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Abstract

Until now, personalised medicine for patients in oncology has been focused on
the use of DNA-based techniques such as mutation detection and fluorescence
in situ hybridisation, fluorescence-activated cell sorting and immuno-staining for
classifying tumours. MicroRNAs are short non-coding RNAs that are involved in
post-translational regulation of gene expression. Their expression levels are
often altered in cancer. Due to their functional importance and stability in
biological samples, they represent another tool that could be used to aid patient
management.

Glioblastoma is a disease that has had little improvement in survival over the
past decade in comparison to other cancers. A number of new drugs have been
explored but even successful trials have shown limited success.

This thesis is focused on identification of microRNAs as signatures for
prognosis prediction in glioblastoma. It is separated into four parts; the
identification of a microRNA signature that can be used to predict prognosis in
glioblastoma; the alignment of glioblastoma microRNA expression with the
microRNA expression of oligodendrocyte precursors and its involvement in
patient outcome; the use of the expression pattern of the most abundant and
robust prognostic microRNA in glioma (miR-9) to delineate glioblastoma
subtype and finally the identification of a microRNA signature to predict
prognosis in patients treated with the anti-angiogenic drug bevacizumab. The
research aims to create signatures suitable for clinical practice, with a small
number of predictors, and where possible the function of the microRNAs has
been predicted and reviewed to provide confirmation of their role in glioma
biology.

The key findings of this research are the formation of robust signatures using
microRNAs in a disease where few markers are available and proof of a
technique that can be used in future drug studies to improve performance at

clinical trials.
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WHO: World Health Organisation

WNT: Wingless-type MMTYV integration site family

WNT4: Wingless-type MMTYV integration site family, member 4
WT1: Wilm's tumour 1

XPO5: Exportin-5

YY1: Yin and yang 1

ZEB: Zinc finger E-box binding homeobox
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1. Introduction

‘The scientist is not a person who gives the right answers, he's one who
asks the right questions.’ Claude Lévi-Strauss, Le Cru et le Cuit, 1964.

Gliomas are central nervous system tumours with particularly poor outcomes.
These are the most common tumour originating in the brain, and they represent
a very broad diagnostic category that encompasses the most malignant and
common form, glioblastoma (Louis et al., 2007a). Gliomas are named due to
their morphological similarity to glial cells, which function as a scaffold and
insulation for neurons allowing the conduction of electrical impulses important
for neurological function. The different types of glioma can be characterised by
the glial cell type they most resemble. For example, astrocytomas resemble
astrocytes and oligodendrogliomas resemble oligodendrocytes (Louis, 2007a).
The outcomes of the different types of glioma are hugely variable and correct
classification is paramount to effective patient management (Riemenschneider
et al., 2010). Despite efforts to improve the outcome of patients suffering with
this devastating disease, the incidence and survival of patients with glioma has
changed little over time (Inskip et al., 2010).

Gliomas are graded from | to IV according to the World Health Organisation
(WHO) classification system, assessing their increasingly aggressive
pathological features (Louis et al., 2007a). Low-grade gliomas (l-11) are benign
and well-differentiated and high-grade gliomas (lll-1V) are malignant and
anaplastic. Stratification based on grade depends more on pathologic features
than on the cell type of origin. The assessment procedure includes features
such as nuclear pleomorphism, high cellularity and mitotic index, endothelial
cell proliferation and necrosis (Louis et al., 2007b; Goodenberger & Jenkins,
2012) (Fig. 1.1).

1.1. Incidence and survival of glioma.

The incidence of primary brain tumours has been increasing since the 1970s
and has an incidence rate of 7.1/100,000 in the UK, as reported in 2014
(Sehmer et al., 2014). Higher grades predominate in men and low grade brain
tumours are more frequent in women (Goodenberger & Jenkins, 2012). The

most common adult brain tumours are gliomas and 86% of these are
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glioblastoma (Sehmer et al., 2014; McKinney, 2004).

Age-related incidence differs by subtype of glioma. Astrocytic tumours show a
small peak in patients under 10 years of age, which decreases to its lowest
incidence between 10 and 20 years, and then steadily increases over the next
50-60 years of life (Inskip et al., 1995; McKinney, 2004). The majority of grade
IV glioblastomas occur in adults between 45 and 75 years of age, with a
progressive increase starting from age 30 (Louis et al., 2007b).
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Grade I, fibrillary astrocytoma
Highly cellular with monomorphic appearance

Grade IV, glioblastoma
Necrotic regions
Pseudopalisading cells

Figure 1.1. Histological criteria of the WHO classification of gliomas.

Adapted from DeAngelis, 2001 (DeAngelis, 2001). The WHO classification
grades gliomas from | to IV. Grade | gliomas are non-invading, and pilocytic
astrocytoma is an example of this (not shown). Grade Il tumours are infiltrative
and have low proliferative capacity, however they frequently transform to a
higher grade. Grade Il tumours show evidence of histological malignancy with
nuclear atypia and a high mitotic index. Grade IV tumours show the features of
grade Il but with necrotic foci, frequently surrounded by pseudopalisading cells
(Louis et al., 2007a). These tumours may also exhibit vascular proliferation
(DeAngelis, 2001).

Median overall survival for glioblastoma, the most aggressive and malignant
glioma, is 15 months, with only 3-5% of patients surviving more than three
years (Koshy et al., 2011; Krex et al., 2007)(Fig. 1.2). This highly aggressive
glioma has an incidence of 3.32 per 100,000 people/year in males and 2.24 in
females (Ohgaki et al., 2004). Age is a significant prognostic factor, with
patients below the age of 50 having a median survival of 8.8 months compared
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to a median survival of 7.3 months between the ages of 50-59 years (Ohgaki et

al., 2004).
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Figure 1.2. Overall survival of patients with glioblastoma from 2000 to
2006 from the SEER (surveillance, epidemiology and end results
program) database.

Image from Koshy et al. 2012 (Koshy et al., 2011). Median survival of
glioblastoma improved between the years 2000 and 2006 from 12 months to 15
months due to administration of the standard chemotherapeutic temozolomide
with post-operative radiotherapy. This data is from the SEER database, which is
a National Cancer Institute (NCI) source for cancer statistics in the US. The

lines indicate the survival rates of two-year periods between 2000 and 2006.

Patients with a grade Ill anaplastic astrocytoma have a 2-year survival rate of
58% and, as with glioblastoma, younger patients have a better outcome (Laws
et al., 2003). Other prognostic factors for high-grade glioma include extent of
resection and Karnofsky performance score (KPS), which assesses patients’
functional status on a scale of 1 to 100. A KPS of 80-100 is considered normal
function, 50-70 suggests the patient is unable to work and 0-40 suggests the

patient is unable to care for himself or herself (Laws et al., 2003).
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1.2. Pathological diagnosis of glioma.

The current clinical diagnosis of glioblastoma does not solely rely on the
histological features described by the WHO but also includes cytogenetic
features based on molecular markers known to be associated with patient
outcomes. Patients who develop a glioblastoma ab initio, termed a primary
glioblastoma, generally have poorer outcomes than those who progress from a
lower grade, termed secondary glioblastoma (Bleeker et al., 2012). Therefore, it
is important to distinguish primary glioblastoma from secondary glioblastoma to
ensure patients are appropriately treated and monitored.

1.2.1. Karyotyping and fluorescent in situ hybridisation.
Integration of histological and genetic findings allows a more precise diagnosis
of the grade and subtype of the glioma (Fig. 1.3), which defines the variable

patients outcomes from these tumours.
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Figure 1.3. Molecular and cytogenetic markers used to classify a
glioma.

Adapted from Bleeker et al. (Bleeker et al., 2012). Karyotyping glioma samples
provides information on chromosome copy number. In most cases a gain in
chromosome 7 will distinguish a glioblastoma from other tumour types (Wiltshire
et al., 2000). Oligodendrogliomas, which are associated with a more favourable
prognosis, are determined in this way by detection of 1p19q (which can also be
performed using molecular testing). In addition to karyotyping, molecular tests
such as fluorescent in situ hybridisation (FISH) and sequencing are performed
to determine other tumour characteristics such as EGFR and MDM?2

amplification.

1.2.2. IDH1 mutations.

Patients with secondary glioblastoma, which accounts for approximately 5% of
all glioblastomas, often have mutations in the isocitrate dehydrogenase (/DH)
gene (Parsons et al., 2008). The most common mutation is IDH1 R132H.

Parsons et al showed that only 7% of primary glioblastoma but 83% of
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secondary glioblastoma had detectable IDH mutations in 2008, which fuelled
further analysis in lower grade glioma the following year (Parsons et al., 2008;
Yan et al., 2009). IDH mutations are frequent in glioma although extremely rare
in other CNS tumours and therefore serve as a method of classification when
the histological results are conflicting (Yan et al., 2009). Detection can be
performed by immunohistochemistry using mutation specific antibodies or DNA
sequencing (Berghoff et al., 2013). Tumours lacking a mutation in IDH1 can
harbour a mutation at amino acid 172 of the IDHZ2 gene. In total, IDH1 and IDH2
mutations have been identified in 86% of grade Il astrocytoma and
oligodendroglioma and 82% of grade Ill disease (Yan et al., 2009). With
adjustments for age, grade, MGMT status, treatment and genomic profile, IDH
mutation is considered a favourable prognostic marker (Ducray et al., 2009).
IDH is an enzyme that catalyses the oxidative carboxylation of isocitrate to a-
ketoglutarate. There are three forms of IDH; IDH1 is cytosolic and IDH2 and 3
are mitochondrial (Geisbrecht & Gould, 1999). All mutations in IDH7 are located
at amino acid 132 of the protein. The most common R132H mutation is a gain
of function mutation that results in an increase in 2-hydroxyglutarate (2HG) in
cells (Fig. 1.4) (Zhang et al., 2013). One enzyme inhibited as a consequence of
the high 2HG levels is TET2 (ten-eleven translocation 2), which catalyses the
conversion of 5-methylcytosine to 5-hydroxymethylcytosine, resulting in DNA
demethylation (Zhang et al., 2013). TETZ2 promoter methylation has also been
reported in gliomas without /IDH71 mutation suggesting that this may be an
important mechanism of gliomagenesis (Kim et al., 2011c). These mutations are
obvious targets for therapy in gliomas, and small molecule inhibitors targeting
the IDH1 protein have already been developed (Popovici-Muller et al., 2012).
These inhibitors have been shown to delay the growth of glioma cells and
promote differentiation and are currently in phase | clinical trials (study number
NCT02073994) (Rohle et al., 2013).

The effects of IDH mutation can result in widespread promoter DNA methylation
and suppression of gene transcription. In 2010, Noushmehr et al. identified a
glioma CpG island methylator phenotype (G-CIMP) which defined a subgroup
of glioma (Noushmehr et al., 2010). This phenotype is tightly associated with
IDH1 mutation and introduction of an IDH71 mutation into cells is sufficient to
establish extensive DNA hypermethylation (Turcan et al., 2012).
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Figure 1.4. IDH1 mutations inhibit histone and DNA demethylation.

Adapted from Yang et al. (Yang et al., 2012a). IDH1 mutations are gain of
function mutations that cause an increase in 2-hydroxyglutarate (2HG), which is
an antagonist of a-ketoglutarate. Lower a-ketoglutarate and higher 2HG result
in inhibition of both histone lysine demethylase (KDM) and the TET family of 5-
methylcytosine (5mC) hydroxylases, which act to remove methyl groups (CHj)
from histone lysines (K), and cytosines (C) in the DNA, respectively. This is an

epigenetic change in the cell, which causes altered differentiation processes.

1.2.3. MGMT methylation.

Promoter methylation of O°-methylguanine-DNA-methyltransferase (MGMT) is
another predictive indicator used clinically to indicate responsiveness to
alkylating agents, such as temozolomide (TMZ) (Hegi et al., 2005). MGMT is a
DNA repair enzyme that can reverse the cytotoxic effect of alkylating agents by
removing the O6 methyl group caused by TMZ treatment (discussed in detail on
page 26). Methylation of the MGMT promoter most likely results in decreased
expression of the MGMT gene rendering cells susceptible to these

chemotherapeutic agents (Hegi et al., 2005). MGMT promoter methylation is
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thought to occur as part of the G-CIMP phenotype, since it is present in almost
all cases with G-CIMP and IDH1 mutation. In non-G-CIMP phenotypes, MGMT
methylation is still reported in 50% of cases (Bady et al., 2012; Turcan et al.,
2012).

1.2.4. 1p19q codeletion in oligodendroglioma.

Oligodendroglioma is a subtype of glioma in which the cells bear some
resemblance to oligodendrocytes (Louis, 2007a), which exhibit a branched-like
morphology and function to produce myelin. Patients with an oligodendroglial
tumour have been shown to have a more favourable prognosis than other
glioma types, with current treatment regimes, therefore it is important to
distinguish between oligodendroglioma and astrocytoma (Jeuken et al., 2004).
Unfortunately, the histological criteria used to discriminate between these
subtypes are poorly defined (Jeuken et al., 2004). There is a strong association
between oligodendroglial tumours and loss of the short arm of chromosome 1
and the long arm of chromosome 19 in tumour cells. Patients with this
aberration have a favourable prognosis (Ducray et al., 2009; Riemenschneider
et al., 2010). This aberration is termed 1p19q codeletion; it can be
characterised by an unbalanced translocation between these chromosomes or
loss of heterozygosity in these chromosomal regions. In the past, detection of
the 1p19q codeletion was performed using conventional karyotyping, but more
recently molecular methods such as FISH, multiplex ligation dependent probe
amplification (MLPA) and loss of heterozygosity (LOH) PCR have been
employed (Berghoff et al., 2013).

1.2.5. BRAF duplication/fusion in pilocytic astrocytoma.

Pilocytic astrocytoma is a grade | glioma, and is a well-defined lesion that does
not invade the brain (Louis et al, 2007a). Therefore, it is important to distinguish
between these and other astrocytomas. Around 50-70% of pilocytic
astrocytomas have fusions of the v-RAF murine sarcoma viral oncogene
homolog B1 (BRAF) gene with the KIAA1549 gene which results in duplication
of the activation domain and a deletion of the N-terminal inhibitory domain of
BRAF, resulting in expression of the mutant BRAF protein (Siegal, 2015).
Detection of the BRAF:KIAA1549 fusion gene is vital in classification of this low
grade lesion, especially since glioblastoma and pilocytic astrocytoma share a
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proliferative microvascular morphology and therefore can cause diagnostic
uncertainty (Siegal, 2015).

1.3 Standard treatment of glioma.

Cancer treatment for solid tumours frequently involves initial resection of the
tumour bulk by surgery. Surgery may not always be possible and is dependent
on tumour location. When performed, brain surgery is a particularly traumatic
procedure as it involves a craniotomy (an operation to open the skull). This may
also be performed whilst a patient is awake to reduce the likelihood of
neurological deficits. Awake craniotomy is usually performed with assessment
of language and motor function at critical points in the procedure, which aids in
brain mapping to define the limits of a tumour resection intra-operatively (Tate,
2015). Following maximal surgical resection, patients are treated with adjuvant
therapy (therapy following the main treatment of surgery). Adjuvant therapy is
designed to eliminate the remainder of the tumour and in brain tumours

includes radiotherapy and chemotherapeutic agents.

1.3.1. Radiotherapy and imaging.

Conventional fractionated radiotherapy is a protocol where external beam
radiation is delivered to the tumour site over a number of sessions to destroy
tumour cells. The patient’s head is immobilised and a CT (computed
tomography) simulator creates an image of the tumour and surrounding brain
using X-rays. This map of the tumour is merged with magnetic resonance
imaging (MRI) and can be used to determine the treatment field, angles and
energy source for most effective local control and limited toxicity. The unit of
measurement of ionising radiation dose in the International System of Units (SI)
is Gray (Gy), and 1Gy defines the absorption of one joule of radiation energy
per one kilogram of matter (BIPM, 2006). Standard treatment for glioblastoma is
60Gy in 30 fractions of 2Gy daily 5 days a week over 6 weeks post-operatively
(Barani & Larson, 2015). The dose is determined by a balance between the
tumour sensitivity and tolerance of normal tissue; effective treatment versus
toxicity.

Improvement in tumour imaging in recent years has benefited surgery and
radiotherapy outcomes. MRI has traditionally been used in glioma imaging
since the 1980s (Doyle et al., 1981). This method of imaging uses radio waves
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and a magnetic field to create a detailed image of the brain. Advances on this
method use diffusion to provide pathological information on a cellular level, and
these include diffusion-weighted imaging and diffusion tensor imaging (Svolos
et al., 2014). Magnetic resonance spectroscopy (MRS) is a more recent
technique that can map the metabolic profiles of the brain using various
metabolites (Chronaiou et al., 2014). This is of particular advantage in clinical
practice for gliomas because they are infiltrative, and comparison of metabolic
markers between tumour and normal brain tissues allows more accurate
assessment of the tumour margin. Additionally, glioblastoma is extremely
heterogeneous, and metabolic imaging can help to determine particularly
aggressive regions by using the high Choline to N-acetyl aspartate ratio, also
known as composite nutritional index. This index can be used in glioblastoma
and lower grade tumours with potential sites of malignancy (Pirzkall et al.,
2002). Imaging can also include other metabolites such as 2-hydroxyglutarate
(2HG), which is increased in IDH mutated tumours (Chronaiou et al., 2014).
However, none of these modalities are used routinely, all are the subject of

research.

1.3.2. Chemotherapy.

Chemotherapy for gliomas has limited efficacy, which is in part due to the
inability of many chemotherapeutic agents to cross the blood-brain-barrier
(BBB), which separates the blood from the brain extracellular fluid. Tightly
spaced endothelial cells, which allow the passage of only water and lipid-
soluble molecules, form this barrier, and glucose and amino acids can be
transported by selective transport. Lipophilic agents may be actively prevented
from crossing the BBB by a membrane protein P-glycoprotein (Deeken &
Loscher, 2007).

The standard chemotherapeutic for high-grade glioma, as previously mentioned
is TMZ (brand names Temodar, Temodal and Temcad). This is an
imidazotetrazine derivative of the alkylating agent dacarbazine, which can cross
the BBB, and it alkylates/methylates DNA. Most often this occurs at the N-7 or
0O-6 positions of guanine residues (Fig. 1.5). Methylation at the O-6 position
most likely causes the anti-tumorigenic properties of TMZ, and if unrepaired,
can give rise to G>A mutations (Johnson et al., 2014). This is because O6-
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methylguanine can base-pair with both cytosine and thymine, with the pairing
rate dependent on the sequence context (Dosanjh et al., 1991). Also, if the O6
methylguanine remains in the template strand, DNA repair mechanisms can
cause double strand breaks, which are toxic to the cell (Margison and
Santibafiez-Koref, 2002).

A Methylation occurs at
this position
N
8 / Pairing to the
complementary
N base
B C
HsC "y
N 0 0 CH; N

H O R

06-Methylguanine paired with thymine 06-methylguanine paired with cytosine

Figure 1.5. Anti-tumorigenic action of TMZ involves methylation of the
06 position of guanine, resulting in G>A mutations.

TMZ can cause methylation of the O3, O6 and N7 positions of guanine. It is the
O6 adduct that gives TMZ its tumorigenic properties because it can base pair
with both cytosine and thymine. This figure shows how the O6 adduct binds
chemically to cytosine and thymine. A) The structure of guanine without
methylation. It is at the O6 position that methylation occurs. B) O6-methyl!
guanine paired with thymine. C) O6-methylguanine paired with cytosine (this
may also have another hydrogen bond from the O position of cytosine in

solution at neutral pH) (Warren et al., 2006).

Grade Il and Il gliomas are heterogeneous in terms of response to therapy and

have a wide range of survival times. Following maximal safe resection of the
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tumour, treatment options include radiation and/or either TMZ or, an older
treatment regimen of PCV (Procarbazine, CCNU, Vincristine), or regular
surveillance by MRI until tumour progression (Riemenschneider et al., 2010).
Unfortunately, although slow-growing in the case of grade Il tumours, these
usually recur two to twenty years after surgery and may have progressed to
higher-grade glioma (Claus et al., 2015). The variability seen in response to
current treatment regimens cannot be fully explained by known prognostic
factors such as age, extent of tumour resection, molecular features, and
histology. It has been shown that a proportion of patients exhibit hypermutation
following treatment with TMZ, including TMZ-induced mutations that are known
to drive progression to HGG (Johnson et al., 2014). All of these patients with
TMZ-induced hypermutation and recurrent HGG bear IDH1 mutations, which
would otherwise confer a good prognosis (Johnson et al., 2014).

Treatment of glioblastoma involves maximal safe resection, adjuvant
radiotherapy and concomitant (alongside the other treatments) TMZ (Stupp et
al., 2009). Despite these aggressive treatments, most patients show limited
response and survival is still relatively short (median survival 12-15 months
(Koshy et al., 2011). It is thought that the heterogeneity of glioblastoma may
allow selection of certain subclones following treatment, which contributes to
treatment resistance (Johnson et al., 2014). The presence of glioma stem-like
cells; slowly dividing cells that are capable of reseeding the tumour, may also
offer the tumour a mechanism to evade treatment strategies (discussed in more
detail on page 37); (Ye et al., 2013).

1.4. Genetic features of grade Il glioma.

As shown in Figure 1.3 on page 20, the genetic profile at different stages in the
progression of glioma reflects the grade and subtype of glioma and therefore
can be used in clinical diagnosis. Advances in the study of glioma have shown
that there are more specific genetic changes that are not yet used in clinical
practice, and these are likely to be included in the clinical guidelines in the
fourth edition of the classification of CNS tumours (Louis et al., 2014).
Mutations of the genes ATRX (alpha thalassemia/mental retardation syndrome
X-linked), CIC (homolog of the Drosophila gene capicua) and FUBP1 (encoding

far-upstream element (FUSE) have been shown to delineate the glioma
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subtypes. CIC and FUBP1 are encoded at chromosomes 19q and 1p
respectively, regions of the 1p19q codeletion. ATRX is encoded on the long arm
of chromosome X. It is a chromatin modifier which, in glioblastoma, is
associated with the alternative lengthening of telomeres (ALT) phenotype; a
telomere lengthening mechanism that is independent of telomerase
(Schwartzentruber et al., 2012). IDH mutations are tightly associated with ATRX
mutations and are observed in grade llI-1ll astrocytomas (71%),
oligoastrocytomas (68%), and secondary glioblastomas (57%) (Jiao et al.,
2012). The IDH/ATRX mutation signature is therefore a marker of astrocytomas
and is associated with a poorer outcome (median 51 months). CIC and FUBP1
are seen in less than 10% of astrocytomas or oligoastrocytomas but are
frequently observed in oligodendrogliomas (46% and 24%, respectively); these
are associated with a more favourable prognosis (median survival 96 months)
(Jiao et al., 2012).

1.5. Genetics of high grade glioma.

Glioblastoma was the first disease to be studied by The Cancer Genome Atlas
(TCGA), a large program designed to integrate comprehensive data on multiple
cancer types, including gene expression, methylation, copy number and
microRNA expression (TCGA, NIH). This produced a wealth of information on a
large dataset of glioblastoma patients (>500 cases) (Cancer Genome Atlas
Research Network, 2008). Since then studies performed by the TCGA and
other laboratories have improved our understanding of the genetics of
glioblastoma (Verhaak et al., 2010; Brennan et al., 2013). More recently, the
TCGA released data for lower grade glioma including grade Il and Ill gliomas
(>500) (Gonda et al., 2014).

1.5.1. Molecular subtypes of glioblastoma.

The first study to show that glioblastoma could be separated into subgroups
using molecular information was performed at Genentech in 2006 and showed
that, based on transcriptional profiling data, three subtypes of glioblastoma
exist; named proneural, mesenchymal and proliferative. The proneural subtype
tumours bear resemblance to a neuronal lineage, express histological markers
including OLIG2 (oligodendrocyte lineage transcription factor 2), DLL3
(Drosophila delta homolog) and BCAN (brevican) and have the best outcome of
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the three subtypes. The mesenchymal and proliferative subtypes are
associated with losses of chromosome 10, gains of chromosome 7, PTEN loss
and EGFR amplification. The proliferative subtype tumours express the markers
PCNA (Proliferating Cell Nuclear Antigen) and TOP2A (Topoisomerase Il Alpha
170kDa) and are able to grow in the absence of EGF (epidermal growth factor)
and FGF (fibroblast growth factor). The mesenchymal subtype expresses
CHI3L1 (chitinase 3-like 1) and the angiogenic marker VEGF. Recurrent
tumours have been shown to shift towards this phenotype (Phillips et al., 2006).
Further studies using TCGA data in 2010 reported an additional molecular
subtype (Verhaak et al., 2010). Verhaak et al clustered mRNA expression
patterns of glioblastoma into four subtypes; proneural, classical, neural and
mesenchymal based on 840 mRNAs (210 mRNAs defining each subgroup).
The classical subtype tumours were associated with chromosome 10 loss and
chromosome 7 gain (although trisomy chromosome 7 was seen in other
subtypes). This group exhibited high-level EGFR amplification along with
mutant EGFR. Homozygous deletions at chromosomal band 9p21.3 were also
evident in this subtype, notably in CDKNZ2A (Cyclin-Dependent Kinase Inhibitor
2A), and these were almost mutually exclusive with other components of the
retinoblastoma pathway. The mesenchymal subtype was associated with
deletions at chromosomal band 17g11.2, which includes NF7 (neurofibromin 1).
Markers reported to be expressed in this subtype overlapped with that of the
earlier Genentech signature; CD44 and CHI3L1. Genes in the tumour necrosis
factor super family were expressed highly in this subtype, which may be a
reflection of high necrosis and inflammatory infiltration. The proneural subtype
showed a high rate of alteration of PDGFRA (platelet-derived growth factor
receptor, alpha polypeptide) and IDH1. There was high expression of
oligodendrocyte development genes including PDGFRA, NKX2-2 (NK2
homeobox 2) and OLIGZ2. Proneural development genes were also expressed
in this group, such as DLL4 detected in the Phillips’ proneural group (Phillips et
al., 2006).

The fourth subtype, neural, was characterised by expression of neuron
markers, for example NEFL (neurofilament, light polypeptide) and GABRA
(gamma-aminobutyric acid (GABA) A receptor). Gene ontology categories for
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the genes expressed in this subtype pointed to neuron projection and axon and
synaptic transmission (Verhaak et al., 2010).

The Verhaak subtypes show mRNA expression that is resonant with various
characterised neural cell types; the proneural subtype bore resemblance to an
oligodendrocytic signature, the classical subtype was aligned with a murine
astrocytic signature, the neural subtype showed high expression for genes
expressed by neurons and the mesenchymal subtype showed a similarity to
cultured astroglia (Verhaak et al., 2010). Methylation of the MGMT promoter
was not associated with subtype, but the subtypes did differ in response to
treatment. The classical and mesenchymal subtypes were the only subtypes
shown to respond to treatment with radiotherapy and TMZ (Verhaak et al.,
2010). The longer survival of the patients with a proneural glioblastoma subtype
may therefore be due to the younger age of these patients (Phillips et al., 2006).
The subtypes determined in 2010 by Verhaak et al. were revised in 2013, when
further data was made available in the TCGA (Verhaak et al., 2010; Brennan et
al., 2013). This confirmed these four subtypes; neural, proneural, classical and
mesenchymal. In addition, they further separated the proneural group into G-
CIMP positive proneural and G-CIMP negative proneural. Astonishingly, these
two groups represented the opposite ends of the spectrum in prognosis for
glioblastoma. Patients with a G-CIMP positive proneural subtype were the
group with the best prognosis of all glioblastoma patients in the TCGA, and the
G-CIMP negative proneural tumours conferred the worse prognosis of all
glioblastomas (Brennan et al., 2013).

G-CIMP refers to a subgroup of gliomas, with a more favourable prognosis, that
have extensive DNA methylation across over 1500 loci in the genome
(Noushmehr et al., 2010). Methylation of DNA occurs predominantly at the
dinucleotide CG in vertebrates. Cytosine and guanine are separated by one
phosphate, and therefore these sites are often termed CpG sites (cytosine-
phosphate-guanine). Cytosines have the ability to become methylated at the 5-
position in this context, forming 5-methylcytosine, and in mammals this
methylation can serve to turn off gene expression (Cooper, 1983). Regions with
a high frequency of CpGs in the genome are called CpG islands, representing
1% of the genome (Vinson & Chatterjee, 2012). In cancer, many tumour

suppressor genes are inactivated by this mechanism, including those involved
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in DNA repair, apoptosis and cell cycle pathways (Esteller, 2002). The finding
that proneural gliomas with the G-CIMP have a better prognosis may reflect the
fact that they have different mechanisms of origin. It has recently been shown
that initial transforming events in G-CIMP gliomas are different to those that
arise in the formation of non-G-CIMP glioblastomas, which result from NF1 loss
in a proneural context (Ozawa et al., 2014).

A further signature was developed based on glioma stem cells expanded from
glioma specimens, and separated these into proneural and mesenchymal
subtypes based on eight mMRNAs (Mao et al., 2013). The proneural subtype
showed higher expression of the proneural markers CD7133 (CD133 antigen),
OLIG2, SOX2 (SRY (sex determining region Y)-box 2) and NOTCH1 (notch 1)
and the mesenchymal subtype showed high expression of CD44 (CD44
antigen), LYN (V-Yes-1 Yamaguchi Sarcoma Viral Related Oncogene
Homolog), WT1 (Wilma’s tumour 1) and BCL2A1 (BCL2-related protein A1).
The mesenchymal subtype was shown to be more aggressive in in vitro and
murine intracranial xenograft assays. The subtypes also had different features
in vitro with proneural cells forming spherical neurospheres and the
mesenchymal cells forming irregular aggregates with some cells having
adherent properties when grown in the absence of serum (Mao et al., 2013).

1.5.2. Heterogeneity and clonal evolution.

Glioblastoma Multiforme is so named due to its high degree of heterogeneity.
Many studies have highlighted the various levels at which heterogeneity can
occur in glioblastoma, including cellular, molecular, metabolic, genetic and
epigenetic levels (Vartanian et al., 2014). This is a considerable barrier towards
the success of therapies for this disease, not only because each patient’s
tumour is different (inter-tumour heterogeneity), but also because the tumour
contains a wealth of different cell types that may be resistant to a particular
therapy (intra-tumour heterogeneity).

Inter-tumour heterogeneity has been described in 1.5.1, where glioblastoma
can be clustered into at least 3 subtypes according to molecular genetics.
Despite a similar diagnosis based on histology, different tumours may have
different mutations and gene expression patterns; they occur in patients of
different ages, and are located in different regions of the brain (Larjavaara et al.,
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2007; Bozdag et al., 2013). These tumours show differences in their response
to current treatments and some are more aggressive than others (Brennan et
al., 2013).

It has since been discovered that more than one of these molecular subtypes
may be present within one tumour (Sottoriva et al., 2013). It is clear that
although a tumour may display the overall transcriptional pattern of one
particular subtype, there may be therapy resistant subclones present within that
tumour that confer an advantage under such a selection process (Meyer et al.,
2015). Clonal evolution refers to the number (how many subclones), hierarchy
(time) and importance (size of the subclone) of each cellular population within a
tumour that has arisen in response to the environment. For example, when a
tumour has been exposed to chemotherapy or radiotherapy certain cell types
will be killed; this leaves remaining/resistant cell types the chance to expand,
creating a tumour with different populations. This has been shown by the
altered subpopulations of cells in recurrent glioblastoma in relation to the initial

lower grade tumour (Johnson et al., 2014).

1.5.3. Cell of origin.

Heterogeneity studies of glioblastoma raise issues as to the cell of origin and
initial oncogenic events in this disease. Ozawa et al. reported that most non-G-
CIMP gliomas arise from a common proneural precursor (Ozawa et al., 2014).
Gains of chromosome 7 and loss of chromosome 10 were the first events in
glioblastoma, and elevated PDGFRA was an initial driver in non-G-CIMP
glioblastoma. Subsequent loss of NF1 was then sufficient to induce a
mesenchymal gene expression pattern (Ozawa et al., 2014). These alterations
are not sufficient to induce gliomagenesis in all neural stem cell types, and
specifically oligodendrocyte precursors (OPs) have been suggested as the cell
of origin in which gliomagenesis is initiated (Liu et al., 2011a). OPs are the
precursors of both oligodendrocytes and astrocytes (Fig. 1.6) and have the
ability to form astrocytic and oligodendroglial tumours through deletions of
CDKNZ2A (Lindberg et al., 2014). It has also been postulated that somatic
mutations may occur prior to tumour initiation by associating the number of
somatic mutations in a patient’s tumour with their age (Tomasetti & Vogelstein,
2013).
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G-CIMP tumours are a separate group of glioblastomas that arise in younger
individuals, most frequently in the frontal lobe (Sturm et al., 2012). These are
therefore likely to have arisen from a neural precursor population present in this
spatial and temporal context of the brain (Lai et al., 2011). The initial event for
these tumours is most likely the IDH1 mutation followed by p53 mutation,
because the probability for C>T mutations is the highest (Lai et al., 2011). The
particular mutations that are acquired in nature suggest that the p53 mutation
occurs on the coding strand and the IDH1 mutation occurs on the template
strand. IDH1 mutant protein therefore will be expressed immediately, whereas a
round of replication must take place before mutant p53 protein is expressed. In
a cell proliferating slowly this could be a considerable time (Lai et al., 2011).
The IDH1 mutation has been shown to be sufficient, alone, to generate the G-
CIMP signature by measuring changes in the methylome when mutant IDH1 is
introduced into cells (Turcan et al., 2012).
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Figure 1.6. The differentiation pathway involving oligodendrocyte
precursors.

Neural progenitors first become glial-restricted, and these glial restricted cells
have multipotent capacity in that they can differentiate into astrocytes and also
oligodendrocytes. A glial-restricted precursor may differentiate directly into an
astrocyte, or into an oligodendrocyte precursor, which progresses through
various differentiated states before terminally entering the oligodendrocyte
lineage (Letzen et al., 2010). Neural progenitors are defined as cells expressing
the ganglioside epitope A2B5 and the intermediate filament protein nestin. Glial
restricted precursors start to express PDGFRA and OLIG1. OP cells begin to
express O1 (oligodendrocyte marker 1) and O4 (oligodendrocyte marker 4) and
later express O1, GalC and CNPase markers. Mature oligodendrocytes can be
distinguished by their expression of myelin basic protein, which is important for

their function.

1.5.4 Altered pathways.

The first study by the TCGA identified the p53 (>31%), retinoblastoma (44%)
and receptor tyrosine kinase pathways (>83%) as significantly altered in
glioblastoma (Verhaak et al., 2010). The p53 pathway is altered in many
cancers and its role is in responding to stress that can cause infidelity of DNA
replication, disrupting cell division. Stress signals are conveyed to the p53
protein through post-translational modifications, and this elicits a transcriptional
network influencing cell cycle checkpoints leading to senescence and apoptosis
(Harris & Levine, 2005). Loss of functional p53 protein is reported in many
cancers and is associated with the transition of a cell from an epithelial type to a
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mesenchymal type (epithelial-mesenchymal transition; EMT) (Muller et al.,
2011).

The p53 pathway is linked to the second network significantly altered in
glioblastoma; the retinoblastoma pathway, through p14Arf (Bates et al., 1998).
This pathway, discovered from its association with the heritable development of
retinoblastoma (an eye tumour) is altered in almost all cancers and is essential
for initiation of replication (Nevins, 2001). Loss of p53 and Rb, or other
components of the pathway, allows the cell to pass through cell cycle
checkpoints, avoiding apoptosis, resulting in daughter cells with genetic
aberrations.

The third significantly altered network in glioblastoma involves the receptor
tyrosine kinases (RTKs). These are transmembrane proteins that transduce an
external signal into the cell. The N-terminus of these proteins is extracellular,
and acts as a receptor for ligands such as epidermal growth factor (EGF). The
C-terminus has kinase activity; it phosphorylates intracellular substrates to
activate downstream signalling cascades (Hubbard & Till, 2000). These
signalling cascades are only activated when the receptor has a bound ligand,
however in cancer, mutation of these receptors allows them to be constitutively
active, without the requirement of ligand binding (Ballotti et al., 1989). More
recently it has also been shown that proteolytically cleaved TKIs have the ability
to migrate to the nucleus where they can directly exert their effects (Song et al.,
2013a). Altered TKis in cancer are targets for therapies, and the first was
Imatinib (brand name Gleevec) for chronic myeloid leukaemia (CML) (Druker et
al., 1996). This drug binds to the ATP binding site of the constitutively active
TKI formed by the Bcer-Abl fusion blocking its catalytic action. This resulted in a
high patient response rate although subsequent resistance through mutation
quickly became apparent (Mauro & Druker, 2001; Shannon, 2002). Since then a
number of first and second generation RTK inhibitors have been approved for
treatment of various cancers, most of which require detection of alteration of the
TKI they inhibit in the patient’s tumour before administration (Cohen et al.,
2003; Kwak et al., 2010). One such pathway influenced by RTKs that was
highlighted by the TCGA study in 2010 is the phosphoinositide-3-kinase (PI3K)
pathway, which is an important intracellular cell cycle pathway (Verhaak et al.,
2010). It is the class IA PI3Ks that are influenced by RTKs, and these are
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recruited to the membrane and convert phosphatidylinositol-4,5-bisphosphate
(PIP2) to phosphatidylinositol-3,4,5-triphosphate (PIP3) which provides docking
sites for kinases such as AKT (Liu et al., 2009).

The second study by the TCGA shed more light on the significant aberrations in
glioblastoma through sequencing analysis (Brennan et al., 2013). This showed
that, in addition to the pathways identified to be significantly altered in
glioblastoma previously, more than 40% of tumours have a non-synonymous
mutation in a chromatin modifier gene (Brennan et al., 2013). Pathways
involved in the different molecular subtypes were determined showing classical
glioblastoma had a down-regulation of pro-apoptotic proteins, mesenchymal
glioblastoma exhibited an increase in endothelial markers and the MAPK
(mitogen activated protein kinase) pathway, proneural glioblastoma showed
elevation of the PI3K pathway and G-CIMP positive tumours showed similarity
to proneural glioblastoma with an increase in Cox-2, IGFBP2 (Insulin-Like
Growth Factor Binding Protein 2) and Annexin-1 (Brennan et al., 2013).

1.5.5. EGFR alteration and EGFR variant lll.

The RTK EGFR is frequently altered in cancer, through amplification,
rearrangement and mutation (Gan et al., 2009; Li et al., 2014a; Reguart &
Remon, 2015). In glioblastoma, EGFR is altered by all these mechanisms and
amplification of the receptor is observed in approximately 40% of tumours.
Around 50% of tumours with amplified EGFR express a particular
rearrangement involving the extracellular binding domain known as EGFR
variant lll (EGFRuvIII) (Sugawa et al., 1990; Ohgaki & Kleihues, 2013). This
variant has a deletion of exons 2-7 of the EGFR gene resulting in a receptor
that cannot bind to a ligand and therefore remains constitutively active (Gan et
al., 2009). The variant has been shown to be associated with a better prognosis
in glioblastoma, with EGFRvIII negative cell populations in the tumour being
radio- and chemo- resistant (Montano et al., 2011). EGFR amplification itself
however is associated with a poorer prognosis in some patient groups such as
those bearing tumours with gain of chromosome 7, or younger patients treated
with radiotherapy (Bienkowski et al., 2013). In other cancers, EGFR inhibitors
have been highly successful in improving patient outcome, and the high
frequency of EGFR in glioblastoma fuelled evaluation of these inhibitors in this
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disease also (Cohen et al., 2003; Lewis et al., 2012; Reardon et al., 2014b).
Clinical trials in newly diagnosed and recurrent glioblastoma have generally
concluded that first generation EGFR inhibitors offer no improvement in
outcome for glioblastoma patients (Reardon et al., 2014b). These results may
be due to low brain penetration, or mutations in signalling pathways
downstream of EGFR as well as high tumour heterogeneity (Cancer Genome
Atlas Research Network, 2008; de Vries et al., 2012; Sottoriva et al., 2013).
Biomarkers have been identified for these inhibitors, but have been shown to
have no clinical value in the trials to date (Mellinghoff et al., 2005; Verhaak et
al., 2010; Reardon & Wen, 2014). A vaccine for EGFRvIII has also been
developed by Celldex Therapeutics and has been evaluated in various clinical
trials using this in combination with other therapies. Phase |l trials for newly
diagnosed glioblastoma have shown EGFRvIII was eliminated in 67% patients
after three months of therapy and was well tolerated (Del Vecchio & Wong,
2010; Schuster et al., 2015).

1.6. The importance of stem cells in glioma.

Cancer stem cells were first identified in the 1990s in acute myeloid leukaemia.
Glioma also has a stem cell niche (Dick, 1991). Glioma stem cells (GSCs) are
characterised by their self renewing properties and multipotent abilities allowing
them to differentiate into all tissue types and cells that have arisen within a
tumour, through precursor stages (Fuchs & Segre, 2000). GSCs bear
resemblance to normal stem cells, but lack the ability to tightly regulate the
proliferation and differentiation into integrating cell types (Venere et al., 2011).
Stem cells that remain following therapy allow the tumour to regrow and
therefore they are an important group of cells within the tumour.

It was in 2002 that GSCs were first isolated, and shown to grow as clonogenic
spheroids in vitro (Ignatova et al., 2002). These cells were shown to differentiate
into cell types that form the initial tumour and expressed the neural stem cell
surface marker CD133. This marker is often used to isolate these cells from the
tumour of a patient by fluorescence-activated cell sorting (Singh et al., 2003).
CD133 is not a specific marker for GSCs however, as CD133 negative stem
cells have been isolated from glioblastomas. The use of this marker is also

complicated by the fact that some antibodies for CD133 recognise only the
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glycosylated form which generates false negatives (Bidlingmaier et al., 2008).
CD133 negative cells are adherent in their growth pattern whereas CD133
positive cells grow as spheres (Brescia et al., 2012). Combinations of markers
have been proven to be most useful and these may include CD44, CD15,
L1CAM and integrin a6 (Brescia et al., 2012).

Glioma stem cells have been shown to exhibit high aldehyde dehydrogenase
(ALDH) activity, and this has also been exploited for isolation of stem cells of
other cancers (Douville et al., 2009). It has been shown however that this
activity is more apparent in mesenchymal glioma stem cells compared to
proneural stem cells (Mao et al., 2013). Alternatives to the isolation of glioma
stem cells using molecular markers include exploiting the auto-fluorescence
properties and morphology of glioma cells. For example, cells that simply are
able to form neurospheres in the absence of serum represent part of the
population of stem cells, and have been shown to have self-renewal capacity
(Yuan et al., 2004). Also dye retention over cell divisions can be exploited to
identify GSCs, as dye is equally divided between daughter cells at division, the
slower the division the less the dye dilution in the cells (Deleyrolle et al., 2011).
The origin of GSCs has been of considerable debate. One explanation is that
normal neural stem cells transform into glioma. The type of glioma to arise may
be as a result of the environment or type of genetic alterations the cell has
undergone. This is supported by the fact that deletion of p53, NF1 or PTEN in
neural stem cells is sufficient to generate glioma, whereas these aberrations in
non-stem brain cells does not cause this effect (Alcantara Llaguno et al., 2009).
Alternatively, glioma cells may have the ability to reprogram into GSCs under
certain conditions. This is supported by the observation that neonatal cortical
astrocytes can dedifferentiate into neural stem cells by deletion of p16/nk4a and
p19Arf (Bachoo et al., 2002).

Single cell genomic analysis of glioblastomas has shown that a stem-like
compartment of cells does exist within the tumour, but that a continuum exists
from stem cell to differentiated cell within a single tumour (Patel et al., 2014).
Therefore, in vitro models embody extremes of the stemness of a tumour and
the full spectrum of stemness is not represented. The genomic stemness
signature is strongest in single cells isolated from proneural tumours, which is

also supported by the fact that the stem cell signature for proneural GSCs
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includes a number of stem-like markers such as SOX2 and CD133 (Mao et al.,
2013; Patel et al., 2014). Despite tight correlation with a stem cell signature,
proneural tumours with the highest heterogeneity had the worst prognosis,
suggesting that clinical outcomes are dependent upon the level of
heterogeneity, as well as presence of GSCs (Patel et al., 2014). The exposure
of the tumour cell population to TMZ can increase the proportion of GSCs within
a tumour, exhibited by an increase in the stemness markers such as CD133,
SOX2, OCT4 and Nestin (Auffinger et al., 2014). These dynamic levels of GSCs
within the tumour, and possibly their location, contribute to the infiltration and
therapy resistant properties of the tumour therefore allowing evasion of current

treatments.

1.7. Novel chemotherapeutics for glioblastoma.

As previously mentioned, one major hurdle for the treatment of glioblastoma is
the ability to deliver adequate amounts of any chemotherapeutic to the brain.
Drugs that have been successful in other cancers have been trialled in
glioblastoma but haven'’t been effective because of this, or because the tumour
is highly heterogeneous compared to other tumours. This has been shown by
the lack of success of TKiIs in glioblastoma compared to other tumours
(Reardon et al., 2014b). Inter-tumour heterogeneity in glioblastoma also makes
personalised medicine essential, and the biomarkers used to define patient
groups may not have been specific enough.

Targeted immunotherapy with monoclonal antibodies (mAb) for highly
expressed proteins in glioblastoma has been explored. For glioblastoma with
amplified EGFR, the mAb (monoclonal antibody) cetuximab has been shown to
have some success (in recurrent glioblastoma) and the type of EGFR mutation
may be of importance in patient outcome (Hasselbalch et al., 2010; Lv et al.,
2012). AMG 595, which is a mAb for EGFRUVIII conjugated to a cytotoxic
(maytansinoid DM1) is currently under clinical trial and has been shown to
cause disruption and internalisation of microtubules which inhibits the
proliferation of glioblastoma cells (Hegde et al., 2014).

Glioblastomas express high levels of VEGF, which contributes to their
vascularity, and this has prompted studies into the mAb bevacizumab (brand

name Avastin) (Bao et al., 2006). Bevacizumab acts by neutralising the activity
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of VEGFA and prevents its binding to the VEGF receptors on endothelial cells,
which is important for vasculature formation and angiogenesis (Bao et al.,
2006). This drug was approved by the United States Food and Drug
Administration (US, FDA) for recurrent glioblastoma in 2009 after phase Il
studies showed a partial response in at least 19% of patients (Cohen et al.,
2009). Since then, two large phase Il trials evaluated bevacizumab for newly
diagnosed glioblastoma. RTOG 0825 was a trial in Europe and AVAglio a trial in
the US (Gilbert et al., 2014; Chinot et al., 2014). These studies were similar in
many respects, as they included the standard treatment of TMZ and
radiotherapy and evaluated outcome with the same statistical techniques. There
were some differences in the studies however. RTOG 0825 excluded poor
prognosis patients investigated by biopsy whereas AVAglio allowed all patients
who had tumour biopsies to be included. Determination of treatment response
was assessed by enhancing tumour only in RTOG 0825 whereas both
enhancing and non-enhancing tumours were used for determination of
treatment response in AVAglio. Despite these differences, results from the two
trials were similar: there was no overall survival benefit from the drug but
improved PFS (median PFS in the bevacizumab-treated group was 10.6
months compared to median PFS in the placebo group of 6.2 months) (Chinot
et al., 2014; Gilbert et al., 2014).

Mabs have recently been developed to reactivate anti-tumour immunity by
blocking immune checkpoint molecules on T-cells. This has shown some
remarkable responses in melanoma, and is now being applied to glioblastoma
(Cooper et al., 2014; Reardon et al., 2014a). The blockade of the programmed
cell death 1 (PD-1) and its ligand programmed death ligand-1 (PDL1) show
promise in both leukaemia and solid tumours (Topalian et al., 2012). Nivolumab
blocks activation of PD-1 which allows activation of cytotoxic T-lymphocytes
against glioblastoma cells and ipilimumab enhances this cytotoxic T-lymphocyte
activation by binding to CTLA-4 (cytotoxic T-lymphocyte-associated antigen-4)
(Hegde et al., 2014). Patients are now being recruited to test this combination in
recurrent glioblastoma (NCT02017717).
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1.8. The study of glioma cell biology in the laboratory.

Most research in the glioma field starts in the laboratory using in vitro assays.
The types of cells and methods of culture used by different laboratories can
vary. Established human cell lines for high-grade glioma are available from the
American Type Culture Collection (ATCC), and include U251, a pleiomorphic
astrocytoid glioblastoma line, U87, an epithelial glioblastoma line and LN229, a
glioblastoma line from the right frontal parietal-occipital cortex which is epithelial
in morphology (ATCC information, February 2015) (Ponten & Macintyre, 1968).
These cell lines are usually assessed annually by short tandem repeat profiling
against the ATCC profile to ensure their integrity. Established glioblastoma lines
grow as adherent monolayers, in media containing serum and will proliferate
indefinitely if monitored and passaged appropriately.

In addition to these established cell lines, some techniques require study of
cells more representative of the tumour that also reflect inter-tumour
heterogeneity, and therefore primary cell lines are expanded from a patient
sample. These are mostly anchorage-dependent, slow-growing lines that will
grow for a period of time before entering senescence, and the time is based on
nutrient conditions, culture manipulation and the Hayflick limit (Shay & Wright,
2000). The cells from a tumour sample are heterogeneous, and the method of
culture will result in selection for populations within the tumour. Due to this, the
culture conditions are chosen to reflect the types of cells to be studied. Cells
with different anchorage dependencies may be selected for, or cells may be
sorted using fluorescence-activated cell sorting for particular cell markers.
GSCs are often required for culture, and in this instance cells would be selected
for using serum-free media, and those cells with spheroidal growth would be
separated from the adherent cells. The spheroids, which represent anchorage
independent GSCs can then be grown as neurospheres in low adherent flasks,
or as monolayers on laminin-coated flasks. These neurospheres are genetically
more representative of the original tumours than established cell lines (Lee et
al., 2006).

Cultures are usually incubated at 21% oxygen, since this is the level of
atmospheric oxygen, however this does not reflect physiological oxygen levels
which often fall below 3%, and even lower in the hypoxic regions of a growing
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glioblastoma (Evans et al., 2004). It has been shown that stem cells culture
more easily below 7% oxygen (Guo et al., 2013; McCord et al., 2009). This is
not practical however without specialist equipment for manipulation of the

cultures under these conditions.

1.9 MicroRNAs.

MicroRNAs have attracted a huge amount of interest in the cancer field over the
last decade. These short non-coding RNAs play important functional roles in
tumour biology, and show promise as biomarkers for patient stratification and
treatment monitoring. MicroRNAs were first identified in the nematode
Caenorhabditis elegans in 1993 (Lee et al., 1993), and by the early 2000s it
was recognised that microRNAs have a conserved mechanism and broad
functional significance throughout the plant and animal kingdoms. Their function
is mainly to regulate protein translation by binding to complementary sequences
in the 3’ untranslated region (UTR) of target messenger RNAs (mRNAs), which
either blocks translation or causes transcript degradation (Krol et al., 2010). At
present, there are over 2000 mature human microRNAs recorded in miRBase
(August 2013), a searchable annotated database of known microRNA
sequences (Griffiths-Jones et al., 2008; Wang et al., 2011; Jacob et al., 2013).
The first cancer-associated microRNAs, miR-15 and miR-16, located at 13q14.3
which is a frequently deleted region in chronic lymphocytic leukaemia (CLL),
were identified in 2002 (Calin et al., 2002). Subsequent studies have shown that
microRNAs play important roles in all recognised cancer hallmarks, and that
each tumour type has a distinct microRNA signature that distinguishes it from
other cancers and normal tissues. Many cancers can be further sub-classified
based on these signatures. Like other cancer-associated genes, microRNA
expression can be altered by chromosomal amplification/deletion, methylation
and transcription factor activation. Alterations in microRNA processing
pathways and target site binding are also common features of cancer cells.
Recent years have seen the increased use of molecular diagnostic approaches
to refine cancer detection, diagnosis and treatment (Chambers et al., 2012;
Chang et al., 2013; Conde et al., 2013; Cushman-Vokoun et al., 2013).
MicroRNAs offer an additional genetic component that can be exploited to

stratify patients with greater accuracy and may be most useful when integrated
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with gene expression and other clinical factors known to robustly predict
outcome. In fact, they may be more useful than mRNAs as prognostic indicators
due to their stability within clinical samples and their robust expression (Lu et
al., 2005). Additionally, the identification of tumour-derived microRNAs in the
circulation, and the development of robust assays for sensitive and accurate
microRNA detection may allow their use as serum biomarkers. This is an area
of intense study, representing a non-invasive method of detection and diagnosis

of cancer.

1.9.1. MicroRNA processing and mechanism of action.

The biogenesis of microRNAs occurs through a well-characterised conserved
processing mechanism (Fig. 1.7). MicroRNAs are encoded in the genome, and
are often expressed as clusters of two or three microRNA hairpins.

They also may be encoded in unique transcripts or in introns of protein coding
genes. After processing, the mature single stranded microRNAs typically bind to
messenger RNA targets in their 3’'UTRs, and result in either reduced translation
or deadenylation and degradation depending on the degree of base-pairing
complementarity with the so-called “seed” region at the 5’ end of the microRNA
(Filshtein et al., 2012) (Fig. 1.8). Because the microRNA/mRNA binding site is
short (6-8 base pairs), each microRNA has the potential to target multiple
different mMRNAs. It is estimated that collectively microRNAs have roles in
regulating up to two thirds of the human genome (Nana-Sinkam & Croce,

2012). Changes in microRNA expression can result in reprogramming of cellular
functions, where they play roles in fundamental processes such as
development, cellular homeostasis and adaptation to stress. MicroRNA
alterations promote a number of pathological conditions as well as cancer
(Ebert & Sharp, 2012).
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Figure 1.7. MicroRNA biogenesis.

MicroRNAs are transcribed in the nucleus into a primary transcript by RNA
polymerase Il. These structures have intra-molecular base pairing forming
distinct hairpin secondary structures, which are cleaved by Drosha (a type Il
ribonuclease) and DGCRS8 (DiGeorge syndrome critical region 8) in the nucleus
to form a 70-nucleotide precursor microRNA molecule (Krol et al., 2010).

The precursor is then exported to the cytoplasm by exportin-5 (Melo et al.,
2010). Some microRNAs bypass this mechanism, and are produced from very
short introns (mirtrons) by splicing and debranching, an activity known as non-
canonical processing of microRNAs (Krol et al., 2010). Following exportation,
the pre-microRNA is then cleaved by the RNase Il Dicer, in conjunction with
TRBP (transactivation responsive protein) and AGOZ2 (Argonaute 2) in the
cytoplasm, which yields a microRNA/microRNA* duplex. One strand of the
duplex (usually the one with the less stable 5’ end) is then preferentially
incorporated into a microRNA-induced silencing complex (miRISC) whereas the
other strand is usually degraded (Krol et al., 2010).
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Figure 1.8. Seed sequences of microRNAs and their relevance in the
determination of the mRNA fate.

The seed sequence for microRNA binding to the target is between the 2™ to the
8" base pair from the 5’ end of the microRNA. This can bind to any region
within the 3’ UTR (untranslated region) of an mRNA molecule and there can be
multiple seed sequences for a microRNA/microRNAs in one 3’ UTR. Perfect
complementarity of the microRNA and the target leads to deadenylation and
degradation. Imperfect complementarity, which is the most common microRNA-
target interaction in animals, results in translational inhibition (Krol et al., 2010).

1.9.2. MicroRNAs as predictors of prognosis.

A microRNA expression signature in the six most common human cancers
(breast, prostate, lung, stomach, pancreas and thyroid) was identified by Carlo
Croce’s lab in 2006. This study used microarrays on 540 frozen tumour samples
to computationally identify 57 differentially expressed microRNAs in cancer
compared to normal tissue (Volinia et al., 2006). The predicted targets of some
of these microRNAs were subsequently validated in light of the context of the
different tumours. Since then a number of signatures and individual microRNAs
have been associated with prognosis in cancer (Hu et al., 2010; S. Srinivasan
etal., 2011).

Variations in sample preparation and patient groups can lead to differing
conclusions, which is illustrated in attempts to generate signatures in the grade
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IV brain tumour glioblastoma multiforme, which has extensive microRNA and
MRNA expression data available in TCGA (Cancer Genome Atlas Research
Network, 2008). Glioblastoma, as previously mentioned, is a disease where
prognosis is particularly difficult to predict, and therefore microRNA expression
has been used repeatedly to attempt to stratify patients into good and poor
prognosis groups. Of five signatures described in glioblastoma (Lakomy et al.,
2011; Niyazi et al., 2011; Srinivasan et al., 2011; W. Zhang et al., 2012a, Sana
et al., 2014), only miR-31 and miR-195 were identified as a predictors in more
than one signature (two signatures associated both with poorer survival). This
discordance between studies could be attributed to various factors. The Lakomy
and Niyazi studies used formalin-fixed paraffin-embedded (FFPE) samples
whereas the others used frozen tissue, although all studies used an optimised
microRNA extraction protocol and microarrays or qRT-PCR with locked nucleic
acid (LNA) primers for quantification. There were differences in treatment with
patients given standard chemotherapy of temozolomide ranging from 35% to
100% of the cohort. There were also differences in cohort size (35-354 patients)
and geographical origin. These differences highlight some problems in
generating useful microRNA expression signatures for clinical prognosis
assessment. This has been addressed to some degree by the use of
standardised procedures and large sample sizes, as has been attempted by
TCGA. Should a successful signature be generated using correlative data of
this type, although not ideal due to the indirect association with tumour biology,
it would greatly improve the clinical decisions for patient management,

particularly in diseases with wide ranging survival times such as glioblastoma.

1.9.3 MicroRNAs for classification of disease.

Expression of microRNAs can be clustered based on embryonic or
developmental origin (Lu et al., 2005) which makes them ideal for classification
of cancers arising from different cell lineages. For example, leukaemia is a
disorder of hematopoietic stem cells and is currently classified by the WHO
according to the lineage of the progenitor cell. MicroRNA expression across
subtypes appears to reflect this. Garzon et al generated expression signatures
by microarray in acute myeloid leukemia (AML) and associated these with
specific clinically relevant cytogenetic abnormalities in 122 untreated patients.
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These alteration-specific signatures were validated in 60 patients using gRT-
PCR (Garzon et al., 2008). Eight microRNAs were over-expressed and 14
under-expressed in AML with 11923 rearrangements compared to all other AML
samples. In AML with trisomy 8, 42 microRNAs were over-expressed, two of
which, miR-124a and miR-30d, are located on chromosome 8. In addition, miR-
155 was associated with LT3-ITD mutations and miR-181a was decreased in
expression in AML with multi-lineage dysplasia. These subtypes are used
worldwide for AML diagnosis and this study clearly shows that microRNAs can
also be used as delineators of the disease. In CLL, microRNAs were shown to
define currently cytogenetically classified tumours with a normal karyotype,
those exhibiting deletions of 11q, 13q or 17p and those with trisomy 12 (Visone
et al., 2009). Glioblastoma classification using clustered microRNAs based on
the cell of origin has also been performed and shown to successfully stratify this
high grade brain disease into five groups (Kim et al., 2011b). Distinct microRNA
expression patterns have also recently been identified in luminal (epithelial
origin), basal-like (myoepithelial origin) and HER2 (human epidermal growth
factor receptor 2) breast cancers (Farazi et al., 2014). Although the
classification of breast cancer is well-defined compared to some other
malignancies, meta-analysis of recent clinical trials have shown incorrect
classification of a substantial number of tumours in laboratories with high
volume testing (Andorfer et al., 2011) and therefore microRNA analysis may
add robustness to current testing. Similarly, in prostate cancer, microRNA
patterns are distinct between different cellular subsets when stem/progenitor
cells were isolated from prostate tumours indicating microRNA expression
patterns are indicative of the cellular populations in a tumour (Liu et al., 2012).
These results suggest that when classification of the tumour is dependent on
the progenitor cell type, microRNAs are useful in separating these classes. In
further support of this, microRNA expression convincingly classified a set of 22
different tumour types according to tissue of origin in a blind study (Rosenfeld et
al., 2008) and a study of less well-differentiated tumours showed that
microRNAs are better delineators of tumour type than mRNAs (Lu et al., 2005)
Subtypes in other cancers have been identified using the huge body of data at
TCGA (Koboldt et al., 2012; Kloosterhof et al., 2013). These, although not
employed in the clinic as yet, may also be stratified using microRNA expression
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patterns. The identification of microRNAs that target current biomarkers may
pave the way for microRNA-based tests as an alternative to mRNA/protein
expression for prognosis assessment. One such example is the discovery of
miR-155 as a target for the biomarker HGAL in diffuse large B-cell lymphoma
and Hodgkin lymphoma (Dagan et al., 2012). MicroRNAs have also been
shown to play a role in cancer progression and may be useful for the prediction
of metastatic outcomes for patient management (Pencheva & Tavazoie, 2013).

1.9.4. MicroRNAs as predictors of drug efficacy.

With the advent of personalised and precision cancer medicine, drugs are
increasingly administered to subgroups of patients most likely to respond.
MicroRNA signatures can be used, in addition to other predictors, to identify
patients likely to benefit from a drug (Rukov et al., 2013). These signatures
should be established in large patient groups in the context of clinical trials
using quality control criteria (McShane et al., 2013).

Although not yet used in clinical decision-making, several studies have
associated microRNAs with well-known biomarkers for treatment therapy
decisions. For example, chronic myeloid leukaemia (CML) is treated with the
BCR-ABL inhibitor Imatinib. Levels of the BCR-ABL rearrangement, which
characterise this disease, decrease over time with Imatinib treatment. It has
been discovered that miR-451 levels inversely correlate with BCR-ABL levels
(Lopotova et al., 2011) at both the time of diagnosis and upon treatment (Scholl
et al., 2012). Likewise, miR-378 has been shown to predict response to anti-
angiogenic treatments in ovarian cancer (Chan et al., 2014). Prior to these
smaller studies, an in silico approach using the NCI-60 human cancer cell line
panel showed approximately 30 microRNAs correlated with response to
numerous anticancer drugs (Blower et al., 2008) which is evidence that
microRNAs play a part in chemo-resistance and could be important in future
testing for drug eligibility.

SNPs in microRNA target sites may also be predictors of response; the LCS6
polymorphism in the let-7 binding site in the 3’ UTR of KRAS predicted
response to anti-epidermal growth factor receptor (EGFR)-based therapy in 100
metastatic colorectal cancer patients (Sebio et al., 2013). Base excision repair
genes have been associated with treatment resistance, and variations in the
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microRNA binding sites of the 3’ UTRs of these genes have been shown to
reflect colorectal cancer prognosis and treatment response (Pardini et al.,
2013). A notable and interesting example of altered target sites in cancer is the
creation of an illegitimate target site for miR-191 in the 3’ UTR of MDM4 by the
presence of SNP34091, which affects chemosensitivity in ovarian cancer
(Wynendaele et al., 2010). Aside from treatment resistance, it is worth noting
that SNPs in microRNA binding sites increase the risk of developing cancer,
and may be markers for genetic susceptibility studies in some cancers (Ziebarth
et al., 2012).

1.9.5. MicroRNA-based therapeutics and companion diagnostics.

Several studies have focused on the use of microRNAs themselves, or anti-
microRNA constructs, as therapy for cancer. A considerable hurdle for this has
been the delivery of such therapies. Despite the challenges, there are now two
clinical trials for microRNA-based therapeutics in cancer among 55 open
microRNA clinical trials (ClinicalTrials.gov, accessed September 2014). The
most advanced trial involves use of anti-miR-122 (Miravirsen) for hepatitis C
therapy (Janssen et al., 2013) which shows reduction in viral RNA with no
evidence of resistance. Miravirsen is complementary in sequence to miR-122
but also has a modified LNA structure providing resistance to degradation yet
high affinity for its target. The detection of this apparent liver-specific microRNA
may become necessary for patient eligibility for Miravirsen in both hepatitis C
and other liver disease (Qiu & Dai, 2014). More recent studies have shown that,
although the intended target of Miravirsen is mature miR-122, it also has affinity
for pri- and pre-miR-122 and this binding results in reduced processing of the
miR-122 precursor molecules which enhances its treatment effect (Gebert et al.,
2014).

The first microRNA-based therapy in cancer is MRX34: a synthetic miR-34a
mimic loaded in liposomal nanoparticles (Bouchie, 2013). Replacement of this
tumour suppressor microRNA antagonises essential cancer cell processes such
as self- renewal, migratory potential and chemoresistance (Bader, 2012). This
therapy is in phase | clinical trial for primary liver cancer and liver metastases
from other cancers and should complete by the end of 2015. The delivery is
such that the nanoparticles accumulate in liver: the target organ. Quantification
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of MRX34 in non-human primates has established a good half-life and exposure
in whole blood (Kelnar et al., 2014) and the results to date are encouraging.
Systemically delivered miR-34a in preformed lung tumours in mouse models
has also been shown to be effective and well tolerated (Trang et al., 2011).
MicroRNAs may have a potential use in reducing the drug resistance of
tumours as has been shown by the early studies using miR-9* replacement
therapy, which reduces levels of SOX2, subsequently reducing levels of ABC
transporters in glioblastoma (Jeon et al., 2011). High levels of SOX2 were
present in patients less responsive to BCNU in this study and may represent a
subgroup of patients who would benefit from this type of therapy.

The advent of microRNA-based treatments may suggest that microRNA
detection will be a fundamental part of a clinical laboratory pipeline in the future.
Detection of particular microRNAs may be required for the initial eligibility of a
drug, patient monitoring and determination of relapse. As with many targeted
therapies, resistance is often a result of long-term administration of these drugs
(Chong & Janne, 2013) and mutation detection in the sequence of the target
microRNA may require monitoring. Combinatorial microRNA-based therapies
may ensue in an attempt to reduce tumour resistance. With similar effect,
certain anti-miR therapies have the potential to target whole families of
microRNAs, reducing the likelihood of resistance (Obad et al., 2011). The study
of microRNA-based therapies is still in its infancy, and side effects of these
therapies need to be evaluated. MicroRNAs have been shown to be exported
from cells in exosomes (Manterola et al., 2014) and therefore they have the
potential to become systemic; effects from this may only be apparent in clinical
trials. Also, the processing of other microRNAs is likely dampened by
overloading the microRNA processing machinery with replacement microRNAs,
and the effects of this are uncertain (Choudhury et al, 2012b).

1.9.6. Assessment of microRNA alterations in a clinical laboratory.
Sample Preparation and Processing

For accurate measurement of microRNAs in patient samples, fresh or snap-
frozen tissues should ideally be used. Nonetheless, many groups have
successfully profiled microRNAs and classified tumours using archived FFPE
material (Hu et al., 2010; Niyazi et al., 2011; Lu et al., 2012) some of which
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were up to ten years old (Li et al., 2007). This is of value for diagnostic testing
since frequently the only clinical specimen available is in the form of a fixed
paraffin block. In this respect, microRNAs are considered more optimal than
MRNA as they are less prone to degradation during the fixation process (Hall et
al., 2012).

The proportion of microRNA in a sample is approximately 0.01% of total RNA,
but varies widely (Liang et al., 2007). Isolation of microRNAs can be performed
using phenol-based RNA extraction methods, and purified further using
commercially available columns optimised to increase microRNA yield. A
comparison of three extraction methods (phenol/guanidinium (TRIzol,
Invitrogen) followed by isopropanol precipitation, miRNeasy (QIAGEN) and
mirVana (Applied Biosystems) column-based kits) showed that while each
method produced high quality purified RNA, a selective method-dependent loss
of specific microRNAs occurs (Ach et al., 2008). TRIzol extraction led to lower
levels of miR-29b, miR-33, and miR-219, and mirVana preparations showed
consistently increased levels of miR-149, miR-328, miR-574, and miR-766
compared with other methods in the breast cancer and HelLa cells examined.
Although microRNA extraction is generally straightforward, these studies
emphasise the importance of using a consistent method and similar
concentration of input RNA in control and test samples, and also the possibility
of method-dependent pitfalls with certain microRNAs.

Extraction of microRNAs from biological fluids is similar to that from tissues. The
major challenge is obtaining a sufficient amount of microRNA for reliable
quantification. MicroRNA extraction protocols are not optimised for serum
extraction and Li and Kowdley noted that using the QIAGEN miRneasy kit, ratio
of QlAzol to serum should be altered to greater than 7:1 however this amount
cannot be accommodated in a standard 1.5ml eppendorf tube, which may
decrease RNA yield and increase transfer steps (Li & Kowdley, 2012). The
adoption of circulating microRNA assays may require the availability of custom
equipment for use in a diagnostic laboratory, which may include robotics, to
extract from multiple samples at one time. These novel protocols are rapidly
developing.

In blood, circulating microRNAs are often in complexes with proteins including
argonaute RISC catalytic component 2 (AGO2), which protect them from
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degradation (Wang et al., 2010; Vickers et al., 2011). In addition to
microRNA/protein complexes, some microRNAs are protected in cell-derived
vesicles, including exosomes and microvesicles which can be relatively easily
isolated from plasma (Skog et al., 2008). However, circulating microRNAs more
frequently co-localise with AGO2 than vesicles (Arroyo et al., 2011; Fabbri et
al., 2012) thus the choice of an initial blood fractionation method is of
importance.

MicroRNA detection and quantification methods

Quantification of microRNA levels can be performed using quantitative real-time
PCR (gRT-PCR), NGS (next generation sequencing) or hybridisation-based
methods such as microarrays and bead-based technologies (Table 1.1). These
techniques are not without complications, but are relatively straightforward. The
comparative stability of microRNAs in biological samples, and the robustness of
microRNA expression is an advantage for clinical testing, however, short
sequence length and the similarity of related microRNAs have required some
modifications to approaches initially established for mMRNA detection. Until fairly
recently, microRNA analysis has been performed using gqRT-PCR and
microarray-based approaches. Now though, NGS is emerging as a cost-
effective option.

The number of microRNAs under study determines the method chosen for
quantification. Microarray and NGS are global microRNA profiling methods
whereas qRT-PCR has mainly been used for fewer microRNAs. A number of
inventive qRT-PCR protocols have been developed that can sensitively detect
and accurately quantify specific microRNAs (Andreasen et al., 2010). These
methods are technically similar to those involving mRNAs, but use a microRNA-
specific stem loop oligonucleotide primer for reverse transcription to extend the
mature microRNA prior to qRT-PCR. This technique may be adapted for global
profiling using a system with spatial separation of the samples and primer
mixes: a technique known as ‘digital PCR’. The advantages of PCR-based

methods for clinical testing are the quick turnaround time and low cost.
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Technique Amount of Cost and Benefits and limitations
RNA required labour

Microarray 120ng Moderate * Only profiles mature
sequences
» No SNP or editing information
gRT-PCR <500ng for an Low * An array cannot cover the
array whole mirna complement

* More beneficial for smaller
numbers of microRNAs
* Short turnaround time

NGS ~1ug Moderate/high + Can be expensive if not in a
high throughput facility
* Must be batched to be cost
effective
+ Complex bioinformatics
» Laborious preparation
procedures

Table 1.1. Comparison of methods for microRNA quantification. Next
generation sequencing (NGS), qRT-PCR (quantitative real-time PCR) and
microarray technology are employed currently for the quantification of
microRNA. Both microarray and NGS are used for the quantification of the
whole complement of microRNAs. More useful for diagnostics is gRT-PCR,
which can be quickly performed for the set of microRNAs identified in the
signature. Results for gqRT-PCR can be obtained in a 24-hour period, which is
highly beneficial in cases where treatment decisions may be based on the
outcome of the test. In all methods, the percentage of tumour present in the
sample should be estimated and the integrity of the microRNA in the sample
assessed prior to analysis.

Prior to NGS, microarrays were the most widely used method of global
microRNA quantification and several commercial platforms are available (Wang
et al., 2007; Wu et al., 2013). With rapid improvements in sequencing
methodology NGS has become a method of choice for microRNA profiling
(Quail et al., 2008) and provides quantitative analysis of both mature and
precursor microRNAs as well as base pair resolution for SNP and mutation
detection. NGS methods are already employed for DNA-based sequencing
currently in diagnostic laboratories (Morgan et al., 2010; Hayes et al., 2013) and
the use of robotics for library preparation improves efficiency of the pipeline.
The majority of sequencing protocols for microRNAs have been generated for
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the lllumina Genome Analyzer (lllumina Inc.) (Morin et al., 2010; Luo, 2012). A
useful pipeline for microRNA sequencing, including bioinformatics, has been
developed by Tuschl’s group (Farazi et al., 2012; Hafner et al., 2012). NGS
microRNA data correlates well with qRT-PCR (Pradervand et al., 2010),
however discordance has been observed in a small proportion of microRNAs,
probably due to sequence-specific method-dependent issues (Leshkowitz et al.,
2013). Multiplexing using sample barcodes allows sufficient read depth for at
least 16 samples to be sequenced in a single lllumina HiSeq lane and enable
NGS to be a cost-effective microRNA analysis method. Improved indexing
protocols, for example employing combinations of both forward and reverse
barcodes in order to maximise the number of samples on one lane of the flow
cell, has further reduced costs (Tu et al., 2012). If urgent results are required on
a sample-by-sample basis the cost and turnaround time of sequencing is
inappropriate for diagnostics in most facilities at present. Additionally, the
requirement for storage of clinical data for the appropriate time period is also
expensive, as with any NGS service, and may influence the platform of choice
for a diagnostic laboratory or may suggest centralisation of testing is more
appropriate.

For comprehensive analysis of NGS data, the bioinformatics is complex and is a
developing area. The short length and sequence similarity of microRNAs can
make alignment of sequence reads against the genome difficult. To combat
this, many protocols align to a precursor microRNA library prior to aligning to
the mature sequence (Auvinen et al., 2012). Multiple tools and protocols are
available for analysis of microRNA sequencing data (Farazi et al., 2012; Li et
al., 2012) and it is likely that these will be standardised in the near future to be
suitable for a clinical pipeline.

To add to the more conventional tests so far described, a novel workflow which
employs hybridisation techniques reminiscent of microarray, but with improved
high-throughput capacity, is Nanostring® nCounter. This approach uses digital
color-coded barcodes and single-molecule imaging for detection and counting
of multiple transcripts in a single reaction tube. Nanostring nCounter has been
reported to be a high sensitivity assay of easy manipulation with a detection
rate of less than one copy per cell for over 800 regions, using as little as 100ng
total RNA (Geiss et al., 2008) as well as being cost-effective and suitable for
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FFPE samples (Waggott et al., 2012). It has good reproducibility when
compared to other microRNA quantification methods (Kolbert et al., 2013) and
is a suitable platform for measurement of microRNAs in the clinical setting.

Sample normalisation

Comparative expression analysis requires the normalisation of microRNA
expression between samples. This may take the form of comparison to a
‘spiked in’ non-endogenous microRNA of known concentration, a stably
expressed endogenous sequence across samples, or comparison to the total
expression of all microRNAs in the sample. For endogenous normalisers, a
stably-expressed sequence across the particular sample set should be
identified and kits are available to assess this across a number of samples
(Jacob et al., 2013). Transfer RNAs, ribosomal RNAs, small nucleolar RNAs
and small nuclear RNAs have been employed as endogenous controls for
microRNA qRT-PCR. Additionally, “housekeeping” microRNAs have been
proposed as reference controls (Peltier & Latham, 2008; J. Hu et al., 2014) but
are not appropriate if expression differences are caused by alterations in
general microRNA processing. Reference choice for these tests will depend on
the microRNAs to be measured and the samples to be tested. Suitable controls
should be rigorously validated prior to their introduction into clinical microRNA
testing.

Despite the various technical challenges described here, overall the
methodology for microRNA measurements in tumour tissue is now well
established and, with appropriate in-house knowledge, is readily translatable
into the clinical testing arena. The choice of platform will depend upon the
individual requirements of the test, equipment availability and local expertise of
each laboratory.

1.9.7. Target prediction of microRNAs.

As previously mentioned, the seed sequence of a microRNA is usually from the
2" nucleotide from the 5° end of the microRNA. These seed sequences bind to
the 3° UTR of mMRNAs. The binding site can have perfect or imperfect
complementarity and the nature of this complementarity determines the fate of
the mRNA. The binding sequence can be 6 to 8 nucleotides in length and it can
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be present anywhere in the sequence of the 3' UTR (and sometimes in the
coding region (Brummer & Hausser, 2014)). These factors complicate the
prediction of microRNA targets so in addition to sequence matching, prediction
tools often use other parameters to provide a score for how likely the target is.
The best known target prediction site is Targetscan, which scores each
predicted target sequence based on the following: 3’ pairing contribution of the
seed, proximity to residues pairing to microRNA nucleotides 13-16, the local
AU-rich nucleotide composition, proximity to seed sequences for microRNAs
that are co-expressed and therefore cooperate in function, positioning within the
3'UTR at least 15 nucleotides from the stop codon, and positioning away from
the centre of long UTRs (Grimson et al., 2007; Garcia et al., 2011). In addition
to these scores the database provides a Pct score, which is the probability of
preferentially conserved targeting. As selectively maintained seed sequences
are more likely to have a relevant biological function, sites with a high score are
more likely to be effective (Friedman et al., 2009).

Miranda is another database used for predicting target sites (Miranda et al.,
2006). This uses position-specific rules and conservation to predict targets, in a
similar way to Targetscan (John et al., 2004). Another prediction tool, Pictar, is
a database with a slightly different method of predicting target sites, based on
the fact that microRNAs are co-expressed in different cell types to exert their
effects in a coordinated fashion (Krek et al., 2005). The target sites are first
identified by position information, co-expression and alignment and then are
filtered based on their optimal free energy when bound. Each predicted site is
scored by a Hidden Markov Model (HMM) Maximum likelihood fit procedure,
and the score for each individual site is combined into a total score which
provides a ranked list of transcripts (Krek et al., 2005). A more recent target
prediction algorithm is that of DIANA micro-T (Paraskevopoulou et al., 2013).
This predicts target sites in 3' UTRs and coding sequences using machine
learning on a positive and negative set of microRNA target sites, which were
taken from PAR-CLIP (Photoactivatable-Ribonucleoside-Enhanced Crosslinking
and Immunoprecipitation) data from Hafner et al (Hafner et al., 2010). In
addition to these purely bioinformatics prediction tools, TarBase includes
experimental data of target sites including what experiments were conducted to
test the targeting of a microRNA to these sites (Sethupathy et al., 2006;
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Papadopoulos et al., 2009). Experimental methods used for this may include
overexpression or knockdown of the microRNA followed by quantification of the
levels of the target mMRNA and protein. Another method is the use of luciferase
reporter assays, which involve the co-transfection of a plasmid containing the 3’
UTR of the target upstream of a luciferase reporter and the microRNA mimic or
inhibitor (Jin et al., 2013). More high throughput methods use biotin probes to
pull down targets using biotinylated microRNA mimics or immunoprecipitation
with AGO to pull out the cross-linked RNA present within the complexes (Hafner

et al., 2010; Subramanian et al., 2015).

1.9.8. MicroRNAs in cancer; functions, alterations and mechanisms.

The reported global decrease in expression of microRNAs compared to
adjacent normal tissue in many cancer types suggests that altered processing
may play a role in the pathology of some cancers (Lu et al., 2005). A number of
components are involved in the processing of microRNAs and mutations
rendering these less effective will inevitably reduce the overall levels of mature
microRNAs in the cell (Fig. 1.9).
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== Mature microRNA
E Precursor microRNA

NORMAL CELL RESPONSE
* Precursor exported to the cytoplasm
* Dicer cleaves precursor to mature form

CHEMOTHERAPY AND RADIOTHERAPY
Release of microRNA maintaining DNA
damage response

E\E MUTATIONS IN EXPO5
¢ Trapping of microRNA in the nucleus

¢ Predicts better response to treatment

E\ g\ E LOW DICER EXPRESSION

* Less cIeavage of precursor to mature

E )E E ¢ Predicts poor prognosis in CLL

Figure 1.9. Alterations in the microRNA processing machinery in
cancer.

The normal processing of a microRNA requires transcription of a primary
transcript, cleavage, exportation to the cytoplasm, and further cleavage to
generate a mature transcript. If any of the machinery performing these steps is
altered in cancer there is global dys-regulation of microRNAs in the cell. It has
been shown that chemo- and radiotherapy cause an increase in microRNAs in
the cell, which acts to maintain the DNA damage response (Wan et al., 2013).
Mutations in the exportation machinery, such as exportin-5, lead to a build up of
precursor microRNA in the nucleus and a lack of mature microRNAs in the
cytoplasm (Melo et al., 2010), where they usually exert their function. Low
expression of processing components, such as Dicer, can dramatically reduce
the numbers of microRNAs cleaved from precursor to mature form, again

reducing their downstream effects on the cell (Kuang et al., 2013).
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The involvement of microRNA processing in the treatment of cancer is
suggested by the apparent acceleration in nuclear export of pre-microRNA
following radiation- or chemotherapeutic- induced DNA damage (Wan et al.,
2013). Hence, the resulting increase in microRNA processing may maintain the
DNA damage response in the cell. Specific aberrations of the microRNA
processing machinery have been directly associated with various cancers. For
example, in some cancers with microsatellite instability, mutations in Exportin-5
(XPQOS5), which exports pre-microRNA from the nucleus to the cytoplasm (i,
2003), lead to trapping of pre-microRNAs in the nucleus preventing further
microRNA processing and function (Melo et al., 2010). A SNP in XPO5 has
been associated with lung cancer and multiple myeloma, and tumours with this
SNP have a better response to chemotherapy (de Larrea et al., 2012; Ding et
al., 2013). Low expression of Dicer, the RNase that cleaves precursor
microRNAs into their mature form, predicts poorer outcome in CLL and ovarian
cancer (Merritt et al., 2008). Furthermore, Dicer expression is lower in CLL
patients with unfavourable cytogenetic aberrations (Zhu et al., 2012a) which is
consistent with the general assumption that global reduction of mature
microRNAs is associated with poorer outcome (Lu et al., 2005). To add to this,
recognition of primary microRNA hairpins among a background of other hairpin
RNAs is required in order to target them for cleavage and ultimate export.
Bartel's group identified sequence determinants within the primary transcripts
that license the hairpin for processing by allowing binding of certain proteins,
such as SRp20 (Auyeung et al., 2013). Mutations of these regions may also
have an implication in cancer, although there have been no reports of processor
binding site alterations in cancer to date.

MicroRNA editing is another layer of regulation that is altered in some cancer
types. This process is catalysed by ‘adenosine deaminases that act on RNA’
(ADARSs) which convert adenine to inosine (Paul & Bass, 1998). Inosine acts
like guanosine and base-pairs with cytidine therefore inducing changes in target
recognition (Habig et al., 2007). Editing of miR-376* (the passenger strand of
miR-376) has been reported in high-grade glioma and may effect patient
outcome (Choudhury et al, 2012a; Seton-Rogers, 2012). Increasing use of NGS
and the efforts of TCGA in providing large volumes of data will likely highlight

more examples such as this in the future.
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1.9.9. MicroRNA networks in cancer.

The presence of ceRNAs, and multiple sequences in the cell at any given time
that may “compete” for microRNA binding, emphasises the extensive networks
that are involved in microRNA function. The imperfect match and relatively short
6-8 base pair “seed” sequence characteristic of microRNA-mRNA interactions
allow for a multitude of potential targets for each microRNA. Additionally, a
single mMRNA may have target sites for multiple microRNAs, creating redundant
molecular networks for the control of gene expression. Because of the potential
to predict microRNA-binding sites based on base pairing, they are highly
amenable to systems biology approaches. However, many studies have
focused narrowly on the specific effect of a given microRNA upon a specific
mMRNA, defined by bioinformatic prediction algorithms, rather than exploring the
extended network of gene expression (Sumazin et al., 2011). One of the
reasons for the focus on single bioinformatically predicted targets is
experimental tractability, as it is not trivial to identify microRNA targets
experimentally in mammalian cells, and many important interactions have been
identified using this method. However, the microRNA/single mRNA target
approach is limited and may not accurately reflect the most physiologically
significant microRNA/target interactions. This can be overcome by screening
multiple targets, or using global approaches to identify microRNA/target
interactions inside the cell. These include proteomics, gene expression arrays
and RNA cross-linking/AgoZ2 pull-down approaches such as HITS-CLIP, to allow
assessment of microRNA-target binding in the cell (Chi et al., 2009; Boudreau
et al., 2014; Hu et al., 2013). Future studies in the field would benefit from the
application of these techniques as well as assessment of microRNA functions in
the context of networks, including sponge interactions and feedback loops
which take into account the competitive nature of interactions between
microRNAs and their targets.

The influence of groups of microRNAs is exemplified by microRNAs in clusters,
which are expressed together and show functional cooperation. For example,
the polycistronic oncogenic miR-17~92 cluster of microRNAs specifically induce
lymphomagenesis in a B-cell-specific transgenic mouse model (Sandhu et al.,
2013) and miR-19b, miR-20a and miR-92 from this cluster along with miR-26a
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and miR-223, promote T-cell acute lymphocytic leukaemia development in
mouse models (Mavrakis et al., 2011).

Inter-cellular network interactions should also be addressed in the context of
microRNAs as shown by the symmetry of cell division in colorectal cancer
(CRC). In late-stage CRC and CRC stem cells, divisions are symmetric
producing two self-renewing daughter cells. In early-stage CRC, cell fate
determinants are localised to opposite poles during division resulting in one
self- renewing and one differentiating daughter cell (asymmetric cell division).
This has been shown to be controlled by a Snail/mir-146a/Numb/B-catenin axis
(Lerner & Petritsch, 2014). This proposes that miR-146a, induced through Snail
dependent B-catenin and TCF (T-cell factor), down-regulates Numb, relieving
Numb-mediated degradation of B-catenin and subsequently enhancing WNT
(wingless-type MMTYV integration site) signalling (Hwang et al., 2014). This
effect maintains self-renewing divisions, partly independent of the EMT.

As part of their role in shaping the fate of a cell, microRNAs are fundamental in
the control of EMT. Some microRNAs, such as the miR-200 family and miR-
34a, are protectors of the epithelial phenotype, and their down-regulation during
EMT enhances mesenchymal specifying targets such as ZEB1 and ZEB2 (Hao
et al., 2014). The miR-34a family can also be inhibited by ZEB1 (Kim et al.,
2011a), establishing a robust feedback loop to ensure the cell is driven towards
a more mesenchymal fate. Oncogenic microRNA miR-22 has been shown to
inhibit anti-metastatic miR-200 in breast cancer by targeting the TET family of
methylcytosine dioxygenases, which results in silencing of miR-200 (Song et
al., 2013b). Positive correlation of miR-138 and EMT has uncovered its role in
driving the process through multiple targets including Vimentin, transcriptional
repressors such as ZEB2 and epigenetic regulators such as EZH2 (Liu et al.,
2011b). Similarly, miR-155 has been shown to repress TGF-B-induced EMT
and depletion of this microRNA can suppress EMT in a mouse model (Kong et
al., 2008).

The study of microRNAs under stress conditions has uncovered some important
findings including the EGFR-mediated phosphorylation of AGOZ2 in response to
hypoxia in breast cancer, resulting in suppression of specific microRNAs that
depend on AGO2 for their maturation (Shen et al., 2014). This is of huge
importance in cancers where EGFR is constitutively active. Understanding of
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microRNA regulatory networks has underlined the importance of microRNA
control over tumour cell biology, and has highlighted novel therapeutic targets
and processes involved in tumour growth. One such example of this is the
recent discovery that miR-542-3p weakens the interaction of p53 with its
negative regulator MDM2, thus stabilising the protein (Wang et al., 2014c).

1.9.10. MicroRNAs as serum biomarkers.

The use of circulating microRNAs as markers in different cancer types is a
rapidly developing area (Schwarzenbach et al., 2014). Tumour cells can release
microRNAs, stabilised by their incorporation into microvesicles, which have
shown stability in the circulation following multiple freeze-thaw cycles and
prolonged exposure to room temperature (Mitchell et al., 2008). A study of 391
patients with non-small cell lung cancer (NSCLC) identified 35 highly expressed
microRNAs with predicted binding sites for at least one of 11 genes of the TGF-
B pathway, which were significantly differentially expressed at the extremes of
survival. Of these, 17 were associated with patient survival and were combined
into a risk score significantly predicting survival in advanced NSCLC (Wang et
al., 2013). Also, isolation of exosomes from serum showed a signature involving
two microRNAs and one small non-coding RNA can be used for non-invasive
diagnosis of glioblastoma (Manterola et al., 2014).

The detection of microRNAs in the blood presents some challenges and there is
overwhelming discordance between reports in well-studied cancers (Jarry et al.,
2014). Appropriate endogenous controls for microRNA quantification in serum
are under debate as many mRNA and rRNA species are absent in blood due to
circulating RNases (Li & Kowdley, 2012). Clinically, fluctuations of circulating
microRNAs can occur as a result of treatment, diet and other factors, increasing
noise in these assays. The presence of myeloid and lymphoid cells can alter the
levels of certain microRNAs and viral infections of the patient may also effect
endogenous microRNA expression (Pritchard et al., 2012). Expression changes
of microRNAs are rapid in blood and even a traumatic venepuncture may have
the potential to influence this. Despite these hurdles, it is clear that further study
is warranted for detection of the presence of microRNAs in the blood for future
non-invasive biomarker development and the field is moving rapidly towards

that goal.
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1.9.11. MicroRNA polymorphisms predisposing cancer.

Aside from treatment resistance, it is worth noting that a number of SNPs in
microRNA binding sites are involved in cancer risk, and may be markers for
genetic susceptibility studies in some cancers (Ziebarth et al., 2012). They can
be used as markers to predict subsets of patients at risk of poor outcome or
lack of treatment response. These SNPs may be present in microRNA target
sites, in the processing machinery or of the microRNA sequence themselves,
altering their targets and ability to be processed (Ding et al., 2013; Wu et al.,
2011; Chin et al., 2008).

1.9.12. MicroRNAs in glioblastoma.

MicroRNAs have oncogenic, tumour-suppressive, ECM (extracellular matrix) -
responsive and treatment-related roles in glioblastoma (Godlewski et al., 2010b;
Yin et al., 2012; Munoz et al., 2014; Kim et al., 2014). Their expression levels
can be exploited to classify glioblastoma according to WHO classifications and
by prognosis (Srinivasan et al., 2011; Sana et al., 2014; Rivera-Diaz et al.,
2015). New molecular classifications have also been generated by clustering
microRNA expression and have been shown to delineate glioblastoma into 5
groups with expression patterns reminiscent of different neural cell precursors
(Kim et al., 2011b).

One of the most studied microRNAs in cancer is miR-21, and this microRNA
has been shown to have an important role in regulating apoptosis in
glioblastoma (Quintavalle et al., 2012a). MicroRNA-21 is highly expressed in
glioblastoma, and reduces apoptosis in cells through targeting of p53 and
FASLG (Papagiannakopoulos et al., 2008; Shang et al., 2015). Through this
role, its presence in glioblastoma cells confers drug resistance and therefore
oligonucleotide inhibitors of miR-21 have been explored to reduce the effect
(Giunti et al., 2015). Additionally, miR-21 has been shown to increase
glioblastoma migration by repressing matrix metalloprotease inhibitors (Gabriely
et al., 2008).

MicroRNAs have a prominent role in EGFR signalling, and this has been
studied extensively in glioblastoma (Wang et al., 2011a; Serna et al., 2014;
Wang et al., 2014b). A tumour suppressor microRNA, miR-34a, is decreased in

glioblastoma, and this, in combination with amplified EGFR confers a poor
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outcome in glioblastoma patients (Yin et al., 2013). When miR-34a was
overexpressed in glioblastoma cells, EGFR protein expression decreased and
this was shown to be mediated through Yin Yang-1 (YY1) (Yin et al., 2013).
Additionally, miR-9 is suppressed by EGFRuvIIl through the Ras/PI3K/AKT
pathway in glioblastoma conferring a growth advantage (Gomez et al., 2014).
The oncomiR miR-148a has also been shown to have a role in regulating EGFR
and apoptosis in glioblastoma through its targeting of MIG6 and BIM (Kim et al.,
2014).

As previously mentioned, microRNAs have prominent roles in development,
and their levels fluctuate throughout differentiation (Letzen et al., 2010). They
have been shown to have a strong regulation influence over the Notch and
WNT pathways in glioblastoma (Chen et al., 2012b; Zoni et al., 2014, Liu et al.,
2014). Glioblastoma stem cells have been shown to have a dependence on the
TGF-B signalling pathways and NF-kB, and these are also regulated through
microRNA mediated mechanisms involving miR-9, miR-34a and miR10b
(Bazzoni et al., 2009; Genovese et al., 2012; Lin et al., 2012). Stem cell function
is maintained by the polycomb repressor complexes and components of these
complexes, for example BMI-1 (B Lymphoma Mo-MLYV Insertion Region 1) and
EZH2, which are regulated by miR-128 and miR-101 respectively (Smits et al.,
2010, Peruzzi et al., 2013;).

The effects of expression of a microRNA are relatively fast, and these
expression levels can be altered very quickly. Some microRNAs have a half-life
of just 30 minutes, such as miR-9 (Sethi & Lukiw, 2009). This makes them
excellent candidates for mediators of signalling pathways in response to
environmental stimulators. In a disease such as glioblastoma, which has
extreme environments; microRNAs have been shown to regulate cellular
response. For example, low glucose availability reduces the expression of miR-
451, which suppresses proliferation and stimulates migration through CAB39
(Calcium Binding Protein 39) (Godlewski et al., 2010a). This contributes to the
‘go or grow’ behaviour of glioma cells; where cells upregulate one or the other
in response to external stimulatory factors (Godlewski et al., 2010a). Similarly,
microRNAs have been shown to stimulate cellular response in the presence of
hypoxia. A well known hypoxia responsive microRNA is miR-210, and

knockdown of this in hypoxic glioblastoma stem cells caused cell cycle arrest,
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decreased neurosphere formation and stem cell marker expression (Yang et al.,
2014). This microRNA may therefore be a potential candidate for targeting
GSCs in the hypoxic niche of glioblastomas. Another mechanism demonstrating
hypoxic response is the blocking of the effects of tumour suppressive microRNA
miR-297 when cells are grown in hypoxia, conferring survival advantage to
glioblastoma cells in this environment (Kefas et al., 2013). On a global level,
and previously mentioned but notable in this context, it has also been shown
that EGFR has the ability to modulate the maturation of a microRNA in hypoxia
by its phosphorylation of AGO, a component of the RISC complex which serves
to reduce the overall levels of mature microRNAs in the cell (Shen et al., 2014).
MicroRNAs have also been explored as potential therapeutics for glioblastoma.
This is a complicated field because RNA-based therapies require delivery
strategies to provide adequate dosage to the tumour site. In glioblastoma this is
difficult due to the BBB. It has been shown that mesenchymal stem cells can
deliver miR-145 and miR-124 to glioma cells when administered intracranially
and systemic administration of miR-7 using novel integrin-targeted
biodegradable polymeric nanoparticles in mice with human glioblastoma
xenografts has also been successful in inhibiting angiogenesis and growth (Lee
et al., 2013; Babae et al., 2014). MicroRNA screens have become
commonplace for identifying microRNAs associated with a particular function,
and one such screen has shown that four microRNAs; miR-1, miR-125a, miR-
150 and miR-425, induce resistance to radiotherapy. These all showed
correlation with TGF-f3 expression and miR-1 and miR-125 were shown to be
regulated by this pathway directly (Moskwa et al., 2014). Furthermore, miR-
125b has been shown to provide resistance to TMZ through PIAS3 (Protein
Inhibitor Of Activated STAT, 3), BAK1 (BCL2-Antagonist/Killer 1), TNFAIP3
(Tumour Necrosis Factor, Alpha-Induced Protein 3) and NKIRAS2 (NF-kB
Inhibitor Interacting Ras-Like 2) in glioblastoma (Shi et al., 2012; Shi et al.,
2014a; Chen et al., 2014; Haemmig et al., 2014). Three of these targets are
implicated in NF-kB signalling, which is required for sensitivity to TMZ (Liu et al.,
2012; Wagner et al., 2013; Haemmig et al., 2014). Similarly, miR-9, which
directly targets NF-kB 1, has TMZ-resistance properties (Bazzoni et al., 2009;
Lee et al., 2013).
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The most advanced translational study for microRNAs in glioblastoma is an
evaluation of miR-10b in gliomas as a whole (Clinical trials identifier
NCT01849952). This microRNA has previously been shown to be higher in
expression in glioblastomas compared to normal brain tissue, and is involved in
cell migration and invasion (Guessous et al., 2013). The trial is currently
recruiting and the investigation includes the in vitro assessment of primary

tumours to anti-miR-10b treatment.

1.10. Survival analysis.

Survival analysis is a type of statistical investigation that determines the
probability of a patient surviving up to a certain point in time. This is measured
using the hazard function which computes the number of patients who died
during a time interval divided by the number of patients alive at the beginning of
the interval weighted by the length of the time interval. Time to the event can be
measured in days, weeks or years, whichever is most appropriate for the time to
event data. In many cases time to death data is incomplete, as some patients
may still be alive after the study ends, and other patients may have dropped out
of the study. In these cases the observations are censored, to represent the
missing data. This includes right censoring, where the individual did not
encounter the event during the study period, left censoring (which is not
appropriate for overall survival data) where the patient joined the study after the
event occurred, and interval censoring, when the event occurred at some time
during the study in between two measurements. The most common type of
censoring for survival analysis in time to death date is right censoring (Altman &
Bland, 1998).

Models used to analyse the survival time of a set of predictor variables include
both parametric and non-parametric methodologies (Cantor & Shuster, 1992).
Parametric methodology assumes that the survival data has an underlying
distribution similar to the known probability distributions, which include
exponential, Weibull and lognormal distributions. These models make
inferences about the parameters of the distribution and they assume a
homogeneous variance of the data. Non-parametric approaches have no
assumed distribution and they include the Kaplan-Meier and log-rank test. The

Kaplan-Meier method estimates survival probability as a function of time, and is
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often interpreted in the form of a graph. Where data are censored this can be
represented on the graph as a vertical line at that timepoint, indicating further
information from this patient has not been collected. The Kaplan-Meier method
is @ maximum likelihood estimate of the probability that a person will have a
lifetime that exceeds the time of the event and takes the following form for the
event time t; and the number of deaths d;:

n; — di
St)= [l ——

ti<t n;

This is therefore the product of the fraction of survivors at time t;. If there is no
censoring, then n; is simply the number of survivors just before time t;. If there is
right censoring, n; is the number of survivors minus the number of losses
(Cantor & Shuster, 1992). This means that at the time of the event it is only the
number patients still alive that are at risk of death. This is calculated at each
time point that an event occurs.

To test the survival distributions of two or more groups, the log-rank test can be
used which compares the Kaplan-Meier curve for each group. This tests the null
hypothesis that there are no differences between two or more populations if
there is an event (i.e. a death) at any time point. Log-rank calculates
probabilities as in the Kaplan-Meier method, and then determines the total
numbers of expected deaths and the number of observed deaths in each group.
From this, a )(2 test can be performed to test the null hypothesis, which is
(observed-expected)*/expected, producing a significance result (Altman &
Bland, 1998).

In certain cases it may be necessary to determine what multiplicative effect an
increase in a covariate has on the hazard rate. The Cox proportional hazards
model is a semi-parametric model designed to test this (Cox, 1972). This model
assesses the proportional change a covariate has on the baseline survival
curve. The baseline hazard curve is the curve when all the coefficients are
equal to zero. The hazard ratio is the hazard divided by the baseline hazard.
This is also the exponent of the coefficient. For example a hazard ratio of two
represents a population that has twice the risk of dying compared to the other,
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or with a continuous variable represents a 2x increase in risk per unit of the
variable.

In some cases it may be necessary to assess a large number of predictors, to
determine which may be prognostic. LASSO (least absolute shrinkage and
selection operator) has the ability to select variables, based on their prognostic
ability, taking into consideration other variables in the model (Tibshirani, 1996).
This estimator involves penalisation of the regression coefficients, which results
in a number of covariates with coefficients shrunk to zero. LASSO mimimises
the following (where y is a dependent variable, x is a independent variable, 3 is
an unknown parameter and A is a tuning parameter controlling the amount of

shrinkage):

1 B p
52 Wi =X B2+ 216,
i j=1

This estimator uses regular least squares (the part of the equation to the left of
the + sign), with a penalty that is determined by A (the second part of the
equation to the right of the + sign). Least squares works by starting with all
coefficients at zero, then finding the predictor most correlated with Y and
increasing the coefficient of the predictor in the direction of the correlation. This
happens until another predictor has an equal correlation, then the coefficient for
that predictor is increased in the direction of the least squares. This is continued
until all the predictors are included in the model.

The absolute values of the coefficients are used in the penalty function, which
results in some coefficients being shrunk all the way to zero. This is in contrast
to ridge regression, which penalises on the squares of the values, and therefore
all covariates have a non-zero coefficient (Fig. 1.10). This therefore performs a
model selection and predictors do not have to be chosen as they would from
ridge regression.
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Figure 1.10. The probability distribution of a parameter, 8, when
penalised using ridge and LASSO.

Using Bayesian probability, penalisation performed by ridge, which uses the
squares of the coefficients in the penalty function, produces a smooth
probability distribution, which never reaches zero. This means that as the
penalty increases, all of the coefficients shrink, but remain non-zero.
Penalisation using LASSO however, uses absolute values for the coefficients in
the penalty function, and produces a ‘pointy’ probability distribution, which
results in some coefficients being shrunk to exactly 0. This has the effect that,

as the penalty increases, more coefficients are shrunk to exactly zero.

The tuning parameter, A, which is required for the penalisation is obviously
important and the optimal A can be determined using likelihood cross validation.
Cross validation involves separation of the data and generating and validating
the model on different subsets, to avoid overfitting of the model. This is
performed multiple times with different A values over many different subsets and
the results are averaged over the rounds to reduce variability. The A with the
lowest cross-validated likelihood is then used in the LASSO estimator (Goeman,
2010).



70

1.11. Publically available data.

The Cancer Genome Atlas (TCGA) is a large program to integrate
comprehensive data for multiple cancer types, including gene expression,
methylation, copy number and microRNA expression for public use. The first
disease to be studied by the TCGA was glioblastoma (Cancer Genome Atlas
Research Network, 2008). Glioblastoma data includes over 500 surgically
resected pathologically identified glioblastoma samples with information on
copy number, methylation, gene expression and microRNA expression. The
data was initially based on microarray microRNA and mRNA expression
measurements but now sequencing data is also available including RNA-seq
and exome-seq. This dataset was extensively analysed in 2013 for glioblastoma
(Brennan et al., 2013). In addition to the glioblastoma data, there are also over
500 samples for lower grade glioma (grade Il and grade Ill) with exome, SNP
methylation, mMRNA and microRNA data available, although data is not
complete for every platform. Comprehensive clinical data and sample handling
is also provided which makes these datasets extremely powerful, not only for
generating hypotheses but also validating wet-lab findings in patient samples.

1.12. The aims and objectives of this thesis.

In many cancers, personalised medicine, or the ‘right drug for the right patient,
at the right time’, has shaped patient management over the past five to ten
years. In glioblastoma, although molecular classifications have been created,
they have never reached the clinic and the only markers used for patient
treatment are MGMT promoter methylation and /DH mutation. The primary aim
of this thesis is to improve this situation, providing molecular biomarkers using
microRNAs, which are highly appropriate for clinical assessment.

My background is as a Clinical Scientist in the National Health Service and |
have seen how service has changed with the era of personalised medicine and
learned how best to implement these tests for patient management. The
microRNA signatures generated here have been designed in such a way as to
allow easy translation to a clinical laboratory.

MicroRNA signatures for prognosis prediction in glioblastoma have previously
been generated (Lakomy et al., 2011; Niyazi et al., 2011; Srinivasan et al.,
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2011; Zhang et al., 2012a, Sana et al., 2014) but the microRNAs used are
different between signatures. In order to confirm the role of the microRNAs used
in the signatures generated here, every effort has been made to validate the
role of these microRNAs in glioma biology.

In summary, the work in this thesis can be described as:

1. Generation of a signature that predicts prognosis in glioblastoma and
prediction of the pathways targeted by the microRNAs included in the signature.
2. Assessment of all prognostic microRNAs in malignant glioma and
prediction and validation of the pathways targeted by these microRNAs.

3. Analysis of a prognostic microRNA in glioma, miR-9, and an attempt to
resolve why a phenotypically oncogenic microRNA appears to be expressed at
higher levels in patients with a better outcome.

4. Generation of a signature for prediction of response to the anti-
angiogenic drug bevacizumab and assessment of the signature using cell line
drug sensitivity data.

This work attempts to validate the hypotheses generated using the huge
volumes of data in the TCGA using further patient subsets and experimental
data.
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2. A 9-microRNA signature predicts prognosis in glioblastoma

‘Science predicts that many different kinds of universe will be spontaneously
created out of nothing. It is a matter of chance that we are in.’ Stephen Hawking,
May 2011.

2.1. Introduction.

In many cancers, a wealth of molecular markers are available for use in
diagnosis and patient management (Marchio et al., 2015; Reguart & Remon,
2015). Unfortunately, the development efforts in personalised medicine for
glioblastoma have been less successful, and there are few molecular indicators
and companion diagnostics for patient management. As previously mentioned,
the prognosis of patients with glioblastoma can range from a few weeks to a
number of years (Bleeker et al., 2012) and the best marker to predict this is
MGMT promoter methylation (Fig. 2.1), (Hegi et al., 2005). However, this
marker is only of use in patients treated with temozolomide (Riemenschneider
et al., 2010). The IDH mutation also predicts a good prognosis, although the
majority of these patients have progressed from lower grade disease which
would already be an indicator of good prognosis (Riemenschneider et al.,
2010). Determination of patients with particularly aggressive tumours is
paramount to patient management to allow more extensive post-treatment
surveillance and possible targeting for more aggressive drugs. Therefore,
appropriate molecular markers predicting prognosis in glioblastoma is an unmet
need.

MicroRNAs represent an attractive tool for stratifying patients into prognostic
categories because of their stability in clinical samples and their ease of
quantification compared to mRNAs (Hall et al., 2012). Directly associated
markers, such as EGFR mutations predicting response to an EGFR inhibitor,
are the most ideal companion diagnostics when assessing which treatment
regime is best for a patient. In the absence of these however, microRNAs
discovered using correlation analysis can be exploited to provide information on
a patient’s tumour that otherwise would not be available. As a result, there have
been multiple attempts to create signatures using microRNAs in different

cancers for a variety of applications (Calin & Croce, 2006; Yu et al., 2008;
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Garzon et al., 2008; Gokhale et al., 2010; Visone et al., 2009; Diaz-Martin et al.,
2014). To date though, there are no microRNA signatures in clinical use.
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Figure 2.1. MGMT promoter methylation predicts a better prognosis in
glioblastoma.

MGMT promoter methylation is currently the only marker that predicts response
to treatment for the disease. Image from Hegi et al., 2005 (Hegi et al., 2005).

MicroRNA expression signatures can define tumour types and molecular
subgroups (Kim et al., 2011b). It is also possible to cluster the expression of
microRNAs into groups based on their embryonic origin (Lu et al., 2005). For
this reason, microRNA expression can be used to identify cancers arising from
different cell lineages. The discovery of microRNAs as predictors of prognosis
became apparent as early as 2004, when let-7 was shown to predict post-
operative survival in lung cancer (Takamizawa et al., 2004). Several individual
microRNAs have been associated with glioblastoma prognosis (Mizoguchi et
al., 2012), but it is likely that multiple microRNAs will provide a more statistically
robust approach. Previous prognostic signatures for glioblastoma have been
designed (Lakomy et al., 2011; Srinivasan et al., 2011; Zhang et al., 20123;
Sana et al., 2014), although the microRNAs employed are not consistent
between studies (Fig. 2.2). Potential reasons for this, as already stated, are due



74

to the different sample sizes, population differences in microRNA expression,
sample types and diverse extraction and quantification methods.

miR-20a miR106a miR-17-5p miR-31
miR-222 miR-148a miR221 miR-146b miR-200b
miR-193a

Srinivasan et al. n=364, American population
TMZ treated proportion not stated, frozen

miR-409-3p miR-539

miR-1282 miR-3163 miR-555
miR-3132 miR-487b, miR-1305,
mir-129-3p miR-210 miR-1286
miR-3065-3p miR-29b miR-374b
let-71, let-7i, miR-595, let-7a,
miR-30b, miR-124, miR-1260,
miR-4286 miR-720
Niyazi et al, n=35, German
population, 74% treated with
TMZ, FFPE

miR181d
miR-518b miR-524-5p
miR-566 miR-1227

Zhang et al. n=36, Chinese
population, 36% treated
with TMZ, frozen samples

miR-196b miR-181¢ miR-21

Lakomy et al, n=38, Czech
population, 100% treated with
TMZ, FFPE

Figure 2.2. Four prognostic microRNA signatures developed for
glioblastoma.

There is little concordance in the microRNAs used in the signatures. This may
be due to a number of study design differences including sample type and size
(Lakomy et al., 2011; Niyazi et al., 2011, Srinivasan et al., 2011; Zhang et al.,
2012a).

In the study described here | used a novel methodology, known as LASSO
(least absolute shrinkage and selection operator (Tibshirani, 1996)), with
glioblastoma data from The Cancer Genome Atlas (TCGA, NIH), to identify a 9-
microRNA prognostic signature. The 9 microRNAs were then used to generate
a risk score algorithm suitable for clinical prognostic stratification. The signature
separated patients according to outcome, was relevant in patients treated with
temozolomide and was validated in an independent dataset. Although other
microRNA prognostic signatures have been identified in glioblastoma, this is the
first to use the whole TCGA dataset; it is relevant across molecular subtypes of
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glioblastoma, and is the first to be validated in an independent dataset from a
different geographical population. Moreover, the signature microRNAs have
been previously implicated in glioblastoma biology, with known functional roles,
further supporting the relevance of the signature. Thus | have identified a
functionally relevant, robust microRNA-based prognostic signature in
glioblastoma.

2.2. Methods.

2.2.1. TCGA clinical information and expression data.

Level 2 Agilent microRNA 8x15k microarray and G4520A microarray gene
expression data plus clinical information for 475 glioblastoma and 10
unmatched non-tumour samples were downloaded from TCGA (TCGA, NIH)
(accessed October 2012). | chose to use level 2 data, which provides quantile
normalised expression data for each probe. This was to aid translation of the
signature into a clinical setting, as an exact oligonucleotide sequence can be
used as a prognostic tool, rather than the expression of a microRNA, which may
have multiple isoforms. Only patients treated with radiotherapy and some form
of chemotherapy were selected as the aim in creation of a prognostic signature
is to benefit patient management, which most likely will include treatment in
some form (Table 2.1). lllumina HiSeq sequencing data (level 3, reads per
million of total reads mapping to a mature microRNA) for microRNAs were
downloaded for all samples with grade Il or Ill glioma from TCGA (n=178; 55
astrocytoma, 47 oligoastrocytoma, 75 oligodendroglioma, 1 not stated; 95 grade
Il, 112 grade lll, 1 not stated).
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Characteristic Number of patients (n=475)
Age (median=59)

<60 years 248
=60 years 227
Gender

Male 293
Female 182
Karnofsky Performance Status

<70 141
>70 220
Not available 114
Days to death/ last follow-up (median 430 days)
<450 days 301
=450 days 174
<30 days 20
Therapy

T™MZ 3
TMZ and

radiation 187
Other 285

Table 2.1. Characteristics of patients used in the generation of the
signature.

The characteristics of the 475 patients included in the generation and testing of
the model are shown in the table. There are more males in the study (62%),
which is expected for a glioblastoma cohort. KPS (Karnofsky performance
status) was calculated prior to surgery and at least 30% had what is considered
to be a low KPS (<70). There were 26 IDH mutations recorded in this cohort

although 117 did not have IDH mutation information.
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475 glioblastoma
samples (TCGA data)

1540 probes for
microRNAs on
microarray

Cross validated determination of a
penalisation parameter
OptL1 function (Penalized package)
Leave one out cross validation
Lambda2 parameter = 0, Cox model used

¥

LASSO regression
* Performed with all probes and samples
* Lambdal= value from cross validation
OptL1 (above)
* All microRNAs were penalised
* Cox model used with an infinite number
of iterations

Figure 2.3. Workflow for generation of the prediction algorithm

The prediction algorithm was generated using the Penalized package in R
(Goeman, 2010). Firstly an appropriate penalization parameter was determined
using the OptL1 function and then LASSO regression was performed using the

Penalized function.

2.2.2, Statistical analysis of microRNA expression data in glioblastoma.
Glioblastoma samples were assessed using a LASSO penalised regression
analysis (see explanation on page 68) to predict survival using microRNA
expression (Tibshirani, 1996) with leave-one-out cross-validation using R
software (v2.15.1) and the Penalized package (Goeman, 2010) (Figure 2.3). A
risk score was generated using the sum of microRNA expression values
weighted by the coefficients from the LASSO regression, as described in
Alencar et al (Alencar et al., 2011).
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This was: E_miR-n = expression of microRNA n.

Risk score = -0.044E_miR-370 + 0.062E_miR-124a + -0.066E_miR-145 +
0.005E_miR-34a + 0.015E_miR-10b + 0.092E_miR-148a + 0.162E_miR-222 +
-0.032E_miR-9 + -0.021E_miR-182

The risk score was applied to all glioblastoma samples in the dataset and the
samples separated into low- and high-risk groups using the median as a cut-off.
The median was used as a cut-off here for demonstration, but the cut-off may
be defined based on treatment availability if introduced as a clinical test. A Cox
regression model incorporating age and the log-rank test were used to assess
overall survival (OS) of the two groups in the whole dataset, the molecular
subtypes of glioblastoma (defined using published classification information
from Brennan et al (Brennan et al., 2013)) and temozolomide treated patients
(obtained from TCGA clinical data). The score was also assessed as a predictor
for progression-free survival (PFS). A statistical significance threshold of p=0.05
was used throughout. Pearson’s correlation coefficient was calculated for
correlation of age with risk score. Pearson’s correlation was chosen (as
opposed to Spearman’s correlation) because it assesses for a linear
relationship, which is what would be expected from the relationship between
age and a factor such as risk score. Multivariable Cox regression models were
used for the risk groups and each of the following factors (separately); MGMT
promoter methylation, gender, IDH mutation, subtypes, extent of resection and
KPS (at diagnosis) to compare the two predictors using TCGA data (Brennan et
al., 2013).

Each microRNA in the signature was assessed for their individual role in
survival using univariable Cox regression. The expression levels of all
microRNAs were also tested for correlation with each other using Spearman’s
correlation (Spearman’s correlation was chosen as the relationship between two

microRNAs may not necessarily be linear).
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2.2.3. Prognostic validation of the signature in an independent cohort
using qRT-PCR.

(extraction and qPCR performed by Charlotte Tumilson at University of
Central Lancashire).

Frozen glioblastoma tissue was obtained from the Brain Tumour North West
tissue bank, Royal Preston Hospital, UK. This was collected under local
permissions and qPCR was performed at the University of Central Lancashire
(Appendix 2.1). Total RNA was extracted using TRIzol® (Life Technologies,
UK) according to the manufacturer’s guidelines. 1ug of total RNA was reverse
transcribed using the NCode miRNA First-strand cDNA synthesis Kit (Life
Technologies). Real-time PCR was performed using GoTaq qPCR Master Mix
(Promega, Madison, WI) on an Applied Biosystems 7500 PCR Machine with U6
snRNA as an endogenous control (chosen because of its stable expression
across normal and cancerous human solid tissues (Peltier & Latham, 2008)).
Average Ct values were calculated for each microRNA, and then normalised to
U6 average Ct values (dCt). These dCt values were used in the signature
algorithm to create risk scores for each patient. One-tailed Cox regression was
performed using these scores. The patients were separated according to the
60™ percentile (used because there were 10% more patients in this dataset
compared to the TCGA dataset with shorter survival than the conventional
median of 450 days) and the high- and low-risk groups assessed for association
with survival using a one-tailed log-rank test. A one-tailed log-rank test was
considered appropriate because the hypothesis is that the high-risk patients

have a poorer survival than the low-risk patients, and not the vice versa.

2.2.4. Assessment of the 9-microRNA signature in lower grade glioma.
MicroRNA expression for WHO (World Health Organisation) Grade Il and Grade
lIl astrocytoma was based on sequencing reads per million mapping to a
mature microRNA (as defined in the microRNA database miRbase (Griffiths-
Jones et al., 2008)). Risk scores were calculated and significance assessed as
above. The median of the lower grade dataset was recalculated and used to
separate the samples into two groups.
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2.2.5. Cell culture, transfection and validation of candidate microRNA
targets.

LN229 glioblastoma cells (ATCC) were cultured in DMEM containing 10% fetal
bovine serum at 37°C in 5% CO,. Cells were transfected with 100nM miR-9
mimic or scrambled control oligonucleotides (ThermoScientific, Waltham, USA),
using 10yl of lipofectamine RNAIMAX (Life Technologies, Carlsbad, CA) per
2.5ml of transfection mix in six-well plates containing 150,000 cells/well. RNA
was extracted 48 hours post-transfection (miRNeasy, Qiagen, Gaithersburg,
MD) and first-strand synthesis catalysed using SuperScript® |l Reverse
Transcriptase (Life Technologies). Quantitative PCR (qPCR) analyses were
performed in triplicate with Tagman assays (Life Technologies) using primers
designed by Primer Design Ltd, Southampton, UK. (sequences in Appendix
4.2).

2.2.6. Identifying predicted microRNA targets associated with OS.

Gene expression was compared between two groups of patients with extremely
poor prognosis and extremely good prognosis in the TCGA dataset. These
were; poor prognosis (survival time < 115 days, n=14, minimum KPS at
diagnosis=80) and good prognosis groups (survival time >1825 days, n=14).
These definitions were chosen because they represent the extremes of survival
times in the TCGA dataset. The LIMMA (linear models for microarray data)
package was used to perform differential expression analysis (Smyth, 2005).
This is a modified T-test, where the standard errors are moderated across the
genes according to information generated from a linear model of the whole
ensemble of genes. The genes with a p-value of less than 0.05 and greater
than 1.5-fold change in expression were used as input to RmiR version 1.14, an
R-based program for assessment of microRNA targets (RmiR, Favero). Gene
ontology analysis was performed using Metacore v6.16 (Thomson Reuters)
modified exact Fisher’s test and pathways determined using DIANA miRpath
(Vlachos et al., 2012) (one-tailed Fisher’'s exact test for enrichment of predicted
microRNA targets). RmiR v1.14 was used to identify targets of the 9 microRNAs
amongst the genes which were present in all databases including; Miranda
(Miranda et al., 2006), Pictar (Krek et al., 2005) and Targetscan (Lewis et al.,
2005) (as loaded by the RmiR vignette). Correlation of microRNA and gene
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expression was performed using Spearman’s correlation on all 475
glioblastoma samples.

2.3. Results.

2.3.1. Identification of a 9-microRNA signature associated with prognosis
in glioblastoma.

In order to identify microRNAs associated with differences in OS in
glioblastoma, LASSO regression (Tibshirani, 1996) was performed using
microRNA expression data (534 microRNAs, 1510 probes) for 475
glioblastomas. This method is optimised for hi-dimensional data (in which there
are more potential predictors than samples) allowing valid inclusion of the 9
microRNAs in the model. The method performs a sub-selection of microRNAs
involved in OS by shrinkage of the regression coefficient through imposing a
penalty proportional to their size. This results in most potential predictors being
shrunk to zero leaving a relatively small number with a weight of non-zero.
These microRNAs may not be the only potential predictors in the set, because,
if two predictors exhibit co-linearity, LASSO will choose the one that has the
strongest association with response (which is not necessarily the only causal
one, especially if the difference between the two predictors’ degree of
association with response is not significant) and the other will be given zero
weight.

Using the LASSO method, 12 microRNA probes were identified with non-zero
regression coefficients. This included two probes for miR-182, which differed in
length by one nucleotide. The longer probe was used for the remainder of the
study as a representation for miR-182. This was done so as to provide a single
sequence in the signature that can be used for microRNA quantification across
platforms. The longer sequence is likely to be more robust as longer sequences
align better. Also a probe for miR-565 was identified that has since been
excluded from miRBase (Griffiths-Jones et al., 2008) as it is classified as a
tRNA fragment; this was not studied further. The LASSO model was refitted
without these two probes resulting in a 9-microRNA signature (Table 2.2).
MicroRNAs given a negative LASSO coefficient are positive predictors of
survival and vice versa. Seven of the microRNAs were significantly differentially
expressed in non-tumour tissue compared to glioblastoma (Table 2.2). miR-10b,
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miR-34a, miR-148a and miR-182 were greater in glioblastoma tissue in
comparison to non-tumour tissue, whereas miR-124a, miR-145 and miR-222

were less.

LASSO .
Penalized Fold change in
MicroRNA . . GBM compared
coefficient for
. to non-tumour
risk score (log2)
miR-124a 0.062 0.032
miR-10b 0.015 10.005
miR-222 0.162 0.278
miR-34a 0.005 3.121
miR-182 -0.021 3.708
miR-148a 0.092 2.752
miR-145 -0.066 0.541
miR-370 -0.044 1.274
miR-9 -0.032 0.863

Table 2.2. MicroRNAs associated with survival using the LASSO
regression test.

Significant (p<0.05) results are shown in bold. Nine microRNAs were reported
to have non-zero coefficients from LASSO regression with 475 patients and of
these, five were negatively associated with patient survival and four were
positively associated with survival. Seven were differentially expressed in
unmatched non-tumour samples compared to glioblastoma samples. The
expressions of these nine microRNAs were used to generate a signature of
prognosis in glioblastoma (GBM).

Each of the microRNAs were assessed for their prognostic predictive capacity
using Cox regression (Fig. 2.4) and characterised according to their genomic
loci (Table 2.3). Four microRNAs; miR-10b (p=0.39), miR-124a (p=0.07), miR-
370 (p=0.12) and miR-182 (p=0.07) are not individually associated with
prognosis using Cox regression. Three of the microRNAs are cleaved from
precursors that are encoded in regions of the genome that have been reported
to be altered in glioblastoma previously (Riemenschneider et al., 2010).
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Figure 2.4. Cox regression on all nine microRNAs identified by LASSO
regression on 475 glioblastoma patients.

These Kaplan-Meier curves represent log-rank analysis of expression of the
microRNA above and below the median microRNA expression of that
microRNA. In each case the median microRNA expression for that microRNA
was used to dichotomise the data and perform log-rank analysis. The Y-axis
represents the fraction of patients alive at each point in time, designated in
months on the X-axis. Not all of the microRNAs identified by LASSO regression
were significant when tested across the TCGA using univariable Cox
regression, which is as expected because LASSO regression takes the
expression of other microRNAs into account.
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. . Expression Amp/del in
MicroRNA Chromosome location Band in poorer Gﬁom
prognosis a
. chr1: 156390133-156390221 chr5: 87962671-
it 87962757 chr15: 89911248-89911337 1‘121'25'(1 1S, creases NA
miR-148a chr7: 25989539-25989606 7p15.2 Increases Amplified
miR-145 chr5: 148810209-148810296 5q32 Decreases NA
miR-10b chr2: 177015031-177015140 2931.1 Increases NA
miR-222 chrX: 45606421-45606530 Xp11.3 Increases NA
miR-182 chr7: 129410223-129410332 7q932.2 Decreases Amplified
miR-370 chr14: 101377476-101377550 14932.2 Increases NA
miR-34a chr1: 9211727-9211836 1p36.22 Increases 1p19q codeletion
: chr8: 9760898-9760982, chr8: 65291706-
- J 23.1 12.
MIR-1242 651814, chi20: 61800852-61800938 a0 taba ' ncreases NA

Table 2.3. The genomic location of the microRNAs identified by LASSO
regression.

The genomic coordinates for the precursors of each of the nine microRNAs in
the signature. Seven of the microRNAs identified have one precursor sequence,
but miR-9 and miR-124a both have three. Three microRNAs; miR-148a, miR-
182 and miR-34a, reside in regions of the genome that have been reported to
be cytogenetically altered in glioblastoma; the short arm of chromosome 1 and
chromosome 7 (Riemenschneider et al., 2010). miR-182 is decreased in poorer
prognosis yet the chromosome it is encoded on (chromosome 7) is gained in

tumours with a poorer prognosis (Goodenberger & Jenkins, 2012).

2.3.2. Generation of a risk score combining expression values of the 9
microRNAs to predict survival.

A risk score was created using the regression coefficients from the LASSO
analysis (see methods, page 68) to weight the expression value of each of the 9
microRNAs. The risk score was then separated on the median (1.48 quantile
normalised probe expression) to create high and low risk groups. The median
survival time of the low-risk group was 13.1 months and the median of the high-
risk group was 9.5 months. Risk score was associated with survival using log-
rank test (Fig. 2.4, p=2.26e™°). Median expression of each signature microRNA
in both groups is shown in Fig. 2.5.
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Figure 2.5. The patient groups assigned to the high- and low-risk
groups using the median as a threshold.

Survival
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A R A

A score for each patient was
calculated using the microRNA
expression signature and patients
were separated into high and low
risk groups using the median (1.48
normalised expression) as a cut-off.
A) The low-risk group has
significantly longer survival times
than those in the high-risk group by
log-rank test (p=2.26e-09). The Y-
axis represents the fraction of
patients alive at each point in time,
designated in months on the X-axis.
B) Expression patterns of the
significant microRNAs in the high-
and low-risk groups, as defined by
the risk score, shown in a heatmap.
The positive microRNAs (yellow)
represent microRNAs that are lower
in poorer prognosis and negative
(black) represent the opposite. Blue
in the heatmap indicates low
expression and red indicates high

expression in a sample.
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Median quantile normalised
expression of microarray probe

Mirna Low risk High risk
miR-124a 8.62 8.90
miR-10b 9.25 9.45
miR-222 9.36 10.58
miR-34a 10.68 11.49
miR-148a 7.94 9.19
miR-182 8.09 7.52
miR-145 9.57 9.21
miR-370 10.04 9.74

miR-9 13.34 12.86

Table 2.4. Median quantile normalised expression of microarray probe
for each microRNA across 475 glioblastoma tumours in the TCGA.

Differences between the two groups are often not large, but combined together
into a risk score algorithm these microRNAs have prognostic potential. miR-
124a which is a microRNA involved in neuronal differentiation, is one of the
lowest expressed microRNAs, and miR-9 which is an abundant microRNA is
expressed at the highest levels of all microRNAs studied (Krichevsky et al.,
2006; Fowler et al., 2011). The levels between the risk groups are not as
markedly different as the microRNAs are from each other in the same group.

Pearson’s correlation of age with risk score showed a significant direct
correlation (R=0.248, p=4.13e-°8). Multivariable Cox regression of the risk group
and age showed the risk group to be an independent predictor of survival
irrespective of age (Group HR=1.61, 95% CI=1.30-1.99, p=1.40e™; Age HR=
1.03, Cl= 1.02-1.04, p=2.50e™). As males have poorer outcome in glioblastoma
(Krex et al., 2007), the risk score was included in a Cox regression model with
gender, and was found to be similar in the male and female groups (median
1.48 in each group).
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2.3.3. Assessment of the risk score in glioblastoma subtypes and in
relation to other prognostic factors.

| then determined the risk groups for each of the TCGA-defined glioblastoma
molecular subtypes (Brennan et al., 2013): proneural G-CIMP (glioma CpG
island methylator phenotype) positive (n=36), proneural G-CIMP negative
(n=88), neural (n=77), classical (n=128) and mesenchymal (n=143). MicroRNA-
defined risk group was associated with survival in all subtypes except proneural
G-CIMP negative glioblastoma (Fig. 2.6 A-E).

The groups were then fitted to a Cox regression model incorporating age in
each patient subtype. The score remained significant in the classical (HR=1.73,
95% Cl=1.13-2.64, p=0.011) and neural (HR=2.03, 95% CI=1.23-3.38, p=0.007)
subgroups and age was a confounding factor in the mesenchymal group
(HR=1.46, 95% CI=0.95-2.23, p=0.084). This suggests that the signature is
more likely associated with age rather than survival in mesenchymal
glioblastoma. The performance of the risk score in the proneural G-CIMP
positive group could not be calculated because all samples but one stratified to
the low risk group. This was expected because G-CIMP glioblastoma is the
subtype of glioblastoma with the best prognosis. The risk score in the proneural
G-CIMP negative group was not significant (HR=1.15, 95% CI=0.70-1.86,
p=0.059). This may suggest that this subtype of glioblastoma, which is
particularly refractory to treatment, has different microRNA biology to the other
subtypes (Brennan et al., 2013). The survival groups also had significantly
different PFS by log-rank (p=9.91e™®) (Fig. 2.6 F), which indicates the signature
is predictor of PFS as well as OS. There were 26 samples in the cohort with
IDH1 mutations, only one of which stratified to the high-risk group, which
suggests the signature is selecting for a subtype with already known survival
differences.

The risk score was evaluated by fitting a Cox model incorporating the risk group
and other factors involved in glioblastoma prognosis (gender, MGMT promoter
methylation, IDH mutation, patient subtype, extent of resection and KPS score).
In each case, the score was significant and was not related to these factors
(Table 2.5).
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Figure 2.6. Log-rank of the low-risk and high-risk groups in subgroups
of glioblastoma.

Risk scores were calculated with the same threshold as the whole cohort for
each subtype of glioblastoma. These were then split into groups based on the
median and log-rank performed to assess survival association of the groups.
The Y-axis represents the fraction of patients alive at each time-point, and the
time in months from diagnosis is represented on the X-axis. Blue lines are the
low-risk group and red lines are the high-risk group. The risk groups were
significant by log-rank test (non-age adjusted) in all molecular subtypes of
glioblastoma but proneural G-CIMP negative (A-E). Risk score is also a

significant predictor of progression free survival (F).
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| then calculated the risk score solely in the group of patients treated with the
most common chemotherapy agent, temozolomide (n=219). This group showed
a significant association between risk score and survival using log-rank (p=8.6e"
%) (Fig. 2.7 A). These results indicate that, in patients treated with the standard
treatment, the microRNA signature predicts survival.

The predictive power of the signature was compared to that of MGMT promoter
methylation status by the log-rank test. In the 304 patients for whom MGMT
promoter methylation status was available (Brennan et al., 2013), multivariable
Cox regression indicated that the microRNA signature (HR=1.88, Cl=1.42-2.48,
p=9.4e) predicted survival. In the same group of patients, MGMT promoter
methylation also predicted survival but with less significance than the microRNA
signature (HR=1.47, Cl=1.12-1.93, p=0.006). Comparing the power of the two
predictions, the microRNA signature results in a 1.88-fold increased risk when
stratified to the high-risk group and the MGMT promoter methylation signature
results in a 1.47-fold increase in risk when the MGMT promoter is
unmethylated. In the group treated with temozolomide only (n=219) there was a
1.76-fold increase in risk by stratification to the low-risk group; this stratifies
patients better than the MGMT signature, which shows a 1.65-fold increase in
risk when stratified to the unmethylated group in the TCGA dataset.
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Figure 2.7. Assessment of risk groups in TMZ treated patients, the
validation cohort and lower grade glioma.

Kaplan-Meier curves of the signature in the different groups are shown. The Y-
axes represent the fraction of patients alive at each time point, and the times in
months are on the X-axes. A) The subgroup of patients treated with the
chemotherapy agent temozolomide was significantly delineated using the
signature (p=8.4e’4). B) MicroRNA expression determined by qRT-PCR
(quantitative real-time PCR) in an independent cohort of 20 glioblastomas
stratified patients by survival based on the signature (p=0.045, one-tailed test).
C) MicroRNA sequencing data of 178 lower grade glioma samples (65
astrocytoma, 47 oligoastrocytoma, and 75 oligodendroglioma, 1 not stated)
significantly separated these samples into high and low risk groups by log-rank
test.
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2.3.4. Risk score validation in an independent dataset.

The nine-microRNA signature has been generated and tested on the same set
dataset. This is possible because LASSO employs leave-one-out cross
validation, where the model is rerun iteratively, each time leaving a sample out.
This reduces over fitting of the model to the dataset. Ideally, validation should
be performed on an independent dataset from a different population, or with a
different technique. Risk scores were calculated for an independent dataset
from the University of Central Lancashire of 20 glioblastoma samples (Table
2.6), with microRNA expression generated using gRT-PCR (quantitative real-
time PCR) and was significantly associated with survival (HR=10.7, p=0.036).
This patient group had an overall worse prognosis (80% died earlier than the
conventional median of 450 days (Mountz et al., 2014)) than those in the TCGA
(70% died earlier than the conventional median of 450 days), and therefore,
expecting more patients to fall into the high-risk group, the patients were
dichotomized based on the 60™ percentile (0.76 DCt). This resulted in 12
patients in the high-risk group with a median survival of 6.27 months and 8
patients in the low-risk group with a median survival of 16 months. These
groups predict survival using a one-sided log-rank test (HR=3.01, p=0.045) (Fig.
2.7B).
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Characteristic Number of patients (n=20)
Age (median=68)
<60 years 5
=60 years 15
Gender
Male 11
Female 9
Days to death/ last follow-up (median 268 days)
<450 days 16
=450 days 4
<30 days 0

Table 2.6. Patient characteristics in the independent dataset used for
validation.

This group had an overall worse prognosis than the TCGA dataset (the ratio to
the conventional median was 10% higher than the ratio in the TCGA dataset)
and therefore the cut-off for the high and low risk groups was shifted to the 60th
percentile.

2.3.5. Risk score assessment in lower grade glioma.

To serve as a further validation, and also to see whether the score is applicable
to lower grade glioma, | calculated risk score on the TCGA dataset of lower
grade gliomas. Risk scores were also calculated for grade Il and Ill gliomas
(n=178) consisting of 81 grade Il and 96 grade Ill samples; 55 were
astrocytomas, 47 oligoastrocytomas and 75 oligodendrogliomas, using TCGA
sequencing data. This was done using the 9 microRNAs derived in the
glioblastoma signature. The cohort was dichotomised into high- and low-risk
groups using the median (-19541.96 reads per million) as a cut-off. As observed
in the glioblastoma dataset, the score proved to be a significant predictor of
survival using log-rank (Fig. 2.7C, p=5.2e™®) and in a Cox model with age
(Group HR=0.62, CI=1.05-3.31, p=3.5e %%, Age HR=1.06, CI=1.04-1.10, p=2.2¢"

97). The low-risk group comprised of 44 grade Il and 45 grade Ill samples; 22
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were astrocytomas, 22 oligoastrocytomas and 45 oligodendrogliomas. The
high-risk group comprised of 37 grade Il samples and 51 grade Ill samples (1
not stated); 33 were astrocytomas, 25 oligoastrocytomas and 30

oligodendrogliomas.

2.3.6. Predicted targets of these microRNAs.

Bioinformatic analysis was used to investigate targets of signature microRNAs
to identify the associated pathways involved. Firstly, genes associated with long
and short survival groups in glioblastoma were identified. The mRNA
expression between two groups of patients with extremely poor prognosis
(survival time < 115 days, n=14, minimum KPS at diagnosis=80) and extremely
good prognosis (survival time >1825 days, n=14) were compared in the TCGA
dataset. The genes with a p-value of less than 0.05 and greater than 1.5-fold
change in expression were used as genes associated with survival. A total of
1154 genes were associated with short and 400 genes with long survival.
Predicted interactions of the 9 microRNAs with the survival-associated genes
were assessed in the Miranda, Pictar and Targetscan databases (Krek et al.,
2005; Lewis et al., 2005; Miranda et al., 2006). This led to the identification of
162 significant predicted microRNA/mRNA interactions, 10 of which had an
inverse correlation of at least 0.25 across all glioblastoma samples (Table 2.7).
This was chosen because the maximum correlation detected was 0.5 between
an mRNA and microRNA and therefore half this was used as a threshold. Using
DIANA miRPath (Vlachos et al., 2012) | identified the top pathways that the
signature microRNAs are predicted to target. The most significant pathways
identified included adherens junction, MAPK signalling, focal adhesion, axon

guidance and WNT signalling (Appendix 2.2).
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LASSO Gene . Fold P-value of
enalized change Spearman’s t_:llfference GBM/normal
MicroRNA pena'iz Gene symbol with . in GBM to
Coefficient . . Correlation (FDR
increasing non-tumour -
(log2) R . adjusted)
survival tissue
hsa-miR-9 -0.032 TGFBI 4.499 -0.649 11.487 0.000
hsa-miR-9 -0.032 P4HA2 2.527 -0.615 1.108 0.999
hsa-miR-9 -0.032 FBN1 2.054 -0.53 1.808 0.001
hsa-miR-222 0.162 KHDRBS2 0.189 -0.496 0.024 0.000
hsa-miR-9 -0.032 SLC25A24 3.574 -0.473 217 0.000
hsa-miR-9 -0.032 SLC31A2 2.384 -0.463 0.593 0.039
hsa-miR-9 -0.032 FNDC3B 2171 -0.406 3.828 0.000
hsa-miR-182 -0.021 F13A1 10.982 -0.309 1.785 0.106
hsa-miR-9 -0.032 LMNA 2.034 -0.292 2.25 0.000
hsa-miR-9 -0.032 WNT4 2.038 -0.265 0.691 0.003

Table 2.7. Predicted target interactions of the signature microRNAs
with significant correlation in expression.

The ten interactions predicted between the 9-microRNA signature and the
mRNAs identified to be involved in survival in glioblastoma (GBM), which also
showed a significant inverse correlation in expression of at least 0.25 across the
patient set. Two of these mRNAs, FBN1 (fibrillin 1) and TGFBI (TGFB induced),
exhibited particularly high correlations in expression with miR-9 (-0.53 and -0.65
respectively) as well as significant differential expression between glioblastoma

compared to non-tumour tissue.

Targets implicated most strongly in patient survival were identified for miR-9,
which showed a significant correlation with eight mRNAs. In order to assess
whether these may be functional targets, a glioblastoma cell line was
transfected with a miR-9 mimic and the expression levels of the predicted
targets were assessed using qPCR. LMNA (lamin A), WNT4 (Wingless-Type
MMTYV Integration Site Family, Member 4), FBN1 (fibrillin 1), P4HAZ2 (prolyl 4-
hydroxylase, alpha polypeptide Il) and SLC25A24 (Solute Carrier Family 25
(Mitochondrial Carrier; Phosphate Carrier), Member 24) had significantly lower
levels of expression when transfected with the mimic in comparison to a

scrambled control (Fig. 2.8) suggesting miR-9 may directly target these mRNAs
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in glioblastoma cells. These mRNAs have predicted targets for miR-9 in their 3
UTR and also decrease when miR-9 is overexpressed in glioblastoma cells.
Thus, bioinformatic analysis of signature microRNAs has identified potential
targets and biological processes known to be involved in glioblastoma biology,

further supporting the relevance of the 9-microRNA signature.
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Figure 2.8. Expression of the predicted targets following transfection
of a miR-9 mimic into LN229 cells relative to a scrambled control.

miR-9 was predicted to target the most mRNASs identified to be prognostic
compared to all other microRNAs in the signature. This barchart shows the
levels of expression of the 8 predicted targets after transfection of a miR-9
mimic or scramble into LN229 cells. Significant decrease in expression (t-test,
p<0.05) was observed for P4HA2, LMNA, WNT4, FBN1 and SLC25A24 48
hours after transfection of the mimic. Results are representative of duplicate
experiments. The Y-axis represents the mRNA expression relative to GAPDH
control mRNA. This is shown in white boxes for the control, scrambled mimic
sequence and black boxes for the miR-9 mimic. Values have been normalised

to the scrambled control.
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2.4. Discussion.

2.4.1. The nine microRNA signature is a molecular indicator of prognosis.
Using LASSO regression, this study has identified and independently validated
a biologically relevant 9-microRNA signature that predicts survival in
glioblastoma. The signature separates patients into high- and low-risk groups
with respect to OS and PFS and may have clinical utility for decisions on patient
management. For example, patients stratified to the high-risk group could be
monitored more closely, or targeted towards novel treatments. The signature is
valid in all glioblastoma subtypes except proneural G-CIMP negative tumours
(which represents only 19% of this dataset), and also predicts survival in
patients treated with the standard chemotherapy drug temozolomide.

The independent dataset used here is relatively small (n=20) and therefore
confounding factors for patient age, treatment received and extent of resection
could not be accounted for. The independent dataset results were generated
using qRT-PCR and indicate that the signature can be implemented using
techniques that would be more conducive to a clinical diagnostic laboratory and
these are the methods that should be explored further. A limitation of this
approach is that a different technique has been used for validation and
therefore a single, defined cut-off could not be ascertained.

Further validation, ideally prospective, and calculation of sensitivity and
specificity, is required before this signature could be implemented clinically. This
would require a prospective clinical trial. This would involve stratifying patients
treated with standard treatment into high- and low- risk groups and data
collection of their survival times as well as other clinical factors such as extent
of resection and KPS.

Prognostic signatures using microRNAs have been formulated previously in
glioblastoma but these have not been validated or evaluated within different
subgroups of the disease, or in relation to molecular characteristics of the
disease (Kim et al., 2011b; Niyazi et al., 2011; Srinivasan et al., 2011; Sana et
al., 2014). A more recent study identified prognostic microRNAs for each
subtype of glioblastoma using TCGA data (Li et al., 2014b) and five microRNAs
in our signature overlap; miR-222, which they report predicts prognosis in
classical and neural glioblastoma, miR-370 which predicts prognosis in neural
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glioblastoma and miR-34a, miR-145 and miR-182 which predict prognosis in the
proneural non-G-CIMP glioblastoma group. Interestingly, 3/9 microRNAs in my
signature are present in their model for proneural G-CIMP negative
glioblastomas yet my signature did not significantly stratify patients in this
subtype. This may be because the other microRNAs in my signature are acting
in different ways in this subtype, therefore creating noise in the score for these
patients.

The LASSO regression model was chosen to improve on other approaches by
utilising all 475 patients, and all microRNAs available to build the signature.
This allows a small number of microRNAs for use in a diagnostic signature with
maximal information but does not identify all predictors in the dataset involved
in survival. This provides a signature with the prediction power similar, or better
than, that of MGMT promoter methylation. It must be noted however that MGMT
promoter methylation was assessed in an unselected population, with the
Infinium methylation bead chip (Bady et al., 2012), which is not the gold
standard employed in a diagnostic laboratory and therefore may lack sensitivity
compared to clinical results. MGMT promoter methylation was also not
assessed in the validation dataset due to lack of methylation data so this finding
requires further confirmation. This signature has a manageable number of
microRNAs for a prognostic indicator, and is well below the number of
predictors employed in commercialised kits for other cancer signatures such as
the gene tests, Mammaprint and ms-14 in breast cancer (Sorlie et al., 2001;
Cheang et al., 2009).

2.4.2. Roles of the microRNAs in the signature in glioma biology.

All microRNAs in this signature, with the exception of miR-370, have been
previously associated with glioma biology (Zhang et al., 2010; Fowler et al.,
2011; Gabriely et al., 2011; Kim et al., 2011a; Genovese et al., 2012; Song et
al., 2012; Rani et al., 2013; Tan et al., 2013; Mucaj et al., 2014). For example,
the microRNA with the most predicted targets involved in survival, miR-9, has
been shown to be associated with resistance to temozolomide and its actions in
glioma biology are explored further in Chapter four of this thesis. Additionally,
miR-148a has been shown to target the EGFR regulators MIG6 and BIM in
glioblastoma and inhibition of this microRNA decreased growth of glioma stem
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cell and xenograft growth in vivo (Kim et al., 2014). This has not been shown for
previous glioblastoma microRNA signatures (Lakomy et al., 2011; Srinivasan et
al., 2011.; Zhang et al., 2012a, Sana et al., 2014). Although miR-370 has not
been reported to have a role in glioblastoma, it targets TGFB-RII (TGFB
receptor 2) (Lo et al., 2012), which has a role in glioblastoma cell growth and
invasion (Kaminska et al., 2013). These studies, and the data presented here,
suggest a potential role for miR-370 in glioma biology. Establishing a defined
role for these microRNAs in glioma biology requires further work to determine
the link between the biology these microRNAs regulate and patient prognosis.
In addition to their established roles in glioma biology, 5 of the 9 signature
microRNAs have been associated with sensitivity to TMZ; miR-9 (Munoz et al.,
2013), miR-145 ( Yang et al., 2012b), miR-148a (Hummel et al., 2011), miR-182
(Tang et al., 2013) and miR-222 (Chen et al., 2012a). It is likely however, that
the microRNAs are providing a measure of all treatment including not just
chemotherapy but radiotherapy and surgery. For example, glioblastoma
tumours with a mesenchymal subtype exhibit more infiltration and therefore
extent of resection will not be as high as in the proneural subtype (Beier et al.,
2012). These observations suggest that the microRNA signature reflects roles
in both tumour biology and treatment resistance, which combined lead to robust

effects on patient survival.

2.4.3. Translational relevance of the signature.

This prognostic signature has potential applicability to the clinic by stratifying
patients, and identifying those less likely to respond to current treatments. The
signature ultimately may facilitate confidence in treatment decisions and
recognising candidates for new therapies. It may be that the most powerful use
of the signature is in combination with MGMT promoter methylation status.
Technologies such as the NanoString nCounter platform may provide highly
accurate quantitative measurements of transcripts for tumour diagnosis as has
been shown for medulloblastoma (Northcott et al., 2012), and is readily
applicable to microRNA studies.

In conclusion, | have identified and validated a 9-microRNA-expression
signature using biologically relevant markers of use in prediction of prognosis in
glioblastoma. Analysis of targets of these microRNAs has identified potential
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key players in glioblastoma networks that could be targeted to combat the
aggressive disease. The LASSO approach may be more broadly applicable in
the identification of relevant microRNA and gene expression signatures in large

datasets.
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3. Prognostic microRNAs in high-grade glioma reveal a link to
oligodendrocyte precursor differentiation.

‘It is my belief that the basic knowledge that we're providing to the world will
have a profound impact on the human condition and the treatments for disease
and our view of our place on the biological continuum.’ Craig Venter, June 2000.

3.1. Introduction.

Molecular subtypes of glioblastoma can be defined by clustering according to
cell type-specific mRNA expression patterns (Verhaak et al., 2010; Brennan et
al., 2013). Verhaak et al. identified classical, proneural, neural, and
mesenchymal subtypes of glioblastoma using mRNA expression, somatic
mutation, and copy number data obtained from TCGA (The Cancer Genome
Atlas) (Verhaak et al., 2010; TCGA, NIH). Interestingly, clustering analysis of
signature gene expression patterns of the four subtypes with expression
patterns from murine neural cells showed that they are reminiscent of specific
neural cell types, for example the proneural class of glioblastoma has an
oligodendrocyte rather than astrocyte signature. The proneural glioblastoma
subtype is also particularly refractory to the current standard treatment of
radiotherapy and temozolomide and a recent study by Ozawa et al. indicates
that most glioblastoma subtypes can arise from a common proneural-like
precursor cell (Verhaak et al., 2010; Ozawa et al., 2014). A consistent body of
literature supports the notion that the presence of less differentiated cells in
cancer confers a poorer prognosis and it may therefore be possible to identify
common signatures of aggressive clinical behaviour in glioma based on
progenitor cell types (Dirks, 2010; Garrido et al., 2014; Waghmare et al., 2014;
Auffinger et al., 2014).

In this context, microRNAs may be relevant, as changes in microRNA
expression are emerging as a common feature of both neural development and
glioma biology (Godlewski et al., 2010b). MicroRNAs have roles in the
maintenance of brain functions throughout life and are extensively dysregulated
in cancer (Carroll & Schaefer, 2012; Stahlhut & Slack, 2013). In brain tumours,
they have been shown to promote ‘stemness’ or inhibit differentiation,
consequently maintaining tumourigenesis (Schraivogel et al., 2011). Their
expression is also altered in stem-like compartments of both brain tumours and
other tumours and has been reviewed by Stappert et al. (Stappert et al., 2014).
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In addition, microRNAs modulate neural differentiation and their expression
patterns have been shown to be distinct at different cellular stages of
differentiation, including oligodendrocyte precursor (OP) differentiation (Letzen
et al., 2010). The presence of stem-like cells in brain cancer has been shown to
be associated with more aggressive, treatment resistant tumours (Dirks, 2010;
Garrido et al., 2014; Auffinger et al., 2014). It is established that microRNAs
have a role in maintaining a specific differentiation phenotype but it remains
unclear whether prognostic microRNA signatures are exclusively tumour grade
and/or molecular subtype-specific, or whether common signatures, for example
associated with differentiation status, can be identified (Aldaz et al., 2013). Here
| have used a computational approach to test the hypothesis that differential
microRNA expression profiles in groups of glioma patients with good and poor
prognosis reflect changes in progenitor development pathways. | therefore
correlated the microRNA expression changes between good and poor
prognosis groups with microRNA expression changes in the OP differentiation
pathway. OP differentiation can be modelled in vitro using embryonic stem cells
(ESCs) that adopt an oligodendrocyte cell fate in a step-wise fashion using
instructive cell culture conditions (Letzen et al., 2010). The differentiation steps
include embryoid body (EBs), a neural progenitor cell state (NP), the
oligodendrocyte progenitor stages OP1, OP2, and OP3 and the fully
differentiated oligodendrocyte lineage (OL) (Figure 3.1). Analysis of microRNA
profiles of these cell types showed that expression changes during OP
differentiation correlate with prognostic microRNA expression changes in
malignant glioma. This correlation is most apparent for the OP1 cell stage,
which consistently predicts survival (in >500 gliomas), hence suggesting a
prognostic signature of aggressive clinical behaviour that is independent of
grade and malignant brain tumour subtype.
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Figure 3.1. The cell stages in the oligodendrocyte precursor (OP)
differentiation pathway. Oligodendrocyte precursors are intermediates
between neural progenitors and astrocytes and oligodendrocytes.

3.2. Methods.

3.2.1. MicroRNA and mRNA expression analysis.

All computational work was performed in R (v2.15.1). Level 3 Agilent microRNA
8x15k microarray, G4520A microarray gene expression data and clinical
information for glioblastoma and non-tumour samples were downloaded from
TCGA (TCGA, NIH). Level 3 lllumina HiSeq sequencing data for mature
microRNA and mRNA expression plus clinical information for lower grade
gliomas were also downloaded from TCGA. There are differences in
normalisation methods and quantification artefacts of microarray and
sequencing platforms, and therefore merging of the data in normalised format
may result in artefacts and spurious results. This is particularly apparent for
microRNA expression below the median, where microarray underperforms (C.
Wang et al., 2014a). Therefore | chose to perform differential expression
analysis prior to merging the two sets of results. The expression changes within
the grades were ascertained using appropriate statistical packages developed
for microarrays and sequencing (Smyth, 2005; Robinson et al., 2009) and then
these data were merged, rather than direct merging of the data prior to
differential expression analysis.
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The good and poor prognosis groups of these glioma datasets were selected
according to the published survival data in the TCGA database (Table 3.1).

GIIIA Glioblastoma
Good Poor Poor
prognosis prognosis Good prognosis  prognosis (<4
(>48 months, (<18 months, (>48 months, months,
n=6) n=10) n=13) n=14)
Age at Diagnosis 40.5 59.5 41.5 61.9
Mean Overall
Survival
(months) 87 8.6 83.4 2.7
Gender Male 67% 40% 62% 50%
Female 33% 60% 38% 50%
IDH1 mutation Mutate
status d 100% 10% 0% 0%
WT 0% 90% 100% 100%

Table 3.1. Characteristics of the grade Ill astrocytoma and glioblastoma
TCGA tumours in poor and good prognosis groups.

As expected, in both GlIIA and glioblastoma age is increased in the poorer
prognosis groups. There are only IDH1 mutations in the GIIIA group. In
glioblastoma, IDH1 mutation is usually present in tumours following progression
from a lower grade, and as the TCGA has sought samples from mainly primary

glioblastoma, this is expected.

EdgeR, a package designed for analysis of differential gene expression from
RNA-seq data, first calculates the interlibrary variation for each gene using
tagwise dispersion, then determines differential expression using the exact
negative binomial test (Robinson et al., 2009). EdgeR was used to compare
microRNA and mRNA expression sequencing data between the two GIIIA
survival groups and 139 IDH mutated and 39 /IDH wild-type grade Il and I
tumours (Robinson et al., 2009). The LIMMA (linear models for microarray data)
package fits a linear model to the expression data for each gene and then tests
the differences between the parameters of the model (Smyth, 2005). LIMMA
was used to compare microarray-based microRNA expression data for the poor

and good prognosis groups in glioblastoma.
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For each microRNA or mRNA, r, the z-scores associated with GIIIA (grade I
astrocytoma) and glioblastoma (V) prognosis were calculated separately from
their log(fold change, FC) and corresponding standard error, SE:
Z.w=log(FCr)/SE i ; Zryv=log(FC:v)/SE: v

Under the joint null hypothesis, log(FC. i) = log(FC; ) = 0, the two z-scores are
N(0,1) distributed and independent, so the sum Z;; + Z; is N(0,2). The p-
values corresponding to the joint null hypothesis were adjusted for multiple

testing using the Benjamini-Hochberg method (Benjamini & Hochberg, 1995).

3.2.2. Pathway prediction.

Miranda, Pictar and Targetscan were used to predict targets for differentially
expressed microRNAs from the differentially expressed mRNAs using the RmiR
package (Krek et al., 2005; B.P. Lewis et al., 2005; Miranda et al., 2006; RmiR,
Favero). Targets were only considered if they were present in at least two of
these databases. The resulting targets were entered into the pathway analysis
program Metacore® (Thomson Reuters). This program performs pathway
enrichment analysis generating a p-value, which represents the probability to
randomly obtain the intersection between the microRNAs inputted and the
pathway genes following hypergeometric distribution.

3.2.3. Analysis of the differentiation pathway.

| used data published in Letzen et al, which describes the microRNA expression
fold changes between each cell differentiation stage within the OP
differentiation pathway including embryonic stem cells (ESCs), neural embryoid
bodies (EB), neural progenitors (NP), glial restricted precursors (GP),
oligodendrocyte precursors (OP) I, OP II, OP Ill and the oligodendrocyte
lineage (OL) (Letzen et al., 2010). Spearman’s correlation (a correlation
indicating a relationship, not necessarily linear) was performed on the fold
change between good and poor prognosis groups within GIIIA and
glioblastoma, with the expression changes of the significantly differentially
expressed microRNAs with at least 2-fold change at each stage in the OP
differentiation pathway. The fold changes of all microRNAs of significance
between OP cell types were used, regardless of their significance for survival.
As a control, expression values from Tagman PCR microRNA expression
between ESCs and haematological precursors (HP) as described in Risuefio et
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al. and between neural stem cells (NSCs) and NPs as described in Goff ef al.
were used to calculate the A Ct and perform Spearman’s correlation with the
prognosis-associated fold differences in GIlIIA and glioblastoma (Goff et al.,
2009; Risuefio et al., 2012;). Only microRNAs significantly differentially
expressed between the ESCs and HPs were used (139 microRNAS) in the
correlation analysis, to prevent a false correlation coefficient due to ‘baseline’
microRNA expression.

3.2.4. Correlation of microRNA expression of the OP pathway with
malignant glioma tumours.

Microarray expression data was processed as described in Letzen et al. (Letzen
et al., 2010) using Agilent Feature Extraction software and the
gTotalGeneSignal was correlated with the level 3 expression data from the
TCGA GIlIIA astrocytomas (n =39), glioblastoma tumours (n=558) and non-
tumour samples (n=10). Only microRNAs detected on all platforms (Agilent
microarray G4470C and custom TCGA Agilent microarray, and Illlumina HiSeq
sequencing) were included resulting in 150 microRNAs. Glioblastomas were
classified according to Brennan et al (Brennan et al., 2013). The correlation
pattern of each cell type for every tumour was analysed for association with

survival using Cox regression and log-rank tests.

3.3 Results

3.3.1 Identification of a high-grade glioma microRNA signature associated
with poor patient survival

To investigate candidate prognostic microRNAs that are associated with high-
grade brain tumours (GIIIA and glioblastoma) through a differential TCGA
microRNA expression analysis, | developed the computational pipeline shown
in Figure 3.2.
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*poor prognosis GBM (n=14),
survival <4 months

egood prognosis GBM n=13,
surviva 1>48 months

*poor prognosis GIIIA ( n=10),
survival <18 months

*good prognosis GIIIA n=6,
survival >48 months

*216 miRNAs assessed
*Data merged
*63 differentially expressed microRNAs.

4

Pathway analysis predicts link to
oligodendrocyte development

|

Calculation of Spearman’s correlation coefficient
identifies a link between each cell stage in the
oligodendrocyte precursor pathway and the prognostic
microRNAs

39 GIIIA tumours
TCGA miRNAseq level 3

558 GBM tumours
TCGA 8x15k Agilent
miRNA microarray level 3

data

)

*150 microRNAs in both microarray and sequencing data
*Viral microRNAs removed

Correlation of microRNA expression of cell types in the
oligodendrocyte precursor pathway with the microRNA
expression profile of each tumour

4

Cox regression analysis
showing degree of correlation
predicts patient outcome

Figure 3.2. The computational analysis pipeline to identify common
prognostic molecular signatures in high-grade astrocytoma.

(A) Prognostic microRNAs were identified separately in GIIIA and glioblastoma
and merged to create a common high-grade microRNA profile associated with
prognosis. Predicted pathway analysis suggests that gene expression pathways
associated with OP cells may predict patient outcome. Fold change data for
differentially expressed microRNAs between cell types in the OP differentiation
pathway were correlated with microRNA fold change data calculated between
prognosis groups in GllIA and glioblastoma. (B) MicroRNA expression profiles
for all 597 TCGA malignant glioma (GllIA and glioblastoma) were correlated
with the expression values of each cell type in the OP differentiation pathway
(Letzen et al., 2010).



109

Based on TCGA patient survival data (TCGA, NIH), | defined suitable filter
criteria indicative of good prognosis (>48 months for GIIIA and glioblastoma)
and poor prognosis (<10 months for GIIIA and <4 months for glioblastoma.
These cut-offs were decided by determination of the 10% shortest and the 10%
longest survival in the TCGA cohort and including patients with sufficient clinical
and microRNA data. This yielded a total of 534 mature microRNAs from 27
glioblastoma and 16 GIIIA tumours, respectively (Fig. 3.2, Table 3.1). Based on
this dataset, | first determined the microRNAs that are differentially expressed
between the good and poor prognosis groups within glioblastoma and GIIIA
specimens, separately. To minimise the false discovery rate, | used EdgeR and
LIMMA including multiple testing correction procedures for next generation
sequencing and microarray analysis respectively (Hochberg, 1995; Smyth,
2005; Benjamini & Robinson et al., 2009). My approach identified 11
microRNAs that are significantly differentially expressed (with log fold changes
between -1.27 and 6.39) in good versus poor prognosis groups in glioblastoma,
and 19 in GIIIA (with log fold changes between -1.28 and 2.20). Two of the 19
GIIIA microRNAs were lower in the poor prognosis GIIIA group (Fig. 3.3 A) and
5 of the 11 candidate glioblastoma microRNAs were lower in the poor prognosis
glioblastoma group (Fig. 3.3 B). The most strongly (>5 fold) altered microRNAs
(miR-10a, miR-196b, miR-211) were all increased within the poor prognosis
GIIIA group. This is in line with previous data for miR-10a and miR-211
suggesting their implication in progression and treatment resistance in

malignant glioma (Ujifuku et al., 2010).
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Figure 3.3. Fold changes of the differentially expressed microRNA

expression between the good and poor prognosis groups in GIIIA (A)
and glioblastoma (B).

The majority of the differentially expressed microRNAs in GllIA are increased
with poorer prognosis, whereas glioblastoma shows a more even spread of
increased and decreased microRNAs in poorer prognosis patients. The Y-axis
refers to the log fold change in the poor prognosis subgroup, compared to the
good prognosis subgroup.
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Overall, my intra-grade glioma microRNA comparison of good and poor
prognosis only yielded three microRNAs; the oncomiR miR-21, the apoptosis
regulator miR-148a, and the tumour suppressor regulator miR-222 that could
serve as candidate predictors of poor prognosis in both glioblastoma and GIIIA
(Zhu et al., 2008; Quintavalle et al., 2012b; Kim et al., 2014). This low overlap
between glioblastoma and GIIIA candidate prognostic microRNAs raises the
question as to whether it is possible to identify a common microRNA signature
for high-grade glioma, or whether the statistical power of the intra-grade
comparison approach is insufficient to reveal a glioblastoma/GlIIA poor
prognosis signature. To address this question and to increase statistical power
in my differential microRNA expression analysis, | combined the z-values

(Zr combined) from the good and poor prognosis groups of GIIIA (Z;1) and
glioblastoma (Z;,v) accounting for differences in microRNA expression profiling
platforms using a computational algorithm based on the z-score merging
performed by Stouffer (Stouffer, 1949). This was suitable because Stouffer
showed that division by standard error generates a value most similar to a
merged z-score. The probability that the score could be less than the z-score
was then determined using the pnorm function and 1 minus this value
generates a p-value. The resulting p-value was then multipled by 2 for a two-
sided test.

Z-score merging used the formula for each microRNA, r, including fold change,
FC, and standard error (SE):

Zon=log(FCru)/SErmi Zrv = 10g(FCrv)/SE; v
Z: combined = (Zein + Zew) v 2

Under the null hypothesis that Z, ; and Z; vy are both N(0,1) and independent,
Z; combined Will also be N(0,1) and can therefore be interpreted as a z-value.
This approach yielded a pool of 216 microRNAs whose differential expression
was analysed across all relevant poor/good prognosis glioblastoma and GIIIA
TCGA specimens, thereby creating z-scores and p-values for the individual
microRNAs. Using the multiple testing corrected p-values for each microRNA
yielded 63 microRNAs that significantly change expression between good and
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poor prognosis high-grade gliomas as indicated by a >2 fold change of standard
deviations from the mean microRNA fold change (FDR<0.05) (Fig. 3.4 A).
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Figure 3.4. Differentially expressed microRNAs in good and poor
prognosis groups of glioma point to OP-related pathways.

(A) Plot of the microRNAs differentially expressed between good and poor
prognosis groups when data from glioblastoma and GlIIA are combined. 63
microRNAs are significantly altered between good and poor prognosis groups
(p<0.05, in red) and have a z-value of at least 2/-2. (B) The targets of the 63
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microRNAs associated with patient outcome were predicted and pathway
analysis revealed a significant enrichment of genes involved in several OP-
related pathways.

This result suggests that a pool of 63 microRNAs form part of a molecular
network that is associated with and/or drives aggressive clinical behaviour in
high-grade gliomas. To identify the molecular pathways that are likely regulated
by the 63 candidate prognostic microRNAs, | predicted their mRNA targets
using standard bioinformatic approaches. In order to focus on the mRNA
targets that are involved in prognosis, | first enriched for those that are
associated with either good or poor prognosis. | compared good prognosis and
poor prognosis mMRNAs in GIIIA and glioblastoma (Table 3.1) using the same
criteria as those described above for microRNA analysis. The mRNA data (z-
scores and p-values) for GIlIIA and glioblastoma were merged resulting in 4259
mRNAs with significant (p<0.05) > 2-fold changes. The targets of the 63
microRNAs associated with patient outcome were predicted from the 4259
MRNAs using the target prediction databases Miranda, Pictar and Targetscan
(Krek et al., 2005; B.P. Lewis et al., 2005; Miranda et al., 2006). In order to
improve target prediction and reduce false positives, | only used targets that
were present in at least two of these databases, resulting in 1618 predicted
targets for the microRNAs. Subsequently, | entered these mRNAs into the
Metacore software and carried out a pathway analysis revealing significant
enrichment of genes involved in several cancer-related pathways (Fig. 3.3 B).
These pathways included IGF and AKT (V-Akt murine thymoma viral oncogene)
signalling, epigenetic and transcriptional regulation, growth factor, androgen
and chemokine- effectors and cytoskeletal remodelling. Interestingly, four of
these pathways are linked with OP cell fate decisions such as survival,
proliferation, differentiation, and myelination. This provides correlative evidence
to suggest that the microRNAs associated with survival in high-grade glioma
have roles in OP differentiation pathways.

3.3.2. Determination of the role of OP gene expression in prognosis of
glioma.

To further determine whether the activity of microRNAs in different cell stages of
the OP differentiation pathway are associated with malignant glioma patient
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outcome, | accessed published data describing microRNA profiles associated
with stages in the differentiation of ESCs into oligodendrocytes (Letzen et al.,
2010). My initial hypothesis was that presence of less differentiated
oligodendrocyte cells in glioma confers a poorer prognosis. To this end, |
questioned whether microRNA expression changes throughout OP
differentiation resemble the prognostic microRNA expression pattern of
malignant glioma. First, | calculated fold changes between each progenitor cell
type in the OP differentiation pathway and correlated these with the fold
differences between poor prognosis and good prognosis samples of GIIIA or
glioblastoma (Fig. 3.2 A-B). Only microRNAs that are significantly differentially
expressed between each stage of the OP differentiation pathway and with at
least a 2-fold change in expression were used. The OP2 to OP3 stage was
omitted, as there were too few differentially expressed microRNAs between
these cell types, suggesting that these two cell stages don’t have a significantly
altered microRNA expression pattern. In GIlIA, the microRNA expression
differences between good and poor prognostic cases correlated directly with the
changes associated with differentiation from NP to GP (correlation coefficient =
0.50, p<0.05), which was not evident in glioblastomas. In both grades, the
expression differences between good and poor prognosis showed a negative
correlation with the changes associated with differentiation from OP1 to OP2
(correlation coefficient -0.54 for GIIIA and -0.47 for glioblastoma, p<0.05) (Fig.
3.5).
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GIIIA GBM ) Correlation coefficient

prognosis prognosis 1.0

Embryonic stem cell (ESC) to embryoid body (EB)

Embryoid body (EB) to neural progenitor (NP)

Neural progenitor (NP) to glial precursor (GP)

- Glial restricted precursor (GP) to OP stage | (OP1)
- OP stage | (OP1) to OP stage Il (OP2)

OP stage Il (OP3) to oligodendrocyte lineage (OL)
Neural stem cell (NSC) to neural progenitor (NP)

Embryonic stem cell (ESC) to haematopoietic stem cell
(HSC)

Figure 3.5. Correlation coefficients comparing the fold change of
microRNA expression between each stage in the OP pathway and the
GllIA and glioblastoma good and poor prognosis groups.

This heatmap represents coefficients from correlation tests between in vitro
microRNA expression data and the prognostic microRNA expression data. The
top 6 rows are data from correlations with Letzen et al. The bottom rows refer to
correlations with data from Goff et al. and Risuefio et al (Goff et al., 2009;
Risuerio et al., 2012). Significant correlations (with p-value generated using
p=r/Sqrt(r*2)/(N—2)) were between neural progenitor and glial restricted
precursors in grade lll data (p=0.009) and OP1 to OPZ2 in both grade Ill and
GBM (p=2. 7e” and p=4.2¢™ respectively). The highest negative correlation is
the transition from OP1 to OP2 and the highest significant positive correlation is

the transition from GP to OP1 in glioblastoma.

Next, | tested whether these correlations are a result of non-specific correlations
with any ESC differentiation pathway (including non-neural lineages), or
whether these high correlations are specific for neural differentiation. | used
expression data from a study comparing microRNA expression between ESC
cells and hematopoietic progenitors (HPs) and between neural stem cells
(NSCs) and neural progenitors (NPs) (Goff et al., 2009, Risueio et al., 2012;). |
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correlated the differences in the differentially expressed microRNAs between
ESCs and HPs and NSC and NP cells with the differential microRNA
expression patterns between good and poor prognosis in GIlIIA and
glioblastoma. This approach revealed no significant correlations (p>0.05)
indicating that the microRNA expression differences between good and poor
prognosis of malignant glioma are specifically correlated with microRNA
expression changes in OP differentiation, and not with other differentiation
pathways (Fig. 3.5).

A notable difference in good and poor prognosis GIlIIA patients studied here
was their IDH mutation status (Table 3.1), which is used to class<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>