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Abstract 

This thesis describes the development of a synthetic approach to an unusual pyrone-

containing macrocyclic natural product (I) isolated from the marine alga Phacelocarpus 

labillardieri. This comprises the synthesis of a simplified model system (II) followed by 

the completion of the first total synthesis of the natural product (I) and its suggested 

stereochemical reassignment, as well as studies on related palladium catalysis 

methodology. An overview of macrocyclic 2-pyrone natural products is given initially, 

along with a discussion of 2-pyrone reactivity and general macrocyclisation strategies in 

natural product synthesis (Chapter 1). 

 

The synthetic route was originally developed for the synthesis of the aromatic analogue II, 

and various attempts and strategies towards this compound are described, culminating in its 

completion (Chapter 2). An account of the application of this strategy to the successful 

synthesis of the natural product (I) is then given, the accomplishment of which allows a 

reassignment of the stereochemistry around the enol ether double bond from the previously 

assigned E to Z in the natural compound (Chapter 3). 

The remainder of the thesis focuses on two studies carried out on succinimide-based 

palladium complexes. The first concerns an investigation into the effect of air on the 

efficiency of Stille cross-coupling reactions catalysed by complex III (Chapter 4), and the 

second an examination of two novel complexes, IV and V, including their synthesis, 

characterisation and catalytic activity (Chapter 5). 
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Chapter 1: Introduction 

1.1 Macrocycles 

1.1.1 Macrocycles in Nature and Medicine 

he unique characteristics of macrocycles have afforded them a prominent position in 

the fields of chemistry, biology and medicine.
1-2

 Generally regarded as ring systems 

consisting of 12 or more atoms, their distinctive chemical, physical and medicinal 

properties set them apart from acyclic or small-ring compounds, and make them useful for a 

broad range of applications. Synthetic macrocycles have found use in coordination 

chemistry (e.g. [2.2.2]-cryptand (1), Figure 1) and form part of complex molecular 

architectures such as catenanes and rotaxanes (e.g. 2, Figure 1).
3
 Naturally occurring 

macrocycles are also widespread and play key roles in many biological processes: haem (3, 

Figure 1), chlorophyll and vitamin B12, to name just three, all contain macrocyclic 

substructures.  

 

Figure 1 Examples of macrocycles with various applications: the ligand [2.2.2]-cryptand (1), a 

rotaxane (2) and the biological molecule haem B (3). 

Whilst torsional, angle and transannular strains dominate the conformations of normal (5–

7-membered) and medium (8–11-membered) rings, these interactions are often minimal in 

larger-ring compounds, giving them a considerable degree of conformational flexibility; 

this is combined with a certain element of constraint arising from the rotational restrictions 

inherent in a cyclic system. Such pre-organisation can limit the entropic penalty associated 

with binding to biological targets such as proteins, thus increasing potency, whilst the 

specific arrangement and stereochemistry of substituents on the ring can lead to very high 

levels of selectivity.
4
 The flexibility afforded by the large ring can also allow them to shield 

certain functionality from the external environment, conferring enhanced solubility, good 

lipophilicity and the ability to penetrate cell membranes. All of these attributes mean that, 

despite not being classically ‘drug-like’,
5
 macrocycles are often promising candidates for 

T 
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pharmaceutical agents.
6-9

 As a result, macrocyclic compounds are finding increasing 

clinical use, for example as antibiotics, antitumour compounds, immunosuppressants and 

antifungals. 

There are numerous examples of therapeutically active macrocyclic molecules,  including 

natural products such as the antifungal compound amphotericin B (4)
10-11

 and antibiotic 

vicenistatin (5);
12

 natural product analogues such as the anticancer drug ixabepilone (6),
13

 

an analogue of epothilone B; or entirely synthetic compounds like pacritinib (7),
14

 a 

myelofibrosis treatment currently undergoing clinical trials (Figure 2). A number of recent 

reviews have been published describing families of related biologically active macrocyclic 

natural products and their chemical synthesis.
15-18

 Despite this apparent interest, 

macrocycles remain a somewhat under-represented structural class in the field of medicinal 

chemistry: at the time of writing, there were approximately 70 approved macrocyclic drugs, 

and historically such compounds have been derived almost exclusively from those found in 

nature.  

 

Figure 2 Examples of therapeutically active macrocycles: amphotericin B (4), vicenistatin (5), 

ixabepilone (6) and pacritinib (7). 

There are more than 3,700 known macrocyclic natural products, constituting approximately 

3% of the current total, and encompassing a vast range of sizes, functionality and biological 

activity.
19

 Such large-ring natural products continue to pose as appealing but challenging 

targets to chemists, and it is this synthetic intractability which has prevented the widespread 

exploitation of these valuable compounds. Efficient synthetic routes to macrocycles, and in 

particular complex and functionality-rich macrocyclic natural products, will therefore 

inevitably play a vital role in the discovery of a new generation of macrocyclic drugs. 
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1.1.2 Synthetic Approaches to Macrocyclic Natural Products 

In the cyclisation of any bifunctional compound, the main challenge to address is the 

competition between the desired intramolecular reaction (cyclisation) and unwanted 

intermolecular reactions (di-, oligo- or polymerisation). Whilst owing to the lack of strain 

in large ring systems the enthalpic barrier to cyclisation is small, the entropic penalty upon 

ring formation can make it unfavourable with respect to polymerization. The ratio between 

the rates of intra- and intermolecular reactions, kintra/kinter, for a given bifunctional chain is 

known as the effective molarity, EM, and has units of concentration.
20

 Because the rate of 

intermolecular reaction is dependent on the reaction concentration, C, and the rate of 

intramolecular reaction is not, cyclisation can be favoured by lowering the reaction 

concentration, i.e. C << EM.
21-22

 High dilution techniques are thus often employed despite 

the fact that they can lead to extended reaction times and necessitate the use of large 

volumes of solvent. These pitfalls can sometimes be circumvented by techniques such as 

slow addition of substrate (also called pseudo-high-dilution conditions) or the use of 

polymer-supported catalysts.
23

 Metal-catalysed reactions can also benefit from a template 

effect by which substrate coordination to a metal atom facilitates macrocyclisation. 

Historically, there have been a variety of cyclisation methods used for the synthesis of 

macrocyclic natural products, including radical and substitution reactions,
24

 macrolactam- 

and macrolactonisations,
25-26

 ring-closing alkene
27

 and alkyne
28

 metathesis reactions, 

olefination reactions,
29-30

 Prins-type reactions
31

 and Pd-catalysed reactions.
32

 Of these, three 

major cyclisation methods have emerged as the most widely used: macrolactonisation, ring-

closing alkene metathesis and Pd-catalysed cross-coupling reactions.  

The prevalence and favourable biological activity of naturally occurring macrolides 

(macrocyclic lactones) has led to macrolactonisation being a very widely used method of 

macrocyclisation in natural product total synthesis. This has been achieved in a plethora of 

different ways using a huge range of coupling reagents which can effect esterification in a 

variety of fashions. Examples (Figure 3) include Yamaguchi’s reagent (8), cyanuric 

chloride (9), Mukaiyama’s reagent (10), DCC (11), DMC (12) and Shiina’s reagent (13). 
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Figure 3 Examples of coupling reagents used in macrolactonisation approaches to natural products. 

One of the more striking examples of this approach is the construction of the 42-membered 

ring in the unusual boron-containing natural product tartrolon B 16 (Scheme 1).
33-34

 The 

macrocyclisation step occurs in a remarkably high yield (82% over two steps) using a 

Yamaguchi lactonisation. Oxidation, deprotection and reaction with Na2B4O7 to install the 

boron atom then complete the first total synthesis of tartrolon B. 

 

Scheme 1 Example of a Yamaguchi macrolactonisation in the total synthesis of tartrolon B (16). 

Whilst this strategy has frequently been employed with great success, dimerisation is often 

a problem, requiring reactions to be run under high-dilution conditions, and not all 

substrates are compatible with the reagents employed, necessitating careful protecting-
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group strategies. Finally this reaction class is obviously only applicable to the synthesis of 

macrolides and so other methods have also needed to be developed. 

The second major macrocyclisation method in natural product total synthesis is ring-closing 

alkene metathesis. As in other metathesis reactions, a variety of catalysts with different 

catalytic activities can be employed depending on the substrate. Examples of such catalysts 

are given in Figure 4: Grubbs’ 1
st
 generation catalyst (17), Grubbs’ 2

nd
 generation catalyst 

(18) and the Hoveyda–Grubbs 2
nd

 generation catalyst (19). 

 

Figure 4 Representative catalysts used in RCM macrocyclisation approaches to natural products. 

The effectiveness of this approach has been amply demonstrated in a number of elegant 

total syntheses of pinnatoxin A (22),
35-37

 a potent toxin from the shellfish Pinna muricata 

which has been responsible for a number of shellfish poisonings in East Asia. The most 

recent synthesis was reported by Zakarian and co-workers in 2011, who employed catalyst 

19 to construct the macrocyclic core of the natural product (Scheme 2).
37

 

 

Scheme 2 Ring-closing metathesis macrocyclisation in the total synthesis of pinnatoxin A (22). 
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Whilst the substantial benefits of this strategy have led to it being widely utilised as a 

macrocyclisation method, it does suffer certain functional-group limitations: other double 

bonds present in the target compound can isomerise, migrate or even undergo metathesis 

themselves, leading to unwanted side-products. If the double bond resulting from the RCM 

is not present in the final target compound, it can be hydrogenated or transformed into 

numerous other groups, but this requires additional synthetic steps and potentially raises 

further chemoselectivity issues. 

The third key reaction class is Pd-catalysed macrocyclisations. A wide array of Pd-

catalysed cross-coupling reactions have in general proved themselves as invaluable tools in 

the total synthesis of natural products, allowing the efficient and selective formation of 

carbon–carbon bonds.
38

 As a macrocyclisation strategy, this approach does not suffer from 

some of the limitations of other methods: the wide range of possible reactions means there 

are few specific functional-group constraints on the resulting cycle, and the mildness of 

many of the reactions often allows the macrocyclisation step to be performed at a late stage 

in the synthesis. As such, this class of reactions arguably represents one of the most 

promising approaches for the synthesis of new macrocycles, and the success in the previous 

application of this to natural product total synthesis has been reviewed in detail (see 

Appendix 1).
32

 

The sheer diversity of these different Pd-catalysed reactions makes them attractive methods 

for macrocycle formation, allowing a choice of disconnections and application to a huge 

variety of molecules. A vast array of different cross-couplings have been developed 

employing a plethora of different organometallic reagents which can react with various 

organic halides or pseudohalides. There remain however five key reactions which have 

proved themselves most useful for macrocycle synthesis. These are the cross-couplings of 

halides, or pseudohalides, with organostannanes (Stille),
39-40

 organoboron compounds 

(Suzuki–Miyaura),
41-42

 alkenes (Heck)
43-44

 or terminal alkynes (Sonogashira).
45

 The 

coupling of a nucleophile with an allylic acetate or carbonate (Tsuji–Trost)
46-47

 has also 

frequently been used. These reactions are summarised in Scheme 3. 
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Scheme 3 The main types of Pd-catalysed macrocyclisation reactions employed in the total 

syntheses of natural products. The precise structure of the Pd-catalyst is not given, but it is usually 

Pd
0
, where L = 2e

−
 donor and x = 2–4. 

Although there are some examples of unusual and inventive Pd-catalysed reactions 

employed as macrocyclisation steps in natural product total synthesis, one could argue that 

the full potential of Pd catalysis in this field has not yet been exploited. This is illustrated 

by the historical dominance of five-or-so cross coupling reactions and the reliance on a 

small collection of simple Pd compounds (e.g. Pd(OAc)2, PdCl2(MeCN)2, Pd2dba3∙CHCl3) 

as catalysts. A huge number of Pd catalysts are described in the literature, including many 

well-defined molecular complexes in addition to polymer- and solid-supported and 

nanoparticle-based catalysts.
48

 Many of these exhibit subtle and selective reactivity which 

would be of great value when applied to complex and multi-functional compounds. One 

such case is the catalyst Pd(N-succ)Br(PPh3)2, 23, the cis- and trans-isomers of which are 

shown in Figure 5. Complex cis-23 was first reported by Serrano in 1999,
49

 and can be 

prepared in a one-pot procedure from Pd2dba3∙CHCl3 (see Chapter 4, section 4.3).
50

 The cis-

isomer of 23 can be isomerised to the trans-isomer by heating in toluene; trans-23 is also 

currently commercially available from Sigma-Aldrich. 
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Figure 5 cis- and trans-(Ph3P)2Pd(N-succ)Br, 23. 

Studies by Fairlamb, Taylor and co-workers have shown these catalysts to be highly 

efficient in certain allylic and benzylic Suzuki–Miyaura
51-52

 and Stille
50, 53-54

 couplings. The 

reasons behind this efficacy remain unclear, but the succinimide ligand is thought to play a 

role, and the active catalytic species is suspected to differ in the presence and absence of 

trace air. These compounds have great potential for use in the total synthesis of complex 

natural products containing allylic or benzylic functionality, and it is the application of 

catalysts such as these which will allow the synthesis of new macrocycles in ever more 

efficient and ingenious ways. 

1.2 2-Pyrones 

1.2.1 Chemistry of 2-Pyrones 

The 2H-pyran-2-one or 2-pyrone system 24 (Figure 6) possesses remarkable chemical and 

biological properties. It is an unsaturated cyclic six-membered lactone, possessing 

reactivity characteristic of an aromatic system, a 1,3-diene and a conjugated ester.
55

 By 

convention it is numbered from the ring oxygen, with the carbonyl function occupying the 

C-2 position, and hence named as an α- or 2-pyrone. The related γ- or 4-pyrone 25 is named 

similarly, and the benzologues 26, 27 and 28 are known as coumarin, isocoumarin and 

chromone respectively.
56

 

 

Figure 6 Structures of various pyrone analogues. 

Unsubstituted 2-pyrone itself (24) is a liquid with a hay-like odour, which polymerises 

slowly on standing. It has distinctive spectroscopic properties, with characteristic UV 

absorption peaks at 216 and 289 nm,
57

 a C=O IR stretch at 1720 cm
−1

,
58

 and four discrete 

multiplets in its 
1
H NMR spectrum between δ 6.38 and 7.77 (Figure 7).

59
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Figure 7 Numbering and 
1
H NMR spectroscopic properties of the 2-pyrone ring system (24). 

The pattern of nucleo- and electrophilic reactivity around the ring is similar to that of an 

unsaturated ester. The C-2, C-4 and C-6 positions are electron-deficient, while the C-3 and 

C-5 positions are relatively electron-rich, as demonstrated by reactions with electrophiles 

such as bromine
60

 or a nitronium ion
61

 (Scheme 4). Reaction with a hard electrophile such 

as Me3O
+
 occurs on the carbonyl oxygen, whilst the reaction with excess bromine mirrors 

that of a diene, resulting in the fully brominated lactone 32.  Nucleophilic attack occurs 

directly at the carbonyl C-2 or in a Michael fashion at C-4 or C-6, and usually results in 

subsequent rearrangement or ring opening, as illustrated by the reactions with aqueous 

ammonia or sodium cyanide,
62

 to give 33 and 34 respectively.  

 

Scheme 4 Reactions of 2-pyrone 24 with a variety of nucleophiles and electrophiles. 

There are numerous published methods for the synthesis of 2-pyrone rings, the most 

common being the classical acid-catalysed condensation of a β-ketoester with a ketone. 

This method is used in the synthesis of coumalic acid 35,
63-64

 which can be decarboxylated 

to give 2-pyrone 24 (Scheme 5).
65
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Scheme 5 Synthesis of 2-pyrone 24 via coumalic acid 35. 

A frequently encountered pyrone-containing substructure is 4-hydroxy-6-methyl-2-pyrone 

(36), also known as triacetic acid lactone. A cheap, commercially available and easily 

handled crystalline solid, this compound consists of a pyrone ring substituted with a 

hydroxyl group and a methyl group, and consequently can exist in two tautomeric forms: as 

a 2-pyrone or a 4-pyrone. It is, however, classified as a 2-pyrone ring as this tautomer is 

dominant (Scheme 6) as shown by comparison of the UV and IR spectra of 36 to the 

corresponding 4-methoxypyrones.
66

 

 

Scheme 6 Tautomeric forms of 4-hydroxy-6-methyl-2-pyrone 36. 

6-Alkyl-4-hydroxy-2-pyrones of this type can be accessed via the acid- or base-catalysed 

intramolecular cyclisation of a β,δ-diketoester (Scheme 7).
67-68

 Indeed, cyclisations of this 

type were reported as early as 1929,
69

 and have since become a commonly used approach to 

the preparation of these kinds of compounds. 

 

Scheme 7 Cyclisation of a β,δ-diketoester to form a 6-alkyl-4-hydroxy-2-pyrone (39). 

The additional functionality on the pyrone ring in 36, and its ready availability, make this 

compound an especially useful and versatile intermediate in organic synthesis.
66

 In addition 

to the diverse reactivity of the 2-pyrone system, this molecule contains an acidic hydroxyl 

moiety (pKa = 4.94
70

) and an activated methyl group. The hydroxyl group can be 

transformed into an abundance of different functional groups including ethers,
71

 

halogens,
72-73

 amines
73

 and sulfides.
74

 The methyl group is also readily functionalised by 

lithiation,
75

 and in the methyl ether by bromination
76

 or oxidation. 
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1.2.2 Natural and Synthetic Bioactive 2-Pyrones 

The 2-pyrone ring system is abundant in nature and can be found in a vast number of 

natural products from bacteria, plants and animals.
77

 These 2-pyrone derivatives exhibit 

huge structural diversity, ranging from remarkably simple structures such as the 

aforementioned 4-hydroxy-6-methyl-2-pyrone 36, which has been reported as a metabolite 

of various enzymes,
78

 to large and complex molecules such as phellinstatin 40, isolated in 

2011 from the fungus Phellinus linteus (Figure 8).
79

 The pyrone ring is frequently found as 

part of conjugated polycyclic systems (e.g. racemosol 41 from the leaf extract of Mesua 

racemosa),
80

 and incorporated into biomolecules such as steroids (e.g. in bufalin 42).
81

 In 

addition to this structural variety, compounds containing the 2-pyrone motif also exhibit a 

broad biological activity including antifungal, antibiotic, cytotoxic, neurotoxic and 

phytotoxic effects. For example phellinstatin 40 has been shown to be a potent inhibitor of 

Staphylococcus aureus as well as posessing antibacterial activity.
79

 The bioactivity of the 2-

pyrone moiety is such that even the simplest pyrones show biological effects: 6-pentyl-2-

pyrone 43, a pungent compound from the soil fungus Trichoderma viride
82

 which is also 

found in peach and nectarine extracts, exhibits antimicrobial activity against a variety of 

microorganisms.
83

 

 

Figure 8 Examples of naturally occurring 2-pyrones. 

Complementing the abundance of naturally occurring bioactive compounds, chemists have 

created libraries of synthetic 2-pyrones and analogues of natural products in the hope of 

discovering novel pharmaceutical agents. Many of these have shown favourable biological 

activity in tests against a variety of illnesses. For example, a screen of synthetic tricyclic 2-

pyrones by Hua and co-workers found that compounds 44 and 45 (Figure 9) protected 

against neuron cell death from the toxicity of amyloid-β peptides, the accumulation of 

which is thought to lead to Alzheimer’s disease.
84

 A range of other tricyclic 2-pyrones such 
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as 46 (Figure 9) exhibit potent anticancer activity comparable to anticancer drugs.
85

 

Another study has found that 3-alkyl-6-chloro-2-pyrones are potent inhibitors of cholesterol 

esterase, an enzyme which helps to absorb dietary cholesterol into the body.
86

 The length of 

the alkyl chain at the C-6 position of the pyrone was found to be critical, and the most 

potent, pyrone 47, possessed a two-methylene linker to a cyclohexyl group. 

 

Figure 9 Examples of synthetic bioactive 2-pyrones. 

The combination of the varied pharmacological profile and diverse reactivity described 

above has made the 2-pyrone system an important chemical entity. This has increasingly 

led to the use of pyrones as precursors for many synthetic compounds of therapeutic 

importance such as HIV protease inhibitors,
87

 antimicrobials
88

 and antitumour agents,
89

 

amongst others.
90

 

1.3 Macrocyclic 2-Pyrone Natural Products 

1.3.1 Isolation, Characterisation and Activity 

In 1982, Blackman and co-workers reported a group of intriguing and unprecedented new 

compounds isolated from Phacelocarpus labillardieri,
91

 a common red alga found 

abundantly around the coasts of southern Australia and New Zealand (Figure 10);
92

 their 

interest in this species was stimulated by neuromuscular blocking activity exhibited by 

crude dichloromethane extracts of the alga. 
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Figure 10 Images of P. labillardieri (a) sketch from William Harvey’s Phycologia Australica 

(1860)
92

 (b) photograph of sample from Tasmania (licensed under Creative Commons BY-NC-

SA).
93

  

Four new natural products were isolated from samples collected off the coasts of Tasmania 

and South Australia; the structures of the four compounds (Figure 11) were elucidated by 

both spectroscopic analysis and chemical degradation, and assigned as three novel 

macrocyclic enol ethers, each containing an embedded 4-pyrone ring (48, 49 and 50), along 

with an acyclic 6-substituted dihydro-2-pyrone (51).
†
 Note that the stereochemistry of the 

enol ether double bonds in 48 and 50 could not, at this point, be determined, but was 

assigned on the basis of later studies (see below). 

 

Figure 11 New natural products reported from P. labillardieri in 1982. 

                                                      
†
 In this thesis the macrocyclic compounds in this series are referred to as the ‘phacelocarpus 

pyrones’. Isomeric compounds share the same letter (A–F) and have been named according to 

whether they contain a 2- or 4-pyrone ring. 

(a) (b) 
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Following this initial report, Fenical and co-workers reported a further four novel 

metabolites in 1986 from another sample of P. labillardieri, collected this time off the coast 

of Victoria, Australia (Figure 12).
94

 The structures of the four compounds were assigned 

based on spectroscopic data and by comparison to the compounds reported previously, and 

were found to share many structural similarities. Compound 52 was found to be an isomer 

of the previously isolated 48 (Figure 11), and the lack of a 
4
J allylic coupling across the 

enol ether bond, along with the lack of any significant nOe enhancement between these 

protons, implied an (E)-stereochemistry; this therefore suggested the assignment of a (Z)-

stereochemistry to compound 48. Two 2-pyrone-containing compounds were also 

identified: compound 53 was thought to be the 2-pyrone analogue of 52 and the dibromo 

compound 54 analogous to the previously identified compound 49 (Figure 11), which was 

also isolated from this sample.  

 

Figure 12 Further natural products from P. labillardieri, reported in 1986. 

A subsequent study in 1990 by Blackman and co-workers on another Tasmanian collection 

of the algae identified a further dibrominated analogue (56), along with β-farnesene (58), a 

metabolite rarely found in marine organisms (Figure 13).
95

 In 1995 a final, related 

macrocyclic 4-pyrone (57) was isolated, along with 50 and 52 (the stereochemistry of 50 

was also determined in this study by nOe experiments), from a sample of the same algae 

(called by its taxonomic synonym Phacelocarpus peperocarpus in this study) collected in 

Victoria, Australia (Figure 13).
96
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Figure 13 Natural products isolated in 1990 (56 and 58) and 1995 (57) from P. labillardieri. 

In 2008, a new series of macrocyclic 2-pyrone natural products, labillarides A–K, was 

isolated from a collection of P. labillardieri from northern New Zealand (Figure 14).
97

 

These novel compounds bear certain structural similarities to those isolated from the 

Australian collections of the alga, but interestingly, none of the previously reported 

compounds were identified in the new samples. They were assigned as eight macrocyclic 2-

pyrones (59–66), along with two macrocyclic enols (67 and 68), presumably biosynthetic 

precursors to the 2-pyrones 61 and 62, and an acyclic 3-furanone oxylipin (69).  
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Figure 14 Labillarides A–K (59–69), isolated from P. labillardieri in 2008. 

Finally, in 2009, two further pyrone-containing macrolides were reported as being isolated 

from the Fijian red alga Neurymenia fraxinifolia (Figure 15).
98

 The structures of these two 

compounds, neurymenolides A (70) and B (71), are strikingly similar to that of labillaride 

D (62), differing only in the size of the macrocyclic ring and the presence of an extra alkene 

in the neurymenolides. This structural similarity implies a shared biosynthetic pathway, and 

it is interesting to note that the two species P. labillardieri and N. fraxinifolia, although 

both marine red algae, are only distantly related. 
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Figure 15 Neurymenolides A and B, isolated from N. fraxinifolia in 2009. 

These final two compounds bring the total number of pyrone-containing macrocyclic 

natural products isolated from marine algae to 19, comprising the phacelocarpus pyrones, 

labillarides and neurymenolides. It is plausible that all of these natural products share 

similar biogenic pathways, with the pyrone moieties being formed from linear diketoacid 

precursors (Scheme 8). The intermediate compounds could then cyclise through either 

oxygen or carbon, giving rise to the range of substituted pyrones observed. It is also 

possible that macrocyclisation could occur prior to pyrone formation. 

 

Scheme 8 Possible biosynthetic pathway for macrocyclic pyrones. 

Many of these compounds have shown interesting biological profiles. Compound 49 has 

been shown to be a potent inhibitor of bee venom derived phospholipase A2 (PLA2) in the 

µM range.
99

 Elevated levels of PLA2 are associated with brain injury and neurological 

disorders including Alzheimer’s disease.
100

 Compound 48 has been demonstrated to be a 

potent feeding inhibitor for various marine herbivorous gastropods, and so is likely used by 

the algae as a defence agent against natural predators.
101

 Labillarides A (59), B (60) and I 

(67) are cytotoxic, whilst labillaride C (61) has shown some antibacterial activity.
97

 

Neurymenolide A (70) has shown growth inhibition of drug-resistant Staphylococcus 

aureus (MRSA).
98
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1.3.2 Structural Assignment of Phacelocarpus 2-Pyrone A (53) 

The phacelocarpus pyrones A and B form two isomeric sub-families as shown in Figure 16. 

These structurally similar compounds are 19-membered macrocycles which all share an 

identical portion of their macrocyclic ring (the C-5–C-17 subunit in 2-pyrone A (53)), 

differing in whether they contain a pyronyl enol ether (pyrones A) or bromination (pyrones 

B). Representative of this small group of unusual compounds is phacelocarpus 2-pyrone A 

(53). 

 

Figure 16 Classification of isomeric subgroups within the phacelocarpus pyrones. 

First isolated in 1986 by Fenical and co-workers, the structure of 53 was assigned based on 

NMR, IR and UV spectroscopic and mass spectrometric data.
94

 The presence of a 2-pyrone 

was indicated by a characteristic UV absorption at 282 nm, infrared bands at 1710, 1640 

and 1565 cm
−1

 and 
13

C NMR resonances at δ 167 and 169, all of which were in agreement 

with an authentic reference compound, 4-methoxy-6-methyl-2-pyrone. The structure of the 

C-2′–C-17 subunit was assigned by comparison to (Z)-4-pyrone A (48), the structure of 

which had been assigned previously by 
1
H and 

13
C NMR spectroscopic analysis and 

chemical degradation studies (Scheme 9).
91
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Scheme 9 Chemical degradation studies on 48. 

The positions of the carbon–carbon triple and double bonds in 48 were determined using 

the 
1
H NMR spectroscopic data. The presence of three doubly allylic methylene groups 

could be recognised: two triplets and one doublet with a small long range coupling. This 

demanded that the unsaturated bonds were homoallylic to each other and to the enol ether 

with the acetylene furthest around the ring. Decoupling experiments supported this 

assignment. The (Z)-geometry of the disubstituted double bonds was assumed on the basis 

of the small 
1
H NMR couplings observed for the alkene protons, although exact values are 

not quoted and the signals are assigned as multiplets.  

The later isolation of the (E)-isomer of 48, (E)-4-pyrone A (52) and a subsequent nOe 

experiment (lack of enhancement of the C-1′ protons on irradiation of the C-4 proton in 52, 

see Figure 16), suggested the respective geometries about the enol ether double bonds.
94

 A 

cis-allylic coupling in 48 was also noted, which was absent in 52, and which is known to be 

accentuated by a cis relationship. The complete structure of the aliphatic portion of 

compound 53, including the stereochemistry, was thus assigned solely on the basis of a 

comparison to the NMR spectroscopic data for 52. However, the match with compound 48 

is also close, and since no nOe studies have been carried out directly on 53, the compound 

has not been prepared synthetically, and no crystal structure has been obtained (the 

compound is reported to be an oil) the geometry of the trisubstituted double bond remains 

in doubt. Reported proton NMR spectroscopic data for compound 53 is shown in Figure 17. 
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Figure 17 Numbering and reported 
1
H NMR spectroscopic data (360 MHz, CDCl3) for compound 

53.
94

 Chemical shifts (in ppm) are followed by the multiplicity of the signal and the coupling 

constant in Hz. 

1.3.3 Synthetic Studies 

Only a small number of synthetic studies towards macrocyclic pyrone-containing natural 

products have been carried out. In 2003, Fürstner and co-workers synthesised a model 

system of phacelocarpus 2-pyrone A 53.
102

 They used a base-catalysed pyrone cyclisation 

followed by a ring-closing alkyne metathesis (RCAM) reaction to build macrocycle 76 

(Scheme 10), containing both an alkyne and an embedded 2-pyrone, but lacking the enol 

ether bridge or skipped (Z)-alkenes. 

 

Scheme 10 Fürstner’s approach to macrocycle 76. 

In 2012, Fürstner and co-workers published the first full synthesis of a macrocyclic pyrone 

natural product, neurymenolide A 70.
103

 They once again adopted a late-stage pyrone 

cyclisation, this time using gold catalysis, followed by molybdenum-catalysed RCAM as 

the penultimate step (Scheme 11). Partial hydrogenation of the newly formed triple bond 

afforded them a protected from of the natural product 70 in 13 steps and 10.8% overall 

yield. This could be deprotected to free neurymenolide A, confirming the correct 

assignment, but no yield is reported as the compound was found to be highly unstable and 

could not be purified. Interestingly this instability is not noted in the isolation paper, which 
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reports purification of the natural product by both reversed-phase and normal-phase silica 

gel HPLC. 

 

Scheme 11 Endgame synthesis towards neurymenolide A 70. 

Very recently, the group of Fürstner have completed the first total synthesis of one member 

of the phacelocarpus pyrones, the brominated derivative 4-pyrone B (49).
104

 Once again, 

the key steps in this synthesis included gold-mediated formation of the 4-pyrone motif, 

followed by ring-closing alkyne metathesis to form the macrocycle (Scheme 12). A late-

stage bromination on the 4-pyrone then afforded the target compound. They also 

synthesised the unnatural syn diastereomer of the natural product, allowing the 

confirmation of the relative stereochemistry at the two stereocentres for the first time. 
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Scheme 12 Final steps of Fürstner’s total synthesis of phacelocarpus 4-pyrone B 49. 

Previously in the Fairlamb and Taylor groups, significant progress has been made towards 

the first total synthesis of 2-pyrone 53.
105

 Dr Michael J. Burns (2006–9) established the 

effective use of 4-hydroxy-2-pyrones in Mitsunobu reactions and Michael additions,
106

 and 

achieved the first synthesis of a 2-pyronyl enol ether (88) using an elimination strategy 

(Scheme 13).
107

 

 

Scheme 13 First synthesis of a pyronylvinyl ether (88) by Burns. 
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Subsequent Suzuki cross-couplings on the vinyl bromides worked well, but the route could 

not be extended to the pyrone with a longer alkyl chain at C-6. A ring-closing metathesis 

approach to the macrocyclic ring was also investigated, and it was found that the 

macrocycle could be successfully accessed using this route, providing that the alkyne 

functionality was protected (Scheme 14). Unfortunately the RCM reaction delivered the 

undesired (E)-isomer (90) as the major product.  

 

Scheme 14 RCM-based approach to macrocycle 90. 

Despite these successes, progress thus far has been hampered by the limited stability of the 

2-pyrone motif under various conditions. It is therefore suggested that more success in 

developing the chemistry leading to the macrocyclic ring could be achieved by targeting 

arene model system 91 (Figure 18), in which the 2-pyrone is replaced with a benzene ring. 

If an efficient route could be found to compound 91, this might potentially serve as a 

pathway for the synthesis of the entire family of phacelocarpus pyrones.  

 

Figure 18 Structure and numbering of natural product 53, along with aromatic model compound 91. 
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1.4 Project Aims and Objectives 

1.4.1 Aims 

I. To complete the first total synthesis of phacelocarpus 2-pyrone A (53). 

II. To exploit any novel or interesting observations and side reactions to develop new 

methodology to facilitate the synthesis of macrocyclic natural products containing 

2-pyrones or skipped unsaturation. 

1.4.2 Objectives 

I. To identify efficient syntheses of the arylvinyl ether and skipped diene 

substructures, and combine these with an effective macrocyclic ring-closure, 

resulting in a mild and efficient synthetic route to the aromatic mimic 

compound 91 (Chapter 2). 

II. To find an efficient and stereocontrolled synthesis of the pyronylvinyl ether motif 

and exploit the methodology developed in the synthesis of 91 to find an expedient 

route to the natural product 53 (Chapter 3). 

III. To investigate the reactions of succinimide-based catalysts cis- and trans-23 in 

order to apply them to the synthesis of complex molecules containing skipped 

dienes, such as 91 and 53 (Chapter 4). 

IV. To develop a new generation of succinimide-based catalysts with enhanced 

reactivity which could also be applied to the syntheses of 91 and 53, and other 

interesting organic substrates containing skipped unsaturation (Chapter 5). 
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Chapter 2: Synthesis of Arene Model System 

2.1 Initial Retrosynthetic Analysis 

iven the arrangement of skipped unsaturated functionality present around the 

macrocyclic ring of compound 91, it appeared most appropriate to focus the 

synthetic route around a Pd-catalysed macrocyclisation strategy, whereby a vinyl or alkynyl 

organometallic reagent could be coupled with an allylic electrophile. A convergent, 

fragment-oriented synthesis was envisaged in which the disconnections and fragments used 

in the synthesis of the model system 91 could also be employed in the total synthesis of the 

natural product (53). With these considerations in mind, a retrosynthetic analysis of the 

model system was proposed (Scheme 15), based on assembling the macrocyclic ring from 

two halves using Pd-catalysed cross-coupling reactions. The western fragment (92) would 

consist of a skipped diene, with two different functional handles, a nucleophilic coupling 

partner and an allylic electrophile; the skipped diene motif in 92 could be constructed by 

double hydrogenation of a skipped diyne (94), itself available by substitution of a terminal 

alkyne (95) with a propargylic electrophile (96). The eastern fragment (93) comprises the 

arylvinyl ether connected to an allylic leaving group, and a terminal alkyne tethered, via an 

alkyl chain, to the aromatic ring. The arylvinyl ether was anticipated to be rapidly accessed 

by addition of an elaborated phenol to an alkyne (97); the phenol itself could be assembled 

by alkylation of a lithiated m-methylphenol (98) with an alkyl electrophile (99). 

 

Scheme 15 Retrosynthetic analysis of compound 91. 

The initially proposed forward synthesis is shown in Scheme 16. Commercially available 

m-cresol (98) could be alkylated with known alkyl iodide 100 and the resultant phenol 

G 
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(101) employed in a conjugate addition with alkyne 102. Reduction and activation would 

then give the required allylic electrophile (104). The synthesis of the western fragment 

begins with alkylation of known alkyne 106 with propargyl bromide; the subsequent diyne 

(107) could then be lithiated again and reacted with a metal-based electrophile. This 

intermediate could then be hydrogenated, affording a (Z,Z)-skipped diene (105). Either a 

Stille or a Suzuki–Miyaura coupling would be suitable to unite the two fragments; a global 

silyl deprotection, activation of the allylic alcohol to 108, followed by Pd-mediated 

macrocyclisation reaction would then complete the synthesis. The regioselectivity of this 

final step should be controlled by the fact that larger rings are favoured in 

macrocyclisations via π-allyl Pd intermediates.
108

 

 

Scheme 16 Proposed forward synthesis of arene mimic 91. 
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2.2 First Generation Approach 

2.2.1 Construction of the Eastern Fragment 

2.2.1.1 Synthesis of Phenol 101 

Initial studies began with the synthesis of the alkylated phenol 101 (Scheme 17). Synthesis 

of the required alkylating agent, iodide 100 was achieved efficiently in two steps following 

a literature procedure
109

 by TMS protection of the terminal alkyne of 4-pentyn-1-ol (109), 

followed by iodination under Appel-type conditions. This was then employed in an 

alkylation reaction whereby the dianion of m-cresol can be generated by using a complex 

base
110

 formed from a combination of n-BuLi, t-BuOK and TMEDA.
111-112

 Such 

dimetallated species then undergo reaction with electrophiles preferentially at the 

deprotonated methyl group, allowing selective alkylation. Pleasingly this reaction worked 

well, with the alkylated phenol 101 being obtained after purification in up to 76% yield, 

and no O-alkylation product being detected.  

 

Scheme 17 Synthesis of phenol 101. 

2.2.1.2 Construction of the Arylvinyl Ether 

A wide variety of methods are reported in the literature for the synthesis of vinyl ethers.
113

 

In particular, reports have described the straightforward oxy-Michael addition of oxygen-

based nucleophiles to terminal alkynoates using a nucleophilic catalyst.
114

 This process was 

repeated employing catalytic DABCO for the reaction between ethyl propiolate (111) and 

phenol (Scheme 18), although unexpectedly, addition was rather more sluggish when m-

cresol was used in place of phenol. This success, however, could not be repeated when an 

internal alkyne (115) was used, with either DABCO or alkyl phosphine catalysts.
115

 

Activation of the ester with a pentafluorophenyl group (117) gave modest yields of the 1,4-
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conjugate addition product (118), but with mixtures of products and poor yields it was 

obvious that this approach was unfeasible. 

 

Scheme 18 Addition attempts to various alkynoates. 

The limitations of the above reactions prompted the exploration of an E2 elimination 

approach, whereby the stereochemistry of the resultant double bond could be controlled by 

the geometry of the starting alkene; e.g. if the concerted elimination process was carried out 

on 2-bromoether 120 (Scheme 19), complete stereocontrol was anticipated in the formation 

of the desired vinyl ether 121. Bromonium ions derived from α,β-unsaturated esters such as 

119 are known to be trapped regioselectively by oxygen nucleophiles;
116

 it was anticipated 

that this could be done with a nucleophile such as a phenol to access 120.  

 

Scheme 19 Proposed bromoetherification approach to vinyl ether. 

It was found that the one-pot bromination–etherification with m-cresol could not be 

performed using  N-bromosuccinimide
117

 (NBS, 123) or N-bromoacetamide
118

 (NBA, 124) 

nor with the more electrophilic N-bromosaccharin
119-120

 (NBSac, 125) and N,N-dibromo-p-
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toluenesulfonamide
116, 121

 (p-TsNBr2, 126), with no product formation observed in any 

attempt (Scheme 20). 

 

Scheme 20 One-pot bromination–etherification attempts. 

In contrast, bromohydroxylation, using water as both a co-solvent and nucleophile, could 

be achieved with a variety of brominating agents (Scheme 21), to give bromohydrin 127. 

This implies that the phenol is not a reactive enough nucleophile for the in situ bromonium 

ring-opening reaction, and perhaps that the bromonium formation is reversible. Subsequent 

attempts to derivatise the hydroxyl group using a Mitsunobu reaction, or electrophilic 

bromopyrone 128, led only to unwanted epoxidation product 130 and E1cB elimination 

product 132 respectively (Scheme 21).  

 

Scheme 21 Attempted bromohydrin derivitisations. 

Numerous studies towards Pd-catalysed C–O bond formation have been described in the 

literature, with a number of specialised ligands and catalysts systems having been 
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developed for the formation of biaryl ethers.
122-127

 The coupling of phenols with vinyl 

halides or pseudohalides, however, has been much less explored.
128

 Since known vinyl 

triflates 134 are available in one step (Scheme 22) from commercially available ethyl 

propionylacetate 133,
129

 it was chosen as the coupling partner for the phenol. 

 

Scheme 22 Synthesis of vinyl triflates (E)- and (Z)-134. 

The two stereoisomers of the enol triflate 134 could be distinguished by virtue of the 

presence of a cis-allylic coupling of 
4
JH–H = 1.3 Hz in the (Z)-isomer which was absent in 

the (E)-isomer (Figure 19). This is a known feature of these structural motifs, and indeed 

was used to support the assignment of the trisubstituted double bonds in a number of the 

phacelocarpus pyrone natural products (see Chapter 1).
94, 96

 

      

Figure 19 Expansions of the alkene and CH2 regions of the
 1

H NMR spectra (400 MHz, CDCl3) of 

(a) (E)-134 and (b) (Z)-134. 

An initial coupling attempt of (E)-134 under literature conditions
128

 afforded only a modest 

yield of the desired product (entry 1, Table 1); this was followed by an extensive 

optimisation, selected examples of which are shown in Table 1 (for full details, see 

Appendix 2; ligands are shown in Figure 20). A combination of Pd(OAc)2, X-Phos and 

K3PO4 in toluene at 100 °C was found to be the most successful, affording the product 116 

cleanly in a 75% yield after only 2 h (entry 5, Table 1). Altering the Pd:ligand ratio did not 

affect the efficiency of the reaction, but premixing of the Pd catalyst with the phosphine 

ligand was found to be crucial to reaction reproducibility. Interestingly, the succinimide-

containing precatalyst 23 was also found to be effective in the reaction, both with and 

without the addition of X-Phos (entries 7 and 8, Table 1). This highlights that PPh3 can 

serve in place of X-Phos, a surprising observation given Buchwald and Hartwig’s findings 

in earlier etherification reaction development.
122-123, 126, 130

 

(a) 
(a) 

(b) (b) 
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Table 1 Screening of conditions for etherification reaction. 

 

Entry 
Catalyst 

[mol%] 
Ligand [mol%] Base [eq.] Time / h Yield

a
 / % 

1 Pd2(dba)3·dba [3]  JohnPhos [9]  NaOt-Bu [1.5]  24 19  

2 Pd(OAc)2 [5]  JohnPhos [5]  K3PO4 [2]  24 38 

3 Pd(OAc)2 [5]  Q-Phos [5]  K3PO4 [2]  24 56  

4 Pd(OAc)2 [5]  X-Phos [5]  K3PO4 [2]  24 75  

5 Pd(OAc)2 [2.5]  X-Phos [5]  K3PO4 [2]  2 75 

6
 

Pd(OAc)2 [2.5]  X-Phos [5]  K3PO4 [2]  2 61
b
 

7
 

trans-23 [2.5] X-Phos [5] K3PO4 [2] 2 60
b
 

8
 

trans-23 [2.5] - K3PO4 [2] 1.5 55
b
 

a
Yield of isolated product following column chromatography. 

b
Reaction carried out in DMF. 

 

Figure 20 Structures of phosphines and catalysts employed in etherification reactions. 

As with the starting enol triflate (E)-134, the compound 116 lacked an allylic coupling 

between the alkene proton and methylene group, implying that the (E)-stereochemistry had 

been retained. However, in order to get conclusive evidence of the stereochemistry, it was 

desirable to obtain a crystal suitable for analysis by X-ray diffraction. To facilitate the 

growing of a single crystal, a large atom was introduced by replacing the ethyl group on the 

ester with an aryl iodide (Scheme 23). Mild ester hydrolysis conditions were employed to 

avoid disrupting the enol ether linkage,
131

 although in this system the reaction was sluggish, 

resulting in a low overall yield for the transesterfication process. Compound 135 showed 

comparable NMR spectroscopic characteristics to ethyl ester 116. 
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Scheme 23 Synthesis of aryl ester 135. 

The crystal structure of 135 (as solved by single crystal X-ray diffraction methods) is 

shown below, and confirms the expected (E)-stereochemistry of the double bond. The 

packing of the unit cell revealed π-stacking and an interesting edge interaction between the 

iodine atom and the phenyl ring (Figure 21, see Appendix 3 for full diffraction data). 

 

Figure 21 (a) Crystal structure of compound 135, confirming its E-stereochemistry; (b) packing in 

the unit cell of 135, showing an interaction between the iodine atom and aromatic ring (in blue).  

With the stereochemistry of ester 116 confirmed, reduction using DIBAL-H proceeded 

efficiently in 85% yield (Scheme 24). The resulting allylic alcohol 136 could be readily 

(b) 

(a) 
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acetylated to acetate 137, but an attempt to generate an allylic bromide 138 by reaction with 

PBr3 led to decomposition. The reduction–acetylation sequence could also be carried out 

without purification of the intermediate alcohol, giving an 80% yield over the two steps.  

 

Scheme 24 Reduction and acetylation of ester 116. 

With an efficient synthesis of the desired enol ether motif in hand, the synthetic route was 

applied to the alkylated phenol 101; thus acetate 140 could be accessed efficiently in 35% 

overall yield over six steps from 4-pentyn-1-ol 109 (Scheme 25). 

 

Scheme 25 Synthesis of allylic acetate 140 from phenol 101. 

2.2.2 Construction of the Western Fragment 

With an efficient route to the eastern half of the target molecule established, efforts were 

directed towards the synthesis of skipped diene fragment 105. The initial target was a vinyl 

boron compound, in anticipation of using a Suzuki–Miyaura coupling to join the western 

and eastern fragments. In contrast to (E)-vinyl boronates, which are synthesised 

straightforwardly by the cis-hydroboration of terminal alkynes, there is no general method 

for the synthesis of (Z)-vinyl boronate reagents. The presence of two (Z)-alkenes in the 
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molecule prompted the exploration of a hydrogenation approach, whereby a skipped diyne 

capped with an alkynylboronate would be prepared, and both alkynes simultaneously 

reduced in a Lindlar-type hydrogenation reaction. The preparation and hydrogenation of 

alkynylboronate esters as a route to (Z)-vinyl boronates was developed by Brown and co-

workers in the late 1980s.
132-133

  

The skipped 1,4-diyne could be assembled by the Cu-catalysed coupling of a Grignard 

reagent derived from a protected propargyl alcohol with propargyl bromide.
134

 The use of a 

TBS protecting group was found to be problematic, as separation of the diyne product 107 

from the remaining starting alkyne (106) was extremely difficult; the most successful 

attempt resulted in only 20% isolated yield. The purification was further complicated by the 

diyne’s limited stability to air and silica gel. Switching to a THP protecting group resulted 

in easier separation and the yield of diyne 142 rose to an acceptable 63%, following column 

chromatography on silica gel (Scheme 26).  

 

Scheme 26 Preparation of diynes 107 and 142. 

Unfortunately the subsequent synthesis of the alkynylboronate ester 143 failed, resulting 

only in partial deprotection of the starting material and no product was observed (Scheme 

27). 

 

Scheme 27 Attempted borylation of terminal alkyne 142. 

The next synthetic approach examined was inspired by a report from Miyaura and co-

workers, who described a formal trans-hydroboration of terminal alkynes with catechol- or 

pinacol-borane catalysed by Rh
I
 (Scheme 28).

135
 The reaction proceeds under mild 

conditions with excellent (Z)-selectivity.  
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Scheme 28 Miyaura and co-workers’ trans-hydroboration.
135

 

It was decided that this approach merited investigation and a revised retrosynthetic analysis 

was proposed. It was thought that the simple skipped eneyne starting material could be 

easily accessed from allylic alcohol 149 (Scheme 29). 

 

Scheme 29 Revised retrosynthetic analysis of vinyl boronate 146. 

Mono-protected alcohol 149 was obtained straightforwardly from the starting diol; an 

initial yield of 44% was increased to 73% by adding the TBSCl silylating agent dropwise in 

solution via syringe pump over 45 min (Scheme 30). The alkyne fragment was anticipated 

to be introduced by activation of the alcohol moiety followed by reaction with 

commercially available ethynylmagnesium bromide. Alcohol 149 was treated with mesyl 

chloride under standard conditions, and reaction of the resulting crude mesylate with the 

Grignard reagent led to the formation of an almost inseparable mixture of regioisomers 147 

and 150, arising from competing SN2 and SN2′ substitutions (Scheme 30).  

 

Scheme 30 Mono-protection, activation and substitution of butenediol giving a mixture of 

regioisomers. 

An attempt to change the leaving group to an iodide, by reaction of the mesylate with 

sodium iodide resulted in complete conversion into the (E)-alkene 151, which was not 
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isolated but reacted directly with the Grignard reagent (Scheme 31). Interestingly, reaction 

proceeded cleanly to afford the skipped enyne 152, with no SN2′ product detected. 

 

Scheme 31 Attempted syntheses of alkyne 152. 

Attempts to avoid the isomerisation by lowering the temperature of the substitution reaction 

simply resulted in the slower formation of 152. Alternative approaches using Appel-type 

reactions
136

 also gave the (E)-isomer. A search of the literature revealed very few examples 

of cis-allylic iodides; rapid isomerisation is frequently reported.
137-138

 It was postulated that 

the corresponding bromide might serve as a suitable alternative given the greater stability of 

allylic bromides.  

Attempts to convert alcohol 143 directly into the corresponding allylic bromide using CBr4 

and PPh3, under literature conditions,
139

 led to side reactions in which the TBS group 

appeared to be undergoing an intermolecular transfer reaction; this resulted in inseparable 

mixtures of product 153 with the corresponding bis-bromide 154 and bis-silyl ether 155 

(Scheme 32). These unwanted side products could not be avoided by altering either the 

bromine source, phosphine or solvent.  

 

Scheme 32 Side products observed in the attempted synthesis of bromide 153. 

To combat the aforementioned side reactions, alcohol 156 was prepared, protected with a 

more acid-stable TIPS protecting group. This was done in a similar fashion to the TBS 

alcohol 143, adding the TIPSCl dropwise into the reaction mixture over 1 h and affording 

the mono-alcohol 156 in 66% yield (Scheme 33). This alcohol 156 was then subjected to 

the Appel conditions as above, and the allylic bromide 159 was isolated cleanly in 84% 

yield. 
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Scheme 33 Further attempts to synthesise 157. 

Unexpectedly, the inclusion of the TIPS protecting group led to poor regioselectivity in the 

subsequent nucleophilic substitution step, with both the mesylate and bromide leaving 

groups. A Cu-mediated alkyne coupling with TMS-acetylene was also tested, but this led to 

almost no regioselectivity (Scheme 34).  

 

Scheme 34 Cu-mediated coupling attempt. 

With changes in the protecting group, leaving group and reaction conditions leading to no 

significant improvements in selectivity, an alternative approach to alkyne 147 was sought. 

(Z)-Alkenes are commonly formed using a (Z)-selective Wittig reaction, and it was thought 

that this approach might be applied, with the key disconnection across the double bond 

leading to two known compounds 162
140

 and 163
141

 (Scheme 35). 

 

Scheme 35 Further revised retrosynthetic analysis of vinyl boronate 146. 



 

57 
 

Both the phosphonium bromide salt 162 and aldehyde 163 are readily available in one and 

two steps respectively from commercially available starting materials. Compound 162 was 

prepared from 4-bromo-1-butyne 164 by reaction with triphenylphosphine following a 

literature procedure (Scheme 36).
140

 

 

Scheme 36 Synthesis of homopropargylic phosphonium salt 162. 

Aldehyde 163 was prepared using literature procedures
141

 in two steps: mono-protection of 

ethane-1,2-diol followed by a Swern oxidation of the resulting alcohol 165 (Scheme 37), 

with both reactions proceeding in excellent yields. 

 

Scheme 37 Synthesis of aldehyde 163. 

With both components in hand, the Wittig reaction was attempted under literature 

conditions.
140

 Pleasingly this proceeded cleanly and stereoselectively to afford the (Z)-

alkene 147 in excellent yield and as a single isomer, as indicated by the alkene coupling of 

3
JH–H = 10.5 Hz (Ha δ 5.49, Hb δ 5.62) in the product (Scheme 38). This sequence of 

reactions allowed multi-gram quantities of the skipped eneyne 147 to be prepared 

efficiently. 

 

Scheme 38 Wittig reaction to form skipped eneyne 147. Inset: 
1
H NMR chemical shifts 

(ppm) for selected protons (CDCl3, 400 MHz). 

With an efficient route to terminal alkyne 147 now established, the Rh-catalysed trans-

hydroboration methodology could now be examined. The Rh
I
 catalyst [Rh(cod)Cl]2 was 

readily available in one step from RhCl3 using a literature method.
142

 Initial attempts at the 

hydroboration reaction afforded only low yields of the desired product (166), but by 

increasing the catalyst loading and reaction time, synthetically useful yields of the product 
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could be obtained (Table 2). The purity of the starting substrate was also found to be very 

important; traces of triphenylphosphine from previous steps were found to hinder the 

reaction and lower the yield. The (Z)-stereochemistry of the new double bond was 

confirmed by the alkene coupling of 
3
JH–H = 13.7 Hz (Ha δ 5.35, Hb δ 6.36) across the newly 

formed double bond, which, although large for a (Z)-alkene, is a comparable value to that 

found in similar systems.
135

  

Table 2 Optimisation of the Rh-catalysed trans-hydroboration reaction. 

 

a
Yield of isolated product 166 following purification on silica gel. 

b
Conversion as judged by 

1
H 

NMR spectroscopy. 

2.2.3 Suzuki–Miyaura Couplings 

A search of the literature revealed that there are a number of possible methods under which 

to effect a Pd-catalysed π-allylic Suzuki coupling. Similar reactions have been performed 

using allylic alcohols,
143-144

 bromides
145-146

 and acetates,
147-152

 coupling with aryl- and vinyl-

boronic acids and esters, and trifluoroborate salts. It was decided to test a range of 

conditions in order to find the most direct and high-yielding route. Since the allylic bromide 

appeared to be unstable or inaccessible (Scheme 24, page 52), the coupling reactions were 

attempted using alcohol 136 and its acetate derivative 137. 

Coupling attempts using the most direct combination of the allylic alcohol and the boronic 

ester led to no reaction (Scheme 39); the addition of Na2CO3 as a base to assist the reaction 

led to decomposition. 

Entry Catalyst  
Loading / 

mol%  
Time / h Yield / %

a 

1 [Rh(cod)Cl]2 1.5 2 trace
b 

2 [Rh(cod)Cl]2 1.5 17 9% 

3 [Rh(cod)Cl]2 3.0 17 27%  

4 [Rh(C2H4)2Cl]2 3.0 17 7% 

5 [Rh(cod)Cl]2 3.0 44 40% 

6 [Rh(cod)Cl]2 6.0 47 47% 

7 [Rh(cod)Cl]2 6.0 72 46% 
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Scheme 39 Coupling attempt of vinyl boronate 166 with allylic alcohol 136. 

A standard set of conditions were next tested on a simple coupling between phenylboronic 

acid (168) and cinnamyl acetate (169), resulting in smooth formation of the product (170) 

(Scheme 40). 

 

Scheme 40 Coupling of phenylboronic acid (168) with cinnamyl acetate (169). 

Attempts to apply these same conditions to our system were unsuccessful (Table 3). A 

variety of conditions were screened, but protic solvents such as methanol appeared to cause 

rapid decomposition of both substrates (entry 1, Table 3), and in most cases no reaction was 

observed when THF was employed (entries 2–4, Table 3). Two attempts in which 

phenylboronic acid was used in place of 166 also failed (entries 5 and 6, Table 3). 
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Table 3 Coupling attempts with allylic acetate 137. 

 

Entry Boronate Reagents Reaction outcome
a 

1 166 Pd(OAc)2 (5 mol%), KF, MeOH decomposition 

2 166 Pd(OAc)2 (5 mol%), KF, THF no reaction 

3 166 PdCl2 (1 mol%), KF, P(2-Fu)3, THF SM, some dec. 

4 166 PdCl2 (1 mol%), KF, P(2-Fu)3, THF/H2O no reaction 

5 PhB(OH)2 PdCl2 (1 mol%), KF, P(2-Fu)3, THF no reaction 

6 PhB(OH)2 PdCl2 (1 mol%), KF, P(2-Fu)3, MeOH decomposition 

a
As determined by 

1
H NMR spectroscopy. 

Since conventional catalysis had failed to deliver the desired product, a heterogeneous 

polymer-supported catalyst, MEPI-Pd 174, which has been reported to be effective in 

analogous couplings, was examined next.
149-150

 The catalyst is synthesised in two steps: 

formation of the polymer 173 followed by complexation to Pd (Scheme 41). The Pd is 

thought to exist in both the Pd
II
 and Pd

0
 oxidation states, coordinated by the imidazole 

moieties on the polymer chain. IR and NMR spectroscopic data of the product 174 were in 

accordance with the literature. 
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Scheme 41 Synthesis of MEPI-Pd (174). 

Despite being reported to catalyse allylic Suzuki–Miyaura reactions on a wide variety of 

substrates, including unactivated aryl chlorides, attempts to apply this catalyst to the 

coupling of 168 and 137 failed to afford any product, leading to complete decomposition of 

the allylic acetate (Scheme 42). 

  

Scheme 42 Suzuki reaction employing MEPI-Pd. 

Employing these conditions for the coupling of 168 with cinnamyl acetate (169) did allow 

the isolation of some product (170), but in variable yields over three runs (Scheme 43). 

Lowering the catalyst loading to the levels reported in the original publication (0.004 

mol%) afforded very low yields even after extended reaction times (22 h) with near-

quantitative recovery of starting material. 

 

Scheme 43 Test reaction using the MEPI-Pd precatalyst. 
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2.2.4 Stille Couplings 

It was postulated that the reason for the failure of the Suzuki–Miyaura reactions lay with 

the relatively poor nucleophilicity of the boron reagent. This would make transmetallation 

onto the π-allyl Pd species slow, resulting in decomposition or no reaction. Thus it was 

reasoned that if a more reactive organometallic coupling partner, such as an 

organostannane, was employed, the reaction might be successful. Accordingly, when 

acetate 137 was stirred with tri-n-butyl(vinyl)tin 176 under conditions reported for Stille 

reactions with allylic acetates,
153

 conversion into skipped diene 177 was observed (entry 1, 

Table 4). Interestingly, it was noted that a small amount of alcohol 136 (i.e. deacylated 

starting material) was also formed in the reaction. Following this encouraging result, an 

extensive screen of catalysts and conditions was carried out, the key examples of which are 

shown in Table 4 (for full details see Appendix 2). 

Increasing the catalyst loading, equivalents of LiCl and reaction time from the original 

conditions led to an appreciable increase in product conversion (entry 2, Table 4). 

Temperature and alternative additives (entries 3 and 4, Table 4) had a detrimental effect on 

the conversion of the reaction, but use of the catalyst Pd2dba3∙CHCl3 was successful (entry 

5, Table 4). The complex Pd2dba3∙CHCl3 can be made by recrystallization of Pd2dba3∙dba 

from CHCl3 solution is thought to be generally of a higher purity.
154-155

 When the catalyst 

was changed to Pd(N-succ)Br(PPh3)2 (23), no reaction took place (entry 6, Table 4) unless 

the reaction mixture was exposed to trace air (removal of the stopper on the reaction vessel 

for 5 seconds), in which case all of the starting material was consumed, forming the desired 

product, and the alcohol side-product in a 4:1 ratio (entry 7, Table 4). If the exposure to air 

was increased to 20 seconds, the conversion dropped, and this was presumed to be due to 

increased homocoupling of the organostannane to form volatile butadiene. Attempts with 

other oxidants such as NMO or NaBO3,
156

 or other catalysts such as ABCat
157

 (Figure 22) 

or PdCl2(MeCN)2 led to little or no conversion to product (entries 9–13, Table 4). The 

interesting effect of the presence of air on the activity of the catalyst to 

Pd(N-succ)Br(PPh3)2 has been investigated more thoroughly and is discussed in Chapter 4. 

Increasing the temperature of the reaction led to increased product formation (and no 

formation of the previously observed alcohol side product 136) but also resulted in 

scrambling of the stereochemistry of the enol ether double bond (entries 14 and 15, Table 

4). 
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Table 4 Optimisation of allylic Stille reaction. 

 

Entry Catalyst [mol%] Oxidant [eq.] 
Ratio 

137:177:136
a 

1 Pd2dba3·dba [3] - 34:58:7 

2 Pd2dba3·dba [6]
b, c 

- 24:62:14 

3 Pd2dba3·dba [3]
d 

- 44:42:14 

4 Pd2dba3·dba [3]
e 

- 83:17:0 

5 Pd2dba3·CHCl3 [3]
c 

- 31:65:4 

6 trans-23 [3] - 89:11:0 

7 trans-23 [3] air [5 s] 0:80:20 

8 trans-23 [3] air [20 s] 13:66:21 

9 trans-23 [3] NaBO3·4H2O [0.1] 76:24:0 

10 trans-23 [3] NMO [0.2] 90:10:0 

11 Pd(dppf)(N-succ)Br [3] - 100:0:0 

12 ABCat [1.5] - 83:17:0 

13 PdCl2(MeCN)2 [3] - 59:32:8 

14 trans-23 [3]
f 

- 52:48
g
:0 

15 trans-23 [3]
h 

- 0:100
i
:0 

   
a
As determined by 

1
H NMR spectroscopy. 

b
Reaction time 48 h. 

c
6 eq. LiCl used. 

d
Reaction 

conducted at 50 °C. 
e
TBAC (1 eq.) used in place of LiCl. 

f
Reaction carried out at 40 °C. 

g
E:Z = 3:1. 

h
Reaction carried out at 60 °C. 

i
E:Z = 2:1. 

 

 

Figure 22 Structures of catalysts in Table 4. 

 

 

 

 

 



 

64 
 

2.2.5 Synthesis of Stannanes 

Following these encouraging results, work began towards the synthesis of the tri-n-butyltin 

analogue of the diene coupling partner 178 (Scheme 44). Although (E)-vinyl stannanes are 

readily accessed by radical addition of Bu3SnH to a terminal alkyne, no general method 

exists for the synthesis of (Z)-vinyl stannanes. Two direct approaches from terminal 

alkynes have been reported, employing Lewis acids and tin hydrides, and these were 

explored first.
158-159

 

Use of the Lewis acid ZrCl4 resulted in recovery of starting material only; using the more 

reactive Lewis acid B(C6F5)3 along with in situ generated Bu3SnH also failed, giving only 

modest conversion to the skipped diene product 179 (Scheme 44). 

 

Scheme 44 Direct hydrostannylation attempts on alkyne 147. 

An alternative method for the construction of (Z)-vinyl stannanes via a vinyl iodide was 

considered. These compounds can be converted into the desired stannane, either by 

lithiation (lithium–halogen exchange) and trapping with a tin-based electrophile,
160

 or by 

Pd-catalysed cross-coupling with Sn2Me6.
161

 (Z)-Vinyl iodides are commonly synthesised 

by diimide reduction of alkynyl iodides with various reagents. The required alkynyl iodide 

180 was readily synthesised from the terminal alkyne 147, but attempts to reduce this with 

nosylhydrazide
162

 or dipotassium azo-1,2-dicarboxylate
163

 to form the vinyl iodide 181 

failed (Table 5). 
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Table 5 Attempts towards vinyl iodide 181. 

 

Entry Conditions Reaction outcome 

1 (KO2CN)2 (5 eq.), pyr., AcOH, MeOH over-reduction 

2 (KO2CN)2 (1.5 eq.), pyr., AcOH, MeOH complex mixture, some SM 

3 o-NO2C6H4SO2N=NH, Et3N, THF/i-PrOH no reaction 

 

A similar but more direct synthetic route would be a (Z)-selective reduction of an alkynyl 

stannane. This transformation can be carried out with  Schwartz’ reagent, Cp2ZrClH, a 

process originally developed by Lipshutz, who applied it to a range of different substrates 

of varying complexity.
164

 Given the difficulties in preparing, handling and storing 

Schwartz’ reagent,
165

 and also its high cost, we looked to employ a procedure reported by 

Negishi and co-workers,
166

 which generates the desired reagent in situ from the 

considerably cheaper and more shelf-stable precursors Cp2ZrCl2 and DIBAL-H. The 

alkynylstannane 182 could be easily synthesised from the terminal alkyne 147 (Scheme 

45), but it was found that limiting the equivalents of n-butyllithium to one, keeping the 

temperature at −78 °C, and the time for lithiation to 10 min were all crucial factors in 

limiting side reactions of the skipped eneyne. The highly labile alkynyl stannanes were then 

subjected to the reduction conditions
164

 using in-situ generated Schwartz’ reagent, which 

afforded either the butyl or the methyl vinyl stannane in 66% and 38% yield respectively 

over two steps, both as isomerically pure compounds. The assignment of a (Z)-

configuration to the newly formed double bonds was supported by the observation of the 

coupling constants across the alkene of 
3
JH–H = 12.3 Hz and 12.2 Hz, and J 

3
Sn−H 

119  = 141.6 

Hz and 153.2 Hz for 178 and 183 respectively (178 Ha δ 6.58, Hb δ 6.01; 183 Ha δ 6.47, Hb 

δ 5.94), which are comparable values to those reported for similar (Z)-vinylstannanes.
167

 

Whilst considerably more labile than the analogous vinyl boronate ester 166, stannanes 178 

and 183 could be purified by flash chromatography by pre-treating the silica gel with 1% 

triethylamine, and could be stored for several weeks at 3 °C with minimal decomposition. 
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Scheme 45 Synthesis of vinyl stannanes 178 and 183. Inset: 
1
H NMR chemical shifts (ppm) for 

selected protons (C6D6, 400 MHz (178) or 500 MHz (183)). 

2.2.6 Coupling of Fragments 

With an efficient route to the vinyl stannane established, the Stille coupling under the 

optimised conditions found earlier could be attempted. Tributylstannane 178 was used in 

the Stille cross-coupling reaction with the simple acetate 137, as a model system in order to 

avoid wasting valuable advanced intermediates (Table 6). 

Initial attempts with trans-Pd(N-succ)Br(PPh3)2 (trans-23) in the presence of trace air did 

not furnish any product, leading only to no reaction and homocoupling of the vinyl 

stannane (entry 1, Table 6). Increasing the temperature to 90 °C under an inert atmosphere 

led to partial conversion to product in an E/Z ratio of 1.5:1 (entry 2, Table 6). The presence 

of minor side-products in the reaction mixture was also noted, possibly the β-hydride 

elimination side-product 184 (as suggested by a distinctive quartet in the 
1
H NMR 

spectrum, δ 5.24, J = 7.2 Hz, feasibly corresponding to Ha) along with compounds arising 

from protodestannylation and homocoupling of stannane 178. Lowering the temperature to 

60 °C and extending the reaction time led to no change in the E/Z ratio, but complete 

consumption of the starting material and less side-product formation (entry 3, Table 6). The 

transmetallation step in the catalytic cycle is known to be rate-limiting in many Stille 

reactions,
168-169

 but the use of Cu
I
 salts

170-171
 and weakly coordinating ligands such as AsPh3 

or P(2-Fu)3
172

 has been shown to speed this up. Indeed the addition of Cu
I
 salts led to 

considerable improvements in the E/Z ratio (entries 4–6, Table 6), with CuCl (entry 6, 

Table 6) offering the best improvement and also the cleanest reaction. As a comparison, a 

reaction was run under literature conditions as above (Table 4),
153

 resulting in incomplete 

consumption of starting material and an E/Z ratio of 1.6:1 as judged by 
1
H NMR 

spectroscopy (entry 7, Table 6). 
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Table 6 Screening of conditions for Stille couplings of 137 and 178. 

 

Entry Catalyst Additive (eq.) 
Time 

/ h 

Temp. 

/ °C 

Ratio 

137:167
a 

E:Z ratio 

in 167
a 

1
b
 trans-23 air (5 s) 24 RT 100:0

c 
- 

2 trans-23 none 3 90 38:62 1.5:1 

3 trans-23 none 24 60 0:100 1.5:1 

4 trans-23 CuI (0.2) 24 60 0:100 2.5:1 

5 trans-23 CuI (1) 18 60 0:100 3:1 

6 trans-23 CuCl (1) 23 60 0:100 3.5:1 

7 Pd2dba3∙CHCl3 i-Pr2NEt (1.5) 22  40 40:60
 

1.6:1 

a
Estimated by 

1
H NMR spectroscopy of unpurified reaction mixture. 

b
Reaction performed in 

DMF/THF 1:1. 
c
As determined by TLC. 

With both fragments in hand, the most successful conditions (entry 6, Table 6) were applied 

to the coupling between allylic acetate 140 and vinyl stannane 178, with the CuCl additive 

leading to the isolation of the desired product 186 in 51% yield after silyl deprotection 

using TBAF (entry 2, Table 7). A further optimisation was briefly carried out, which 

involved testing the allylic carbonate 185 in the cross coupling, since similar carbonates 

have been reported to be excellent coupling partners in allylic Stille reactions.
173-174

 The 

required carbonate 185 could be readily accessed in 60% yield using a literature 

procedure.
175

 This substrate proved to be unreactive at RT (entry 3, Table 7), and at higher 

temperatures led only to decomposition (entry 4, Table 7). Trimethyltin compounds are 

known to offer increased reactivity over their more commonly used tributyltin analogues, 

although they are considerably more toxic. It was anticipated that using the trimethyltin 

analogue 183 might further accelerate the transmetallation step of the reaction, thereby 

improving the E/Z selectivity. When this substrate was employed in the Stille reaction, a 

repeatable E/Z ratio of 3:1 could be obtained (entry 5, Table 7), and the reaction was 

appreciably faster. The deprotected alcohol 186 could once again be isolated, after 

treatment with TBAF and purification on silica gel, in 73% yield over two steps. Removing 
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the CuCl additive (entries 6–7, Table 7) and lowering or raising the reaction temperature 

(entries 7–8, Table 7) led to a decrease in yield and/or selectivity. 

Table 7 Application of Stille reaction to full system and further optimisation. 

 

Entry R X Additive 
Time / 

h 

Temp 

/ °C 
Yield / %

a 
E/Z

b 

1 Bu Ac CuI (1 eq.) 22 60 24 1.7:1 

2 Bu Ac CuCl (1.2 eq.) 17 60 51 2.3:1 

3 Bu CO2Me H2O (2 eq.) 5 RT 0
c 

- 

4 Bu CO2Me none 7 60 dec.
c 

- 

5 Me Ac CuCl (2 eq.) 4.5 60 73 3:1 

6 Me Ac none 3 60 36 1.6:1 

7 Me Ac none 2 40 0
c 

- 

8 Me Ac CuCl (2 eq.) 2 70 52 3:1 

a
Yield of isolated product over two steps, following purification on silica gel.

 b
Estimated by 

1
H NMR 

spectroscopy. 
c
As determined by 

1
H NMR spectroscopy. 

2.2.7 Ring Closure Attempts 

A variety of conditions were envisioned to be potentially suitable for the final ring closing 

reaction. The allylic alcohol group could be activated in a number of different ways, and 

Cu
I
 salts are known to mediate reactions between terminal alkynes and allylic 

electrophiles.
176-178

 Similarly, allylic chlorides, bromides and acetates are known to react 

with zincated terminal alkynes under Pd catalysis.
179

 Whilst the use of strong bases such as 

n-BuLi was unlikely to be compatible with this complex substrate, it was hoped that 

zincation could be achieved under milder conditions using Zn(OTf)2 and Et3N.
180-181

 Initial 

attempts to form a tosylate or mesylate group from the allylic alcohol under standard 

conditions led to either return or decomposition of starting material (Table 8, entries 1–4). 

In contrast to this, acetylation under standard conditions led to a 100% conversion into the 

desired product (entry 5, Table 8).  
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Table 8 Attempted functional group transformations of allylic alcohol 186. 

 

Entry X Conditions Time / h Temp / °C  Reaction outcome
a
 

1 OTs TsCl, Et3N, CH2Cl2 20 RT  Decomposition 

2 OTs TsCl, pyridine 2 RT 
 
No reaction 

3 OTs TsCl, pyridine 17 50 
 
SM/partial dec. 

4 OMs MsCl, Et3N, THF 2.5 RT 
 
SM/partial dec. 

5 OAc Ac2O, Et3N, DMAP, CH2Cl2 1.5 RT 
 
100% conversion

 

6 OMs Ms2O, Et3N, DMAP, CH2Cl2 3 RT  Ether cleavage
b 

7 Br PBr3, Et2O 2 0 
 
Ether cleavage

b 

8 OMs Ms2O, Et3N, DMAP, CH2Cl2 1.5 0 → RT 
 
Partial conversion 

9 Br CBr4, PPh3, CH2Cl2 1 RT 
 
Decomposition 

10 Cl CCl4, PPh3, CH2Cl2 3 0 → RT 
 
Decomposition 

11 Cl NCS, Me2S, CH2Cl2 1 −20 
 
Decomposition 

a
As judged by 

1
H NMR spectroscopy. 

b
See Scheme 46. 

A variety of other conditions were examined, including an attempt to emulate the 

successful acetylation conditions with methanesulfonic anhydride, and an attempt with PBr3 

(entries 6 and 7 respectively, Table 8) which both led to a clean and complete 

decomposition via cleavage of the ether bond (Scheme 46). However, in the former case, 

reducing the reaction time and temperature led to the formation of some of the desired 

product by 
1
H NMR spectroscopy (entry 8, Table 8), although the precise conversion could 

not be determined accurately. Further attempts using the Appel (entries 9 and 10, Table 8) 

and Corey–Kim (entry 11, Table 8) reactions also led to decomposition. 

The cleavage of the vinyl ether bond was presumed to be acid mediated. This could 

potentially occur either under the reaction conditions from trace water, or during workup 

(Scheme 46). The pseudomolecular ion for ketone 190 (X = Br) was observed by mass 

spectrometry (ESI), and both structures are consistent with the expected chemical shifts in 

the crude 
1
H NMR spectrum of the appropriate reaction mixtures. 
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Scheme 46 Potential pathway for enol ether cleavage. 

The allylic acetate 192 was subjected to conditions known to effect zincation of terminal 

alkynes,
180-181

 followed by heating with Pd(dppf)Cl2 (Scheme 47). Unfortunately all 

attempts at closing the ring in this way afforded only returned starting material, along with 

the conjugated elimination product 193 (Scheme 47). This result suggests that the zincation 

step is not effective, and that heating with a base for extended periods leads to elimination 

of the allylic leaving group from the starting material. An alternative attempt under 

Sonogashira-type conditions (CuI, Pd(dppf)Cl2, Cs2CO3) led to no product formation. 

 

Scheme 47 Attempted ring closure of allylic acetate 192. 

Similarly, the allylic mesylate 194 which was the crude product of the mesylation reaction 

(entry 8, Table 8) was subjected to a Cu
I
-mediated substitution reaction, but this afforded 

only decomposition and no product could be discerned by 
1
H NMR spectroscopy or ESI-

MS (Scheme 48). 
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Scheme 48 Attempted ring closing with mesylate 194. 

2.2.8 Reversal of key steps 

One possible contingency plan involved reversing the key steps in the synthesis, i.e. 

carrying out the allylic substitution reaction prior to a Stille cross-coupling 

macrocyclisation reaction (Scheme 49). This would have the advantage of avoiding any 

problematic functional group interconversions, not forming the sensitive triply skipped 

alkene system until the final step. The silyl-protected allylic alcohol 178 would make an 

ideal precursor to the corresponding allylic bromide or chloride. Then using either a Cu-

mediated substitution reaction or Pd-catalysed coupling of an alkynyl zinc reagent, it was 

anticipated that good chemo- and regioselectivity could be obtained, in addition to 

stereospecificity.  

 

Scheme 49 Revised retrosynthetic analysis of compound 91. 

Due to previously encountered volatility problems during the synthetic sequence leading to 

stannane 178, at this stage the TBS protecting group was swapped for a bulkier TBDPS 

group. This enabled the synthesis of the key intermediate 200 to be carried out more 

reliably, and also improved the yield of the stannylation–reduction step, affording the (Z)-

vinyl stannane 202 in 85% yield (Scheme 50). 
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Scheme 50 Synthesis of vinyl stannane 202 with a TBDPS protecting group. 

The new protecting group was then smoothly removed using TBAF, and the resulting 

allylic alcohol (203) converted into the corresponding chloride (204) or bromide (205) 

under Appel conditions (Scheme 51). In both cases the Appel reactions were unexpectedly 

sluggish, affording only partial conversion and recovery of starting material. 

 

Scheme 51 Conversion of stannane 202 into allylic halides 204 and 205. 

The silyl protected terminal alkyne 196 was also deprotected using TBAF (Scheme 52). 

The terminal alkyne 196 could also be synthesised directly from the ester 139 in 71% over 

three steps. 

 

Scheme 52 Deprotection of silyl-protected alkyne 140. 

With these two key fragments in hand, conditions for the substitution reaction were 

screened (Table 9). An attempt to use the Negishi conditions
179

 to form a zincated alkyne 

using n-BuLi led only to decomposition of the substrate (entry 1, Table 9). When Cu
I
 salts 

were employed to mediate the reaction, partial conversion to the desired product 195 was 

observed (entries 2–5, Table 9); disappointingly, the product was formed in a 1:1 mixture 
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along with the unwanted γ-isomer (206), resulting from SN2ʹ substitution, and these proved 

inseparable by chromatography. Superior conversions were obtained when stoichiometric 

Cu was used along with NaI with the allylic chloride (entry 5, Table 9). This allowed 

isolation of the products in 40% isolated yield after column chromatography. 

Table 9 Screening of reaction conditions for alkyne substitution reaction. 

 

Entry X Conditions Time / h Temp / °C  Reaction outcome
a 

1 Br n-BuLi, ZnBr, Pd(dppf)Cl2 14 RT  decomposition 

2 Br CuI, TBAC, K2CO3, DMF 21 RT 
 

38% conv. 

3 Br CuI, NaI, K2CO3, DMF 24 RT 
 

34% conv. (11% isol.
b
) 

4 Cl CuI, TBAC, K2CO3, DMF 22 RT→50 
 

17% conv. (5% isol.
b
) 

5 Cl CuI, NaI, K2CO3, DMF 20 RT 
 

40% isolated
b 

a
As judged by 

1
H NMR spectroscopy. 

b
Combined yield of product mixture following column 

chromatography. 

2.2.9 Stille Macrocyclisations 

Despite the inseparability of the mixture of regioisomers, it was considered instructive to 

test the macrocyclisation reaction on this mixture of compounds as a proof of principle, 

before finding a more efficient route to the required Stille precursor (195) as a single 

compound. The mixture of isomers (195 and 206) was therefore subjected to the Stille 

conditions used previously (see Table 7) at a range of substrate concentrations. At lower 

concentrations (1–5 mM) the reactions all resulted in loss of the tributyltin group, either 

using trans-23 (entries 1–3, Table 10) or the Farina conditions
172

 of Pd2dba3∙CHCl3 and 

AsPh3 (entries 4–5, Table 10), conditions often employed in Stille macrocyclisations.
32

 

Presumably this protodestannylation was caused by adventitious acid in the DMF solvent, 

although it was still observed even in the presence of DIPEA base. Increasing the 
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concentration to 20 mM led to no reaction with trans-23 (entry 6, Table 10), but using the 

Farina conditions full consumption of starting material was observed along with the 

formation of a new mixture of compounds, suspected to be the cyclisation products 91 and 

207. Repetition of the reaction on a larger scale and for a shorter reaction time allowed 

isolation of the products as a mixture in ca. 60% yield, and positive confirmation of their 

identity by 
1
H NMR and APCI-MS (observed 321.2210 [M+H]

+
, required 321.2213). It was 

not possible to assign the structures of minor isomers (e.g. E/Z isomers around the enol 

ether double bond) due to the small scale of the reaction, but analysis of the 
1
H NMR 

spectra with the aid of COSY experiments strongly suggested the formation of both the 

expected macrocycles 91 and 207. An attempt to separate any isomers using AgNO3-

impregnated preparative TLC led to loss of the product mixture. 

Table 10 Screening of conditions for Stille macrocyclisation. 

 

Entry Conditions [SM] / mM Time / h Reaction outcome
a 

1 trans-23, LiCl, DMF 1 29 protodestannylation 

2 trans-23, LiCl, DMF 5 28 
protodestannylation/ 

β-hydride elimination 

3 trans-23, CuCl, LiCl, DMF 5 19 protodestannylation 

4 
Pd2dba3∙CHCl3, AsPh3, LiCl, 

DIPEA, DMF 
5 5 protodestannylation 

5
b Pd2dba3∙CHCl3, AsPh3, LiCl, 

DIPEA, CyH 
5 72 protodestannylation 

6 trans-23, LiCl, DMF 20 29 unreacted SM 

7 
Pd2dba3∙CHCl3, AsPh3, LiCl, 

DIPEA, DMF 
20 2.5 full conversion 

8 
Pd2dba3∙CHCl3, AsPh3, LiCl, 

DIPEA, DMF 
20 1.5 ca. 60% isol. Yield

c 

a
As judged by 

1
H NMR spectroscopy. 

b
Temperature increased to 80 °C. 

c
Combined yield of product 

mixture following column chromatography. 
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This positive result served as a proof of principle that this was a viable strategy for the 

formation of the macrocyclic ring. The only challenge remaining was to find an efficient 

and reliable route to compound 195 as a single isomer. 

2.3 Second Generation Approach 

2.3.1 Revised Retrosynthetic Analysis 

An alternative route to the Stille precursor was thus proposed, which would allow its 

isolation as a single stereo- and regioisomer. This revised strategy involved using a late-

stage Wittig reaction between C-9 and C-10 to introduce the vinyl stannane group in a 

stereoselective manner (Scheme 53), giving rise to eastern (208) and western (209) 

precursor fragments. The aldehyde 208 would be available using the chemistry already 

developed from three known building blocks ((E)-134, 210 and 211). The phosphonium salt 

209 was anticipated to be accessible from bromobutyne (164) in three steps.  

 

Scheme 53 Second generation revised retrosynthetic analysis. 
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2.3.2 Construction of the Eastern Fragment 

In considering the retrosynthesis of the required alkylated phenol, a scaleable and efficient 

route was sought to allow as much material as possible to be brought through the early 

reactions. The route began with silyl protection of 3-iodophenol 212 with a TIPS group, 

chosen to be orthogonal to the TBDPS group which would be introduced later in the 

synthesis. The carbon–carbon bond was then formed using an efficient Sonogashira 

reaction on the aryl iodide; the resultant triple bond in 214 could be reduced giving 215 and 

the hydroxyl moiety readily converted to a bromide (216) or iodide (217) leaving group 

(Scheme 54).
182

 

 

Scheme 54 Synthesis of alkyl bromide 216 and alkyl iodide 217. 

Alkylations of terminal alkynes with alkyl halides have been reported in the literature under 

a variety of conditions.
183-185

 A screening of conditions was carried out, selected examples 

of which are shown in Table 11 (for full details, see Appendix 2). No significant formation 

of product (218) could be observed when using the bromide 216 as the electrophile (entries 

1 and 2, Table 11). Switching to the iodide (217) initially gave no improvement (entry 3, 

Table 11), until an excess of HMPA was employed (entry 4, Table 11), although further 

increases in the amount led to a decrease in yield (entry 5, Table 11). Several attempts, 

under conditions reported for alkyl Sonogashira reactions by Fu and co-workers,
186

 led to 

only modest yields being recorded (entries 6 and 7, Table 11). 
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Table 11 Screening of alkylation conditions. 

 

Entry X Conditions Temp. / °C Yield / %
a 

1 Br n-BuLi (1.1 eq.), THF −78 → 50 no reaction
b 

2 Br n-BuLi (1.5 eq.), HMPA (1 eq.), THF −78 → 50 trace
b 

3 I n-BuLi (1.2 eq.), HMPA (1.1 eq.), THF −78 → RT trace
b 

4 I n-BuLi (1.2 eq.), HMPA (2.4 eq.), THF −78 → 67 20 

5 I n-BuLi (1.2 eq.), HMPA (5 eq.), THF −78 → 67 7 

6 I 
[Pd(allyl)Cl]2, IPr∙HCl, (4-MeO)-dba, CuI, 

Cs2CO3, DMF/Et2O 
40 13 

7 I 
Pd2(4-MeO-dba)3, IPr∙HCl, CuI, Cs2CO3, 

DMF/Et2O 
40 7 

a
Yield of isolated product following column chromatography. 

 b
As judged by 

1
H NMR spectroscopy. 

Although attempts to cleave the TIPS group of the bis-silyl ether selectively using only one 

equivalent of TBAF led to clean formation of the diol 219 (Scheme 55), this transformation 

could be effected by employing conditions developed by Sun and co-workers which use 

KOAc in a mixture of DMF and water.
187

 However, the low yields obtained in the 

alkylation reactions (Table 11) made this approach to the target phenol 220 unfeasible. 

 

Scheme 55 Attempted (left) and selective (right) deprotection of compound 218. 

The failure of the strategy above led to the exploration of an alternative route to the phenol, 

mirroring the successful synthesis of phenol 101 used previously. The known terminal 

alkyne (211) was alkylated using oxetane to generate alcohol 221 in high yield (Scheme 

56).
188-189

 This was then iodinated in a similar fashion to previously, giving iodide 222 in 

excellent yield. This iodide can be used as the alkylating agent in the m-cresol dimetallation 

reaction utilised earlier. Initial attempts at this reaction gave only low yields of impure 
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products, but it was found that by maintaining a reaction temperature lower than −70 °C for 

a prolonged period (ca. 20 h), side reactions were minimised and the product could be 

isolated in 71% yield (Scheme 56). 

 

Scheme 56 Synthesis of phenol 220. 

The new alkylated phenol 220 could then be applied in the optimised Buchwald–Hartwig 

etherification reaction with enol triflate (E)-134, affording the aryl vinyl ether 223 in good 

yield (Scheme 57). The ester could then be reduced and acetylated in 76% yield, followed 

by desilylation using TBAF, providing homopropargylic alcohol 225 in 80% yield. This 

three-step sequence could also be carried out without purification of the intermediate 

acetate 224, allowing isolation of the desired alcohol in 84% yield over three steps (Scheme 

57). 
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Scheme 57 Synthesis of allylic acetate 225. 

Homopropargylic aldehydes are known to be extremely sensitive compounds, susceptible 

to isomerisation, primarily due to the high acidity of the propargylic position. However, 

oxidation reactions of homopropargylic alcohols have been reported using Dess–Martin 

periodinane,
190

 and in this case smooth conversion could be achieved under carefully base- 

and water-free conditions (Scheme 58). Any attempts to buffer the reaction with NaHCO3, 

or switch to the Swern oxidation, led to extensive decomposition and side reactions.  

 

Scheme 58 Oxidation of alcohol 225 to form aldehyde 208. 

2.3.3 Construction of the Western Fragment 

Whilst bifunctional stannane–phosphonium reagents similar to 209 have been briefly 

described in the literature,
191

 their potential for use in the synthesis of skipped dienes has 

been largely overlooked. We found that the required novel fragment could be readily 

accessed in three steps from commercially available bromobutyne (164) (Scheme 59). 

Using a similar protocol to that used in the synthesis of 178, this starting material was 
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lithiated with n-BuLi and reacted with tributyltin chloride to afford an alkynylstannane. The 

use of one equivalent of the organolithium reagent, and a low temperature for the lithiation 

step (−78 °C) were found to be critical in favouring lithiation of the alkyne over elimination 

of HBr from either the starting material or the product to form a conjugated eneyne. The 

crude alkynylstannane was reduced directly using in situ generated Schwartz’ reagent. 

Reaction of the resultant bromide (226) with triphenylphosphine in a mixture of acetonitrile 

and toluene with the addition of a catalytic amount of NaI afforded the desired compound 

209 as a stable white solid in 70% yield. 

 

Scheme 59 Synthesis of phosphonium reagent 209. 

As a test of the feasibility of this fragment as a building block in the construction of 

skipped dienes, compound 209 was treated with NaHMDS at −78 °C which resulted in an 

orange solution, suggesting successful formation of a phosphorus ylid. Accordingly, the 

addition of propionaldehyde led to the smooth formation of the isomerically pure (Z,Z)-

diene 227 which could be isolated in 93% yield, effectively demonstrating the potential of 

this strategy (Scheme 60). Alkene couplings of 
3
JH–H = 12.3 and 10.7 Hz observed in the 

1
H 

NMR spectrum of 227 confirmed the (Z,Z)-stereochemistry. Subsequent coupling with 

benzyl bromide using trans-23 resulted in full conversion into the expected product 228 

(Scheme 60). Unfortunately due to the volatility of this compound, an accurate yield of the 

isolated product could not be obtained. 

 

Scheme 60 Demonstration of Wittig–Stille coupling approach to skipped alkenes such as 228. 
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2.3.4 Coupling of Fragments and Ring Closure 

With both the eastern and western fragments now in hand, the key Wittig coupling to unite 

the two fragments was attempted. It was found that the desired stannane (Z)-alkene 195  

could be obtained in a moderate 43% yield, but with essentially complete stereoselectivity. 

No side products were isolated or characterised in this reaction, and the low yield obtained 

was attributed to decomposition of the sensitive aldehyde fragment. The stereochemistry of 

the new double bond was confirmed by the presence of a 
3
JH–H = 10.2 Hz coupling in the 

product. 

 

Scheme 61 Wittig coupling between phosphonium 209 and aldehyde 208. 

The final ring-closing reaction was then attempted, first under the conditions used 

previously (Table 10), which afforded the product 91 in 28% yield. Encouraged by this, a 

further attempt using the newly developed catalyst AsCat (229, see Chapter 5 for full 

details) was then undertaken. The reaction was performed under dilute conditions (20 mM), 

and maintained at 25 °C in order to minimise the isomerisation observed upon heating in 

previous attempts. Analysis by TLC showed complete consumption of the starting material 

after 72 h; work up and purification by preparative TLC allowed isolation of the desired 

macrocycle 91 in 44% yield (Scheme 62). 

 

Scheme 62 Stille macrocyclisation of compound 195 using AsCat 229 to give the target compound 

91. 
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2.4 Product Characterisation 

Compound 91 was isolated in an approximately 5:1 E/Z-ratio around the enol ether double 

bond. The expected connectivity and stereochemistry of the final target compound has been 

found to be in full agreement with 
1
H NMR, COSY, HSQC, HMBC and NOESY 

experiments (see Appendix 4 for a full list of correlations). In particular, the nOe 

correlation between H-5 and H-1′, along with the lack of interaction between H-4 and H-1′, 

strongly suggest that the expected (E)-isomer is the major product (Figure 23). 

 

Figure 23 (a) 
1
H NMR spectroscopic data (700 MHz, CDCl3) for compound 91; chemical shifts (in 

ppm) are followed by the multiplicity of the signal and the coupling constant in Hz. (b) Key nOe 

interactions for compound 91, confirming the stereochemistry around the enol ether double bond. 

The 
1
H NMR spectroscopic data for the macrocyclic ring portion of compound 91 can be 

compared to that reported for the phacelocarpus 2-pyrone A 53 (Table 12).
94

 Some portions 

of the compound (e.g. H-6 to H-14) match closely (Δδ < 0.1 ppm), but the largest chemical 

shift difference arises for the proton at H-4: δ 4.62 in the model system (91) against δ 5.11 

in the natural compound (53), which suggests that the enol ether double bond is rather more 

electron deficient in the pyrone-containing system, but also therefore offers no insight into 

whether the correct stereochemistry has been assigned in the natural product.  
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Table 12 Comparison of 
1
H NMR spectroscopic data for the aliphatic portion of compounds 91 and 

53. 

 

Position
a 

δ (53) / ppm
b,c 

δ (91) / ppm
b 

Δδ / ppm 

4 5.11 4.62 −0.49 

5 2.66 2.79 +0.13 

6, 7 5.36 5.40 +0.04 

8 2.77 2.86 +0.09 

9, 10 5.36 5.45 +0.09 

11 2.97 2.89 −0.08 

14 2.20 2.16 −0.04 

15 1.56 1.44 −0.12 

16 1.88 1.67 −0.21 

17 2.48 2.58 +0.10 

1′ 2.21 2.34 +0.13 

2′ 1.10 1.16 +0.06 

a
Numbering as for compound 91. 

b
For multiplets, the centrepoint of the range is quoted. 

c
From 

reference 
94

 (CDCl3, 360 MHz). 

2.5 Summary 

The successful synthesis of compound 91 has been achieved in 6.5% yield over 11 steps in 

the longest linear sequence. The key steps in assembling the challenging macrocyclic 

framework were a Pd-catalysed etherification reaction to construct the arylvinyl ether 

substructure, and sequential Wittig and Stille cross-coupling reactions using the novel 

phosphonium–stannane fragment 209 to build the skipped diene system. The effective use 

of the newly developed catalyst AsCat (229) has also been demonstrated. The efficient and 

convergent route established can serve as a proof of principle that macrocyclic polyenes 

containing 1,4-skipped-unsaturated functionality can be assembled in this way. This is 

demonstrated by the application of this synthetic strategy to the first total synthesis of 

phacelocarpus 2-pyrone A (53) which is discussed in Chapter 3.  
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Part of the work described in this chapter has been included in a publication (see Appendix 

1).
192
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Chapter 3: Total Synthesis of Phacelocarpus 2-

Pyrone A 

3.1 Retrosynthetic Analysis 

ased on the success of the second generation approach to the arene model compound 

91 described in Chapter 2, a similar strategy was envisaged for the synthesis of the 

phacelocarpus 2-pyrone A (53), as shown in Scheme 63. The final steps of the synthesis 

would proceed exactly as in the model studies: a Stille macrocyclisation connecting C-5 

and C-6, preceded by a (Z)-selective Wittig reaction forming a carbon–carbon double bond 

between C-9 and C-10. This would require two key fragments, the phosphonium salt 

(western fragment, 209), synthesised previously (section 2.2.3, Chapter 2), and the pyrone 

compound (eastern fragment, 231). 

 

Scheme 63 Retrosynthetic analysis of natural product 53. 

Construction of the pyronylvinyl ether motif however, presented an additional challenge 

which would require exploration of some novel chemistry. An early attempt to use a 

B 
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Buchwald–Hartwig etherification strategy (Scheme 64), as in the model system, led only to 

the isolation of an unexpected side product (236) and none of the desired enol ether (235). 

This could potentially arise from an elimination on triflate (E)-134 followed by a Heck-type 

coupling another equivalent of the triflate, leading to the diester 236. The stereochemistry 

of the trisubstituted double bonds could not be assigned with any certainty. 

 

Scheme 64 Attempted Buchwald–Hartwig etherification with pyrone 36. 

An alternative method would therefore have to be found for the synthesis of the 

pyronylvinyl ether. The strategy chosen for this sought to build on the success of Dr M. J. 

Burns in previous studies,
105, 107

 by using a Mitsunobu–elimination sequence (Scheme 63). 

The alkylated pyrone 234 was envisioned to undergo a Mitsunobu reaction with the 

secondary alcohol 233, which should proceed with inversion at the alcohol centre, giving 

rise to the pyronyl ether 232.
106

 This could then undergo, in the presence of base, an E2 

elimination forming the pyronyl vinyl ether substructure. Silyl deprotection and oxidation 

would give the required aldehyde for the Wittig coupling (231). The C-16–C-17 

disconnection should be available using a reported method for the alkylation of 4-hydroxy-

6-methyl-2-pyone (36).
75

 

3.2 Synthesis of the Alkylated Pyrone 

Two methods are reported by Hsung and co-workers for the alkylation of 4-hydroxy-6-

methyl-2-pyrone (36).
75

 One (route A) involves the treatment of the compound with excess 

n-BuLi in a mixture of THF and HMPA, followed by reaction with an alkyl halide. The 

second (route B) requires heating of the compound in HMDS to effect silylation of the 

hydroxyl group; fewer equivalents of n-BuLi are then required for the lithiation (Scheme 

65). 
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Scheme 65 Alkylation methods of compound 36 reported by Hsung et al. 

It was found in this case that the dilithiation strategy (route A) was far more effective than 

the silylation–lithiation method (route B). It was observed using in situ IR (ReactIR) studies 

that the dilithiation of the pyrone 36 with n-BuLi in the presence of HMPA was rapid with 

complete formation of the dilithium species (36b) within 10–12 min (Figure 24). 

 

 

Figure 24 ReactIR data showing rapid dilithiation of pyrone 36. Experiment conducted by M. 

Völkel. 

Reaction of this dilithiated species with alkyl iodide 222 allowed isolation of the desired 

product 234 in 71% yield (Scheme 66). Extended reaction times or use of a large excess of 

n-BuLi led to formation of the dialkylated side product 237 (Scheme 66), presumably 

arising from competing lithiation on the pyrone ring. When the hydroxyl group on the 
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pyrone was silylated with HMDS prior to lithiation and reaction with the alkyl iodide (route 

B), the same byproduct 237, was also observed.  

 

Scheme 66 Alkylation of 4-hydroxy-6-methyl-2-pyrone 36, and the unwanted side product 237. 

3.3 Elimination Approach to Pyronylvinyl Ether 

3.3.1 Synthesis of Secondary Alcohol 

With the alkylated pyrone 234 in hand, attention turned to the synthesis of the required 

coupling partner for the planned Mitsunobu reaction. This was anticipated to be available 

from the bromohydrin ester 238 (Scheme 67) which is diastereomeric to the compound 127 

synthesised as part of the model studies (see Chapter 2). In order to achieve the necessary 

relative stereochemistry, the starting material would be the (Z)-pentenoate which would in 

turn come from a hydrogenation of the commercially available pentynoate 115. 

 

Scheme 67 Planned retrosynthesis of compound 233. 

The synthesis proceeded as planned, as shown in Scheme 68. Reduction of ethyl 2-

pentynoate (115), according to a literature procedure,
193

 was followed by reaction with N-

bromosaccharin, affording the bromohydrin 238 in 64% yield over two steps as a single 

diastereomer. This could be reduced by treatment with excess DIBAL-H, and the resulting 

diol could be selectively acetylated
194

 or pivaloylated
195

  on the primary hydroxyl only, both 

following literature procedures. 
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Scheme 68 Forward synthesis of compounds 233 and 240. 

For ester 238, the vicinal coupling constant (
3
JH–H = 4.2 Hz) observed between the Ha and 

Hb (Figure 25) was found to differ from that for bromohydrin 127, derived from the (E)-

alkenoate (
3
JH–H = 7.2 Hz), supporting the assignment of different relative stereochemistry. 

 

Figure 25 
1
H NMR spectra (400 MHz, CDCl3) of diastereomeric compounds (a) 127 and (b) 238. 

Inset: expansion of the 3.7–4.4 ppm region. 
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3.3.2 Mitsunobu Reactions 

Initial screening of the Mitsunobu reaction of secondary alcohol 233 with 4-hydroxy-6-

methyl-2-pyrone 36 under  literature conditions
106

 led to no formation of product 242 (entry 

1, Table 13). An extensive screening was subsequently carried out, selected examples of 

which are shown in Table 13 (for full table, see Appendix 2). Heating the reaction to 40 °C 

in dichloromethane afforded partial conversion (entry 2, Table 13), but switching to the 

more polar solvents THF or DMF completely suppressed the formation of product (entries 

3 and 4, Table 13). The use of toluene, however, led to improved conversion (entry 5, Table 

13). Switching from DIAD to the more polar DEAD allowed more straightforward removal 

of the hydrazine byproduct and facilitated the isolation of the pyronyl ether 242 (entry 6, 

Table 13). Similar conversions could also be obtained at RT (entry 7, Table 13); in one case 

a quantitative conversion was obtained (entry 8, Table 13), although this could not be 

replicated on subsequent attempts and the reasons for this result remain unclear. The use of 

neopentyl alcohol as an additive led to no product formation (entry 9, Table 13).
196

 

Employing DMEAD (Figure 26), a more reactive and polar replacement for DIAD and 

DEAD,
197

 led to no improvement in conversion (entry 10, Table 13). The pivalate substrate 

241 could also be used in the reaction; its reduced polarity with respect to the acetate led to 

easier purification of the corresponding pyronyl ether 243. Adding the reagents at low 

temperature before slowly warming the reaction mixture to RT was found to be an effective 

strategy, leading to the isolation of 243 in good yield (entry 12, Table 13). 
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Table 13 Screening of conditions for Mitsunobu reaction. 

 

Entry Reagents R 
Time 

/ h 
Solvent 

Temp. 

/ °C 

Conv. / 

%
a, b 

1 
DIAD (1.5 eq.), 

PPh
3
 (1.5 eq.) Ac (1.5 eq.) 6 CH2Cl2 RT 0 

2 
DIAD (1.5 eq.), 

PPh
3
 (1.5 eq.) Ac (1.5 eq.) 24 CH2Cl2 40 50 

3 
DIAD (1.2 eq.), 

PPh
3
 (1.2 eq.) Ac (1.1 eq.) 23 THF 50 0 

4 
DIAD (1.2 eq.), 

PPh
3
 (1.2 eq.) Ac (1.1 eq.) 19 DMF 40 0 

5 
DIAD (1.5 eq.), 

PPh
3
 (1.5 eq.) Ac (1.5 eq.) 24 toluene 40 62 

6 
DEAD (1.9 eq.),  

PPh
3
 (2 eq.) Ac (2 eq.) 24 toluene 40 53 (45) 

7 
DEAD (2.2 eq.),  

PPh
3
 (2 eq.) Ac (2 eq.) 23 toluene RT 56 

8 
DEAD (2 eq.), 

PPh
3
 (2 eq.) Ac (2 eq.) 21 toluene RT 100 

9 

DEAD (1.1 eq.),  

PPh
3
 (1.1 eq.), 

NpOH (0.5 eq.) 

Ac (1.1 eq.) 24 toluene 40 0 

10 
DMEAD (1.2 eq.),  

PPh
3
 (1.2 eq.) Ac (1.2 eq.) 24 toluene RT 50 

11 
DEAD (1.5 eq.), 

PPh
3
 (1.5 eq.) Piv (1.5 eq.) 23 toluene RT 32 

12 
DEAD (2 eq.),  

PPh
3
 (2 eq.) Piv (2 eq.) 25 toluene 

–78 to 

RT 
69 (66) 

a
As judged by 

1
H NMR spectroscopy. 

b
Yields of isolated product in parentheses. 

 

Figure 26 Structures of azodicarboxylates used in Table 13. 
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3.3.3 Elimination Reactions 

With the required ethers 242 and 243 in hand, a screening of bases and conditions was 

carried out for the E2 elimination reaction. Although previous studies have found 

eliminations on similar systems to be efficient,
105

 heating bromide 242 with two equivalents 

of DBU in THF at 70 °C led to no reaction and recovery of starting material only (entry 1, 

Table 14). Switching the solvent to dioxane and increasing the temperature to 100 °C led to 

little or no formation of product (entries 2–4, Table 14). When five equivalents of base 

were employed (entry 5, Table 14), complete consumption of starting material was 

observed, but only a small amount (17%) of product 244 could be isolated, suggesting that 

substrate decomposition was a significant problem. Despite the low yields obtained, it was 

gratifying to note that the product was obtained as a single stereoisomer suggesting that the 

elimination process is stereospecific as anticipated. Reaction also took place at 90 °C in 

toluene (entry 6, Table 14), but afforded product 244 in a similarly poor yield (13%). A 

number of other bases led to decomposition or no reaction (entries 7–9, Table 14), with the 

exception of KHMDS, which gave partial conversion to the unexpected side product 245, 

which was isolated in 24% yield, in a dr of 4:1 as judged by 
1
H NMR spectroscopic 

analysis. The formation of this compound could be envisaged to arise from base-mediated 

removal of the acetate group,
198

 with formation of ketene, followed by intramolecular SN2 

reaction (Scheme 69); on this basis the major diastereomer was assumed to be the one 

depicted. 
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Table 14 Various attempts to effect elimination of bromide 242. 

 

Entry Base 
Time 

/ h 
Solvent Temp / °C 

Reaction 

outcome
a 

1 DBU (2 eq.) 23 THF 70 N. R.
b 

2 DBU (1.5 eq.) 22 dioxane 100 N. R.
 b
 

3 DBU (2 eq.) 6 dioxane 100 trace
b 

4 DBU (3 eq.) 19 dioxane 100 trace
b 

5 DBU (5 eq.) 24 dioxane 100 17%
c 

6 DBU (5 eq.) 24 toluene 90 13%
 c
 

7 NaOMe 16 MeOH RT dec.
d 

8 t-BuOK (1.05 eq.) 24 THF RT → 60 N. R.
 b
 

9 DIPEA (5 eq.) 26 dioxane 100 N. R.
 b
 

10 KHMDS (1.1 eq.) 16 THF RT 
Formation 

of 245
d 

a
As determined by 

1
H NMR spectroscopy. 

b
Recovery of starting material confirmed by 

1
H NMR 

spectroscopy. 
c
Yield of isolated product following chromatography in silica gel. 

d
See Scheme 69. 

 

Scheme 69 Proposed mechanism for the formation of side product 245. 

The possibility of a base-mediated removal of the acetate group during the elimination 

reaction and concomitant formation of side products led us to consider elimination of a 

substrate bearing a more stable pivalate group in place of the acetate. When the pivalate-

derived bromide 243 was treated with five equivalents of DBU at 100 °C in toluene 

(Scheme 70), the desired product (246) could be isolated in a 26% yield with no recovery 

of starting material, suggesting that side reactions and decomposition remain problematic 

for this transformation. 
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Scheme 70 Elimination reaction of allylic pivalate 243 with DBU. 

3.3.4 Approach Towards Eastern Fragment 

Despite the low isolated yields obtained in the elimination attempts of the simple systems 

above, it was decided to go forward and attempt the same process with the alkylated pyrone 

234. The Mitsunobu reaction was successful with both the acetate- and pivalate-derived 

alcohols 233 and 241, affording the brominated ethers 232 and 247 respectively (Scheme 

71). The elimination reaction with the acetate 232 gave a complex mixture from which no 

product could be isolated; however, reaction with the pivalate 247 did lead to the formation 

of isolable product (248) in 28% yield, but along with the unexpected bis-pivalate 249 in 

11% yield, the presence of which suggests decomposition and side reactions remain  

problems for this chemistry. The vinyl ether 248 could then be taken on and deprotected 

under standard conditions to give alcohol 250. Attempts to oxidise the small amount of 250 

obtained did not lead to the isolation of any of the desired aldehyde 251. Due to the 

successive low yields obtained in this synthetic sequence, only a very limited amount of 

material could be carried through to this stage. These limitations meant that this approach 

was abandoned in favour of the Au-catalysis methodology described in Section 3.4. 
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Scheme 71 Synthesis of vinyl ether 250. 

3.4 Addition Approach to Pyronylvinyl Ether 

Following the difficulties encountered in the Mitsunobu–elimination approach to the 

eastern fragment of the natural product, our attention was drawn to a report by Nolan and 

co-workers, which described the use of cooperative Au
I
 catalysis to facilitate the addition of 

phenols to internal alkynes to afford (Z)-enol ethers.
199

 First reported by Nolan in 2010,
200

 

the unusual dinuclear [(Au(IPr))2(μ-OH)][BF4] complex (255) is able to catalyse the 

reactions efficiently at low catalysts loadings (0.5–1 mol%) and with highly acidic phenols 

(e.g. Scheme 72). 
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Scheme 72 The addition of acidic phenols such as 253 to internal alkynes, as reported by Nolan and 

co-workers.
199

 (Note: the NHC ligand possesses nitrogen stabilisation at the carbene centre – not 

shown). 

The methodology has since been combined with Pd catalysis to allow one-pot access to 

benzo[c]chromenes and benzo[b]furans,
201

 and expanded to include benzylic and aliphatic 

alcohols.
202

 

It was postulated that this methodology could be applied to the synthesis of pyronylvinyl 

ethers in a similar fashion. Accordingly, when 4-hydroxy-6-methyl-2-pyrone (36) and 

alkynes 115 and 256 were reacted with complex 255 in toluene, compounds 257 and 258 

were isolated in 76% and 68% yields respectively (Scheme 73). The regioselectivity for 

compound 257 was essentially complete, whilst for compound 258, a 3:1 ratio of 

regioisomers was observed, although the minor isomer was not isolated. This methodology 

was subsequently expanded and  found to be highly applicable to a range of alkynes and 2-

pyrone derivatives.
203
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Scheme 73 Examples of reaction of 2-pyrone 36 with alkynes 115 and 256. 

As reported,
199, 202

 the (Z)-isomer was the only isolable product in each reaction. This could 

be confirmed by noting, for example in compound 258, the 
4
JH–H = 1.3 Hz between the 

vinyl ether proton (Hb δ 5.37) and the CH2 of the ethyl group (Hc δ 2.22) in the 
1
H NMR 

spectrum, a coupling which was absent in the (E)-isomer (244) synthesised by the 

elimination route (Figure 27).  
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Figure 27 
1
H NMR spectra (400 MHz, CDCl3) of (a) 258 and (b) 244 with expansions of the alkene 

and CH2 regions. 

The total synthesis of the reported structure of compound 53, however, would require 

access to the (E)-enol ether. A number of attempts were made to isomerise the double bond 

in compound 258 (conditions 1–4, Scheme 74), but no isomerisation was detected under 

any of the conditions tested. 
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Scheme 74 Attempted isomerisations of 258 into 244. 

It was, however, proposed that as for the arene model system, isomerisation might be 

observed during the Stille coupling with the allylic acetate and, moreover, this 

isomerisation might be encouraged by using a higher temperature for the final cyclisation 

reaction. If the two geometrical isomers formed in this step were found to be separable, this 

would provide a viable route to both isomers of the natural product, allowing final 

confirmation of the stereochemistry around the enol ether double bond, an issue about 

which there remains uncertainty. 

As such, the alkylated pyrone 234 was reacted with alkyne 256 using the Au catalyst 255. 

The acetate was used in excess (five equivalents) to minimise possible side reactions 

resulting from the pyrone reacting with the alkyne moiety present on the side chain. 

Gratifyingly, under these conditions the reaction proceeded smoothly, giving a 

regioisomeric ratio of 10:1 (by 
1
H NMR spectroscopy) in favour of the desired compound; 

deprotection with TBAF followed by flash chromatography on silica gel led to the isolation 

of the desired homopropargylic alcohol 259 in 90% yield over two steps (Scheme 75). It is 

worth noting that, although run in technical grade toluene under air, this reaction appears to 

be sensitive to trace impurities in either the acetate or pyrone, the presence of which can 

lead to reaction failure and the formation of little or no product. More investigation is 

required to determine the exact nature of this effect. 

 

Scheme 75 Synthesis of (Z)-vinyl ether 259. 
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3.5 Oxidation, Wittig Coupling and Cyclisation 

Initial attempts to oxidise the alcohol 259 to an aldehyde under the Dess–Martin conditions 

used in the model studies (Chapter 2) were not straightforward, and the high polarity of the 

pyrone compound meant that it was difficult to separate the desired aldehyde cleanly from 

excess DMP and DMP byproducts at the end of the reaction; decomposition and side-

product formation was also noted, in particular furan 261 was isolated from one reaction in 

17% yield (Scheme 76). A number of other oxidants were also tested including PDC and 

TPAP, with all leading to decomposition, and PCC, which led to the formation of the 1,4-

dicarbonyl compound 262 in 57% yield. 

 

Scheme 76 Attempted oxidation of alcohol 259 and resulting side products. 

It was noted that the dicarbonyl 262 is in fact a precursor compound to the furan 261, and 

this suggested that the major side reaction was hydration of the alkyne. This was 

presumably catalysed by residual gold remaining from the alkyne addition step; Au-

catalysed hydration of alkynes is known with catalyst loadings as low as 10 ppm.
204

 

Accordingly, a thiourea-based resin (Quadrapure-TU), which is designed to scavenge metal 

atoms, was added to the crude reaction mixture immediately after the Au-catalysed addition 

step. Deprotection and purification by flash chromatography as before gave an alcohol 

(259) which could be cleanly oxidised to the aldehyde 260. This was used immediately in 

the Wittig coupling with stannane–phosphonium salt 209 (Scheme 77). This reaction did 

not lead to clean formation of product, however, and the stannane 263 could only be 

isolated in 14% yield over two steps. The low yield in this reaction was attributed to the 

sensitive nature of the aldehyde coupling partner and accompanying decomposition during 

the reaction. 
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Scheme 77 Oxidation and Wittig coupling of alcohol 259. 

With the cyclisation precursor in hand, the Stille cross-coupling reaction was carried out 

under the conditions used in the model system (Scheme 78). A higher temperature of 35 °C 

was used in order to try and encourage any isomerisation of the enol ether bond; the 

reaction was thus complete (as judged by consumption of 263 by TLC) in 18 h. Preparative 

TLC purification of the crude reaction mixture led to the isolation of a small amount of the 

cyclised product 264 (20% yield), which appeared to be present as a single isomer. 

 

Scheme 78 Cyclisation of 263 to give macrocycle 264. 

3.6 Characterisation and Structural Reassignment 

When a 
1
H NMR spectrum of 264 was acquired in C6D6, the 

4
JH–H = 1.2 Hz between H-4 

and H-1′ was clearly apparent as in the precursor compound (263), suggesting that the (Z)-

geometry had been retained in the macrocycle. A 1D nOe experiment irradiating H-4 led to 

a 2.1%, 1.7% and 1.6% enhancement of protons H-5, H-1′ and H-2′ respectively (Figure 28 

(b)). This can be compared to the reported nOe experiments on other members of the 

phacelocarpus pyrone family (Figure 28 (c)). The (E)-4-pyrone compound 52 gave no 

enhancement of the H-1′ protons on irradiation at H-4,
94

 whereas the two compounds 50 

and 57, both assigned a (Z)-geometry, gave an interaction between H-4 and the H-2′ methyl 

group.
96

 No nOe experiments are reported for the target natural product 53 (Figure 28 (a)). 

It is also worth noting that the model compound, with a confirmed (E)-geometry, had no 
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NOESY interaction between H-4 and H-1′ or H-2′ (see Chapter 2). These comparisons all 

suggest that the (Z)-geometry of synthetic 264 can be assigned with confidence. 

 

Figure 28 (a) Reported structure of natural compound 53 (no nOe experiments reported); (b) one-

dimensional nOe enhancements measured for compound 264 and (c) those reported for compounds 

52, 50 and 57.
94, 96

 

A full NMR spectroscopic characterisation of the compound was run in CDCl3 solution, 

including COSY, HSQC and HMBC spectra (see Appendix 5 for a full list of correlations). 

Pleasingly, the data were found to match very closely to those reported for the natural 

compound, with the 
13

C NMR spectrum (referenced to CDCl3 = 77.0 ppm) having all of the 

signals within 0.1 ppm of those reported (Table 15). Note that the carbon signals were only 

tentatively assigned in the original report,
94

 and so have been reassigned here with 

confidence based on HSQC and HMBC experiments. 
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Table 15 Comparison of reported 
13

C NMR shifts for the natural compound with those for synthetic 

264.  

 

Position
 δ (53, natural)

a
 / 

ppm
 

δ (53, natural), 

reassigned / ppm 

δ (264, synthetic)
b
 

/ ppm
 Δδ / ppm 

1 169.0 165.1 165.1 0 

3 151.0 151.0 151.1 +0.1 

4 89.6 114.2 114.3 +0.1 

5 18.1 23.8 23.8 0 

6 124.4 126.6 126.7 +0.1 

7 126.6 128.4 128.5 +0.1 

8 23.8 25.3 25.3 0 

9 128.4 130.5 130.6 +0.1 

10 130.5 124.4 124.4 0 

11 25.0 16.9 16.9 0 

12 78.9 78.9 79.0 +0.1 

13 79.3 79.3 79.4 +0.1 

14 25.3 18.1 18.2 +0.1 

15 25.5 27.3 27.3 0 

16 27.3 25.0 25.0 0 

17 32.3 32.3 32.4 +0.1 

18 165.1 166.9 167.0 +0.1 

20 166.9 169.0 168.9 −0.1 

21 114.2 89.6 89.7 +0.1 

22 99.0 99.0 99.0 0 

1′ 16.9 25.5 25.5 0 

2′ 11.0 11.0 11.1 +0.1 
a
From reference 

94
 (50 MHz). 

b
Referenced to CDCl3 = 77.0 ppm (175 MHz). 
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Similarly, almost all of the chemical shifts in the 
1
H NMR spectrum (CHCl3 = 7.24 ppm) of 

264 are in very good agreement (Δδ < 0.1 ppm) of the natural compound, with the 

exception of the two hydrogens on the pyrone ring at positions C-21 and C-22, which 

deviate by 0.20 and 0.12 ppm respectively (Table 16). An IR band at 1733 cm
−1

 in the 

synthetic compound confirms the presence of a 2-pyrone, so it is unclear why those peaks 

in particular exhibit such a large deviation. The agreement for the aliphatic portion of the 

compound is also much closer than that for the aromatic model system 91, which has the 

opposite (E)-stereochemistry to 264 around the enol ether double bond.  

Table 16 Comparison of reported 
1
H NMR shifts for natural 53 with those of synthetic 264 and the 

aromatic model system 91. 

 

Position
 

δ (91) / ppm
a,b 

Δδ / ppm 
δ (53, nat.)

b,c
 / 

ppm
 Δδ / ppm 

δ (264, synth.)
a,b

 

/ ppm 

4 4.60 −0.51 5.11 +0.03 5.14 

5 2.77 +0.11 2.66 −0.02 2.64 

6, 7 5.38 +0.02 5.36 +0.05 5.41 

8 2.84 +0.07 2.77 +0.02 2.79 

9, 10 5.43 +0.07 5.36 +0.05 5.41 

11 2.87 0 2.87 −0.01 2.86 

14 2.14 −0.06 2.20 −0.03 2.17 

15 1.42 −0.14 1.56 +0.01 1.57 

16 1.65 −0.23 1.88 −0.09 1.79 

17 2.56 +0.12 2.48 +0.02 2.50 

21 - - 5.20 +0.20 5.40 

22 - - 5.89 +0.12 6.01 

1′ 2.32 +0.11 2.21 −0.04 2.17 

2′ 1.14 +0.04 1.10 −0.05 1.05 
a
Referenced to CHCl3 = 7.24 ppm (700 MHz); 

b
For multiplets, the centrepoint of the range is quoted. 

c
From reference 

94
 (360 MHz). 
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The very close agreement of the NMR spectroscopic data, along with the tentative fashion 

in which the stereochemistry of 53 was originally assigned (see Chapter 1), is compelling 

enough to suggest that compound 264 possesses the same structure as the natural 

compound, which, given the confirmation of the (Z)-stereochemistry, implies that the 

incorrect geometrical isomer has been proposed for the natural product.  

3.6 Summary 

The first total synthesis of phacelocarpus 2-pyrone A has been completed in 1.4% overall 

yield over nine steps in the longest linear sequence. Full structural characterisation and 

confirmation of stereochemistry have been carried out, and, in light of the very close 

agreement with the reported data, this has allowed a stereochemical reassignment of the 

natural compound to the (Z)-isomer about the trisubstituted double bond. The chemistry 

employed in the synthesis has built upon the successful construction of a macrocyclic 

aromatic model compound described in Chapter 2, employing the same retrosynthetic 

disconnections and synthetic strategy. A novel Au-catalysed method for the formation of 

(Z)-pyronyl enol ethers has been utilised, along with the sequential Wittig reaction and 

Stille cross-coupling used to complete the macrocyclic ring. 
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Chapter 4: Air Effects in Stille Couplings 

4.1 Introduction to Succinimide Pd Catalysts 

n 1999 Serrano and co-workers first reported the facile oxidative addition of N-

bromosuccinimide to Pd(0) and Pt(0) precursor complexes, giving rise to the 

corresponding air-stable imidate complexes such as 265 and cis-23 (Scheme 79).
49

  

 

Scheme 79 Serrano’s original syntheses of complexes 265 and cis-23. 

Following this initial report, during studies towards the total synthesis of inthomycin C,
205

 

Fairlamb, Taylor and co-workers discovered in 2003 that the presence of trace amounts of 

N-bromosuccinimide in their starting materials facilitated Stille couplings with benzyl 

bromides.
53-54

 Further investigation revealed that the preformed complex cis-23 was an 

efficient precatalyst for a range of benzylic and allylic Stille couplings (e.g Scheme 80).
50, 53

 

  

Scheme 80 Application of complex cis-23 in the Stille reaction.
50

 

A reproducible method for the synthesis of cis-23 was found: treatment of the precursor 

complex Pd2dba3∙CHCl3 with two equivalents of PPh3 per Pd forms the Pd(η
2
-dba)(PPh3)2 

intermediate 270 (Scheme 81), addition of NBS leads to oxidative addition into the N–Br 

bond and formation of the desired complex cis-23.
53

 

I 
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Scheme 81 Synthesis of cis-23. 

The same group reported that the isomeric complex trans-Pd(N-succ)Br(PPh3)2 (trans-23) 

can also be used as an efficient catalyst for both benzylic and aryl Suzuki–Miyaura 

couplings on multi-gram scale, with catalyst loadings as low as 0.1% (Scheme 82).
51-52, 206

 

Trans-23 has subsequently been commercialised by Sigma-Aldrich (catalogue number 

643742). 

 

Scheme 82 Application of complex trans-23 in the Suzuki–Miyaura reaction. 

The intriguing activity of these catalysts is proposed to be due to the presence of the 

succinimide ligand. Imidate ligands such as this have similar electronic properties to halide 

ligands, but can coordinate to metals in a variety of ways (Figure 29),
207

 and it is thought 

that these different coordination modes may be able to stabilise catalytic intermediates in a 

way that other anionic ligands cannot. Fairlamb, Serrano and co-workers have prepared an 

extensive library of imidate-containing Pd complexes (see examples, Figure 29), in an 

effort to exploit the properties imparted by these ligands, and found that many of them 

exhibit remarkable catalytic activity in a number of different cross-coupling reactions.
53, 208-

216
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Figure 29 Above: potential coordination modes of imidate ligands; Below: examples of imidate-

containing Pd complexes (273–277). 

Cis- and trans-23 remain two of the most thoroughly examined imidate complexes in terms 

of scope and reactivity, but despite these impressive results, a number of aspects of these 

two catalysts remain unexplored. It had been noted during previous mechanistic studies that 

the activity of the catalyst is somewhat sensitive to the presence of air, and that the colour 

of the reaction mixture is also dependent on exposure to air. If reactions were performed 

under rigorously inert conditions then the reactions remained yellow, but if exposed to air 

they rapidly turned black. Moreover, it was noted that some reactions actually required a 

trace amount of air to initiate catalyst turnover, i.e. providing a competent species that can 

enter into the catalytic cycle (see Chapter 2). Similar observations in relation to the 

presence or absence of trace air have been recently reported for a Pd(PPh3)4 system 

employed in the Stille coupling (also noted in previous unpublished studies within the 

group).
217

 Given these intriguing preliminary observations, it was decided to undertake a 

systematic study of the effect of air on the catalytic ability of the complexes.  

4.2 Preliminary Studies 

Following the unusual observations made during the target-oriented synthesis discussed 

earlier (see Chapter 2), whereby a trace amount of air was required to activate the catalyst 

and allow the reaction to proceed, an examination of the amount of air needed to initiate the 

same model reaction was carried out (Table 17). All reactions were carried out with trans-
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23 as the Pd source, at the same reaction scale (0.21 mmol 137, 6.2 μmol Pd) using an 

identically sized Schlenk tube as the reaction vessel (see Figure 30(a)) and with equivalent 

stirring rates.  

As had been observed previously, when the reaction was carried out in the absence of air, 

little conversion into product 177 was observed (entry 1, Table 17). Warming the reaction 

mixture led to improved conversion into the product (entries 2 and 3, Table 17), but also to 

isomerisation of the trisubstituted enol ether double bond (in all other entries, E:Z ≥ 9:1). 

Removal of the reaction vessel stopper for 5 seconds (with no flow of N2) led to complete 

consumption of the starting material (137), and concomitant formation of the product 177 

and alcohol side product 136 in a 4:1 ratio (entry 4, Table 17). Note that in these first four 

reactions (entries 1–4, Table 17), the presence of the stannane starting material (176) in the 

crude reaction mixture (observed by 
1
H NMR spectroscopy) showed that stannane 

homocoupling was not occurring. It was noted that, as in earlier studies (Chapter 2), 

increasing the time that the stopper was removed to 20 seconds led to incomplete 

consumption of starting material and homocoupling of the stannane (entry 5, Table 17). 

Similar results were obtained upon injection into an N2 backfilled reaction vessel of 1 mL, 

2 mL, 5 mL and 10 mL of air using a syringe and an exit needle (entries 6–9, Table 17). It 

can be seen that as the amount of air injected increases, the amount of product 177 formed 

in the reaction mixture decreases, with the formation of the alcohol side product 136 

approximately constant. It is worth noting that 1 mL of air contains approximately 8.6 μmol 

O2 (assuming 21% O2 in air), which is more than the one equivalent of O2 per Pd required 

for oxidation to Pd
II
, which could either lead to phosphine oxidation and/or promotion of 

stannane homocoupling.  

The injection of 10 mL of dry air, which had been passed through a drying column 

containing activated 4 Å molecular sieves, led to little change in the outcome (entry 10, 

Table 17), discounting water as the activating species. Backfilling the headspace above the 

reaction mixture with atmospheric (entry 11, Table 17) or dry air (entry 12, Table 17), or 

performing the reaction in an open flask (entry 13, Table 17) led to near-identical results, 

with no product formation, and partial conversion to the alcohol side-product 136. 

Interestingly, whilst all of the previous air-exposed reactions had been black after 24 h, 

these final three remained yellow (Figure 30(b)). 
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Table 17 Examination of air volume and temperature effects on an allylic Stille reaction. 

 

Entry Method of exposure 
Ratio

a
 

137:177:136 
Colour

b
  

1 None 89:11:0 yellow 

2 None
c
  52:48

d
:0 yellow  

3 None
e
  0:100

f
:0 black  

4 Stopper removal (5 s) 0:80:20 black 

5 Stopper removal (20 s) 13:66:21 black
g 

6 Injection (1 mL) 12:80:10 black
g 

7 Injection (2 mL) 10:79:11 black
g 

8 Injection (5 mL) 27:58:15 black
g 

9 Injection (10 mL) 50:35:15 black
g 

10 Injection (10 mL)
h
  41:40:19 black

g 

11 Backfill 68:0:32 yellow
g
 

12 Backfill
h
  68:0:32 yellow

g
 

13 Open flask 71:0:29 yellow
g
 

a
As judged by 

1
H NMR spectroscopy; 

b
Colour of reaction mixture after 24 h, see Figure 30(a) for 

examples; 
c
Reaction carried out at 40 °C; 

d
E:Z = 3:1; 

e
Reaction carried out at 60 °C; 

f
E:Z = 2:1; 

g
Homocoupling of stannane indicated by absence in crude 

1
H NMR spectrum; 

h
Air dried over 4 Å 

MS before use. 

  

 

Figure 30 (a) Dimensions of Schlenk tube used for air-exposure studies; (b) Examples of ‘yellow’ 

and ‘black’ reaction mixtures. 

(a) 

(b) 
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It would appear from this preliminary study that although for this system air is required to 

activate the catalyst at room temperature and achieve efficient catalytic turnover, the 

presence of too much air supresses the formation of the cross-coupled product, favouring 

instead the homocoupling of the stannane. The formation of the allylic alcohol 136 appears 

to be a consistent background reaction when the reaction is exposed to air, constituting 10–

20% of the product mixture when the amount of air is limited. The mechanism by which 

this side-product is formed is unclear, but appears to be independent of the amount of water 

present in the system.  

A positive effect of air has also been observed by other studies in the Fairlamb group, 

conducted by Dr Petr Sehnal. Upon examination of another model reaction (Scheme 83), it 

was found that conversion of diphenylbromomethane 279 into product (280) only occurred 

when the reaction was exposed to air. The reaction could be monitored in situ using the 

ReactIR system (with Si probe), which has been shown to be particularly suited to studying 

cross-coupling reactions.
218-219

 No conversion into product was observed when the reagents 

were stirred with trans-23 at 60 °C for 15 min under an atmosphere of N2 (Figure 31). At 

ca. 35 min, the reaction mixture was exposed to air for 20 seconds by removal of the 

stopper (no flow of N2) before being re-sealed for the remaining reaction time. The reaction 

rapidly reached completion (within 1 h) and turned a dark brown colour. 

 

Scheme 83 Stille cross-coupling reaction of (Z)-278 and 279 to give 280. 

 

Figure 31 Conversion to product as monitored by ReactIR in reaction in Scheme 83. The conversion 

is shown as the second derivative which accounts for the gradient changes as a function of peak 

intensity and allows overlapping peaks to be discerned. Inset: IR spectra for (Z)-278 and 280. Figure 

prepared by Prof. I. J. S. Fairlamb. 
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In many transition-metal-catalysed reactions, a dark brown or black colour may indicate the 

formation of colloidal metal or metal nanoparticles.
220-221

 Therefore the colour change from 

yellow to black may indicate the presence of Pd nanoparticles (PdNPs) at higher 

temperatures or in the presence of trace air. A key question is whether the PdNPs are 

catalytically active or simply a moribund form (i.e. a dead-end for catalysis). A more 

detailed kinetic investigation is required to elucidate the mechanistic intricacies of these 

reactions and provide proof of a heterogeneous pathway in the presence of trace air. 

4.3 Further Investigations 

Following this preliminary study, it was thought instructive to study a somewhat simpler 

system in order to gain a more complete understanding of the processes occurring under 

different conditions. A simple benchmark reaction was selected (Scheme 84) which was 

previously reported to work well with catalyst 23,
54

 and five variables were systematically 

examined: temperature, solvent, catalyst stereochemistry, stannane stereochemistry and 

exposure to trace air. Reactions were carried out in either toluene or DMF at 60, 70 or 

90 °C.  

 

Scheme 84 The benchmark reaction used in the investigations into catalyst 23. 

Reactions were conducted simultaneously with one reaction exposed to ‘trace air’ and the 

other kept under an atmosphere of N2. The exposure to air was carried out in a controlled 

way using a consistent method:  

− All reactions were set up in an identical fashion and on the same scale: benzyl 

bromide was added to a solution of the stannane and catalyst in the appropriate 

degassed solvent prepared under an atmosphere of N2. 

− If the reaction was to be exposed to air, the flow of N2 was closed at the Schlenk 

side-arm, the stopper was removed for five seconds (timed with a stopwatch), 

before being replaced and the vessel left sealed for the remainder of the reaction 

time. The Schlenk tubes used were as depicted in Figure 30(a). 

− If the reaction was conducted under ‘inert conditions’, it was sealed under a flow of 

N2 and left sealed for the remainder of the reaction time. 

For full experimental details, see general procedure 2 in Chapter 7. 
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The (E)- and (Z)-stannanes 278 for use in the screening experiments could be formed in a 

single reaction by a radical addition of Bu3SnH to ethyl propiolate (111), followed by 

separation of the isomers by column chromatography on silica gel (Scheme 85).
222

  

 

Scheme 85 Synthesis of (E)- and (Z)-278. 

4.3.1 Reactions in Toluene 

The reaction was first examined using toluene as a solvent at various temperatures, using 

both cis- and trans-23, and both the (E)- and (Z)-stannanes 278. The results of this are 

gathered in Figure 32. 

 

 

Figure 32 Results of benchmark reaction conducted in toluene at various temperatures. Conversion 

as judged by 
1
H NMR spectroscopy. For tabulated data see Appendix 2. 

It can be seen from Figure 32 that the reaction is sensitive to temperature. An increase in 

the reaction temperature from 60 to 70 °C leads to a doubling of conversion, and a further 

increase to 90 °C affords near-quantitative conversion. At the higher temperatures, partial 
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isomerisation of the stannane was observed, and it was noted that this was exacerbated by 

trace air. The trans-catalyst is more efficient than the cis-catalyst in almost every case, and 

this is likely due to its greater solubility in toluene. The 99% conversion of the reaction 

previously reported in the literature
50

 (cis-23, (E)-278, 60 °C, no air) could not be emulated, 

and this was also attributed to the poor solubility of the catalyst in toluene (incomplete 

dissolution was observed). The presence of trace air appears to be detrimental to the 

conversion of the reaction, and this effect is more pronounced at lower temperatures. It was 

notable that when reactions were exposed to air, they invariably turned black after the 3 h 

reaction time. In cases where the reaction was conducted under entirely inert conditions, the 

reaction mixture always remained yellow (the colour of the catalyst in solution). This 

suggests that air is having a detrimental effect on the activity of the catalyst in this solvent.  

It was also noted that (E)-278 reacted faster than (Z)-278, and in order to confirm this, a 

competition reaction between the stannanes was carried out, whereby one equivalent of 

benzyl bromide was allowed to react with one equivalent of each stannane (Scheme 86). 

The results confirm that benzyl bromide 267 reacts faster with the (E)-278 under catalysis 

by both cis- and trans-23. The remainder of the excess vinyl stannane was converted to the 

homocoupled product both reactions. 

 

Scheme 86 Competition experiment between (E)- and (Z)-278. 

4.3.2 Reactions in DMF 

In order to provide a comparison with the results of the reactions in toluene, the screening 

of conditions was repeated using DMF as the solvent. DMF is a widely used solvent for 

many Pd-catalysed cross-coupling reactions, but particularly for the Stille reaction. The 

benchmark reactions were repeated in DMF and the results are summarised in Figure 33. 

It can be seen immediately from the results that the reaction is more efficient in DMF than 

in toluene. Indeed the reaction using (E)-278 is so efficient that the conversion is essentially 

quantitative under all conditions screened and no trend can be discerned. The same is true 

when (Z)-278 is employed at 90 °C. This could be due to the greater solubility of both 

catalysts in DMF but could also imply that a more active role is being played by the solvent 
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(e.g. in stabilisation of the Pd centre). In a similar manner to the toluene reactions, exposure 

of the reaction mixture to air led to the formation of a black colour, whilst under inert 

conditions the reaction mixture remained yellow. Using (Z)-278 at 60 °C it appears that 

trace air has a beneficial effect on the reaction, increasing the conversion by around 20% 

with both catalysts. Interestingly, this stands in contrast to the reaction conducted in 

toluene, where the conversion was reduced by exposure to air in a number of instances. At 

ambient temperature trans-23, whilst soluble in DMF, fails to afford any product either 

with or without air, in contrast to the system examined in the preliminary studies. 

 

 

Figure 33 Results of benchmark reaction conducted in DMF at various temperatures. Conversion as 

judged by 
1
H NMR spectroscopy. For tabulated data see Appendix 2. 

In order to further explore the theory that DMF was beneficial for the catalysis, DMF-

stabilised Pd nanoparticles (DMF-PdNPs) reported by Obora
223

 were pre-synthesised. It 

was hypothesised that the DMF-PdNPs ought to be similar to the PdNPs generated from 

trans-23 in DMF. Interestingly, in order to prepare the DMF-PdNPs, it was found necessary 

to make modifications to the original procedure:
223

 the synthesis only worked when it was 

carried out in the presence of air; performing the reaction under inert conditions led to the 

formation of Pd black (see Chapter 7 for experimental details). They were subsequently 
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characterised using XAS methods (see Section 4.1.1.2). When these pre-synthesised 

nanoparticles were employed in the reaction with (Z)-278 (Scheme 87), the conversion was 

essentially quantitative under inert conditions, both at room temperature and 60 °C. This 

outcome is consistent with the hypothesis that similar nanoparticles are forming under our 

reaction conditions, and that this could be expedited by the presence of trace air.  

 

Scheme 87 Benchmark reaction with DMF-stabilised PdNPs. 

4.4 Characterisation of the Active Catalytic Species 

4.4.1 Air-Exposed Reactions 

4.4.1.1 Transmission Electron Microscopy Analysis 

If PdNPs were indeed forming from complex 23 under our reaction conditions, it would be 

informative to characterise these particles by transmission electron microscopy (TEM), a 

technique routinely used to examine samples containing metal particles.
220

 This involves 

passing a beam of electrons through the sample; dense objects scatter the electrons such 

that an image can be generated of the sample. The instrument used in this study has a 

resolution of ca. 1 nm. As an ex situ technique, any particles to be characterised need to be 

preserved such that they can be removed from the reaction mixture and analysed without  

changing or aggregating. Therefore a reaction was conducted in each of DMF and toluene, 

and after 3 h an aliquot was removed from each, ten equivalents (w.r.t Pd) of 

(poly)vinylpyrrolidinone (Mw = 29,000) were added to encapsulate any nanoparticles 

present, and the solvent was removed under vacuum. This process is summarised in 

Scheme 88 (see Chapter 7 for full details). 
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Scheme 88 Encapsulation of in situ formed Pd nanoparticles from trans-23. O=PPh3 was observed 

by 
31

P NMR (see Section 4.4.2.1). 

Once the particles had been treated in this way, they could be analysed by TEM. This 

process was carried out for a series of four reactions at 60 °C: in DMF or toluene and with 

or without exposure to trace air. These reactions are depicted in Scheme 89.  

 

Scheme 89 Reactions used to analyse Pd species present by TEM. 

In both reactions which were not exposed to air, no nanoparticles were observed by TEM. 

However, PdNPs were observed in both samples taken from the air-exposed reactions, and 

the images captured of the reaction mixtures, along with a histogram analysis of the particle 

sizes, are shown in Figure 34 and Figure 35. 
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Figure 34 Electron micrograph of reaction mixture (see above scheme) in toluene after 3 h, 

stabilised by addition of PVP (10 eq. per Pd, Mw = 29,000) before removal of solvent. Inset: 

histogram of particle diameter (nm) across a sample of nanoparticles (n = 100). 

Both reactions clearly show the formation of well-defined spherical Pd nanoparticles (most 

likely truncated icosahedra with (111) surfaces),
224

 but there are interesting differences 

between the nanoparticles formed in different reaction media. The particles from the 

reaction in toluene show a greater range of sizes and a wider distribution with similar 

numbers of particles between 1 and 3.5 nm. The particles formed in DMF show a tighter 

distribution, with a clear modal diameter of 1.5–2 nm. Smaller nanoparticles can in some 

cases be more active, although other factors such as morpology are also important, and this 

might explain the greater efficiency of the catalyst in DMF over toluene.
225

 These results 

point to a stabilising effect of DMF on the nanoparticles, leading to less aggregation and so 

smaller and more active nanoparticles. This goes some way to explaining the different 

effect of air on the reactions in DMF and toluene. 

0

5

10

15

20

25

30

Fr
eq

u
en

cy

Size / nm



 

119 
 

  
 

 

Figure 35 Electron micrograph of reaction mixture (see above scheme) in DMF after 3 h, stabilised 

by addition of PVP (10 eq. per Pd, Mw = 29,000) before removal of solvent. Inset: histogram of 

particle diameter (nm) across a sample of nanoparticles (n = 100). 

TEM analysis was also attempted on the preformed DMF-stabilised nanoparticles 

employed in the reaction in Scheme 87, but the nanoparticles observed were too small to 

carry out a meaningful analysis given the maximum resolution of the electron microscope 

(<1 nm). In the original paper, the TEM analysis showed weak particles of approximately 

1.5 nm in size.
223

 

4.4.1.2 X-Ray Absorption Spectroscopy Analysis 

The PdNPs were further characterised by X-ray absorption spectroscopy (XAS). This 

technique involves bombarding the sample with X-rays, and detecting the energies of any 

emitted electrons from the atom of interest (e.g. Pd). It allows the structure determination of 

higher order species such as nanoparticles in situ whilst ignoring organic species such as 

ligands, substrates, additives and solvent. XAS can be split into two techniques from which 

both electronic and structural information can be gathered: (a) X-ray absorption near edge 

spectroscopy (XANES) from the absorption edge region, which gives information about the 

oxidation state and electronic structure of atoms; (b) extended X-ray absorption fine 

structure spectroscopy (EXAFS) from the scattering pattern, which gives information about 
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the surrounding environment (e.g. Pd–Pd, Pd–P and Pd–X interactions can be readily 

characterised). This technique has been used previously for the characterisation of 

transition metal NPs under working conditions.
224, 226

 All XAS measurements in this study 

were carried out on Beamline 18 at the Diamond Synchotron, Oxfordshire, by Professors 

Ian Fairlamb and Adam Lee (Aston University), and Dr Christopher Partlett (Aston 

University). 

The pre-synthesised DMF-stabilised PdNPs reported by Obora
223

 were first examined using 

this technique. A colloidal suspension in DMF (1 mM) was analysed directly at room 

temperature using the X-ray beam. This experiment confirmed that the PdNPs consist of a 

mixture of Pd
0
 and Pd

II
 sites in a 27:73 ratio (Figure 36). Qualitatively, the EXAFS data 

shows that the NPs contain a large number of Pd
II
 sites at the surface, an observation 

consistent with the experimental finding that air was required for the successful synthesis of 

the NPs. 

    

Figure 36 XAS data for the DMF-stabilised PdNPs. Left: XAS data, including the XANES region 

(below 24.35 KeV) and the EXAFS region (above 24.35 KeV). Right: EXAFS spectrum for the 

DMF-PdNPs (RT) and appropriate reference spectra (Pd and PdO). Figures prepared by Prof. I. J. S. 

Fairlamb and Dr C. Partlett (Aston). 

An examination of the species arising from the degradation of trans-23 was also carried out 

by XAS. A DMF solution of the complex was heated to 140 °C in the presence and absence 

of air; differences in the size, shape and stirring of the in-line reaction vessel to those used 

in previous studies meant degradation was slow and a higher temperature was required. The 

EXAFS data (Figure 37) shows that the resulting material consists mainly of Pd
II
 sites, as 

seen for the DMF-stabilised PdNPs (Figure 36). Additional experiments are required for a 

more detailed analysis of this data, which is ongoing within the group in collaboration with 

the team at Aston University. 
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Figure 37 EXAFS data showing the degradation of complex trans-23 with heating. New peaks are 

noted on the left side of the spectra as the material is heated and exposed to air, more like PdO, 

showing that there are increasing Pd
II
 sites as part of a more ordered structure. Figure prepared by 

Prof. I. J. S. Fairlamb and Dr C. Partlett (Aston). 

4.4.2 Air-Free Reactions 

4.4.2.1 31P NMR Spectroscopic Analysis 

In an attempt to further characterise the Pd species forming under the working reaction 

conditions, an analysis of the reaction mixtures by 
31

P NMR spectroscopy was carried out. 

This involved running the reactions as normal before removing the solvent in vacuo and 

analysing the crude residue by 
31

P and 
1
H NMR spectroscopy.  

 

Scheme 90 Reactions used to analyse Pd species present by 
31

P NMR and LIFDI. 

In reactions which were run in the presence of trace air, in both toluene and DMF, only one 

major peak was present in the 
31

P NMR spectrum, at δ 29.8 (c and e, Figure 38), and this 

was attributed to triphenylphosphine oxide (lit.
227

 δ 29.5). This suggests that the air in the 

reaction mixture could be oxidising the phosphine meaning that it binds more weakly to the 

Pd centre, thereby encouraging the formation of nanoparticles, and could explain the black 

colour formed when the reaction is exposed to air. In the reaction in toluene which was not 

exposed to air, a single peak was observed in the 
31

P NMR spectrum at δ 23.0 (d, Figure 38) 

which is attributed to the catalyst trans-23 itself (δ 23.0, a, Figure 38) and this suggests that 

the catalyst is not degrading under the reaction conditions in the absence of air and 

therefore acting in a homogenous, molecular fashion. In the air-free reaction in DMF, two 
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new signals were observed at δ 23.8 and δ 22.6 (b, Figure 38). These did not match the 

reference compound PdBr2(PPh3)2, which gave a signal at δ 26.6 (f, Figure 38), nor the 

signal which appeared (amongst others) at δ 32.3 when one equivalent each of PPh3 and 

NBS were combined in CDCl3 solution (g, Figure 38).
228-229

  

 

Figure 38 
31

P NMR spectra (167 MHz, CDCl3) of crude reaction mixtures conducted under various 

conditions along with reference spectra. 

4.4.2.2 LIFDI Mass Spectrometry Analysis 

Liquid Injection Field Desorption Ionisation (LIFDI) mass spectrometry is a useful 

technique for analysing catalytic intermediates as it minimises fragmentation and so allows 

the observation of fragile species.
230

 Samples were taken of the air-free reactions (Scheme 

90) at the end of the reaction and after removal of solvent. When these samples were 

analysed by LIFDI-MS, a number of new peaks were observed, none of which occurred at 

m/z = 809, corresponding to the molecular ion of trans-23. In the air-free toluene reaction, 

the base peak occurred at m/z = 623 and could not be assigned, although the isotope pattern 

suggested that it contained Pd. However, a peak was also observed at m/z = 901, the isotope 

pattern of which closely matches that of a chemical formula of C48H44O2P2PdBr (Figure 

4.5). This species was also present as a minor component in the air-free DMF reaction, and 

has been assigned to species I (Figure 39). This ion can be envisaged to arise by the loss of 

a succinimide or bromide anion from a suspected Pd
IV

 intermediate (species III, where X = 

anionic or carbon-centred ligand). In DMF, the base peak occurred at m/z = 645, and this 
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satisfies the chemical formula C26H23N2O4PPdBr and closely matches the theoretical 

isotope pattern shown below. This peak has been assigned the structure (species II) shown 

in Figure 39 and possibly derived from a species such as IV. 

 

 

Figure 39 Measured and theoretical isotope patterns and proposed structures for species I and II, 

observed in reaction mixtures (Scheme 90) in toluene and DMF. Figures prepared by Prof. I. J. S. 

Fairlamb. 

These results suggest that Pd
IV

 intermediates are present when the reaction is run in the 

absence of air. Further studies are necessary to assess whether the concentration of the 

species detected by LIFDI-MS change over time (i.e. during catalytic turnover).  

4.5 Summary 

Based on the observations described above, it is suggested that two catalytic pathways are 

operative, depending on the reaction conditions. When a trace of air is present, catalytically 

active Pd nanoparticles are rapidly formed, and these are more catalytically efficient in 

DMF than in toluene (potentially due to stabilisation by DMF solvent). These nanoparticles 

have been observed by TEM and those in DMF shown by EXAFS to consist of a mixture of 

Pd
0
 and Pd

II
. Triphenylphosphine oxide has also been observed in the air-exposed reactions, 
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suggesting that phosphine oxidation may play a role in nanoparticle formation in these 

cases. In the absence of air, the catalysis proceeds in a homogenous fashion, possibly via a 

Pd
II/IV

 manifold. New species, potentially derived from Pd
IV

 intermediates, have been 

observed by 
31

P NMR spectroscopy and LIFDI-MS.  
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Chapter 5: AsCat and FurCat 

5.1 AsPh3 and P(2-Fu)3 Ligands in Palladium Catalysis 

arina and Krishnan have reported that, in both polar and non-polar solvents, the rate of 

the Stille cross-coupling reaction can be heavily dependent on the ligands used with 

Pd.
172, 231

 They found that the rate of reaction can be dramatically increased by employing 

more weakly coordinating ligands such as AsPh3 or P(2-Fu)3, in preference to PPh3, in 

combination with the Pd
0
 precursor complex Pd2dba3, allowing reactions to be run at a 

lower temperature. This has since become a widely used catalyst system for the Stille 

reaction, and whilst well-defined complexes such as Pd(AsPh3)4,
232

 PdCl2(AsPh3)2
233

 and 

PdCl2(P(2-Fu)3)2
234

 have been prepared and described, complexes containing these ligands 

have found only occasional use in catalysis, despite their potential. Inspired by the success 

of the PPh3-containing complex PdBr(N-succ)(PPh3)2 23, it was hoped to combine the rate 

enhancement afforded by these ligands with the efficiency and selectivity of succinimide-

based catalysts, and the synthesis of two novel catalysts encompassing AsPh3 and P(2-Fu)3 

ligands was undertaken. 

5.2 Catalyst Synthesis and Characterisation 

Both complexes, PdBr(N-succ)(AsPh3)2 (229, ‘AsCat’) and PdBr(N-succ)(P(2-Fu)3)2 (282, 

‘FurCat’), were successfully synthesised by adapting the same procedure used to synthesise 

cis-23 (Scheme 91). 

 

Scheme 91 Synthesis of complexes AsCat (229) and FurCat (282). 

Both complexes were isolated as pale brown air- and moisture-stable solids in moderate to 

good yields. Complex 229 appeared in the 
1
H NMR spectrum in an approximately 4:1 

cis:trans ratio. It appeared to be unstable in solution, isomerising entirely to the trans 

isomer over 24 h at RT in CDCl3 or CD2Cl2 with gradual decomposition (indicated by a 

relative increase in the intensity of the peak corresponding to free NBS) and formation of 

Pd black. The use of dry CDCl3 and preparation of the NMR sample in a glovebox did not 

affect the rate of decomposition, suggesting that it is not water- or acid-mediated. Both the 

isomerisation and decomposition were much more rapid in C6D6 and acetone-d6. 

F 
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Complex 282 behaved similarly, with its 
1
H and 

31
P NMR spectra in CD2Cl2 indicating an 

approximately 9:1 cis:trans ratio. Isomerisation and decomposition were appreciably 

slower than for the AsPh3-based catalyst, with the isomeric ratio reaching 1:1 after 24 h at 

RT in solution with partial decomposition. 

It is interesting to compare these observations to the much greater stability observed of 

complex cis-23 in CD2Cl2 or CDCl3 solution at room temperature, and these results reflect 

the expected properties of the catalysts in solution: the AsPh3 ligand should dissociate much 

more readily than the P(2-Fu)3 which in turn should be more labile than PPh3. 

A single crystal X-ray diffraction structure of trans-229 was obtained (Figure 40), with the 

crystals grown by vapour diffusion of pentane into a saturated solution of the complex in 

CH2Cl2. For full details see Appendix 3. 

 

Figure 40 Single crystal X-ray diffraction structure of complex 229. Hydrogen atoms removed for 

clarity. Thermal ellipsoids shown with probability of 50%. Selected bond lengths (Å): Pd(1)–As(1): 

2.4229(4), Pd(1)–Br(1): 2.4338(4), Pd(1)–As(2): 2.3914(4), Pd(1)–N(1): 2.025(2). Selected bond 

angles (°): N(1)–Pd(1)–As(1): 90.69(7), As(1)–Pd(1)–Br(1): 92.969(13), Br(1)–Pd(1)–As(2): 

87.471(13). 

An attempt to synthesise compound 229 using the cheaper and more readily available 

precursor Pd(OAc)2 led to only small amounts of impure product being isolated, the main 
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side product being trans-PdBr2(AsPh3)2, which was isolated in 57% yield (w.r.t. NBS) as a 

bright yellow solid. 

 

Scheme 92 Attempted synthesis of 229 from Pd(OAc)2, resulting in the formation of 283.  

Interestingly, this simple compound has received very limited attention in the literature, 

with only sporadic reports and incomplete characterisation data available.
235-236

 The trans 

stereochemistry was confirmed by single crystal X-ray diffraction (Figure 41), with the 

crystals grown by slow evaporation from CHCl3. For full details see Appendix 3. 

 

Figure 41 Single crystal X-ray diffraction structure of complex 283. Hydrogen atoms and co-

crystallised CHCl3 removed for clarity. Thermal ellipsoids shown with probability of 50%. Selected 

bond lengths (Å): Pd(1)–As(1): 2.4043(3), Pd(1)–Br(1): 2.4180(3).  
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5.3 Preliminary Testing 

As a preliminary test, the catalysts’ activities were evaluated in the benchmark reaction 

explored previously (see Chapter 4) at ambient temperature (Table 18). 

Table 18 Application of novel catalysts 229 and 282 to benchmark reaction. 

 

Entry  Catalyst Solvent Trace air
a 

Conv. / %
b 

1 AsCat (229) DMF no 89
c 

2 AsCat (229) DMF yes 84
d 

3 AsCat (229) toluene no 14 

4 AsCat (229) toluene yes 8 

5 FurCat (282) DMF no 15 

6 FurCat (282) DMF yes 15 

7 trans-23 DMF no 0 

8 trans-23 DMF yes 0 

a
Reaction mixture exposed to air for five seconds (see Chapter 4). 

b
Conversion judged by 

1
H NMR 

spectroscopy. 
c
Average over three runs. 

d
Average over two runs. 

It can be seen that in this reaction in DMF the activity of catalyst 229 is very good at RT, in 

contrast to that of catalyst 282, which gives poor conversion, and catalyst trans-23, which 

is completely inactive. It is interesting to note the difference in activity for catalyst 229 

observed when the solvent is switched from DMF to toluene. This is presumed to be due to 

catalyst stability: rapid degradation was observed in the similar non-polar solvent C6D6. Air 

seems to have little effect on the activity of either catalyst, and in this system does not 

activate the PPh3-based precatalyst trans-23 (see also Chapter 4). 

5.4 Benzyl Chloride Stille Couplings 

Following these initial studies, attention turned to the Stille coupling of benzyl chlorides. 

There are only limited reports of Stille couplings with benzyl chlorides,
53, 237-239

 and these 

invariably require an elevated temperature (typically 60–80 °C). As diarylmethane 

derivatives are currently receiving much attention as bioactive compounds,
240

 we proposed 

that this might be a mild, general and useful method for their synthesis.  
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5.4.1 Scope of Organostannanes 

A screen of coupling reactions using the test substrate 4-methylbenzyl chloride (284) and 

various organostannanes was carried out, using 5 mol% of each catalyst in DMF (Table 

19). Gratifyingly it was found that all of the stannanes tested could be coupled with a very 

high efficiency, and moreover the activities of the catalysts appeared to be complementary. 

Table 19 Stille cross couplings of 4-methylbenzyl chloride (284) with various stannanes. 

 

Entry Stannane Product Catalyst 
Time / 

h 

Conv.
a, b

 / 

% 

1 

 
285 

 
286 

AsCat (229) 24 >99 (88) 

2 AsCat (229) 24 99 (83)
c 

3 FurCat (282) 24 27 

4 trans-23 24 0 

5 
PdBr2(AsPh3)2 

(283) 
24 >99 

6 

 
287 

 
288 

AsCat (229) 24 54 

7 FurCat (282) 3 >99 (83) 

8 

 
289 

 
290 

AsCat (229) 24 8 

9 FurCat (282) 24 >99 (97) 

10 
 

291  
292 

AsCat (229) 24 99
d
 

11 FurCat (282) 24 98
d
 

12 

 
(Z)-278  

293 

AsCat (229) 24 27 

13 AsCat (229) 72 87 (83) 

a
Percentages refer to conversion to product as judged by 

1
H NMR spectroscopy. 

b
Numbers in 

parentheses refer to yields of isolated product following purification on SiO2–K2CO3. 
c
Reaction 

conducted using propylene carbonate solvent. 
d
Product not isolated due to volatility. 

The triphenylarsine-based catalyst 229 is efficient at mediating coupling with 

tributylphenylstannane 285 in DMF (entry 1, Table 19), and also in propylene carbonate 

(entry 2, Table 19), a ‘green’ replacement solvent for DMF which has been successfully 

employed in a number of Pd-mediated transformations including Heck reactions,
241

 direct 
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arylations
242

 and allylic substitutions.
243

 In contrast, the tri(2-furyl)phosphine-based catalyst 

282 gives only modest conversion (entry 3, Table 19), whilst the analogous 

triphenylphoshine-based succinimide catalyst, Pd(N-succ)Br(PPh3)2 23, gives no 

conversion at room temperature (entry 4, Table 19). Interestingly, the bis-bromide complex 

PdBr2(AsPh3)2 (283) also gives complete conversion in this reaction (entry 5, Table 19). 

Coupling of the electron-rich heteroaromatic stannanes 287 and 289, based on furan and 

thiophene respectively, is efficiently mediated by complex 282, but not by 229 (entries 6–9, 

Table 19). Both catalysts are efficient with tributylvinylstannane 290 (entries 10 and 11, 

Table 19). The unreactive stannane (Z)-279 could be coupled using catalyst 229 after 

extended reaction times (entry 13, Table 19), demonstrating the stability of the catalyst 

under the reaction conditions, despite the low turnover frequency in this case. Where high 

conversions were attained, pure products could be readily isolated following a simple 

aqueous workup and flash chromatography using SiO2–K2CO3 (9:1, w/w) as the stationary 

phase in order to remove organotin impurities.
244

 

In contrast to the slow reaction of stannane (Z)-278 with a benzyl chloride, the reaction of 

both (Z)-278  and its isomer (E)-278  were rapid (3 h) with benzyl bromide (267), even at 

lower catalyst loadings, with the products being obtained in high yields in both cases 

(Scheme 93). 

 

Scheme 93 Coupling of benzyl bromide (267) with electron-deficient stannanes (E)- and (Z)-278, 

mediated by catalyst 229. 

The intriguing complementarity exhibited by the two catalysts could be rationalised by 

considering the interaction between each catalyst with the stannanes 285 and 287. The more 

labile catalyst 229 was rapidly degraded by the more reactive 2-furyl-derived stannane 287, 

leading to decomposition of the catalyst, potentially into an inactive form of Pd black, 

before complete conversion to the product could be attained. In contrast, with the phenyl-

derived stannane 285, the catalyst is stable enough to facilitate full conversion to product 

without degrading. By comparison, the more stable catalyst 282 is not ‘activated’ with the 

phenyl stannane (although the nature of this ‘activation’ is not known), leading to sluggish 

reaction and low conversion. With the more electron-rich stannane 287, the catalyst enables 

rapid conversion to the desired product. To test this proposal, a competition reaction was 
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carried out with each catalyst and both stannanes, and the product distribution analysed 

(Scheme 94). 

 

Scheme 94 Competition reactions between stannanes 283 and 285 with each catalyst. 

The results seen from these reactions are consistent with the proposal above. With complex 

229, the presence of the furylstannane 287 leads to rapid degradation of the catalyst, and the 

recovery of large amounts of starting material, although it is interesting to note that more of 

the furan 288 is formed than the benzyl compound 286, suggesting that coupling of the 

furyl stannane is faster. With complex 282, almost all of the starting material is consumed, 

and much more of the furan product 288 formed suggesting that the catalyst is stable and 

that the furylstannane couples faster. 

5.4.2 Synthesis of Benzyl Chlorides 

It was important to screen the scope of the reaction with respect to the structure and 

electronics of the benzyl chloride coupling partner. Whilst many benzyl chlorides are cheap 

and commercially available, in this case, a number of the substrates were synthesised from 

various starting materials. 

3,4,5-Trimethoxybenzyl chloride 295 was readily available from the corresponding benzyl 

alcohol by treatment with SOCl2 under literature conditions (Scheme 95).
245

 

 

Scheme 95 Synthesis of 3,4,5,-trimethoxybenzyl chloride 295. 

An attempt to use the same procedure on the alcohol methyl 4-(hydroxymethyl)benzoate 

296 led to a high yield of the unexpected novel sulfite ester 297 (Scheme 96). Extending 

the reaction time, or stirring this product with HCl did not lead to the formation of any of 

the desired benzyl chloride. 
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Scheme 96 Unexpected formation of sulfite ester 297. 

The use of an alternative literature method,
246

 employing TsCl and DBU also did not afford 

benzyl chloride, however, the methanolysis of 4-(chloromethyl)benzoyl chloride
247

 (298) 

led to smooth conversion to the desired product 299 (Scheme 97). 

 

Scheme 97 Synthesis of methyl 4-(chloromethyl)benzoate 299. 

Attempts to obtain 4-cyanobenzyl chloride (302) from the corresponding bromide 300 by 

reaction with LiCl in THF
248

 led to very slow conversion into product, with only 89% 

conversion achieved after 65 h at reflux (Scheme 98). Since the product was inseparable 

from the bromide starting material, this was not a practical approach. The target compound 

could instead be obtained efficiently in two steps from 4-cyanobenzaldehyde (301) by 

reduction
249

 followed by treatment with excess SOCl2. 

 

Scheme 98 Synthesis of 4-cyanobenzyl chloride 302. 

5.4.3 Scope of benzyl chlorides 

With the required benzyl chlorides in hand, a screen of different coupling partners was 

carried out under the same conditions used above, first with tributylphenylstannane 285 in 

combination with catalyst 229 (Table 20). 
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Table 20 Substrate scope of various benzyl chlorides coupling with tributylphenylstannane 285 

using catalyst 229. 

 

Entry Benzyl chloride Product Yield
a
 / % 

1 
284 286 

88 

2 
303 304 

92 

3 

295 305 

83 

4 

299 306 

67 

5 
302 307 

94
b 

6 
308 

309 

79
c 

7 

310 311 

72 

a
Percentages refer to yields of isolated product following purification on SiO2–K2CO3. 

b
Reaction 

conducted at 40 °C. 
c
Reaction carried out with 3 eq. organostannane and 6 mol% catalyst. 

Gratifyingly, the catalyst was found to be compatible with a wide range of functionality on 

the benzyl chloride, including electron rich (entries 2 and 3, Table 20) and electron 

deficient (entry 4, Table 20) examples, with the cross-coupled products isolated in excellent 

yields. The very electron deficient 4-cyanobenzyl chloride (302) required gentle heating (40 

°C) for an efficient reaction (entry 5, Table 20). A double coupling on a bis-benzyl chloride 

309 was efficient (entry 6, Table 20), and substitution ortho to the benzyl position did not 

affect the reaction (entry 7, Table 20).  
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The screening was repeated using tributyl(2-furyl)stannane 287 in combination with 

catalyst 282 (Table 21). 

Table 21 Substrate scope of various benzyl chlorides coupling with tributyl(2-furyl)stannane 287 

using catalyst 282. 

 

Entry Benzyl chloride Product Yield
a
 / % 

1 
284 288 

83 

2 
303 312 

89 

3 

295 313 

77 

4 

299 314 

74 

5 
302 315 

87
b, c 

6 
308 316 

89
d 

7 

310 317 

83
c 

a
Percentages refer to yields of isolated product following purification on SiO2–K2CO3. 

b
Reaction 

conducted at 40 °C. 
c
Reaction time 24 h. 

d
Reaction carried out with 3 eq. organostannane and 6 

mol% catalyst.  

As with catalyst 229, the 2-furylphosphine-derived catalyst 282 was fully compatible with 

the same array of substitution on the benzyl chloride, with the desired cross-coupling 

products isolated in comparable yields in all cases. All couplings were complete within 3 h, 

with the exception of the electron-deficient 4-cyanobenzyl chloride 302 (entry 5, Table 21), 



 

135 
 

which required 24 h at 40 °C, and the doubly ortho-substituted trimethyl benzyl chloride 

317 (entry 7, Table 21), which required 24 h at RT. 

5.4.4 Tandem Stille–Suzuki Reactions 

One of the most remarkable aspects of succinimide-containing catalysts is the high 

selectivity they display for benzyl electrophiles over aryl electrophiles, a feature which has 

been previously demonstrated with complex 23.
50

 Pleasingly, upon reacting 4-bromobenzyl 

chloride (318) with tributylphenylstannane 285 or tributyl(2-furyl)stannane 287, using 

complex 229 or 282 respectively, smooth conversion was observed to the product resulting 

from reaction exclusively at the benzyl position (Scheme 99); unfortunately neither of these 

products could be separated from the biphenyl or bifuran byproducts resulting from 

homocoupling of the corresponding stannane. However, with addition of 4-

methoxyphenylboronic acid 319 and Na2CO3, along with heating to 60 °C, a Suzuki–

Miyaura coupling could be effected on the aryl bromide leading to isolation of compounds 

320 and 321, both in 73% yield, which demonstrate the selectivity of both catalysts for the 

benzyl position in Stille cross-couplings. 

 

Scheme 99 Tandem Stille–Suzuki coupling with 4-bromobenzyl chloride 318. 

5.5 Summary 

Two new succinimide-containing Pd complexes have been developed and found to be 

excellent catalysts for Stille cross-couplings with benzyl halides. Both complexes can 

mediate Stille couplings with a wide range of benzyl chlorides and a high degree of 

efficiency. They also exhibit an intriguing complementarity with respect to the 

organostannane used and a remarkable selectivity for benzyl chlorides over aryl bromides.  
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Part of the work described in this chapter has been included in a publication (see Appendix 

1).
250
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Chapter 6: Conclusions and Future Work 

6.1 Conclusions 

The work described in this thesis has explored new ways of constructing macrocyclic 

scaffolds containing a variety of unusual functionality. A number of different synthetic 

routes towards a challenging polyene macrocycle (91) have been investigated, based around 

a Pd-catalysed macrocyclisation strategy. The successful approach utilised a key Wittig 

reaction with the novel dual nucleophile 209 (Figure 42) to assemble the cyclisation 

precursor as a single stereoisomer, with a Pd-catalysed allylic Stille reaction used to close 

the macrocyclic ring and complete the synthesis. The macrocycle 91, which serves as a 

model system for a family of pyrone-containing macrocyclic natural products, has therefore 

been completed in 6.5% overall yield over 11 linear steps, and this has entailed the 

application of a variety of novel chemical reactions to complex organic systems.  

 

Figure 42 Key compounds 91, 209, 250, 259 and 264 synthesised in this study, along with the 

originally assigned structure of phacelocarpus 2-pyrone A (53). 

The retrosynthetic approach established during this initial study has been applied to 

complete the first total synthesis of the natural product phacelocarpus 2-pyrone A (264). 

Two different and complementary methods for the construction of both the (E)- and (Z)-

isomers of the highly unusual 2-pyronyl enol ether motif have been developed. The (E)-

enol ether is accessed using an E2 elimination reaction, which has allowed the synthesis of 

the advanced intermediate 250. The synthesis of the (Z)-isomer uses the highly efficient Au
I
 

-catalysed addition of a hydroxypyrone to an internal alkyne, resulting in the key compound 

259. Oxidation, reaction with the phosphonium 209 and Stille macrocyclisation as in the 



 

138 
 

model system has then led to the successful synthesis of the natural product 264. 

Spectroscopic studies on the final compound have allowed a reassignment of the 

stereochemistry around the enol ether bond from the (E)-stereoisomer as originally reported 

(53), to a (Z)-geometry in the natural compound (264). 

Further to this, an investigation has been carried out into the role of trace air in certain Stille 

couplings catalysed by the succinimide-containing Pd complex 23. This has been 

investigated in using two model systems, and it has been found that the presence of air can 

have a dramatic effect, either positive or negative, on the efficiency of the reaction. It is 

proposed that this is due to a difference in the identity of the active species under different 

working conditions. Subsequent TEM, XAS, NMR spectroscopy and LIFDI mass 

spectrometry studies have been carried out in an effort to characterise the active species in 

each case. These results suggest the formation of Pd nanoparticles upon exposure of the 

catalyst system to air, and the possibility of a Pd
II/IV

 manifold when no air is present in the 

system (Scheme 100). 

 

Scheme 100 Possible mechanistic dichotomy with catalyst 23 in the presence or absence of trace air. 

Finally, the design, synthesis and testing of two new succinimide-containing Pd complexes 

has been undertaken. These complexes, AsCat (229) and FurCat (282) have been applied as 

catalysts to the Stille cross-coupling reaction of organostannanes with a range of benzyl 

chlorides and found to be both highly efficient at room temperature, and selective for 

benzyl chlorides in the presence of aryl bromides. Complex 229 has also been found to be 

an effective catalyst for the Stille macrocyclisation step leading to compounds 91 and 264. 

 

Figure 43 Novel succinimide-containing Pd complexes investigated during this study, 229 and 282. 



 

139 
 

6.2 Future Work 

6.2.1 Synthesis of Natural Product and Model System Isomers 

Whilst the nOe studies carried out on both the pyrone 264 and aromatic macrocycle 91 

strongly support the reassignment of the geometry of the enol ether bond in the natural 

product, the most effective confirmation would be the synthesis of the alternate isomer of 

the natural product (53). 

Considerable progress has been made towards delineating a viable synthetic route towards 

macrocycle 53, but the key problem which remains to be overcome is finding an efficient 

and high-yielding route to the (E)-pyronyl enol ether substructure. As discussed in Chapter 

3, the Mitsunobu–elimination approach has thus far furnished only low yields of the desired 

product due to the harsh reaction conditions required. Given the failure of the isomerisation 

attempts (see Chapter 3) of the (Z)-stereoisomer, the most promising avenue of 

investigation would appear to be improving the efficiency of the elimination.  

One possible means to do this would be increasing the reactivity of the halide leaving 

group, thus allowing milder conditions to be employed. The replacement of the bromide 

with an iodide, which should allow a more facile elimination, gives rise to iodo-ether 324,  

and this could be available either directly by iodohydrin formation from an alkene to give 

323, or via the bromide 322 using a Finkelstein reaction (Scheme 101). 

 

Scheme 101 Proposed syntheses of iodopyronyl ether 324 as a route to the vinyl ether 325. 

Once an efficient and high-yielding route to the pyronylvinylether 326 has been 

established, the synthesis would be identical to that used for compound 264, leading to the 

total synthesis of compound 53 in 10 steps along the longest linear route (Scheme 102). 
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Scheme 102 Proposed intermediate compound 326, leading to the total synthesis of macrocycle 53. 

The (Z)-isomer of the aromatic model system could also be accessed, using the same 

strategy used to complete the natural product. This would involve reacting phenol 220 with 

acetate 256 under Au catalysis to form the (Z)-enol ether, and then completion of the 

synthetic route as before (Scheme 103). 

 

Scheme 103 Proposed synthesis of the (Z)-arylvinyl ether 327 as a precursor to macrocycle 328. 

If both isomers were available for both the natural product and the model system, a 

complete analysis of the stereochemistry could be undertaken, putting the assignment of the 

stereochemistry of the natural compound beyond all doubt. 

6.2.2 The Total Synthesis of Labillaride B 

The chemistry developed in the synthesis of the macrocycles 91 and 264 could be readily 

applied to the total synthesis of further natural products, especially those in the macrocyclic 

pyrone family. In particular brominated macrocycle labillaride B (60), also isolated from P. 

labillaridieri (see Chapter 1), presents an appealing target.
97

 This compound has exhibited 

some cytotoxic activity in initial biological tests, and no total synthesis has been reported to 

date. An initial retrosynthetic analysis is shown in Scheme 104. 
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Scheme 104 Retrosynthetic analysis of labillaride B (60) 

The skipped diene functionality could be introduced in the final stages of the synthesis 

using a (Z)-selective Wittig reaction and phosphonium salt 329. A Mitsunobu reaction 

could be employed to effect the macrocyclisation, with the open-chain precursor 

constructed using an alkylation reaction of compound 36 with alkyl iodide 330. This in turn 

should be available from 8-nonyn-1-ol (331). A proposed forward synthesis is shown in 

Scheme 105. 

 

Scheme 105 Proposed forward steps in the synthesis of labillaride B (60). 
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The known
251

 starting material 331 could be converted into the iodide 330 using a sequence 

of well-precedented transformations. This could then be reacted with the dilithiated pyrone 

species using the method of Hsung,
75

 with the primary iodide expected to react in 

preference to the hindered secondary bromide. Protecting group manipulations would be 

followed by the key Mitsunobu macrocyclisation. The final steps of the synthesis involve 

deprotection of the primary alcohol, oxidation to an aldehyde (335) and (Z)-selective Wittig 

reaction to give the natural product 60 in 16 steps from a known precursor. 

A preliminary study has already been carried out in the Fairlamb group, leading to the 

successful synthesis of epoxide 333.
203

 

6.2.3 New Methodology for the Synthesis of Skipped Dienes 

The skipped diene motif is a prominent feature of many biologically important compounds, 

meaning that methods for their stereocontrolled synthesis are highly valuable to the field of 

total synthesis. Whilst a number of methods have been reported for the synthesis of skipped 

dienes,
252-255

 the successful synthesis of bifunctional compound (Z)-209 opens up the 

potentially powerful combination of the Wittig reaction with Pd catalysed Stille coupling as 

a new route to skipped dienes. 

 

Scheme 106 Syntheses of (E)- and (Z)-209. 

The key reagents 209 should be readily available in both (E)- and (Z)-isomeric forms in two 

steps from bromobutyne (164, Scheme 106). These could then be employed in either a 

standard (Z)-selective or Schlosser-modified
256

 (E)-selective Wittig reaction with the 

appropriate aldehyde, affording a skipped diene with (E,E)-, (E,Z)- or (Z,Z)-geometry 

containing a vinyl stannane (336, Scheme 107). The tributylstannyl group could 

subsequently be reacted with an allylic or benzylic electrophile in a π-allyl Stille reaction 

with trans-23 to afford a diverse array of isomeric products (337). This approach would 

allow the possibility to achieve stereocontrol of the double bond at each position in the final 

compound by the choice of stannane, Wittig conditions and allylic electrophile. 
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Scheme 107 The use of bifunctional reagents (E)- and (Z)-209 in the synthesis of a variety of 

skipped diene systems. 

The methodology could also be extended to other cross-coupling reactions (e.g. Suzuki–

Miyaura) or olefinations (e.g. modified Julia or Julia–Kocienski reactions), if the initial 

screening proves promising. 

6.2.4 Second Generation AsCat and FurCat Catalysts 

Building on the successful study of the AsCat (229) and FurCat (282) catalysts described in 

this thesis, a more detailed mechanistic and kinetic investigation is required to clarify the 

exact role and significance of the ligands in the low-temperature Stille couplings. A 
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significant expansion of the substrate scope to that already employed can also be 

envisioned, including to other cross-coupling reactions such as the Suzuki–Miyaura. 

In addition to this, a new generation of catalysts could be anticipated, encompassing 

different imidate ligands in place of succinimide. For example, the saccharin ligand, when 

used in Pd complexes, has given rise to catalysts which have shown great promise in a 

variety of cross-couplings with coumarin-based substrates.
257-258

 Incorporation of more 

labile ligands could yield catalysts with enhanced reactivity and selectivity complementary 

to those catalysts already studied. 

The proposed target complexes, 338 and 339, could be synthesised in a similar fashion to 

the succinimide-based catalysts, by reacting Pd2(dba)3∙CHCl3 with two equivalents of the 

appropriate ligands, followed by oxidative addition with N-bromosaccharin (Scheme 108). 

 

Scheme 108 Structure and proposed synthesis of new saccharin-based Pd complexes 338 and 339. 

The reactivity of these new complexes could be analysed in comparison with the two 

complexes already studied in order to attempt to explain the role of the imidate ligand. 
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Chapter 7: Experimental Section 

7.1 General Experimental Techniques 

Solvents and Reagents 

Commercially sourced reagents were purchased from Sigma-Aldrich, Alfa Aesar, Acros 

Organics or Fluorochem and used as received unless otherwise noted. Dry ether (diethyl 

ether), THF, dichloromethane, hexane, toluene and acetonitrile were obtained from a Pure 

Solv MD-7 solvent machine and stored under nitrogen. Ether and THF were also degassed 

by bubbling nitrogen gas through the solvent with sonication. Dry pyridine, triethylamine 

and TMEDA were obtained by distillation from KOH and stored under nitrogen. Dry 

acetone and cyclohexane were obtained by distillation from CaH2 and stored under 

nitrogen. Dry DMF and DMSO were purchased from Acros Organics; DMF was degassed 

by bubbling nitrogen gas through the solvent with sonication, DMSO was used as received. 

Petrol refers to the fraction of petroleum ether boiling in the range 40–60 °C. 

Reactions requiring anhydrous or air-free conditions were carried out in dry solvent under 

an argon or nitrogen atmosphere using oven- or flame-dried glassware. 

MEPI-Pd (174),
149

 Pd2dba3∙CHCl3,
154

 PdCl2(MeCN)2,
259

 ABCat,
157

 nosylhydrazide,
162

 

dipotassium azo-1,2-dicarboxylate
163

 and PdCl2(PPh3)2
213

 were synthesised following 

literature procedures. [(AuIPr)2(μ-OH)][BF4] (255) was generously provided by Prof. S. 

Nolan.  

Chromatography 

Thin layer chromatography (TLC) was carried out using Merck aluminium backed 5554 

plates. Spots were visualised by the quenching of ultraviolet light (λmax = 254 nm) and then 

stained and heated with a solution of anisaldehyde, potassium permanganate or 

phosphomolybdic acid as appropriate. Retention factors (Rf) are reported along with the 

solvent system used in parentheses. Flash column chromatography was ordinarily 

performed using Merck 60 silica gel (particle size 40–63 µm); where indicated it was 

performed using SiO2–K2CO3 (9:1, w/w) as the stationary phase in order to remove tin-

containing impurities.
244

 Preparatory TLC was carried out using Analtech UNIPLATE 

glass-backed silica plates. The solvent system used in each case is reported in parentheses.  
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Melting Points  

Melting points were determined using a Stuart SMP3 melting point apparatus using a 

temperature ramp of 3 °C min
−1

. 

Infrared Spectroscopy 

Infrared spectra were recorded using a Thermo-Nicolet Avatar-370 FT-IR spectrometer, or 

a PerkinElmer Spectrum Two spectrometer using an UATR attachment. They were carried 

out as either a KBr disc, solution, thin film or ATR as reported in the text. Absorption 

maxima (νmax) are reported in wavenumbers (cm
−1

) and are described as strong (s), medium 

(m), weak (w) or broad (br). Where indicated, reactions were monitored in situ using a 

Mettler Toledo ReactIR ic10 with a k6 conduit SiComp (silicon) probe and MCT detector. 

Nuclear Magnetic Resonance Spectroscopy 

Proton (
1
H) and Carbon-13 (

13
C) NMR spectra were recorded on one of a Jeol ECX400 or 

Jeol ECS400 spectrometer at 400 and 100 MHz respectively, a Bruker AV500 operating at 

500 and 125 MHz respectively, or a Bruker AV700 operating at 700 and 175 MHz 

respectively. The 
13

C NMR spectrum of compound 264 was recorded on a Bruker 

AVIII800 spectrometer (Manchester Institute of Biotechnology) operating at 200 MHz. 

Chemical shifts are reported in parts per million (ppm) of tetramethylsilane using residual 

solvent as an internal standard (CHCl3 δH = 7.26 ppm; CDCl3 δC = 77.16 ppm). 

Multiplicities are described as singlet (s), doublet (d), triplet (t), quartet (q), quintet (quin), 

multiplet (m), apparent (app.) and broad (br). Coupling constants (J) are quoted to the 

nearest 0.1 Hz. Spectra were processed using MestreNova and, where required, exported as 

JPEG images into the appropriate document. Copies of 
1
H and 

13
C NMR spectra for all 

compounds are given in Appendix 7. 

Boron-11 (
11

B) spectra were recorded on a Jeol ECS400 spectrometer at 128 MHz. 

Chemical shifts are referenced externally to BF3∙OEt2 and reported in parts per million 

(ppm). 

Fluorine-19 (
19

F) spectra were recorded on a Jeol ECX400 or Jeol ECS400 spectrometer at 

376 MHz. Chemical shifts are referenced externally to CFCl3 and reported in parts per 

million (ppm). 

Phosphorus-31 (
31

P) spectra were recorded on a Jeol ECX400 or Jeol ECS400 spectrometer 

at 162 MHz. Chemical shifts are referenced externally to H3PO4 and reported in parts per 

million (ppm). 
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Tin-119 (
119

Sn) spectra were recorded on a Bruker AV500 spectrometer at 187 MHz. 

Chemical shifts are referenced externally to SnCl4 and reported in parts per million (ppm). 

Mass Spectrometry 

Electrospray ionisation (ESI) mass spectrometry was performed on a Bruker daltronics 

micrOTOF spectrometer. Electron impact (EI), atmospheric pressure chemical ionisation 

(APCI) and liquid induction field desorption ionisation (LIFDI) mass spectrometry were 

performed on a Waters GCT Premier mass spectrometer. Mass to charge ratios (m/z) are 

reported in Daltons with percentage abundance in parentheses along with the corresponding 

fragment ion, where known. High resolution mass spectra (HRMS) are reported with less 

than 5 ppm error. 

UV–Visible Spectroscopy 

UV–visible spectroscopy was performed on a Jasco V-560 spectrometer, with a background 

taken in the appropriate solvent prior to recording spectra, using a cell with a path length of 

1 cm. The wavelength of maximum absorption (λmax) is reported in nm along with the 

extinction coefficient (ε) in dm
3
 mol

−1
 cm

−1
. Copies of the appropriate absorption spectra 

and Beer–Lambert plots are given in Appendix 6. 

Elemental Analysis 

Elemental analysis was carried out using an Exeter Analytical CE-440 Elemental Analyser, 

with the percentages reported as an average of two runs. 

X-Ray Crystallography 

Diffraction data were collected at 110 K on an Agilent SuperNova diffractometer with 

Mo Kα radiation (λ = 0.71073 Å). Data collection, unit cell determination and frame 

integration were carried out with CrysalisPro. Absorption corrections were applied using 

face indexing and the ABSPACK absorption correction software within CrysalisPro. 

Structures were solved and refined using Olex2
260

 implementing SHELX algorithms and 

the Superflip
261-263

 structure solution program. Structures were solved by charge flipping, 

Patterson or direct methods and refined with the ShelXL
264

 package using full-matrix least 

squares minimisation. All non-hydrogen atoms were refined anisotropically. Tables of 

crystallographic data are given in Appendix 3. 
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Transmission Electron Microscopy 

Transmission election microscopy was performed at the Department of Biology 

Technology Facility, University of York, using an FEI Tecnai 12 G2 BioTWIN microscope 

operating at 120 kV, and images were captured using SIS Megaview III camera. Samples 

were suspended in ethanol and applied to a TEM grid with a Formvar/carbon film. The 

resulting images were enlarged and particles measured manually. 

7.2 General Procedures 

General Procedure A: Synthesis of Succinimide Catalysts 

To a Schlenk tube containing Pd2dba3∙CHCl3 (1 eq.) and ligand L (4 eq.) under N2 was 

added dry CH2Cl2 (70 mL mmol
−1

), and the resulting mixture was stirred for 10 min at RT, 

resulting in a clear orange to brown solution. After this time, a solution of N-

bromosuccinimide (recrystallized from H2O and dried in vacuo, 2 eq.) in dry CH2Cl2 (20 

mL mmol
−1

) was added in one portion and the reaction mixture stirred for a further 10 min. 

The resulting yellow to orange solution was diluted with petroleum ether (ca. 1.5 L 

mmol
−1

) to precipitate the complex. The yellow-to-pale-brown solid was filtered off, 

washed with petrol and dried in vacuo to afford the desired compound. Complexes could be 

purified, if needed, by dissolving in the minimum volume of CH2Cl2 and precipitating with 

ether. 

General Procedure B: Stille cross-coupling reactions with benzyl bromide for air-

effect studies 

A Schlenk tube (for dimensions see Section 4.2, Chapter 4) containing cis- or trans-

(Ph3P)2Pd(N-succ)Br 23 (4.7 mg, 5.8 μmol) and a stirrer bar was evacuated and backfilled 

with N2 three times. A solution of stannane (E)- or (Z)-278 (50 mg, 0.13 mmol) in dry, 

degassed DMF (1.5 mL) was added, followed by benzyl bromide (14 μL, 20 mg, 0.12 

mmol). The reaction mixture was then treated in one of two ways: (a) the flow of N2 was 

closed at the Schlenk side-arm and the stopper was removed for five seconds (timed with a 

stopwatch) with rapid stirring, before being replaced and the vessel left sealed; (b) the 

Schlenk tube was sealed under a flow of N2. The reactions were then heated to the specified 

temperature and stirred for 3 h. The resulting solution was cooled to RT, the solvent 

removed in vacuo and the crude residue analysed by 
1
H NMR spectroscopy or other 

methods as appropriate. 
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General procedure C: Room-temperature Stille cross-coupling reactions with benzyl 

chlorides 

To a solution of the appropriate catalyst (5.84 μmol, 0.05 eq.) and benzyl halide (0.117 

mmol, 1 eq.) in dry DMF (1.5 mL) under N2 in a Schlenk tube was added the appropriate 

stannane (0.176 mmol, 1.5 eq.). The reaction vessel was sealed and stirred at RT for the 

required time. After this time the solution was diluted with ether (20 mL), washed with 

water (3 × 10 mL), dried (MgSO4), filtered and evaporated. When purification was 

performed, it was carried out using flash column chromatography with a SiO2–K2CO3 (9:1, 

w/w) stationary phase and the solvent system specified for each compound. 

7.3 Synthetic Procedures and Compound Data 

Throughout this section, laboratory notebook references are given for the experiment from 

which the synthetic procedure is quoted. Where reactions were not optimised by the author, 

both the initial test reaction details and the optimised procedure are given, along with both 

notebook references. For experiment references for specific NMR data, see the relevant 

NMR spectra in Appendix 7. Known compounds are indicated with a literature reference 

next to the compound name. 

1-Trimethylsilyl-2-pentyn-5-ol (110)
109

 

 

To a solution of 4-pentyn-1-ol (500 mg, 5.94 mmol) in dry THF (20 mL) at −78 °C was 

added dropwise n-butyllithium (2.33 M in hexanes, 5.10 mL, 11.9 mmol), and the resulting 

white suspension was stirred for 1 h. The reaction was then quenched by the addition of 

chlorotrimethylsilane (1.59 mL, 12.5 mmol) and allowed to warm to RT over 2 h. After this 

time the solution was poured into a mixture of ether (15 mL) and 10% aq. HCl (15 mL) and 

stirred vigorously overnight. The layers were separated and the aqueous phase was 

extracted with ether (2  30 mL). The combined organic layers were washed with 

brine (2  10 mL), dried over MgSO4, filtered and evaporated. Flash chromatography 

(SiO2, CH2Cl2→CH2Cl2/MeOH, 99:1, v/v) afforded the title compound as a colourless oil 

(848 mg, 91%). 

Rf 0.38 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3332br, 2957m, 2175m, 1431w, 

1249s, 1051m, 984w, 925w, 836s, 758s, 697m, 639m, 581w; 
1
H NMR (400 MHz, CDCl3) 

δ 3.75 (q, J = 5.5 Hz, 2H), 2.34 (t, J = 6.9 Hz, 2H), 1.76 (quin, J = 6.5 Hz, 2H), 1.57 (br d, J 

= 3.2 Hz, 1H), 0.13 (s, 9H); 
13

C NMR (100 MHz, CDCl3) δ 106.7, 85.4, 62.1, 31.2, 16.7, 
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0.2; MS (ESI
+
) m/z (rel. %) 179 ([M+Na]

+
, 65), 157 ([M+H]

+
, 100); HRMS (ESI

+
) 

157.1041 [M+H]
+
, C8H17OSi requires 157.1043. 

Lab book reference number: TOR-1-39 

1-Trimethylsilyl-5-iodo-2-pentyne (100)
109

 

 

To a solution of alcohol 110 (1.38 g, 8.80 mmol) in ether (36 mL) and MeCN (12 mL) was 

added triphenylphosphine (2.54 g, 9.68 mmol) and imidazole (659 mg, 9.68 mmol). The 

resultant solution was cooled to 0 °C and iodine (2.46 g, 9.68 mmol) was added. The 

reaction mixture was stirred at RT for 6 h during which time a white precipitate formed. 

The reaction was then cooled to 0 °C, filtered and concentrated in vacuo. Ether (100 mL) 

was added, and the organic solution was washed with 10% aq. Na2S2O3 (60 mL). The layers 

were separated and the aqueous layer was extracted with ether (60 mL), and the combined 

organic layers were then washed with brine (60 mL), dried over MgSO4, filtered and 

evaporated. Flash chromatography (SiO2, heptane/ether, 98:2, v/v) afforded the title 

compound as a colourless oil (2.07 g, 88%).
 

Rf 0.67 (ether/petrol, 1:9, v/v); IR (thin film, cm
−1

) νmax 2958m, 2859w, 2175m, 1428w, 

1323w, 1248s, 1221w, 1168w, 1021w, 1031w, 836s, 758s, 698m, 638m, 572w; 
1
H NMR 

(400 MHz, CDCl3) δ 3.29 (t, J = 6.8 Hz, 2H), 2.36 (t, J = 6.8 Hz, 2H), 2.00 (quin, J = 6.8 

Hz, 2H), 0.15 (s, 9H); 
13

C NMR (100 MHz, CDCl3) δ 105.0, 85.9, 32.1, 21.0, 5.30, 0.17. 

Lab book reference number: TOR-4-324 

3-(6-Trimethylsilyl-5-hexynyl)phenol (101) 

 

To a solution of TMEDA (235 µL, 1.58 mmol) in dry hexane (5 mL) at −78 °C was added 

dropwise n-butyllithium (2.3 M in hexane, 0.68 mL, 1.58 mmol), followed by potassium 

tert-butoxide (177 mg, 1.58 mmol) in one portion. The reaction mixture was warmed to 

−20 °C and m-cresol (66 µL, 0.63 mmol) added. After 3.5 h, the cooling bath was removed, 

dry THF (2 mL) added, and the reaction cooled to −78 °C before a solution of iodide 100 

(200 mg, 0.75 mmol) in dry THF (1 mL) was added. The cooling bath was then removed, 
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and the reaction stirred for 1 h before being quenched with water (5 mL) and 6 M aq. HCl 

(1.2 mL). The layers were separated, and the aqueous layer extracted with ether 

(3  20 mL). The combined organic layers were washed with brine (20 mL), dried over 

MgSO4, filtered and evaporated. Flash chromatography (SiO2, petrol/ether, 9:1, v/v) 

afforded the title compound as a colourless oil (103 mg, 76%). 

Rf 0.18 (ether/petrol, 1:4, v/v); IR (CHCl3, cm
−1

) νmax 3378br, 2940m, 2900w, 2860w, 

2173m, 1598m, 1589m, 1487w, 1455m, 1249s, 1155m, 842s, 781m, 760s, 696s; 
1
H NMR 

(400 MHz, CDCl3) δ 7.17–7.10 (m, 1H), 6.75 (dq, J = 8.1, 0.8 Hz, 1H), 6.67–6.59 (m, 2H), 

4.74 (br s, 1H), 2.57 (t, J = 7.6 Hz, 2H), 2.23 (t, J = 7.1 Hz, 2H), 1.70 (tt, J = 8.6, 6.7 Hz, 

2H), 1.58–1.49 (m, 2H), 0.14 (s, 9H); 
13

C NMR (100 MHz, CDCl3) δ 155.6, 144.5, 129.6, 

121.1, 115.4, 112.8, 107.5, 84.8, 35.3, 30.4, 28.2, 19.9, 0.3; MS (ESI
+
) m/z (rel. %) 269 

([M+Na]
+
, 30), 247 ([M+H]

+
, 100); HRMS (ESI

+
) 247.1512 [M+H]

+
, C15H23OSi requires 

247.1513. 

Lab book reference number: TOR-1-56 

Ethyl (2E)-3-phenoxyprop-2-enoate (113)
265

 

 

A solution of ethyl propiolate (200 mg, 2.04 mmol), phenol (192 mg, 2.04 mmol) and 

DABCO (22.5 mg, 0.20 mmol) in CH2Cl2 (12 mL) was stirred at RT for 10 min. After this 

time, the solvent was removed in vacuo and the residue purified by flash chromatography 

(SiO2, petrol/ether, 19:1, v/v), affording the title compound as a yellow oil (379 mg, 97%). 

Rf 0.83 (EtOAc/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 2982w, 1709s, 1649s, 1632m, 

1588s, 1488s, 1368w, 1319m, 1210s, 1186s, 1167s, 1110s, 1044m, 950m, 835m, 756s, 

690s, 492w; 
1
H NMR (400 MHz, CDCl3) δ 7.80 (d, J = 12.2 Hz, 1H), 7.43–7.32 (m, 2H), 

7.22–7.16 (m, 1H), 7.12–7.02 (m, 2H), 5.55 (d, J = 12.2 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 

1.28 (t, J = 7.1 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 167.4, 159.2, 156.0, 130.1, 125.1, 

118.2, 102.3,  60.2, 14.5; MS (ESI
+
) m/z (rel. %) 215 ([M+Na]

+
, 100), 193 ([M+H]

+
, 95); 

HRMS (ESI
+
) 215.0678 [M+Na]

+
, C11H12NaO3 requires 215.0679. 

Lab book reference number: TOR-1-1 
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Ethyl (2E)-3-(3-methylphenoxy)prop-2-enoate (114) 

 

A solution of ethyl propiolate (200 mg, 2.04 mmol), m-cresol (220 mg, 2.04 mmol) and 

DABCO (22.5 mg, 0.20 mmol) in CH2Cl2 (12 mL) was stirred at RT for 24 h. After this 

time, the solvent was removed in vacuo and the residue purified by flash chromatography 

(SiO2, petrol/ether, 19:1→9:1, v/v), affording the title compound as a colourless oil (221 

mg, 53%). 

Rf 0.69 (ether/petrol, 1:3, v/v); IR (thin film, cm
−1

) νmax 2981w, 1710s, 1650s, 1608m, 

1584s, 1488m, 1462w, 1368w, 1295w, 1247s, 1178m, 1108s, 1144s, 1043m, 951m, 839m, 

780m, 689m; 
1
H NMR (400 MHz, CDCl3) δ 7.79 (d, J = 12.2 Hz, 1H), 7.25 (td, J = 7.6, 0.6 

Hz, 1H), 7.06–6.94 (m, 1H), 6.92–6.83 (m, 2H), 5.53 (d, J = 12.2 Hz, 1H), 4.19 (q, J = 7.1 

Hz, 2H), 2.36 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 167.5, 159.4, 

156.0, 140.4, 129.8, 125.9, 118.8, 115.2, 102.1, 60.2, 21.5, 14.5 ; MS (ESI
+
) m/z (rel. %) 

229 ([M+Na]
+
, 100), 207 ([M+H]

+
, 25); HRMS (ESI

+
) 229.0827 [M+Na]

+
, C12H14NaO3 

requires 229.0835. 

Lab book reference number: TOR-1-4 

Pentafluorophenyl 2-pentynoate (117) 

 

2-Pentynoic acid (200 mg, 2.04 mmol) and pentafluorophenol (413 mg, 2.24 mmol) were 

dissolved in dry CH2Cl2 (10 mL) and cooled to 0 °C. DCC (462 mg, 2.24 mmol) was added 

and the reaction mixture was stirred for 6 h at RT before being filtered and concentrated in 

vacuo. Flash chromatography (SiO2, petrol/ether, 99:1, v/v) afforded the title compound as a 

colourless oil (502 mg, 93%). 

Rf 0.63 (EtOAc/petrol, 3:7, v/v); IR (CDCl3, cm
−1

) νmax 2257m, 2224m, 1752m, 1521s; 
1
H 

NMR (400 MHz, CDCl3) δ 2.46 (q, J = 7.5 Hz, 2H), 1.27 (t, J = 7.5 Hz, 3H); 
13

C NMR 

(101 MHz, CDCl3) 148.9, 141.2 (ddq, JC–F = 252.9, 12.8, 4.2 Hz), 140.0 (dtt, JC–F = 253.8, 

13.3, 3.8 Hz), 138.0 (dm, 
1
JC–F = 249.0 Hz), 124.6–124.1 (m), 96.8, 70.3, 12.9, 12.3; 

19
F 

NMR (376 MHz, CDCl3) δ −151.7–−152.3 (m, 2F), −157.0 (t, J = 21.5 Hz, 1F), −161.5–

−162.2 (m, 2F); MS (LIFDI
+
) m/z (rel. %) 183 ([M−C5H5O]

+
, 80), 81 ([M−C6F5O]

+
, 100). 
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Lab book reference number: TOR-1-5 

3-Methylphenyl (2E)-3-(3-methylphenoxy)pent-2-enoate (118) 

 

A solution of alkyne 117 (30 mg, 0.11 mmol), m-cresol (12 mg, 0.11 mmol) and DABCO 

(2.6 mg, 0.023 mmol) in CH2Cl2 (1.5 mL) was stirred at RT for 5.5 h, after which time the 

solvent was removed in vacuo. Flash chromatography (SiO2, petrol→petrol/ether, 99:1, v/v) 

afforded the title compound as a colourless oil (7 mg, 27%). 

Rf 0.71 (ether/petrol, 1:4, v/v); IR (CHCl3, cm
−1

) νmax 3684m, 3047w, 2922m, 1726s, 1620s, 

1582m, 1485m; 
1
H NMR (400 MHz, CDCl3) δ 7.29 (td, J = 7.5, 1.1 Hz, 1H), 7.21 (t, J = 

7.8 Hz, 1H), 7.06 (dd, J = 6.9, 1.3 Hz, 1H), 7.01–6.94 (m, 1H), 6.89–6.77 (m, 4H), 4.96 (s, 

1H), 2.96 (q, J = 7.5 Hz, 2H), 2.38 (s, 3H), 2.32 (s, 3H), 1.29 (t, J = 7.5 Hz, 3H); 
13

C NMR 

(101 MHz, CDCl3) δ 180.00, 166.14, 153.37, 150.75, 140.45, 139.47, 129.83, 129.06, 

126.74, 126.31, 122.52, 122.13, 118.84, 118.51, 94.03, 25.32, 21.41, 21.38, 11.88; MS 

(ESI
+
) m/z (rel. %) 297 ([M+H]

+
, 20), 319 ([M+Na]

+
, 100); HRMS (ESI

+
) 319.1296 

[M+Na]
+
, C19H20NaO3 requires 319.1305. 

Lab book reference number: TOR-1-10 

Ethyl (E)-2-pentenoate (119)
266

 

 

A solution of (E)-2-pentenoic acid (500 mg, 5.0 mmol), and concentrated H2SO4 (0.1 mL) 

in EtOH (5 mL) was stirred under reflux for 18 h. The reaction mixture was cooled to RT, 

and the solvent evaporated in vacuo, before the addition of water (15 mL). The resulting 

aqueous solution was extracted with ether (4  25 mL), and the combined organic layers 

dried over MgSO4, filtered and evaporated, with no heating, to afford the title compound as 

a volatile colourless oil, which was used without further purification (634 mg, 99%). 

Rf 0.64 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 2973m, 1717s, 1654m, 1462w, 

1368m, 1333m, 1264m, 1179s, 1124m, 1042s, 978m, 912w, 859m, 710w; 
1
H NMR (400 

MHz, CDCl3) δ 7.01 (dt, J = 15.7, 6.4 Hz, 1H), 5.80 (dt, J = 15.7, 1.7 Hz, 1H), 4.17 (q, J = 

7.1 Hz, 2H), 2.30–2.12 (m, 2H), 1.27 (t, J = 7.1 Hz, 3H), 1.06 (t, J = 7.4 Hz, 3H); 
13

C NMR 

(101 MHz, CDCl3) δ 167.0, 150.8, 120.5, 60.2, 25.4, 14.4, 12.3. 
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Lab book reference number: TOR-1-16 

N-Bromosaccharin (125)
267

 

 

To a solution of sodium saccharin (25 g, 103.6 mmol), Na2CO3 (5.5 g, 51.8 mmol) and KBr 

(12.3 g, 103.6 mmol) in water (500 mL) with mechanical stirring was added a solution of 

oxone (63.7 g, 103.6 mmol) in water (60 mL) at 0 °C, over 1 h using a dropping funnel. 

The cooling was removed and the reaction mixture stirred at RT for 24 h, after which time 

it was cooled to 0 °C and the resulting precipitate filtered, washed with ice-cold water and 

dried in vacuo to give the title compound as a white solid (25.7 g, 95%). 

M.P. 180–183 °C (lit.
267

 177.5–181 °C); IR (KBr, cm
−1

) νmax 3093m, 1639s, 1584s, 1458m, 

1334m, 1254s, 1153s, 1052m, 958s; 
1
H NMR (400 MHz, CDCl3) δ 8.12–8.07 (m, 1H), 

7.99–7.93 (m, 1H), 7.90 (td, J = 7.6, 1.5 Hz, 1H), 7.85 (td, J = 7.5, 1.5 Hz, 1H); 
13

C NMR 

(101 MHz, CDCl3) δ 157.9, 138.4, 135.2, 134.8, 127.2, 125.9, 121.8; MS (ESI
+
) m/z (rel. 

%) 228 ([M−Br+2Na]
+
, 100), 206 ([M−Br+H+Na]

+
, 25), 184 ([M−Br+2H]

+
, 80). 

Lab book reference number: TOR-8-697 

N,N-Dibromo-p-toluenesulfonamide (126)
268

 

 

To a solution of p-toluenesulfonamide (5 g, 29.2 mmol) and Na2CO3 (3.4 g, 32.1 mmol) in 

water (25 mL) with vigorous stirring was added bromine (3.0 mL, 58.4 mmol), resulting in 

the formation of a thick precipitate. After 2 h, the precipitate was filtered, washed with ice-

cold water and dried in vacuo to afford the title compound as a yellow solid (8.18 g, 85%).  

M.P. 94–95 °C (lit.
269

 92–93 °C); IR (KBr, cm
−1

) νmax 3060w, 2985w, 1925w, 1596s, 

1491m, 1447m, 1406m, 1359s, 1107s, 1083s, 814s, 742s, 659s, 561s; 
1
H NMR (400 MHz, 

C6D6) δ 7.81 (d, J = 8.0 Hz, 2H), 6.70 (d, J = 8.0 Hz, 2H), 1.82 (s, 3H); 
13

C NMR (100 

MHz, C6D6) δ 145.9, 136.8, 131.0, 128.0, 20.9; MS (ESI
+
) m/z (rel. %) 194 

([M−2Br+2H+Na]
+
, 100), 172 ([M−2Br+3H]

+
, 20). 

Lab book reference number: TOR-1-25 
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Ethyl (2R*, 3R*)-2-bromo-3-hydroxypentanoate (127)
270

 

 

To a solution of ester 119 (300 mg, 2.34 mmol) in MeCN (4 mL) and water (1 mL) was 

added N-bromosaccharin 125 (675 mg, 2.57 mmol) in one portion. The resulting solution 

was stirred for 2 h at RT before being diluted with ether (30 mL). The reaction mixture was 

washed successively with sat. aq. NaHCO3 (20 mL), sat. aq. Na2S2O3 (20 mL) and water 

(20 mL), dried over MgSO4, filtered and concentrated in vacuo. Flash chromatography 

(SiO2, petrol/ether, 85:15, v/v) afforded the title compound as a colourless oil (349 mg, 

66%).  

Rf 0.45 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3450br, 2977m, 2938w, 2880w, 

1726s, 1464m, 1372m, 1280s, 1184s, 1148s, 1097m, 1035s, 972s, 894w, 856w, 803w, 

643w; 
1
H NMR (400 MHz, CDCl3) δ 4.24 (q, J = 7.2 Hz, 2H), 4.12 (d, J = 7.7 Hz, 1H), 

3.93 (dddd, J = 8.6, 7.7, 6.2, 3.2 Hz, 1H), 2.69 (d, J = 6.2 Hz, 1H), 1.87 (dqd, J = 14.9, 7.4, 

3.2 Hz, 1H), 1.53 (ddq, J = 14.9, 8.6, 7.4 Hz, 1H), 1.29 (t, J = 7.2, 3H), 1.00 (t, J = 7.4 Hz, 

3H); 
13

C NMR (100 MHz, CDCl3) δ 169.5, 73.7, 62.3, 47.8, 26.5, 14.0, 9.7; MS (ESI
+
) m/z 

(rel. %) 247 ([M+Na]
+
, 100); HRMS (ESI

+
) 246.9943 [M+Na]

+
, C7H13BrNaO3 requires 

246.9940. 

Lab book reference number: TOR-1-29 

Ethyl 2,3-epoxypentanoate (130)
271

 

 

Bromohydrin 127 (50 mg, 0.22 mmol), 4-bromo-6-methyl-2-pyrone (46 mg, 0.24 mmol) 

and triethylamine (34 µL, 0.24 mmol) were dissolved in CH2Cl2 (2 mL) and heated to 

reflux for 7 h, then stirred at RT for 17 h. After this time the solvent was removed in vacuo. 

Flash chromatography (SiO2, petrol/ether, 80:20, v/v) afforded the title compound as a 

colourless oil (16 mg, 50%). 

1
H NMR (400 MHz, CDCl3) δ 4.29–4.15 (m, 2H), 3.21 (d, J = 1.9 Hz, 1H), 3.14 (ddd, J = 

6.0, 4.9, 1.9 Hz, 1H), 1.75–1.57 (m, 2H), 1.29 (td, J = 7.1, 0.5 Hz, 3H), 1.01 (t, J = 7.5 Hz, 

3H); 
13

C NMR (100 MHz, CDCl3) δ 169.5, 61.6, 59.5, 52.9, 24.6, 14.2, 9.6; MS (ESI
+
) m/z 

(rel. %) 167 ([M+Na]
+
, 100); HRMS (ESI

+
) 167.0674 [M+Na]

+
, C7H12NaO3 requires 

167.0679. 



 

156 
 

Lab book reference number: TOR-1-30 

Ethyl 2-bromopent-2-enoate (132)
272

 

 

Bromohydrin 127 (100 mg, 0.44 mmol), m-cresol (70 µL, 0.67 mmol) and 

triphenylphosphine (175 mg, 0.67 mmol) were dissolved in dry THF (2 mL) and cooled to 

0 °C. DIAD (131 µL, 0.67 mmol) was added and the resulting solution stirred at RT for 

21 h. The solvent was removed in vacuo, and the resulting residue taken up in ether (5 mL) 

and filtered. The filtrate was concentrated in vacuo. Flash chromatography (SiO2, 

ether/petrol, 1:4, v/v) afforded the title compound as a yellow oil (35 mg, 38%, E/Z = 1:1). 

All data is quoted for a mixture of both geometrical isomers. 

Rf 0.58 (ether/petrol, 1:4, v/v); 
1
H NMR (400 MHz, CDCl3) δ 7.26 (t, J = 7.1 Hz, 1H), 6.65 

(t, J = 7.8 Hz, 1H), 4.26 (q, J = 7.1 Hz, 2H), 4.25 (q, J = 7.1 Hz, 2H), 2.49 (quin, J = 7.6 

Hz, 2H), 2.34 (quin, J = 7.5 Hz, 2H), 1.32 (t, J = 7.1 Hz, 3H), 1.32 (t, J = 7.1 Hz, 3H), 1.09 

(t, J = 7.6 Hz, 3H), 1.05 (t, J = 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 163.0, 162.7, 

150.0, 147.5, 115.9, 110.9, 62.5, 62.2, 25.7, 25.1, 14.3, 14.2, 13.3, 12.0; MS (ESI
+
) m/z (rel. 

%) 207 ([M+H]
+
, 100); HRMS (ESI

+
) 207.0015 [M+H]

+
, C7H12BrO2 requires 207.0015. 

Lab book reference number: TOR-1-32 

Ethyl (E)-3-(trifluoromethylsulfonyloxy)pent-2-enoate (E-134)
129

 

 

To a solution of ethyl propionylacetate (3.31 g, 23.0 mmol) in hexane (116 mL) was added 

water (29 mL), and the resulting biphasic mixture was cooled to 5 °C with rapid stirring. 

Tetramethylammonium hydroxide (25 wt% aq., 41.9 mL, 115 mmol) was added and the 

biphasic mixture was vigorously stirred for ca. 10 min, followed by dropwise addition of 

triflic anhydride (9.7 mL, 57.4 mmol). After 20 min, the reaction mixture was diluted with 

water (120 mL) and the layers separated. The aqueous layer was extracted with ethyl 

acetate (2  100 mL), and the combined organic layers were washed with water (100 mL), 

brine (100 mL), dried over MgSO4, filtered and evaporated. Flash chromatography (SiO2, 

petrol/ether, 19:1, v/v) afforded the title compound as a colourless oil (4.04 g, 63%). 
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Rf 0.70 (ether/petrol, 1:1, v/v); IR (CHCl3, cm
−1

) νmax 2926m, 2855w, 1729m, 1666w, 

1425m, 1374w, 1246m, 1214s, 1143s, 1112m, 1026m, 963s, 881w, 855m; 
1
H NMR (400 

MHz, CDCl3) δ 5.92 (s, 1H), 4.22 (q, J = 7.1 Hz, 2H), 2.94 (q, J = 7.5 Hz, 2H), 1.31 (t, J = 

7.1 Hz, 3H), 1.21 (t, J = 7.5 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 166.9, 164.2, 120.1 (q, 

1
JC–F = 320.1 Hz), 112.2, 61.3, 25.2, 14.2, 10.9; 

19
F NMR (376 MHz, CDCl3) δ −73.9; MS 

(ESI
+
) m/z (rel. %) 277 ([M+H]

+
, 100); HRMS (ESI

+
) 277.0357 [M+H]

+
, C8H12F3O5S 

requires 277.0352. 

Lab book reference number: TOR-4-312 

Ethyl (Z)-3-(trifluoromethylsulfonyloxy)pent-2-enoate (Z-134)
129

 

 

Title compound was isolated as a side product during the synthesis of triflate (E)-134 

(37 mg, 10%). 

Rf 0.47 (ether/petrol, 1:1, v/v); IR (CHCl3, cm
−1

) νmax 2983w, 2927m, 1732s, 1681m, 1427s, 

1371w, 1303m, 1206s, 1190s, 1142s, 1030m, 943w, 916s, 857m, 655w; 
1
H NMR (400 

MHz, CDCl3) δ 5.74 (t, J = 1.3 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 2.42 (qd, J = 7.3, 1.3 Hz, 

2H), 1.29 (t, J = 7.1 Hz, 3H), 1.17 (t, J = 7.3 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 

162.6, 160.3, 118.4 (q, 
1
JC–F = 319.9 Hz), 111.1, 61.4, 27.8 (q, 

5
JC–F = 2.3 Hz), 14.1, 10.5; 

19
F NMR (376 MHz, CDCl3) δ −74.6; MS (ESI

+
) m/z (rel. %) 299 ([M+Na]

+
, 100), 277 

([M+H]
+
, 45); HRMS (ESI

+
) 277.0349 [M+H]

+
, C8H12F3O5S requires 277.0352. 

Lab book reference number: TOR-1-35 

Ethyl (E)-3-(3-methylphenoxy)pent-2-enoate (116) 

 

A flame-dried Schlenk tube containing a stirrer bar was charged with triflate E-134 (100 

mg, 0.359 mmol) and K3PO4 (153 mg, 0.719 mmol) before being evacuated and backfilled 

with nitrogen. Dry toluene (2 mL) was added, followed by a premixed solution of 

Pd(OAc)2 (4.0 mg, 0.018 mmol) and X-Phos (8.6 mg, 0.018 mmol) in dry toluene (0.5 mL). 

Transfer was made quantitative with an additional portion of dry toluene (0.5 mL). Finally 

m-cresol (45 µL, 0.431 mmol) was added via syringe and the reaction heated to 100 °C for 

24 h. The reaction mixture was then filtered through Amberlite and evaporated. Flash 
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chromatography (SiO2, petrol/ether 97:3→9:1, v/v) afforded the title compound as a 

colourless oil (63 mg, 75%). 

Rf 0.52 (ether/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 2937m, 1713m, 1631s, 1586m, 

1486w, 1462w, 1377w, 1283w, 1249m, 1128s, 1047s, 837w, 692m; 
1
H NMR (400 MHz, 

CDCl3) δ 7.30–7.21 (m, 1H), 7.01 (d, J = 7.5 Hz, 1H), 6.84–6.76 (m, 2H), 4.75 (s, 1H), 

4.07 (q, J = 7.1 Hz, 2H), 2.92 (q, J = 7.5 Hz, 2H), 2.34 (s, 3H), 1.27 (t, J = 7.5 Hz, 3H), 

1.19 (t, J = 7.1 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 117.8, 167.5, 153.5, 140.3, 129.7, 

126.4, 122.2, 118.5, 95.0, 59.5, 25.0, 21.4, 14.4, 12.0; MS (ESI
+
) m/z (rel. %) 257 

([M+Na]
+
, 30), 235 ([M+H]

+
, 100); HRMS (ESI

+
) 235.1330 [M+H]

+
, C14H19O3 requires 

235.1329. 

Lab book reference number: TOR-1-47 

(E)-3-(3-Methylphenoxy)pent-2-enoic acid (340) 

 

A solution of ester 116 (87 mg, 0.37 mmol), LiBr (321 mg, 3.70 mmol) and triethylamine 

(153 µL, 1.11 mmol) in MeCN (1 mL) and water (20 µL) was stirred at RT for 6 h, then 

heated to reflux for 3.5 days. After this time, water (5 mL) was added, the aqueous solution 

acidified to pH 2, and then extracted with CH2Cl2 (3  20 mL). The combined organic 

layers were washed with water (10 mL), dried over MgSO4, filtered and evaporated. Flash 

chromatography (SiO2, petrol/ether, 9:1→ether, v/v) afforded the title compound as a white 

solid (34 mg, 45%). 

1
H NMR (400 MHz, CDCl3) δ 7.30–7.22 (m, 1H), 7.03 (d, J = 8.1 Hz, 1H), 6.91–6.66 (m, 

2H), 4.78 (s, 1H), 2.93 (q, J = 7.5 Hz, 2H), 2.36 (s, 3H), 1.28 (t, J = 7.5 Hz, 3H); 
13

C NMR 

(100 MHz, CDCl3) δ 180.0, 173.1, 153.4, 140.4, 129.8, 126.7, 122.1, 118.5, 94.5, 25.4, 

21.4, 12.0; MS (ESI
+
) m/z (rel. %) 229 ([M+Na]

+
, 50), 207 ([M+H]

+
, 100); HRMS (ESI

+
) 

207.1024 [M+H]
+
, C12H15O3 requires 207.1016. 

Lab book reference number: TOR-2-108 
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4-Iodophenyl (E)-3-(3-methylphenoxy)pent-2-enoate (135) 

 

4-Iodophenol (27.5 mg, 0.13 mmol) was added to a solution of acid 338 (23.4 mg, 0.11 

mmol), DCC (25.8 mg, 0.13 mmol) and DMAP (1.4 mg, 0.01 mmol) in dry CH2Cl2 (2 mL), 

and the reaction stirred for 22 h at RT. The resulting suspension was filtered, and the filtrate 

concentrated in vacuo. Flash chromatography (SiO2, petrol/ether, 19:1, v/v) afforded the 

title compound as a white solid (39 mg, 85%). Single crystals were grown by slow 

evaporation from MeOH in a small vial. 

M.P. 100–102 °C; Rf 0.49 (ether/petrol, 1:9, v/v); IR (thin film, cm
−1

) νmax 2926w, 1732m, 

1626s, 1582m, 1481s, 1380w, 1247m, 1206s, 1167w, 1145w, 1108s, 991m, 806w, 693w; 

1
H NMR (400 MHz, CDCl3) δ 7.67–7.61 (m, 2H), 7.31 (td, J = 7.5, 1.0 Hz, 1H), 7.10–7.05 

(m, 1H), 6.90–6.84 (m, 2H), 6.84–6.80 (m, 2H), 4.95 (s, 1H), 2.96 (q, J = 7.5 Hz, 2H), 2.39 

(s, 3H), 1.30 (t, J = 7.5 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 180.7, 165.6, 153.3, 150.8, 

140.6, 138.4, 129.9, 126.9, 124.2, 122.1, 118.5, 93.6, 89.4, 25.4, 21.5, 11.9; MS (ESI
+
) m/z 

(rel. %) 431 ([M+Na]
+
, 30), 409 ([M+H]

+
, 100); HRMS (ESI

+
) 409.0305 [M+H]

+
, 

C18H18IO3 requires 409.0295. 

For X-ray crystallographic data, see Appendix 3. 

Lab book reference number: TOR-2-112 

(E)-3-(3-methylphenoxy)pent-2-en-1-ol (136) 

 

Diisobutylaluminium hydride (1.0 M in hexanes, 3.47 mL, 3.47 mmol) was added to a 

solution of ester 116 (407 mg, 1.74 mmol) in dry ether (15 mL) at −78 °C. After stirring for 

2 h, the reaction mixture was poured onto a vigorously stirred mixture of ether (100 mL) 

and 0.5 M aq. Rochelle’s salt (100 mL) and stirred for a further 1.5 h. The layers were 

separated, and the aqueous layer extracted with ether (3  60 mL). The combined organics 

were then dried over MgSO4, filtered and evaporated. Flash chromatography (SiO2, 

petrol/ether, 4:1→3:7, v/v) afforded the title compound as a colourless oil (283 mg, 85%). 

Rf 0.39 (EtOAc/petrol, 1:1, v/v); IR (CHCl3, cm
−1

) νmax 3342br, 2978m, 2936m, 2879m, 

1667m, 1610m, 1587m, 1486s, 1377w, 1255s, 1168s, 1054m, 984s, 798m, 781m;
 1

H NMR 
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(400 MHz, C6D6) δ 7.04 (t, J = 7.7 Hz, 1H), 6.90–6.83 (m, 2H), 6.78–6.73 (m, 1H), 4.84 (t, 

J = 7.7 Hz, 1H), 3.85 (d, J = 7.7 Hz, 2H), 2.22 (q, J = 7.5 Hz, 2H), 2.05 (s, 3H), 1.12 (t, J = 

7.5 Hz, 3H); 
13

C NMR (100 MHz, C6D6) δ 161.3, 156.1, 139.9, 129.7, 128.4, 124.8, 121.6, 

118.0, 105.6, 58.4, 20.1, 21.3; MS (ESI
+
) m/z (rel. %) 215 ([M+Na]

+
, 45), 175 

([M+H−H2O]
+
, 100); HRMS (ESI

+
) 215. 1037 [M+Na]

+
, C12H16NaO2 requires 215.1043. 

Lab book reference number: TOR-3-194 

(E)-3-(3-Methylphenoxy)pent-2-enyl acetate (137) 

 

Acetic anhydride (540 μL, 584 mg, 5.72 mmol) was added to a solution of alcohol 136 (550 

mg, 2.86 mmol), triethylamine (558 μL, 4.0 mmol) and DMAP (49 mg, 0.40 mmol) in 

CH2Cl2 (20 mL) at 0 °C. The resulting solution was stirred at RT for 2.5 h before being 

quenched with sat. aq. NH4Cl (20 mL), the layers separated and the aqueous layer extracted 

with CH2Cl2 (3 × 20 mL). The combined organic layers were dried over MgSO4, filtered 

and evaporated. Flash chromatography (SiO2, petrol/ether, 95:5, v/v) afforded the title 

compound as a colourless oil (630 mg, 94%). 

Rf 0.51 (ether/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 2975w, 1738s, 1666m, 1486m, 

1365m, 1230s, 1182s, 1152m, 1055w, 1020m;
 1

H NMR (400 MHz, C6D6) δ 7.03–6.97 (m, 

1H), 6.85–6.80 (m, 2H), 6.74–6.70 (m, 1H), 4.82 (t, J = 8.1 Hz, 1H), 4.52 (d, J = 8.1 Hz, 

2H), 2.30 (q, J = 7.5 Hz, 2H), 2.01 (s, 3H), 1.62 (s, 3H), 1.14 (t, J = 7.5 Hz, 3H);
 13

C NMR 

(100 MHz, C6D6) δ 170.1, 164.0, 155.5, 140.0, 129.7, 125.2, 121.9, 118.3, 88.6, 60.6, 23.3, 

21.2, 20.6, 12.6; MS (ESI
+
) m/z (rel. %) 257 ([M+Na]

+
, 90), 197 ([M+Na−AcOH]

+
, 15), 

175 ([M+H−AcOH]
+
, 100); HRMS (ESI

+
) 257.1143 [M+Na]

+
, C14H18NaO3 requires 

257.1148. 

Lab book reference number: TOR-3-272 

Ethyl (E)-3-(3-[6-trimethylsilyl-5-hexynyl]phenoxy)pent-2-enoate (139) 

 

A flame-dried Schlenk tube containing a stirrer bar was charged with K3PO4 (1.09 g, 5.12 

mmol) before being evacuated and backfilled with nitrogen. Dry toluene (5 mL) was added, 
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followed by a solution of phenol 101 (756 mg, 3.07 mmol) in dry toluene (5 mL), a pre-

mixed solution of Pd(OAc)2 (14.4 mg, 0.06 mmol) and X-Phos (61 mg, 0.13 mmol) in dry 

toluene (5 mL), and a solution of triflate (E)-134 (711 mg, 2.56 mmol) in dry toluene (5 

mL). The resulting mixture was heated to 100 °C for 2 h, before being cooled to RT, 

filtered through Celite and evaporated. Flash chromatography (SiO2, petrol/ether 

95:5→85:15, v/v) afforded the title compound as a colourless oil (579 mg, 61%). 

Rf 0.58 (EtOAc/petrol, 1:4, v/v); IR (CHCl3, cm
−1

) νmax 2961m, 2948m, 2173m, 1712s, 

1632s, 1584m, 1485m, 1444w, 1378m, 1283w, 1247s, 1222m, 1129s, 1046s, 1000w, 841s, 

760m, 697m; 
1
H NMR (400 MHz, CDCl3) δ 7.32–7.25 (m, 1H), 7.04 (ddd, J = 7.7, 1.7, 1.1 

Hz, 1H), 6.82 (ddd, J = 3.9, 2.3, 0.9 Hz, 2H), 4.77 (s, 1H), 4.08 (q, J = 7.1 Hz, 2H), 2.94 (q, 

J = 7.5 Hz, 2H), 2.63 (t, J = 7.7 Hz, 2H), 2.26 (t, J = 7.1 Hz, 2H), 1.83–1.65 (m, 2H), 1.61–

1.50 (m, 2H), 1.28 (t, J = 7.5 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H), 0.14 (s, 9H); 
13

C NMR (100 

MHz, CDCl3) δ 177.8, 167.6, 153.7, 144.9, 129.8, 125.8, 121.5, 119.0, 107.3, 95.1, 84.9, 

59.6, 35.2, 30.3, 28.1, 25.1, 19.8, 14.5, 12.0, 0.3; MS (ESI
+
) m/z (rel. %) 395 ([M+Na]

+
, 

100), 373 ([M+H]
+
, 80); HRMS (ESI

+
) 373.2176 [M+H]

+
, C22H33O3Si requires 373.2193. 

Lab book reference number: TOR-5-414 

(E)-3-(3-[6-Trimethylsilyl-5-hexynyl]phenoxy)pent-2-en-1-ol (341) 

 

Diisobutylaluminium hydride (1.0 M in hexanes, 0.68 mL, 0.68 mmol) was added to a 

solution of ester 139 (126 mg, 0.34 mmol) in dry ether (6 mL) at −78 °C. After stirring for 

2 h, the reaction mixture was poured onto a vigorously stirred mixture of ether (35 mL) and 

0.5 M aq. Rochelle’s salt (35 mL) and stirred for a further 20 h. The layers were separated, 

and the aqueous layer extracted with ether (3  25 mL). The combined organics were then 

dried over MgSO4, filtered and evaporated. Flash chromatography (SiO2, petrol/ether, 4:1, 

v/v) afforded the title compound as a colourless oil (93 mg, 95%). 

Rf 0.34 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3331br, 2937m, 2860w, 2173m, 

1667m, 1606m, 1586m, 1485m, 1445m, 1248s, 1169m, 1054m, 986m, 840s, 759s, 697m, 

639m; 
1
H NMR (400 MHz, C6D6) δ 7.07 (t, J = 7.8 Hz, 1H), 6.93–6.83 (m, 2H), 6.76 (dt, J 

= 7.7, 1.2 Hz, 1H), 4.84 (t, J = 7.7 Hz, 1H), 3.86 (d, J = 7.5 Hz, 2H), 2.33 (dd, J = 8.6, 6.7 

Hz, 2H), 2.23 (q, J = 7.4 Hz, 2H), 2.01 (t, J = 7.1 Hz, 2H), 1.58–1.46 (m, 2H), 1.38–1.29 

(m, 2H), 1.13 (t, J = 7.5 Hz, 3H), 0.22 (s, 9H); 
13

C NMR (100 MHz, C6D6) δ 161.3, 156.1, 
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144.5, 129.7, 124.1, 121.0, 118.3, 107.7, 105.6, 84.4, 58.4, 35.4, 30.6, 28.3, 23.1, 20.0, 

12.8, 0.37; MS (ESI
+
) m/z (rel. %) 353 ([M+Na]

+
, 95), 313 ([M+H−H2O]

+
, 100); HRMS 

(ESI
+
) 353.1893 [M+Na]

+
, C20H20NaO2Si requires 353.1907. 

Lab book reference number: TOR-1-88 

(E)-3-(3-[6-Trimethylsilyl-5-hexynyl]phenoxy)pent-2-enyl acetate (140) 

 

Acetic anhydride (60 μL, 65 mg, 0.64 mmol) was added to a solution of crude alcohol 339 

(0.32 mmol), triethylamine (58 μL, 0.45 mmol) and DMAP (5.5 mg, 0.04 mmol) in CH2Cl2 

(5 mL) at RT. The resulting solution was stirred at RT for 2 h before being quenched with 

sat. aq. NH4Cl (10 mL), the layers separated and the aqueous layer extracted with CH2Cl2 

(3 × 10 mL). The combined organic layers were dried over MgSO4, filtered and evaporated. 

Flash chromatography (SiO2, petrol/ether, 85:15, v/v) afforded the title compound as a 

colourless oil (111 mg, 93% over two steps). 

Rf 0.52 (EtOAc/petrol, 1:4, v/v); IR (thin film, cm
−1

) νmax 2939w, 2174w, 1739m, 1664w, 

1585w, 1484w, 1444w, 1365w, 1247s, 1227s, 1181m, 1020m, 946w, 841s, 760w, 697w; 
1
H 

NMR (400 MHz, C6D6) δ 7.03 (t, J = 7.7 Hz, 1H), 6.82–6.87 (m, 2H), 6.73 (dtt, J = 7.6, 

1.1, 0.5 Hz, 1H), 4.83 (t, J = 8.1 Hz, 1H), 4.52 (d, J = 8.1 Hz, 2H), 2.23–2.35 (m, 4H), 2.01 

(t, J = 7.1 Hz, 2H), 1.64 (s, 3H), 1.54–1.44 (m, 2H), 1.36–1.27 (m, 2H), 1.15 (t, J = 7.5 Hz, 

3H), 0.22 (s, 9H); 
13

C NMR (100 MHz, C6D6) δ 170.1, 164.0, 155.6, 144.6, 129.8, 124.5, 

121.2, 118.5, 107.7, 99.7, 84.8, 60.6, 35.3, 30.5, 28.3, 23.3, 20.6, 19.9, 12.7, 0.4; MS (ESI
+
) 

m/z (rel. %) 395 ([M+Na]
+
, 100), 335 ([M+Na−AcOH]

+
, 20), 313 ([M−OAc]

+
, 50); HRMS 

(ESI
+
) 395.2001 [M+Na]

+
, C22H32NaO3Si requires 395.2013. 

Lab book reference number: TOR-5-445, TOR-5-446 

1-(tert-Butyldimethylsilyloxy)-2-propyne (106)
273

 

 

A solution of propargyl alcohol (3.0 g, 53.5 mmol), tert-butyldimethylchlorosilane (12.1 g, 

80.3 mmol) and imidazole (5.4 g, 80.3 mmol) in dry CH2Cl2 (150 mL) was stirred for 2.5 h 

at RT. The reaction was quenched with sat. aq. NH4Cl (100 mL), and the aqueous layer 

extracted with CH2Cl2 (3  50 mL). The combined organic layers were washed with brine 
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(100 mL), dried over MgSO4, filtered and evaporated. Flash chromatography (SiO2, 

petrol/ether, 19:1, v/v) afforded the title compound as a colourless oil (8.98 g, 100%). 

Rf 0.64 (ether/petrol, 1:9, v/v); IR (thin film, cm
−1

) νmax 3312w, 2956m, 2930m, 2887w, 

2859m, 2182w, 1473w, 1254m, 1091s, 1004w, 922w, 832s, 776s, 725w, 659m, 625m 

537w; 
1
H NMR (400 MHz, CDCl3) δ 4.31 (d, J = 2.4 Hz, 2H), 2.39 (t, J = 2.4 Hz, 1H), 0.91 

(s, 9H), 0.13 (s, 6H); 
13

C NMR (100 MHz, CDCl3) δ 82.6, 73.0, 51.7, 25.9, 18.4, −5.1. 

Lab book reference number: TOR-1-80 

2-(2-Propynyloxy)tetrahydro-2H-pyran (141)
274

 

 

3,4-Dihydro-2H-pyran (1.65 g, 19.6 mmol) was added dropwise to a solution of propargyl 

alcohol (1.0 g, 17.8 mmol) and p-toluenesulfonic acid (34 mg, 0.18 mmol) in dry CH2Cl2 

(10 mL) at 0 °C. The resulting solution was stirred at RT for 3 h before being diluted with 

CH2Cl2 (20 mL). The reaction mixture was washed with sat. aq. NaHCO3 (20 mL), water 

(20 mL) and brine (20 mL) then dried over MgSO4, filtered and evaporated. Flash 

chromatography (SiO2, petrol/ether, 19:1, v/v) afforded the title compound as a colourless 

oil (2.21 g, 90%).  

Rf 0.31 (ether/petrol, 1:9, v/v); IR (thin film, cm
−1

) νmax 3290w, 2943m, 2871w, 1442w, 

1346w, 1201m, 1119s, 1057m, 1024s, 948m, 901m, 870m, 815m, 662m, 570w; 
1
H NMR 

(400 MHz, CDCl3) δ 4.82 (t, J = 3.4 Hz, 1H), 4.30 (dd, J = 15.7, 2.5 Hz, 1H), 4.23 (dd, J = 

15.7, 2.5 Hz, 1H), 3.89–3.80 (m, 1H), 3.58–3.50 (m, 1H), 2.41 (t, J = 2.4 Hz, 1H), 1.90–

1.69 (m, 2H), 1.69–1.48 (m, 4H); 
13

C NMR (100 MHz, CDCl3) δ 97.0, 79.9, 74.1, 62.1, 

54.1, 30.4, 25.5, 19.1. 

Lab book reference number: TOR-2-106 

1-(tert-Butyldimethylsilyloxy)-2,5-hexadiyne (107) 

 

Magnesium turnings (92 mg, 3.81 mmol) were added to a Schlenk tube, which was then 

evacuated and backfilled with nitrogen. A small crystal of iodine was added, followed by 

dry THF (6 mL). A solution of ethyl bromide (263 µL, 3.52 mmol) in dry THF (2 mL) was 

added dropwise, and the resulting mixture stirred at 50 °C for 45 min, before a solution of 
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alkyne 106 (500 mg, 2.94 mmol) in dry THF (2 mL) was added. The reaction mixture was 

stirred for a further 1 h at 50 °C. Heating was removed and the reaction cooled to RT before 

CuCl (8.9 mg, 0.09 mmol) was added. The reaction was then heated to 50 °C and stirred for 

15 min before propargyl bromide (80% in toluene, 328 µL, 2.94 mmol) was added 

dropwise. The reaction mixture was stirred for a further 45 min at 50 °C, cooled to RT and 

quenched with sat. aq. NH4Cl (7 mL). The layers were separated and the aqueous layer 

extracted with hexane (3  10 mL). The combined organic layers were washed with brine 

(15 mL), dried over MgSO4, filtered and evaporated. Flash chromatography (SiO2, 

petrol→petrol/ether, 99:1, v/v) afforded the title compound as a colourless oil which rapidly 

turned yellow in air (119 mg, 20%). 

Rf 0.52 (ether/petrol, 1:9, v/v); 
1
H NMR (400 MHz, CDCl3) δ 4.31 (t, J = 2.2 Hz, 2H), 3.20 

(q, J = 2.4 Hz, 2H), 2.06 (t, J = 2.7 Hz, 1H), 0.91 (s, 9H), 0.12 (s, 6H); 
13

C NMR (100 

MHz, CDCl3) δ 79.6, 78.3, 78.0, 69.0, 52.0, 26.0, 18.5, 9.9, −5.0. 

Lab book reference number: TOR-1-84 

2-(2,5-Hexadiynyloxy)tetrahydro-2H-pyran (142)
275

 

 

Magnesium turnings (226 mg, 9.28 mmol) were added to a Schlenk tube, which was then 

evacuated and backfilled with nitrogen. Dry THF (15 mL) was added, followed by ethyl 

bromide (263 µL, 3.52 mmol), and the resulting mixture stirred at 50 °C for 45 min, before 

a solution of alkyne 141 (885 mg, 6.31 mmol) in dry THF (5 mL) was added. The reaction 

mixture was stirred for a further 1 h at 50 °C. Heating was removed and the reaction cooled 

to RT before CuCl (8.9 mg, 0.09 mmol) was added, the reaction stirred for 15 min, and 

propargyl bromide (80% in toluene, 360 µL, 3.23 mmol) added dropwise. The reaction 

mixture was stirred for a further 2 h at 50 °C, cooled to RT and quenched with sat. aq. 

NH4Cl (15 mL). The layers were separated and the aqueous layer extracted with hexane 

(3  40 mL). The combined organic layers were washed with brine (30 mL), dried over 

MgSO4, filtered and evaporated. Flash chromatography (SiO2, petrol/ether, 19:1, v/v) 

afforded the title compound as a colourless oil which rapidly turned yellow in air (704 mg, 

63%). 

1
H NMR (400 MHz, CDCl3) δ 4.79 (t, J = 3.4 Hz, 1H), 4.30 (dt, J = 15.4, 2.2 Hz, 1H), 4.20 

(dt, J = 15.4, 2.2 Hz, 1H), 3.91–3.75 (m, 1H), 3.62–3.44 (m, 1H), 3.22 (dt, J = 2.9, 2.2 Hz, 
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2H), 2.07 (t, J = 2.7 Hz, 1H), 1.91–1.68 (m, 2H), 1.65–1.41 (m, 4H); 
13

C NMR (100 MHz, 

CDCl3) δ 97.0, 79.5, 78.0, 77.0, 69.1, 62.1, 54.5, 30.4, 25.5, 19.2, 9.9. 

Lab book reference number: TOR-2-119 

 (Z)- 4-(tert-Butyldimethylsilyloxy)but-2-en-1-ol (149)
276

 

 

A solution of tert-butyldimethylsilylchloride (1.71 g, 11.3 mmol) in dry CH2Cl2 (6 mL) was 

added dropwise to a solution of cis-2-butene-1,4-diol (1.0 g, 11.3 mmol) and dry 

triethylamine (1.80 mL, 13.6 mmol) in dry CH2Cl2 (10 mL) at 0 °C via syringe pump over 

45 min. After stirring for an additional 30 min, the reaction mixture was quenched with 

water (20 mL). The layers were separated and the aqueous layer extracted with CH2Cl2 

(3  15 mL), washed with water (20 mL), dried over MgSO4, filtered and evaporated. Flash 

chromatography (SiO2, petrol/ether, 7:3, v/v) afforded the title compound as a colourless oil 

(1.67 g, 73%). 

1
H NMR (400 MHz, acetone-d6) δ 5.64–5.51 (m, 1H), 5.58–5.45 (m, 1H), 4.31–4.22 (m, 

2H), 4.19–4.08 (m, 2H), 0.89 (s, 9H), 0.07 (s, 6H); 
13

C NMR (100 MHz, acetone-d6) δ 

131.6, 131.0, 60.0, 58.6, 26.3, 18.8, −5.1; MS (ESI
+
) m/z (rel. %) 225 ([M+Na]

+
, 35), 203 

([M+H]
+
, 100), 185 ([M−H2O+H]

+
, 45); HRMS (ESI

+
) 203.1461 [M+H]

+
, C10H23O2Si 

requires 203.1462. 

Lab book reference number: TOR-2-131 

(Z)-1,4-Di(tert-butyldimethylsilyloxy)but-2-ene (342)
277

 

 

Title compound isolated as a side product from the synthesis of 149 (408 mg, 11%). 

Rf 0.81 (ether/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 2955m, 2929m, 2857m, 1472w, 

1361w, 1254s, 1078s, 1006m, 939w, 833s, 773s, 668w; 
1
H NMR (400 MHz, CDCl3) δ 

5.62–5.47 (m, 2H), 4.23 (dt, J = 3.2, 0.9 Hz, 4H), 0.90 (s, 18H), 0.07 (s, 12H); 
13

C NMR 

(100 MHz, CDCl3) δ 130.3, 59.8, 26.1, 18.5, −5.0; MS (ESI
+
) m/z (rel. %) 339 ([M+Na]

+
, 

25), 317 ([M+H]
+
, 100); HRMS (ESI

+
) 317.2321 [M+H]

+
, C16H37O2Si2 requires 317.2327. 

Lab book reference number: TOR-2-131 
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 (Z)-6-(tert-Butyldimethylsilyloxy)hex-4-en-1-yne (147) 

 

METHOD A: To a mixture of alcohol 149 (1.02 g, 5.06 mmol) and dry triethylamine (1.53 

g, 15.2 mmol) in dry THF (20 mL) at 0 °C was added methanesulfonyl chloride (1.16 g, 

10.1 mmol) dropwise. After stirring for 1 h at RT, the reaction mixture was diluted with 

ether (40 mL), washed with sat. aq. NH4Cl (2  20 mL) and brine (2  20 mL), dried over 

MgSO4, filtered and concentrated in vacuo to afford the crude mesylate as a yellow oil, 

which was used in the next step without further purification. 

To a solution of ethynylmagnesium bromide (0.5 M in THF, 40.5 mL, 20.2 mmol) at 0 °C 

in a Schlenk tube was added CuI (674 mg, 3.54 mmol) followed by a solution of the crude 

mesylate in dry THF (6 mL). The reaction mixture was heated to 60 °C for 19 h before 

being cooled to RT and quenched with sat. aq. NH4Cl (20 mL). The layers were separated, 

and the aqueous extracted with ether (3  20 mL). The combined organic layers were 

washed with brine (30 mL), dried over MgSO4, filtered and evaporated. Purification by 

flash chromatography (SiO2, petrol/ether 19:1, v/v) afforded the title compound as a 

colourless oil (341 mg, 32%). 

METHOD B: To a rapidly stirred suspension of phosphonium salt 162 (4.84 g, 12.1 mmol) 

in dry THF (47 mL) at −78 °C was added dropwise n-butyllithium (2.5 M in hexanes, 4.6 

mL, 11.6 mmol). After stirring for 5 min at −78 °C, the solution was warmed to 0 °C for 

1.5 h, before being cooled once again to −78 °C, and a solution of aldehyde 163 (1.75 g, 

10.0 mmol) in dry THF (14 mL) was added dropwise via syringe. Transfer was made 

quantitative with an additional portion of dry THF (14 mL). The reaction mixture was 

allowed to warm to RT over 2 h. After a further 14 h at RT, the reaction was quenched with 

sat. aq. NH4Cl (80 mL), and the aqueous later extracted with ether (3  130 mL). The 

combined organic layers were washed with brine (130 mL), dried over MgSO4, filtered and 

evaporated. Flash chromatography (SiO2, petrol/ether, 98:2, v/v) afforded the title 

compound as a pale yellow oil (2.03 g, 96%). 

Rf 0.76 (ether/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 3312w, 2930m, 2954m, 2858m, 

1472w, 1464w, 1258s, 1091s, 1017s, 939w, 835s, 798s, 779s, 667m, 638m; 
1
H NMR (400 

MHz, CDCl3) δ 5.62 (dtt, J = 10.6, 5.9, 1.6 Hz, 1H), 5.49 (dtt, J = 10.6, 7.0, 1.6 Hz, 1H), 

4.25 (ddd, J = 5.9, 1.6, 0.9 Hz, 2H), 2.98 (dtd, J = 7.0, 1.6, 0.9 Hz, 2H), 1.98 (t, J = 2.7 Hz, 

1H), 0.90 (s, 9H), 0.08 (s, 6H); 
13

C NMR (100 MHz, CDCl3) δ 131.8, 124.6, 82.3, 68.5, 
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59.4, 26.1, 18.5, 17.4, −5.1; MS (ESI
+
) m/z (rel. %) 233 ([M+Na]

+
, 30), 211 ([M+H]

+
, 100); 

HRMS (ESI
+
) 211.1511 [M+H]

+
, C12H23O requires 211.1513. 

Lab book reference numbers (method A): TOR-2-125, TOR-2-126 

Lab book reference number (method B): TOR-4-307 

3-([tert-Butyldimethylsilyloxy]methyl)pent-4-en-1-yne (150) 

 

Title compound was isolated as a side product from the synthesis of 147 by method A (146 

mg, 14%) 

Rf 0.78 (ether/petrol, 2:3); 
1
H NMR (400 MHz, CDCl3) δ 5.85 (ddd, J = 17.1, 10.2, 5.8 Hz, 

1H), 5.39 (dt, J = 17.1, 1.6 Hz, 1H), 5.18 (dt, J = 10.2, 1.6 Hz, 1H), 3.73 (dd, J = 9.5, 6.3 

Hz, 1H), 3.59 (dd, J = 9.5, 7.6 Hz, 1H), 3.23 (qdd, J = 6.1, 2.4, 1.4 Hz, 1H), 2.21 (d, J = 2.4 

Hz, 1H), 0.89 (s, 9H), 0.06 (d, J = 1.1 Hz, 6H); 
13

C NMR (100 MHz, CDCl3) δ 134.5, 

116.9, 82.7, 72.1, 66.4, 38.7, 25.9, 18.4, −5.2.  

Lab book reference number: TOR-2-125, TOR-2-126 

(E)-6-(tert-Butyldimethylsilyloxy)hex-4-en-1-yne (152) 

 

To a mixture of alcohol 149 (1.67 g, 8.25 mmol) and dry triethylamine (2.51 g, 24.8 mmol) 

in dry THF (30 mL) at 0 °C was added methanesulfonyl chloride (1.89 g, 16.5 mmol) 

dropwise. After stirring for 1 h at RT, the reaction mixture was diluted with ether (60 mL), 

washed with sat. aq. NH4Cl (2  30 mL) and brine (2  30 mL), dried over MgSO4 and 

concentrated in vacuo to afford the crude mesylate as a yellow oil, which was used in the 

next step without further purification. 

To a solution of the crude mesylate in acetone (5 mL) at 0 °C was added NaI (680 mg, 4.54 

mmol), and the resulting suspension stirred at RT for 1 h. After this time the reaction 

mixture was diluted with water (5 mL) and the acetone removed in vacuo. The resulting 

aqueous solution was extracted with ether (3  20 mL), and the combined organic layers 

were washed with brine (20 mL), dried over MgSO4, filtered and evaporated to afford a 

clear oil which was used in the next step without purification. 
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To a solution of ethynylmagnesium bromide (0.5 M in THF, 16.5 mL, 8.24 mmol) at 0 °C 

in a Schlenk tube was added CuI (275 mg, 1.44 mmol) followed by a solution of the crude 

iodide in dry THF (4 mL). The reaction mixture was heated to 60 °C for 19 h before being 

cooled to RT and quenched with sat. aq. NH4Cl (10 mL). The layers were separated, and 

the aqueous lyaer extracted with ether (3  10 mL). The combined organic layers were 

washed with brine (15 mL), dried over MgSO4, filtered and evaporated. Flash 

chromatography (SiO2, petrol/ether, 98:2, v/v) afforded the title compound as a colourless 

oil (357 mg, 83%, E/Z 10:1). 

Rf 0.57 (ether/petrol, 1:9, v/v); IR (thin film, cm
−1

) νmax
 
3314w, 2956m, 2930m, 2857m, 

1472w, 1379w, 1256m, 1119m, 1084m, 1048m, 969m, 834s, 812m, 775s, 631s; 
1
H NMR 

(400 MHz, CDCl3) δ 5.85 (dtt, J = 15.2, 4.8, 1.7 Hz, 1H), 5.66 (dtt, J = 15.2, 5.5, 1.7 Hz, 

1H), 4.17 (dq, J = 5.0, 1.7 Hz, 2H), 2.96 (ddq, J = 5.2, 2.6, 1.7 Hz, 2H), 2.10 (t, J = 2.6 Hz, 

1H), 0.90 (s, 9H), 0.07 (s, 6H); 
13

C NMR (100 MHz, CDCl3) δ 131.4, 123.9, 81.7, 70.4, 

63.4, 26.1, 21.5, 18.6, −5.1. 

Lab book reference numbers: TOR-2-132, TOR-2-133, TOR-2-134 

 (Z)- 4-(Triisopropylsilyloxy)but-2-en-1-ol (156)
278

 

 

To a solution of cis-2-butene-1,4-diol (1.0 g, 11.3 mmol) and dry triethylamine (1.90 mL, 

13.6 mmol) in dry CH2Cl2 (10 mL) was added triisopropylsilylchloride (2.43 mL, 

11.3 mmol) dropwise via syringe pump over 1 h at 0 °C. After stirring for an additional 1 h, 

the reaction mixture was quenched with water (20 mL). The layers were separated and the 

aqueous layer extracted with CH2Cl2 (3  10 mL), washed with water (20 mL), dried over 

MgSO4, filtered and evaporated. Purification by flash chromatography (SiO2, petrol/ether 

9:1→3:2, v/v) afforded the title compound as a colourless oil (1.71 g, 66%). 

1
H NMR (400 MHz, CDCl3) δ 5.73–5.69 (m, 2H), 4.27–4.31 (m, 2H), 4.23–4.18 (m, 2H), 

1.36–0.80 (m, 21H); 
13

C NMR (100 MHz, CDCl3) δ 131.6, 130.0, 60.0, 59.2, 18.1, 12.1; 

MS (ESI
+
) m/z (rel. %) 267 ([M+Na]

+
, 100), 245 ([M+H]

+
, 30); HRMS (ESI

+
) 267.1751 

[M+Na]
+
, C13H28NaO2Si requires 267.1751. 

Lab book reference number: TOR-2-156 
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(Z)-1,4-Di(triisopropylsilyloxy)but-2-ene (343)
279

 

 

Title compound was isolated as a by-product from the synthesis of 156 (79 mg, 1.7%). 

Rf 0.81 (ether/petrol, 2:3, v/v); 
1
H NMR (400 MHz, CDCl3) δ 5.58 (t, J = 3.1 Hz, 2H), 4.32–

4.28 (m, 4H), 1.18–0.96 (m, 42H); 
13

C NMR (100 MHz, CDCl3) δ 130.3, 60.1, 18.1, 12.1. 

Lab book reference number: TOR-2-156 

(Z)-1-Bromo-4-(triisopropylsilyloxy)but-2-ene (159)
280

 

 

Triphenylphosphine (361 mg, 1.37 mmol) was added to a solution of carbon tetrabromide 

(438 mg, 1.32 mmol) and alcohol 156 (280 mg, 1.15 mmol) in dry CH2Cl2 (3 mL) at 0 °C. 

The solution was stirred for 25 min before the solvent was evaporated, and hexane (75 mL) 

added. The resulting precipitate was filtered off and the filtrate evaporated. Flash 

chromatography (SiO2, petrol/ether 98:2, v/v) afforded the title compound as a colourless 

oil (297 mg, 84%). 

Rf 0.77 (ether/petrol, 2:3, v/v); 
1
H NMR (400 MHz, CDCl3) δ 5.80–5.66 (m, 2H), 4.40 (dd, 

J = 5.2, 1.2 Hz, 2H), 4.11–3.98 (m, 2H), 1.20–0.96 (m, 21H); 
13

C NMR (100 MHz, CDCl3) 

δ 134.9, 125.7, 59.5, 27.2, 18.1, 12.1; MS (ESI
+
) m/z (rel. %) 329 ([M+Na]

+
, 100), 307 

([M+H]
+
, 10); HRMS (ESI

+
) 329.0937 [M+Na]

+
, C13H27BrNaOSi requires 329.0907. 

Lab book reference number: TOR-2-157 

3-Butynyltriphenylphosphonium bromide (162)
281

 

 

A solution of triphenylphosphine (recrystallised from hot ethanol and vacuum dried over 

P2O5, 8.9 g, 33.8 mmol) and 4-bromo-1-butyne (4.95 g, 37.2 mmol) in dry MeCN (35 mL) 

was stirred at 80 °C for 72 h. After being cooled to RT, the MeCN was removed in vacuo, 

and benzene (40 mL) was added. The resulting precipitate was filtered, washed with 

benzene and dried in vacuo to afford the title compound as a pale brown solid (13.0 g, 

98%). 
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M.P. 167–169 °C (lit.
281

 152–154 °C); IR (ATR, cm
−1

) νmax 3190m, 2049w, 2889w, 2861w, 

1587w, 1485w, 1436s, 1329w, 1214w, 1112s, 995m, 946m, 798m, 753m, 714s, 686s, 555s, 

504s, 481s, 456s; 
1
H NMR (400 MHz, DMSO-d6) δ 7.91 (ddq, J = 7.4, 6.6, 1.6 Hz, 3H), 

7.87–7.74 (m, 12H), 3.98–3.84 (m, 2H), 3.01 (t, J = 2.6 Hz, 1H), 2.56 (dddd, J = 13.0, 7.5, 

6.6, 2.7 Hz, 2H); 
13

C NMR (100 MHz, DMSO-d6) δ 135.1 (d, J = 3.0 Hz), 133.8 (d, J = 

10.3 Hz), 130.3 (d, J = 12.6 Hz), 117.9 (d, J = 86.2), 81.1 (d, J = 17.5 Hz), 74.0 (d, J = 1.6 

Hz), 19.8 (d, J = 50.6 Hz), 12.0 (d, J = 2.4 Hz);
 31

P NMR (162 MHz, DMSO-d6) δ 24.3; MS 

(ESI
+
) m/z (rel. %) 315 ([M−Br]

+
, 100); HRMS (ESI

+
) 315.1298 [M−Br]

+
, C22H20P requires 

315.1297. 

Lab book reference number: TOR-3-205 

2-(Tert-butyldimethylsilyloxy)ethanol (165)
141

 

 

A solution of tert-butyldimethylsilylchloride (20.0 g, 133 mmol) in CH2Cl2 (20 mL) was 

added dropwise at 0 °C to a solution of ethane-1,2-diol (37 mL, 41.2 g, 663 mmol) and 

triethylamine (67 mL, 92.4 g, 663 mmol) in CH2Cl2 (250 mL) via syringe pump over a 

period of 2 h. The resulting solution was stirred at RT for a further 1.5 h and quenched with 

water (160 mL). The layers were separated and the aqueous layer extracted with CH2Cl2 (3 

 120 mL). The combined organic layers were washed with water (120 mL) and brine 

(120 mL), dried over MgSO4, filtered and evaporated. The crude residue was purified by 

filtration through a short plug of silica using petrol/ether (1:1, v/v), affording the title 

compound as a colourless oil (22.2 g, 95%). 

Rf 0.53 (EtOAc/petrol, 1:1, v/v); 
1
H NMR (400 MHz, CDCl3) δ 3.74–3.68 (m, 2H), 3.66–

3.61 (m, 2H), 0.91 (s, 9H), 0.08 (s, 6H); 
13

C NMR (100 MHz, CDCl3) δ 64.2, 63.8, 26.0, 

18.5, −5.2; MS (ESI
+
) m/z (rel. %) 199 ([M+Na]

+
, 100), 179 ([M+H]

+
, 50); HRMS (ESI

+
) 

199.1133 [M+Na]
+
, C8H20NaO2Si requires 199.1125. 

Lab book reference number: TOR-6-506 
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2-(Tert-butyldimethylsilyloxy)ethanol (163)
282

 

 

To a solution of oxalyl chloride (2.68 mL, 31.2 mmol) in dry CH2Cl2 (70 mL) was added a 

solution of dry DMSO (4.83 mL, 68 mmol) in dry CH2Cl2 (14 mL) dropwise via dropping 

funnel at −78 °C. After stirring for 10 min, a solution of alcohol 165 (5.0 g, 28.3 mmol) and 

dry pyridine (4.56 mL, 56.6 mmol) in dry CH2Cl2 (20 mL) was added dropwise and the 

solution stirred for an additional 25 min. Dry triethylamine (19.8 mL, 142 mmol) was then 

added dropwise and the resulting suspension allowed gradually to warm to RT; 1 M aq. 

HCl was  added until the aqueous layer was pH 5. The layers were separated and the 

aqueous layer extracted with CH2Cl2 (3  50 mL). The combined organic extracts were 

washed with sat. aq. CuSO4 (50 mL), dried (MgSO4), filtered and evaporated. Flash 

chromatography (SiO2, petrol/ether, 9:1→85:15, v/v) afforded the title compound as a 

volatile colourless oil (4.93 g, 99%). 

Rf 0.42 (ether/petrol, 2:3, v/v); 
1
H NMR (400 MHz, CDCl3) δ 9.70 (t, J = 0.9 Hz, 1H), 4.21 

(d, J = 0.8 Hz, 2H), 0.92 (s, 9H), 0.10 (s, 6H); 
13

C NMR (100 MHz, CDCl3) δ 205.5, 69.8, 

25.9, 18.5, −5.3. 

Lab book reference number: TOR-3-200 

Di-µ-chloro-bis(η
4
-1,5-cyclooctadiene)-dirhodium(I) (344)

142
 

 

A three-necked, 25-mL round-bottomed flask was charged with RhCl3 (491 mg, 1.87 

mmol) and flushed with argon. Degassed ethanol/water (5:1, 6 mL) was then added, 

followed by 1,5-cyclooctadiene (0.75 mL), and the resulting solution was heated to reflux 

and stirred for 18 h before being allowed to cool. The resulting precipitate was filtered, 

washed with pentane and dried in vacuo to afford the title compound as a yellow-orange 

solid (387 mg, 84%). 

M.P. 248 °C (dec.) (lit.
283

 256 °C (dec.)); IR (ATR, cm
−1

) νmax 2988w, 2935w, 2873m, 

2827m, 1467m, 1423w, 1322m, 1299m, 1211w, 1172w, 1078w, 994s, 960s, 866m, 815s, 

795m, 774m, 689w, 597w, 486s, 473s; 
1
H NMR (400 MHz, C6D6) δ 4.29–4.16 (m, 8H), 

2.50 (ddd, J = 7.6, 5.2, 2.1 Hz, 8H), 1.75 (q, J = 7.0 Hz, 8H); 
13

C NMR (100 MHz, CDCl3) 

δ 78.9, 78.8, 31.0; MS (LIFDI
+
) m/z (rel. %) 492 ([M]

+
, 100); HRMS (LIFDI

+
) 491.9266 
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([M]
+
), C16H24Cl2Rh2 requires 491.9365; Elemental anal.: C: 39.07, H: 4.87; C16H24Cl2Rh2 

requires C: 38.97, H: 4.91. 

Lab book reference number: TOR-3-225 

2-[(1′Z,4′Z)-6′-(Tert-butyldimethylsilyloxy)hexa-1′,4′-dienyl]-4,4,5,5-tetramethyl-

[1,3,2]-dioxaborolane (166) 

 

Pinacolborane (115 μL, 0.79 mmol) was added to a solution of [Rh(cod)Cl]2 (342, 23.7 mg, 

0.048 mmol), tricyclohexylphosphine (53 mg, 0.19 mmol) and dry triethylamine (0.55 mL, 

3.95 mmol) in dry cyclohexane (10 mL) at RT. After 30 min, a solution of alkyne 147 (200 

mg, 0.95 mmol) in dry cyclohexane (2 mL) was added and the reaction mixture stirred for 

47 h. After this time, MeOH (1 mL) was added to quench any remaining borane and the 

solvent was removed in vacuo. Flash chromatography (SiO2, petrol/ether, 95:5, v/v) 

afforded the title compound as a pale yellow oil (125 mg, 47%). 

Rf 0.55 (ether/petrol, 1:9, v/v); IR (CHCl3, cm
−1

) νmax 2978m, 2953s, 2931s, 2855m, 1627m, 

1471w, 1422m, 1371w, 1325s, 1259s, 1145s, 1099s, 1075s, 836s, 776s;
 1

H NMR 

(400 MHz, CDCl3) δ 6.35 (dt, J = 13.7, 7.4 Hz, 1H), 5.55 (dtt, J = 10.8, 5.9, 1.4 Hz, 1H), 

5.44 (dtt, J = 10.8, 7.5, 1.5 Hz, 1H), 5.35 (dt, J = 13.7, 1.5 Hz, 1H), 4.29 (dtt, J = 6.1, 1.6, 

0.7 Hz, 2H), 3.25–3.10 (m, 2H), 1.27 (s, 12H), 0.90 (s, 9H), 0.08 (s, 6H); 
13

C NMR (100 

MHz, CDCl3) δ 152.1, 130.6, 128.2, 83.1, 59.7, 31.4, 26.1, 25.0, 18.5, −4.9 (C–B not 

observed); 
11

B NMR (128 MHz, CDCl3) δ 28.9; MS (ESI
+
) m/z (rel. %) 339 ([M+H]

+
, 100), 

361 ([M+Na]
+
, 95); HRMS (ESI

+
) 339.2525 [M+H]

+
, C18H36BO3Si requires 339.2525. 

Lab book reference number: TOR-3-217 

Cinnamyl acetate (169)
284

 

 

To a solution of cinnamyl alcohol (1.0 g, 7.45 mmol), triethylamine (1.45 mL, 10.4 mmol) 

and DMAP (127 mg, 1.04 mmol) in CH2Cl2 (30 mL) was added acetic anhydride (1.41 mL, 

14.9 mmol) at 0 °C. The resulting solution was stirred at RT for 2.5 h, before being filtered 
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through a short plug of silica, eluting with ether. The filtrate was evaporated to afford the 

title compound as a yellow oil (1.25 g, 95%). 

IR (thin film, cm
−1

) νmax 3028w, 1733s, 1495w, 1449w, 1380m, 1362m, 1222s, 1068w, 

1023s, 963s, 744s, 692s, 603m, 467w;
 1
H NMR (400 MHz, CDCl3) δ 7.42–7.37 (m, 2H), 

7.35–7.30 (m, 2H), 7.29–7.23 (m, 1H), 6.66 (dt, J = 15.8, 1.4 Hz, 1H), 6.29 (dt, J = 15.8, 

6.5 Hz, 1H), 4.73 (dd, J = 6.5, 1.4 Hz, 2H), 2.11 (s, 3H);
 13

C NMR (100 MHz, CDCl3) δ 

171.0, 136.3, 134.4, 128.8, 128.2, 126.8, 123.3, 65.2, 21.2. 

Lab book reference number: TOR-3-216 

 (E)-5-(3-Methylphenoxy)hepta-1,4-diene (177) 

 

Tributyl(vinyl)tin (78 mg, 0.25 mmol) was added to a Schlenk tube containing a solution of 

acetate 137 (48 mg, 0.21 mmol), cis- or trans-Pd(N-succ)Br(PPh3)2 23 (5.0 mg, 6.2 μmol) 

and LiCl (26 mg, 0.62 mmol) in dry DMF (1.5 mL) under N2. The reaction mixture was 

then exposed to air for 5 seconds before being sealed and stirred for 24 h at RT. After this 

time, the reaction mixture was diluted with ether (20 mL), washed with water (3 × 10 mL), 

dried over MgSO4, filtered and evaporated in vacuo. A sample was purified in order to 

obtain analytical data. 

Rf 0.44 (ether/petrol, 1:4, v/v); IR (thin film, cm
−1

) νmax 2976m, 1669w, 1610m, 1587m, 

1486s, 1464m, 1255s, 1154s, 1047m;
 1
H NMR (400 MHz, C6D6) δ 7.05 (t, J = 7.7 Hz, 1H), 

6.95–6.89 (m, 2H), 6.72 (ddt, J = 7.5, 1.7, 0.8 Hz, 1H), 5.69 (ddt, J = 17.1, 10.1, 6.0 Hz, 

1H), 5.02 (dq, J = 17.1, 1.8 Hz, 1H), 4.93 (dq, J = 10.1, 1.6 Hz, 1H), 4.87 (t, J = 7.8 Hz, 

1H), 2.59 (ddt, J = 7.7, 6.0, 1.7 Hz, 2H), 2.20 (q, J = 7.5 Hz, 2H), 2.06 (d, J = 0.8 Hz, 3H), 

1.12 (t, J = 7.5 Hz, 3H);
 13

C NMR (100 MHz, C6D6) δ 157.7, 157.0, 139.8, 137.6, 129.6, 

124.0, 120.6, 116.8, 114.5, 105.8, 30.9, 22.6, 21.3, 12.4; MS (ESI
+
) m/z (rel. %) 203 

([M+H], 100); HRMS (ESI
+
) 203.1437, C14H19O requires 203.1430. 
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(1Z,4Z)-1-Tri-n-butylstannyl-6-(tert-butyldimethylsilyloxy)hexa-1,4-diene (178) 

 

To a solution of alkyne 147 (485 mg, 2.31 mmol) in dry THF (18 mL) at −78 °C was added 

dropwise n-butyllithium (2.2 M in hexanes, 1.08 mL, 2.36 mmol), and the resulting 

solution was stirred for 10 min before dropwise addition of tributyltin chloride (826 mg, 

2.54 mmol). The cooling bath was removed and the reaction mixture was stirred for a 

further 2 h, after which time it was diluted with ether (100 mL), washed with water (50 mL) 

and brine (50 mL), dried over Na2SO4, filtered and evaporated to afford a yellow oil which 

was used directly without further purification. 

Diisobutylaluminium hydride (1.0 M in hexane, 3.47 mL, 3.47 mmol) was added dropwise 

to a solution of zirconocene dichloride (1.08 g, 3.69 mmol) in dry THF (15 mL) at 0 °C. 

The reaction mixture was then stirred for 30 min at 0 °C during which time an off-white 

suspension formed. A solution of the crude intermediate stannane was then added in dry 

THF (2 mL), with additional dry THF (2 mL) used to rinse the flask and ensure quantitative 

transfer. The cooling was then removed, and the reaction mixture rapidly became a 

homogenous red solution. After stirring for 1 h at RT, the reaction was diluted with n-

pentane (20 mL) and quenched with water (3 eq., 125 μL), leading to the disappearance of 

the red colour and formation of a yellow precipitate. After stirring for 20 min, the reaction 

mixture was filtered through a Celite plug, which was washed copiously with hexane. 

Evaporation of the filtrate and flash chromatography (SiO2, petrol/ether/triethylamine, 

94:5:1, v/v) afforded the title compound as a colourless oil (767 mg, 66%). 

Rf 0.73 (ether/petrol, 1:9, v/v); IR (thin film, cm
−1

) νmax 2957s, 2927s, 2856m, 1595w, 

1464m, 1253m, 1099s, 837s, 776m, 667w; 
 1

H NMR (400 MHz, C6D6) δ 6.58 (dt, J = 12.3, 

7.0 Hz, J 
3

Sn−H 
119  = 141.6 Hz, J 

3
Sn−H 

117  = 135.2 Hz, 1H), 6.04 (dt, J = 12.3, 1.3 Hz, 

J 
2

Sn−H 
119  = 71.3 Hz, J 

2
Sn−H 

117  = 68.7 Hz, 1H), 5.73 (dtt, J = 10.9, 6.1, 1.7 Hz, 1H), 5.51 

(dtt, J = 10.8, 7.3, 1.7 Hz, 1H), 4.31 (dtt, J = 6.2, 1.6, 0.8 Hz, 2H), 2.94 (t, J = 6.9 Hz, 2H), 

1.61 (m, 6H), 1.4 (m, 6H), 1.03 (m, 6H), 1.00 (s, 9H), 0.95 (t, J = 7.3 Hz, 9H), 0.10 (s, 6H); 

13
C NMR (100 MHz, C6D6) δ 147.0, 131.0, 129.2, 128.6, 59.7, 35.9, 29.7 ( J 

3
Sn−C

 = 20.7 

Hz), 27.8 ( J 
2

Sn−C 
119  = 56.1 Hz, J 

2
Sn−C 

117  = 54.1 Hz), 26.2, 18.5, 14.0, 10.6 ( J 
1

Sn−C 
119  = 

338.9 Hz, J 
1

Sn−C 
117  = 322.8 Hz), −4.9; 

119
Sn NMR (187 MHz, C6D6) δ −60.6; HRMS 

(ESI
+
) 525.2527 [M+Na]

+
, C24H50NaOSiSn requires 525.2549. 
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Lab book reference numbers: TOR-5-437, TOR-5-439 

(1Z,4Z)-1-Trimethylstannyl-6-(tert-butyldimethylsilyloxy)hexa-1,4-diene (183) 

 

To a solution of alkyne 147 (461 mg, 2.19 mmol) in dry THF (20 mL) at −78 °C was added 

dropwise n-butyllithium (2.3 M in hexane, 1.0 mL, 2.30 mmol), and the resulting solution 

was stirred for 5 min before dropwise addition of a solution of trimethyltin chloride (480 

mg, 2.41 mmol) in dry THF (5 mL). The resulting solution was stirred for 15 min at 

−78 °C, after which time cooling bath was removed and the reaction mixture was stirred for 

a further 1.5 h. The resulting solution was then diluted with ether (65 mL), washed with 

water (40 mL) and brine (40 mL), dried over Na2SO4, filtered and evaporated to afford a 

yellow oil which was used directly without further purification. 

Diisobutylaluminium hydride (1.0 M in hexane, 1.05 mL, 1.05 mmol) was added dropwise 

to a solution of zirconocene dichloride (326 mg, 1.12 mmol) in dry THF (15 mL) at 0 °C. 

The reaction mixture was then stirred for 30 min at 0 °C during which time an off-white 

suspension formed. A solution of the crude intermediate stannane was then added in dry 

THF (3 mL), with additional dry THF (2 mL) used to rinse the flask and ensure quantitative 

transfer. The cooling was then removed, and the reaction mixture rapidly became a 

homogenous red solution. After stirring for 1 h, the reaction was diluted with n-pentane (20 

mL) and quenched with water (10 eq., 125 μL), leading to the disappearance of the red 

colour and formation of a yellow precipitate. After stirring for 30 min, the reaction mixture 

was filtered through a Celite plug which was washed copiously with hexane. Evaporation 

of the filtrate and flash chromatography (SiO2, petrol/ether/triethylamine, 96:2:2, v/v) 

afforded the title compound as a colourless oil (99 mg, 38%). 

Rf 0.71 (ether/petrol, 1:9, v/v); IR (thin film, cm
−1

) νmax 2957m, 2929m, 2857m, 1596w, 

1472w, 1253m, 1098s, 836s, 774s, 719m, 527s;
 1

H NMR (500 MHz, C6D6) δ 6.47 (dt, J = 

12.2, 7.0 Hz, J 
3

Sn−H 
119  = 153.2 Hz, J 

3
Sn−H 

117  = 146.3 Hz, 1H), 5.94 (dt, J = 12.2, 1.1 Hz, 

J 
2

Sn−H 
119  = 79.0 Hz, J 

2
Sn−H 

117  = 75.9 Hz, 1H), 5.70 (dtt, J = 10.9, 6.1, 1.7 Hz, 1H), 5.43 

(dtt, J = 10.9, 7.4, 1.8 Hz, 1H), 4.27 (dtt, J = 6.2, 1.6, 0.8 Hz, 2H), 2.86 (t, J = 7.1 Hz, 2H), 

1.00 (s, 9H), 0.18 (s, J 
2

Sn−H 
119  = 55.0 Hz, J 

2
Sn−H 

117  = 57.7 Hz, 9H), 0.09 (s, 6H); 
13

C NMR 

(100 MHz, C6D6) δ 146.7, 131.0, 130.2, 128.5, 59.7, 35.1, 26.1, 18.5, −4.9, −8.7 ( J 
1

Sn−C 
119  
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= 338.9 Hz, J 
1

Sn−C 
117  = 322.8 Hz) ; 

119
Sn NMR (187 MHz, C6D6) δ −57.7; HRMS (ESI

+
) 

399.1148 [M+Na]
+
, C15H32NaOSiSn requires 399.1138. 

Lab book reference numbers: TOR-6-554, TOR-6-555 

(E)-3-(3-[6-Trimethylsilyl-5-hexynyl]phenoxy)pent-2-enyl methyl carbonate (185) 

 

Methyl chloroformate (67 μL, 82 mg, 0.87 mmol) was added to a solution of crude alcohol 

339 (0.29 mmol) and pyridine (70 μL, 69 mg, 0.45 mmol) in dry CH2Cl2 (5 mL) at RT. The 

resulting solution was stirred at RT for 2 h before being quenched with brine (5 mL), the 

layers separated and the aqueous layer extracted with ether (3 × 5 mL). The combined 

organic layers were washed with sat. aq. NaHCO3 (5 mL), dried over MgSO4, filtered and 

evaporated. Purification by flash chromatography (SiO2, petrol/ether/triethylamine, 80:18:2, 

v/v) afforded the title compound as a colourless oil (67.7 mg, 60% over two steps). 

IR (thin film, cm
−1

) νmax 2965w, 2173w, 1746m, 1663w, 1585w, 1485w, 1443m, 1242s, 

1183m, 1055w, 931m, 839s, 759m, 696m;
 1
H NMR (400 MHz, C6D6) δ 7.01 (t, J = 7.8 Hz, 

1H), 6.83 (t, J = 2.0 Hz, 1H), 6.80 (dt, J = 8.0, 1.5 Hz, 1H), 6.73 (d, J = 7.8 Hz, 1H), 4.82 

(t, J = 8.1 Hz, 1H), 4.52 (d, J = 8.1 Hz, 2H), 3.31 (s, 3H), 2.30 (app. quin, J = 7.5 Hz, 4H), 

2.02 (t, J = 7.1 Hz, 2H), 1.43–1.53 (m, 2H), 1.37–1.26 (m, 2H), 1.15 (t, J = 7.5 Hz, 3H), 

0.22 (s, 9H); 
13

C NMR (100 MHz, C6D6) δ 165.0, 156.3, 155.4, 144.6, 129.8, 124.6, 121.3, 

118.6, 107.7, 98.8, 84.8, 64.1, 54.1, 35.3, 30.5, 28.3, 23.4, 19.9, 12.6, 0.4; MS (ESI
+
) m/z 

(rel. %) 411 ([M+Na]
+
, 100), 335 ([M+Na−MeOCO2H]

+
, 20), 313 ([M−MeOCO2]

+
, 10); 

HRMS (ESI
+
) 411.1946 [M+Na]

+
, C22H32NaO4Si requires 411.1962. 

Lab book reference numbers: TOR-6-476, TOR-6-477 

 (2Z, 5Z, 8E)-9-(3-hex-5-ynylphenoxy)undeca-2,5,8-trien-1-ol (186) 

 

To a Schlenk tube containing a solution of trans-(Ph3P)2Pd(N-succ)Br (1.0 mg, 1.3 μmol), 

LiCl (5.5 mg, 0.13 mmol) and CuCl (8.4 mg, 0.09 mmol) in dry DMF (0.5 mL) was added 
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a solution of acetate 140 (15.9 mg, 0.043 mmol) in dry DMF (0.5 mL), followed by a 

solution of stannane 183 (32 mg, 0.085 mmol) in dry DMF (0.5 mL). The tube was sealed 

and heated to 60 °C for 4.5 h, after which time the reaction mixture was cooled to RT, and 

diluted with ether (20 mL). The resulting solution was washed with water (3 × 10 mL), 

dried over MgSO4, filtered and evaporated. 

The crude residue was dissolved in dry THF (4 mL) and TBAF (1.0 M in THF, 0.19 mL, 

0.19 mmol) was added dropwise at RT. After stirring for 2.5 h, the reaction mixture was 

diluted with ether (15 mL), washed with sat. aq. NH4Cl (10 mL), dried over Na2SO4, 

filtered and concentrated in vacuo. Purification by flash chromatography (SiO2, 

EtOAc/petrol, 1:1, v/v) afforded the title compound in an inseparable mixture of isomers as 

a yellow oil (10.6 mg, 73%, E/Z 3:1). 

NMR spectroscopic data is given for the major E-isomer only. 

Rf 0.35 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3303br, 3015w, 2936m, 1672w, 

1606m, 1585m, 1485m, 1446m, 1248m, 1154s, 1045m, 782w, 696w, 634w; 
1
H NMR (400 

MHz, C6D6) δ 7.09 (t, J = 7.7 Hz, 1H), 6.98–6.90 (m, 2H), 6.72 (dt, J = 7.6, 1.3 Hz, 1H), 

5.56–5.44 (m, 1H), 5.40–5.24 (m, 3H) 4.88 (t, J = 7.7 Hz, 1H), 3.94 (d, J = 6.4 Hz, 2H), 

2.72–2.62 (m, 4H), 2.40–2.21 (m, 4H), 1.88 (td, J = 7.1, 2.6 Hz, 2H), 1.77 (t, J = 2.6 Hz, 

1H), 1.58–1.44 (m, 2H), 1.38–1.23 (m, 2H), 1.17 (t, J = 7.5 Hz, 3H); 
13

C NMR (100 MHz, 

C6D6) δ 157.1, 144.4, 130.0, 129.8, 129.7, 129.3, 123.3, 119.8, 117.0, 113.7, 107.1, 100.3, 

84.2, 69.0, 58.5, 35.5, 30.5, 28.2, 26.1, 24.9, 22.7, 18.4, 12.4; MS (ESI
+
) m/z (rel. %) 361 

([M+Na]
+
, 100), 339 ([M+H]

+
, 40); HRMS (ESI

+
) 361.2126 [M+Na]

+
, C23H30NaO2 requires 

361.2138. 

Lab book reference numbers: TOR-6-518, TOR-6-519 

(2Z, 5Z, 8E)-9-(3-hex-5-ynylphenoxy)undeca-2,5,8-trien-1-yl acetate (192) 

 

Acetic anhydride (9.3 μL, 10 mg, 0.098 mmol) was added to a solution of alcohol 186 (16.6 

mg, 0.049 mmol), triethylamine (10 μL, 0.068 mmol) and DMAP (0.8 mg, 6.8 μmol) in 

CH2Cl2 (4 mL) at 0 °C. The resulting solution was stirred at RT for 1.2 h before being 

quenched with sat. aq. NH4Cl (10 mL), the layers separated and the aqueous layer extracted 

with CH2Cl2 (3 × 10 mL). The combined organic layers were washed with water (10 mL) 
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and brine (10 mL), dried over MgSO4, filtered and evaporated to afford the title compound 

as a colourless oil which was used without further purification (17.7 mg, 95%, E/Z 3:1). 

NMR spectroscopic data is given for the major E-isomer only. 

IR (thin film, cm
−1

) νmax 3302w, 2936m, 1739s, 1585m, 1445m, 1372m, 1228s, 1154s, 

1022s, 797s, 696m; 
1
H NMR (400 MHz, C6D6) δ 7.09 (t, J = 7.7 Hz, 1H), 6.98–6.90 (m, 

2H), 6.72 (d, J = 7.6 Hz, 1H), 5.56–5.38 (m, 2H), 5.37–5.22 (m, 2H), 4.86 (t, J = 7.7 Hz, 

1H), 4.58 (d, J = 6.6 Hz, 2H), 2.77–2.62 (m, 4H), 2.39–2.22 (m, 4H), 1.89 (td, J = 7.2, 2.7 

Hz, 2H), 1.77 (t, J = 2.6 Hz, 1H), 1.66 (s, 3H), 1.57–1.43 (m, 2H), 1.39–1.24 (m, 2H), 1.17 

(t, J = 7.5 Hz, 3H); 
13

C NMR (100 MHz, C6D6) δ 194.1, 157.2, 144.4, 133.0, 129.7, 129.7, 

127.2, 124.5, 123.3, 119.8, 117.0, 113.7, 107.1, 84.2, 69.0, 60.1, 35.5, 30.5, 28.2, 26.1, 

24.9, 22.7, 20.5, 18.4, 12.4; MS (ESI
+
) m/z (rel. %) 403 ([M+Na]

+
, 100), 381 ([M+H]

+
, 20); 

HRMS (ESI
+
) 381.2400 [M+H]

+
, C25H33O3 requires 381.2424. 

Lab book reference number: TOR-7-570 

2-(Tert-butyldiphenylsilyloxy)ethanol (198)
285

 

 

Tert-butyldiphenylsilylchloride (7.97 g, 29.0 mmol) was added dropwise over a period of 

1.5 h (with the use of a syringe pump) to a solution of ethane-1,2-diol (9.0 g, 145 mmol) 

and triethylamine (14.7 g, 145 mmol) in CH2Cl2 (60 mL) at 0 °C. Upon completion of the 

addition, the solution was allowed to warm to RT, and stirred for a further 3 h before being 

quenched with water (40 mL). The layers were separated and the aqueous layer extracted 

with CH2Cl2 (3 × 30 mL). The combined organic layers were washed with water (40 mL) 

and brine (40 mL), dried over MgSO4, filtered and concentrated in vacuo. Purification by 

flash chromatography (SiO2, EtOAc/petrol, 1:4, v/v) afforded the title compound as a 

colourless oil (1.33 g, 15%). 

Rf 0.36 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3398br, 3071w, 2931m, 2858m, 

1725w, 1473m, 1427m, 1391w, 1362w, 1112s, 1056m, 999m, 881w, 823m, 738m, 701s, 

614m, 505s; 
1
H NMR (400 MHz, CDCl3) δ 7.69–7.65 (m, 4H), 7.48–7.36 (m, 6H), 3.79–

3.75 (m, 2H), 3.71–3.66 (m, 2H), 1.07 (s, 9H); 
13

C NMR (101 MHz, CDCl3) δ 135.7, 133.4, 

130.0, 127.9, 65.0, 63.9, 27.0, 19.4; MS (ESI
+
) m/z (rel. %) 323 ([M+Na]

+
, 100); HRMS 

(ESI
+
) 323.1437 [M+Na]

+
, C18H24NaO2Si requires 323.1438. 

Lab book reference number: TOR-7-569 
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2-(Tert-butyldiphenylsilyloxy)ethanol (199)
285

 

 

To a solution of oxalyl chloride (555 mg, 4.37 mmol) in dry CH2Cl2 (12 mL) was added a 

solution of dry DMSO (746 mg, 9.65 mmol) in dry CH2Cl2 (2 mL) dropwise via dropping 

funnel at −78 °C. After stirring for 10 min, a solution of alcohol 198 (1.19 g, 3.98 mmol) 

and dry pyridine (629 mg, 7.96 mmol) in dry CH2Cl2 (5 mL) was added dropwise and the 

solution stirred for an additional 20 min at −78 °C. Dry triethylamine (2.01 g, 19.9 mmol) 

was then added dropwise and the resulting suspension allowed to warm to RT; 1M aq. HCl 

was added until the aqueous layer was pH 5. The layers were separated and the organic 

layer extracted with CH2Cl2 (3  10 mL). The combined organic extracts were washed with 

sat. aq. CuSO4 (10 mL) and brine (10 mL) before being dried over MgSO4, filtered and 

evaporated. Purification by flash chromatography (SiO2, petrol/ether, 9:1, v/v) afforded the 

title compound as a colourless oil (1.06 g, 89%). 

Rf 0.45 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3071w, 2932m, 2858m, 1738s, 

1473m, 1427m, 1113s, 998w, 899m, 824m, 741m, 701s, 611m, 505s; 
1
H NMR (400 MHz, 

CDCl3) δ 9.72 (t, J = 0.9 Hz, 1H), 7.69–7.65 (m, 4H), 7.48–7.36 (m, 6H), 4.21 (d, J = 0.9 

Hz, 2H), 1.10 (s, 9H); 
13

C NMR (101 MHz, CDCl3) δ 201.9, 135.7, 132.6, 130.2, 128.1, 

70.1, 26.8, 19.4; MS (ESI
+
) m/z (rel. %) 321 ([M+Na]

+
, 100); HRMS (ESI

+
) 321.1280 

[M+Na]
+
, C18H22NaO2Si requires 321.1281. 

Lab book reference number: TOR-7-572 

(Z)-6-(Tert-butyldiphenylsilyloxy)hex-4-en-1-yne (200) 

 

To a rapidly stirred suspension of phosphonium salt 162 (1.71 g, 4.64 mmol) in dry THF 

(12 mL) at −78 °C was added dropwise n-butyllithium (2.3 M in hexanes, 1.81 mL, 

4.16 mmol). After stirring for 5 min at −78 °C, the resulting solution was warmed to 0 °C 

for 40 min, before being cooled to −78 °C, and a solution of aldehyde 199 (1.08 g, 

3.62 mmol) in dry THF (4 mL) was added dropwise via syringe. Transfer was made 

quantitative with an additional portion of dry THF (4 mL). The resulting reaction mixture 

was stirred at −78 °C for 1.5 h before being allowed to warm to RT. After a further 6 h at 

RT, the reaction was quenched with sat. aq. NH4Cl (25 mL), and the aqueous later extracted 

with ether (3  30 mL). The combined organic layers were washed with brine (30 mL), 
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dried over MgSO4, filtered and evaporated. Purification by flash chromatography (SiO2, 

petrol/ether, 9:1, v/v) afforded the title compound as a pale yellow oil (946 mg, 78%). 

Rf 0.68 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3304m, 3072w, 2931m, 2858m, 

1473m, 1428m, 1362w, 1113s, 1071m, 998w, 824m, 741m, 702s, 639m, 614m, 505s; 
1
H 

NMR (400 MHz, CDCl3) δ 7.70–7.66 (m, 4H), 7.46–7.36 (m, 6H), 5.75–5.64 (m, 1H), 5.47 

(dtt, J = 10.6, 7.0, 1.7 Hz, 1H), 4.25 (ddt, J = 6.1, 1.7, 0.8 Hz, 2H), 2.79 (dddt, J = 7.0, 2.6, 

1.7, 0.9 Hz, 2H), 1.94 (t, J = 2.7 Hz, 1H), 1.04 (s, 9H); 
13

C NMR (101 MHz, CDCl3) δ 

135.7, 133.7, 131.2, 129.8, 127.9, 124.9, 82.4, 68.4, 60.2, 26.9, 19.3, 17.4; MS (ESI
+
) m/z 

(rel. %) 357 ([M+Na]
+
, 100), 335 ([M+H]

+
, 20); HRMS (ESI

+
) 357.1637 [M+Na]

+
, 

C22H26NaOSi requires 357.1645. 

Lab book reference number: TOR-7-574 

 (1Z,4Z)-1-Tri-n-butylstannyl-6-(tert-butyldiphenylsilyloxy)hexa-1,4-diene (202) 

 

To a solution of alkyne 200 (947 mg, 2.83 mmol) in dry THF (20 mL) at −78 °C was added 

dropwise n-butyllithium (2.3 M in hexanes, 1.25 mL, 2.89 mmol), and the resulting 

solution was stirred for 5 min before dropwise addition of tributyltin chloride (1.01 g, 

3.11 mmol). The resulting solution was stirred for 30 min at −78 °C, after which time 

cooling bath was removed and the reaction mixture was stirred for a further 2 h. The 

resulting solution was then diluted with petrol (100 mL), washed with water (50 mL) and 

brine (50 mL), dried over Na2SO4, filtered and evaporated to afford a yellow oil which was 

used directly without further purification. 

Diisobutylaluminium hydride (1.0 M in hexane, 4.3 mL, 4.30 mmol) was added dropwise 

to a solution of zirconocene dichloride (1.32 g, 4.53 mmol) in dry THF (15 mL) at 0 °C. 

The reaction mixture was then stirred for 45 min at 0 °C during which time an off-white 

suspension formed. A solution of the crude intermediate stannane (2.83 mmol) was then 

added in dry THF (3 mL), with additional dry THF (2 mL) used to rinse the flask and 

ensure quantitative transfer. The cooling was then removed, and the reaction mixture 

rapidly became a homogenous red solution. After stirring for 1 h, the reaction was diluted 

with n-pentane (20 mL) followed by water (10 eq., 0.5 mL). After stirring for 2.5 h, a 

further portion of water (0.5 mL) was added, leading to the disappearance of the red colour 

and formation of a yellow solution containing a white precipitate. The reaction mixture was 
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filtered through a Celite plug which was washed copiously with hexane. Evaporation of the 

filtrate and flash chromatography (SiO2, petrol/ether/triethylamine, 95:3:2, v/v) afforded the 

title compound as a colourless oil (1.51 g, 85%). 

Rf 0.78 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 2957s, 2928s, 2856m, 1591w, 

1463m, 1428m, 1376w, 1111s, 1071m, 999w, 824m, 740m, 701s, 613m, 505s; 
1
H NMR 

(400 MHz, C6D6) δ 7.85–7.77 (m, 4H), 7.27–7.21 (m, 6H), 6.46 (dt, J = 12.3, 7.1 Hz, 1H), 

5.97 (dt, J = 12.3, 1.2 Hz, 1H), 5.82 (dtt, J = 10.8, 6.2, 1.6 Hz, 1H), 5.56–5.42 (m, 1H), 

4.41 (ddt, J = 6.2, 1.6, 0.8 Hz, 2H), 2.82–2.70 (m, 2H), 1.62–1.51 (m, 6H), 1.41–1.29 (m, 

6H), 1.19 (s, 9H), 0.99–0.94 (m, 6H), 0.92 (t, J = 7.3 Hz, 9H); 
13

C NMR (101 MHz, C6D6) 

δ 147.0, 136.0, 134.2, 130.3, 130.0, 129.1, 100.3, 77.0, 60.7, 35.9, 29.7, 27.7, 27.1, 19.5, 

14.0, 10.6; MS (ESI
+
) m/z (rel. %) 358 ([M−SnBu3+H+Na]

+
, 100), 649 ([M+Na]

+
, 20), 665 

([M+K]
+
, 15); HRMS (ESI

+
) 649.2856 [M+Na]

+
, C34H53NaOSiSn requires 649.2858. 

Lab book reference numbers: TOR-7-576, TOR-7-578 

 (1Z,4Z)-1-Tri-n-butylstannyl-6-chlorohexa-1,4-diene (204) 

 

To a solution of silyl ether 202 (356 mg, 0.57 mmol) in dry THF (10 mL) was added 

dropwise TBAF (1 M in THF, 0.6 mL, 0.60 mmol) at RT. After 1.5 h, the reaction mixture 

was diluted with ether (40 mL), washed with sat. aq. NH4Cl (20 mL), dried over Na2SO4, 

filtered and evaporated to afford a crude allylic alcohol which was used directly without 

further purification. 

To a solution of the crude allylic alcohol in dry CH2Cl2 (5 mL) was added 

triphenylphosphine (224 mg, 0.86 mmol) and carbon tetrachloride (110 μL, 1.14 mmol). 

After stirring for 5 h, an additional portion of carbon tetrachloride (55 μL, 0.57 mmol) was 

added. After stirring for 22 h, a further portion of carbon tetrachloride (275 μL, 2.85 mmol) 

was added, and this process was repeated after a further 2 h. After a total reaction time of 

29 h, the solvent was removed in vacuo. Flash chromatography (SiO2, n-

pentane/ether/triethylamine, 95:2:3, v/v) afforded the title compound as a colourless oil 

(55.2 mg, 24%). 

IR (thin film, cm
−1

) νmax 2957s, 2924s, 2872m, 2853m, 1595w, 1464m, 1377w, 1251w, 

1072w, 874w, 767w, 693w, 597w; 
1
H NMR (400 MHz, C6D6) δ 6.43 (dt, J = 12.3, 7.0 Hz, 

1H), 6.01 (dt, J = 12.3, 1.2 Hz, 1H), 5.55–5.41 (m, 2H), 3.76 (d, J = 7.0 Hz, 2H), 2.79 (ddd, 
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J = 6.8, 5.5, 1.3 Hz, 2H), 1.65–1.52 (m, 6H), 1.43–1.31 (m, 6H), 1.03–0.97 (m, 6H), 0.94 (t, 

J = 7.3 Hz, 9H); 
13

C NMR (101 MHz, C6D6) δ 146.0, 132.8, 130.0, 126.4, 39.1, 35.1, 29.7, 

27.7, 14.0, 10.6. 

Lab book reference numbers: TOR-7-585, TOR-7-586 

 (1Z,4Z)-1-Tri-n-butylstannyl-6-bromohexa-1,4-diene (205) 

 

To a solution of silyl ether 202 (412 mg, 0.66 mmol) in dry THF (10 mL) was added 

dropwise TBAF (1 M in THF, 0.69 mL, 0.69 mmol) at RT. After 1.5 h, the reaction mixture 

was diluted with ether (40 mL), washed with sat. aq. NH4Cl (20 mL), dried over Na2SO4, 

filtered and evaporated to afford a crude allylic alcohol which was used directly without 

further purification. 

To a solution of the crude allylic alcohol in dry CH2Cl2 (5 mL) was added 

triphenylphosphine (207 mg, 0.79 mmol) and carbon tetrabromide (251 mg, 0.76 mmol). 

After stirring for 6 h, additional portions of carbon tetrabromide (109 mg, 0.33 mmol) and 

triphenylphosphine (86 mg, 0.33 mmol) were added. After stirring for a further 1 h, the 

solvent was removed in vacuo, hexane (20 mL) was added, and the resulting precipitate 

removed by filtration. Evaporation of the filtrate and flash chromatography (SiO2, 

petrol/ether/triethylamine, 95:2:3, v/v) afforded the title compound as a colourless oil 

(131 mg, 44%). 

IR (thin film, cm
−1

) νmax 2956s, 2924s, 2871m, 2853m, 1594w, 1464m, 1377w, 1204m, 

1072w, 874w, 755w, 693m, 598w; 
1
H NMR (400 MHz, C6D6) δ 6.45 (dt, J = 12.3, 7.0 Hz, 

1H), 6.02 (dt, J = 12.3, 1.3 Hz, 1H), 5.58–5.49 (m, 1H), 5.41 (dt. J = 10.5, 7.3 Hz, 1H), 

3.63 (d, J = 8.2 Hz, 2H), 2.82 (tt, J = 7.2, 1.5 Hz, 2H), 1.69–1.51 (m, 6H), 1.47–1.29 (m, 

6H), 1.07–0.89 (m, 15H); 
13

C NMR (101 MHz, C6D6) δ 145.8, 133.2, 130.0, 126.4, 34.9, 

29.7, 27.7, 26.6, 14.0, 10.6. 

Lab book reference numbers: TOR-7-580, TOR-7-581 
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(E)-3-(3-[5-Hexynyl]phenoxy)pent-2-enyl acetate (196) 

 

To a solution of silyl protected alkyne 140 (48.4 mg, 0.130 mmol) in dry THF (5 mL) was 

added TBAF (1 M in THF, 0.14 mL, 0.14 mmol), and the resulting solution stirred at RT 

for 2 h. The reaction mixture was then diluted with ether (30 mL), washed with sat. aq. 

NH4Cl (15 mL), dried over MgSO4, filtered and evaporated. Flash chromatography (SiO2, 

petrol/ether, 17:3, v/v) afforded the title compound as a colourless oil (20.5 mg, 53%). 

Rf 0.56 (ether/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 3296w, 2940m, 1737s, 1665m, 

1606w, 1586m, 1485m, 1444w, 1365m, 1230s, 1181s, 1151m, 1055w, 1020m, 971w, 

946w, 801w, 697w, 637w; 
1
H NMR (400 MHz, C6D6) δ 7.03 (t, J = 7.7 Hz, 1H), 6.88–6.82 

(m, 2H), 6.73 (dt, J = 7.4, 1.3 Hz, 1H), 4.84 (t, J = 8.0 Hz, 1H), 4.52 (d, J = 8.0 Hz, 2H), 

2.31 (q, J = 7.5 Hz, 2H), 2.27 (t, J = 7.8 Hz, 2H), 1.88 (td, J = 7.1, 2.7 Hz, 2H), 1.76 (t, J = 

2.7 Hz, 1H), 1.63 (s, 3H), 1.50–1.41 (m, 2H), 1.30–1.23 (m, 2H), 1.15 (t, J = 7.5 Hz, 3H); 

13
C NMR (101 MHz, C6D6) δ 164.0, 155.6, 144.6, 129.8, 128.7, 124.5, 121.2, 118.6, 99.7, 

84.1, 69.0, 60.6, 35.3, 30.4, 28.2, 23.4, 20.6, 18.4, 12.6; MS (ESI
+
) m/z (rel. %) 241 

([M−AcO]
+
, 45), 263 ([M−OAc+Na]

+
, 100), 279 ([M−OAc+K]

+
, 2), 323 ([M+Na]

+
, 80), 

339 ([M+K]
+
, 10); HRMS (ESI

+
) 323.1606 [M+Na]

+
, C19H24NaO3 requires 323.1618. 

Lab book reference number: TOR-7-582 

4-[3-(Triisopropylsilanyloxy)-phenyl]-butan-1-ol (215) 

 

A solution of 3-iodophenol (5.0 g, 22.75 mmol), triisopropylchlorosilane (5.8 mL, 

27.3 mmol) and imidazole (1.86 g, 27.3 mmol) in CH2Cl2 (50 mL) was stirred for 2 h at 

RT. After this time, the reaction mixture was poured onto ice water (50 mL), the layers 

separated, and the aqueous layer extracted with CH2Cl2 (2 × 50 mL). The combined organic 

layers were washed with 1 M aq. HCl (50 mL), 1 M aq. NaOH (50 mL) and sat. aq. 

NaHCO3 (50 mL), dried over MgSO4, filtered and evaporated to afford a colourless oil 

which was used directly without purification. 
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A stirred solution of the crude protected phenol (22.75 mmol), PdCl2(PPh3)2 (160 mg, 0.23 

mmol), CuI (43 mg, 0.23 mmol) and 3-butyn-1-ol (1.91 g, 27.3 mmol) in dry triethylamine 

(60 mL) was heated to 70 °C for 1 h. After this time, the resulting mixture was cooled to 

RT, and quenched with sat. aq. NH4Cl (300 mL). The aqueous solution was extracted with 

CH2Cl2 (3 × 250 mL), and the combined organic layers washed with brine (250 mL), dried 

over MgSO4, filtered and evaporated to afford a yellow oil which was used directly without 

further purification. 

Palladium on carbon (1 g, 10 wt%, 5 wt% Pd) was added to a stirred solution of the crude 

alkyne (22.75 mmol) in MeOH (100 mL). The reaction vessel was then placed under an 

atmosphere of H2 and stirred for 48 h, after which time the reaction mixture was filtered 

through a short plug of silica which was washed thoroughly with CH2Cl2. Evaporation 

afforded the title compound as a colourless oil (7.13 g, 97% over three steps). 

Rf 0.33 (ether/petrol, 1:1); IR (thin film, cm
−1

) νmax 3345br, 2942s, 2866s, 1602m, 1584s, 

1484s, 1463m, 1441m, 1384w, 1276s, 1158m, 1061m, 1003m, 976m, 920w, 883s, 826m, 

782m, 687s, 509w, 455w; 
1
H NMR (400 MHz, CDCl3) δ 7.14–7.07 (m, 1H), 6.77–6.73 (m, 

1H), 6.74–6.64 (m, 2H), 3.66 (t, J = 6.4 Hz, 2H), 2.58 (t, J = 7.4 Hz, 2H), 1.71–1.63 (m, 

2H), 1.63–1.55 (m, 2H), 1.34–1.16 (m, 3H), 1.09 (d, J = 7.2 Hz, 18H); 
13

C NMR (101 

MHz, CDCl3) δ 156.1, 143.9, 129.2, 121.3, 120.2, 117.4, 63.0, 35.7, 32.4, 27.6, 18.1, 12.8; 

MS (ESI
+
) m/z (rel. %) 323 ([M+H]

+
, 40), 345 ([M+Na]

+
, 100), 361 ([M+K]

+
, 10); HRMS 

(ESI
+
) 323.2401 [M+H]

+
, C19H35NaO2Si requires 323.2401. 

Lab book reference number: TOR-7-660, TOR-7-661, TOR-7-662 

1-Bromo-4-[3-(triisopropylsilanyloxy)-phenyl]-butane (216) 

 

A solution of alcohol 215 (591 mg, 1.83 mmol), carbon tetrabromide (911 mg, 2.75 mmol) 

and triphenylphosphine (721 mg, 2.75 mmol) in dry ether (10 mL) was stirred at RT for 

16 h. After this time TLC analysis indicated incomplete reaction, so additional portions of 

carbon tetrabromide (304 mg, 0.92 mmol) and triphenylphosphine (240 mg, 0.92 mmol) 

were added. After an additional 2 h, the reaction mixture was filtered and evaporated. 

Purification by flash chromatography (SiO2, petrol/EtOAc, 9:1, v/v) afforded the title 

compound as a colourless oil (652 mg, 92%). 
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Rf 0.59 (ether/petrol, 1:9, v/v); IR (thin film, cm
−1

) νmax 2943m, 2893w, 2866m, 1602m, 

1584m, 1484s, 1463m, 1441m, 1278s, 1158m, 1003m, 970m, 882s, 823m, 681s, 659m, 

563w, 510w, 458w; 
1
H NMR (400 MHz, CDCl3) δ 7.12 (td, J = 7.4, 1.6 Hz, 1H), 6.76–6.73 

(m, 1H), 6.75–6.66 (m, 2H), 3.41 (t, J = 6.7 Hz, 2H), 2.58 (t, J = 7.5 Hz, 2H), 1.93–1.81 

(m, 2H), 1.81–1.68 (m, 2H), 1.29–1.18 (m, 3H), 1.10 (d, J = 7.2 Hz, 18H); 
13

C NMR (101 

MHz, CDCl3) δ 156.2, 143.3, 129.2, 121.2, 120.1, 117.5, 34.9, 33.7, 32.2, 29.7, 18.0, 12.8; 

MS (ESI
+
) m/z (rel. %) 385 ([M+H]

+
, 100), 407 ([M+Na]

+
, 95); HRMS (ESI

+
) 385.1559 

[M+H]
+
, C19H34BrOSi requires 385.1557. 

Lab book reference number: TOR-7-645 

1-Iodo-4-[3-(triisopropylsilanyloxy)-phenyl]-butane (217) 

 

METHOD A: A stirred solution of bromide 216 (210 mg, 0.55 mmol) and NaI (164 mg, 

1.09 mmol) in acetone (10 mL) was heated to 60 °C for 2 h. After this time the reaction 

mixture was cooled to RT, diluted with water (40 mL) and extracted with ether (3 × 30 

mL). The combined organic layers were dried over MgSO4, filtered and evaporated to 

afford the title compound as a colourless oil (231 mg, 98%). 

METHOD B: Iodine (868 mg, 3.42 mmol) was added portion-wise to a solution of 

triphenylphosphine (897 mg, 3.42 mmol) and imidazole (464 mg, 6.82 mmol) in CH2Cl2 

(15 mL), and the resulting mixture stirred for 30 min at RT. A solution of alcohol 215 (1.0 

g, 3.10 mmol) in CH2Cl2 (5 mL) was then added dropwise and the reaction stirred for a 

further 15 min. After this time the reaction was quenched with sat. aq. Na2S2O4 (20 mL), 

the layers separated and the aqueous layer extracted with CH2Cl2 (2 × 20 mL). The 

combined organic layers were dried over Na2SO4, filtered and concentrated in vacuo. 

Purification by flash chromatography (SiO2, petrol/ether, 19:1, v/v) afforded the title 

compound as a colourless oil (1.03 g, 73%). 

Rf 0.62 (ether/petrol, 1:9, v/v); IR (thin film, cm
−1

) νmax 2943s, 2866s, 1603m, 1584m, 

1484s, 1463m, 1442m, 1279s, 1158m, 1072w, 1003m, 973m, 883s, 822m, 780m, 689s, 

510w; 
1
H NMR (400 MHz, CDCl3) δ 7.11 (td, J = 7.5, 1.0 Hz, 1H), 6.74 (dt, J = 7.7, 1.3 

Hz, 1H), 6.72–6.68 (m, 2H), 3.19 (t, J = 6.9 Hz, 2H), 2.57 (t, J = 7.5 Hz, 2H), 1.89–1.77 

(m, 2H), 1.77–1.65 (m, 2H), 1.30–1.18 (m, 3H), 1.10 (d, J = 7.2 Hz, 18H); 
13

C NMR (101 

MHz, CDCl3) δ 156.2, 143.4, 129.3, 121.3, 120.2, 117.5, 34.8, 33.0, 32.2, 18.0, 12.8, 6.9; 
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MS (ESI
+
) m/z (rel. %) 455 ([M+Na]

+
, 100); HRMS (ESI

+
) 455.1240 [M+Na]

+
, 

C19H33INaOSi requires 455.1238. 

Lab book reference number (method A): TOR-7-653 

Lab book reference number (method B): TOR-8-678 

(But-3-ynyloxy)tert-butyldiphenylsilane (211) 

 

To a stirred solution of 3-butyn-1-ol (2.5 g, 35.7 mmol) and imidazole (2.55 g, 35.7 mmol) 

in CH2Cl2 (200 mL) was added dropwise tert-butyldiphenylchlorosilane (9.27 mL, 35.7 

mmol). The resulting mixture was stirred for 26 h at RT, before being filtered through a 

short plug of silica gel, eluting with CH2Cl2. The solution was concentrated in vacuo to 

afford the title compound as a colourless oil (10.85 g, 99%). 

Rf 0.54 (ether/petrol, 1:9, v/v); IR (thin film, cm
−1

) νmax 3309w, 3072w, 2931m, 2858m, 

1473m, 1428m, 1384w, 1106s, 1008w, 918m, 823m, 799w, 737m, 700s, 613s, 503s, 488s; 

1
H NMR (400 MHz, CDCl3) δ 7.70–7.66 (m, 4H), 7.45–7.35 (m, 6H), 3.79 (t, J = 7.1 Hz, 

2H), 2.45 (td, J = 7.1, 2.7 Hz, 2H), 1.95 (t, J = 2.7 Hz, 1H), 1.06 (s, 9H) ; 
13

C NMR (101 

MHz, CDCl3) δ 135.7, 133.7, 129.8, 127.8, 81.6, 69.5, 62.4, 26.9, 22.7, 19.4; MS (APCI
+
) 

m/z (rel. %) 309 ([M+H]
+
, 100); HRMS (APCI

+
) 309.1661 [M+H]

+
, C20H25OSi requires 

309.1669. 

Lab book reference number: TOR-8-711 

1-tert-Butyldiphenylsilyloxy-8-[3-(triisopropylsilanyloxy)-phenyl]-oct-3-yne (218) 

 

To a stirred solution of alkyne 211 (122 mg, 0.396 mmol) in dry THF (5 mL) at −78 °C was 

added dropwise n-butyllithium (1.85 M in hexanes, 0.22 mL, 0.396 mmol). The resulting 

solution stirred for 25 min, before the addition of a solution of iodide 217 (150 mg, 0.33 

mmol) and HMPA (140 μL, 0.792 mmol) in dry THF (1 mL). An additional portion of dry 

THF (1 mL) was used to ensure quantitative transfer. The reaction mixture was then stirred 

for 5 min at −78 °C, 1 h at RT, and 5 h at 66 °C. After this time the reaction was cooled to 

RT and quenched with sat. aq. NH4Cl (10 mL). The layers were separated and the aqueous 
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layer extracted with EtOAc (3 × 10 mL). The combined organic layers were then dried over 

MgSO4, filtered and concentrated in vacuo. Purification by flash chromatography (SiO2, 

petrol/CHCl3, 4:1→1:1, v/v) afforded the title compound as a colourless oil (40.8 mg, 20%). 

Rf 0.58 (ether/petrol, 1:9, v/v); IR (thin film, cm
−1

) νmax 2941s, 2865m, 1584m, 1484m, 

1277s, 1157m, 1110s, 1003w, 883m, 823m, 738w, 701s, 614w, 506s; 
1
H NMR (400 MHz, 

CDCl3) δ 7.70–7.65 (m, 4H), 7.45–7.34 (m, 6H), 7.09 (dd, J = 8.8, 7.5 Hz, 1H), 6.72 (dt, J 

= 7.5, 1.3 Hz, 1H), 6.70–6.67 (m, 2H), 3.73 (t, J = 7.2 Hz, 2H), 2.53 (t, J = 7.6 Hz, 2H), 

2.42 (tt, J = 7.2, 2.4 Hz, 2H), 2.13 (tt, J = 7.1, 2.4 Hz, 2H), 1.66 (tt, J = 9.0, 6.7 Hz, 2H), 

1.53–1.42 (m, 2H), 1.33–1.17 (m, 3H), 1.09 (d, J = 7.2 Hz, 18H), 1.05 (s, 9H); 
13

C NMR 

(101 MHz, CDCl3) δ 156.1, 144.0, 135.7, 133.9, 129.7, 129.2, 127.8, 121.3, 120.2, 117.3, 

81.3, 76.8, 63.1, 35.4, 30.6, 28.6, 26.9, 23.1, 19.4, 18.8, 18.1, 12.8; MS (ESI
+
) m/z (rel. %) 

635 ([M+Na]
+
, 100), 651 ([M+K]

+
, 80); HRMS (ESI

+
) 635.3725 [M+Na]

+
, C39H56NaO2Si2 

requires 635.3711. 

Lab book reference number: TOR-8-687 

3-[8-Hydroxyoct-5-ynyl]-phenol (219) 

 

To a solution of bis-silyl-protected compound 218 (19.4 mg, 0.032 mmol) in dry THF 

(1 mL) was added TBAF (1 M in THF, 33 μL, 0.033 mmol) at 0 °C. After 45 min, the 

reaction was quenched with sat. aq. NH4Cl (10 mL). The aqueous layer was then extracted 

with ether (3 × 10 mL), and the organic layers combined, dried over MgSO4, filtered and 

evaporated. Purification by flash chromatography (SiO2, petrol/EtOAc, 9:1→4:1, v/v) 

afforded the title compound as a colourless oil (6.7 mg, 96%).  

Rf 0.09 (EtOAc/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3312br, 2931m, 2856m, 1588s, 

1457s, 1260s, 1156s, 1041s, 782m, 695m; 
1
H NMR (400 MHz, CDCl3) δ 7.14 (t, J = 7.8 

Hz, 1H), 6,74 (ddd, J = 7.5, 1.6, 0.9 Hz, 1H), 6.70 (t, J = 1.9 Hz, 1H), 6.68–6.64 (m, 1H), 

5.28 (br s, 1H), 3.70 (t, J = 6.1 Hz, 2H), 2.59 (t, J = 7.5 Hz, 2H), 2.44 (tt, J = 6.1, 2.4 Hz, 

2H), 2.19 (tt, J = 7.0, 2.4 Hz, 2H), 1.91 (br s, 1H), 1.77–1.68 (m, 2H), 1.56–1.47 (m, 2H); 

13
C NMR (101 MHz, CDCl3) δ 155.8, 144.3, 129.6, 121.1, 115.3, 112.9, 82.7, 76.7, 61.5, 

35.1, 30.1, 28.3, 23.3, 18.7; MS (ESI
+
) m/z (rel. %) 219 ([M+H]

+
, 100), 241 ([M+Na]

+
, 80); 

HRMS (ESI
+
) 219.1378 [M+Na]

+
, C14H19O2 requires 219.1380. 
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Lab book reference number: TOR-8-669 

3-([8-tert-Butyldiphenylsilyl]oct-5-ynyl)phenol (220) 

 

METHOD A, INITIAL REACTION: To a suspension of potassium tert-butoxide (267 mg, 

2.38 mmol) and dry TMEDA (214 μL, 2.38 mmol) in dry hexane (5 mL) at −78 °C was 

added dropwise n-butyllithium (1.8 M in hexanes, 1.32 mL, 2.38 mmol), and the mixture 

was stirred for 15 min. After this time, m-cresol (100 µL, 0.95 mmol) was added, and the 

reaction mixture was warmed to −20 °C and stirred at this temperature for 3 h. The cooling 

bath was then removed, dry THF (2 mL) added, and the reaction cooled to −78 °C before a 

solution of iodide 222 (702 mg, 1.47 mmol) in dry THF (3 mL) was added. The resulting 

mixture was stirred at −78 °C for 2 h before being quenched with water (8 mL) and 6 M aq. 

HCl (1 mL). The layers were separated, and the aqueous layer extracted with ether 

(3  15 mL). The combined organic layers were dried over MgSO4, filtered and evaporated. 

Purification by flash chromatography (SiO2, petrol/EtOAc, 92:8, v/v) and drying in vacuo 

afforded the title compound as a colourless oil (211 mg, 44%). 

METHOD A, OPTIMISED PROCEDURE: To a suspension of potassium tert-butoxide 

(1.10 g, 9.8 mmol) and dry TMEDA (1.47 mL, 9.8 mmol) in dry hexane (21 mL) at −78 °C 

was added dropwise n-butyllithium (2.0 M in hexanes, 4.87 mL, 9.8 mmol), and the 

mixture was stirred for 15 min. After this time, m-cresol (410 µL, 3.9 mmol) was added, 

and the reaction mixture was warmed to −20 °C and stirred at this temperature for 3.5 h. 

The cooling bath was then removed, dry THF (5 mL) added, and the reaction cooled to −78 

°C before a solution of iodide 222 (2.8 g, 5.9 mmol) in dry THF (8 mL) was added. The 

resulting mixture was stirred at −78 °C for 20 h before being quenched with brine (20 mL) 

and 6 M aq. HCl (5 mL). The layers were separated, and the aqueous layer extracted with 

ether (4  30 mL). The combined organic layers were washed with water (5 mL), dried over 

MgSO4, filtered and evaporated. Purification by flash chromatography (SiO2, petrol/EtOAc, 

19:1→17:3, v/v) and drying in vacuo afforded the title compound as a colourless oil (1.27 g, 

71%). 

METHOD B: A solution of bis-silyl ether 218 (63.4 mg, 0.10 mmol) and potassium acetate 

(5 mg, 0.05 mmol) in DMF/water (20:1, 0.7 mL) was stirred at 70 °C for 22 h. After this 

time the reaction mixture was cooled to RT, diluted with ether (10 mL) and washed with 
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water (3 × 5 mL). The aqueous layer was extracted with ether (5 mL), and the combined 

organic layers washed with brine (5 mL), dried over MgSO4, filtered and evaporated. 

Purification by flash chromatography (SiO2, petrol/EtOAc, 9:1, v/v) afforded the title 

compound as a colourless oil (43.4 mg, 95%). 

Rf 0.46 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3397br, 2928s, 2856m, 1589m, 

1456m, 1428m, 1155w, 1111s, 823w, 738m, 701s, 613m, 505s; 
1
H NMR (400 MHz, 

CDCl3) δ 7.71–7.66 (m, 4H), 7.45–7.33 (m, 6H), 7.12 (td, J = 7.4, 1.2 Hz, 1H), 6.73 (dt, J = 

7.7, 1.2 Hz, 1H), 6.67–6.60 (m, 2H), 4.57 (br s, 1H), 3.74 (t, J = 7.1 Hz, 2H), 2.55 (t, J = 

7.6 Hz, 2H), 2.42 (tt, J = 7.1, 2.4 Hz, 2H), 2.14 (tt, J = 7.0, 2.4 Hz, 2H), 1.68 (tt, J = 9.0, 

6.7 Hz, 2H), 1.49 (quin, J = 7.2 Hz, 2H), 1.04 (s, 9H); 
13

C NMR (101 MHz, CDCl3) δ 

155.6, 144.5, 135.7, 133.9, 129.8, 129.6, 127.8, 121.1, 115.4, 112.7, 81.3, 77.31, 63.1, 35.4, 

30.4, 28.6, 26.9, 23.1, 19.4, 18.8; MS (ESI
+
) m/z (rel. %) 457 ([M+H]

+
, 5), 474 ([M+NH4]

+
, 

100), 479 ([M+Na]
+
, 80), 495 ([M+K]

+
, 40); HRMS (ESI

+
) 479.2381 [M+Na]

+
, 

C30H36NaO2Si requires 479.2377. 

Lab book reference number (method A, initial reaction): TOR-8-710 

Lab book reference number (method A, optimised procedure): MV-1-018 (reaction 

optimised by M. Völkel) 

Lab book reference number (method B): TOR-8-707 

7-(tert-Butyldiphenylsilyloxy)hept-4-yn-1-ol (221) 

 

To a solution of alkyne 211 (5 g, 16.2 mmol) in dry THF (30 mL) was added dropwise n-

butyllithium (2.0 M in hexanes, 8.1 mL, 16.2 mmol) at −78 °C. The reaction mixture was 

stirred for 25 min before the addition of BF3•Et2O (2.0 mL, 16.2 mmol), and the resulting 

solution stirred for a further 15 min. After this time trimethylene oxide (526 μL, 8.1 mmol) 

was added dropwise and the reaction mixture maintained at −78 °C for a further 2 h. After 

this time, the cooling was removed and the reaction immediately quenched with sat. aq. 

NH4Cl (60 mL). The layers were separated and the aqueous layer extracted with ether 

(3 × 60 mL). The combined organic layers were dried over MgSO4, filtered and evaporated. 

Purification by flash chromatography (SiO2, petrol/ether, 9:1→1:1, v/v) afforded the title 

compound as a colourless oil (2.71 g, 91%). 

Rf 0.25 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 2245br, 3071w, 2931m, 2858m, 

1473m, 1428m, 1389w, 1361w, 1101s, 1057m, 916w, 823m, 738m, 701s, 688m, 614m, 
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505s, 490m; 
1
H NMR (400 MHz, CDCl3) δ 7.70–7.66 (m, 4H), 7.46–7.35 (m, 6H), 3.75 (t, 

J = 7.1 Hz, 2H), 3.72 (t, J = 6.2 Hz, 2H), 2.42 (tt, J = 7.1, 2.4 Hz, 2H), 2.26 (tt, J = 6.9, 2.4 

Hz, 2H), 1.71 (tt, J = 6.9, 6.2 Hz, 2H), 1.05 (s, 9H); 
13

C NMR (101 MHz, CDCl3) δ 135.7, 

133.8, 129.8, 127.8, 80.7, 77.9, 63.0, 62.1, 31.6, 26.9, 23.0, 19.4, 15.5; MS (ESI
+
) m/z (rel. 

%) 389 ([M+H]
+
, 100); HRMS (ESI

+
) 389.1906 [M+H]

+
, C23H30NaO2Si requires 389.1907. 

Lab book reference number: TOR-8-684 

7-(tert-Butyldiphenylsilyloxy)-1-iodohept-4-yne (222) 

 

INITIAL REACTION: A solution of alcohol 221 (983 mg, 2.68 mmol), triphenylphosphine 

(1.06 g, 4.02 mmol), iodine (1.02 g, 4.02 mmol) and imidazole (274 mg, 4.02 mmol) in 

MeCN (30 mL) was stirred at RT for 4 h. After this time, the solvent was removed in 

vacuo, and the residue dissolved in ether (60 mL) and washed with sat. aq. Na2S2O4 (40 

mL). The layers were separated and the aqueous layer extracted with ether (2 × 40 mL). 

The combined organic layers were then washed with brine (40 mL), dried over MgSO4, 

filtered and evaporated. Purification by flash chromatography (SiO2, petrol/ether, 99:1, v/v) 

afforded the title compound as a colourless oil (929 mg, 73%). 

OPTIMISED PROCEDURE: A solution of alcohol 221 (4.85 g, 13.2 mmol), 

triphenylphosphine (3.85 g, 14.6 mmol), iodine (3.71 g, 14.6 mmol) and imidazole (1.98 g, 

29.1 mmol) in CH2Cl2 (100 mL) was stirred at RT for 3 h. After this time, the reaction 

mixture was quenched with 10% aq. Na2S2O4 (50 mL). The layers were separated and the 

aqueous layer extracted with CH2Cl2 (2 × 20 mL). The combined organic layers were then 

dried over MgSO4, filtered and evaporated. Purification by flash chromatography (SiO2, 

petrol/ether, 19:1, v/v) afforded the title compound as a colourless oil (5.53 mg, 88%). 

Rf 0.50 (ether/petrol, 1:9, v/v); IR (thin film, cm
−1

) νmax 3070w, 2931m, 2857m, 1472w, 

1428m, 1221w, 1111s, 823m, 738m, 701s, 614m, 505s, 490m; 
1
H NMR (400 MHz, CDCl3) 

δ 7.70–7.66 (m, 4H), 7.46–7.36 (m, 6H), 3.74 (t, J = 7.0 Hz, 2H), 3.27 (t, J = 6.8 Hz, 2H), 

2.41 (tt, J = 7.0, 2.4 Hz, 2H), 2.27 (tt, J = 6.7, 2.4 Hz, 2H), 1.94 (quin, J = 6.7 Hz, 2H), 1.05 

(s, 9H) ; 
13

C NMR (101 MHz, CDCl3) δ 135.7, 133.8, 129.8, 127.8, 79.2, 78.5, 62.9, 41.7, 

32.6, 26.9, 23.1, 19.9, 19.4; MS (ESI
+
) m/z (rel. %) 477 ([M+H]

+
, 10), 494 ([M+NH4]

+
, 

100); HRMS (ESI
+
) 477.1100 [M+H]

+
, C23H30IO4Si requires 477.1105. 

Lab book reference number (initial reaction): TOR-7-627 
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Lab book reference number (optimised procedure): MV-1-058 (reaction optimised by M. 

Völkel) 

Ethyl (E)-3-(3-[8-tert-butyldiphenylsilyloxyoct-5-ynyl]phenoxy)pent-2-enoate (223) 

 

A flame-dried Schlenk tube containing a stirrer bar was charged with K3PO4 (323 mg, 1.52 

mmol), followed by a solution of triflate E-134 (212 mg, 0.76 mmol) in dry toluene (2 mL), 

a premixed solution of Pd(OAc)2 (4.3 mg, 0.02 mmol) and X-Phos (18 mg, 0.04 mmol) in 

dry toluene (2 mL) and a solution of phenol 220 (417 mg, 0.91 mmol) in dry toluene (2 

mL). The resulting suspension was heated to 100 °C for 2 h. The reaction mixture was then 

cooled to RT, filtered through a pad of Celite and evaporated. Purfication by flash 

chromatography (SiO2, petrol/ether, 19:1, v/v) afforded the title compound as a colourless 

oil (226 mg, 51%). 

Rf 0.59 (ether/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 2932m, 2858m, 1712s, 1632s, 

1608w, 1584w, 1485w, 1463w, 1428m, 1377m, 1242m, 1223m, 1182w, 1128s, 1112s, 

1046s, 999w, 917w, 823m, 738m, 701s, 613m, 505s, 490m; 
1
H NMR (400 MHz, CDCl3) δ 

7.72–7.67 (m, 4H), 7.46–7.36 (m, 6H), 7.32–7.21 (m, 1H), 7.02 (dt, J = 7.7, 1.5 Hz, 1H), 

6.88–6.78 (m, 2H), 4.79 (s, 1H), 4.09 (q, J = 7.1 Hz, 2H), 3.76 (t, J = 7.1 Hz, 2H), 2.95 (q, 

J = 7.5 Hz, 2H), 2.64–2.58 (m, 2H), 2.44 (tt, J = 7.1, 2.4 Hz, 2H), 2.17 (tt, J = 7.0, 2.4 Hz, 

2H), 1.76–1.66 (m, 2H), 1.56–1.46 (m, 2H), 1.29 (t, J = 7.5 Hz, 3H), 1.21 (t, J = 7.1 Hz, 

3H), 1.06 (s, 9H); 
13

C NMR (101 MHz, CDCl3) δ 177.8, 167.6, 153.6, 144.9, 135.7, 133.9, 

129.8, 129.7, 127.8, 125.8, 121.5, 118.9, 95.1, 81.1, 77.4, 63.0, 59.6, 35.3, 30.4, 28.6, 26.9, 

25.1, 23.1, 19.3, 18.7, 14.4, 12.0; MS (ESI
+
) m/z (rel. %) 583 ([M+H]

+
, 5), 600 ([M+NH4]

+
, 

80), 605 ([M+Na]
+
, 100), 621 ([M+K]

+
, 5); HRMS (ESI

+
) 605.3063 [M+Na]

+
, 

C37H46NaO4Si requires 605.3058. 

Lab book reference number: TOR-8-718 
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 (E)-3-(3-[8-tert-Butyldiphenylsilyloxyoct-5-ynyl]phenoxy)pent-2-enyl acetate (224) 

 

Diisobutylaluminium hydride (1.0 M in hexanes, 0.79 mL, 0.79 mmol) was added to a 

solution of ester 223 (218 mg, 0.37 mmol) in dry ether (7 mL) at −78 °C. After stirring for 

2 h, the reaction mixture was poured onto a vigorously stirred mixture of ether (40 mL) and 

1.1 M aq. Rochelle’s salt (40 mL) and stirred for a further 1 h. The layers were separated, 

and the aqueous layer extracted with ether (2  30 mL). The combined organic layers were 

then washed with brine (30 mL), dried over Na2SO4, filtered and evaporated. 

The crude residue was dissolved in CH2Cl2 (7 mL), and acetic anhydride (76 mg, 0.74 

mmol), triethylamine (52 mg, 0.52 mmol) and DMAP (6.4 mg, 0.05 mmol) were added. 

The resulting solution was stirred at RT for 2 h before being quenched with sat. aq. NH4Cl 

(15 mL), the layers separated and the aqueous layer extracted with CH2Cl2 (3 × 15 mL). 

The combined organic layers were washed with water (30 mL) and brine (30 mL), dried 

over MgSO4, filtered and evaporated. The compound was either used directly in the next 

step without purification, or purified by flash chromatography (SiO2, petrol/ether, 

19:1→9:1, v/v) affording the title compound as a colourless oil (166 mg, 76% over two 

steps). 

Rf 0.50 (ether/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 2933m, 2858m, 1738s, 1664w, 

1586w, 1485w, 1428m, 1363m, 1229s, 1182m, 1150w, 1112s, 1055w, 1019w, 945w, 

917w, 823w, 739w, 702s, 614m, 506m; 
1
H NMR (400 MHz, C6D6) δ 7.74–7.69 (m, 4H), 

7.18–7.13 (m, 6H), 6.97 (t, J = 7.8 Hz, 1H), 6.81 (t, J = 2.0 Hz, 1H), 6.78 (ddd, J = 8.1, 2.4, 

1.0 Hz, 1H), 6.68 (dt, J = 7.7, 1.3 Hz, 1H), 4.78 (t, J = 8.1 Hz, 1H), 4.46 (d, J = 8.1 Hz, 

2H), 3.72 (t, J = 6.9 Hz, 2H), 2.36 (tt, J = 6.9, 2.4 Hz, 2H), 2.30–2.20 (m, 4H), 1.95 (tt, J = 

7.0, 2.4 Hz, 2H), 1.57 (s, 3H), 1.51–1.39 (m, 2H), 1.35–1.24 (m, 2H), 1.11 (s, 9H), 1.09 (t, 

J = 7.6 Hz, 3H); 
13

C NMR (101 MHz, C6D6) δ 170.1, 164.0, 155.6, 144.7, 136.0, 134.1, 

130.0, 129.8, 128.1, 124.5, 121.3, 118.5, 99.7, 81.4, 77.7, 63.4, 60.6, 35.5, 30.6, 28.8, 27.0, 

23.4, 23.4, 20.6, 19.5, 19.0, 12.6; MS (ESI
+
) m/z (rel. %) 605 ([M+Na]

+
, 100), 621 

([M+K]
+
, 5); HRMS (ESI

+
) 605.3067 [M+Na]

+
, C37H46NaO4Si requires 605.3058. 

Lab book reference number: TOR-8-741 
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 (E)-3-(3-[8-Hydroxyoct-5-ynyl]phenoxy)pent-2-enyl acetate (225) 

 

To a solution of silyl ether 224 (162 mg, 0.28 mmol) in dry THF (8 mL) was added TBAF 

(1 M in THF, 0.28 mL, 0.28 mmol), and the resulting solution stirred at RT for 2 h. At this 

point an additional portion of TBAF solution (0.03 mL, 0.03 mmol) was added and the 

reaction stirred for a further 30 min, before being diluted with ether (40 mL) and washed 

with sat. aq. NH4Cl (20 mL). The layers were separated and the organic layer dried over 

MgSO4, filtered and evaporated. Purification by flash chromatography (SiO2, petrol/EtOAc, 

3:1, v/v) afforded the title compound as a colourless oil (78 mg, 80%). 

Rf 0.13 (EtOAc/petrol, 1:3, v/v); IR (thin film, cm
−1

) νmax 3443br, 2937m, 2860w, 1737s, 

1664m, 1606w, 1585m, 1485m, 1442m, 1365m, 1303w, 1230s, 1181s, 1151m, 1053s, 

1021s, 970m, 946m, 850w, 801m, 697m; 
1
H NMR (400 MHz, C6D6) δ 7.04 (t, J = 7.8 Hz, 

1H), 6.89 (t, J = 2.0 Hz, 1H), 6.85 (ddd, J = 8.1, 2.4, 1.0 Hz, 1H), 6.76 (dt, J = 7.6, 1.3 Hz, 

1H), 4.84 (t, J = 8.1 Hz, 1H), 4.52 (d, J = 8.1 Hz, 2H), 3.43 (t, J = 6.5 Hz, 2H), 2.36–2.28 

(m, 4H), 2.19 (tt, J = 6.6, 2.4 Hz, 2H), 1.99 (tt, J = 7.1, 2.4 Hz, 2H), 1.63 (s, 3H), 1.52 (tt, J 

= 9.2, 6.8 Hz, 2H), 1.39–1.27 (m, 2H), 1.15 (t, J = 7.5 Hz, 3H); 
13

C NMR (101 MHz, C6D6) 

δ 170.3, 164.0, 155.6, 144.7, 129.8, 124.5, 121.3, 118.6, 99.7, 82.0, 77.5, 61.6, 60.6, 35.4, 

30.6, 28.8,  23.6, 23.4, 20.6, 18.9, 12.6; MS (ESI
+
) m/z (rel. %) 307 ([M−AcOH+Na]

+
, 75), 

367 ([M+Na]
+
, 100), 383 ([M+K]

+
, 10); HRMS (ESI

+
) 367.1878 [M+Na]

+
, C21H28NaO4 

requires 367.1880. 

Lab book reference number: TOR-8-744 

 (E)-3-(3-[(8-formyl)oct-5-ynyl]phenoxy)pent-2-enyl acetate (208) 

 

INITIAL REACTION: To a solution of alcohol 225 (29.2 mg, 0.085 mmol) in dry CH2Cl2 (3 

mL) at 0 °C was added NaHCO3 (71.4 mg, 0.85 mmol) and Dess–Martin periodinane (108 

mg, 0.25 mmol). The resulting suspension was stirred for 5 h at 0 °C before being quenched 

with sat. aq. NaHCO3 (1.5 mL) and sat. aq. Na2S2O5 (1.5 mL) and stirred for a further 5 min 
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at 0 °C and 30 min at RT. The layers were separated, and the aqueous layer extracted with 

EtOAc (3 × 4 mL). The combined organic layers were washed with brine (4 mL), dried 

over MgSO4, filtered and evaporated. Purification by flash chromatography (SiO2, 

petrol/ether, 4:1, v/v → EtOAc) afforded the title compound as a colourless oil (13 mg, 

45%). 

OPTIMISED PROCEDURE: To a solution of alcohol 225 (114 mg, 0.33 mmol) in dry CH-

2Cl2 (3 mL) at 0 °C was added Dess–Martin periodinane (350 mg, 0.83 mmol). The 

resulting suspension was stirred for 5 min before the cooling was removed and the reaction 

stirred for a further 1.5 h at RT, after which time TLC analysis indicated that the reaction 

was complete. The solution was cooled to −15 °C, diluted with hexane (4 mL), and filtered 

through a short plug of silica, eluting with ether/pentane (4:1, v/v). The resulting clear 

solution was evaporated, affording the title compound as a colourless oil (97 mg, 86%). 

Rf 0.49 (EtOAc/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 2939m, 2864w, 1735s, 1663w, 

1604w, 1585w, 1485w, 1444w, 1365w, 1232s, 1182m, 1149w, 1052w, 1020m; 
1
H NMR 

(400 MHz, C6D6) δ 9.07 (t, J = 1.7 Hz, 1H), 7.05 (t, J = 7.8 Hz, 1H), 6.90 (t, J = 2.0 Hz, 

1H), 6.85 (ddd, J = 8.0, 2.4, 1.0 Hz, 1H), 6.79–6.75 (m, 1H), 4.85 (t, J = 8.0 Hz, 1H), 4.52 

(d, J = 8.0 Hz, 2H), 2.58 (td, J = 2.4, 1.7 Hz, 2H), 2.35–2.28 (m, 4H), 1.95 (tt, J = 7.1, 2.4 

Hz, 2H), 1.63 (s, 3H), 1.55–1.45 (m, 2H), 1.34–1.25 (m, 2H), 1.15 (t, J = 7.5 Hz, 3H); 
13

C 

NMR (125 MHz, C6D6) δ 194.0, 170.1, 164.0, 155.7, 144.6, 129.8, 124.5, 121.2, 118.6, 

99.8, 85.6, 71.3, 60.6, 35.4, 34.4, 30.5, 28.5, 23.4, 20.6, 18.8, 12.6; MS (ESI
+
) m/z (rel. %) 

397 ([M+MeOH+Na]
+
, 100), 365 ([M+Na]

+
, 45), 315 ([M+MeOH−OAc]

+
, 10) 283 

([M−OAc]
+
, 20); HRMS (ESI

+
) 365.1739 [M+Na]

+
, C21H26NaO4 requires 365.1723. 

Lab book reference number (initial reaction): TOR-7-643 

Lab book reference number (optimised procedure): MV-1-047 (reaction optimised by M. 

Völkel) 

 (Z)-1-Tri-n-butylstannyl-4-bromobut-1-ene (226) 

 

INITIAL REACTION: To a solution of 4-bromo-1-butyne (1.0 g, 7.52 mmol) in dry THF 

(50 mL) at −78 °C was added dropwise n-butyllithium (1.6 M in hexanes, 4.7 mL, 7.52 

mmol), and the resulting solution was stirred for 10 min before dropwise addition of 

tributyltin chloride (2.69 g, 8.27 mmol). The cooling was removed and the reaction mixture 



 

195 
 

stirred for 2.5 h at RT. The resulting solution was then diluted with ether (200 mL), washed 

with brine (100 mL), and water (100 mL), dried over Na2SO4, filtered and evaporated to 

afford a yellow oil which was used directly without further purification. 

Diisobutylaluminium hydride (1.0 M in hexane, 9.02 mL, 9.02 mmol) was added dropwise 

to a solution of zirconocene dichloride (2.86 g, 9.78 mmol) in dry THF (20 mL) at 0 °C. 

The reaction mixture was then stirred for 1 h at 0 °C during which time an off-white 

suspension formed. A solution of the crude intermediate stannane (7.52 mmol) was then 

added in dry THF (5 mL), with additional dry THF (5 mL) used to rinse the flask and 

ensure quantitative transfer. The cooling was then removed, and the reaction mixture 

rapidly became a homogenous red solution. After stirring for 1.5 h, the reaction was 

quenched with water (2.7 mL) and diluted with n-pentane (40 mL), leading to the 

disappearance of the red colour and formation of a yellow solution containing a white 

precipitate. The reaction mixture was filtered through a Celite plug which was washed 

copiously with hexane. Evaporation of the filtrate and flash chromatography (SiO2, petrol) 

afforded the title compound as a colourless oil (616 mg, 19% over two steps). 

OPTIMISED PROCEDURE: To a solution of 4-bromo-1-butyne (2.87 g, 21.6 mmol) in dry 

THF (150 mL) at −78 °C was added dropwise n-butyllithium (2.0 M in hexanes, 10.65 mL, 

21.6 mmol), and the resulting solution was stirred for 10 min before dropwise addition of 

tributyltin chloride (7.71 g, 23.7 mmol). The cooling was removed and the reaction mixture 

stirred for 1.5 h at RT. The resulting solution was then diluted with ether (50 mL), washed 

with brine (30 mL), and water (10 mL), dried over MgSO4, filtered and evaporated to 

afford a yellow oil which was used directly without further purification. 

Diisobutylaluminium hydride (1.0 M in hexane, 26.5 mL, 26.5 mmol) was added dropwise 

to a solution of zirconocene dichloride (8.40 g, 28.7 mmol) in dry THF (50 mL) at 0 °C. 

The reaction mixture was then stirred for 10 min at 0 °C during which time an off-white 

suspension formed. A solution of the crude intermediate stannane (21.6 mmol) was then 

added in dry THF (10 mL), with additional dry THF (5 mL) used to rinse the flask and 

ensure quantitative transfer. The cooling was then removed, and the reaction mixture 

rapidly became a homogenous red solution. After stirring for 1 h, the reaction was diluted 

with n-pentane (60 mL) and quenched with water (1.2 mL), leading to the disappearance of 

the red colour and formation of a yellow solution containing a white precipitate. The 

reaction mixture was filtered through a Celite plug which was washed copiously with 

hexane. Evaporation of the filtrate and flash chromatography (SiO2, petrol) afforded the 

title compound as a colourless oil (5.11 g, 55% over two steps). 
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Rf 0.43 (petrol);  IR (thin film, cm
−1

) νmax 2957s, 2924s, 2871m, 2853m, 1599w, 1464m, 

1418w, 1374w, 1340w, 1296w, 1264m, 1205w, 1072w, 1000w, 961w, 874w, 692m, 626w, 

598w; 
1
H NMR (400 MHz, CDCl3) δ 6.47 (dt, J = 12.5, 6.9 Hz, J 

3
Sn−H 

119  = 135.9 Hz, 

J 
3

Sn−H 
117  = 130.0 Hz, 1H), 6.02 (dt, J = 12.5, 1.1 Hz, J 

2
Sn−H 

119  = 67.4 Hz, J 
2

Sn−H 
117  = 64.7 

Hz, 1H), 3.38 (t, J = 7.2 Hz, 2H), 2.59 (qd, J = 7.1, 1.1 Hz, 2H), 1.54–1.44 (m, 6H), 1.37–

1.25 (m, 6H), 0.96–0.90 (m, 6H), 0.89 (t, J = 7.3 Hz, 9H); 
13

C NMR (101 MHz, C6D6) δ 

144.9, 132.7, 40.0, 32.3, 29.3 ( J 
3

Sn−C
 = 20.6 Hz), 27.5 ( J 

2
Sn−C 

119  = 57.5 Hz, J 
2

Sn−C 
117  = 

54.7 Hz), 13.9, 10.4 ( J 
1

Sn−C 
119  = 341.4 Hz, J 

1
Sn−C 

117  = 326.7 Hz); MS (EI
+
) m/z (rel. %) 

423 ([M−H]
+
, 100), 367 ([M−Bu]

+
, 90), 311 ([M−2Bu+H]

+
, 95), 255 ([M−3Bu+2H]

+
, 50); 

HRMS (EI
+
) 423.0701 [M−H]

+
, C16H32BrSn requires 423.0709. 

Lab book reference numbers (initial reaction): TOR-7-605, TOR-7-606 

Lab book reference numbers (optimised procedure): MV-1-064, MV-1-065 (reactions 

optimised by M. Völkel) 

 (Z)-4-Tri-n-butylstannylbut-3-enyl(triphenyl)phosphonium bromide (209) 

 

INITIAL REACTION: A solution of stannane 226 (448 mg, 1.06 mmol) in dry MeCN 

(6 mL) was added to a Schlenk tube containing triphenylphosphine (415 mg, 1.58 mmol), 

and the resulting solution was stirred at 80 °C for 4 d, then 90 °C for 27 h. After this time 

an additional portion of triphenylphosphine (2.36 g, 9.01 mmol) was added and the reaction 

stirred at 90 °C for a further 24 h. The reaction mixture was then cooled to RT and the 

solvent removed in vacuo. The residue was dissolved in the minimum volume of CH2Cl2, 

n-pentane was then added, and the resulting precipitate collected by filtration and dried in 

vacuo, affording the title compound as a white solid (414 mg, 57%). 

OPTIMISED PROCEDURE: A solution of stannane 226 (1.23 g, 2.9 mmol) in dry 

toluene/MeCN (1:1, 16 mL) was added to a Schlenk tube containing triphenylphosphine 

(3.80 g, 14.5 mmol) and NaI (43.5 mg, 0.29 mmol). The resulting solution was heated to 80 

°C and stirred for 4 d. After this time, the reaction mixture was cooled to RT and the 

solvent removed in vacuo. The residue was taken up in pentane, and CH2Cl2 added until the 

slurry became a clear solution; n-pentane was then added, and the resulting precipitate 
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collected by filtration and dried in vacuo, affording the title compound as a white solid 

(1.39 g, 70%).  

M.P. 122 °C; Rf 0.18 (EtOAc/petrol, 1:1); IR (ATR, cm
−1

) νmax 2956m, 2922m, 2852m, 

1587m, 1485m, 1436s, 1376w, 1317w, 1190w, 1111s, 1072m, 996m, 874w, 747s, 724s, 

690s, 596m, 525s, 505s, 496s; 
1
H NMR (400 MHz, CDCl3) δ 7.94–7.86 (m, 6H), 7.83–7.76 

(m, 3H), 7.75–7.67 (m, 6H), 6.90 (dt, J = 12.8, 6.5 Hz, J 
3

Sn−H 
119  = 68.4 Hz, J 

3
Sn−H 

117  = 

65.3 Hz, 1H), 5.92 (dt, J = 12.4, 1.2 Hz, J 
2

Sn−H
= 33.2 Hz, 1H), 4.07–3.93 (m, 2H), 2.37–

2.25 (m, 2H). 1.36–1.25 (m, 6H), 1.23–1.10 (m, 6H), 0.81 (t, J = 7.2 Hz, 9H), 0.66–0.58 

(m, 6H); 
13

C NMR (101 MHz, CDCl3) δ 145.3 (d, JC–P = 17.8 Hz), 135.2 (d, JC–P = 3.0 Hz), 

133.9 (d, JC–P = 10.0 Hz), 131.3 (d, JC–P = 2.1 Hz), 130.7, (d, JC–P = 12.6 Hz), 118.3 (d, JC–P 

= 85.6 Hz), 29.6 (d, JC–P = 3.7 Hz), 29.2 ( J 
3

Sn−C
 = 20.5 Hz), 27.3 ( J 

2
Sn−C

 = 55.3 Hz), 22.9 

(d, JC–P = 48.1 Hz),  13.8, 10.1 ( J 
1

Sn−C 
119  = 340.5 Hz, J 

1
Sn−C 

117  = 323.9 Hz); 
31

P NMR (162 

MHz, CDCl3) 24.5; MS (ESI
+
) m/z (rel. %) 607 ([M−Br]

+
, 100); HRMS (ESI

+
) 607.2533 

[M−Br]
+
, C34H48PSn requires 607.2516. 

Lab book reference number (initial reaction): TOR-7-620 

Lab book reference number (optimised procedure): MV-1-035 (reaction optimised by M. 

Völkel) 

(1Z,4Z)-1-Tri-n-butylstannylhepta-1,4-diene (227) 

 

To a solution of phosphonium 209 (50.5 mg, 0.074 mmol) in dry THF (2 mL) was added 

NaHMDS (1 M in THF, 74 μL, 0.074 mmol) at −78 °C. The resulting bright yellow 

solution was stirred for 30 min, before propionaldehyde (5 μL, 0.067 mmol) was added and 

the cooling bath removed. After stirring for an additional 2 h at RT, the reaction mixture 

was diluted with EtOAc (5 mL), and water (5 mL). The layers were separated and the 

aqueous layer extracted with EtOAc (2 × 5 mL). The combined organic layers were washed 

with brine (5 mL), dried over Na2SO4,, filtered and evaporated. Purification by flash 

chromatography (SiO2, hexane/triethylamine, 98:2, v/v) afforded the title compound as a 

colourless oil (24 mg, 93%). 

IR (thin film, cm
−1

) νmax 2960m, 2925m, 2873w, 2854w, 1593w, 1464w, 1415w, 1259s, 

1088s, 864m, 793s, 690m, 663m, 596w; 
1
H NMR (400 MHz, CDCl3) δ 6.44 (dt, J = 12.3, 
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7.0 Hz, J 
3

Sn−H 
119  = 141.5 Hz, J 

3
Sn−H 

117  = 135.2 Hz, 1H), 5.82 (dt, J = 12.3, 1.3 Hz, 

J 
2

Sn−H 
119  = 71.3 Hz, J 

2
Sn−H 

117  = 68.6 Hz, 1H), 5.41 (dtt, J = 10.7, 7.1, 1.6 Hz, 1H), 5.31 

(dtt, J = 10.7, 7.1, 1.6 Hz, 1H), 2.78 (t, J = 7.1 Hz, 2H), 2.07 (app. quin, J = 7.4 Hz, 2H), 

1.55–1.45 (m, 6H), 1.36–1.25 (m, 6H), 0.98 (t, J = 7.5 Hz, 3H), 0.97–0.86 (m, 6H), 0.89 (t, 

J = 7.3 Hz, 9H); 
13

C NMR (101 MHz, C6D6) δ 147.3, 132.4, 128.6, 127.0, 35.1, 29.4 

( J 
3

Sn−C
 = 20.1 Hz), 27.5 ( J 

2
Sn−C 

119  = 56.9 Hz, J 
2

Sn−C 
117  = 54.7 Hz), 20.9, 14.4, 13.9, 10.4 

( J 
1

Sn−C 
119  = 339.5 Hz, J 

1
Sn−C 

117  = 332.0 Hz). 

Lab book reference number: TOR-7-618 

 (2E, 7Z, 10Z)-3-(3-[(12-tributylstannyl)dodeca-7,10-dien-5-ynyl]phenoxy)pent-2-enyl 

acetate (195) 

 

INITIAL REACTION: To a solution of phosphonium salt 209 (208 mg, 0.30 mmol) in dry 

THF (1 mL) at −78 °C was added dropwise NaHMDS (1 M in THF, 0.23 mL, 0.23 mmol). 

The resulting orange solution was stirred for 45 min at −78 °C before a solution of aldehyde 

208 (13.0 mg, 0.038 mmol) in dry THF (0.5 mL) was added via syringe. An additional 

portion of dry THF (0.5 mL) was used to ensure quantitative transfer. The resulting solution 

was stirred for 30 min before being warmed to 0 °C and stirred for 1 h. After this time, the 

reaction was quenched with water (3 mL) and EtOAc (3 mL). The layers were separated 

and the aqueous layer extracted with EtOAc (3 × 5 mL), and the combined organic layers 

were washed with brine (5 mL), dried over Na2SO4, filtered and evaporated. Purification by 

flash chromatography (SiO2, petrol/ether/triethylamine, 88:10:2, v/v) afforded the title 

compound as a yellow oil (5.7 mg, 22%). 

OPTIMISED PROCEDURE: To a solution of phosphonium salt 209 (410 mg, 0.60 mmol) 

in dry THF (1 mL) at −78 °C was added dropwise NaHMDS (1 M in THF, 0.57 mL, 0.57 

mmol). The resulting orange solution was warmed to 0 °C for 10 min, before being cooled 

once again to −78 °C. A solution of aldehyde 208 (97 mg, 0.28 mmol) in dry THF (0.5 mL) 

was added via cannula. An additional portion of dry THF (1 mL) was used to ensure 

quantitative transfer. The resulting solution was warmed to RT and stirred for 3 h. After 

this time, the reaction was diluted with ether (4 mL) and quenched with water (2 mL) and 
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brine (2 mL). The layers were separated and the aqueous layer extracted with ether (3 × 5 

mL), and the combined organic layers dried over MgSO4, filtered and evaporated. 

Purification by flash chromatography (SiO2, petrol/ether/triethylamine, 88:10:2, v/v) 

afforded the title compound as a yellow oil (81.7 mg, 43%). 

Rf 0.32 (ether/petrol/triethylamine, 8:90:2, v/v); IR (thin film, cm
−1

) νmax 2956m, 2926s, 

2856m, 1739s, 1664w, 1586m, 1485w, 1464w, 1229s, 1182s, 1151w, 1055w, 1019m, 

970w, 876w, 801w, 696m, 606w; 
1
H NMR (400 MHz, C6D6) δ 7.04 (t, J = 7.8 Hz, 1H), 

6.89 (t, J = 2.0 Hz, 1H), 6.85 (ddd, J = 8.0, 2.5, 1.0 Hz, 1H), 6.77 (dt, J = 7.7, 1.4 Hz, 1H), 

6.56 (dt, J = 12.3, 1.2 Hz, 1H), 6.02 (dt, J = 12.3, 1.2 Hz, 1H), 5.62 (dtt, J = 10.2, 6.8, 1.6 

Hz, 1H), 5.50 (dtt, J = 10.2, 7.0, 1.5 Hz, 1H), 4.84 (t, J = 8.1 Hz, 1H), 4.53 (d, J = 8.0 Hz, 

2H), 3.00–2.94 (m, 2H), 2.88 (tt, J = 7.1, 1.4 Hz, 2H), 2.37–2.28 (m, 4H), 2.04 (tt, J = 7.1, 

2.5 Hz, 2H), 1.64 (s, 3H), 1.63–1.50 (m, 8H), 1.43–1.32 (m, 8H), 1.16 (t, J = 7.5 Hz, 3H), 

1.04–0.98 (m, 6H), 0.94 (t, J = 7.3 Hz, 9H); 
13

C NMR (125 MHz, C6D6) δ 170.1, 163.9, 

155.6, 146.9, 144.7, 129.8, 129.1, 129.0, 126.5, 124.5, 121.3, 118.5, 99.8, 80.3, 78.6, 60.6, 

35.5, 35.4, 30.7, 29.7 ( J 
3

Sn−C
 = 20.7 Hz), 28.9, 27.8 ( J 

2
Sn−C

 = 54.4 Hz), 23.4, 20.6, 19.0, 

17.9, 14.0, 12.6, 10.6 ( J 
1

Sn−C 
119  = 339.5 Hz, J 

1
Sn−C 

117  = 323.9 Hz); 
119

Sn NMR (186 MHz, 

C6D6) –60.6; MS (ESI
+
) m/z (rel. %) 693 ([M+Na]

+
, 100); HRMS (ESI

+
) 693.3276 

[M+Na]
+
, C37H58NaO3Sn requires 693.3307. 

Lab book reference number (initial reaction): TOR-7-644 

Lab book reference number (optimised procedure): MV-1-048 (reaction optimised by M. 

Völkel) 

 (3E,6Z,9Z)-3-Ethyl-2-oxabicyclo[16.3.1]docosa-1(22),3,6,9,18,20-hexaen-12-yne (91) 

 

LiCl (15.1 mg, 0.36 mmol) was placed with a stirrer bar in a Schlenk tube and dried under 

vacuum with vigorous heating (approx. 10 min). Dry DMF (1.8 mL) was added and stirred 

until the LiCl had dissolved. The resulting solution was added via cannula to another 

Schlenk tube containing stannane 195 (24.0 mg, 35.8 μmol) and Pd(Br)(N-Succ)(AsPh3)2 

(AsCat, 3.2 mg, 3.6 μmol). The resulting solution was stirred at 25 °C (controlled using an 

oil bath) for 72 h. After this time, the reaction mixture was diluted with ether (3 mL) and 
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washed with water (4 × 3 mL). The combined aqueous layers were then re-extracted with 

ether (3 × 3 mL), and the combined organic layers washed with brine (5 mL), dried over 

MgSO4, filtered and evaporated. Purification by preparatory thin layer chromatography 

(SiO2, petrol/ether, 98:2, v/v) afforded the title compound as a colourless oil (5.0 mg, 44%). 

Rf 0.49 (ether/petrol, 1:19, v/v); IR (thin film, cm
−1

) νmax 3018w, 2933s, 2857m, 1743w, 

1669w, 1602w, 1588m, 1485m, 1443m, 1249s, 1155s, 1048w, 989w, 799w, 696m; 
1
H 

NMR (700 MHz, CDCl3) 7.20 (t, J = 7.7 Hz, 1H, H-20),  6.83–6.81 (m, 3H, H-19, 21, 22), 

5.48–5.43 (m, 2H, H-9, 10), 5.43–5.38 (m, 2H, H-6, 7), 4.62 (t, J = 7.6 Hz, 1H, H-4), 2.89 

(dt, J = 5.8, 2.3 Hz, 2H, H-11), 2.86 (t, J = 5.6 Hz, 2H, H-8), 2.81–2.78 (m, 2H, H-5), 2.58 

(t, J = 7.5 Hz, 2H, H-17), 2.34 (q, J = 7.5 Hz, 2H, H-1′), 2.16 (tt, J = 7.0, 2.3 Hz, 2H, H-

14), 1.71–1.64 (m, 2H, H-16), 1.48–1.41 (m, 2H, H-15), 1.16 (t, J = 7.5 Hz, 3H, H-2′); 
13

C 

NMR (175 MHz, CDCl3) 156.7 (C, C-1 + C-3), 143.9 (C, C-18), 130.0 (CH, C-10), 129.6 

(CH, C-20), 128.6 (CH, C-6), 128.0 (CH, C-7), 124.7 (CH, C-9), 123.2 (CH, C-19), 118.7 

(CH, C-22), 117.5 (CH, C-21), 106.7 (CH, C-4), 79.9 (C, C-13), 78.4 (C, C-12), 35.4 (CH2, 

C-17),  30.5 (CH2, C-16),  28.0 (CH2, C-15), 25.6 (CH2, C-8),  24.9 (CH2, C-5), 22.6 (CH2, 

C-1′), 18.7 (CH2, C-14), 17.2 (CH2, C-11), 12.3 (CH3, C-2′); MS (APCI
+
) m/z (rel. %) 338 

([M+NH4]
+
, 100), 321 ([M+H]

+
, 20); HRMS (APCI

+
) 321.2237 [M+H]

+
, C23H29O requires 

321.2213. 

Lab book reference number: MV-1-055 (reaction conducted by M. Völkel) 

See also: TOR-7-648 

Diethyl 3-ethenyl-4-ethylhexa-2,4-dienedioate (236) 

 

A flame-dried Schlenk tube containing a stirrer bar was charged with triflate (E)-134 (200 

mg, 0.72 mmol), 4-hydroxy-6-methyl-2-pyrone 36 (109 mg, 0.86 mmol) and K3PO4 (305 

mg, 1.44 mmol) before being evacuated and backfilled with nitrogen. Dry toluene (4 mL) 

was added, followed by a premixed solution of Pd(OAc)2 (3.3 mg, 0.014 mmol) and Q-

Phos (15.3 mg, 0.022 mmol) in dry toluene (2 mL). Transfer was made quantitative with an 

additional portion of dry toluene (0.5 mL) and the reaction heated to 100 °C for 24 h. The 

reaction mixture was then filtered through amberlite and evaporated. Flash chromatography 

(SiO2, petrol/ether, 95:5, v/v) afforded the title compound as a colourless oil (17 mg, 19%). 



 

201 
 

1
H NMR (400 MHz, CDCl3) δ 7.65 (dd, J = 17.9, 11.0 Hz, 1H) 5.73 (s, 1H), 5.65 (s, 1H), 

5.54 (dt, J = 10.7, 1.6 Hz, 1H), 5.44, (d, J = 17.9 Hz, 1H), 4.19 (q, J = 7.1 Hz, 2H), 4.19 (q, 

J = 7.2 Hz, 2H), 2.81 (q, J = 7.6 Hz, 2H), 1.30 (t, J = 7.1 Hz, 3H), 1.30 (t, J = 7.1 Hz, 3H), 

1.02 (t, J = 7.5 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 165.9, 165.8, 161.2, 155.7, 131.8, 

124.2, 119.5, 117.3, 60.4, 60.2, 30.4, 25.1, 14.3 (2  CH3, overlapping), 12.9; MS (ESI
+
) 

m/z (rel. %) 253 ([M+H]
+
, 60), 275 ([M+Na]

+
, 100); HRMS (ESI

+
) 275.1246 [M+Na]

+
, 

C14H20NaO4 requires 275.1254. 

Lab book reference number: TOR-1-44 

6-([8-tert-Butyldiphenylsilyl]oct-5-ynyl)-4-hydroxypyran-2-one (234) 

 

To a solution of 4-hydroxy-6-methyl-2-pyrone (100 mg, 0.79 mmol) in a Schlenk tube in 

dry THF (1 mL) and dry HMPA (0.42 mL) at −78 °C was added dropwise n-butyllithium 

(2.0 M in hexanes, 0.91 mL, 1.82 mmol). After 10 min, an additional portion of dry THF (1 

mL) was added to aid stirring. After a further 15 min, a solution of iodide 222 (567 mg, 

1.19 mmol) in dry THF (1 mL) was added dropwise, with an additional portion of THF 

(0.75 mL) used to ensure quantitative transfer. The resulting solution was stirred at −78 °C 

for 45 min, after which time the cooling was removed and the reaction immediately 

quenched with water (5 mL) and acidified to pH 1 with 3 M aq. HCl. The layers were 

separated, and the aqueous phase extracted with ether (3 × 10 mL). The combined organic 

layers were dried over MgSO4, filtered and evaporated. Purification by flash 

chromatography (SiO2, CH2Cl2/MeOH, 19:1, v/v) afforded the title compound as a 

colourless oil (268 mg, 71%). 

Rf 0.09 (EtOAc/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3072w, 2930s, 2859m, 1695m, 

1663s, 1564s, 1428m, 1252m, 1111s, 824m, 738w, 702s, 614w, 505m; 
1
H NMR (400 MHz, 

CDCl3) δ 7.70–7.65 (m, 4H), 7.45–7.33 (m, 6H), 5.94 (d, J = 2.0 Hz, 1H), 5.56 (d, J = 2.0 

Hz, 1H), 3.74 (t, J = 7.1 Hz, 2H), 2.51–2.41 (m, 2H), 2.41 (tt, J = 7.1, 2.3 Hz, 2H), 2.15 (tt, 

J = 7.0, 2.3 Hz, 2H), 1.77–1.66 (m, 2H), 1.55–1.43 (m, 2H), 1.04 (s, 9H); 
13

C NMR (101 

MHz, CDCl3) δ 172.4, 168.0, 167.1, 135.7, 133.8, 129.8, 127.8, 101.4, 90.1, 80.6, 77.8, 

63.0, 33.3, 28.2, 26.9, 25.9, 23.0, 19.4, 18.6; MS (ESI
+
) m/z (rel. %) 475 ([M+H]

+
, 70), 492 

([M+NH4]
+
, 100); HRMS (ESI

+
) 475.2297 [M+H]

+
, C29H35O4Si requires 475.2299. 
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Lab book reference number: TOR-10-912 

3-([7-tert-Butyldiphenylsilyl]hept-4-ynyl)-6-([8-tert-butyldiphenylsilyl]oct-5-ynyl)-4-

hydroxypyran-2-one (237) 

 

Title compound isolated as a byproduct from some syntheses of compound 234. 

IR (thin film, cm
−1

) νmax 3070w, 2955m, 2931m, 2857m, 1687m, 1624m, 1560m, 1472m, 

1336w, 1256m, 1111s, 1008w, 823m, 738m, 702s, 614m, 505s, 490m; 
1
H NMR (400 MHz, 

CDCl3) δ 10.05 (br s, 1H), 7.69–7.65 (m, 12H), 7.46–7.30 (m, 18H), 5.58 (s, 1H), 3.78–

3.76 (m, 4H), 2.49 (t, J = 7.7 Hz, 2H), 2.47–2.35 (m, 6H), 2.18–2.04 (m, 4H), 1.74–1.54 

(m, 4H), 1.53–1.38 (m, 2H), 1.04 (2 × s, 2 × 9H); 
13

C NMR (101 MHz, CDCl3) δ 171.8, 

166.4, 135.7 (2 × C), 133.9, 133.8, 129.8 (2 × C), 127.8 (2 × C), 105.4, 88.2, 87.9, 80.8, 

80.7, 77.6, 60.0 (2 × C), 32.2, 28.7, 28.6, 27.0 (2 × C), 26.8, 26.7, 23.3, 23.0 (2 × C), 19.4 

(2 × C), 18.6 (2 × C); MS (ESI
+
) m/z (rel. %) 823 ([M+H]

+
, 10) 845 ([M+Na]

+
, 100); 

HRMS (ESI
+
) 845.4052 [M+Na]

+
, C52H62NaO5Si2 requires 845.4028. 

Lab book reference number: MV-1-057 (reaction conducted by M. Völkel) 

Ethyl (Z)-2-pentenoate (239)
193

 

 

To a solution of ethyl 2-pentynoate (708 mg, 5.61 mmol) in THF/pyridine (15.4 mL, 10:1, 

v/v) was added Lindlar catalyst (120 mg, 17 wt%), and the reaction placed under an 

atmosphere of H2 with vigorous stirring for 20 h at RT. After this time, the reaction mixture 

was filtered through Celite, eluting with ether (50 mL). The filtrate was washed with sat. 

aq. CuSO4 (3 × 20 mL), dried over MgSO4, filtered and evaporated. The crude residue was 

used directly in the next step; a small sample was purified to acquire analytical data. 

1
H NMR (400 MHz, CDCl3) δ 6.20 (dt, J = 11.5, 7.5 Hz, 1H), 5.73 (dt, J = 11.5, 1.7 Hz, 

1H), 4.16 (q, J = 7.1 Hz, 2H), 2.65 (quind, J = 7.5, 1.7 Hz, 2H), 1.28 (t, J = 7.1 Hz, 3H), 
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1.05 (t, J = 7.6 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 166.6, 152.1, 199.3, 59.9, 22.6, 

14.4, 13.6. 

Lab book reference number: TOR-9-742 

Ethyl (2R*, 3S*)-2-bromo-3-hydroxypentanoate (238) 

 

The crude (Z)-alkenoate 239 (38.8 mmol) was dissolved in MeCN/water (87 mL, 4:1, v/v), 

and N-bromosaccharin (15.2 g, 58.2 mmol) was added in one portion. The reaction mixture 

was stirred for 24 h at RT before being diluted with ether (250 mL), washed with sat. aq. 

NaHCO3 (150 mL), sat. aq. Na2S3O3 (150 mL) and water (150 mL), before being dried over 

MgSO4, filtered and evaporated. Purification by flash chromatography (SiO2, petrol/ether, 

4:1, v/v) afforded the title compound as a colourless oil (6.58 g, 64% over two steps). 

Rf 0.40 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3490br, 2970m, 2938m, 1733s, 

1464m, 1394w, 1371m, 1260s, 1206m, 1153s, 1115m, 1096m, 1052m, 1024s, 988m, 857w, 

713w, 632w, 536m, 472m; 
1
H NMR (400 MHz, CDCl3) δ 4.29 (d, J = 4.2 Hz, 1H), 4.25 

(qd, J = 7.1, 1.7 Hz, 2H), 3.82 (ddd, J = 7.8, 5.0, 4.2 Hz, 1H), 2.64 (br s, 1H), 1.64 (dt, J = 

13.8, 7.5 Hz, 1H) 1.60–1.52 (m, 1H), 1.31 (t, J = 7.1 Hz, 3H), 0.99 (t, J = 7.4 Hz, 2H); 
13

C 

NMR (101 MHz, CDCl3) δ 169.5, 72.4, 62.5, 52.1, 27.4, 14.1, 10.0; MS (ESI
+
) m/z (rel. %) 

247 ([M+Na]
+
, 100); HRMS (ESI

+
) 246.9934 [M+Na]

+
, C7H13BrNaO3 requires 246.9940. 

Lab book reference number: TOR-9-763 

(2S*, 3S*)-2-Bromopentane-1,3-diol (240) 

 

Ester 238 (2.0 g, 8.88 mmol) was dissolved in dry ether (40 mL) and cooled to 0 °C. 

Diisobutylaluminium hydride (1.0 M in hexanes, 28.2 mL, 28.2 mmol) was added dropwise 

over 20 min. The resulting solution was stirred for 6.5 h, before being diluted with ether (50 

mL) and quenched with sat. aq. Rochelle’s salt (60 mL). The biphasic mixture was stirred 

for 1 h, after which time the layers were separated, and the aqueous layer extracted with 

ether (3 × 40 mL). The combined organic layers were washed with brine (40 mL), dried 

over MgSO4, filtered and evaporated. Crude reaction mixtures were generally used in the 



 

204 
 

next step directly without purification; a small sample was purified to collect analytical 

data. 

1
H NMR (400 MHz, CDCl3) δ 4.15 (td, J = 5.8, 2.4 Hz, 1H), 3.96 (t, J = 5.6 Hz, 2H), 3.66 

(tdd, J = 7.8, 5.6, 2.4 Hz, 1H), 3.13 (t, J = 6.3 Hz, 1H), 2.56 (d, J = 7.6 Hz, 1H), 1.71–1.53 

(m, 2H), 0.96 (t, J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 73.0, 65.4, 62.0, 28.9, 

10.0; MS (ESI
+
) m/z (rel. %) 205 ([M+Na]

+
, 100); HRMS (ESI

+
) 204.9834 [M+H]

+
, 

C5H11BrNaO2 requires 204.9835. 

Lab book reference number: TOR-9-769 

(2S*, 3S*)-2-Bromo-3-hydroxypentyl acetate (233) 

 

Crude diol 240 (8.88 mmol) and collidine (2.13 mL, 16.1 mmol) were dissolved in CH2Cl2 

(30 mL) and cooled to −78 °C. Acetyl chloride (0.69 mL, 9.67 mmol) was added dropwise 

and the mixture allowed to slowly warm to RT. After 21 h, the reaction was quenched with 

1 M aq. HCl (80 mL), the layers separated and the aqueous layer extracted with CH2Cl2 (3 

× 60 mL). The combined organic layers were dried over Na2SO4, filtered and evaporated. 

Purification by flash chromatography (SiO2, petrol/ether, 3:2, v/v) afforded the title 

compound as a colourless oil (1.14 g, 57% over two steps). 

Rf 0.29 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3464br, 2968m, 2936m, 2880w, 

1743s, 1459w, 1367m, 1234s, 1127w, 1081s, 1036m, 971w, 851w, 606w, 452w; 
1
H NMR 

(400 MHz, CDCl3) δ 4.48 (dd, J = 11.7, 7.6 Hz, 1H), 4.40 (dd, J = 11.6, 6.4 Hz, 1H), 4.19 

(ddd, J = 7.6, 6.4, 2.3 Hz, 1H), 3.51 (ddd, J = 7.8, 5.4, 2.3 Hz, 1H), 2.10 (s, 3H), 1.75–1.63 

(m, 1H), 1.63–1.53 (m, 1H), 0.99 (t, J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 170.8, 

71.6, 65.3, 57.2, 29.1, 21.0, 10.1; MS (ESI
+
) m/z (rel. %) 247 ([M+Na]

+
, 100); HRMS 

(ESI
+
) 246.9946 [M+Na]

+
, C7H13BrNaO3 requires 246.9940. 

Lab book reference number: TOR-9-772 
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(2S*, 3S*)-2-Bromo-3-hydroxypentyl pivalate (241) 

 

Crude diol 240 (11.24 mmol) was dissolved in CH2Cl2/pyridine (30 mL, 1:1, v/v) and 

cooled to 0 °C. Pivaloyl chloride (2.07 mL, 16.9 mmol) was added dropwise and the 

mixture stirred at 0 °C for 2 h. After this time, the reaction mixture was washed with water 

(60 mL) and sat. aq. CuSO4 (2 × 60 mL). The combined aqueous layers were extracted with 

CH2Cl2 (60 mL), and the combined organic layers dried over MgSO4, filtered and 

evaporated. Purification by flash chromatography (SiO2, petrol/ether, 7:3, v/v) afforded the 

title compound as a colourless oil (1.52 g, 51% over two steps). 

Rf 0.39 (EtOAc/petrol, 1:4, v/v); IR (thin film, cm
−1

) νmax 3474br, 2969m, 2936m, 2877w, 

1732s, 1481m, 1461m, 1398w, 1367w, 1283s, 1154s, 1034w, 974w, 862w, 771w; 
1
H NMR 

(400 MHz, CDCl3) δ 4.47 (dd, J = 11.7, 7.3 Hz, 1H), 4.39 (dd, J = 11.7, 6.5 Hz, 1H), 4.20 

(td, J = 6.9, 2.5 Hz, 1H), 3.49 (br m,1H), 1.95 (br m, 1H), 1.75–1.53 (m, 1H), 1.63–1.53 

(m, 1H), 1.22 (s, 9H), 0.99 (t, J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 178.3, 71.8, 

65.1, 57.5, 39.0, 28.9, 27.3, 10.1; MS (ESI
+
) m/z (rel. %) 289 ([M+Na]

+
, 100); HRMS 

(ESI
+
) 289.0413 [M+Na]

+
, C10H19BrNaO3 requires 289.0410. 

Lab book reference number: TOR-9-842 

(2S*, 3R*)-2-Bromo-3-(6-methyl-2-oxo-4-pyranyloxy)pentyl acetate (242) 

 

To a solution of acetate 233 (300 mg, 1.33 mmol), 4-hydroxy-6-methyl-2-pyrone 36 (84 

mg, 0.66 mmol) and triphenylphosphine (350 mg, 1.33 mmol) in dry toluene (10 mL) at 40 

°C was added DEAD (197 μL, 1.25 mmol). The resulting solution was stirred at 40 °C for 

24 h, after which time it was cooled to RT and the solvent removed in vacuo. Purification 

by flash chromatography (SiO2, petrol/EtOAc, 3:2, v/v) afforded the title compound as a 

colourless oil (100 mg, 45%). 

Rf 0.34 (ether/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 2974w, 1734s, 1650m, 1565s, 

1450m, 1412w, 1243s, 1144w, 1038w, 1003w, 819w; 
1
H NMR (400 MHz, CDCl3) δ 5.79 

(dd, J = 2.3, 1.1 Hz, 1H), 5.41 (d, J = 2.2 Hz, 1H), 4.47 (q, J = 5.6 Hz, 1H), 4.41 (dd, J = 
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12.1, 5.4 Hz, 1H), 4.35 (dd, J = 12.1, 5.7 Hz, 1H), 4.28 (q, J = 5.6 Hz, 1H), 2.21 (d, J = 0.9 

Hz, 3H), 2.10 (s, 3H), 1.95–1.85 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 170.4, 169.6, 164.8, 162.9, 100.6, 88.6, 79.15, 64.4, 48.9, 24.3, 20.86, 20.0, 9.2; 

MS (ESI
+
) m/z (rel. %) 355 ([M+Na]

+
, 80), 333 ([M+H]

+
, 100); HRMS (ESI

+
) 333.0322 

[M+H]
+
, C13H18BrO5 requires 333.0332. 

Lab book reference number: TOR-9-791 

(2S*, 3R*)-2-Bromo-3-(6-methyl-2-oxo-4-pyranyloxy)pentyl pivalate (243) 

 

To a solution of pivalate 241 (175 mg, 0.655 mmol), 4-hydroxy-6-methyl-2-pyrone 36 

(41.3 mg, 0.328 mmol) and triphenylphosphine (172 mg, 0.655 mmol) in toluene (6 mL) at 

−78 °C was added DEAD (103 μL, 0.655 mmol). The resulting solution was stirred at 

−78 °C for 40 min, then at RT for 40 min, after which time the solvent was removed in 

vacuo. Purification by flash chromatography (SiO2, petrol/EtOAc, 3:1, v/v) afforded the 

title compound as a colourless oil (81.6 mg, 66%). 

Rf 0.10 (EtOAc/petrol, 1:4, v/v); IR (thin film, cm
−1

) νmax 2973m, 1727s, 1650m, 1564s, 

1480w,1449m, 1411w, 1319w, 1281m, 1242s, 1141s,1094w, 1036m, 1002m, 929w, 860w, 

815w, 769w; 
1
H NMR (400 MHz, CDCl3) δ 5.80 (dd, J = 2.2, 1.0 Hz, 1H), 5.40 (d, J = 2.2 

Hz, 1H), 4.50–4.40 (m, 2H), 4.35–4.28 (m, 2H), 2.21 (d, J = 1.0 Hz, 3H), 1.98–1.85 (m, 

2H), 1.22 (s, 9H), 0.98 (t, J = 7.4 Hz, 3H); 
13

C NMR (125 MHz, CDCl3) δ 177.9, 169.6, 

164.7, 162.9, 100.6, 88.7, 79.2, 64.2, 49.1, 39.1, 27.3, 24.3, 20.0, 9.1; MS (ESI
+
) m/z (rel. 

%) 397 ([M+Na]
+
, 100); HRMS (ESI

+
) 397.0616 [M+Na]

+
, C16H23BrNaO5 requires 

397.0621. 

Lab book reference number: TOR-9-822 

 (E)-3-(6-Methyl-2-oxo-4-pyranyloxy)pent-2-enyl acetate (244) 

 

A solution of bromide 242 (22.3 mg, 0.067 mmol) and DBU (50.9 mg, 0.335 mmol) in dry 

dioxane (1.5 mL) was heated to 100 °C for 24 h. After this time, the reaction mixture was 
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cooled to RT, diluted with CH2Cl2 (10 mL) and washed with sat. aq. NH4Cl (2 × 10 mL). 

The combined aqueous layers were re-extracted with CH2Cl2 (2 × 10 mL), and the 

combined organic layers dried over MgSO4, filtered and evaporated. Purification by flash 

chromatography (SiO2, petrol/EtOAc, 4:1, v/v) afforded the title compound as a colourless 

oil (2.8 mg, 17%). 

Rf 0.32 (EtOAc/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 2925s, 1736s, 1647w, 1567m, 

1448s, 1407w, 1376m, 1366m, 1228s, 1179w, 1139w, 1026m, 888w, 804m, 785w, 700w; 

1
H NMR (400 MHz, CDCl3) δ 5.87 (dd, J = 2.2, 1.0 Hz, 1H), 5.49 (d, J = 2.2 Hz, 1H), 5.33 

(t, J = 7.8 Hz, 1H), 4.63 (d, J = 7.8 Hz, 2H), 2.36 (q, J = 7.5 Hz, 2H), 2.25–2.23 (m, 3H), 

2.25–2.17, 2.08 (s, 3H), 1.08 (t, J = 7.5 Hz, 3H); 
13

C NMR (125 MHz, CDCl3) δ 171.0, 

169.3, 164.8, 163.4, 157.0, 112.2, 100.2, 91.0, 59.5, 22.3, 21.1, 20.2, 11.9; MS (ESI
+
) m/z 

(rel. %) 375 ([M+Na]
+
, 100), 253 ([M+H]

+
, 25); HRMS (ESI

+
) 275.0890 [M+Na]

+
, 

C13H16NaO5 requires 275.0890. 

Lab book reference number: TOR-9-764 

6-Methyl-4-[(1S*)-1-[(2S*)-oxiran-2-yl]propoxy]-pyran-2-one (245) 

 

To a solution of bromide 242 (19.8 mg, 0.059 mmol) in dry THF (1 mL) was added 

KHMDS (0.7 M in toluene, 93 μL, 0.065 mmol) at 0 °C. The resulting red solution was 

stirred for 18 h at RT, before being quenched with NH4Cl (10 mL). The layers were 

separated and the aqueous layer extracted with CH2Cl2 (3 × 10 mL); the combined organic 

layers were dried over MgSO4, filtered and evaporated. Purification by flash 

chromatography (SiO2, petrol/EtOAc, 3:1, v/v) afforded the title compound as a colourless 

oil (3.0 mg, 24%, dr = 4:1). 

NMR spectroscopic data given for the major diastereomer only. 

Rf 0.19 (EtOAc/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 2972w, 2935w, 1715s, 1651s, 

1563s, 1449m, 1409m, 1320w, 1244s, 1183w, 1145m, 1037m, 1002m, 928w, 860w, 815m, 

660w, 548w; 
1
H NMR (400 MHz, C6D6) δ 5.44 (d, J = 2.1 Hz, 1H), 5.20 (dd, J = 2.1, 1.0 

Hz, 1H), 3.31 (qd, J = 6.2, 1.7 Hz, 1H), 2.56–2.47 (m, 1H), 2.16 (ddd, J = 5.1, 4.0, 1.1 Hz, 

1H), 1.98 (ddd, J = 5.1, 2.5, 1.4 Hz, 1H), 1.45 (d, J = 1.0 Hz, 3H), 1.42–1.33 (m, 1H), 1.32–

1.17 (m, 1H), 0.60 (t, J = 7.5 Hz, 3H); 
13

C NMR (125 MHz, C6D6) 169.2, 163.5, 162.3, 

100.0, 89.4, 80.1, 52.4, 44.0, 24.5, 19.3, 9.4; MS (ESI
+
) m/z (rel. %) 246 ([M+K]

+
, 10), 233 
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([M+Na]
+
, 100), 211 ([M+H]

+
, 25); HRMS (ESI

+
) 233.0775 [M+Na]

+
, C11H14NaO4 requires 

233.0784. 

Lab book reference number: TOR-8-756 

(E)-3-(6-Methyl-2-oxo-4-pyranyloxy)pent-2-enyl pivalate (246) 

 

A solution of bromide 243 (22.7 mg, 0.061 mmol) and DBU (45 μL, 0.302 mmol) in dry 

toluene (1 mL) was heated to 100 °C for 22 h. After this time, the reaction mixture filtered 

through a short plug of silica, eluting with EtOAc. Evaporation of the filtrate and 

purification of the residue by flash chromatography (SiO2, petrol/EtOAc, 4:1, v/v) afforded 

the title compound as a colourless oil (4.7 mg, 26%). 

Rf 0.38 (EtOAc/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 2936m, 1732s, 1649w, 1567m, 

1449w, 1407w, 1281w, 1229m, 1144s, 1033w, 821w; 
1
H NMR (400 MHz, C6D6) δ 5.49 (d, 

J = 2.2 Hz, 1H), 5.24 (dd, J = 2.3, 1.1 Hz, 1H), 5.10 (t, J = 7.8 Hz, 1H), 4.30 (d, J = 7.8 Hz, 

2H), 1.94 (q, J = 7.5 Hz, 2H), 1.46 (s, 3H), 1.16 (s, 9H), 0.82 (t, J = 7.5 Hz, 3H); 
13

C NMR 

(125 MHz, C6D6) 177.7, 168.7, 163.3, 163.1, 157.2, 112.5, 99.2, 91.2, 59.3, 38.8, 27.3, 

22.2, 19.4, 11.7; MS (ESI
+
) m/z (rel. %) 317 ([M+Na]

+
, 100); HRMS (ESI

+
) 317.1360 

[M+Na]
+
, C16H22NaO5 requires 317.1359. 

Lab book reference number: TOR-9-826 

(2S*, 3R*)-2-Bromo-3-(6-([8-tert-Butyldiphenylsilyl]oct-5-ynyl)-2-oxo-4-

pyranyloxy)pentyl acetate (232) 

 

Diethylazodicarboxylate (60 mg, 0.35 mmol) was added dropwise to a solution of pyrone 

234 (87 mg, 0.18 mmol), acetate 233 (83 mg, 0.37 mmol) and triphenylphosphine (96 mg, 

0.37 mmol) in dry toluene (4 mL). The resulting solution was stirred for 24 h, before the 

solvent was removed in in vacuo. Purification by flash chromatography (SiO2, 

CH2Cl2/MeOH, 99:1, v/v) afforded the title compound as a colourless oil (41.5 mg, 33%). 
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Rf 0.47 (EtOAc/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 2931m, 2858m, 1729s, 1647m, 

1564m, 1462m, 1428m, 1370m, 1337w,1233s, 1104s, 1055m, 1009m, 917w, 822m, 740m, 

703s, 614m, 505s, 491m; 
1
H NMR (400 MHz, CDCl3) δ 7.68 (dt, J = 6.5, 1.6 Hz, 4H), 

7.46–7.34 (m, 6H), 5.77 (d, J = 2.1 Hz, 1H), 5.41 (d, J = 2.1 Hz, 1H), 4.49–4.44 (m, 1H), 

4.43–4.39 (m, 1H), 4.38–4.33 (m, 3H), 4.32–4.27 (m, 1H), 3.74 (t, J = 7.1 Hz, 2H), 2.48–

2.38 (m, 4H), 2.21–2.14 (m, 2H), 2.11 (s, 3H), 1.97–1.85 (m, 2H), 1.73 (tt, J = 8.4, 7.3 Hz, 

2H), 1.59–1.44 (m, 2H), 1.04 (s, 9H), 0.98 (t, J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) 

δ 170.4, 169.5, 166.3, 164.9, 135.7, 133.9, 129.8, 127.8, 100.0, 88.8,79.2, 77.8, 64.5, 63.0, 

33.4, 28.3, 26.9, 25.8, 24.3, 23.0, 20.9, 19.4, 18.6, 9.2; MS (ESI
+
) m/z (rel. %) 703 

([M+Na]
+
, 100); HRMS (ESI

+
) 703.2063 [M+Na]

+
, C36H45BrNaO6Si requires 703.2061. 

Lab book reference number: TOR-9-778 

(2S*, 3R*)-2-Bromo-3-(6-([8-tert-Butyldiphenylsilyl]oct-5-ynyl)-2-oxo-4-

pyranyloxy)pentyl pivalate (247) 

 

To a solution of pivalate 241 (194 mg, 0.728 mmol), pyrone 234 (173 mg, 0.364 mmol) and 

triphenylphosphine (191 mg, 0.728 mmol) in dry toluene (9 mL) at −78 °C was added 

DEAD (127 mg, 0.728 mmol). The resulting solution was stirred at −78 °C for 19 h, then at 

RT for 2 h, after which time the solvent was removed in vacuo. Purification by flash 

chromatography (SiO2, petrol/EtOAc, 9:1→4:1, v/v) afforded the title compound as a 

colourless oil (124 mg, 47%). 

Rf 0.21 (EtOAc/petrol, 1:4, v/v); IR (thin film, cm
−1

) νmax 2933m, 1733s, 1648m, 1565s, 

1427m, 1239m, 1142s, 1112s, 822w, 739w, 703m, 614w, 506m; 
1
H NMR (400 MHz, 

CDCl3) δ 7.72–7.63 (m, 4H), 7.46–7.32 (m, 6H), 5.77 (d, J = 2.0 Hz, 1H), 5.39 (d, J = 2.0 

Hz, 1H), 4.50–4.41 (m, 2H), 4.35–4.29 (m, 2H), 3.74 (t, J = 7.1 Hz, 2H), 2.48–2.38 (m, 

4H), 2.16 (tt, J = 7.0, 2.4 Hz, 2H), 1.98–1.86 (m, 2H), 1.80–1.67 (m, 2H), 1.54–1.47 (m, 

2H), 1.23 (s, 9H), 1.04 (s, 9H), 0.98 (t, J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 

177.87, 169.47, 166.20, 164.73, 135.66, 133.79, 129.73, 127.75, 99.95, 88.77, 80.61, 79.20, 

77.73, 64.18, 62.93, 49.09, 39.01, 33.30, 28.29, 27.25, 26.88, 25.76, 24.21, 23.01, 19.31, 

18.57, 9.13; MS (ESI
+
) m/z (rel. %) 745 ([M+Na]

+
, 100); HRMS (ESI

+
) 745.2512 [M+Na]

+
, 

C39H51BrNaO6Si requires 745.2530. 
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Lab book reference number: TOR-10-859 

(E)-3-(3-[8-tert-Butyldiphenylsilyloxyoct-5-ynyl]2-oxo-4-pyranyloxy)pent-2-enyl 

pivalate (248) 

 

To a solution of bromide 247 (43.1 mg, 0.06 mmol) in dry toluene (1 mL) was added DBU 

(18.1 mg, 0.119 mmol), and the reaction heated to 100 °C for 3.5 d. After this time, the 

reaction mixture was cooled to RT and filtered through a short plug of silica, eluting with 

ether. Evaporation of the filtrate and purification by flash chromatography (SiO2, 

petrol/ether, 9:1→1:1, v/v) afforded the title compound as a colourless oil (10.7 mg, 28%). 

Rf 0.31 (EtOAc/petrol, 1:4, v/v); IR (thin film, cm
−1

) νmax 2932m, 2858w, 1731s, 1645w, 

1567m, 1462w, 1428m, 1280w, 1224m, 1143s, 1112s, 1052w, 823w, 703m, 614w, 505m; 

1
H NMR (400 MHz, CDCl3) δ 7.70–7.65 (m, 4H), 7.46–7.34 (m, 6H), 5.83 (d, J = 2.2 Hz, 

1H), 5.45 (d, J = 2.2 Hz, 1H), 5.32 (t, J = 7.7 Hz, 1H), 4.62 (d, J = 7.7 Hz, 2H), 3.74 (t, J = 

7.1 Hz, 2H), 2.49–2.40 (m, 4H), 2.37 (q, J = 7.6 Hz, 2H), 2.17 (tt, J = 7.1, 2.4 Hz, 2H), 

1.79–1.69 (m, 2H), 1.54–1.47 (m, 2H), 1.20 (s, 9H), 1.07 (t, J = 7.6 Hz, 3H), 1.04 (s, 9H); 

13
C NMR (126 MHz, CDCl3) δ 178.5, 169.3, 166.7, 164.8, 157.0, 135.7, 133.9, 129.8, 

127.8, 112.5, 99.5, 91.1, 80.7, 77.8, 63.0, 59.4, 38.9, 33.5, 28.3, 27.3, 26.9, 25.9, 23.1, 22.4, 

19.4, 18.6, 12.0; MS (ESI
+
) m/z (rel. %) 665 ([M+Na]

+
, 10), 660 ([M+NH4]

+
, 100), 643 

([M+H]
+
, 10); HRMS (ESI

+
) 665.3284 [M+Na]

+
, C39H50NaO6Si requires 665.3269. 

Lab book reference number: TOR-10-861 

2-(Pivaloyloxy)-3-(6-[8-tert-Butyldiphenylsilyloxyoct-5-ynyl]-2-oxo-4-

pyranyloxy)pentanyl pivalate (249) 

 

Title compound isolated as a byproduct in the synthesis of compound 248 (4.8 mg, 11%). 
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Rf 0.20 (EtOAc/petrol, 1:4, v/v); IR (thin film, cm
−1

) νmax 2932m, 1732s, 1647w, 1565m, 

1462w, 1428m, 1364w, 1239m, 1141s, 1111s, 912w, 821m, 736m, 702s, 619w, 506m; 
1
H 

NMR (400 MHz, CDCl3) δ 7.70–7.65 (m, 4H), 7.46–7.32 (m, 6H), 5.76 (d, J = 2.1 Hz, 1H), 

5.48 (d, J = 2.1 Hz, 1H), 5.26 (td, J = 6.0, 3.7 Hz, 1H), 4.40 (dt, J = 7.2, 5.4 Hz, 1H), 4.31 

(dd, J = 12.0, 3.7 Hz, 1H), 4.25–4.17 (m, 1H), 4.11 (dd, J = 12.0, 6.3 Hz, 1H), 3.74 (t, J = 

7.1 Hz, 2H), 2.50–2.37 (m, 4H), 2.22–2.12 (m, 2H), 1.79–1.65 (m, 4H), 1.54–1.45 (m, 2H), 

1.19 (s, 9H), 1.17 (s, 9H), 1.04 (s, 9H);
 13

C NMR (126 MHz, CDCl3) δ 178.0, 177.5, 170.1, 

166.0, 165.0, 135.7, 133.9, 129.8, 127.8, 100.1, 88.6, 80.7, 78.1, 77.8, 70.7, 63.0, 62.3, 

39.0, 33.3, 30.5, 28.3, 27.3, 27.2, 26.9, 25.9, 23.1, 22.9, 19.4, 18.6, 9.6, 1.2; MS (ESI
+
) m/z 

(rel. %) 767 ([M+Na]
+
, 10), 762 ([M+NH4]

+
, 100), 745 ([M+H]

+
, 15); HRMS (ESI

+
) 

767.3949 [M+Na]
+
, C44H60NaO8Si requires 767.3950. 

Lab book reference number: TOR-10-861 

 (E)-3-(3-[8-Hydroxyoct-5-ynyl]2-oxo-4-pyranyloxy)pent-2-enyl pivalate (250) 

 

To a solution of silyl ether 249 (16.1 mg, 0.025 mmol) in dry THF (1 mL) was added 

dropwise TBAF (1 M in THF, 28 μL, 0.028 mmol). The resulting solution was stirred at RT 

for 50 min, before being diluted with ether (10 mL) and washed with sat. aq. NH4Cl 

(10 mL). The aqueous phase was extracted with ether (2 × 10 mL), and the combined 

organic layers dried over MgSO4, filtered and evaporated. Purification by flash 

chromatography (SiO2, petrol/EtOAc, 3:2, v/v) afforded the title compound as a colourless 

oil (4.5 mg, 45%). 

Rf 0.28 (EtOAc/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3450br, 2925m, 1728s, 1642w, 

1563m, 1417w, 1225m, 1146s, 1049m, 802w; 
 1
H NMR (400 MHz, CDCl3) 5.87 (d, J = 2.2 

Hz, 1H), 5.47 (d, J = 2.2 Hz, 1H), 5.34 (t, J = 7.7 Hz, 1H), 4.63 (d, J = 7.7 Hz, 2H), 3.69 (t, 

J = 6.2 Hz, 2H), 2.49 (t, J = 7.6 Hz, 2H), 2.43 (tt, J = 6.2, 2.4 Hz, 2H), 2.37 (q, J = 7.5 Hz, 

2H), 2.22 (tt, J = 7.0, 2.4 Hz, 2H), 1.83–1.73 (m, 2H), 1.60–1.51 (m, 2H), 1.20 (s, 9H), 1.09 

(t, J = 7.5 Hz, 3H); 
13

C NMR (126 MHz, CDCl3) δ 178.5, 169.4, 166.6, 164.9, 157.1, 112.5, 

99.6, 91.2, 81.7,  61.5, 59.4, 38.9, 33.5, 29.9, 28.2, 27.3, 25.9, 23.3, 22.4, 18.6, 12.0; MS 

(ESI
+
) m/z (rel. %) 427 ([M+Na]

+
, 100), 405 ([M+H]

+
, 90); HRMS (ESI

+
) 405.2286 

[M+H]
+
, C23H33O6 requires 405.2272. 



 

212 
 

Lab book reference number: TOR-10-875 

Pent-2-ynyl acetate (256) 

 

To a solution of 2-pentyn-1-ol (2.0 g, 23.8 mmol), triethylamine (3.37 g, 33.3 mmol) and 

DMAP (407 mg, 3.33 mmol) in CH2Cl2 (60 mL) was added dropwise acetic anhydride 

(4.86 g, 47.6 mmol), and the resulting solution stirred for 18 h at RT. After this time the 

reaction mixture was quenched with sat. aq. NH4Cl (60 mL), the layers separated and the 

aqueous layer extracted with CH2Cl2 (3 × 40 mL). The combined organic layers were 

washed with water (60 mL) and brine (60 mL), dried over MgSO4, filtered and evaporated. 

The residue was purified by filtration through a short silica plug, eluting with CH2Cl2, 

followed by further washing with water (2 × 30 mL), drying  over MgSO4 and 

concentration in vacuo to afford the title compound as a slightly volatile colourless oil (2.45 

g, 84%). 

IR (thin film, cm
−1

) νmax 2980w, 2942w, 2242w, 1746s, 1438w, 1379m, 1224s, 1150w, 

1025m, 972w, 913w, 831w; 
1
H NMR (400 MHz, CDCl3) δ 4.66 (t, J = 2.3 Hz, 2H), 2.24 

(qt, J = 7.5, 2.3 Hz, 2H), 2.09 (s, 3H), 1.14 (t, J = 7.5 Hz, 3H); 
13

C NMR (101 MHz, 

CDCl3) δ 170.6, 89.1, 73.3, 53.0, 21.0, 13.7, 12.6; MS (EI
+
) m/z (rel. %) 126 ([M]

+
, 2), 125 

([M−H]
+
, 5), 111 ([M−Me]

+
, 100), 97 ([M−Et]

+
, 85); 84 ([M−Ac+H]

+
, 95), 83 ([M−Ac]

+
, 

100); HRMS (ESI
+
) 126.0681 [M]

+
, C7H10O2 requires 126.0681. 

Lab book reference number: TOR-10-899 

Ethyl (Z)-3-(6-Methyl-2-oxo-4-pyranyloxy)pent-2-enoate (257) 

 

To a solution of ethyl 2-pentynoate (99 μL, 0.75 mmol) and 4-hydroxy-6-methyl-2-pyrone 

36 (63.5 mg, 0.50 mmol) in toluene (1 mL) in a microwave vial at 110 °C was added 

[(AuIPr)2(μ-OH)][BF4] (6.4 mg, 0.005 mmol). The reaction was stirred for 20 h, before the 

solution was cooled to RT and evaporated. Purification of the crude residue with flash 

chromatography (SiO2, EtOAc/petrol, 2:3, v/v) afforded the title compound as an orange oil 

(95.3 mg, 76%). 
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Rf 0.22 (EtOAc/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 3086vw, 2980w, 1716s, 1667m, 

1646s, 1568s, 1448m, 1407m, 1369m, 1319m, 1278m, 1229s, 1191s, 1132s, 1036m, 

1001m, 856m, 817m, 519w; 
1
H NMR (CDCl3, 400 MHz) δ 5.95–5.94 (m, 1H), 5.67 (t, J = 

1.2 Hz, 1H), 5.36 (dd, J = 2.3, 0.6 Hz, 1H), 4.10 (q, J = 7.1 Hz, 2H), 2.33 (qd, J = 7.4, 1.2 

Hz, 2H), 2.24 (s, 3H), 1.21 (t, J = 7.1 Hz, 3H), 1.14 (t, J = 7.4 Hz, 3H); 
13

C NMR (CDCl3, 

101 MHz) δ 168.7, 165.2, 164.8, 163.6, 163.2, 108.1, 99.8, 89.7, 60.6, 27.3, 20.2, 14.2, 

10.6; MS (ESI
+
) m/z (rel. %) 253 ([M+H]

+
, 100), 275 ([M+Na]

+
, 25), 181 ([M−CO2Et+H]

+
, 

28); HRMS (ESI
+
) 253.1065 [M+H]

+
, C13H17O5 requires 253.1071. 

Lab book reference number: KE-1-45 (reaction conducted by K. Evans) 

(Z)-3-(6-Methyl-2-oxo-4-pyranyloxy)pent-2-enyl acetate (258) 

 

To a solution of pent-2-ynyl acetate 256 (91.6 mg, 0.75 mmol) and 4-hydroxy-6-methyl-2-

pyrone (63.5 mg, 0.5 mmol) in toluene (1 mL) in a microwave vial at 80 °C was added 

[(AuIPr)2(μ-OH)][BF4] (3.2 mg, 0.0025 mmol). The reaction was stirred for 24 h, before 

the solution was cooled to RT and evaporated. Purification of the crude residue with flash 

chromatography (SiO2, EtOAc/petrol, 2:3, v/v) afforded the title compound as a pale yellow 

oil (86.4 mg, 68%). 

Rf 0.25 (EtOAc/petrol, 2:3, v/v); IR (thin film, cm
−1

) νmax 2975w, 1729s, 1647m, 1567s, 

1448m, 1407m, 1380m, 1365w, 1320w, 1223s, 1178m, 1137m, 1029m, 1008m, 858w, 

822m, 521w; 
1
H NMR (CDCl3, 400 MHz) δ 5.89 (m, 1H), 5.41–5.33 (m, 2H), 4.48 (dt, J = 

7.0, 1.1 Hz, 2H), 2.25–2.18 (m, 5H), 2.04 (s, 3H), 1.09 (t, J = 7.4 Hz, 3H); 
13

C NMR 

(CDCl3, 101 MHz) δ 171.0, 168.7, 164.7, 163.6, 155.0, 111.5, 99.8, 90.1, 58.4, 25.4, 21.0, 

20.2, 10.9; MS (ESI
+
) m/z (rel.%) 275 ([M+Na]

+
, 100), 253 ([M+H]

+
, 2), 193 

([M−(AcOH)+H]
+
, 14); HRMS (ESI

+
) 275.0896 [M+Na]

+
, C13H16NaO5 requires 275.0890. 

Lab book reference number: KE-1-57 (reaction conducted by K. Evans) 
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(Z)-3-(6-[8-tert-Butyldiphenylsilyloxyoct-5-ynyl]2-oxo-4-pyranyloxy)pent-2-enyl 

acetate (345) 

 

A solution of pyrone 234 (30 mg, 0.06 mmol), acetate 256 (39 mg, 0.32 mmol) and 

[(AuIPr)2(μ-OH)][BF4] (0.8 mg, 0.6 μmol) in toluene (0.5 mL) was heated to 110 °C and 

stirred for 5 h. Removal of the solvent in vacuo followed by flash chromatography 

(petrol/EtOAc, 4:1, v/v) afforded the title compound as a colourless oil (27.3 mg, 76%). 

Rf 0.48 (EtOAc/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 2932m, 2858m, 1733s, 1645m, 

1568m, 1462w, 1428m, 1380w, 1221s, 1178w, 1111s, 1027w, 915w, 823m, 703s, 614m, 

506m 491w; 
1
H NMR (400 MHz, CDCl3) δ 7.70–7.65 (m, 4H), 7.45–7.35 (m, 6H), 5.86 (d, 

J = 2.2 Hz, 1H), 5.38 (d, J = 2.2 Hz, 1H), 5.37 (tt, J = 7.0, 1.3 Hz, 1H), 4.48 (dt, J = 7.0, 1.1 

Hz, 2H), 3.74 (t, J = 7.1 Hz, 2H), 2.49–2.44 (m, 4H), 2.42 (tt, J = 7.2, 2.4 Hz, 2H), 2.25–

2.20 (m, 2H), 2.17 (tt, J = 7.0, 2.4 Hz, 2H), 2.04 (s, 3H), 1.81–1.70 (m, 2H), 1.58–1.48 (m, 

2H), 1.08 (t J = 7.4 Hz, 3H), 1.04 (s, 9H); 
13

C NMR (101 MHz, CDCl3) δ 171.0. 168.6, 

166.9, 164.7, 155.0, 135.7, 133.8, 129.8, 127.8, 111.5, 99.2, 90.2, 80.6, 77.8, 63.0, 58.4, 

33.4, 28.3, 26.9, 25.8, 25.3, 23.0, 21.0, 19.3, 18.6, 10.9; MS (ESI
+
) m/z (rel. %) 623 

([M+Na]
+
, 100); HRMS (ESI

+
) 623.2787 [M+Na]

+
, C36H44NaO6Si requires 623.2799. 

Lab book reference number: TOR-10-884 

(Z)-3-(6-[8-Hydroxyoct-5-ynyl]2-oxo-4-pyranyloxy)pent-2-enyl acetate (259) 

 

To a solution of silyl ether 343 (18.6 mg, 0.031 mmol) in dry THF (1 mL) at 0 °C was 

added TBAF (1 M in THF, 34 μL, 0.034 mmol) dropwise. The resulting solution was 

stirred at RT for 1.5 h, before being diluted with ether (10 mL) and washed with sat. aq. 

NH4Cl (10 mL). The aqueous layer was extracted with ether (2 × 10 mL), and the combined 

organic layers dried over MgSO4, filtered and evaporated. Purification by flash 
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chromatography (petrol/EtOAc, 1:1, v/v) afforded the title compound as a colourless oil 

(10.0 mg, 89%). 

Rf 0.20 (EtOAc/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 3443br, 2936m, 1727s, 1643m, 

1565s, 1417m, 1380m, 1365w, 1222s, 1179m, 1136w, 1031m, 960w, 824m, 607w; 
1
H 

NMR (400 MHz, CDCl3) δ 5.90 (d, J = 2.2 Hz, 1H), 5.39 (d, J = 2.2 Hz, 1H), 5.37 (tt, J = 

7.0, 1.3 Hz, 1H), 4.48 (d, J = 7.0 Hz, 2H), 3.69 (t, J = 6.2 Hz, 2H), 2.50 (t, J = 7.6 Hz, 2H), 

2.43 (tt, J = 6.2, 2.4 Hz, 2H), 2.27–2.17 (m, 4H), 2.04 (s, 3H), 1.85–1.73 (m, 2H), 1.63–

1.49 (m, 2H), 1.09 (t J = 7.4 Hz, 3H); 
13

C NMR (101 MHz, CDCl3) δ 171.0. 168.6, 166.9, 

164.7, 155.0, 111.5, 99.3, 90.3, 81.7, 77.5, 61.5, 58.5, 33.5, 28.2, 25.8, 25.4, 23.3, 21.0, 

18.6, 10.9; MS (ESI
+
) m/z (rel. %) 385 ([M+Na]

+
, 100), 363 ([M+H]

+
, 5); HRMS (ESI

+
) 

385.1611 [M+Na]
+
, C20H26NaO6 requires 385.1622. 

Lab book reference number: TOR-10-891 

(Z)-3-(6-[4-(Furan-2-yl)butyl]2-oxo-4-pyranyloxy)pent-2-enyl acetate (261) 

 

Title compound was isolated as a side product from some oxidations of compound 259 

(when not purified with Quadrapure) (6.8 mg, 17%). 

Rf 0.37 (EtOAc/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 2929m, 1806w, 1738s, 1645m, 

1568s, 1462w, 1417m, 1379w, 1222s, 1177w, 1136w, 1019m, 822w; 
1
H NMR (400 MHz, 

C6D6) δ 7.12 (dd, J = 1.9, 0.8 Hz, 1H), 6.12 (dd, J = 3.2, 1.9 Hz, 1H), 5.83 (dt, J = 3.0,0.9 

Hz, 1H), 5.41 (d, J = 2.3 Hz, 1H), 5.37 (d, J = 2.3 Hz, 1H), 5.00 (tt, J = 7.1, 1.3 Hz, 1H), 

4.43 (dt, J = 7.1, 1.3 Hz, 2H), 2.32 (t, J = 7.2 Hz, 2H), 1.88–1.80 (m, 2H), 1.70 (qd, J = 7.5, 

1.3 Hz, 2H), 1.64 (s, 3H), 1.47–1.31 (m, 2H), 1.27–1.17 (m, 2H), 0.66 (t, J = 7.4 Hz, 3H); 

13
C NMR (125 MHz, C6D6) δ 170.0, 168.1, 167.1, 163.3, 156.0, 155.0, 141.2, 111.9, 110.6, 

105.5, 98.4, 90.6, 58.1, 33.6, 27.8, 27.7, 26.1, 25.1, 20.3, 10.8; MS (ESI
+
) m/z (rel. %) 383 

([M+Na]
+
, 100), 361 ([M+H]

+
, 5); HRMS (ESI

+
) 383.1461 [M+Na]

+
, C20H24NaO6 requires 

383.1465. 

Lab book reference number: TOR-10-911 
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(Z)-3-(6-[5,8-Dioxooctyl]2-oxo-4-pyranyloxy)pent-2-enyl acetate (262) 

 

Alcohol 259 (8.9 mg, 0.025 mmol, not purified with Quadrapure) was dissolved in dry 

CH2Cl2 (2 mL), and Celite (10 mg) and PCC (8.0 mg, 0.037 mmol) were added sequentially 

at 0 °C. The resulting solution was stirred at this temperature for 45 min, before being 

warmed to RT and stirred for another 2.5 h. After this time, the solution was filtered 

through as short plug of silica and flushed with EtOAc. The eluent was evaporated, and the 

crude residue purified by flash chromatography (EtOAc/petrol, 2:3, v/v), affording the title 

compound as a colourless oil (5.4 mg, 57%). 

Rf 0.65 (EtOAc); IR (thin film, cm
−1

) νmax 2930m, 1721br s, 1644m, 1567s, 1461w, 1417m, 

1380w, 1365w, 1222s, 1176w, 1135w, 1025w, 822w; 
1
H NMR (400 MHz, C6D6) δ 9.25 (s, 

1H), 5.45 (d, J = 2.2 Hz, 1H), 5.43 (d, J = 2.2 Hz, 1H), 5.01 (tt, J = 7.0, 1.3 Hz, 1H), 4.44 

(dt, J = 7.1, 1.1 Hz, 2H), 2.09 (ddd, J = 6.7, 5.0, 1.4 Hz, 2H), 2.06–2.00 (m, 2H), 1.90–1.85 

(t, J = 7.0 Hz, 2H), 1.82 (t, J = 7.0 Hz, 2H), 1.71 (qq, J = 7.4, 1.1 Hz, 2H), 1.64 (s, 3H), 

1.34–1.24 (m, 2H), 1.28–1.13 (m, 2H), 0.67 (t, J = 7.4 Hz, 3H); 
13

C NMR (125 MHz, 

CDCl3) δ 206.7, 199.2, 170.0, 168.2, 166.9, 163.3, 155.0, 111.9, 98.6, 90.6, 58.1, 41.8, 

37.5, 34.5, 33.6, 26.1, 25.2, 23.1, 20.3, 10.7; MS (ESI
+
) m/z (rel. %) 401 ([M+Na]

+
, 100), 

385 ([M+H]
+
, 10); HRMS (ESI

+
) 401.1565 [M+Na]

+
, C20H26NaO7 requires 401.1571. 

Lab book reference number: TOR-10-918 

(2Z,7Z,10Z)-3-(6-[(12-tributylstannyl)dodeca-7,10-dien-5-ynyl]2-oxo-4-

pyranyloxy)pent-2-enyl acetate (263) 

 

To a solution of alcohol 259 (49.2 mg, 0.14 mmol) in dry CH2Cl2 (1 mL) at 0 °C was added 

Dess–Martin periodinane (86 mg, 0.20 mmol). The resulting suspension was stirred for 5 
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min before the cooling was removed and the reaction stirred for a further 1 h at RT, after 

which time TLC analysis indicated that the reaction was complete. The solution was cooled 

to −10 °C, diluted with pentane (2 mL), and filtered through a short plug of layered silica 

and Celite, eluting successively with ether/petrol (1:1, v/v), CH2Cl2 and EtOAc/petrol (1:1, 

v/v). The resulting solution was evaporated, and the crude residue triturated with ether, 

decanted and evaporated, affording a crude residue which was used directly in the next 

step. 

To a solution of phosphonium salt 209 (196 mg, 0.29 mmol) in dry THF (0.5 mL) at −78 

°C was added dropwise NaHMDS (1 M in THF, 0.27 mL, 0.27 mmol). The resulting 

orange solution was warmed to 0 °C for 10 min, before being cooled once again to −78 °C. 

A solution of the crude aldehyde (0.14 mmol) in dry THF (0.5 mL) was added, and an 

additional portion of dry THF (0.5 mL) was used to ensure quantitative transfer. The 

resulting solution was warmed to RT and stirred for 1 h. After this time, the reaction was 

diluted with ether (4 mL) and quenched with water (2 mL) and brine (2 mL). The layers 

were separated and the aqueous layer extracted with ether (3 × 5 mL), and the combined 

organic layers dried over MgSO4, filtered and evaporated. Purification by flash 

chromatography (SiO2, petrol/ether/triethylamine, 83:15:2, v/v) afforded the title compound 

as a yellow oil (13.3 mg, 14%). 

Rf 0.32 (EtOAc/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 2956m, 2926s, 2871w, 2854w, 

1740s, 1646m, 1570m, 1463w, 1416w, 1364w, 1221s, 1177w, 1134w, 1023w, 822w, 

692w; 
1
H NMR (500 MHz, C6D6) δ 6.56 (dt, J = 12.3, 7.0 Hz, 1H), 6.02 (d, J = 12.3 Hz, 

1H), 5.67–5.57 (m, 1H), 5.56–5.46 (m, 1H), 5.47–5.39 (m, 2H), 5.01 (t, J  7.1 Hz, 1H), 4.44 

(d, J = 7.1 Hz, 2H), 2.97 (dd, J = 7.0 Hz, 2.1 Hz, 2H), 2.89 (t, J = 7.0 Hz, 2H), 1.95 (tt, J = 

7.1, 2.1 Hz, 2H), 1.90 (t, J = 7.7 Hz, 2H), 1.72 (q, J = 7.5 Hz, 2H), 1.65 (s, 3H), 1.64–1.54 

(m, 6H), 1.44–1.32 (m, 6H), 1.20–1.26 (m, 2H), 1.12–1.03 (m, 2H), 1.05–0.99 (m, 6H), 

0.94 (t, J = 7.3 Hz, 9H), 0.68 (t, J = 7.5 Hz, 3H); 
13

C NMR (125 MHz, C6D6) δ 169.9, 

168.0, 167.0, 163.1, 155.0, 146.8, 129.2, 129.1, 126.3, 111.8, 98.4, 90.5, 79.9, 78.9, 58.1, 

35.4, 33.4, 30.5, 29.7, 28.5, 27.8, 25.8, 25.2, 20.3, 18.8, 17.9, 14.0, 10.6; MS (ESI
+
) m/z 

(rel. %) 711 ([M+Na]
+
, 100); HRMS (ESI

+
) 711.3070 [M+Na]

+
, C36H56NaO5Sn requires 

711.3049. 

Lab book reference number: TOR-10-929 
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(3Z,6Z,9Z)-3-Ethyl-2,19-dioxabicyclo[16.3.1]docosa-1(21),3,6,9,18-pentaen-12-yn-20-

one (264) 

 

LiCl (8.0 mg, 0.19 mmol) was placed with a stirrer bar in a Schlenk tube and dried under 

vacuum with vigorous heating (approx. 10 min). Dry DMF (1.0 mL) was added and stirred 

until the LiCl had dissolved. The resulting solution was added via cannula to another 

Schlenk tube containing stannane 263 (13.3 mg, 19.3 μmol) and Pd(Br)(N-Succ)(AsPh3)2 

(AsCat, 1.7 mg, 1.9 μmol). The resulting solution was stirred at 35 °C for 18 h. After this 

time, the reaction mixture was diluted with ether (10 mL) and washed with water (3 × 

5 mL). The combined organics layers were dried over MgSO4, filtered and evaporated. 

Purification by preparatory thin layer chromatography (SiO2, petrol/EtOAc, 1:1, v/v) 

afforded the title compound as a yellow oil (1.3 mg, 20%). 

Rf 0.58 (EtOAc/petrol, 1:1, v/v); IR (thin film, cm
−1

) νmax 2925s, 2854m, 1733s, 1645m, 

1567m, 1462w, 1417w, 1223m, 1131w, 821w, 702w; 
1
H NMR (700 MHz, CDCl3) δ 6.03 

(d, J = 2.2 Hz, 1H, H-22), 5.54–5.47 (m, 1H, H-10), 5.42 (d, J = 2.2 Hz, 1H, H-21), 5.41–

5.34 (m, 3H, H-6, 7, 9), 5.16 (t, J = 7.3 Hz, H-4), 2.87 (d, J  7.5 Hz, 2H, H-11), 2.81 (t, J = 

7.5 Hz, 2H, H-8), 2.66 (t, J = 7.3 Hz, 2H, H-5), 2.51 (t, J = 6.9 Hz, 2H, H-17), 2.23–2.16 

(m, 4H, H-14, 1′), 1.81 (app. quin, J  = 6.9 Hz, 2H, H-16), 1.62–1.53 (m, 2H, H-15), 1.07 

(t, J = 7.4 Hz, 3H, H-2′); 
13

C NMR (175 MHz, CDCl3) δ 169.2 (C, C-20), 167.1 (C, C-18), 

165.3 (C, C-1), 151.3 (C, C-3), 130.8 (CH, C-9), 128.6 (CH, C-7), 126.9 (CH, C-6), 124.6 

(CH, C-10), 114.4 (CH, C-4), 99.2 (CH, C-22), 89.8 (CH, C-21), 79.5 (C, C-13), 79.2 (C, 

C-12), 32.5 (CH2, C-17), 27.5 (CH2, C-16), 25.7 (CH2, C-1′), 25.5 (CH2, C-8), 25.2 (CH2, 

C-15), 23.9 (CH2, C-5), 18.3 (CH2, C-14), 17.0 (CH2, C-11), 11.2 (CH3, C-2′); MS (ESI
+
) 

m/z (rel. %) 361 ([M+Na]
+
, 100); HRMS (ESI

+
) 361.1761 [M+Na]

+
, C22H26NaO3 requires 

361.1774. 

Lab book reference number: TOR-10-931  
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cis-Bromobis(triphenylphosphine)(N-succinimide)palladium(II) (cis-23)
53

  

 

Prepared using general procedure A (L = PPh3), affording the title compound as a yellow 

powder (48 mg, 31%). 

M.P. 234–237 °C (dec.); IR (CH2Cl2, cm
−1

) νmax 1632s, 1437m, 1355m, 1243w, 1097m; 
1
H 

NMR (400 MHz, CD2Cl2) δ 7.70–7.62 (m, 6H), 7.45–7.38 (m, 3H), 7.35 (dd, J = 9.7, 7.3 

Hz, 9H, overlapping), 7.27 (td, J = 7.7, 2.2 Hz, 6H), 7.22–7.14 (m, 6H), 2.24–2.16 (m, 2H), 

1.62–1.55 (m, 2H); 
31

P NMR (162 MHz, CD2Cl2) δ 33.6 (d, J = 8.8 Hz), 24.0 (d, J = 8.8 

Hz); UV–Vis (CH2Cl2, nm) λmax 280 (ε = 30960). 

Lab book reference number: TOR-4-344 

trans-Bromobis(triphenylphosphine)(N-succinimide)palladium(II) (trans-23)
284

 

 

Compound was obtained commercially from Sigma-Aldrich. No published data is 

available. 

M.P. 220–225 °C (dec.); IR (ATR, cm
−1

) νmax 1634s, 1481w, 1433m, 1351w, 1235s, 1098s, 

744s, 691s; 
1
H NMR (400 MHz, CDCl3) δ 7.78–7.75 (m, 12H), 7.51–7.42 (m, 18H), 1.65 

(s, 2H), 1.28 (s, 2H); 
13

C NMR (100 MHz, CDCl3) δ 186.6, 135.1 (vt, Σ 
2/3

JC–P + 
4/5

JC–P = 

13.0 Hz), 130.7 (vt, Σ 
4
JC–P + 

6
JC–P = 1.9 Hz), 130.5 (vt, Σ 

1
JC–P + 

3
JC–P = 49.1 Hz), 128.3 

(vt, Σ 
2/3

JC–P + 
4/5

JC–P = 10.7 Hz), 30.6; 
31

P NMR (162 MHz, CDCl3) δ 23.4. 

Ethyl 3-(tributylstannyl)propenoates (278)
222

 

 

AIBN (67 mg, 0.41 mmol) was added to a neat mixture of ethyl propiolate (1.0 g, 10.2 

mmol) and tributyltin hydride (3.12 g, 10.7 mmol), and the mixture heated to 60 °C for 2 h. 

It was then allowed to cool to RT and purified by flash chromatography (SiO2, 

petrol/EtOAc, 95:5, v/v), affording the E-isomer (600 mg, 15%) and the Z-isomer (1.92 g, 

48%), both as colourless oils. 
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Z-isomer: Rf 0.65 (ether/petrol, 1:9, v/v); 
1
H NMR (400 MHz, CDCl3) δ 7.15 (d, J = 12.9 

Hz, J 
2

Sn−H 
119  = 59.1 Hz, J 

2
Sn−H 

117  = 56.4 Hz, 1H), 6.72 (d, J = 12.9 Hz, J 
3

Sn−H 
119  = 114.2 

Hz, J 
3

Sn−H 
117  = 109.3 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 1.57–1.37 (m, 6H), 1.34–1.23 (m, 

9H), 1.05–0.88 (m, 6H), 0.87 (t, J = 7.3, 9H); 
13

C NMR (100 MHz, CDCl3) δ 167.8, 157.2, 

135.5, 60.6, 29.3 ( J 
3

Sn−C
 = 21.0 Hz), 27.5 ( J 

2
Sn−C 

119  = 58.2 Hz, J 
2

Sn−C 
117  = 55.7 Hz), 14.4, 

13.9 ( J 
4

Sn−C
 = 1.0 Hz), 11.2 ( J 

1
Sn−C 

119  = 361.8 Hz, J 
1

Sn−C 
117  = 346.4 Hz); MS (ESI

+
) m/z 

(rel. %) 413 ([M+Na]
+
, 100); HRMS (ESI

+
) 413.1488 [M+Na]

+
, C17H34NaO2Sn requires 

413.1476. 

E-isomer:
 
Rf 0.53 (ether/petrol, 1:9, v/v); 

1
H NMR (400 MHz, CDCl3) δ 7.74 (d, J = 19.4 

Hz, J 
2

Sn−H 
119  = 61.0 Hz, J 

2
Sn−H 

117  = 58.4 Hz, 1H), 6.30 (d, J = 19.4 Hz, J 
3

Sn−H 
119  = 54.9 

Hz, J 
3

Sn−H 
117  = 52.6 Hz, 1H), 4.21 (q, J = 7.1 Hz, 2H), 1.61–1.40 (m, 6H), 1.36–1.25 (m, 

9H), 1.06–1.89 (m, 6H), 0.87 (t, J = 7.3, 9H); 
13

C NMR (100 MHz, CDCl3) δ 165.1, 152.6, 

136.5, 60.5, 29.1 ( J 
3

Sn−C
 = 21.4 Hz), 27.4 ( J 

2
Sn−C 

119  = 57.3 Hz, J 
2

Sn−C 
117  = 54.5 Hz), 14.4, 

13.8, 9.8 ( J 
1

Sn−C 
119  = 349.9 Hz, J 

1
Sn−C 

117  = 334.8 Hz); MS (ESI
+
) m/z (rel. %) 413 

([M+Na]
+
, 100); 391 ([M+H]

+
, 20) HRMS (ESI

+
) 413.1469 [M+Na]

+
, C17H34NaO2Sn 

requires 413.1476. 

Lab book reference number: TOR-5-398 

Ethyl (Z)-4-phenyl-2-butenoate (Z-281)
208

 

 

Title compound was synthesised using general procedure B as a colourless oil. 

Rf 0.51 (ether/petrol, 1:9, v/v); 
1
H NMR (400 MHz, CDCl3) δ 7.33–7.27 (m, 2H), 7.25–7.19 

(m, 3H), 6.35 (dt, J = 11.4, 7.6 Hz, 1H), 5.35 (dt, J = 11.4, 1.8 Hz, 1H), 4.22 (q, J = 7.2 Hz, 

2H), 4.03 (dd, J = 7.6, 1.8 Hz, 2H), 1.31 (t, J = 7.2 Hz, 3H); 
13

C NMR (100 MHz, CDCl3) δ 

166.6, 148.1, 139.6, 128.8 (2 × CH, overlapping), 126.5, 120.1, 60.2, 35.3, 14.4; MS (ESI
+
) 

m/z (rel. %) 213 ([M+Na]
+
, 100), 191 ([M+Na]

+
, 60); HRMS (ESI

+
) 213.0880 [M+Na]

+
, 

C12H14NaO2 requires 213.0886. 
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Ethyl (E)-4-phenyl-2-butenoate (E-281)
208

 

 

Title compound was synthesised using general procedure B as a colourless oil. 

Rf 0.30 (ether/petrol, 1:9, v/v);
 1

H NMR (400 MHz, CDCl3) δ 7.35–7.29 (m, 2H), 7.27–7.21 

(m, 1H), 7.18 (ddt, J = 7.4, 1.3, 0,6 Hz, 2H), 7.10 (dt, J = 15.6, 6.8 Hz, 1H), 5.81 (dt, J = 

15.61.7 Hz, 1H) 4.18 (q, J = 7.1 Hz, 2H), 3.52 (dd, J = 6.8, 1.7 Hz, 2H), 1.27 (t, J = 7.1 Hz, 

3H); 
13

C NMR (100 MHz, CDCl3) δ 166.6, 147.4, 137.9, 129.0, 126.8, 122.5, 60.4, 38.6, 

14.4; MS (ESI
+
) m/z (rel. %) 213 ([M+Na]

+
, 100), 191 ([M+Na]

+
, 50); HRMS (ESI

+
) 

213.0883 [M+Na]
+
, C12H14NaO2 requires 213.0886. 

DMF-stabilised palladium nanoparticles 

To a round-bottomed flask equipped with a reflux condenser containing dry DMF (15 mL) 

at 140 °C under air was added a suspension of PdCl2 in H2O (0.1 M, 150 μL, 0.015 mmol). 

The resulting solution was stirred for 6 h at 140 °C, before being cooled and stored at 5 °C. 

Aliquots of the 1 mM solution were used directly in the relevant reactions. 

cis-Bromobis(triphenylarsine)(N-succinimide)palladium(II) (229) 

 

Prepared using general procedure A (L = AsPh3), affording the title compound as a light 

brown powder (179.5 mg, 52%). Single crystals were grown by vapour diffusion of pentane 

into a saturated solution of the compound in CH2Cl2. 

M.P. 108–112 °C (dec.); IR (ATR, cm
−1

) νmax 1715w, 1637s, 1482w, 1436m, 1349m, 

1235m, 1078w, 999w, 736s, 691s, 482s, 468w; 
1
H NMR (400 MHz, CDCl3, cis:trans = ca. 

4:1) δ 7.75 (dd, J = 7.9, 1.7 Hz), 7.59–7.54 (m), 7.46–7.33 (m), 7.33–7.19 (m), 7.20–7.12 

(m), 2.37–2.29 (m, 2H, cis), 1.63–1.56 (m, 2H, cis), 1.29 (s, 4H, trans); UV–Vis (CH2Cl2, 

nm) λmax 288 (ε = 18040); MS (LIFDI
+
) m/z 896.88 ([M]

+
); Elemental anal.: C: 52.21, H: 

3.76, N: 1.49, C40H34As2BrNO2Pd∙0.24C4H4O2NBr requires C: 52.45, H: 3.76, N: 1.83 (this 

ratio has been corroborated by 
1
H NMR spectroscopy). 

For X-ray crystallographic data (trans-isomer), see Appendix 3. 

Lab book reference number: TOR-6-532 
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cis-Bromobis(tri(2-furyl)phosphine)(N-succinimide)palladium(II) (282) 

 

Prepared using general procedure A (L = P(2-Fu)3), affording the title compound as a light 

brown powder (254 mg, 88%). 

M.P. 90–93 °C (dec.); IR (ATR, cm
−1

) νmax 1712w, 1633m, 1455w, 1350w, 1235m, 1215m, 

1125m, 1010s, 752s, 590m, 535s, 503s; 
1
H NMR (400 MHz, CD2Cl2, cis:trans = ca. 9:1) δ 

7.76–7.74 (m, 6H, trans), 7.65 (td, J = 1.9, 0.7 Hz, 3H, cis), 7.51 (td, J = 1.8, 0.7 Hz, 3H, 

cis), 7.30 (dd, J = 3.6, 1.0 Hz, 6H, trans), 7.12 (ddd, J = 3.5, 2.5, 0.7, 3H, cis), 7.03–6.99 

(m, 3H, cis), 6.57 (ddd, J = 3.6, 1.9, 1.0 Hz, 6H, trans), 6.47 (dt, J = 3.4, 1.6 Hz, 3H, cis), 

6.42 (dt, J = 3.4, 1.6 Hz, 3H, cis), 2.42–2.34 (m, 2H, cis), 2.17–2.09 (m, 2H, cis), 1.92 (s, 

4H, trans); 
31

P NMR (162 MHz, CD2Cl2) −25.7 (d, J = 13.5 Hz, cis), −26.6 (d, J = 13.5 Hz, 

cis), −32.0 (s, trans); UV–Vis (CH2Cl2, nm) λmax 296 (ε = 14720); MS (LIFDI
+
) m/z 748.91 

([M]
+
); Elemental anal.: C: 44.56, H: 2.97, N: 1.70; C28H22BrNO8P2Pd requires C: 44.91, H: 

2.96, N: 1.87. 

Lab book reference number: TOR-9-797 

trans-Bistriphenylarsinepalladium(II) dibromide (283)
235

 

 

To a Schlenk tube containing Pd(OAc)2 (100 mg, 0.45 mmol) and AsPh3 (409 mg, 1.34 

mmol) under N2 was added dry CH2Cl2 (3 mL), and the resulting mixture was stirred for 15 

min at RT, resulting in a green suspension. After this time, a solution of N-

bromosuccinimide (recrystallized from H2O and dried in vacuo, 80 mg, 0.45 mmol) in dry 

CH2Cl2 (3 mL) was added in one portion and the reaction mixture stirred for a further 15 

min. An additional portion of dry CH2Cl2 (2 mL) was added, and the reaction stirred for 

another 15 min. The resulting orange suspension was filtered and dried in vacuo, affording 

the title compound as a yellow-orange solid (113 mg, 57% w.r.t NBS). Single crystals were 

grown by slow evaporation from CHCl3. 

M.P. 212–216 °C (dec.); IR (ATR, cm
−1

) νmax 1581w, 1483m, 1436m, 1305w, 1188w, 

1079m, 1024w, 999m, 737s, 691s, 476s, 464s; 
1
H NMR (400 MHz, CDCl3) δ 7.73–7.65 

(m, 12H), 7.47–7.35 (m, 18H); 
13

C NMR (400 MHz, CDCl3) δ 134.7, 132.7, 130.3, 128.6; 
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MS (ESI
+
) m/z (rel. %) 901 ([M+Na]

+
, 100); HRMS (ESI

+
) 900.8066 [M+Na]

+
, 

C36H30As2Br2NaPd requires 900.8053; Elemental anal.: C: 49.29, H: 3.30, N: 0, 

C36H30As2Br2Pd requires C: 49.21, H: 3.44, N: 0. 

For X-ray crystallographic data, see Appendix 3. 

Lab book reference number: TOR-10-885 

1-Benzyl-4-methylbenzene (286)
286

 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, petrol) as a colourless oil (18.8 mg, 88%).  

Rf 0.56 (ether/petrol, 1:99, ν/ν); 
1
H NMR (400 MHz, CDCl3) δ 7.31–7.26 (m, 2H), 7.22–

7.17 (m, 3H), 7.10 (s, 4H), 3.95 (s, 2H), 2.32 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 141.6, 

138.2, 135.7, 129.3, 129.0, 129.0, 128.6, 126.1, 41.7, 21.2; MS (EI
+
) m/z (rel. %) 182 

([M]
+
, 75), 167 ([M−Me]

+
, 100). 

Lab book reference number: TOR-9-760 

2-[(4-Methylphenyl)methyl]furan (288)
287

 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, petrol) as a colourless oil (16.7 mg, 83%).  

Rf 0.70 (ether/petrol, 1:9, ν/ν); 
1
H NMR (500 MHz, CDCl3) δ 7.35–7.30 (m, 1H), 7.13 (s, 

4H), 6.33–6.26 (m, 1H), 6.00 (d, J = 2.6 Hz, 1H), 3.94 (s, 2H), 2.34 (s, 3H); 
13

C NMR (126 

MHz, CDCl3) δ 155.0, 141.6, 136.1, 135.2, 129.3, 128.7, 110.3, 106.2, 34.2, 21.2; MS (EI
+
) 

m/z (rel. %) 172 ([M]
+
, 100), 157 ([M−Me]

+
, 75); HRMS (EI

+
) 172.0888 [M]

+
, C12H12O 

requires 172.0888. 

Lab book reference number: TOR-9-829 
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2-[(4-Methylphenyl)methyl]thiophene (290)
287

 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, petrol) as a colourless oil (21.3 mg, 97%). 

1
H NMR (500 MHz, CDCl3) δ 7.18–7.10 (m, 5H), 6.98–6.87 (m, 1H), 6.80 (d, J = 2.6 Hz, 

1H), 4.12 (s, 2H), 2.34 (s, 3H); 
13

C NMR (126 MHz, CDCl3) δ 144.6, 137.5, 136.1, 129.4, 

128.6, 126.9, 125.1, 124.0, 35.8, 21.2; MS (EI
+
) m/z (rel. %) 188 ([M]

+
, 100), 187 ([M−H]

+
, 

50), 173 ([M−Me]
+
, 75); HRMS (EI

+
) 188.0655 [M]

+
, C12H12S requires 188.0660. 

Lab book reference number: TOR-10-848 

Ethyl (2Z)-4-(4-methylphenyl)but-2-enoate (293) 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, ether/petrol, 5:95, v/v) as a colourless oil (19.9 

mg, 83%).  

Rf 0.26 (ether/petrol, 1:19, ν/ν); IR (thin film, cm
−1

) νmax 2981m, 1717s, 1643m, 1514m, 

1410m, 1387w, 1298w, 1192s, 1162s, 1096w, 1040m, 925w, 807m, 504w, 476w; 
1
H NMR 

(500 MHz, CDCl3) δ 7.12 (s, 4H), 6.33 (dt, J = 11.4, 7.6 Hz, 1H), 5.83 (dt, J = 11.4, 1.7 Hz, 

1H), 4.22 (q, J = 7.1 Hz, 2H), 3.98 (dd, J = 7.6, 1.7 Hz, 2H), 2.32 (s, 3H), 1.32 (t, J = 7.1 

Hz, 3H); 
13

C NMR (126 MHz, CDCl3) δ 166.6, 148.4, 136.6, 136.0, 129.4, 128.6, 119.9, 

60.1, 34.9, 21.2, 14.4; MS (ESI
+
) m/z (rel. %) 227 ([M+Na]

+
, 100), 205 ([M+Na]

+
, 15); 

HRMS (ESI
+
) 227.1034 [M+Na]

+
, C13H16NaO2 requires 227.1043. 

Lab book reference number: TOR-10-846 
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3,4,5-Trimethoxybenzylchloride (295)
245

 

 

Thionyl chloride (403 μL, 5.55 mmol) was added dropwise to a solution of 3,4,5-

trimethoxybenzyl alcohol (1.0 g, 5.05 mmol) in toluene (5 mL) at 0 °C. The resulting 

solution was stirred for 40 min at RT, before the volatiles were removed in vacuo to afford 

the title compound as an off-white solid (1.09 g, 99%). 

M.P. 57–59 °C (lit.
288

 58–60 °C); 
1
H NMR (400 MHz, CDCl3) δ 6.61 (s, 2H), 4.54 (s, 2H), 

3.87 (s, 6H), 3.84 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 153.5, 138.2, 133.1, 105.8, 61.0, 

56.3, 47.0; MS (ESI
+
) m/z (rel. %) 239 ([M+Na]

+
, 100), 217 ([M+H]

+
, 10), 181 ([M−Cl]

+
, 

100); HRMS (ESI
+
) 239.0445 [M+Na]

+
, C10H13NaClO3 requires 239.0445. 

Lab book reference number: TOR-9-789 

Methyl 4-[([4-(methoxycarbonyl)phenyl]methoxysulfinyl)oxymethyl]benzoate (297) 

 

Thionyl chloride (156 μL, 2.15 mmol) was added dropwise to a solution of methyl 4-

(hydroxymethyl)benzoate (325 mg, 1.96 mmol) in toluene (2 mL) at 0 °C. The resulting 

solution was stirred for 2 h at RT, before the volatiles were removed in vacuo to afford the 

title compound as a white solid (323 mg, 87%). 

M.P. 95–97 °C; 
 1

H NMR (500 MHz, CDCl3) δ 8.02 (d, J = 8.1 Hz, 4H), 7.38 (d, J = 8.1 

Hz, 4H), 5.07 (d, J = 12.4 Hz, 2H), 4.98 (d, J = 12.4 Hz, 2H), 3.92 (s, 6H); 
13

C NMR (126 

MHz, CDCl3) δ 166.7, 140.0, 130.5, 130.1, 128.1, 63.5, 52.4; MS (ESI
+
) m/z (rel. %) 401 

([M+Na]
+
, 100), 380 ([M+H]

+
, 20); HRMS (ESI

+
) 401.0647 [M+Na]

+
, C18H18NaO7S 

requires 401.0665. 

Lab book reference number: TOR-9-827 
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Methyl 4-(chloromethyl)benzoate (299)
247

 

 

Methanol (950 μL, 21.6 mmol) was added dropwise to a solution of 4-

(chloromethyl)benzoyl chloride (815 mg, 4.31 mmol) and triethylamine (903 μL, 6.47 

mmol) in CHCl3 (60 mL) at 0 °C. The resulting solution was stirred at RT for 15 h before 

being quenched with water (60 mL). The layers were separated, and the organic layer was 

dried over MgSO4, filtered and evaporated to afford the title compound as a white solid 

(828 mg, >99%). 

M.P. 35–36 °C (lit.
246

 37–38 °C); 
1
H NMR (500 MHz, CDCl3) δ 8.03 (d, J = 8.3 Hz, 2H), 

7.46 (d, J = 8.3 Hz, 2H), 4.61 (s, 2H), 3.92 (s, 3H); 
13

C NMR (126 MHz, CDCl3) δ 166.7, 

142.4, 130.3, 130.2, 128.6, 52.4, 45.5; MS (ESI
+
) m/z (rel. %) 207 ([M+Na]

+
, 100), 184 

([M+H]
+
, 10), 149 ([M−Cl]

+
, 60); HRMS (ESI

+
) 207.0176 [M+Na]

+
, C9H9NaClO2 requires 

207.0183. 

Lab book reference number: TOR-9-838 

4-Cyanobenzylchloride (302)
248

 

 

Sodium borohydride (324 mg, 8.39 mmol) was added to a stirred solution of 4-

cyanobenzaldehyde (1.0 g, 7.63 mmol) in MeOH (30 mL). After stirring for 30 min, the 

reaction mixture was concentrated in vacuo and the residue dissolved in CH2Cl2 (30 mL), 

washed with water (3 × 30 mL), dried over MgSO4 and concentrated in vacuo. The crude 

residue was then dissolved in toluene (5 mL) and cooled to 0 °C. Thionyl chloride (2.5 mL, 

33.7 mmol) was added dropwise and the resulting solution stirred for 30 min at RT. After 

this time, the volatiles were removed in vacuo to afford the title compound as an off-white 

solid (701 mg, 61%). 

M.P. 78–79 °C (lit.
289

 77–78 °C); 
1
H NMR (400 MHz, CDCl3) δ 7.67 (d, J = 8.5 Hz, 2H), 

7.51 (d, J = 8.5 Hz, 2H), 4.60 (s, 2H);
 13

C NMR (101 MHz, CDCl3) δ 142.5, 132.7, 129.3, 

118.6, 112.4, 45.1; MS (EI
+
) m/z (rel. %) 151 ([M]

+
, 30), 116 ([M−Cl]

+
, 100); HRMS (EI

+
) 

151.0188 [M]
+
, C8H6NCl requires 151.0189. 

Lab book reference number: TOR-10-871, TOR-10-872 
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1-Benzyl-4-methoxybenzene (304)
286

 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, ether/petrol, 1:99, v/v)  as a colourless oil (21.3 

mg, 92%). 

1
H NMR (400 MHz, CDCl3) δ 7.32–7.26 (m, 2H), 7.23–7.15 (m, 3H), 7.13–7.09 (m, 2H), 

6.86–6.81 (m, 2H), 3.93 (s, 2H), 3.79 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 158.1, 141.7, 

133.4, 130.0, 129.0, 128.6, 126.1, 114.0, 55.4, 41.2; MS (EI
+
) m/z (rel. %) 198 ([M]

+
, 100), 

197 ([M−H]
+
, 45), 167 ([M−OMe]

+
, 40), 121 ([M−Ph]

+
, 25); HRMS (EI

+
) 198.1053 [M]

+
, 

C14H14O requires 198.1045. 

Lab book reference number: TOR-9-765 

5-Benzyl-1,2,3-trimethoxybenzene (305) 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, ether/petrol, 2:98, v/v) as a colourless oil (25.1 

mg, 83%).  

Rf 0.24 (ether/petrol, 3:7, ν/ν); IR (thin film, cm
−1

) νmax 2936m, 2837w, 1589m, 1505m, 

1495m, 1452m, 1420m, 1329m, 1236s, 1183w, 1124s, 1009m, 970w, 844w, 782w, 702m, 

593w;
1
H NMR (400 MHz, CDCl3) δ 7.35–7.25 (m, 2H), 7.27–7.16 (m, 3H), 6.40 (s, 2H), 

3.93 (s, 2H), 3.82 (s, 3H), 3.81 (s, 6H); 
13

C NMR (101 MHz, CDCl3) δ 153.3, 141.0, 136.9, 

128.9, 128.6, 126.3, 106.1, 61.0, 56.2, 42.4; MS (ESI
+
) m/z (rel. %) 281 ([M+Na]

+
, 100), 

259 ([M+H]
+
, 60); HRMS (ESI

+
) 259.1320 [M+H]

+
, C16H19O3 requires 259.1329. 

Lab book reference number: TOR-9-790 
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Methyl 4-benzylbenzoate (306)
286

 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, ether/petrol, 3:97→5:95, v/v) as a colourless oil 

(17.8 mg, 67%).  

1
H NMR (400 MHz, CDCl3) δ 7.96 (d, J = 8.3 Hz, 2H), 7.33–7.20 (m, 3H), 7.22–7.13 (m, 

2H), 4.03 (s, 2H), 3.90 (s, 3H); 
13

C NMR (101 MHz, CDCl3) δ 167.2, 146.7, 140.3, 130.0, 

129.1, 128.7, 128.2, 126.5, 52.2, 42.1; MS (ESI
+
) m/z (rel. %) 249 ([M+Na]

+
, 100), 227 

([M+Na]
+
, 15); HRMS (ESI

+
) 249.0882 [M+Na]

+
, C15H14NaO2 requires 249.0886. 

Lab book reference number: TOR-9-844 

4-Benzylbenzonitrile (307)
290

 

 

Title compound was synthesised using general procedure C (with a reaction temperature of 

40 °C), isolated after flash chromatography (SiO2–K2CO3, 9:1, w/w, ether/petrol, 

2:98→5:95, v/v) as a colourless oil (21.3 mg, 94%). 

Rf: 0.36 (ether/petrol, 1:9, ν/ν); IR (thin film, cm
−1

) νmax 3029w, 2922w, 2227s, 1603m, 

1495m, 1454m, 1414m, 1261w, 1177w, 1074w, 1021m, 915w, 855m, 797s, 761s, 725s, 

698s, 593s, 543s, 494m; 
1
H NMR (400 MHz, CDCl3) δ 7.63–7.52 (m, 2H), 7.36–7.19 (m, 

5H), 7.18–7.09 (m, 2H), 4.03 (s, 2H); 
13

C NMR (101 MHz, CDCl3) δ 146.9, 139.5, 132.5, 

129.8, 129.1, 128.9, 126.8, 119.1, 110.2, 42.1; MS (APCI
+
) m/z (rel. %) 206 ([M+H]

+
, 

100); HRMS (APCI
+
) 194.0957 [M+H]

+
, C14H12N requires 194.0964. 

Lab book reference number: TOR-10-880 

1,3-Dibenzylbenzene (309)
291

 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, petrol) as a colourless oil (24.0 mg, 79%).  
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1
H NMR (400 MHz, CDCl3) δ 7.32–7.26 (m, 4H), 7.23–7.16 (m, 7H), 7.06 (t, J = 1.8 Hz, 

1H), 7.02 (dd, J = 7.6, 1.8 Hz, 2H), 3.95 (s, 4H); 
13

C NMR (101 MHz, CDCl3) δ 141.4, 

141.3, 129.8, 129.1, 128.7, 128.6, 126.9, 126.2, 42.0; MS (EI
+
) m/z (rel. %) 258 ([M]

+
, 75), 

167 ([M−CH2Ph]
+
, 100); HRMS (EI

+
) 258.1416 [M]

+
, C20H18 requires 258.1409. 

Lab book reference number: TOR-9-773 

2-Benzyl-1,3,5-trimethylbenzene (311)
292

 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, petrol) and preparatory thin layer chromatography 

(SiO2, n-pentane) as a colourless oil (17.8 mg, 72%).  

1
H NMR (400 MHz, CDCl3) δ 7.28–7.17 (m, 2H), 7.20–7.10 (m, 1H), 7.06–6.97 (m, 2H), 

6.89 (s, 2H), 4.02 (s, 2H), 2.30 (s, 3H), 2.21 (s, 6H); 
13

C NMR (101 MHz, CDCl3) δ 140.2, 

137.2, 135.8, 133.9, 129.0, 128.5, 128.0, 125.8, 34.8, 21.1, 20.3; MS (EI
+
) m/z (rel. %) 210 

([M]
+
, 75), 195 ([M−Me]

+
, 100), 180 ([M−2Me]

+
, 25), 165 ([M−3Me]

+
, 20); HRMS (EI

+
) 

210.1413 [M]
+
, C16H18 requires 210.1409. 

Lab book reference number: TOR-9-782 

2-[(4-Methoxyphenyl)methyl]furan (312)
293

 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, ether/petrol, 1:99, v/v) as a colourless oil (19.6 

mg, 89%).  

1
H NMR (500 MHz, CDCl3) δ 7.33 (dd, J = 1.9, 0.9 Hz, 1H), 7.16 (d, J = 8.6 Hz, 2H), 6.85 

(d, J = 8.6 Hz, 2H), 6.29 (dd, J = 3.2, 1.9 Hz, 1H), 5.98 (dd, J = 3.2, 0.9 Hz, 1H), 3.92 (s, 

2H), 3.80 (s, 3H); 
13

C NMR (126 MHz, CDCl3) δ 158.4, 155.2, 141.5, 130.3, 129.8, 114.1, 

110.3, 106.1, 55.4, 33.8; MS (EI
+
) m/z (rel. %) 188 ([M]

+
, 100), 173 ([M−Me]

+
, 10), 157 

([M−MeO]
+
, 20); HRMS (EI

+
) 188.0840 [M]

+
, C12H12O2 requires 188.0837. 

Lab book reference number: TOR-9-821 
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2-[(3,4,5-Trimethoxyphenyl)methyl]furan (313) 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, ether/petrol, 1:9, v/v) as a colourless oil (22.3 mg, 

77%).  

Rf: 0.22 (ether/petrol, 3:7, ν/ν); IR (thin film, cm
−1

) νmax 2938w, 2838w, 1590m, 1505m, 

1457m, 1421m, 1334m, 1236s, 1183w, 1122s, 1008s, 970w, 806w, 729m, 650w, 660w, 

528w; 
1
H NMR (500 MHz, CDCl3) δ 7.34 (dd, J = 1.9, 0.9 Hz, 1H), 6.45 (s, 2H), 6.31 (dd, 

J = 3.2, 1.9 Hz, 1H), 6.05 (dd, J = 3.2, 0.9 Hz, 1H), 3.91 (s, 2H), 3.83 (s, 6H), 3.82 (s, 3H); 

13
C NMR (126 MHz, CDCl3) δ 154.5, 153.4, 141.7, 136.7, 133.9, 110.4, 106.5, 105.8, 61.0, 

56.2, 34.9; MS (ESI
+
) m/z (rel. %) 271 ([M+Na]

+
, 100), 249 ([M+H]

+
, 55); HRMS (ESI

+
) 

271.0948 [M+Na]
+
, C14H16NaO4 requires 271.0941. 

Lab book reference number: TOR-9-830 

Methyl 4-(furan-2-ylmethyl)benzoate (314) 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, ether/petrol, 3:97→5:95, v/v) as a colourless oil 

(18.8 mg, 74%).  

Rf 0.16 (ether/petrol, 1:19, ν/ν); IR (thin film, cm
−1

) νmax 2952w, 1718s, 1612m, 1506w, 

1435m, 1417m, 1277s, 1178m, 1150w, 1105s, 1020m, 1011m, 939w, 794w, 727s, 600m, 

491w; 
1
H NMR (500 MHz, CDCl3) δ 7.98 (d, J = 8.2 Hz, 2H), 7.35–7.32 (m, 1H), 7.30 (d, 

J = 8.2 Hz, 2H), 6.31–6.29 (m, 1H), 6.03 (d, J = 2.7 Hz, 1H), 4.02 (s, 2H), 3.90 (s, 3H); 
13

C 

NMR (126 MHz, CDCl3) δ 167.1, 153.6, 143.6, 141.9, 130.0, 128.8, 128.6, 110.5, 106.8, 

52.2, 34.6; MS (ESI
+
) m/z (rel. %) 239 ([M+Na]

+
, 100), 217 ([M+Na]

+
, 30); HRMS (ESI

+
) 

239.0678 [M+Na]
+
, C13H12NaO3 requires 239.0679. 

Lab book reference number: TOR-10-845 

 



 

231 
 

4-(Furan-2-ylmethyl)benzonitrile (315) 

 

Title compound was synthesised using general procedure C (with a reaction temperature of 

40 °C), isolated after flash chromatography (SiO2–K2CO3, 9:1, w/w, ether/petrol, 

2:98→4:96, v/v) as a colourless oil (18.6 mg, 87%). 

Rf: 0.38 (ether/petrol, 1:9, ν/ν); IR (thin film, cm
−1

) νmax 2922w, 2229s, 1980w, 1715m, 

1608s, 1505s, 1417m, 1150m, 1011s, 939m, 852m, 811s, 736s, 599m, 550s; 
1
H NMR (400 

MHz, CDCl3) δ 7.62–7.57 (m, 2H), 7.34–7.30 (m, 3H), 6.31 (dd, J = 3.2, 1.9 Hz, 1H), 6.06 

(dq, J = 3.2, 0.9 Hz, 1H), 4.03 (s, 2H); 
13

C NMR (101 MHz, CDCl3) δ 152.7, 143.9, 142.2, 

132.5, 129.6, 119.0, 110.6, 110.5, 107.2, 34.6; MS (ESI
+
) m/z (rel. %) 206 ([M+Na]

+
, 100); 

HRMS (ESI
+
) 206.0583 [M+Na]

+
, C12H9NNaO requires 206.0576. 

Lab book reference number: TOR-10-878 

1,3-Di(furan-2-ylmethyl)benzene (316) 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, ether/petrol, 1:99→2:98, v/v) as a colourless oil 

(24.8 mg, 89%).  

Rf 0.15 (petrol); IR (thin film, cm
−1

) νmax 2908w, 1592m, 1506m, 1446m, 1250w, 1449m, 

1073m, 1009s, 939m, 884m, 798m, 719s, 599s; 
1
H NMR (400 MHz, CDCl3) δ 7.32 (dd, J = 

1.9, 0.9 Hz, 2H), 7.25–7.21 (m, 1H), 7.12–7.07 (m, 3H), 6.29 (dd, J = 3.2, 1.9 Hz, 2H), 

5.99 (dd, J = 3.2, 0.9 Hz, 2H), 3.95 (s, 4H); 
13

C NMR (126 MHz, CDCl3) δ 154.6, 141.6, 

138.5, 129.3, 128.8, 127.0, 110.4, 106.4, 34.5; MS (EI
+
) m/z (rel. %) 238 ([M]

+
, 100), 157 

([M−CH2Fu]
+
, 80); HRMS (EI

+
) 238.0994 [M]

+
, C16H14O2 requires 238.0994. 

Lab book reference number: TOR-9-824 
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2-[(2,4,6-Trimethylphenyl)methyl]furan (317) 

 

Title compound was synthesised using general procedure C, isolated after flash 

chromatography (SiO2–K2CO3, 9:1, w/w, petrol) as a colourless oil (19.5 mg, 83%).  

Rf 0.31 (petrol); IR (thin film, cm
−1

) νmax 2920m, 1614m, 1593m, 1506m, 1485m, 1446m, 

1377w, 1168m, 1135w, 1074m, 1007s, 934w, 885w, 852m, 789m, 727s, 679w, 599m, 

557w; 
1
H NMR (400 MHz, CDCl3) δ 7.30–7.28 (m, 1H), 6.87 (s, 2H), 6.23 (dd, J = 3.2, 1.9 

Hz, 1H), 5.76 (dd, J = 3.2, 1.1 Hz, 1H), 3.94 (s, 2H), 2.30 (s, 6H), 2.28 (s, 3H); 
13

C NMR 

(126 MHz, CDCl3) δ 154.2, 141.2, 137.0, 136.1, 131.6, 129.0, 110.2, 105.5, 28.4, 21.0, 

20.0; MS (EI
+
) m/z (rel. %) 200 ([M]

+
, 100), 185 ([M−Me]

+
, 75), 144 (50), 132 

([M−Fu−H]
+
, 85); HRMS (EI

+
) 200.1202 [M]

+
, C14H16O requires 200.1201. 

Lab book reference number: TOR-9-840 

1-Benzyl-4-(4-methoxyphenyl)benzene (320)
294

 

 

Reaction between 4-bromobenzyl chloride (1 eq.) and tributylphenylstannane (1.1 eq.) was 

conducted according to general procedure C. At the end of the reaction time (24 h), 4-

methoxybenzeneboronic acid (26.7 mg, 0.176 mmol) was added, followed by 2 M aq. 

Na2CO3 (1 mL) and the reaction heated to 60 °C for 20 h with vigorous stirring. After this 

time the work-up was conducted according to general procedure 2 and purification by flash 

chromatography (SiO2–K2CO3, 9:1, w/w, ether/petrol, 1:199, v/v) and preparatory thin layer 

chromatography (SiO2, ether/petrol, 1:9, v/v) afforded the title compound as a white solid 

(23.3 mg, 73%). 

M.P. 93–95 °C (lit.
294

 100–101 °C); Rf 0.24 (ether/petrol, 1:19, ν/ν); IR (thin film, cm
−1

) 

νmax 3027w, 2912w, 2838w, 1606m, 1582w, 1528w, 1498s, 1454m, 1402w, 1279m, 1250s, 

1211m, 1179m, 1074w, 1037s, 1015m, 907s, 828s, 793s, 730s, 698s, 668m, 598m, 554w, 

544w, 498m;
 1

H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 8.9 Hz, 2H), 7.47 (d, J = 8.3 Hz, 

2H), 7.33–7.27 (m, 2H), 7.26–7.20 (m, 5H), 6.96 (d, J = 8.9 Hz, 2H), 4.01 (s, 2H), 3.84 (s, 

3H);
 13

C NMR (126 MHz, CDCl3) δ 159.2, 141.2, 139.7, 138.8, 133.7, 129.4, 129.1, 128.6, 

128.1, 126.9, 126.3, 114.3, 55.5, 41.7; MS (EI
+
) m/z (rel. %) 274 ([M]

+
, 100), 259 
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([M−Me]
+
, 15), 243 ([M−OMe]

+
, 10), 197 ([M−Ph]

+
, 10); HRMS (EI

+
) 274.1348 [M]

+
, 

C20H18O requires 274.1358. 

Lab book reference number: TOR-10-857 

2-([4-(4-Methoxyphenyl)phenyl]methyl)furan (321) 

 

Reaction between 4-bromobenzyl chloride (1 eq.) and 2-(tributylstannyl)furan (1.1 eq.) was 

conducted according to general procedure C. At the end of the reaction time (3 h), 4-

methoxybenzeneboronic acid (26.7 mg, 0.176 mmol) was added, followed by 2 M aq. 

Na2CO3 (1 mL) and the reaction heated to 60 °C for 19 h with vigorous stirring. After this 

time the work-up was conducted according to general procedure 2 and purification by flash 

chromatography (SiO2–K2CO3, 9:1, w/w, ether/petrol, 1:99→2:98, v/v) afforded the title 

compound as a white solid (22.5 mg, 73%). 

M.P. 93–94 °C; Rf 0.25 (ether/petrol, 1:19, ν/ν); IR (thin film, cm
−1

) νmax 2962w, 2837w, 

1607m, 1500s, 1291m, 1274m, 1254s, 1182m, 1150w, 1037s, 1011s, 937w, 908w, 816s, 

759s, 733s, 601w, 505w; 
1
H NMR (400 MHz, CDCl3) δ 7.51 (d, J = 8.9 Hz, 2H), 7.49 (d, J 

= 8.1 Hz, 2H), 7.35 (dd, J = 1.9, 0.8 Hz, 1H), 7.28 (d, J = 8.1 Hz, 2H), 6.97 (d, J = 8.9 Hz, 

2H), 6.31 (dd, J = 3.0, 1.9 Hz, 1H), 6.05 (dd, J = 3.0, 0.8 Hz, 1H), 4.00 (s, 2H), 3.85 (s, 

3H); 
13

C NMR (101 MHz, CDCl3) δ 159.2, 154.7, 141.7, 139.2, 136.7, 133.6, 129.2, 128.2, 

127.0, 114.3, 110.4, 106.4, 55.5, 34.2; MS (EI
+
) m/z (rel. %) 264 ([M]

+
, 100), 249 

([M−Me]
+
, 10); HRMS (EI

+
) 264.1147 [M]

+
, C18H16O2 requires 264.1150. 

Lab book reference number: TOR-10-853 
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Appendix 2: Tables of Reaction Data 

Table 22 Optimisation of Pd-catalysed etherification reaction (Chapter 2). 

 

Entry 
Catalyst 

[mol%] 

Ligand 

[mol%] 
Base [eq.] Solvent 

Time 

/ h 

Yield / 

%
a 

1 Pd(OAc)2 [2] Q-Phos [3]  K3PO4 [2]  toluene 24 48  

2 Pd(OAc)2 [5]  Q-Phos [5]  K3PO4 [2]  toluene 24 56  

3
 Pd(OAc)2 [5]  Q-Phos [5]  K3PO4 [2]  toluene 24  31

b 

4 Pd(OAc)2 [5]  X-Phos [5]  K3PO4 [2]  toluene 24 75  

5 Pd(OAc)2 [2.5]  X-Phos [5]  K3PO4 [2]  toluene 2 75 

6 Pd(OAc)2 [2.5]  X-Phos [5]  K3PO4 [2]  DMF 2 61 

7 Pd(OAc)2 [5]  JohnPhos [5]  K3PO4 [2]  toluene 24 38 

8 Pd2(dba)3 [3]  JohnPhos [9]  
t-BuONa 

[1.5]  
toluene 24 19  

9 cis-23 [5]  -  K3PO4 [2] toluene 24 47  

10 cis-23 [5] 
PCy3·HBF4 

[10] 
K3PO4 [2] toluene 24 23 

11 trans-23 [2.5] X-Phos [5] K3PO4 [2] DMF 2 60 

12 trans-23 [2.5] X-Phos [5] Cs2CO3 [2] DMF 2 50 

13 trans-23 [2.5] - K2CO3 [2] DMF 1 -
c
 

14 trans-23 [2.5] - t-BuONa [2] DMF 1 -
d 

15 trans-23 [2.5] - 
2,6-lutidine 

[2] 
DMF 24 -

d 

16 trans-23 [2.5] - K3PO4 [2] DMF 1.5 55 

17 trans-23 [2.5] - K3PO4 [2] DMF 1.5 50
e
 

18 trans-23 [2.5] - K3PO4 [2] DMF 1 53
f 

19 trans-23 [2.5] - - DMF 24 -
g 

20 PdNPs [2.5] X-Phos [5] K3PO4 [2] DMF 1 44 

21 280 [2.5] - K3PO4 [2] DMF 0.3 57 

22 280 [2.5] X-Phos [5] K3PO4 [2] DMF 0.3 -
d 



 

271 
 

23 280 [2.5] - K3PO4 [2] DMF 1 -
d,h

  

24 229 [2.5] - K3PO4 [2] DMF 0.2 37 

25 trans-23 [2.5] - K3PO4 [2] DMA 0.7 55 

26 Pd(OAc)2 [2.5]  P(2-Fu)3 [5]  K3PO4 [2]  toluene 1.5 -
d 

27 - - K3PO4 [2]  toluene 1.5 -
c 

a
Yield of isolated product after column chromatography. 

b
TBAB additive used. 

c
Isomerisation of 

product observed in crude reaction mixture by 
1
H NMR spectroscopy. 

d
Decomposition observed by 

1
H NMR spectroscopy. 

e
Reaction exposed to air for 5 s at start of reaction. 

f
Reaction carried out at 

120 °C. 
g
No reaction. 

h
Reaction conducted at 50 °C. 
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Table 23 Optimisation of allylic Stille reaction (Chapter 2). 

 

Entry Catalyst [mol%] Oxidant [eq.] 
Ratio 

137:177:136
a 

1 Pd2dba3
.
dba [3] - 34:58:7 

2 Pd2dba3
.
dba [3]

b 
- 48:35:17 

3 Pd2dba3
.
dba [3]

c 
- 36:53:11 

4 Pd2dba3
.
dba [6] - 49:49:2 

5 Pd2dba3
.
dba [6]

b, c 
- 24:62:14 

6 Pd2dba3
.
dba [3]

d 
- 44:42:14 

7 Pd2dba3
.
dba [3]

e 
- 83:17:0 

8 Pd2dba3
.
CHCl3 [3]

c 
- 31:65:4 

9 cis-23 [3] - 92:8:0 

10 trans-23 [3] - 89:11:0 

11 cis-23 [3] air [5 s] 0:80:20 

12 trans-23 [3] air [5 s] 0:80:20 

13 cis-23 [3] air [20 s] 23:55:22 

14 trans-23 [3] air [20 s] 13:66:21 

15 trans-23 [3] 
NaBO3·4H2O 

[0.1] 
76:24:0 

16 trans-23 [3] NMO [0.2] 90:10:0 

17 Pd(dppf)(N-succ)Br [3] - 100:0:0 

18 ABCat [1.5] - 83:17:0 

19 ABCat [1.5] air [5 s] 75:7:19 

20 PdCl2(MeCN)2 [3] - 59:32:8 

21 trans-23 [3]
f 

- 52:48
g
:0 

22 trans-23 [3]
h 

- 0:100
i
:0 

   
a
As determined by 

1
H NMR spectroscopy. 

b
Reaction time 48 h. 

c
6 equiv. LiCl used. 

d
Reaction 

conducted at 50 °C. 
e
TBAC (1 equiv.) used in place of LiCl.  

f
Reaction carried out at 40 °C. 

g
E:Z = 

3:1. 
h
Reaction carried out at 60 °C. 

i
E:Z = 2:1. 
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Table 24 Alkylation attempts of terminal alkyne 211 (Chapter 2). 

 

Entry X Conditions Temp. / °C Result
a 

1 Br n-BuLi (1.1 eq.), THF −78 → 50 no reaction 

2 Br n-BuLi (1.1 eq.), HMPA (1.1 eq.), THF −78 → 50 no product 

formed 
3 Br n-BuLi (1.5 eq.), HMPA (1 eq.), THF −78 → 50 trace

 

4 I n-BuLi (1.2 eq.), THF −78 → 67 no reaction 

5 I n-BuLi (1.2 eq.), HMPA (1.1 eq.), THF −78 → RT trace 

6 I n-BuLi (1.2 eq.), HMPA (1.2 eq.), Et
2
O −78 → 36 no reaction 

7 I n-BuLi (1.2 eq.), HMPA (1.2 eq.), 

hexane −78 → 70  no reaction 

8 I n-BuLi (1.2 eq.), dioxane −78 → 100  no reaction 

9 I NaHMDS (1.2 eq.), THF 0 no reaction 

10 I n-BuLi (1.2 eq.), HMPA (2.4 eq.), THF −78 → 67 20%
b 

11 I n-BuLi (1.2 eq.), HMPA (5 eq.), THF −78 → 67 7%
 b 

12 I 
[Pd(allyl)Cl]2, IPr.HCl, (4-MeO)-dba, 

CuI, Cs2CO3, DMF/Et2O 
40 13%

 b
 

13 I 
Pd2(4-MeO-dba)3, IPr.HCl, CuI, 

Cs2CO3, DMF/Et2O 
40 7%

 b
 

14 I 
Pd2(4-MeO-dba)3, IPr.HCl, CuI, 

Cs2CO3, DMF/Et2O 
50 low conversion 

15 I 
Pd2(4-MeO-dba)3, IAd.HCl, CuI, 

Cs2CO3, DMF/Et2O 
40 low conversion 

a
As judged by 

1
H NMR spectroscopy. 

b
Yield of isolated product following column chromatrography. 
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Table 25 Screening of conditions for Mitsunobu reaction of pyrone 36 (Chapter 3). 

 

Entry Reagents R 
Time 

/ h 
Solvent 

Temp. 

/ °C 

Conv. / 

%
 a, b

 

1 
DIAD (1.2 eq.), 

PPh
3
 (1.2 eq.) Ac (1.1 eq.) 15 CH2Cl2 RT 0 

2 
DIAD (1.5 eq.), 

PPh
3
 (1.5 eq.) Ac (1.5 eq.) 6 CH2Cl2 RT 0 

3 
DIAD (1.2 eq.), 

PPh
3
 (1.2 eq.) Ac (1.1 eq.) 22 CH2Cl2 40 42 

4 
DIAD (2 eq.),  

PPh
3
 (2 eq.) Ac (1.1 eq.) 24 CH2Cl2 40 33 

5 
DIAD (1.2 eq.), 

PPh
3
 (1.2 eq.) Ac (1.1 eq.) 23 THF 50 0 

6 
DIAD (1.2 eq.), 

PPh
3
 (1.2 eq.) Ac (1.1 eq.) 19 DMF 40 0 

7 
DIAD (1.5 eq.), 

PPh
3
 (1.5 eq.) Ac (1.5 eq.) 24 CH2Cl2 40 50 

8 
DIAD (1.5 eq.), 

PPh
3
 (1.5 eq.) Ac (1.5 eq.) 24 toluene 40 62 

9 
DEAD (1.5 eq.), 

PPh
3
 (1.5 eq.) Ac (1.5 eq.) 44 toluene RT 61 

10 
DEAD (2 eq.),  

PPh
3
 (2 eq.) Ac (2 eq.) 21 toluene RT 100 

11 
DEAD (0.9 eq.),  

PPh
3
 (0.9 eq.) Ac (0.9 eq.) 23 toluene RT 30 

12 
DEAD (1.7 eq.), 

PPh
3
 (1.7 eq.) Ac (1.7 eq.) 23 toluene RT 60 

13 
DEAD (2 eq.),  

PPh
3
 (2.2 eq.) Ac (2 eq.) 28 toluene RT 30 

14 
DEAD (1.9 eq.),  

PPh
3
 (2 eq.) Ac (2 eq.) 24 toluene RT 58 

15 
DEAD (1.9 eq.),  

PPh
3
 (2 eq.) Ac (2 eq.) 24 

1:1, 

CH2Cl2/tol 
RT 37 
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16 
DEAD (1.9 eq.),  

PPh
3
 (2 eq.) Ac (2 eq.) 24 toluene 40 53 (45) 

17 
DEAD (2.2 eq.),  

PPh
3
 (2 eq.) Ac (2 eq.) 23 toluene RT 56 

18 

DEAD (1.1 eq.),  

PPh
3
 (1.1 eq.), 

NeopOH (0.5 eq.) 

Ac (1.1 eq.) 24 toluene RT 0 

19 

DEAD (1.1 eq.),  

PPh
3
 (1.1 eq.), 

NeopOH (0.5 eq.) 

Ac (1.1 eq.) 24 toluene 40 0 

20 
DMEAD (1.2 eq.),  

PPh
3
 (1.2 eq.) Ac (1.2 eq.) 24 toluene RT 50 

21 
DEAD (1.5 eq.), 

PPh
3
 (1.5 eq.) Piv (1.5 eq.) 23 toluene RT 32 

22 
DEAD (2 eq.),  

PPh
3
 (2 eq.) Piv (2 eq.) 25 toluene 

–78 to 

RT 
69 (66) 

a
As judged by 

1
H NMR spectroscopy. 

b
Yields of isolated product in parentheses. 
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Table 26 Data for reactions Stille reactions using catalyst 23 carried out in toluene (Chapter 4). 

 

Entry  Stannane  Cat. 
Temp. 

/ °C 

Trace 

air
a 

Conv.
b
 / 

%
 

Reaction 

colour
c Comments 

1 Z cis 60  no 10/14 yellow   

2 Z cis 60 yes 15/18 black   

3 Z trans  60 no 38 yellow   

4 Z trans  60 yes 18 black   

5 Z cis 60 no 22 brown single crystals  

6 Z cis 60 yes 24 black single crystals 

7 E cis 60 no 46 yellow   

8 E cis 60 yes 26 black   

9 E trans  60 no 98/88 yellow   

10 E trans  60 yes 40/59 black   

11 Z cis 70  no 36 yellow   

12 Z cis 70 yes 37 black   

13 Z trans  70 no 74 brown   

14 Z trans  70 yes 50 black   

15 Z cis 90 no 84 yellow Z:E = 5.9:1
b 

16 Z cis 90 yes 96 black Z:E = 2.2:1
b 

17 Z trans  90 no 96 yellow Z:E = 7.7:1
b 

18 Z trans  90 yes 94 black Z:E = 1.6:1
b 

a
‘Trace air’ refers to air exposure by removing the stopper of the Schlenk tube for 5 seconds with 

rapid stirring at the start of the reaction. 
b
As judged by 

1
H NMR spectroscopy. Separate repeats 

separated by a solidus (/). 
c
Colour of the reaction mixture as judged by eye after 3 h. 
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Table 27 Data for reactions Stille reactions using catalyst 23 carried out in DMF (Chapter 4). 

 
 

Entry  Stannane  Cat. 
Temp 

/ °C 

Trace 

air
a Conv.

b
 / % 

Reaction 

colour
c 

1 Z cis 60 no 74 yellow 

2 Z cis 60 yes 96 black 

3 Z trans  60 no 66/83 yellow 

4 Z trans  60 yes 92/97 yellow 

5 E trans  60 no 100 yellow 

6 E trans  60 yes 100 black 

7 Z cis 90 no 96 yellow 

8 Z cis 90 yes 88 black 

9 Z trans  90 no 94 yellow 

10 Z trans  90 yes 99 black 

11 E cis 90 no 99 yellow 

12 E cis 90 yes 100 black 

13 E trans  90 no 97 yellow 

14 E trans  90 yes 97 black 

15 Z trans RT no 0 pale yellow 

16 Z trans RT yes 0 pale yellow 

17 Z Pd-NPs
d 

RT no 96 yellow 

18 Z Pd-NPs
d
 60 no 94 black 

a
 ‘Trace air’ refers to air exposure by removing the stopper of the Schlenk tube for 5 seconds with 

rapid stirring at the start of the reaction. 
b
As judged by 

1
H NMR spectroscopy. Separate repeats 

separated by a solidus (/). 
c
Colour of the reaction mixture as judged by eye after 3 h. 

d
Pre-

synthesised DMF-stabilised palladium nanoparticles. 
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Appendix 3: X-Ray Diffraction Data 

Crystallographic data for compound 135  

 

Figure 44 Single crystal X-ray diffraction structure of compound 135. Hydrogen atoms removed for 

clarity. Thermal ellipsoids shown with probability of 50%. 
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Table 28 Crystal data and structure refinement for ijsf1205 (compound 135). 

Identification code ijsf1205  

Empirical formula C18H17IO3  

Formula weight 408.22  

Temperature/K 110.00(10)  

Crystal system triclinic  

Space group P-1  

a/Å 6.3811(3)  

b/Å 8.7585(4)  

c/Å 15.2319(8)  

α/° 76.494(4)  

β/° 85.421(4)  

γ/° 87.858(4)  

Volume/Å
3
 824.96(7)  

Z 2  

ρcalcmg/mm
3
 1.643  

m/mm
−1

 1.950  

F(000) 404.0  

Crystal size/mm
3
 0.2433 × 0.1237 × 0.0831  

Radiation Mo Kα (λ = 0.71073)  

2Θ range for data collection 6.06 to 70.2°  

Index ranges −10 ≤ h ≤ 10, −14 ≤ k ≤ 10, −21 ≤ l ≤ 24  

Reflections collected 11726  

Independent reflections 7286[R(int) = 0.0238]  

Data/restraints/parameters 7286/0/201  

Goodness-of-fit on F
2
 1.044  

Final R indexes [I>=2σ (I)] R1 = 0.0334, wR2 = 0.0734  

Final R indexes [all data] R1 = 0.0411, wR2 = 0.0781  

Largest diff. peak/hole / e Å
−3

 1.61/−1.01  
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Crystallographic data for compound trans-229 (CCDC 1036905) 

 

Figure 45 Single crystal X-ray diffraction structure of complex 229. Hydrogen atoms removed for 

clarity. Thermal ellipsoids shown with probability of 50%. Selected bond lengths (Å): Pd(1)–As(1): 

2.4229(4), Pd(1)–Br(1): 2.4338(4), Pd(1)–As(2): 2.3914(4), Pd(1)–N(1): 2.025(2). Selected bond 

angles (°): N(1)–Pd(1)–As(1): 90.69(7), As(1)–Pd(1)–Br(1): 92.969(13), Br(1)–Pd(1)–As(2): 

87.471(13). 
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Table 29 Crystal data and structure refinement for ijsf1401 (compound 229). 

CCDC Number CCDC 1036905 

Identification code ijsf1401 

Empirical formula C40H34As2BrNO2Pd 

Formula weight 896.83 

Temperature/K 110.05(10) 

Crystal system monoclinic 

Space group P21/n 

a/Å 12.2363(2) 

b/Å 15.6103(3) 

c/Å 19.0632(3) 

α/° 90 

β/° 105.4121(17) 

γ/° 90 

Volume/Å
3
 3510.35(11) 

Z 4 

ρcalcmg/mm
3
 1.697 

m/mm
−1

 3.574 

F(000) 1776.0 

Crystal size/mm
3
 0.2713 × 0.1255 × 0.0375 

Radiation Mo Kα (λ = 0.71073) 

2Θ range for data collection 5.664 to 60° 

Index ranges −17 ≤ h ≤ 13, −19 ≤ k ≤ 21, −26 ≤ l ≤ 25 

Reflections collected 18231 

Independent reflections 10230 [Rint = 0.0319, Rsigma = 0.0582] 

Data/restraints/parameters 10230/0/424 

Goodness-of-fit on F
2
 1.044 

Final R indexes [I>=2σ (I)] R1 = 0.0405, wR2 = 0.0798 

Final R indexes [all data] R1 = 0.0699, wR2 = 0.0933 

Largest diff. peak/hole / e Å
−3

 0.91/−0.99 
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Crystallographic data for compound 283 

 

Figure 46 Single crystal X-ray diffraction structure of compound 283. Hydrogen atoms and co-

crystallised CHCl3 removed for clarity. Thermal ellipsoids shown with probability of 50%. Selected 

bond lengths (Å): Pd(1)–As(1): 2.4043(3), Pd(1)–Br(1): 2.4180(3). 
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Table 30 Crystal data and structure refinement for ijsf1505 (compound 283). 

Identification code ijsf1505  

Empirical formula C37H31As2Br2Cl3Pd  

Formula weight 998.03  

Temperature/K 143(40)  

Crystal system monoclinic  

Space group C2/c  

a/Å 12.2130(5)  

b/Å 14.5533(5)  

c/Å 20.4738(7)  

α/° 90  

β/° 91.371(3)  

γ/° 90  

Volume/Å
3
 3637.9(2)  

Z 4  

ρcalcmg/mm
3
 1.822  

m/mm
−1

 4.759  

F(000) 1944.0  

Crystal size/mm
3
 0.2041 × 0.1273 × 0.0804  

Radiation Mo Kα (λ = 0.71073)  

2Θ range for data collection 6.674 to 64.316  

Index ranges −16 ≤ h ≤ 18, −21 ≤ k ≤ 18, −30 ≤ l ≤ 21  

Reflections collected 11411  

Independent reflections 5772 [Rint = 0.0219, Rsigma = 0.0344]  

Data/restraints/parameters 5772/0/222  

Goodness-of-fit on F
2
 1.044  

Final R indexes [I>=2σ (I)] R1 = 0.0320, wR2 = 0.0672  

Final R indexes [all data] R1 = 0.0531, wR2 = 0.0784  

Largest diff. peak/hole / e Å
−3

 0.71/−0.90  
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Appendix 4: Spectral data for compound 91 

Table 31 Table of correlations for compound 91. 

 

1
H NMR (CDCl3, 700 MHz) 

13
C NMR (CDCl3, 

175 MHz) 

No δ / ppm Integral M COSY 
J / 

Hz 
NOESY 

δ / 

ppm 
HMBC 

1 - - - - - - 156.7 4, 5, 20, 

1′, 2′ 3 - - - - - - 156.7 

4 4.62 1H t 5 7.6 5 106.5 5, 1′ 

5 2.81–2.78 2H m 4, 6/7 - 4, 6/7, 1′ 24.9 6/7 

6 
5.43–5.38 

1H 
m 5, 8 - 4, 5, 8 

128.6 5 

7 1H 128.0 5, 8 

8 2.86 2H t 
6/7, 

9/10 
5.6 6/7, 9/10 25.6 6/7 

9 
5.48–5.43 

1H 
m 8, 11 - 8, 11 

124.7 8, 11 

10 1H 130.0 11 

11 2.89 2H dt 9/10, 14 
5.8, 

2.3 
9/10 17.2 - 

12 - - - - - - 78.4 14 

13 - - - - - - 79.9 14, 15 

14 2.16 2H tt 11, 15 
7.0, 

2.3 
15, 16, 17 18.7 15, 16 

15 1.48–1.41 2H m 14, 16 - 14, 16, 17 28.0 14, 16, 17 

16 1.71–1.64 2H m 15, 17 - 14, 15, 17 30.5 14, 15, 17 

17 2.58 2H t 16 7.5 
14, 15, 16 

19/21/22 
35.4 15, 16 

18 - - - - - - 143.9 16, 17, 20 

19 6.83–6.81 1H m 17, 20 - 16,17, 20 123.2 
17, 20, 

21/22 

20 7.20 1H t 19/21/22 7.7 19/21/22 129.6 19/21/22 

21 
6.83–6.81 

1H 
m 17, 20 - 16, 17, 20 

117.5 19/22 

22 1H 118.7 17, 19/21 

1′ 2.34 2H q 2′ 7.5 5, 2′ 22.6 5, 2′ 

2′ 1.16 3H t 1′ 7.5 1′ 12.3 1′ 

 

 



 

285 
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Appendix 5: Spectral data for compound 264 

Table 32 Table of correlations for compound 264. 

 

1
H NMR (CDCl3, 700 MHz) 

13
C NMR (CDCl3, 

200 MHz) 

No

. 
δ / ppm Integral M COSY 

J / 

Hz 

δ / 

ppm 
HMBC 

1 - - - - - 165.3 21 

3 - - - - - 151.3 4, 5, 1′, 2′ 

4 5.16 1H t 5, 1′ 7.5 114.4 5, 1′ 

5 2.66 2H t 6/7, 1′ 7.1 23.9 - 

6 
5.41–5.34 

1H 
m 5, 8 - 

126.9 8, 5 

7 1H 128.6 8, 5, 11 

8 2.81 2H t 6/7, 9 6.1 25.5 9, 10, 11 

9 5.41–5.34 1H m 8, 10 - 130.8 11, 8 

10 5.54–5.47 1H m 11, 9 - 124.6 11, 8 

11 2.87 2H d 10, 14 7.6 17.0 9 

12 - - - - - 79.2 11 

13 - - - - - 79.5 14, 15 

14 2.23–2.16 2H m 11, 15 - 18.3 15, 16 

15 1.62–1.53 2H m 14, 16 - 27.5 14, 16, 17 

16 1.81 2H p 15, 17 7.0 25.2 14, 15, 17 

17 2.51 2H t 16, 22 6.8 32.5 15, 16 

18 - - - - - 167.1 16, 17, 22 

20 - - - - - 169.2 21 

21 5.42 1H d 22 2.2 89.8 22 

22 6.01 1H d 17, 21 2.2 99.2 17, 21 

1′ 2.23–2.16 2H m 5, 2′ - 25.7 2′ 

2′ 1.07 3H t 1′ 7.4 11.2 1′ 
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Appendix 6: UV–Visible Spectroscopy Data 

 

 

Figure 47 UV–visible spectroscopy data for compound cis-23. 
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Figure 48 UV–visible spectroscopy data for compound 229. 
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Figure 49 UV–visible spectroscopy data for compound 282. 



 

293 
 

Abbreviations 

ABCat trans-(P,N)-[PdBr-(μ-C5H4N-C
2
,N)(PPh3)]2 

Ac acetyl 

AIBN azobisisobutyronitrile 

APCI atmospheric pressure chemical ionisation 

aq. aqueous 

ATR attenuated total reflectance 

Bn benzyl 

Bu butyl 

C, c. concentration 

c. concentrated 

cat. catalyst, catalytic 

cod 1,5-cyclooctadiene 

conv. conversion 

COSY correlation spectroscopy 

Cp cyclopentadienyl 

Cy cyclohexyl 

dba dibenzylideneacetone 

DABCO 1,4-diazabicyclo[2.2.2]octane 

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene 

DCC dicyclohexylcarbodiimide 

dec. decomposition 

DEAD diethyl azodicarboxylate 

DIAD diisopropyl azodicarboxylate 

DIBAL-H diisobuylaluminium hydride 

DIPEA N,N-diisopropylethylamine 
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DMAP dimethylaminopyridine 

DMC 2-chloro-1,3-dimethylimidazolinium chloride 

DMEAD di-2-methoxyethyl azodicarboxylate 

DMF dimethylformamide 

DMP Dess–Martin periodinane 

DMSO dimethylsulfoxide 

DPEphos (oxydi-2,1-phenylene)bis(diphenylphosphine) 

dppe 1,2-bis(diphenylphosphino)ethane 

dppf 1,1'-bis(diphenylphosphino)ferrocene 

dr diastereomeric ratio 

EI electron ionisation 

EM effective molarity 

Enz enzyme 

eq. equivalents 

ESI electrospray ionisation 

Et ethyl 

EXAFS extended X-ray absorption fine structure spectroscopy 

FGI functional group interconversion 

Fu furyl 

HIV human immunodeficiency virus 

HMBC heteronuclear multiple-bond correlation spectroscopy 

HMDS hexamethyldisilazane, hexamethyldisilazide 

HMPA hexamethylphosphoramide 

HRMS high-resolution mass spectrometry 

HSQC heteronuclear single quantum coherence spectroscopy 

i- iso- 

Imid. imidazole 
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IPr 1,3-bis(2,6-triisopropylphenyl)imidazol-2-ylidene 

IR infrared 

isol. isolated 

JohnPhos (2-biphenyl)di-tert-butylphosphine 

L ligand 

LIFDI liquid introduced field desorption ionisation 

lit. literature 

[M] metal 

m- meta- 

Me methyl 

Mes mesityl 

MOM methoxymethyl 

M.P. melting point 

MRSA methicillin-resistant Staphylococcus aureus 

MS molecular sieves 

Ms methanesulfonic, methanesulfonyl 

Mw molecular weight 

n- normal 

NBS N-bromosuccinimide 

NBSac N-bromosaccharin 

NCS N-chlorosuccinimide 

NIS N-iodosuccinimide 

NMO N-methylmorpholine-N-oxide 

NMR nuclear magnetic resonance 

Np neopentyl 

N. R. no reaction 

Nu nucleophile 



 

296 
 

nOe nuclear Overhauser effect 

NOESY nuclear Overhauser effect spectroscopy 

[P] protecting group 

p- para- 

PCC pyridinium chlorochromate 

PDC pyridinium dichromate 

PdNPs palladium nanoparticles 

Ph phenyl 

Pin pinacol ester 

Piv pivaloyl 

PLA2 phospholipase A2 

ppm parts per million 

Pr propyl 

PVP (poly)vinylpyrrolidinone 

pyr. pyridine 

Q-Phos 1,2,3,4,5-pentaphenyl-1′-(di-tert-butylphosphino)ferrocene 

 

quant. quantitative yield 

rel. relative 

Rf retention factor 

RCAM ring-closing alkyne metathesis 

RCM ring-closing alkene metathesis 

RT at ambient temperature 

SEM [2-(trimethylsilyl)ethoxy]methyl 

SM starting material 

succ succinimide 

t- tertiary 

TBAC tetra-n-butylammonium chloride 
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TBAF tetra-n-butylammonium fluoride 

TBDPS tert-butyldiphenylsilyl 

TBS tert-butyldimethylsilyl 

Temp. temperature 

TES triethylsilyl 

TEM transmission electron microscopy 

Tf triflic, trifluoromethanesulfonic 

TFP tri(2-furyl)phosphine 

THF tetrahydrofuran 

THP tetrahydropyranyl 

TIPS triisopropylsilyl 

TLC thin layer chromatography 

TMEDA N,N,N′,N′-tetramethylethylenediamine 

TMS trimethylsilyl 

tol toluene 

TPAP tetrapropylammonium perruthenate 

Ts tosyl, toluenesulfonyl 

UV ultraviolet 

w.r.t. with respect to 

X leaving group 

XANES X-ray absorption near edge spectroscopy 

XAS X-ray absorption spectroscopy 

X-Phos 2-(dicyclohexylphosphino)-2′,4′,6′-triisopropylbiphenyl 

xs. in excess 



 

298 
 

References 

[1] Marsault, E.; Peterson, M. L., J. Med. Chem., 2011, 54, 1961–2004. 

 

[2] Madsen, C. M.; Clausen, M. H., Eur. J. Org. Chem., 2011, 3107–3115. 

 

[3] Lahlali, H.; Jobe, K.; Watkinson, M.; Goldup, S. M., Angew. Chem. Int. Ed., 2011, 

50, 4151–4155. 

 

[4] Villar, E. A.; Beglov, D.; Chennamadhavuni, S.; Porco Jr, J. A.; Kozakov, D.; 

Vajda, S.; Whitty, A., Nat. Chem. Biol., 2014, 10, 723–731. 

 

[5] Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J., Adv. Drug. Deliv. 

Rev., 1997, 23, 3–25. 

 

[6] Yu, X.; Sun, D., Molecules, 2013, 18, 6230–6268. 

 

[7] Mallinson, J.; Collins, I., Future Med. Chem., 2012, 4, 1409–1438. 

 

[8] Driggers, E. M.; Hale, S. P.; Lee, J.; Terrett, N. K., Nat. Rev. Drug Discov., 2008, 

7, 608–624. 

 

[9] Giordanetto, F.; Kihlberg, J., J. Med. Chem., 2013, 57, 278–295. 

 

[10] Dutcher, J. D., Chest, 1968, 54, 296–298. 

 

[11] Gallis, H. A.; Drew, R. H.; Pickard, W. W., Rev. Infect. Dis., 1990, 12, 308–329. 

 

[12] Shindo, K.; Kamishohara, M.; Odagawa, A.; Matsuoka, M.; Kawai, H., J. Antibiot., 

1993, 46, 1076–1081. 

 

[13] Conlin, A.; Fornier, M.; Hudis, C.; Kar, S.; Kirkpatrick, P., Nat. Rev. Drug Discov., 

2007, 6, 953–954. 

 

[14] Hart, S.; Goh, K. C.; Novotny-Diermayr, V.; Hu, C. Y.; Hentze, H.; Tan, Y. C.; 

Madan, B.; Amalini, C.; Loh, Y. K.; Ong, L. C.; William, A. D.; Lee, A.; Poulsen, 

A.; Jayaraman, R.; Ong, K. H.; Ethirajulu, K.; Dymock, B. W.; Wood, J. W., 

Leukemia, 2011, 25, 1751–1759. 

 

[15] Kopp, F.; Marahiel, M. A., Nat. Prod. Rep., 2007, 24, 735–749. 

 



 

299 
 

[16] Harrowven, D. C.; Kostiuk, S. L., Nat. Prod. Rep., 2012, 29, 223–242. 

 

[17] Gulder, T.; Baran, P. S., Nat. Prod. Rep., 2012, 29, 899–934. 

 

[18] Xie, J.; Bogliotti, N., Chem. Rev., 2014, 114, 7678–7739. 

 

[19] Wessjohann, L.; Ruijter, E.; Garcia-Rivera, D.; Brandt, W., Mol. Divers., 2005, 9, 

171–186. 

 

[20] Kirby, A. J., Effective Molarities for Intramolecular Reactions. In Advances in 

Physical Organic Chemistry, Gold, V.; Bethell, D., Eds.; Academic Press: London, 

1981; Vol. 17, pp 183–278. 

 

[21] Winnik, M. A., Chem. Rev., 1981, 81, 491–524. 

 

[22] Illuminati, G.; Mandolini, L., Acc. Chem. Res., 1981, 14, 95–102. 

 

[23] Brehm, E.; Breinbauer, R., Org. Biomol. Chem., 2013, 11, 4750–4756. 

 

[24] Roxburgh, C. J., Tetrahedron, 1995, 51, 9767–9822. 

 

[25] Parenty, A.; Moreau, X.; Campagne, J. M., Chem. Rev., 2006, 106, 911–939. 

 

[26] Parenty, A.; Moreau, X.; Niel, G.; Campagne, J. M., Chem. Rev., 2013, 113, PR1–

PR40. 

 

[27] Gradillas, A.; Pérez-Castells, J., Angew. Chem. Int. Ed., 2006, 45, 6086–6101. 

 

[28] Fürstner, A.; Davies, P. W., Chem. Commun., 2005, 2307–2320. 

 

[29] Morin-Fox, M. L.; Lipton, M. A., Tetrahedron Lett., 1993, 34, 7899–7902. 

 

[30] Giesbrecht, H. E.; Knight, B. J.; Tanguileg, N. R.; Emerson, C. R.; Blakemore, P. 

R., Synlett, 2010, 374–378. 

 

[31] Crane, E. A.; Scheidt, K. A., Angew. Chem. Int. Ed., 2010, 49, 8316–8326. 

 

[32] Ronson, T. O.; Taylor, R. J. K.; Fairlamb, I. J. S., Tetrahedron, 2015, 71, 989–

1009. 

 

[33] Berger, M.; Mulzer, J., J. Am. Chem. Soc., 1999, 121, 8393–8394. 



 

300 
 

 

[34] Mulzer, J.; Berger, M., J. Org. Chem., 2004, 69, 891–898. 

 

[35] Sakamoto, S.; Sakazaki, H.; Hagiwara, K.; Kamada, K.; Ishii, K.; Noda, T.; Inoue, 

M.; Hirama, M., Angew. Chem. Int. Ed., 2004, 43, 6505–6510. 

 

[36] Stivala, C. E.; Zakarian, A., J. Am. Chem. Soc., 2008, 130, 3774–3776. 

 

[37] Araoz, R.; Servent, D.; Molgó, J.; Iorga, B. I.; Fruchart-Gaillard, C.; Benoit, E.; 

Gu, Z.; Stivala, C.; Zakarian, A., J. Am. Chem. Soc., 2011, 133, 10499–10511. 

 

[38] Nicolaou, K. C.; Bulger, P. G.; Sarlah, D., Angew. Chem. Int. Ed., 2005, 44, 4442–

4489. 

 

[39] Milstein, D.; Stille, J. K., J. Am. Chem. Soc., 1978, 100, 3636–3638. 

 

[40] Milstein, D.; Stille, J. K., J. Am. Chem. Soc., 1979, 101, 4992–4998. 

 

[41] Miyaura, N.; Suzuki, A., J. Chem. Soc., Chem. Commun., 1979, 866–867. 

 

[42] Miyaura, N.; Yamada, K.; Suzuki, A., Tetrahedron Lett., 1979, 20, 3437–3440. 

 

[43] Mizoroki, T.; Mori, K.; Ozaki, A., Bull. Chem. Soc. Jpn., 1971, 44, 581–581. 

 

[44] Heck, R. F.; Nolley, J. P., J. Org. Chem., 1972, 37, 2320–2322. 

 

[45] Sonogashira, K.; Tohda, Y.; Hagihara, N., Tetrahedron Lett., 1975, 16, 4467–4470. 

 

[46] Tsuji, J.; Takahashi, H.; Morikawa, M., Tetrahedron Lett., 1965, 6, 4387–4388. 

 

[47] Trost, B. M.; Fullerton, T. J., J. Am. Chem. Soc., 1973, 95, 292–294. 

 

[48] Palladium-Catalyzed Coupling Reactions: Practical Aspects and Future 

Developments; Molnár, Á., Ed.; Wiley-VCH: Weinheim, Germany, 2013. 

 

[49] Serrano, J. L.; Zheng, Y.; Dilworth, J. R.; Sánchez, G., Inorg. Chem. Commun., 

1999, 2, 407–410. 

 

[50] Crawforth, C. M.; Fairlamb, I. J. S.; Taylor, R. J. K., Tetrahedron Lett., 2004, 45, 

461–465. 

 



 

301 
 

[51] Burns, M. J.; Fairlamb, I. J. S.; Kapdi, A. R.; Sehnal, P.; Taylor, R. J. K., Org. 

Lett., 2007, 9, 5397–5400. 

 

[52] Fairlamb, I. J. S.; Sehnal, P.; Taylor, R. J. K., Synthesis, 2009, 508–510. 

 

[53] Crawforth, C. M.; Burling, S.; Fairlamb, I. J. S.; Kapdi, A. R.; Taylor, R. J. K.; 

Whitwood, A. C., Tetrahedron, 2005, 61, 9736–9751. 

 

[54] Crawforth, C. M.; Burling, S.; Fairlamb, I. J. S.; Taylor, R. J. K.; Whitwood, A. C., 

Chem. Commun., 2003, 2194–2195. 

 

[55] Ellis, G. P., Pyran-2-ones and their benzo derivatives: reactivity at ring atoms. In 

Comprehensive Heterocyclic Chemistry, Katritzky, A. R., Ed.; Pergamon Press 

Ltd.: Oxford, 1984; Vol. 3, pp 675–706. 

 

[56] Pratap, R.; Ram, V. J., Chem. Rev., 2014, 114, 10476–10526. 

 

[57] Nakazumi, H.; Ueyama, T.; Kitaguchi, T.; Kitao, T., Phosphorus Sulfur, 1983, 16, 

59–66. 

 

[58] Kotretsou, S. I.; Georgiadis, M. P., Org. Prep. Proc. Int., 2000, 32, 161–167. 

 

[59] Pirkle, W. H.; Dines, M., J. Heterocycl. Chem., 1969, 6, 1–3. 

 

[60] Pirkle, W. H.; Dines, M., J. Org. Chem., 1969, 34, 2239–2244. 

 

[61] Pirkle, W. H.; Dines, M., J. Heterocycl. Chem., 1969, 6, 313–315. 

 

[62] Vogel, G., J. Org. Chem., 1965, 30, 203–207. 

 

[63] von Pechmann, H., Liebigs Ann., 1891, 264, 261–309. 

 

[64] Wiley, R. H.; Smith, N. R., Org. Synth., 1951, 31, 23. 

 

[65] Zimmerman, H. E.; Grunewald, G. L.; Paufler, R. M., Org. Synth., Coll. Vol., 1973, 

5, 982. 

 

[66] Moreno-Mañas, M.; Pleixats, R., Dehydroacetic Acid, Triacetic Acid Lactone, and 

Related Pyrones. In Advances in Heterocyclic Chemistry, Katritzky, A. R., Ed.; 

Academic Press: San Diego, CA, 1992; Vol. 53, pp 1–84. 

 

[67] Harris, T. M.; Harris, C. M., J. Org. Chem., 1966, 31, 1032–1035. 



 

302 
 

 

[68] Narasimhan, N. S.; Ammanamanchi, R., J. Org. Chem., 1983, 48, 3945–3947. 

 

[69] Borsche, W.; Bodenstein, C. K., Ber. Dtsch. Chem. Ges., 1929, 62, 2515–2523. 

 

[70] Ang, K.-P.; Tan, S.-F., J. Chem. Soc., Perkin Trans. 2, 1979, 1525–1526. 

 

[71] Siddiq, M.; Munawar, M. A.; Iqbal, M., J. Chem. Soc. Pak., 1986, 8, 437–441. 

 

[72] van Dam, M. J. D.; Kögl, F., Recl. Trav. Chim. Pays-Bas, 1964, 83, 39–49. 

 

[73] Cervera, M.; Moreno-Mañas, M.; Pleixats, R., Tetrahedron, 1990, 46, 7885–7892. 

 

[74] Bittencourt, A. M.; Gottlieb, O. R.; Mors, W. B.; Magalhães, M. T.; Mageswaran, 

S.; Ollis, W. D.; Sutherland, I. O., Tetrahedron, 1971, 27, 1043–1048. 

 

[75] Zhang, X.; McLaughlin, M.; Muñoz, R. L. P.; Hsung, R. P.; Wang, J.; Swidorski, 

J., Synthesis, 2007, 749–753. 

 

[76] Bloomer, J. L.; Zaidi, S. M. H.; Strupczewski, J. T.; Brosz, C. S.; Gudzyk, L. A., J. 

Org. Chem., 1974, 39, 3615–3616. 

 

[77] McGlacken, G. P.; Fairlamb, I. J. S., Nat. Prod. Rep., 2005, 22, 369–385. 

 

[78] Eckermann, C.; Matthes, B.; Nimtz, M.; Reiser, V.; Lederer, B.; Boger, P.; 

Schroder, J., Phytochemistry, 2003, 64, 1045–1054. 

 

[79] Cho, J.-Y.; Kwon, Y.-J.; Sohn, M.-J.; Seok, S.-J.; Kim, W.-G., Bioorg. Med. Chem. 

Lett., 2011, 21, 1716–1718. 

 

[80] Morel, C.; Guilet, D.; Oger, J. M.; Seraphin, D.; Sevenet, T.; Wiart, C.; Hadi, A. H. 

A.; Richomme, P.; Bruneton, J., Phytochemistry, 1999, 50, 1243–1247. 

 

[81] Steyn, P. S.; van Heerden, F. R., Nat. Prod. Rep., 1998, 15, 397–413. 

 

[82] Collins, R. P.; Halim, A. F., J. Agric. Food. Chem., 1972, 20, 437–438. 

 

[83] Cutler, H. G.; Cox, R. H.; Crumley, F. G.; Cole, P. D., Agric. Biol. Chem., 1986, 

50, 2943–2945. 

 



 

303 
 

[84] Hua, D. H.; Huang, X.; Tamura, M.; Chen, Y.; Woltkamp, M.; Jin, L.-W.; 

Perchellet, E. M.; Perchellet, J.-P.; Chiang, P. K.; Namatame, I.; Tomoda, H., 

Tetrahedron, 2003, 59, 4795–4803. 

 

[85] Perchellet, E. M.; Ladesich, J. B.; Chen, Y.; Sin, H.-S.; Hua, D. H.; Kraft, S. L.; 

Perchellet, J.-P., Anti-Cancer Drugs, 1998, 9, 565–576. 

 

[86] Deck, L. M.; Baca, M. L.; Salas, S. L.; Hunsaker, L. A.; Vander Jagt, D. L., J. Med. 

Chem., 1999, 42, 4250–4256. 

 

[87] Vara Prasad, J. V. N.; Para, K. S.; Lunney, E. A.; Ortwine, D. F.; Dunbar, J. B.; 

Ferguson, D.; Tummino, P. J.; Hupe, D.; Tait, B. D., J. Am. Chem. Soc., 1994, 116, 

6989–6990. 

 

[88] Fairlamb, I. J. S.; Marrison, L. R.; Dickinson, J. M.; Lu, F.-J.; Schmidt, J. P., 

Bioorgan. Med. Chem., 2004, 12, 4285–4299. 

 

[89] Kondoh, M.; Usui, T.; Kobayashi, S.; Tsuchiya, K.; Nishikawa, K.; Nishikiori, T.; 

Mayumi, T.; Osada, H., Cancer Lett., 1998, 126, 29–32. 

 

[90] Goel, A.; Ram, V. J., Tetrahedron, 2009, 65, 7865–7913. 

 

[91] Kazlauskas, R.; Murphy, P. T.; Wells, R. J.; Blackman, A. J., Aust. J. Chem., 1982, 

35, 113–120. 

 

[92] Harvey, W. H., Phycologia Australica. L. Reeve: London, 1860; Vol. 3, Plate 

CLXIII. 

 

[93] Macroalgal Herbarium Portal. 

 http://macroalgae.org/portal/collections/individual/index.php?occid=166978 

(accessed 7th January 2015) Image by University of New Hampshire, licensed 

under Creative Commons BY-NC-SA. 

 

[94] Shin, J.; Paul, V. J.; Fenical, W., Tetrahedron Lett., 1986, 27, 5189–5192. 

 

[95] Blackman, A. J.; Bremner, J. B.; Paano, A. M. C.; Skerratt, J. H.; Swann, M. L., 

Aust. J. Chem., 1990, 43, 1133–1136. 

 

[96] Murray, L.; Currie, G.; Capon, R. J., Aust. J. Chem., 1995, 48, 1485–1489. 

 

[97] Popplewell, W. L., PhD Thesis, Victoria University of Wellington, New Zealand, 

2008. 

 

http://macroalgae.org/portal/collections/individual/index.php?occid=166978


 

304 
 

[98] Stout, E. P.; Hasemeyer, A. P.; Lane, A. L.; Davenport, T. M.; Engel, S.; Hay, M. 

E.; Fairchild, C. R.; Prudhomme, J.; Le Roch, K.; Aalbersberg, W.; Kubanek, J., 

Org. Lett., 2009, 11, 225–228. 

 

[99] Mayer, A. M. S.; Paul, V. J.; Fenical, W.; Norris, J. N.; De Carvalho, M. S.; Jacobs, 

R. S., Hydrobiologia, 1993, 260–261, 521–529. 

 

[100] Farooqui, A. A.; Ong, W.-Y.; Horrocks, L. A., Pharmacol. Rev., 2006, 58, 591–

620. 

 

[101] Sakata, K.; Iwase, Y.; Kato, K.; Ina, K.; Machiguchi, Y., Nippon Suisan Gakk., 

1991, 57, 261–265. 

 

[102] Song, D.; Blond, G.; Fürstner, A., Tetrahedron, 2003, 59, 6899–6904. 

 

[103] Chaladaj, W.; Corbet, M.; Fürstner, A., Angew. Chem. Int. Ed., 2012, 51, 6929–

6933. 

 

[104] Hoffmeister, L.; Fukuda, T.; Pototschnig, G.; Fürstner, A., Chem. Eur. J., 2015, 

4529–4533. 

 

[105] Burns, M. J., Ph.D. Thesis, University of York, U. K., 2010. 

 

[106] Burns, M. J.; Ronson, T. O.; Taylor, R. J. K.; Fairlamb, I. J. S., Beilstein J. Org. 

Chem., 2014, 10, 1159–1165. 

 

[107] Burns, M. J.; Thatcher, R. J.; Taylor, R. J. K.; Fairlamb, I. J. S., Dalton Trans., 

2010, 39, 10391–10400. 

 

[108] Trost, B. M., Angew. Chem. Int. Ed., 1989, 28, 1173–1192. 

 

[109] Baldwin, J. E.; Adlington, R. M.; Singh, R., Tetrahedron, 1992, 48, 3385–3412. 

 

[110] Lochmann, L.; Pospíšil, J.; Lím, D., Tetrahedron Lett., 1966, 7, 257–262. 

 

[111] Bates, R. B.; Siahaan, T. J., J. Org. Chem., 1986, 51, 1432–1434. 

 

[112] Andringa, H.; Verkruijsse, H. D.; Brandsma, L.; Lochmann, L., J. Organomet. 

Chem., 1990, 393, 307–314. 

 

[113] Winternheimer, D. J.; Shade, R. E.; Merlic, C. A., Synthesis, 2010, 2497–2511. 

 



 

305 
 

[114] Fan, M.-J.; Li, G.-Q.; Li, L.-H.; Yang, S.-D.; Liang, Y.-M., Synthesis, 2006, 2286–

2292. 

 

[115] Inanaga, J.; Baba, Y.; Hanamoto, T., Chem. Lett., 1993, 22, 241–244. 

 

[116] Phukan, P.; Chakraborty, P.; Kataki, D., J. Org. Chem., 2006, 71, 7533–7537. 

 

[117] Dulcere, J. P.; Mihoubi, M. N.; Rodriguez, J., J. Org. Chem., 1993, 58, 5709–5716. 

 

[118] Zhang, J.; Wang, J.; Qiu, Z.; Wang, Y., Tetrahedron, 2011, 67, 6859–6867. 

 

[119] Urankar, D.; Rutar, I.; Modec, B.; Dolenc, D., Eur. J. Org. Chem., 2005, 2349–

2353. 

 

[120] de Souza, S. P. L.; da Silva, J. F. M.; de Mattos, M. C. S., Synth. Commun., 2003, 

33, 935–939. 

 

[121] Akiyoshi, S.; Okuno, K., J. Am. Chem. Soc., 1954, 76, 693–694. 

 

[122] Kataoka, N.; Shelby, Q.; Stambuli, J. P.; Hartwig, J. F., J. Org. Chem., 2002, 67, 

5553–5566. 

 

[123] Mann, G.; Incarvito, C.; Rheingold, A. L.; Hartwig, J. F., J. Am. Chem. Soc., 1999, 

121, 3224–3225. 

 

[124] Shelby, Q.; Kataoka, N.; Mann, G.; Hartwig, J., J. Am. Chem. Soc., 2000, 122, 

10718–10719. 

 

[125] Kuwabe, S.; Torraca, K. E.; Buchwald, S. L., J. Am. Chem. Soc., 2001, 123, 

12202–12206. 

 

[126] Torraca, K. E.; Huang, X. H.; Parrish, C. A.; Buchwald, S. L., J. Am. Chem. Soc., 

2001, 123, 10770–10771. 

 

[127] Burgos, C. H.; Barder, T. E.; Huang, X.; Buchwald, S. L., Angew. Chem. Int. Ed., 

2006, 45, 4321–4326. 

 

[128] Willis, M. C.; Taylor, D.; Gillmore, A. T., Chem. Commun., 2003, 2222–2223. 

 

[129] Babinski, D.; Soltani, O.; Frantz, D. E., Org. Lett., 2008, 10, 2901–2904. 

 



 

306 
 

[130] Aranyos, A.; Old, D. W.; Kiyomori, A.; Wolfe, J. P.; Sadighi, J. P.; Buchwald, S. 

L., J. Am. Chem. Soc., 1999, 121, 4369–4378. 

 

[131] Mattsson, S.; Dahlström, M.; Karlsson, S., Tetrahedron Lett., 2007, 48, 2497–2499. 

 

[132] Brown, H. C.; Bhat, N. G.; Srebnik, M., Tetrahedron Lett., 1988, 29, 2631–2634. 

 

[133] Srebnik, M.; Bhat, N. G.; Brown, H. C., Tetrahedron Lett., 1988, 29, 2635–2638. 

 

[134] Matovic, N. J.; Hayes, P. Y.; Penman, K.; Lehmann, R. P.; De Voss, J. J., J. Org. 

Chem., 2011, 76, 4467–4481. 

 

[135] Ohmura, T.; Yamamoto, Y.; Miyaura, N., J. Am. Chem. Soc., 2000, 122, 4990–

4991. 

 

[136] Mitchell, M.; Qaio, L.; Wong, C.-H., Adv. Synth. Catal., 2001, 343, 596–599. 

 

[137] Holton, R. A.; Zoeller, J. R., J. Am. Chem. Soc., 1985, 107, 2124–2131. 

 

[138] Arcelli, A.; Balducci, D.; de Fatima Estevao Neto, S.; Porzi, G.; Sandri, M., 

Tetrahedron: Asymmetry, 2007, 18, 562–568. 

 

[139] Sun, M.; Deng, Y.; Batyreva, E.; Sha, W.; Salomon, R. G., J. Org. Chem., 2002, 

67, 3575–3584. 

 

[140] Perl, N. R.; Ide, N. D.; Prajapati, S.; Perfect, H. H.; Durón, S. G.; Gin, D. Y., J. Am. 

Chem. Soc., 2010, 132, 1802–1803. 

 

[141] Gersbach, P.; Jantsch, A.; Feyen, F.; Scherr, N.; Dangy, J.-P.; Pluschke, G.; 

Altmann, K.-H., Chem. Eur. J., 2011, 17, 13017–13031. 

 

[142] Giordano, G. C., R. H.; Heintz, R. M.; Forster, D.; Morris, D. E., Inorg. Synth., 

1979, 19, 218–220. 

 

[143] Tsukamoto, H.; Uchiyama, T.; Suzuki, T.; Kondo, Y., Org. Biomol. Chem., 2008, 

6, 3005–3013. 

 

[144] Kayaki, Y.; Koda, T.; Ikariya, T., Eur. J. Org. Chem., 2004, 2004, 4989–4993. 

 

[145] Ueda, M.; Nishimura, K.; Kashima, R.; Ryu, I., Synlett, 2012, 23, 1085–1089. 

 



 

307 
 

[146] Scrivanti, A.; Beghetto, V.; Bertoldini, M.; Matteoli, U., Eur. J. Org. Chem., 2012, 

264–268. 

 

[147] Bouyssi, D.; Gerusz, V.; Balme, G., Eur. J. Org. Chem., 2002, 2445–2448. 

 

[148] Ortar, G., Tetrahedron Lett., 2003, 44, 4311–4314. 

 

[149] Sarkar, S. M.; Uozumi, Y.; Yamada, Y. M. A., Angew. Chem. Int. Ed., 2011, 50, 

9437–9441. 

 

[150] Yamada, Y. M. A.; Sarkar, S. M.; Uozumi, Y., J. Am. Chem. Soc., 2012, 134, 

3190–3198. 

 

[151] Yao, B.; Liu, Y.; Wang, M.-K.; Li, J.-H.; Tang, R.-Y.; Zhang, X.-G.; Deng, C.-L., 

Adv. Synth. Catal., 2012, 354, 1069–1076. 

 

[152] Kabalka, G. W.; Al-Masum, M., Org. Lett., 2005, 8, 11–13. 

 

[153] Del Valle, L.; Stille, J. K.; Hegedus, L. S., J. Org. Chem., 1990, 55, 3019–3023. 

 

[154] Zalesskiy, S. S.; Ananikov, V. P., Organometallics, 2012, 31, 2302–2309. 

 

[155] Kapdi, A. R.; Whitwood, A. C.; Williamson, D. C.; Lynam, J. M.; Burns, M. J.; 

Williams, T. J.; Reay, A. J.; Holmes, J.; Fairlamb, I. J. S., J. Am. Chem. Soc., 2013, 

135, 8388–8399. 

 

[156] McKillop, A.; A. Tarbin, J., Tetrahedron Lett., 1983, 24, 1505–1508. 

 

[157] Beeby, A.; Bettington, S.; Fairlamb, I. J. S.; Goeta, A. E.; Kapdi, A. R.; Niemela, 

E. H.; Thompson, A. L., New J. Chem., 2004, 28, 600–605. 

 

[158] Asao, N.; Liu, J.-X.; Sudoh, T.; Yamamoto, Y., J. Chem. Soc., Chem. Commun., 

1995, 2405–2406. 

 

[159] Gevorgyan, V.; Liu, J.-X.; Yamamoto, Y., Chem. Commun., 1998, 37–38. 

 

[160] Saito, T.; Suzuki, T.; Morimoto, M.; Akiyama, C.; Ochiai, T.; Takeuchi, K.; 

Matsumoto, T.; Suzuki, K., J. Am. Chem. Soc., 1998, 120, 11633–11644. 

 

[161] Farina, V.; Hauck, S. I., J. Org. Chem., 1991, 56, 4317–4319. 

 

[162] Myers, A. G.; Zheng, B.; Movassaghi, M., J. Org. Chem., 1997, 62, 7507–7507. 



 

308 
 

 

[163] Wullschleger, C. W.; Gertsch, J. r.; Altmann, K.-H., Org. Lett., 2010, 12, 1120–

1123. 

 

[164] Lipshutz, B. H.; Keil, R.; Barton, J. C., Tetrahedron Lett., 1992, 33, 5861–5864. 

 

[165] Buchwald, S. L.; LaMaire, S. J.; Nielsen, R. B.; Watson, B. T.; King, S. M., 

Tetrahedron Lett., 1987, 28, 3895–3898. 

 

[166] Huang, Z.; Negishi, E.-i., Org. Lett., 2006, 8, 3675–3678. 

 

[167] López, S.; Montenegro, J.; Saá, C., J. Org. Chem., 2007, 72, 9572–9581. 

 

[168] Espinet, P.; Echavarren, A. M., Angew. Chem. Int. Ed., 2004, 43, 4704–4734. 

 

[169] Cordovilla, C.; Bartolomé, C.; Martínez-Ilarduya, J. M.; Espinet, P., ACS Catal., 

2015, 3040–3053. 

 

[170] Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S., J. Org. Chem., 

1994, 59, 5905–5911. 

 

[171] Han, X.; Stoltz, B. M.; Corey, E. J., J. Am. Chem. Soc., 1999, 121, 7600–7605. 

 

[172] Farina, V.; Krishnan, B., J. Am. Chem. Soc., 1991, 113, 9585–9595. 

 

[173] Castaño, A. M.; Echavarren, A. M., Tetrahedron Lett., 1996, 37, 6587–6590. 

 

[174] Paterson, I.; Anderson, E. A.; Dalby, S. M.; Lim, J. H.; Genovino, J.; Maltas, P.; 

Moessner, C., Angew. Chem. Int. Ed., 2008, 47, 3021–3025. 

 

[175] Ashfeld, B. L.; Miller, K. A.; Smith, A. J.; Tran, K.; Martin, S. F., J. Org. Chem., 

2007, 72, 9018–9031. 

 

[176] Jeffery, T., Tetrahedron Lett., 1989, 30, 2225–2228. 

 

[177] Grushin, V. V.; Alper, H., J. Org. Chem., 1992, 57, 2188–2192. 

 

[178] Bieber, L. W.; da Silva, M. F., Tetrahedron Lett., 2007, 48, 7088–7090. 

 

[179] Qian, M.; Negishi, E.-i., Synlett, 2005, 1789–1793. 

 



 

309 
 

[180] Frantz, D. E.; Fässler, R.; Carreira, E. M., J. Am. Chem. Soc., 2000, 122, 1806–

1807. 

 

[181] Frantz, D. E.; Fässler, R.; Tomooka, C. S.; Carreira, E. M., Acc. Chem. Res., 2000, 

33, 373–381. 

 

[182] Moussa, I. A.; Banister, S. D.; Akladios, F. N.; Chua, S. W.; Kassiou, M., Bioorg. 

Med. Chem. Lett., 2011, 21, 5707–5710. 

 

[183] Brattesani, D. N.; Heathcock, C. H., Synth. Commun., 1973, 3, 245–248. 

 

[184] Buck, M.; Chong, J. M., Tetrahedron Lett., 2001, 42, 5825–5827. 

 

[185] Nomura, I.; Mukai, C., J. Org. Chem., 2004, 69, 1803–1812. 

 

[186] Eckhardt, M.; Fu, G. C., J. Am. Chem. Soc., 2003, 125, 13642–13643. 

 

[187] Wang, B.; Sun, H.-X.; Chen, B.; Sun, Z.-H., Green Chem., 2009, 11, 1112–1114. 

 

[188] Yamaguchi, M.; Nobayashi, Y.; Hirao, I., Tetrahedron Lett., 1983, 24, 5121–5122. 

 

[189] Yamaguchi, M.; Nobayashi, Y.; Hirao, I., Tetrahedron, 1984, 40, 4261–4266. 

 

[190] Wavrin, L.; Viala, J., Synthesis, 2002, 2002, 0326–0330. 

 

[191] Corey, E. J.; d'Alarcao, M.; Kyler, K. S., Tetrahedron Lett., 1985, 26, 3919–3922. 

 

[192] Ronson, T. O.; Voelkel, M. H. H.; Taylor, R. J. K.; Fairlamb, I. J. S., Chem. 

Commun., 2015, 51, 8034–8036. 

 

[193] Wishart, N.; Bonafoux, D. F.; Frank, K. E.; Hobson, A. D.; Konopacki, D. B.; 

Martinez, G. Y.; Wang, L. Novel tricyclic compounds. U.S. patent appl. 

2013/0072470 A1, 2013. 

 

[194] Ishihara, K.; Kurihara, H.; Yamamoto, H., J. Org. Chem., 1993, 58, 3791–3793. 

 

[195] Heathcock, C. H.; McLaughlin, M.; Medina, J.; Hubbs, J. L.; Wallace, G. A.; Scott, 

R.; Claffey, M. M.; Hayes, C. J.; Ott, G. R., J. Am. Chem. Soc., 2003, 125, 12844–

12849. 

 

[196] Walker, M. A., J. Org. Chem., 1995, 60, 5352–5355. 



 

310 
 

 

[197] Sugimura, T.; Hagiya, K., Chem. Lett., 2007, 36, 566–567. 

 

[198] Baptistella, L. H. B.; Fernando dos Santos, J.; Ballabia, K. C.; Marsaioli, A. J., 

Synthesis, 1989, 436–439. 

 

[199] Oonishi, Y.; Gómez-Suárez, A.; Martin, A. R.; Nolan, S. P., Angew. Chem. Int. 

Ed., 2013, 52, 9767–9771. 

 

[200] Gaillard, S.; Bosson, J.; Ramón, R. S.; Nun, P.; Slawin, A. M. Z.; Nolan, S. P., 

Chem. Eur. J., 2010, 16, 13729–13740. 

 

[201] Oonishi, Y.; Gómez-Suárez, A.; Martin, A. R.; Makida, Y.; Slawin, A. M. Z.; 

Nolan, S. P., Chem. Eur. J., 2014, 20, 13507–13510. 

 

[202] Veenboer, R. M. P.; Dupuy, S.; Nolan, S. P., ACS Catal., 2015, 5, 1330–1334. 

 

[203] Evans, K. J., M.Chem. Report, University of York, U. K., 2015. 

 

[204] Marion, N.; Ramón, R. S.; Nolan, S. P., J. Am. Chem. Soc., 2009, 131, 448–449. 

 

[205] Webb, M. R.; Donald, C.; Taylor, R. J. K., Tetrahedron Lett., 2006, 47, 549–552. 

 

[206] Kearney, A. M.; Landry-Bayle, A.; Gomez, L., Tetrahedron Lett., 2010, 51, 2281–

2283. 

 

[207] Adams, H.; Bailey, N. A.; Briggs, T. N.; McCleverty, J. A.; Colquhoun, H. M.; 

Williams, D. J., J. Chem. Soc., Dalton Trans., 1986, 813–819. 

 

[208] Serrano, J. L.; Fairlamb, I. J. S.; Sánchez, G.; García, L.; Pérez, J.; Vives, J.; López, 

G.; Crawforth, C. M.; Taylor, R. J. K., Eur. J. Inorg. Chem., 2004, 2706–2715. 

 

[209] Crawforth, C. M.; Fairlamb, I. J. S.; Kapdi, A. R.; Serrano, J. L.; Taylor, R. J. K.; 

Sánchez, G., Adv. Synth. Catal., 2006, 348, 405–412. 

 

[210] Fairlamb, I. J. S.; Kapdi, A. R.; Lee, A. F.; Sánchez, G.; López, G.; Serrano, J. L.; 

García, L.; Pérez, J.; Pérez, E., Dalton Trans., 2004, 3970–3981. 

 

[211] Fairlamb, I. J. S.; Kapdi, A. R.; Lynam, J. M.; Taylor, R. J. K.; Whitwood, A. C., 

Tetrahedron, 2004, 60, 5711–5718. 

 



 

311 
 

[212] Serrano, J. L.; García, L.; Pérez, J.; Pérez, E.; García, J.; Sánchez, G.; Sehnal, P.; 

De Ornellas, S.; Williams, T. J.; Fairlamb, I. J. S., Organometallics, 2011, 30, 

5095–5109. 

 

[213] Chaignon, N. M.; Fairlamb, I. J. S.; Kapdi, A. R.; Taylor, R. J. K.; Whitwood, A. 

C., J. Mol. Catal. A: Chem., 2004, 219, 191–199. 

 

[214] Fairlamb, I. J. S.; Taylor, R. J. K.; Serrano, J. L.; Sánchez, G., New J. Chem., 2006, 

30, 1695–1704. 

 

[215] Serrano, J. L.; Garcı́a, L.; Pérez, J.; Pérez, E.; Vives, J.; Sánchez, G.; López, G.; 

Molins, E.; Orpen, A. G., Polyhedron, 2002, 21, 1589–1596. 

 

[216] Sánchez, G.; García, J.; Martínez, M.; Kapdi, A. R.; Pérez, J.; García, L.; Luis 

Serrano, J., Dalton Trans., 2011, 40, 12676–12689. 

 

[217] Kratochvíl, J.; Novák, Z.; Ghavre, M.; Nováková, L.; Růžička, A.; Kuneš, J.; Pour, 

M., Org. Lett., 2015, 17, 520–523. 

 

[218] Shi, W.; Luo, Y.; Luo, X.; Chao, L.; Zhang, H.; Wang, J.; Lei, A., J. Am. Chem. 

Soc., 2008, 130, 14713–14720. 

 

[219] Luo, X.; Zhang, H.; Duan, H.; Liu, Q.; Zhu, L.; Zhang, T.; Lei, A., Org. Lett., 

2007, 9, 4571–4574. 

 

[220] Widegren, J. A.; Finke, R. G., J. Mol. Catal. A: Chem., 2003, 198, 317–341. 

 

[221] Pun, D.; Diao, T.; Stahl, S. S., J. Am. Chem. Soc., 2013, 135, 8213–8221. 

 

[222] Stille, J. K.; Groh, B. L., J. Am. Chem. Soc., 1987, 109, 813–817. 

 

[223] Hyotanishi, M.; Isomura, Y.; Yamamoto, H.; Kawasaki, H.; Obora, Y., Chem. 

Commun., 2011, 47, 5750–5752. 

 

[224] Ellis, P. J.; Fairlamb, I. J. S.; Hackett, S. F. J.; Wilson, K.; Lee, A. F., Angew. 

Chem., 2010, 122, 1864–1868. 

 

[225] Philippot, K.; Serp, P., Concepts in Nanocatalysis. In Nanomaterials in Catalysis, 

Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2013; pp 1–54. 

 

[226] Bayram, E.; Linehan, J. C.; Fulton, J. L.; Roberts, J. A. S.; Szymczak, N. K.; 

Smurthwaite, T. D.; Özkar, S.; Balasubramanian, M.; Finke, R. G., J. Am. Chem. 

Soc., 2011, 133, 18889–18902. 



 

312 
 

 

[227] Shen, C.; Yang, G.; Zhang, W., Org. Biomol. Chem., 2012, 10, 3500–3505. 

 

[228] Trippett, S., J. Chem. Soc., 1962, 2337–2340. 

 

[229] Tsolis, A. K.; McEwen, W. E.; VanderWerf, C. A., Tetrahedron Lett., 1964, 5, 

3217–3221. 

 

[230] Dransfield, T. A.; Nazir, R.; Perutz, R. N.; Whitwood, A. C., J. Fluorine Chem., 

2010, 131, 1213–1217. 

 

[231] Farina, V.; Krishnan, B.; Marshall, D. R.; Roth, G. P., J. Org. Chem., 1993, 58, 

5434–5444. 

 

[232] Malatesia, L.; Angoletta, M., J. Chem. Soc., 1957, 1186–1188. 

 

[233] Usón, R.; Forniés, J.; Navarro, R.; Garcia, M. P., Inorg. Chim. Acta, 1979, 33, 69–

75. 

 

[234] Hettrick, C. M.; Scott, W. J., J. Am. Chem. Soc., 1991, 113, 4903–4910. 

 

[235] Shobatake, K.; Nakamoto, K., J. Am. Chem. Soc., 1970, 92, 3332–3335. 

 

[236] Kirsten, L.; Steyl, G., Acta Crystallogr., Sect. E: Struct. Rep. Online, 2009, 65, 

m218–m218. 

 

[237] Nichele, T. Z.; Monteiro, A. L., Tetrahedron Lett., 2007, 48, 7472–7475. 

 

[238] Yamada, S.; Ishii, E.; Konno, T.; Ishihara, T., Tetrahedron, 2008, 64, 4215–4223. 

 

[239] Takaoka, S.; Takaoka, N.; Minoshima, Y.; Huang, J.-M.; Kubo, M.; Harada, K.; 

Hioki, H.; Fukuyama, Y., Tetrahedron, 2009, 65, 8354–8361. 

 

[240] Mondal, S.; Panda, G., RSC Adv., 2014, 4, 28317–28358. 

 

[241] Parker, H. L.; Sherwood, J.; Hunt, A. J.; Clark, J. H., ACS Sustainable Chem. Eng., 

2014, 2, 1739–1742. 

 

[242] Dong, J. J.; Roger, J.; Verrier, C.; Martin, T.; Le Goff, R.; Hoarau, C.; Doucet, H., 

Green Chem., 2010, 12, 2053–2063. 

 



 

313 
 

[243] Schäffner, B.; Holz, J.; Verevkin, S. P.; Börner, A., ChemSusChem, 2008, 1, 249–

253. 

 

[244] Harrowven, D. C.; Curran, D. P.; Kostiuk, S. L.; Wallis-Guy, I. L.; Whiting, S.; 

Stenning, K. J.; Tang, B.; Packard, E.; Nanson, L., Chem. Commun., 2010, 46, 

6335–6337. 

 

[245] Rosowsky, A.; Papoulis, A. T.; Forsch, R. A.; Queener, S. F., J. Med. Chem., 1999, 

42, 1007–1017. 

 

[246] Kim, H.-W. L., Yun-Sang ; Shetty, Dinesh ; Lee, Hak-Jeong ; Lee, Dong-Soo ; 

Chung, June-Key ; Lee, Myung-Chul ; Chung, Kyoo-Hyun ; Jeong, Jae-Min Bull. 

Korean Chem. Soc., 2010, 31, 3434–3436. 

 

[247] Tanaka, M.; Higuchi, Y.; Adachi, N.; Shibutani, Y.; Ahmed, S. A.; Kado, S.; 

Nakamura, M.; Kimura, K., Tetrahedron, 2005, 61, 8159–8166. 

 

[248] Metzger, A.; Argyo, C.; Knochel, P., Synthesis, 2010, 2010, 882–891. 

 

[249] Grünberg, M. F.; Gooßen, L. J., Chem. Eur. J., 2013, 19, 7334–7337. 

 

[250] Ronson, T. O.; Carney, J. R.; Whitwood, A. C.; Taylor, R. J. K.; Fairlamb, I. J. S., 

Chem. Commun., 2015, 51, 3466–3469. 

 

[251] Gao, Y.; Shan, Q.; Liu, J.; Wang, L.; Du, Y., Org. Biomol. Chem., 2014, 12, 2071–

2079. 

 

[252] Millar, J. G.; Oehlschlager, A. C., J. Org. Chem., 1984, 49, 2332–2338. 

 

[253] Bestmann, H. J.; Vostrowsky, O., Chem. Phys. Lipids, 1979, 24, 335–389. 

 

[254] Miyaura, N.; Yano, T.; Suzuki, A., Tetrahedron Lett., 1980, 21, 2865–2868. 

 

[255] Thadani, A. N.; Rawal, V. H., Org. Lett., 2002, 4, 4317–4320. 

 

[256] Schlosser, M.; Christmann, K. F., Angew. Chem. Int. Ed., 1966, 5, 126–126. 

 

[257] Santana, M. D.; García-Bueno, R.; García, G.; Sánchez, G.; García, J.; Kapdi, A. 

R.; Naik, M.; Pednekar, S.; Pérez, J.; García, L.; Pérez, E.; Serrano, J. L., Dalton 

Trans., 2012, 41, 3832–3842. 

 

[258] Shah, P.; Santana, M. D.; García, J.; Serrano, J. L.; Naik, M.; Pednekar, S.; Kapdi, 

A. R., Tetrahedron, 2013, 69, 1446–1453. 



 

314 
 

 

[259] Mathews, C. J.; Smith, P. J.; Welton, T., J. Mol. Catal. A: Chem., 2004, 214, 27–

32. 

 

[260] Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H., 

J. Appl. Crystallogr., 2009, 42, 339–341. 

 

[261] Palatinus, L.; van der Lee, A., J. Appl. Crystallogr., 2008, 41, 975–984. 

 

[262] Palatinus, L.; Chapuis, G., J. Appl. Crystallogr., 2007, 40, 786–790. 

 

[263] Palatinus, L.; Prathapa, S. J.; van Smaalen, S., J. Appl. Crystallogr., 2012, 45, 575–

580. 

 

[264] Sheldrick, G., Acta Crystallogr., Sect A: Found. Crystallogr., 2008, 64, 112–122. 

 

[265] Kinart, W. J.; Kinart, A., Appl. Organomet. Chem., 2007, 21, 373–376. 

 

[266] Tanaka, K.; Yamagishi, N.; Tanikaga, R.; Kaji, A., Bull. Chem. Soc. Jpn., 1979, 52, 

3619–3625. 

 

[267] Zajc, B., Synth. Commun., 1999, 29, 1779–1784. 

 

[268] Chen, Z.-G.; Wei, J.-F.; Wang, M.-Z.; Zhou, L.-Y.; Zhang, C.-J.; Shi, X.-Y., Adv. 

Synth. Catal., 2009, 351, 2358–2368. 

 

[269] Gunasekaran, S.; Venkatasubramanian, N., J. Chem. Soc., Perkin Trans. 2, 1983, 

949–953. 

 

[270] Righi, G.; Rumboldt, G.; Bonini, C., Tetrahedron, 1995, 51, 13401–13408. 

 

[271] Adam, W.; Peters, E.-M.; Peters, K.; Schmidt, E.; von Schnering, H. G., Chem. 

Ber., 1983, 116, 1686–1689. 

 

[272] Lipshutz, B. H.; Bošković, Ž. V.; Aue, D. H., Angew. Chem. Int. Ed., 2008, 47, 

10183–10186. 

 

[273] Higashino, M.; Ikeda, N.; Shinada, T.; Sakaguchi, K.; Ohfune, Y., Tetrahedron 

Lett., 2011, 52, 422–425. 

 

[274] Filla, S. A.; Song, J. J.; Chen, L.; Masamune, S., Tetrahedron Lett., 1999, 40, 

5449–5453. 



 

315 
 

 

[275] Brevet, J.-L.; Mori, K., Biosci. Biotech. Bioch., 1993, 57, 1553–1556. 

 

[276] Mauleón, P.; Krinsky, J. L.; Toste, F. D., J. Am. Chem. Soc., 2009, 131, 4513–

4520. 

 

[277] Liang, Y.; Hnatiuk, N.; Rowley, J. M.; Whiting, B. T.; Coates, G. W.; Rablen, P. 

R.; Morton, M.; Howell, A. R., J. Org. Chem., 2011, 76, 9962–9974. 

 

[278] Boone, M. A.; McDonald, F. E.; Lichter, J.; Lutz, S.; Cao, R.; Hardcastle, K. I., 

Org. Lett., 2009, 11, 851–854. 

 

[279] Abraham, E.; Davies, S. G.; Millican, N. L.; Nicholson, R. L.; Roberts, P. M.; 

Smith, A. D., Org. Biomol. Chem., 2008, 6, 1655–1664. 

 

[280] Charette, A. B.; Marcoux, J.-F., Tetrahedron Lett., 1993, 34, 7157–7160. 

 

[281] Dharanipragada, R.; Fodor, G., J. Chem. Soc., Perkin Trans. 1, 1986, 545–550. 

 

[282] Syed, M. K.; Murray, C.; Casey, M., Eur. J. Org. Chem., 2014, 2014, 5549–5556. 

 

[283] Chatt, J.; Venanzi, L. M., J. Chem. Soc., 1957, 4735–4741. 

 

[284] Compound commercially available from Sigma-Aldrich. 

 

[285] Rehbein, J.; Leick, S.; Hiersemann, M., J. Org. Chem., 2009, 74, 1531–1540. 

 

[286] Yoon, S.; Hong, M. C.; Rhee, H., J. Org. Chem., 2014, 79, 4206–4211. 

 

[287] Hall, S. S.; Farahat, S. E., J. Heterocycl. Chem., 1987, 24, 1205–1213. 

 

[288] Steck, E. A.; Fletcher, L. T.; Brundage, R. P., J. Org. Chem., 1963, 28, 2233–2238. 

 

[289] Barkenbus, C.; Holtzclaw, J. B., J. Am. Chem. Soc., 1925, 47, 2189–2192. 

 

[290] Bernhardt, S.; Shen, Z.-L.; Knochel, P., Chem. Eur. J., 2013, 19, 828–833. 

 

[291] Kuwano, R.; Yokogi, M., Org. Lett., 2005, 7, 945–947. 

 

[292] Guo, X.-K.; Zhao, D.-Y.; Li, J.-H.; Zhang, X.-G.; Deng, C.-L.; Tang, R.-Y., 

Synlett, 2012, 2012, 627–631. 



 

316 
 

 

[293] Li, X.; Feng, Y.; Lin, L.; Zou, G., J. Org. Chem., 2012, 77, 10991–10995. 

 

[294] Kim, C.-B.; Jo, H.; Ahn, B.-K.; Kim, C. K.; Park, K., J. Org. Chem., 2009, 74, 

9566–9569. 

 


