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Abstract 
	  
Until now, personalised medicine for patients in oncology has been focused on 

the use of DNA-based techniques such as mutation detection and fluorescence 

in situ hybridisation, fluorescence-activated cell sorting and immuno-staining for 

classifying tumours. MicroRNAs are short non-coding RNAs that are involved in 

post-translational regulation of gene expression. Their expression levels are 

often altered in cancer. Due to their functional importance and stability in 

biological samples, they represent another tool that could be used to aid patient 

management. 

Glioblastoma is a disease that has had little improvement in survival over the 

past decade in comparison to other cancers. A number of new drugs have been 

explored but even successful trials have shown limited success.  

This thesis is focused on identification of microRNAs as signatures for 

prognosis prediction in glioblastoma. It is separated into four parts; the 

identification of a microRNA signature that can be used to predict prognosis in 

glioblastoma; the alignment of glioblastoma microRNA expression with the 

microRNA expression of oligodendrocyte precursors and its involvement in 

patient outcome; the use of the expression pattern of the most abundant and 

robust prognostic microRNA in glioma (miR-9) to delineate glioblastoma 

subtype and finally the identification of a microRNA signature to predict 

prognosis in patients treated with the anti-angiogenic drug bevacizumab. The 

research aims to create signatures suitable for clinical practice, with a small 

number of predictors, and where possible the function of the microRNAs has 

been predicted and reviewed to provide confirmation of their role in glioma 

biology.  

The key findings of this research are the formation of robust signatures using 

microRNAs in a disease where few markers are available and proof of a 

technique that can be used in future drug studies to improve performance at 

clinical trials. 
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TESK2: Testis-specific kinase 2 
TET2: Ten-eleven translocation 2 
TGFB: Transforming growth factor, Beta 
TMZ: Temozolomide 
TNFAIP3: Tumour necrosis factor, alpha-induced protein 3 
TOP2A: Topoisomerase (DNA) II alpha 170kDa 
TRBP: TAR (HIV-1) RNA binding protein 
U6: non-coding small nuclear RNA component of U6 small nuclear 
ribonucleoprotein 
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US/ USA: United States of America 
UTR: Untranslated region 
VEGF: Vascular endothelial growth factor 
WHO: World Health Organisation 
WNT: Wingless-type MMTV integration site family 
WNT4: Wingless-type MMTV integration site family, member 4 
WT1: Wilm's tumour 1 
XPO5: Exportin-5 
YY1: Yin and yang 1 
ZEB: Zinc finger E-box binding homeobox 
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1. Introduction 
	  

‘The scientist is not a person who gives the right answers, he's one who 
asks the right questions.’ Claude Lévi-Strauss, Le Cru et le Cuit, 1964. 

	  
	  
Gliomas are central nervous system tumours with particularly poor outcomes. 

These are the most common tumour originating in the brain, and they represent 

a very broad diagnostic category that encompasses the most malignant and 

common form, glioblastoma (Louis et al., 2007a). Gliomas are named due to 

their morphological similarity to glial cells, which function as a scaffold and 

insulation for neurons allowing the conduction of electrical impulses important 

for neurological function. The different types of glioma can be characterised by 

the glial cell type they most resemble. For example, astrocytomas resemble 

astrocytes and oligodendrogliomas resemble oligodendrocytes (Louis, 2007a). 

The outcomes of the different types of glioma are hugely variable and correct 

classification is paramount to effective patient management (Riemenschneider 

et al., 2010). Despite efforts to improve the outcome of patients suffering with 

this devastating disease, the incidence and survival of patients with glioma has 

changed little over time (Inskip et al., 2010).  

Gliomas are graded from I to IV according to the World Health Organisation 

(WHO) classification system, assessing their increasingly aggressive 

pathological features (Louis et al., 2007a). Low-grade gliomas (I-II) are benign 

and well-differentiated and high-grade gliomas (III-IV) are malignant and 

anaplastic. Stratification based on grade depends more on pathologic features 

than on the cell type of origin. The assessment procedure includes features 

such as nuclear pleomorphism, high cellularity and mitotic index, endothelial 

cell proliferation and necrosis (Louis et al., 2007b; Goodenberger & Jenkins, 

2012) (Fig. 1.1).  

1.1. Incidence and survival of glioma. 
The incidence of primary brain tumours has been increasing since the 1970s 

and has an incidence rate of 7.1/100,000 in the UK, as reported in 2014 

(Sehmer et al., 2014). Higher grades predominate in men and low grade brain 

tumours are more frequent in women (Goodenberger & Jenkins, 2012). The 

most common adult brain tumours are gliomas and 86% of these are 
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glioblastoma (Sehmer et al., 2014; McKinney, 2004). 

Age-related incidence differs by subtype of glioma. Astrocytic tumours show a 

small peak in patients under 10 years of age, which decreases to its lowest 

incidence between 10 and 20 years, and then steadily increases over the next 

50-60 years of life (Inskip et al., 1995; McKinney, 2004). The majority of grade 

IV glioblastomas occur in adults between 45 and 75 years of age, with a 

progressive increase starting from age 30 (Louis et al., 2007b). 
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Figure 1.1. Histological criteria of the WHO classification of gliomas. 

Adapted from DeAngelis, 2001 (DeAngelis, 2001). The WHO classification 

grades gliomas from I to IV. Grade I gliomas are non-invading, and pilocytic 

astrocytoma is an example of this (not shown). Grade II tumours are infiltrative 

and have low proliferative capacity, however they frequently transform to a 

higher grade. Grade III tumours show evidence of histological malignancy with 

nuclear atypia and a high mitotic index. Grade IV tumours show the features of 

grade III but with necrotic foci, frequently surrounded by pseudopalisading cells 

(Louis et al., 2007a). These tumours may also exhibit vascular proliferation 

(DeAngelis, 2001). 

 

Median overall survival for glioblastoma, the most aggressive and malignant 

glioma, is 15 months, with only 3-5% of patients surviving more than three 

years (Koshy et al., 2011; Krex et al., 2007)(Fig. 1.2). This highly aggressive 

glioma has an incidence of 3.32 per 100,000 people/year in males and 2.24 in 

females (Ohgaki et al., 2004). Age is a significant prognostic factor, with 

patients below the age of 50 having a median survival of 8.8 months compared 
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to a median survival of 7.3 months between the ages of 50-59 years (Ohgaki et 

al., 2004). 

  
Figure 1.2. Overall survival of patients with glioblastoma from 2000 to 
2006 from the SEER (surveillance, epidemiology and end results 
program) database. 

Image from Koshy et al. 2012 (Koshy et al., 2011). Median survival of 

glioblastoma improved between the years 2000 and 2006 from 12 months to 15 

months due to administration of the standard chemotherapeutic temozolomide 

with post-operative radiotherapy. This data is from the SEER database, which is 

a National Cancer Institute (NCI) source for cancer statistics in the US. The 

lines indicate the survival rates of two-year periods between 2000 and 2006.  

 

Patients with a grade III anaplastic astrocytoma have a 2-year survival rate of 

58% and, as with glioblastoma, younger patients have a better outcome (Laws 

et al., 2003). Other prognostic factors for high-grade glioma include extent of 

resection and Karnofsky performance score (KPS), which assesses patients’ 

functional status on a scale of 1 to 100. A KPS of 80-100 is considered normal 

function, 50-70 suggests the patient is unable to work and 0-40 suggests the 

patient is unable to care for himself or herself (Laws et al., 2003). 
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1.2. Pathological diagnosis of glioma. 
The current clinical diagnosis of glioblastoma does not solely rely on the 

histological features described by the WHO but also includes cytogenetic 

features based on molecular markers known to be associated with patient 

outcomes. Patients who develop a glioblastoma ab initio, termed a primary 

glioblastoma, generally have poorer outcomes than those who progress from a 

lower grade, termed secondary glioblastoma (Bleeker et al., 2012). Therefore, it 

is important to distinguish primary glioblastoma from secondary glioblastoma to 

ensure patients are appropriately treated and monitored.  

1.2.1. Karyotyping and fluorescent in situ hybridisation. 
Integration of histological and genetic findings allows a more precise diagnosis 

of the grade and subtype of the glioma (Fig. 1.3), which defines the variable 

patients outcomes from these tumours. 
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Figure 1.3. Molecular and cytogenetic markers used to classify a 
glioma. 

Adapted from Bleeker et al. (Bleeker et al., 2012). Karyotyping glioma samples 

provides information on chromosome copy number. In most cases a gain in 

chromosome 7 will distinguish a glioblastoma from other tumour types (Wiltshire 

et al., 2000). Oligodendrogliomas, which are associated with a more favourable 

prognosis, are determined in this way by detection of 1p19q (which can also be 

performed using molecular testing). In addition to karyotyping, molecular tests 

such as fluorescent in situ hybridisation (FISH) and sequencing are performed 

to determine other tumour characteristics such as EGFR and MDM2 

amplification. 

1.2.2. IDH1 mutations. 
Patients with secondary glioblastoma, which accounts for approximately 5% of 

all glioblastomas, often have mutations in the isocitrate dehydrogenase (IDH) 

gene (Parsons et al., 2008). The most common mutation is IDH1 R132H. 

Parsons et al showed that only 7% of primary glioblastoma but 83% of 
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secondary glioblastoma had detectable IDH mutations in 2008, which fuelled 

further analysis in lower grade glioma the following year (Parsons et al., 2008; 

Yan et al., 2009). IDH mutations are frequent in glioma although extremely rare 

in other CNS tumours and therefore serve as a method of classification when 

the histological results are conflicting (Yan et al., 2009). Detection can be 

performed by immunohistochemistry using mutation specific antibodies or DNA 

sequencing (Berghoff et al., 2013). Tumours lacking a mutation in IDH1 can 

harbour a mutation at amino acid 172 of the IDH2 gene. In total, IDH1 and IDH2 

mutations have been identified in 86% of grade II astrocytoma and 

oligodendroglioma and 82% of grade III disease (Yan et al., 2009). With 

adjustments for age, grade, MGMT status, treatment and genomic profile, IDH 

mutation is considered a favourable prognostic marker (Ducray et al., 2009).  

IDH is an enzyme that catalyses the oxidative carboxylation of isocitrate to α-

ketoglutarate. There are three forms of IDH; IDH1 is cytosolic and IDH2 and 3 

are mitochondrial (Geisbrecht & Gould, 1999). All mutations in IDH1 are located 

at amino acid 132 of the protein. The most common R132H mutation is a gain 

of function mutation that results in an increase in 2-hydroxyglutarate (2HG) in 

cells (Fig. 1.4) (Zhang et al., 2013). One enzyme inhibited as a consequence of 

the high 2HG levels is TET2 (ten-eleven translocation 2), which catalyses the 

conversion of 5-methylcytosine to 5-hydroxymethylcytosine, resulting in DNA 

demethylation (Zhang et al., 2013). TET2 promoter methylation has also been 

reported in gliomas without IDH1 mutation suggesting that this may be an 

important mechanism of gliomagenesis (Kim et al., 2011c). These mutations are 

obvious targets for therapy in gliomas, and small molecule inhibitors targeting 

the IDH1 protein have already been developed (Popovici-Muller et al., 2012). 

These inhibitors have been shown to delay the growth of glioma cells and 

promote differentiation and are currently in phase I clinical trials (study number 

NCT02073994) (Rohle et al., 2013). 

The effects of IDH mutation can result in widespread promoter DNA methylation 

and suppression of gene transcription. In 2010, Noushmehr et al. identified a 

glioma CpG island methylator phenotype (G-CIMP) which defined a subgroup 

of glioma (Noushmehr et al., 2010). This phenotype is tightly associated with 

IDH1 mutation and introduction of an IDH1 mutation into cells is sufficient to 

establish extensive DNA hypermethylation (Turcan et al., 2012).  
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Figure 1.4. IDH1 mutations inhibit histone and DNA demethylation. 

Adapted from Yang et al. (Yang et al., 2012a). IDH1 mutations are gain of 

function mutations that cause an increase in 2-hydroxyglutarate (2HG), which is 

an antagonist of α-ketoglutarate. Lower α-ketoglutarate and higher 2HG result 

in inhibition of both histone lysine demethylase (KDM) and the TET family of 5-

methylcytosine (5mC) hydroxylases, which act to remove methyl groups (CH3) 

from histone lysines (K), and cytosines (C) in the DNA, respectively.  This is an 

epigenetic change in the cell, which causes altered differentiation processes. 

1.2.3. MGMT methylation. 
Promoter methylation of O6-methylguanine-DNA-methyltransferase (MGMT) is 

another predictive indicator used clinically to indicate responsiveness to 

alkylating agents, such as temozolomide (TMZ) (Hegi et al., 2005). MGMT is a 

DNA repair enzyme that can reverse the cytotoxic effect of alkylating agents by 

removing the O6 methyl group caused by TMZ treatment (discussed in detail on 

page 26). Methylation of the MGMT promoter most likely results in decreased 

expression of the MGMT gene rendering cells susceptible to these 

chemotherapeutic agents (Hegi et al., 2005). MGMT promoter methylation is 
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thought to occur as part of the G-CIMP phenotype, since it is present in almost 

all cases with G-CIMP and IDH1 mutation. In non-G-CIMP phenotypes, MGMT 

methylation is still reported in 50% of cases (Bady et al., 2012; Turcan et al., 

2012). 

1.2.4. 1p19q codeletion in oligodendroglioma. 
Oligodendroglioma is a subtype of glioma in which the cells bear some 

resemblance to oligodendrocytes (Louis, 2007a), which exhibit a branched-like 

morphology and function to produce myelin. Patients with an oligodendroglial 

tumour have been shown to have a more favourable prognosis than other 

glioma types, with current treatment regimes, therefore it is important to 

distinguish between oligodendroglioma and astrocytoma (Jeuken et al., 2004). 

Unfortunately, the histological criteria used to discriminate between these 

subtypes are poorly defined (Jeuken et al., 2004). There is a strong association 

between oligodendroglial tumours and loss of the short arm of chromosome 1 

and the long arm of chromosome 19 in tumour cells. Patients with this 

aberration have a favourable prognosis (Ducray et al., 2009; Riemenschneider 

et al., 2010). This aberration is termed 1p19q codeletion; it can be 

characterised by an unbalanced translocation between these chromosomes or 

loss of heterozygosity in these chromosomal regions. In the past, detection of 

the 1p19q codeletion was performed using conventional karyotyping, but more 

recently molecular methods such as FISH, multiplex ligation dependent probe 

amplification (MLPA) and loss of heterozygosity (LOH) PCR have been 

employed (Berghoff et al., 2013).  

1.2.5.  BRAF duplication/fusion in pilocytic astrocytoma. 
Pilocytic astrocytoma is a grade I glioma, and is a well-defined lesion that does 

not invade the brain (Louis et al, 2007a). Therefore, it is important to distinguish 

between these and other astrocytomas. Around 50-70% of pilocytic 

astrocytomas have fusions of the v-RAF murine sarcoma viral oncogene 

homolog B1 (BRAF) gene with the KIAA1549 gene which results in duplication 

of the activation domain and a deletion of the N-terminal inhibitory domain of 

BRAF, resulting in expression of the mutant BRAF protein (Siegal, 2015). 

Detection of the BRAF:KIAA1549 fusion gene is vital in classification of this low 

grade lesion, especially since glioblastoma and pilocytic astrocytoma share a 
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proliferative microvascular morphology and therefore can cause diagnostic 

uncertainty (Siegal, 2015).  

1.3 Standard treatment of glioma. 
Cancer treatment for solid tumours frequently involves initial resection of the 

tumour bulk by surgery. Surgery may not always be possible and is dependent 

on tumour location. When performed, brain surgery is a particularly traumatic 

procedure as it involves a craniotomy (an operation to open the skull). This may 

also be performed whilst a patient is awake to reduce the likelihood of 

neurological deficits. Awake craniotomy is usually performed with assessment 

of language and motor function at critical points in the procedure, which aids in 

brain mapping to define the limits of a tumour resection intra-operatively (Tate, 

2015). Following maximal surgical resection, patients are treated with adjuvant 

therapy (therapy following the main treatment of surgery). Adjuvant therapy is 

designed to eliminate the remainder of the tumour and in brain tumours 

includes radiotherapy and chemotherapeutic agents. 

1.3.1. Radiotherapy and imaging.  
Conventional fractionated radiotherapy is a protocol where external beam 

radiation is delivered to the tumour site over a number of sessions to destroy 

tumour cells. The patient’s head is immobilised and a CT (computed 

tomography) simulator creates an image of the tumour and surrounding brain 

using X-rays. This map of the tumour is merged with magnetic resonance 

imaging (MRI) and can be used to determine the treatment field, angles and 

energy source for most effective local control and limited toxicity. The unit of 

measurement of ionising radiation dose in the International System of Units (SI) 

is Gray (Gy), and 1Gy defines the absorption of one joule of radiation energy 

per one kilogram of matter (BIPM, 2006). Standard treatment for glioblastoma is 

60Gy in 30 fractions of 2Gy daily 5 days a week over 6 weeks post-operatively 

(Barani & Larson, 2015). The dose is determined by a balance between the 

tumour sensitivity and tolerance of normal tissue; effective treatment versus 

toxicity.  

Improvement in tumour imaging in recent years has benefited surgery and 

radiotherapy outcomes. MRI has traditionally been used in glioma imaging 

since the 1980s (Doyle et al., 1981). This method of imaging uses radio waves 
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and a magnetic field to create a detailed image of the brain. Advances on this 

method use diffusion to provide pathological information on a cellular level, and 

these include diffusion-weighted imaging and diffusion tensor imaging (Svolos 

et al., 2014). Magnetic resonance spectroscopy (MRS) is a more recent 

technique that can map the metabolic profiles of the brain using various 

metabolites (Chronaiou et al., 2014). This is of particular advantage in clinical 

practice for gliomas because they are infiltrative, and comparison of metabolic 

markers between tumour and normal brain tissues allows more accurate 

assessment of the tumour margin. Additionally, glioblastoma is extremely 

heterogeneous, and metabolic imaging can help to determine particularly 

aggressive regions by using the high Choline to N-acetyl aspartate ratio, also 

known as composite nutritional index. This index can be used in glioblastoma 

and lower grade tumours with potential sites of malignancy (Pirzkall et al., 

2002). Imaging can also include other metabolites such as 2-hydroxyglutarate 

(2HG), which is increased in IDH mutated tumours (Chronaiou et al., 2014). 

However, none of these modalities are used routinely, all are the subject of 

research. 

1.3.2. Chemotherapy.  
Chemotherapy for gliomas has limited efficacy, which is in part due to the 

inability of many chemotherapeutic agents to cross the blood-brain-barrier 

(BBB), which separates the blood from the brain extracellular fluid. Tightly 

spaced endothelial cells, which allow the passage of only water and lipid-

soluble molecules, form this barrier, and glucose and amino acids can be 

transported by selective transport. Lipophilic agents may be actively prevented 

from crossing the BBB by a membrane protein P-glycoprotein (Deeken & 

Loscher, 2007).  

The standard chemotherapeutic for high-grade glioma, as previously mentioned 

is TMZ (brand names Temodar, Temodal and Temcad). This is an 

imidazotetrazine derivative of the alkylating agent dacarbazine, which can cross 

the BBB, and it alkylates/methylates DNA. Most often this occurs at the N-7 or 

O-6 positions of guanine residues (Fig. 1.5). Methylation at the O-6 position 

most likely causes the anti-tumorigenic properties of TMZ, and if unrepaired, 

can give rise to G>A mutations (Johnson et al., 2014). This is because O6-
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methylguanine can base-pair with both cytosine and thymine, with the pairing 

rate dependent on the sequence context (Dosanjh et al., 1991). Also, if the O6 

methylguanine remains in the template strand, DNA repair mechanisms can 

cause double strand breaks, which are toxic to the cell (Margison and 

Santibáñez-Koref, 2002). 

 
Figure 1.5. Anti-tumorigenic action of TMZ involves methylation of the 
O6 position of guanine, resulting in G>A mutations.   

TMZ can cause methylation of the O3, O6 and N7 positions of guanine. It is the 

O6 adduct that gives TMZ its tumorigenic properties because it can base pair 

with both cytosine and thymine. This figure shows how the O6 adduct binds 

chemically to cytosine and thymine. A) The structure of guanine without 

methylation. It is at the O6 position that methylation occurs. B) O6-methyl 

guanine paired with thymine. C) O6-methylguanine paired with cytosine (this 

may also have another hydrogen bond from the O position of cytosine in 

solution at neutral pH) (Warren et al., 2006). 

 

Grade II and III gliomas are heterogeneous in terms of response to therapy and 

have a wide range of survival times. Following maximal safe resection of the 
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tumour, treatment options include radiation and/or either TMZ or, an older 

treatment regimen of PCV (Procarbazine, CCNU, Vincristine), or regular 

surveillance by MRI until tumour progression (Riemenschneider et al., 2010). 

Unfortunately, although slow-growing in the case of grade II tumours, these 

usually recur two to twenty years after surgery and may have progressed to 

higher-grade glioma (Claus et al., 2015). The variability seen in response to 

current treatment regimens cannot be fully explained by known prognostic 

factors such as age, extent of tumour resection, molecular features, and 

histology. It has been shown that a proportion of patients exhibit hypermutation 

following treatment with TMZ, including TMZ-induced mutations that are known 

to drive progression to HGG (Johnson et al., 2014). All of these patients with 

TMZ-induced hypermutation and recurrent HGG bear IDH1 mutations, which 

would otherwise confer a good prognosis (Johnson et al., 2014).  

Treatment of glioblastoma involves maximal safe resection, adjuvant 

radiotherapy and concomitant (alongside the other treatments) TMZ (Stupp et 

al., 2009). Despite these aggressive treatments, most patients show limited 

response and survival is still relatively short (median survival 12-15 months 

(Koshy et al., 2011). It is thought that the heterogeneity of glioblastoma may 

allow selection of certain subclones following treatment, which contributes to 

treatment resistance (Johnson et al., 2014). The presence of glioma stem-like 

cells; slowly dividing cells that are capable of reseeding the tumour, may also 

offer the tumour a mechanism to evade treatment strategies (discussed in more 

detail on page 37); (Ye et al., 2013). 

1.4. Genetic features of grade II glioma. 
As shown in Figure 1.3 on page 20, the genetic profile at different stages in the 

progression of glioma reflects the grade and subtype of glioma and therefore 

can be used in clinical diagnosis. Advances in the study of glioma have shown 

that there are more specific genetic changes that are not yet used in clinical 

practice, and these are likely to be included in the clinical guidelines in the 

fourth edition of the classification of CNS tumours (Louis et al., 2014).  

Mutations of the genes ATRX (alpha thalassemia/mental retardation syndrome 

X-linked), CIC (homolog of the Drosophila gene capicua) and FUBP1 (encoding 

far-upstream element (FUSE) have been shown to delineate the glioma 
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subtypes. CIC and FUBP1 are encoded at chromosomes 19q and 1p 

respectively, regions of the 1p19q codeletion. ATRX is encoded on the long arm 

of chromosome X. It is a chromatin modifier which, in glioblastoma, is 

associated with the alternative lengthening of telomeres (ALT) phenotype; a 

telomere lengthening mechanism that is independent of telomerase 

(Schwartzentruber et al., 2012). IDH mutations are tightly associated with ATRX 

mutations and are observed in grade II-III astrocytomas (71%), 

oligoastrocytomas (68%), and secondary glioblastomas (57%) (Jiao et al., 

2012). The IDH/ATRX mutation signature is therefore a marker of astrocytomas 

and is associated with a poorer outcome (median 51 months). CIC and FUBP1 

are seen in less than 10% of astrocytomas or oligoastrocytomas but are 

frequently observed in oligodendrogliomas (46% and 24%, respectively); these 

are associated with a more favourable prognosis (median survival 96 months) 

(Jiao et al., 2012).  

1.5. Genetics of high grade glioma. 
Glioblastoma was the first disease to be studied by The Cancer Genome Atlas 

(TCGA), a large program designed to integrate comprehensive data on multiple 

cancer types, including gene expression, methylation, copy number and 

microRNA expression (TCGA, NIH). This produced a wealth of information on a 

large dataset of glioblastoma patients (>500 cases) (Cancer Genome Atlas 

Research Network, 2008). Since then studies performed by the TCGA and 

other laboratories have improved our understanding of the genetics of 

glioblastoma (Verhaak et al., 2010; Brennan et al., 2013). More recently, the 

TCGA released data for lower grade glioma including grade II and III gliomas 

(>500) (Gonda et al., 2014). 

1.5.1. Molecular subtypes of glioblastoma. 
The first study to show that glioblastoma could be separated into subgroups 

using molecular information was performed at Genentech in 2006 and showed 

that, based on transcriptional profiling data, three subtypes of glioblastoma 

exist; named proneural, mesenchymal and proliferative. The proneural subtype 

tumours bear resemblance to a neuronal lineage, express histological markers 

including OLIG2 (oligodendrocyte lineage transcription factor 2), DLL3 

(Drosophila delta homolog) and BCAN (brevican) and have the best outcome of 
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the three subtypes. The mesenchymal and proliferative subtypes are 

associated with losses of chromosome 10, gains of chromosome 7, PTEN loss 

and EGFR amplification. The proliferative subtype tumours express the markers 

PCNA (Proliferating Cell Nuclear Antigen) and TOP2A (Topoisomerase II Alpha 

170kDa) and are able to grow in the absence of EGF (epidermal growth factor) 

and FGF (fibroblast growth factor). The mesenchymal subtype expresses 

CHI3L1 (chitinase 3-like 1) and the angiogenic marker VEGF. Recurrent 

tumours have been shown to shift towards this phenotype (Phillips et al., 2006). 

Further studies using TCGA data in 2010 reported an additional molecular 

subtype (Verhaak et al., 2010). Verhaak et al clustered mRNA expression 

patterns of glioblastoma into four subtypes; proneural, classical, neural and 

mesenchymal based on 840 mRNAs (210 mRNAs defining each subgroup). 

The classical subtype tumours were associated with chromosome 10 loss and 

chromosome 7 gain (although trisomy chromosome 7 was seen in other 

subtypes). This group exhibited high-level EGFR amplification along with 

mutant EGFR. Homozygous deletions at chromosomal band 9p21.3 were also 

evident in this subtype, notably in CDKN2A (Cyclin-Dependent Kinase Inhibitor 

2A), and these were almost mutually exclusive with other components of the 

retinoblastoma pathway. The mesenchymal subtype was associated with 

deletions at chromosomal band 17q11.2, which includes NF1 (neurofibromin 1). 

Markers reported to be expressed in this subtype overlapped with that of the 

earlier Genentech signature; CD44 and CHI3L1. Genes in the tumour necrosis 

factor super family were expressed highly in this subtype, which may be a 

reflection of high necrosis and inflammatory infiltration. The proneural subtype 

showed a high rate of alteration of PDGFRA (platelet-derived growth factor 

receptor, alpha polypeptide) and IDH1. There was high expression of 

oligodendrocyte development genes including PDGFRA, NKX2-2 (NK2 

homeobox 2) and OLIG2. Proneural development genes were also expressed 

in this group, such as DLL4 detected in the Phillips’ proneural group (Phillips et 

al., 2006). 

The fourth subtype, neural, was characterised by expression of neuron 

markers, for example NEFL (neurofilament, light polypeptide) and GABRA 

(gamma-aminobutyric acid (GABA) A receptor). Gene ontology categories for 
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the genes expressed in this subtype pointed to neuron projection and axon and 

synaptic transmission (Verhaak et al., 2010).  

The Verhaak subtypes show mRNA expression that is resonant with various 

characterised neural cell types; the proneural subtype bore resemblance to an 

oligodendrocytic signature, the classical subtype was aligned with a murine 

astrocytic signature, the neural subtype showed high expression for genes 

expressed by neurons and the mesenchymal subtype showed a similarity to 

cultured astroglia (Verhaak et al., 2010). Methylation of the MGMT promoter 

was not associated with subtype, but the subtypes did differ in response to 

treatment. The classical and mesenchymal subtypes were the only subtypes 

shown to respond to treatment with radiotherapy and TMZ (Verhaak et al., 

2010). The longer survival of the patients with a proneural glioblastoma subtype 

may therefore be due to the younger age of these patients (Phillips et al., 2006).  

The subtypes determined in 2010 by Verhaak et al. were revised in 2013, when 

further data was made available in the TCGA (Verhaak et al., 2010; Brennan et 

al., 2013). This confirmed these four subtypes; neural, proneural, classical and 

mesenchymal. In addition, they further separated the proneural group into G-

CIMP positive proneural and G-CIMP negative proneural. Astonishingly, these 

two groups represented the opposite ends of the spectrum in prognosis for 

glioblastoma. Patients with a G-CIMP positive proneural subtype were the 

group with the best prognosis of all glioblastoma patients in the TCGA, and the 

G-CIMP negative proneural tumours conferred the worse prognosis of all 

glioblastomas (Brennan et al., 2013). 

G-CIMP refers to a subgroup of gliomas, with a more favourable prognosis, that 

have extensive DNA methylation across over 1500 loci in the genome 

(Noushmehr et al., 2010). Methylation of DNA occurs predominantly at the 

dinucleotide CG in vertebrates. Cytosine and guanine are separated by one 

phosphate, and therefore these sites are often termed CpG sites (cytosine-

phosphate-guanine). Cytosines have the ability to become methylated at the 5-

position in this context, forming 5-methylcytosine, and in mammals this 

methylation can serve to turn off gene expression (Cooper, 1983). Regions with 

a high frequency of CpGs in the genome are called CpG islands, representing 

1% of the genome (Vinson & Chatterjee, 2012). In cancer, many tumour 

suppressor genes are inactivated by this mechanism, including those involved 
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in DNA repair, apoptosis and cell cycle pathways (Esteller, 2002). The finding 

that proneural gliomas with the G-CIMP have a better prognosis may reflect the 

fact that they have different mechanisms of origin. It has recently been shown 

that initial transforming events in G-CIMP gliomas are different to those that 

arise in the formation of non-G-CIMP glioblastomas, which result from NF1 loss 

in a proneural context (Ozawa et al., 2014).  

A further signature was developed based on glioma stem cells expanded from 

glioma specimens, and separated these into proneural and mesenchymal 

subtypes based on eight mRNAs (Mao et al., 2013). The proneural subtype 

showed higher expression of the proneural markers CD133 (CD133 antigen), 

OLIG2, SOX2 (SRY (sex determining region Y)-box 2) and NOTCH1 (notch 1) 

and the mesenchymal subtype showed high expression of CD44 (CD44 

antigen), LYN (V-Yes-1 Yamaguchi Sarcoma Viral Related Oncogene 

Homolog), WT1 (Wilma’s tumour 1) and BCL2A1 (BCL2-related protein A1).  

The mesenchymal subtype was shown to be more aggressive in in vitro and 

murine intracranial xenograft assays. The subtypes also had different features 

in vitro with proneural cells forming spherical neurospheres and the 

mesenchymal cells forming irregular aggregates with some cells having 

adherent properties when grown in the absence of serum (Mao et al., 2013). 

1.5.2. Heterogeneity and clonal evolution. 
Glioblastoma Multiforme is so named due to its high degree of heterogeneity. 

Many studies have highlighted the various levels at which heterogeneity can 

occur in glioblastoma, including cellular, molecular, metabolic, genetic and 

epigenetic levels (Vartanian et al., 2014). This is a considerable barrier towards 

the success of therapies for this disease, not only because each patient’s 

tumour is different (inter-tumour heterogeneity), but also because the tumour 

contains a wealth of different cell types that may be resistant to a particular 

therapy (intra-tumour heterogeneity). 

Inter-tumour heterogeneity has been described in 1.5.1, where glioblastoma 

can be clustered into at least 3 subtypes according to molecular genetics. 

Despite a similar diagnosis based on histology, different tumours may have 

different mutations and gene expression patterns; they occur in patients of 

different ages, and are located in different regions of the brain (Larjavaara et al., 
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2007; Bozdag et al., 2013). These tumours show differences in their response 

to current treatments and some are more aggressive than others (Brennan et 

al., 2013).  

It has since been discovered that more than one of these molecular subtypes 

may be present within one tumour (Sottoriva et al., 2013). It is clear that 

although a tumour may display the overall transcriptional pattern of one 

particular subtype, there may be therapy resistant subclones present within that 

tumour that confer an advantage under such a selection process (Meyer et al., 

2015). Clonal evolution refers to the number (how many subclones), hierarchy 

(time) and importance (size of the subclone) of each cellular population within a 

tumour that has arisen in response to the environment. For example, when a 

tumour has been exposed to chemotherapy or radiotherapy certain cell types 

will be killed; this leaves remaining/resistant cell types the chance to expand, 

creating a tumour with different populations. This has been shown by the 

altered subpopulations of cells in recurrent glioblastoma in relation to the initial 

lower grade tumour (Johnson et al., 2014).  

1.5.3. Cell of origin. 
Heterogeneity studies of glioblastoma raise issues as to the cell of origin and 

initial oncogenic events in this disease. Ozawa et al. reported that most non-G-

CIMP gliomas arise from a common proneural precursor (Ozawa et al., 2014). 

Gains of chromosome 7 and loss of chromosome 10 were the first events in 

glioblastoma, and elevated PDGFRA was an initial driver in non-G-CIMP 

glioblastoma. Subsequent loss of NF1 was then sufficient to induce a 

mesenchymal gene expression pattern (Ozawa et al., 2014). These alterations 

are not sufficient to induce gliomagenesis in all neural stem cell types, and 

specifically oligodendrocyte precursors (OPs) have been suggested as the cell 

of origin in which gliomagenesis is initiated (Liu et al., 2011a). OPs are the 

precursors of both oligodendrocytes and astrocytes (Fig. 1.6) and have the 

ability to form astrocytic and oligodendroglial tumours through deletions of 

CDKN2A (Lindberg et al., 2014).  It has also been postulated that somatic 

mutations may occur prior to tumour initiation by associating the number of 

somatic mutations in a patient’s tumour with their age (Tomasetti & Vogelstein, 

2013). 
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G-CIMP tumours are a separate group of glioblastomas that arise in younger 

individuals, most frequently in the frontal lobe (Sturm et al., 2012). These are 

therefore likely to have arisen from a neural precursor population present in this 

spatial and temporal context of the brain (Lai et al., 2011). The initial event for 

these tumours is most likely the IDH1 mutation followed by p53 mutation, 

because the probability for C>T mutations is the highest (Lai et al., 2011). The 

particular mutations that are acquired in nature suggest that the p53 mutation 

occurs on the coding strand and the IDH1 mutation occurs on the template 

strand. IDH1 mutant protein therefore will be expressed immediately, whereas a 

round of replication must take place before mutant p53 protein is expressed. In 

a cell proliferating slowly this could be a considerable time (Lai et al., 2011). 

The IDH1 mutation has been shown to be sufficient, alone, to generate the G-

CIMP signature by measuring changes in the methylome when mutant IDH1 is 

introduced into cells (Turcan et al., 2012). 
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Figure 1.6. The differentiation pathway involving oligodendrocyte 
precursors.  

Neural progenitors first become glial-restricted, and these glial restricted cells 

have multipotent capacity in that they can differentiate into astrocytes and also 

oligodendrocytes. A glial-restricted precursor may differentiate directly into an 

astrocyte, or into an oligodendrocyte precursor, which progresses through 

various differentiated states before terminally entering the oligodendrocyte 

lineage (Letzen et al., 2010). Neural progenitors are defined as cells expressing 

the ganglioside epitope A2B5 and the intermediate filament protein nestin. Glial 

restricted precursors start to express PDGFRA and OLIG1. OP cells begin to 

express O1 (oligodendrocyte marker 1) and O4 (oligodendrocyte marker 4) and 

later express O1, GalC and CNPase markers. Mature oligodendrocytes can be 

distinguished by their expression of myelin basic protein, which is important for 

their function. 

1.5.4 Altered pathways.  
The first study by the TCGA identified the p53 (>31%), retinoblastoma (44%) 

and receptor tyrosine kinase pathways (>83%) as significantly altered in 

glioblastoma (Verhaak et al., 2010). The p53 pathway is altered in many 

cancers and its role is in responding to stress that can cause infidelity of DNA 

replication, disrupting cell division. Stress signals are conveyed to the p53 

protein through post-translational modifications, and this elicits a transcriptional 

network influencing cell cycle checkpoints leading to senescence and apoptosis 

(Harris & Levine, 2005). Loss of functional p53 protein is reported in many 

cancers and is associated with the transition of a cell from an epithelial type to a 
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mesenchymal type (epithelial-mesenchymal transition; EMT) (Muller et al., 

2011).   

The p53 pathway is linked to the second network significantly altered in 

glioblastoma; the retinoblastoma pathway, through p14Arf (Bates et al., 1998). 

This pathway, discovered from its association with the heritable development of 

retinoblastoma (an eye tumour) is altered in almost all cancers and is essential 

for initiation of replication (Nevins, 2001). Loss of p53 and Rb, or other 

components of the pathway, allows the cell to pass through cell cycle 

checkpoints, avoiding apoptosis, resulting in daughter cells with genetic 

aberrations. 

The third significantly altered network in glioblastoma involves the receptor 

tyrosine kinases (RTKs). These are transmembrane proteins that transduce an 

external signal into the cell. The N-terminus of these proteins is extracellular, 

and acts as a receptor for ligands such as epidermal growth factor (EGF). The 

C-terminus has kinase activity; it phosphorylates intracellular substrates to 

activate downstream signalling cascades (Hubbard & Till, 2000). These 

signalling cascades are only activated when the receptor has a bound ligand, 

however in cancer, mutation of these receptors allows them to be constitutively 

active, without the requirement of ligand binding (Ballotti et al., 1989). More 

recently it has also been shown that proteolytically cleaved TKIs have the ability 

to migrate to the nucleus where they can directly exert their effects (Song et al., 

2013a). Altered TKIs in cancer are targets for therapies, and the first was 

Imatinib (brand name Gleevec) for chronic myeloid leukaemia (CML) (Druker et 

al., 1996). This drug binds to the ATP binding site of the constitutively active 

TKI formed by the Bcr-Abl fusion blocking its catalytic action. This resulted in a 

high patient response rate although subsequent resistance through mutation 

quickly became apparent (Mauro & Druker, 2001; Shannon, 2002). Since then a 

number of first and second generation RTK inhibitors have been approved for 

treatment of various cancers, most of which require detection of alteration of the 

TKI they inhibit in the patient’s tumour before administration (Cohen et al., 

2003; Kwak et al., 2010). One such pathway influenced by RTKs that was 

highlighted by the TCGA study in 2010 is the phosphoinositide-3-kinase (PI3K) 

pathway, which is an important intracellular cell cycle pathway (Verhaak et al., 

2010). It is the class IA PI3Ks that are influenced by RTKs, and these are 
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recruited to the membrane and convert phosphatidylinositol-4,5-bisphosphate 

(PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3) which provides docking 

sites for kinases such as AKT (Liu et al., 2009). 

The second study by the TCGA shed more light on the significant aberrations in 

glioblastoma through sequencing analysis (Brennan et al., 2013). This showed 

that, in addition to the pathways identified to be significantly altered in 

glioblastoma previously, more than 40% of tumours have a non-synonymous 

mutation in a chromatin modifier gene (Brennan et al., 2013). Pathways 

involved in the different molecular subtypes were determined showing classical 

glioblastoma had a down-regulation of pro-apoptotic proteins, mesenchymal 

glioblastoma exhibited an increase in endothelial markers and the MAPK 

(mitogen activated protein kinase) pathway, proneural glioblastoma showed 

elevation of the PI3K pathway and G-CIMP positive tumours showed similarity 

to proneural glioblastoma with an increase in Cox-2, IGFBP2 (Insulin-Like 

Growth Factor Binding Protein 2) and Annexin-1 (Brennan et al., 2013).  

1.5.5. EGFR alteration and EGFR variant III.  
The RTK EGFR is frequently altered in cancer, through amplification, 

rearrangement and mutation (Gan et al., 2009; Li et al., 2014a; Reguart & 

Remon, 2015). In glioblastoma, EGFR is altered by all these mechanisms and 

amplification of the receptor is observed in approximately 40% of tumours. 

Around 50% of tumours with amplified EGFR express a particular 

rearrangement involving the extracellular binding domain known as EGFR 

variant III (EGFRvIII) (Sugawa et al., 1990; Ohgaki & Kleihues, 2013). This 

variant has a deletion of exons 2-7 of the EGFR gene resulting in a receptor 

that cannot bind to a ligand and therefore remains constitutively active (Gan et 

al., 2009). The variant has been shown to be associated with a better prognosis 

in glioblastoma, with EGFRvIII negative cell populations in the tumour being 

radio- and chemo- resistant (Montano et al., 2011). EGFR amplification itself 

however is associated with a poorer prognosis in some patient groups such as 

those bearing tumours with gain of chromosome 7, or younger patients treated 

with radiotherapy (Bienkowski et al., 2013). In other cancers, EGFR inhibitors 

have been highly successful in improving patient outcome, and the high 

frequency of EGFR in glioblastoma fuelled evaluation of these inhibitors in this 
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disease also (Cohen et al., 2003; Lewis et al., 2012; Reardon et al., 2014b). 

Clinical trials in newly diagnosed and recurrent glioblastoma have generally 

concluded that first generation EGFR inhibitors offer no improvement in 

outcome for glioblastoma patients (Reardon et al., 2014b). These results may 

be due to low brain penetration, or mutations in signalling pathways 

downstream of EGFR as well as high tumour heterogeneity (Cancer Genome 

Atlas Research Network, 2008; de Vries et al., 2012; Sottoriva et al., 2013). 

Biomarkers have been identified for these inhibitors, but have been shown to 

have no clinical value in the trials to date (Mellinghoff et al., 2005; Verhaak et 

al., 2010; Reardon & Wen, 2014). A vaccine for EGFRvIII has also been 

developed by Celldex Therapeutics and has been evaluated in various clinical 

trials using this in combination with other therapies. Phase II trials for newly 

diagnosed glioblastoma have shown EGFRvIII was eliminated in 67% patients 

after three months of therapy and was well tolerated (Del Vecchio & Wong, 

2010; Schuster et al., 2015). 

1.6. The importance of stem cells in glioma. 
Cancer stem cells were first identified in the 1990s in acute myeloid leukaemia. 

Glioma also has a stem cell niche (Dick, 1991). Glioma stem cells (GSCs) are 

characterised by their self renewing properties and multipotent abilities allowing 

them to differentiate into all tissue types and cells that have arisen within a 

tumour, through precursor stages (Fuchs & Segre, 2000). GSCs bear 

resemblance to normal stem cells, but lack the ability to tightly regulate the 

proliferation and differentiation into integrating cell types (Venere et al., 2011). 

Stem cells that remain following therapy allow the tumour to regrow and 

therefore they are an important group of cells within the tumour.  

It was in 2002 that GSCs were first isolated, and shown to grow as clonogenic 

spheroids in vitro (Ignatova et al., 2002). These cells were shown to differentiate 

into cell types that form the initial tumour and expressed the neural stem cell 

surface marker CD133. This marker is often used to isolate these cells from the 

tumour of a patient by fluorescence-activated cell sorting (Singh et al., 2003). 

CD133 is not a specific marker for GSCs however, as CD133 negative stem 

cells have been isolated from glioblastomas. The use of this marker is also 

complicated by the fact that some antibodies for CD133 recognise only the 
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glycosylated form which generates false negatives (Bidlingmaier et al., 2008). 

CD133 negative cells are adherent in their growth pattern whereas CD133 

positive cells grow as spheres (Brescia et al., 2012). Combinations of markers 

have been proven to be most useful and these may include CD44, CD15, 

L1CAM and integrin α6 (Brescia et al., 2012).  

Glioma stem cells have been shown to exhibit high aldehyde dehydrogenase 

(ALDH) activity, and this has also been exploited for isolation of stem cells of 

other cancers (Douville et al., 2009). It has been shown however that this 

activity is more apparent in mesenchymal glioma stem cells compared to 

proneural stem cells (Mao et al., 2013). Alternatives to the isolation of glioma 

stem cells using molecular markers include exploiting the auto-fluorescence 

properties and morphology of glioma cells. For example, cells that simply are 

able to form neurospheres in the absence of serum represent part of the 

population of stem cells, and have been shown to have self-renewal capacity 

(Yuan et al., 2004). Also dye retention over cell divisions can be exploited to 

identify GSCs, as dye is equally divided between daughter cells at division, the 

slower the division the less the dye dilution in the cells (Deleyrolle et al., 2011). 

The origin of GSCs has been of considerable debate. One explanation is that 

normal neural stem cells transform into glioma. The type of glioma to arise may 

be as a result of the environment or type of genetic alterations the cell has 

undergone. This is supported by the fact that deletion of p53, NF1 or PTEN in 

neural stem cells is sufficient to generate glioma, whereas these aberrations in 

non-stem brain cells does not cause this effect (Alcantara Llaguno et al., 2009). 

Alternatively, glioma cells may have the ability to reprogram into GSCs under 

certain conditions. This is supported by the observation that neonatal cortical 

astrocytes can dedifferentiate into neural stem cells by deletion of p16Ink4a and 

p19Arf (Bachoo et al., 2002).  

Single cell genomic analysis of glioblastomas has shown that a stem-like 

compartment of cells does exist within the tumour, but that a continuum exists 

from stem cell to differentiated cell within a single tumour (Patel et al., 2014). 

Therefore, in vitro models embody extremes of the stemness of a tumour and 

the full spectrum of stemness is not represented. The genomic stemness 

signature is strongest in single cells isolated from proneural tumours, which is 

also supported by the fact that the stem cell signature for proneural GSCs 
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includes a number of stem-like markers such as SOX2 and CD133 (Mao et al., 

2013; Patel et al., 2014). Despite tight correlation with a stem cell signature, 

proneural tumours with the highest heterogeneity had the worst prognosis, 

suggesting that clinical outcomes are dependent upon the level of 

heterogeneity, as well as presence of GSCs (Patel et al., 2014). The exposure 

of the tumour cell population to TMZ can increase the proportion of GSCs within 

a tumour, exhibited by an increase in the stemness markers such as CD133, 

SOX2, OCT4 and Nestin (Auffinger et al., 2014). These dynamic levels of GSCs 

within the tumour, and possibly their location, contribute to the infiltration and 

therapy resistant properties of the tumour therefore allowing evasion of current 

treatments. 

1.7. Novel chemotherapeutics for glioblastoma. 
As previously mentioned, one major hurdle for the treatment of glioblastoma is 

the ability to deliver adequate amounts of any chemotherapeutic to the brain. 

Drugs that have been successful in other cancers have been trialled in 

glioblastoma but haven’t been effective because of this, or because the tumour 

is highly heterogeneous compared to other tumours. This has been shown by 

the lack of success of TKIs in glioblastoma compared to other tumours 

(Reardon et al., 2014b). Inter-tumour heterogeneity in glioblastoma also makes 

personalised medicine essential, and the biomarkers used to define patient 

groups may not have been specific enough. 

Targeted immunotherapy with monoclonal antibodies (mAb) for highly 

expressed proteins in glioblastoma has been explored. For glioblastoma with 

amplified EGFR, the mAb (monoclonal antibody) cetuximab has been shown to 

have some success (in recurrent glioblastoma) and the type of EGFR mutation 

may be of importance in patient outcome (Hasselbalch et al., 2010; Lv et al., 

2012). AMG 595, which is a mAb for EGFRvIII conjugated to a cytotoxic 

(maytansinoid DM1) is currently under clinical trial and has been shown to 

cause disruption and internalisation of microtubules which inhibits the 

proliferation of glioblastoma cells (Hegde et al., 2014).   

Glioblastomas express high levels of VEGF, which contributes to their 

vascularity, and this has prompted studies into the mAb bevacizumab (brand 

name Avastin) (Bao et al., 2006). Bevacizumab acts by neutralising the activity 
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of VEGFA and prevents its binding to the VEGF receptors on endothelial cells, 

which is important for vasculature formation and angiogenesis (Bao et al., 

2006). This drug was approved by the United States Food and Drug 

Administration (US, FDA) for recurrent glioblastoma in 2009 after phase II 

studies showed a partial response in at least 19% of patients (Cohen et al., 

2009). Since then, two large phase III trials evaluated bevacizumab for newly 

diagnosed glioblastoma. RTOG 0825 was a trial in Europe and AVAglio a trial in 

the US (Gilbert et al., 2014; Chinot et al., 2014). These studies were similar in 

many respects, as they included the standard treatment of TMZ and 

radiotherapy and evaluated outcome with the same statistical techniques. There 

were some differences in the studies however. RTOG 0825 excluded poor 

prognosis patients investigated by biopsy whereas AVAglio allowed all patients 

who had tumour biopsies to be included. Determination of treatment response 

was assessed by enhancing tumour only in RTOG 0825 whereas both 

enhancing and non-enhancing tumours were used for determination of 

treatment response in AVAglio. Despite these differences, results from the two 

trials were similar: there was no overall survival benefit from the drug but 

improved PFS (median PFS in the bevacizumab-treated group was 10.6 

months compared to median PFS in the placebo group of 6.2 months) (Chinot 

et al., 2014; Gilbert et al., 2014).  

Mabs have recently been developed to reactivate anti-tumour immunity by 

blocking immune checkpoint molecules on T-cells. This has shown some 

remarkable responses in melanoma, and is now being applied to glioblastoma 

(Cooper et al., 2014; Reardon et al., 2014a). The blockade of the programmed 

cell death 1 (PD-1) and its ligand programmed death ligand-1 (PDL1) show 

promise in both leukaemia and solid tumours (Topalian et al., 2012). Nivolumab 

blocks activation of PD-1 which allows activation of cytotoxic T-lymphocytes 

against glioblastoma cells and ipilimumab enhances this cytotoxic T-lymphocyte 

activation by binding to CTLA-4 (cytotoxic T-lymphocyte-associated antigen-4) 

(Hegde et al., 2014). Patients are now being recruited to test this combination in 

recurrent glioblastoma (NCT02017717).  
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1.8. The study of glioma cell biology in the laboratory. 
Most research in the glioma field starts in the laboratory using in vitro assays. 

The types of cells and methods of culture used by different laboratories can 

vary. Established human cell lines for high-grade glioma are available from the 

American Type Culture Collection (ATCC), and include U251, a pleiomorphic 

astrocytoid glioblastoma line, U87, an epithelial glioblastoma line and LN229, a 

glioblastoma line from the right frontal parietal-occipital cortex which is epithelial 

in morphology (ATCC information, February 2015) (Ponten & Macintyre, 1968). 

These cell lines are usually assessed annually by short tandem repeat profiling 

against the ATCC profile to ensure their integrity. Established glioblastoma lines 

grow as adherent monolayers, in media containing serum and will proliferate 

indefinitely if monitored and passaged appropriately.  

In addition to these established cell lines, some techniques require study of 

cells more representative of the tumour that also reflect inter-tumour 

heterogeneity, and therefore primary cell lines are expanded from a patient 

sample. These are mostly anchorage-dependent, slow-growing lines that will 

grow for a period of time before entering senescence, and the time is based on 

nutrient conditions, culture manipulation and the Hayflick limit (Shay & Wright, 

2000). The cells from a tumour sample are heterogeneous, and the method of 

culture will result in selection for populations within the tumour. Due to this, the 

culture conditions are chosen to reflect the types of cells to be studied. Cells 

with different anchorage dependencies may be selected for, or cells may be 

sorted using fluorescence-activated cell sorting for particular cell markers. 

GSCs are often required for culture, and in this instance cells would be selected 

for using serum-free media, and those cells with spheroidal growth would be 

separated from the adherent cells. The spheroids, which represent anchorage 

independent GSCs can then be grown as neurospheres in low adherent flasks, 

or as monolayers on laminin-coated flasks. These neurospheres are genetically 

more representative of the original tumours than established cell lines (Lee et 

al., 2006). 

Cultures are usually incubated at 21% oxygen, since this is the level of 

atmospheric oxygen, however this does not reflect physiological oxygen levels 

which often fall below 3%, and even lower in the hypoxic regions of a growing 
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glioblastoma (Evans et al., 2004). It has been shown that stem cells culture 

more easily below 7% oxygen (Guo et al., 2013; McCord et al., 2009). This is 

not practical however without specialist equipment for manipulation of the 

cultures under these conditions.  

1.9 MicroRNAs. 
MicroRNAs have attracted a huge amount of interest in the cancer field over the 

last decade. These short non-coding RNAs play important functional roles in 

tumour biology, and show promise as biomarkers for patient stratification and 

treatment monitoring. MicroRNAs were first identified in the nematode 

Caenorhabditis elegans in 1993 (Lee et al., 1993), and by the early 2000s it 

was recognised that microRNAs have a conserved mechanism and broad 

functional significance throughout the plant and animal kingdoms. Their function 

is mainly to regulate protein translation by binding to complementary sequences 

in the 3’ untranslated region (UTR) of target messenger RNAs (mRNAs), which 

either blocks translation or causes transcript degradation (Krol et al., 2010). At 

present, there are over 2000 mature human microRNAs recorded in miRBase 

(August 2013), a searchable annotated database of known microRNA 

sequences (Griffiths-Jones et al., 2008; Wang et al., 2011; Jacob et al., 2013). 

The first cancer-associated microRNAs, miR-15 and miR-16, located at 13q14.3 

which is a frequently deleted region in chronic lymphocytic leukaemia (CLL), 

were identified in 2002 (Calin et al., 2002). Subsequent studies have shown that 

microRNAs play important roles in all recognised cancer hallmarks, and that 

each tumour type has a distinct microRNA signature that distinguishes it from 

other cancers and normal tissues. Many cancers can be further sub-classified 

based on these signatures. Like other cancer-associated genes, microRNA 

expression can be altered by chromosomal amplification/deletion, methylation 

and transcription factor activation. Alterations in microRNA processing 

pathways and target site binding are also common features of cancer cells. 

Recent years have seen the increased use of molecular diagnostic approaches 

to refine cancer detection, diagnosis and treatment (Chambers et al., 2012; 

Chang et al., 2013; Conde et al., 2013; Cushman-Vokoun et al., 2013). 

MicroRNAs offer an additional genetic component that can be exploited to 

stratify patients with greater accuracy and may be most useful when integrated 
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with gene expression and other clinical factors known to robustly predict 

outcome. In fact, they may be more useful than mRNAs as prognostic indicators 

due to their stability within clinical samples and their robust expression (Lu et 

al., 2005). Additionally, the identification of tumour-derived microRNAs in the 

circulation, and the development of robust assays for sensitive and accurate 

microRNA detection may allow their use as serum biomarkers. This is an area 

of intense study, representing a non-invasive method of detection and diagnosis 

of cancer.  

1.9.1. MicroRNA processing and mechanism of action. 
The biogenesis of microRNAs occurs through a well-characterised conserved 

processing mechanism (Fig. 1.7). MicroRNAs are encoded in the genome, and 

are often expressed as clusters of two or three microRNA hairpins.  

They also may be encoded in unique transcripts or in introns of protein coding 

genes. After processing, the mature single stranded microRNAs typically bind to 

messenger RNA targets in their 3’UTRs, and result in either reduced translation 

or deadenylation and degradation depending on the degree of base-pairing 

complementarity with the so-called “seed” region at the 5’ end of the microRNA 

(Filshtein et al., 2012) (Fig. 1.8). Because the microRNA/mRNA binding site is 

short (6-8 base pairs), each microRNA has the potential to target multiple 

different mRNAs. It is estimated that collectively microRNAs have roles in 

regulating up to two thirds of the human genome (Nana-Sinkam & Croce, 

2012). Changes in microRNA expression can result in reprogramming of cellular 

functions, where they play roles in fundamental processes such as 

development, cellular homeostasis and adaptation to stress. MicroRNA 

alterations promote a number of pathological conditions as well as cancer 

(Ebert & Sharp, 2012). 
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Figure 1.7. MicroRNA biogenesis. 

MicroRNAs are transcribed in the nucleus into a primary transcript by RNA 

polymerase II. These structures have intra-molecular base pairing forming 

distinct hairpin secondary structures, which are cleaved by Drosha (a type III 

ribonuclease) and DGCR8 (DiGeorge syndrome critical region 8) in the nucleus 

to form a 70-nucleotide precursor microRNA molecule (Krol et al., 2010).  

The precursor is then exported to the cytoplasm by exportin-5 (Melo et al., 

2010). Some microRNAs bypass this mechanism, and are produced from very 

short introns (mirtrons) by splicing and debranching, an activity known as non-

canonical processing of microRNAs (Krol et al., 2010). Following exportation, 

the pre-microRNA is then cleaved by the RNase III Dicer, in conjunction with 

TRBP (transactivation responsive protein) and AGO2 (Argonaute 2) in the 

cytoplasm, which yields a microRNA/microRNA* duplex. One strand of the 

duplex (usually the one with the less stable 5’ end) is then preferentially 

incorporated into a microRNA-induced silencing complex (miRISC) whereas the 

other strand is usually degraded (Krol et al., 2010). 
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Figure 1.8. Seed sequences of microRNAs and their relevance in the 
determination of the mRNA fate.  

The seed sequence for microRNA binding to the target is between the 2nd to the 

8th base pair from the 5’ end of the microRNA. This can bind to any region 

within the 3’ UTR (untranslated region) of an mRNA molecule and there can be 

multiple seed sequences for a microRNA/microRNAs in one 3’ UTR. Perfect 

complementarity of the microRNA and the target leads to deadenylation and 

degradation. Imperfect complementarity, which is the most common microRNA-

target interaction in animals, results in translational inhibition (Krol et al., 2010).  

1.9.2. MicroRNAs as predictors of prognosis. 
A microRNA expression signature in the six most common human cancers 

(breast, prostate, lung, stomach, pancreas and thyroid) was identified by Carlo 

Croce’s lab in 2006. This study used microarrays on 540 frozen tumour samples 

to computationally identify 57 differentially expressed microRNAs in cancer 

compared to normal tissue (Volinia et al., 2006). The predicted targets of some 

of these microRNAs were subsequently validated in light of the context of the 

different tumours. Since then a number of signatures and individual microRNAs 

have been associated with prognosis in cancer (Hu et al., 2010; S. Srinivasan 

et al., 2011).  

Variations in sample preparation and patient groups can lead to differing 

conclusions, which is illustrated in attempts to generate signatures in the grade 
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IV brain tumour glioblastoma multiforme, which has extensive microRNA and 

mRNA expression data available in TCGA (Cancer Genome Atlas Research 

Network, 2008). Glioblastoma, as previously mentioned, is a disease where 

prognosis is particularly difficult to predict, and therefore microRNA expression 

has been used repeatedly to attempt to stratify patients into good and poor 

prognosis groups.  Of five signatures described in glioblastoma (Lakomy et al., 

2011; Niyazi et al., 2011; Srinivasan et al., 2011; W. Zhang et al., 2012a, Sana 

et al., 2014), only miR-31 and miR-195 were identified as a predictors in more 

than one signature (two signatures associated both with poorer survival). This 

discordance between studies could be attributed to various factors. The Lakomy 

and Niyazi studies used formalin-fixed paraffin-embedded (FFPE) samples 

whereas the others used frozen tissue, although all studies used an optimised 

microRNA extraction protocol and microarrays or qRT-PCR with locked nucleic 

acid (LNA) primers for quantification. There were differences in treatment with 

patients given standard chemotherapy of temozolomide ranging from 35% to 

100% of the cohort. There were also differences in cohort size (35-354 patients) 

and geographical origin. These differences highlight some problems in 

generating useful microRNA expression signatures for clinical prognosis 

assessment. This has been addressed to some degree by the use of 

standardised procedures and large sample sizes, as has been attempted by 

TCGA. Should a successful signature be generated using correlative data of 

this type, although not ideal due to the indirect association with tumour biology, 

it would greatly improve the clinical decisions for patient management, 

particularly in diseases with wide ranging survival times such as glioblastoma. 

1.9.3 MicroRNAs for classification of disease. 
Expression of microRNAs can be clustered based on embryonic or 

developmental origin (Lu et al., 2005) which makes them ideal for classification 

of cancers arising from different cell lineages. For example, leukaemia is a 

disorder of hematopoietic stem cells and is currently classified by the WHO 

according to the lineage of the progenitor cell. MicroRNA expression across 

subtypes appears to reflect this. Garzon et al generated expression signatures 

by microarray in acute myeloid leukemia (AML) and associated these with 

specific clinically relevant cytogenetic abnormalities in 122 untreated patients. 



	   47	  

These alteration-specific signatures were validated in 60 patients using qRT-

PCR (Garzon et al., 2008). Eight microRNAs were over-expressed and 14 

under-expressed in AML with 11q23 rearrangements compared to all other AML 

samples. In AML with trisomy 8, 42 microRNAs were over-expressed, two of 

which, miR-124a and miR-30d, are located on chromosome 8. In addition, miR-

155 was associated with LT3-ITD mutations and miR-181a was decreased in 

expression in AML with multi-lineage dysplasia. These subtypes are used 

worldwide for AML diagnosis and this study clearly shows that microRNAs can 

also be used as delineators of the disease. In CLL, microRNAs were shown to 

define currently cytogenetically classified tumours with a normal karyotype, 

those exhibiting deletions of 11q, 13q or 17p and those with trisomy 12 (Visone 

et al., 2009). Glioblastoma classification using clustered microRNAs based on 

the cell of origin has also been performed and shown to successfully stratify this 

high grade brain disease into five groups (Kim et al., 2011b). Distinct microRNA 

expression patterns have also recently been identified in luminal (epithelial 

origin), basal-like (myoepithelial origin) and HER2 (human epidermal growth 

factor receptor 2) breast cancers (Farazi et al., 2014). Although the 

classification of breast cancer is well-defined compared to some other 

malignancies, meta-analysis of recent clinical trials have shown incorrect 

classification of a substantial number of tumours in laboratories with high 

volume testing (Andorfer et al., 2011) and therefore microRNA analysis may 

add robustness to current testing. Similarly, in prostate cancer, microRNA 

patterns are distinct between different cellular subsets when stem/progenitor 

cells were isolated from prostate tumours indicating microRNA expression 

patterns are indicative of the cellular populations in a tumour (Liu et al., 2012). 

These results suggest that when classification of the tumour is dependent on 

the progenitor cell type, microRNAs are useful in separating these classes. In 

further support of this, microRNA expression convincingly classified a set of 22 

different tumour types according to tissue of origin in a blind study (Rosenfeld et 

al., 2008) and a study of less well-differentiated tumours showed that 

microRNAs are better delineators of tumour type than mRNAs (Lu et al., 2005) 

Subtypes in other cancers have been identified using the huge body of data at 

TCGA (Koboldt et al., 2012; Kloosterhof et al., 2013). These, although not 

employed in the clinic as yet, may also be stratified using microRNA expression 
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patterns. The identification of microRNAs that target current biomarkers may 

pave the way for microRNA-based tests as an alternative to mRNA/protein 

expression for prognosis assessment.  One such example is the discovery of 

miR-155 as a target for the biomarker HGAL in diffuse large B-cell lymphoma 

and Hodgkin lymphoma (Dagan et al., 2012).  MicroRNAs have also been 

shown to play a role in cancer progression and may be useful for the prediction 

of metastatic outcomes for patient management (Pencheva & Tavazoie, 2013).  

1.9.4. MicroRNAs as predictors of drug efficacy. 
With the advent of personalised and precision cancer medicine, drugs are 

increasingly administered to subgroups of patients most likely to respond. 

MicroRNA signatures can be used, in addition to other predictors, to identify 

patients likely to benefit from a drug (Rukov et al., 2013). These signatures 

should be established in large patient groups in the context of clinical trials 

using quality control criteria (McShane et al., 2013). 

Although not yet used in clinical decision-making, several studies have 

associated microRNAs with well-known biomarkers for treatment therapy 

decisions. For example, chronic myeloid leukaemia (CML) is treated with the 

BCR-ABL inhibitor Imatinib.  Levels of the BCR-ABL rearrangement, which 

characterise this disease, decrease over time with Imatinib treatment. It has 

been discovered that miR-451 levels inversely correlate with BCR-ABL levels 

(Lopotova et al., 2011) at both the time of diagnosis and upon treatment (Scholl 

et al., 2012). Likewise, miR-378 has been shown to predict response to anti-

angiogenic treatments in ovarian cancer (Chan et al., 2014). Prior to these 

smaller studies, an in silico approach using the NCI-60 human cancer cell line 

panel showed approximately 30 microRNAs correlated with response to 

numerous anticancer drugs (Blower et al., 2008) which is evidence that 

microRNAs play a part in chemo-resistance and could be important in future 

testing for drug eligibility. 

SNPs in microRNA target sites may also be predictors of response; the LCS6 

polymorphism in the let-7 binding site in the 3’ UTR of KRAS predicted 

response to anti-epidermal growth factor receptor (EGFR)-based therapy in 100 

metastatic colorectal cancer patients (Sebio et al., 2013). Base excision repair 

genes have been associated with treatment resistance, and variations in the 
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microRNA binding sites of the 3’ UTRs of these genes have been shown to 

reflect colorectal cancer prognosis and treatment response (Pardini et al., 

2013). A notable and interesting example of altered target sites in cancer is the 

creation of an illegitimate target site for miR-191 in the 3’ UTR of MDM4 by the 

presence of SNP34091, which affects chemosensitivity in ovarian cancer 

(Wynendaele et al., 2010). Aside from treatment resistance, it is worth noting 

that SNPs in microRNA binding sites increase the risk of developing cancer, 

and may be markers for genetic susceptibility studies in some cancers (Ziebarth 

et al., 2012).   

1.9.5. MicroRNA-based therapeutics and companion diagnostics. 
Several studies have focused on the use of microRNAs themselves, or anti-

microRNA constructs, as therapy for cancer. A considerable hurdle for this has 

been the delivery of such therapies. Despite the challenges, there are now two 

clinical trials for microRNA-based therapeutics in cancer among 55 open 

microRNA clinical trials (ClinicalTrials.gov, accessed September 2014). The 

most advanced trial involves use of anti-miR-122 (Miravirsen) for hepatitis C 

therapy (Janssen et al., 2013) which shows reduction in viral RNA with no 

evidence of resistance. Miravirsen is complementary in sequence to miR-122 

but also has a modified LNA structure providing resistance to degradation yet 

high affinity for its target. The detection of this apparent liver-specific microRNA 

may become necessary for patient eligibility for Miravirsen in both hepatitis C 

and other liver disease (Qiu & Dai, 2014). More recent studies have shown that, 

although the intended target of Miravirsen is mature miR-122, it also has affinity 

for pri- and pre-miR-122 and this binding results in reduced processing of the 

miR-122 precursor molecules which enhances its treatment effect (Gebert et al., 

2014).   

The first microRNA-based therapy in cancer is MRX34: a synthetic miR-34a 

mimic loaded in liposomal nanoparticles (Bouchie, 2013). Replacement of this 

tumour suppressor microRNA antagonises essential cancer cell processes such 

as self- renewal, migratory potential and chemoresistance (Bader, 2012). This 

therapy is in phase I clinical trial for primary liver cancer and liver metastases 

from other cancers and should complete by the end of 2015. The delivery is 

such that the nanoparticles accumulate in liver: the target organ. Quantification 
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of MRX34 in non-human primates has established a good half-life and exposure 

in whole blood (Kelnar et al., 2014) and the results to date are encouraging. 

Systemically delivered miR-34a in preformed lung tumours in mouse models 

has also been shown to be effective and well tolerated (Trang et al., 2011). 

MicroRNAs may have a potential use in reducing the drug resistance of 

tumours as has been shown by the early studies using miR-9* replacement 

therapy, which reduces levels of SOX2, subsequently reducing levels of ABC 

transporters in glioblastoma (Jeon et al., 2011). High levels of SOX2 were 

present in patients less responsive to BCNU in this study and may represent a 

subgroup of patients who would benefit from this type of therapy.  

The advent of microRNA-based treatments may suggest that microRNA 

detection will be a fundamental part of a clinical laboratory pipeline in the future.  

Detection of particular microRNAs may be required for the initial eligibility of a 

drug, patient monitoring and determination of relapse. As with many targeted 

therapies, resistance is often a result of long-term administration of these drugs 

(Chong & Janne, 2013) and mutation detection in the sequence of the target 

microRNA may require monitoring.  Combinatorial microRNA-based therapies 

may ensue in an attempt to reduce tumour resistance. With similar effect, 

certain anti-miR therapies have the potential to target whole families of 

microRNAs, reducing the likelihood of resistance (Obad et al., 2011). The study 

of microRNA-based therapies is still in its infancy, and side effects of these 

therapies need to be evaluated. MicroRNAs have been shown to be exported 

from cells in exosomes (Manterola et al., 2014) and therefore they have the 

potential to become systemic; effects from this may only be apparent in clinical 

trials. Also, the processing of other microRNAs is likely dampened by 

overloading the microRNA processing machinery with replacement microRNAs, 

and the effects of this are uncertain (Choudhury et al, 2012b). 

1.9.6. Assessment of microRNA alterations in a clinical laboratory. 
Sample Preparation and Processing 

For accurate measurement of microRNAs in patient samples, fresh or snap-

frozen tissues should ideally be used. Nonetheless, many groups have 

successfully profiled microRNAs and classified tumours using archived FFPE 

material (Hu et al., 2010; Niyazi et al., 2011; Lu et al., 2012) some of which 
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were up to ten years old (Li et al., 2007). This is of value for diagnostic testing 

since frequently the only clinical specimen available is in the form of a fixed 

paraffin block. In this respect, microRNAs are considered more optimal than 

mRNA as they are less prone to degradation during the fixation process (Hall et 

al., 2012).  

The proportion of microRNA in a sample is approximately 0.01% of total RNA, 

but varies widely (Liang et al., 2007). Isolation of microRNAs can be performed 

using phenol-based RNA extraction methods, and purified further using 

commercially available columns optimised to increase microRNA yield. A 

comparison of three extraction methods (phenol/guanidinium (TRIzol, 

Invitrogen) followed by isopropanol precipitation, miRNeasy (QIAGEN) and 

mirVana (Applied Biosystems) column-based kits) showed that while each 

method produced high quality purified RNA, a selective method-dependent loss 

of specific microRNAs occurs (Ach et al., 2008). TRIzol extraction led to lower 

levels of miR-29b, miR-33, and miR-219, and mirVana preparations showed 

consistently increased levels of miR-149, miR-328, miR-574, and miR-766 

compared with other methods in the breast cancer and HeLa cells examined. 

Although microRNA extraction is generally straightforward, these studies 

emphasise the importance of using a consistent method and similar 

concentration of input RNA in control and test samples, and also the possibility 

of method-dependent pitfalls with certain microRNAs. 

Extraction of microRNAs from biological fluids is similar to that from tissues. The 

major challenge is obtaining a sufficient amount of microRNA for reliable 

quantification. MicroRNA extraction protocols are not optimised for serum 

extraction and Li and Kowdley noted that using the QIAGEN miRneasy kit, ratio 

of QIAzol to serum should be altered to greater than 7:1 however this amount 

cannot be accommodated in a standard 1.5ml eppendorf tube, which may 

decrease RNA yield and increase transfer steps (Li & Kowdley, 2012). The 

adoption of circulating microRNA assays may require the availability of custom 

equipment for use in a diagnostic laboratory, which may include robotics, to 

extract from multiple samples at one time. These novel protocols are rapidly 

developing. 

In blood, circulating microRNAs are often in complexes with proteins including 

argonaute RISC catalytic component 2 (AGO2), which protect them from 



	   52	  

degradation (Wang et al., 2010; Vickers et al., 2011). In addition to 

microRNA/protein complexes, some microRNAs are protected in cell-derived 

vesicles, including exosomes and microvesicles which can be relatively easily 

isolated from plasma (Skog et al., 2008). However, circulating microRNAs more 

frequently co-localise with AGO2 than vesicles (Arroyo et al., 2011; Fabbri et 

al., 2012) thus the choice of an initial blood fractionation method is of 

importance.  

 

MicroRNA detection and quantification methods 

Quantification of microRNA levels can be performed using quantitative real-time 

PCR (qRT-PCR), NGS (next generation sequencing) or hybridisation-based 

methods such as microarrays and bead-based technologies (Table 1.1). These 

techniques are not without complications, but are relatively straightforward. The 

comparative stability of microRNAs in biological samples, and the robustness of 

microRNA expression is an advantage for clinical testing, however, short 

sequence length and the similarity of related microRNAs have required some 

modifications to approaches initially established for mRNA detection. Until fairly 

recently, microRNA analysis has been performed using qRT-PCR and 

microarray-based approaches.  Now though, NGS is emerging as a cost-

effective option.  

The number of microRNAs under study determines the method chosen for 

quantification. Microarray and NGS are global microRNA profiling methods 

whereas qRT-PCR has mainly been used for fewer microRNAs. A number of 

inventive qRT-PCR protocols have been developed that can sensitively detect 

and accurately quantify specific microRNAs (Andreasen et al., 2010). These 

methods are technically similar to those involving mRNAs, but use a microRNA-

specific stem loop oligonucleotide primer for reverse transcription to extend the 

mature microRNA prior to qRT-PCR. This technique may be adapted for global 

profiling using a system with spatial separation of the samples and primer 

mixes: a technique known as ‘digital PCR’. The advantages of PCR-based 

methods for clinical testing are the quick turnaround time and low cost. 
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Table 1.1. Comparison of methods for microRNA quantification. Next 

generation sequencing (NGS), qRT-PCR (quantitative real-time PCR) and 

microarray technology are employed currently for the quantification of 

microRNA. Both microarray and NGS are used for the quantification of the 

whole complement of microRNAs. More useful for diagnostics is qRT-PCR, 

which can be quickly performed for the set of microRNAs identified in the 

signature. Results for qRT-PCR can be obtained in a 24-hour period, which is 

highly beneficial in cases where treatment decisions may be based on the 

outcome of the test. In all methods, the percentage of tumour present in the 

sample should be estimated and the integrity of the microRNA in the sample 

assessed prior to analysis. 

 
Prior to NGS, microarrays were the most widely used method of global 

microRNA quantification and several commercial platforms are available (Wang 

et al., 2007; Wu et al., 2013). With rapid improvements in sequencing 

methodology NGS has become a method of choice for microRNA profiling 

(Quail et al., 2008) and provides quantitative analysis of both mature and 

precursor microRNAs as well as base pair resolution for SNP and mutation 

detection. NGS methods are already employed for DNA-based sequencing 

currently in diagnostic laboratories (Morgan et al., 2010; Hayes et al., 2013) and 

the use of robotics for library preparation improves efficiency of the pipeline. 

The majority of sequencing protocols for microRNAs have been generated for 

Technique! Amount of 
RNA required!

Cost and 
labour!

Benefits and limitations!

Microarray! 120ng! Moderate! •  Only profiles mature 
sequences!

•  No SNP or editing information!
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Low! •  An array cannot cover the 

whole mirna complement!
•  More beneficial for smaller 

numbers of microRNAs!
•  Short turnaround time!

NGS! ~1ug! Moderate/high! •  Can be expensive if not in a 
high throughput facility!

•  Must be batched to be cost 
effective!

•  Complex bioinformatics!
•  Laborious preparation 

procedures!
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the Illumina Genome Analyzer (Illumina Inc.) (Morin et al., 2010; Luo, 2012). A 

useful pipeline for microRNA sequencing, including bioinformatics, has been 

developed by Tuschl’s group (Farazi et al., 2012; Hafner et al., 2012). NGS 

microRNA data correlates well with qRT-PCR (Pradervand et al., 2010), 

however discordance has been observed in a small proportion of microRNAs, 

probably due to sequence-specific method-dependent issues (Leshkowitz et al., 

2013). Multiplexing using sample barcodes allows sufficient read depth for at 

least 16 samples to be sequenced in a single Illumina HiSeq lane and enable 

NGS to be a cost-effective microRNA analysis method. Improved indexing 

protocols, for example employing combinations of both forward and reverse 

barcodes in order to maximise the number of samples on one lane of the flow 

cell, has further reduced costs (Tu et al., 2012). If urgent results are required on 

a sample-by-sample basis the cost and turnaround time of sequencing is 

inappropriate for diagnostics in most facilities at present. Additionally, the 

requirement for storage of clinical data for the appropriate time period is also 

expensive, as with any NGS service, and may influence the platform of choice 

for a diagnostic laboratory or may suggest centralisation of testing is more 

appropriate.  

For comprehensive analysis of NGS data, the bioinformatics is complex and is a 

developing area.  The short length and sequence similarity of microRNAs can 

make alignment of sequence reads against the genome difficult. To combat 

this, many protocols align to a precursor microRNA library prior to aligning to 

the mature sequence (Auvinen et al., 2012). Multiple tools and protocols are 

available for analysis of microRNA sequencing data (Farazi et al., 2012; Li et 

al., 2012) and it is likely that these will be standardised in the near future to be 

suitable for a clinical pipeline. 

To add to the more conventional tests so far described, a novel workflow which 

employs hybridisation techniques reminiscent of microarray, but with improved 

high-throughput capacity, is Nanostring® nCounter. This approach uses digital 

color-coded barcodes and single-molecule imaging for detection and counting 

of multiple transcripts in a single reaction tube. Nanostring nCounter has been 

reported to be a high sensitivity assay of easy manipulation with a detection 

rate of less than one copy per cell for over 800 regions, using as little as 100ng 

total RNA (Geiss et al., 2008) as well as being cost-effective and suitable for 
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FFPE samples (Waggott et al., 2012). It has good reproducibility when 

compared to other microRNA quantification methods (Kolbert et al., 2013) and 

is a suitable platform for measurement of microRNAs in the clinical setting. 

 

Sample normalisation  

Comparative expression analysis requires the normalisation of microRNA 

expression between samples. This may take the form of comparison to a 

‘spiked in’ non-endogenous microRNA of known concentration, a stably 

expressed endogenous sequence across samples, or comparison to the total 

expression of all microRNAs in the sample. For endogenous normalisers, a 

stably-expressed sequence across the particular sample set should be 

identified and kits are available to assess this across a number of samples 

(Jacob et al., 2013). Transfer RNAs, ribosomal RNAs, small nucleolar RNAs 

and small nuclear RNAs have been employed as endogenous controls for 

microRNA qRT-PCR. Additionally, “housekeeping” microRNAs have been 

proposed as reference controls (Peltier & Latham, 2008; J. Hu et al., 2014) but 

are not appropriate if expression differences are caused by alterations in 

general microRNA processing. Reference choice for these tests will depend on 

the microRNAs to be measured and the samples to be tested.  Suitable controls 

should be rigorously validated prior to their introduction into clinical microRNA 

testing.  

Despite the various technical challenges described here, overall the 

methodology for microRNA measurements in tumour tissue is now well 

established and, with appropriate in-house knowledge, is readily translatable 

into the clinical testing arena. The choice of platform will depend upon the 

individual requirements of the test, equipment availability and local expertise of 

each laboratory. 

1.9.7. Target prediction of microRNAs. 
As previously mentioned, the seed sequence of a microRNA is usually from the 

2nd nucleotide from the 5’ end of the microRNA. These seed sequences bind to 

the 3’ UTR of mRNAs. The binding site can have perfect or imperfect 

complementarity and the nature of this complementarity determines the fate of 

the mRNA. The binding sequence can be 6 to 8 nucleotides in length and it can 
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be present anywhere in the sequence of the 3’ UTR (and sometimes in the 

coding region (Brummer & Hausser, 2014)). These factors complicate the 

prediction of microRNA targets so in addition to sequence matching, prediction 

tools often use other parameters to provide a score for how likely the target is.  

The best known target prediction site is Targetscan, which scores each 

predicted target sequence based on the following: 3’ pairing contribution of the 

seed, proximity to residues pairing to microRNA nucleotides 13-16, the local 

AU-rich nucleotide composition, proximity to seed sequences for microRNAs 

that are co-expressed and therefore cooperate in function, positioning within the 

3'UTR at least 15 nucleotides from the stop codon, and positioning away from 

the centre of long UTRs (Grimson et al., 2007; Garcia et al., 2011). In addition 

to these scores the database provides a PCT score, which is the probability of 

preferentially conserved targeting. As selectively maintained seed sequences 

are more likely to have a relevant biological function, sites with a high score are 

more likely to be effective (Friedman et al., 2009). 

Miranda is another database used for predicting target sites (Miranda et al., 

2006). This uses position-specific rules and conservation to predict targets, in a 

similar way to Targetscan (John et al., 2004). Another prediction tool, Pictar, is 

a database with a slightly different method of predicting target sites, based on 

the fact that microRNAs are co-expressed in different cell types to exert their 

effects in a coordinated fashion (Krek et al., 2005). The target sites are first 

identified by position information, co-expression and alignment and then are 

filtered based on their optimal free energy when bound. Each predicted site is 

scored by a Hidden Markov Model (HMM) Maximum likelihood fit procedure, 

and the score for each individual site is combined into a total score which 

provides a ranked list of transcripts (Krek et al., 2005). A more recent target 

prediction algorithm is that of DIANA micro-T (Paraskevopoulou et al., 2013). 

This predicts target sites in 3’ UTRs and coding sequences using machine 

learning on a positive and negative set of microRNA target sites, which were 

taken from PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking 

and Immunoprecipitation) data from Hafner et al (Hafner et al., 2010). In 

addition to these purely bioinformatics prediction tools, TarBase includes 

experimental data of target sites including what experiments were conducted to 

test the targeting of a microRNA to these sites (Sethupathy et al., 2006; 
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Papadopoulos et al., 2009). Experimental methods used for this may include 

overexpression or knockdown of the microRNA followed by quantification of the 

levels of the target mRNA and protein. Another method is the use of luciferase 

reporter assays, which involve the co-transfection of a plasmid containing the 3’ 

UTR of the target upstream of a luciferase reporter and the microRNA mimic or 

inhibitor (Jin et al., 2013). More high throughput methods use biotin probes to 

pull down targets using biotinylated microRNA mimics or immunoprecipitation 

with AGO to pull out the cross-linked RNA present within the complexes (Hafner 

et al., 2010; Subramanian et al., 2015). 

1.9.8. MicroRNAs in cancer; functions, alterations and mechanisms. 
The reported global decrease in expression of microRNAs compared to 

adjacent normal tissue in many cancer types suggests that altered processing 

may play a role in the pathology of some cancers (Lu et al., 2005). A number of 

components are involved in the processing of microRNAs and mutations 

rendering these less effective will inevitably reduce the overall levels of mature 

microRNAs in the cell (Fig. 1.9).   
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Figure 1.9. Alterations in the microRNA processing machinery in 
cancer. 

The normal processing of a microRNA requires transcription of a primary 

transcript, cleavage, exportation to the cytoplasm, and further cleavage to 

generate a mature transcript. If any of the machinery performing these steps is 

altered in cancer there is global dys-regulation of microRNAs in the cell. It has 

been shown that chemo- and radiotherapy cause an increase in microRNAs in 

the cell, which acts to maintain the DNA damage response (Wan et al., 2013). 

Mutations in the exportation machinery, such as exportin-5, lead to a build up of 

precursor microRNA in the nucleus and a lack of mature microRNAs in the 

cytoplasm (Melo et al., 2010), where they usually exert their function. Low 

expression of processing components, such as Dicer, can dramatically reduce 

the numbers of microRNAs cleaved from precursor to mature form, again 

reducing their downstream effects on the cell (Kuang et al., 2013). 
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The involvement of microRNA processing in the treatment of cancer is 

suggested by the apparent acceleration in nuclear export of pre-microRNA 

following radiation- or chemotherapeutic- induced DNA damage (Wan et al., 

2013). Hence, the resulting increase in microRNA processing may maintain the 

DNA damage response in the cell. Specific aberrations of the microRNA 

processing machinery have been directly associated with various cancers. For 

example, in some cancers with microsatellite instability, mutations in Exportin-5 

(XPO5), which exports pre-microRNA from the nucleus to the cytoplasm (Yi, 

2003), lead to trapping of pre-microRNAs in the nucleus preventing further 

microRNA processing and function (Melo et al., 2010).  A SNP in XPO5 has 

been associated with lung cancer and multiple myeloma, and tumours with this 

SNP have a better response to chemotherapy (de Larrea et al., 2012; Ding et 

al., 2013). Low expression of Dicer, the RNase that cleaves precursor 

microRNAs into their mature form, predicts poorer outcome in CLL and ovarian 

cancer (Merritt et al., 2008). Furthermore, Dicer expression is lower in CLL 

patients with unfavourable cytogenetic aberrations (Zhu et al., 2012a) which is 

consistent with the general assumption that global reduction of mature 

microRNAs is associated with poorer outcome (Lu et al., 2005). To add to this, 

recognition of primary microRNA hairpins among a background of other hairpin 

RNAs is required in order to target them for cleavage and ultimate export. 

Bartel’s group identified sequence determinants within the primary transcripts 

that license the hairpin for processing by allowing binding of certain proteins, 

such as SRp20 (Auyeung et al., 2013). Mutations of these regions may also 

have an implication in cancer, although there have been no reports of processor 

binding site alterations in cancer to date. 

MicroRNA editing is another layer of regulation that is altered in some cancer 

types. This process is catalysed by ‘adenosine deaminases that act on RNA’ 

(ADARs) which convert adenine to inosine (Paul & Bass, 1998). Inosine acts 

like guanosine and base-pairs with cytidine therefore inducing changes in target 

recognition (Habig et al., 2007). Editing of miR-376* (the passenger strand of 

miR-376) has been reported in high-grade glioma and may effect patient 

outcome (Choudhury et al, 2012a; Seton-Rogers, 2012). Increasing use of NGS 

and the efforts of TCGA in providing large volumes of data will likely highlight 

more examples such as this in the future. 
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1.9.9. MicroRNA networks in cancer. 
The presence of ceRNAs, and multiple sequences in the cell at any given time 

that may “compete” for microRNA binding, emphasises the extensive networks 

that are involved in microRNA function. The imperfect match and relatively short 

6-8 base pair “seed” sequence characteristic of microRNA-mRNA interactions 

allow for a multitude of potential targets for each microRNA. Additionally, a 

single mRNA may have target sites for multiple microRNAs, creating redundant 

molecular networks for the control of gene expression. Because of the potential 

to predict microRNA-binding sites based on base pairing, they are highly 

amenable to systems biology approaches. However, many studies have 

focused narrowly on the specific effect of a given microRNA upon a specific 

mRNA, defined by bioinformatic prediction algorithms, rather than exploring the 

extended network of gene expression (Sumazin et al., 2011). One of the 

reasons for the focus on single bioinformatically predicted targets is 

experimental tractability, as it is not trivial to identify microRNA targets 

experimentally in mammalian cells, and many important interactions have been 

identified using this method. However, the microRNA/single mRNA target 

approach is limited and may not accurately reflect the most physiologically 

significant microRNA/target interactions. This can be overcome by screening 

multiple targets, or using global approaches to identify microRNA/target 

interactions inside the cell. These include proteomics, gene expression arrays 

and RNA cross-linking/Ago2 pull-down approaches such as HITS-CLIP, to allow 

assessment of microRNA-target binding in the cell (Chi et al., 2009; Boudreau 

et al., 2014; Hu et al., 2013).  Future studies in the field would benefit from the 

application of these techniques as well as assessment of microRNA functions in 

the context of networks, including sponge interactions and feedback loops 

which take into account the competitive nature of interactions between 

microRNAs and their targets. 

The influence of groups of microRNAs is exemplified by microRNAs in clusters, 

which are expressed together and show functional cooperation. For example, 

the polycistronic oncogenic miR-17~92 cluster of microRNAs specifically induce 

lymphomagenesis in a B-cell-specific transgenic mouse model (Sandhu et al., 

2013) and miR-19b, miR-20a and miR-92 from this cluster along with miR-26a 
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and miR-223, promote T-cell acute lymphocytic leukaemia development in 

mouse models (Mavrakis et al., 2011).  

Inter-cellular network interactions should also be addressed in the context of 

microRNAs as shown by the symmetry of cell division in colorectal cancer 

(CRC). In late-stage CRC and CRC stem cells, divisions are symmetric 

producing two self-renewing daughter cells. In early-stage CRC, cell fate 

determinants are localised to opposite poles during division resulting in one 

self- renewing and one differentiating daughter cell (asymmetric cell division). 

This has been shown to be controlled by a Snail/mir-146a/Numb/β-catenin axis 

(Lerner & Petritsch, 2014). This proposes that miR-146a, induced through Snail 

dependent β-catenin and TCF (T-cell factor), down-regulates Numb, relieving 

Numb-mediated degradation of β-catenin and subsequently enhancing WNT 

(wingless-type MMTV integration site) signalling (Hwang et al., 2014). This 

effect maintains self-renewing divisions, partly independent of the EMT.  

As part of their role in shaping the fate of a cell, microRNAs are fundamental in 

the control of EMT. Some microRNAs, such as the miR-200 family and miR-

34a, are protectors of the epithelial phenotype, and their down-regulation during 

EMT enhances mesenchymal specifying targets such as ZEB1 and ZEB2 (Hao 

et al., 2014). The miR-34a family can also be inhibited by ZEB1 (Kim et al., 

2011a), establishing a robust feedback loop to ensure the cell is driven towards 

a more mesenchymal fate. Oncogenic microRNA miR-22 has been shown to 

inhibit anti-metastatic miR-200 in breast cancer by targeting the TET family of 

methylcytosine dioxygenases, which results in silencing of miR-200 (Song et 

al., 2013b). Positive correlation of miR-138 and EMT has uncovered its role in 

driving the process through multiple targets including Vimentin, transcriptional 

repressors such as ZEB2 and epigenetic regulators such as EZH2 (Liu et al., 

2011b).  Similarly, miR-155 has been shown to repress TGF-β-induced EMT 

and depletion of this microRNA can suppress EMT in a mouse model (Kong et 

al., 2008). 

The study of microRNAs under stress conditions has uncovered some important 

findings including the EGFR-mediated phosphorylation of AGO2 in response to 

hypoxia in breast cancer, resulting in suppression of specific microRNAs that 

depend on AGO2 for their maturation (Shen et al., 2014). This is of huge 

importance in cancers where EGFR is constitutively active. Understanding of 
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microRNA regulatory networks has underlined the importance of microRNA 

control over tumour cell biology, and has highlighted novel therapeutic targets 

and processes involved in tumour growth. One such example of this is the 

recent discovery that miR-542-3p weakens the interaction of p53 with its 

negative regulator MDM2, thus stabilising the protein (Wang et al., 2014c). 

1.9.10. MicroRNAs as serum biomarkers. 
The use of circulating microRNAs as markers in different cancer types is a 

rapidly developing area (Schwarzenbach et al., 2014). Tumour cells can release 

microRNAs, stabilised by their incorporation into microvesicles, which have 

shown stability in the circulation following multiple freeze-thaw cycles and 

prolonged exposure to room temperature (Mitchell et al., 2008). A study of 391 

patients with non-small cell lung cancer (NSCLC) identified 35 highly expressed 

microRNAs with predicted binding sites for at least one of 11 genes of the TGF-

β pathway, which were significantly differentially expressed at the extremes of 

survival. Of these, 17 were associated with patient survival and were combined 

into a risk score significantly predicting survival in advanced NSCLC (Wang et 

al., 2013). Also, isolation of exosomes from serum showed a signature involving 

two microRNAs and one small non-coding RNA can be used for non-invasive 

diagnosis of glioblastoma (Manterola et al., 2014). 

The detection of microRNAs in the blood presents some challenges and there is 

overwhelming discordance between reports in well-studied cancers (Jarry et al., 

2014). Appropriate endogenous controls for microRNA quantification in serum 

are under debate as many mRNA and rRNA species are absent in blood due to 

circulating RNases (Li & Kowdley, 2012).  Clinically, fluctuations of circulating 

microRNAs can occur as a result of treatment, diet and other factors, increasing 

noise in these assays. The presence of myeloid and lymphoid cells can alter the 

levels of certain microRNAs and viral infections of the patient may also effect 

endogenous microRNA expression (Pritchard et al., 2012). Expression changes 

of microRNAs are rapid in blood and even a traumatic venepuncture may have 

the potential to influence this. Despite these hurdles, it is clear that further study 

is warranted for detection of the presence of microRNAs in the blood for future 

non-invasive biomarker development and the field is moving rapidly towards 

that goal.  
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1.9.11. MicroRNA polymorphisms predisposing cancer. 
Aside from treatment resistance, it is worth noting that a number of SNPs in 

microRNA binding sites are involved in cancer risk, and may be markers for 

genetic susceptibility studies in some cancers (Ziebarth et al., 2012).  They can 

be used as markers to predict subsets of patients at risk of poor outcome or 

lack of treatment response. These SNPs may be present in microRNA target 

sites, in the processing machinery or of the microRNA sequence themselves, 

altering their targets and ability to be processed (Ding et al., 2013; Wu et al., 

2011; Chin et al., 2008).  

1.9.12. MicroRNAs in glioblastoma. 
MicroRNAs have oncogenic, tumour-suppressive, ECM (extracellular matrix) - 

responsive and treatment-related roles in glioblastoma (Godlewski et al., 2010b; 

Yin et al., 2012; Munoz et al., 2014; Kim et al., 2014). Their expression levels 

can be exploited to classify glioblastoma according to WHO classifications and 

by prognosis (Srinivasan et al., 2011; Sana et al., 2014; Rivera-Diaz et al., 

2015). New molecular classifications have also been generated by clustering 

microRNA expression and have been shown to delineate glioblastoma into 5 

groups with expression patterns reminiscent of different neural cell precursors 

(Kim et al., 2011b).  

One of the most studied microRNAs in cancer is miR-21, and this microRNA 

has been shown to have an important role in regulating apoptosis in 

glioblastoma (Quintavalle et al., 2012a). MicroRNA-21 is highly expressed in 

glioblastoma, and reduces apoptosis in cells through targeting of p53 and 

FASLG (Papagiannakopoulos et al., 2008; Shang et al., 2015). Through this 

role, its presence in glioblastoma cells confers drug resistance and therefore 

oligonucleotide inhibitors of miR-21 have been explored to reduce the effect 

(Giunti et al., 2015). Additionally, miR-21 has been shown to increase 

glioblastoma migration by repressing matrix metalloprotease inhibitors (Gabriely 

et al., 2008). 

MicroRNAs have a prominent role in EGFR signalling, and this has been 

studied extensively in glioblastoma (Wang et al., 2011a; Serna et al., 2014; 

Wang et al., 2014b). A tumour suppressor microRNA, miR-34a, is decreased in 

glioblastoma, and this, in combination with amplified EGFR confers a poor 
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outcome in glioblastoma patients (Yin et al., 2013). When miR-34a was 

overexpressed in glioblastoma cells, EGFR protein expression decreased and 

this was shown to be mediated through Yin Yang-1 (YY1) (Yin et al., 2013). 

Additionally, miR-9 is suppressed by EGFRvIII through the Ras/PI3K/AKT 

pathway in glioblastoma conferring a growth advantage (Gomez et al., 2014). 

The oncomiR miR-148a has also been shown to have a role in regulating EGFR 

and apoptosis in glioblastoma through its targeting of MIG6 and BIM (Kim et al., 

2014). 

As previously mentioned, microRNAs have prominent roles in development, 

and their levels fluctuate throughout differentiation (Letzen et al., 2010). They 

have been shown to have a strong regulation influence over the Notch and 

WNT pathways in glioblastoma (Chen et al., 2012b; Zoni et al., 2014; Liu et al., 

2014). Glioblastoma stem cells have been shown to have a dependence on the 

TGF-β signalling pathways and NF-κB, and these are also regulated through 

microRNA mediated mechanisms involving miR-9, miR-34a and miR10b 

(Bazzoni et al., 2009; Genovese et al., 2012; Lin et al., 2012). Stem cell function 

is maintained by the polycomb repressor complexes and components of these 

complexes, for example BMI-1 (B Lymphoma Mo-MLV Insertion Region 1) and 

EZH2, which are regulated by miR-128 and miR-101 respectively (Smits et al., 

2010, Peruzzi et al., 2013;). 

The effects of expression of a microRNA are relatively fast, and these 

expression levels can be altered very quickly. Some microRNAs have a half-life 

of just 30 minutes, such as miR-9 (Sethi & Lukiw, 2009). This makes them 

excellent candidates for mediators of signalling pathways in response to 

environmental stimulators. In a disease such as glioblastoma, which has 

extreme environments; microRNAs have been shown to regulate cellular 

response. For example, low glucose availability reduces the expression of miR-

451, which suppresses proliferation and stimulates migration through CAB39 

(Calcium Binding Protein 39) (Godlewski et al., 2010a). This contributes to the 

‘go or grow’ behaviour of glioma cells; where cells upregulate one or the other 

in response to external stimulatory factors (Godlewski et al., 2010a). Similarly, 

microRNAs have been shown to stimulate cellular response in the presence of 

hypoxia. A well known hypoxia responsive microRNA is miR-210, and 

knockdown of this in hypoxic glioblastoma stem cells caused cell cycle arrest, 
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decreased neurosphere formation and stem cell marker expression (Yang et al., 

2014). This microRNA may therefore be a potential candidate for targeting 

GSCs in the hypoxic niche of glioblastomas. Another mechanism demonstrating 

hypoxic response is the blocking of the effects of tumour suppressive microRNA 

miR-297 when cells are grown in hypoxia, conferring survival advantage to 

glioblastoma cells in this environment (Kefas et al., 2013). On a global level, 

and previously mentioned but notable in this context, it has also been shown 

that EGFR has the ability to modulate the maturation of a microRNA in hypoxia 

by its phosphorylation of AGO, a component of the RISC complex which serves 

to reduce the overall levels of mature microRNAs in the cell (Shen et al., 2014). 

MicroRNAs have also been explored as potential therapeutics for glioblastoma.  

This is a complicated field because RNA-based therapies require delivery 

strategies to provide adequate dosage to the tumour site. In glioblastoma this is 

difficult due to the BBB. It has been shown that mesenchymal stem cells can 

deliver miR-145 and miR-124 to glioma cells when administered intracranially 

and systemic administration of miR-7 using novel integrin-targeted 

biodegradable polymeric nanoparticles in mice with human glioblastoma 

xenografts has also been successful in inhibiting angiogenesis and growth (Lee 

et al., 2013; Babae et al., 2014). MicroRNA screens have become 

commonplace for identifying microRNAs associated with a particular function, 

and one such screen has shown that four microRNAs; miR-1, miR-125a, miR-

150 and miR-425, induce resistance to radiotherapy. These all showed 

correlation with TGF-β expression and miR-1 and miR-125 were shown to be 

regulated by this pathway directly (Moskwa et al., 2014). Furthermore, miR-

125b has been shown to provide resistance to TMZ through PIAS3 (Protein 

Inhibitor Of Activated STAT, 3), BAK1 (BCL2-Antagonist/Killer 1), TNFAIP3 

(Tumour Necrosis Factor, Alpha-Induced Protein 3) and NKIRAS2 (NF-κB 

Inhibitor Interacting Ras-Like 2) in glioblastoma (Shi et al., 2012; Shi et al., 

2014a; Chen et al., 2014; Haemmig et al., 2014). Three of these targets are 

implicated in NF-κB signalling, which is required for sensitivity to TMZ (Liu et al., 

2012; Wagner et al., 2013; Haemmig et al., 2014). Similarly, miR-9, which 

directly targets NF-κB 1, has TMZ-resistance properties (Bazzoni et al., 2009; 

Lee et al., 2013). 
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The most advanced translational study for microRNAs in glioblastoma is an 

evaluation of miR-10b in gliomas as a whole (Clinical trials identifier 

NCT01849952). This microRNA has previously been shown to be higher in 

expression in glioblastomas compared to normal brain tissue, and is involved in 

cell migration and invasion (Guessous et al., 2013). The trial is currently 

recruiting and the investigation includes the in vitro assessment of primary 

tumours to anti-miR-10b treatment. 

1.10. Survival analysis. 
Survival analysis is a type of statistical investigation that determines the 

probability of a patient surviving up to a certain point in time. This is measured 

using the hazard function which computes the number of patients who died 

during a time interval divided by the number of patients alive at the beginning of 

the interval weighted by the length of the time interval. Time to the event can be 

measured in days, weeks or years, whichever is most appropriate for the time to 

event data. In many cases time to death data is incomplete, as some patients 

may still be alive after the study ends, and other patients may have dropped out 

of the study. In these cases the observations are censored, to represent the 

missing data. This includes right censoring, where the individual did not 

encounter the event during the study period, left censoring (which is not 

appropriate for overall survival data) where the patient joined the study after the 

event occurred, and interval censoring, when the event occurred at some time 

during the study in between two measurements. The most common type of 

censoring for survival analysis in time to death date is right censoring (Altman & 

Bland, 1998). 

Models used to analyse the survival time of a set of predictor variables include 

both parametric and non-parametric methodologies (Cantor & Shuster, 1992). 

Parametric methodology assumes that the survival data has an underlying 

distribution similar to the known probability distributions, which include 

exponential, Weibull and lognormal distributions. These models make 

inferences about the parameters of the distribution and they assume a 

homogeneous variance of the data.  Non-parametric approaches have no 

assumed distribution and they include the Kaplan-Meier and log-rank test. The 

Kaplan-Meier method estimates survival probability as a function of time, and is 
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often interpreted in the form of a graph. Where data are censored this can be 

represented on the graph as a vertical line at that timepoint, indicating further 

information from this patient has not been collected.  The Kaplan-Meier method 

is a maximum likelihood estimate of the probability that a person will have a 

lifetime that exceeds the time of the event and takes the following form for the 

event time ti and the number of deaths di: 

. 

This is therefore the product of the fraction of survivors at time ti. If there is no 

censoring, then ni is simply the number of survivors just before time ti. If there is 

right censoring, ni is the number of survivors minus the number of losses 

(Cantor & Shuster, 1992). This means that at the time of the event it is only the 

number patients still alive that are at risk of death. This is calculated at each 

time point that an event occurs.  

To test the survival distributions of two or more groups, the log-rank test can be 

used which compares the Kaplan-Meier curve for each group. This tests the null 

hypothesis that there are no differences between two or more populations if 

there is an event (i.e. a death) at any time point. Log-rank calculates 

probabilities as in the Kaplan-Meier method, and then determines the total 

numbers of expected deaths and the number of observed deaths in each group. 

From this, a χ2 test can be performed to test the null hypothesis, which is 

(observed-expected)2/expected, producing a significance result (Altman & 

Bland, 1998). 

In certain cases it may be necessary to determine what multiplicative effect an 

increase in a covariate has on the hazard rate. The Cox proportional hazards 

model is a semi-parametric model designed to test this (Cox, 1972). This model 

assesses the proportional change a covariate has on the baseline survival 

curve. The baseline hazard curve is the curve when all the coefficients are 

equal to zero. The hazard ratio is the hazard divided by the baseline hazard. 

This is also the exponent of the coefficient. For example a hazard ratio of two 

represents a population that has twice the risk of dying compared to the other, 
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or with a continuous variable represents a 2x increase in risk per unit of the 

variable. 

In some cases it may be necessary to assess a large number of predictors, to 

determine which may be prognostic. LASSO (least absolute shrinkage and 

selection operator) has the ability to select variables, based on their prognostic 

ability, taking into consideration other variables in the model (Tibshirani, 1996). 

This estimator involves penalisation of the regression coefficients, which results 

in a number of covariates with coefficients shrunk to zero. LASSO mimimises 

the following (where y is a dependent variable, x is a independent variable, β is 

an unknown parameter and λ is a tuning parameter controlling the amount of 

shrinkage): 

  
This estimator uses regular least squares (the part of the equation to the left of 

the + sign), with a penalty that is determined by λ (the second part of the 

equation to the right of the + sign). Least squares works by starting with all 

coefficients at zero, then finding the predictor most correlated with Y and 

increasing the coefficient of the predictor in the direction of the correlation. This 

happens until another predictor has an equal correlation, then the coefficient for 

that predictor is increased in the direction of the least squares. This is continued 

until all the predictors are included in the model. 

The absolute values of the coefficients are used in the penalty function, which 

results in some coefficients being shrunk all the way to zero. This is in contrast 

to ridge regression, which penalises on the squares of the values, and therefore 

all covariates have a non-zero coefficient (Fig. 1.10). This therefore performs a 

model selection and predictors do not have to be chosen as they would from 

ridge regression. 
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Figure 1.10. The probability distribution of a parameter, β, when 
penalised using ridge and LASSO.  

Using Bayesian probability, penalisation performed by ridge, which uses the 

squares of the coefficients in the penalty function, produces a smooth 

probability distribution, which never reaches zero. This means that as the 

penalty increases, all of the coefficients shrink, but remain non-zero. 

Penalisation using LASSO however, uses absolute values for the coefficients in 

the penalty function, and produces a ‘pointy’ probability distribution, which 

results in some coefficients being shrunk to exactly 0. This has the effect that, 

as the penalty increases, more coefficients are shrunk to exactly zero. 

 

The tuning parameter, λ, which is required for the penalisation is obviously 

important and the optimal λ can be determined using likelihood cross validation. 

Cross validation involves separation of the data and generating and validating 

the model on different subsets, to avoid overfitting of the model. This is 

performed multiple times with different λ values over many different subsets and 

the results are averaged over the rounds to reduce variability.  The λ with the 

lowest cross-validated likelihood is then used in the LASSO estimator (Goeman, 

2010).  

 

 

β"
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1.11. Publically available data. 
The Cancer Genome Atlas (TCGA) is a large program to integrate 

comprehensive data for multiple cancer types, including gene expression, 

methylation, copy number and microRNA expression for public use. The first 

disease to be studied by the TCGA was glioblastoma (Cancer Genome Atlas 

Research Network, 2008). Glioblastoma data includes over 500 surgically 

resected pathologically identified glioblastoma samples with information on 

copy number, methylation, gene expression and microRNA expression. The 

data was initially based on microarray microRNA and mRNA expression 

measurements but now sequencing data is also available including RNA-seq 

and exome-seq. This dataset was extensively analysed in 2013 for glioblastoma 

(Brennan et al., 2013). In addition to the glioblastoma data, there are also over 

500 samples for lower grade glioma (grade II and grade III) with exome, SNP 

methylation, mRNA and microRNA data available, although data is not 

complete for every platform. Comprehensive clinical data and sample handling 

is also provided which makes these datasets extremely powerful, not only for 

generating hypotheses but also validating wet-lab findings in patient samples.  

	  

1.12. The aims and objectives of this thesis. 
In many cancers, personalised medicine, or the ‘right drug for the right patient, 

at the right time’, has shaped patient management over the past five to ten 

years. In glioblastoma, although molecular classifications have been created, 

they have never reached the clinic and the only markers used for patient 

treatment are MGMT promoter methylation and IDH mutation. The primary aim 

of this thesis is to improve this situation, providing molecular biomarkers using 

microRNAs, which are highly appropriate for clinical assessment. 

My background is as a Clinical Scientist in the National Health Service and I 

have seen how service has changed with the era of personalised medicine and 

learned how best to implement these tests for patient management. The 

microRNA signatures generated here have been designed in such a way as to 

allow easy translation to a clinical laboratory. 

MicroRNA signatures for prognosis prediction in glioblastoma have previously 

been generated (Lakomy et al., 2011; Niyazi et al., 2011; Srinivasan et al., 
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2011; Zhang et al., 2012a, Sana et al., 2014) but the microRNAs used are 

different between signatures. In order to confirm the role of the microRNAs used 

in the signatures generated here, every effort has been made to validate the 

role of these microRNAs in glioma biology. 

In summary, the work in this thesis can be described as: 

1. Generation of a signature that predicts prognosis in glioblastoma and 

prediction of the pathways targeted by the microRNAs included in the signature. 

2. Assessment of all prognostic microRNAs in malignant glioma and 

prediction and validation of the pathways targeted by these microRNAs.  

3. Analysis of a prognostic microRNA in glioma, miR-9, and an attempt to 

resolve why a phenotypically oncogenic microRNA appears to be expressed at 

higher levels in patients with a better outcome. 

4. Generation of a signature for prediction of response to the anti-

angiogenic drug bevacizumab and assessment of the signature using cell line 

drug sensitivity data.  

This work attempts to validate the hypotheses generated using the huge 

volumes of data in the TCGA using further patient subsets and experimental 

data.  
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2. A 9-microRNA signature predicts prognosis in glioblastoma 
	  

‘Science predicts that many different kinds of universe will be spontaneously 

created out of nothing. It is a matter of chance that we are in.’ Stephen Hawking, 

May 2011. 

2.1. Introduction. 
In many cancers, a wealth of molecular markers are available for use in 

diagnosis and patient management (Marchio et al., 2015; Reguart & Remon, 

2015). Unfortunately, the development efforts in personalised medicine for 

glioblastoma have been less successful, and there are few molecular indicators 

and companion diagnostics for patient management.  As previously mentioned, 

the prognosis of patients with glioblastoma can range from a few weeks to a 

number of years (Bleeker et al., 2012) and the best marker to predict this is 

MGMT promoter methylation (Fig. 2.1), (Hegi et al., 2005). However, this 

marker is only of use in patients treated with temozolomide (Riemenschneider 

et al., 2010). The IDH mutation also predicts a good prognosis, although the 

majority of these patients have progressed from lower grade disease which 

would already be an indicator of good prognosis (Riemenschneider et al., 

2010). Determination of patients with particularly aggressive tumours is 

paramount to patient management to allow more extensive post-treatment 

surveillance and possible targeting for more aggressive drugs. Therefore, 

appropriate molecular markers predicting prognosis in glioblastoma is an unmet 

need.  

MicroRNAs represent an attractive tool for stratifying patients into prognostic 

categories because of their stability in clinical samples and their ease of 

quantification compared to mRNAs (Hall et al., 2012). Directly associated 

markers, such as EGFR mutations predicting response to an EGFR inhibitor, 

are the most ideal companion diagnostics when assessing which treatment 

regime is best for a patient. In the absence of these however, microRNAs 

discovered using correlation analysis can be exploited to provide information on 

a patient’s tumour that otherwise would not be available. As a result, there have 

been multiple attempts to create signatures using microRNAs in different 

cancers for a variety of applications (Calin & Croce, 2006; Yu et al., 2008; 
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Garzon et al., 2008; Gokhale et al., 2010; Visone et al., 2009; Díaz-Martín et al., 

2014). To date though, there are no microRNA signatures in clinical use. 

 

 
Figure 2.1. MGMT promoter methylation predicts a better prognosis in 
glioblastoma.  

MGMT promoter methylation is currently the only marker that predicts response 

to treatment for the disease. Image from Hegi et al., 2005 (Hegi et al., 2005). 
 

MicroRNA expression signatures can define tumour types and molecular 

subgroups (Kim et al., 2011b). It is also possible to cluster the expression of 

microRNAs into groups based on their embryonic origin (Lu et al., 2005). For 

this reason, microRNA expression can be used to identify cancers arising from 

different cell lineages. The discovery of microRNAs as predictors of prognosis 

became apparent as early as 2004, when let-7 was shown to predict post-

operative survival in lung cancer (Takamizawa et al., 2004). Several individual 

microRNAs have been associated with glioblastoma prognosis (Mizoguchi et 

al., 2012), but it is likely that multiple microRNAs will provide a more statistically 

robust approach. Previous prognostic signatures for glioblastoma have been 

designed (Lakomy et al., 2011; Srinivasan et al., 2011; Zhang et al., 2012a; 

Sana et al., 2014), although the microRNAs employed are not consistent 

between studies (Fig. 2.2). Potential reasons for this, as already stated, are due 
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to the different sample sizes, population differences in microRNA expression, 

sample types and diverse extraction and quantification methods. 

 
Figure 2.2.  Four prognostic microRNA signatures developed for 
glioblastoma. 

There is little concordance in the microRNAs used in the signatures. This may 

be due to a number of study design differences including sample type and size 
(Lakomy et al., 2011; Niyazi et al., 2011; Srinivasan et al., 2011; Zhang et al., 

2012a). 
 

In the study described here I used a novel methodology, known as LASSO 

(least absolute shrinkage and selection operator (Tibshirani, 1996)), with 

glioblastoma data from The Cancer Genome Atlas (TCGA, NIH), to identify a 9-

microRNA prognostic signature. The 9 microRNAs were then used to generate 

a risk score algorithm suitable for clinical prognostic stratification. The signature 

separated patients according to outcome, was relevant in patients treated with 

temozolomide and was validated in an independent dataset. Although other 

microRNA prognostic signatures have been identified in glioblastoma, this is the 

first to use the whole TCGA dataset; it is relevant across molecular subtypes of 
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glioblastoma, and is the first to be validated in an independent dataset from a 

different geographical population. Moreover, the signature microRNAs have 

been previously implicated in glioblastoma biology, with known functional roles, 

further supporting the relevance of the signature. Thus I have identified a 

functionally relevant, robust microRNA-based prognostic signature in 

glioblastoma.  

2.2. Methods. 

2.2.1. TCGA clinical information and expression data. 
Level 2 Agilent microRNA 8x15k microarray and G4520A microarray gene 

expression data plus clinical information for 475 glioblastoma and 10 

unmatched non-tumour samples were downloaded from TCGA (TCGA, NIH) 

(accessed October 2012). I chose to use level 2 data, which provides quantile 

normalised expression data for each probe. This was to aid translation of the 

signature into a clinical setting, as an exact oligonucleotide sequence can be 

used as a prognostic tool, rather than the expression of a microRNA, which may 

have multiple isoforms. Only patients treated with radiotherapy and some form 

of chemotherapy were selected as the aim in creation of a prognostic signature 

is to benefit patient management, which most likely will include treatment in 

some form (Table 2.1). Illumina HiSeq sequencing data (level 3, reads per 

million of total reads mapping to a mature microRNA) for microRNAs were 

downloaded for all samples with grade II or III glioma from TCGA (n=178; 55 

astrocytoma, 47 oligoastrocytoma, 75 oligodendroglioma, 1 not stated; 95 grade 

II, 112 grade III, 1 not stated). 
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Characteristic Number of patients (n=475) 
Age (median=59)     
<60 years 248   
≥60 years 227   
Gender     
Male 293   
Female 182   
Karnofsky Performance Status   
≤70 141   
>70 220   
Not available 114   
Days to death/ last follow-up (median 430 days) 
<450 days 301   
≥450 days 174   
≤30 days 20   
Therapy     
TMZ 3   
TMZ and 
radiation 187   
Other 285   

 

Table 2.1. Characteristics of patients used in the generation of the 
signature. 

The characteristics of the 475 patients included in the generation and testing of 

the model are shown in the table. There are more males in the study (62%), 

which is expected for a glioblastoma cohort. KPS (Karnofsky performance 

status) was calculated prior to surgery and at least 30% had what is considered 

to be a low KPS (<70). There were 26 IDH mutations recorded in this cohort 

although 117 did not have IDH mutation information. 
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Figure 2.3. Workflow for generation of the prediction algorithm 

The prediction algorithm was generated using the Penalized package in R 

(Goeman, 2010). Firstly an appropriate penalization parameter was determined 

using the OptL1 function and then LASSO regression was performed using the 

Penalized function. 

 

2.2.2. Statistical analysis of microRNA expression data in glioblastoma. 
Glioblastoma samples were assessed using a LASSO penalised regression 

analysis (see explanation on page 68) to predict survival using microRNA 

expression (Tibshirani, 1996) with leave-one-out cross-validation using R 

software (v2.15.1) and the Penalized package (Goeman, 2010) (Figure 2.3). A 

risk score was generated using the sum of microRNA expression values 

weighted by the coefficients from the LASSO regression, as described in 

Alencar et al (Alencar et al., 2011). 
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This was: E_miR-n = expression of microRNA n. 

Risk score = -0.044E_miR-370 + 0.062E_miR-124a + -0.066E_miR-145 + 

0.005E_miR-34a + 0.015E_miR-10b + 0.092E_miR-148a + 0.162E_miR-222 + 

-0.032E_miR-9 +  -0.021E_miR-182 

 

The risk score was applied to all glioblastoma samples in the dataset and the 

samples separated into low- and high-risk groups using the median as a cut-off. 

The median was used as a cut-off here for demonstration, but the cut-off may 

be defined based on treatment availability if introduced as a clinical test. A Cox 

regression model incorporating age and the log-rank test were used to assess 

overall survival (OS) of the two groups in the whole dataset, the molecular 

subtypes of glioblastoma (defined using published classification information 

from Brennan et al (Brennan et al., 2013)) and temozolomide treated patients 

(obtained from TCGA clinical data). The score was also assessed as a predictor 

for progression-free survival (PFS). A statistical significance threshold of p=0.05 

was used throughout.  Pearson’s correlation coefficient was calculated for 

correlation of age with risk score. Pearson’s correlation was chosen (as 

opposed to Spearman’s correlation) because it assesses for a linear 

relationship, which is what would be expected from the relationship between 

age and a factor such as risk score. Multivariable Cox regression models were 

used for the risk groups and each of the following factors (separately); MGMT 

promoter methylation, gender, IDH mutation, subtypes, extent of resection and 

KPS (at diagnosis) to compare the two predictors using TCGA data (Brennan et 

al., 2013). 

Each microRNA in the signature was assessed for their individual role in 

survival using univariable Cox regression. The expression levels of all 

microRNAs were also tested for correlation with each other using Spearman’s 

correlation (Spearman’s correlation was chosen as the relationship between two 

microRNAs may not necessarily be linear). 
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2.2.3. Prognostic validation of the signature in an independent cohort 
using qRT-PCR.  
(extraction and qPCR performed by Charlotte Tumilson at University of 
Central Lancashire). 
Frozen glioblastoma tissue was obtained from the Brain Tumour North West 

tissue bank, Royal Preston Hospital, UK. This was collected under local 

permissions and qPCR was performed at the University of Central Lancashire 

(Appendix 2.1). Total RNA was extracted using TRIzol® (Life Technologies, 

UK) according to the manufacturer’s guidelines. 1µg of total RNA was reverse 

transcribed using the NCode miRNA First-strand cDNA synthesis Kit (Life 

Technologies). Real-time PCR was performed using GoTaq qPCR Master Mix 

(Promega, Madison, WI) on an Applied Biosystems 7500 PCR Machine with U6 

snRNA as an endogenous control (chosen because of its stable expression 

across normal and cancerous human solid tissues (Peltier & Latham, 2008)). 

Average Ct values were calculated for each microRNA, and then normalised to 

U6 average Ct values (dCt). These dCt values were used in the signature 

algorithm to create risk scores for each patient. One-tailed Cox regression was 

performed using these scores. The patients were separated according to the 

60th percentile (used because there were 10% more patients in this dataset 

compared to the TCGA dataset with shorter survival than the conventional 

median of 450 days) and the high- and low-risk groups assessed for association 

with survival using a one-tailed log-rank test. A one-tailed log-rank test was 

considered appropriate because the hypothesis is that the high-risk patients 

have a poorer survival than the low-risk patients, and not the vice versa. 

2.2.4. Assessment of the 9-microRNA signature in lower grade glioma. 
MicroRNA expression for WHO (World Health Organisation) Grade II and Grade 

III astrocytoma was based on sequencing reads per million mapping to a 

mature microRNA (as defined in the microRNA database miRbase (Griffiths-

Jones et al., 2008)). Risk scores were calculated and significance assessed as 

above. The median of the lower grade dataset was recalculated and used to 

separate the samples into two groups. 
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2.2.5. Cell culture, transfection and validation of candidate microRNA 
targets. 
LN229 glioblastoma cells (ATCC) were cultured in DMEM containing 10% fetal 

bovine serum at 37°C in 5% CO2. Cells were transfected with 100nM miR-9 

mimic or scrambled control oligonucleotides (ThermoScientific, Waltham, USA), 

using 10µl of lipofectamine RNAiMAX (Life Technologies, Carlsbad, CA) per 

2.5ml of transfection mix in six-well plates containing 150,000 cells/well. RNA 

was extracted 48 hours post-transfection (miRNeasy, Qiagen, Gaithersburg, 

MD) and first-strand synthesis catalysed using SuperScript® II Reverse 

Transcriptase (Life Technologies).  Quantitative PCR (qPCR) analyses were 

performed in triplicate with Taqman assays (Life Technologies) using primers 

designed by Primer Design Ltd, Southampton, UK. (sequences in Appendix 

4.2).  

2.2.6. Identifying predicted microRNA targets associated with OS. 
Gene expression was compared between two groups of patients with extremely 

poor prognosis and extremely good prognosis in the TCGA dataset. These 

were; poor prognosis (survival time < 115 days, n=14, minimum KPS at 

diagnosis=80) and good prognosis groups (survival time >1825 days, n=14). 

These definitions were chosen because they represent the extremes of survival 

times in the TCGA dataset. The LIMMA (linear models for microarray data) 

package was used to perform differential expression analysis (Smyth, 2005). 

This is a modified T-test, where the standard errors are moderated across the 

genes according to information generated from a linear model of the whole 

ensemble of genes. The genes with a p-value of less than 0.05 and greater 

than 1.5-fold change in expression were used as input to RmiR version 1.14, an 

R-based program for assessment of microRNA targets (RmiR, Favero). Gene 

ontology analysis was performed using Metacore v6.16 (Thomson Reuters) 

modified exact Fisher’s test and pathways determined using DIANA miRpath 

(Vlachos et al., 2012) (one-tailed Fisher’s exact test for enrichment of predicted 

microRNA targets). RmiR v1.14 was used to identify targets of the 9 microRNAs 

amongst the genes which were present in all databases including; Miranda 

(Miranda et al., 2006), Pictar (Krek et al., 2005) and Targetscan (Lewis et al., 

2005) (as loaded by the RmiR vignette). Correlation of microRNA and gene 
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expression was performed using Spearman’s correlation on all 475 

glioblastoma samples.  

2.3. Results. 

2.3.1. Identification of a 9-microRNA signature associated with prognosis 
in glioblastoma. 
In order to identify microRNAs associated with differences in OS in 

glioblastoma, LASSO regression (Tibshirani, 1996) was performed using 

microRNA expression data (534 microRNAs, 1510 probes) for 475 

glioblastomas. This method is optimised for hi-dimensional data (in which there 

are more potential predictors than samples) allowing valid inclusion of the 9 

microRNAs in the model. The method performs a sub-selection of microRNAs 

involved in OS by shrinkage of the regression coefficient through imposing a 

penalty proportional to their size. This results in most potential predictors being 

shrunk to zero leaving a relatively small number with a weight of non-zero. 

These microRNAs may not be the only potential predictors in the set, because, 

if two predictors exhibit co-linearity, LASSO will choose the one that has the 

strongest association with response (which is not necessarily the only causal 

one, especially if the difference between the two predictors’ degree of 

association with response is not significant) and the other will be given zero 

weight.  

Using the LASSO method, 12 microRNA probes were identified with non-zero 

regression coefficients. This included two probes for miR-182, which differed in 

length by one nucleotide. The longer probe was used for the remainder of the 

study as a representation for miR-182. This was done so as to provide a single 

sequence in the signature that can be used for microRNA quantification across 

platforms. The longer sequence is likely to be more robust as longer sequences 

align better. Also a probe for miR-565 was identified that has since been 

excluded from miRBase (Griffiths-Jones et al., 2008) as it is classified as a 

tRNA fragment; this was not studied further. The LASSO model was refitted 

without these two probes resulting in a 9-microRNA signature (Table 2.2). 

MicroRNAs given a negative LASSO coefficient are positive predictors of 

survival and vice versa. Seven of the microRNAs were significantly differentially 

expressed in non-tumour tissue compared to glioblastoma (Table 2.2). miR-10b, 
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miR-34a, miR-148a and miR-182 were greater in glioblastoma tissue in 

comparison to non-tumour tissue, whereas miR-124a, miR-145 and miR-222 

were less. 

 

MicroRNA 
LASSO 

Penalized 
coefficient for 

risk score (log2) 

Fold change in 
GBM compared 
to non-tumour  

miR-124a 0.062 0.032 
miR-10b 0.015 10.005 
miR-222 0.162 0.278 
miR-34a 0.005 3.121 
miR-182 -0.021 3.708 

miR-148a 0.092 2.752 
miR-145 -0.066 0.541 
miR-370 -0.044 1.274 

miR-9 -0.032 0.863 
 
Table 2.2. MicroRNAs associated with survival using the LASSO 
regression test. 

Significant (p<0.05) results are shown in bold. Nine microRNAs were reported 

to have non-zero coefficients from LASSO regression with 475 patients and of 

these, five were negatively associated with patient survival and four were 

positively associated with survival. Seven were differentially expressed in 

unmatched non-tumour samples compared to glioblastoma samples. The 

expressions of these nine microRNAs were used to generate a signature of 

prognosis in glioblastoma (GBM). 

 
Each of the microRNAs were assessed for their prognostic predictive capacity 

using Cox regression (Fig. 2.4) and characterised according to their genomic 

loci (Table 2.3). Four microRNAs; miR-10b (p=0.39), miR-124a (p=0.07), miR-

370 (p=0.12) and miR-182 (p=0.07) are not individually associated with 

prognosis using Cox regression. Three of the microRNAs are cleaved from 

precursors that are encoded in regions of the genome that have been reported 

to be altered in glioblastoma previously (Riemenschneider et al., 2010). 
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Figure 2.4. Cox regression on all nine microRNAs identified by LASSO 
regression on 475 glioblastoma patients.    

These Kaplan-Meier curves represent log-rank analysis of expression of the 

microRNA above and below the median microRNA expression of that 

microRNA. In each case the median microRNA expression for that microRNA 

was used to dichotomise the data and perform log-rank analysis. The Y-axis 

represents the fraction of patients alive at each point in time, designated in 

months on the X-axis. Not all of the microRNAs identified by LASSO regression 

were significant when tested across the TCGA using univariable Cox 

regression, which is as expected because LASSO regression takes the 

expression of other microRNAs into account.  
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Table 2.3. The genomic location of the microRNAs identified by LASSO 
regression. 

The genomic coordinates for the precursors of each of the nine microRNAs in 

the signature. Seven of the microRNAs identified have one precursor sequence, 

but miR-9 and miR-124a both have three. Three microRNAs; miR-148a, miR-

182 and miR-34a, reside in regions of the genome that have been reported to 

be cytogenetically altered in glioblastoma; the short arm of chromosome 1 and 

chromosome 7 (Riemenschneider et al., 2010). miR-182 is decreased in poorer 

prognosis yet the chromosome it is encoded on (chromosome 7) is gained in 

tumours with a poorer prognosis (Goodenberger & Jenkins, 2012). 
 

2.3.2. Generation of a risk score combining expression values of the 9 
microRNAs to predict survival. 
A risk score was created using the regression coefficients from the LASSO 

analysis (see methods, page 68) to weight the expression value of each of the 9 

microRNAs. The risk score was then separated on the median (1.48 quantile 

normalised probe expression) to create high and low risk groups. The median 

survival time of the low-risk group was 13.1 months and the median of the high-

risk group was 9.5 months. Risk score was associated with survival using log-

rank test (Fig. 2.4, p=2.26e-09). Median expression of each signature microRNA 

in both groups is shown in Fig. 2.5. 

 

 

MicroRNA Chromosome location Band
Expression 

in poorer 
prognosis

Amp/del in 
Glioma

miR-9 chr1: 156390133-156390221  chr5: 87962671-
87962757  chr15: 89911248-89911337 1q22, 5q14.3, 

15q26.1 Decreases NA
miR-148a chr7: 25989539-25989606 7p15.2 Increases Amplified
miR-145 chr5: 148810209-148810296 5q32 Decreases NA
miR-10b chr2: 177015031-177015140 2q31.1 Increases NA
miR-222 chrX: 45606421-45606530 Xp11.3 Increases NA
miR-182 chr7: 129410223-129410332 7q32.2 Decreases Amplified
miR-370 chr14: 101377476-101377550 14q32.2 Increases NA
miR-34a chr1: 9211727-9211836 1p36.22 Increases 1p19q codeletion

miR-124a chr8: 9760898-9760982,  chr8: 65291706-
65291814,  chr20: 61809852-61809938 8p23.1, 8q12.3, 

20q13.33 Increases NA



	   86	  

 

Figure 2.5. The patient groups assigned to the high- and low-risk 
groups using the median as a threshold. 
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A score for each patient was 

calculated using the microRNA 

expression signature and patients 

were separated into high and low 

risk groups using the median (1.48 

normalised expression) as a cut-off. 

A) The low-risk group has 

significantly longer survival times 

than those in the high-risk group by 

log-rank test (p=2.26e-09). The Y-

axis represents the fraction of 

patients alive at each point in time, 

designated in months on the X-axis.  

B) Expression patterns of the 

significant microRNAs in the high- 

and low-risk groups, as defined by 

the risk score, shown in a heatmap. 

The positive microRNAs (yellow) 

represent microRNAs that are lower 

in poorer prognosis and negative 

(black) represent the opposite. Blue 

in the heatmap indicates low 

expression and red indicates high 

expression in a sample. 
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Table 2.4. Median quantile normalised expression of microarray probe 
for each microRNA across 475 glioblastoma tumours in the TCGA. 

Differences between the two groups are often not large, but combined together 

into a risk score algorithm these microRNAs have prognostic potential. miR-

124a which is a microRNA involved in neuronal differentiation, is one of the 

lowest expressed microRNAs, and miR-9 which is an abundant microRNA is 

expressed at the highest levels of all microRNAs studied (Krichevsky et al., 

2006; Fowler et al., 2011). The levels between the risk groups are not as 

markedly different as the microRNAs are from each other in the same group. 
 

Pearson’s correlation of age with risk score showed a significant direct 

correlation (R=0.248, p=4.13e-08). Multivariable Cox regression of the risk group 

and age showed the risk group to be an independent predictor of survival 

irrespective of age (Group HR=1.61, 95% CI=1.30-1.99, p=1.40e-5; Age HR= 

1.03, CI= 1.02-1.04, p=2.50e-3). As males have poorer outcome in glioblastoma 

(Krex et al., 2007), the risk score was included in a Cox regression model with 

gender, and was found to be similar in the male and female groups (median 

1.48 in each group).  

 

Mirna &Low&risk &High&risk
miR$124a 8.62 8.90
miR$10b 9.25 9.45
miR$222 9.36 10.58
miR$34a 10.68 11.49
miR$148a 7.94 9.19
miR$182 8.09 7.52
miR$145 9.57 9.21
miR$370 10.04 9.74
miR$9 13.34 12.86

Median&quantile&normalised&
expression&of&microarray&probe
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2.3.3. Assessment of the risk score in glioblastoma subtypes and in 
relation to other prognostic factors. 
I then determined the risk groups for each of the TCGA-defined glioblastoma 

molecular subtypes (Brennan et al., 2013): proneural G-CIMP (glioma CpG 

island methylator phenotype) positive (n=36), proneural G-CIMP negative 

(n=88), neural (n=77), classical (n=128) and mesenchymal (n=143). MicroRNA-

defined risk group was associated with survival in all subtypes except proneural 

G-CIMP negative glioblastoma (Fig. 2.6 A-E).  

The groups were then fitted to a Cox regression model incorporating age in 

each patient subtype. The score remained significant in the classical (HR=1.73, 

95% CI=1.13-2.64, p=0.011) and neural (HR=2.03, 95% CI=1.23-3.38, p=0.007) 

subgroups and age was a confounding factor in the mesenchymal group 

(HR=1.46, 95% CI=0.95-2.23, p=0.084). This suggests that the signature is 

more likely associated with age rather than survival in mesenchymal 

glioblastoma. The performance of the risk score in the proneural G-CIMP 

positive group could not be calculated because all samples but one stratified to 

the low risk group. This was expected because G-CIMP glioblastoma is the 

subtype of glioblastoma with the best prognosis. The risk score in the proneural 

G-CIMP negative group was not significant (HR=1.15, 95% CI=0.70-1.86, 

p=0.059). This may suggest that this subtype of glioblastoma, which is 

particularly refractory to treatment, has different microRNA biology to the other 

subtypes (Brennan et al., 2013). The survival groups also had significantly 

different PFS by log-rank (p=9.91e-08) (Fig. 2.6 F), which indicates the signature 

is predictor of PFS as well as OS. There were 26 samples in the cohort with 

IDH1 mutations, only one of which stratified to the high-risk group, which 

suggests the signature is selecting for a subtype with already known survival 

differences. 

The risk score was evaluated by fitting a Cox model incorporating the risk group 

and other factors involved in glioblastoma prognosis (gender, MGMT promoter 

methylation, IDH mutation, patient subtype, extent of resection and KPS score). 

In each case, the score was significant and was not related to these factors 

(Table 2.5).  
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Table 2.5. Results of multivariable Cox regression incorporating 
prognostic factors in glioblastoma. 
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Figure 2.6. Log-rank of the low-risk and high-risk groups in subgroups 
of glioblastoma.  

Risk scores were calculated with the same threshold as the whole cohort for 

each subtype of glioblastoma. These were then split into groups based on the 

median and log-rank performed to assess survival association of the groups. 

The Y-axis represents the fraction of patients alive at each time-point, and the 

time in months from diagnosis is represented on the X-axis. Blue lines are the 

low-risk group and red lines are the high-risk group. The risk groups were 

significant by log-rank test (non-age adjusted) in all molecular subtypes of 

glioblastoma but proneural G-CIMP negative (A-E). Risk score is also a 

significant predictor of progression free survival (F).  
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I then calculated the risk score solely in the group of patients treated with the 

most common chemotherapy agent, temozolomide (n=219). This group showed 

a significant association between risk score and survival using log-rank (p=8.6e-

04) (Fig. 2.7 A). These results indicate that, in patients treated with the standard 

treatment, the microRNA signature predicts survival.  

The predictive power of the signature was compared to that of MGMT promoter 

methylation status by the log-rank test.  In the 304 patients for whom MGMT 

promoter methylation status was available (Brennan et al., 2013), multivariable 

Cox regression indicated that the microRNA signature  (HR=1.88, CI=1.42-2.48, 

p=9.4e-06) predicted survival. In the same group of patients, MGMT promoter 

methylation also predicted survival but with less significance than the microRNA 

signature (HR=1.47, CI=1.12-1.93, p=0.006). Comparing the power of the two 

predictions, the microRNA signature results in a 1.88-fold increased risk when 

stratified to the high-risk group and the MGMT promoter methylation signature 

results in a 1.47-fold increase in risk when the MGMT promoter is 

unmethylated. In the group treated with temozolomide only (n=219) there was a 

1.76-fold increase in risk by stratification to the low-risk group; this stratifies 

patients better than the MGMT signature, which shows a 1.65-fold increase in 

risk when stratified to the unmethylated group in the TCGA dataset.  
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Figure 2.7.  Assessment of risk groups in TMZ treated patients, the 
validation cohort and lower grade glioma. 

Kaplan-Meier curves of the signature in the different groups are shown. The Y-

axes represent the fraction of patients alive at each time point, and the times in 

months are on the X-axes. A) The subgroup of patients treated with the 

chemotherapy agent temozolomide was significantly delineated using the 

signature (p=8.4e-4).  B) MicroRNA expression determined by qRT-PCR 

(quantitative real-time PCR) in an independent cohort of 20 glioblastomas 

stratified patients by survival based on the signature (p=0.045, one-tailed test). 

C) MicroRNA sequencing data of 178 lower grade glioma samples (55 

astrocytoma, 47 oligoastrocytoma, and 75 oligodendroglioma, 1 not stated) 

significantly separated these samples into high and low risk groups by log-rank 

test.  
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2.3.4. Risk score validation in an independent dataset. 
The nine-microRNA signature has been generated and tested on the same set 

dataset. This is possible because LASSO employs leave-one-out cross 

validation, where the model is rerun iteratively, each time leaving a sample out. 

This reduces over fitting of the model to the dataset. Ideally, validation should 

be performed on an independent dataset from a different population, or with a 

different technique. Risk scores were calculated for an independent dataset 

from the University of Central Lancashire of 20 glioblastoma samples (Table 

2.6), with microRNA expression generated using qRT-PCR (quantitative real-

time PCR) and was significantly associated with survival (HR=10.7, p=0.036). 

This patient group had an overall worse prognosis (80% died earlier than the 

conventional median of 450 days (Mountz et al., 2014)) than those in the TCGA 

(70% died earlier than the conventional median of 450 days), and therefore, 

expecting more patients to fall into the high-risk group, the patients were 

dichotomized based on the 60th percentile (0.76 DCt). This resulted in 12 

patients in the high-risk group with a median survival of 6.27 months and 8 

patients in the low-risk group with a median survival of 16 months. These 

groups predict survival using a one-sided log-rank test (HR=3.01, p=0.045) (Fig. 

2.7B). 
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Table 2.6. Patient characteristics in the independent dataset used for 
validation. 

This group had an overall worse prognosis than the TCGA dataset (the ratio to 

the conventional median was 10% higher than the ratio in the TCGA dataset) 

and therefore the cut-off for the high and low risk groups was shifted to the 60th 

percentile.  
 

2.3.5. Risk score assessment in lower grade glioma. 
To serve as a further validation, and also to see whether the score is applicable 

to lower grade glioma, I calculated risk score on the TCGA dataset of lower 

grade gliomas. Risk scores were also calculated for grade II and III gliomas 

(n=178) consisting of 81 grade II and 96 grade III samples; 55 were 

astrocytomas, 47 oligoastrocytomas and 75 oligodendrogliomas, using TCGA 

sequencing data. This was done using the 9 microRNAs derived in the 

glioblastoma signature. The cohort was dichotomised into high- and low-risk 

groups using the median (-19541.96 reads per million) as a cut-off. As observed 

in the glioblastoma dataset, the score proved to be a significant predictor of 

survival using log-rank (Fig. 2.7C, p=5.2e-03) and in a Cox model with age 

(Group HR=0.62, CI=1.05-3.31, p=3.5e-02; Age HR=1.06, CI=1.04-1.10, p=2.2e-

07). The low-risk group comprised of 44 grade II and 45 grade III samples; 22 

Characteristic

Age (median=68)
<60 years 5
≥60 years 15
Gender
Male 11
Female 9
Days to death/ last follow-up (median 268 days)
<450 days 16
≥450 days 4
<30 days 0

Number of patients (n=20)



	   95	  

were astrocytomas, 22 oligoastrocytomas and 45 oligodendrogliomas. The 

high-risk group comprised of 37 grade II samples and 51 grade III samples (1 

not stated); 33 were astrocytomas, 25 oligoastrocytomas and 30 

oligodendrogliomas. 

 

2.3.6. Predicted targets of these microRNAs. 
Bioinformatic analysis was used to investigate targets of signature microRNAs 

to identify the associated pathways involved. Firstly, genes associated with long 

and short survival groups in glioblastoma were identified. The mRNA 

expression between two groups of patients with extremely poor prognosis 

(survival time < 115 days, n=14, minimum KPS at diagnosis=80) and extremely 

good prognosis (survival time >1825 days, n=14) were compared in the TCGA 

dataset. The genes with a p-value of less than 0.05 and greater than 1.5-fold 

change in expression were used as genes associated with survival. A total of 

1154 genes were associated with short and 400 genes with long survival.  

Predicted interactions of the 9 microRNAs with the survival-associated genes 

were assessed in the Miranda, Pictar and Targetscan databases (Krek et al., 

2005; Lewis et al., 2005; Miranda et al., 2006). This led to the identification of 

162 significant predicted microRNA/mRNA interactions, 10 of which had an 

inverse correlation of at least 0.25 across all glioblastoma samples (Table 2.7). 

This was chosen because the maximum correlation detected was 0.5 between 

an mRNA and microRNA and therefore half this was used as a threshold. Using 

DIANA miRPath (Vlachos et al., 2012) I identified the top pathways that the 

signature microRNAs are predicted to target. The most significant pathways 

identified included adherens junction, MAPK signalling, focal adhesion, axon 

guidance and WNT signalling (Appendix 2.2).  
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MicroRNA 

LASSO 
penalized 

Coefficient 
(log2) 

Gene symbol 

Gene 
change 

with 
increasing 

survival 

Spearman’s 
Correlation 

Fold 
difference 
in GBM to 

non-tumour 
tissue 

P-value of 
GBM/normal 

(FDR 
adjusted) 

hsa-miR-9 -0.032 TGFBI 4.499 -0.649 11.487 0.000 

hsa-miR-9 -0.032 P4HA2 2.527 -0.615 1.108 0.999 

hsa-miR-9 -0.032 FBN1 2.054 -0.53 1.808 0.001 

hsa-miR-222 0.162 KHDRBS2 0.189 -0.496 0.024 0.000 

hsa-miR-9 -0.032 SLC25A24 3.574 -0.473 2.17 0.000 

hsa-miR-9 -0.032 SLC31A2 2.384 -0.463 0.593 0.039 

hsa-miR-9 -0.032 FNDC3B 2.171 -0.406 3.828 0.000 

hsa-miR-182 -0.021 F13A1 10.982 -0.309 1.785 0.106 

hsa-miR-9 -0.032 LMNA 2.034 -0.292 2.25 0.000 

hsa-miR-9 -0.032 WNT4 2.038 -0.265 0.691 0.003 

 

Table 2.7. Predicted target interactions of the signature microRNAs 
with significant correlation in expression. 

The ten interactions predicted between the 9-microRNA signature and the 

mRNAs identified to be involved in survival in glioblastoma (GBM), which also 

showed a significant inverse correlation in expression of at least 0.25 across the 

patient set. Two of these mRNAs, FBN1 (fibrillin 1) and TGFBI (TGFB induced), 

exhibited particularly high correlations in expression with miR-9 (-0.53 and -0.65 

respectively) as well as significant differential expression between glioblastoma 

compared to non-tumour tissue. 

 

Targets implicated most strongly in patient survival were identified for miR-9, 

which showed a significant correlation with eight mRNAs. In order to assess 

whether these may be functional targets, a glioblastoma cell line was 

transfected with a miR-9 mimic and the expression levels of the predicted 

targets were assessed using qPCR. LMNA (lamin A), WNT4 (Wingless-Type 

MMTV Integration Site Family, Member 4), FBN1 (fibrillin 1), P4HA2 (prolyl 4-

hydroxylase, alpha polypeptide II) and SLC25A24 (Solute Carrier Family 25 

(Mitochondrial Carrier; Phosphate Carrier), Member 24) had significantly lower 

levels of expression when transfected with the mimic in comparison to a 

scrambled control (Fig. 2.8) suggesting miR-9 may directly target these mRNAs 
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in glioblastoma cells. These mRNAs have predicted targets for miR-9 in their 3’ 

UTR and also decrease when miR-9 is overexpressed in glioblastoma cells.  

Thus, bioinformatic analysis of signature microRNAs has identified potential 

targets and biological processes known to be involved in glioblastoma biology, 

further supporting the relevance of the 9-microRNA signature.   

 

 

 
Figure 2.8. Expression of the predicted targets following transfection 
of a miR-9 mimic into LN229 cells relative to a scrambled control.	  

miR-9 was predicted to target the most mRNAs identified to be prognostic 

compared to all other microRNAs in the signature. This barchart shows the 

levels of expression of the 8 predicted targets after transfection of a miR-9 

mimic or scramble into LN229 cells. Significant decrease in expression (t-test, 

p<0.05) was observed for P4HA2, LMNA, WNT4, FBN1 and SLC25A24 48 

hours after transfection of the mimic. Results are representative of duplicate 

experiments. The Y-axis represents the mRNA expression relative to GAPDH 

control mRNA. This is shown in white boxes for the control, scrambled mimic 

sequence and black boxes for the miR-9 mimic. Values have been normalised 

to the scrambled control. 
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2.4. Discussion. 

2.4.1. The nine microRNA signature is a molecular indicator of prognosis. 
Using LASSO regression, this study has identified and independently validated 

a biologically relevant 9-microRNA signature that predicts survival in 

glioblastoma. The signature separates patients into high- and low-risk groups 

with respect to OS and PFS and may have clinical utility for decisions on patient 

management.  For example, patients stratified to the high-risk group could be 

monitored more closely, or targeted towards novel treatments. The signature is 

valid in all glioblastoma subtypes except proneural G-CIMP negative tumours 

(which represents only 19% of this dataset), and also predicts survival in 

patients treated with the standard chemotherapy drug temozolomide.  

The independent dataset used here is relatively small (n=20) and therefore 

confounding factors for patient age, treatment received and extent of resection 

could not be accounted for. The independent dataset results were generated 

using qRT-PCR and indicate that the signature can be implemented using 

techniques that would be more conducive to a clinical diagnostic laboratory and 

these are the methods that should be explored further. A limitation of this 

approach is that a different technique has been used for validation and 

therefore a single, defined cut-off could not be ascertained.  

Further validation, ideally prospective, and calculation of sensitivity and 

specificity, is required before this signature could be implemented clinically. This 

would require a prospective clinical trial. This would involve stratifying patients 

treated with standard treatment into high- and low- risk groups and data 

collection of their survival times as well as other clinical factors such as extent 

of resection and KPS.  

Prognostic signatures using microRNAs have been formulated previously in 

glioblastoma but these have not been validated or evaluated within different 

subgroups of the disease, or in relation to molecular characteristics of the 

disease (Kim et al., 2011b; Niyazi et al., 2011; Srinivasan et al., 2011; Sana et 

al., 2014). A more recent study identified prognostic microRNAs for each 

subtype of glioblastoma using TCGA data (Li et al., 2014b) and five microRNAs 

in our signature overlap; miR-222, which they report predicts prognosis in 

classical and neural glioblastoma, miR-370 which predicts prognosis in neural 
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glioblastoma and miR-34a, miR-145 and miR-182 which predict prognosis in the 

proneural non-G-CIMP glioblastoma group. Interestingly, 3/9 microRNAs in my 

signature are present in their model for proneural G-CIMP negative 

glioblastomas yet my signature did not significantly stratify patients in this 

subtype. This may be because the other microRNAs in my signature are acting 

in different ways in this subtype, therefore creating noise in the score for these 

patients. 

The LASSO regression model was chosen to improve on other approaches by 

utilising all 475 patients, and all microRNAs available to build the signature. 

This allows a small number of microRNAs for use in a diagnostic signature with 

maximal information but does not identify all predictors in the dataset involved 

in survival. This provides a signature with the prediction power similar, or better 

than, that of MGMT promoter methylation. It must be noted however that MGMT 

promoter methylation was assessed in an unselected population, with the 

Infinium methylation bead chip (Bady et al., 2012), which is not the gold 

standard employed in a diagnostic laboratory and therefore may lack sensitivity 

compared to clinical results. MGMT promoter methylation was also not 

assessed in the validation dataset due to lack of methylation data so this finding 

requires further confirmation. This signature has a manageable number of 

microRNAs for a prognostic indicator, and is well below the number of 

predictors employed in commercialised kits for other cancer signatures such as 

the gene tests, Mammaprint and ms-14 in breast cancer (Sorlie et al., 2001; 

Cheang et al., 2009).  

2.4.2. Roles of the microRNAs in the signature in glioma biology. 
All microRNAs in this signature, with the exception of miR-370, have been 

previously associated with glioma biology (Zhang et al., 2010; Fowler et al., 

2011; Gabriely et al., 2011; Kim et al., 2011a; Genovese et al., 2012; Song et 

al., 2012; Rani et al., 2013; Tan et al., 2013; Mucaj et al., 2014). For example, 

the microRNA with the most predicted targets involved in survival, miR-9, has 

been shown to be associated with resistance to temozolomide and its actions in 

glioma biology are explored further in Chapter four of this thesis. Additionally, 

miR-148a has been shown to target the EGFR regulators MIG6 and BIM in 

glioblastoma and inhibition of this microRNA decreased growth of glioma stem 
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cell and xenograft growth in vivo (Kim et al., 2014).	  This has not been shown for 

previous glioblastoma microRNA signatures (Lakomy et al., 2011; Srinivasan et 

al., 2011.; Zhang et al., 2012a, Sana et al., 2014). Although miR-370 has not 

been reported to have a role in glioblastoma, it targets TGFB-RII (TGFB 

receptor 2) (Lo et al., 2012), which has a role in glioblastoma cell growth and 

invasion (Kaminska et al., 2013). These studies, and the data presented here, 

suggest a potential role for miR-370 in glioma biology. Establishing a defined 

role for these microRNAs in glioma biology requires further work to determine 

the link between the biology these microRNAs regulate and patient prognosis.	  

In addition to their established roles in glioma biology, 5 of the 9 signature 

microRNAs have been associated with sensitivity to TMZ; miR-9 (Munoz et al., 

2013), miR-145 ( Yang et al., 2012b), miR-148a (Hummel et al., 2011), miR-182 

(Tang et al., 2013) and miR-222 (Chen et al., 2012a).  It is likely however, that 

the microRNAs are providing a measure of all treatment including not just 

chemotherapy but radiotherapy and surgery. For example, glioblastoma 

tumours with a mesenchymal subtype exhibit more infiltration and therefore 

extent of resection will not be as high as in the proneural subtype (Beier et al., 

2012). These observations suggest that the microRNA signature reflects roles 

in both tumour biology and treatment resistance, which combined lead to robust 

effects on patient survival. 

2.4.3. Translational relevance of the signature. 
This prognostic signature has potential applicability to the clinic by stratifying 

patients, and identifying those less likely to respond to current treatments. The 

signature ultimately may facilitate confidence in treatment decisions and 

recognising candidates for new therapies. It may be that the most powerful use 

of the signature is in combination with MGMT promoter methylation status. 

Technologies such as the NanoString nCounter platform may provide highly 

accurate quantitative measurements of transcripts for tumour diagnosis as has 

been shown for medulloblastoma (Northcott et al., 2012), and is readily 

applicable to microRNA studies.  

In conclusion, I have identified and validated a 9-microRNA-expression 

signature using biologically relevant markers of use in prediction of prognosis in 

glioblastoma. Analysis of targets of these microRNAs has identified potential 
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key players in glioblastoma networks that could be targeted to combat the 

aggressive disease. The LASSO approach may be more broadly applicable in 

the identification of relevant microRNA and gene expression signatures in large 

datasets. 
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3. Prognostic microRNAs in high-grade glioma reveal a link to 
oligodendrocyte precursor differentiation. 
	  
‘It is my belief that the basic knowledge that we're providing to the world will 
have a profound impact on the human condition and the treatments for disease 
and our view of our place on the biological continuum.’ Craig Venter, June 2000. 

3.1. Introduction. 
Molecular subtypes of glioblastoma can be defined by clustering according to 

cell type-specific mRNA expression patterns (Verhaak et al., 2010; Brennan et 

al., 2013). Verhaak et al. identified classical, proneural, neural, and 

mesenchymal subtypes of glioblastoma using mRNA expression, somatic 

mutation, and copy number data obtained from TCGA (The Cancer Genome 

Atlas) (Verhaak et al., 2010; TCGA, NIH).  Interestingly, clustering analysis of 

signature gene expression patterns of the four subtypes with expression 

patterns from murine neural cells showed that they are reminiscent of specific 

neural cell types, for example the proneural class of glioblastoma has an 

oligodendrocyte rather than astrocyte signature. The proneural glioblastoma 

subtype is also particularly refractory to the current standard treatment of 

radiotherapy and temozolomide and a recent study by Ozawa et al. indicates 

that most glioblastoma subtypes can arise from a common proneural-like 

precursor cell (Verhaak et al., 2010; Ozawa et al., 2014). A consistent body of 

literature supports the notion that the presence of less differentiated cells in 

cancer confers a poorer prognosis and it may therefore be possible to identify 

common signatures of aggressive clinical behaviour in glioma based on 

progenitor cell types (Dirks, 2010; Garrido et al., 2014; Waghmare et al., 2014; 

Auffinger et al., 2014). 

In this context, microRNAs may be relevant, as changes in microRNA 

expression are emerging as a common feature of both neural development and 

glioma biology (Godlewski et al., 2010b). MicroRNAs have roles in the 

maintenance of brain functions throughout life and are extensively dysregulated 

in cancer (Carroll & Schaefer, 2012; Stahlhut & Slack, 2013). In brain tumours, 

they have been shown to promote ‘stemness’ or inhibit differentiation, 

consequently maintaining tumourigenesis (Schraivogel et al., 2011). Their 

expression is also altered in stem-like compartments of both brain tumours and 

other tumours and has been reviewed by Stappert et al. (Stappert et al., 2014). 
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In addition, microRNAs modulate neural differentiation and their expression 

patterns have been shown to be distinct at different cellular stages of 

differentiation, including oligodendrocyte precursor (OP) differentiation (Letzen 

et al., 2010). The presence of stem-like cells in brain cancer has been shown to 

be associated with more aggressive, treatment resistant tumours (Dirks, 2010; 

Garrido et al., 2014; Auffinger et al., 2014). It is established that microRNAs 

have a role in maintaining a specific differentiation phenotype but it remains 

unclear whether prognostic microRNA signatures are exclusively tumour grade 

and/or molecular subtype-specific, or whether common signatures, for example 

associated with differentiation status, can be identified (Aldaz et al., 2013). Here 

I have used a computational approach to test the hypothesis that differential 

microRNA expression profiles in groups of glioma patients with good and poor 

prognosis reflect changes in progenitor development pathways. I therefore 

correlated the microRNA expression changes between good and poor 

prognosis groups with microRNA expression changes in the OP differentiation 

pathway. OP differentiation can be modelled in vitro using embryonic stem cells 

(ESCs) that adopt an oligodendrocyte cell fate in a step-wise fashion using 

instructive cell culture conditions (Letzen et al., 2010). The differentiation steps 

include embryoid body (EBs), a neural progenitor cell state (NP), the 

oligodendrocyte progenitor stages OP1, OP2, and OP3 and the fully 

differentiated oligodendrocyte lineage (OL) (Figure 3.1). Analysis of microRNA 

profiles of these cell types showed that expression changes during OP 

differentiation correlate with prognostic microRNA expression changes in 

malignant glioma. This correlation is most apparent for the OP1 cell stage, 

which consistently predicts survival (in >500 gliomas), hence suggesting a 

prognostic signature of aggressive clinical behaviour that is independent of 

grade and malignant brain tumour subtype. 
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Figure 3.1. The cell stages in the oligodendrocyte precursor (OP) 
differentiation pathway. Oligodendrocyte precursors are intermediates 

between neural progenitors and astrocytes and oligodendrocytes. 

3.2. Methods. 

3.2.1. MicroRNA and mRNA expression analysis. 
All computational work was performed in R (v2.15.1). Level 3 Agilent microRNA 

8×15k microarray, G4520A microarray gene expression data and clinical 

information for glioblastoma and non-tumour samples were downloaded from 

TCGA (TCGA, NIH). Level 3 Illumina HiSeq sequencing data for mature 

microRNA and mRNA expression plus clinical information for lower grade 

gliomas were also downloaded from TCGA. There are differences in 

normalisation methods and quantification artefacts of microarray and 

sequencing platforms, and therefore merging of the data in normalised format 

may result in artefacts and spurious results. This is particularly apparent for 

microRNA expression below the median, where microarray underperforms (C. 

Wang et al., 2014a). Therefore I chose to perform differential expression 

analysis prior to merging the two sets of results. The expression changes within 

the grades were ascertained using appropriate statistical packages developed 

for microarrays and sequencing (Smyth, 2005; Robinson et al., 2009) and then 

these data were merged, rather than direct merging of the data prior to 

differential expression analysis.  
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The good and poor prognosis groups of these glioma datasets were selected 

according to the published survival data in the TCGA database (Table 3.1).  

 
	  	   	  	   GIIIA	   Glioblastoma	  

	  	   	  	  

Good	  
prognosis	  

(>48	  months,	  
n=6)	  

Poor	  
prognosis	  

(<18	  months,	  
n=10)	  

Good	  prognosis	  
(>48	  months,	  

n=13)	  

Poor	  
prognosis	  (<4	  

months,	  
n=14)	  

Age	  at	  Diagnosis	   	  	   40.5	   59.5	   41.5	   61.9	  
Mean	  Overall	  
Survival	  
(months)	   	  	   87	   8.6	   83.4	   2.7	  

Gender	   Male	   67%	   40%	   62%	   50%	  

	  	   Female	   33%	   60%	   38%	   50%	  
IDH1	  mutation	  
status	  

Mutate
d	   100%	   10%	   0%	   0%	  

	  	   WT	   0%	   90%	   100%	   100%	  
 

Table 3.1. Characteristics of the grade III astrocytoma and glioblastoma 
TCGA tumours in poor and good prognosis groups. 

As expected, in both GIIIA and glioblastoma age is increased in the poorer 

prognosis groups. There are only IDH1 mutations in the GIIIA group. In 

glioblastoma, IDH1 mutation is usually present in tumours following progression 

from a lower grade, and as the TCGA has sought samples from mainly primary 

glioblastoma, this is expected. 

 

EdgeR, a package designed for analysis of differential gene expression from 

RNA-seq data, first calculates the interlibrary variation for each gene using 

tagwise dispersion, then determines differential expression using the exact 

negative binomial test (Robinson et al., 2009). EdgeR was used to compare 

microRNA and mRNA expression sequencing data between the two GIIIA 

survival groups and 139 IDH mutated and 39 IDH wild-type grade II and III 

tumours (Robinson et al., 2009). The LIMMA (linear models for microarray data) 

package fits a linear model to the expression data for each gene and then tests 

the differences between the parameters of the model (Smyth, 2005). LIMMA 

was used to compare microarray-based microRNA expression data for the poor 

and good prognosis groups in glioblastoma.  
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For each microRNA or mRNA, r, the z-scores associated with GIIIA (grade III 

astrocytoma) and glioblastoma (IV) prognosis were calculated separately from 

their log(fold change, FC) and corresponding standard error, SE: 

Zr,III = log(FCr,III)/SEr,III ;  Zr,IV = log(FCr,IV)/SEr,IV       

Under the joint null hypothesis, log(FCr,III) = log(FCr,IV) = 0, the two z-scores are 

N(0,1) distributed and independent, so the sum Zr,III + Zr,II is N(0,2). The p-

values corresponding to the joint null hypothesis were adjusted for multiple 

testing using the Benjamini-Hochberg method (Benjamini & Hochberg, 1995). 

3.2.2. Pathway prediction. 
Miranda, Pictar and Targetscan were used to predict targets for differentially 

expressed microRNAs from the differentially expressed mRNAs using the RmiR 

package (Krek et al., 2005; B.P. Lewis et al., 2005; Miranda et al., 2006; RmiR, 

Favero). Targets were only considered if they were present in at least two of 

these databases. The resulting targets were entered into the pathway analysis 

program Metacore®  (Thomson Reuters). This program performs pathway 

enrichment analysis generating a p-value, which represents the probability to 

randomly obtain the intersection between the microRNAs inputted and the 

pathway genes following hypergeometric distribution. 

3.2.3. Analysis of the differentiation pathway. 
I used data published in Letzen et al, which describes the microRNA expression 

fold changes between each cell differentiation stage within the OP 

differentiation pathway including embryonic stem cells (ESCs), neural embryoid 

bodies (EB), neural progenitors (NP), glial restricted precursors (GP), 

oligodendrocyte precursors (OP) I, OP II, OP III and the oligodendrocyte 

lineage (OL) (Letzen et al., 2010). Spearman’s correlation (a correlation 

indicating a relationship, not necessarily linear) was performed on the fold 

change between good and poor prognosis groups within GIIIA and 

glioblastoma, with the expression changes of the significantly differentially 

expressed microRNAs with at least 2-fold change at each stage in the OP 

differentiation pathway. The fold changes of all microRNAs of significance 

between OP cell types were used, regardless of their significance for survival. 

As a control, expression values from Taqman PCR microRNA expression 

between ESCs and haematological precursors (HP) as described in Risueño et 
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al. and between neural stem cells (NSCs) and NPs as described in Goff et al. 

were used to calculate the Δ Ct and perform Spearman’s correlation with the 

prognosis-associated fold differences in GIIIA and glioblastoma (Goff et al., 

2009; Risueño et al., 2012;). Only microRNAs significantly differentially 

expressed between the ESCs and HPs were used (139 microRNAs) in the 

correlation analysis, to prevent a false correlation coefficient due to ‘baseline’ 

microRNA expression. 

3.2.4. Correlation of microRNA expression of the OP pathway with 
malignant glioma tumours. 
Microarray expression data was processed as described in Letzen et al. (Letzen 

et al., 2010) using Agilent Feature Extraction software and the 

gTotalGeneSignal was correlated with the level 3 expression data from the 

TCGA GIIIA astrocytomas (n =39), glioblastoma tumours (n=558) and non-

tumour samples (n=10). Only microRNAs detected on all platforms (Agilent 

microarray G4470C and custom TCGA Agilent microarray, and Illumina HiSeq 

sequencing) were included resulting in 150 microRNAs. Glioblastomas were 

classified according to Brennan et al (Brennan et al., 2013). The correlation 

pattern of each cell type for every tumour was analysed for association with 

survival using Cox regression and log-rank tests. 

3.3 Results 

3.3.1 Identification of a high-grade glioma microRNA signature associated 
with poor patient survival 
To investigate candidate prognostic microRNAs that are associated with high-

grade brain tumours (GIIIA and glioblastoma) through a differential TCGA 

microRNA expression analysis, I developed the computational pipeline shown 

in Figure 3.2.  
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Figure 3.2.  The computational analysis pipeline to identify common 
prognostic molecular signatures in high-grade astrocytoma. 

(A) Prognostic microRNAs were identified separately in GIIIA and glioblastoma 

and merged to create a common high-grade microRNA profile associated with 

prognosis. Predicted pathway analysis suggests that gene expression pathways 

associated with OP cells may predict patient outcome.  Fold change data for 

differentially expressed microRNAs between cell types in the OP differentiation 

pathway were correlated with microRNA fold change data calculated between 

prognosis groups in GIIIA and glioblastoma. (B) MicroRNA expression profiles 

for all 597 TCGA malignant glioma (GIIIA and glioblastoma) were correlated 

with the expression values of each cell type in the OP differentiation pathway 

(Letzen et al., 2010). 
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Based on TCGA patient survival data (TCGA, NIH), I defined suitable filter 

criteria indicative of good prognosis (>48 months for GIIIA and glioblastoma) 

and poor prognosis (<10 months for GIIIA and <4 months for glioblastoma.	  

These cut-offs were decided by determination of the 10% shortest and the 10% 

longest survival in the TCGA cohort and including patients with sufficient clinical 

and microRNA data. This yielded a total of 534 mature microRNAs from 27 

glioblastoma and 16 GIIIA tumours, respectively (Fig. 3.2, Table 3.1). Based on 

this dataset, I first determined the microRNAs that are differentially expressed 

between the good and poor prognosis groups within glioblastoma and GIIIA 

specimens, separately. To minimise the false discovery rate, I used EdgeR and 

LIMMA including multiple testing correction procedures for next generation 

sequencing and microarray analysis respectively (Hochberg, 1995; Smyth, 

2005; Benjamini & Robinson et al., 2009). My approach identified 11 

microRNAs that are significantly differentially expressed (with log fold changes 

between -1.27 and 6.39) in good versus poor prognosis groups in glioblastoma, 

and 19 in GIIIA (with log fold changes between -1.28 and 2.20). Two of the 19 

GIIIA microRNAs were lower in the poor prognosis GIIIA group (Fig. 3.3 A) and 

5 of the 11 candidate glioblastoma microRNAs were lower in the poor prognosis 

glioblastoma group (Fig. 3.3 B). The most strongly (>5 fold) altered microRNAs 

(miR-10a, miR-196b, miR-211) were all increased within the poor prognosis 

GIIIA group. This is in line with previous data for miR-10a and miR-211 

suggesting their implication in progression and treatment resistance in 

malignant glioma (Ujifuku et al., 2010). 
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Figure 3.3. Fold changes of the differentially expressed microRNA 
expression between the good and poor prognosis groups in GIIIA (A) 
and glioblastoma (B). 

The majority of the differentially expressed microRNAs in GIIIA are increased 

with poorer prognosis, whereas glioblastoma shows a more even spread of 

increased and decreased microRNAs in poorer prognosis patients. The Y-axis 

refers to the log fold change in the poor prognosis subgroup, compared to the 

good prognosis subgroup.  

A                                                                                                                                     B
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Overall, my intra-grade glioma microRNA comparison of good and poor 

prognosis only yielded three microRNAs; the oncomiR miR-21, the apoptosis 

regulator miR-148a, and the tumour suppressor regulator miR-222 that could 

serve as candidate predictors of poor prognosis in both glioblastoma and GIIIA 	  

(Zhu et al., 2008; Quintavalle et al., 2012b; Kim et al., 2014). This low overlap 

between glioblastoma and GIIIA candidate prognostic microRNAs raises the 

question as to whether it is possible to identify a common microRNA signature 

for high-grade glioma, or whether the statistical power of the intra-grade 

comparison approach is insufficient to reveal a glioblastoma/GIIIA poor 

prognosis signature. To address this question and to increase statistical power 

in my differential microRNA expression analysis, I combined the z-values 

(Zr,combined) from the good and poor prognosis groups of GIIIA (Zr,III) and 

glioblastoma (Zr,IV) accounting for differences in microRNA expression profiling 

platforms using a computational algorithm based on the z-score merging 

performed by Stouffer (Stouffer, 1949).  This was suitable because Stouffer 

showed that division by standard error generates a value most similar to a 

merged z-score. The probability that the score could be less than the z-score 

was then determined using the pnorm function and 1 minus this value 

generates a p-value. The resulting p-value was then multipled by 2 for a two-

sided test.  

Z-score merging used the formula for each microRNA, r, including fold change, 

FC, and standard error (SE): 

 

 Zr,III = log(FCr,III)/SEr,III      Zr,IV = log(FCr,IV)/SEr,IV   

   Zr,combined = (Zr,III + Zr,IV)/ √2 

 

Under the null hypothesis that Zr,III and Zr,IV are both N(0,1) and independent, 

Zr,combined will also be N(0,1) and can therefore be interpreted as a z-value. 

This approach yielded a pool of 216 microRNAs whose differential expression 

was analysed across all relevant poor/good prognosis glioblastoma and GIIIA 

TCGA specimens, thereby creating z-scores and p-values for the individual 

microRNAs. Using the multiple testing corrected p-values for each microRNA 

yielded 63 microRNAs that significantly change expression between good and 
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poor prognosis high-grade gliomas as indicated by a >2 fold change of standard 

deviations from the mean microRNA fold change (FDR<0.05) (Fig. 3.4 A).  

 

 

 

 
Figure 3.4. Differentially expressed microRNAs in good and poor 
prognosis groups of glioma point to OP-related pathways. 

(A) Plot of the microRNAs differentially expressed between good and poor 

prognosis groups when data from glioblastoma and GIIIA are combined. 63 

microRNAs are significantly altered between good and poor prognosis groups 

(p<0.05, in red) and have a z-value of at least 2/-2. (B) The targets of the 63 
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microRNAs associated with patient outcome were predicted and pathway 

analysis revealed a significant enrichment of genes involved in several OP-

related pathways.  

This result suggests that a pool of 63 microRNAs form part of a molecular 

network that is associated with and/or drives aggressive clinical behaviour in 

high-grade gliomas. To identify the molecular pathways that are likely regulated 

by the 63 candidate prognostic microRNAs, I predicted their mRNA targets 

using standard bioinformatic approaches. In order to focus on the mRNA 

targets that are involved in prognosis, I first enriched for those that are 

associated with either good or poor prognosis. I compared good prognosis and 

poor prognosis mRNAs in GIIIA and glioblastoma (Table 3.1) using the same 

criteria as those described above for microRNA analysis. The mRNA data (z-

scores and p-values) for GIIIA and glioblastoma were merged resulting in 4259 

mRNAs with significant (p<0.05) > 2-fold changes. The targets of the 63 

microRNAs associated with patient outcome were predicted from the 4259 

mRNAs using the target prediction databases Miranda, Pictar and Targetscan 

(Krek et al., 2005; B.P. Lewis et al., 2005; Miranda et al., 2006). In order to 

improve target prediction and reduce false positives, I only used targets that 

were present in at least two of these databases, resulting in 1618 predicted 

targets for the microRNAs. Subsequently, I entered these mRNAs into the 

Metacore software and carried out a pathway analysis revealing significant 

enrichment of genes involved in several cancer-related pathways (Fig. 3.3 B). 

These pathways included IGF and AKT (V-Akt murine thymoma viral oncogene) 

signalling, epigenetic and transcriptional regulation, growth factor, androgen 

and chemokine- effectors and cytoskeletal remodelling. Interestingly, four of 

these pathways are linked with OP cell fate decisions such as survival, 

proliferation, differentiation, and myelination. This provides correlative evidence 

to suggest that the microRNAs associated with survival in high-grade glioma 

have roles in OP differentiation pathways. 

3.3.2. Determination of the role of OP gene expression in prognosis of 
glioma. 
To further determine whether the activity of microRNAs in different cell stages of 

the OP differentiation pathway are associated with malignant glioma patient 
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outcome, I accessed published data describing microRNA profiles associated 

with stages in the differentiation of ESCs into oligodendrocytes (Letzen et al., 

2010). My initial hypothesis was that presence of less differentiated 

oligodendrocyte cells in glioma confers a poorer prognosis. To this end, I 

questioned whether microRNA expression changes throughout OP 

differentiation resemble the prognostic microRNA expression pattern of 

malignant glioma. First, I calculated fold changes between each progenitor cell 

type in the OP differentiation pathway and correlated these with the fold 

differences between poor prognosis and good prognosis samples of GIIIA or 

glioblastoma (Fig. 3.2 A-B). Only microRNAs that are significantly differentially 

expressed between each stage of the OP differentiation pathway and with at 

least a 2-fold change in expression were used. The OP2 to OP3 stage was 

omitted, as there were too few differentially expressed microRNAs between 

these cell types, suggesting that these two cell stages don’t have a significantly 

altered microRNA expression pattern. In GIIIA, the microRNA expression 

differences between good and poor prognostic cases correlated directly with the 

changes associated with differentiation from NP to GP (correlation coefficient = 

0.50, p<0.05), which was not evident in glioblastomas. In both grades, the 

expression differences between good and poor prognosis showed a negative 

correlation with the changes associated with differentiation from OP1 to OP2 

(correlation coefficient -0.54 for GIIIA and -0.47 for glioblastoma, p<0.05) (Fig. 

3.5).   
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Figure 3.5. Correlation coefficients comparing the fold change of 
microRNA expression between each stage in the OP pathway and the 
GIIIA and glioblastoma good and poor prognosis groups. 

This heatmap represents coefficients from correlation tests between in vitro 

microRNA expression data and the prognostic microRNA expression data. The 

top 6 rows are data from correlations with Letzen et al. The bottom rows refer to 

correlations with data from Goff et al. and Risueño et al (Goff et al., 2009; 

Risueño et al., 2012).  Significant correlations (with p-value generated using 

p=r/Sqrt(r^2)/(N—2)) were between neural progenitor and glial restricted 

precursors in grade III data (p=0.009) and OP1 to OP2 in both grade III and 

GBM (p=2.7e-3 and p= 4.2e-4 respectively). The highest negative correlation is 

the transition from OP1 to OP2 and the highest significant positive correlation is 

the transition from GP to OP1 in glioblastoma.  

 

Next, I tested whether these correlations are a result of non-specific correlations 

with any ESC differentiation pathway (including non-neural lineages), or 

whether these high correlations are specific for neural differentiation. I used 

expression data from a study comparing microRNA expression between ESC 

cells and hematopoietic progenitors (HPs) and between neural stem cells 

(NSCs) and neural progenitors (NPs) (Goff et al., 2009, Risueño et al., 2012;). I 
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correlated the differences in the differentially expressed microRNAs between 

ESCs and HPs and NSC and NP cells with the differential microRNA 

expression patterns between good and poor prognosis in GIIIA and 

glioblastoma. This approach revealed no significant correlations (p>0.05) 

indicating that the microRNA expression differences between good and poor 

prognosis of malignant glioma are specifically correlated with microRNA 

expression changes in OP differentiation, and not with other differentiation 

pathways (Fig. 3.5). 

A notable difference in good and poor prognosis GIIIA patients studied here 

was their IDH mutation status (Table 3.1), which is used to classify patients 

clinically; those with the mutation are usually proneural tumours and have a 

favourable prognosis (Riemenschneider et al., 2010; Killela et al., 2013). In my 

cohort, all the good prognosis patients had an IDH mutation, while only one 

poor prognosis patient’s tumour was IDH mutated. It could be argued that the 

difference in microRNA expression between these two groups is simply due to 

different biology associated with the presence or absence of an IDH mutation. 

To test this possibility, I obtained sequencing data for IDH mutated (IDHmut, 

n=139) and IDH wild-type (IDHwt, n=39) gliomas (combining data for both grade 

II and III glioma for added statistical power as it is simply the mutation under 

analysis and not the tumour context) from the TCGA and determined microRNA 

expression differences between the two groups using the criteria previously 

stated. The microRNA expression fold differences between IDHwt and IDHmut 

were correlated with the fold changes between each stage in the OP 

differentiation pathway. The only significant correlation observed was an 

inverse correlation between IDHmut and IDHwt and OP1 to OP2. Good versus 

poor prognosis GIIIA and glioblastoma also correlated with this OP 

differentiation stage. Critically, the fold differences between IDHmut and IDHwt 

did not correlate with the changes during differentiation from NP to GP (p<0.05, 

correlation coefficient < -0.34). Therefore I conclude that the correlation I have 

shown between prognosis and OP stage differentiation is independent of IDH 

mutation status. 
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3.3.3. Correlation of glioma tumour microRNA expression with the OP cell 
stage. 
Correlations of the microRNA expression differences between good and poor 

prognosis cases and between neural differentiation stages imply that correlation 

with the OP1 cell type is most closely related to prognosis.  

In order to examine this hypothesis, I correlated the microRNA expression 

profiles of each differentiation stage/cell type in the oligodendrocyte 

differentiation pathway with microRNA expression profiles of 39 GIIIA, 558 

glioblastoma and 10 non-tumour samples from the TCGA. Only microRNAs 

present in all platforms (sequencing and microarray) were used (150 

microRNAs) (Appendix 3.1).  The majority of the 597 tumours positively 

correlated with each cell type in the OP differentiation pathway. Seven GIIIA 

tumours did not correlate with OP2 or OP3 microRNA expression, and two GIIIA 

tumours did not correlate with OP2 expression. Across all tumours assessed, 

the highest correlations were with OP1 and OL cell types microRNA expression 

patterns (Fig. 3.6 A-B). The cell type whose microRNA expression correlated 

most positively with tumour microRNA expression was OP1. MicroRNA 

expression of this cell type was most correlated with expression of each tumour 

type and also ten non-tumour samples.  
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Figure 3.6. The correlation of microRNA expression between each cell 
type with glioma tumours in the TCGA. 

(A) Plot of density (Y-axis) of the Spearman’s correlation coefficients (X-axis) for 

each cell type with all GIIIA and glioblastoma tumours in the TCGA. All cell 

types in the OP differentiation pathway (from Letzen et al, data obtained 

through personal communication) show significant positive correlation of 

microRNA expression with each tumour, with the oligodendrocyte lineage and 

OP1 cells showing the highest positive correlations. (B) Heatmap of correlation 

of each GIIIA/glioblastoma tumour with each OP cell type. (C) Hazard ratios 

from Cox regression analysis of the correlation patterns of each cell type shows 

that OP1 microRNA expression correlation is the most predictive in terms of 

prognosis. MicroRNA profiles of all cell types were significantly associated with 

survival (p<0.05). (D) Kaplan-Meier plot of the OP1 correlation coefficients for 
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grade III and IV gliomas. Groups are separated above and below the median 

correlation of microRNA expression between OP1 and tumour.  

Twenty-three glioblastomas had the highest correlation with OL and one 

glioblastoma had the highest correlation with glial restricted precursor (GP). 

Average correlation with OP1 was 0.60 for GIIIA, 0.93 for glioblastoma, 0.69 for 

the mesenchymal subtype of glioblastoma (n=155), 0.67 for classical 

glioblastoma (n=143), 0.36 for G-CIMP glioblastoma (n=38), 0.54 for neural 

glioblastoma (n=82), 0.58 for proneural glioblastoma (n=97) (Brennan et al., 

2013)1, and 0.88 for non-tumour samples. These results indicate that 

glioblastoma is most positively correlated with OP expression patterns. GIIIA 

alone has lower correlations with OP cells than non-tumour samples. 

To determine the association of the OP differentiation cell stages with high-

grade glioma patient survival, the correlation values for each of the eight cell 

types in the OP differentiation pathway with all 597 tumours in the TCGA were 

assessed for association with survival using Cox regression analysis. Rho (ρ) 

values (Spearman’s coefficient) for all cell types were significant negative 

predictors (p<0.05) of survival. The highest hazard ratio was for correlations 

with the OP1 cell type (Fig. 3.5 C), which indicates that gliomas with microRNA 

expression patterns similar to OP1 cells have a poorer patient outcome (Cox 

regression HR = 13.02, 95% CI = 3.77-45.04, p = 5.02e-05) (Fig. 3.5 D). Taken 

together, my results suggest that the most aggressive malignant gliomas (both 

GIIIA and glioblastoma) have a microRNA expression pattern that aligns with 

expression patterns characteristic of the OP1 cell stage. 

3.4. Discussion. 

3.4.1. Prognostic glioma microRNAs align with OP pathways. 
There has been considerable discussion over subtyping of glioblastoma based 

on expression and copy number data. However, so far this approach has not 

delivered robust clinical biomarkers and the field is further complicated by data 

confirming that subtypes can co-exist within the same tumour thereby creating a 

diversity of oncogenic transcriptional programs that contribute to treatment 

resistance (Sottoriva et al., 2013; Patel et al., 2014). 

Models of glioma suggest these tumours may be defined by the initiating cell 

type or the type of initiating mutation (Lei et al., 2011). Despite these 
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observations, the glial cell of origin in different histological types of glioma 

remains unclear (Sukhdeo et al., 2011). It has been proposed that OPs may fill 

this role in some subtypes and this is supported by data suggesting that 

mesenchymal glioblastoma can arise from a proneural-like precursor (Liu et al., 

2011a; Ozawa et al., 2014). 

Using integrated mRNA and microRNA expression data I have identified that 

prognostic microRNA expression patterns in malignant glioma correlate with 

microRNA expression changes during oligodendrocyte differentiation. This 

study is novel in identifying grade-independent and subtype-independent 

prognosis prediction using microRNAs as biomarkers, which are stable in 

clinical samples and may be appropriate for implementation into clinical practice 

(Hall et al., 2012). 

MicroRNA expression changes associated with cellular transitions between 

OP1 and OP2 suggest that more aggressive tumours have more cells with 

OP1-like expression patterns. Whether these are non-malignant OP1s present 

within the tumour mass, malignant cells with similarities to these cells, or are 

simply less differentiated, cannot be ascertained from my data. The tumour 

samples under study here were defined by the TCGA as having at least 70% 

tumour nuclei which suggests this is unlikely to be a non-malignant population 

of cells. 

In line with my computational results, OPs have been shown to stimulate a 

more aggressive phenotype by promoting neo-vascularisation of glioma and are 

present at the invasive front of high grade tumours (Huang et al., 2014). Initial 

neoplasia-generating aberrations in NSCs can only become transforming upon 

differentiation into an OP, suggesting that these cell types are important in 

tumour initiation, as well as defining its behaviour (Sukhdeo et al., 2011). 

Supporting this notion, both proneural and mesenchymal glioblastoma tumours 

have been shown to arise from a common precursor (Ozawa et al., 2014). OP 

cells are also implicated in maintaining self-renewal by means of asymmetric 

cell division, supporting both self-renewal and proliferation in the tumour 

(Sugiarto et al., 2011). OP cells are also defined by their PDGFRA expression, 

and recent studies show that amplification of this is an initiating event in 

gliomagenesis (Ozawa et al., 2014; Zhang et al., 2014; Havrda et al., 2014). 
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Oligodendrocyte precursor cells are highly migratory, and this is mediated by 

different cues at different regions in the CNS (Jarjour and Kennedy, 2004). 

Substrates such as laminin promote OPC migration, whereas collagen inhibits 

mobility (Milner et al., 1996). Enhanced migratory capacity may be an 

explanation for the poorer prognosis in patients exhibiting microRNA patterns 

similar to GPs and OPCs. The biological significance of these results may 

suggest that it is a particular stem-like cell that is important in patient outcome, 

and detection of these cell types could be of importance in assessment of the 

level of aggressiveness of certain cancers.  

 

3.4.2. Translational relevance of the OP1 prognostic signature. 
My results suggest a more OP1-like phenotype is associated with a more 

aggressive tumour, and presence of these OP1 microRNA patterns predicts 

poorer prognosis. MicroRNA signatures predicting more aggressive tumours 

have been developed in the past, yet their relevance to tumour biology is not 

well understood (Lakomy et al., 2011; Srinivasan et al., 2011; Zhang et al., 

2012a, Sana et al., 2014). Also, subtype-specific signatures are not easy to 

implement into the clinical routine of standard healthcare laboratories due to 

logistic challenges (i.e. multiple testing procedures) and the need for diverse 

state-of-the-art profiling platforms (i.e. next generation sequencing) as well as 

high-level bioinformatics/computational support. Hence, it would be desirable to 

replace complex prognostic signatures with a few key biomarkers wherever 

possible. For example, Letzen et al describe peaks of miR-10a and miR-21 

expression in OP cells (Letzen et al., 2010) compared to other neural cell types 

(these microRNAs were both significantly increased in poor prognosis malignant 

glioma in my study) and it may therefore be possible that these microRNAs 

alone have the potential to be exploited as biomarkers for the presence of OP-

like cells.  Prospective observational clinical trials will be needed to address this 

hypothesis. 

Taken together, I provide preliminary evidence that classification of malignant 

glioma based on microRNA expression patterns seen in OPs may predict the 

outcome of the disease, which could not only inform patient management but 

also guide development of novel treatments. The statistical power of future work 
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is likely to be increased due to the availability of more samples in TCGA and 

other repositories. This is also a principle that could be extended to other 

tumour types, to elucidate the characteristic microRNA profiles exhibited in 

particular by poor prognosis tumours. 

	    



	   123	  

4. Investigation of microRNA-9 in malignant glioma. 
 

‘Not just microbes, not just the worm, not just animals but plants…and 

related to RNAi. This really sets it up as a tiny RNA universe.’ Gary 

Ruvkin, 2008.  

4.1. Introduction. 
Results from my prognostic signature in glioblastoma shown in Chapter two 

revealed miR-9 as a prognostic microRNA, with reduced tumour expression 

levels resulting in poorer prognosis. This suggests that miR-9 may be a tumour 

suppressor. When targets were predicted for all microRNAs in the prognostic 

signature in Chapter two, more targets were identified for miR-9 than any other 

microRNA. Kim et al. also reported that miR-9 had the largest correlation 

network of all microRNAs in glioblastoma and Sun et al. named miR-9 as one of 

four microRNAs in a ‘hub’ contributing to gliomagenesis (Kim et al., 2011b; Sun 

et al., 2013). This microRNA is highly expressed in the brain, extremely 

abundant in glioma, and has been shown to promote neural cell differentiation 

in conjunction with miR-124a by inhibiting STAT3 (signal transducer and 

activator of transcription 3) phosphorylation (Sempere et al., 2004; Krichevsky 

et al., 2006; X. Tan et al., 2012). This is likely to occur through the JAK (janus 

kinase) family of proteins, which are all targeted by miR-9 and phosphorylate 

STAT3 (Kim et al., 2011b). These results support the notion that miR-9 may be 

an important microRNA in the biology of glioma. 

Despite the finding that miR-9 has a lower expression level in tumours from 

patients who have a worse outcome, several studies report that miR-9 may be 

oncogenic in nature. Inhibition of miR-9 was indicated to reduce migration and 

induce sensitivity to temozolomide, as well as hinder neurosphere formation 

and promote differentiation (Schraivogel et al., 2011; X. Tan et al., 2012; Munoz 

et al., 2013; Munoz et al., 2014). 

In support of the survival analysis results, it was reported that EGFRvIII can 

suppress miR-9 which causes up-regulation of its target FOXP1 (forkhead box 

P1) resulting in increased tumour growth (Gomez et al., 2014). The 

developmental taxonomy of glioblastoma defined by microRNAs showed miR-9 
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to be expressed at a higher level in the oligoneural subclass, which is a 

relatively good prognosis group of tumours (Kim et al., 2011b). 

An individual microRNA has the ability to target at least 200 genes (Yue et al., 

2009), and the effects of a particular microRNA may be different depending on 

the cellular context. For example, miR-9 only has the ability to affect neural cell 

lineage differentiation when in the presence of miR-124a (Krichevsky et al., 

2006). The fact that a microRNA has multiple targets can aid its research, as 

pathway enrichment may be determined using these targets, which I performed 

in Chapter three. However, study of this number of targets in a heterogeneous 

disease such as glioblastoma, with many cellular contexts in one tumour, can 

prove problematic. This may be the cause of the conflicting results for miR-9. 

The aim of Chapter four was to clarify why tumours from patients with poorer 

prognosis have lower expression levels of miR-9 yet miR-9 confers an 

advantage to tumour cells when overexpressed. 

In this study, I have combined results from patient samples, which reflect the 

overall expression levels of miR-9 in a tumour, with the expression levels of 

miR-9 in cultured glioma stem cells. I have interpreted the results in light of the 

current molecular classifications for both glioblastoma tumours (Verhaak et al., 

2010; Brennan et al., 2013) and glioma stem cell lines (Mao et al., 2013). These 

results suggest that miR-9 is expressed at lower levels in the mesenchymal 

group of tumours and the phenotypic characteristics of miR-9 correlate with 

hallmarks of this glioblastoma subtype, such as infiltration and necrosis. With 

further validation miR-9 could be used as a biomarker associating with the 

mesenchymal subtype, which would eliminate the need for multiple markers to 

be tested.  

4.2. Methods. 

4.2.1. Cell culture and transfection. 
Glioblastoma stem-like cell lines G33, G35, X6, 157, 528 and G44 were 

obtained from freshly resected malignant glioma samples (from Ichiro Nakano, 

Ohio State University with patient consent and permissions, Appendix 4.1 (Mao 

et al., 2013)). These were cultured at 37°C in 5% CO2 in stem cell media 

consisting of neurobasal/Glutamax medium (Life Technologies, Carlsbad, CA) 

supplemented with 2% B27 (Life Technologies), which is designed to support 
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neural cell culture, and 20ng/ml epidermal growth factor and 20ng/ml fibroblast 

growth factor (PeproTech, Rocky Hill, NJ). Cells were grown as adherent 

monolayers in laminin-coated dishes (Invitrogen) or as neurospheres in 75cm2 

ultra-low attachment flasks (Corning, NY).  

U251, U87, U373 and LN229 adult glioblastoma cells (American Type Culture 

Collection, ATCC), and KNS42, Res186, UW479 and SF188 paediatric cell 

lines (obtained from Chris Jones at The Institute of Cancer Research, Surrey 

under a material transfer agreement (Gaspar et al., 2010)) were cultured in 

RPMI 160 medium (Life Technologies) containing 10% foetal bovine serum 

(Sigma-Aldrich, St Louis, MO) at 37°C in 5% CO2 in 75cm2 flasks (Corning). 

GBM-1 and GBM-4 (obtained from freshly resected malignant glioma samples 

as recorded in Wurdak et al (Wurdak et al., 2010) and transferred under a 

material transfer agreement) were cultured at 37°C in 5% CO2 in stem cell 

media consisting of neurobasal/Glutamax medium (Life Technologies) 

supplemented with 2% B27 (Life Technologies) and 1% N-2 (Life 

Technologies), both designed to support neural cell culture. 20ng/ml epidermal 

growth factor and 20ng/ml fibroblast growth factor (PeproTech) were also added 

to the media. Cells were grown as adherent monolayers in laminin-coated 

25cm2 flasks (Life Technologies). 

Cells were transfected with 100nM miR-9 mimic or scrambled control 

oligonucleotides (GE Healthcare Dharmacon Inc, Lafayette, CO), using 5µl of 

lipofectamine 2000 (Life Technologies) per 2.5ml of transfection mix in six-well 

plates containing 200,000 cells/well and were assayed after 48 hours. Plasmid 

transfections were performed in the same way with 10µl lipofectamine 2000 and 

4µg of plasmid. Human foetal neural stem cells (SCP2743) obtained from 

Columbus Nationwide Children’s Hospital were grown as monolayer cultures by 

Dr. Choi-Fong Cho (Harvard Medical School). 

Hypoxic cultures were performed at 1% oxygen rather than 21% (atmospheric 

oxygen level) by adjustment of the nitrogen levels in the incubator. The 

incubator was not opened during the 72-hour incubation period and RNA 

extraction was performed immediately after harvesting the cells. Hypoxia 

response was confirmed by quantifying mRNA levels of a HIF1A target, GLUT1 

by qRT-PCR. 
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4.2.2. RNA extraction and quantitative real-time PCR. 
For mRNA quantification RNA was extracted using TRIzol® Reagent (Life 

Technologies) according to the manufacturer’s guidelines 48 hours post-

transfection and first-strand synthesis performed using SuperScript® II Reverse 

Transcriptase (Life Technologies).  Quantitative PCR (qPCR) analyses were 

performed in duplicate with SYBR® Select Master mix for CFX (Applied 

Biosystems) on a BIO-RAD CFX ConnectTM real-time PCR detection system.  

Primers were manually designed for mRNAs and ordered from Integrated DNA 

technologies (IDT, San Jose, CA) or Sigma-Aldrich. The control used for these 

assays was a primer for 18S ribosomal RNA, which has been shown to have 

stable and abundant expression across treatments and samples by Life 

Technologies and Selvey et al and is often used in RT-PCR studies for 

glioblastoma (Selvey et al., 2001; Fassl et al., 2012; Ozawa et al., 2010). Primer 

sequences are included in Appendix 4.2. 

For microRNA quantification, RNA was extracted using TRIzol® Reagent (Life 

Technologies) according to the manufacturer’s guidelines 48-72 hours post-

transfection and reverse transcription was performed using Taqman MicroRNA 

Reverse Transcription Kit (Applied Biosystems, ABI, Waltham, MA).  

Quantitative PCR (qPCR) analyses were performed with Taqman 2x Universal 

PCR master mix with no UNG (ABI) and measured on a BIO-RAD CFX 

ConnectTM real-time PCR detection system. Taqman MicroRNA assays (ABI) 

were used as microRNA primers. The control used for these assays was U6 

snRNA as this is considered to be stable across human tissues, both cancerous 

and non-cancerous (Peltier & Latham, 2008). 

 

4.2.3. RNA extraction and Illumina microRNA Sequencing (sequencing 
performed by Dr. Sally Harrison, Leeds Teaching Hospitals). 
RNA was extracted using miRNeasy (Qiagen, Gaithersburg, MD). Library 

preparation was performed using the NEBNext® Multiple X Small RNA Library 

Prep Set for Illumina (New England Biolabs Inc, Ipswich, MA) according to 

manufacturer’s guidelines. Illumina multiplex HiSeq sequencing (Illumina, Inc) 
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was performed according to manufacturer’s guidelines on a HiSeq 2000 with 50 

base reads and 16 samples per lane.  

4.2.4. Cell adhesion assays. 
For cell-cell adhesion assays a single glioma stem-like cell suspension of 1 

million cells in 3ml stem cell medium was added to a 15ml Falcon tube (Thermo 

Fisher Scientific Inc, Waltham, MA) and incubated on a 360° rotator at 37°C in 

5% CO2. Every 1-hour 100µl was removed and fixed in 16% paraformaldehyde 

(PFA, Electron Microscopy Sciences, Hatfield, PA). To visualise the spheres, 

cells were stained with 1:1000 Hoechst 33342, Trihydrochloride, Trihydrate 

10mg/ml solution in water (Life Technologies) and the size and number of the 

spheres were imaged using a bright-field microscope (DM6000B, Leica, 

Wetzlar, Germany) connected to a charged-coupled device camera. These 

images were then quantified by area using the ‘Analyze Particles’ function of 

ImageJ 1.48v which applies a mask to the image so all small particles (single 

cells) are removed from the image. 

For cell substrate adhesion assays, established cell lines U251 and U373 were 

seeded at 5000 cells per well of a 96-well plate in 100μl of serum containing 

media (see above). The plate was incubated at 37°C in 5% CO2 and at 4 hours 

incubation time the non-adherent cells and media were carefully removed from 

appropriate wells. 16% PFA was added to each well to fix the cells. Cells were 

stained with 1:1000 Hoechst 33342 for 30 minutes. One field per well at 4x 

magnification was imaged using a bright-field microscope (DM6000B, Leica) 

connected to a charged-coupled device camera. The number of cells was then 

quantified by area using the ‘Analyze Particles’ function of ImageJ 1.48v.  

4.2.5. Cell viability assays. 
Cells were assessed for viability using PrestoBlue® Cell Viability Reagent (Life 

Technologies). Glioma stem-like cells were seeded at 5000 cells/well in 90μl 

stem cell media. 10μl PrestoBlue® was added and incubated at room 

temperature for 10 minutes. Absorbance at 570nm was measured on a 

POLARStar® Omega platereader (Bmg Labtech, Ortenberg, Germany). 
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4.2.6. Transwell migration assays. 
Migration of glioma stem cells (GSCs) was assayed using FluoroBlock™ 

permeable transwell inserts (Corning®) with 8μm pore sized membranes. 

Membranes were coated with 600μl 1:100 Corning® Matrix Growth Factor 

Reduced Matrigel® in DMEM for 3 hours at 37°C in 5% CO2 and then washed 

with 200μl phosphate buffered saline (PBS, Life Technologies). 50000 GSC 

cells in 100μl stem cell medium were added to the insert. Then 600μl stem cell 

medium was added to the well. Cells were incubated for 6 hours at 37°C in 5% 

CO2, and then non-migrating cells in the insert were removed with a PBS wash 

and cotton swabs. Cells that migrated to the bottom of the membrane were then 

stained with 600μl crystal violet for 15 minutes at 25°C and washed with water. 

The inserts were allowed to dry for 3 days. For quantification, the crystal violet 

was removed using 600μl acetic acid and absorbance at 570nm was measured 

on a POLARStar® Omega platereader (Bmg Labtech). The level of absorbance 

provides an indication of the number of cells present on the membrane as they 

stain with crystal violet.  

4.2.7. Western blotting.  
For western blotting of targets Invitrogen apparatus was used. Cells were 

washed in cold PBS, lysed in radioimmunoprecipitation assay (RIPA) buffer 

which contains 25mM Tris-HCl pH 7.6, 150mM NaCl, 1% NP-40, 1% sodium 

deoxycholate and 0.1% SDS (Thermo Scientific) with 1x PhosStop 

phosphatase inhibitors (Roche diagnostics, Basel, Switzerland) and 1x protease 

inhibitor cocktail set (Calbiochem, Billerica, MA) and sonicated for 5 seconds. 

20µg protein were separated on a 10% precast polyacrylamide SDS (sodium 

dodecyl sulphate) gel (BIORAD, mini protean TGX gel) and blotted onto 

nitrocellulose membrane (BIORAD, Hercules, CA). Membranes were blocked 

for one hour under shaking in 5% non-fat milk solution (Lab Scientific, 

Highlands, NJ) in 1 x Tris-buffered saline with Tween 20 (TBST, 20 mM Tris pH 

7.5. 150 mM NaCl. 0.1% Tween 20, BIORAD). After washing in TBST, the 

membrane was incubated overnight at 4°C under shaking with 10ml primary 

polyclonal rabbit anti-SHC antibody (Cell Signalling Technology, Danvers, MA) 

at a dilution of 1:1000 in 5% non-fat milk solution (Lab Scientific). The 

membrane was again washed and then incubated for 1 hour in 1:10000 
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peroxidase-conjugated goat anti-rabbit IgG antibody (Cell Signalling 

Technology). The Thermo Scientific Supersignal West Femto Maximum 

Sensitivity substrate and the BIORAD Chemidoc were used to develop the 

signal. The membrane was then washed in TBST and then incubated for 1 hour 

with anti-GAPDH fluorescent antibody (Abcam, Cambridge UK) and visualised 

on the BIORAD Chemidoc. 

4.2.8. Luciferase reporter assays. 
U251 cells were co-transfected in six well plates (Corning Costar) with either 

scrambled control oligonucleotide or miR-9 mimic (Dharmacon) and pEZX 

negative control (empty vector) or pEZX-SHC1 3’ UTR luciferase construct 

harbouring the 3’ UTR including binding sites for miR-9 (GeneCopoeia, 

Rockwille, MD, HmiT017080, Fig. 4.1). 24 hours later 100μl was transferred to 

wells of a 96-well white bottom plate (Cellstar, VWR, Radnor, PA) to allow cells 

to settle in the appropriate volumes for the assay. 24 hours later 100μl Steady-

Glo® Luciferase reagent (Promega, Madison, WI) was added and incubated at 

room temperature for 5 minutes to allow lysis. Luminescence was measured 

using a POLARStar® Omega platereader (Bmg Labtech). 

 

 
Figure 4.1. The pEZX reporter plasmid with the 3’ UTR of SHC1. 

In order to assess SHC1 as a target of miR-9, cells were co-transfected with 

miR-9 mimic and this plasmid containing the SHC1 3’ UTR sequence (miR 

target), or an empty (without the SHC1 3’UTR) pEZX plasmid as a control. 

Image from Genecopoeia manufacturer’s guidelines. 

4.2.9. TCGA data, statistical analysis and target prediction. 
Level 3 Agilent microRNA 8x15k microarray and G4520A microarray gene 

expression data plus clinical information for 558 glioblastoma and 10 
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unmatched non-tumour samples were downloaded from TCGA (TCGA, NIH 

(accessed October 2012). Illumina HiSeq sequencing data (level 3, reads per 

million of total reads mapping to a mature microRNA and precursor sequences) 

for microRNAs were downloaded for all samples with grade II or III glioma from 

TCGA (n=178; 55 astrocytoma, 47 oligoastrocytoma, 75 oligodendroglioma, 1 

not stated; 95 grade II, 112 grade III, 1 not stated). Survival analysis was 

performed in R v2.15.1 using Cox regression for mature sequences and 

precursor sequences separately. Subgroups of the patient samples were 

defined using data from Brennan et al. and tumour cell percentage and extent 

of necrosis were obtained from TCGA clinical data files (Brennan et al., 2013). 

Targets of miR-9 were identified using Miranda (Miranda et al., 2006) and 

Targetscan (Lewis et al., 2005) irrespective of conservation. Gene ontology 

analysis was performed using Metacore v6.16 (Thomson Reuters) modified 

exact Fisher’s test. Correlation of microRNA and mRNA expression was 

performed using Spearman’s correlation on all 558 glioblastoma samples.  

4.2.10. Sequencing bioinformatics pipeline (performed by Dr. Lucy Stead). 
Fastq files were generated using Illumina software and instructions. Adapter 

sequences were removed and trimmed according to quality to remove low 

quality reads and adapter contamination. Reads of less than 13 bases were 

removed. Data was collapsed into unique sequences and their associated 

counts. Reads were then aligned to miRBase v19 (Griffiths-Jones et al., 2008) 

precursors (downloaded May 2013). Reads aligning more than once were 

assigned to the most probable location of origin using SeqEM (Martin et al., 

2010). This produced a read count for every precursor in the database. A 

further file was generated from this, which only included sequences aligning to 

mature microRNAs defined by MiRBase.  

4.3. Results. 

4.3.1 Expression of miR-9 in samples with different prognosis, and with 
different molecular subtypes.  
I performed survival analysis for miR-9 in glioblastoma using TCGA microarray 

microRNA expression data. This showed that in 558 patients miR-9 is 

expressed at lower levels in tumours from patients with a poorer prognosis 
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(HR= 0.91, CI=0.85-0.99, p=0.019, Fig. 4.2 A). A similar analysis was 

performed using the level 3 sequencing data for mature microRNAs for lower 

grade glioma (encompassing grade II and III) and this also showed that miR-9 

was expressed at lower levels in patients with poorer prognosis (log miR-9 HR 

= 0.28, CI=0.13-0.59, p=9.8e-4, Fig. 4.2 B). 

 
Figure 4.2. In glioma miR-9 is a prognostic microRNA that decreases 
with poorer patient outcome. 

Survival analysis was performed for miR-9 using TCGA microRNA expression 

data. These are Kaplan-Meier curves showing the association of miR-9 

expression levels with patient survival. The Y-axis represents the fraction of 

patients alive at each time, shown in months on the X-axis. A) In 558 

glioblastoma patients, miR-9 was shown to be at lower expression levels in 

patients with a poorer outcome (separated on the median expression level). B) 

In 178 grade II and III glioma patients, mature miR-9 expression levels were 

also lower in tumours of patients with poorer prognosis.  
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In order to assess whether the expression of miR-9 was altered in different 

subtypes of glioblastoma, levels were assessed in each subgroup (as defined 

by Brennan et al). This showed that the mesenchymal glioblastoma subgroup 

had much lower levels of miR-9 compared to the other subgroups (Fig. 4.3 A) 

and a LIMMA (linear models for microarray data) test comparing miR-9 in 

proneural TCGA tumours with mesenchymal tumours showed a significant 

decrease in expression in the mesenchymal subgroup (p=3.05e-11, Fig. 4.3 B). 
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Figure 4.3.  miR-9 expression is lower in mesenchymal glioblastoma. 

Levels of miR-9 expression were assessed using quantile normalised 

microarray expression data for molecular subtypes of glioblastoma. A) A density 

plot of the microRNA expression in all subgroups of glioblastoma. miR-9 is 

highest in the G-CIMP tumours and lowest in the mesenchymal subtype. B) 

Comparison of the miR-9 levels in proneural and mesenchymal tumours by 

LIMMA test showed a significant decrease in the mesenchymal subgroup 

compared to the proneural group. The Y-axis represents quantile normalised 

microRNA expression for the two probes of miR-9 on the microarray. The boxes 

represent the interquartile range and the heavy line within the box is the median 

expression. The whiskers are the minimum and maximum expression within the 

nominal range (the upper/lower quartile plus 1.5 times the interquartile distance) 

and the circles are outliers from this range. 
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4.3.2. Association of miR-9 precursor expression with prognosis and 
abundance of mature miR-9 in glioma.  
	  
So far I have shown that mature miR-9 expression is prognostic in patients with 

glioblastoma and lower grade glioma. In order to determine whether the 

precursor sequences are prognostic I used TCGA sequencing data where 

reads aligning to precursor sequences have been quantified, to perform survival 

analysis. I performed survival analysis on the three precursors of miR-9, which 

showed that all precursors are prognostic (Fig. 4.4 A-C). In-house sequencing 

of two GSC lines and a non-tumour sample also shows that the levels of the 

precursors differ between samples, but no one particular precursor is altered in 

the same way across samples (Fig. 4.4 D). 
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Figure 4.4. All precursors of miR-9 are associated with survival but 
levels of the precursors differ across samples. 

A-C) Sequencing data from TCGA grade II and III glioma samples showed all 

precursor sequences are prognostic. D) Read counts per million (Y-axis) of 

miR-9 precursor in two glioma stem cell lines grown on laminin, and a non-

tumour sample. Characterisation according to the signature of Mao et al. (Mao 

et al., 2013) loosely indicates GBM-1 may be more proneural-like and GBM-4 

more mesenchymal-like (Appendix 4.3). Lower miR-9 levels in GBM-4 to GBM-

1 reflect the similarity of GBM-4 to a mesenchymal subtype with lower miR-9 

levels. 

 

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Months

Fr
ac

tio
n 

of
 s

ur
vi

vi
ng

 p
at

ie
nt

s

Low Expression

High Expression

p value=0.003

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MiR-9-1

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Months

Fr
ac

tio
n 

of
 s

ur
vi

vi
ng

 p
at

ie
nt

s

High Expression

p value=0.003

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MiR-9-2

Low Expression

A" B"

miR$9$1' miR$9$2'

Months" Months"

High"expression" High"expression"

Low"expression"

Low"expression"

p="0.003"p="0.003"Fr
ac
:o

n"
of
"su

rv
iv
in
g"
pa
:e

nt
s"

Fr
ac
:o

n"
of
"su

rv
iv
in
g"
pa
:e

nt
s"

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Months

Fr
ac

tio
n 

of
 s

ur
vi

vi
ng

 p
at

ie
nt

s

Low ExpressionLow Expression

High Expression

p value=0.006

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MiR-9-3

C"

Months"

Fr
ac
-o

n"
of
"su

rv
iv
in
g"
pa
-e

nt
s"

miR$9$3'

High"expression"

Low"expression"

p=0.006"

D"

0"

20000"

40000"

60000"

80000"

100000"

120000"

GBM1"" GBM4" Normal"brain"

Se
qu

en
ci
ng
)re

ad
s)

)

Mir4941"

Mir4942"

Mir4943"

mature"miR49"

miR49*"Se
qu

en
ci
ng
"re

ad
s"

GBM1" GBM4" Non6tumour"

0"

20000"

40000"

60000"

80000"

100000"

120000"

GBM1"" GBM4" Normal"brain"

Se
qu

en
ci
ng
)re

ad
s)

)

Mir4941"

Mir4942"

Mir4943"

mature"miR49"

miR49*"



	   136	  

MiR-9 has been reported to be highly expressed in brain (Sempere et al., 2004) 

and so the levels of miR-9 sequences were assessed compared to all other 

microRNA sequences in a glioblastoma sample and a non-tumour sample. This 

showed that miR-9 represents nearly 30% of all microRNAs in one glioblastoma 

sample, and 6% of all microRNA in a non-tumour sample (Fig. 4.5). 

 
Figure 4.5. miR-9 sequences are highly represented in the total 
population of microRNA sequences with brain and glioblastoma 
samples. 

The proportion of miR-9 sequences compared to all other microRNA was 

assessed to determine its abundance in glioblastoma (GBM) and non-tumour 

tissue. These pie charts show the numbers of sequencing reads per million 

mapping to a miR-9 mature sequence or precursor compared to reads mapping 

to all other microRNAs. miR-9 is more highly represented in the total microRNA 

from a glioblastoma patient sample. Note these samples are not matched. 

 

4.3.3. Levels of expression of miR-9 in tumours with different percentages 
of tumour cell content. 
Following the finding that miR-9 is expressed at lower levels in mesenchymal 

tumours I sought to determine whether this is linked to a recent result showing 

that mesenchymal tumours have a lower percentage of tumour cells than other 

glioblastoma subtypes (Meyer et al., 2015). The 558 samples in the TCGA were 

split based on the median expression of miR-9 and the percentage tumour cells 

compared in the two groups using a Students T-test. This showed that the 

group with a below median expression of miR-9 also have a significantly lower 

tumour cell percentage (p=2.2e-16, Fig. 4.6). Spearman’s correlation of 

GBM$
Non$tumor)
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percentage tumour cells with miR-9 levels was also significant for a positive 

correlation (Rho= 0.23, p=5.63e-08). 

 
Figure 4.6. The patient group with below median expression of miR-9 
have fewer tumour cells in the sample. 

The Y-axis represents the percentage tumour cells in each sample defined by 

the TCGA. The X-axis represents the below median miR-9 expression level and 

above median miR-9 expression level based on the merged data from two 

probes for miR-9 on the microarray. The boxes represent the interquartile range 

and whiskers represent the maximum and minimum expression level. Patients 

with below median expression levels of miR-9 in their tumour show a lower 

percentage of tumour cells. This may suggest that samples with more infiltration 

have less miR-9.  
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4.3.4. Expression of miR-9 in mesenchymal glioma stem cells. 
Tumours with more extensive infiltration may have lower miR-9 simply because 

the infiltrating cells have lower miR-9 expression, thus diluting the levels of miR-

9 in the total sample. In order to test whether this contributes to why miR-9 is 

lower in the mesenchymal glioblastoma subtype and also prognostic, I 

measured the levels of expression in glioma stem cell lines. These lines were 

characterised as proneural or mesenchymal according to the Mao et al 

signature (Mao et al., 2013) (characterisation previously performed by Dr. 

Marco Mineo, Appendix 4.3).  A neural progenitor cell line, SCP27, was also 

assessed for miR-9 levels and Dr Marjorie Boissinot performed qRT-PCR for 

established adult and paediatric cell lines (Fig. 4.7). A students T-test showed 

that mesenchymal stem cells have lower expression of miR-9 (p=7.9e-4), 

suggesting that the infiltrates are not the sole explanation for lower miR-9 

expression in mesenchymal glioblastoma. The other cell lines showed varying 

expression of miR-9. Highest levels were observed in proneural glioma stem 

cell lines. 
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Figure 4.7. Levels of miR-9 are low in mesenchymal glioma stem cell 
lines; other cell lines have varying expression levels. 
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4.3.5 Association of miR-9 with necrosis. 
One of the hallmarks of mesenchymal glioblastoma is the more extensive 

necrosis (Naeini et al., 2013). Therefore it is plausible that miR-9 is expressed 

at lower levels in necrotic regions. In order to assess this I performed 

Spearman’s correlation of percentage of necrosis with the levels of miR-9 

across 558 glioblastoma samples in the TCGA. In accordance with my 

hypothesis above, this showed that samples with a lower miR-9 expression 

have more necrosis by T-test (p=2.2e-16, Fig. 4.8). Spearman’s correlation also 

shows negative correlation of miR-9 with necrosis (Rho=-0.17, p=3.37e-05). 

 
Figure 4.8.  Glioblastoma tumours with lower miR-9 expression have 
more extensive necrosis. 

The Y-axis represents percentage necrosis as defined by the TCGA and the X-

axis represents quantile normalised miR-9 expression based on two probes for 

miR-9 in the microarray, separated on median miR-9 expression in all 

glioblastoma samples in the TCGA. The dark lines represent the median, the 

boxes represent the interquartile range and the whiskers show the maximum 

percentage necrosis recorded in these groups of patients. As expected, patients 

with below median miR-9 expression had a higher percentage of necrosis 

suggesting miR-9 levels may be lower in necrotic regions, and therefore 

contributing to the lower levels of miR-9 in mesenchymal glioblastoma samples. 
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4.3.6. Effect of hypoxia on miR-9 expression levels. 
Another hallmark of mesenchymal glioblastoma is extensive hypoxia and 

therefore it is plausible that miR-9 may decrease when cells are exposed to 

hypoxia. As mesenchymal cells have more extensive hypoxia it could be that 

these pockets in the tumour have even less miR-9 expression. I tested this by 

exposing a mesenchymal glioma stem cell line; G35, as a monolayer and as 

spheres, to 1% oxygen for 72 hours and performing qRT-PCR for miR-9. This 

showed that miR-9 does indeed decrease with hypoxia (Fig. 4.9). In order to 

monitor hypoxia response of the cells, a HIF-1a target was also measured, 

which showed an increase at lower oxygen levels (Appendix 4.4). 

 
Figure 4.9. When cells are exposed to hypoxia, levels of miR-9 are 
lower.   

In order to determine what the effect of hypoxia is on miR-9 levels, a 

mesenchymal stem cell line was exposed to hypoxia and normoxia and levels 

of miR-9 were quantified after 72 hours. This was tested with cells growing as a 

monolayer and as spheres. The Y-axis represents the delta delta Ct G35 cells 

(U6 Ct minus miR-9 Ct in normoxia/ U6 Ct minus miR-9 Ct in 

hypoxia/normoxia), and the X-axis represents the treatment condition. Both had 

lower expression of miR-9 after exposure to 1% oxygen in comparison to those 

exposed to 20% oxygen. These are merged results of duplicate experiments. 
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4.3.7. Pathway enrichment of predicted miR-9 targets.  
In order to predict the functions of miR-9, targets were predicted using the 

intersection between the targets predicted from microRNA target prediction 

algorithms Miranda (Miranda et al., 2006) and Targetscan (Lewis et al., 2005). 

This identified 1148 targets, which were used for pathway analysis using 

Metacore, which performs pathway enrichment using hypergeometric analysis. 

This method uses the hypergeometric distribution, which describes the 

probability of the number of successes in a number of draws, without 

replacement, from a finite population size. The intersection between the target 

genes and those in a pathway is calculated and under the null hypothesis of no 

enrichment the probability of occurrence of an intersection of a certain size by 

chance follows the hypergeometric distribution. The top ten pathways are 

shown in Fig. 4.10.  

 
Figure 4.10. The top ten enriched pathways of the predicted targets for 
miR-9, with representation of proportion of genes in the pathway.	  

This shows the proportion of genes in the pathway predicted to target miR-9 

along the Y-axis and the pathways defined by Metacore on the X-axis, in order 

of significance from left to right. In the top ten pathways enriched for predicted 

miR-9 targets there is high representation of cytoskeletal remodelling, and 

chemokines and adhesion. Cell adhesion and cytoskeletal modelling were 

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

A
c*
o
n
"o
f"
li
th
iu
m
"o
n
"s
y
n
a
p
*
c"

tr
a
n
sm

is
si
o
n
"a
n
d
"a
u
to
p
h
a
g
y
"

T
h
ro
m
b
o
xa
n
e
"A
2
""
p
a
th
w
a
y
"

si
g
n
a
ll
in
g
"

H
B
V
"s
ig
n
a
ll
in
g
"v
ia
"p
ro
te
in
"

k
in
a
se
s"
le
a
d
in
g
"t
o
"H
C
C
"

C
h
e
m
o
k
in
e
s"
a
n
d
"a
d
h
e
si
o
n
"

C
y
to
sk
e
le
ta
l"
re
m
o
d
e
ll
in
g
"

P
ro
g
e
st
e
ro
n
e
Gm

e
d
ia
te
d
"

o
o
cy
te
"m

a
tu
ra
*
o
n
"

P
K
A
"s
ig
n
a
ll
in
g
"

V
E
G
F
"s
ig
n
a
ll
in
g
"v
ia
"V
E
G
F
R
2
"

W
N
T
"s
ig
n
a
ll
in
g
"p
a
th
w
a
y
"p
a
rt
"2
"

T
G
F
,"
W
N
T
"a
n
d
"c
y
to
sk
e
le
ta
l"

re
m
o
d
e
ll
in
g
"

O
v
a
ri
a
n
"c
a
n
ce
r"
si
g
n
a
ll
in
g
"

ca
sc
a
d
e
s"

Pr
op

or
%o

n'
of
'G
en

es
'



	   144	  

chosen for further study as these pathways are of interest in the transition to a 

mesenchymal subtype. 

4.3.8. Effect of miR-9 on adhesion. 
In order to determine whether miR-9 is involved in cell adhesion, as indicated 

by the pathway analysis of predicted target genes, I assessed cell adhesion 

following overexpression of miR-9 in GSCs as these are able to form 

neurospheres in vitro. miR-9 was overexpressed using Dharmacon mimics and 

compared to a scramble mimic sequence (and quantified by RT-PCR with every 

experiment to confirm overexpression). Cell-cell adhesion assays were 

performed using glioma stem cell lines and measured the number and size of 

spheres after 4 hours of seeding single cells and culturing in rotating 

suspension. This showed that overexpression of miR-9 increased the 

number/size of spheres compared to the scrambled control (Fig. 4.11). 

Cell substrate adhesion assays were performed using established cell lines (as 

these do not require substrate such as laminin or fibronectin to adhere to) on 

tissue culture plates. After 4 hours non-attached cells were washed away and 

the number of cell remaining were assessed. This showed that overexpression 

of miR-9 increased the ability of cells to attach to the plastic (Fig. 4.12). 

The design of the cell adhesion experiments was different for cell cell adhesion 

and cell substrate adhesion. Different cell lines were used because they have 

different abilities to attach to other cells, and also to substrates. For the cell cell 

adhesion the fold change from T0 was used because it could not be confirmed 

that all cells were single cells at this stage. For cell substrate adhesion however, 

fold change was not required and therefore assessment was at the end of the 4 

hours.  
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Figure 4.11. Cell adhesion assays show that miR-9 increased the ability 
of cells to adhere to each other. 

After four hours of incubation, there were more cells in a sphere when cells had 

been transfected with the miR-9 mimic compared to cells transfected with the 

scramble. The Y-axis represents the area increase after four hours, which was 

quantified by applying a mask to the well image, which removed particles less 

than a threshold size to remove single cells from the image. G44 scramble has 

been normalised to 1. The stained area remaining was then compared to the 

area present with mask applied at the start of the experiment (this was done in 

case some cells were not completely dissociated at the start of the experiment). 

Representative of two experiments.	  
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Figure 4.12. Cell adhesion assays show that miR-9 increased the ability 
of cells to adhere to a substrate. 

After four hours of incubation, there were more cells attached to the bottom of a 

well in cells overexpressing miR-9 compared to a scrambled control. The Y-axis 

represents the area after four hours quantified in the same way as for the cell 

cell adhesion assay (Fig. 4.11) without normalisation to time 0. Shown as the 

merge of two experiments. 

 

4.3.9 Effect of miR-9 on cell viability. 
It is plausible that the effects seen in hypoxia, and observations of cell 

adhesion, are due to miR-9 altering cell viability. I therefore tested whether miR-

9 has an effect on the viability of a cell, which may have implications in other 

assays. Cell viability assay Presto Blue, which uses cell permeable redox 

indicator resazurin to detect cell reducing power, showed that miR-9 

overexpression does not alter cell viability (Fig. 4.13).  
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Figure 4.13. miR-9 overexpression does not affect cell viability. 

The effect of miR-9 on cell viability was assayed because it may affect the 

results of other experiments. Cells transfected with a miR-9 mimic did not have 

altered cell viability compared to those transfected with a scramble (48-hour 

transfection). The Y-axis represents the percentage cell viability determined by 

Presto Blue assay compared to the cell viability prior to transfection.  

4.3.9 A target of miR-9 is SHC1, a cytoskeletal remodelling protein. 
I have ascertained that miR-9 is lower in mesenchymal glioblastoma and also 

has a role in cell adhesion, potentially through cytoskeletal remodelling. To 

identify a target of miR-9 that may be eliciting this effect I sought to determine 

which predicted target of miR-9 is also overexpressed in mesenchymal 

glioblastoma, and is associated with the Gene Ontology terms “Cell adhesion” 

and “Cytoskeletal Organisation”. I determined which mRNAs are significantly 

altered between 156 mesenchymal tumours from the TCGA and 96 proneural 

tumours using LIMMA and determined which of these intersected with miR-9 

targets. Then I intersected this list with the Gene Ontology lists for cell adhesion 

and cytoskeletal organisation. The final list contained nine genes; CLDN2 

(claudin 2), DSG2 (desmoglein 2), ATXN3 (ataxin 3), TESK2 (testis-specific 

protein kinase 2), ARFGEF1 (ADP-ribosylation factor guanine nucleotide-

exchange factor 1), DIAPH2 (diaphanous-related formin 2), MYPN 

(myopalladin), SHC1 (Src homology 2 domain containing transforming protein 
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1). These were individually assessed and SHC1 was chosen as a candidate to 

study further, due to high scoring target prediction sites as determined by 

Targetscan (Fig. 4.14). 

 

 
Figure 4.14. The predicted target sites in SHC1 3’ UTR for miR-9. 

Of all microRNAs predicted to target SHC1, miR-9 has the top score using both 

scoring methods in Targetscan. The total context score, which is calculated by 

site-type contribution, 3' pairing contribution, local AU contribution, position 

contribution, target site abundance contribution and seed-pairing stability 

contribution, is -0.34. The Aggregate PCT which scores based on the probability 

of conservation based on microRNA selection rather than by chance, is 0.97. 

There are two predicted target sites for miR-9 in this 3’ UTR. 

 

Levels of SHC1 protein were assessed after miR-9 overexpression using 

western blotting. This showed that miR-9 overexpression decreased SHC1 

protein levels (Fig. 4.15 A). To further confirm this result a plasmid with the 

SHC1 3’ UTR downstream of the Gaussia princeps luciferase (GLuc) reporter 

gene under the control of a SV40 promoter was co-transfected into U251 cells 

with either the miR-9 mimic or a scramble sequence (Fig. 4.15 B). 
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Figure 4.15. Overexpression of miR-9 decreases SHC1 protein levels. 

SHC1 had a high score on Targetscan as a predicted target for miR-9, therefore 

levels of SHC1 protein and expression of a luciferase reporter under the control 

of SHC1 3’ UTR were measured with overexpression of miR-9. A) Western 

blotting to measure protein levels of SHC1 after 48 hours of transfection with a 

miR-9 mimic or scramble. The p66 isoform of SHC1 is shown here and GAPDH 

was used as a control. Results are representative of duplicate experiments. B) 

Results of a 48-hour co-transfection of the miR-9 mimic with the plasmid and 

scramble with the plasmid. A paired two-tailed T-test between these showed 

that overexpression of miR-9 significantly decreased luminescence (p=4.43e-5). 

Both the miR-9 mimic and scramble sequence were also co-transfected with a 

plasmid without the SHC1 3’ UTR present as controls.  
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4.4 Discussion. 
Glioblastoma can be separated into different molecular subtypes with different 

clinical and phenotypic characteristics (Verhaak et al., 2010; Brennan et al., 

2013). Current methods to subtype glioblastoma in patient samples rely on the 

quantification of a large number of mRNAs using the Verhaak et al. signature 

(Verhaak et al., 2010). This is not conducive to clinical testing due to the cost 

and labour intensity. My research has shown that miR-9 is lower in the 

mesenchymal subtype of tumours and also in glioma stem cell lines expanded 

from patient tumours. This has been tested using microarray analysis on patient 

samples, sequencing analysis and qRT-PCR analysis in glioma stem cell lines. 

With further validation, miR-9 would be an ideal candidate as a biomarker 

delineating this subtype, which confers an aggressive tumour type with a good 

response to standard treatment (Mao et al., 2013; Verhaak et al., 2010). The 

cause for the lower miR-9 expression levels in this subtype is not entirely clear 

from my data. Patient samples are heterogeneous, and different clones will 

have varying levels of miR-9, which culminate to produce a lower level from a 

mesenchymal glioblastoma tumour sample. Using miR-9 expression from the 

TCGA patient samples I have shown that despite the heterogeneity within the 

tumour, lower miR-9 expression is detectable within mesenchymal tumours 

without the need for multiple sampling of a particular tumour. My data suggests 

that the levels of miR-9 could be lower in these tumours because of more 

extensive infiltration. As miR-9 is a neural microRNA (Sempere et al., 2004), 

levels are likely lower in non-neural cells (Landgraf et al., 2007). A tumour 

highly infiltrated with other cells, such as lymphocytes, is therefore expected to 

have a lower overall miR-9 expression level. However, miR-9 levels remain low 

when glioma stem cells are expanded from these samples in optimal conditions, 

representing a more homogenous population of cells. This indicates that the 

mesenchymal glioblastoma tumour cells themselves have a lower level of the 

microRNA. 

Analysis of the precursors of miR-9 showed that all are prognostic in TCGA 

patient samples. The sequencing data showed that it could be a combination of 

miR-9-1 and miR-9-2 that cause higher levels of miR-9 in proneural 

glioblastoma. Compared to normal brain, miR-9* is, like miR-9, also expressed 
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at higher levels in the GSC line GBM-1 to GBM-4, which suggests regulation at 

the transcriptional level rather than stability of the precursor transcript. In both of 

the cell lines the levels of miR-9* are higher than that of miR-9, which may 

indicate an alteration in processing generating more of the 3p transcript. 

As previously mentioned, mesenchymal glioblastoma has extensive regions of 

hypoxia and necrosis and levels of miR-9 may fluctuate within these regions. I 

have shown by correlation that tumours with more necrosis have lower levels of 

miR-9, and by qRT-PCR that the cellular response of a glioma stem cell to 

hypoxia causes a decrease in miR-9 levels. This may suggest that certain 

regions of a mesenchymal tumour may have lower expression levels of miR-9 

compared to others. The levels of oxygen termed as ‘hypoxia’ and ‘normoxia’ 

here refer to an adjustment on atmospheric oxygen (1% and 21% oxygen 

respectively), and not a comparison between physiological levels of normoxia 

(<1%-10% (Evans et al., 2004)). If the experiment had been performed at these 

levels, results may have been different, or possibly more significant.  

Pathway analysis of predicted targets of miR-9 suggested a role for miR-9 in 

adhesion and cytoskeletal remodelling. Adhesion assays confirmed that miR-9 

promoted cellular adhesion. Mining for a target that may mediate this function in 

mesenchymal glioblastoma pointed to SHC1, an adapter protein involved in 

signal transduction. TargetScan (Lewis et al., 2005) also shows that miR-9 is 

predicted to target other SHC family members; SHC2 and SHC3. Three 

different isoforms of SHC1 protein exist, all obviously with the same 3’ UTR 

sequence present and therefore under the control of miR-9. An important role 

for SHC1 is as a sensor for external signals, prompting a form of programmed 

cell death called anoikis. This occurs when anchorage dependent cells, such as 

epithelial cells, detach from the extracellular matrix (Chiarugi & Giannoni, 2008). 

Epithelial cells exhibit strong cell-cell adhesion properties, and this can be 

likened to differences seen in vitro between proneural and mesenchymal 

glioblastoma stem cells (Mao et al., 2013). The epithelial mesenchymal 

transition (EMT) is characterised by a loss of these interactions and release 

from the epithelial layer (Lamouille et al., 2014).  

The mesenchymal subtype of glioblastoma has low levels of miR-9, yet breast 

cancer samples with high expression of vimentin and CD44 (mesenchymal 

markers) have higher levels of miR-9 (Gwak et al., 2014), which may reflect 



	   152	  

differences in the extracellular matrix of these cancers. Several experiments 

have validated e-cadherin as a target of miR-9, and increase of miR-9 in 

carcinomas has been shown to contribute to the ‘cadherin switch’ and loss of e-

cadherin-mediated adhesions in the epithelial-mesenchymal transition (Ma et 

al., 2010; Sethupathy et al., 2006). However, this switch has been shown to be 

absent in glioblastoma cells (Mikheeva et al., 2010). Tan et al. showed that 

miR-9 acts in a negative feedback loop with CREB (cAMP response element-

binding protein) (Tan et al., 2012), and this protein has the ability to regulate 

WNT, TGF-β (transforming growth factor beta) and Notch signalling (Zoni et al., 

2014), which were also identified in my pathway analysis of miR-9 targets. 

Another well-characterised target of miR-9 is NF-κB (nuclear factor kappa-light-

chain-enhancer of activated B cells) (Bazzoni et al., 2009), which mediates 

mesenchymal differentiation in glioma (Bhat et al., 2013). These findings point 

to a strong role for miR-9 targets as oncogenic drivers of the mesenchymal 

subtype of glioblastoma. 
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5.  MicroRNAs predicting response to the anti-angiogenic drug 
bevacizumab. 
	  

‘For the sick it is important to have the best.’ Florence Nightingale. 

5.1. Introduction. 
Bevacizumab is an anti-angiogenic monoclonal antibody that acts by slowing 

the growth of new blood vessels through inhibition of VEGFA (vascular 

endothelial growth factor A). In glioblastoma, there have been two recent, 

prospective, randomised, placebo controlled clinical trials to assess whether 

bevacizumab improves survival in patients with newly diagnosed glioblastoma; 

AVAglio and RTOG 0825 (Chinot et al., 2014; Gilbert et al., 2014). In AVAgio 

patients received 10mg/kg of bevacizumab or placebo every two weeks with 

concurrent TMZ/radiotherapy ending with a dose on the last day of TMZ. Then, 

after a break of 4 weeks bevacizumab was administered with TMZ 

maintenance. Following this, 15mg/kg of bevacizumab or placebo alone were 

given every three weeks until disease progression (Chinot et al., 2014). In 

RTOG 0825 bevacizumab or placebo was administered 10mg/kg every two 

weeks from the fourth week of radiotherapy, until disease progression, toxicity 

or completion of adjuvant therapy up to a maximum of 24 cycles (Gilbert et al., 

2014). Both studies reported an improved progression-free survival but no 

overall survival benefit. Despite these results there is anecdotal evidence, and 

some evidence from the tails of Kaplan Meier curves, that some patients may 

benefit from bevacizumab treatment, and appropriate methods for identification 

of these patients is an unmet need (Field et al., 2014, Prados, 2014; Reardon & 

Wen, 2014).  

Prediction of response to bevacizumab in glioblastoma patients has been 

attempted previously, using a nine-gene expression signature representative of 

the mesenchymal glioma subtype (Colman et al., 2010), which was assessed 

using tumour samples from the RTOG 0825 patients. The results showed a 

significant association between worse OS (overall survival) and PFS 

(progression free survival) with the mesenchymal subtype. A smaller, more 

recent trial (the BELOB trial) in the Netherlands assessed bevacizumab alone 

and in combination with the alkylating nitrosourea compound lomustine for 

recurrent glioblastoma, with a primary endpoint of overall survival (Taal et al., 
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2014). This involved administration of lomustine 110 mg/m2 once every 6 

weeks, bevacizumab 10 mg/kg once every 2 weeks, or a combination treatment 

including lomustine 110 mg/m2 every 6 weeks and bevacizumab 10 mg/kg 

every 2 weeks. Results showed that the EGFR amplified, classical glioblastoma 

subtype responded well to combination therapy and the mesenchymal subtype 

showed poor response to single agent bevacizumab (although there were only 

28 patients in the mesenchymal single agent bevacizumab group) (Eraslan et 

al., 2014). This result is supported by the fact that anti-angiogenic therapy 

resistance is associated with the mesenchymal transition, and tumours with 

more infiltration are more resistant to these drugs (Piao et al., 2012; Piao et al., 

2013). As previously mentioned in Chapter four, these aspects of a tumour are 

often observed together. In another study, Omuro et al. found patients with 

proneural tumours had a reduced overall survival compared to other subtypes 

when treated with bevacizumab, TMZ and hyperfractionated stereotactic 

radiotherapy (Omuro et al., 2014).  

In an immune context, infiltration by monocytes expressing the tyrosine kinase 

Tie2 (tunica internal endothelial cell kinase 2) has been shown to confer anti-

angiogenic therapy resistance to tumours (Gabrusiewicz et al., 2014). Tie2, and 

Ang1 (angiopoietin 1) have been shown to predict progression free survival in 

patients with ovarian cancer treated with bevacizumab (Backen et al., 2014). 

The AVAglio trial ruled out VEGFA and VEGFR2 (vascular endothelial growth 

factor receptor 2) as predictive or prognostic biomarkers, although a VEGFA 

SNP rs2010963 is associated with vascular toxicity (Field et al., 2014; Di 

Stefano et al., 2014). MMP2 (matrix metalloproteinase 2) has also been shown 

to be associated with response and survival in bevacizumab treated patients 

(Tabouret et al., 2014). MicroRNAs have not been studied in the prediction of 

response to bevacizumab in glioblastoma to date. 

So far, there has been no validation of a bevacizumab response biomarker for 

any disease type to date, although biomarkers have been suggested (Bruhn et 

al., 2014). The AVAglio and RTOG 0825 trials reported an improvement in PFS 

alone and this is solely meaningful if it translates to an overall survival 

improvement (Field et al., 2014). These data therefore do not provide enough 

evidence to continue with bevacizumab use in newly diagnosed glioblastoma. 
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Different results may have been found if patients were selected according to a 

biomarker.  

Identification of a biomarker for bevacizumab treated patients is particularly 

complicated as patients are treated at different stages of disease, with varying 

lengths and numbers of cycles due to toxicity. Patients are also treated with 

different combination therapies, and may have been treated with a different 

drug prior to administration of bevacizumab. The cost of the drug limits its 

access to just a small number of institutions, and therefore obtaining samples 

from these patients is difficult. In this study, I have attempted to identify a 

microRNA signature prognostic in bevacizumab treated patients (newly 

diagnosed and recurrent glioblastoma) with overall survival as an endpoint. I 

have adapted my LASSO (least absolute shrinkage and selection operator) 

method used in Chapter two to predict prognosis in glioblastoma to this 

subgroup of patients. This showed an 8-microRNA signature defined a 

subgroup with better prognosis, and when applied to patients treated with all 

treatments was less powerful suggesting that this signature is related to 

bevacizumab. 

5.2.  Methods.  

5.2.1. TCGA clinical information and expression data. 
Level 3 Agilent microRNA 8x15k microarray expression data plus clinical and 

treatment information for 562 glioblastoma samples, 90 of which were from 

patients treated with bevacizumab (either as adjuvant, progression or 

recurrence treatment), were downloaded from TCGA (TCGA, NIH). Level 3 data 

provide an expression value for each microRNA by merging of probes values.  

Patients had been treated using varying numbers of 2-3 week cycles of 

bevacizumab therefore treatment time was determined as the date of start of 

treatment to the date of end of treatment. Samples were taken at diagnosis. 

Three patients were removed due to lack of start date information, resulting in 

87 patients (Table 5.1). These were randomly split into test and training set 

groups of 50 and 37 patients respectively. This was done because it was not 

possible to obtain an independent dataset, which would be the ideal validation. 

These numbers were chosen to generate maximum power in generation of the 

model, whilst allowing a validation cohort for testing of the model.  
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Table 5.1. Characteristics of the patients included in the study. 

MicroRNA expression levels for 87 patients from the TCGA were included in the 

study. These were separated into a training set of 50 patients for generation of 

the model and a test set of 37 patients for testing of the model. The test and 

training set patients were allocated randomly, with more patients in the training 

set to ensure a robust model.  All patients had been treated with bevacizumab; 

whether this treatment was adjuvant (16% of training set patients and 22% of 

test set patients), at progression (58% of training set patients and 43% of test 

set patients), or at recurrence (10% of training set patients and 5% of test set 

patients) was noted. Mean length of treatment denotes the days from the start 

of first cycle to the end of last cycle. These groups were randomly assigned. 

The test set is a smaller group with a slightly poorer survival and more patients 

with a lower than expected KPS score (47% with a KPS lower than 70 

compared to 42% with a KPS below 70 in the training set). 

5.2.2. Generation of a risk algorithm for OS in bevacizumab-treated 
glioblastoma patients using microRNAs. 
The training set samples were assessed using LASSO penalized regression 

(Tibshirani, 1996) with leave-one-out cross-validation using the R software 

(v2.15.1) and the Penalized package (Goeman, 2010). This produced 8 

microRNAs with non-zero coefficients. A risk score was generated using the 

Age median 56 years
<60 years 33
≥60 years 17
Gender
Male 27
Female 23
Karnofsky Performance score
≤70 21
>70 29
Days to death/ last follow-up 
<450 days 25
≥450 days 25
<30 days 0
Treatment regimen
Adjuvant 8
Progression 29
Recurrence 5
Not available 8
Mean treatment length (days) 205.9

TRAINING SET No. of patients 
(n=50)

TEST set No. of patients 
(n=37)

8

23
14

177.4

median 54.5 years

16
2

0

11

23
14

18
19

10
27
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sum of microRNA expression values weighted by the coefficients from the 

LASSO regression. 

This was: E_miR-n = expression of microRNA n. 

Risk score = 0.055E_miR-124a + 0.309E_miR-202 + -0.184E_miR-204 + 

0.170E_miR-222 + -0.194E_miR-363 + -0.025E_miR-630 + -0.322E_miR-663 + 

0.161E_miR-7  

The risk score was applied to all samples in the training set. The scores were 

then plotted on a density plot to determine whether there is a natural cut-off for 

responders and non-responders. The most prognostic cut-off was chosen 

based on log-rank tests at each minimum value on the density plot. The training 

set samples were then separated into responders and non-responders using 

this cut-off (0). A Cox regression model incorporating age and the log-rank test 

were used to assess OS of the two groups in the training set. The score was 

also assessed for PFS. A statistical significance threshold of p=0.05 was used 

throughout. The length of treatment time was correlated with the time of survival 

in both responder and non-responder groups. 

5.2.3. Validation of the risk score in the test set. 
The risk score was calculated with the above algorithm using the microRNA 

expression values for the 37 test set samples. The defined cut-off of 0 was used 

to separate the test set into two groups of responders and non-responders. A 

Cox regression model incorporating age and the log-rank test were used to 

assess OS of the two groups. The length of treatment time was correlated with 

the time of survival in both responder and non-responder groups. 

5.2.4. Testing of the algorithm across all treatment types. 
The risk score was applied to all 562 patients in the TCGA (treated with varying 

treatment regimens) (Table 5.2). This cohort was split into two groups based on 

the score cut-off of 0 and the two groups assessed by Cox regression and log-

rank test.	  
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Table 5.2. Patient information for the whole TCGA dataset of 
glioblastoma patients. 

These patients were treated with a range of treatment regimens, 472 of which 

did not include bevacizumab. 

5.2.5. Characterisation of the two groups defined by the signature. 
Each group (test group responders, test group non-responders, training group 

responders, training group non-responders, all responders from test and 

training groups and all non-responders from test and training groups) was 

analysed for the number of patients with mesenchymal glioblastoma according 

to Brennan et al. (Brennan et al., 2013), the percentage of tumour cells and 

stromal cells in the sample and the type of treatment regimens (adjuvant or 

recurrent) the patients were treated with. This was done because previous data 

suggest that non-mesenchymal tumours fare better when treated with 

bevacizumab (Sulman et al., 2013). These were analysed for significance using 

Fisher’s exact test. 

5.2.6. Testing of the signature in a group of National Cancer Institute (NCI) 
cell lines.  
In order to assess the performance of the signature in another set of samples,  

I downloaded Agilent microarray (V2) microRNA expression data on eight NCI 

cell lines (different disease types, not including glioblastoma) that had been 

Age
<60 years 286
≥60 years 276
Gender
Male 342
Female 220
Karnovsky Performance score
≤70 171
>70 257
Not available 134
Days to death/ last follow-up 
<450 days 372
≥450 days 190
<30 days 24

No. of patients (n=562)
median 57.9 years
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tested for levels of apoptosis by western blot 48 hours after treatment with 

bevacizumab (Hein & Graver, 2013). Mean-centred microRNA expression data 

was downloaded from NCI (http://discover.nci.nih.gov/cellminer/, accessed 

January 2015). Expression levels were not recorded for miR-124a so this was 

omitted from the signature. The other seven microRNAs were used to calculate 

a signature: 

 

This was: E_miR-n = expression of microRNA n. 

Risk score =  0.309E_miR-202 + -0.184E_miR-204 + 0.170E_miR-222 + -

0.194E_miR-363 + -0.025E_miR-630 + -0.322E_miR-663 + 0.161E_miR-7  

 

The score was plotted on a density graph and a minimum density at a risk score 

of 0 was observed. This was used as a cut-off for responder and non-responder 

groups.  

5.3. Results. 

5.3.1. An 8-microRNA signature generated from the training set predicts 
prognosis in bevacizumab treated patients.  
In order to identify microRNAs associated with OS in bevacizumab treated 

glioblastoma, LASSO regression (Tibshirani, 1996) was performed on 50 

randomly chosen training set samples of 87 bevacizumab treated patients in the 

TCGA. This used Agilent microarray microRNA expression data (merged 

expression data for 534 microRNAs).  

Using the LASSO method, 8 microRNAs were identified with non-zero 

regression coefficients. MicroRNAs given a negative LASSO coefficient are 

positive predictors of survival and vice versa (Table 5.3).  
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Table 5.3. The eight microRNAs with non-zero coefficients from LASSO 
regression. 

LASSO regression identified 8 microRNAs with non-zero coefficients, indicating 

they are suitable for inclusion in a signature algorithm. There are equal 

numbers of negative predictors and positive predictors. Data was obtained from 

miRbase (accessed February 2015). These microRNAs are expressed from 

seven different chromosomes with a high representation of chromosomes 

9,15,20 and X. miR-7 and miR-204 are both expressed from within 

chromosome band 9q21; a region defined as having glioma proliferative 

capacity (Weber et al., 2001), although miR-204 is associated with a good 

response and miR-7 with a poor response. miR-663 resides within a region of 

heterochromatin on chromosome 20, which may reduce its expression levels.  

 

5.3.2. A risk score combining expression values of the 8 microRNAs 
predicts survival in the training set of bevacizumab treated patients. 
A risk score was created using the regression coefficients from the LASSO 

analysis (see methods page 68) to weight the expression value of each of the 8 

microRNAs, in a similar way to the risk score in Chapter two.  

 

This was: E_miR-n = expression of microRNA n. 

Risk score = 0.055E_miR-124a + 0.309E_miR-202 + -0.184E_miR-204 + 

0.170E_miR-222 + -0.194E_miR-363 + -0.025E_miR-630 + -0.322E_miR-663 + 

0.161E_miR-7  

 

MicroRNA Lasso regression 
coefficient Chromosome location Band

hsa-miR-124a
0.055

 chr8:9760898-9760982                    
chr8:65291706-65291814                   

chr20:61809852-61809938

8p23.1, 
8q12.3, 

20q13.33 
hsa-miR-202 0.309 chr10:133247511-133247620 10q26.3
hsa-miR-204 -0.184 chr9:70809975-70810084 9q21.12
hsa-miR-222 0.170 chrX:45747015-45747124 Xp11.3
hsa-miR-363 -0.194 chrX:134169378-134169452 Xq26.2
hsa-miR-630 -0.025 chr15:72587217-72587313 15q24.1
hsa-miR-663 -0.322 chr20:26208186-26208278 20q10

hsa-miR-7 0.161

chr9:83969748-83969857 
chr15:88611825-88611934 
chr19:4770670-4770779 

9q21.32 
15q26.1 
19p13.3  
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The risk score was then plotted as a density plot (Fig. 5.1) and each minimum 

value on the density plot was assessed for its prognostic power by cutting the 

data at this risk score value and performing a log-rank test (Table 5.4). This was 

performed so as to assess points in the dataset as a cut-off for dichotomisation. 

The peaks and troughs in the curve represent risk score values where there are 

more or few patients with this risk score. A trough (a minimum) may suggest 

that a responder and non-responder group exist within the data.  

 

  
              Risk score 
Figure 5.1. Density plot of the risk score in the 50 training set patients. 

The risk score was calculated using the signature algorithm. The Y-axis 

represents the density of each score in the 50 patients and the X-axis 

represents the risk score, as defined by the expression of the 8 microRNAs. 

The minima on this graph were used as potential cut-offs for the responder and 

non-responder group. 
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Table 5.4. Results of log-rank test on each of the risk score minimum 
densities. 

The risk score was plotted as a density plot, which highlighted 5 minima of 

density for the risk scores. These risk scores were assessed for their ability to 

separate the patients into responder and non-responder groups. The first 

column represents which minimum this refers to on the density plot in Fig. 5.1, 

numbered from left to right. The second column is the risk score at this 

minimum. The remaining three columns represent results of the log-rank test on 

the two groups (responders and non-responders) created by using this 

minimum as a cut-off; hazard ratios, 95% confidence intervals and p-values are 

recorded. As minimum 4 showed the most significance, with the most powerful 

hazard ratio, the risk score at this point (0) was used as a cut-off to separate the 

training set into responders and non-responders. This produced 29 ‘responder’ 

patients with a risk score below 0, and 21 ‘non-responders’ with a risk score 

above 0. 

 

The cut-off was assigned in this way because if the signature is predicting the 

response of patients to the drug it is assumed that patients either respond or 

don’t respond and therefore the score will fall into two groups. This has its 

limitations, as it could be complicated by other factors, such as toxicity of the 

drug to certain patients. The minimum density that occurred around a risk score 

of 0 showed the highest significance with the best hazard ratio, and so a risk 

score of 0 was chosen for the cut-off (Fig. 5.2). The median survival time of the 

responder group was 22 months and the median of the non-responder group 

was 12 months.  

 

Minimum&
value&on&
graph

Risk&score&at&
minimum

Hazard&ratio&
of&log9rank

95%&
confidence&
intervals p&value

1 !1.54 NA
2 !0.87 0.1 CI=0.01!0.77 0.027
3 !0.46 0.15 CI=0.05!0.45 7.40E!04
4 0.00 0.16 CI=0.07!0.36 1.20E!05
5 0.79 0.09 CI=0.01!0.95 0.046
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Figure 5.2. The two groups of the training set (n=50) defined by using a 
cut-off value risk score of 0. 

The risk score is based on the expression of the eight microRNAs and the cut-

off to generate responder and non-responder groups is 0, as defined by 

assessment of each minimum density in Table 5.4. The log rank of these two 

groups showed a significant survival benefit to the responders. The median 

survival of the responder group is 22 months, compared to a non-responder 

survival median of 12 months. The heatmap shows high microRNA expression 

in red and low microRNA expression in blue. Positive microRNAs are those that 

are higher in tumours of patients with poorer prognosis, and negative 

microRNAs are the vice versa. The responders show lower expression of 

negative microRNAs and higher expression of positive microRNAs. 
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Spearman’s correlation of treatment length with survival time showed that the 

responders showed a correlation (correlation coefficient=0.48, p=0.01) whereas 

the non-responders did not (correlation coefficient=0.36, p=0.12). Multivariable 

Cox regression of the risk group and age showed the risk group to be an 

independent predictor of survival irrespective of age (group HR=0.11, CI=0.04-

0.29, p=5.4e-6, age HR=1.03, CI=1.00-1.06 p=3.3e-2). 

5.3.3. Assessment of the signature in the test group of 37 patients. 
Risk scores were calculated for the 37 test set patients using the risk score 

algorithm and the cut-off of 0 was used to separate into responder and non-

responder groups. A one-sided log rank test was performed (one-sided 

because this tests the hypothesis that the responders respond better than the 

non-responders, and not the other way round). This produced a group of 18 

responders, with median survival 21 months and a group of 19 non-responders 

with a median survival of 15 months. The log rank test showed that the 

responders survive significantly longer than the non-responders (HR=0.34, 

CI=0.11-1.01, p=0.026, Fig. 5.3).  Multivariable Cox regression showed that age 

was not a prognostic factor in the test set group (HR=0.99, CI=0.94-1.04, 

p=0.69), yet the risk group was a prognostic factor (HR=0.33, CI=0.11-0.99, 

p=0.049). 
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Figure 5.3. The two groups of the test set (n=37) defined by using a 
cut-off value risk score of 0. 

The risk score is based on the expression of the eight microRNAs to generate 

responder and non-responder groups with a cut-off of 0. The one-tailed log rank 

of these two groups show a significant survival benefit to the responders 

(p=0.026). The median survival of the responder group is 21 months, compared 

to a non-responder survival median of 15 months. The heatmap shows high 

microRNA expression in red and low microRNA expression in blue. Positive 

microRNAs are those that increase in tumours of patients with better prognosis, 

and negative microRNAs are the vice versa. The responders show lower 

expression of negative microRNAs and higher expression of positive 

microRNAs.  

 

Spearman’s correlation of treatment length with survival time showed that 

neither the test group responders nor non-responders showed a correlation 

(responder correlation coefficient=0.07, p=0.80, non-responder correlation 

coefficient=0.44, p=0.12). When the test and training sets were combined, the 

responder group showed a significant correlation between survival and 

treatment length (correlation coefficient=0.33, p=0.04) whereas the non-

responder group did not (correlation coefficient=0.31, p=0.08). Although the 
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survival of the responder group significantly correlates with treatment length 

and the non-responder groups do not, it must be noted that there is not a great 

difference in correlation coefficient (0.33 versus 0.31 respectively) and p-value 

(0.04 versus 0.08 respectively) for these tests. In addition to correlation studies, 

Cox regression was performed on the responders and non-responders from the 

87 patients combined from the test and training sets. This confirmed that the 

responders show an improved survival with longer treatment length (HR=0.995, 

CI=0.99-1.00, p=0.01) yet the non-responders do not (HR=0.997, CI=0.99-1.0, 

p=0.19). 

5.3.4. Testing of the signature across all the patients in the TCGA, treated 
with different treatment types. 
The patients tested so far have all been treated with bevacizumab and the 

signature appears to stratify patients into responder and non-responder groups. 

In order to test whether this is predictive of patient outcome in general or in 

response to bevacizumab, I calculated the signature for all 562 patients in the 

TCGA treated with varying drugs and regimes (Table 5.2). These patients 

included the 87 patients treated with bevacizumab. This resulted in 305 in the 

responder group (median survival 10 months) and 257 in the non-responder 

group (median survival 8 months).  A log rank test between the groups showed 

this signature is prognostic in this group of patients yet is less powerful than in 

the group of patients treated with bevacizumab (HR=0.73, CI=0.61-0.89, 

p=0.0016, Fig. 5.4). If a patient is stratified to the responder group and treated 

with bevacizumab, they have a 75% (average of test and training set hazard 

ratio) better chance of responding than if they were stratified to the non-

responder group. If a patient is stratified to the responder group and treated 

with a non-specific treatment, they have a 27% better chance of responding 

than if they were stratified to the non-responder group. This indicates the 

signature is predicting response to bevacizumab specifically.  
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Figure 5.4. The responder and non-responder groups of the whole of 
the glioblastoma patients in the TCGA as defined by the signature, 
regardless of treatment. 

The risk score is based on the expression of the eight microRNAs and the cut-

off to generate responder and non-responder groups is 0. Log rank of these two 

groups show a significant survival benefit to the responders (p=0.0016). The 

median survival of the responder group is 15.6 months, compared to a non-

responder survival median of 12.5 months.  

5.3.5. Characterisation of the two groups defined by the signature. 
Previous signatures have shown that the mesenchymal subtype does not 

respond well to bevacizumab (Colman et al., 2010). Therefore I assessed 

whether the molecular subgroup is associated with the risk score by 

determining the proportions of each molecular glioblastoma subtype in the 

responder and non-responder groups and assessing for difference using 

Fisher’s exact test (Table 5.4 A). This showed that there were significantly less 
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mesenchymal type tumours in the responder group (p=0.041). The other 

subtypes do not show a significant difference in the responder and non-

responder groups.  

The cohort of bevacizumab treated patients includes different treatment start 

points during the course of a patient’s disease. These include adjuvant, 

progression and recurrence treatment. It is plausible that the particular timing 

for bevacizumab treatment in the patient’s treatment course may affect their 

survival time and thus be reflected in the risk group. To test this, I assessed the 

treatment regimes in each of the responder and non-responder groups. There 

was no significant difference in any treatment regime between the two groups 

when tested with Fisher’s exact test (Table 5.4 B). 

As mesenchymal tumours are associated with more extensive infiltration and 

necrosis, percentage of tumour cells, stromal cells and necrosis were correlated 

with risk score in order to assess whether the microRNA expression is affected 

by any of these histological features (Table 5.4 C). There was no significant 

correlation between any of these features and risk score indicating the 

microRNA expression signature does not solely reflect any of these features. 

  



	   169	  

 

 
Table 5.5. Assessment of the characteristics in the responder and non-
responder groups in the 87 bevacizumab treated patients in the TCGA. 

The 87 patients were separated into responders and non-responders according 

to the algorithm and the two groups were assessed for enrichment of particular 

characteristics using Fisher’s test. A) Each molecular subtype was compared in 

the responder and non-responder groups to determine whether any particular 

subtype is more or less prominent in responders. This showed that there were 

fewer mesenchymal tumours in the responder group. B) The treatment 

regimens were compared between groups to determine whether the signature 

is discriminatory based on treatment regimen. This showed no significance, 

which indicates the signature is not associated with survival due to the timing of 

bevacizumab administration relative to a patient’s disease course. C) Risk score 

was assessed for correlation (Spearman’s correlation) with histological features 

that are reminiscent of a mesenchymal subtype; percentage tumour cells, 

percentage stromal cells and percentage necrosis. There were no significant 

correlations between risk score and these features (p=0.52 for tumour cells, 

p=0.36 for stromal cells, p=0.19 for necrosis). 

 

Molecular)subtypes)

Treatment)regimen)

Histological)features)

A))

B))

C))

Column1( Classical( G.CIMP( Mesenchymal( Neural( Proneural( Missing(
Responders) 11) 2) 11) 9) 9) 5)

NonAresponders) 4) 1) 18) 5) 8) 4)

Fisher)test)pAvalue) 0.154) 1.000) 0.041) 0.56) 1.000)

Column1( Adjuvant(( Progression( Recurrence( Missing(
Responders) 8) 24) 5) 10)

NonAresponders) 8) 21) 2) 9)

Fisher)test)pAvalue) 0.786) 1) 0.445)

Column1( Rho( p.value(
Tumour)cells) A0.11) 0.52)

Stromal)cells) A0.15) 0.36)

Necrosis) 0.22) 0.19)
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5.3.6. Ability of the signature to predict progression free survival. 
In the RTOG 0825 and AVAglio trials progression free survival improved yet 

overall survival did not. As overall survival and progression free survival are 

usually correlated, a signature score is likely to predict both. I tested whether 

the 8-microRNA signature predicts progression free survival using Cox 

regression in both the test and training sets. The training set showed that the 

signature score predicts PFS (HR=2.67, C=1.42-5.03, p=0.0024) and the two 

groups separated by a cut-off of 0 have significantly different PFS (HR=0.48, 

CI=0.25-0.93, p=0.029). In the test set the risk score predicted PFS (HR=2.27, 

CI=1.02-5.04, p=0.045) but the risk group did not (HR=0.58, CI=0.29-1.13, 

p=0.11). This may be because the test set is much smaller and when further 

separated into subsets it loses significance. 

5.3.7. Assessment of the signature in NCI cell lines. 
In the absence of an independent bevacizumab-treated patient cohort, I 

attempted to perform a validation using bevacizumab-treated cell lines. The NCI 

have a panel of 60 cell lines that have drug response information (Shoemaker, 

2006). Unfortunately, bevacizumab was not included in the drug screen. 

However, Hein and Graver assayed apoptosis levels in eight NCI (non-

glioblastoma) cell lines after 48 hours of treatment with/without bevacizumab 

using western blotting with an antibody against cleaved Poly [ADP-Ribose] 

Polymerase (PARP) (Hein & Graver, 2013). This showed a non-significant 

increase in apoptosis in two cell lines when treated with bevacizumab 

compared to a control; A498 (renal cell carcinoma) and HS-578T (breast 

cancer). My hypothesis was that the cell lines that showed an increase in 

apoptosis after bevacizumab treatment would be categorised as responders 

using my signature. I used calculated risk scores using the mean-centred 

microRNA expression data on treatment naïve cell lines from the NCI and 

plotted a density plot as with the TCGA data (Figure 5.5). This showed that 

there was a single minimum at 0; therefore 0 was again used as a cut-off 

(although this doesn’t relate to 0 in the TCGA data which was quantile 

normalised and not mean-centred).  
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        Risk score 
Figure 5.5.  Density plot of the risk score in eight NCI cell lines (miR-
124a was not included in this risk score). 

The risk score was calculated using the signature algorithm without miR-124a. 

The Y-axis represents the density of each score in the 8 cell lines and the X-

axis represents the risk score, as defined by the expression of the 7 

microRNAs. The minimum at a risk score of zero was used as a cut-off for the 

responder and non-responder groups. 

 

This produced a group of two cell lines in the responder category; H522 and 

A498 and six cell lines in the non-responder category (Fig. 5.6).  
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Figure 5.6.  The microRNA expression of the 7 microRNAs (original 
signature minus miR-124a) in eight NCI cell lines. 

 A) The results of the western blotting performed by Hein and Graver (Hein & 

Graver, 2013) for cleaved PARP. A498 and HS-578T showed a minor increase 

in cleaved PARP following bevacizumab exposure. Two lung adenocarcinoma 

cancer cell lines; H522 and HOP62, both already show presence levels of 

cleaved PARP in the untreated cell lines, show a slight decrease in cleaved 

PARP with bevacizumab. B) Heatmap of the signature microRNA expression in 

the cell lines. The two cell lines stratified by the signature to the responder 

group were H522 and A498. A489, defined as a responder, is one of the cell 

lines that showed increased apoptosis following bevacizumab treatment. 

Interestingly, two of the negative microRNAs, miR-7 and miR-202, are higher in 

the responders to other samples, yet the score overall still defined them as a 

responder.  
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5.4. Discussion. 
This study has identified 8 microRNAs that, when combined in a signature, are 

associated with prognosis in bevacizumab treated glioma patients. The 

expression of these microRNAs can be incorporated into a risk score that when 

split at a defined cut-off, separates patients into groups with significantly 

different survival times. This is more significant in patients treated with 

bevacizumab than in patients treated with other treatments. This risk score, with 

further validation, could be used as an indicator at diagnosis to determine 

whether a patient will respond, at any time during their disease, to 

bevacizumab. Validation is required ideally in a prospective trial, and at least 

retrospectively from a previous trial to determine whether this signature predicts 

response in an independent cohort. The trial would require collection of 

extensive clinical data and samples in a control arm treated with standard 

treatment and a treatment arm treated with standard treatment plus 

bevacizumab.  The majority of the patients in this study were treated at 

progression, and therefore a trial that assesses the signature at diagnosis and 

starts bevacizumab treatment at progression would be ideal. 

As a form of validation, I calculated the signature in the eight cell lines from 

different cancers from the NCI that had been tested for bevacizumab 

associated apoptosis (Hein & Graver 2013). This is not ideal because they are 

not glioblastoma cell lines, and also miR-124a could not be included in the 

signature, however it serves as a form of testing of the signature in the absence 

of other options. The cell line microRNA expression performed by the NCI and 

the cell lines used in the apoptosis assessment would have been of different 

passages. It must also be noted that tumour cell apoptosis, although an 

indicator of response, is not the major effect of bevacizumab. Bevacizumab can 

alter the tumour vasculature, which is likely to improve patient outcome (Field et 

al. 2014). Despite these problems, one of the two cell lines defined as a 

responder (A498) showed increased apoptosis after bevacizumab treatment, 

which is encouraging. This may suggest that my signature is a reflection of 

tumour response. Vascular response may also be a factor that is involved in the 

signature, especially as some of the microRNAs are in angiogenic pathways. 
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Considerable further work is required however to confirm the relevance of the 

responses shown in the cell lines. 

The major outcomes from the clinical trials of bevacizumab in newly diagnosed 

glioblastoma (RTOG 0825 and AVAglio) were that bevacizumab increases PFS 

and not overall survival. If a signature is to be viable, the main aim of that 

signature is to categorise patients according to overall survival. The signature I 

have designed in this study predicts overall survival with the most power. The 

prediction of PFS was not significant in the test set, possibly because it is only a 

small group of 37 patients, and further splitting of this into two smaller groups 

reduces the chance of gaining significance. However, when the test and training 

sets were combined, PFS is significantly better in the responder group. Another 

indicator that a signature is performing well is to test whether an increase in 

treatment length is associated with a longer survival within the responder group 

but not the non-responder group. Again this was not significant in the test group 

of patients but when the two groups were combined there was a significant 

improvement in survival with longer treatment in the responder group. As 

expected there was no effect in the non-responder group. 

Of the eight microRNAs identified in the signature, seven are involved in 

angiogenesis. The microRNAs that have a positive weight in the signature 

(negative microRNAs), and therefore are lower in responders (who have a risk 

score less than the cut-off), are likely to be anti-angiogenic. This is deduced 

because responders should have more angiogenesis than non-responders, due 

to their response to an anti-angiogenic drug. Of these positively-weighted 

microRNAs, miR-124a has been shown to transcriptionally decrease VEGF 

(vascular endothelial growth factor) through RAS (rat sarcoma) signalling (Shi et 

al. 2014b) and miR-222 is considered one of three most important anti- 

angiogenic microRNAs in coronary artery disease (Zhang et al. 2011). 

Overexpression of miR-7 in a neuroblastoma mouse model significantly 

reduced angiogenesis and overexpression in endothelial cell lines decreased 

tube formation and sprouting (Babae et al. 2014). Of the microRNAs that were 

negatively weighted, miR-363 and miR-663 are reported to have pro-angiogenic 

properties; miR-363 has been shown to improve endothelial cell angiogenic 

properties and endothelial interaction with haematopoietic precursors (Costa et 

al. 2013) and miR-663 indirectly increases VEGF and promotes angiogenesis. 
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The reports on these microRNAs are concordant with their effect in the 

signature. However, miR-204 and miR-630 show anti-angiogenic properties and 

are negatively weighted microRNAs; miR-204 directly decreases VEGF and 

also targets angiopoietin-1 (Zhao et al. 2014; Kather et al. 2014), and miR-630 

has been shown to be induced by the anti- angiogenic protein angiopoietin-like 

protein 1 (Kuo et al. 2013).  

Previous studies have suggested that patients with glioblastoma of the 

mesenchymal subtype respond less well to bevacizumab (Sulman et al. 2013). 

There are fewer patients with tumours of mesenchymal molecular glioblastoma 

subtype in the responder category, which is in agreement with previous 

findings. However, of all the mesenchymal tumours, 38% still stratified to the 

responder group, which suggests that the signature is not simply predicting a 

mesenchymal subtype. 

A number of biomarkers have been proposed for the response to bevacizumab, 

including protein biomarkers and imaging features, these could be incorporated 

into a signature such as this for a highly robust stratification (Field et al. 2014). 

To drive this forward, access would be required to samples and data from 

patients treated with bevacizumab, as indicators that these biomarkers may be 

successful before embarking on a prospective clinical trial. This, as well as a 

consensus on strategies for biomarkers for the drug, has been urged upon by a 

number of professionals in the field and is a continuing need (Fine 2014; 

Prados 2014). 
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6. Discussion. 
	  

‘Whoever is careless with the truth in small matters cannot be trusted with 

important matters’ A. Einstein. 

6.1 MicroRNA expression and its association with prognosis. 
This work began from a standpoint where it was accepted that microRNAs have 

roles in gliomagenesis. MicroRNAs are also recognised to have a prognostic, 

and potentially predictive value in glioma. Despite this, few studies have 

robustly demonstrated that microRNAs with prognostic potential affect biological 

processes in the tumour. When microRNAs have been identified to be 

prognostic through simple correlations with survival it is entirely plausible that 

the prognostic ability is due to a factor that is not associated with the tumour 

biology. Thus, in some cases the microRNAs may be predictive of clinical 

factors that could be important, but are not associated with the actual biology of 

tumour cells. For example, the presence of inflammatory cells that may have 

different endogenous microRNA expression, and patient age that may also be a 

confounding factor (Zhu et al., 2012b; Bozdag et al., 2013). The presence of 

these cells is obviously an important aspect of the tumour biology and may 

have a bearing on prognosis. On the other hand it is likely that some 

microRNAs are prognostic due to their direct role in glioma biology. This is likely 

since it has previously been shown that microRNAs have roles in differentiation, 

development, stem cells and response to the environment (Letzen et al., 2010; 

Godlewski et al., 2010a; Kim et al., 2011b).  

I have shown in Chapter two that microRNA expression levels are associated 

with glioma prognosis, and when combined the expression of these microRNAs 

robustly predicts survival. The combined microRNA expression score is 

predictive of age, but also independently predictive of prognosis. Other factors 

were also assessed, such as KPS, extent of resection and important molecular 

features, some of which were associated with survival but in each case, the 

combined expression score was independently prognostic. Chapter three 

revealed that the microRNA expression in tumours reflects different stages in 

differentiation of the cells altered in glioma, and that the more the microRNA 

expression mirrors certain of these cells, the poorer the patient outcome. In this 

way, the microRNAs appear to provide information on the differentiation state of 
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the tumour sample as a whole, or provide an indication of the number of less 

differentiated cell types present in a tumour sample. The prognostic data for 

miR-9 in Chapter four initially conflicted with the literature on this microRNA, 

however there are plausible clinical and biological explanations for this 

(Schraivogel et al., 2011; Munoz et al., 2013; Munoz et al., 2014). I have 

confirmed that miR-9 does indeed have oncogenic potential in glioblastoma 

cells, by increasing their migration, and a possible reason for the conflict with 

prognostic data is that miR-9 is expressed at a lower level in tumours with more 

infiltration, hypoxia and necrosis. These are all features of mesenchymal 

glioblastoma, a particularly aggressive form of the disease (Verhaak et al., 

2010; Mao et al., 2013). These results reflect the fact that the study of 

glioblastoma using in vitro assays, with cell lines, does not fully depict the 

tumour, and other factors must be taken into consideration. These factors 

include extreme conditions in the tumour environment, or infiltration with other 

cells that are lost when cells are expanded in culture. In this regard, microRNAs 

can provide biologically relevant information on a tumour sample. This is 

potentially easier to do with microRNAs that mRNAs, since microRNAs have 

multiple targets often involved in similar pathways. 

6.2. The use of microRNAs to determine the ultimate ‘aim’ of the 
cell/tumour. 
Pathway analysis of the microRNAs involved in prognosis was performed in 

Chapters two, three and four of this thesis and all pointed to pathways with 

prominent roles in gliomagenesis. In Chapter two, microRNAs involved in 

prediction of prognosis in glioblastoma include MAPK and WNT signalling as 

well as adhesion and polarity. In Chapter three prognostic microRNAs in the 

whole of malignant glioma pointed towards AKT and IGFR signalling as well as 

adhesion and differentiation. In Chapter four, pathways predicted to be targeted 

by prognostic miR-9 involved VEGFR, TGF, PKA and WNT signalling as well as 

cell adhesion pathways. It is important to note that pathway analysis can be 

biased towards well studied pathways, and this coupled with the high false 

positive rate of target prediction analysis suggests these results should be 

interpreted with caution. However, in combination with the overexpression 

studies of miR-9, and the alignment of microRNA expression with cell types in 
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the differentiation pathway of astrocytes, I have provided evidence that they are 

biologically relevant as well as prognostic. 

6.3. MicroRNAs in the clinical setting. 
The reason I chose microRNAs for these prognostic studies was, besides the 

fact they offer an alternative to the more studied mRNAs, they are more stable 

in biological samples (Hall et al., 2012). This not only allows more samples to 

be tested (even samples older than ten years, or those poorly handled) but it 

also indicates that quantitation of their expression is likely to be more robust 

across samples. One drawback of the study of microRNAs is that the methods 

used for quantification are less well developed. Microarray analysis still seems 

to be a popular choice over the multiple sequencing methods, which can be 

complicated and time-consuming for both the library preparation and 

bioinformatics (Pradervand et al., 2010; Ach et al., 2008). Sequencing methods 

are more expensive and labour intensive for microRNAs than mRNAs. The 

principle involves enrichment of the small RNA fraction with a 5’ 

monophosphate (suggesting it has been processed by Dicer) to ensure 

sufficient read depth of the microRNA sequences is obtained in relation to all 

other RNA in the sample (Hafner et al., 2012). In my experience, this 

enrichment was poor, and only a small fraction (5-30%) aligned to microRNA 

precursor sequences in a microRNA sequencing trial using the NEBNext® 

microRNA library preparation method in the Next Generation Sequencing 

facility in our institution. Custom library methods have shown that the ligases 

used in these preparations are also critical and some may neglect or have a 

preference for microRNAs of a certain secondary structure (Sorefan et al., 

2012). Additionally the RNA integrity value (RIN), which has been generated 

using neural networks and adaptive learning on total RNA samples, is not 

necessarily useful for the integrity of small RNA, which degrades less than 

mRNA (Schroeder et al., 2006). The RIN is still of importance in microRNA 

profiling studies because the samples with a low RIN may have more mRNA 

sequences in the small RNA fraction due to degradation.  
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6.4. How I have adapted my work for eventual introduction to the 
clinic. 
Profiling of microRNAs for mining of prognostic microRNAs requires different 

methods to those for clinical assessment. Profiling requires a cost-effective 

assay which is accurate to quantify as many microRNAs as possible in the 

sample, whereas clinical assessment requires a less labour intensive, 

economical test with fewer microRNAs profiled. In Chapters two and five, where 

I have attempted to generate signatures of microRNA expression for clinical 

assessment I used the LASSO algorithm because it performed a selection on 

the microRNAs and so only few (nine in the prognostic signature in Chapter two 

and eight in the predictive signature in Chapter five) were included in the final 

algorithm. This means that assays that profile a small number microRNAs with 

fewer transfer steps (less chance of mix-ups in a clinical setting) and less labour 

requirement can be used. The LASSO algorithm allowed all microRNAs to be 

used in generation of the model, in contrast to Srinivasan et al and Sana et al 

who used preselected microRNAs for generation of the model. Additionally, I 

included all glioblastoma samples, rather than generating different models for 

different molecular subtypes, as performed by Li et al (S. Srinivasan et al., 

2011; R. Li et al., 2014b). Both these studies, as well as the signature 

generated by Sana et al (Sana et al., 2014), used univariate Cox regression to 

assess the microRNAs for association with survival. This does not take into 

account the effects of microRNAs collectively. It is also likely that a large 

number of microRNAs would be identified with an expression pattern that 

correlates with patient outcome leaving too many predictors for a valid clinical 

signature. This was reduced in the Li et al study by permutation tests. The 

LASSO method therefore generates a very different model than those 

previously created, where not all prognostic microRNAs are included, yet the 

ones that are included reflect all the microRNAs with prognostic potential. This 

is shown by the fact that alone some of the microRNAs in my signature are not 

associated with survival by univariate cox regression.  

I attempted to validate the signatures using methods that could be used in a 

diagnostic laboratory, and in Chapter two this was done using qRT-PCR. Other 

methods that could be used may be Luminex, or Nanostring nCounter, both of 
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which require little labour requirement. This was a small cohort of only 20 

glioblastoma samples and a larger cohort would have been more optimal. This 

patient group collectively had a poorer survival than the TCGA dataset, and as 

a different platform had been used it caused problems as to where to cut-off the 

score into groups of high and low risk patients. It was not appropriate to use the 

median, because it would be expected that more patients should fall into the 

high-risk group. I decided to evaluate the groups based on how many patients 

survived in relation to the conventional median of 450 days. As there were 10% 

more patients surviving less than the conventional median in the validation 

cohort compared to the cohort I used to generate the model, the 60th percentile 

was used. Despite the differences and small number of patients, the signature 

had the ability to separate patients into high and low risk groups, which is 

encouraging. This therefore represents a validation using an independent 

sample set, taken from a different population, using a different platform. These 

are all suitable validation models for validating a prognostic signature (Altman et 

al., 2009). Taken with the fact that in the lower grade TCGA dataset of 

sequencing data the signature also stratified patients into significant high and 

low risk groups, this is highly promising. The signature stratified patients from all 

molecular subtypes of glioblastoma except the G-CIMP negative proneural 

group. This group of patients was defined by Brennan et al to be the group with 

the poorest prognosis of all glioblastoma subtypes, and in the original study by 

Verhaak et al the proneural group is particularly refractory to treatment 

(Verhaak et al., 2010; Brennan et al., 2013). It would be expected that most of 

these patients should be stratified to the high-risk subgroup of patients but there 

were still 39% of proneural G-CIMP negative patients in the good prognosis 

group. Stem cell signatures for glioblastoma have indicated that the proneural 

G-CIMP negative group have the most similar expression patterns to stem cells 

compared to other glioblastoma subtypes (Patel et al., 2014). Also, the 

presence of heterogeneity at the single cell level within the proneural G-CIMP 

negative tumours confers a worse prognosis (Patel et al., 2014). In the case of 

a stem cell signature, you would expect that the more closely a tumour mirrors a 

stem cell expression pattern (due to the presence of more stem cells) then a 

patient would have a worse outcome. However, in the case of proneural non-G-

CIMP tumours it seems the opposite is true. This may be a reason for the 
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conflicting results. Interestingly, when the microRNA expression patterns of the 

glioma samples, rather than single cells, are correlated with oligodendrocyte 

precursors as in Chapter three, the mesenchymal subtype shows a higher 

correlation than the proneural subtype. It is likely that the ‘stem cell’ is different 

in a proneural sample to a mesenchymal sample, as is shown when miR-9 was 

quantified in proneural and mesenchymal GSCs in Chapter four.  

My nine-microRNA signature is clinically relevant in the fact that it predicts 

prognosis similar to, or better than, MGMT promoter methylation, and also has 

the added advantage that it stratifies patients regardless of their treatment 

regime. Stratification of patients will allow the high-risk patients to be more 

closely monitored, and if eligible, may be suitable for clinical trials for novel 

treatments. The cut-off used in my study was arbitrary, defined by the median, 

to show proof of the algorithm, but in practice cut-offs may be decided based on 

availability of clinical resources.  

LASSO regression was again used for generation of a signature predicting 

response to bevacizumab in Chapter five. The data I used in this chapter was 

based on a merged value for each microRNA based on all the probes for that 

microRNA signature, which differed from Chapter two where I used actual probe 

values. This was because in Chapter two, the aim was to produce a signature 

suitable for a clinical test, and this can in theory be extrapolated to any platform 

based on the sequences of that probe. The aim of Chapter five, was to 

determine in principle whether microRNAs can predict the response of a drug, 

and whilst the necessities of a clinical test were taken in to consideration, the 

microRNA expression levels themselves were considered more appropriate 

here. Bevacizumab is not an easy drug to evaluate, as was shown by the trial 

designs. The drug was administered at different times during treatment in my 

dataset, each patient received different numbers of cycles of the drug and 

determination of response is difficult without imaging data. My aim was to 

determine whether, during the course of a patient’s treatment, bevacizumab 

administration could be of benefit. This could be at any time, for an unspecified 

number of cycles. With this in mind it was considered optimal to use the entire 

patient treatment time (date of diagnosis to death) as the overall outcome. 

These microRNAs, when combined in a similar way to the prognostic 

microRNAs in Chapter two, stratified patients significantly into ‘responders’ and 
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‘non-responders’ in both test and training sets. Ideally, validation would be 

performed in another, independent dataset.  I found it difficult to obtain further 

samples for validation due to relatively few patients having been treated with 

bevacizumab, which is why the dataset was split into training and test sets for 

generation and testing of the model. Samples for an independent validation are 

still being sourced, and ideally this will be performed using a test suitable for a 

clinical setting.  

I chose to study microRNA expression-based prediction of response to 

bevacizumab in particular because it is clear that some patients do respond and 

therefore the drug has clinical utility despite its lack of success at clinical trial. A 

ten-gene signature was tested on the patients in the bevacizumab treated arm 

in the RTOG 0825 trial and results were reported at ASCO (American Society of 

Clinical Oncology) in 2013 (Sulman et al., 2013). These showed that the ten-

gene signature that was linked to a more mesenchymal genotype predicted 

poor response to the drug. It is difficult to compare their signature with my eight-

microRNA signature because they didn’t provide survival information on groups 

defined by a cut-off, only for the proportional hazard of the score. Their ten-

gene signature was generated using preselected genes, which are associated 

with a mesenchymal subtype of glioblastoma, and may suggest that this 

subtype has a poor response to the drug. The association of mesenchymal 

glioblastoma and poor bevacizumab response is supported to an extent by my 

results as more patients with mesenchymal glioblastoma were stratified to the 

non-responder group. There are however, still 11 of 29 patients with a 

mesenchymal subtype of glioblastoma who were stratified to the responder 

group using my signature. Compared to the Sulman et al study, which included 

234 cases, my study is relatively small and separation into test and training sets 

made it even smaller (Sulman et al., 2013). It is possible that with a larger 

cohort more significance could be gained. My study also includes patients 

treated at recurrence and progression, which are not included in their model as 

it is based on data from the trial for newly diagnosed glioblastoma. This may 

generate more noise in my data as patients may have been treated with 

different regimens at initial diagnosis. The inclusion of patients treated at 

diagnosis and recurrence may be an advantage however, as my signature has 

the ability to predict response to bevacizumab without taking these factors into 
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account and may offer information that proves useful to patient management at 

any stage in a patient’s treatment course.  

6.5. The role of prognostic microRNAs in malignant glioma. 
The aim of Chapter three was to directly determine what the role of prognostic 

microRNAs in malignant glioma might be. Unlike Chapters two and five where 

the number of prognostic microRNAs was minimised for a signature, this study 

required all prognostic microRNAs to be identified. Following this, target 

pathways of the microRNAs were inferred and a pathway was chosen to 

determine whether the pathway as a whole might have a bearing on survival. 

The study of prognostic microRNAs in the entire group of malignant glioma 

generated some problems. The data for grade III glioma was expression data 

from Illumina sequencing; yet the expression data for glioblastoma was 

microarray data. I decided to initially perform differential expression analysis 

separately in both groups prior to merging to minimise the effects of artefacts for 

each platform. This prior analysis however included small subsets of patients 

with extremely poor or good survival. It could be argued that these extremes are 

not representative of the grade III glioma and glioblastoma patients as a whole. 

Because of this, I validated the findings from the pathway analysis by using the 

whole dataset for correlation of the expression patterns of the tumours with the 

cell stages in the OP differentiation pathway. The other pathways were not 

followed up further, and although interesting, were therefore not validated. It 

could also be argued that it is not clinically relevant to define a group of 

microRNAs of poor patient outcome in grade III glioma and glioblastoma 

collectively because the literature implicates different molecular pathways in 

their aetiology and therefore their prognostic features would also be different. 

Brennan et al showed that a proportion of glioblastoma (the G-CIMP positive) 

are reminiscent of a lower grade tumour, and these may have similar molecular 

expression patterns to lower grade tumours, suggesting that a common 

pathway may exist, in some subtypes at least. Whether glioblastomas with 

similarity to lower grade tumours should be included as grade IV gliomas or a 

separate entity in the classification of glioma remains to be decided. Ozawa et 

al indicate that all non-G-CIMP glioblastoma is derived from a proneural-like 

precursor and this may be an argument that the non-G-CIMP gliomas should be 



	   184	  

a separate classification from the G-CIMP ones (Ozawa et al., 2014). In this 

event, the signature in Chapter two should also exclude the G-CIMP proneural 

cohort. Revisions of the WHO classifications for glioma have been suggested, 

but until then, in my opinion, a signature should incorporate all patients in a 

particular WHO classification for ease of clinical testing (Louis et al., 2014). 

As part of the correlation analysis of the oligodendrocyte differentiation pathway 

cell types with the grade II gliomas and glioblastoma, 150 microRNAs were 

included. Not all microRNAs were included because extremely high correlations 

were generated when all microRNA expression was taken into account. This is 

likely because a large proportion of microRNAs may be at zero expression in 

both cell types, and some microRNAs may be expressed at a baseline level and 

not be involved in differences between these cell types at all. It is also difficult to 

compare the expression of microRNAs with few transcripts quantified by 

microarray in the OP cell types and quantified by sequencing in the grade III 

gliomas. These microRNAs may not have any reads detected at all in the 

sequencing experiment which could be due to both an alignment issue or 

because they were too low to detect at that read depth. Therefore these were 

omitted. It is recognised however, that some of these microRNAs may be 

important. Additionally in Chapter three, tumour sample microRNA expression is 

correlated to cell lines for the cell stages in the OP pathway. MicroRNA 

expression patterns can be reflective of the cellular microenvironment, and the 

OP cells were grown in an optimal environment whereas a proportion of the 

cells in the tumour sample would have been exposed to extreme conditions. 

This is recognised as a limitation of this study. Despite these limitations, the 

prognostic microRNAs in Chapter three pointed to the targeting of pathways of 

OP involvement, and when the changes in microRNA expression across one of 

these pathways was further studied, it showed that these had links to the 

survival of patients with glioma. 

Whilst it is recognised that using a combination of microRNAs to predict 

prognosis or drug response is more optimal, some microRNAs alone have very 

powerful prognostic potential. In the prognostic signature in Chapter two, miR-

222 and miR-148a have the coefficients furthest from zero and the highest 

median increase in the high risk group compared to low risk group. It was miR-9 

however that was more consistently prognostic in the lower grades of glioma, 
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and also showed more connectors when predicted targets that are also 

prognostic were identified. This may suggest that, although the fold change per 

monthly increase in survival is lower for miR-9 than that for miR-222 and miR-

148a, it is more consistently associated with prognosis than these other 

microRNAs.  

This microRNA is most highly expressed in the brain and therefore you would 

expect that normal brain tissue would have high levels of miR-9 (Sempere et 

al., 2004). Additionally, miR-9 increases with differentiation and so you would 

expect more differentiated brain cells to have more miR-9 (Krichevsky et al., 

2006). In glioblastoma, infiltration of lymphocytes and the presence of GSCs in 

the tumour would suggest that the levels of miR-9 in a tumour sample should be 

lower than that of a non-tumour sample. You would also expect that the more 

infiltrating lymphocytes and GSCs present in the tumour sample the poorer the 

patient outcome. My findings could not confirm that the levels of miR-9 are 

higher in non-tumours compared to glioblastoma, most likely due to few 

samples that are unmatched, in the analysis. Also, the levels of miR-9 are high 

in both tissues, and the changes between the two groups are minimal. 

However, I have shown that miR-9 levels are indeed lower in samples of 

glioblastoma tumours that are from patients with a poorer outcome. These 

levels also correlate with the estimated percentage of tumour cells in a sample. 

This suggests miR-9 levels in a sample are reflective of the cellular composition 

of the tumour. 

To add to this, miR-9 also appears to have an oncogenic role. It has already 

been shown that miR-9 inhibits STAT3 and suppresses mesenchymal 

differentiation (Krichevsky et al., 2006; Kim et al., 2011b). I have proven that 

miR-9 is lower in the mesenchymal group of glioblastomas, both in patient 

samples and in cultured GSCs. This group of tumours are also known to have 

more infiltration of immune cells (Engler et al., 2012) and therefore the cellular 

expression of miR-9 and the multicellular composition result in a magnified 

effect that miR-9 is lower in samples of this tumour subtype.  

When the levels of miR-9 are assessed in proneural and mesenchymal 

tumours, there is still some overlap (Fig. 4.2). This may indicate that miR-9 

cannot perfectly delineate the mesenchymal tumour type. This could be 

because some tumours have both subtypes present, as shown from single cell 
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studies (Sottoriva et al., 2013). These could also be tumours that are proneural 

in nature and some cells are transforming to a mesenchymal subtype, as all 

non-G-CIMP glioblastomas have been shown to arise form a proneural 

precursor (Ozawa et al., 2014). This group of proneural non-G-CIMP tumours 

with high heterogeneity have a poorer prognosis to those without high 

heterogeneity as shown by the Patel et al stem cell signature (Patel et al., 

2014). If miR-9 could be used as a measure of the presence and number of 

cells that deviate from normal brain tissue, this would provide information for 

patient management. To add to this, miR-9 has been shown through successive 

generations of Drosophila melanogaster that it dampens down selective 

pressure in proneural networks. The reduction of miR-9 in these organisms was 

shown to ‘free up’ the genomic landscape to exert greater phenotypic influence 

(Cassidy et al., 2013). This suggests it is possible that lower levels of miR-9 

may increase the ability of the tumour to adapt to its extreme environment. 

Such a hypothesis is reflected in my findings where miR-9 decreased when 

mesenchymal GSC cells were exposed to hypoxia and also tumours with a 

more necrotic environment had lower miR-9 expression levels. I demonstrated 

the effect of hypoxia on miR-9 levels using a mesenchymal GSC line, which has 

amplified EGFR and the increased EGFR activity may be of consequence. The 

interaction between EGFR and the microRNA RISC loading component AGO2 

is enhanced in hypoxia and prevents its binding to Dicer resulting in less mature 

microRNA present in the cell (Shen et al., 2014). The decreased miR-9 

therefore may be as a result of a decrease in the global microRNA level. There 

are conflicting findings as to the effect of hypoxia on miR-9 expression. miR-9-1 

and mir-9-3 have been shown to be under the control of HIF1A (hypoxia 

inducible factor 1A) which can drive the levels of this precursor up under 

hypoxic conditions in pulmonary artery smooth muscle cells (Shan et al., 2014). 

This may increase the level of miR-9 precursor but if the ability to process these 

precursors is compromised due to the EGFR binding of AGO2, this point is 

irrelevant. Further to this, mesenchymal cells migrate more when exposed to 

hypoxia (Joseph et al., 2015). Low miR-9 in hypoxia does not seem to support 

this. miR-9 does not explain all migration in glioblastoma however, as 

mesenchymal cells are highly mobile and invasive compared to proneural cells 

(Mao et al., 2013), yet have low miR-9 expression levels. I have shown that 
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overexpression of miR-9 increases migration but that does not exclude that 

other mechanisms may also alter migration, particularly in mesenchymal 

glioblastoma. Future study could assess the migration patterns of proneural and 

mesenchymal cells. It has been shown in paediatric glioma that different cell 

lines migrate with different patterns such as a cogwheel pattern with protrusions 

from the core as opposed to a sheet like migration by the extension of flattened 

protrusions more laterally (Cockle et al., 2015). This may shed more light on 

why mesenchymal GSCs, which have low endogenous miR-9 expression 

levels, are still migratory and invasive in nature (Mao et al., 2013). It would also 

be appropriate to assess the effect of miR-9 knockdown on migration of a 

proneural GSC cell line (which have high endogenous levels of miR-9) in vivo, 

ideally in an immunocompetent mouse model (due to the involvement of miR-9 

in predicting infiltration). The hypothesis for this would be that reducing miR-9 

levels may result in a tumour with mesenchymal hallmarks of infiltration and 

necrosis due to increase in factors such as NF-κB and E-cadherin. Should miR-

9 be evaluated further as a marker of heterogeneity, single cell sequencing 

should be performed as in Patel et al with correlation of the levels of 

heterogeneity with the levels of miR-9 in the tumours (Patel et al., 2014). 

The null hypothesis of this study was that microRNAs involved in prognosis are 

not involved in glioma biology. I have shown here, in Chapters two to four, that 

these microRNAs target mRNAs involved in glioma biology, they have 

functional roles in the disease and they are involved in differentiation pathways 

of the likely cell of origin in glioma. The combined expression of nine 

microRNAs, eight of which have defined roles in glioma biology, predicted 

prognosis in glioblastoma better than the current predictive biomarker of MGMT 

promoter methylation. In Chapter three, upon the discovery that the prognostic 

microRNAs in malignant glioma are predicted to target pathways enriched for 

the differentiation and survival of oligodendrocyte precursors I proceeded to 

show that the microRNA expression patterns of poorer prognostic gliomas align 

with those of oligodendrocyte precursors. Following this I showed that, for each 

individual glioma, a score can be generated as to how closely a tumour mirrors 

an oligodendrocyte precursor microRNA expression pattern, and that this score 

is itself prognostic. miR-9 has been a large part of this thesis, and in Chapter 

two and four I showed that this microRNA has the ability to reduce the 
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expression of mRNAs involved in glioma biology. In Chapter four I 

demonstrated that miR-9 has a functional role in glioma in the ability to increase 

migration and is also altered in response to the extreme changes in a glioma 

tumour on a more broad level. This microRNA is prognostic in grade II, III and 

IV glioma and is highly connected to prognostic mRNAs in Chapter two. These 

findings suggest that alone, or in combination, the prognostic microRNAs in 

glioma have a role in glioma biology. The reasons why a microRNA may be 

prognostic are many. It may be a marker of a particular phenotype of tumour 

such as its aggressiveness, invasiveness and migration capacity, or it could be 

due to the tumours response to current treatments, by targeting drug 

transporters for example. The microRNAs may be markers of particular types of 

cells in the tumour, e.g., immune cells, lymphocytes and stem cells that confer a 

survival advantage to the tumour. They may also mark the cells responding to a 

particular environmental feature, such as high pressure in the cranium, hypoxia 

and necrotic surroundings. Additionally, and already mentioned, the microRNAs 

may be providing information on features of the patient, such as their age or 

gender. 

6.6. Limitations of this work. 
The results generated in this thesis relied on the availability of large amounts of 

data on both microRNAs and mRNAs, in large groups of patients with 

comprehensive clinical information. Most of the data I have used has been 

publically available from TCGA. This resource has large numbers of patients, 

with many different data types as well as varying levels of normalisation of the 

data. It is clear that this portal is invaluable for the study and validation of 

genetic and protein studies but it does have its limitations. The huge volumes of 

data, with multiple samples for each patient in some cases, mean that the 

possibility of inaccurate information is high. The histo-pathological data, such as 

the percentage of necrosis, tumour cells and stromal cells in a sample is 

subjective therefore correlations involving this data should be interpreted with 

caution. The genetic data is also subject to human error- the departments 

providing this high throughput analysis are meticulous in their delivery but it is 

inevitable with this level of processing that some mistakes will be made. This is 

what makes validations in other sample sets important. 
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A further limitation involves sampling, and in a disease named ‘glioblastoma 

multiforme’ because of its extensive heterogeneity, this is even further 

exaggerated. It has already been proven that multiple molecular subtypes may 

be present in one tumour and therefore taking a sample of a tumour for 

molecular profiling may be confounded by the sampling technique (Sottoriva et 

al., 2013). The data I used to characterise each of the tumours according to 

molecular subtype was also defined using TCGA data (Brennan et al., 2013). It 

is likely that the samples taken for both mRNA and microRNA profiling were 

from a similar portion of the tumour, and therefore correlations of the 

microRNAs expression levels with their tumour subtypes may only be applicable 

to that small part of the tumour, without taking in to consideration the 

substructure of the tumour. Additional features that may not be taken into 

consideration because of this, such as extensive vasculature, necrosis and the 

invasive edge, may be of importance in patient outcome. Improvements on this 

may include the involvement of metabolic imaging, so some information on the 

region of the sampling site could be included, or only samples from extremely 

aggressive (high Choline to N-acetyl aspartate ratio) are included. Future work 

for both signatures could include a sample set using these imaging parameters, 

with samples that have the most clinical utility, such as FFPE sections.  

6.7. Conclusion and future perspectives. 
MicroRNAs represent an alternative, potentially more optimal, set of genetic 

markers that can be used to provide information on a tumour. In cases such as 

glioblastoma, where there are relatively few molecular markers used in the 

clinic, these offer an expanded predictor set to exploit for clinical management. 

They are also useful in cases where a patient subset desperately needs to be 

determined, such as with bevacizumab efficacy. Where mRNA and protein 

based markers fail, both directly involved with the biology and identified using 

correlated methods, microRNAs offer an alternative.  

In the next 5-10 years glioma clinical management is set to change due to the 

availability of new drugs for treatment. These may include immunotherapy and 

different combinatorial therapies. In a disease as heterogeneous as 

glioblastoma, personalised medicine is extremely important, and the definition 

of patient subsets for these new therapies is imperative. For each prospective 
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trial of a new drug, patients should be selected on the most appropriate markers 

and it is clear from this thesis that microRNAs should be included in this 

repertoire. Ideally these microRNAs should be identified at the outset of a trial 

to avoid the problems realised in the introduction of bevacizumab for newly 

diagnosed glioblastoma. 

This thesis confirms the previous work, which suggests microRNAs are 

predictive of prognosis in glioblastoma and moves the area further into more 

clinically relevant questions such as prediction of drug response. I have shown, 

on a global microRNA expression level, and also for miR-9 alone, that these 

associations are relevant in glioma biology. The new questions are how to 

include these findings in current patient management. The best protocol should 

include the information from the microRNA prediction algorithms together with 

clinical, histo-pathological and other molecular data. Either way, the addition of 

microRNAs into the current scope for clinical testing in glioma is of considerable 

advantage. 
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Appendices 
Appendix 2.1. Patient sample collection at UCLan 

	  
8	  January	  2013	  
	  
	  
Lisa	  Shaw	  /	  Charlotte	  Bellamy	  
School	  of	  Pharmacy	  &	  Biomedical	  Sciences	  
University	  of	  Central	  Lancashire	  
	  
	  
Dear	  Lisa	  /	  Charlotte	  
	  
Re:	  STEM	  Ethics	  Committee	  Application	  
Unique	  reference	  Number:	  STEM	  041	  
	  
The	   STEM	   ethics	   committee	   has	   granted	   approval	   of	   your	   proposal	   application	  
‘Identification	  of	  Biomarkers	  for	  Glioma	  Progression’.	  
	  
Please	  note	  that	  approval	   is	  granted	  up	  to	  the	  end	  of	  project	  date	  or	   for	  5	  years,	  
whichever	   is	   the	   longer.	   	   This	   is	   on	   the	   assumption	   that	   the	   project	   does	   not	  
significantly	   change	   in	   which	   case,	   you	   should	   check	   whether	   further	   ethical	  
clearance	  is	  required.	  
	  
We	  shall	  e-‐mail	  you	  a	  copy	  of	  the	  end-‐of-‐project	  report	  form	  to	  complete	  within	  a	  
month	   of	   the	   anticipated	   date	   of	   project	   completion	   you	   specified	   on	   your	  
application	   form.	   	   	   This	   should	   be	   completed,	  within	   3	  months,	   to	   complete	   the	  
ethics	   governance	   procedures	   or,	   alternatively,	   an	   amended	   end-‐of-‐project	   date	  
forwarded	  to	  roffice@uclan.ac.uk	  together	  with	  reason	  for	  the	  extension.	  
	  
Please	   also	   note	   that	   it	   is	   the	   responsibility	   of	   the	   applicant	   to	   ensure	   that	   the	  
ethics	  committee	  that	  has	  already	  approved	  this	  application	  is	  either	  run	  under	  the	  
auspices	   of	   the	   National	   Research	   Ethics	   Service	   or	   is	   a	   fully	   constituted	   ethics	  
committee,	   including	   at	   least	   one	   member	   independent	   of	   the	   organisation	   or	  
professional	  group.	  	  
	  
Yours	  sincerely	  	  
	  
	  
	  
Tal	  Simmons	  
Chair	  
STEM	  Ethics	  Committee	  
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Appendix 2.2. The top 100 pathways for predicted targets of the 
microRNAs from Metacore.  

	  

Pathway 
Pathway 
ID 

Number 
of 
Genes 

-ln(p-
value) Genes 

Adherens junction hsa04520 40 22.32 

CTNNA1, PTPRM, ACTB, 
PTPN1, LEF1, ACTN2, 
TGFBR1, IGF1R, MET, WASF1, 
VCL, PTPRF, WASL, PARD3, 
YES1, ENSG00000158195, 
SMAD2, CSNK2A1,CSNK2A1P, 
TCF7, CTNNA2, BAIAP2, 
MAPK1, MAP3K7, PTPRJ, 
RAC1, SRC, PVRL2, MLLT4, 
ACVR1B, SSX2IP, NLK, 
TGFBR2, PVRL1, ACTG1, 
EP300, ACTN3, IQGAP1, 
SMAD4, SNAI2, SMAD3 

MAPK signaling 
pathway hsa04010 94 17.93 

MAP4K4, MAP2K3, FGF12, 
RPS6KA1, FOS, NTRK2, 
NFATC2, MAPK8, PRKCA, 
TRAF6, CSDE1, NTF3, 
PDGFRA, EVI1, MAP3K7IP1, 
TGFBR1, NFKB1, MAP2K1, 
STMN1, GADD45A, MRAS, 
MAP3K4, MAP3K1, FLNB, 
ENSG00000091436, PPM1B, 
PRKACA, MAP3K7IP2, 
MAP4K2, CACNB1, CACNA2D1, 
ATF2, CACNB2, MEF2C, 
ARRB2, FGF23, BDNF, 
PLA2G2F, CRKL, TAOK1, 
MAP3K10, FGFR2, 
HSPA1A,HSPA1B, NR4A1, 
STK4, RASA2, MAP2K4, 
RPS6KA4, SOS1, FGF9, 
DUSP16, PRKX, MAP3K3, 
RPS6KA5, CRK, MAPK1, 
MAP3K7, RAC1, SRF, CDC25B, 
FGF7, GRB2, PAK2, MAP2K7, 
FGF18, RAP1B, 
ENSG00000187446, PPP3CA, 
MAPKAPK2, ACVR1B, PLA2G3, 
CACNA2D2, NLK, NF1, DUSP1, 
TGFBR2, FGF5, DUSP3, 
DUSP6, RASA1, MAPK14, 
PTPRR, PRKCB1, MAX, 
MAP3K14, RPS6KA3, MAP3K5, 
RRAS, GNG12, MAPK10, 
PDGFRB, PRKACB, AKT3, 
CACNB3 
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Focal adhesion hsa04510 76 17.48 

ITGB4, BCL2, ACTB, PIK3CA, 
MAPK8, PRKCA, PGF, SHC2, 
ITGB1, PDGFRA, ACTN2, FN1, 
IGF1R, TNC, MYLK2, MAP2K1, 
MET, DIAPH1, TNR, RELN, 
VCL, COL5A1, FIGF, FLNB, 
ROCK1, PDPK1, CAV2, ITGB8, 
FLT1, ITGA9, CRKL, ITGA6, 
PIK3R1, TNN, COL4A4, SOS1, 
VAV3, VEGFA, PTEN,PTENP1, 
CRK, SHC1, MAPK1, THBS1, 
RAC1, SRC, KDR, PAK4, GRB2, 
PAK2, PAK6, THBS2, CAV1, 
RAP1B, ARHGAP5, PPP1CC, 
ITGA11, CCND2, ACTG1, 
PRKCB1, COL2A1, LAMC1, 
IGF1, CCND3, PAK7, ILK, 
MAPK10, ACTN3, ITGA7, 
PDGFRB, SHC4, PIK3R3, 
COL4A1, AKT3, PDGFC, ITGA5, 
LAMA4 

Axon guidance hsa04360 54 16.71 

EFNB2, SRGAP3, SEMA6A, 
EPHA3, SRGAP1, GNAI2, 
NTN4, DPYSL2, SLIT1, 
NFATC2, CSDE1, ABLIM3, 
CXCL12, ITGB1, SEMA6C, 
EFNA3, MET, GNAI3, SEMA6D, 
SRGAP2, ROCK1, L1CAM, 
CFL2, EFNA5, EPHA7, EPHA4, 
NFATC3, NRP1, SEMA4C, 
UNC5D, CFL1, MAPK1, RAC1, 
NFATC1, PAK4, PAK2, PAK6, 
ENSG00000187446, PPP3CA, 
EPHA8, RASA1, PLXNA3, 
SEMA3A, EFNB3, NFAT5, 
PAK7, EPHB1, GNAI1, DCC, 
ROBO2, SEMA4F, EPHB4, 
EFNB1, EFNA1 

Wnt signaling pathway hsa04310 58 13.48 

FZD7, CTNNBIP1, AXIN2, 
CXXC4, CAMK2D, WNT4, 
NFATC2, MAPK8, PRKCA, 
LEF1, FZD5, LRP6, TBL1X, 
ROCK1, PRKACA, FZD8, 
VANGL2, SMAD2, FZD3, 
FOSL1, BTRC, 
CSNK2A1,CSNK2A1P, SKP1A, 
TCF7, NFATC3, PRKX, DAAM1, 
MAP3K7, VANGL1, WNT1, 
RAC1, FBXW11, NFATC1, 
SIAH1, FRAT2, SFRP2, 
ENSG00000187446, PPP3CA, 
CHD8, NLK, PSEN1, PPARD, 
PLCB1, CCND2, DKK2, 
PRKCB1, PLCB4, FZD4, 
SENP2, NFAT5, PRICKLE2, 
CCND3, MAPK10, EP300, 
PRKACB, CAMK2B, SMAD4, 
SMAD3 
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Oxidative 
phosphorylation hsa00190 5 13.47 

ATP6V0E1, NDUFC2, SDHC, 
COX7A2, ATP6V0A2 

Regulation of actin 
cytoskeleton hsa04810 76 13.41 

ITGB4, ARPC5, PFN1, ACTB, 
MYH9, PIK3CA, FGF12, CSDE1, 
TIAM1, SCIN, ITGB1, PDGFRA, 
ACTN2, FN1, IQGAP2, MYLK2, 
MAP2K1, WASF1, DIAPH1, 
SSH2, MRAS, VCL, ROCK1, 
WASL, ITGB8, 
ENSG00000158195, ARPC1A, 
ITGA9, FGF23, ARHGEF7, 
NCKAP1, PIP5K1B, PIP4K2B, 
CRKL, FGFR2, CFL2, ITGA6, 
PIK3R1, SOS1, VAV3, BAIAP2, 
FGF9, CRK, CFL1, MAPK1, 
RAC1, PIP5K1A, FGF7, 
DIAPH2, PAK4, ARHGEF4, 
PIP4K2C, PAK2, PAK6, FGF18, 
FGF5, PPP1CC, ITGA11, 
GNA13, ACTG1, GSN, SLC9A1, 
PIP5K3, MYH10, RRAS, PAK7, 
GNG12, ACTN3, ITGA7, 
PDGFRB, PIK3R3, RDX, 
IQGAP1, PFN2, ITGA5, GIT1 

ErbB signaling pathway hsa04012 39 12.47 

CAMK2D, CDKN1B, PIK3CA, 
MAPK8, HBEGF, PRKCA, 
CSDE1, SHC2, NRG3, 
CDKN1A, MAP2K1, ERBB3, 
CBL, CRKL, PIK3R1, MAP2K4, 
SOS1, CRK, SHC1, MAPK1, 
SRC, PAK4, GRB2, PAK2, 
PAK6, MAP2K7, NRG1, 
PRKCB1, ERBB4, PAK7, 
MAPK10, PLCG1, SHC4, 
RPS6KB1, ENSG00000109321, 
PIK3R3, AKT3, EREG, CAMK2B 

Colorectal cancer hsa05210 37 10.88 

FZD7, AXIN2, BCL2, PIK3CA, 
RALGDS, FOS, MAPK8, LEF1, 
PDGFRA, FZD5, TGFBR1, 
IGF1R, MAP2K1, MET, MSH2, 
APPL1, FZD8, SMAD2, FZD3, 
MLH1, PIK3R1, SOS1, TCF7, 
MAPK1, RAC1, GRB2, ACVR1B, 
TGFBR2, BAX, FZD4, MAPK10, 
DCC, PDGFRB, PIK3R3, AKT3, 
SMAD4, SMAD3 

Long-term potentiation hsa04720 29 10.24 

CAMK2D, RPS6KA1, PRKCA, 
CSDE1, GRIA1, GRM1, 
MAP2K1, ADCY1, PRKACA, 
ITPR1, GRIN1, ITPR3, 
ENSG00000198668, PRKX, 
MAPK1, GRIN2A, GRIA2, 
RAP1B, ENSG00000187446, 
PPP3CA, PPP1CC, PLCB1, 
PRKCB1, PLCB4, RPS6KA3, 
EP300, PRKACB, GNAQ, 
CAMK2B 
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Melanogenesis hsa04916 39 8.54 

FZD7, CAMK2D, GNAI2, 
CREB3L1, GNAO1, WNT4, 
PRKCA, CSDE1, LEF1, FZD5, 
EDNRB, MAP2K1, GNAI3, 
ADCY1, ADCY5, PRKACA, 
FZD8, KIT, FZD3, TCF7, 
ENSG00000198668, PRKX, 
MITF, MAPK1, KITLG, WNT1, 
ADCY9, PLCB1, PRKCB1, 
PLCB4, FZD4, CREB1, EP300, 
GNAI1, PRKACB, GNAQ, 
CAMK2B, ADCY6, CREB3L2 

TGF-beta signaling 
pathway hsa04350 36 8.39 

E2F5, FST, TGFBR1, ID4, 
LTBP1, BMP6, ROCK1, 
SMURF1, ZFYVE9, SMAD7, 
SMAD2, RBL1, SMAD5, ACVR1, 
SKP1A, ACVR2A, NOG, INHBB, 
GDF6, MAPK1, THBS1, THBS2, 
SMAD1, BMP2, ACVR2B, 
ACVR1B, SMURF2, TGFBR2, 
BMPR1B, SP1, ZFYVE16, 
PITX2, EP300, RPS6KB1, 
SMAD4, SMAD3 

GnRH signaling 
pathway hsa04912 37 7.84 

CAMK2D, MAP2K3, PLD1, 
MAPK8, HBEGF, PRKCA, 
CSDE1, MAP2K1, ADCY1, 
ADCY5, MAP3K4, MAP3K1, 
PRKACA, PLA2G2F, ITPR1, 
MAP2K4, SOS1, ITPR3, 
ENSG00000198668, PRKX, 
MAP3K3, MAPK1, SRC, GRB2, 
ADCY9, MAP2K7, PLA2G3, 
PLD2, MAPK14, PLCB1, 
PRKCB1, PLCB4, MAPK10, 
PRKACB, GNAQ, CAMK2B, 
ADCY6 

Glycan structures - 
biosynthesis 1 hsa01030 43 6.94 

B3GNT1, GALNT2, HS6ST2, 
UST, GALNT7, GALNT1, 
CHST3, EXT1, 
ENSG00000174473, NDST1, 
CHST14, GALNT3, ST3GAL3, 
STT3B, ENSG00000147408, 
GALNT13, C1GALT1, FUT8, 
ALG9, MGAT5B, CHST1, 
ENSG00000182022, B4GALT2, 
B3GNT2, GALNT9, GALNT10, 
HS3ST3B1, MGAT4A, GCNT1, 
EXTL2, B4GALT5, EXTL3, 
MAN1A2, GALNT12, OGT, 
GALNTL1, GCNT4, MGAT1, 
ALG2, CHSY1, B4GALT1, 
XYLT1, ST6GAL1 

Renal cell carcinoma hsa05211 28 6.77 

PIK3CA, PGF, CSDE1, 
MAP2K1, MET, SLC2A1, FIGF, 
EGLN3, EPAS1, CRKL, PIK3R1, 
SOS1, PTPN11, VEGFA, CRK, 
MAPK1, RAC1, PAK4, GRB2, 
PAK2, PAK6, RAP1B, ARNT, 
ETS1, PAK7, EP300, PIK3R3, 
AKT3 
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Chronic myeloid 
leukemia hsa05220 30 6.56 

CDKN1B, PIK3CA, E2F3, 
CSDE1, SHC2, EVI1, TGFBR1, 
CDKN1A, NFKB1, MAP2K1, 
CDK6, CBL, CRKL, PIK3R1, 
RELA, SOS1, PTPN11, CRK, 
SHC1, MAPK1, RUNX1, GRB2, 
ACVR1B, TGFBR2, SHC4, 
PIK3R3, BCL2L1, AKT3, 
SMAD4, SMAD3 

Pancreatic cancer hsa05212 29 6.51 

PIK3CA, RALGDS, RALBP1, 
E2F3, PLD1, MAPK8, PGF, 
STAT3, TGFBR1, NFKB1, 
MAP2K1, RALB, FIGF, CDK6, 
SMAD2, PIK3R1, RELA, 
VEGFA, MAPK1, RAC1, 
ACVR1B, TGFBR2, MAPK10, 
RALA, PIK3R3, BCL2L1, AKT3, 
SMAD4, SMAD3 

O-Glycan biosynthesis hsa00512 15 6.48 

GALNT2, GALNT7, GALNT1, 
ENSG00000174473, GALNT3, 
GALNT13, C1GALT1, GALNT9, 
GALNT10, GCNT1, B4GALT5, 
GALNT12, OGT, GALNTL1, 
GCNT4 

Glioma hsa05214 26 6.37 

CAMK2D, PIK3CA, E2F3, 
PRKCA, CSDE1, SHC2, 
PDGFRA, IGF1R, CDKN1A, 
MAP2K1, CDK6, PIK3R1, SOS1, 
PTEN,PTENP1, 
ENSG00000198668, SHC1, 
MAPK1, GRB2, PRKCB1, IGF1, 
PLCG1, PDGFRB, SHC4, 
PIK3R3, AKT3, CAMK2B 

Ubiquitin mediated 
proteolysis hsa04120 45 6.21 

UBE2D1, CDC27, UBE4A, 
TRAF6, UBE3A, UBE2Z, 
UBE3C, UBE2R2, UBE1, 
MAP3K1, UBE2Q2, BIRC6, 
UBE2E3,UBE2E4P, UBE2J1, 
CUL3, UBE2I, SMURF1, 
UBE2W, CBL, MID1, PML, 
UBE2Q1, UBE2B, BTRC, 
SKP1A, UBE2L3, CUL4A, 
FBXW7, UBR5, FBXW11, 
SIAH1, UBE4B, TRIM32, 
UBE1L2, KLHL13, SMURF2, 
NEDD4L, PIAS3, UBE2O, 
ANAPC5, CUL5, NEDD4, 
UBE2H, HUWE1, UBE2D3 

Tight junction hsa04530 46 6.09 

CTNNA1, ACTB, MYH9, GNAI2, 
MAGI2, PRKCA, CSDE1, 
CLDN2, ACTN2, CLDN14, 
F11R, IGSF5, GNAI3, MRAS, 
VAPA, ENSG00000091436, 
PARD3, EPB41L2, YES1, 
PRKCE, PPP2R3A, 
CSNK2A1,CSNK2A1P, CLDN11, 
CTNNA2, PTEN,PTENP1, 
MPP5, EPB41L1, AMOTL1, 
CLDN18, SRC, MYH11, CTTN, 
CASK, MLLT4, CGN, ACTG1, 
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PRKCB1, CSDA, MYH10, 
RRAS, ACTN3, EPB41L3, 
GNAI1, AKT3, MYH1, MAGI1 

Arachidonic acid 
metabolism hsa00590 3 5.93 CYP2E1, PLA2G2F, PLA2G3 

Prostate cancer hsa05215 33 5.93 

CCNE2, BCL2, CDKN1B, 
PIK3CA, E2F3, CREB3L1, 
CSDE1, LEF1, PDGFRA, 
IGF1R, CDKN1A, NFKB1, 
MAP2K1, PDPK1, FGFR2, 
PIK3R1, RELA, SOS1, TCF7, 
HSP90B1, PTEN,PTENP1, 
FOXO1, MAPK1, GRB2, 
CREB5, IGF1, CREB1, EP300, 
PDGFRB, PIK3R3, AKT3, 
PDGFC, CREB3L2 

Androgen and estrogen 
metabolism hsa00150 2 5.71 CARM1, HSD17B7 

Metabolism of 
xenobiotics by 
cytochrome P450 hsa00980 4 5.55 

ADH1B,ADH1C, CYP2E1, 
ADHFE1, ADH1A 

Glutathione metabolism hsa00480 1 5.54 GCLM 

Starch and sucrose 
metabolism hsa00500 6 5.21 

ENPP3, HK1, EP400, GYS1, 
HK2, PGM1 

Pyruvate metabolism hsa00620 2 5.05 ACACB, PC 

Glycine, serine and 
threonine metabolism hsa00260 3 4.65 PSPH,PSPHL, RDH11, SHMT2 

Hedgehog signaling 
pathway hsa04340 21 4.28 

WNT4, RAB23, SMO, GLI3, 
BMP6, ZIC2, CSNK1G2, 
PRKACA, BTRC, PRKX, WNT1, 
FBXW11, PTCH1, GAS1, BMP2, 
CSNK1G3, CSNK1G1, GLI2, 
STK36, PRKACB, LRP2 

Aminoacyl-tRNA 
biosynthesis hsa00970 2 4.23 WARS2, RARS 

Insulin signaling 
pathway hsa04910 44 4.11 

PPARGC1A, ACACB, PRKAG2, 
PIK3CA, PTPN1, MAPK8, 
PHKA2, CSDE1, SHC2, PFKP, 
MAP2K1, LIPE, PTPRF, SOCS4, 
PDPK1, PRKACA, CBL, GYS1, 
CRKL, PIK3R1, FLOT2, SOS1, 
ENSG00000198668, PRKAR2A, 
PRKX, FOXO1, CRK, SHC1, 
MAPK1, PRKAA1, GRB2, 
RHOQ, FLOT1, PPP1CC, 
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PPP1R3A, PRKAR1A, MAPK10, 
TRIP10, SHC4, RPS6KB1, 
PRKACB, PIK3R3, AKT3, EIF4E 

Histidine metabolism hsa00340 3 4.01 
ASPA, PRPS1,PRPS1L1, 
CARM1 

Acute myeloid leukemia hsa05221 21 4.01 

PIK3CA, CSDE1, LEF1, STAT3, 
NFKB1, MAP2K1, PIM1, KIT, 
PML, PIK3R1, RELA, SOS1, 
TCF7, MAPK1, RUNX1, GRB2, 
JUP, PPARD, RPS6KB1, 
PIK3R3, AKT3 

Polyunsaturated fatty 
acid biosynthesis hsa01040 10 3.88 

BAAT, ELOVL2, SCD, ACOT7, 
SCD5, ELOVL5, YOD1, PECR, 
HADHA, ACOT8 

VEGF signaling 
pathway hsa04370 25 3.86 

PIK3CA, NFATC2, PRKCA, 
CSDE1, SHC2, MAP2K1, 
PLA2G2F, PIK3R1, VEGFA, 
NFATC3, MAPK1, RAC1, SRC, 
NFATC1, KDR, 
ENSG00000187446, PPP3CA, 
MAPKAPK2, PLA2G3, MAPK14, 
PRKCB1, NFAT5, PLCG1, 
PIK3R3, AKT3 

Long-term depression hsa04730 26 3.73 

GNAI2, GNAO1, PRKCA, 
CSDE1, GRIA1, GRM1, IGF1R, 
MAP2K1, GNAI3, PLA2G2F, 
ITPR1, PRKG1, ITPR3, MAPK1, 
GRIA2, PLA2G3, NOS1, RYR1, 
PLCB1, GNA13, GRID2, 
PRKCB1, PLCB4, IGF1, GNAI1, 
GNAQ 

Base excision repair hsa03410 2 3.57 POLL, TDG 

Porphyrin and 
chlorophyll metabolism hsa00860 2 3.57 UROD, ALAD 

Amyotrophic lateral 
sclerosis (ALS) hsa05030 9 3.45 

BCL2, CAT, NEFL, NEFH, 
RAC1, PPP3CA, BAX, SLC1A2, 
BCL2L1 

Non-small cell lung 
cancer hsa05223 20 3.43 

RARB, PIK3CA, RASSF5, E2F3, 
PRKCA, CSDE1, FOXO3, 
MAP2K1, PDPK1, CDK6, STK4, 
PIK3R1, SOS1, MAPK1, GRB2, 
PRKCB1, PLCG1, PIK3R3, 
AKT3, RXRA 

Glycolysis / 
Gluconeogenesis hsa00010 7 3.39 

ADH1B,ADH1C, PFKP, HK1, 
HK2, ADHFE1, PGM1, ADH1A 

Complement and 
coagulation cascades hsa04610 8 3.32 

FGA, CD46, CR2, THBD, F3, 
SERPINE1, SERPINF2, F13A1 
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Endometrial cancer hsa05213 19 3.11 

CTNNA1, AXIN2, PIK3CA, 
CSDE1, LEF1, FOXO3, 
MAP2K1, PDPK1, MLH1, 
PIK3R1, SOS1, TCF7, CTNNA2, 
PTEN,PTENP1, MAPK1, GRB2, 
ILK, PIK3R3, AKT3 

Neuroactive ligand-
receptor interaction hsa04080 45 3.03 

EDG1, NR3C1, CCKBR, LEP, 
GRIA4, PRLR, GABRA1, 
GRIN3A, EDG4, GRIA1, GRM1, 
GLRA3, EDNRB, GRM3, 
ADRB3, PTGFR, PTGER2, 
NPY2R, GRID1, NPFFR2, 
PARD3, GABRB2, HRH1, 
HTR2C, ADRA2A, GRIN1, 
PTGER3, HTR7, CNR1, F2RL2, 
GRIN2A, RXFP2, GRIA2, 
GPR23, GABRG2, GRM7, 
GABBR2, GABRB3, THRB, 
GHRHR, GRID2, CALCR, 
GABRQ, DRD2, TBXA2R 

Autoimmune thyroid 
disease hsa05320 5 2.98 

CD40, ENSG00000179344, 
HLA-DPB1, IL10, HLA-DRB5 

Phosphatidylinositol 
signaling system hsa04070 24 2.95 

SYNJ1, PIK3CA, PRKCA, 
OCRL, PIP5K1B, PIP4K2B, 
ITPR1, PIK3R1, ITPR3, 
PTEN,PTENP1, 
ENSG00000198668, PIP5K1A, 
PIP4K2C, DGKQ, DGKI, ITPK1, 
CARKL, PLCB1, PRKCB1, 
PLCB4, PIP5K3, PLCG1, DGKZ, 
PIK3R3 

Cell adhesion 
molecules (CAMs) hsa04514 38 2.83 

CD4, MPZL1, PTPRM, CD40, 
NRCAM, SDC2, CLDN2, ITGB1, 
CLDN14, CDH2, F11R, VCAN, 
PTPRF, ENSG00000179344, 
NEGR1, L1CAM, ITGB8, 
CNTNAP2, ITGA9, SDC1, 
NFASC, ITGA6, CLDN11, SPN, 
ALCAM, HLA-DPB1, CLDN18, 
PVRL2, PTPRC, NLGN2, 
NLGN1, CNTNAP1, CADM1, 
PVRL1, CNTN1, CNTN2, 
NLGN3, HLA-DRB5 

Gap junction hsa04540 30 2.82 

GNAI2, PRKCA, CSDE1, GRM1, 
PDGFRA, MAP2K1, GNAI3, 
ADCY1, ADCY5, PRKACA, 
HTR2C, ITPR1, PRKG1, SOS1, 
ITPR3, PRKX, MAPK1, SRC, 
GRB2, ADCY9, PLCB1, 
PRKCB1, PLCB4, DRD2, 
GNAI1, PDGFRB, PRKACB, 
GNAQ, PDGFC, ADCY6 

Melanoma hsa05218 24 2.76 

PIK3CA, FGF12, E2F3, CSDE1, 
PDGFRA, IGF1R, CDKN1A, 
MAP2K1, MET, CDK6, FGF23, 
PIK3R1, FGF9, PTEN,PTENP1, 
MITF, MAPK1, FGF7, FGF18, 
FGF5, IGF1, PDGFRB, PIK3R3, 
AKT3, PDGFC 
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Glycan structures - 
degradation hsa01032 2 2.75 GNS, BRUNOL6 

mTOR signaling 
pathway hsa04150 17 2.7 

PIK3CA, RPS6KA1, PGF, FIGF, 
PDPK1, PIK3R1, VEGFA, 
MAPK1, ENSG00000164327, 
PRKAA1, ULK2, RPS6KA3, 
IGF1, RPS6KB1, PIK3R3, AKT3, 
EIF4E 

Cytokine-cytokine 
receptor interaction hsa04060 46 2.68 

CCL2, TNFRSF11B, LEP, CD40, 
PRLR, TNFSF4, IL6ST, 
CXCL12, CNTFR, PDGFRA, 
EDA, TGFBR1, MET, LIFR, 
CCL22, CXCL11, FLT1, 
TNFSF11, KIT, TNFRSF1B, 
IL7R, ACVR1, VEGFA, 
ACVR2A, INHBB, CSF1R, 
KITLG, TNFRSF21, KDR, CSF1, 
IL10, IL10RA, CCL21, BMP2, 
ACVR2B, ACVR1B, IL15, 
TGFBR2, BMPR1B, EDAR, 
IL28RA, PDGFRB, IL11, IL9R, 
TNFRSF8, PDGFC 

ECM-receptor 
interaction hsa04512 26 2.61 

ITGB4, FNDC5, SDC2, ITGB1, 
FN1, TNC, TNR, RELN, 
COL5A1, ITGB8, ITGA9, SDC1, 
DAG1, ITGA6, TNN, COL4A4, 
FNDC3A, THBS1, THBS2, 
ITGA11, COL2A1, LAMC1, 
ITGA7, COL4A1, ITGA5, LAMA4 

Keratan sulfate 
biosynthesis hsa00533 7 2.59 

B3GNT1, ST3GAL3, FUT8, 
CHST1, B4GALT2, B3GNT2, 
B4GALT1 

Leukocyte 
transendothelial 
migration hsa04670 33 2.25 

CTNNA1, ACTB, GNAI2, 
PIK3CA, RASSF5, PRKCA, 
CXCL12, CLDN2, ITGB1, 
ACTN2, CLDN14, F11R, GNAI3, 
VCL, ROCK1, PIK3R1, VAV3, 
CLDN11, CTNNA2, PTPN11, 
RAC1, CLDN18, CYBB, RAP1B, 
MLLT4, ARHGAP5, MAPK14, 
ACTG1, PRKCB1, PLCG1, 
ACTN3, GNAI1, PIK3R3 

Circadian rhythm hsa04710 6 2.15 
PER3, NR1D1, BHLHB3, PER2, 
NPAS2, CLOCK 

Urea cycle and 
metabolism of amino 
groups hsa00220 3 2.13 ARG2, ODC1, SMS 

Epithelial cell signaling 
in Helicobacter pylori hsa05120 21 2.13 

PTPRZ1, MAPK8, HBEGF, 
F11R, ADAM10, IGSF5, NFKB1, 
MET, ATP6V0E1, MAP2K4, 
RELA, PTPN11, RAC1, SRC, 
ADAM17, ATP6V0A2, MAPK14, 
MAP3K14, MAPK10, PLCG1, 
GIT1 
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Notch signaling 
pathway hsa04330 14 1.98 

APH1A, NUMB, NOTCH2, 
NUMBL, DLL1, HES1, ADAM17, 
PSEN1, DTX4, JAG1, NCSTN, 
PCAF, EP300, JAG2 

Calcium signaling 
pathway hsa04020 46 1.93 

CCKBR, CAMK2D, PDE1C, 
PLN, PHKA2, PRKCA, GRM1, 
PDGFRA, EDNRB, MYLK2, 
ADRB3, PTGFR, ADCY1, 
ATP2B4, ERBB3, PRKACA, 
ATP2A2, VDAC2, SLC8A1, 
HRH1, HTR2C, ITPR1, GRIN1, 
PTGER3, ITPR3, HTR7, 
ENSG00000198668, PRKX, 
GRIN2A, ADCY9, 
ENSG00000187446, PPP3CA, 
NOS1, RYR1, PLCB1, PRKCB1, 
PLCB4, ERBB4, GNAL, PLCG1, 
PDGFRB, PRKACB, TBXA2R, 
GNAQ, VDAC3, CAMK2B 

Cysteine metabolism hsa00272 1 1.92 GOT1 

Aminophosphonate 
metabolism hsa00440 1 1.92 CARM1 

Olfactory transduction hsa04740 11 1.91 

CAMK2D, PDE1C, PRKACA, 
ARRB2, PRKG1, 
ENSG00000198668, PRKX, 
GNAL, PRKACB, CLCA2, 
CAMK2B 

Propanoate metabolism hsa00640 4 1.91 
ACACB, SUCLG2, HADHA, 
PCCA 

Small cell lung cancer hsa05222 26 1.87 

CCNE2, RARB, BCL2, CDKN1B, 
PIK3CA, E2F3, TRAF6, ITGB1, 
FN1, NFKB1, CDK6, ITGA6, 
PIK3R1, COL4A4, RELA, 
PTEN,PTENP1, NOS1, PIAS3, 
MAX, LAMC1, PIK3R3, BCL2L1, 
COL4A1, AKT3, RXRA, LAMA4 

Regulation of 
autophagy hsa04140 3 1.83 

GABARAPL1,GABARAPL3, 
PRKAA1, ULK2 

Fc epsilon RI signaling 
pathway hsa04664 23 1.73 

MAP2K3, PIK3CA, MAPK8, 
PRKCA, CSDE1, MAP2K1, 
PRKCE, PLA2G2F, PIK3R1, 
MAP2K4, SOS1, VAV3, MAPK1, 
RAC1, GRB2, MAP2K7, 
PLA2G3, MAPK14, PRKCB1, 
MAPK10, PLCG1, PIK3R3, 
AKT3 

Valine, leucine and 
isoleucine degradation hsa00280 6 1.71 

HADH, ACAA2, BCAT2, 
HADHA, PCCA, DBT 

Taste transduction hsa04742 6 1.71 
ACCN1, PRKACA, ITPR3, 
PRKX, PRKACB, ADCY6 

Tryptophan metabolism hsa00380 9 1.7 

CAT, WARS2, CARM1, HADH, 
OGDHL, NFX1, GCDH, HADHA, 
OGDH 
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p53 signaling pathway hsa04115 21 1.67 

CCNE2, CCNG1, IGFBP3, 
CDKN1A, GADD45A, RRM2, 
CDK6, EI24, STEAP3, BID, 
PTEN,PTENP1, THBS1, 
SERPINE1, SIAH1, MDM4, 
CCND2, BAX, PMAIP1, IGF1, 
CCND3, BBC3 

Folate biosynthesis hsa00790 5 1.6 
QDPR, FPGS, EP400, GCH1, 
ALPL 

Thyroid cancer hsa05216 10 1.58 

CSDE1, LEF1, MAP2K1, RET, 
NCOA4, TCF7, MAPK1, TFG, 
CCDC6, RXRA 

N-Glycan degradation hsa00511 1 1.56 BRUNOL6 
Linoleic acid 
metabolism hsa00591 4 1.49 

CYP2E1, RDH11, PLA2G2F, 
PLA2G3 

SNARE interactions in 
vesicular transport hsa04130 12 1.39 

SNAP23, STX11, SYBL1, 
VAMP3, VAMP1, STX1B, 
STX17, VAMP2, VAMP4, 
SNAP25, STX1A, SNAP29 

T cell receptor signaling 
pathway hsa04660 26 1.39 

CD4, PIK3CA, FOS, NFATC2, 
CSDE1, NFKB1, CBL, PIK3R1, 
SOS1, VAV3, NFATC3, 
NFATC1, IL10, PAK4, GRB2, 
PAK2, PAK6, PTPRC, 
ENSG00000187446, PPP3CA, 
MAP3K14, NFAT5, PAK7, 
PLCG1, PIK3R3, AKT3 

Inositol phosphate 
metabolism hsa00562 15 1.37 

SYNJ1, PIK3CA, OCRL, 
MINPP1, PIP5K1B, PIP4K2B, 
PTEN,PTENP1, PIP5K1A, 
PIP4K2C, ITPK1, CARKL, 
PLCB1, PLCB4, PIP5K3, PLCG1 

Chondroitin sulfate 
biosynthesis hsa00532 8 1.36 

UST, CHST3, DSE, CHST14, 
ENSG00000147408, 
ENSG00000182022, CHSY1, 
XYLT1 

1- and 2-
Methylnaphthalene 
degradation hsa00624 8 1.36 

ADH1B,ADH1C, DHRS1, 
MYST3, ADHFE1, LYCAT, 
NAT5, MYST4, ADH1A 

Selenoamino acid 
metabolism hsa00450 4 1.35 

CARM1, PAPSS2, SEPHS2, 
SEPHS1 

Glycerophospholipid 
metabolism hsa00564 20 1.31 

GPD2, PTDSS1, ETNK2, PLD1, 
PPAP2B, GPAM, MYST3, 
PLA2G2F, AGPAT3, DGKQ, 
DGKI, PLA2G3, LYCAT, ETNK1, 
PHOSPHO1, PLD2, NAT5, 
MYST4, DGKZ, ACHE 

Naphthalene and 
anthracene degradation hsa00626 2 1.28 CARM1, DHRS1 

Heparan sulfate 
biosynthesis hsa00534 7 1.25 

HS6ST2, EXT1, NDST1, 
HS3ST3B1, GLCE, EXTL2, 
EXTL3 
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Novobiocin 
biosynthesis hsa00401 2 1.25 TAT, GOT1 

Dorso-ventral axis 
formation hsa04320 9 1.25 

MAP2K1, NOTCH2, SPIRE1, 
SOS1, MAPK1, GRB2, ETS2, 
ERBB4, ETS1 

Taurine and 
hypotaurine metabolism hsa00430 4 1.24 GAD1, BAAT, GAD2, C10orf22 

Nitrogen metabolism hsa00910 3 1.24 GLS, GLUL, CA7 

Butanoate metabolism hsa00650 7 1.23 
GAD1, HADH, DDHD1, RDH11, 
GAD2, L2HGDH, HADHA 

Pyrimidine metabolism hsa00240 15 1.22 

UPRT, NME4, POLR1B, 
POLR1C, RRM2, DCK, AK3, 
NT5C2, POLR3H, ENTPD5, 
ENTPD1, NT5C3, POLR2D, 
CMPK, POLR3G 

Sulfur metabolism hsa00920 1 1.2 PAPSS2 

Methane metabolism hsa00680 3 1.19 CAT, SHMT2, LPO 

Cell Communication hsa01430 26 1.17 

ITGB4, ACTB, LMNB1, LMNA, 
FN1, TNC, TNR, RELN, 
COL5A1, INA, VIM, KRT74, 
GJA5, ITGA6, TNN, COL4A4, 
THBS1, THBS2, KRT38, GJA3, 
ACTG1, COL2A1, LAMC1, 
COL4A1, GJA7, LAMA4 

N-Glycan biosynthesis hsa00510 13 1.16 

DHDDS, DOLPP1, STT3B, 
FUT8, ALG9, MGAT5B, 
B4GALT2, MGAT4A, MAN1A2, 
MGAT1, ALG2, B4GALT1, 
ST6GAL1 

Carbon fixation hsa00710 3 1.09 GPT2, RPIA, GOT1 

gamma-
Hexachlorocyclohexane 
degradation hsa00361 3 1.09 DHRS1, ACP6, ALPL 

Neurodegenerative 
Diseases hsa01510 12 1.06 

VAPB, BCL2, NR4A2, NEFH, 
PRNP, FBXW7, GRB2, PSEN1, 
BAX, EP300, BCL2L1, HSPA5 

Benzoate degradation 
via CoA ligation hsa00632 9 1.06 

DHRS1, MYST3, YOD1, GCDH, 
LYCAT, HADHA, CARKL, NAT5, 
MYST4 
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Appendix 3.1. 150 microRNAs used in the OP signature. 

	  
1       hsa-let-7a 51     hsa-mir-184 101    hsa-mir-346 
2       hsa-let-7b 52     hsa-mir-185 102    hsa-mir-34a 
3       hsa-let-7c 53     hsa-mir-186 103    hsa-mir-363 
4       hsa-let-7d 54     hsa-mir-18a 104    hsa-mir-365 
5       hsa-let-7e 55     hsa-mir-190 105 hsa-mir-369-3p 
6       hsa-let-7f 56     hsa-mir-191 106    hsa-mir-370 
7       hsa-let-7g 57     hsa-mir-192 107    hsa-mir-375 
8       hsa-let-7i 58    hsa-mir-193b 108    hsa-mir-378 
9        hsa-mir-1 59     hsa-mir-194 109    hsa-mir-379 
10     hsa-mir-100 60     hsa-mir-195 110    hsa-mir-381 
11     hsa-mir-101 61     hsa-mir-197 111    hsa-mir-382 
12     hsa-mir-103 62     hsa-mir-19a 112 hsa-mir-409-3p 
13     hsa-mir-105 63     hsa-mir-19b 113    hsa-mir-410 
14    hsa-mir-106a 64    hsa-mir-200c 114    hsa-mir-411 
15    hsa-mir-106b 65     hsa-mir-203 115    hsa-mir-421 
16     hsa-mir-107 66     hsa-mir-204 116    hsa-mir-424 
17     hsa-mir-10a 67     hsa-mir-20a 117 hsa-mir-425-5p 
18     hsa-mir-10b 68     hsa-mir-20b 118    hsa-mir-432 
19    hsa-mir-125b 69      hsa-mir-21 119    hsa-mir-433 
20     hsa-mir-126 70     hsa-mir-210 120    hsa-mir-451 
21    hsa-mir-130a 71     hsa-mir-212 121    hsa-mir-484 
22    hsa-mir-130b 72     hsa-mir-217 122 hsa-mir-485-5p 
23     hsa-mir-132 73     hsa-mir-218 123   hsa-mir-487b 
24    hsa-mir-133a 74      hsa-mir-22 124    hsa-mir-488 
25     hsa-mir-134 75     hsa-mir-221 125    hsa-mir-495 
26    hsa-mir-135a 76     hsa-mir-222 126    hsa-mir-497 
27     hsa-mir-136 77     hsa-mir-223 127    hsa-mir-500 
28     hsa-mir-137 78     hsa-mir-23a 128    hsa-mir-505 
29     hsa-mir-138 79     hsa-mir-23b 129    hsa-mir-539 
30    hsa-mir-142-5p 80      hsa-mir-24 130  hsa-mir-542-3p 
31     hsa-mir-143 81      hsa-mir-25 131   hsa-mir-551b 
32     hsa-mir-144 82     hsa-mir-26a 132    hsa-mir-577 
33     hsa-mir-145 83     hsa-mir-26b 133    hsa-mir-584 
34    hsa-mir-146a 84     hsa-mir-27a 134    hsa-mir-589 
35    hsa-mir-148a 85     hsa-mir-27b 135    hsa-mir-592 
36    hsa-mir-148b 86     hsa-mir-29a 136    hsa-mir-598 
37     hsa-mir-149 87     hsa-mir-29b 137    hsa-mir-629 
38     hsa-mir-150 88     hsa-mir-29c 138    hsa-mir-652 
39     hsa-mir-152 89     hsa-mir-30b 139    hsa-mir-660 
40     hsa-mir-153 90     hsa-mir-30c 140    hsa-mir-758 
41     hsa-mir-155 91     hsa-mir-30d 141    hsa-mir-766 
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42     hsa-mir-15a 92      hsa-mir-32 142  hsa-mir-767-5p 
43     hsa-mir-15b 93     hsa-mir-320 143  hsa-mir-769-5p 
44      hsa-mir-16 94     hsa-mir-320 144      hsa-mir-9 
45    hsa-mir-181a 95     hsa-mir-324-5p 145    hsa-mir-92b 
46    hsa-mir-181b 96     hsa-mir-326 146     hsa-mir-93 
47    hsa-mir-181c 97     hsa-mir-328 147     hsa-mir-95 
48    hsa-mir-181d 98     hsa-mir-335 148     hsa-mir-98 
49     hsa-mir-182 99     hsa-mir-340 149    hsa-mir-99a 
50     hsa-mir-183 100    hsa-mir-345 150    hsa-mir-99b 
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Appendix 4.1. Consent and transfer for the samples. 

	  
	  
	    

    
HARVARD 
MEDICAL SCHOOL 

BRIGHAM AND 
WOMEN’S  HOSPITAL 

Department of Neurosurgery 75 Francis Street    
Boston, Massachusetts 02115 
Tel: (617) 732-6600 
Fax: (617) 734-8342 
                     

Josie Hayes,  
LICAP 
Leeds University Medical School, 
Leeds, UK 

    30 April 2015 
 
Dear Josie, 
 

I am writing to confirm that the brain tumor samples that were used in your studies were collected under a 

protocol approved by The Ohio State University Institutional Review Board.  All samples were de-

identified and approved for experimental use.  These samples were collected when I was a faculty 

member at Ohio State University. The protocol is IRB 2005C0075 "Investigating novel therapeutic 

strategies for brain tumor treatment". 

 

Please contact me if you have any further questions. 

 

Yours Sincerely, 

 

 
 
 
Sean Lawler, Ph.D.  
Principal InvestigatorHarvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery 
Brigham and Women's Hospital, Harvard Medical School, 4 Blackfan Circle, H.I.M. 930A, Boston, MA 02115.     
slawler@partners.org 
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Appendix 4.2. Primer Sequences. 

CD133	  forward:	  GTTTCCGACTCCTTTTG	  	  
CD133	  reverse:	  ATCTCCCTGTTGGTGAT	  
Olig2	  forward:	  GTTCTCCCCTGAGGCTTTTC	  
Olig2	  reverse:	  GGAAGATAGTCGTCGCAGCTT	  	  
Sox2	  forward:	  CCTGATTCCAGTTTGCCTCT	  
Sox2	  reverse:	  CAGCTCCGTCTCCATCATCATGT	  
Notch1	  forward:	  TCACGCTGACGGAGTACAAG	  	  
Notch1	  reverse:	  GGCAGTGGCAGATGTAGGAG	  
CD44	  forward:	  AAGGTGGAGCAAACACAACC	  
CD44	  reverse:	  CTTCTGCCCACACCTTCTTC	  
LYN	  forward:	  TTCCCTACCCAGGGAGAACT	  
LYN	  reverse:	  CTGCCTTTTCTTTCCAGCAC	  	  
WT1	  forward:	  ACTCTTGTACGGTCGGCATC	  	  
WT1	  reverse:	  TCTCACCAGTGTGCTTCCTG	  
BCL2A1forward:	  ATGGATAAGGCAAAACGGAG	  	  
BCL2A1	  reverse:	  TGGAGTGTCCTTTCTGGTCA	  	  
GAPDH	  forward:	  GAAGGTGAAGGTCGGAGTCA	  	  
GAPDH	  reverse:	  TTGAGGTCAATGAAGGGGTC	  	  
18S	  reverse:	  CCTTGGATGTGGTAGCCGTTT	  
18S	  forward:	  AACTTTCGATGGTAGTCGCCG	  
SHC1	  forward:	  CTCAGGAACCCACCCAAAC	  
SHC1	  reverse:	  GATGGTCAGGTGGCTCTTC	  
SLC25A24	  forward:	  AGAAATTGTCCAGTCTCTCCAG	  
SLC25A24	  reverse:	  AAGTAGTCTCTCCATTCATTCCA	  
P4HA2	  forward:	  CCCAGGCACAATTTCCAGAG	  
P4HA2	  reverse:	  TCCACAACACCGTATGATAATAGT	  
SLC31A2	  forward:	  CGGTGCTTCTGTTTGATTTCTG	  
SLC31A2	  reverse:	  TTGCCAACCTTGATGCCTTC	  
FBN1	  forward:	  GCATTTGCCAGAACACTCCT	  
FBN1	  reverse:	  TTACCCTCACACTCGTCCAC	  
WNT4	  forward:	  GCGGGAGAGAAGCAAGGG	  
WNT4	  reverse:	  GCATTCCACCCGCATGTG	  
LMNA	  forward:	  TCACCCGCTCCTACCTCCT	  
LMNA	  reverse:	  GGCAGGTCCCAGATTACATGAT	  
FNDC3B	  forward:	  ACAATGATGATGACCGACCAAA	  
FNDC3B	  reverse:	  GGATTAACTTGAACGAGAATAACCT	  
TGFBI	  forward:	  GGCAATCATCTCTCTGGAAGT	  
TGFBI	  reverse:	  AATTATGTGGTTCCGAAGCAAAT	  
GLUT1	  forward:	  AACTCTTCAGCCAGGGTCCAC	  
GLUT1	  reverse:	  CACAGTGAAGATGATGAAGAC	  
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Appendix 4.3. Characterisation of the GSC cell lines (performed by Dr. 
Marco Mineo, Harvard Medical School) 

Blue	  are	  proneural	  markers	  and	  red	  are	  mesenchymal	  markers	  according	  to	  Mao	  
et	  al	  (Mao	  et	  al.,	  2013).	  
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The	  following	  characterisations	  were	  performed	  using	  sequencing	  data	  produced	  
by	  Dr.	  Sally	  Harrison.	  
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Appendix 4.4. Glut1 (target of HIF1A) mRNA levels to show cellular 
response to hypoxia. 
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