
Ordinal Analysis of Set Theories;

Relativised and Intuitionistic

Jacob Cook

School of Mathematics

University of Leeds

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

6th July 2015

The candidate confirms that the work submitted is his own and that appropriate credit has

been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and that no

quotation from the thesis may be published without proper acknowledgement.

c� 2015 The University of Leeds and Jacob Cook

i

Abstract

In the early 1980s, the forum of ordinal analysis switched from analysing subsystems of second

order arithmetic and theories of inductive definitions to set theories. The new results were much

more uniform and elegant than their predecessors. This thesis uses techniques for the ordinal

analysis of set theories developed over the past 30 years to extract some useful information

about Kripke Platek set theory, KP and some related theories.

First I give a classification of the provably total set functions of KP, this result is reminiscent

of a classic theorem of ordinal analysis, characterising the provably total recursive functions of

Peano Arithmetic, PA.

For the remainder of the thesis the focus switches to intuitionistic theories. Firstly, a detailed

rendering of the ordinal analysis of intuitionistic Kripke-Platek set theory, IKP, is given. This

is done in such a way as to demonstrate that IKP has the existence property for its verifiable

⌃ sentences. Combined with the results of [40] this has important implications for constructive

set theory.

It was shown in [42] that sometimes the tools of ordinal analysis can be applied in the context of

strong set-theoretic axioms such as power set to obtain a characterisation of a theory in terms of

provable heights of the cumulative hierarchy. In the final two chapters this machinery is applied

to ‘scale up’ the earlier result about IKP to two stronger theories IKP(P) and IKP(E). In

the case of IKP(E) this required considerable new technical legwork. These results also have

important applications within constructive set theory.

ii

Acknowledgements

I would like to express my gratitude to Michael Rathjen, not just for supervising

this thesis but also for guiding me through di�cult times, during which I wasn’t

sure if it was right to continue. Your clarity of thought will be a lifelong inspiration.

I would like to thank Bronwyn Hodgins for her inspiring approach to life.

I am also very grateful to both of my parents for putting up with my endless inde-

cision and chaotic lifestyle.

Additional mathematical support team: Pedro Francisco Valencia Vizcáıno, Michael

Toppel and Ian Cooper.

Additional non-mathematical support team: Ian Cooper, Conor Cussel, Ben Finley,

Kevin Fenemore, Sam Houlker, Luke Tilley, Ralph Burden, Jacob Handyside, Sophie

Groves, Tom Codrington, Peter Hill, Ian Faulkner, Tom Richmond, Mieke Little,

Gabriel Hassan, James Mcha�e and many many others.

iii

iv

Contents

1 Introduction 1

1.1 A brief history of ordinal analysis . 1

1.2 Kripke-Platek set theory . 2

1.3 Proof theoretic ordinals . 4

1.4 The existence property . 5

1.5 Outline of the thesis . 7

2 A classification of the provably total set functions of KP 9

2.1 A relativised ordinal notation system . 11

2.2 A Tait-style sequent calculus formulation of KP 19

2.3 The infinitary system RS
⌦

(X) . 22

2.4 Cut elimination for RS
⌦

(X) . 25

2.5 Embedding KP into RS
⌦

(X) . 37

2.6 A well ordering proof in KP . 50

2.7 The provably total set functions of KP . 57

3 An ordinal analysis of IKP 61

3.1 A sequent calculus formulation of IKP . 61

3.2 An ordinal notation system . 63

3.3 The infinitary system IRS
⌦

. 64

3.4 Cut elimination for IRS
⌦

. 71

3.5 Embedding IKP into IRS
⌦

. 78

3.6 An ordinal analysis of IKP . 88

4 A relativised ordinal analysis of IKP(P) 91

4.1 A sequent calculus formulation of IKP(P) . 91

4.2 The infinitary system IRSP
⌦

. 92

4.3 Cut elimination for IRSP
⌦

. 97

v

4.4 Embedding IKP(P) into IRSP
⌦

. 102

4.5 A relativised ordinal analysis of IKP(P) . 108

5 A relativised ordinal analysis of IKP(E) 113

5.1 A sequent calculus formulation of IKP(E) . 113

5.2 The infinitary system IRSE
⌦

. 114

5.3 Cut elimination for IRSE
⌦

. 119

5.4 Embedding IKP(E) into IRSE
⌦

. 131

5.5 A relativised ordinal analysis of IKP(E) . 145

vi

Chapter 1

Introduction

Ordinal analysis is a collection of tools and techniques that allow the extraction of certain kinds

of information about a formal theory. This thesis is focused on applying these techniques to

theories related to Kripke-Platek set theory, KP. It could be seen as an attempt at answering

the question:

What extra information can we learn from the ordinal analysis of KP?

Firstly the techniques are used to say something about how KP deals with set functions. Next

the techniques are transferred to the intuitionistic case and put to good use in creating definable

witnesses for existential theorems. Finally these techniques are ‘scaled up’ to say something

useful about two more intuitionistic theories related to KP, but of much higher proof theoretic

strength than those traditionally analysed in ordinal analyses.

1.1 A brief history of ordinal analysis

Ordinal analysis is the process of characterising a formal theory by the assignment of a transfinite

ordinal, which somehow measures its ‘proof theoretic strength’. The first example of an ordinal

analysis came in the form of Gentzen’s consistency proof for arithmetic in 1936 [15]. Gentzen

showed that using transfinite induction up to the ordinal

"
0

= least ↵. !↵ = ↵

one may prove the consistency of PA. In order to understand the significance of Gentzens

result it must be noted that he made use of transfinite induction only for primitive recursive

predicates and beyond that only finitistically justifiable arguments. Thus a more accurate (and

modern) statement of Gentzen’s result could be

(1) PRA+PR-TI("
0

) ` Con(PA).

1

It is now fairly commonly accepted that ‘finitistic means’ can be accurately described by the

theory of Primitive Recursive Arithmetic PRA ([50]). Gentzen also showed that

(2) PA ` PR-TI(↵) for any ↵ < "
0

.

The intuition strongly suggested by (1) and (2) is that the ordinal "
0

somehow ‘measures’

the strength of PA. Over the years following Gentzen’s paper the concept of the proof theoretic

ordinal of a theory was made rigorous. Ordinal analyses were carried out for ever stronger

theories with ever higher corresponding proof theoretic ordinals.

In 1964 Feferman [9] and Schütte [45], [46] independently determined �
0

as the ‘limit of

predicativity’, the proof theoretic ordinal of the theory of autonomous ramified progressions.

The next major step came from Takeuti who analysed systems of second order arithmetic (first

⇧1

1

�CA [51] and then �1

2

�CA [52]). This was the first time an ordinal analysis was obtained

for an impredicative theory. Next the field began to provide ordinal analyses for theories of

iterated inductive definitions (see Bucholz, Pohlers, Sieg and Feferman [5]).

However the landscape of ordinal analysis was dramatically changed in the early 1980s by

Jäger [16], [17] and Jäger and Pohlers [19]. They began a switch from analysing subsystems

of second order arithmetic to analysing set theories directly. This new field has been termed

admissible proof theory. The switch was a desirable one since the new methods employed were

more transparent and uniform across the analysis of di↵erent theories.

KP was of central importance in the new wave of ordinal analysis and has continued to be

the base theory over which ever stronger systems have been analysed. The strongest theory

that has so far been subjected to an ordinal analysis lies somewhere in the region of ⇧1

2

� CA

or even �1

3

� CA [33], [38].

1.2 Kripke-Platek set theory

A common justification for the axioms of set theories such as ZF is by a description of a universe

of sets being created in ordinal stages. We imagine we have created a certain part of the universe

V
↵

and then apply certain set building operations to form V
↵+1

. For example if we have a set

x 2 V
↵

and '(y) is a formula of set theory we may apply the axiom of separation to form the

set

{y 2 x | '(y)}.

2

A feature that often goes unnoticed in such an operation is that the formula ' can contain

unbounded quantifiers. These quantifiers make reference to a completed universe of sets, of

which the new set we are attempting to create is already a member. This kind of definition is

called an impredicative definition and is philosophically troublesome to some mathematicians.

The axioms of replacement and power set give rise to similar concerns.

These worries lead Kripke [22] and Platek [28], in the mid 1960s, to axiomatise a set theory

that was compatible with the idea of a growing universe. This standpoint is known as predica-

tivism. The now accepted axioms of KP are

Extensionality: (8x 2 a)(x 2 b) ^ (8x 2 b)(x 2 a) ! a = b.

Foundation/Set Induction: 8x[(8y 2 x)F (y) ! F (x)] ! 8xF (x)
for any formula F .

Pair: 9z(z = {a, b}).

Union: 9z(z = [a).

Infinity: 9x[x 6= ; ^ (8y 2 x)(9z 2 x)(y 2 z)].

�
0

-Separation: 9y[y = {x 2 a | F (x)}]
for any �

0

-formula F (a).

�
0

-Collection: (8x 2 a)9yG(x, y) ! 9z(8x 2 a)(9y 2 z)G(x, y)
for any �

0

-formula G.

A �
0

formula is one in which no unbounded quantifiers appear. Note that in [3] infinity is

not included in the definition of KP, however in proof theory it is now considered convention

to include it. Whilst it has been argued that KP doesn’t fall into the most stringent definition

of a predicative theory [9], [10], each of its axioms appear compatible with the idea of a growing

universe, making it more philosophically palatable to the predicativists than, for example, ZF.

Philosophy aside, KP has turned out to be an interesting and rich area of study. One reason

for this is that the vast majority of ordinary mathematics and even set theory can be carried

out in KP. KP turns out to be the ‘right’ theory for extending recursion theory to the ordinals.

Moreover, models of KP, the so-called admissible sets have been a major source of interaction

between di↵erent areas of logic: recursion theory, model theory and set theory [3].

3

1.3 Proof theoretic ordinals

The compelling intuition arising from Gentzens result is that the ordinal "
0

somehow ‘measures’

the strength of Peano Arithmetic. The immediate thought on how to generalise this measure

leads to the following definition of the proof theoretic ordinal of a theory T ,

(3) |T |
Con

:= least ↵. PRA+TI(↵) ` Con(T).

The problem with this definition is that it’s not clear how we are to represent ordinals in PRA.

In fact, it is always possible (see [34]) to cook up an ordering �
T

on the natural numbers, with

order type ! such that

PRA+TI(�
T

) ` Con(T).

Apparently making a mockery of the measure |T |
Con

. The ordering �
T

is highly pathological

and ‘unnatural’, e↵ectively coding up the consistency of T into the definition of the ordering.

It has long been suggested ([20], [11], [12]) that if one restricted to ‘natural’ well orderings, it

should be possible to restore the dignity of |T |
Con

. However, it has proved very di�cult to find

a rigorous definition of a ‘natural’ ordinal representation system which excludes all pathological

counter-examples [34]. It is thus desirable to distill what is meant by the definition of |T |
Con

into a more rigorous mathematical framework, devoid of the word ‘natural’.

For simplicity let us assume T is a theory that allows quantification over subsets of N (e.g.

a subsystem of second order arithmetic or a set theory) and that T comprises ACA
0

. Suppose

A ✓ N and � is an ordering on A, such that (A,�) is definable in the language of T . Let

LO(A,�) be the formula of T expressing that (A,�) is a linear ordering. We define

WO(A,�) :=LO(A,�) ^
(8X ✓ N)[(8u 2 A)[(8v � u)(v 2 X) ! u 2 X] ! (8u 2 A)(u 2 X)].

An ordinal ↵ is said to be provably recursive in T if there is a well ordering (A,�), which is

provably recursive in T and of the same order type as ↵, such that

T ` WO(A,�).

We then define

|T |
sup

:= sup{↵ | ↵ is provably recursive in T}.

It turns out that |T |
sup

is a much more robust measure than |T |
Con

[34]. The following

observation is from [34] p9.

4

Observation 1.3.1. “Every ordinal analysis that has so far appeared in the literature has

provided a primitive recursive ordinal notation system (A,�) such that T is proof theoretically

reducible to PA +
S

a2ATI(A|
a

,�|
a

). Moreover, if T is a classical theory then T and PA +
S

a2ATI(A|
a

,�|
a

) prove the same arithmetic sentences and if T is an intuitionistic theory then

T and HA +
S

a2ATI(A|
a

,�|
a

) prove the same arithmetic sentences. Furthermore, |T |sup =

|� |.”

Chapter 3 provides an ordinal analysis in the sense of 1.3.1 for IKP. However, since the

publication of [34] a new application of the techniques of ordinal analysis has been pioneered,

that of relativised ordinal analysis.

Power Kripke-Platek Set theory KP(P) is formed from KP by adding the power set axiom

and allowing the power set operation as primitive in the �
0

separation and collection schemas.

Owing to power set, the proof theoretic strength of KP(P) dwarfs all theories for which an

ordinal analysis (in the sense of 1.3.1) has been carried out to date. Let PRST be the weak

system of set theory, containing basic operations on sets and the defining axioms for the primitive

recursive set functions (see [30]), let IPRST stand for PRST formulated with intuitionistic

logic. Extractable from [42] is a proof theoretic reduction of KP(P) to a weak system of

set theory, e.g. PRST, plus transfinite iterations of the power set construction up to but

not including the Bachmann-Howard ordinal. When compared with 1.3.1, this looks like a

‘scaled up’ version of ordinal analysis. In a similar vein chapters 4 and 5 can be seen as giving

reductions of IKP(P) and IKP(E) to PRST plus transfinite iterations of the power set or

set-exponentiation operation. Or more precisely, showing that IKP(P) and IKP(E) prove

the same ⌃ sentences as IPRST together with transfinite iterations of the power set or set

exponentiation operation up to but not including the Bachmann-Howard ordinal.

1.4 The existence property

Intuitionistic theories often possess pleasing meta-mathematical properties in comparison to

their classical counterparts, such as the disjunction property. For an intuitionistic theory T

where quantifiers range over natural numbers, it is often relatively straight forward to show

the numerical existence property, i.e. If T ` 9xA(x) then there is some n such that T ` A(n)

(provided A contains no other free variables). The numerical existence property can also be

required of a set theory. A set theory T has the numerical existence property if whenever

T ` (9x 2 !)A(x), there is some n such that T ` A(n). It turns out that most intuitionistic and

constructive set theories have the numerical existence property [36], [39]. However, extending

5

this property to unbounded existential set quantifiers poses significant technical challenges and

turns out to be impossible in some cases.

Definition 1.4.1. Let T be a theory formulated in a language containing the language of set

theory and A(x) be a formula from the language of T with no free variables other than x. T is

said to have the existence property if whenever T ` 9xA(x) there is a formula B(x) with exactly

x free such that

T ` 9!x[B(x) ^A(x)].

T is said to have the weak existence property if whenever T ` 9xA(x), there is some formula

C(y) with exactly y free, such that

T ` 9!yC(y) ^ 8x(C(x) ! 9y(y 2 x)) ^ 8y[C(y) ! (8x 2 y)A(x)].

The weak existence property asks for a definable, inhabited set of witnesses.

Intuitionistic Zermelo-Fraenkel set theory IZF, formulated with collection, does not possess

the existence property or even the weak existence property [14], [40]. However IZF formulated

with replacement instead of collection does have the existence property [26]. The comparison of

these two results indicates that somehow the collection axiom hinders the defining of witnesses

in intuitionistic set theories, this led Beeson ([4] IX.1) to ask

Does any reasonable set theory with collection have the existence property?

Perhaps the most studied form of constructive set theory is Constructive Zermelo Fraenkel set

theory CZF ([1], [2]). It was shown in [49] that CZF possesses neither the existence property or

the weak existence property. Since CZF contains the axiom subset collection, again collection

is indicated in the breakdown of the existence property.

Three theories arising in the study of CZF are CZF�, CZFE and CZFP . CZF� arises

from CZF by omitting the subset collection axiom, CZFE and CZFP then arise from CZF�

by adding the exponentiation and power set axioms respectively. We have the following easy

relationships between the theories

CZF� a CZFE a CZF a CZFP .

These implications cannot be reversed. That CZF 6` CZFP comes from the fact that CZFP

has much stronger proof theoretic strength that CZF [2], [41]. The fact that CZFE 6` CZF

was shown in [24]. It was shown in [40] that CZF�, CZFE and CZFP all have the weak

existence property. Also given in [40] were reductions to three versions of intuitionistic Kripke-

Platek set theory, IKP, IKP(P) and IKP(E), these reductions were given in such a way that

6

if the latter theories possessed the existence property for certain restricted classes of formulae

then the corresponding versions of CZF would possess the full existence property. It is thus

desirable to prove that these three versions of IKP have the existence property for ⌃, ⌃P and

⌃E formulae respectively. This is where ordinal analysis enters the stage. The strategy is to

embed the three versions of IKP into corresponding infinitary systems, then remove problematic

inferences (such as collection) from the infinite derivations of existential statements, then show

that from these transformed derivations we can extract a witnessing term from the infinitary

system. In chapter 3 this programme is carried out in full for IKP, thus confirming that CZF�

has the existence property. In chapters 4 and 5 we define infinitary systems corresponding to

IKP(P) and IKP(E) respectively. We then remove problematic inferences for derivations of

existential statements in these infinitary systems. The final step of extracting witnessing terms

from these transformed derivations, thus confirming that CZFP and CZFE have the existence

property, will be carried out in [43].

1.5 Outline of the thesis

The first section of this thesis is concerned with classifying the provably total set-functions of

KP. A classic result from ordinal analysis is the characterisation of the provably recursive

functions of Peano Arithmetic, PA, by means of the fast growing hierarchy [7]. Whilst it is

possible to formulate the natural numbers within KP, the theory speaks primarily about sets.

For this reason it is desirable to obtain a characterisation of its provably total set functions. We

will show that KP proves the totality of a set function precisely when it falls within a hierarchy

of set functions based upon a relativised constructible hierarchy.

The third chapter will be concerned with performing an ordinal analysis of Kripke-Platek

set theory formulated with intuitionistic logic; IKP. This will be carried out in such a way

that if IKP proves a ⌃-sentence A, we can computably extract a term s from the pertaining

infinitary system, which witnesses A. This enables us to prove that IKP has the existence

property for its verifiable ⌃ sentences. This has important applications within constructive set

theory. in particular, when combined with the results of [40], this chapter confirms that CZF�

has the existence property.

Chapter 4 provides a relativised ordinal analysis for intuitionistic power Kripke-Platek set

theory IKP(P), which comprises IKP but where the operation power-set is allowed as primitive

in the separation and collection schemas. In particular IKP(P) proves the power set axiom.

7

The relativised ordinal analysis for the classical version of the theory, KP(P), was carried out

in [42], the work in this chapter adapts the techniques from that paper to the intuitionistic

case. Whilst full cut-elimination cannot be attained, these results allow the classification of the

theory in terms of provable heights of the Von-Neumann hierarchy.

The final chapter provides a relativised ordinal analysis for intuitionistic exponentiation

Kripke-Platek set theory IKP(E), which comprises IKP and where the operation of set-

exponentiation is allowed as primitive in the separation and collection schemas. Given sets

a and b, set-exponentiation allows the formation of the set ab, of all functions from a to b. This

work allows us to classify the theory in terms of the provable height of an exponentiation hier-

archy. This system was much more di�cult to analyse than IKP(P) and posed considerable

technical challenges. A particular problem was assigning an ordinal level to the formal terms of

the infinitary system. Ultimately this turned out to be impossible and had to be dealt with by

allowing level declarations in the hypothesis, the level of a term becomes a dynamic property

requiring its own derivation in the infinitary system. As far as I know the ideas in this chapter

is new.

The results of the final two chapters also have important applications within constructive

set theory. In particular, when combined with the results of [40] they provide an important step

on the way to proving that the theories CZFP and CZFE have the full existence property, the

final part of this proof will appear given in [43].

8

Chapter 2

A classification of the provably total

set functions of KP

A major application of the techniques of ordinal analysis has been the classification of the prov-

ably total recursive functions of a theory. Usually the theories to which this methodology has

been applied have been arithmetic theories, in that context it makes most sense to speak about

arithmetic functions. The concept of a recursive function on natural numbers and be extended

to a more general recursion theory on arbitrary sets. For more details see [25], [27] and [44].

Since KP speaks primarily about sets, it is perhaps desirable to obtain a classification of its

provably total recursive set functions.

To provide some context we first state a classic result from proof theory, the classification of

the provably total recursive functions of PA. This result probably first appeared in [21], [23]

and [48], was considerably simplified by Bucholz and Wainer in [7] and has been carried out

in much greater generality by Weiermann in [54]. For the following definitions, suppose we

have an ordinal representation system for ordinals below "
0

, together with an assignment of

fundamental sequences to the limit ordinal terms. For an ordinal term ↵, let ↵
n

denote the n-th

element of fundamental sequence for ↵, ie. ↵
n+1

< ↵
n

and sup
n<!

(↵
n

) = ↵. There are certain

technical properties that such an assignment must satisfy, these will not be gone into here, for

a detailed presentation see [7].

Definition 2.0.1. For each ↵ < "
0

we define the function F
↵

: ! ! ! by transfinite recursion

9

as follows

F
0

(n) := n+ 1

F
↵+1

(n) := Fn+1

↵

(n) (:=

n+1z }| {
F
↵

� ... � F
↵

(n))

F
↵

(n) := F
↵n(n) if ↵ is a limit.

This hierarchy is known as the fast growing hierarchy. Given unary functions on the natural

numbers f and g, we say that f majorises g if theres is some n such that (8m > n)(g(m) <

f(m)). For a recursive function f let A
f

(n,m) be the ⌃ formula expressing that on input n

the turing machine for computing f outputs m, to avoid frustrating counter examples let us

suppose A
f

does this in some ‘natural’ way.

Theorem 2.0.2. Suppose f : ! ! ! is a recursive function. Then

i) If PA ` 8x9!yA
f

(x, y) then f is majorised by F
↵

for some ↵ < "
0

.

ii) PA ` 8x9!yA
F↵(x, y) for every ↵ < "

0

.

Proof. This classic result is proved in full in [7]. ut

This chapter will be focused on obtaining a similar result for the provably total set functions

of KP. A similar role to the fast growing hierarchy in Theorem 2.0.2 will be played by the

relativised constructible hierarchy.

Definition 2.0.3. Let X be any set. We may relativise the constructible hierarchy to X as

follows:

L
0

(X) := TC({X}) the transitive closure of {X}
L
↵+1

(X) := {B ✓ L
↵

(X) : B is definable over hL
↵

(X),2i}
L
✓

(X) :=
[

⇠<✓

L
⇠

(X) when ✓ is a limit.

In section 1. we build an ordinal notation system relativised to an arbitrary well ordering,

this will be used for the rest of the chapter. In section 2. we define the infinitary system

RS
⌦

(X), based on the relativised constructible hierarchy and show that we can eliminate cuts

for derivations of ⌃ formulae. In section 3. we embed KP into RS
⌦

(X), allowing us to obtain

cut free infinitary derivations of KP provable ⌃ formulae. In section 4. we give a well ordering

proof in KP for the ordinal notation system given in section 1. Finally we combine the results

of this chapter to give a classification of the provably total set functions of KP. This result,

whilst perhaps known to those who have thought hard about these things, has not appeared in

the literature to date.

10

2.1 A relativised ordinal notation system

The aim of this section is to relativise the construction of the Bachmann-Howard ordinal to

contain an arbitrary well ordering W := (X,�). We will construct an ordinal representation

system that will be primitive recursive given access to an oracle for W . Here the notion of

recursive and primitive recursive is extended to arbitrary sets, see [27] or [44] for more detail.

The construction of an ordinal representation system for the Bachmann-Howard ordinal is now

fairly standard in proof theory, carried out for example in [6]. Intuitively our system will appear

similar, only the ordering W will be inserted as an initial segment before new ordinals start

being ‘named’ via the collapsing function.

Before defining the formal terms and the procedure for computing their ordering, it is infor-

mative to give definitions for the corresponding ordinals and ordinal functions themselves. To

this end we will begin working in ZFC, later it will become clear that the necessary ordinals

can be expressed as formal terms and comparisons between these terms can be made primitive

recursively relative to W.

In what follows ON will denote the class of all ordinals. First we require some information

about the ' function on ordinals. These definitions and results are well known, see [47].

Definition 2.1.1. For each ↵ 2 ON we define a class of ordinals Cr(↵) ✓ ON and a class

function

'
↵

: ON ! ON

by transfinite recursion.

i) Cr(0) := {!� | � 2 ON} and '
0

(�) := !� .

ii) For ↵ > 0 Cr(↵) := {� | (8� < ↵)('
�

(�) = �)}.

iii) For each ↵ 2 ON '
↵

(·) is the function enumerating Cr(↵).

The convention is to write '↵� instead of '
↵

(�). An ordinal � 2 Cr(0) is often referred to as

additive principal, since for all �
1

,�
2

< � we have �
1

+ �
2

< �.

Theorem 2.1.2.

i) '↵
1

�
1

= '↵
2

�
2

if and only if

8
><

>:

↵
1

< ↵
2

and �
1

= '↵
2

�
2

or ↵
1

= ↵
2

and �
1

= �
2

or ↵
2

< ↵
1

and '↵
1

�
1

= �
2

.

11

ii) '↵
1

�
1

< '↵
2

�
2

if and only if

8
><

>:

↵
1

< ↵
2

and �
1

< '↵
2

�
2

or ↵
1

= ↵
2

and �
1

< �
2

or ↵
2

< ↵
1

and '↵
1

�
1

< �
2

.

iii) For any additive principal � there are unique ordinals �
1

 � and �
2

< � such that

� = '�
1

�
2

.

Proof. This result is proved in full in [47]. ut

Definition 2.1.3. We define �
(·) : ON ! ON to be the class function enumerating the ordinals

� such that for all �
1

,�
2

< � we have '�
1

�
2

< �. Ordinals of the form �
�

will be referred to

as strongly critical.

Now let ✓ 2 ON be the unique ordinal corresponding to the order type of the well ordering W.

Definition 2.1.4. Let ⌦
✓

be the least uncountable cardinal greater than ✓. The sets B
✓

(↵) ✓
ON and ordinals

✓

(↵) are defined by transfinite recursion on ↵ as follows:

B
✓

(↵) := Closure of {0,⌦} [{�
�

: � ✓} under +, ' and
✓

|
↵

✓

(↵) := min{� : � /2 B
✓

(↵)}

For the remainder of this section, since ✓ remains fixed, the subscripts will be dropped from ⌦
✓

,

B
✓

and
✓

to improve readability. At first glance it may appear strange having the elements

from ✓ inserted into the �-numbers. Ultimately we aim to have + and ' as primitive symbols

in our notation system, simply having ✓ as an initial segment here would cause problems with

unique representation. Some ordinals could get a name directly from ✓ and other names by

applying + and ' to smaller elements.

Lemma 2.1.5. For each ↵ 2 ON:

i) The cardinality of B(↵) is max{@
0

, |✓|}, where |✓| denotes the cardinality of ✓.

ii) ↵ < ⌦.

Proof. i) Let

B0(↵) :={0,⌦} [{�
�

: � ✓}
Bn+1(↵) :=Bn(↵) [{⇠ + ⌘ : ⇠, ⌘ 2 Bn(↵)}

[{'⇠⌘ : ⇠, ⌘ 2 Bn(↵)}
[{ ⇠ : ⇠ 2 Bn(↵) \ ↵}.

Observe that B(↵) = [
n<!

Bn(↵), this can be proved by a straightforward induction on n.

12

If ✓ is finite then, again by induction on n, we can show that each Bn(↵) is also finite. Since

B(↵) is a countable union of finite sets and ! ✓ B(↵) it follows that it must have cardinality @
0

.

Now suppose ✓ is infinite, so B(↵) is the countable union of sets of cardinality |✓| and thus also

has cardinality |✓|.

ii) If ↵ � ⌦ then ⌦ ⇢ B(↵) contradicting i). ut

Lemma 2.1.6.

i) If � � then B(�) ✓ B(�) and � �.

ii) If � 2 B(�) \ � then � < �.

iii) If � � and [�, �) \B(�) = ; then B(�) = B(�).

iv) If ⇠ is a limit then B(⇠) = [
⌘<⇠

B(⌘).

v) � is a strongly critical and � � �
✓+1

.

vi) B(�) \ ⌦ = �.

vii) If ⇠ is a limit then ⇠ = sup
⌘<⇠

 ⌘.

viii) (� + 1) (�)�, where �� denotes the smallest strongly critical ordinal above �.

ix) If ↵ 2 B(↵) then (↵+ 1) = (↵)�.

x) If ↵ /2 B(↵) then (↵+ 1) = ↵ and B(↵+ 1) = B(↵).

xi) If � 2 B(�) and � 2 B(�) then [� < � if and only if � < �].

Proof. i) Suppose � �, now note that B(�) is closed under |
�

which includes |
�

so

B(�) ✓ B(�). From this it immediately follows from the definition that � �.

ii) From � 2 B(�) \ � we get � 2 B(�), thus � < � b the definition of �.

iii) It is enough to show that B(�) is closed under |
�

. Let � 2 B(�) and � < �, then by

assumption � < �, thus � 2 B(�).

iv) By i) we have [
⌘<⇠

B(⌘) ✓ B(⇠). It remains to verify that Y := [
⌘<⇠

B(⌘) is closed under

 |
⇠

. So let � 2 Y \ ⇠, since ⇠ is a limit there is some ⇠
0

< ⇠ such that � 2 Y \ ⇠
0

and there

is some ⇠
1

< ⇠ such that � 2 B(⇠
1

). Therefore � 2 B(⇠⇤) \ ⇠? where ⇠⇤ = max{⇠
0

, ⇠
1

}, thus
 � 2 B(⇠⇤) ✓ Y .

13

v) We may write the ordinal ↵ in Cantor normal form, so that ↵ = !↵1 + ... + !↵n with

↵
1

� ... � ↵
n

. If n > 1 then ↵
1

, ...,↵
n

< ↵ whih implies by the definition of ↵ that ↵
1

, ...,↵
n

2
B(↵). But by closure of B(↵) under + and ' we get '0↵

1

+ ...+ '0↵
n

= !↵1 + ...!↵n 2 B(↵)

contradicting ↵ /2 B(↵). Thus ↵ is additive principal and it follows from Theroem 2.1.2iii)

that we may find ordinals � ↵ and � < ↵ such that ↵ = '��. If � > 0 then � < ↵ since

� '�0 < '��, but if �, � < ↵ then we have �, � 2 B(↵) and hence '�� 2 B(↵) contradicting

 ↵ /2 B(↵). Thus ↵ = '�0, but if � < ↵ then again we get '�0 2 B(↵); a contradiction. So

it must be the case that ↵ = �, ie. ↵ is additive principal.

For the second part note that ↵ 6= �
�

for any � ✓ since by definition each such �
�

2 B(↵).

vi) By 2.1.5ii) and the definition of it is clear that ↵ ✓ B(↵) \ ⌦. Now let

Y := ↵ [{� � ⌦ | � 2 B(↵)}

by v) Y contains 0,⌦ and �
�

for � ✓, moreover it is closed under + and '. It remains to

show that Y is closed under |
↵

, this follows immediately from ii).

vii) Let ⇠ be a limit ordinal. Using parts vi), iv) and i) we have

 ⇠ = B(⇠) \ ⌦ = ([
⌘<⇠

B(⌘)) \ ⌦ = [
⌘<⇠

(B(⌘) \ ⌦) = [
⌘<⇠

 ⌘ = sup
⌘<⇠

 ⌘.

viii) Let

Y := (↵)� [{� � ⌦ | � 2 B(↵)}.

Y is closed under + and ', also it contans �
�

for any � ✓ by v). Moreover it contains �

for any � ↵ by i), so it is closed under |
(↵+1)

. Therefore Y must contain B(↵ + 1), and so

 (↵+ 1) (↵)�.

ix) From ↵ 2 B(↵) we get ↵ 2 B(↵ + 1), it then follows from ii) that ↵ < (↵ + 1).

Thus (↵ + 1) (↵)� by viii) and (↵ + 1) � (↵)� from v), so it must be the case that

 (↵+ 1) = (↵)�.

x) Suppose ↵ /2 B(↵), then [↵,↵+1)\B(↵) = ; so we may apply iii) to give B(↵+1) = B(↵)

from which (↵+ 1) = ↵ follows immediately.

xi) Suppose � 2 B(�) and � 2 B(�). If � < � then from ix) we get (� + 1) = (�)� > �, but

by i) (� + 1) �.

Now if � < � then from the contraposition of i) we get � < �. ut

14

Definition 2.1.7. We write

i) ↵ =
NF

↵
1

+ ...+↵
n

if ↵ = ↵
1

+ ...+↵
n

, n > 1, ↵
1

, ...,↵
n

are additive principal numbers and

↵
1

� ... � ↵
n

.

ii) ↵ =
NF

'�� if ↵ = '�� and �, � < '��.

iii) ↵ =
NF

 � if ↵ = � and � 2 B(�)

Lemma 2.1.8.

i) If ↵ =
NF

↵
1

+ ...+ ↵
n

then for any ⌘ 2 ON

↵ 2 B(⌘) if and only if ↵
1

, ...,↵
n

2 B(⌘).

ii) If ↵ =
NF

'�� then for any ⌘ 2 ON

↵ 2 B(⌘) if and only if �, � 2 B(⌘).

iii) If ↵ =
NF

 � then for any ⌘ 2 ON

↵ 2 B(⌘) if and only if � 2 B(⌘) \ ⌘.

Proof. i) Suppose ↵ =
NF

↵
1

+ ...+ ↵
n

, the (direction is clear from the closure of B(⌘) under

+. For the other direction let

AP (↵) :=

8
>>><

>>>:

; if ↵ = 0

{↵} if ↵ is additive principal

{↵
1

, ...,↵
n

} if ↵ =
NF

↵
1

+ ...+ ↵
n

AP (↵) stands for the additive predecessors of ↵. Now let

Y := {� 2 B(⌘) |AP (�) ✓ B(⌘)}.
Observe that 0,⌦ 2 Y and {�

�

| � ✓} ✓ Y . Now choose any �, � 2 Y , we have AP (� + �) ✓
AP (�) [AP (�) ✓ B(⌘), thus Y is closed under +. Now AP ('��) = {'��} since the range of

' is the additive principal numbers thus Y is closed under '. Finally AP (�) = { �} for any

� 2 Y \ ⌘ so Y is closed under |
⌘

. It follows that B(⌘) ✓ Y and thus the other direction is

proved.

ii) Again the (direction follows immediately from the closure of B(⌘) under '. For the other

direction we let

PP (↵) :=

8
>>>>>><

>>>>>>:

; if ↵ = 0

{↵} if ↵ is strongly critical

{�, �} if ↵ =
NF

'��

{↵
1

, ...,↵
n

} if ↵ =
NF

↵
1

+ ...+ ↵
n

.

15

for want of a better phrase PP (↵) stands for the predicative predecessors of ↵. Now set

Y := {� 2 B(⌘) | PP (�) ✓ B(⌘)}

It is easily seen that Y contains 0,⌦ and �
�

for any � ✓. PP (� + �) ✓ PP (�) [PP (�) so Y

is closed under +. PP ('��) ✓ {�, �} so Y is closed under '. Finally PP (�) = { �} for any

� < ⌘ by 2.1.6v). It follows that Y must contain B(⌘), which proves the) direction.

iii) Suppose ↵ =
NF

 �, the (direction is clear by the closure of B(⌘) under |
⌘

. For the

other direction suppose ↵ 2 B(⌘), from this we get � < ⌘ which gives us � < ⌘. Now by

assumption � 2 B(�), and B(�) ✓ B(⌘) so � 2 B(⌘) \ ⌘. ut

In order to create an ordinal notation system from the ordinal functions described above, we

single out a set R(✓) of ordinals which have a unique canonical description.

Definition 2.1.9. We give an inductive definition of the set R(✓), and the complexity G↵ < !

for every ↵ 2 R(✓)

(R1) 0,⌦ 2 R(✓) and G0 := G⌦ := 0.

(R2) For each � ✓, �
�

2 R(✓) and G�
�

:= 0.

(R3) If ↵ =
NF

↵
1

+...+↵
n

and ↵
1

, ...,↵
n

2 R(✓) then ↵ 2 R(✓) andG↵ := max{G↵
1

, ..., G↵
n

}+
1.

(R4) If �, � < ⌦, ↵ =
NF

'�� and �, � 2 R(✓) then ↵ 2 R(✓) and G↵ := max{G�, G�}+ 1.

(R5) If � � ⌦, ↵ =
NF

'0� and � 2 R(✓) then ↵ 2 R(✓) and G↵ := G� + 1

(R6) If ↵ =
NF

 � and � 2 R(✓) then ↵ 2 R(✓) and G↵ := G� + 1

Lemma 2.1.10. Every element ↵ 2 R(✓) is included due to precisely one of the rules (R1)-(R6)

and thus the complexity G↵ is uniquely defined.

Proof. This follows immediately from 2.1.8. ut

Our goal is to turn R(✓) into a formal representation system, the main obstacle to this is that

it is not immediately clear how to deal with the constraint � 2 B(�) in a computable way. This

problem leads to the following definition.

Definition 2.1.11. To each ↵ 2 R(✓) we assign a set K↵ of ordinal terms by induction on the

complexity G↵:

(K1) K0 := K⌦ := K�
�

:= ; for all � ✓.

16

(K2) If ↵ =
NF

↵
1

+ ...+ ↵
n

then K↵ := K↵
1

[... [K↵
n

.

(K3) If ↵ =
NF

'�� then K↵ := K� [K�.

(K4) If ↵ =
NF

 � then K↵ := {�} [K�.

K↵ consists of the ordinals that occur as arguments of the function in the normal form

representation of ↵. Note that each ordinal in K↵ belongs to R(✓) itself and has complexity

lower than G↵.

Lemma 2.1.12. For any ↵, ⌘ 2 R(✓)

↵ 2 B(⌘) if and only if (8⇠ 2 K↵)(⇠ < ⌘)

Proof. The proof is by induction on G↵. If G↵ = 0 then ↵ 2 B(⌘) for any ⌘, and K↵ = ; by

(K1) so the result holds.

Case 1. If ↵ =
NF

↵
1

+ ...+ ↵
n

then ↵ 2 B(⌘) i↵ ↵
1

, ...,↵
n

2 B(⌘) by 2.1.8i). Now inductively

↵
1

, ...,↵
n

2 B(⌘) i↵ (8⇠ 2 K↵
1

[... [K↵
n

)(⇠ < ⌘), but by (K2) K↵ = K↵
1

[... [K↵
n

.

Case 2. If ↵ =
NF

'�� we may argue in a similar fashion to Case 1, using 2.1.8ii) and (K3)

instead.

Case 3. If ↵ =
NF

 � then ↵ 2 B(⌘) i↵ � 2 B(⌘) \ ⌘ by 2.1.8iii). Now by induction hypothesis

� 2 B(⌘) \ ⌘ i↵ (8⇠ 2 K�)(⇠ < ⌘) and � < ⌘, and by (K4) this occurs precisely when (8⇠ 2
K↵)(⇠ < ⌘). ut

Recall that ✓ is the ordinal corresponding to the order type of the well ordering W = (X,�).

Let

L
W

: = {0,⌦,+,', } [{�
x

: x 2 X} and

L⇤
W

: = {s | s is a finite string of symbols from L
W

}.

Now let T (W) ✓ L⇤
W

be the set of strings that correspond to ordinals in R(✓) expressed in

normal form. Owing to Lemma 2.1.10 there is a one to one correspondence between T (W) and

R(✓). The ordering on T (W) induced from the ordering of the ordinals in R(✓) will be denoted

�. To di↵erentiate between elements of the two sets, greek letters ↵,�, �, ⌘, ⇠, ... range over

ordinals and roman letters a, b, c, d, e, ... range over finite strings from L⇤
W

.

Theorem 2.1.13. Suppose W = (X,�) is an arbitrary well ordering. The set T (W) and the

relation � on T (W) are primitive recursive in W .

17

Proof. We need to provide the following two procedures

A) A W -primitive recursive procedure which decides for a 2 L⇤
W

whether a 2 T (W).

B) A W -primitive recursive procedure which decides for non-identical a, b 2 T (W) whether

a � b or b � a.

We define A) and B) simultaneously by induction on the term complexity Ga.

For the base stage of A) we have 0,⌦ 2 T (W) and �
x

2 T (W) for all x 2 X.

For the base stage of B) we have 0 � �
x

� ⌦ for all x 2 X and the terms �
x

inherit the

ordering from W , for which we have access to an oracle.

For the inductive stage of A) we require the following 3 things:

A1) A W -primitive recursive procedure that on input a
1

, ..., a
n

2 T (W) decides whether

a
1

+ ...+ a
n

2 T (W).

A2) A W -primitive recursive procedure that on input a
1

, a
2

2 T (W) decides whether 'a
1

a
2

2
T (W).

A3) A W -primitive recursive procedure that on input a 2 T (W) decides whether a 2 T (W).

For A1) we need to decide if n > 1 and if a
1

⌫ ... ⌫ a
n

, which we can do by the induction

hypothesis. We also need to decide if a
1

, ..., a
n

are additive principal; all terms other than those

of the form b
1

+ ...+ b
m

(m > 1) and 0 are additive principal.

For A2), First let ORD
W

denote the set of L
W

strings which represent an ordinal (not neces-

sarily in normal form), ie. each function symbol has the correct arity. Next we define the set of

strings which correspond to the strongly critical ordinals.

SC
W

:= {⌦} [{�
x

: x 2 X} [{a 2 ORD
W

: a ⌘ b}

We may decide membership of SC
W

in a W -primitive recursive fashion. For the decision

procedure we split into cases based upon the form of a
2

:

i) If a
2

⌘ 0 then 'a
1

a
2

2 T (W) whenever a
1

/2 SC
W

ii) If a
2

2 SC
W

then 'a
1

a
2

2 T (W) whenever a
1

⌫ a
2

and a
2

6= ⌦.

iii) If a
2

� ⌦ then 'a
1

a
2

2 T (W) exactly when a
1

= 0.

18

iv) If a
2

⌘ b
1

+ ...+ b
n

� ⌦, with n > 1 then 'a
1

a
2

2 T (W) regardless of the form of a
1

.

iv) If a
2

⌘ 'b
1

b
2

� ⌦ then 'a
1

a
2

2 T (W) whenever a
1

⌫ b
1

.

For a rigourous treatment of the ' function see [47].

The function K from Definition 2.1.11 lifts to a W -primitive recursive function on T (W). More-

over every b 2 Ka is a member of T (W) of lower complexity than a. Owing to Lemma 2.1.12,

for the decision procedure A3) we may first compute Ka, then check whether (8b 2 Ka)(b � a),

which we may do by the induction hypothesis.

Finally for the inductive stage of B), given two elements of T (W) we may decide their ordering

using the following procedure.

B1) 0 � a for every a 6= 0.

B2) �
x

� ⌦ for every x 2 X.

B3) The elements �
x

inherit the ordering from W .

B4) If a 2 SC
✓

or a ⌘ 'bc then a
1

+ ...+ a
n

� a if a
1

� a.

B5) If a 2 SC
✓

then 'bc � a if b, c � a.

B6) b � ⌦ for all b.

B7) a � �
x

for all x 2 X.

B8) a
1

+...+a
n

� b
1

+...+b
m

if n < m and (8i n)[a
i

⌘ b
i

]

or 9i min(n,m)[8j < i(a
j

= b
j

) and a
i

� b
i

].

B9) 'a
1

b
1

� 'a
2

b
2

if a
1

� a
2

^ b
1

� 'a
2

b
2

or a
1

= a
2

^ b
1

� b
2

or a
2

� a
1

^ 'a
1

b
1

� b
2

.

B10) a � b if a � b.

ut

2.2 A Tait-style sequent calculus formulation of KP

Definition 2.2.1. The language of KP consists of free variables a
0

, a
1

, ..., bound variables

x
0

, x
1

, ..., the binary predicate symbols 2, /2 and the logical symbols _,^, 8, 9 as well as paren-

theses), (.

19

The atomic formulas are those of the form

(a 2 b) , (a /2 b)

The formulas of KP are defined inductively by:

i) Atomic formulas are formulas.

ii) If A and B are formulas then so are A _B and A ^B.

iii) If A(b) is a formula in which the bound variable x does not occur, then 8xA(x), 9xA(x),

(8x 2 a)A(x) and (9x 2 a)A(x) are all formulas.

Quantifiers of the form 9x and 8x will be called unbounded and those of the form (9x 2 a) and

(8x 2 a) will be referred to as bounded quantifiers.

A formula is said to be �
0

if it contains no unbounded quantifiers. A formula is said to be ⌃

(⇧) if it contains no unbounded universal (existential) quantifiers.

The negation ¬A of a formula A is obtained from A by undergoing the following operations:

i) Replacing every occurrence of 2,/2 with /2,2 respectively.

ii) Replacing any occurrence of ^,_, 8x, 9x, (8x 2 a), (9x 2 a) with _,^, 9x, 8x, (9x 2 a), (8x 2
a) respectively.

Thus the negation of a formula A is in negation normal form. The expression A ! B will be

considered shorthand for ¬A _B.

The expression a = b is to be treated as an abbreviation for (8x 2 a)(x 2 b) ^ (8x 2 b)(x 2 a).

The derivations of KP take place in a Tait-style sequent calculus, finite sets of formulae denoted

by Greek capital letters are derived. Intuitively the sequent � may be read as the disjunction

of formulae occuring in �.

The axioms of KP are:

20

Logical axioms: �, A,¬A for any formula A.

Extensionality: �, a = b ^B(a) ! B(b) for any formula B(a).

Pair: �, 9z(a 2 z ^ b 2 z).

Union: �, 9z(8y 2 z)(8x 2 y)(x 2 z).

�
0

-Separation: �, 9y[(8x 2 y)(x 2 a ^B(x)) ^ (8x 2 a)(B(x) ! x 2 y)]

for any �
0

-formula B(a).

Set Induction: �, 8x[(8y 2 xF (y) ! F (x)] ! 8xF (x) for any formula F (a).

Infinity: �, 9x[(9z 2 x)(z 2 x) ^ (8y 2 x)(9z 2 x)(y 2 z)].

�
0

-Collection: �, (8x 2 a)9yG(x, y) ! 9z(8x 2 a)(9y 2 z)G(x, y)

for any �
0

-formula G.

The rules of inference are

�, A �, B
(^)

�, A ^B

�, A
(_)

�, A _B

�, B
�, A _B

�, a 2 b ^ F (a)
(b9)

�, (9x 2 b)F (x)

�, F (a)
(9)

�, 9xF (x)

�, a 2 b ! F (a)
(b8)

�, (8x 2 b)F (x)

�, F (a)
(8)

�, 8xF (x)

�, A �,¬A
(Cut)

�

In both (b8) and (8), the variable a must not be present in the conclusion, such a variable is

referred to as the eigenvariable of the inference.

The minor formulae of an inference are those rendered prominently in the premises, the other

formulae in the premises will be referred to as side formulae. The principal formula of an

inference is the one rendered prominently in the conclusion. Note that the principal formula

can also be a side formula of that inference, when this happens we say that there has been a

contraction. The rule (Cut) has no principal formula.

As an example of a KP derivation, it is informative to show that the bounded and unbounded

quantifiers interact with one another as expected.

Lemma 2.2.2. The following are derivable within KP:

i) (8x 2 b)F (x) $ 8x(x 2 b ! F (x)).

21

ii) (9x 2 b)F (x) $ 9x(x 2 b ^ F (x)).

Proof. We verify only i) as the proof of ii) is very similar. First note that a 2 b ^ ¬F (a), a 2
b ! F (a) is a logical axiom of KP, we have the following derivation in KP.

a 2 b ^ ¬F (a), a 2 b ! F (a)
(b9)

(9x 2 b)¬F (x), a 2 b ! F (a)
(8)

(9x 2 b)¬F (x), 8x(x 2 b ! F (x))
(_) twice

(8x 2 b)F (x) ! 8x(x 2 b ! F (x))

a 2 b ^ ¬F (a), a 2 b ! F (a)
(9) 9x(x 2 b ^ ¬F (x)), a 2 b ! F (a)
(b8) 9x(x 2 b ^ ¬F (x)), (8x 2 b)F (x)

(_) twice 8x(x 2 b ! F (x)) ! (8x 2 b)F (x)
(^)

(8x 2 b)F (x) $ 8x(x 2 b ! F (x))
ut

2.3 The infinitary system RS⌦(X)

LetX be an arbitrary (well founded) set and let ✓ be the set-theoretic rank ofX (hereby referred

to as the 2-rank). Henceforth all ordinals are assumed to belong to the ordinal notation system

T (✓) developed in the previous section. The system RS
⌦

(X) will be an infinitary proof system

based on L
⌦

(X); the relativised constructible hierarchy up to ⌦.

Definition 2.3.1. We give an inductive definition of the set T of RS
⌦

(X) terms, to each term

t 2 T we assign an ordinal level | t |
i) For every u 2 TC({X}), ū 2 T and | ū | := �

rank(u)

[here rank(u) is the 2-rank of u and TC

denotes the transitive closure operator.]

ii) For every ↵ < ⌦, L
↵

(X) 2 T and |L
↵

(X) | := �
✓+1

+ ↵.

iii) If ↵ < ⌦, A(a, b
1

, ..., b
n

) is a formula of KP with all free variables displayed and s
1

, ..., s
n

are terms with levels less than �
✓+1

+ ↵ then

[x 2 L
↵

(X)|A(x, s
1

, ..., s
n

)L↵(X)]

is a term of level �
✓+1

+ ↵. Here the superscript L
↵

(X) indicates that all unbounded

quantifiers occuring in A are replaced by quantifiers bounded by L
↵

(X).

The terms ofRS
⌦

(X) are to be viewed as purely formal, syntactic objects. However their names

are highly suggestive of the intended interpretation in the relativised constructible hierarchy up

to ⌦.

Definition 2.3.2. The formulae of RS
⌦

(X) are of the form A(s
1

, ..., s
n

), where A(a
1

, ..., a
n

) is

a formula of KP with all free variables displayed and s
1

, ..., s
n

are RS
⌦

(X) terms.

Formulae of the form ū 2 v̄ and ū /2 v̄ will be referred to as basic. The properties �
0

, ⌃ and ⇧

are inherited from KP formulae.

22

Note that the system RS
⌦

(X) does not contain free variables

For the remainder of this section we shall refer to RS
⌦

(X) terms and formulae simply as terms

and formulae.

For any formula A we define

k(A) :={| t | | t occurs in A, subterms included}
[{⌦ | if A contains an unbounded quantifier}.

If � is a finite set of the RS
⌦

(X) formulae A
1

, ..., A
n

then we define

k(�) := k(A
1

) [... [k(A
n

).

Abbreviations 2.3.3.

i) For RS
⌦

(X) terms s and t, the expression s = t will be considered as shorthand for

(8x 2 s)(x 2 t) ^ (8x 2 t)(x 2 s).

ii) If | s | < | t |, A(s, t) is an RS
⌦

(X) formula and 3 is a propositional connective we define:

s 2̇ t3A(s, t) :=

8
>>><

>>>:

s 2 t3A(s, t) if t ⌘ ū

A(s, t) if t ⌘ L
↵

(X)

B(s)3A(s, t) if t ⌘ [x 2 L
↵

(X) | B(x)]

Our aim will be to remove cuts from certain RS
⌦

(X) derivations of ⌃ sentences. In order to

do this we need to express a certain kind of uniformity in infinite derivations. The right tool

for expressing this uniformity was developed by Bucholz in [8] and is termed operator control.

Definition 2.3.4. Let P(ON) := {Y : Y is a set of ordinals}. A class function

H : P(ON) ! P(ON)

is called an Operator if the following conditions are satisfied for Y, Y 0 2 P(ON)

(H1) 0 2 H(Y) and �
�

2 H(Y) for any � ✓ + 1.

(H2) If ↵ =
NF

↵
1

+ ...+ ↵
n

then ↵ 2 H(Y) i↵ ↵
1

, ...,↵
n

2 H(Y).

(H3) If ↵ =
NF

'↵
1

↵
2

then ↵ 2 H(Y) i↵ ↵
1

,↵
2

2 H(Y)

(H4) Y ✓ H(Y)

23

(H5) Y 0 ✓ H(Y)) H(Y 0) ✓ H(Y)

Note that this definition of operator, as with the infinitary system RS
⌦

(X) is dependent on the

set X and its 2-rank ✓.
Abbreviations 2.3.5. For an operator H:

i) We write ↵ 2 H instead of ↵ 2 H(;).

ii) Likewise Y ✓ H is shorthand for Y ✓ H(;).

iii) For any RS
⌦

(X) term t, H[t](Y) := H(Y [| t |).

iv) If X is an RS
⌦

(X) formula or set of formulae then H[X](Y) := H(Y [k(X)).

Lemma 2.3.6. Let H be an operator s an RS
⌦

(X) term and X an RS
⌦

(X) formula or set of

formulae.

i) If Y ✓ Y 0 then H(Y) ✓ H(Y 0).

ii) H[s] and H[X] are operators.

iii) If | s | 2 H then H[s] = H.

iv) If k(X) ✓ H then H[X] = H.

Proof. These results are easily checked, they are proved in full in [35]. ut

Definition 2.3.7. If H is an operator, ↵ an ordinal and � a finite set of RS
⌦

(X)-formulae, we

give an inductive definition of the relation H ↵

� by recursion on ↵. (H-controlled derivability

in RS
⌦

(X).) We require always that

{↵} [k(�) ✓ H
this condition will not be repeated in the inductive clauses pertaining to the axioms and inference

rules below. We have the following axioms:

H ↵

✓, ū 2 v̄ if u, v 2 TC(X) and u 2 v

H ↵

✓, ū /2 v̄ if u, v 2 TC(X) and u /2 v.

The following are the inference rules of RS
⌦

(X), the column on the right gives the requirements

on the ordinals, terms and formulae for each rule.

(^) H ↵0 �, A H ↵1 �, B

H ↵

�, A ^B
↵
0

,↵
1

< ↵

(_) H ↵0 �, C for some C 2 {A,B}
H ↵

�, A _B
↵
0

< ↵

24

(/2) H[s]
↵s �, s 2̇ t ! r 6= s for all | s | < | t |

H ↵

�, r /2 t

↵
s

< ↵

r 2 t is not basic

(2) H ↵0 �, s 2̇ t ^ r = s

H ↵

�, r 2 t

↵
0

< ↵

| s | < | t |
| s | < �

✓+1

+ ↵

r 2 t is not basic

(b8) H[s]
↵s �, s 2̇ t ! A(s) for all | s | < | t |

H ↵

�, (8x 2 t)A(x)
↵
s

< ↵

(b9) H ↵0 �, s 2̇ t ^A(s)

H ↵

�, (9x 2 t)A(x)

↵
0

< ↵

| s | < | t |
| s | < �

✓+1

+ ↵

(8) H[s]
↵s �, A(s) for all s

H ↵

�, 8xA(x)
↵
s

< ↵

(9) H ↵0 �, A(s)

H ↵

�, 9xA(x)

↵
0

< ↵

| s | < �
✓+1

+ ↵

(Cut)
H ↵0 �, A H ↵0 �,¬A

H ↵

�
↵
0

< ↵

(⌃-Ref
⌦

(X))
H ↵0 �, A

H ↵

�, 9zAz

↵
0

,⌦ < ↵

A is a ⌃ formula

Az results from A by restricting all unbounded quantifiers in A to z. The reason for the condition

preventing the derivation of basic formulas in the rules (2) and (/2) is to prevent derivations

of sequents which are already axioms, as this would cause a hindrance to cut-elimination. The

condition that | s | < �
✓+1

+ ↵ in (2) and (9) inferences will allow us to place bounds on the

location of witnesses in derivable ⌃ formulas.

2.4 Cut elimination for RS⌦(X)

We need to keep track of the complexity of cuts appearing in a derivation, to this end we define

the rank of an RS
⌦

(X) formula.

25

Definition 2.4.1. The rank of a term or formula is defined by recursion on the construction

as follows:

1. rk(ū) := �rank(u)

2. rk(L
↵

(X)) := �
✓+1

+ ! · ↵

3. rk([x 2 L
↵

(X)|F (x)]) := max(�
✓+1

+ ! · ↵+ 1, rk(F (;̄)) + 2)

4. rk(s 2 t) := rk(s /2 t) := max(rk(t) + 1, rk(s) + 6)

5. rk((9x 2 ū)F (x)) := rk((8x 2 ū)F (x)) := max(rk(ū) + 3, rk(F (;̄)) + 2).

6. rk((9x 2 t)F (x)) := rk((8x 2 t)F (x)) := max(rk(t), rk(F (;̄)) + 2) if t is not of the form ū.

7. rk(9xF (x)) := rk(8xF (x)) := max(⌦, rk(F (;̄)) + 1)

8. rk(A ^B) := rk(A _B) := max(rk(A), rk(B)) + 1

H ↵

⇢

� will be used to denote that H ↵

� and all cut formulas appearing in the derivation have

rank < ⇢.

Observation 2.4.2. i) For each term t, rk(t) = ! · | t |+ n for some n < !.

ii) For each formula A, rk(A) = ! ·max(k(A)) + n for some n < !.

iii) rk(A) < ⌦ if and only if A is �
0

.

The next Lemma shows that the rank of a formula A is determined only by max(k(A)) and the

logical structure of A.

Lemma 2.4.3. For each formula A(s), if | s | < max(k(A(s))) then rk(A(s)) = rk(A(;̄)).

Proof. The proof is by induction on the complexity of A.

Case 1. If A(s) ⌘ s 2 t then by assumption | s | < | t |, so rk(A(s)) = rk(t) + 1 = rk(A(;̄)).

Case 2. If A(s) ⌘ t 2 s we may argue in a similar fashion to Case 1.

Case 3. It cannot be the case that A(s) ⌘ s 2 s.

Case 4. If A(s) ⌘ (9y 2 ū)B(y, s) then

rk(A(s)) = max(rk(ū) + 3, rk(B(;̄, s)) + 2)

and

rk(A(;̄)) = max(rk(ū) + 3, rk(B(;̄, ;̄)) + 2).

26

4.1 If | ū | > max(k(B(;̄, ;̄))) then | s | < | ū | by assumption, so using observation 2.4.2ii) gives

us

rk(A(s)) = rk(ū) + 3 = rk(A(;̄)).
4.2 If | ū | max(k(B(;̄, ;̄)) then | s | < max(k(B(;̄, ;̄))) by assumption, so by induction hy-

pothesis

rk(B(;̄, s)) = rk(B(;̄, ;̄))
and hence using Observation 2.4.2ii) gives us

rk(A(s)) = rk(B(;̄, ;̄)) + 2 = rk(A(;̄)).

Case 5. If A(s) ⌘ (9y 2 t)B(y, s) for some t not of the form ū, we may argue in a similar way

to case 4.

Case 6. A(s) ⌘ (9y 2 s)B(y, s), now | s | < max(k(A(;̄))) = max(k(B(;̄, ;̄))), so by induction

hypothesis

rk(B(;̄, s)) = rk(B(;̄, ;̄))
and hence using observation 2.4.2 we see that

rk(A(s)) = rk(B(;̄, s)) + 2

= rk(B(;̄, ;̄)) + 2

= rk(A(;̄)).

Case 7. If A(s) ⌘ 9xB(x, s) then by assumption | s | < max(k(A(s))) = max(k(B(;, s))) so

we may apply the induction hypothesis to see that rk(A(s)) = max(⌦, rk(B(;, s)) + 1) =

max(⌦, rk(B(;, ;)) + 1) = rk(A(;)).

Case 8. All other cases are either propositional in which case we may just use induction hy-

pothesis directly or are dual to cases already considered. ut

Definition 2.4.4. To each non-basic formula A we assign an infinitary disjunction (
W
A

i

)
i2y

or conjunction (
V
A

i

)
i2y as follows:

1. r 2 t :' W
(s 2̇ t ^ r = s)| s |<| t | provided r 2 t is not a basic formula.

2. (9x 2 t)B(x) :' W
(s 2̇ t ^B(s))| s |<| t |

3. 9xB(x) :' W
(B(s))

s2T

4. B
0

_B
1

:' W
(B

i

)
i2{0,1}

5. ¬B :' V
(¬B

i

)
i2y if B is of the form considered in 1.-4.

27

The idea is that the infinitary conjunction or disjunction lists the premises required to derive

A as the principal formula of an RS
⌦

(X)-inference di↵erent from (⌃-Ref
⌦

(X)) or (Cut).

Lemma 2.4.5. If A ' (
W

A
i

)
i2y or A ' (

V
A

i

)
i2y then

8i 2 y(rk(A
i

) < rk(A))

Proof. We need only treat the case where A ' (
W
A

i

)
i2y since the other case is dual to this one.

We proceed by induction on the complexity of A.

Case 1. Suppose A ⌘ r 2 t then by assumption either r or t is not of the form ū, we split cases

based on the form of t.

1.1 If t ⌘ ū then r is not of the form v̄ and rk(A) = rk(r) + 6. In this case A
i

⌘ v̄ 2 ū ^ v̄ = r

for some | v̄ | < | ū | and we have

rk(A
i

) = max(rk(v̄ 2 ū), rk(v̄ = r)) + 1

= rk(v̄ = r) + 1

= max(rk((8x 2 v̄)(x 2 r)), rk((8x 2 r)(x 2 v̄))) + 2

= rk(r) + 5 < rk(r) + 6 = rk(A)

1.2 If t ⌘ L
↵

(X) then A
i

⌘ s = r for some | s | < | t |. So we have

rk(A
i

) = rk((8x 2 s)(x 2 r) ^ (8x 2 r)(x 2 s))

= max(rk(s) + 4, rk(r) + 4)

< max(rk(r) + 1, rk(t) + 6) = rk(A)

1.3 If t ⌘ [x 2 L
↵

(X)|B(x)] then A
i

⌘ B(s) ^ s = r for some | s | < | t |. So we have

rk(A
i

) = max(rk(B(s)) + 1, rk(r = s) + 1).

First note that rk(r = s) + 1 = max(rk(s) + 5, rk(r) + 5) < rk(A). So it remains to verify that

rk(B(s)) + 1 < rk(A), for this it is enough to show that rk(B(s)) < rk(t).

1.3.1 If max(k(B(s))) | s | then by Observation 2.4.2ii) we have rk(B(s)) + 1 < ! · | s |+ !
rk(t).

1.3.2 Otherwise max(k(B(s))) > | s | then by Lemma 2.4.3 we have

rk(B(s)) + 1 = rk(B(;̄)) + 1

< max(�
✓+1

+ ! · ↵+ 1, rk(B(;̄)) + 2) = rk(t)

28

Case 2. Suppose A ⌘ (9x 2 t)B(x), we split into cases based on the form of t.

2.1 If t ⌘ ū then rk(A) := max(rk(ū) + 3, rk(B(;̄)) + 2). In this case A
i

⌘ v̄ 2 ū ^ B(v̄) for

some | v̄ | < | ū |, so we have

rk(A
i

) = max(rk(ū) + 2, rk(B(v̄)) + 1).

Clearly rk(ū) + 2 < rk(ū) + 3 so it remains to verify that rk(B(v̄)) + 1 < rk(A)

2.1.1 If |v̄| � max(k(B(v̄))) then by Observation 2.4.2i) rk(B(v̄)) + 1 < rk(ū) < rk(ū) + 3.

2.1.2 If |v̄| < max(k(B(v̄))) then by Lemma 2.4.3 rk(B(v̄)) + 1 = rk(B(;̄)) + 1 < rk(B(;̄)) + 2.

2.2 Now suppose t ⌘ L
↵

(X), so rk(A) = max(rk(t), rk(B(;̄)) + 2). In this case A
i

= B(s) for

some | s | < | t |.

2.2.1 If | s | � max(k(B(s))) then rk(B(s)) < rk(t) by Observation 2.4.2.

2.2.2 If | s | < max(k(B(s))) then by Lemma 2.4.3 rk(B(s)) = rk(B(;̄)) < rk(A).

2.3. Now suppose t ⌘ [y 2 L
↵

(X) | C(y)], so we have

rk(A) := max(rk(t), rk(B(;̄)) + 2)

= max(�
✓+1

+ ! · ↵+ 1, rk(C(;̄)) + 2, rk(B(;̄)) + 2).

In this case A
i

⌘ C(s) ^B(s) for some | s | < | t |.

2.3.1 If | s | < max(k(B(s))) then rk(B(s)) + 1 = rk(B(;̄)) + 1 < rk(B(;̄)) + 2. It remains to

show that rk(C(s)) < rk(A).

2.3.1.1 If max(k(C(s))) < | t | then rk(C(s)) + 1 < rk(t) by Observation 2.4.2.

2.3.1.2 Now if max(k(C(s))) � | t | then we may apply Lemma 2.4.3 to give

rk(C(s)) + 1 = rk(C(;̄)) + 1 < rk(C(;̄)) + 2 rk(A).

2.3.2 If | s | � max(k(B(s))) then rk(B(s)) < �
✓+1

+ ! · ↵ by Observation 2.4.2. Now we may

apply the same argument as in 2.3.1.1 and 2.3.1.2 to yield rk(C(s)) + 1 < rk(A).

Case 3. If A ⌘ 9xB(x) then rk(A) := max(⌦, rk(B(;̄)) + 1). In this case A
i

⌘ B(s) for some

term s.

29

3.1 If B contains an unbounded quantifier then by Lemma 2.4.3 rk(B(s)) = rk(B(;̄)) < rk(A).

3.2 If B does not contain an unbounded quantifier then rk(B(s)) < ⌦ by Observation 2.4.2iii)

Case 4. If A ⌘ B _ C then the result is clear immediately from the definition of rk(A). ut

Lemma 2.4.6. i) If ↵ ↵0 2 H, ⇢ ⇢0, k(�0) ✓ H and H ↵

⇢

� then H ↵

0

⇢

0 �,�
0 .

ii) If C is a basic formula which holds true in the set X and H ↵

⇢

�,¬C then H ↵

⇢

� .

iii) If H ↵

⇢

�, A _B then H ↵

⇢

�, A,B .

iv) If A ' V
(A

i

)
i2y and H ↵

⇢

�, A then (8i 2 y)H[i]
↵

⇢

�, A
i

.

v) If � 2 H and H ↵

⇢

�, 8xF (x) then H ↵

⇢

�, (8x 2 L
�

(X))F (x) .

Proof. All proofs are by induction on ↵.

i) If � is an axiom then �,�0 is also an axiom, and since {↵0}[k(�0) ✓ H there is nothing to show.

Now suppose � is the result of an inference

...H
i

↵i

⇢

�
i

...
(I) (i 2 y) ↵

i

< ↵
H ↵

⇢

�

Using the induction hypothesis we have

...H
i

↵i

⇢

0 �i

,�0 ... (i 2 y) ↵
i

< ↵

It’s worth noting that k(�0) ✓ H
i

, since H
i

(;) ◆ H(;), this can be observed by looking at each

inference rule.

Finally we may apply the inference (I) again to obtain

H ↵

0

⇢

0 �,�
0

as required.

ii) If �,¬C is an axiom then so is � so there is nothing to show.

Now suppose �,¬C was derived as the result of an inference rule (I), then ¬C cannot have been

the principal formula since it is basic so we have the premise(s)

H
i

↵i

⇢

�
i

,¬C ↵
i

< ↵.

30

Now by induction hypothesis we obtain

H
i

↵i

⇢

�
i

↵
i

< ↵

to which we may apply the inference rule (I) to complete the proof.

iii) If �, A_B is an axiom then �, A,B is also an axiom. If A_B was not the principal formula

of the last inference then we can apply the induction hypothesis to its premises and then the

same inference again.

Now suppose that A _B was the principal formula of the last inference. So we have

H ↵0

⇢

�, C or H ↵0

⇢

�, C,A _B where C 2 {A,B} and ↵
0

< ↵

By i) we may assume that we are in the latter case. By the induction hypothesis, and a

contraction, we obtain

H ↵0

⇢

�, A,B

Finally using i) yields

H ↵

⇢

�, A,B .

iv) If �, A is an axiom, then � is also an axiom since A cannot be the active part of an axiom,

so �, A
i

is an axiom for any i 2 y. If A was not the principal formula of the last inference then

we may apply the induction hypothesis to its premises and then use that inference again.

Now suppose A was the principal formula of the last inference. With the possible use of part

i), we may assume we are in the following situation:

H[i]
↵i

⇢

�, A,A
i

(8i 2 y) ↵
i

< ↵.

Inductively and via a contraction we obtain

H[i]
↵i

⇢

�, A
i

.

Here it is important to note that H[i][i] ⌘ H[i]. To which we may apply part i) to obtain

H[i]
↵

⇢

�, A
i

as required.

v) The interesting case is where 8xF (x) was the principal formula of the last inference. In this

case we may assume we are in the following situation:

(1) H[s]
↵s

⇢

�, 8xF (x), F (s) for all terms s, with ↵
s

< ↵.

31

Using the induction hypothesis yields

(2) H[s]
↵s

⇢

�, (8x 2 L
�

(X))F (x), F (s)

Note that for | s | < �
✓+1

+ � we have s 2̇ L
�

(X) ! F (s) ⌘ F (s). So as a subset of (2) we have

H[s]
↵s

⇢

�, (8x 2 L
�

(X))F (x), s 2̇ L
�

(X) ! F (s) for all | s | < �
✓+1

+ �, with ↵
s

< ↵.

From which one application of (b8) gives us the desired result. ut

Lemma 2.4.7 (Reduction for RS
⌦

(X)). Suppose C ⌘ ū 2 v̄ or C ' W
(C

i

)
i2y and rk(C) :=

⇢ 6= ⌦.

If [H ↵

⇢

⇤,¬C & H �

⇢

�, C] then H ↵+�

⇢

⇤,�

Proof. If C ⌘ ū 2 v̄ then by 2.4.6ii) we have either H ↵

⇢

⇤ or H �

⇢

� . Hence using 2.4.6i) we

obtain H ↵+�

⇢

⇤,� as required.

Now suppose C ' W
(C

i

)
i2y, we proceed by induction on �. We have

H ↵

⇢

⇤,¬C(1)

H �

⇢

�, C .(2)

If C was not the principal formula of the last inference in (2), then we may apply the induction

hypothesis to the premises of that inference and then the same inference again. Now suppose

C was the principal formula of the last inference in (2). If B was the principal formula of

the inference (⌃-Ref
⌦

(X)), then B is of the form 9zF (s
1

, ..., s
n

)z, which implies rk(B) = ⌦,

therefore the last inference in (2) was not (⌃-Ref
⌦

(X)). So we have

(3) H �0

⇢

�, C, C
i0 for some i

0

2 y, �
0

< � with | i
0

| < �
✓+1

+ �.

The induction hypothesis applied to (2) and (3) yields

(4) H ↵+�0

⇢

⇤,�, C
i0 .

Now applying Lemma 2.4.6iv) to (1) provides

(5) H[i
0

]
↵

⇢

⇤,¬C
i0 .

But | i
0

| 2 H by (4), which means H[i
0

] = H by Lemma 2.3.6iv), so in fact we have

(6) H ↵

⇢

⇤,¬C
i0 .

Thus we may apply (Cut) to (4) and (6) (noting that rk(C
i0) < rk(C) := ⇢ by Lemma 2.4.5)

to obtain

H ↵+�

⇢

⇤,�

as required. ut

32

Theorem 2.4.8 (Predicative cut elimination for RS
⌦

(X)).

If H �

⇢+!

↵ � and ⌦ /2 [⇢, ⇢+ !↵) then H '↵�

⇢

�

Proof. The proof is by main induction on ↵ and subsidiary induction on �. If � is an axiom then

the result is immediate. If the last inference was anything other that (Cut) we may apply the

subsidiary induction hypothesis to its premises and then the same inference again. The crucial

case is where the last inference was (Cut), so suppose there is a formula C with rk(C) < ⇢+!↵

such that

H �0

⇢+!

↵ �, C with �
0

< �.(1)

H �0

⇢+!

↵ �,¬C with �
0

< �.(2)

Applying the subsidiary induction hypothesis to (1) and (2) yields

H '↵�0

⇢

�, C .(3)

H '↵�0

⇢

�,¬C .(4)

Case 1. If rk(C) < ⇢ then we may apply (Cut) to (3) and (4), noting that '↵�
0

+1 < '↵� 2 H,

to give the desired result.

Case 2. Now suppose rk(C) 2 [⇢, ⇢+ !↵), so we may write rk(C) in the following form:

(5) rk(C) = ⇢+ !↵1 + ...+ !↵n with ↵ > ↵
1

� ... � ↵
n

.

Here n = 0 indicates that rk(C) = ⇢. From (3) we know that k(C) ✓ H and thus rk(C) 2 H.

Now (5) and (H2) and (H3) from Definition 2.3.4 give us ↵
1

, ...,↵
n

2 H. Since rk(C) 6= ⌦ we

may apply the Reduction Lemma 2.4.7 to (3) and (4) to obtain

(6) H '↵�0+'↵�0

⇢+!

↵1
+...+!

↵n
� .

Now '↵�
0

+ '↵�
0

< '↵�, so by Lemma 2.4.6i) we have

(7) H '↵�

⇢+!

↵1
+...+!

↵n
� .

Applying the main induction hypothesis (since ↵
n

< ↵) to (7) gives

H '↵n('↵�)

⇢+!

↵1
+...+!

↵n�1
� .

But since '↵� is a fixed point of the function '↵
n

(·) we have

H '↵�

⇢+!

↵1
+...+!

↵n�1
� .

Now since ↵
1

, ...,↵
n�1

< ↵ we may repeat this application of the main induction hypothesis a

further n� 1 times to obtain

H '↵�

⇢

�

as required. ut

33

Lemma 2.4.9 (Boundedness for RS
⌦

(X)). If C is a ⌃ formula, ↵ � < ⌦, � 2 H and

H ↵

⇢

�, C then H ↵

⇢

�, CL�(X) .

Proof. The proof is by induction on ↵. If C is basic then C ⌘ CL�(X) so there is nothing to

show. If C was not the principal formula of the last inference then we may apply the induction

hypothesis to its premises and then the same inference again. Now suppose C was the princi-

pal formula of the last inference. The last inference cannot have been (⌃-Ref
⌦

(X)) since ↵ < ⌦.

Case 1. Suppose C ' V
(C

i

)
i2y and H[i]

↵i

⇢

�, C, C
i

with ↵
i

< ↵. Since C is a ⌃ formula, there

must be some ⌘ 2 H(;) \ ⌦ such that (8s 2 y)(| s | < ⌘). Therefore CL�(X) ' V
(C

L�(X)

i

)
i2y.

Now two applications of the induction hypothesis gives

H[i]
↵i

⇢

�, CL�(X), C
L�(X)

i

to which we may apply the appropriate inference to gain the desired result.

Case 2. Now suppose C ' W
(C

i

)
i2y and H ↵0

⇢

�, C, C
i0 , with i

0

2 y, | i
0

| < �
✓+1

+ ↵ and

↵
0

< ↵. In this case CL�(X) ' W
(C

i

)
i2y0 where either y0 = y or y0 = {i 2 y | | i | < �

✓+1

+ �}.
Now by assumption | i

0

| < �
✓+1

+ ↵ < �
✓+1

+ �, so i
0

2 y0. Thus using the same inference

again, or (b9) in the case that the last inference was (9), we obtain

H ↵

⇢

�, CL�(X)

as required. ut

Definition 2.4.10. For each ⌘ 2 T (✓) we define

H
⌘

: P(ON) 7! P(ON)

H
⌘

(Y) :=
\

{B(↵) | Y ✓ B(↵) and ⌘ < ↵}

Lemma 2.4.11. For any ⌘, H
⌘

is an operator.

Proof. We must verify the conditions (H1) - (H5) from Definition 2.3.4.

(H1) Clearly 0 2 H
⌘

(Y) and {�
�

| � ✓} ✓ H
⌘

(Y) since these belong in any of the sets B(↵).

It remains to note that H
⌘

(Y) ◆ B(1) and since �
✓+1

= 0 2 B(1) we have �
✓+1

2 H
⌘

(Y).

(H2) and (H3) follow immediately from Lemma 2.1.8i) and ii) respectively.

(H4) is clear from the definition. Now for (H5) suppose Y 0 ✓ H
⌘

(Y), then Y 0 ✓ B(↵) for every

↵ such that ⌘ < ↵ and Y ✓ B(↵). It follows that H
⌘

(Y 0) ✓ H
⌘

(Y). ut

34

Lemma 2.4.12. i) H
⌘

(Y) is closed under ' and |
⌘+1

.

ii) If � < ⌘ then H
�

(Y) ✓ H
⌘

(Y)

iii) If � < ⌘ and H
�

↵

⇢

� then H
⌘

↵

⇢

�

Proof. i) Note that for any X, H
⌘

(X) = B(↵) for some ↵ � ⌘ + 1.

ii) follows immediately from the definition of H
⌘

and iii) follows easily from ii). ut

Lemma 2.4.13. Suppose ⌘ 2 B(⌘) and for any ordinal � let �̂ := ⌘ + !⌦+� .

i) If ↵ 2 H
⌘

then ↵̂, ↵̂ 2 H
↵̂

ii) If ↵
0

2 H
⌘

and ↵
0

< ↵ then ↵̂
0

< ↵̂

Proof. i) First note that H
⌘

(;) = B(⌘+1). Now from ↵, ⌘ 2 B(⌘+1) we get ↵̂ 2 B(⌘+1) and

thus ↵̂ 2 B(↵̂). It follows that ↵̂ 2 B(↵̂+ 1) = H
↵̂

(;).

ii) Suppose that ↵
0

2 H
⌘

and ↵
0

< ↵, using the preceding argument we get that ↵̂
0

2
B(↵̂

0

+ 1) ✓ B(↵̂), thus ↵̂
0

< ↵̂. ut

Theorem 2.4.14 (Collapsing for RS
⌦

(X)). Suppose � is a set of ⌃ formulae and ⌘ 2 B(⌘).

If H
⌘

↵

⌦+1

� then H
↵̂

 ↵̂

 ↵̂

�

Proof. We proceed by induction on ↵. First note that from ↵ 2 H
⌘

we get ↵̂, ↵̂ 2 H
↵̂

from

Lemma 2.4.13i).

If � is an axiom then the result follows by Lemma 2.4.6i). So suppose � arose as the result of

an inference, we shall distinguish cases according to the last inference of H
⌘

↵

⌦+1

� .

Case 1. Suppose A ' V
(A

i

)
i2y 2 � and H

⌘

[i]
↵i

⌦+1

�, A
i

with ↵
i

< ↵ for each i 2 y. Since A is

a ⌃ formula, we must have sup{| i | | i 2 y} < ⌦, therefore as k(A) ✓ H
⌘

= B(⌘ + 1) we must

have sup{| i | | i 2 y} < (⌘ + 1). It follows that for any i 2 y | i | 2 H
⌘

and thus H
⌘

[i] = H
⌘

.

This means that we may use the induction hypothesis to give

H
↵̂i

 ↵̂i

 ↵̂i
�, A

i

for all i 2 y.

Now applying Lemma 2.4.12ii) we get

H
↵̂

 ↵̂i

 ↵̂i
�, A

i

for all i 2 y.

35

Upon noting that ↵̂
i

< ↵̂ by 2.4.13ii) we may apply the appropriate inference to obtain

H
↵̂

 ↵̂

 ↵̂

� .

Case 2. Now suppose that A ' W
(A

i

)
i2y 2 � and H

⌘

↵0

⌦+1

�, A
i0 with i

0

2 y, |i
0

| 2 H
⌘

and

↵
0

< ↵. We may immediately apply the induction hypothesis to obtain

H
↵̂

 ↵̂0

 ↵̂0
�, A

i0

Now we want to be able to apply the appropriate inference to derive � but first we must check

that | i
0

| < �
✓+1

+ ↵̂. Since | i
0

| 2 H
⌘

= B(⌘ + 1) we have

| i
0

| < (⌘ + 1) < ↵̂ �
✓+1

+ ↵̂.

Therefore we may apply the appropriate inference to yield

H
↵̂

 ↵̂

 ↵̂

� .

Case 3. Now suppose the last inference was (⌃-Ref
⌦

(X)) so we have 9zF z 2 � andH
⌘

↵0

⌦+1

�, F

with ↵
0

< ↵ and F a ⌃ formula. Applying the induction hypothesis we have

H
↵̂

 ↵̂0

 ↵̂0
�, F .

Applying Boundedness 2.4.9 we obtain

H
↵̂

 ↵̂0

 ↵̂0
�, FL ↵̂0 (X) .

Now by Lemma 2.4.13 |L
 ↵̂0(X) | = �

✓+1

+ ↵̂
0

< �
✓+1

+ ↵̂, so we may apply (9) to obtain

H
↵̂

 ↵̂

 ↵̂

�, 9zF z

as required.

Case 4. Finally suppose the last inference was (Cut), so for some A with rk(A) ⌦ we have

H
⌘

↵0

⌦+1

�, A with ↵
0

< ↵.(1)

H
⌘

↵0

⌦+1

�,¬A with ↵
0

< ↵.(2)

4.1 If rk(A) < ⌦ then A is �
0

. In this case both A and ¬A are ⌃ formulae so we may

immediately apply the induction hypothesis to both (1) and (2) giving

H
↵̂0

 ↵̂0

 ↵̂0
�, A(3)

H
↵̂0

 ↵̂0

 ↵̂0
�,¬A .(4)

36

Since k(A) ✓ H
⌘

(;) = B(⌘ + 1) and A is �
0

it follows from Observation 2.4.2 that rk(A) 2
B(⌘ + 1) \ ⌦. Thus rk(A) < (⌘ + 1) < ↵̂, so we may apply (Cut) to complete this case.

4.2 Finally suppose rk(A) = ⌦. Without loss of generality we may assume that A ⌘ 9zF (z)

with F a �
0

formula. We may immediately apply the induction hypothesis to (1) giving

(5) H
↵̂0

 ↵̂0

 ↵̂0
�, A .

Applying Boundedness 2.4.9 to (5) yields

(6) H
↵̂0

 ↵̂0

 ↵̂0
�, AL ↵̂0 (X) .

Now using Lemma 2.4.6v) on (2) yields

(7) H
↵̂0

↵0

⌦+1

�,¬AL ↵̂0 (X) .

Observe that since ⌘,↵
0

2 H
⌘

we have ↵̂
0

2 B(⌘ + 1) ✓ B(↵̂
0

). So since �,¬AL ↵̂0 (X) is a set

of ⌃-formulae we may apply the induction hypothesis to (7) giving

(8) H
↵1

 ↵1

 ↵1
�,¬AL ↵̂0 where ↵

1

:= ↵̂
0

+ !⌦+↵0 .

Now

↵
1

= ↵̂
0

+ !⌦+↵0 = ⌘ + !⌦+↵0 + !⌦+↵0 < ⌘ + !⌦+↵ := ↵̂.

Owing to Lemma 2.4.13ii) we have ↵̂
0

, ↵
1

< ↵̂, thus we may apply (Cut) to (6) and (8)

giving

H
↵̂

 ↵̂

 ↵̂

�

as required. ut

2.5 Embedding KP into RS⌦(X)

Definition 2.5.1. i) Given ordinals ↵
1

, ...,↵
n

. The expression !↵1#...#!↵n denotes the or-

dinal !↵p(1) + ... + !↵p(n) , where p : {1, ..., n} 7! {1, ..., n} such that ↵
p(1)

� ... � ↵
p(n)

.

More generally ↵#0 := 0#↵ := 0 and ↵#� := !↵1#...#!↵n#!�1#...#!�m for ↵ =
NF

!↵1 + ...+ !↵n and � =
NF

!�1 + ...+ !�m .

ii) If A is any RS
⌦

(X)-formula then no(A) := !rk(A).

iii) If � = {A
1

, ..., A
n

} is a set of RS
⌦

(X)-formulae then no(�) := no(A
1

)#...#no(A
n

).

iv) � � will be used to abbreviate that

H[�]
no(�)

0

� holds for any operator H

37

v) �↵
⇢

� will be used to abbreviate that

H[�]
no(�)#↵

⇢

� holds for any operator H

As might be expected �↵ � and �
⇢

� stand for �↵
0

� and �0

⇢

� respectively.

The following lemma shows that under certain conditions we may use � as a calculus.

Lemma 2.5.2. i) If � follows from premises �
i

by an RS
⌦

(X) inference other than (Cut) or

(⌃-Ref
⌦

(X)) and without contractions then

if �↵
⇢

�
i

then �↵
⇢

�

ii) If �↵
⇢

�, A,B then �↵
⇢

�, A _B.

Proof. Part i) follows from Lemma 2.4.5. It also needs to be noted that if the last inference was

universal with premises {�
i

}
i2Y , then H[�

i

] ✓ H[i].

For part ii) suppose �↵
⇢

�, A,B, so we have

H[�]
no(�,A,B)#↵

⇢

�, A,B .

Two applications of (_) and a contraction yields

H[�]
no(�,A,B)#↵+2

⇢

�, A _B .

It remains to note that since !rk(A_B) is additive principal, Lemma 2.4.5 gives us

no(�, A,B)#↵+ 2 = no(�)#↵#!rk(A)#!rk(B) + 2 < no(�)#↵#!rk(A_B) = no(�, A _B)#↵.

So we may complete the proof with an application of Lemma 2.4.6i). ut

Lemma 2.5.3. Let A be an RS
⌦

(X) formula and s, t be RS
⌦

(X) terms.

i) � A,¬A

ii) � s /2 s

iii) � s ✓ s where s ✓ s :⌘ (8x 2 s)(x 2 s)

iv) If | s | < | t | then � s 2̇ t ! s 2 t and � ¬(s 2̇ t), s 2 t

v) � s 6= t, t = s

vi) If | s | < | t | and � �, A,B then � �, s 2̇ t ! A, s 2̇ t ^B

vii) If | s | < �
✓+1

+ ↵ then � s 2 L
↵

(X)

38

Proof. i) We use induction of rk(A), and split into cases based upon the form of A.:

Case 1. Suppose A ⌘ ū 2 v̄. In this case either A or ¬A is an axiom so there is nothing to

show.

Case 2. Suppose A ⌘ r 2 t where max(| r |, | t |) � �
✓+1

. By Lemma 2.4.5 and the induction

hypothesis we have � s 2̇ t ^ r = s, s 2̇ t ! r 6= s for all | s | < | t |. Thus we have the following

template for derivations in RS
⌦

(X):

� s 2̇ t ^ r = s, s 2̇ t ! r 6= s
(2) � r 2 t, s 2̇ t ! r 6= s
(/2) � r 2 t, r /2 t

Case 3. Suppose A ⌘ (9x 2 t)F (x). By Lemma 2.4.5 and the induction hypothesis we have

� s 2̇ t ^ F (s), s 2̇ t ! ¬F (s) for all | s | < | t |.We have the following template for derivations

in RS
⌦

(X):

� s 2̇ t ^ F (s), s 2̇ t ! ¬F (s) for all | s | < | t |
(b9) � (9x 2 t)F (x), s 2̇ t ! ¬F (s)
(b8) � (9x 2 t)F (x), (8x 2 t)¬F (x)

Case 4. A ⌘ A
0

_A
1

. We have the following template for derivations in RS
⌦

(X):

� A
0

,¬A
0(_) � A

0

_A
1

,¬A
0

� A
1

,¬A
1(_) � A

0

_A
1

,¬A
1(^) � A

0

_A
1

,¬A
0

^ ¬A
1

All other cases may be seen as variations of those above.

ii) We proceed by induction on rk(s). If s is of the form ū then s /2 s is already an axiom.

Inductively we have � r /2 r for all | r | < | s |. Now suppose s is of the form L
↵

(X), in this case

r /2 r ⌘ r 2̇ s ^ r /2 r so we have the following template for derivations in RS
⌦

(X):

� r 2̇ s ^ r /2 r(b9) � (9x 2 s)(x /2 r)
(_) � s 6= r

2.3.3ii) � r 2̇ s ! s 6= r
(/2) � s /2 s

Now suppose s is of the form [x 2 L
↵

(X) |B(x)], by i) we have � B(r),¬B(r) for any | r | < | s |.
We have the following template for derivations in RS

⌦

(X):

39

� r /2 r � B(r),¬B(r) for any | r | < | s |
(^) � B(r) ^ r /2 r,¬B(r)
(b9) � (9x 2 s)(x /2 r),¬B(r)
(_) � s 6= r,¬B(r)

Lemma 2.5.2ii) � B(r) ! s 6= r
(/2) � s /2 s

iii) Again we proceed by induction on rk(s). If s ⌘ ū then � v̄ /2 ū, v̄ 2 ū for any | v̄ | < | ū | by
part i), so we have the following template for derivations in RS

⌦

(X):

� v̄ /2 ū, v̄ 2 ū
Lemma 2.5.2ii) � v̄ 2 ū ! v̄ 2 ū(b8) � (8x 2 s)(x 2 s)

Suppose s ⌘ L
↵

(X), by the induction hypothesis we have � r ✓ r for all | r | < | s |. We have

the following template for derivations in RS
⌦

(X):

� r ✓ r � r ✓ r
(^) � r = r(2) � r 2 s2.3.3ii) � r 2̇ s ! r 2 s(b8) � (8x 2 s)(x 2 s)

Finally suppose s ⌘ [x 2 L
↵

(X) | B(x)], again by the induction hypothesis we have � r ✓ r

for all | r | < | s |. Also by part i) we have � ¬B(r), B(r) for all such r. We have the following

template for derivations in RS
⌦

(X):

� ¬B(r), r ✓ r
(^) � ¬B(r), r = r � ¬B(r), B(r)
(^) � ¬B(r), B(r) ^ r = r

(2) � ¬B(r), r 2 s
Lemma 2.5.2ii) � B(r) ! r 2 s

(b8) � (8x 2 s)(x 2 s)

iv) Was shown whilst proving iii).

v) By part i) we have � ¬(s ✓ t), s ✓ t and � ¬(t ✓ s), t ✓ s for all | s | < | t |. We have the

following template for derivations in RS
⌦

(X).

� ¬(s ✓ t), s ✓ t
(_) � ¬(s ✓ t) _ ¬(t ✓ s), s ✓ t

� ¬(t ✓ s), t ✓ s
(_) � ¬(t ✓ s) _ ¬(s ✓ t), t ✓ s

(^) � ¬(s ✓ t) _ ¬(t ✓ s), s ✓ t ^ t ✓ s
2.3.3i) � s 6= t, t = s

vi) If t ⌘ L
↵

(X) then this result is trivial since s 2̇ t ! A := A and s 2̇ t ^B := B.

Now if t ⌘ ū then s 2̇ t := s 2 t and if t ⌘ [x 2 L
↵

(X) |C(x)] then s 2̇ t := C(s). In either case

we have the following template for derivations in RS
⌦

(X):

40

� �, A,B
(_) � �, s 2̇ t ! A,B

� �,¬(s 2̇ t), s 2̇ t by i)
(_) � �, s 2̇ t ! A, s 2̇ t

(^) � �, s 2̇ t ! A, s 2̇ t ^B

vii) By part iii) we have � s = s for all | s | < �
✓+1

+↵ which means we have � s 2̇ L
↵

(X)^s = s

for all such s. From which one application of (2) gives the desired result. ut

Lemma 2.5.4 (Extensionality). For any RS
⌦

(X) formula A(s
1

, ..., s
n

),

� [s
1

6= t
1

], ..., [s
n

6= t
n

],¬A(s
1

, ..., s
n

), A(t
1

, ..., t
n

).

Where [s
i

6= t
i

] := ¬(s
i

✓ t
i

),¬(t
i

✓ s
i

).

Proof. The proof is by induction on rk(A(s
1

, ..., s
n

))#rk(A(t
1

, ..., t
n

)).

Case 1. Suppose A(s
1

, s
2

) ⌘ s
1

2 s
2

. By the induction hypothesis we have � [s
1

6= t
1

], [s 6=
t], s

1

6= s, t
1

= t for all | s | < | s
2

| and all | t | < | t
2

|. What follows is a template for derivations

in RS
⌦

(X), for ease of reading the principal formula of each inference is underlined (some lines

do not necessarily represent single inferences, but in these cases it is clear how to extend the

concept of ”principal formula” in a sensible way).

� [s
1

6= t
1

], [s 6= t], s
1

6= s, t
1

= t
(_) � [s

1

6= t
1

], s 6= t, s
1

6= s, t
1

= t
Lemma 2.5.3 vi) � [s

1

6= t
1

], t 2̇ t
2

! s 6= t, s
1

6= s, t 2̇ t
2

^ t
1

= t
(2) � [s

1

6= t
1

], t 2̇ t
2

! s 6= t, s
1

6= s, t
1

2 t
2

(/2) � [s
1

6= t
1

], s /2 t
2

, s
1

6= s, t
1

2 t
2

Lemma 2.5.3 vi) � [s
1

6= t
1

], s 2̇ s
2

^ s /2 t
2

, s 2̇ s
2

! s
1

6= s, t
1

2 t
2

(b9) � [s
1

6= t
1

], (9x 2 s
2

)(x /2 t
2

), s 2̇ s
2

! s
1

6= s, t
1

2 t
2

(/2) � [s
1

6= t
1

], (9x 2 s
2

)(x /2 t
2

), s
1

/2 s
2

, t
1

2 t
2

Lemma 2.4.6i) � [s
1

6= t
1

], s
2

6= t
2

, s
1

/2 s
2

, t
1

2 t
2

Case 2. Suppose A(s
1

) ⌘ s
1

2 s
1

. In this case ¬A(s
1

) ⌘ s
1

/2 s
1

so the result follows from

Lemma 2.5.3ii).

Case 3. Suppose A(s
1

, ..., s
n

) ⌘ (9y 2 s
i

)(B(y, s
1

, ..., s
n

)) for some 1 i n. Inductively we

have

� [s
1

6= t
1

], ..., [s
n

6= t
n

],¬B(r, s
1

, ..., s
n

), B(r, t
1

, ..., t
n

)

for all | r | < | s
i

|. Now by applying 2.5.3iv) we obtain

� [s
1

6= t
1

], ..., [s
n

6= t
n

], r 2̇ s
i

! ¬B(r, s
1

, ..., s
n

), r 2̇ s
i

^B(r, t
1

, ..., t
n

)

To which we may apply (b9) followed by (b8) to arrive at the desired conclusion.

41

Case 4. Suppose A(s
1

, ..., s
n

) ⌘ (9x 2 r)B(x, s
1

, ..., s
n

) for some r not present in s
1

, ..., s
n

. From

the induction hypothesis we have

� [s
1

6= t
1

], ..., [s
n

6= t
n

], p 2̇ r ! ¬B(p, s
1

, ..., s
n

), p 2̇ r ^B(p, t
1

, ..., t
n

) for all | p | < | r |.

Applying (b9) followed by (b8) gives us the desired result.

The cases where A(s
1

, ..., s
n

) ⌘ 9xB(x, s
1

, ..., s
n

) or A(s
1

, ..., s
n

) ⌘ B _ C may be treated in a

similar manner to case 4. All other cases are dual to one of the ones considered above. ut

Lemma 2.5.5 (Set Induction). For any RS
⌦

(X)-formula F :

�!
rk(A)

8x[(8y 2 x)F (y) ! F (x)] ! 8xF (x)

where A := 8x[(8y 2 x)F (y) ! F (x)].

Proof. Claim:

(*) H[A, s]
!

rk(A)
#!

| s |+1

0

¬A,F (s) for any term s.

We begin by verifying (*) using induction on | s |. From the induction hypothesis we know that

(1) H[A, t]
!

rk(A)
#!

| t |+1

0

¬A,F (t) for all | t | < | s |.

By applying (_) if necessary to (1) we obtain

(2) H[A, t, s]
!

rk(A)
#!

| t |+1
+1

0

¬A, t 2̇ s ! F (t) for all | t | < | s |.

To which we may apply (b8) yielding

(3) H[A, s]
⌘+2

0

¬A, (8y 2 s)F (y) where ⌘ := !rk(A)#!| s |.

Observe that no(¬F (s), F (s)) < !rk(A), so by Lemma 2.5.3i) we have

(4) H[A, s]
⌘+2

0

¬F (s), F (s) .

Applying (^) to (3) and (4) yields

(5) H[A, s]
⌘+3

0

¬A, (8y 2 s)F (y) ^ ¬F (s), F (s) .

To which we may apply (9) to otain

(6) H[A, s]
⌘+4

0

¬A, 9x[(8y 2 x)F (y) ^ ¬F (x)], F (s) .

42

It remains to observe that ¬A ⌘ 9x[(8y 2 x)F (y) ^ ¬F (x)] and that ⌘ + 4 < !rk(A)#!| s |+1,

and hence we may apply Lemma 2.4.6i) to provide

(7) H[A, s]
!

rk(A)
#!

| s |+1

0

¬A,F (s)

so the claim is verified.

Applying (8) to (*) gives

H[A]
!

rk(A)
#⌦

0

¬A, 8xF (x) .

Now by two applications of (_) we may conclude

H[A]
!

rk(A)
#⌦+2

0

A ! 8xF (x) .

It remains to note that no(A ! 8xF (x)) � !⌦+1 > ⌦+ 2, so we have

(2.1) �!
rk(A)

0
A ! (8x 2 L

↵

(X))F (x)

as required. ut

Lemma 2.5.6 (Infinity). Suppose ! < µ < ⌦, then

� (9x 2 L
µ

(X))[(9z 2 x)(z 2 x) ^ (8y 2 x)(9z 2 x)(y 2 z)].

Proof. The following gives a template for derivations in RS
⌦

(X), the idea is that L
!

(X) serves

as a witness inside L
µ

(X).

Lemma 2.5.3vii)

� s 2 L
k

(X) for any | s | < |L
k

(X) | and k < !.
2.3.3ii) � L

k

(X) 2̇ L
!

(X) ^ s 2 L
k

(X)
(b9) � (9z 2 L

!

(X))(s 2 L
k

(X))
2.3.3ii) � s 2̇ L

!

(X) ! (9z 2 L
!

(X))(s 2 z)
(b8) � (8y 2 L

!

(X))(9z 2 L
!

(X))(y 2 z)

� L
0

(X) 2 L
!

(X)
2.3.3ii) � L

0

(X) 2̇ L
!

(X) ^ L
0

(X) 2 L
!

(X)
(b9) � (9z 2 L

!

(X))(z 2 L
!

(X))
(^) � (8y 2 L

!

(X))(9z 2 L
!

(X))(y 2 z) ^ (9z 2 L
!

(X))(z 2 L
!

(X))
2.3.3ii) � L

!

(X) 2̇ L
µ

(X) ^ [(8y 2 L
!

(X))(9z 2 L
!

(X))(y 2 z) ^ (9z 2 L
!

(X))(z 2 L
!

(X))]
(b9) � (9x 2 L

µ

(X))[(9z 2 x)(z 2 x) ^ (8y 2 x)(9z 2 x)(y 2 z)]
ut

Lemma 2.5.7 (�
0

-Separation). Suppose A(a, b
1

, ..., b
n

) be a �
0

-formula of KP with all free

variables indicated, µ a limit ordinal and | s |, | t
0

|, ..., | t
n

| < �
✓+1

+ µ.

� (9y 2 L
µ

(X))[(8x 2 y)(x 2 s ^A(x, t
1

, ..., t
n

)) ^ (8x 2 s)(A(x, t
1

, ..., t
n

) ! x 2 y)]

43

Proof. Let ↵ := max{| s |, | t
0

|, ..., | t
n

|}+ 1 and note that ↵ < �
✓+1

+ µ since µ ia a limit. Now

let � be the unique ordinal such that ↵ = �
✓+1

+ � if such an ordinal exists, if not set � := 0.

Now define

t := [z 2 L
�

(X) | z 2 s ^B(z)]

where B(z) := A(z, t
1

, ..., t
n

). We have the following templates for derivations in RS
⌦

(X):

Lemma 2.5.3 i)

� ¬(r 2 s ^B(r)), r 2 s ^B(r) for all | r | < ↵
Lemma 2.5.2ii) � (r 2 s ^B(r)) ! r 2 s ^B(r)

2.3.3ii) � r 2̇ t ! r 2 s ^B(r)
(b8) � (8x 2 t)(x 2 s ^B(r))

In the following derivation r ranges over terms | r | < | s |.
Lemma 2.5.3 iv)

� ¬(r 2̇ s), r 2 s

Lemma 2.5.3 i)

� ¬B(r), B(r)
(^) � ¬(r 2̇ s),¬B(r), r 2 s ^B(r)

Lemma 2.5.3 iii)

� r = r
(^) � ¬(r 2̇ s),¬B(r), (r 2 s ^B(r)) ^ r = r
2.3.3ii) � ¬(r 2̇ s),¬B(r), r 2̇ t ^ r = r

(2) � ¬(r 2̇ s),¬B(r), r 2 t
Lemma 2.5.2ii) � ¬(r 2̇ s), (B(r) ! r 2 t)
Lemma 2.5.2ii) � r 2̇ s ! (B(r) ! r 2 t)

(b8) � (8x 2 s)(B(x) ! x 2 t)

Now applying (^) to the two preceding derivations and noting that | t | < �
✓+1

+ µ gives us

� t 2̇ L
µ

(X) ^ [(8x 2 t)(x 2 s ^B(r)) ^ (8x 2 s)(B(x) ! x 2 t)]

to which we may apply (b9) to obtain

� (9y 2 L
µ

(X))[(8x 2 y)(x 2 s ^B(x)) ^ (8x 2 s)(B(x) ! x 2 y)].

It should also be checked that

t 2 H[(9y 2 L
µ

(X))[(8x 2 y)(x 2 s ^B(x)) ^ (8x 2 s)(B(x) ! x 2 y)]]

but this is the case since

| s |, | t
0

|, ..., | t
n

| 2 k((9y 2 L
µ

(X))[(8x 2 y)(x 2 s ^B(x)) ^ (8x 2 s)(B(x) ! x 2 y)])

and | t | = max{max{| s |, | t
0

|, ..., | t
n

|}+ 1,�
✓+1

}. ut

Lemma 2.5.8 (Pair and Union). Let µ be a limit ordinal and let s, t be RS
⌦

(X)-terms such

that | s |, | t | < �
✓+1

+ µ, then

i) � (9z 2 L
µ

(X))(s 2 z ^ t 2 z)

44

ii) (9z 2 L
µ

(X))(8y 2 s)(8x 2 y)(x 2 z)

Proof. Let ↵ := max{| s |, | t |} + 1, now let � be the unique ordinal such that ↵ = �
✓+1

+ � if

such an ordinal exists, otherwise set � := 0. Now by Lemma 2.5.3vii) we have

� s 2 L
�

(X) and � t 2 L
�

(X).

Now by (^) and noticing that � < µ since µ is a limit, we have

� L
�

(X) 2̇ L
µ

(X) ^ (s 2 L
�

(X) ^ t 2 L
�

(X)).

To which we may apply (b9) to obtain the desired result.

ii) Let � be the unique ordinal such that | s | = �
✓+1

+ � if such an ordinal exists, otherwise let

� = 0. By Lemma 2.5.3vii) we have � r 2 L
�

(X) for any | r | < | s |. In the following template

for derivations in RS
⌦

(X), r and t range over terms such that | r | < | t | < | s |:
� r 2 L

�

(X)
(_) if necessary � r 2̇ t ! r 2 L

�

(X)
(b8) � (8x 2 t)(x 2 L

�

(X))
(_) if necessary � t 2̇ s ! (8x 2 t)(x 2 L

�

(X))
(b8) � (8y 2 s)(8x 2 y)(x 2 L

�

(X))
2.3.3ii) � L

�

(X) 2̇ L
µ

(X) ^ (8y 2 s)(8x 2 y)(x 2 L
�

(X)) since � < µ
(b9) � (9z 2 L

µ

(X))(8y 2 s)(8x 2 y)(x 2 z)
ut

Lemma 2.5.9 (�
0

-Collection). Suppose F (a, b) is any �
0

formula of KP.

� (8x 2 s)9yF (x, y) ! 9z(8x 2 s)(9y 2 z)F (x, y)

Proof. By Lemma 2.5.3i) we have

� ¬(8x 2 s)9yF (x, y), (8x 2 s)9yF (x, y).

Applying (⌃-Ref
⌦

(X)) yields

H[(8x 2 s)9yF (x, y)]
↵+1

0

¬(8x 2 s)9yF (x, y), 9z(8x 2 s)(9y 2 z)F (x, y)

where ↵ := !rk((8x2s)9yF (x,y))#!rk((8x2s)9yF (x,y)). Now two applications of (_) provides

H[(8x 2 s)9yF (x, y)]
↵+3

0

(8x 2 s)9yF (x, y) ! 9z(8x 2 s)(9y 2 z)F (x, y) .

It remains to note that

↵+ 3 < !rk(8x2s)9yF (x,y)+1 = no((8x 2 s)9yF (x, y) ! 9z(8x 2 s)(9y 2 z)F (x, y))

so the proof is complete. ut

45

Theorem 2.5.10. If KP ` �(a
1

, ..., a
n

) where �(a
1

, ..., a
n

) is a finite set of formulae whose free

variables are amongst a
1

, ..., a
n

, then there is some m < ! (which we may compute from the

derivation) such that

H[s
1

, ..., s
n

]
⌦·!m

⌦+m

�(s
1

, ..., s
n

)

for any operator H and any RS
⌦

(X) terms s
1

, ..., s
n

.

Proof. Suppose �(a
1

, ..., a
n

) ⌘ {A
1

(a
1

, ..., a
n

), ..., A
k

(a
1

, ..., a
n

)}. Note that for any choice of

terms s
1

, ..., s
n

and each 1 i k

rk(A
i

(s
1

, ..., s
n

)) = ! ·max(k(A
i

(s
1

, ..., s
n

))) +m
i

for some m
i

< !

 ! · ⌦+m
i

= ⌦+m
i

.

Therefore

no(A
i

(s
1

, ..., s
n

)) = !rk(Ai(s1,...,sn)) !⌦+mi = !⌦ · !mi = ⌦ · !mi .

So letting m = max(m
1

, ...,m
k

) + 1 we have

no(�(s
1

, ..., s
n

)) ⌦ · !m1#...#⌦ · !mn

= ⌦ · (!m1#...#!mn)

 ⌦ · !m

The proof now proceeds by induction on the KP derivation. If �(a
1

, ..., a
n

) is an axiom of KP

then the result follows from 2.5.3i), 2.5.4, 2.5.5, 2.5.6, 2.5.7, 2.5.8 or 2.5.9.

Now suppose that �(a
1

, ..., a
n

) arises as the result of an inference rule.

Case 1. Suppose the last inference was (b8), so (8x 2 a
i

)F (x, ā) 2 �(ā) and we are in the

following situation in KP

�(ā), c 2 a
i

! F (c, ā)
(b8)

�(ā)

where c is di↵erent from a
1

, ..., a
n

. Inductively we have some m < ! such that

(1) H[s̄, r]
⌦·!m

⌦+m

�(s̄), r 2 s
i

! F (r, s̄) for all | r | < | s
i

|.

1.1 If s
i

is of the form ū we may immediately apply (b8) to complete this case.

Suppose s
i

⌘ L
↵

(X) for some ↵. Applying Lemma 2.4.6iii) to (1) gives

(2) H[s̄, r]
⌦·!m

⌦+m

�(s̄),¬(r 2 s
i

), F (r, s̄) .

Since | r | < | s |, by Lemma 2.5.3vii) we have

(3) � r 2 s.

46

Applying (Cut) to (1) and (2) yields

(4) H[s̄, r]
⌦·!m

+1

⌦+m

�(s̄), F (r, s̄) .

To which we may apply (b8) to complete this case.

Suppose s
i

⌘ [x 2 L
↵

(X) | B(x)], again we may apply Lemma 2.4.6iii) to (1) to obtain

(5) H[s̄, r]
⌦·!m

⌦+m

�(s̄),¬(r 2 s
i

), F (r, s̄) .

Since | r | < | s | by Lemma 2.5.3iv) we have

(6) � ¬(r 2̇ s), r 2 s.

Applying (Cut) to (5) and (6) yields

(7) H[s̄, r]
⌦·!m

+1

⌦+m

�(s̄),¬(r 2̇ s
i

), F (r, s̄) .

Now two applications of (_) provide

(8) H[s̄, r]
⌦·!m

+3

⌦+m

�(s̄), r 2̇ s
i

! F (r, s̄) .

To which we may apply (b8) to complete this case.

Case 2. Suppose the last inference was (8) so 8xA(x, ā) 2 �(ā) and we are in the following

situation in KP

�(ā), F (c, ā)
(8)

�(ā)

where c is di↵erent from a
1

, ...a
n

. Inductively we have some m < ! such that

H[s̄, r]
⌦·!m

⌦+m

�(s̄), F (r, s̄) for all terms r.

We may immediately apply (8) to complete this case.

Case 3. Suppose the last inference was (b9) so (9x 2 s
i

)F (x, s̄) 2 �(s̄) and we are in the

following situation in KP

�(ā), c 2 a
i

^ F (c, ā)
(b9)

�(ā)

3.1 Suppose c is di↵erent from a
1

, ..., a
n

. Using the induction hypothesis we find some m < !

such that

(9) H[s̄]
⌦·!m

⌦+m

�(s̄), ;̄ 2 s
i

^ F (;̄, s̄) .

47

3.1.1 If s
i

is of the form ū we may immediately apply (b9) to complete the case.

3.1.2 Suppose s
i

is of the form L
↵

(X). Applying Lemma 2.4.6iv) to (1) yields

(10) H[s̄]
⌦·!m

⌦+m

�(s̄), F (;̄, s̄) .

Noting that in this case ;̄ 2̇ s ^ F (;̄, s̄) ⌘ F (;̄, s̄), we may apply (b9) to complete this case.

3.1.3 Suppose s
i

is of the form [x 2 L
↵

(X) | B(x)]. First we must verify the following claim

(*) � ¬(;̄ 2 s
i

^ F (;̄, s̄)), ;̄ 2̇ s
i

^ F (;̄, s̄).

Note that owing to Lemma 2.5.4 we have � [r 6= ;̄],¬B(r), B(;̄) for all | r | < | s
i

|. In the

following template for derivations in RS
⌦

(X) r ranges over terms | r | < | s
i

|.
� [r 6= ;̄],¬B(r), B(̄,;)

Lemma 2.5.2ii)
� r 6= ;̄,¬B(r), B(;̄)

Lemma 2.5.2ii)
� B(r) ! r 6= ;̄, B(;̄)

(/2)
� ¬(;̄ 2 s

i

), B(;̄)
Lemma 2.5.3i)

� ¬F (;̄, s̄), F (;̄, s̄)
(^)

� ¬(;̄ 2 s
i

),¬F (;̄, s̄), B(;̄) ^ F (;̄, s̄)
Lemma 2.5.2ii)

� ¬(;̄ 2 s
i

) _ ¬F (;̄, s̄), B(;̄) ^ F (;̄, s̄)
Now applying (Cut) to (9) and (*) we get

(11) H[s̄]
⌦·!m

+1

⌦+m

0 �(s̄), ;̄ 2̇ s
i

^ F (;̄, s̄) .

Note the possible increase in cut rank. We may apply (b9R) to (11) to complete this case.

3.2 Suppose c is one of a
1

, ..., a
n

, without loss of generality let us assume c = a
1

. Applying the

induction hypothesis we can compute some m < ! such that

(12) H[s̄]
⌦·!m

⌦+m

�(s̄), s
1

2 s
i

^ F (s
1

, s̄).

Note that in fact 3.2 subsumes 3.1 since we can conclude (12) from the induction hypothesis

regardless of whether or not c is a member of ā. To help with clarity 3.1 is left in the proof

above, but in later embeddings we shall dispense with such cases.

If s
1

and s
i

are of the form ū and v̄ with | s
1

| < | s
i

| then we may immediately apply (b9) to

complete this case. If this is not the case then we verify the following claim

(**) � ¬(s
1

2 s
i

^ F (s
1

, s̄)), (9x 2 s
i

)F (x, s̄).

To prove (**) we split into cases based on the form of s
i

.

48

3.2.1 Suppose s
i

is of the form ū.

3.2.1.1 If s
1

is also of the form v̄ [remember that by assumption | s
1

| � | s
i

|] then ¬(s
1

2
s
i

), F (s
1

, s̄), (9x 2 s
i

)F (x, s̄) is an axiom so we may apply (_) twice to complete this case.

3.2.1.2 Now suppose s
1

is not of the form v̄. We have following template for derivations in

RS
⌦

(X), here r ranges over terms with | r | < | s
i

|.
Lemma 2.5.3i)

� ¬(r 2 s
i

), r 2 s
i

Lemma 2.5.4
� r 6= s

1

,¬F (s
1

, s̄), F (r, s̄)
(^) � ¬(r 2 s

i

), r 6= s
1

,¬F (s
1

, s̄), r 2 s
i

^ F (r, s̄)
(b9) � ¬(r 2 s

i

), r 6= s
1

,¬F (s
1

, s̄), (9x 2 s
i

)F (x, s̄)
Lemma 2.5.2ii) � r 2 s

i

! r 6= s
1

,¬F (s
1

, s̄), (9x 2 s
i

)F (x, s̄)
(/2) � ¬(s

1

2 s
i

),¬F (s
1

, s̄), (9x 2 s
i

)F (x, s̄)
Lemma 2.5.2ii) � ¬(s

1

2 s
i

) _ ¬F (s
1

, s̄), (9x 2 s
i

)F (x, s̄)

3.2.2 Now suppose s
i

is of the form L
↵

(X). In the following template for derivations in RS
⌦

(X)

r ranges over terms with | r | < | s
i

|.
Lemma 2.5.4

� r 6= s
1

,¬F (s
1

, s̄), F (x, s̄)
2.3.3ii) � r 6= s

1

,¬F (s
1

, s̄), r 2̇ s
i

^ F (x, s̄)
(b9) � r 6= s

1

,¬F (s
1

, s̄), (9x 2 s
i

)F (x, s̄)
2.3.3ii) � r 2̇ s

i

! r 6= s
1

,¬F (s
1

, s̄), (9x 2 s
i

)F (x, s̄)
(/2) � ¬(s

1

2 s
i

),¬F (s
1

, s̄), (9x 2 s
i

)F (x, s̄)
Lemma 2.5.2ii) � ¬(s

1

2 s
i

) _ ¬F (s
1

, s̄), (9x 2 s
i

)F (x, s̄)

3.2.3 Finally suppose s
i

is of the form [x 2 L
↵

| B(x)]. In the following template for derivations

in RS
⌦

(X) r ranges over terms with | r | < | s
i

|.
Lemma 2.5.3i)

� ¬B(r), B(r)
Lemma 2.5.4

� r 6= s,¬F (s
1

, s̄), F (r, s̄)
(^) � ¬B(r), r 6= s

1

,¬F (s
1

, s̄), B(r) ^ F (r, s̄)
(b9) � ¬B(r), r 6= s

1

,¬F (s
1

, s̄), (9x 2 s
i

)F (x, s̄)
Lemma 2.5.2ii) � B(r) ! r 6= s

1

,¬F (s
1

, s̄), (9x 2 s
i

)F (x, s̄)
(/2) � ¬(s

1

2 s
i

),¬F (s
1

, s̄), (9x 2 s
i

)F (x, s̄)
Lemma 2.5.2ii) � ¬(s

1

2 s
i

) _ ¬F (s
1

, s̄), (9x 2 s
i

)F (x, s̄)

This completes the proof of the claim (**). It remains to note that we may apply (Cut) to (**)

and (12) to complete Case 3.

Case 4. Suppose the last inference was (9) so 9xF (x, s̄) 2 �(s̄) and we are in the following

situation in KP:

�(ā), F (c, ā)
(9)

�(ā)

49

Let p = s
j

if c = a
j

otherwise let p = ;̄, from the induction hypothesis we can compute some

m < ! such that

H[s̄]
⌦·!m

⌦+m

�(s̄), F (p, s̄) .

Applying (9) completes this case.

Case 5. If the last inference was (^) or (_) the result follows immediately by applying the

corresponding RS
⌦

(X) inference to the induction hypotheses.

Case 6. Finally suppose the last inference was (Cut). So we are in the following situation in

KP

�(ā), B(ā, b̄) �(ā),¬B(ā, b̄)
(Cut)

�(ā)

Here b̄ := b
1

, ..., b
l

denotes the free variables occurring in B that are di↵erent from a
1

, ..., a
n

.

Let ¯̄; denote the sequence of l occurrences of ;̄. From the induction hypothesis we find m
1

and

m
2

such that

H[s̄]
⌦·!m1

⌦+m1
�(s̄), B(s̄, ¯̄;)

H[s̄]
⌦·!m1

⌦+m2
�(s̄),¬B(s̄, ¯̄;)

To which we may apply (Cut) to complete the proof. ut

2.6 A well ordering proof in KP

The aim of this section is to give a well ordering proof in KP for initial segments of formal

ordinal terms from T (✓). First let

e
0

(✓) : = ⌦
✓

+ 1

e
n+1

(✓) : = !en(✓).

Each e
n

(✓) may be seen as a formal term from the representation system T (✓) from 2.1.13.

Although the term is the same, the order type of terms in T (✓) below e
n

(✓) will be dependent

upon ✓. We aim to verify that for every n < !

KP ` A
n

(✓) :=9↵9f [dom(f) = ↵ ^ range(f) = {a 2 T (✓) | a �
✓

(e
n

(✓)))}
^ 8�, � 2 dom(f)(� < � ! f(�) � f(�))].

A
n

(✓) is a ⌃-formula of KP in which ✓ is a free variable ranging over ordinals. For the remainder

of this section we argue informally in KP. The symbols ↵,�, �, ✓... are to be KP-variables

50

ranging over ordinals and are ordered by <, the symbols a, b, c, ... are seen as KP-variables

ranging over codes of formal terms from T (✓), these are ordered by �. For the remainder of this

section the variable ✓ will remain free as we argue in KP, for ease of reading we shall simply

⌦ and instead of ⌦
✓

and
✓

. This proof is an adaptation to the relativised case of a well

ordering proof in [35].

Definition 2.6.1. The set Acc
✓

is defined by

Acc
✓

:={a � ⌦ | 9↵9f [dom(f) = ↵ ^ range(f) = {b : b � a}
^ 8�, � 2 dom(f)(� < � ! f(�) � f(�))]}.

Lemma 2.6.2 (Acc
✓

-induction). For any KP-formula F (a) we have

(8a 2 Acc
✓

)[(8b � a)F (b) ! F (a)] ! (8a 2 Acc
✓

)F (a).

Proof. For a 2 Acc
✓

let o(a) and f
a

be the unique ordinal and function such that o(a) = dom(f
a

),

{b : b � a} = range(f
a

) and 8�, � 2 o(a)(� < � ! f
a

(�) � f
a

(�)). Now for a contradiction let

us assume that

(8a 2 Acc
✓

)[(8b � a)F (b) ! F (a)] but ¬F (a
0

) for some a
0

2 Acc
✓

Using set induction/foundation we may pick a
0

such that o(a
0

) is minimal. (Note that here we

must make use of the full set induction schema of KP since the formula F is of unbounded

complexity) Now for any b � a
0

we have o(b) < o(a
0

), thus by our choice of a
0

we get F (b),

thus we have

(8b � a
0

)F (b).

So by assumption we have F (a
0

), contradiction. ut

Lemma 2.6.3. Acc
✓

has the following closure properties:

i) b 2 Acc
✓

^ a � b ! a 2 Acc
✓

ii) (8a � b)(a 2 Acc
✓

) ! b 2 Acc
✓

iii) a, b 2 Acc
✓

! a+ b 2 Acc
✓

iv) a, b 2 Acc
✓

! 'ab 2 Acc
✓

v) (8� ✓) �
�

2 Acc
✓

Proof. i) Using the notation defined at the start of the proof of Lemma 2.6.2 we may define

o(a) := {� 2 o(b) | f
b

(�) � a} and f
a

:= f
b

|
o(a)+1

51

thus witnessing that a 2 Acc
✓

.

ii) Let us assume that (8a � b)(a 2 Acc
✓

), we must verify that b 2 Acc
✓

. Using �
0

-Separation

and Infinity we may form the set {a | a � b}, therefore f := [
a�b

f
a

is a set by �
0

-Collection

and Union. Let � := dom(f). Setting o(b) := � + 1 and f
b

:= f [{(�, b)} furnishes us with the

correct witnesses to confirm that b 2 Acc
✓

.

iii) Firstly we must specify what a+b means, since it may not be the case that the string a+b is

a term in T (✓). However, we may define a ✓-primitive recursive function + : T (✓)⇥T (✓) ! T (✓)

which corresponds to ordinal addition.

Let us assume that (8c � b)(a + c 2 Acc
✓

), now if we can show that a + b 2 Acc
✓

then the

desired result will follow from Acc
✓

-induction (2.6.2). Now let d � a+ b, either d � a in which

case d 2 Acc
✓

by i) or d � a and thus d = a + c for some unique c � b. Such a c may be

determined in a ✓-primitive recursive fashion, hence d 2 Acc
✓

by assumption. Thus we have

(8d � a+ b)(d 2 Acc
✓

).

From which we may use ii) to obtain a+ b 2 Acc
✓

, completing the proof.

iv) Again a function ' : T (✓)⇥ T (✓) ! T (✓) may be defined in a ✓-primitve recursive fashion.

It is our aim to show (8x, y 2 Acc
✓

)('xy 2 Acc
✓

), to this end let

F (a) := (8b 2 Acc
✓

)('ab 2 Acc
✓

)

and assume

(*) (8z � a)F (z)

by 2.6.2 it su�ces to verify F (a). So let us assume

(**) a, b 2 Acc
✓

and (8y � b)('ay 2 Acc
✓

)

now we must verify 'ab 2 Acc
✓

. To do this we prove that

d � 'ab) d 2 Acc
✓

by induction on Gd; the term complexity of d.

1) If d is strongly critical then d � a or d � b in which case d 2 Acc
✓

by (*) or (**).

2) If d ⌘ 'd
0

d
1

then we have the following subcases:

52

2.1) If d
0

� a and d
1

� 'ab then since Gd
1

< Gd we get d
1

2 Acc
✓

from the induction hypoth-

esis. So by (*) we get d ⌘ 'd
0

d
1

2 Acc
✓

2.2) If d ⌘ 'ad
1

and d
1

� b then d 2 Acc
✓

by (**).

2.3 If a � d
0

and d � b then d 2 Acc
✓

since b 2 Acc
✓

.

3. If d ⌘ d
1

+ ... + d
n

and n > 1 we get d
1

, ..., d
n

2 Acc
✓

from the induction hypothesis and

thus d 2 Acc
✓

follows from iii).

Thus we have verified that

(8b 2 Acc
✓

)[(8y � b)('ay 2 Acc
✓

) ! 'ab 2 Acc
✓

]

So, from Acc
✓

-induction we get (8b 2 Acc
✓

)('ab 2 Acc
✓

), ie. F (a) completing the proof.

v) We aim to show that

(8� ✓)[(8� < �)(�
�

2 Acc
✓

) ! �
�

2 Acc
✓

]

from which we may use transfinite induction along ✓ (since ✓ is an ordinal) to obtain the desired

result.

So suppose � ✓ and (8� < �)(�
�

2 Acc
✓

). Now suppose b � �
�

, by induction on the term

complexity of b we verify that b 2 Acc
✓

.

If b ⌘ 0 we are trivially done by ii) or if b ⌘ �
�

for some � < � then we know b 2 Acc
✓

by

assumption.

If b ⌘ b
0

+ ...+ b
n

or b ⌘ 'b
0

b
1

then we may use parts iii) and iv) and the induction hypothesis

since the components b
i

have smaller term complexity.

It cannot be the case that b ⌘ b
0

since a � �
✓

for every a.

Thus using ii) we get that �
�

2 Acc
✓

and the proof is complete. ut

Definition 2.6.4. By recursion through the construction of ordinal terms in T (✓) we define

the set SC�⌦

(a) which lists the most recent strongly critical ordinal below ⌦ used in the build

up of the ordinal term a:

1) SC�⌦

(0) := SC�⌦

(⌦) := ;

53

2) SC�⌦

(a) := {a} if a ⌘ �
�

for some � ✓ or a ⌘ a
0

.

3) SC�⌦

(a
1

+ ...+ a
n

) := [
1in

SC�⌦

(a
i

)

4) SC�⌦

('a
0

a
1

) := SC�⌦

(a
0

) [SC�⌦

(a
1

)

5) SC�⌦

(a) := { a}.

Now let

M
✓

:= {a 2 T (✓) | SC�⌦

(a) ✓ Acc
✓

}
and

a �
M✓ b := a, b 2 M

✓

^ a � b.

Finally for a definable class U we define the following formula

Prog
M✓

(U) := (8y 2 M
✓

)[(8z �
M✓ y)(z 2 U) ! (y 2 U)]

Lemma 2.6.5.

Acc
✓

= M
✓

\ ⌦ := {a 2 M
✓

| a � ⌦}

Proof. Suppose that a 2 Acc
✓

and observe that (8x 2 SC�⌦

(a))(x � a), thus SC�⌦

(a) ✓ Acc
✓

by 2.6.3i) thus we have verified that a 2 M
✓

\ ⌦.

Now let us suppose that a 2 M
✓

\ ⌦, so we know that SC�⌦

(a) ✓ Acc
✓

. By induction on the

term complexity Ga we verify that a 2 Acc
✓

.

Clearly 0 2 Acc
✓

and if a ⌘ �
�

for some � ✓ then a 2 Acc
✓

by Lemma 2.6.3v).

If a ⌘ a
1

+...+a
n

then we get a
1

, ..., a
n

2 M
✓

\⌦ since SC�⌦

(a
i

) ✓ SC�⌦

(a) for each i. Now us-

ing the induction hypothesis we get a
1

, ..., a
n

2 Acc
✓

and so by Lemma 2.6.3ii) we have a 2 Acc
✓

.

If a ⌘ 'bc then we get b, c 2 M
✓

\ ⌦, so using the induction hypothesis we get b, c 2 Acc
✓

and

so by Lemma 2.6.3iii) we have a 2 Acc
✓

.

If a ⌘ a
0

then SC�⌦

(a) = {a} so we have a 2 Acc
✓

by assumption. ut

Definition 2.6.6. For a definable class U let

U � := {b 2 M
✓

| (8a 2 M
✓

)[M
✓

\ a ✓ U ! M
✓

\ a+ !b ✓ U]}

where M
✓

\ a := {b 2 M
✓

| b � a}.

Lemma 2.6.7. KP ` Prog
M✓

(U) ! Prog
M✓

(U �)

54

Proof. Assume

Prog
M✓

(U)(1)

b 2 M
✓

(2)

(8x �
M✓ b)(z 2 U �)(3)

Under these assumptons we need to verify that b 2 U �. Since we already have that b 2 M
✓

by

(2), it su�ces to verify

(8a 2 M
✓

)[M
✓

\ a ✓ U ! M
✓

\ a+ !b ✓ U]

to this end we assume that

(4) a 2 M
✓

and M
✓

\ a ✓ U

Now choose some d 2 M
✓

\ a+ !b, we must show that d 2 U under the assumptions (1)-(4).

If d � a then we have d 2 U by (4).

If d = a then using (1) and (4) we have a 2 U .

If d � a then since d � a+ !b, we may find d
1

, ..., d
k

such that

d = a+ !d1 + ...+ !dk and d
k

� ... � d
1

� b

Since M
✓

\ a ✓ U we get M
✓

\ a+ !d1 ✓ U from (3).

In a similar fashion using (3) a further k � 1 times we obtain

M
✓

\ a+ !d1 + ...+ !dk ✓ U

Finally using one application of Prog
M✓(U) (assumption (1)) we have d 2 U and thus the proof

is complete. ut

Definition 2.6.8. We define the class X
✓

in KP as

X
✓

:= {a 2 M
✓

| (9x 2 Ka)(x ⌫ a) _ a 2 Acc
✓

}

Recall that the function k was defined in Definition 2.1.11 and can be computed in a ✓-primitive

recursion fashion. The class X
✓

may be thought of as those a 2 M
✓

for which either a is

undefined or a 2 Acc
✓

.

Lemma 2.6.9. KP ` Prog
M✓

(X
✓

).

55

Proof. Assume

a 2 M
✓

(1)

(8z �
M✓ a)(z 2 X

✓

)(2)

We need to verify that a 2 X
✓

. If (9x 2 Ka)(x ⌫ a) then we are done, so assume (8x 2
Ka)(x � a) and thus a 2 T (✓) and we must verify that a 2 Acc

✓

. To achieve this we verify

that

(*) b � a) b 2 Acc
✓

from which we would be done by 2.6.3ii). To verify (*) we proceed by induction on Gb, the

term complexity of b.

If b ⌘ 0 or b ⌘ �
�

for some � ✓ we are done by 2.6.3v).

If b ⌘ b
0

+ ...+ b
n

or b ⌘ 'b
0

b
1

then the result follows by the induction hypothesis and 2.6.3ii)

or 2.6.3iii).

So suppose that b ⌘ b
0

. It must be the case that (8x 2 Kb
0

)(x � b
0

) and b
0

� a. We must

now show that b
0

2 M
✓

in order to use (2) to conclude that b
0

2 X
✓

. The claim is that

(**) SC�⌦

(b
0

) ✓ Acc
✓

and thus b
0

2 M
✓

Suppose d 2 SC�⌦

(b
0

) then either d ⌘ �
�

for some � ✓ in which case d 2 Acc
✓

by 2.6.3v) or

d ⌘ d
0

� a for some d
0

. But

Gd Gb
0

< Gb

and thus d 2 Acc
✓

by induction hypothesis. Thus the claim (**) is verified. Now using (2) we

obtain b
0

2 X
✓

which implies b ⌘ b
0

2 Acc
✓

. ut

Lemma 2.6.10. For any n < ! and any definable class U

KP ` Prog
M✓

(U) ! M
✓

\ e
n

(✓) ✓ U ^ e
n

(✓) 2 U.

Proof. We proceed by induction on n [outside of KP].

If n = 0 then Prog
M✓(U) says that

(8a 2 Acc
✓

)[(8b � a)(b 2 U) ! a 2 U].

So using Acc
✓

-induction (Lemma 2.6.2) we obtain Acc
✓

✓ U . Hence from 2.6.5 we get M
✓

\⌦ ✓
U . Now ⌦,⌦+ 1 2 M

✓

so using Prog
M✓(U) a further two times we have ⌦+ 1 := e

o

(✓) 2 U as

56

required.

Now suppose the result holds up to n; since the induction hypothesis holds for all definable

classes we have that that

KP ` Prog
M✓

(U �) ! M
✓

\ e
n

(✓) ✓ U � ^ e
n

(✓) 2 U �

and by Lemma 2.6.7 we have

(1) KP ` Prog
M✓

(U) ! M
✓

\ e
n

(✓) ✓ U � ^ e
n

(✓) 2 U �.

Now we argue informally in KP. Suppose Prog
M✓(U), then from (1) we obtain

M
✓

\ e
n

(✓) ✓ U � ^ e
n

(✓) 2 U �.

This says that

(8b 2 M
✓

\ (e
n

(✓) + 1))(8a 2 M
✓

)[M
✓

\ a ✓ U ! M
✓

\ a+ !b ✓ U].

Now if we put a = 0 and b = e
n

(✓) (noting that e
n

(✓) 2 M
✓

) we obtain

M
✓

\ !en(✓) ✓ U

from which Prog
M✓(U) implies !en(✓) 2 U as required. ut

Theorem 2.6.11. For every n < !

KP ` (e
n

(✓)) 2 Acc
✓

and hence KP ` A
n

(✓).

Proof. By 2.6.9 we have Prog
M✓

(X
✓

) recalling that

X
✓

:= {a 2 M
✓

| (9x 2 Ka)(x ⌫ a) _ a 2 Acc
✓

}.

So from 2.6.10 we get e
n

(✓) 2 X for any n < ! and thus (e
n

(✓)) 2 Acc
✓

. ut

2.7 The provably total set functions of KP

For each n < ! we define the following recursive set function

G
n

(X) := L
 (en(rk(X)))

(X)

For a formula A(a, b) of KP let

8x9!yA(x, y) := 8x8y
1

8y
2

[A(x, y
1

) ^A(x, y
2

) ! y
1

= y
2

] ^ 8x9yA(x, y).

57

Definition 2.7.1. If T is a theory formulated in the language of set theory, f a set function

and X a class of formulae. We say that f is X definable in T if there is some X-formula A
f

(a, b)

with exactly the free variables a, b such that

i) V |= A
f

(x, y) $ f(x) = y.

ii) T ` 8x9!yA
f

(x, y).

Theorem 2.7.2. Suppose f is a set function that is ⌃ definable in KP, then there is some n

(which we may compute from the finite derivation) such that

V |= 8x(f(x) 2 G
n

(x)).

Moreover G
m

is ⌃ definable in KP for each m < !.

Proof. Let A
f

(a, b) be the ⌃ formula expressing f such that KP ` 8x9!yA
f

(x, y) and fix an

arbitrary set X. Let ✓ be the rank of X. Applying Theorem 2.5.10 we can compute some k < !

such that

H
0

⌦·!k

⌦+k

8x9!yA
f

(x, y) .

Applying Lemma 3.4.1iv) twice we get

H
0

⌦·!k

⌦+k

9yA
f

(X, y) .

Applying Theorem 2.4.8 (predicative cut elimination) we get

H
0

ek+1(✓)

⌦+1

9yA
f

(X, y) .

Now by Theorem 2.4.14 (collapsing) we have

H
ek+2(✓)

 (ek+2(✓))

 (ek+2(✓))
9yA

f

(X, y) .

Applying Theorem 2.4.8 (predicative cut elimination) again yields

H
�

'(�)(�)

0

9yA
f

(X, y) where � := e
k+2

(✓).

Now by Lemma 2.4.9 (boundedness) we obtain

(1) H
�

↵

0

(9y 2 L
↵

)A
f

(X, y)L↵ where ↵ := '(�)(�).

Since (1) contains no instances of (Cut) or (⌃-Ref
⌦

(X)), it follows by induction on ↵ that

L
↵

(X) |= 9yA
f

(X, y)

It remains to note that L
↵

(X) ✓ G
k+3

(X) to complete this direction of the proof.

For the other direction we argue informally in KP. Let X be an arbitrary set, we may specify

the rank of X in a �
0

manner([3] p29). By Theorem 2.6.11 we can find an ordinal of the same

order type as e
n

(rk(X)). We can now generate L
en(rk(X))

(X) by ⌃-recursion ([3] p26 theorem

6.4). ut

58

The comparison of Theorem 2.0.2 with Theorem 2.7.2 provides a pleasing relation between the

arithmetic and set theoretic worlds.

Remark 2.7.3. In fact the first part of 2.7.2 can be carried out inside KP, i.e. If f is ⌃

definable in KP then we can compute some n such that KP ` 8x(9!y 2 G
n

(x))A
f

(x, y). This

is not immediately obvious since it appears we need induction up to ("
⌦✓+1

), which we do not

have access to inKP. The way to get around this is to note that we could, in fact, have managed

with an infinitary system based on an ordinal representation built out of B
✓

(e
m

(✓)), provided

m is high enough, and we may compute how high m needs to be from the finite derivation. We

do have access to induction up to (e
m

(✓)) in KP by Theorem 2.6.11.

59

60

Chapter 3

An ordinal analysis of IKP

This chapter provides a detailed rendering of the ordinal analysis of Kripke-Platek set theory

formulated with intuitionistic logic, IKP. This is done in such a way that not only do we char-

acterise the proof theoretic ordinal of IKP (in the sense of [34]), but also so that we are able

to extract witness terms from the resulting cut-free derivations of ⌃ sentences in the infinitary

system. This results in a proof that IKP has the existence property for ⌃ sentences, which in

conjunction with results in [40] verifies that CZF� has the full existence property.

This chapter is essentially an application of well known techniques to the intuitionistic case.

There are certain technical issues arising in the intuitionistic case that need checking, moreover

many of the arguments in this chapter are modular and transfer over to the stronger systems

analysed in subsequent chapters with minimal changes.

3.1 A sequent calculus formulation of IKP

Definition 3.1.1. The language of IKP consists of free variables a
0

, a
1

, ..., bound variables

x
0

, x
1

, ..., the binary predicate symbol 2 and the logical symbols ¬,_,^,!, 8, 9 as well as paren-

theses), (.

The atomic formulas are those of the form a 2 b.

The formulas of IKP are defined inductively by:

i) All atomic formulas are formulas.

ii) If A and B are formulas then so are ¬A, A _B, A ^B and A ! B.

iii) If A(b) is a formula in which the bound variable x does not occur, then 8xA(x), 9xA(x),

(8x 2 a)A(x) and (9x 2 a)A(x) are also formulas.

61

Quantifiers of the form 9x and 8x will be called unbounded and those of the form (9x 2 a) and

(8x 2 a) will be referred to as bounded quantifiers.

A �
0

-formula is one in which no unbounded quantifiers appear.

The expression a = b is to be treated as an abbreviation for (8x 2 a)(x 2 b) ^ (8x 2 b)(x 2 a).

The derivations of IKP take place in a two-sided sequent calculus. The sequents derived are

intuitionistic sequents of the form �) � where � and � are finite sets of formulas and �

contains at most one formula. The intended meaning of �) � is that the conjunction of

formulas in � implies the formula in �, or if � is empty, a contradiction. The expressions) �

and �) are shorthand for ;) � and �) ; respectively.

The axioms of IKP are:

Logical axioms: �, A,) A for every �
0

formula A.

Extensionality: �) a = b ^B(a) ! B(b) for every �
0

formula B(a).

Pair: �) 9z(a 2 z ^ b 2 z).

Union: �) 9z(8y 2 z)(8x 2 y)(x 2 z).

�
0

-Separation: �) 9y[(8x 2 y)(x 2 a ^B(x)) ^ (8x 2 a)(B(x) ! x 2 y)]

for every �
0

-formula B(a).

Set Induction: �) 8x[(8y 2 xF (y) ! F (x)] ! 8xF (x) for any formula F (a).

Infinity: �) 9x[(9z 2 x)(z 2 x) ^ (8y 2 x)(9z 2 x)(y 2 z)].

�
0

-Collection: �) (8x 2 a)9yG(x, y) ! 9z(8x 2 a)(9y 2 z)G(x, y) for any �
0

-formula G.

The rules of inference are

�, C) �
(^L) For C 2 {A,B}

�, A ^B) �
�) A �) B(^R)

�) A ^B

�, A) � �, B) �
(_L)

�, A _B) �
�) C(_R) For C 2 {A,B}

�) A _B

�) A(¬L)
�,¬A)

�, A)
(¬R)

�) ¬A
�)(?)

�) A

�, B) � �) A
(! L)

�, A ! B) �
�, A) B

(! R)
�) A ! B

�, a 2 b ^ F (a)) �
(b9L)

�, (9x 2 b)F (x)) �

�) a 2 b ^ F (a)
(b9R)

�) (9x 2 b)F (x)

62

�, a 2 b ! F (a)) �
(b8L)

�, (8x 2 b)F (x)) �

�) a 2 b ! F (a)
(b8R)

�) (8x 2 b)F (x)

�, F (a)) �
(9L)

�, 9xF (x)) �

�) F (a)
(9R)

�) 9xF (x)

�, F (a)) �
(8L)

�, 8xF (x)) �

�) F (a)
(8R)

�) 8xF (x)

�) A �, A) �
(Cut)

�) �

In each of the inferences (b9L), (9L) (b8R) and (8R) the variable a is forbidden from occurring

in the conclusion. Such a variable is known as the eigenvariable of the inference.

The minor formulae of an inference are those rendered prominently in its premises, the other

formulae in the premises will be referred to as side formulae. The principal formula of an

inference is the one rendered prominently in the conclusion. Note that in inferences where the

principal formula is on the left, the principal formula can also be a side formula of that inference,

when this happens we say that there has been a contraction.

3.2 An ordinal notation system

Given below is a very brief description of how to carry out the construction of a primitive

recursive ordinal notation system for the Bachmann-Howard ordinal. This construction is very

similar to the one carried out in full detail in the previous chapter, only there is no ordering

inserted as an initial segment.

Definition 3.2.1. Let ⌦ be a ‘big’ ordinal, eg. @
1

. (In fact we could have chosen !CK

1

as shown

in [31].) We define the sets B⌦(↵) and ordinals
⌦

(↵) by transfinite recursion on ↵ as follows

B⌦(↵) =

8
><

>:

closure of {0,⌦} under:

+, (⇠, ⌘ 7! '⇠⌘)

(⇠ 7�!
⌦

(⇠))
⇠<↵

(3.1)

⌦

(↵) ' min{⇢ < ⌦ : ⇢ /2 B(↵)}.(3.2)

It can be shown that
⌦

(↵) is always defined and thus
⌦

(↵) < ⌦. Moreover, it can also be

shown that B
⌦

(↵) \ ⌦ =
⌦

(↵).

63

Let "
⌦+1

be the least orinal ⌘ > ⌦ such that !⌘ = ⌘. The set B⌦("
⌦+1

) gives rise to a primitive

recursive ordinal notation system [6] [35]. The ordinal
⌦

("
⌦+1

) is known as the Bachmann-

Howard ordinal. There are many slight variants in the specific ordinal functions used to build

up a notation system for this ordinal, for example rather than ‘closing o↵’ under the ' function

at each stage, we could have chosen !-exponentiation, all the systems turn out to be equivalent,

in that they eventually ‘catch-up’ with one another and the specific ordinal functions used can

be defined in terms of one another. Here the functions ' and are chosen as primitive since

they correspond to the ordinal operations arising from the two main cut elimination theorems

of the next section.

3.3 The infinitary system IRS⌦

The purpose of this section is to define an intuitionistic style infinitary system IRS
⌦

within

which we will be able to embed IKP and then extract useful information about IKP derivations.

Henceforth all ordinals will be assumed to belong to the primitive recursive ordinal representa-

tion system arising from B⌦("
⌦+1

).

The system is based around the constructible hierarchy up to level ⌦.

L
0

:= ;
L
↵+1

= {X ✓ L
↵

|X is definable over L
↵

in the language of IKP with parameters}
L
�

:=
[

⇠<�

L
⇠

if � is a limit ordinal

Definition 3.3.1. We inductively define the terms of IRS
⌦

. To each term t we also assign an

ordinal level |t|.

i) For each ↵ < ⌦, L
↵

is a term with |L
↵

| := ↵.

ii) If F (a, b
1

, ..., b
n

) is a formula of IKP with all free variables indicated and s
1

, ..., s
n

are IRS
⌦

terms with levels less than ↵, then

[x 2 L
↵

| F (x, s
1

, ..., s
n

)L↵]

is a term of level ↵. Here FL↵ indicates that all unbounded quantifiers in F are restricted

to L
↵

.

64

The formulae of IRS
⌦

are of the form F (s
1

, ..., s
n

) where F (a
1

, ..., a
n

) is a fomula of IKP with

all free variables displayed and s
1

, ..., s
n

are IRS
⌦

-terms.

Note that the system IRS
⌦

does not contain free variables. We can think of the universe

made up of IRS
⌦

-terms as a formal, syntactical version of L
⌦

, unbounded quantifiers in IRS
⌦

-

formulas can be thought of as ranging over L
⌦

.

For the remainder of this section IRS
⌦

-terms and IRS
⌦

-formulae will simply be referred to as

terms and formulae.

A formula is said to be �
0

if it contains no unbounded quantifiers.

The ⌃-formulae are the smallest collection containing the �
0

-formulas and containing A _ B,

A^B, (8x 2 s)A, (9x 2 s)A and 9xA whenever it contains A and B. Likewise The ⇧-formulae

are the smallest collection containing the �
0

-formulas and containing A_B, A^B, (8x 2 s)A,

(9x 2 s)A and 8xA whenever it contains A and B.

Abbreviation 3.3.2. For ⇧ a binary propositional connective, A a formula and s, t terms with

| s | < | t | we define the following abbreviation:

s 2̇ t ⇧A :=A if t is of the form L
↵

:=B(s) ⇧A if t is of the form [x 2 L
↵

|B(x)]

Like in IKP, derivations in IRS
⌦

take place in a two sided sequent calculus. Intuitionistic

sequents of the form �) � are derived, where � and � are finite sets of formulae and at most

one formula occurs in �. �,�,⇤, ... will be used as meta variables ranging over finite sets of

formulae.

IRS
⌦

has no axioms, although note that some of the rules can have an empty set of premises.

The inference rules are as follows:

65

(2L)1
�, p 2̇ t ^ r = p) � for all | p | < | t |
�, r 2 t) �

(2R) �) s 2̇ t ^ r = s
�) s2 t

if | s | < | t |

(b8L) �, s 2̇ t ! A(s)) �
�, (8x 2 t)A(x)) �

if | s | < | t |

(b8R)1
�) p 2̇ t ! A(p) for all | p | < | t |
�) (8x 2 t)A(x)

(b9L)1 �, p 2̇ t ^A(p)) � for all | p | < | t |
�, (9x 2 t)A(x)) �

(b9R)
�) s 2̇ t ^A(s)
�) (9x 2 t)A(x)

if | s | < | t |

(8L) �, A(s)) �
�, 8xA(x)) �

(8R)1
�) A(p) for all p
�) 8xA(x)

(9L)1 �, A(p)) � for all p
�, 9xA(x)) �

(9R)
�) A(s)

�) 9xA(x)

(⌃-Ref
⌦

) �) A
�) 9zAz

if A is a ⌃-formula,

As well as the rules (^L), (^R), (_L), (_R), (¬L), (¬R), (?), (! L), (! R) and (Cut) which

are defined identically to the rules of the same name in IKP.

In general we are unable to remove cuts from IRS
⌦

derivations, one of the main obstacles to full

cut elimination comes from (⌃-Ref
⌦

) since it breaks the symmetry of the other rules. However

we can still perform cut elimination on certain derivations, provided they are of a very uniform

kind. Luckily, certain embedded proofs from IKP will be of this form. In order to express

uniformity in infinite proofs we draw on [8], where Bucholz developed a powerful method of

describing such uniformity, called operator control.

Definition 3.3.3. Let

P (ON) = {X : X is a set of ordinals}.

66

A class function

H : P (ON) ! P (ON)

will be called an operator if H satisfies the following conditions for all X 2P (ON):

1. X ✓ Y) H(X) ✓ H(Y) (monotone)

2. X ✓ H(X) (inclusive)

3. H(H(X)) = H(X) (idempotent)

4. 0 2 H(X) and ⌦ 2 H(X).

5. If ↵ has Cantor normal form !↵1 + · · ·+ !↵n , then

↵2H(X) i↵ ↵
1

, ...,↵
n

2H(X).

The latter ensures that H(X) will be closed under + and � 7! !�, and decomposition of its

members into additive and multiplicative components.

From now on ↵ 2 H and {↵
1

, ...,↵
n

} ✓ H will be considered shorthand for ↵ 2 H(;) and

{↵
1

, ...,↵
n

} ✓ H(;) respectively.

Definition 3.3.4. If A is a formula let

k(A) := {↵ 2 ON : the symbol L
↵

occurs in A, subterms included}.

Likewise we define

k({A
1

, ..., A
n

}) := k(A
1

) [... [k(A
n

) and k(�) �) := k(�) [k(�).

Now for H an arbitrary operator, s a term and X a formula, set of formulae or a sequent we

define

H[s](X) :=H(X [{|s|})
HX :=H(X [k(X))

Lemma 3.3.5. Let H be an operator, s a term and X a formula, set of formulae or sequent.

(i) For any X,X 0 2 P (ON), if X 0 ✓ X then H(X 0) ✓ H(X)].

(ii) H[s] and H[X] are operators.

(iii) If k(X) ✓ H(;) then H[X] = H.

(iv) If | s | 2 H then H[s] = H.

67

Proof. This result is demonstrated in full in [35]. ut

We also need to keep track of the complexity of cuts appearing in derivations.

Definition 3.3.6. The rank of a term or formula is determined by

1. rk(L
↵

) := ! · ↵
2. rk([x 2 L

↵

| F (x)]) := max{! · ↵+ 1, rk(F (L
0

)) + 2}
3. rk(s 2 t) := max{rk(s) + 6, rk(t) + 1}
4. rk(A ^B) = rk(A _B) = rk(A ! B) := max{rk(A) + 1, rk(B) + 1}
5. rk(¬A) := rk(A) + 1

6. rk((9x 2 t)A(x)) = rk((8x 2 t)A(x)) := max{rk(t), rk(F (L
0

)) + 2}
7. rk(9xA(x)) = rk(8xA(x)) := max{⌦, rk(F (L

0

)) + 1}
Observation 3.3.7. i) rk(s) = ! · |s|+ n for some n < !.

ii) If A is �
0

, rk(A) = ! ·max(k(A)) +m for some m < !.

iii) If A contains unbounded quantifiers rk(A) = ⌦+m for some m < !.

iv) rk(A) < ⌦ if and only if A is �
0

.

There is plenty of leeway in defining the actual rank of a formula, basically we need to make

sure the following lemma holds.

Lemma 3.3.8. In every rule of IRS
⌦

other than (⌃-Ref
⌦

) and (Cut), the rank of the minor

formulae is strictly less than the rank of the principal formula.

Proof. This result is demonstrated for a di↵erent set of propositional connectives in [35], the

adapted proof to the intuitionistic system is similar. ut

Definition 3.3.9 (Operator controlled derivability for IRS
⌦

). LetH be an operator and �) �

an intuitionistic sequent of IRS
⌦

, we define the relation H ↵

⇢

�) � by recursion on ↵.

We require always that k(�) �)[{↵} ✓ H, this condition will not be repeated in the inductive

clauses for each of the inference rules of IRS
⌦

below. The column on the right gives the ordinal

requirements for each of the inference rules.

(2L)1
H[r]

↵r

⇢

�, r 2̇ t ^ r = s) � for all | r | < | t |
H ↵

⇢

�, s 2 t) �
| r | ↵

r

< ↵

(2 R)
H ↵0

⇢

�) r 2̇ t ^ r = s

H ↵

⇢

�) s 2 t

↵
0

< ↵

| r | < | t |
| r | < ↵

68

(b8L) H ↵0

⇢

�, s 2̇ t ! A(s)) �

H ↵

⇢

�, (8x 2 t)A(x)) �

↵
0

< ↵

| s | < | t |
| s | < ↵

(b8R)1
H[s]

↵s

⇢

�) s 2̇ t ! F (s) for all | s | < | t |
H ↵

⇢

�) (8x 2 t)F (x)
| s | ↵

s

< ↵

(b9L)1
H[s]

↵s

⇢

�, s 2̇ t ^ F (s)) � for all | s | < | t |
H ↵

⇢

�, (9x 2 t)F (x)) �
| s | ↵

s

< ↵

(b9R)
H ↵0

⇢

�) s 2̇ t ^A(s)

H ↵

⇢

�) (9x 2 t)A(x)

↵
0

< ↵

| s | < | t |
| s | < ↵

(8L) H ↵0

⇢

�, F (s)) �

H ↵

⇢

�, 8xF (x)) �

↵
0

+ 1 < ↵

| s | < ↵

(8R)1
H[s]

↵s

⇢

�) F (s) for all s

H ↵

⇢

�) 8xF (x)
| s | < ↵

s

+ 1 < ↵

(9L)1
H[s]

↵s

⇢

�, F (s)) � for all s

H ↵

⇢

�, 9xF (x)) �
| s | < ↵

s

+ 1 < ↵

(9R)
H ↵0

⇢

�) F (s)

H ↵

⇢

�,) 9xF (x)

↵
0

+ 1 < ↵

| s | < ↵

(Cut)
H ↵0

⇢

�, B) � H ↵1

⇢

�) B

H ↵

⇢

�) �

↵
0

,↵
1

< ↵

rk(B) < ⇢

(⌃-Ref
⌦

)
H ↵0

⇢

�) A

H ↵

⇢

�) 9z Az

↵
0

+ 1,⌦ < ↵

A is a ⌃-formula

Lastly if �) � is the result of a propositional inference of the form (^L), (^R), (_L), (_R),

(¬L), (¬R), (?), (! L) or (! R), with premise(s) �
i

) �
i

then from H ↵0

⇢

�
i

) �
i

(for each

i) we may conclude H ↵

⇢

�) � , provided ↵
0

< ↵.

Lemma 3.3.10 (Weakening and Persistence for IRS
⌦

). i) If �
0

✓ �, k(�) �) ✓ H, ↵
0

↵ 2 H, ⇢

0

 ⇢ and H ↵0

⇢0
�
0

) � then

H ↵

⇢

�) �

69

ii) If � � � 2 H and H ↵

⇢

�, (9x 2 L
�

)A(x)) � then H ↵

⇢

�, (9x 2 L
�

)A(x)) � .

iii) If � � � 2 H and H ↵

⇢

�) (8x 2 L
�

)A(x) then H ↵

⇢

�) (8x 2 L
�

)A(x)

iv) If � 2 H and H ↵

⇢

�, 9xA(x)) � then H ↵

⇢

�, (9x 2 L
�

)A(x)) � .

v) If � 2 H and H ↵

⇢

�) 8xA(x) then H ↵

⇢

�) (8x 2 L
�

)A(x) .

Proof. We show i), ii) and v).

i) is proved by an easy induction on ↵.

ii) Is also proved using induction on ↵, suppose � � � 2 H(;) and H ↵

⇢

�, (9x 2 L
�

)A(x)) � .

If (9x 2 L
�

)A(x) was not the principal formula of the last inference or the last inference was

not (b9L)1 then we may apply the induction hypotheses to it’s premises followed by the same

inference again. So suppose (9x 2 L
�

)A(x) was the principal formula of the last inference which

was (b9L)1, so we have

H[s]
↵s

⇢

�, (9x 2 L
�

)A(x), A(s)) � for all |s| < �, with ↵
s

< ↵.

From the induction hypothesis we obtain

H[s]
↵s

⇢

�, (9x 2 L
�

)A(x), A(s)) � for all |s| < �, with ↵
s

< ↵

but since � � � this also holds for all |s| < �. So by another application of (b9L)1 we get

H ↵

⇢

�, (9x 2 L
�

)A(x)) �

as required.

For v) suppose H ↵

⇢

�) 8xA(x) . The interesting case is where 8xA(x) was the principal

formula of the last inference, which was (8R)1, in this case we have

H[s]
↵s

⇢

�) A(s) for all s, with | s | < ↵
s

+ 1 < ↵.

So taking just the cases where | s | < � and noting that in these cases A(s) ⌘ s 2̇ L
�

! A(s),

we may apply (b8R) to obtain

H ↵

⇢

�) (8x 2 L
�

)A(x)

as required.

The proofs of iii) and iv) may be carried out in a similar manner to those above. ut

70

3.4 Cut elimination for IRS⌦

Lemma 3.4.1 (Inversions of IRS
⌦

). i) If H ↵

⇢

�, A ^B) � then H ↵

⇢

�, A,B) � .

ii) If H ↵

⇢

�) A ^B then H ↵

⇢

�) A and H ↵

⇢

�) B .

iii) If H ↵

⇢

�, A _B) � then H ↵

⇢

�, A) � and H ↵

⇢

�, B) � .

iv) If H ↵

⇢

�, A ! B) � then H ↵

⇢

�, B) � .

v) If H ↵

⇢

�) A ! B then H ↵

⇢

�, A) B .

vi) If H ↵

⇢

�) ¬A then H ↵

⇢

�, A) .

vii) If H ↵

⇢

�, r 2 t) � then H[s]
↵

⇢

�, s 2̇ t ^ r = s) � for all |s| < |t|.

viii) If H ↵

⇢

�, (9x 2 t)A(x)) � then H[s]
↵

⇢

�, s 2̇ t ^A(s)) � for all |s| < |t|.

ix) If H ↵

⇢

�) (8x 2 t)A(x) then H[s]
↵

⇢

�) s 2̇ t ! A(s) for all |s| < |t|.

x) If H ↵

⇢

�, 9xA(x)) � then H[s]
↵

⇢

�, A(s)) � for all s.

xi) If H ↵

⇢

�,) 8xA(x) then H[s]
↵

⇢

�) A(s) for all s.

Proof. All proofs are by induction on ↵, we treat three of the most interesting cases, iv), vi)

and x).

iv) Suppose H ↵

⇢

�, A ! B) � , If the last inference was not (! L) or the principal formula

of that inference was not A ! B we may apply the induction hypothesis to the premises of that

inference, followed by the same inference again. Now suppose A ! B was the principal formula

of the last inference, which was (! L). Thus, with the possible use of weakening, we have

H ↵0

⇢

�, B,A ! B) � for some ↵
0

< ↵.(1)

H ↵1

⇢

�, A ! B) A for some ↵
1

< ↵.(2)

Applying the induction hypothesis to (1) yields H ↵0

⇢

�, B) � from which we may obtain the

desired result by weakening.

vi) Now suppose H ↵

⇢

�) ¬A If ¬A was the principal formula of the last inference which was

(¬R) then we have H ↵0

⇢

�, A) for some ↵
0

< ↵, from which we may obtain the desired result

by weakening. If the last inference was di↵erent to (¬R) we may apply the induction hypothesis

to the premises of that inference followed by the same inference again.

71

x) Finally suppose H ↵

⇢

�, 9xA(x)) � . If 9xA(x) was the principal formula of the last infer-

ence which was (9L)1 then we have

H[s]
↵s

⇢

�, 9xA(x), A(s)) � with ↵
s

< ↵ for each s.

Applying the induction hypothesis yields

H[s]
↵s

⇢

�, A(s)) �

from which we get the desired result by weakening. If 9xA(x) was not the principal formula

of the last inference or the last inference was not (9L)1 then we may apply the induction

hypothesis to the premises of that inference followed by the same inference again. ut

Lemma 3.4.2 (Reduction for IRS
⌦

). Let ⇢ := rk(C) 6= ⌦

If H ↵

⇢

�, C) � and H �

⇢

⌅) C then H ↵#↵#�#�

⇢

�,⌅) �

Proof. The proof is by induction on ↵#↵#�#�. Assume that

⇢ := rk(C) 6= ⌦(1)

H ↵

⇢

�, C) �(2)

H �

⇢

⌅) C(3)

If C was not the principal formula of the last inference in both derivations then we may simply

use the induction hypothesis on the premises and then the final inference again.

So suppose C was the principal formula of the last inference in both (2) and (3). Note also that

(1) gives us immediately that the last inference in (3) was not (⌃-Ref
⌦

).

We treat three of the most interesting cases.

Case 1. Suppose C ⌘ r 2 t, thus we have

(4) H[p]
↵p

⇢

�, C, p 2̇ t ^ r = p) � for all | p | < | t | with ↵
p

< ↵

and

(5) H �0

⇢

⌅) s 2̇ t ^ r = s for some | s | < | t | with �
0

< �.

Now from (5) we know that | s | 2 H and thus from (4) we have

(6) H ↵s

⇢

�, C, s 2̇ t ^ r = s) � .

72

Applying the induction hypothesis to (6) and (3) yields

(7) H ↵s#↵s#�#�

⇢

⌅,�, s 2̇ t ^ r = s) � .

Finally a (Cut) applied to (5) and (7) yields

H ↵#↵#�#�

⇢

⌅,�) �

as required.

Case 2. Now suppose C ⌘ (8x 2 t)F (x) so we have

(8) H ↵0

⇢

�, C, s 2̇ t ! F (s)) � for some | s | < | t | with ↵
0

, | s | < ↵

and

(9) H[p]
�p

⇢

⌅) p 2̇ t ! F (p) for all | p | < | t | with �
p

< �.

Now (8) gives s 2 H and thus from (9) we have

(10) H �s

⇢

⌅) s 2̇ t ! F (s) .

Applying the induction hypothesis to (3) and (8) gives

(11) H ↵0#↵0#�#�

⇢

�,⌅, s 2̇ t ! F (s)) � .

Finally (Cut) applied to (10) and (11) yields the desired result.

Case 3. Now suppose C ⌘ A ! B so we have

H ↵0

⇢

�, C) A with ↵
0

< ↵(12)

H ↵1

⇢

�, C,B) � with ↵
1

< ↵(13)

H �0

⇢

⌅, A) B with �
0

< �(14)

The induction hypothesis applied to (12) and (3) gives

(15) H ↵0#↵0#�#�

⇢

�,⌅) A .

Now an appilication of (Cut) to (15) and (14) gives

(16) H ↵0#↵#�#�

⇢

�,⌅) B .

Inversion (Lemma 3.4.1 iv)) applied to (13) gives

(17) H ↵1

⇢

�, B) � .

Finally a single application of (Cut) to (16) and (17) yields the desired result. ut

73

Theorem 3.4.3 (Predicative Cut Elimination for IRS
⌦

). Suppose H ↵

⇢+!

�
�) � , where

⌦ /2 [⇢, ⇢+ !�) and � 2 H, then

H '�↵

⇢

�) � .

Provided H is an operator closed under '.

Proof. The proof is by main induction on � and subsidiary induction on ↵.

If the last inference was anything other than (Cut) or was a cut of rank < ⇢ then we may apply

the subsidiary induction hypothesis to the premises and then re-apply the final inference. So

suppose the last inference was (Cut) with cut-formula C and rk(C) 2 [⇢, ⇢+ !�). So we have

H ↵0

⇢+!

�
�, C) � with ↵

0

< ↵.(1)

H ↵1

⇢+!

�
�) C with ↵

1

< ↵.(2)

First applying the subsidiary induction hypothesis to (1) and (2) gives

H '�↵0

⇢

�, C) �(3)

H '�↵1

⇢

�,) C .(4)

Now if rk(C) = ⇢ then one application of the Reduction Lemma 3.4.2 gives the desired result

(once it is noted that '�↵
0

#'�↵
0

#'�↵
1

#'�↵
1

< '�↵ since '�↵ is additive principal.)

Now let us suppose that � > 0 and rk(C) 2 (⇢, ⇢+!�). Since rk(C) < ⇢+!� we can find some

�
0

< � and some n < ! such that

rk(C) < ⇢+ n · !�0 .

Thus applying (Cut) to (3) and (4) gives

H '�↵

⇢+n·!�0
�) �

Now by the main induction hypothesis we obtain

H '�0('�↵)

⇢+(n�1)·!�0
�) �

But by definition '�↵ is a fixed point of the function '�
0

(·) ie. '�
0

('�↵) = '�↵, so we have

H '�↵

⇢+(n�1)·!�0
�) �

From here a further (n � 1) applications of the main induction hypothesis yields the desired

result. ut

74

Lemma 3.4.4 (Boundedness for IRS
⌦

). If A is a ⌃-formula, B is a ⇧-formula, ↵ � < ⌦ and

� 2 H then

i) If H ↵

⇢

�) A then H ↵

⇢

�) AL� .

ii) If H ↵

⇢

�, B) � then H ↵

⇢

�, BL�) �

Proof. Suppose that H ↵

⇢

�) A . We proceed by induction on ↵.

If A was not the principal formula of the last inference then we can simply use the induction

hypothesis. If A was the principal formula of the last inference and is of the form ¬C, C ^D,

C _D, C ! D, (9x 2 t)C(x) or (8x 2 t)C(x), then again the result follows immediately from

the induction hypothesis.

Note that the last inference cannot have been (8R)1 or (⌃-Ref
⌦

) since A is a ⌃ formula and

↵ < ⌦.

So suppose A ⌘ 9xC(x) and

H ↵0

⇢

�) C(s)

For some ↵
0

, | s | < ↵. By induction hypothesis we obtain

H ↵0

⇢

�) C(s)L� .

Which may be written as

H ↵0

⇢

�) s 2̇ L
�

^ C(s)L� .

Now an application of (b9R) yields the desired result.

Part ii) is proved in a similar manner. ut

Definition 3.4.5. For each ⌘ we define

H
⌘

: P(B⌦("
⌦+1

)) �! P(B⌦("
⌦+1

))

H
⌘

(X) : =
\

{B⌦(↵) : X ✓ B⌦(↵) and ⌘ < ↵}

Lemma 3.4.6. i) H
⌘

is an operator for each ⌘.

ii) ⌘ < ⌘0 =) H
⌘

(X) ✓ H
⌘

0(X)

iii) If ⇠ 2 H
⌘

(X) and ⇠ < ⌘ + 1 then
⌦

(⇠) 2 H
⌘

(X)

Proof. This is proved in [8]. ut

75

Lemma 3.4.7. Suppose ⌘ 2 H
⌘

and let �̂ := ⌘ + !⌦+� .

i) If ↵ 2 H
⌘

then ↵̂,
⌦

(↵̂) 2 H
↵̂

.

ii) If ↵
0

2 H
⌘

and ↵
0

< ↵ then
⌦

(↵̂
0

) <
⌦

(↵̂).

Proof. i) From ↵, ⌘ 2 H
⌘

= B⌦(⌘ + 1) we get ↵̂ 2 B⌦(⌘ + 1) and hence ↵̂ 2 B⌦(↵̂) by 3.4.6ii).

Thus
⌦

(↵̂) 2 B⌦(↵̂+ 1) = H
↵̂

(;).

ii) Suppose that ↵ > ↵
0

2 H
⌘

. By the argument above we get
⌦

(↵̂
o

) 2 B⌦(↵̂
0

+ 1) ✓ B⌦(↵̂),

thus
⌦

(↵̂
0

) <
⌦

(↵̂). ut

Theorem 3.4.8 (Collapsing for IRS
⌦

). Suppose that ⌘ 2 H
⌘

, � is a set of at most one

⌃-formula and � a finite set of ⇧-formulae with max{rk(A) |A 2 �} ⌦ then:

H
⌘

↵

⌦+1

�) � implies H
↵̂

 ⌦(↵̂)

 ⌦(↵̂)
�) �

Proof. We proceed by induction on ↵. If the last inference was propositional then the assertion

follows easily from the induction hypothesis.

Case 1. Suppose the last inference was (b8R)1, then � = {(8x 2 t)F (x)} and

H
⌘

[p]
↵p

⌦+1

�) p 2̇ t ! F (p) for all | p | < | t | with ↵
p

< ↵.

Since k(t) ✓ H
⌘

, we know that | t | 2 B(⌘ + 1) and thus | t | <
⌦

(⌘ + 1). Thus k(p) ✓ H
⌘

for

all | p | < | t |, so H
⌘

[p] = H
⌘

for all such p. At this point we would like to use the induction

hypothesis, the problem is that p 2̇ t ! F (p) may not be a ⌃-formula. Instead we may first

use inversion 3.4.1v) to obtain

H
⌘

↵p

⌦+1

�, p 2̇ t) F (p) .

Noting that at worst p 2̇ t contains only bounded quantification, we may now apply the induc-

tion hypothesis to give

H
↵̂p

 ⌦(↵̂p)

 ⌦(↵̂p)
�, p 2̇ t) F (p) .

Since
⌦

(↵̂
p

)+1 <
⌦

(↵̂) for all p, we may apply (! R) and then (b8R)1 to obtain the desired

result.

Case 2. Suppose the last inference was (b8L) so (8x 2 t)F (x) 2 � and

H
⌘

↵0

⌦+1

�, s 2̇ t ! F (s)) � for some | s | < | t | with ↵
0

< ↵.

Since max{rk(A) | A 2 �} ⌦, F (s) contains only bounded quantifiers and thus s 2̇ t ! F (s)

is itself a ⇧-formula. So we may apply the induction hypothesis to give

H
↵̂0

 ⌦↵̂0

 ⌦↵̂0
�, s 2̇ t ! F (s)) �

76

from which we obtain the desired result using one applicaton of (b8L).

Case 3.(b9L)1 and (b9R) ae similar to cases 1 and 2 but without the worry that the formula

in the premise could not be ⌃.

Case 4. Suppose the last inference was (9R), so � = {9xF (x)} and

H
⌘

↵0

⌦+1

�) F (s) for some | s | < ↵ and ↵
0

< ↵.

Since F (s) is ⌃ we may immediately apply the induction hypothesis to obtain

H
↵̂0

 ⌦↵̂0

 ⌦↵̂0
�) F (s) .

Now since | s | 2 H
⌘

= B(⌘ + 1) we know that | s | <
⌦

(⌘ + 1) <
⌦

↵̂, so we may apply (9R)

to obtain the desired result.

Case 5. If the last inference was (8L) we may argue in a similar fashion to case 4.

It cannot be the case that the last inference was (9L) or (8R) since � contains only ⇧ formulae

and � only ⌃ formulae.

Case 6. Suppose the last inference was (⌃-Ref
⌦

), so � = {9zF z} for some ⌃ formula F and

H
⌘

↵0

⌦+1

�) F .

The induction hypothesis yields

H
↵̂0

 ⌦↵̂0

 ⌦↵̂0
�) F

Now applying Boundedness 3.4.4 yields

H
↵̂0

 ⌦↵̂0

 ⌦↵̂0
�) FL ⌦(↵̂0)

From which one application of (9R) yields the desired result.

Case 7. Finally suppose the last inference was (Cut), then there is a formula C with rk(C) ⌦

and ↵
0

< ↵ such that

H
⌘

↵0

⌦+1

�, C) �(1)

H
⌘

↵0

⌦+1

�) C(2)

7.1 If rk(C) < ⌦ then C contains only bounded quantification and as such is both ⌃ and ⇧,

thus we may apply the induction hypothesis to both (1) and (2) to give

H
↵̂0

 ⌦(↵̂0)

 ⌦(↵̂0)
�, C) �(3)

H
↵̂0

 ⌦(↵̂0)

 ⌦(↵̂0)
�) C .(4)

77

Since k(C) ✓ H
⌘

and rk(C) < ⌦, we have rk(C) <
⌦

(⌘ + 1), so we may apply (Cut) to (3)

and (4) to obtain the desired result.

7.2 If rk(C) = ⌦ then C ⌘ 9xF (x) or C ⌘ 8xF (x) with F (L
0

) a �
0

formula. The two cases

are similar so for simplicity just the case where C ⌘ 9xF (x) is considered.

We can begin by immediately applying the induction hypothesis to (2) since C is a ⌃ formula,

giving

H
↵̂0

 ⌦(↵̂0)

 ⌦(↵̂0)
�) C .

Now applying boundedness 3.4.4 yields

(5) H
↵̂0

 ⌦(↵̂0)

 ⌦(↵̂0)
�) CL ⌦(↵̂0) .

Since
⌦

(↵̂
0

) 2 H
↵̂0 we may apply 3.3.10iii) to (1) to obtain

H
↵̂0

↵0

⌦+1

�, (9x 2 L
 ⌦(↵̂0)

)F (x)) � .

Now (9x 2 L
 ⌦(↵̂0)

)F (x) is bounded and hence ⇧ so by the induction hypothesis we obtain

(6) H
↵̂1

 ⌦(↵1

 ⌦(↵1)
�, (9x 2 L

 ⌦(↵̂0)
)F (x)) � .

Where ↵
1

:= ↵̂
0

+ !⌦+↵0 . Since ↵
1

< ⌘ + !⌦+↵ := ↵̂ and rk((9x 2 L
 ⌦(↵̂0)

)F (x)) <
⌦

(↵) we

may apply (Cut) to (5) and (6) to complete the proof. ut

3.5 Embedding IKP into IRS⌦

In this section we show how IKP derivations can be carried out in a very uniform manner

within IRS
⌦

. First some preparatory definitions. To facilitate independence from Chapter 2, I

redefine the commutative sum of ↵ and �, ↵#�.

Definition 3.5.1. i) Given ordinals ↵
1

, ...,↵
n

. The expression !↵1#...#!↵n denotes the ordi-

nal

!↵p(1) + ...+ !↵p(n)

where p : {1, ..., n} 7! {1, ..., n} such that ↵
p(1)

� ... � ↵
p(n)

. More generally ↵#0 :=

0#↵ := 0 and if ↵ =
NF

!↵1 + ... + !↵n and � =
NF

!�1 + ... + !�m then ↵#� :=

!↵1#...#!↵n#!�1#...#!�m .

ii) If A is any IRS
⌦

-formula then no(A) := !rk(A) and if �) � is an IRS
⌦

-sequent containing

formulas {A
1

, ..., A
n

}, then no(�) �) := no(A
1

)#...#no(A
n

).

78

iii) � �) � will be used to abbreviate that

H[�) �]
no(�)�)

0

�) � holds for any operator H

iv) �⇠
⇢

�) � will be used to abbreviate that

H[�) �]
no(�)�)#⇠

⇢

�) � holds for any operator H

We would like to be able to use � as a calculus since it dispenses with a lot of superfluous

notation, luckily under certain conditions this is possible.

Lemma 3.5.2. i) If �) � follows from premises �
i

) �
i

by an inference other than (Cut)

or (⌃-Ref
⌦

) and without contractions then

if �↵
⇢

�
i

) �
i

then �↵
⇢

�) �.

ii) If �↵
⇢

�, A,B) � then �↵
⇢

�, A ^B) �.

Proof. In a similar manner to 2.5.2 the first part follows from the additive principal nature of

ordinals of the form !↵ and Lemma 3.3.8.

For the second part suppose �↵
⇢

�, A,B) � which means we have

H[�, A,B) �]
no(�)�)#no(A)#no(B)#↵

⇢

�, A,B) � .

Two applications of (^L) yields

H[�, A,B) �]
no(�)�)#no(A)#no(B)#↵+2

⇢

�, A ^B) � .

It remains to note that H[�, A,B) �] = H[�, A ^B) �] and

no(A)#no(B) + 2 = !rk(A)#!rk(B) + 2 < !rk(A^B) = no(A ^B)

to complete the proof. ut

Lemma 3.5.3. For any IRS
⌦

formulas A,B and terms s, t we have

i) � �, A) A

ii) � s 2 s)

iii) �) s ✓ s here s ✓ s is shorthand for (8x 2 s)(x 2 s).

iv) �) s 2̇ t ! s 2 t and � s 2̇ t) s 2 t, for | s | < | t |.

v) � s = t) t = s

79

vi) If � �, A) B then �, s 2̇ t ^A) s 2̇ t ^B for | s | < | t |.

vii) If � �, A,B) � then � �, s 2̇ t ! A, s 2̇ t ^B) � for | s | < | t |.

viii) If | s | < � then �) s 2 L
�

Proof. i) By induction of rk(A). We split into cases based on the form of the formula A.

Case 1. If A ⌘ (r 2 t) then by the induction hypothesis we have

� �, s 2̇ t ^ r = s) s 2̇ t ^ r = s for all | s | < | t |.

The following is a template for IRS
⌦

derivations.

� s 2̇ t ^ r = s) s 2̇ t ^ r = s for all | s | < | t |
(2R) � s 2̇ t ^ r = s) r 2 t for all | s | < | t |

(2L)1 � r 2 t) r 2 t

Case 2. If A ⌘ (9x 2 t)F (x) then by the induction hypothesis we have

� s 2̇ t ^ F (s)) s 2̇ t ^ F (s) for all | s | < | t |.

We have the following template for IRS
⌦

derivations.

� s 2̇ t ^ F (s)) s 2̇ t ^ F (s) for all | s | < | t |
(b9R) � s 2̇ t ^ F (s)) (9x 2 t)F (x) for all | s | < | t |

(b9L)1 � (9x 2 t)F (x)) (9x 2 t)F (x)

Case 3. All remaining cases can be proved in a similar fashion to above.

ii) The proof is by induction on rk(s), inductively we get � r 2 r) for all | r | < | s |. Now if

s is of the form L
↵

, then r 2 r ⌘ r 2̇ s ! r 2 r and we have the following template for IRS
⌦

derivations.

� r 2 r) for all | r | < | s |
(b8L) � (8x 2 s)(x 2 r)) for all | r | < | s |
(^L) � s = r) for all | r | < | s |

(2L)1 � s 2 s)
Now if s ⌘ [x 2 L

↵

|B(x)] then we have the following template for derivations in IRS
⌦

.

i)

� B(r)) B(r) for all | r | < | s |
Induction Hypothesis

� r 2 r) for all | r | < | s |
(! L) � B(r), B(r) ! r 2 r)

(b8L) � B(r), (8x 2 s)(x 2 r))
(^L) � B(r), r = s)

Lemma 3.5.2ii) � B(r) ^ r = s)
(2L)1 � s 2 s)

80

iii) Again we use induction on rk(s). Inductively we have �) r ✓ r for all | r | < | s |. If

s ⌘ [x 2 L
↵

|B(x)] then we have the following template for derivations in IRS
⌦

.

i)

� B(r)) B(r) for all | r | < | s |

Induction Hypothesis

� B(r)) r ✓ r for all | r | < | s |
(^R) � B(r)) r = r

(^R) � B(r)) B(r) ^ r = r
(2R) � B(r)) r 2 s
(! R) �) r 2̇ s ! r 2 s(b8R)1 �) (8x 2 s)(x 2 s)

If s ⌘ L
↵

then we have the following template for derivations in IRS
⌦

.

Induction Hypothesis

�) r ✓ r for all | r | < | s |
(^R) �) r = r(2R) �) r 2 s(b8R)1 �) (8x 2 s)(x 2 s)

iv) Was shown whilst proving iii).

v) The following is a template for IRS
⌦

derivations

i)

� s ✓ t) s ✓ t
(^L) � s = t) s ✓ t

i)

� t ✓ s) t ✓ s
(^L) � s = t) t ✓ s

(^R) � s = t) t = s

vi) Trivial for t ⌘ L
↵

, now if t ⌘ [x 2 L
↵

|C(x)] then we have the following template for IRS
⌦

derivations.

� �, A) B
(^L) � �, C(s) ^A) B

� �, C(s)) C(s)
(^L) � �, C(s) ^A) C(s)

(^R) � �, C(s) ^A) C(s) ^B

vii) This is also trivial for t ⌘ L
↵

so suppose t ⌘ [x 2 L
↵

| C(x)] and we have the following

template for IRS
⌦

derivations.

� �, C(s)) C(s)
(^L) � �, C(s) ^B) C(s)

� �, A,B) �
(^L) � �, A, C(s) ^B) �

(! L) � �, C(s) ! A,C(s) ^B) �

viii) Suppose | s | < � then we have the following template for derivations in IRS
⌦

.

iii)

�) s = s(2R) �) s 2 L
� ut

81

Lemma 3.5.4. For any terms s
1

, ..., s
n

, t
1

, ..., t
n

and any formula A(s
1

, ..., s
n

) we have

� [s
1

= t
1

], ..., [s
n

= t
n

], A(s
1

, ..., s
n

)) A(t
1

, ..., t
n

)

Where [s
i

= t
i

] is shorthand for s
i

✓ t
i

, t
i

✓ s
i

.

Proof. We proceed by induction on rk(A(s
1

, ..., s
n

))#rk(A(t
1

, ..., t
n

)).

Case 1. Suppose A(x
1

, x
2

) ⌘ (x
1

2 x
2

), then for all | s | < | s
2

| and | t | < | t
2

| we have the

following template for derivations in IRS
⌦

.

� [s
1

= t
1

], [t = s], s
1

= s) t
1

= t
Lemma 3.5.2ii) � [s

1

= t
1

], t = s, s
1

= s) t
1

= t
3.5.3vi) � [s

1

= t
1

], t 2̇ t
2

^ t = s, s
1

= s) t 2̇ t
2

^ t
1

= t
(2R) � [s

1

= t
1

], t 2̇ t
2

^ t = s, s
1

= s) t
1

2 t
2

(2L)1 � [s
1

= t
1

], s 2 t
2

, s
1

= s) t
1

2 t
2

3.5.3vii) � [s
1

= t
1

], s 2̇ s
2

! s 2 t
2

, s 2̇ s
2

^ s
1

= s) t
1

2 t
2

(8L) � [s
1

= t
1

], (8x 2 s
2

)(x 2 t
2

), s 2̇ s
2

^ s
1

= s) t
1

2 t
2

(2L)1 � [s
1

= t
1

], (8x 2 s
2

)(x 2 t
2

), s
1

2 s
2

) t
1

2 t
2

Lemma 3.3.10i) � [s
1

= t
1

], [s
2

= t
2

], s
1

2 s
2

) t
1

2 t
2

Case 2. If A(x
1

, x
2

) ⌘ x
1

2 x
1

then the assertion follows by Lemma 3.5.3ii) and weakening.

Case 3. Suppose A(x
1

, ..., x
n

) ⌘ (9y 2 x
i

)B(y, x
1

, ..., x
n

), for simplicity let us suppose that

i = 1. Inductively for all | r | < | s
1

| we have

� [s
1

= t
1

], ..., [s
n

= t
n

], r 2̇ s
1

^B(r, s
1

, ..., s
n

)) r 2̇ t
1

^B(r, t
1

, ..., t
n

)
(b9R) � [s

1

= t
1

], ..., [s
n

= t
n

], r 2̇ s
1

^B(r, s
1

, ..., s
n

)) (9y 2 s
1

)B(y, t
1

, ..., t
n

)
(b9L)1 � [s

1

= t
1

], ..., [s
n

= t
n

], (9y 2 s
1

)B(y, t
1

, ..., t
n

)) (9y 2 s
1

)B(y, t
1

, ..., t
n

)

Case 4. The bounded universal quantification case is dual to the bounded existential one.

Case 5. If A(x
1

, ..., x
n

) ⌘ 9yB(y, x
1

, ..., x
n

) then inductively for all terms r we have

� [s
1

= t
1

], ..., [s
n

= t
n

], B(r, s
1

, ..., s
n

)) B(r, t
1

, ..., t
n

)

subsequently applying (9R) followed by (9L)1 yields the desired result.

Case 6. The unbounded universal quantification case is dual to the unbounded existential one.

Case 7. All propositional cases follow immediately from the induction hypothesis. ut

Corollary 3.5.5 (Equality). For any IRS
⌦

-formula A(s
1

, ..., s
n

)

�) s
1

= t
1

^ ... ^ s
n

= t
n

^A(s
1

, ..., s
n

) ! A(t
1

, ..., t
n

)

82

Lemma 3.5.6 (Set Induction). For any formula F

�!rk(A)

0

) 8x[(8y 2 x)F (y) ! F (x)] ! 8xF (x).

Where A := 8x[(8y 2 x)F (y) ! F (x)].

Proof. First we verify the following claim:

(*) H[A, s]
!

rk(A)
#!

| s |+1

0

A) F (s) for all s.

The claim is verified by induction on | s |, inductively suppose that

H[A, t]
!

rk(A)
#!

| t |+1

0

A) F (t) holds for all | t | < | s |.

If necessary we may apply (! R) to obtain

H[A, t, s]
!

rk(A)
#!

| t |+1
+1

0

A) t 2̇ s ! F (t) .

Next applying (b8R)1 yields

H[A, s]
!

rk(A)
#!

| s |
+2

0

A) (8y 2 s)F (y) .

Also by Lemma 3.5.3i) we have

H[A, s]
!

rk(F (s))
#!

rk(F (s))

0

F (s)) F (s) .

Now one may note that !rk(F (s))#!rk(F (s)) !rk(F (s))+1 !max(⌦,rk(F (L0))+3) = !rk(A) to see

that by weakening we can conclude

H[A, s]
!

rk(A)#!|s|+2

0

F (s)) F (s) .

Hence using one application of (! L) we get

H[A, s]
!

rk(A)
#!

|s|
+3

0

A, (8y 2 s)F (y) ! F (s)) F (s) .

Applying (b8L) yields
H[A, s]

!

rk(A)
#!

|s|
+4

0

A) F (s) .

Thus the claim (*) is verified. A single application of (8R)1 to (*) furnishes us with

H[A]
!

rk(A)
#⌦

0

A) 8xF (x) .

Finally applying (! R) gives

�!rk(A)

0

) A ! 8xF (x)

as required. ut

83

Lemma 3.5.7 (Infinity). For any ordinal ↵ > ! we have

�) (9x 2 L
↵

)[(9z 2 x)(z 2 x) ^ (8y 2 x)(9z 2 x)(y 2 z)]

Proof. The following is a template for derivations in IRS
⌦

:

Lemma 3.5.3 viii)

�) L
0

2 L
!(b9R) �) (9z 2 L
!

)(z 2 L
!

)

Lemma 3.5.3 viii)

�) s 2 L
↵

for all |s| < ↵ < !
(b9R) �) (9z 2 L

!

)(s 2 z) for all |s| < !
(b8R)1 �) (8y 2 L

!

)(9z 2 L
!

)(y 2 z)
(^R) �) (9z 2 L

!

)(z 2 L
!

) ^ (8y 2 L
!

)(9z 2 L
!

)(y 2 z)
(b9R) �) (9x 2 L

↵

)[(9z 2 x)(z 2 x) ^ (8y 2 x)(9z 2 x)(y 2 z)]
ut

Lemma 3.5.8 (�
0

-Separation). Suppose |s|, |t
1

|, ..., |t
n

| < � where � is a limit ordinal and

A(a, b
1

, ..., b
n

) is a �
0

-formula of IKP with all free variables displayed, then

�) (9y 2 L
�

)[(8x 2 y)(x 2 s ^A(x, t
1

, ..., t
n

)) ^ (8x 2 s)(A(x, t
1

, ..., t
n

) ! x 2 y)]

Proof. First let � := max{|s|, |t
1

|, ..., |t
n

|}+ 1 and note that � < � since � is a limit. Now let

t := [u 2 L
�

| u 2 s ^A(u, t
1

, ..., t
n

)].

Let B(x) := A(x, t
1

, ..., t
n

), in what follows r ranges over terms with | r | < | t | and p ranges

over terms with | p | < | s |. We have the following two templates for derivations in IRS
⌦

:

Derivation (1)

Lemma 3.5.3i)

� r 2 s ^B(r)) r 2 s ^B(r)
(! R) �) r 2̇ t ! (r 2 s ^B(r))

(b8R)1 �) (8x 2 t)(x 2 s ^B(x))

Derivation (2)

Lemma 3.5.3iv)

� p 2̇ s,B(p)) p 2 s

Lemma 3.5.3i)

� p 2̇ s,B(p)) B(p)
(^R) � p 2̇ s,B(p)) p 2 s ^B(p)

Lemma 3.5.3iii)

�) p ✓ p
(^R) �) p = p

� p 2̇ s,B(p)) (p 2 s ^B(p)) ^ p = p
(2R) � p 2̇ s,B(p)) p 2 t
(! R) � p 2̇ s) B(p) ! p 2 t
(! R) �) p 2̇ s ! (B(p) ! p 2 t)

(b8R)1 �) (8x 2 s)(B(x) ! x 2 t)

84

Now applying (^R) to the conclusions of derivations (1) and (2) we obtain

�) (8x 2 t)(x 2 s ^B(x)) ^ (8x 2 s)(B(x) ! x 2 t).

Finally note that |t| = � < � so we may apply (b9R) to obtain

�) (9y 2 L
�

)[(8x 2 y)(x 2 s ^B(x)) ^ (8x 2 s)(B(x) ! x 2 y)]

as required. ut

Lemma 3.5.9 (Pair). If � is a limit ordinal and |s|, |t| < �, then

�) (9z 2 L
�

)(s 2 z ^ t 2 z)

Proof. Let � := max{|s|, |t|}+ 1 and note that � < � since � is a limit. We have the following

template for IRS
⌦

derivations:

Lemma 3.5.3viiii)

�) s 2 L
�

Lemma 3.5.3viiii)

�) t 2 L
�(^R) �) (s 2 L

�

^ t 2 L
�

)
(b9R) �) (9z 2 L

�

)(s 2 z ^ t 2 z)
ut

Lemma 3.5.10 (Union). If � is a limit ordinal and |s| < � then

�) (9z 2 L
�

)(8y 2 s)(8x 2 y)(x 2 z)

Proof. Let ↵ = |s|, we have the following template for derivations in IRS
⌦

:

Lemma 3.5.3viii)

� r 2̇ s, q 2̇ r) q 2 L
↵

for all |q| < |r| < ↵
(! R) � r 2̇ s) q 2̇ r ! q 2 L

↵(b8R)1 � r 2̇ s) (8x 2 r)(x 2 L
↵

)
(! R) �) r 2̇ s ! (8x 2 r)(x 2 L

↵

)
(b8R)1 �) (8y 2 s)(8x 2 y)(x 2 L

↵

)
(b9R) �) (9z 2 L

�

)(8y 2 s)(8x 2 y)(x 2 z)
ut

Lemma 3.5.11 (�
0

-Collection). For any �
0

formula F (x, y).

�) (8x 2 s)9yF (x, y) ! 9z(8x 2 s)(9y 2 z)F (x, y)

85

Proof. Using Lemma 3.5.3 we have

� (8x 2 s)9yF (x, y)) (8x 2 s)9yF (x, y)

Now let H̄ := H[(8x 2 s)9yF (x, y)] and ↵ := no((8x 2 s)9yF (x, y)) (8x 2 s)9yF (x, y)), by

applying (⌃-Ref
⌦

) we obtain

H̄ ↵+1

0

(8x 2 s)9yF (x, y)) 9z(8x 2 s)(9y 2 z)F (x, y) .

Applying (! R) gives

H̄ ↵+2

0

) (8x 2 s)9yF (x, y) ! 9z(8x 2 s)(9y 2 z)F (x, y) .

It remains to note that

↵+ 2 = ↵ =no((8x 2 s)9yF (x, y)) (8x 2 s)9yF (x, y)) + 2

<no() (8x 2 s)9yF (x, y) ! 9z(8x 2 s)(9y 2 z)F (x, y))

and H̄ = H[) (8x 2 s)9yF (x, y) ! 9z(8x 2 s)(9y 2 z)F (x, y)] to complete the proof. ut

Theorem 3.5.12. If IKP ` �(ā)) �(ā) where �(ā)) �(ā) is an intuitionistic sequent

containing exactly the free variables ā := a
1

, ..., a
n

, then there is an m < ! (which we may

compute from the IKP-derivation) such that

H[�(s̄)) �(s̄)]
⌦·!m

⌦+m

�(s̄)) �(s̄)

for any IRS
⌦

terms s̄ := s
1

, ...s
n

and any operator H.

Proof. Let A be any IRS
⌦

formula, note that by Observation 3.3.7, we have rk(A) ⌦+ l for

some l < !. Therefore

no(A) = !rk(A) !⌦+l = !⌦ · !l = ⌦ · !l

Thus for any choice of terms s̄ we have

no(�(s̄)) �(s̄)) ⌦ · !m for some m < !.

The remainder of the proof is by induction on the derivation IKP ` �(ā)) �(ā).

If �(ā)) �(ā) is an axiom of IKP then the assertion follows by Lemmas 3.5.5, 3.5.6, 3.5.7,

3.5.8, 3.5.9, 3.5.10 or 3.5.11. If �(ā)) �(ā) was the result of a propositional inference then

we may apply the induction hypothesis to the premises and then the corresponding inference

in IRS
⌦

. In order to cut down on notation we make the following abbreviation, let

H̄ := H[�(s̄)) �(s̄)].

86

Case 1. Suppose that �(ā)) �(ā) was the result of the inference (b8R), then �(s̄) = {(8x 2
s
i

)F (x)}. The induction hypothesis furnishes us with an k < ! such that

H̄[p]
⌦·!k

⌦+k

�(s̄)) p 2 s
i

! F (p) for all | p | < | s |
i

.

Now by Lemma 3.4.1v) we have

H̄[p]
⌦·!k

⌦+k

�(s̄), p 2 s
i

) F (p)

Also by 3.5.3iv) we have

� p 2̇ s
i

) p 2 s
i

Applying (Cut) to these two yields

H̄[p]
⌦·!k

+1

⌦+k

�(s̄), p 2̇ s
i

) F (p)

Now by (!R) we have

H̄[p]
⌦·!k

+2

⌦+k

�(s̄)) p 2̇ s
i

! F (p) .

Hence by (b8R)1 we have

H̄ ⌦·!k+1

⌦+k

�(s̄)) (8x 2 s
i

)F (x)

as required.

Case 2. Now suppose that �(ā)) �(ā) was the result of the inference (b8L). So (8x 2
a
i

)F (x) 2 �(ā) and we are in the following situation in IKP

�(ā), c 2 a
i

! F (c)) �(ā)
(b8L)

�(ā)) �(ā)

If c is not a member of ā then by the induction hypothesis we have an m < ! such that

(1) H̄ ⌦·!m

⌦+m

�(s̄), s
1

2 s
i

! F (s
1

)) �(s̄) .

Now if c is a member of ā, for simplicity let us suppose that c = a
1

. Inductively we can find an

m < ! such that (1) is also satisfied. First we verify the following claim:

(2) � �, (8x 2 s
i

)F (x)) s
1

2 s
i

! F (s
1

)

2.1 Suppose s
i

is of the form L
↵

. The claim is verified by the following template for derivations

in IRS
⌦

, here r ranges over terms with |r| < |s
i

|.
Lemma 3.5.4

� �, F (r), r 2 s
i

, r = s
1

) F (s
1

)
(b8L) � �, (8x 2 s

i

)F (x), r 2 s
i

, r = s
1

) F (s
1

)
Lemma 3.5.2ii) � �, (8x 2 s

i

)F (x), r 2 s
i

^ r = s
1

) F (s
1

)
(2L)1 � �, (8x 2 s

i

)F (x), s
1

2 s
i

) F (s
1

)
(!R) � �, (8x 2 s

i

)F (x)) s
1

2 s
i

! F (s
1

)

87

2.2 Now suppose s
i

is of the form [x 2 L
↵

| B(x)], we have the following template for derivations

in IRS
⌦

, here r and p range over terms with level below | s
i

|.

Lemma 3.5.4
� p 2̇ s

i

, r = p, r = s
i

) r 2̇ s
iLemma 3.5.2ii) � p 2̇ s

i

^ r = p, r = s
i

) r 2̇ s
i(2L)1 � r 2 s

i

, r = s
i

) r 2̇ s
i

Lemma 3.5.4
� F (r), r 2 s

i

, r = s
1

) F (s
1

)
(!L) � �, r 2̇ s

i

! F (r), r 2 s
i

, r = s
1

) F (s
1

)
(b8L) � �, (8x 2 s

i

)F (x), r 2 s
i

, r = s
1

) F (s
1

)
Lemma 3.5.2ii) � �, (8x 2 s

i

)F (x), r 2 s
i

^ r = s
1

) F (s
1

)
(2L)1 � �, (8x 2 s

i

)F (x), s
1

2 s
i

) F (s
1

)
(!R) � �, (8x 2 s

i

)F (x)) s
1

2 s
i

! F (s
1

)

Now that the claim is verified we may apply (Cut) to (1) and (2) to obtain

H̄ ⌦·!m0

⌦+m

0 �(s̄)) �(s̄)

where ⌦+m0 := max{⌦+m, rk(s
1

2 s
i

! F (s
1

))}, which is the desired result.

All other quantification cases are similar to Cases 1 and 2.

Finally suppose �(ā)) �(ā) was the result of (Cut). So we are in the following situation in

IKP.

�(ā), F (ā, c̄)) �(ā) �(ā)) F (ā, c̄)

�(ā)) �(ā)

Where c̄ are the free variables occurring in F (ā, c̄) that are distinct from ā. By the induction

hypothesis we can find m
0

,m
1

< ! such that

H̄ �·!m0

⌦+m0
�(s̄), F (s̄,L

0

)) �(s̄)

H̄ �·!m1

⌦+m1
�(s̄)) F (s̄,L

0

) .

Note that k(F (s̄,L
0

)) ✓ H̄ so we may apply (Cut) to finish the proof. ut

3.6 An ordinal analysis of IKP

Lemma 3.6.1. If A is a ⌃-sentence and IKP `) A, then there is some m < !, which we

may compute explicitly from the derivation, such that

H
�

'(⌦(�))(⌦(�))

0

) A where � := !
m

(⌦ · !m).

Here !
0

(↵) := ↵ and !
k+1

(↵) := !!k(↵).

88

Proof. Suppose that A is a ⌃-sentence and that IKP `) A, then by Theorem 3.5.12 there is

some 1 m < ! such that

(1) H
0

⌦·!m

⌦+m

) A .

By applying Predicative Cut Elimination 3.4.3 (m� 1) times we obtain

(2) H
0

!m�1(⌦·!m
)

⌦+1

) A .

Applying Collapsing 3.4.8 to (2) gives

(3) H
�

 ⌦(�)

 ⌦(�)
) A where � := !

m

(⌦ · !m).

Finally by applying Predicative Cut Elimination 3.4.3 again we get

H
�

'(⌦(�))(⌦(�))

0

) A

completing the proof. ut

Theorem 3.6.2. If A ⌘ 9xC(x) is a ⌃-sentence such that IKP `) A then there is an ordinal

term ↵ <
⌦

("
⌦+1

), which we may compute from the derivation, such that

L
↵

|= A.

Moreover, there is a specific IRS
⌦

term s, with | s | < ↵, which we may compute explicitly from

the IKP derivation, such that

L
↵

|= C(s).

Proof. Suppose IKP `) A for some ⌃-sentence A, from Lemma 3.6.1 we may compute some

1 m < ! such that

H
�

'(⌦(�))(⌦(�))

0

) A where � := !
m

(⌦ · !m).

Let ↵ := '(
⌦

(�))(
⌦

(�)), applying Boundedness 3.4.4 we obtain

(2) H
�

↵

0

) AL↵ .

Since the derivation (2) contains no instances of (Cut) or (⌃-Ref
⌦

) and the correctness of the

remaining rules within L
↵

is easily verified by induction on the derivation, it may be seen that

L
↵

|= A.

For the second part of the theorem note that it must be the case that the final inference in (2)

was (b9R) and thus by the intuitionistic nature of IRS
⌦

there must be some s, with | s | < ↵,

such that

(3) H
�

↵

0

) C(s)L↵ .

89

Thus

(4) L
↵

|= C(s).

The remainder of the proof is by checking that each part of the embedding and cut elimination

of the previous two sections may be carried out e↵ectively, details will appear in [43]. ut

Remark 3.6.3. In fact Theorem 3.6.2 can be verified within IKP, this is not immediately

obvious since we do not have access to induction up to
⌦

("
⌦+1

). However one may observe

that in an infinitary proof of the form (3) above, no terms of level higher than ↵ are used.

By carrying out the construction of IRS
⌦

just using ordinals from B(!
m+1

(⌦ · !m)) we get a

restricted system, but a system still capable of carrying out the embedding and cut elimination

necessary for the particular derivation of the sentence A. This can be done inside IKP since

we do have access to induction up to
⌦

(!
m+1

(⌦ · !m+1)). It follows that IKP has the set

existence property for ⌃ sentences. More details will be found [43].

90

Chapter 4

A relativised ordinal analysis of

IKP(P)

This chapter provides a relativised ordinal analysis for intuitionistic power Kripke-Platek set

theory IKP(P). The relativised ordinal analysis for the classical version of the theory, KP(P),

was carried out in [42], the work in this chapter adapts the techniques from that paper to the

intuitionistic case. We begin by defining an infinitary system IRSP
⌦

, unlike in IRS
⌦

the terms

in IRSP
⌦

can contain sub terms of a higher level, or from higher up the Von-Neumann hierarchy

in the intended interpretation. This reflects the impredicativity of the power set operation.

Next we prove some cut elimination theorems, allowing us to transform infinite derivations of ⌃

formulae into infinite derivations with only power-bounded cut formulae. The following section

provides an embedding of IKP(P) into IRSP
⌦

. The final section collates these results into a

relativised ordinal analysis of IKP(P).

4.1 A sequent calculus formulation of IKP(P)

Definition 4.1.1. The formulas of IKP(P) are the same as those of IKP except we also allow

subset bounded quantifiers of the form

(8x ✓ a)A(x) and (9x ✓ a)A(x).

These are treated as quantifiers in their own right, not abbreviations. In contrast, the formula

a ✓ b is still viewed as an abbreviation for the formula (8x 2 a)(x 2 b)

Quantifiers 8x, 9x will still be referred to as unbounded, whereas the other quantifiers (includ-

ing the subset bounded ones) will be referred to as bounded.

91

A �P
0

-formula of IKP(P) is one that contains no unbounded quantifiers.

As with IKP, the system IKP(P) derives intuitionistic sequents of the form �) � where at

most one formula can occur in �.

The axioms of IKP(P) are the following:

Logical axioms: �, A) A for every �P
0

–formula A.

Extensionality: �) a=b ^B(a) ! B(b) for every �P
0

-formula B(a).

Pair: �) 9x[a2x ^ b2x]

Union: �) 9x(8y2a)(8z2y)(z2x)

�P
0

–Separation: �) 9y[(8x 2 y)(x 2 a ^B(x)) ^ (8x 2 a)(B(x) ! x 2 y)]

for every �P
0

-formula B(a).

�P
0

–Collection: �) (8x 2 a)9yG(x, y) ! 9z(8x 2 a)(9y 2 z)G(x, y)

for every �P
0

–formula G(a, b).

Set Induction: �) 8u [(8x 2 u)G(x) ! G(u)] ! 8uG(u)

for every formula G(b).

Infinity: �) 9x [(9y 2 x) y 2 x ^ (8y 2 x)(9z 2 x) y 2 z].

Power Set: �) 9z (8x ✓ a)x 2 z.

The rules of IKP(P) are the same as those of IKP (extended to the new language containing

subset bounded quantifiers), together with the following four rules:

�, a ✓ b ^ F (a)) �
(pb9L)

�, (9x ✓ b)F (x)) �

�) a ✓ b ^ F (a)
(pb9R)

�) (9x ✓ b)F (x)

�, a ✓ b ! F (a)) �
(pb8L)

�, (8x ✓ b)F (x)) �

�) a ✓ b ! F (a)
(pb8R)

�) (8x ✓ b)F (x)

As usual it is forbidden for the variable a to occur in the conclusion of the rules (pb9L) and

(pb8R), such a variable is referred to as the eigenvariable of the inference.

4.2 The infinitary system IRSP
⌦

The purpose of this section is to introduce an infinitary proof system IRSP
⌦

. As before all

ordinals will be assumed to be members of B⌦("
⌦+1

).

Definition 4.2.1. We define the IRSP
⌦

terms. To each IRSP
⌦

term t we also assign its ordinal

level, | t |.

1. For each ↵ < ⌦, V
↵

is an IRSP
⌦

term with |V
↵

| = ↵.

92

2. For each ↵ < ⌦, we have infinitely many free variables a↵
0

, a↵
1

, a↵
2

,, with | a↵
i

| = ↵.

3. If F (x, ȳ) is a �P
0

-formula of IKP(P) (whose free variables are exactly those indicated) and

s̄ ⌘ s
1

, ..., s
n

are IRSP
⌦

terms, then the formal expression [x 2 V
↵

| F (x, s̄)] is an IRSP
⌦

term with | [x 2 V
↵

| F (x, s̄)] | := ↵.

The IRSP
⌦

formulae are of the form A(s
1

, ..., s
n

), where A(a
1

, ..., a
n

) is a formula of IKP(P)

with all free variables indicated and s
1

, ..., s
n

are IRSP
⌦

terms.

A formula A(s
1

, ..., s
n

) of IRSP
⌦

is �P
0

if A(a
1

, ..., a
n

) is a �P
0

formula of IKP(P).

The ⌃P formulae of IRSP
⌦

are the smallest collection containing the �P
0

formulae and contain-

ing A_B, A^B, (8x 2 s)A, (9x 2 s)A, (8x ✓ s)A, (9x ✓ s)A and 9xA whenever it contains A

and B. Likewise The ⇧P -formulae are the smallest collection containing the �P
0

formulae and

containing A _ B, A ^ B, (8x 2 s)A, (9x 2 s)A, (8x ✓ s)A, (9x ✓ s)A and 8xA whenever it

contains A and B.

The axioms of IRSP
⌦

are:

(A1) �, A) A for A in �P
0

.

(A2) �) t = t.

(A3) �, s
1

= t
1

, ..., s
n

= t
n

, A(s
1

, ..., s
n

)) A(t
1

, ..., t
n

) for A(s
1

, . . . , s
n

) in �P
0

.

(A4) �) s 2 V
↵

if | s | < ↵.

(A5) �) s ✓ V
↵

if | s | ↵.

(A6) �, t 2 [x 2 V
↵

| F (x, s̄)]) F (t, s̄) for F (t, s̄) is �P
0

and | t | < ↵.

(A7) �, F (t, s̄)) t 2 [x 2 V
↵

| F (x, s̄)] for F (t, s̄) is �P
0

and | t | < ↵.

The inference rules of IRSP
⌦

are:

(b8L) �, s 2 t ! F (s)) �
�, (8x2 t)F (x)) �

if | s | < | t |

(b8R)1
�) s 2 t ! F (s) for all | s | < | t |
�) (8x2 t)F (x)

(b9L)1 �, s 2 t ^ F (s)) � for all | s | < | t |
�, (9x2 t)F (x)) �

(b9R)
�) s 2 t ^ F (s)
�) (9x2 t)F (x)

if | s | < | t |

(pb8L) �, s ✓ t ! F (s)) �
�, (8x ✓ t)F (x)) �

if | s | | t |

(pb8R)1
�) s ✓ t ! F (s) for all | s | | t |
�) (8x ✓ t)F (x)

93

(pb9L)1 �, s ✓ t ^ F (s)) � for all | s | | t |
�, (9x ✓ t)F (x)) �

(pb9R)
�) s ✓ t ^ F (s)
�) (9x ✓ t)F (x)

if | s | | t |

(8L) �, F (s)) �
�, 8xF (x)) �

(8R)1
�) F (s) for all s
�) 8xF (x)

(9L)1 �, F (s)) � for all s
�, 9xF (x)) �

(9R)
�) F (s)

�) 9xF (x)

(2L)1
�, r 2 t ^ r = s) � for all | r | < | t |

�, s 2 t) �

(2R) �) r 2 t ^ r = s
�, s2 t

if | r | < | t |

(✓L)1
�, r ✓ t ^ r = s) � for all | r | | t |

�, s ✓ t) �

(✓R) �) r ✓ t ^ r = s
�) s ✓ t

if | r | | s |

(Cut) �, A) � �) A
�) �

(⌃P -Ref) �) A
�) 9z Az

if A is a ⌃P -formula,

As well as the rules (^L), (^R), (_L), (_R), (¬L), (¬R), (?), (! L), (! R) from IKP. As

usual Az results from A by restricting all unbounded quantifiers to z.

Definition 4.2.2. The rank of a formula is determined as follows.

1. rk(s 2 t) := max{| s |+ 1, | t |+ 1}.

2. rk((9x 2 t)F (x)) := rk((8x 2 t)F (x)) := max{| t |, rk(F (V
0

)) + 2}.

3. rk((9x ✓ t)F (x)) := rk((8x ✓ t)F (x)) := max{| t |+ 1, rk(F (V
0

)) + 2}.

4. rk(9xF (x)) := rk(8xF (x)) := max{⌦, rk(F (V
0

)) + 2}.

5. rk(A ^B) := rk(A _B) := rk(A ! B) := max{rk(A), rk(B)}+ 1.

6. rk(¬A) := rk(A) + 1

94

Note that the definition of rank for IRSP
⌦

formulae is much less complex than for IRS
⌦

, this

is because we are only aiming for partial cut-elimination for this system. In general it will not

be possible to remove cuts with �P
0

cut formulae. Note however that we still have rk(A) < ⌦

if and only if A is �P
0

.

We also have the following useful lemma.

Lemma 4.2.3. If A is a formula of IRSP
⌦

with rk(A) � ⌦ (ie. A contains unbounded quan-

tifiers), and A was the result of an IRSP
⌦

inference other than (⌃P -Ref) and (Cut) then the

rank of the minor formulae of that inference is strictly less than rk(A).

Definition 4.2.4 (Operator controlled derivability for IRSP
⌦

). If A(s
1

, ..., s
n

) is a formula of

IRSP
⌦

then let

|A(s
1

, ...s
n

) | := {| s
1

|, ..., | s
n

|}.

Likewise if �) � is an intuitionistic sequent of IRSP
⌦

containing formulas A
1

, ..., A
n

, we define

|�) � | := |A
1

| [... [|A
n

|.

Definition 4.2.5. Let H be an operator and �) � an intuitionistic sequent of IRSP
⌦

formu-

lae. We define the relation H ↵

⇢

�) � by recursion on ↵.

If �) � is an axiom and |�) � | [{↵} ✓ H, then H ↵

⇢

�) � .

We require always that |�) � |[{↵} ✓ H where �) � is the sequent in the conclusion, this

condition will not be repeated in the inductive clauses pertaining to the inference rules of IRSP
⌦

given below. The column on the right gives the ordinal requirements for each of the inference

rules.

(2L)1
H[r]

↵r

⇢

�, r 2 t ^ r = s) � for all | r | < | t |
H ↵

⇢

�, s 2 t) �
| r | ↵

r

< ↵

(2R)
H ↵0

⇢

�) r 2 t ^ r = s

H ↵

⇢

�) s 2 t

↵
0

< ↵

| r | < | t |
| r | < ↵

(✓L)1
H[r]

↵r

⇢

�, r ✓ t ^ r = s) � for all | r | | t |
H ↵

⇢

�, s ✓ t) �
| r | ↵

r

< ↵

(✓R)
H ↵0

⇢

�) r ✓ t ^ r = s

H ↵

⇢

�) s ✓ t

↵
0

< ↵

| r | | t |
| r | < ↵

95

(b8L) H ↵0

⇢

�, s 2 t ! A(s)) �

H ↵

⇢

�, (8x 2 t)A(x)) �

↵
0

< ↵

| s | < | t |
| s | < ↵

(b8R)1
H[s]

↵s

⇢

�) s 2 t ! F (s) for all | s | < | t |
H ↵

⇢

�) (8x 2 t)F (x)
| s | ↵

s

< ↵

(b9L)1
H[s]

↵s

⇢

�, s 2 t ^ F (s)) � for all | s | < | t |
H ↵

⇢

�, (9x 2 t)F (x)) �
| s | ↵

s

< ↵

(b9R)
H ↵0

⇢

�) s 2 t ^A(s)

H ↵

⇢

�) (9x 2 t)A(x)

↵
0

< ↵

| s | < | t |
| s | < ↵

(pb8L) H ↵0

⇢

�, s ✓ t ! A(s)) �

H ↵

⇢

�, (8x ✓ t)A(x)) �

↵
0

< ↵

| s | | t |
| s | < ↵

(pb8R)1
H[s]

↵s

⇢

�) s ✓ t ! F (s) for all | s | | t |
H ↵

⇢

�) (8x ✓ t)F (x)
| s | ↵

s

< ↵

(pb9L)1
H[s]

↵s

⇢

�, s ✓ t ^ F (s)) � for all | s | | t |
H ↵

⇢

�, (9x ✓ t)F (x)) �
| s | ↵

s

< ↵

(pb9R)
H ↵0

⇢

�) s ✓ t ^A(s)

H ↵

⇢

�) (9x ✓ t)A(x)

↵
0

< ↵

| s | | t |
| s | < ↵

(8L) H ↵0

⇢

�, F (s)) �

H ↵

⇢

�, 8xF (x)) �

↵
0

+ 1 < ↵

| s | < ↵

(8R)1
H[s]

↵s

⇢

�) F (s) for all s

H ↵

⇢

�) 8xF (x)
| s | < ↵

s

+ 1 < ↵

(9L)1
H[s]

↵s

⇢

�, F (s)) � for all s

H ↵

⇢

�, 9xF (x)) �
| s | < ↵

s

+ 1 < ↵

(9R)
H ↵0

⇢

�) F (s)

H ↵

⇢

�,) 9xF (x)

↵
0

+ 1 < ↵

| s | < ↵

96

(Cut)
H ↵0

⇢

�, B) � H ↵0

⇢

�) B

H ↵

⇢

�) �

↵
0

< ↵

rk(B) < ⇢

(⌃P -Ref)
H ↵0

⇢

�) A

H ↵

⇢

�) 9z Az

↵
0

+ 1,⌦ < ↵

A is a ⌃P -formula

Lastly if �) � is the result of a propositional inference of the form (^L), (^R), (_L), (_R),

(¬L), (¬R), (?), (! L) or (! R), with premise(s) �
i

) �
i

then from H ↵0

⇢

�
i

) �
i

(for each

i) we may conclude H ↵

⇢

�) � , provided ↵
0

< ↵.

4.3 Cut elimination for IRSP
⌦

Lemma 4.3.1 (Weakening and Persistence for IRSP
⌦

).

i) If �
0

✓ �, |�) � | ✓ H, ↵
0

 ↵ 2 H, ⇢
0

 ⇢ and H ↵0

⇢0
�
0

) � then

H ↵

⇢

�) �

ii) If � 2 H and H ↵

⇢

�, 9xA(x)) � then H ↵

⇢

�, (9x 2 V
�

)A(x)) � .

iii) If � 2 H and H ↵

⇢

�) 8xA(x) then H ↵

⇢

�) (8x 2 V
�

)A(x) .

Proof. All proofs are by induction on ↵. We show ii), suppose � 2 H and H ↵

⇢

�, 9xA(x)) � .

The interesting case is where 9xA(x) was the principal formula of the last inference which was

(9L)1, in this case we have H[s]
↵s

⇢

�, 9xA(x), A(s)) � for each term s with | s | < ↵
s

+1 < ↵

(If 9xA(x) was not a side formula we can use part i) to make it one). By the induction hypothesis

we obtain H[s]
↵s

⇢

�, (9x 2 V
�

)A(x), A(s)) � for all | s | < �. By (^L) we get

H[s]
↵s+1

⇢

�, (9x 2 V
�

)A(x), s 2 V
�

^A(s)) �.

Hence we may apply (b9L)1 to obtain H ↵

⇢

�, (9x 2 V
�

)A(x)) � as required. ut

Lemma 4.3.2 (Inversions of IRSP
⌦

).

i) If H ↵

⇢

�, A ^B) � and rk(A ^B) � ⌦ then H ↵

⇢

�, A,B) � .

ii) If H ↵

⇢

�) A ^B and rk(A ^B) � ⌦ then H ↵

⇢

�) A and H ↵

⇢

�) B .

iii) If H ↵

⇢

�, A _B) � and rk(A _B) � ⌦ then H ↵

⇢

�, A) � and H ↵

⇢

�, B) � .

iv) If H ↵

⇢

�, A ! B) � and rk(A ! B) � ⌦ then H ↵

⇢

�, B) � .

v) If H ↵

⇢

�) A ! B and rk(A ! B) � ⌦ then H ↵

⇢

�, A) B .

97

vi) If H ↵

⇢

�) ¬A and rk(A) � ⌦ then H ↵

⇢

�, A) .

vii) If H ↵

⇢

�, (9x 2 t)A(x)) � and rk(A(V
0

)) � ⌦ then H[s]
↵

⇢

�, s 2 t ^A(s)) � for all

|s| < |t|.

viii) If H ↵

⇢

�) (8x 2 t)A(x) and rk(A(V
0

)) � ⌦ then H[s]
↵

⇢

�) s 2 t ! A(s) for all |s| <
|t|.

ix) If H ↵

⇢

�, (9x ✓ t)A(x)) � and rk(A(V
0

)) � ⌦ then H[s]
↵

⇢

�, s ✓ t ^A(s)) � for all

|s| |t|.

x) If H ↵

⇢

�) (8x ✓ t)A(x) and rk(A(V
0

)) � ⌦ then H[s]
↵

⇢

�) s ✓ t ! A(s) for all |s|
|t|.

xi) If H ↵

⇢

�, 9xA(x)) � then H[s]
↵

⇢

�, F (s)) � for all s.

xii) If H ↵

⇢

�,) 8xA(x) then H[s]
↵

⇢

�) F (s) for all s.

Proof. The proof is by induction on ↵ and many parts are standard for many intuitionistic

systems of a similar nature. We show viii) and ix).

viii) Suppose that H ↵

⇢

�) (8x 2 t)A(x) and rk(A(V
0

)) � ⌦. Since A must contain an un-

bounded quantifier, the sequent �) (8x 2 t)A(x) cannot be an axiom. If the last inference

was not (b8R)1 then we may apply the induction hypothesis to the premises of that inference,

and then the same inference again. Finally suppose the last inference was (b8R)1 so we have

H[s]
↵s

⇢

�) s 2 t ! A(s) for all | s | < | t |, with ↵
s

< ↵.

Applying weakening completes the proof of this case.

ix) Suppose that H ↵

⇢

�, (9x ✓ t)A(x)) � and rk(A(V
0

)) � ⌦. Since A(x) contains an un-

bounded quantifier 9x ✓ t)A(x) cannot be the active part of an axiom, thus if �, (9x ✓ t)A(x))
� is an axiom then so is �, s ✓ t ^ A(x)) � for any | s | | t |. As in viii) the remaining

interesting case is where (9x ✓ t)A(x) was the principal formula of the last inference, which

was (pb9L)1. In this case we have

H[s]
↵s

⇢

�, (9x ✓ t)A(x), s ✓ t ^A(s)) � for all | s | | t | with ↵
s

< ↵.

Now applying the induction hypothesis yields H[s]
↵s

⇢

�, s ✓ t ^A(s)) � , to which we may

apply weakening to complete the proof of this case. ut

Lemma 4.3.3 (Reduction). If rk(C) := ⇢ > ⌦, H ↵

⇢

�, C) � and H �

⇢

⌅) C then

H ↵#↵#�#�

⇢

�,⌅) �

98

Proof. The proof is by induction on ↵#↵#�#�. The interesting case is where C was the

principal formula of both final inferences, notice that in this case the last inference cannot have

been (⌃P -Ref) since rk(C) > ⌦ and the conclusion of an application of (⌃P -Ref) always has

rank ⌦. Thus the rest of the proof follows in the usual way by the symmetry of the rules and

Lemmas 4.2.3 and 4.3.2, we treat the case where C ⌘ (8x ✓ t)A(x) and C was the principal

formula of both last inferences, so we have

H ↵

⇢

�, C) �(1)

H �

⇢

⌅) C(2)

H ↵0

⇢

�, C, s ✓ t ! A(s)) � with ↵
0

, | s | < ↵ and | s | | t |.(3)

H[p]
�p

⇢

⌅) p ✓ t ! A(p) for all | p | | t | with | p | ↵
p

< ↵.(4)

From (3) we know that s 2 H, so from (4) we get

(5) H �s

⇢

⌅) s ✓ t ! A(s) .

Applying the induction hypothesis to (2) and (3) yields

(6) H ↵0#↵0#�#�

⇢

�, s ✓ t ! A(s)) � .

Finally by applying (Cut) to (5) and (6), whilst noting that by Lemma 4.2.3 rk(s ✓ t ! A(s)) <

⇢, we obtain

H ↵#↵#�#�

⇢

�,⌅) �

as required. ut

Lemma 4.3.4. If H ↵

⌦+n+1

�) � then H !

↵

⌦+n

�) � for any n < !.

Proof. The proof is by induction on ↵, suppose H ↵

⌦+n+1

�) � . If �) � is an axiom there

is nothing to show. If �) � was the result of an inference other that (Cut) or a cut with

cut-rank < ⌦+n then we may apply the induction hypothesis to the premises of that inference

and then the same inference again. So suppose the last inference was (Cut) with cut-formula

C, and that rk(C) = ⌦+ n. So we have

H ↵0

⌦+n+1

�, C) � with ↵
0

< ↵.(1)

H ↵1

⌦+n+1

�) C with ↵
1

< ↵.(2)

Applying the induction hypothesis to (1) and (2) gives

H !

↵0

⌦+n

�, C) �(3)

H !

↵1

⌦+n

�) C .(4)

99

Now applying the Reduction Lemma 4.3.3 to (3) and (4) provides us with

H !

↵0
#!

↵0
#!

↵1
#!

↵1

⌦+n

.

It remains to note that !↵0#!↵0#!↵1#!↵1 < !↵ since !↵ is additive principal, so we can

complete the proof by weakening. ut

Theorem 4.3.5 (Partial cut elimination for IRSP
⌦

). If H ↵

⌦+n+1

�) � then H !n(↵)

⌦+1

�) �

where !
0

(�) := � and !
k+1

(�) := !!k(�).

Proof. The proof uses an easy induction on n and the previous Lemma. ut

Note that 4.3.5 is much weaker than the full predicative cut elimination result we obtained for

IRS
⌦

(Theorem 3.4.3), this is because in general we cannot eliminate cuts with�P
0

cut-formulae

from IRSP
⌦

derivations.

Lemma 4.3.6 (Boundedness). If A is a ⌃P -formula, B is a ⇧P -formula, ↵ � < ⌦ and � 2 H
then

i) If H ↵

⇢

�) A then H ↵

⇢

�) AV� .

ii) If H ↵

⇢

�, B) � then H ↵

⇢

�, BV�) �

Proof. The proofs are by induction on ↵, we show ii), the proof of i) is similar. As with Lemma

3.4.4 the only interesting case is where B was the principal formula of the last inference and B

is of the form 8xC(x). So we have

H ↵0

⇢

�, B, C(s)) � for some |s| < ↵ with ↵
0

+ 1 < ↵.

Using the induction hypothesis we obtain

H ↵0

⇢

�, BV� , C(s)) � for some |s| < ↵ with ↵
0

+ 1 < ↵.

Now since �, BV�) s 2 V
�

is an axiom, we have H ↵0

⇢

�, BV�) s 2 V
�

, so by (! L) we

obtain

H ↵0+1

⇢

�, BV� , s 2 V
�

! C(s)) � for some |s| < ↵ with ↵
0

+ 1 < ↵.

Finally an application of (b8L) yields

H ↵

⇢

�, BV�) �

as required. ut

100

Theorem 4.3.7 (Collapsing). Suppose that ⌘ 2 H
⌘

, � is a set of at most one ⌃P -formula and

� a set of ⇧P -formulae with max{rk(A) |A 2 �} ⌦ then:

H
⌘

↵

⌦+1

�) � implies H
↵̂

 ⌦(↵̂)

 ⌦(↵̂)
�) �.

Here �̂ = ⌘ + !⌦+� and the operators H
⇠

are those defined in Definition 3.4.5.

Proof. Note first that from ⌘ 2 H
⌘

and Lemma 3.4.7 we obtain

(1) ↵̂,
⌦

(↵̂) 2 H
↵̂

.

The proof is by induction on ↵.

Case 0. If �) � is an axiom then the result follows immediately from (1).

Case 1. If the last inference was propositional then the assertion follows easily by applying the

induction hypothesis and then the same inference again.

Case 2. Suppose the last inference was (pb8R)1, then � = {(8x ✓ t)F (x)} and

H
⌘

[p]
↵p

⌦+1

�) p ✓ t ! F (p) for all | p | | t | with ↵
p

< ↵.

Since | t | 2 H
⌘

(;) = B⌦(⌘ + 1) and | t | < ⌦, we have | t | <
⌦

(⌘ + 1), thus | p | 2 H
⌘

for all

| p | | t |. So we have

H
⌘

↵p

⌦+1

�) p ✓ t ! F (p)

By Lemma 4.3.2 v) we get

H
⌘

↵p

⌦+1

�, p ✓ t) F (p)

Now since p ✓ t is �P
0

we may apply the induction hypothesis to obtain

H
↵̂p

 ⌦(↵̂p)

 ⌦(↵̂p)
�, p ✓ t) F (p) for all | p | | t | with ↵

p

< ↵.

Now noting that
⌦

(↵̂
p

) + 1 <
⌦

(↵̂), by applying (! R) followed by (pb8R)1 we obtain the

desired result. The cases where the last inference was (b8R)1, (pb9L)1, (b9L)1, (2 L)1 or

(✓L)1 are similar.

Case 3. Now suppose the last inference was (pb8L), so (8x ✓ t)F (x) 2 � and

H
⌘

↵0

⌦+1

�, s ✓ t ! F (s)) � for some | s | | t | with ↵
0

< ↵.

Since max{rk(A) | A 2 �} ⌦ F (s) is a �P
0

formula and thus s ✓ t ! F (s) is �P
0

as well. So

we may apply the induction hypothesis to obtain

H
↵̂0

 ⌦(↵̂0)

 ⌦(↵̂0)
�, s ✓ t ! F (s)) �

101

to which we may apply (pb8L) to complete this case. The cases where the last inference was

(b8L), (pb9R), (b9R), (2R) or (✓R) are similar.

Case 4. Now suppose the last inference was (8L), so 8xA(x) 2 � and

H
⌘

↵0

⌦+1

�, F (s)) � for some | s | < ↵ and ↵
0

< ↵.

Since F (s) is ⇧P (in fact �P
0

) we may apply the induction hypothesis to obtain

H
↵̂0

 ⌦(↵̂0)

 ⌦(↵̂0)
�, F (s)) �

Now since | s | 2 H
⌘

= B⌦(⌘ + 1) we have | s | <
⌦

(⌘ + 1) <
⌦

(↵̂). So we may apply (8L) to
complete the case. The case where the last inference was (9R) is similar.

The rest of the proof is completely analogous to that of Theorem 3.4.8, using boundedness for

IRSP
⌦

(4.3.6) instead of for IRS
⌦

. ut

4.4 Embedding IKP(P) into IRSP
⌦

Definition 4.4.1. As in the embedding section for the case of IKP, � �) � will be used to

abbreviate that

H[�) �]
no(�)�)

0

�) � holds for any operator H.

Also �⇠
⇢

�) � will be used to abbreviate that

H[�) �]
no(�)�)#⇠

⇢

�) � holds for any operator H.

Only this time we are referring to operator controlled derivability in IRSP
⌦

.

Lemma 4.4.2. For any formula A

� A) A

Proof. We proceed by induction on the complexity of A. If A is �P
0

then this is axiom (A1) of

IRSP
⌦

.

Suppose A is of the form 9xF (x). Let ↵
s

= | s |+ no(F (s)) F (s)) and ↵ = no(A) A), note

that | s | < ↵
s

+ 1 < ↵
s

+ 2 < ↵ for all s. By the induction hypothesis we have

H[F (s)]
↵s

0

F (s)) F (s) for all terms s and for an arbitrary operator H.

Now using weakening if necessary on the operator and (9R) we get

H[F (s), s]
↵s+1

0

F (s)) 9xF (x)

Finally since H[F (s), s](;) ✓ H[9xF (x)][s](;) we may apply (9L)1 to obtain the desired result.

The other cases are similar. ut

102

Lemma 4.4.3 (Extensionality). For any formula A and any terms s
1

, ..., s
n

, t
1

, ..., t
n

� s
1

= t
1

, ..., s
n

= t
n

, A(s
1

, ..., s
n

)) A(t
1

, ..., t
n

).

Proof. If A is �P
0

then this is an axiom. The remainder of the proof is by induction on

rk(A(s
1

, ..., s
n

)), note that rk(A(s
1

, ..., s
n

) = rk(A(t
1

, ..., t
n

) since A is not �P
0

.

Case 1. SupposeA(s
1

, ..., s
n

) ⌘ 9xB(x, s
1

, ..., s
n

), we know that rk(B(r, s
1

, ..., s
n

)) < rk(A(s
1

, ..., s
n

))

for all r by Lemma 4.2.3, so by induction hypothesis we have

� s
1

= t
1

, ..., s
n

= t
n

, B(r, s
1

, ..., s
n

)) B(r, t
1

, ..., t
n

) for all terms r.

Now successively applying (9R) and then (9L)1 yields the desired result.

Case 2. Now suppose A(s
1

, ..., s
n

) ⌘ (9x ✓ s
i

)B(x, s
1

, ..., s
n

). Since A is not �P
0

, B must

contain an unbounded quantifier, and thus by Lemma 4.2.3 ⌦ rk(r ✓ s
i

^ B(r, s
1

, ..., s
n

)) <

rk(A(s
1

, ..., s
n

)) for any | r | | s
i

|, thus by induction hypothesis we have

� s
1

= t
1

, ..., s
n

= t
n

, r ✓ s
i

^B(r, s
1

, ..., s
n

)) r ✓ t
i

^B(r, t
1

, ..., t
n

) for all | r | | s
i

|.

Thus successively applying (pb9R) and then (pb9L)1 yields the desired result. The other cases

are similar. ut

Lemma 4.4.4 (�P
0

-Collection). For any �P
0

formula F

�) (8x 2 s)9yF (x, y) ! 9z(8x 2 s)(9y 2 z)F (x, y).

Proof. Lemma 4.4.2 provides us with

� (8x 2 s)9yF (x, y)) (8x 2 s)9yF (x, y)

Noting that (8x 2 s)9yF (x, y) is a ⌃P formula and that rk((8x 2 s)9yF (x, y)) = !⌦+2 we may

apply (⌃P -Ref) to obtain

H̄ !

⌦+2·2+2

0

(8x 2 s)9yF (x, y)) 9z(8x 2 s)(9y 2 z)F (x, y)

where H̄ = H[(8x 2 s)9yF (x, y)] and H is an arbitrary operator. Now applying (! R) we get

H̄ !

⌦+2·2+3

0

) (8x 2 s)9yF (x, y) ! 9z(8x 2 s)(9y 2 z)F (x, y).

It remains to note that !⌦+2 · 2 + 3 < !⌦+3 = no(() 8x 2 s)9yF (x, y) ! 9z(8x 2 s)(9y 2
z)F (x, y)) to see that the result is verified. ut

Lemma 4.4.5 (Set Induction). For any formula F

�) 8x[(8y 2 x)F (y) ! F (x)] ! 8xF (x).

103

Proof. Let H be an arbitrary operator and let A := 8x[(8y 2 x)F (y) ! F (x)]. First we prove

the following

Claim: H[A, s]
!

rk(A)
#!

| s |+1

0

A) F (s) for all terms s.

The claim is proved by induction on | s |. By the induction hypothesis we have

H[A, t]
!

rk(A)
#!

| t |+1

0

A) F (t) for all | t | < | s |.
Using weakening and then (! R) we get

H[A, s, t]
!

rk(A)
#!

| t |+1
+1

0

A) t 2 s ! F (t) for all | t | < | s |.
Hence by (b8R)1 we get

H[A, s]
!

rk(A)
#!

| s |
+2

0

A) (8x 2 s)F (x)

(the extra +2 is needed when | s | is not a limit.) Now let ⌘
s

:= !rk(A)#!| s | + 2. By Lemma

4.4.2 we have H[A, s]
⌘s

0

F (s)) F (s) , so by (! L) we get

H[A, s]
⌘s+1

0

A, (8y 2 s)F (y) ! F (s)) F (s) .

Finally by applying (8L) we get

H[A, s]
⌘s+3

0

A) F (s) ,

since ⌘
s

+3 < !rk(A)#!| s |+1 the claim is verified. Now by applying (8R)1 we deduce from the

claim that

H[A]
!

rk(A)
+⌦

0

A) 8xF (x) .

Hence by (! R) we obtain the desired result. ut

Lemma 4.4.6 (Infinity). For any operator H we have

H !+2

0

) 9x[(9y 2 x)(y 2 x) ^ (8y 2 x)(9z 2 x)(y 2 z)]

Proof. First note that for any | s | < ↵ we have H 0

0

s 2 V
↵

by virtue of axiom (A4). Let

| s | = n < !, we have the following derivation in IRSP
⌦

:

H 0

0

) V
n+1

2 V
!

H 0

0

) s 2 V
n+1

(^R)
H 1

0

) V
n+1

2 V
!

^ s 2 V
n+1

(b9R)
H n+2

0

) (9z 2 V
!

)(s 2 z)
(! R)

H n+3

0

) s 2 V
!

! (9z 2 V
!

)(s 2 z)
(b8R)1 H !

0

) (8y 2 V
!

)(9z 2 V
!

)(y 2 z)

H 0

0

) V
0

2 V
!

(^R)
H 1

0

) V
0

2 V
!

^ V
0

2 V
!

(b9R)
H 2

0

) (9z 2 V
!

)(z 2 V
!

)
(^R)

H !+1

0

) (8y 2 V
!

)(9z 2 V
!

)(y 2 z) ^ (9z 2 V
!

)(z 2 V
!

)
(9R)

H !+2

0

) 9x[(8y 2 x)(9z 2 x)(y 2 z) ^ (9z 2 x)(z 2 x)]

104

ut

Lemma 4.4.7 (�P
0

-Separation). If A(a, b, c
1

, ..., c
n

) is a �P
0

-formula of IKP(P) with all free

variables indicated, r, s̄ := s
1

, ..., s
n

are IRSP
⌦

terms and H is an arbitrary operator then:

H[r, s̄]
↵+7

⇢

) 9y[(8x 2 y)(x 2 r ^A(x, r, s̄)) ^ (8x 2 r)(A(x, r, s̄) ! x 2 y)]

where ↵ := | r | and ⇢ := max{| r |, | s
1

|, ..., | s
n

|}+ !.

Proof. First we define

p := [x 2 V
↵

| x 2 r ^A(x, r, s̄)] and H̄ := H[r, s̄].

For t any term with | t | < ↵ the following are derivations in IRSP
⌦

, first we have:

Axiom (A1)

H̄ 0

0

t 2 r) t 2 r

Axiom (A1)

H̄ 0

0

A(t, r, s̄)) A(t, r, s̄)
(^R)

H̄ 1

0

t 2 r, A(t, r, s̄)) t 2 r ^A(t, r, s̄)

Axiom (A7)

H̄ 0

0

t 2 r ^A(t, r, s̄)) t 2 p
(cut)

H̄ 2

⇢

t 2 r, A(t, r, s̄)) t 2 p
(! R)

H̄ 3

⇢

t 2 r) A(t, r, s̄) ! t 2 p
(! R)

H̄ 4

⇢

) t 2 r ! (A(t, r, s̄) ! t 2 p)
(b8R)1 H̄ ↵+5

⇢

) (8x 2 r)(A(x, r, s̄) ! x 2 p)

Next we have:

Axiom (A6)

H̄ 0

0

t 2 p) t 2 r ^A(t, r, s̄)
(! R)

H̄ 1

0

) t 2 p ! t 2 r ^A(t, r, s̄)
(b8R)1 H̄ ↵+2

0

) (8x 2 p)(x 2 r ^A(x, r, s̄))

Now by applying (^R) followed by (9R) to the conclusions of these two derivations we get

H̄ ↵+7

⇢

) 9y[(8x 2 y)(x 2 r ^A(x, r, s̄)) ^ (8x 2 r)(A(x, r, s̄) ! x 2 y)]

as required. ut

Lemma 4.4.8 (Pair). For any operator H and any terms s and t we have

H[s, t]
↵+2

0

) 9z(s 2 z ^ t 2 z)

Where ↵ := max(| s |, | t |) + 1.

Proof. The following is a derivation in IRSP
⌦

:

105

Axiom (A4)

H[s, t]
0

0

) s 2 V
↵

Axiom (A4)

H[s, t]
0

0

) t 2 V
↵

(^R)
H[s, t]

1

0

) s 2 V
↵

^ t 2 V
↵

(9R)
H[s, t]

↵+2

0

) 9z(s 2 z ^ t 2 z)
ut

Lemma 4.4.9 (Union). For any operator H and any term s we have

H[s]
�+5

0

) 9z(8y 2 s)(8x 2 y)(x 2 z)

where � = | s |.

Proof. Let r and t be terms such that | r | < | t | < �, we have the following derivation in IRSP
⌦

:

Axiom (A4)

H[s, t, r]
0

0

t 2 s, r 2 t) r 2 V
�

(! R)
H[s, t, r]

1

0

t 2 s) r 2 t ! r 2 V
�

(b8R)1
H[s, t]

�+2

0

t 2 s) (8x 2 t)(x 2 V
�

)
(! R)

H[s, t]
�+3

0

) t 2 s ! (8x 2 t)(x 2 V
�

)
(b8R)1

H[s]
�+4

0

) (8y 2 s)(8x 2 y)(x 2 V
�

)
(9R)

H[s]
�+5

0

) 9z(8y 2 s)(8x 2 y)(x 2 z)
ut

Lemma 4.4.10 (Powerset). For any operator H and any term s we have

H[s]
↵+3

0

) 9z(8x ✓ s)(x 2 z)

where ↵ = | s |.

Proof. Let t be any term with | t | < ↵, we have the following derivation in IRSP
⌦

:

Axiom (A4)

H[s, t]
0

0

t ✓ s) t 2 V
↵+1

(! R)
H[s, t]

1

0

) t ✓ s ! t 2 V
↵+1

(pb8R)1 H[s]
↵+2

0

) (8x ✓ s)(x 2 V
↵+1

)
(9R)

H[s]
↵+3

0

) 9z(8x ✓ s)(x 2 z)
ut

106

Theorem 4.4.11. If IKP(P) ` �(ā)) �(ā) where �(ā)) �(ā) is an intuitionistic sequent

containing exactly the free variables ā = a
1

, ..., a
n

, then there exists an m < ! (which we may

calculate from the derivation) such that

H[s̄]
⌦·!m

⌦+m

�(s̄)) �(s̄)

for any operator H and any IRSP
⌦

terms s̄ = s
1

, ..., s
n

.

Proof. Note that the rank of IRSP
⌦

formulas is always < ⌦ + ! and thus the norm of IRSP
⌦

sequents is always < !⌦+! = ⌦ · !!. The proof is by induction on the IKP(P) derivation. If

�(ā)) �(b̄) is an axiom of IKP(P) then the result follows by one of Lemmas 4.4.2, 4.4.3 4.4.4,

4.4.5, 4.4.6, 4.4.7, 4.4.8, 4.4.9 and 4.4.10. Let H̄ := H[s̄].

Case 1. Suppose the last inference of the IKP(P) derivation was (pb9L) then (9x ✓ a
i

)F (x) 2
�(ā) and from the induction hypothesis we obtain a k such that

H̄[p]
⌦·!k

⌦+k

�(s̄), p ✓ s
i

^ F (p)) �(s̄)

for all | p | | s
i

| (using weakening if necessary). Thus we may apply (pb9L)1 to obtain the

desired result.

Case 2. Now suppose the last inference was (pb9R) then �(ā) = {(9x ✓ a
i

)F (x)} and we are

in the following situation in IKP(P):

` �(ā)) c ✓ a
i

^ F (c)
(pb9R) ` �(ā)) (9x ✓ a

i

)F (x)

2.1 If c is not a member of ā then by the induction hypothesis we have a k < ! such that

H̄ ⌦·!k

⌦+k

�(s̄)) V
0

✓ s
i

^ F (V
0

)

Hence we can apply (pb9R) to complete this case.

2.2 Now suppose c is a member of ā for simplicity let us suppose that c = a
1

. Inductively we

can find a k < ! such that

(1) H̄ ⌦·!k

⌦+k

�(s̄)) s
1

✓ s
i

^ F (s
1

)

Next we verify the following

(2) claim: �! �(s̄), s
1

✓ s
i

^ F (s
1

)) (9x ✓ s
i

)F (x).

Owing to axiom (A1) we have

(3) H̄[r]
0

0

r ✓ s
i

) r ✓ s
i

for all | r | | s
i

|.

107

Also by Lemma 4.4.3 we have

(4) � �[s̄], r = s
1

, F (s
1

)) F (r) for all | r | | s
i

|.

Now let �
r

= no(�[s̄], r = s
1

, F (s
1

)) F (r)). Applying (^R) to (3) and (4) provides

H̄[r]
�r+1

0

�(s̄), r ✓ s
i

, r = s
1

, F (s
1

)) r ✓ s
i

^ F (r) .

Using (pb9R) we may conclude

H̄[r]
�r+2

0

�(s̄), r ✓ s
i

, r = s
1

, F (s
1

)) (9x ✓ s
i

)F (x) .

Now two applications of (^L) gives us

H̄[r]
�r+4

0

�(s̄), r ✓ s
i

^ r = s
1

, F (s
1

)) (9x ✓ s
i

)F (x) .

Now applying (✓ L)1 provides

H̄ �+5

0

�(s̄), s
1

✓ s
i

, F (s
1

)) (9x ✓ s
i

)F (x)

where � = sup| r || si | �r. Finally, by applying (^L) a further two times we can conclude

H̄ �+7

0

�(s̄), s
1

✓ s
i

^ F (s
1

)) (9x ✓ s
i

)F (x) .

Via some ordinal arithmetic it can be observed that

� + 7 no(�(s̄), s
1

✓ s
i

^ F (s
1

)) (9x ✓ s
i

)F (x))#!,

so the claim is verified.

To complete this case we may now apply (Cut) to (1) and (2).

All other cases are similar to those above, or may be treated in a similar manner to Theorem

3.5.12. ut

4.5 A relativised ordinal analysis of IKP(P)

A major di↵erence to the case of IKP is that we don’t immediately have the soundness of cut-

reduced IRSP
⌦

derivations of ⌃P -formulae within the appropriate segment of the Von-Neumann

Hierarchy. This is partly due to the fact that we don’t have a term for each element of the

hierarchy (this can be seen from a simple cardinality argument). In fact we do still have

soundness for certain derivations within V
 ⌦("⌦+1)

, which is demonstrated in the next lemma,

where we must make essential use of the free variables in IRSP
⌦

. First we need the notion of

108

an assignment. Let V ARP be the set of free variables of IRSP
⌦

. A variable assignment is a

function

v : V ARP �! V
 ⌦("⌦+1)

such that v(a↵
i

) 2 V
↵+1

for each i. v canonically lifts to all terms as follows

v(V
↵

) = V
↵

v({x 2 V
↵

| F (x, s
1

, ..., s
n

)}) = {x 2 V
↵

|F (x, v(s
1

), ..., v(s
n

))}.

Moreover it can be seen that v(s) 2 V| s |+1

and thus v(s) 2 V
 ⌦("⌦+1)

for all terms s.

Theorem 4.5.1 (Soundness for IRSP
⌦

). Suppose �[s
1

, ..., s
n

] is a finite set of ⇧P formulae with

max{rk(A) |A 2 �} ⌦, �[s
1

, ..., s
n

] a set containing at most one ⌃P formula and

H ↵

⇢

�[s̄]) �[s̄] for some operator H and some ↵, ⇢ < ⌦.

Then for any assignment v,

V
 ⌦("⌦+1)

|=
^

�[v(s
1

), ..., v(s
n

)] !
_

�[v(s
1

), ..., v(s
n

)].

Where
V

� and
W
� stand for the conjunction of formulas in � and the disjunction of formulas

in � respectively, by convention
V ; = > and

W ; = ?.

Proof. The proof is by induction on ↵. Note that the derivation H ↵

⇢

�[s̄]) �[s̄] contains no

inferences of the form (8R)1, (9L)1 or (⌃P -Ref) and all cuts have �P
0

cut formulae. All

axioms of IRSP
⌦

can be observed to be sound with respect to the interpretation.

First we treat the case where the last inference was (pb8L) so we have

H ↵0

⇢

�[s̄], t ✓ s
i

! F (t, s̄)) �[s̄] for some ↵
0

, | t | < ↵, with | t | | s
i

|.

Since max{rk(A) | A 2 �} ⌦, it follows that t ✓ s
i

! F (t, s̄) is a �P
0

formula. So we may

apply the induction hypothesis to obtain

V
 ⌦("⌦+1)

|=
^

�[v(s̄)] ^ [v(t) ✓ v(s
i

) ! F (v(t), v(s̄))] !
_

�[v(s̄)],

where v(s̄) := v(s
1

), ..., v(s
n

). From here the desired result follows by regular logical semantics.

Now suppose the last inference was (pb8R)1, so we have

(1) H ↵t

⇢

�[s̄]) t ✓ s
i

! F (t, s̄) for all | t | | s
i

| with ↵
t

< ↵.

In particular this means we have

(2) H ↵0

⇢

�[s̄]) a�
j

✓ s
i

! F (a�
j

, s̄) for some ↵
0

< ↵.

109

Here � := | s
i

| and j is chosen such that a�
j

does not occur in any of the terms s
1

, ..., s
n

. If F

contains an unbounded quantifier we may use inversion for IRSP
⌦

4.3.2v) to obtain

(3) H ↵0

⇢

�[s̄], a�
j

✓ s
i

) F (a�
j

, s̄) for some ↵
0

< ↵.

So we may apply the induction hypothesis to get

(4) V
 ⌦("⌦+1)

|=
^

�[v(s̄)], v(a�
j

) ✓ v(s
i

) ! F (v(a�
j

), v(s̄))

for all variable assignments v. Thus by the choice of a�
j

we have

(5) V
 ⌦("⌦+1)

|=
^

�[v(s̄)] ! (8x ✓ v(s
i

))F (x, v(s̄))

as required. If F is �P
0

then we may immediately apply the induction hypothesis to (2) to

obtain

(6) V
 ⌦("⌦+1)

|=
^

�[v(s̄)] ! [v(a�
j

) ✓ v(s
i

) ! F (v(a�
j

), v(s̄))]

for all variable assignments v, again by the choice of a�
i

we obtain the desired result. All other

cases may be treated in a similar manner to the two above. ut

Lemma 4.5.2. Suppose IKP(P) `) A for some ⌃P sentence A, then there is an m < !,

which we may compute from the derivation, such that

H
�

 ⌦(�)

 ⌦(�)
) A where � := !

m

(⌦ · !m).

Proof. Suppose IKP(P) `) A for some ⌃P sentence A, then by Theorem 4.4.11 we can

explicitly find some m < ! such that

H
0

⌦·!m

⌦+m

) A .

Applying Partial cut elimination 4.3.5 we have

H
0

!m�1(⌦·!m
)

⌦+1

) A .

Now using Collapsing 4.3.7 we obtain

H
�

 ⌦(�)

 ⌦(�)
) A where � := !

m

(⌦ · !m).

completing the proof. ut

Note that we cannot eliminate all cuts from the derivation since we don’t have full predicative

cut elimination for IRSP
⌦

as we do for IRS
⌦

.

110

Theorem 4.5.3. If A is a ⌃P -sentence and IKP(P) `) A then there is some ordinal term

↵ <
⌦

("
⌦+1

), which we may compute from the derivation, such that

V
↵

|= A.

Proof. From Lemma 4.5.2 we obtain some m < ! such that

(1) H
�

 ⌦(�)

 ⌦(�)
) A where � := !

m

(⌦ · !m).

Let ↵ :=
⌦

(�). Applying Boundedness 4.3.6 to (1) we obtain

(2) H
�

↵

↵

) AV↵ .

Now applying Theorem 4.5.1 to (2) we obtain

V
 ⌦("⌦+1)

|= AV↵

and thus

V
↵

|= A

as required. ut

Remark 4.5.4. Suppose A ⌘ 9xC(x) is a ⌃P sentence and IKP(P) `) A. As well as the

ordinal term ↵ given by Theorem 4.5.3, it is possible to determine (making essential use of the

intuitionistic nature of IRSP
⌦

) a term s, with | s | < ↵, such that

V
↵

|= C(s).

This proof is somewhat more complex than in the case of IKP since the proof tree correspond-

ing to (2) above can still contain cuts with �P
0

cut formulae.

Moreover, in order to show that IKP(P) has the existence property, the embedding and cut

elimination for a given finite derivation of a ⌃P sentence, needs to be carried out inside IKP(P).

In order to do this it needs to be shown that from the finite derivation we can calculate some

ordinal term � < "
⌦+1

such that the embedding and cut elimination for that derivation can still

be performed inside IRSP
⌦

with the term structure restricted to B(�).

These proofs will appear in [43].

111

112

Chapter 5

A relativised ordinal analysis of

IKP(E)

This final chapter provides a relativised ordinal analysis for intuitionistic exponentiation Kripke-

Platek set theory IKP(E). Given sets a and b, set-exponentiation allows the formation of the

set ab, of all functions from a to b. A problem that presents itself in this case is that it is not

clear how to formulate a term structure in such a way that we can read o↵ a terms level in the

pertinent ‘exponentiation hierarchy’ from that terms syntactic structure. Instead we work with

a term structure similar to that used in IRSP
⌦

, and a terms level becomes a dynamic property

inside the infinitary system. Making this work in a system for which we can prove all the

necessary embedding and cut-elimination theorems turned out to be a major technical hurdle.

The end result of the chapter is a characterisation of IKP(E) in terms of provable height of the

exponentiation hierarchy, this machinery will also be used in a later paper by Rathjen [43], to

show that CZFE has the full existence property.

5.1 A sequent calculus formulation of IKP(E)
Definition 5.1.1. The formulas of IKP(E) are the same as those of IKP except we also allow

exponentiation bounded quantifiers of the form

(8x 2 ab)A(x) and (9x 2 ab)A(x).

These are treated as quantifiers in their own right, not abbreviations. The formula ”fun(x, a, b)”

is defined below. It’s intuitive meaning is ”x is a function from a to b”.

fun(x, a, b) := x ✓ a⇥ b ^ (8y 2 a)(9z 2 b)((y, z) 2 x)

^ (8y 2 a)(8z
1

2 b)(8z
2

2 b)[((y, z
1

) 2 x ^ (y, z
2

) 2 x) ! z
1

= z
2

]

113

Quantifiers 8x, 9x will be referred to as unbounded, whereas the other quantifiers (including

the exponentation bounded ones) will be referred to as bounded.

A �E
0

-formula of IKP(E) is one that contains no unbounded quantifiers.

As with IKP, the system IKP(E) derives intuitionistic sequents of the form �) � where �

and � are finite sets of formulae and � contains at most one formula.

The axioms of IKP(E) are given by:

Logical axioms: �, A,) A for every �E
0

–formula A.

Extensionality: �) a=b ^B(a) ! B(b) for every �E
0

-formula B(a).

Pair: �) 9x[a2x ^ b2x]

Union: �) 9x(8y2a)(8z2y)(z2x)

Infinity: �) 9x [(9y 2 x) y 2 x ^ (8y 2 x)(9z 2 x) y 2 z].

�E
0

–Separation: �) 9x((8y 2 x)(y 2 a ^A(y)) ^ (8y 2 a)(A(y) ! y 2 x))

for every �E
0

formula A(b).

�E
0

–Collection: �) (8x 2 a)9yB(x, y) ! 9z(8x 2 a)(9y 2 z)B(x, y)

for every �E
0

formula B(b, c).

Set Induction: �) 8u [(8x 2 u)G(x) ! G(u)] ! 8uG(u)

for every formula G(b).

Exponentiation: �) 9z (8x 2 ab)(x 2 z).

The rules of IKP(E) are the same as those of IKP (extended to the new language containing

exponentiation bounded quantifiers), together with the following four rules:

�, fun(c, a, b) ^ F (c)) �
(Eb9L)

�, (9x 2 ab)F (x)) �

�) fun(c, a, b) ^ F (c)
(Eb9R)

�) (9x 2 ab)F (x)

�, fun(c, a, b) ! F (c)) �
(Eb8L)

�, (8x 2 ab)F (x)) �

�) fun(c, a, b) ! F (c)
(Eb8R)

�) (8x 2 ab)F (x)

As usual it is forbidden for the variable a to occur in the conclusion of the rules (Eb9L) and

(Eb8R), such a variable is referred to as the eigenvariable of the inference.

5.2 The infinitary system IRSE
⌦

The purpose of this section is to introduce an infinitary system IRSE
⌦

within which we will be

able to embed IKP(E). As with the Von-Neumann hierarchy built by iterating the power set

114

operation through the ordinals, one may define an Exponentiation-hierarchy as follows

E
0

:= ;
E

1

:= {;}
E
↵+2

:= {X | X is definable over hE
↵+1

,2i with parameters}
[{f | fun(f, a, b) for some a, b 2 E

↵

.}
E
�

:=
[

�<�

E
�

for � a limit ordinal.

E
�+1

:= {X | X is definable over hE
↵+1

,2i with parameters} for � a limit ordinal.

Lemma 5.2.1. If y 2 E
↵+1

and x 2 y then x 2 E
↵

.

Proof. The proof is by induction on ↵. If y is a set definable over hE
↵

,2i with parameters, the

members of y, including x, must be members of E
↵

.

Now suppose ↵ = �+1 and y 2 E
↵+1

is a function y : p ! q for two sets p, q 2 E
�

. Since x 2 y,

it follows that x is of the form (x
0

, x
1

) with x
0

2 p and x
1

2 q, we use the standard definition

of ordered pair so

(1) (x
0

, x
1

) := {{x
0

, x
1

}, {x
0

}}

We must now verify the following claim:

(*) {x
0

}, {x
1

}, {x
0

, x
1

} 2 E
�

.

If � = � + 1 then by the induction hypothesis applied to x
0

2 p 2 E
�

and x
1

2 q 2 E
�

we get

x
0

, x
1

2 E
�

and thus {x
0

}, {x
1

}, {x
0

, x
1

} 2 E
�

as required.

If � is a limit then by the induction hypothesis and the construction of the E hierarchy at limit

ordinals, we know that s
0

2 E
�0 and s

1

2 E
�1 for some �

0

,�
1

< �, thus {s
0

}, {s
1

}, {s
0

, s
1

} 2
E

max(�0,�1)+1

which completes the proof of (*).

From (*) and (1) it is clear that (s
0

, s
1

) 2 E
�+1

as required. ut

The idea of IRSE
⌦

is to build an infinitary system for reasoning about the E hierarchy.

Definition 5.2.2. The terms of IRSE
⌦

are defined as follows

1. E
↵

is an IRSE
⌦

term for each ↵ < ⌦.

2. a↵
i

is an IRSE
⌦

term for each ↵ < ⌦ and each i < !, these terms will be known as free

variables.

115

3. If F (a, b̄) is a �E
0

formula of IKP(E) containing exactly the free variables indicated, and

t, s̄ := s
1

, ..., s
n

are IRSE
⌦

terms then

[x 2 t | F (x, s̄)]

is also a term of IRSE
⌦

.

Observe that IRSE
⌦

terms do not come with ‘levels’ as in the other infinitary systems. This is

because it is not clear how to immediately read o↵ the location of a given term within the E

hierarchy, just from the syntactic information available within that term.

The formulas of IRSE
⌦

are of the form F (s
1

, ..., s
n

), where F (a
1

, ..., a
n

) is a formula of IKP(E)
with all free variables indicated and s

1

, ..., s
n

are IRSE
⌦

terms. The formula A(s
1

, ..., s
n

) is said

to be �E
0

if A(a
1

, ..., a
n

) is a �E
0

formula of IKP(E). The ⌃E (⇧E) formulae are the smallest

collection containing the �E
0

formulae and closed under ^, _, bounded quantification and un-

bounded existential (universal) quantification.

The axioms of IRSE
⌦

are given by

(E1) �, A) A for every �E
0

–formula A.

(E2) �) t = t for every IRSE
⌦

term t.

(E3) �, s̄= t̄, B(s̄)) B(t̄) for every �E
0

-formula B(s̄).

(E4) �) E
�

2 E
↵

for all � < ↵ < ⌦

(E5) �) a�
i

2 E
↵

for all i 2 ! and � < ↵ < ⌦

(E6) �, t 2 E
↵

, s 2 t) s 2 E
↵

for all ↵ < ⌦

(E7) �, t 2 E
↵+1

, s 2 t) s 2 E
↵

for all ↵ < ⌦

(E8) �, s 2 t, F (s, p̄)) s 2 [x 2 t | F (x, p̄)]

(E9) �, s 2 [x 2 t | F (x, p̄)]) s 2 t ^ F (s, p̄)

(E10) �, s 2 E
↵

, t 2 E
�

, fun(p, s, t)) p 2 E
�

for all � � max(↵,�) + 2.

(E11) �, t 2 E
�

, p̄ 2 E
↵̄

) [x 2 t | F (x, p̄)] 2 E
�

for all � � max(�, ↵̄)

Definition 5.2.3. For a formula A(a
1

, ..., a
n

) of IKP(E) containing exactly the free variables

ā := a
1

, ..., a
n

and any IRSE
⌦

terms s̄ := s
1

, ..., s
n

, we define the �̄-rank kA(s̄)k
¯

�

where �̄ :=

�
1

, ...,�
n

are any ordinals < ⌦. The definition is made by recursion on the build up of the

formula A.

i) ks 2 tk
�1,�2 := max(�

1

,�
2

)

ii) k(9x 2 t)F (x, s̄)k
�,

¯

�

:= k(8x 2 t)F (x, s̄)k
�,

¯

�

:= max(�, kF (E
0

, s̄)k
0,

¯

�

+ 2)

iii) k(9x 2 st)F (x, p̄)k
�,�,

¯

�

:= k(8x 2 st)F (x, p̄)k
�,�,

¯

�

:= max(� + !, � + !, kF (E
0

, p̄)k
0,

¯

�

+ 2)

116

iv) k9xF (x, s̄)k
¯

�

:= k8xF (x, s̄)k
¯

�

:= max(⌦, kF (E
0

, s̄)k
0,

¯

�

+ 2)

v) kA ^Bk
¯

�

:= kA _Bk
¯

�

:= kA ! Bk
¯

�

:= max(kAk
¯

�

, kBk
¯

�

) + 1

vi) k¬Ak
¯

�

:= kAk
¯

�

+ 1

We define the rank of A(s̄) by

rk(A(s̄)) := kA(s̄)k
¯

0

Observation 5.2.4.

i) kA(s̄)k
¯

�

< ⌦ if and only ifA is�E
0

ii) If A contains unbounded quantifiers then rk(A(s̄)) = kA(s̄)k
¯

�

for all s̄ and �̄.

Definition 5.2.5 (Operator Controlled Derivability in IRSE
⌦

). IRSE
⌦

derives intuitionistic se-

quents of the form �) � where � and � are finite sets of IRSE
⌦

formulae and � contains at

most one formula. For H an operator and ↵, ⇢ ordinals we define the relation H ↵

⇢

�) � by

recursion on ↵.

If �) � is an axiom and ↵ 2 H then H ↵

⇢

�) � .

It is always required that ↵ 2 H, this requirement is not repeated for each inference rule below.

(E-Lim)1
H[�]

↵�

⇢

�, s 2 E
�

) � for all � < �

H ↵

⇢

�, s 2 E
�

) �

� a limit

↵
�

< ↵

� 2 H

(b8L)

H ↵0

⇢

�, s 2 t ! A(s)) �

H ↵1

⇢

�) t 2 E
�

H ↵2

⇢

�) s 2 E
�

H ↵

⇢

�, (8x 2 t)A(x)) �

↵
0

,↵
1

,↵
2

< ↵

�, � 2 H
� < ↵

� �

(b8R)1

H ↵0

⇢

�) s 2 t ! F (s) for all s

H ↵1

⇢

�) t 2 E
�

H ↵

⇢

�) (8x 2 t)F (x)

↵
0

,↵
1

< ↵

� 2 H
� < ↵

(b9L)1
H ↵0

⇢

�, s 2 t ^ F (s)) � for all s

H ↵1

⇢

�) t 2 E
�

H ↵

⇢

�, (9x 2 t)F (x)) �

↵
0

,↵
1

< ↵

� 2 H
� < ↵

117

(b9R)

H ↵0

⇢

�) s 2 t ^A(s)

H ↵1

⇢

�) t 2 E
�

H ↵2

⇢

�) s 2 E
�

H ↵

⇢

�) (9x 2 t)A(x)

↵
0

,↵
1

,↵
2

< ↵

�, � 2 H
� < ↵

� �

(Eb8L)

H ↵0

⇢

�, fun(p, s, t) ! A(p)) �

H ↵1

⇢

�) s 2 E
�

H ↵2

⇢

�) t 2 E
�

H ↵3

⇢

�) p 2 E
�

H ↵

⇢

�, (8x 2 st)A(x)) �

↵
0

,↵
1

,↵
2

,↵
3

< ↵

�, �, � 2 H
� < ↵

� max(�, �) + 2

(Eb8R)1

H ↵0

⇢

�) fun(p, s, t) ! F (p) for all p

H ↵1

⇢

�) s 2 E
�

H ↵2

⇢

�) t 2 E
�

H ↵

⇢

�) (8x 2 st)F (x)

↵
0

,↵
1

,↵
2

< ↵

�, � 2 H
max(�, �) + 2 ↵

(Eb9L)1

H ↵0

⇢

�, fun(p, s, t) ^ F (p)) � for all p

H ↵1

⇢

�) s 2 E
�

H ↵2

⇢

�) t 2 E
�

H ↵

⇢

�, (9x 2 st)F (x)) �

↵
0

,↵
1

,↵
2

< ↵

�, � 2 H
max(�, �) + 2 ↵

(Eb9R)

H ↵0

⇢

�) fun(p, s, t) ^A(p)

H ↵1

⇢

�) s 2 E
�

H ↵2

⇢

�) t 2 E
�

H ↵3

⇢

�) p 2 E
�

H ↵

⇢

�) (9x 2 st)A(x)

↵
0

,↵
1

,↵
2

,↵
3

< ↵

�, �, � 2 H
� < ↵

� max(�, �) + 2

(8L)
H ↵0

⇢

�, F (s)) �

H ↵1

⇢

�) s 2 E
�

H ↵

⇢

�, 8xF (x)) �

↵
0

+ 3,↵
1

+ 3 < ↵

� < ↵

� 2 H

(8R)1
H[�]

↵�

⇢

�, s 2 E
�

) F (s) for all s and all � < ⌦

H ↵

⇢

�) 8xF (x)
� < ↵

�

+ 3 < ↵

118

(9L)1
H[�]

↵�

⇢

�, s 2 E
�

, F (s)) � for all s and all � < ⌦

H ↵

⇢

�) 8xF (x)
� < ↵

�

+ 3 < ↵

(9R)

H ↵0

⇢

�) F (s)

H ↵1

⇢

�) s 2 E
�

H ↵

⇢

�) 9xF (x)

↵
0

+ 3,↵
1

+ 3 < ↵

� < ↵

� 2 H

(⌃E -Ref)
H ↵0

⇢

�, A

H ↵

⇢

�, 9z Az

↵
0

+ 1,⌦ < ↵

A is a ⌃E -formula

(Cut)

H ↵0

⇢

�, A(s
1

, ..., s
n

)) �

H ↵1

⇢

�) A(s
1

, ..., s
n

)

H ↵2

⇢

�) s
i

2 E
�i i = 1, ..., n

H ↵

⇢

�) �

↵
0

,↵
1

,↵
2

< ↵

kA(s̄)k
¯

�

< ⇢

�̄ 2 H

Lastly if �) � is the result of a propositional inference of the form (^L), (^R), (_L), (_R),

(¬L), (¬R), (?), (! L) or (! R), with premise(s) �
i

) �
i

then from H ↵0

⇢

�
i

) �
i

(for each

i) we may conclude H ↵

⇢

�) � , provided ↵
0

< ↵.

Convention 5.2.6. In cases where terms E
↵

and a↵
i

occur directly as witnesses in existential

rules or in cut formulae we will omit the extra premise declaring the terms location in the E
term hierarchy since

E
↵

2 E
↵+1

and a↵
i

2 E
↵+1

are axioms (E4) and (E5) respectively. It must still be checked that ↵ 2 H however.

5.3 Cut elimination for IRSE
⌦

Lemma 5.3.1 (Inversions of IRSE
⌦

). If max(rk(A), rk(B)) � ⌦ then we have the usual propo-

sitional inversions for intuitionistic systems:

i) If H ↵

⇢

�, A ^B) � then H ↵

⇢

�, A,B) � .

ii) If H ↵

⇢

�) A ^B then H ↵

⇢

�) A and H ↵

⇢

�) B .

iii) If H ↵

⇢

�, A _B) � then H ↵

⇢

�, A) � and H ↵

⇢

�, B) � .

iv) If H ↵

⇢

�, A ! B) � then H ↵

⇢

�, B) � .

v) If H ↵

⇢

�) A ! B then H ↵

⇢

�, A) B .

If rk(A) � ⌦ we have the following additional inversions:

119

vi) If H ↵

⇢

�) ¬A then H ↵

⇢

�, A) .

vii) If H ↵

⇢

�) (8x 2 t)A(x) then H ↵

⇢

�) s 2 t ! A(s) for all terms s.

viii) If H ↵

⇢

�, (9x 2 t)A(x)) � then H ↵

⇢

�, s 2 t ^A(s)) � for all terms s.

ix) If H ↵

⇢

�) (8x 2 st)A(x) then H ↵

⇢

�) fun(p, s, t) ! A(p) for all terms p.

x) If H ↵

⇢

�, (9x 2 st)A(x)) � then H ↵

⇢

�, fun(p, s, t) ^A(p)) � for all terms p.

Finally we have the following persistence properties:

xi) If � 2 H \ ⌦ and H ↵

⇢

�) 8xA(x) then H ↵

⇢

�) (8x 2 E
�

)A(x) .

xii) If � 2 H \ ⌦ and H ↵

⇢

�, 9xA(x)) � then H ↵

⇢

�, (9x 2 E
�

)A(x)) � .

Proof. All proofs are by induction on ↵, i) to vi) are standard for intuitionistic systems of this

type.

For viii) suppose that H ↵

⇢

�, (9x 2 t)A(x)) � and rk(A(E
0

)) � ⌦. (9x 2 t)A(x) cannot

have been the ”active component” of an axiom, so if �, (9x 2 t)A(x)) � is an axiom then so

is �, s 2 t ^A(s)) �. Now if (9x 2 t)A(x) was not the principal formula of the last inference

we may apply the induction hypothesis to the premises of that inference followed by the same

inference again. Finally if (9x 2 t)A(x) was the principal formula of the last inference and the

last inference was (b9L)1 so we have

H ↵0

⇢

�, (9x 2 t)A(x), s 2 t ^A(s)) � for all terms s and for some ↵
0

< ↵.

Applying the induction hypothesis followed by weakening yields

H ↵

⇢

�, s 2 t ^A(s)) � for all terms s

as required. The proofs of vii), xi) and x) are similar.

For xi) suppose H ↵

⇢

�) 8xA(x) and � 2 H\⌦. �) 8xA(x) cannot be an axiom. If the last

inference was not (8R)1 then we may apply the induction hypothesis to its premises and then

the same inference again. So suppose the last inference was (8R)1 in which case we have the

premise

H[�]
↵�

⇢

�, s 2 E
�

) A(s) for all s and all � < ⌦, with � < ↵
�

+ 3 < ↵.

In particular since � 2 H we have

H ↵�

⇢

�, s 2 E
�

) A(s) for all s with � < ↵
�

+ 3 < ↵.

120

So by (!R) we have

H ↵�+1

⇢

�) s 2 E
�

! A(s) for all s

Now since) E
�

2 E
�+1

is an instance of axiom (E4), � 2 H and � < ↵ we may apply (b8R) to

obtain

H ↵

⇢

�) (8x 2 E
�

)A(x)

as required. The proof of xii) is similar. ut

Lemma 5.3.2 (Reduction for IRSE
⌦

). Suppose rk(C(s̄)) := ⇢ > ⌦ where C(ā) is an IKP(E)
formula with all free variables displayed. If

H ↵

⇢

�) C(s̄)

H �

⇢

�, C(s̄)) �

H �i

⇢

�) s
i

2 E
⌘i with ⌘

i

2 H \ ⌦ for each 1 i n.

Then

H ↵#↵#�#�#�

⇢

�) � where � := max
i=1,...,n

(�
i

)

Proof. The proof is by induction on ↵#↵#�#�#�. Assume that

rk(C(s̄)) := ⇢ > ⌦(1)

H ↵

⇢

�) C(s̄)(2)

H �

⇢

�, C(s̄)) �(3)

H �i

⇢

�) s
i

2 E
⌘i for each 1 i n and for some ⌘

i

2 H \ ⌦.(4)

Since rk(C(s̄)) := ⇢ > ⌦, C cannot be the ‘active part’ of an axiom, hence if (2) or (3) are

axioms of IRSE
⌦

then so is �) �.

If C(s̄) was not the principal formula of the last inference in either (2) or (3) then we may ap-

ply the induction hypothesis to the premises of that inference and then the same inference again.

So suppose C(s̄) was the principal formula of the last inference in both (2) and (3). Since the

conclusion of a (⌃E -Ref) inference always has rank ⌦ and rk(C(s̄)) := ⇢ > ⌦ we may conclude

that the last inference of (2) was not (⌃E -Ref).

121

Case 1. Suppose C(s̄) ⌘ (9x 2 s
i

)F (x, s̄), thus we have

H ↵0

⇢

�) r 2 s
i

^ F (r, s̄) ↵
0

< ↵(5)

H ↵1

⇢

�) s
i

2 E
�

↵
1

< ↵ and � 2 H(6)

H ↵2

⇢

�) r 2 E
⇠

⇠,↵
2

< ↵ , ⇠ 2 H(;) and ⇠ �(7)

H �0

⇢

�, C(s̄), p 2 s
i

^ F (p, s̄)) � for all p and �
0

< �(8)

H �1

⇢

�, C(s̄)) s
i

2 E
�

0 �0,�
1

< � and �0 2 H(;)(9)

From (8) we obtain

(10) H �0

⇢

�, C(s̄), r 2 s
i

^ F (r, s̄)) � .

Applying the induction hypothesis to (2), (4) and (10) yields

(11) H ↵#↵#�0#�0#�

⇢

�, r 2 s
i

^ F (r, s̄)) � .

Note that

⌦ < rk(r 2 s
i

^ F (r, s̄)) = rk(F (r, s̄)) + 1

< rk(F (r, s̄)) + 2

= rk(C(s̄)) := ⇢.

So we may apply (Cut) to (4),(5),(7) and (11) giving

H ↵#↵#�#�#�

⇢

�) �

as required. The case where C(s̄) ⌘ (8x 2 s
i

)F (x, s̄) is similar.

Now suppose C(s̄) ⌘ (8x 2 sis
j

)F (x, s̄), so we have

H ↵0

⇢

�) fun(p, s
i

, s
j

) ! F (p, s̄) for all p and ↵
0

< ↵(12)

H ↵1

⇢

�) s
i

2 E
�

↵
1

< ↵ and � 2 H(;)(13)

H ↵2

⇢

�) s
j

2 E
�

0 ↵
2

< ↵, �0 2 H(;) and max(�, �0) + 2 ↵(14)

H �0

⇢

�, C(s̄), fun(r, s
i

, s
j

) ! F (r, s̄)) � �
0

< �(15)

H �1

⇢

�, C(s̄)) r 2 E
⇠

⇠ < �, ⇠ 2 H(;) and �
1

< �(16)

H �2

⇢

�, C(s̄)) s
i

2 E
⇣

⇣ 2 H(;) and �
2

< �(17)

H �3

⇢

�, C(s̄)) s
j

2 E
⇣

0 ⇣ 0 2 H(;), �
3

< � and ⇠ max(⇣, ⇣ 0) + 2(18)

122

As an instance of (12) we have

(19) H ↵0

⇢

�) fun(r, s
i

, s
j

) ! F (r, s̄) .

Applying the induction hypothesis to (2), (4) and (15) gives

(20) H ↵#↵#�0#�0#�

⇢

�, fun(r, s
i

, s
j

) ! F (r, s̄)) � .

Furthermore the induction hypothesis applied to (2),(4) and (16) gives

(21) H ↵#↵#�1#�1#�

⇢

�) r 2 E
⇠

.

Note that

⌦ < rk(fun(r, s
i

, s
j

) ! F (r, s̄)) = rk(F (r, s̄)) + 1

< rk(F (r, s̄)) + 2 = rk(C(s̄))

so we may apply (Cut) to (4), (19), (20), (21) to give

(22) H ↵#↵#�#�#�

⇢

�) � .

as required.

The case where C(s̄) ⌘ (9x 2 sis
j

)F (x, s̄) is similar.

Case 3. Now suppose that C(s̄) ⌘ 8xF (x, s̄), so we have

H[�]
↵�

⇢

�, p 2 E
�

) F (p, s̄) for all p and all � < ⌦ with ↵
�

+ 3 < ↵(23)

H �0

⇢

�, C(s̄), F (r, s̄)) � with �
0

+ 3 < �(24)

H �1

⇢

�, C(s̄)) r 2 E
⇠

with ⇠ < �, ⇠ 2 H(;) and �
1

+ 3 < �.(25)

Since ⇠ 2 H(;), from (23) we obtain

(26) H ↵⇠

⇢

�, r 2 E
⇠

) F (r, s̄)

Applying the induction hypothesis to (2), (4) and (24) gives

(27) H ↵#↵#�0#�0#�

⇢

�, F (r, s̄)) � .

Again applying the induction hypothesis to (2), (4) and (25) gives

(28) H ↵#↵#�1#�1#�

⇢

�) r 2 E
⇠

.

Now a (Cut) applied to (26) and (28) yields

(29) H ↵#↵#�#�1#�

⇢

�) F (r, s̄) .

123

Note that

⌦ rk(F (r, s̄)) < rk(F (r, s̄)) + 2 = rk(C) = ⇢

So a (Cut) applied to (4), (27), (28) and (29) yields

(30) H ↵#↵#�#�#�

⇢

�) �

as required.

The case where C(s̄) ⌘ 9xF (x, s̄) is similar.

In the cases where C ⌘ A ^ B,A _ B,A ! B or ¬A we may argue as with other intuitionistic

systems of a similar nature. ut

Theorem 5.3.3 (Cut Elimination I). If H ↵

⌦+n+1

�) � then H !n(↵)

⌦+1

�) � for all n < !.

Where !
0

(↵) = ↵ and !
n+1

(↵) = !!n(↵).

Proof. By main induction on n and subsidiary induction on ↵. The interesting case is where the

last inference was (Cut), with cut formula A(s̄) such that rk(A(s̄)) = ⌦+ n and s̄ = s
1

, ..., s
m

are the only terms occurring A(s̄). In this case we have

H ↵0

⌦+n+1

�) A(s̄) with ↵
0

< ↵(1)

H ↵1

⌦+n+1

�, A(s̄)) � with ↵
1

< ↵(2)

H ↵2

⌦+n+1

�) s
i

2 E
�i with ↵

2

< ↵ and �
i

2 H for each i = 1, ...,m.(3)

Applying the subsidiary induction hypothesis to (1), (2) and (3) gives

H !

↵0

⌦+n

�) A(s̄) with ↵
0

< ↵(4)

H !

↵1

⌦+n

�, A(s̄)) � with ↵
1

< ↵(5)

H !

↵2

⌦+n

�) s
i

2 E
�i with ↵

2

< ↵ and �
i

2 H for each i = 1, ...,m.(6)

Now applying the Reduction Lemma 5.3.2 to (4), (5) and (6) gives

(7) H !

↵0
#!

↵0
#!

↵1
#!

↵1
#!

↵2

⌦+n

�) � .

Note that !↵0#!↵0#!↵1#!↵1#!↵2 < !↵ so by weakening we have

(7) H !

↵

⌦+n

�) � .

Finally applying the main induction hypothesis gives

H !n(↵)

⌦+1

�) �

as required. ut

124

Lemma 5.3.4. If � � < ⌦ with �, � 2 H(;) and H ↵

⇢

�) s 2 E
�

then

H ↵+2

⇢

⇤ �) s 2 E
�

where ⇢⇤ := max(⇢,� + 1).

Proof. If � = � the result follows by weakening, so suppose � < �. Assume that

(1) H ↵

⇢

�) s 2 E
�

.

Now as instances of axioms (E4) and (E6) respectively we have

H 0

0

�) E
�

2 E
�

(2)

H 0

0

�, s 2 E
�

,E
�

2 E
�

) s 2 E
�

.(3)

Applying (Cut) to (2) and (3) yields

(4) H 1

�+2

�, s 2 E
�

) s 2 E
�

.

Now applying a second (Cut) to (1) and (4) supplies us with

H ↵+2

⇢

⇤ �) s 2 E
�

as required. ut

Lemma 5.3.5 (Boundedness). Suppose ↵ � < ⌦, � 2 H, A is a ⌃E -formula and B is a ⇧E

formula then

i) If H ↵

⇢

�) A then H ↵

⇢

⇤ �) AE� .

ii) If H ↵

⇢

�, B) � then H ↵

⇢

⇤ �, B
E�) � .

where ⇢⇤ := max(⇢,� + 1).

Proof. By induction on ↵. The interesting case of i) is where A ⌘ 9xC(x) and A was the

principal formula of the last inference which was (9R). Note that since ↵ < ⌦ the last inference

cannot have been (⌃E -Ref). So we have

H ↵0

⇢

�) C(r) with ↵
0

+ 3 < ↵.(1)

H ↵1

⇢

�) r 2 E
�

with ↵
1

< ↵, � 2 H and � < ↵.(2)

Since � < ↵ we also know that � < � so using Lemma 5.3.4 we get

(3) H ↵1+2

⇢

⇤ �) r 2 E
�

.

125

Now by applying the induction hypothesis to (1) we get

(4) H ↵0

⇢

�) C(r)E� .

(^R) applied to (3) and (4) yields

(5) H max(↵0+1,↵1+3)

⇢

⇤ �) r 2 E
�

^ C(r)E� .

Now since �) E
�

2 E
�+1

is an axiom we may apply (b9R) to (2) and (5) giving

H ↵

⇢

⇤ �) (9x 2 E
�

)C(x)E�

as required.

Now for ii) the interesting case is where B was the principal formula of the last inference which

was (b8L), thus B ⌘ 8xC(x). So we have

H ↵0

⇢

�, B, C(s)) � with ↵
0

< ↵.(6)

H ↵1

⇢

�, B) s 2 E
�

with ↵
1

+ 3 < ↵, � 2 H and � < ↵.(7)

Applying the induction hypothesis twice to (6) and once to (7) we get

H ↵0

⇢

�, BE� , C(s)E�) � with ↵
0

< ↵.(8)

H ↵1

⇢

�, BE�) s 2 E
�

with ↵
1

+ 3 < ↵, � 2 H and � < ↵.(9)

Now since � < ↵ we also know that � < � so by applying Lemma 5.3.4 to (9) we get

(10) H ↵1+2

⇢

⇤ �, BE�) s 2 E
�

.

Applying (! L) to (8) and (10) supplies us with

(11) H max(↵0+1,↵1+3)

⇢

⇤ �, BE� , s 2 E
�

! C(s)E�) � .

Now applying (b8L) to (11), (9) and) E
�

2 E
�+1

which is an instance of axiom (E4), we

obtain

H ↵

⇢

⇤ �, B
E�) �

completing the proof. ut

Theorem 5.3.6 (Cut Elimination II; Collapsing). Suppose ⌘ 2 H
⌘

, � is a set of at most one

⌃E formula and � is a finite set of ⇧E formulae with max
A2�(rk(A)) ⌦ then

H
⌘

↵

⌦+1

�) � implies H
↵̂

 ⌦(↵̂)

 ⌦(↵̂)
�) � ,

where ↵̂ := ⌘ + !↵.

126

Proof. The proof is by induction on ↵. Note that since ⌘ 2 H
⌘

we know from Lemma 3.4.7 that

↵̂,
⌦

(↵̂) 2 H
↵̂

.

Case 1. If �) � is an axiom the result follows easily.

Case 2. If �) � was the result of a propositional inference we may apply the induction hy-

pothesis to the premises of that inference, and then the same inference again.

Case 3. Suppose the last inference was (E-Lim), then s 2 E
�

is a formula in � for some limit

ordinal � and

H
⌘

[�]
↵�

⌦+1

�, s 2 E
�

) � for all � < � with ↵
�

< ↵.

Since � 2 H
⌘

(;) = B⌦(⌘ + 1) and � < ⌦ we know that � <
⌦

(⌘ + 1) and thus � 2 H
⌘

for all

� < �. So we have

H
⌘

↵�

⌦+1

�, s 2 E
�

) � for all � < � with ↵
�

< ↵.

Now applying the induction hypothesis provides

H
↵̂

 ⌦(↵̂�)

 ⌦(↵̂�)
�, s 2 E

�

) � for all � < � with ↵
�

< ↵.

Now since
⌦

(↵̂
�

) <
⌦

(↵̂) we may apply (E-Lim) to get the desired result.

Case 4. Suppose the last inference was (b8L), then (8x 2 t)F (x) 2 � and

H
⌘

↵0

⌦+1

�, s 2 t ! F (s)) � with ↵
0

< ↵.(1)

H
⌘

↵1

⌦+1

�) t 2 E
�

� 2 H
⌘

(;) and ↵
1

< ↵.(2)

H
⌘

↵2

⌦+1

�) s 2 E
�

� 2 H
⌘

(;), �,↵
2

< ↵ and � �.(3)

Since max
A2�(rk(A)) ⌦, we know that s 2 t ! F (s) is a �E

0

formula so we may immediately

apply the induction hypothesis to (1), (2) and (3) giving

H
↵̂

 ⌦(↵̂0)

 ⌦(↵̂)
�, s 2 t ! F (s)) �(4)

H
↵̂

 ⌦(↵̂1)

 ⌦(↵̂)
�) t 2 E

�

(5)

H
↵̂

 ⌦(↵̂2)

 ⌦(↵̂)
�) s 2 E

�

.(6)

Since � 2 H
⌘

we know that � <
⌦

(⌘ + 1) and thus � 2 H
↵̂

and � <
⌦

(↵̂). Moreover

⌦

(↵
i

) <
⌦

(↵) for i = 0, 1, 2 so we may apply (b8L) to complete this case. The case where

the last inference was (b9R) is treated in a similar manner.

127

Case 5. Suppose the last inference was (b8R)1, then � = {(8x 2 t)F (x)} and

H
⌘

↵0

⌦+1

�) s 2 t ! F (s) for all s, with ↵
0

< ↵.(7)

H
⌘

↵1

⌦+1

�) t 2 E
�

with ↵
1

,� < ↵ and � 2 H
⌘

.(8)

We may apply Inversion 5.3.1v) to (7) giving

(9) H
⌘

↵0

⌦+1

�, s 2 t) F (s) .

Applying the induction hypothesis to (8) and (9) yields

H
↵̂

 ⌦(↵̂1)

 ⌦(↵̂)
�) t 2 E

�

(10)

H
↵̂

 ⌦(↵̂0)

 ⌦(↵̂)
�, s 2 t) F (s).(11)

Note that since � 2 H
⌘

we know that � <
⌦

(⌘ + 1) <
⌦

(↵̂), thus applying (! R) to (11)

followed by (b8R)1 (noting that
⌦

(↵̂
0

) + 1 <
⌦

(↵̂)) gives the desired result. The case where

the last inference was (b9L)1 is treated in a similar manner.

Case 6. Now suppose the last inference was (Eb9L)1, so (9x 2 st)F (x) 2 � and

H
⌘

↵0

⌦+1

�, fun(p, s, t) ^ F (p)) � for all p, with ↵
0

< ↵.(12)

H
⌘

↵1

⌦+1

�) s 2 E
�

with � 2 H
⌘

and ↵
1

< ↵.(13)

H
⌘

↵2

⌦+1

�) t 2 E
�

with ↵
2

< ↵, � 2 H
⌘

and max(�, �) + 2 ↵.(14)

By assumption fun(p, s, t) ^ F (p) is a ⇧E [in fact �E
0

] formula so we may apply the induction

hypothesis to (12), (13) and (14) giving

H
↵̂

 ⌦(↵̂0)

 ⌦(↵̂)
�, fun(p, s, t) ^ F (p)) � for all p.(15)

H
↵̂

 ⌦(↵̂1)

 ⌦(↵̂)
�) s 2 E

�

(16)

H
↵̂

 ⌦(↵̂2)

 ⌦(↵̂)
�) t 2 E

�

.(17)

Since
⌦

(↵̂
i

) <
⌦

(↵̂) for i = 0, 1, 2 and �, � 2 H
⌘

means that max(�, �) + 2 <
⌦

(⌘ + 1) <

⌦

(↵̂) we may apply (Eb9L)1 to (15), (16) and (17) to complete this case. The case where the

last inference was (Eb8R)1 may be treated in a similar manner.

Case 7. Now suppose the last inference was (Eb9R), so � = {(9x 2 st)F (x)} and we have

H
⌘

↵0

⌦+1

�) fun(p, s, t) ^ F (p) for all p with ↵
0

< ↵.(18)

H
⌘

↵1

⌦+1

�) s 2 E
�

with � 2 H
⌘

(;) and ↵
1

< ↵.(19)

H
⌘

↵2

⌦+1

�) t 2 E
�

with � 2 H
⌘

(;) and ↵
2

< ↵.(20)

H
⌘

↵3

⌦+1

�) p 2 E
�

↵
3

, � < ↵, � 2 H
⌘

(;) and � max(�, �) + 2.(21)

128

Since fun(p, s, t)^F (p) is a ⌃E formula we can apply the induction hypothesis to (18), (19), (20)

and (21) followed by (Eb9R), in a similar manner to Case 4. The case where the last inference

was (Eb8L) can also be treated in a similar manner.

Now suppose the last inference was (8L), so 8xF (x) 2 � and

H
⌘

↵0

⌦+1

�, F (s)) � with ↵
0

+ 3 < ↵.(22)

H
⌘

↵1

⌦+1

�) s 2 E
�

�,↵
1

+ 3 < ↵ and � 2 H
⌘

(;).(23)

Since F (s) is �E
0

we may immediately apply the induction hypothesis to (22) and (23) giving

H
↵̂

 ⌦(↵̂0)

 ⌦(↵̂)
�, F (s)) �(24)

H
↵̂

 ⌦(↵̂1)

 ⌦(↵̂)
�) s 2 E

�

.(25)

Now since � 2 H
⌘

we know that � <
⌦

(⌘ + 1) <
⌦

(↵̂) hence we may apply (8L) to (24)

and (25) to complete this case. The case where the last inference was (9R) can be treated in a

similar manner.

Case 9. Now suppose the last inference was (⌃E -Ref), so � = {9zAz} where A is a ⌃E formula

and

H
⌘

↵0

⌦+1

�) A with ↵
0

+ 1,⌦ < ↵.(26)

We may immediately apply the induction hypothesis to (26) giving

(27) H
↵̂0

 ⌦(↵̂0)

 ⌦(↵̂0)
�) A .

Applying Boundedness 5.3.5i) to (27) provides

(28) H
↵̂0

 ⌦(↵̂0)

 ⌦(↵̂0)+2

�) AE ⌦(↵̂0) .

Now as an instance of axiom (E4) we have

(29) H
↵̂0

0

0

) E
 ⌦(↵̂0)

2 E
 ⌦(↵̂0)+1

.

Since
⌦

(↵̂
0

)+1 2 H
↵̂

and
⌦

(↵̂
0

)+1 <
⌦

(↵̂) we may apply (9R) to (28) and (29) to complete

the case.

Now suppose the last inference was (Cut), then we have

H
⌘

↵0

⌦+1

�) A(s̄) with ↵
0

< ↵.(30)

H
⌘

↵1

⌦+1

�, A(s̄)) � with ↵
1

< ↵.(31)

H
⌘

↵2

⌦+1

�) s
i

2 E
�i with ↵

2

< ↵, �̄ 2 H
⌘

and kA(s̄)k
¯

�

 ⌦.(32)

129

10.1 If kA(s̄)k
¯

�

< ⌦ it follows from �̄ 2 H
⌘

= B⌦(⌘ + 1) that kA(s̄)k
¯

�

2 B⌦(⌘ + 1) and thus

kA(s̄)k
¯

�

<
⌦

(⌘ + 1) <
⌦

(↵̂). Also A is �E
0

, thus we may apply the induction hypothesis to

(30), (31) and (32) followed by (Cut) to complete this (sub)case.

10.2 Now suppose kA(s̄)k
¯

�

= ⌦. Then either A ⌘ 8xF (x) or A ⌘ 9xF (x) with F a �E
0

formula.

The two cases are dual, we assume that the former is the case. Thus A is ⇧E , so we may apply

the induction hypothesis to (31) giving

(33) H
↵̂1

 ⌦(↵̂1)

 ⌦(↵̂1)
�, A(s̄)) �

Applying Boundedness 5.3.5ii) to (33) yields

(34) H
↵̂

max(⌦(↵̂0), ⌦(↵̂1))

 ⌦(↵̂1)
�, A(s̄)E ⌦(↵̂0)) � .

Now applying Inversion 5.3.1xi) to (30) gives

(35) H
↵̂0

↵0

⌦+1

�) A(s̄)E ⌦(↵̂0) .

Noting that A(s̄)E ⌦(↵̂0) is �E
0

we may apply the induction hypothesis to (35) giving

(36) H
↵

⇤
 ⌦(↵

⇤
)

 ⌦(↵
⇤
)

�) A(s̄)E ⌦(↵̂0) .

where ↵⇤ := ↵̂
0

+ !⌦+↵0 . Now applying the induction hypothesis to (32) gives

(37) H
↵̂2

 ⌦(↵̂2)

 ⌦(↵̂2)
�) s

i

2 E
�i .

Now as an instance of axiom (E4) we have

(38) H
↵̂

0

0

) E
 ⌦(↵̂0)

2 E
 ⌦(↵̂0)+1

.

Since �̄ 2 B⌦(⌘ + 1) we get

kA(s̄)E ⌦(↵̂0)k
¯

�, ⌦(↵̂0)+1

=
⌦

(↵̂
0

) + 1 <
⌦

(↵̂).

It remains to note that

↵⇤ = ⌘ + !⌦+↵0 + !⌦+↵0 < ⌘ + !⌦+↵ = ↵̂

and thus
⌦

(↵⇤) <
⌦

(↵). So we may apply (Cut) to (34),(36),(37) and (38) to conclude

H
↵̂

 ⌦(↵̂)

 ⌦(↵̂)
�) �

as required. ut

130

5.4 Embedding IKP(E) into IRSE
⌦.

Definition 5.4.1. If �[ā]) �[ā] is an intuitionistic sequent of IKP(E) with exactly the free

variables ā = a
1

, ..., a
n

and containing the formulas A
1

(ā), ..., A
m

(ā) then

no
¯

�

(�[s̄]) �[s̄]) := !kA1k�̄#...#!kAmk�̄ .

For terms s̄ := s
1

, ...s
n

and ordinals �̄ := �
1

, ...,�
n

the expression s̄ 2 E
¯

�

will be considered

shorthand for s
1

2 E
�1 , ..., sn 2 E

�n

The expression � �[s̄]) �[s̄] will be considered shorthand for

H[�̄]
no�̄(�[s̄])�[s̄])

0

s̄ 2 E
¯

�

,�[s̄]) �[s̄] .

For any operator H and any ordinals �̄ < ⌦.

The expression �↵
⇢

�[s̄]) �[s̄] will be considered shorthand for

H[�̄]
no�̄(�[s̄])�[s̄])#↵

⇢

s̄ 2 E
¯

�

,�[s̄]) �[s̄] .

For any operator H and any ordinals �̄ < ⌦.

As might be expected �↵ �[s̄]) �[s̄] and �
⇢

�[s̄]) �[s̄] will be considered shorthand for

�↵
0

�[s̄]) �[s̄] and �0

⇢

�[s̄]) �[s̄] respectively.

Lemma 5.4.2. For any formula A(ā) of IKP(E) containing exactly the free variables displayed

and any IRSE
⌦

terms s̄ = s
1

, ..., s
n

�
⌦

A(s̄)) A(s̄)

Proof. By induction on the construction of the formula A. If A is �E
0

then this is an instance

of axiom (E1).

Suppose A(s̄) ⌘ 8xF (x, s̄). For each � < ⌦ we define

↵� := � + no
�,

¯

�

(F (t, s̄)) F (t, s̄)),

note that

� < ↵� < ↵� + 8 < no
¯

�

(A(s̄)) A(s̄)).

By axiom (E1) we have

(1) H[�, �̄]
0

0

t 2 E
�

) t 2 E
�

for all t and all � < ⌦.

Now from the induction hypothesis we have

(2) H[�, �̄]
↵

�

⌦

s̄ 2 E
¯

�

, t 2 E
�

, F (t, s̄)) F (t, s̄) for all t and all � < ⌦.

131

It is worth noting that this use of the induction hypothesis is where we really need cuts of

�̄-rank arbitrarily high in ⌦. Applying (8L) to (1) and (2) yields

H[�, �̄]
↵

�
+4

⌦

s̄ 2 E
¯

�

, t 2 E
�

, A(s̄)) F (t, s̄)

to which we may apply (8R)1 to get the desired result.

Case 2. Now suppose A ⌘ (8x 2 s
i

)F (x, s̄). From the induction hypothesis we have

(3) H[�, �̄]
!

kF (t,s̄)k�,�̄ ·2
⌦

t 2 E
�

, s̄ 2 E
¯

�

, F (t, s̄)) F (t, s̄) for all t and all � < ⌦.

In particular when � = �
i

in (3) we have

(4) H[�, �̄]
↵0

⌦

t 2 E
�i , s̄ 2 E

¯

�

, F (t, s̄)) F (t, s̄)

where ↵
0

:= !kF (t,s̄)k�i,�̄ · 2 Now as an instance of axiom (E6) we have

(5) H[�̄]
0

0

s
i

2 E
�i , t 2 s

i

) t 2 E
�i

Now applying (Cut) to (4) and (5) yields

(6) H[�̄]
↵0+1

⌦

s̄ 2 E
¯

�

, t 2 s
i

, F (t, s̄)) F (t, s̄) .

As an instance of axiom (E1) we have

(7) H[�̄]
0

0

t 2 s
i

) t 2 s
i

.

Applying (! L) to (6) and (7) yields

(8) H[�̄]
↵0+2

⌦

s̄ 2 E
¯

�

, t 2 s
i

, t 2 s
i

! F (t, s̄)) F (t, s̄) .

An application of (b8L) to (5) and (8) provides

H[�̄]
↵0+3

⌦

s̄ 2 E
¯

�

, t 2 s
i

, (8x 2 s
i

)F (x, s̄)) F (t, s̄) .

Finally using (! R) followed by (b8R)1 and noting that ↵
0

+ 5 < no
¯

�

(A(s̄)) A(s̄)) we get

the desired result.

Case 3. Suppose that A ⌘ (9x 2 sis
j

)F (x, s̄). From the induction hypothesis we know that

(9) H[�̄, �]
!

kF (t,s̄)k�,�̄ ·2
⌦

s̄ 2 E
¯

�

, t 2 E
�

, F (t, s̄)) F (t, s̄) for all t and all � < ⌦.

In particular when � = � := max(�
i

,�
j

) + 2 we have

(10) H[�̄]
↵0

⌦

s̄ 2 E
¯

�

, t 2 E
�

, F (t, s̄)) F (t, s̄) for all t,

132

where ↵
0

:= !kF (t,s̄)k�̄,� · 2. Now as an instance of axiom (E10) we have

(11) H[�̄]
0

0

s̄ 2 E
¯

�

, fun(t, s
i

, s
j

)) t 2 E
�

.

Applying (Cut) to (10) and (11) gives

(12) H[�̄]
↵0+1

⌦

s̄ 2 E
¯

�

, fun(t, s
i

, s
j

), F (t, s̄)) F (t, s̄) .

As an instance of axiom (E1) we have

(13) H[�̄]
0

0

fun(t, s
i

, s
j

)) fun(t, s
i

, s
j

)

Applying (^R) to (12) and (13) gives

(14) H[�̄]
↵0+2

⌦

s̄ 2 E
¯

�

, fun(t, s
i

, s
j

), F (t, s̄)) fun(t, s
i

, s
j

) ^ F (t, s̄) .

Now applying (Eb9R) to (11) and (14) yields

(15) H[�̄]
↵0+3

⌦

s̄ 2 E
¯

�

, fun(t, s
i

, s
j

), F (t, s̄)) (9x 2 sis
j

)F (x, s̄) .

Two applications of (^L) gives

(15) H[�̄]
↵0+5

⌦

s̄ 2 E
¯

�

, fun(t, s
i

, s
j

) ^ F (t, s̄)) (9x 2 sis
j

)F (x, s̄) .

Finally using (Eb9L)1 gives

(15) H[�̄]
↵0+6

⌦

s̄ 2 E
¯

�

, (9x 2 sis
j

)F (x, s̄)) (9x 2 sis
j

)F (x, s̄) .

It remains to note that ↵
0

+ 6 < no
¯

�

(A(s̄)) A(s̄)) to complete this case.

All other cases are either propositional, for which the proof is standard or may be regarded as

dual to one of the three above. ut

Lemma 5.4.3 (Extensionality). For any formula A(ā) of IKP(E) (not necessarily with all free

variables displayed) and any IRSE
⌦

terms s̄ := s
1

, ..., s
n

, t̄ := t
1

, ..., t
n

we have

�
⌦

s̄ = t̄, A(s̄)) A(t̄)

where s̄ = t̄ is shorthand for s
1

= t
1

, ..., s
n

= t
n

.

Proof. If A(s̄) is �E
0

then this is an instance of axiom (E3). The remainder of the proof is by

induction on rk(A(s̄)), note that since A is assumed to contain an unbounded quantifier

rk(A) = kA(s̄)k
¯

�

� ⌦ for any ordinals �̄ < ⌦.

Case 1. Suppose A(s̄) ⌘ 8xF (x, s̄). By the induction hypothesis we have

H[�̄, �̄, �]
no�̄,�̄,�(s̄=

¯

t,F (r,s̄))F (r,

¯

t))

⌦

s̄ 2 E
¯

�

, t̄ 2 E
�̄

, r 2 E
�

, s̄ = t̄, F (r, s̄)) F (r, t̄)

133

for all r and all � < ⌦. For ease of reading we suppress the other terms possibly occurring in

F (r, s̄) and the assumptions about their locations in the E hierarchy since these do not a↵ect

the proof. By virtue of axiom (E1) we have

H[�̄, �̄, �]
0

0

r 2 E
�

) r 2 E
�

.

Hence we may apply (8L) to obtain

H[�̄, �̄, �]
↵�

⌦

s̄ 2 E
¯

�

, t 2 E
�̄

, s̄ = t̄, r 2 E
�

, 8xF (x, s̄)) F (r, t̄)

where ↵
�

:= � + no
¯

�,�̄,�

(s̄ = t̄, F (r, s̄)) F (r, t̄)) + 1. Note that

↵
�

+ 3 < no
¯

�,�̄

(s̄ = t̄, A(s̄)) A(t̄)) =: ↵.

Hence we may apply (8R)1 to obtain

H[�̄, �̄]
↵

⌦

s̄ 2 E
¯

�

, t̄ 2 E
�̄

, s̄ = t̄, A(s̄)) A(t̄)

as required.

Case 2. Now suppose A(s̄) ⌘ (8x 2 sis
j

)F (x, s̄). Using the induction hypothesis we have

(1) H[�̄, �̄, �]
↵0

⌦

s̄ 2 E
¯

�

, t̄ 2 E
�̄

, r 2 E
�

, s̄ = t̄, F (r, s̄)) F (r, t̄)

for any term r and any � < ⌦, where ↵
0

= no
¯

�,�̄,�

(s̄ = t̄, F (r, s̄)) F (r, t̄)). At this point we

set � = max(�
i

,�
j

) + 2, note that � 2 H[�̄, �̄]. By virtue of axiom (E1) we have

(2) H[�̄, �̄]
0

0

fun(r, s
i

, s
j

)) fun(r, s
i

, s
j

).

Hence by (! L) we get

H[�̄, �̄]
↵0+1

⌦

s̄ 2 E
¯

�

, t̄ 2 E
�̄

, r 2 E
�

, s̄ = t̄,(3)

fun(r, s
i

, s
j

) ! F (r, s̄), fun(r, s
i

, s
j

)) F (r, t̄).

As an instance of axiom (E10) we have

(4) H[�̄, �̄]
0

0

s̄ 2 E
¯

�

, fun(r, s
i

, s
j

)) r 2 E
�

.

An application of (Cut) to (3) and (4) yields

H[�̄, �̄]
↵0+2

⌦

s̄ 2 E
¯

�

, t̄ 2 E
�̄

, s̄ = t̄,(5)

fun(r, s
i

, s
j

) ! F (r, s̄), fun(r, s
i

, s
j

)) F (r, t̄).

Now applying (Eb8L) to (4) and (5) gives

(6) H[�̄, �̄]
↵0+3

⌦

s̄ 2 E
¯

�

, t̄ 2 E
�̄

, s̄ = t̄, (8x 2 sis
j

)F (x, s̄), fun(r, s
i

, s
j

)) F (r, t̄).

134

Note that ↵
0

� ⌦ since F is not �E
0

, so we don’t have to worry about the condition � < ↵
0

+3.

Now as an instance of axiom (E3) we have

(7) H[�̄, �̄]
0

0

s̄ = t̄, fun(r, t
i

, t
j

)) fun(r, s
i

, s
j

) .

Also axiom (E10) gives rise to

(8) H[�̄, �̄]
0

0

t̄ 2 E
�̄

, fun(r, t
i

, t
j

)) r 2 E
⌘

where ⌘ = max(�
i

, �
j

) + 2.

Applying (Cut) to (6),(7) and (8) gives

(9) H[�̄, �̄]
↵0+4

⌦

s̄ 2 E
¯

�

, t̄ 2 E
�̄

, s̄ = t̄, (8x 2 sis
j

)F (x, s̄), fun(r, t
i

, t
j

)) F (r, t̄).

Now (! R) gives

(10) H[�̄, �̄]
↵0+5

⌦

s̄ 2 E
¯

�

, t̄ 2 E
�̄

, s̄ = t̄, (8x 2 sis
j

)F (x, s̄)) fun(r, t
i

, t
j

) ! F (r, t̄).

Finally we may apply (Eb8R)1, noting that ↵
0

+ 6 < no
¯

�,�̄

(s̄ = t̄, A(s̄)) A(t̄)) to complete

this case.

Note that it could also be the case that A(s̄) ⌘ (8x 2 pq)F (x, s̄) where p and/or q is not a

member of s̄. The following case is an example of this kind of thing.

Case 3. Suppose A(s̄) ⌘ (9x 2 p)F (x, s̄, p), where p is not present in s̄. By the induction

hypothesis we have

(11) H[�̄, �̄, �]
↵0

⌦

s̄ 2 E
¯

�

, t̄ 2 E
�̄

, p 2 E
�

, r 2 E
�

, s̄ = t̄, F (r, s̄, p)) F (r, t̄, p)

where ↵
0

:= no
¯

�,�̄,�,�

(s̄ = t̄, F (r, s̄, p)) F (r, t̄, p)). As an instance of axiom (E1) we have

(12) H[�̄, �̄, �]
0

0

r 2 p) r 2 p .

Applying (^R) to (11) and (12) yields

(13) H[�̄, �̄, �]
↵0+1

⌦

s̄ 2 E
¯

�

, t̄ 2 E
�̄

, p 2 E
�

, r 2 E
�

, s̄ = t̄, F (r, s̄, p), r 2 p) r 2 p ^ F (r, t̄, p) .

As an instance of axiom (E6) we have

(14) H[�̄, �̄, �]
0

0

p 2 E
�

, r 2 p) r 2 E
�

.

(Cut) applied to (12) and (13) gives

(15) H[�̄, �̄, �]
↵0+2

⌦

s̄ 2 E
¯

�

, t̄ 2 E
�̄

, p 2 E
�

, s̄ = t̄, F (r, s̄, p), r 2 p) r 2 p ^ F (r, t̄, p) .

Now (b9R) gives

(16) H[�̄, �̄, �]
↵0+3

⌦

s̄ 2 E
¯

�

, t̄ 2 E
�̄

, p 2 E
�

, s̄ = t̄, F (r, s̄, p), r 2 p) A(s̄) .

135

Two applications of (^L) gives

(17) H[�̄, �̄, �]
↵0+5

⌦

s̄ 2 E
¯

�

, t̄ 2 E
�̄

, p 2 E
�

, s̄ = t̄, r 2 p ^ F (r, s̄, p)) A(s̄) .

To which we may apply (b9L) to complete this case.

All other cases are similar to one of those above. ut

Lemma 5.4.4 (Set induction). For any formula F (a) of IKP(E) we have

�
⌦

) 8x[(8y 2 x)F (y) ! F (x)] ! 8xF (x).

Proof. Let H be an arbitrary operator and let

A := 8x[(8y 2 x)F (y) ! F (x)].

Let p̄ be the terms other than s that occur in F (s), sub-terms not included. Let H̄ := H[�̄]

where �̄ is an arbitrary choice of ordinals < ⌦. In the remainder of the proof we shall just write

H̄ ↵

⇢

�) � instead of H[�̄]
↵

⇢

p̄ 2 E
¯

�

,�) � , since p̄ 2 E
¯

�

will always remain a side formula

in the derivation.

Claim:

(*) H̄[�]
!

rk(A)
#!

�+1

⌦

A, s 2 E
�

) F (s) for all � < ⌦ and all terms s.

Note that since A contains an unbounded quantifier rk(A) = no
¯

�

(A). We prove the claim by

induction on �. Thus the induction hypothesis supplies us with

(1) H̄[�]
!

rk(A)
#!

�+1

⌦

A, t 2 E
�

) F (t) for all � < � and all terms t.

So by weakening we have

(2) H̄[�, �]
!

rk(A)
#!

�+1

⌦

A, s 2 E
�

, t 2 s, t 2 E
�

) F (t) .

Case 1. Suppose � = �
0

+ 1, so a special case of (2) becomes

(3) H̄[�]
!

rk(A)
#!

�

⌦

A, s 2 E
�

, t 2 s, t 2 E
�0) F (t) .

As an instance of axiom (E7) we have

(4) H̄[�]
0

0

s 2 E
�

, t 2 s) t 2 E
�0 .

Applying (Cut) to (3) and (4) yields

(5) H̄[�]
!

rk(A)
#!

�
+1

⌦

A, s 2 E
�

, t 2 s) F (t) .

136

(! R) followed by (b8R)1 provides

(6) H̄[�]
!

rk(A)
#!

�
+3

⌦

A, s 2 E
�

) (8x 2 s)F (x) .

Now from Lemma 5.4.2 we have

(7) H̄[�]
no�̄,�(F (s))F (s))

⌦

s 2 E
�

, F (s)) F (s) .

Since no
¯

�,�

(F (s)) F (s)) < !rk(A), by (! L) we get

(8) H̄[�]
!

rk(A)
#!

�
+4

⌦

A, s 2 E
�

, (8x 2 s)F (x) ! F (s)) F (s) .

To which we may apply (8L) giving

(9) H̄[�]
!

rk(A)
#!

�
+1

⌦

A, s 2 E
�

) F (s)

as required.

Case 2. Now suppose � is a limit ordinal. Applying (E-Lim) to (2) provides us with

(10) H̄[�]
!

rk(A)
#!

�

⌦

A, s 2 E
�

, t 2 s, t 2 E
�

) F (t) .

As an instance of axiom (E6) we have

(11) H̄[�]
0

0

s 2 E
�

, t 2 s) t 2 E
�

.

An application of (Cut) to (10) and (11) yields

(12) H̄[�]
!

rk(A)
#!

�
+1

⌦

A, s 2 E
�

, t 2 s) F (t) .

The remainder of this case can proceed exactly as in Case 1 from (5) onwards. Thus the claim

(*) is verified.

Finally applying (8R)1 to (*) gives

H̄ !

rk(A)
#⌦

⌦

A) 8xF (x) .

Finally noting that !rk(A)#⌦ < no
¯

�

(A ! 8xF (x)) we may apply (! R) to complete the proof.

ut

Lemma 5.4.5 (Infinity). For any operator H we have

H !+4

!

) 9x[(9y 2 x)(y 2 x) ^ (8y 2 x)(9z 2 x)(y 2 z)] .

137

Proof. Firstly note that by Definiton 3.3.3 1,! 2 H. We have the following derivation trees in

IRSE
⌦

.

Axiom (E4)

H 0

0

) E
0

2 E
!

(^R)
H 1

0

) E
0

2 E
!

^ E
0

2 E
!

(b9R)
H 2

0

) (9y 2 E
!

)(y 2 E
!

)

Axiom (E6)

H 0

0

s 2 E
n

,E
n

2 E
n+1

) s 2 E
n+1

Axiom (E4)

H 0

0

) E
n

2 E
n+1

(Cut)
H 1

n+3

s 2 E
n

) s 2 E
n+1

Axiom (E4)

H 0

0

) E
n+1

2 E
!

(^R)
H 2

n+3

s 2 E
n

) E
n+1

2 E
!

^ s 2 E
n+1

(b9R)
H n+3

n+3

s 2 E
n

) (9z 2 E
!

)(s 2 z)
(E-Lim)

H !

!

s 2 E
!

) (9z 2 E
!

)(s 2 z)
(! R)

H !+1

!

) s 2 E
!

! (9z 2 E
!

)(s 2 z)
(b8R)1 H !+2

!

) (8y 2 E
!

)(9z 2 E
!

)(y 2 z)

Applying (^R) followed by (b9R) to the conclusions of the two proof trees above yields the

required result. ut

Lemma 5.4.6 (�E
0

-Separation). For any �E
0

formula A(a, b̄) of IKP(E) containing exactly the

free variables a, b̄ = b
1

, ..., b
n

, any IRSE
⌦

terms r, s
1

, ..., s
n

and any operator H:

H[�, �̄]
↵+7

0

s̄ 2 E
¯

�

, r 2 E
�

) 9x[(8y 2 x)(y 2 r ^A(y, s̄)) ^ (8y 2 r)(A(y, s̄) ! y 2 x)]

where ↵ = max(�̄, �).

Proof. First let

p := [x 2 r | A(x, s̄)].

As an instance of axiom (E11) we have

(1) H[�, �̄]
0

0

s̄ 2 E
¯

�

, r 2 E
�

) p 2 E
↵

.

Moreover we have the following derivations in IRSE
⌦

:

Axiom (E9)

H 0

0

s̄ 2 E
¯

�

, r 2 E
�

, t 2 p) t 2 r ^A(t, s̄)
(! R)

H 1

0

s̄ 2 E
¯

�

, r 2 E
�

) t 2 p ! t 2 r ^A(t, s̄) (1)
(b8R)1 H ↵+2

0

s̄ 2 E
¯

�

, r 2 E
�

) (8y 2 p)(y 2 r ^A(y, s̄))

138

Axiom (E8)

H 0

0

s̄ 2 E
¯

�

, r 2 E
�

, t 2 r, A(t, s̄)) t 2 p
(! R)

H 1

0

s̄ 2 E
¯

�

, r 2 E
�

, t 2 r) A(t, s̄) ! t 2 p
(! R)

H 2

0

s̄ 2 E
¯

�

, r 2 E
�

) t 2 r ! (A(t, s̄) ! t 2 p)
(b8R)1

H �+3

0

s̄ 2 E
¯

�

, r 2 E
�

) (8y 2 r)(A(y, s̄) ! y 2 p)

Now applying (^R) to (1) and the conclusions of the two proof trees above, followed by an

application of (9R) yields the desired result. ut

Lemma 5.4.7 (Pair). For any operator H, and IRSE
⌦

terms s, t and any ordinals �, � < ⌦:

H[�, �]
↵+6

↵+2

s 2 E
�

, t 2 E
�

) 9z(s 2 z ^ t 2 z)

where ↵ := max(�, �).

Proof. If � = � the proof is straightforward, without loss of generality let us assume � > �. As

instances of axioms (E6) and (E4) we have

H[�, �]
0

0

t 2 E
�

,E
�

2 E
�

) t 2 E
�

(1)

H[�, �]
0

0

) E
�

2 E
�

.(2)

Applying (Cut) gives

(3) H[�, �]
1

�+2

t 2 E
�

) t 2 E
�

.

By axiom (E1) we have

(4) H[�, �]
0

0

s 2 E
�

) s 2 E
�

.

Applying (^R) to (3) and (4) provides

(5) H[�, �]
2

�+2

s 2 E
�

, t 2 E
�

) s 2 E
�

^ t 2 E
�

,

to which we may apply (9R) giving

H[�, �]
�+6

�+2

s 2 E
�

, t 2 E
�

) 9z(s 2 z ^ t 2 z) .

as required. ut

Lemma 5.4.8 (Union). For any operator H, IRSE
⌦

term s and any � < ⌦ we have

H[�]
�+9

�+2

s 2 E
�

) 9z[(8y 2 s)(8x 2 y)(x 2 z)] .

Proof. We have the following template for derivations in IRSE
⌦

.

139

Axiom (E6)

H[�]
0

0

t 2 E
�

, r 2 t) r 2 E
�

Axiom (E6)

H[�]
0

0

s 2 E
�

, t 2 s) t 2 E
�

(Cut)
H[�]

1

�+2

s 2 E
�

, t 2 s, r 2 t) r 2 E
�

(! R)
H[�]

2

�+2

s 2 E
�

, t 2 s) r 2 t ! r 2 E
�

(b8R)1
H[�]

�+3

�+2

s 2 E
�

, t 2 s) (8x 2 t)(x 2 E
�

)
(! R)

H[�]
�+4

�+2

s 2 E
�

) t 2 s ! (8x 2 t)(x 2 E
�

)
(b8R)1

H[�]
�+5

�+2

s 2 E
�

) (8y 2 s)(8x 2 y)(x 2 E
�

)
(9R)

H[�]
�+9

�+2

s 2 E
�

) 9z(8y 2 s)(8x 2 y)(x 2 z).
ut

Lemma 5.4.9 (�E
0

-Collection). Let F (a, b, c̄) be any �E
0

formula of IKP(E) containing exactly

the free variables displayed then for any s̄ = s
1

, ..., s
n

�
⌦

) (8x 2 s
i

)9yF (x, y, s̄) ! 9z(8x 2 s
i

)(9y 2 z)F (x, y, s̄).

Proof. Since F is �E
0

we have

no
¯

�

((8x 2 s
i

)9yF (x, y, s̄)) = !⌦+2.

Hence by Lemma 5.4.2 we have

H[�̄]
!

⌦+2·2
⌦

s̄ 2 E
¯

�

, (8x 2 s
i

)9yF (x, y, s̄)) (8x 2 s
i

)9yF (x, y, s̄) .

Applying (⌃E -Ref) gives

H[�̄]
!

⌦+2·2+2

⌦

s̄ 2 E
¯

�

, (8x 2 s
i

)9yF (x, y, s̄)) 9z(8x 2 s
i

)(9y 2 z)F (x, y, s̄) .

By (! R) we get

H[�̄]
!

⌦+2·2+3

⌦

s̄ 2 E
¯

�

) (8x 2 s
i

)9yF (x, y, s̄) ! 9z(8x 2 s
i

)(9y 2 z)F (x, y, s̄) .

Finally since !⌦+2 · 2 + 3 < !⌦+3 we may conclude

�
⌦

) (8x 2 s
i

)9yF (x, y, s̄) ! 9z(8x 2 s
i

)(9y 2 z)F (x, y, s̄)

as required. ut

Lemma 5.4.10 (Exponentiation). For any terms s, t any �, � < ⌦ and any operator H

H[�, �]
�+4

�+3

s 2 E
�

, t 2 E
�

) 9z(8x 2 st)(x 2 z)

where � := max(�, �) + 2.

140

Proof. First let

p := [x 2 E
�

| fun(x, s, t)].

As an instance of axiom (E10) we have

(1) H[�, �]
0

0

s 2 E
�

, t 2 E
�

, fun(q, s, t)) q 2 E
�

for all q.

Also axiom (E8) provides

(2) H[�, �]
0

0

q 2 E
�

, fun(q, s, t)) q 2 p for all q.

Applying (Cut) to (1) and (2) provides

(3) H[�, �]
1

�+2

s 2 E
�

, t 2 E
�

, fun(q, s, t)) q 2 p for all q.

Now by (! R) we have

(4) H[�, �]
2

�+2

s 2 E
�

, t 2 E
�

) fun(q, s, t) ! q 2 p for all q.

Thus we may use (Eb8R)1 giving

(5) H[�, �]
�+1

�+2

s 2 E
�

, t 2 E
�

) (8x 2 st)(x 2 p) for all q.

As instances of axioms (E11) and (E4) we also have

H[�, �]
0

0

s 2 E
�

, t 2 E
�

,E
�

2 E
�+1

) p 2 E
�+1

(6)

H[�, �]
0

0

) E
�

2 E
�+1

.(7)

We may apply (Cut) to (6) and (7) to obtain

(8) H[�, �]
1

�+3

s 2 E
�

, t 2 E
�

) p 2 E
�+1

.

Finally by applying (9R) to (5) and (8) we get

H[�, �]
�+4

�+3

s 2 E
�

, t 2 E
�

) 9z(8x 2 st)(x 2 z)

as required. ut

Theorem 5.4.11. If IKP(E) ` �[ā]) �[ā] with ā the only free variables occurring in the

intuitionistic sequent �[ā]) �[ā]. Then there is a k < ! such that for any IRSE
⌦

terms s̄, any

�̄ < ⌦ and any operator H
H[�̄]

⌦·!k

⌦+k

s̄ 2 E
¯

�

,�[s̄]) �[s̄] .

141

Proof. The proof is by induction on the IKP(E) derivation. If �[ā]) �[ā] is an axiom of

IKP(E) then the result follows by one of lemmas 5.4.2, 5.4.3, 5.4.4, 5.4.5, 5.4.6, 5.4.7, 5.4.8,

5.4.9 and 5.4.10.

Case 1. Suppose the last inference was (Eb9L), then (9x 2 aia
j

)F (x) 2 �[ā] and the final

inference looks like

�[ā], fun(b, a
i

, a
j

) ^ F (b)) �[ā]
(Eb9L)

�[ā]) �[ā]

where b does not occur in ā. By the induction hypothesis we have a k
0

such that

(1) H[�̄, �]
⌦·!k0

⌦+k0
s̄ 2 E

¯

�

, p 2 E
�

,�[s̄], fun(p, s
i

, s
j

) ^ F (p)) �[s̄]

for all p and all � < ⌦. Let us choose the special case of (1) where � := max(�
i

,�
j

) + 2 and

note that for this choice of �, H[�̄, �] = H[�̄]. Now fun(p, s
i

, s
j

)) fun(p, s
i

, s
j

) is an axiom due

to (E1) and by Lemma 5.4.2 we have �
⌦

F (p)) F (p) so applying (^R) gives

(2) �
⌦

fun(p, s
i

, s
j

), F (p)) fun(p, s
i

, s
j

) ^ F (p).

Applying (Cut) to (1) and (2) provides

(3) H[�̄]
⌦·!k1

⌦+k1
s̄ 2 E

¯

�

, p 2 E
�

,�[s̄], fun(p, s
i

, s
j

), F (p)) �[s̄] .

Now as an instance of axiom (E10) we have

(4) H[�̄]
0

0

s̄ 2 E
¯

�

, fun(p, s
i

, s
j

)) p 2 E
�

.

So (Cut) to (3) and (4) gives

(5) H[�̄]
⌦·!k1

+1

⌦+k1
s̄ 2 E

¯

�

,�[s̄], fun(p, s
i

, s
j

), F (p)) �[s̄] .

To which we may apply (^L) twice followed by (Eb9L)1 to complete the case.

Case 2. Suppose the last inference was (Eb9R) then �[ā] = {(9x 2 aia
j

)F (x)} and the final

inference looks like

�[ā]) fun(b, a
i

, a
j

) ^ F (b)
(Eb9R)

�[ā]) (9x 2 aia
j

)F (x)

Suppose b is a member of ā, without loss of generality let us suppose that b ⌘ a
1

, so by the

induction hypothesis we have a k
0

< ! such that

(8) H[�̄]
⌦·!k0

⌦+k0
s̄ 2 E

¯

�

,�[s̄]) fun(s
1

, s
i

, s
j

) ^ F (s
1

).

If b is not a member of ā we can also conclude (8) by the induction hypothesis. As an instance

of axiom (E1) we have fun(s
1

, s
i

, s
j

)) fun(s
1

, s
i

, s
j

) to which we may apply (^L) giving

(9) H[�̄]
1

0

fun(s
1

, s
i

, s
j

) ^ F (s
1

)) fun(s
1

, s
i

, s
j

) .

142

Now applying (Cut) to (8) and (9) yields

(10) H[�̄]
⌦·!k0

+1

⌦+k0
s̄ 2 E

¯

�

,�[s̄]) fun(s
1

, s
i

, s
j

)

Axiom (E10) gives us

(11) H[�̄]
0

0

s̄ 2 E
¯

�

, fun(s
1

, s
i

, s
j

)) s
1

2 E
�

where � := max(�
i

,�
j

) + 2.

So applying (Cut) to (10) and (11) gives

(12) H[�̄]
⌦·!k0

+1

⌦+k0
s̄ 2 E

¯

�

,�[s̄]) s
1

2 E
�

.

Finally we may apply (Eb9R) to (8) and (12) to complete this case.

Case 3. Now suppose the last inference was (Eb8L), so (8x 2 aia
j

)F (x) 2 �[ā] and the final

inference looks like

�[ā], fun(b, a
i

, a
j

) ! F (b)) �[ā]
(Eb8L)

�[ā]) �[ā].

If b is present in ā, without loss of generality let us suppose b ⌘ a
1

, regardless of whether b is

present in ā, by the induction hypothesis we have a k
0

< ! such that

(13) H[�̄]
⌦·!k0

⌦+k0
s̄ 2 E

¯

�

, p 2 E
�

,�[s̄], fun(p, s
i

, s
j

) ! F (p)) �[s̄] .

The problem here is that �
1

may be greater than max(�
i

,�
j

)+2 meaning we cannot immediately

apply (Eb8L), moreover unlike in case 2 it is not possible to derive s̄ 2 E
¯

�

,�[s̄]) fun(s
1

, s
i

, s
j

).

Instead we verify the following claim:

(*) �
⌦

�[s̄], (8x 2 sis
j

)F (x)) fun(s
1

, s
i

, s
j

) ! F (s
1

)

To prove the claim we first note that as an instance of axiom (E10) we have

(14) H[�̄]
0

0

s̄ 2 E
¯

�

, fun(s
1

, s
i

, s
j

)) s
1

2 E
�

where � := max(�
i

,�
j

) + 2.

Then we have the following template for derivations in IRSE
⌦

.

(E1)

� fun(s
1

, s
i

, s
j

)) fun(s
1

, s
i

, s
j

)
Lemma 5.4.2
�
⌦

F (s
1

)) F (s
1

)
(! L) �

⌦

fun(s
1

, s
i

, s
j

) ! F (s
1

), fun(s
1

, s
i

, s
j

)) F (s
1

) (14)
(Eb8L) �

⌦

(8x 2 sis
j

)F (x), fun(s
1

, s
i

, s
j

)) F (s
1

)
(! R) �

⌦

(8x 2 sis
j

)F (x)) fun(s
1

, s
i

, s
j

) ! F (s
1

)

Thus the claim is verified. Now we may complete the case by applying (Cut) to (13) and (*).

Case 4. Now suppose the last inference was (b8L), so (8x 2 a
i

)F (x) 2 �[ā] and the final

inference looks like

143

�[ā], b 2 a
i

! F (b)) �[ā]
(b8L)

�[ā]) �[ā].

If b does occur in ā, without loss of generality we may assume b ⌘ a
1

. Regardless of whether b

is present in ā, by the induction hypothesis we have a k
0

< ! such that

(15) H[�̄]
⌦·!k0

⌦+k0
s̄ 2 E

¯

�

,�[s̄], s
1

2 s
i

! F (s
1

)) �[s̄].

Claim:

(**) �
⌦

(8x 2 s
i

)F (x)) s
1

2 s
i

! F (s
1

).

To prove the claim we first note that by axiom (E6) we have

(16) H[�̄]
0

0

s̄ 2 E
¯

�

, s
1

2 s
i

) s
1

2 E
�i

Then we have the following template for derivations in IRSE
⌦

.

(E1)

� s
1

2 s
j

) s
1

2 s
j

Lemma 5.4.2
�
⌦

F (s
1

)) F (s
1

)
(! L) �

⌦

s
1

2 s
j

! F (s
1

), s
1

2 s
j

) F (s
1

) (16)
b8L) �

⌦

(8x 2 s
i

)F (x), s
1

2 s
j

) F (s
1

)
(! R) �

⌦

(8x 2 s
i

)F (x)) s
1

2 s
i

! F (s
1

)

Finally we may apply (Cut) to (15) and (**) to complete this case.

Case 5. Now suppose the last inference was (8L), so 8xF (x) 2 �[ā] and the final inference looks

like

�[ā], F (b)) �[ā]
(8L)

�[ā]) �[ā].

If b is a member of ā, without loss of generality let us assume b ⌘ a
1

. By the induction

hypothesis we have a k
0

< ! such that

(19) H[�̄]
⌦·!k0

+1

⌦+k0
s̄ 2 E

¯

�

,�[s̄], F (s
1

)) �[s̄].

If b is not a member of ā we can in fact still conclude (19) from the induction hypothesis. Now

as an instance of axiom (E1) we have

(20) H[�̄]
0

0

s̄ 2 E
¯

�

) s
1

2 E
�1 .

So applying (8L) gives the desired result.

Case 6. Now suppose the last inference was (8R), then {8xF (x)} ⌘ �[ā] and the final inference

looks like

144

�[ā]) F (b)
(8L)

�[ā]) 8xF (x)

with b not present in ā. By the induction hypothesis we have a k
0

< ! such that

H[�̄, �]
⌦·!k0

⌦+k0
s̄ 2 E

¯

�

, p 2 E
�

,�[s̄]) F (p)

for all p and all � < ⌦. Applying (8R)1 gives the desired result.

Case 7. Suppose the last inference was (Cut) then the derivation looks like

�[ā], B(ā, b̄)) �[ā] �[ā]) B(ā, b̄)

�[ā]) �[ā]

where each member of b̄ is distinct from the members of ā. By the induction hypothesis we get

k
0

, k
1

2 ! such that

H[�̄]
⌦·!k0

⌦+k0
s̄ 2 E

¯

�

,E
0

2 E
1

,�[s̄], B(s̄, Ē
0

)) �[s̄](21)

H[�̄]
⌦·!k1

⌦+k1
s̄ 2 E

¯

�

,E
0

2 E
1

,�[s̄]) B(s̄, Ē
0

) .(22)

Now since) E
0

2 E
1

is an instance of axiom (E4) and s̄ 2 E
¯

�

) s
i

2 E
�i is an instance of

axiom (E1) we may apply (Cut) to (21) and (22) giving

(23) H[�̄]
⌦·!k

⌦+k

s̄ 2 E
¯

�

,E
0

2 E
1

,�[s̄]) �[s̄] .

Finally applying (Cut) to (23) and H[�̄]
0

0

E
0

2 E
1

we can complete this case.

All other cases can be treated in a similar manner to one of those above. ut

5.5 A relativised ordinal analysis of IKP(E)
Analogously to with IRSP

⌦

we will prove a soundness theorem for certain IRSE
⌦

derivable

sequents in E
 ⌦("⌦+1)

. Again we need the notion of an assignment. Let V ARE be the set of free

variables of IRSE
⌦

, an assignment is a map

v : V ARE �! E
 ⌦("⌦+1)

such that v(a↵
i

) 2 E
↵+1

for all i < ! and ordinals ↵. Again an assignment canonically lifts to

all IRSE
⌦

terms by setting

v(E
↵

) = E
↵

v([x 2 t | F (x, s
1

, ..., s
n

)]) = {x 2 v(t) | F (x, v(s
1

), ..., v(s
n

))}.

145

The di↵erence between here and the case of IRSP
⌦

is that for a given term t, it is no longer

possible to ascertain the location of v(t) within the E-hierarchy solely by looking at the syntactic

structure of t. It is however possible to place an upper bound on that location using the following

function

m(E
↵

) : = ↵

m(a↵
i

) : = ↵

m([x 2 t | F (x, s
1

, ..., s
n

)]) : = max(m(t),m(s
1

), ...,m(s
n

)) + 1.

It can be observed that v(s) 2 E
m(s)+1

for any s, however in general m(s) is only an upper

bound on a terms position in the E-hierarchy.

Theorem 5.5.1 (Soundness for IRSE
⌦

). Suppose �[s
1

, ..., s
n

] is a finite set of ⇧E formulae with

max{rk(A) | A 2 �} ⌦, �[s
1

, ..., s
n

] a set containing at most one ⌃E formula and

H ↵

⇢

�[s̄]) �[s̄] for some operator H and some ↵, ⇢ < ⌦.

Then for any assignment v,

E
 ⌦("⌦+1)

|=
^

�[v(s
1

), ..., v(s
n

)] !
_

�[v(s
1

), ..., v(s
n

)].

Where
V

� and
W
� stand for the conjunction of formulae in � and the disjunction of formulae

in � respectively, by convention
V ; := > and

W ; := ?.

Proof. The proof is by induction on ↵. Note that the derivation H ↵

⇢

�[s̄]) �[s̄] contains no

inferences of the form (8R)1, (9L)1 or (⌃E -Ref) and all cuts have �E
0

cut formulae.

All axioms apart from (E6) and (E7) are clearly sound under the interpretation, the soundness

of (E6) and (E7) follows from Lemma 5.2.1.

Now suppose the last inference was (Eb9R), so amongst other premises we have

H ↵0

⇢

�[s̄]) fun(t, s
i

, s
j

) ^A(t, s̄) for some ↵
0

< ↵.

Applying the induction hypothesis yields

E
 ⌦("⌦+1)

|=
^

�[v(s̄)] ! [fun(v(t), v(s
i

), v(s
j

)) ^A(v(t), s̄)] where v(s̄) := v(s
1

), ..., v(s
n

).

Suppose �[v(s̄)] holds in E
 ⌦("⌦+1)

, so we have

E
 ⌦("⌦+1)

|= fun(v(t), v(s
i

), v(s
j

)) ^A(v(t), v(s̄)).

It remains to note that the function space v(si)v(s
j

) is a member of E
 ⌦("⌦+1)

and thus

E
 ⌦("⌦+1)

|= (9x 2 v(si)v(s
j

))A(x, v(s̄)).

146

as required.

Now suppose the last inference was (Eb9L)1, thus amongst other premises we have

(2) H ↵0

⇢

�[s̄], fun(p, s
i

, s
j

) ^A(p, s̄)) �[s̄] for all terms p and some ↵
0

< ↵.

For the remainder of this case fix an arbitrary valuation v
0

. Let �
0

:= m(s
i

), �
1

:= m(s
j

) and

� := max(�
0

,�
1

) + 2. Choose k such that a�
k

does not occur in any of the terms in s̄. As a

special case of (2) we have

H ↵0

⇢

�[s̄], fun(a�
k

, s
i

, s
j

) ^A(a�
k

, s̄)) �[s̄] .

Applying the induction hypothesis we get

(3) E
 ⌦("⌦+1)

|=
^

�[v(s̄)] ^ [fun(v(a�
k

), v(s
i

), v(s
j

)) ^A(v(a�
k

), v(s̄))] !
_

�[v(s̄)]

for all valuations v. In particular (3) holds true for all valuations v which coincide with v
0

on

s̄. By the choice of a�
k

it follows that

E
 ⌦("⌦+1)

|=
^

�[v
0

(s̄)] !
_

�[v
0

(s̄)]

as required.

All other cases may be treated in a similar manner to those above, using similar reasoning to

Theorem 4.5.1. ut

Lemma 5.5.2. Suppose IKP(E) `) A for some ⌃E sentence A, then there exists an n < !,

which we may compute from the derivation, such that

H
�

 ⌦(�)

 ⌦(�)
) A where � := !

m

(⌦ · !m).

Proof. Suppose IKP(E) `) A, then by Theorem 5.4.11 we can explicitly calculate some

1 m < ! such that

H
0

⌦·!m

⌦+m

) A

Applying partial cut elimination for IRSE
⌦

5.3.3 we get

H
0

!m�1(⌦·!m
)

⌦+1

) A .

Finally by applying collapsing for IRSE
⌦

5.3.6 we get

H
!m(⌦·!m

)

 ⌦(!m(⌦·!m
))

 ⌦(!m(⌦·!m
))

) A

as required. ut

147

Theorem 5.5.3. If A is a ⌃E -sentence and IKP(E) `) A then there is an ordinal term

↵ <
⌦

("
⌦+1

), which we may compute from the derivation, such that

E
↵

|= A.

Proof. By Lemma 5.5.2 we can determine some m < ! such that

H
�

 ⌦(�)

 ⌦(�)
) A where � := !

m

(⌦ · !m).

Let ↵ :=
⌦

(�). Applying boundedness 5.3.5 we get

H ↵

↵

) AE↵ .

Now Theorem 5.5.1 yields

E
 ⌦("⌦+1)

|= AE↵ .

It follows that

E
↵

|= A

as required.

ut

Remark 5.5.4. Suppose A ⌘ 9xC(x) is a ⌃E sentence and IKP(E) `) A. As in the case

of IKP(P), as well as the ordinal term ↵ given by Theorem 5.5.3, it is possible to compute a

specific IRSE
⌦

term s such that E
↵

|= C(s). Moreover this process can be carried out inside

IKP(E). These results will be verified in [43].

148

References

[1] P. Aczel, M. Rathjen: Notes on constructive set theory. Technical Report 40,

Institut Mittag-Le✏er (The Royal Swedish Academy of Sciences,Stockholm,2001).

http://www.ml.kva.se/preprints/archive2000-2001.php 6

[2] P. Aczel, M. Rathjen: Constructive set theory. book draft, August 2010. 6

[3] J Barwise: Admissible Sets and Structures. (Springer, Berlin 1975). 3, 58

[4] M. Beeson: Foundations of Constructive Mathematics. Springer, Berlin (1985). 6

[5] W. Buchholz, S. Feferman, W. Pohlers, W. Sieg: Iterated inductive definitions and subsys-

tems of analysis. (Springer, Berlin, 1981). 2

[6] W. Buchholz: A new system of proof-theoretic ordinal functions. Annals of Pure and Applied

Logic 32 (1986) 195-207 11, 64

[7] W. Bucholz, S. Wainer Provably computable functions and the fast growing hierarchy. in:

Contemporary Mathematics 65 (American Mathematical Society, Providence,1987) 179-198.

7, 9, 10

[8] W. Buchholz: A simplified version of local predicativity. in: P. Aczel, H. Simmons, S. Wainer

(eds.), Leeds Proof Theory 90 (Cambridge University Press, Cambridge, 1993) 115-147. 23,

66, 75

[9] S. Feferman: Systems of predicative analysis. Journal of Symbolic Logic 29 (1964) 1-30. 2, 3

[10] S. Feferman: predicative provability is set theory. American Mathematical Society, Volume

72, Number 3 (1966), 486-489. 3

[11] S. Feferman: Systems of predicative analysis II. Representations of ordinals. Journal of

Symbolic Logic 33 (1968) 193-220. 4

149

[12] S. Feferman: Proof theory: a personal report. in: G. Takeuti Proof Theory, 2nd edition

(North-Holland, Amsterdam, 1987) 445-485. 4

[13] H. Friedman: Countable models of set theories. In: A. Mathias and H. Rogers (eds.): Cam-

bridge Summer School in Mathematical Logic, volume 337, Lectures Notes in Mathematics

(Springer, Berlin, 1973) 539-573.

[14] H.Friedman, S. Ščedrov: The lack of definable witnesses and provably recursive functions

in intuitionistic set theory. Advances in Mathematics 57 (1985) 1-13. 6

[15] G. Gentzen: Die Widerspruchsfreiheit der reinen Zahlentheorie. Annalen 112 (1936) 493-

565 1

[16] G. Jäger: Beweistheorie von KPN. Archiv f. Math. Logik 2 (1980) 53-64. 2

[17] G. Jäger: Zur Beweistheorie der Kripke–Platek Mengenlehre über den natürlichen Zahlen.

Archiv f. Math. Logik 22 (1982) 121-139. 2

[18] G. Jäger: Theories for admissible sets: a unifying approach to proof theory. Bibliopolis,

Naples, 1986

[19] G. Jäger and W. Pohlers: Eine beweistheoretische Untersuchung von �1

2

–CA+BI

und verwandter Systeme, Sitzungsberichte der Bayerischen Akademie der Wissenschaften,

Mathematisch–Naturwissenschaftliche Klasse (1982). 2

[20] G. Kreisel: A survey of proof theory. Journal of Symbolic Logic 33 (1968) 321-388. 4

[21] G. Kreisel, G. Mints, S. Simpson: The use of abstract language in elementary meta- math-

ematics: Some pedagogic examples. in: Lecture Notes in Mathematics, vol. 453 (Springer,

Berlin, 1975) 38-131. 9

[22] S. Kripke: Transfinite recursion on admissible ordinals. Journal of Symbolic logic 29 (1964)

161-162 3

[23] E. Lopez-Escobar: An extremely restricted !-rule, Fundamenta Mathematicae 90 (1976)

159-172. 9

[24] Lubarsky, R Independence results around constructive ZF. Annals of Pure and Applied

Logic, 132 (2005) 209-225. 6

[25] Y.N. Moschovakis: Recursion in the universe of sets, mimeographed note, 1976. 9

150

[26] J. Myhill: Some properties of Intuitionistic Zermelo-Fraenkel set theory. In: A. Mathiasand

H. Rogers (eds.): Cambridge Summer School in Mathematical Logic , volume 337 of Lectures

Notes in Mathematics (Springer, Berlin, 1973) 206- 231. 6

[27] D. Normann: Set recursion, in: Fenstad et al. (eds.): Generalized recursion theory II

(North-Holland, Amsterdam, 1978) 303-320. 9, 11

[28] R. A. Platek: Foundations of recursion theory PhD Thesis, Stanford University, 1966

(219pp). 3

[29] M. Rathjen, S. Tupailo: Characterizing the interpretation of set theory in Martin-Löf type

theory. Annals of Pure and Applied Logic 141 (2006) 442-471.

[30] Michael Rathjen: A Proof-Theoretic Characterization of the Primitive Recursive Set Func-

tions. The Journal of Symbolic Logic Vol. 57, No. 3 (1992), pp. 954-969 5

[31] M. Rathjen: How to develop proof–theoretic ordinal functions on the basis of admissible

ordinals. Mathematical Logic Quarterly 39 (1993) 47-54. 63

[32] M. Rathjen: Proof theory of reflection. Annals of Pure and Applied Logic 68 (1994) 181-224

[33] M. Rathjen Recent advances in ordinal analysis: ⇧1

2

�CA and related systems. Bulletin of

Symbolic Logic 1, (1995) 468-485 2

[34] M. Rathjen: The realm of ordinal analysis. In: S.B. Cooper and J.K. Truss (eds.): Sets

and Proofs. (Cambridge University Press, 1999) 219-279. 4, 5, 61

[35] M. Rathjen: Unpublished Lecture Notes on Proof Theory. (1999) 24, 51, 64, 68

[36] M. Rathjen: The disjunction and other properties for constructive Zermelo-Fraenkel set

theory. Journal of Symbolic Logic 70 (2005) 1233-1254. 5

[37] M. Rathjen: An ordinal analysis of stability. Archive for Mathematical Logic 44 (2005)

1-62

[38] M. Rathjen: An ordinal analysis of parameter-free ⇧1

2

comprehension. Archive for Mathe-

matical Logic 44 (2005) 263-362. 2

[39] M. Rathjen: Metamathematical Properties of Intuitionistic Set Theories with Choice Prin-

ciples. In: S. B. Cooper, B. Löwe, A. Sorbi (eds.): New Computational Paradigms: Changing

Conceptions of What is Computable (Springer, New York, 2008) 287-312. 5

151

[40] M. Rathjen: From the weak to the strong existence property. Annals of Pure and Applied

Logic 163 (2012) 1400-1418. ii, 6, 7, 8, 61

[41] M. Rathjen: Constructive Zermelo-Fraenkel Set Theory, Power Set, and the Calculus of

Constructions. In: Peter Dybjer, Sten Lindström, Erik Palmgren and Göran Sundholm:

Epistemology versus ontology: Essays on the philosophy and foundations of mathematics in honour

of Per Martin-Löf (Springer, Dordrecht, Heidelberg, 2012) 313-349. 6

[42] M. Rathjen: Relativized ordinal analysis: The case of Power Kripke-Platek set theory.

Annals of Pure and Applied Logic 165 (2014) 316-393. ii, 5, 8, 91

[43] M. Rathjen: The existence property for intuitionistic set theories with collection. In prepa-

ration. 7, 8, 90, 111, 113, 148

[44] G.E Sacks: Higher recursion theory. (Springer, Berlin, 1990) 9, 11

[45] K. Schẗute: Eine Grenze für die Beweisbarkeit der transfiniten Induktion in der verzweigten

Typenlogik. Archiv für Mathematische Logik und Grundlagenforschung 67 (1964) 45-60. 2

[46] K. Schütte: Predicative well-orderings, in: Crossley, Dummett (eds.), Formal systems and

recursive functions (North Holland, 1965) 176?184. 2

[47] K. Schütte: Proof Theory. (Springer, Berlin 1977). 11, 12, 19

[48] H. Schwichtenberg: Proof theory: Some applications of cut-elimination. In: J. Barwise

(ed.): Handbook of Mathematical Logic. (North Holland, Amsterdam, 1977) 867-895. 9

[49] A.W. Swan: CZF does not have the existence property. Annals of Pure and Applied Logic

165 (2014) 1115-1147. 6

[50] W. W. Tait Finitism. Journal of Philosophy 78 (1981) 524-546 2

[51] G. Takeuti: Consistency proofs of subsystems of classical analysis. Annals of Mathematics

86 no.2, (1967) 299-348. 2

[52] G. Takeuti, M. Yasugi: The ordinals of the systems of second order arithmetic with the

provably �1

2

-comprehension and the �1

2

-comprehension axiom respectively. Japan Journal of

Mathematics. 41 (1973) 1-67. 2

[53] G. Takeuti: Proof theory, second edition. (North Holland, Amsterdam, 1987).

[54] A. Weiermann: How to characterize provably total functions by local predicativity. Journal

of Symbolic Logic 61 (1996) 52-69. 9

152

