
 1 

                                                          
 
 
 
 

Health Monitoring of Gas Turbine Engine 
Framework Design and Strategies 

 
Rishi Relan 

 
 
A Dissertation Submitted In Partial Fulfilment of the Requirements for the 
Degree of Master of Philosophy in the Department of Automatic Control 

and Systems Engineering 
 
 
 
 
 
 
 

 
June 2015 

 
 
 
 

 
  



 2 

DECLARATION 

 
 
 
 
I hereby declare that except where specific reference is made to 
the work of others, the contents of this dissertation are original and 
have not been submitted in whole or in part for consideration for 
any other degree or qualification in this, or any other university. 
This dissertation is majorly my own work. The work done in 
collaboration with others is duly acknowledged as well as specified 
in the text at appropriate palces.  

                                                              

 
                                                  
Rishi Relan 
  



 3 

ACKNOWLEDGEMENTS 

This I would like to express my deep gratitude to my supervisors, 
Professor Visakan Kadirkamanathan, who is also the present Direc-
tor of Rolls-Royce UTC, and Professor Robert. F. Harrison for giving 
me the opportunity to purse my MPhil research under their guid-
ance. I especially thank Professor Visakan Kadirkamanathan for his 
excellent guidance, helpful insights and providing great encourage-
ment as well as time during my research. I feel honoured to have 
worked under such an experienced supervisor. I sincerely thank 
Professor Robert. F. Harrison for passing on his scientific 
knowledge and expertise on prognostics. I would like to thank the 
former Director of Rolls-Royce UTC, Professor Peter Fleming for his 
constant encouragement and advice.  

I would like to thank, Dr. Martha Arbayani Bin Zaidan, my dear 
friend and colleague in the Rolls-Royce UTC for the technical dis-
cussions as well as the collaboration, which produced our joint 
work on “Integrated Prognostic Approach” and contributed to-
wards the design of better health monitoring approach for gas tur-
bine engines. 

I am grateful to Rolls-Royce plc and Engineering and Physical Sci-
ences Research Council (EPSRC) for providing me the necessary fi-
nancial support through Dorothy Hodgkin Postgraduate Award 
(DHPA). 

  



 4 

I would like to thank Andy Mills for all the helpful discussions, and 
many thanks to Debbie Proctor, Renata Ashton for being able to 
solve just about anything administrative. My profound thanks to 
my dear friends Vignesh, Rui and members of the UTC for their un-
conditional support and with whom I had the great luxury of work-
ing especially, Hasanin, Maszatul, Ioannis, Arun and others. 

I would like to express my greatest appreciation and respect to my 
mother, thousands of miles away in New Delhi, India. Special 
thanks goes to my wife, being a PhD student at the University of 
Edinburgh in Scotland and also taking care of our recently born be-
loved daughter alone, takes a lot of effort. This work would not 
have been possible without constant love, prayers and sacrifice 
from them. I am truly indebted to all their patience, support and 
understanding. Thank you!  

I would also like to express my immense gratitude to the staff of 
the Department of Automatic Control and Systems Engineering. 
Last but not the least; I thank the University of Sheffield for giving 
me this great opportunity. I feel proud to have been part of this 
excellent institution. To all those cited by name here and many oth-
ers I did not mention by name who supported me during this won-
derful journey, I will forever owe you this achievement.  

Thank you all very much!   



 5 

LIST OF FIGURES 
FIGURE 1: THREE STEPS OF CBM .......................................................................................................................... 18 
FIGURE 2: HEALTH MONITORING BENEFITS IN CIVIL AEROSPACE INDUSTRY ..................................................................... 21 
FIGURE 3: A WHITTLE-TYPE TURBO-JET ENGINE SCHEMATIC AND ITS WORKING CYCLE (ROLLS-ROYCE PLC, 1996) ................ 22 
FIGURE 4: THE LOCATION OF THE EHM SENSORS ON THE ROLLS-ROYCE TRENT 900 ENGINE(ROLLS-ROYCE, 2014) ............. 24 
FIGURE 5: OVERVIEW OF EHM ARCHITECTURE ....................................................................................................... 31 
FIGURE 6: EXAMPLES OF TRANSIENTS IN NORMAL FLIGHT PROFILE ............................................................................... 37 
FIGURE 7: HIERARCHICAL ARCHITECTURE OF AN ENGINE ........................................................................................... 39 
FIGURE 8: ENGINE MODULES & ACCESSORIES ........................................................................................................ 40 
FIGURE 9: PROPOSED EHM ................................................................................................................................ 41 
FIGURE 10: ACTIVE INFORMATION FUSION (LOONEY, 2002) ..................................................................................... 45 
FIGURE 11: BASIC IDEA OF COMPRESSED SENSING ................................................................................................... 48 
FIGURE 12: ACTIVE DIAGNOSIS(R NIKOUKHAH & CAMPBELL, 2002) .......................................................................... 55 
FIGURE 13: PASSIVE LEARNER .............................................................................................................................. 58 
FIGURE 14: ACTIVE LEARNER ............................................................................................................................... 58 
FIGURE 15: PROPOSED FRAMEWORK .................................................................................................................... 66 
FIGURE 16: FRAMEWORK FOR HEALTH MONITORING ................................................................................................ 68 
FIGURE 17: SENSE-ACQUIRE-TRANSFER-ANALYSE-ACT PARADIGM ............................................................................. 71 
FIGURE 18: SELECTION OF SUBSYSTEM SELECTION .................................................................................................... 73 
FIGURE 19: CIVIL AIRCRAFT FLIGHT CYCLE.............................................................................................................. 74 
FIGURE 20: IDENTIFIED SUBSYSTEM USING PIMENTO TOOL ........................................................................................ 75 
FIGURE 21: FUEL METERING DEVICE ..................................................................................................................... 79 
FIGURE 22: TMC CURRENT ................................................................................................................................ 80 
FIGURE 23: SPOOL VALVE POSITION ..................................................................................................................... 80 
FIGURE 24: RESULTANT FORCE ON SPOOL .............................................................................................................. 80 
FIGURE 25: SEGMENTS OF MAGNETO-MOTIVE FORCE ............................................................................................... 92 
FIGURE 26: PROBABILITY DENSITY FUNCTIONS OF DIFFERENT SEGMENTS ...................................................................... 92 
FIGURE 27: ENTROPIES OF SEGMENTS ................................................................................................................... 93 
FIGURE 28: THE RELATIONSHIP BETWEEN JOINT INFORMATION, MARGINAL ENTROPY, CONDITIONAL ENTROPY AND MUTUAL 

ENTROPY(DAVID J C MACKAY, 2002). .......................................................................................................... 96 
FIGURE 29: MUTUAL INFORMATION UNDER DIFFERENT CONDITIONS......................................................................... 100 
FIGURE 30: STEPS IN CALCULATION OF APPROXIMATE ENTROPY HERE 𝑋 = 𝑆 𝑎𝑛𝑑 𝑁 = N (YAN & GAO, 2007) .......... 107 
FIGURE 31: APPROXIMATE ENTROPY OF SIMULATED SIGNALS ................................................................................... 107 
FIGURE 32: APPROXIMATE ENTROPY OF DIFFERENT SEGMENTS ................................................................................ 108 
FIGURE 33: SPECTRAL ENTROPY ANALYSIS ........................................................................................................... 117 
FIGURE 34: ONE-DIMENSIONAL TIME-SERIES DATA ................................................................................................ 119 
FIGURE 35: CONCEPT OF A CHANGE POINT DETECTION FOR RECOVERABLE SYSTEM ....................................................... 126 
FIGURE 36: CHANGE POINT DETECTION IN TGT MARGIN DATA AFTER MAINTENANCE EVENT(MARTHA A ZAIDAN, R.RELAN, 

HARRISON, & MILLS, 2014) ..................................................................................................................... 127 
FIGURE 37: INCORPORATING INFORMATION FROM COVARIATES ............................................................................... 128 
FIGURE 38: CHANGE POINT DETECTION USING INFORMATION FROM COVARIATES(MARTHA A ZAIDAN, R.RELAN, ET AL., 2014).

 ............................................................................................................................................................ 129 
FIGURE 39: INTEGRATED PROGNOSTICS: COMBINING BAYESIAN APPROACH AND CPD(MARTHA A ZAIDAN, R.RELAN, ET AL., 

2014) ................................................................................................................................................... 131 
FIGURE 40: RESULT OF CPD + BAYESIAN ALGORITHM(MARTHA A ZAIDAN, R.RELAN, ET AL., 2014) .............................. 131 
FIGURE 41: CHANGE DETECTION FOR DATA COLLECTION.......................................................................................... 139 
FIGURE 42: PATENT REVIEW STATISTICS .............................................................................................................. 166 

  



 6 

List of TABLES 

 
TABLE 1: REVENUE IMPACT OF SERVICE AND PARTS BUSINESS BY GLOBAL INDUSTRY (KOUDAL, 2006) ................................ 20 
TABLE 2: DATA SET 1 ......................................................................................................................................... 84 
TABLE 3: DATA SET 2 ......................................................................................................................................... 84 
TABLE 4: DATA SET 3 ......................................................................................................................................... 84 
TABLE 5: ENTROPY CALCULATION FOR DIFFERENT DATA SETS .................................................................................... 93 
TABLE 6: CASE STUDY 1 .................................................................................................................................... 108 
TABLE 7: CASE STUDY 2 .................................................................................................................................... 109 
TABLE 8: TEST FOR MINIMUM NUMBER OF SAMPLES .............................................................................................. 109 
TABLE 9: PATENT REVIEW ................................................................................................................................. 168 



 7 

LIST OF ACRONYMS 

EHM Equipment Health Management 

SatCom Satellite communication 

FMMEA Failure Mode Mechanism Effects Analysis 

GTE Gas Turbine Engine 

SATAA Sense, Acquire, Transfer, Analyse, And Act 

BIT Built-in-test 

PIMENTO 
Prognostic Inference Method Embedded in 
Novel Toolset 

FMU Fuel Metering Unit 

LRU Line Replaceable Unit 

TGT Turbine gas temperature 

M.I Mutual information 

KDE Kernel density estimation 

FCU Fuel control unit 

EEC Electronic engine control 

FADEC Full authority digital engine control 

AFD Active fault diagnosis 

FDI Fault detection and isolation 

CS Compressed sensing 

ApEn Approximate entropy 

Div Divergence 



 8 

  

LPC Low pressure combustion 

HPT High pressure turbine 

AFD Active fault diagnosis 

FMECA Failure mode, effects, and criticality analysis 

RMS Root mean square  

MAP Maximum a posteriori 

CTG Cardiotocography 

MMF Magneto-motive force 

PSD Power spectral density 

EEG Electro-Encephalogram 

FMV Fuel metering valve 

SpEn Spectral entropy 

RUL Remaining useful life 

CPD Change point detection  

CBM Condition Based Maintenance  

KDE Kernel density estimation  

TM Torque motor 

TMD Torque motor demand 

SV Servo valve 

RuLSIF  
Relative unconstrained Least-Squares Im-
portance Fitting 

i.i.d Independently Identically distributed 

BR-3 Bayesian Regression 3 



 9 

LIST OF SYMBOLS 

 𝜇 Mean 

𝜎, 𝑠𝑡𝑑  Standard deviation 

𝜎2 , 𝑣𝑎𝑟  Variance 

RMS Root mean square 

𝑋 Vector of sampled signal or random variable 

𝑥𝑛 
Sampled value of a signal or i.i.d samples of a 
random variables, where 𝑛 = 1,2,3 … ℝ 

𝑝(𝑥) Probability density function 

𝐾(∎) Kernel  function 

𝑝(𝑥)̂ Estimated probability density function 

𝑆 Covariance Matrix 

𝑑𝑒𝑡 Determinant 

𝛿𝑆 Elementary change of entropy 

𝛿𝑄 Reversibly received elementary heat 

𝑇𝑒𝑚𝑝 Temperature 

𝐻(∎) Entropy 

ℎ, 𝛾 kernel bandwidth 

𝜒 Finite support set  discrete random variable 

𝐼(𝑋; 𝑌) Mutual Information 

𝐻(𝑋; 𝑌) Joint Entropy 

𝑝(𝑥; 𝑦) Joint probability distribution function 



 10 

𝑃(𝑥|𝑦) 
Condition  probability distribution function of 
 𝑥 given  𝑦 

𝑝(𝑥|𝑦) 
Condition  probability density function of  𝑥 
given  𝑦 

𝐻(𝑥|𝑦) Condition  entropy of  𝑥 given  𝑦 

𝑚 Embedding dimension 

𝑟 
Predetermined tolerance value for approxi-
mate entropy 

𝑑(𝑋(𝑖), 𝑋(𝑗)) Distance between two vectors 𝑋(𝑖), 𝑋(𝑗) 

𝑘 Constant 

𝑆𝑥𝑥(𝑤) Power spectral density 

𝑤 Angular frequency 

𝔼 Expectation operator 

𝑥(𝑡) Signal from length up to time  𝑡 

𝑃𝑓 Power level 

𝐻𝑆𝑝𝐸𝑛 Spectral Entropy 

∑ ∎ Summation 

ℝ𝑑 
d-dimensional vector in Euclidian space of real 
numbers 

′ Transpose operator 

ℤ𝑡 
Set of retrospective subsequence samples 
starting at time 𝑡 

𝛼 Relative Pearson divergence(PE) 

𝑃(∎) Probability distribution 

𝑓(∎) Convex function 



 11 

 
  

𝜃 Set of parameters 

𝐽(∎) Cost function 

𝜆 Regularization parameter 

𝑔(∎) Density ratio 

𝑔̂(∎) Density ratio estimator 

𝑑 
Dimension of the Euclidian space / state- 
space/ dimensionality of vectored time series 

𝑆𝑆 Support Set 



 12 

ABSTRACT 

This thesis develops the research focus for the System’s health 
monitoring DHPA project being undertaken at Sheffield Control 
and Systems Engineering UTC. The research aims to develop a 
framework for extracting and maximizing the information in the 
measured data for system health monitoring/analysis. 

This research project focuses on the development of a methodol-
ogy to extract as much as information (or features) from measured 
data including transient signals obtained during test rig testing, 
normal operation (e.g. typical flight phases), transient manoeuvres 
or a specific functional test protocol to diagnose (and if feasible use 
for prognosis) the condition of a system accessories/sub-systems 
or components. 

The following thesis briefly describes the problem formulation, the 
motivation behind this research. A broad overview of the possible 
areas for research as well as significance of proposed research is 
presented and the fundamental issues related to health monitor-
ing of any complex system are discussed. This work has been di-
vided in to three different parts namely framework design for sys-
tem health monitoring, feature/information extraction for system 
health monitoring and design of a change detection algorithm.   

There exist lots of technological gaps in existing state of the art ar-
chitecture/framework of Equipment Health Monitoring (EHM) sys-
tem e.g. present day EHM systems do not utilize the available tran-
sient data generated at various stages of the gas turbine engine 
flight cycle. Hence to fulfil those gaps a concise and generic frame-
work for the system level health monitoring of gas turbine engine 
has been proposed.  
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Based on the proposed framework some feature extraction meth-
ods have been developed based on information theory and com-
plexity theory. These methods have been applied to extract fea-
tures from a real data obtained from a test rig of a fuel metering 
valve.  

The performance of a system degrades over time due to deteriora-
tion mechanisms and single fault events. While deterioration 
mechanisms occur gradually, single fault events are characterized 
by occurring accidentally. Sometime during the normal operation 
of the system a change/event may occur at system / subsystem or 
component level sensor signal, which can be due to initiation of an 
incipient fault which can take a long time to appear in the repre-
sentative sensor signatures hence it may not be easily detectable 
using naked eye. Identifying these changes as soon as possible is 
referred to as change detection. 

A trend monitoring algorithm based on spectral entropy has been 
developed and also applied to the oil debris monitoring problem. 
This trend monitoring status can act a continuous input to the in-
telligent equipment health monitoring system. Furthermore, a 
change detection algorithm based on direct density ratio estima-
tion also has been developed and applied to low pressure turbine 
data in order to detect change point and include this information 
in to the prognosis process. This detected change point can also 
acts as triggering point for data acquisition a higher rate as well as 
for longer time period. The data acquired higher sampling rate and 
or longer time can be used further better fault diagnosis and prog-
nosis.  
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INTRODUCTION 

1.1 Background 

With the advanced technological developments, a large amount of 
complex and expensive machinery is operated in today’s world and 
it is also expected to meet very high demands for productivity, ef-
ficiency and quality. Due to these high expectations the traditional 
preventive and corrective maintenance approaches have been 
found insufficient to meet these goals, therefore a more efficient 
maintenance strategy is needed to handle today’s ever growing 
and demanding situation.  

As the complexity of industrial systems increases, fault diagnosis 
and failure prognosis become more and more important, since 
they are crucial means to maintain system safety and high reliabil-
ity. Hence, the desire for reliable systems is a major objective for 
any production houses including operators and manufacturers. 
Consequently, the maintenance of critical machinery is always a 
major expense for the organizations and an essential activity of ad-
ministration and operation.  

In general, a fault refers to an abnormal condition that may lead to 
reduction or loss of the capability of a system or its component to 
perform a required function at a pre-specified level of efficiency 
and reliability. On the other hand, a failure means the inability of a 
system or its component to perform its required functions within 
specified performance requirements. A loosen belt is an example 
of fault in a mechanical system where the belt is still working but 
the transmission efficiency is decreased. However, a broken belt is 
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a failure since the belt is not working anymore and must be re-
placed.  

System health monitoring is a key feature for failure prevention 
and Condition Based Maintenance (CBM). A health monitoring sys-
tem needs to detect a fault or failure in a timely manner so that 
and the faulty components can be replaced effectively to ensure 
system’s normal operations. In the last few decades, various 
maintenance strategies have evolved such as from reactive 
maintenance, to age-based preventive maintenance, then evolving 
further to the modern condition-based maintenance strategies. 
Reactive maintenance is usually performed after the system break-
down and is not able to operate anymore. In order to deal with 
system shut down and also to prevent catastrophic failures, which 
can cause emergency shutdowns, an age-based preventive mainte-
nance strategies was introduced. In this policy, the health check of 
the system was carried out based on system’s operating time re-
gardless of the health condition of the system. Actually, an Age-
based preventive maintenance may sometimes reduce unexpected 
failures, but it is not cost effective and one cannot completely elim-
inate or rule out the possibility or the risk of the major failures. All 
these different (very) conventional maintenance strategies do not 
necessarily satisfy the demands of high reliability as well as effi-
ciency of the modern complex engineering systems. Fortunately, 
CBM is considered as an effective alternative. In this strategy  un-
necessary maintenance is avoided by only taking maintenance ac-
tions, when there is a clear and plausible evidence of abnormality 
in a monitored system is observed(Lee, Ni, Djurdjanovic, Qiu, & 
Liao, 2006; Vachtsevanos, Lewis, Roemer, Hess, & Wu, 2006). The 
monitoring is usually based on combining the information from dif-
ferent sensor measurements and it does not really interrupt the 
normal operation of the monitored plant. The main idea behind 
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this strategy is to avoid excessive or insufficient maintenance in or-
der to significantly increase the actual system availability or run 
time for high production activities. 

 

Figure 1: Three steps of CBM (M. Y. M. Yu, Wang, & Huang, 2010) 

In general, CBM strategy includes three key steps namely: data col-
lection, data processing and decision-making (M. Yu, Wang, Luo, & 
Huang, 2011; M. Y. M. Yu, Wang, & Huang, 2010).These steps are 
shown in the Figure 1. Data collection step involves obtaining the 
data related to system condition/health from the sensors installed 
at various levels of system’s hierarchy. Data processing step is 
about pre-processing, handling and analysing the data or signals 
collected for better understanding and interpretation of system 
health or condition. Finally, the purpose of the decision-making 
step is to recommend or develop the efficient maintenance strate-
gies based on the analysis performed in the previous step. As men-
tioned before, Fault diagnosis and prognosis are two critical 
steps/factors in any modern CBM, and they are complementary 
tasks. Diagnosis is actually a “static” indicator whereas failure prog-
nosis is more a “dynamic” indicator. The main objective of the di-
agnosis step is to indicate whether or not a fault/anomaly has oc-
curred and at the same time provide some useful information 
about the severity or extent of the fault/anomaly (Samantaray & 
Bouamama, 2010). Prognosis step tries to track fault degradation 
process (by modelling using data driven or physics based approach) 
and predict as accurately as possible the Remaining Useful Life 
(RUL) of a faulty component or subsystem. Prognosis in CBM has 
received more attention in the recent past for different applica-
tions and has become a hot topic of research for various industrial 
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segments. Actually, prognosis is often much more efficient than 
the diagnosis to achieve zero-downtime performance, which is 
very important when a delayed information about the possible fail-
ure can be catastrophic in some applications such as (e.g., helicop-
ter gearbox and nuclear power plant etc.). But in order to do an 
accurate prognosis, the status of system’s health/condition must 
be known as accurately as possible. Therefore, the monitoring of 
system’s health is very crucial for any CBM. 

1.2 Motivation 

Many engineering systems, including gas turbine engines, rely on 
operational data to monitor the systems health. The operational 
data is derived predominantly from steady-state conditions at a 
predetermined time or operational condition. Such a strategy, in 
the gas turbine engine case, is successful in detecting a significant 
number of faults.  Difficulties detecting the remaining faults re-
late to the steady-state data not containing characteristics of these 
faults. The location of the fault is also an important factor to cor-
rect monitoring of the system’s health, hence continuous monitor-
ing of subsystem’s / component’s health is also required. 

1.2.1 Aerospace gas turbine engine maintenance   

For many of the world’s largest manufacturers, aftermarket service 
and parts operations essentially define a significant part of their 
business revenue. According to the statistics, after-sales services 
and parts contribute only 25% of revenues across all manufacturing 
companies but are responsible for 40-50% of profits. Table 1.1 
shows that the aerospace and defense business accounts for about 
47% percent of revenue, the largest in comparison to other global 
industries (Koudal, 2006). Engine manufacturers, e.g. General Elec-
tric, Pratt & Whitney and Rolls-Royce, all have performance-based 
contracts with commercial airlines in which their compensation is 
tied to product availability (hours flown) (S.-H. Kim, Cohen, & 
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Netessine, 2007); (Marinai, Probert, & Singh, 2004). Services, such 
as TotalCarer and power by the hour arrangements, are now re-
garded as an essential element of delivering asset operation (King, 
Bannister, Clifton, & Tarassenko, 2009). 

Global industry  

 

Share of service and parts 
business in overall sales 

Aerospace and defence 47% 

Automotive and commercial 
vehicle 

37% 

Diversified manufacturing 
and industrial products 

20% 

High technology and 
telecommunications 
equipment 

19% 

Life science/medical devices 21 % 

All companies 26% 

Table 1: Revenue impact of service and parts business by global in-
dustry (Koudal, 2006) 
 

The economic impact of such service contracts is significant. For 
example, Rolls-Royce, one of the world’s largest jet engine and gas 
turbine makers, has more than 14,000 aerospace engines in ser-
vice, operated by more than 500 airlines and powering more than 
5.5 million commercial flights per years (OSyS, 2014). The consid-
erable number of the engines to be maintained, in terms of service 
and providing proper spare-parts, enable this company to generate 
revenue about 55% of the more than US$11 billion in total reve-
nues (Rolls-Royce, 2014).This evidence emphasizes the significant 
benefits of applying as well as developing health monitoring  
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techniques for civil aerospace gas turbine engines, which is one of 
the effective ways to reduce life cycle costs, improve engine relia-
bility as well as availability (Y. G. Li & Nilkitsaranont, 2009; Marinai 
et al., 2004). Figure 2 illustrates the benefits of health monitoring 
in civil aerospace industry, based on (Leao, Fitzgibbon, Puttini, & 
de Melo, 2008). Aircrafts are highly valuable assets and large budg-
ets are spent in aircraft support, maintenance and logistics. The ap-
plication of health monitoring technologies in civil aerospace can 
potentially yield profits to commercial aircraft operators.  

 
Figure 2: Health monitoring benefits in civil aerospace industry 

(Leao et al., 2008) 

  



 22 

1.2.2 Gas Turbine Engine Principle 

The concept of the gas turbine has been acknowledged to an Eng-
lish coalmaster and inventor, named John Barber (1734-1801), who 
patented his idea about gas turbine in 1791 (Davey, 2003). He es-
tablished the basic principle of a gas turbine engine, despite the 
lack of technology at that time (P. G. Hill & Peterson, 1965). Mate-
rial, design and manufacturing techniques needed to put this prin-
ciple into a working machine were not fully available until the early 
parts of the 20th century. The first patent was granted to Frank 
Whittle (1907-1996) in 1930 for using a gas turbine to produce a 
propulsive jet (Rolls-Royce plc, 1996). 
 

 

Figure 3: A Whittle-type turbo-jet engine schematic and its work-
ing cycle (Rolls-Royce plc, 1996) 

Gas turbine engines are widely used in different fields to generate 
energy. They are also very commonly used in aircraft. A gas turbine 
engine is essentially a power plant which utilises air as a working 
fluid to produce power in the form of thrust, shaft-power or com-
pressed air. Figure 3(a) shows a Whittle-type turbo-jet engine 
(Rolls-Royce plc, 1996). 
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It can be seen that there are several internal sections inside, includ-
ing inlet section, compressor section, combustor section and tur-
bine section. In addition, Figure 3(b) illustrates the working cycle 
on a pressure-volume diagram. The engine cycles show that in each 
instance there is induction, compression, combustion and exhaust. 
In the inlet section, the air intake and fan directs the air into the 
engine (point A), then the compressor compresses the air to a high 
pressure (point A to B). After the compressor section, the high-
pressure air is directed into the combustion chamber, where fuel 
(kerosene) is spread as small particles and burned at high temper-
ature and constant pressure, thereby considerably increasing the 
volume and velocity of air (point B to C). The high velocity air is then 
directed towards the turbine and driving it using the kinetic energy 
from the high-speed gas. A portion of the high-velocity air is ex-
panded through the exit nozzle, producing thrust (point C to D) 
(Rolls-Royce plc, 1996). 
 
When gas turbine engines are run, they become fouled with air-
borne contaminants such as oil, pollen, soot, unburned fuel, soils 
and salt which encrust compressor components (Rainer Kurz & 
Brun, 2007). Therefore, gas turbine engines show the effects of 
damage and deterioration in its lifetime of service. The degradation 
of an engine has an adverse effect on the engine’s overall perfor-
mance (Khani et al., 2012). Various factors affect degradation in 
gas turbine engine performance (R. Kurz & Brun, 2001): including 
Dust/dirt ingestion and further accumulation on fan blades/com-
pressor air foils. Increased air seal, compressor and turbine blade-
tip clearances because of rub other mechanisms such as erosion of 
air foils and seals, hot section oxidation, foreign object damage. 
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1.2.3 Gas Turbine Sensor and Monitoring Systems 

To reduce maintenance cost and avoid service disruption, equip-
ment health monitoring (EHM) has been employed in modern gas 
turbine engines. EHM is a pro-active technique for predicting when 
something might go wrong (prognostics) and preventing a poten-
tial threat before it has a chance to develop into a real problem, 
e.g. fault. EHM can be used to estimate the health of thousands of 
engines operating worldwide, using on-board sensors and live sat-
ellite feeds (Nick Waters, 2009). 

 

Figure 4: The location of the EHM sensors on the Rolls-Royce Trent 
900 engine(Rolls-Royce, 2014) 

There are several sensors fitted to monitor critical engine charac-
teristics, such as temperatures, pressures, speeds, flows and vibra-
tion levels, to ensure they are within acceptable tolerances and to 
highlight when they are not. Figure 4 shows the typical parameters 
measured on the Rolls-Royce Trent 900 engine (Rolls-Royce, 2014). 

1.3 Outline & contribution of the thesis 

The key premise for this thesis is that additional fault characteris-
tics can be detected when more informative data can be gathered 
by utilizing various methodologies such as exciting the systems us-
ing suitable transient manoeuvres to produce dynamic signals 
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and/or by injecting an additional signal to produce additional dy-
namic signals and acquiring the data intelligently to capture maxi-
mal health information. An important element of this thesis is to 
design a generic framework dealing with various issues such as 
data generation, data collection, communication and decision 
making, for the health monitoring of complex engineering systems 
such as e.g. civil gas turbine engine. Other major focus is on the 
extraction of indicative information/features from system dynamic 
characteristics without interfering with the functionality of the sys-
tem. Another generic but very important aspects of trend monitor-
ing and change point detection (change in system’s state or fault) 
for system health monitoring are also tackled in this thesis and 
later an integrated prognostic methodology combining the change 
point detection algorithm and Bayesian prognostics is proposed for 
better remaining useful life calculation of the system. 

Chapter 2 
Description: This chapter provides an introduction to state-of-art 
monitoring system and its capabilities of the gas turbine engine. It 
gives a first-hand description of the hierarchical & modular struc-
ture of the gas turbine engine. It points out the challenges and lim-
itations in the current generation health monitoring systems with 
respect to the technologies involved in data collection, communi-
cation and decision making. 

Contribution: A comprehensive literature review, which covers all 
the as aspects such as data generation, data collection, data com-
munication as well as decision making, which are critical towards 
designing an integrated health monitoring system is done. Use of 
the transient information (in the various sensor signals as well as 
system’s operation) for the purpose of system’s health monitoring 
is discussed in detail. A new architecture for the next generation 
equipment health monitoring systems for the gas turbine engine is 
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proposed, which also includes the information from various ancil-
lary/accessory system. A detailed discussion about technological 
impact and the suitability of the available methodologies, for the 
use in next generation gas turbine engine of the available method-
ologies is provided. 
 
Chapter 3 
Description: This chapter describes a generic framework for health 
monitoring of gas turbine engines which takes in to consideration 
aspects of data collection, communication, compression and deci-
sion making etc. A proposal is also made to modify and extend the 
Rolls-Royce “Sense-Acquire-Transfer-Analyse-Act Paradigm”  

 
Contribution: A systematic framework for the design of health 
monitoring for inclusion of transient information in accessing the 
overall health of the system is proposed. Furthermore various sug-
gestions to include new technologies/methodologies to extend the 
framework are made, so that existing bottlenecks, technological 
gaps in the existing equipment health monitoring system with re-
spect to data collection, communication, compression and decision 
making etc. can be addressed in the next generation monitoring 
systems for the civil gas turbine engines. The Rolls-Royce “Sense-
Acquire-Transfer-Analyze-Act Paradigm” is also extended to in-
clude the suggested changes proposed the chapter. 
 
Chapter 4 
Description: This chapter gives a brief introduction of the chal-
lenges associated with the identification of the faulty system in a 
complex system. A complex system can fail in a multiple ways. In a 
physical system, most of the faults that are manifested as system-
level failures are initiated at the component-level, and a gas turbine 
engine is no exception. In the engine, there are a large number of 
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components, each of which can have multiple failure modes. Fur-
thermore, each failure mode is a product of many failure mecha-
nisms that are simultaneously active. In short, there can be a large 
number of failure scenarios in the engine. Ideally, a system-level 
health assessment methodology should take all these possibilities 
into consideration. However, in most of the practical cases, it is not 
possible to cover all of these cases. Hence it is important to choose 
a representative set of suitable system/subsystems or components 
which are most relevant in terms of time, cost and effort.  

 
Contribution: In this chapter, a systematic way to select a candi-
date subsystem based on the criticality of the problem, time, cost 
and effort is described. In the case of gas turbine engine it is em-
phasized, how the various factors such as operational mode of the 
flight, expert or stakeholder’s knowledge of high value faults (com-
ing from Failure Mode Mechanism Effects Analysis, FMMEA study), 
which can contribute to the selection of suitable sub-system for 
fault investigation can be utilized and combined with already exist-
ing knowledge about the working of engine subsystem to select a 
candidate sub-system. Based on the described approach, Fuel me-
tering valve (FMV) is selected as the candidate subsystem for fur-
ther investigations.  

 
Chapter 5 
Description: In order to design a robust equipment health monitor-
ing system, data selection plays a critical role. For the better deci-
sion making of the system’s state, suitable sensor signals should be 
selected and information hidden in those sensor signals must be 
properly extracted in order to make intelligent decisions. Feature 
extraction is always a crucial step for information gathering as well 
as health monitoring of a system. Whenever any change or faults 
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occur, most of the systems always manifest abnormal and some-
times nonlinear dynamic behaviour. Hence it is necessary to extract 
the features hidden in the sensory signals for more accurate health 
monitoring and diagnosis. Various methods based on information 
theory and complexity theory are described in the chapter. These 
methods were further tested on the real test rig signal of fuel me-
tering valve.  
 
Contribution: In this chapter, feature extraction methods based on 
Shannon entropy, mutual information, and approximate entropy 
are proposed and tested on the real-life test-rig designed to imitate 
the oil debris building up problem in a fuel metering valve of a gas 
turbine engine. The proposed techniques are found accurate as 
well as robust enough to distinguish between the healthy and un-
healthy system. 

 
Chapter 6 
Description: This chapter presents an information theoretic trend 
monitoring as well as change point detection (CPD) algorithm to 
solve the generic problems mentioned below encountered in the 
system lifecycle with hierarchical and modular structures.  
 

 Continuous trend monitoring of the system/sub-system or 
any other asset health. 

 Dealing with irregular events such as information arising from 
irregular events occurring during the life cycle of an asset and 
rapid degradation in the state of health parameter.  
 

A simple demonstration case study is performed to test the effec-
tiveness of the spectral entropy based trend monitoring approach. 
Later on direct-density ratio based concept is applied to two case 
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studies.  In the first case study, the CPD algorithm is used to de-
tect the change in a vibration signal (covariate), which affects the 
slope of degradation. Furthermore, in the second case study, CPD 
is applied directly to the degradation data to discover when an un-
known maintenance event took place. This information directs the 
main prognostic algorithm to reset the prediction.  Based on this 
information, an integration approach is discussed to track and pre-
dict the health of the system. 

 
Contribution:  The proposed trend monitoring as well as inte-
grated prognostic approach combining change detection and pre-
viously proposed Bayesian technique proves to be promising. 
These methods demonstrate several advantages e.g. continuous 
tracking of a health index, utilisation of the available multiple en-
gine data as well as data available at various levels of a system’s 
hierarchy.  Trend monitoring methods is able to continuous track, 
whereas change detection method is able to detect changes or 
faults in multiple covariates (e.g. vibration, ambient temperature) 
at any level of the system to then informing main prognostic algo-
rithm to update its belief about degradation. The recovery in deg-
radation data due to maintenance action can also be handled au-
tomatically based on integrated prognostic concept.   
 
Chapter 7 
Description: Main conclusions drawn from the research work are 
presented in this chapter. 
 
Chapter 8 
Description: In this chapter, concrete suggestions are made about 
the future work which may be carried out in order to design a fully 
integrated and robust equipment health monitoring system. 
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2 Gas Turbine Monitoring Systems 

2.1 State-of-art monitoring system 

Monitoring systems technologies log the actions, performance and 
status of the components in the electrical and control systems. 
They collect data from some sensor signals deemed indicative of 
performance and mechanical elements of the engine, which are 
then used to draw certain conclusions, based on algorithms pro-
grammed into the monitoring system. The monitoring system can 
be ground-based, assessing systems flying in the air, floating on the 
sea, or generating electricity on another continent. The aim of a 
monitoring system is to maximize availability and minimize opera-
tional disruption.  Some state of the art capabilities of the present 
Rolls-Royce Equipment Health Management (EHM) system are 
mentioned below in Figure 5. The main bottlenecks lie on on-board 
data compression for data transfer via SatCom as well as capturing 
data from different parts of engine systems at different bandwidth 
which eventually result in different action times because data (in-
formation) arrives at external service provider or Operations at dif-
ferent times. Some state of the art capabilities of the present Rolls-
Royce Equipment Health Management (EHM) systems are men-
tioned below: 

 Performance monitoring – e.g. COMPASS, DAC 

 Oil debris 

 Engine Accessory Built-In-Test – detection of failure state only 
(i.e. testability) 

 Vibration monitoring 
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Figure 5: Overview of EHM Architecture 

 For the purposes of this report a number of attributes of these 
EHM systems are apparent.   

 Fixed schedule to the tests (i.e. at specific point within the 
flight profile or engine modes) 

 Incipient fault detection is limited to a sub-set of core engine 
components 

 Full system bandwidth captured only for vibration 

 Monitoring is ambivalent to system condition / risk, the same 
fidelity of monitoring is always completed. 

The design modern of GTE follows a modular concept. The basic 
engine by itself is not operable and cannot serve all the functions 
the airframe depends on. Additionally to its main components the 
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basic engine needs various accessory systems to become an oper-
able engine. Accessory systems are seen as data rich, potentially 
providing information on both their own condition and the wider 
system. Hence it is also important to monitor the health of critical 
auxiliary sub-systems/components attached with the engine in or-
der to improve the overall health monitoring of aerospace engines.  

This work seeks to maximize the health state information in the 
measured data (transient as well as steady state) that is used in 
analysis. One of the main emphases of this research project is to 
test hypothesis that utilization the all data available including the 
use of transient information provides increased prognostic horizon 
(for GTE accessories / LRUs). The first few questions which come to 
mind when considering the inclusion of transient information in the 
design of health monitoring system are explored below as well as 
the motivation behind the present hypothesis of including transi-
ent or dynamic information for the design of health monitoring is 
also discussed below: 

2.2 Masking of fault by controller at steady state 

Many complex engineering systems like Gas turbine engines use 
feedback control systems as a means to achieve desired dynamic 
and steady-state performance.  The main advantage of a simple 
feedback control system lies in the fact that the feedback control 
system can perform efficiently even in the presence of un-measur-
able disturbances such as system faults and degradations. However 
this ability/utility is in total contrast to the functionality of a sys-
tem’s condition monitoring function, which seeks to observe the 
current state of the system. There can be cases where intermit-
tent/incipient faults in sensors result in oscillations of the selected 
value without the steady state deviation being large enough to be 
classified as a fault. 
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2.3 Transient information: How good it is? 

With advances in technology, machines/systems have become in-
creasingly complicated and there is a need to look at not only sta-
tionary machine conditions but also transient machine conditions. 
Some machine/systems failures, if not most of them, happen dur-
ing transition periods (such as during machine start-up, machine 
shutdown, acceleration or deceleration phases etc.) & can some-
times provide information about machine conditions which cannot 
be revealed from stationary signals. The points below provide a 
very brief overview of the condition machine/systems can go 
through during transient conditions. 

 Many types of equipment have natural resonant vibration 
characteristics through which the equipment has to pass on 
start-up, shutdown, and sometimes even some operating 
ranges. 

 Loads, pressures, temperatures and vibration are changing 
rapidly, especially during start-ups, shutdowns and rapid 
speed/acceleration changes e.g. Jerk and jounce. 

It’s during these transitions or “transient events” where much 
can be learned about the health and performance of the ma-
chine/turbo-machinery. The following case studies, carried out 
by different research groups, also included transient infor-
mation for the purpose of health assessment of a Gas turbine 
engine. 

 In some situations good quality steady state measurements 
are difficult to obtain, such as from military aircraft engines 
that operate up to 70% of the total mission time at unsteady 
conditions,(G. L. Merrington, 1989). 
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 (White, 1988) has summarized four main (diagnostic perfor-
mances) differences between steady state and transient con-
ditions as mentioned below: 

1. “During a transient condition the shaft inertia will either de-
mand or produce power depending on whether it is acceler-
ated or retarded”. 

2. “Pressure and temperature gradients during transients 
cause different mass flows into and out of components de-
pending on the rate of change of the transient”. 

3. “The heat balance is not satisfied during transient opera-
tion. Heat is either transferred to or given out by engine 
components adjacent to the gas stream. This means that 
expansion and compression are no longer adiabatic”. 

4. “During transient operations the properties and dimensions 
of various turbine components can change. The main rea-
sons for this are the physical properties of the materials 
which are subject to expansion and strain due to tempera-
ture and centrifugal forces. This can detrimentally affect tip 
clearances and leakage of bleed air flows”. 

 An overview of the use of both performance and mechanical 
transient analysis as a means to detect gas turbine problems 
and the need for transient analysis and transient analysis tech-
niques has been discussed in (Meher-Homji, Cyrus B | 
Bhargava, 1994). 

 More specifically, it has been shown in (Borguet, Dewallef, & 
Léonard, 2005) that the use of measurements representative 
of transient behaviour significantly improves the diagnosis ac-
curacy. The study compares the diagnostic efficiency of iden-
tification of 14 different fault cases by the use steady state 
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data and transient data. Comparison results clearly show the 
improved diagnostic efficiency by the inclusion of transient 
data. The study was carried out in the framework of Obidicote 
project-work package 4: steady state test cases. 

 (G. Merrington, Kwon, Goodwin, & Carlsson, 1991) showed a 
marked improvement in fault identification by applying ana-
lytical redundancy methods to gas turbine engine transient 
data. (G. L. Merrington, 1989) developed a method for esti-
mating the effects of unmeasured fault parameters from in-
put/output transient measurements and discussed the effects 
of sampling rate and the measurement noise on resultant sen-
sitivity of the technique. (G. L. Merrington, 1994) applied 
model based technique to the problem of detecting degraded 
performance in a military turbofan engine from take-off accel-
eration type transients and established that good fault cover-
age can be gleaned from the resultant pseudo-steady state 
gain estimate. (G. L. Merrington, 1994).  

 (Eustace, Woodyatt, Merrington, & Runacres, 1994) com-
pared the fault diagnostic technique based on use of steady-
state engine data with technique based on transient data and 
concluded that for range of faults examined, not only is there 
similar fault information contained within transient data, but 
faults can be detected with increasing sensitivity using these 
data.  

 In addition, some gas turbine component faults, such as bear-
ing faults (based on bearing temperature readings) (Meher-
Homji, Cyrus B | Bhargava, 1994) and mis-scheduled nozzle 
control during transients (Merrington, 1988), contribute little 
to steady state performance deviation but significant to tran-
sient performance change.  
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Furthermore, performance shift due to engine faults is very 
likely to be magnified during transients compared to that at 
corresponding steady state conditions. Even though most of 
the case studies mentioned above do consider the advantage 
of including the transient information in to the prognostic/di-
agnostic framework but unfortunately, some difficulties arise 
when processing signals acquired during transient events, 
non-stationary phenomena or when the systems are working 
in an unsteady operating conditions. Moreover, a loss of ef-
fectiveness can be observed for many signal processing tech-
niques (Chatterton, Pennacchi, Ricci, Borghesani, & Vania, 
2013) in the case of complex systems such as gas turbine en-
gine, in which the measured signals can be a mixture of differ-
ent sources, and signals are affected by high level of noise. The 
main difficulty lies in fact that the main transient signal fea-
tures are often submerged in the background of noise, espe-
cially in the early stage of failure development. Enhancement 
and extraction of these features or components are the main 
tasks in detecting the defect. 

2.4 Available transients in real GTE operation  

It is additionally worth noting that a normal operation exposes a 
Gas Turbine engine to levels of transients above those suggested 
by idealised flight profiles. Sources of transients may include com-
pensation for wind gusts during manual and auto-throttle control, 
climbs during flight to achieve different altitudes, taxi behaviour, 
go-arounds, descent phase reacceleration due to stacking aircraft 
near to an airport. Figure 6 shows the variation of turbine pressure 
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ratio (TPR) along with the its altitude (ALT) profile in a typical civil 
aircraft flight cycle. 

 
Figure 6: Examples of transients in normal flight profile 

2.5 Fundamental Questions One needs to Answer? 

There are several influencing factors to maximise the health state 
information in the measured data that is used in analysis e.g. 
Where, what, when & how do we measure? The challenges regard-
ing the selection of sufficiently informative measurements or sam-
ples of data is a key issue in the design of any health monitoring 
system. A few questions which one might have to answer while 
considering the design of any health monitoring system are men-
tioned below: 

 Where do we need to measure? (e.g. engine environ-
ment ) 

 What do we need to measure? 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

Time (s)

TP
R

TPR & ALT variation for typical flight

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2

4
x 10

4

A
LT

 (f
ee

t)



 38 

 When do we need to measure? (e.g. specific tests or 
during operation) 

 What is the current EHM capability? 

 What are the practical, as well as operational, con-
straints? 

 How to configure measurements? (Sampling rate, data 
compression etc.) 

 What makes it difficult/expensive?  

 Is it feasible to get the data to an analyst? 

 
This thesis introduces methodologies sourced from the literature 
which aims to address the above questions.  In the following sec-
tions first a framework will be proposed for health monitoring of 
the gas turbine engine based on transient and steady-state data as 
well as the  techniques and few approaches available to an-
swer/tackle the issues mentioned above will be discussed. It is 
worth noting that there are many ways to extract maximal infor-
mation/features from data (signal processing, machine learning 
concepts etc.) but the upstream operation of obtaining the right 
data/information/features is the focus here.  

2.6 Hierarchical and Modular Structure 

Complex engineering system is defined as a group of interrelated, 
interacting or interdependent constituents (components) forming 
a complex whole (Rebovich, 2008). Many engineering systems are 
comprised of hundreds or thousands of components. Intermediate 
groupings, or various levels of subsystems, are necessary to de-
scribe or depict these systems manageably. Such an engineering 
system that requires one or more levels of definition intermediate 
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to system and component is characterized as a complex system in 
this thesis. Thus, a complex system is a system composed of a num-
ber of subsystems, each of which is embodied by a particular set of 
components, or sub-subsystems.  

A turbine engine consists of its main components, which change 
the state of the gas flow in the sequence of the thermodynamic 
working cycle. The design of modern turbofan engines follows a 
modular concept (Linke-Diesinger, 2008). In Figure 7 an aircraft en-
gine is presented as an example of a complex system, which com-
prises of subsystems (e.g., LPC, HPT). Further down the hierarchy, 
the subsystems are composed of components (e.g., HPT blades). 

 

 

Figure 7: Hierarchical Architecture of an Engine 



 40 

The basic engine by itself is not operable and cannot serve all the 
functions the airframe depends on. Additionally to its main com-
ponents the basic engine needs various systems to become an op-
erable engine.  

Furthermore the modular structure (Manzar abbas, 2009) of the 
gas turbine engine can further be extended as shown in Figure 8. 

 

 

Figure 8: Engine Modules & Accessories 

While faults arise at component level, sensing capabilities are lim-
ited to subsystem level, and system operations and maintenance 
practices are scheduled based on system level parameters. As 
mentioned in the section above, most state of the art EHM availa-
ble in the market do not consider the inclusion of state of the any 
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subsystem or component individually. This thesis proposes the in-
clusion of accessories or sub-system health in to the overall health 
assessment of the engine as shown in the Figure 9. 

  

 

Figure 9: Proposed EHM 
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2.7 Factors affecting design of integrated health monitoring 
system 

In order to design an efficient integrated health monitoring system, 
one needs to address the issues of data collection, data selection 
as well as data generation. There are many ways in which these 
issues can be addressed. The following section presents a concise 
literature survey about the techniques which may help to find an-
swers to some of the fundamental questions associated with de-
sign of such an integrated system and may also help to bridge the 
technological gap. 

2.7.1 Data collection and selection 

Acquiring a parsimonious data set for health assessment 

Often the most time-consuming and costly task in any scientific in-
vestigation is the gathering of data. In many cases we have limited 
resources for collecting such data. Hence, it is particularly valuable 
to determine ways in which we can make use of these resources as 
much as possible as. Sufficiently informative data is a key to the 
success of any analysis:  

“The more informative the data, the simpler is the analysis” 

Using the literature as a starting point, a number of data collection 
approaches have been considered. Broadly these are classified as:  
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Active information fusion, optimal sensor selection & sensor 
management – Active information fusion is about selectively 
choosing the sensors so that the information gain can compensate 
the cost spent in information gathering. 

Active data selection - Learning efficiently by actively selecting par-
ticularly salient data points. 

Active Sensing – can be stated as a problem of controlling strate-
gies applied to the data acquisition. 

All of the above mentioned approaches are closely related and deal 
with the issue of most informative way to select, collect or classify 
data. Other important factors in data collection are data transfer, 
data compression and where to collect the data from as well as 
combining the all the information gathered from number of 
sources in an efficient as well most informative way. The ap-
proaches mentioned below deal with such issues:  

Compressive sensing - compressed sensing is the process of ac-
quiring and reconstructing a signal that is supposed to be sparse or 
compressible. The first two approaches are active research areas 
in field of machine learning whereas active sensing, compressive 
sensing and active information fusion, optimal sensor selection, 
sensor management are active areas of research in the field of sig-
nal processing. In the next few sections, the approaches mentioned 
above will be described very briefly and their relevance this project 
research will be discussed. 

a. Active information fusion, optimal sensor selection & sensor man-
agement 

For the purpose of information gathering many information fu-
sion applications especially in aerospace and military domains 
are often characterized as a high degree of complexity due to 
three challenges:  
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 Data are often acquired from sensors of different modali-
ties e.g. pressure, fluid flow, temperature and with differ-
ent degrees of uncertainty 

 Decision must be timely - made quickly enough to be useful 

 The world (flight as well as load conditions in this present 
case) situations as well as sensory observations evolve over 
time.  

Multi-sensor management system/active controller or process 
seeks to manage or coordinate the usage of a suite of sensors or 
measurement devices in a dynamic, uncertain environment, to 
improve the performance of data fusion and ultimately that of 
perception. It is also beneficial to avoid overwhelming storage 
and computational requirements in a sensor and data rich envi-
ronment by controlling the data gathering process such that only 
the truly necessary data are collected and stored. A generic sen-
sor management is responsible for answering questions like: 

 Which observation tasks are to be performed and what are 
their priorities? 

 How many sensors are required to meet an information re-
quest? 

 When are extra sensors to be deployed and in which loca-
tions? 

 Which sensor sets are to be applied to which tasks? 

 What is the action or mode sequence for a particular sen-
sor? 

 What parameter values should be selected for the opera-
tion of sensors? 
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A dynamic active information fusion framework tries to simulta-
neously address the challenges mentioned above. In a simpler 
way, an active information system is to selectively choose those 
information sources that are most informative to the problem 
while minimizing the associated costs in terms of computational 
complexity, time, and required resources in acquiring the infor-
mation. Overall efficiency can be achieved by aggregating only a 
subset of the most relevant sensory data to address current 
problem. Architecture of the active fusion framework is problem 
specific. One of the generic representations of the active infor-
mation fusion architecture is shown in [Figure 10].  

 
Figure 10: Active Information Fusion (Looney, 2002) 

A good introduction to data fusion and mathematical techniques 
can be found in (D.L. Hall & Llinas, 1997; David L. Hall & 
McMullen, 2004; Liggins, Hall, & Llinas, 2008). (Xiong & 
Svensson, 2002) give a very good survey of the issues and ap-
proaches related to multi-sensor management for information 
fusion. A key to success for any active information fusion frame-
work is proper sensor selection or management of different sen-
sor so that the information gain can compensate the cost spent 
in information gathering. There are numerous applications of 
sensor selection including computer vision, control systems and 
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sensor networks etc. which can be found in  (Denzler & Brown, 
2000, 2002a, 2002b); (Miller & Runggaldier, 1997). (Y. Zhang & 
Ji, 2005, 2010) discuss the issue of sensor selection in active in-
formation fusion (Looney, 2002) framework.  

(Rowaihy et al., 2007) presents a survey of sensor selection 
schemes in wireless sensor networks.  (Yongmian Zhang and 
Qiang Ji, 2006) applied the concept of Dynamic Bayesian Net-
work for active and dynamic information fusion. (Roemer, 
Kacprzynski, & Orsagh, 2001) provides an assessment of data 
and knowledge fusion strategies for prognostics and health man-
agement.  

b. Active data selection 

For any scientific analysis, informative data is the most important 
factor for generating sensing results as well as validating hypoth-
esis. The main question we are trying to answer is  

How do we select the data? 

Most theories for data modelling often assume that the data are 
provided by a source that we do not control. However, there are 
two scenarios in which active selection of data can be useful. 

 Data measurements are relatively expensive or time-con-
suming (e.g. bore scope),  

 We can determine where to look ‘next’ [Active Sensing] so 
as to learn [Active Learning] as much as possible. 

c. Active sensing 

Active sensing is a large field aimed at providing systems with 
tools and methods for decision making under uncertainty, e.g. in 
a changing environment and lack of sufficient information. This 
has been extensively researched in the field of robotics.  Active 
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sensing can be thought both in terms of hardware sensor capa-
bilities where sensors send signals (e.g. ultrasonic waves or elec-
trical signals) to environment and receive response by itself as 
well as for monitoring strategies for gathering most informative 
sensory data from environment. Here we are concerned with the 
latter case. Some of the aspects of active sensing incorporate the 
following:  

 How to make decisions for next actions in order to extract 
maximum information from the sensor data. 

 Minimize costs such as operational effects and energy. 

Hence, Active Sensing can be stated as a problem of controlling 
strategies/policies/actions applied to the data acquisition pro-
cess which will depend on the current state of the data interpre-
tation and the goal or the task of the process. An action is a par-
ticular kind of event leading to a change in system state or in the 
state of the world. The states capture all the information relevant 
to the system decision-making process. The field of active sens-
ing is closely related to the work in experiment design 
(Lindley.D.V, 1956); (Fedorov, 1972), active learning (David J. C. 
MacKay, 1992); (Seung, Opper, & Sompolinsky, 1992)  and sen-
sor placement (A Krause, Guestrin, Gupta, & Kleinberg, 2006), 
(Andreas Krause, Singh, & Guestrin, 2008). The active sensing, 
active perception paradigm is introduced by (Bajcsy, 1985, 
1988), (Aloimonos, Weiss, & Bandyopadhyay, 1988). 
(Mihaylova, Lefebvre, Bruyninckx, Gadeyne, & Schutter, 2002) 
provide a survey of active sensing in robotics. (Kreucher, 
Kastella, & Hero III, 2005) presented a sensor management ap-
proach using the active sensing principle. (Denzler & Brown, 
2000, 2002b) discussed an information theoretic approach to 
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data and parameter selection. (S. Liu & Holloway, 2002) ex-
plained the general principle of active sensing for stochastic sys-
tem. 

d. Compressive/Distilled sensing 

Conventional approaches to sampling signals or images follow 
Shannon’s celebrated theorem: the sampling rate must be at 
least twice the maximum frequency present in the signal (the 
Nyquist rate). Compressed sensing (CS) is a novel sensing/sam-
pling paradigm that goes against the common wisdom in data ac-
quisition. CS theory suggests that one can recover certain signals 
and images from far fewer samples or measurements than tradi-
tional methods use.  

 
Figure 11: Basic Idea of Compressed Sensing 

The key idea of compressed sensing(CS) is given by (Baraniuk, 
2007; Candes & Wakin, 2008; Donoho, 2006). CS relies on the 
empirical observation that many types of signals or images can 
be well-approximated by a sparse expansion in terms of a suita-
ble basis, that is, by only a small number of non-zero coefficients. 
This is the key to the efficiency of many lossy compression tech-
niques such as JPEG, MP3 etc.  

A compression is obtained by simply storing only the largest basis 
coefficients. When reconstructing the signal the non-stored co-
efficients are simply set to zero. This is certainly a reasonable 
strategy when full information of the signal is available. How-
ever, when the signal first has to be acquired by a somewhat 
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costly, lengthy or otherwise difficult measurement (sensing) pro-
cedure, this seems to be a waste of resources. 

First, large efforts are spent in order to obtain full information on 
the signal, and afterwards most of the information is thrown 
away at the compression stage. One might ask whether there is 
a clever way of obtaining the compressed version of the signal 
more directly, by taking only a small number of measurements 
of the signal. It is not obvious at all whether this is possible since 
measuring directly the large coefficients requires knowing a pri-
ori their location. Compressive sensing provides nevertheless a 
way of reconstructing a compressed version of the original signal 
by taking only a small amount of linear and non-adaptive meas-
urements.  

The theory of compressive sensing uses a lot of tools from prob-
ability theory. Another important feature of compressive sensing 
that practical reconstruction can be performed by using efficient 
algorithms. Since the interest is in the vastly under-sampled case, 
the linear system describing the measurements is underdeter-
mined and therefore has infinitely many solutions. The key idea 
is that the sparsity helps in isolating the original signal. The the-
oretical foundation of compressed sensing has links to and also 
explores methodologies from various other fields such as, for ex-
ample, applied harmonic analysis, frame theory, geometric func-
tional analysis, numerical linear algebra, optimization theory, 
and random matrix theory. 

2.7.2 Data generation 

How do we generate data in order to get maximum information 
about the system? 

Data generation deals with the fields of design of experiments, 
dynamic system identification and statistics to name the most 
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relevant. Design of experiment is a fundamental process in every 
research field and equivalently has practical applicability in vari-
ous areas specifically in engineering science, medical sciences 
and social sciences. For this research, a significant amount of lit-
erature has been explored and a few relevant approaches are de-
scribed below:  

Experimental design – deals with issues such as choice/design in-
put and sampling rate selection for system identification. A spe-
cific area under experimental design most relevant to this re-
search is the design of an optimal input signal for system identi-
fication and model discrimination. 

The next few sections describe very briefly each of the ap-
proaches mentioned above and their relevance to this research. 

a. Experimental design 

System identification deals with constructing mathematical mod-
els of dynamical systems from observed input/output data 
through an experiment. An experiment here is a process or study 
that results in the collection of data. The results of experiments 
are not known in advance. Usually, statistical experiments are 
conducted in situations in which researchers can manipulate the 
conditions of the experiment and can control the factors that are 
irrelevant to the research objectives.  

Experimental design is the process of planning a study to meet 
specified objectives. Planning an experiment properly is very im-
portant in order to ensure that the right type of data and a suffi-
cient sample size and power are available to answer the research 
questions of interest as clearly and efficiently as possible.  

In order to obtain the maximal information from the observation 
data, the idea of optimal experimental design can originally be 
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traced back in early statistics literature (Wald, 1943) ;(Cox, 
1958); (Fedorov, 1972); (Whittle, 1973); (P.Wynn, 1972) as well 
as in the engineering literature (Levadi, 1966);(Gagliardi, 1967); 
(Goodwin, G., Payne, 1973); (Goodwin, G., Payne, R., Murdoch, 
1973);(Arimoto & Kimura, 1971), (Mehra, 1974a, 1974b); 
(Goodwin & Payne, 1977); (M. B. Zarrop, 1974, 1979; M. Zarrop, 
1979); (Hildebrand & Gevers, 2003). A recent survey is contained 
in (Gevers, 2005) where many additional references can be 
found. 

b. Optimal Input design 

The purpose of the design of identification experiments is to 
make the collected data maximally informative with respect to 
the intended use of the model, subject to constraints that might 
be at hand. Optimal input design for system identification was an 
active area of research in the 1970’s, with different quality 
measures of the identified model being used for this optimal de-
sign Over several decades, a large body of literature has devel-
oped on the topic of optimal input design (see, e.g., (Mehra, 
1974a, 1974b), (M. B. Zarrop, 1979);(Ljung, 1999, 2010), 
(Jansson & Hjalmarsson, 2005), (Bombois & Gilson, 2006), 
(Rivera, Lee, Mittelmann, & Braun, 2009; Steenis & Rivera, 
2009) and references therein.   

2.7.3 Fault Diagnosis and learning 

There are various approaches to fault detection and diagnosis. 
Each approach has its own strengths and weaknesses. In most of 
the practical applications, multiple approaches are combined to 
design a suitable fault detection methodology. There are two 
main categories: Passive and Active. The passive approach where 
the detector monitors the inputs and the outputs of the system 
and decides whether (and if possible what kind of) a fault has 
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occurred. This is done by comparing the measured input - output 
behaviour with normal behaviour of the system. The passive ap-
proach is used to continuously monitor the system in particular 
when the detector has no way of acting upon the system, for ma-
terial or security reasons, whereas active approach relies on the 
fact that an external signal can be modulated or send to system 
to extract important information. In this section, we highlight 
some of the major differentiating factors between the passive 
and active technique. In this section first a short introduction to 
passive approaches is given and later the active approaches are 
discussed.   

a. Passive Fault Detection Approach 

Traditional passive fault detection is well established and present 
in our in everyday life, like e.g. warning lights and sounds, fire 
and smoke alarms etc. As described above, the main idea is to 
observe (measure or estimate) certain important parameters or 
states (observable or estimated) of the system, and if those pa-
rameters or states deviate away from the predefined expected 
values (thresholds), the event would be declared as a fault. 
Thresholds are typically chosen using a simple probabilistic ap-
proach to the system, i.e. if a parameter is out of predefined spe-
cific bounds, there is a small probability that the observed part 
of the system is operating in healthy conditions. 

There are numerous references on research and implementation 
of this approach (M Blanke, B, & Lunau, 1997; M. Blanke, 
Staroswiecki, & Wu, 2001; Mogens Blanke, Lunze, Kinnaert, 
Staroswiecki, & Schröder, 2006; Ron J. Patton, Frank, & Clark, 
2000). (Gerfler, 1997; P. Zhang & Ding, 2008) described a fault 
diagnosis approach in which the diagnosis is only based on al-
ready existing signals in the system such as e.g., the control input, 
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the disturbance noise and the measurement output. As a conse-
quence of this, the faults in the system can only be detected / 
isolated, when either it is excited by either the control input or 
the disturbance noise. In other words, the control inputs or noise 
should be persistently exciting in order to excite the system in 
same frequency band in which the fault is present. (Isermann & 
Ballé, 1997; Isermann, 1994, 1995; R.J. Patton & Chen, 1997). 
Most of the work in the area of fault detection is geared towards 
this type of approach (Basseville, 1988; Benveniste & Basseville, 
1984; Chen & Patton, 1998; R. Patton, Clark, & Frank, 1989; Ron 
J. Patton et al., 2000; A S Willsky, 1976; Alan S Willsky, 1986). 
This kind of approach will not in general give an optimal fault di-
agnosis of the system. The issues and drawbacks of this approach 
are discussed below. 

b. Issues with passive approaches 

 Complexity of the system can make observation of all pa-
rameters impossible such as e.g. in the gas turbine engine, 
observation of all system parameter at all, level of system 
hierarchy is difficult. 

 The requirement of continuous observation of parameters 
itself increases the complexity of the system as more sen-
sors and alarm mechanisms to perform observations are re-
quired and a fault in these additional equipment can de-
stroy passive fault detection scheme. 

 One of the most desired requirements of today’s complex 
systems is robustness. Robustness can be achieved by the 
use of parallel or redundant modules, systems of observers 
and controllers, specially designed feedback loops, etc. In-
clusion of such additional requirements and modules can 



 54 

have an undesired effect of straining one part of the sys-
tem, if something is wrong with another part of the system, 
while at the same time, observed parameters might remain 
within the pre-defined range. This kind of additional strain 
can lead to the more disastrous collapse of the system in 
the future; therefore it presents potential danger, and can 
lead to reduced operational time of the equipment. 

In fact, what is common for all passive methods is that they are 
not acting on the system. Instead, if the system is excited by let 
us say some auxiliary signals, then the detection and isolation of 
faults can be done in a much more systematic and efficient way. 
As discussed by many researchers in many cases, the fault diag-
nosis will also be much faster(H Niemann, 2006; Henrik 
Niemann, 2006; Poulsen & Niemann, 2008). The section below, 
gives an idea about the active diagnosis approach. 

 

c. Active diagnosis 

Active diagnosis – The active approach to failure detection consists 
in acting upon the system on a periodic basis or at critical times 
using a test signal in order to exhibit abnormal behaviours which 
would otherwise remain undetected during normal operation. 
All of the above mentioned approaches are closely related and 
deal with the issue of most informative way to select or collect 
or classify data. Other important factors in data collection are 
data transfer, data compression and where to collect the data 
from as well as combining the all the information gathered from 
number of sources in an efficient and most informative way. The 
approaches mentioned below deal with such issues:  
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Figure 12: Active Diagnosis(R Nikoukhah & Campbell, 2002) 

The idea of injecting a signal into the system for identification 
purposes, that is, to determine the values of various physical pa-
rameters, has been widely used and is a fundamental part of en-
gineering design. The design of test signals has been a major is-
sue in system identification, but their use in failure detection has 
been introduced in (X. J. Zhang, 1989); (Keresteciogˇlu & Zarrop, 
1994; Kerestecioglu, 1993) and (Uosaki, Tanaka, & Sugiyama, 
1984). The basic idea behind active [Figure 12] fault diagnosis 
(Ramine Nikoukhah, 1998) is that, at some point of time (sched-
uled intervals) during normal operation of the system, a specific 
test signal is injected into the system for a finite period of time. 
This signal is supposed to expose the failure modes of the system 
which are then detected by the detection filter. The idea of active 
fault diagnosis has further been explored by different groups in 
different contexts such as in (R Nikoukhah, Campbell, & 
Delebecque, 2000) perturbations are modelled as bounded en-
ergy signals, where the aim is to find minimum energy auxiliary 
input signal which enables to decide surely in which mode the 
process operates. 

Robust multimodal identification problem has been explored by 
(R. Nikoukhah, Campbell, Horton, & Delebecque, 2002); with 
priori information by (Ramine Nikoukhah & Campbell, 2006); for 
nonlinear systems by (Andjelkovic, Sweetingham, & Campbell, 
2008); for closed loop systems by (Esna Ashari, Nikoukhah, & 
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Campbell, 2009); for detection of incipient faults in (Fair, 
Campbell, & Carolina, 2009) and (R. Nikoukhah, Campbell, & 
Drake, 2010). (Esna Ashari, Nikoukhah, & Campbell, 2011) stud-
ied the design of auxiliary signal for active fault detection for lin-
ear discrete-time systems whereas (Esna Ashari, Nikoukhah, & 
Campbell, 2012) studied the effect of feedback system on active 
fault detection.(H Niemann, 2005) used the new approach of ac-
tive fault diagnosis in connection with Fault Tolerant Control. 
(Henrik Niemann & Kjølstad, 2008) applied active fault diagnosis 
(AFD) approach for fault detection and isolation (FDI) of paramet-
ric faults in dynamic systems. The fault diagnosis performance 
was investigated with respect to different information levels 
from the external inputs to the systems.  

A controller reconfiguration based approach rather than an ex-
ogenous excitation signal for active fault diagnosis for additive or 
parametric faults has been proposed in (Stoustrup & Niemann, 
2010). (Šimandl & Herejt, 2003) deals with the information pro-
cessing strategies and considers their influence on fault detec-
tion performance index. (Simandl, 2005) extends the idea pre-
sented in (Šimandl & Herejt, 2003) where information about the 
auxiliary signal generator was given a priori and depended on de-
cision in known manner, to more general case for which the gen-
erator of the auxiliary input is also searched. 

Since the inputs of a system are usually utilized for control, it is 
necessary to tackle the problem of simultaneous control and ac-
tive detection. Early works (Stoustrup, Grimble, & Niemann, 
1997), (Jamouli, 2003) studied the relationships and limitations 
of the integrated fault detection and control, and more detailed 
treatment was given in (Khosrowjerdi, Nikoukhah, & Safari-
Shad, 2004), (H Niemann, 2006) and (Blackmore & Williams, 
2006). (Siroky, Simandl, Axehill, & Puncochar, 2011) presents an 
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optimization approach to resolve the competing aims of active 
fault detection and control. 

d. Optimal Input design for model discrimination/ fault diagnosis 

In order to estimate (identify) the parameters of a given model, 
one may have to choose the proper model structure among a set 
of available candidate models, which may correspond, for in-
stance, to competing scientific hypotheses about the description 
of some phenomenon e.g. nominal and fault mode operation of 
any system. Choosing between model structures is called model 
discrimination.  

In practice, of course, the ability to discriminate distinguishable 
model structures depends on the informational content of the 
data collected. This is why optimal experiment design for model 
discrimination has received some attention in the statistical liter-
ature (see, e.g., (G. E. P. B. and W. J. Hill, 1967);(A. C. Atkinson 
and D. R. Cox, 1974; Atkinson & Fedorov, 1975); (Dette & Titoff, 
2009).Applications of experiment design for discrimination can 
be found in domains as diverse as chemistry (Alberton, Schwaab, 
Lobão, & Pinto, 2011; Schwaab et al., 2006), machine learning 
(Rajamoney, 1993), systems biology (Kreutz & Timmer, 2009); 
(Skanda & Lebiedz, n.d., 2010); (Mélykúti, August, 
Papachristodoulou, & El-Samad, 2010) and psychology 
(Cavagnaro, Myung, Pitt, & Kujala, 2010; Myung & Pitt, 2009). 

Active approach also has some drawbacks. In such approaches 
the system is excited by auxiliary signals along with the signals 
present in the loop. These signals might disturb the performance 
of the system in the fault free case. Hence, the design of an aux-
iliary signal is the most important part of modern active fault di-
agnosis system. 
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e. Active learning 

 
Figure 13: Passive Learner 

 
Figure 14: Active Learner 

What is Active Learning? 

Active learning – It can be described as a closed-loop phenome-
non of a learner selecting actions or making queries that influ-
ence what data are added to its information content from which 
associations and rules are learned. 

The primary goal of machine learning is to derive general pat-
terns or models from a limited amount of data. An active learner 
Figure 14 gathers information about the world by asking queries 
and receiving responses. It then outputs a classifier or model de-
pending upon the task that it is being used for. An active learner 
differs from a passive learner which simply receives a random 
data set from the world and then outputs a classifier or model. 
One analogy is that a standard passive learner Figure 13 is a stu-
dent that gathers information by sitting and listening to a teacher 
while an active learner is a student that asks the teacher ques-
tions, listens to the answers and asks further questions based 
upon the teacher’s response.  It is plausible that this extra abil-
ity to adaptively query the world based upon past responses 
would allow an active learner to perform better than a passive 
learner. Furthermore we need not set out our desired queries in 
advance. Instead, we can choose our next query based upon the 
answers to our previous queries. This process of guiding the sam-
pling process by querying for certain types of instances based 
upon the data that we have seen so far is called active learning. 
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In practice, active learning offers its greatest rewards in situa-
tions where data are expensive or difficult to obtain, or when the 
environment is complex or dangerous. In industrial settings each 
training point may take days to gather and cost thousands of dol-
lars; a method for optimally selecting these points could offer 
enormous savings in time and money. There is also a significant 
body of work on the design of experiments in the field of optimal 
experimental design (Atkinson, 2001). The general theory of ac-
tive learning has been studied in the area of optimal experimen-
tation design (Chaloner & Verdinelli, 1995); (Sebastiani & Wynn, 
2000) and (Fedorov, 1972). A system proposed to drive robots 
that will perform queries whose results would be fed back into 
the active learning system was investigated in the context of re-
fining theories found with Inductive Logic Programming by 
(Muggleton, S.H.; Bryant, C.H.; Page, C.D.; Sternberg, 1999). 

One other major area of machine learning is reinforcement 
learning (Kaelbling, Littman, & Moore, 1996). For tackling the re-
inforcement problem there are some model based algorithms 
,that explicitly have two modes of operation: an explore mode 
that tries to estimate and refine the parameters of the whole 
model and an exploit mode that tries to maximize the reward 
given the current model (Kearns & Koller, 1999; Kearns & Singh, 
2002). The explore mode can be regarded as being an active 
learner; it tries to learn as much about the domain as possible, in 
the shortest possible time. 

2.7.4 Metrics for decision making 

In mathematical statistics and information theory there are vari-
ous techniques available for decision making based on entropy 
(Information) or distance based metrics. Few of the general tech-
niques for distinguishing between different probability distribu-
tions are mentioned below for reference: 

http://en.wikipedia.org/wiki/Mathematical_statistics
http://en.wikipedia.org/wiki/Information_theory
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Statistical distances  

 Kullback–Leibler divergence(Ali & Silvey, 1966a; Csiszár, 
1967; Hershey & Olsen, 2007; B. Liu, Yan, Li, & Wang, 
2010; David J C MacKay, 2002) 

 Rényi's divergence(Van Erven & Harrëmos, 2014) 

 Jensen–Shannon divergence(Grosse et al., 2002; P. W. 
Lamberti, Majtey, Borras, Casas, & Plastino, 2008; 
Pedro W. Lamberti & Majtey, 2003) 

 Bhattacharyya distance(Choi & Lee, 2003; Guorong, 
Peiqi, & Minhui, 1996; Kailath, 1967) 

Criteria for information based model, observation, feature, sen-
sor selection 

 Akaike information criterion(Bozdogan, 2000) 

 Bayesian information criterion(Y. Zhang & Ji, 2010) 

 Deviance information criterion(Spiegelhalter, Best, 
Carlin, & Van der Linde, 2014) 

 Focused information criterion(Claeskens & Hjort, 2003) 

 Entropy, relative entropy, cross-entropy, Mutual Infor-
mation(Cover & Thomas, 2006) 

 Fisher-information matrix (sometimes simply called in-
formation) can be defined as the variance of the score, 
or as the expected value of the observed infor-
mation(Borguet & Léonard, 2008; Lu, Ye, & Neuman, 
2011). 

 Approximate entropy, Sample Entropy and permutation 
entropy(Bandt & Pompe, 2002; He, Huang, & Zhang, 
2012a; Kosmidou & Hadjileontiadis, 2009) 

The section below provides a reference to few of the criteria’s 
used for data or model selection in the literature for different 
purposes: 
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Data Selection 

The criterion for how informative a new datum will depend on 
what we are interested in. Experimental design within a Bayesian 
framework using the Shannon information as an objective func-
tion has been studied by (Lindley.D.V, 1956) and by (Luttrell, 
1985). (David J. C. MacKay, 1992) discusses three different alter-
natives objective functions based on Information measure for 
data selection. (Chater & Oaksford, 1999) explains the infor-
mation gain and decision theoretic approaches to data selection. 
(Osborne, Garnett, & Roberts, 2010) recently discusses a Bayes-
ian formalism for the intelligent selection of observations from 
sensor networks that may intermittently undergo faults or 
change points.  
 

Active Leaning 

In the regression setting, active learning has been investigated by 
(Cohn, Ghahramani, & Jordan, 1996). (David J. C. MacKay, 1992) 
also explores the effects of different information-based loss 
functions for active learning in a regression setting, including the 
use of KL-divergence. Another related area to active learning is 
the notion of value of information in decision theory. The value 
of information of a variable is the expected increase in utility that 
we would gain if we were to know its value. For example, in a 
printer troubleshooting task (Heckerman et al., 1994), where the 
goal is to successful diagnose the problem, we may have the op-
tion of observing certain domain variables (such as “ink warning 
light on”) by asking the user questions. We can use a value of 
information computation to determine which questions are most 
useful to ask. 
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2.8  Critical Evaluation of methodologies 

In this section, a critical evaluation of the particular research 
methodology from an industrial perspective is provided. The 
main conclusions which can be drawn from above discussion in 
terms of technological impact of the particular chosen research 
methodology are summarized below. 
 
Active sensing is a very recent field offers a new research direc-
tion for data acquisition. The main benefit lies in that less storage 
space is required during data acquisition and its technological im-
pact can be high but following limitations such as the require-
ment of a real time optimal online optimization algorithm, opti-
mal sensor selection and the order of operations for calculation 
of criteria for optimality grows exponentially as the number of 
sensors increase hinder the use of active sensing in prognostic 
framework. 
 
Passive data fusion or optimal sensor field has been applied to 
various engineering system but Active information fusion field 
offers a good research opportunity for the use in a prognostic 
framework. It offers potential benefit of using existing sources of 
information for informative data collection in an optimal way 
which can later be used of fault diagnosis with high technological 
impact but it requires an efficient online optimization of available 
data acquisition/ monitoring strategies. 
 
Although the use of Compressed sensing in data acquisition pro-
cess is very promising and once mature its technological impact 
will be very high but currently it is not a not mature technology 
(even though highly researched field) and the restrictive hard-
ware capabilities makes it difficult to use in near future. 
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Active data selection heavily researched area in the machine 
learning community for training data selection for function ap-
proximations, model selection etc. In future, its technological im-
pact can be medium to low depending upon the particular prob-
lem. It can potential be used for selecting interesting sample of 
data (fault data) for further analysis. The main limitation at-
tached to the use of this methodology is that it can mostly be 
applied to offline data selection for function approximation. 
 
Experiment design/ Optimal Input design/ Optimal input for 
model discrimination is a heavily researched field in system the-
ory, system modelling, and control system. It offers a unique mix 
of scientific and application driven research. It can have a very 
high technology Impact and offer benefits as many industrial sys-
tems rely on experiment design based system identification for 
modelling. The limitations of these methodologies lies in the fact 
that it requires efficient experiment design processes, requires 
the exact knowledge of model or sometimes very high amount 
of data. 
 
Active diagnosis is a very recent fault diagnosis methodology. It 
offers a very good research opportunity and a potentially a very 
high Technology impact with the benefits by providing an accu-
rate identification of faults during run-time but practical applica-
tions are limited due to system constraints. 
 
Active learning like Active data selection is heavily researched 
topic in the field of machine learning. Its technology Impact can 
be considered from medium to low. It may offer few benefits 
when applied to some industrial problem. Main restriction to the 
use of this methodology is due to the fact that it is very problem 
specific and has not been really tested on industrial problem. 
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2.9 Summary 

In this chapter, an introduction to state-of-art monitoring sys-
tem and its capabilities of the gas turbine engine is given. The 
hierarchical & modular structure of the gas turbine engine 
along with the challenges and limitations in the current gener-
ation health monitoring systems, with respect to the technol-
ogies involved in data collection, communication and decision 
making of the gas turbine engine is discussed.  Based on com-
prehensive literature survey, use of the transient information 
(in the various sensor signals as well as system’s operation) for 
the purpose of system’s health monitoring is discussed in de-
tail. A new architecture for the next generation equipment 
health monitoring systems for the gas turbine engine is pro-
posed, which also includes the information from various ancil-
lary/accessory system. A detailed discussion about technolog-
ical impact and the suitability of the available methodologies, 
for the use in next generation gas turbine engine of the availa-
ble methodologies is provided. 
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3 Framework Design  

3.1 Generic framework for system health monitoring 

In this section, a generic framework for the health monitoring of 
complex engineering systems such as gas turbine engines is pro-
posed. First of all, a systematic methodology for the design of 
health monitoring for inclusion of transient information in ac-
cessing the overall health of the system is proposed as shown in 
Figure 15. The proposed framework clearly distinguishes be-
tween the data collection, data generation and decision making 
boundary for designing a robust equipment health monitoring 
system for civil aerospace gas turbine engines. 

 

 
Figure 15: Proposed Framework 

In the modern day civil gas turbine engines, the data is normally 
collected as snap-shots (taken at various pre-specified intervals 
during the whole flight) or as the steady-state data i.e. at the 
ground stations/flight parking bays (when the aircraft is at rest). 



 67 

Hence, present day EHM systems do not utilize the available 
transient data generated at various stages of the gas turbine en-
gine flight cycle. Therefore, in order to maximize the information 
or minimize the uncertainty about the system/state of the cho-
sen subsystem/component and later this information can be 
used for accurate fault diagnosis, a comprehensive data genera-
tion, data collection, communication as well as intelligent deci-
sion making capabilities are required in the next generation EHM. 
Figure 15 depicts one of the possible ways, how the transient in-
formation can be included in to data collection process and 
which technological questions need to be answered in order to 
design a fully robust informative data collection methodology in 
order to include the transient information for maximizing the in-
formation about the state of the system.  

As shown in the Figure 15, transient data can be collected, either 
during the different phases of the flight, during different transi-
ent manoeuvres e.g. acceleration, deceleration etc., transients 
occurring during the steady-state operation of the flight e.g. tur-
bulences, sudden loss in the altitude or change of direction or by 
designing a dedicated auxiliary signal, which pokes the systems 
at pre-specified interval in order to gather/dynamic signals with-
out interfering with the normal operations of the system. There 
are many technological questions such as optimal sensor selec-
tion for data collection, sampling rate for data acquisition, band-
width available for communication at the ground station and re-
dundancy of the data available from various sources/sensors, 
which one needs to address before finally deciding to pursue a 
particular methodology for data acquisition and processing. The 
above shown framework can further be refined to Figure 16 de-
pict various approaches available for capturing most informative 
data: 

 



 68 

 

Figure 16: Framework for health monitoring 

In this proposed extended framework following key aspects of sys-
tem health monitoring have been considered as shown in Figure 
16: 

 Data Selection: Acquiring a parsimonious data set for 
health assessment 

 Sensor selection and placement 

 Active1 sensing – data acquisition configuration 

 Compression  

 Data generation: Generating health-informative data 

 Signal/experiment design 
                                                      

1  The word Active has been extensively used in different contexts in the literature from different 
scientific domains. Other options could be e.g. Responsive, receptive etc. 
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 Optimal Input signal design for model discrimination 
(E.g. optimal signal design for discriminating between 
nominal and faulty mode of the same physical system or 
between two different fault modes of system with mul-
tiple fault modes. 

This is underpinned by multi-sensor data fusion, information fusion 
and other signal analysis methodologies. These categories lead to 
the following approaches for fault diagnosis and learning. 

 Using the informative data for fault diagnosis (getting infor-
mation to analytics) 

 Auxiliary signal design for active fault diagnosis (Combines 
the field of optimal experimental design and fault diagno-
sis) 

 Active learning (When the system is diagnosed to be in 
faulty mode, the selecting different queries/signal to learn 
more about the faulty mode of the system) 

Figure 16 shows various possibilities in which the proposed frame-
work can be expanded and how different techniques can be in-
cluded to accommodate the factors mentioned above. It also 
shows clearly, where different techniques lie on different side of 
paradigm as well as which techniques share the boundary between 
data collection and data generation.  
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The following section would how the above mentioned aspects fit 
as well as extend/contribute to overall Rolls-Royce equipment 
health management paradigm of “Sense-Acquire-Transfer-Ana-
lyse-Act (SATAA)”.  

3.2 Sense-Acquire-Transfer-Analyse-Act Paradigm 

With an electrical system connecting all the equipment with power, 
the control system controlling all the actions of the system, a mon-
itoring system is needed to log the actions, performance and status 
of the components in these systems. As mentioned before, the 
monitoring collection system can be ground-based, while monitor-
ing systems fly in the air, float on the sea, or generate electricity on 
another continent. All monitoring systems work on the simple basis 
of (Rolls-Royce, 2014): 

Sense - Acquire - Transfer - Analyse - Act. 

The aim of a monitoring system is to maximise reliability and avail-
ability. A monitoring system will not stop a system from malfunc-
tioning, but will log system data from which system characteristics 
can be deduced. The monitoring system collects data from all over 
the system and provides feedback at a specific location depending 
on the product the equipment is part of. The monitoring systems 
provides us with the freedom of knowing what our system is doing, 
how well it is doing it and helps in predicting how it will react next 
time we run it.  

Fundamental issues in any closed loop system are its sensing capa-
bilities, data acquisition, data selection, data transmission and 
analysis. Figure 17 below presents a possible mapping of the above 
discussed fields to the Rolls-Royce Engine Health Monitoring 
“Sense-Acquire-Transfer-Analyse-Act” Paradigm (Rolls-Royce, 
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2014). This mapping can be modified or improved in future accord-
ing to the needs/limitations as well as chosen/developed ap-
proaches. This section will briefly describe the scope as well as lim-
itations of few of the above mentioned research fields and their 
relevance / applicability to the Rolls-Royce engine health monitor-
ing paradigm of “Sense-Acquire-Transfer-Analyse-Act (SATAA)” 
(Rolls-Royce, 2014). The presented mapping shows, how the cur-
rent day on-board, off-board as well as communication capabilities 
can be enhanced by the possible adaptation of the methodologies 
discussed above at the different stages of the paradigm. 

 
Figure 17: Sense-Acquire-Transfer-Analyse-Act paradigm 
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3.3 Summary 

A systematic framework for the design of health monitoring for 
inclusion of transient information in accessing the overall health 
of the system is proposed. Furthermore various suggestions to 
include new technologies/methodologies to extend the frame-
work are made, so that existing bottlenecks, technological gaps 
in the existing equipment health monitoring system with respect 
to data collection, communication, compression and decision 
making etc. can be addressed in the next generation monitoring 
systems for the civil gas turbine engines. The Rolls-Royce “Sense-
Acquire-Transfer-Analyse-Act Paradigm” is also extended 
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4 Case Study Identification  

4.1 Pimento Tool & Expert knowledge 

A complex system can fail in a multiple ways. In a physical system, 
most of the faults that are manifested as system-level failures are 
initiated at the component-level, and a gas turbine engine is no ex-
ception. In the engine, there are a large number of components, 
each of which can have multiple failure modes. Furthermore, each 
failure mode is a product of many failure mechanisms that are sim-
ultaneously active. In short, there can be a large number of failure 
scenarios in the engine. Ideally, a system-level health assessment 
methodology should take all these possibilities into consideration. 
However, in most of the practical cases, it is not possible to cover 
all of these cases. Hence it is important to choose a representative 
set of suitable system/subsystems or components which are most 
relevant in terms of criticality of the fault, time, cost and effort.  

In order to choose a candidate system or subsystem as shown in 
Figure 18, one must consider following factors: 

 

 

Figure 18: Selection of subsystem selection 
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 Mission profile or operating phase of the aircraft  

 Failure mechanisms of each of these components are 
known a priori. This information can be obtained 
through the failure modes, mechanisms, and effects 
analysis (FMMEA) of the system.  

 Expert knowledge 

a) Aircraft Mission Profile 

A mission profile is a detailed description of an aircraft's fight path 
and it’s in-flight activities (Jayaram & Rivera, 1994). These profiles 
are broken into more specialized segments known as phases, which 
focus on specific flight operations. Figure 19 shows various phases 
of a typical flight cycle of a commercial aircraft.  Operational flight 
phases play an important role in the selection of a suitable system 
as loads and stresses under which some these system/components 
operate depend on the phase of flight they are operating which in 
turn effect the probability of them developing a fault or at later 
stage a failure. 

 
Figure 19: Civil Aircraft Flight Cycle 
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b) FMECA Study (PIMENTO TOOL) 

In this work the components that are most likely to fail are identi-
fied through FMECA study using PIMENTO TOOL and expert 
knowledge. FMECA studies identify potential failure of a compo-
nent/subsystem, determine the effects of this failure, and identify 
actions that can eliminate or reduce the likelihood of potential fail-
ures to occur (Bowles & Ph.D, 2012). The failure mechanisms of 
each of these components are known a priori. This information can 
be obtained through the failure modes, mechanisms, and effects 
analysis (FMMEA) (Pecht, 1995) of the system. The purpose of 
FMMEA is to identify potential failure mechanisms for all potential 
failures modes, and to prioritize failure mechanisms.  

 

 
Figure 20: Identified subsystem using Pimento Tool 
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The purpose of FMMEA is to identify potential failure mechanisms 
for all potential failures modes, and to prioritize failure mecha-
nisms. Figure 20 shows the suitable subsystem suggested by per-
forming FMECA as well as FMMEA study using PIMENTO Tool. After 
considering the factors important for the selection of suitable sub-
systems the following subsystems have been found suitable for 
analysis. 

 Fuel distribution system 

 Bleed valves 

 Oil supply system 

For this study fuel distribution system has been considered. The 
section below explains briefly the functioning of fuel distribution 
unit as well deals with a specific problem of oil debris monitoring 
in a component namely fuel metering valve of fuel distributions 
system. 

4.2 Fuel system 

In the fuel supply of an engine two systems are involved. These are 
the aircraft fuel supply and storage system and the engine fuel dis-
tribution system. The aircraft fuel system is also called the primary 
fuel system and has the functions of fuel storage as well as the sup-
ply of all engines with low pressure fuel. The engine mounted sys-
tem is called the secondary fuel system. It is responsible for the fuel 
supply of the individual engine including the metering of the fuel 
for combustion. The engine-mounted fuel distribution system de-
livers clean pressurized fuel for combustion and hydraulic pur-
poses. The system ensures that the fuel has the proper tempera-
ture and pressure for its use. The fuel for combustion is metered 
by a metering device. This is controlled by the computer of the 
FADEC system, the electronic engine control (EEC). In older hydro-
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mechanical systems the metering device is a component of the hy-
dro-mechanical fuel control unit (FCU).  

 

4.3 Fuel distribution system description 

The basic fuel distribution system of a typical engine consists of the 
following components (listed in the sequence in which they are 
passed by the fuel): Fuel pump, Fuel-cooled oil cooler, Fuel filter, 
Fuel metering device (FMU), Fuel flow transmitter, Fuel manifold 
components and Fuel nozzles. 

Fuel systems provide the engine with the necessary fuel to support 
the combustion process and the flow control such that the required 
quantity of fuel to enable an easy start, acceleration and decelera-
tion in all different flight conditions. To achieve this, the fuel pump 
is used for sending the fuel into the fuel spray nozzles, which fur-
ther inject the fuel in the form of an atomised spray into the com-
bustion chamber for combustion. At this stage, the fuel is further 
mixed with an appropriate quantity of air and burnt together to 
produce hot gas to drive the turbine (Soares, 2008).  

The main controlling devices in the fuel systems are fully automatic 
except the selection of engine power output, which is normally 
achieved by a manual throttle or a power lever, because the flow 
rate must vary accordingly in order to balance/properly mix with 
the  amount of air passing through the engine, while maintaining 
a constant selected engine speed or pressure ratio (Soares, 2008)., 
it is necessary to have An automatic safety control is usually 
needed to prevent crossing any maximum limit on the engine gas 
temperature, compressor delivery pressure, and the assembly 
speed. A governor provided in the fuel system also prevents the 
over-speeding for the safety reason. 
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4.4 Case Study: Oil debris monitoring in Fuel metering device 
(FMU) 

For the purpose of this research a case study has been undertaken 
to investigate the applicability of the information theoretic tech-
niques in identification of the faults and to extract the information 
about developed fault by analysing information from sensors sig-
nals. The main objective of this research was to investigate the in-
clusion of various available signals (directly measured, derived 
from measured signals or estimated signals) in identification of 
faults. Fuel metering system has been selected as a suitable sub-
system/component for a test case study. 

4.5 Fuel metering unit 

The main function of the FMU and Fuel Pump is to deliver a regu-
lated fuel flow to the combustor, where the fuel is mixed with the 
air. The fuel pump consists of a low pressure centrifugal pump and 
a high-pressure gear pump, which are driven by the high-speed 
gearbox. The fuel input from the aircraft fuel tanks will flow 
through an aircraft fuel pump to the Low-Pressure (LP) pump.  

Regulation of the quantity of fuel injected into the combustion sys-
tem is important because it has the most significant effect on the 
engine behaviour. One of these effects is on the gas turbine engine 
control of power or thrust. The relationship between the airflow 
through the engine and the fuel supplied is complicated by changes 
in altitude, air temperature and aircraft speed. Varying these fac-
tors change the density of the air within the engine intake and con-
sequently the mass of the air through the engine is also varied. 
There is an electronic system control, which measures and trans-
lates changing engine conditions to automatically adjust the fuel 
pump output electronically. Electronic Engine Control (EEC) system 
continuously monitors shaft speeds, temperatures and pressures 
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along the engine to ensure its safe operation. The EEC commands 
the FMU to increase or decrease the flow of fuel to the engine to 
activate the desired level of thrust. Figure 21 shows the block dia-
gram of a typical fuel metering unit. 

This case study deals with identification of fault developed in fuel 
metering valve units due to accumulation of debris in fuel filters 
over a period of time. The data is collected from a test rig of a fuel 
metering unit. Over a period of time the quantity of the debris was 
increased to simulate the similar operating conditions as in real op-
eration. As shown in Figure 21 the control signals are the signals 
which are available on a real system during real flight conditions & 
extra rig sensors were installed to measure the additional signals 
available at various stages of fuel metering valve. Figure 22 shows 
the torque motor current signal which is used to drive the FMV 
spool valve, Figure 23 shows the spool valve position and Figure 24 
shows the effect magneto-motive force acting on the spool. These 
signals are used as the available signals for further analysis.  

 
Figure 21: Fuel Metering Device 
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Figure 22: TMC Current 

 
Figure 23: Spool Valve Position 

 
Figure 24: Resultant Force on Spool 

 
Disclaimer: This block diagram shown in Figure 21 is based on an 
existing real platform based at Rolls-Royce plc, Derby and the 
data for this application was acquired at 40Hz sampling fre-
quency.   
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4.6 Summary 

This chapter gives a brief introduction of the challenges associated 
with the identification of the faulty system in a complex system. A 
complex system can fail in a multiple ways. In a physical system, 
most of the faults that are manifested as system-level failures are 
initiated at the component-level, and a gas turbine engine is no ex-
ception. In the engine, there are a large number of components, 
each of which can have multiple failure modes. Furthermore, each 
failure mode is a product of many failure mechanisms that are sim-
ultaneously active. Hence it is important to choose a representative 
set of suitable system/subsystems or components which are most 
relevant in terms of time, cost and effort. A systematic way to se-
lect a candidate subsystem based on the criticality of the problem, 
time, cost and effort is described. In the case of gas turbine engine 
it is emphasized, how the various factors such as operational mode 
of the flight, expert or stakeholder’s knowledge, knowledge of high 
value faults (coming from Failure Mode Mechanism Effects Analy-
sis, FMMEA study), which can contribute to the selection of suita-
ble sub-system for fault investigation can be utilized and combined 
with already existing knowledge about the working of engine sub-
system to select a candidate sub-system. Based on the described 
approach, Fuel metering valve (FMV) is selected as the candidate 
subsystem for further investigations. 
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5 Information collection  

In order to design a robust equipment health monitoring system, 
data selection plays a critical role. For the better decision making 
of the system’s state, suitable sensor signals should be selected and 
information hidden in those sensor signals must be properly ex-
tracted in order to make intelligent decisions. Feature extraction is 
always a crucial step for information gathering as well as health 
monitoring of a system. When-ever any change or faults occur, 
most of the systems always manifest abnormal and sometimes 
nonlinear dynamic behaviour. Hence it is necessary to extract the 
features hidden in the sensory signals for more ac-curate health 
monitoring and diagnosis. Feature extraction is always a crucial 
step for information gathering as well as health monitoring of a sys-
tem. Whenever any change or faults occur, most of the systems al-
ways manifest abnormal and sometimes nonlinear dynamic behav-
iour. Hence it is necessary to extract the features hidden in the sen-
sory signals for more accurate health monitoring and diagnosis. In 
this study apart from common statistical time domain features, 
other features are extracted based on the principles as well as 
tools/techniques available from the field of information theory and 
complexity theory. In this chapter all computations are performed 
on discrete-time data but that continuous-time definitions may be 
used for explanatory ease on occasion. 

5.1 Statistical features extraction.  

 

When the original discretized time domain signal is considered, 
some basic discriminative information which can be extracted in 
the form of statistical parameters from the n time domain samples, 
which can later be used for health monitoring are, root mean 
square (RMS), mean, peak value, crest factor, Skewness, kurtosis, 
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Variance, Standard Deviation, Impulse Factor, Shape Factor etc. In 
the section below first a formal mathematical definition of these 
terms is given and later on 3 different datasets have been used to 
emphasize the usefulness of including some of these parameters in 
the wider set of feature set for health monitoring. Below the statis-
tical definition are given for a signal 𝑋 = {𝑥1,𝑥2,𝑥3, … . . 𝑥𝑛}: 

a. Statistical definition of time domain quantities 

 Mean: 𝜇 =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  

 Standard deviation 𝜎 = √
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 Peak Value =  
1

2
(𝓂𝒶𝓍(𝑥) − 𝓂𝒾𝓃 (𝑥)) 

 Crest Value =  𝒫ℯ𝒶𝓀 𝓋𝒶ℓ𝓊ℯ 𝑅𝑀𝑆⁄  

 Impulse factor =  𝒫ℯ𝒶𝓀 𝓋𝒶ℓ𝓊ℯ 𝜇⁄  

 Shape factor =  𝑅𝑀𝑆 𝜇⁄  
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 Mean 
Value 

Standard 
Deviation 

Variance RMS 
Value 

Skew-
ness 

Kurtosis Crest 
Factor 

Shape 
Factor 

Impulse 
Factor 

Seg1 18.482 0.6751 0.4557 18.4944 -0.0779 2.7763 0.1428 1.0006 0.1429 

Seg2 18.7717 0.9992 0.9985 18.7983 0.0723 2.3768 0.1850 1.0014 0.1852 

Seg3 16.8362  5.5139 30.4038 17.7162 -2.1240 6.9395 0.9423 1.0522 0.9916 

Seg4 12.9630  10.5172 110.6124 16.6928 -0.3454 3.7555 2.6080 1.2877 3.3584 

Table 2: Data Set 1 

 

 Mean 
Value 

Standard 
Deviation 

Variance RMS 
Value 

Skew-
ness 

Kurtosis Crest 
Factor 

Shape 
Factor 

Impulse 
Factor 

 

Seg1 18.3749 0.7134 0.509 18.3887 -0.0921 2.7175 0.1475 1.0007 0.1476 

Seg2 18.7317 0.9704 0.9417 18.7568 0.0808 2.4184 0.1877 1.0013 0.188 

Seg3 18.6229 2.1225 4.505 18.7434 0.1301 2.0314 0.3685 1.0064 0.3709 

Seg4 18.4434 5.5447 30.7442 19.2588 1.9292 14.61 1.8364 1.0442 1.9176 

Table 3: Data Set 2 

 Mean 
Value 

Standard 
Deviation 

Variance RMS 
Value 

Skew-
ness 

Kurtosis Crest 
Factor 

Shape 
Factor 

Impulse 
Factor 

 

Seg1 18.5723 0.6279 0.3943 18.5829 -0.0464 2.8974 0.1325 1.0005 0.1325 

Seg2 18.7755 1.0043 1.0086 18.8023 0.077 2.3786 0.1849 1.0014 0.1852 

Seg3 18.5629 2.1066 4.438 18.682 0.1293 2.0623 0.3697 1.0064 0.3721 

Seg4 14.6766 9.9532 99.067 17.7333 -0.1948 4.8845 2.455 1.2082 2.9663 

Table 4: Data Set 3 

 

b. Results & Discussions 

In this investigation various statistical and indicative time do-
main quantities have been calculated, which can be potentially be 
included in the wider set of features. Three different segmenta-
tions have been used for performing these investigations. One of 
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the possible segmentation options can be seen in Figure 25. The 
data in each segment is then used to calculate the above men-
tioned statistical quantities. It can be easily observed from the Ta-
ble 2, Table 3 and Table 4 that the second, third and fourth order 
statistical moments of data segments (segment 3 and 4 represents 
the onset of the fault conditions) can be included as few of the pos-
sible features for the detection of the faults a change (marginal 
sometimes) is visible, whereas there robustness depends largely on 
the number of sample points used to calculate the statistics. Fea-
tures such as Impulse factor, crest factor and shape factor can be 
bit more reliable as a significant change is evident and they largely 
depend on the peak value, mean value and 𝑅𝑀𝑆 value of the sig-
nal. Even though these time domain statistical parameters can be 
included in the feature set but their robustness as well as reliability 
needs to be tested for different scenarios.  Therefore an extended 
feature set must be constructed containing more robust and dis-
criminating features/information sources which may help in distin-
guishing between a faulty and non-faulty condition. 

5.2 Features extraction based information theory  

An entropy as well as mutual information calculator based on ker-
nel density estimation is developed for this purpose, which can dis-
tinguish between the faulty and non-faulty states when we can 
measure/estimate a signal which has a direct relationship with the 
faulty signal/physical phenomenon. The basic idea is that the en-
tropy of health parameter and mutual information between the 
health parameter and other available sensor signal changes when 
a fault is present.  

One of the fundamentals problems in application of information-
theoretic framework is in the calculation of univariate or multivar-
iate probability density function (pdf). The estimation of pdf of a 
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random variable can be done either in a parametric or a non-para-
metric way. The section below presents one of the many different 
non-parametric methods available for calculating the multivariate 
pdf of the random variable.  

c. Estimation of Probability Density Function using Kernel density estima-
tion  

In statistics, kernel density estimation (KDE) is a non-parametric 
way to estimate the probability density function of a random vari-
able. Let X = 

1 2
[ , ,........ ]nx x x  be an i.i.d sample drawn from some 

distribution with an unknown density ( )p x . We are interested in 

estimating the shape of this function.  Its kernel density estimator 
(Moon, Rajagopalan, & Lall, 1995)is    
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 
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Where ( )K   is the kernel — a symmetric but not necessarily pos-

itive function that integrates to one — and   0h  is a smoothing 
parameter called the bandwidth. A kernel with subscript h is called 
the scaled kernel (Moon et al., 1995) and defined as 
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h
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A range of kernel functions are commonly used: uniform, triangu-
lar, Quartic, Epanechnikov, normal etc. In case of multivariate ker-
nel density estimation, the kernel density estimate (Moon et al., 
1995) is defined to be 
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Where  

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Density_estimation
http://en.wikipedia.org/wiki/Kernel_%28statistics%29
http://en.wikipedia.org/wiki/Smoothing
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( ) K u is a multivariate kernel function (Moon et al., 1995), Let 

1 2
( , ,........ )

d
x x x  be a sample of d-dimensional random vectors 

whose density is being estimated, 
1 2

'
 [ , ,........ ]

i i i di
x x x x , 1i n   

are the n  sample vectors, h  is kernel bandwidth, and S is the 

covariance matrix on 
i

x . The kernel function ( ) K u must be a valid 

probability density function. In this present case the multivariate 

Gaussian probability density function is used for ( ) K u , which is de-

fined as (Moon et al., 1995)  

 
/2 1/2

1
( ) exp( / 2)

(2 ) det( )d d
K u u

h S
   (5) 

Here “d” is the dimensionality of the vectored time series. There 
are many methods for choosing the bandwidth h . The “optimal” 
Gaussian bandwidth corresponding to kernel defined in equation 
(5) is given by (Moon et al., 1995)  

 1/( 4)

1/( 4)4

( 2)

d

dh n
d



  
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 
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d. Entropy of a signal 

There are many notions of entropy which have been proposed in 
the literature. “The etymology of the word entropy dates back to 
the famous German physicist Rudolf Clausius in second half of 
18thcentury who defined entropy as a thermodynamic state varia-
ble”. Rudolf Clausius originally defined it as  

 Q
S

Temp


   (7) 
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Where S an elementary change of entropy, Q  is a reversibly re-

ceived elementary heat, and Temp  is an absolute temperature. 

Obviously this definition has no meaning in the field of signal pro-
cessing. However, it started a diffusion of entropy as a term into 
the other areas.”(Ekštein & Pavelka, 2004).  

The entropy as a measure of system disorganization/disorder ap-
peared for the first time in the field of thermodynamics. It is scien-
tifically known that the systems usually tend to go from a state of 
order (low entropy) to a state of maximum disorder (high entropy). 
If we try to put this in other terms, it means that the entropy of a 
system can also be related to the amount of information it actually 
contains. A highly ordered system can be described using fewer bits 
of information (See later for more information) than a disordered 
system. 

“As proposed by scientists, the relation between entropy and signal 
processing is based on the hypothesis that the noise (white noise) is 
a projection of a system in the thermodynamic equilibrium into a 
signal. Hence, the noisy signal is supposed to have the highest en-
tropy value, while the speech signal (which mainly contains periodic 
sounds like e.g. vowels) has significantly lower entropy value as it is 
supposed to be more organized, and it usually requires an extra en-
ergy to be produced in such an organized form2”. 

The idea of entropy of random variables and processes by Claude 
E. Shannon is a cornerstone of the modern information theory and 
of the modern age of ergodic theory. Shannon introduced in his pa-
per "A Mathematical Theory of Communication" (Shannon, 1948). 
According to his definition/concept, Entropy is a measure of the av-
erage information content one is missing when one does not know 

                                                      
2 This principle reflects the Second thermodynamic postulate saying that entropy can be low-

ered if an energy is exerted into the task of organizing the examined system 
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the value of the random variable. For a discrete random variable 
X  with values in a finite set 𝜒 (support set in case of continuous 
random variable), Shannon entropy (Shannon, 1948) is defined as 
below 

 ( ) = ( )log ( )  0
b

x

H X p x p x


   (8) 

Where “b” is the base of the logarithm. Common values of b are 2 
(for discrete random variables), Euler's number e, and 10, When b 
= 2, the units of entropy are also commonly referred to as bits. 

Differential entropy also referred to as continuous entropy (Cover 
& Thomas, 2006) is a concept in information theory that extends 
the idea of Shannon entropy to  continuous probability distribu-
tion. Let X  be a random variable with cumulative distribution 
function       x PP r X x  . If    P x is continuous, the random 

variable is said to be continuous.  

Let   '( ) x Pp x  when the derivative is defined. If ( ) 0p x



 , 

then  p x  is called the probability density function for X . The set 

where   0p x   is called the support set of X . The differential en-

tropy  h x   of a continuous random variable X  with a density

 f x is defined as (Cover & Thomas, 2006)  

       ,
SS

H X x log p x dxp   (9) 

Where, SS  is the support set of the random variable. As in the dis-
crete case, the differential entropy depends only on the probability 
density of the random variable, and hence the differential entropy 
is sometimes written as  H f rather than  H X .  
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Entropy has been used in multiple ways in the field science and en-
gineering. The section below will give a brief overview of the differ-
ent ways the entropy has been used in various scientific domains. 

The principle of maximum entropy was introduced 1957 by Edwin 
Jaynes in his articles on  Information Theory and Statistical Me-
chanics (Jaynes, 1957a, 1957b, 1968). In this paper Jaynes explains 
the approach in statistical mechanics by a principle which he called 
“maximum-entropy principle”. The principle of maximum entropy 
is invoked or can be used, when we have some / partial piece(s) of 
information about a probability distribution of the data samples, 
but not enough to characterize it completely—it is quite likely, be-
cause we do not have the means or resources to know it com-
pletely. The principle of maximum entropy, in the very simplistic 
terms postulates that we should always choose the probability dis-
tribution that maximizes the amount of unpredictability/random-
ness contained in the distribution, under the constraint that the 
distribution matches the average that we measured (assumed). 

(Kullback, 1959) also introduced a measure of relative information 
(relative entropy) between two probability distributions with re-
spect to another. This also considered as a measure of the distance 
(in statistical sense) between these two probability distributions.  

 
The identification of the model order in signal processing and sys-
tem identification is an important factor and still an open area of 
research. When the order of the model (size of the parameter vec-
tor 𝜃) is fixed, the estimation of an optimal value (in the sense of 
maximum likelihood, maximum a posteriori (MAP) or other Bayes-
ian estimators) is well established, but the determination of the or-
der of the model is still an active area of investigation and big chal-
lenge. Among the various tools used for determination of model 
order, entropy is used as one of the tools. 
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The famous Akaike criterion (Hirotugu Akaike, 1969; H Akaike, 
1974; Farrier, 1984; M. Wax & Kailath, 1985; Mati Wax, 1991) uses 
this amount to determine the optimal order of the model in the 
specific context of linear models (in the parameters). 

 
Entropy is used in multiple ways in spectral analysis. The classic ex-
ample can be found in (Burg P.J, 1967). Entropy has been used in 
multiple ways for spectral estimation such as minimum cross-en-
tropy spectral analysis (Shore, 1981), multidimensional power 
spectral estimation (McClellan, 1982).  

e. Entropy calculation of the force signal 

The data is obtained from a test rig developed to simulate the sce-
nario of fault caused by debris build up in the fuel metering servo-
valve has been used for analysis and validation purposes. Figure 22 
shows the Torque motor current and [Figure 23] valve spool posi-
tion signals respectively which are directly available on-board as 
well as on test rig.  

 
It can be easily seen from the Figure 22 and Figure 23 respectively 
that not much information can be obtained from the torque motor 
current signal and valve spool position signals during the build of 
debris in the fuel system (simulation of faulty conditions) until the 
actual fault has occurred where as it can be observed from the Fig-
ure 24 that resultant force on the spool also changes (increases) as 
more and more debris is introduced in to the system (fuel filter). 
Hence In this present case, resultant force (calculated from the 
pressure signals time series data obtained from test rig ) on the 
spool of the valve is found to be a suitable health index for further 
analysis. For the analysis the magneto-motive net force signal has 
been divided in to segments as can be seen below in the Figure 25.  
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Figure 25: Segments of magneto-motive force 

 
Figure 26: Probability density functions of different segments 
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Figure 27: Entropies of Segments 

 

 Data Set 
1 

Data Set 
2 

Data Set 
3 

Data Set 
4 

Data Set 
5 

Seg1 26,2443 31,1825 29,6588 30,7628 29,1215 

Seg2 25,5035 30,1130 28,6692 24,4049 28,6692 

Seg3 19,2674 23,3082 21,5811 20,8741 20,0679 

Seg4 5,7473 20,0679 9,4750 12,2861 12,2861 

Table 5: Entropy Calculation for Different Data Sets 

f. Results & Discussions 

In this investigation differential entropy of the different segments 
of the net magneto- motive force signal Figure 24 has been calcu-
lated. For this investigation the time series data is considered to be 
stationary and all other operating conditions are assumed to be 
same. The data can further be divided into the segments as shown 
in the Figure 25. This choice of data is only specific to this applica-
tion because the data shown in the Figure 25  from a real platform 
which tries to emulate the situation in the air. Different troughs in 
the data are not present in the real data and they are actually pre-
sent due to repetition of testing cycle for the oil debris build up 
problem. The main idea about this segmentation choice to actually 
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combine the data without these troughs in order to emulate the 
situation in the air e.g. continuous build-up of oil debris in the fuel 
metering valve filter. The data in each segment is then used to cal-
culate the probability density function (pdf) as shown in Figure 26. 
For the calculation of the probability density functions data is as-
sumed to be stationary in each segment. From each probability 
density function then differential entropy is calculated. It can be 
easily seen from the Figure 27 that entropy of signal decreases as 
more and more debris is introduced in to the system. Further, in 
order to consider differential entropy as a possible discriminating 
feature, more similar experiments were carried out with different 
choice of data lengths and segmentation. Table 5 shows the result 
of such experiments. It can be easily observed that similar to first 
experiment the entropy of signal decreases as more and more de-
bris is introduced in to the system. Hence differential entropy can 
easily be considered as one of discriminating features/information 
sources which may help in distinguishing between a faulty and non-
faulty condition. 

Disclaimer: These calculation were performed on MATLAB release 
2013b, on a Windows 7 Professional PC with the following speci-
fications. 

 
 

g. Mutual Information  

Mutual information (M.I) is one of many quantities that measures 
how much one random variable tells us about another. It is a di-
mensionless quantity with (generally) units of bits, and can be 
thought of as the reduction in uncertainty about one random vari-

http://en.wikipedia.org/wiki/Bit
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able given knowledge of another. High mutual information indi-
cates a large reduction in uncertainty; low mutual information in-
dicates a small reduction; and zero mutual information between 
two random variables means the variables are independent.  

Formally, the mutual information of two discrete random variables 
𝑋 and 𝑌 can be defined as (David J C MacKay, 2002): 

 ( , )
( ; ) ( , )log

( ) ( )xYy X

p x y
I X Y p x y

p x p y

 
 
 


ò ò

  
(10) 

In the case of continuous random variables, the summation is re-
placed by a definite double integral (David J C MacKay, 2002): 

 
 

( , )
( ; ) ( , )log  

( ) ( )
 

p x y
I X Y p x y dxdy

p x p y

 
 
 

    (11) 

Where ( , )p x y  is now the joint probability density function of x

and y , and ( , )( )
y

x p x yp    , (( ,) )
x

p xp yy    are the marginal 

probability density functions of X and Y  respectively. Qualita-
tively, entropy is a measure of uncertainty – the higher the entropy, 
the more uncertain one is about a random variable. To understand 

what ( ; )I X Y actually means, we first need to define entropy, con-

ditional entropy & joint entropy. Following quantity are defined as 
in (David J C MacKay, 2002)  

The entropy of a random variable X  is given by  

 ( ) ( )log ( ) H X p x p x dx   (12) 

The joint entropy of a set of random variables X  & Y is given by 

 ( ; ) ( , )log ( , ) H X Y P x y P x y dxdy    (13) 
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The conditional entropy is the average uncertainty about X  af-
ter observing a second random variable Y , and is given by 
(David J C MacKay, 2002)  

 ( , )
( | ) ( , )log  

( )

p x y
H X Y p x y dxdy

p y
   (14) 

 ( | ) ( ) ( | ) H X Y p y H X Y y dy    (15) 

With the definitions of ( )H X and ( | )H X Y , equation (11) can be 

written as (David J C MacKay, 2002)  

      ; |I X Y H X H X Y   (16) 

Hence Mutual information is therefore the reduction in uncertainty 
about variable X , after observing Y  and satisfies 

( ( ); ;) .I X Y I Y X  [Figure 28] shows how the total entropy 

( ; )H X Y  of a joint ensemble can be broken down.   

 
Figure 28: The relationship between joint information, Marginal en-
tropy, conditional entropy and mutual entropy (David J C MacKay, 
2002). 

h. Estimation of Mutual information 

As discussed in the previous section, estimating the mutual infor-
mation (MI) between X   and Y requires the estimation of the 

joint probability density function of ( , )X Y . This estimation of the 

joint probability function has to be carried on the known data set. 
This technique was first developed for discrete random variables 
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later it has been extended to continuous random variables. For this 
reason, the MI has to be estimated.  

There are two basic approaches to estimate the Mutual Infor-
mation namely parametric and nonparametric methods. In the  
nonparametric estimation methods, usually no meaningful param-
eters are associated, whereas the parametric estimation methods 
on the other hand usually make assumptions about the functional 
form of the regression (mostly in least squares sense) and then the 
estimate is of actually only of those parameters that are available 
as free parameters. Some of the techniques available for estimat-
ing the MI include histogram based, adaptive partitioning, splines, 
kernel density and nearest neighbour etc.(Walters-Williams & Li, 
2009)  

Histogram-based (Moddemeijer, 1989a, 1989b) and kernel-based 
(Mars & Arragon, 1982; Moon et al., 1995) Pdf estimations are 
among the most commonly used methods. However, their use is 
usually restricted to one-dimensional or two-dimensional probabil-
ity density functions. K-nearest neighbour method is also analyzed 
by (Kraskov, Stögbauer, & Grassberger, 2004) and is able to handle 
multi-dimensional probability density functions. A survey about 
various methods available to estimate the mutual information can 
be found in (Walters-Williams & Li, 2009). 

i. Use of Mutual information 

Mutual information is used in several areas of science and engi-
neering. Mutual information is used in the field of language pro-
cessing by (Brown, Desouza, & Mercer, 1992; Lankhorst, 
Moddemeijer, Box, & Approach, 1993), speech processing & 
speech recognition by (Bahl, Brown, de Souza, & Mercer, 1986; 
Normandin, Cardin, & De Mori, 1994; Okawa, Kobayashi, & Shirai, 
1994; Povey et al., 2008). (Mars & Arragon, 1982; Moddemeijer, 
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1989a, 1989b)  used it for the estimation of time delay. Mutual 
information was used for lag identification in nonlinear time series 
(Fraser, 1989; Granger & Lin, 1994; Harvill & Ray, 2000; Kantz & 
Schreiber, 2003; Mars & Arragon, 1982). Mutual information was 
used to analyze non-linear system in  (H. S. Kim, Eykholt, & Salas, 
1999; Papana & Kugiumtzis, 2008, 2009). 

Use of mutual information in image processing can be found in  
(Hastreiter, Freund, Greiner, & Ertl, 1997; Maes, Collignon, 
Vandermeulen, Marchal, & Suetens, 1997). A very good survey 
about the use of mutual information in field of image processing 
can be found in (Pluim, Maintz, & Viergever, 2003). Other scientific 
field in which mutual information is extensively used is machine 
learning. In the specific area of machine learning various methods 
have been developed for feature selection using mutual infor-
mation which can be found in (Estévez, Tesmer, Perez, & Zurada, 
2009; Kwak, 2002; H. Liu, Sun, Liu, & Zhang, 2009; Peng, Long, & 
Ding, 2005; Zaffalon & Hutter, 2002).  

 

(Joshi, Deignan, Meckl, & Jennings, 2005) proposed a fault detec-
tion algorithm for multi-input multi-output (MIMO) systems based 
on a clustering algorithm developed using mutual information. A 
fault diagnosis procedure based on discriminant analysis and mu-
tual information was developed by (Verron, Tiplica, & Kobi, 2008). 
(Munawar, Reidemeister, & Ward, 2011) used in their work nor-
malized mutual information (NMI) as to automatically monitor the 
health of complex software systems and localize faulty compo-
nents when faults occur. 

A nonparametric signal detection and classification technique was 
proposed for condition-based maintenance of Helicopter 
Drivetrains using mutual information measures in the time–fre-
quency domain by (Coats et al., 2011). In (Zugasti & Arrillaga, 



 99 

2012) mutual information was used to identify sensor fault for the 
structural health monitoring. (J. Yu, Chen, & Rashid, 2013) applied 
a multi-way independent component analysis (MICA) mixture 
model and mutual information based fault detection and diagnosis 
approach for batch process monitoring. 

j. Results & Discussions 

In this investigation a method for fault identification has been im-
plemented. This method is based on the information theory, and 
more precisely, on Mutual Information. Mutual Information anal-
yses the dependence between sensors information. If that infor-
mation dependence changes between 2 different states, we can 
say that there is probably faulty condition in the system provided 
all other operating conditions remain same? In order to have that 
information, the dependence between two healthy sensors must 
be known under various operating conditions, that is why a learn-
ing phase is needed.  
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Figure 29: Mutual Information under different Conditions 

As it can be seen in the Figure 29 the results obtained from testing 
of the developed algorithm. It can be seen that mutual information 
between the Torque motor current as shown in Figure 22 and re-
sultant force do not change much but mutual information between 
valve spool position signal as shown in Figure 23 and resultant force 
changes drastically during faulty and non-faulty conditions. Hence 
the possible outcome of this investigation can easily be further uti-
lized to develop a 

a) Technique which can be used a selection procedure for op-
timal sensors/features. 

b) Technique for fault identification If we can estimate/meas-
ure/calculate force correctly. 
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Note: Similarly like the calculation of entropy, here it is also as-
sumed that for the calculation of the probability density functions 
data is assumed to be stationary throughout each segment. 

Disclaimer: These calculation were performed on MATLAB release 
2013b, on a Windows 7 Professional PC with the following speci-
fications. 

 

5.3 Feature based on Complexity theory  

Due to instantaneous variations in any system parameters such as 
friction, damping, or any external loading conditions over the time, 
dynamical systems tend to show / exhibit different dynamical prop-
erties (time-variation, nonlinearities etc.) which can often be char-
acterized as non-linear behaviours (Pintelon, Schoukens, & 
Vandersteen, 1997). Therefore, techniques for non-linear parame-
ter estimation or non-linear dynamics provide a very good alterna-
tive to extracting defect-related features hidden in the measured 
sensor signals that may not be effectively identified using other 
techniques (Yan & Gao, 2007) In the past, various researchers put 
a lot of effort and investigated a number of non-linear parameter 
identification techniques such as e.g. Correlation Dimension 
(Ruelle, 1990) and Complexity Measure (Lempel & Ziv, 1976; 
Steven M Pincus, 1991). Correlation dimension has been success-
fully applied to gearbox tooth defect diagnosis by (Jiang, Chen, & 
Qu, 1999) and for rolling bearing defect detection by (D. B. Logan 
& Mathew, 1996; D. Logan & Mathew, 1996). As stated in (L. A. 
Smith, 1988; Theiler, 1990), In order to reliably estimate of the Cor-
relation Dimension of a time series, it is often required that a large 
quantity of data points should be calculated, which requires high 
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computational time and unsuitability for on-line, real-time applica-
tions.  

The Complexity Measure, in comparison, is computationally more 
efficient as claimed by various authors in the past. The complexity 
of a signal can be described by two different measures: the 
Lempel–Ziv Complexity as defined in (Kaspar & Schuster, 1987; 
Lempel & Ziv, 1976) and Approximate Entropy (ApEn) which is pro-
posed by  (Steven M Pincus, 1991). Approximate Entropy ex-
presses the regularity of a time series in multiple dimensions, and 
contains more time-related information (Steven M Pincus, 1991). 
Therefore, this makes ApEn an attractive tool for monitoring sys-
tem dynamics, as information on the temporal progression (time 
evolution) of a defect is valuable not only for properly diagnosing 
the current system/machine health condition, but also in accu-
rately predicting the future behaviour of the machine health. 

a) Approximate Entropy  

Approximate Entropy (ApEn) is a regularity statistic that quantifies 
the unpredictability of fluctuations in a time series and can be used 
to classify complex systems. As the working condition/health of a 
system/machine deteriorates due to the various initial conditions 
and/or progression of defects due to various operating conditions, 
it would eventually result in a decrease in regularity (periodic be-
haviour in case of rotating machine, phenomenon like whirl appear 
due to unbalance) of health parameter e.g.  Such a change in the 
specific shape of a waveform or pattern being observed, would also 
tend to initiate a change in its corresponding Approximate Entropy 
(ApEn) value.  

Studies done by (Diambra, de Figueiredo, & Malta, 1999) on the 
Electro-Encephalogram (EEG) signals revealed that an increase of 
the ApEn values can be used to detect and characterize eplieptic 
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activities. In the field of biomedical engineering, studies on fetal 
heart rates using cardiotocography (CTG) done by (Signorini, 
Magenes, Cerutti, & Arduini, 2003) have shown correlation be-
tween the increase of ApEn values and pathological conditions. 
(Abásolo et al., 2005) found that the EEG analysis with ApEn could 
be a useful tool to increase the insight into brain dysfunction in Alz-
heimer’s disease.(Yan & Gao, 2007) developed a machine health 
monitoring system based on the Approximate Entropy (ApEn). 

(Awwad, Hasan, Dyson, Balli, & Gan, 2008) studied whether ap-
proximate entropy (ApEn) analysis provides a suitable method of 
detecting differences induced by a motor preparation task in time-
ordered inter-spike intervals (ISIs) recorded in monotonically firing 
motoneurons. ApEn was used for analysing the regularity and com-
plexity of the acoustic emission ssignals (AE) signals for crack mon-
itoring by (Taylor, Lin, & Chu, 2011). ApEn was used to extract the 
nonlinear information and features of the vibration signal of the 
four typical faults of rotating machinery by (He, Huang, & Zhang, 
2012b). (Fang, Chen, Zheng, & Harrison, 2012) have shown that 
ApEn can be used to extract different features in left-hand and 
right-hand motor imagery EEG efficiently. An EEG analysis system 
of seizure detection based on a cascade of wavelet-approximate 
entropy for feature selection was proposed by (Shen et al., 2013).  

Theoretical background 

For a time series 𝑋  containing N data points 

      1 ,  2 ,....,x x x n , its ‘‘regularity’’ can be measured by ApEn in 

a multiple dimensional space, in which a series of vectors are con-
structed and expressed as (Steven M Pincus, 1991) 
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 (1) = { (1), (2),....., ( )}

(2) = { (2), (3),....., (  1)}

.....

( 1) = { ( -  1), ( -   2),....., ( )}

X x x x m

X x x x m

X n m x n m x n m x n



   

 (17) 

In equation (17), each of the vectors is composed of m consecutive 
and discrete data points of the time series S (Steven M Pincus, 

1991). The distance  ( ( ), ( ))d X i X j  between two vectors  X i  

and  X j can be defined as the maximum difference in their re-

spective corresponding elements (Steven M Pincus, 1991): 

 
1,2,...,

( ( ), ( )) = max (| ( 1) ( 1) |),
k m

d X i X j x i k x j k


      (18) 

Where  = 1,2,...., 1,  1,2,...., 1,i N m j n m     and n is the num-

ber of data points contained in the time series. For each vector

 X i , a measure that describes the similarity between the vector 

 X i and all other vectors  ,   = 1,2,...., 1,  j j n m j iX     can be 

constructed as(Steven M Pincus, 1991) 

( ) = { [ ( ), ( )]}
( 1)

m

j ii
C r r d X i X j

n m

 

 


1
 (19) 

 

Where 

1,  0,
{ }  

0,  0.

x
x

x

 
   

 
 (20) 

The symbol r  in equation (19) represents a predetermined toler-
ance value, defined as r (Steven M Pincus, 1991) 
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  = * ( ),r k std X  (21) 

Where,( 0)k   is a constant and ( )std  is the standard deviation 

of the time series. By defining (Steven M Pincus, 1991) 

 1
( ) = ln[ ( )],   = 1,2,...., 1

1

m m

i i
r C r i n m

n m
  

 
  (22) 

the ApEn value of the time series can be calculated as (Steven M 
Pincus, 1991) 

 1

( , ) = lim [ ( ) ( )]
m m

N
ApEn m r r r 




  (23) 

For practical applications, a finite time series consisting N data 
points is used to estimate the ApEn value of the time series, which 
is defined as (Steven M Pincus, 1991) 

 
1

( , , ) = ( ) ( )
m m

ApEn m r n r r 


  (24) 

As explained in (B. Liu et al., 2010) , the value of the estimate de-
pends on the choice of m  and r . These two parameters must be 
fixed apriori before ApEn can be calculated. As suggested by 
(Steven M Pincus, 1991), m  can be taken as 2 and r  can be 

taken as 0.1 0.2( *5) std  , where std is the standard deviation 

of the original data.  
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Equation (24) indicates the similarity among the reconstructed vec-
tors within the time series, when the dimension of the vectors has 
increases from m  to 1m (Steven M Pincus, 1991). In this way 
the regularity of the time series being analysed is affected and con-
sequently, the associated ApEn value changes. The greater the reg-
ularity is, the lower the ApEn value as suggested by the various re-
searchers mentioned above. Take for an example, a periodic time 
series containing only a single frequency component will have a low 
ApEn value (which eventually approaches zero), due to the high 
regularity and periodic nature of the signal. In contrast, a relatively 
complex time series containing multiple frequency components 
e.g. a random noise sequence, random phase multisines etc. will 
have a high ApEn values, due to a low level of regularity (Yan & 
Gao, 2007)  

To calculate the ApEn value of a given time series 𝑋, data points 
contained within the time series are first rearranged into a series 
of m  and 1m  dimensional vectors, respectively, as illustrated 
in Figure 30. Then the distances between two corresponding data 
points from each corresponding vector is calculated. As mentioned 
in the equation (24) above, the similarity measure score for the re-
constructed vectors for each dimension m  and 1m  for a given 
value of r is obtained.  

Subsequently, using equation (24), the ApEn value for the time se-
ries 𝑋 with 𝑛 data points is calculated. To ensure consistency of 
the ApEn calculation, a minimum data length 𝑛, as well as appro-
priate dimension 𝑚 and tolerance 𝑟 needs to be (pre-) deter-
mined by performing various training runs or by lots of inputs from 
domain experts. In this case study, ApEn is used to extract features 
from force signal obtained from the fuel metering valve spool. 
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Figure 30: Steps in calculation of Approximate Entropy Here 𝑿 =
𝑺 𝒂𝒏𝒅 𝑵 = 𝐧 (Yan & Gao, 2007) 

 

Figure 31: Approximate Entropy of simulated signals 
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Figure 32: Approximate Entropy of Different Segments 

 
 

Number of data sample in each segment = 102300 

Down 
sampling 
 

Embedded  
Dimension  
(m) = 1 

Embedded  
Dimension  
(m) = 2 

Embedded  
Dimension 
(m) = 3 

1 

Seg1 = 1.9653 Seg1 =1.9433 Seg1 =1.8835 

Seg2 =1.8581 Seg2 =1.8222 Seg2 =1.7826 

Seg3 =1.4435 Seg3 =1.3522 Seg3 =1.3253 

Seg4 =0.8342 Seg4 =0.7870 Seg4 =0.7698 

3 

Seg1 =2.2758 Seg1 =2.2343 Seg1 =1.9904 

Seg2 =2.2507 Seg2 =2.2177 Seg2 =1.9975 

Seg3 =2.0505 Seg3 =2.0034 Seg3 =1.7784 

Seg4 =1.5351 Seg4 =1.4739 Seg4 =1.3728 

5 

Seg1 =2.9773 Seg1 =2.6407 Seg1 =1.1461 

Seg2 =2.9717 Seg2 =2.6645 Seg2 =1.1529 

Seg3 =2.8626 Seg3 =2.4425 Seg3 =0.8684 

Seg4 =2.4023 Seg4 =2.1248 Seg4 =1.3155 

Table 6: Case Study 1 
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Number of data sample in each segment = 60000 

Down 
sampling 
 

Embedded  
Dimension  
(m) = 1 

Embedded  
Dimension  
(m) = 2 

Embedded  
Dimension 
(m) =3 

1 

Seg1 = 2.0134 Seg1 =1.9812 Seg1 = 1.8862 

Seg2 = 1.8479 Seg2 =1.8072 Seg2 = 1.7525 

Seg3 = 0.5919 Seg3 =0.5884 Seg3 = 0.5796 

Seg4 = 0.4205 Seg4 =0.4471 Seg4 = 0.4397 

3 

Seg1 = 2.2970 Seg1 =2.2374 Seg1 = 1.8723 

Seg2 = 2.2415 Seg2 =2.1903 Seg2 = 1.8904 

Seg3 = 1.1146 Seg3 =1.0971 Seg3 = 1.0722 

Seg4 = 0.9535 Seg4 =0.9318 Seg4 = 0.8951 

5 

Seg1 = 2.9736 Seg1 =2.4731 Seg1 = 0.8412 

Seg2 = 2.9582 Seg2 =2.5164 Seg2 = 0.8321 

Seg3 = 1.9309 Seg3 =1.8521 Seg3 = 1.6137 

Seg4 = 1.8168 Seg4 =1.6800 Seg4 = 1.3733 

Table 7: Case Study 2 

500 randomly selected samples in each segment 

Data Sets 
Embedded  
Dimension  
(m) = 1 

1 

Seg1 = 1.4033 

Seg2 = 1.3092 

Seg3 = 1.1634 

Seg4 = 1.0160 

2 

Seg1 = 1.3788 

Seg2 = 1.3298 

Seg3 = 1.1634 

Seg4 = 1.1111 

3 

Seg1 = 1.3724 

Seg2 = 1.3256 

Seg3 = 1.1634 

Seg4 = 0.5696 

Table 8: Test for minimum number of samples 
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b) Results & Discussions 

In this investigation, first a toy test case simulation has been per-
formed on three different kinds of signals to test the effectiveness 
of approximate entropy in differentiating patterns of regular-
ity/complexity. Figure 31 shows the result of the approximate en-
tropy calculated on the signals with different complexity namely, 
sine, chirp and white noise signal at different values of 𝑟 with em-
bedding dimension 𝑚 = 2. It clearly shows that, predictability of 
white noise is less or complexity is more as compared to more pe-
riodic signals like sine or chirp. Approximate entropy of the differ-
ent segments shown in Figure 25 of the net magneto-motive force 
(MMV) signal are calculated. For this investigation data is consid-
ered to be stationary and all other operating conditions are as-
sumed to be same. It can be easily seen from the Figure 32 that 
approximate entropy of signal decreases as more and more debris 
is introduced in to the system. In order to test the robustness of 
the approximate entropy based feature to distinguish between 
healthy and unhealthy state, two different case studies were per-
formed, results of which are summarised in the Table 6 & Table 7. 
Two different data sets were randomly selected from the segments 
shown in the Figure 25 and a scan of different embedding dimen-
sions as well as different sampling rate was performed. It can be 
concluded that, a proper choice of embedding dimension as well as 
sampling rate is crucial for the success of this approach in different 
application. Hence along with information-theoretic features cal-
culated in Section 3.1 approximate entropy can also be considered 
as one of discriminating features/information sources which may 
help in distinguishing between a faulty and non-faulty condition. 
The advantage of using approximate entropy as feature for sys-
tem’s health lies in the fact that it requires relatively less data sam-
ples for discriminating between healthy and unhealthy state, which 
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is very useful in the real-time scenario. This is evident from the in-
vestigation performed on three different data sets as shown in the 
Table 8. The samples for each segments were chosen randomly 
from 3 different data sets. It can be observed that for a particular 
set of embedding dimensions and sample rate, the ApEn decreases 
continuously as the oil debris starts building up. The elapsed time 
for the calculation of the ApEn was 0.092527 seconds. 0.130959 
seconds. 0.107242 seconds for different datasets respectively. 
These calculation were performed on MATLAB release 2013b, on a 
Windows 7 Professional PC with the following specifications. 

 

5.4 Summary 

 For the better decision making of the system’s state, suitable 
sensor signals should be selected and information hidden in those 
sensor signals must be properly extracted in order to make intelli-
gent decisions. Feature extraction is always a crucial step for infor-
mation gathering as well as health monitoring of a system. When-
ever any change or faults occur, most of the systems always mani-
fest abnormal and sometimes nonlinear dynamic behaviour. Hence 
it is necessary to extract the features hidden in the sensory signals 
for more accurate health monitoring and diagnosis. In this chapter, 
feature extraction methods based on, Shannon entropy, mutual in-
formation, spectral entropy and approximate entropy are pro-
posed and tested on the real-life test-rig designed to imitate the oil 
debris building up problem in a fuel metering valve of a gas turbine 
engine. The proposed techniques are found accurate as well as ro-
bust enough to distinguish between the healthy and unhealthy sys-
tem provided some assumptions on the properties like stationarity 
of time series data are met The advantages of ApEn are its lower 
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computational demand as it does not really needs the explicit cal-
culation of the probability density functions and it can be applied 
in real time after properly understanding the effect from noise 
(Rhea et al., 2011) on the calculation of entropy because for a poor 
signal to noise ratio calculation of the pdf’s is relatively more diffi-
cult as well as more computationally expensive step. In ApEn 
proper selection of the r parameter helps to improve the perfor-
mance of the algorithm on data contaminated by experimental 
noise (S M Pincus & Goldberger, 1994; Steven M Pincus, 1991), , 

since this parameter act as a filter parameter. Conceptually, if the 
r parameter is larger than the experimental noise, then the effect 
of the experimental noise on the analysis should be reduced 
(Deffeyes, Harbourne, Stuberg, & Stergiou, 2011). 
 
 

 
Disclaimer: These finding are only applicable to FMV calculation 
and may not be directly extended to another subsystems, compo-
nents or system.  
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6 Trend Monitoring & Change Detection 
 

6.1 Continuous trend/change monitoring 

Monitoring the status of various systems and sub-systems in the 
gas turbine engine provides a unique and challenging environment 
for the design, function and use of sensor-based monitoring equip-
ment. Trend or change monitoring is an integral part of the process 
together with the maintenance in an intelligent equipment health 
monitoring system. Trend and change monitoring is therefore a 
tool that provides early indication of changing state of health of the 
various important as well as critical system components, and allows 
for early intervention, but is also a means by which the effect of 
interventions and control actions may be recorded, evaluated and 
controlled. In the section below, first few very specific cases are 
discussed, which are often encountered in aerospace industry, es-
pecially in civil gas turbine engine logistics and maintenance cycle 
and later on various techniques are introduced, which can be used 
both in the case of batch or continuous trend monitoring of critical 
quantities. In this chapter all computations are performed on dis-
crete-time data but that continuous-time definitions may be used 
for explanatory ease on occasion. 

6.2 Dealing with system hierarchy and irregular events 

As discussed in Section 1.5 a gas turbine engine can be described 
as a hierarchical system, most the decision about overall health of 
a gas turbine engine are taken based on the parameters/sensors 
measurements obtained from the top level system sensor e.g. Tur-
bine gas temperature (TGT) margin but in order to design an effi-
cient integrated health monitoring system one needs to include in-
formation about any change (online or offline) such as any mainte-
nance event e.g. compressor on-line washing, information about 
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any faults/change occurring at various levels of hierarchy e.g. infor-
mation about low pressure turbine vibration data, fault occurring 
in fuel metering valve etc. before further analysis can be carried 
out and a comprehensive as well as concrete information about 
state of health of the system can be provided or predicted. There-
fore, continuous trend monitoring as well as accurate detection of 
a change point in the states of system, system parameters or sys-
tem health index and timely inclusion of this information plays an 
important as well as crucial role in designing any advanced health 
monitoring system. 

In the following section, first a brief introduction of two different 
techniques, first for trend monitoring and second for change point 
detection is given as well as its suitability for application in two typ-
ical scenarios observed in the civil gas turbine engine health moni-
toring is tested. Later, an integrated prognosis approach (Martha A 
Zaidan, R.Relan, Harrison, & Mills, 2014) is proposed and is applied 
in combination with an existing prognosis method proposed by 
(Skaf, Zaidan, Harrison, & Mills, 2013; MA Zaidan, Harrison, Mills, 
& Fleming, 2013; Martha Arbayani Zaidan, Mills, & Harrison, 
2013) to address the problem of predicting gas turbine engine 
global health index (TGT margin). 

6.3 Spectral Entropy based trend monitoring 

In this section, we consider the use of a running measure of power 
spectrum disorder to track changes continuously in the magneto-
motive force signal acting on the fuel metering valve (FMV). Along 
with the usual tracking of the time domain statistical parameters 
such mean, standard deviation, variance and higher moments of 
the signal property, here we propose spectral entropy (SpEn) as an-
other simple but robust way for the purpose of trend monitoring.  
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Spectral entropy (SpEn), describes the irregularity of the signal 
spectrum and is a normalized form of the famous Shannon’s en-
tropy defined in the previous section. It quantifies the spectral 
complexity of the time series. It makes use of the amplitude com-
ponents of the power spectrum of the given signal as probabilities 
for entropy calculations. A variety of spectral transformations exist. 
Of these available transformations, the Fourier transformation (FT) 
is probably the most well-known transformation method from 
which the power spectral density (PSD) can be obtained/calcu-
lated. The PSD is a function that represents the distribution of 
power as a function of frequency. For analysing the frequency con-
tent of the signal 𝑥(𝑡), one might like to compute the ordinary 
Fourier transform ; however, for many signals of interest this Fou-
rier transform does not exist. Because of this, it is advantageous to 
work with a truncated (continuous) Fourier transform  𝑥𝑇̂(𝑤) , 

where the signal is integrated only over a finite interval [0,  𝑇𝑖𝑚𝑒]: 
(Brigham & Morrow, 1967; S. W. Smith, 1997) 

 𝑥𝑇𝑖𝑚𝑒̂(𝑤)= 
1

√𝑇𝑖𝑚𝑒
∫ 𝑥(𝑡)

𝑇𝑖𝑚𝑒

0
𝑒−𝑖𝜔𝑡𝑑𝑡 (25) 

For the Discrete Fourier Transform the integration in the above 
equation will be replaced by the summation sign Then the power 
spectral density can be defined as below (S. W. Smith, 1997): 

 𝑆𝑥𝑥(𝑤)= lim
𝑇𝑖𝑚𝑒→∞

𝔼 [|𝑥𝑇𝑖𝑚𝑒̂(𝑤)|
2

] (26) 

For each frequency in the frequency band of interest, the power 
level 𝑃𝑓 obtained from Fourier Transform is summed and then the 

total power, 𝑃𝑓  is calculated. Normalization of 𝑃𝑓  with respect 

to the total spectral power 𝑆𝑥𝑥(𝑤) , yields a probability density 
function. The power level at each frequency is divided by the total 
power 𝑃𝑓 = 𝑃𝑓 𝑃𝑇𝑜𝑡𝑎𝑙; 𝑃𝑇𝑜𝑡𝑎𝑙 =⁄ total power, which in the end 
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yields the total, 𝑃𝑓 = 1. After this, the Spectral Entropy is com-

puted by multiplying the power at each frequency by the logarithm 
of the same power, 𝑃𝑓 ∗ log (𝑃𝑓) and then multiplying the result 

by −1.(Kannathal, Choo, Acharya, & Sadasivan, 2005). Total en-
tropy is the sum of entropy computed over entire frequency band 
of interest. Thus, the spectral entropy (Kannathal et al., 2005) is 
given by: 

 𝐻𝑆𝑝𝐸𝑛 = ∑ 𝑃𝑓 ∗ 𝑙𝑜𝑔2 ∗ (1 𝑃𝑓⁄ )𝑓  (27) 

The ability of spectral entropy (SpEn) to show the irregularity is in-
dependent of amplitude or frequency of the signal. Spectral en-
tropy has been applied in diverse disciplines for various applica-
tions. (Misra & Ikbal, 2004) applied spectral entropy based method 
to design automatic speech recognition system. (Chechetkin & 
Lobzin, 2004) applied Spectral entropy criteria for structural seg-
mentation in genomic DNA sequences. Various entropy based cri-
teria including the spectral entropy has been used for detection of 
epilepsy in EEG in (Kannathal et al., 2005). (Martorano, Facco, 
Falzetti, & Pelaia, 2007) used Spectral entropy assessment with au-
ditory evoked potential in neuro-anesthesia. Time-varying spectral 
entropy is used by (Papo, Caverni, Douiri, Podlipsky, & 
Baudonnière, 2007) to differentiates between positive and nega-
tive feedback-related EEG activity in a hypothesis testing paradigm. 
Analysis of depth of anesthesia with Hilbert-Huang spectral en-
tropy was performed by (X. Li, Li, Liang, Voss, & Sleigh, 2008). A 
spectral entropy based study to identify cardiac arrhythmias is car-
ried out by (Staniczenko, Lee, & Jones, 2009). Entropy and com-
plexity measures were used by (Sabeti, Katebi, & Boostani, 2009) 
for EEG signal classification of schizophrenic and control partici-
pants. Entropies based detection method for epileptic seizures was 
proposed by (Pravin Kumar, Sriraam, Benakop, & Jinaga, 2010). A 
hybrid spectral-entropy approach was used in (Han, Muniandy, & 
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Dayou, 2011) for acoustic classification of Australian anurans. Eval-
uation of spectral entropy was recorded by (Morgaz et al., 2011) 
to measure anaesthetic depth and antinociception in sevoflurane-
anaesthetised Beagle dogs. A normalized spectral entropy related 
index is able to measure a part of the structural complexity of an 
ecological time series in (Zaccarelli, Li, Petrosillo, & Zurlini, 2013). 

Figure 33 shows the evolution of the spectral entropy of the net 
magneto-motive force acting on the spool of the fuel metering 
valve (FMV). For the purpose of analysis, the segment of the signals 
measurement from the test rig are concatenated for emulating a 
scenario of the continuous operation of the FMV and oil debris 
build-up phenomenon. It can be easily observed that spectral en-
tropy (SpEn) is clearly able to track the change in the nature of the 
magneto-motive force due build-up of the oil debris in the filter of 
fuel metering valve, hence it can be used as one of the system 
health feature to continuously monitor the trend/evolution of the 
signal under consideration. 

 

Figure 33: Spectral Entropy Analysis 
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6.4 Change point detection  

The aim of change point detection (CPD) algorithm is to discover 
points at which sudden changes occur in a time-series data 
(Kawahara & Sugiyama, 2012; Song Liu, Yamada, Collier, & 
Sugiyama, 2013).These method can be classified based on the de-
lay in detection: real-time detection or retrospective detection. 
Real-time detection is used for applications which require immedi-
ate response.  On the other hand, retrospective detection can be 
used for applications, which can usually tolerate a bit longer reac-
tion periods/time.  As proposed by (Song Liu et al., 2013), latter 
algorithm tends to give more robust and accurate detection nor-
mally. 

Here we propose a CPD method, named relative unconstrained 
least-squares importance fitting (RuLSIF) (Song Liu et al., 2013; 
Yamada, Suzuki, Kanamori, Hachiya, & Sugiyama, 2013), for the 
detection of anomalies (maintenance and step change/fault 
events), as mentioned earlier. In this approach, we do not require 
to estimate probability densities, such as kernel density estimation 
(Brodsky & Darkhovsky, 1993; Csörg\Ho & Horvath, 1988) as re-
quired in the last chapter, but instead estimates the ratio of prob-
ability densities directly (Vapnik, 1998). The following section sum-
marise the main idea behind RuLSIF (Yamada et al., 2013) CPD al-
gorithm,. 

6.4.1 Change point detection by relative density-ratio estimation 

Let us assume, 𝑧𝑡 a time-series of data to be monitored for de-
tecting changes in the statistical properties of the data. In the case 
of a gas turbine engine, the observed data can be either a global 
health index such as Thrust gas temperature(TGT Margin) or any 
sensor signal originating from various levels of hierarchy in the sys-
tem architecture. 
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𝑧𝑡 is 𝑑-dimensional time-series sample at time 𝑡 (Yamada et al., 
2013), where 

 𝑧𝑡= [𝑧1, 𝑧2, 𝑧3, 𝑧4, … … , 𝑧𝑑  ] ∈ ℝ𝑑. (28) 

Let us assume 𝑍𝑡 as a sample of time series at time 𝑡 with length 
𝒦, given by (Yamada et al., 2013): 

     𝑍𝑡 = [𝑧𝑡
′, 𝑧𝑡+1

′ , 𝑧𝑡+2
′ , 𝑧𝑡+3

′ , … … , 𝑧𝑡+𝑘−1
′ ]∈ ℝ𝑑𝒦 (29) 

Here ′ is the transpose operator. Next, let ℤ𝑡 be a set of 𝑛 ret-
rospective subsequence samples starting at time 𝑡 (Yamada et al., 
2013): 

 ℤ𝑡 = [𝑧𝑡
′, 𝑧𝑡+1

′ , 𝑧𝑡+2
′ , 𝑧𝑡+3

′ , … … , 𝑧𝑡+𝑛−1
′ ] ∈ ℝ𝑑𝒦∗𝑛 (30) 

As illustrated in Figure 34, this forms a 𝑑𝒦 ∗ 𝑛  Hankel matrix, 
which is an important part of this algorithm, is used for change de-
tection utilizing the concept of the subspace learning (Kawahara & 
Sugiyama, 2012; Moskvina & Zhigljavsky, 2003). 

 
Figure 34: One-dimensional time-series data 

The main idea behind this algorithm is to calculate a dissimilarity 
measure between two consecutive segments of the time series 
data, ℤ𝑡  and ℤ𝑡+𝑛 . The higher the dissimilarity measure, the 
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more likely it is that, a significant change has occurred in the statis-
tical property of the time series. In RuLSIF, the dissimilarity meas-
ure is defined by (Yamada et al., 2013): 

 𝐷𝑖𝑣(𝑃𝑡||𝑃𝑡+𝑛) + 𝐷𝑖𝑣(𝑃𝑡+𝑛||𝑃𝑡),  (31) 

Where 𝑃𝑡  and 𝑃𝑡+𝑛 are denoted by 𝑃(𝑍) and 𝑃𝛼
∗(𝑍), are the 

probability distributions of the samples in sequence ℤ𝑡 and ℤ𝑡+𝑛 
respectively. Here “𝑍” represent argument of the probability den-
sity function. 𝐷𝑖𝑣(𝑃𝑡||𝑃𝑡+𝑛)  is the 𝛼 -relative Pearson diver-
gence(PE) defined by (Song Liu et al., 2013) (Yamada et al., 2013),  

 
𝑃𝐸(𝑃||𝑃∗) =  

1

2
∫ 𝑃∗(𝑍) (

𝑃(𝑍)

𝑃𝛼
∗(𝑍)

− 1)

2

𝑑𝑍 (32) 

which is a special case of 𝑓 -divergence (Ali & Silvey, 1966b; 
Csiszár, 1967), where 𝑓 is a convex function.  

 𝐷𝑖𝑣(𝑃𝑡||𝑃𝑡+𝑛) = ∫ 𝑃∗(𝑧)𝑓 (
𝑃(𝑧)

𝑃𝛼
∗ (𝑧)

) 𝑑𝑍,  (33) 

 𝐷𝑖𝑣(𝑃𝑡||𝑃𝑡+𝑛) = 𝑃𝐸𝛼(𝑃||𝑃∗)

=
1

2
𝑃𝐸𝛼(𝑃||𝛼𝑃 + (1 − 𝛼)𝑃∗)

=  
1

2
∫ 𝑃𝛼

∗(𝑍) (
𝑃(𝑍)

𝑃𝛼
∗(𝑍)

− 1)

2

𝑑𝑍 

(34) 

Where 𝛼− relative Pearson divergence (PE) measures the differ-
ence between two probability distributions 𝑃(𝑍) and 𝑃𝛼

∗(𝑍), for 
0 ≤ 𝛼 < 1 . Where 𝑃𝛼

∗(𝑍) = 𝛼𝑃(𝑍) + (1 − 𝛼)𝑃∗(𝑍)  is the 
𝛼−mixture density and the 𝛼−relative density ratio is bounded 

above by 1
𝛼⁄  for 𝛼 > 0. The 𝛼− relative density ratio,𝑟𝛼  is de-

fined by (Song Liu et al., 2013) (Yamada et al., 2013): 
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𝑟𝛼(𝑍) =  (

𝑃(𝑍)

𝛼𝑃(𝑍) + (1 − 𝛼)𝑃∗(𝑍)
=

𝑃(𝑍)

𝑃𝛼
∗(𝑍)

) (35) 

The expectation of 𝑓(𝑍)   under 𝑃(𝑍)  is denoted by 
𝔼𝑃(𝑍)[𝑓(𝑍)], given by (Song Liu et al., 2013) (Yamada et al., 2013): 

 𝐷𝑖𝑣(𝑃𝑡||𝑃𝑡+𝑛) = 𝑃𝐸𝛼(𝑃||𝑃∗)

=  
1

2
∫ 𝑃𝛼

∗(𝑍)(𝑟𝛼(𝑍) − 1)2𝑑𝑍 

=  
1

2
∫ 𝔼𝑃𝛼∗(𝑍)

(𝑍)[(𝑟𝛼(𝑍) − 1)2] 

(36) 

From equation (36), it can be concluded that, only the density ratio 
needs to be calculated. Furthermore, the density ratio can be ex-
pressed as a kernel, described below (Song Liu et al., 2013) 
(Yamada et al., 2013): 

 
𝑟𝛼(𝑍) = 𝑔(𝑍) =  ∑ 𝜃𝑙𝐾(𝑍, 𝑍𝑙)

𝑛

𝑙=1

 (37) 

Where, where 𝜃 = (𝜃1, 𝜃2, 𝜃3…..𝜃𝑛)′are learning parameters and 
𝐾(𝑍, 𝑍𝑙) is a Gaussian kernel, defined by (Song Liu et al., 2013) 
(Yamada et al., 2013): 

 
𝐾(𝑍, 𝑍𝑙) = 𝑒

(−
∥𝑍−𝑍∗∥2

2𝛾2 )
 (38) 

Here 𝛾 > 0 is the kernel width, which is determined based on 
cross validation. The parameters 𝜃 can be learned by minimising 
the squared loss between true relative ratio, 𝑟𝛼(𝑍), and estimated 
relative ratio, 𝑔̂(𝑍), given by (Song Liu et al., 2013) (Yamada et al., 
2013): 
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 𝐽(𝑍) =
1

2
∫ 𝑃𝛼

∗(𝑍)(𝑟𝛼(𝑍) − 𝑔̂(𝑍))2𝑑𝑍         

= − 𝔼𝑃(𝑍)[𝑔̂(𝑍)] +
𝛼

2
𝔼𝑃(𝑍)[𝑔̂(𝑍)2] +

               
1−𝛼

2
𝔼𝑃(𝑍)[𝑔̂(𝑍)2] + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

(39) 

By replacing 𝑔̂(𝑍), by a kernel, in equation (39), and approximating 
the expectations by their empirical averages, RuLSIF optimisation 
problem can be reformulated as (Song Liu et al., 2013) (Yamada et 
al., 2013): 

 𝑚𝑖𝑛

𝜃∈𝑅𝑛 [
1

2
𝜃∗𝐻̂𝜃 − ℎ̂′𝜃 +

𝜆

2
𝜃∗𝜃] (40) 

Where, 
𝜆

2
𝜃∗𝜃 is the penalty term for the regularization, (𝜆 > 0) is 

a regularization parameter. Parameters 𝑣 ̂is the 𝑛 −dimensional 

vector with the 𝑙𝑡ℎ element given by (Song Liu et al., 2013) 
(Yamada et al., 2013): 

 
𝑣̂𝑙 =

1

𝑛
∑ 𝐾(𝑍𝑖 , 𝑍𝑙)

𝑛

𝑖=1

 (41) 

And 𝑉 ̂is the 𝑛 ∗ 𝑛 −matrix with the (𝑙, 𝑙∗ )𝑡ℎ element given by 
(Song Liu et al., 2013) (Yamada et al., 2013): 

 
𝑉̂𝑙,𝑙∗ =

𝛼

𝑛
∑ 𝐾(𝑍𝑖 , 𝑍𝑙)𝐾(𝑍𝑖 , 𝑍𝑙∗)

𝑛

𝑖=1

+
1 − 𝛼

𝑛
∑ 𝐾(𝑍𝑗

∗, 𝑍𝑙)𝐾(𝑍𝑗
∗, 𝑍𝑙

∗)

𝑛

𝑗=1

 

(42) 

Hence, the analytic solution of the equation (40) can be found by 
solving the following problem (Song Liu et al., 2013) (Yamada et 
al., 2013): 
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 𝜃 = (𝑉̂ + 𝜆𝐼𝑛)
−1

𝑣̂ (43) 

Where, 𝐼𝑛 is the 𝑛-dimensional identity matrix. Finally, a density 
ratio estimator can be written as (Song Liu et al., 2013) (Yamada et 
al., 2013): 

 
𝑟𝛼(𝑍) = 𝑔̂(𝑍) =  ∑ 𝜃𝑙̂𝐾(𝑍, 𝑍𝑙)

𝑛

𝑙=1

 (44) 

when 𝛼 =  0 , this method is reduced to unconstrained least-
squares importance fitting (uLSIF) described in (Kanamori, Hido, & 
Sugiyama, 2009). Now further this density ratio estimator can be 
for change point detection of a time series. By substituting the 
equation (44) in the equation (36) the 𝛼 −relative Pearson diver-
gence can be expressed as (Song Liu et al., 2013) (Yamada et al., 
2013): 

 
𝑃𝐸𝛼̂ = −

𝛼

2𝑛
∑ 𝑔̂(𝑍𝑖)2

𝑛

𝑙=1

−
(1 − 𝛼)

2𝑛
∑ 𝑔̂(𝑍𝑖

∗)2

𝑛∗

𝑗=1

+
1

𝑛
∑ 𝑔̂(𝑍𝑖)

𝑛

𝑖=1

−
1

2
 

(45) 

The indicator score/value obtained from the (symmetric version, 
equation (31) is used as basis of change point in time series (e.g. 
TGT margin, vibration signals etc.). The main advantages of using 
this technique for change/anomaly/fault detection (for gas turbine 
engine problems here) over previously proposed techniques can be 
summarised as below: 
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 This approach is quite simple (Vapnik, 1998), as it does not 
require the estimation of probability density function explic-
itly (e.g. kernel density estimation for each segment of the 
sequence, as described in the previous chapter), but this ap-
proach estimates the ratio of probability densities directly 
without going through density estimation step. In this regard, 
this technique can easily be adapted to be used in quasi-real 
time scenarios. 

 The acquired data (global health index of a gas turbine engine 
like TGT margin as well as other sensor signals (covariates) 
from different level of hierarchy) normally have large amount 
of noise attached to it. This method is based on a non-para-
metric method, where it does not need to assume a specific 
functional form for the distribution of the data sequences. 
Therefore, such models are better equipped to handle the 
model’s complexity as well as uncertainty(Bishop, 2006; 
Rasmussen & Williams, 2006). 

 The solution of this problem can be computed analytically 
(Kanamori et al., 2009; Song Liu et al., 2013; Yamada et al., 
2013), hence can be used for real time applications. 

 The basic idea of RuLSIF is to consider relative density ratios, 
which are smoother and always bounded from above 
(Yamada et al., 2013). 3  

                                                      

3 Thresholds and value of 𝛼 needs to be defined a-priori in order to determine mainte-
nance event as well as covariate changes, therefore density ratios must be bounded for 
detecting change point. 
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6.5 Application of Change point detection  

In the section below two specific case studies have been performed 
which uses the methodology shown in the Figure 39 . An 
event/change detection algorithm based on direct density ratio es-
timation has been applied. 

 To detect maintenance events in recoverable systems. 

 To low pressure turbine vibration signal. This information 
about change in vibration signal has later been combined 
with TGT margin (Global health index) in order to do better 
prognosis and calculation of remaining useful life of the gas 
turbine engine.  

a. Change detection for recoverable system 

An aerospace gas turbine engine is a recoverable system which 
means its performance can be improved by a properly scheduled 
maintenance action (Schneider, Demircioglu Bussjaeger, Franco, 
& Therkorn, 2010). Elements of gas turbine degradation, such as 
compressor fouling, are recoverable through compressor washing. 
These actions increase the useful life of a gas turbine engine and 
help in optimizing the performance of the gas turbine over a longer 
period. However, these maintenance actions are performed by a 
separate organization to those performing fleet management, 
leading to uncertainty in the maintenance state of the asset (Skaf 
et al., 2013). One of the ways to include information about such 
maintenance events is by detecting accurately these maintenance 
events directly from the measured service data of a global health 
index like e.g. Turbine gas temperature (TGT) margin. A change 
point detection algorithm can be used to detect a significant in-
crease in TGT margin. The event detection information can be sub-
sequently passed on to a prognosis algorithm. Figure 35 shows a 
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general concept how the change point detection algorithm pro-
vides information to reset the prognostic algorithm. The change 
point detection is applied directly to TGT margin to detect the sig-
nificant change in the degradation. 

 
Figure 35: Concept of a change point detection for recoverable 

system 

Figure 36 shows an example of TGT margin data and the score of 
change-point detection algorithm. The top figure shows the real 
TGT margin (Blue +) and its ground truth (Red solid), respectively. 
The bottom figure shows the result of the change point detection 
algorithm based on direct density ratio estimation (Kawahara & 
Sugiyama, 2012; Song Liu et al., 2013).  

A significant increase in change point score e.g. > 0.6 (chosen heu-
ristically) in this present case can be observed clearly at time index 
around 30, which indicates the occurrence of a maintenance event. 
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Figure 36: Change point detection in TGT Margin data after mainte-
nance event(Martha A Zaidan, R.Relan, Harrison, & Mills, 2014) 

b. Change detection for capturing variation in slope of global health in-
dex 

During the condition monitoring of a gas turbine engine a consid-
erable change in slope of degradation of the global health index like 
TGT margin can be observed. This change in slope of degradation 
can be due to various factors (covariates) such as operating condi-
tions, due to occurrence of an event (abnormal behaviour, a shift 
change in any local health index) and faults occurring at local or 
global level of gas turbine engine hierarchy. This section discusses 
two unique concepts using two different covariate effects. 
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Figure 37: Incorporating information from covariates 

There are several key operational factors/parameters (covariates) 
which are used in order to monitor the performance of an engine, 
including engine's operating speed, temperature, pressure, fuel 
flow and vibration levels (Ackert, 2010) at different stages in a gas 
turbine engine. In this case study, after deep discussions with sub-
ject matter experts the vibration of lower pressure turbine shaft is 
used as a main factor/covariate. As Turbine Gas Temperature (TGT) 
is measured near the exit station of low pressure turbine, hence it 
also makes vibration of low pressure turbine shaft a good candidate 
for further analysis. Figure 38 shows how detecting the change in 
vibration level correlate with the rapid change in TGT margin. The 
top subfigure illustrates the real TGT margin and its ground truth, 
represented by cross and solid line, respectively. The crossing of 
vertical dash line with the TGT margin data represent the point 
where the slope of the degradation starts to change. From the Fig-
ure 38 it can be seen that the first phase of normal deterioration is 
represented by time span between flight cycle 0 and 45, while the 
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second phase of rapid deterioration is represented by time span 
after flight cycle 45. The middle figure shows the measured low 
pressure turbine vibration signal, whereas the bottom figure is the 
scores (which represent the level of change occurred) obtained 
from change point detection algorithm. 

 
Figure 38: Change point detection using information from covari-

ates(Martha A Zaidan, R.Relan, et al., 2014). 

A threshold value is calculated heuristically based on offline imple-
mentation of change point detection on multiple sets of vibration 
(covariate) data From several experiments, this threshold can be 
specified. The value of this threshold will depend on fleet to fleet 
data, chosen subsystem/component as well as the chosen covari-
ate. A lower threshold may be chosen carefully and only if when 
the signal to noise ratio is good. A properly chosen threshold would 
eventually decide the impact of whole prognostic algorithm on the 
RUL as one of the task of CPD is use the information about this 
threshold to calculate the indicator score and eventually inform the 
main prognostic algorithm.  Figure 37 illustrates a block diagram 
of general concept for including obtained by applying the change 
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detection algorithm on different factors/covariate affecting the 
performance of the engine. When a change point detection algo-
rithm detects the change in one of the factors, that information is 
passed on to other algorithm for further analysis.  

A specific case study of prognosis of TGT margin utilizing the con-
cept developed above and Bayesian hierarchical modelling progno-
sis concept developed by (MA Zaidan, Harrison, et al., 2013; MA 
Zaidan, Mills, & Harrison, 2013) is discussed in the section below 
and also can be found in (Martha A Zaidan, R.Relan, et al., 2014). 

c. Integrated prognostics: Combining change point detection with re-
maining useful life calculation 

In the proposed integrated prognostics approach (Martha A 
Zaidan, R.Relan, et al., 2014) several monitored signals, e.g. 
global health index and other covariates, are fed into a prognos-
tic algorithm proposed by (Martha a. Zaidan, Harrison, Mills, & 
Fleming, 2014) to estimate RUL of gas turbine engine as shown 
in the Figure 39. At the same time, these parameters are also 
monitored continuously by CPD algorithm. If CPD algorithm de-
tects significant increase in TGT margin (the indicator score is big-
ger than the defined threshold), it considers that maintenance 
action is just performed and prognostic algorithm should be re-
started. Furthermore, whenever the CPD algorithm detects ab-
normality in one of monitored systems parameters/covariates 
(the indicator score is bigger than the defined threshold), it con-
siders that there is a fault or other changes in slope of health in-
dex (degradation parameters) due to various operating condi-
tions, which would affect the degradation process. The prognos-
tic model is then reset or reconfigured to improve the RUL esti-
mation 
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Figure 39: Integrated prognostics: Combining Bayesian approach 

and CPD(Martha A Zaidan, R.Relan, et al., 2014) 

 

 

Figure 40: Result of CPD + Bayesian Algorithm(Martha A Zaidan, 
R.Relan, et al., 2014) 
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Figure 40 illustrates the results of a remaining useful life prediction 
problem where the slope of degradation parameters/ health index 
under consideration is decays rapidly. It clearly shows that the in-
tegrated prognostics approach performs much better as compared 
to the previously proposed approach BR-3 (Variational Bayesian) 
and it converges very fast to the “expected” RUL. The flexibility of 
resetting or reconfiguring the prognostics algorithm at the onset of 
a significant change in the degradation parameters/health index or 
a change in the covariate, results in better RUL estimation. 

6.6 Summary 

This chapter presents two different techniques for generic prob-
lems like continuous trend monitoring and change point detection. 
The results described in this chapter are partially a result of joint 
work done in collaboration to propose an integrated prognostic ap-
proach. The main contribution of the author in are: 

 Development of spectral entropy based trend monitoring 
scheme. 

 Development and proposal of direct-density ration based 
change point detection (CPD) technique for the detection of 
change in global health index or any of the other systems pa-
rameters.  

 Development of methodology for integrated prognostic ap-
proach. 4 

This chapter discusses, how the system health monitoring systems 
can make use information available from continuously tracking the 

                                                      

4 The result of this approach are produced as a scientific paper (jointly co-authored) and 
are under review in the journal of “Experts systems with applications”, Elsevier, 2014. 
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change in the status of a health parameter of an asset as well as 
how the prognostic performance can be improved by utilising the 
information about irregular events, such as maintenance event, 
slope change in degradation and by including that information into 
the prognostic framework.  

The proposed integrated prognostic concept is promising for use in 
a complex hierarchical system. This method is able to detect any 
changes or faults in multiple covariates (e.g. vibration, ambient 
temperature) at any level of the system’s hierarchy, including sub-
system as well as component level. The challenge is to select opti-
mally the information from multiple covariates which may affect 
the degradation of health parameter indirectly as well as perfor-
mance of prognostics algorithm. 

 

Disclaimer: The simulation and calculation were performed on 
MATLAB release 2013b, on a Windows 7 Professional PC with the 
following specifications. 
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7 Conclusions  

This chapter summarises several major conclusions which can be 
drawn from this thesis. The main objective of this research is to 
identify the technological gaps in the existing state-of-the-art 
Equipment Health Management (EHM) system as well as present 
day’s “Sense-Acquire-Transfer-Analyse-Act Paradigm” of Rolls-
Royce Engine Health Monitoring system.  

The methodologies, framework as well as algorithms proposed in 
this thesis aim to deal with various challenges, which arise in devel-
oping a robust and intelligent health monitoring system for com-
plex systems such as civil gas turbine engines. Selection of an ap-
propriate framework/methodology/algorithm for a particular ap-
plication is crucial to the ultimate success of an Equipment Health 
Management (EHM) system. Therefore, this requires a good under-
standing of challenges associated with a specific application in such 
a complex system in order to make intelligent decisions on-board 
or off-board regarding the health of a system. 

As described in before, Monitoring systems technologies log the 
actions, performance and status of the components in the electri-
cal and control systems. They collect data from some sensor signals 
deemed indicative of performance and mechanical elements of the 
engine, which are then used to draw certain conclusions, based on 
algorithms programmed into the monitoring system. The aim of a 
monitoring system is to maximize availability and minimize opera-
tional disruption.   

In chapter 1, a brief background on the existing health monitoring 
as well as maintenance paradigms is provided. A clear motivation 
for developing a new framework is stated. Along with the commer-
cial benefits of the, various advantages are also discussed, which 
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support the idea of developing an intelligent health monitoring sys-
tem. A brief introduction of the working of gas turbine engine as 
well as state-of-the-art gas turbine engine equipment health mon-
itoring system is given. In the end, outline and contribution of the 
thesis are stated.    

In chapter 2, a thorough analysis of existing state-of-art Equipment 
Health Management (EHM) system has been performed and vari-
ous existing technological gaps and bottlenecks in architec-
ture/framework of EHM have been pointed out. A thorough analy-
sis based on exhaustive literature review of the factors affecting 
the next generation integrated Equipment Health Management 
(EHM) system has been performed and technological as well as sci-
entific impact of incorporating various suggested techniques and 
technologies in to the new Equipment Health Management (EHM) 
system architecture has also been discussed.  

To overcome these bottlenecks and fill those technological gaps 
discussed in previous chapter, in chapter 3, a concise and generic 
framework for health monitoring of complex systems such as gas 
turbine engine has been developed.  A clear emphasis is put on 
the use the transient information (along with the steady-state in-
formation) in designing a framework for equipment health moni-
toring system. It is also clearly stated, how and when this transient 
information can be collected for gathering better information 
about the state of health of the asset under consideration. To over-
come the fundamental issues associated with any closed loop sys-
tem such as its sensing capabilities, data acquisition, data selection, 
data transmission and analysis a clear picture has been presented, 
how and where the above proposed approaches would fit in or con-
tribute/ extended the “Sense-Acquire-Transfer-Analyse-Act Para-
digm” of Rolls-Royce Engine Health Monitoring system.  
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In order to implement and test some of proposed methods, a case 
study identification study has been performed for choosing a suit-
able system/subsystem or component in chapter 4. A clear path-
way is proposed to design a methodology which combines infor-
mation from various sources such as knowledge about high value 
fault based on Failure mode effect cause analysis (FMECA), opera-
tional phases of flight, expert knowledge and knowledge about the 
working of a particular sub-systems. Based on this approach the 
three sub-system were selected as candidate sub-system, out of 
which fuel metering value (FMV) was finally selected for further in-
vestigation.  

In order to gain as much information as possible, about the state of 
system/asset under consideration and later, to classify between 
the faulty and non-faulty state, in chapter 5 some feature extrac-
tion methods (keeping in mind their applicability in real-time sce-
narios) based on information theory e.g. entropy, mutual infor-
mation and complexity theory e.g. approximate entropy have de-
veloped and applied to the data obtained (in batch mode scenario) 
from a test rig developed to simulate the scenario of fault caused 
by debris build up in the fuel metering servo-valve. 

To address the fundamental problem of extracting a much infor-
mation as possible about the state of the system under considera-
tion (be it global or local system) and later use this information in 
order to better prognosis about the state/remaining useful life of 
the system, in chapter 6, an information-theoretic spectral entropy 
based method is proposed for trend monitoring of a signal/health 
index. Later on, a relative direct-density ration based change point 
detection algorithm has been developed and is also applied to 
problem of prognosis of recoverable system and to detect change 
in the state of global health index by incorporating the information 
about the state of subsystem at a local level. 
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8 Future Work 

Despite the proposed framework for intelligent data collec-
tion/generation as well as the extended (closed loop) version of the 
“Sense-Acquire-Transfer-Analyse-Act” paradigm and the proposed 
algorithms dealing with information collection/feature selection 
and anomaly detection problem prove to be promising, there are 
still a number of research areas, which are required to be improved 
and technological gaps which need to be filled, in order to design a 
next generation equipment health monitoring system for the fu-
ture gas turbine engines. This section provides several concrete 
suggestions for the future work. To develop a robust and effective 
health monitoring system, following aspects related to the method 
use must be investigated:   

1. Effect of data length 

As the proposed algorithm based on the information theory require 
calculation of the probability density function, the length of availa-
ble data samples therefore play a really important part in the over-
all success of the algorithm. Hence, it must be ensured that there 
are sufficient number of data samples available before quantities 
like entropy, mutual information can be accurately enough calcu-
lated/estimated. Effect of data length on robustness of feature ex-
tracted to distinguish between healthy and unhealthy state of sys-
tem under consideration must be thoroughly investigated. 

2. Feature Extraction and Selection of dominant features 

Although this thesis proposes a few different methods based on in-
formation theory and complexity theory, to distinguish between 
the healthy and unhealthy state of system under consideration. 
There are multiple other ways to extract different features from 
the signal. Once a set of different features have been extracted, the 
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selection of dominant features for good classification performance 
is very critical to design a robust and intelligent equipment health 
monitoring system.  

3. Further application of the Change point detection algorithm 

Application of the Change point detection algorithm to develop a 
recommender system for better data acquisition and sensor con-
figuration.  

a. Reconfiguration of sensor or data acquisition system  

As already discussed in Section 1.6 that often the most time-con-
suming and costly task in any scientific investigation is the gather-
ing of data. In order to design an efficient integrated health moni-
toring system, one needs to address, one of the fundamental the 
issues of data collection i.e. 
When and how do we need to measure? 

According to the framework proposed in Section 2 one can acquire 
the data in following ways: 

a. During operation  
b. During an event e.g. change detection problem 
c. specific tests (Active Fault diagnosis or optimal input design 

for system identification) 

In the section 4.4., data was collected from a test rig imitating the 
conditions of the civil aircraft during a normal operating flight cycle.  
The change point information gathered at different level of sys-
tem’s hierarchy can act as a triggering point for the data acquisition 
at higher sampling rates and/or for longer acquisition times in or-
der to do better data analysis at a later stage or can be combined 
with information already available at different levels of hierarchy 

file:///C:/Users/uos/Google%20Drive/TR2013/Transfer_ReportHealthMonitoringofComplexSystem_Home.docx%23Section_16
file:///C:/Users/uos/Google%20Drive/TR2013/Transfer_ReportHealthMonitoringofComplexSystem_Home.docx%23Framework
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to do better prognosis about the remaining useful life of a sys-
tem/sub-system or a component. 

 

 
Figure 41: Change detection for data collection 

In the Figure 41, on the similar principle a methodology is proposed 
based on the change point detection algorithm to tackle with other 
fundamental problem of data collection in any health monitoring 
system. As shown above, a change detection algorithm can be used 
to trigger and/or reconfigure the data acquisition system and/or 
sensory system 

  

Sensors for different health indices 
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4. Development of Information transfer algorithm 

As discussed above, many complex engineering like gas turbine en-
gine have different level of hierarchy as well as modular structure, 
a change at one of level of hierarchy can affect the dynamics at 
other level of hierarchy. There might or might not be direct inter-
action between different levels, but one can try to track or detect 
the changes as well as information transfer between various sen-
sors (on-board and/or virtual sensors) in the different level of hier-
archy during a faulty and normal operating condition. There are 
various techniques employed in neuroscience to track the changes 
in brain by observing the response at different part of brain by stim-
ulating in the different and tracking the change in information of 
the brain activity or by quantifying the information flow. Hence, 
field of causality research is a strong candidate for application in to 
fault diagnosis etc. 

5. Development of an Intelligent Fault Diagnosis and Prognosis 

A critical part of developing and implementing an effective as well 
as reliable health monitoring system is actually based on the ability 
to detect faults/anomalies in early enough stages/phases of sys-
tem’s operation and later on to do something useful with the ac-
quired information. Fault isolation and diagnosis process uses 
these detection events as the start of the process for classifying the 
fault for the system being monitored (Vachtsevanos et al., 2006) 
Condition monitoring and/or failure prognosis then forecasts the 
remaining useful life (the approximate operating time between the 
detection of the any anomaly or fault and an unacceptable level of 
degradation of any of the system’s health parameters). If the iden-
tified anomaly or fault affects the life of any critical component, 
then the failure prognosis models also must take in to considera-
tion and should reflect this diagnosis. As a minimum, the following 
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probabilities should be used to specify fault detection and diagnos-
tic accuracy according to (Vachtsevanos et al., 2006): 

 “The probability of anomaly detection, including false-alarm 
rate and real fault probability statistics”. 

 “The probability of specific fault diagnosis classifications using 
specific confidence bounds and severity predictions”. 

To specify the accuracy of any prognostic algorithm, the devel-
oper/end user must first define following points: 

 The level of condition/health parameter degradation beyond 
which operation of the asset/system is considered unsatisfac-
tory or undesirable. 

 A minimum amount of warning time which should provide 
the operator and maintainer, the required information so 
that he/she can be act before the onset of actual failure. 

 A minimum probability level that remaining useful life will be 
equal to or greater than the minimum warning level. 

Such an approach will involve synergistic deployments of compo-
nent health monitoring technologies, as well as integrated reason-
ing capabilities for the interpretation of fault-detect outputs as de-
scribed in (Khawaja, Vachtsevanos, & Wu, 2005; Tang et al., 2008; 
Vachtsevanos et al., 2006). Furthermore, it will also involve the in-
troduction of various learning (machine) technologies to support 
the continuous improvement of the reasoning capabilities. Finally, 
a plausible maintenance and logistics architecture is required that 
can govern integration and interoperation within the system, for 
example between various on-board elements and their counter-
part ground-based support functions, as well also between various 
health management system functionalities, external maintenance 
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and operation functions. These kind of Decision-Making Support 
Systems (DMSS) are mostly computer-based systems, which can 
support any individual or an organisational decision-making pro-
cesses. Recent advances in information technology and artificial in-
telligence especially machine learning are continuously enhancing 
the capabilities of these systems and giving rise to so called, intelli-
gent-DMSS. A typical intelligent-DMSS will usually contain various 
decision layers, generally  making decision about sensor place-
ments as well as sensing strategies, signal processing and database 
management systems, fault diagnosis, fault prognosis and logistics 
etc. 
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Appendix A  
Patent Review 

A patent review has been performed on the fault detection / di-
agnosis of gas turbine engine and its subsystems. [Figure 42] pro-
vide a very broad overview of the results obtained by entering 
different search term in Google patents search engine.  

Patent Review Statistics: 

 

Figure 42: Patent Review Statistics 

  

No. of Patents

Diagnosis of gas turbine engines

Data fusion for fault diagnosis of
gas turbine engine

Fault diagnosis of gas turbine
engine

System identification for fault
diagnosis

Intelligent fault diagnosis of gas
turbine engine

Active fault diagnosis of gas
turbine engine

Transient for fault diagnosis of gas
turbine
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Review of the relevant patents: 

[Table 9] shows few of the patents filed by various organizations 
that are relevant to the present thesis. The detailed description 
containing dates, assignee and abstracts of the patents can be 
found in the Appendix B.  

 
No. Assignee PATENT NO TITLE 

1 Honeywell In-
ternational Inc., 
Morristown, 
NJ(US) 

US 6,868,325 B2 Transient fault detection sys-
tem and method using hidden 
markov models 

2 Honeywell In-
ternational Inc., 
Morristown, NJ 
(US) 

US 7,043,348 B2 Transient fault detection sys-
tem and method 

3 Honeywell In-
ternational Inc., 
Morristown, NJ 
(US) 

US 7,693,643 B2 Fault detection system and 
method for turbine engine 
fuel systems 

4 United Tech-
nologies Corpora-
tion, 
Hartford, CT 
(US) 

US 7,769,507 B2 System for gas turbine health 
monitoring data fusion 

5 Honeywell In-
ternational 
Inc.,Morristown, 
NJ (US) 

US 7,945,397 B2 System and method for gear-
box health monitoring 

6 NIXON & 
VANDERHYE, PC 
901, NORTH 
GLEBE ROAD, 
11TH FLOOR 
ARLINGTON, 
VA 22203 (US) 

US 
2010/0155634A1 

Performance monitoring and 
prognostics for aircraft pneu-
matic control valves 
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7 Honeywell In-
ternational Inc., 
Morristown, NJ 
(US) 

US 2010/0303611 
A1 

Methods and systems for tur-
bine line replaceable unit 
fault detection and isolation 
during engine startup 

8 Honeywell In-
ternational Inc., 

Morristown, 
NJ (US) 

US 20080183311 
A1 

Apparatus and method for au-
tomated closed-loop identifi-
cation of an industrial process 
in a process control system.  

9 Honeywell In-
ternational Inc., 
Morristown, NJ 
(US) 

US 201110112659 
Al 

System identification in auto-
mated process control 

Table 9: Patent Review 

Patent No. [1, 2 & 7] in [Table 9] discuss the use of transients or 
transient event e.g. start-up based information for fault detection 
whereas patent no. [3, 5 & 6] discuss various approaches for sub-
system fault detection/health assessment. The limitations of these 
patents lie in the fact that most of these approaches deal with ei-
ther building a passive anomaly detector consisting of a feature ex-
tractor and a reasoning module/classifier or a residual/baseline 
comparison based approach for fault detection and are most of the 
time applicable in easily identifiable fault modes. These inventions 
do not take in to consideration the incipient faults or do no talk 
about their prognosis. These inventions also do not use an inte-
grated approach of using steady state and transient data for system 
health monitoring. 

Patent No. [4] in [Table 9] discuss a framework for data fusion con-
sisting of a data alignment module, an analysis module and a high 
level diagnostic feature information fusion module for gas turbine 
engine health monitoring. This invention takes in to consideration 
already available information from sensors of different modalities 
such as aircraft sensors, structural assessment sensors, vibration 
sensors, gas path sensors, lubrication and fuel system sensors and 
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combine that information with FADEC fault codes, pilot observa-
tions as well as engine maintenance history at different levels of 
hierarchy for recommending maintenance action. The limitation of 
this approach is that it does not consider or include the information 
about the health of auxiliary subsystem for proper assessment of 
engine health. This approach is a generic approach which can easily 
be modified according to chosen data fusion architecture 

Patent No. [8] describes a method for automated closed-loop iden-
tification of a multiple model structure-model order combination 
of an industrial process based on prediction metric or rank for in a 
process control system.  Patent no. [9] further build on the above 
described approach and discusses an approach based on injecting 
an additional signal optimized for identification. This invention de-
scribes a method for system model identification by performing ex-
periments on a system to be controlled, comprising: 

 Selection and discriminating between the two models that 
enables improvement in model quality, wherein for a given 
input to the system the two selected models produce dif-
ferent outputs. 

 Designing or determining an input having a control compo-
nent and an identification component where the control 
component is used for control of the system and the iden-
tification component is used for identification experiments. 

 Wherein the system identification experiments are based 
on modification of linear quadratic control to perform sys-
tem identification in closed loop. 

 The control component and identification component of 
the input is determined simultaneously. 
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Invention described in patent no. [9] deal with the problem of 
optimal input design for system identification by selecting two 
model of the same process and determining an input signal for 
discrimination in a control theoretic (linear quadratic control) 
way specifically used for automated process control and model 
predictive controllers whereas there are other approaches al-
ready discussed in the document above which can be used for 
the same purpose. There is no mention of the applicability of the 
method discussed in this approach to a real system. 
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Appendix B 
 

Patent No. US 6,868,325 B2 

Date: Mar. 15,2005 

Title: Transient fault detection system and method using hidden markov Mod-
els 

Assignee: Honeywell International Inc., Morristown, NJ (US) 

Abstract:  

A transient fault detection system and method is provided that facilitates im-
proved fault detection performance in transient conditions. The transient fault de-
tection system provides the ability to detect symptoms of engine faults that occur 
in transient conditions. The transient fault detection system includes a Hidden 
Markov Model detector that receives sensor data during transient conditions and 
determines if a fault has occurred during the transient conditions. Detected faults 
can then be passed to a diagnostic, system where they can be passed as appropri-
ate to maintenance personnel. 

 

Patent No. US 7,043,348 B2 

Date: May 9, 2006 

Title: Transient fault detection system and method 

Assignee: Honeywell International Inc., Morristown, NJ (US) 

Abstract:  

A transient fault detection system and method is provided that facilitates im-

proved fault detection performance in transient conditions. The transient fault 

detection system provides the ability to detect symptoms of fault in engine that 

occur in transient conditions. The transient fault detection system includes a fea-

ture extractor (PCA) that measures sensor data during transient conditions and 

extracts salient features from the measured sensor data. The extracted salient 

features are passed to a classifier (ANN) that analyzes the extracted salient fea-

tures to determine if a fault has occurred during the transient conditions. De-

tected faults can then be passed to a diagnostic system where they can be passed 

as appropriate to maintenance personnel. 
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Patent No. US 7,693,643 B2 

Date: Apr. 6,2010 

Title: Fault detection system and method for turbine engine fuel systems 

Assignee: Honeywell International Inc., Morristown, NJ (US) 

Abstract:  

A system and method is provided that facilitates improved fault detection. 

The fault detection system provides the ability to detect symptoms of fault in the 

fuel system of a turbine engine. The fault detection system captures selected 

data from the turbine engines that is used to characterize the performance of 

the fuel system. The fault detection system includes a feature extractor (PCA) 

that extracts salient features from the selected sensor data. The extracted salient 

features are passed to a classifier (fuzzy clustering system) that analyzes the ex-

tracted salient features to determine if a fault is occurring or has occurred in the 

turbine engine fuel system. Detected faults can then be passed to a diagnostic 

system where they can be passed as appropriate to maintenance personnel. 

 

Patent No. US 7,769,507 B2 

Date: Aug. 3, 2010 

Title: System for gas turbine health monitoring data fusion 

Assignee: United Technologies Corporation, Hartford, CT (US) 

Abstract:  

An apparatus for assessing health of a device comprising a data alignment 

module for receiving a plurality of sensory outputs and outputting a synchro-

nized data stream, an analysis module for receiving the synchronized data 

stream and outputting at least one device health feature, and a high level diag-

nostic feature information fusion module for receiving the at least one device 

health feature and outputting a device health assessment. 

 

  



 173 

Patent No. US 7,945,397 B2                             

Date: May 17, 2011 

Title: System and method for gearbox Health monitoring 

Assignee: Honeywell International Inc., Morristown, NJ (US) 

Abstract:  

A system includes a plurality of sensors configured to measure one or more 

characteristics of a gearbox. The system also includes a gearbox condition indi-

cator device, which includes a plurality of sensor interfaces configured to receive 

input signals associated with at least one stage of the gearbox from the sensors. 

The gearbox condition indicator device also includes a processor configured to 

identify a fault in the gearbox using the input signals and an output interface 

configured to provide an indicator identifying the fault. The processor is config-

ured to identify the fault by determining a family of frequencies related to at 

least one failure mode of the gearbox, decomposing the input signals using the 

family of frequencies, reconstructing a gear signal using the deconstructed input 

signals, and comparing the reconstructed gear signal to a baseline signal. The 

family of frequencies includes a gear mesh frequency and its harmonics. 

 

Patent No. US 2010/0155634 Al                          

Date: Jun. 24, 2010 

Title: Performance monitoring and prognostics for aircraft pneumatic control 

valves 

Assignee: NIXON & VANDERHYE, PC 901, NORTH GLEBE ROAD, 11TH FLOOR AR-

LINGTON, VA 22203 (US) 

Abstract:  

A method estimates the health state of an aircraft pneumatic control valve 

through indirect measurements of available sensors. Measurements from iden-

tical valves operating under the same condition are compared. Residues are 

translated into estimates of individual valve degradation state. Historical degra-

dation states can be used to predict expected time to failure. 
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Patent No. US 2010/0303611 Al                          

Date: Dec. 2, 2010 

Title: Methods and systems for turbine Line replaceable unit fault Detection and 

isolation during Engine startup 

Assignee: Honeywell International Inc., Morristown, NJ (US) 

Abstract: Systems and methods for isolating a performance anomaly within 
one or more line replaceable units (LRUs) on a gas turbine engine by monitor-
ing the start-up transient are presented. The system comprises a set of sen-
sors, an anomaly detector and a fault isolation reasoner. Each sensor of the 
set monitors at least one operating parameter of at least one engine compo-
nent. The anomaly detector is configured to detect an anomaly in a compo-
nent by comparing a particular value of an operating parameter to a baseline 
value of that parameter. The specific cause of the start-up anomaly is isolated 
utilizing a set of component reasoners that is based on the nature of the de-
tected anomaly. The key events during the engine start-up are identified by 
the combination of monitoring physically relevant phases of a start-up and 
monitoring the engine control schedule. The values at these key events are 
used for comparing at the anomaly detector 

 
Patent No. US 20080183311  A1                        

Date: July 31, 2008 

Title: Apparatus and method for automated closed-loop identification of an in-

dustrial process in a process control system. 

Assignee: Honeywell International Inc., Morristown, NJ (US) 

Abstract:  

An apparatus, method, and computer program are provided for automated 

closed-loop identification of an industrial process in a process control system. 

Multiple models (such as multiple model structure-model order combinations) 

can be identified, where the models are associated with a process to be con-

trolled. One or more metrics (such as a prediction metric or rank) can be deter-

mined for each of the models. At least one of the models can be selected based 

on the one or more metrics. A final model for controlling the process can be pro-

vided (such as to a controller), where the final model is based on the at least one 

selected model. A band pass filter could be designed using some of the identified 

models. The band pass filter could be used to identify at least one other of the 

models or to determine at least one of the one or more metrics. 
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Patent No. US 201110112659 Al                       

Date: May 12, 2011 

Title: System identification in automated Process control 

Assignee: Honeywell International Inc., Morristown, NJ (US) 

Abstract:  

The systems and methods described herein allow for automatic identifica-

tion experiments in a closed loop, where the old control strategy, already tuned 

and tested, is utilized. The strategy is modified to inject additional signal opti-

mized for identification. The experimenting time may be reduced by performing 

only those system manipulations which explore model uncertainties important 

to potential degradation of controller performance by discrepancy between the 

system and the model. The disruptions are reduced by keeping the control loop 

closed, which eliminates waiting for steady state before applying steps to the in-

puts and reduces the risk of process limits crossing. The energy of additional 

signal can be set to meet the maximum allowable disruption requirements. The 

energy of additional signal is in a direct relation to the speed of identification 

related information gathering. It can be varied in time to follow the needs of 

system operators. 
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