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Abstract

In this thesis we present a methodology for validating Gaussian process mod-

els: Gaussian process emulators and simulator discrepancy models. A Gaus-

sian process emulator is a representation of our beliefs about a mathematical

model implemented in a computer program known as a simulator. By �simula-

tor discrepancy�, we mean the di�erence between a simulator's output and the

corresponding physical process. We present a set of diagnostics to validate and

assess the adequacy of Gaussian process models. These diagnostics are based

on comparisons between real observations and model predictions for some test

data, known as validation data, de�ned by a sample of real observations not

used to build the model. The validation data are chosen according to designs

that we have developed for such purposes. The diagnostics for Gaussian process

emulators and discrepancy models are useful tools during the modelling proce-

dure. Based on the result of the diagnostics, we can identify problems such as

undercon�dence, overcon�dence, poor estimation of some unknown parameters,

which if not identi�ed might compromise analyses using the Gaussian process

models. After we identify a problem, the diagnostics may provide information

on where we should collect more data in order to make the predictive model a

better representation of our beliefs.
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Chapter 1

Introduction

1.1 Simulators

Simulators, also known as computer models, are mathematical representations of a real

system implemented in a computer. The simulator, represented by η(·) , is assumed to be a

function of a set of inputs denoted by x = (x1, . . . , xp) ∈ χ ⊂ Rp , with output represented

by y ∈ R . A computer experiment is a set of simulator runs at di�erent values of inputs,

(y1 = η(x1), . . . , yn = η(xn)) . Computer experiments have been used to investigate real-

world systems in almost all �elds of science and technology. There are some situations where

computer experiments are feasible but physical experiments are impossible. For example,

the number of inputs may be too large to perform physical experiments, the cost to perform

the physical experiment may be too high, or the physical experiment may be an unethical

experiment.

The use of computer experiments dates back to the 1940s at Los Alamos National Labo-

ratory in the study of the behaviour of nuclear weapons. In 19441, there was a quantitative

investigation of the hydrodynamics of a nuclear implosion where IBM machine calculations

were used to solve partial di�erential equations of implosion hydrodynamics.

1Chapter 4, Los Alamos: Technical Review to August 1944, available at http://www.fas.org/sgp/

othergov/doe/lanl/00795708.pdf

1



2 CHAPTER 1. INTRODUCTION

Examples of scienti�c and technological developments that have been conducted using

computer experiments are many and growing. In climate science, Zickfeld et al. (2004)

present a low-order model of the Atlantic thermohaline circulation which is able to repro-

duce many features of the behaviour of coupled ocean-atmosphere circulation models such

as the sensitivity of the thermohaline circulation to the amount, regional distribution and

rate of climate change. Randall et al. (2007) evaluate the capabilities and limitations of

global climate models used in the IPCC (Intergovernmental Panel on Climate Change). In

cosmology, Benson et al. (2001) use a complex computer model to understand the processes

responsible for the formation and evolution of the galaxies. In �re protection engineering,

McGrattan et al. (2007) present a Fire Dynamics Simulator (FDS) which is a computational

�uid dynamics model of �re-driven �uid �ow. The simulator solves numerically a form of the

Navier-Stokes equations appropriate for low-speed, thermally-driven �ow with an emphasis

on smoke and heat transport from �res.

1.2 Emulators

Simulators can be extremely expensive to run, for example if the mathematical model is very

complex, or if the required precision is very high. Therefore, the simulator is run at a limited

number of inputs. The output of the simulator at untried inputs has to be predicted. Statis-

tics plays an important role in computer modelling, providing predictions of the simulator at

any given con�guration of simulator inputs. Sacks et al. (1989b) provide a good description

of prediction and design problems for computer experiments. A statistical representation of

a simulator is known as a statistical emulator, or simply emulator. For any given con�gu-

ration of input values for the simulator, the emulator provides a probabilistic prediction of

the output that the simulator would produce if it were run at those inputs. Furthermore,

for any set of input con�gurations, the emulator will provide a joint probabilistic prediction

of the corresponding set of simulator outputs.

An emulator is a probability distribution that represents the simulator, where the simula-

tor is viewed as an unknown mathematical function. Although the computer code is known,
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its complexity allows η(·) to be considered an unknown function. From a Bayesian point of

view Kimeldorf and Wahba (1970) and O'Hagan (1978) use Gaussian processes to describe

the behaviour of an unknown mathematical function. In the 1980s, the fundamental idea of

building a statistical emulator using Gaussian processes was introduced, in a non-Bayesian

framework by Sacks et al. (1989b), and by Currin et al. (1988, 1991) within a Bayesian

framework.

The probabilistic predictions of the simulator may take one of two forms depending on

the approach used to build the emulator. In the fully Bayesian approach, the predictions

are complete probability distributions (O'Hagan 2006; Kennedy et al. 2006). In the Bayes

linear approach, probability distributions are not fully speci�ed, but instead work with �rst

and second order moments (Craig et al. 2001; Goldstein and Rougier 2006). In this thesis,

we use the full Bayesian approach.

In order to build a Gaussian process emulator, the uncertainty about the simulator output

is described as a Gaussian process with a particular mean function m(·) , and a covariance

function V (·, ·) . If η(·) has a Gaussian process distribution then for every n = 1, 2, . . . the

joint distribution of η(x1), . . . , η(xn) is multivariate normal for all x1, . . . ,xn ∈ χ . The mean

function m(·) can be any function of x ∈ χ , but V (·, ·) must satisfy the property that every

covariance matrix with elements {v(xi,xj)} must be non-negative de�nite.

1.3 The need to validate an emulator

The Gaussian process emulators are indeed �exible models to represent our uncertainty

about the simulator. However, a Gaussian process emulator can give poor predictions of the

simulator outputs for at least two reasons. First, the assumption of a stationary Gaussian

process with particular mean and covariance structures may be inappropriate. Second, even

if these assumptions are reasonable there are various parameters to be estimated, and a

bad or unfortunate choice of training dataset may suggest inappropriate values for these

parameters. In the case of the correlation length parameters, where we condition on �xed
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estimates rather than integrating over the full posterior distribution, we may also make a

poor choice of estimate to condition on. Therefore, before using an emulator as a surrogate

of a simulator, the assumptions made to build the emulator should be checked. The process

of checking the Gaussian process assumptions is called the validation process.

Although Gaussian process emulators are widely used as surrogate of simulators, little is

done to validate the emulators. A non-valid emulator can lead to wrong conclusions about

the simulator outputs at untried inputs. For instance, it would be undesirable if a modeller

uses a non-valid emulator to learn about a physical system that the simulator was intended

to represent. Therefore, it is necessary to check whether or not the assumptions made to

build the emulator are reasonable. In case of a failure of any assumption, the diagnostics in

the validation procedure should be able to provide information in order to help the modeller

to rebuild a valid emulator. The main contribution of this thesis is to present a set of

diagnostics to be included in the validation procedure of a Gaussian process emulator.

1.4 Outline of the thesis

The main focus lies on developing diagnostic tools to check whether a Gaussian process

emulator can represent properly our uncertainty about simulator outputs at untried inputs.

In Chapter 2, we review how to build a Gaussian process emulator and discuss some analyses

that can be done with an emulator such as uncertainty analysis, sensitivity analysis and

calibration.

There is an extensive literature on validation of simulators. Simulators make imprecise

statements about physical systems. This can be due to simpli�cations made in the physical

theory or approximations to solutions of complex systems. Therefore, a simulator should be

validated. In Chapter 3, we review validation methods for simulators in order to see if any

ideas can help develop validation methods for emulators.

In Chapter 4, we present a procedure for validating Gaussian process emulators. The

validation procedure contains a set of numerical and graphical diagnostics that provides
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information to judge the validity of a Gaussian process emulator.

One important step to build and validate an emulator is the choice of input points where

we should run the simulator. Choosing the inputs is called the design problem. In Chapter

5, we discuss the design problem. We review how to choose inputs to e�ciently build an

emulator. We present some designs for choosing inputs to validate an emulator. We are

interested in designs that e�ciently distinguish between good and bad emulators.

There are several ways in which an emulator can di�er from another. We call competing

emulators di�erent emulators for the same simulator. Though we are interested in valid

emulators, valid emulators are not unique, and hence it is necessary to have some criteria to

rank competing emulators. In Chapter 6, we discuss some methods for comparing competing

emulators. The proposed comparison methods are based on the Bayes Factor and some

scoring rules.

In Chapter 7, we consider a model to predict a real system, combining a simulator with

experimental data. We assume that the di�erence between the real system outputs and the

simulator outputs is a smooth function called here the discrepancy function. We present

methods of inference to predict the real system assuming a Gaussian process for the dis-

crepancy function and di�erent ways to deal with the unknown parameters. We extend the

diagnostics for Gaussian process emulators to validate discrepancy function models.

Finally, in Chapter 8 we provide discussion and some possibilities for future work related

to this thesis.



Chapter 2

Statistical analysis for simulators using

emulators

2.1 Introduction

In this chapter, we consider the use of emulators as surrogates for simulators. An emulator is

used to provide probabilistic predictions of the simulator at untried inputs. We present the

main steps of a statistical analysis for a simulator. Our approach is based on a full Bayesian

approach, where we represent our uncertainty about the outputs of a simulator using an

emulator.

Simulators are usually deterministic input-output models, where running the simulator

again at the same input values will always give the same outputs. However, the output

value is unknown before running the simulator for a particular input set. From a Bayesian

perspective, uncertainty about the output of the simulator, also called code uncertainty,

can be expressed by a stochastic process. The result is a statistical representation of the

simulator, known as emulator.

In Section 2.2, we formally show the emulator approach, reviewing the Gaussian process

emulator with all required assumptions for building it. In Section 2.3, we demonstrate the

6
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Gaussian process emulator with some toy examples. In Section 2.4, we discuss some analyses

that can be done using an emulator as a surrogate of the simulator.

2.2 Gaussian process emulators

An emulator is a probability distribution that represents uncertainty about the simulator,

where the simulator is viewed as an unknown mathematical function. Although the simula-

tor is in principle known, we are uncertain about the actual value of the simulator output

for any untried input value. From a Bayesian point of view Kimeldorf and Wahba (1970)

and O'Hagan (1978) use Gaussian processes to describe the behaviour of an unknown math-

ematical function. In the 1980s, the fundamental idea of building a emulator using Gaussian

processes was introduced, in a non-Bayesian framework by Sacks et al. (1989b), and within

a Bayesian framework by Currin et al. (1988, 1991). We review the principal ideas of the

Gaussian process emulator from a Bayesian point of view. For a frequentist point of view,

see also Santner et al. (2003, section 3.3).

The simulator, represented by η(·) , is assumed to be a function of a set of inputs denoted

by x = (x1, . . . , xp) ∈ X1 × · · · × Xp = X ⊂ Rp , with output represented by y = η(x) ∈ R .

In order to build a Gaussian process emulator, the uncertainty about the simulator output

is described as a Gaussian process with a particular mean function m(·) , and a covariance

function V (·, ·) . Formally, if η(·) is represented by a Gaussian process then for every n =

1, 2, . . . the joint distribution of η(x1), . . . , η(xn) is multivariate normal for all xi ∈ X and

i = 1, 2, . . . , n . The mean function m(·) can be any function of x ∈ X , but V (·, ·) must

satisfy the property that every covariance matrix with elements {V (xi,xj)} must be non-

negative de�nite.

Our prior beliefs about the simulator η(·) are represented by a Gaussian process with

mean m0(·) and covariance function V0(·, ·) . Using a hierarchical formulation,

η(·)|β, σ2, δ ∼ GP (m0(·), V0(·, ·)) , (2.1)
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where the mean function m0(·) is given by

m0(x) = h(x)Tβ, (2.2)

where h(·) : χ ⊂ Rp 7−→ Rq is a known function of the inputs, where q can be di�erent from

the input space dimension p , and β is an unknown q -dimensional vector of coe�cients. The

function h(·) should be chosen to incorporate any prior knowledge about the form of η(·) .

The choice for h(·) depends on prior beliefs about the simulator. The simplest case is

when q = 1 and h(x) = 1 for all x . Then the mean function is m(x) = β , where now β is a

scalar hyperparameter representing an unknown overall mean for the simulator output. This

choice expresses no prior knowledge about how the output will respond to variation in the

inputs. Another simple instance is when h(x)T = (1,xT ) , so that q = 1 + p , where p is the

number of inputs. Then m(x) = β0 + β1x1 + . . .+ βpxp , which expresses a prior expectation

that the simulator output will show a trend in response to each of the inputs, but there is no

prior information to suggest any speci�c non-linearity in those trends. If there is prior belief

in non-linearity of response, then quadratic or higher polynomial terms might be introduced

into h(·) . In this thesis, unless it is said to the contrary, our prior beliefs for the simulator

are represented by the linear mean m(x) = β0 + β1x1 + . . .+ βpxp .

The covariance function V0(·, ·) is given by

V0(x,x′) = σ2Cδ(x,x
′), (2.3)

where σ2 is an unknown scale parameter, and Cδ(·, ·) is a known correlation function with

the unknown vector of correlation parameters δ . The chosen correlation function Cδ(·, ·)

should ensure that the covariance matrix of any set of inputs is non-negative de�nite.
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Correlation functions

A correlation function Cδ(x,x
′) represents the correlation between the simulator outputs

at the input x and x′ with correlation parameter δ . In statistical analysis for simulators

is common to use stationary correlation functions. We say a correlation function C(·, ·) is

stationary if C(x,x′) = R(x− x′) , and it is said to be isotropic if C(x,x′) = R(||x− x′||) .

A family of stationary correlation functions which is widely used in the literature to specify

a Gaussian process is the power exponential correlation function,

Cδ(x,x
′) = exp{−|(x− x′)/δ1|δ2}, for x,x′ ∈ X , (2.4)

where δ1 > 0 , and the allowable range for δ2 to ensure positive de�niteness of the corre-

sponding correlation matrices is δ2 ∈ (0, 2] . If δ2 = 2 then Cδ(·, ·) is a squared exponential

correlation function, also known as Gaussian correlation function. An extension of this family

is a p-dimensional separable version of the power exponential correlation function.

Cδ(x,x
′) = exp

{
−

p∑
i=1

|(xi − x′i)/δi|δp+i
}
, (2.5)

where δi > 0 , and δp+i ∈ (0, 2] for i = 1, . . . , p . As a special case, the p-dimensional

separable version of the squared exponential correlation function is

Cδ(x,x
′) = exp

{
−

p∑
i=1

|(xi − x′i)/δi|2
}
, (2.6)

where the parameters δ = (δ1, . . . , δp) are called correlation length parameters. This formula

shows the role of each correlation length parameter δi . The smaller its value, the closer

together xi and x′i must be in order for the outputs at x and x′ to be highly correlated.

Large (small) values of δi mean that the output values are correlated over a wide (narrow)

range of the ith input xi . Some authors use a di�erent parametrization for the correlation

parameters, for example θi = δ
− 1

2
i , where θi is called a roughness parameter.

Other correlation functions, such as linear and cubic correlation functions are given in
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Currin et al. (1991). For more details of correlation functions for Gaussian processes, see

Cressie (1993), Santner et al. (2003), and Rasmussen and Williams (2006). In this thesis,

unless it is said to the contrary, we use the p-dimensional separable version of the squared

exponential correlation function (2.6) with correlation parameters described as correlation

lengths.

Training data

Suppose y = (y1 = η(x1), . . . , yn = η(xn))T contains n values of the simulator outputs at

design points x1, . . . ,xn in the input space χ ⊂ Rp . These data are called the training

dataset. The design points are chosen attempting to cover the whole input space. Chapman

et al. (1994) suggest that the sample size of the training data should be at least ten times

the dimensionality of the input space, i.e. n = 10p . Loeppky et al. (2009) illustrate that

n = 10p is a reasonable rule for initial experiments.

Design for building emulators

In the process of building an emulator, we need to answer the following question: Which

values in the input space should we run the simulator at in order to minimize our uncertainty

with respect to the simulator? To answer this question, several designs for computer models

have been developed.

The simplest design is a random sample from a uniform distribution over the input space.

Figure 2.1 (a) illustrates the simple random design of size 10 in a region X = [−1, 1]2 .

The problem with this method is that some regions of the input space can be completely

uncovered. In our example, Figure 2.1 (a), we see that small values of X1 are not covered.

McKay et al. (1979) propose Latin hypercube sampling for choosing inputs for a simulator.

Latin hypercube sampling guarantees that each input is well represented in the design. Figure

2.1 (b) illustrates a Latin hypercube design of size 10 from the region X = [−1, 1]2 . We see
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that marginally, both input variable sample spaces are well covered.
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Figure 2.1: Sampling-based designs with 10 elements and 2 dimensions on the region X =
[−1, 1]2 : (a) Uniform random sample; (b) Latin hypercube sample.

In Chapter 5, we discuss the design problem in more detail and present other designs

for building emulators such as distance-based designs, optimal designs, lattice designs, and

non-random designs.

Updating the prior process

According to (2.1) the distribution of the outputs is multivariate normal as follows:

y|β, σ2, δ ∼ Nn

(
Hβ, σ2A

)
, (2.7)

where

H = [h(x1), . . . , h(xn)]T , (2.8)

and A is the matrix with elements

Ai,j = Cδ(xi,xj). (2.9)



12 CHAPTER 2. STATISTICAL ANALYSIS FOR SIMULATORS USING EMULATORS

Using standard techniques for conditioning in multivariate normal distributions, it can be

shown that

η(·)|β, σ2, δ,y ∼ GP (m∗0(·), V ∗0 (·, ·)) , (2.10)

where

m∗0(x) = h(x)Tβ + tδ(x)TA−1(y −Hβ),

V ∗0 (x, x′) = σ2
[
Cδ(x, x

′)− tδ(x)TA−1tδ(x
′)
]
,

where tδ(x) = (Cδ(x,x1), . . . , Cδ(x,xn))T .

Using a weak prior for (β, σ2) , p(β, σ2) ∝ σ−2 , combining with (2.7) using Bayes Theorem,

the posterior for (β, σ2) is a Normal Inverse Gamma distribution, characterised by

β|y, σ2, δ ∼ N
(
β̂, σ2

(
HTA−1H

)−1
)
, (2.11)

where β̂ =
(
HTA−1H

)−1
HTA−1y , and

σ2|y, δ ∼ InvGam

(
n− q

2
,
(n− q − 2)σ̂2

2

)
, (2.12)

where σ̂2 =
yT
(
A−1 − A−1H

(
HTA−1H

)−1
HTA−1

)
y

n− q − 2
.

Integrating β out from the product of (2.10) and (2.11), it can be shown that

η(·)|y, σ2, δ ∼ GP (m1(·), V ∗1 (·, ·)) , (2.13)

where

m1(x) = h(x)T β̂ + tδ(x)TA−1(y −Hβ̂), (2.14)

V ∗1 (x, x′) = σ2
[
Cδ(x, x

′)− tδ(x)TA−1tδ(x
′)

+
(
h(x)− tδ(x)TA−1H

)
(HTA−1H)−1

(
h(x′)− tδ(x′)TA−1H

)T]
. (2.15)
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Student-t process emulator

The Student-t process emulator is obtained by integrating σ2 out from the product of (2.12)

and (2.13), and is given by

η(·)|y, δ ∼ Student-t Process (n− q,m1(·), V1(·, ·)) , (2.16)

where

m1(x) = h(x)T β̂ + tδ(x)TA−1(y −Hβ̂), (2.17)

V1(x, x′) = σ̂2
[
Cδ(x, x

′)− tδ(x)TA−1tδ(x
′)

+
(
h(x)− tδ(x)TA−1H

)
(HTA−1H)−1

(
h(x′)− tδ(x′)TA−1H

)T]
. (2.18)

where β̂ =
(
HTA−1H

)−1
HTA−1y and σ̂2 =

yT
(
A−1 − A−1H

(
HTA−1H

)−1
HTA−1

)
y

n− q − 2
.

Analogously to a Gaussian process, if η(·) is represented by a Student-t process then for

every m = 1, 2, . . . the joint distribution of η(x1), . . . , η(xm) is multivariate Student-t for all

xi ∈ X , i = 1, . . . ,m .

Inference for the correlation lengths

The correlation parameter vector δ is unknown. A prior for the correlation parameters δ

should be speci�ed. if p(δ) is the prior density function for δ , the posterior density for δ is

obtained via

p(δ|y) ∝ p(δ)

∫ ∫
p(y|β, σ2, δ)p(β, σ2)dβdσ2

∝ p(δ)|A|−
1
2 |HTA−1H|−

1
2 (σ̂2)−

n−q
2 , (2.19)

where A and σ̂2 are functions of δ . Paulo (2005) presents reference priors for the correlation

lengths. Andrianakis (2009) discusses the use of di�erent priors for the correlation lengths.
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A fully Bayesian analysis would now integrate out the correlation length vector δ from the

product of the densities in (2.16) and (2.19). The posterior distribution of δ is intractable,

but approximate Bayesian methods can be applied, such as a Laplace approximation (Lindley

1980). Markov Chain Monte Carlo methods can be used for a fully Bayesian analysis as in

Bayarri et al. (2007), but these methods require highly intensive computations. Alternatively,

δ can be estimated from the posterior distribution p(δ|y) , or from the likelihood p(y|δ) , and

then the analysis proceeds as if these estimates were the true values. This approach is called

the plug-in approach. Estimates for δ are most often chosen using an optimization method

to �nd the posterior mode (Sacks et al. 1989b; Currin et al. 1991).

2.3 Illustrative examples

In this section we illustrate how to emulate a simulator using some toy examples. We begin

with models having only one and two inputs.

2.3.1 One-dimensional toy example

Example 2.1 (1D toy example) Let the simulator be the function

η(x) = 5 + x+ cosx.

This toy example was used in Oakley (1999). Figure 2.2 presents the function we use as

simulator with some training data, which we use to build the emulator.

We assume that the simulator is represented as a Gaussian process as in (2.1). The prior

distribution for (β, σ2, δ) is p(β, σ2, δ) ∝ σ−2p(δ) , where δ follows a log Normal distribution

with parameters µ = 0 and σ2 = 100 . The reason for choosing this log normal prior is that

it is a proper probability distribution but essentially �at over the relevant range. Therefore,

conditional on the training data shown in Figure 2.2 and an estimated correlation length, our
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Figure 2.2: Simulator from example 2.1 with some training data given by • .

beliefs about the simulator can be described as a Student-t process emulator (2.16). Figure

2.3 presents some Student-t process emulators conditioned on the training data and di�erent

values for the correlation length, δ . Notice that, for all cases, the simulator is contained in

the 95% credible intervals.

Figure 2.3 (a) presents the independent case, i.e. when δ = 0 . Notice that the emulator

mean at untried inputs is represented by an adjusted regression line for the training data,

and the widths of the 95% credible intervals for outputs at most inputs are exactly the same.

This emulator is undercon�dent. Figure 2.3 (b) presents the case where δ = 1 . We assume

that there is some correlation between outputs for inputs close to each other. We observe

that predictions at inputs near training data have small ranges for the 95% credible intervals.

The size of the 95% credible interval increases as distances between the input we want to

predict at and the nearest training data increase. We are now more con�dent about the

simulator behaviour in comparison with the independent case. Figure 2.3 (c) presents the

case where δ = 2 . Now the correlation between outputs for inputs close to each other is

signi�cantly higher. Therefore, the size of the intervals gets smaller. We are more con�dent

now than in the previous cases. However we need to justify why we use a correlation length

with that size. We could keep increasing the correlation lengths, but we would eventually

be overcon�dent about the simulator behaviour and make some wrong predictions.
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(a) δ = 0 (b) δ = 1 (c) δ = 2

Figure 2.3: Student-t process emulators conditioned on the training data and di�erent values
for the correlation lengths.

We estimate the correlation length δ from its posterior distribution, equation (2.19), using

a log Normal prior with parameters (0,100). The posterior mode is given by δ̂ = 3.857 .

Figure 2.4 (a) presents the prior and the posterior distribution for δ . We notice that the

prior density is �at, as our prior beliefs about δ are vague. The Student-t emulator using

δ̂ as the true correlation length is presented in Figure 2.4 (b). We notice that the emulator

predictions are accurate with narrow 95% credible intervals. In Figure 2.4 (c), we plot the

di�erence between the simulator and the predictive mean. Now, we can see clearly the 95%

credible intervals. Even though the emulator predictions seems perfect in Figure 2.4 (b),

when we look at the di�erence between the simulator and the predictive mean the emulator

seems to be undercon�dent, though perhaps trivially so.
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Figure 2.4: Example 2.1: (a) Prior and posterior distribution for the correlation length;
(b) Student-t process emulator conditioned on the training and posterior mode for δ ; (c)
Di�erence between the simulator and the emulator mean with 95% credible intervals.
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2.3.2 Two-dimensional toy example

Example 2.2 We suppose that the simulator encodes the following mathematical function

η(x1, x2) =
(

1− e−
1

2x2

)(2300x3
1 + 1900x2

1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

)
, (2.20)

where (x1, x2) ∈ (0, 1)2 . This example is a toy example used in the GEM-SA software1.

Figure 2.5 (a) presents the simulator (2.20) over the input space. The training data are

composed of 20 points selected by a Latin hypercube sampling, Figure 2.5 (b). Using the

training data, we estimate the correlation length parameters by maximizing the function

(2.19). The estimates are (δ̂1, δ̂2) = (0.2421, 0.4240) , indicating that the simulator is more

smooth with respect to the second input than the �rst.
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Figure 2.5: Example 2.2: (a) Simulator applied on the input space; (b) The training data.

Using the training data and the estimated correlation lengths, we build the Student-t

process (2.16) and we predict the simulator in a grid of 20× 20 points over the input space.

Figure 2.6 (a) presents the emulator posterior mean and (b) the posterior standard deviations

applied over the grid of points. Visually, the emulator mean using 20 training data points is

1The GEM-SA software is available at http://ctcd.group.shef.ac.uk/gem.html.
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able to capture the main features of the true simulator. Note that the colourmaps used to

represent the output axes in Figures 2.5 (a) and 2.6 (a) are on the same scale. The standard

deviations, as expected, are small close to the training data, and are larger far from the

training data, where there is little information.
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Figure 2.6: Student-t process emulator using the training data: (a) emulator mean; (b)
emulator standard deviation.

2.3.3 Surfebm model

The Surfebm model is an energy balance model of the Earth's climate used in Andrianakis

(2009). The state variables are upper ocean temperatures averaged around the globe at

constant latitudes. This simpli�ed version of the model has two inputs: the solar constant

and the albedo, and one output: the mean surface temperature. We normalised the inputs

to the (0, 1)2 space. Using a Latin hypercube design, 20 training inputs were generated

and are presented in Figure 2.7 (a). Having obtained our design points, we then run the

surfebm model at these points and get the mean surface temperature, which we denote by

y = (η(x1), . . . , η(x20))T .

We assume that the uncertainty on the surfebm model is well represented by a Gaussian

process using a linear mean function with h(x) = (1, x)T . For the covariance function we
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choose σ2Cδ(·, ·), where the correlation function Cδ(·, ·) is the squared correlation function.

Given the training data, we estimate the correlation lengths, δ , from (2.19) assuming a �at

log Normal prior with parameters (0,100) for each correlation length. The posterior mode

is given by (δ̂1, δ̂2) = (2.2546222, 0.1443991) , indicating that the simulator is more smooth

with respect to the �rst input than the second.

Conditioned on the training data and on the estimated correlation lengths, we �t a

Student-t process emulator (2.16) in a grid of points in the input space. Figure 2.7 (b)

presents the predictive mean of the Student-t emulator. Predictions for the mean surface

temperature are high values when we observe large values for the solar constant input, X1 ,

and small values for the albedo input, X2 . The mean surface temperature is predicted to

be small when the albedo input is large and the solar constant input is small. A linear rela-

tionship between the mean surface temperature and the two inputs can be seen. Figure 2.7

(c) presents, as a measure of uncertainty, the predictive standard deviations. The variability

of the predictions is small next to the training data, and the standard deviation increases in

regions where there are few or no data.
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Figure 2.7: Student-t process emulator for the surfemb model using the training data (a);
Predictive mean (b); Predictive standard deviation (c).
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2.3.4 Multiple output emulators

Many simulators have several outputs. In this thesis, we focus on single output simulators,

but some authors consider multiple output simulators. The simplest way to emulate a multi-

output simulator is to use an independent Gaussian process emulator for each output. The

problem with this approach is the assumption that the outputs are all independent. Conti

and O'Hagan (2007) model the multi-output simulator using a Gaussian process, taking into

account the correlation between the outputs where they use a separable covariance function

for the outputs. Rougier (2008) presents an alternative multivariate emulator which has not

only a separable covariance function but also a separable mean function. Rougier's approach

is called the outer-product emulator.

A simulator may represent a real-world process that evolves over time (or sometimes in

space, or both time and space). Such simulators are multi-output with a particular structure

for the outputs which are time-series (or maps, or maps varying with time). Conti et al.

(2009) and Liu and West (2009) present di�erent approaches for emulation when the output

is a time series.

2.4 Analysis using emulators

The simplest analysis using an emulator is to predict the output at untried inputs. This

is important when the simulator is expensive to run. Note that the emulator provides a

probability distribution for that output, and not only a single value for the output prediction.

Welch et al. (1992) present an application of Gaussian processes to screening (input selection)

and prediction in complex simulators.



2.4. ANALYSIS USING EMULATORS 21

2.4.1 Uncertainty analysis

A common scenario is that one or more inputs are uncertain. Therefore, we consider the

input to be a random variable X . Consequently the output Y = η(X) is a random variable.

We are interested in the induced distribution of Y , known as the uncertainty distribution. If

the simulator can be run at a large number of input con�gurations, then a simple Monte Carlo

method can be used to obtain a random sample of the outputs. However even for relatively

cheap simulators, those that take a few seconds to run, several thousands of simulator runs

can be very expensive. Using emulators, the computational cost can be reduced signi�cantly,

where just a few hundreds of runs may be required for analyses that provide similar results.

O'Hagan (2006) provides a comparison between Monte Carlo uncertainty analysis using the

simulator directly and an emulator.

Uncertainty analysis for simulators using emulators was presented by Haylock and O'Hagan

(1994), where they derived the posterior moments of mean and variance of the output distri-

bution. Oakley and O'Hagan (2002) extended Haylock and O'Hagan's results deriving the

posterior moments of the distribution function of the output, and made inference about the

density function of the output.

2.4.2 Sensitivity analysis

Sensitivity analysis is concerned with understanding how changes in the inputs x a�ect the

output y . Saltelli, Chan, and Scott (2000) discuss some di�erent measures to quantify input

sensitivity using the simulator, for example sensitivity analyses based on variance decom-

position and regression modelling. Sensitivity analysis methods requiring a large number of

simulator runs can be impractical for expensive simulators.

When there is uncertainty in the inputs, the input is treated as a random variable X .

Consequently the output Y = η(X) is also a random variable. The approach of sensitivity

analysis that takes into account the uncertainty in the inputs is known as probabilistic

sensitivity analysis. Learning about the distribution of the output induced by the inputs X
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is uncertainty analysis. Sensitivity analysis goes beyond uncertainty analysis, exploring how

individual inputs a�ect the distribution of the output. Oakley and O'Hagan (2004) presented

a probabilistic sensitivity analysis using the emulator where they provided Bayesian inference

about sensitivity measures based on variance and regression �tting.

Kennedy, Anderson, Conti, and O'Hagan (2006) present a number of recent applications

in which an emulator of a computer code is created using a Gaussian process model. They

presented three case studies from the Centre for Terrestrial Carbon Dynamics (CTCD) where

sensitivity analysis and uncertainty analysis are illustrated.

2.4.3 Calibration

In computer experiments, it is assumed that there is an unknown true input-output function

that describes a particular real process, ξ(·) , and the simulator is a simpli�ed representation

of this real-world function. When `parameters' of the true real-world function are unknown,

suitable physical observations may be used to learn these unknown parameters, which are

speci�ed as simulator inputs. This process is called calibration.

In calibration, as well as uncertainty in the simulator input, the simulator may be a

biased version of reality, and the physical observations may include noise. These three major

sources of uncertainty are considered by Kennedy and O'Hagan (2001). They presented a

full Bayesian calibration analysis. Following calibration the modellers may want to predict

the real process, combining the calibrated simulator with the physical observations. This is

possible using the Kennedy and O'Hagan model, where the di�erence between the computer

model and the real process is called the discrepancy function. We come back to this problem

in Chapter 7. It is worth mentioning that when the simulator is expensive to run, an emulator

can be used in calibration.

Bayarri et al. (2005) presented an application of the Kennedy and O'Hagan calibration

model to study the e�ect of a collision of a vehicle. As an alternative to full Bayesian

calibration, Goldstein and Rougier (2006) presented a Bayes linear approach.
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2.5 Conclusion

In this chapter we have presented the emulator as a statistical representation of our knowledge

about the outputs of a simulator. We have shown how to use Gaussian processes to represent

our beliefs about the simulator outputs. We have shown how to update the prior process

using a set of simulator runs. We illustrate the inference for emulator for some toy examples.

We have reviewed some analyses using emulators as surrogates of simulators, such as

uncertainty and sensitivity analyses. The use of an emulator in these analyses is important

when the simulator is expensive to run. However, before using the emulator it is necessary to

check whether the emulator correctly represents our uncertainty about the simulator outputs.

This process is called validation. Similarly, in computer experiments when a simulator is

used to represent a real system, the simulator has to be validated. A literature review on

validation for simulators is presented in Chapter 3. Diagnostics for validating Gaussian

process emulators are presented in Chapter 4.



Chapter 3

Validation of models: a literature review

3.1 Introduction

In this chapter we provide a literature review on validation of models. We �rst consider

methods for validation for deterministic models, i.e. simulators, and consider their suit-

ability for validating emulators. A simulator, which we represent by a function η(·) , is a

mathematical approximation of a real system. We assume that there is an unknown true

input-output function, ξ(·) , that represents the real system, so that η(·) is an approxima-

tion of ξ(·) . Before using a simulator to investigate a real system, it should be validated.

The validation process consists of providing evidence in favour or against the simulator as a

surrogate of the real system.

When a real system ξ(·) or a simulator η(·) is represented by a probabilistic model, the

predictions are given by probability distributions. Comparisons between predictions and

`real' observations (physical observations or simulator runs) should also take into account

the uncertainty associated with the predictions. In Section 3.3, we discuss some ideas for

validating probabilistic predictive models.

24
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3.2 Veri�cation and validation of simulators

In validating a simulator there are two steps. The �rst step refers to the assessment of the

accuracy of the numerical solutions with respect to the theoretical solutions of the complex

mathematical model. The second step refers to checking if the simulator is able to represent

the intended real system; this process generally involves comparison of simulator outputs to

physical observations of the real system. Fishman and Kiviat (1968) have called these two

steps veri�cation and validation (V&V) respectively.

In computer science and engineering, there are guidelines for veri�cation and validation

of simulators. Published examples of guidelines include the Institute of Electrical and Elec-

tronics Engineers (IEEE 1991, 1998), the US Department of Defence (USDoD 1996), the

American Institute of Aeronautics and Astronautics (AIAA 1998), and the U.S. Food and

Drug Administration (FDA 2002).

Some formal de�nitions are given in Trucano et al. (2006).

Veri�cation is the process of determining that a model implementation accurately rep-

resents the developer's conceptual description of the model and the solutions to the

model.

Validation is the process of determining the degree to which a model is an accurate repre-

sentation of the real world from the perspective of the intended uses of the model.

The literature on V&V for simulators is quite extensive and represents di�erent perspec-

tives and approaches, such as philosophical theories about validation, statistical techniques

and software practices. Some reviews of the literature about V&V are given in Balci and

Sargent (1984), Kleijnen (1995b), Roache (1998) and Oberkampf and Trucano (2000).

The statistical validation techniques depend on the availability of the physical observa-

tions. Kleijnen (1999) described three levels of data availability: (i) when real data is scarce;

(ii) when only the outputs from the real system are available; (iii) when both outputs and

inputs from the real system are available.
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3.2.1 Validating with scarce real data

In some applications, physical data may be either scarce or completely missing, for example,

when modelling hypothetical nuclear accidents. In studies where there are no real data, then

strong validation claims are impossible. However, analysts can perform simulation studies

to �nd out whether the simulator contradicts qualitative expert knowledge. The process of

asking experts whether the simulation outputs are reasonable is called Face Validity (Sargent

1979). Another validation technique is sensitivity analysis (Welch et al. 1992; Kleijnen

1995b). This is performed to show whether the e�ect of changes to inputs agrees with an

expert's prior qualitative knowledge.

3.2.2 Validating using outputs of the real system only

In this situation the inputs of the real system cannot be measured, and only the outputs are

available. Therefore, we have a set of runs of the simulator (y1 = η(x1), . . . , yn = η(xn)) and

a set of observations of the real process (z1, . . . , zm) at unknown input values. For example,

Kleijnen (1995a) presents a case study involving the search for mines by means of sonar,

where a simulator is validated whose output is the probability that in a certain position there

is a mine. In this case study, the US Navy had one team that deposited some mines on the sea

bottom. However, it was impossible to measure environmental variables such as temperature

and salinity of the sea water, which were simulator inputs. To validate the simulator, in the

�rst stage a sensitivity analysis was performed where the results were compared with expert

intuition. In a second stage there is a comparison of binary (success/failure) outcome of n

runs of the simulator and m �eld trials.

The two-stage validation can be applied in situations where only the outputs of the real

system are available. The �rst stage is a face validation, where sensitivity analysis is per-

formed in order to show whether the e�ect of changes on inputs agree with expert prior

qualitative knowledge. In the second stage the empirical distribution of the simulator out-

put obtained using the outputs (y1, y2, . . . , yn) is compared with the empirical distribution
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of the real output obtained using the observations (z1, z2, . . . , zm) , where these distributions

would be the same for an ideal simulator assuming that both the simulator outputs and the

real observations represent the same input space. The most popular statistical techniques

for comparing two distributions are the χ2 test and the Komolgorov-Smirnov test.

3.2.3 Validating using inputs and outputs of the real system

We have seen that it is possible to compare expert knowledge with the result of sensitivity

analysis. But in the situation that both output and inputs of the real process are available, a

more thorough validation analysis can be performed. Let zi be a measure of the real system

at location xi , for i = {1, 2, . . . , n} . For the real inputs, we also obtain the respective

simulator runs (y1 = η(x1), . . . , yn = η(xn)) . Kleijnen et al. (1998) call this process �trace-

driven simulation�.

The simplest comparison method is a graphical comparison between simulator outputs

and real observations. Based on expert knowledge and with a degree of con�dence given by

the expert, the simulator can be judged as a good or bad approximation to the real system.

This method is very subjective, but it is often used in practice. Kozempel et al. (1995)

proposed to �t a regression line and test whether the �tted line has unit slope and intercept

zero.

Quantifying the validity of a simulator can also be seen as a hypothesis testing problem

when we calculate the di�erence between simulator outputs and physical observations and

test a null hypothesis that the di�erence has zero mean. Hills and Trucano (1999, 2001)

propose the statistic

X2 = (z− y)T (Σd)
−1(z− y),

where z = (z1, . . . , zn) , y = (y1, . . . , yn) , and Σd is the estimated covariance matrix for

the di�erence between the simulator outputs and the experimental observations. Under the

assumption that errors between the simulator outputs and that of physical observations are

independent normal random variables, the statistic X2 has a chi-square distribution with n
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degrees of freedom. Hills and Trucano also mentioned that non-parametric methods can be

used to compare the simulation and the real outputs, such as the Wilcoxon test for comparing

the mean of the simulator output with the real observations, and the Kolmogorov-Smirnov

test to establish whether the distribution of di�erence between simulator output and real

observations is normally distributed.

Oberkampf and Barone (2006) assumed that the physical observations follow a normal

distribution with mean µ , and proposed a validation metric based on con�dence intervals

for the true error, D = ȳ − µ , where ȳ is mean of the simulator outputs, and µ is the true

mean of the real process. A con�dence interval for D is given by

(
D̃ − tα

2
,m−1

sd√
m

; D̃ + tα
2
,m−1

sz√
m

)
, (3.1)

where D̃ = ȳ − z̄ , z̄ is the sample mean of m observed values of the real system, sd is the

estimated standard deviation of di = (yi−zi) for i = 1, . . . , n , and tα
2
,v is the 1− α

2
quantile

of Student-t distribution for v degrees of freedom.

Oberkampf and Barone (2006) also extended the metric (3.1) where r experimental repli-

cations at each location x are available (z1(x), . . . , zr(x)). A con�dence interval for the true

error for a speci�c input value x is given by

(
D̃(x)− tα

2
,r−1

sd(x)√
r

; D̃(x) + tα
2
,r−1

sd(x)√
r

)
, (3.2)

where D̃(x) = η(x) − z̄(x) , z̄(x) is the sample mean of observed values of the real system

at input x based on r replications of the experiment, and sd(x) is the estimated standard

deviation of (η(x)− zk(x)) for k = 1, . . . , r .

The authors also presented some global metrics in order to provide a more compact

statement of a validation metric result. The average relative error metric and the average

relative con�dence indicator are de�ned by∣∣∣∣∣D̃z̄
∣∣∣∣∣
avg

=

∫
x∈χ

∣∣∣∣η(x)− z̄(x)

z̄(x)

∣∣∣∣ dx, and

∣∣∣∣CIz̄
∣∣∣∣
avg

=
tα

2
,r−1√
r

∫
x∈χ

∣∣∣∣sd(x)

z̄(x)

∣∣∣∣ dx
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where CI is half-width of the con�dence interval (3.2).

Other proposed metrics are the maximum relative error metric and the maximum relative

con�dence indicator. These metrics allow identifying some particular point over the range

of the data that should be noted. They are respectively de�ned by∣∣∣∣∣D̃z̄
∣∣∣∣∣
max

= max
x∈χ

∣∣∣∣η(x)− z̄(x)

z̄(x)

∣∣∣∣, and

∣∣∣∣CIz̄
∣∣∣∣
max

=
tα

2
,r−1√
r

max
x∈χ

∣∣∣∣sd(x)

z̄(x)

∣∣∣∣.
3.2.4 Validating the simulator using the calibration model

A common assumption is that physical data are observed with noise (Santner et al. 2003).

We observe

zi = ξ(xi) + εi, (3.3)

where εi is the observation error for the ith observation.

Another assumption is that the simulator is a biased version of reality. This assumption

is reasonable since a simulator is in fact an approximation of a real system.

ξ(·) = η(·) + d(·), (3.4)

where d(·) is an unknown discrepancy function, also known as the bias function.

Combining (3.3) and (3.4), Kennedy and O'Hagan (2001) present the calibration model

for linking observations to simulator outputs:

zi = ξ(xi) + εi = ρη(xi, θ) + d(xi) + εi, (3.5)

where εi is the observation error for the ith observation, ρ is an unknown regression coe�-

cient, θ is a calibration parameter for the simulator, and d(·) is a discrepancy function. The

discrepancy function, the simulator and the observational errors are all independent from

each other. Note that some authors only consider ρ = 1 .
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Bayarri et al. (2002, 2005) proposed a Bayesian validation framework with two main

steps. The �rst step is a prediction step based upon the statistical methodology proposed

by Kennedy and O'Hagan (2001), where a Bayesian calibration model is built and used

for making predictions. The second step is a validation step based on Bayesian hypothesis

testing methodology. It is tested whether the simulator can represent the real process. Let

M0 denote the model without the discrepancy function and M1 the model including the

discrepancy function, i.e

M0 : zi = η(xi, θ) + εi,

M1 : zi = η(xi, θ) + d(xi) + εi.

Given a prior probability for each model, π0 and π1 respectively, Bayes theorem gives that

the posterior probability of M0 is given by

p(M0|y, z) =
π0l0(y, z)

π0l0(y, z) + π1l1(y, z)
(3.6)

where li(y, z) is the marginal likelihood for the model Mi, i = 0, 1 .

Rebba, Mahadevan, and Huang (2006) presented a validation metric based on a Bayes

Factor where they compare the simulator output with experimental data when both are

stochastic. Rebba et al. also presented a model error estimation methodology and sensitivity

analysis of the validation metric.

Wang et al. (2009) criticised the validation metric proposed by Oberkampf and Barone

(2006), (3.1) and (3.2), and based on Kennedy and O'Hagan (2001) Wang et al. developed

a Bayesian procedure for simulator validation. They proposed a validation metric based on

prediction intervals. Let ld(x) and ud(x) be the lower and upper bounds of the 100(1−α)%

prediction interval for d(·) , where d(·) is the discrepancy function de�ned in (3.5). De�ne

∆min(x) =

 0, if η(x) ∈ (ld(x), ud(x)),

min {|η(x)− ld(x)|, |η(x)− ud(x)|} , otherwise,

and

∆max(x) = max {|η(x)− ld(x)|, |η(x)− ud(x)|} .
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Let ∆0 be the maximum allowable deviation between the simulator output and the real

experiment that the user will tolerate. Then the validation rules are as follows: reject the

simulator at x if ∆min(x) > ∆0 , accept the simulator at x if ∆max(x) < ∆0 , and there is

no conclusion and more physical observations are needed if ∆min(x) ≤ ∆0 ≤ ∆max(x) .

3.3 Validating emulators

We now consider the problem of validating an emulator rather than validate the simulator

itself. The emulator is a probabilistic predictive model for the simulator, and validating an

emulator should provide information in order to check whether the emulator represents well

our uncertainty about the simulator η(·) .

The validation de�nition presented in Section 3.2 needs to be adapted as follows.

Validation is the process of determining that a probabilistic model represents our uncer-

tainty about the true model (a simulator or a real system) appropriately.

An example of an invalid model is a model in which the uncertainty on the predictions

is too large. Such model is called undercon�dent model. Analogously, if the uncertainty on

the predictions is too small, then we have an invalid model which is overcon�dent.

In elicitation, it is possible to determine the appropriateness of a set of probability judge-

ments, where probability judgements for a series of events are compared with the observed

relative frequency of these same events (O'Hagan et al. 2006). Here, we want to check if the

probability judgements for an unknown function appropriately represent uncertainty about

the function which can be either a simulator η(·) or the real system ξ(·) . The problem

with using elicitation-based methods for evaluating probability judgements about an un-

known function is that even if we observe the function at many points, we only have a single

`sample' of the random process. Instead, we must check the assumptions made to build the

probabilistic model.
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3.3.1 Existing methods for validating emulators

The use of emulators has become very popular. However, there is little literature on val-

idating such models. Sacks et al. (1989b) use quantile-quantile plots of the standardised

residuals to check if their emulator represents well a simulator. Rougier et al. (2007) pre-

sented a cross-validation diagnostic called the �leave-one-out� diagnostic, where they left one

element out of the training data and predicted it, repeating this procedure for all elements

and plotting credibility intervals for each element. They also presented a diagnostic where

they leave out more than one element.

Validating an emulator can be compared with validating linear models with dependent

errors. However, the Gaussian process emulator is modelling a deterministic function, and

hence the `predictions' for observed values used to build the model are perfect as the Gaussian

process interpolates the training data exactly, with no uncertainty. Residuals can only be

obtained using cross validation methods, or, more appropriately, a new dataset. Therefore,

the diagnostics used in linear models need to be adapted to be applied in the computer

model framework.

In the context of linear models, Haslett and Hayes (1998) presented a general theory

for residuals, where they de�ne the marginal and the conditional residuals. The marginal

residuals are the errors between the observed values and the �tted values, whereas the

conditional residuals are the errors between the predictive values for observed values not

used to build the model. Fraccaro et al. (2000) presented graphical diagnostics for marginal

and conditional residuals in a time series regression context. The authors decompose the

estimated variance matrix of the residuals using a Cholesky decomposition, and rotate them

in order to have uncorrelated residuals with unit variance. Houseman et al. (2004) used the

Cholesky decomposition of the inverted covariance matrix to rotate the residuals of linear

mixed models and time series. Houseman at al. provided a quantile-quantile plot of these

uncorrelated errors providing asymptotic properties of the empirical cumulative distribution

and pointwise standard errors.

The Gaussian process emulators that we consider in this thesis model deterministic func-
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tions, so that there are no marginal errors as de�ned by Haslett and Hayes (1998). Specif-

ically, emulator predictions for outputs used to build the emulator will exactly equal the

respective outputs, with zero variances. We can only obtain prediction errors for simula-

tor runs not used to build the emulator, the conditional errors in Haslett and Hayes (1998).

Another important feature that should be considered in the diagnostics for validating emula-

tors is the error correlation due to a spatial correlation structure. Therefore our uncertainty

about a simulator output at inputs near a training data point is smaller than our uncertainty

about a simulator output at inputs far from any training data point.

Graphical diagnostics presented by Houseman et al. (2004), who use a quantile-quantile

plot for the uncorrelated conditional errors, and by Fraccaro et al. (2000) who plot uncor-

related conditional errors against the data order, will be used in this work. However, the

Cholesky decomposition depends on the data order. In Fraccaro et al. (2000) the data are

indexed by time, but in computer modelling the data order is typically arbitrary. Therefore,

it is necessary to present some decomposition methods that are invariant to the data order.

In this work, we propose to use the eigen and the pivoted Cholesky decompositions to build

the uncorrelated errors, as will be discussed in Section 4.3.3.

3.3.2 Validating calibration models

In Kennedy and O'Hagan (2001), the simulator is approximated by a Gaussian process

emulator where the authors propose statistical methodology to make predictions of the real

process. Kennedy and O'Hagan propose a probabilistic predictive model to represent the

real system using the model (3.5). O'Hagan (2006) refers to the predictive model for reality

as a predictor.

In order to validate a predictor, we need to check whether the predictor represents well

our uncertainty about the reality, taking into account our uncertainty for the simulator, the

discrepancy function and some unknown parameters. Therefore, we need to check all as-

sumptions made and compare the probabilistic predictions with real observations. Kennedy

and O'Hagan (2001) use quantile-quantile plots of the standardised residuals of their cal-
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ibration model to check statistical assumptions. Goldstein and Rougier (2006) present a

diagnostic based on the deviation between real observations and Bayes linear predictions

of the simulator for the same inputs, where they presented a standardised deviation and

compared the values with a distribution with zero mean and unit variance. In Chapter 7,

we present a set of diagnostics for the full Bayesian approach for the discrepancy function

model, which is a particular case of the calibration model.

3.4 Conclusion

The validation and veri�cation methods for simulators are essential for developing simulators.

They determine whether a simulator can be used as a surrogate of the real system with

accuracy de�ned by the simulator user. There are several V&V guides and a very extensive

literature for validation and veri�cation for simulators. However, there is little attention on

validation when the simulator or the real process is represented by a stochastic process.

In this thesis, we focus on validation of probabilistic predictive models as surrogates of

simulators and real systems. The V&V methods provide information about the accuracy

of the model, and here in this thesis we are interested in describing how the probabilistic

predictive model represents our uncertainty about the object that the model was developed

to imitate.

The validation process for probabilistic model predictions is based on diagnostics, checking

the assumptions made to build the predictive model and comparing the predictions with `real'

observations of the model (simulator runs or physical observations), taking into account the

uncertainty provided by the predictive model. In Chapter 4, we present a set of diagnostics

for the validation of Gaussian process emulators used as surrogates of simulators. In Chapter

7, we show how to validate the discrepancy function model used to model a real system which

is a particular case of the Kennedy and O'Hagan (2001) calibration model.



Chapter 4

Diagnostics for Gaussian process

emulators

4.1 Introduction

Emulators have been used as stochastic approximations of expensive simulators in several

areas of science, but in order to build emulators some assumptions and approximations are

made. Unless the emulator correctly represents the simulator, inferences made using that

emulator will be invalid. Hence, emulators need to be subjected to validation testing. There

is a large literature on using emulators to represent expensive simulators, but there has been

little research into validating emulators before using them. In this chapter, we propose some

numerical and graphical diagnostics for Gaussian process emulators that take into account

simulator uncertainty.

In Section 4.2, we brie�y review the ideas of Gaussian process emulation presented in

Chapter 2, and describe some possible problems with using Gaussian process emulators.

In Section 4.3, we present some methods that have been proposed for validating computer

models, and then we present some numerical and graphical diagnostics for Gaussian process

emulators. The proposed diagnostics depend on new runs of the simulator where we compare

35
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the observed outputs with their respective emulator predictions. In Section 4.5, we demon-

strate the diagnostic tools in synthetic and real examples. Where the emulator is failing to

represent the simulator adequately, the diagnostics give warnings that allow the source of

the validation problems to be identi�ed.

4.2 Emulation

An emulator is a stochastic process that represents the simulator, where the simulator is

viewed as an unknown mathematical function. We assume that the uncertainty about the

simulator output is described as a Gaussian process with a mean function h(·)Tβ , and a

homoscedastic covariance function σ2Cδ(·, ·) with squared exponential correlation function

(2.6), in which δ are correlation lengths.

Therefore, conditional on some training data, y = (y1 = η(x1), . . . , yn = η(xn))T and

integrating out (β, σ2) our beliefs about the simulator output at non observed inputs is

described by a Student-t process:

η(·)|y, δ ∼ Student Process (n− q,m1(·), V1(·, ·)) (4.1)

where

m1(x) = h(x)T β̂ + tδ(x)TA−1(y −Hβ̂),

V1(x, x′) = σ̂2
[
Cδ(x, x

′)− tδ(x)TA−1tδ(x
′)

+
(
h(x)− tδ(x)TA−1H

)
(HTA−1H)−1

(
h(x′)− tδ(x′)TA−1H

)T]
.

where β̂ =
(
HTA−1H

)−1
HTA−1y , and σ̂2 =

yT
(
A−1 − A−1H

(
HTA−1H

)−1
HTA−1

)
y

n− q − 2
.

The emulator distribution depends on the correlation lengths. Here we use the plug-

in method, where an estimate for the correlation lengths, δ̂ , is used as the true value δ

ignoring uncertainty. Estimates for the correlation lengths are obtained from their posterior
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distribution (2.19).

4.2.1 Possible problems with Gaussian process emulators

Although the Gaussian process is a very �exible class of distributions for representing prior

knowledge about the computer model, the Gaussian process emulator (4.1) can give poor

predictions of simulator outputs for at least two reasons. First, the assumption of a station-

ary Gaussian process with particular mean and covariance structures may be inappropriate.

Second, even if these assumptions are reasonable there are various parameters to be esti-

mated, and a bad or unfortunate choice of training dataset may suggest inappropriate values

for these parameters. In the case of the correlation length parameters, where we condition

on �xed estimates rather than integrating over the full posterior distribution, we may also

make a poor choice of estimate to condition on.

The uncertainty about the simulator outputs is represented by a Gaussian process, so

joint normality of the simulator outputs has to be a reasonable judgement. In particular,

the emulator asserts that it is very unlikely for the true simulator output to be more than

two or three predictive standard deviations from the predictive mean, and that it is no more

likely to be above the predictive mean than below it. In this context transformations may

be useful.

In addition to the assumption of normality, speci�c forms are assumed for the mean

and the covariance functions. If the assumed form of the mean in (2.2) is wrong, because

inappropriate regressors have been used in h(·) , or if the coe�cients β have been poorly

estimated, then the emulator predictions may be systematically too low or too high in some

regions of the input space.

In (2.3), stationarity is assumed for the covariance function, implying that we expect the

simulator output to respond with similar degrees of smoothness at all points in the input

space. It is assumed that there is a common variance σ2 and the correlation function depends

only on (x− x′) . Hence, either unequal variance or a correlation structure that depends on
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spatial position (x,x′) instead of the di�erence (x− x′) only are failures of the stationarity

assumption. In practice, simulators may respond much more rapidly to changes in the inputs

at some parts of the space than others. In the case of such non-stationarity, credible intervals

of emulator predictions can be too wide in regions of low responsiveness or too narrow in

regions where the response is more dynamic.

Finally, although the form of the covariance function may be appropriate, we may estimate

the correlation lengths (δ ) poorly. Poor estimation of the correlation parameters leads to

credible intervals that are too wide or too narrow in the neighbourhood of the training data

points.

In the next section, we present some diagnostics that can be useful for identifying problems

in emulator predictions. These diagnostics are based on statistical comparisons between new

(validation) runs of the simulator and their respective predictions.

4.3 Diagnostics for validating Gaussian process emula-

tors

In order to validate an emulator, our diagnostics will be based on comparisons between

emulator predictions and simulator runs for a new dataset. Let X(v) = (x
(v)
1 ,x

(v)
2 , . . . ,x

(v)
m )T

denote a non-observed set of inputs, called validation input data. The simulator outputs

for the validation input data are given by y(v) = η(X(v)) where y(v) = (y
(v)
1 , . . . , y

(v)
m )T , and

η(X(v)) =
(
η(x

(v)
1 ), . . . , η(x

(v)
m )
)T

. The validation input data should be selected to cover the

whole of that part of the input space over which we wish to use the emulator. Otherwise,

we might validate an emulator which does not represent the simulator for a particular non-

observed subset of the input space.

A general diagnostic D(·) is a function of the validation data output, and we propose to

compare the observed D(y(v)) with the reference distribution of D(η(X(v))) conditioned on

the training data. If D(y(v)) lies in an appropriately chosen region with a small probability,
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then this suggests that there is a con�ict between the emulator and the simulator. The test

region(s) for D(·) should be chosen so that D(y(v)) falling in the region is associated with

a particular failure in the construction of the emulator. If across a range of such diagnostics

there are no indications of con�ict, then we can suppose that the emulator is representing

uncertainty about the simulator appropriately.

4.3.1 Individual prediction errors

Individual prediction errors for the validation data are given by the di�erences between

the observed simulator outputs and the predictive mean output at the same inputs, i.e.

(y
(v)
i − E[η(x

(v)
i )|y]) , for i = 1, 2, · · · ,m .

We can consider each standardised prediction error

DI
i (y

(v)) =
y

(v)
i − E[η(x

(v)
i )|y]√

V [η(x
(v)
i )|y]

(4.2)

as a diagnostic. If the emulator represents uncertainty about the simulator properly, the stan-

dardised prediction errors have standard Student-t distributions, conditional on the training

data and the estimated correlation parameters δ . In practice, the number of training data is

generally large enough so that the degrees of freedom is large and we can consider these to

be standard normally distributed. Hence, individual large errors, with absolute values larger

than 2, say, indicate a con�ict between the simulator and the emulator. An isolated outlier of

this kind might be ignored, or might indicate a local problem just around the inputs for that

validation data point. This can be investigated further by obtaining a few more validation

data runs in that vicinity.

If there are a larger number of large standardised errors, this would indicate a more

systematic problem. If large errors of the same sign arise in some part of the input space,

this suggests an inappropriate choice of mean function. It may also be indicative of a failure

of the stationarity assumption.
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If large errors arise primarily in validation points that are close to training data points,

this indicates that one of more on the correlation parameters have been over-estimated, so

that the emulator predictions are too strongly in�uenced by nearby training data points. If

there are no such obvious patterns in the occurrence of large errors, then the problem may

occur due to lack of homoscedasticity.

Patterns of unexpectedly small standardised errors may indicate con�icts complementary

to those discussed above. For instance, if validation points close to training data points

give unexpectedly small standardised errors, this suggests under-estimation of correlation

parameters. Graphical displays can be powerful ways of spotting patterns of large or small

errors, and are discussed in Section 4.3.4.

4.3.2 Mahalanobis distance

Although the collection of individual standardised errors DI(y(v)) provide a range of useful

diagnostics, it is also important to be able to summarise them in a single diagnostic.

Hills and Trucano (1999, 2001) use a χ2 -test to compare the simulator output with the

real process in a V&V approach. The same idea can be used as a diagnostic to compare

emulator predictions with the simulator outputs under the same inputs. Their diagnostic is

given by

Dχ2(y(v)) =
m∑
i=1

DI
i (y

(v))2. (4.3)

For a large training dataset, i.e. when n → ∞ , and with independence among the output

values, the distribution of Dχ2

(
η(X(v))

)
converges to a chi-squared distribution with m

degrees of freedom. However, the independence assumption is too strong. For example, if

the simulator is a smooth function, then similar outputs are expected when the inputs are

close to each other in the input space. This correlation is captured by the emulator in the

covariance function.

A natural extension of (4.3) allowing the correlation among the outputs is the Mahalanobis

distance between the emulator and the simulator outputs at the validation inputs set, given
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by

DMD(y(v)) =
(
y(v) − E

[
η(X(v))|y

])T (
V
[
η(X(v))|y

])−1 (
y(v) − E

[
η(X(v))|y

])
, (4.4)

where the elements of the predictive mean vector E
[
η(X(v))|y

]
and the predictive covariance

matrix V
[
η(X(v))|y

]
for the Gaussian process emulator are given respectively by (2.17) and

(2.18). Extreme values (large or small) for the observed Mahalanobis distance (DMD(y(v)))

indicate a con�ict between the emulator and simulator.

Theorem 1 Under Gaussian process emulator assumptions, the distribution of DMD(η(X(v)))

conditional on the training data and an estimate of the correlation parameter δ is a scaled

F-Snedecor distribution with m and n− q degrees of freedom,

(n− q)
m(n− q − 2)

DMD(η(X(v)))|y, δ ∼ Fm,n−q. (4.5)

Proof: De�ne W = (n−q)
m(n−q−2)

DMD(η(X(v))) . Conditional on the training data, σ2 and δ ,

we have that

W =
σ2(n− q)

σ̂2m(n− q − 2)
Z, (4.6)

where by (2.13), Z = (η(X(v)) − m1(X(v)))T
(
V ∗1 (X(v))

)−1
(η(X(v)) − m1(X(v))) follows a

chi-squared distribution with m degrees of freedom. As a result,

W |σ2,y, δ ∼ Gamma

(
m

2
,
σ̂2m(n− q − 2)

2σ2(n− q)

)
.

The distribution of σ2 conditional on y and δ is given by (2.12). The distribution of W

after integrating σ2 out is given by

p(w|y, δ) =

∫ ∞
0

p(w|σ2,y, δ)p(σ2|y, δ)dσ2

=
(σ̂2(n− q − 2))

m+n−q
2

2
m+n−q

2 Γ
(
m
2

)
Γ
(
n−q

2

) ( mw

n− q

)m
2 1

w

×
∫ ∞

0

(σ2)−
m+n−q

2
−1 exp

{
− 1

σ2

(n− q − 2)σ̂2

2

(
1 +

mw

n− q

)}
dσ2. (4.7)
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The integrand is the kernel of an inverse Gamma distribution with parameters m+n−q
2

and

(n−q−2)σ̂2

2

(
1 + mw

n−q

)
. Therefore

p(w|y, δ) =
Γ
(
m+n−q

2

)
Γ
(
m
2

)
Γ
(
n−q

2

) (mw)
m
2

w

(n− q)n−q2

[(n− q) +mw]
m+n−q

2

, w > 0, (4.8)

which is the density of a F-Snedecor distribution with m and n− q degrees of freedom. �

The expected value and the variance of the Mahalanobis distance are respectively given

by

E[DMD(η(X(v)))|y, δ] = m,

Var[DMD(η(X(v)))|y, δ] =
2m(m+ n− q − 2)

n− q − 4
.

As previously mentioned, an unexpectedly large or small value of DMD(y(v)) indicates a

con�ict between the emulator and the simulator. If such a problem arises, it is important

to explore individual errors, to look for patterns of large or small values, so as to identify

the most likely cause of the problem. We now consider alternative ways to decompose the

Mahalanobis distance into individual diagnostics for this purpose.

4.3.3 Variance decompositions

Individual prediction errors (4.2) are correlated, which introduces some risks in interpreting

them. Also, looking at individual errors may not e�ectively identify some con�icts between

the emulator and simulator. For instance, two errors may not individually be large, but if

they have opposite signs when they are strongly positively correlated, then this suggests a

con�ict. Let G be a standard deviation matrix such that V [η(X(v))|y] = GGT . Then the

vector of transformed errors

DG(y(v)) = G−1(y(v) − E[η(X(v))|y]) (4.9)
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are uncorrelated and have unit variances. If the normality assumption made for the outputs

is reasonable, the distribution of each of these errors is a standard Student-t with (n − q)

degrees of freedom. We can consider these as an alternative set of diagnostics. As with the

errors DI(y(v)) , we look for individual large transformed errors and patterns of large and

small values. However, the structure of G will give di�erent interpretations to such patterns.

This approach is similar to that of Houseman et al. (2004), who use rotated residuals for

linear models with correlated errors.

Another property of this diagnostic is that DMD(y(v)) = DG(y(v))TDG(y(v)) . That is,

the sum of squares of the elements of DG(y(v)) is the Mahalanobis distance, and hence we

can interpret these diagnostics as decomposing DMD(y(v)) .

There are many ways to decompose a positive de�nite matrix into the product of a square

root matrix and its transpose. The natural choices are the Cholesky decomposition and the

eigen decomposition (Golub and van Loan 1996). The eigen decomposition is very popular,

but the Cholesky decomposition is computationally cheaper and we shall see that it is more

intuitive to interpret than the eigen decomposition.

Eigen decomposition. When G is the eigen decomposition matrix, we denote the

elements of the vector DG(y(v)) by DE(y(v)) , and call them eigen errors. When a large

DE
i (y(v)) is identi�ed, further information may be gained by studying which individual errors

are given the largest weights in the linear combination of the individual predictive errors. If

the weights single out as important a particular individual error, then this error should be

studied as suggested in Section 4.3.1. If the weights emphasize a subset of the individual

prediction errors, then it might indicate a problem in the region of the input space around

the inputs of the validation data points associated, indicating a possible non-stationarity

problem.

Cholesky decomposition. The Cholesky decomposition is the special case where GT

is the unique upper triangular matrix R such that V [η(X(v))|y] = RTR , and we denote

the elements of the vector DG(y(v)) by DC(y(v)) , and call them Cholesky errors. Then

G−1 is also a triangular matrix, and DC
i (y(v)) is the unique linear combination of the �rst



44 CHAPTER 4. DIAGNOSTICS FOR GAUSSIAN PROCESS EMULATORS

i validation errors such that its predictive variance is the conditional variance of the i-th

validation error given the preceding i−1 errors. Although this has the bene�t of producing a

set of uncorrelated transformed errors that are still linked to the individual validation points

(in contrast to the eigen decomposition), the decomposition is not invariant to how we order

the validation points, and patterns of high or low values have no obvious interpretation.

Pivoted Cholesky decomposition. By permuting the validation dataset, we obtain

di�erent Cholesky decompositions. Any such permutation may detect di�erent anomalies.

However, in order to have the bene�ts of both the eigen and Cholesky decompositions, we

have found the most e�ective diagnostics are achieved by permuting the data so that the

�rst element is the one with the largest variance, the second element is the one with the

largest predictive variance conditioned on the �rst element, and so on. We then denote

the elements of the vector DG(y(v)) by DPC(y(v)) , and call them pivoted Cholesky er-

rors. This permutation can be obtained by applying the pivoted Cholesky decomposition,

which returns a permutation matrix P and the unique upper triangular matrix R such

that PTV [η(X(v))|y]P = RTR . So G = PRT . More details about the pivoted Cholesky

decomposition including the algorithm are presented in Section 4.4.

A group of unusually large or small pivoted Cholesky errors in the �rst part of the sequence

suggest non-homogeneity, while a number of unusually large or small errors in the latter part

of the sequence indicate poor estimation of δ or an inappropriate correlation structure. In

addition, we have the bene�t that each of the DPC(y(v))s is associated with a particular

validation data point, which makes it easy to investigate individual large errors. The pivoted

Cholesky decomposition will therefore be our choice in the examples of Section 4.5.

4.3.4 Graphical methods

Graphical displays are e�cient ways to investigate the adequacy of the emulator predic-

tions and to check some assumptions made to build the emulator (2.16). We propose some

graphical methods using both the individual standardised errors (4.2) and the uncorrelated

standardised errors (4.9).
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Plot of the individual errors against the emulator's predictions. In this graphical

diagnostic, we search for patterns suggesting a problem in the mean function. For example,

if for some particular ranges of the output the errors are systematically positive (or negative)

this indicates a misspeci�cation of the mean function. Heteroscedasticity of the individual

errors suggests that the simulator should be studied as a non-stationary process. Large abso-

lute individual errors might suggest that the predictive variance is too small, and individual

errors very close to zero might suggest too large a variance.

In addition to plotting individual errors DI(y(v)) in this way, we can plot the uncorrelated

standardised errors obtained by the Cholesky or pivoted Cholesky decomposition, because

each error can be mapped to one emulator prediction. However, we are then less likely to

see groups of systematic deviations indicating problems with the mean function. Consider,

for instance, a group of positive individual errors in some part of the plot. These may arise

from validation points that are relatively close together in the input space. The �rst of these

points to be plotted in the Cholesky or pivoted Cholesky sequences DC(y(v)) or DPC(y(v))

may show up in the plot as a large error, but the subsequent ones are conditioned on the

�rst and may appear normal.

We cannot plot the uncorrelated standardised errors obtained by eigen decomposition in

this way.

Plot of the errors against the index. The meaning of the index depends on which

error we are plotting. For individual errors DI(y(v)) and Cholesky errors DC(y(v)) , the index

is the validation data order. For eigen errors, the index gives the order of the DE(y(v))s with

the largest predictive variance. For pivoted Cholesky errors, the index is the pivoting order,

which gives the order of the DPC(y(v))s with the largest conditional predictive variance.

For all these graphics, it is expected that the errors should be �uctuating around zero with

a constant variance and no special patterns. Too many large errors indicates an under-

estimation of the variance. On the other hand, too many small errors indicates an over-

estimation of the variance. In both cases, it can also suggest that the simulator is a non-

stationary process.
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The pivoted Cholesky and the eigen decomposition provide an extra interpretation that

we can associate with the correlation structure. In both cases, if we observe either large

or very small errors at the beginning of the plot, i.e., on the left-hand side, it indicates

a failure of estimation of predictive variance, or non-stationarity. If we observe large (or

very small) errors at the end of the plot, however, i.e., on the right-hand side, it indicates

that the correlation length parameters were over (under) estimated or the chosen correlation

structure is unsuitable.

Quantile-quantile plots. Under the normality assumption, the uncorrelated standard-

ised errors DG(y(v)) have standard Student-t distributions with (n− q) degrees of freedom.

So, the quantile-quantile plot (QQ-plot) using this distribution becomes a natural graphical

diagnostic. In a QQ-plot, if the points lie close to the 45-degree line through the origin, the

normality assumption for the simulator outputs is a reasonable assumption. If the points

cluster around a line with slope less (or greater) than one, the implication is that the pre-

dictive variability was over-estimated (or under-estimated).

Curvature in the plot indicates non-normality, while outliers at either end of the plot

suggest local �tting problems or non-stationarity.

The interpretation of the QQ-plot using uncorrelated standardised errors is independent of

the decomposition method, and is generally informative for both eigen and pivoted Cholesky

decompositions. Although the distribution of each individual standardised error, DI
i (y

(v)) ,

is also a standard student-t distribution, the fact that the errors are correlated makes the

QQ-plot more di�cult to interpret.

Plots of errors against inputs. Plotting the standardised errors against the corre-

sponding values of each input is also helpful. Again, we expect to see a horizontal band

containing the errors. These plots are used to identify di�erent behaviour of the errors in

some parts of the input space, indicating possible failure of the stationarity assumption. This

graphic can also indicate that the relationship between the input and the prediction is not

fully represented in the mean function. For example, we can identify a pattern that was not

included in the mean function.
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Notice that we cannot plot the eigen errors in this way. Whilst it is possible to plot the

Cholesky or pivoted Cholesky errors against input values, because of the linking of each error

to a validation data point, interpretation is complicated by the conditioning in the same way

as when plotting against the emulator mean.

4.3.5 Other diagnostics

Credible interval diagnostic. Another diagnostic is the proportion of validation outputs

which lie in their marginal credible intervals. For each validation element using (2.16) a

100α% credible interval for the simulator output can be built, denoted by CIi(α) for i =

1, . . . ,m . This diagnostic is given by

DCI(y
(v)) =

1

m

m∑
i=1

1(y
(v)
i ∈ CIi(α)) (4.10)

where 1(·) is an indicator function. We expect that the observed value for DCI(y
(v)) should

be close to α . However, because the outputs are not independent the reference distribution

of DCI(·) is not binomial. The only practical way to compute the reference distribution is

by simulation.

The distribution of DCI(·) can be obtained by the following Monte Carlo simulation. We

sample a large number of samples from the multivariate Student-t distribution with n − q

degrees of freedom, mean vetor E[η(X(v))|y] and covariance matrix V [η(X(v))|y] , and then

for each sample we calculate DCI(·) . The empirical distribution of the calculated DCI(·)s

is a good estimate of the distribution of DCI(η(X(v)) . In particular, the mean and the

square of standard deviation are respectively estimates of the expectation and the variance

of DCI(η(X(v)) .

This diagnostic is a supplement to the Mahalanobis distance. For example, we can have

many unusually large and unusually small errors and yet still have an acceptable value for

DMD(y(v)) . The DCI(y
(v)) diagnostic o�ers a way to identify this kind of heterogeneity.
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Predictive density diagnostic. It is worth mentioning here another interpretation

of the Mahalanobis distance. Since the distribution of validation outputs is a multivariate

Student-t distribution with mean m1(X(v)) , covariance matrix V1(X(v)) and n − q degrees

of freedom, the density function itself can be a diagnostic,

DPD(y(v)) = K

[
1 +

1

n− q
DMD(y(v))

]−m+n−q
2

(4.11)

where K =
Γ(m+n−q

2 )
Γ(n−q2 )

((n − q)π)−
m
2 |V1(X(v))|− 1

2 . A small value for this diagnostic would

indicate a con�ict between the emulator and simulator. Note, however, that DPD(y(v)) is

just a decreasing function of the Mahalanobis distance DMD(y(v)) , and so small values of

the predictive density correspond directly with large values of the Mahalanobis distance.

4.4 Pivoted Cholesky decomposition

The Cholesky decomposition was developed by the French mathematician André-Louis Cholesky,

and published after his death by Benoît (1924). The method received little attention after

its publication. However, the Cholesky decomposition was analysed by Fox et al. (1948) and,

in the same year, Turing (1948) presented a result on stability of the method. After that,

the Cholesky decomposition became very popular. See more details about historical context

in Taussky and Todd (2006) and Brezinski (2006).

Matrices are denoted in this work by bold capital letters, A,B,C, . . . , and submatrices

are speci�ed with the colon notation, as used in Golub and van Loan (1996). A(p:q, r:s)

denotes the submatrix of A formed by the intersection of rows p to q and columns r to s .

Particular cases: A(i, j) denotes the element in row i and column j , A(i, :) denotes row i ,

and A(:, j) column j .

Formally, the Cholesky method decomposes a symmetric positive de�nite matrix A

uniquely into a product of an upper triangular matrix R and its transpose, i.e. A = RTR ,

or equivalently A = LLT where L is a lower triangular matrix. This method is the iterative
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process described in Algorithm 4.1, where basically at each step k the row k of matrix R

is calculated and the matrix A(k : n, k : n) is updated and used in an iterative process.

Algorithm 4.1 This algorithm computes the Cholesky decomposition A = RTR of a
symmetric positive de�nite matrix A ∈ <n×n

R = 0 {de�ne a n× n zero matrix}
for k = 1 to n do

R(k, k) =
√

A(k, k)
R(k, k + 1 : n) = R(k, k)−1A(k, k + 1 : n)
A(k + 1 : n, k + 1 : n) = A(k + 1 : n, k + 1 : n)−R(k, k + 1 : n)TR(k, k + 1 : n)

end for

Using the Cholesky decomposition the determinant of A is given by the square of the

product of the diagonal values of matrix R , det(A) =
∏n

i=1 R(i, i)2 , and the inverse is

obtained by (A)−1 = (RTR)−1 = R−1(R−1)T , where R−1 is calculated by the backward

substitution method (Gentle 1998). The Cholesky decomposition is often used to solve the

linear system Ax = b , when A is symmetric positive de�nite. For example, the equations

of the linear least squares problem are of this form (Gentle 1998).

An arbitrary permutation of rows and columns of matrix A can be decomposed by the

Cholesky algorithm, PTAP = RTR , where P is a permutation matrix and R is an upper

triangular matrix. The permutation matrix is an orthogonal matrix, so the matrix A can be

rewritten as A = (RPT )TRPT , so that RPT is a decomposition of A . Although RPT is

not the Cholesky decomposition of A , because it is not triangular, RPT can be computed

quickly using a simple modi�cation of Algorithm 4.1.

The process of �nding R and P for symmetric positive de�nite matrices is called the

pivoted Cholesky decomposition (PCD). The PCD is an extension of Cholesky decomposition

where a pivoting step is included. The pivoting step consists of �nding, at each iteration k ,

the largest possible element of the diagonal of the updated matrix A(k:n, k:n) . The index of

the largest element is saved and called the pivot. The PCD algorithm, which is an extension

of the Cholesky decomposition Algorithm 4.1, is described in Algorithm 4.2.

Notice that the determinant of A is the same as the determinant of its symmetric per-

mutation PTAP , i.e. det(A) = det(PTAP) , but, in order to �nd the inverse of A ,
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Algorithm 4.2 This algorithm computes the pivoted Cholesky decomposition PTAP =
RTR of a symmetric positive semide�nite matrix A ∈ <n×n . The nonzero elements of the
permutation matrix P are given by P(piv(k), k) = 1 , k = 1, . . . , n

R = 0 {de�ne a n× n zero matrix}
piv = 1 : n
for k = 1 to n do

B = A(k : n, k : n)
q = {i : A(i, i) = max (diag(B))} {Finding the pivot}
A(:, k)� A(:, q) {Swap columns}
R(:, k)� R(:, q) {Swap columns}
A(k, :)� A(q, :) {Swap rows}
piv(k)� piv(q) {Swap pivoting position}
R(k, k) =

√
A(k, k)

R(k, k + 1 : n) = R(k, k)−1A(k, k + 1 : n)
A(k + 1 : n, k + 1 : n) = A(k + 1 : n, k + 1 : n)−R(k, k + 1 : n)TR(k, k + 1 : n)

end for

the following relationship using the inverse of its symmetric permutation can be used:

(A)−1 = P(PTAP)−1PT , where (PTAP)−1 = R−1(R−1)T .

More information about the numerical analysis of the pivoted Cholesky decomposition

can be found in Higham (2002).

4.5 Examples

In this section, we use two datasets to illustrate the proposed diagnostics for Gaussian

process emulators. The �rst example is an arti�cial model with two inputs, while the second

example is a model of re�ectance for a homogeneous plant canopy. In both examples, the

prior relationship between the output and the inputs is represented by the mean function

(2.2) with h(x)T = (1,xT ) . This envisages a linear trend in response to each input, which

is widely used for Gaussian process emulation. Although computer models are in practice

almost certainly nonlinear, we often have little prior knowledge of what form the nonlinearity

will take.
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4.5.1 Two-input toy model

We perform our diagnostics in example 2.2, where the training data are composed of 20

points selected by Latin hypercube sampling. The validation data are composed of 25 points

independently selected using another Latin hypercube sample. Figure 4.1 presents the train-

ing and the validation datasets. Using the training data, the estimated correlation length

parameters are (δ̂1, δ̂2) = (0.2421, 0.4240) .
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Figure 4.1: Training (•) and validation (4) datasets sampled from independent Latin hy-
percube sampling scheme.

Then, we predict the output for the validation points using a Student-t process (2.16)

conditional on the training data and the estimated correlation lengths. The observed chi-

square diagnostic, Dχ2(y(v)) = 24.411 , is very close to its expected value E[Dχ2(η(X(v)))] =

25 , suggesting that the emulator is a good approximation of the simulator. However, this

diagnostic ignores the fact that the outputs are correlated. Table 4.1 presents the observed

Mahalanobis distance and credible interval diagnostics, and some statistics of their predictive

distributions.

The observed Mahalanobis distance, DMD(y(v)) = 70.36 , is an extreme value of its theo-

retical distribution, a scaled F distribution with parameters (25,18). This indicates a con�ict

between the emulator and the simulator. The observed credible interval diagnostic is less

dramatic. We see that 92% (23 out of 25) of the simulator outputs lie in their respective
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95% marginal credible intervals built by the emulator. The lower quartile of the distribution

of DCI(η(X(v))) obtained via simulation, is 0.92, and indeed it is not surprising to have 2

values out of 25 lying outside their 95% intervals.

The chi-square and credible interval diagnostics suggest that emulator predictions are

marginally satisfactory but the Mahalanobis distance makes it clear that jointly they are far

from valid. This may be related to poor estimation of the correlation length parameters or

to a non-homogeneity in the input space.

Table 4.1: The observed Mahalanobis distance and credible interval diagnostics, with some
summaries of their predictive distributions, for the toy example.

Obs. Expected Std. dev. 1stQ Median 3rdQ
DMD(·) 70.360 25.000 12.404 16.016 21.778 29.438
DCI(·) 0.920 0.951 0.072 0.920 1.000 1.000

Figure 4.2 presents some graphical diagnostics using the individual standardised errors.

Figure 4.2 (a) presents the individual standardised errors against the emulator predictions

given by the expected value. There is no obvious pattern, although the two largest individual

errors are associated with small values of the predictions, which might indicate a problem in

the mean function or an stationarity problem. Figure 4.2 (b) is the QQ-plot of the individual

errors, and supports the �nding of the chi-square and credible interval diagnostics that the

predictions appear valid marginally.

In order to check a possible stationarity problem, the individual standardised errors are

plotted against each input, Figure 4.2 (c) and (d). The two large errors are associated with

small values of the input 1, and large values of the input 2. This might be connected to a

sub-region of the input space not represented in the training data. If possible, new runs of

the simulator in this sub-region may improve the emulator. Also, it can be seen in Figure

4.2 (c) that the larger the value of input 1, the smaller is the variability of the individual

errors. This can indicate non-stationarity, or perhaps an over estimation of the correlation

length δ1 . For the second input, Figure 4.2 (d), there is no particular pattern to the errors.

The diagnostics presented in Figure 4.2 ignore the correlation structure of the errors, and
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Figure 4.2: Graphical diagnostics for the toy example using the individual standardised
errors: (a) DI(y(v)) against the emulator predictions; (b) quantile-quantile plot; (c) Di(y

(v))
against input 1; (d) Di(y

(v)) against input 2.

so do not address the problem observed using the Mahalanobis distance diagnostic. Figure

4.3 presents graphical diagnostics using the uncorrelated standardised errors. The eigen

errors are presented in Figure 4.3 (a), where we can observe large errors at the end of the

plot. This clearly indicates a problem with the correlation structure, which could be either

a misspeci�cation of the correlation function, or an over-estimation of the correlation length

parameters. When we examine the weights given by the eigen vector for the large errors,

we cannot identify a pattern for the components of the 16th, 17th and 23rd eigen errors.

However, the components of the 21st eigen value indicate the 5th validation point as a very

important point for the size of this eigen error. And all validation points related to the

largest weights of the 24th and 25th eigen errors present values for input 1 smaller than 0.5.
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The pivoted Cholesky errors are presented in Figure 4.3 (b). Large errors are again

observed at the end of the plot in this diagnostic, suggesting a problem with the correlation

structure. However, with this plot it is easier to explore the nature of the problem, because

there are only two large values and we can link each one to a single validation data point.

Their input vectors are (0.14, 0.58) and (0.18, 0.10). These two points are di�erent from the

two large individual standardised errors, but they also are characterized by small values of

input 1, suggesting that the emulator predictions are not valid over this part of the input

space.

Figure 4.3 (c) presents the quantile-quantile plot of the pivoted Cholesky errors, where

it can be seen that the points cluster around a line with slope slightly greater than one, so

that there may be a small under-estimation of the predictive variability. However, the two

outliers, which were the two large values in Figure 4.3 (b), are the most striking feature of

this plot.
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Figure 4.3: Graphical diagnostics for the toy example using the uncorrelated standard-
ised errors: (a) the eigen errors DE(y(v)) , against the eigenvalue number; (b) the pivoted
Cholesky errors DPC(y(v)) , against the pivoting order; (c) quantile-quantile plot of the piv-
oted Cholesky errors.

In summary, the numerical and graphical diagnostics indicate some con�icts between

the emulator and the simulator. The con�ict seems to be related to poor estimation of the

correlation parameters, and perhaps to non-stationarity and the training data not adequately

covering a sub-region of input space where X1 takes values below 0.2.
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Since the simulator (2.20) is a simple function we can quickly run it more times. So,

we combine the training data with the validation data, plus another 5 observations ran-

domly selected in a subregion of the input space where both inputs are smaller than 0.5.

Using the updated training data, the estimated correlation length parameters are (δ̂1, δ̂2) =

(0.1764, 0.4116) , which are smaller than the previous estimates, con�rming the suspicion of

over-estimation, especially δ1 .

A new validation dataset using a Latin hypercube sampling was selected, and the Ma-

halanobis distance and credible interval diagnostics are presented in Table 4.2. The Maha-

lanobis distance is still higher than expected, but now suggests much less con�ict with the

simulator. The credible interval diagnostic again indicates that the emulator predictions for

the validation data are individually reasonable.

Table 4.2: The observed Mahalanobis distance and credible interval diagnostics, with some
summaries of their predictive distributions, for the toy example after new training data.

Obs. Expected Std. dev. 1stQ Median 3rdQ
DMD(·) 51.129 30 10.230 23.172 28.958 36.324
DCI(·) 0.933 0.950 0.058 0.933 0.967 1.000

Figure 4.4 (a) presents the individual standardised errors. There is no obvious pattern,

and although there are some errors outside the credibility bounds, they are not large enough

to suggest a serious con�ict. Figure 4.4 (b) suggests that the emulator is underestimating

the highest output values, and so is perhaps not adequately capturing the peak of the output

surface.

The pivoted Cholesky errors are presented in Figure 4.4 (c). Although there are no very

large errors, there are too many outside the bounds. The QQ-plot of the pivoted Cholesky

errors, Figure 4.4 (d), con�rms that the emulator's predicted variability is a bit smaller than

the observed variability.

Although the diagnostics indicate that there may still be some validation problems, the

emulator built with the updated training data does improve the predictions. At this point

we may make a �nal build of the emulator using all the simulator runs (the original training
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Figure 4.4: Graphical diagnostics for the toy example after new training data: individual
standardised errors DI(y(v)) against (a) the validation data order, and (b) the emulator
predictions; (c) pivoted Cholesky errors DPC(y(v)) against the pivoting order; (d) quantile-
quantile plot of pivoted Cholesky errors.

data, the original validation data, the extra 5 points and the �nal validation data).
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Figure 4.5 shows the steady improvement of the emulator. Figure 4.5 (a) shows the

emulator mean plotted against the two inputs, based on just the original training data.

Figures 4.5 (b) and (c) show how the emulator evolves as we add the original validation

data and the extra 5 points, and then when we add in the additional validation data. The

training data for each emulator and also the validation data used to build the diagnostics

are illustrated in each graphic. Figure 4.5 (d) presents the true value of the simulator (a

plot that will not generally be available to us with a real simulator). Figure 4.5 (d) shows

that this is a di�cult function to emulate, which is very sensitive to input 1 when its value is

small. The original emulator does not capture this behaviour, but after adding the original

validation data and 5 more points the correct shape is emerging. The �nal emulator in

Figure 4.5 (c) does a very good job of representing the simulator.

4.5.2 Nilson-Kuusk model

In this section, a real dataset is used as an example for the proposed diagnostics. The

simulator was built based on the Nilson-Kuusk model, which is a re�ectance model for a

homogeneous plant canopy. The simulator has 5 inputs, the solar zenith angle, the leaf area

index, relative leaf size, the Markov clumping parameter and one parameter called λ . For

more details of this model, and for the real meanings of these inputs and the outputs, see

Nilson and Kuusk (1989) and Kuusk (1996). For our analysis, the inputs were rescaled to

make all the input values lie between 0 and 1, and the inputs are referenced as inputs 1 to 5.

The training data and the validation data contain 150 and 100 points, respectively, and

are supplied as example data with the GEM-SA software (http://ctcd.group.shef.ac.

uk/gem.html). The training and the validation data were selected using independent Latin

hypercube designs. The estimated correlation length parameters are

δ̂ = (0.4607, 1.1183, 2.7996, 2.2590, 0.1470).

We see that the correlation decays fastest for input 5, indicating that the model output
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Figure 4.5: Predictive mean of the Gaussian process emulator built with (a) the original
training data; (b) the updated training data; (c) all observations as the training data; (d)
The two dimensional toy model evaluated over the input space. Training data (•) and
validation data (M).

responds most strongly (and most non-linearly) to this input. Input 3, in contrast, has a

high correlation length, suggesting that the output responds very smoothly to changes in

this input.

The Mahalanobis distance and credible interval diagnostics are presented in Table 4.3.

Both diagnostics point to a major discrepancy between the emulator and the simulator.

They also suggest that the variability of the process is greater than was estimated, or the

stationarity assumption is too strong.

Figure 4.6 (a) presents the individual standardised errors against the order of the vali-
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Table 4.3: The observed Mahalanobis distance and credible interval diagnostics and some
summaries of their predictive distributions, Nilson-Kuusk model.

Obs. Expected Std. dev. 1stQ Median 3rdQ
DMD(·) 750.237 100.000 18.593 87.288 98.813 111.964
DCI(·) 0.80 0.95 0.0275 0.93 0.95 0.97

dation data. Many large errors can be observed, but there is no particular pattern. The

only very large error suggests a local �tting problem around that validation point, while

the remaining large errors indicate either an under-estimation of the variability, or a non-

stationarity problem. Figure 4.6 (b) plots the individual standardised errors against the

emulator predictions given by the expected value. The variability of the errors for small

values of the predictions is smaller than the error variability for the large values of the

predictions, indicating heteroscedasticity.
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Figure 4.6: Graphical diagnostics for the Nilson-Kuusk model using the individual standard-
ised errors: (a) DI(y(v)) against the validation data order; (b) DI(y(v)) against the emulator
predictions.

In order to �nd whether there is a particular subspace in the input space where the

behaviour is di�erent, the individual errors are plotted against each input, Figure 4.7. There

is no clear systematic pattern for the inputs 1 to 4. However, the variability of the errors

seems to depend on whether the input 5 is greater than 0.5, or 700 on the original scale. The

last panel in Figure 4.7 plots the model output against input 5 for the combined training

and validation data, and shows a clear nonlinearity and change of behaviour in the model
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for values of input 5 above 700.
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Figure 4.7: Individual standardised errors for the Nilson-Kuusk model, DI(y(v)) , against the
�ve input variables. Also the combined training and validation model outputs against input
5.

The pivoted Cholesky errors are presented in Figure 4.8 (a). Large errors at the end of

the plot indicates a possible over-estimation of the correlation length parameters, although

the suggested non-stationarity of the model may be causing these large conditional errors.

The QQ-plot of the pivoted errors, Figure 4.8 (b), indicates that the observed variability is

bigger than the estimated, with many large values supporting the suggested non-stationarity

problem.

According to the diagnostics, the emulator built with the training data is not a good and

valid representation of the simulator. The diagnostics consistently point to the presence of

non-stationarity and/or heteroscedasticity, with the model output for values of input 5 above

700 being shifted and more variable than when this input is below 700. Actions to improve

the emulator might include adapting the mean function to the apparent shape of the response
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Figure 4.8: Graphical diagnostics for the Nilson-Kuusk model using the the pivoted Cholesky
errors: (a) DPC(y(v)) against the pivoting order; (b) Quantile-quantile plot.

to input 5, allowing for a di�erent variance when input 5 is above 700, or transforming the

output variable to induce more homoscedasticity. Such changes, together with rebuilding

the emulator using all 250 data points, should improve the �t substantially, but this should

be checked against new validation data. However, we have no access to the simulator code,

so such an analysis is not feasible

Instead, 50 validation data points randomly chosen were added to the training data. The

points were randomly chosen because, if we run the emulator adding extra points in the

area where the input space is between 650 and 800, it would have very few data points in

that region for validation. The other 50 validation data points were used for the diagnostics.

Attempting to improve the emulator, we change the mean function allowing a 4th-order

polynomial for input 5, i.e. h(x)T = (1,xT , x2
5, x

3
5, x

4
5) . To stabilize the variability over

the input space, a log transformation of the output was used. Alternatively, more complex

analyses could be used since the diagnostics suggested the presence of non-stationarity in

the input space. For instance, a non-stationary Treed Gaussian process model can be used

(Gramacy and Lee 2008). Another approach would be using a linear spline with knots at

700 and 775 or 800 for input 5 as the mean function instead of a 4th-order polynomial, but

for this example we have opted for the polynomial mean function because of its simplicity.

The Mahalanobis distance and credible interval diagnostics are presented in Table 4.4.
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Both diagnostics suggest no con�ict between the rebuilt emulator and the Nilson-Kuusk

model.

Table 4.4: The observed Mahalanobis distance and credible interval diagnostics and some
summaries of their predictive distributions of the updated emulator for the Nilson-Kuusk
model.

Obs. Expected Std. dev. 1stQ Median 3rdQ
DMD(·) 63.873 50.000 11.305 43.007 49.968 58.320
DCI(·) 0.94 0.951 0.032 0.92 0.96 0.98

Figure 4.9 shows as expected that the rebuilt emulator can be a surrogate for the Nilson-

Kuusk model. Figure 4.9 (a) presents the individual standardised errors against the emulator

predictions, and Figure 4.9 (b) presents the pivoted Cholesky errors against the pivoting

order. Both �gures indicate no obvious pattern. Figure 4.9 (c) presents the QQ-plot of

the pivoted Cholesky errors. As the points lie close to the 45-degree line, the normality

assumption for the log transformed simulator outputs appears to be reasonable.
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Figure 4.9: Graphical diagnostics of the updated emulator for the Nilson-Kuusk model:
(a) Individual standardised errors, DI(y(v)) , against the emulator predictions; (b) Piv-
oted Cholesky errors, DPC(y(v)) , against the pivoting order; (c) Quantile-quantile plot of
DPC(y(v)) .

We have seen in this example that the natural response to the diagnostics in the original

emulator �t would have been to include all the validation data in the training sample, to

add extra validation points with values of input 5 in the neighbourhood of 700, and then

to validate the new emulator with extra validation points. This was not practical because
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we did not have access to the simulator to make more runs, but we were instead able to

produce a valid emulator with only 50 extra training data, randomly selected from the

original validation sample. This result is encouraging because additional simulator runs can

often be costly to obtain.

4.6 Concluding remarks

In this chapter, we have presented a set of diagnostics for validating Gaussian process emula-

tors. We believe that this is a very important step before using the emulator as surrogate for

the simulator, because a non-valid emulator can induce wrong conclusions. Our diagnostics

focus on comparing emulator outputs with new runs of the computer model, referred to here

as validation data, in a way that takes account of the uncertainties and correlations in the

Gaussian process emulator predictions.

We proposed two kinds of diagnostics, numerical and graphical. The numerical diagnostics

are functions of the validation data outputs, where we compare the observed value of each

diagnostic with its induced distribution by the predictive distribution of the emulator out-

puts. The graphical diagnostics are visualisations of the prediction errors, where we consider

the individual standardised errors and the uncorrelated standardised errors. The diagnostics

are able to indicate whether the emulator and its uncertainty can represent the simulator. If

the emulator fails, the diagnostics can give information about where the problem might be.

However, the interpretations we have suggested for the various diagnostics should be used

with care, since in a complex system such as a Gaussian process emulator all the elements will

interact in determining the diagnostic values. Better understanding of how to read di�erent

combinations of diagnostics will come with more experience of their use.

The diagnostics are equally e�ective when the training dataset is large. In this case, the

mean function (2.17) will typically reproduce the simulator almost perfectly even for a non-

stationary simulator, and the predictive variances will be very small throughout the region

of input space covered by the training data. Even though the validation data may appear to
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follow the emulator mean function very closely, the diagnostics may nevertheless �nd that

they are not close enough relative to the small predictive variances, so that standardised

errors are not acceptable.

In the case of a large training dataset, computational problems are often encountered due

to near-singularity of the predictive variance matrix. The pivoted Cholesky decomposition is

then particularly valuable because the ill-conditioned nature of the matrix will emerge with

pivoting variances eventually becoming negative due to rounding errors. Such components

should be ignored, and the diagnostics based only on the uncorrelated errors produced up

to that point.

In practice, �all models are wrong�1 and no emulator will represent its simulator with

perfect validity. The emulator will still be useful, and `good enough', if any remaining con-

�icts are small. In particular, an emulator built on a large training dataset (and hence with

uniformly small predictive variances) may be deemed adequate even if there are substantive

validation failures. It would be useful to have some measures for whether the emulator is

`good enough', but they are likely to depend on the uses to which the emulator will be put.

We explore some measures of goodness of �t in Chapter 6.

1The full quotation is �Essentially, all models are wrong, but some are useful.� from Box, George E. P.;
Norman R. Draper (1987). Empirical Model-Building and Response Surfaces. Wiley. pp. p. 424.



Chapter 5

Designs for building and validating

emulators

5.1 Introduction

In this chapter, we investigate how to select the emulator training and validation inputs. In

order to build an emulator, we want a design that makes the emulator predict accurately

the simulator output at non observed inputs. To validate an emulator we want a design

that e�ciently distinguishes between good and bad emulators. The judgement about the

emulator's validity is based on the diagnostics presented in Chapter 4.

Since the behaviour of the simulator is unknown, designs that provide information about

the simulator output throughout the input space are needed. Predictions for the simulator are

made using emulators that represent our probability judgements about simulators. Design

and prediction for simulators were �rst addressed in the literature by Sacks et al. (1989a,b).

In Section 5.2, we describe designs that we use to build emulators. Our focus is on designs

that cover the input space, which we call a space-�lling property. We review Latin hypercube

sampling, distance-based designs and non-random designs.

An emulator can replace a simulator in analyses where runs for the simulator are com-

65
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putationally expensive. However, the emulator needs to be subjected to validation testing.

Otherwise, inferences made using the emulator will be invalid. In order to validate an em-

ulator, new simulator runs are needed where the simulator and the emulator outputs are

compared. The design for validation problem is to select inputs minimizing the possibility

of making wrong conclusions, i.e. judging a `bad' emulator to be valid, or a good emulator

to be not valid. In Section 5.3, we propose some designs for validating Gaussian process

emulators. In Section 5.4, we use a simulation study to test the performance of the proposed

validation designs.

5.2 Designs for building Gaussian process emulators

In order to build an emulator, we need to run the simulator at di�erent points in the input

space. The process of choosing these input points is the design problem considered here. The

simplest design uses uniform random sampling, where we sample from a uniform distribution

over the input space. A problem with this method is that some regions of the input space

may not be covered. One way to solve this problem is using strati�ed sampling, where

the input space is partitioned into J disjoint strata, Xj , and from each stratum a uniform

random sample with size nj is taken. Using the strati�ed sampling, all regions of the input

space X are represented by the
∑

j nj input values.

The simulator output may only depend on few of the inputs, in which case we want to be

sure that points are well spread across the space of these `important' inputs. A design that

spreads points evenly throughout the input space does not necessarily have this property.

The Latin hypercube design is a design such that a projection of the set of points into each

dimension has the points evenly spread over that dimension. In the next section, we review

Latin hypercube sampling. We also review other designs that are evenly spread throughout

the input space which are called distance-based designs. Finally, we review some non-random

designs used in numerical integration.
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5.2.1 Latin hypercube sampling

Latin hypercube designs are popular in the computer experiments literature (Santner et al.

2003). This popularity is attributed to two reasons. Firstly, Latin hypercube designs are

simple to generate. Secondly, in a Latin hypercube sample, the observations in each input

dimension are evenly spread.

McKay et al. (1979) proposed Latin hypercube sampling as an alternative to simple ran-

dom sampling in a Monte Carlo study. Latin hypercube sampling ensures that, marginally,

the sample space of each input is well covered. Stein (1987) shows that the asymptotic vari-

ance of the expectation of the simulator output using Latin hypercube sampling is less than

that obtained using simple random sampling. Stein also presents a method for producing

Latin hypercube samples when the inputs are dependent. Here, we assume that all input

variables are independent.

The following procedure describes how to obtain a Latin hypercube design, X .

Let B be an n×p matrix, where each column of B is an independent random permutation

of {1, 2, . . . , n} . Let Uij (i = 1, 2 . . . , n , j = 1, 2 . . . , p) be np independent uniformly

distributed random variables on (0, 1) which are also independent of B . Then the j -th

element of the i-th input is given by

Xij =
Bij + Uij

n
.

Note that if the input space is [a, b]p , a straightforward transformation can be used.

Even though a Latin hypercube design represents well every input marginally, it does not

necessarily have good space-�lling properties.
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5.2.2 Distance-based designs

Distance-based designs are designs based on measures of distance between points that quan-

ti�es how evenly spread the points are. Let X ⊂ X be an arbitrary design consisting of input

points {x1, x2, . . . , xn} . Let dist be a metric on X , for instance, the Euclidean distance.

For any design, the minimum distance between two points can be obtained. A design that

maximizes this measure is called a maximin design. A maximin design is denoted by XMm ,

and is formally given by

XMm = max
X⊂X

min
{x,x′}∈X

dist(x, x′), (5.1)

where dist(x, x′) is the Euclidean distance between x and x′ . Maximin designs tend to

place points near the boundary of the input space region, which may not provide su�cient

information about the middle of the input space.

Another distance-based design is a design that every point in the input space X is close

to some point in X . This design is called a minimax design. A minimax design is denoted

by XmM , and is formally given by

XmM = min
X⊂X

max
x∈X

min
x′∈X

dist(x, x′). (5.2)

One problem with minimax designs is that they are di�cult to generate. Consequently, they

are rarely used.

Maximin Latin hypercube designs

Within the class of Latin hypercube designs, we can choose one that satis�es a distance-based

criterion, for example the maximum minimal distance. Such a design is called a maximin

Latin hypercube design. This design was examined by Morris and Mitchell (1997). Figure

5.1 (a) presents 50 points from a two dimensional maximin Latin hypercube design, where

10,000 Latin hypercube designs were generated and the design with the largest minimum

distance is chosen.
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5.2.3 Non-random designs

Lattice designs. A lattice design is one of a number of non-random space-�lling designs

suitable for de�ning a set of points in the simulator input space for creating a training

sample. The points are chosen on a regularly space grid superimposed on the input space.

In computer experiments, lattice designs were considered by Bates et al. (1996, 1998).

A number of di�erent sequences of numbers have been proposed that have space-�lling

properties. The sequences use di�erent algorithms to generate them, but all have the prop-

erty that they are potentially in�nite in length, as a new sequence can be added to an old one.

A design of points is obtained simply by taking the �rst points in the sequence. Examples

are the Weyl sequence, the Halton sequence, and the Sobol' sequence (Neiderreiter 1992). A

Weyl sequence is similar to a lattice design in the way it is generated, but with generators

that are irrational numbers. A Halton sequence also has a prime integer �generator� for each

dimension, and each prime generates a sequence of fractions.

Sobol' sequence. The Sobol' sequence uses the same set of coordinates as a Halton

sequence with generator 2 for each dimension, but then reorders them according to a com-

plicated rule. Galanti and Jung (1997) illustrate the Sobol' sequence including simple nu-

merical examples. There is a function in R for producing Sobol' sequences. Sobol' sequences

in R are produced with the function runif.sobol from the package `fOptions'. Figure 5.1 (b)

presents 50 points from a two dimensional Sobol' sequence design.

As advantage of Sobol' sequences is that a Sobol' sequence is cheaper to generate than

other sequences. In contrast to Latin hypercube designs, longer Sobol sequences can be

constructed from a shorter Sobol sequence by adding points to the shorter sequence. Latin

hypercube designs must be reconstructed if more points are needed. Santner et al. (2003,

page 160) suggests that if more information about the correlation lengths is needed, then,

due to a greater variety of inter-point distances, designs based on Sobol' sequence may be

preferable to Latin hypercube designs.
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Figure 5.1: Two-dimensional design of size 50 using: (a) Maximin Latin hypercube design,
where 10000 Latin hypercubes were generated and the one with maximum minimal distance
is chosen; (b) Sobol' sequence design.

5.3 Design for validating Gaussian process emulators

Now we consider how to select inputs to perform a validation analysis of a Gaussian process

emulator. We want to choose a validation design X(v) that minimizes the possibility of

making wrong validation conclusions, i.e. validating a bad emulator or not validating a

good emulator. The validation analysis of an emulator is based on numerical and graphical

diagnostics presented in Chapter 4.

If our uncertainty about the simulator output at untried inputs is well represented by an

emulator, we say that this emulator is valid. If we run the simulator in regions of the input

space where there is signi�cant information, i.e. we are fairly certain about a value for the

simulator output, then a valid emulator should provide a probability distribution for the

output concentrated on the actual output value. On the other hand, if we run the simulator

in regions of the input space with weak information or no information, i.e. our uncertainty

about the simulator output is high, the emulator should provide a �at probability distribution

for the output. Therefore, a validation design should contain elements in di�erent regions of

emulation uncertainty varying from low to high. Then we can understand how the emulator
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behaves under di�erent sources of information and check whether the emulator represents

our uncertainty about the simulator outputs.

The designs described in Section 5.2 can be used as validation designs. However, it is not

necessarily guaranteed that regions with small and large uncertainty are covered, because

the training data are not used to select the validation design. For instance, if we use a Sobol'

sequence design as validation design, by de�nition the validation inputs would �ll the gaps

among the training inputs. Therefore, validation points in small uncertainty regions may

not be observed. An independent design such as an independent Latin hypercube design

may have points in regions of with di�erent levels of emulator uncertainty.

We are interested in checking how the emulator behaves under di�erent uncertainty condi-

tions. Therefore, we propose methods for choosing the validation inputs under two situations.

In the �rst situation, we choose validation inputs without using the simulator outputs at the

training inputs. We consider a criterion based on distance between the validation inputs and

the training inputs. In the second situation, we propose design criteria where the valida-

tion inputs are chosen conditioned on the training data. We use some criteria based on the

predictive variance of the emulator to generate the validation designs.

5.3.1 Distance-based validation design

Emulation uncertainty at a validation input will depend on the distance of the validation

input from the nearest training input. If the nearest training input is close to a validation

input, then we expect to have low uncertainty for the output at the validation input. Anal-

ogously, if the nearest training input is far from a validation input, then high uncertainty is

expected. Therefore, let distX(x(v)) be the minimum distance between a validation input

point x(v) and the training points X , i.e.

distX(x(v)) = min
x∈X

dist(x,x(v)).

To choose a design that contains validation points with di�erent levels of uncertainty,
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we should choose a design that maximises the variability of the inter-point distances of the

validation inputs and the training inputs. Therefore, our proposed criterion is the variance

of the inter-point distances between the validation inputs and the training inputs, i.e.

ΥV arDist(X
(v)) = V ar

(
distX(x

(v)
1 ), . . . , distX(x(v)

m )
)
. (5.3)

We are interested in a design that maximises this criterion, because we can have validation

input points with minimum distance to training data points varying from small to large,

providing input points with emulator uncertainty varying from low and large. The proposed

validation design is

X
(v)
V arDist = max

X(v)⊂X
ΥV arDist(X

(v)). (5.4)

The optimisation method to solve (5.4) requires high-dimensional optimisation algorithms

increasing considerably the computational cost. Alternatively, we could choose distance-

based designs for validation in a class of Latin hypercube designs.

In practice, we generate a large number of Latin hypercube designs, which is computa-

tionally cheap, and select the design the optimises the criterion (5.3). This procedure gives

an approximation for the optimal validation design in the class of the Latin hypercube de-

signs. Hence, a distance-based Latin hypercube design for validation is generated

after sampling many Latin hypercube designs and choosing the design with largest value of

the criterion (5.3). Notice that this procedure may not arbitrarily get validation points close

to training points.

5.3.2 Combined design for validation

The distance-based validation design selects points in di�erent uncertainty regions according

to the optimisation method in (5.4). As an alternative, we propose a two-part sampling

procedure. In the �rst part, the data is chosen according to any independent design described

in Section 5.2. In the second part, the input points are randomly chosen from a low emulation

uncertainty region. These low emulation uncertainty regions are de�ned by regions nearby
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the training input points. Such a design is called a combined validation design.

Let m be the sample size for the validation data. According to this combined design idea,

m1 validation points are chosen for the �rst part of the sampling procedure, and m2 = m−m1

validation points are chosen in a such way that the correlation between each validation point

and the closest training data point is high. The combined design for validation of size m is

de�ned by

X
(v)
C =

 X
(v)
C1

X
(v)
C2

 ,

where the design X
(v)
C1

are the inputs from an independent design, and X
(v)
C2

are the inputs

from a region with points highly correlated with some training data.

For sampling X
(v)
C1
, we can use any space-�lling design described in section 5.2. However,

we must guarantee that all validation inputs are di�erent from the training inputs, otherwise

it would be a waste of e�ort since the simulator is a deterministic function. An independent

design for validation can have input points in regions with uncertainty varying from low to

high. But, the training data size is generally small, since the simulator is generally compu-

tationally expensive. Therefore, it is likely that the validation inputs from a independent

design lie in regions with medium to high uncertainty.

To sample X
(v)
C2
, we only use the training inputs and not the outputs. We need to �x a

maximum distance, d0 , considered close in the input space. This is to guarantee that the

validation inputs are chosen from regions with low uncertainty. Centred on a training input,

x , a low uncertainty region would be the ellipsoid

Rx =

{
(z1, . . . , zp) ∈ X :

∑
k

(zk − xk)
2 < d0

}
. (5.5)

The validation input points, X
(v)
C2
, are chosen using the following strategy:

1. Fix a maximum distance, d0 , considered close;

2. Randomly select one training data point, x ;
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3. De�ne the ellipsoid region Rx , equation (5.5);

4. Randomly choose a validation point from a uniform distribution in region Rx ;

5. Repeat 2-4 to generate m2 validation points.

It is not simple to �x a distance considered close in the input space, particularly in high

dimensions. As an alternative, we could set a value, say ρ , for the minimum correlation

between two points in the input space still considered high. The strategy for choosing the

validation points X
(v)
C2

remains the same, but the ellipsoid region is now given by

Rx = {z = (z1, . . . , zp) ∈ X : Cδ(z,x) > ρ} , (5.6)

where Cδ(·, ·) is a correlation function with correlation parameter δ . It is necessary to choose

a correlation function and also �x a value for the correlation parameter δ . If the training

outputs are available, δ can be estimated from its posterior distribution (2.19). Note that

the ellipsoid region (5.5) is just a particular case of the ellipsoid region (5.6).

Figure 5.2 illustrates the proposed combined design for validation in a two-dimension

example. In Figure 5.2 (a), n = 7 training inputs were selected from a Latin hypercube

design. In Figure 5.2 (b), m1 = 4 validation inputs, X
(v)
C1
, were chosen from an independent

Latin hypercube design. Finally, in Figure 5.2 (c), m2 = 2 training inputs were randomly

chosen. For each chosen input a region Rx , equation (5.6), is de�ned. The validation points

are randomly sampled from a uniform distribution in each region. The correlation lengths

used are ψ1 = ψ2 = 0.5 , and the minimum correlation considered high was ρ = 0.80 .

5.3.3 Predictive variance-based validation design

The distance-based and the combined validation designs do not require simulator runs at

the training inputs, except for the combined validation design when we want to estimate

the correlation parameters from the data. But, if we have access to the training data before
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Figure 5.2: Illustrating the combined design for validation in a two-dimensional case. (a)

Training inputs; (b) choosing X
(v)
C1
; (c) choosing X

(v)
C2
.

choosing the validation inputs, we can then build an emulator and sample the validation

inputs using the uncertainty region de�ned by the emulator.

Conditional on the training data and an estimate for the correlation lengths, a Student-

t process emulator is given by equation (2.16), with predictive mean, m1(·) , and predic-

tive variance matrix, V1(·, ·) , given by (2.17) and (2.18), respectively. Let V1(X(v)) =

{V1(x
(v)
i , x

(v)
j )} be the predictive variance matrix for a validation set of inputs, X(v) .

In order to choose designs covering regions with di�erent levels of uncertainty, we present

designs based on some criteria applied to the predictive variance matrix V1(X(v)) . We want

a criterion that chooses input points from regions with high and low uncertainty. In simple

terms, we want input points where the predictive variance is large and also inputs points

where the predictive variance is small, taking into account the correlation structure of the

emulator.

Our �rst criterion is based on the eigenvalues of the predictive variance matrix. The

proposed design is based on the variance of the eigenvalues, i.e.

ΥV arEig(X
(v)) = V ar

(
λ1(V1(X(v))), . . . , λm(V1(X(v)))

)
, (5.7)

where λi(A) is the i-th eigenvalue of matrix A . A large eigenvalue is associated with a linear

combination of the observed inputs that has a large variance, whereas a small eigenvalue is
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associated with a linear combination that has a small variance. A design that maximizes

this criterion is more likely to have validation input points in di�erent levels of emulator

uncertainty, because a large variance of the eigenvalues indicates the presence of large and

small eigenvalues. Therefore, the design for validation based on the criterion (5.7) is given

by

X
(v)
V arEig = max

X(v)⊂X
ΥV arEig(X

(v)). (5.8)

Alternatively, we propose a criterion based on the pivoted Cholesky decomposition of

the predictive variance matrix. The criterion is the variance of the predictive conditional

variances given by the diagonal of the pivoted Cholesky decomposition matrix:

ΥV arChol(X
(v)) = V ar

(
R1(V1(X(v))), . . . , Rm(V1(X(v)))

)
, (5.9)

where Ri(A) is the i-element of diagonal matrix of the pivoted Cholesky decomposition of

A . Ri(V1(X(v))) is the predictive conditional variance for the observation i . An observation

with a large (small) predictive conditional variance is associated with a large (small) emulator

uncertainty. Therefore, the design for validation based on the criterion (5.9) is given by

X
(v)
V arChol = max

X(v)⊂X
ΥV arChol(X

(v)). (5.10)

The optimization methods required on (5.8) and (5.10) can be very computationally de-

manding, particularly in high-dimensional problems. So, we propose to choose predictive

variance-based validation designs in a class of Latin hypercube designs.

5.4 Simulation examples

In this section, we present some examples where we generate the presented validation designs

and run some diagnostics. The simulator examples are realisations of Gaussian processes

where we can control the associated parameters. We show the e�ect on the diagnostics for
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di�erent validation designs in di�erent scenarios. We vary the validation sample size and

the simulator dimension, and use di�erent estimates of the correlation lengths.

For the training data, we use the n = 10p rule of thumb for the number of inputs points

to be chosen (Chapman et al. 1994). This rule of thumb is considered a good rule for

initial experiments by Loeppky et al. (2009). Conditional on the training data, we generate

six di�erent designs for validation. The �rst design is an independent Latin hypercube

design referred to as Ind. The second design is a Latin hypercube distance-based validation

design, VarDist, that depends only on the training inputs. The next two designs depend

on the training data and its emulator. They are Latin hypercube predictive variance-based

validation designs maximising the criteria (5.7) and (5.9), respectively referred to as VarEig

and VarChol. A combined validation design using the squared exponential correlation

function and the plug-in estimates for the correlation lengths is also generated, Comb. The

last design is a Sobol' sequence design generated after the training data, here referred to as

Sobol.

In order to generate the Latin hypercube designs for validation (VarDist, VarEig, and

VarChol), we sampled 500 Latin hypercube designs and chose those designs that maximise

the criteria (5.3), (5.7) and (5.9) respectively.

Example 5.1 (Gaussian process with linear mean) Simulator: The simulator is a

random realisation of a p-dimensional Gaussian process with linear mean, constant variance

and squared exponential correlation functions. The mean, m(·), and covariance functions,

V (·, ·), are given by

m(x) =

p∑
k=1

(−1)k+1xk, x ∈ (0, 1)p,

V (x,x′) = 0.5 exp

{
−

p∑
k=1

(xi − x′i)2/δ∗i

}
,

where δ∗ = (δ∗1 = 0.5, . . . , δ∗p = 3.0) is a vector of size p with δ∗i = 0.5 + 2.5 (i−1)
(p−1)

for

i = 1, 2, . . . , p.
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The training inputs are generated from a p-dimensional Sobol' sequence using the n = 10p

rule, and the outputs are realisations of the generated function from the Gaussian process.

Emulator: The emulator is a Student-t process emulator, (2.16), with a linear mean

prior, squared exponential correlation function and correlation lengths given by the true value

δ∗ .

We generate the validation designs for the following simulator dimensions: p = {3, 4, 5, 10} .

For each value of p , we also vary the validation data size: m = {3p, 5p, 8p} . Since the sim-

ulator is generally an expensive model, we choose these values representing respectively a

small validation data size, a validation data size equal to half of the training data size, and

a validation data size close to the training data size.

Table 5.1 presents the Mahalanobis distance for di�erent validation designs, di�erent

values of the dimension, p , and di�erent rules for choosing the validation sample size. In

each row of the table, the expected value for the Mahalanobis distance is given by the

validation sample size m , and the theoretical distribution is a scaled-F distribution (4.5).

Since the simulator is a Gaussian process, the Student-t process is a valid emulator. For

most of the scenarios, the Mahalanobis distance correctly identi�es a valid model.

p n m Ind VarDist VarEig VarChol Comb Sobol
3 30 3p = 9 5.547 6.9111 6.9462 6.7767 7.6492 6.6811

5p = 15 4.4368 17.6107 16.3944 18.9399 10.8218 14.2104
8p = 24 17.4516 9.0955 18.5808 16.0421 14.6797 9.7183

4 40 3p = 12 5.9192 13.5215 13.8821 21.1716 17.0041 17.4977
5p = 20 14.8215 18.3512 8.7402 20.4286 19.6991 26.5775
8p = 32 26.2084 27.7727 31.6892 21.6513 31.7014 19.6572

5 50 3p = 15 32.9686* 21.4718 10.7046 10.022 12.1325 30.2155
5p = 25 30.7485 29.9447 30.5001 37.1104 21.6913 36.3786
8p = 40 38.3397 59.7747 57.9237 32.5198 35.9539 50.7044

10 100 3p = 30 25.9753 48.1343 50.5976* 27.5991 31.0009 39.612
5p = 50 40.2536 34.5041 52.5942 50.6586 66.1407 75.5288*
8p = 80 71.6175 84.2976 66.6316 84.0993 85.1438 97.6646

Table 5.1: Mahalanobis distance of the emulator predictions of example 5.1 for di�erent
validation designs, simulator dimension and validation data size. Values marked with `∗ ' are
those that are outside the 95% credible interval.
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For the scenarios in Table 5.1 where valid emulators were not identi�ed by the Mahalanobis

distance, the observed values of the Mahalanobis distance are near the limit of their credible

intervals. Figure 5.3 presents the pivoted Cholesky errors against the pivoting order for

these emulators. The graphical diagnostics suggest that there is no evidence against the

assumption of valid emulators.
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Figure 5.3: Pivoted Cholesky errors for the emulators with large Mahalanobis distance in
Table 5.1.

Large uncorrelated errors can have a strong impact on the Mahalanobis distance, as we

observed in Figure 5.3. Hence, we should be careful when we have small validation data

sizes. To illustrate this, we use the following example:

Example 5.2 (Gaussian process with linear mean) Simulator: The simulator is a

random realisation of a p-dimensional Gaussian process with linear mean, constant variance

and squared exponential correlation functions. The mean, m(·), and covariance functions,

V (·, ·) are given by

m(x) =

p∑
k=1

(−1)k+1xk, x ∈ (0, 1)p,

V (x,x′) = 0.5 exp

{
−

p∑
k=1

(xi − x′i)2/δ∗i

}
,

where δ∗ = (δ∗1 = 0.5, . . . , δ∗p = 3.0), δ∗i = 0.5 + 2.5 (i−1)
(p−1)

for i = 1, 2, . . . , p.
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The training inputs are 10p points generated from a p-dimensional Sobol' sequence, and

the outputs are realisations of the generated function from the Gaussian process.

Emulator: The emulator is a Student-t process emulator, (2.16), with a linear mean

prior, squared exponential correlation function and correlation lengths given by the maximum

likelihood estimates for correlation lengths.

A random function was generated from a 10-dimension Gaussian process, 100 training

inputs were chosen and the simulator outputs are evaluated as described in example 5.2.

Combined validation designs with size m = {30, 50, 80} were generated, the outputs were

observed from the simulator, and the emulator was evaluated at each validation design. The

observed Mahalanobis distances, with 95% credible intervals were 66.22 (16.92, 55.50), 86.54

(30.33, 81.54), 105.2751 (51.00, 120.51), respectively. For the �rst two validation samples

the emulator would be considered non valid. Figures 5.4 a-c show the pivoted Cholesky

errors for each validation dataset. The graphical diagnostics suggest that there is no obvious

pattern in the uncorrelated errors, and therefore all three emulators can be considered as

valid emulators. Hence, the large observed Mahalanobis distances have been in�uenced by

few uncorrelated errors. The e�ect of the large uncorrelated errors on the Mahalanobis

distance is stronger when the validation sample size is smaller.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

0 5 10 15 20 25 30

−
3

−
2

−
1

0
1

2
3

Pivoting order

D
P

C
(y

* )

19

22

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

0 10 20 30 40 50

−
2

−
1

0
1

2
3

Pivoting order

D
P

C
(y

* )

30

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

0 20 40 60 80

−
2

−
1

0
1

2
3

Pivoting order

D
P

C
(y

* )

60

(a) m = 30 (b) m = 50 (c) m = 80

Figure 5.4: Pivoted Cholesky errors for the emulators of the simulator given in example 5.2
with p = 10 . using the combined validation design.

The Student-t process depends on the plug-in estimate for the correlation lengths. In our
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next example, we vary the emulator correlation lengths to test the e�ect on the diagnostics

of di�erent validation designs.

Example 5.3 (Gaussian process with linear mean) Simulator: The simulator is a

random realisation of a p-dimensional Gaussian process with linear mean, constant variance

and squared exponential correlation functions. The mean, m(·), and covariance functions,

V (·, ·), are given by

m(x) =
5∑

k=1

(−1)k+1xk, x ∈ (0, 1)5,

V (x,x′) = 0.5 exp

{
−

5∑
k=1

(xi − x′i)2/δ∗i

}

where δ∗ = (0.500, 1.125, 1.750, 2.375, 3.000). The training inputs are 50 points generated

from a 5-dimensional Sobol' sequence, and the outputs are realisations of the generated func-

tion from the Gaussian process.

Emulator: The emulator is a Student-t process emulator, (2.16), with a linear mean

prior and squared exponential correlation function.

We build an emulator using the true value δ∗ , the maximum likelihood estimate δ̂ , δi =

0,∀i , and δi = 6,∀i . For the last two correlation lengths, we have an emulator that assumes

independence between any two outputs and an overcon�dent emulator. For each di�erent

plug-in estimate, we select six validation designs with size m = 25 , evaluate the emulator

and the simulator and compare the results.

Tables 5.2 and 5.3 present the observed Mahalanobis distances and the mean squared

error. The expected value for the theoretical Mahalanobis distance is 25 and the 95% credible

interval is (12.18, 50.12). Using the true value, the emulators applied in the validation designs

were correctly identi�ed as valid emulators. The same happens with the emulators using the

maximum likelihood estimates, suggesting that the correlation lengths were well estimated.

The independent emulator was also judged as a valid emulator. They are valid in the sense

that the probability distribution derived from the emulator represents well our uncertainty
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about the simulator output. Note that the accuracy for the predictive mean is very poor when

we compare the mean squared errors of the emulators using the true δ and the independent

emulators. Finally, when the correlation length is too high, the Mahalanobis distances are

very high indicating non valid emulators. This is reasonable because when the correlation is

too high it leads to overcon�dent emulators.

δ Ind VarDist VarEig VarChol Comb Sobol
δ∗ 30.75 29.94 30.50 37.11 21.69 36.38

δ̂ 43.66 48.20 44.05 39.89 32.22 23.27
{δi = 0} 16.11 21.31 22.53 24.07 21.10 20.61
{δi = 6} 1031.16 1385.12 1459.46 952.27 1061.02 1235.05

Table 5.2: Mahalanobis distance of the emulator predictions of example 5.3 with p = 5 ,
validation data size m = 25 and di�erent values of the correlation length.

δ Ind VarDist VarEig VarChol Comb Sobol
δ∗ 0.0032 0.0075 0.0013 0.004 0.0009 0.0021

δ̂ 0.0012 0.0025 0.0034 0.0022 0.0029 0.0014
{δi = 0} 0.1844 0.2358 0.2698 0.2708 0.2494 0.23
{δi = 6} 0.3047 0.6647 0.5226 0.3879 0.2792 0.8508

Table 5.3: Mean squared error of the emulator predictions of example 5.3 with p = 5 ,
validation data size m = 25 and di�erent values of the correlation length.

Example 5.4 (Gaussian process with cubic polynomial mean) The simulator is a ran-

dom realisation of a p-dimensional Gaussian process with cubic polynomial mean, constant

variance and squared exponential correlation functions. The mean, m(·), and covariance

functions, V (·, ·), are given by

m(x) =

p∑
k=1

(−1)k+1(xk − x3
k), x ∈ (0, 1)p,

V (x,x′) = 0.5 exp

{
−

p∑
k=1

(xi − x′i)2/δ∗i

}
,

where δ∗ = (δ∗1 = 0.5, . . . , δ∗p = 3.0) is a vector of size p with δ∗i = 0.5 + 2.5 (i−1)
(p−1)

for

i = 1, 2, . . . , p.
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In this example, we generate the simulators from a Gaussian process with a cubic polynomial

mean. Our emulator is Student-t process emulator with a linear mean prior and squared ex-

ponential correlation function. The training inputs are 10p generated from a p-dimensional

Sobol' sequence with p = {3, 4, 5, 10} . We use the likelihood estimates for δ as the plug-

in estimates in the emulator. Also for each value of p , we vary the validation data size

m = {3p, 5p, 8p} .

Table 5.4 presents the Mahalanobis distance for di�erent validation designs, di�erent val-

ues of the dimension p , and di�erent rules for choosing the validation sample size. In most

of the scenarios, the observed Mahalanobis distance suggests a valid model. For those emu-

lators for which the observed Mahalanobis distances were outside the 95% credible intervals,

they are nevertheless all close to the upper limits of their credible intervals. For each extreme

Mahalanobis distance, a graphical diagnostic check using the pivoted Cholesky errors was

done. The graphical diagnostics suggest that there is no evidence against the assumption of

valid emulators.

p n m Ind VarDist VarEig VarChol Comb Sobol
3 30 3p = 9 8.9327 8.0877 9.2482 7.7687 7.5084 8.4024

5p = 15 11.7315 28.0005 23.4686 11.508 14.4801 22.8294
8p = 24 40.6416 37.9715 28.5239 66.8603* 34.0021 42.1951

4 40 3p = 12 20.3136 28.5577 23.5867 19.8706 36.1634* 31.6188
5p = 20 36.7652 34.7823 38.0688 29.994 32.467 32.0816
8p = 32 61.6603* 34.0332 51.135 61.6753* 68.6478* 64.5197*

5 50 3p = 15 7.469 12.7537 11.7713 9.7113 9.753 27.7157
5p = 25 26.3703 30.7192 21.8193 28.3528 27.8541 17.648
8p = 40 34.3706 72.5109* 61.5465 48.788 50.0809 39.2298

10 100 3p = 30 46.0342 88.1531* 64.1226* 48.8914 40.8658 44.6645
5p = 50 72.4895 59.9118 50.9156 59.0834 99.4419* 58.6468
8p = 80 140.2513* 92.9186 112.9737 127.4352* 161.6534* 104.1254

Table 5.4: Mahalanobis distance of the emulator predictions of example 5.4 for di�erent
validation designs, simulator dimension and validation data size. Values marked with `∗ ' are
those that are outside the 95% credible interval.
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5.4.1 Monte Carlo study

In the previous examples, we have randomness when the validation designs were chosen,

except for the Sobol' sequence which is a non-random design. We also have some randomness

when outputs of the simulator are generated; this is due to the simulator in the examples

being a random function sampled from a Gaussian process. In order to take this randomness

into account, we perform a Monte Carlo study.

The simulator is a 3-dimensional function generated from the Gaussian process of example

5.2. We generate 30 training data points, estimate the correlation lengths, and �t the

Student-t process emulator. We repeat 250 times the process of generating all the previous

six validation designs, evaluating the outputs and obtaining the Mahalanobis distance for

each validation design. The sample size of each validation design is m = 8p = 24 points.

In order to verify the performance of the validation designs, we have done the study for

di�erent estimates for the correlation length. We use the true value δ∗ = (0.50, 1.75, 3.00) ,

the maximum likelihood estimate δ̂ = (0.5276, 1.2762, 2.6049) , a deliberately reduced value

for the correlation length δ = 0.1δ∗ , and an in�ated value for the correlation length δ = 1.5δ∗ .

The last two values for correlation lengths were included to show the e�ect of the designs on

the diagnostics when the emulators are respectively under and overcon�dent.

If the assumptions for the emulator are correct, the distribution for the Mahalanobis dis-

tance is a scaled F distribution given in equation (4.5). Table 5.5 presents the proportion

of observed Mahalanobis distances that lie in the 95% credible interval for the Monte Carlo

simulation. For each correlation length scenario, the validation designs have similar propor-

tions of valid models, except for the reduced correlation length where the combined design

has a slightly lower proportion of valid models than other designs. We notice that the pro-

portion of observed Mahalanobis distances inside the interval is very small for the in�ated

correlation lengths. When we reduce the correlation lengths, we have a high proportion of

valid models.

Figure 5.5 presents the box-plots of the Mahalanobis distances with the theoretical 95%
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δ Ind VarDist VarEig VarChol Comb Sobol
δ∗ 0.940 0.936 0.948 0.932 0.936 0.952

δ̂ 0.996 0.992 0.980 0.988 0.988 0.984
0.10δ∗ 0.996 1.000 0.988 0.988 0.936 1.000
1.50δ∗ 0.044 0.036 0.036 0.040 0.040 0.036

Table 5.5: Proportion of valid models in the Monte Carlo simulation of the 3D Gaussian
process simulator for each validation design and di�erent values for correlation length esti-
mate.

credible interval. We notice that the observed Mahalanobis distances have a similar be-

haviour for all validation designs when we use the nominated true value, maximum likelihood

estimate and the in�ated value for the correlation lengths (Figures 5.5 a-c).

When we use the small value for the correlation lengths (δ = 0.10δ∗ ) the combined

validation design and Sobol' sequence behave di�erently (Figure 5.5 d). This di�erence is

associated with observations from regions of small uncertainty. For the Sobol' sequence there

are no values very close to each other; this is due to the space �lling properties of the Sobol'

sequences. Therefore, there are no or very few observations where the emulator is overcon�-

dent. For the validation designs based on optimising Latin hypercube using various criteria,

the proportion of observations where the emulator is overcon�dent is similar in each case

and larger than the Sobol' sequence, and therefore the boxplots for the Mahalanobis distance

present smaller values. For the combined validation design, a third of the observations are

deliberately chosen from small uncertainty regions, it therefore presents more undercon�dent

values and consequently smaller Mahalanobis distances.

In this simple Monte Carlo experiment, we conclude that all proposed validation designs

provide points where the diagnostics will correctly provide evidence in favour of or against

the validity of the emulator when our emulators are undercon�dent or represent well our

uncertainty about the simulator outputs. This is because all designs are able to choose

points from regions with medium and high uncertainty levels. However, when we have an

overcon�dent emulator we need inputs from low uncertainty regions. The Sobol' sequence is a

space-�lling sequential design, and therefore there are no input points close to training inputs.

The optimal Latin hypercube validation designs choose some points from small regions,
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Figure 5.5: Box-plot of the observed Mahalanobis distances obtained in the Monte Carlo
simulation of the 3-input Gaussian process simulator using the following correlation lengths:
(a) the nominal true value δ∗ ; (b) the Maximum Likelihood estimate δ̂ ; (c) the in�ated value
1.5δ∗ ; (d) the reduced valued 0.1δ∗ .

but not many points. Also, the combined design, that deliberately chooses inputs close to

training data, generate validation designs that provide information against the validity of

the emulator.

5.5 Conclusions

The design for validation is an important issue that should be considered when the emulator

needs to be validated. We have presented some designs for building and validating Gaussian
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process emulators. Designs for building Gaussian process emulators are desired to have

space-�lling properties, and we reviewed distance-based designs, maximin Latin hypercube

designs and some non-random designs. Designs for validating Gaussian process emulators

should cover regions with di�erent levels of uncertainty.

We propose validation designs that depend on the availability of the training data. If only

the training inputs are available, then we should use distance-based validation designs or a

combined design with a �xed value for the largest distance between points where the inputs

are still considered close. If the training outputs are also available, we build the emulator

using the training data and select the validation inputs from regions with di�erent levels of

uncertainty based on the predictive variance matrix. In our simulation study, the designs

behave similarly to each other, but the combined validation design seems to be better at

identifying undercon�dent emulators.



Chapter 6

Comparing competing emulators

6.1 Introduction

In this chapter, we present some methods for comparing competing emulators. Di�erent

model choices can lead to di�erent emulators for the same simulator. A set of emulators for

the same simulator are referred as competing emulators. The diagnostic methods presented

in Chapter 4 identify valid emulators, but if we have two or more valid emulators, the

proposed diagnostics are not designed to indicate the best emulator. Hence, it is necessary

to consider some tools that allow us to compare competing emulators.

Gaussian process emulators can di�er from each other for a number of reasons. For exam-

ple, they can have di�erent h(·) functions, di�erent correlation functions Cδ(·, ·) , di�erent

ways to deal with the unknown parameters (plug-in or numerical integration), di�erent de-

signs for training data, etc.

The comparison methods are based on a new dataset where we compare the observed value

of the simulator output with the predictions made by each emulator. The emulator with

`the best' predictions is considered the best emulator. However, there are several ways to

measure how good the predictions of a particular emulator are. Here, we intend to describe

some of these methods providing rules for comparing competing emulators.

88
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One simple comparison criterion for two competing emulators is the mean squared error,

which compares the predictions for a simulator, η̃(x(v)) , with the observed value, y(v) , as

follows:

MSE(y) =
1

m

m∑
i=1

(
y

(v)
i − η̃(x

(v)
i )
)2

, (6.1)

where the prediction function, η̃(x(v)) , depends on the loss function adopted for predicting

the simulator. If the squared error loss function is used, the prediction function, η̃(x(v)) ,

is the predictive mean function of the emulator. The smaller the MSE(y) the better the

accuracy of the emulator.

The mean squared error only provides information about the emulator accuracy. It ignores

the prediction uncertainty. A statistic that takes into account uncertainty in the emulator

predictions is the Mahalanobis distance, which was presented in (4.4). The expected value

for the Mahalanobis distance is the rank of the predictive covariance matrix, so emulators

that present values for the Mahalanobis distance near the rank of the predictive covariance

matrix are considered valid emulators. However, the observed Mahalanobis distance cannot

be used to rank di�erent emulators. One option for choosing the best emulator is to select

from among the valid emulators the one with smaller mean squared error (6.1). But as we

stated earlier, the mean squared error only takes into account the emulator's accuracy.

Therefore, we need statistics for ranking competing emulators that take into account

the prediction accuracy and the prediction uncertainty. In Bayesian statistics, the natural

way for comparing competing models is the Bayes factor, which we review in section 6.2.

Alternative comparison methods known as proper scoring rules are reviewed in section 6.3.

In section 6.4, we illustrate the comparison methods with some examples.

6.2 Bayes factors

The Bayes factor is a practical tool for comparing predictions made by two competing scien-

ti�c theories. It was developed by Je�reys (1935, 1961), and it is very popular in Bayesian
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2 logeB12 B12 Evidence against M2

0-2 1-3 Not worth more than a bare mention
2-6 3-20 Positive
6-10 20-150 Strong
>10 >150 Very strong

Table 6.1: Reference table for Bayes factor comparisons proposed by Kass and Raftery (1995)

analysis. The Bayes factor is mainly used to compare competing models. Suppose we have

two competing models, M1 and M2 , with predictive density for data D given by p(D|M1)

and p(D|M2) respectively. The Bayes factor for M1 against M2 is

B12 =
p(D|M1)

p(D|M2)
. (6.2)

A large value for the Bayes factor suggest that M1 is more appropriate than M2 . Kass and

Raftery (1995) proposed a guideline, shown in Table 6.1 for interpreting the Bayes factor.

Their table is a slight modi�cation of the guideline proposed by Je�reys (1961, app. B).

Kass and Raftery considered the transformation of twice the natural logarithm of the Bayes

factor because it is on the same scale as the likelihood ratio test statistic.

If a model contains unknown parameters, say θ , the predictive density is obtained by

integrating over the parameter space, so

p(D|Mi) =

∫
p(D|Mi, θi)π(θi|Mi)dθi,

where θi is a vector of parameters under Mi , π(θi|Mi) is its prior distribution, and p(D|Mi, θi)

is the probability density conditional on θi or the likelihood of θi . For a review of Bayes

factors see Kass and Raftery (1995) and references therein.

In the emulation context, for the most of the situations we use weak priors to represent

the unknown parameters associated with the Gaussian process emulator. If we use improper

priors then the Bayes factor would depend on non-speci�ed constants and could not be

evaluated. In order to deal with this problem, we could use some data to learn about the

unknown parameters and another dataset to evaluate the Bayes factor. This method is
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called the partial Bayes factor (Lempers 1971; Aitkin 1991). It is straightforward to

use the partial Bayes factor to compare competing emulators. The emulators are built with

some training data, (y,X) , and then we use some testing data, or validation data, X(v)

to evaluate the predictive distribution of the simulator at the same testing inputs for all

competing emulators. The Bayes factor for emulator E1 against emulator E2 is

B12 =
p(η(X(v))|E1,y,X)

p(η(X(v))|E2,y,X)
, (6.3)

where Ei refers to the information associated with emulator i , i = {1, 2} . Analogously,

if we have several emulators, we simply choose one as baseline, and compare the baseline

emulator to every other emulator using table 6.1 as reference.

6.3 Scoring rules

In this section, we present alternative summary measures for evaluating emulators. Scoring

rules assign a numerical score based on the predictive distribution and on the observed real

process. They have been used in the �eld of expert elicitation to encourage the expert

to make careful assessments and to be honest (O'Hagan 2006). Scoring rules measure the

quality of probabilistic forecasts and rank competing models (Gneiting and Raftery 2007).

Let s(F, y) be the score assigned for the stated predictive distribution F and the observed

value y , where y has distribution G . We assume that a scoring rule is a penalty measure

that the forecaster wishes to minimize. A scoring rule is proper if the expected value of

s(F, y) for an observation y drawn from G is maximized if F = G . It is strictly proper

if the maximum is unique. See Gneiting et al. (2007) and Gneiting and Raftery (2007) for

more information about strictly proper scoring rules.
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6.3.1 Logarithmic score

The logarithmic score proposed by Good (1952) is the logarithm of the predictive density,

f , evaluated at the observation y , and is a proper scoring rule. We have

logS(F, y) = log f(y), (6.4)

with the larger the logarithmic score the better. If we take the di�erence between the

logarithmic score of two di�erent models at the same observations, we have the log Bayes

factor of the �rst model against the second.

In the Gaussian process emulator (2.10) using plug-in estimates for the correlation lengths,

the logarithmic score is log p(η(X(v))|y,X, δ) . This is either a multivariate normal density,

or, in the case when (σ2, β) are integrated out, a multivariate student-t density. In the

case where the correlation lengths are integrated out numerically, it is necessary to obtain

a numerical approximation for the joint density function. Banerjee et al. (2003, page 132)

propose a method called composition sampling which consists of approximating the joint

predictive density using a sample of the unknown parameters. The composition method of

�nding a numerical approximation of the joint predictive density is the following:

p(η(X(v))|y,X) ≈ 1

M

M∑
k=1

p(η(X(v))|y,X, δ(k)), (6.5)

where, for instance, p(·|y,X, δ) is the multivariate Student-t density, and (δ(1), . . . , δ(M)) is

a sample from the posterior distribution of the correlation lengths. Conditional on a sample

of the correlation lengths, the k -th sample from the predictive distribution of η(X(v)) is

obtained by sampling from (2.16) conditional on the training data and (δ(k)) .

6.3.2 Energy score

Gneiting and Raftery (2007) claim that the logarithmic score lacks robustness, so they pro-

pose the use of the energy score. The energy score, es , is a generalization of the continuous
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ranked probability score, crps , which compares, for each individual prediction, the empiri-

cal distribution and the theoretical distribution. If F is a predictive cumulative probability

function and y is an observation from the process, then the continuous ranked probability

score is de�ned as

crps(F, y) = −
∫ ∞
−∞

(F (z)− I(y ≤ z))2 dz. (6.6)

If F has �nite �rst moments, the crps can be rewritten as

crps(F, y) =
1

2
E |Z − Z ′| − E |Z − y|, (6.7)

where Z and Z ′ are independent copies of a random variable with distribution F and �nite

�rst moments. Figure 6.1 illustrates two di�erent values of the crps when F is a standard

normal distribution. The shaded areas illustrate the region over which we integrate to obtain

the crps .
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crps(N(0, 1), 0) = 0.2337 crps(N(0, 1), 1) = 0.6024

Figure 6.1: Illustrating the continuous ranked probability score of a standard normal distri-
bution.

The energy score is a multivariate version of the continuous ranked probability score. The

energy score is given by

es(F,y) =
1

2
E ||Z− Z′|| − E ||Z− y|| (6.8)

where Z and Z′ are independent copies of a random vector with distribution F , and || · ||

denotes the Euclidean norm. Székely (2000) shows that the energy score is strictly proper
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when the expectation E ||Z|| exists.

The energy score can be calculated using the following computationally e�cient Monte

Carlo approximation

es(F,y) ≈ 1

2(M − 1)

M−1∑
i=1

||zi − zi+1|| −
1

M

M∑
i=1

||zi − y|| (6.9)

where z1, . . . , zM is a simple random sample of size M from the predictive distribution F .

For emulators, the predictive density F is given by the emulator itself, and the observations

of the process y are the simulator outputs at the testing inputs.

In order to compare several emulators, for each emulator we make predictions for the same

testing inputs and calculate the Energy score using the testing outputs. The best emulator

according to the energy score is the emulator with the largest observed energy score.

6.3.3 Dawid score

The Dawid score is a proper scoring rule that depends on the �rst and second moments only

(Dawid 1998; Dawid and Sebastiani 1999). The Dawid score is proportional to a multivariate

normal log density:

ds(F,y) = − log(det(Σ))− (y − µ)TΣ−1(y − µ). (6.10)

If the predictive process F is a multivariate normal distribution with mean µ and variance

Σ , the Dawid score is equivalent to the logarithmic score. The di�erence between the Dawid

scores of two di�erent models can be seen as a numerical approximation to the log Bayes

Factor. The Dawid score for an emulator is given by

DS = − log(det(V [X(v)|y]))−DMD(y(v)), (6.11)

where DMD(·) is the Mahalanobis distance (4.4).
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The Dawid score is useful in situations where the predictive density is not available, or

perhaps too complex or numerically expensive to evaluate. For example, the Dawid score

can be used to compare emulators using the Bayes linear approach (Goldstein and Woo�

2007).

6.4 Comparing emulators: examples

In this section, we consider how to compare competing emulators using the Bayes factor

and the presented scoring rules. We compare the prediction performance of the competing

emulators on a common dataset. This dataset should be a representative sample of the

simulator throughout the input space. This is because an emulator could be better in a

particular region of the input space, but worse in others. So, the predictive dataset should

cover the input space. We use the methods described in Chapter 5 for choosing the dataset

used for comparing competing emulators.

Comparing two di�erent emulators using partial Bayes factor is described in equation

(6.3), and the result can be interpreted according to table 6.1. The scoring rules are also

used, the emulator with the largest score being considered the best according to the respective

scoring rule.

Two-input examples

Two-input example 1

We compare the emulators built for the arti�cial model (Example 2.2) presented in section

2.3.2. The simulator is given by

η(x1, x2) =
(

1− e−
1

2x2

)(2300x3
1 + 1900x2

1 + 2092x1 + 60

100x3
1 + 500x2

1 + 4x1 + 20

)
, (6.12)

where (x1, x2) ∈ (0, 1)2 .
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An emulator was built using 20 training data points. A second emulator was updated

using 30 more training data, with 50 training data points in total. Figures 4.5 (a) and (b)

present respectively the training data and the predictive mean for both emulators.

To compare these two emulators, we need a new set of simulator runs. Using a Latin

hypercube design, 30 new inputs were sampled (Figure 6.2) and their respective simulator

outputs were obtained using equation (6.12).
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Figure 6.2: 30 inputs for comparison generated using a Latin hypercube design.

Table 6.2 presents some comparison statistics for each emulator. For the �rst emulator,

using the 20 training data, the plug-in estimates for the correlation lengths are (δ̂1, δ̂2) =

(0.2421, 0.4240) . The Mahalanobis distance suggests the emulator is non-valid since its

observed value is outside a 95% credible interval (15.23, 56.83). On the other hand, the

second emulator, using 50 training data, is considered valid as the observed DMD is inside

the 95% credible interval. The plug-in estimates for the correlation lengths are (δ̂1, δ̂2) =

(0.1763, 0.4116) . The mean square error, as expected when we increase the training data,

is smaller for the second emulator. The energy score, the logarithmic score and the Dawid

score are larger for the second emulator, which also favours the second emulator. From the

logarithmic score, we can calculate the log Bayes factor for the second emulator against the

�rst emulator: logBF = 44.1766 − 7.2562 = 36.9204 . According to table 6.1, there is very

strong evidence against the �rst emulator.
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Model MSE DMD(y(v)) ES logS DS
1st Emulator 1.7088 97.2659 -5.5661 7.2562 45.1661
2nd Emulator 0.0388 46.2913 -0.7514 44.1766 142.4725

Table 6.2: Comparison statistics for the two input example.

This simple example illustrates a situation where we expect a better performance from

the emulator with more data, i.e., the second emulator. The comparison measures were

consistent suggesting that the second emulator is the best.

Two-input example 2

Example 6.1 Let the simulator be the following 2-dimensional function

η(x1, x2) = x1x2e
−x2

1−x2
2 , (x1, x2) ∈ (−2, 2)2. (6.13)

In this example, we test di�erent prior assumptions for the Gaussian process. We use

di�erent mean functions by changing the h(·) , and we also change the estimates of the

correlation lengths. The simulator is illustrated in Figure 6.3 (a), where we can see that the

simulator is a smooth function.

We sampled 45 training data points using two independent Latin hypercube designs,

with 20 and 25 observations respectively. We also sampled 40 testing data points using an

independent Latin hypercube. Figure 6.3 (b) presents the contour plot of the simulator with

training and testing data denoted by (•) and (4) respectively.

Our prior assumptions about the simulator are described by Gaussian process emulators

with di�erent mean functions h(·) . The correlation function used is the squared exponential

correlation function. Conditional on the training data and on estimates of the correlation

lengths, the emulators are given by Student-t processes given by equation (2.16).

Table 6.3 presents the h(·) function used, the plug-in estimates for the correlation lengths,

δ̂ , the mean squared error and the Mahalanobis distance for each emulator built conditional
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Figure 6.3: Example 6.1: (a) Perspective plot of the simulator; (b) Contour plot of the
simulator with the 45 training inputs (•), 40 testing inputs (4) and another 40 testing data
(+) generated from Latin hypercube designs.

on the training data. The correlation lengths were estimated maximizing by the function

(2.19) using its respective h(·) function. The estimates for the correlation lengths are very

similar among the emulators, and the same behaviour is observed for the mean squared errors

which are very small. The Mahalanobis distances are signi�cantly small suggesting that all

emulators are undercon�dent.

h(x) δ̂ MSE DMD(y(v))

(1) δ̂(0) = (1.0463, 1.0504) 0.000006 1.2983

(1, x)) δ̂(1) = (1.0591, 1.0639) 0.000006 1.4904

(1, x, x2) δ̂(2) = (1.0698, 1.0755) 0.000007 1.6482

(1, x, x2, x3) δ̂(3) = (1.0784, 1.0854) 0.000007 1.7781

Table 6.3: Comparison statistics for example 6.1 for di�erent values of the h(·) function.

Figure 6.4 shows the pivoted Cholesky errors using the di�erent prior mean functions.

The errors con�rm that the emulators are similar to each other and undercon�dent. They

all show smaller variability at the end of the pivoting order suggesting underestimation of

the correlation lengths.

We now use a trial-and-error procedure to �nd a valid emulator for each h(·) function.
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Figure 6.4: Example 6.1: (a) Pivoted Cholesky errors for emulators using di�erent h(·)
functions.

Since the Mahalanobis distance and the pivoted Cholesky errors suggested that the correla-

tion lengths were underestimated, we multiply the estimated correlation lengths by a factor

α , for α = {1.00, 1.05, 1.10, . . . , 1.50} and calculate the Mahalanobis distance for each em-

ulator. The results are presented in Table 6.4. The expected value for the Mahalanobis

distance is 40, and its credible interval depends on h(·) . For the four h(·) functions used,

the emulator is valid when the respective estimated correlation lengths are increased by

25%. When we increase the estimated correlation lengths by more than 30% the emulators

become overcon�dent. However, in order to validate the emulators properly we need new

testing data, so we have a second testing dataset for this example given in Figure 6.3 (b)

denoted by the symbol `+ '. For the second testing dataset 40 inputs were generated using

a Latin hypercube and the outputs were obtained running the simulator (6.1) at all testing

inputs.
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h(·)
α (1) (1, x) (1, x, x2) (1, x, x2, x3)

1.00 1.2983 1.4904 1.6482 1.7781
1.05 2.6425 3.0633 3.4107 3.6912
1.10 5.3735 6.2368 6.9404 7.4982
1.15 10.6137 12.2625 13.5667 14.5789
1.20 20.0081 22.9266 25.1245 26.8074
1.25 35.7233 40.4923 43.9384 46.3692
1.30 60.1442 67.1736 71.8689 76.3921
1.35 98.3387 107.3004 110.2110 115.1054
1.40 134.0551 161.8854 146.9015 140.2221
1.45 188.4756 212.9052 189.8107 216.3926
1.50 199.9750 260.9421 275.0082 281.7863

Table 6.4: Mahalanobis distance for example 6.1 for di�erent values of the h(·) function
and di�erent correlation lengths. Highlighted values refer to the values near to the expected
value 40.

Using the original training data, we build emulators using the four speci�cations of the

h(·) function, and for each h(·) function, we use three di�erent plug-in estimates for the

correlation length. Firstly, we use the maximum likelihood estimate (MLE) for δ . Secondly,

we use an in�ated estimate suggested by Table 6.4, 1.25δ̂ . Finally, we use, as reference, an

�independence �emulator which is an emulator for which any two ouputs are independent,

i.e. δ = (0, 0)T .

Each emulator was used to predict the outputs for the second testing data. Table 6.5

presents the mean squared error, the Mahalanobis distance, the energy score, the logarithmic

score and the Dawid score for each emulator using the second testing dataset. The emulators

using the MLE for the correlation lengths result in smaller values for the mean squared

error. However, they are all undercon�dent emulators. On the other hand, the independent

emulators give considerably larger values for the mean squared errors while the Mahalanobis

distance also suggest undercon�dent emulators. When we use the in�ated correlation lengths,

we con�rm the analysis from Table 6.4 that suggests that the emulators using the in�ated

correlation length would be valid.

According to the scoring rules presented in Table 6.5, the emulators using the constant
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h(x) δ̂ MSE DMD(y(v)) es logS Ds

(1) δ̂(0) 0.000006 1.2983 -0.0181 228.1067 517.2064

1.25δ̂(0) 0.000032 35.7233 -0.0258 229.7439 533.5404
(0,0) 0.005263 29.8460 -0.3269 47.1021 167.7014

(1, x) δ̂(1) 0.000006 1.4904 -0.0183 228.8452 518.3852

1.25δ̂(1) 0.000036 40.4923 -0.0267 226.6803 527.5471
(0,0) 0.005352 29.0846 -0.3254 46.2119 165.8137

(1, x, x2) δ̂(2) 0.000007 1.6482 -0.0185 229.0388 518.4204

1.25δ̂(2) 0.000039 43.9384 -0.0291 223.8017 521.7219
(0,0) 0.005426 27.3132 -0.3318 45.6088 164.3032

(1, x, x2, x3) δ̂(3) 0.000007 1.7781 -0.0190 228.7165 517.3691

1.25δ̂(3) 0.000044 46.3692 -0.0302 221.2542 516.5003
(0,0) 0.005470 26.0902 -0.3344 44.8420 162.5118

Table 6.5: Comparison statistics for example 6.1 for di�erent values of the h(·) function and
di�erent estimates for the correlation lengths.

mean prior, h(x) = (1) , perform better than the others. Among the valid emulators, those

whose Mahalanobis distances are near its expected value, 40, the best emulator is the one

with prior mean given by a constant function, i.e. m(x) = h(x)Tβ = β0 , and in�ated

correlation length. This emulator presents the overall largest value for the logarithmic score

and the Dawid score, and the largest value for the energy score among the valid emulators.

6.5 Discussion

In this chapter, we have presented the Bayes factor and some scoring rules to compare

competing emulators. We believe that it is necessary to provide comparison measures for

emulators since the diagnostics for validation presented in the previous chapter do not rank

models. The proposed comparison methods depend on new runs of the simulator, referred to

here as testing data, where di�erent emulators should make predictions at the same inputs to

make them comparable. We suggest comparing valid models only, although the comparison

methods do not require a valid model.

For comparing competing emulators, we suggest the use of the partial Bayes factor, as
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we believe it is the best way to compare models in a Bayesian framework. However, in

some situations it is not possible to evaluate the predictive density function of the emulator

analytically. Therefore, we should use numerical approximations for the density function

or try alternative comparison methods such as the energy score and the Dawid score. The

energy score is numerically obtained when the samples from the emulator are available. The

Dawid score depends only on the �rst two moments of the emulator, and is an alternative

measure when the previous measures cannot be evaluated.

We have focused on the case in which the simulator gives a single output. It would be

useful to extend the comparison methods to multiple-output emulators. The extension would

be straightforward, since the emulator is still a Gaussian process and the predictive density

will be known. However, further research is need before implementation.



Chapter 7

Analysis and diagnostics for discrepancy

models

7.1 Introduction

In this Chapter, we consider a model to predict a real system, ξ(·) , combining a fast simula-

tor, η(·) , with experimental data. Experimental data are observations of the real system that

the simulator was design to represent. Such a model is a simpli�ed version of the calibration

model proposed by Kennedy and O'Hagan (2001). The di�erence between the real system

and the simulator, i.e., d(·) = ξ(·) − η(·) , is called the discrepancy function. A model that

uses a fast simulator, fast in the sense that there is no need of emulation, and experimental

data is called a discrepancy function model. This model is described in in Section 7.2.

In Section 7.3, we review some di�erent methods for dealing with some unknown param-

eters in the discrepancy function model. The method most commonly used is the plug-in

method, in which we obtain estimates for the parameters and condition on the parameter

estimates as the true values. Other methods attempt to take into account the uncertainty

associated with the unknown parameters. Nagy et al. (2007) propose a computationally

cheap integration method for emulators that we adapt here. We also brie�y describe the

103
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MCMC and the Kennedy and O'Hagan approaches.

Our aim is to provide a set of diagnostics to validate a discrepancy model. In Section

7.4, we present some graphical and numerical diagnostics that provide some information

about the validity of the model. The proposed diagnostics are extensions of the diagnostics

proposed in Chapter 4.

7.2 Discrepancy function model

The aim is to learn about a real system, represented by ξ(·) , which is simulated by η(·, ·) .

We consider two di�erent types of inputs: the control inputs which are the same inputs

as in the real system function, and the calibration inputs or parameters which are inputs

for the simulator only. The calibration parameters can, for example, be physical constants

associated with the real system, or numerical parameters associated with the numerical

precision required. The real system is represented as the simulator plus an unknown function

d(·) called the discrepancy function:

ξ(·) = η(·, θ) + d(·), (7.1)

where the calibration parameters, denoted by θ , are unknown inputs for the simulator only.

The domain for the real system function, ξ , is the input space, X ∈ Rp . Note that the

discrepancy function, d , has the same domain as ξ , and the simulator domain depends on

the control inputs x ∈ X and the calibration parameters.

For a particular input x ∈ X , the observed real process includes measurement errors,

or observational errors. For a given input x , the observational error is added to (7.1).

Therefore, observations of the real process z1, . . . , zn at location x1, . . . ,xn are subject to

observational errors e1, . . . , en . Therefore, the model is given by

zi = ξ(xi) + ei = η(xi, θ) + d(xi) + ei, i = 1, 2, . . . , n. (7.2)
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Our prior uncertainty about the real process ξ should incorporate our prior uncertainty

about the associated processes and parameters. One important assumption is that the prior

distributions for the discrepancy function, the observational errors and the simulator are

independent. We assume that the simulator is fast to run, so there is no need to emulate the

simulator. The calibration parameters θ are still unknown, and therefore any information

about θ is included in its prior distribution. Each observational error, ei , is assumed to be

normally distributed with zero mean, and constant variance σ2
e , i.e.

ei|σ2
e ∼ N

(
0, σ2

e

)
, ∀i = 1, . . . , n. (7.3)

We represent the uncertainty about the discrepancy function by a Gaussian process with

mean function md(·) and covariance function Vd(·, ·) :

d(·) ∼ GP (md(·), Vd(·, ·)). (7.4)

The mean function, md(·) , is generally represented by a linear function hd(·)Tβd , where

hd(·) is a known function and βd a vector of unknown regression parameters. The covariance

function is a stationary covariance function Vd(·, ·) . Here, we use a homoscedastic covari-

ance function in the form Vd(·, ·) = σ2
dCδd(·, ·) . We use the squared exponential correlation

function (2.6) with correlation lengths given by the vector δd = (δd,1, . . . , δd,p) .

Therefore, our prior uncertainty about the real system ξ(·) is described by a Gaussian

process with mean and covariance functions given by mξ(·) and Vξ(·, ·) respectively, i.e.

ξ(·)|θ, σ2
d, δd ∼ GP (mξ(·), Vξ(·, ·)) , (7.5)

where

mξ(x) = E[ξ(x)|θ] = η(x, θ) +md(x), (7.6)

Vξ(x,x
′) = Cov[ξ(x), ξ(x′)|σ2

d, δd] = Vd(x,x
′). (7.7)
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The training data is a set of experimental data from the real system, (z,X), where, for

instance, we have n di�erent input values, X = (xT1 , . . . ,x
T
n )T and for each input xi , the

observed real process is denoted by zi . The training data is used to update our beliefs about

the real process and the parameters θ and Ψ = (σ2
d, δd, σ

2
e) .

It is straightforward to update our beliefs about ξ(·) conditional on the training data, θ

and Ψ . Using properties of the multivariate normal distribution, it can be shown that the

posterior distribution of the real process is

ξ(·)|z,X, θ,Ψ ∼ GP
(
m∗ξ(·; θ,Ψ), V ∗ξ (·, ·; Ψ)

)
. (7.8)

The posterior mean function is given by

m∗ξ(x; θ,Ψ) = E[ξ(x)|z,X, θ,Ψ]

= mξ(x; θ) + Vξ(x,X)T
(
Vξ(X) + σ2

eIn
)−1

(z−mξ(X; θ)), (7.9)

where the notation mξ(X; θ) corresponds to the vector (mξ(x1; θ) , . . . , mξ(xn; θ))T , Vξ(x,X)

is a vector such that Vξ(x,X)[i] = Vξ(x,xi) for i = 1, . . . , n , and Vξ(X) is a matrix such

that Vξ(X)[i, j] = Vξ(xi,xj) .

The posterior covariance function is

V ∗ξ (x, x′; Ψ) = Cov[ξ(x), ξ(x′)|z,X,Ψ]

= Vξ(x, x
′|Ψ)− Vξ(x,X)T

(
Vξ(X) + σ2

eIn
)−1

Vξ(x,X). (7.10)

The posterior distribution (7.8) depends on the true values of parameters (θ,Ψ) which

are unknown quantities. The likelihood for (θ,Ψ) is built from (7.5), and hence the posterior

distribution for (θ,Ψ) is

p(θ,Ψ|z,X) ∝ p(θ,Ψ)MN(z,mz(X; θ),
(
Vξ(X) + σ2

eIn
)
) (7.11)

where p(θ,Ψ) is a prior distribution, MN(x,m, V ) denotes the density of the multivariate
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normal at vector x , with mean vector m and covariance matrix V .

7.3 Inference for discrepancy function models

We are interested in making predictions about the real system, ξ(·) , conditioned on a set

of experimental data using the predictive process (7.8). However, we should deal with the

unknown quantities (θ,Ψ) . The simplest way is to estimate (θ,Ψ) and condition on them

as true values. This method is called the plug-in method, and estimates for (θ,Ψ) can

be found by maximizing the posterior (7.11). The plug-in method fails to take into account

uncertainty in the unknown quantities (θ,Ψ) . An MCMC algorithm could be used, although

it is computationally expensive. Kennedy and O'Hagan (2001) proposed a method where

the calibration parameter is numerically integrated out, and the remaining parameters are

estimated and used as true values. Nagy et al. (2007) proposed a Monte Carlo method

that approximates the posterior (2.19) by a multivariate log normal and integrates over the

correlation parameters in a Gaussian process emulator. We adapt Nagy et al.'s algorithm

for the discrepancy function model.

In order to illustrate the inference methods, we use the following toy example.

Example 7.1 (Toy example) We assume that the real process is one realization of the

model (7.5), where

η(x, θ) = xθ + sin(3xθ)

md(x) = 0,∀x

Vd(x, x
′) = σ2

d exp

{
−(x− x′)2

δ2
d

}

We generated two di�erent samples from this process:

(a) 400 noisy observations illustrated in Figure 7.1 (a) where 15 are randomly chosen as

training data.
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(b) 400 noisy observations illustrated in Figure 7.1 (b) where 100 are randomly chosen as

training data.

The parameters used to generate the processes were θ = 3, σ2
d = 2, δd = 0.5, and σ2

e = 0.01.
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Figure 7.1: Two di�erent processes sampled from the Gaussian process described in example
7.1 and the associated simulator.

For example 7.1, we use independent vague priors for θ and Ψ .

θ ∼ N(0, 100),

σ2
d ∼ InvGamma(4.01/2, 2.01/2),

δd ∼ Gamma(0.01, 0.01),

σ2
e ∼ InvGamma(4.01/2, 2.01/2).

However, for most situations there may be at least some information about the likely size of

measurement errors, i.e., information about σ2
e , that should be included in the prior.

7.3.1 Plug-in method

Predictions for the real process are based on the process (7.8) using plug-in estimates (θ̂, Ψ̂)

for (θ,Ψ) . For instance, (θ̂, Ψ̂) could be the joint posterior mode of (7.11) obtained by an
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optimization method, such as the Downhill simplex method (Nelder and Mead 1965) or the

simulated annealing algorithm (Belisle 1992).

For example 7.1 (a), the plug-in method is applied to the training data with size 15

randomly chosen from the 400 observations. The parameter estimates are θ̂ = 2.0335 , σ̂2
d =

0.2845 , δ̂d = 0.5060 and σ̂2
e = 0.1156 . The calibration parameter and the variances were

poorly estimated, especially the estimated observation variance which is quite big. Figure

7.2 (a) presents the training data and the estimated real process using plug-in estimates

of (θ,Ψ) . The mean estimated process represents the real process well, but the associated

uncertainty is very high. This is due to the poor estimation of some parameters.

For example 7.1 (b), a larger training dataset containing 100 observations was chosen and

(θ,Ψ) were estimated. The parameter estimates are θ̂ = 2.5721 , σ̂2
d = 0.7808 , δ̂d = 0.7492

and σ̂2
e = 0.0295 . Figure 7.2 (b) presents the training data and the estimated real process.

The parameter estimates are closer to the true values, but the uncertainty is apparently

greater than it should be.
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Figure 7.2: Estimated processes using the plug-in method: (a) using 15 training data chosen
from example 7.1 (a); (b) using 100 training data chosen from example 7.1 (b).

The large uncertainty for the predictive intervals of example 7.1 (a) and (b) is due to poor

estimation of the unknown parameters (θ,Ψ). In order to illustrate this, Figure 7.3 presents

predictions for the real system using the true value for each parameter θ = 3 , σ2
d = 2 ,

δd = 0.5 and σ2
e = 0.01 . The widths of the predictive intervals given the true values are
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visably lower than those of the predictive intervals given the estimated values presented in

Figure 7.2.
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Figure 7.3: Estimated processes using the plug-in method at the true value for each param-
eter.

7.3.2 Nagy et al.'s approach

Nagy et al. (2007) propose a method for inference about the correlation parameters in a

Gaussian process emulator. The authors present a Monte Carlo method where the distribu-

tion of the unknown parameters, on the log scale, is approximated by a normal distribution

centred on the posterior mode and covariance matrix given by the negative of the inverse of

the Hessian matrix of the posterior density for the parameters of interest. The authors also

compared their approach with the plug-in and MCMC approaches, where they found that

their approach is better in the sense that it combines the computational e�ciency of the

plug-in method and the Bayesian approach of dealing with the uncertainty in the unknown

parameters.

We adapt Nagy et al.'s method for the discrepancy model (7.1). The normal approxi-

mation for the posterior distribution of (θ, log Ψ) is derived from (7.11). This approach is

summarized as follows:

1. Obtain the posterior mode of the posterior distribution of τ = (θ, log Ψ) , denoted by
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τ̂ .

2. Compute the Hessian matrix (the matrix of second derivatives) at τ̂ , denoted by Hτ .

3. Sample from the multivariate normal distribution N(τ̂ ,−H−1
τ ) to obtain M Monte

Carlo samples τ (1), . . . , τ (M) .

4. The approximated predictive mean is given by the average

Ê[ξ(x)|z,X] =
1

M

M∑
k=1

m∗1(x; θ(k),Ψ(k)), (7.12)

and the approximated predictive covariance is given by

Ĉov[ξ(x), ξ(x′)|z,X] = Ê[ξ(x)ξ(x′)|z,X]− Ê[ξ(x)|z,X]Ê[ξ(x′)|z,X]T , (7.13)

where

Ê[ξ(x)ξ(x′)|z,X] =
1

M

M∑
k=1

V ∗ξ (x, x′; Ψ(k)) +m∗ξ(x; θ(k),Ψ(k))m∗ξ(x
′; θ(k),Ψ(k))T , (7.14)

m∗ξ(x; θ,Ψ) and V ∗ξ (x, x′; θ,Ψ) are given in equations (7.9) and (7.10) respectively.

Nagy et al.'s method was applied to the same dataset used to illustrate the plug-in method.

The posterior mode for (θ, log(Ψ)) and the Hessian matrix were obtained using the opti-

mization method `optim' implemented in R. The estimated process for example 7.1 (a) and

(b) are presented in Figure 7.4 (a) and (b) respectively. In both cases, the real process is

contained in the 95% credible intervals, but the uncertainty is visually large, especially for

example 7.1 (a).

In both cases in example 7.1, the predictive intervals for the real system ξ(·) using Nagy

et al.'s method are very similar to those predictive intervals using the plug-in method (Figure

7.2). The reason for that is the poor estimation of the parameters (θ,Ψ) . The approximated

density functions for each parameter of both examples 7.1 (a) and (b) are presented in Figure

7.5. Both variances were poorly estimated, the true values being both far out in the tail of
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Figure 7.4: Estimated processes using Nagy et al.'s method: (a) using 15 training data
chosen from example 7.1 (a); (b) using 100 training data chosen from example 7.1 (b).

the approximated distributions. This is the reason for the large uncertainty in the predictions

in Figure 7.4.

7.3.3 Kennedy and O'Hagan's approach

This approach was proposed by Kennedy and O'Hagan (2000, 2001). Predictions for the real

process take into account uncertainty about the calibration parameter. In order to predict

the real process it is necessary to �nd plug-in estimates for Ψ and to integrate θ out from

the joint posterior. We assume that the calibration parameter θ and the parameter Ψ are

independent, i.e p(θ,Ψ) = p(θ)p(Ψ) . However this assumption is not strictly necessary.

The predictive distribution for the real process cannot be analytically derived, however,

conditional on the parameter Ψ , we can derive the predictive mean as

E [ξ(x)|z,X,Ψ] =

∫
E [ξ(x)|y,X,Ψ, θ] p(θ|z,X,Ψ)dθ

=

∫
m∗ξ(x; θ,Ψ)p(θ|z,X,Ψ)dθ, (7.15)

and the predictive covariance function is

Cov [ξ(x), ξ(x′)|z,X,Ψ] = E [ξ(x)ξ(x′)|z,X,Ψ]− E [ξ(x)|z,X,Ψ]E [ξ(x′)|z,X,Ψ] , (7.16)
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Figure 7.5: Approximated marginal posterior distribution of each unknown parameter of
example 7.1 (a) and (b) using Nagy et al.'s method. The true value for each parameter is
presented as a vertical dotted line on each Figure.

where E [ξ(x)ξ(x′)|z,X,Ψ] =

∫ (
V ∗ξ (x, x′; Ψ) +m∗ξ(x; θ,Ψ)m∗ξ(x

′; θ,Ψ)
)
p(θ|z,X,Ψ)dθ , and

m∗ξ(·; θ,Ψ) and V ∗ξ (·, ·; Ψ) are presented in equation (7.8).

The integrals in (7.15) and (7.16) are recommended to be solved using the iterative Gauss-

Hermite quadrature method (Kennedy and O'Hagan 2001).

Plug-in estimates for Ψ are obtained as

Ψ̂ = argmax
Ψ

p(Ψ|z,X), (7.17)
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where

p(Ψ|z,X) =

∫
θ

p(θ,Ψ|z,X)dθ, (7.18)

and p(θ,Ψ|z,X) is de�ned in equation (7.11).

7.3.4 MCMC approach

In this approach, to make predictions of the real system, the calibration parameter θ

and the parameters Ψ are integrated out from the joint posterior. The predictive dis-

tribution for the real process cannot be analytically derived. However, we can approxi-

mate the predictive mean and the predictive covariance as (7.12) and (7.13). The samples

((θ(1),Ψ(1)), . . . , (θ(M),Ψ(M))) are generated from the posterior distribution (7.11) using an

MCMC sampler. Assuming that θ and Ψ are independent a priori, the full conditional

distributions are

p(θ|z,X,Ψ) ∝ p(θ) exp

{
−1

2
(z−mξ)

TV −1
ξ (z−mξ)

}
, (7.19)

and

p(Ψ|z,X, θ) ∝ p(Ψ)|Vξ|−
1
2 exp

{
−1

2
(z−mξ)

TV −1
ξ (z−mξ)

}
. (7.20)

The MCMC algorithm consists of the following steps.

1. Initialize the iteration process, i.e. attribute values for θ(0) and Ψ(0) .

2. Sample a value for θ(k) from the conditional distribution f(θ|z,X,Ψ(k−1)) given in

(7.19).

(a) Sample θ? from a proposal distribution, q(·|θ(k−1)) .

(b) Accept θ? , i.e. θ(k) = θ? , with probability

α(θ?, θ(k−1)) = min

(
1,

f(θ?|z,X,Ψ(k−1))q(θ(k−1)|θ?)
f(θ(k−1)|z,X,Ψ(k−1))q(θ?|θ(k−1))

)
. (7.21)
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(c) If θ? is rejected, then θ(k) = θ(k−1) .

3. Sample a value for Ψ(k) from the conditional distribution f(Ψ|z,X, θ(k)) given in (7.20).

(a) Sample Ψ? from a proposal distribution, q(·|Ψ(k−1))

(b) Accept Ψ? , i.e. Ψ(k) = Ψ? , with probability

α(Ψ?,Ψ(k−1)) = min

(
1,

f(Ψ?|z,X, θ(k))q(Ψ(k−1)|Ψ?)

f(Ψ(k−1)|z,X, θ(k))q(Ψ?|Ψ(k−1))

)
. (7.22)

(c) If θ? is rejected, then θ(k) = θ(k−1) .

4. Repeat steps 2 and 3 a large number of times and monitor convergence of the chain.

Although the Kennedy and O'Hagan's method and the MCMC approach are more ap-

propriate methods for dealing with uncertainty in the unknown parameters, both of these

methods are computationally expensive. In the next section, we present diagnostics for val-

idating the discrepancy function model using the plug-in and Nagy et al.'s methods. The

diagnostics for the discrepancy function models using Kennedy and O'Hagan and the MCMC

approaches would be the same as those diagnostics using Nagy et al.'s approach.

7.4 Diagnostics for validating the discrepancy function

model

Discrepancy function models should be validated. Otherwise, predictions from an invalid

model may simply lead to wrong conclusions about the real process. In order to validate

a model, it is necessary to use a set of diagnostics. In Chapter 4, we proposed a set of

numerical and graphical diagnostics to validate Gaussian process emulators. The proposed

diagnostics are based on the performance of the predictive model on a new dataset, called

the validation data. For each diagnostic there is an observed value from the validation data,

and a distribution induced by the predictive distribution. Extreme values may indicate non
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valid emulators. The same procedure can be used for validating the discrepancy function

model.

Let (z(v),X(v)) be the validation data, where z
(v)
i is an noisy observation of the real

system under conditions given by the input vector x
(v)
i , and X(v) = (x

(v)
1

T
, . . . ,x

(v)
m

T
)T . The

size of the validation data is de�ned as m . There are no studies on the literature about

the ideal size of the validation data, but we recommend that the validation data cover the

input space. A diagnostic for validation could be any statistic DG(·) that can be evaluated

at the observed validation data, DG(z(v)) , and compared with the induced distribution of

the random variable DG(ξ(X(v))) . A good diagnostic is the one that provides information

on where the problem could be in case of a model that is not valid.

7.4.1 Diagnostics when the plug-in method is used

The set of diagnostics when the plug-in method is used are essentially the same as those

diagnostics presented in Chapter 4. The reason for that is because in Chapter 4 we developed

diagnostics for Gaussian process emulators, and here the predictive process for the real system

is also a Gaussian process, (7.8).

The simplest diagnostic is the standardised individual predictive error, DI(·) , described

in (4.2).

DI(z
(v)
i ; x

(v)
i ) =

z
(v)
i − E[ξ(x

(v)
i )]√

Var[ξ(x
(v)
i )]

, for i = 1, . . . ,m. (7.23)

For a valid predictive model we expect to observe values between -2 and 2, which corresponds

to the 95% credible interval for each individual error, since each prediction is normally

distributed as (7.8) with plug-in estimates for (θ,Ψ) . The individual errors can be plotted

against the predictive mean, or against any of the inputs to see if there is a pattern. The

problem, however, is that such plot does not take into account the correlation among the

predictions.

The next diagnostic takes into account the correlation among the predictions. The Maha-
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lanobis distance, DMD(·) , is a generalisation of the sum of squares of the individual errors.

It requires the predictive mean and predictive covariance matrix:

DMD(z(v); X(v)) = (z(v) − E[ξ(X(v))])T Cov[ξ(X(v))]−1(z(v) − E[ξ(X(v))]) (7.24)

where the i-th element of vector E[ξ(X(v))] is E[ξ(x
(v)
i )] , and the element (i, j) of the matrix

Cov[ξ(X(v))] is Cov[ξ(x
(v)
i ), ξ(x

(v)
j )] . For a valid model, the Mahalanobis distance follows a

chi squared distribution with degrees of freedom given by rank(Cov[ξ(X(v))]) . A large value

for this diagnostic may suggest overcon�dence. On the other hand, a small value may suggest

undercon�dence.

In Section 4.3.3, we presented the uncorrelated errors of the form G−1(z(v)−E[ξ(X(v))]) ,

where the predictive variance matrix is decomposed into Cov[ξ(X(v))] = GGT . There are

several decomposition methods and we used the pivoted Cholesky decomposition. The piv-

oted Cholesky decomposition of the variance matrix is given by PT Cov[ξ(X(v))]P = UTU ,

where U is an upper triangular matrix and P is a permutation matrix. Therefore, the

pivoted Cholesky errors are given by

DPC(z(v); X(v)) = PU−1(z(v) − E[ξ(X(v))]). (7.25)

One advantage of the pivoted Cholesky error is that each single pivoted Cholesky error is

associated with one validation data point. Therefore, if an extreme value for a DPC(z(v); X(v))

is observed, the associated validation data can be tracked where the cause of the problem

may be identi�ed. If the predictive distribution is known, one very useful graphical display

is the QQ-plot with credible intervals (Houseman et al. 2004).

Toy Examples

Example 7.1 (a). The training data consisted of a random sample of 15 observations and

the estimated model is presented in Figure 7.2 (a). For this example, we use 50 observations

randomly chosen as validation data points. The individual errors (7.23) are presented in
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Figure 7.6. Figure 7.6 (a) presents the individual errors against the predictive mean. There

is no pattern associated with the mean function, however, the variability of the errors is

smaller than expected. Figure 7.6 (b) presents the individual errors versus the input. There

is no pattern suggesting a non-stationary problem.
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Figure 7.6: Validation diagnostics for the toy example 7.1 (a), using 15 training data points
and 50 validation data points, based on the individual errors: (a) DI(z(v)) against the
predictive mean; (b) DI(z(v)) against the validation inputs.

Figure 7.7 (a) presents the pivoted Cholesky errors (7.25), where the variability of the

errors is considerably smaller than expected. The Mahalanobis distance (7.24), DMD(z(v)) =

3.7317 , con�rms the undercon�dence, where the expected value is 50, and the credible in-

terval is (32.36, 71.42). Figure 7.7 (b) presents the Quantile-Quantile plot that emphasizes

that the error variability is small. We now consider increasing the training data sample size.

Using the selected training data, uncertainty in the predictions is very large. The param-

eters were poorly estimated, especially σ̂2
e which is far too big. To reduce this uncertainty,

we can use more data, in particular more data at the same training inputs to obtain more

information about the observational variance error. So, we observe again the real process

at the original training inputs, and add the validation data to the training data. Therefore,

the new training data contain 80 observations: 15 for the previous training data, 50 for the

validation and 15 more observations evaluated at the same inputs as the initial training data.
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Figure 7.7: Validation diagnostics for the toy example 7.1 (a) , using 15 training data points
and 50 validation data points, based on the pivoted Cholesky errors: (a) DPC(z(v)) against
the pivoting order; (b) QQ plot of DPC(z(v)) .

A new validation dataset containing 50 observations was randomly chosen and used for

diagnostics. Figure 7.8 (a) presents the estimated process using the new training data. The

range of the predictive intervals are smaller than before, but they still seem to be larger than

they should be. The Mahalanobis distance is 14.54, which is smaller than the expected 50 and

the 95% credible interval is (32.36, 71.42). Figure 7.8 (b) does not suggest poor estimation

of the correlation lengths because the variability of the errors is constant throughout the

pivoting order, but the variance is too small which suggests either the estimated discrepancy

variance, σ̂2
d , or the observational error variance, σ̂

2
e , is too large. According to Figure 7.8

(c) the normality assumption seems reasonable, but the variance of the pivoted Cholesky

errors is too small.

We now suppose that we know the observational variance, i.e., σ2
e = 0.01 . This as-

sumption is not too strong; for instance this information could be obtained throughout the

speci�cations of the measurement instrument used to collect the data. The remaining pa-

rameters (θ, σ2
d, δd ) still need to be estimated. We use the 80 training data points to estimate

them. Figure 7.9 (a) presents the predictive real process. 50 new validation data elements

were randomly chosen, and the Mahalanobis distance is 48.02, which is very close to its

expected value. Figure 7.9 (b) and (c) present diagnostics with the pivoted Cholesky errors,

and both �gures suggests that the estimated process is a valid model.
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Figure 7.8: Validation diagnostics for the toy example 7.1 (a), using 80 training data points
and 50 new validation data points, based on the pivoted Cholesky errors: (a) DPC(z(v))
against the pivoting order; (b) QQ plot of DPC(z(v)) .

Example 7.1 (b). The training data consist of a random sample of 100 observations

used to build the predictive model presented in Figure 7.2 (b). The validation data consist

of 50 observations randomly selected from the remaining 300 observations sampled from the

real process. Figure 7.10 (a) presents the individual errors against the predictive mean and

Figure 7.10 (b) presents the individual errors against the input. In both cases, there is no

noticeable pattern associated with the mean function, but the variability of the errors is

smaller than expected.

The observed Mahalanobis distance DMD(z(v)) = 12.3824 suggests undercon�dence. The

expected value is 50, and the credible interval is (32.36, 71.42). Figure 7.11 (a) presents the

pivoted Cholesky errors (7.25), where the variability is very small, but there is no patterns

indicating problems on the correlation structure. Figure 7.11 (b) presents the Quantile-

Quantile plot where we observe light tails indicating small variability.

7.4.2 Diagnostics when numerical approximations are used

Here, we present some diagnostics for the discrepancy function model when the parameters

(θ,Ψ) are numerically integrated out via sampling methods. This includes methods such as

MCMC and Nagy et al.'s method. The diagnostics depend on the predictive distribution
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Figure 7.9: Validation diagnostics for the toy example 7.1 (a), using 80 training data points,
50 validation data points and a �xed value for the observational variance (σ2

e = 0.01), based
on the pivoted Cholesky errors: (a) DPC(z(v)) against the pivoting order; (b) QQ plot of
DPC(z(v)) .

of ξ(X(v)) which cannot be derived analytically. Two ways to deal with this are (i) using

a Gaussian approximation of the predictive distribution of ξ(X(v)) with vector mean and

covariance matrix derived numerically via (7.12) and (7.13); (ii) using composition sampling,

(Banerjee et al. 2003, page 132), where we sample from the predictive distribution of ξ(X(v)) .

The k -th sample from the predictive distribution of ξ(X(v)) is obtained by sampling from

(7.8) conditional on the training data and (θ(k),Ψ(k)) .

The individual errors (7.23) for a valid model are expected to be values randomly dis-

tributed around zero, and the distribution for each individual error is, for case (i), approxi-

mated by a standard Gaussian distribution. For case (ii), the distribution of the individual

errors is derived numerically for each error. Analogously, the pivoted Cholesky errors (7.25)

should be independent and approximated by standard Gaussian for case (i) and numerically

derived for case (ii). In the numerical approximation (ii), we keep the pivoting order of the

validation data, to guarantee that the distribution of each numerical pivoted Cholesky error

correspond to one observed pivoted Cholesky error.

The Mahalanobis distance, regardless of the induced distribution, has an expected value

given by the rank of the predictive covariance matrix, m (Goldstein and Woo� 2007). Under

the Gaussian approximation, case (i), the approximated distribution of the Mahalanobis
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Figure 7.10: Validation diagnostics for the toy example 7.1 (b), using 100 training data
points and 50 validation data points, based on the individual errors: (a) DI(z(v)) against
the predictive mean; (b) DI(z(v)) against the validation inputs.

distance is a chi-squared distribution with m degrees of freedom. For case (ii) the distribution

is numerically approximated.

We use example 7.1 to illustrate both methods for deriving the predictive distribution of

ξ(X(v)) .

Toy example using the Gaussian approximation

In example 7.1 (a) and (b), the predictive distribution is approximated by a Gaussian dis-

tribution, as described previously in case (i). A sample of the unknown parameters (θ,Ψ) is

obtained using Nagy et al.'s approach.

Example 7.1 (a). The same 15 training data and 50 validation data points used for

the plug-in method are used here. The estimated process using Nagy et al.'s method is

presented in Figure 7.4 (a). The predictive distribution for the real process at the validation

inputs is approximated by a Gaussian distribution. Figure 7.12 (a) presents the individual

errors against the predictive mean. The variability of the errors is very small suggesting

undercon�dence. Figure 7.12 (b) presents the individual errors versus the inputs which also

undercon�dence.
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Figure 7.11: Validation diagnostics for the toy example 7.1 (a), using 100 training data
points and 50 validation data points, based on the pivoted Cholesky errors: (a) DPC(z(v))
against the pivoting order; (b) QQ plot of DPC(z(v)) .

The pivoted Cholesky errors (7.25) are shown in Figure 7.13 (a). It can be seen that

the variability of the errors is small indicating undercon�dence. The Mahalanobis distance

(7.24) con�rms this, with DMD(z(v)) = 3.6933 , where under the Gaussian approximation,

the expected value for the Mahalanobis distance should be 50, with approximate 95% cred-

ible interval given by (32.36, 71.42). Figure 7.13 (b) presents the Quantile-Quantile plot

that emphasizes that the error variability is small. In summary, all diagnostics are indicat-

ing undercon�dence. We suggest increasing the size of the training dataset to reduce the

uncertainty in the unknown parameters.

Comparing the prediction using the plug-in method with those using the Nagy et al.'s

method, we notice the predictions are very similar. This can be done visually comparing

Figure 7.2 (a) with Figure 7.4 (a), and numerically the Mahalanobis distance using the same

validation data are respectively 3.7317 and 3.6933.

Example 7.1 (b). The same 100 training data and 50 validation data points used on the

plug-in method are used here. The estimated process using Nagy et al.'s method is presented

in Figure 7.4 (a). Figure 7.14 (a) presents the individual errors against the predictive mean.

The variability of the errors is small suggesting undercon�dence. Figure 7.14 (b) presents

the individual errors versus the inputs which also undercon�dence.
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Figure 7.12: Validation diagnostics for the Gaussian approximation of the toy example 7.1
(a) using 15 training data, 50 validation data and (θ,Ψ) sampled via Nagy et al.'s approach:
Individual errors (a) against the predictive mean; (b) against the validation inputs.

The Mahalanobis distance is DMD(z(v)) = 11.9662 , where the expected value is 50, and

the numerical approximation of the 95% credible interval is (27.1929, 89.6213) suggesting

undercon�dence. The pivoted Cholesky errors (7.25) are shown in Figure 7.15 (a). It can be

seen that the variability of the errors is small indicating undercon�dence. Figure 7.15 (b)

presents the Quantile-Quantile plot that emphasizes that the error variability is small. In

summary, all diagnostics are indicating undercon�dence. We suggest increasing the size of

the training dataset to reduce the uncertainty in the unknown parameters.

In order to tackle the undercon�dence problem, a new training data was created adding the

validation data and some new observation at 30 randomly selected inputs from the original

training data. Hence, the new training data contains 180 observations. A new validation

dataset with 50 observations was selected.

Figure 7.16 (a) presents the individual errors against the predictive mean. The vari-

ability of the errors is small suggesting undercon�dence. Figure 7.16 (b) presents the in-

dividual errors versus the inputs which also undercon�dence. The Mahalanobis distance

is DMD(z(v)) = 24.9740 , which is small considering that the expected value is 50, and its

numerical approximation for the 95% credible interval is (28.5281, 74.3808) suggesting un-

dercon�dence. The pivoted Cholesky errors (7.25) are shown in Figure 7.16 (c). It can be

seen that the variability of the errors is small indicating undercon�dence.
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Figure 7.13: Validation diagnostics for the Gaussian approximation of the toy example 7.1
(a) using 15 training data, 50 validation data and (θ,Ψ) sampled via Nagy et al.'s approach
based on the pivoted Cholesky errors: (a) DPC(z(v)) against the pivoting order; (b) QQ plot
of DPC(z(v)) .

After we increased the training data, all diagnostics are still indicating undercon�dence.

However, we can notice an improvement on the diagnostics towards validating the model for

example 7.1 since the variability of the errors is larger when the training data was increased.

Toy example using composition sampling

For examples 7.1 (a) and (b), the same training and validation data used to illustrate the

Gaussian approximation are used here to illustrate the composition sampling. Predictions

for the real process are numerically obtained using the composition method and samples

from the posterior distribution of the unknown parameters (θ,Ψ) are obtained using Nagy

et al.'s approach.

Example 7.1 (a). The diagnostics presented in Figure 7.17 suggests undercon�dence.

The individual errors are presented on Figures 7.17 (a) and (b), we notice a large variability

for the errors suggesting undercon�dence. Figure 7.17 (c) shows the pivoted Cholesky errors

versus the pivoting order. It con�rms that the predictive model has large uncertainty. The

intervals for pivoted Cholesky errors were made by �xing the pivoting order of for the pre-

dictions of the validation data, otherwise, for each prediction sampled using the composition
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Figure 7.14: Validation diagnostics for the Gaussian approximation of the toy example 7.1
(b) using 100 training data, 50 validation data and (θ,Ψ) sampled via Nagy et al.'s approach:
Individual errors (a) against the predictive mean; (b) against the validation inputs.

method a new pivoting order could be generated.

Comparing the diagnostics using the Gaussian approximation with the diagnostics when

the composition sampling is used, we notice that the intervals using the composition sampling

are smaller for this example (Figures 7.12, 7.13 (c), and 7.17).

Example 7.1 (b). Graphical diagnostics are presented in Figure 7.18, and the credible

intervals are based on 300 samples of the predictive real process at the validation inputs.

The graphical diagnostics suggest undercon�dence, and for this example the training data

with 180 observation and a new validation dataset are used.

The individual errors are presented in Figures 7.19 (a) and (b), where there are no notice-

able patterns. We observe few observations outside the intervals. The uncorrelated errors

are presented in Figure 7.19 (c) where again there are no noticeable patterns suggesting a

valid model.

We compare the diagnostics of the model built for example 7.1 (b) using the Gaussian

approximation with the model using the composition sampling in Figures 7.16 and 7.19.

We have two di�erent conclusions, the second model is a valid model, while the �rst one is

still an undercon�dent model. This is because for that training data sample the Gaussian

approximation for the predictive distribution of the real process is not a good approximation,
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Figure 7.15: Validation diagnostics for the Gaussian approximation of the toy example 7.1
(b) using 100 training data, 50 validation data and (θ,Ψ) sampled via Nagy et al.'s approach
based on the pivoted Cholesky errors: (a) DPC(z(v)) against the pivoting order; (b) QQ plot
of DPC(z(v)) .

whereas the numerical approximation provided by the composition method leads to a model

that represents better the uncertainty about the real process.

In these examples, we show that graphical diagnostics can be obtained when the unknown

parameters are numerically integrated over their joint posterior distribution. We show some

approximation for the distribution of the diagnostics using the composition sampling method.

These diagnostics can also be applied to the Student-t process emulator when the correlation

lengths are numerically integrated out using a Monte Carlo method.

7.5 Discussion

In this Chapter, we presented the discrepancy function model when the simulator is cheap to

run. We presented some inference methods to predict the real system when our uncertainty

about the discrepancy function can be represented by a Gaussian process. The inference

methods depend on the way we deal with the unknown quantities (θ,Ψ) . We described

the plug-in, the Nagy et al., the Kennedy and O'Hagan, and the MCMC approaches, where

we gave emphasis to the plug-in and the Nagy et al.'s approaches. Some diagnostics for

validating the predictive methods were presented and illustrated for the plug-in and Nagy
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Figure 7.16: Validation diagnostics for the Gaussian approximation of the toy example 7.1 (b)
using 180 training data, 50 validation data and (θ,Ψ) sampled via Nagy et al.'s approach:
(a) DI(z(v)) against the predictive mean; (b) DI(z(v)) against the validation inputs; (c)
pivoted Cholesky errors versus the pivoting order.

et al.'s approaches.

Nagy et al.'s approach depends on the maximum likelihood estimates (MLEs) and an

approximation for the Hessian matrix. For large training data sizes, the di�erence between

the predictions using this approach and using plug-in methods will be very small, because

the approximated distribution for the parameters will be centred on the MLEs with a little

uncertainty. However, when the sample size is small the uncertainty in the parameters will be

larger and Nagy et al.'s approach would be more appropriate for dealing with the uncertainty

in the predictions.

The proposed diagnostics are very useful tools during the modelling procedure. Based

on the results from the diagnostics, we can identify problems such as undercon�dence, over-

con�dence, poor estimation of some unknown parameters. After we identify a problem, the

diagnostics may provide information on where we should collect more data in order to make

the predictive model a better representation of our beliefs about the real system.

The diagnostics proposed to validate discrepancy function models are similar to those

diagnostics proposed to validate Gaussian process emulators (Chapter 4). The innovations

here are the diagnostics for the discrepancy function model when numerical approximations

are used. The induced distribution of the diagnostics is obtained by either analytical or nu-
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Figure 7.17: Validation diagnostics for the toy example 7.1 (a) using the composition sam-
pling to derive the predictive distribution, 15 training data, 50 validation data and (θ,Ψ)
sampled via Nagy et al.'s approach: (a) DI(z(v)) against the predictive mean; (b) DI(z(v))
against the validation inputs; (c) pivoted Cholesky errors versus the pivoting order.

merical approximations. These diagnostics can also be used for validating Gaussian process

emulators when the correlation lengths are numerically integrated out.
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Figure 7.18: Validation diagnostics for the toy example 7.1 (b) using sampling procedures
to derive the predictive distribution using, 100 training data, 50 validation data and (θ,Ψ)
sampled via Nagy et al.'s approach : (a) DI(z(v)) against the predictive mean; (b) DI(z(v))
against the validation inputs; (c) pivoted Cholesky errors versus the pivoting order.
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Figure 7.19: Validation diagnostics for the toy example 7.1 (b) using sampling procedures
to derive the predictive distribution using, 180 training data, 50 validation data and (θ,Ψ)
sampled via Nagy et al.'s approach : (a) DI(z(v)) against the predictive mean; (b) DI(z(v))
against the validation inputs; (c) pivoted Cholesky errors versus the pivoting order.



Chapter 8

Conclusions

8.1 Summary and contributions

The �rst main contribution of this thesis is to provide a detailed diagnostic analysis to

validate scalar output Gaussian process emulators. This is a very important step before

using the emulator as surrogate for the simulator, because a non-valid emulator can result

in wrong conclusions. The second contribution is to present some designs for validation.

Another important contribution of this thesis is to present some statistics that can be used

to compare competing emulators. This is due to the proposed validation diagnostics being

unable to rank di�erent valid emulators. The �nal contribution is to extend the diagnostics

for validating Gaussian process emulators to validate discrepancy function models, where

we presented some diagnostics for validating the discrepancy function model when plug-in

estimates are used and when the unknown parameters are integrated out.

The demand for emulators has been increasing considerably, but there has been very little

research on validating emulators. We presented a set of numerical and graphical diagnostics

to compare the emulator predictions with the simulator outputs at some inputs chosen

for validation purposes. Our proposed diagnostics not only provide information about the

validity of an emulator, but also guide the modeller in �xing problems when the emulator

131



132 CHAPTER 8. CONCLUSIONS

is not valid. One important numerical diagnostic is the Mahalanobis distance, because

it is a single measure that takes into account the correlation structure of the emulator.

Uncorrelated errors are also presented in order to reduce the risk of misinterpretation. The

innovation is the use of the pivoted Cholesky errors, where the pivoting order provides an

extra interpretation that we can associate with the correlation structure. In section 4.3.4,

we presented a set of graphical diagnostics that provide information about the validity of

the emulator.

The design for validation problem is de�ned by choosing the inputs to run the simulator

whose outputs are compared with the emulator predictions. Designs for validation were

discussed in Section 5.3. The innovation is to develop designs where we choose input points

from regions with di�erent uncertainty levels. The proposed designs depend on the availabil-

ity of the training data. If only the training inputs are available, we suggest distance-based

validation designs. When all training data is available, we presented validation designs based

on the emulator uncertainty using the predictive variance matrix.

The numerical and graphical diagnostics presented in Chapter 4 provide information about

the validity of an emulator. However, they do not provide a measure that can be used to

rank competing emulators. In Chapter 6, we discussed some comparison criteria used to rank

competing emulators, where we suggest using Bayes factors. Some alternatives are provided

based on scoring rules, in case the density function is not available, such as emulators derived

using Bayes linear methods or emulators where the correlation lengths were numerically

integrated out.

In Chapter 7, we presented diagnostics for discrepancy function models. We modelled

the discrepancy function as the di�erence between the computer model and the real system,

where we have calibration parameters associated with the simulator and a variance param-

eter associated with observation errors. We have shown that using plug-in methods, the

diagnostics are the same as those proposed in Chapter 4, but when we numerically integrate

the unknown parameters out the diagnostics can be adapted. We proposed, in Section 7.4.2,

a set of diagnostics using a sample of the predictive distribution for the emulator.
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8.2 Future work

In Chapter 4, we provided diagnostics for single-output Gaussian process emulators. However

complex models can have two or more outputs. Hence, a multiple output emulator can be

a more appropriate surrogate of a simulator. The proposed diagnostics for single-output

emulators can still be applied on the multiple output case if the multi-output emulator is a

Student-t process as in Conti and O'Hagan (2007). However, the current diagnostics would

consider the vector of outputs evaluated at one particular validation input as a set of di�erent

simulation runs. For some numerical diagnostics, such as the Mahalanobis distance, this is

not a problem. But for some diagnostics such as the pivoted Cholesky errors, the pivoting

order would not have a one-to-one relationship to the validation data, because there is more

than one output for the same set of inputs. Thus, we should investigate diagnostic tools for

multiple output emulators.

The discrepancy function model is a simpli�ed version of the calibration model proposed

by Kennedy and O'Hagan (2001). In the Kennedy and O'Hagan calibration model, the

uncertainty about the simulator is represented by a Gaussian process. Therefore, we should

have a two-step validation procedure where in the �rst step we validate the emulator, and in

the second step we validate the calibration model. Diagnostics for the Kennedy and O'Hagan

model is an area of future research.

The main results about diagnostics for Gaussian process emulators presented in Chapter

4 are published in Bastos and O'Hagan (2009).
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