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Summary

This thesis investigates the use of a variety of passive frequency selective surfaces

for specular scatter reduction. Motivation from this work stems from the increased

interest in controlling propagation in indoor environments. Influencing the propa-

gation environment using both passive and active structures is of current research

interest due to the increased use of wireless devices inside building structures. This

thesis aims to develop surfaces suitable for installation on corridor walls to work

alongside existing solutions.

An initial literature review of frequency selective surfaces; particularly for use inside

buildings to create smart environments, suggests reducing the propagation down

corridors could be beneficial in decreasing co-channel interference although no solu-

tions have been offered.

Development of the initial comb frequency selective surface (CR-FSS) enabled mea-

surement systems and simulation models to be constructed and compared. Due to

the various limitations of the CR-FSS, design modifications and evolutions are inves-

tigated to overcome issues with poor angular performance, polarisation dependant

performance, and experimental manufacture. The initial challenge was to create

a rotationally symmetrical surface which could reduce specular scatter from addi-

tional angles of incidence in the elevation plane. A pin reflection FSS (PR-FSS) was

created, however investigation of the structure showed that it was ineffectual for TE

polarisation. In a multipath environment this could be an issue which effects per-

formance. Investigation of additional variations of the CR-FSS such as the slanted

comb FSS (SC-FSS) and crenelated CR-FSS complete the analysis.

A validation of a frequency selective comb structures is conducted with in-building

multipath simulations. Statistical plots show that a comb structure can be used to

significantly improve the signal-to-interference ratio (SIR) of co-channel transmitters

at 2.4 GHz by reducing propagation down a corridor.

i



Publications

Excerpts of this work has been disseminated in both journals and conference pro-

ceedings, and are listed below:

Journal

1. C.J. Davenport and J. M. Rigelsford, “Design of comb reflection frequency

selective surface for interference reduction in building corridors,” Electronics

Lett., vol. 49, no. 23, pp. 1478–1479, 2013.

2. C.J. Davenport and J. M. Rigelsford, “Passive pin reflection frequency se-

lective surface for interference reduction in the built environment,” Microwave

and Optical Tech. Lett., vol. 56, no. 6, pp. 1424–1427 , 2014.

3. C.J. Davenport and J. M. Rigelsford, “Novel indoor bi-static measurement

facility for full scattering characterisation of surfaces at oblique incidence,”

Journal of Electromagnetic Waves and Applications, vol. 28, no. 14, pp. 1798–

1806 , 2014.

4. C.J. Davenport and J. M. Rigelsford, “Specular Reflection Reduction us-

ing Periodic Frequency Selective Surfaces,” IEEE Trans. Antennas Propag.,

vol. 62, no. 9, pp. 4518–4527 , 2014.

ii



5. P. Valtr, C.J. Davenport, P. Pechac and J. M. Rigelsford, “A Mode Matching

Technique for Analysis of Scattering by Periodic Comb Surfaces,” IEEE Trans.

Antennas Propag., In Press.

Conference

6. H. Altan, K. Mohammadian, B. Voisin, C. Davenport, J. Rigelsford and

J. Zhang, “Energy and wireless efficiency: Demonstrated through a typical

UK home,” in Proceedings of Zero Energy Mass Custom Home, Florida, USA,

2013.

7. C.J. Davenport, J. M. Rigelsford, J. Zhang, and H. Altan, “Periodic comb

reflection frequency selective surface for interference reduction,” in Proceedings

of Loughborough Antennas and Propagation Conference, Loughborough, 2013,

pp. 615–618.

8. C.J. Davenport and J. M. Rigelsford, “Design of a Pin Reflection Frequency

Selective Surface From a Comb-Based Structure,” in Proceedings of European

Conference on Antennas and Propagation, Den Haag, 2014, pp. 1610–1613.

9. C.J. Davenport and J. M. Rigelsford, “Slanted-comb frequency selective

surfaces for passive reduction in specular scatter,” in Proceedings of Progress

in Electromagnetic Research, Guangzhou, 2014.

10. C.J. Davenport and J. M. Rigelsford, “Slanted-comb Frequency Selective

Surface for Use in Reducing Specular Scatter for TM Polarization,” in Proceed-

ings of Loughborough Antennas and Propagation Conference, Loughborough,

2014, pp. 628–630.

iii



11. C.J. Davenport and J. M. Rigelsford, “In-building propagation control us-

ing passive elements installed in a corridor,” in Proceedings of Progress in

Electromagnetic Research, Prague, 2015, Presented.

Accepted conference abstracts

12. C.J. Davenport and J. M. Rigelsford, “Corrugated Comb Frequency Selec-

tive Surfaces for Control of Wireless Propagation in Buildings,” in Loughbor-

ough Antennas and Propagation Conference, Loughborough, 2015, Accepted.

iv



Acknowledgements

I would firstly like thank my supervisor, Dr Jonathan Rigelsford who was instru-

mental in directing my PhD. I would recommend him as a supervisor to any student

in the future and the daily meetings will be missed.

I would like to thank Dr Hasim Altan and Professor Jie Zhang whom initially su-

pervised me and provided me with great feedback as I was starting out. I would like

to thank the EPSRC E-Futures DTC and British Gas for funding this project.

The whole Communications Group at the University of Sheffield are to be thanked

for making the office a more friendly and lively place to study. Dr Lee Ford and

Professor Richard Langley have both been able to offer me great advice and help on

my project whenever I asked, and I would like to also thank them. I would like to

also thank Jon Davidson, a fellow Sheffield student whom I have known since the

first week of our undergraduate course, as well as all the other students and staff

that helped me throughout my PhD.

A special mention to my best friends that I have known since secondary school.

Tom Cairns, Rick Grammatica, Chris Lincoln, and Brad Rice have always been

great mates.

I would like to thank my parents Kevin and Michelle, and younger siblings Andrew

and Emily, for their support. I would never have achieved so much in life without

any of them.

Finally, my fiancée Kelly has for the past 9 years supported me throughout Uni-

versity and this Thesis would not have got finished without her encouragement and

help!

v



Contents

List of Figures xi

List of Tables xxi

Abbreviations and Symbols xxii

1 Introduction 1

1.1 Wireless friendly buildings . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Energy efficient buildings . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Proposed method of application . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Literature Review 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Periodic corrugated structures . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Smart indoor environments . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Frequency selective surfaces . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 High impedance surfaces . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Absorbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Comb Reflection FSS 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Initial design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Simulation set-up . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Experimental measurement . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Surface manufacture . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Initial simulation and measurement results . . . . . . . . . . . . . . . 36

3.4.1 Comb height . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vi



Contents

3.4.2 Comb thickness . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Effects of changing frequency of signal and period of surface . 40

3.4.4 Oblique incidence angle performance . . . . . . . . . . . . . . 43

3.5 Specular scatter reduction . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5.1 Reduction at θi = 50◦ . . . . . . . . . . . . . . . . . . . . . . 45

3.5.2 Reduction at θi = 60◦ . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Scattering plots of the CR-FSS . . . . . . . . . . . . . . . . . . . . . 50

3.6.1 Simulated scattering plots . . . . . . . . . . . . . . . . . . . . 50

3.6.2 Measured scattering plots . . . . . . . . . . . . . . . . . . . . 53

3.7 CR-FSS at φi = 90◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.8 Frequency domain investigation of grating lobes . . . . . . . . . . . . 56

3.8.1 CR-FSS floquet mode plots . . . . . . . . . . . . . . . . . . . 57

3.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Pin Reflection FSS 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Pin separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Simulations and NRL measurements . . . . . . . . . . . . . . . . . . 66

4.3.1 PR-FSS construction . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Pin height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3.3 Oblique incidence angle performance . . . . . . . . . . . . . . 69

4.4 PR-FSS and CR-FSS comparisons . . . . . . . . . . . . . . . . . . . . 70

4.5 Specular scatter reduction . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.1 Reduction at 50◦ . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5.2 Reduction at 60◦ . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Angular stability across the frequency range . . . . . . . . . . . . . . 73

4.7 Pin surface currents . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.7.1 TM and TE polarisation differences . . . . . . . . . . . . . . . 74

4.7.2 Null in frequency response . . . . . . . . . . . . . . . . . . . . 76

4.8 Simulated scattering plots . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9 Scattering plot of the PR-FSS . . . . . . . . . . . . . . . . . . . . . . 80

4.10 PR-FSS floquet mode plots . . . . . . . . . . . . . . . . . . . . . . . 81

4.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

vii



Contents

5 Slanted-Comb FSS 84

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Simulation set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 Simulation of comb slant angle . . . . . . . . . . . . . . . . . . . . . 86

5.3.1 Frequency response at θi of 50◦ - TM polarisation . . . . . . . 86

5.3.2 Frequency response at θi of 50◦ - TE polarisation . . . . . . . 89

5.3.3 Frequency response at θi of 60◦ - TM polarisation . . . . . . . 92

5.3.4 Variation of slant angle on scattering . . . . . . . . . . . . . . 95

5.3.5 Far-field scattering patterns . . . . . . . . . . . . . . . . . . . 97

5.4 Alternate periodic surface . . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Experimental measurement . . . . . . . . . . . . . . . . . . . . . . . 102

5.5.1 Angular measurements . . . . . . . . . . . . . . . . . . . . . . 103

5.5.2 Measured scattering plots . . . . . . . . . . . . . . . . . . . . 105

5.6 SC-FSS floquet mode plots . . . . . . . . . . . . . . . . . . . . . . . . 108

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6 Crenelated CR-FSS 110

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 Surface design considerations . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 Foam substrate manufacture . . . . . . . . . . . . . . . . . . . 111

6.2.2 Accuracy of simulation models . . . . . . . . . . . . . . . . . . 112

6.3 Experimental prototype and measurement . . . . . . . . . . . . . . . 113

6.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.5 Equal thickness simulations . . . . . . . . . . . . . . . . . . . . . . . 117

6.6 Oblique incidence performance . . . . . . . . . . . . . . . . . . . . . . 118

6.7 Crenelated CR-FSS floquet mode plots . . . . . . . . . . . . . . . . . 121

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7 Validation at 2.4 GHz 124

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2 Frequency band design . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Initial surface design and periodicity results . . . . . . . . . . . . . . 125

7.3.1 Simulation set-up . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.2 Periodicity results . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.4 2.4 GHz surface for TE and TM polarisations . . . . . . . . . . . . . 130

7.4.1 Oblique incidence performance . . . . . . . . . . . . . . . . . . 131

viii



Contents

7.5 Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.6 Full building simulation . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.7 Initial simulation model and results . . . . . . . . . . . . . . . . . . . 136

7.8 Increasing corridor length . . . . . . . . . . . . . . . . . . . . . . . . 140

7.9 Double lining of walls with CR-FSS . . . . . . . . . . . . . . . . . . . 143

7.10 Signal-to-interference ratio plots . . . . . . . . . . . . . . . . . . . . . 146

7.10.1 Averaged E-field plots . . . . . . . . . . . . . . . . . . . . . . 146

7.10.2 SIR plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8 Conclusions 155

8.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.2 Contribution to existing literature . . . . . . . . . . . . . . . . . . . . 157

8.3 Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.3.1 In-situ measurements . . . . . . . . . . . . . . . . . . . . . . . 159

8.3.2 Further indoor simulations . . . . . . . . . . . . . . . . . . . . 159

8.3.3 Active Structures . . . . . . . . . . . . . . . . . . . . . . . . . 159

References 161

A Appendices 172

A.1 A note on mode-matching . . . . . . . . . . . . . . . . . . . . . . . . 172

A.2 Measurement techniques . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.2.2 NRL reflectivity arch . . . . . . . . . . . . . . . . . . . . . . 183

A.2.2.1 Network analyser settings . . . . . . . . . . . . . . . 183

A.2.2.2 Polarisation of the horn antennas . . . . . . . . . . . 185

A.2.2.3 Calibration of the NRL arch . . . . . . . . . . . . . . 186

A.2.3 Bi-static measurement chamber . . . . . . . . . . . . . . . . . 188

A.2.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . 188

A.2.3.2 Hardware construction and configuration . . . . . . . 189

A.2.3.3 Software design . . . . . . . . . . . . . . . . . . . . . 190

A.2.3.4 Applications of the system . . . . . . . . . . . . . . . 191

A.2.3.5 Measurements with no time gating . . . . . . . . . . 192

A.2.3.6 Time gated measurements . . . . . . . . . . . . . . . 196

A.2.3.7 Far-field requirements . . . . . . . . . . . . . . . . . 197

ix



Contents

A.2.4 Potential improvements to the bi-static measurement system . 199

A.3 Other potential calibration techniques . . . . . . . . . . . . . . . . . . 200

A.3.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

x



List of Figures

1.1 Ofcom research on wireless router take-up for those with a broad-

band connection at home [8]. (∗from 2009 based on fixed broadband

connections only. ∗∗prior to 2009 this is total broadband penetration.) 2

1.2 Ofcom research on the number of electrical devices in the home envi-

ronment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 A building coated in metallic insulation such as Celotex could have a

negative impact on expected propagation routes for wireless signals. . 5

1.4 The propagating signal from two co-channel transmitters can cause

interference between each, reducing router performance. . . . . . . . . 7

1.5 A visualisation of the installation of such surfaces in an interior envi-

ronment to reduce effective interference. . . . . . . . . . . . . . . . . 7

1.6 A metallised insulation incorporating the CR-FSS structure. . . . . . 8

1.7 A flow-chart of the work in this thesis. . . . . . . . . . . . . . . . . . 9

2.1 A basic periodic corrugated structure, with period α, height, h, and

thickness, w1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Improvements of the shadow region of buildings using corrugated sur-

faces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 In-situ measurements conducted in [1] considering the use of FSS in

a wall to reduce propagation into an adjacent wall. . . . . . . . . . . 19

2.4 An ideal example of propagation control in [46]. . . . . . . . . . . . . 22

2.5 The transmission response of (a) the pin diode switching and (b) the

varactor diode tuning at normal incidence. . . . . . . . . . . . . . . . 24

2.6 Prototype of the switchable FSS for dual polarised signals [62]. Pin

diodes are located on the (a) front of the FSS, and connected on the

(b) rear. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 High impedance surface structure. . . . . . . . . . . . . . . . . . . . . 26

xi



List of Figures

2.8 High impedance surface structure. . . . . . . . . . . . . . . . . . . . . 27

2.9 Various beam patterns for a range of varactor diode bias voltages. . . 27

2.10 Many resonant layer absorbers are based on the Salisbury screen. . . 28

2.11 Reflectivity characteristics of the tuneable active FSS in [69]. . . . . . 29

3.1 (a) An incoming electromagnetic wave is reflected completely as spec-

ular scatter from a flat PEC metal plate, where θi = θr. The introduc-

tion of periodic elements in (b) results in the specular scatter being

reduced with the remaining energy redirected as backscatter with an-

gle θB. θB can be tuned between 0◦ and 90◦ depending on preferred

specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Comb with dimensions: height, h, thickness, t, and period, α. . . . . 33

3.3 The CR-FSS manufactured for experimental measurements. The

structure is manufactured from aluminium angle screwed onto a ground

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Comb height simulation results for the CR-FSS (α = 16 mm) for TE

and TM polarised signals with θi = 60◦ at f = 12 GHz (λ = 25 mm). 37

3.5 The comb thickness specular scatter graphs for (a) TM polarisation

and (b) TE polarisation for θi = 60◦. A range of pin thickness from

1.6 mm to 14.4 mm are simulated. . . . . . . . . . . . . . . . . . . . . 38

3.6 Scattering results of the PR-FSS (black dashed lines) compared to

the flat PEC surface (red solid line). The PR-FSS shows a reduction

in specular scatter compared to the PEC at θr = 50◦, for TM polari-

sation. There is also a large increase in backscatter for the PR-FSS,

with the angle θB dependant on frequency of the plane wave. . . . . . 40

3.7 The peak backscatter occurs at a frequency defined by the period of

the surface. For case A, θi = 50◦ and α = 20 mm, fB = c
2α sin θi

= 9.8

GHz. Additional results can be seen in the accompanying table. . . . 42

3.8 Relationship between the reduction in specular scatter and angle of

incidence for TM and TE polarisation at f = 12 GHz. The solid lines

represent the measured results, and the dashed the simulation results. 43

3.9 A comparison of the measured and simulation results for TE and TM

polarisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

xii



List of Figures

3.10 Simulated scattering plots of the CR-FSS and flat PEC plate for (a)

TM and (b) TE polarisations at f = 10.8 GHz, (c) TM and (d) TE

polarisations at f = 12 GHz. The specular reflection in each case can

be seen at 50◦, with backscatter peak at 72◦ and 53◦ for 10.8 GHz

and 12 GHz respectivly. . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.11 A three-dimensional scattering pattern from a 600 mm2 comb surface,

at 12 GHz, θi = 50◦. There is no scattering other than that in the φ

= 0◦ plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.12 A comparison of the measured and simulation results for TE and TM

polarisation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.13 Simulated scattering plots of the CR-FSS and flat PEC plate for (a)

TM and (b) TE polarisations at f = 10.8 GHz, (c) TM and (d) TE

polarisations at f = 12 GHz. . . . . . . . . . . . . . . . . . . . . . . . 49

3.14 Simulated full scattering results between 9 and 18 GHz for TM polar-

isation. Illustrated are the (a) flat plate and (b) CR-FSS for θi = 60◦.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.15 Simulated full scattering results between 9 and 18 GHz for TE polar-

isation. Illustrated are the (a) flat plate and (b) CR-FSS for θi = 60◦.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.16 Three-dimensional scattering results between 8 and 18 GHz of (a)

a flat metal plate and (b) the CR-FSS. The transmitted signal has

θi = 48◦ and is TM polarised. . . . . . . . . . . . . . . . . . . . . . . 53

3.17 Three dimensional scattering plot showing the scattering from the

flat metal plate subtracted from the CR-FSS. It reveals the decrease

in specular scatter and the increase in backscatter. . . . . . . . . . . 54

3.18 Defining the φi and θi angles with reference to the CR-FSS. . . . . . 55

3.19 NRL measurements illustrating frequency range response for TM and

TE polarisations at φi = 90◦ and φi = 0◦. For a plane wave with θi

= 60◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.20 Grating lobe diagram for Dx >
λ
2
. . . . . . . . . . . . . . . . . . . . . 57

3.21 S-parameter (dB) results for a range of fin heights for the princi-

ple direction r̂(0, 0) and higher-order propagating mode r̂(−1, 0) for

θi = 50◦, fin period of 16 mm, and thickness of 1.6 mm. . . . . . . . 58

xiii



List of Figures

3.22 S-parameter (dB) results for a range of fin periods for the principle

direction r̂(0, 0) and higher-order propagating mode r̂(−1, 0). for

θi = 50◦, a fin thickness of 1.6 mm and a fin height of 15 mm. . . . . 59

4.1 A cross-sectional view of (a) the CR-FSS first simulated in chapter

3, and (b) the PR-FSS. The dimensions of the CR-FSS and PR-FSS

are period α, pin separation d, thickness t, simulated surface width

W , and height h. The angle of incidence, θi and angle of reflection,

θr are measured with respect to z in the xz plane, and the angle of

rotation, φi in the xy plane is measured with respect to x. . . . . . . 63

4.2 Simulated results showing the relationship between pin separation

and reduction in received forward scatter for TM and TE polarisations

at f = 12 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 The aluminium prototypes of the 39×39 PR-FSS with magnification

of the pin structure in the inset image. . . . . . . . . . . . . . . . . . 66

4.4 Pin height simulation results for the PR-FSS as a function of wave-

length (α = 16 mm and d = 16 mm) for TM polarised signals with

θi = 60◦ at f = 12 GHz. (λ = 25 mm). Only TM polarisation is

considered as the surface is completely ineffective for TE polarised

excitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Relationship between the reduction in specular scatter and angle of

incidence for TM and TE polarisation at f = 12 GHz. . . . . . . . . 69

4.6 A comparison of the measured and simulated results for TE and TM

polarisation for θi = 50◦. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7 A comparison of the measured and simulated results for TE and TM

polarisation for θi = 60◦. . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 The normalised frequency response for a PR-FSS with plane wave

excitation for (a) TM and (b) TE polarised at θi = 60◦, and the

respective surface current distributions for (c) TM and (d) TE polar-

isation at 11 GHz, and (e) TM and (f) TE polarisation at 15 GHz. . . 75

4.9 (a) The nomalised frequency response for a a TM polarised plane

wave with θi = 50◦, and surface currents at (b) 13.2 GHz where the

harmonic occurs, and (c) 14 GHz, where the surface is effective at

reducing specular scatter. . . . . . . . . . . . . . . . . . . . . . . . . 76

xiv



List of Figures

4.10 Simulated full scattering results between 9 and 18 GHz for TM polar-

isation. Illustrated are the (a) flat plate and (b) PR-FSS for θi = 60◦.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.11 Simulated full scattering results between 9 and 18 GHz for TE polar-

isation. Illustrated are the (a) flat plate and (b) PR-FSS for θi = 60◦.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.12 Scattering measurement for a PR-FSS for a TM polarised wave for θi

= 50◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.13 S-parameter (dB) results for a range of pin heights for the princi-

ple direction r̂(0, 0) and higher-order propagating mode r̂(−1, 0) for

θi = 50◦, pin thickness of 1.6 mm and period 16 mm. Results for TE

show that there is little effect on either scattering mode. . . . . . . . 81

4.14 S-parameter (dB) results for a range of pin periods for the princi-

ple direction r̂(0, 0) and higher-order propagating mode r̂(−1, 0) for

θi = 50◦, pin height 15 mm, and thickness 1.6 mm. Results for TE

show that there is little effect on either scattering mode. . . . . . . . 82

5.1 A slanted comb frequency selective surface (SC-FSS), with slant an-

gle, θslant measured from the normal. The fin period, α, height, hs

and thickness, t are labelled. Also shown is the propagating wave,

with angle of incidence, θi and propagation direction, r. . . . . . . . 85

5.2 Normalised reduction in specular scatter for a slanted FSS with θslant = 20◦

to 0◦ for θi = 50◦ and TM polarisation. . . . . . . . . . . . . . . . . . 87

5.3 Normalised reduction in specular scatter for a slanted FSS with θslant = 45◦

to 25◦ for θi = 50◦ and TM polarisation. . . . . . . . . . . . . . . . . 87

5.4 Normalised reduction in specular scatter for a slanted FSS with θslant = 70◦

to 50◦ for θi = 50◦ and TM polarisation. . . . . . . . . . . . . . . . . 88

5.5 Normalised reduction in specular scatter for a slanted FSS with θslant = 90◦

to 75◦ for θi = 50◦ and TM polarisation. . . . . . . . . . . . . . . . . 88

5.6 Normalised reduction in specular scatter for a slanted FSS with θslant = 20◦

to 0◦ for θi = 50◦ and TE polarisation. . . . . . . . . . . . . . . . . . 90

5.7 Normalised reduction in specular scatter for a slanted FSS with θslant = 45◦

to 25◦ for θi = 50◦ and TE polarisation. . . . . . . . . . . . . . . . . 90

5.8 Normalised reduction in specular scatter for a slanted FSS with θslant = 70◦

to 50◦ for θi = 50◦ and TE polarisation. . . . . . . . . . . . . . . . . 91

xv



List of Figures

5.9 Normalised reduction in specular scatter for a slanted FSS with θslant = 90◦

to 75◦ for θi = 50◦ and TE polarisation. . . . . . . . . . . . . . . . . 91

5.10 Normalised reduction in specular scatter for a slanted FSS with θslant = 20◦

to 0◦ for θi = 60◦ and TM polarisation. . . . . . . . . . . . . . . . . . 93

5.11 Normalised reduction in specular scatter for a slanted FSS with θslant = 45◦

to 25◦ for θi = 60◦ and TM polarisation. . . . . . . . . . . . . . . . . 93

5.12 Normalised reduction in specular scatter for a slanted FSS with θslant = 70◦

to 50◦ for θi = 60◦ and TM polarisation. . . . . . . . . . . . . . . . . 94

5.13 Normalised reduction in specular scatter for a slanted FSS with θslant = 90◦

to 75◦ for θi = 60◦ and TM polarisation. . . . . . . . . . . . . . . . . 94

5.14 The effects of slant angle on scattering performance, finding the op-

timum slant angle for frequencies of (a) 15 GHz and (b) 16 GHz. . . . 96

5.15 Simulated frequency plot for a 55◦ slanted FSS, for θi = 50◦. . . . . . 97

5.16 Simulated far-field scattering patterns for a 55◦ slanted FSS, for θi = 50◦

and TM polarisation at various frequencies. . . . . . . . . . . . . . . 98

5.17 Asymmetrical combs can introduce significant changes into scattering

patterns and frequency responses. The fins highlighted with a bold

outline have been moved at a separate slant angle to the others. . . . 99

5.18 Frequency versus scattering angle plots and graphs showing specular

and backscatter frequency ranges for and SC-FSS with (a and b)

θslant = 50◦, and asymmetrical SC-FSS with (c and d) 50◦ and 40◦

and (e and f) 50◦ and 0◦. . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.19 Experimental brass surface used for testing and validation of simula-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.20 Experimental brass surface used for testing and validation of simula-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.21 Measured frequency response of the SC-FSS with θslant = 50◦ for a

range of angles of incidence for (a) TE and (b) TM polarisation. . . . 104

5.22 Measured scattering plots for TE polarisation. . . . . . . . . . . . . . 106

5.23 Measured scattering plots for TM polarisation. . . . . . . . . . . . . . 107

5.24 S-parameter (dB) results for a range of slant angles for the princi-

ple direction r̂(0, 0) and higher-order propagating mode r̂(−1, 0) for

θi = 50◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xvi



List of Figures

6.1 The crenelations in the foam are strengthened using sloped edges,

with angle θc. The periodic elements have top width, w1, bottom

width, w2 and height, h. The surfaces are illuminated with a plane

wave with direction of propagation, r and angle of incidence of θi.

The foam substrate is then lined with the metallic foil to produce the

frequency selective surface. . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 One of the foam prototypes, milled from foam with a foil reflective

surface. In this case θc = 20◦ is shown. The foil is secured to the

foam substrate using conductive tape. . . . . . . . . . . . . . . . . . 111

6.3 Measurements for corrugated surface with θc = 0◦, 10◦, 20◦ and 30◦

for TE and TM polarisation, with θi = 50◦. . . . . . . . . . . . . . . 114

6.4 Simulations for corrugated surface with θc = 0◦, 10◦, 20◦ and 30◦ for

TE and TM polarisation, with θi = 50◦. . . . . . . . . . . . . . . . . 116

6.5 The frequency response of the crenelated surface structures for a fixed

thickness for TE and TM polarisation. . . . . . . . . . . . . . . . . . 117

6.6 The frequency response of the crenelated surface structures with θc = 10◦

for varying angles of incidence, and (a) TE and (b) TM polarisation. 119

6.7 The frequency response of the crenelated surface structures with θc = 20◦

for varying angles of incidence, and (a) TE and (b) TM polarisation. 120

6.8 S-parameter (dB) results for a range of crenelation angles for the

principle direction r̂(0, 0) and higher-order propagating mode r̂(−1, 0)

for θi = 50◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.1 The surface constructed in CST had a height, h of 80 mm, a thickness

of 4 mm, and varying surface periodicities, α. . . . . . . . . . . . . . 126

7.2 Simulation results of a 2.4 GHz surface for varying surface periodici-

ties at θi = 50◦ for (a) TE and (b) TM polarisation. The ISM band

is highlighted in (c) and (d) for TE and TM polarisation respectively. 128

7.3 Simulation results of a 2.4 GHz surface for varying surface heights at

θi = 50◦ for (a) TE and (b) TM polarisation. The period is constant

at 80 mm. The ISM band is highlighted in (c) and (d) for TE and

TM polarisation respectively. . . . . . . . . . . . . . . . . . . . . . . 129

7.4 The frequency response of a CR-FSS when compared to a flat plate,

optimised for working at 2.4 GHz. . . . . . . . . . . . . . . . . . . . . 130

xvii



List of Figures

7.5 Simulation results of a 2.4 GHz surface for varying angles of inci-

dence. The ISM band is highlighted in (c) and (d) for TE and TM

polarisation respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.6 Scattering simulation results of a 2.4 GHz surface at 50◦ for (a) TE

and (b) TM polarisation. . . . . . . . . . . . . . . . . . . . . . . . . 133

7.7 Scenario 1: the CR-FSS was installed on only one corridor wall. The

transmitter is located arbitrarily in the right hand room. . . . . . . . 136

7.8 Full building simulations at 2.4 GHz, with (a) flat metallic walls and

(b) walls with CR-FSS installed. There are CDF plots of the prop-

agation comparing the E-fields in (c) the receiver room and (d) the

transmitter room. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.9 Full building simulations at 1.5 GHz, with (a) flat metallic walls and

(b) walls with CR-FSS installed. There are CDF plots of the prop-

agation comparing the E-fields in (c) the receiver room and (d) the

transmitter room. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.10 Scenario 2: the use of a larger corridor to analyse the potential in-

crease in performance when using the CR-FSS. . . . . . . . . . . . . . 140

7.11 Full building simulations at 2.4 GHz, with a corridor length of 5.5 me-

ters, with (a) flat metallic walls and (b) walls with CR-FSS installed.

There are CDF plots of the propagation comparing the E-fields in (c)

the receiver room and (d) the transmitter room. . . . . . . . . . . . . 141

7.12 Full building simulations at 1.5 GHz, with a corridor length of 5.5 me-

ters, with (a) flat metallic walls and (b) walls with CR-FSS installed.

There are CDF plots of the propagation comparing the E-fields in (c)

the receiver room and (d) the transmitter room. . . . . . . . . . . . . 142

7.13 An additional comb surface on the other corridor wall could poten-

tially increase the reduction in scattering down the corridor, further

increasing the SIR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.14 Full building simulations at 2.4 GHz, with a corridor length of 5.5

meters, with (a) flat metallic walls and (b) walls with two CR-FSS

installed. There are CDF plots of the propagation comparing the

E-fields in (c) the receiver room and (d) the transmitter room. . . . . 144

xviii



List of Figures

7.15 Full building simulations at 1.5 GHz, with a corridor length of 5.5

meters, with (a) flat metallic walls and (b) walls with two CR-FSS

installed. There are CDF plots of the propagation comparing the

E-fields in (c) the receiver room and (d) the transmitter room. . . . . 145

7.16 E-field plots for a dipole transmitting at 1.5 GHz, with each cell

averaged using 100 values over 100 square cm. . . . . . . . . . . . . 147

7.17 E-field plots for a dipole transmitting at 2.4 GHz, with each cell

averaged using 100 values over 100 square cm. . . . . . . . . . . . . . 148

7.18 Creating a secondary plot for the calculation of SIR. This plot is the

mirrored version of Fig. 7.17b. . . . . . . . . . . . . . . . . . . . . . 149

7.19 Plots showing the highest E-field level available from either transmit-

ter at 2.4 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.20 Signal-to-interference plots for the respective in-building simulations

at 2.4 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.21 Signal-to-interference plots for the respective in-building simulations

at 1.5 GHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.1 (a)The bi-static NRL reflectivity arch used to measure the frequency

range of both the CR-FSS and PR-FSS prototypes, (b) a schematic

view of the measurement system. The sample is 600 mm2. . . . . . . 183

A.2 The Agilent 8720D vector network analyser (VNA) used in both the

NRL reflectivity arch and the bi-static measurement chamber. . . . . 184

A.3 TE and TM polarisations with respect to direction of propagation, r . 185

A.4 The time domain response of the empty room and flat plate shows

where respective time gates should be positioned. . . . . . . . . . . . 186

A.5 The (a) time domain and (b) frequency domain response for a flat

PEC plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.6 The bi-static measurement system includes a receiver mounted on a

rotating arm capable of rotating accurately over a 360◦ range. The

angle of rotation is controlled by a pre-programmed servo motor. . . 188

A.7 Top-down view of the bi-static RCS measurement system described

in this paper. For many applications, only the reflection from the

front of the surface-under-test (SUT) is of interest. . . . . . . . . . . 189

A.8 The graphical user interface (GUI) for the rotating bi-static measure-

ment system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

xix



List of Figures

A.9 The bi-static measurement system is programmed to start at a re-

ceiver angle of 0◦. (a) The start position can be changed to suit the

position of the transmitter, and the SUT. (b) A full circular mea-

surement is completed at the users predefined resolution, and (c) the

receiver returns to the rest position,ready for the next measurement. . 193

A.10 Scattering plots of an empty chamber for (a) TM and (b) TE polari-

sation, for a receiver range of 0◦ to 360◦. . . . . . . . . . . . . . . . . 194

A.11 Measurement of (a) a flat plate and (b) a CR-FSS structure prior to

time gating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.12 The measured response of a flat plate in the time domain, showing

regions of receiver-transmitter coupling, and specular scatter between

120◦ and 170◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A.13 Time domain response for θRx = 100◦, 140◦, and 180◦. The main

specular scatter peak occurs at 27.8 ns. The other visible peaks are

due to coupling between the antenna and receiver. . . . . . . . . . . . 197

A.14 The transmitting horn in the bi-static measurement system. . . . . . 199

xx



List of Tables

3.1 Example design parameters based on frequency and angle of incidence

of a surface using Equation 3.1. . . . . . . . . . . . . . . . . . . . . . 33

3.2 CR-FSS plate dimensions. . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 The reduction in fin material when using a pin structure of thickness

t = 1.6 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Simulated 3 dB and 6 dB bandwidths for the CR-FSS for TE and

TM polarized signals and the PR-FSS for the TM polarization; for

a range of angles of incidence. The 3 dB start and stop frequencies

are also listed. The numbers listed in brackets refer to a second 3 dB

frequency range, beginning and ending at the described frequencies. . 71

7.1 Resonant frequency for both TE and TM polarisation of the CR-FSS

at varying periods, with height = 80 mm, and thickness = 4 mm. . . 127

A.1 VNA parameters and relevant measurement distances for the NRL

reflectivity arch. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.2 Summary of the parameters used to programme the VNA and servo-

motor controls, and relevant measurement distances for the bi-static

measurement system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

xxi



Abbreviations and Symbols

Abbreviations and acronyms

BPSK binary phase shift keying
CDF cumulative distribution function
CR-FSS comb reflection frequency selective surface
CST MWS Computer Simulation Technology - Microwave Studio
DTV digital television
FIT finite integral technique
FSS frequency selective surface
GPIB general purpose interface bus
GSM Global System for Mobile Communications
GUI graphical user interface
HIS high impedance surface
ILS industrial landing system
ISM industrial, scientific and medical
ITU-R International Telecommunication Union Radiocommunication
LOS line-of-sight
MVDS multipoint video distribution system
NaN not a number
N-LOS non-line-of-sight
NRL Naval Research Laboratories
OFDM orthogonal frequency-division multiplexing
RAM radar absorbing material
RF radio frequency
Rx receiver
PEC perfect electrical conductor
PR-FSS pin reflection frequency selective surface
QAM quadrature amplitude modulation
QPSK quadrature phase shift keying
RCS radar cross section
SC-FSS slanted comb frequency selective surface

xxii



List of Tables

SINR signal-to-interference-plus-noise ratio
SIR signal-to-interference ratio
SUT surface under test
TE transverse electric
TETRA terrestrial trunked radio
TM transverse magnetic
Tx transmitter
USB universal serial bus
VOD video on demand
VNA vector network analyser
WiFEEB Wireless Friendly Energy Efficient Buildings
Wi-Fi wireless fidelity
WLAN wireless local area network

Symbols and units

Symbols

α = period of FSS in mm

θc = crenelation angle

θi = angle of incidence in azimuth plane

θr = reflection angle

θs = scattering angle

θslant = slant angle of the SC-FSS

θslant(2) = secondary slant angle of the SC-FSS

λ = wavelength

φi = angle of incidence in the elevation plane

ωo = resonant frequency

fB = frequency of direct backscatter

h = Fin or pin height in mm

hA = height of flat absorber in mm

hc = height of fin in mm hs = length of slanted comb in mm

R1 = transmitter to SUT distance

R2 = SUT to receiver distance

t = thickness of fin or pin in mm

w1 = top crenelation thickness

w2 = bottom crenelation thickness

xxiii



List of Tables

Units

◦ = degree

dB = decibel

dBm = decibel-milliwatts

GHz = gigahertz

MHz = megahertz

ns = nanosecond

xxiv



Chapter 1

Introduction

The control of wireless propagation in buildings has recently been of interest, how-

ever various issues still exist. This thesis presents an alternate solution to control-

ling wireless propagation in an indoor environment. The surfaces proposed in this

work are ideally used simultaneously with other solutions within the field of indoor

electromagnetic propagation. They aim to provide a low-cost method of prevent-

ing interference between co-channel transmitters by electromagnetically separating

rooms by reducing propagation down building corridors.

This problem has been described as an issue by researchers, and could reduce the

performance of other solutions in many scenarios. Previous research has described

the use of frequency selective surfaces installed as either a wallpaper [1], or as a

small window installed on an otherwise metallic (and thus reflective to all electro-

magnetic signals) wall. In some cases, the installation of such surfaces is expensive

and requires redesign of buildings or installation of new walls to function suitably

well. It is thus the overall purpose of this study to investigate inexpensive solutions

that can be easily incorporated into the building structure.

Consideration is also given to the influence of energy efficient design and construction

methods used. The use of thick and metallic building materials and insulation can

significantly alter the propagation environment, and these are considered in the

review of literature, and the design of surfaces and propagation scenarios.
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Chapter 1: Introduction

1.1 Wireless friendly buildings

In most cases, a brute force method of ensuring good wireless connectivity within

buildings is to use many transmitting nodes to provide sufficiently high strength

connections. However, there are many issues associated with deployment of many

nodes, such as high levels of interference [2], the added cost of multiple transmit-

ters, and issues with installation of nodes. Interference is often caused by co-channel

transmissions – signals broadcasting at the same frequency which interfere with each

other, reducing the signal-to-interference-plus-noise ratio (SINR). At 2.4 GHz, this

interference can be difficult to counteract as there is only 3 non-overlapping chan-

nels [3].
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Figure 1.1: Ofcom research on wireless router take-up for those with a broadband

connection at home [8]. (∗from 2009 based on fixed broadband connections only.
∗∗prior to 2009 this is total broadband penetration.)

Several alternatives are currently available, each with their own advantages. By

switching to 5 GHz, the user is presented with 23 non-overlapping channels [4],

meaning that co-channel interference is unlikely to be an issue, particularly as Wi-

Fi nodes are increasingly dual band and intelligent enough to switch to a less noisy

channel [5]. Currently, two dual band router types exist for public use. The first

is a simultaneous dual band router, offering twice the bandwidth of a single band

router by operating at both 2.4 and 5 GHz. Secondly, a selectable dual band router

allows the user to switch between either frequency and offers the same bandwidth
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as a single band router. There are however disadvantages to using 5 GHz routers.

Currently, very few devices actually have 5 GHz receivers and transmission through

building walls decreases as the frequency of signal increases retrospectively short-

ening range [6]. However, the scattering of signals around corners and through

doorways from edge diffractions is better at these higher frequencies.

High capacity wireless connectivity is increasingly an issue in the modern world,

particularly as the large majority of IP traffic is due to video content. Cisco re-

port that by 2018, IP video traffic will constitute 79% of all traffic, up from 66%

in 2013 [7]. This means the requirement for high throughput and low interference

wireless connections is essential due to the large quantity of data that must be

transmitted. There has also been a distinguishable increase in consumer electronics

within the last decade. Consequently, the number of devices requiring access to a

high data rate wireless internet connection is increasing. Since 2007, the percentage

of homes using a wireless router for connection to broadband has risen from 34%

to 89% at the start of 2013 [8]. This year-on-year growth is illustrated in Fig. 1.1.

Explanations for this uptake of wireless routers include an increase in the number of

devices requiring wireless connectivity, and the low cost and ease of obtaining wire-

less routers when signing up to broadband contracts. Similarly for larger buildings,

the reliability and coverage of a high throughput connection can be extremely useful.
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There has also been a 20% increase in the use of fixed broadband in homes since

2007, with the figure at 72% for 2013. Furthermore, there has been a large increase

in the number of electronic devices in the home requiring internet connectivity. 59%

of households in the UK have at least 3 devices at home and these are most likely to

be a laptop, smart phone, and a games console [8]. Other devices requiring broad-

band connection include desktop PCs, VOD boxes (such as BT, Virgin Media and

Sky+), tablets, and smart televisions.

Due to the fact that these often share the same router and require high data rates

for streaming videos and games, a high capacity wireless connection is required.

This can be said of any scenario where there are a lot of end devices requiring high

data rates. We can also consider that 44.1% of homes also have 4 or more electronic

devices. This means that many routers are in close proximity to each other, partic-

ularly in semi-detached or terraced houses, where the transmitting ranges overlap.

This problem also exists in buildings with much larger permanent and migrating

populations, such as lecture theatres, restaurants, and places of work. Many of the

devices requiring wireless internet connectivity are portable: electronic tablets, lap-

tops, and mobile phones are all often used outside of the home environment. Such

devices are also increasingly being used for both teaching and recreational purposes,

requiring many high throughput wireless connections.

1.2 Energy efficient buildings

The building structure itself is integral to the design and application of any frequency

selective surface (FSS) to be installed to control the propagation in buildings. Var-

ious building design regulations and favourable building techniques are described

later in this thesis. Measurement of both thermal and electrical properties of vari-

ous building material compositions will further the current knowledge in the subject

area.

Government policies are the main driver for energy efficient developments [9] and

according to a consultation on policy options report by Communities and Local Gov-

ernment [10], 17% of all UK emissions are from non-domestic buildings and 27% are

from domestic dwellings. This has led to a large increase in interest into energy effi-

ciency improvements to new buildings, and retrofitting older ones. Further interest
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in new building materials and methods will increase considering new build dwellings

and schools must be zero carbon by 2016 [11], and new build non-domestic buildings

by 2019 [10].

Often, the techniques and methods used cause issue with the propagation of wireless

signals, effecting connectivity and throughput of many services. For example, the use

of metallic insulation in both small and large buildings has the potential to disrupt

expected signal paths, including outdoor-to-indoor and in-building propagation. An

example of such a structure is shown in Fig. 1.3, where all of the walls are coated with

metallic insulation. However, there are still potential routes of propagation through

window and door structures. These are traditionally seen as ideal transmission

medium for signals as glass is reasonably good at allowing the transmission of high

frequency signals. However, some additional building standards are leading to more

potential issues.

Figure 1.3: A building coated in metallic insulation such as Celotex could have a

negative impact on expected propagation routes for wireless signals.

The Passivhaus standard demands some of the highest energy efficiency and instal-

lation methods currently in use in the building sector. Once a structure is built

to such a high level of performance, it is assessed against various criteria based

on heating and cooling demand, air tightness and primary energy demand. These

figures are much lower than other high efficiency standards, requiring the most ad-

vanced technologies in order to fulfil them. The Passivhaus standard in the UK
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utilises thick insulation and triple pane double low-e glazed windows. As well as

being triple glazed, the low emissivity glass is coated with a thin metallic layer to

increase performance. Inevitably, this can effect outdoor-to-indoor signal level. The

Passivhaus standard is not restricted to residential housing as non-domestic build-

ings can also be awarded such accolades for energy efficiency.

Metallized insulations are often used in the deployment of frequency selective sur-

faces to ensure adequate performance. Additionally, advances in some sectors drive

the research and development in others and the wireless propagation sector has

profited already with various research and cross-departmental collaboration projects

such as the Wireless Friendly and Energy Efficient Buildings (WiFEEB) project at

the University of Sheffield. There has been recent discussion related to the wire-

less friendliness of a building [12], however the WiFEEB project has several objec-

tives related to an energy efficient building as well as its potential to be wireless

friendly [13].

1.3 Proposed method of application

As described previously, the CR-FSS surface is ideal for use in long corridors, where

any propagating signal is likely to reflect multiple times. An example of the neces-

sary arrangement is shown in Fig. 1.4. The scenario shown displays two co-channel

Wi-Fi transmitters, which are interfering with each other due to the propagation

down the corridor.

The effect of building materials on cross-polarisation will be considered in the lit-

erature review, and will drive the investigation for a structure that works well for

both TE and TM polarisations. In this case, the transmission frequency is arbitrary,

however in the validation chapter later in the Thesis, they are Wi-Fi transmitters

operating at 2.4 GHz. In the case of only two transmitters, the problem of inter-

ference would be reduced by switching channels. However, in large buildings where

there are many transmitters, finding a clear channel is difficult, especially at 2.4 GHz

where there are limited non-overlapping channels. The introduction of the CR-FSS

into the corridor wall structure in Fig. 1.5 would have the effect of reducing specular

scatters, redirecting this either back towards the transmitter or another pre-defined

direction.
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/

Figure 1.4: The propagating signal from two co-channel transmitters can cause

interference between each, reducing router performance.

Figure 1.5: A visualisation of the installation of such surfaces in an interior envi-

ronment to reduce effective interference.

For mass production of the surface, the CR-FSS would be integrated into metallic

insulation, providing the same energy efficiency performance whilst acting as an

FSS. Surfaces made from foam and metal foils are investigated in chapter 6. A

potential design of the surface is shown in Fig. 1.6, whereby the CR-FSS structure

is supported by a foam substrate either side. An additional foil layer is applied to

the underside for additional energy efficiency and for stability of the structure.
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CR-FSS foil

Additional foil

Foam substrate

Figure 1.6: A metallised insulation incorporating the CR-FSS structure.

8



Chapter 1: Introduction

1.4 Thesis structure

The thesis is structured as shown in Fig. 1.7, with chapter headings providing a

brief overview of the content.

Figure 1.7: A flow-chart of the work in this thesis.
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The thesis begins with Chapter 1, where a general introduction to this research

area is given with specific points about the cross-over between energy efficiency and

wireless propagation in buildings.

Following this, a detailed literature review of many of the state of the art in fre-

quency selective surfaces (FSS) - both passive and active - is conducted in Chapter

2. The limitations of many of these surfaces is discussed and standards of compari-

son for the development of our surfaces are set.

Chapter 3 offers a detailed explanation of the comb reflection FSS (CR-FSS), with

thorough analysis of a variety of structure parameters, such as fin height, period,

and thickness. Performance at oblique incidence is investigated for comparison with

similar structures already in literature. Various limitations of this surface lead onto

the design of a different passive structure described in the next chapter.

Chapter 4 offers an in-depth analysis of a pin reflection FSS (PR-FSS), developed to

try and overcome the limitations of the CR-FSS. Problems with polarisation of the

incident wave are discussed, and the advantages of this surface are also considered

compared to the CR-FSS.

Slanted comb FSS (SC-FSS) offer an alternate method of developing the basic comb

structure discussed in Chapter 3. The use of such a structure can reduce its ef-

fective height, negating the need for large wall cavities for installation in buildings

particularly at lower frequencies such as 2.4 GHz. Simulations and measurements

once again show the characteristics of the surface for both TM and TE polarisation.

Furthermore, alternately slanted structures and their performance are investigated

for completion.

Chapter 6 concludes the development of the surface structures, investigating crenelated

CR-FSS structures. These have been designed to add possible additional mechanical

strength to the foam structures which were initially investigated for use with the

CR-FSS structures for final implementation. Upon initial fabrication of the foam

structures, it was found that the comb structure was fragile and could easily bend

or break off. Also coating of foil onto the surface was found to be more difficult

around the CR-FSS foam substrate. By forming a crenelated shape, the stability of
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the surface structure is increased and foiling accuracy is increased.

Validation at 2.4 GHz of the CR-FSS was completed in chapter 7. This involved

designing a surface that offered adequate reduction in specular scatter at 2.4 GHz

for both TE and TM polarisation, requiring optimisation of thickness, height, and

period parameters. Following this, a variety of in-building simulation models are

conducted on CST. Analysis of the electric field plots show that the CR-FSS can of-

fer a frequency selective response, reducing the potential for co-channel interference.

Finally, the thesis is concluded in chapter 8 with the novelties summarised, contri-

butions to existing literature, limitations, and potential for further work discussed.

A relevent paper on mode-matching techniques is attached in appendix A.1 as it

was co-authored by the Thesis author and is of relevence to work studied in this PhD.

Addiotnally, the measurement techniques and experimental systems are then dis-

cussed in appendix A.2, with summaries of both the NRL reflectivity arch and the

bi-static scattering measurement system which was developed as part of this project.

Software and hardware specifications are given for ease of repeatability and replica-

tion of our results. These methods of measurement are used in the analysis of the

surfaces designed in chapters 3 to 6.
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Literature Review

This Chapter provides a detailed review of the important literature in the field of in-

door wireless propagation, frequency selective surfaces, periodic structures and other

related research within the area of electromagnetic propagation.

2.1 Introduction

Existing literature published as journal articles and conference proceedings offers

a variety of different viewpoints regarding electromagnetic propagation and surface

designed to control and change any transmission or reflection response. Moreover,

the literature can be used as a benchmark for measurement systems, design, and

simulation modelling in this work.

The review of literature in this section will cover a range of topics surrounding the use

of structures and surfaces for in-building propagation control. The work currently

published in this field offers several solutions of controlling and isolating wireless

signals in a building, and they are discussed in this chapter. Relevant previously

published material can be categorised into:

• Periodic structures - The work contained in this thesis is based signifi-

cantly on the work and ideas covered in this set of literature, particularly that

surrounding the design of the surfaces.

• Smart indoor environments - Considered to be a building which has inte-

grated control over the propagation of RF signals, whether transmitted from

inside or outside the building .
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• Frequency selective surfaces - Explanation of the common surfaces and

structures used to enable the filtering of electromagnetic signals, depending

on the frequency of transmission.

• High impedance surfaces - Consideration of surfaces which have a different

set of properties compared to the periodic structures used in this thesis.

• Absorbers - An alternative solution to the reflection of signals in a different

direction. A traditional topic in the area of wireless communications and RF

propagation, this section covers a multitude of different surfaces and common

research.

• Materials characterisation - A review of the electrical parameters of various

building materials and how their composition could effect the deployment of

the structures developed in this thesis.

These characterisations are important as they compare alternate surfaces and struc-

tures of similar performance such as frequency selective surfaces, whilst also con-

sidering the overall system performance when applied to a building in smart indoor

environments. By comparing both the system and unit level research, the gaps

within current literature can be pin-pointed and applied as objectives for the work

in this thesis.

2.2 Periodic corrugated structures

Passive periodic corrugations such as in Fig. 2.1 have been have been extensively used

in electromagnetic propagation, waveguide surface wave control [14] and specular

scatter analysis and as such, this thesis does not give an exhaustive review of each

paper in this topic. Of particular interest is where corrugated surfaces have been

experimentally verified for use in reducing specular scatter [15] or backscatter [16].

Analytical solutions are acknowledged, however are not considered in this thesis.

Initial experimental work carried out on periodic comb structures was conducted by

Ebbeson [17] for the purpose of installation of airport hangars and terminal build-

ings in order to reduce the interference from the instrument landing system (ILS),

which can be an issue, especially due to large taxiing aircraft [18]. The ILS is a ra-

dio transmission at carrier frequencies between 108.1 MHz and 111.95 MHz used for

precision guidance of landing and approaching aircraft on a runway. Their research
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Figure 2.1: A basic periodic corrugated structure, with period α, height, h, and

thickness, w1.

focuses on the reduction of signals at 35 GHz, requiring a surface period of 8.6 mm

effective for reducing the specular scatter [19].

Ebbeson provides an experimental analysis and review of numerical literature for

a brass surface at 35 GHz, although the considered bandwidth is small making it

difficult to see any expected frequency ranges [17]. For example, the relative power

of the an incident wave on the surface is considered between 33 GHz and 37 GHz,

making it difficult to understand any frequency selective trends or secondary peaks.

Also of interest is how the angle of incidence effects the amount of secularly scat-

tered power. Measurements are used to suggest an optimum angle of incidence,

whereby the amount of specular scatter is reduced by the greatest. Either side of

this optimum, the performance of the surface is not as good, however there is a 6

dB reduction between 44◦ and 73◦. The optimum angle can be changed by consid-

ering an alternate frequency. Example of this is given in [17] where at 37 GHz, the

optimum angle of incidence is 70◦.

This work is further presented in [19, 20], where links to their use in reducing scat-

tering from ILS transmissions at airports is envisaged. Indeed, a surface has been

installed at Toulouse-Blagnac Airport in France for the purpose of preventing possi-

ble ILS scattering onto a nearby runway from adjacent aircraft [21]. These surfaces

have periodicities of nearly 3 meters, nearing 1λ at 108 MHz [22]. For these large

wavelength signals it is acknowledged that diffractive effects can become an issue

unless the surfaces are not significantly larger than a wavelength. Thus, in the sim-
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ulations and experimental tests carried out in this thesis, surface dimensions must

be considered to avoid or minimise such edge effects.

As the interfering signals are transmitted from stationary transmitters in this case,

the angle of incidence is well defined and the surface periodicity can be based on

Eq. 2.1. Bragg’s Law defines the angle of incidence, frequency and period of a

crystal lattice whereby constructive interference occurs [23]. The basic equation

used to calculate when constructive interference in the direction of transmission will

be greatest is thus:

nλ = 2α sin θi (2.1)

where n = 1,2,...,∞, λ is the wavelength of interest, α is the period of the surface

and θi is the angle of incidence of the propagating wave.

Alternative solutions to the three dimensional structures include the use of reflector

backed blazed gratings, such as those in [24]. They reduce the complexity of some of

three dimensional structures by removing the vertical portion of the comb, leaving

just two thin layers - one solid on the bottom of the structure, and one periodic,

on the top. There are many more complex structures such as the tunable metallo-

dieletric structure in [25], where the thickness of the substrate can be used to change

resonant frequency, whilst tunable elements can alter them in-application. Scatter-

ing of incoming waves in predefined directions has also be researched by Doumanis

et al. with use of their engineered reflectors [51]. The basis of operation is similar

to the three dimensional structures reported in this Thesis, as they reduce specular

reflection, re-directing the incident power in the direction required. Measurements

of the surface show that it is stable for a range of angles of incidence. However,

the surface designed is complex and in order to coat a whole corridor wall would

be expensive. Thus, more suitable designs are preferred for this scenario. Other

research in this area considers sinusoidal corrugations [26], strip gratings [27], and

T-shaped 1D analytical solutions [28].

An alternate use of corrugated surfaces was investigated by Kapasi et al. [29]. Large

corrugations of height 30 mm and period 5 mm were used to improve the signal

strength in the shadow region of buildings. In this case, the period and height of
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the surface are much less than the wavelength of the transmitted signal. Both CST

simulation and experimental results were used to obtain information of the signal

strength. Their simulations suggest that surface wave propagation on the corrugated

surface increases the signal level in the shadow region, marked by A in Fig. 2.2.

Figure 2.2: Improvements of the shadow region of buildings using corrugated sur-

faces.

Further to their simulations, experimental measurement of multipath and non-

multipath scenarios were conducted. These reveal that in non-multipath environ-

ments, corrugations can be beneficial as suggested by previous simulations. However,

the introduction of multipath signals means there is little difference in signal level

whether corrugations are used or not. As interior scenarios such as corridors are

likely to be multipath environments, these type of corrugations are likely to have

limited use.

2.3 Smart indoor environments

As previously suggested in the introduction, the control of propagation in buildings

can be implemented using various frequency selective surfaces and structures, inte-

grating various passive and active structures. This reduces the need for an excessive

number of wireless transmitters to cope with high data rate connections, reducing

cost and wireless interference. The common use of the 802.11g Wi-Fi nodes also

causes issues with co-channel interference. This should not be an issue for non-
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overlapping channels, however the 2.4 GHz frequency band is limited to only three

of these respective channels. In a high density network, there will be multiple users

on the same channels or overlapping ones, reducing the network capacity due to

increased levels of co-channel interference. This means that relatively high power

transmissions such as Wi-Fi transmitters at 20 dBm can cause interference to oth-

ers [2]. Separating and isolating these transmissions can increase the throughput of

the wireless nodes, improving both performance and efficiency of the whole wireless

network. These should offer an increased SIR not matter what the receiver sensi-

tivity of the affected receiver. Similarly, if the SIR is increased in a specific scenario

the receiver sensitivity need not be so high in magnitude.

Considering a wireless system may have a variation of different polarised transmit-

ting and receiving antennas, it is important to consider both TE and TM modes

of propagation. Literature has also reported that cross-polarisation is important

to consider particularly in complex indoor scattering environments [30], especially

where there are multiple dielectric materials present. It has also been acknowledged

that scatters and reflectors can cause polarisation changes in propagating signals.

It is concluded that there is no degradation of the signal quality even with random

positioning of receiving antennas, because of the cross-polarisation of the propagat-

ing signals. [31].

Also of interest, is how the basic building environment can affect the propagation

of signals in multiple cases such as indoor-to-outdoor propagation (and the recipro-

cal), and indoor propagation. Yan et al. [32] simulate the effect of metallic insulation

(such as Celotex or Kingspan) on the reception of digital TV (DTV) signals broad-

cast from 50 meters away and 20 meters high. The metallic insulation was positioned

exclusively in exterior walls – in more complex indoor environments, there may well

be metallic insulation located in interior walls too [33, 34]. Under non line-of-sight

(NLOS) conditions, the insulation significantly effects the path loss for all three

measurements at 70, 200, and 600 MHz. Unsurprisingly, LOS routes are unaffected

by the insulation, as the signal can simply travel through a window. With further

consideration of an energy efficient environment, this may not represent a more com-

plex building environment.

Window construction and design is important, particularly in energy efficient build-
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ing design. Traditionally, a significant amount of heat energy is lost through win-

dows, hence the improvement to double glazed windows, increasing the U-value1

and reducing the emissivity of the window. The more energy efficient a window

becomes, the more difficult it is for a signals such as GSM and DTV to propagate

through. Conversely, it can be argued that such high reflectivity and low emissivity

windows improve security and connectivity of indoor wireless systems.

The development of various frequency selective windows have been investigated to

solve the issue of poor electromagnetic transmission through windows. It is sug-

gested in [35] that low-emissivity windows can unintentionally reduce transmission

at frequencies between 1 and 2 GHz by 20 to 35 dB. By removing periodic hexagonal

shapes in the metallic coating, improvements can be made to the total transmitted

power, and measurements and simulations shows this is effective for frequencies be-

tween 0.8 and 3 GHz. Future investigation into the effect of triple glazed windows

will be of interest, particularly as they are the PassivHaus standard [36].

The main bulk of the research in this area has been based on indoor propagation

scenarios, where exterior and interior walls, and transmitter deployment positions

can all effect signal level. This research has been of interest over the last ten years,

particularly with the increase in wireless connectivity in homes and non-domestic

buildings. The future of in-building wireless transmission and propagation is likely

to change furthermore, with more and more devices requiring wireless connectivity,

higher throughput and high levels of security.

The use of frequency selective surfaces (FSS) in interior walls requires the instal-

lation of a passive or active structures, capable of providing a transmission path

through the wall. The FSS must either coat the whole wall [37], which is potentially

expensive depending on the surface type used, or the FSS is installed onto a wall

that is otherwise coated in metallic or reflective insulation . Several publications are

available in literature on this subject and are subsequently discussed.

Sung et al. investigate various aspects of passive FSS deployment in a building

structure, with the aim of acting as an electromagnetic filter; allowing signals of

1The U-value is a metric for measuring the thermal performance of a building. A higher level
of insulation will result in a lower U-value.
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chosen frequency to penetrate, whilst others are reflected [1]. This is generally im-

portant in development and deployment of these surfaces in indoor environments.

The work carried out in [1] focusses on many aspects of FSS deployment including

position and size on wall, the angle of incidence of propagating signal, and angular

stability. These three factors have shown to be important in much of the research

in this subject area.

Figure 2.3: In-situ measurements conducted in [1] considering the use of FSS in a

wall to reduce propagation into an adjacent wall.

Alignment of separate sheets of FSS ‘wallpaper’ are investigated, with results show-

ing that when they are misaligned, there is no reduction in performance or shift in

harmonic frequency of a simple square loop FSS. The square loop FSS has relatively

good frequency stability for varying angles of incidence however, there is an obvious

shift in peak frequency from 5.7 to 5.4 GHz, for angles of incidence ranging from

0◦ to 60◦. Measurement results of the signal strength for a propagating transmis-

sion through a wall show that over a wide range of frequencies (2 to 7 GHz) the

installation of the FSS provides 10 to 20 dB less signal than for the wall only, as

shown in Fig. 2.3. This is interesting to note, as even though the FSS wallpaper is

designed for a narrow frequency range, the reduction in signal level is for a much

larger frequency range.
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Measurements and simulations by Sung et al. on the same FSS structure in [38] re-

veal that spacing between the wall structure and FSS are also important considera-

tions when installing the surface. Considering the FSS in air, the resonant frequency

occurs at approximately 9.9 GHz. This resonant frequency does not change when

the FSS is positioned 10 and 20 mm in front of the wall. However, when placed

directly (0 mm) on the wall, the FSS resonant frequency shifts to 8.5 GHz. This

means that positioning of such FSS should be considered. It is also noted that the

FSS and wall distance could be further reduced using dielectrics such as polystyrene

foams, although this is flammable and may be problematic to use for building in-

stallation.

One final conclusion drawn in [1] is that alternative propagation paths such as

through windows and down corridors can affect the performance the FSS – the sig-

nal simply propagates around the FSS and metallic wall, rather than through it.

Following this work on FSS in building design, solutions for issues such as spectral

overcrowding, interference, and security are examined. Work published by Batchelor

et al. [39] introduces the issue of prevent outdoor-to-indoor propagation in prison

cells, to prevent prisoners using their mobile phones. The method to prevent the

use of phones must be frequency selective as TETRA bands must be available for

emergency service communications, whilst GSM is to be blocked. The results of

their double layer FSS show that a 100 MHz pass band can be created at 400 MHz

and can give 10 to 15 dB reduction at all other frequencies. Here, two manufacturing

techniques were used to create the FSS, with a 1 GHz shift in resonant frequency

from 13.8 to 14.8 GHz. They suggest that the inaccuracy of using inject printing

rather than etching on a copper clad sheet could be the reason for the shift in fre-

quency. Thus, it has been seen that manufacturing accuracies can alter frequency

responses quite considerably.

The installation of FSS surfaces in the building structure is further investigated by

Raspopoulos and Stavrou in [40]. They provide a detailed experimental and simu-

lation prediction for the signal power of a transmitter throughout a large building.

This paper provides several interesting results, including a comparison of various

FSS element shapes, such as cross dipole, square loop, and jerusalem cross. Their

analysis suggests that this shape is best for various parameters such as cross polari-

sation, bandwidth size, small band separation, and angular stability. This suggests
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why many in the literature prefer to use such a shape when developing an FSS. An

example of the angular stability of the structures designed in [40] is given for both

TE and TM polarisation. Off-normal incidence shows that the structures vary by

nearly 500 MHz between 0◦ and 54◦, whilst only having a narrow bandwidth, re-

sulting in poor stability over a range of angles of incidence at their chosen frequency

of 2.4 GHz. This angular stability can be improved by miniaturising the unit cell

design [41], but this will inevitably increase complexity of any full FSS as well as

adding cost to any active components.

More interestingly is the use of ray tracing models using MATLAB to predict the

signal level in a building structure, using only four material parameters. These

were brick, concrete, plaster, and wood, each with their own electrical parameters

assigned. Simulations using Wireless Insite [42], the ray tracing model using MAT-

LAB, and in-situ measurements are well correlated despite so few materials used

in the building structure. Results comparing the original building walls, and walls

coated in FSS show that signal level only various at a few locations when added to

both external and internal walls at 2.4 GHz. At 5.2 GHz for an interior environment

coated in FSS on external walls and floors and ceilings, there is no reduction in sig-

nal level, since this is out of the operational bandwidth, reinforcing the frequency

selective nature of the surface.

Scaling of surfaces for measurement in chambers is common, with Sanz-Izquierdo

increasing the parameters of their FSS by tenfold to perform measurements at

4 GHz [43]. They note that at 400 MHz, issues such as multipath can cause mea-

surement issue, particularly in small measurement systems. Other issues such as

edge effects can influence measurement accuracy at low frequency. Scaling param-

eters will prove useful for our work for several reasons. Firstly, size of simulation

models can be reduced, as increased frequency requires a smaller period and height

of elements. Secondly, production of prototype surfaces becomes cheaper, and their

measurement becomes easier.

Significant work on autonomous and intelligent walls was conducted by Subrt et

al. [44,45], with the main focus of their studies revolving around the use of an active

FSS installed on a metallised wall, which pro-actively learns about the propagation

environment using sensors to improve the wireless system performance. In [46], a
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basic simulation model of a building is constructed. Basic materials with arbitrary

electrical parameters are used, such as concrete and plasterboard. Their FSS is

simply modelled as being a high or low transmission material, rather than placed as

a whole surface or structure in the wall.

Figure 2.4: An ideal example of propagation control in [46].

2.4 Frequency selective surfaces

Frequency selective surfaces are periodic structures capable of reducing the trans-

mitted electromagnetic energy at select frequencies [47]. They are predominantly

used as bandpass or band stop radio frequency (RF) filtering applications, and typ-

ical examples include allowing mobile cellular network signals into buildings while

rejecting other frequencies [39, 43]. Such designs are usually constrained to opera-

tional angular performance at near normal (perpendicular) incidence. Alternatively,

FSS have been applied to offer specular scatter reduction [48–50], and flexibility in

angle of backscatter [51].

FSSs have also been used for stealth in both military [52] and wind turbine con-

struction [53], WLAN in buildings [54], and for general control of propagation of

wireless signals inside buildings [46]. Installation of these surfaces is often an issue
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in the indoor environment, with walls designed to include the FSS [1, 55]. These

structures are positioned in-between walls which separate internal rooms.

Initial FSS in the built environment focus on the propagation of signals from the

outside to the inside, especially via windows [56, 57]. The use of an hexagonal FSS

in an energy efficient window can improve signal by at least 10 dB over a frequency

range 1 to 2.5 GHz [35]. As well as increasing signal level of indoor-to-outdoor

signals, FSS can also be used to prevent indoor interference. The basic theory is

that the FSS filters out any signals of a desired frequency, whilst letting others pass.

For this to be functional, the wall must be fully covered with FSS, or part-FSS

part-metallic. This is to ensure the propagating signal can pass only through the

FSS structure. Depending on the complexity and cost of the FSS design, either

deployment method may be viable. In [38], a square loop FSS is used to reduce

the signal level of at a frequency of 10 GHz. Parameters such as necessary air gap

between the FSS and the original wall are examined, and it is concluded that a 10

mm gap is needed for their case. When scaling to 2.4 GHz, this means an air gap

of at least 40 mm will be needed, and thus unsuitable in some cases where space

is an issue. Inevitably the installation of these structures could have an effect on

sound and thermal insulation. Where a large air gap is required, the use of thermal

and sound insulation materials alongside the FSS structures should be considered.

Current building regulations suggest that an air gap of at least 50 to 100 mm can

be used in a cavity wall, so such a structure may well have to be used in conjunction

with insulation materials.

The active configuration of FSS in application has been considered by many. The

tunability and switching of surfaces is often performed by changing the impedance

of the surface. Controlled using a bias voltage [58,59], various diodes offer the abil-

ity to frequency tune any surface even after installation. Inevitably, this adds cost

and complexity to a system, however in many applications it can be worthwhile.

The area coverage of such structures should be considered, particularly where active

components are required. Both the total cost and availability of components will

have an effect on whether these solutions can become realisable. One such config-

urable FSS is described by Sanz-Izquierdo et al. [60]. Proposed is a double layered

FSS, with the bottom layer using pin diodes and the top layer using varactor diodes.

The pin diode is used as a switch, enabling the structure to be electromagnetically
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reflective or transmissive. The top layer uses varactor diodes which can be used

to tune the pass band frequency of any signal. These effects are shown at normal

incidence in Fig. 2.5.

(a) (b)

Figure 2.5: The transmission response of (a) the pin diode switching and (b) the

varactor diode tuning at normal incidence.

In this case, BB857 varactor diodes are used to tune a capacitance range of 0.5 pF

(28 V) to 7.2 pF (1 V) and operate at the 2.4 GHz region. BAR64-2 pin diodes

were used for the switching layer. One issue with the dipole design used in [60],

is that the FSS works only for one polarisation. This is because the E-field must

be in the direction of the lumped element. Mias mitigates this by using varactor

pairs per unit cell, one of which is rotated 90◦ with respect to the other [61]. The

effective tuning range of the FSS is also investigated, with Mias concluding that

the reduction in normalised transmitted power must be sufficiently large to act as

either a transmitter, or reflector. When acting as a transmitter, the reduction in

transmitted power must not exceed 1–2 dB. This is considered to be the insertion

loss of the system. Conversely, when operating as a reflector, the surface must have

a reduction in transmission of at least 10 dB to work effectively.

Kiani et al. demonstrate the use of pin diodes with a similar 90◦ symmetry [62],

with the final prototype shown in Fig. 2.6. In this case, BAP51-03 pin diodes are
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(a) (b)

Figure 2.6: Prototype of the switchable FSS for dual polarised signals [62]. Pin

diodes are located on the (a) front of the FSS, and connected on the (b) rear.

used, with an operating (or resonant) frequency of 3.2 GHz. In theoretical results

given in [63], it was expected that the resonant frequency be much lower, at 2.4

GHz. Multiple reasons were given for this shift, and will be considered in work in

this Thesis. These differences are likely to be caused by the following design issues:

• Differences in dielectric constant of the substrate.

• Diode model inaccuracies - the use of a diode model in CST will be discussed

later.

• Inductances due to by the dc bias lines seen in Fig. 2.6b.

• The use of soldering material, seen in Fig. 2.6a.

The results in both simulation and experimental results show a stable surface for

angles of incidence up to 45◦ for both TE and TM polarisation, with insertion

loss of between 2.3 to 2.6 dB when the pin diodes are off. When the diodes are

turned on, difference in transmission loss can be between 9 and 12 dB, depending

on polarisation.
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2.5 High impedance surfaces

Similar periodic structures exist which act as so-called high impedance surfaces.

Corrugated metal slabs have been utilised as HIS, however have multiple corruga-

tions per wavelength as shown in Fig. 2.7 [64]. The height of the fin is particularly

important in the design of these surfaces, with a short circuit where the fin termi-

nates with the ground plate. As the height of the fins is a quarter wavelength, this

in turn creates an open circuit on the top of the surface.

Figure 2.7: High impedance surface structure.

Structures developed from the corrugated metal slab include Sievenpiper’s HIS which

supresses surface waves at certain frequencies. These are described as forbidden

frequencies and lie in this region at the resonant frequency, where the impedance is

very high. The resonant frequency, ω0 is simply described as:

ω0 = 1√
LC

where L and C are the associated inductance and capacitance respectively. The

impedance of the structure stems from the interaction of electric charges as shown

in Fig. 2.8. It should also be noted, that at this resonant frequency the reflection

phase is 0.

These surfaces have found use in control of antenna radiation patterns and active

beam steering is also reported using electrically tunable impedance surfaces using
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Figure 2.8: High impedance surface structure.

varactor diodes. Changing the voltage of the diodes result in a shift in resonant

frequency and thus reflection phase characteristics. Similar structures include arti-

ficial magnetic conductors [65], however these surfaces are limited in use in oblique

incidence specular reductions across a relatively large bandwidth.

Figure 2.9: Various beam patterns for a range of varactor diode bias voltages.

2.6 Absorbers

The use of absorbers is common in applications where reduced electromagnetic re-

flections are required at specific frequency ranges. There is a multitude of radar

absorbing materials (RAM) for a wide range of functions, and this section describes

the most important. RAM work by absorbing electromagnetic energy and convert-

ing it into heat, thus reducing the amount of electromagnetic energy reflected back

towards the radar source. A variety of material types and techniques are used to
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achieve this, including elastomers, flat and pyramidal shaped foams and spray coat-

ings.

Their in-building use is limited due to a range of reasons such as high cost, large

thickness, and bandwidth restrictions. However, their performance and fundamental

principles can still be used to quantify the surfaces designed in this Thesis.

Figure 2.10: Many resonant layer absorbers are based on the Salisbury screen.

Their frequency performance can also be designed to operate as wideband or multi-

band structures. Resonant lossy screens such as the Salisbury screen [66] are single

frequency absorbers, using phase cancellation to reduce reflected signals. A Salis-

bury screen with impedance equal to the free space impedance (377 Ω) is placed a

quarter of a wavelength above a reflective surface [67], as shown in Fig. 2.10. Of

an incident wave, some is reflected off the Salisbury screen, whilst the remainder

is reflected from the PEC plate. As the total distance of a reflected wave is half

a wavelength, electromagnetic signals are 180◦ out of phase and cancel each other.

There are several disadvantages of this basic technique such as single frequency op-

eration and the large thickness of the structure at lower frequencies.

Further complexity can be added to create a structure capable of operation at mul-

tiple frequencies. Double and multi-layer screens spaced with dielectric materials

between them can increase the working bandwidth of such surfaces [68]. Jaumann

absorbers work in the same way as Salisbury screens, applying additional lossy
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screens at other distances to form multi frequency performance. Tuneable surfaces

have also been investigated using devices with changeable characteristics such as

diodes. A single layer tuneable FSS is used in [69] to change the reflectivity of a flat

absorber. Depending on voltage bias of the pin diode, the surface can essentially

become highly reflective, or highly absorbent, as seen in Fig. 2.11.

Figure 2.11: Reflectivity characteristics of the tuneable active FSS in [69].

Absorbers are also commonly used in anechoic chambers, with pyramidal shaped

RAM usually lining most of the room. The purpose of these absorbers is to reduce

the reflections from the wall which may affect any measurements taking place. Pyra-

midal absorbers are commonly produced from foam-based materials loaded with car-

bon. The quantity of carbon in the absorber is gradually increased from the top to

base, to provide a gradual increase in impedance between air and the absorber [70].

Pyramidal absorbers provide high attenuation over a large frequency band and for

a wide range of angles of incidence, making them one of the best choices for ab-

sorbers based on performance alone [71]. However their composition of foam and

loaded-carbon makes them large, fragile, and costly; thus limiting their applications

to anechoic chambers.

In order to improve their performance, it was proposed that a square loop FSS was

loaded into the absorber, providing an additional impedance layer [72]. The initial

implementation of this surface results in slight improvements to the performance at

a low frequency (2 to 6 GHz) and narrow bandwidth. At oblique incidence, there is

a noticeable improvement in reflectivity performance. However above an incidence
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angle of 45◦,the performance is similar to the unloaded absorber.

The use of frequency selective surfaces (FSS) to modify the reflectivity of various

types of absorber at normal and oblique incidence acting as impedance layers has

been recently investigated. When integrated with an impedance FSS, pyramidal

absorber can have marginally better performance over a narrow frequency band,

particularly at normal incidence [72]. However, at oblique incidence this combina-

tion is not effective, as there are issues dependant on the polarization of the plane

wave [73]. The FSS described in [73] is positioned in a cavity below the pyramidal

spikes, but above the ground plane and encased in absorber. By optimising a surface

for either TE or TM using a square loop FSS, it was thought the performance could

be improved, however this was not the case.

In [72], for a TE polarised wave there is slight improvements of 5 dB to 10 dB between

5 GHz and 6 GHz, when the FSS is TE optimised and compared to the unmodified

absorber. The reflectivity of the unmodified absorber and TM optimised FSS are

very similar over the whole frequency range. For a TM polarised plane wave, there is

little difference between the unmodified and TM optimised FSS reflectivity. The TE

optimised FSS has worse reflectivity, thus requiring an alternate approach. By using

a dipole FSS, the reflectivity performance can be improved for one polarization, and

in this case TE polarization was investigated. It is shown that the reflectivity can

be reduced further between 4 GHz and 5.3 GHz by an additional 10 dB to 20 dB.

For TM polarization, the response was exactly the same as unmodified absorber.

Another disadvantage to the impedance loaded FSS like those in [74, 75] are that

due to manufacturing process of the pyramidal absorber, it is difficult to know where

to position the FSS. By placing the FSS on the bottom of the absorber, they negate

this issue.
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Comb Reflection FSS

This Chapter investigates the use of a comb reflection frequency selective surface

for the purpose of reducing specular scatter, re-redirecting signals at a pre-defined

backscatter angle. The effect of various parameters such as height, period, and thick-

ness of the elements are discussed, and simulation and measurement results are used

to offer recommendations.

3.1 Introduction

This Chapter will introduce:

• The basic operating principles of the CR-FSS structure.

• Simulation and design of the CR-FSS in CST microwave studio at X-band.

• Measurement of the CR-FSS in both the NRL reflectivity arch and bi-static

measurement chamber.

• The application of CR-FSS surfaces.

• Issues with the CR-FSS for varying azimuth incident angle, φi.

The use of comb and corrugated surfaces for manipulation of electromagnetic signals

is well documented, with analytical and mathematical formulae forming the basis

to published work. Few have provided an experimental validation to this work.

This chapter aims to offer a detailed simulation and experimental analysis to comb

surfaces - so called comb reflection frequency selective surface (CR-FSS) due to their

ability to redirect an incoming signal to another direction.
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3.2 Initial design

The operating principle of the CR-FSS structure is illustrated in Fig. 3.1. Firstly,

compared to a flat metallic plate the CR-FSS will reduce specular scatter for a

certain frequency range. Secondly, the reflection can be redirected towards the

region of transmission. It can be seen in Fig. 3.1(a) that all energy of a plane wave

from a flat metal plate is reflected at angle θr = θi. The introduction of periodic

elements in Fig. 3.1(b) result in the specular reflection being reduced, re-directed

as backscatter. The direction of θB will be dependant on the direction of incidence,

frequency of the incoming wave, and the period of the elements.

(a)

(b)

Figure 3.1: (a) An incoming electromagnetic wave is reflected completely as specular

scatter from a flat PEC metal plate, where θi = θr. The introduction of periodic

elements in (b) results in the specular scatter being reduced with the remaining

energy redirected as backscatter with angle θB. θB can be tuned between 0◦ and 90◦

depending on preferred specification.

Generally, these periodic FSS can be characterised by Bragg’s Law, which states:

α =
c

2fB sin θi
(3.1)
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Angle of Incidence, θi

40◦ 50◦ 60◦

f = 2 GHz

α (mm) 97.23 81.59 72.17

f = 5.8 GHz

α (mm) 40.23 33.76 29.86

f = 12.2 GHz

α (mm) 19.13 16.05 14.20

Table 3.1: Example design parameters based on frequency and angle of incidence of

a surface using Equation 3.1.

where α is the period of the combs, c is the speed of light in a vacuum, fB is the

frequency at which peak backscatter will occur, and θi is the angle of incidence of

the plane wave.

The general size of both the simulation model and experimental prototypes is first

considered. Firstly, the prototype surface must be the correct size for accurate test-

ing using experimental methods. Traditionally, measurement systems used a surface

size of 600 mm × 600 mm [76] , and thus this was chosen as our ground plane di-

mensions. The number of comb repetitions should next be considered. Too many

and the surface will be costly to manufacture and difficult to make. Too few and

the measurement of the surface may become inaccurate. With use of Equation 3.1,

the periods at various basic frequencies and angles of incidence can be calculated.

Figure 3.2: Comb with dimensions: height, h, thickness, t, and period, α.
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The frequency of experimental testing should also be considered. Low frequency

measurements are difficult because the necessary size of the surface under test be-

comes very large if edge effects are to be avoided. Measurements are concentrated

in the X and Ku frequency bands (covering a frequency range from 8 GHz to 18

GHz.). For a frequency of 12.2 GHz, a period of 16.05 mm is required for an angle

of incidence of 50 ◦ to provide maximum backscatter to the transmission source. For

this period and the previously described ground plane dimensions, 37 repetitions can

be used to create the periodic surface.

3.2.1 Simulation set-up

In order to optimise the simulation time of the CR-FSS, a thin slice of the structure

with 37, 16 mm periodic repititions in the y-axis used with total length of 592 mm.

This was because periodic or H/E-field boundaries could not be used in the same

ordinal plane as the plane wave excitation in the time domain. The length should

be large enough to mitigate the effects of edge diffractions. In the x-axis a width

of 20 mm was used with E/H-field boundaries selected depending on polarisation of

the signal of interest, vastly reducing the simulation time.
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3.3 Experimental measurement

Simulated results of the CR-FSS can be validated using the experimental techniques

described in Section A.2. The NRL reflectivity arch allows for accurate specular

scatter measurements due to the stationary antenna horns, whilst the bi-static mea-

surement system is capable of full scattering measurements, offering a more complete

characterisation of the surfaces. An adequate surface was manufactured to fulfil the

requirements of both systems.

Table 3.2: CR-FSS plate dimensions.

Parameter Dimension

Fin period 16 mm

Fin height 16 mm

Fin thickness 1.7 mm

Width 600 mm

Length 600 mm

Figure 3.3: The CR-FSS manufactured for experimental measurements. The struc-

ture is manufactured from aluminium angle screwed onto a ground plane.
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3.3.1 Surface manufacture

The CR-FSS structure used for experimental measurements was made from alu-

minium, with aluminium angle secured to the plate, forming the comb fins. The

final surface is shown in Fig. 3.3, with the dimensions listed in Table 3.2. As the fins

were created using pre-made aluminium angle, both the period and height had to

be the same. The thickness was also limited to 1.7 mm due to the lack of aluminium

angle with a thinner profile. The width and length of the surface were both 600

mm. The flat plate in both the bi-static measurement system and NRL arch use a

flat metal plate of the same dimensions, making for accurate comparison of the two

surfaces.

Mass manufacture would not be from such expensive and weighty materials, but

incorporated into metallic insulation material using energy efficient foils and foams,

however this shall be discussed in Section 1.3.

3.4 Initial simulation and measurement results

This section presents comprehensive results from simulation and experimentation of

the CR-FSS. To summarise, the following aspects are reported on:

• The performance of the CR-FSS for changing oblique incidence for both TM

and TE polarisation.

• The specular scatter reduction for a selection of angles of incidence.

• The effects of pin height, period and thickness on any response.

• 2D and 3D scattering plots produced by simulation and measurement on the

bi-static system.

3.4.1 Comb height

The effect on increasing comb height on the reduction in specular scatter was sim-

ulated with the height ranging from 0 to 30 mm. Simulations were performed in 2

mm steps from 1 to 31 mm, where 0 mm is equivalent to the flat PEC plate. The

results are extracted from the scattering plots from CST simulations [77], with TE

and TM polarised plane waves excited at θi = 60◦ and f = 12 GHz.
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Figure 3.4: Comb height simulation results for the CR-FSS (α = 16 mm) for TE

and TM polarised signals with θi = 60◦ at f = 12 GHz (λ = 25 mm).

The height of the pin or fin can have a detrimental effect on performance as seen

by the simulation results shown in Fig. 3.4. As expected for lower comb heights,

the FSS has a poor performance. At least 6 dB reduction in the specular scatter

magnitude is visible for comb heights between 11 and 17 mm, and 9 and 18 mm

for TM and TE polarisations. The greatest reduction in specular scatter occurs at

0.56λ (14 mm) and 0.6λ (15 mm) for TM and TE polarisation respectively. The

performance at this frequency then reduces, becoming ineffectual once more at 1λ

(25mm) for both TM and TE polarisation, at this frequency. As the height of the

fins of the CR-FSS increase the frequency at which the comb resonates also changes.

In the case where one frequency is considered, such as in Fig. 3.4, there is a period-

ical peak in reduction of specular scatter which occurs at a function of λ which is

also dependant on angle of incidence.

Ideally, the of the TE and TM responses would be equalised, to peak at a single

important frequency. This can be done by changing all the parameters such as

height, thickness, and period until this occurs. Although this is not done in this

chapter, it will be done for the design of the 2.4 GHz surfaces.
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Figure 3.5: The comb thickness specular scatter graphs for (a) TM polarisation and

(b) TE polarisation for θi = 60◦. A range of pin thickness from 1.6 mm to 14.4 mm

are simulated.
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3.4.2 Comb thickness

The effect of comb thickness, t on frequency response for TM and TE polarisations

was simulated for θi = 60◦. The aim of this investigation is to understand how

bandwidth and peak frequency change for different comb thickness. Fig. 3.5 shows

the reduction in specular scatter magnitude for a range of comb thickness. Comb

thickness is measured as in Fig. 3.2, thus a smaller t refers to a thinner element. For

TM polarisation, as the comb thickness increases the frequency response becomes

more narrow, with a resonant peak at 14 GHz. This peak is visible at 12.4 GHz

and 16.2 GHz for thickness of 3.2 mm and 6.4 mm respectively, so can be suggested

that increasing the thickness of the fins increases the frequency at which this null

occurs. For TE polarisation however, the peak frequency shifts considerably to the

right as the comb thickness increases.

When t = 6.4 mm, the resonant frequency is at 17 GHz, and offers very little re-

duction in specular scatter. From Fig. 3.5 it is evident that as the thickness of the

comb increases the reduction decreases for TE polarisation. For the purpose of the

future studies the comb thickness is chosen to optimise the potential TE and TM

polarisation reduction, which occurs at a thickness of approximately 1.6 mm.
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Figure 3.6: Scattering results of the PR-FSS (black dashed lines) compared to the

flat PEC surface (red solid line). The PR-FSS shows a reduction in specular scatter

compared to the PEC at θr = 50◦, for TM polarisation. There is also a large

increase in backscatter for the PR-FSS, with the angle θB dependant on frequency

of the plane wave.

3.4.3 Effects of changing frequency of signal and period of

surface

The effect of changing parameters in equation 3.1 on the scattering for periodic

structures such as the PR-FSS and CR-FSS are summarised in this section. The

angle of backscatter, θB can be tuned by choosing the frequency of operation prior

to manufacture. Fig. 3.6 shows the scattering from both a PEC (red line) and

CR-FSS surface (black dashed lines) with a period, α of 16 mm at three different

frequencies for a TM polarised plane wave with θi = 50◦. The TE case would show

exactly the same trends, although magnitudes of scattering would be different to

the TM polarised case. Considering initially the specular reflection region (denoted
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by θr), there is a reduction in specular scatter compared to a flat PEC surface for

frequencies 11, 12 and 13 GHz. The angle of specular scatter is unaffected also.

The angle of backscatter in the region θB also changes with frequency. Given the

angle of incidence and the frequency of the incident wave, the angle of backscatter

can be chosen. In Fig. 3.6, the angle varies from -70◦, -53◦, -42◦ for f = 11, 12 and

13 GHz.

If it is required to reflect all of the signal back to the transmitter (θB = −θi), then

α must be carefully chosen depending on the expected frequency of the transmitted

wave. Fig. 3.7 shows that by increasing the periodicity of the pins or fins, the

frequency at which θB = −θi is true decreases. For example, when θi = 50◦ and α

= 12 mm, the frequency at which the condition θB = −θi is met is f = 16.3 GHz.

If the period is increased to 18 mm, this frequency shifts to 10.9 GHz.

This peak backscatter from the surface is defined by the Bragg’s Law equation (3.1),

previously defined in Section 3.2. Evidently, a larger period results in the peak

frequency reducing. It should also be noted that only the period of the surface was

increased in these simulations, and the height and thickness of the combs remained

constant. To achieve realistic scaling, all parameters would be scaled equally. That

is to say, if the period was doubled then the height and thickness would also need to

be doubled. By decreasing the operational frequency, additional grating lobes will

be introduced at lower frequencies, also as defined by Bragg’s Law.
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Figure 3.7: The peak backscatter occurs at a frequency defined by the period of the

surface. For case A, θi = 50◦ and α = 20 mm, fB = c
2α sin θi

= 9.8 GHz. Additional

results can be seen in the accompanying table.
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Figure 3.8: Relationship between the reduction in specular scatter and angle of

incidence for TM and TE polarisation at f = 12 GHz. The solid lines represent the

measured results, and the dashed the simulation results.

3.4.4 Oblique incidence angle performance

Interior environments are commonly full of transmitters and receivers, of different

frequencies and transmission powers. The main problem is that the angle of arrival

on any installed surface is often unknown, or occurs at multiple angles due to scat-

tering and diffraction.The surface has been optimised for approximately 50◦, as seen

for a period of 16 mm and frequency of 12.2 GHz. Results are shown in Fig.3.8 for a

frequency of 12 GHz, so a slight shift in optimum angle may be visible. The reduc-

tion in specular scatter is the difference between the magnitude of CR-FSS surface

and the equivalent flat plate for a range of angles of incidence. Both TE and TM

poarisations are considered, as this would be the case in a multipath environment.

Simulation results were obtained by changing the angle of incidence of the plane

wave and exporting the far-field monitor data at the frequency of interest. Simula-

tion results were completed for a θi range of 0◦ to 90◦, with a resolution of 5◦. A 1◦

resolution between 45◦ and 55◦ for the TE and 50◦ and 60◦ for the TM were used
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to obtain more accurate results at the peak values. The NRL reflectivity arch was

used for measurements to provide verification of simulation results. Owing to the

limitations of the NRL arch, measurements of the CR-FSS were limited to between

5◦ and 60◦. A resolution of 2◦ was used to obtain an accurate representation of the

response. As described in Sec. A.2, time gating techniques were used to remove

unwanted reflections and noise from the measurements. For each specific angle of

incidence, the experiment was recalibrated and then the flat metal plate and CR-

FSS were measured.

The oblique incidence performance is illustrated in Fig. 3.8. Simulations show a

peak reduction at around 50◦ and 53◦ for TE and TM polarisation respectively. The

performance of the TM is also lower than expected. The NRL arch measurements

offer accurate comparison, particularly for TE polarisation, although the peak re-

duction occurs at around 48◦ for both polarisations.

The large difference between the measured and simulated response for TM polarisa-

tion can be explained by the slight differences in harmonic frequency, which can be

seen in Fig. 3.9. As there is quite a narrowband response, a slight shift in frequency

can lead to a large difference in recorded value at a singular frequency.
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3.5 Specular scatter reduction

The previous section summarised the trend in reduction in specular scatter at

12 GHz for a range of angles of incidence. It is the purpose of this part of the

study to understand how the broadband frequency response is effected for both TE

and TM polarisation. Two examples are given for angles of incidence, θi = 50◦ and

60◦. Simulation predictions are compared to NRL and scattering measurements.

3.5.1 Reduction at θi = 50◦

For incident signals greater than 45◦, performance of conventional FSS is usually

reduced. However, we have seen previously that at 12 GHz, the peak reduction of

the CR-FSS actually occurs around this angle of incidence, due to its optimisation.

Initial consideration of the results in Fig. 3.9 shows that the TM polarised response

is much broader in frequency than TE. We can also see that the 6 dB bandwidths

for both TE and TM polarisation are 2.3 GHz and 5.4 GHz respectively.
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Figure 3.9: A comparison of the measured and simulation results for TE and TM

polarisation.

In indoor scenarios where multipath reflections are common and polarisation is often

undefined, the actual performance of this surface at this angle of incidence may be

unpredictable as any incident signal could be either of the two polarisations at any

given time. This is likely to be the case even if the signal is radiated from a dipole
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located in a multipath environment.

The 6 dB frequency ranges for TE and TM respectively are 11 GHz to 13.3 GHz and

11.2 GHz to 16.6 GHz, although simulation results are a little more narrow band

for both polarisations. That is, the simulated TE frequency band ends at 13 GHz

and the TM band starts at 11.5 GHz.

Scattering graphs for TE and TM polarisation show that the backscatter angle is

dependant on frequency and angle of incidence. Similar the specular performance

shown previously is also reflected in these plots. Analysis at 10.8 GHz and 12 GHz

show how the surface will re-direct to another direction.

−54
−48
−42
−36
−30
−24
−18
−12
−6
0 dB

90o

60o

30o
0o

−30o

−60o

−90o

(a) TM, f = 10.8 GHz
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(d) TE, f = 12 GHz

Figure 3.10: Simulated scattering plots of the CR-FSS and flat PEC plate for (a)

TM and (b) TE polarisations at f = 10.8 GHz, (c) TM and (d) TE polarisations at f

= 12 GHz. The specular reflection in each case can be seen at 50◦, with backscatter

peak at 72◦ and 53◦ for 10.8 GHz and 12 GHz respectivly.
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The previous simulated scattering plots showed that in the φ = 0◦ plane, energy

was re-directed in a range of θ angles. To ensure that energy was not redirected in

any other φ plane, a three dimensional 600 mm2 model was simulated. The far-field

result was evaluated at 12 GHz and is shown in Fig. 3.11. The resulting field result

shows that there is no scattering other than that in the φ = 0◦ plane.

Figure 3.11: A three-dimensional scattering pattern from a 600 mm2 comb surface,

at 12 GHz, θi = 50◦. There is no scattering other than that in the φ = 0◦ plane.
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3.5.2 Reduction at θi = 60◦

The oblique incidence measurements and simulations also show that good reduction

in specular scatter can occur at angles lower or greater than 50◦. At 60◦, Fig. 3.8

shows that there is still at least a 10 dB reduction, depending on polarisation.

Simulation and measurement results at Fig. 3.12 confirm that at 12 GHz, at least

10 to 12 dB reduction can be expected irrespective of polarisation. Furthermore, 6

dB bandwidths for TE and TM polarisation can be respectively given as 11 GHz to

13 GHz and 11 GHz to 15.9 GHz. The TM simulation result is shifted by about 0.6

GHz from the measurement however.
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Figure 3.12: A comparison of the measured and simulation results for TE and TM

polarisation.

Comparative scattering plots for θi = 60◦ are shown in Fig. 3.13 for 10.8 GHz and

12 GHz once more. At 10.8 GHz, the signal is reflected directly back to the trans-

mission source. As expected, the performance for TM polarisation at this frequency

is not as good as the TE polarised signal. For TM polarisation, the backscattered

E-field level at -60◦ is shown to be about 10 dB less than for the TE equivalent.

Similarly, there is no reduction in specular scatter in Fig. 3.13a for TM polarisation,

compared to approximately 6 dB for TE polarisation in Fig. 3.13b.

Increasing the frequency to the ideal working point at 12 GHz, the performance for

both polarisations is increased. However, the backscatter is no longer at -60◦ . In
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both cases, it has shifted to -44◦ and the level of backscatter is greater than the

specular reflections. For TM and TE polarisations, there is a respective 10 dB and

14 dB reduction in specular scatter, and can be confirmed from results in Fig. 3.12.
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(c) TM, f = 12 GHz
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(d) TE, f = 12 GHz

Figure 3.13: Simulated scattering plots of the CR-FSS and flat PEC plate for (a)

TM and (b) TE polarisations at f = 10.8 GHz, (c) TM and (d) TE polarisations at

f = 12 GHz.
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3.6 Scattering plots of the CR-FSS

So far, results have investigated the performance of the CR-FSS for either a given

frequency or a given angle of reflection (be that specular scatter or backscatter in

most cases). By combining the two we can obtain a three-dimensional scattering plot

of the CR-FSS, providing a useful demonstration of how the surface is performing

over a very large frequency range. These plots are created via both simulation and

measurement, and the methods are described here.

3.6.1 Simulated scattering plots

Simulated plots were created using a range of far-field monitors ranging from 8 to

18 GHz. As previously explained, at a certain frequency far-field monitors provide

the scattering from the surface in question. In this case, monitors were positioned at

every 0.2 GHz, providing a high resolution representation of the full frequency range.

The first 3-D scattering plot is of a flat plate and is shown in Fig. 3.14(a), where the

majority of the signal is reflected in the specular direction at 60◦. Due to the nature

narrow beamwidth of the plane wave in CST, the sidelobes are also narrow. The

level of signal elsewhere is approximately 40 dB lower than the peak of the specular

reflection. The CR-FSS is then simulated, and the resulting plot shown in Fig. 3.14b.

With the introduction of the periodic CR-FSS, the scattering pattern changes con-

siderably. Firstly, there is a large reduction in the specular scatter region between

11 and 16 GHz. There is also a considerable increase in backscatter, where the

scattering angle depends on the frequency of the signal.
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(a)

(b)

Figure 3.14: Simulated full scattering results between 9 and 18 GHz for TM polari-

sation. Illustrated are the (a) flat plate and (b) CR-FSS for θi = 60◦.

51



Chapter 3: Comb Reflection FSS

(a)

(b)

Figure 3.15: Simulated full scattering results between 9 and 18 GHz for TE polari-

sation. Illustrated are the (a) flat plate and (b) CR-FSS for θi = 60◦.
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3.6.2 Measured scattering plots

(a)

(b)

Figure 3.16: Three-dimensional scattering results between 8 and 18 GHz of (a) a

flat metal plate and (b) the CR-FSS. The transmitted signal has θi = 48◦ and is

TM polarised.

The bi-static rotating measurement system previously described in chapter A.2 was

used to provide full three-dimensional scattering plots of the flat plate and CR-FSS

for a range of frequencies and scattering angles.
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The respective plots for a TM polarised plane wave with θi = 48◦ is shown in

Fig. 3.16. Due to the type of horn antennas used, the specular reflection from the

flat plate has a broader beam width compared to the simulated result. Use of the

CR-FSS once again reduces the specular scatter, and increases the backscatter. The

angles of peak backscatter are analytically predictable using the Bragg’s Law equa-

tions. For example, for the peak backscatter in Fig. 3.14b the peak backscatter for

θi = 60◦ is at f = 300/(2× 16× sin(60)) = 10.83 GHz.

The difference in magnitude between the CR-FSS and the flat plate is shown in

Fig. 3.17. In the backscatter region, there is an increase of nearly 40 dB in the

backscatter region and a reduction of 10 to 20 dB in the specular region. The overall

scattering measurement seems to be slightly noisy with 10 dB peaks in regions where

no increase or reduction would be expected.

Figure 3.17: Three dimensional scattering plot showing the scattering from the flat

metal plate subtracted from the CR-FSS. It reveals the decrease in specular scatter

and the increase in backscatter.
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3.7 CR-FSS at φi = 90◦

All measurements and simulations thus far have considered a CR-FSS when φi = 0◦.

In many applications, a plane wave is unlikely to be incident only at this angle of

φi. Previous investigation in this chapter has shown that the CR-FSS is effective for

a chosen frequency range—offering a reduction in specular scatter, redirecting this

as backscatter towards the original transmission.

Figure 3.19 illustrates how ineffectual the CR-FSS for a plane wave at φi = 90◦

compared to when φi = 0◦. The graph shows that for φi = 0◦, there is a reduction

in specular scatter between 10.3 to more than 18 GHz and 11 to 14 GHz for TM and

TE respectively. However, when the plane wave is rotated by 90◦—so φi = 90◦—

the CR-FSS offers no reduction in specular scatter over the entire frequency range.

Figure 3.18: Defining the φi and θi angles with reference to the CR-FSS.
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Figure 3.19: NRL measurements illustrating frequency range response for TM and

TE polarisations at φi = 90◦ and φi = 0◦. For a plane wave with θi = 60◦.

3.8 Frequency domain investigation of grating lobes

Simulations and measurements so far have shown that energy can be redirected into

the direction of grating lobes, defined by Bragg’s Law; relating the period of the

structure and frequency of the signal to the angle at which this backscatter will oc-

cur. Simulations were conducted in the time domain, resulting in scattering plots of

the structure. Due to the large simulation time of each permutation of a parameter,

each model in the time domain was finitely thin with E or H-boundaries to remove

edge effects in this axis. This means that subsequent analysis of grating lobes is

limited to this plane only - i.e. φi = 0◦ only (see Fig. 3.18).

Frequency domain simulations in CST offer an opportunity to evaluate the propa-

gating waves and their direction by simulating the structure using a Floquet port.

This assigns a unit cell boundary condition to a small part of the structure making

the surface infinitely large. S-parameter results can be obtained for a number of

modes, although only propagating ones are of importance. Depending on the peri-

odicity and frequency of a signal, there could be any number of grating lobes.

The grating lobe diagram can visually show when different modes will be propa-

gating. Where they exist inside the circles (as seen in Fig. 3.20), these modes will
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propagate. If they fall outside they will be evanescent and die off [47]. As the prop-

agation of higher order modes in the rx and rz axis are dependant on the periodicity

in those directions, the co-ordinates of the respective modes can be defined by:

r̂(k, n) = (sx + k
λ

Dx

, sz + n
λ

Dz

) (3.2)

If the principal mode is given by the co-ordinates (sx, sz), the modes are propagating

when:

sy =
√

1− s2x − s2z (3.3)

is real and sx and sz lie inside the circle of the grating lobe diagram. For the case

where Dx >
λ
2
, the circles can overlap as shown in Fig. 3.20 where the points r̂(0, 0)

and r̂(−1, 0) represent the principle mode and grating lobe mode respectively. In

this case, both these modes will be propagating.

Figure 3.20: Grating lobe diagram for Dx >
λ
2
.

A series of floquet mode simulations have been performed for all of the structures,

focussing on important sweeps of certain parameters.

3.8.1 CR-FSS floquet mode plots

The effect of changing the height of the combs on both r̂(0, 0) and r̂(−1, 0) modes

is shown in Fig. 3.21 for both TE and TM polarisation. It is clear that the nulls in

the r̂(0, 0) mode coincide with the peaks in the r̂(−1, 0) mode as energy is directed
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into these. General trends show that as the fin height increases, the frequency at

which there is a null in r̂(0, 0) increases. For much higher fin heights above 20 mm

additional grating lobes appear in r̂(−1, 0) for both TE and TM polarisation.

(a) r̂(0, 0), TE (b) r̂(−1, 0), TE

(c) r̂(0, 0), TM (d) r̂(−1, 0), TM

 

 

−30 −27 −24 −21 −18 −15 −12 −9 −6 −3 0

Figure 3.21: S-parameter (dB) results for a range of fin heights for the principle

direction r̂(0, 0) and higher-order propagating mode r̂(−1, 0) for θi = 50◦, fin period

of 16 mm, and thickness of 1.6 mm.
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As previously shown in the time domain simulations, fin period is an important

factor in the frequency range at which these structures will reduce specular scatter.

Fig. 3.22 summarises the effect on both the r̂(0, 0) and r̂(−1, 0) modes.

(a) r̂(0, 0), TE (b) r̂(−1, 0), TE

(c) r̂(0, 0), TM (d) r̂(−1, 0), TM

 

 

−30 −27 −24 −21 −18 −15 −12 −9 −6 −3 0

Figure 3.22: S-parameter (dB) results for a range of fin periods for the principle

direction r̂(0, 0) and higher-order propagating mode r̂(−1, 0). for θi = 50◦, a fin

thickness of 1.6 mm and a fin height of 15 mm.
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3.9 Conclusions

This chapter has introduced the main concepts of specular reflection reduction using

periodic comb structures. Specific analysis of specular scatter reduction frequency

ranges compared to flat PEC plates is given using CST simulations, NRL mea-

surements, and more complex results in the bi-static measurement chamber. TE

polarised responses are often more narrowband than their TM equivalent, irrespec-

tive of angle of incidence or frequency. Various simulations highlight the effects of

fin height, periodicity and thickness on the frequency response. Three dimensional

scattering plots show the change in angle of backscatter as the frequency is increased.

For signals which are incident with the surface by φi = 90◦, the CR-FSS has been

shown to be ineffectual and thus an alternate surface design is considered in the

following chapter.
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Pin Reflection FSS

A pin surface is investigated in order to understand its performance compared to a

comb structure. The main motivations behind this design are to reduce material use

and to prevent the reduction in performance associated with the CR-FSS when the

plane wave is not perpendicular to the comb direction.

4.1 Introduction

The previous chapter addressed the use of a periodic comb surface to reduce specular

reflections and re-direct these at a chosen angle in the backscatter region. However,

the ability to reduce specular reflections decreases as the angle in the azimuth plane,

φ tends to 90◦. In both interior and exterior scenarios, this could cause a reduction

in performance. A simple yet effect solution is required due to the potential increase

in building material costs.

It is proposed that a surface which is radially symmetrical every 90◦ could be used

to solve this issue. This would mean that the surface would look the same whether

φ was 0◦ or 90◦. Initial designs suggested an array of pins could satisfy the construc-

tion specification, whilst saving considerably on material and possible manufacturing

costs due to the ease of production. The pin reflection frequency selective surface

(PR-FSS) was optimised and analysed using conventional measurement and simu-

lation techniques described previously in the last two chapters.
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This chapter can be summarised as follows:

• Simulations on how the pin separation, d effects the reduction in specular

scatter, and the optimum choice of d.

• The PR-FSS construction for experimentation, and accurate modelling in

CST.

• Effects of the pin height, and angle of incidence on the reduction in specular

scatter magnitude.

• Comprehensive comparison between the PR-FSS and CR-FSS.

• Review of the surface scattering for angles of incidence of 50◦ and 60◦ using

simulations and measurements.

4.2 Pin separation

The fin structure of the CR-FSS can be periodically separated to create an array of

pins, the distance of which is to be defined as pin separation, d. This pin separation

distance is perpendicular to the periodic distance of the comb previously described.

Simulation results in this section are used to investigate the effect increasing the

pin separation has on the reduction in specular scatter. The optimum pin separa-

tion would have the largest dimension that still offers comparable performance to

the previously examined CR-FSS. This is because some loss in performance can be

acceptable if there is a large decrease in material use. Table 4.1 gives examples of

the amount of material reduction that can be achieved with various pin separation

distances. This material reduction does not include the ground plane. This can

help reduce both weight and cost, potentially becoming viable in scenarios where

low weight solutions are required.

Once again, simulations were performed in CST MWS, for a CR-FSS (d = 0 mm)

and PR-FSS with d ranging from 1 to 41 mm, in steps of 2 mm. As the number

of pins was kept constant for each simulation (a single pin in the y-axis), the width

of the ground plate, W changes and is equal to d, as defined in Fig. 4.1. This is

important, as for accurate comparison, the width of the flat PEC plate must be

the same dimensions as the ground plate of the PR-FSS. The PR-FSS structure is
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rotationally symmetrical in φi = 0◦/90◦ directions, meeting the design requirements

previously mentioned.

Pin separation, d (mm) Reduction in fin (%) Notes

0 0 CR-FSS
5 64
10 84
16 90
25 93.6

Table 4.1: The reduction in fin material when using a pin structure of thickness

t = 1.6 mm

Figure 4.1: A cross-sectional view of (a) the CR-FSS first simulated in chapter 3,

and (b) the PR-FSS. The dimensions of the CR-FSS and PR-FSS are period α, pin

separation d, thickness t, simulated surface width W , and height h. The angle of

incidence, θi and angle of reflection, θr are measured with respect to z in the xz

plane, and the angle of rotation, φi in the xy plane is measured with respect to x.

A rectangular pin was used in simulations, with a pin thickness of 1.6 mm, (in both

the x-axis and y-axis), as shown in Fig. 4.1. A rectangular pin is used due to the

difficulty of simulating a threaded screw, both with the design of the threading and

the meshing on the structure for accurate simulation results. As d is increased in

length, the separation between pins becomes larger. Logically, it is assumed that
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surface performance would degrade as this distance increases, however simulation

results reveal important features about the surface.
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Figure 4.2: Simulated results showing the relationship between pin separation and

reduction in received forward scatter for TM and TE polarisations at f = 12 GHz.

Simulation results are presented in Fig. 4.2 for TM and TE polarised plane waves.

For both polarisations, a PR-FSS with periods of 16 mm, +17 mm, and 18 mm

are investigated. The graph was produced by plotting the difference in specular

scatter magnitude for each value of d, at θi = 60◦ and f = 12 GHz for the range

of separation distances specified previously. The reduction in specular scatter is the

difference between the result of a flat PEC plate of the same width as the respective

PR-FSS at 12 GHz.

Distinct differences can be seen between TM and TE polarisations. For TM po-

larisation, the point at which the pin period equals the pin separation (α = d) is

noted by a square marker for clarity. This is an important marker, as it means

that the period in both the x− and y−axis is equal, making the surface rotationally

symmetrical.

As expected, the CR-FSS (i.e. d = 0 mm) has the greatest reduction in specular

scatter, at approximately 13 dB for both TM and TE polarizations for α = 16 mm
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and 18 mm. At α = 17 mm, the reduction in specular scatter offered by the CR-FSS

is similar to that of the symmetrical PR-FSS. As the pin separation is increased, the

PR-FSS becomes less effective at reducing specular scatter. For TM polarization,

surfaces with d ≤ 20 mm have an effective reduction of at least 8 dB when α = 16

mm. For TE polarization, the PR-FSS is ineffectual at reducing specular scatter,

unless pin separation is very low (< 4 mm). This is because the pin elements are

perpendicular to the electric field and thus the propagating signal is not coupled

onto the respective elements. Therefore none of the propagating signal is reflected.

This is contrary to the TM case whereby the elements are parallel to the electric

field and thus can be coupled and reflected. Further analysis using the current dis-

tributions is conducted later in the chapter.

It can thus be concluded that the PR-FSS will not work TE polarisation for a

rotationally symmetrical surface, and closer investigation for TM polarisation is

required.
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4.3 Simulations and NRL measurements

Analysis of the PR-FSS is conducted using CST simulations and comparative mea-

surements. With consideration of the initial pin separation simulations in section 4.2,

a pin separation, d of 16 mm is used, as this also matches the surface period of the

PR-FSS, and the CR-FSS tested in chapter. 3. Comparison of the CR-FSS and PR-

FSS using simulations at various angles of incidence is also reported on. The exper-

imental set-up for the NRL reflectivity arch is described in detail in Section A.2.2.

Simplifications for fast but accurate modelling of the pin structure are described

here.

4.3.1 PR-FSS construction

Experimental surface manufacture: the PR-FSS had an array of 16 mm long

screws inserted into the ground plane to form a 39 × 39 grid, totalling 1521 pins.

Each hole was tapped to provide a thread to tightly secure the screws, ensuring a

good electrical contact between the screws and the plate, thus reducing the possible

effects of unnecessary resistance.

Figure 4.3: The aluminium prototypes of the 39× 39 PR-FSS with magnification of

the pin structure in the inset image.
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As the ground plate was 1 mm thick, the resulting pin height was 15 mm. Future

simulations show that 15 mm is an adequate height for the pins, although not the

optimum at 12 GHz. The final surface is shown in Fig. 4.3. The total size of the

ground plate is 600 mm2.

CST simplifications: various simplifications have been made in the simulation

of this surface, compared to the experimental surface. The screws were modelled in

CST as rectangular pins instead of threaded screws, as accurate simulation would

require very high mesh density and simulations would be too lengthy. Slight inaccu-

racies between measurement and simulation results may be due to this modification.

With the rectangular pins the mesh that was required was similar to that used pre-

viously, as confirmed by the convergence of the simulation results. The accuracy of

the simulation results when compared to measurement results also reiterates that

the simulation model and meshing were suitable.
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4.3.2 Pin height

As seen previously with the CR-FSS, the height of the pin affects the reduction in

specular scatter at a given frequency. As the PR-FSS only works for TM polarisa-

tion, only this is considered in Fig. 4.4. For f = 12 GHz and θi = 60◦, the peak

reduction in specular scatter occurs at 17 mm (0.68λ), compared to 14 mm for the

CR-FSS in Fig. 3.4. A 6 dB reduction in specular scatter is visible between 13 mm

and 20 mm. Evidently, the choice of pin height will affect performance in the fol-

lowing simulations and experiments. For accurate comparison between the CR-FSS

and PR-FSS structures, a pin height of 15 mm was chosen. Although not at the op-

timum as illustrated in Fig. 4.4, there is still acceptable reduction in specular scatter.
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Figure 4.4: Pin height simulation results for the PR-FSS as a function of wavelength

(α = 16 mm and d = 16 mm) for TM polarised signals with θi = 60◦ at f = 12

GHz. (λ = 25 mm). Only TM polarisation is considered as the surface is completely

ineffective for TE polarised excitation.

A full frequency domain analysis has been conducted in Fig. 4.13, where there is a

correlation between pin height and resonant frequency where the greatest reduction

in specular scatter occurs has been plotted. This optimum pin height generally

occurs for pin heights of 0.5λ to 0.7λ, depending on frequency.
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4.3.3 Oblique incidence angle performance

The performance of the PR-FSS for varying incidence angle is investigated at 12 GHz.

Simulation results were obtained by changing the angle of incidence of the plane wave

and exporting the far-field monitor data at the frequency of interest. For comparison

with the CR-FSS, a PR-FSS was excited by a TM polarised plane wave in CST,

and the far-field data extracted at 12 GHz. As before, a range of incidence angles

from 0◦ to 90◦ were considered with 5◦ steps, with a 1◦ resolution between 45◦ and

55◦ used to obtain more accurate results at the peak values. Measurement data

from the NRL reflectivity arch are used to validate the simulated results, with a 2◦

resolution up to 60◦ due to limitations of the system.
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Figure 4.5: Relationship between the reduction in specular scatter and angle of

incidence for TM and TE polarisation at f = 12 GHz.

Compared to the TM performance of the CR-FSS in Fig. 3.8, the CST simulation

shows a similar level of reduction over a similar range: at least 6 dB between 38◦

and 74◦, with a peak at 50◦. The NRL measurement shows a close trend to the

simulation, peaking at 50◦, although at 54◦, the measurement seems to be lower

than the simulation predicted.
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4.4 PR-FSS and CR-FSS comparisons

Extensive comparisons of the frequency response of the CR-FSS and PR-FSS were

completed, with 3 dB and 6 dB bandwidths listed in Table 4.2. Also listed are the

frequencies at which the 3 dB band starts and ends. Four angles of incidence are

considered here: 40◦, 50◦, 60◦, and 70◦, as the reduction is greater at these angles

of incidence, as seen in the previous section.

For TM polarisation, the CR-FSS has a larger 6 dB bandwidth than the PR-FSS for

all respective angles of incidence. This is the same for the 3 dB bandwidths. This

suggests that the PR-FSS has a reduced operational bandwidth for TM polarisa-

tion. The start and stop frequencies also reduce for the PR-FSS in all of the cases

in Table. 4.2.

Comparison between the CR-FSS and PR-FSS for TE polarisation is not possible as

the PR-FSS is ineffectual for TE polarisation. For the CR-FSS, the 3 dB and 6 dB

bandwidths for TE polarisation are smaller than the retrospective TM polarisations.

The PR-FSS also exhibits frequency responses which are harmonic, hence there is

multiple 3 dB frequency ranges for θi = 40◦ and θi = 70◦. This is discussed further

in section 4.7.
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Chapter 4: Pin Reflection FSS

4.5 Specular scatter reduction

This section presents and discusses the results of NRL reflectivity measurements

and simulated models of the PR-FSS at various angles of incidence. Both TE and

TM polarisations are shown, despite the PR-FSS not working for TE polarisation,

as previously shown.

4.5.1 Reduction at 50◦

The reduction of specular scatter at θi = 50◦ is shown in Fig. 4.6. As expected, both

the simulated results and experimental measurements show that there is no reduc-

tion for TE polarisation. For TM polarisation, there is a 3 dB reduction between a

range of 10.8 GHz and 16.8 GHz, with a harmonic visible at 13.2 GHz (13.5 GHz

for the measured result). Section 4.7 discusses the possible causes of this harmonic

when using a pin structure. At least 6 dB reduction is visible between 11.3 GHz

and 15.8 GHz for the measured result and 11 GHz and 15.6 GHz for the simulated.

The harmonic of the simulated result causes the 6 dB frequency range to be split

between 13.1 and 13.4 GHz.
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Figure 4.6: A comparison of the measured and simulated results for TE and TM

polarisation for θi = 50◦.
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4.5.2 Reduction at 60◦

The reduction in specular scatter magnitude at 60◦ is shown in Fig. 4.7. Once

again, both simulations and measurements show that the surface does not work for

TE polarisation. For TM polarisation, the NRL measurement and CST simulation

show good agreement. There is a 6 dB start and stop frequency between 10.1 GHz

and 13.7 GHz, and 9.9 GHz and 13.5 GHz for the simulation and measurement

result respectively. There is a peak reduction of 14 dB and 16 dB at 10.65 GHz and

10.75 GHz respectively, for simulations and measurements.
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Figure 4.7: A comparison of the measured and simulated results for TE and TM

polarisation for θi = 60◦.

4.6 Angular stability across the frequency range

Following analysis of the oblique incidence angle sweep in section 4.3.3 and the re-

duction across the whole frequency ranges for θi = 50◦ and 60◦, it seems that the

angular stability is not as good for the PR-FSS as it is for the CR-FSS. Although

at 12 GHz there is 12 dB and 8 dB reductions at 50◦ and 60◦ repetitively the peak

reductions are changeable. At 50◦, the peak in reduction is at 14 to 15 GHz (mea-

surement to simulation), with a second lower peak in the 10 to 13 GHz region. This

peak remains at 60◦, however the large peak at 14 GHz does not exist.
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These changeable frequency ranges mean that the PR-FSS does not have very good

angular stability, something which could be essential in indoor propagation control

down corridors.

4.7 Pin surface currents

4.7.1 TM and TE polarisation differences

The calculation of pin surface currents using CST was conducted to understand

further why the PR-FSS was ineffectual for TE polarisation. A comparison between

two identical PR-FSS was used, with surface current monitors at f = 11 and 15 GHz.

The respective E/H-field probes were used to obtain the initial frequency responses

for the TE and TM polarised plane wave at θi = 60◦.

The direction of the electric field effects the interaction of the pins with, as seen in

Fig. 4.8. Normalised reduction in specular scatter is shown for both TM and TE

polarisations - with TM offering 6 dB reduction between 10 and 13 GHz, and TE

being totally ineffectual. Beginning with TM polarisation, the current distribution

at 11 GHz shows that the majority of the current occurs at the base of the pins and

on the front side of the pin, suggesting much of the field is reflected back towards the

transmitter. Each pin also offers very similar magnitudes and patterns of reflection.

At 15 GHz, where the surface is no longer in operating range, the uniformity of

reflection is lost. On the pin where the highest surface current, the current is evenly

distributed around the pin, and not lop-sided like for the 11 GHz currents.

For TE polarisation, the electric field lies parallel to the y-axis and perpendicular

to the direction of propagation.This results in the pins having no effect on the

propagating wave, with pins with current distributions equal on both sides. For

example, for TE polarisation at 15 GHz the pin with highest surface current, has

equal distribution on the non-visible side. There is also no surface current at the

base of the pin, resulting in no backscatter or reduction in specular scatter.
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Figure 4.8: The normalised frequency response for a PR-FSS with plane wave ex-

citation for (a) TM and (b) TE polarised at θi = 60◦, and the respective surface

current distributions for (c) TM and (d) TE polarisation at 11 GHz, and (e) TM

and (f) TE polarisation at 15 GHz.
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4.7.2 Null in frequency response

At certain angles of incidence, nulls are introduced into the frequency response.

Inspection of the surface currents is used to explain why these occur. Multiple

periods are used in the y-axis to clearly illustrate the surface currents on the ground

plate diagonally between the pins.

8 9 10 11 12 13 14 15 16 17 18
−21

−18

−15

−12

−9

−6

−3

0

3

Frequency (GHz)

N
or

m
al

is
ed

 r
ed

’n
 in

 s
pe

cu
la

r 
sc

at
te

r 
(d

B
)

 

 

PR−FSS
Flat PEC

(a)

(b) (c)

Figure 4.9: (a) The nomalised frequency response for a a TM polarised plane wave

with θi = 50◦, and surface currents at (b) 13.2 GHz where the harmonic occurs, and

(c) 14 GHz, where the surface is effective at reducing specular scatter.

Fig. 4.9(a) shows the simulated frequency response for a a TM polarised plane wave

with θi = 50◦, initially shown in Fig. 4.6. Also shown are two surface current plots to

aid in understanding why this harmonic occurs. The null in the response at 13.2 GHz

where there is no reduction in specular scatter, shows a current distribution around

the bottom of the pin which is equally distributed instead of being focussed in the

direction of the incoming plane wave like at 14 GHz. At f = 13.2 in Fig.4.9(b), the

current is evenly distributed, around the base of the pin itself and over the whole
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ground plane. This is similar to a PEC surface where there would be an even current

distribution over the whole surface. The current density at the base of the pins is

also similar to that diagonally in between the pins on the ground plate. However,

for the peak in reduction at f = 14 GHz, the current distribution is maximum at

one side of the base of a pin and is much greater than anywhere else on the ground

plate, resulting in a reduction in specular scatter and redirection as backscatter.

4.8 Simulated scattering plots

The simulated scattering plots of the PR-FSS are shown in Fig. 4.10 and Fig. 4.11

for TM and TE polarisation respectively. A plane wave with an angle of incidence

of 60◦ is used to excite the structure, thus specular scatter occurs at this scattering

angle. The flat plate scattering shows the peak energy is scattered in this angle.

The PR-FSS reduces this specular scatter evidently between 10 and 14 GHz for TM

polarisation in Fig. 4.10b, where the energy is scattered back towards to the source.

For TE polarisation, the PR-FSS is expectedly in-effectual at reducing the specular

scatter, as shown in Fig. 4.11b. There is a visible backscatter lobe, however this is

of much lower power than for TM polarisation.
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(a) Flat plate, TM polarisation

(b) PR-FSS, TM polarisation

Figure 4.10: Simulated full scattering results between 9 and 18 GHz for TM polari-

sation. Illustrated are the (a) flat plate and (b) PR-FSS for θi = 60◦.

78



Chapter 4: Pin Reflection FSS

(a) Flat plate, TE polarisation

(b) PR-FSS, TE polarisation

Figure 4.11: Simulated full scattering results between 9 and 18 GHz for TE polari-

sation. Illustrated are the (a) flat plate and (b) PR-FSS for θi = 60◦.
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4.9 Scattering plot of the PR-FSS

Scattering measurements were conducted to validate whether the scattering angles

were measurable on an aluminium prototype. As highlighted earlier in the chapter,

the pins of the prototype differed from those simulated due to ease of manufacture

and simulation respectively. For comparison with simulations and previous scat-

tering measurements, a frequency range of 8 to 18 GHz was measured for the full

scattering range between -90◦ and 90◦. The PR-FSS is shown for TM polarisation in

Fig. 4.12. Reduction in specular scatter and the backscatter lobe are both evident

in the time gated measurement.

(a)

Figure 4.12: Scattering measurement for a PR-FSS for a TM polarised wave for θi

= 50◦.
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4.10 PR-FSS floquet mode plots

Floquet simulation results are shown for TM polarisation only due to the fact that

the structure does not reduce the specular scatter much in TE polarisation as shown

previously in the chapter. Fig. 4.14 shows simulation results of changing pin height.

The PR-FSS r̂(0, 0) mode shows a similar response to increasing pin height as the

CR-FSS; that is an increase in fin height leads to the null position increasing in

frequency.

(a) r̂(0, 0), TM (b) r̂(−1, 0), TM

 

 

−30 −27 −24 −21 −18 −15 −12 −9 −6 −3 0

Figure 4.13: S-parameter (dB) results for a range of pin heights for the principle

direction r̂(0, 0) and higher-order propagating mode r̂(−1, 0) for θi = 50◦, pin thick-

ness of 1.6 mm and period 16 mm. Results for TE show that there is little effect on

either scattering mode.
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Additionally, the effect of increasing pin period can be seen in Fig. 4.14. There is

a fairly narrow operating band at the presented frequency range where periods of

12 to 16 mm offer the greatest reduction in specular scatter, shown by the null in

r̂(0, 0), with energy redirected into the grating lobe in r̂(−1, 0).

(a) r̂(0, 0), TM (b) r̂(−1, 0), TM

 

 

−30 −27 −24 −21 −18 −15 −12 −9 −6 −3 0

Figure 4.14: S-parameter (dB) results for a range of pin periods for the principle

direction r̂(0, 0) and higher-order propagating mode r̂(−1, 0) for θi = 50◦, pin height

15 mm, and thickness 1.6 mm. Results for TE show that there is little effect on

either scattering mode.
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4.11 Conclusions

This section has proposed the use of a PR-FSS for the purpose of reducing spec-

ular reflections. The initial development of the surface stemmed from the poor

performance of the CR-FSS at φi = 90◦ and the necessity for a surface that was

rotationally symmetrical. Initial analysis showed that a pin separation equal to the

period was possible, with the reduction in performance not as large as anticipated.

An aluminium surface was constructed for testing, with a 39×39 array of screws

secured into a 600 mm2 ground plane. Simplifications for CST modelling were made

using rectangular pegs instead of the screw shape used in the aluminium surface.

Measurements and simulations show good agreement, for a range of angles of in-

cidence, however the angular stability of the PR-FSS is questionable due to large

peaks at unwanted frequencies. The fact that the surface is not very stable across

a wide range of angles of incidence means that it could well be unsuitable for in-

door propagation reduction where only one frequency range is to be prevented from

propagating.

Even though the rotational symmetry solves the issue proposed in the previous

chapter, the pin surface is ineffectual for TE polarisation, making it less useful in

multipath environments, such as the corridor application suggested in this Thesis.

Furthermore, simulations show that to work at its optimum performance, the height

of the PR-FSS is similar to the period, as with the CR-FSS. This means that at

lower frequencies the height is still an issue in indoor applications, where it must fit

inside small corridor cavities comfortably.
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Slanted-Comb FSS

At frequencies more commonly used for in-building communications (such as 2.4

GHz), surface parameters are scaled, making them much larger and potentially large

element heights could cause issue with installation in narrow wall cavities. To un-

derstand potential issues that this could cause, slanting of the comb surface is in-

vestigated in order to reduce the effective structure height. Once again, simulation

results and measurement of a brass prototype show the surface could be effective at

reducing specular scatter, even when slanted at different angles.

5.1 Introduction

This chapter investigates the use of a slanted comb frequency selective surface (SC-

FSS) to reduce specular scatter and are variations of the comb surfaces reported in

chapter 3 . Various parameters of the CR-FSS such as height and period become

much larger when scaled to be optimised to 2.4 GHz (which has a half wavelength of

62.5 mm). In real-life application this could require an insulation with a large height

profile, possibly causing issue with installation in some corridors. Reducing the fin

height negatively effects the reduction in specular scatter at the required frequency

thus, the effect of slanting the combs is investigated. To examine the performance of

the SC-FSS, a variety of simulations and experimental measurements are conducted.

A variety of simulation results are used to characterise the surface performance.

The frequency response for both TE and TM polarisation is simulated for a range

of angles of incidence. For each angle of incidence, a range of slant angles is to be

simulated. The scattering patterns for the whole range of slant angles is presented
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at various frequencies, and the effect of alternately slanting the periodic surface is

presented. Measurements of a brass surface are used to understand potential prob-

lems with production, and validate simulation results. Full scattering measurements

are conducted on the bi-static measurement system.

5.2 Simulation set-up

Simulations in CST Microwave Studio (MWS) have previously shown that periodic

structures can be accurately modelled and compared to measurements. Slanting

structures offer a greater deal of complexity when simulated in the time domain due

to the use of hexahedral mesh. This means that slanted structures dissect the mesh

cells often forming staircase cells if too coarse. This thus requires the simulation

environment to have many more mesh cells than simpler models of the CR-FSS and

PR-FSS structures, increasing simulation time.

The SC-FSS could be modelled using perfectly electrical conducting (PEC) material,

and was constructed using a ground plane and slanted fins, as shown in Fig. 5.1.

There are various pre-defined parameters, including fin thickness, t = 1.6 mm, the

period of the comb elements, α = 16 mm, and the slanted height of the surface, hs

= h+ tan θs, where h = 15 mm and is the height before slanting. The retrospective

slant angle is θs. A plane wave illumination was once again used, with the use of

the time domain solver, electric and magnetic field probes, and far-field monitors at

a range of frequencies.

θ
ir

θ
slant

h
s

t

α

Figure 5.1: A slanted comb frequency selective surface (SC-FSS), with slant angle,

θslant measured from the normal. The fin period, α, height, hs and thickness, t

are labelled. Also shown is the propagating wave, with angle of incidence, θi and

propagation direction, r.
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5.3 Simulation of comb slant angle

This section will present how the frequency response for both TE and TM polarisa-

tion changes when the surface fins are gradually slanted. An initial angle of incidence

of 50◦ is used, with a further set of simulations for TM polarisation at 60◦. The

slant angle ranges from 0◦ to 90◦ in 5◦ steps.

5.3.1 Frequency response at θi of 50◦ - TM polarisation

Due to the quantity of simulated results obtained, the remainder of this section is

split into further sub-sections, denoting the frequency response at 50◦ for TM and

TE polarisation between 9 and 18 GHz.

The reduction in specular scatter for a variety of different slant angles is presented

in Figs. 5.2 to 5.5. Incremental steps in slant angle were simulated, with an electric

field probe positioned at the specular scatter angle. In this case, the plane wave was

TM polarised and had an angle of incidence, θi of 50◦. Compared to the CR-FSS

(when θslant = 0◦), the SC-FSS has much more harmonic response, regardless of

θslant. For example, in Fig. 5.2 at 13.5 GHz, a SC-FSS with θslant = 20◦ has worse

performance compared to θslant = 0◦. That is, there is a difference in reduction in

specular scatter of 21 dB (from -26 dB to -5 dB.)

As the slant angle is increased initially (0◦ < θslant < 20◦), large harmonics are

introduced and the performance over the majority of the original working frequency

range deteriorates. By θslant = 25◦, performance is particularly poor and a the -6 dB

bandwidth lies between 10.8 GHz and 12 GHz. The peak reduction is only -12 dB

at this slant angle, compared to -25 dB for θslant = 0◦. Interestingly for θslant > 45◦,

the -6 dB bandwidth increases beyond the simulated frequency range. Further in-

vestigation showed that the stop frequency for those slant angles extending past

the plotted values was between 19 and 20 GHz, so the response was not extended

greatly. Obvious peaks in harmonics for θslant = 55◦, 60◦, 65◦, and 75◦ occur at 13.5,

15, 15.9, and 16.6 GHz respectively.

The additional harmonics introduced by slanting the comb structure have the effect

of increasing the bandwidth of the response.
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Figure 5.2: Normalised reduction in specular scatter for a slanted FSS with

θslant = 20◦ to 0◦ for θi = 50◦ and TM polarisation.
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Figure 5.3: Normalised reduction in specular scatter for a slanted FSS with

θslant = 45◦ to 25◦ for θi = 50◦ and TM polarisation.
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Figure 5.4: Normalised reduction in specular scatter for a slanted FSS with

θslant = 70◦ to 50◦ for θi = 50◦ and TM polarisation.
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Figure 5.5: Normalised reduction in specular scatter for a slanted FSS with

θslant = 90◦ to 75◦ for θi = 50◦ and TM polarisation.
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5.3.2 Frequency response at θi of 50◦ - TE polarisation

For a 50◦ TE polarization plane wave, the change in frequency response is more

clear. As the slant angle is increased, the harmonic frequency increases and the

performance of the surface decreased. The response also becomes more broadband

when compared to the CR-FSS (θslant = 0◦). The full range of responses can be

seen in Fig. 5.6 to 5.9

Although the peak reduction does decrease as slant angle increases, the perfor-

mance for θslant =50◦ is still reasonable in that the reduction in specular scatter is

still nearly 12 dB. However, the peak frequency at which this occurs is at 16 GHz -

a considerable shift in frequency.

As the electric field is perpendicular to the direction of propagation, an increase in

slant angle is similar to a reduction in fin height. Both cases result in a similar

increase in resonant peak, and this is highlighted in Chapter 7 in Fig. 7.3.

Finally, for extreme slant angles, such as those shown in Fig. 5.9, there is no reduc-

tion in specular scatter up to 18 GHz.
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Figure 5.6: Normalised reduction in specular scatter for a slanted FSS with

θslant = 20◦ to 0◦ for θi = 50◦ and TE polarisation.
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Figure 5.7: Normalised reduction in specular scatter for a slanted FSS with

θslant = 45◦ to 25◦ for θi = 50◦ and TE polarisation.
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Figure 5.8: Normalised reduction in specular scatter for a slanted FSS with

θslant = 70◦ to 50◦ for θi = 50◦ and TE polarisation.
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Figure 5.9: Normalised reduction in specular scatter for a slanted FSS with

θslant = 90◦ to 75◦ for θi = 50◦ and TE polarisation.

91



Chapter 5: Slanted-Comb FSS

5.3.3 Frequency response at θi of 60◦ - TM polarisation

Furthermore, a sweep of slant angles for an angle of incidence of 60◦ for TM polar-

isation was completed. The reduction in specular scatter for a variety of different

slant angles is presented in Fig. 5.10 to 5.13.

The results at this angle of incidence are similar to those at 50◦, where the intiail

slanting seen in Fig. 5.10 decreases the performance between 12 and 17 GHz, whilst

increasing between 10 and 12 GHz. Performance continues to decrease in Fig. 5.11

until the second harmonic appears in Fig. 5.12, at approximately θslant = 60◦.

When the combs are nearly parallel with the ground plane in Fig. 5.13, i.e. θslant ≈ 80◦,

the specular scatter reduction is zero once again.
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Figure 5.10: Normalised reduction in specular scatter for a slanted FSS with

θslant = 20◦ to 0◦ for θi = 60◦ and TM polarisation.
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Figure 5.11: Normalised reduction in specular scatter for a slanted FSS with

θslant = 45◦ to 25◦ for θi = 60◦ and TM polarisation.
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Figure 5.12: Normalised reduction in specular scatter for a slanted FSS with

θslant = 70◦ to 50◦ for θi = 60◦ and TM polarisation.
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Figure 5.13: Normalised reduction in specular scatter for a slanted FSS with

θslant = 90◦ to 75◦ for θi = 60◦ and TM polarisation.
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5.3.4 Variation of slant angle on scattering

The performance of the SC-FSS at 15 GHz and 16 GHz is further investigated and

simulation results are illustrated in Fig. 5.14 for a TM polarized wave at θi = 50◦.

Far-field scattering results show the level of backscatter (negative scattering angles)

and specular scatter (positive scattering angles). The slant angle, and scattering

angle axes have a resolution of 5◦ and 1◦ respectively. In Fig. 5.14 , the scattering

characteristics of a flat plate are the same as a SC-FSS with θs = ±90◦. This is

because the fins are parallel to the ground plane.

The scattering graph at a frequency of 15 GHz is shown in Fig. 5.14a for an angle

of incidence of 50◦. The direct specular scatter is clearly seen at θs = 50◦, and the

backscatter at 28◦. For a SC-FSS with θslant = ±60◦ similar performance can be

achieved compared to a CR-FSS (θslant = 0◦). That is, similar levels of reduction in

specular scatter and increase in backscatter can be maintained, despite the SC-FSS

being slanted by 60◦. For 16 GHz, θslant = ±65◦ offers the largest reduction in

specular scatter, as previously noted in Figs. 5.4. At this frequency, the peak in

backscatter has also shifted to θs = −24◦.

This analysis shows the problems associated with choosing slant angle of the comb

depending on frequency of interest, for optimum performance of the structure com-

pared to a CR-FSS. Even slight inaccuracies in choosing slant angle can have detri-

mental effects on the reduction in specular scatter magnitude.
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(a) 15 GHz

(b) 16 GHz

Figure 5.14: The effects of slant angle on scattering performance, finding the opti-

mum slant angle for frequencies of (a) 15 GHz and (b) 16 GHz.
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5.3.5 Far-field scattering patterns

In this section, a brief analysis of the scattering patterns for a slanted comb frequency

selective surface (SC-FSS) is given. The far-field response at various frequencies is

analysed. Figs. 5.16a, 5.16b and 5.16c show the far-field response of the SC-FSS

with θslant = 55◦, compared to a flat PEC surface for frequencies of 10 GHz, 13.5

GHz and 17 GHz respectively.

The reduction in specular scatter magnitude is shown in Fig. 5.15 (reproduced from

Fig. 5.4), where there is a wide -6 dB frequency range starting from 10.8 GHz to

more than 18 GHz. Thus, at a frequency of 10 GHz, there is no reduction in specular

scatter and no signal is re-directed as backscatter, as shown in Fig. 5.16a.
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Figure 5.15: Simulated frequency plot for a 55◦ slanted FSS, for θi = 50◦.

The far-field scattering pattern at 13.5 GHz in Fig. 5.16b shows complete suppres-

sion of the specular scatter. This is re-directed to the backscatter region at -40◦.

Similarly, there is a -18 dB reduction at 17 GHz, seen in Fig. 5.16c. As the frequency

is increased, the backscatter angle changes to approximately -20◦.
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(a) f = 10 GHz.
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(b) f = 13.5 GHz.
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(c) f = 17 GHz.

Figure 5.16: Simulated far-field scattering patterns for a 55◦ slanted FSS, for θi = 50◦

and TM polarisation at various frequencies.
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5.4 Alternate periodic surface

It can be concluded from the initial simulations that the SC-FSS can offer accept-

able levels of reduction in specular scatter depending on frequency and slant angle,

particularly for TM polarization. Further investigation on alternately slanted fins

reveal some interesting scattering features. The alternate slanting of fins is shown

in Fig. 5.17, where the angle of slanting varies between θslant and θslant(2). The

purpose of this section is to understand how providing variably slanted elements

can affect both the specular scatter and backscatter properties of an incident plane

wave. Initially, CST simulations are used to provide scattering characteristics for

TM polarization. This is because TE polarized signals exhibit a poor performance

between the frequency range of interest for slant angles greater than 50◦.

θslant

θslant(2)

Figure 5.17: Asymmetrical combs can introduce significant changes into scattering

patterns and frequency responses. The fins highlighted with a bold outline have

been moved at a separate slant angle to the others.

The initial simulation result for θslant = 50◦ is shown in Fig. 5.18a, where there is

one grating lobe between 5 and 18 GHz for scattering angles, θs = −70◦ and −20◦.

For the angle of direct backscatter (−50◦), the grating lobe occurs at 12.2 GHz, as

suggested by both results in Fig. 5.18a and 5.18b. There is also a large region of

reduction in specular scatter, with at least 10 dB between 10.6 GHz to more than

18 GHz.

Alternately slanting the comb structure can have effects on the number of backscat-

ter lobes and the specular scatter reduction range. In this case, two variations are

investigated: (1) θslant = 50◦ and θslant(2) = 40◦ and (2) θslant = 50◦ and θslant(2) =

0◦. These represent both small and large differences in θslant and θslant(2). The slight

change in slant angle for case (1) reveals emerging secondary and tertiary backscat-
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ter lobes at 6.1 GHz and slightly greater than 18 GHz respectively, as shown in

Fig. 5.18d. These are both visible in Fig. 5.18c. The specular scatter reduction is

affected, particularly between 10.8 and 13 GHz, where the level of reduction is less

than for the uniformly slanted surface between this range.

Further reduction of θslant(2) to 0◦ results in backscatter harmonics with compara-

ble magnitude to the original backscatter lobe at 6.1 GHz. The elements slanted

at θslant(2) = 0◦ become completely vertical. Results are shown in Fig. 5.18e and

Fig. 5.18f. Despite the change in slant angles, the position of the grating lobes

does not change, however there is an increase in backscatter level for case (2). The

secondary grating lobe at 6.1 GHz is only 6 dB lower in magnitude than the initial

one. The level of the tertiary lobe cannot be quantified, however the side lobes at

between 17 and 18 GHz are of similar magnitude to the primary grating lobe. For

case (2) there is also a reduction in specular scatter between 5 and 10 GHz, peaking

at 30 dB reduction at 8.2 GHz.

By switching between continuous and alternating slant angles, simulations have

shown that a secondary frequency region in which specular scatter is reduced can

be exploited. Secondary and tertiary grating lobes can be introduced by using

alternating slant angles, increasing the amount of signal in the backscatter region

between 5 and 18 GHz.
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(e)
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Figure 5.18: Frequency versus scattering angle plots and graphs showing specular

and backscatter frequency ranges for and SC-FSS with (a and b) θslant = 50◦, and

asymmetrical SC-FSS with (c and d) 50◦ and 40◦ and (e and f) 50◦ and 0◦.
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5.5 Experimental measurement

Compared to the previous two surfaces (the CR-FSS and PR-FSS) the SC-FSS

proved more difficult to manufacture and the comb elements were troublesome to

align. Due to the potential expense of the material cost and manufacture, there were

limited options for production. The cheapest method was to produce a number of

small brass fins which were to be connected to a large ground plane. As with previ-

ous surfaces, the ground plane measured 600×600 mm2. Both the fins and ground

plane were made from brass.

Figure 5.19: Experimental brass surface used for testing and validation of simula-

tions.

Each fin measured 16 mm in height, 1 mm in thickness, and 600 mm in width. The

period of the surface (16 mm) was manually marked out and each fin retrospectively

secured using conductive tape. The final surface is shown in Fig. 5.19. By using a

flexible connection, the slant angle of each fin could be altered and set using tem-

plates, as shown in Fig. 5.20.
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Figure 5.20: Experimental brass surface used for testing and validation of simula-

tions.

5.5.1 Angular measurements

The specular scatter from the SC-FSS was measured compared to a flat plate, with

the differences in magnitudes for TE and TM polarisation plotted in Fig. 5.21. The

measurement results are compared to simulations, where it is shown that the corre-

lation is much less than for the previous ones completed in chapters 3 and 4 for the

CR-FSS and PR-FSS respectively. Three angles of incidence were measured: 40◦,

50◦, and 60◦.

For TE polarisation, there is a definitive peak reduction between approximately

12 and 14.5 GHz for the three angles of incidence measured. These results show

similarities with the simulations in Fig. 5.7, where the slant angle is between 25◦ to

45◦. This response is as expected for TE polarisation, although the harmonic fre-

quency has shifted. This could have been caused by the template being inaccurate,

where the fins are able to rotate more than 50◦, possibly to 40◦-45◦. Furthermore,

some of the elements were not straight which caused the periodicity in some areas

of the surface to not be as expected.

For TM polarisation, the response is a little more difficult to analyse. What is ev-

idents is that depending on angle of incidence, the greatest reduction seems to be

in different frequency bands. As the response at 40◦ seems most like simulations,

it is likely that inaccuracies in the NRL arch at the highest angles of incidence are

effecting results.
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Figure 5.21: Measured frequency response of the SC-FSS with θslant = 50◦ for a

range of angles of incidence for (a) TE and (b) TM polarisation.
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5.5.2 Measured scattering plots

As simulated scattering plots have already been analysed for both symmetrical and

asymmetrical slanted surfaces, measurements of the surfaces are conducted for com-

parison. Scattering measurements were completed using the bi-static measurement,

and results for both TE and TM polarisation are presented in Figs. 5.22 and 5.23

respectively. For comparison, both flat plate and SC-FSS measurements were con-

ducted.

The angle of incidence was 50◦. As expected from Bragg’s Law, the frequency of

direct backscatter occurs at 12.2 GHz. That is, for a surface period of 16 mm, and

angle of incidence of 50◦, fB = 3 × 108/(2 × 0.016 × sin(50)) = 12.2 GHz. As ex-

pected, there is a large reduction in specular scatter, although this is particularly

visible for TM polarisation.
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(a) Flat surface

(b) Slanted-comb FSS

Figure 5.22: Measured scattering plots for TE polarisation.
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(a) Flat surface

(b) Slanted-comb FSS

Figure 5.23: Measured scattering plots for TM polarisation.
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5.6 SC-FSS floquet mode plots

The frequency domain analysis of the SC-FSS structures repeat the trends shown

in the time domain simulations. A full sweep of slant angle was completed between

0◦ and 90◦.

(a) r̂(0, 0), TE (b) r̂(−1, 0), TE

(c) r̂(0, 0), TM (d) r̂(−1, 0), TM

 

 

−30 −27 −24 −21 −18 −15 −12 −9 −6 −3 0

Figure 5.24: S-parameter (dB) results for a range of slant angles for the principle

direction r̂(0, 0) and higher-order propagating mode r̂(−1, 0) for θi = 50◦.

Fig. 5.24 shows that the main specular scatter reduction increases in frequency as
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the slant angle increases for TE polarisation. It also gets increasingly narrowband

and the null depth is not as pronounced. Indeed, for large portions of the frequency

band and for much of the slant angles, the structure reduces the specular scatter

poorly compared to a flat plate.

For TM polarisation, the structure gets much broadband as the slant angle increases

towards 55◦. All of this energy is directed into the respective r̂(−1, 0) mode. The

structure is particularly resonant for TM polarisation, where the E-field can be cou-

pled into the slanted combs, offering a more resonant r̂(0, 0) mode response. For

slant angles greater than 75◦ the structure becomes more like a flat ground plane

and does not change the specular scatter.

5.7 Conclusions

In order to reduce the required surface height, but still offer adequate performance

at the required frequency ranges, it was proposed that the comb elements be slanted.

The effects of the specular and scattering patterns are simulated using the conven-

tional techniques previously shown in the thesis. It has been shown that a SC-FSS

can be used to offer sufficient specular reduction over a wide bandwidth, although

the response often has unwanted harmonics.

A brass prototype is manufactured, with changeable slant angles for measurement

for validation of simulations. Further simulations using frequency domain floquet

analysis show that the structure is extremely resonant for TM polarisation and

offers substitutional scattering reduction. In TE polarisation, the performance is

much worse.
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Crenelated CR-FSS

This chapter prototypes the CR-FSS as a foam substrate lined with foil, similar

in composition to metallic insulation building materials. Furthermore, the effect

of the crenelation angle of the comb on the specular scatter is investigated. Both

simulations and measurements are used to verify the frequency and scattering from

the surfaces.

6.1 Introduction

This chapter investigates the use of crenelated CR-FSS for reducing specular re-

flections, but aims to solve a number of unanswered questions yet to have been

considered in the previous chapters. Firstly, the prototype material of this surface

differ from previous sections as materials that could be used for installation in a

building structure are used to prototype the structures. Previously, the construc-

tion of prototype surfaces has been from metals such as aluminium and brass. These

are expensive and do not reflect the proposed construction method in suggested ap-

plications such as those used as thermal insulation materials like Celotex [79]. It is

therefore proposed that a foam-based substrate with a foil topping be used to create

the crenelated structure.

As the strength of the foam substrate may be affected by using the existing vertical

periodic elements, additional structure strength could be achieved using a crenelated

design, as seen in Fig. 6.1. Sloping the comb elements could also help in the appli-

cation of foils to the foam substrate, as discussed later in this chapter. Several foam

substrates of various slope angles are accurately milled, with an example surface
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shown in Fig. 6.2.

θ
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w
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θ
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α

Figure 6.1: The crenelations in the foam are strengthened using sloped edges, with

angle θc. The periodic elements have top width, w1, bottom width, w2 and height,

h. The surfaces are illuminated with a plane wave with direction of propagation, r

and angle of incidence of θi. The foam substrate is then lined with the metallic foil

to produce the frequency selective surface.

6.2 Surface design considerations

6.2.1 Foam substrate manufacture

To compare with results presented in chapter 3, the foam elements were periodically

spaced 16 mm apart. The top width of the foam substrate, w1 is constant regardless

of the slope angle, θc. As θc is increased the bottom width, w2 increases. The height,

h of each element is kept constant at 15 mm.

Figure 6.2: One of the foam prototypes, milled from foam with a foil reflective

surface. In this case θc = 20◦ is shown. The foil is secured to the foam substrate

using conductive tape.

Although the foam is accurately milled, the application of foil to the substrate
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proved difficult and seemed to alter the frequency response of the measured surfaces

compared to expected measurements. This was particularly the case for surfaces

with θc = 0◦ and 10◦ as it was difficult to form the foil around 90◦ and 80◦ corners.

This meant that once the manufactured surfaced had been foiled, the surface had

thicker fins than expected, making w1 variable, depending on the value of θc. Thus,

the consequences of producing a surface with thicker elements are considered. Also,

the accuracy of simulation models for crenelated surfaces is considered.

Finally, the use of smaller 300 mm2 surfaces for measurement was investigated. The

use of 600 mm2 surfaces had previously been used in this Thesis. In measurement

systems such as the NRL arch, there can be issues with edge diffractions if the

surfaces under test are not comparably large to multiple numbers of wavelengths

at the lowest frequency of interest. Although the use of 300 mm2 surfaces have

previously been reported on in literature [76], this chapter considers whether surface

size adversely effects the measurement process by comparing the measured results

with simulations.

6.2.2 Accuracy of simulation models

Simulation of such models has shown to produce an accurate prediction of previous

surfaces, such as those in chapter 3–5. Initial simulations of the prototypes proved

difficult to match to measured results due to the inaccuracies in expected parameters

following the foiling process. As suggested previously, the unforeseen increase in the

element thickness to surface period ratio during the foiling of the foam substrate

effected the frequency response. Following accurate measurement of the prototypes,

simulation models were updated and provide a more accurate comparison to respec-

tive prototypes. Simulation results reporting the initial expected response are shown

in section 6.5.

The meshing used in CST required a PEC refinement of 9 to adequately model

the crenelated structure. This meant there was an increase in mesh cells around

the crenelated edges of the surface, compared to those in the free space around the

structure. This simulation model had 5 million mesh cells, much more than previous

simulations and thus increased total simulation time.
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6.3 Experimental prototype and measurement

The prototyping of these surfaces differs from those reported in previous chapters,

as they are precisely milled into a foam substrate with a metallic foil layer on top

to form the periodic surface, as shown in Fig. 6.2. The periodic comb elements were

milled into a square foam substrate measuring 300 mm on each side.

The specular scatter from each surface was measured using a Naval Research Lab-

oratories (NRL) reflectivity arch. Two American Electronic Laboratories (AEL)

H1498 wideband horn antennas were used to measure the reflected signal at an

angle of incidence of 50◦. An Agilent E8720 vector network analyser (VNA) was

used to measure between a frequency of 8 and 18 GHz, with 401 discrete frequency

points. A sweep time of 2 seconds was and time gating techniques were used to

remove unwanted scattering and coupling from the final measurement.

The measured results for TE and TM polarisation are shown in Figs. 6.3a and 6.3b

respectively. For TE polarisation the harmonic response diminishes as θc is in-

creased. There seems to be no major shift in resonant frequency. For TM polarisa-

tion, the change in harmonic frequency is large, ranging from 12 GHz, to 14 GHz

and finally to 16.5 GHz as θc is increased from 0◦ to 20◦.
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(a) TE polarisation
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Figure 6.3: Measurements for corrugated surface with θc = 0◦, 10◦, 20◦ and 30◦ for

TE and TM polarisation, with θi = 50◦.
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6.4 Simulations

As changing the physical structure of the comb surface is expected to alter the

frequency response, this was initially investigated. Simulations of four slope angles

were investigated using CST Microwave Studio, using the time domain solver. These

were θc = 0◦, 10◦, 20◦ and 30◦, where θc = 0◦ represents a CR-FSS surface. Plane

wave excitation with an angle of incidence, θi = 50◦ was used to illuminate a PEC

periodic surface, using the time domain solver. Fine meshing was used to ensure a

suitable representation of the sloped elements in the simulation model, as previously

discussed. In each case the period, α = 16 mm, and height, h = 16 mm were kept

constant.

The results for TE and TM polarisation at θi = 50◦ are shown in Figs. 6.4a and 6.4b

respectively. The w1 width was 4.5 mm, 2.8 mm, 3 mm and 1.6 mm for θc = 0◦,

10◦, 20◦ and 30◦ respectively. This was to compensate for the increase in thickness

during coating of the foam substrate in reflective foil, and to provide accurate com-

parison to measurements. For TE polarisation similarity between the simulated and

measured results in Figs. 6.4a and 6.3a is good, with the θc = 0◦ offering the best

peak performance at 14.4 GHz, with reduction in specular scatter decreasing as the

slant angle is increased. At θc = 10◦, the measured 6 dB bandwidth is actually

larger as there is less of a harmonic response. There is little observable difference

between the θc = 0◦ and 10◦ simulated results where the harmonic peak is still vis-

ible. Simulations and measurements for θc = 20◦ and 30◦ match well.

For TM polarisation, a comparison between simulated and measured results in

Figs. 6.4b and 6.3b. A less than accurate match in reduction in the magnitude

of specular scatter can be particularly seen for θc = 0◦ where the where the simu-

lated peak harmonic at 12 GHz in Fig. 6.4a is nearly 12 dB lower than measured

in Fig. 6.3a. The other simulated results show good correlation, although the har-

monic at 15.5 GHz for θc = 10◦ is not as pronounced in measurements. Once again,

simulations and measurements for θc = 20◦ and 30◦ correlate well.
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Figure 6.4: Simulations for corrugated surface with θc = 0◦, 10◦, 20◦ and 30◦ for TE

and TM polarisation, with θi = 50◦.
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6.5 Equal thickness simulations

Thus far, simulations have reflected the dimensions of the prototype surfaces to

accurately show that the measurement results can be verified. However, it is also

important to understand the trends of keeping the top thickness w1 equal, whilst

increasing the slope angle, θc, as these were the original design criteria.
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Figure 6.5: The frequency response of the crenelated surface structures for a fixed

thickness for TE and TM polarisation.
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For TE polarisation, increasing the slant angle clearly increases the harmonic fre-

quency, but reduces the potential peak reduction in specular scatter. The change in

response is much more erratic for TM polarisation, with performance reducing as θc

is increased.

6.6 Oblique incidence performance

The reduction in magnitudes over a full range of angles of incidence is important, as

if the frequency range in which the surface performs varies by a large amount, over-

all system performance will be reduced. As previously mentioned, this is because

when the surface is installed in a building structure, there will be a range of oblique

angles of incidence. The operational range is investigated between 40◦ and 60◦ for

two surface angles, θc = 10◦ and θc = 20◦.

For θc = 10◦ both the TE and TM response seem quite stable. Although the

magnitude of reduction is reduced in Fig. 6.6a at θi = 50◦, the peak harmonic

does not shift considerably between θi = 40◦ and 60◦. The angular stability is

much better for θc = 20◦ , where the level of reduction does not considerably alter.

However, the 6 dB bandwidths do shift down in frequency as the angle of incidence

increases. This should not cause issue due to the large bandwidth covering a large

range of frequencies.

Increasing the crenelation angle to 20◦ alters the performance for both TE and TM

polarisations. For TE polarisation (Fig. 6.7a) the peak harmonic is shifted to the

right, resulting in a -18 dB reduction at 17.2 GHz at θi = 40◦, as the incidence an-

gle is increased, the performance at this frequency is reduced. Furthermore, for TM

polarisation (Fig. 6.7b) the response is also shifted the right, with the performance

slightly reducing as the angle of incidence increases.
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Figure 6.6: The frequency response of the crenelated surface structures with

θc = 10◦ for varying angles of incidence, and (a) TE and (b) TM polarisation.
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Figure 6.7: The frequency response of the crenelated surface structures with

θc = 20◦ for varying angles of incidence, and (a) TE and (b) TM polarisation.
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6.7 Crenelated CR-FSS floquet mode plots

A full range of crenelation angles were simulated in the frequency domain and plotted

against the usual frequency range in Fig. 6.8. The TE r̂(0, 0) mode shows that the

structure does not offer good reduction in specular scatter as the crenelation angle

increases.

(a) r̂(0, 0), TE (b) r̂(−1, 0), TE

(c) r̂(0, 0), TM (d) r̂(−1, 0), TM

 

 

−30 −27 −24 −21 −18 −15 −12 −9 −6 −3 0

Figure 6.8: S-parameter (dB) results for a range of crenelation angles for the prin-

ciple direction r̂(0, 0) and higher-order propagating mode r̂(−1, 0) for θi = 50◦.

Interestingly for TM polarisation, most energy is redirected into the r̂(−1, 0) mode
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over a large frequency range for a crenelation angle between 45◦ and 50◦.
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6.8 Conclusion

This chapter has explored the possibility of using a corrugated comb frequency

selective surface with sloped periodic elements in order to reduce the specular scatter

of an incoming wave. Simulation and measurement results are given for both TM

and TE polarised plane waves, with θi = 50◦. Slope angles of θc = 0◦, 10◦, 20◦

and 30◦ are all investigated using CST simulations and foam prototype coated in

reflective foil. For accurate representation in the simulation model, their respective

top widths, w1 are 4.5 mm, 2.8 mm, 3 mm, and 1.6 mm. Finally, the effect of

changing fin width is demonstrated using further simulations. Small changes in w1

can alter the frequency response drastically, suggesting that care should be taken in

mass manufacture of such surfaces.
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Validation at 2.4 GHz

Additional optimisation at 2.4 GHz is done using simulations in order to understand

the required parameters for a basic CR-FSS structure which could be applied at a

useful frequency in-building. By overlapping the TM and TE reduction peaks, per-

formance should be optimised for the multipath environments that it will be installed

in, although the multipath propagation down corridors can alter expected results. In-

building simulations are used to validate the application of such surfaces in indoor

environments.

7.1 Introduction

This thesis concludes by providing a simulation analysis of the comb reflection fre-

quency selective surface (CR-FSS) optimised at 2.4 GHz. Although the ability to

simply scale the various dimensions of the structure with frequency have been pre-

viously discussed, important issues such as higher frequency harmonics are vague.

This is because they occur at higher frequencies than measurable or realistically

modelled using simulation software (25-30 GHz).

An initial parameter study is performed to align the performance for both TE and

TM polarisation in the 2.4 GHz Wi-Fi band. At this frequency, the reduction in

specular scatter should be at a maximum compared to a flat metal plate. Further

analysis of the structure provides a detailed understanding of performance for vari-

ous angles of incidence, and other surface parameters. Finally, the surface is applied

to a corridor in a small in-building scenario to understand the possible performance
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at a range of frequencies for the purpose of reducing co-channel interference.

7.2 Frequency band design

As previously seen in the X and Ku bands, a stable broadband frequency reduction

can be designed for a wide range of angles of incidence. Several frequency bands

should be considered to be allowed to pass:

• TETRA emergency service bands: 380 - 393 MHz, 410 - 430 MHz (some higher

frequency ones overlap with GSM 900).

• GSM 900: 880 - 960 MHz.

• GSM 1800: 1710 - 1880 MHz.

• 3G: 1920 - 2170 MHz.

The following should be prevented from propagating:

• Wi-FI 2.4 GHz bands: 2412 - 2484 MHz.

• Wi-Fi 5 GHz bands: 5150 - 5350 MHz, 5470 - 5725 MHz, 5725 - 5850 MHz.

In summary, specular scatter in the 2.4 to 2.5 GHz range should be prevented. The

potential use in the 5 GHz frequency band is to be investigated, as the harmonics

for both TE and TM polarisation are expected in this region.

7.3 Initial surface design and periodicity results

The previously investigated surface was designed to work in the 10 to 15 GHz range,

depending on angle of incidence and polarisation. A simple scaling factor of 5 to 6

would be required to reduce the working frequency to approximately 2.4 GHz. In

this case, a periodicity sweep of 70 to 95 mm for both TE and TM polarisation

was conducted. It should also be noted, that the maximum direct backscatter at

2.45 GHz will occur at an angle according to Bragg’s Law.

α =
c

2fB sin θi
=

3×108

2× 2.45×109 × sin(50)
= 79.9 mm (7.1)
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7.3.1 Simulation set-up

Simulations using CST have been shown to provide accurate representations of the

surfaces, and their associated performance based of several different factors. A

frequency range of 0 to 8 GHz was simulated, with plane wave excitation and electric-

and magnetic-field probes used to measure results for both TM and TE polarisation.

The combs were modelled as PEC materials once again, and the simulation model

was set-up exactly the same as in chapter 3. The initial height and thickness of the

comb elements was 80 mm and 4 mm respectively. The surface was 20 mm wide

and used periodic boundaries to remove scattering from the edge effects.

θ
ir t

h

Figure 7.1: The surface constructed in CST had a height, h of 80 mm, a thickness

of 4 mm, and varying surface periodicities, α.

7.3.2 Periodicity results

The frequency response for both TE and TM polarisations are shown in Fig. 7.2. As

expected, when the period of the surface increases, the resonant frequency decreases.

Furthermore, there are multiple resonant frequencies, which should be avoided in

the main frequency bands, such as 5.1 to 5.8 GHz for the design. If a dual band

surface was required, careful tuning to ensure that the surface lies in both the 2.4

GHz and 5 GHz frequency bands would be possible.

The resonant frequencies and bandwidths of both the TM and TE polarised plane

waves would also ideally be very similar. For simulated results in Fig. 7.2, the res-

onant frequencies are summarised in Table 7.1. This seems to occur for periods of

90 to 95 mm. Below this, the TE polarised signals have lower resonant frequencies

than TM polarised ones.
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Table 7.1: Resonant frequency for both TE and TM polarisation of the CR-FSS at

varying periods, with height = 80 mm, and thickness = 4 mm.

Resonant Frequency (GHz)
Period (mm) TE polarisation TM polarisation

70 2.55 3.14
75 2.39 2.84
80 2.27 2.62
85 2.17 2.34
90 2.08 2.10
95 2.00 2.00

The next stage of the simulations will be to understand the effects of changing

height, thickness, and period of the surface to tune the surface so that, for both

polarisations the resonant frequency will lie at 2.45 GHz and potentially in the

5 GHz region. Furthermore, scaling of the 95 mm period which works at 2 GHz will

be done to allow the peak reduction for both polarisations in the 2.4 GHz band.
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Figure 7.2: Simulation results of a 2.4 GHz surface for varying surface periodicities

at θi = 50◦ for (a) TE and (b) TM polarisation. The ISM band is highlighted in (c)

and (d) for TE and TM polarisation respectively.
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Figure 7.3: Simulation results of a 2.4 GHz surface for varying surface heights at

θi = 50◦ for (a) TE and (b) TM polarisation. The period is constant at 80 mm. The

ISM band is highlighted in (c) and (d) for TE and TM polarisation respectively.
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7.4 2.4 GHz surface for TE and TM polarisations

As suggested previously, a surface which has a peak in reduction at the same fre-

quency for both TE and TM polarisations would be beneficial. Initial simulations

have shown that at 95 mm, the resonant frequency lies at 2 GHz, with fin height of

80 mm and thickness of 4 mm.

A suitably scaled surface designed for a frequency of 2.4 GHz is designed. In this

case, the height of the surface is 70 mm, the period is 80 mm, and the thickness is 4

mm. Simulations are run in CST over a wide frequency band to understand where

possible harmonics of the surface would occur.
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Figure 7.4: The frequency response of a CR-FSS when compared to a flat plate,

optimised for working at 2.4 GHz.

The resonant frequency for both TE and TM polarisation is at 2.4 GHz, with a start

3 dB frequency of approximately 2.1 GHz. The TE response is more narrow band

than the TM due to the extended 3 dB stop frequency, as shown in Fig. 7.4.

Further harmonics occur in the 5 to 7 GHz region, which would also cause reductions

at these frequencies. At frequencies lower than 2 GHz there is no reduction at all,
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meaning that signals at these frequencies should propagate normal down the corri-

dor if the surface was installed. This is further analysed in section 7.6, where full

building simulations at 1.5 and 2.4 GHz are conducted to understand the frequency

selectiveness of the surface.

7.4.1 Oblique incidence performance

The surface is to be positioned in a corridor of a full building, and the parameters

summarised in this section are to be used to obtain results. However, the perfor-

mance of the surface over a range of angles of incidence is unknown. Simulations at

40◦ , 50◦ and 60◦ are done and the simulated results of the specular scatter reduction

are shown for TE and TM polarisation in Figs. 7.5a and 7.5b respectively.

For TE polarisation, the surface is stable for angles of incidence between 40◦ and

60◦. The peak in harmonic shifts from between 2.45 and 2.25 GHz respectively, and

is wide enough to offer at least 5 dB reduction for a bandwidth of 400 MHz between

2.2 and 2.6 GHz.

For TM polarisation, the results show that at least 5 dB reduction occurs over a

much wider bandwidth. Additionally, from 40◦ to 60◦, the peak in reduction shifts

from 2.6 to 2.15 GHz. For 40◦, there is at least 5 dB reduction between 2.45 and

3.4 GHz. At 50◦ this lies between 2.2 and 3.25 GHz, and for 60◦ it is between 2 and

3.25 GHz.

Overall system-level performance will only be fully understood in the multipath en-

vironment of a full building simulation. In this case, a range of signals of varying

angle and polarisation will be incident on the CR-FSS structure.
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Figure 7.5: Simulation results of a 2.4 GHz surface for varying angles of incidence.

The ISM band is highlighted in (c) and (d) for TE and TM polarisation respectively.
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7.5 Scattering

Simulated scattering plots for TE and TM polarisation are shown in Fig. 7.6. As

expected, at the specular scatter angle, there are reductions in scattering level at

2.4 GHz and 5.5 GHz for both TE and TM polarisation. There are primary and

secondary backscatter lobes for frequencies above 2 and 4 GHz respectively.

(a) TE polarisation

(b) TM polarisation

Figure 7.6: Scattering simulation results of a 2.4 GHz surface at 50◦ for (a) TE and

(b) TM polarisation.
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7.6 Full building simulation

Full building simulations have been previously used to analyse the performance

of frequency selective surfaces (FSS) [82], with use of measurements often also

used [83, 84]. A similar analysis using CST MWS is completed in this section to

compare the use of a CR-FSS with a simple metallic wall. The following will de-

scribe the building construction, port excitation, results extraction, and finally vi-

sualisation and analysis of the results.

Previous analysis of in-building propagation has involved the use of cumulative dis-

tribution function (CDF) plots for the analysis of E-field [85, 86], signal-to-noise

ratio (SIR) and capacity [87]. A 20 dB increase for the case of SIR and capacity

can be considered normal when using frequency selective surfaces, and thus further

increase in SIR, or the decrease in E-field levels following the installation of the

CR-FSS would be beneficial.

Due to the variety of different propagation routes and node positions, basic scenarios

are used to gauge the best installation procedures. For each scenario, an uncoated

corridor, and one with a CR-FSS will be done in order to statistically analyse the

difference between both. Each scenario consists of a building with only metallic

walls. This is because:

• In many existing FSS installations, the building has to be retrofitted with

metallic insulation to ensure an isolated environment for the FSS to work

correctly.

• Energy efficient buildings are more commonly using metallic insulation as a

method of improving the thermal efficiency of the structure.

• The performance of the CR-FSS relies on the channelled propagation down

corridors.

• It greatly reduces the model complexity, reducing simulation execution time

and potential for error.

Excitation at the required frequency was ensured by using a dipole length port. The

resonant frequency was adjustable, depending on the length of this port. Signals at

the required frequencies of 2.4 GHz and 1.5 GHz required dipole lengths of 49 mm
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and 84 mm respectively. The fields at the frequency of interest were extracted using

a two-dimensional cut-plane E-field monitor. The E-field levels are presented in this

two-dimensional plane for a variety of scenarios, useful for both visual comparison

and statistical analysis.

As the CR-FSS structure is designed to be frequency selective, the propagation

should reduce propagations at 2.4 GHz and not alter the scattering at 1.5 GHz.
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7.7 Initial simulation model and results

The initial simulation provides a small scenario, with dimensions shown in Fig. 7.7.

Although the dimensions are smaller than a usual building might be, it should offer

a sensible idea as to whether the CR-FSS is effective at reducing specular scatter

in a multipath environment. This is because initial simulations on the surface itself

show that a reduction of up to 10 dB can be achieved from one bounce from the

CR-FSS.

To provide an exact comparison of the flat and comb scenarios, the walls were all

assigned PEC properties. To prevent the whole structure from becoming resonant,

no roof or floor materials were assigned (open boundary), although the height of the

building was chosen so that the majority of the scattering energy remained in the

building simulation and did not escape vertically.

Figure 7.7: Scenario 1: the CR-FSS was installed on only one corridor wall. The

transmitter is located arbitrarily in the right hand room.

Simulations were run for 2.4 GHz and 1.5 GHz, with results respectively shown in

Figs. 7.8 and 7.9. Visual comparison of the room at 2.4 GHz for the normal building

(Fig. 7.8a) and the building with the CR-FSS installed (Fig. 7.8b) show that most of

the electromagnetic energy at this frequency is prevented from reaching the bottom

left hand room. This seems to be a result of reducing the direction propagation

paths down the corridor itself. Further statistical analysis in Fig. 7.8c shows that

there is approximately a 3 dB reduction in mean signal level in this region. The

levels of E-field in the transmitting room are near equal, as shown in Fig. 7.8d. It is

also possible to see that in Fig. 7.8b, specular propagation is redirected back towards

the transmitting room as predicted. This inevitably prevents signals reaching the
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bottom empty room.

The simulations at 1.5 GHz show this reduction to be frequency selective, as no

reduction is encountered at this frequency, and the E-field levels remain the same

in the receiving room, as shown in the CDF plot in Fig. 7.9c. For a more realistic

simulation, it is proposed that the corridor be made longer to offer a more represen-

tative model of a building.
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(a) Unlined building

(b) Building with CR-FSS installed
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Figure 7.8: Full building simulations at 2.4 GHz, with (a) flat metallic walls and (b)

walls with CR-FSS installed. There are CDF plots of the propagation comparing

the E-fields in (c) the receiver room and (d) the transmitter room.
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(a) Unlined building

(b) Building with CR-FSS installed
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Figure 7.9: Full building simulations at 1.5 GHz, with (a) flat metallic walls and (b)

walls with CR-FSS installed. There are CDF plots of the propagation comparing

the E-fields in (c) the receiver room and (d) the transmitter room.
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7.8 Increasing corridor length

In this section, a larger simulation with a longer corridor of 5.5 m is conducted.

Once again, comparison of the E-field levels in various areas of the building are

done to statistically analyse the performance of the CR-FSS. Results at 2.4 GHz

and 1.5 GHz are shown in Figs. 7.11 and 7.12 respectively. Additional repetitions

of the CR-FSS are placed along a single side of the corridor.

Figure 7.10: Scenario 2: the use of a larger corridor to analyse the potential increase

in performance when using the CR-FSS.

The results at 2.4 GHz show that the reduction is much larger than for the smaller

simulation model. This is confirmed by the CDF plot in the bottom left hand room,

where there is a reduction of approximately 14 dB (Fig. 7.11c).

Despite the increased length of the corridor and the effectiveness at 2.4 GHz, the

performance is shown to be frequency selective as there is no reduction at 1.5 GHz.

This is highlighted both in the E-field plot comparison (Figs. 7.12a and 7.12b) and

the empty room CDF plot (Fig. 7.12d).

It is possible to see that a large portion of the transmitted power actually enters

the corridor and begins propagating, like in Fig. 7.11a. By extending the CR-FSS

around this corner, it may be possible to reduce the propagation further by re-

directing this propagation back into the transmitting room.
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(a) Unlined building

(b) Building with CR-FSS installed
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Figure 7.11: Full building simulations at 2.4 GHz, with a corridor length of 5.5

meters, with (a) flat metallic walls and (b) walls with CR-FSS installed. There are

CDF plots of the propagation comparing the E-fields in (c) the receiver room and

(d) the transmitter room.
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(a) Unlined building

(b) Building with CR-FSS installed
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(c) Empty room
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Figure 7.12: Full building simulations at 1.5 GHz, with a corridor length of 5.5

meters, with (a) flat metallic walls and (b) walls with CR-FSS installed. There are

CDF plots of the propagation comparing the E-fields in (c) the receiver room and

(d) the transmitter room.
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7.9 Double lining of walls with CR-FSS

It was also proposed that a double installation of a CR-FSS could be used to further

improve the magnitude of reduction. The CR-FSS is applied to both sides of the

corridor. The CDF shows that there is a mean reduction of 19 dB at 2.4 GHz, as

shown in Fig. 7.14d. This is a 5 dB improvement when only one CR-FSS surface is

used. The CDF at 1.5 GHz (Fig. Fig. 7.15c) for the same room shows that there

is no reduction in E-field, which is expected. Thus it can be summarised that the

double lining offers the best reduction.

Figure 7.13: An additional comb surface on the other corridor wall could potentially

increase the reduction in scattering down the corridor, further increasing the SIR.
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(a) Unlined building

(b) Building with two CR-FSS installed
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Figure 7.14: Full building simulations at 2.4 GHz, with a corridor length of 5.5

meters, with (a) flat metallic walls and (b) walls with two CR-FSS installed. There

are CDF plots of the propagation comparing the E-fields in (c) the receiver room

and (d) the transmitter room.
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(a) Unlined building

(b) Building with two CR-FSS installed
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(c) Empty room
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Figure 7.15: Full building simulations at 1.5 GHz, with a corridor length of 5.5

meters, with (a) flat metallic walls and (b) walls with two CR-FSS installed. There

are CDF plots of the propagation comparing the E-fields in (c) the receiver room

and (d) the transmitter room.
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7.10 Signal-to-interference ratio plots

In order to further quantify the effect that the CR-FSS corridor installation has on

the transmitting ranges of each transmitter, the signal-to-interference ratio (SIR)

can be calculated. It is predicted that by decreasing the propagating fields down

the corridor, the SIR will be improved for both rooms due to the increased electro-

magnetic separation at the required frequency ranges.

7.10.1 Averaged E-field plots

In order to calculate and present the SIR clearly, the E-field field plots must first

be averaged over several wavelengths in order to remove the small scale fading [88].

For this scenario, four cases will be considered for comparison:

1. Unlined building at 1.5 GHz.

2. Building with two CR-FSS installed at 1.5 GHz.

3. Unlined building at 2.4 GHz.

4. Building with two CR-FSS installed at 2.4 GHz.

The resulting averaged E-field plots are shown in Figs. 7.16 and 7.17. Following the

averaging of the E-field values, the propagation paths are much more clear, particu-

larly for the case of the building with no CR-FSS installed in Fig. 7.17a. Specifically,

the output of the Matlab matrix formed by calculating the averaged value of a de-

termined number of surrounding values. In this case, a 10 by 10 square centimetre

averaging produces a clear picture of the electromagnetic scatter whilst reducing the

amount of fading and unwanted peaks and nulls in the propagating signal.

Prior to this process, all values which either equal zero or are less than - 25 dB

are assigned to not-a-number (NaN). This is because when calculating the average

numbers, NaN is discarded in calculation. In the previous plots CST assigns the

PEC wall structures as 0 dB and the E-fields immediately next to the walls are

assigned low E-field values in the range of -25 to -100 dB. In order to remove both

of these from any averaging calculations, their values are assigned as NaN and are
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plotted as white in the following averaged E-field plots.

The averaged plots in Fig. 7.16 are for a transmission at 1.5 GHz, with just metallic

walls in Fig. 7.16a and a doubly CR-FSS lined corridor in Fig. 7.16b. Although no

statistical analysis will be conducted on these averaged plots, it is interesting to note

that the two plots are much more similar in E-field level than the 2.4 GHz averaged

plots in Fig. 7.17.

(a) Unlined building

(b) Building with two CR-FSS installed

Figure 7.16: E-field plots for a dipole transmitting at 1.5 GHz, with each cell aver-

aged using 100 values over 100 square cm.
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(a) Unlined building

(b) Building with two CR-FSS installed

Figure 7.17: E-field plots for a dipole transmitting at 2.4 GHz, with each cell aver-

aged using 100 values over 100 square cm.
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7.10.2 SIR plots

Now that the E-field plots have been averaged, it is possible to calculate the signal

to interference ratio (SIR) at each given point in the matrix, representing the SIR at

any specific point in the building itself. As the SIR requires at least two transmitting

nodes, a secondary node and E-field pattern is acquired by simply mirroring the E-

field matrix result so that the transmitter is in the original ’Empty room’ and that

the empty room is the ’Room with Tx’, as shown in Fig. 7.18. The secondary

transmitter results in an interfering signal, the propagation of which can also be

altered by the CR-FSS structure. This will give a realistic scenario of a single

channel, two transmitter network. Similar scenarios have been constructed in [90]

where the signal-to-interference-and-noise ratio (SINR) is calculated and the effect

of absorber on walls of a building are characterised.

(a)

Figure 7.18: Creating a secondary plot for the calculation of SIR. This plot is the

mirrored version of Fig. 7.17b.

For this case, we operate under the premise that it is favourable to be connected to

the network with the highest signal/E-field strength. Under this assumption, the

signal part of the SIR will be the maximum E-field at a specific point in the results

matrix when comparing Fig. 7.17b and 7.18. The resulting information is plotted

in Fig. 7.19 and form the basis of the SIR. Similarly, the minimum E-field at each

matrix element when comparing the two cases is the interference. The SIR can be

calculated by dividing the signal level by the interference, as shown in equation 7.2.

SIR = 20 log

(
max(Ez(x, y)A, Ez(x, y)B)

min(Ez(x, y)A, Ez(x, y)B)

)
(7.2)
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(a) Unlined building

(b) Building with two CR-FSS installed

Figure 7.19: Plots showing the highest E-field level available from either transmitter

at 2.4 GHz.

where Ez(x, y)A and Ez(x, y)B are the linear E-fields in the z-plane at each x and y

element for the two matrices formed. Conducted for both the unlined and CR-FSS

lined corridors, SIR plots are shown in Fig. 7.20.
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(a) Unlined building

(b) Building with two CR-FSS installed
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(c) CDF of transmitting room

Figure 7.20: Signal-to-interference plots for the respective in-building simulations

at 2.4 GHz.

The plots in Fig. 7.20 show that much higher SIR is possible in the rooms, and

indeed in the corridor regions when the CR-FSS is installed in the building. The

results of these simulations are to be used as a proof of concept rather than for spe-

cific numerical analysis, particularly due to the inaccuracies of the building fabric.

151



Chapter 7: Validation at 2.4 GHz

For completion, the SIR plots are shown for 1.5 GHz in Fig. 7.21 for an unlined

corridor, and one with a CR-FSS installed. Little difference in SIR can be seen in

the individual rooms, confirming that the CR-FSS does not effect the propagation

at this frequency.

It is difficult to quantify whether the amount of attenuation shown in these sce-

narios is good enough to disrupt multipath propagation in an indoor environment.

We can consider that a range of variables will alter the propagation and ability to

isolate rooms sufficiently. Firstly, the antennas themselves can transmit at a range

of frequencies, distances, and have different gains, transmission powers, and receiver

sensitivities. The propagation environment will also vary a great deal with the build-

ing structure being composed of different materials and furniture. It has however

been acknowledged in [89] that various other solutions only offer up to 20 dB at-

tenuation in shielded rooms, and only when doors are closed. Furthermore, results

in [90] for an absorber lined corridor show improvements in SNR ranging from 10

to 30 dB, depending on reflectivity of the absorber used.
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(a) Unlined building

(b) Building with two CR-FSS installed

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

SIR (dB)

C
D

F

 

 

Flat wall
CR−FSS on wall

(c) CDF of transmitting room

Figure 7.21: Signal-to-interference plots for the respective in-building simulations

at 1.5 GHz.
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7.11 Conclusions

This chapter is used as a validation of the comb reflection frequency selective surface

(CR-FSS) and the application in a corridor. The initial sections of the chapter con-

sidered the optimisation of a structure for 2.4 GHz for both TE and TM polarisation

for a range of angles of incidence so that it would be suitable for use in a multipath

environment. Although initially designed to operate solely in the 2.4 GHz band, the

second harmonics lie in the 5 to 6 GHz region, meaning that the higher frequency

Wi-Fi bands may be affected.

Following this, in-building propagation simulations were run on CST MWS. The

model was constructed using PEC walls for accurate comparison of the the unlined

and CR-FSS lined corridors, whilst also serving to increase simulation time. Each

model was finely meshed to accurately simulate the effect of multiple repetitions of

the comb structure. In order to increase simulation time whilst maintaining E-field

accuracy the building was modelled with no roof or floor.

Cumulative distribution function (CDF) plots for two frequencies (1.5 GHz and 2.4

GHz) show both the out-of-band and in-band performance respectively. At 1.5 GHz,

there is no reduction of E-field in the ’Empty room’ despite the use of the CR-FSS

lined corridors; whereas at 2.4 GHz there is significant reduction of E-fields. The

performance of a wireless system can thus be summarised using signal-to-interference

ratio (SIR) plots, where once again at 2.4 GHz the performance of Wi-Fi transmitters

is shown to be increased in individual rooms due to the electromagnetic separation

down the corridor.
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Conclusions

Concluding remarks on the work conducted in this Thesis. Includes a summary of

the research, the contribution to current and state-of-the-art literature in the field of

electromagnetics, and the potential for use in future work.

8.1 Thesis summary

This thesis has investigated the use of a range of passive frequency selective struc-

tures that can be used to reduce specular reflections from propagating signals. Fur-

thermore, these reflections can be redirected at a pre-defined backscatter angle. The

main application of such a structure is in a corridor environment, where multipath

and oblique propagations are common. In particular, wireless friendly and energy

efficient buildings have become increasingly popular for research, whereby frequency

selective surfaces (FSS) are utilised to isolate wireless networks from each other for

the purpose of security, reduced interference, and increased network capacity. De-

spite the installation of FSS in metallic walls, propagation down corridors has the

potential to reduce the performance of these solutions.

This work offers several contributions to the design and analysis of passive FSS and

to the study of electromagnetic propagation as a whole. The design and measure-

ment of several passive structures have been conducted to understand their per-

formance in multipath environments. A bi-static three dimensional measurement

system was developed and optimised for the purpose of measuring such structures

and measurement result coincide well with CST MWS simulation work. Finally,

CST MWS was used for in-building propagation studies and provides a method of
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validation of the comb reflection FSS (CR-FSS) at 2.4 GHz.

Several criteria were initially used to define the design stages of the passive FSS

structures. These were:

• The surface should be cheap to manufacture and should add limited additional

cost to the normal design of a building.

• As it is proposed to be installed in a corridor environment, the structure height

should be assumed to be an important design consideration.

• The surface should reduce specular propagations at a variety of angles of in-

cidence down the corridor environment. This is in both the azimuth and

elevation planes of incidence.

• Performance should be adequate for both transverse electric (TE) and trans-

verse magnetic (TM) polarisations.

A variety of measurement and simulation results are presented, some requiring more

complex measurement systems such as the automated bi-static measurement rig de-

scribed in chapter A.2 for analysis of full scattering patterns of a variety of reflective

FSS. Initial surface design work began with investigation of existing comb structures

and their scattering performance and particularly how well they reduce specular re-

flections. The use of a comb reflection frequency selective surface (CR-FSS) to

achieve good reductions in specular scatter, re-directing this in a pre-defined direc-

tion based on frequency and angle of incidence is described in chapter 3.

A pin reflection FSS (PR-FSS) is designed to overcome some of the shortcomings

of the CR-FSS in chapter 4 by producing a rotationally symmetrical surface, how-

ever the performance at TE polarisation is significantly reduced. Thus, it can be

expected that there will be a trade-off when comparing both surfaces when applied

to a multi-path environment. This is likely to be scenario specific and decisions will

likely to have to be made during the design stage of any building modifications.

Further surface designs include a slanted comb FSS (SC-FSS) detailed in chapter 5.

The idea for this structure stems from trying to reduce the effective height of the

comb structure, thus making it more plausible for a variety of applications where
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space is a decisive factor. The design, simulation, and manufacture of such sur-

faces have shown to be more difficult than basic comb or pin structures, making

mass-production more expensive and time consuming. Furthermore, simulation and

measurement results show that the angular stability of such surfaces is not as good

as previous surface designs, making its multipath performance less understandable.

Chapter 6 details the final structure investigated. The initial idea of the crenelated

CR-FSS stems from the production of the CR-FSS from foam materials, which were

found to be susceptible to damage and difficult to line with foil. Increasing the

crenelation angle of the surface structure is found to add structural support, how-

ever its scattering characteristics subsequently change. It can be broadly said that

the reduction in specular scatter is reduced when the crenelation angle is increased.

A final validation and optimisation of the CR-FSS at 2.4 GHz is conducted in CST

MWS. This includes choice of parameters which make the specular scatter reductions

overlap at 2.4 GHz for both TE and TM polarisation, whilst maintaining adequate

angular stability over a wide range of angles of incidence. Full in-building simula-

tions show that by installing the pre-designed structure in a corridor environment,

a frequency selective performance can be achieved. Scenario examples show that at

1.5 GHz the structure does not effect the propagation of signals at all; however, at

2.4 GHz there is a large reduction in signal level. Cumulative distribution function

(CDF) plots are used to statistically prove the effectiveness of the CR-FSS structure.

8.2 Contribution to existing literature

The work described in this Thesis offers an additional method of increasing the elec-

tromagnetic separation of co-channel transmitting nodes in a building by reducing

the propagation down a corridor. This is most likely to be in a scenario either where

there are multiple 2.4 GHz transmitters or in a building which has been designed to

be wireless friendly with the use of metallic walls (used for isolation of rooms). The

work detailed in this Thesis has contributed to several areas of propagation in the

following ways:

• Consideration of the propagation down corridors - before this research,
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wireless friendly building design did not consider the issue of preventing prop-

agation down corridors. The main aim was to isolate individual rooms using

metallic walls, and have control over which frequencies can pass to other parts

of the building using FSS. Ideally this is fine, however users of buildings often

leave doors open and the doors themselves can leak electromagnetic energy

due to air gaps if they are poorly fitted in the building. Propagation down

corridors offer several design issues such as the requirement for oblique inci-

dence performance and sufficient bandwidth over a range of angles.

• Design, measurement, and simulation of a variety of surface struc-

tures - Four different passive surface structures are investigated for their suit-

ability to reduce specular reflections. The majority of this work covers the

design of such structures and their advantages/disadvantages in reducing spec-

ular scatter for both TM and TE polarisation. Some structures are effective

for both (CR-FSS), whilst others are useful for only one polarisation, but offer

reduction for a range of azimuth and elevation angles (PR-FSS). Furthermore,

implementation in narrow corridors using slanted-comb FSS (SC-FSS) and

surfaces with ease of production considered (crenelated CR-FSS).

• Use of the rotational scattering measurement system in other PhD

projects - the bi-static rotating measurement system described in Chapter A.2

is being used in current PhD projects, utilising the time domain gating features

implemented in this project to improve measurement accuracy.

• Published papers on the subject area - to date, the work from this The-

sis has been disseminated in several journals and at a variety of conferences

including two IEEE Transactions.

8.3 Further work

During the course of the PhD work many further ideas have been considered. This

section details those thoughts based on reading literature in the area, discussion

with colleagues, and work that could be completed to reinforce research described
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in this Thesis.

8.3.1 In-situ measurements

Following the simulation of building propagation in chapter 7, it is proposed that

an in-situ experimental measurement be conducted to evaluate the performance of a

CR-FSS structure installed in a corridor. Potential cost and installation difficulties

will make this a difficult task and the potential outputs at this stage of research

were deemed non-essential considering both surface characterisation and in-building

simulations have been performed. This would also give an understanding the opti-

misation of such surfaces in a real life scenario.

8.3.2 Further indoor simulations

Work conducted in chapter 7 can be further expanded to understand the effect of

multiple transmitters (not limited to 2) on the signal-to-interference ratio (SIR).

This will also offer an insight into the performance of the CR-FSS in much larger

buildings rather than just one corridor.

Furthermore, following the measurement of building materials in section ??, their

effect on propagation can not be under valued. The in-building simulations in this

Thesis consider only PEC walls for the purpose of speed of simulation and exact

comparison of unlined and CR-FSS lined corridor walls. The placement of plas-

terboard materials on top of the CR-FSS structures is likely to have an effect on

reduction frequency ranges and possibly performance despite their low relative per-

mittivity.

8.3.3 Active Structures

Active structures are becoming increasingly popular in in-building propagation con-

trol, particularly for their ability to change transmission characteristics, as previ-

ously described in the literature review in this thesis. The analysis and design of the

pin reflection FSS (PR-FSS) in chapter 4 for example, was conducted in the hope

of transforming this surface into a switchable active surface. The pins in this case

would be able to be disconnected and reconnected to the ground plane in order to
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change its scattering characteristics.

A three dimensional microstrip surface was modelled using CST and simulated,

initially using ideal open and short circuits between the pin and ground plane.

Results of the specular scatter showed that there was a significant difference between

both cases. Further implementation of the surface using controllable pin diodes to

switch between each case showed that although the specular scatter region could

be altered, it did not match the performance of the perfect open and short cases.

Nonetheless, this is a possible area for future research in electromagnetic scattering

of three dimensional periodic structures.
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Appendix A

Appendices

A.1 A note on mode-matching

Although the work covered in this Thesis does not directly mention mode-matching

techniques, an analytical based paper was published by the author, with results that

could be directly applicable to the research conducted as part of this PhD work. As

well as the development of mathematical principles for the analysis of periodic comb

surfaces, experimental and CST simulation results were conducted to characterise

and validate the structures and mathematical approach.

The paper, ‘A mode matching technique for analysis of scattering by periodic comb

surfaces ’ is overleaf.
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Abstract—Numerical techniques for calculating 

electromagnetic fields within three dimensional surfaces are 

computationally intensive. Therefore, this paper presents the 

application of a mode-matching technique developed for analyzing 

electromagnetic scattering from periodic comb surfaces 

illuminated by a plane wave. A set of linear equations have been 

developed to calculate mode coefficients of the field distribution 

for both E-polarized and H-polarized incident waves. Analysis is 

performed for two cases where the comb thickness is either 

infinitely thin or of a finite thickness. The technique is shown to 

accurately predict both field intensities within the near-field of the 

periodic surface and far-field scattering patterns. Results are 

compared to those obtained using the finite integration techniques 

(FIT) implemented in CST Microwave Studio. Furthermore, 

numerical results are compared to measurements of an aluminum 

prototype. Additional far-field scattering measurements using a 

bi-static system provide additional confidence in CST simulations 

and the mode-matching methods presented here. 

 
Index Terms—Mode matching, electromagnetic scattering, 

periodic structures, CST Microwave Studio. 

I. INTRODUCTION 

HE use of periodic structures and surfaces to control 

scattering of electromagnetic waves has been 

comprehensively investigated. Their use in both indoor and 

outdoor environments have been explored. Typical examples 

include using periodic comb surfaces for reducing the 

interference caused by an Instrument Landing System (ILS) at 

airports [1]. Alternatively, corrugated surfaces can be used to 

improve signal coverage close to a building due to surface wave 

propagation [2]. The control of propagation in indoor 

environments was described in [3], where various periodic 

structures can reduce the specular scatter down corridors. By 

suppressing interference between adjacent co-channel Wi-Fi 

access points, signal coverage can be improved [4]. 

 

 
 

 

 
Fig. 1.  Geometry of the corrugated surface problem. 

 

Mathematically, the scattering properties of periodic comb 

surfaces were studied by several authors [5, 6]. In [7], a mode 

matching technique was applied to scattering by an inclined 

strip grating and in [8] this method was used to arrive at simple 

approximate closed-form formulas for mode coefficients of a 

parallel-plate waveguide. In this work we apply mode-matching 

technique to solve the problem of scattering by a comb grating 

structure. Analytical solutions have been applied to many 

different periodic structures, such as sinusoidal [9], saw-shaped 

[10], and comb [11] gratings. A comparison of different 

methods is described in [12], with the scattering from a sinusoid 

considered with use of the Masel, Merrill, and Miller (MMM) 

method [13], the Modified Physical Optics (MPO) method [14], 

and Waterman’s Plane Harmonics (WPH) [15] method all 

discussed. Mode matching methods have been investigated in 

[16], where the analysis is based on Green’s second theorem, 

describing the integration around a closed contour. Various 

periodic structures such as high impedance surfaces (HIS) are 

analyzed using the mode matching analysis in [17]. 

In this paper, we present a mode-matching solution to the 

scattering and fields within a periodic comb surfaces, reinforced 

by CST simulations and experimental measurement of an 

aluminum surface. Building on the work referenced above, we 

present analytical solutions for calculating the electric field 

within or above a comb surface. Equations are developed for 

both TE and TM polarizations and can be applied to combs 

having any finite thickness. This enables computationally fast 

analysis of periodic scattering surfaces. 

Section II introduces the use of Floquet scattering modes in 

combination with waveguide cavity theory to calculate field 

distribution of a periodic comb structure. Section III provides a 

generic field matching solution, whereby the thickness of the 

fins does not affect the analytical solution, to calculate the 
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respective field at a certain position on the structure. Section IV 

uses the electric field calculation for infinitely thin fins (t=0) to 

calculate the far-field scattering pattern of the structure. These 

analytical results are verified using CST simulations. Section V 

expands on the field calculation to consider when there is a 

finite thickness to the fins (t>0). Once again, CST simulations 

are produced to compare to our analytical results. Section VI 

uses experimental measurements and further CST simulations 

to further verify the analytical work presented in this paper. The 

paper is concluded in Section VII. 

II. ANALYTICAL FORMULATION 

In this section we present the analytical formulation of the 

equations required to calculate the electromagnetic fields within 

a periodic comb surface. A two-dimensional geometry of the 

periodic surface and incident wave is shown in Fig. 1. The 

structure consists of perfectly conducting periodic fins of 

thickness t on a ground plane. In contrast to previous research 

[17], this work considers surfaces which are electrically large 

in terms of the wavelength of the illuminating source. The 

period and height of the fins are denoted by p and d, 

respectively. The inner distance between the fins is 𝐿, where 

𝐿 = 𝑝 − 𝑡. Mathematically, the problem is split into two 

different regions, where the field is calculated by different 

equations. Region I is positioned above the structure at z>0. 

Region II occurs in the structure itself, at distance -d<z<0. 

These regions are labelled as I and II (see Fig. 1). 

The electromagnetic plane wave illuminating the periodic 

surface, is represented by the vector ki and is incident in Region 

I at an angle, 𝜃 and is reflected (as specular scatter) at an angle, 

ϕ. The angles 𝜃 and ϕ are positive when the 𝑥-component of ki 

and ks are respectively in the positive direction of 𝑥-axis. The 

scattering scenario is treated as a two-dimensional problem 

within the 𝑥-𝑧 plane.  

Using the time harmonic phasor form (𝑒𝑗𝜔𝑡) of an incident 

plane wave illuminating the surface expressed as: 

 

𝑒−𝑗(𝛼0𝑥−𝛽0𝑧) 

                                    (1) 

 

the resulting wave is scattered from the periodic surface and can 

be expressed as the summation of spatial harmonics based on 

Floquet theory [18], namely:  

 

∑ 𝐴𝑚𝑒−𝑗(𝛼𝑚𝑥+𝛽𝑚𝑧)

∞

𝑚=−∞

 

                   (2) 

 

Then the total field in Region I, representing the y-

component of electric or magnetic field intensity in the case of 

a TE or TM polarized incident wave, can therefore be expressed 

as: 

 

𝜓𝐼 = 𝑒−𝑗(𝛼0𝑥−𝛽0𝑧) + ∑ 𝐴𝑚𝑒−𝑗(𝛼𝑚𝑥+𝛽𝑚𝑧)

∞

𝑚=−∞

 

       (3) 

 

Where unitary amplitude of incident wave is assumed, k0 is the 

wave number, and where α and β are 𝑥 and 𝑧 components of k0, 

respectively. 

 

𝛼𝑚 = 𝛼0 +
2𝜋𝑚

𝑝
                               (4a) 

 

𝛽𝑚 = √𝑘0
2 − 𝛼𝑚

2                             (4b) 

 

and 

𝛼0 = 𝑘0𝑠𝑖𝑛𝜃                                 (4c) 

 

Due to the electrically large size of the features of the 

periodic surface, the total field in Region II can therefore be 

written as a summation of forward-travelling and reflected 

wave within a waveguide cavity as: 

 

𝜓𝑇𝐸
𝐼𝐼 = ∑ 𝐵𝑚𝑠𝑖𝑛

𝑚𝜋𝑥

𝐿

∞

𝑚=1

[𝑒𝑗𝑘𝑚𝑧 − 𝑒−𝑗𝑘𝑚(2𝑑+𝑧)] 

      (5a) 

 

in the case of TE-polarized incident wave and as 

 

𝜓𝑇𝑀
𝐼𝐼 = ∑ 𝐵𝑚𝑐𝑜𝑠

𝑚𝜋𝑥

𝐿

∞

𝑚=0

[𝑒𝑗𝑘𝑚𝑧 + 𝑒−𝑗𝑘𝑚(2𝑑+𝑧)] 

        (5b) 

 

in the case of TM-polarized incident wave. Where the 

imaginary part of km must be negative to ensure wave 

attenuation along the 𝑧-axis: 

 

𝑘𝑚 = √𝑘0
2 − (

𝑚𝜋

𝐿
)

2

 

    (6) 

 

Equation 2a and 2b enable us to develop a series of analytical 

formula described in the following sections of this paper. 

III. GENERIC FIELD MATCHING SOLUTION FOR FINS OF 

ARBITRARY THICKNESS 

In this section we develop a generic field matching solution 

for the periodic surface illustrated in Fig. 1 comprising of fins 

of arbitrary thickness. Such a solution enables us to predict the 

field distribution within or near to an infinite periodic structure. 

The validity of the theory is assumed for structures with a finite 

number of fins as well. 

Firstly this has been achieved by developing the work 

published in [7, 8] to utilize Green’s second theorem [19] in 

order to match fields ψI and ψII. By selecting the integration path 

intersecting regions I and II, thus relating both fields in one 

equation. Therefore Green’s second theorem can be expressed 

in the form 
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∮ (𝜙
𝜕𝜓

𝜕𝑁
− 𝜓

𝜕𝜙

𝜕𝑁
)

𝐶

𝑑𝑙 = ∬(𝜙∇2𝜓 − 𝜓∇2𝜙)
𝑆

𝑑𝑠 

         (7) 

 

where the integration is made along an arbitrary closed curve, 

C and forms a boundary of surface, S. The curve C is 

represented by its outer normal, N. The function ϕ is an 

auxiliary function; in the case where ϕ satisfies Helmholtz 

equation, the right side of (7) is equal to zero. In our case the 

curve C is chosen as indicated in Fig. 1, where the integration 

is completed over one period of the grating. The contribution to 

the integral is in both directions of the x-axis only; the 

contribution in the direction of z-axis is negligible. Assuming ϕ 

satisfies Helmholtz equation, (7) yields 

 

∫ (𝜙
𝜕𝜓𝐼

𝜕𝑧
− 𝜓𝐼

𝜕𝜙

𝜕𝑧
)

𝐿

0

𝑑𝑥 + ∫ (𝜙
𝜕𝜓𝐼𝐼

𝜕𝑧
− 𝜓𝐼𝐼

𝜕𝜙

𝜕𝑧
)

0

𝐿

𝑑𝑥 = 0 

   (8) 

 

In general, ψI and ψII are expressed using an infinite number 

of coefficients: Am and Bm, for ψI and ψII respectively. 

Practically, the number of coefficients is limited as m = -M,…, 

-1, 0, 1, …, M in the case of Am coefficients and m = 1, 2, …, 

2M + 1 in the case of Bm coefficients, resulting in overall 

number of unknowns in (8) equal to 4M + 2. Therefore 2M + 1 

of pairs of linearly independent equations are needed to solve 

for Am and Bm coefficients. This is achieved by selecting 2M + 1 

linearly independent pairs of ϕ as 

 

𝜙𝑛
+𝑇𝐸

= 𝑠𝑖𝑛 (
𝑛𝜋𝑥

𝐿
) 𝑒−𝑗𝑘𝑛𝑧 

                      (9a) 

𝜙𝑛
−𝑇𝐸 = 𝑠𝑖𝑛 (

𝑛𝜋𝑥

𝐿
) 𝑒𝑗𝑘𝑛𝑧 

                        (9b) 

 

for TE polarization where n = 1, 2, …, 2M+1. Similarly, they 

can be represented as 

 

𝜙𝑛
+𝑇𝑀

= 𝑐𝑜𝑠 (
𝑛𝜋𝑥

𝐿
) 𝑒−𝑗𝑘𝑛𝑧 

                       (9c) 

𝜙𝑛
−𝑇𝑀 = 𝑐𝑜𝑠 (

𝑛𝜋𝑥

𝐿
) 𝑒𝑗𝑘𝑛𝑧 

                         (9d) 

 

for TM polarizations where n = 0, 1, …, 2M. Inserting (3), (5) 

and (9) in (8) gives following set of linear equations that are 

used to calculate Am and Bm. 

 

∑ (𝛽𝑚 − 𝑘𝑛)

∞

𝑚=−∞

∙ 𝐹𝑛,𝑚𝐴𝑚 + 𝐺𝑛𝐵𝑛 = (𝛽0 + 𝑘𝑛) ∙ 𝐹𝑛,0 

   (10a) 

∑ (𝛽𝑚 + 𝑘𝑛)

∞

𝑚=−∞

∙ 𝐹𝑛,𝑚𝐴𝑚 + 𝐺𝑛
′𝐵𝑛 = (𝛽0 − 𝑘𝑛) ∙ 𝐹𝑛,0 

   (10b) 

 

Where 

 

𝐹𝑛,𝑚 =
𝑛𝜋 𝐿⁄

(𝑛𝜋 𝐿⁄ )2−𝛼𝑚
2

[1 − 𝑒−𝑗𝛼𝑚𝐿𝑐𝑜𝑠(𝑛𝜋)]       for TE pol.  

                        (11a) 

𝐹𝑛,𝑚 =
𝑗𝛼𝑚

(𝑛𝜋 𝐿⁄ )2 − 𝛼𝑚
2

[1 − 𝑒−𝑗𝛼𝑚𝐿𝑐𝑜𝑠(𝑛𝜋)]      for TM pol. 

                        (11b) 

 

and where 

 

       
𝐺𝑛 = 𝑘𝑛𝐿

              𝐺𝑛
′ = 𝑘𝑛𝐿𝑒−2𝑗𝑘𝑛𝑑            for TE pol. 

 
    𝐺𝑛 = 2𝑘𝑛𝐿

                    𝐺𝑛
′ = −2𝑘𝑛𝐿𝑒−2𝑗𝑘𝑛𝑑         for TM pol. , 𝑛 = 0 

 

   
𝐺𝑛 = 𝑘𝑛𝐿

                 𝐺𝑛
′ = −𝑘𝑛𝐿𝑒−2𝑗𝑘𝑛𝑑        for TM pol. , 𝑛 ≠ 0 

 

The field distribution within or near to the structure is now 

readily available using (3, 5) with use of Am and Bm coefficients, 

that are in turn obtained by solving the set of equations (10). As 

Region I and Region II have to be identical at the boundary 

(z=0), the number of harmonics in each region must be the same 

i.e. 2M+1. This is also necessary for the numerical stability of 

solving Eq. 10a and 10b. In general, for a given geometry the 

number of modes considered M, must increase as the frequency 

of interest increases. For the examples presented in this work 

M=19, although M=7 would provide comparable results for 

frequencies up to 20 GHz. 

A. Comparison of analytical simulation with CST for 

infinitely thin combs 

The analytical solution generated in the previous section is 

compared to the finite integral technique (FIT)-based software 

CST Microwave Studio [20], in order to verify the theoretical 

prediction of field distribution by (3, 5) using coefficients 

obtained by the procedure described earlier in this section. For  

both the analytical solution and the CST simulation, the tested 

periodic surface consists of 12 fins separated by a fin period, p 

of 20 mm. The height d of each fin, d is 50 mm. The width of 

the structure along the y-axis direction is 400 mm. CST 

simulations were performed for both the full 3D structure and 

the representative 2D structure using periodic boundaries as 

described in [4] which is more computationally efficient. 

The magnitude of the 𝑦-component of the electric field 

intensity, Ey for TE, and magnetic field intensity, Hy for TM 

polarized incident waves are shown in Fig. 2, where 𝐸𝑦 = 𝜓𝐼  

and 𝐻𝑦 = 𝜓𝐼 𝑍0⁄ . The field is calculated with respect to unitary 

amplitude of incident electric field intensity. The observation 

point is in the center of the structure at height z = 20 mm and -

20 mm. The field intensity is shown as a function of frequency 

for incidence angle 𝜃 = 50˚. The predicted field outside (z = 20 

mm) and inside (z = -20 mm) the structure are shown in Fig. 2 

and Fig. 3 respectively. The results show that there is excellent 

agreement between the mode-matching approach described 

previously, and the fully numerical solution obtained by CST. 
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It can be observed that the CST simulation result for 2D and 3D 

cases are almost identical.  

 

 
Fig. 2. Comparison of modelling results; considering the field outside the 
structure at [x; y; z] = [11 cm; 0 cm; 2 cm]. 

 

 
Fig. 3. Comparison of modelling results; now considering the field inside the 

structure at [x; y; z] = [11 cm; 0 cm; -2 cm]. 

 
Fig. 4.  Field amplitude as a function of y (x = 11 cm, z = 0 cm) for TE-polarized 
wave and for three distinct frequencies 5 GHz, 10 GHz and 15 GHz. 

 

The CST simulated E-field intensity on the boundary of the 

two regions as a function of y-dimension (x = 11cm, z= 0 cm) 

is shown in Fig. 4 documenting that the field along the y-axis 

can be considered roughly invariant.  

As well as obtaining accurate results for the examples given 

in this paper, the analytical mode-matching method several 

orders of magnitude faster than CST. For example, for a 

computer with a 2.83 GHz processor and 8 GB RAM, the mode 

matching technique takes 200 ms to analyze the structure for 

one polarization and 200 frequency points as shown in Figs 2 

and 3. The calculation of the same result using CST takes 

approximately 10 minutes for the 3D case and approximately 

60 seconds for the 2D case. 

B. Comparison of analytical results with CST for combs 

with a thickness greater than zero 

 
Fig. 5.  Comparison of modelling results; considering the field on the boundary 

of the Region I and Region II, [x; y; z] = [11 cm 0 cm 2 cm]. For a thickness, t 
= 1.6 mm 

 

 
Fig. 6.  Comparison of modelling results; field on the boundary of the Region I 

and Region II, [x; y; z] = [11 cm 0 cm -2 cm]. For a thickness, t = 1.6 mm 

 

Numerical simulations and the proposed analytical technique 

are compared for fins of non-zero thickness is shown in Figs. 5 

and 6 for surfaces with a thickness of 1.6 mm. The results show 

there is still a good agreement between the proposed approach 
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based on mode matching and the fully numerical solution by 

CST for non-zero thickness. Increased fin thickness lowers the 

separation of the plates of the waveguide formed by the fins and 

shifts the frequency pattern in Figs. 5 and 6 towards higher 

frequencies compared to the case of infinitely thin fins. This 

applies only to TE polarization, however. For TM polarization 

the fin thickness is not significant. 

 

 
Fig. 7a. Comparison of modelling results for TE polarization; field on the 

boundary of the Region I and Region II, [x; y; z] = [11 cm 0 cm 0 cm]. 
Thickness t varies from 2.0 mm to 10 mm as indicated. 

 

 
Fig. 7b. Comparison of modelling results for TM polarization; field on the 

boundary of the Region I and Region II, [x; y; z] = [11 cm 0 cm 0 cm]. 
Thickness t varies from 2.0 mm to 10 mm as indicated. 

To investigate the influence of the fin thickness t on the 

mode-matching simulation accuracy, comparisons have been 

made for three cases (t = 2 mm, t = 5 mm and t = 10 mm) while 

keeping the fins’ period constant (p = 20 mm). The resulting 

comparisons can be seen in Fig. 7a and 7b for TE and TM 

polarization, respectively. It can be observed that the two results 

correspond quite well for smaller fin thickness (where t/p <= 

0.25) while diverging for increased fin thickness (where t/p = 

0.5). 

IV. FAR-FIELD SCATTERING FOR INFINITELY THIN COMBS 

In order to calculate the far-field scattering by the periodic 

surface with infinitely thin combs, the scattered component of 

the field ψI(x, y) has to be calculated at points where z=0 and 

integrated over the surface of the structure using Kirchhoff-

Huygens principle as [21] 

 

𝐸𝑠 =
𝑗𝑘0

4𝜋𝑟
∫ ∫ 𝜓𝑠

𝐼(𝑥, 0)𝑒𝑗𝑘0𝑥𝑠𝑖𝑛𝜙(𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝜙) 𝑑𝑦𝑑𝑥
𝑊 2⁄

−𝑊 2⁄

𝑋

−𝑡
    

(12) 

 

where  

𝜓𝑠
𝐼(𝑥, 𝑧) = ∑ 𝐴𝑚𝑒−𝑗(𝛼𝑚𝑥+𝛽𝑚𝑧)∞

𝑚=−∞             (13) 

 

and where the exponential term in (12) represents the phase 

shift relative to an element at x=0.  The phase term 𝑒−𝑗𝑘0𝑟 is 

neglected in (12). W is the width of the structure measured along 

the y-axis and X is the dimension of the structure along the x-

axis which can be expressed as X = (Nf - 1)·p where Nf is the 

number of fins and 𝑝 is the fin period. The distance, r is the 

distance between the surface and the receiving point, and is the 

same for all points on the structure due to the far-field scattering 

assumption. Evaluating (12) gives the far-field scattering at a 

distance r in the 𝑥-𝑧 plane as a function of incidence, 𝜃 and 

scattering angle, 𝜙.  

 

𝐸𝑠 =
𝑘0𝑊(𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝜙)

4𝜋𝑟
∑ 𝐴𝑚

𝑒−𝑗(𝛼𝑚−𝑘0𝑠𝑖𝑛𝜙)𝑋 − 1

𝑘0𝑠𝑖𝑛𝜙 − 𝛼𝑚

∞

𝑚=−∞

 

     (14) 

 

Fig. 8 shows the far-field scattering pattern of the structure 

as a function of scattering angle, 𝜙 at a frequency of 12 GHz. 

In this case, the fins of the structure are infinitely thin. The angle 

of incidence, 𝜃 is 50°.  In this case, the reference distance for 

the pattern calculation was 1 m. relatively good agreement can 

be observed between the CST prediction and mode matching 

simulation using (14). Our mode matching equations offer a 

good prediction of the expected CST result in a much faster 

 

𝐸𝑠
𝑇𝐸 =

𝑘0𝑊

4𝜋𝑟
(𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝜙) ∑ ∑

𝐴𝑚𝑒𝑗(𝑘0𝑠𝑖𝑛𝜙−𝛼𝑚)𝑛𝑝

𝑘0𝑠𝑖𝑛𝜙 − 𝛼𝑚
[𝑒𝑗(𝑘0𝑠𝑖𝑛𝜙−𝛼𝑚)𝐿 − 1]

∞

𝑚=−∞

𝑁𝑓−2

𝑛=0

 

                                        (15) 

𝐸𝑠
𝑇𝑀 =

𝑘0𝑊

4𝜋𝑟
(𝑐𝑜𝑠𝜃 + 𝑐𝑜𝑠𝜙) ( ∑ ∑

𝐴𝑚𝑒𝑗(𝑘0𝑠𝑖𝑛𝜙−𝛼𝑚)𝑛𝑝

𝑘0𝑠𝑖𝑛𝜙 − 𝛼𝑚
[𝑒𝑗(𝑘0𝑠𝑖𝑛𝜙−𝛼𝑚)𝐿 − 1]

∞

𝑚=−∞

𝑁𝑓−2

𝑛=0

− ∑
𝑒𝑗𝑘0(𝑠𝑖𝑛𝜙−𝑠𝑖𝑛𝜃)𝑛𝑝

𝑘0(𝑠𝑖𝑛𝜙 − 𝑠𝑖𝑛𝜃)
[1 − 𝑒−𝑗𝑘0(𝑠𝑖𝑛𝜙−𝑠𝑖𝑛𝜃)𝑡]

𝑁𝑓−1

𝑛=0

) 

    (16) 
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solver time, with small discretion for 𝜙 >75° and 𝜙 < −55° for 

TE and TM polarization. 

V. FAR-FIELD SCATTERING FOR COMBS WITH A THICKNESS 

GREATER THAN ZERO 

A similar approach as in Section IV was used to derive 

formulas analogical to (14) for a structure with fins of a 

thickness greater than zero. Note that the amplitude of 𝜓𝑠
𝐼(𝑥, 0) 

is equal to zero and one for 𝑛(𝐿 + 𝑡) − 𝑡 < 𝑥 < 𝑛(𝐿 + 𝑡) in the 

case of TE and TM polarization, respectively, due to boundary 

conditions; 𝑛 = 0, 1, … , 𝑁𝑓 − 1. Evaluating (12) and taking into 

account boundary conditions gives equations (15, 16). Fig. 9 

shows the far-field scattering pattern of the structure as a 

function of scattering angle, 𝜙. The periodic structure is the 

same as in the previous case with exception of thickness of the 

fins set equal to t = 1.6 mm.  

 
Fig. 8.  Comparison of CST modelling results and mode matching formula 

using equation (10). The far-field scattering pattern for an angle of incidence, 

𝜃 = 50˚ for t = 0 mm at a frequency of 12 GHz. 

 
Fig. 9.  Comparison of CST modelling results and mode matching formula 

using equation (10). The far-field scattering pattern for an angle of incidence, 

𝜃 = 50˚ for t = 1.6 mm at a frequency of 12 GHz. 

 

The frequency of interest is 12 GHz. As can be seen from 

comparison of Figs. 8 and 9, the fin thickness has an impact on 

the scattering pattern.   

VI. EXPERIMENTAL MEASUREMENT OF FAR-FIELD 

CHARACTERISTICS 

Further investigation of the far-field characteristics was 

conducted using CST simulations, the mode-matching method, 

and retrospective far-field scattering measurements. To perform 

accurate measurements for comparison and validation of the 

other two techniques, a prototype aluminum surface was 

manufactured using bent aluminum strips secured using rivets 

to an aluminum ground plane, creating a surface with overall 

dimensions of 621 × 600 mm. The constructed surface had a fin 

period of 23 mm, height of 50 mm, and thickness of 1.6 mm. 

The final prototype is shown in Fig. 10. 

Measurements of the aluminum surface were conducted to 

characterize the far-field scattering of the surface, relative to 

angle of scatter. These were conducted in a bi-static 

measurement chamber, developed in [22]. A frequency range 

of 8 to 18 GHz was measured, using a sweep time of 2 seconds, 

and intermediate frequency bandwidth (IFBW) of 1 KHz on an 

Agilent E8720 vector network analyzer (VNA). Relevant time 

gates were used to remove noise. 

 

 
Fig. 10.  The constructed aluminum surface, with a fin period of 23 mm, height 

of 50 mm, and thickness of 1.6 mm. The surface has 27 reputations of fins 

secured on a ground plane of 621 × 600 mm. 

 

A. Far-field measurements at 12 GHz 

The scattering from the periodic aluminum prototype and a 

flat metal plate were measured for both TM and TE 

polarization, and plots at 12 GHz are shown in Figs. 11 and 12 

respecitvely. For TM polarization, there is a clear reduction in 

specular scatter at 50°, redirected as backscatter at 

approximately -20°. Due to the large beamwidth of the horn 

antenna, the peak in specular scatter covers a large angle of 

scatter than in CST simulations and mode-matching solutions. 

A similar response is shown for TE polarization in Fig. 12, 

although the surface does not have such a large reduction in 

specular scatter at this frequency for TE polarization. Once 

again, there is a peak increase in backscatter at -20°.  
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Fig. 11. The far-field scattering pattern for TM polarization at a frequency of 

12 GHz, comparing results from the periodic comb and flat plate. 

 

 
Fig. 12. The far-field scattering pattern for TE polarization at a frequency of 
12 GHz, comparing results from the periodic comb and flat plate. 

 

B. Full scattering analysis 

Measurement results were extended to produce a scattering 

measurement across a whole range of frequencies for 

comparison with both CST simulations and mode-matching 

results. This was done for TM polarisation and an angle of 

incidence of 50°. 

A full frequency sweep of the scattering characteristics 

using the bi-static measurement system is shown in Fig. 13. The 

main scattering lobes can be compared to Figs. 14, where a 

similar response is obtained using the mode matching 

technique, whilst illuminated with a unitary amplitude plane 

wave and receiver reference distance equal to 1 meter. For both 

cases it is possible to see the sweeping backscatter angle as the 

frequency increases. As previously described in literature this 

is linked to Bragg’s Law [4, 22]. The beamwidth in Fig. 13 is 

much larger due to the types of antenna horn used in 

measurement.  

Simulation results of the CST model in Fig. 15 reveal an 

identical response to that Fig. 14, showing that the mode-

matching technique can be used to accurately obtain results 

much more quickly than measurements and numerical 

techniques.  

 

 
Fig. 13. The measured scattering magnitude for a frequency of 8 GHz and 

18 GHz between scattering angles of -90° and 90° for TM polarization.  

 

 
Fig. 14. The mode matching scattering magnitude for a frequency of 8 GHz and 

18 GHz between scattering angles of -90° and 90° for TM polarization. 

 

 
Fig. 15. CST simulation plot of the scattering magnitude for a frequency of 8 

GHz and 18 GHz between scattering angles of -90° and 90° for TM 

polarization.  
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VII. CONCLUSIONS 

In this work we have presented a novel mode-matching 

technique that is suitable for calculating the electric and 

magnetic fields within the near-field region of a periodic comb 

surface and the resultant far-field scattering pattern. The fields 

can be expressed as an infinite sum of modes and the 

coefficients of individual modes are obtained by solving the 

proposed set of linear equations. The proposed technique is 

suitable for analysis of such surfaces illuminated by both E-

polarized and H-polarized incident waves. Analysis has been 

performed for two cases where the comb thickness is either 

infinitely thin or of a finite thickness. Calculated results are in 

good agreement to those obtained using the finite integration 

techniques (FIT) implemented in CST Microwave Studio (CST 

MSW). Our mode matching technique is computational faster 

by several orders of magnitude when compared to FIT. 

Furthermore, numerical results are compared to measurements 

of an aluminum prototype. Far-field scattering measurements 

are obtained using a bi-static system. These results provide 

additional confidence in the validity of CST simulations and the 

mode matching methods presented within this paper. 
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Appendix A: Appendices

A.2 Measurement techniques

This chapter introduces the main measurement techniques used in validating the

surfaces built in this thesis. This includes the development of a bi-static measure-

ment system specifically designed for the measurement of reflective frequency selec-

tive surfaces. Methods used in removing noise and coupling from measurements are

described.

A.2.1 Introduction

The measurement of the frequency selective surfaces investigated in this project

is essential for validation of simulations and theoretical predictions. This chapter

describes a variety of different issues with measurement, including:

• Naval Research Laboratories (NRL) arch measurement set-up.

• Bi-static scattering measurement design and set-up.

• Time gating techniques for improving measurement accuracy in both experi-

mental systems.

• Target size constraints.

• Calibration and validation of the experimental systems.

To summarise, two main measurement systems and their calibration are discussed.

Work on the design and development of the bi-static measurement system is pub-

lished in a journal paper entitled “Novel indoor bi-static measurement facility for

full scattering characterisation of surfaces at oblique incidence”.
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A.2.2 NRL reflectivity arch

Initial measurements on the prototype surfaces were conducted on the Naval Re-

search Laboratories (NRL) reflectivity arch at the University of Sheffield. The arch

illustrated in Fig. A.1a is used to perform specular scatter measurements in the

characterisation of the FSS in this thesis.

The experimental set-up consists of a bi-static measurement arrangement, suitable

for measuring the specular scatter of any surface positioned on the target area. The

transmit and receive antennas are focused on the target, and are positioned manually

using an external positioning system. An angular range of 5◦ to 60◦ is available for

both transmitter and receiver. The angles are measured from the normal to the

surface, as shown in Fig. A.1b.

(a)

TX RX 

DUT 

θi 

θr 

(b)

Figure A.1: (a)The bi-static NRL reflectivity arch used to measure the frequency

range of both the CR-FSS and PR-FSS prototypes, (b) a schematic view of the

measurement system. The sample is 600 mm2.

A.2.2.1 Network analyser settings

The 2 port Agilent 8720D vector network analyser (VNA) showin in Fig. A.2 was

used to perform S21 measurements in the NRL arch, with the VNA settings dis-

played in Table A.1. In most measurements, a frequency range of 2 to 18 GHz
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was used with 401 discrete points. A sweep time of 2 seconds and an intermediate

frequency of 1 kHz was adequate for accurate measurement.

Figure A.2: The Agilent 8720D vector network analyser (VNA) used in both the

NRL reflectivity arch and the bi-static measurement chamber.

Although not essential for measurements of this nature, the NRL arch is positioned

in an anechoic chamber. Various calibration techniques are used in characterisation

of FSS surfaces, and are described here. The measurement steps are shown below:

1. The transmitter angle, θi and receiver angle, θr are manually positioned.

2. Time gating is applied to remove coupling and reflections from inside the

chamber.

3. The flat metal plate is positioned in the target area and the S21 result is saved.

4. The FSS are positioned in the same position as the flat plate, and the S21

result is saved.

5. Steps 4 and 5 are repeated for each θi and θr angle, and each polarisation. This

data is then used to compare the difference between measured magnitudes.
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Table A.1: VNA parameters and relevant measurement distances for the NRL re-

flectivity arch.

Parameter Value

Start frequency 2 GHz

Stop frequency 18 GHz

Sweep time 2 s

Number of points 401

IF bandwidth 1 kHz

Transmit Power 0 dB

Time gate start 16.1 ns

Time gate stop 17.9 ns

Angular range 5◦ to 65◦

Angular step 1◦

Receiver to SUT distance 0.72 m

Transmitter to SUT distance 0.72 m

A.2.2.2 Polarisation of the horn antennas

In this thesis, the polarisation of the horns is described as either transverse magnetic

(TM) or transverse electric (TE). For TE modes the magnetic field is perpendicular

to the propagation direction, while for TM modes the electric field is perpendicular

to propagation.

Figure A.3: TE and TM polarisations with respect to direction of propagation, r

185



Appendix A: Appendices

A.2.2.3 Calibration of the NRL arch

The process of calibration in the NRL arch is described in more detail in this section.

The purpose of calibration is to remove any unwanted received signals that can re-

sult in erroneous measurements. A step-by-step guide in the time gating technique

used in the measurement of the surfaces in this report is given. The first step is to

set up all frequency domain settings such as start and stop frequencies, number of

points, IF bandwidth and sweep time as these all alter the time domain response,

subsequently changing any time gate which has been implemented.

A time domain measurement of an empty room is then compared to that of a flat

plate and compared on screen in the time domain. The main reflection from the

plate is easily seen, as shown in Fig. A.4, revealing where respective time gates

should be positioned. Unwanted reflections from side walls and metal elements in

the room, and the direct line of sight coupling are subsequently time gated out of

the measurement.
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Figure A.4: The time domain response of the empty room and flat plate shows

where respective time gates should be positioned.

A time gate is thus applied between 16.1 ns and 17.9 ns and the resultant time

domain response is shown in Fig. A.5a. Displaying the frequency domain response

reveals a much clearer measurement, as shown in Fig. A.5b. There is a distinguish-
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able decrease in measured reflectivity as the frequency increases due to the free space

path loss increasing. As long as the gate position encompasses the main peak in the

time domain, there should be no substantial change in the frequency domain. [91] .

The gate should be wide enough to include important features of the device under

test, but discount any reflections from unimportant features or coupling between

antennas.
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Figure A.5: The (a) time domain and (b) frequency domain response for a flat PEC

plate.
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A.2.3 Bi-static measurement chamber

A.2.3.1 Introduction

Although the NRL reflectivity arch can produce very accurate and precise mea-

surement results, it is limited to specular scatter measurements. Results of the

backscatter region are not possible due to the design of the system. It was proposed

that a bi-static system be developed to perform 360◦ measurement of any frequency

selective surface (FSS) designed in this thesis.

Research of existing bi-static systems are reported in [92–95]; however, many of the

current measurement systems have limitations in providing full circular scattering

results. The bi-static system described in [96] has limited angular measurement

range, as the receiver does not move near to, or in front of the transmitter, which

means that backscatter measurements will not be performed.

Figure A.6: The bi-static measurement system includes a receiver mounted on a

rotating arm capable of rotating accurately over a 360◦ range. The angle of rotation

is controlled by a pre-programmed servo motor.

For many surfaces, the scatter towards the transmitter is of interest, and this is

considered in the design of our system. Alternative facilities are capable of more

complex hemispherical measurements, requiring expensive control systems and long
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measurement times [97, 98] and the potential high cost of development was consid-

ered in our system.

Angular resolution of results is often an issue. The use of a fixed rail measurement

system with 30◦ resolution is described in [99], although it requires multiple fixed

receive antennas at each of the angles of interest. This system requires not only

extensive control systems to switch between antenna of interest, but also multiple

antennas; increasing the cost of the system. There is therefore motivation for the

design of a bi-static system capable of 360◦ measurements at high resolution and

low cost.

A.2.3.2 Hardware construction and configuration

The bi-static measurement system was constructed in a partially anechoic chamber

measuring 6 m × 4 m × 3.5 m. The final experimental rig is pictured in Fig. A.6.

The system allows for an accurate and fast scattering measurement of a centralised

target – see Fig. A.7 for the top-down view of the system.

RX 

Stationary 

TX 

Rotating arm 

SUT 

θi 

θS = 0° 

θS = -90° 

θS = 90° 

Figure A.7: Top-down view of the bi-static RCS measurement system described in

this paper. For many applications, only the reflection from the front of the surface-

under-test (SUT) is of interest.

Targets of varying size can be mounted on the flat plate in the centre of the system.
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The transmit horn was connected to a stationary beam, 2.3 m from the target. This

was manually positioned, using a laser level to confirm the angle of incidence to the

target. The receive antenna was secured to a rotating arm, 1.65 m from the target.

The rotating arm was connected to a servo motor located in the middle of the sys-

tem. Surfaces under test can be loaded onto the turntable which is also positioned

in the centre of the system. Two QPAR wideband horn antennas (P/N 6878/24)

were used for the receiver and transmitter. Measurements are limited to frequencies

between 1.5 and 18 GHz when using these horns. Only TE and TM polarisation

measurements are available when using these horns.

The dynamic range of the system is best quantified in the empty chamber measure-

ments in Fig. A.10, where the maximum signal comes from the direct path coupling

between receiver and transmitter antennas between 210 ◦ and 230◦ and the minimum

signal is from when the receiver and transmitter are at right angles to each other,

between 90◦ and 150◦. Measurements show the dynamic range spans from -50 dB

to -115 dB. The dynamic range of the Agilent 8720D VNA itself is 100 dB [100].

The transmit and receive horns are electrically connected to ports 1 and 2 respec-

tively of an Agilent E8720 Vector Network Analyser (VNA) via RF coaxial cables.

The VNA was then connected to a PC for data transfer via a GPIB-to-USB link.

The VNA data is written continuously to a text file for the duration of the measure-

ment. When run under full angular resolution, a 360◦ measurement with 0.5◦ steps

can be done, although in many cases, a 1◦ step will suffice.

Inevitably, the movement of the receive horn arm also moves the RF cables. Phase

instabilities could be introduced, although in this case phase was not measured. In a

scenario where the phase is of importance and is required to be measured, it is likely

another method of attaching the cables to the horns to reduce cable movement will

be required, considering the cost of phase stable cables.

A.2.3.3 Software design

Microsoft Visual Basic (VB) and MINT [101] software is used to programme the

VNA and servomotor, with the user able to select a range of parameters on a graph-

ical user interface (GUI), such as start and stop frequency, number of discrete mea-

surement points and angular step. Table A.2 summarises the selectable parameters
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Table A.2: Summary of the parameters used to programme the VNA and servomotor

controls, and relevant measurement distances for the bi-static measurement system.

Parameter Value

Start frequency 8 GHz

Stop frequency 18 GHz

Sweep time 2 s

Number of points 401

IF bandwidth 1 kHz

Transmit Power 0 dB

Time gate start 27 ns

Time gate stop 29 ns

Angular range 360◦

Angular step 1◦

Receiver to SUT distance 1.65 m

Transmitter to SUT distance 2.3 m

available in the GUI, an example of which can be seen in Fig. A.8.

Credit for the basic motor control and GUI can be given to Daniel Holtby, Lee

Ford and Jonathan Rigelsford. Further additions described here were added by the

author to improve the measurement accuracy and also remove consistent bugs which

caused the system to crash resulting in a necessary restart of the system. The most

important of these additions was the use of a time gating technique and is considered

in the next sections. The user is also able to select between measurements in the

time and frequency domains, where the start and stop values in the GUI will change

the time start and stop points.

A.2.3.4 Applications of the system

The high accuracy and resolution of the bi-static system lends itself to many ap-

plications. Full characterisation of FSS backed with large metallic ground plates

are possible with just a 180◦ receiver sweep angle. For FSS where through mea-

surements are needed, the 360◦ sweep enables both specular and forward scattering
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Figure A.8: The graphical user interface (GUI) for the rotating bi-static measure-

ment system.

to be measured. Radar absorbing materials (RAM) can also be tested, with a 1◦

resolution possible. Antenna measurements are possible using this bi-static system,

although their characterisation are best suited to traditional measurement systems,

such as near-field characterisation chambers.

A.2.3.5 Measurements with no time gating

To reveal areas of unexpected reflections or coupling which could affect scattering

measurements, an empty chamber measurement was initially done. Although both

TE and TM polarisations were examined, only TM polarisation is discussed here

for brevity. The SUT and turntable with supporting pole were removed from the

centre of the system.

For this measurement, the transmitter was positioned at θRx = 42◦. The measure-

ment technique illustrated in Fig. A.9 was used to obtain a full 360◦ receiver angle

resolution, for a frequency range of 8 to 18 GHz, and scattering results are shown

in Fig. A.10a and Fig. A.10b for TM and TE polarisation respectively.

The scattering measurements in Fig. A.10 reveal two regions of coupling which may
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RX rest 

position 

RX start 

position 

TX 

(a)

Full 360° RCS 

measurement at 

predefined  

resolution 

TX 

(b)

RX rest 

position 

RX end 

position 

TX 

(c)

Figure A.9: The bi-static measurement system is programmed to start at a receiver

angle of 0◦. (a) The start position can be changed to suit the position of the

transmitter, and the SUT. (b) A full circular measurement is completed at the users

predefined resolution, and (c) the receiver returns to the rest position,ready for the

next measurement.

be an issue when completing further scattering measurements. The first region of

concern is evident between 0◦ and 80◦. This is due to the receiver moving in front

of the transmitter, as illustrated in Fig. A.9. This interference may cause issues in

measuring backscatter reflections.

As the receiver moves away from the transmitter in the angle range 80◦ to 150◦,

the level of coupling is reduced; however, not to a suitable level. This means that

coupling between the antenna and receiver is still an issue, even when separated by

such a large distance. The final region lies between 150◦ and 300◦, and reveals a very

high level of line-of-sight (LOS) coupling. This occurs when the receiver is directly

opposite the transmitter. For oblique incidence measurements, the specular scatter

is likely to occur in the receiver angle ranges 120◦ to 160◦, depending on angle of

incidence, and so the LOS may affect accuracy of results.

Indeed, in initial measurements of both a flat plate and CR-FSS structure, the

measurement results have been affected by the noisy conditions substantially. The

measurement in Fig. A.11 shows that there is noise in parts of the measurement,

such as between scattering angles of -60◦ and -30◦, and 60◦ and 90◦, caused by

coupling of the receiver and transmitter horns and line-of-sight (LOS) respectively.
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(a) TM polarisation.

(b) TE polarisation.

Figure A.10: Scattering plots of an empty chamber for (a) TM and (b) TE polari-

sation, for a receiver range of 0◦ to 360◦.
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(a) Flat plate

(b) CR-FSS.

Figure A.11: Measurement of (a) a flat plate and (b) a CR-FSS structure prior to

time gating.
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A.2.3.6 Time gated measurements

Unwanted reflections and coupling are often removed using time gating techniques

to improve the accuracy of results. The application of such a technique is more dif-

ficult in an actively moving bi-static measurement system compared to traditional

stationary ones. Firstly, a full time domain measurement of the flat metal plate is

conducted to understand where a suitable time gate should be placed. The system

was programmed to perform a time domain measurement between 0 and 35 ns. The

resulting scattering from a flat plate is illustrated in Fig. A.12.

In the time domain, the specular scatter from the flat plate occurs between 120◦

and 170◦, due to the wide beamwidth of the horn antennas. This is evident at

approximately 27.8 ns. Also visible over the full receiver angle range is a sweeping

signal caused by the coupling between the moving receiver and transmitter. This

receiver-transmitter coupling is the main cause of the non-time gated results in Fig.

A.11. At 42◦, the transmit and receive horns are aligned completely, resulting in

the shortest coupling distance, and thus the shortest coupling time, at 16 ns. Con-

versely, the maximum transmit time occurs at approximately 28 ns at 222◦, when

the receiver is opposite the transmitter.

Figure A.12: The measured response of a flat plate in the time domain, showing

regions of receiver-transmitter coupling, and specular scatter between 120◦ and 170◦.

196



Appendix A: Appendices

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
−130

−120

−110

−100

−90

−80

−70

−60

−50

Time (ns)

S
pe

cu
la

r 
sc

at
te

r 
(d

B
)

 

 

100°

140°

180°

Specular 

scatter Transmitter-receiver 

coupling 

Time gate 

Figure A.13: Time domain response for θRx = 100◦, 140◦, and 180◦. The main

specular scatter peak occurs at 27.8 ns. The other visible peaks are due to coupling

between the antenna and receiver.

The use of a time gate is introduced, with the user able to input gate start and

stop parameters on the GUI. For measurements completed in this bi-static system,

a time gate between 27 and 29 ns will remove the majority of the coupling. Fig.

A.13 highlights that the time gate can remove transmitter-receiver coupling for a

range of angles of receiver. The improved scattering plots are presented in the re-

sults sections of the surface design chapters.

The windowing function used on the Agilent 8720D VNAs in both the NRL mea-

surements and bi-static measurements was the ‘normal’ gate as defined in [104].

Step rise time, impulse width, and span can be altered by changing the gate type

as described in [103].

A.2.3.7 Far-field requirements

Far-field requirements were considered according to equations 3.1 and 3.2, where the

distance from the transmitter to the SUT, and the distance between the SUT and

the receiver should be separated by at least R1 m and R2 m respectively [102].
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R1 =
2D2

1

λ
(A.1)

where D1 is the largest dimension of the SUT, and λ is the wavelength at the highest

frequency. The dimensions of the SUT were 0.6 m × 0.6 m, thus D1 = 0.6 m.

For a measurement of f = 18 GHz, λ = 0.0167 m, and accordingly R1 = 43 m.

Considering now the far-field criteria for the receiver with respect to the SUT, the

required separation, R2 is

R2 =
2D2

2

λ
(A.2)

where D2 is the largest dimension of the SUT, and λ is the wavelength at the high-

est frequency. For a 600 mm2 flat metal plate, D2 = 0.6 m. Therefore, at 8 GHz,

R2 = 19 m, and at 18 GHz, R2 = 43 m. Ideally, the target would be very small

to reduce R2; however, this introduces issues with diffraction from the target edges.

The target must be relatively large (usually target length = 10λ), as diffraction from

the edges can occur if the edges are visible to the main beam of the antenna.

These edge effects are mitigated by having a large target size, compared to the low-

est frequency of interest. At 8 GHz, λ = 37 mm, which is 1/20th the target length.

However, leading and trailing edge effects are evident in Fig. A.12. The angle of

incidence is also an issue, as for oblique angles, the surface will appear much smaller

than if the transmission is normal to the surface. Once again, the large size of the

target helps keep any issues to a minimum.

The fact that measurements for both the NRL reflectivity arch and the bi-static

rotating measurement system may take place in the near-field limits the potential

to measure the relative phase of a signal. Coincidently, both techniques are only

used for measurement of the amplitude of the signal. For measurements that do

take place in the near-field, reflectivity readings are likely to be lower than when

measured in the far-field. [105].
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A.2.4 Potential improvements to the bi-static measurement

system

Despite the measurement system being able to perform accurate and precise mea-

surements, there are a few improvements that could be made to increase the usability

and functionality of the rig.

Firstly, the positioning of the transmitting horn is difficult to do due to the fact it

is free standing as shown in Fig. A.14. Although a laser level and protractor are

used to set the angle of incidence, finer alterations must be made after viewing the

results. This makes the whole measurement system much more cumbersome than

it potentially could be.

Figure A.14: The transmitting horn in the bi-static measurement system.

As it is free standing, the distance between the target and the transmitting horn

is also changeable, making repeatable results difficult especially if the system has

been reconfigured. To improve this part of the measurement system, there should
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be a method of mechanically setting and fixing the angle of incidence and distance

from the centre of the target. This would also ensure that the horn is directed at

the centre of the target. Automatation of the transmitter horn in a similar way to

the receiever horn would allow for multiple measurements to accuratly be completed

with minimal input from the user of the system.

The connection to the receiving antenna requires a fixed cable which is twisted

around the centre of the rig after each measurement, requiring uncoupling and reat-

taching. This reduces the number of measurements that can be done per day and

has several risk factors. During the measurement process, the cable often got caught

around the centre of the target, requiring manual untangling of the coaxial whilst

the system was running. This did no effect measurements as the receiver was behind

the target at this stage. Also, continual bending and twisting of the cable is likely to

effect its performance over a long period of time, requiring replacement more often

than required if an alternative solution was used.

It is proposed that a rotary joint could be used to connect the rotating receive an-

tenna to the VNA. This would mean that none of the cables actually twist around

the target, and that multiple measurements could be done without untangling and

reattaching the coaxial cable.

A.3 Other potential calibration techniques

Further to the calibration techniques discussed so far in this chapter, additional

techniques are available. For example, subtracting the background noise of the

measurement system can be done to obtain just the scattering characteristics of the

target under test. However, in order to implement this calibration, phase infor-

mation is also required for each measurement angle and at each frequency point.

As it was unclear as to whether this could be achieved using the respective VNA,

and initial calibration techniques gave clear results this was not investigated further.

Implementation of this technique would also require very accurate positioning of

both the transmit and receive antennas, as well as the target itself. This is so that

each angle of measurement could be coherently subtracted to remove the coupling
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detailed previously. Small errors in this measurement could result in inaccurate final

results after the subtraction of the measured s-parameters.

A.3.1 Conclusions

Measurements will be used to validate a variety of surface designs and respective CST

simulations. A bi-static measurement system has been developed to provide a large

quantity of data over various angles of scattering and broadband frequency range.

By performing initial measurements in the time domain, a suitable time gate can

be used to improve the clarity of scattering measurements of a variety of reflective

FSS. Despite this, a range of improvements have been suggested for improving both

the accuracy and speed of future measurements, as well as the repeatability.
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