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Abstract

This thesis deals with discrete Lax systems and integrable lattice equations (i.e., partial
difference equations (PAES) ) associated with elliptic curves. We will be concerned
with their derivation and integrability properties, as well as with certain reductions. In
particular the construction of a new class of higher-rank elliptic type integrable system

forms one of the core results, opening new avenues of investigation.

The primary integrable system of interest is Adler’s equation (nowadays often referred
to as (4), which is a lattice version of the Krichever-Novikov (KN) equation. For this
equation we exhibit a new Lax pair, the compatibility of which yields the equation in its
so-called 3-leg form and which forms a starting point for the investigationin thisthesis. It
isthis particular Lax pair that is most readily generalized to higher-rank cases, in contrast
to other known Lax pairsfor Q4. In fact, the most general class of higher-rank Lax pairs
contains not only higher-rank versions of (), but also equations which are conjectured to
be related to discrete versions of the Landau-Lifschitz (LL) equations. We will briefly
treat the latter, but our main focus will be on the class of higher-rank systems related to

Adler’s lattice equation.

Furthermore, by considering limits on the solutions, whereby the curve degenerates, we
will propose higher-rank analogues of various equations in the well-known ABS list.
Finally, we will set up ageneral scheme that corresponds to isomonodromic deformations
on the torus, from which non-autonomous éelliptic type difference equations can be
derived.



Contents

Abstract
Contents

List of figures

11

1.2

13

14

1.5

Introduction

Elliptic functionsand their functional relations. . . . . .. ... ... ..
Gammafunctions . . . . . . . ...
1.2.1 Theédliptic Betaintegral solution of star-triangle relation

Discreteintegrablesystems . . . . . . . . ..
1.3.1 Quadrilatera lattice equations: Multi-dimensional consistency . .
Similarity reduction and isomonodromic deformation problems .. . . . . .

141 Derivation of isomonodromic deformation problems from

smilarityreduction . . . . . .. ... .. o

11

13

14



CONTENTS

2 Adler’s equation ), in its various manifestations
21 Weierstrassformof theAdlersystem. . . . . .. . ... ... ... ...
211 CAC Laxpal . .. i e e e e e
212 3legform. . . . ... ..
213 EllipticLaxpar ... ... ... ...
2.2 Jacobi formof theAdlersystem . . . ... ... ...

23 Spinrepresentation . . . . . ...

3 Elliptic Lax systems on the lattice
31 Introduction . . . . . . . ...
3.2 Generd élipticLaxscheme . . ... ... ... .. ...........
3.3 EllipticLax pairsfor 3-leg latticesystems . . . . . ... .. .. ... ..
3.3.1 CaseN=2: Elliptic Lax pair for the Adler 3-leg lattice equation . .
332 CaseN=3: . . . . e

3.3.3 Higher-rank N=3 elliptic lattice systems (3.47) in explicit form . .

4 Degenerations, continuum limits and reductions
4.1 Rationa and hyperbolicsubcases. . . . . . ... ... ... ... ....
411 Rationalcase . ....... .. ... ...
412 Hyperbolic (Trigonometric)case . . . . . . ... ... ... ...
4.1.3 Ahigherrankanalogueof @, . . . ... ... ... ... ... .

414 A higherrank analogue of (Q3)s=1 - - « « « v v v oo

34

35

37

39

49

52

52

53

58

59

64

74

81

87



CONTENTS

42 Continuumlimits . . . . . . . . . . e
4.2.1 Straight continuumlimit . . . . .. ... ... ... .. .....
422 Skewcontinuumlimit . . ... .. ... ... ... ...,

43 Reductions . . . . . . .. e

5 Discrete elliptic isomonodromic deformation problems
5.1 Genera dlipticisomonodromic deformationscheme . . . . .. ... ..
511 Firstorderscheme . . ... .. .. .. .. ...
512 Revisedscheme. . . . .. .. .. .. .. . ...
52 Higherorderscheme . . ... ... .. .. . . ... ... . ...

5.3 DISCUSSION . . . . o o o o e e e

6 Conclusions
6.1 Summaryofresults . . . . . ... ... . . ...

6.2 Futurework . . . . . . ..

A Jacobi theta functions and proof of the higher degree identity (1.11)
A.1 Formulaefor Jacobi thetafunctions . . . . ... ... ..........

A.2 Proof of the higher degreeidentity (1.11) . . ... ... ... ... ...

B The Frobenius-Stickelberger type identities

Bibliography

126

128



List of Figures

11

1.2

1.3

14

15

3.1

3.2

3.3

5.1

The star-trianglerelation. . . . . . . .. ... ... .. ... ....... 12
Consistency around thecube. . . . . . . . . ... ... .. ... .. ... 16
3-legformof theequation (1.47) . . . . . . . . .. . .. .. ... ..., 17
The diagram of lattice equation and its similarity constraint . . . . . . .. 20
Compatibilitydiagram . . . . . . . .. ... 20
Lax compatibility condition (3.4). . . . . . . . . . ... ... 53
Thehexagonrelation . . . . ... ... ... ... . . ... ... ..., 58
Cayleycube . . . . . . . . 67
2-step periodicreduction. . . . ... . 110



Chapter 1

Introduction

This thesis is concerned with integrable partial difference equations (lattice equations)
associated with elliptic curves. The prime example of such a system is the lattice
Krichever-Novikov (KN) equation (or Adler’s lattice), which will be studied in detail
in chapter 2, and which has a close connection, through the Lagrangian aspects, to the

modern theory of elliptic hypergeometric functions.

A general dliptic N x N matrix Lax scheme is presented, leading to two classes
of eliptic lattice systems, one which we interpret as the higher-rank analogue of the
Landau-Lifschitz (LL) equations, while the other class we characterize as the higher-
rank analogue of Adler’'s lattice equation. We present the general scheme, but focus
mainly on the latter type of models. In the case N = 2 anovel Lax representation of
Adler’s elliptic lattice equation in its so-called 3-leg form is obtained. This Lax pair was
presented in [26]. The case of rank N = 3 is analyzed using Cayley’s hyperdeterminant
of format 2 x 2 x 2, yielding a multi-component system of coupled 3-leg quad-equations.
Moreover, the liptic discrete isomonodromic deformation problem, which leads to non-

autonomous elliptic lattice equations, has been considered.

In this introductory chapter we collect a number of aspects of the theory that come
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together in this subject: the elliptic Gamma function and elliptic Beta integra and
its relation to the lattice equations under consideration, the general theory of lattice
equations integrable in the sense of multidimensional consistency, similarity reductions
and isomonodromic deformation problems and the technique of de-autonomization. The
results in this chapter are not new but present some of the state-of-the-art ingredients

needed for the main topic of the thesis.

Thefirst section of thisintroduction gives some ideaof the theory of elliptic functionsand
presents some useful formulae which are needed to prove of some relationsin thisthesis.
The next section covered here is an overview of different types of Gamma functions
(classic, basic and €lliptic) related to three classes of the hypergeometric functions
theory and the aspect of elliptic Beta integral interpreted as a star-triangle relation in
statistical mechanics. This section of the introduction concentrates on the results given
by Spiridonov and Bazhanov et a. [19, 97]. Thisisfollowed by a short overview of the
integrability of discrete systems, in particular their multi-dimensional consistency. The
final topic of this chapter is the theory of isomonodromic deformation problem followed

by an outline of the thesis.

1.1 Elliptic functions and their functional relations

An éelliptic function is a meromorphic function in the complex plane with two periods
wy; and wy (w; and wy, are only half-periods) such that o is not real. The theory of
elliptic functions has been studied by Abel, Euler, Jacobi, Legendre [1, 49, 61] and
others. An important contribution in the subject of eliptic functions has been provided
by Weierstrass who introduced what is now called the Welerstrass o function [106]. A
comprehensive treatise of the theory is given in many textbooks[11, 18, 24, 107] as well
as [74]. Many lattice systems covered in the thesis rely on addition formulae for the

Weierstrass functions o, ¢ and o which will play a central role throughout the thesis. We
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will first focus on the sigma-function of Weierstrass, o(z), defined by

ad z z 1 22
o(z) ==z H (1-— an) exp [an + QQ%m] , (1.2)
(m,n)#(0,0)

with Q,,, = 2mw; + 2nwe and 2w, » being a fixed pair of the primitive periods.

Alternatively o(z) can be represented in terms of the theta function 6+,

2
mz?\ 201 (z|T) Woy

= = =2 1.2
2w1> 01,(0]7) g wy : s (1.2

o(z) = 2wy exp (
where n; = ((w;). We refer to the Appendix A for properties of the theta-functions,
from which corresponding properties of the sigma function are inherited. Furthermore,

the connections between the standard Weierstrass functions are given

() = ool = 28 o) =K.

where o(z), ((z) are odd functions of = and p(z) isan even function. By differentiation

(1.1), we have the following expressions:

1 > 1 1 2
() = -+ 3 (5 o ta- T ). (1.32)
(m,n)#(0,0) mn
1 > 1 1
oz) = 5+ O ( TR @ ) (1.3b)
(m,n)#(0,0) mn

We note that o(z) is an entire function with its simple zeros at 2,,,. The Weierstrass
functions satisfy a number of addition formulas that are functional relations and valid for
arbitrary values of their arguments. These functional relations are interconnected. The

most fundamental one in the theory is the three-term identity:

o(z+a)o(x —a)o(y+bo(y —b) —o(x+b)o(x —b)o(y +a)o(y — a)
=o(x+y)o(x—y)o(a+b)o(a—D>). (1.4)

This addition formula, which is a direct consequence of the parallel formula for the 6-

functions (A.7), can be rewritten as

®n($)®A(y) - @K(ZE - y) q)n—l—)\(y) + q)n-i-)\(x) @)\(y - ZL’) ) (15)
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where the (truncated) Lamé function ®,, is given by

o(x+ k)
o(x)o(k)’

with some complex numbers . A particular limit of (1.5) as A — « yieldsthe following

. (z) = (1.6)

O (2)Pu(y) = u(r +y) [((K) + C(2) +Cly) = ¢+ +y)] (1.7)

which is equivalent to the well-known identity for {-function

e O@ Yoyt olat2)
C(x) +¢y) +C(2) = Clz+y + 2) o e e e e (1.8)
Furthermore, we have the addition formulae for the Welerstrass p-function
oy e yely—a) o o(22)
p(z) — ply) = 72(2) 02(3) , ¢(2) 7i(z) (19
or:
B, (2)P_ () = p(x) — () (1.10)

The generalization of the basic identity (3-term relation for the o-function (1.4) or the

elliptic partia fraction expansion formula (1.5) for the @) is:

n

H Ki mz E q)ﬁl-f— AKEn xz

=1 Jj=1
J#u

::]:

(1.11)

where x;, x; are any non-singular fixed values. Thisidentity has a key role in thisthesis.
Extending the identity (1.11) (or (1.7)) to n + 1 variables, including x, and z,, and
subsequently taking the limit xy = x; + ¢, with ¢ — 0, we obtain the following identity
(after some obvious relabeling of parameters and changes of variables):

_ + )
—1)" 1o e ol L
( ) KoFR1++En (w1 + + ) H?:l U(xj)

x| ¢ (ko +Z (k) + Cx5) = (o + K14+ R+ a1+ + )| =

o(xi 4+ i+ +xy) o™ )
E Dpcgtrr-bocbrnn (T G o+ ) L . =1 @@ -
i=1 Il ol =) j=0
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Equation (1.12) can be derived from (1.11) by systematic limits, but we omit details of
the proof.

1.2 Gamma functions

The history of the classical and basic hypergeometric functions associated with the
different types of Gamma functions spans over several centuries. Some introductory
overviews on this aspect, and the main results derived in the past by protagonists in the
field, are givenin [12, 13, 35|, which are the standard reference books for the theory of
special functions of hypergeometric type. In this section, we shall follow the treatment

givenin [101].

The initial important instance of the hypergeometric theory is the Gauss hypergeometric
function o I} related to Euler’s classical Gamma function. Thisfunction, I'.(¢), is defined

as an infinite integral representation for ®(¢) > 0 of the form

I.(¢) = /0 ety (1.13)

It can be shown from the definition that the Euler Gamma function is analytic for (&) >
0, has simple poles at ¢ € Z~, and no zeros. Let us consider the following proposition

resulting from the definition of T'..

Proposition 1.2.1 1. The Euler Gamma funcion T'.({) satisfies the first order

difference equation for £ € Z-
Ie(§+1) = €Te(§), (1.14)

2. It satisfiesthe Euler’s reflection formulas

™

L(§le(1 =€) = (1.15)

sin &
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Proof

A proof of thefirst functional equation and the reflection equation for the Gammafunction
can befoundin[107]. O

The trigonometric analogue of the Euler Gamma function is defined as an infinite product
form (or g-GammafunctionI,)

o0

- (¢:9)0 L ok
L) = Epal — T (5,q>oo—kHO<1 &0 (1.16)

In the basic hypergeometric theory we have an extra parameter ¢ with |¢| < 1 whichis

fixed. Thefollowing relation is satisfied by the ¢-Gamma function.

Proposition 1.2.2 Observe that the g-Gamma function satisfies the ¢-difference equation

1—¢t

Fq(f+1): 1—¢

[y (8), (1.17)

asan analogue of (1.14).

Proof

A proof of the functional equation for I, follows from its definition [35]. O

The g-analogue of the Gauss hypergeometric function, the so-called basic hypergeometric
function (where the parameter ¢ isreferred to asthe base), isdenoted by ,¢, (a, b; ¢, £) and

was introduced by Heine [13].

The dliptic analogue of the other Gamma functions (1.13) and (1.16) is defined by the
infinite product [87]

oo

—1.
I'(&p,q) = (e p-G)ee yypere &P a)e = [[ (1 —&P'd), (1.18)

(&P, @)oo s

for ¢ € C\ {0}. Ontheéllipticlevel there exists two extra parameters p, g € C satisfying
lq], [p| < 1. Furthermore, observe that the product representation of the elliptic Gamma

function shows explicitly the poles, zeros and singularity, namely I'(¢) has simple poles at



Chapter 1. Introduction 7

¢ equalsto p~'q 7 for non-negative integersi, j, zerosat & = p' ¢/ fori, j € Z> and
essential singularity at £ equalsto zero. The other Gamma functions can be obtained by
taking the limit of elliptic parameters and £. We shall continue the discussion by giving a

following proposition for elliptic Gamma function included.

Proposition 1.2.3 1. The éliptic Gamma function possesses the reflection property
L(&p,q)T(pg€ ™ p,q) = 1. (1.19)

2. It satisfiesthe following difference equation

L'(q&ipq) = I(Ep)L(Esp, ), (1.20)

1
(i P)oo
(a similar relation with ¢ <> p) where 9(&;p) = (D;P)oo(§3 )0 (67105 D)oo IS @
multiplicative theta function in the normalization corresponding to the Jacobi’s

triple product identity.

3. It satisfies

['(&p,0) = . ;) , (1.21)

and similar eguations obtained by interchanging p and ¢ due to its symmetry;

I'(&p.q) =T(& ¢, p).

Proof

The proof of the reflection property of the elliptic Gamma function is trivia as it can
be obtained from its definition. The difference equation for the elliptic Gamma function
follows directly from its product representation and the ¢-difference equations for the

infinite product

, (&9 , (&9
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It can be easily shown that the rel ation between p-shifted factorials and the function (1.18)
is composed of setting ¢ = 0 in the definition of the elliptic Gamma function. O

The dliptic Gamma function forms a basic ingredient in the theory of elliptic
hypergeometric functions. This theory known as the top level of the classical
hypergeometric functionswasintroduced in thework of Frenkel and Turaev [30] in which
aconnection is established between the elliptic Boltzmann weights, or elliptic 6j-symbols
and values of terminating 1,14, éliptic hypergeometric series. Many formulas found in
the classic and basic level have been generalized to the eliptic case [95]. For further

consideration on the subject we indicatively refer to Spiridonov’s overviews[96, 97].

Let 7 and o be complex numberslying in the right half of the complex plane, although the
product formula (1.18) for the elliptic Gamma function is taken as a definition of I'(¢), it

can be interpreted as an infinite series representation

—2i€k
D(e” ") p, q) = exp Z 52 _ k)2 : 52 _ k)2 (1.23)
D G )

where the parameter  connected to the nomes p and ¢ as
2mio

M —=pqg, with p=¢e*", g=e

This representation can be obtained easily from the following formula

1 - —ex —oo fk
[T0-¢rd) p{ ;m_pmu_qm}’ gl Il <1 (1.29)

7,k=0

Relevant to thisthesisisthe elliptic Betaintegral introduced by Spiridonov [94]. Thefirst
integral identity involving the eliptic Gamma function in the elliptic level is known as
the elliptic analogue of the Euler’s Betaintegral in the theory of classical hypergeometric
functions. Next, we shall focus on the proof given by Spiridonov of thisintegral identity

from the different perspective by applying anew relation (1.11).
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Theorem 1.2.1 (Elliptic Beta Integral [94]) Let the six complex parameters, ¢ =

(t, ta, ..., ts) Satisfy | .| < 1 and the balancing condition Y = [],_, tx = pq/ts. Then
1 / d¢ 1
— | A&ty tg, ety = = ———— 1.25
Ami Jr (&t B2, o) £ (Pip)oo( @)oo (12)
where T isthe positively oriented unit circleand A.(&; 1, t, ..., t5) iS defined as
5 -1 -1
- I'(ti€, 8 Yt
,t5) — 5 QHZZI ( ’L£17 Z£ ) 7 )p7 q) ’ (126)
[(€%,62YE YD, q) H1§i<j§5r(titj;p7Q)
where the following convention is used

Ae(g; tla t27

I'(z,y,2p,9) =T(x;p, )T (y; 0, )T (250, q). (1.27)

Proof
The proof follows the one given in [97], but we add a new element to the proof by using

the higher degree identity (1.11) for N=3 case

q)m (xl)cbm (xQ)CI)KB(x?)) - ¢)51+H2+H3($1)@H2 (xQ - xl)cbféa(x?) - xl)
_'_(I)m (xl - x2>®f€1+1€2+1€3 (xQ)(I)Ks (.%3 - x2) + Cbm (xl - x3>q)f€2 (xQ - x3)q)l€1+l€2+f€3 (.%3)

(1.28)

Thisisthetrilinear relation involving six free parameters, each term contains a product of
three ® functionsin (1.6). If we use the following rel ation between Weierstrass o-function

and the Jacobi type theta function, «,
. . Z . 2 w
19(627”7;; 627”7') _ _2_M€ﬂz(z—7/4)—2w1C(w1)z 0'(2(,012)Q/11(0), (7_ _ w_;)7 (129)
where w;, wy complex variable acts linearly independent in the right half-line and 64, is

the Jacobi theta function (see Appendix A), then the relation (1.28) can be rewritten as

O (ay; p)9(wB; p)d(zy; p)d(aby; p)d(wy ™ p)d(yz ™" p)d(wa™; p)
—0(ya™ a; p)d(wa™" B; p)i(afyr; p)d(y; p)i(w; p)d(v: p)O(wy ™ p)

2
- Z’—xﬁ(yw1a;p>z9<aﬂww;pw<xww;p)ﬁ(&p)ﬁ(y;pw(x;pw(yx1;p>

—%ﬂ(aﬁvy;p)ﬂ(wy‘lv;p)ﬂ(wy‘lﬁ;p)ﬁ(a;p)ﬂ(w;p)ﬁ(fr;p)ﬁ(wx‘l;p) :
(1.30)
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where o, y, w, [, x,  are arbitrary complex variables. We observe that (1.30) is
a four-term identity containing "six” free parameters, each term including a product of

seven theta functions. We now substitute

y — Y&t a =yl
w — Y¢ , B — gt
r — Yt , A T P

into the theta function identity (1.30) to derive the following form

-

D18 p)0(0E )% p) [ [0Vt 5p) = (Y p)(YET 5 p)0(€%p) [ [ 9(tats; p)
k=2

k

o

5
= &Y ;p)0(YED) [ [0t ) — 10Vt p)d(YE p) [ [ 9(t4E5 ).
k=1

(1.31)

b
Il

1

Multiplying both sides of this equality by A (¢, tq,...,t5) in order to obtain the ¢-

difference equation

Ae(f, qtl, tg, ceey t5) — Ae(f, tl, ...,t5) = f(q_lf, tl, ...,t5) — f(f, tl, ceey t5) s (132)

where

[y O&)0(MY5p) 1
[Th_s O(titi; p)I(E2 )I(YE; p) €

Thus, (1.32) isintegrated over the variable £ to obtain zero on the right hand side and by

F(&te, onts) = Ae(§, 1, 0 ts5) (1.33)

applying the residue theorem to the resulting integrals (as described in [102]), we are led
to the equality (1.25). O

The trigonometric limit of the elliptic Betaintegral (1.25) where an elliptic nome p — 0
(or ¢ — 0) constructs the Nasrallah-Rahman ¢-Beta integral [86] which is one parameter
generaization of the Askey-Wilson integral [13]. Recently an important connection
between the theory of elliptic hypergeometric functions and solvable models of statistical

mechanics has been discovered by Bazhanov and Sergeev, [19] demonstrating that the
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elliptic Beta integral (1.25) provides a new solution of the star-triangle relation with the
Boltzmann weight given by the elliptic Gamma function. The equivalence between the
elliptic Betaintegral and the star-triangle relation givenin [19, 96] will be reviewed in the
next section by following treatment in [56, 96].

1.2.1 The elliptic Beta integral solution of star-triangle relation

The éliptic Betaintegral appearsin statistical mechanics as a star-triangle relation

2
0

= Clayip, QW (= a = %@ OW (v T )W (a8, 7). (1.34)
where the Boltzmann weights W («) and S(u) are given in terms of the elliptic Gamma

function (1.23) as

[ (e~ !umwtilamn)opy q)D (e~ wtetilomn). p q)

W(Oé; u, w) = F(e—i(ufw*i(ﬂﬂr??)) D, q)F(efi(quwii(aJrn));pa Q) ’

(1.35)

and

. _ (P D)oo (05 @)
Suip.a) = 4rl(e?™;p, q)T'(e=2%;p,q) (1.30)

Here C' depends explicitly on the spectral parameters o and v as C(«,v;p,q) =
[(e2e e2etr=n) e=2v:p ¢) [19]. Figure 1.1 given below is the star-triangle relation in
itsgraphical form!. Theintegral relation depends on three spectral parameters o, v,  and

~
~ N~ g

variable v islocated at the black vertex of the star-shaped on the |eft-hand side appearing
in the Boltzmann weights S(u) and W («).

1The star-triangle relation as depicted in Figure 1.1 has its origin in statistical mechanics, namely as a
special relation for Boltzmann weights associated with exactly solved models, see e.g. [17]. Actually, the

simplest example of a star-triangle relation can be found in the Kirchhoff laws of electric network theory

[57].
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= -~ =

U U U

)

Figure 1.1: The star-triangle relation.

The equivalence between (1.25) and (1.34) can be seen by using the reflection property

(1.19) and choosing the following variablesfor ¢ in the theorem 1.2.1

e ] — ,—a—iu _ v+
t1=e s to =€ s t3 =e 7 s

t4 — ef'yfzu’ t5 — eaJr'yfnJrzu’ t6 — eaJr'yfnfzu’

aswell as & = ¢™. One can show that the form of star-triangle relation (1.34) does not

change when we replace W and C' by

W(a;u,w) = K ' a)W(a;u,w), (1.373)

ol K@K Knh-—a-9) ,
Clnip ) = K(n—a)K(n—7) K(a+ V)C(a’ vpg,  (L370)

for an arbitrary normalization function K (). To get the expression for C' which is equal

to unity, C' = 1, one can introduce the function

)~ e pnqn€2na 138
K(a) = exp (n%;o} n(l—pm)(1—g)(1 +p"q")) ’ (39
satisfies
K(Oé) —2a, _ _ _
Ry g =1, K@K(a) =1 (1.39)

The new solution of the star-triangle relation has a bearing on the work in the thesis.
Because the Lagrangian form of the discrete integrable equation (), of the ABS
classification comes up as a quasi-classical limit of the Boltzmann weights satisfying the

star-triangle relation [19]. As a consequence, all the other equationsin the ABSlist arise
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as limiting cases [8]. The appearance of the “top” equation ), in the ABS list of affine-
linear quadrilateral equations, which was introduced by V. Adler [5] as the permutability

condition of the Backlund transformations of the KN equation, isremarkabl e observation.

1.3 Discrete integrable systems

Discrete integrable systems have received alot of attentionsin recent years and contribute
to the development of a variety of different fields in mathematics and physics, such as
special function theory, numerical analysis, difference geometry and quantum field theory.
In particular, they appear in the field of statistical mechanics, for example as a quasi-
classical limit of the new solution of the star-triangle relation [19]. Besides the important
application to mathematics and physics, discrete systems are also a fast growing field
of computer science. Some existing reviews on this subject involve the book [38, 42],
and introductory overviews by Nijhoff, [74] and introductory lecture notes taught at the

University of Leeds.

The discrete equations appear in theform of difference equations, which are the analogues
of differential equations in the continuous theory of integrable systems. Although the
theory of difference equations, in its current state, is not as advanced as the theory of
differential equations, at the same time in general the former theory is richer as well
as more generic. In developing the theory of integrable difference equations, part of
the research is focused on the question of what is the proper definition of integrability,
and severa properties of those difference equations have been proposed as integrability
detectors. Many integrable difference systems have been given by discretizing known
(integrable) ordinary differential equations (ODES) and partial differential equations
(PDEs). Early examples of discrete integrable equations involving the korteweg-de Vries
(KdV) equation, modified KdV (mKdV) and sine-Gordon (sG) equation for instance,
were derived by Hirota in [43, 44, 45, 46]. The discretisations appear by taking the
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exponentiation of adifferential operator in Hirota' sapproach. The*Dutch” school (Capel,
Nijhoff, Quispel et a.) derived integrable PAEs viaa Direct Linearization (DL) method,
[64, 85], first proposed by Fokas and Ablowitz in 1981, [29] for the specific continuous
case of the KdV and the Painlevé 1l equation.

Another powerful test for integrability in the discrete case is the technique of singularity
confinement, which was proposed by Grammaticos, Papageorgiou and Ramani in [37] as
a proper candidate for a discrete analogue of the Painlevé property. This technique, used
to find discrete version of the Painlevé equations, analyzes the initial value problem of a
given equation when a singularity of it appears. However, in 1999, Hietarinta and Viallet
[40] showed that singularity confinement is a necessary but not sufficient condition for

predicting integrability.

Another important integrability test for the discrete system is 3-dimensional consistency
or Consistency-around-the-cube (C.A.C) proposed as a feature of integrable PAES by
Nijhoff et a. in [70]. C.A.C has been used as a tool to investigate and classify lattice
equationsin [7]. As a consequence of this property one may immediately construct the
Lax pairs of the discrete system. We shall focus more closely on the 3D-consistency

condition in the next section.

1.3.1 Quadrilateral lattice equations: Multi-dimensional consistency

Two-dimensiona lattice equations within the class of quadrilateral PAEs have the
following form:

Q(u, 0, 0, 1 v, 8) = 0, (1.40)
where the fields u = u(n, m) is the dependent variable, with the shifted variables u =
un+1,m), @ = u(n,m+1)and & = u(n + 1,m + 1) defining the different values
of u at the vertices around an elementary plaguette on a rectangular lattice, see Figure

1.2-(a). The spectral parameters o« and 3 are lattice parameters corresponding to lattice
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direction n, m and attached to the edges of quadrilateral. Thefields v = u(n, m) and its
shifts are assigned to the vertices of the square lattice. In [7], the lattice equation (1.40)
was considered in the classification study of quadrilateral |attices, where has the property
of “3D-consistency” or C.A.C. Thisproperty wasfirst put forward by Nijhoff and Walker
[71] in the study of higher order similarity reductions of integrable PAEs of KdV type,
as a key integrability feature. The CAC property is nowadays regarded as a definition
of integrability of 2D lattice equations of the form ¢ = 0, allowing the equations to be
consistently embedded in a higher-dimensional lattice. More specificaly, applying the
equation ¢ = 0 on three elementary plaquette of the cube in Figure 1.2-(b) yields

Qu, @@, w0,8) =0, — u=F(u,u,aa,p), (1.41a)
Q(u,u,, T a, k)=0, — U= F(u,u,w@, B, k), (1.41b)
Q(u,u,w, T B, k)=0, — T = F(u,u,w, 8, k), (1.41c)

where the given third direction indicated by the shift — denotes a shift in the third
independent variable h which is associated with the lattice parameter «. Substituting
the solutions F' of (1.41) into the equation (Q = 0 on the remaining faces of the cube we

obtain three separate relations for @ = u(n + 1,m + 1, h + 1), namely:

Q(w, 7,7, a, 8) = 0, and (1.423)
Q(@, 3,7, a, k) =0, and (1.42b)
Q(@, 7,7, : B, k) = 0. (1.420)

Then the property the C.A.C indicates that these expressions (1.42) produce the same
value of T, even though there are three separate way to evaluate it. In other words, the

final point isindependent of the way in which it is calculated.

We shall take the discrete modified KdV equation as an example to illustrate the recipe
givenin [71]. The lattice mKdV equation can be written:

~

Q(u, 4,4, u; a, B) = aluu — tu) — B(ui — tu) = 0. (1.43)
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u « u
G G
U @ u
(a) Face of the square lattice (b) Elementary cube

Figure 1.2: Consistency around the cube.

Solving the equation for 5, we have

AL LY (L44)
au — fu

and get asimilar relation for @, @ in the other pairs of the lattice directions

~ oau — KU fu — ku

u=1u

uUu=1u

— —. (1.45)
QU — KU bu — Ku

Now, if we shift (1.44) in the h-direction, and place the values of @, u respectively, we

obtain
~ 2 2\ 2 N\ 2 A2\
=_ fla” — K )uuj— k(B — « )1? +a(k® =0 )jm (1.46)
Bla? — k2)u+ k(8% — a®)u+ a(k? — f2)u
The later expression isinvariant under permutations of lattice shifts “ ", “~” and*“ ="

together with corresponding lattice parameters. It is obvious that we can obtain the same
result for 7 if we start with the other pairs (1.45) on the cubein Figure 1.2 (b). Hence the
mKdV equation (1.43) obeysthe C.A.C property.

In 2003 Adler, Bobenko and Suris (ABS) classified all discrete integrable systems, which
have the consistency around a cube property, on quad-graphs [7]. All equations of the
form @ (1.40), that have the following properties:

1.  isafirst order expression in each of thefields u, u, u, .
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2. ( satisfy the D, symmetry group of the square.

3. Thetetrahedron condition, the value 5 isindependent of the value w.

With these conditions the different types of equations of the form (1.40) can be reduced
to nine models, they are split into three categories, (A; — As), (H; — H3) and (Q1 — Q4).
These discrete equations are not independent. In particular, all equation in the (Q— list
can be obtained as degenerations or limits from Adler’s lattice equation [5], @4, which
is the top level equation in the ABS list of affine-linear quadrilateral equations. For the
purpose of this thesis, we will focus on the lattice equation (), in chapter 2, where we

shall explore the equation in detail.

Importantly, the equations in the ABS classification can be made manifest through a so-

called 3-leg form [22] given by
Qu, T, T, v, B) = o(u, T ) [o(u, T B) = (w, T 0, B) =0, (L47)

where the function ¢ indicatesthe short leg and ¢ indicatesthelong leg. Thisisillustrated
by Figure 1.3.

Figure 1.3: 3-leg form of the equation (1.47)

The 3-leg functions ¢ and ¢ in (1.47) give rise to a Lagrange structure for the 3-leg
equation viathe relations

. 0 - ~ 0 ~
o(u, ;) = %X(u,u; a), Y(u,u;o,f) = %A(u,u;&,ﬁ) : (1.48)

which are the defining relations for .Z and A, defining the relevant action functional [7].
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1.4 Similarity reduction and iIsomonodromic

deformation problems

Monodromy is the change of the fundamental solution of a linear differential equation
when the argument moves around one of the regular singularities. That change is
measured by multiplication of the fundamental solution matrix by a factor from the
right given by the monodromy matrix. Furthermore, if the differential equation carries
parameters one can deform the differential equation by changing those parameters.
I somonodromy means then that the monodromy matrix is effectively invariant under those

deformations, hence invariant under such changes of variables.

1.4.1 Derivation of isomonodromic deformation problems from

similarity reduction

The first example of an isomonodromic deformation system was first worked out by R.
Fuchs [33, 34] who discovered the Painlevé VI equation in 1905 as arising from the
deformation of a second order linear ODE. The generalization to matrix differential
systems were studied subsequently by Schlesinger [90]. In [2] Ablowitz and Segur
showed that Painlevé equations arise from similarity reductions. Let usillustrate the idea

by means of the continuous modified KdV (mKdV) equation
vy — 6020y + Vgw = 0,
where the similarity variable turns out to be of the form
&= (3t
with the ansatz v = u(£)(3t)~1/3. One reads, after one integration, the equation

Uge = 2ud + fu+c,
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which isP,;. Moreover, in [28] Flaschka and Newell did the full isomonodomy theory on
the Lax pair arising from those reductions. At the same time Jimbo et al. [51, 52, 53]
developed the isomonodromy from a 7-function approach, and they gave the Lax pairs
for al (continuous) Painlevé equations. For detailed information on the approach and the

historical review, we refer to [3, 25].

The discovery in the 1990s of discrete analogues of the Painlevé equations has been one
of the most prominent developments in the field of discrete integrable systems. One
of the decisive sources of such non-autonomous nonlinear ordinary difference equations
(OAES) has been the method of similarity reduction on the lattice, first proposed by
Nijhoff and Papageorgiouin 1991 [67]. It liftsto thelattice the above-mentioned approach
of obtaining the P, equation from similarity reduction of the mKdV equation, noting that
the transition to the lattice is highly nontrivial given that it is not really possible to find
asimilarity variable in the lattice case. The reduction performed in [70] instead of using
a similarity variable employs compatible non-autonomous (and nonlinear) constraints,
which alowsoneto avoid theintroduction of asimilarity variable. For the quad-equations
of the form (1.40), the suitable similarity constraints are given in terms of a configuration
forming a cross

F(u, w, u, u, u) =0. (1.49)

Therefore, we have that the system comprising both the lattice equation as well as the
constraint can be symbolically represented by the diagram in Figure 1.4. By posing the
equation and its similarity constraint on the variable u, we effectively reduce the lattice
equation to a nonautonomous OAE in one independent variable. This can be seen by the
fact that all points of the discrete equation can be calculated from afinite set of discrete

points (alocal initial value problem).

The diagram in Figure 1.5 demonstrates how the similarity constraint and the lattice
equation are compatible. Starting from the initial points (indicated at the diagram by
) we calculated the other points using (1.40) (values displayed by o) and (1.49) (values
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Ue
U u
u U U
with ° * °
u u
ue

Figure 1.4: The diagram of lattice equation and its similarity constraint

initiated by +). At the eighth step we reach a point at which the evaluation can be muilti-
valued (symbolized by &) which is not acceptable since we are looking for single valued
solutions of the discrete equation. The value calculated by means of the lattice equation
must coincide with the value computed using the similarity constraint. i.e., both ways
of calculating the value at this point must show the same result. This can be verified by

direct calculation.

+ o
o o o +
o ° o >
+ o

Figure 1.5: Compatibility diagram

If, as a result, for a well-chosen function F' of the constraint (1.49), the system of
constraint and the equation @@ = 0 (1.40) are found to be compatible in the sense of
the diagram in Figure 1.5, then the configuration of local initial value problem defined on
the black points can be iterated throughout the lattice to yield a single-valued solution w
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of the system at each point of thelattice. Subsequently, aswas shown in[70] for examples
in the KdV class of |attice equations, the system can be reduced to an OAE in any one of
the independent variables. Asasimple example of this procedure we will give the case of

the reduction of alinear PAE, following the treatment in [42].

Next, we will first investigate the similarity reduction procedure on the linear level where

the constraint is compatible with the quad equation.

The linear case

L et us concentrate on the linear quadrilateral equation of the form
(a+B)(@—1) = (a — )i —w), (150)

for a dependent variable u« and lattice parameters o and [ This equation is
multidimensionally consistent according to the conventions of the previous section 1.3.1.

The similarity constraint for this equation was given first in [ 70] and reads:
1, 1 N
§n(u —u) + §m(u —u)+p+A=1)""" =0, (1.52)

where i, A are constant in the lattice variables n, m and in the lattice parameters o, (.
It can be verified by explicit computation that the constraint (1.51) is compatible with
(1.50) in the sense of Figure 1.5, but even in this case the computation is quite tedious so
we omit the details. The linear lattice equation (1.50), which is the linearized version of
the lattice equation H; in the ABS list [7], has a general solution given by the discrete
Fourier type integral representation:
a+r\"/B+kr\™m dk
u(n,m) = /F ( ) ( ) —, (1.52)

a—kK b—k K

where the contour (or curve) I' is chosen in an appropriate manner. From the

integral representation (1.52) the following differential-difference equations in the | attice
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parameters can be constructed

= l-w, so=-

— = 153
O‘aa 2 ( )

by considering the integral solution (1.52). In addition, these equations are compatible
with the lattice equation (1.50), which can be easily verified by direct calculation.

Taking the form of the differential operator (vector field) X = «d, + 53Js into account
we will now impose the scaling invariance X = 0 on the solution of the equation @) = 0
where Q := (a4 8) (i — @) — (o — 8)(u — u) isthe lattice equation (1.50). Thisyields

XQ

Q+ (a+B)X(@—1a) — (a— B)X(@—u)

= Q+(a+B)@—7)— (a—B)7T—n), (154)

where n == (ad, + 503)u. For X to vanish on al solutions of ) = 0 we must have

n = 71and 7j = 77 with the solution
n=pu+\N-=1)""" (1.55)
Therefore, we have established that
Xu = (ady + B0g)u = p + A\(—1)"t", (1.56)

can be written as the similarity constraint (1.51). It can be seen immediately by using the
relation (1.53). We will now proceed with the reduction of deriving an OAE from the
system given above. The idea to get the explicit reduction is to eliminate the tilde-shift
(alternatively the hat-shift may be eliminated) by combining primarily on the similarity
constraint and the corresponding lattice equation. Writing the constraint as

1 1 . ~ ~
5na+§mb+n:0, n=p+A=1)""" with: a=(u—u), b= (u—u), (1.57)

for convenience, we have from the backward shift of the lattice equation in n direction:

(W —u) =t —u), where  t:= (a—f)/(a+ ). (1.58)
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By combining (1.50) and (1.58) we obtain
(@—w) =" —t)@—u) -t T@-17), (1.59)
orintermsof a = u — u thisgivestherelation:
at+tta=({t"—1t)r, (1.60)

in terms of reduced variable z == o — u . Furthermore, from equation (1.50) we have
b =u—u = tr+ z. Using now this relation and (1.57) we obtain from (1.60) the
following closed-form difference equation in terms of x and its hat-shift only:

1
ME Gy = St 0, (L6D)

A=) (1) =t +1) = (to+) -

in which t, u, A\, n are parameters of the equation, derived as a reduction of PAE
for u (1.50). This is a second order linear nonautonomous OAE eguation in the
independent variable m. The similar relation for n can be obtained equally, where the
other discrete variable m becomes just a parameter. Here, we gave a summary of how the
similarity reduction procedure on the linear level worksin practice. Obviously, pursuing a
reduction of the nonlinear systems of PAE to OAE on the two-dimensional lattice or the
higher-order case is more elaborate [70]. Another advantage of the similarity approach,
relevant to later parts of this thesis, is that it also provides a systematic derivation of
Lax pairs (monodromy problems) for the lattice equations. This leads to the discrete
isomonodromic deformation problem which is derived by implementing the similarity

constraint to the Lax pair of the system. Let us show the ideafor the linear case.

As aready mentioned before, the linear discrete equation (1.50) obeys C.A.C. property
of subsection 1.3.1. Therefore this equation can be consistently embedded in a higher
dimensional lattice by considering compatible system

(a+B)(@—1) = (o= B —u), (1.623)

(a+r)(u—1u)=(a—k)(u—u), (1.62b)

~

(B+r)@—u)=(F—r)(T—u), (1.62c)
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where w defines the shift in the additional direction in the lattice related with a lattice
parameter x as before and by considering the shifted variable 7 = ¢, we obtained an

inhomogeneous Lax pair of the form:

5= () - (S )a v @:(5+“)¢—<5f2)a+u, (1.63)

a—K a—kK b—kK 15}

whose compatibility condition @ = é arising from shift on the two equations (1.63), leads

to the linear equation (1.50).

We will next derive a Lax pair for the system of differential-difference equation (DAFE)
(1.53). Thiscan be achieved in asimilar way by using 3D-consistency. Thus, performing

the sameideaon DAFE, we get from applying the shift in the additional direction:

- = =
06804 2

O _ 27— u) 000~ G —) (164

Inserting as before w = ¢ and using the equation (1.63) shifted in the first direction, we

obtain:

Op n

&%:_5(‘5_@:‘%(‘5—(Z;:)(so—:@)—u), (1.65)

asimilar equation with n replaced by m, « replaced by /5 and tilde-shifts with hat shifts.
We will consider the derivation of the Lax pair for the similarity reduction. The similarity
constraint for the variable u, since it supposes now the existence of athird direction, will
adopt the extended form from (1.56)

(0, + BOs + KO )u = p + N(—1)" ™t (1.66)

where h related to the additional direction is the independent lattice variable. Applying a
bar-shift along this additional direction and inserting z =  we get:

(04804 + Baﬁ + /‘ian)@ =p— )‘(_1)”+m+h : (167)

The differential equation in the spectral parameter ~ can be obtained immediately

inserting the expression acquired for 0, from (1.65) and its 5-counterpart, this yields
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amonodromy problem in terms of the spectral parameter x

d U n/oa—K m/fB—k
L= (1)t Y _( ) __( )
g =p—A(=1) gntm)+ 5 (o )et s u

l/a—k b—kK
——( n—+
2\a+ kK B+kK

G+ %@. (1.69)

It appears to have regular singularitiesat k = 0, co and kK = —«, —f3. The analogy with
isomonodromy in this case is that this linear differential equation is compatible with the
differential equations in terms of both the lattice parameters (1.65) as well as with the
linear difference equations (1.63) for the discrete shiftsin the variables n and m. In the
following we will derive the relevant monodromy problem for the similarity reductions

on the nonlinear level [42]. We will pursue this by analogy with the linear case.

The nonlinear case

We will consider the lattice mKdV equation (1.43). In analogy to (1.53) we introduce

differential-difference equation in the lattice parameters:

l nu—u
—logu = ————,
Do 8 au+u

(1.69)

and similar equation with n replaced by m, a replaced by 5 and tilde-shift with hat shift.
The remarkable fact is that these equations are compatible with the integrable mKdv
equation. In analogy to (1.56), we have

Xu = (ad, + BO3)u = (4 + A~1)"")u, (1.70)

which can be obtained by imposing the scaling invariance X = 0 onthe solutions@ = 0
where Q(u, @, @, u; o, B) 1= a(uti — tiu) — B(uii — ww) isthe lattice mKdV quadrilinear
function. The discrete version of the above constraint can be obtained straightforwardly

using (1.69) and its S-counterpart. Thisleadsto

I R N (171)

u+u u+u

n
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It can be shown that the equation (1.71) is compatible with the lattice mKdV according
to the diagram in Figure 1.5. With the constraints thus obtained, one can use them in

conjunction with the original equations, to derive areduction of the original equation.

We next address the problem of deriving a monodromy problem for the reduction of
the lattice mKdV equation, which requires a similar calculation as the one performed in
the case of the linear system. In fact, the similarity constraint for the variable u, since
it assumes the existence of an additional direction, will adopt the extended form from
(1.70).

(0n + BIg + KOK)u = (pu+ A(—1)" T )y (1.72)

where the lattice parameter x associated with the additional direction in the lattice is
interpreted as a spectral parameter and where h isthe independent discrete variable. Next,
performing a bar-shift along this direction and inserting z = f/g we obtain:

%(aaa + B0y + KOR) f — é(oﬁa B0+ kO = (1 — M=)y (L73)

which can be split into two linear equations, leading to the vector similarity constraint:

(1.74)

_)\_1n+m+h_'_y 0
(aaﬁﬁaﬁman)x(“ ( )0 )X,
1%

where x = (f, g)* and v isarbitrary. Applying the sameideato the differential-difference

equation (1.69) we obtain the expressionsfor 0, x as

Oéi f _ n (@®+ Hu+ (a® — kHu , 2akuu f
[oJe! q (a? — k?)(u+ u) 2ak . 2% ; .

(1.75)

Similarly we have alinear equation for 05 x after the replacementsa — fand ~— .

Inserting these linear equationsinto (1.74) a differential equation in terms of the spectral
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parameter x can be obtained of the form:

d n+m+4y 0
Iid—X = X
K 0 n+m+y—p— A=1)"m
n (@ + k)u+ (a® — K*)u , 2akuu
- ~ X
(a® = k?) (U + u) 20K . 20’y
m (62 + KU+ (B2 — )y, 2Bruy
- ~ X
(8% = K?)(U + u) 28k , 28%
(1.76)

where v is a constant. The equation (1.76) has regular singularitiesat = 0, a2, 32, oc.
Monodromy measures the change in the solution y as afunction of 2, when the value of
2 moves around one of the regular singularities of the equation in the complex plane.
The isomonodromic deformation problem posed by (1.76) in conjunction with (1.75)
providesaLax pair for the Painlevé VI equation, aswas shownin [70]2. At the sametime
(1.76) in conjunction with the Lax pair for the lattice KdV equation, which is of the form
(2.10) with an appropriate choice of matrices, provides an isomonodromic deformation
problem for the discrete counterpart of Py, [70]. (We omit the details, asthe corresponding

computations are quite laborious.)

The similarity reduction techniqueis not the only way to achieve the monodromy problem
for the discrete systems. We will next, relevant to chapter 5 of the thesis, review an

aternative method for the derivation of the isomonodromic deformation problem.

1.4.2 Deautonomization of maps

In the previous section we have seen the procedure for the construction of isomonodromic

problem from similarity reduction. In this section we shall encounter another approach,

2Theoriginal Lax pair for Py, was given by R Fuchsin [33, 34], while the first 2x 2 matrix Lax pair for
that equation was givenin [52].
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by starting from Lax pairs for a known autonomous integrable map coming from the
lattice Gel’ fand-Dikii (GD) hierarchy. The GD hierarchy first introduced in [68], where
the discrete analogue of the continuous GD hierarchy was derived by using the direct
linearization method. For full details of derivation of the integrable mappings the reader
isreferred to the literature [68].

The approach, which is based on the use of a deautonomizing procedure, has been
first introduced by Papageorgiou et a. in [84] in order to construct isomonodromic
deformation problems for the lattice Painlevé I-I1l equations. Here we follow the
treatment given in [25, 84]. As noted in [84] the mappings related to the lattice analogue

of GD hierarchy are given by a spectral problem of the following form

A (r)p(k) =To(k),  @(k) = B(r)p(k), (1.77)

in which « is interpreted as the Floguet parameter coming through the periodicity
condition of the solution and the spectral parameter = denotes an eigenvalue of <7 the

Lax matrices o7, % aregivenin the form for the mappings of GD type (cf. [259]):

N
(k) = Y TXO 4 xO
=1

Br) = YV 1yO N=23 . (1.78)

where the shift matrix X, takes of the form

0 1
0 1

0 1
K oeee eee o 0

in which all coefficients X®, Y1) and Y(©) are diagonal 2/ x 2M (even periods) or
(2M — 1) x (2M — 1) (odd periods) matrices. The mappings (1.78) are reduction of the
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discrete KdV equationfor N = 2 and Boussinesq equationfor N = 3 inthe GD hierarchy.
Next, in order to obtain an the isomonodromic deformation system we deautonomize the
equation (1.77) by replacing 7 with kd/dk. Thisleads

d
Fu%w(n; k) = (n;K)p(n; k), P(n; k) = B(n; K)p(n; k), (1.79)

the following relation can be obtained by the compatibility of (1.79)

—

%%(n; k)= (n;k)B(n; k) — B(n; k) (n; k). (1.80)

On the other hand, the monodromy problems are not always of differential type. In
another case, the corresponding non-autonomous equations may depend on the lattice
variable n exponentially. This led us to reconsider the choice of the deautonomization
procedure given above. As shown in the paper [84] the spectral problem (1.77) can be
replaced by the ¢-difference system

p(n;q k) = (n;R)p(ns k), @ns k) = B(n; k)p(n; k), (1.81)
rather than to the differential system. Equation (1.81) leads to the compatibility condition
B(n,q k) o (n; k) = Ja/f\(n, K) B(n; k) . (1.82)

In the following, let us finish this section by working out an explicit examples of above

derivations leading monodromy problemsfor the discrete Painlevé equations.

dP,
In this case, for mappings coming from the lattice KdV equation the Lax matrices.# and
A for M =2,and N = 2 are given by

f1 U9 1 ]{?1 1 0
d(n; K’) = K fg Us ) %(nv 'Li) = 0 kQ 1

Kui K fs k0 k3
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where f depends on the discrete variable n. From (1.79) we obtain the set of relations

k3U1—/€1a1+f1—]?3+1:07 uy —uz — k1 + ky =0,
kyug — kolly + fo — f1 = 0, : Uy — Ty — kg + kg = 0, (1.83a)
k2u3—/€3a3+f3—]?2:0, ug — Uy — ks +k; =0,
in addition to
(fi— fi)ki =0, i=1,2,3. (1.83b)

In order to have some f; are not constant, we arrange the diagonal entries k; appropriately,
namely by taking ks = k3 = 0, k; # 0 ityields f, = f, and f5 = f, + 1 having taken
into account u; = wuy. Furthermore, considering Casimir constant C' = wuy + ug + uz We

obtain from the relation (1.83a) for y,, = us = us(n)
fo—fi

Yntl T Yn + Yn-1 + = Ca

n

fo = %n + (=1)"fo, fo, f1 = constant, (1.84)

which is precisely the dP, equation. Another choice of the diagonal entries, namely
by choosing k3 = 0, ki, ko # 0, does produce an alternative form of dP,. Next, the
construction of a discrete monodromy problem for dP,,, arising from the modified GD

class [84] will be considered.

dPy

It was noted in [84] to obtain a Lax pair for dP,;, we can consider the case of even

dimension M = 2 and rank 3, meaning that we have 4 x 4 matricesin the form

fl U2 U3 0 ]{?1 w1 0 0
0 Uz U 0 k 1 0

o (n; k) = f2 us v , B k) = ? . (1.85)
kv 0 f3 wa 0 0 k3 we

kup kve 0 fy k0 0 Ky



Chapter 1. Introduction 31

The set of relations below reveal s from the compatibility condition (1.82)

~

k101 + Uy — wouy — kzvy =0, Jrwr + katia — kyug — fowr = 0,
koUs + uywy — quo + kqvg = 0, | J%wg + kquy — ksug — fqwo =0, (1.86)
ksvs + g — wiug — kivg =0, Ja+ kiuy — kqur — qf1 =0,
kg + Tswy — g — kgvg = 0, o+ kstis — kgug — f3 = 0,
with
D= vy, Ty=qus, Ty= vy, Ti=ur. (1.87)
(W Wa

Again, we need to tune the diagonal entries k; similar to the dP, case in order to get a

nontrivial dependence of the f; on the discrete variable n. Thus choosing
ky=ki=0, ki, ks #0 = fi=fi, fs = fs, (1.88)

we can derive

klzwlfl_fQ 7 k3:w2f3_f4 ’ (1.89)

Uz Uyg

using also u; = qus/wy, U3 = uy/w, obtained from the first set in (1.86). These two
expressionsfor k; and k3 lead to f4 =qfs, fz = f4. Furthermore, from the last relation
(1.87) we have

vivg =0, = CA", vy = Opq = CA™MHL, (1.90)

where C' is constant. Some variables, which are not being specified by the compatibility
relations (1.86), are specified by imposing the following constraint

uy =v+ fi, up=wv3+ fi, uz=v4+fo, w=vi+f3, (1.91)
inadditiontow, = k1 +1, wy = ks+ 1. Next, let usintroducethe new variable z,, = v,
which implies

Vo = 0n+1/xn71 ) U3 = en/xn 5 Vg = Tp—1,

and use the constraints for the remaining two equationsin thefirst set of (1.86) to derive

(Tn + [3)(0n + forn)
(w0 + f0) (O + frzn)

(1.92)

Tn1Tpn—1 = en—i—l
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which isthe dP;;. The main observation is that the de-autonomization procedure (going
from a pure spectral problem to a differential equation in the spectral parameter and
thereby making the resulting system of equations non-autonomous) yields appropriate
Lax pairs for several of the discrete Painlevé equations. Furthermore, we point out the
transition from the differential case to the ¢-difference case is significant if we want to
make the transition to the next (i.e., elliptic) case. In fact, whereas the ¢-difference caseis
related to a trigonometric grid, at the elliptic level we will consider difference equations
on the torus (namely on the elliptic curve of the parameter ). It is exactly the later stage,
namely the consideration of elliptic isomonodromic deformation problems on the torus

that will be the subject of chapter 5.

1.5 Outline

In this section we will give a short overview of the different chapters of thisthesis.

Chapter 2 is concerned with Adler’s lattice equation which plays an important role in this
thesis. We give a review of its main properties. In particular, starting with alternative
forms for Adler’s discrete equation based on different choices of the dlliptic curve, the
connections amost them are presented. The first Lax representation for the Adler’'s
equation is derived by Nijhoff in [72]. The method presented in the article is used to
construct Lax pair for the other discrete integrable systems. We introduce a novel Lax
representation of Adler’s lattice equation obtained from the three-leg form of the discrete
KN equation. In addition to chapter the quasi-classical expansion of the star-triangle
relation is related to the three-leg form of the @4, ABS equation, that was introduced in

[19]. we give a short overview of the details of the relation.

Chapter 3 deals with a general eliptic Lax scheme of the higher rank case, which is the

generalization of the new Lax pair of Adler’s|attice equation introduced in chapter 2. In
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the case of rank N=3 we show an interesting connection with Caley’s hyperdeterminant of
format 2 x 2 x 2, and use this connection to construct in explicit form the generalizations
of the 3-leg formulae in this case. In fact, along the way we present and use a novel
compound theorem for hyperdeterminants, which to our knowledge is a new result in the
theory of hyperdeterminants. This chapter has already appeared as part of ajoint work of
the author with Nijhoff and Yoo-Kong in [26].

Chapter 4 is considered with the rational and hyperbolic (trigonometric) limits of the
systemsthat are given in terms of elliptic functions thereby the connection between @ list
in ABS equations is presented. Two continuum limits of the Adler’s lattice equation are
constructed. We review the derivation of the discrete Ruijsenaars model which isone-step

periodic reduction of LL class.

Chapter 5 focuses on €lliptic discrete isomonodromic deformation problems (i.e. on Lax
pairs on the elliptic curve of the spectral parameter), obtained by de-autonomization of
related isospectral problems on the torus. We set up the general scheme and derive the
system of compatibility conditions emerging from this novel type of elliptic monodromy
problems, and giveaninitial analysisof theresulting rather complex system of conditions.

Finally in chapter 6 we discuss the current study and open problems for the future.
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Chapter 2

Adler’s equation (), In Its various

manifestations

There are, to date, severa types of integrable discrete systems that are associated
with elliptic curves. Such systems include the lattice Landau-Lifschitz (LL) equations
constructed in [66] from the lattice version of Sklyanin Lax pair [92], aternatively a
projective discretization of the LL [4], resulting from a Darboux transformation of a
dressing chain, another lattice version of LL, arisingin [6] as a permutability condition of
Shabat-Yamilov chain, the elliptic lattice KdV obtained in [73] from the consideration
of an infinite matrix scheme with an eliptic Cauchy kernel and an elliptic extension
of the lattice Kadomtsev-Petviashvili equation [65], resulting from a direct linearisation
method associated with an elliptic Cauchy kernel [50]. Apart from these, there also exists
Adler's lattice Krichever-Novikov system (KN) [5], which has various forms, derived
from the permutability condition of the Backlund transformations of the KN equation
[58]. The various manifestations of Adler’'s equation are connected and highlighted in
this chapter. In the context of what follows later, Adler’s equation plays a prominent role

so the mgority of this chapter is dedicated to areview of its main features.
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2.1 Weierstrass form of the Adler system

Adler’'s discrete equation is an integrable lattice version of the KN equation i.e. of the

nonlinear evolution equation

1 3 —u?
Up = —Ugge + (T(U) uacac) ) (21)
4 Sy

inwhich r(u) isapolynomial associated with a Weierstrass elliptic curve
Dy : U? =1(u) = 4u® — gou — g3 = 4(u —e1)(u — e2)(u + €1 + e3). (2.2)

Different realizations of the elliptic curve U? = r(u) can be taken, but in principle r(u)
can be a quartic polynomial in general position. To bring then the curve in standard form,

e.g. the Weierstrass form, a Mobius transform of the type

au+b

u— —,
cu+d

can be applied yielding the Weierstrass form (2.2). Adler’s discrete equation, which
was obtained from the permutability condition of the Backlund transformations of KN

equation (2.1), can be written in the form?:

Al =b)(@ =) = (@ = b)(c = b)] |(@ = b)(@ - b) — (@ = b)(c — b)
+ Bl(u—a)(ii—a) ~ (b~ a)(c — a)] |(@ — a)(@ — a) — (b~ a)(c — a)| =
= ABC(a—b), (2.3)
cf. [72], where v = u(n,m) is the dependent variable, with the shifted variables u =

u(n + 1,m), @ = u(n,m + 1) and & = u(n + 1,m + 1) defining the different values

of u at the vertices around an elementary plagquette, see Figure 1.2-(a). Here a, b are

INote that in the original paper [5] the equation was written in a slightly different form with rather
complicated expressions for the coefficients given in terms of the moduli go and g3 of the Welerstrass

curve.
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parameters of the lattice equation (2.3) associated with the grid size, and are points, that
are, given by a = (a, A), b = (b, B) together with ¢ = (¢, C’) on a Welerstrass elliptic

curve, I'yy, 1.e.
A?=r(a)=4a®> —ga—g3 , B*=rb) , C*=r(c), (2.4)
which can be parametrized in terms of Weierstrass p—function as follows:
(a,4) = (p(a), ¢'(a)),

(b, B) = (p(8),¢'(8)),
(Cu O) = (@(’7)7 @,(7))7 (25)

where o and 3 are the corresponding uniformising parametersand v = 5 — a. The

parameters a, b and ¢ are related through the addition formulae on the elliptic curve:

A(c—0b) = C(a—10b)— B(c—a),

1 /A+ B\’
at+bt+e = - (222 (2.6)
4\ a—-">

The collection of the corresponding elliptic functions appeared in chapter 1. We note the
following fact about what is possibly the most simple solution of equation (2.3):

Proposition 2.1.1 A*trivial” solution of the |attice equation (2.3) is given by

u=p(&+na+mp) , Withé& constant . (2.7)

We call thisatrivial solution becauseit isthe counterpart of the zero solution for the lattice
potential KdV equation, and as such qualifies asthe simplest solution of () ,. However, the
proof that (2.7) is a solution of (2.3) by direct computation isin itself highly nontrivia,
and requires the use of several dliptic identities. In particular, it uses expressions of the

form

(u—=b)(w—b) = B[C(§) — C(§+ B) +¢(28) = C(B)],
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which itself relies on the identities (1.8) and (1.9) for particular choices of the arguments.
Alternatively the proposition is a direct corollary of the 3-leg form of @), which we will

present in section 2.1.2.

Remark 2.1.1 One would naively expect that the solution (2.7) can be used as a seed
solution for the Backlund transform to generate an analogue of soliton solutions for @4,
where the Backlund transform (due to multidimensional consistency) is identical to the
equation itself, albeit with a lattice direction associated with the Backlund parameter.
However, unlike the case of the KdV lattice equation, where the zero solution can be used
as a seed solution to generate soliton solutions in this way, in the case of @), the trivia
solution does not generate new solutions by Backlund transforms (in other word the seed
Is “non-germinating”). The issue of finding germinating seed solutions was addressed
in [14] where the first non trivial solutions of both ), as well as of the continuous
counterpart, the KN equation, were constructed for the Jacobi form. Genera formulae

for the analogue of N-soliton solutions were constructed in [15].

2.1.1 C.A.C. Lax pair

The multidimensional consistency property given in section 1.3.1, which means that such
equation can be consistently embedded in a multidimensional lattice, and which has been
interpreted as a definition of integrability for the discrete system provides a'so a method
to derive Lax pairs for the lattice equations [22, 105]. The method is provided in [72]
where the derivation of first Lax pair for the Adler system was presented. The ideaisto
consider the third direction as auxiliary associated with the spectral parameter «, replace

B by k and linearise the lattice system in the new variable u and its shifts, we have from



Chapter 2. Adler’s equation (), in its various manifestations 38

(2.3)
Al = k)@= k) = (a— K)(K = B)] | (@ = k) (@ — k) = (a — k)(K = )]
+ K [(u—a)(ii—a) ~ (k= a)(¥ = )] | (@— a)(@— a) = (k= a)(' — a)| =
— AKK'(a— k), (2.8)
where?
k=pk) . K=¢() ,
K =gk —a) : K =¢'(k—a).
Solving for 7 and using the addition formula (2.6) leads
=~ ksuu+ kyuu + kyuuu — kouu — ks(u 4+ u+u) — ke

= — — — — 2.9
Y kou + ks — kyuu — kqu — kyuw — ksu + kouun — kjun (2:9)

where the coefficients k; = k;(a, k) in (2.9) are
ko=A+K |, k=aK+kA | k =adK+kA,
ky=—AR2 — K(a (k+K)—kk) |, ki=Ala—kk —a(Ak+aK),
aswell as

k5 = a(k‘2+k‘3)—|—k(k2—|—k4)—Ak3—Ka3,

2

ke = A2 —(a— kK — k)] + K[a®> - (k- a)(K - a)]
FAK[A(k — k) + K(a — k)] .

This Riccati equation can be linearized using the transformation @ = 5 resulting the
following set of equations

f = "}/_1 [(lﬂ; — k4u — kluﬂ + kQﬂ)f + (k5(u + ?7) + k6 - kguﬂ)g} ,

ﬁ = ’771 [(lﬁ(u + ?7) - koua‘f‘ ]{Jg)f + (lﬁuﬂ — ]{Jgu + l{;4ﬂ — k5)g] ,

2The spectral variables (k, K)and (k’, K') ontheélliptic curve should obviously not be confused with
the standard notation for the moduli and half periods of the Jacobi elliptic functions. The latter will not use

inthethesis.
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with ~ being an arbitrary prefactor. Taking the other set of equation in the same form
apart from the obvious replacements: ~— " and « — [, we have the following linear

system
@/ = Ln(aa Uu; Oé) 2 (2108.)
P = M(u,u;8)¢p. (2.10b)

The prefactor must be chosen so that the relation for determinants of this equation

det(L) det(M) = det(M) det(L) , (2.11)
is satisfied, which in this case provides
/ ~ ~ 922 ~ ~ 1/2
v=(a— k)(KK [(ull + ua + ua + Z) — (u+u+ a)(duua —gg)D :
where K’ = p(k — «). Inthe form (2.3) of the equation the Lax matrix reads as follows:

ks — kyu — kiut + kot ks(u + ) + kg — ksuu
L. = 1( 5 4U 1uu ot ks(u+ ) 6 3UU>' (2.12)

v

ki(u+u) — kouu + ks kyuu — kou + kgt — ks

Taking the other part of the Lax matrix M in the same form apart from the following
replacements: “— " and o — . The compatibility relation of the Lax pair (2.10) gives
thelattice KN system (2.3).

2.1.2 3-leg form

After its discovery in [5], Adler’s lattice equation (2.3) reemerged in [7] as the top
equation in the ABS list of affine-linear quadrilateral equations, where it was renamed
@s. The key integrability characteristic of Adler’s equation is its multidimensional
consistency, [22, 71], which in the case of Adler’s system can be made manifest through

its so-called 3-leg form, see [7]:

~ ~

o(E—E+a)o€+E—a)oE—E—Bo(€+E+B)  a(E—E—a(E+E+7)

~ .

o€ —E—a)o(+E+a) s€—E+B) o +E—B)  GE—t+)o(E+E—n)
(2.13)
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The uniformising variable, £ = £(n,m) in (2.13), is now the dependent variable of the
equation, related to the original variable « of the rational form (2.3) of the equation
through the identification u = (&) and v = 5 — « as before. The eguivalence between
these two forms can be seen to be a consequence of an interesting identity given in the

following elliptic identity:

Proposition 2.1.2 For arbitrary (complex) variables X, Y, and Z, we have the following
identity
(X = p(+a)(Y —p—B)(Z—p( —a+p))
(X = p(€ = a)(Y = p(€ + B))(Z = p(§ +a - 5))
= s{A[(p(&) = b)(Y =b) — (a = b)(c = b)] [(X = b)(Z —=b) = (a = )(c — D)]
+B[(p(§) —a)(X —a) — (b—a)(c—a)] [(Y —a)(Z —a) — (b—a)(c—a)]
—ABC(a—1b)}, (2.14)
in which

o —a)a(E+B)o(E+a—B) 1t (2.15)

T o€ tapE-—BoE—arp) " (At B)p(§) - Ab—aB’
and where (a, A), (b, B) and (¢, C') are given as before.

Proof

This can be established directly by showing that the coefficients of each monomial

1,X,Y, Z, XY, XZ YZ and XY Z of the identity are equivalent. Expanding the left-

hand side of the identity as

LHS := (1 -t*)XYZ + (p(§ —a) — p(€ + @)Y Z + (*p(& + B) — p(¢ — £) X Z
HEPp(E+a—B) = p(€ —a+B)XY + (p(& = Bp€ —a+p)
—t2p(E + B)o(E +a = F)X + (p(§ + a)p(€ —a+B) — 2p(§ — a)p(§ +a—B)Y
Hp(E + a)p(€ — B) — (€ — a)p(€ + B))Z + *p(€ — a)p(§ + a — B)p(& + B)
—p(§ + a)p(§ — B)p(§ —a+P) , (2.16)
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itisobviousthat thefirst term of thefirst line, (1—¢?) XY Z, isequal to the corresponding
term on the right hand-side of (2.14) using the definition of s. The rest of the equalities
of the corresponding coefficients follow by the same method as explained below. The
computations are relatively straightforward, relying on (2.4), eliptic addition formulaes
and the Frobenius-Stickelberger formula[31], see Appendix B for more details. First, we

make use of thisformulain terms of the variables (¢, o, —5)

o§+a—p)of—a)ola+p)o(+5)
a3(§) o*() o*(5) ’

L opl@) ¢la)|=]1 a A |=2

where the Weierstrass ¢ isan even function of its argument and consider asimilar relation
with (¢, —a, ). If we divide the former determinant by the latter one, we obtained the
following expression for ¢ and s in (2.15)

_JOb—a)—Ab—aB+pO)A+B) 4a—b)/ ()
GO —a)+ AbtaB - o)A+ B) " (GO0 a)+ Ab+aB - o)A+ B)?

Applying the elliptic addition formulae of the form, namely:

0(€) + oln) + pl€ £ 1) = | (%) | (2.17)

on (2.16), we get on the one hand

LHS = (1 —t)XYZ + (a + p(£) — M + t3(—a — p(€) + M))YZ

Wo(6) —a)?
s 0 e
Het o)~ CEZT e pie) + LOLD )y
H(ca—ple) + DAy o + LD,
(- o) + I o)+ LD,
H(ca— () + DA o pie) + LT,

(2.18)
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(-l + ILA o i)+ WOy

Hb— o0+ LI e+ OO,

(b= o)+ WEZBE) oo+ WL

Hia+ o6 - Oy i) + WELLI) o i
HIO ) 4 oo+ LA g
A

The proof is completed by using the relations (2.6) and subsequently (2.4), (2.5) on the
coefficients of (2.19) and as well as on the right hand-side of (2.14) repeatedly. O
Identifyingu = p(¢), X = = p(€),Y =1 = p(€) and Z = 1 = p(€), and using

3 VRS ILIUEES)
p(§) — p(n) = 026 (2.20)

it can be readily seen that the eliptic identity (2.14) relates the rational form of Adler’s
equation in the Weierstrass case (2.3) with the 3-leg (2.13).

The connection between the rational and the elliptic form of the Adler system parallels
that of the continuous KN equation, which inits (original) eliptic form reads:

1 3 (1—¢&%)

Equation (2.21) arose in [58, 59, 77] from the study of the finite-gap solutions of the
Kadomtsev—Petviashvili equation associated with eliptic curve. 1n 1984 [93, 98] Sokolov

~ 6p(26) si) . (2.21)

found the Hamiltonian structure and infinite hierarchies of the KN equation. Later work
on this equation has been established by Novikov [ 76] which ishilinear form and algebro-
geometric solution scheme but the solution was not explicitly given. The first eliptic

solutions were derived together with the discrete analogue in [14].

Itisreadily seenthat we can turn the original equation (rational form) (2.1) intotheelliptic
form (2.21) of the KN equation by using the identificationsu = ©(§), U = ’(§) for the
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dependent variables and employing the elliptic identities:

o209 -1 (S 20 . SO-stO-L. e

in order to express higher derivatives of the p in terms of lower derivatives.

2.1.3 Elliptic Lax pair

Lax pairs for the discrete equations are not unique and can be obtained directly from the
lattice equations by doing a similar derivation as explained before. We will show that
the three-leg form of the Adler system (2.13) allows us to obtain a new Lax pair for ().
Applying a gauge transformation, we derive an alternative Lax pair for Adler’s equation
to the one given in (2.12). Again, we consider an auxiliary direction related with the
spectral parameter x on the 3D lattice. Starting from (2.13) by replacing 5 by < and using
the additional formula (2.20) leads to a fractional linear form in terms of u = o( f )
= (&) andw = p(?):

ez 0HE— )i — p(€ — a)) 03 (E+ KT = gl + k)
PO S S8 = e a)@— ple + @) (€ — )@ plé — 1)

PR )=+ k- a))

(€ —r+a)@—p(E—r+a)

where the overline ~ denotes the shift associated with the parameter . Going through

the same moves as explained in [72], the next step is to solve @ from the expression
F(£,€6&a,r) = 0,yidding
R — p(§+ k)p(€ —k+a) —p(f+ K —a)(@—p(€ — k)

u =

(- (€ + 7)) — (@ o€~ #) /
where
1/2
e E o o(E— o+ m(e—n+a) (- plc—a)
B RE & 0) = e ayate - W@+%—-><ﬂ—M§+jJ @2
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This relation can be linearized in terms of % and . Substituting@ = f/g, @ = f/§
and splitting into two linear equationsfor f and ¢ leads to:

([ F =77 (B2(6 — k+ ) = (€ + 5 — @) f + (p( + K — a)p(& — )
—R2p(§ —k+a)p(E+ 1)) g

| G=7 (R = 1) f + (96— 1) = Rp(g + 1)) g] -
These can be given as a matrix system acting on ¢ = (f,g)” , where the Lax pair is

written as;
b =Ly (& &a) v, (2.24)

together with a similar formula for QZ = Mq,) obtained from F'(, E,E,E; k,B) = 0.
From the condition (2.11) for L,y and M(q,), we are led to the choice

V= (p(—r)—p(E+r)(p(E—r+a)—p(l+r—a)) R*. (2.25)

The Lax matrix L,) isthen

(r o
Ly =7"V(&r—a) ( ) V(& k), (2.269)
0 R
where
Ve =w_k 1 TPETH) (2.26b)
1 —p(§—K)

with u = p(&) asaways, k = p(x) and where 4’ is a yet to be specified quantity (it is
related to the v in (2.25)). Next we can apply a gauge transformation of the form:

a* (€ + k) 0

o'2(26)a™*(2a)0™? (28)x = ( 0 2(¢ — k)

) V(& r)Y, (2.27)

to derive the following alternative Lax pair for the Adler system:

Y= Loy =\ ®2n(§~— §—a) —‘b%(fj‘ §—a) . (2.289)
Pou(—E—E—a) —Pp(—E+E—0q)
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By (—€ — € —B) —Bo(—E+ €~ B)

in which ®,. denotes the (truncated) Lamé function given in (1.6) and where the explicit

M ( ©uE—E—F)  —Ou(E+e-p) ) o

form for the coeff|C|ents>\ = A, 5, a)and p = u(f,@ﬂ) follows from the consistency
relatlonw was
AE Ea) = <o<5+§+a> o€+ &~ a)o(€ € ~a)a(E~ §+oz))1/2
o 7(20)0(2€)o(2€) |
)

~ 1/2
2o [+ E+BoE+E— B —E—Bo€—¢+B)
He &) ( o(28)0(26)7(28) )

Note that we did not need to specify ~' after all, since we have absorbed it into the function

A. Each member of the elliptic Lax pair (2.28) is reminiscent of the time-dependent part
of the Lax pair related with the time-discretisation of the 2-particle Ruijsenaars system
that was constructed in [69]. The Lax pair (2.28) has already been presented in [104], but

not its derivation from a gauge transformation.

2.2 Jacobi form of the Adler system

As we have seen, there are various alternative forms for Adler’s discrete equation based
on different choices of the underlying elliptic curve. Thus, if one considers (2.3) to be the
Weierstrass form of the equation (with parameters on a Weierstrass elliptic curve (2.4)),

the equation in Jacobi form (due to Hietarinta, [41]) reads:
Q(v,7,7,0) = p(vT + 0) — q(v0 + T0) — (0 + vD) + pgr(1 + viov) = 0. (2.30)

Here the dependent variable v is related to « of (2.3) through a fractional linear
transformation [41], where (p, P), (¢,Q) and (r, R) are now points on a Jacobi type
elliptic curve:

I;: X?=a2—~y2?+1, v? =k +1/k, (2.31)
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with modulusk of thiscurve. They can be parametrized in terms of Jacobi elliptic function

asfollows:

p=(p,P) = (Vksn(a; k),sn'(e; k), q=(q,Q) = (Vksn(B; k),sn'(8; k),

t=(r,R) = (Vksn(a — f3; k),sn' (o — f3; k)) . (2.32)
In [9] Adler and Suris pointed out that the Welerstrass form (2.3) and the Jacobi form
(2.32) of the Adler equation are equivalent in the sense of M 6biustransformation between

points on the curves of 'y, and I';. We will state this link explicitly in the following

identity.

Proposition 2.2.1 For arbitrary variables X, Y, and Z, the following identity holds

A[(b —a)(c—b)(u—k)(Y — k) + (d(u+ s) — bu — K))(d(Y + s) — b(Y — k))}
[(b —a)(c—b)(X —K)(Z — k) + (d(X +5) — b(X —K)(d(Z + s) — b(Z — k))]
+B[(a —b)(c — a)(u— k) (X — k) + (d(u + 5) — a(u — K))(d(z + 5) — a(X — k))}
[(a —b)(c—a)(Y —K)(Z — k) + (d(Y + ) —a(Y —K)(d(Z + s) — a(Z — k))}
—ABC(a — b)(u—K)(X =K = K)(Z = k) = t{ (= k) (X = K)(Y = K)(Z =)

(1= p* ) (p(uX + Y Z) = q(uY + XZ)) = (pQ — aP)(XY +uZ) — pg (uXYZ + 1))} ,

(2.33)
inwhich
¢ 81k* (=1 + k*)°(p + g)ei
(U KDHAp? + Kkp? = 2k (1 + P))(pQ — ¢P)(¢? + ki — 2k3(1 + Q))
_e(5kt—1) k> —5k
= ST TTEA 1 (2:34)

if one has the following relation between the parameters

2,2 1\ _ 16,2 | L4(1
y - (5(k“p” — 1) — k°p~ + k*(1 5P)+P)el’ (2.35)
2kt + 1)(—1+ K2 — P)

(1 —kH(K*p* —1)p
A = SaTiEr PR (2.36)
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and a similar equation with (a, A) replaced by (b, B) and (p, P) replaced by (¢, Q).
Moreover, therootse; (i = 1,2) in (2.2) and the modulus k given in (2.31) are related to
each other with bi-rational transformation [ 9]

1 6ey
— 4k =— 2.37
k2 + 2e0 +e1 (2.37)

where the points (a, A), (b, B), (¢,C) and (p, P), (¢, Q) are introduced as before.

Proof
Therelation (2.33) can be easily seen by direct computation through identities. O

Asadirect corollary of Proposition 2.2.1, identifying

~

X=u, Y=u, Z=u,

we see that the expression in the curly brackets on the right hand side of (2.33) can be
written in terms of the following expression

Q(u, u, 1, ﬁ) = p(uX+YZ)—q(uY+XZ)+M((XY+uZ)—pq (uXYZ+1)),

(r?*¢* - 1)

(2.38)
itisnot hard to see that the equation Q(u, w, u, 5) = 01s, up to some simple computations,
equivalent to the (), equation in the form (2.30). It is also straightforward to verify that
the relation on the left hand side of (2.33) is equivalent to Adler’s equation (2.3) in the

sense that the dependent variables are related by arational transformation, v — *utds,

Furthermore, Adler’'s discrete integrable equation is recovered in the quasi-classical
limit of star-triangle relation corresponding to the elliptic Beta solution. The model is
discoveredin [19]. The Lagrangian form of the discrete system (2.3) appears in the quasi-
classical expansion of the Boltzmann weights (1.37a) parametrized through the elliptic
Gamma function. The latter function contains two elliptic nomes labeled p, ¢ and the
Lagrangian of (2.3) is obtained when one of the nomesis real and fixed, while the other

one approaches unity

p = e g=e 51 as h=—inc =0 (2.39)

)
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where A playsthe role of the Planck constant. Introduce a new function A(z|7) as

z '9 I . 2 .
Az|r) = / log ! 11(Z+ Q)dm + m; + m4m, (2.40)
0

where 0;, standsfor the thetafunction givenin[74] and G(7) = G(22) = [[;Z,(1 —p").

In the limit (2.39) the elliptic Gamma function (1.23) becomes

1 0o 0o egizk_e_%zk p—k:/ka:n
()~ B3 S T y  a
n=0 k=1

and may be written in terms of the dilogarithm function defined by the power series

log T'(z ZLl 202" ) — Lig(e 2% p™2 ) + O(h) . (2.42)

In the following, using mtegral representation of the dilogarithm function and making a

change of variablesyields

logF( ) 2h/ 10gH 2ivk 2n+1)(

Therefore, the Boltzmann weight (1.37a) becomes

2 )dv + O(h) = )\(z\T) LO(h) . (243)

W (a;u,v) = exp{— .,?(04 u,v)+ O(h)} (2.44)

2h
where the two point Lagrangian .¢

L(o;u,v) = Mu—v+ia) — ANu—v+ia) + ANu+v+ia) — ANu+v—ia) — A(2ia|27) ,

(2.45)
statesa L agrangian for (, equation [19]. Asaconsequence the quasi-classical limit of the
Boltzmann weight (1.37a) givesthe (2.3) equation of the ABSlist. In [56] this connection
Is extended to the rest of the ABS list.

Many interesting results were established for the latter form of the lattice KN equation,
notably explicit expressions for the (doubly elliptic) N-soliton solutions, [15] and
singular-boundary solutions [16]. It would be interesting to investigate that the Adler’s
system (2.3) in the Weierstrass form admits some specia solutions in terms of éliptic
functions. The construction of seed and soliton solutions for the novel system in the

Weierstrass form is undertaken at the moment.
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2.3 Spin representation

There is another way to represent Adler's equation, which we refer to as “spin
representation” and which is connected to the Jacobi form of Adler’'s equation (2.30).
Such a spin representation has been used in connection with the Landau-Lifschitz (LL)
equations, cf. e.g.[6]. In continuous level, the origina KN equation arises from a spin

zero limit of LL equation, [27] although this connection is not pointed out explicitly.

A spin representation of Adler’s lattice system is based on the following observation.

Introducing (for general V) spin matrices of the form
S I=GQG™* (2.46)

where () is afixed matrix obeying tr(€2’) =0, =1,..., N — 1, and Q" = 1, the latter
being the N x NN unit matrix, and where the matrices I represent an appropriate basisin
the space of such matrices. The vector S in (2.46), which isthe main quantity of interest,
can be expressed in terms of the matrix G' containing the dynamical variables ; ; in the
form:

G = (Ul,u2, te ,UN) , U = (ul,i7u2,i7 T 7“N,i)T , (2-47)

where we can think of the vectors u; in some projective space like CP”, implying that
we can set (without loss of generality) all first components «; ; = 1. In order to expand
the obtained matrix, we need a basisin G L 5, which, following [21], we can obtain from

the following elementary matrices

1 01

Q= w? , N= SO (2.48)
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and where w isthe N root of unity, w = exp(2mi/N ). These matrices obey the following
relations
I =3"Qm =0mmQuey™ 19 =T, ., (2.49)

where the ¥ means Hermitian conjugation. We can take as a basis of G L the set of
matrices {I,,, n, |n1,n1 € Zy}. The am of this section is to realize the Adler lattice
systemin terms of appropriately chosen spin vectorsthat are defined in terms of the above
ingredients. The main observation here is that Adler’s lattice equation in its Jacobi form

(2.30) can be written conveniently in terms of spin vectors.

We have

11

G = . Q=03, GosG'=S-0o (2.50)
u v

in the basis of the standard Pauli matrices o = (0, 02, 03). Thisleads to the following

identification of a spin matrix and (normalised) spin vector

1

v—1Uu

S(u,v) = (uwv — 1, —i(uwv +1),u+v) , |SP=8-8S=1, (2.51)

whichin the case of areal spin vector (when v = u* the complex conjugate of each other),
isthe realization of stereographic projection of the complex planeto unit sphere. We have

now the following remarkable observation:

Proposition 2.3.1 Adler’slattice equation in Jacobi form, i.e. (2.30), can be represented

in the following spin form:
Jo+ S(v,0) - JS(3,7) =0, (2.52)

in which the coefficient (anisotropy parameters) comprising J, and the 3 x 3 diagonal
matrix J = diag(J, Jo, J3) are given by

q—r 1—gr 1+4gqgr q+r
JO: s lep 9 ) J2:p 9 ) J3: 9 )

(2.53)

withr = (pQ — ¢P)/(1 — p*¢?).
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The proof is by direct computation, writing out the components and identifying the
various combinations of termswith the ones occurring in (2.30). Obviously, the particular
way (2.52) of writing the equation is not unique: it is subject to the D4 symmetries of the
quadrilateral both in how the spin variables depend on the variables v on the vertices and

in how the anisotropy parameters depend on the lattice parameters.

This observation suggests that the search for arational form of higher-rank Adler lattice
systemsmay involve higher spinvariables. At thisstageit isnot yet clear how to construct

these variables but it will be subject of future work.
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Chapter 3

Elliptic Lax systems on the lattice

3.1 Introduction

In this chapter, we propose a genera elliptic Lax scheme of rank N, which is inspired
by the novel Lax representation (2.28) for Adler’s equation in 3-leg form, derived in the
previous chapter 2. This general Lax scheme leads to two distinct classes of systems
which we coin as being “of Landau-Lifschitz (LL) type” (or spin-nonzero case) and as
“of KN type” (or spin-zero case). We present genera results for both classes in section
3.2, someinitial results of this section were aready presented in [104], but then focusin
the remainder of this chapter on the KN class of Lax systems. The latter case requires
a separate treatment. In fact, we first study in detail the compatibility conditions for the
case N = 2, showing by means of this example how Adler’s equation emerges, yielding
the 3-leg form directly, in contrast to what Lax pair of [72] obtained from consistency-
around-the-cube. We next turn to the more typical case N = 3, in which case the
analysis is markedly more involved. Notably in the rank N = 3 case the analysis of
the compatibility condition exploits a (to our knowledge novel) compound theorem for

Cayley’s hyperdeterminants of format 2 x 2 x 2, see[23], aresult which may have some
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significancein itsown right. We conjecture that the resulting rank 3 lattice system may be
regarded as a discrete analogue of arank 3 Krichever-Novikov type of differential system
that was constructed by Mokhov in [63]. Resultsin this chapter have appeared in the joint
paper [26] by the candidate in collaboration with Nijhoff and Yoo-Kong. The general set-
up of the elliptic Lax scheme was given in [104], but there the focus was on the LL class
of models and the analysis of the KN class was not followed through. Here, in contrast,
we will develop the latter aspect morein detail, which requires atotally separate anaysis,

but for the sake of self-containedness we reiterate the general schemefirst.

3.2 General elliptic Lax scheme

Consider the Lax pair of the form:

Xk = Lana (31&)

5(\5 - Mana (31b)

defining horizontal and vertical shifts of the vector function ., according to the diagram

in Figure 3.1:

Figure 3.1: Lax compatibility condition (3.4).

where the vectors y are located at the vertices of the quadrilateral and in which the

matrices L and M are attached to the edges linking the vertices. The matrices L,, and
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M.,. can be taken of the form:

(Lo)ij = ®nu(& —& —a)hj, (3.29)
(My)i; = ®nel(& —& — B)k; (3.2b)

where as mentioned earlier, ®,. denotes the (truncated) Lamé function

o(&+ k)
o(§)o(k)’

with o denoting the Weierstrass o-function. Thevariables¢; = &;(n,m), (i = 1,..., N),

0.(¢) = (33)

are the main dependent variables. As before o and § denote the uniformized lattice
parameters (as in (2.5)), while « is the (uniformized) spectral parameter. In (3.2), the
coefficients h; and k; are functions of the variables ¢; and their shifts that remain to be
determined. The compatibility condition between (3.1a) and (3.1b) is given by the lattice
zero-curvature condition:

L.M, = M,L, . (3.4)
Using the addition formula
Ou(2)Pp(y) = Pz +y) [((r) + ((x) + C(y) = C(k+z +y)], (35)

where ((z) = L Ino(z) is the Weierstrass zeta function, the consistency relation (3.4)

givesriseto

Mz

(E—F—a)+¢GE- @-—/3>+¢<N/~e>—<<Nn+§2—5j—a—/3>]=

Z [s—@ ﬁ>+<<5—»sj—a>+<<m>—<<Nm+é—sj—oa—ﬁ>}

(i,j=1,...,N). (3.6)

Due to the arbitrariness of the spectral parameter « the equations (3.6) separate into two
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parts, namely

;
b

WE
=)

l)@:(ZE)@ . (j=1,...,N), (3.7a)
=1

[C(g—&—@)ﬂLC& }
(& -4

{Zkl[ & = 6>+<(5—£j—oz>]}hj

(t,j=1,...,N). (3.7b)

1

Mz

1

Now there are two scenarios which we refer to as the “LL type” (or physically, the spin

non-zero) case and the “KN type” (spin zero) cases respectively:

1. Discrete LL typecase: ), iy = >, k; # 0, inwhich case we have that the variables

h;, k; are proportional to each other, k; = ph; , and after summing up (3.7a), we
obtain the following conservation law:
Z;\Ll /l;l — le\il 7{;1 (38)
Z;il hy le\; ki

and in which case egs. (3.7b) reduce to:

N ~ ~ ~ - ~
Z [C(fz — & —a)phy — (& — & — ﬁ)kl]

N
=" |66 — &+ Bk — (& -G+ )| (L=1,....N).(39)

=1

The above system of equations can be reduced under the condition:

Z (3.10)

which is a conservation law for the centre of mass motion. In fact, (3.10) follows

(i
I
[I]E>

[

—_
—
—

(1]

_|_

from the determinant of the relation (3.4) and using the Frobenius-Stickelberger

determinantal formula (B.4).
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2. KNtypecase: >,y = >,k = 0, in which case (3.7a) becomes vacuous. In
this case we seek further reductions by the additional constraint = = >, & = 0
(modulo the period lattice of the élliptic functions).

In this section we shall focus primarily on the class of modelsin# 2, but we shall conclude
this section by presenting the general structure of the systems that emerge from the Lax
system in both cases, and then in the ensuing sections present an alternative analysis for
the Lax system of class# 2 for thecases N = 2 and NV = 3. We proceed with the genera
analysisof (3.9) by using atrick which was employed in [69], based on an elliptic version
of the Lagrange interpolation formula (see Appendix B) in order to identify the variables
hy, k. Particularly, consider the following elliptic function, where as a consequence of the
conservation law (3.10) for the variables &, the Lagrange interpolation (B.6) of Appendix
B is applicable, leading to the following identity:

o€~ E)ole —&—a— D)

F = > =
© o =& —a)o(§—&—0B)

M= L=

CE—&—a)—Ct—&—a)| H

T
I

N
+Y[ce-a-8)-co-a-n) K, (311)

=1
which holds for any four sets of variables &;, 5 , 5 El such that (3.10) holds. In (3.11) n
can be anyone of the zeroes of F'(¢), i.e. é’; or & + a + 3, and the coefficients H;, K; are

given by:

o = Hk 1‘7(& §k+040(l &k B) (3.12a)
[sz 19 fl fk - Hk;ﬁlg(fl )

)
Kl _ Hk 1 U(Sl gk + 6)0 &f B Od) (312b)
[Hk 1‘751 fk+7]nk¢l‘75l )
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Furthermore, the coefficients obey the identity:

N

> (H+K)=0. (3.13)
=1
Taking £ = EZ n =& + o+ £ in(3.11) and comparing with (3.7b), we can deduce the

following identifications:
tH = ph; , tK,=—ph , l=1,...,N, (3.14)

with a function ¢ being an arbitrary proportionality factor. Thus in this case # 1 by

eliminating h; from (3.14) we obtain the set of equations

t ~ t ~
“H+=-K,=0 , I=1,....N (3.15)
P P

which, by inserting the expressions (3.12) for H;, and K;, constitute a system of N
equations for N + 2 unknowns &, (I = 1,..., N), and p and t. Rewriting this system
(3.15) in explicit form, we obtain the system of N 7-point equations shown in Figure 3.2:
ﬂ U(fz—gkﬂLOé)U(fl—ﬁk—ﬂ)a(fl—gkﬂLﬂ—@)
w1 06— &+ B) (& — & —a) ol —;gk —B+a)

for N+1variables¢; (i =1,...,N)andp = —LAp/(;p), supplemented with (3.10) which

=D (3.16)

fixes the discrete dynamics of the centre of mass = . In (3.16) the under-accents - and -
denote reverse lattice shifts, i.e., ;(n,m) = &i(n — 1,m) and §;(n, m) = &(n,m — 1)

respectively.

The implicit system of PAES arises as Euler-Lagrange equation from the following
Lagrangian:
N
Z=% [fa-&+a)-f&-§+8) - fE-&+a—p)] —lnpl=, 317
i,j=1
in which the function f isthe eliptic dilogarithm f(z) = [ In o(¢) d€ , with respect to
variations of the dependent variables¢; (1 = 1, 2, ..., V). The one-step periodic reduction,
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Figure 3.2: The hexagon relation

Xx = AX« , l€adsto animplicit system of OAESswhich amountsto the time-discretization
of the Ruijsenaars (relativistic Calogero-Moser) model, given in [69]. We consider the
system (3.16) to be “of LL class’ although a precise connection with the LL equation
remains still to be established. Lattice versions of the LL equation were given in the
papers [4, 6, 66]. However, not only the connection of (3.16) with these earlier models
remains unclear at this stage, but also the relation between these various discretizations of
the LL equation have remained obscure to thisdate. In the remainder of the thesiswe shall
concentrate on the case # 2 which, aswe show for N = 2, leadsto Adler’slattice equation
in 3-leg form, and for higher rank of N (/V > 3) isexpected to lead to higher rank version

of Adler’s equation. For this case, we shall perform a different kind of analysis.

3.3 Elliptic Lax pairs for 3-leg lattice systems

In this section we shall focus on case # 2 of general elliptic Lax systemsintroduced in the
previous section, corresponding to the “spin-zero” case (where Zf\; L= Zfi Lk =0).
We shall first demonstrate, in the case N = 2 of this system, how the 3-leg form of
Adler’s equation arises in a natural way from this Lax pair. In fact, it turns out that

the elaboration of the compatibility conditions for this Lax pair immediately produces
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the required equations, and is far less laborious than of the consistency-around-the-cube
Lax pair of [72] yielding the corresponding rational form of (),. Next we shall analyze
the much more generic case of N = 3, and produce a novel system of elliptic lattice
equations, which constitutes the main result of this chapter. We aso present the structure
of the lattice system arising form the scheme for general v, based on similar ingredients
as the ones used in the case # 1 elaborated in the previous section, but subject to slightly

different conditions.

3.3.1 Case N=2: Elliptic Lax pair for the Adler 3-leg lattice equation

Let & = &,,,, beafunction of the discrete independent variables n, m for which we want

to derive alattice equation from the following Lax pair:

~ - (3.183)
CI)2/$(_€ — 5 - Oé) _(I)in(_g + 6 - Oé)

5(\ _ MRX - u @2,'{(5/\_ 5 - 5) _q)2n(£/\+ 5 - 5) Y, (318b)
CI)2/€(_€ - 5 - B) _(I)Qn(_g + 6 - 6)

A( (1)25(5—5_04) —@25(54‘5_&) )
X

in which the coefficients A are functions A = A(¢, §~, a)and p = p(, 2, B), respectively.
Their explicit form and the derivation of the Lax pair (3.18) were already presented in
chapter 2, but A and . will actually not be relevant for the determination of the resulting
lattice equation, which is Adler's system in 3-leg form. The discrete zero-curvature
condition (3.4) can, once again, be analyzed using the addition formula(3.5) for the Lamé
function ®, and analyzed entry-by-entry. Applying this to each entry of both the left-
hand side and right-hand side of (3.4) we observethat in all four entries a common factor

containing the spectral parameter « will drop out and that we are left with the following
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four relations:
—£-
—E-

Au(é’é

~ ~

A C(

~
o~ ~

A C(

1:2

- ¢

These four relati

=ﬁAF@—é—m+<@—§—m—<@+5—m+<@+5+my

Q)4 CE—E—B)—CE+E—a)+CE+E+A)

B)+CE—€—a)— C@+§—@+ﬁ@+£+®y

) 4 CE+E—B) —CE+E-a)+CE—€+B)]

CE-E-P)+CE+e—a)- «?+5—ﬁw+a5+f—aﬂ,

)+ (E—E—B) —((E+E—a)+(E+E+ D)

)+ CEHE—B) —C(E+E—a)+cE—€+5)

~ ~

f—f—6r+af+§—a>—a—f+§—ﬁ>+a5—§+aﬂ,

ons can be rewritten as:

Ap
(é“

0(2)o(E+E+5~a)
E-a)o+E-a)o€-¢-poE+e+p)
0(2)o(E+€+a—p)

— A —— i ,

o(E—¢ ><§+f—6ww€—§—aww5+f+a>

<E>@ £+ 6 —a)
o€+E- )o@ -+ p)o+e—p)
@@ @ £+ a—p)

:g/\ _ ! _ ,

@ {—B+a)

2)0
E+ErajoE—c—poE+e+p)
_ 0(26)o(E—¢—a+p)

= [IA—=——2 =~ _ — —~ )

o —=E+B)o+E+P)o(E—E—a)a(§+E+a)
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(3.199)

(3.19b)

(3.19¢)

(3.19d)

(3.20)

(3.20b)

(3.20c)
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~

il a(26)o(E+E—B+a)

E-E+a)o€+E+a)aE—e+po+e-p)
P 0(26)o(E+€E—a+p) (3.200)
o€ —E+ B o€ +E+B)o(€ —E+a)o(+E—a)

using the identity

oz +y)o(z+ 2)o(y + 2)
o(z)o(y)o(z)o(z+y+2)

C(z)+Cy) +¢(2) —Cla+y+2z) = (3.21)

Eliminating A and ., simply by dividing pairwise the relations over each other, we obtain
directly the 3-leg formulae. In fact, we obtain two seemingly different-looking equations

for £, namely:

cE—t+a)o€+E—a)of—E—B)oE+E+H) o —E—)aE+E+7)

~

0E—E—a)o€+E+) 0E—E+B)0ETE-B) oG —ttmoCrt—n)
(3.223)

in which as beforey = 5 — a and

~ ~

o€ Exra)aE+E+a) o€ —E-P)oE+E-5) _ol€—¢—)o+E-)
o§—E—a)o(f+E—a) o=+ B)o(l+E{+8) o€ -+ o€+E+7)
(3.22b)

but actually these two equations are equivalent. The first equation (3.22a) is identical
to (2.13), namely the 3-leg form of the Adler lattice equation given in [7]. The second
equation (3.22b) is obtained from the first by interchanging £ «+ ? a < B, whichisa
symmetry of the equation. The equivalence between these two forms is made manifest
by passing to the rational form (2.3) of the equation, and the latter connection is already
given in Proposition 2.1.2. Since the Adler system (2.3) is manifestly invariant under the
replacements u <> U o+ B —whilst not interchanging u and u — (this being a particular
aspect of the D -symmetry of the equation), the 3-leg form (3.22a) is aso invariant under
the parallel exchange onthelevel of theuniformising variables. £ < ? a <> [. Thisisthe

symmetry that connects the two forms (3.22a) and (3.22b), which are hence equivalent.
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Remark 3.3.1 The coefficients A\ and ;. are determined by the condition for which the
dynamical equation for the determinants of the Lax matrices L., M,, needsto be trivially
satisfied. Thus, a possible choice for A and 1 is to determine these factors such that
det(L,) and det(M,) are proportional to constants (i.e. independent of &), which leads
to the following expressions

Hiw. 1/2 H(w. G 1/2
A= (7(“’“;‘”) o= (7(“’“;@) , (3.23)
AUT BUT

whereu = ©(§) , U = r(u) = ¢/(§), andsimilary u = (¢ ) , U = r(u) = ¢/(¢ ), and
u= p(é) U = r(u) = @/(E). The symmetric triquadratic function H is given by

2
H(u,v,a) = <uv + au + av + %) — (dawv — g3)(u+v+a), (3.24)

and which can be obtained in the following form in terms of o-function

H(u,v,a) = (u—v)? i(z:vv) —(u+v+a) i(it:)/> —(u+v+a)
_o§+tnta)jo§+n—a)o—nt+a)o(§—n—a)

(3.25)

o4(§) o*(n) o*(a) ’
inwhich U? = r(u), V? = r(v). Additionaly, we have the expression in terms of the

polynomial of the curve:
[7(u) +7(a) — 4(u — a)*(u+v + a)}z —4r(u)r(a) = 16(u — a)*H(u,v,a) . (3.26)

We further note at this point that the discriminant of the triquadratic in each argument
factorizes:
H? —2H H,, = r(a)r(u) . (3.27)

In [10] the discriminant properties of affine-linear quadrilaterals and their relation with
the corresponding biquadratics and their discriminants, were exploited to tighten the

classification result of [7].
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Remark 3.3.2 An alternative derivation of the N = 2 case can be given using the system

of equations (3.12). In this case the variables H; and K; admit the following forms

Hl_a(§—§+&)g(5~+§+&)g(5~—5—5><7A(5+5_5>, (3.289)
Aa(g—g—v)g(&f—v)a@)
H2:a(—g—g+@)‘i(_§+g+04)‘i(_§_€_B)UE\_§+§_B), (3.28b)
R 0—5—/&1-7)0(—54‘5_7)0(_2)
K, = TE=E+BoE+E+Bol —¢—a)ole+E—a) (3.280)
) o —&+ v)f(é +&+7)a(2€)
KQ_a(—§—§+5)0~(—§:\+§+5)U~(_é_§_a)0£_§+§_O‘)’ (3.284)
o(—=§ —E+7)o(=E+E+7)o(-2€)

if onesets&;, = —& = €. Theidentity H; + H, = 0 upon inserting the above expressions

yields the equation:
E+éra)o€-¢-a)] o€+e-0oE-¢-p) _o€+E-no€-E+n)
c§+l—a)o—E+a)] o+E+B)o(—E+8) al—E—7)al+{+)

which isequivalent to the elliptic lattice system (2.3) under the same changes of variables
as discussed before. In fact, (3.29) can be obtained from (2.13) by interchanging: ¢ <
¢ and ?<—> ¢ . Similarly, theidentity K, + K, = 0 upon inserting the expressions (3.28c)
and (3.28d) for K; and K, yieldsasimilar equation to (3.29) which can be obtained from
(2.13) by interchanging: ¢ « E and E > 2 . Thus, we recover from the scheme
proposed in the previous section the Adler system in the various 3-leg forms based on

different vertices of the elementary quadrilateral.



Chapter 3. Elliptic Lax systems on the lattice 64

3.3.2 Case N=3:

To generalize the results of the previous subsection to the rank 3 case, we consider the

following form of aLax representation on the lattice:

h1®3n(§1 — & — 04) h2®3n(§1 — & — 04) h3‘b3n(§1 —&3— 04)
X = h1@3n(g2 — & —a) hﬂ’:m(é — & —a) h3®3n(§2 —&—a) | X,

h®s (€3 — & — @) ha®se(&s — & — @) ha®su(&3 — & — @)
(3.30a)

k@5 (€ — & — B) Ka®an(Er — o — B) k@& — & — B)
N=| k®s(C— 6 =) ka®su(&a— & — ) ksPs(&— & —B) | X

k@3, (E — & — B) Fa®su(€s — & — ) kaPan(& — & — B)
(3.30b)

subjectto 327 h; =327 k; = 0, and where the coefficients h;, k; are some functions
of the variables ¢; and their shifts. The compatibility conditions (3.4) of this Lax pair
results in a coupled set of Lax equations in terms of the three variables ¢; as we shall
demonstrate by performing a similar type of analysis as in the case N = 2, where is

understandably more involved.

Eliminating! hy3 = —h; — hy and k5 = —k; — k, we obtain from (3.7b) the following
system of equations:

~

E%k@—a—m+«a—@—m—q3—%—m—qg—@—m}

—
Il o
—_

2 ~ - ~ -
Zflglhj {C(fi —&a-=B)+C&—& —a) =& —&—B) —((&—¢ —04)]
=1

Vi, j=12,3. (3.31)

YInstead of hs and k3 we could have eliminated ., or ho and k; or ko yielding equivalent results.
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and using the addition formula (3.21) we next deduce:

1=1 o&—&—a)(&G—& — P& —&—a)o(és—& — B)
=1 o0& —&—B)o(&—& —a)o(& =& —B)o(és — & — )
Vi j=1,23. (3.32)

in order to write (3.32) in a more concise way, we denote the coefficients on the |eft-
hand side and right-hand side of the equation as A;;; = Aﬂj@,a & o, B) and By, =
Bilj(g,g,g;a,ﬁ) respectively. Noting the common factors h,;/k; (j = 1,2,3) in these
equations, we next derive the system of six equations

hy _ Aunghi + Aigjhy _ Asyhy + Asyihy  Agihy + Agah

kj - BlleI + BleE2 B21j%1 + B22j7{;2 B31jE1 + 3323‘%2
(j=1,2,3). (3.33)

We can rewrite the resulting set of relations (3.33) as

(A11Ba1j — A21jBllj)/l;17{;1 + (A11jBazj — A21jB12j)E1E2

+(A12j Barj — AQQjBllj)/h\QE1 + (A12jBaaj — A22j812j>/]:02752 =0,
(A11Bs15 — ASljBllj)Blzl + (A11jBsgj — A31jB12j)/]”\01E2

+(A12; Bs1j — A32jBllj)/l;27{;1 + (A12j Bsaj — A32jBl2j)E2E2 =0,
(Ag1Bs1j — A31jB21j)/l;17{;1 + (A21; Bsaj — A31jBQ2j)E1E2

+(A22j331j - A32j321j)/h\2zl + (A22jBS2j - A32j822j>/]:02752 =0,

(1=1,2,3), (3.34)
where
P Ao<§—§—23+fj—g+/i>o<a—2i> e
0(@—fl—&A)U(fl—ﬁj—ﬁ)a(ﬁi—SS—Oé)U(fg—fj—ﬁ)
By, = o&—&—&+¢ ta- B)o& — &) (3.35b)

o0& —&—BoE—&—a)ol6—&—BoE—&—a)
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We observe that these homogeneous bilinear systems for the variables 1, ki, hs and ks

can be resolved by using Cayley’s three-dimensional 2 x 2 x 2-hyperdeterminant [23].
Let usrecall the general statement (see also [36]):

Definition 3.3.3 The hyperdeterminant of the 2 x 2 x 2 hyper-matrix A = (a;;) (¢, 7,k =

0,1) isgiven by:
Det(A): det apoo @001 + det a100 @010 2
110 A111 aipr Ao
_ A det Qpoo  Aoo1 det @100 A101 ' (3.36)
ap10  Aao11 a110 A111

Its main property isthe following:

Proposition 3.3.1 The hyperdeterminant (3.36) vanishes identically iff the following set

of bilinear equations with six unknowns

apo1ToYo + Ao11ZToy1 + ar011Yo + a11121y1 = 0,
ap0oToYo + Ao10ToY1 + A100T1Y0 + ar10T1y1 = 0,
ap10T020 + Ap11T021 + A1102120 + 1112121 = 0,
apo0ToZ0 + Apo1T021 + A1002120 + 1012121 = 0,
a100Y020 + @101Y021 + ar10y120 + a111y121 = 0,

apo0Yozo + Aoo1Yo21 + aproY120 + aoriyiz1 = 0, (3.37)

hasanon-trivial solution (i.e., none of thevectorsx = (z¢, 1), y = (Y0, ¥1), 2 = (20, 21)

are equal to the zero vector).

A proof of thisstatement can befoundin[91]. The cubic hyper-matrix A can beillustrated

by the diagram of entries as givenin Figure 3.3
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ap10 a110

ap11
Q111

000

a100

Qpo1 a101

Figure 3.3: Cayley cube

In the case at hand, the components a;;;, can be readily identified by comparing (3.34)
with the system (3.37) and the variables z;, y; with the ﬁi and Ej, respectively. Noting
that these particular coefficientsare al 2 x 2 determinants, it turns out that the following

compound theorem for hyperdeterminantsis directly applicable.

Lemma 3.3.4 (Compound theorem for 2 x 2 x 2 hyper-determinants) The following

identity holds for the compound hyper-determinants of format 2 x 2 x 2:

a a// a/ a// a/ a// a a//
b b/l d/ dl/ b/ b/l d dl/ 2
+
< c C// C/ C// C/ C// c C// )
b b// d/ d// b/ b// d d//
a a// a a// a/ a// a/ a// a a// b b// 2
b b// d d// b/ b// d/ d// c c// d d//
_ 4 =
c C/l c C/l C/ C/l C/ C/l a/ a// b/ b/l
b b// d d// b/ b// d/ d// C/ C// d/ d//

(3.38)
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Proof

This can be established by direct computation. Assuming without loss of generality that
theentriesa”, v, ¢, d” are all nonzero, we can take out the common product (a”d"c”d")?
from al terms on the left-hand side. Denoting all theratiosa/a”, o’ /a” by capitals A, A’

etc, and noting that the 2 x 2 determinant afa issimply givenby A — B (and in
b/b" 1

a similar way the other determinants occurring in the expression on the left-hand side),
then the left-hand side of (3.38) is representable by

2
a2 B2 2 g2 ( A-B A -D A —-B" A-D )
C-B C'—D C'_B C_D
A-B A-D A —-B A -D ]
C—-B C-D ' ' —B ' -D ’

Computing the expression between brackets, we observe that it can be simplified to:

(A= C)(B = D) +(D = B)(C' = A)) = 4(4 = O)(B — D)(A' = C')(B' = D) =
A-C B-D i
A —C B -D

which leads to the desired result. O

To the best of our knowledge this compound theorem is a new result in the theory of
hyper-determinants. It seems intimately linked to the structure of the linear equations
(the Lax relations) from which it originate in the present context, and there may
be analogues for the case of higher rank hyper-determinants (this is currently under
investigation). A connection between hyper-determinants and minors of symmetric
matrices was established in [47], but it is not clear whether (and if so how) those results
arerelated to the above proposition. Hyperdeterminants have also appeared in the context
of integrable systems as reviewed in [100], where it was pointed out that the vanishing of
a2 x 2 x 2 Cayley hyperdeterminant can be interpreted as the lattice CKP equation of
[55, 89]. However the appearance of the hyperdeterminant in the thesis is of a different

nature.
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| dentifying the coefficients of the system of homogeneous equations (3.34) as entries of a
2 x 2 x 2 hyper-determinant, we observe that the structure of this hyper-determinant
is exactly of the form as given in Lemma (3.3.4), and hence we have the following

immediate corollary.

Proposition 3.3.2 Identifying the eight entries (a;;x); jx—01 by comparing the first two
equations of (3.37) with the system of equations (3.34), the hyper-determinant takes the

form as given by the compound theorem Lemma (3.3.4), and hence reduces to a perfect

square of the form:
2
Ailj Ail/j Ai’lj Ai/l/j
Ai"lj A’i”l’j A’i”lj Ai"l/j
(1 =1,2,3), (3.39)
Bilj Bil’j Bi’lj Bi’l’j
Bi"lj Bi"l/j B’i”lj B’i”l’j
where
Auj  Awy| _ o(&—&)o(&r — &) a(& — &)

Apy Aowj| o0& & —)o(& — & — )0 — & — )o(Ep — & — )

0(@‘&//)”(3*‘3/_a—a'—a’)+§j—2a+5)

X = o~ o~ ~ ~ ~ ~ )
o —&—a)o§p —&—a)o(&G—& —P)o& =& —B)o(&—& —B)
(3.40)

inwhichwe canseti,i' = 1,2, 1,I' = 1,2 # 3, and where we naturally should take

i" = 3.

Remark 3.3.5 A similar expression for the corresponding determinant in terms of the B,;;

as given (3.40) interchanging o and 5 and the shifts ™ and ™.

Proof

The form (3.40) of the relevant 2 x 2 determinants, using the expressions for the entries
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(3.35), is computed as follows. By definition of A;;; givenin (3.35) we have

Ayj A
Aiij  Airj

- a(& — &)o(&r — &)
S(&) S(Ex)o(& — & — B)o(&n — & — B)o (& — & — B)

~

o &bt —at Pl -GGt & —at o —& —a)E —&—a)

~

oGy -G Bt —at B -G & & —at B — & — a)o(Er — & — )],
(3.41)

where

S(E) =06~ & —a)o(t — & — a)o(€ — & — a).

Noting that the difference in the bracket can be simplified by applying the three-term

relation for the o-function in the following form:

o(x —a)o(y —b)o(z —b)o(w —a) —o(y — a)o(z — b)o(z — a)o(w — b)
=o(z+y—a—"bo(r—y)o(r—z)o(b—a), (3.42)

inwhich z — y = 2z — w. Making now the following choice for z, y, z, w, aandbin
the identity (3.42):

~ ~

r=6-6GrE—atf  y=& -G+ -atp
zZ = EZ — w = gi/ —
a = é\l b = é\l’
the expression between brackets on the right-hand side of (3.41) simplifiesto

[ ]=o(-G &+ o€ +E —G—& &+ & —20+p) 0§ — &) o — &)
We substitute the right-hand side of this equation into (3.41) and cancel the first factor
against the corresponding one in the prefactor of (3.41). Then using the fact that o is an

odd function, we obtain the desired result given by the determinant in (3.40). In asimilar
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way (or by making the obvious replacements « <+ § and ~ «» ~ ) the computation of the
2 x 2 determinant B;;; can be verified. O

We apply now the compound theorem Lemma (3.3.4) to the system of homogeneous
equations (3.34). In fact, from that system of equations follows that the ratios Ei /ﬁj and
k; /Ej obey quadratic equationswhose discriminant, by virtue of the compound theorem, is
aperfect square. Thus, theseratios can be obtained in arather ssmpleform. Wedistinguish
the two cases: i) the hyper-determinant in question, i.e. the determinant (3.39), vanishes,

and i) the hyper-determinant is non-zero.

1) Case (3.39)= 0
In this case the resulting set of equations is given by the vanishing of the hyper-
determinant, i.e. the set of equations:

Ayj A
A’i”lj A’i”l’j

Bing B
B’i”lj Bi”l’j

Aing Aiwj
A’i”lj A’i”l’j

By By
B’i”lj B’i”l’j

(3.43)

Inserting the explicit expression (3.40), and its counterpart in terms of the quantities 5,
into (3.43) we obtain the relations

~ ~
o~ ~ —~

o+ —& -G —E&+&+5—20) o€y - &—ah@ —& —a)ol&y & —a)

1
=~

o +En G =G —G+&+B-20) 0§ —G—a)ol&—& —a)ol§—&—a)
_d&+@—5—5—é+&+a—%)d§—é—m(@—&— € —&-p)

B)o
o€+ — 8 — & — &+ & +a—2B) a(§—&—BolE, &—)d —&-p)

9

where againwecan set 7,7’ = 1,2, 1,1’ = 1,2 # 3, and where we naturally should take
" = 3. The set of relations (3.44) is a coupled system of three quadrilateral equations
(for j = 1,2,3) of 3-leg type, i.e. in terms of three independent variables which reside

in the arguments of the Weierstrass o-functions®>. We note that all three equations (for

2The same system of equations would have been obtained if, rather than eliminating % 5 and ks in its

derivation, we would have eliminated one of the other variables among the coefficients 4 ; and ;.
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j = 1,2, 3) have acommon factor, which in the case of afurther reduction & + & + &3 =
0(mod period lattice) involvesonly the“long legs” (i.e. the differences over the diagonal).
Thus, this system of equations may be too ssimple to figure as a proper candidate for a

higher-rank analogue of the Adler lattice equation.

ii) Case (3.39) 0

Asaconsequence of the compound theorem, Lemma (3.3.4), the hyper-determinant in the
case at hand isaperfect square. Thus, going back to the system (3.34), by first eliminating
the ratioﬁi/ﬁj, we obtain aquadratic for theratio Ei/%j, (z, 7 = 1,2) fromwhich the latter
can be solved using the fact that the discriminant of the quadratic (which coincides with
the hyper-determinant) isa perfect square. Thus, we obtain rather manageabl e expressions
for the solutions of the mentioned ratios in terms of the 2 x 2 determinants involving the

expressions A;;; and B;;;. Theresult of this computation is the following:

Proposition 3.3.3 If the expression (3.39) is non-vanishing, we have the following
solutions of the system (3.34) given in terms of the ratios (i.e, up to a common

multiplicative factor)

h Asy; k B,
either — =% together with ) ,
ho Az ko B
(3.45a)
an A12j Bl2j Allj Al?j Bl?j
Ba1j Azaj  Baaj Agij Az Ba;
};1 B31j A32j 332]‘ . %1 ASlj A32j B32j
or — — — together with — = —

ha Biij Anj B ko Ay Ay Buj
Ba1j Asij  Bagj Agij Az B
Bsi; Asij Bagj A1y Asz; Bayj

(j=1,2,3)  (3.45b)
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The proof, once again, is by direct computation and involves some determinantal

manipulations.

The system of equations resulting from (3.45a), inserting the explicit expressions for the

quantities A;;; and B;;; from (3.35) reads as follows

b oG -b-G+E—at ol -6 —a)aE —&— o — &)

hy o -G -Gt —atBol-Eb-a)o@-&—Bo@ &)
(3.462)
B ol -GGt &ta—Bol—&—Bo@E —&—a)oE—&)

= —~ —~ .

kr oG- -G+ ta—B)oE—&—B)ol& & —a)a(& — &)
(j=1,2,3) (3.46b)

~

Inserting the expressions of (3.35) into the system of equations (comprising the equations
for different values of ;7 = 1,2,3). The system of equations (3.46) for j = 1,2, 3, we
do not consider to be viable because it seems to be overdetermined taking into account
the common factorsin (3.46a) and (3.46b). Furthermore, neither does it admit the natural
solution &;(n, m) = &(0,0) + na + mpB (i = 1,2,3) nor does it admit the reduction
&1+ & + & = 0 (mod period lattice). Thus, we reject this system of equations.

Turning now to the system given by (3.45b) for j = 1,2, 3, this constitutes a more

complicated system of quadrilateral elliptic 3-leg type of equations, which can be written
asaset of equalities:

Biii A1 Bix Bii2 A1z Bi Biiz Ai23 DBias
Boi1 Az B Baio Ao B Bz Agz  DBags
Bs11 Asp1 Bsop Bs1a Aszy Bsoo Bs13  Aszs  Bsag
= = , (3.473)
Biiin A Biz Bii2 A2 Bi Biis A1z DBias
Bo11 Az Baop Boia Az Baoo Bz A213  Baog
Bsi1 Asii Bsop Bs1a Asia Bsao Bs13 Asi3  Bsas
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Amn A1 Bia Ane Az Bia Ans  Aiez Bios
Ao11 Azo1 Bom A912 Aoz Bago A9z Asgaz Baos
As1n Aszr Bsa Asz12 Aszz Bsao Asz13 Aszs Bsas
- - . (3.47h)
A1 Az Bin Anz A2 B Ans Aiez Bus
Ao11 A Bon Aoz Az Boro Aoz Az Bog
Asin Az Bsu Asz12 Aszz Baiz As13 Ases Baig
with the determinants expanded by means of the formul ae:
e &G G 0t BoE &) | .
o§i—&G—a)o(§—§& — Bl —&—a)o(ls—& —B)
and
Awj - Awg| J(éiz— &) o(& — §3) o(& — &) _
Awj Awj| oG =& —a)o(& =& —a) o — & — a)o(§ — & — a)
o ol&-&)oE T -E-&—&+&—2+p)
o€ ~E o6& -a)ol@—& - Mol & - Po -&-F) o)

with the B-determinants obtained from these by interchanging “and ~ and « and /.
Explicit forms of the equations (3.47a) and (3.47b) can be obtained by expanding the 3 x 3
determinants along the A- and B-columns respectively using the expression (3.48) and

(3.49) and their B-counterparts. We will next give the explicit form of those equations.

3.3.3 Higher-rank N=3 elliptic lattice systems (3.47) in explicit form

To obtain the resulting system for V = 3 in explicit form we expand the determinants in
(3.47) using the expressions(3.48) and (3.49), namely by expanding the 3 x 3 determinants
along the single column with A-entries (in (3.47a)) and along the column with B-entries

(in (3.47b)). Thus everything can be expressed in terms of products of o-functions. Note,
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however, that these determinants are not quite of Frobenius (i.e. eliptic Cauchy) type for

which we would have pure products. The resulting equations comprise:

[0@1—ENQ)U(E+§2—A€~1—A€~2—£:3+§1+a—2§)0(§3—g2—g3+€1+5—@)
(€))S(Ey) 0(E5 — & —a)o(€5 — & — @)
o6& e b -G -Gtata-2) o6 -B-E+&+F-a)
(5) (53) (52 L—a)o (52 53—06)
o(Er—EolEs + 6~ G B -Gt & ta-20)0(E ~& - §s+§1+ﬁa)]
(52) (53) (51 &-a)o (51 & —a)

[0(2152) o6t f -G GtEta- 2o & -Gtet8-o

(f) (fg) (53 & —a)o (53 & —a)
a(?l—Z;)a(?ﬁ?g:&—§2—£3,+52+a—2§) E-6-Gratb-o
S(€,)S(E;) 06y — & —a)o(Ey — & — )
U(ﬁz—gg)ﬂ(gﬁ-?g—gl 52 £3+£2+a—25) (?1—52—23-*-52-*-5—@)]

—+

+ ~ —~
(52) (53) (51 51_04) (51 53_05)

_a& B) o€ —& - B)

_a< B) (&2 52—5)

[(sl 52) (G +&-8-G-G+a+a=20)0 & -&-G+a+6-0)
(5) (52) (53 51_04) (53 53_04)

o€ o6 +E -8 -G -Etbta-2)oE & -Eratb-a)
S(€,)S(Es) o6, — & —a)o(6, — & —a)
o(ggzg)a@ﬁ?gﬁgz§+§1+a2§)a(z§z§3+§1+ﬁa)]
(&) S(E) o€, — & — ) o(€, — & — @)
X[a(ﬁ—@) o6 tE -GG Gteta 2ol -6 &ratso)
S(€) SE) o6 — & — )06y — & —a)
U(§1—§3)0(§1+€3:§1—§2 £3+£2+a—25) (?2—52—23-*-52-*-5—@)
S(€) (&) 06 —&— ) o(Ey— & — )
a(ZE—?3>a(?2+?3—j—52—£§+5i+a—2§~)a(§—é—&ﬁﬁﬂ—a)} (3500
S(€,)S(Es) o6, —& —a)o(, — & —a)

Jr

—+

where
S) =0~ —B)o(€—E —B)a(E—E&—f).

The second one can be obtained from the first equation (3.50a) by interchanging £, and
¢3. Namely,
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[a(?l—2)0@1+§2—El—Ez—Ea+£1+a—2ﬁ)a(§3—32—é+£1+ﬁ—a)
S(€) S(E) 06 — & — ) 06 — & — )

o€ 606 48— b B Gt ta—20)0 & G164 a)
SE€)SE) (&~ 6 —a)o(&; & —a)

06— E)olEa+E =GB~ Gt & ta=20)0(6, ~ & - &+&+ﬁ®]
(&) S(E) o6, — & — ) o(&, — & — )
[dﬁ@)@+@ f-G-Gt&ta-2)oE-E-E+&+f-a)

S(E)S(E) (& — & — ) o(&s — & —a)
70(?1—Z},)a(?l+§3—Aé—§z—5j+53+a—2§)a(?2—22—23+£3+6—a)
S(€)S(E3) o€, — & —a) (6 — & — )
U(§2—§3)0(§2+§3:§~1 52 £3+£3+a—25) (?1_22_23+£3+/6_a):|

Jr

+ ~ —~
(52) (53) (51 51 ) (51 53_05)
o6& 53— B)o(é& —& = B)
REGERErG @—m
&)olE+

[@15g< 6-G-B-G+6+a-200(E-6-6+6+5-0)
S(€) S(E) 06 — & — ) o€ — & — a)
_U(Efgg)ff(gvﬁrfg §1 §2 §3+§1+a*25) (?2*22*23+§1+5*a)
S(E)S(E) (& — & —a)o(&, — & —a)
U(?z*?s)a(gfrfgifl €2 — §3+§1+a*25) (?12223+§1+5a)]
(&) SE) o6, & —a)o(E, - & —a)
4ﬂ3—@)@+@ G-G-&t&ta-20)o0E-Bh-Bt&ti-a)

S(€) S(E) o6 — & — )06y — & — a)
06 &) 16 -GGG t& a2l B -Er&TE-a)
S(€)5(E) o(€, — & — ) (€, — & — )
0(22_?3)0(§2+§3;gl 52 §3+§3+a—25) (2:1—22—23-*-53-*-5—06)]7 (3.50b)
(&) S(E) 06 — & — ) o€, — & — )

Jr

—+

where
SE)=0(—& B o€ —E —B)a(E—E&—P).

Explicit form of the third one arising from (3.47b) can be acquired from the first equality

(3.50a) by interchanging “and ~ and e and 3. Thefirst oneis given as follows:
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r@}ébdﬁ+§ G-6-Br6-2+poE-B-G+a-F+a)
KE) K)o —& =B o -5-5)

o€ ~&)oE 16 B -G -Btb 20100 -G-G+a-Fta)
K(&) K(&) o0&y — & — B)o(& — é—m

o(E &0t & -6 -G -Bt& 20100 ~G-G+&-Fta)
(52) (53) (51 &2 —B)o (51 )

[dﬁ@)@+@ G-&-br&-2+B06-b-E+&—F+a)

K@) K(&)oE—& — ) o — & —B)

70@1—?3)0(?14-53 51 52 £3+£2—2a+ﬂ) (?2—52—53-*-52—54-@)
K(&) K(&) o6, — & - B) o, - é—m

U(§2_?3)0'(§2+§3_£1 52 £3+£2—2a+ﬂ) (5 —&— &+ & —B+a)
K(&) K(&) o(E, — & — B)o(&, — & — B

Jr

—+

_0(5:1—52— ol =& — )
o(€1— €& —a)o(&2— & —a)
XF@—E)@+@ G-6-&+6 %106 -G-Gta-Fta)
K(&) K (&) o0& — & — 8) o(&, — & — B)
o6 - E)oG t b B -G +a 20+ P)oE -G -Gt&-f+a)
(E) (53) (52 & —B)o (52 53*5)

0 oG tE b -G G162+ 8)oE & -Gta-Bta)
(52) (53) (51 &—B)o (51 )
4ﬂ3—@)@+@ G-6-B16-2+poE-E-G+a-F+a)

K(&) (fz) (53 &-B)o (53 )
o6 &)+ -E-B-B+&-20+HoEG-G-&+&-F+a)
K(&) K(&) o(E, — & — B)o(& — é—m
0(Es~E)oE+ &y &6 -G +& 204 8o -G -&+E&-F+a)

K(gz) (53) (51 52_5)‘7(51_53_5)

Jr

—+

)

(3.50c)

where
K@) =o0¢-&-a)o—&—a)o¢—&—a).
We omit the fourth equation arising from (3.47b), which can be obtained from (3.50b)

by interchanging "and ~ and « and 3, as we expect that it is implied by the other three
equations. So (3.50a)-(3.50c) constitute a coupled system of quadrilateral equations for
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the three dependent variables &;(n, m), &(n, m), &(n, m). For the moment, we do not
have a direct proof of that the fourth equation is implied from the equations (3.50a)-
(3.50c). The equations are very complicated, not only because of the complexity of
each of these equations themselves, but also the fact that they are implicit with the
dependent variables sitting in the argument of the elliptic functions. However, we expect
the consistency of the system to be valid on the basis of applying random numerical
substitutionsfor initial valuesin the case of the rationa limit. We have done a number of
such experiments that give very accurate verifications but we do not know how reliable
these numerical results are, as we do not know how robust the numerical algorithms are

under the choice of initial conditions.

We further remark that this system as expected allows for a trivial solution of type
&i(n, m) = &(0,0) + na+mp (i = 1,2,3). Animportant problem remains the finding
of arational form for the system of equations. This, aswell as verifying their reducibility
under the additional constraint &, + & + &3 = 0(mod period lattice), is currently under
investigation. If so, the latter system of equations can be duly regarded as a higher-rank
version of Adler’slattice equation in 3-leg form (2.13).

In order to address the problem of finding rational formswe intend to look into the gauge
transformation of the 3 x 3 Lax pair similar to those used in section 2.1.3. This would
require discrete extensions of Frobenius-Stickelberger formulae of Appendix B. Thus, we
present here a(asfar aswe are aware) new 3 x 3 determinantal formulawhichis expected
to play a role in constructing the rational form of the rank 3 generalization of Adler's

system from their analogue of the 3-leg forms:
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Proposition 3.3.4 The following identity holds for arbitrary £; 5 3 and x5

1 p(&1+r1) e+ Ke)
(

(
I p(&+kr1) e+k) | =
I (& +rK1) p(3+ k2)
_ e —r)oGi+ &+ &+ mF2m) oG -S)o(G-)a&—-&)
o (&1 + k1) 0(& + k1) 0(§3 + k1) 02(&1 + K2) 02 (§2 + K2) 02(€3 + Ka)

X [C(&1 4 K1) + C(E2 4 K1) + ((E3 + K1) + 20 (w2 — K1) — ((§1 + &2 + &3 + K1 + 2k2)]
(3.51)

where o isthe Weierstrass dlliptic function (1.3b).

Proof
A proof of the identity (3.51) is based on the two steps. Firstly, the 3 x 3 determinant can

be rewritten
o0& —&)o(& — &)

P(&1 + k2) — p(3 + K2)
~ 02(& + k1)o2(&3 + Ka)

p(82 + k2) — p(3 + K2)

P&+ K1) — p(§3 + K1)
P(&2 + K1) — p(§3 + K1)

0(1+ &3+ 261)0(§2 + 83 +2k2)  0(82 + &3 + 261)0 (&1 + &3 + 2k2)
0?(& + K2)o? (&2 + K1)

02(&1 4 k1)o% (& + K2)
(3.52)

)

using the addition formula (1.9). Next applying the following higher addition rule:

o(k+x)oA+z)o(u+z)o(k + N+ p+1y)o?(y)
—o(k+y)oA+y)o(u+y)o(k+ A+ p+z)o?(z)
=o(k)o(No(po@)oy)olk+A+p+z+y)oly— =)

X [C(r) + C(A) +C(w) +C(x) +Cy) = ¢k + A+ p+z+y), (353

and setting

K= A=Ky — K1, p="=E + K1,

==& + ki, y=2E& + K1,
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we obtain the right hand side of (3.51). O

One can consider the above proposition to be discrete versions of the corresponding
Frobenius-Stickelberger determinantal identity, namely involving determinants in which
the columns are not made out of successive higher derivatives of the p-function, but are
made of shifts in their arguments. Since the right-hand side of (3.51) is not manifestly
anti-symmetric with respect to theinterchange of x; and k., but the left-hand sideiis, there

must be an additional identity expressing this invariance.

Furthermore, the identity (3.53) is equation (1.12) for n = 2 and derives from:

() +¢A) + () + (@) +Cly) =S+ A+ p+a+y) =
_ Pu(@) (@) Ppu(2)Prirtu(y) = Pu(y)PAW)Pu(y) Pririn()
Criru(z +y) (p(z) — ) '

(3.54)

A further generalization of the latter identity (3.54), which plays a key role in the
derivation of (3.51), isgiven by:

olx+y+z)ox—y)olz—2)o(y — 2)
o?(z)o?(y) o?(2)
X [C(k) + C(A) + Q) +C(v) +¢(2) +C(y) +C(2) —C(k+ A+ p+rv+a+y+2)] =

= Oy (2)Px(2)Pu ()P0 (7) (0(2) — 9(V)) Prtrtptv (Y + 2)
+@ (1) PA (1) P, (y)

+0,(2) A (2)Pu(2)

Peirrprv(T+y+2)

P, (y) (p(x) = 9(2) Prirsprv(z + 2)
(I)V ( -

(2) (p(y) — 9(2) Pryrtprv(T +y) . (3.55)

which is also obtained from (1.12) for n = 3. We will seek in ongoing research to
explore novel identities like (3.51) in the search for gauge transformations on the elliptic

Lax pairs.
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Chapter 4

Degenerations, continuum limits and

reductions

In this chapter, we study the rational and hyperbolic limits of Adler’s dliptic lattice
equation in 3-leg form and the multi-component system of coupled 3-leg quad-equations
presented in the previous chapter. These results can be duly regarded as the higher-rank
versionsof thelist of () equationswithinthe ABSlist. Furthermore, we consider the semi-
continuum limit, or skew limit, and straight limit of Adler's system in the Welerstrass
form. Thislimit leadsto adifferential-difference equation whichisdefined in terms of one
continuous and one discrete independent variable. The skew limit of the three-leg form
of the Adler system is also investigated. Finally, we will pay attention to the reductions
to the elliptic Ruijsenaars-Schneider (RS) system.

4.1 Rational and hyperbolic subcases

In this section we consider the degenerate subcases of the systems derived in the previous

chapter 3 obtained by reducing the elliptic curve to the hyperbolic (trigonometric) and



Chapter 4. Degenerations, continuum limits and reductions 82

rational cases. We consider the cases N = 2 and N = 3 separately. In the former case
we will recover some well-known equations from the ABS list, whilst in the latter case
we obtain lattice system which we consider to be of Boussinesq type. The results for the
case N = 2 have aready been presented in [104] where the connection between the ABS
discrete equations and the discrete-time elliptic Ruijsenaars-Schneider model has been

introduced.

N=2:

In the previous chapter, a general elliptic Lax pair was introduced, leading to the higher-
rank analogue of the lattice KN equation. We now consider the equation with 2-particle

situation.

4.1.1 Rational case

Intherational limit both periods go to infinity, i.e. 2w; — oo , 2ws — 00, INnwhich case
we have the displacement o () — &, yieldingto @, (£) — f—; The Lax matrices L,. and
M, in (3.2) in this case take of the form:

1 1
L, = —eh+ Ly, M, = —
2/§€jL 0 2K

where e denotes the (column) vector with 1 in each coordinatese = (1,1)%, h and k are

Ck + MO s (41)

the (row)-vectors with the entries i;, k; respectively. In (4.1) L, and M, are given by
h; 2 k;

~7]Ei,j 5 MO — AijEiyj 5 (42)
ij=1 & — Sj —Q ij=1 & — Sj -

in which the £;; denote the standard elementary matrices, i.e. (E;;)mn = 0imdj, - From

2
Lo =

the form of the Lax matrices (4.2), we can then obtain the following relations
aLy— PLy+ LoP = —¢h ,

BMy — PMy + MyP = —ek | (4.3)
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where we have set
2
P = Z §k B (4.4)
k=1
Working on the Lax equation (3.4) and inserting (4.1), we derive
LoMy = MyLo , (4.5)

together with the relation ﬁekj = Eehj for j = 1, 2. In order to proceed with the general
analysis of (4.5) we consider reductions by additional constraints he = ke = 0 and
&1 = =& = £. Consequently, dividing each entry in the first row of the relation over each

other, we find the equation, i.e.

E-t+a)E+e=0) E=¢=AE+e+8) _E=t-DC+E+1) 40

E-E-a)E+eta) E—E+B)E+E-D)  E—cry)(Ere—n)

Introducing a new variable . = £ and inserting this to (4.6) we can derive the following

relations

a(i—u)(u—1) — B — ) (u— 1) + Bola — B)(u+ T+ +a)
= Ba(a = B) (B — af + a?), (4.7)

where we find in particular case for u the (), equation of [7].

4.1.2 Hyperbolic (Trigonometric) case

Let us perform the hyperbolic limit 2w; — oo , 2wy = %m’, in which case we can make

the substitution o () — sinh(§), yielding
. (&) — coth(€) + coth(k).
In the case Lax matrices (3.2) can be taken the form:

L, = eh cot k + Ly, M, = ek coth k + My, (4.8)
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where the Lax matrices L, and M, are given by

2 2
Lo=Y_ hjcoth(§ — & —a)Eyy;,  My= Y kjcoth(§ — & — B)E;, . (49)

i,j=1 i,j=1
From the form of the Lax matrices (4.2), as a result of the dropping down of the terms
with the spectral parameter coth x, we can obtain the following relations
exp(20) exp(2P) Lo — Lo exp(2P) = exp(2a) exp(2P)e h + e hexp(2P)
exp(28) exp(2P) My — My exp(2P) = exp(28) exp(2P)e k + e kexp(2P) , (4.10)
where P, h, k and e are given as before. We again make the specification (4.5) and

assuming the following constraint he = ke = 0 again, we subsequently derive the

relations
sinh(g £+ ) sinh(g—l— £—a) sinh(g ¢£—0) sinh(g+ £+ B)
smh(§ £—a) smh(§ + & + ) sinh(€ — §+ B) smh(§ +&-0)
smh(é‘ £+ a— ()sin (£+§—oa+6)

(4.12)

smh({ E—a+pf) smh(f +&+a— 6)
where ¢ = £(n, m) is the dependent variable of the equation, related the value u of the

rational form of (Q)3)s=; equation of [7] through the identification u = cosh(2£). The
equival ence between two forms can be seen as a conseguence of an identity given in the

next statement.

Proposition 4.1.1 The following identity holds for arbitrary variables X, Y, and Z,
(X — cosh(2¢ — 2a)) (Y — cosh(2€ + 28)) (Z — cosh(26 — 2(8 — a)))
— (X — cosh(2¢ 4 2a)) (Y — cosh(2¢ — 28)) (Z — cosh(2€ + 2(8 — v)))
_— [a(1 — %) (cosh(28)Y + XZ) — B(1 — a?)( cosh(26) X + Y Z)

—~(a? = 8 (VX + cosh(26)2) + (1= O‘Zf; — 52))} , (4.12)

where
2a3e?

t = T (4.13)
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Proof
It is straightforward calculation; one need to show that the coefficient of each monomial
1,X,Y,Z, XY, XZ YZ and XY Z of the identity are equivalent. It can be readily seen
by using the definition of hyperbolic cosine function and the identification o« — e2,
B — €*? on the right-hand side which completes the proof. O

Identifying u = cosh(2§), X = u = cosh(2g), Y =u= Cosh(QE) and Z = u

cosh(Qg ), we see that the expression in brackets on the right-hand side of (4.12) can be

written in terms of the following quadrilateral expression
Q(u, 0,4, w; a, B) := a(l — B)(uii + wa) — B(1 — o) (uii + )

(a2 - ) (i + i) + L O‘Zf; —7)) | (a4

which the equation Q(u, @, @, 5; a, ) = 0 is eguivalent to the (Q3)s=1 eguation in the
ABS list. Using the identity

sinh(€) sinh (1) = cosh(§ + 1) ; cosh(§ — 77)7

it is not hard to see that the expression on the left-hand side of (4.12) and the relation

(4.11) are equal. We remark that the statement 4.1.1, which is a new identity, can be
derived by degeneration (in the hyperbolic limit o(§) — sinh(&)) of Proposition 2.1.2.
Finally, the hyperbolic limit 2w, = $7 , 2w, — ioco of thedliptic functionsis performed

along the similar way after making the substitution

o(§) — sin(€) .

The details will be omitted. Next, let us consider the rational as well as the hyperbolic

(trigonometric) limits of the equation (3.50a) with three variables.

N=3:

In chapter 3, we derived from the general elliptic Lax system of rank 3 a coupled system
of quadrilateral elliptic 3-leg equations. We now consider the equations in the 3-particle



Chapter 4. Degenerations, continuum limits and reductions 86

3 3
situation and conditions ) h; = > k; = 0 . Let usfirst focus on the rational limit of
j=1 j=1
egs. (3.50a).

4.1.3 A higher rank analogue of (),

By taking therationa limit o(¢) — £ in (3.50a) we obtain

[@1—?2)(?14-?2—51 52 £3+£1+a—25)(5 —H-&+a+B-a)
S(&1) (52)(53 & — )(53 & — o)
_(?1*?3)(§1+€3 51 52753+51+a*25)(§2*g2*23+§1+5*a)
S(6) S(E) (& — & — ) (& - & —a)
(G- tE -G -6 -G +ata—20)(E -6 &+&+ﬁ®]
(52) (53) (51 —&—a) (51 —&—a)
[(?1§2)(§1+52§1 f-BrGta-20)(-6-E+b+f-a)

S(6) S(E) (€ — & — )(53 & —a)
7(?1—2;)(?1-*-?3—51 52—£3+€2+a—25)(€2 L-&Gt+&+B-a)
S(&1) (53)(52 & - )(52 53—06)
+(§z—§3)(§2+§3—5~1 52—€3+€2+04—25)(€ —& - 53-&-52—&-5—04)]
S(&,) (53)(51 51—a)(€1 & — )

Jr

5:1 52— B) (&2 =& - B)
& — B) (€2 — & — B)

[(g gz)(§1+§2 §1 52 §3+§1+a725)(€ —H-&GB+&a+B—a)
S(€1) S(E) (6 — & — ) (& — & —a)
7(§1—§3)(§1+§3751—527§3+§1+a72ﬁ)(§2722723+§1+ﬁ7a)
SE)SE) (&~ -) (& -&-a)
(?2*?3)(§2+§3*€1 E2*€3+£1+a72ﬁ)(€ —& - gs+§1+ﬁa)]
S(fg) (53)(51 & - )(51 & — )
(?1—gz)(§1+§2—§—§2A—§3A+£2+a—2?)(53—g2—53+52+5—@)
S(E)S(E) (6 — & —a) (6 — & — a)
_(?1—%)(?1-*-?3 £~1 52—£3+€2+a—25)(€2—22—53-*-52-*-5—06)
S(6) S(E) (& — & — ) (6 - & —a)

(G- E)Et&-E-G-G+&+a—20)(E -&- §3+§z+ﬁa)]
S(E) SE) (6 — & —a) (€ — & —a)

_
 (

Jr

—+

, (4.15)
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where
SE) =(E-&-B)(E-&—B)(E—&—h),

and coupled to this equation we have two more similar rational equations obtained in the
same way from (3.50b) and (3.50c). By analogy with the N = 2 case, where the rational
limit of Adler's equation was shown to yield the ), equation (after a substitution), we
can justifiably consider the above coupled system as constituting a higher-rank version of
(2. However, in this case the analogue of the substitution used before seems no longer

applicable.

4.1.4 A higher rank analogue of (Q3);-1

We can consider the trigonometric limit o(£) — sinh(§) in (3.50a) that becomes

~

[sinh(s —&)sinh(E +&,—& & — &+ & +a—20) sinh(E, G -G+ & +F-a)
S(€) S(E) (€ — & — a) sinh(§ — & — a)
_sinh(, — &)sinh(§, + & — &~ B -G+ & +a—2) smh(?g E-B+a+-a)
S(61) S(€y) sinh(E, — & — ) sinh(&, —& — a)
L Sinh(E — &)sinh(§, + &~ & & - &+ & ta—2) sinh(§, G -&+& 46— a)}
S(62) S(€3) sinh(€, — & — ) sinh(&, —& — a)
[Sinh(f 52) Slnh(fl + §2 51 €2 — 53 + &+ a—20) Slnh(fg b—&+&+6—a)
S(61) S(&,) sinh(§; — & ) sinh(§, — & — a)
_sinh(§, — &)sinh(§, + &~ &~ B -G+ & +a—2) Slnh(fg E-G+&+8-a)
S(61) S(&s) sinh(§; — & — o) sinh(E, & — a)

L sinh(E, = &) sinh(E, + &~ & &~ &+ &+ —20) sinh(E, G- &+ &+ - a)}

S(&,) S(&) sinh(€, — & — a) sinh(€, — & — a)
_ sinh(€; — & — ) sinh(€2 — & — B)
sinh(a §1 B) Sinh(g2 & —f)
" sinh({1 52) blnh({l —|—£2 51 €2 — 53 +& +a—2p) bmh(ﬁg E2—&+&+8—a) _

5(5 ) (52) bmh(£ & -a) blnh(§ )
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| sinh(E, — &) sinh(E, + & — G -GG+ bta—28) sinh(G -G -G+ &+ B—a)
S(€1) S(&) sinh(&, — & — a) sinh (&, — & —
| sinh(E, — &) sinh(E, + & — & — &~ & + & +a —26) sinh(§, G- &+ + 5 a)}
(£2> S(&,) sinh(, — & — a) sinh(&, ~6-a)
Sinh(g fz) Slnh(fl + §2 51 €2 — 53 +&+a— 25) Slnh( —&G+6+8-a)
S(E, ) S(E,) sinh(&, — & — a) sinh(&, 53 - a)
_sinh(E — E)sinh(E, 16 —E -G - &t & ta—20) sinh(E -G - &+ &+ 8- a)
S(E) SE) (G~ & —a) (€ — & — o)

+Sinh(5~z —gg) Sinh(?z + 53 £1— & — 53 +&+a— 25) blnh(51 E2—E+E+B— @)} . (4.16)

V
)

—~

2 @)

=
EIJ
AJ‘A“,

=

5(52) (53) bmh(& 52 - 04) bmh(g 53 - O‘)
where
S(€) = sinh(§ — & — B) sinh(€ — & — B) sinh(€ — & — ).

The other trigonometric relations coupled to this equation (4.16) are achieved from
(3.50b) and (3.50c). By anaogy with the N = 2 case, where the trigonometric limit
of Adler's equation revealed the (Q3)s—; eguation (after a substitution), we consider
the above coupled system as a higher-rank version of (@)3)s—; in 3-leg form. However,
the analogue of the substitution used in the previous case is not convenient. Next we
will investigate the continuum limit of Adler’s lattice equation, leading to associated

differential-difference equations.

4.2 Continuum limits

Let us investigate what happens under a continuum limit for Adler’s elliptic lattice
equation in the Welerstrass form (2.3), bringing us eventually back to the original KN
equation. Since the lattice equation includes two discrete variables, n and m, we have
to consider the continuum limit in two steps. In the first step, the limit is conducted

on only one of the lattice variables (and associated |attice parameter) while keeping the
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other lattice direction intact. This reduces our equation to drastically different type of
intermediate (differential-difference) equation, i.e., an equation with one discrete and one
continuous independent variable. In the second step the remaining lattice variable will
be continuous. Both cases are obtained by reducing the lattice step associated with the
parameters o and 5 to zero. There are two key continuum limitsthat are of interest: i) the
straight limit obtained by taking alimit in one of the discrete directions, ii) the skew limit
obtained after performing a change of variables on the lattice and invol ving a combination

of two lattice parameters.

The continuum limit for the integrable system of quadrilateral elliptic 3-leg type (3.47),
which may be regarded as a higher-rank version of Adler’s lattice equation, still remain
to be investigated. Each part of the system of equations (3.50a)-(3.50c) is aready
very complicated and would require computer-aided computations, let alone taking
into account that the limit has to be considered for the entire system of equations
simultaneously. Thus, doing the systematic continuum limits for those multi-component
systemsis going to be extremely challenging, and we will not attempt to do those limits
here. Instead we will present here the continuum limits of the much simpler case of
Adler’slattice equation (both in the rational aswell asin the 3-leg form), which will give

agood indication of the procedure and of the subtleties involved.

4.2.1 Straight continuum limit

We will consider a particular continuum limit for Adler’s elliptic lattice equation by
expanding around the branch point of the curve. Let the half-periods of the elliptic

functions be given by w; and w-, i.e. we have the periodicity condition:

P(€ + 2w12) = p(§).

Introducing athird half period by w; = —w; — wy, the branch points of the elliptic curve

aregiven by (6170)7 (627 O) and (637 O) with €1 = p(wl)a €2 = @(WQ)a €3 = @(w?))’ leadlng
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to the representation for the curve:
A? =4(a—e1)(a —e)(a—e3).

Clearly, ¢'(wy) = ¢'(w2) = ¢'(w3) = 0 and the moduli of the curve g4, , g» can be given

interms of the e; as:
g2 = —4(e1es + e1es + ezez) = —4(g — 36%) . g3 =4dejeses = 4dey(g — 26%) ,

where we have introduced the quantity g = (e1 — e2)(e; — e3) = £"(w1). Notethat if

one of the lattice parameters « or 3 is taken to be a half-period, say § = w;, implying
(b, B) = (e1,0) and ¢ — e; = g/(a — e;), then the |attice equation (2.3) leads to:

9
)
u— €

u—e; =

(4.)

where we have used the notation for the shift w — wu to define the lattice translation

associated with the | attice parameter w.

Thelimit we would like to consider isthe one when one of the parameters of the equation,
say (3, approaches the half-period wy, i.e. to consider 5 = w; + d inthelimit§ — 0. The

way to do thisisto consider the combined shift « — 7, we take

~ 1
ﬂ—>u+\/gux+§5um+...,

= - 1
E—>u+\/5ux+§5um+....
In this expansion we have:

b = plwi+0)=e +0%g+...,
B = ¢(w+0)=20g+45%g+...,
¢ = platw —0)=pla+tw)—0p(atw)+...,

C = —glatw —0)=—p(at+w)+0p"(a+w)+...
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where we can use

_ / g4
@(04+W1)—a_61+€1 , platw)= 7((1—@1)2’
and
2
' (a4 w) = 79(142 — (3a®+ g —3e})(a—e1)) .

(a—ep)?

Expanding to first order in  we obtain the differential-difference equation:

1
éAumﬂx = —H(a,u,u), (4.2)

with
H(a,u,v) = (uv + au + av + 3e] — 9)* — 4(a +u + v)(auv — e1g + 2¢3) . (4.3)

We note that the equation (4.2) isthe formulafor the Backlund transformation (BT) of the

Krichever-Novikov eguation (2.1), which formed the starting point for the construction in
[5].

Applying this continuum limit to the Lax pair (2.10) we obtain the following semi-

continuous Lax relation

P = Un(p ) (44a)
with
P R (T T R R R R VA N
Ku, ~(u— k)2 —3g3 + (u+ k) (uk — 1g2)

which supplementsthe lattice Lax pair (2.12). Thelinear equation (4.4) isthe spatial part
of the Lax pair to the continuous KN equation (2.1), which can be recovered from the

original Lax pair given in the paper [58].
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4.2.2 Skew continuum limit

The straight limit is not the only way to obtain a semi-discrete lattice equation. Here we
consider a particular continuum limit which involves a change of variables on the lattice,

namely, w,, ,m, =: Un1m,m, ad then the shifted variables becomes:

Up+1,m 7 Untm+1,m —: U,

Un,m+1 —7 Unt+m+1lm+l = U,

~

Uttt — Ungomamet = 10 - (4.5)
Rearranging the discrete variablesin (2.3), we have
A [(u bY@ —b) — (a—b)(c— b)] [(a— D) — b) — (a — b)(c — b)}
+ B[(u—a)(@—a) ~ (b~ a)(c— a) l(i— )@ —a) = (b—a)(c— a)] _

— ABC(a—b) , (4.6)
and taking the limit by transformation
0=p—a—0, n— —oc0, m-—o00, 4.7
such that mdo — ¢ finite whilst n + m isto remain fixed. Thus, using the expansions

1
b = @(a+6):a+5A+§52A1+253aA—|—... )

B = ¢(a+0)=A+56A +66%aA+...,

¢ = pl0)= 5+ O().
C = ¢6)=—5+00),

where A; = ¢ () = 6a* — go/2, we have for the variable u the Taylor expansion:

U Y
u—>u+5ut+§52utt+... s (48)
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and inserting these into the equation (4.6) we obtain the following differential-difference

equation:
_ - 1 1
Ay —v)vy = A*(V+ 2v 4+ v + 6a) — 2(vo — 5141)(1),’11 - §A1) ) (4.9)

for thevariablev = u—a. Equation (4.9), which contains one continuous and one discrete
variable, is called the mixed lattice KN equation. The Lax pair for the equation (4.9) can
be obtained from the Lax pair (2.12) by applying the skew continuum limit.

Continuum limits of 3-leg equations of Adler’s equation

We will now consider the same (skew) continuum limits directly on the 3-leg form (2.13)
of Adler’s equation by performing on a combination of the two lattice directions. Again
we will make a change of independent discrete variables as in (4.5). Thus, making the

replacements for the dependent variable £(n, m) asfollows

~

Em+1m) =€ +1Lm):=¢ , Enm+1) =& +1Lm+1)=¢,

En+1,m+1) = Em +2,m+1):=¢ (4.10)
This can be visualized in the diagram:

E(n',m) &' +1,m)

E',m+1) e +1,m+1) &0 +2,m+1)

Focusing on thelimit (4.7) asin the previouscase wherem § — t isfiniteandn’ = n+m

isfixed. By thislimit and the transformations as given in (4.10), the Adler’s equation in
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3-leg form (2.13) goes over into the following form
a(g—ﬁ—l—&)a(g—kf—&) a(g—ﬁ—é—&)a(§+€+5+&)
0§ —E-a)o(€+E+a) g€~ ¢+ d+a)o(E+E—6—a)
_ol-¢-0)alE+E+0)
o(§—E+8)o(E+E— )

The next thing is for a small §, to apply the Taylor series expansions for a arbitrary

(4.11)

quantity y in (4.11):

cE+L5+y) =o(E+y) (1 +§(E— 1)CE+ y)) T (4.128)
and R .

(€0 +y) =o€ +y)(1£0E-DCE+y)) + o . (4120)
where ((t) = 41no(t) is the Welerstrass zeta function and the dot “ - * stands for ¢-

derivative with respect to a continuous variable ¢ ( § = 25 ). Inserting (4.12) into the

equation (4.11), sigmafunctions o drop out and then we obtai n semi-continuous equati on:
(1+ 5(?— DCE—€—a)+..)(1+ 5(§+ )CE+E+a)+..)
(1+5(§+1)§(E—§+a) )(1+5(E—1)g(§+§—a)+...)

(1+5( DCE—6) + )(1+5(§+ DCE+E) +...)

(1+5(§+1) CE—&)+. )1 +6E—1CE+E) +..)

in which one retains the dominant term in the small parameter § to yield the expression

I

JCE-e-a)+CE+E+a)—CE—€+a) - CE+E-a)
=2€(E+E —2A(E-O+((E—E+a)—((E+E—a)
+H(€—E—a)—((E+E+a). (413)
Applying the following identity to the left-hand side

oz +y)o(z+ 2)o(y + 2)
o(z)o(y)o(z)o(z+y+2)’

C(z)+Cy) +¢(2) —Cla+y+2z) = (4.14)
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gives an intermediate equation, with one discrete and one continuous variable as follows:

‘= o +&ta)o(+{—a)o(—E{+a)o(§—§—a) y
B o(20)0(2€)0(2€)

< [26E+Y-AE-YHCE-E+a)—CE+E-a)

+C(E—§—a)—(E+E+a)|, (4.15)
which can be cast into the form:
Au:2w+2(u—a)2(u+g+a) - %(U2+A2). (4.16)

However, the aternative 3-leg form (3.22b) gives the continuum limit

é = 0(§+g+a)0(§+g—a)a(§—%:4—04)0(5_g_a)
0 (2a)o(2€)o(2€)

x [20(E-8 —2AE+E) +C(E+E—a)—((E—E+a)
F(E+E+a)—CE—E—a)],  (417)

which can be cast into the form:
1
A =222 —2(u—a)*(u+u+a)+ §(U2+A2). (4.18)

Both egs. (4.16) and (4.18) are compatible in view of the identity:

H 7~7 - H s Wy ~ 1
(w a%_u(ug @) :(u—a)z(u+g+2u+2a)—§(U2+A2).

Thus, we can rewrite (4.16), (4.18) as.

pg = HWBOF AW 2y (4.19)

u—u

and thisis equivalent to equation (4.9).

Remark 4.2.1 In section 4.2.1, the differential-difference equation has been obtained by

taking the parameter 5 — w;. To proceed next to the full continuum limit, performed
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on the remaining parameter «, one can apply on the result (4.9) of the skew limit of
Adler system the procedure to obtain the straight limit, i.e. one can take « = w; + § and
expand around the half-period w; taking into account the relation (4.1). Hovewer, it is
guite cumbersome and requires higher-order expansions and subtle changes of variables.

The end result will necessarily be the fully continuous KN equation (2.1).

4.3 Reductions

The integrable lattice PAES have several types of special solutions. In most cases the
process of obtaining these solutions requires the study of reduction of the corresponding
PAES. We mean that the periodic reduction yields a system of OAESs. Lattice systems
typically admit several types of reductions, e.g.:

1. Periodic reductions (stationary solutions);
2. Non-autonomous scaling-type reductions (often yielding discrete Painlevé

equations).

So far little work exists on reductions of either type for elliptic lattice equations. In [76]
finite-gap solutions of the continuous KN equation (2.1) was obtained. Another work is
that the 2-step periodic reductions of the ABS equations have been studied in [54]. The
simplest periodic reduction is the 1-step period one obtained by imposing

X = AXx » (4.20)
for which we get an isospectral problem of the form

NI{ Xk = )\Xli 5 5(\& = MI{XK 5 (421)

and this is precisely the Lax pair for the discrete-time elliptic Ruijsenaars (RS) model,
which istherelativistic variant of the discrete-time elliptic Calogero-Moser (CM) system.
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The time-discrete version of the RS system was discovered by Nijhoff, Ragnisco and
Kuznetsov in [69] from a reduction of fully discrete Kadomtsev-Petviashvili (KP)
equation with three lattice variables. Next, we shall give abrief review of how the discrete

systemisobtained in [69]. The elliptic Lax matrices have been introduced in the form

(Np)ij =kik; (& =&+ 06) » (M) = kk P (f &+ B)
(i,j=1,...,N) (4.22)

where &; are the position of the particles and /5 is a parameter of the system associated
with the non-relativistic limit. The auxiliary variables k; do not depend on ~ and remain
to be determined. Asin chapter 1, the hat shift in the dependent variable ; = &;(n, m)
will be defined as &;(n,m + 1) = @ and &(n,m — 1) = & Letus consider first the
compatibility ]V M, = M, N,, we get from the addition formula (3.5) that

Z!«l —G+B) G —&+B) —C(h+28+&—&)]

=Y KR +CE -G+ B +CEG—&+B) —C(+28+&—§)] .

=1
Thusby setting >~ %2 = SN 2, the equations can be separated into a part depending
on the spectral parameter ~, and the remainder independent of «. Thisleadsto the identity

Z —&+8) — k(& — &+ B)]

=1

N
~“STRCE -6+ 8 - kG -&+ 8]
=1

(4.23)

forali,j=1,..., N. Thereation (4.23) can be end up with the form

N
STRCE-&+8) —kCE—-&a+8)] =q, (4.242)

=1

N
STk &+ 8) —RCE—&+8)] =4, (4.24b)

=1
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where ¢ does not depend on a particle label. We will assume it to be constant. The
equations of motion in terms of the &; can be derived by eliminating the variables k; from
(4.23). Inorder to do thiswe will apply the Lagrange interpol ation formula (see Appendix

B) leading
N . _— A, —
K2 = _qu;U(fl =&+ P& —¢§ Aﬁ) | (4.250
ijél a(& —&j) H] 10§ — &)
N
2 qu;U(fl &+ B)o(& — & — B) 7 (4.25b)
ijél o(& — 5]) HJ 1 0(@ &)

forl =1,2,..., N. Shifting (4.25b) in the backward direction we get an implicit system
of OAEs

N |
=15 :

o&-&-5) =10 _ﬁj)a(fl_gj_ﬁ)’

Thus, taking ¢/ to be unity leads to the time-discretization of the Ruijsenaars (relativistic

>»Q [

Calogero-Moser) model. The discrete-time RS system in the “~” direction can be

obtained by making the replacement ~«»~

The connection between ABS equations and RS system has already presented in [104]
where it has been shown that one-step periodic reduction of the system (3.16) to be “of
Landau-Lifschitz (LL) class’ (or spin-nonzero case) givenin chapter 3, x,. = \x,., leads
to the discrete-time élliptic RS model (4.26).

The corresponding non-autonomous analogue is obtained by de-autonomization, i.e. the

replacement

)\Xﬁj > XK,-i-T 9

i.e. by going over to a non-isospectral problem which in the eliptic case corresponds to
a linear difference equation on the torus and the corresponding discrete isomonodromic
deformations. First examples of such de-autonomizationswere considered in [42, 84] and

also reviewed in chapter 1.
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Chapter 5

Discrete elliptic iIsomonodromic

deformation problems

In this chapter we present a new class of isomonodromic deformation problems which
form (in some sense) the nonautonomous counterparts of the Lax pairs studied in chapter
3. Those monodromy problems are obtained by applying the elliptic analogue of the
deautonomization procedure, outlined in chapter 1 for the difference and ¢-difference
Lax pair associated with discrete Painlevé equations. In the continuous case, there are
various elliptic isomonodromic deformation problems known in the literature [60, 99],
going back to the work of Okamoto [78, 79, 80, 81, 82, 83], who derived in particular
an isomonodromic system for a coupled system of second order ODEs with two free
parameters (apart from the moduli of the elliptic curve), which can be thought of as an
elliptic generalization of the Painlevé VI equation. Okamoto’s work was generalized to
an arbitrary order ODE in the paper of Iwasaki [48]. In the discrete case there has been
recent work by Yamada and Noumi et al. [75, 103] on Lax pairs for the elliptic discrete
Painlevé equation of Sakai [88]. Our approach is different from the latter and we present

this new general élliptic isomonodromic Lax scheme in what follows. We show how the
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compatibility conditions lead to a constitutive set of relations and we perform an initial
analysis to derive nonlinear nonautonomous difference equations from the scheme in the

simplest nontrivial case.

5.1 General elliptic isomonodromic deformation scheme

In this section, we will show how to set up a novel class of isomonodromic deformation
problems on the torus, from the point of view of lattice equations. This follows the

structure of the zero-curvature Lax systems treated in chapter 3.

5.1.1 First order scheme

The new system appears as the discrete compatibility condition of a pair of the associated
linear problems (Lax pair) defining the shift (translation) of an eigenfunction x,, inthen

with together the linear difference equation in terms of the spectral parameter,

Xn-i—r = Tl-i XK, ) (51a)
X. = LiX.: (5.1b)
where Lax matrices
(Lp)ij = Hijo(r)®u(&—¢& —a), (5.29)
(Th)ij = Sijo(r)®u(&G—& —7), (5.2b)

inwhich f; ;, S; ; do not depend on ~ and remain to be determined. Asit turnsout -, and
perhaps o and (5, will depend explicitly onthe discrete variablesn, m, while¢; = &;(n, m)
are the main independent variables. The Ansatz for the Lax pair (5.1) is natural, in view

of thefact that the matrices L, and T, are anatural choice by comparison with the results
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obtained in [26]. We mention that the extra factor o(x) (in comparison with the Lax

matricesin (3.2)) iscrucial for the scheme to work, as we shall see.

The compatibility of the system (5.1) givesus

%n—f—r = TK Ln Xk

525—}—7’ = LfiJrT Tfi Xk -

Equating (5.34) and (5.3b), we derive the Lax equation

Working out the matrix Lax equation (5.4) we obtain

ZHZI Sl] Ii+7' z gl - 04) Ii(gl - gj - PY)

—ZSzIHlj él ) H(g_éj_a)7

(Vi,j=1,...,N)

which can be rewritten in the form
Z Hzl Sl] n+T z Sj )CI),T(& - gj

O (& — & — )& — & —a—7)]
Z Hl] fl )n(gl—fj—&)a

using the addition formulas
D (2)PA(y) = Pz — y) Pura(y) + Pusa(w) Paly — ).

From the fundamental identity

()P (y) = Pulr +y) [C(8) +((2) +((y) = C(k + 2+ )],

- )

(5.39)
(5.3b)

(5.4)

(5.5)

(5.6)
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one can basically derive the following relation

ZHzlSl] n n+7’(§z é] ) —T(él_éj_,y)+
O, (& — & —a)d n(fi—ﬁj—@—”Y‘FT)(C(“)—C(H‘f‘é—fj—&—”Y‘i‘T)ﬂL

H() +CE & —a- 7))] -

Z G—&—a—A)[CR) —(r+&E—G—a—F)+
HE—&—N+C&a—&—a)].

(Vi,j=1,...,N) (5.7)

Using the relation ®,.(7)®,.1-(z) = ®.(7 + )P (z) on the first terms of the first line
leaves the term which can go with the third term of line 1 of (5.7) by applying the identity

(5.6) once more. Thus, we end up with the form:

=

o<r>ZHﬂ Sy Pu(& — & —a—7+ 7). (& — & — )

X[Cﬁ C(rh+& — fj—oz—7+7)+C(gi—&+T—oz)—C(éj—éﬁ—v)]
N
Z —G—a=F) R —Cr+&—&—a—F) +

HE-G-H)+E-& - o)
(Vi,j=1,...,N). (5.8)

Note that there exists an overall factor CDK@ — ¢ —a — v+ 1) ontheleft-hand side and
@K(é — & — o —7) on the right-hand side which can be dropped out by setting

y=7—T.

Then the remaining terms can be separated into a part depending on the spectral parameter

r, and the remainder independent of x. Thisleadsto therelationsin terms of the variables
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Hij7 Sij and fz of the form:

N N
] Z §ilHlj = Z HilSlch)T(gi & —a)o(r), (5.99)
=1 =1

N N
. Z Sy o(—7)®_ (& — & — )P (& — & —F) = Z HuSy; @—-(& — & — ),
=1 =1
(5.9b)

forali,j =1,..., N. Thisformsthe set of constitutiverelations from the Lax equations
which no longer depend on the spectral parameter . Next we will explicitly disentangle
this coupled system that arise from the Lax systeminthecases N = 1 and N = 2. Higher
rank for N (IV > 3) isexpected to lead to higher rank version of the discrete equation.

i) Case: N =1

This is the ssimplest case which can be explicitly solved. Let us now analyze the basic
relations of the general scheme in the case N = 1 only in order to arrive more explicit
equations, showing that the elaboration of the compatibility conditions for the Lax pair
immediately produces the ordinary discrete equation. In this case all quantities ; ;, .S;

in (5.9) are scalars, leading to the system of equations:
§11H11 = H11511CI’T(E— §— Oé) 0(7') )
§11H11 0(—7') cpr(g_ §— 04>q)fr(§_ g— ;?) = H;1 51 Cp—r@ —&— ’Y)'

Eliminating 511, S11 and Hyq, ssimply by dividing pairwise the relations over each other
and using the definition of the Lamé function ... (£) in (1.6), aswell as 7 = v — 7, we

obtain: _ _
c(y+m)oly—7) _o(€—E—a+m)o(f—E—a—T1)
a*(7) 02— €& —a)
Rearranging by using the addition formula (2.20)

a(a:a;t(ii Zéﬂ(lfy; y) _ p(y) — o) ,
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we find that
pE—€—a) = p(v),

which gives afirst order difference equation for & =: £(n), namely

£ — & —a=+vy(mod period lattice) .
Integrating the latter, using v = 7o — nT we get
E(n) =&(0) + (a £y0)n £ gn(n —1)7. (5.11)

This indicates that in the simplest case the scheme gives rise to functions obeying the
rational version of the equations that are eliptic functions with arguments depending
guadratically on the discrete independent variable n. The dependence on the square of
the discrete variable n seemstypical, for Painlevé types equations, and in particular such

dependence appears in the parameters of the Painlevé VI [70, 81].

i) Higher N values

As in the autonomous case we want to eliminate the variables f;;, S;; from the general
system given in (5.9) and obtain a closed form system of equations for the dependent

variables & =: &;(n). To write the system (5.9) more concisely we introduce matrices
AL = o (£7) P, (& — & — ),
05 = o(£7)04 (&~ & — ), (5.12)

and the operation of ” glueing” matrices: for any two matrices A = (4, ;), B = (B, )

we introduce the glued matrix [AB], given by:
([AB])i; == Ai;Bi; ,
In terms of this notation the above system takes the simple matrix form:
e S-H=[A*H]-S,
e [ S]-[AH|=H -[I"S].
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As in the autonomous case we want the matrix H to be of rank 1. There are in fact two
possibilities that either S is of rank 1 then det(A~) = 0 or [ATH] must be of rank 1.
Since these cases give rise to a kind of equivalent result, we shall choose one of them,
which is the latter, in order to present the analysis here. It follows then from the first
eguation that [ATH] is of rank 1, since [A~H] is generically not of rank 1, and the
second equation then impliesthat [I'S] is of rank 1 (and not S itself!), implying:

det(A+) :det(@T(& _éj —Oé)iijl =0 = T"‘E—E—NO[ =0.

.....

—_

for = .= ij: &5 - (Thisfollowsfrom Frobenius’ elliptic Cauchy determinant).

We come to the conclusion from thisformulathat it make sense to revise the original Lax
scheme in order to redefine the coefficient S;; such that [I" S];; ~ s s; is manifestly of
rank 1. Thus we need to bring the matrix I';; = o(—7)®_,(& — &; — ) into the original
Lax pair (5.2b) by incorporation in the coefficient matrix ®_,(§; — & — ). A smple
computations and some appropriate scaling yields the revised Lax schemethat will be the

starting point in the next section.

5.1.2 Revised scheme

From the implied condition that the matrix [I'S] must be of rank 1, it is convenient
to revise the scheme and absorb the matrix I' = (I'; ;) in the coefficient, leading to an

aternative Lax pair of the form:

Xvﬁ = gfﬂ Xk  Xk+r = e?er‘r Xk - (513)

In (5.13) the revised Lax matrices contain now both rank 1 matrix coefficients, namely
they are of theform: H; ; = hfh; , Si; = s} s}

(Lo)ig = Wi o(w)@ull —& — ) b, (5.143)

(%)i,j = 5;_ O-(ﬁ) ¢I€(§’L - gj B ’Y) Sj_ : (27.] =1,... 7N) (5.14b)
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For this system the calculation proceedsin asimilar way as before, and using the addition
formulae (5.5) and (5.6) the compatibility yields the following system of equations:

N N
o nf (Yonrst) sy =o(-n) S GO (&~ —a)hy (5.15a)
=1 =1
othZh leT —&§—a) (& — ;_SJrZSlh o, ( ?)h;,
(5.15b)

(forali,j=1,..., N), which asbefore can be cast in the matrix form:

e S-[AH|=H-S, (5.16a)

o [ATH].[IFS]=["S] - H, (5.16b)
with now therank 1 matrices H = h™(h™)7, S = sT(s7)T and the matrix '+ (instead of
')

A?; = (:l:7->q)i7'(€z & — a),

Iy = oM (& —& ). (5.17)
Moreover, it can be seen easily from the second relation above that since [I" S| isgenerally

not of rank 1 but H isrank 1 matrix then [A™ H] must berank 1. Again, we need to impose
that the determinant of the matrix A™ must equal to zero, i.e. det(A™) = 0, implying:

[I]2
[1]

—Z=Na—-17 = (n) ==2(0)+ (Na—7)n. (5.18)

Next we will consider the lower order values of N, say at N = 1 of the revised scheme
(5.15).

i)Case N =1

In this case, the compatibility conditions for the revised Lax pair (5.13) gives the first

order relation which is amost similar to equation (5.11) obtained in the previous section.
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Let usfirst consider the quantities (5.15) or (5.16), then we are left with the following two

relations:
hWth™sts™ =55 hTh ®_(E— & —a)o(—T1), (5.19)
Wh™sts o(—T) P (E—E—a)P_(E—E—7) =515 hth™ d_ (£ —&— 7).

(5.19b)

Eliminating »* and s*, simply by dividing pairwise the relations over each other and
using the definition of the function (1.6), as before, this constitutes
oc(F+m)o(r=7) o§-E—a+m)o((—E—a—7)
o?(7) o?(§—¢—a)

which can be rearranged by using the addition formulae (2.20), so we have

=0,

plE—E—a) = p(3).
Thisgivesdirectly thefirst order difference equation for £ = &, ,,, up to modulo the period
lattice, that is

~ 1
E—¢—aty=0 = fz{o—l—nain%ZFin(n—i—l)T, (5.20)

where &, and v, are the integration constants.

ii) Case N =2

To resolve this case, the first identity (5.15a) allows us to identify A* = ps* (for some

scalar function p), and consequently:
2

57 = LT)) > EE (G —-&—a)h;.

(h= - sT —
Expressing all the entries of thefirst and second relationintermsof s;"s;” =: S;, s 'h; =:
H; we get:
H\. = =
(1 n —) Si= A7 S + A5,S, | (5.21a)
H,
H - -
(—1 + 1) Sy = ALS) + A5, , (5.21b)
H,
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Using these new variables the entries of the other matrix relation (5.15b) yields the

system:
+ 17+ 1+t o ! + 17+ ™o L T+Q
Anrn + 1412F21F1 Sy = 14111112F2 + A12F22 Sy = Fnsl + F1252 )
+ 1+ + ot 2 + ot Mo + 17+ ™o L T+Q
A21F11 + 1422F21F1 Sy = Azﬁuﬁ2 + A22F22 Sy = F2151 + F2252 .
(5.22)

To analyse these further, taking into account that det(A*) = 0, werewritetherelations
interms of theratios X = Hy/H,, Y = S,/5, and Z = 5, /4, leading to:
Y AL+ ARY
X AL+ Ay
1+ X
A AY
AEFE + ATQF;X = (AEFIFQ + ABFZEX)Y/X = (fﬁ + fo?)Z )

Z

AE/AE = AE/AQE = (FE + FE?)/(F; + FJQ?) . (5-23)

These are in fact four relations for X, Y and Y with coefficients in terms of &, This
manageable system (5.23) can be solved by direct computation. Eliminating X, Y and Y
we derive the first order difference equation for ¢;(n) (j = 1, 2) given by

a(a+§1—&)a(a—y+7+§1—&)a(a+§2—§1)a(—7+7+§1—§2)

o2r—a—y—& - &) <0(—7+§1—§2)0(a—v+§2—§~1)
o(—a—y+r—bt+&)olatr+l—b)olaté &) —o(—y—&i+&)
sla-r+a-E)at-a-ytr-Gr)olate @) ol e -E)+
Hotrra-@otatra-Eotata-ola—+6-8)
o(—a—y+r—a+&)to(-y-&+&)olat & —&)ola—v+& &)

0(04+T+§2—gl)U(—Oé—7+T—§2+§~1)>U(—0¢—’Y+27—§1+§~1)

_l’_

ola+& —&)ola—y+T+& —&)o(a+& —&)o(—y+T1—& +&)
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+J(—2’)/ +7)o(—y+71) J£51 —~§2) a@l —&—a+7T)
o(y) o(37 —E’Y) o(& — &) 0(52: £ — o) L
cla—y+7+& —&)ola+tT+& —&)o(r—7+& — &)

[a(a+§1 - &)

o€~ & +2r—a—7)—ola+T+E& —&) a6 — & +21 -7 —a)

J(oz+§1—gg)a(a—'y—FT—F&—é)J(T—'y—gl—ng)] X

x|ol@—v+7+6—E)olat+&—&)o(a+T+E—E)o(T —v+E& — &)
o(&—E+2r—a—7)—ola+T+E& &) o(€ —E +27 —y —a)

U(a+§2—g2)0(a—7+7+§1—52)0(7—7—51+§N2)] =0, (5.24)

whichissubject to the condition &, + & = (2a—7)n+Z=(0). Thisisafirst order nonlinear
nonautonomous elliptic ordinary difference equation containing three parameters =(0), 7
and ~y. Although (5.24) may be interesting in its own right, we are really seeking a
scheme that provides a second order OAE. In a sense, the scheme of this section forms a
parallel to the one for the monodromy problem for Py, (1.76), abeit with the last term on
the right-hand side absent. The compatibility with (1.75) in that case would also produce
a first order equation, at most, which is linearisable. Since the scheme (5.1) involves
only one lattice direction it constitutes really an analogue to the case of the truncated
monodromy problem (1.76) involving only a single lattice shift. Thus, by thisanalogy, in
order to arrive at a higher-order system we expect that we need to involve more than one
lattice shift in the elliptic monodromy problem. The aternative choice would be either
to consider the full rank matrix case for H or to consider higher rank cases (N > 2).
These aternatives turn out to be very complicated and we will not consider them here but

instead in the next section propose a higher-order scheme involving multiplelattice shifts.
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5.2 Higher order scheme

In order to derive higher-order OAEs we extend the isomonodromic problem to a higher

order one as follows:

XF;,—‘,—T = T/Ii X,Lg 9 (525)

N
(T/ﬂ)iJ L= 0'2("1) Z Sz(,l])q)fi(gz - 771/)(1)&(771/ - Sj - 7) 5 (Zaj = 17 ) N) 5
=

where the n; variables as well as the extended coefficients Sfl]) remain to be determined.
We consider this difference equation on the torus in conjunction with the lattice Lax

system

52/@ = Ln Xk (Ln)i,j - Hi,j O-("i) q)n(gz - éj - a) ’ (5268.)
X =Max,, (Mu)ij=Kijo(k)®u(&—&—f), (5.26b)

where as before we like to take the coefficient matrices H and K of rank 1 and

independent of the spectral variable .

We can think of the scheme above as an elliptic de-autonomization of a higher-order
periodic reduction on the lattice. 2-step periodic reduction: x — X — § = \x
followed by de-autonomization: A\x ~ x,,, However, now we want to keep the
midpoint unspecified associated with some value ) for €.

X, & X1

e .

* Ax, €

Figure 5.1: 2-step periodic reduction.
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This system leads to the system of compatibility conditions:

LT, = T,L,. (5.272)
M,..T. = T.M,, (5.27h)
L.M, = M,L,. (5.27¢)

To do this most effectively we need a new elliptic identity, generalizing (1.7),

@Héfzji(z)ng) = %[(C(“)ﬂLC(ﬂU)ﬂLC(Q)—i—C(z)—C(/ﬁ+x+y+z))2

(k) = (9(@) + p(y) + 9(2) + plr +a+y+2) ||
(5.28)

V k,x,y, z. The consistency condition L, , T, = 'T; L, leads

Z Hzl S l) K+T z gl - Oé) (& 7]1’) (771’ - éj - ’7)

LU=

= Z SUY Hy @, (& — ) Dl — & — ) ®u(§ — & — @), (5.29)

L=

or equivalently

Z Hy Sl] &= b= )P (T+ & — & — ) D& — ) P — &5 — )

LU=

= Z S Hy @, (& — ) Dol — & —7) Pu(&— & — ) . (5.30)

L=

The latter was derived by using the expression @, (7)®,..,(z) = ®,(z) (7 + z) onthe
first two ® terms of (5.29). Furthermore, applying the above identity (5.28) we end up
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with theform

N

Z o(T) 0, (& — & — )P (& — & —a— v +7) Hy Sl(j;')

Li'=1
< [(CtR) —Cls+ &~ — a4+ E = a) +CE )+ S — & =)
(

+p n)—( (k+& — éj—a—7+7)+@(7+§~i—§z—a)+@(§z—m/)+@(m'—éj—'y))]
N
=Y (& —¢&—a—7) SY) Hy;

l
<[ (C) — ¢+ &g - )+C(5—ﬁw)+<(ﬁzf—5—~)+<(§—§j—a))2

(k) = (s +& =& — a=F) + p(& — i) + ol —& =7 +p(& — & —a)) | -

There is a common factor ¢ (g — ¢ — o — v + 1) onthe left-hand side, and a common
factor <I>,$(§Z ¢, — a —7) on the right-hand side, which can once again be identified if
weset 7 = v — 7, so that they cancel. The remaining terms separate in accordance with
their different dependence on «. Thus, we have terms containing only the external indices

¢ and j, whichyield

N
Z ~&—a)Hy 8} Z SO my; (5.31)

L=

Thelinear termsin (k) —C(m+g~ — & —a—vy+7)leadto

N
Z a(r)@T(é — & —a)Hy Sl(jl) (C(T +E&—&— @) + (& —m) +Clw — & — 7))

=350 iy (CE -+ — &=+ 1)+ (G- & — ). (532)
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Finally, the terms, which do not depend on «, giverise to

ZH S8 @€~ &~ 0) oM (Cr+ & —&—a) + G —m) + o — & =)

L=
—p(T+ & — & —a) —pl& —m) — ol — & — 7)}
Zszl Hij [( 771')+C(77l/—§z 7+T)+C(§—§j—oz)>2
L=

~p(& =) — ol —&—7+7) — & & —a)| . (533)

Therefore, we have obtained the following constitutive relations:

N
o D oM (&—&—a)HaS) Z S H,; (5.343)
L=1 L=
. g: HilSl(;') a(& — +~T—Ot)<7(fl - & —Y)o(& & &+ —a—7)
l,l/zl ’ o&—&—a+1)o(&—m)olmpy —& —7)
o(&G— &=Vl —&—F—a)o(G+&—& — v — )
-3 5"y ,
”Z: Lo o (& — )0 (T — fz FNo(& — & — a)
(5.34)
N
* Z Hi Sl(gl‘/) S (& —m) Pr(r — & — )
L=
Z SY HG @ (& =) (i — & —F) D (§— & — ).
=
(5.340)

where vy = v — 7. The second relation is obviously derived by using (1.8) on both side
of (5.32), whereas (5.34c) can be obtained by applying the identity (5.28) on (5.33). The
general schemeisof relations derived israther complicated. Thefirst and last relation can

be written in the form:

e SSH=[A*H]-S, (5.353)
e [AST |-[AH=H-[AST'], (5.35h)



Chapter 5. Discrete €elliptic isomonodromic deformation problems 114

where we have used the same notation as before, with the matrix S as the matrix with

entries (S),; = 52, S

1y !

and where the “doubly glued” matrix [A~S I'"| isthe matrix
with entries:
Z SZ-(Jl-/) D (& —m)Pr(m — & —) = [ATST7];

l/
The equation (5.34b) is the most complicated to write in a matrix form. In order to

achieve thiswe actually first go back to (5.32) and using also (5.31) add extratermsin the
summand to obtain the equality

N
> HuS o(1)0n(E — & —a) (C(r+&—& =) + (& — & =) + (=)

LI'=1

~CE =& —a=F) & —m) +Clw =& =) + ) — G- & - 7))

—st ) Hiy (& =) + i — & =7 +7) +C(-7) — (&~ & —)

L=

HE-G— N+ HCE-§—a)—CE-§—a-7). (539
Applying the identity (1.7) on each quadruple of ¢ termsin the summands, we obtain

S (& — )P (r — & — )

ZHzls“[—a? (M) (& — & —a)

ll/ (él 5] )
(fz fj - — 57)
- O (& —-& —) ]
= 7P (& — )P (i — & — 7)
il Hl] —
Z ' [ ®—T(§i - fl - ’7)

B R S k1 2l S| R
S_ (& =& —7)o(—7)

Thus, “the middlerelation” (5.34b) can be written more concisely as follows

[A'ST )T ]-H-[C(S/T |- [ATH])]
= [CT(H-[S/T*]))] - [ATH] - [[A*ST*]/T*], (5.38)
where

Ch = o(£r) s (& — & — a —7), (5.39)
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and where we have introduced the operation
X
X/T*] = . :
R T ey

Although the notation is somewhat ad-hoc, it may prove useful in determining the ranks

of the matrices.

We will discuss the strategy to analyze the case that N = 2. As before, we want to
take H of rank 1, in which case it follows from (5.354) that either S is of rank 1, or
det(A™) vanishes. Focusing on the latter option, then from the third relation, (5.35b), we
conclude that the matrix [ﬁ_g f_] must be of rank 1. Next these rank conditions can
be implemented on the matrix form (5.38) with the aim to eliminate H, S. Furthermore,
we have to solve for the yet undetermined quantities r;,, where from the diagram 5.1 it is
suggestiveto expect a solution for 7, of the form either n;, = 5 +p4orng = a + « (both
choices being compatible because of (5.27¢)). At the sametimewe must set v = a + 3,
and to account for the nonautonomicity we need to assumethat 5 = 3(m) = 5(0) — mr,
a = a(n) = a(0) — n7. These are the natural assumptions, under which we expect the
scheme given by the three matrix relations, (5.35a), (5.35b) and (5.38), to be resolvable

and to lead to a second order nonautonomous OAE for ¢; subject to the condition (5.18).

Remark 5.2.1 As a byproduct, the autonomous limit of the higher-order reduced Lax
system of this section, we can consider the 2-step higher-time flow of the RS model of
[69]. Thiswould haveaLax pair of the form which is obtained by setting instead of (5.25)
the spectral problem:

M = T X (5.40)

supplemented by (5.26a) and where 7 = 0 and ~ is constant. In that stationary case,

(5.27a) becomes

L.T.=T.L,. (5.41)
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The compatibility of (5.41) follows similar analysis as the one for nonautonomous case,

making use of (5.28) and the result isthe following set of constitutive relations:

N N
o > HyS =Y 8] H;, (5.42a)
=1 Li=1
. ZN: 507 (& — —~04)U(fl — & =06 —&— &+ —a—7)
=1 v o(§i =& —a)o(&§ —m)oln —& —)
_ 3 50 gy, TE == oli & =y —e)ol&+E =& i —0)
=1 o(& —nv)o(ny — fl o (& — & — a)
(5.42b)
N

L Z Hz'l Sl(jl‘l) Ko (g - gl - Oé) (I)m) (Sl - 771/) ®KO (77l’ - gj - ’7)

N
- Z gz(ll/) Hlj ®Ko(§i - ﬁl’) 50(771/ gl ) ﬂo(gl - gj - O‘) )

(5.42¢)

wherein the latter we canfix «, to be any non-singular fixed value. We can also obtain the
first two (5.42a), (5.42b) from the limit 7 — 0 of (5.34), while (5.42c) needs a separate
analysis. Equations(5.42) represent a system of constitutiverelationsfor ahigher-rank RS
flows and in what we consider the higher order to be a hierarchy of RS flows. This system
should be made explicit by solving for the coefficients H, S as well as the intermediate

Val‘iablenl/.

5.3 Discussion

In this chapter we have proposed the genera structure of an elliptic isomonodromic
system and obtained a constitutive set of relations from the compatibility conditions. In
contrast to existing elliptic isomonodromy deformation systems on the torus for discrete

Painlevé type equations, the one proposed here can be readily extended to any rank, and
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as such we would expect it to contain higher order discrete Painlevé equations of the type
of the Garnier systems. We naturally expect that there are elliptic Painlevé type equations
coming out of the scheme given by the matrix relations (5.35a), (5.35b) and (5.38) for
N = 2. Thefull analysis of these equations still needs to be performed and thisis|eft as
the subject of future study.
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Chapter 6

Conclusions

6.1 Summary of results

Thisthesisdealswith anovel classof elliptic Lax systemson thelattice and corresponding
nonlinear lattice systems. In particular, we are concerned with a lattice version of the

famous Krichever-Novikov equation and its higher-rank case.

Chapter 1 was mainly areview, but contains al'so afew novel elements, such as the use of
the identity (1.28) in the proof of the elliptic Beta integral, as well as the new identities
(1.11) and (1.12) which we have not encountered in the vast literature on elliptic functions.
In chapter 2 we pull together some mostly known facts about Adler’s lattice equation, but
there are a'so some new insights, such as the compound identity (2.14) connecting the
3-leg and rational form of Adler’s lattice equation, as well as the spin representation of
the Jacobi form. However, the main results in the thesis are found in chapters 3-5 which

deal with the novel Lax systems.

In chapter 3 a general class of higher-rank elliptic Lax representations for systems of
PAEs on the 2D lattice has been proposed and investigated. Distinguishing between
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what we called spin-zero (generalizations of Adler’s lattice equation) and spin-nonzero
(generalized Landau-Lifschitz (LL) type) models, we gave the general structure of the
resulting equations (from the compatibility conditions) for the latter, but concentrated
mainly on the former case for N = 2 and N = 3. For N = 2 it has shown in [104]
that the Lax systems leads indeed to Adler’s lattice equation in its 3-leg form (for the
Welerstrass class) and we have analyzed how these results generalizeto thecase N = 3
(asarepresentative examplefor the higher-rank case). Thecaseof rank N = 3 isanalyzed
using Cayley’s hyperdeterminant of format 2 x 2 x 2, yielding a multi-component system
of coupled 3-leg quad-equations. This chapter also contains a new result which we refer
to as Compound theorem for 2 x 2 x 2 hyper-determinants given in Lemma (3.3.4). In
our view, the significance of the results of this chapter is not only to add a new class of
elliptic type of integrable systems to our already substantial zoo of such systems, but to
depart from the rather restrictive confinement of 2 x 2 systems to which al ABS type
systems, [7], belong. To obtain good insightsin the essential structures behind (discrete
and continuous) integrable systems, such departures into the multi-component cases are

necessary.

In chapter 5, the reductions to iso-spectral or isomonodromic problems were discussed.
The latter reductions, achieved by means of deautonomization of isospectral problems
on the torus, lead to systems of nonautonomous elliptic OAES, which are expected to
yield élliptic discrete Painlevé equations and possibly higher-order analogues. We set
up the general scheme and made some initial analysis, but there is more to be done to
obtain a closed form of the equations. Our approach, of systematically deriving Lax
pairs (or monodromy problems) from a general perspective allowsfor a natural extension
to higher rank and higher order forms and as such is in contrast to existing elliptic
monodromy problems [75, 103], proposed as Lax pairs for the famous elliptic Painlevé
equation of Sakai [88]. It remains an open question whether or not the elliptic discrete

Painlevé equation can be detected in our scheme. Nevertheless, our approach provides
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an alternative scheme for obtaining in principle such nonautonomous OAEs. It would
be interesting to compare our Lax systems to the existing ones in the literature, which is
not quite trivial because the latter ones tend to employ multiplicative forms of the elliptic

functions, such as the ones discussed in section 1.1.

6.2 Future work

The higher-rank lattice system, which we have proposed in chapter 3, as far as we are
aware, forms the first integrable lattice system generalizing the famous ()4 equation. As
it stands the rank 3 system is the analogue of 3-leg form of Adler’s equation with the
dependent variable appearing in the argument of elliptic functions. It is highly desirable
to find itsrational form analogous to the rational form of the Adler equation. In that form
further properties, such as multidimensional consistency, symmetriesand the construction
of solutions (such a solution solutions) can be studied. For the moment these goals are
hampered by the sheer complexity of the system, and would require various machineries,
such as use of generalized Frobenius-Stickelberger formulae. A possible outcome would
be to establish a connection with a differential system obtained by O. Mokhov in the
1980s, [63], arising from third order commuting differential operators defining rank 3
vector bundles over an elliptic curve, cf. [62]. Thisisthe only system that is comparable

with our system at the continuous level.

Another direction is to consider the Landau-Lifshitz class of models, whose (higher-
order) periodic reductions are expected to yield higher-order time discretizations of the
Ruijsenaars-Schneider model of [69]. In the thesis we concentrated mostly on what
we called the spin-zero case, whereas some results concerning periodic reductions of
the spin non-zero case was aready obtained in [104]. As a direction for the future,
establishing connections with the recently found master-solution of the quantum Yang-

Baxter equations, [19] and its multi-spin generalization [20], may be of interest.
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Recently, isomonodromic deformation problems for Sakai’s elliptic discrete Painlevé
equation [88] have been considered by several authors [75, 103]. The completion of
the scheme proposed in chapter 5 would provide an alternative approach to such elliptic
monodromy problems, with a potential to find natural extensions to higher rank and
higher order of the 2 x 2 x 2. It would also be interesting to further explore eliptic
discrete integrable systems in higher dimensions, such as the elliptic lattice KP equation

constructed recently in [50], which is essentially a system in 3+1 dimensions.
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Appendix A

Jacobi theta functions and proof of the

higher degree identity (1.11)

Here we give abrief summary of some relevant formulae for the theory of theta functions
and a proof of the new dlliptic identity in (1.11). Many textbooks on this material exist,
but we prefer the ones by Akhiezer, [11], Whittaker and Watson [107] and the relevant
chapter in [18], whilst Hancock [39] is a good general reference. This Appendix follows
closely the Notes [74] which provide a more constructive, rather than algebra-geometric

approach to the functions.

A.1 Formulae for Jacobi theta functions

The Jacobi theta functions constitutes a fundamental part of the theory of eliptic
functions. The definitions are given with modulus 7 as infinite series
_ n+ 92 4 omitn+ D@4 L
Oup(x|T) = Zexp [71'@7'(71 + 2) + 2mi(n + 2)(9& + 2)] : (A1)

ne”L
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where the parameters a, b are sometimes referred to as the caracteristics of the theta
functions, and we can have them take the values in Z,. The series for ¢,; converges
uniformly for all discs |z| < R in the complex plane, for arbitrary real R > 0, whenever
the (fixed modulus) 7 has a strictly positive imaginary part. The following quasi-

periodicity conditions, satisfied by the Jacobi theta functions, follow from the definitions:

Oup (2 + 1|7) = €™ Ogp(x|7) , Oup(x + 7|7) = e ™H2H0)9 (2] 7). (A.2)
The 01 (z) function isodd, 611 (—x|7) = —611(x|7), and Oy (), Op1(x), b10(x) are all
even functions:

Ooo(—x|7) = Opo(x|7) ,  Oor(—x|7) = Op1(x|7), 6O10(—x|T) = O10(x|7).  (A.3)
The 6,1 (x) function is related to theta function of rational characteristic: J(z;q) =
(¢ @)oo(2; Q) oo (271¢; q) oo DY thetriple product relation

O11(x|T) = —z'e_m(x_%)ﬁ(e%m; ey | (A.4)
where we take » = 2™ and p = 2™, Furthermore, the multiplication of two theta

functions can be given in the general formula:

Oup(z|T) Oy (y|7) = Oap(x+y|27)0a 5 (z—y|27) + 0411 5(x +y|27)0 441 5 (2 —y|27)
(A.5)
where we have the characteristics:

/ o
L - S AV 2a

for a,b,d’,l/ € Z,. From these bilinear relations between theta functions of modulus

A:

B =b-V (A.6)

7 and of modulus 27 we can, by elimination, obtain many quartic relations between the
A-functions of different characteristic (but of the same modulus), see e.g. [107], but most
of these quartic relations are not very insightful. In contrast for #,;, which isthe only odd

theta function, we have closed-form relation:

911(% + a)HH(J: — a)é?n(y + b)@n(y — b) + 911(1’ + b)@n(x — b)@n(a =+ y)Hll(a — y)

+011(z + y)011(z — y)b11(b+ a)br1(b—a) =0. (A7)
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Itiseasily seen that the thetafunction relation (A.7), which plays akey role in the theory
of elliptic functions, isidentical to the sigma equation (1.4).

A.2 Proof of the higher degree identity (1.11)

The proof of the higher order elliptic identity given in (1.11) can be achieved directly
by simple iteration. The generalization of the basic identity (3-term relation for the o-

function (1.7) or the elliptic partial fraction expansion formula) is:

n

H Dy, (75) = Z Doy oty (T4) H Cpnj (%‘ — ;) , (A.8)

=1

<
[

<
N

which can be easily proven by induction as follows:
Case I: The statement holds when n isequal to 2. It isa simple matter to prove using the

three-term relation (1.4). Firstly we make a change of variables. Let

R1 — T2
r=x + 5 ,
To + K
Y =Ky + 2 17
2
K1+ Z2
a = ,
2
To — K1
b=
2

Then the three-term rel ation becomes

U(xl + m)a(xl — 1’2)0(1%2 + $2)U(/€2 + Hl) = a(xl)a(xl i 1’2)0(1%2 + K1+ xg)a(ﬁg)

o (@1 + Ko + K1) (1 — Ka — 22)0(22)0 (K1) -
If we divide the above relation by:
o(x1)o(xa)o(x1 — x9)o (Ko + K1)o(ka)o (k1) ,
we obtain the following identity

Doy (21) Py (12) = Py (11 — T2) Py 40y (T2) + Prey ey (1) Prey (22 — 1) (A.9)
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Therefore, the first case can be verified.

Case I1: Assume the statement holds for some n (some unspecified value of n ). It must
be shown that also holdsfor n + 1:
n+1 n+1 n+1
[ ®n@) =D Pynar, (@) [] O, (2 — i) - (A.10)
i=1 i=1 j=1
j#i
It is a simple matter to prove this relation using the identities for @, function. Firstly,

applying the induction hypothesis on the left-hand side of (A.10)

n+1 n n n
[T @n (@) =D @alw) [[ @n, (@ — 2:) @ (wna) , A= 5ir, (A.11)
i=1 i=1 Jj=1 i=1

J#

and using (A.9) from the case | between the first and last term, we have

n+1

H ®"ii (xl) = Z {®A+I€n+1(xi)(blin+1(xn+l - xz)
i=1 =1

_'_(I)A(xi - xn+1)®/\+l€n+1(xn+1)} H (bﬁj (xj - xl)

j=1
JFi
n n+1
= Z ®A+Hn+l($i) H CI)H]. (xj - xZ)
i=1 j=1
JF
TPt i1 (Tnr1) Z Pp(7; — Tpga) H Dy (zj — ), (A12)
i=1 j=1
JFi

where A = 3" | ;. Clearly, arranging the terms by using the induction hypothesis, we
get the right hand side of (A.10). It has been verified that indeed it holdswhen n + 1.
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Appendix B

The Frobenius-Stickelberger type
Identities
Here we collect some results related to the eliptic determinantal formulae of Frobenius

and Frobenius-Stickelberger type (i.e. éliptic Cauchy and Vandermonde determinants).

The Frobenius-Stickelberger formula, [31] is given by

1 oplzr) @(z1) - 9" (a9)
1 opleg) @(z) - 9" (2)
1 p(xs) @(zs) - 9" (xs)
L p(w,) ¢(zn) - @(H_Q) (z)
o1+ 22+ o+ 20) [[[jo o( — 25)

= (=1)DO=D/2 19131 (0 — 1)!

H?:l o"(x;)
(B.1)
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Denoting the Frobenius-Stickelberger matrix & (x4, ..., x,) = £ (x) by:

1 p(z1) ¢ (21) O (1)
1 p(z9) ¢ (22) O (x5)

D)= 1 p(r3) @' (v3) --- @(H_Q) (w3) (B.2)
1 p(zn) @/(In) T @(niz) (7n)

we have from Cramer’s rule the following factorization formula:

) T I — s [T oz —y)
[ﬁ(m) P(y) ]-7-— ) Oy (s Y;)o (%)Hl#] (y] y)’ (B.3)

inwhich ¥ = X}, v, . Asaconsequence we obtain from thisthe Frobenius-Stickel berger

determinantal formula, [32]

o(k+3X) Hi<j o(x; —x;) o(y; — i) — Z "

det (P, (z; _yj))i,jzl ..... N o(k) I o(x i_yj>

(B.4)
Conversely, the Frobenius-Stickelberger formula (B.1) can be obtained from the

Frobenius formula by a set of degenerate limits. The elliptic Lagrange interpolation

formulae N N v
0 _l‘z H': O-(yl_x)
H =Y b n(—y) = (B.5)
i1 7 5 y‘ i=1 ?2 U(?Jz‘ - ?Jj)
which holdsif > # 0,and if ¥ =0
N N
o H U(?J m)
H f = Z 5 yz .I'— yz)] = ’ ) (B6)
i1 9 (€ —v) i=1 HJ 1 a(y ?Jj)

where x denotes any of the zeroes x;, (i = 1,..., N) on the left-hand side. Both (B.5)
and (B.6) can be obtained from the Frobenius formula[32] by row-or column expansions
(adding an extra row and column to the Frobenius matrix, say with zo = £ and yo = 7,
and then expanding along that row or column) and (B.6) can subsequently be obtained

from alimiting case of the latter.
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