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Abstract

In many areas of science, near-periodic phenomena represent important information within

time-series data. This thesis takes the example of the detection of non-transitory frequency com-

ponents in passive sonar data, a problem which finds many applications. This problem is typically

transformed into the pattern recognition domain by representing the time-series data as a spectro-

gram, in which slowly varying periodic signals appear as curvilinear tracks.

The research is initiated with a survey of the literature, which is focused upon research into the

detection of tracks within spectrograms. An investigation into low-level feature detection reveals

that none of the evaluated methods perform adequately within the low signal-to-noise ratios of real-

life spectrograms and, therefore, two novel feature detectors are proposed. An investigation into

the various sources of information available to the detection process shows that the most simple

of these, the individual pixel intensity values, used by most existing algorithms, is not sufficient

for the problem. To overcome these limitations, a novel low-level feature detector is integrated

into a novel active contour track detection algorithm, and this serves to greatly increase detection

rates at low signal-to-noise ratios. Furthermore, the algorithm integrates a priori knowledge of

the harmonic process, which describes the relative positions of tracks, to augment the available

information in difficult conditions.

Empirical evaluation of the algorithm demonstrates that it is effective at detecting tracks at

signal-to-noise ratios as low as: 0.5 dB with vertical; 3 dB with oblique; and 2 dB with sinusoidal

variation of harmonic features. It is also concluded that the proposed potential energy increases

the active contour’s effectiveness in detecting all the track structures by a factor of eight (as de-

termined by the line location accuracy measure), even at relatively high signal-to-noise ratios,

and that incorporating a priori knowledge of the harmonic process increases the detection rate

by a factor of two.
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Chapter 1

Introduction

“If you cause your ship to stop, and place the head of a long tube in the water

and place the outer extremity to your ear,

you will hear ships at a great distance from you.”

— Leonardo da Vinci, 1452–1519.

In many endeavours of science, pattern recognition in particular, there exists the problem of

detecting near-periodic non-stationary phenomena within time series data. The continuous signal

in which a phenomenon is embedded is measured, segmented in time, and frequency decompo-

sition is performed on each section. The purpose of the analysis is to determine whether there

exists a frequency component, or pattern of frequency components, within each of the segmented

sections of the continuous signal. This bounds the assumption that the frequency component is

stationary within each segmented section. A typical representation for such data is a spectrogram

(also known as a LOFARgram, periodogram, sonogram, or spectral waterfall), in which time and

frequency are variables along orthogonal axes, and intensity is representative of the power obser-

ved at a particular time and frequency. This forms a visual representation of the frequency-time

variation of the original time-series data using the Short-Term Fourier Transform (STFT) [7, 6].

If a slowly varying frequency component exists within the time-series, it will appear over several

consecutive time segments, and the resulting spectrogram will contain a track; a discrete set of

points that exist in consecutive time frames of the spectrogram, each point related to the frequency

component(s) of the time-series data. Consequently, detecting the tracks within a spectrogram de-

termines the presence and state of a periodic or near-periodic phenomena in the original time-series

data.

The problem of detecting tracks in spectrograms has been investigated since the spectrogram’s

introduction in the mid 1940s by Koenig et al. [101]. Research into the use of automatic detection

methods increased with the advent of reliable computational algorithms during the 1980s, 1990s

and early 21st century. The research area has attracted contributions from a variety of backgrounds,

ranging from statistical modelling [137], image processing [3, 57] and expert systems [117]. The

problem can be compounded, not only by a low Signal-to-Noise Ratio (SNR) in a spectrogram,
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which is the result of weak periodic phenomena embedded within noisy time-series data, but also

by the variability of a track’s structure with time. This can vary greatly depending upon the na-

ture of the observed phenomenon, but typically the structure arising from signals of interest, can

vary from vertical straight tracks (no variation with time) and oblique straight tracks (uniform fre-

quency variation), to undulating and irregular tracks. A good detection strategy should be able to

cope with all of these.

In the broad sense this “problem arises in any area of science where periodic phenomena are

evident and in particular signal processing” [148]. In practical terms, the problem forms a critical

stage in the detection and classification of sources in passive sonar systems, the analysis of speech

data and the analysis of vibration data—the outputs of which could be the detection of a hostile

torpedo or of an aeroplane engine which is malfunctioning. Applications within these areas are

wide and include identifying and tracking marine mammals via their calls [130, 125], identifying

ships, torpedoes or submarines via the noise radiated by their mechanical movements such as pro-

peller blades and machinery [196, 38], distinguishing underwater events such as ice cracking [68]

and earth quakes [86] from different types of source, meteor detection, speech formant tracking

[163], and so on. The research presented in this thesis is applicable to any area of science in which

it is necessary to detect frequency components within time-series data.

There exist two distinct approaches to this problem: the time domain and the frequency do-

main. A discussion of the differences between the two has been presented by Wold [185] and re-

views of methods which are applied in the time domain have been presented by Kootsookos [105]

and Quinn and Hannan [149]. In summary, the transformation of a time domain signal into the

frequency domain often allows more efficient analysis to be performed [32]. The transformation

also has the effect of quantising a series’ broadband noise into the spectrum of frequency bins, and

therefore, the SNR of a narrowband feature in the time series is enhanced in the frequency domain

[72]. Nevertheless, when constructing a ‘conventional’ spectrogram image the phase information

is lost and, therefore, frequency domain methods should be applied to areas in which the time of

measurement commencement is not important. The transfer of the signal from the time domain

into the frequency domain allows for the application of algorithms from a wide variety of research

disciplines, as highlighted in the literature review of this thesis (see Chapter 2), whereas generally

time domain analysis is restricted to the fields of signal processing and statistical analysis.

The passive sonar process sufficiently encapsulates the attributes of this problem and the re-

mainder of this introduction, and thesis, will concentrate on the passive sonar problem and its

related literature. Having said that, it is not necessary to have any prior knowledge of the passive

sonar process or the propagation of sound within the underwater environment—the problem will

be tackled from a pattern recognition viewpoint and any information from outside this sphere that

is necessary in understanding the problem is presented in the latter half of this introduction. Fur-

thermore, existing algorithms that have been applied to the problem of spectrogram track detection

will be reviewed in Chapter 2.



1.1. THE PASSIVE SONAR PROBLEM 25

1 2 3 4 5

Time Series STFT
Spectrogram

Image
Track

Detection
Source

Classification

Figure 1.1: Flow diagram of the passive sonar process.

1.1 The Passive Sonar Problem

Passive sonar is a form of sonar in which no energy is emitted from the detection apparatus [178].

Instead, the acoustic pressure surrounding a hydrophone (the transducer) is converted into an elec-

trical signal and analysed to reveal the presence of a source within the environment. Passive sonar

is typically used by navies for the identification of submarines, torpedoes and ships and within

science and ecology for the monitoring of marine mammals and fish. Currently, trained operators

analyse the passive sonar data in spectrogram images to detect and classify any acoustic sources in

the surrounding environment [120]. This is a complex task, with many spectrograms being analy-

sed from an increasing number of look-directions, in which the detection of each track is critical to

subsequent information processing. Recent advances in mechanical technology, leading to noise

reduction, has fuelled the need for more robust, reliable and sensitive algorithms to detect ever

quieter engines in real time and in short time frames. Also, recent awareness and care for endange-

red marine wildlife [125, 172] has resulted in increased data collection, which requires automated

algorithms to detect calls and determine local specie population and numbers. Consequently, it is

of interest to develop computational algorithms to achieve track detection automatically.

The acoustic data observed via passive sonar systems is conventionally transformed from the

time domain into the frequency domain using the short-term Fourier transform [179]. This al-

lows for the construction of a spectrogram image which provides a visual representation of the

distribution of acoustic energy across frequencies and over time [174]. The vertical axis of a spec-

trogram typically represents time, the horizontal axis represents the discrete frequency steps, and

the amount of power observed by the hydrophone is represented as the intensity at each time-

frequency point. It follows from this that if a source which emits narrowband energy is present

during some consecutive time frames a track, or line, will be present within the spectrogram.

The process by which passive sonar exploits narrowband sound radiated in an underwater

environment is outlined in Fig. 1.1. Passive sonar systems do not emit any sound and therefore

only sound radiated from the target can be detected by the receiver (box 1). The short-term Fourier

transform of the observed signal is calculated (box 2) to determine the power present at each

frequency band in a particular time sample. These Fourier transforms are then collected together

and a spectrogram image is formed (box 3) which represents the energy at each time-frequency

point (these points will be discussed further, and illustrated, in the next section).

Sound sources such as ships and other machines radiate some of their energy as narrowband

sound that is dependent upon engine speed [174]. The sources of this radiated sound can be

grouped under the classes of internal machinery noise and external propeller noise and produce
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tracks in a spectrogram that vary in frequency according to the state which the machine is in. For

example, when a source is running at a constant speed and there is an absence of the Doppler

effect [49], the frequencies emitted are stationary and the narrowband energy that is radiated re-

sults in time-invariant tracks. Moreover, a source in which the machinery speed increases, i.e.,

the source is accelerating, results in tracks that increase in frequency over time. Other sources

of radiated narrowband sound that are not dependent on engine speed, the hydrodynamic flow

noise and the remainder of the machinery noise, result in constant frequencies regardless of the

machine’s state. As each type of source emits a particular frequency pattern, it may provide suf-

ficient information for its identification using a spectrogram (Fig. 1.1, box 5). Urick presents a

full discussion on the radiation of acoustic energy from submerged machinery in “Principles of

Underwater Sound” [174]. Due to the Doppler effect and the nature of the source’s machinery

the track is often time-variant and therefore, general line detection algorithms, as will be shown

in this thesis, are not suitable. It still holds, however, that a particular, relative, frequency pattern

will be emitted by each source.

The principle source of complexity in the analysis of passive sonar is that all noise from each

concomitant event in the underwater environment is observed. This results in the presence of large

amounts of non-uniform background broadband noise in the spectrogram. This noise distorts

the tracks, causing them to be broken, particularly at low frequency ranges, and also introduces

points of high energy at spurious frequencies. Discriminating these from the signals of interest is

particularly hard in low signal-to-noise ratio conditions. Another cause for broken tracks in the

spectrogram is the Lloyd mirror, or image-interference, effect [174]. This occurs when the sea is

calm; an interference pattern is created by constructive and destructive interference between the

direct and surface-reflected sound.

1.2 Data

Following the discussion of the problem, a detailed description of the type of signals that are under

consideration will be presented. Consequently, this provides a basis by which synthetic data can

be generated for evaluating algorithms designed to detect such signals.

1.2.1 Signal Generation

A continuous signal x(t), observed by a sensor, is the superposition of a longitudinal sound wave

emitted by a source s(t), after propagation through, in this case, the ocean environment s′(t) [174],

and background noise n(t) [72], such that

x(t) = s′(t) + n(t). (1.1)

The detection of the periodic or near-periodic narrowband frequency components of s′(t) through

spectrogram analysis is the concern of this thesis. Periodicity is defined such that

s(t) = s(t+ jP ), ∀j ∈ N, (1.2)
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where P is the period of the signal, and near-periodicity such that

|s(t)− s(t+ P )| < ε (1.3)

where ε is a marginal error resulting from a variation in periodicity. The effects of propagation

will be discussed in more detail in Section 1.2.2. Throughout this thesis the noise n(t) is assumed

to be Gaussian [72, 11].

The signal x(t) is sampled at a period of Ts seconds (a sampling rate of fs , 1/Ts Hz) using

the Dirac comb [47] defined by

∆Ts(t) ,
∞
∑

m=−∞

δ(t+mTs)

where δ is the Dirac delta, to form a discrete signal xs(t), such that

xs(t) = x(t)∆Ts(t). (1.4)

The period Ts (or sampling rate fs) is chosen according to the Nyquist sampling theorem such that

the highest meaningful frequency in the application is representable.

This thesis concentrates on the detection of narrowband mechanical sources such as torpedoes,

ships and submarines within the ocean. Being mechanical devices, powered by an engine and

propelled by a propeller blades, the sound waves emitted are periodic [174]. As such s(t), which

is the superposition of a set of harmonically related sinusoids, comprises a fundamental frequency,

ωt
0, being the lowest frequency sinusoidal in the sum, and h harmonics of this [11], such that

s(t) = µ+

h
∑

k=1

Ak sin(kω
t
0t+ φ) (1.5)

where ωt
0 is the fundamental frequency at time t and, φ, its phase, h is the number of harmonics

observed, µ is the mean value, and Ak is the amplitude of the kth harmonic. These harmonics are

directly related to the rotational speed of the drive shaft.

Several other components of a mechanical device cause the emission of frequency components

which are related to this fundamental frequency but which are not harmonics, i.e. they are not

integer multiples of the fundamental frequency, and these are referred to as inter-harmonics [115].

Reduction gear ratios connecting the propeller blades, the propeller blades themselves and the

power plant emit additional low frequency inter-harmonic components [174]. Auxiliary units such

as pumps, generators, servos, and relays also emit noise in the ultrasonic region [139]. These,

the fundamental, harmonic and inter-harmonic, frequency components comprise the signature of

a particular mechanical device [174]. The signature, due to the differences in the mechanical

construction and components, is unique for each type of device and will be referred to as the

pattern set, P s, such that

P s = {m1, . . . ,mh}
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where m1 = 1 and the term h ≥ 1 is the number of relative frequency components (the first

component of the set corresponds to the fundamental frequency) of the signal s(t).

The signal s(t) can now be defined to be the superposition of sinusoids having harmonically

related frequency components defined in P s, such that

s(t) = µ+
∑

mk∈P s

Ak sin(mkω
t
0t+ φ) (1.6)

where mk ∈ P s is the kth relative frequency component of P s and Ak is its amplitude.

1.2.2 Signal Propagation

Physical phenomena may influence the signal so that the observed signal has different properties

from that which is emitted by the source. The passive sonar equation [173]

SL− TL = NL−DI +DT (1.7)

describes the effects of the oceanic environment upon the intensity of the signal and the conditions

upon which it is detectable against background noise. It has three fundamental parts, which are

all expressed in decibels (dB): the observed signal intensity, the noise level NL, and the system’s

detection threshold DT . The observed signal intensity is the difference between the radiated

signal level SL, in decibels, and the transmission loss TL, due to the signal’s propagation through

the ocean. This occurs due to a combination of the following physical effects: spreading, ray path

bending, absorption, reflection, and scattering. Therefore, the intensity level of the signal arriving

at the sensor is described by the left side of Eq. (1.7), that is SL − TL. In addition to receiving

the source signal the passive SONAR sensor also receives ambient noise NL. To some extent this

can be counterbalanced by the gain of the receiver array DI [174], resulting in an overall noise

level of NL − DI . When the equality in Eq. (1.7) holds the target is on the system’s detection

threshold i.e. “a binary choice detector will dither between ‘target present’ and ‘target absent’

indications” [171].

The difference between the intensity of the observed source signal s′(t) and that emitted by

the source s(t), Eq. (1.1), can be expressed as a scaling of the emitted signal [189], such that

s′(t) = αs(t) (1.8)

where α is the scaling factor, that is α ∝ SL− TL, and represents propagation loss.

In addition to this, when a source is performing a circling manoeuvre offset from the receiver,

is approaching the sensor, or is receding from the sensor, the Doppler effect [49] causes the emitted

sound wave to compress or expand and therefore the perceived frequency ω̂t
0, may differ from that

at the source ωt
0 [66], such that

ω̂t
0 = (

c

c± vs
)ωt

0 (1.9)

where c is the speed of sound through the medium, and vs is the source to receiver velocity radial

component (in the case that both source and receiver are in motion). This equation is dependent
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upon the speed of sound in seawater and in 1981 a simplified, nine-term equation for calculating

this speed, c (ms−1), was developed by Mackenzie [119], such that

c = 1448.96 + 4.591T − 5.304×10−2T 2 + 2.374×10−4T 3 +

1.340(S − 35) + 1.630×10−2D + 1.675×10−7D2 −
1.025×10−2T (S − 35)− 7.139×10−13TD3 (1.10)

where T is the temperature in degrees Celsius, S is the salinity in parts per thousand, and D is

the depth in meters. Its ranges of validity are: temperature −2 to 30◦C, salinity 30 to 40‰, and

depth 0 to 8,000m. Nevertheless, if these conditions are unknown, or an approximate value is

sufficient, c can be assumed to be 1,500ms−1 [139]. Other, more complicated, equations exist

and are accurate over a wider range of conditions [53, 62], including the international standard

(UNESCO) algorithm [39, 186].

Taking the effect of amplitude scaling, by a factor of α, and the changes in perceived frequency

ω̂t
0 described by the Doppler effect into account, Eq. 1.6, which previously described the observed

signal s′(t), can be re-written such that

s′(t) = µ+ α
∑

mk∈P s

Ak sin(mkω̂
t
0t+ φ). (1.11)

Using these properties, synthetic acoustic signals can be generated which mimic the behaviour of

a mechanical device operating in various states.

1.2.3 Spectrogram Formation

A spectrogram S is formed by splitting a discrete time-domain signal xs(t) into sections τ seconds

in length [101], such that

xms (t) , xs(t+mR), t = 0, 1, . . . , T − 1

where xms is the mth frame of the signal, T = ⌊τfs⌋ is the frame length (fs is the sample rate used

when sampling the continuous signal in Eq. 1.4) and T ≥ 1, and R is the time advance from one

frame to the next (in number of samples). Throughout this thesis τ is taken to be one second and

R is taken to be R = T/2, so that there is a half second overlap between each frame.

The power spectrum of a frame can be calculated using the Short-Term Fourier Transform

(STFT) [160], such that

Fm(ω) =
T−1
∑

t=0

xms (t)w(t)e−2πiωt, 0 < ω <
2

T
(1.12)

where ω ∈ R
+ represents ordinary frequency (Hz) and w(t) is a window such as the Hamming
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Figure 1.2: Magnitude Squared of the Fourier transform of an acoustic signal at one time frame.

The x-axis represents frequency (Hz) and the y-axis power (V2/Hz). The signal has frequency

components of 120, 240, 360, 480 and 600Hz plus noise derived from a Gaussian distribution

(with mean SNR of 3 dB).

window function [76], such that

w(t) = 0.53836 − 0.46164 cos

(

2πt

T − 1

)

. (1.13)

The use of windows such as the Hamming window reduces the effects of ‘spectral-leakage’ [76],

which occurs when processing finite-duration signals, by weighting the signal at the frame boun-

daries close to zero.

The STFT results in the magnitude and phase over frequency of the signal. By taking its

squared magnitude and multiplying by a normalisation factor, the periodogram estimate of the

power spectrum is derived which satisfies Parseval’s theorem [146], according to

Pm(ω) =
1

∑T−1
t=0 |w(t)|2

|Fm(ω)|2 . (1.14)

An example of the power spectrum of one time frame of a signal is presented in Fig. 1.2. It can be

observed that, at low SNRs, the components of the frequency-set indicated are indistinguishable

from the noise. As such, the detection of low SNR frequency components is difficult in single time

frame STFTs. Nevertheless, over time, noise is uncorrelated and therefore has a relatively large

variance, however, a signal that contains a frequency component is correlated and therefore has

less variance; under these assumptions the detection of the frequency components should be easier

within a number of successive power spectra.

Treating the power spectrum of a frame, [Pm(ω0) Pm(ω1) . . . Pm(ωN−1)], as a row vector,

successive vectors can be stacked up and interpreted as a grey scale image S, a spectrogram, which

has M rows and N columns, such that

S = [sij]M×N =



















P0(ω0) P0(ω1) . . . P0(ωN−1)

P1(ω0) P1(ω1) . . . P1(ωN−1)

P2(ω0) P2(ω1) . . . P2(ωN−1)
...

...
. . .

...

PM−1(ω0) PM−1(ω1) . . . PM−1(ωN−1)



















(1.15)
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Figure 1.3: A spectrogram image where intensity represents signal power (voltage-squared per

unit bandwidth, that is V2/Hz). In this example the tracks have an SNR of (from left to right):

three 3 dB, three 6 dB, and three 9 dB.

where i = 0, 1, . . . ,M − 1 is the time frame, j = 0, 1, . . . , N − 1 is the frequency bin, N ∈ N

is the number of frequency bins calculated using the STFT, and M ∈ N is the number of previous

frames to be retained. Therefore, the grey scale intensity in a spectrogram represents the amount

of energy present in each frequency component at a particular time frame. An example of a

spectrogram image, the composition of (M = 40) power spectra can be seen in Fig. 1.3. As each

new power spectrum becomes available it is prepended onto the first row of the spectrogram and

the oldest spectrum is removed, forming a “rolling window”, also known as a “waterfall display”.

A frequency component of x(t), which is constant or varying slowly over time, and is therefore

present in more than one consecutive row of S, is referred to as a track. A track appears in

a spectrogram as a (perceptually) connected non-linear structure that can vary in its frequency

position in each time frame according to the state of the underlying mechanism. Several states

have been mentioned with regards to the domain signals: constant, increasing, sinusoidal and

random. For example, a mechanical source that is constantly approaching then receding from the

receiver will emit a frequency component that undulates around a central frequency due to the

Doppler effect. Within a spectrogram this is represented as a track that is sinusoidal in appearance.

Three examples of synthetic spectrogram images which represent a number of track appearances

are presented in Fig. 1.4.

As discussed previously, each of the components of P s will form a track in the spectrogram

at a position relative to the fundamental frequency. For example an acoustic signal may contain

fundamental frequencies and their harmonics and inter-harmonics at relative positions to them,

in spectroscopy analysis molecules with particular spectral characteristics could form the pattern

or electromagnetic signatures that correspond to an object through relative frequencies against

background radiation.
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(c) A source that repeatedly approaches and recedes from the receiver.

Figure 1.4: Three examples of synthetic spectrogram images which exhibit a variety of track

appearances at an mean SNR of 16 dB. Intensity is proportional to power in voltage-squared per

unit bandwidth, that is V2/Hz.

Within this thesis the mean, frequency domain, signal-to-noise ratio of a spectrogram is calcu-

lated such that [72]

SNR = 10 log10

(

P̄t

P̄b

)

(1.16)

P̄t =
1

|Pt|
∑

(i,j)∈Pt

sij, P̄b =
1

|Pb|
∑

(i,j)∈Pb

sij (1.17)

where Pt = {(i, j)|sij belongs to a track} is the set of points related to the frequency components

of s′(t) such that Pt 6= ∅ and Pb = {(i, j)|(i, j) /∈ Pt} is the set of points which represent noise

such that Pb 6= ∅.

There are two specific approaches to measuring the SNR in this problem and it is necessary to

make the distinction: in the time domain (also known as the broadband SNR) or in the frequency

domain. As this thesis is concerned with the detection of tracks within a spectrogram image

the time domain SNR is not a true representation of the problem complexity, and therefore, all

SNRs presented in this thesis are taken within the frequency domain according to Eq. 1.16. As

an example of the difference between the two measurements; a time domain SNR of −27.01 dB

equates to a frequency domain SNR of 2.99 dB when a sample rate of 2 kHz is used and assuming

a 1Hz bin size STFT.
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1.3 Thesis Contributions

Thesis proposition: to demonstrate that a multiple active contour framework is ef-

fective at detecting patterns of tracks in spectrograms.

The work is initiated with a full review of the algorithms that have been applied to the problem;

this forms the first key contribution of this thesis. The review reveals that two areas have drawn

the majority of interest, statistical models, such as the hidden Markov model [150], and image

processing/pattern recognition. It is also concluded that, although there has been a great expansion

of the areas of pattern recognition and image processing in recent years, there has been relatively

little research on applying these advances to the passive sonar domain. Additionally, many of

the machine learning techniques that are commonly known in the area of pattern recognition, and

that may offer improvements over techniques already applied to the problem of spectrogram track

detection have not been evaluated. The active contour algorithm is found to encompass many of

the features that have been proposed for use in the detection of spectrogram tracks and to overcome

some of the limitations of existing algorithms.

This motivates the next stage of research, and consequently the thesis’ second contribution:

an investigation into, and evaluation of, low-level pattern recognition and image processing tech-

niques applied to the spectrogram track detection problem. This investigation involves the de-

finition and evaluation of an exhaustive greedy detection method based on multi-scale template

correlation to demonstrate an ‘optimal’ detector’s performance. This is the thesis’ third contribu-

tion as it establishes a benchmark result, which is obtainable using all the information available

to detect low-level features. This feature detector is empirically compared with other ‘optimal’

detectors that utilise less information, and also to feature detectors which utilise dimensionality

reduction to simplify the detection process. One of which employs an equivalent data model to

the ‘optimal’ detector and this comparison demonstrates that dimensionality reduction degrades

detection performance. All of these low-level feature detectors are evaluated by calculating their

Receiver Operating Characteristic (ROC) curves on a set of spectrograms, which contain a variety

of SNRs and track appearances. It is shown that none of the standard feature detection methods

reach the performance of the exhaustive detector. Nevertheless, near ‘optimal’ performance can

be gained by using machine learning techniques to extract filters from training data and fitting a

statistical model to classify unseen examples—simplifying the detector’s search space.

The findings and conclusions of this research motivate the development of a high-level track

detection framework using an active contour model. This incorporates an interchangeable low-

level feature detector into a single and multiple track detection algorithm—the thesis’ fourth contri-

bution. The framework provides a flexible detection mechanism that allows for the detection of

tracks that have unknown appearances. Furthermore, this framework enables the enhancement of

detection probabilities by integrating information taken from either harmonically related positions

in the spectrogram or from positions defined by the signature of a specific source. This is a fur-

ther contribution of this thesis. The framework is evaluated upon a set of synthetic spectrogram

images, the properties of which have been outlined in Section 1.2. Testing upon synthetic spectro-

grams also allows the automatic calculation of ground truth data, which would be hard to obtain
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for real-world data, allowing for accurate evaluations to be conducted. The measure used to eva-

luate the track detection framework is the line location accuracy score [145], which has previously

been used by Di Martino and Tabbone [57] for evaluating algorithms applied to this problem. It

is shown through a number of empirical comparisons that the solutions presented in this thesis are

necessary for the application of the active contour algorithm to this problem. Moreover, the propo-

sed active contour algorithm encompasses aspects of existing approaches, whilst overcoming some

of their limitations, such as: high computational complexity, sensitivity to noise, and assumptions

of track structure, to name but a few. Ultimately, the algorithm is demonstrated to be an effective

method for the detection of tracks that display a variety structures.

1.4 Thesis Structure

The remainder of this thesis is organised as follows. In Chapter 2 a taxonomy, evaluation and

review of the spectrogram track detection algorithms found in the literature are presented. The

evaluation criteria are defined and example applications are presented along with the criteria which

should be met to allow for the successful application of an algorithm. Due to the complexity of

quantitatively evaluating each algorithm upon a common data set, the methods are qualitatively

evaluated based upon results and algorithm descriptions presented in the respective papers. Chap-

ter 3 presents an investigation into existing and novel low-level feature detection algorithms from

the areas of pattern recognition and image analysis. Also, an investigation into the detection of

features in harmonically related positions is presented with the aim of enhancing feature detec-

tion in low SNR conditions. Chapter 4 proposes a high-level track detection framework for single

and multiple tracks which integrates the findings of the previous chapters into the active contour

model. The chapter also contains an analysis of the computational complexity of the model. In

Chapter 5 the proposed track detection framework is evaluated and a discussion of its effective-

ness is presented. Finally, in Chapter 6 the conclusions resulting from the research presented in

this thesis are drawn and future research directions are put forward.



Chapter 2

The Field as it Stands

This chapter presents a review of the spectrogram track detection algorithms present in the li-

terature. Constructing such a review reveals the approaches that have been taken to solve this

problem whilst ascertaining their limitations, strengths and weaknesses—laying the foundations

for future innovations within the field. The research surveyed here is taken from a variety of

computer science disciplines and is concerned with the specific problem of track detection wi-

thin spectrogram images applied to passive sonar. Whilst there is a huge amount of literature on

acoustic analysis and pattern recognition the intersection of these fields is relatively small—this

chapter provides a review of this intersection. The algorithms are grouped within a taxonomy and

evaluated according to the following factors, some or all of which are essential for a successful

application: their ability to cope with noise variation over time; high variability in track shape;

closely separated tracks; multiple tracks; the birth/death of tracks; low signal-to-noise ratios; their

ability to perform track association; that they have no a priori assumption of track shape; and, for

real time implementations, that they are computationally inexpensive. This evaluation is based on

what is presented in the literature.

The chapter starts by defining the evaluation criteria. A taxonomy of the reviewed algorithms

is presented and these algorithms are surveyed and reviewed. This leads to a discussion of their

principal shortfalls with respect to the criteria defined, and to the identification of issues to be

addressed in future research. Finally, the chapter’s summary is drawn.

2.1 Definition of Evaluation Criteria

The criteria by which the algorithms will be evaluated, some or all of which are essential for a

successful application, are defined below (in no particular order):

C1 Low SNR — Is reliable detection achieved in a frequency domain SNR below 3 dB, defined

as Eq. (1.16)?

C2 Temporal Noise Variability — Does the method allow for a time-variant noise model?

C3 Birth/Death of Tracks — Does the algorithm cope with the initiation and/or termination of

tracks at some point within the spectrogram?

35
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Application Typical Track Characteristics Criteria Required

Whale vocalisation Short duration, high variability, C2 Temporal Noise Variability,

predictable appearance, initiation C3 Birth/Death Tracks,

and termination observed. C4 Multiple Tracks,

C7 High Track Variability.

Passive Sonar Long duration, low SNR, initiation C1 Low SNR,

and termination observed. C2 Temporal Noise Variability,

-Submarine Low variability. C3 Birth/Death Tracks,

C4 Multiple Tracks,

C5 Closely Spaced Tracks,

C6 Crossing Tracks,

C7 High Track Variability,

-Torpedo High variability. C8 No A Priori Shape Assumption.

Directly instrumented Long duration, high SNR. C4 Multiple Tracks,

vibration analysis C5 Closely Spaced Tracks,

C6 Crossing Tracks,

C7 High Track Variability,

C8 No a priori Shape Assumption.

Table 2.1: Track characteristics and criteria specific to typical applications of spectrogram track

detection algorithms.

C4 Multiple Tracks — Can the algorithm detect two or more separate tracks that exist concur-

rently (in the same time frame)?

C5 Closely Spaced Tracks — Can the algorithm distinguish two or more tracks that are separa-

ted by one frequency bin?

C6 Crossing Tracks — Will the algorithm detect and distinguish between multiple tracks that

occupy the same point in a spectrogram for one or more consecutive time frames?

C7 High Track Variability — Does the algorithm detect time-invariant tracks that have high

variability?

C8 No A Priori Shape Assumption — Is the method free from the assumption of a strict track

shape model and therefore can generalise to unknown cases?

C9 Track Association — Does the method output a series of points that it deems as belonging

to the same track?

C10 Computationally Inexpensive — Does the algorithm have an on-line computational burden

with less than polynomial complexity (not including any training requirements)?

The importance of each criterion depends upon the algorithm’s application, as each applica-

tion is concerned with the detection of signals with different characteristics. The dominant signal

characteristics of some example applications, along with the criteria that should be met to demons-

trate an algorithm’s suitability, are identified in Table 2.1. In addition to these, the need to fulfil the

C9 (Track Association) criterion is dependent upon the type of subsequent processing that will be

performed and when on-line detection is needed the C10 (Computationally Inexpensive) criterion

should be met.
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2.2 Algorithm Taxonomy

Algorithms presented in the literature are identified and categorised in Table 2.2 (in chronological

order within subheadings). It should be noted that the majority of research has been conducted in

the areas of statistical modelling, image processing and neural networks, with additional contri-

butions from relaxation techniques. Hidden Markov models have attracted, by far, the largest

proportion of research interest. Considering the relative size, breadth of techniques and the recent

speed of progress in the areas of image processing and pattern recognition they have received very

little attention in the literature.

It should be noted for completeness that additional methods exist, particularly those that are

presented in the literature as Master’s theses [197, 40], which it was not possible to survey (al-

though they have been included in the taxonomy presented here). Nevertheless, it is believed that

similar techniques from different authors have been reviewed and therefore that the key algorithms

are still presented in this review.

2.3 Literature Survey

This section presents a review of the methods found in the literature under the categories presented

in Table 2.2. The techniques presented here are specifically those found in the literature that have

been applied to the problem of spectrogram track detection in passive sonar systems. As such this

is not intended to form a full catalogue of general purpose detection or tracking methods as this

falls outside the problem domain specified by this thesis.

It was noted in Section 1.2.3 that there are two distinct approaches to measuring the SNR in

spectrogram images. In order to convert between the two, full information regarding the short-

term Fourier transform process is needed and this is not obtainable for all of the papers reviewed

in this survey. Therefore, where time domain signal-to-noise ratios are presented the distinction is

noted.

2.3.1 Maximum Likelihood Estimators

Maximum likelihood estimators (MLE) are based upon statistical assumptions regarding the data

in question. A statistical test is defined that decides whether a frequency bin contains noise or

a track (signal). Maximum likelihood methods make detections on single spectrogram points

and lend themselves to the detection of temporally invariant tracks as no assumptions are made

regarding the temporal evolution of a track. Nevertheless, the simplicity of the detection methods

limit their application to high SNR cases. This limitation is overcome with MLE methods based

on convolution, which make assumptions regarding the temporal evolution of a track to augment

low SNR detection. The large search space needed to perform real world detections, however,

makes them unfeasible.

Rife and Boorstyn [152] state that after the short-term Fourier transform output has been ob-

tained, the frequency bin that has the maximum value is the maximum likelihood estimate of the
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Approach Representative Works

Maximum Likelihood

MLE Maximum value [152]

Correlation [8]

Multi harmonic [20]

Image Processing Techniques

Likelihood Ratio Test Morphological operators [3]

Hough Transform Graph theoretic tracking & heuristic search Hough transforma [30]

Multi-stage Decision Multi-stage decision cost function optimisation [55]

Steerable Filter Gap bridging, region locating & multi-stage decision process [56, 57]

Two-Pass Split-Window Broadband subtraction via estimation [38]

Edge Detector Gaussian filtered spectrogram [69]

Neural Networks

Supervised Learning Autoassociative memory & multi-layer perceptron [99]

Multi-layer perceptron [114]

Multi-layer perceptron constrained using Ockham’s networks [98]

MNET1 [4]

MNET2 [4]

RNET [4]

Unsupervised Learning Kohonen self-organising map [54]

Statistical Models

Dynamic Programming Logarithmic likelihood function [162]

Hidden Markov Model Viterbi & max amplitude [169]

Viterbi, “mixed” track & threshold [190]

Viterbi & “mixed” track [191]

Viterbi & double threshold [165]

Viterbi & probabilistic data association [88]

Parallel, multi model detection [175]

Forward-backward linking, SNR estimate & track gradient [137]

Forward-backward linking & SNR estimate [138]

Viterbi & SNR estimate [138]

Forward-backward linking & spectrum interpolation [74]

Tracking Algorithms

Particle Filter Formant detection [163]

Relaxation Methods

Relaxation Relaxationa [197]

Simulated Annealing Simulated annealinga [40]

Simulated annealing [112]

Expert Systems

Double detection Double threshold & priority ranking [117]

a Master’s theses which are not surveyed in Section 2.3.

Table 2.2: Categorisation of spectrogram track detection techniques in chronological order within

subheadings.
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frequency position in the observation, ω̂i, that is,

ω̂j = argmax
i
|sji|, j = 0, 1, . . . ,M − 1. (2.1)

This is repeated for each observation. Thus, a single frequency is detected within each and every

time frame j, and the estimated track is a series of these frequency positions. Ferguson [66] has

applied this method to the analysis of aircraft acoustics received by an underwater hydrophone.

According to Barrett and McMahon [20], the single frequency case described above, Eq. (2.1),

can be extended to the detection of a single frequency that exhibits harmonics, such that

ω̂j = argmax
i

m
∑

l=1

|sj,li|2, j = 0, 1, . . . ,M − 1. (2.2)

These early MLE techniques disregard information describing the distribution of the inten-

sity values attributed to each class, opting to use the maximum instead. This would lead to the

method mistaking spurious high power noise for instances of a track. Nevertheless, an important

introduction in the multi-harmonic case is the concept of detecting a fundamental frequency by in-

tegrating information from its harmonics. This integration of information should greatly increase

the detectability of tracks at low SNRs.

Altes [8] presents a likelihood ratio test based upon the correlation of a spectrogram with an

expected, noise free, reference spectrogram Zk = [zji(ρk)], such that

p(S|Zk) ≈
M−1
∑

j=0

N−1
∑

i=0

[−zji(ρk)
σ2

+
sjizji(ρk)

σ4

]

(2.3)

where σ is the standard deviation of the time domain noise, which is assumed to be known a

priori. This process is repeated for K reference signal hypotheses (each with a hypothesised

signal parameter of ρk) and the maximum response is taken to be the detected signal, such that

k̂ = argmax
1≤k≤K

[ln p(S|Zk)].

The use of the correlation function allows for the detection of very weak SNR tracks. Never-

theless, for the method’s use in remote sensing applications, where the state and behaviour of the

phenomenon under observation are unknown, a very large reference set is needed. For example,

performing a full search for instances of the sinusoidal track model outlined in Section 3.3.1,

which has five free parameters (the additional parameters are the frequency position and phase

of the sinusoidal track), would result in a search complexity of O(n5) and this complexity grows

exponentially with each additional parameter.

2.3.2 Image Processing

Image analysis techniques [71] applied to this area treat the spectrogram as an image contai-

ning features to be extracted, applying statistical and image processing algorithms to achieve this.
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Image analysis is a vast research area, and provides a wide range of techniques that could be

beneficial to this problem. These are often inspired by human visual perception models, which

suggests they might be applicable to this problem, as it is accomplished by human operators. The

complexity of more advanced methods, however, often makes real-time implementation difficult.

2.3.2.1 Two-Pass Split-Window

Chen et al. [38] propose the use of the two-pass split-window (TPSW) to estimate the background

broadband noise within a spectrogram. Once an estimate of this has been calculated, subtracting it

from the image should result in a cleaned spectrogram containing narrowband tracks. The TPSW

algorithm consists of two steps: first a local mean is calculated over a neighbourhood surrounding

each bin in the STFT, such that

ŝji =
1

2W + 1

i+W
∑

l=i−W

sjl, i = W, . . . ,N − 1−W (2.4)

where j = 0, 1, . . . ,M−1 and 2W +1 is the number of bins used to calculate the local mean. The

result, ŝji, is clipped and a second, local, mean is calculated upon these (as defined by Eq. (2.4)).

Although this is a filtering technique, a threshold criterion can be defined upon the TPSW

output and a detection made using this. As with any filtering technique, there is a balance to

be made between the amount of smoothing and the detectability at low SNRs. In this case, this is

controlled with the window size W . As the TPSW is calculated independently for each time step in

the spectrogram it has no assumption of track structure. This allows the detection of time-invariant

tracks that may be highly irregular in appearance.

2.3.2.2 Edge Detection

Gillespie [69], proposes an edge detection method that initially smoothes the spectrogram using a

Gaussian filter G, such that

S′ = S ∗G (2.5)

G =







1 2 1

2 4 2

1 2 1






. (2.6)

The benefit of smoothing is that it prevents edges from breaking up into many parts; the detrimental

effect is a reduction of the spectrogram’s resolution if the smoothing kernel is too large.

Each point (i, j) in the smoothed spectrogram S′ is thresholded by comparison to the back-

ground measurement bji. This background measurement is continuously updated to allow for

time-invariant noise conditions and computed independently for each frequency bin, such that

bji = bj,i−1 +

(

s′ji − bj,i−1

α

)

(2.7)
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and the spectrogram is thresholded according to

s′ji
bj,i−1

> H (2.8)

where H is the threshold value. Furthermore, detections in subsequent time frames are linked if

they are within adjacent or overlapping frequency positions.

This method is applied by Gillespie to whale call detections and of the 2,077 calls detected by

humans the method successfully detected 1,897 (90%). Nevertheless, as with all methods that rely

on smoothing of the spectrogram, the detection of low SNR tracks can be compromised as they

may be eliminated in the transformed image.

2.3.2.3 Likelihood Ratio Test

Abel et al. [3] propose a statistical likelihood test to be used for track detection. The probability

distribution of a signal (assumed to be Gaussian) is determined along with the distribution of noise

probabilities. A likelihood test is defined such that

rji
rji + 1

· sji
bji

HN

>
<
HB

Tλ (2.9)

where rji is the SNR at point (i, j) and bji is the broadband power at point (i, j), and HN and

HB are the hypotheses of a pixel containing narrowband and broadband signal, respectively. The

result of applying this test is fragmented tracks and isolated false positive detections. These incon-

sistencies are repaired using the morphological operators dilation and erosion, which expand and

contract a track respectively. In set theory, erosion is defined as A⊖B = {z ∈ E|Bz ⊆ A} where

E is a Euclidean space or an integer grid, A = {(i, j)|sji belongs to a track} in E, B is a struc-

turing element and Bz is the translation of B by vector z. Informally, erosion means to translate

the structuring element B to all points in A and take only the points where the structuring element

overlaps completely with points in A. Dilation is defined as A ⊕ B = {z ∈ E|(B̂)z ∩ A 6= ∅}
where B̂ is the symmetric of B. Informally, this means to translate the structuring element to every

point in A and take all the points that are covered by the structuring element. Combined and orde-

red in this way produces ‘closing’, A ·B = (A⊕B)⊖B, [71] which has the effect of smoothing,

eliminating thin protrusions and filling narrow gaps in the tracks. After this process, the region

grow algorithm is employed to group pixels into a single track. This algorithm recursively groups

connected pixels based upon a similarity measure, which, in this case, is that the pixels are part of

a track.

The likelihood ratio test is described as being optimal as, for a given probability of a false

alarm, the probability of detection is maximised. The background noise is not assumed to be

stationary and therefore broadband equalisation is used to estimate rji on a frame-by-frame basis

by taking the trimmed mean over a sliding frequency window [2]. Over-smoothing, however, may

reduce its applicability to the detection of low SNR tracks. This method also requires the use of

a threshold that must be determined a priori, further limiting its generalisation. In the noisy test
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image presented in the paper [3] the method appears to cancel a large amount of the background

noise whilst preserving the track. No quantitative results are presented however. Additionally,

the use of the erosion operator limits this method to approximately stationary tracks because of

its assumptions about track shape. Sections of tracks which do not fit the operator B exactly, i.e.

tracks that rapidly increase/decrease in frequency, will be eliminated from the resulting detection.

2.3.2.4 Multi-Stage Decision Process

Di Martino et al. [55] present an alternative approach based on feature grouping theory. In the

paper it is stated that several studies in feature grouping theory [102, 80] suggest that it is possible

to find perceptual features of patterns that allow efficient figure-ground discrimination. In the

case of spectrogram tracks, Di Martino et al. define these features, which distinguish a set of

points belonging to a track from those belonging to noise, to be: frequential curvature regularity;

temporal continuity; high average intensity; and high point density. A new cost function, which

incorporates these perceptual features, is defined over a track ζ , such that

Φ(ζ) =
α.G(ζ) + β.C(ζ)

A(ζ)
, (2.10)

where A(ζ) is the track’s amplitude, such that A(ζ) =
∑

(i,j)∈ζ sji, and the terms G(ζ) and C(ζ)

are its continuity and curvature respectively. The cost function will decrease if a spectral track is

detected and increase otherwise and, therefore, the problem is transformed into optimising the cost

function along all paths of length N , starting from a given image point. Each time an optimal path

is found to traverse a point in the image, the point’s counter is incremented.

It is claimed by Di Martino et al. [55] that the computation of the optimal path according to

the cost function Φ(ζ) is linear in N and the algorithm is amenable to parallel processing. The

qualitative result presented by Di Martino et al., obtained using one spectrogram, reports that the

method reduces the noise and that the spectral track “becomes more perceptible” [55]. It is stated

that the method has been tested on a set of spectrograms with differing SNRs, the results of which

show that this method increases track detection and decreases false positive detections (although

these results are not presented).

A point to be made regarding the continuity measurement used in Eq. (2.10); the measurement

is defined to be proportional to the number of track points that have zero amplitude and this is rarely

the case in spectrograms that contain background noise—such as those from sea environments. In

this case it may be more intuitive to define the measurement to be proportional to the number of

track points that are below a defined threshold. Moreover, the use of the track’s amplitude in the

denominator gives the output a large dependency upon this factor. Thus restricting the detection

to relatively high SNR tracks; if the weights are chosen to detect high curvature, high continuity

tracks that have high amplitude, tracks that have low curvature, high continuity and low amplitude

are likely to be missed. Also, if there are spurious points of high amplitude noise present in the

spectrogram, which would have high curvature and low continuity, there is a high probability that

these would cause a false positive detection.
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2.3.2.5 Steerable Filter

Di Martino and Tabbone [57] propose an approach using steerable filters. Three steps are de-

fined: the detection process, region locating and track tracing. The detection process starts by

smoothing the spectrogram using a Gaussian filter and an energy function is defined, such that

E(θ) = G̈(θ)2 + H(θ)2 (where G̈ is the second derivative of the Gaussian and H is its Hil-

bert transform in the direction θ), to detect edges using steerable filters. Continuing the detection

process, the local dominant direction θd, such that θd = argmax
θ

[E(θ)], for each point in the spec-

trogram is found, the second derivative of the image is calculated to enhance tracks and the local

maxima in the direction perpendicular to θd is found. False contours that result from this process

are suppressed using an hysteresis threshold [33] and gap bridging is utilised to provide conti-

nuity. The regions surrounding the detected edges are located by computing the zero-crossings of

the second derivative on either side of the detections and, to remove the effects of noise on the

zero-crossings, the mean distance along the curve to its zero crossings. This determines the region

Ri = {(i, j)|li ≤ j ≤ ri}, where li and ri are the region’s left and right boundaries and i is the row

index, that encompasses them. A multi-stage decision process (as described in Section 2.3.2.4) is

used to trace the track in the original spectrogram within the regions detected during the processing

to extract the spectrogram tracks. This maximises the cost function Φ(C) defined as

Φ(C) =
N−1
∑

i=0

A(Pi)− α
N−1
∑

i=2

|l(Pi−1, Pi)− l(Pi, Pi+1)| (2.11)

where Pi ∈ Ri, A(Pi) is the amplitude of Pi, and l(Pi, Pj) is the slope of segment [Pi, Pj ]. This

extracts contours present within the regions Ri. The initial stages of this process (region location)

are used to refine the search space within which the multi-stage decision process optimises, thus

reducing the computational burden.

It is noted that locating the regions in the proposed way does not guarantee that two tracks

have not been merged during smoothing and therefore that only a single track is present within the

track tracing search region. Also, the proposed method is not truly unsupervised as a threshold

parameter value needs to be manually determined within the track detection stage. The method was

tested using spectrograms of varying SNRsa (1.50–7.45) and varying spatial frequencies [56]. It

achieves above 87% detection performance over all SNRs and spatial frequencies and can perform

the detection within a 128× 128 pixel spectrogram in 36.74 seconds. It is not possible to perform

a direct comparison between the SNRs used in this experiment and others as a different SNR

measurement is useda.

The use of the cost function Φ(C), Eq. (2.11), provides a balance between the detection of

temporally invariant tracks and high SNR tracks. The local nature with which the curvature is

calculated prevents the method from linking spurious high amplitude noise responses that are some

distance away from the current track, whilst allowing globally fluctuating tracks to be detected.

aIt is assumed that the paper’s authors use the same SNR calculation as is presented in their other paper [57] and

therefore that these figures are calculated as SNR = 10 log10([P̄t − P̄b]/σb) where σb is the standard deviation of the

noise.
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Nevertheless, in situations in which high amplitude noise points exist within the identified region

Ri, there is a high probability that they will cause the detection to deviate from the true location.

2.3.3 Neural Networks

Neural networks are a widely applied classification architecture and a wide variety of neural net-

works exist, many of which are described in “Neural Networks: A Comprehensive Foundation”

by S. Haykin [77] and “Neural Networks for Pattern Recognition” by C. Bishop [28]. Multi-layer

non-linear neural networks can be effective as pattern classifiers [180] and have a proven ability to

extract salient features of high-dimensional input spaces, allowing the identification of patterns in

complex problems [77]. These properties make them a strong candidate for applications such as

this. The atomic unit of a neural network is a neuron and a neuron is a simple mathematical model

of the neurons that exist in biological nervous systems [121], such that [28]

z = g

(

n
∑

i=0

wixi

)

where z is the neuron’s output, g its activation function, wi is the weight applied to the ith input xi

and n is the number of input synapses. They have been studied by Rosenblatt [153] who referred

to them as perceptrons and Widrow and Hoff [183] who called them adalines.

It is the aim of a well designed neural network to learn a statistical model of the process that

generates some data. This is achieved by iteratively adjusting the weights of neural connections

with the aim of minimising an error function defined upon some training examples [28]. In a

supervised learning setting these examples have class labels attributed them and the error is a

function of mistaken classifications. Unsupervised learning does not make use of class labels and

instead the neural network may determine statistical similarities of the data. A key drawback in

the use of an improperly designed neural network, and any model that learns by example, is the

possible reduction in the model’s ability to generalise to unknown cases. In applications such as

this, frequency tracks can vary greatly and it is quite probable that a training set will not fully

represent the range of variations that the model may need to identify.

2.3.3.1 Supervised Learning

Di Martino and Tabbone remark that such methods “need a supervised learning set that reduces

their utility in real cases” [57]. Kendall et al. investigate this by testing several methods for im-

proving the generalisation of neural networks [98]. In terms of the application this improves the

networks’ ability to detect track structures that were not included in the training data. Several tech-

niques to improve a network’s generalisation ability are tested: heuristically changing the number

of hidden nodes, weight decay, soft weight sharing and Ockham’s networks.

A hidden node is a neuron within a neural network that is neither an input or output unit.

These are described as being hidden because their activations are not directly seen by the outside

world. The hidden layer (the layer of the neural network that is made up of hidden units) learns to

represent the input data in a way that captures salient information. The number of nodes, or even
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the number of hidden layers, determine the network’s ability to represent complex, non-linear,

patterns [28]. Having too many hidden nodes, however, increases the network’s complexity, and

can have the side affect of allowing the network to quickly over-fit training data (a problem also

referred to as the bias-variance trade-off)—reducing its ability to generalise [28]. Unfortunately,

there is no definitive method to determine the number of hidden nodes that are needed to solve a

classification problem [60] and so trial and error is often employed.

Weights are applied to the values passed between nodes of the network and control how much

effect the value has on the receiving node’s activation. Utilising weight decay [28] helps to avoid

over-fitting training data by forcing the weights to remain small and can lead to significant im-

provements in generalisation performance [84]. This is realised through a simple regularisation

function utilised during training, which shrinks the weight’s value after they have been updated.

This function is defined as

C =
∑

i

∑

j

(oj − dij)
2 + λ

∑

i

w2
i (2.12)

where dij is the desired value of output oj in the network’s output layer, wi is the network’s ith

weight and λ can be thought of as a normalising parameter.

Weight sharing [111] is a technique in which a single weight is shared among several connec-

tions in a network, reducing the number of adjustable parameters. This requires good knowledge

of the problem background so that it is possible to specify which connections will share weights

[111]. Soft Weight Sharing [134] utilises Gaussian mixture models during training to determine

the weight’s values and which weights should be linked dynamically. This removes the depen-

dence on the user to fix the weighting links a priori.

Ockham’s razor states that more simple models should be preferred to more complex models

and that this preference should be balanced with the extent to which the model fits the data [28].

This philosophy is utilised in Ockham’s networks to improve the generalisation performance of

neural networks in the absence of large amounts of training data [97]. The minimum description

length principle [21] is utilised to attribute a coding length to a network and the classification errors

it produces. A cost function is defined such that

C = I(x|Θ) + I(Θ) (2.13)

where I(x|Θ) is the description length of the data misfit x, given the chosen model Θ (the in-

put/output values of all the training pairs not correctly classified) and I(Θ) is the description

length of the model itself (the neural network’s weights). The cost function is optimised by a

genetic algorithm [128] and the network that equates to the minimum is optimal—according to

Ockam’s razor—as it has the least combined classification errors and complexity.

Weight decay and Ockham’s networks were found to be the most advantageous methods eva-

luated by Kendall et al.. Weight decay, constrained by the cost function outlined in Eq. (2.12),

was found to significantly reduce the classification variance on a generalisation set when using a

network with one hidden node. For a complex network (eight hidden nodes), correct values of
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λ not only reduce variance but also provide improvements in the generalisation performance by

reducing the network complexity. Ockham’s networks, however, were found to be the most suc-

cessful method for improving generalisation. Nevertheless, it was shown that, in this problem, the

method has limited effect and reduces the generalisation error rate by no more than 3% upon a

test set containing 121 instances of 9× 9 pixel spectrogram windows (which were independently

labelled from the training set). Furthermore, the method is very computationally expensive, requi-

ring 24 hr of computation time for one run. Because of this, no averaging over many trials was

performed. It is stated, however, that “given that the genetic algorithm is finding a near global

minimum for C it is likely that the variance will be small” [98]. Aside from limited improvements

in generalisation error, the Ockham’s network method did result in the lowest complexity network

based on the minimum description length principle.

Khotanzad et al. [99] implement a track detection mechanism with the following steps. Ini-

tially the spectrogram is thresholded to obtain a binary image. An auto-associative memory (ASM)

[85] is employed to eliminate the noise and to reconstruct the received signal. The ASM is trained

using a learning algorithm based on Hebb’s rule [79] upon a number of clean reference signals

that contain a target or no target, of which the closest to the noisy input signal is recalled during

evaluation. The output of the ASM is then passed to a multi-layer perceptron (MLP) [28] trained

using the back-propagation algorithm [155] to classify the clean data from the ASM as containing

a target or not.

It is stated in the paper that in an initial study a classification accuracy of 97% was achieved for

spectrograms that contain a track, and 100% for noise only spectrograms. These results, however,

were obtained using a very small test set that was derived by adding Gaussian noise to the training

spectrograms and that consisted of 24 spectrograms containing a track and 12 noise only spectro-

grams. Moreover, the shape of the tracks present in test set were regular and do not vary greatly

in appearance. Under these conditions, it is possible that the networks are over-fitting the data,

explaining the very high classification rates, and that the technique would not generalise well.

Leeming [114] also investigates the applicability of the MLP, however, in this study its ability

to determine the number of tracks present in an example is under scrutiny. The MLP network

was trained in two ways; the first, to classify a window as containing 0, 1, 2 or greater than 2

tracks, and, the second, whether the MLP can recall a clean picture with no noise from the input

data (a similar problem to that investigated by Khotanzad et al. using the ASM). The evaluation

is performed upon a collection of spectrogram windows containing strong time-invariant tracks

10–20 dB above noise, weak time-invariant tracks 4–10 dB above noise and time varying tracks

7–10 dB above noise (having a random frequency variation of ±1 frequency bin per time frame).

The results conclude that MLPs with one hidden layer do not have the capacity to model data

that contains two or more tracks, however, data containing noise or one track could be recognised

by a such an MLP. An additional finding is that it is possible to remove noise from windows using

a network topology consisting of one hidden layer and increasing the number of nodes improves

clarity, especially in the case that the window contains time varying tracks. It is found in the paper

that when applying the networks to the task of counting tracks, increasing the size of the second

hidden layer produces no increase in effectiveness and it is concluded that this suggests that the
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second layer is counting tracks and the first is removing noise (although it is noted that these

networks require far fewer nodes in the first hidden layer than those tested for removing noise and

therefore this distinction is not clear).

The experimental results presented in the paper demonstrate that this method detects 75% of

tracks that are time-invariant within an SNR range of 4–10 dB and 79% of time varying tracks

with SNRs ranging between 7–10 dB (when trained to detect the respective track types). To test

the generalisation performance, a network trained to detect time-invariant tracks is tested using the

time varying test set and vice versa. In this case the performance drops to 69% (trained on time-

invariant tracks and tested on time varying tracks) and 43% (trained on time varying tracks and

tested on time-invariant tracks). These results highlight the difficulty of applying neural networks

to this problem, however, it is not clear whether this is a fundamental limitation of the neural

network architectures or the effects of over-fitting.

An alternative architectural approach is taken by Adams and Evans who implement MNET—

a multi-layer feed-forward NN architecture for track detection inspired by the Hidden Markov

Model (HMM) [4] (see Section 2.3.4.2 for a full discussion of HMM techniques). In the context

of HMMs, the probability of a particular observation sequence, given a HMM, is calculated using

the forward-backward algorithm [150]. A method analogous to this algorithm is used to calculate

the output of each node at each time step in the MNET architecture. The estimated sequence

of track locations are then obtained by finding the node (each node represents a frequency state)

with the largest output at each observation time. In the paper, two networks are derived from

this architecture: MNET1, which is trained using a supervised learning algorithm; and MNET2, in

which parameters are derived analytically from knowledge of the problem structure (a method used

by Streit and Barrett [169] and Xie and Evans [190] to determine HMM parameters). Additionally,

the architecture is extended to form RNET, in which the nodes representing the HMM states are

replaced by an MLP network, and this is trained using a supervised learning algorithm. The

addition of the hidden layers, and the use of the sigmoid activation function within them, creates a

non-linear mapping between network’s input and output [28].

The tracking problem presented in the paper was simplified by quantising the STFT frequency

range into eight possible states and, therefore, the HMM, MNET1, MNET2 and RNET archi-

tectures had eight states corresponding to each of these sub-ranges. These architectures were

compared against a MLP NN and a HMM using the Viterbi algorithm to track the frequency. The

Viterbi algorithm [150] is used to determine the most likely sequence of hidden states defined

by the HMM (called the Viterbi path) that results in the observed sequence. It is concluded that

the HMM outperforms the other methods in tests where SNRs are between 4 and −5.6 dB and

RNET achieves the closest performance to the HMM; followed by MNET1, NN then MNET2.

Nevertheless, the operational computational complexity of RNET and both the MNET architec-

tures, O(NM), is lower than that of the HMM, O(M2N). An advantage of MNET’s architecture

over the NN is that its number of nodes is tied to the problem formulation and is therefore prede-

fined, whereas the size of a NN needs to be determined by trial and error. Also, compared with

the NN, MNET has a smaller network size. This is also true when compared to RNET (which

is also smaller than the neural network), however, the addition of RNET’s hidden layer creates a
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non-linear mapping from input to output, allowing it to model more complex data and achieve a

higher detection rate. A limitation of the experimentation is the coarse frequency resolution into

which the spectrograms are subdivided; this limits the method’s ability to detect tracks that have

small frequency variations, however, it results in networks that have fewer states and, therefore,

simplifies the detection problem.

2.3.3.2 Unsupervised Learning

Methods using unsupervised learning may show more reliable application to real world cases as

they are not trained to detect a specific track structure but learn the statistical similarities between

the data [28].

Di Martino et al. [54] propose the use of a two layer adapted Kohonen self-organising map

[104] that is constrained according to the same perceptually relevant track features as those outli-

ned in their previous paper [55] (and outlined in section 2.3.2.4). The map, with an input layer of

147 nodes (three nodes for each input pixel that represent time, amplitude and frequency) and an

output layer of 49 nodes (N ), is applied directly to the spectrogram in an attempt to extract tracks.

In using three input nodes for each pixel, each being attributed to a different aspect of the pixel,

the defined perceptual track features can be evaluated upon the converged map. Once this conver-

gence occurs within a spectrogram, a cost function, Φ(W ) that incorporates the defined features,

is evaluated on the weights of each type of input node (time, amplitude and frequency). This cost

function tests the convergence for the presence of a track, such that

Φ(W ) =

N
∑

i=1

WA
i

N

N−1
∑

i=2

(WF
i−1 − 2WF

i +WF
i+1)

2

(2.14)

where WF and WA represent the weights attributed to the connection of the frequency and am-

plitude input nodes to the output layer respectively.

The method was applied by the authors to a spectrogram with an SNR of 2 dBb and the net-

work’s detection resolution was taken to be a 7× 7 pixel window in a 70× 70 pixel spectrogram.

The resulting spectrogram has the majority of the noise removed and contains a large response

where the track is present in the ground truth data. The track in the original spectrogram is not

continuous as noise obscures parts of it, however, the resolution of the self-organising map causes

many of these gaps to be bridged. A property that could also result in localisation problems and

extend terminated tracks. With regard to the cost function Φ(W ), its formulation allows for the

detection of high amplitude, low curvature tracks as its numerator takes a high value and the di-

visor a low value, equating to a high response. When a high amplitude high curvature track is

encountered, however, the function will take on a low value, giving a high probability of false

negative detections. This would also be the case for low amplitude low curvature tracks, which is

a limitation when low SNR track detection is needed.

bcalculated as SNR = 10 log10([P̄t − P̄b]/σb)
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2.3.4 Statistical Models

Statistical models determine the optimal path through a number of detections, which include false

and true positives, by calculating the path with the maximum likelihood depending upon the data

and a model of the data’s generative process.

2.3.4.1 Dynamic Programming

Scharf and Elliot [162] model a frequency track as a random walk, zk = zk−1 + ǫk, and derive

a dynamic programming [25, 108] approach for track extraction. Dynamic programming is a

method of solving complex tasks by solving the simpler, smaller problems that they comprise.

In this case, the state of the frequency track is determined by calculating its state at each row of

the spectrogram recursively. The method is described as being applicable to frequency or phase

tracking, stating that “the distinction between the two is more imagined than real”. A logarithmic

likelihood function, l, is defined such that

l ∼ 1

2σ2

N−1
∑

n=0

Re{e(−iφnk)Pn(ω̂n)}+
N−1
∑

n=0

ln p(ω̂n|ω̂n−1) (2.15)

where ω̂n is the estimated discrete frequency state, p(ω̂n|ω̂n−1) is the transition probability, which

is chosen to model a notion of physical reality, σ is the standard deviation of the time domain

noise and e(−iφnk) is the phase shift of the STFT, where φnk is the total accumulated phase after

nk steps (k is the number of samples in which the phase is assumed to increase at a fixed linear

rate). Here σ is fixed and therefore the standard deviation of the noise is assumed to be stationary

and known a priori. The most likely track is one that maximises l and dynamic programming is

used to determine this by calculating the best path through the observed peaks (a more complete

discussion of a related non-linear tracking algorithm is presented by Scharf et al. [161]).

The algorithm was tested on two spectrograms with a carrier-to-noise ratio (SNR of a modu-

lated signal) of −3 dB (time domain) using 60 time steps of data to calculate the optimal path.

They note that even when STFT peaks are unreliable the method tracks the true frequency. Ne-

vertheless, it can be observed in the qualitative data presented that, at several points, the tracking

diverges from the true frequency.

2.3.4.2 Hidden Markov Model

Shin and Kil [165] argue that to effectively track a signal any a priori knowledge of the signal’s

behaviour should be used and that Hidden Markov Models allow for this. Hidden Markov Models

(HMM) [150] are well known for their application to this type of problem as they allow for the

modelling of an unobservable stochastic process that is observed through an additional stochastic

process, producing a sequence of observations (in this case the STFT output).

A general limitation of the HMM is the automatic discretisation of an estimated continuous

variable [105], in this case the signal’s frequency. This does not, however, affect its application to

this problem as the continuous frequency is discretised during the STFT and the HMM estimates
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the state within these frequency bins. Another limitation associated with HMMs is the automa-

tic determination of the model’s parameters given some training data. An approximation to the

solution can be achieved using iterative methods such as the Baum-Welch algorithm [22], the Ex-

tended Baum-Welch algorithm [94], which are generalised Expectation-Maximisation algorithms,

or gradient techniques [151]. Employing such methods can reduce the generalisation ability of

the resulting HMM to track variations that are similar to those present in the training data—a ty-

pical supervised learning problem called over-fitting. Anderson et al. [11] further discuss issues

associated with HMM models.

2.3.4.2.1 Single Track Streit and Barrett [169] demonstrate the use of a HMM spectrogram

frequency tracker. In this formulation only the most powerful frequency bin is used in each obser-

vation, limiting the method to the detection of single tracks. The inclusion of a zero state allows the

tracker to model disappearing and re-appearing tracks, the occurrence of which is detected using a

threshold value. Frequency cells composed of a subset, or gate, centred on the previously detected

frequency cell (therefore representing the allowed wandering frequency positions) are identified

with the states of the hidden Markov chain. Analytic expressions for the basic parameters of the

HMM are obtained in terms of physically meaningful quantities. It is shown that the computatio-

nal complexity of the Viterbi algorithm is [(n + 1) + c1]
2T , where c1 is the complexity (in units

equivalent to addition) of computing the measurement probability density function (PDF) (in the

case where it is computed for each symbol in the measurement vectors), and the computational

complexity of the forward-backward linking algorithm is [(n + 1) + c2]
2T , where c2 is the PDF

calculation complexity in units equivalent to multiplication.

The performance of the HMM tracker was qualitatively evaluated for two sets of simulated

data and demonstrates good detection results in time domain SNRs of −20 dB and −23 dB with

the disappearance and initiation of tracks. The HMM tracker was compared with the dynamic

programming method presented by Scharf and Elliot [162] and it was found that their method

is equivalent to an HMM using real valued continuous measurement vectors. Scharf and Elliot,

however, do not include a zero state to account for the absence of a signal. It is noted that the

dynamic programming algorithm presented for maximising the likelihood function l, Eq. (2.15),

is equivalent to the Viterbi algorithm.

Paris and Jauffret [138] and Shin and Kil [165] both investigate the use of HMMs applied

to this problem. Both compare forms of the Viterbi line detector (a global optimisation scheme)

while Paris and Jauffret also test the forward-backward (F-B) local optimisation algorithm.

Shin and Kil use the smoothed amplitude of the short-term integrator as a feature for the

algorithm. Subsequently, a double threshold Viterbi line detector is employed; two thresholds are

used to identify which STFT bins are to be linked, reducing the algorithm’s computational load.

A likelihood function based upon each cell’s amplitude and linking distance is used which, as

this is based upon amplitude information, allows the algorithm to cope with time varying signal

and noise characteristics. Below an SNR of −4 dB (time domain) the performance of the Viterbi

algorithm is shown to be weak as false detections become apparent. To compensate for this the

authors propose to extract features from projection spaces other than the spectrogram image and
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employ feature fusion, optimisation and classification techniques (discussion of this is beyond the

scope of this chapter). Qualitative results (of the Viterbi detector alone) were presented from one

spectrogram image showing that tracks with slow spatial variation are recovered accurately.

Paris and Jauffret propose to integrate SNR estimates into the HMM algorithm to improve tra-

cking performance when the spectrogram SNR is not known a priori. Two methods for estimating

the SNR of a spectrogram are proposed: a parametric maximum likelihood estimation (MLE),

which gives the scaled likelihood, defined as

bs(sji) ≃ exp

[

Nsji
∑N−1

l=0 sjl

]

; (2.16)

and a non-parametric probabilistic integration of the spectral power (PISP) approach by taking the

normalised spectrogram, such that

s̄ji =
sji

∑N−1
l=0 sjl

. (2.17)

Implementing an SNR estimate in this way slightly reduces the computation time associated with

the MLE method. Calculating the likelihood of the current observation in terms of its mean allows

for detection even if the noise level varies with time.

It was shown that both the Viterbi and the F-B algorithms perform equally well in the ex-

periments, and that estimating the SNR results in no loss of performance (it is also noted that

both SNR estimates perform equally well). It is stated, however, that the Viterbi algorithm per-

forms many more comparisons (but fewer multiplications) than the forward-backward algorithm

(reflecting that found by Streit and Barrett [169]) and that PISP is less computationally intensive

than MLE. One shortfall of these methods is that they do not take into account the appearance or

disappearance of a frequency track or the existence of multiple tracks.

Jauffret and Bouchet [88] outline a probabilistic data association (PDA) method coupled with

the Viterbi line extractor. The spectrogram is thresholded resulting in a set of false alarms and a

set of true detections. The likelihood of a spectrogram track is calculated to be proportional to

L(Sj∗|yj) = 1− Pd +
Pd

λ

N−1
∑

i=0

1√
2πσ

e−
(sji−yj )

2

2σ2 , j = 0, 1, . . . ,M − 1 (2.18)

where Sj∗ denotes row j of the spectrogram S, σ is the standard deviation of the Gaussian dis-

tribution modelling the correct detections, yj represents the state of the system at time j, Pd is

the probability of detection and λ is the probability of false alarm (per frequency cell). Several

assumptions regarding the nature of the data are made in this calculation, which are outlined in the

paper. The Viterbi line detector is then used to extract the most likely track from the spectrogram.

This method was shown to reliably detect slowly varying tracks when the SNR is above 4 dB,

in both simulated and real world examples. Van Cappel and Alinat comment that “probabilistic

data association with severely limited branching factors suffers from various difficulties due to the

low SNR and to the variability of track frequencies and amplitudes” [175]. The proposed method

also does not account for the birth and death of tracks.
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Gunes and Erdöl [74] argue that if concentrated noise exists in specific frequency ranges, de-

riving the observation estimates with respect to the full spectrum, as has been presented thus far,

will typically lead to unbalanced observation likelihoods. They outline a HMM for the detection

of vortex frequency tracks in low SNR conditions that overcomes this limitation by defining an ob-

servation likelihood measure based upon the interpolation between local maxima of the spectrum.

The spectral estimate’s local maxima are determined within each time frame and form the centres

of windows within which interpolation across subsequent time frames is performed. This results

in a set of smoothed local maxima, which are used to mask the original spectral estimate during

the observation likelihood calculation—thus the calculation is determined with respect to a subset

of the spectrum.

Gunes and Erdöl implemented the forward-backward linking algorithm to perform track asso-

ciation. The method was shown to reliably detect tracks within two spectrogram images, one of

which exhibits time variant noise irregularly distributed throughout the frequency spectrum and

the other Gaussian noise.

2.3.4.2.2 Multiple Tracks Paris and Jauffret demonstrate a HMM scheme that is able to detect

multiple simultaneous tracks [137]—an event that occurs when multiple acoustic sources exist in

a number of consecutive time frames or when a single source emits multiple frequencies that could

be harmonically related, as described in Section 1.2.1. An additional constraint is imposed upon

the F-B algorithm, that is, that two tracks cannot inhabit the same place in state space by adding

the track’s rate of frequency change, ḟ , to the representation of the state yi, such that

yi =
1

∆f

[

fi

ḟi

]

(2.19)

where f is the state’s frequency position and ∆f is the frequency resolution used in the STFT.

These modifications also allow two tracks to cross the same point in a spectrogram. The appea-

rance and disappearance of the tracks, which was left unaddressed previously [138], is determined

by a sequential test using the mechanism of the F-B algorithm. The tracks are extracted from the

spectrogram and their start and end points are calculated using past and future detections.

This technique is not a true general multi-track detector as an upper bound on the number of

tracks to be found is a parameter of the algorithm. Tests using this algorithm show that it performs

well both with known and unknown SNR, with a slight rise in the mean square error in the latter

case. In a test on a synthetic spectrogram with multiple frequency tracks that were highly corrupted

the algorithm recovers them all accurately. When the algorithm is applied to a real spectrogram it

again accurately detects the frequency tracks. Nevertheless, overestimating the number of tracks

increases computational workload, which would not be desirable in a real time application.

Xie and Evans [190] propose a multi-track approach using the Viterbi algorithm, which ope-

rates on the thresholded output of the STFT. They define a “mixed” track and use the Viterbi

algorithm to produce the maximum a posteriori “mixed” track estimates. The estimation of the

threshold requires good knowledge of the SNR of the signal under scrutiny. They later present

further results [191] that remove the need of thresholding and show superior performance over
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the previous method (although this is at the expense of increased storage space). To separate the

“mixed” tracks into individual tracks it is proposed to use amplitude and transition probability in-

formation. If two tracks do not cross then transition information alone is enough; if they do cross

then they are assumed to have different constant amplitudes and this, together with state transition

information, is used for separation—it is unclear what effect two tracks having the same amplitude

will have.

Simulation results are presented that show good tracking performance when the track’s fre-

quency varies by 5Hz over approximately 11 hours of data. In these over-restricted conditions,

which are unrealistic in this problem, the tracker is able to detect a track at an SNR of −23 dB

(time domain).

Van Cappel and Alinat propose an alternative HMM approach to multiple track detection;

multiple HMMs are utilised to implement several frequency track variation models in parallel

[175]. It is noted that the solution to track detection must be designed “firstly in taking into

account as long as possible observed data blocks (batch processing), secondly in delaying the

decisions (knowledge of future) and thirdly in using several frequency line variation models in

parallel” [175]. A HMM is described to extract tracks from thresholded STFT outputs where the

threshold is related to the noise level. A generalised likelihood ratio test is performed using two

models in parallel as two standard deviation estimates are used; one accounting for stable tracks

and the other for unstable. Three track models are taken into account: the first, a stable track with

zero order; the second, an unstable track with zero order; and, lastly, a stable track with an order

of one. The change from one model to another is triggered by a Bayesian test using the track

variation of the recent observations.

Qualitative results are presented for a spectrogram containing tracks that exhibit a large amount

of variability. It can be seen that each model has the ability to detect tracks with different charac-

teristics separately and, when combined, the mechanism incorporates the detection attributes of all

the models contained.

2.3.5 Tracking Algorithms

Tracking algorithms such as the Kalman filter [93] form a series of estimates, or predictions, of

a system state (in this case the track position). Based upon an existing estimate, the state of the

system in the next time frame is predicted; once a measurement becomes available (in this case

the STFT output) the estimate is updated according to the observation and the process is repeated.

An issue associated with this type of detection method, especially when applied to areas that need

quick, accurate detections, is the latency of detection, i.e. the number of observations that are

required to update the a priori estimate to accurately locate and track a feature.

2.3.5.1 Particle Filter

The particle filter is a sequential Monte Carlo method [58], in which the posterior probability

density function (PDF) is represented as a set of particles and associated normalised weights in

state space, which generalises the Kalman filter [13]. At each time step particles are drawn from
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the previously calculated set with probabilities proportional to their weights. The weights of these

particles are then updated according to the current observation and used to calculate the Bayesian

estimate of the state for the current time step. This is repeated at each time step and has the effect

of tracking a state estimate of a non-linear non-Gaussian process, in this case the frequency of a

spectrogram track, through time.

Shi and Chang investigate the use of particle filters to extract the formants (peak frequencies

of speech signals and therefore tracks) from a spectrogram [163]. Pre-processing converts the

spectrogram from log energy to the grey-scale range (0–255). Particle filtering is employed to

estimate the state (the frequency) of the kth formant at time t, F̂
(k)
t , based upon the state estimate

in the previous time step, F̂
(k)
t−1, which represents all the previous observations, such that

F̂
(k)
t = E[F

(k)
t |R

(k)
t , F̂

(k)
t−1] (2.20)

where R
(k)
t is the formant spectrum region (the observation).

The prediction stage updates the current state to predict the frequency location for the next

observation, and, as the next observation becomes available, this prediction is updated. The prior

p(F (k)) and conditional prior p(F
(k)
t |F

(k)
t−1) PDFs are assumed to be Gaussian or products of Gaus-

sians,

p(F (k)) ∼ N (F (k);µF (k) , σF (k)) (2.21)

p(F
(k)
t |F

(k)
t−1) ∼ N (F

(k)
t ;F

(k)
t−1, σF (k)

t|t−1

) (2.22)

where µF (k) and σF (k) are the PDF’s mean and standard deviation and are learnt from manually

labelled formant tracks. The particle filter algorithm can thus detect the track on a frame-by-frame

basis.

In this form, the particle filter is applicable to detecting a single track in a spectrogram. Never-

theless, the paper outlines a method to split the spectrogram into k non-overlapping regions R(k)

and to perform tracking in each region, therefore allowing for multiple tracks to be followed.

The results of the experiments presented by Shi and Chang [163] show a mean frequency

error of 71, 115 and 113Hz for the first three formants (it should be noted that the tracks in

this application cover a larger range of frequencies compared with the very narrow band tracks

discussed in other papers). This is a relatively large error, especially for applications that require

accurate frequency estimation to perform subsequent source classification.

2.3.6 Relaxation Methods

Relaxation algorithms search for a global sub-optimal solution to a problem by progressively re-

laxing constraints, analogous to annealing in metallurgy [100], which involves the heating and

controlled cooling of a material to increase the order of its atoms and reduce defects.

2.3.6.1 Simulated Annealing

Lee [112] applies Simulated Annealing (SA) [100, 177] to globally optimise a cost function defi-

ned upon the SNR over time. The assumption is made that the initial frequency location is known
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and that the track is constrained to a frequency variance of 0, 1 or −1 frequency bins in each time

step. This assumption limits the method’s application to cases where it is known a priori that

the spectrogram contains a track. If this is not the case and the method is applied, a false track

throughout the spectrogram will be detected. The cost function is defined as

C(j) =
K
∑

k=1

(αµk − sjak) (2.23)

where (ak)k=1,K is monotonically increasing sequence such that ak = i if sji belongs to a track

and ak 6= at, k 6= t. The term sjak represents the power of the track at point (ak, j), α is a

threshold that controls the detection sensitivity and µk is the estimate of noise from the previous

track, or the spectrogram border, to the current track, such that

µk(j) =

{

1
ak

∑ak−1
i=0 sji, if k = 1
1

ak−ak−1+1

∑ak−1
i=ak−1+1 sji, if k > 1.

(2.24)

The global cost function is defined as CT =
∑M−1

j=0 C(j), the minimum of which, determined by

the SA algorithm, guides the solution towards tracks in the spectrogram.

An initial track configuration is generated at random, which is then incrementally improved

using the SA algorithm. This method was tested using a test set containing −18 to 3 dB SNR (time

domain) spectrograms that have a single track at 64Hz. In these experiments the initial frequency

location of the track is known and the detection initiated from this frequency bin. The CPU time

required to detect a single frequency track within a 128 × 128 pixel spectrogram varied from 380

to 572 seconds. Qualitative results are presented, which demonstrate reliable detection of time-

invariant tracks in most SNRs, with the detection in some cases varying from the true location.

Additional experimental results are presented that test the need for accurate a priori knowledge of

the track’s frequency location. The initial state was set to 75Hz and the experiments repeated with

the method successfully recovering the track. This experiment, however, was conducted upon a

single spectrogram with a very high SNR of 3 dB (time domain).

2.3.7 Expert Systems

Lu et al. [117] employ the use of an expert system and priority ranking to improve the performance

of weak track detection and tracking by allowing for a certain degree of learning. The following

stages are followed: the broadband component of the STFT output is removed from the signal,

a double threshold is taken where the spectrogram is thresholded with a low threshold value and

then a second is applied “to make further judgement according to the characteristics of the shape

of the frequency line and timing continuity”. The detected frequencies are then stored in an expert

database and their initial priority ranks are set to zero. The threshold of each entry in the expert

database is adjusted and the narrow region encompassing the initial detection is tested according

to the characteristics of a typical track. The priority ranking is reduced or increased depending

on the outcome of these tests. A track is eliminated when its priority falls below zero, thus false

detections are eliminated.
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Qualitative results are presented from the application of the method to one synthetic spectro-

gram containing 4 tracks, the weakest having an SNR of −9.76 dB (time domain), which demons-

trate good detection performance. Another qualitative detection within a real world spectrogram

is also presented, but these detections are not quantitatively analysed.

2.4 Discussion

To recapitulate, this chapter has aimed to survey and review algorithms representative of the in-

tersection between the areas of acoustic analysis and pattern recognition for the problem of spec-

trogram track detection. The intention of such a survey has been to ascertain which approaches

have been taken to solve this problem and, in the process, to reveal their limitations, strengths and

weaknesses and thus laying the foundations for the research that will be presented in the following

chapters of this thesis. To accomplish this, a problem statement, set of evaluation criteria, taxo-

nomy of algorithms and a review of each algorithm from within the taxonomy has been presented.

This section presents an evaluation of the algorithms with respect to the defined criteria and a

discussion of the algorithms’ strengths and limitations.

2.4.1 Algorithm Evaluation

The reviewed algorithms have been evaluated with respect to specific criteria that are prerequisites

for a reliable and successful spectrogram track detection algorithm. These criteria have been

defined in Section 2.1 and the results are summarised in Table 2.3.

2.4.2 Technique Limitations

In addition to the benefits of each technique, and the insight into the nature of the data that the

study of these methods gives us, several fundamental limitations of the techniques that have been

presented are identifiable.

• Smoothing of the spectrogram using spatial filtering techniques cannot guarantee that two close

tracks have not been merged. It can also cause instances where a detected track has been shifted

from the true location through the use of such a filter. These problems carry over to methods

employing some form of resolution reduction as a pre-processing stage.

• Di Martino et al. describe problems that follow from using multiple hypothesis testing methods

[55], the first being that the number of possible solutions increases dramatically with search

depth and, therefore, “thresholding during the search is necessary in order to avoid the combi-

natory explosion”. Also that “the decision process is local and so very sensitive to initialisation”.

• Thresholding and likelihood estimates are statistically powerful and simple methods. Neverthe-

less, when the SNR of a spectrogram is low the probability density functions overlap conside-

rably. Consequently, a low threshold value will result in a high true positive rate but will also

detect many false positives. Conversely, if the threshold value is set to a low value the resulting

detection will contain few false positives but false negatives start to be the drawback. Another
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Maximum Likelihood

Single frequency [152] N Y Y N N N Y Y Y Y

Multi harmonic [20] N Y Y N N N Y Y Y Y

Correlation [8] - N Y Y Y Y Y N N N

Image Processing Techniques

Likelihood ratio & morphological operators [3] - Y Y Y Y Y N Y Y -

Multistage decision process [55] - Y Y Y Y Y Y Y N Y

Steerable filter & multistage decision [56, 57] N Y Y Y N N Y Y N Y

Two-pass split-window [38] N Y Y Y N N Y Y N Y

Edge detector [69] N Y Y Y N Y Y Y N Y

Neural Networks

ASM and MLP [99] N - N N N N N N Y -

Multi-layer perceptron [114] N - Y Y Y - N N N -

MLP using Ockham’s networks [98] N - Y Y N Y Y N N Y

Kohonen self-organising map [54] N Y Y Y N N N Y N -

MNET1 [4] N - N N N N N N Y Y

MNET2 [4] N - N N N N N Y Y Y

RNET [4] Y - N N N N N N Y Y

Statistical Models

Dynamic programming [162] - N N N N N N Y Y -

Viterbi & max amplitude [169] - N Y N N N Y Y Y -

Viterbi, “mixed” track & threshold [190] - N Y Y Y Y N Y Y -

Viterbi & “mixed” track [191] - N Y Y Y Y N Y Y -

Viterbi & double threshold [165] Y Y Y Y N N Y Y -

Viterbi & PDA [88] N Y N N N N N Y Y -

Parallel, multi model detection [175] - N Y Y - - Y Y Y -

F-B linking, SNR estimate & track gradient [137] Y Y Y Y - Y Y Y Y N

F-B linking & SNR estimate [138] Y Y N N N N Y Y Y N

Viterbi & SNR estimate [138] Y Y N N N N N Y Y N

F-B linking & spectrum interpolation [74] - Y N N N N Y Y Y -

Tracking Algorithms

Particle filter [163] - Y Y Y N N Y Y Y N

Relaxation Methods

Simulated annealing [112] - Y N Y Y N N Y Y N

Expert Systems

Double threshold & priority ranking [117] - - Y Y Y Y Y Y N Y

Table 2.3: Analysis of spectrogram track detection algorithms (‘-’ denotes the inability to make a

judgement regarding the criteria for a specific method due to lack of information).
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drawback of these techniques is the constant variation of the noise distribution present in real-

world noise environments. This problem then lends itself to machine learning techniques that

are adaptive to the environment.

• Although the reviewed RNET and MNET neural network architectures do not account for mul-

tiple tracks, track crossing and track birth/death, their HMM counterparts are able to. Due to

their close similarity to HMM formulations, these properties should be easily transferred to their

implementations.

• The representative work of probabilistic data association (coupled with the Viterbi line detec-

tor) and dynamic programming assume that one track is present at any one time frame of the

spectrogram. This limitation has been overcome with methods implementing hidden Markov

models, some of which incorporate information regarding the current FFT observation into the

likelihood measurement, which enables them to model time varying signal-to-noise ratio levels.

Nevertheless, many of the implementations that are shown to work in low SNR conditions are

tested upon tracks that are relatively stationary (typical variations are 1 Hz over minutes/hours

of data). Anderson et al. note that “the transition and measurement probabilities are derived ef-

fectively on the assumption that the actual tracks are piecewise constant, which is not at all the

case” [11]. If the track varies too greatly the probabilities will not be able to represent the beha-

viour accurately and therefore the track will not be extracted to the accuracy needed for source

classification. The representation of a probability distribution function as a set of particles, as in

particle filtering, allows the modelling of non-parametric system state distributions that can be

dynamic due to particle population re-sampling at each iteration. Nevertheless, this introduces

added computational burden as many particles are needed to produce a good approximation and

each of these needs to be updated at each iteration (along with their associated weights). With

regard to the proposed HMM solutions, each perform specific aspects of the desired proper-

ties however, not one algorithm combines all of the desirable features to fully realise a viable

solution.

• The representative work based upon simulated annealing assumes that the initial track position

is known. Although experiments have shown that it need not be known accurately to result in the

correct detection of a track, it is unclear how much error is allowed for the method to work effec-

tively. This limits the method’s application to spectrograms in which a track is known to exist.

• The fundamental SNR limit of current techniques seems to be in the region of 2–4 dB in the

frequency domain for tracks that exhibit low shape variation (this is derived by converting time

domain SNR levels using assumptions of common spectrogram derivation parameters). This is

not sensitive enough for some applications.

• There appears to be a theoretical division in the literature present in this field. A number of

methods concentrate on determining the presence of a track within a window of data, and there-

fore conduct classification, whereas the remainder concentrate on determining the presence of

a track at a specific pixel location, and therefore conduct track detection. The practical effect

of this divide is that classification mechanisms are applicable, and most often used, to ‘clean’
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spectrograms, that is, to present the operator with a reduced complexity task where noise is

suppressed and “difficult to see” features are highlighted. On the other hand, a reliable track

detection mechanism replaces the need for such an operator all together, allowing the output

to be directly passed to higher level decision mechanisms (be it an operator or computational

system) for further processing.

2.5 Research Directions

The research presented in this thesis will investigate and integrate several beneficial aspects of

the work found in the literature and, it will be shown in Chapter 5, will overcome some of their

limitations.

The active contour algorithm relies upon internal energies to guide its convergence [96]. In the

original algorithm, these energies are defined to be the continuity and curvature of the contour [96]

and, as such, are parallels of two of the features used to identify tracks derived by Di Martino et al.

[54] from feature grouping theory: temporal continuity and frequential curvature. The additional

features that Di Martino et al. propose, high average energy and higher point density, will be

further discussed and investigated in Chapter 3 by means of a full investigation into low-level

feature detection in this problem.

It is evident from this literature review that there exists a wide range of techniques that have

been applied to this problem, all of which rely upon low-level feature detection methods. A vast

majority of techniques that have been reviewed utilise information derived from single pixel va-

lues for their low-level feature detection, more specifically: those reviewed under the sections

Maximum Likelihood Estimates; Statistical Models; Tracking Algorithms; Relaxation Methods;

Expert Systems; and a number from the Image Processing [3, 55, 38]. Di Martino and Tabbone

[57], Gillespie [69], and the contributions from the Neural Network background (excluding Adams

and Evans [4]) build upon this to perform low-level feature detection within windows of the spec-

trogram, thus incorporating spatial information. Surprisingly, however, no study exists into the

effects of low-level feature detection, and so this topic will be addressed in Chapter 3.

An early contribution to the field, proposed by Barrett and McMahon [20], is a simple maxi-

mum likelihood detector that integrates information at harmonic locations in the spectrogram to

enhance the detection of tracks. In the paper, however, no experimental evidence or investigation is

presented to suggest that this improves the detection of tracks in the presence of a harmonic series.

Subsequent work on HMM algorithms has attempted to tackle the problem of detecting multiple

tracks in spectrograms, however, these are assumed to originate from independent sources and, as

such, no information is fused to increase their rate of detection. In Section 3.4 an investigation

into the integration of harmonic information is conducted and empirical evidence supporting this

claim is presented.
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2.6 Conclusions

It is hard to present a direct performance comparison of the outlined techniques as there is a

large variation in the type of results presented in the literature. Several papers lack quantitative

results, favouring qualitative analysis of one or two spectrograms instead. Furthermore, where

quantitative results exist, there is a lack of consistency in the type of data that each technique is

tested upon. These inconsistencies include: testing upon synthetic data; real-world data or both;

the type of structure variation that tracks exhibit and the SNRs (even the measure of SNR); and

noise environment present in the data set. This greatly inhibits the ability to form any direct

comparison of results between papers describing different techniques.

The representative work from hidden Markov models and image processing techniques de-

monstrate applicability to this problem (albeit from different directions), as each of the reviewed

solutions demonstrate the ability to achieve one or more of the defined criteria. Nevertheless, it

seems that there has been no effort to combine all of these properties into one viable solution and

therefore there is still room for improvement in order to meet the challenges posed by present

applications.

This survey has been concerned with surveying track detection methods applied to spectrogram

images. Techniques exist that include phase information derived from the FFT but these are not

reviewed here. For further reading the following is recommended [19, 11, 122, 123].



Chapter 3

Low-Level Feature Detection

“Do not go where the path may lead,

go instead where there is no path and leave a trail.”

— Ralph Waldo Emerson, 1803–1882.

The first stage in the detection of any object within an image is to extract low-level features.

For a spectrogram, this stage results in the identification of unconnected points that are likely to

belong to a track, which are output in the form of another image [71]. In Chapter 2 it was found

that the approaches to the low-level feature detection of spectrogram tracks present in the literature

can be grouped into two categories. Abel et al. [3], Di Martino et al. [55], Scharf and Elliot [162]

and Paris and Jauffret [137], to name but a few, take the approach of detecting single pixel ins-

tances of the tracks, therefore only intensity information can be exploited in the decision process,

and Gillespie [69], Kendall et al. [98] and Leeming [114] take the approach of detecting track

sections within windows of the spectrogram, and therefore, in addition to intensity information,

information regarding the track structure is exploited in the decision process. Nevertheless, an em-

pirical study of the differences and detection benefits between the two approaches is still lacking.

It would be expected that when intensity information degrades, such as in low signal-to-noise ratio

spectrograms, the structural information will augment this deficit and thus improve detection rates.

This chapter presents such a study. Firstly three low-level feature detectors are defined, each

of which acts upon an increasing amount of information. These are termed ‘optimal’ detectors as

they perform an exhaustive search of the feature space and retain all of the information provided

to them by the feature model. The exhaustive search performed by these methods, however, means

that they are computationally expensive and, as such, a number of ‘sub-optimal’ detectors are exa-

mined. All of these ‘sub-optimal’ feature detectors derive feature vectors from within a window

and they therefore act upon intensity and structural information, however, they utilise machine lear-

ning techniques for dimensionality reduction and class modelling and therefore simplify the search

space. The ‘sub-optimal’ detectors are split into two categories—data-based and model-based—to

reflect the source of the training samples utilised by their supervised learning process. Finally, the

performance of the model-based ‘optimal’ feature detector is compared against the model-based

61
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‘sub-optimal’ feature detector to ascertain the degree of performance divergence between the two

approaches.

In addition to this, the final section of this chapter presents a novel transformation that inte-

grates information from harmonic locations within the spectrogram. This is possible due to the

harmonic nature of acoustic signals and is defined with the aim of revealing the presence of an

acoustic source at low signal-to-noise ratios by utilising all of the information available. The be-

nefits of performing low-level feature detection whilst combining information from harmonic lo-

cations are shown at the end of this chapter through a comparison with the detection performance

achieved by the low-level feature detectors when applied to the original spectrogram.

3.1 ‘Optimal’ Feature Detectors

Detection methods that utilise dimensionality reduction techniques such as principal component

analysis [92] to reduce the model or data complexity, lose information regarding the feature model

in the process [28]. This information loss detracts from their ability to detect features and therefore

they produce sub-optimal detection results. A method which models the data correctly and does

not lose any information in the detection process will have the most discrimination power as a fea-

ture detector, under the condition that it correctly models the features to be detected. These types

of detectors are more generally referred to as correlation methods in the image analysis domain.

In order for such methods to detect features that vary greatly, a model has to be defined with pa-

rameters corresponding to each variation type that can be observed. An exhaustive search for the

parameter combination that best describes the data is conducted by matching the model to the data

by varying its parameters.In this section are defined three detection methods with the properties

of an ‘optimal’ feature detector, i.e. no model reduction or approximation is performed during the

search for the feature and therefore they can be termed to be ‘optimal’ detectors. Three modes of

detection have been identified, each of which increases the amount of information available to the

detection process from the previous mode: individual pixels; local intensity distribution; and local

structural intensity distribution. Individual pixel classification performs detection based upon the

intensity value of single pixels. By definition this method makes no assumption as to the track

shape and consequently is the most general of the methods in terms of detecting variable struc-

ture. A track, however, “is a spectral representation of the temporal evolution of the signal” [54]

and, therefore, “can be expressed as a function of the time” [54], i.e. it is composed of a collec-

tion of pixels in close proximity to each other. Performing the detection process using individual

pixels ignores this fact. An extension to this detection process is therefore to model the pixel value

distribution in a local neighbourhood, forming a detector that incorporates this information. Ne-

vertheless, such a detector still ignores the information that can be derived from the arrangement

of pixels in the neighbourhood. Such information will enable the detector to distinguish between

a number of random high intensity pixels resulting from noise and an arranged collection of pixels

that belong to a track.
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3.1.1 Bayesian Inference

A common method used to model the distribution of individual pixel values makes use of proba-

bility density functions. A classification can then be made by testing the pixel’s class-conditional

membership to distributions describing each class, forming maximum likelihood classification, or,

by extending this to act upon a Bayesian decision using the a posteriori probability. Assuming

that the modelling is accurate, maximum a posteriori classification acts upon the optimal decision

boundary [60]. In the former case, the class-conditional distribution to which the pixel value has

the highest membership determines its classification. In the latter, the decision is made accor-

ding to the Bayes decision rule and this has been shown to be optimal [60], i.e. it minimises the

probability of error (subject to correct design choices).

In this case, Bayesian classification infers a pixel’s class membership based upon the probabi-

lity that it originates from a distribution model of the class’ intensity values. The distribution of

the intensity values of each class is determined prior to classification as a training stage; the model

which best describes the data is chosen and this is fitted to the data by determining applicable para-

meter values. A similar approach was used by Rife and Boorstyn [152] and Barrett and McMahon

[20] who applied maximum likelihood classification to pixel values, however, a very simple class

model was used in that work; the maximum value in each spectrogram row was classified as a

track position.

3.1.1.1 Intensity Distribution Models

There are three approaches to density estimation [28]: parametric, non-parametric, and semi-

parametric. The first of these, the parametric approach, assumes a specific functional form for the

density model, which is fitted to a data set by an appropriate choice of the model’s parameters. A

drawback of this approach is that the functional form of the model may not accurately represent

the data. This limitation is alleviated in non-parametric density estimation, in which no functional

form of the density is assumed. Instead, the density is determined by the data and, as a conse-

quence, has the drawback that the number of parameters grows with the cardinality of the data set.

This forms a complex model, which can be slow to evaluate for new data points [28]. The third

approach balances the previous two and is typically applied as mixture models. These models

allow a general class of functional forms in which the number of parameters increases with the

complexity of the data and is independent of the size of the data [28]. In this problem, using syn-

thetic data, it is possible to accurately estimate the data’s density using the parametric approach,

which usually allows the density function to be rapidly evaluated for new data points [28]. In other

cases, however, it may be necessary to employ the non-parametric or semi-parametric approach.

Nevertheless, the classification technique is equally valid when using different forms of density

estimation.

To estimate the parameters of the class-conditional distribution for each class, histograms des-

cribing the frequency of intensity values were generated, one for each class, and parametric func-

tions fitted to them. The number of pixel intensity values used to train the models was 266,643

samples of each of the noise and track classes (the data was scaled to have a maximum value of
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Figure 3.1: Class-conditional probability density function fittings for the single-pixel noise, mo-

delled using an exponential PDF (a), and track, modelled using a gamma PDF (b), intensity value

distributions. 266,643 randomly chosen pixel values for each class, taken from spectrograms ha-

ving an SNR range of 0 to 8 dB were histogrammed into 1,000 bins linearly spaced between 0 and

255. The fittings for the signal and noise histograms have a root mean squared error of 0.00048
and 0.00084 respectively.

255 in the training set). These were then histogrammed into 1,000 equally space bins spanning the

range 0–255 to form a histogram. As there was a large amount of training data available, the pa-

rameter values of each distribution function were determined by maximum likelihood estimation

[60] as this has been shown to reach the Bayesian estimation under such conditions [28] and are

simpler to evaluate [60] (under the case that there is little training data it may be more appropriate

to use Bayesian estimation). The Gamma and Exponential probability density functions (PDF)

were found to model the signal and noise distributions sufficiently well as they have a root mean

squared error of 0.00048 and 0.00084 (mean error per histogram bin) respectively; histograms of

intensity values and the resultant fittings for each class are presented in Fig. 3.1. As such, the

class-conditional probabilities of a pixel value, given the hypotheses of noise h1 and of signal h2,

are determined such that

P (h1|syx) = λ exp{−λx}

P (h2|syx) = xα−1β
α exp{−βx}

Γ(α)
(3.1)

where x > 0, the term Γ represents the gamma distribution and the distribution parameters were

found to be α = 1.1439, β = 20.3073 and λ = 7.2764 (with standard errors of 0.0029, 0.0576

and 0.0144 respectively).
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The histograms presented in Fig. 3.1 highlight the fundamental limitation of these methods;

there is a large overlap between the distributions of values from each class. This overlap is exag-

gerated as the SNR is reduced and it can be expected to impede the classification performance of

this type of detector.

3.1.1.2 Decision Rules

The simplest form of Bayesian inference, referred to as Maximum Likelihood (ML) [129], is to

calculate the class for which the pixel intensity value has the maximum membership. By defining

a set of candidate hypotheses H = {h1, h2}, where h1 and h2 are the hypotheses that an obser-

vation is a member of the noise or signal class respectively, and the probability density functions

corresponding to these hypotheses, given the data syx,∀x ∈ N ∧ y ∈M (from Section 1.2.3), the

likelihood that the data is a result of each hypothesis is determined, such that

hML = argmax
h∈H

P (syx|h). (3.2)

When all the hypotheses in H have equal likelihood of being true any convenient tie breaking rule

can be taken [60], in this case a random classification is made.

A drawback of maximum likelihood classification is that it does not take into account the a

priori probability of observing a member of each class P (h). For example, in the case of taking a

random observation with each hypothesis having an equal likelihood of being true, the observation

should in fact be classified as belonging to the class that is most likely to be observed [60]. The a

posteriori probability P (h|syx), which combines the class-conditional and prior, can be computed

with Bayes formula,

P (h|syx) =
P (syx|h)P (h)

P (syx)
. (3.3)

The form of Bayesian decision that incorporates this information, the hypotheses prior probabili-

ties, to form a decision is referred to as Maximum A Posteriori (MAP), such that

hMAP = argmax
h∈H

P (syx|h)P (h)

P (syx)
. (3.4)

Note that the ML estimate can be thought of as a specialisation of the MAP decision in which the

prior probabilities are equal. The term P (syx) is a normalisation term, which is independent of h,

and therefore, does not influence the decision. It can therefore be dropped [60] and Eq. 3.4 reduces

to

hMAP = argmax
h∈H

P (syx|h)P (h). (3.5)

In the case that the prior probabilities are unknown, which is common, they can be estimated as

the frequency of observing each hypothesis within a training set [28], irrespective of its value. In

this case the prior probabilities were determined by calculating the frequency of pixels belonging

to each class in the training set.

An example of a spectrogram’s membership of the noise and track class is presented in Fig. 3.2,
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(b) Track class membership.

Figure 3.2: Likelihood of class membership, intensity represents likelihood of class membership

(scaled to be within 0 and 255). The tracks in this spectrogram have SNRs of, from left to right;

first three: 3 dB, middle three: 6 dB and the last three: 9 dB. The intensity of the each response is

scale independently.

Figure 3.2a presents the noise membership values of each pixel. It can be seen that the majority

of noise pixels have a large likelihood of belonging to the noise class. Nevertheless, the high

noise values are found to have a lower likelihood and some of the low SNR tracks are found

to have a high likelihood of belonging to this class. Figure 3.2b presents the likelihood of the

pixels belonging to the track class and these emphasise the overlap between the two classes. The

noise pixels are given a high likelihood of belonging to the track class and track pixels have a

low likelihood of belonging to the track class. Taking the maximum membership of each pixel, as

defined by Eq. 3.2, a classification of the spectrogram is obtained, Fig. 3.3. Most of the pixels that

form a track are correctly classified, although gaps are present in low SNR tracks. The amount of

noise in the spectrogram is reduced but there is still a large amount present and this is reflected in

the classification percentages for the spectrogram pixels, 78.31% of noise and 71.51% of track is

classified correctly.

3.1.2 Bayesian Inference using Spatial Information

Classification based upon single pixel values is limited to forming a decision using only intensity

information. The definition of a track, as described in Chapter 1, is that a narrowband component

of energy is present in a number of consecutive time frames. A consequence of this is that track

pixels will be in close proximity to each other—a property that is not exploited using the classi-

fication methods defined above. An alternative method for classification is to determine a pixel’s

class membership based upon the distribution of pixel values in a local neighbourhood centred

upon the pixel, thus exploiting both sources of information. This form of classification, applied to

spectrogram track detection, has been investigated by Potter et al. [144] and Di Martino et al. [54]

who demonstrate that it can produce high classification rates. A window function is now defined

to enable the previously defined classifiers to perform this form of classification.
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Figure 3.3: An example of maximum likelihood spectrogram pixel classification, in this image

likelihood has been encoded as the inverse of intensity and scaled to have a maximum value of

255. The tracks in this spectrogram have SNRs of, from left to right; first three 3 dB, middle three

6 dB and the last three 9 dB.

3.1.2.1 Window Function

The spectrogram S (as defined in Section 1.2.3), can be broken down into I overlapping windows

W of predefined size, such that

W xy =






















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

(3.6)

γ =
⌊n

2

⌋

, ρ =
⌊m

2

⌋

where m ∈ N and n ∈ N are odd numbers defining the size of the window (height and width

respectively) such that γ < x < fmax − γ and ρ < y < M − ρ. A row vector, V xy of size

d = mn, can be constructed from the values contained within window W xy in a column-wise

fashion where Cxy
r contains values from the rth column of W xy, such that

Cxy
r = [sy−ρ,x−γ+r sy−ρ+1,x−γ+r . . . sy+ρ,x−γ+r] (3.7)

where r = 0, . . . , n− 1, and thus

V xy = [Cxy
0 C

xy
1 . . . Cxy

n−1]. (3.8)
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3.1.2.2 Decision Rules

Using the window function, the ML hypothesis can be tested for the derived feature vector of

pixel values. When the dependency relationships between the pixels are unknown, i.e. under no

assumption of the track’s shape, the pixels are assumed to be conditionally independent given

each hypothesis [60], such that

hcoML = argmax
h∈H

d
∏

k=1

P (V xy
k |h). (3.9)

Similarly, the MAP classification is modified to take advantage of this information—forming the

naı̈ve Bayes rule,

hcoMAP = argmax
h∈H

d
∏

k=1

P (h|V xy
k ) (3.10)

= argmax
h∈H

d
∏

k=1

P (V xy
k |h)P (h) (3.11)

where d = |V xy| , mn is the cardinality of the feature vector V xy.

Nota bene to avoid the problem of underflows during the calculation of hcoML and hcoMAP ,

the sum of the log likelihoods is taken instead of the product of the likelihoods [60].

3.1.3 Bar Detector

The two previous detectors have been defined to exploit intensity information and also the fre-

quency of intensity values within a window. A final piece of information that can be exploited in

the classification process is the arrangement of intensity values within the local window of spec-

trogram pixels. The independence assumption made in the co-Bayes methods, defined previously,

means that they only take into account the presence of multiple track pixels within the window and

not the arrangement of these pixels. Thus two disjoint pixels in a window that have high mem-

bership to the track distribution will be classified just as two pixels of the same value arranged in

consecutive locations. The latter of the two is most likely to be the result of a track being present

in the window and the former the result of random noise. This section describes a feature detector

that exploits all the information that has been so far outlined. A simple exhaustive line detection

method is described that is able to detect linear features at a variety of orientations and scales

(width and lengths) within a spectrogram. In accordance with the detectors in this section, this

detector can also be viewed as ‘optimal’ because it detects all variations of the parameters defining

the arrangement of pixels belonging to a track within a window in an exhaustive fashion.

First, consider the detection of an arbitrary fixed-length linear track segment and the estimation

of its orientation (subsequently this will be extended to include the estimation of its length). The

process of detection and inference proceeds as follows: a rotating bar is defined that is pivoted at

one end to a pixel g = [xg, yg], in a spectrogram S, such that g ∈ S where s = [xs, ys], and

extends in the direction of the l previous observations, see Fig. 3.4. The values of the pixels that are
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Figure 3.4: The bar operator, having the properties; width w, length l and angle θ.

encompassed by the bar template are defined by the set F = {s ∈ S : Pl(s, θ, l) ∧ Pw(s, θ, w)},
where

Pl(s, θ, l) ⇐⇒ 0 ≤ [cos(θ), sin(θ)][s− g]T < l

Pw(s, θ, w) ⇐⇒
∣

∣[−sin(θ), cos(θ)][s− g]T
∣

∣ < w
2 , (3.12)

and where θ is the angle of the bar with respect to the x axis (varied between −π
2 and π

2 radians),

w is the width of the bar and l is its length. The pixels in F are summed, such that

B(θ, l, w) =
1

|F |
∑

f∈F

f . (3.13)

To reduce the computational load of determining Pw(s, θ, l) and Pl(s, θ, l) for every point in the

spectrogram, s can be restricted to xs = xg−(l+1), . . . , xg+(l−1) and ys = yg, . . . , yg+(l−1)
(assuming the origin is in the bottom left of the spectrogram) and a set of templates can be derived

prior to runtime to be convolved with the spectrogram. The bar is rotated through 180 degrees,

θ = [−π
2 ,

π
2 ], calculating the underlying summation at each ∆θ.

Normalising the output of B(θ, l, w) forms a brightness invariant response B̄(θ, l, w) [131],

which is also normalised with respect to the background noise, such that

B̄(θ, l, w) =
1

σ(B)
[B(θ, l, w)− µ(B)] (3.14)

where σ is the standard deviation of the response and µ its mean.

Once the rotation has been completed, statistics regarding the variation of B(θ, l, w) can be

calculated to enable the detection of the angle of any underlying lines that pass through the pivoted

pixel g. For example, the maximum response, such that

θl = argmax
θ

B̄(θ, l, w). (3.15)
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Figure 3.5: The mean response of the rotated bar operator centred upon a vertical line 21 pixels in

length (of varying SNRs). The bar is varied in length between 3 and 31 pixels.

Assuming that the noise present in a local neighbourhood of a spectrogram is random, the resulting

responses will be low. Conversely, if there is a line present, the responses will exhibit a peak in one

configuration, as shown in Fig. 3.5. Thresholding the response at the angle B̄(θl, l, w) allows these

cases to be detected. This threshold will be chosen such that it represents the response obtained

when the bar is not fully aligned with a track segment.

Repeating this process, pivoting on each pixel g in the first row of a spectrogram and threshol-

ding, allows for the detection of any lines that appear during time updates.

This process will now be extended to facilitate the detection of the length l. For simplicity, and

without loss of generality, the line’s width is set to unity, i.e. w = 1. To estimate the line’s length

Eq. (3.15) is replaced with

θl = argmax
θ

∑

l∈L

B̄(θ, l, w), (3.16)

where L is a set of detection lengths, to facilitate the estimation of the angle over differing lengths.

Once the line’s angle θl has been estimated B̄(θl, l, w) is analysed as l increases to estimate the

line’s length.

The response of B̄ is dependent on the bar’s length, as this increases, and extends past the line,

it follows that the peak in the response will decrease, as illustrated in Fig. 3.5. The length of a line

can therefore be estimated by determining the maximum bar length in which the response remains

above a threshold value: ll = max(Lp), where Lp is defined such that

Lp = {l ∈ L : B̄(θl, l, w) >
3

4
max(B̄(θl, l, w))}. (3.17)

An arbitrary threshold of 3/4 of the maximum response found in B̄(θl, l, w) is taken (the threshold

value could alternatively be learnt in a training stage).

3.1.3.1 Length Search

The estimation of a line’s length using the linear search outlined above is particularly inefficient

and has a high run-time cost. To reduce this, the uniform search strategy is replaced with the more
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Algorithm 3.1 Bar length binary search

Input: llow, the minimum length to search for, lhigh, the maximum length to search for, T , a

threshold, θl, the line’s orientation, S, a spectrogram image

Output: ll, the length of an underlying line.

1: if B̄(θl, llow, w) > T then

2: plow ← llow + 1
3: phigh ← lhigh + 1
4: while plow 6= llow ∧ phigh 6= lhigh do

5: plow ← llow

6: plow ← lhigh

7: l← ⌊ llow+lhigh

2 ⌋
8: if B̄(θl, l, w) > T then

9: llow ← l
10: else {the line’s length has been exceeded}
11: lhigh ← l
12: end if

13: end while

14: ll ← llow

15: else {a line does not exist}
16: ll ← 0
17: end if

18: return ll

efficient binary search algorithm outlined in Algorithm 3.1. Implementing the search in this way

reduces the associated search costs from O(n) to O(log n), allowing searches to be performed for

a large number of line lengths. The same algorithm can be used to search for the line’s width,

further reducing the cost.

3.2 ‘Sub-Optimal’ Feature Detectors

A limitation of the ‘optimal’, correlation detection methods is that they are computationally fea-

sible only for models with few parameters. As the number of parameters increase, the size of

the search space increases exponentially—forming an intractable solution. For example, a simple

deterministic sinusoidal model contains five free parameters: fundamental frequency position;

scaling; track amplitude; phase and frequency; which requires a solution of O(n5) complexity.

Dimensionality reduction techniques remove potentially unneeded information and therefore

reduce the search space by simplifying the model or, alternatively, the data. This is an important

step in the classification process as the act helps to avoid the curse of dimensionality [60]; a

problem that states that for each additional dimension, exponentially more samples are needed

to span the space. Moreover, data that has some underlying low-dimensional structure may be

embedded in high-dimensional space and the additional dimensions are likely to represent noise

[28]. If these additional dimensions can be removed, leaving the low-dimensional structure intact,

the problem is simplified.

As outlined earlier, these methods should not achieve the performance of the ‘optimal’ de-
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tectors due to information loss. Nevertheless, the increase in computing performance, and the

non-specificity that occurs as a result of the problem simplification (‘optimal’ detectors are speci-

fic to detecting structures that are dictated by their models) merits their use.

A low dimension subspace is typically learnt by supervised learning methods and as such can

be derived in two ways: data-based and model-based. Data-based methods determine the subspace

using real examples of the data to be classified by constructing a training set. This training set

could contain noise and random variations of the feature that occur in the real world, however, it

is often difficult to construct a training set that fully represents these complex variations. On the

other hand, model-based methods generate the data used for training from a model and, therefore,

are limited to the model’s ability to represent the complexity of the problem. This section presents

feature detection methods that are examples of both methods.

3.2.1 Data-Based Subspace Learning

It is common in the area of machine learning that a classification, or decision, is based upon

experience [128]. The experience can take the form of a data set, a training set, which contains

examples of the data to be classified and labels describing the class to which the examples belong.

This is what is referred to as data-based learning. This data set should encompass the primary

variations that are possible in the data so that the classifier is able to learn the underlying process

that generates the data [60]. In the problem of remote sensing, data is scarce and it may not

be possible to construct such a training set. Consequently, techniques that utilise such machine

learning methods may be limited in their ability to generalise to unseen complex track structures.

The window function outlined in Section 3.1.2.1 splits the spectrogram into overlapping win-

dows and constructs high dimensional feature vectors from the intensity values contained within

these windows. Feature vectors from multiple windows concatenated together form a set of data

that can be used to train and test the classification algorithms presented in this section.

3.2.1.1 Explicit Dimension Reduction

Dimensionality reduction techniques have been investigated throughout the history of pattern re-

cognition. They offer the ability to visualise high dimensional data and to simplify the classifica-

tion process, for reasons previously outlined.

There has recently been a renewed interest in the development of dimensionality reduction

techniques, with particular application to high dimensional data visualisation. Recent algorithm

contributions include: ISOMAP [170], Locally Linear Embedding (LLE) [154], Stochastic Neigh-

bourhood Embedding (SNE) [82], Laplacian Eigenmapes (LE) [24], Kernel Matrix [181], local

tangent space aligning (LTSA) [198], Essential Loops [113], Neural Networks [83], t-SNE [176],

and general graph based frameworks to unify different dimensionality reduction techniques [195].

Nevertheless, implemented as batch techniques, these methods require all training and testing

samples to be given in advance. Embedding a novel data point into the space requires a complete

recalculation of the subspace—a computationally expensive process. In recent years there has

been a move to address this issue and researchers are introducing incremental learning algorithms
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Figure 3.6: Windowed spectrogram PCA eigenvalues. The eigenvalues were determined using a

data set of 1,000 samples data samples of each class taken from spectrograms having a mean SNR

of 8 dB.

such as: incremental versions of MDS, ISOMAP, LLE and LE [26]; LLE [106]; ISOMAP [109];

LTSA [116]; and incremental Laplacian Eigenmaps [90]. It is beyond the scope of this thesis to

evaluate these methods with application to this data and therefore this section concentrates on eva-

luating the well established techniques of principal component analysis (PCA) [140, 67], linear

discriminant analysis (LDA) [23] and neural networks. These methods are suitable for classifica-

tion problems as they calculate basis vectors that allow novel data points to be projected into the

low dimensional space with no added computational burden.

Statistical methods such as PCA and LDA attempt to determine a subspace in which a mea-

sure of the data’s variance is maximised. The key difference between the two methods is that they

measure the variance in different manners: PCA takes the data’s global variance, and LDA the wi-

thin and between class variances. Consequently, both methods determine subspaces that represent

different features of the data, PCA globally extracts the most significant features from the data set

whereas LDA attempts to extract the most significant features that separate the classes. Neural

networks incrementally determine a subspace in which the sum-of-squares error of a training or

validation set is at a minimum [28]. If the correct network and activation functions are applied to

the data, this translates into a projection in which the properties of the data that are most relevant

to learning the target function are captured [129].

The eigenvalues obtained by applying principal component analysis to a training set compri-

sing 1,000 data samples (3 × 21 pixel window instances) of each class randomly selected from

a spectrogram having a SNR of 8 dB are presented in Fig. 3.6. A majority of the data’s variance

is contained within the first three principal components and the remaining components have little

variance. Figure 3.7 presents the distribution of windows containing vertical tracks and noise (se-

lected randomly from spectrograms having SNRs of 3 dB and 6 dB) after projection onto the first

two principal components. In this form the classes are neatly clustered. A high proportion of the

noise is clustered in a dense region and three protrusions from this cluster contain the data samples

from the track class—each of the protrusions corresponds to each of the three possible positions of

a straight vertical track in a window three pixels wide. As the SNR of the track contained within

a window increases, its projected distance from the noise class increases proportionally. There

is some overlap between low SNR track data points and the noise cluster, which emphasises the
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Figure 3.7: Windowed spectrogram projected onto the first two principal components.
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Figure 3.8: Windowed spectrogram LDA eigenvalues. The eigenvalues were determined using a

data set of 1,000 samples data samples of each class taken from spectrograms having a mean SNR

of 8 dB.

problems of separation between these two classes found earlier in the investigation. The windows

containing high SNR tracks (greater than 3 dB) are well separated from the noise in this projection.

Figure 3.8 presents the eigenvalues derived through LDA. The eigenvalues of LDA when ap-

plied to the same data set as used previously for PCA indicate that all of the variance can be

represented with one component. The result of projecting the data onto the first two components

is presented in Fig. 3.9. The samples from different locations of the window are not as cleanly

separated as was found with PCA. The most likely explanation for this is that LDA maximises the

between-class variation and not the data’s global variance. Nevertheless, the separate class clusters

are preserved in the projection. As with PCA, LDA cannot separate the overlap between the low

SNR track samples and the noise cluster, but high SNR samples are still well separated from the

noise.

3.2.1.2 Implicit Dimension Reduction

Neural networks perform dimensionality reduction when in specific topologies [95]—a three-layer

Multi-Layer Perceptron (MLP) that has a hidden layer with fewer nodes than the input and output

layers compresses the data—thus implicitly reducing the data’s dimensionality [28]. The same
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Figure 3.9: Windowed spectrogram projected onto the first two LDA principal components.

is true for the Radial Basis Function (RBF) network, in which radial basis functions are used

as the activation functions. The self-organising map (SOM) [103, 104] performs dimensionality

reduction in a very different manner. The SOM reduces the dimensionality in a manner similar to

the explicit dimensionality reduction techniques discussed in the previous section. It often takes

the form of a two-dimensional array of nodes that use a neighbourhood function to model the low

dimensional structure in high dimensional data.

3.2.1.3 Classification Methods

To quantitatively evaluate the effectiveness of dimensionality reduction and to determine the ap-

plicability of classifiers to this problem, the performance of a range of classifiers is evaluated in

this section. Each of the classifiers will be evaluated using the original, high dimensional, data in

addition to the low dimension data.

The following classifiers are evaluated in this section: the Radial Basis Function (RBF);

Self Organising Map (SOM); k-Nearest Neighbour (KNN); and Weighted k-Nearest Neighbour

(WKNN). In addition to these, simpler distance based classification schemes are also evaluated.

The class c that minimises the distance d, for each feature vector V xy, is taken to be the classifi-

cation of the feature vector, such that

ck = argmin
c∈C

d(V xy,µc). (3.18)

The distance measure d can be taken to be the Euclidean distance d1, or the Mahalanobis distance

d2, such that

d1(V
xy,µc) =

√

(V xy − µc)
T (V xy − µc) (3.19)

d2(V
xy,µc) =

√

(V xy − µc)
TΣ

−1
c (V xy − µc) (3.20)

where V xy and µc and Σ
−1
c are the mean vector and the inverse of the covariance matrix of each

class c in the training set respectively. When the Mahanalobis distance is in use and the covariance

matrix is diagonal, the normalised Euclidean distance is formed, which will be evaluated as the

third distance measure d3.

Furthermore, the structure observed in the low dimensional representations obtained using

PCA and LDA suggest that the noise class can be modelled using a multivariate distribution. An

additional classifier is therefore formed by modelling the noise class with a multivariate Gaussian
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distribution,

G(V xy) =
1

2πd/2|Σ|1/2
exp

{

−1

2
(V xy − µ)TΣ−1(V xy − µ)

}

, (3.21)

where |Σ| and Σ
−1 are the determinant and inverse of the noise classes’ covariance matrix respec-

tively. The output of which can be thresholded to determine the feature’s membership to the noise

class, such that

h =

{

h1 if G(V xy) > ǫ,

h2 otherwise.
(3.22)

The data used during this experiment was as follows; the training set consisted of 6,732

samples of 3 × 21 pixel windows taken from spectrograms that contain vertical tracks having

SNRs of 0 dB. This window size was chosen as during preliminary experiments it was found to

provide acceptable results (see Appendix A, Figure A.2). The test set, containing the same num-

ber of samples and window configuration, contained examples of tracks having an SNR of 0, 3

and 6 dB. It was found during preliminary experimentation that the multilayer perceptron neural

network does not perform well compared with the RBF and SOM networks and therefore results

obtained using this classifier are not included in this chapter.

Each of the classifier’s parameters were chosen to maximise generalisation performance and

were determined through preliminary experimentation, these are as follows. The KNN and WKNN

classifier used ten nearest neighbours to determine the class of the novel data point. In the event of

a tie, a random classification was made. An RBF classifier with five Gaussian activation functions

and two training iterations has been implemented as this was found to perform well in preliminary

experimentation. The RBF basis centres were determined by k-means clustering [28]; the variance

of the basis functions were taken as the largest squared distance between the centres. The RBF

weights were determined using the pseudo inverse of the basis activation levels with the training

data [28]. A rectangular lattice of SOM nodes was used—the size of which was determined auto-

matically by setting their ratio to be equal to the ratio of the two biggest eigenvalues of the data

set [104]. The Gaussian model defined in Eq. (3.21) was fitted to the noise class by calculating its

mean and standard deviation.

The classification performance of each classifier applied to the original data and the same

data projected into a low dimensional subspace determined through PCA and LDA is presented

in Table 3.1 (and the standard deviations attributed to these results are presented in Table 3.2).

These results demonstrate that classification performance using these features can reach 84% with

a standard deviation of 4% when applied to the test dataset (using the RBF classifier in a three di-

mensional subspace derived through PCA). The classification performance using the training data

set is lower than that observed using the test data set as the classifiers were trained using more

complex data than that with which they were tested. The training data comprised of instances of

windows containing noise and track having an SNR of 0 dB and, upon this data, the majority of

classifiers obtain a classification percentage between 71 and 78% with standard deviations bet-

ween 2% and 5%. These results demonstrate that the dimensionality reduction techniques extract

meaningful information from the data even at low SNRs. By testing the classifiers upon a dataset
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Classifier Window PCA 2D PCA 3D PCA 4D PCA 5D LDA 2D LDA 3D LDA 4D LDA 5D

KNN — tr 77.8 75.9 79.5 78.5 79.0 78.4 78.0 78.4 78.0
KNN — te 81.5 78.5 83.3 82.7 83.1 80.1 80.6 80.8 79.6

WKNN — tr 77.5 76.1 79.7 79.5 79.5 79.1 78.0 77.1 78.0
WKNN — te 80.8 77.0 83.4 83.1 82.2 81.0 80.6 80.3 80.5

RBF — tr 75.6 73.0 77.3 76.6 76.0 76.5 75.6 76.6 75.6
RBF — te 81.8 81.9 84.4 83.8 83.3 81.8 82.1 81.8 80.8

SOM — tr 80.4 78.8 81.3 81.5 80.5 80.3 80.2 79.2 80.2
SOM — te 79.6 74.3 80.8 79.9 80.5 77.5 78.3 77.0 76.1

Euclid. (d1) — tr 76.4 63.1 74.0 74.5 75.6 76.7 75.4 76.6 76.3
Euclid. (d1) — te 81.1 66.4 81.2 81.5 81.0 82.3 81.4 80.5 80.9

Mahalanobis (d2) — tr 54.9 60.2 71.2 69.4 67.3 75.8 71.6 71.1 69.4
Mahalanobis (d2) — te 54.6 65.3 81.2 77.5 77.0 81.8 79.7 79.1 75.8

N. Euclid. (d3) — tr 52.4 59.8 68.9 66.0 62.6 75.7 73.2 71.2 68.8
N. Euclid. (d3) — te 54.0 63.3 78.6 74.4 69.9 82.0 81.0 78.6 77.1

Gaussian (G(V xy)) — tr 50.1 66.1 71.8 73.5 74.8 61.0 65.6 67.4 69.5
Gaussian (G(V xy)) — te 50.3 76.1 81.5 82.0 82.2 68.1 72.3 74.4 74.8

Table 3.1: Classification percentage on training (tr) and test (te) data using the proposed features.

The highest classification percentage for each classifier is highlighted in bold and the highest

percentage for each feature is underlined. The standard deviations of these results are presented

separately in Table 3.2.

Classifier Window PCA 2D PCA 3D PCA 4D PCA 5D LDA 2D LDA 3D LDA 4D LDA 5D

KNN — tr 2.50 4.77 2.72 4.24 2.73 3.15 2.95 2.61 3.83
KNN — te 3.44 8.78 2.72 3.29 2.84 2.92 3.52 3.61 3.79

WKKN — tr 3.87 5.07 2.79 4.17 3.69 2.69 2.66 3.21 4.13
WKNN — te 4.44 7.44 1.97 3.58 2.51 4.53 2.37 4.48 3.67

RBF — tr 4.40 5.16 4.19 4.02 4.47 2.45 2.91 2.40 2.68
RBF — te 2.92 5.31 2.77 2.97 2.83 3.73 3.11 2.64 4.54

SOM — tr 1.74 3.06 2.41 2.67 1.97 3.22 3.08 2.73 3.52
SOM — te 4.63 7.00 3.80 3.55 5.29 6.84 5.35 3.78 4.55

Euclid. (d1) — tr 2.08 11.03 2.77 3.13 3.02 2.59 3.57 3.17 3.90
Euclid. (d1) — te 2.56 13.11 3.50 2.29 3.29 1.42 3.66 2.99 3.01

Mahalanobis (d2) — tr 2.47 14.06 2.90 3.35 3.80 3.27 2.94 4.38 3.45
Mahalanobis (d2) — te 3.12 19.96 2.92 2.00 4.52 2.21 3.06 4.14 5.50

N. Euclid. (d3) — tr 1.57 10.14 4.17 5.68 4.66 3.37 3.49 4.75 3.43
N. Euclid. (d3) — te 3.05 14.09 4.54 7.64 10.69 2.10 3.77 4.83 3.19

Gaussian (G(V xy)) — tr 0.32 6.74 2.82 4.09 3.30 5.92 5.80 4.75 5.00
Gaussian (G(V xy)) — te 0.50 10.69 2.59 4.80 2.07 2.84 5.77 5.47 3.07

Table 3.2: Standard deviation of the classification performance presented in Table 3.1.

comprising windowed instances of noise and tracks that have an SNR greater than or equal to

0 dB (in this case 0, 3 and 6 dB) it is possible to demonstrate that the dimensionality reduction

techniques allow the classifiers to generalise to higher, unseen, SNRs while trained upon track

instances that have very low SNRs.

Several of the classifiers perform badly when applied to the original windowed data; the nor-

malised Euclidean, Mahalanobis, and Gaussian classifiers all have a classification performance

between 50% and 55% upon the original test data. Nevertheless, when the data is projected into

a lower dimension subspace derived through PCA or LDA this performance increases to between

63% and 76%. This indicates that the dimension reduction techniques have removed noise present

in the original feature vectors and have allowed the, relatively simple, classifiers to correctly mo-

del the data’s structure. Furthermore, this has reduced the performance gap between these and the

more complicated classifiers.

It was shown by Kendall et al. [98] that the generalisation performance of a neural network

classifier, when applied to this problem, can be further improved through Ockham’s networks
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(b) Parametric manifold detection method.

Figure 3.10: Spectrogram detections (2.18 dB SNR in the frequency domain) using the proposed

bar method and the parametric manifold detection method.

[97]. These experiments, however, were conducted, and shown to perform best, on a low number

of training samples (121 examples) and therefore this technique was not tested in this section.

3.2.2 Model-Based Subspace Learning

The previously evaluated techniques determine a low dimension subspace using examples of the

data to be classified and in which the classification performance of this data is optimised. An

alternative approach to calculating the subspace is by utilising a model describing the data and not

the data itself—a feature detector in this vein is described by Nayar et al. [131]. In such techniques

the data used to train the detection mechanism is generated from a model that is constructed such

that it describes each observable variation that can exist in the problem. Training the detection

mechanism in this way allows the exact underlying nature of the problem to be captured by the

learning technique.

The feature detector proposed by Nayar et al. [131], like the bar detector proposed in Sec-

tion 3.1.3, is a model-based feature detection method. The primary difference between the two is

that Nayar et al. propose to construct a sampled manifold in a feature space derived through PCA.

Detection is achieved by calculating the closest point on the manifold to a sample taken from an

image (nearest neighbour classification) and thresholding the distance if necessary. The bar detec-

tor performs the detection without the construction of the manifold, instead, the image sample’s

responses as the model is varied are analysed and the best fit is found from the match between

sample response and model. This avoids the loss of information that is an effect of dimensiona-

lity reduction. This equivalence justifies a direct comparison between the two methods and, more

importantly, a comparison between an ‘optimal’ and a ‘sub-optimal’ detector that model the data

equivalently and differ only in the presence and absence of a dimension reduction step.

The execution times of the proposed method and that outlined by Nayar et al. were measured

within one 398 × 800 pixel spectrogram using Matlab 2008a and a dual-core 2.0GHz Intel PC.

As the method proposed by Nayar et al. is not multi-scale the length of the bar is fixed L = 13 to

facilitate a fair comparison, additionally, the parametric manifold was constructed using the same

parameter range and resolution as used in the bar model. The bar detector performed the detection
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in 5.5min whereas the comparison performed the detection in 3.4min and the resulting detections

can be seen in Fig. 3.10. Although this is far from an exhaustive test it does highlight a benefit of

dimension reduction—the duration of the detection process is reduced with the complexity of the

model. In the detection results presented the threshold for each method was chosen such that a true

positive rate of 0.7 was achieved. This allows equivalent false positive rates to be compared and

it becomes apparent that the speed offered by the ‘sub-optimal’ method is achieved at the price of

detection performance—the detector utilising the dimension reduction technique results in a false

positive rate of 0.163 and the bar detector a false positive rate of 0.025.

A more exhaustive comparison between all the feature detectors described in this chapter is

presented in the next section.

3.3 Evaluation of Feature Detectors

The feature detectors that are outlined in this chapter have been evaluated along with several com-

mon line detection methods found in the literature; the Hough transform [59] applied to the ori-

ginal grey-scale spectrogram; the Hough transform applied to a Sobel edge detected spectrogram;

convolution of line detection masks [71]; Laplacian line detection [71]; and pixel value threshol-

ding [71]. Due to its simplicity and comparable performance to more complex methods, the clas-

sification scheme that combines PCA and the Gaussian classifier outlined in Section 3.2.1.3 will

be evaluated here.

During preliminary experimentation it was found that forming a six dimensional subspace

using −0.5 dB (mean SNR) samples provides the best detection performance (to improve reada-

bility these results are presented in Appendix A, Figure A.1) and, as discussed in Section 3.2.1.3,

that using a window size of 3× 21 provided acceptable results (Appendix A, Figure A.2).

The performance of each feature detector can be characterised by determining its Receiver

Operating Characteristic (ROC) [63]. A two-dimensional ROC graph is constructed in which the

True Positive Rate (TPR) is plotted in the x-axis and False Positive Rate (FPR) is plotted in the

y-axis. The TPR (also known as sensitivity, hit rate and recall) of a detector is calculated such that

TPR =
TP

TP + FN
(3.23)

where TP is the number of True Positive detections and FN is the number of false negative

detections. The FPR (also known as the false alarm rate) is calculated such that

FPR =
FP

FP + TN
(3.24)

where FP is the number of False Positive detections and TN is the number of True Negative

detections. For a full introduction to ROC analysis the reader is referred to Fawcett [65], which

appears in a special issue of Pattern Recognition Letters dedicated to ROC analysis in pattern

recognition.
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Track Type Parameter Values

Vertical Signal Duration (seconds) 100
SNR (dB) −1–7

Oblique Track Gradient (Hz/s) 1, 2, 4, 8 & 16
Signal Duration (seconds) 100
SNR (dB) −1–7

Sinusoidal Period (seconds) 10, 15 & 20
Centre Frequency Variation (%) 1, 2, 3, 4 & 5
Signal Duration (seconds) 200
SNR (dB) −2–6

Table 3.3: Parameter values spanning the synthetic data set.

3.3.1 Experimental Data

Using the signal model outlined in Section 1.2.1, a set of spectrogram images is generated for

use in the evaluation of the proposed low-level feature detectors. The spectrograms are formed

by generating synthetic acoustic signals and transforming these to form spectrograms using the

process described. Time-series signals are created and contain a fundamental frequency of ωt
0 =

120Hz (at constant speed), a harmonic pattern set P s = {1, 2, 3, 4, 5}, and have a sampling

rate of fs = 4,000Hz (to ensure high fidelity in the representation of frequency modulations).

The fundamental and harmonic series are chosen to be representative of values true to small boat

observations. Spectrograms are generated from these using a time resolution of one second with a

half second overlap, and a frequency resolution of 1Hz per STFT bin. The three variations of track

appearance that are commonly seen in this problem are: sinusoidal, representing a Doppler shifted

signal; vertical, representing a constant engine speed; and oblique, representing an accelerating

engine. A number of noise-only spectrograms were also included in the data set. A description

of the parameter variations used for these three signal types is outlined in Table 3.3. For each

parameter combination, one spectrograms is generated to form a test set, and another to form

a training set to facilitate the application of the machine learning techniques. The parameters

described in Table 3.3 determine the appearance of each type of track and are defined as:

Period — The time in seconds between two peaks of a sinusoidal track;

Centre Frequency Variation — The amplitude of a sinusoidal track relative to its frequency

location, expressed as a percentage of the track’s frequency;

SNR — The frequency domain SNR, described by Eq. 1.16;

Track Gradient — The amount of change in the track’s frequency relative to time.

The values of these parameters are chosen to cover meaningful real-world observations. The

effects of these upon the appearance of the sinusoidal track class are illustrated in Fig. 3.11. To

ensure an accurate representation of the SNR, the final value is calculated within the resulting

spectrogram and therefore may deviate from the value specified (all SNRs quoted within this thesis

are calculated in this manner).

Ground truth spectrograms were created by generating a spectrogram for each parameter com-

bination that have high SNRs (approximately 1,000 dB), and then thresholding these to obtain
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Figure 3.11: The effects of the parameter values upon the appearance of sinusoidal tracks. The top

row represents sinusoidal tracks that have a 10 second period, the middle row a 15 second period

and the bottom row a 20 second period. The tracks in the left column have a centre frequency

variation of 1%, the middle 3% and the right 5%. All of the tracks have a mean SNR of 7.5 dB

(rounded to the nearest 0.5 dB), which has been simulated for illustration purposes. The intensity

is proportional to power in voltage-squared per unit bandwidth, that is V2/Hz, and is linearly

scaled to have intensity values between 0 and 255.

binary bitmaps. These have the value one in pixel locations where a track is present in the related

spectrogram, and zero otherwise. The data set is scaled to have a maximum value of 255 using the

maximum value found within the training set, except when applying the PCA detector, when the

original spectrogram values are used.

3.3.2 Results

In this section are presented the results obtained during experimentation upon the data set described

above. The parameters used for each method are described in Table 3.4 and the Gaussian classifier

using PCA was trained using examples of straight-line tracks and noise.

The ROC curves were determined by varying a threshold parameter that operates on the output

of each method—pixel values above the threshold were classified as signal and otherwise noise.

The ROC curves for the Hough transforms were calculated by varying the parameter space peak

detection threshold. The TPR and FPR for each of the methods were calculated using the number

of correctly and incorrectly detected track and noise pixels.
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Detection Method Parameter Value

Laplacian Filter size (pixels) 3× 3
Convolution Threshold value range 0–255 (step 0.2)

Bar (fixed-scale) width w (pixels) 1
length l (pixels) 21
angle θ (radians) −π

2
–0 (step 0.05)

Threshold value range 0–255 (step 0.5)

Bar (muti-scale) width w (pixels) 1
length l (pixels) 6, 7, 8, 9, 10, 12, 14, 16, 18 & 20
angle θ (radians) −π

2
–0 (step 0.05)

Threshold value range 0–255 (step 0.5)

Pixel Thresholding Threshold value range 0–255 (step 0.2)

PCA Window size (pixels) 3× 21
Threshold value range 0–1 (step 0.001)

Data dimensionality 2

Nayar width w (pixels) 1
length l (pixels) 21
angle θ (degrees) 0–180 (step 0.05)

Threshold value range (distance to manifold) 0–10 (step 0.1)

Data dimensionality 8

MLE & MAP λ 7.2764
α 1.1439
β 20.3073

co-MLE & co-MAP Window size (pixels) 3× 3
λ 7.2764
α 1.1439
β 20.3073

Hough Threshold value range (peak detection threshold) 0.5–1 (step 0.001)

Table 3.4: The parameter values of each detection method that were used during the experimenta-

tion.

3.3.2.1 Comparison of ‘Optimal’ Detection Methods

One of the hypotheses proposed by this chapter is as follows: as the amount of information made

available to the detection process is increased, the detector’s performance will also increase. Evi-

dence for the validity of this hypothesis is presented in the form of performance measurements for

each detector described in this chapter, each of which acts upon a different amount and type of

information, which is presented in Fig. 3.12.

The MAP and ML detectors, operating on single pixel values, achieve a TPR of 0.051 and

0.643, and a FPR of 0.002 and 0.202 respectively (as no thresholding is performed ROC curves

for these methods are not presented). These results highlight the high class distribution overlap

and variability in this problem. The ML detector performs better than the MAP detector (although

it also results in a higher FPR) due to the very low a priori probability of observing the track

class—the detector requires a very high conditional probability for the decision to be made that

the pixel belongs to the track class. These rates increase to a TPR of 0.283 and 0.489, and FPR of

0.016 and 0.074 when the MAP and ML detectors are evaluated within 3×3 pixel neighbourhoods

(respectively). Again, the low a priori probability of the track class hinders the MAP detector’s

ability to detect tracks within the spectrograms as it does not reach the TPR level of ML detector

on single pixels. Nevertheless, the MAP detector’s TPR is increased when integrating spatial
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Figure 3.12: Receiver operating characteristic curves of the evaluated detection methods.

information (at the expense of a slight increase in FPR). Moreover, spatial integration has reduced

the FPR of the ML detector quite dramatically, however, this is at the expense of a vast reduction

of the TPR. Therefore, spatial integration does increase the detector’s performance, however, due

to the simplicity of the detection strategies, this increase is manifested in either a large reduction

in the FPR or a large increase in the TPR, but not both. Finally, the bar detector was defined to

exploit all of the information available to a detector: the intensity, local frequency, and structure

of the pixel values. Preliminary tests were performed using a fixed length implementation. The

maximum of the rotated bar’s response, B̄(θl, l, w), where l = 21 and θl, defined by Eq. (3.15) was

taken as the output pixel’s value to produce a response for each pixel. This was then thresholded to

perform the detection and forms a feature detection mechanism that outperforms all other detection

methods. The multi-scale abilities of the proposed method allow it to better fit piecewise linear

features and approximate curvilinear features. These properties translate to a ROC curve that has

greater separation from existing line detection methods than the fixed length implementation, and

thus it achieves much higher TPRs and lower FPRs. Taking an example TPR of 0.7 the best

detectors are, in order of increasing performance: Convolution (FPR: 0.246), PCA (FPR: 0.213),

Bar Fixed-Scale (FPR: 0.181) and Bar Multi-Scale (FPR: 0.133). These results show that the

combination of intensity information and structural information, rather than relying on intensity

information alone, increases detector reliability.
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(a) Original spectrogram.
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(b) Result of the harmonic transform.

Figure 3.13: An example of the harmonic transform applied to a spectrogram. Intensity is propor-

tional to power in voltage-squared per unit bandwidth, that is V2/Hz.

3.3.2.2 Comparison of ‘Sub-Optimal’ Detection Methods

The second hypothesis proposed in this chapter was that ‘optimal’ detection methods will outper-

form ‘sub-optimal’ detection methods. It was found that the feature detector proposed by Nayar

et al. and the fixed-scale bar detector would allow this comparison to be made, as they both utilise

equivalent data models. It can be seen in Fig. 3.12 that the detection performance of the fixed-

scale bar detector outperforms that proposed by Nayar et al. over the full range of TPRs and FPRs,

confirming the validity of this hypothesis. It was found instead that the ‘sub-optimal’ detection

method that achieves the closest performance to the bar-method was the Gaussian classifier using

PCA. This indicates that the learning method is capturing the correct type of information in the

data set and results in a form in which it is faithfully represented and modelled using the Gaussian

distribution.

Of the other evaluated methods, the threshold and convolution methods achieve almost identi-

cal performance over the test set. With the Laplacian and Hough on Sobel line detection strategies

achieving considerably less and the Hough on grey scale spectrogram performing the worst. It is

possible that the Hough on edge transform outperformed the Hough on grey scale due to the reduc-

tion in noise occurring from the application of an edge detection operator. Nevertheless, both of

these achieved detection rates that are considerably less than the other methods. None of the exis-

ting methods that were evaluated had comparable performance to the ‘optimal’ or ‘sub-optimal’

methods outlined in this chapter.

3.4 Harmonic Integration

An additional source of information that the detection process can exploit, other than local infor-

mation as previously explored, arises from the harmonic nature of acoustic energy. Enhancing

the detection robustness using this information was first explored by Barrett and McMahon [20],

however, subsequent research has ignored this and instead has focussed on detecting individual

tracks.

As described in Section 1.2.1 the acoustic signal emitted by a source comprises of a fundamen-
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tal frequency and its harmonic series at frequencies that are integer multiples of the fundamental.

Within a spectrogram these harmonic frequencies result in multiple tracks at specific positions.

Recall that noise is an uncorrelated phenomenon and is therefore not harmonic in nature. A trans-

formation can be defined upon the spectrogram, or output of a detector, that integrates the energy

or detection from harmonically related positions, such that

s′yx =
1

n

n
∑

k=1

sy,[kx] (3.25)

for y = 1, 2, . . . ,M and x = 1, 1 1
n , 1

1
2n , . . . , N and where [kx] ≤ N , the transformed spec-

trogram is S′ = [s′yx]M×nN , the notation [x] denotes the nearest integer function and the term

n controls the number of harmonics that will be integrated in the transformation. The x-axis of

the transformation output is related to fractional frequencies in the original spectrogram, this ac-

counts for the frequency quantisation that occurs during the FFT process. Quantisation rounds

fractional frequencies into the nearest quantisation bin and therefore the position of tracks har-

monically related to a fundamental frequency may not reside in bins that are integer multiples of

the fundamental frequency. An example of the output of this transformation when applied to a

spectrogram is presented in Fig. 3.13. It results in a more prominent fundamental frequency, ho-

wever, the transformation has actually decreased the spectrogram’s SNR from 6.56 dB to 6.23 dB.

The reason for this is concealed in the distribution statistics of the intensity values. The mean

values of the two classes are transformed closer together—being 41.48 and 7.50 in the original

spectrogram and 39.82 and 7.66 after the transformation (signal and noise respectively)—and the

ratio between these forms the SNR estimate (Eq. 1.16). Nevertheless, the SNR estimate does not

take into account the variance of the two classes and the transformation has a large effect on this.

The standard deviations of the classes’ intensity values in the original spectrogram are 25.50 and

7.55 and in the transformed spectrogram these values are roughly halved to 12.00 and 3.85—the

transformation has reduced the overlap between the two classes, aiding in their separability.

3.4.1 Results

To demonstrate the effectiveness of this simple transformation, the previous experiment is re-

peated using the top performing detector, the multi-scale bar detector, and this is applied to the

transformed spectrograms, S′, as defined by Eq. 3.25 instead of the original spectrograms. As the

harmonic set is integrated, the detector’s performance is evaluated on the detection of the track

corresponding to the fundamental frequency and not all the frequency tracks as in the previous ex-

periment. The results of this experiment, in comparison to the detector’s previous performance, are

presented in Fig. 3.14 and they demonstrate the vast improvement in the detector’s performance

that is afforded by this relatively simple transformation.
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Figure 3.14: Receiver operating characteristic curves of the bar detector with and without harmonic

integration

3.5 Summary

This chapter has presented a performance comparison within a group of novel and existing low-

level feature detection methods applied to spectrogram track detection. Initially, a group of ‘opti-

mal’ feature detectors were defined so that each utilised increasing amounts of information from

the spectrogram when performing the detection and these were compared with each other. The

information sources utilised by each of these were: the intensity of an individual pixel, the inten-

sity distribution within a window, and the structural arrangement of pixels within a window. It

was found that the ‘bar’ feature detector, which utilises the structural and intensity information

from within a window (and therefore incorporates all of the available information), performed

most favourably. Nevertheless, because of its exhaustive search, in combination with a complex

model, it was found to be computationally expensive. A consequence of these findings is that

the methods that are defined to operate on single pixel values, for example the solutions utilising

the HMM, multi-stage decision process and simulated annealing, that were seen in the literature

review cannot reach the performance of methods that utilise more information in the low-level

detection process.

Subsequently, a group of ‘sub-optimal’ feature detectors were defined that utilise machine

learning principles to simplify the detection process. These were also defined to utilise the maxi-

mum amount of information available to facilitate their comparison to the ‘bar’ detector and were

grouped into the categories of model-based and data-based feature detectors; reflecting the source
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of the training samples used by their supervised learning process. Due to the loss of information

that is incurred by dimension reduction techniques these feature detectors were not able to perform

comparably to the ‘optimal’ ‘bar’ detector. Nevertheless, a novel data-based feature detector that

utilises principal component analysis was found to be the best performing ‘sub-optimal’ detector,

in addition to reducing the computational complexity inherent in the ‘bar’ detector. This detector

tackled the detection problem by specifically modelling the noise class, thus bypassing some of the

generalisation limitations that are inherent when applying machine-learning techniques to limited

training data (although the principal components are still dependent upon the track structure repre-

sented by the training set). Furthermore, a comparison between an ‘optimal’ and a ‘sub-optimal’

model-based feature detector, which have equivalent data models, found that the dimension re-

duction technique used in the ‘sub-optimal’ detector, whilst reducing computational complexity,

vastly reduces detection abilities.

The final section of this chapter presented a harmonic transformation for spectrograms. This

allowed for an empirical comparison between low-level feature detection with and without integra-

ting information from harmonic locations. It was shown that the transformation does not increase

the separation between the means of the track and noise classes but instead reduces the standard

deviations of the classes—reducing the overlap between the distributions. This effect was shown

to offer a vast performance improvement when detecting low-level features.





Chapter 4

A Track Detection Algorithm

“The field of computer vision has its sights set on

nothing less than enabling computers to see.”

— Blake and Isard [29].

It was shown in Chapter 3 that the detection of low-level features can be improved by exploi-

ting structural information, in addition to intensity information, during the detection process. It has

also been shown that, assuming a harmonic series is present, including information from harmonic

positions can further improve detection rates. This chapter extends the active contour algorithm

to create a model that incorporates these findings, forming a high-level track detection algorithm.

The active contour model is a well known image analysis algorithm that achieves non-parametric

feature detection within an image through energy minimisation. Several of its features, however,

prevent its application to this problem and these are identified and overcome with novel solutions.

Integrating a low-level feature detector, derived from machine learning and classification tech-

niques, into a flexible track detection algorithm, that can model any structure (dependent upon its

internal energy constraints), allows for generalisation to unseen track structure. Furthermore, this

generalisation is enhanced by formulating the potential energy to be dependent upon noise class

membership alone. The model extends the notion of a harmonic series to allow for the detection of

defined patterns of narrow-band spectra—further enhancing detection at low SNRs. The proposed

algorithm is subjected to an analysis of its computational complexity to ensure its suitability to the

real-time applications that are the concern of this thesis.

The first section of this chapter introduces and presents the definition of the active contour algo-

rithm and a review of the literature relevant to it, with respect to this problem. General limitations

of the algorithm are identified and solutions present in the literature are discussed. The second

section of this chapter discusses the limitations of the algorithm that prevent its application to this

problem. Novel solutions are then proposed to overcome these limitations. These are presented in

the context of the active contour framework for spectrogram track detection. A complexity ana-

lysis is then presented to demonstrate the framework’s suitability to real-time implementation and

finally the chapter’s summary is drawn.

89
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4.1 The Active Contour Algorithm

The Active Contour algorithm (also known as a snake) is a special form of deformable energy mo-

del proposed by Kass et al. [96] and allows for non-parametric feature detection within an image

—ideal in problems, such as remote sensing, where a priori shape information is not strictly defi-

ned. The active contour is driven by an energy minimisation process and is constrained by internal

energy forces, which ensure that its shape follows certain criteria; these criteria are typically de-

fined as curvature and connectivity. It is guided by potential energy, which attracts the active

contour towards features by following local changes in energy gradient. As these gradients are

calculated on a local basis the contour needs to be initialised close to the desired feature to ensure

correct convergence. The active contour converges on a minimum of the weighted combination

of its internal and potential energies within the spatial domain of the image. The potential energy

constraints translate this convergence to be a local gradient maxima in the image. In the original

formulation the energy minimisation is performed using variational calculus. This model has been

successfully applied to object detection and segmentation problems in a wide range of image ana-

lysis applications such as brain segmentation; artery, thyroid, cell and cortex detection; and road

detection in space-borne SAR images.

The original active contour model, as proposed by Kass et al. [96], is as follows. A collection

of k contour vertices defined on a finite grid, v(t) = [x(t), y(t)], t ∈ {0, 1, . . . , k − 1}, forms

a deformable contour where x(t) and y(t) are the contour vertex’s position in the image S =

[sij ]M×N such that x(t) ∈ {0, 1, . . . , N − 1} and y(t) ∈ {0, 1, . . . ,M − 1}. The contour has the

energy

E(v) =
k−2
∑

t=1

(

α|v′(t)|2 + β|v′′(t)|2 + P(v(t))
)

(4.1)

where the terms α and β control the first-order continuity and second-order curvature of the

contour respectively, and the term P is the potential induced by the image (also known as the

external, or ‘image’ energy). The continuity is defined as the distance between two adjacent ver-

tices, therefore ensuring that they remain close together, and the curvature as the second order

distance, ensuring that the contour has low curvature to conform with the features of interest.

Setting their weights, α and β, to have large values increases the influence of these energies.

The potential is defined to attract the contour to salient features in the image. The simplest

features for this are the image intensity, such as

P(v(t)) = −γsy(t),x(t) (4.2)

or gradient

P(v(t)) = −γ
∣

∣∇sy(t),x(t)
∣

∣

2
. (4.3)

where ∇ is the gradient operator and γ is the potential’s weight.

The active contour model is often applied to image analysis problems, which are inherently

discrete. In such cases the first and second derivatives, which constitute the first and second terms

in Equation (4.1), being the continuity and curvature internal energies, are discretely approximated
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by finite differences [184]. The approximation of the first derivative is taken to be

v′(t) ≈ |v(t)− v(t− 1)|2 (4.4)

and the second derivative is discretely approximated as

v′′(t) ≈ |v(t− 1)− 2v(t) + v(t+ 1)|2. (4.5)

This poses a problem when implementing an open ended active contour as it is not possible to

calculate these approximations at each end of the contour, v(0) and v(k) (as v(−1) and v(k + 1)

do not exist!). A simple solution is to ‘mirror’ the contour vertex on the opposite side of each of

these vertices, such that v(k + 1) = v(k − 1) and v(−1) = v(1). This allows an approximation

to their derivatives to be calculated in accordance with Equations (4.4) and (4.5).

4.1.1 Algorithm Background

The original formulation for the active contour algorithm, as described previously, was introdu-

ced by Kass et al. in 1988. Since its introduction the algorithm received a lot of attention from

the image processing community as it allowed for flexible modelling of object boundaries, which

forms a key step in object detection, recognition and segmentation problems, some of which have

been mentioned above. Nevertheless, as the algorithm was investigated it became apparent that

there were several limitations that needed to be overcome to allow successful application to these

problems. The most prominent and relevant aspects of the algorithm will be discussed in this

section, which will be organised according to the constituent parts of the algorithm and develop-

ments relevant to each of these will be discussed. These aspects are: contour initialisation, internal

energy representation, potential energy representation, contour energy minimisation, and multiple

contour models.

4.1.1.1 Contour Initialisation

One of the major limitations of the original algorithm is the contour’s sensitivity to the initialisation

location. For the contour to converge accurately it was necessary to initialise it close to the desired

solution, which was often achieved through user intervention. A relaxation to this criteria was

introduced by Neuenschwander et al. [133] in the form of perturbation snakes, a form of snake that

only requires the two end-points of the object to be specified by the user. Alternative approaches

were proposed with the aim of removing user intervention altogether; the first from Cohen [43].

This was termed the ‘balloon’ force and applied to closed contour formulations. It was noted that

if the initial contour is placed in a constant gradient area—a part of the image with no potential

force—the curve shrinks on itself until it becomes a singular point. To counteract this the balloon

force acts as though filling the contour with air, expanding it from an initial state. If the contour is

initialised somewhere within the object to be detected this balloon force expands the contour until

it encounters the object’s boundary. This relaxes the initialisation criteria from specific points

on (or very near) the object boundary to any point within the object’s boundary, and combats
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the additional problem of the contour not being able to enter concave boundary sections. An

incidental benefit of this force is that it introduces some resilience to noise in the image as the force

pushes the contour over weak detections. Similar solutions to the balloon force exist: gravitation

external force field [164], constant normal force [194], ‘blown’ force [187] and the ‘wrapping’

force [27]. Nevertheless, although some of these methods move towards a solution, they all suffer

from the problem of striking a balancing between the strength of the additional force and that of

the gradient induced by the potential energy. An imbalance between these can result in the contour

over-running the object boundary. To combat this an auto-adaptive dynamic force is needed that

will guide the contour towards the object [89]. An additional drawback of these methods is the

need to determine in which direction the pressure should act. This is dependent upon whether the

contour is initialised within or without the object boundary and this point is addressed with the

dual contour. Dual contours [75] consist of one contour initialised inside and a second outside

the boundary and their energies are minimised in absence of a balloon force. Once each of the

contours has converged, a force is added to the contour with the highest energy, which attracts

it towards the other. More recent developments, that aim to overcome the initialisation problem,

have been proposed by Xu and Prince [192; 193], referred to as Gradient Vector Flow (GVF),

and subsequently, Normal Gradient Vector Flow (NGVF) proposed by Jifeng et al. [91]. The

initialisation problem, as discussed, can be thought of as a limitation resulting from the potential

energy force. The extent to which this force can influence the contour is limited to a local region

surrounding the object boundary. Gradient vector flow overcomes this limitation by calculating a

diffusion field of the gradient vectors derived from the image. The field then extends far away from

the boundary of the image and is independent of whether the contour is initialised within or outside

the object boundary. The GVF also has the effect of overcoming the boundary concavity [50]

problem. Nevertheless, the method does have its limitations; the calculation cannot be formulated

using the standard energy minimisation framework, instead, it is specified directly from a force

balance equation.

4.1.1.2 Potential Energy

Other than the local influence of the potential energy, limitations still exist with applications in

which features are not defined, or reliably defined, by gradient change or intensity [37]. If the

image is too noisy then a large amount of smoothing is required, which will smooth the boun-

dary edges. Complex backgrounds are likely to produce strong edges, which can be mistaken

as object boundaries [164]. Alternative potential energies have been proposed to overcome these

limitations; Davis et al. [52] combine the output of several edge detectors, including: the Sobel

detector; the Canny detector; maximum likelihood detection; the Mero-Vassey detector [126]; and

a bi-directional morphological edge operator. The solution improves edge detection and is applied

to computerised tomography and magnetic resonance medical images, however, the increase in the

number of parameters complicates the active contour model and its parameter selection. Wu et al.

[188] use a single potential energy and propose using the zero-crossings of wavelet-frames to offer

noise resistance. It is concluded in the paper that the solution is effective down to an SNR of 10 dB,

and below this the performance deteriorates. Davatzikos and Prince [51] propose an energy based
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upon the probability distribution within a region of specific thickness. Minimising the variance

of the region draws the contour towards thick, homogeneous boundaries in the image. Shih and

Zhang [164] combine the original energy term with a regional similarity energy that minimises the

difference between the intensity of the region encompassed by the contour and the intensity within

the contour vertex’s local neighbourhood and apply this to locate objects in complex backgrounds.

Similar approaches, termed region-snakes, have been taken by Chesnaud et al. [41] and Slabaugh

et al. [166], however, as the name implies, these are methods designed to segment regions of an

image and therefore tackle the problem of object extraction from a different viewpoint. An additio-

nal model that has been proposed with respect to image segmentation is called the Active Contour

Without Edges (ACWE) [37]. In this model two regions are defined as ‘inside’ and ‘outside’ of

a closed contour and the mean intensity values of these regions are calculated. The difference

between their average and the expected region intensity is minimised, and this minimum trans-

lates to the detection of an image segment having different image intensity. Savelonas et al. [159]

point out that, with respect to texture segmentation, this formulation cannot discriminate regions

of different textures that have equal average intensity values. To address this the ACWE model has

been extended to use vector-valued images [36], these may be separate RGB images, where each

pixel is a vector comprising red, green and blue components, or multi-spectral images where each

pixel is a vector of components representing different wavelengths. Alternatively, vector-valued

images can be formed by deriving features from a Gabor transformation [135, 158, 156], Wavelet

transformation [16] or LBP distributions [159]. These region based active contours use informa-

tion regarding a region to define the contour’s convergence and therefore are not applicable in this

research.

4.1.1.3 Internal Energy

The effect of the contour collapsing upon itself in the absence of potential energy is a side effect

of the internal energy formulation. Although these energies force the contour to form a smooth

shape and to have vertices that are in close proximity to each other, they also force the contour

to collapse into a point [184]. This is a side effect of the continuity energy as it minimises the

distance between each vertex and therefore forcing the contour to coalesce upon strong edges in

the image [9]. Williams and Shah [184] move towards addressing this issue by exploring better

approximations to curvature. It is noted in the paper that the original internal energies are not

normalised with respect to distance, although the value of the energy’s weight can be chosen to

correct this invariance. A curvature estimate is proposed based upon the mathematical definition

of curvature (the angle between the x-axis and the tangent to the curve), however, this measure is

computationally expensive and is scale variant. Two additional measures are proposed, which are

based upon the original curvature measure. Squaring the curvature’s value forms a measure that is

dependent upon the distance between vertices and results in a curvature measure can be non-zero

when the contour is straight. Normalising the two vectors before taking the difference removes

this the length dependence and, consequently, the curvature measure is based solely upon the angle

between the vectors. Perrin and Smith [141] argue that a contour that is a smooth circle and has

contour vertices equally spaced, fulfils the original hypothesis for the internal energy and therefore
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should be a minimum of the internal energy functions. An internal energy based upon geometric

properties is defined in the paper that fulfils this specification. Furthermore, this representation of

curvature combines the continuity and curvature energies into one term, simplifying the internal

energy’s computation in addition to the active contour model.

4.1.1.4 Energy Minimisation

Within the original formulation proposed by Kass et al. energy minimisation is achieved using a

variational approach by solving a pair of Euler equations iteratively. As such, it requires that the

energies are defined by differentiable functions and Finite Differences or Finite Elements are used

to discretely approximate the continuous energy functions. This requirement does not allow hard

constraints to be defined upon the contour, such as imposing a fixed minimum distance between

the vertices [10]. Additionally, this method suffers from numerical instability due to the compound

effects of the iterative approximations followed by a further geometrical approximation from the

continuous plane, in which the optimisation is performed, to the discrete grid of the image [9].

Search-based approaches to energy minimisation which allow the inclusion of hard constraints,

such as simulated annealing [73] and dynamic programming [9], have been proposed. These tech-

niques solve the energy minimisation iteratively, however, the simulated-annealing approach is

supervised and, as such, requires user intervention to identify the contour’s end points. Further-

more, these techniques are computationally expensive as they perform exhaustive searches within

the search space [89] and add additional complications such as choosing the correct parameter

combination [75]. An additional iterative algorithm derived from the dynamic programming me-

thod [89] that allows the inclusion of hard constraints and avoids exhaustive searches is proposed

by Williams and Shah [184]—the greedy algorithm. The authors have shown that this greedy algo-

rithm produces comparable results to the more complex methods, in addition to which, it is much

faster than the dynamic programming method proposed by Amini et al. [9], having a complexity

of O(nm) as opposed to O(nm3), where n is the number of contour vertices and m is the number

of points in each contour vertex’s neighbourhood. The complexity has been further reduced to

form the fast greedy algorithm [107], which reduces the computation time by 30% by evaluating

the energy function in alternative search patterns within each vertex’s neighbourhood. Further

improvements have been realised in the optimally fast greedy algorithm [127]. More recently,

genetic snakes have been proposed that use a genetic algorithm to minimise the energy function

[17]. Using a genetic algorithm in this setting proved to be useful in overcoming the problems

of initialisation, parameter selection and local minima in the energy function. In the case that

points on the object boundary can be supplied to the algorithm, alternative energy minimisation

approaches can be taken and, because of the restricted space in which they work, these techniques

may lead to globally optimal solutions. The minimal path approach [44] is one such method that

guarantees to find the global minimum of the energy function and requires only one point on the

object boundary to be identified.
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4.1.1.5 Multiple Contours

An extension to the active contour model that allows for the simultaneous detection of multiple

objects within an image has also been presented in the literature. This approach can offer improved

detection rates in a number of different applications, in particular when multiple objects that have

similar appearance exist within a single image. For this purpose, Srinark and Kambhamettu [167]

propose a framework that contains an additional energy term called the group energy. This energy

measures the variance of properties of the objects being detected and is used to promote the correct

detection of ‘weak’ objects (i.e. poorly defined in the image) by the detection of ‘strong’ objects

and, as such, the objects must be of the same shape. An alternative multiple snake formulation is

proposed by Chalana et al. that utilises two snakes to extract cardiac boundaries within ultrasound

images [35]. In this model, however, the structure that one contour can model is independent of the

other. A further class of active contour model that utilises multiple contours has been developed

to detect a single object using multiple contours [1, 199], however, these are applied to detecting

regions and not boundaries and are therefore not applicable here.

This review has concentrated on aspects relevant to the problem posed by this thesis and as

such several unconnected developments regarding the active contour model, have been omitted.

For example, extensions relevant to three-dimensional object detection [42, 81], video analysis

[136], Active Shape Models [45] and Geodesic Active Contours [34]—to name but a few.

4.2 Track Detection Framework

For the detection of features in the proposed domain two of the issues discussed previously limit

the active contour’s application (in its original form): its sensitivity to initialisation and the as-

sumption that features are defined by local intensity gradient. These limitations are addressed in

this section.

It is the concern of this thesis to detect vertical curvilinear features within spectrogram images.

Therefore the active contour model described here is an open ended contour where the first and

last vertices are fixed to the top and bottom of the spectrogram (or window within the spectrogram)

such that v(0) = [x(0), ρ] and v(k − 1) = [x(k − 1),M − ρ], where ρ is the height dimension of

the potential energy defined below. Movement of the contour vertices is restricted in the y-axis to

ensure an even search along this axis. This has the additional benefit of reducing problems that can

occur due to the internal energy’s sensitivity to the distance between contour vertices [157] and

avoids the need to dynamically resample the contour by preventing the vertices from becoming

too disparate.

4.2.1 Gradient Potential

Since its introduction it has been evident that the active contour model is limited by its sensitivity

to the initialisation location and it is therefore required to be initialised close to the desired feature

to ensure correct convergence. This is an effect of the potential energy gradients being calculated

on a local basis and is overcome by Cohen in the closed contour case by introducing a balloon
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force that expands the contour, allowing it to be initialised anywhere within the feature boundary.

In the proposed model a similar force, the gradient potentialW , is implemented, such that

W(v(t)) =

[

−c
0

]

v(t). (4.6)

This creates an uniform energy gradient across the spectrogram, and therefore across the contour’s

search space, biasing the contour to move in a given direction with force c. In effect, forcing

the contour to perform an even search throughout the spectrogram after being initialised at a low

frequency. As previously discussed with respect to the balloon force, the gradient potential also

prevents the contour from being trapped by spurious isolated edge points, allows it to pass over

weak edges [164] and reduces the contour’s sensitivity to its initial configuration [42]. Additio-

nally, this supplementary force enables the contour to move into concave sections of the track

[89].

4.2.2 Potential Energy

Chan and Vese [37] state that a general edge-detector can be defined by a positive and decreasing

function g, that is dependent upon the intensity gradient of an image, such that

lim
z→inf

g(z) = 0. (4.7)

The original potential energy function fulfils this condition but it has been shown in Chapter 3 that,

with respect for the application, where low SNRs are commonly encountered, the performance of

a simple edge detector such as that expressed in the original potential energy function is insuffi-

cient. A problem that has also been encountered by Chalana et al. [35] with application to cardiac

boundary detection.

It was also shown in Chapter 3 that a detection mechanism can be defined using machine lear-

ning techniques to exploit more of the information that is available in the spectrogram. Such a

feature detector combines intensity information with spatial information to allow for detection in

low SNR images and along broken (weak) tracks. In addition to the property defined by Chan

and Vese, in this application it is required that the detection mechanism has a low computational

burden and it has been shown in Chapter 3 that exhaustive ‘optimal’ detectors do not have this

property. Nevertheless, a detector has been defined with low computational burden, which per-

forms favourably in comparison with the ‘optimal’ detector and also has the property of a general

edge-detector defined by Eq. 4.7.

These properties were fulfilled by a feature detector that will now form the potential energy of

the active contour. The potential energy is therefore derived from intensity values taken within a

ξ× ρ pixel window W ij , centred on vertex v(t) = [x(t), y(t)] where i = x(t) and j = y(t) using

Eq. (3.6). The method of spectrogram windowing is outlined in Section 3.1.2.1. Here, the windows

are taken dynamically under each vertex of the contour as it evolves within the spectrogram. The

intensity values are arranged column wise into a vector V ij using Eq. (3.8) and PCA is utilised to

derive a compact feature vector that represents the window (avoiding the ‘curse of dimensionality’
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[28]). Its similarity to noise can be measured by testing its membership of a noise model. To allow

its use as a potential energy, the measure has to be formulated to take a maximum value when the

window contains a signal track and minimum value when the window contains noise.

A multivariate Gaussian distribution is used as the noise model and this is fitted to examples

of the noise class within a space defined by d principal component basis vectors, such that

G(v(t)) =
1

(2π)
d
2 |Σ̂n| 12

e−
1
2
Q̂

T
(Σ̂

n
)−1Q̂ (4.8)

for Q̂ = UT V̇
ij
l , where Σ̂

n
is the standard deviation of the low-dimensional noise cluster, and

V̇
ij
l is the feature vector after removing the high-dimensional noise cluster’s mean (both of these

are determined during a training phase). When subtracting the mean it is necessary to observe

the following condition; if a component of the vector is zero, its corresponding value in the mean

removed vector is also zero. This enables the contour to effectively ‘ignore’ previously detected

pixels by setting their values to zero, a condition that is also physically meaningful—if no power

is present in the pixel, no signal can be contributing to its value. Therefore, during the training

phase the noise cluster will be centred on the origin of the low-dimensional space by subtracting

the mean of the noise cluster in the high-dimensional space. The vector V̇
ij

is therefore calculated

such that

V̇
ij
l =

{

0 if V
ij
l = 0,

V
ij
l − µn

l otherwise
(4.9)

where V
ij
l is the lth component of the vector V ij and µn

l is the lth component of the vector µn.

4.2.2.1 Noise Model Training

The parameters U , µn and Σ̂
n

are determined during a training phase and are then stored for

use during the algorithm’s application. First it is necessary to derive the subspace spanned by the

orthogonal basis vectors u1, . . . ,ud in which the noise model will be defined, where d is the rank

of the matrix U . The bases for the new space are derived through unsupervised learning using

PCA [28] and therefore a training set X = [x1, . . . ,xj ]
T where xl = V ij is formed such that it

includes equal numbers of examples of windows containing a feature and those containing only

noise. The principal components uk of this training set, are found by maximising the quantity λk,

such that

λk =
1

n

j
∑

i=1

uT
k (xi − x̄)2

where x̄ is the mean vector of X , subject to the orthogonality constraint

uT
l Uk = δlk
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Figure 4.1: Windowed spectrogram feature vectors projected onto the first two principal compo-

nents (window size 3 × 21 pixels). The noise class is represented by red circular points, the two

signal classes, having an SNR of 3 and 6 dB, are represented by blue and green crosses respecti-

vely and the contours represent the Gaussian distribution. Increasing the track’s SNR increases its

distance from the noise class. The three pronged fan structure results from the track being present

in the left, middle or right of the window.

where δlk is the Kroneker delta. A subset of the basis vectors, U , is selected as the first d principal

components to form the low dimensional space, such that

U = [u1, . . . ,ud]. (4.10)

By storing the basis vectors, the window vectors derived as the active contour evolves can be

projected into the same space. Projecting the training set onto these basis vectors results in a distri-

bution similar to that presented in Fig. 4.1, in which there is a clear separation of the classes and in

which the noise is modelled using the Gaussian distribution. A consequence of the dimensionality

reduction process is that the number of basis vectors used to model the subspace (the space’s di-

mensionality) is a parameter to be determined. In the case of PCA the dimensionality should reflect

the proportion of the training data’s variance that is to be represented and the fraction of training

data available to the algorithm’s training process. Consequently, the number of dimensions to be

used is dependent upon the training data used to derive the principal components. Therefore the

value of d that is applicable to the proposed application and data will be determined during the

algorithm’s training process.

Now that the space in which the noise model is to be defined has been derived, the model can

be fitted to the data. The noise samples are extracted from the training set X , such that Xn ⊂ X

where Xn 6= ∅, and their mean is calculated in the original high-dimensional space, such that

µn =
1

l

l
∑

i=1

xn
i (4.11)
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(a) Single track, as defined in Eq. (4.14).
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(b) Multiple tracks, as defined in Eq. (4.15)

(h = 5 and c = 0).
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(c) Original spectrogram.
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(d) Ground truth.

Figure 4.2: Potential energy topologies for a 180× 180 pixel section of a spectrogram. The x-axis

represents frequency, the y-axis time and, in the original spectrogram, intensity is proportional to

power in voltage-squared per unit bandwidth, that is V2/Hz. For easier interpretation the values

in (a) and (b) are 1− E(v(t)), making the valleys peaks and vice versa. A window size of 3× 21
pixels was used to generate this data.

where l is the number of vectors within the set Xn. This mean is removed from the training

set to form Xn
c = Xn − µn. The term Σ is defined as the standard deviation of the noise

cluster within the low dimensional subspace. The mean centred noise cluster is projected into the

low dimensional space such that X̂
n
c = UTXn

c and therefore Σ̂
n

can be calculated using the

maximum likelihood estimate [60], such that

Σ̂
n
=

1

l

l
∑

i=1

(x̂n
i − µ̂n)(x̂n

i − µ̂n)T (4.12)

where

µ̂n =
1

l

l
∑

i=1

x̂n
i (4.13)

and where ∀x̂n ∈ X̂
n
c is a vector containing only noise and l is the number of such vectors within

the set X̂n
c . The contours of level response resulting from such a model are depicted in Fig. 4.1.

4.2.2.2 Individual Track Detection

The noise model’s response can be combined with the gradient potential that has been defined in

Section 4.2.1 to replace the original potential energy, P , in the energy formulation of the active
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contour model, Eq. (4.1), such that

P (v(t)) =W(v(t)) + γG(v(t)) (4.14)

where γ is the potential energy’s weighting.

The feature space topology resulting from Eq. (4.14) is similar to that presented in Fig. 4.2a,

demonstrating that the combination of spatial and intensity information produces few spurious

detections and a large gradient change at track locations—desirable properties for feature detec-

tion using the active contour algorithm. Nevertheless, if each simultaneous track is a component

originating from a common source, and therefore is part of a signature pattern, the local nature

of the energy term results in multiple detections, one for each component, and not a single de-

tection for the whole pattern. In addition to this, some of the false positive detections have the

same magnitude as true positives and in short time frames these are hard to separate with a simple

threshold.

4.2.2.3 Multiple Track Detection

To overcome these issues when performing low-level feature detection it has been necessary to de-

fine the harmonic transformation that was described in Section 3.4. This transformation integrates

information from harmonic locations in the spectrogram to form a single, more distinguished, track

in the output and it also has the effect of suppressing false positive detections. A similar transfor-

mation will be integrated into the potential energy of the active contour to alleviate the issues found

in the single track formulation. The transformation will be extended to integrate information from

locations defined by the characteristics of the target to be detected and as such the harmonic trans-

formation previously defined is a special case of this in which the track relationships are defined

by integer multiples.

It was discussed in Chapter 1 that simultaneous tracks originating from a common source can

have some underlying linear relationship, for example, periodic signals are made up of harmonic

frequencies and produce tracks in a spectrogram at harmonic locations. This a priori knowledge

can be represented by a pattern set P s = {m1, . . . ,mh}, where mi ∈ R
+ is a multiple of the

fundamental frequency, and can be integrated into the potential energy function, Eq. (4.14), such

that

P (v(t)) =W(v(t)) +
γ

h

[

h
∑

i=1

G

([

mi 0

0 1

]

v(t)

)]

(4.15)

where m1 = 1 (the fundamental frequency) and the term h ≥ 1 is the number of relative frequen-

cies in P s. Window samples in Eq. (4.15) are taken from relative locations as defined in P s and

the potential energy forms a pattern-based active contour search—an active ‘mesh’ (Fig. 4.3) that

stretches under the influence of the harmonic relationships as its fundamental position increases in

frequency.

The modified feature space incorporating harmonic information is similar to that presented in

Fig. 4.2b. The averaging of detections in several locations vastly reduces the unwanted effects of
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Figure 4.3: The contour mesh, the contour ‘body’ in circles, its harmonic set locations defined by

P s in squares and lines depicting the connection of potential energy.

the energy term defined in Eq. (4.14). In particular, a track’s response is now located at a single,

more localised, position corresponding to the fundamental frequency of the signature pattern and

this is easily distinguished from the weaker harmonic response. Gaps in the track, a result of

weaker signal sections, have been interpolated with information from higher harmonics and false

positive detections are weaker due to the random, uncorrelated, nature of noise. In this example,

these are now easily distinguished from true detections in short time periods.

A final point regarding the potential energy; it was outlined in the literature review presented at

the start of this chapter that some formulations of the active contour model require that the potential

energy is differentiable. For example, this is the case when variational calculus is used to minimise

the contour’s energy. Although it has not been presented as such within this thesis, the potential

energy force can be utilised as a separate transformation stage and applied to the spectrogram prior

to the active contour. In this case the original potential energy (the pixel’s intensity value) can be

utilised and therefore any minimisation technique that is applicable in the original formulation

is also applicable in this case—thus it is equivalent. This bypasses the need for a differentiable

potential energy, however, in this thesis the greedy energy minimisation technique will be used

and therefore the condition of differentiable energies is not necessary.

4.2.2.4 Noise Model

A single Gaussian distribution is used to model noise in the proposed algorithm. Noise excursions

above a certain threshold are classified as ‘signal’. In a supervised learning situation this improves

generalisation to unseen cases and is a useful property with respect to the concerned application,

and any that has similar characteristics, in which the feature’s appearance, for example the track’s

shape, can vary significantly against a background of uniform noise. Consequently, it may be

necessary to model noise with different characteristics, however, the formulation of this algorithm

facilitates this. In a similar vein to the generalisation made by Chan and Vese regarding the edge

detector, it is possible to state that any noise model that can be defined as a positive increasing

function and one that is dependent upon the noise in a sample, can be adopted in the proposed

algorithm. In fact, all probabilistic models fulfil this criterion and have the additional benefit that

their outputs do not require scaling to fall within the unit interval. Furthermore, this generalisation

permits the inclusion of a wider range of classification methods such as those explored in the
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previous chapter.

In situations where the track class is well defined, i.e. where it has little variability, the problem

allows for the modelling of the track class. It is therefore possible to augment the noise model with

information derived from the track model. Under this formulation, where s is a positive and in-

creasing function of membership to the track class, the term G in Eq. 4.15 should be supplemented

such that

G(z) = 1− s(z). (4.16)

Some problems may exhibit temporal variability of the noise distribution—a characteristic that

is not explicitly accounted for with the proposed noise model. Nevertheless, an extension to expli-

citly model temporal variation of the noise’s mean intensity can be incorporated into the proposed

model. This aspect is not fully explored in this thesis but two solutions to the problem will be

briefly presented here. The first solution achieves this invariance by removing the mean from the

window vectors prior to processing, similar to the technique of achieving lighting invariance in

photometric image analysis [71], which results in vectors that model each pixel’s deviation from

the their mean and not their absolute intensity values. The second is a more complex method that

exploits the sparseness of frequency tracks in a spectrogram; in most cases a source will not be

present in a spectrogram, however, in the case where there exists a source that emits say ten nar-

rowband frequency components and the spectrogram is the result of a 1,000 frequency bin FFT

process, the track class represents only 1% of the data. In this context the frequency tracks have

a very small skew on the maximum-likelihood estimate of the data’s mean and can therefore be

ignored or accounted for through bias estimation [60]. As such, the mean of the noise model can

be updated at each time step to be equal to the mean value of the current spectrogram frame.

4.2.3 Internal Energy

The internal energies for the active contour model are defined by the first and second derivatives

along the contour, Eq. (4.1). These energies force the contour vertices to remain close to each

other, a condition enforced by the first derivative, and to have low curvature, enforced by the

second derivative constraint. Williams and Shah demonstrate that for a closed contour under no

influence from a potential energy, these internal energies force the contour to collapse into a point.

In the case of an open-ended contour, these energies force the contour to have a straight, verti-

cal configuration. With reference to Figs. 4.4, 4.5 and 4.6; an analysis of the internal energy values

under three, ideal, configurations demonstrate this effect. The three cases under investigation are:

configurations in which the contour is vertical; oblique; and sinusoidal. It can be seen that it is in

only one of these cases that the sum of the internal energies is minimum (the case in which the

contour is vertical). The consequence of this is that the internal energies bias the contour to form

a vertical configuration when detecting tracks that have any of the other configurations.

Perrin and Smith [141] alleviate this problem in the closed contour case by defining an internal

energy based upon local geometric properties of the neighbouring contour vertices. The energy

is calculated as the distance from the current contour vertex position to the point on the perpen-

dicular bisector of the two surrounding vertices that has an exterior angle equal to the mean of



4.2. TRACK DETECTION FRAMEWORK 103

−1 −0.5 0 0.5 1
0

5

10

15

20

(a) Vertical Track.

−1 −0.5 0 0.5 1
0

5

10

15

20

(b) First Derivative.

−1 −0.5 0 0.5 1
0

5

10

15

20

(c) Second Derivative.

Figure 4.4: The original internal energies’ values when modelling a straight vertical track.

0 10 20 30 40
0

5

10

15

20

(a) Oblique Track.

1 1.5 2 2.5 3
0

5

10

15

20

(b) First Derivative.

−1 −0.5 0 0.5 1
0

5

10

15

20

(c) Second Derivative.

Figure 4.5: The original internal energies’ values when modelling an oblique track.
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Figure 4.6: The original internal energies’ values when modelling a sinusoidal track.
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Figure 4.7: An illustration of the optimal contour vertex position as defined by the internal energy

introduced by Perrin and Smith.

the exterior angles between the five neighbouring vertices. In their paper, however, the solution is

presented in a descriptive manner and not mathematically or algorithmically. In this section this

point is addressed and a mathematical formulation of the energy is derived. This problem can be

formulated as calculating the lengths of sides a and b of an isosceles triangle, see Figure 4.7, and

can be solved through simple geometrical properties as follows.

The length of the base of the isosceles triangle is ‖v(t − 1) − v(t + 1)‖ and the two equal

length sides have lengths ‖v(t − 1) − v′(t)‖ = ‖v(t + 1) − v′(t)‖. The case in which the base

of the triangle is parallel to the x-axis will be considered first and then this will be generalised to

the case in which the triangle is arbitrarily rotated. The ideal vertex position, v′(t), for v(t) is at

v(t− 1) + [a b]T where a and b are equal to half the length of the isosceles triangle’s base and its

height, respectively. The component a is therefore calculated such that

a =
1

2
‖b(t)‖ = 1

2
‖v(t− 1)− v(t+ 1)‖ (4.17)

where b(t) is the length of the triangle’s base, and the midpoint between v(t− 1) and v(t+ 1) is

simply

bm(t) = v(t+ 1) +
1

2
b(t). (4.18)

The component b is the distance between bm(t) and the ideal vertex position v′(t) on the per-

pendicular bisector. This point lies on the perpendicular bisector such that the angle between

v(t − 1) − v′(t) and v′(t) − v(t + 1) is equal to the mean angle θ(t) of the three surrounding
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contour edges, such that

θ(t) =
1

3
cos−1

(

u(t) · u(t− 1)

‖u(t)‖ ‖u(t− 1)‖

)

(4.19)

where u(t) = v(t − 1) − v(t) for any non-zero vector u(t) [143]. Therefore angle θ′′(t) (see

figure 4.7) is

θ′(t) =
180− θ(t)

2
(4.20)

and subsequently

θ′′(t) = 180 − 90 − θ′(t). (4.21)

The distance b is calculated through basic trigonometry, such that

b =
1

2
‖b(t)‖ tan θ′′(t) (4.22)

and the ideal vertex position v′(t) is therefore v(t− 1) + [a b]T for the special case that the base

of the triangle b(t) is parallel to the x-axis. To generalise this, the vector [a b]T needs to be rotated

by θ∗ degrees, where θ∗ is the angle at which the triangle’s base intercepts the x-axis, such that

v′(t) = v(t− 1) +

[

a

b

][

cos(θ∗) sin(θ∗)

− sin(θ∗) cos(θ∗)

]

(4.23)

where θ∗ = u(t)·[1 0]
‖u(t)‖ . The energy term, as defined by Perrin and Smith [141], is thus the distance

between v′(t) and v(t), such that

Eint(v(t),x) = ‖[v(t) + x]− v′(t)‖ (4.24)

where x ∈ neighbourhood(v(t)).

This energy term preserves the curvature criteria, defined originally by the second derivative

along the contour, by enforcing that the angles between the contour’s edges are equal. It also pre-

serves the continuity criteria, defined originally by the first derivative along the contour, by forcing

each contour vertex towards a point on the perpendicular bisector of the surrounding vertices. The

energy term proposed by Perrin and Smith therefore combines the properties of the two original

internal energy terms into one and thus reduces the number of internal energy parameters by the

same factor.

4.2.4 Energy Minimisation

The minimum of the active contour’s energy, as defined by Eq. (4.1), translates to the detection of

a feature within a spectrogram. The iterative greedy algorithm proposed by Williams and Shah is

used as the energy minimisation technique, as it has a low computational complexity O(nm) and

it relaxes the constraints upon the forms of the energy functions imposed by other minimisation

techniques. Specifically, the algorithm allows the energy terms to have non-differentiable forms,

such as those of the internal and potential energies outlined in this chapter, without loss of accuracy

[184]. In terms of execution time, it has also been shown to outperform energy minimisation
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Algorithm 4.1 Contour energy minimisation

Input: S, spectrogram; f1 and f2, search range.

Output: v̂, contour positions.

1: s← 1
2: initialise contour vs at −1
3: initialise contour vs−1 at f1
4: while ∀vs(t) < f2 do

5: while ∀vs(t) 6= vs−1(t) do

6: for t = 0, 1, . . . , k − 1 do

7: if vs−1(t) < f2 then

8: vs(t) = [i, j]T where argmin
(i,j)∈neighbourhood(vs−1(t))

E([i, j]T )

9: else

10: vs(t) = vs−1(t)
11: end if

12: end for

13: end while

14: if ∃vs(t) < f2 then

15: store vs(t) in detections such that v̂j(t) = vs(t)
16: j ← j + 1
17: for t = 0, 1, . . . , k − 1 do

18: vs+1(t) = vs(t) + [2, 0]T

19: sy(t),x(t) = 0, where [x(t), y(t)] = vs(t)
20: end for

21: s← s+ 1
22: end if

23: end while

24: return detections v̂

using finite differences and LU decomposition as utilised by Cohen and Cohen [89]. The greedy

algorithm is a gradient descent method for energy minimisation and the pseudo-code that describes

this process in detail is presented in Algorithm 4.1. A cautionary note; due to the iterative nature

of this energy minimisation process it is possible that the algorithm cycles between two low energy

states indefinitely and therefore this occurrence should form an additional stopping condition when

implementing the algorithm.

The process updates each contour vertex’s position to the minimum within its local neighbou-

rhood (determined by the function neighbourhood(v(t))). The neighbourhood is normally taken

to be the 3× 3 square neighbourhood centred on the contour vertex. This is repeated for each ver-

tex until the search range has been exceeded (or no movement occurs)—at this stage the contour

has converged to a minimum of the energy function E . The position of each contour vertex at

the minimum is stored as a detection (see Section 4.2.5 below) and the contour re-initialised at

higher frequency bins that are out of range of the current detection; in the case of a 3 × 3 pixel

neighbourhood each contour vertex is re-initialised two pixels higher in the frequency axis (line 18

in Algorithm 4.1). In this way, the contour does not miss any tracks that are close to the first. Al-

though the contour is re-initialised two pixels after a detection, the space between the position of

re-initialisation and the detection is captured within each contour vertex’s local neighbourhood,
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and so this space is not ignored. It is however harder for the contour to reach this space due to the

gradient potential biasing it in the increasing frequency direction. Once the maximum frequency

defined by the search range is reached the algorithm terminates, returning the detections found

during the energy minimisation process. The search range f1 ∈ N and f2 ∈ N can be taken as the

complete frequency range available in the spectrogram, i.e. f1 = 0 and f2 = M − 1, so that an

exhaustive search for tracks within the spectrogram is conducted. Alternatively, if it is known that

the tracks to be detected are located within a specific frequency range, a contiguous subset of the

spectrogram corresponding to that range can be specified such that f1 < f2 < M − 1.

A drawback of performing energy minimisation for the detection of features is that if a weak

feature and a strong feature reside in close proximity to each other (within each other’s local

neighbourhood) and the weak feature is encountered prior to the strong feature, it will be missed.

This is because the contour is drawn away from the weak feature as the minimum within the local

neighbourhood moves to the position of the stronger feature—note that this will not occur if the

strong feature is encountered first as, according to line 19 of Algorithm 4.1, it is removed before

the contour is re-initialised.

4.2.4.1 A Note on the Vertices’ Neighbourhood

Now that the potential energy is formulated to make use of pixels taken from within a window the

configuration of these windows in the vertex’s neighbourhood should be considered. The original

potential energy makes use of the pixel values in the vertex’s neighbourhood and these pixels can

be thought of as a special case of a window that has the size 1 × 1 pixels. Extending this to a

window of a larger size results in windows that are centred upon each point in the neighbourhood.

If, for example, the window has a width of 3 pixels and these windows are centred upon each

point in the neighbourhood, the information derived from several points in the neighbourhood will

overlap. To correct for this, neighbourhood positions to the left of the vertex should be associated

with the rightmost column of the window, those to the right associated with the leftmost column

of the window and those in the centre of the neighbourhood should be associated with the centre

column of the window. This results in a configuration in which the evolution for each side of the

contour is driven solely by information from that side.

4.2.5 Rolling Window

Thus far, the spectrogram has been treated as a stationary image, however, in real applications this

is not always the case. The spectrogram can be constructed in real-time and, as such, updated

as each observation arrives. The short-term Fourier transform is applied to the observation and a

new row of the spectrogram becomes available. Conventionally, at this time the oldest row of the

spectrogram is removed and a “rolling window” or “waterfall display” of a fixed height is formed.

Track detection can be repeated within this scrolling window as the data is updated. This leads to

the consideration of how often the detection is performed and how the output of the algorithm (the

positions in each rolling window at which a track is detected) is interpreted. Consequently, two

configurations arise, each having separate approaches to interpreting the output.
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The first configuration is as follows; the detection is performed within the rolling window as

each new row becomes available and therefore the detection process integrates past (and perhaps

future) information to enhance the detection at each time point. In this way each row supports

k detections as it flows down a rolling window k pixels in height and the active contour has k

vertices corresponding to each row in the rolling window. In this configuration several approaches

to interpreting the algorithm’s output exist, each of which produces a different system behaviour,

these are:

a) The set of detection locations Dt composed of the co-ordinate positions [l, t]T of the first

contour vertex of each detection within the rolling window (for each update of the rolling

window), such that

Dt =







[l, j]T
∣

∣

∣
[l, j]T =

[

i,

[

1

0

]

v̂
j
i (0)

]T






(4.25)

where i = k, k + 1, . . . , N − 1 is each row of the spectrogram and v̂
j
i (0) is the location

in the first row of the jth detection (convergence of the contour) within the rolling window

that has row i of the spectrogram as its first row. The multiplication of v̂
j
i (0) with the vector

[1 0]T simply extracts the x-axis co-ordinate from the first row. This can be interpreted as

the detection process utilising past information to enhance the detection in the current time

step.

b) The mean position along the x-axis of all the contour vertices of each detection within the

rolling window, such that

Dt =







[l, j]T
∣

∣

∣
[l, j]T =

[

i−
⌊

k

2

⌋

,
1

k

k−1
∑

t=0

[

1

0

]

v̂
j
i (t)

]T






. (4.26)

This configuration could be beneficial if smoothing of the detection output is needed, the

averaging of locations smoothes detection irregularities.

c) A combination of the output from the k detections that each row supports, such that

Dt =







[l, j]T
∣

∣

∣
[l, j]T =

[

i− t,

[

1

0

]

v̂
j
i (t)

]T






, t = 0, 1, . . . , k − 1 (4.27)

which allows an initial, quick, estimate to be made based upon the detection in one time

step, which is refined throughout subsequent iterations. This interpretation requires post-

processing of the set Dt to combine the detections from the multiple iterations.

This configuration is characterised by an initial detection delay after the arrival of the first observa-

tion equal to the time that it takes to fill the rolling window. Once this period has passed, detection

can take place each time that a new observation arrives.

The second detection configuration simplifies the process by removing the overlap between

rolling windows and therefore detection is performed each time that the rolling window is com-
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pletely updated. In this configuration each row supports exactly one detection and the delay in

detection is the amount of time in which it takes to refresh the whole rolling window. The out-

put of the detection process for each row in the rolling window is stored in each iteration of the

algorithm, such that

Dt =

{

(l, j)
∣

∣

∣
[l, j]T = [i− t,

[

1

0

]

v̂
j
i (t)]

}

, t = 0, 1, . . . , k − 1 (4.28)

where i = k − 1, 2k − 1, . . . , ⌊Nk ⌋ is the row of the spectrogram and N is the number of rows in

the spectrogram.

4.3 Complexity Analysis

In the context of a spectrogram track detection algorithm’s application, it is important that detec-

tions are made in real-time. In a majority of situations the algorithm would be expected to be

used on-line and therefore its complexity should reflect this. As such, any training costs will be

ignored and the analysis of complexity will be concerned with the algorithm’s on-line execution

costs. It is widely accepted that a linear or quadratic time complexity is acceptable as a tractable

solution under these considerations. Therefore, an analysis of the algorithm’s complexity in terms

of time and space, with regard to the potential energy and both formulations of the internal energy,

is conducted to establish whether or not it is a tractable solution (it has been shown that the greedy

energy minimisation algorithm has complexity O(mn), Section 4.1.1.4). The notation that will be

used throughout this analysis is big O, where n is the number of elementary arithmetic operations

(add, subtract, multiply and divide).

It will be assumed that vector multiplication (and therefore the dot product) has complexity

O(n) as, using schoolbook matrix multiplication [48], multiplying a matrix of size m× n with a

matrix of size n × p has the complexity O(mnp). As such, two vectors that have the sizes 1 × x

and x × 1, and therefore m = 1, n = x and p = 1, result in a multiplication complexity of

O(1n1) = O(n).

4.3.1 Original Internal Energy

A study into the algorithm’s time and space complexity reveals that they are both linear with

respect to all parameters except the dimensionality of the potential energy’s feature space. This

non-linearity is the result of the computation and storing of the inverted matrix Σ
−1 in Eq. (4.8),

which has a time complexity of O(n3) using Gaussian elimination [60] and a space complexity of

O(n2). Although, as matrix inversion and multiplication are computationally equivalent [5], the

more efficient Strassen [168] and Coppersmith-Winograd [46] algorithms reduce this complexity.

Regarding the time complexity, as Σ−1 does not vary during the algorithm execution its value can

be determined prior to execution and stored for subsequent use—reducing the execution time from

O(n3) to O(n2). Also, the matrix multiplication QT
Σ

−1 in Eq. (4.8) is processed in O(n2) time

as QT has a size of 1×s and Σ
−1 is a matrix of size s×s (the complexity of matrix multiplication
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between a n ×m matrix and a m × d matrix is O(nmd) using the schoolbook method [48]—as

m = d and n = 1 in this case, the order is O(n2)). Fortunately a low PCA dimensionality

(typically 3–6 dimensions) is sufficient to capture enough information for accurate track detection

and therefore a non-linearity in s is acceptable.

4.3.2 Perrin Internal Energy

In terms of the potential energy, the same formulation is used in both versions of the algorithm and

therefore the complexity remains O(n2) due to the matrix multiplication between QT and Σ
−1,

as described previously. What remains to be shown is that the Perrin internal energy formulation

does not have a greater complexity than this. It can be seen that the only components of the Perrin

calculation (outlined in Section 4.2.3) that are not linear are: cos, sin, cos−1, || ||, and the matrix

multiplication in v′(t). Analysing these in turn; the elementary trigonometric functions, cos, sin,

and cos−1, can all be computed in O(M(m) log(m)),where m is the number of digits precision

and M(m) is the number of single precision operations required to multiply m-bit integers [31],

which within this analysis are assumed to be constant. The square and square root involved in the

distance function || || can all be computed with a complexity of O(M(m)) using Newton’s method

[31]. The matrix multiplication involved in calculating v′(t) can be calculated using schoolbook

matrix multiplication, which has complexity O(mnp), where m, n and p are the matrix dimen-

sions, in this case m = 1, n = 2 and p = 2 = n and therefore the complexity is O(n2) for a fixed

n = 2 as the size of these matrices do not change. As this is the component that has the highest

complexity within the calculation of the Perrin internal energy, and its complexity is equal to that

of the original formulation, it can be concluded that the Perrin energy introduces no additional

complexity to the algorithm.

4.4 Summary

This chapter has presented an active contour framework for the detection of single and multiple

tracks in spectrograms. A discussion of the original active contour algorithm, its limitations and

alternative methodologies, has also been presented. This has led to the identification of issues that

prevent the algorithm in its original form from being applied to spectrogram track detection. Novel

solutions to these problems have been proposed in this chapter. The performance of the original

algorithm is dependent upon the location in which it is initialised and the gradient potential energy

function was proposed to overcome this. The potential energy force, which defines the feature’s

location in the image, relies upon intensity information from a single point and this was found in

Chapter 3 to be insufficient for this problem. To rectify this, a novel potential energy formulation

based upon supervised learning techniques has been proposed to take advantage of structural and

intensity information to increase detection rates. Moreover, this potential energy has been exten-

ded to integrate information from harmonically related positions in the spectrogram to improve

detection at low SNRs. The potential energy explicitly models the noise, which improves gene-

ralisation to unknown track structures when using machine learning techniques. The conditions

under which the noise model can be augmented with information from the track class, in problems
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where it is well defined, have been identified in Section 4.2.2.4. It has also been shown that the

original internal energies bias the contour towards a configuration that does not accurately model

the variation of structure observed in spectrogram tracks. These energies were therefore repla-

ced by the internal energy proposed by Perrin and Smith, which removes the ‘geometrical’ bias.

Within the proposed framework the greedy energy minimisation algorithm was preferred over the

variational calculus approach as it relaxes the restrictions imposed upon the forms of the energy

functions as well as having a reduced computational complexity. An analysis of the framework’s

computational complexity has shown that it is applicable to real-time implementations.





Chapter 5

Algorithm Evaluation

“The true method of knowledge is experiment.”

— William Blake, 1757–1827.

It has been demonstrated in Chapter 3 that, when detecting low-level features, structural and

harmonic information can be integrated into the process to improve track detection rates. In Chap-

ter 4 these findings have been realised within an active contour algorithm for high-level track

detection. The active contour algorithm allows generalisation to unseen track structures due to the

flexibility of the model in the absence of rigid shape parameters.

In this chapter the above algorithm is assessed using the synthetic data set described in Sec-

tion 3.3.1. The first section of this chapter presents, and discusses, the evaluation measure that will

be used throughout the experimentation. The subsequent section presents an analysis of several

of the algorithm’s parameters for which values can be determined from the experimental results

of Chapter 3. Following this analysis, several empirical comparisons are made between the detec-

tion performance achieved using variants of the algorithm. These comparisons aim to demonstrate

the algorithm’s applicability to the problem of weak feature detection, and more specifically, to

determine the validity of the following hypotheses:

• The internal energy proposed by Perrin and Smith models the track structure observed in

this problem better than the original internal energy.

• The potential energy formulation proposed in this thesis increases track detection perfor-

mance when compared with the original potential energy.

• The detection of harmonic patterns of tracks, as opposed to individual tracks, increases

high-level detection performance.

Preceding each evaluation is presented a study into the stability of each variant of the algorithm

in relation to a variety of parameter value combinations. This leads to the selection of appropriate

combinations of values for use in each experiment, which are designed to test the various aspects

of the algorithm by applying it to a number of test scenarios. A discussion of the findings from

each evaluation is presented, related to existing literature, and finally, the chapter’s conclusions are

drawn.

113
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5.1 Evaluation Measure

The evaluation measure chosen for use during this evaluation is the Line Location Accuracy

(LLA) proposed by Pratt [145], and used by Di Martino and Tabbone [57] for this application.

The accuracy is evaluated by a figure of merit that is at its maximum when all track pixels are

detected and no false positive detections exist. A set of all detected pixel locations Dt can be

constructed from the output of the track detection model, as defined in the previous chapter, and

there also exists ground truth data. This data is in the form of a set of actual pixel locations

Pt = {(i, j)|sij belongs to a track}, therefore the figure of merit is formulated such that

F =
1

max(|Pt|, |Dt|)
∑

(i,j)∈Dt

1

1 + λ min
(l,k)∈Pt

(||[i, j] − [l, k]||2) (5.1)

where |Pt| and |Dt| are the cardinalities of the actual and detected track pixel set respectively,

||[i, j]− [l, k]|| is the Euclidean distance between the detected track pixel [i, j] and the actual track

pixel [l, k] and λ ∈ R
+ where, throughout this chapter, λ = 1.

The parameter λ controls the influence of the distance from detection to true location, values

below one suppress the measure’s degradation resulting from inaccurate detections or false posi-

tives. It is therefore possible that two methods which achieve high LLAs when λ = 1 may have

equal LLAs when λ = 0 as, in this state, the figure of merit is simply measuring the ratio between

the number of detections and the number of true locations. Furthermore, an algorithm that results

in fewer, more accurate, detections will result in a higher LLA than one which produces the correct

number of inaccurate detections when λ = 1. When, however, λ is sufficiently small, it is possible

that the LLA of the former becomes less than that of the latter.

It can be observed in Eq (5.1) that the occurrence of a number of conditions drive the value

below its maximum. In the case that a detection is close to, but not at the same location as the true

occurrence, the Euclidean distance between the detection and the true position, |[i, j] − [l, k]|2,

reduces the function’s value. The difference between the number of detections and the number of

true occurrences, |Dt| and |Pt|, also reduces the function’s value when false negative or false po-

sitive detections occur. The LLA measure therefore aggregates a number of commonly measured

factors into one figure of merit.

5.1.1 Experimental Data

The training and test sets described in Section 3.3.1, upon which the low-level feature detectors

were evaluated, are combined to form the training set used during the experiments presented in

this chapter. The training set therefore comprises two spectrograms generated from each of the

parameter combinations previously outlined in Section 3.3.1. Furthermore, a new test set is ge-

nerated, in the same manner as previously described, which contains ten spectrograms generated

from each of the parameter combination.
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5.2 Parameter Selection

It has been shown in Section 3.3 that by calculating the PCA vectors using low SNR data samples,

the signal detection rate is maximised. The same procedure is used to calculate the PCA vectors

for use in the active contour’s potential energy to provide the high-level algorithm with sufficient

information to detect the features. The lower dimensional subspace in which the noise is model-

led using Eq. (4.8) is therefore derived using PCA and 1,000 feature vectors containing noise and

1,000 feature vectors containing track and noise, each extracted from within a 3 × 21 pixel win-

dow from spectrograms having a mean SNR of −0.5 dB. Previously, however, it has been found

that the best ROC performance is achieved using a subspace having six dimensions. The ROC

measure used to determine this is a balance between the false positive detection rate and false ne-

gative detection rate. The active contour algorithm is sensitive to false positive detections, which

can cause a local minimum of the contour’s energy gradient within its search space and therefore

result in false positive detections within the high-level detection process. It can be seen in Ap-

pendix A, Fig. A.1, that increasing the dimensionality of the subspace, whilst increasing the track

detection performance, also decreases the noise detection performance. By analysing the track de-

tection performance as the dimensionality increases it can be seen that a good balance is achieved

at a dimensionality of three. Using fewer than three dimensions results in a large decrease of the

track detection performance and incurs an increase in its variability. Adding further dimensions,

although increasing the track detection performance, only does so by approximately 1–2% per

dimension. The noise detection performance is reduced by a much smaller amount, however, it

should be noted that a typical spectrogram is largely composed of noise. For example, in the condi-

tions of this evaluation the percentage of each spectrogram that forms part of a track is 0.63%—the

remaining 99.37% is noise. It is therefore much more beneficial for high-level algorithms, such

as the active contour algorithm, to have fewer false positive detections made at the low-level. The

use of three dimensions is further justified by analysing the PCA eigenvalues, which are presented

in Fig. 5.1 and show that, of all the principal components, the first three account for the largest

portion of the data’s variance and, by definition, these three principal components minimise the

data’s mean square error.

Surface views of the principal component vectors, which can be seen in Fig. 5.2, confirm

PCA’s ability to capture salient information from this data. The first is similar to the Prewitt, first

derivative, edge detector [147]; the second, a second partial derivative edge detector, similar to

Eq. (5.2); and the third the inverse of that.

s′′ij = si−1,j − 2sij + si+1,j (5.2)

Finally, the potential energy term, presented in Eq. (4.15), allows a priori information regar-

ding the position of relative frequencies to be built into the detection process through the use of the

pattern set P s. This additional information enables the potential energy term to sample multiple

concurrent features and, therefore, increase the reliability of detection. Within the data set, five

frequency tracks are present that are described by the pattern set P s = {1, 2, 3, 4, 5} (plus the
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Figure 5.1: The eigenvalues associated with the principal components derived by averaging over

10 random training sets, each containing 1,000 examples of each class. The top line represents the

eigenvalues for 2.5 dB SNR examples, the middle 1.5 dB SNR and the bottom −0.5 dB SNR and

error bars of 2 standard deviations (SNRs have been rounded to the nearest 0.5 dB).
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(c) Third Principal Component.

Figure 5.2: The first three principal component vectors viewed as 3× 21 point surface plots.

fundamental frequency). The search was optimised by initialising the contour within 10% of the

expected frequency position for a particular source. Throughout all of the experiments presented

in this chapter, the active contour’s length is set to k = 20 and all SNRs quoted in this chapter

have been rounded to the nearest 0.5 dB and calculated according to the definition presented in

Section 1.2.3.

5.3 Comparison of Internal Energies

The first of the hypotheses presented by this chapter is that the internal energy proposed by Perrin

and Smith models the track structure observed in this problem better than the original internal

energy. It has been discussed in Chapter 4 that the original internal energies bias the contour to
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take on a straight and vertical configuration and that the internal energy proposed by Perrin and

Smith removes this bias. First, using the potential energy proposed in this thesis, each algorithm’s

sensitivity to varying weighting values is analysed, a suitable combination of weights for each is

selected, and the analysis is presented.

5.3.1 Parameter Sensitivity

The weighting parameters of the internal and potential energies of the active contour algorithm and

the gradient potential, affect its ability to locate features in the spectrogram and to model the local

deformation of these features. Ballerini explains that “large values for the continuity and curvature

weights will discourage convergence to a ‘busy’ contour” and that “small weights may allow the

contour to be trapped into false edges or leak out through gaps in the boundary” [17]. These

parameters, therefore, form the balance of energies that determine the final contour convergence.

As such, it is difficult to specify optimal parameter values using heuristics. Instead, a good set of

parameter values is searched for by varying each parameter in turn throughout its range of values.

During this search the remaining parameters are fixed at values that have been found to lead to

good convergences during preliminary experimentation. Each parameter combination is evaluated

using the training set and the values that lead to the maximum performance are chosen as those for

use in the evaluation of the test set. In this search, therefore, the interactions between the energies

that these parameter values control are ignored. This assumption means that the results are likely

to be sub-optimal, however, it greatly simplifies the optimisation process.

In this comparison two variants of the algorithm will be evaluated, both of which will employ

the definition of potential energy presented in this thesis. The difference between the two variants

will be that one has the original internal energy and the other the internal energy proposed by Perrin

and Smith. Plotting the line location accuracy as a function of each parameter’s value also allows

the algorithm’s sensitivity to parameter values to be analysed. Figure 5.3 presents the results of

this empirical investigation and affords an insight into the role of each parameter.

The potential energy is the algorithm’s sole source of information to allow for the accurate

location of features in an image. Its weight is controlled by the value of the parameter γ, and as

this increases the active contour gains more information from the spectrogram. This fact is directly

reflected in both of the observed functions; as γ increases the LLAs also increase.

The gradient potential parameter c enables the active contour to locate features that lie outside

its local gradient topology and to pass over false positive detections that result from the potential

energy. It is observed in both of the algorithm variants that as c increases, i.e. the contour moves

over false positives with a greater force, the LLAs also increase. If the value, however, is too great

(above 0.36) the contour begins to be forced over true positives and the detection rates decrease.

In both variants of the algorithm, the functions of c have, in general, the same form and the peak

in performance is observed at the same value, indicating that the gradient potential balances the

effects of the potential energy and is, in the most part, independent of the contour’s internal energy.

The internal energy parameters control the contour’s ability to deform and to model the track’s

structure. When the original internal energy variant is considered, it can be observed that the

value of α (which controls the continuity of the contour) has very little effect on the detection
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(a) Original internal energy algorithm variant. The mean standard deviations for each function are α =
0.0042, β = 0.0052, γ = 0.0044 and c = 0.0057, a full list of the standard deviations is presented

in Appendix A.2.6, Table A.1a. Whilst varying each of the parameters the remainder took the following

values: α = 0.10, β = 0.20, γ = 1.00 and c = 0.41.
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(b) Perrin internal energy algorithm variant. The mean standard deviations for each function are β = 0.0062,

γ = 0.0028 and c = 0.0047, a full list of the standard deviations is presented in Appendix A.2.6, Table A.1b.

Whilst varying each of the parameters the remainder took the following values: β = 0.20, γ = 1.00 and

c = 0.41.

Figure 5.3: The mean line location accuracy of training set detection as functions of each variant of

the algorithm’s parameter values. The results were obtained from five repetitions of the experiment

using the potential energy proposed in this thesis.

rate. It seems that the information captured through the contour’s second derivative, controlled

by the parameter β (which controls the curvature of the contour), overlaps that captured by the

first derivative. The parameter β has a far greater effect; at low values the contour has sufficient

freedom to model track variations and evolve, however, when the influence is too great (above a

value of approximately 0.4) this ability is restricted and the contour is not able to evolve and model

the tracks. A similar behaviour is observed in the variant that utilises the internal energy proposed

by Perrin and Smith, at low values of β (less than 0.2) the maximum of the LLA is reached and

the performance is relatively stable. Above this range, however, the contour’s ability to evolve and

model the track’s structure is restricted and the LLA degrades accordingly.

To confirm that choosing the parameter values by analysing the algorithm’s performance as a

function of LLA is sensible, several additional measures were taken during the experiments. These

were designed to evaluate each compositional measure that the LLA aggregates into one measure.

The additional measures were the proportion of true track occurrences detected (those that are

within five pixels distance of the true location) and the mean probability of false positive detections

per row of the spectrogram (the number of additional detections within the five pixel range plus

those outside of this range). The results are presented in Appendix A, Fig. A.3 and Fig. A.9,

and show that, in the large part, the parameter values for each algorithm behave in accordance
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with the corresponding LLA. In both cases, as the potential energy parameter γ is increased, the

detection performance also increases and the false positive rate remains low (below 0.005 in the

Perrin algorithm variant and 0.034 in the original variant). The internal energy parameter β of the

Perrin variant reaches its LLA maximum at 0.16. It is evident from Figure A.3 that the detection

performance remains fairly stable at low values of β and is inversely proportional to β as its value

increases. The false positive rate exhibits similar behaviour; at low values of the parameter β a

small number of false positive detections are observed and these decline as β’s value is increased.

The parameter controlling the effect of the gradient potential, c, has a distinct LLA maximum

at a value of 0.36. Again, analysing the detection rate reveals that the proportion of true positive

detections is inversely proportional to the value of c, however, the mean probability of false positive

detections per row is also inversely proportional to this value. The LLA measure has, therefore,

chosen a balance between these two measures, and the maximum corresponds to the value at

which the mean probability of false positive detections per row is low and the proportion of true

positive detections remains relatively high. Therefore, in the case of the Perrin algorithm variant,

the LLA measure has determined an acceptable balance between minimising the probability of

false positive detections and maximising the number of true positive detections.

Regarding the original algorithm variant, the proportion of true positive detections and the

mean probability of false positive detections per row is presented in Appendix A, Figure A.9. As

discussed earlier, the value of α shows no effect on the detection performance, which is confir-

med by the number of observed true and false positive detections. The internal energy weighting

parameter of the contour’s second derivative, β, reaches its maximum LLA at a value of 0.22.

This corresponds to the point at which the mean probability of false positive detections per row

starts to increase. The proportion of true positive detections is very close to its maximum value

and therefore the LLA measure has provided an adequate balance between these two measures. In

confirmation of the previous observation, the gradient potential parameter, in all measures, exhibits

similarly behaviour to the gradient potential parameter in the Perrin algorithm variant, although

the responses are at higher values. Again, the LLA measure has reached a compromise between

minimising false positive detections and maximising the proportion of true positive detections,

occurring at a value of 0.36.

In accordance with the results found during this investigation, and for the remainder of the ex-

periments in this section, the following parameter values are used; for the original internal energy

variant, the internal energy parameters are set to: α = 0.96 and β = 0.22, the potential energy

parameter to γ = 1.00 and the gradient potential to c = 0.36; and for the Perrin and Smith internal

energy variant, the internal energy parameter is set to β = 0.16, the potential energy parameter to

γ = 1.00 and the gradient potential to c = 0.36. These values also correspond to points of low

standard deviation of the results, as presented in Appendix A.2.6, Table A.1.

5.3.2 Performance

Using the parameter value combination that has been determined for each variant of the algorithm,

it is now possible to analyse the algorithms’ performance on each type of track configuration found

in the test dataset. The line location accuracy of each variant, applied to each track configuration,
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Figure 5.4: The mean line location accuracies of vertical track detections as functions of the

spectrogram’s SNR—a comparison between the original and Perrin internal energies. The mean

standard deviations for the Original detections is 0.0060 and the Perrin detections 0.0064, a full list

of the standard deviations is presented in Appendix A.2.6, Table A.2. The results were obtained

from ten repetitions of the experiment using the potential energy proposed in this thesis.

is measured as a function of the SNR of the track. Not only does this allow for the construction

of a detailed comparison between the two variants with regards to their ability to detect differing

track structures but also for the analysis of the performance as the track’s SNR degrades.

The first of these comparisons, with regards to the vertical track structure, is presented in

Figure 5.4. At SNRs of 0 dB and above the Perrin variant outperforms the original by a mean

LLA measure of 0.0260. Below this point the performance of both variants degrade, however, the

original internal energy is marginally more resilient and has an LLA measure that is, on average,

0.0298 higher than the Perrin internal energy variant in the SNR range −1 to −0.5 dB. This is

possibly an effect of the shape bias that is exhibited by the original internal energy. As it has been

shown in Chapter 4, the original internal energy biases the contour to form a straight vertical track,

a fact that could explain the apparent difference in performance at low SNRs. In this setting the

potential energy’s influence is diminished and therefore the internal energy’s role is accentuated.

This change in the balance of energies allows the internal energy’s bias to have greater influence

on the contour, resulting in a convergence that coincidentally matches the track’s shape.

The proportion of true positive detections and mean probability of false positive detections per

row for each algorithm variant are presented in Appendix A, Figure A.4 and Figure A.10. The

mean probability of false positive detections per row resulting from the original internal energy is

over ten times that of the Perrin internal energy variant, however, the proportions of true positive

detections for each variant are comparatively close to each other. The reason that the LLAs of both

variants are similar is a combination of two effects. The first is a consequence of the true positive

measure, which deems a detection within five pixels of the true location to be a true detection. If

false positive detections are located within this distance (and a true positive detection not made),

this would artificially inflate the measure. The second effect is due to the LLA incorporating a

measure of the detection’s distance from the true location and these results indicate that the Perrin

variant, although detecting as much, or possibly more, of the tracks than the original variant,

it has done so at the expense of location accuracy. The number of true positive detections of

each algorithm variant show that there is a relatively small mean difference of 0.0425 between

them. This indicates that the original internal energy models the tracks more closely and therefore

its resulting detections have a smaller distance from the true location. This finding would be
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(a) Original internal energy algorithm variant. The mean standard deviations for the each function is:

1Hz/s = 0.0128, 2Hz/s = 0.0075, 4Hz/s = 0.0052, 8Hz/s = 0.0031 and 16Hz/s = 0.0031, a full

list of the standard deviations is presented in Appendix A.2.6, Table A.3a.
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(b) Perrin internal energy algorithm variant. The mean standard deviations for the each function is: 1Hz/s =
0.0126, 2Hz/s = 0.0098, 4Hz/s = 0.0053, 8Hz/s = 0.0029 and 16Hz/s = 0.0015, a full list of the

standard deviations is presented in Appendix A.2.6, Table A.3b.

Figure 5.5: The mean line location accuracies of oblique track detections as functions of the

spectrogram’s SNR—a comparison between the original and Perrin internal energies. The results

were obtained from ten repetitions of the experiment using the potential energy proposed in this

thesis.

congruent with the theoretical analysis in Chapter 4.

The results of a comparison between the two algorithm variants when applied to the detection

of oblique tracks is presented in Figure 5.5. These results confirm that the two variants of the

algorithm achieve very similar LLAs. The original variant, however, demonstrates more resilience

to reduced SNRs than the Perrin variant. Nevertheless, this could be partly due to the increase in

false positive detections that results from this form of internal energy. In accordance with expec-

tations, as the gradient of the track increases the LLA decreases. When detecting tracks with a

gradient of 1Hz/s the algorithm variants achieve mean LLAs of 0.8996 (Perrin) and 0.8728 (origi-

nal) at SNRs of 5–7 dB and at 3–7 dB the means reduce to 0.8355 (Perrin) and 0.8715 (original).

Therefore, in this case, although the Perrin variant produces higher results at the higher SNRs,

the original variant is more consistent as the SNR decreases. When detecting tracks with greater

gradients, the algorithm variant achieving the best performance reverses, for example, the mean

values for the detection of 2Hz/s gradient tracks in the same SNR range are: 0.4386 (Perrin) and

0.4658 (original). Tracks that have a gradient of 8Hz/s and 16Hz/s seem beyond the capabilities

of both variants and the LLAs are close to zero. The original variant has a slightly higher LLA than

the Perrin variant, however, the original variant also produces a greater number of false positive

detections and therefore, as discussed, it is possible that the increase in LLA is attributed to the

increase in the number of false positive detections. As the SNR of the tracks degrade, both algo-

rithms experience a decline in performance, and this occurs at approximately the same point in the
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(a) Original internal energy algorithm variant. The mean standard deviations for the each function is: 1% =
0.0178, 2% = 0.0112, 3% = 0.0203, 4% = 0.0166 and 5% = 0.0205, a full list of the standard deviations

is presented in Appendix A.2.6, Table A.4a.
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(b) Perrin internal energy algorithm variant. The mean standard deviations for the each function is: 1% =
0.0044, 2% = 0.0056, 3% = 0.0083, 4% = 0.0166 and 5% = 0.0095, a full list of the standard deviations

is presented in Appendix A.2.6, Table A.4b.

Figure 5.6: The mean line location accuracies of sinusoidal (ten second period) track detections

as functions of the spectrogram’s SNR—a comparison between the original and Perrin internal

energies. The results were obtained from ten repetitions of the experiment using the potential

energy proposed in this thesis.

range of SNR considered. The original variant of the algorithm, however, has LLAs of 0.6504,

0.1816 and 0.0866 at an SNR of −1 dB in comparison to 0.1522, 0.0402 and 0.0066 resulting

from the Perrin variant.

In Appendix A, Figure A.5 and Figure A.11, is presented the number of true positive and

false positive detections attributed to these experiments. Once again, the false positive rate of the

original algorithm variant is far greater than that of the Perrin variant; the Perrin variant has a

maximum mean probability of false positive detections per row of less than 0.0026, however, the

original variant results in a maximum false positive rate that is more than a factor of ten higher

0.0611.

With regards to the detection of sinusoidal tracks, (Figures 5.6, 5.7 and 5.8) an initial observa-

tion is that, as would be expected, as the amplitude (the centre frequency variation) of the sinusoid

increases the detection rate decreases, which holds for both variants of the algorithm. A similar

trend to that found in the oblique track experiments is present in these results, the original variant

of the algorithm is more resilient to reduced SNRs than the Perrin variant. When applied to the

detection of sinusoidal tracks with a period of ten and fifteen seconds (Figure 5.6 and Figure 5.7)

and at SNRs greater than 4 dB both variants result in very similar LLAs; in some cases the original

variant is marginally better than the Perrin and in other cases the opposite is true. When, however,

the algorithms are applied to the detection of sinusoidal tracks with a period of twenty seconds
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(a) Original internal energy algorithm variant. The mean standard deviations for the each function is: 1% =
0.0163, 2% = 0.0099, 3% = 0.0148, 4% = 0.0137 and 5% = 0.0101, a full list of the standard deviations

is presented in Appendix A.2.6, Table A.5a.
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(b) Perrin internal energy algorithm variant. The mean standard deviations for the each function is: 1% =
0.0051, 2% = 0.0055, 3% = 0.0049, 4% = 0.0050 and 5% = 0.0045, a full list of the standard deviations

is presented in Appendix A.2.6, Table A.5b.

Figure 5.7: The mean line location accuracies of sinusoidal (fifteen second period) track detections

as functions of the spectrogram’s SNR—a comparison between the original and Perrin internal

energies. The results were obtained from ten repetitions of the experiment using the potential

energy proposed in this thesis.

with low centre frequency variation (Figure 5.8) the Perrin variant has marginally better LLAs at

SNRs above 4 dB.

Upon inspection of the number of true positive and false positive detections presented in Ap-

pendix A, Figures A.6–A.8 and Figures A.12–A.14, it is again obvious that the original variant

produces many more false positive detections than the Perrin variant. The Perrin variant results in

a maximum mean probability of false positives per row of 0.1155 (occurring when applied to the

detection of sinusoidal tracks having a period of ten seconds with 4% centre frequency variation)

whereas the original variant produces 0.4546, which is also its maximum mean probability of false

positives per row. For the remaining cases the mean probability of false positives per row is largely

between 0.02–0.03 for the Perrin variant and 0.2–0.3 for the original, the Perrin variant producing

a factor of ten less than the original variant.

So as to not detract from the readability of the results, full lists of the standard deviations for the

results presented here are included in Appendix A.2.6, Tables A.2–A.6, the means of which have

been presented in each figure’s caption. These standard deviations demonstrate that the results

have a very low variation, typically exhibiting a standard deviation of less than 0.02 within five

repetitions of each experiment. A number of examples of detections that are the result of both

variants of the algorithm are presented in Appendix A.2.5, Figures A.27 and A.28.
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(a) Original internal energy algorithm variant. The mean standard deviations for the each function is: 1% =
0.0107, 2% = 0.0068, 3% = 0.0171, 4% = 0.0183 and 5% = 0.0121, a full list of the standard deviations

is presented in Appendix A.2.6, Table A.6a.
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(b) Perrin internal energy algorithm variant. The mean standard deviations for the each function is: 1% =
0.0046, 2% = 0.0042, 3% = 0.0061, 4% = 0.0064 and 5% = 0.0057, a full list of the standard deviations

is presented in Appendix A.2.6, Table A.6b.

Figure 5.8: The mean line location accuracies of sinusoidal (twenty second period) track detections

as functions of the spectrogram’s SNR—a comparison between the original and Perrin internal

energies. The results were obtained from ten repetitions of the experiment using the potential

energy proposed in this thesis.

5.3.3 Discussion

The overall trend of the results from these experiments imply that, at the higher signal-to-noise ra-

tios, the difference between the two methods is negligible and the Perrin variant often outperforms

the original variant. Moreover, when the probability of false positive detections per row is taken

into account, the Perrin variant provides more favourable results across all the experiments. When

the SNR decreases the original algorithm variant demonstrates more resilience to the reduction in

the available information. Nevertheless, it is possible that this is due to the increased probability

of false positive detections per row and not the detection ability of the algorithm. In this problem

it is difficult to measure the actual true positive detection rate as it is possible that the energy ba-

lance, with the addition of the gradient potential, causes the contour to overrun the true location.

This fact, in relation to the balloon force, is commented upon by Ji and Yan who state that “these

[balloon and similar] forces all have to be included at the equilibrium of their snakes/segments and

easily result in a slight overrun of the target contours” [89]. The true positive measures, which

have been presented in Appendix A, therefore account for this overrun by taking a true positive

detection to be any detection that is within five pixels distance of the true location. It is therefore

difficult to separate a true but overrun detection from a false detection. This said, the Perrin energy

formulation results in a mean probability of false positive detections per row of less than 0.022,



5.4. ORIGINAL POTENTIAL ENERGY 125

0.003, 0.115, 0.030 and 0.030 in the vertical, oblique, ten second sinusoidal, fifteen second sinu-

soidal and twenty second sinusoidal track experiments respectively. These figures translate into

maximum mean false positive detections of approximately one in every 45, 333, 9 and 33 lines of

the spectrogram. Therefore, the true positive detection figures are relatively reliable when com-

pared with the original variant, which results in maximum mean false positive detections every 4,

16, 3, 4 and 4 lines. It has been seen that when the algorithms’ sensitivity to parameter variations

were evaluated, the strength of the gradient potential is directly correlated with the probability of

false positive detections per row and a value that maximised the LLA was chosen. If, however, the

false positive rate were to be minimised, a greater gradient potential should be chosen and it can

be seen in Appendix A, Figure A.3b and Figure A.9b, that values of above 0.44 result in a very

low false positive detection rate (less than 0.0025 and 0.0237 in the whole training data set for the

Perrin and original variants respectively), however, it should be noted that the true positive rate is

also directly correlated with the strength of the gradient potential.

It can be seen that, regardless of the internal energy representation used, the active contour

algorithm is able to detect all variations of the track structure. There are limitations to this, ho-

wever; tracks that have a gradient greater than 4Hz/s are beyond the deformable capabilities of

the contour or the generalisation capabilities of the potential energy. Sinusoidal tracks are detec-

ted with a high probability at SNRs above 3.5 dB (with reference to the true positive detections

presented in Appendix A), and the same can be said for the detection of oblique tracks. Vertical

tracks are reliably detected at very low SNRs of around −1 dB.

5.4 Original Potential Energy

A second aim of the comparisons is to determine whether the potential energy proposed in this

thesis produces better detection performance than the original potential energy. Again, this as-

sessment is initiated by evaluating the weighting parameter’s sensitivity to different values, which

allows an appropriate combination of values to be selected for use during the experimentation. As

these variants of the algorithm are completely deterministic multiple repetitions yield the same

result and therefore results derived from one repetition of the experiments are presented.

5.4.1 Parameter Sensitivity

The line location accuracies that result from the use of the original potential energy (see Figure 5.9)

have much more complicated forms than those that resulted from the use of the novel potential

energy term (see Figure 5.3). Nevertheless, in a broad sense, the trends between the two are

similar. The LLA is proportional to the value of γ as is the case when using the novel potential

energy and the LLA is indirectly proportional to the strength of the gradient potential. When,

however, the behaviour of the LLA, as the value of the parameter γ increases, is analysed in

more detail it becomes apparent that there is a slight reduction in the LLA as the value passes

0.88. Therefore a strong influence from the potential energy, which defines the position of the

feature in the image, counterintuitively hinders performance, indicating that it is not suited to this

problem. The internal energy parameter β has an interesting form in this variant, its value has
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Figure 5.9: The mean line location accuracy of the training set detections as functions of each

variant of the algorithm’s parameter values. The results were obtained using the original poten-

tial energy (the pixel’s intensity). Whilst varying each of the parameters the remainder took the

following values: α = 0.1, β = 0.2, γ = 1 and c = 0.41

only a very small effect on the LLA. To gain a deeper insight into these results the proportion of

true positive detections and the mean probability of false positive detections per row are illustrated

in Appendix A, Figure A.15. The probability of false positive detections per row increase as the

value of β increases, and the number of true positive detections remains constant. The LLA must

therefore be optimising the location of the detection, which is offset with the probability of false

positive detections per row when combined to form the LLA measure. As has been mentioned, the

LLA of the gradient potential behaves similarly to that of the variants that use the novel potential

energy. The true positive detection rate is at its maximum in the range 0–0.5 and then declines

after this. The false positive rate also has a similar behaviour; information related to the accuracy

of the detections influence the LLA and the value 0.18 therefore results in the best track detection

accuracy. The LLA function of the parameter γ also has a similar behaviour; the maximum of this

function is reached at a value of 0.82, which is also the maximum of the true positive detections,

however, the mean probability of false positive detections per row at this point is very large, at

1.6 per row. As indicated by both the LLA and the proportion of true detections, the value of

the parameters controlling the internal energies, β and α, do not have any noticeable effect on

the performance of the contour and therefore these parameters are set to the values β = 0.66 and

α = 0.5. The maximum LLA when varying parameter c is reached at a value of 0.18.

5.4.2 Performance

The LLAs resulting from the application of the original potential energy to this problem are pre-

sented in Figures 5.10–5.12. The LLAs are unequivocally lower than those obtained using the

novel potential energy. As has been proved and discussed in Chapter 3, using the intensity values

of single pixels as features, in this setting, does not provide enough class separability to be able

to reliably detect the tracks. This is also evident in the probability of false positive detections per

row; with reference to Figures A.16–A.20 presented in Appendix A.2.3, the mean probability of

false positive detections per row of the spectrogram is, on average, sixteen times higher than that

found with the novel potential energy.

Referring to the examples of the detections made when using the original potential energy

presented in Appendix A.2.5, Figures A.27 and A.28, it becomes apparent that the algorithm is
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Figure 5.10: The mean line location accuracies of vertical track detections as functions of the spec-

trogram’s SNR. The results were obtained using the original potential energy (the pixel’s intensity)

and the original internal energies (the active contour’s weighted first and second derivatives).
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Figure 5.11: The mean line location accuracies of oblique track detections as functions of the spec-

trogram’s SNR. The results were obtained using the original potential energy (the pixel’s intensity)

and the original internal energy (the active contour’s weighted first and second derivatives).

not detecting anything meaningful in the spectrogram. The LLA is therefore giving weight to

false positive detections that are near to the true track location. This explains the absence of any

performance degradation as the complexity of the tracks increase and also as the SNR decreases.

That said, the oblique track case presents some degradation in the LLA as the complexity of the

track increases. Coincidently, it can also be seen that the probability of false positive detections

(Figure A.17b) reduce in these spectrograms, which is the case for all variants of the algorithm,

and therefore the LLA is apparently affected by a reduction in the number of false positives, rather

than the complexity of the track leading to fewer detections.

The inappropriate nature of this form of potential energy when applied to this problem is

furthermore supported by the fact that, the optimal value for the parameter γ has been found to

be less than its maximum value. Moreover, the probability of false positive detections is directly

proportional to the potential energy’s influence (see Figure A.15 in Appendix A.2.3).

5.5 Multiple Versus Individual Track Detection

The final hypothesis that this chapter has set out to prove is; the detection of harmonic patterns of

tracks, as opposed to individual tracks, increases detection performance. To ascertain the answer

to this question, a variant of the algorithm that uses information derived from the fundamental

track position, whilst adopting the novel potential energy and the original internal energy, is eva-

luated and the results are compared with those presented in Section 5.3. Those results having
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(a) Ten second period.
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(b) Fifteen second period.
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(c) Twenty second period.

Figure 5.12: The mean line location accuracies of sinusoidal track detections as functions of the

spectrogram’s SNR. The results were obtained using the original potential energy (the pixel’s in-

tensity) and the original internal energy (the active contour’s weighted first and second derivatives).

been obtained using information derived from the fundamental in addition to the harmonic series,

are therefore compared with the results obtained using information derived from the fundamental

position alone.

The effect of removing the averaging process upon the contour’s search space is that false

positive detections will be stronger. It is therefore necessary to determine the force of the gradient

potential that will be used with the single contour as this controls the contour’s ability to pass over

false positive detections. An analysis of the LLA as the parameter’s value changes is presented in

Figure 5.13. As expected, a higher value for the force of the gradient potential than that used for

multiple track detection is necessary to induce a high LLA. Therefore, the parameter c will have

the value 0.72 throughout the experiments presented in this section. The remaining parameters are

fixed at the values found previously, i.e. α = 0.96, β = 0.22 and γ = 1.00.
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Figure 5.13: The mean line location accuracy of training set detection as functions of each variant

of the algorithm’s parameter values. The results were obtained from five repetitions of the expe-

riment using the potential energy proposed in this thesis. The mean standard deviations of this

function is 0.0204, a full list of the standard deviations is presented in Appendix A.2.6, Table A.7.

Whilst varying each of the parameters the remainder took the following values: α = 0.10,

β = 0.20, γ = 1.00 and c = 0.41.
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Figure 5.14: The mean line location accuracies of vertical track detections as a function of the

spectrogram’s SNR. The results were obtained using the potential energy proposed in this the-

sis and the original internal energy (the active contour’s weighted first and second derivatives).

The mean standard deviations for the function is 0.0014, a full list of the standard deviations is

presented in Appendix A.2.6, Table A.8.

5.5.1 Performance

The results of applying a single contour to the detection of vertical fundamental tracks are pre-

sented in Figure 5.14. At SNRs higher than 0 dB the single contour has a LLA of almost one,

a mean increase of 0.2144 over integrating information from four harmonic locations (plus the

fundamental’s location). The true positive rate is, however, roughly equal at these SNRs (see Ap-

pendix A, Figures A.10a and A.22a). The difference in LLA is therefore reflecting the difference

in false positive rates, which are presented in Figures A.10b and A.22b in Appendix A. Due to the

increased gradient potential necessary to reach the single contour’s maximum performance upon

the training set, the single contour produces no false positive detections and this increases its LLA.

Below a SNR of 0 dB the single contour’s true positive rate falls and consequently the LLA de-

creases to a mean of 0.1150 below that of the multiple contour detection. When detecting oblique

tracks, integrating information from multiple locations increases the LLA in all cases except for

1Hz/s gradient tracks at SNRs greater than 5 dB (in which case the LLA is, on average, 0.0445

higher when using a single contour), see Figure 5.15. Below this point the LLA of simultaneous

multiple track detection is, on average, 0.4636 higher than single contour detection. The LLA
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Figure 5.15: The mean line location accuracies of oblique track detections as functions of the

spectrogram’s SNR. The results were obtained using the potential energy proposed in this thesis

and the original internal energy (the active contour’s weighted first and second derivatives). The

mean standard deviations for the each function is: 1Hz = 0.0100, 2Hz = 0.0062, 4Hz =
0.0014, 8Hz = 0.0002 and 16Hz = 0.0000, a full list of the standard deviations is presented in

Appendix A.2.6, Table A.9.
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Figure 5.16: The mean line location accuracies of sinusoidal (ten second period) track detections

as functions of the spectrogram’s SNR. The results were obtained using the potential energy pro-

posed in this thesis and the original internal energy (the active contour’s weighted first and second

derivatives). The mean standard deviations for the each function is: 1% = 0.0073, 2% = 0.0054,

3% = 0.0042, 4% = 0.0057 and 5% = 0.0029, a full list of the standard deviations is presented

in Appendix A.2.6, Table A.10.

achieved when integrating information from multiple locations has a mean LLA that is 0.2747,

0.1245, 0.0403 and 0.0247 higher for the cases of detecting oblique tracks that have gradients of

2Hz/s, 4Hz/s, 8Hz/s, and 16Hz/s respectively.

A similar trend is observed in the detection of sinusoidal tracks that have a period of ten

seconds, the results of which are presented in Figure 5.16. At a centre frequency variation of 1%

the detection of single tracks outperforms that of multiple tracks by a mean LLA of 0.1206 at SNRs

above 3.5 dB. Below a SNR of 3.5 dB, however, the integration of information from multiple track

positions drastically outperforms the single track detection by a LLA of 0.3355. When the track

has greater centre frequency variation, the single track detection strategy falls behind the multiple

track detection strategy, which results in mean LLAs that are 0.2497, 0.2456, 0.2318 and 0.2294

higher for centre frequency variations of 2%, 3%, 4% and 5% respectively.

As the period of the sinusoidal track increases, the detection of harmonic tracks, in addition

to the fundamental track, follow a similar pattern; excluding tracks that have a centre frequency

variation of 1% and that have a high SNR (greater than 4 dB when the period is 15 seconds and

greater than 3 dB when the period is 20 seconds), integrating information from multiple locations
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Figure 5.17: The mean line location accuracies of sinusoidal (fifteen second period) track de-

tections as functions of the spectrogram’s SNR. The results were obtained using the potential

energy proposed in this thesis and the original internal energy (the active contour’s weighted first

and second derivatives). The mean standard deviations for the each function is: 1% = 0.0069,

2% = 0.0060, 3% = 0.0039, 4% = 0.0031 and 5% = 0.0021, a full list of the standard deviations

is presented in Appendix A.2.6, Table A.11.
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Figure 5.18: The mean line location accuracies of sinusoidal (twenty second period) track de-

tections as functions of the spectrogram’s SNR. The results were obtained using the potential

energy proposed in this thesis and the original internal energy (the active contour’s weighted first

and second derivatives). The mean standard deviations for the each function is: 1% = 0.0063,

2% = 0.0074, 3% = 0.0049, 4% = 0.0039 and 5% = 0.0028, a full list of the standard deviations

is presented in Appendix A.2.6, Table A.12.

outperforms the detection of single fundamental tracks in all the experiments, the results of which

are presented in Figure 5.17 and Figure 5.18. Sinusoidal tracks having a period of fifteen seconds

are detected with a mean LLA difference of: 0.2010, 0.3027, 0.2804, 0.2778 and 0.2567. Sinusoi-

dal tracks having a period of twenty seconds are detected with a mean LLA difference of: 0.1866,

0.3274, 0.3009, 0.2993 and 0.2810. A number of examples of detections that are the result from

this variant of the algorithm are presented in Appendix A.2.5, Figures A.27 and A.28.

Fewer false positive detections have occurred during this experiment than occurred when inte-

grating information from harmonic locations. This is due to the necessity of increasing the gradient

potential, which in turn reduces the number of true positive detections.

5.5.2 Discussion

Predominantly, integrating detections from harmonically related positions in the spectrogram en-

hances detection rates. Very low false positive rates have been produced during the single contour

experimentation and in most cases no false positive detections were observed at all. This would
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seem to contradict the proposition that integrating information from harmonically related posi-

tions reduces the potential energy’s response to false positive detections, however, it is necessary

to increase the gradient potential in the single contour case to realise the algorithm’s maximum

performance upon the test set. This consequently reduces the false positive rate, but has the di-

sadvantage of reducing the contour’s sensitivity to low SNR tracks. Unexpectedly, however, the

enhancement of detection rates is not always realised; in some cases, particularly with near verti-

cal tracks at high SNRs, the single contour detection capabilities, reflected in its LLA, outperform

those of integrating information from multiple positions. It seems, however, that this is misleading.

The proportion of true positive detections presented in Appendix A, demonstrate that integrating

information from harmonically related positions increases the number of true positive detections.

It is in fact the extremely low rates of false positive detections, realised by increasing the gradient

potential of the single contour, which increase the LLAs.

It is obvious throughout the results that integrating information derived from harmonic loca-

tions offers a large amount of resilience to SNR degradation, independently of the track’s structure.

5.6 Further Discussion

After analysing each experiment in detail it is now possible to discuss some general findings with

respect to the proposed algorithm.

5.6.1 Active Contour Algorithm

It has been shown during optimisation that the value of the parameter α has very little influence on

the detection performance of the algorithm. This was observed in two variants of the algorithm,

each using one of the two potential energies discussed in this thesis. It is not possible to conclude

the reason for this behaviour without additional investigation, however, it could potentially be due

to an overlap of the salient information captured by the first and the second derivatives (the conti-

nuity and curvature) of the active contour. The parameter β behaves similarly in both algorithm

variants, the key difference is that the maximum of the LLA is reached at a higher value in the

original variant when compared with the Perrin variant, and this indicates two possibilities: the

first that the Perrin energy captures more salient information and therefore its influence does not

need to be as strong as the original internal energy; the second, the opposite, the Perrin energy does

not capture the correct information and so it is beneficial to reduce its influence. The experimental

evidence favours the former; the Perrin variant achieves similar or higher LLAs compared with

the original variant at the higher SNRs and therefore, even whilst having a lower influence on the

contour’s energy, it produces comparable results. Generally, however, high weighting of the inter-

nal energies restricts the contour’s ability to deform and evolve, resulting in a large degradation

in the detection performance and an increase in the probability of false positive detections. The

gradient potential, as designed, acts as a means of controlling false positive detections; a high gra-

dient potential force reduces the probability of false positive detections and a low force increases

them. It is therefore akin to a threshold and, as such, increasing its value has the concomitant effect
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of reducing the number of true positive detections—a balance that should be a point of attention

when selecting the parameter’s value.

Moreover, the novel potential energy introduces the capability of detecting multiple tracks

simultaneously. Integrating over harmonic positions in this way reduces the potential energy’s

response to false positive detections (as noise is not harmonic), which translates into a reduction in

the strength of the gradient potential force, and creates a more finely balanced and sensitive detec-

tion strategy. Principally, the active contour algorithm, when utilising the novel potential energy,

has proven to be a reliable method for extracting unknown shaped tracks in spectrograms. Moreo-

ver, the potential energy proposed in this thesis produces far fewer false positive detections when

compared with the original potential energy, promoting its suitability to the problem. Increasing

the influence of the original potential energy upon the contour’s energy results in an increase in

the probability of false positive detections, and the optimal value for the weighting of this energy

is below its maximum. Contrarily, as the novel potential energy’s influence upon the contour’s

energy is increased, there is a relatively stable probability of false positive detections.

5.6.2 Relation to Existing Methods

It is now possible to relate this research to existing techniques found in the literature. Chapter 2

presents a review of a number of methods that have been proposed and that are based upon some

form of deformable model. Di Martino et al. introduce a number of perceptual track features de-

rived from feature grouping theory [55] and these features are defined to be: frequential curvature

regularity; temporal continuity; high average intensity; and high point density. Equivalences to

these features are present in the active contour model proposed in this thesis. The frequential

curvature, temporal continuity and point density are defined to be the continuity and curvature bet-

ween pixels in the spectrogram and is synonymous with the internal energies of an active contour.

High amplitude is taken to be the pixel’s intensity value, which is equivalent to the original inter-

nal energy evaluated in this chapter. These features are also utilised in other work proposed by

the same authors [54], the primary difference between the two being the method of searching for

the instances of pixel groups that fulfil the criteria. The first proposal is to perform an exhaustive

search between all pixels in the spectrogram, evaluating their cost function, and selecting those

that result in high values. The second uses a self organising map and tests its convergence for

the presence of a track using a cost function. Nevertheless, this chapter and the investigation into

low-level feature detection presented in Chapter 3, have demonstrated the weakness of such me-

thods when applied to low SNR spectrograms. The results presented have shown that relying upon

individual pixel’s amplitude results in poor detection performance at low SNRs. Furthermore, the

active contour’s energy minimisation has a far lower computational burden (whilst ensuring an

even search throughout the spectrogram) as the multi-stage decision process conducts an exhaus-

tive search between each and every pixel.

In addition to these methods, Di Martino and Tabbone [56] propose a similar cost function

that also incorporates the track’s amplitude and the slope between two pixels (an approximation

to the first derivative), but from which the curvature (the second derivative) is removed. Initially,

candidate locations of the spectrogram are identified for further processing within a stage that
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applies Gaussian filtering. In an analogous fashion to the authors’ previous work, the cost function

subsequently groups pixels within the identified regions into track structures. This simplifies the

algorithm’s complexity by removing the need for exhaustive searches, however, it introduces the

caveat that the subsequent pixel grouping is dependent upon the power of the initial detection

process; any weak tracks that are overlooked in the initial stage are removed from the solution.

This caveat is circumvented by the energy minimisation process drawn on by the active contour,

which ensures an even search throughout the spectrogram. To impart dispersion of knowledge,

this, and the author’s previous work, could benefit from the insight into the description of curvature

and continuity of a feature that is afforded by the numerous contributions to the active contour

research area. Moreover, it is possible to augment the simplistic features of individual pixel values

used to identify tracks by these methods by the potential energy proposed in this thesis.

Methods which make use of the hidden Markov model [190, 137] maximise the probability

of a track based upon the observation (the current row of a spectrogram) and the model’s state

transition probabilities. Track structures that are unlikely, are therefore unaccounted for in this

representation, can be mismodelled. To overcome this limitation, a solution using multiple track

models, to be used in parallel, has been proposed [175]. The additional complexity resulting from

this solution is avoided with the active contour algorithm as its internal energies afford great flexi-

bility. Moreover, the transition matrix of the hidden Markov model can be loosely interpreted as a

probabilistic method for learning the form of the internal energy that is applicable to the problem.

As such, maximising the probability is therefore tantamount to minimising a cost function that de-

fines the permitted model deformation. The distinct backgrounds of the hidden Markov model and

the active contour prevent ready insight into the possibility of transference between the two algo-

rithms. Nonetheless, the potential energy proposed by this thesis was first defined in Chapter 3 as

a standalone low-level feature detector that outputs the probability of detection. As such, it should

be possible to use this low-level feature detector in conjunction with the hidden Markov model to

increase the reliability of the existing hidden Markov model solutions presented in Section 2.3.4.2,

which derive probabilities from single pixel values.

Correlation methods such as that presented by Altes [8] are classed as ‘optimal’ detectors,

as defined in Chapter 3. These methods test hypotheses by correlating a template, or reference

spectrogram, with the spectrogram being analysed. As is shown in Section 3.2, correlation me-

thods are computationally expensive as they form large search spaces in which the true detection

needs to be located. The active contour model can be interpreted as a flexible correlation method,

which, because of deformation and efficient energy minimisation (see Section 4.3) removes the

computational burden associated with correlation based detectors.

Unfortunately, it is not possible to directly compare the results presented in this chapter to those

presented by Di Martino and Tabbone [57], who first used the line location accuracy measure in

this application, as the value of the LLA parameter λ used to derive their results is not known.

5.6.3 Line Location Accuracy

The line location accuracy has been used to optimise the parameter values and to measure the

performance of the algorithms during the evaluation presented in this chapter. This performance
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measure aggregates three pieces of information: the true positive rate; the false positive rate; and

the location of the true positive detections. As such, optimisation using this measure forms a

balance between the three detection criteria. One way in which this balance could manifest itself

would be to improve true positive detections at the expense of false positive detections or detection

location accuracy. Predominantly, this measure has lead to the selection of parameter values that

provide acceptable performance. Nevertheless, fewer false positive detections could be obtained

by raising the gradient potential force above the value that the LLA measure indicates is optimal

(obviously this would have consequence upon the number of true positive detections). Moreover,

depending upon the specific application, some of the aspects of the LLA measure may be more

important than others. For example, in some applications it may be more desirable to identify the

presence of a source in a particular time frame. To know that the algorithm has detected the source

at a specific frequency may be secondary or unnecessary. Relaxing conditions such as this affords

the tuning of parameters to maximise true-positive detections at the expense of location accuracy.

5.7 Summary

This chapter has presented a thorough evaluation of the spectrogram track detection algorithm pre-

sented in the previous chapter. In doing so, the benefits of the novel potential energy, the internal

energy proposed by Perrin and Smith and the detection of a harmonic series of tracks, when ap-

plied to the problem of spectrogram track detection, were each evaluated. It has been determined

that the Perrin internal energy achieves, and often surpasses, the LLA achieved by the original

internal energy at the higher SNRs. As the SNR degrades further, however, the original internal

energy produces higher LLA scores. Nevertheless, the probability of false positive detections that

occur using the Perrin internal energy are over a factor of ten lower than those occurring with the

original internal energy. It is therefore possible that the original internal energy produces better

localisation results and that the Perrin internal energy, although producing greater specificity, over-

runs the target contour, which is a common condition when introducing forces such as the gradient

potential.

The novel potential energy proposed in this thesis greatly improves the algorithm’s detection

capabilities. It has been shown that using the original potential energy formulation results in

very low LLA. This, in conjunction with the high probability of false positive detections that also

occur, indicate that the algorithm fails to detect anything meaningful in the data. The integration

of information from harmonic locations also proves to increase the LLA.

Finally, a discussion has been presented that relates the findings of this chapter to existing

work in the area. It has been shown that the multi-stage decision processes that optimise cost

functions are similar to the energy minimisation used in the proposed algorithm. The energy mi-

nimisation technique used by the active contour, however, is far less computationally expensive

whilst ensuring an even search throughout the spectrogram. It has also been proposed that the

amplitude features that these cost functions depend upon could be substituted for the proposed

potential energy to enhance the method’s detection rates. It has also been discussed that the mea-

sures of continuity and curvature employed by the cost functions could benefit from research into
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the forms of the active contour internal energies. The proposed algorithm has also been related

to existing detection methods that utilise the hidden Markov model and it was proposed that the

low-level feature detector that the potential energy is based upon could also enhance the detection

rates of these algorithms.



Chapter 6

Conclusions

“On the mountains of truth you can never climb in vain:

either you will reach a point higher up today,

or you will be training your powers

so that you will be able to climb higher tomorrow.”

— Friedrich Nietzsche, 1844–1900.

This thesis tackles the problem of detecting non-stationary quasi-periodic phenomenon in

time-series data. This problem is expressed as the detection of tracks in spectrograms, which

finds application in many remote sensing problems, and a formal definition of this problem is out-

lined in Section 1.2. The research presented is preceded by a taxonomy, review and survey of

existing algorithms from the literature (see Chapter 2), which has led to the identification of short-

falls in current research, and has motivated solutions to these issues. Chapter 3 addresses one such

shortfall by presenting a full investigation into low-level feature detection. Subsequently, a novel

high-level detection algorithm based upon the active contour algorithm, which allows for flexible

modelling of unknown track structures, is presented in Chapter 4. The active contour algorithm

finds parallels with some aspects of the existing research applied to this problem and overcomes

some of their limitations (see Section 5.6.2). This high-level algorithm integrates the findings of

Chapter 3, namely the low-level feature detection methods and the harmonic integration, into an

energy minimisation process. The strengths and weaknesses of the proposed algorithm are em-

pirically evaluated in Chapter 5, where it is applied to the detection of tracks in a number of test

scenarios. Additionally, Chapter 5 evaluates the benefits of each of the novel solutions that have

been proposed in this thesis through an empirical comparison to the original algorithm [96].

This thesis’ main conclusions are:

• It is concluded in Chapter 2 that many of the existing algorithms applied to the problem of

spectrogram track detection rely upon simple low-level feature detection mechanisms;

• Chapter 3 shows that low-level feature detectors based upon single pixel values produce

unreliable detection results;

137
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• Chapter 3 also demonstrates that integrating spatial and structural information into the low-

level detection process increases detection reliability;

• Utilising dimensionality reduction techniques during low-level feature detection has been

shown in Chapter 3 to reduce computational burden but also to reduce detection rates;

• Integrating information from harmonic locations within the spectrogram reduces the va-

riance of pixel values, and therefore, improves the reliability of low-level feature detection

(see Section 3.4 and Section 5.5);

• The internal energy proposed by Perrin and Smith [141] closely models the track structure

that can be observed in spectrograms (see Section 4.2.3) and results in slight improvements

in the detection rates when compared with the original internal energy formulation (see

Section 5.3);

• The active contour’s original potential energy, which relies upon distinctions between single

pixel values, is not suitable in this application (see Section 3.3.2) and fails to achieve reliable

detection results when applied to detecting tracks in spectrograms (see Section 5.4);

• The potential energy proposed by this thesis (see Section 4.2.2), which is based upon low-

level feature detection strategies (see Chapter 3), effectively facilitates the active contour’s

application to the problem of spectrogram track detection (see Sections 5.3, 5.4 and 5.5).

Following from these, the active contour algorithm proposed in Chapter 4 has fulfilled the thesis

proposition (see Section 1.3) as an effective method, which incorporates and extends existing me-

thodologies for detecting tracks that have a wide variety of structural configurations at low SNRs.

Empirical and theoretical evidence for this claim is presented throughout this thesis. Therefore, in

general, this is a new application of a developed idea, which leads to new results. In conducting

this research several obstacles have been encountered, and a reflective discussion follows.

Existing research on spectrogram track detection has been found to lie in disparate areas of

computer science and mathematics (see Table 2.2 in Section 2.2). Moreover, much of the research

has been conducted in conjunction with governmental agencies, with limited data, and is subject to

sensitivity clauses. As such, there existed no coherent and encompassing work that fully described

the state of the art and the field itself. This offered the opportunity to survey research that is

applied to the detection of tracks in spectrogram images and to advance an original and important

contribution to the research community, this contribution is presented in Chapter 2.

The disparity of existing research has made it hard to determine equivalences in existing me-

thods, to view it as a whole, and consequently, to ascertain a clear initial research direction. The

locus of the initial investigation in Chapter 3 is therefore centred on the lowest level of abstraction

afforded when posed as a computer vision and pattern recognition problem—low-level feature

detection [71]. From this viewpoint, statistical machine learning techniques based upon the sim-

plest decision boundaries [60] have been applied and limitations discussed (see Section 3.1.1).

Increasing the amount of information available to feature detection mechanisms with increasing

complexity has allowed their construction in a systematic and rigorous way, ab initio (see Sec-

tions 3.1.2 and 3.1.3). Mathematical concepts like dimensionality reduction [92], and machine
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learning techniques [129] like neural networks [28] are applied to strike a balance between model

specificity and complexity (see Section 3.2).

The process of this low-level investigation allows for the algorithms presented in the literature

review to be thought of in terms of pattern recognition processes, and for their low-level feature

detection capabilities to be related to the evaluated strategies (see Section 2.5). Under this light, a

majority of the existing methods have been found to utilise very basic low-level feature detection,

many of which utilise information derived from single pixels and ignore the spatial and structural

information which exists in the spectrogram (see Chapter 2, in particular Section 2.5).

Subsequently, the active contour [96] is developed for use as a high-level [71] track detection

algorithm (see Chapter 4). Commonalities with existing algorithms that have been applied to this

problem are identified in Section 2.5 and Section 5.6.2, and limitations that it overcomes are iden-

tified in Sections 2.4.2 and 5.6.2. More specifically, the proposed algorithm offers: the ability to

perform an even search of the whole spectrogram (see Section 4.2.1) at low computational burden

(see Section 4.3); the ability to model rapidly varying and unknown structure (see Section 4.2.3);

and allows for the integration of low-level feature detection methods (see Section 4.2.2). An

even search of a spectrogram is ensured by the introduction of a gradient potential, however, this

can also cause localisation errors to occur [89] as the contour can overrun the true position (see

Section 5.3.3). The technique’s ability to generalise to unobserved cases has been maximised in

Section 4.2.2 by explicitly modelling the noise distribution and not the track class. Consequently,

the proposed algorithm solution has been shown in Chapter 5 to allow for the detection of a great

variety of track structure using one model. This dissection of ideas portrays the intricate nature

of research in the this field: interdependencies are inherent and non-linear in nature, lending to

complex solutions.

Due to the nature of the real-world data, and the absence of a publicly available data set, the

development and evaluation of the algorithm (see Chapter 5) was achieved using synthetic data.

The data set has been designed in collaboration with QinetiQ Ltd. to match real-world data as

closely as possible, and opportunities to evaluate the approach using real-world data have proved

the algorithm’s viability. The data set described in Section 3.3.1 has been designed to contain

low signal-to-noise ratio tracks to determine the limitations of the algorithm (see discussions in

Chapter 5). Nevertheless, even the most carefully designed synthetic data set is no substitution for

real-world examples and, therefore, aspects of an algorithm developed as such should be further

developed to guarantee its suitability. To facilitate this, the development of the algorithm in Chap-

ter 4 has been described in a modular approach, the necessary conditions for the substitution of

components of the algorithm, such as the potential energy, have been outlined (see Section 4.2.2).

Developments of this sort are further discussed in the ‘Future Work’ section below. The algo-

rithm’s applicability to real-world spectrograms in its current state is, however, demonstrated in

Figure 6.1 by applying it to the detection of a track produced by a fishing vessel.

Nonetheless, there are advantages for the use of a synthetic data set: its use has allowed for the

evaluation presented in Chapter 5 to be performed upon an extensive data set which spans the wide

range of test cases described in Section 3.3.1, far grater than would be afforded with real-world

data. In addition to this, accurate ground-truth data is readily available (again in Section 3.3.1),
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(a) An example of a real spectrogram

image where intensity represents log(S).
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(b) The detection resulting from using the

active contour algorithm, where the para-

meter values are c = 0.17, α = 0.10,

β = 0.20 and γ = 1.00.

Figure 6.1: An example of real-world track detection. The active contour model used to produce

this result utilised the original internal energy and the novel potential energy proposed by this

thesis.

which would also not be the case with real-world data. Evaluating the algorithm in this way has

added weight to some of the theoretical arguments put forward by this thesis, such as the develop-

ment of the low-level feature detector (see Chapter 3), gradient potential (see Section 4.2.1) and

internal energy model (see Section 4.2.3). Quantitative results have been presented in Chapter 5 to

encourage the comparison of results between research. Many of the papers reviewed in Chapter 2

present qualitative results (see Section 2.3), for example Di Martino et al. [55], Scharf and Elliot

[162], Streit and Barrett [169], Shin and Kil [165], using data that is not available for compari-

son. To further encourage the dissemination of results, the data set and experimental code used

throughout this investigation accompany this thesis (please refer to the included DVD for details).

A consequence of the lack of quantitative results is that no standard metric existed for the

evaluation of such an algorithm. The few researchers who present quantitative results have adopted

the Line Location Accuracy (LLA) measure [145] (see Section 5.1), which provides an objective

aggregation of the number of true positive detections, false positive detections, and a measure of

the detection’s location accuracy. Issues relating to this aggregation are discussed in Section 5.6.3,

predominantly, however, the measure produces desirable balances between the aggregated parts

(see Section 5.3).

Empirical evidence using the line location accuracies derived from direct comparisons, in

conjunction with theoretical analyses, has demonstrated the necessity and benefits of the novel

solutions, as shown in Sections 5.3, 5.4 and 5.5. Each aspect of the proposed active contour al-

gorithm has been evaluated in isolation to ensure a fair comparison, and to give credence to the

interpretations (also presented in Sections 5.3, 5.4 and 5.5). Moreover, the potential energy em-

ployed has undergone extensive evaluation as a low-level feature detector (see Chapter 3). This

evaluation has involved the calculation of Receiver Operating Characteristics (ROC) [65] using an

extensive data set. The ROC has long been used in signal detection theory [63], and is increasingly

being used in the machine learning community to characterise the trade-off between true positive

and false positive detections [65]. This measure allows classifiers to be organised and selected
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based upon their performance.

To re-iterate what has been stated in the introduction of this thesis, this research has focussed

on the detection of tracks in spectrogram images, a problem into which any time series data that

contains narrowband quasi-periodic phenomenon can be transformed. Although this research has

focussed on the application of passive sonar for the detection of mechanical devices, many other

directly related acoustic problems exist: marine mammal monitoring [130, 125], speech formant

tracking [163], engine vibration monitoring and wolf population monitoring [61], to name but a

few.

6.1 Future Work

Included in this section is a discussion of possible future research directions that have arisen as a

result of the research presented in this thesis. Some of the suggestions specifically apply to the

proposed algorithm, whilst others are general problems which exist in the research area.

6.1.1 Track Association

In can occur that multiple tracks exist in a spectrogram and that at some point in time they cross

each other. High-level processing may require complete tracks to be extracted from the spec-

trogram and this occurrence complicates the matter. A number of algorithms are able to detect

crossing tracks [3, 55, 98], including the one proposed in Chapter 4, however, it is still left to sepa-

rate them into distinct tracks. This limits the ability of high-level algorithms to uniquely associate

the state of each source during and after the crossing occurs and, therefore, over the whole length

of the track. Mellema has recently proposed a technique to associate piece-wise sections of a track

that has undergone temporal discontinuities, or, to associate multiple simultaneous tracks origina-

ting from a common harmonic series [124]. This would logically extend to the case of crossing

tracks, however, this has not been explicitly investigated as it falls outside of the scope of this

thesis. Integrating this type of track association into existing detection algorithms could improve

detection rates and eliminate the need for post-processing of the detections. Existing solutions

that currently achieve this are based upon the hidden Markov model and integrate information

about the track’s gradient into the state representation [137, 190]. The limitations relating to these

algorithms have been fully discussed in Chapter 2.

6.1.2 Ambient Noise

A consequence of conducting the algorithm’s development on synthetic data is that the potential

energy may need to be developed further to account for more complex noise conditions that can

be encountered in application. One such condition is the temporal noise variation that may be

observed in the sea, a limitation that exists in a number of algorithms present in the literature

(see Table 2.3 and the remainder of Chapter 2). Much of the variability in the sea’s ambient

noise is caused by changing dominant sources [174]. Dominant sources of ambient noise in the

sea which affect the frequency ranges of concern (10Hz–1 kHz) are identified by Urick [174] as
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being shipping noise and wind noise. Distant shipping (greater than 1,000 miles away) and local

shipping can produce broadband ambient noise in the range of 50–500 Hz [182] (it is also possible

that distant storms act similarly [174]). Ambient noise has also been shown to be correlated with

local wind speed [142], the direct mechanism causing the noise is still uncertain Urick [174],

however, theoretical research has indicated that wind can produce noise in the frequency range of

0.1–1 kHz [174]. In the absence of ambient sources (such as distant shipping) wind speed becomes

the dominant factor of the background noise levels [174]. Consequently, ambient noise sources

remain relatively constant, noise levels in the sea remain relatively constant, and therefore, the

proposed potential energy is sufficient. For a detailed discussion on these and further sources of

ambient noise the reader is referred to “Principles of Underwater Sound” by Urick [174].

The effects of temporal variation of the ambient noise on the final spectrogram is still rela-

tively unclear, and the design of the sensing apparatus can greatly influence this effect [174]. A

hydrophone located in the sea receives pressure waves from a large radius and the contribution

from local weather changes and ambient noise is directional [174]. Therefore, these contributions

become averaged over a large volume. Consequently, it can be expected that local conditions will

not effect the background noise dramatically, permitting the use of the existing potential energy,

and normalisation of the spectrogram [72] can correct for any variations that do occur.

As discussed, the algorithm presented in this thesis does not explicitly model temporal fluctua-

tions of noise. Solutions to this issue that are present in the literature are discussed in Chapter 2.

A simple rectification, which is proposed in Section 4.2.2.4, is to update the mean of the distri-

bution to that of the observed data (tracks in the spectrogram account for a very small fraction of

the observed data and their effects on the mean could be ignored or accounted for through bias

estimation), however, this has not been evaluated and would be an interesting future development.

6.1.3 Clutter

Distinct to the problem of temporal noise variability is the general problem of clutter, a problem

which affects all remote sensing mechanisms: radar [78, 87]; passive sonar [174]; and active sonar

[64, 15]. Clutter is caused by phenomenon which produce unwanted target-like features in the

received sonar or radar data and can be caused, in the underwater environment, by: explosions;

earthquakes and volcanoes; shipping; biological noise; and rain [174]. The difficulty attributed to

this problem is that its sources, biological in particular, form an unpredictable part of the ambient

background [174].

As such, there are three methods to deal with clutter: integrate a priori knowledge regarding

the clutter into the detection algorithm itself [14, 110]; identify and remove the clutter using a pre-

processing stage [118, 14]; or identify false detections resulting from clutter in post-processing

[110]. There exists much research into the modelling of clutter in active sonar [70, 12, 132, 18],

however, such research is lacking in the case of passive sonar.

The averaging process formulated in the algorithm proposed in Section 4.2.2 reduces the

chance of false positive detections resulting from clutter assuming that it is not harmonic in nature.

Nevertheless, false positive detections in passive sonar that result from clutter are a real problem

for current algorithms and should be the focus of future investigation. One possible solution that
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could be applied to detection algorithms, in particular that presented in this thesis, is to explicitly

model the track class and augment the noise model with this information (a further discussion is

presented in Section 4.2.2.4). This dependency upon a track model, however, would reduce the

algorithm’s ability to generalise to unknown track structure.

6.1.4 Automatic Determination of Harmonic Features

One of the contributions of this thesis is a track detection algorithm which aims to boost detection

rates in low signal-to-noise ratio spectrograms by integrating information from locations defined

by harmonic relationships (see Chapter 4). These relationships, the relative frequencies between

tonal harmonics and the fundamental frequency, are a result of the mechanical components within

a source which are typically identified as being the propulsion and auxiliary machinery (engine,

motors, reduction gears, generators and pumps etc.) [174]. Algorithms of this sort can be tailored

to function as detection mechanisms for a particular source in the case that harmonic relationships

are not defined as integer multiples but as some arbitrary linear relationship. Currently, these har-

monic relationships are manually determined, either through observation, or, through analysis of

a source’s mechanical structure. In remote sensing applications it may not be possible to have

a priori knowledge regarding a source’s mechanical components. Moreover, different operating

conditions may excite or inhibit the mechanisms that produce particular harmonics, and there-

fore, the components that are observed. This complicates the manual identification of a source’s

identifying harmonics. Machine learning techniques can be applied to this problem, automatically

learning the linear relationships of harmonic components that identify the source within varying

conditions. One drawback of supervised machine learning is the requirement of manually labelled

ground-truth data. If this is not available, there are two approaches to overcome this requirement:

utilising unsupervised learning techniques removes the requirement for ground-truth data; or em-

ploying supervised learning techniques using noisy, automatically generated, ground-truth data.

This noisy ground-truth data can be generated using a detection mechanism that has a high true

positive, as well as a high false positive detection rate, which is a common trade-off when perfor-

ming detection within noisy data. If a suitable supervised machine learning technique is applied,

and enough training data is available, the relationships between true frequency components, which

are common between multiple observations, are likely to be reliably discovered.

An additional complication in the automatic discrimination of sources based upon harmonic

components is that subsets of these components belonging to distinct sources may overlap. The

degree to which these overlap will directly influence a system’s ability to distinguish between the

sources that share common subsets. Multi-objective optimisation can be employed to minimise

these effects by determining the optimal combination of components that uniquely identifies each

source with respect to all other sources. Thus, optimising the system’s ability to discriminate

between sources. This type of optimisation problem is an ideal application of supervised ma-

chine learning techniques that are able to optimise complex hypotheses. Evolutionary computing

methods, such as genetic algorithms, are one such technique [129]. These stochastic search algo-

rithms search a large space of hypotheses, progressively refining multiple competing hypotheses

until an optimal solution is found according to a predefined fitness function. As these algorithms



144 CHAPTER 6. CONCLUSIONS

perform searches in large spaces the optimisation can take time. Nevertheless, once the system has

been designed, the optimisation is a fully automatic process which is performed off-line and only

needs to be repeated when a new set of sources are to be included.

As such, two areas in which the application of machine learning techniques could improve

existing systems have been identified as a result of the research presented in this thesis. Namely, the

automatic identification of reliable time-invariant features for remote sources, and the optimisation

of these features for source discrimination and detection, as discussed in this section.
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Additional Diagrams

A.1 Chapter 3

In this section of the appendix is presented the additional figures from Chapter 3.
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Figure A.1: PCA low-level feature detection performance as a function of the training set’s SNR

(SNRs have been rounded to the nearest 0.5 dB). The training sets consisted of 1,000 samples

of each class.
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(b) Signal performance.

Figure A.2: PCA low-level feature detection performance as a function of the window’s height

and width. The training set comprised of 1,000 samples of each class, the track class having a

SNR of −0.5 dB.
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A.2 Chapter 5

In this section of the appendix is presented the additional figures from Chapter 5.

Each figure represents the mean of five repetitions of each experiment in addition to the stan-

dard deviation of these repetitions, each repetition utilises a different random training set. Two

sets of results are presented for each experiment; the true positive performance, which is the pro-

portion of correct detections, i.e. those that are within five pixels of the true detection, and the false

positive performance, which represents the mean probability of additional detections per row of

the spectrogram within, plus those outside of, this range. All SNRs have been rounded to the nea-

rest 0.5 dB.

A.2.1 Perrin Internal Energy and the Proposed Potential Energy

This subsection presents the additional figures resulting from the experiments conducted upon the

active contour algorithm using the Perrin internal energy and the novel potential energy proposed

in this thesis (multiple track detection). These results are attributed to Section 5.3.
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(a) Proportion of true positive detections.
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(b) Mean probability of false positive detections per spectrogram row.

Figure A.3: The mean detection performance of the training set as functions of the algorithm’s

parameter values. Whilst varying each of the parameters the remaining took the following values:

β = 0.20, γ = 1.00, c = 0.41, and the potential energy’s window size was taken to be 3 × 21
pixels.
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(b) Mean probability of false positive detections per spectrogram row.

Figure A.4: The algorithm’s detection performance of vertical tracks as a function of the spectro-

gram’s SNR in addition to the mean probability of false positives per spectrogram row measured

during the experiment. The parameter values used were: β = 0.16, γ = 1.00, c = 0.36, and the

potential energy’s window size was taken to be 3× 21 pixels.
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(a) Proportion of true positive detections.
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4Hz/s 0.0000 0.0039 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000

8Hz/s 0.0067 0.0000 0.0000 0.0000 0.0000 0.0000 0.0062 0.0000 0.0000

16Hz/s 0.0000 0.0000 0.0000 0.0000 0.0020 0.0000 0.0026 0.0119 0.0000
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4Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0061 0.0006

8Hz/s 0.0000 0.0000 0.0049 0.0030 0.0000 0.0000 0.0047 0.0000 0.0015

16Hz/s 0.0032 0.0011 0.0000 0.0010 0.0021 0.0010 0.0010 0.0000 0.0015

(b) Mean probability of false positive detections per spectrogram row.

Figure A.5: The algorithm’s detection performance of oblique tracks as functions of the spectro-

gram’s SNR in addition to the mean probability of false positives per spectrogram row measured

during the experiment. The parameter values used were: β = 0.16, γ = 1.00, c = 0.36, and the

potential energy’s window size was taken to be 3× 21 pixels.
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(a) Proportion of true positive detections.
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2% 0.0000 0.0071 0.0022 0.0349 0.0606 0.0344 0.0189 0.0020 0.0237

3% 0.0378 0.0121 0.0068 0.0076 0.0416 0.0153 0.0478 0.0340 0.0367

4% 0.0134 0.0006 0.0711 0.0084 0.0581 0.0186 0.0485 0.0785 0.0151

5% 0.0260 0.0037 0.0428 0.0597 0.0443 0.0278 0.0259 0.0471 0.0795

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0127 0.0262 0.0139 0.0125 0.0031 0.0140 0.0137 0.0075 0.0179

2% 0.0077 0.0712 0.0049 0.0846 0.0370 0.0268 0.0295 0.0221 0.0275

3% 0.0302 0.0626 0.0128 0.0899 0.1639 0.2755 0.2578 0.3445 0.0869

4% 0.0270 0.1367 0.1566 0.2234 0.2282 0.3602 0.4030 – 0.1155

5% 0.0655 0.0526 0.1250 0.1493 0.1882 0.2305 – – 0.0779

(b) Mean probability of false positive detections per spectrogram row.

Figure A.6: The algorithm’s detection performance of sinusoidal tracks having a period of ten

seconds as functions of the spectrogram’s SNR in addition to the mean probability of false positives

per spectrogram row measured during the experiment. The parameter values used were: β = 0.16,

γ = 1.00, c = 0.36, and the potential energy’s window size was taken to be 3× 21 pixels.
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(a) Proportion of true positive detections.
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2% – 0.0294 0.0718 0.0319 0.0382 0.0163 0.0509 0.0188 0.0115

3% 0.0084 0.0042 0.0444 0.0200 0.0176 0.0249 0.0276 0.0051 0.0312

4% 0.0067 0.0533 0.0027 0.0306 0.0024 0.0073 0.0048 0.0020 0.0056

5% 0.0173 0.0251 0.0097 0.0028 0.0090 0.0260 0.0210 0.0070 0.0027

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0345 0.0284 0.0000 0.0187 0.0544 0.0150 0.0131 0.0183 0.0241

2% 0.0389 0.0014 0.0099 0.0012 0.0159 0.0067 0.0513 0.0049 0.0249

3% 0.0279 0.0134 0.0146 0.0022 0.0328 0.0171 0.0569 0.1490 0.0292

4% 0.0077 0.0349 0.0072 0.0331 0.0063 0.0558 0.0649 0.0889 0.0244

5% 0.0234 0.0091 0.0241 0.0384 0.0560 0.0190 0.0763 0.0000 0.0216

(b) Mean probability of false positive detections per spectrogram row.

Figure A.7: The algorithm’s detection performance of sinusoidal tracks having a period of fifteen

seconds as functions of the spectrogram’s SNR in addition to the mean probability of false positives

per spectrogram row measured during the experiment. The parameter values used were: β = 0.16,

γ = 1.00, c = 0.36, and the potential energy’s window size was taken to be 3× 21 pixels.
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(a) Proportion of true positive detections.
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4% 0.0000 0.0536 0.0116 0.0265 0.0235 0.0046 0.0306 0.0116 0.0310
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2% 0.0092 0.0075 0.0111 0.0217 0.0643 0.0001 0.0371 0.0060 0.0178

3% 0.0468 0.0198 0.0252 0.0498 0.0198 0.0201 0.0081 0.0626 0.0263

4% 0.0091 0.0181 0.0000 0.0891 0.0045 0.0286 0.0367 0.1277 0.0298

5% 0.0393 0.0248 0.0344 0.0750 0.0417 0.0099 0.0030 0.0317 0.0275

(b) Mean probability of false positive detections per spectrogram row.

Figure A.8: The algorithm’s detection performance of sinusoidal tracks having a period of twenty

seconds as functions of the spectrogram’s SNR in addition to the mean probability of false positives

per spectrogram row measured during the experiment. The parameter values used were: β = 0.16,

γ = 1.00, c = 0.36, and the potential energy’s window size was taken to be 3× 21 pixels.
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A.2.2 Original Internal Energy and the Proposed Potential Energy

This subsection presents the additional figures resulting from the experiments conducted upon

the active contour algorithm using the Original internal energies (the weighted first and second

derivatives of the active contour) and the novel potential energy proposed in this thesis. These

results are attributed to Section 5.3.
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(b) Mean probability of false positive detections per spectrogram row.

Figure A.9: The mean detection performance of the training set as functions of the algorithm’s

parameter values. Whilst varying each of the parameters the remaining took the following values:

β = 0.20, α = 0.10, γ = 1.00, c = 0.41, and the potential energy’s window size was taken to be

3× 21 pixels.
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(a) Proportion of true positive detections.
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0.1796 0.2214 0.2331 0.2151 0.2027 0.1757 0.2139 0.1367 0.2248

(b) Mean probability of false positive detections per spectrogram row.

Figure A.10: The algorithm’s detection performance of vertical tracks as a function of the spectro-

gram’s SNR in addition to the mean probability of false positives per spectrogram row measured

during the experiment. The parameter values used were: β = 0.22, α = 0.96, γ = 1.00, c = 0.36,

and the potential energy’s window size was taken to be 3× 21 pixels.
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(a) Proportion of true positive detections.
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2Hz/s 0.0933 0.0244 0.0661 0.0144 0.0232 0.0511 0.0421 0.0325 0.0012

4Hz/s 0.0593 0.0361 0.0123 0.0197 0.0111 0.0051 0.0338 0.0183 0.0354

8Hz/s 0.0106 0.0167 0.0160 0.0144 0.0043 0.0269 0.0179 0.0062 0.0069

16Hz/s 0.0165 0.0061 0.0238 0.0074 0.0177 0.0124 0.0121 0.0345 0.0038

3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

1Hz/s 0.0414 0.0315 0.0404 0.0667 0.0472 0.1139 0.0289 0.0383 0.0611

2Hz/s 0.0259 0.0451 0.1009 0.0549 0.0293 0.0067 0.0426 0.0267 0.0400

4Hz/s 0.0259 0.0162 0.0051 0.0228 0.0222 0.0111 0.0079 0.0283 0.0218

8Hz/s 0.0160 0.0141 0.0250 0.0111 0.0111 0.0093 0.0167 0.0222 0.0144

16Hz/s 0.0087 0.0042 0.0095 0.0181 0.0286 0.0181 0.0219 0.0000 0.0143

(b) Mean probability of false positive detections per spectrogram row.

Figure A.11: The algorithm’s detection performance of oblique tracks as functions of the spectro-

gram’s SNR in addition to the mean probability of false positives per spectrogram row measured

during the experiment. The parameter values used were: β = 0.22, α = 0.96, γ = 1.00, c = 0.36,,

and the potential energy’s window size was taken to be 3× 21 pixels.
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(a) Proportion of true positive detections.
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1% – 0.4192 0.2862 0.2288 0.4326 0.2037 0.3324 0.0965 0.1156

2% 0.1657 0.1052 0.2538 0.3778 0.3428 0.2792 0.2692 0.1064 0.2114

3% 0.3397 0.1674 0.2967 0.2275 0.4025 0.2290 0.3793 0.3191 0.4227

4% 0.2296 0.0898 0.3326 0.2886 0.4055 0.2840 0.3103 0.5899 0.2702

5% 0.3699 0.1280 0.3682 0.2927 0.3641 0.4116 0.2807 0.3914 0.4059

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.1595 0.2831 0.2187 0.2091 0.1032 0.1468 0.2298 0.2027 0.2293

2% 0.1531 0.4138 0.1508 0.3555 0.2838 0.2621 0.3338 0.2476 0.2537

3% 0.3463 0.2643 0.2852 0.4432 0.6242 0.7142 0.6945 0.8301 0.4109

4% 0.3576 0.5103 0.6783 0.7663 0.6416 0.8318 0.6880 – 0.4546

5% 0.4897 0.4345 0.5449 0.6365 0.6422 0.6153 – – 0.4250

(b) Mean probability of false positive detections per spectrogram row.

Figure A.12: The algorithm’s detection performance of sinusoidal tracks having a period of ten

seconds as functions of the spectrogram’s SNR in addition to the mean probability of false positives

per spectrogram row measured during the experiment. The parameter values used were: β = 0.22,

α = 0.96, γ = 1.00, c = 0.36, and the potential energy’s window size was taken to be 3 × 21
pixels.
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(a) Proportion of true positive detections.
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3% 0.1546 0.1719 0.3383 0.2618 0.2636 0.2467 0.2913 0.1130 0.2737

4% 0.1903 0.4007 0.1082 0.3094 0.1276 0.2320 0.1621 0.1918 0.1177

5% 0.2702 0.3173 0.2160 0.1798 0.1952 0.3247 0.1734 0.1630 0.1132

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.3101 0.2161 0.0624 0.2795 0.2241 0.1327 0.1347 0.1890 0.2486

2% 0.3380 0.1195 0.1965 0.0684 0.1983 0.1364 0.3960 0.1233 0.2358

3% 0.3027 0.1801 0.2503 0.1119 0.2188 0.2074 0.3349 0.4755 0.2469

4% 0.1938 0.3285 0.2004 0.3158 0.1693 0.4013 0.3330 0.4901 0.2513

5% 0.2123 0.1306 0.2269 0.2821 0.3083 0.2267 0.3395 0.0836 0.2213

(b) Mean probability of false positive detections per spectrogram row.

Figure A.13: The algorithm’s detection performance of sinusoidal tracks having a period of fifteen

seconds as functions of the spectrogram’s SNR in addition to the mean probability of false positives

per spectrogram row measured during the experiment. The parameter values used were: β = 0.22,

α = 0.96, γ = 1.00, c = 0.36, and the potential energy’s window size was taken to be 3 × 21
pixels.
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(a) Proportion of true positive detections.

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.5000 0.0641 0.1493 0.0834 0.3907 0.1518 0.2444 0.1850 0.2088

2% – 0.1602 0.1859 0.2717 0.2287 0.1850 0.2318 0.1011 0.3380

3% 0.0014 0.1574 0.1345 0.1522 0.2866 0.2917 0.2336 0.1826 0.3155

4% 0.0627 0.3508 0.1861 0.2998 0.3109 0.2880 0.2834 0.2021 0.2988

5% 0.3655 0.0753 0.1989 0.2242 0.4552 0.3412 0.1513 0.2003 0.3598

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0966 0.3267 0.1631 0.2975 0.1473 0.2254 0.0847 0.2247 0.2084

2% 0.1185 0.1988 0.2289 0.1578 0.3262 0.1136 0.1743 0.1031 0.1952

3% 0.3202 0.2612 0.2123 0.3767 0.2640 0.2240 0.1309 0.2288 0.2220

4% 0.2332 0.2265 0.1331 0.4177 0.1707 0.3739 0.2851 0.5549 0.2752

5% 0.1825 0.2927 0.3178 0.4870 0.3485 0.3004 0.0972 0.2825 0.2753

(b) Mean probability of false positive detections per spectrogram row.

Figure A.14: The algorithm’s detection performance of sinusoidal tracks having a period of twenty

seconds as functions of the spectrogram’s SNR in addition to the mean probability of false positives

per spectrogram row measured during the experiment. The parameter values used were: β = 0.22,

α = 0.96, γ = 1.00, c = 0.36, and the potential energy’s window size was taken to be 3 × 21
pixels.
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A.2.3 Original Internal Energy and the Original Potential Energy

This subsection presents the additional figures resulting from the experiments conducted upon

the active contour algorithm using the original internal energies (the weighted first and second

derivatives of the active contour) and the original potential energy (the pixel’s intensity). These

results are attributed to Section 5.4.
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(a) Proportion of true positive detections.
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(b) Mean probability of false positive detections per spectrogram row.

Figure A.15: The mean detection performance of the training set as functions of the algorithm’s

parameter values. Whilst varying each of the parameters the remaining took the following values:

β = 0.20, α = 0.10, γ = 1.00 and c = 0.41.
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(a) Proportion of true positive detections.

−1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB

3.6558 3.6418 3.6472 3.6540 3.6577 3.6766 3.6723 3.6596 3.6737

3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

3.7024 3.6973 3.7025 3.7061 3.7134 3.7071 3.7152 3.7203 3.6825

(b) Mean probability of false positive detections per spectrogram row.

Figure A.16: The algorithm’s detection performance of vertical tracks as a function of the spectro-

gram’s SNR in addition to the mean probability of false positives per spectrogram row measured

during the experiment. The parameter values used were: β = 0.66, α = 0.50, γ = 0.82 and

c = 0.18.
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(a) Proportion of true positive detections.

−1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB

1Hz/s 2.1750 2.1361 2.1315 2.1349 2.1311 2.1410 2.1250 2.1100 2.1167

2Hz/s 1.1267 1.1256 1.1294 1.1222 1.1283 1.1228 1.1106 1.1206 1.1000

4Hz/s 0.5722 0.5728 0.5753 0.5697 0.5764 0.5773 0.5702 0.5714 0.5667

8Hz/s 0.2856 0.2917 0.2944 0.2880 0.2827 0.2884 0.2877 0.2840 0.2824

16Hz/s 0.2528 0.2494 0.2488 0.2476 0.2449 0.2486 0.2545 0.2440 0.2495

3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

1Hz/s 2.1217 2.0969 2.0980 2.1300 2.1094 2.0994 2.1100 2.0956 2.1213

2Hz/s 1.1037 1.1007 1.1111 1.1019 1.0965 1.0867 1.0815 1.0800 1.1087

4Hz/s 0.5722 0.5736 0.5677 0.5756 0.5631 0.5651 0.5698 0.5589 0.5705

8Hz/s 0.2854 0.2828 0.2792 0.2813 0.2778 0.2801 0.2722 0.2667 0.2830

16Hz/s 0.2540 0.2519 0.2495 0.2429 0.2476 0.2457 0.2429 0.2476 0.2484

(b) Mean probability of false positive detections per spectrogram row.

Figure A.17: The algorithm’s detection performance of oblique tracks as functions of the spectro-

gram’s SNR in addition to the mean probability of false positives per spectrogram row measured

during the experiment. The parameter values used were: β = 0.66, α = 0.50, γ = 0.82 and

c = 0.18.
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(a) Proportion of true positive detections.

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% – 3.6481 3.6384 3.6542 3.6496 3.6419 3.6416 3.6308 3.6240

2% 3.5961 3.6357 3.6320 3.6141 3.6320 3.6334 3.6047 3.6192 3.6351

3% 3.5868 3.5984 3.6068 3.5949 3.6013 3.5825 3.5881 3.5884 3.5864

4% 3.5769 3.5788 3.5860 3.5682 3.5543 3.5798 3.5594 3.5644 3.5491

5% 3.6240 3.6233 3.5933 3.6034 3.6160 3.6156 3.6040 3.5985 3.6012

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 3.6285 3.6189 3.6035 3.6372 3.6331 3.6323 3.6348 3.6060 3.6327

2% 3.6047 3.6114 3.6068 3.5875 3.6091 3.5979 3.5958 3.6031 3.6129

3% 3.5735 3.5627 3.5532 3.5692 3.5635 3.5398 3.5474 3.5482 3.5759

4% 3.5495 3.5391 3.5318 3.5364 3.5361 3.5144 3.5487 – 3.5546

5% 3.5944 3.5818 3.5866 3.5745 3.5922 3.5585 – – 3.5978

(b) Mean probability of false positive detections per spectrogram row.

Figure A.18: The algorithm’s detection performance of sinusoidal tracks having a period of ten

seconds as functions of the spectrogram’s SNR in addition to the mean probability of false positives

per spectrogram row measured during the experiment. The parameter values used were: β = 0.66,

α = 0.50, γ = 0.82 and c = 0.18.
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(a) Proportion of true positive detections.

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 3.7047 3.6657 3.6415 3.6444 3.6548 3.6400 3.6357 3.6375 3.6490

2% – 3.6292 3.6207 3.6426 3.6305 3.6262 3.6285 3.6212 3.6323

3% 3.6026 3.5966 3.6026 3.6149 3.5976 3.5781 3.5933 3.5838 3.6000

4% 3.5929 3.5801 3.5819 3.5738 3.5696 3.5710 3.5750 3.5705 3.5869

5% 3.6123 3.6114 3.6045 3.6196 3.6060 3.6075 3.5942 3.5891 3.6064

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 3.6277 3.6240 3.6360 3.6391 3.6230 3.6235 3.6128 3.6105 3.6394

2% 3.6207 3.6037 3.5955 3.5933 3.5969 3.5951 3.5872 3.5841 3.6130

3% 3.5918 3.5900 3.5880 3.5634 3.5701 3.5875 3.5665 3.5738 3.5883

4% 3.5814 3.5738 3.5584 3.5565 3.5503 3.5587 3.5560 3.5554 3.5701

5% 3.5943 3.5940 3.5802 3.5682 3.5713 3.5741 3.5636 3.5153 3.5889

(b) Mean probability of false positive detections per spectrogram row.

Figure A.19: The algorithm’s detection performance of sinusoidal tracks having a period of fifteen

seconds as functions of the spectrogram’s SNR in addition to the mean probability of false positives

per spectrogram row measured during the experiment. The parameter values used were: β = 0.66,

α = 0.50, γ = 0.82 and c = 0.18.
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(a) Proportion of true positive detections.

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 3.6295 3.6602 3.6607 3.6581 3.6536 3.6583 3.6290 3.6290 3.6496

2% – 3.6233 3.6014 3.6194 3.6113 3.5936 3.5903 3.5983 3.5965

3% 3.6267 3.5571 3.6004 3.6038 3.5914 3.5971 3.5916 3.5958 3.5882

4% 3.5627 3.5891 3.6025 3.5736 3.5877 3.5751 3.5833 3.5832 3.5807

5% 3.6357 3.6195 3.6214 3.6182 3.6037 3.6286 3.6106 3.6061 3.6130

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 3.6400 3.6371 3.6171 3.6202 3.6147 3.6565 3.6158 3.6243 3.6384

2% 3.5956 3.5865 3.5818 3.5680 3.5710 3.5838 3.5682 3.5745 3.5915

3% 3.5917 3.5909 3.5801 3.5967 3.5875 3.5771 3.5741 3.5526 3.5884

4% 3.5788 3.5718 3.5744 3.5816 3.5670 3.5657 3.5616 3.5543 3.5761

5% 3.6125 3.6113 3.6062 3.6070 3.6017 3.5874 3.5938 3.5897 3.6098

(b) Mean probability of false positive detections per spectrogram row.

Figure A.20: The algorithm’s detection performance of sinusoidal tracks having a period of twenty

seconds as functions of the spectrogram’s SNR in addition to the mean probability of false positives

per spectrogram row measured during the experiment. The parameter values used were: β = 0.66,

α = 0.50, γ = 0.82 and c = 0.18.
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A.2.4 Single Track Detection

This subsection presents the additional figures resulting from the experiments conducted upon

the active contour algorithm using the original internal energies (the weighted first and second

derivatives of the active contour) and the proposed potential energy when applied to single track

detection. These results are attributed to Section 5.5.
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(a) Proportion of true positive detections.
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(b) Mean probability of false positive detections per spectrogram row.

Figure A.21: The mean detection performance of the training set as functions of the algorithm’s

parameter values. Whilst varying the parameter’s value, the remaining took the following values:

β = 0.20, α = 0.10 and γ = 1.00.
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(a) Proportion of true positive detections.

−1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(b) Mean probability of false positive detections per spectrogram row.

Figure A.22: The algorithm’s detection performance of vertical tracks as a function of the spectro-

gram’s SNR in addition to the mean probability of false positives per spectrogram row measured

during the experiment. The parameter values used were: β = 0.22, α = 0.96, γ = 1.00 and

c = 0.74.
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(a) Proportion of true positive detections.

−1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB

1Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

1Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(b) Mean probability of false positive detections per spectrogram row.

Figure A.23: The algorithm’s detection performance of oblique tracks as functions of the spectro-

gram’s SNR in addition to the mean probability of false positives per spectrogram row measured

during the experiment. The parameter values used were: β = 0.22, α = 0.96, γ = 1.00 and

c = 0.74.
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(a) Proportion of true positive detections.

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% – 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2% 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000

3% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000

5% 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3% 0.0008 0.0002 0.0001 0.0092 0.0250 0.0471 0.0496 0.1055 0.0140

4% 0.0001 0.0021 0.0039 0.0053 0.0288 0.0586 0.0171 – 0.0073

5% 0.0001 0.0001 0.0017 0.0044 0.0096 0.0193 – – 0.0024

(b) Mean probability of false positive detections per spectrogram row.

Figure A.24: The algorithm’s detection performance of sinusoidal tracks having a period of ten

seconds as functions of the spectrogram’s SNR in addition to the mean probability of false positives

per spectrogram row measured during the experiment. The parameter values used were: β = 0.22,

α = 0.96, γ = 1.00 and c = 0.74.
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(a) Proportion of true positive detections.

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2% – 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4% 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3% 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0019 0.0001

4% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0006 0.0001

5% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000

(b) Mean probability of false positive detections per spectrogram row.

Figure A.25: The algorithm’s detection performance of sinusoidal tracks having a period of fifteen

seconds as functions of the spectrogram’s SNR in addition to the mean probability of false positives

per spectrogram row measured during the experiment. The parameter values used were: β = 0.22,

α = 0.96, γ = 1.00 and c = 0.74.
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(a) Proportion of true positive detections.

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2% – 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

5% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0008 0.0001

5% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(b) Mean probability of false positive detections per spectrogram row.

Figure A.26: The algorithm’s detection performance of sinusoidal tracks having a period of twenty

seconds as functions of the spectrogram’s SNR in addition to the mean probability of false positives

per spectrogram row measured during the experiment. The parameter values used were: β = 0.22,

α = 0.96, γ = 1.00 and c = 0.74.
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A.2.5 Example Detections
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(a) Ground Truth.
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(b) Spectrogram.
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(c) Original internal and novel potential energy.

The LLA of the fundamental track detection is

0.7640.
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(d) Perrin internal and novel potential energy.

The LLA of the fundamental track detection is

0.8025.
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(e) Original internal and original potential

energy. The LLA of the fundamental track de-

tection is 0.2100.
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(f) Original internal and novel potential energy,

single contour. The LLA of the fundamental

track detection is 0.6791.

Figure A.27: A set of example detections. The SNR of the spectrogram is 4.5 dB and contains

vertical and oblique tracks that have a gradient of 1Hz/s.
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(a) Ground Truth.
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(b) Spectrogram.
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(c) Original internal and novel potential energy.

The LLA of the fundamental track detection is

0.3967.
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(d) Perrin internal and novel potential energy.

The LLA of the fundamental track detection is

0.3658.
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(e) Original internal and original potential

energy. The LLA of the fundamental track de-

tection is 0.1134.
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(f) Original internal and original potential

energy, single contour. The LLA of the funda-

mental track detection is 0.4568.

Figure A.28: A set of example detections. The SNR of the spectrogram is 6.5 dB and contains

sinusoidal tracks that have a centre frequency variation of 3%.
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A.2.6 Standard Deviations

This subsection presents the standard deviations attributed to the results presented in Sections 5.3,

5.4 and 5.5.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

α 0.0060 0.0034 0.0057 0.0054 0.0031 0.0042 0.0058 0.0046 0.0050 0.0047 0.0043 0.0057 0.0046

β 0.0039 0.0041 0.0045 0.0045 0.0028 0.0034 0.0060 0.0047 0.0072 0.0019 0.0072 0.0050 0.0072

γ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c 0.0006 0.0002 0.0004 0.0002 0.0007 0.0005 0.0013 0.0003 0.0017 0.0021 0.0033 0.0071 0.0036

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50

α 0.0032 0.0046 0.0088 0.0046 0.0038 0.0039 0.0048 0.0058 0.0023 0.0083 0.0063 0.0049 0.0025

β 0.0068 0.0024 0.0050 0.0025 0.0037 0.0045 0.0116 0.0107 0.0146 0.0093 0.0142 0.0107 0.0032

γ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0015 0.0072 0.0035 0.0062 0.0055

c 0.0094 0.0140 0.0122 0.0121 0.0036 0.0012 0.0029 0.0039 0.0036 0.0068 0.0080 0.0043 0.0117

0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76

α 0.0027 0.0044 0.0042 0.0016 0.0047 0.0037 0.0078 0.0032 0.0045 0.0007 0.0034 0.0027 0.0047

β 0.0031 0.0025 0.0063 0.0037 0.0051 0.0039 0.0041 0.0031 0.0063 0.0073 0.0050 0.0026 0.0032

γ 0.0067 0.0079 0.0073 0.0169 0.0083 0.0063 0.0086 0.0053 0.0113 0.0104 0.0134 0.0048 0.0050

c 0.0036 0.0045 0.0075 0.0083 0.0146 0.0112 0.0085 0.0050 0.0163 0.0170 0.0113 0.0056 0.0039

0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 Mean

α 0.0050 0.0031 0.0044 0.0024 0.0037 0.0032 0.0042 0.0051 0.0019 0.0013 0.0017 0.0035 0.0042

β 0.0037 0.0027 0.0023 0.0041 0.0029 0.0063 0.0050 0.0058 0.0038 0.0029 0.0038 0.0028 0.0052

γ 0.0060 0.0061 0.0066 0.0080 0.0099 0.0116 0.0125 0.0057 0.0055 0.0077 0.0059 0.0031 0.0044

c 0.0068 0.0042 0.0039 0.0055 0.0046 0.0063 0.0052 0.0032 0.0078 0.0048 0.0029 0.0015 0.0057

(a) Original internal energy algorithm variant. Whilst varying each of the parameters the remainder took the

following values: α = 0.10, β = 0.20, γ = 1.00 and c = 0.41.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

β 0.0105 0.0043 0.0052 0.0027 0.0033 0.0012 0.0037 0.0057 0.0029 0.0049 0.0074 0.0039 0.0080

γ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

c 0.0008 0.0005 0.0007 0.0011 0.0021 0.0019 0.0026 0.0040 0.0048 0.0044 0.0113 0.0090 0.0165

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50

β 0.0038 0.0070 0.0040 0.0096 0.0081 0.0058 0.0022 0.0023 0.0111 0.0075 0.0041 0.0083 0.0088

γ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

c 0.0076 0.0097 0.0087 0.0056 0.0026 0.0037 0.0035 0.0031 0.0060 0.0065 0.0034 0.0063 0.0108

0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76

β 0.0049 0.0049 0.0073 0.0093 0.0079 0.0071 0.0083 0.0097 0.0053 0.0110 0.0052 0.0088 0.0102

γ 0.0001 0.0001 0.0001 0.0002 0.0002 0.0048 0.0039 0.0087 0.0080 0.0032 0.0081 0.0063 0.0101

c 0.0057 0.0046 0.0062 0.0101 0.0104 0.0070 0.0066 0.0063 0.0074 0.0079 0.0127 0.0047 0.0036

0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 Mean

β 0.0051 0.0050 0.0034 0.0084 0.0082 0.0073 0.0039 0.0034 0.0041 0.0047 0.0053 0.0086 0.0062

γ 0.0105 0.0130 0.0103 0.0093 0.0060 0.0127 0.0039 0.0072 0.0034 0.0045 0.0054 0.0028 0.0028

c 0.0060 0.0024 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0047

(b) Perrin internal energy algorithm variant. Whilst varying each of the parameters the remainder took the

following values: β = 0.2, γ = 1.00 and c = 0.41.

Table A.1: The standard deviation of five repetitions of the training set detections as functions

of each variant of the algorithm’s parameter values. The results were obtained using the poten-

tial energy proposed in this thesis. These standard deviations are attributed to Figure 5.3a and

Figure 5.3b in Chapter 5.
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−1.0dB −0.5dB 0.0dB 0.5dB 1.0 dB 1.5dB 2.0dB 2.5dB 3.0dB

Original 0.0085 0.0046 0.0098 0.0066 0.0049 0.0061 0.0043 0.0050 0.0064

Perrin 0.0088 0.0051 0.0102 0.0069 0.0081 0.0096 0.0059 0.0054 0.0064

3.5dB 4.0dB 4.5dB 5.0dB 5.5 dB 6.0dB 6.5dB 7.0dB Mean

Original 0.0061 0.0043 0.0042 0.0064 0.0063 0.0040 0.0077 0.0077 0.0060

Perrin 0.0044 0.0038 0.0054 0.0045 0.0055 0.0059 0.0055 0.0069 0.0064

Table A.2: The standard deviations of ten repetitions of the line location accuracies of vertical

track detections as functions of the spectrogram’s SNR—a comparison between the original and

Perrin internal energies. These standard deviations are attributed to Figure 5.4 in Chapter 5.

−1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB

1Hz/s 0.0328 0.0118 0.0127 0.0158 0.0084 0.0094 0.0180 0.0147 0.0113

2Hz/s 0.0151 0.0041 0.0081 0.0137 0.0091 0.0041 0.0080 0.0099 0.0096

4Hz/s 0.0061 0.0040 0.0078 0.0034 0.0053 0.0029 0.0060 0.0071 0.0063

8Hz/s 0.0037 0.0025 0.0029 0.0031 0.0027 0.0033 0.0032 0.0016 0.0022

16Hz/s 0.0033 0.0020 0.0031 0.0013 0.0032 0.0028 0.0022 0.0043 0.0019

3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

1Hz/s 0.0054 0.0141 0.0112 0.0100 0.0156 0.0092 0.0087 0.0083 0.0128

2Hz/s 0.0048 0.0105 0.0055 0.0058 0.0062 0.0041 0.0070 0.0024 0.0075

4Hz/s 0.0062 0.0069 0.0048 0.0058 0.0024 0.0052 0.0042 0.0037 0.0052

8Hz/s 0.0040 0.0025 0.0029 0.0028 0.0033 0.0038 0.0033 0.0057 0.0031

16Hz/s 0.0020 0.0025 0.0016 0.0042 0.0025 0.0020 0.0020 0.0120 0.0031

(a) Original internal energy algorithm variant.

−1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB

1Hz/s 0.0295 0.0058 0.0182 0.0188 0.0119 0.0198 0.0136 0.0111 0.0140

2Hz/s 0.0079 0.0113 0.0058 0.0079 0.0062 0.0059 0.0172 0.0127 0.0210

4Hz/s 0.0102 0.0049 0.0034 0.0027 0.0019 0.0064 0.0029 0.0056 0.0048

8Hz/s 0.0012 0.0003 0.0020 0.0015 0.0021 0.0024 0.0031 0.0041 0.0017

16Hz/s 0.0018 0.0013 0.0023 0.0002 0.0017 0.0023 0.0012 0.0020 0.0012

3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

1Hz/s 0.0107 0.0132 0.0137 0.0062 0.0058 0.0110 0.0054 0.0059 0.0126

2Hz/s 0.0108 0.0119 0.0090 0.0093 0.0090 0.0063 0.0068 0.0072 0.0098

4Hz/s 0.0074 0.0067 0.0040 0.0114 0.0041 0.0050 0.0040 0.0049 0.0053

8Hz/s 0.0028 0.0036 0.0027 0.0026 0.0027 0.0065 0.0024 0.0076 0.0029

16Hz/s 0.0011 0.0011 0.0009 0.0014 0.0022 0.0011 0.0016 0.0020 0.0015

(b) Perrin internal energy algorithm variant.

Table A.3: The standard deviations of the line location accuracies of oblique track detections

as functions of the spectrogram’s SNR—a comparison between the original and Perrin internal

energies. These standard deviations are attributed to Figure 5.5b and Figure 5.5a in Chapter 5.



A.2. CHAPTER 5 171

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% – 0.0407 0.0254 0.0073 0.0697 0.0217 0.0407 0.0054 0.0034

2% 0.0138 0.0035 0.0048 0.0039 0.0007 0.0055 0.0165 0.0183 0.0350

4% 0.0533 0.0144 0.0131 0.0156 0.0020 0.0004 0.0274 0.0100 0.0410

8% 0.0177 0.0010 0.0184 0.0042 0.0170 0.0053 0.0005 0.0507 0.0214

16% 0.0106 0.0234 0.0235 0.0211 0.0416 0.0138 0.0077 0.0138 0.0100

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0086 0.0033 0.0105 0.0252 0.0070 0.0051 0.0177 0.0105 0.0178

2% 0.0035 0.0175 0.0203 0.0064 0.0144 0.0050 0.0118 0.0091 0.0112

4% 0.0131 0.0158 0.0064 0.0552 0.0003 0.0150 0.0175 0.0449 0.0203

8% 0.0387 0.0093 0.0041 0.0403 0.0149 0.0063 0.0158 – 0.0166

16% 0.0429 0.0369 0.0218 0.0172 0.0085 0.0150 – – 0.0205

(a) Original internal energy algorithm variant.

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% – 0.0061 0.0039 0.0038 0.0037 0.0034 0.0117 0.0009 0.0040

2% 0.0000 0.0020 0.0027 0.0079 0.0115 0.0041 0.0038 0.0020 0.0106

4% 0.0067 0.0058 0.0026 0.0018 0.0063 0.0072 0.0210 0.0117 0.0020

8% 0.0026 0.0006 0.0027 0.0043 0.0224 0.0067 0.0143 0.0058 0.0046

16% 0.0057 0.0011 0.0120 0.0096 0.0153 0.0081 0.0058 0.0007 0.0112

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0012 0.0067 0.0058 0.0024 0.0020 0.0069 0.0051 0.0026 0.0044

2% 0.0019 0.0021 0.0015 0.0219 0.0067 0.0008 0.0097 0.0065 0.0056

4% 0.0078 0.0162 0.0017 0.0048 0.0070 0.0071 0.0253 0.0060 0.0083

8% 0.0059 0.0160 0.0099 0.0171 0.0154 0.0270 0.1100 – 0.0166

16% 0.0075 0.0153 0.0072 0.0172 0.0163 0.0089 – – 0.0095

(b) Perrin internal energy algorithm variant.

Table A.4: The standard deviations of the line location accuracies of sinusoidal (ten second period)

track detections as functions of the spectrogram’s SNR—a comparison between the original and

Perrin internal energies. These standard deviations are attributed to Figure 5.6a and Figure 5.6b in

Chapter 5.
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−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.0650 0.0054 0.0112 0.0313 0.0059 0.0136 0.0211 0.0032 0.0014

2% – 0.0209 0.0000 0.0142 0.0247 0.0079 0.0077 0.0098 0.0076

4% 0.0098 0.0093 0.0133 0.0246 0.0097 0.0315 0.0037 0.0033 0.0179

8% 0.0289 0.0077 0.0085 0.0102 0.0024 0.0113 0.0038 0.0073 0.0061

16% 0.0032 0.0071 0.0148 0.0118 0.0036 0.0073 0.0171 0.0066 0.0068

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0204 0.0148 0.0094 0.0127 0.0302 0.0041 0.0136 0.0141 0.0163

2% 0.0098 0.0104 0.0179 0.0006 0.0032 0.0038 0.0132 0.0065 0.0099

4% 0.0374 0.0061 0.0187 0.0107 0.0197 0.0116 0.0192 0.0047 0.0148

8% 0.0134 0.0063 0.0145 0.0291 0.0124 0.0208 0.0116 0.0392 0.0137

16% 0.0013 0.0015 0.0037 0.0247 0.0167 0.0177 0.0241 0.0039 0.0101

(a) Original internal energy algorithm variant.

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.0016 0.0166 0.0078 0.0027 0.0014 0.0012 0.0072 0.0122 0.0018

2% – 0.0063 0.0135 0.0044 0.0051 0.0081 0.0037 0.0030 0.0111

4% 0.0058 0.0047 0.0062 0.0070 0.0093 0.0033 0.0056 0.0010 0.0058

8% 0.0007 0.0034 0.0032 0.0012 0.0013 0.0066 0.0015 0.0014 0.0024

16% 0.0128 0.0072 0.0062 0.0012 0.0015 0.0022 0.0014 0.0056 0.0008

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0033 0.0037 0.0000 0.0077 0.0044 0.0065 0.0032 0.0047 0.0051

2% 0.0042 0.0017 0.0003 0.0021 0.0093 0.0006 0.0140 0.0006 0.0055

4% 0.0079 0.0057 0.0059 0.0017 0.0046 0.0028 0.0025 0.0042 0.0049

8% 0.0041 0.0042 0.0021 0.0091 0.0028 0.0024 0.0191 0.0193 0.0050

16% 0.0023 0.0028 0.0057 0.0047 0.0070 0.0057 0.0093 0.0000 0.0045

(b) Perrin internal energy algorithm variant.

Table A.5: The standard deviations of the line location accuracies of sinusoidal (fifteen second

period) track detections as functions of the spectrogram’s SNR—a comparison between the ori-

ginal and Perrin internal energies. These standard deviations are attributed to Figure 5.7a and

Figure 5.7b in Chapter 5.
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−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.0058 0.0000 0.0011 0.0009 0.0110 0.0056 0.0030 0.0035 0.0053

2% – 0.0008 0.0014 0.0074 0.0015 0.0025 0.0073 0.0005 0.0138

4% 0.0000 0.0127 0.0067 0.0034 0.0072 0.0064 0.0065 0.0078 0.0012

8% 0.0000 0.0121 0.0018 0.0072 0.0025 0.0028 0.0066 0.0030 0.0035

16% 0.0163 0.0013 0.0038 0.0087 0.0103 0.0122 0.0014 0.0051 0.0031

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0021 0.0188 0.0028 0.0062 0.0033 0.0008 0.0003 0.0076 0.0046

2% 0.0020 0.0043 0.0014 0.0036 0.0152 0.0002 0.0041 0.0011 0.0042

4% 0.0065 0.0044 0.0036 0.0105 0.0066 0.0110 0.0033 0.0057 0.0061

8% 0.0015 0.0050 0.0000 0.0053 0.0034 0.0087 0.0172 0.0280 0.0064

16% 0.0012 0.0089 0.0034 0.0098 0.0064 0.0024 0.0009 0.0015 0.0057

(a) Original internal energy algorithm variant.

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.0373 0.0178 0.0116 0.0119 0.0107 0.0185 0.0133 0.0168 0.0200

2% – 0.0094 0.0115 0.0080 0.0129 0.0139 0.0174 0.0144 0.0121

4% 0.0000 0.0064 0.0020 0.0035 0.0035 0.0061 0.0088 0.0158 0.0112

8% 0.0001 0.0064 0.0066 0.0087 0.0077 0.0074 0.0129 0.0127 0.0167

16% 0.0129 0.0024 0.0067 0.0073 0.0117 0.0088 0.0085 0.0055 0.0090

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0072 0.0195 0.0102 0.0135 0.0087 0.0087 0.0047 0.0189 0.0147

2% 0.0119 0.0116 0.0113 0.0143 0.0112 0.0179 0.0084 0.0093 0.0115

4% 0.0164 0.0124 0.0114 0.0112 0.0083 0.0048 0.0097 0.0066 0.0081

8% 0.0074 0.0104 0.0125 0.0129 0.0085 0.0141 0.0129 0.0086 0.0098

16% 0.0181 0.0109 0.0153 0.0134 0.0128 0.0093 0.0119 0.0128 0.0104

(b) Perrin internal energy algorithm variant.

Table A.6: The standard deviations of the line location accuracies of sinusoidal (twenty second

period) track detections as functions of the spectrogram’s SNR—a comparison between the ori-

ginal and Perrin internal energies. These standard deviations are attributed to Figure 5.8a and

Figure 5.8b in Chapter 5.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24

0.0075 0.0101 0.0109 0.0093 0.0126 0.0159 0.0103 0.0101 0.0074 0.0152 0.0185 0.0109 0.0203

0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50

0.0133 0.0239 0.0160 0.0203 0.0069 0.0322 0.0116 0.0199 0.0111 0.0198 0.0073 0.0367 0.0225

0.52 0.54 0.56 0.58 0.60 0.62 0.64 0.66 0.68 0.70 0.72 0.74 0.76

0.0374 0.0345 0.0311 0.0299 0.0252 0.0240 0.0368 0.0274 0.0256 0.0222 0.0280 0.0350 0.0199

0.78 0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 Mean

0.0277 0.0294 0.0284 0.0169 0.0345 0.0137 0.0143 0.0220 0.0315 0.0216 0.0132 0.0084 0.0204

Table A.7: The standard deviation of five repetitions of the training set detections as a function

of the gradient potential’s parameter values. The results were obtained using the potential energy

proposed in this thesis and using a single active contour. These standard deviations are attributed

to Figure 5.13 in Chapter 5.

−1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB

0.0049 0.0028 0.0025 0.0042 0.0013 0.0014 0.0008 0.0021 0.0003

3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

0.0005 0.0007 0.0005 0.0002 0.0002 0.0002 0.0001 0.0003 0.0014

Table A.8: The standard deviations of the line location accuracies of vertical track detections

as functions of the spectrogram’s SNR—single track detection. These standard deviations are

attributed to Figure 5.14 in Chapter 5.
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−1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB 2.5dB 3.0dB

1Hz/s 0.0015 0.0022 0.0037 0.0095 0.0091 0.0135 0.0143 0.0223 0.0218

2Hz/s 0.0008 0.0010 0.0001 0.0012 0.0010 0.0019 0.0045 0.0053 0.0008

4Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0027 0.0022

8Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002

16Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB 6.5dB 7.0dB Mean

1Hz/s 0.0195 0.0168 0.0081 0.0066 0.0082 0.0023 0.0060 0.0043 0.0100

2Hz/s 0.0069 0.0166 0.0124 0.0093 0.0120 0.0118 0.0112 0.0081 0.0062

4Hz/s 0.0020 0.0006 0.0012 0.0005 0.0037 0.0027 0.0036 0.0042 0.0014

8Hz/s 0.0005 0.0000 0.0017 0.0000 0.0005 0.0002 0.0005 0.0000 0.0002

16Hz/s 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table A.9: The standard deviations of the line location accuracies of oblique track detections

as functions of the spectrogram’s SNR—single track detection. These standard deviations are

attributed to Figure 5.15 in Chapter 5.

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% – 0.0008 0.0011 0.0011 0.0123 0.0080 0.0073 0.0106 0.0120

2% 0.0000 0.0000 0.0003 0.0004 0.0009 0.0020 0.0022 0.0006 0.0041

4% 0.0001 0.0000 0.0000 0.0000 0.0016 0.0004 0.0006 0.0014 0.0053

8% 0.0000 0.0000 0.0010 0.0005 0.0016 0.0006 0.0011 0.0048 0.0011

16% 0.0000 0.0000 0.0003 0.0025 0.0003 0.0006 0.0003 0.0012 0.0010

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0040 0.0066 0.0186 0.0109 0.0108 0.0067 0.0046 0.0020 0.0073

2% 0.0070 0.0058 0.0132 0.0088 0.0228 0.0145 0.0046 0.0043 0.0054

4% 0.0047 0.0061 0.0054 0.0075 0.0141 0.0071 0.0108 0.0059 0.0042

8% 0.0045 0.0047 0.0050 0.0136 0.0037 0.0139 0.0352 – 0.0057

16% 0.0036 0.0042 0.0052 0.0058 0.0071 0.0110 – – 0.0029

Table A.10: The standard deviations of the line location accuracies of sinusoidal (ten second

period) track detections as functions of the spectrogram’s SNR—single track detection. These

standard deviations are attributed to Figure 5.16 in Chapter 5.

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5dB 2.0dB

1% 0.0000 0.0019 0.0014 0.0029 0.0043 0.0079 0.0153 0.0200 0.0076

2% – 0.0006 0.0011 0.0009 0.0012 0.0016 0.0024 0.0050 0.0044

4% 0.0000 0.0000 0.0009 0.0000 0.0002 0.0003 0.0008 0.0005 0.0017

8% 0.0000 0.0000 0.0000 0.0004 0.0001 0.0000 0.0005 0.0000 0.0003

16% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0001

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0dB Mean

1% 0.0113 0.0142 0.0116 0.0037 0.0101 0.0017 0.0022 0.0007 0.0069

2% 0.0094 0.0072 0.0090 0.0102 0.0146 0.0075 0.0101 0.0111 0.0060

4% 0.0030 0.0016 0.0108 0.0041 0.0082 0.0127 0.0115 0.0098 0.0039

8% 0.0002 0.0016 0.0026 0.0101 0.0041 0.0101 0.0100 0.0124 0.0031

16% 0.0013 0.0010 0.0014 0.0044 0.0060 0.0030 0.0085 0.0103 0.0021

Table A.11: The standard deviations of the line location accuracies of sinusoidal (fifteen second

period) track detections as functions of the spectrogram’s SNR—single track detection. These

standard deviations are attributed to Figure 5.17 in Chapter 5.



A.2. CHAPTER 5 175

−2.0dB −1.5dB −1.0dB −0.5dB 0.0dB 0.5dB 1.0dB 1.5 dB 2.0dB

1% 0.0000 0.0000 0.0016 0.0007 0.0059 0.0055 0.0122 0.0174 0.0171

2% – 0.0000 0.0000 0.0006 0.0034 0.0012 0.0038 0.0016 0.0177

4% 0.0000 0.0000 0.0001 0.0000 0.0008 0.0019 0.0005 0.0018 0.0029

8% 0.0000 0.0002 0.0000 0.0000 0.0002 0.0000 0.0002 0.0020 0.0020

16% 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001 0.0004 0.0014

2.5dB 3.0dB 3.5dB 4.0dB 4.5dB 5.0dB 5.5dB 6.0 dB Mean

1% 0.0164 0.0058 0.0058 0.0050 0.0050 0.0026 0.0041 0.0015 0.0063

2% 0.0048 0.0108 0.0084 0.0100 0.0169 0.0150 0.0095 0.0150 0.0074

4% 0.0046 0.0034 0.0080 0.0173 0.0138 0.0127 0.0092 0.0071 0.0049

8% 0.0015 0.0034 0.0028 0.0114 0.0070 0.0121 0.0088 0.0142 0.0039

16% 0.0022 0.0023 0.0040 0.0108 0.0078 0.0068 0.0052 0.0062 0.0028

Table A.12: The standard deviations of the line location accuracies of sinusoidal (twenty second

period) track detections as functions of the spectrogram’s SNR—single track detection. These

standard deviations are attributed to Figure 5.18 in Chapter 5.
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[47] Córdoba, A., April 1989. Dirac combs. Letters in Mathematical Physics 17 (3), 191–196.

[48] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., September 2001. Introduction to

Algorithms, 2nd Edition. MIT Press.

[49] da Costa Andrade, E. N., January 1959. Doppler and the Doppler effect. Endeavour

XVIII (69).

[50] Davatzikos, C., Prince, J. L., January 1999. Convexity analysis of active contour problems.

Image and Vision Computing 17 (1), 27–36.

[51] Davatzikos, C. A., Prince, J. L., March 1995. An active contour model for mapping the

cortex. IEEE Transactions on Medical Imaging 14 (1), 65–80.

[52] Davis, D. N., Natarajan, K., Claridge, E., July 1995. Multiple energy function active

contours applied to CT and MR images. In: Proceedings of the Fifth IEEE International

Conference on Image Processing and its Applications. pp. 114–118.

[53] Del Grosso, V. A., October 1974. New equation for the speed of sound in natural waters

(with comparisons to other equations). Journal of the Acoustical Society of America 56 (4),

1084–1091.

[54] Di Martino, J.-C., Colnet, B., Di Martino, M., April 1994. The use of non supervised neural

networks to detect lines in lofargram. In: Proceedings of the IEEE International Conference

on Acoustics, Speech and Signal Processing. Vol. 2. IEEE, pp. 293–296.



LIST OF REFERENCES 181

[55] Di Martino, J.-C., Haton, J. P., Laporte, A., April 1993. Lofargram line tracking by multis-

tage decision process. In: Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing. Vol. 1. IEEE, pp. 317–320.

[56] Di Martino, J.-C., Tabbone, S., September 1995. Detection of lofar lines. In: Braccini, C.,

De Floriani, L., Vernazza, G. (Eds.), Proceedings of the 8th International Conference on

Image Analysis and Processing. Vol. 974 of Lecture Notes in Computer Science. Springer,

Berlin, pp. 709–714.

[57] Di Martino, J.-C., Tabbone, S., January 1996. An approach to detect lofar lines. Pattern

Recognition Letters 17 (1), 37–46.

[58] Doucet, A., De Freitas, N., Gordon, N. J., 2001. Sequential Monte Carlo Methods in Prac-

tice. Information Science and Statistics. Springer-Verlag.

[59] Duda, R. O., Hart, P. E., January 1972. Use of Hough transform to detect lines and curves

in pictures. Communications of the ACM 15 (1), 11–15.

[60] Duda, R. O., Hart, P. E., Stork, D. G., 2000. Pattern Classification. Wiley-Interscience Pu-

blication.

[61] Dugnola, B., Fernándeza, C., Galiano, G., March 2007. Wolf population counting by spec-

trogram image processing. Applied Mathematics and Computation 186 (1), 820–830.

[62] Dushaw, B. D., Worcester, P. F., Cornuelle, B. D., Howe, B. M., January 1993. On equations

for the speed of sound in seawater. Journal of the Acoustical Society of America 93 (1),

255–275.

[63] Egan, J. P., 1975. Signal detection theory and ROC analysis. Series in Cognition and Per-

ception. Academic Press, New York.

[64] Ellis, D., March 2007. Measurements and analysis of reverberation, target echo and clutter.

Tech. Rep. N00014-06-1-0830 and N00014-03-1-0420, Defence Research and Develop-

ment Canada — Atlantic.

[65] Fawcett, T., June 2006. An introduction to ROC analysis. Pattern Recognition Letters 27 (8),

861–874.

[66] Ferguson, B. G., October 1996. Time-frequency signal analysis of hydrophone data. IEEE

Journal of Oceanic Engineering 21 (4), 537–544.

[67] Fukunaga, K., 1990. Introduction to Statistical Pattern Recognition. Elsevier.

[68] Ghosh, J., Turner, K., Beck, S., Deuser, L., June 1996. Integration of neural classifiers for

passive sonar signals. Control and Dynamic Systems — Advances in Theory and Applica-

tions 77, 301–338.



182 LIST OF REFERENCES

[69] Gillespie, D., 2004. Detection and classification of right whale calls using an ‘edge’ detector

operating on a smoothed spectrogram. Canadian Acoustics 32 (2), 39–47.

[70] Goldman, A., Cohen, I., July 2004. Anomaly detection based on an iterative local statistics

approach. Signal Processing 84 (7), 1225–1229.

[71] Gonzalez, R. C., Woods, R. E., 2006. Digital Image Processing, 3rd Edition. Prentice-Hall,

Inc., Upper Saddle River, NJ, USA.

[72] Grigorakis, A., August 1997. Application of detection theory to the measurement of the

minimum detectable signal for a sinusoid in Gaussian noise displayed on a lofargram. Tech.

Rep. DSTO-TR-0568, Maritime Operations Division, Aeronautical and Maritime Research

Laboratory, Defence Science and Technology Organisation, Canberra.

[73] Grzeszczuk, R. P., Levin, D. N., October 1997. Brownian strings: segmenting images with

stochastically deformable contours. IEEE Transactions on Pattern Analysis and Machine

Intelligence 19 (10), 1100–1114.

[74] Gunes, T., Erdöl, N., May 2006. HMM based spectral frequency line tracking: improve-

ments and new results. In: Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing. Vol. 2. pp. 673–676.

[75] Gunn, S. R., Nixon, M. S., January 1997. A robust snake implementation; a dual active

contour. IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1), 63–68.

[76] Harris, F. J., January 1978. On the use of windows for harmonic analysis with the discrete

Fourier transform. Proceedings of the IEEE 66 (1), 51–83.

[77] Haykin, S., 1999. Neural Networks : A Comprehensive Foundation, 2nd Edition. Prentice

Hall, Upper Saddle River, N.J.

[78] Haykin, S., Thomson, D., November 1998. Signal detection in a nonstationary environment

reformulated as an adaptive pattern classification problem. Proceedings of the IEEE Special

Issue on Intelligent Signal Processing 86 (11), 2325–2344.

[79] Hebb, D. O., 1949. The Organization of behaviour. John Wiley, New York.

[80] Herault, L., Horaud, R., September 1993. Figure ground discrimination: a combinatorial

optimisation approach. IEEE Transactions on Pattern Analysis and Machine Intelligence

15 (9), 899–914.

[81] Hernández, C., Schmitt, F., October 2003. A snake approach for high quality image-based

3D object modeling. In: Proceedings of the Second IEEE Workshop on Variational, Geo-

metric and Level Set Methods in Computer Vision. pp. 241–248.

[82] Hinton, G., Roweis, S. T., December 2003. Stochastic neighbor embedding. In: Advances

in Neural Information Processing Systems. Vol. 15. MIT Press, pp. 857–864.



LIST OF REFERENCES 183

[83] Hinton, G., Salakhutdinov, R. R., July 2006. Reducing the dimensionality of data with

neural networks. Science 313 (5786), 504–507.

[84] Hinton, G. E., 1987. Learning translation invariant recognition in massively parallel net-

works. In: Proceedings of the PARLE Conference on Parallel Architectures and Languages

Europe. Vol. 258 of Lecture Notes in Computer Science. pp. 1–13.

[85] Hopfield, J. J., April 1982. Neural networks and physical systems with emergent collec-

tive computational abilities. Proceedings of the National Academy of Sciences of the USA

79 (8), 2554–2558.

[86] Howell, B. P., Wood, S., Koksal, S., September 2003. Passive sonar recognition and analysis

using hybrid neural networks. In: Proceedings of OCEANS ’03. Vol. 4. pp. 1917–1924.

[87] Hubbert, J., Dixon, M., Ellis, S., Meymaris, G., 2009. Weather radar ground clutter, part i:

Identification, modeling and simulation. Journal of Atmospheric and Oceanic Technology,

In Press.

[88] Jauffret, C., Bouchet, D., November 1996. Frequency line tracking on a lofargram: an effi-

cient wedding between probabilistic data association modelling and dynamic programming

technique. In: Conference Record of the Thirtieth Asilomar Conference on Signals, Sys-

tems and Computers. Vol. 1. IEEE, pp. 486–490.

[89] Ji, L., Yan, H., April 2002. Attractable snakes based on the greedy algorithm for contour

extraction. Pattern Recognition 35 (4), 791–806.

[90] Jia, P., Yin, J., Huang, X., Hu, D., December 2009. Incremental laplacian eigenmaps by

preserving adjacent information between data points. Pattern Recognition Letters 30 (16),

1457–1463.

[91] Jifeng, N., Chengke, W., Shigang, L., Shuqin, Y., January 2007. NGVF: an improved exter-

nal force field for active contour model. Pattern Recognition Letters 28 (1), 58–63.

[92] Jolliffe, I., 2002. Principal Component Analysis, 2nd Edition. Springer.

[93] Kalman, R., March 1960. A new approach to linear filtering and prediction problems. Tran-

sactions of the ASME — Journal of Basic Engineering 82 (Series D), 35–45.

[94] Kanevsky, D., Sainath, T. N., Ramabhadran, B., Nahamoo, D., September 22–26 2008.

Generalization of extended Baum-Welch parameter estimation for discriminative training

and decoding. In: Proceedings of the 9th Annual Conference of the International Speech

Communication Association. pp. 277–280.

[95] Karhunen, J., Joutsensalo, J., 1995. Generalizations of principal component analysis, opti-

mization problems, and neural networks. Neural Networks 8 (4), 549–562.

[96] Kass, M., Witkin, A., Terzopoulos, D., January 1988. Snakes: Active contour models. In-

ternational Journal of Computer Vision 1 (4), 321–331.



184 LIST OF REFERENCES

[97] Kendall, G. D., Hall, T. J., May 1993. Improving generalisation with Ockham’s networks:

minimum description length networks. In: Proceedings of the 3rd International Conference

on Artificial Neural Networks. pp. 81–85.

[98] Kendall, G. D., Hall, T. J., Newton, T. J., June 1993. An investigation of the generalisation

performance of neural networks applied to lofargram classification. Neural Computing and

Applications 1 (2), 147–159.

[99] Khotanzad, A., Lu, J. H., Srinath, M. D., June 1989. Target detection using a neural network

based passive sonar system. In: Proceedings of the International Joint Conference on Neural

Networks. Vol. 1. pp. 335–440.

[100] Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., May 1983. Optimization by simulated annea-

ling. Science 220 (4598), 671–680.

[101] Koenig, W., Dunn, H. K., Lacy, L. Y., July 1946. The sound spectrograph. Journal of the

Acoustical Society America 18 (1), 244–244.

[102] Koffka, K., 1935. Principles of gestalt psychology. Harcourt Brace, New York.

[103] Kohonen, T., January 1982. Self-organized formation of topologically correct feature maps.

Biological Cybernetics 43 (1), 59–69.

[104] Kohonen, T., 2001. Self-Organizing Maps, 3rd Edition. Vol. 30 of Springer Series in Infor-

mation Sciences. Springer, Heidelberg.

[105] Kootsookos, P. J., 1993. A review of the frequency estimation and tracking problems. Tech.

rep., Systems Engineering Department, Australian National University.
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59, 86, 134, 136

Baum-Welch algorithm, 50

Extended Baum-Welch algorithm, 50

Forward-backward algorithm, 50–52

Viterbi algorithm, 47, 50–53, 58

High-level detection, 113, 115

Hilbert transform, 43

Hough transform, 79, 84

Hydrophone, 25, 39, 142

Image processing, 23, 33, 37, 39–44, 59

Inter-harmonic, 27, 31

k-nearest neighbour, 75

Kalman filter, 53

Laplacian line detection, 79, 84

Learning

Back-propagation, 46

Hebb’s rule, 46

Likelihood ratio test, 39, 41–42

Line detection, 26

Line location accuracy, 34, 114, 114, 116–

132, 134–136, 140

Linear discriminant analysis, 73–77

Lloyd mirror, 26

LOFARgram, see Spectrogram

Low-level feature, 33, 59, 61, 61–87, 89, 113,

133, 134, 136, 138–140

Machine learning, 33, 72, 96, 138, 143, 144

Manifold, 78

Marine mammal, 24, 25, 41

Maximum a posteriori, 63, 65, 68, 82

Maximum likelihood, 37–39, 51, 59, 63, 65,

68, 82, 92

Meteor, 24

Minimum description length, 45

Morphological operator

Closing, 41

Dilation, 41

Erosion, 41

Multi-stage decision process, 42–44, 86, 133,

135

Near-periodic, 23

Neighbourhood, 107
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Neural network, 37, 44, 44–48, 59, 73, 78,

139

Auto-associative memory, 46–47

Generalisation, 44–46, 77

Hidden node, 44

Kohonen self-organising map, 48, 75–

133

Multi-layer feed-forward, 47–48

Multi-layer perceptron, 46–47, 74

Neuron, 44

Ockham’s network, 44, 45, 45

Radial basis function, 75–76

Soft weight sharing, 44

Supervised learning, 44–48

Unsupervised learning, 48

Weight decay, 44, 45

Weight sharing, 45

Noise, 26, 28, 30

Ambient, 141–142

Broadband, 40, 41

Model, 97–99, 101–102

model, 139

Noise level, 28

Temporal variation, 102, 141

Ocean, 26–28

Parameter sensitivity, 117–119

Parseval’s theorem, 30

Particle filter, 53–54, 58

Pattern recognition, 24, 33, 35, 138

Pattern set, 27, 80

Period, 80

Periodic, 23, 24, 27

Periodogram, see Spectrogram

Power spectrum, 29–31

Prewitt, 115

Principal component analysis, 62, 73–78, 81,

87, 96–99, 115

Probabilistic data association, 51

Probability density function, 50, 53, 54, 63

Exponential, 64

Gamma, 64

Propagation of sound, 24, 26, 28–29

Propeller blade, 24, 27

Ray path bending, 28

Receiver array, 28

Receiver operating characteristics, 33, 79, 82,

85, 115, 140

Reflection, 28

Scattering, 28

Sensor, 26, 28

Ship, 24, 25, 27, 142

Short-term Fourier transform, 23, 25, 29

Signal level, 28

Signal processing, 24

Signal-to-noise ratio, 23, 26, 32, 31–32, 37,

116, 124

Signature, 27

Simulated annealing, 54–55, 86, 94

Snake, see Active contour

SONAR

Passive, 24–33

Sonogram, see Spectrogram

Source, 28

Spectral waterfall, see Spectrogram

Spectrogram, 23–26, 29, 29–32, 115, 117,

118, 127, 131, 133–135, 139

Spectroscopy, 31

Speech formant, 24

Speed of sound, 29

Spreading, 28

Statistical model, 23, 33, 37, 44, 49–53, 59

Submarine, 24, 25, 27

Template, 134

Test set, 80–81, 114, 117, 139

Threshold, 40–42, 46, 51–53, 55, 56, 70, 79

Detection threshold, 28

Gradient potential, 132

Hysteresis, 43

Time domain, 24, 29, 32
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Time-series, 23, 24

Torpedo, 24, 25, 27

Track, 23, 25, 26, 31

Association, 36, 141

Birth, 35

Death, 35

Features, 42, 48, 59, 133

Gradient, 80

Oblique, 24, 80, 121, 122, 125, 127, 129

Sinusoidal, 80, 122, 123, 125, 130

Structure, 24, 35, 40, 44, 132, 134

Vertical, 24, 80, 120, 125

Training set, 80–81, 114, 117, 118, 139

Transmission loss, 28

Two-pass split-window, 40

Ultrasonic, 27

UNESCO, 29

Waterfall display, see Rolling window

Wavelet transform, 93

Weighted k-nearest neighbour, 75

Window, 48, 59, 61, 67, 72, 79, 96, 107, 115

Hamming, 29

Rolling, 31, 107–109




