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Abstract 

The increasing world population demands increased food production, but several abiotic factors, for 

example, drought is hampering increased food production. The problem of drought is increasing and 

further limiting the productivity of many crops. There could be a range of potential strategies that may 

help plants to tolerate and avoid drought conditions, for example, to produce stress tolerant plants, to 

understand and utilize signalling mechanisms in plants to adapt them to drought, to minimize yield loss in 

dryland areas and to reduce the water needs. 

ABA (abscisic acid) is produced during drought stress causing the closure of the stomatal pore to prevent 

water loss. K
+
 (potassium) release from the vacuole through K

+
 transporters localised to the tonoplast, 

during these conditions this is one of the important steps. However, the mechanism of coupling of ABA 

to the tonoplast is not known yet. The AtTPK1 channel (Arabidopsis thaliana two pore potassium 

channel) is localised to the tonoplast and has been shown to have a role in the vacuolar K
+
 release and 

stomatal closure. AtTPK1 is activated by phosphorylation and binding of 14-3-3 proteins. The surface of 

the plasma membrane of plants contains receptor-like kinases (RLKs) that are known to be involved in 

the early steps of osmotic-stress signalling. Binding of a ligand to the extracellular domain of the RLK 

activates the intracellular kinase domain, resulting in bringing extracellular environment signals into the 

intracellular targets. LRRs (Leucine-rich repeat) are a possible mechanism to link external ABA with 

TPK1 and because LRRs had been found to impact in TPK1 current, for example, two LRR receptor 

kinase candidates, KINASE1 and KINASE2 (At3g02880 and At4g21410) were shown by patch clamp 

studies to affect TPK1 current stimulation. The BiFC (Bimolecular fluorescence complementation) 

studies also showed interaction of these kinases with TPK1 when they were treated with ABA. Therefore, 

it was hypothesized that they are involved in the activation of TPK1 (Isner et al., unpublished data). The 

kinase mutant lines were selected for further characterization in comparison to tpk1 and WT (wild type) 

in different media conditions. 

All the knockout lines showed shorter root lengths and lower fresh weights as compared to the wild type 

in K
+
-deficient, higher K

+
 and osmotic stress conditions. Lower fresh weights for the KO (knock out) 

lines as compared to the wild type were also observed in soil in control and moderate stress conditions. 

The lower growth of the tpk1 and kinase KO lines as compared to the wild type may be because of the 

lack of TPK1 activity. The lack of kinase proteins may lead to the inactivation of TPK1 channels and thus 

it leads to the comparable results between the kinase KO lines and tpk1 KO line. These results suggest a 

link between these kinases and TPK1 channel activity. These lines were also tested for the stomatal 

conductance under various ABA treatments applied to the excised leaves. The kinase KO lines and tpk1 

KO led to a delayed response in stomatal closure after exposure to different concentration of ABA (1 µM, 

10 µM and 100 µM). 

The similarities in phenotype between the kinases KO and channel KO mutants suggest there may be a 

relation between these kinases and the TPK1 channel. Combined with other, as yet unpublished data, the 

data from this report support the idea of the involvement of these kinases in ABA dependent regulation of 

TPK1. 
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Chapter 1 

1 Introduction 

1.1 Drought 

Drought is a natural disaster of water-deficit stress condition. Generally drought is 

known as a long period of surface or underground water deficiency or unusually dry 

weather that persists long enough (for months or even years) to cause environmental, 

social and economic problems. This generally happens when a region receives 

continuously below average precipitation. 

Drought occurs due to changes in many environmental factors such as temperatures, 

low relative humidity, high winds, timing and characteristics of rain or snow, poor water 

managements by humans or increased water usage. 

Both surface and groundwater resources are affected by drought, resulting in reduced 

water supply, less nutrient availability, low crop production or harvest failure and  a 

reduction in product varieties (Riebsame et al., 1994). Drought not only affects the 

productivity of the crops but also the vegetative parts by lowering the growth and 

photosynthesis. Drought causes long-term impacts on perennial crops (crops that live 

for more than two years). Almost all major crops are affected by drought depending 

upon the degree of desiccation. More than 50% of the Earth’s surface areas, including 

agricultural lands are exposed to drought (Kogan, 1997). According to the UNCCD 

(United Nations Convention to Combat Desertification) classification system, 40 

percent of the world’s total land is considered as dry lands. 

Plants require water for many physiological and biochemical processes, for example, 

photosynthesis, nutrient uptake and translocation, as well as for cooling (Farooq et al., 

2009). Nowadays the crucial issues for agriculture are drought, salinity and low 

temperature. These affect the physical, physiological and even genetical behavior of the 

plants.  Drought stress results in the disruption of the cellular membrane bilayer making 

it unusually porous (Mahajan and Tuteja, 2005) and difficult for the transport of 

materials in to and out of the cell. Upon dehydration organelles and cytosolic proteins 

may decrease their function or even may completely denature (Mahajan and Tuteja, 

http://www.intechopen.com/books/abiotic-stress-in-plants-mechanisms-and-adaptations/stomatal-responses-to-drought-stress-and-air-humidity#B8
http://www.intechopen.com/books/abiotic-stress-in-plants-mechanisms-and-adaptations/stomatal-responses-to-drought-stress-and-air-humidity#B8
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2005). Cell division may be reduced resulting in reduced plant growth. Water stress can 

result in reducing photosynthesis rate, ion uptake and respiration and ultimately it can 

result in plant death (Jaleel et al., 2008). Drought causes water stress, but can also often 

lead to salinity stress. Drought stress is a common detrimental factor in the world 

economy than salinity. Salinity is the high concentration of ions of salts such as Na
+
, 

Ca
2+

, Cl
-
 and HCO3

-
 in the soil. Drought can also affect human activities. Drought leads 

to direct and indirect loss to farmers and consumers respectively. 

By 2050, it is expected that the world population will increase by two to three billion. 

At the same time water shortages are anticipated to get more severe due to climate 

change, potentially resulting in reduced food production. Yet, by 2050, a 70 percent 

increase in food demand is expected, particularly in developing countries (Hugh Turral, 

FAO consultant). To increase food production a number of strategies can be employed: 

 Improving farming practices and traditional plant breeding, to conserve water, 

such as making dams and other constructions that help to store water. 

 Genetic engineering, to increase plant tolerance to drought stress. 

  Understanding and exploiting signalling mechanisms in plants to adapt them to 

drought. 

1.1.1 Different mechanisms of plants for tolerating drought stress 

Plants adopt different mechanisms for drought tolerance (Osakabe et al., 2013). For 

example, xerophytes have different morphological and physiological adaptations to 

water deficient conditions such as the members of family Cactaceae use stems as water 

reservoirs. Other xerophytes have comparatively thick waxy layers or smaller leaf 

surfaces that help in reducing the water loss. Cotton plants respond to drought by 

accelerating senescence and by shedding of the old leaves. Some plants have extensive 

root systems either going deep into the earth or spreading on the surface of the earth 

(Henry et al., 2012) to explore and absorb distant water sources. Other plants like rice, 

wheat and barley do not have such mechanisms and therefore they are sensitive to 

drought. 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3952189/#B58
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Figure 1.1: Different plants adapt differently to stress. 

Figure 1.1A: Cactaceae family having round stems and spined leaves. Figure 1.1B: Examples of crop 

plants; rice, wheat and barley.  

One of the most important mechanisms to tolerate drought is the ability of plants to 

regulate the size of the stomatal opening. This ability is especially important during 

drought stress, when loss of water can cause serious damage to plants. The discovery 

and development of stress tolerant crops to avoid yield loss during water stress is 

therefore very important. 

1.1.2 The phytohormone abscisic acid (ABA) 

Abscisic acid (ABA) is produced in plants during drought stress. It is a naturally 

occurring plant hormone that was identified in the 1960s. It is important for the 

regulation of abiotic stress responses such as drought, salinity, seed development and 

dormancy, germination, stomatal closure and biotic stress (pathogen attack) (Cutler et 

al., 2010). It is synthesized from oxygenated carotenoids called xanthophylls, for 

example, neoxanthin, violaxanthin and zeaxanthin, (Li and Walton, 1990). ABA is 

applied either to intact leaves or isolated epidermis for closing the stomatal aperture 

(Jones and Mansfield, 1970). Wright and Hiron, (1972) showed that the level of ABA 

increases in the leaves that are osmotically stressed. The response of mesophyll and 

guard cells is different to ABA, this difference in response is important for the control 

of transpiration. Mesophyll cells work efficiently during stomatal closure because of the 

difference in response to ABA (Jones and Mansfield, 1970). Thus, understanding the 

A

B

http://en.wikipedia.org/wiki/Abscisic_acid
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function of ABA is essential for the development of crops with better stress responses 

(Wang et al., 2011).  

1.1.3 ABA receptors and ABA signalling pathway 

During drought stress, ABA is produced and accumulated in the vascular tissues 

(xylem, phloem) of plants (Iuchi et al., 2001 and Behnam et al., 2013). ABA is 

delivered by membrane localised ATP-binding cassette (ABC) transporters into the 

guard cells (Kang et al., 2010). The sensing of ABA by the plant cell has recently been 

revealed (Pei et al., 1997). Several receptors are responsible for sensing ABA such as 

PYR (pyrabactin resistance) /PYL (pyrabactin resistance-like). The binding of ABA to a 

PYR /PYL family of ABA receptor-like proteins initiates the early steps of ABA 

signalling pathway (Ma et al., 2009; Park et al., 2009 and Cutler et al., 2010). The 

formation of ABA during drought stress brings about activation of chains of reactions 

that activate the production of reactive oxygen species (ROS) such as H2O2, which 

results in the transport of Ca
2+ 

through both plasma membrane and tonoplast into the 

cytosol.
 

The plasma membrane proton pumps H
+
-ATPases that hyperpolarise the 

membrane are inhibited in the presence of ABA to induce stomatal closure (Merlot et 

al., 2007). The Arabidopsis genome contains 13 PYR1-like genes named Pyl1 to Pyl13. 

The 2C protein phosphatases (PP2Cs), (ABI1 and ABI2 (ABA INSENSITIVE 1 and 2)) 

are central regulators of ABA responses (Koornneef et al., 1984 and Merlot et al., 

2001). In this pathway, the type 2C protein phosphatases (PP2Cs) and Sucrose non-

fermentation kinase subfamily 2 (SnRK2s) act as negative and positive regulators of 

downstream signalling (Ma et al., 2009 and Park et al., 2009). In figure 1.2, during 

normal growth conditions when cellular ABA levels are low, ABI type protein 

phosphatases 2Cs are active and bind to a serine/threonine protein kinase SnRK2 such 

as Open Stomata 1 (OST1) and dephosphorylate to keep the SnRK2s in an inactive 

state. While during stress condition, the cellular ABA level rises and binds to 

PYR/PYL, (Ma et al., 2009 and Yin et al., 2009) which in turn inhibits and creates a 

binding surface for PP2Cs. SnRK2s are then released from PP2Cs and self-activated via 

auto-phosphorylation, in the nucleus the SnRK2s further phosphorylates ABRE-binding 

factors (ABF). The phosphorylated ABFs bind to ABA-responsive elements (ABREs) at 

the promoter of the ABA-responsive genes and lead to the transcription of ABA-

responsive genes resulting in stomatal closure. While in the cytoplasm the activated 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3952189/#B26
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3952189/#B5
http://genesdev.cshlp.org/content/24/16/1695.full#ref-63
http://genesdev.cshlp.org/content/24/16/1695.full#ref-85
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SnRK2s cause the activation of S-type anion channel such as  SLAC1 a slow-activating 

sustained (S-type), (Schroeder and Hagiwara, 1989) and a rapid-transient (R-type), that 

helps in the removal of anions. The anion efflux through the K
+
 efflux channel, GORK 

(guard cell outward-rectifying K
+
), results in plasma membrane depolarization and in 

decreasing the activity of stomatal opening channels, such as KAT1/KAT2.  

G protein coupled receptor has also been shown to be a ABA receptor (Liu et al., 2007). 

ABA responses in Arabidopsis are mediated by G protein-coupled receptors (GPCRs) 

by interacting with G protein alpha subunit (Liu et al.,2007). G-proteins act as 

molecular switches to couple the activation of GPCRs (Jin-Gui Chin, 2008). The 

GPCRs plays an important role in a range of signalling pathways. The GPCRs sense 

many extracellular signals and activates the hetromeric G proteins, which further 

transduce signals intracellular to appropriate downstream effectors (Narendra Tuteja 

2009) to switch on cellular responses. G-proteins were found to regulate stomatal 

movements in Vicia faba using electrophysiological and pharmacological methods, 

(Huajian Zhang 2012). All these findings have greatly helped in understanding the 

functions of ABA but there is still a great ignorance about the coupling of ABA 

signalling to the vacuole. 

 

Figure 1.2: Signalling model of ABA. 

In the normal growth conditions, PP2C phosphatase (2C protein phosphatases) attaches to SnRK2 kinases 

(Sucrose non-fermentation kinase subfamily 2) and deactivates their auto-phosphorylation. During stress 

conditions, ABA attaches to ABA receptors PYR/PYL (pyrabactin resistance/pyrabactin resistance-like) 

forming a complex resulting in the deactivation of PP2C phosphatases, resulting in the auto-

phosphorylation of SnRK2 kinases that further results in the phosphorylation of transcription factors that 

helps in the transcription of ABA-responsive genes.   
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1.2 Stomata 

1.2.1 Stomatal structure 

Plants need to have a control over the exchange of water and gases into the plants and in 

their outside environment. This is important to adjust to their continuously changing 

environment. Therefore, the epidermis of aerial plant parts contain small pores called 

stoma (stomata: plural) that are used for the exchange of gasses and for the transpiration 

of water in and out of the leaf by controlling the size of the stomatal pores. In the 

terrestrial plants, stomata were first found over 400 million years ago (Edwards et al., 

1998). On the basis of morphology stomata are divided into two shapes; linear 

dumbbell-shape in grasses and kidney shape in trees and shrubs. The size of one stoma 

ranges from 10—80 µm depending on the environmental condition and the type of the 

species (Willmer and Fricker, 1996). These pores are surrounded by a pair of 

specialized epidermal cells called the guard cells having cell wall, nucleus, cytoplasm, 

chloroplasts, vacuoles, radially arranged microfibrils and other cellular organelles. The 

guard cells are further surrounded by epidermal cell, spongy mesophylls, palisade, 

upper epidermis cells and cutical respectively. The inner wall of the guard cell is much 

thicker compared to the outer wall. When the guard cells are turgid the gap between the 

two cells is more and when the cell is flaccid the gap is less. Depending on the size, 

shape, structure, location and their behaviours stomata respond to a variety of signals 

which result in changes in environment from the cellular to the global level 

(Hetherington and Woodward, 2003). Stomatal pores occupy about 5% of the total leaf 

area (Willmer and Fricker, 1996). The internal structure of the leaf is shown below in 

figure 3 and stomata in figure 4 showing location of different cells, the shape and 

position of stomata and different other cells. 
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Figure 1.3: Internal structure of leaf. 

The internal structure of a leaf showing the location of different cells, i.e., cuticle, upper epidermis, 

palisade mesophyll cells, spongy mesophyll cells, lower epidermis and guard cells. 

 

Figure 1.4: Structure of stomata. 

The stoma is surrounded by a pair of guard cells, containing vacuoles, cellulose microfibrils and inner 

thick and outer thin walls.  

1.2.2 Stomatal function 

Stomata are involved in the maintenance of plant homeostasis. They regulate gas 

exchange between the leaves and the atmosphere. The transpiration of water from the 

leaves drives the water uptake by the roots and transport through the xylem allowing the 

uptake of CO2 for photosynthesis and exit of oxygen as a by-product (Takemiya and 

Shimazaki, 2010) through stomata. The stomatal opening helps the plants to cool. Some 

large trees, for example deciduous trees, can transpire about 400 litres of water per day 

through their stomata (Raven et al, 1987). The annual maximum rate of water loss 

through stomata is 32 X 10
15

 kg in the uniform and warm forested areas (Alistair and 
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Woodward, 2003). Plants close their stomata during drought stress and therefore take-

up very little CO2 and the transpiration rate is also lowered (Arve, L. E. et al, 2011). 

Guard cells respond to environmental stimuli such as blue light, red light, temperature, 

CO2, humidity and plant hormones such as auxins, ethylene and abscisic acid to prevent 

excessive water loss by transpiration and to optimize plant growth (Vavasseur and 

Raghavendra, 2005). The more the turgor pressure in the guard cells, the greater is the 

opening of the stomatal aperture and vice versa. When the turgor pressure is more in the 

epithelial cells (subsidiary cells) the stomatal aperture is reduced due to the force 

applied by the epithelial cells on the guard cells (Buckley, 2005). During 

photosynthesis, CO2 is consumed a lot, causing a decline in the concentration of CO2, 

for compensating this, stomata open and let in more CO2 to the cell from the atmosphere 

to continue cellular activities. On the other hand, during the absence of photosynthesis, 

high concentration of CO2 is available and therefore, very little CO2 is taken up. Thus it 

helps in the lower water loss through transpiration as the stomata are closed (Dietrich et 

al., 2001). During water stress conditions, plants can keep their stomata closed to reduce 

the water loss and sacrificing CO2 uptake.  

Guard cell also contains proteinecious cortical microtubules that are believed to be 

involved in the cell shape and development of stomata (Mitchison and Kirschner, 1984). 

The microtubules radiate from the inside of the stomatal pore toward outside of the 

guard cell (McDonald et al., 1993). These microtubules are involved in the deposition of 

cellulose microfibrils in distinctive orientation and distribution in characteristic regions 

of the guard cell wall that is important for the stomatal movement in response to the 

guard cell volume (Palevitz and Hepler, 1976). 

Like other cells, guard cells also have cellular organelles such as vacuoles. The vacuole 

provides turgor, ion homeostasis, protein degradation, pH regulation, Ca
2+

 signaling and 

is a depository for both harmful and useful compounds. When plants absorb nutrients in 

excess, these are stored in the vacuoles. This stored food helps the plants to survive 

during periods of less food availability, when minerals such as NO3
− 

and K
+
 are released 

from the vacuole to maintain cytosolic homeostasis (Walker et al., 1996 and Orsel et al., 

2002). As a storage organelle of the cell, vacuoles also store K
+
 and K

+
 accumulation 

develops turgor pressure within the cell which generates opening and closing of stomata 

and other tropisms. 
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1.2.3 Guard cell vacuolar K
+ 

and its role in stomatal conductance 

Potassium is a very important cation present in about ~100 mM in almost all organisms. 

It provides a suitable ionic environment for metabolic processes in the cytosol. K
+
 is 

used by cells for maintaining the regulatory processes in development, growth, 

reproduction, solute transport and osmotic balance for regulation of water in plants. 

Potassium is required for many physiological processes such as in the activation of 

many enzymes, photosynthesis and protein synthesis. A deficiency of potassium can 

lead to many growth related problems to the plants. Mainly, these could be a slow or 

arrested growth, chlorosis of leaves which is due to the low level of chlorophyll due to 

K
+
 deficient conditions, reduced ability to fight against diseases, pests and bugs, 

unhealthy roots, early shedding of leaves before the time (Defoliation), formation of less 

ATP, resulting in the breakdown of transport of sugar and no or poor resistance to 

drought and high temperature. All these can result in lower crop quality and yield. 

K
+
 in the guard cells helps in the opening of stomata (Allen and Sanders, 1995). 

Accumulation of K
+
 results in the reduction of water potential causing the increase of 

water uptake. The water causes turgidity of the guard cells, which results in the opening 

of stomata. The cell wall of guard cells contains asymmetrical arranged microfibrils that 

help in opening and closing of stomata (Shimazaki et al., 2007). The stomatal 

conductance also depends on the accumulation of the sugars (Talbott and Zeiger, 1998). 

1.2.4 Potassium channels and transporters 

The plasma membrane, endomembranes and tonoplast of plants contains membrane 

proteins for the transport of potassium (Maathuis, 2007). There are two main types of 

K
+
 channels in the plasma membrane, i.e. inward rectifying K

+
 (K

+
in), i.e. AKT1, and 

outward rectifying K
+
 (K

+
out) channels, e.g. GORK (Guard cell outward rectifying K

+
 

channel). 

The vacuoles of the cells also contain channels and carrier transporters. The Arabidopsis 

genome contains 15 genes coding for proteins that form K
+
 channels (Szczerba et al., 

2009). There are three types of vacuolar K
+
 channels, i.e., fast activating K

+
 channels 

(FV), slow activating K
+
 channels (SV) and vacuolar channels (VK) (Hedrich and 

Neher, 1987; lvashikina and Hedrick, 2005 and Pottosinet et al., 2004). Tandem-pore 

potassium (TPK) channels belong to voltage independent K
+
 channels. There are five 

isoforms of tandem-pore potassium (TPK) channels, i.e., TPK1, TPK2, TPK3, TPK 4 
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and TPK5 in Arabidopsis. They are localized to the tonoplast of the vacuole except 

TPK4 which is localized to the plasma membrane (Becker et al., 2004). There are two 

TPK isoforms in rice (Oryza sativa) that are known as TPKa and TPKb. Shin 

Hamamoto et al., (2008) characterised NtTPK1 (Nicotiana tabacum) as a novel 

tonoplast potassium channel in tobacco. NtTPK1 was found in flowers, leaves and 

roots. 

1.3 TPK1 a Vacuolar potassium channel 

1.3.1 TPK1 structure and localization 

Using approaches such as electrophysiology, reverse genetics, and homologous gene 

expression, the TPK1 gene was shown to have a role in K
+ 

homeostasis, stomatal 

functioning and seed germination (Gobert et al., 2007). TPK1 is the VK channel and the 

most abundantly expressed isoform of the vacuolar potassium channel family. TPK1 is 

considered to be the most prominent member of the TPK family (Zimmermann et al., 

2004). It is expressed at the tonoplast. Schonknecht et al., (2002) and Czempinski et al., 

(2002) showed TPK1 channel to be expressed in the vacuolar membrane of Arabidopsis 

and tobacco. TPKs have four trans-membrane domains (4-TMD), a two pore structure 

and both pores contain the GYGD motif (Voelker et al., 2006), responsible for K
+
 

selectivity (Maathuis, 2007) as shown in figure 1. Most of the TPK channels have two 

clear ‘EF hands’ localized in the C-terminal domain where Ca
2+

 binds and a 14–3–3 

protein (GRF6) binding site, Ca
2+

 is involved in TPK1 regulation (Maathuis, 2007). The 

phosphorylation of a serine residue (S42) in the N-terminus of the TPK1 channel, by 

calcium-dependent protein kinases (CDPKs) (Latz et al., 2013) helps in binding of 14-3-

3 proteins to the TPK1 channel. This 14-3-3 protein further helps in the activation of the 

TPK1 channel (Latz et al., 2007). TPKs have been identified in roots, leaves and 

flowers and have been found in the tonoplast membrane. The proposed structure of 

TPK1 is shown below.  
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Figure 1.5: Proposed topology of the two pore K
+
 channel. 

Proposed topology of the TPK1, showing four transmembrane domains (M1, M2, M3, and M4),  two pore 

regions (P1 and P2), 14-3-3 binding site in the amino terminus and a two carboxy terminal Ca
2+

 binding 

EF-hands. 

1.3.2 Function 

At the tonoplast TPK1 mediates K
+
-selective currents between cytoplasmic and 

vacuolar compartments. TPK1 activity is independent of vacuolar membrane voltage, 

but is regulated by cytoplasmic Ca
2+

 and cytoplasmic pH (Gobert et al., 2007). Gobert 

et al., (2007) showed the absence of current in the vacuolar membrane in the TPK1 loss 

of function mutants. TPK1 was also reported by Gobert et al., (2007) to be involved in 

the translocation of intracellular K
+
. TPK1 is also involved in the redistribution of K

+
 

between the different tissues of the plants.  

In stomatal guard cells, TPK1 is involved in the removal of Potassium from the guard 

cell vacuole. Lower concentration of potassium in the guard cells helps in the closure of 

stomatal pore for preventing or decreasing the rate of transpiration during periods of 

less water availability. When the TPK1 gene is knocked out, K
+
 release in the presence 

of ABA is delayed, causing slower stomatal closure which can reduce plant growth, but 

removal of TPK1 has no effect on K
+
 uptake during stomatal opening (Gobert et al., 

2007). This suggests that during stomatal closure TPK1 could be a possible pathway for 

vacuolar K
+
 release in the presence of ABA.  

TPK1 is activated under different environmental factors such as the concentration of 

potassium, elevated Ca
2+

 concentration in the cell, pH of the cell, S42 phosphorylation 

and 14-3-3 proteins binding to an N-terminal domain (Latz et. al 2007) and stress 

hormones such as ABA.  

 

 

Vacuole

Cytosol EF-hands 

P1 P2

M1                    

14-3-3

M3 M4M2
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1.3.3 Regulation of TPK1 

There are many potential factors that are involved in TPK1 regulation, such as 

cytoplasmic calcium, pH (Gobert et al., 2007), 14-3-3 proteins (Latz et al., 2007), K
+
 

concentration and phosphorylation. The 14–3–3 binding motif in TPK1 is 

phosphorylated and activated by the calcium-dependent protein kinases (CDPKs) (Latz 

et al., 2013). 14-3-3 protein further helps in the enhanced activation of the TPK1 

channel (Latz et al., 2007). Thus, ABA may lead to the activation of TPK1 via 

phosphorylation of the 14-3-3 domain.  

1.3.4 Previous work 

The reduction of water loss during abiotic stress such as drought stress can improve 

growth and quality of the plants. Investigating the pathways of water conservation by 

plants may help improving water use efficiency in plants. Potassium channels such as 

TPK1 are involved in the movement of stomata by removing  K
+
 from the guard cell 

vacuole thereby resulting in the closure of stomatal pore and resulting in the prevention 

of  water loss. Thus understanding of the activation of TPK1 channel is important. Isner 

et al., (unpublished data) showed the increased activity of TPK1 in Arabidopsis guard 

cell vacuoles, through patch clamp studies when ATP and 14-3-3 were added to the bath 

solution. To see the effect of phosphorylation, the vacuoles were further washed with 

100 mM NaCO3, no effect on the phosphorylation was observed, which suggested that 

the kinase responsible for TPK1 phosphorylation and 14-3-3 dependent activation is 

associated to the tonoplast. Thus, for the identification of that kinase bioinformatics 

analysis was performed by Isner et al., using SUBA data base. For 17 kinase isoforms 

(KINASE1 to KINASE17) loss of function mutants were obtained and their activities 

were observed in the presence of ATP+14-3-3. Out of 17 kinase mutants, two candidate 

kinase knockout lines, i.e. kinase1_1 of At3g02880 and kinase2 of At4g21410 were 

shown to affect TPK1 current stimulation. The current stimulation by these kinases was 

lower. BiFC approach was further used for analysing the interaction of the kinases to 

the TPK1 channel. Fluorescence was observed in the guard cell protoplasts that were 

co-transformed i.e, TPK1-YFPCt with KINASE1_1-YFPNt or with KINASE2-YFPNt. 

The interaction for the KINASE1_1 was found at the tonoplast while for the KINASE2 

the interaction was found at the endoplasmic reticulum. According to the Arabidopsis 

Information Resource (TAIR) both kinases are members of the leucine LRR-RLK 
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family and are located to the plasma membrane and are expressed ubiquitously in 

plants. Preliminary data suggest that KINASE1_1, can move from the plasma 

membrane to the tonoplast through endocytosis (Isner et al., unpublished data). 

Cysteine-rich receptor-like kinases (CRKs) are shown to be regulated by stress or 

hormones (Zhang et al, 2013). Nemhauser et al., (2006) showed CRK29 (At4g21410) to 

be significantly down-regulated by ABA. Chen et al., (2010) suggested that the LRR 

kinase (AT3G02880.1) phosphorylation state increases at a C-terminal position after an 

hour treatment with ABA. The above discussed work showed that this may be the case 

that the kinases are involved in the activation of TPK1. 

1.4 Kinases 

MacRobbie (2006) suggested that after ABA application, K
+
 is released from the 

vacuole within minutes. This rapid ABA induced K
+
 release may involve a quick 

posttranslational change and protein-protein interaction. Isner et al., (unpublished data) 

showed kinases to be involved in the regulation of TPK1. The potential role of kinases 

in ABA dependent activation of TPK1 were studied here. Kinases are the key regulators 

of cell functions. Kinases are involved in the transfer of a phosphate (PO4
3−

) group from 

ATP to a substrate (the process called phosphorylation). The substrates may be protein, 

lipids, carbohydrates, amino acids and nucleic acids. The phosphate group is covalently 

attached to a specific substrate. Phosphorylation is an important process for the function 

and activity of many proteins. It activates and deactivates many protein enzymes. 

Kinases also help in determining the location of many proteins. Specific kinases are 

often named after their substrates for example, protein kinases (Cyclin dependent 

kinases, Mitogen-activated protein kinases), lipid kinases (Phosphatidylinositol kinases, 

Sphingosine kinases) and carbohydrate kinases (Hexokinase, Phosphofructo kinase). A 

brief description of the functions of these kinases are below: 

Protein kinases are involved in the signal transduction (Hideji Karbiet and Setsuko 

Komatsu, 1995) of various stimuli such as biotic and abiotic stresses. Protein kinases 

attach phosphate groups to a specific amino acids for modifying protein function. Some 

protein kinases have been found to be Ca
2+

 dependent (D. M. Roberts and A. C. 

Harmon 1982) known as CDPKs (calcium dependent protein kinases). Another class of 

protein kinases, Cyclin dependent kinases (CDKs) belongs to  serine/threonine protein 

kinases. During different stages of cell division the CDKs make sure that the cells 

http://en.wikipedia.org/wiki/Hexokinase
http://en.wikipedia.org/wiki/Phosphofructokinase
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progress in an organized manner (Francis D, 2007). Mitogen activated protein kinase 

(MAPK) are involved in response to abiotic stress (Alok Krishna Sinha, 2011). In  

Arabidopsis the  expression of AtMEKK1 (Arabidopsis thaliana MAP kinase kinase) 

and AtMPK3 (Arabidopsis thaliana MAP kinase kinase kinases) could be induced 

during drought stress (Mizoguchi T, 1996). Lipid kinases attach phosphate group to 

lipids in the cell and helps in changing the reactivity and localization of the lipids.  For 

example, Phosphatidylinositol kinases phosphorylates lipids. The phosphorylated lipids 

(phosphoinositides) help in cell signalling, lipid signalling and membrane trafficking 

(Munnik T, 2011).  Sphingosine kinases are lipid kinases that catalyzes the formation of 

lipid second messenger (Olivera A 2001) such as sphingosine-1-phosphate from the 

precursor sphingolipid sphingosine. Hexokinase a carbohydrate kinase phosphorylates 

six carbon sugars (hexoses). While phospofructo kinase phosphorylates Fructo 6-

phosphate.   

While Phosphatases are involved in the removal of PO4
3−

 group from a substrate 

through hydrolysis (the process called dephosphorylation) that is opposite to the 

function of kinases. The phosphatases are named after their substrates for example, 

phosphotyrosine, (Tyrosine-specific phosphatases), phosphoserine/-threonine (serine-

/threonine-specific phosphatases).  

1.4.1 Receptor-like kinases (RLKs) 

Plant cell responds to different environmental stress conditions (stimuli), for example 

biotic or abiotic stress condition, through receptors present on the cell surfaces. The 

plant response to these stimuli could be in various forms, for example, division, 

expansion or elongation of the cells, cell death or abscission of leaves, synthesis of 

chemical compounds and preparing themselves to fight against the infections and 

pathogens (Morris and Walker 2003). Receptor like kinases (RLKs) are transmembrane 

receptor proteins that assist communication from cell to cell and between the cell and its 

outside environment (Shiu and Bleecker, 2001). RLK is the largest family of such 

receptors. In Arabidopsis there are more than 400 identified membrane-associated 

RLKs. The first plant RLK was identified in 1990 in maize by Zan et al., in 2013. RLKs 

have also been shown to play a role in light responses and have been suggested to be 

present throughout the plant (Shiu et al., 2004).  

http://en.wikipedia.org/wiki/Lipid
http://en.wikipedia.org/wiki/Kinase
http://en.wikipedia.org/wiki/Sphingosine-1-phosphate
http://en.wikipedia.org/wiki/Sphingolipid
http://en.wikipedia.org/wiki/Sphingosine
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1.4.2 Leucine-rich repeat RLKs (LRR–RLKs) 

Leucine rich repeat-RLKs are the largest group of receptor-kinases in Arabidopsis 

(Diévart and Clark, 2003). In Arabidopsis there are 120 genes of (LRR)-RLKs. Osakabe 

et al., (2013) suggested that the surface of plasma membranes of some plants contains 

RLKs that are known to be involved in the early steps of osmotic-stress signalling. 

LRR-RLKs have tandem repeats of about 24 amino acids with conserved leucines 

(Colette et al., 2011). It has an extracellular membrane for sensing stimuli, the 

extracellular LRR domain that are localized at the plasma membrane function as a 

receptor and is involved in protein-protein interactions (Walker, 1994) in response to 

various environmental and developmental signals (Dievart and Clark, 2004). A C-

terminal cytoplasmic serine/threonine kinase domain involved in protein 

phosphorylation. The (LRR)-RLKs are known to be involved in the plant growth, 

development, differentiation, stress response (Zan et al., 2013) and disease resistance 

(Song et al., 1995).  

 

 

Figure 1.6: Structure of leucine-rich repeat receptor-like kinase. 

LRR-RLK has an extracellular leucine rich repeat domain and a cytoplasmic kinase domain. 
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http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3952189/#B57
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1.4.3 Objectives 

Isner et al., (unpublished data) showed increased activity of TPK1 in Arabidopsis guard 

cell vacuoles. The kinases responsible for TPK1 phosphorylation and 14-3-3 dependent 

activation was shown to be associated to the tonoplast. Thus, for the identification of 

that kinase bioinformatics analysis was performed and candidates tested using a loss of 

function approach. Two candidate kinases  i.e. KINASE1 (gene code At3g02880) and 

KINASE2 (At4g21410) were shown to affect TPK1 current stimulation. The current 

stimulation by these kinases was lower. BiFC approach was further used for analysing 

the interaction of the kinases with the TPK1 channel. Fluorescence was observed in the 

guard cell protoplasts that were co-transformed. The interaction for the KINASE1_1 

was found at the tonoplast while for the KINASE2 the interaction was found at the 

endoplasmic reticulum.  

Therefore the objectives of the thesis were: 

To investigate the role of the TPK1 channel, KINASE1 and KINASE2 in the growth 

and stomatal conductance of Arabidopsis. To achieve this, wild type and loss of 

function mutants were compared in growth experiments and stomatal conductance 

measurements and the results are discussed.  
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Chapter 2 

2 Materials and Methods 

2.1 Plant material 

The seeds of different lines of Arabidopsis were obtained from Salk Institute Genomic 

Analysis Laboratory (http://signal.salk.edu/cgi-bin/tdnaexpress). Ecotype Colombia was 

used as wild type. Two T-DNA insertion lines (Salk_019840 and Gabi_047F11) of 

LRR-RLK at3g02880, and one T-DNA insertion line (Sail_447_FO6) of LRR-RLK 

at4g21410 were used. As documented in the Signal Salk database, T-DNA is inserted in 

the first exon of at3g02880 in Salk_019840  mutant line, while insertion is in the 300 

UTR in case of Gabi_047F11mutant line of the same gene.The T-DNA is inserted in the 

first exon of at4g21410 in  Sail_447_FO6. These lines were named formally as 

kinase1_1 (Salk_019840), kinase1_2 (Gabi_047F11) and kinase2 (Sail_447_FO6). 

These lines were used to study the effect of these genes on growth and stomatal 

conductance in Arabidopsis under different conditions. 

2.2 Growth medium and growth conditions 

2.2.1 Seed sterilization 

The Arabidopsis seeds were sterilized using 70% ethanol for 1 minute, then using 70% 

ethanol with a drop of tween-20 for 15 minutes and followed by five times washing 

with sterilized distilled water. 

2.2.2 Growth on ½ MS plates 

Arabidopsis seeds were grown in different media conditions to study plant growth. 

Seeds were sown on ½ MS (Murashige and Skoog medium) control plates containing 

macronutrients (10.30 mM NH4NO3, 1.49 mM CaCl2.2H2O, 0.750 mM MgSO4.7H2O, 

0.625 mM KH2PO4, and 9.39 mM KNO3) and micronutrients (0.050 μM H3BO3, 0.052 

μM CoCl2.6H2O, 0.05 μM CuSO4.5H2O, 0.049 μM FeSO4.7H2O, 0.0499 μM 

MnSO4.4H2O,  0.516 μM Na2Mo4O4.2H2O, 14.9 μM ZnSO4.7H2O). The control 

medium was supplemented with additional KCl to increase the concentration of K
+
 up 

to 50 mM in the medium for the salt stress treatment. While for the osmotic stress 
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treatment the control medium was supplemented with sorbitol solution to 50 mM (w/v) 

and 80 mM (w/v) sorbitol. KH2SO4 and KNO3 in the control medium were replaced 

with the equimolar concentrations of Na
+
 salts, i.e., NaH2PO4 and NaNO3 for the zero 

K
+
 condition. 

2.2.3 Growth in soil 

Seeds were sown with the help of sterile toothpicks on P40 trays containing compost 

from Sinclair named Levingtons F2 + sand. Each pot contained one seed. The trays 

were kept in the cold room for 2—3 days, and then were transferred to the growth room. 

The trays were regularly watered by the horticulture technicians for 3 to 4 weeks. 

2.2.4 Growth environment 

The plants were kept in the growth room under 20-23 C
0
 at 16hrs day length. 

2.3 Chemicals and consumables 

The chemicals used in this study were purchased from different companies including 

Sigma (UK), Fischer Scientific (UK) and the consumables were purchased from Star 

Lab (UK), Eppendorf (UK). The RNA extraction kits, gel purification and protein assay 

kits were purchased from Qiagen (UK) and Fermentas (UK) Thermo scientific. 

2.4 DNA extraction from Arabidopsis plants 

DNA was extracted from individual Arabidopsis plants according to the CTAB method. 

The leaves were ground to fine powder in liquid nitrogen and powder was quickly 

mixed with 500 µl pre-warmed CTAB (Hexadecyl trimethyl-ammonium bromide) 

buffer and incubated at 65 °C for 60 minutes. After vortexing the mixture, 300 µl of 

chloroform: isoamylalcohol solution (24:1v/v) was added. The mixture was vigorously 

shaken and centrifuged for 7 min in a microfuge. The top aqueous layer was transferred 

to clean, sterilized, Eppendorf tubes and DNA was precipitated by adding 2 volumes of 

96 % ethanol and 4% 3 M NaAc (pH 5.2). The mixture was vortexed and left at room 

temperature for 30 minutes to precipitate the DNA. The mixture was then centrifuged 

for 10 min at 13000 RPM to obtain the DNA pellet. Finally, the pellet was rinsed in 70 

% ethanol. It was then dried for 10 min and resuspended in 100 µl sterilized water. 
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2.5 Total RNA isolation from Arabidopsis plants 

Total RNA was extracted from leaf tissues of individual homozygous Arabidopsis 

plants, using an RNase easy KIT (Qiagen, UK). Approximately 100 mg leaves were 

ground to fine powder in liquid nitrogen with the help of a grinder, while kept frozen. 

The tissue was transferred to RNase-free 2 ml tubes, allowing the liquid nitrogen to 

evaporate, but not letting the tissue to thaw. 450 µl of buffer RLT (a lysis buffer) was 

added and vortexed vigorously. The lysate was added to a Q1Ashredder spin column 

placed in a 2 ml tube and was centrifuged for 2 min on full speed. The supernatant was 

transferred to a clean 1.5 ml Eppendorf tube. 0.5 ml of 96% ethanol was added to the 

lysate and was mixed immediately by pipette. The sample was then transferred to an 

RNeasy spin column and then centrifuged for 30 Sec at 10,000 RPM. The follow-

through was discarded. To wash the RNeasy column 350 µl of buffer RW1 (a washing 

buffer) was added and centrifuged for 30 Sec. 10 µl of the DNase I stock solution was 

added to 70 µl of buffer RDD and was mixed by inverting the tube several times. 80 µl 

of DNAse I incubation mixture was directly poured over the RNeasy spin column 

membrane and left on the bench for 15 minutes. To wash the RNeasy column, 350 µl of 

buffer RW1 was added and centrifuged for 30 Sec and the flow-through was discarded. 

To wash the RNeasy spin column 500 µl of buffer RPE (a wash buffer) was added and 

then centrifuged for 30 Sec at 10,000 RPM. 500 µl of buffer RPE was again added and 

then centrifuged for 2 minutes at 10,000 RPM. For avoiding any carryover of buffers 

and contaminations the RNeasy spin column was placed in a new 2 ml collection tube 

and was centrifuged for 1 min at 10,000 RPM. The RNeasy spin column was removed 

and placed in a 1.5 ml Eppendorf tube. For eluting the RNA 50 µl of RNase free water 

was added to the RNeasy spin column and then centrifuged for 1 minute at 1000 RPM. 

2.6 cDNA synthesis 

Two micrograms of the RNA and 0.5 µg of oligo-dT primer per microgram of RNA 

were mixed and water was added to make the total volume up to 15 µl. For melting the 

secondary structure in the template, the tube was heated to 70 
o
C for five minutes. The 

tube was then cooled on ice to prevent the secondary structure from reformation. The 

tube was then briefly spun for collecting the solution. M-MLV 5X reaction buffer (5 

µl), dNTP mix (1.25 µl), and a recombinant Rnasin ribonuclease inhibitor (0.5 µl) were 

added to the tube. The enzyme used for the synthesis of the first strand of cDNA was 
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the Moloney murine leukemia virus Reverse transcriptase (M-MLV RT), an RNA-

dependent DNA polymerase reverse transcriptase. M-MLV RT (1 µl) was added and the 

final volume was adjusted to 25 µl. The sample was mixed gently and was incubated at 

42
o
C for 60 minutes. 

2.7 Screening of the putative mutant lines using PCR 

The putative T-DNA insertion lines were screened by PCR technique. Different sets of 

primers, i.e., gene specific (forward and reverse) and T-DNA specific primers were 

used. DNA obtained from the leaf tissues of the kinase1_1, kinase1_2 and kinase2 was 

used as a template for the PCR. 

PCR mix was prepared in 2 ml Eppendorf tube by adding and mixing 5 µl Go-Taq Flexi 

buffer, 2 µl of MgCl2, 1 µl of dNTP, 1 µl of each primer, 0.1 µl of Go-Taq polymerase, 

2-3 µl of the template DNA and the final volume was made to 25 µl (per reaction) by 

adding the required amount of water. PCR conditions varied according to the 

requirement of the primer pairs (Table 2.1) and the size of the amplicon. The PCR 

products were resolved by electrophoresis in a 1% agarose gel (w/v). 

2.8 Identification of homozygous lines and RT-PCR analyses 

RT-PCR was performed for identifying the homozygous lines of kinase1_1, kinase1_2 

and kinase2. The cDNA from individual homozygous plants was prepared and used as a 

template for the RT-PCR to analyse the transcript level of the respective genes. PCR 

mix was prepared in 2 ml Eppendorf tube by adding and mixing 5 µl Go-Taq Flexi 

buffer, 2 µl of MgCl2, 1 µl of dNTP (10 mM of each deoxyribonucleotide 

triphosphates), 1 µl of each primer, 0.1 µl of Go-Taq polymerase (5U/µl), 2-3 µl of the 

template cDNA and the final volume was made to 25 µl (per reaction) by adding the 

required amount of water. PCR was performed on a Mastercycler machine. PCR 

conditions varied according to the requirement of the primer pairs (Table 2.1) and the 

size of the amplicon. The PCR products were resolved by electrophoresis in a 1% 

agarose gel. 
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Table 2.1 Primers used to screen the knockout mutant lines. 

2.9 Growth analysis 

2.9.1 Root length analyses on ½ MS plates 

Plants were grown in different media conditions on ½ MS plates to analyse their root 

length. One week old plants were transferred from the control ½ MS plates to different 

media conditions (10 mM K
+ 

[control], 0 mM K
+
, 50 mM K

+
, 50 mM sorbitiol, 80 mM 

sorbitol) and were analysed for root length after two weeks. Three plants of each 

genotype were plated on a single plate. Three plates of each media condition were used 

in one replicate. The experiment was replicated three times. The root lengths were 

       Gene ID Primer Sequence Product 

Size in bp 

(base pairs) 

Salk_ 019840 F TATTCCGAGTTCGTTGTCGTC 998 bp 

Salk_ 019840 R ATGAGAAGTTGTCCCATCACG 998 bp 

Sail_447_F06 F AAATACAGCAGGGATGTG 1184 bp 

Sail_447_F06 R TCTCAGCATCACAACAACTCG 1184 bp 

RP_Gabi_047F11 CAGCAGTTGAATGAAGAAGGC 1289 bp 

LP_Gabi_047F11 TTGCTTCCACGGTTTAAAAAC 1289 bp 

T-DNA Lb  ATATTGACCATCATACTCATTGC 580 bp 

Gabi_047F11 F CGTGATGGGACAACTTC 643 bp 

Gabi_047F11 R ACTTGACCCCAAACAATATTCAAATC 643 bp 

Lb2-Sail GCTTCCTATTATATCTTCCCAAATTAC 650 bp 

Lba1 TTTTTCGCCCTTTGACGTTGTTGGAGT 1000 bp 

Actin F ACGAGCAGGAGATGGAAAC 510 bp 

Actin R ACCCCAGCTTTTTAAGCCTT 510 bp 
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marked at the beginning and at the end of the experiment as initial and final root length 

respectively. Plates were scanned and the root lengths were measured using Image J 

software (http://imagej.en.softonic.com/). The percent increase in root length per day 

was determined using the equation, [{(Lf-Li)/Li}/No of days]*100 where Lf is the final 

root length, Li is the initial root length, No of days is the total duration plants exposed to 

different treatments. 

2.9.2 Fresh weight analyses on ½ MS plates 

The plants were grown on ½ MS plates as mentioned in the section 2.2.2. The total 

weight of three plants of each genotype growing on one plate was taken. Each replicate 

of the experiment contained three plates for each media conditions. The Experiment was 

replicated three times. Percent gain of fresh weight was calculated using the equation, 

(total fresh weight/No of days) *100. 

2.9.3 Fresh weight analyses in soil 

The plants were grown on soil as mentioned in the section 2.2.3. The fresh weight of the 

soil grown plants was analysed in stress conditions. Three weeks old plants were 

exposed to control, moderate stress and severe drought stress condition for two weeks. 

The plants in control conditions were watered with 220 ml of water while the moderate 

stressed with 110 ml and severe stressed with 55 ml of water per tray. Each tray 

contained six plants. Each replicate of the experiment contained three plants of each 

genotype in each tested condition. The experiment was replicated three times. After two 

week treatment, plants were removed from the soil, roots were washed with water and 

dried with blotting paper and then fresh weights of the plants were taken using a 

balance. The percent gain of the fresh weight was calculated using the equation as 

mentioned in section 2.9.2. 

2.10 Whole leaf stomatal conductance measurements: 

To see if stomatal conductance of the kinase KO lines (kinase1_1, kinase1_2, kinase2), 

tpk1 and wild type leaves show different responses to ABA, similar size leaves were 

exposed to 1 µM, 10 µM and 100 µM of ABA for 30 minutes. The leaves of 3 to 4 

weeks old plants were used in the experiment. In each replicate of the experiment, eight 

leaves of each KO line were analysed in comparison with wild type. The excised leaves 

http://imagej.en.softonic.com/
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were kept in stomatal opening buffer (consisting of 10 mM KCl and 10 mM Mes-KOH 

(pH 6.15) with their abaxial surface up for one hour. As a control value, stomatal 

conductance of eight leaves of each genotype per treatment was measured with an 

infrared gas analyser (Li-Cor 6400 (LI-COR, Cambridge, UK) portable photosynthesis 

system). Half of the leaves of the KO and wild type were then transferred to control and 

ABA treatment for 30 minutes. After 30 minutes leaves were removed from the 

solutions and their stomatal conductance was measured. The average of stomatal 

conductance of the leaves at control condition was subtracted from the ABA treated 

condition and the values were then calculated in percentage.  

2.11 Statistical treatment of data 

The data for the growth and stomatal conductance experiments were obtained from 

three individual replicates. The significance was analysed using unpaired two-tailed 

Student t-tests using MS excel program. Significance levels were at p<5% unless 

indicated otherwise. The error bars in the figures represent standard errors. 
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Chapter 3 

3 Results 

3.1 Screening of Arabidopsis thaliana kinase mutant lines 

Two putative mutant lines (kinase1_1 and kinase1_2) of the LRR-receptor like kinase 

(gene code) At3g02880 and one putative mutant line (kinase2) of the LRR-RLK (gene 

code) At4g21410 were identified through bioinformatics analyses and 

electrophysiological experiments and were thought to be involved in the activation of 

TPK1. For further phenotypic characterisation of these lines in different conditions, 

these lines were tested by using PCR and RT-PCR at both DNA and cDNA level.  

Gene specific primers (forward and reverse) and LBA (left border primer)  and SAIL 

were used for the screening (Table 2.1). The PCR results showed amplification when a 

gene specific and a T-DNA primer was used for all the three mutant lines which 

indicates the insertion of T-DNA in the genes (figure 3.1 A, B and 3.3 B). The results 

also showed absence of amplification with gene specific forward and reverse primers 

for all the three putative mutant lines which suggests that these lines are homozygous 

for T-DNA insertion (figure 3.2 A, B and 3.3 A).  

 

Figure 3.1: PCR for screening the kinase1_1  and kinase2 knockout mutant lines. 

Figure 3.1A: PCR for screening of the kinase1_1 knocout mutant line with gene specific reverse and left  

border primer. Lane 1-5: kinase1-1 mutant line DNA, lane 6: water (-ive control); lane 7 and 8: gDNA 

wild type (+ive control). Figure 3.1B: Screening of the kinase2 knocout mutant line with gene specific 

forward and T-DNA primer; Lane 1-5: gDNA from the kinase2 mutant line, lane 6: water (-ive control), 

lane 7 and 8: gDNA wild type (+ive control), L: is the ladder in both A and B.  

1 kb

(A) Gene specific R and LBA primer

L               1               2                3                  4              5                 6                7      8

(B) Gene specific F and SAIL primer

L                1                2                3                  4              5                6                 7    8
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Figure 3.2: PCR for screening the kinase1_1  and kinase2 knockout mutant lines.  

Figure 3.2A: PCR for screening of the kinase1_1 knockout mutant line with gene specific forward and 

reverse primers. Lane 1-5: gDNA from mutant line, lane 6: water (-ive control); lane 7 and 8: gDNA wild 

type (+ive control); Figure 3.2B: Screening of the kinase2 knockout mutant line with gene specific 

forward and reverse primers. ; Lane 1-5: gDNA from the kinase mutant line, lane 6: water (-ive control), 

lane 7 and 8: gDNA wild type (+ive control), L: is the ladder in both A and B. 

 

Figure 3.3: PCR for screening the kinase1_2 knockout mutant lines.  

Figure 3.3A: PCR for screening of the kinase1_2 knockout mutant line with gene specific forward and 

reverse primers. Lane 1-6: gDNA from mutant line, lane 7 gDNA wild type (+ive control); Lane 8: water 

(-ive control).Figure 3.3B: Screening of the kinase1_2 knockout mutant line with gene specific forward 

and left border primer. Lane 1-6: gDNA from the kinase mutant line, lane 7 gDNA wild type (+ive 

control); lane 8 water L is the hyper ladder iv. 

The above mentioned mutant lines were further tested by RT-PCR to check the 

transcript level of these genes. The results showed a lack of transcript for the lines 

kinase1_1 (figure 3.4) and kinase2 (figure 3.5) with gene specific and actin forward and 

1 kb

(A) Gene specific F and R primers 

L                      1              2            3             4              5             6           7             8    L
(B) Gene specific F and R primers

1.2 kb

L                    1              2             3            4               5                6            7            8  L

(A) Gene specific F and R primers  

(B) Gene specific F and LBA primers  

L                  1        2     3      4      5    6                7               8   

1                2         3     4      5   6                 7                8                L

1300bp
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reverse primers. However, we observed the presence of a transcript for the kinase1_2 

when gene specific forward and reverse primers were used (figure 3.6). 

 

Figure 3.4: RT-PCR for  kinase1_1 knockout mutant line. 

Figure 3.4A: RT-PCR for screening of kinase1_1 knockout mutant line with gene specific forward and 

reverse primers. Figure 3.4B: RT-PCR screening of kinase1_1knockout mutant line  with actin primers, 

Lane 1 and 2: cDNA from mutant line kinase1_1 lane 3: cDNA from wild type, lane 4: gDNA from WT 

(+ control), lane 5: cDNA from another kinase mutant line (+ive control), lane 6: water (-ive control), L: 

is the ladder.  

 

Figure 3.5: RT-PCR for  kinase2 knockout mutant line. 

Figure 3.5A: RT-PCR for screening of kinase2 knockout mutant line  with gene specific forward and 

reverse primers. Figure 3.5B: RT-PCR screening of kinase2 knockout mutant line with actin primers, 

Lane 1, 2 and 3: cDNA from mutant line kinase2, lane 4: water, lane 5  cDNA from WT (+control), L: is 

the ladder.  

(A) Gene specific F and R primers  

(B) Actin F and R primers

800 bp

L                   1           2             3                   4                 5                            6           

L                      1       2             3          4         5                        6           

(A) Gene specific F and R primers  

(B) Actin F and R primers

L                         1                       2                         3                        4              5 

L                    1            2                    3                4                5                         

650 bp
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Figure 3.6: RT-PCR for  kinase1_2 knockout mutant line. 

Figure 3.6A: RT-PCR for screening of kinase1_2 knockout mutant line with gene specific forward and 

reverse primers. Figure 3.6B: RT-PCR screening of kinase1_2 knockout mutant line with actin primers. 

Lane 1 and 2: cDNA from mutant line kinase1_2, lane 3 and 4: cDNA from wild type (+ive control), lane 

5 gDNA from wild type (+ive control): lane 6 and 7 water (-ive control), L is the ladder.  

3.2 Characterization of wild type, tpk1 and kinase mutant lines 

3.2.1 Analyses of root length 

To see whether the loss of function in the kinase and TPK1 genes had any effect on the 

root length and fresh weights of the plants, root length of the wild type and knockout 

lines was analysed in several conditions. The results showed that there was no 

significant difference in root growth between any of the tested genotypes in control and 

80 mM sorbitol conditions. However, all the three knockout lines showed less root 

length per day as compared with the wild type plants at 0 mM K
+
, 50 mM K

+
 and 50 

mM sorbitol (figure 3.7) indicating a strong connection between the kinases and TPK1 

channel. 

(A) Gene specific F and R primers

800 bp

1        2         3                4       5      6             7                 L   

(B) Actin F and R primers

1        2         3                4       5      6             7                 L   
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Figure 3.7: Percent increase in roots length of wild type and transgenic lines exposed to 

different media conditions on ½ MS plates. 

Figure 3.7: Percent increase in root length per day of the wild type and three mutant lines as mentioned in 

the figure. The plants were grown for two weeks under different conditions (10 mM K
+ 

[control], 0 mM 

K
+
, 50 mM K

+
, 50 mM sorbitol and 80 mM sorbitol) and root lengths were measured. Data are from three 

independent experiments, and the bars in the figure represent the standard errors. * denotes a significant 

difference by T-test at a probability level of p < 0.05 between the wild type and knockout lines.  

3.2.2 Analyses of fresh weight on plates 

Fresh weights of the wild type and knockout lines was analysed  (figure 3.8) in several 

conditions to observe whether the loss of function in the kinase and TPK1 genes had 

any effect on the fresh weights of the plants. The results showed no difference in the 

fresh weight of all the tested genotypes in control, 50 mM K
+
 and 50 mM sorbitol 

conditions. However, all the knockout lines showed less fresh weight as compared with 

the wild type plants in 0 mM K
+
 and 80 mM sorbitol conditions (figure 3.8). The results 

again pointing towards a relation between the kinases and TPK1 channel. 
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Figure 3.8: Percent increase in fresh weights of wild type and transgenic lines exposed to 

different media conditions on ½ MS plates.  

Figure 3.8: Percent increase in fresh weights of the wild type and three mutant lines as mentioned in the 

figure. The plants were grown for two weeks under different conditions (10 mM K
+
 [control], 0 mM K

+
, 

50 mM K
+
, 50 mM sorbitol and 80 mM sorbitol) and fresh weight of each plant was recorded. Data are 

from three independent experiments, and the bars in the figure represent the standard errors. * denotes a 

significant difference by T-test at a probability level of p < 0.05 between the wild type and knockout 

lines. 

3.2.3 Analyses of fresh weight in soil 

To see whether loss of function in the kinase and TPK1 genes has any effect on the 

fresh weights of plants, six soil grown plants were kept per tray and then each tray was 

exposed to control (220 ml water), moderate (110 ml water) and severe drought (55 ml 

water) stress conditions. The fresh weight of the wild type and knockout lines was then 

analysed. The results showed less fresh weight for all the knockout lines as compared 

with the wild type plants in control and moderate stress conditions. No difference was 

observed for all the genotypes at severe drought stress in soil (figure 3.9).  
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Figure 3.9: Percent increase in fresh weights of wild type and transgenic lines exposed to 

different conditions in soil. 

Figure 3.9: Percent increase in fresh weights of the wild type and three mutant lines as mentioned in the 

figure. The plants were grown in soil in control conditions and then were exposed to experimental 

conditions (control, moderate drought and severe drought) for two weeks and fresh weight of each plant 

was recorded. Data are from three independent experiments, and the bars in the figure represent the 

standard errors. * denotes a significant difference by T-test at a probability level of p < 0.05 between the 

wild type and knockout lines.  

3.3 Stomatal conductance 

Isner et al., (unpublished data), showed LRR kinases to be involved in the 

phosphorylation of AtTPK1 in ABA dependent manner. Therefore, further to see any 

phenotypic relation among, the knockout lines of LRR kinases and Attpk1 stomatal 

conductance in comparison with the wild type plants were tested (figure 3.10). In 

general, the data showed less reduction in stomatal conductance in response to ABA for 

all the tested KO lines as compared to the wild type. The similarities in the stomatal 

conductance phenotype between the kinase knockouts and tpk1 KO mutants suggest a 

relation between these kinases and the TPK1 channel. Combined with other, as yet 

unpublished data, the data from this report support the idea of the involvement of these 

kinases in ABA dependent regulation of TPK1. 
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Figure 3.10: Analyses of the stomatal conductance of wild type and mutant lines at 

different ABA concentrations, i.e., 1 µM ABA (figure 3.10A), 10 µM ABA (figure 3.10B) or 

100 µM ABA (figure 3.10C). 

The stomatal conductance of various genotypes (as mentioned in figure 3.10) was analysed under 

different concentrations of ABA. The leaves were incubated in stomatal opening buffer for one hour and 

then their initial stomatal conductance was measured with an infrared gas analyser. The leaves were then 

kept in two conditions, i.e., control, which has opening buffer, 1 µM ABA (figure 3.10A), 10 µM ABA 

(figure 3.10B) or 100 µM ABA (figure 3.10C) for 30 minutes. The final conductance was expressed as a 

percentage of the initial conductance measured in wild type leaves which was set at 100%. Data show 

averages ± SEM for one independent experiment by using 8 leaves for each genotype. The error bars 

represent the standard error. * denotes a significant difference by T-test at a probability level of p < 0.05 

between the wild type and knockout lines. The average of control experiments was subtracted from the 

average of the ABA treated experiments.  
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CHAPTER 4 

4 Discussion and conclusions 

The vacuolar potassium channel AtTPK1 has been shown to have a major role in ABA-

dependent stomatal closure (Gobert et al., 2007). The activated TPK1 effluxes K
+ 

from 

the guard cell vacuole resulting in the closure of the stomata and then prevents the loss 

of water from the plant. How the coupling of ABA to AtTPK1 at the tonoplast takes 

place is not yet known.      

There is a possible way that kinases may bring external ABA and attaches it with 

AtTPK1. As discussed in the previous work section, kinase1_1 and kinase2 knockout 

lines were shown by patch clamp study to affect TPK1 current (Isner et al., unpublished 

data). Therefore, these kinases were further studied in relation to their interaction with 

TPK1. Growth experiments and stomatal conductance were performed for studying the 

involvement of these kinases in TPK1 activation. Kinase knockout lines (kinase1_1, 

kinase1_2, and kinase2), tpk1 and WT were used and their roles were studied and 

compared. 

4.1 Kinases have role in TPK1 channel regulation 

Growth experiments were done to see whether the loss of function in the kinase and 

TPK1 genes had any effect on the root length and fresh weights of the plants. Root 

length and fresh weights of the wild type and knockout lines was analysed in several 

conditions. The data obtained for the growth experiments show that there was no 

significant difference found in the root lengths (figure 3.7) and fresh weights (figure 

3.8) among all the tested genotypes in control conditions. These results are similar to 

those of Gobert et al., (2007) who showed there was no growth phenotype for Attpk1 in 

control conditions. This suggests a limited role of TPK1 under control growth 

conditions. The data showed shorter root lengths (figure 3.7) and less fresh weights 

(figure 3.8) for all the KO lines of kinases and of tpk1 as compared with the wild type at 

0 mM K
+ 

conditions. Gobert et al., (2007), showed the same growth phenotype for the 

Attpk1 knockout lines at low K
+
 conditions while AtTPK1 overexpressor plants were 

shown to grow better in K
+
-deficient condition. Ahmad et al., (unpublished data) also 

showed a better growth in low K
+
 conditions for rice that overexpresses TPKs. The 
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lower growth of all the KO lines as compared to the wild type may be because of the 

impaired K
+
 distribution within the plant body as it has been suggested that TPK1 is 

involved in the redistribution and translocation of K
+
 in the plant (Gobert et al., 2007). 

As hypothesized earlier, the TPK1 current is stimulated by the two mentioned kinases, 

therefore, loss of function of these genes may lead to lack of TPK1 activation. This lack 

of TPK1 may, therefore, be responsible for the lack of K
+
 distribution and translocation 

in the kinase KO lines. Efficient distribution of nutrients could lead to better growth of 

the plants. Thus the efficient release of K
+
 from the root vacuoles through TPK1 

channels may help loading of more K
+
 into the xylem and this will help in the K

+
 

distribution from root to shoot. On the other hand, higher K
+
 loading to the xylem, may 

increase K
+
 absorption through K

+
 transporters localised in the plasma membrane at the 

root soil boundary. Ahmad et al., (unpublished data) showed higher K
+
 content in the 

rice TPK overexpressor plants in the K
+
 deficient conditions which supports the idea 

that TPK activity may affect root K
+
 absorption. The absence of TPK1 activity in tpk1 

and the kinase knockouts may lead to reduced K
+
 release from the guard cell vacuole 

and therefore may keep the stomata open, as seen in the stomatal conductance 

experiment. Indeed, the tpk1 and the kinase knockouts showed less reduction in 

stomatal conductance in the presence of ABA. The resulting increased water loss could 

be a reason for the lower fresh weight of the KO lines. As shown from the stomatal 

conductance data all the knockout lines showed a slower response to ABA. The kinase 

KO lines phenocopies the Attpk1 knockout, suggesting a role of the two kinases in the 

regulation of TPK1. 

At 50 mM K
+
 conditions, all the KO lines showed shorter root length as compared to the 

WT. Gobert et al., (2007) showed less growth for the tpk1 knockouts than the wild type 

at 80 mM K
+
. These results suggest that TPK1 has a role in the high K

+
 condition and 

plays a role in maintaining cell turgor and for controlling the concentration of K
+
 in the 

cell. They did not find any difference in the overall tissue K
+
 content of the TPK1 

overexpressor and knockout line in comparison with the wild type. This suggested that 

the difference in the seedling growth of these lines may be attributed to differential K
+
 

distribution within the plant. The difference in the K
+
 distribution of different genotypes 

may be because of the difference in TPK1 expression. 
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At osmotic stress conditions (50 mM and 80 mM sorbitol), all the KO lines showed 

shorter root lengths and less fresh weights as compared to the WT (figure 3.7 and 3.8). 

These results were further analysed in the soil under different water regimes and we 

observed less fresh weights for all the KO lines as compared to the wild type at control 

and moderate stress conditions (figure 3.9). Our results are also comparable to 

overexpressing lines of rice TPKb which showed better growth in the osmotic stress 

conditions (Ahmad et al., unpublished data). There could be many reasons for the 

observed lower fresh weights; i.e. (a) the loss of TPK1 may affect the distribution of 

K
+
 and therefore may damage the growth of the knockout lines, (b) there may be higher 

water loss in the KO lines as the loss of TPK1 function may delay the closing of 

stomata, (c) the KO lines may have comparatively less K
+
 content due to the lack of 

TPK1 activity which could be a reason for the lower growth of the KO lines. Ahmad et 

al., (unpublished data) found a higher K
+
 content in rice TPK overexpressor lines and 

suggested that increased TPK activity might be a reason for improved K
+
 nutrition 

under osmotic stress conditions. (d) The lower weights of the kinase knockouts could be 

because of the impaired activity of the receptor-like kinases, as it is known that RLKs 

are involved in the growth and development of plants and that they respond to many 

environmental stress conditions such as salt and drought. For example Ouyang et al., 

(2010) showed the sensitivity of RLK OsSIK1 gene knockout mutants, i.e. sik1-1 

(Oryza sativa stress-induced protein kinase gene 1) and sik1-2 (Oryza sativa stress-

induced protein kinase gene) plants under drought treatment.  

4.2 LRR-RLK knockouts and TPK1 knockout shows similar response to ABA 

Delay in stomatal closure may lead to higher water loss which will result in the plant 

weight loss. An increase of 200-300% was found in the phosphorylation of TPK1 after 

treating the intact cells with ABA (Isner et al., unpublished data). The binding of 14-3-3 

proteins to the N-terminus of the TPK1 depends on the phosphorylation of the serine 

risidue in the 14-3-3 binding motif of the TPK1 (Latz et al., 2007). The 14–3–3 binding 

motif in TPK1 is phosphorylated and activated by the calcium-dependent protein 

kinases (CDPKs) (Latz et al., 2013) 14-3-3 protein further helps in the enhanced 

activation of the TPK1 channel (Latz et al., 2007). RLKs have been shown to be 

essential for a quick drought stress response. Alex et al., (2012) showed the up-

regulation of RLK genes in root and shoot in the presence of 1 hour drought treatment.  

Here we showed that in the presence of light, different concentrations (1 µM, 10 µM 

and 100 µM) of ABA induced a  lower decrease in the stomatal conductance of all the 

KO lines as compared to the WT. Osakabe et al., (2005) also showed that  the RPK1 (a 
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leucine-Rich-Repeat Receptor-Like kinase 1) KO lines (rpk1-1 and rpk1-2) in 

Arabidopsis showed decreased sensitivity to ABA during stomatal closure and 

suggested that that RPK1 gene is involved in the early steps in the ABA signalling 

pathway and early ABA perception.   

The data for the stomatal conductance experiment (figure 3.10) showed less reduction in 

stomatal conductance for all the KO lines compared to the wild type, when they were 

exposed to different concentrations of ABA. The less reduction might be a reason for 

the greater water loss and less fresh weights. These results are also comparable to the 

results of Gobert et al., (2007) where in light conditions, at 10 μM the stress hormone 

ABA induced a rapid decrease in WT leaf conductance but the response to ABA was 

slower in the tpk1 KO lines and slightly faster in the TPK1ox. The difference between 

the controls in the three panels might be because the experiments were done in different 

stages of the plants growth, or it might be because the experiments were performed at 

different times of the day.    

In the presence of ABA, guard cell vacuolar K
+
 is released through TPK1 helping in the 

closure of stomata. The stomatal conductance data obtained for the LRR-RLK 

knockouts phenocopied tpk1 which provides good evidence for the link between kinases 

and TPK1 channel. Binding of a ligand to the extracellular domain of the LRR-RLKs 

activates the intracellular kinase domain, resulting in bringing extracellular environment 

signals into the intracellular targets. As there is no such activity in the LRR-RLKS 

knockouts, this likely disrupts the response to ABA and signals to TPK1 which in turn 

causes the lower reduction in the stomatal conductance. 

4.3 The presence of a strong stomatal conductance phenotype in spite of high 

levels of transcript in the kinase1_2 mutant is puzzling 

The kinase1_2 line was found to be homozygous for the T-DNA insertion (figure 3.3). 

However, at the transcript level, overexpression of the gene was found (figure 3.6) 

which clearly suggests that this is not a null mutant. Interestingly, the phenotype for this 

line was the same as that for the kinase1_1 mutant. There could be many reasons for 

this anomaly i.e. For example, the inserted T-DNA could have caused a mutation. 

Another possibility could be the presence of another T-DNA insertion somewhere else 

in the genome which affects the stomatal conductance of this line. 



36 

 

4.4  Model of activation of TPK1 in the presence of ABA 

Based on results presented here from growth and stomatal conductance experiments and 

unpublished data from Isner et al, the following model can be composed. In the 

presence of ABA, the LRR-RLK KINASE1_1, that is present on the plasma membrane 

internalizes to the tonoplast and then attaches to the TPK1 causing the phosphorylation 

of the N-terminal domain of TPK1. Phosphorylation allows binding of the 14-3-3 

proteins, causing the activation of the TPK1 channel. Activation of TPK1 causes efflux 

of potassium from the guard cell vacuole to the cytoplasm. In the next phase guard cell 

outward rectifying K
+ 

channel (GORK) then remove K
+
 from the cell. The removal of 

anions and K
+ 

from guard cells results in a reduction of guard cell turgor and leads to 

stomatal closure (Gobert et al., 2007; Schroeder and Hagiwara, 1989).  

 

 

Figure 4.1: Model of activation of TPK1 in the presence of ABA. 

In the presence of ABA, RLK kinase1_1 internalise to the tonoplast through endocytosis where it causes 

the phosphorylation of the N-terminal domain of TPK1, resulting in the attachment of the 14-3-3 proteins 

and then causing the activation of the TPK1 channel. 

Through BiFC study the interaction between the KINASE1_1 and TPK1 was shown by 

Isner et al, and our comparable results for the physiological role of the LRR knockouts 

kinase1_1 and kinase1_2 and tpk1 knockouts from growth and stomatal conductance 

data suggests the involvement of this kinase in the activation of TPK1 in the presence of 

ABA. From growth and stomatal conductance data no significant difference between 
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kinase1_1 and kinase2 was observed. While from Isner et al., (unpublished data) the 

expression of the kinase1_1 was observed in the tonoplast and in the endoplasmic 

reticulum for the kinase2 which they suggest a possible role of kinase2 in the upstream 

of kinase1_1. 

4.5 Further studies 

 Another at3g02880 null mutant allele should be tested to ensure that the 

observed stomatal conductance phenotype is due to a mutation in this gene.  

 TPK1 phosphorylation was shown by Isner et al., (unpublished data) to be ABA-

dependent. To see if TPK1 phosphorylation is dependent on KINASE1_1,  

ABA-dependent TPK1 phosphorylation should be tested in the kinase KO line.  

 The tpk1 and kinase knockout line may be analysed for K
+
 content to see the 

effect of these proteins in K
+
 nutrition.  

 The KINASE1 and KINASE2 were found to be involved in the phosphorylation 

of TPK1. It would be interesting to identify the phosphatase that 

dephosphorylates TPK1To further characterise the role of KINASE1 and 

KINASE2, these  proteins could be overexpressed in Arabidopsis and plants 

could be analysed for phenotypes 
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Appendices   

Roots length from ½ MS plates 

CONTROL WT kinase1_1 kinase2 tpk1 

REPLICATE 1 25.2815788 33.79620766 31.31889177 30.52216214 

REPLICATE 2 14.75261621 11.81640322 22.88073002 15.69213448 

REPLICATE 3 26.69774119 33.47181185 31.77812175 23.73841913 

REPLICATE 4 32.82025819 31.14506028 29.20069525 26.82674968 

REPLICATE 5 28.75159363 32.35219366 29.39295884 27.39176288 

REPLICATE 6 23.47344392 22.46095652 31.52671446 21.268277 

T-TEST  0.31127542 0.09174635 0.377117393 

0 mM K+     

REPLICATE 1 7.03425 4.310952105 3.220141151 4.582947684 

REPLICATE 2 8.049986469 4.590777069 4.129398532 4.511523731 

REPLICATE 3 7.026988636 5.043321918 5.206883675 5.076416753 

REPLICATE 4 7.203425 5.3011642 2.920141151 5.229476838 

REPLICATE 5 7.094998647 4.80691 3.15367679 5.115237314 

REPLICATE 6 8.326983344 2.50691 3.409068837 3.776416753 

T-TEST  0.004078329 0.000300221 0.001547539 

50 mM K +     

REPLICATE 1 15.55815716 10.54660881 14.18131432 13.8623885 

REPLICATE 2 25.54673847 14.61230259 12.6063021 17.49548833 

REPLICATE 3 21.57729522 19.55755771 11.93940648 12.25115768 

REPLICATE 4 28.05048379 25.42482502 15.52122843 15.92650499 

REPLICATE 5 10.08572162 9.234324665 5.28059578 8.480200228 

REPLICATE 6 22.59357074 12.00615129 21.79531511 13.99774417 

T-TEST  0.031464637 0.025061847 0.011075609 

50 mM sorbitol      

REPLICATE 1 17.45064818 15.5631077 16.74934171 16.14077485 

REPLICATE 2 20.39063971 13.39609969 14.73296747 16.15731819 

REPLICATE 3 16.99702521 13.96171674 12.10665349 15.85886133 

REPLICATE 4 25.37688051 16.75029888 20.13410187 20.38158355 

REPLICATE 5 19.81824844 17.95930303 14.53845967 13.85449516 

REPLICATE 6 19.67987038 14.47147079 16.60309464 18.08746653 

T-TEST  0.010286716 0.003199197 0.013785755 

80 mMsorbitol      

REPLICATE 1 5.758991172 8.495870731 9.663905216 12.74054899 

REPLICATE 2 3.948157059 4.250292267 5.015791575 5.363323447 

REPLICATE 3 15.9466174 11.86588674 11.4562756 19.68809016 

REPLICATE 4 30.76866049 17.85178355 12.18003851 11.13112755 

REPLICATE 5 20.18653544 14.3699439 12.28418621 9.313344261 

REPLICATE 6 4.320043775 5.956060742 3.119152573 4.51682426 

T-TEST  0.263329497 0.225248131 0.496940577 
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Fresh weight of plants from ½ MS plates 

 

Fresh weights of Soil grown plants  

CONTROL WT kinase1_1 kinase2 tpk1 

REPLICATE 1 24.7333333 19.9666667 21.9466667 20.1033333 

REPLICATE 2 27.9666667 22.9666667 26 23.2966667 

REPLICATE 3 26.6666667 24.5166667 22.3 23.4933333 

T-TEST  0.04903984 0.04970711 0.0137347 

MODERATE WT kinase1_1 kinase2 tpk1 

REPLICATE 1 16.6666667 11.96 12 12.8 

REPLICATE 2 16.8333333 14.7666667 14.8666667 15.0666667 

REPLICATE 3 15.2 11.6333333 11.0333333 11.0333333 

T-TEST  0.04583796 0.04918672 0.04948397 

SEVERE WT kinase1_1 kinase2 tpk1 

REPLICATE 1 2.93333333 3.6 5 2.93333333 

REPLICATE 2 5.4 2.7 3.93333333 4.36666667 

REPLICATE 3 2.8 5 3.36666667 4.93333333 

T-TEST  0.97286413 0.74061262 0.73207895 

CONTROL WT kinase1_1 kinase2 tpk1 

REPLICATE 1 0.5365 0.48675 0.5805 0.5675 

REPLICATE 2 0.49566667 0.47366667 0.612 0.518 

REPLICATE 3 0.4945 0.52 0.438 0.775 

T-TEST  0.55553367 0.56116563 0.31916115 

0 mM K+     

REPLICATE 1 0.215 0.165 0.15 0.142 

REPLICATE 2 0.25266667 0.17533333 0.17166666 0.198 

REPLICATE 3 0.216 0.171 0.102 0.11 

T-TEST  0.02926331 0.02660629 0.03522842 

50 mM K+     

REPLICATE 1 0.274 0.251 0.2375 0.25 

REPLICATE 2 0.43166667 0.37966667 0.34733333 0.365 

REPLICATE 3 0.293 0.235 0.237 0.269 

T-TEST  0.05459527 0.05127039 0.11504648 

50 mM SORBITOL     

REPLICATE 1 0.25 0.173 0.19 0.185 

REPLICATE 2 0.372 0.32666667 0.35793333 0.33666667 

REPLICATE 3 0.342 0.31 0.309 0.31 

T-TEST  0.0611802 0.11574359 0.05215497 

80 mM SORBITOL     

REPLICATE 1 0.28488889 0.201 0.17933333 0.19566667 

REPLICATE 2 0.32866667 0.25866667 0.219 0.236 

REPLICATE 3 0.269 0.22 0.218 0.211 

T-TEST  0.02175393 0.04252256 0.01848902 
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Leaf stomatal conductance at 100 µM ABA  

 

 CONTROL     AB

A 

       

 WT   kinase1_1  WT   kinase1_1  WT  kinase1_

1 

 Initi

al 

final chang

e in 

apertu

re 

Initi

al 

Fina

l 

chang

e in 

apertu

re 

Initi

al 

final chang

e in 

apertu

re 

Initial final chang

e in 

apertu

re 

ABA-

con 

ABA-

con 

REP

1 

1.16 1.11 0.043 0.9 0.76 0.157 1.68 1.1 0.35 1.21 0.57 0.53 0.3 0.37 

REP

2 

1.17 1.05 0.102 0.99 0.9 0.089 1.01 0.74 0.27 1.3 0.71 0.45 0.17 0.36 

REP

3 

0.76

4 

0.6 0.214 0.92 0.73 0.203 0.86 1 -0.2 0.581 0.39 0.33 -0.38 0.13 

REP

4 

0.75

4 

0.88 -0.16 0.5 0.5 -0.00 0.6 0.52 0.13 0.496 0.32 0.36 0.29 0.37 

REP

5 

0.62

4 

0.42 0.326 0.46 0.39 0.142 0.54 0.47 0.14 0.601 0.58 0.03 -0.19 -0.1 

REP

6 

0.61

2 

0.44 0.284 0.49 0.39 0.201 0.42 0.2 0.52 0.792 0.75 0.05 0.23 -0.2 

REP

7 

0.55

1 

0.42 0.235 0.64 0.6 0.062 0.87 0.68 0.22 0.52 0.29 0.45 -0.01 0.39 

REP

8 

0.64

6 

0.6 0.066 0.47 0.4 0.135 0.65 0.22 0.67 0.443 0.29 0.36 0.6 0.22 

T-

TES

T 

0.30

6 

             

 

 CONTROL     AB

A 

       

 WT   kinase1_2  WT   kinase1_2  WT  kinase1_

2 

 Initi

atl 

fin

al 

change 

in 

apertur

e 

Initi

atl 

Fina

l 

chang

e in 

apertu

re 

Initi

atl 

final chang

e in 

apertu

re 

Initiatl final chang

e in 

apertu

re 

ABA-

con 

ABA-

con 

REP1 1.37 1.2 0.146 1.09 0.8 0.241 0.58 0.3 0.42 0.63 0.4 0.4 0.274 0.16 

REP2 0.99 0.6 0.3939 0.79 0.6 0.253 0.8 0.4 0.52 0.94 0.6 0.4 0.127 0.14 

REP3 0.91 0.9 0.0372 1.02 0.7 0.305 1.09 0.4 0.6 0.95 0.6 0.4 0.566 0.06 

REP4 1.02 0.9 0.1176 1.11 0.9 0.205 1.11 0.6 0.5 0.87 0.6 0.3 0.378 0.14 

REP5 0.99 0.8 0.2222 0.98 0.8 0.205 0.76 0.4 0.53 0.97 0.8 0.2 0.309 0.02 

REP6 1.2 1 0.1667 0.8 0.6 0.249 0.98 0.5 0.53 0.85 0.5 0.4 0.359 0.17 

T-

TEST 

0.00

3 
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 CONTROL     ABA        

 WT   kinase2  WT   kinase2  WT  kinase2 

 Initia

l 

fina

l 

change 

in 

apertur

e 

Initia

l 

fina

l 

change 

in 

apertur

e 

Initia

l 

final change 

in 

apertur

e 

Initia

l 

final change 

in 

apertur

e 

ABA-

con 

ABA-

con 

REP1 0.89 1 -0.165 1.47 1.3 0.102 1.14 0.6 0.4 1.1 0.9 0.2 0.611 0.124 

REP2 0.89 1 -0.15 0.98 0.9 0.058 1.31 0.6 0.5 0.91 0.8 0.9 0.671 0.847 

REP3 1.88 1.7 0.0851 1.44 1.4 0.0208 1.97 0.8 0.6 1.51 0.9 0.6 0.509 0.608 

REP4 1.28 1.1 0.1719 1.88 1.7 0.1223 1.58 0.9 0.4 1.37 0.3 0.2 0.264 0.127 

REP5 1.17 1.1 0.0256 1.15 0.8 0.3426 1.01 0.6 0.4 0.94 0.4 0.4 0.413 0.054 

REP6 0.92 0.8 0.1277 1.47 1 0.3429 0.79 0.2 0.7 0.88 0.3 0.3 0.606 -0.04 

REP7 2.59 1.5 0.4093 1.19 1 0.1748 2.6 1.3 0.5 1.47 0.4 0.3 0.11 0.111 

REP8 2.23 1.9 0.13 1.13 0.5 0.5575 1.71 0.8 0.6 1.63 0.5 0.3 0.428 -0.22 

T-

TEST 

0.05              

 

 CONTROL     ABA        

 WT   tpk1   WT   tpk1   WT  tpk1 

 Initial final change 

in 

aperture 

Initial Final change 

in 

aperture 

Initial final change 

in 

aperture 

Initial final change 

in 

aperture 

ABA-

con 

ABA-

con 

REPL1 0.9 0.9 -0.004 1.47 1.6 -0.088 0.78 0.5 0.32 1.47 1.2 0.2 0.327 0.3 

REPL2 1.04 1.1 -0.01 1.11 1 0.081 1.11 0.5 0.53 1.08 0.8 0.3 0.542 0.18 

REPL3 1.02 1.1 -0.108 1.15 1 0.147 1.29 0.4 0.69 1.01 0.4 0.6 0.796 0.43 

REPL4 1.66 1.4 0.1747 1.28 1 0.254 0.87 0.3 0.67 0.91 0.4 0.6 0.498 0.34 

REPL5 1.56 1.5 0.0449 1.63 1.3 0.215 1.46 0.6 0.61 1.01 0.4 0.6 0.561 0.4 

REPL6 2.24 3 -0.344 1.51 1.3 0.146 1.02 0.9 0.09 0.92 0.4 0.6 0.434 0.47 

T-

TEST 

0.02              
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Leaf stomatal conductance at 10 µM ABA  

 CONTROL      AB

A 

      

 WT   kinase1_1  WT   kinase1_1  WT  kinase1

_1 

 Initia

l 

fina

l 

change 

in 

aperture 

Initia

l 

fina

l 

change 

in 

apertur

e 

Initial final change 

in 

apertur

e 

Initial fina

l 

change 

in 

apertur

e 

ABA-

con 

ABA-

con 

REP1 1.04 0.7 0.3154 0.8 0.5

7 

0.2943 1.09 0.5 0.6 0.8 0.4 0.6 0.26 0.3 

REP2 1.43 1 0.2727 1.09 0.6

8 

0.3752 0.67 0.4 0.5 0.55 0.3 0.4 0.19 0.1 

REP3 1.07 0.8 0.2402 0.99 0.6

1 

0.3843 0.54 0.2 0.6 0.61 0.3 0.5 0.35 0.1 

REP4 1.09 1 0.055 1.46 1.0

3 

0.2945 1.36 0.5 0.6 1.11 0.4 0.6 0.57 0.3 

REP5 1.31 0.9 0.2763 1.33 0.8

7 

0.3451 1 0.3 0.7 0.78 0.5 0.4 0.41 0 

REP6 0.98 1.2 -0.26 0.6 0.7

6 

-0.25 1.08 1.1 0 0.56 0.4 0.3 0.27 0.6 

REP7 0.48 0.5 0.008 0.65 0.6 0.073 0.63 0.3 0.5 0.54 0.5 0.1 0.54 0.1 

T-

TES

T 

0.04              

 

 CONTROL     ABA        

 WT   kinase1_2  WT   kinase1_2  WT  kinase1

_2 

 Initia

l 

final change 

in 

apertur

e 

Initia

l 

fin

al 

change 

in 

apertur

e 

Initia

tl 

final change 

in 

apertur

e 

Initia

tl 

final change 

in 

apertur

e 

ABA

-con 

ABA-

con 

REP1 1.24 0.9 0.2597 1.29 1 0.209 1.31 0.7 0.46 1.11 0.7 0.4 0.199 0.17 

REP2 1.68 1.2 0.2857 1.05 0.5 0.527 1.28 0.4 0.66 1.49 1.2 0.2 0.371 -0.31 

REP3 1.2 0.6 0.4833 1.41 1.3 0.05 0.96 0.5 0.52 1.18 0.9 0.2 0.032 0.16 

REP4 1.61 1.5 0.0683 2.59 2.1 0.189 1.25 0.5 0.57 1.79 1.4 0.2 0.5 0.05 

REP5 1.32 1 0.2348 1.78 1 0.427 1.25 0.5 0.59 2.08 1 0.5 0.352 0.09 

REP6 0.97 0.8 0.1533 1.53 0.9 0.397 1.2 0.4 0.66 1.13 0.5 0.6 0.507 0.17 

T-

TEST 

0.01              

 

 WT   kinase2  WT   kinase2  WT  kinase

2 

 Initi

al 

fin

al 

change 

in 

apertur

e 

Initi

al 

final change 

in 

apertur

e 

Initi

al 

final change 

in 

apertur

e 

Initiatl final change 

in 

apertur

e 

ABA-

con 

ABA-

con 

REP1 1.04 0.7 0.3154 0.87 0.7 0.2314 1.09 0.3 0.8 1.02 0.5 0.5 0.441 0.297 

REP2 1.44 1 0.3188 1.16 0.7 0.4043 0.64 0.2 0.7 1.47 0.7 0.5 0.356 0.092 

REP3 1.02 0.7 0.3039 1.08 0.5 0.5657 0.94 0.3 0.7 1.03 0.6 0.4 0.382 -0.14 

REP4 0.95 1 -0.054 0.74 0.8 -0.013 0.97 0.3 0.7 1.06 0.4 0.6 0.758 0.599 

REP5 1.24 1.1 0.0968 1.19 1 0.1513 1.54 0.8 0.5 0.81 0.3 0.6 0.384 0.438 

REP6 0.61 0.9 -0.516 0.72 0.6 0.1 0.66 0.4 0.4 0.68 0.4 0.4 0.936 0.311 

T-

TEST 

0.04              
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 CONTROL    ABA        

 WT   tpk1   WT   tpk1   WT  tpk1 

 Initial final change 

in 

aperture 

Initial Final change 

in 

aperture 

Initial final change 

in 

aperture 

Initial final change 

in 

aperture 

ABA-

con 

ABA-

con 

REP1 1.04 0.7 0.3154 1.33 0.9 0.311 1.09 0.5 0.57 1.45 0.8 0.5 0.257 0.15 

REP2 1.43 1 0.2727 1.38 0.9 0.378 0.67 0.4 0.46 0.65 0.5 0.2 0.188 -0.15 

REP3 1.07 0.8 0.2402 1.21 0.8 0.32 0.54 0.2 0.59 0.52 0.3 0.4 0.349 0.1 

REP4 1.06 0.8 0.2538 1.21 0.9 0.252 0.64 0.4 0.33 0.92 0.6 0.3 0.073 0.05 

REP5 1.26 0.8 0.3778 1.21 0.9 0.249 0.79 0.3 0.59 0.84 0.4 0.5 0.208 0.22 

REP6 0.99 1.1 -0.085 1.16 0.9 0.244 1.02 0.3 0.74 0.93 0.4 0.6 0.822 0.36 

REP7 0.96 0.6 0.3725 1.05 0.9 0.179 0.99 0.3 0.68 1.17 1 0.2 0.31 0.01 

T-

TEST 

0.04              

 

Leaf stomatal conductance at 1 µM ABA  

 WT   kinase1_1  WT   kinase1_1  WT  kina

se1_

1 

 Initial final change 

in 

apertur

e 

Initial fin

al 

change 

in 

apertur

e 

Initia

l 

fin

al 

change 

in 

apertur

e 

Initial fin

al 

change 

in 

apertur

e 

AB

A-

con 

AB

A-

con 

REP1 1.83 1.4 0.2514 1.51 1.1

3 

0.2517 1.78 1.4 0.2 1.55 0.9 0.4 -0 0.1 

REP2 1.29 1 0.238 1.25 0.9

3 

0.2552 1.23 0.8 0.3 1.61 1.3 0.2 0.09 -0 

REP3 0.84 0.6 0.3111 1.13 0.6

8 

0.4009 1.96 0.5 0.8 0.88 0.6 0.3 0.46 -0.1 

REP4 1.05 0.9 0.1429 0.97 0.5

5 

0.4269 1.64 0.9 0.5 0.83 0.5 0.4 0.31 -0 

REP5 0.94 0.7 0.2639 1.49 1.0

6 

0.2886 1.64 0.9 0.4 0.93 0.7 0.3 0.18 -0 

REP6 1.23 0.9 0.274 1.11 0.7

6 

0.318 1.5 1 0.3 1.24 0.6 0.5 0.06 0.2 

T-

TEST 

0.05              

               

 CONT

ROL 

     ABA        

 WT   kinase1

_2 

  WT   kinase1

_2 

  WT  kina

se1_

2 

 Initial final change 

in 

apertur

e 

Initiatl fin

al 

change 

in 

apertur

e 

Initia

l 

fin

al 

change 

in 

apertur

e 

Initial fin

al 

change 

in 

apertur

e 

AB

A-

con 

AB

A-

con 

REPL

1 

0.33 0.3 0.003 0.6 0.6 0.068 0.7 0.7 0.06 0.85 0.7 0.2 0.05

8 

0.12 

REPL

2 

0.47 0.5 -0.161 0.47 0.4 0.18 0.52 0.5 0.09 0.52 0.5 -0 0.24

9 

-0.2 

REPL

3 

0.43 0.5 -0.155 0.76 0.7 0.109 0.71 0.6 0.1 0.45 0.3 0.3 0.25

1 

0.19 

REPL

4 

1.52 1.4 0.0789 2.36 2 0.174 1.18 0.5 0.56 1.13 0.9 0.2 0.48

5 

0.06 

REPL

5 

1.67 1.5 0.1198 2.77 2.7 0.011 2.46 0.5 0.8 0.96 1.1 -0.1 0.67

7 

-

0.11 

REPL

6 

1.66 1.5 0.0843 1.75 1.9 -0.08 0.93 0.7 0.29 1.09 0.9 0.1 0.20

2 

0.22 

T-

TEST 

0.02              
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 CONTROL     ABA        

 WT   kinase2  WT   kinase2  WT  kinas

e2 

 Initial fin

al 

change 

in 

apertur

e 

Initia

l 

Fina

l 

change 

in 

apertur

e 

Initia

l 

final change 

in 

apertur

e 

Initial final change 

in 

apertur

e 

ABA-

con 

ABA

-con 

REP1 1.15 1 0.0957 1.44 1.1 0.2569 1.79 0.8 0.6 1.06 0.7 0.3 0.469 0.07

5 

REP2 1.31 0.9 0.3321 1.18 0.9 0.2076 2.02 1 0.5 1.39 1 0.3 0.178 0.07

3 

REP3 1.55 1.4 0.071 1.64 1.3 0.2256 1.28 0.7 0.4 1.72 0.6 0.6 0.36 0.41

2 

REP4 1.01 0.9 0.1337 1.66 1.4 0.1807 0.96 0.4 0.6 1.14 0.9 0.2 0.42 0.04

2 

REP5 0.63 0.8 -0.319 1.25 1.1 0.136 1.42 0.8 0.4 1.35 1 0.2 0.764 0.10

8 

REP6 1.36 1.2 0.125 1.63 1.4 0.1166 1.41 0.9 0.4 1.38 0.6 0.6 0.246 0.43

5 

T-

TES

T 

0.04              

 

 CONTROL     ABA        

 WT   tpk1   WT   tpk1   WT  tpk1 

 Initial final change 

in 

aperture 

Initial Final change 

in 

aperture 

Initial final change 

in 

aperture 

Initial final change 

in 

aperture 

ABA-

con 

ABA-

con 

REP1 1.25 1.3 -0.072 1.56 1.2 0.244 1.05 0.4 0.64 1.24 0.5 0.6 0.708 0.35 

REP2 1.41 1 0.2695 1.71 1.4 0.158 1.19 0.6 0.52 1.44 0.7 0.5 0.247 0.33 

REP3 1.11 0.9 0.1991 1.78 1.4 0.225 1.36 1.2 0.15 1.43 0.9 0.4 -0.05 0.16 

REP4 0.96 1.2 -0.216 2.81 2.8 0.004 0.73 0.6 0.21 1.41 1.1 0.2 0.427 0.19 

REP5 0.53 0.6 -0.093 1.31 1 0.272 1.06 0.6 0.45 1.47 1.5 0 0.538 -0.26 

REP6 0.52 0.5 -0.008 1.26 1 0.228 0.95 0.3 0.63 0.93 0.6 0.3 0.64 0.1 

T-

TEST 

0.05              
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List of Abbreviations 

 

ABA:  Abscisic acid 

ABF:  Downstream transcription factors 

ABI1 and ABI2:  ABA Insensitive 1 and ABA Insensitive 2 

ABREs:  ABA-responsive promoter elements  

ATP: Adenosine Tri phosphate 

BiFC: Bimolecular fluorescence complementation 

Bp: Base pair 

cDNA: Complementary DNA 

CDPKs: Calcium-dependent protein kinases 

DNA: Deoxyribonucleic acid 

dNTP: Deoxyribonucleotide triphosphates 

GORK: Guard cell outward rectifying potassium channel 

GRF6: General regulatory factor  

K
+

in: Inward rectifying K
+
  

K
+

out: Outward rectifying K
+ 

KO: Knockouts 

LRR–RLKs: Leucine-rich-repeat Receptor-like protein kinases 

OST1: Open Stomata 1 

PCR: Polymerase chain reaction 

PP2Cs: Protein phosphatases 

PYL: Pyrabactin resistance-like 

PYR: Pyrabactin resistance 

http://en.wikipedia.org/wiki/Bimolecular_fluorescence_complementation
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qRT-PCR: Quantitative reverse transcriptase PCR 

RLKs: Receptor-like protein kinases  

RNA: Ribonucleic acid 

ROS: Reactive oxygen species 

Sik: Stress-induced protein kinase 

SLAC: Slow anion channel  

SnRK2s: Sucrose non-fermentation kinase subfamily 2  

SV: Slow activating K
+
 channels  

TAIR: The Arabidopsis Information Resource  

T-DNA: Transferred DNA 

TMD: Trans-membrane domains  

TPK: Tandem Pore Potassium channel 

UNCCD: United Nations Convention to Combat Desertification 

VK: Vacuolar channels  

WT: wild type 
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