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ABSTRACT 
Machine-learning has emerged as a paradigm for real industrial processes modelling 

and classification; Industrial manufacturing processes are increasingly dependent on 

data-driven modelling and machine learning support for large process structures so as to 

recognise complex patterns, reduce cost management, enhance quality control measures 

and make intelligent decisions based on the measured data. Complex industrial 

processes, e.g., the rails manufacturing process, are known to include hundreds of sub-

processes. Hence the overarching purpose of this research is to develop a novel and 

efficient rails data classification framework to address several challenges associated 

with complex rails manufacturing process operated by Tata Steel Europe. The 

modelling problem is not trivial as the data are highly imbalanced with the number of 

good rails being much higher than the rejected rails. Another major challenge in data-

driven modelling is associated with the volume and properties of the data. 

This thesis contains four key contributions. Firstly, data pre-processing and feature 

selection environment based on RapidMiner and Matlab packages is presented to deal 

with complex and large scale data. An imbalanced problem is dealt with via two 

different approaches i.e., bootstrapping-based over-sampling and under-sampling. Such 

approach succeeded in selecting the most important variables to rails production process 

and providing more balanced rails dataset. Secondly, an iterative support vector 

machines with bootstrapping-based over-sampling and under-sampling classification 

approach is presented. The novelty and value of the integrated strategy lies in iteratively 

addressing the volume and complexity scenarios of rails data while maintaining good 

generalization capabilities. The next contribution lies in producing a new approach to 

rails data classification via iterative fuzzy support vector machine (IFSVM)-based data 

sampling. The proposed method incorporates the class distribution advantages of 

efficient data sampling and the unique learning mechanism of IFSVM. This technique 

delivers an optimal trade-off between the execution time and the overall classification 

performance. 

In the final contribution, a new integration strategy combining IFSVM with fuzzy c-

means clustering (FCMs) is proposed. FCMs enabled the proposed IFSVM to be 

applied to a small scale dataset thus reducing the number of support vectors. The 

integration concept potentially inhibits the computational complexity of the proposed 



	
  

	
  
	
  

IFSVM and thus improves the classification performance since the complexity of 

computations is proportional to the number of support vectors. 
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Chapter 1 

 

Introduction 
 
 

1.1  Background and Motivations  

Today’s rails transport offers one of the safest cargo and passenger transport 

systems around the globe. Nowadays, a large capital investment and innovations 

are required in steel rails and locomotive power since the cost of laying down the 

rails infrastructure can be very high where safety measures, inspections and 

maintenance must be guaranteed for the machinery and the overall infrastructure. 

However, high quality materials can reduce maintenance costs and improve 

reliability. Tata Steel Europe is one of the leading steel manufacturing companies 

and supplier of high quality rails products.  Process enhancement, investment, 

research and development allow the company to improve products quality and 

reduce manufacturing costs required by the rails production. This research deals 

with investigating rails manufacturing process operated by Tata Steel Europe, 

assessing the quality of final products of rails production route and design 

classification frameworks based on machine learning paradigms.  
 
The future competitiveness of the rails industry depends significantly on its ability 

to tailor the produced rails to meet desired specifications with respect to the 

mechanical properties and quality assurance. Industrial process plants (e.g., rails 

manufacturing route) are usually heavily equipped with a large number of 

instruments (e.g., sensors) to deliver data for process production quality analysis 

and control.  The collected manufacturing data contains useful information and 

knowledge that would be further integrated with the main manufacturing process to 
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enhance products, reduce costs and improve decision making. This volume of data 

could not practically be visualized and analysed by hand within a reasonable 

timeframe. Accordingly, data-driven modelling approaches play a crucial role in 

dealing with large scale-datasets, nonlinear input-output mapping, learning to 

recognise complex useful patterns and making intelligent decisions based on the 

data.  
 

The quality of rails can be either good or bad based on non-destructive testing 

(NDT) and human-based knowledge. This research focuses on the small number of 

rejected rails verified via an automatic and manual ultrasonic testing for the 

presence of internal irregularities such as cracks and flaws, to find root causes as 

well as identifying bottlenecks in the production route and thus applying 

appropriate control measures to improve process yields (reduce defects). The data 

accumulated from the rail manufacturing process is the culmination of more than 

two years of production period. The rail production line consists of three key 

production stages, steel making, continuous casting, rolling and finishing as will be 

shown explicitly in chapter 3. 
 

1.2  Problem Statement 
 
The original rails data collected from the rails production route is very large, with 

over 200 variables and over 65000 data records covering a two-year production 

period. Large scale data sets mean that data manipulation is not straight forward 

and therefore data classification is not possible. A Tata Steel process expert will 

normally be closely involved in the data pre-processing stage to clarify variable 

correlations and redundancy among data items and therefore construct a better set 

of rails data. Due to non-uniform rails data formats and huge volumes of rails data, 

it is a true challenge to optimise the rails manufacturing process of knowledge 

acquisition from data with machine learning-based techniques. Accordingly, data 

pre-processing environment including a solid variable selection framework for the 

rails manufacturing process will be designed for inputs and variables selection. It is 

worth mentioning that all potential inputs were measured during rails production 

process and where consequently an enormous increment of rails data inputs occurs. 

The influence of these inputs to the final product varies and thus should be assessed 

for the following reasons:    
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• Computationally expensive training procedure due to the ‘curse of 

dimensionality’ is more likely to weaken the overall performance of the 

models and classifiers as the number of input variables increases. Thus, an 

input reduction procedure and/or a powerful hardware equipment may be 

required. 

• Redundant and insignificant variables may disturb the true input-output 

relationships. 

Many traditional approaches to data-driven modelling and machine-learning 

classification problems assume that the target classes share similar prior 

probabilities. However, this assumption is grossly violated in many industrial 

problems. More often than not, it is the case that the ratios of prior probabilities 

between classes are extremely skewed. An initial inspection for rails data has 

shown that there are only few rejected rails. This situation is known as the 

imbalanced dataset problem. The amount of imbalance varies depending on the 

problem. A data set is imbalanced if the samples belonging to the majority class 

outnumber the samples belonging to the minority class. Since standard machine 

learning techniques and other modelling algorithms yield better classification 

performance with balance data sets, quality classification is not reachable with the 

current rails data set structure. The classification would always be biased in favour 

of the dominating class (majority), while the data belonging to the minority class 

tend to be misclassified. Therefore, direct data resampling approaches are to be 

applied to change the class distribution of rails data. Most studies designed to 

address the imbalanced dataset problem have dealt with low dimensional data. 

However, rails dataset gathered from rails manufacturing route involve extremely 

high dimensionality.	
   A common solution to the imbalance problem is data 

resampling. The most widely applied data sampling strategies are external methods, 

such as over-sampling and under-sampling or internal methods such as cost 

sensitive learning. Other algorithms combine the aforementioned methods to 

minimize their drawbacks and enhance classifiers’ generalization performance. 

Both data oversampling and under-sampling strategies will be applied in this 

research to rails dataset.  

Another problem towards a successful rails data classification is the ability of 

machine learning-based paradigms to effectively tackle the noise and outliers that 

exist in rails dataset. Consequently, a fuzzy-based machine learning paradigm titled 
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iterative fuzzy support vector machine (IFSVM) is presented to address such 

concern. Fuzzy support vector machine (FSVM) works similarly to support vector 

machine (SVM), except that a specific membership degree is given to each data 

point so that various data points can make different contributions to the decision 

surface learning. The FSVM model prevents noise and outliers from creating 

narrower margins. However, in the SVM model case, equally training each data 

point may cause over-fitting. The calculation of membership values is based on the 

sparse distribution of the training points, with outliers and noise being assigned 

proportionally smaller membership values than other points. 
 
The final challenge in rails data classification is the curse of dimensionality. A 

Sequential Minimal Optimization (SMO) technique will be employed with machine 

learning iterative-based scheme (i.e., ISVM and IFSVM) to break the quadratic 

optimization (QP) problem into a series of small QP problems. Fuzzy C-means 

(FCM) clustering scheme will also integrated with the proposed machine learning-

based paradigms not only to solve the above concern but also to reduce the number 

of support vectors and enhance classification performance. 
 
1.3 Aims and Objectives 
 
The aim of this research is to design classification architectures to deal with 

imbalanced rails data provided by Tata Steel Europe via machine learning-based 

paradigms. The rails production system is multidimensional with more than 200 

input variables. The output that represents the quality of rails is either good or bad 

based on non-destructive testing (NDT). 

Therefore, the objectives of this project are as follows: 
 

1.   To develop a new framework for identifying the most relevant data variables 

in rails production route via correlation analysis and neural-fuzzy based 

model input selection approach to eliminate redundant information and 

construct a parsimonious dataset that represent the original rails production 

data. 

 

2.  To develop a modelling technique based on an adaptive neuro-fuzzy 

inference system (ANFIS) classification with fuzzy C-means clustering. 
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3.  To address the class imbalance problem of rails data via applying data 

resampling schemes i.e., bootstrapping-based over-sampling and under-

sampling. 

4.  To develop a machine learning-based paradigm titled iterative support vector 

machine (ISVM) with bootstrapping-based over-sampling and under-

sampling for rails data classification. 

 
5.  To develop an iterative fuzzy support vector machine classification algorithm 

with bootstrapping-based over-sampling and under-sampling and extend the 

developed ISVM modelling technique to include fuzzy set theory. 

 
6.  To optimise the proposed IFSVM via designing an integration strategy with 

FCMs clustering to reduce the number of support vectors and achieve better 

generalisation ability. 

 

1.4 Thesis Outline and Contributions 
 
The overarching aim of this research is to develop generic machine learning-based 

paradigms with applicability in various engineering and scientific disciplines. In 

this particular work, the proposed techniques aim to cope with various challenges 

that exist in rails quality data provided by Tata Steel Europe as described in Section 

1.2. The sub-sections below outline the major contributions of the thesis and 

provide a brief description of each chapter. 
 

The objective of Chapter 2 is to provide a literature review that covers a wide 

perspective of knowledge discovery in data bases and data mining, including 

machine learning-based paradigms. Available machine learning and data mining 

techniques from a variety of applications and research disciplines are reviewed 

providing the methodology of technique selection. Most recent and novel machine 

learning approaches are classified and discussed, providing the motivations for 

choosing data-driven machine learning approaches. 
 
Chapter 3, titled ‘rails through manufacturing process’ presents an overview of 

rails manufacturing route operated by Tata Steel Europe. A clear explanation is 

given in this chapter of the rails-through process data infrastructure and key 

production stages of rails production route i.e., steel making, continuous casting, 

rolling and finishing. This chapter also emphasises briefly the current research on 
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rails data modelling. Finally, the challenges and opportunities related to rails 

manufacturing data are addressed. 
 
Chapter 4, titled ‘rails data pre-processing, neural-fuzzy model input selection 

and artificial neural network modelling’ presents the new rails data processing 

framework based on exploratory data analysis and input variables selection scheme 

to find the most important inputs and a parsimonious model data set. A well-

structured environment based on RapidMiner software, excel and Matlab is 

designed to handle the curse of dimensionality of rails data due to the fact that 

complexity of models and classifiers strongly depends on the number of input 

dimensions and the size of data samples. Applying the above mentioned techniques, 

will identify data outliers, redundant variables missing value, correct wrong data 

entries and most importantly select the most relevant inputs to the rails 

manufacturing process. This chapter also introduces an adaptive neural-fuzzy 

inference system classification technique based on fuzzy C-means Clustering. The 

integration strategy of ANFIS with FCMs scheme aims at yielding a good 

generalization ability in terms of performance accuracy and consistency. 
 
Chapter 5 introduces a new machine-learning classification technique titled 

‘iterative support vector machines with bootstrapping-based over-sampling and 

under-sampling’. The proposed algorithm tackles the problem of learning from 

severely imbalanced Rails dataset via a new iterative support vector machine 

algorithm with bootstrapping-based over-sampling and under-sampling, combining 

the good generalisation ability of SVMs with the class distribution advantages of 

resampling techniques. The novelty and value of the presented classification 

formulation lies in simplifying the complexity (curse of dimensionality) of rails 

dataset by integrating data sampling schemes with iterative support vector 

machines. This contribution was presented in the 19th World Congress of the 

International Federation of Automatic Control IFAC, Cape Town, South Africa, 

August, 2014. 
 
Chapter 6 is inspired by the idea of margin maximization to promote the 

generalisation capacity of the ISVM classifier presented in Chapter 5 via utilizing 

fuzzy logic concept. In this chapter a fuzzy margin is proposed and optimised to 

boost the generalisation capacity of ISVM. The idea of SVMs is reformulated into a 

new FSVM by assigning a fuzzy membership function to each data point. 

Therefore, a new formulation titled ‘Iterative fuzzy support vector machines 
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classification with bootstrapping-based over-sampling and under-sampling is 

presented. This integration concept is applied to two rails datasets and reveals a 

significant improvement in classification performance of the proposed IFSVM in 

contrast to ISVM. Another contribution is also presented in this chapter defined as 

iterative fuzzy support vector machines-based fuzzy C-means (IFSVM-FCMs) 

clustering. Fuzzy C-means clustering FCMs enables the proposed IFSVM learning 

algorithm to be applied on small scale datasets without high computational costs. 

Instead of using large dataset, the integration concept with FCMs that is used to 

provide the classifier with a smaller dataset proves to be promising and demonstrate 

several advantages not only in providing better generalization and accuracy but also 

in drastically reducing the number of support vectors. Part of this work will be 

presented in the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE 2015), August, Istanbul, Turkey, 2015. It is worth mentioning that the radial 

basis function (RBF) Kernel-type applied in Chapters 5 and 6 with the proposed 

machine learning-based paradigms could be seen as a sensible alternative to the use 

of complex polynomials. Radial basis function offers superior generalization 

performance.  

Chapter 7, titled ‘conclusions and future work’, summarises the main findings of 

this thesis and also outlines recommendations for future work. 
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Chapter 2 

 

A Review of Applications of Machine-
Learning for Large Scale Complex 
Systems  
 

 

2.1  Introduction 

Today’s manufacturing consists of different types of processes. These processes are 

complex and caught between the growing need for cost minimization, product 

quality improvement, process safety and short manufacturing time. For these 

requirements to be achieved, the industrial process parameters have to be chosen 

very carefully. The selection of optimum process parameters has a significant 

influence on reducing manufacturing costs, enhancing productivity of the process 

and ensuring a better quality of products Venkata Rao, 2011. However, for 

manufacturing process optimization, the major challenge one may encounter is the 

fact that such processes are complex and are highly non-linear. Due to the high 

number of influential parameters and massive complexity of many industrial 

processes, conventional modelling and optimization methods are no longer 

adequate.  Advanced modelling and data classification techniques have become 

increasingly a crucial target for complex manufacturing process modelling, 

classification and optimization. 
 

The primary objectives of this chapter are to provide a broad overview of the 

theory and concepts relevant to large complex systems modelling and the existing 

research pertinent to the problem of rail manufacturing process data modelling and 

classification. It is also to deliver a methodology: how the most appropriate 
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approaches to rails manufacturing process modelling and classification are 

selected?   
 

Available machine learning and knowledge discovery in databases techniques 

are explored from a variety of application disciplines and research. The following 

review of the literature is organized based on these subject areas where the aims are 

to address the key research issues of extracting knowledge and interesting patterns 

from large complex systems and the limitations and capabilities of existing 

approaches. It also identifies the current trends and common difficulties, provides 

some examples of successful applications and outlines the challenges with the 

problem of rail manufacturing process modelling and classification. It is vital to 

discuss the definitions and methodologies employed in the process of classifying 

and modelling large complex systems to benefit those who are not familiar with this 

domain.  
 

The last section of this chapter will outline some challenges in applying data 

mining to a real complex manufacturing process i.e., the curse of dimensionality 

and the class imbalance problem. 
 

2.2  Data Driven Modelling Approaches 

As an engineering discipline, data-driven approaches comprise a technology that 

describes various complex behaviours, and have recently been an attractive 

alternative for modelling many complex industrial systems. Data driven modelling 

consists of analysing the system’s behaviour straight forwardly form historical data  

and finding correlations and relationship between the input and output variables 

without any explicit knowledge of the physical behaviour of the system or/and 

human intervention (Michell  1997; Solomatune et al. 2008).  
 

A distinct feature of data-driven modelling techniques is that no prior 

information about the process under study is necessary. Such techniques play a 

crucial role in data modelling, optimization and control of large complex industrial 

processes for which other mathematical based methods are expected to fail in 

identifying the bottlenecks, because of the difficulty in describing unexpected 

disturbances and in handling the complexity of such systems as they often consist 

of several sub-processes. 
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Industrial process plants are usually heavily equipped with a large number of 

instruments. The primary objective of such instruments is to deliver data for 

process production quality analysis and control. The collected manufacturing data 

contains knowledge and useful information that would be further integrated with 

the main manufacturing process to enhance products, reduce costs and improve 

decision making.  

It was approximately two decades ago when researchers from academia and 

industry began to explore and benefit from big size data being measured and stored 

in online servers by constructing predictive models based on this data. The concept 

of ‘big data’ (data from multiple sources) has since emerged as an important 

vehicle for exploiting quantitative information to extract meaningful knowledge.  

In the last two decades data-driven modelling approaches established themselves 

as a remarkable alternative to the standard means for classification and modelling 

of large complex processes. The term industrial complex systems here refers to a 

class of problems for which the volume of data variables is either significantly large 

and/or each of the data variables has a behaviour which is entirely unknown or 

individually unpredictable, but in spite of this, the system as a whole can possess an 

analysable properties. Industrial manufacturing processes are increasingly 

demanding data-driven modelling and machine learning support for large process 

structures containing hundreds of sub-processes. Technically, such process 

structures are categorized by the solid relation to the assembly of products (e.g., 

Rails production Process). 

Data-driven methods for data analysis and systems learning have to a great 

extent been probabilistic, but recently there has been a potential increase in the 

development of other types of data driven systems, especially with the machine 

learning community. Recently, and within the machine learning community, data-

driven methods have been significantly developed, achieving the same level and 

even a better overall performance in contrast to other modelling techniques. A 

simple Schematic of the general approach to data driven modelling is presented in 

Figure 2.1 (Solomatune et al. 2008). 
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Figure 2.1: Schematic of general approach to data-driven modelling (Solomatune et 

al. 2008) 
 
The General principle that the date-driven modelling process follows consists of:  

• Study the problem. 

• Data collection.  

• Data preparation. 

• Feature selection. 

• Build and test the model.  

These core steps generally follow the so-called Occam’s razor principle 

(Mitchell 1999; Solomatune et al. 2008). In data-driven modelling, it is not only the 

model parameters that are subject to optimization but also model’s structure. There 

is a considerably increasing attention given to data-driven models particularly for 

the purpose of production quality enhancement, process control and system 

performance monitoring. However, great challenges arise due to the complexity of 

the industrial processes in both structure and automation degrees (Yin et al. 2014). 

In the Engineering domain, large complex systems development (e.g., Rail 

manufacturing process) necessitates the coordination of hundreds of sub-processes. 

One of the biggest challenges of learning from such complex systems is 

computational efficiency (Han et al. 1993). Another major challenge in data-driven 

modelling is associated with the volume and properties of the data. Practically, the 

data accumulated from industrial processes are strongly co-linear (Kadlec et al. 

2009).  

As described in Chapter 1, the rail manufacturing process is a complex process 

that includes hundreds of data variables and thousands of data records are difficult 

 Real System 
(Process) 

                 
(Data-Driven) 

Model  

  

Predicted Output 
𝑌!  

Observed Output   
      𝑌  Input Data 

Model Training / 
error minimization 

!𝑌 −   𝑌!! 
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to be modelled either via knowledge based approaches (linguistics) or via physical 

based approaches.  

Most data-driven methods which represent large advances on most standard  

experimental modelling consist of the following overlapping fields (Solomatine and 

Ostfeld 2008): 

•  Soft Computing: It includes evolutionary computing, fuzzy logic and 

neural networks; it also includes other areas within machine learning. 

•  Artificial Intelligence: it is referred to as the study of how expert 

intelligence (human based knowledge) can be integrated into computers. 

• Computational Intelligence: it is known to be very close to computational 

Intelligence field but with special emphasis given to fuzzy rule-based 

systems, artificial neural networks and evolutionary computation. 

•  Machine Learning: they are considered as a sub-area of artificial 

intelligence that focuses on computational Intelligence’s theoretical 

foundations.  

• Data mining in databases and Knowledge discovery (KDD) focuses on the 

development of algorithms and techniques for making sense of data. Data 

mining is considered as a part of a wider KDD.    

According to Zain et al. (2012), Garg et al. (2013), Khashei and Bijari (2010) 

and Sadoyan et al. (2005), one of the commonly used data-driven approaches is 

artificial neural networks. They are self-adaptive tools that employ universal 

function approximation to estimate any function with arbitrary accuracy. Artificial 

neural networks are computational networks that attempt to simulate the networks 

of nerve cell (neurons) of the biological (animal or human) central nervous systems 

(Graupe 2006). Neural networks-based approaches have gained a significant 

reputation in solving data mining manufacturing problems. Garg et al. (2014) 

introduced an empirical data driven modelling of rapid prototyping (RP) process 

i.e., fused deposition modelling. A comparative analysis between the modelling 

techniques such as regression analysis and artificial neural networks (ANNs) was 

discussed. Another study was proposed by Asiltürk and Çunkaş (2011) to develop 

surface roughness model based	
  on artificial neural network and multiple regression 

to predict surface roughness in steel.	
   An experiment was designed to measure 
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cutting speed, feed and cutting of depth. A high accuracy of surface roughness was 

estimated by ANN in contrast to multiple regression models. Other examples of 

data-driven approaches include Bayesian approaches (Kumar and Pal 2011), hidden 

Markov Model (Tobon-Mejia et al. 2012), fuzzy rule based systems (Zadeh 1965). 

Artificial neural networks ANNs have also been described as a fault diagnosis 

paradigm (Chen and Liao 2002; Hoskins et al. 1991). Liao et al. (2001) presented a 

multi-layer perceptron neural network type on modelling welding data. Liao and 

Wen (2007) published a survey about the application of ANN as a powerful 

classification and clustering tool from 1995 to 2005. ANN has been also introduced 

as a data-driven approach for quality improvement in industrial process. The neural 

network model presented by Oh et al. (2001) was used to establish the relationship 

between quality variables and process. The proposed framework succeeded in 

identifying the main cause of malfunctions and also provide parameter 

enhancement.  

The availability of large amounts of data has identified a serious problem as to 

how to extract a useful knowledge. Despite the useful analytical properties of 

artificial neural network approaches, they are well known for not being able to 

handle large size databases and their practical capabilities are limited by the curse 

of dimensionality (Bishop 2006). They also require a large computational time for 

big data analyses (Sadoyan et al. 2005). Their solution to the optimization problem 

relates to local minima whereas other learning techniques such as Support vector 

machine point at global maxima (Trotter et al. 2001). Hence, artificial neural 

networks cannot necessarily be the appropriate choice for modelling large complex 

systems. 

2.3  Knowledge Discovery in Databases and Data Mining (KDD) 

Across wide application areas, data are being accumulated and stored at a rapid rate 

and large scale. The availability of such large volumes of data has led to the 

problem of how to extract a meaningful oriented knowledge. Consequently, new 

advanced computational methods and tools have been developed to help experts 

and researchers extract knowledge and useful patterns from large databases (Fayyad 

et al. 1996). These tools and paradigms are the subject of knowledge discovery and 

data mining fields. Knowledge discovery and data mining (KDD) is the overall 
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process of finding useful knowledge, regularities and relations among the observed 

data (Fayyad. et al. 1996; Giudici 2003; Klosgen and Zytkow 2002). Fayyad et al. 

(1996) define the process of KDD as the nontrivial process of finding novel, 

ultimately understandable and potentially effective patterns in data.  Such a process 

usually consists of the following steps: (i) data preparation, (ii) data pre-processing, 

(iii) data mining, (iv) data evaluation (v) implementation (Köksal et al. 2011). Data 

mining is usually seen as a single step of KDD. The inclusion of data mining and 

the extraction of useful patterns in databases are also known by different names by 

various communities (e.g., information discovery, knowledge extraction, pattern 

processing and information harvesting) (Fayyad. et al. 1996). The overall structure 

of KDD process is illustrated in Figure 2.2. 

 

 
 

Figure 2.2: The architecture of knowledge discovery process (Fayyad. et al. 1996) 

 
 In practice, knowledge discovery and data mining techniques have broadly and 

successfully been applied to provide an effective vehicle for quality improvement 

and a better control of industrial products and processes. The rail manufacturing 

process is complex and faces major challenges related to product quality, process 

monitoring and fault diagnosis (Harding et al. 2006). Han and Kamber (2001) and 

Harding et al. (2006) stated that the type of knowledge to be explored defines the 

data mining algorithms to be executed. Several KDD and data mining techniques 
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have been developed to overcome these problems including data classification, 

prediction, concept description regression and clustering techniques (Harding et al. 

2006). A set of tasks can be accomplished via practical data mining in many 

problems of many application areas (e.g., classification, estimation, clustering and 

prediction).  
 

 Wu et al. (2008)	
  has presented and discussed the top 10 commonly used data 

mining techniques in the last two decades, some of which are general and 

applicable to many problems in any field (Berkhin 2002), whereas others are 

specifically tailored to tackle a certain class of problems. Köksal et al. (2011) has 

pointed out that data mining techniques have recently applied and successfully 

solved quality and control problems of large complex systems. 
 

Pham and Afify (2005) and Choudhary et al. (2008) have also reviewed data 

mining applications in industrial domains. They discussed several paradigms and 

evaluated their advantages and drawbacks in different real applications where they 

have been effectively employed. Harding et al. (2006), Feng and Kusiak (2006),  

and Choudhary et al. (2008) have carried-out a survey on the applications of data 

mining in engineering design and manufacturing and clearly show the potential 

scope of data mining in these fields in accomplishing competitive advantages in 

contrast to other techniques. The main advantage of data mining in contrast to other 

conventional techniques is that the collection of data required to be analysed is 

performed during normal runs of the industrial process under study. Consequently, 

there is no need to dedicate a special machine for data collection. 
 

Practically, the area of systems modelling in manufacturing environments is a 

fertile research ground. Different techniques and tools for exploiting data have 

recently been proposed. In fact, data mining techniques can be mainly divided in 

two categories: classification and clustering techniques (Mucherino et al. 2009). In 

practice, the main targets of data mining concept (prediction) can be achieved using 

the primary data mining methods i.e., classification and clustering. Figure 2.3 

shows data mining major strategies.  
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Figure 2.3: Data mining and machine learning core strategies 
 
 

The data mining and machine learning strategy is divided into two categories: 

supervised learning and unsupervised learning (Bishop 2006). Data classification 

and prediction are the core areas of supervised learning. Within the category of 

unsupervised learning, one of the fundamental tools is clustering which seeks to 

extract knowledge and information from unlabelled data. The idea of supervised and 

unsupervised learning will be briefly demonstrated in the following section.	
  

 

2.4   Supervised and Unsupervised Learning	
  

The two fundamental classes of learning methods are supervised and unsupervised 

learning. In supervised learning, the cases i.e., data points and their labels are both 

known and provided to the algorithm (Fung 2001). The aim is then, to learn the 

concept in the way that when a new case appears to be classified, the algorithm 

should predict a label for this case (predict the correct output value for any valid 

input objects) (Fung 2001); (Bishop 2006). In other words, supervised learning is 

related to “learning by example” techniques, which means that examples of 

problem are presented to a learning agent e.g., Neural Networks, Support vector 

Machines as well as the solution. The goal is then, for the learning agent to provide 

good solutions to the similar unseen problems (Oliver 2004). The learned model 
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can be represented in different forms either mathematically or as classification 

rules. As described in Figure 2.3, one of the common supervised learning 

techniques is data classification.  

Unlike supervised learning, unsupervised learning refers to the problem of 

finding a hidden structure (clusters, patterns) in unlabelled data (Duda et al. 2001). 

In other words, unsupervised learning is defined as given a training data that is not 

hand-labelled and attempts to find patterns in the data that can be used to determine 

the correct output value for new data instances (Duda et al. 2001). 

Unsupervised learning can be considered as “trial-and-error” learning which 

means that there is no error or optimal signal to evaluate desirable solutions (Oliver 

2004). In machine learning, procedures that use unlabelled data are said to be 

unsupervised. In practice, if the experimental data is not hand-labelled by their 

category membership it is not possible to learn and explore its internal features. To 

cover this dilemma, some assumptions are to be considered (Duda et al. 2001): 

1) Prior probabilities for each observer are known; 

2) The class-conditional probabilities are also known; 

3) The values of parameter vector are known; 

4) Date category labels are unknown. 

 
Unsupervised Learning is a closely related task to the problem of density 

estimation and includes many techniques that aim to extract and demonstrate the 

key specification of the data (Duda et al. 2001). Most algorithms employed in 

unsupervised learning are based on data classification and data mining methods for 

the purpose of pre-processing the data. One fundamental approach to unsupervised 

learning is data clustering (Fung 2001). The next section will provide more thorough 

review of classification methods and how these techniques relate to specific data 

mining applications (manufacturing processes). 

 

2.4.1 Classification  

In practice, the nature of the data effectively governs whether the model is suitable 

for classification, estimation, or prediction (Chen et al. 1996); (Roger and Girolami 

2011). Classification is the learning technology that classifies the data into one of 

the pre-defined classes (Fayyad et al. 1996). The input space is divided into 
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decision regions whose boundaries are called decision surfaces (Bishop 2006). 

Classification is a functional learning tool in many manufacturing areas, for 

example, in rail manufacturing process, defected rails are classified to find patterns 

and derive the rules to enhance productivity. 

There exist a wide variety of classification techniques such as Radial basis 

function, support vector machine (SVM), neural networks, nearest neighbour, 

Bayesian classification and decision trees. Classification techniques are applied in 

many application areas including fraud detection, speech recognition and medical 

diagnosis (Alpaydim 2010); (Choudhary et al. 2008). Other techniques are also 

utilized for classification purposes such as genetic algorithm (GA), rough set 

theory, fuzzy logic and various hybrid methods (Han and Kamber 2006).  It is 

important to highlight that each technique provides better performance than others 

when applied to a certain problem. Therefore, there is no universal machine 

learning and data mining tool that suits every problem (Fayyad et al. 1996).  

A major challenge for data classification algorithms is the structure of the data. 

Typically, the data accumulated for industrial manufacturing processes are strongly 

co-linear with high level of noise and redundancy. Apart from the above stated 

challenges, these data are most likely to include hundreds or/and thousands of data 

records (Kadlec et al. 2009).	
  	
  

Knowledge acquisition and machine learning are well known problem in 

building advanced expert systems. Irani et al. (1993) developed one of the earliest 

expert systems for modelling and diagnosis for the semiconductor manufacturing 

process based on knowledge extraction. The designed paradigm is reliable with the 

data and meets the expectations of process experts. A broad discussion about the 

applicability of data mining techniques on in-line control, automatic default 

classification and inspection is given by (McDonald 1999). A proposal has also 

been presented to extend these algorithms to enhance the products reliability and 

apply final testing procedures phases. Braha and Shmilovici (2002) presented three 

data classification techniques (neural network, decision tree and composite 

classifier) for wafer cleaning process. The objective of the new classifier named, 

the advanced wafer cleaning algorithm, was to make the cleaning process more 

understandable by classifying the experimental data into pre-defined classes and 

predict to which the new data belong.   
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Artificial neural network (ANN) and Naïve Bayesian Classifier (NBC) were 

employed by Perzyk et al. (2005) in steel casting process as classification tools. 

The study was carried out on two identical data sets with binary outputs. It was 

found that, based on comparative analysis; the prediction errors of Naïve Bayesian 

Classifier were lower than those of the ANNs.     

An extensive stream of work is dedicated to encounter class imbalance learning 

problems. The performance of traditional classification algorithms is limited when 

applied to highly imbalanced datasets.  The classification problems of imbalanced 

datasets have extensively been tackled via SVMs and FSVMs algorithms. In real 

life systems, as the size of datasets increase, knowledge extraction, exploration, 

analysis and control gets more complicated and resource consuming (Choudhary et 

al. 2008). These techniques have proven to be potentially effective, fast and achieve 

good generalization capabilities (Vapnik 1995); (Bishop 2006); (Roger and 

Girolami 2011). Another perhaps a more distinct feature of these tools is their 

ability to handle the curse of dimensionality in large scale manufacturing systems 

with large size of datasets. However, these tools are relatively new to researchers 

from academia and industry alike whose area of expertise is not related to artificial 

intelligence and computer science (Choudhary et al. 2008).   

Rojas and Nandi (2006)  proposed an SVM based framework to classify and 

detect bearing-faults of rolling elements. The classifier was fast with a successful 

classification performance of 95%.  
 

Fung and Mangasarian (2005) proposed proximal support vector machine 

algorithm (PSVM) for generating linear and nonlinear classifier by assigning the 

data points to either a positive or a negative class as well as ensuring margins 

maximization. PSVMs comprise equality instead of in inequality constraints by 

allocating data points to either positive or negative classes. In contrast to the 

standard SVMs that require a costly computational time to find a solution to a 

quadratic or a linear program, PSVM requires nothing more than solving a non-

singular system of linear equations.  The proposed algorithm is fast and can easily 

handle large scale data sets, as shown by the classification of around two million 

points, ten-attributes in a round 20.8 seconds. However, PSVMs have their 

potential disadvantage as they have a sensitivity to outliers and noise because of 

over-fitting (Jing 2005). 
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Jing (2005) presented a robust proximal support vector machine algorithm 

(RPSVM) to deal with the task of over-fitting (noise and outliers dominance 

minimization) in comparison to PSVMs algorithms for two class classification. The 

main concept of the proposed algorithm RPSVMs is to change the training set to a 

fuzzy set by assigning each data point to a membership value based on its relative 

importance in the data set. The experimental results of the proposed algorithm show 

that it can reduce over-fitting. However, the generalization ability may be enhanced 

further by selecting a good methodology to computing the membership values.    

Nguyen and Ho (2005) proposed a new method to minimize the complexity of 

support vectors obtained in their solution. The key feature of the proposed 

algorithm is the selection of the closest support vectors corresponding to the same 

class and exchanging them by new constructed vectors. The bottom-up technique 

simplifies the support vector solutions in which the newly constructive vectors only 

need to find a single maximum point of a one variable function on the interval (0, 

1). The experimental results proved that the approach is computationally simple 

compared to other reduced set methods. However, it cannot handle dimensionality. 

Dong et al. (2005)  proposed an algorithm to solve the problem of training 

support vector machine on huge size databases with thousands of classes. In this 

approach, a two-step procedure (parallel optimization, sequential optimization) is 

tailored to train the support vector machines. In the parallel optimization step, the 

key idea is to quickly eliminate most of the non-support vectors by employing 

block diagonal matrices to approximate the original matrix. This step will divide 

the original problem into hundreds of sub-problems which can be solved more 

efficiently. Consequently, the training time for the sequential optimization can be 

reduced.  In the sequential optimization, the idea is to speed up the training process 

by integrating some functional strategies such as kernel cashing and efficient 

calculation of kernel matrix. Experiments on huge size databases showed that the 

algorithm has a high training speed and a good generalization performance. 

However, the proposed algorithms have not taken in to account imbalanced and/or 

corrupted data with noise or outliers. 

Geebelen et al. (2012) proposed a new algorithm called Smoothed Separable 

Case Approximation (SSCA) to reduce the number of SVM. The proposed 

approach upper bounds the weight vector of the pruned solution which reduces the 
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number of support vectors.  Results showed that the upper bounding the weight 

vector is crucial which leads to numerical stability and avoids over-fitting during 

the approximation phase. 

Hwang et al. (2011)  proposed a new weighted approach based on Lagrangian 

Support Vector Machines (LSVM) to tackle the problem of imbalanced data 

classification. The main concept of the proposed algorithm is to assign an 

appropriate weight to data classes. The majority class has to receive lower weight 

than the minority class. Most importantly, the weight should satisfy  𝑤! ∈      [0,1] so 

that a convergence can be achieved when training the weighted lagrangian support 

vector machines (WLSVMs). WLSVM has some better advantages in contrast to 

standard support vector machines  as it can be learned iteratively  which can make 

the training phase faster than using quadratic programming for training. However, 

WLSVM is slower than SVM when using the sequential minimal optimization 

(SMO) based scheme proposed by (Platt 1998). 

Lin and Wang (2002) propose a type of fuzzy support vector machines algorithm 

(FSVMs).  The main idea of the algorithm is to apply a fuzzy membership to each 

data input of support vector machine (SVM) and reformulate SVM in to FSVM. An 

appropriate fuzzy membership is chosen in a way such that the lower bound of 

fuzzy memberships must be defined; then, the property of the main data is to be 

selected and finally make connections between fuzzy memberships and this 

property. However, this method is likely to yield good results if the distributions of 

the given training data of each class are well spread around the central means. The 

formulation of the algorithm is not complete where the linear separable cases 

cannot be discussed.  However, comparative experimental results against standard 

SVM on real data set are not provided (Tao and Wang 2004). 

Tao and Wang (2004) proposed a new fuzzy support vector machine algorithm 

based on the weighted margin. The basic idea is to employ the fuzzy membership 

function to weight the margin. This approach incorporates the idea from SVM and 

fuzzy neural networks for a better classifier performance. The influence of data 

inputs can be either reduced or avoided by applying the fuzzy membership for each 

training vector to weigh the margin.  The advantage of modifying SVM by the idea 

of fuzzy neural system is to apply some fuzzy membership functions. 
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Consequently, experiments on real data sets illustrate that NFSVM can yield robust 

outcomes in contrast to standard SVM. 

Xiong et al. (2005) proposed a new algorithm of fuzzy support vector machines 

based on fuzzy c-means clustering.  The algorithm is based on the idea of applying 

fuzzy c-means clustering scheme to each class of data set. The key feature is that 

during clustering with a suitable fuzziness parameter, the algorithm will get rid of 

the data that are less important and choose the important samples such as support 

vectors to represent the other similar samples that are close to the cluster centres. 

Experimental results of the proposed fuzzy support vector machines showed that 

less quadratic programing time is needed compared with conventional SVMs. 

Batuwita and Palade (2010) proposed an approach to improve FSVMs for class 

imbalance learning CIL (called FSVMs-CIL). This method is used to handle the 

class imbalance dilemma for the task at hand in the presence of noise and outliers.  

The basic idea is to assign fuzzy-membership values for the training examples 

based on their importance in order to reduce the effect of the above concerns. This 

approach is evaluated on ten real world data sets, containing around ten thousand 

records.  Experiments show that the proposed algorithm is effective and outperform 

other existing internal and external imbalanced learning methods.  However, 

experiments were limited to small data sets and the authors have not proven the 

robustness of their algorithm on large scale data set where a much larger 

optimization problem is required. 

Based on the previous literature review sections, there are many application 

areas in the manufacturing industries where machine learning and data mining tools 

are used for classification include quality improvement, control, fault diagnosis and 

condition monitoring. Support vector machines, fuzzy support vector machines, 

decision tree, hybrid neural networks and other hybrid methods are well known to 

accomplish classification tasks. Fuzzy logic is usually incorporated within these 

techniques to deal with the uncertainty and noise that exist in the data.  Clustering 

which is the primary unsupervised learning tool will be discussed in the next 

section. 
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2.4.2 Clustering 

Clustering analysis is a fundamental task of data mining and is defined as assigning 

a set of units or observers into a certain number of  groups or subsets called clusters 

so that the observers in one cluster are similar to each other than they are to the 

observers in other clusters (Hair et al. 1987). Clustering is an unsupervised learning 

technique which is tailored to explore and extract hidden structures and similarities 

in datasets based on probability density models or similarity metrics (Xu and 

Wunsch 2005); (Buhmann 1995). Clustering analysis does not use category labels 

that tag observers with prior identifiers, the absence of information distinguishes 

cluster analysis (unsupervised learning) from discriminant analysis (supervised 

learning) (Jain 2010). 

Cluster analysis has played an important role in wide range of fields. All 

clustering methods have their own advantages and drawbacks, and are applicable to 

various data structure (Suen 2000). Almost all clustering techniques involve a 

process of measurements, either the magnitude of the distance between two 

observers (i.e. sum of squared distance criterion) or the magnitude of their 

similarity to each other (Helmuth 1980). 

Practically, clustering algorithms are divided into two groups: hierarchal and 

partitional (Jain 2010). Hierarchical clustering algorithms iteratively seek to 

produce nested clusters either in agglomerative way by producing each data point in 

its own cluster and gathering the most similar pairs or in divisive mode by starting 

with all given data points in one cluster recursively and dividing each cluster into 

sub clusters (Jain 2010). 

In contrast to hierarchical clustering, partitioned clustering classifies the data into K 

groups, which together satisfy the requirements of a partition (Kaufman and 

Rousseeuw 1990): 

• Each group must contain at least 1 observer. 

• Each observer must belong to exactly one group. 

The most widely used algorithm for partitioning is the K-means algorithm. Since 

partitioned algorithms are remarkably more applicable in pattern recognition and 

clustering analysis (Jain 2010), two K-means algorithms are to be presented in the 

next section; K-means and Fuzzy K-means algorithms. 
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2.4.2.1 K-means Clustering 

K-means is said to be a proto-type clustering technique. It is a method that is 

commonly designed to automatically partition N-dimensional data set into K 

groups or clusters (Wagstaff et al. 2001). Although k-means algorithm was first 

proposed over 5 decades ago, it is still considered as one of the effective tools for 

clustering analysis as it is efficient, simple and easy to implement (Jain 2010). K-

means algorithm is based on the principle of maximizing the similarity between 

observers within a cluster and minimizing the similarity between observers in 

different clusters (Dehariya et al. 2010). 

Practically, iterative k-means procedure for a given N-dimensional data set is 

summarized as follows (Jain 2010); (Wan et al. 1988):  

1) Initialize the centre of the clusters; 

2) Assign each data point to its closest cluster centre; 

3) Set the position of each cluster to the mean of all data points  related to  

that cluster; 

4) Compute a new cluster centre; 

5) Repeat steps 2, 3and 4 until convergence. 

 The most commonly used measure of similarity at this stage between two 

observers is the Euclidean distance which is basically the measurement of a straight 

line drown between these two observers (Hair et al. 1987). The above steps will be 

repeated until convergence when there is no further change in assignment of 

instances to clusters and the new cluster centre is the same as the previous cluster 

centre (Wan et al. 1988). 

When dealing with K-means algorithm, three parameters are to be taken into 

account by the researcher: the number of clusters K, the cluster initialisation step, 

and the distance metric where the most critical choice is K (Jain 2010).  

2.4.2.2 Fuzzy C-means Clustering  

In fuzzy cluster analysis many algorithms have been developed. Generally, the 

most widely used is the fuzzy C-means algorithm conceived by Dunn and 

generalized by Bezdek (Zahid et al. 2001). The fuzzy C-means (FCMs) algorithm 

has been applied to a wide variety of engineering and scientific disciplines such as 
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pattern recognition, data mining; this algorithm is an objective function 

optimization approach which uses the squared-norm to measure similarity between 

prototype and data points (Zhang and Chen 2003). 

The fuzzy C-means method offer an important insight into the data by producing 

a degree of membership to individual data vectors within clusters. Fundamentally, 

this algorithm seeks a minimum of heuristic global of cost function (Duda et al. 

2001), where each point has a degree of belonging to clusters rather than belonging 

completely to just one cluster (Dehariya et al. 2010). Thus, points on the edge of a 

cluster, maybe in the cluster to a lesser degree than points in the centre of a cluster 

(Dehariya et al. 2010). The fuzzy C means algorithm is summarized as follows: 

(Dehariya et al. 2010): 

1) Choose a number of clusters; 

2) Randomly assign to each point coefficients for being in the cluster; 

3) Repeat until the algorithm has converged (that is, the coefficients’ change 

between two iterations is no more than the given sensitivity threshold). 
 

Wang et al. (2006) proposed a machine learning based framework for 

classification and fault detection. An integrated strategy based on hieratical 

clustering and K means partitioning was employed to classify the defected patterns. 

Sebzalli and Wang (2001) utilized the fuzzy C-Means clustering (FCMs) approach 

and Principle component analysis (PCA) to a refinery catalytic process. The aim 

was to identify bottlenecks and develop operational strategies for desirable products 

specifications and to minimize product lose during system changeover. 
 

According to Alpaydim (2010), clustering can be used as a dimensionality 

reduction method. The aim was to perform data exploration and understanding 

overall data structure and find correlations between variables. It has been reported 

by Alpaydim (2010) that clustering can be used as a pre-processing stage similar to 

dimensionality reduction approaches. New research has been presented by Ordieres 

Meré et al. (2004) in designing an integrated strategy between clustering and neural 

network. The model has been able to successfully predict the structure properties of 

galvanised steel by implement a clustering scheme in the first instance and then 

apply networks. 
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Fuzzy clustering based approaches have also succeeded in detecting welding flows 

from radiographic images. Liao et al. (1999) developed a methodology to process 

each welding image based on two clustering paradigms i.e., fuzzy C means 

clustering FCMs and fuzzy K nearest neighbour. A performance comparison was 

performed between these two clustering methods. 
 

An outstanding characteristic of Clustering is that it can also be incorporated 

with supervised learning techniques, i.e., an optimization process. Xia et al. (2005) 

proposed an approach which exploits the advantage of K-means clustering 

algorithm to minimize the number of support vectors (SVs) for the training of 

(SVM).  The basic idea is to apply K-means clustering to select a set that represent 

the structures of whole data set at the same time with fewer data points based on the 

observation that the large amount of original dataset is redundant for training SVM. 

The advantage of the algorithm lies in the fact that the smaller the input dataset is, 

the fewer SVs will be produced which will lead to less computational time and 

memory. 

Xiong et al. (2005) presented a new algorithm of fuzzy support vector machines 

based on fuzzy c-means clustering.  The algorithm is based on the idea of applying 

fuzzy c-means clustering scheme to each class of data set. The key feature is that 

during clustering with a suitable fuzziness parameter, the algorithm will eliminate 

the data that are less important and choose the important samples such as the 

support vectors to represent the other similar samples that are close to the cluster 

centres. Experimental results of the proposed fuzzy support vector machines show 

that less quadratic programing time is needed compared with conventional SVMs. 

Another commonly used approach to the problem of unsupervised learning is the 

bayes classifier. This classifier is different to the maximum likelihood methods as 

they view the parameter vector as quantities whose values are fixed but unknown 

where, as in the bayes classifier, one assumes that the parameter vector is random 

variables with unknown prior distribution (Duda et al. 2001). Practically, such a 

classifier will lead to poor result when dealing with unlabelled samples unless some 

explicit statements about the experimental samples are to be assumed (Duda et al. 

2001), these statements are as follows: 

1) Prior probabilities for each observer are known. 

2) The class-conditional probabilities are also known. 
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3) The values of parameter vector are known. 

4) Date category labels are unknown. 
 

Various efforts from an application view point are closely related to the cause of 

defects and faults of different types of manufacturing systems or processes and 

therefore data mining and knowledge discovery inevitably will lead to better 

operations of the manufacturing enterprise (Harding et al. 2006). An increasing 

awareness has been indicated by recent trends as more and more people are 

utilizing data mining and machine learning to overcome problems in 

manufacturing. The subjects reviewed in this chapter have mainly emphasized on 

providing a general concept of machine learning and data mining algorithms and 

their applications in various industrial areas. A more broadened literature review 

relating to the novel approaches we have tailored to tackle the problem of applying 

machine learning and data mining techniques on rails manufacturing process will 

be emphasized in the core Chapters 5 and 6 respectively.  
 

Exploring and organizing data into appropriate grouping should significantly 

prevail in many engineering and scientific fields. Although many algorithms have 

been proposed for clustering analysis, the fuzzy C means algorithm has  a rich and 

diverse history as it was independently discovered  in many various field and is still 

one of the well-known algorithms for clustering because it is easy to implement, 

simple, efficient, and has empirical success (Jain 2010). In contrast to K means 

algorithm, fuzzy C means algorithm has one drawback is that the probability of 

membership of a point in a cluster depends explicitly on the number of clusters and 

when this number is specified incorrectly, serious problems may arise (Duda et al. 

2001). 

One of the most important problems in data analysis is cluster validation where 

the researcher needs to test solutions of data mining problems for robustness 

(Buhmann 1995). It is important to note that the data representation issue 

predetermines what kind of cluster structures can be discovered in the data 

(Buhmann 1995). An additional issue relates to the adequate selecting of the 

algorithm and correctly choosing the initial set of clusters (Fung 2001). The size of 

the data set is also an important factor, because most of the clustering algorithms 

require multiple data scans to achieve convergence (Fung 2001). 
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Data preparation tasks and data quality, particularly for rails manufacturing data, 

have not been discussed yet. Potential efforts relating to data preparation process 

are needed for a better overall modelling and classification performance. Data 

cleaning also requires a more generic process for complex databases to enable a 

successful accuracy of data mining in manufacturing industry.  Data cleaning and 

data pre-processing, including a solid variable selection framework for the rail 

manufacturing process, will be discussed in details in Chapter 4.  
 

Mining from imbalanced domains is indeed a very challenging problem from 

both performance and algorithmic prospectives. In the development of a 

classification model, choosing the objective function and the class distribution 

incorrectly can hinder the performance of standard classifiers and modelling 

algorithms. The classification would always be biased in favour of the dominating 

class (majority), while the data related to the minority class tend to be misclassified. 

Such a concern can be overcome via data resampling techniques (Akbani et al. 

2004; Batuwita and Palade 2010 ; Estabrooks et al. 2004) to lead to balanced data. 

The problem of class imbalance learning and the most influential methods to 

overcome this concern will be presented next, 

2.5  Class Imbalance Learning 

Nowadays, data are being collected at a dramatic pace across a wide variety of 

manufacturing processes and in many application areas. Such data are complex and 

high dimensional where one has to deal with significantly large number of 

attributes. The curse of dimensionality creates problems to machine learning 

community. Another, perhaps more well-known and potential challenge which has 

come into light recently is the class imbalance problem. Imbalanced data 

correspond to data sets where there are many more examples of one class than the 

other class.  
 

As described in Chapter 1, the rails through process data provided by Tata Steel 

Europe include a large amount of data records and data variables. Such data are 

often very difficult to model due to class imbalance problem and to its high 

dimensional nature. Class imbalance learning has a significant impact on the overall 

performance of models and classifiers.  
 

Data mining and machine learning techniques are known to have weaknesses 

when applied to imbalanced data sets where they tend to be overwhelmed by the 
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majority class and lead to a poor classification and modelling performance on the 

minority class. The majority of concept learning tools are beforehand designed with 

the assumption that the training sets are well-balanced. For many domains, 

particularly complex manufacturing systems, this is not usually the case in which 

one class is represented by a few numbers of examples and the other class is 

represented by a relatively larger number. 
  

Very few examples in a minority class cannot provide sufficient information and 

result in great performance degradation (Wang and Yao 2009). There has been a 

great attention from machine learning and data mining community given to 

overcome the class distribution problem and thus various solutions were proposed 

at the data level and algorithmic level  (Chawla et al. 2002; Chawla et al. 2004; 

Estabrooks et al. 2004; Liu et al. 2009; Wang and Yao 2009). These approaches 

can be categorized into two sets: internal techniques and external techniques 

(Estabrooks et al. 2004).    

The internal techniques, algorithmic level strategy, are designed to modify the 

structure of the algorithms or build new ones in a way that the algorithm pays more 

attention to the minority class. The second general approach to solving the class 

imbalance problems is an external approach, data level strategy, which resamples 

only the data under study without modifying the algorithm (Estabrooks et al. 2004).  

However, it is unclear whether the internal approaches are more effective than 

the external approaches (Estabrooks et al. 2004). The internal approaches have the 

disadvantage of being algorithm specific. In machine learning and data mining, this 

is a critical issue because data sets presenting various characteristics are better 

classified by different algorithms and it is quite difficult for the class imbalance 

problem to transport the modification from one model to another (Estabrooks et al. 

2004). It is worth noting that external approaches are independent and can 

straightforwardly re-balance the training data before training the model. External 

approaches also have the property that allows the user to set up the desired ratio 

between the majority and minority class. The external sampling strategies are the 

best choice of changing the class distribution of the rail manufacturing process data. 

These types and their way of implementation together with the data classifiers will 

be explained in detail in Chapters 5 and 6. 
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For dealing with the class imbalance in a classification problems, (Estabrooks et 

al. 2004) combined the over-sampling with under-sampling techniques. The 

proposed technique proved to be effective. The bias applied was regulated carefully 

via an elimination strategy so to prevent unreliable classifier to contribute in the 

text classification process. 

Japkowicz (2000) presented a study on the effect of imbalance problem in 

dataset. Three strategies have been evaluated: Random under-sampling, focused 

resampling and a recognition-based induction scheme. A simple artificial 1D data 

was examined. Both under-sampling and the focused resampling were effective in 

contrast to the recognition based induction scheme.   

Chawla et al. (2002) proposed a synthetic minority oversampling technique 

(SMOTE). SMOTE is able to generate a new synthetic minority examples via 

combining minority examples that lie together. The oversampling technique 

presented is sophisticated (Estabrooks et al. 2004), but the authors did not consider 

different class distribution ratios. Several sampling methodologies with different 

class distributions were evaluated by (Batista et al. 2004). Different data over-

resampling and under-sampling techniques included SMOTE, TOMEK and 

SMOTE+ENN were examined. SMOTE resulted in a good performance for 

databases with a small number of majority class examples. 

Wang and Yao (2009) extended SMOTE presented by (Chawla et al. 2002) into 

a novel paradigm called (SMOTEBagging) for solving multi class dataset in 

ensemble model. This approach is internal where only the algorithm has been 

modified to solve the class imbalance problem. A comparison framework has been 

also designed to compare two models OverBagging and SMOTEBagging. SMOTE 

proved diversity in systems resampling and improve its overall performance. Li 

(2007) discussed the bagging ensemble variation (BEV) system for imbalanced data 

classification. The algorithm effectively proved to utilize the minority class data 

without generating synthetic data and make any amendments to classification 

system. 

Although many resampling strategies were exist, oversampling and under-

sampling methodologies have received remarkable attention as external methods to 

counter the class imbalance problem (Batista et al. 2004), (Chawla et al. 2004), 

(Chawla et al. 2002). A brief overview on the most applicable external sampling 
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strategies in addition to the cost sensitive learning will be presented in the next 

sections.  

2.5.1 Under-Sampling  
 
The mechanism for under-sampling seeks to reduce the number of majority class 

examples in the training set. Under-sampling is an external independent sampling 

method that can straightforwardly re-balance the training data before training the 

classifier. Therefore, it can be employed with any classification and modelling 

algorithm. In random under-sampling, the training dataset is rebalanced by 

randomly removing majority class examples until a desired class ratio between the 

majority and minority class is achieved.  
 

Despite its simplicity, the under-sampling approach proved to be significantly 

efficient and can be easily implemented. However, under-sampling approach has 

been reported in Hwang et al. (2011), Akbani et al. (2004), Liu et al. (2006) and 

Chawla et al. (2002) to throw away potentially useful data and some crucial 

information might be lost. It thus, could dramatically disturb the decision boundary 

of the classifier in the classification problem. 
  
2.5.2 Over-Sampling 
 
Oversampling is another external (data level) sampling technique that can also be 

applied to change the class distribution of databases. In random over-sampling, the 

majority class examples in the training dataset are randomly duplicated until a 

desired ratio between the majority and minority class is achieved. The 

oversampling technique has gained extra attention. The advantage of a such a 

technique is that it is external and therefore, easily transportable as well as very 

simple to implement (Estabrooks et al. 2004; Garcia and He 2009; Yang et al. 2011 

a).   
 

Another advantage of this technique is that no information is lost since all 

instances are employed (Yang et al. 2011 a). However, by creating additional 

examples, oversampling leads to a high computational cost. Thus, a sufficient 

amount of memory is required to hold the whole training set. Moreover, randomly 

replicating the data might contain erroneous values which could negatively impact 

learning performance (Chawla et al. 2002).  
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2.5.3 Cost Sensitive Learning 
 
Highly imbalanced problems have generally highly non-uniform error costs where 

the influence of the majority class is dominant and the minority class is only 

represented by a few examples with less influence to the modelling and 

classification problem. Internal approaches deal with the modification of learning 

model in order to make it less sensitive the imbalancing problem. In cost sensitive 

learning, the main objective is to minimize the total cost of majority class examples 

rather than modifying the class distribution of the data the way external resampling 

techniques do (Chawla et al. 2004; Garcia and He 2009).  
 

It has been reported that cost sensitive learning leads to better results than 

random resampling techniques (Japkowicz 2000). However, the main drawback of 

this technique is its restriction to just few modelling applications and necessity to 

predefine the misclassification costs which is not usually available in datasets. In 

data classification problems, various algorithmic approaches have been designed for 

different modelling and classification algorithms, such as fuzzy systems (Fernández 

et al. 2009), neural networks (Zhou and Liu 2006) and support vector machines 

(Akbani et al. 2004). 
 

Due to the imbalance nature of the rail manufacturing process data, a well-

designed data resampling schemes and their influence on the overall rail data 

classification process will be discussed in details in Chapters 5 and 6. The 

foundations for most of the current sampling strategies to real world industrial 

learning problems will also be presented in a broad overview. 

2.6  Evaluation Metrics for Class Imbalance Learning  
 

Performance metrics of class imbalance problems provide a simple way of 

examining a classifier’s performance on a given dataset. In the machine learning 

community, there are several performance evaluation metrics which were proposed 

for the tackling class imbalance learning problem such as area under the curve 

(AUC) (Bradley 1997), receiver operating characteristic  (ROC), F-measure, 

Geometric-mean (Gm) and confusion matrix. However, these metrics are inherently 

sensitive to any changes in imbalanced datasets and thus, in certain situations, they 

can be deceiving (Garcia and He 2009). G-mean and F-measure are functions of 

confusion matrix (Liu et al. 2009). 
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In the presence of unequal error costs in imbalanced datasets, ROC curve 

(Garcia and He 2009); (Estabrooks et al. 2004); (Liu et al. 2013) represents an 

appropriate method for performance measures. Whereas, In the case of learning 

from imbalanced datasets where equal error costs apply, error rate is a functional 

performance measure criteria (Chawla et al. 2002); (Liu et al. 2009). AUC is also a 

reliable performance metric for cost sensitive learning problems (Liu et al. 2009).  
 

In data classification domains, the confusion matrix is a powerful metric by 

which the performance of a classifier can be assessed (Prajapati and Patle 2010); 

(Tang et al. 2009); (Hwang et al. 2011). However, a better understanding of 

classifier’s performance can be achieved via the performance of misclassification 

especially in the case of imbalanced data (Veropoulos et al. 1999). The structure of 

the given data and the modelling framework type are the major factors on which 

performance metric is to be chosen. A detailed overview on the performance 

metrics used in rail data classifications and their success rate are to be discussed in 

Chapters 5 and 6.  
 
2.7  Summary 

 

This chapter has presented a literature review and discussed briefly various aspects 

relevant to large complex systems modelling. First, the description of data driven 

modelling approaches is provided to understand the process of knowledge 

discovery in databases and data mining in general.  The most influential machine 

learning techniques i.e., data classification and data clustering are explored from a 

variety of application disciplines which is the main focus of research. The 

advantages and disadvantages of these techniques on real world applications are 

discussed. An overview highlighting the similarities between several disciplines 

and common connections to data classification are also identified.  

Subsequently, class imbalance learning problem is investigated both in class 

distribution and costs. Existing contributions and research pertinence to the 

problem of rail data modelling and classification are also presented. The most 

influential data level and algorithm level sampling strategies i.e., over-sampling, 

under-sampling and cost sensitive learning techniques are briefly illustrated. 

In the next chapter, a detailed description of the rail manufacturing process as 

provided by Tata Steel Europe and Key Production Stages will be presented. The 
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chapter will also include the recent developments and contributions in research for 

a successful modelling and classification of the rail process. Consequently, the next 

chapter will also outline the challenges of rail production data i.e., data complexity 

and curse of dimensionality. 
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Chapter 3 
 

Rails Though Manufacturing 
Process  

 
 

3.1 Introduction  

Real world industrial processes are complex entities whose performance in terms of 

expected quality of delivered products and cost management are of a strategic 

importance. The rails manufacturing process is one of these complex systems which 

includes many wide-ranging characteristics and integrated sub-processes. For 

systems modelling, the reliability and performance issues of these complicated 

manufacturing processes have recently attracted considerable attention. In this 

chapter, a general overview of the rails manufacturing process operated by Tata 

Steel Europe is presented. In addition, the key stages of steel production line are 

also briefly described. Next, rails data key challenges and opportunities that have 

significant impact towards a successful data modelling and classification 

implementation are also addressed. The aim of this chapter is also to present and 

assess the rails production line as well as the rails data accumulated from this 

process. In practice, rails quality can either be ‘‘good’’ or ‘‘bad’’ based on Non- 

Destructive Testing (NDT) in addition to the knowledge which may be provided by 

human expert. 

3.2 An Overview of Rails Manufacturing Line 

The future competitiveness of the rails industry depends significantly on its ability 

to tailor the produced rails to meet desired specifications with respect to the 

mechanical properties and quality assurance. Recently, there has been worldwide 

increased effort in the area of rails production towards the enhancement of rails 
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quality with the aid of data modelling techniques which has become a subject of 

major interest. An initial inspection of any rails production data can indeed reveal 

that there maybe a few rejected rails. Advanced analytical approaches are needed 

for such rejections to find the root causes as well as identifying bottlenecks in the 

production route and thus applying appropriate control measures to improve 

process yields (reduce defects). Production costs of rails production line may 

undoubtedly be reduced significantly via improving process yields (reducing 

defects) and consequently meeting the quality requirements for the customers.  

3.2.1 Rails Manufacturing Process 

In this section, a brief overview is provided of the process by which the rails data 

were collected. The rails manufacturing data utilized in this research were gathered 

from an integrated steel production process which pertains to Tata Steel Europe. 

The main features of the rails manufacturing process are illustrated in Figure 3.1     

(Yang et al. 2011 a).   

 

Figure 3.1: Tata Steel Rails manufacturing process Route (Yang et al. 2011a) 

3.2.2 Rails Production Route: Key Production Stages 

The word ‘process’ used in this thesis refers to several interacting sub-processes, 

each of these parts fulfils a certain role towards the production of quality rails. The 

rails manufacturing process can be separated into three sub-systems including: steel 
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making, continuous casting, rolling and finishing. These stages are the three key 

sub-processes of Tata Steel Europe production line. 
 
3.2.2.1 Steel Making 
 
At the steel making stage, the iron ore as well as additional scrapes are 

continuously loaded into the top of a big blast furnace where iron oxides are 

converted into liquid iron denoted as hot metal. The liquid products (molten iron) 

are drained from the blast furnace to a basic oxygen steelmaking furnace in which 

carbon-rich molten iron is refined into steel. The basic oxygen steelmaking process 

or as also called, oxygen converter process, blows oxygen through the molten iron, 

the key to the process is to reduce carbon content of the alloys and changes it into 

low-carbon-steel at the same time as separating as many of the other chemical 

impurities as possible. For further secondary steel making, the liquid steel is passed 

through a ladle metallurgical furnace in order to adjust the chemical structures of 

the steel via adding extra alloys. The de-gasser unit will then improve steel 

cleanness by removing harmful hydrogen and other gases. Figure 3.2 illustrates the 

structure of steel making stage 
 

 
Figure 3.2: Rails Production Steel Making Stage 

 

3.2.2.2 Continuous Casting  
In the stage of continuous casting, the rails liquid steel is conveyed via a multi-

strand continuous casting machine where 8-tonne steel blooms (Yang et al. 2011a). 

Continuous bloom casting is incorporated with tight control via alloy addition.  The 

blooms are heated in a reheating furnace and then fed directly to straightening 

operations and multi-pass rolling mills at a proper temperature in order to yield rails 
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with a maximum length of 120 meters.  The internal integrity of the produced 

blooms is preserved by eliminating oxide inclusion. Recently, this stage has 

received an extra attention throughout the investments in dynamic spray control and 

mould electromagnetic stirring to ensure cast bloom consistency with minimal 

segregation and to prevent the internal cracks and flows. A simple continuous 

casting stage is shown in Figure 3.3. 
 

 
Figure 3.3: Rails Production Continuous Casting stage 

 
3.2.2.3 Rolling and Finishing 

One of the main rails forming processes is hot rolling stage. At this stage, the 

blooms pass through the rolling stands after being reheated in the furnace as shown 

in Figure 3.4. The blooms cross-section is reduced and reshaped in each pass until 

the desired rails shape is achieved. The final stage of the rails manufacturing 

process involves a preventative measure against cracks and flaws and evaluating 

the properties of every rails via a complete NDT. The aim of NDT is to ensure that 

rails meet applicable standards and quality control specifications, as well as for 

dimensional accuracy, before dispatch to clients (Yang et al. 2011 a).  

 

 

 

 

 

 

Figure 3.4: Rails Production Rolling and finishing stage 

Continuous Casting 

	
  
	
  
	
  

	
  
	
  

	
  

	
  

	
  

FINISH & NDT 

Reheat Furnace 



	
  

39	
  
	
  

Rails data accumulated from Tata Steel Rails production line have only a single 

output consisting of integer values of (0, 1, 2 and 3) where 0 represents good rails 

and values (1, 2 and 3) represent defected rails with progressive degrees. This 

research focuses on the small number of rejected rails, which are distinguished 

from the good rails as they have cracks and/or internal flows, by building analytical 

approaches to discover the root causes of such defects and therefore tailor an 

adequate optimization and control measures to enhance product quality and reduce 

manufacturing costs. 

3.2.3 A Review of the Rails Through-Process Data 

Industrial processing plants are usually heavily equipped with a large number of 

instruments such as sensors and transmitters. The main purpose of these 

instruments is to deliver meaningful data for process monitoring and quality 

control. Researchers from academia and industry started to devote increasing 

efforts to the volume of data being measured and stored in the process industry by 

constructing predictive models based on this data. The data collected from rails 

manufacturing process are the culmination of more than two years of a production 

period. Online data servers are utilized to collect real-time variables, process 

parameters, quality inspection data and management information from the rails 

production route via extensive instrumentations allocated for online monitoring and 

process control. An overview of the rails through-process data gathered from Tata 

Steel online server is presented in Figure 3.5. 

	
  
	
  
	
  

Figure 3.5: An Overview of Rails Through-Process Data  
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For a successful data collection, as shown in Figure 3.6, a solid data infrastructure 

has been designed to collect the rails data from rails production line. The data 

accumulated include real time variables, management information, quality 

inspection data, key unit production time histories and process parameters. A 

master server is utilised to store the overall data where the completion of advanced 

level of KDD was performed. The original rails quality data gathered from the key 

production stages are very large, with over 200 variables and around 83000 data 

records. The main concern of this study is the small number of the rejected rails, 

verified via an automatic and manual ultrasonic testing for the presence of internal 

irregularities such as cracks and flaws, to find root causes as well as identifying 

bottlenecks in the production route and thus applying an appropriate control 

measures to improve process yields (reducing defects).   

	
  
	
  

Figure 3.6: Rails Project Data Infrastructure 
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Despite the advances in rails-making technology, changes in material properties, 

equipment faults and variations in operating conditions, the product quality could be 

completely different from the desired specifications. An initial inspection of the Rails 

through Process Data has revealed some fundamental challenges i.e., 
  
Ø Presence of significant noise, conflicting information, lack of understanding  

     among many data variables; 

Ø Redundant information, and outputs (defects) cannot be quantified accurately; 

Ø Large amount of data records and data variables, difficulty of manipulation and     

     visualisation; 

Ø Both the number of data fields and data file size almost violate the limit of 

     Microsoft Access 2007, therefore, cause computational difficulties;  
	
  
	
  

3.3 An Overview of Rails Data Modelling 
 
The overall data collected from the rails manufacturing route presented above is the 

culmination of more than two-years of manufacturing period. The data collected 

include more than 65000 data records and over 200 data variables. For rails data 

modelling and analysis, many potential challenges arise based on preliminary 

investigations. Basic pre-processing tasks can prove to be computationally 

expensive and resource-intensive due to the volume and complexity of rails data. 

Consequently, modelling and optimisation procedures and algorithms need to be 

tailored with particular care (Yang et al. 2011 a). 
 

 Simple tasks, copying, pasting and plotting, cannot be executed 

straightforwardly because they often violate the specifications and norms of most 

commonly used software. Based on these challenges, the choice of designing an 

adequate data analysis tool becomes crucial due to the fact that a single computing 

algorithm cannot successfully provide potential requirements in the rails data 

modelling cycle. Hence, an integrated software environment was carefully designed 

to perform rails data modelling as illustrated in Figure 3.7. 
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Figure 3.7: An Integrated analysis environment for Rails Data Mining 
 

3.3.1 Current Research On Rails Data Modelling 
 
Industrial process plants are usually equipped with a number of instruments 

(sensors). The primary objective of these instruments is to deliver data for process 

analysis and control. It was approximately two decades ago when researchers from 

academia and industry began to make use of the large amounts of data being 

measured and stored in online servers by constructing predictive models based on 

this data. Furthermore, the concept of ‘Big Data’ began to emerge whereby it refers 

to data points that transcend disciplines (multi-disciplinary).  

With the increasing demands on economic requirements, cost management, 

systems performance and production quality improvement, industrial 

manufacturing plants have become more complex (integrated) in terms of both 

automaton and structure degrees. These issues become the most critical aspects for 

systems modelling and are receiving increased attention. With the various 

operational constraints and requirements for Tata Steel rails production line, the 

design of an appropriate process-based model is of strategic important for product 

quality improvement. 
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Due to the fact that most of industrial plants are complex with unforeseen 

disturbances such as equipment and instrument faults, variations in material 

properties and changes in plant operating conditions, the final product quality is 

likely to be far different from specifications. In order to enhance the final product 

quality, an appropriate modelling strategy which relates batch process conditions 

and the final quality is inevitably required where the success and performance of 

real-time quality modelling and control depend on the accuracy and availability of 

the designed model.  

Several data-driven modelling approaches have been developed where online 

measurements are applied for final product quality prediction.  Most of commonly 

used approaches utilise historical training data for identifying inferential model for 

quality prediction, this data were collected from previously completed unsuccessful 

or successful runs.  

ANNs have recently been well-known to hot rolling process modelling and 

control tool (Yang et al. 2011 a; Öznergiz et al. 2009; Lee and Choi 2004). This is 

due their quick interpolation ability and the flexible self-learning mechanism. 

Another ANN application for modelling the rails hot rolling process is presented by 

Altınkaya et al. (2014). In this study, ANN was used to model the production 

parameters of deferent types of rails in the rails rolling process where the aim was 

to achieve optimum parameter values of various types of rails. The ANN model 

presented is reliable and effective and provides useful way for precise decision 

making.  
 

ANN and Naïve Bayesian classifier (NBC) are employed by Perzyk et al. (2005) 

in steel casting process as classification tools. The study was carried out on two 

identical data sets with binary outputs. It was found, based on comparative analysis, 

that the prediction errors of Naïve Bayesian Classifier are lower than that of the 

ANNs. 
 

A real time visual inspection system (VIS) has been proposed by Li and Ren 

(2012) for the detection of rails discrete surface defects. An image acquisition 

system is applied to acquire a rails image, and then, a track extraction algorithm is 

used to cut a sub-image of rails track. Having enhanced the contrast of the rails 

image via a normalization method, VIS approach detects the defects using the 
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defect localization methodology. Even though this technique is robust to noise, it 

still involves human image inspection and thus, it is unreliable and time consuming. 
 

A robust SVM classification framework was designed by  Rojas and Nandi 

(2006) to classify and detect bearing-faults of rolling element. The classifier has 

proved to be fast and a successful classification performance of 95% has been 

achieved. Ph Papaelias et al. (2008) presented a comprehensive study reviewing 

non-destructive evaluation (NDE) techniques that are in use in North America and 

Europe for rails defect detection. This study outlined the background theory about 

the most applicable techniques used to facilitate condition data into productive 

maintenance procedures.  
 

Although many studies focusing on the identification of possible failures in rails 

exist, all of which focusing on either rails manufacturing sub-process or a certain 

part in this sub-process, no attempts of modelling or/and classifying the whole rails 

manufacturing process including: steel making, Casting , rolling and finishing 

stages have so far been reported.  

 
3.3.2 Challenges and Opportunities of Rails Manufacturing Data  
 
 
Making on-specification products is an important endeavour, and also a challenge 

for the rails manufacturing process. Such a complex process may not produce the 

desired quality products because of the instability of operating conditions and 

uncertainty of row materials. Products quality prediction of rails production process 

would be helpful so that one can make adjustments to process conditions.  
 

Nowadays, the growth of data, both structured and unstructured, has presented a 

remarkable challenges as well as opportunities for organisations in academia and 

industry. With growing data volumes, it is essential for such organizations to make 

use and extract real-time information form the measured data. Meanwhile, there 

have been competitive efforts that use data to deliver better insights and extract 

knowledge to decision-makers for fulfilling a better production quality and improve 

systems performance. In practice, a major challenge for data modelling and 

classification algorithms is the structure of the data. Typically, the data 

accumulated for industrial manufacturing process are strongly co-linear with high 

level of noise and redundancy.  Apart from the above stated challenges, these data 
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are most likely to contain hundreds or/and thousands of data records (Kadlec et al. 

2009).	
   

Learning from rails manufacturing process data is an emerging area with several 

challenges are to be addressed. The volume of the collected data is significantly 

large, making the modelling process very challenging. Consequently, only relevant 

inputs should be used in the rails modelling process. This, however, led to another 

challenge which is the identification of relevant data variables. Technical 

difficulties also arise when learning from large scale data sets; as such data are 

more likely to increase the search space for modelling and classification algorithms 

in a computationally explosive manner. Moreover, Large Data Modelling 

algorithms are Hungry for Resources. Therefore, a sufficient amount of memory is 

required to hold the training set. 

Analysing high dimensional data is a crucial task demanding much caution and 

care. The curse of dimensionality does not revolve only around the inclusion of 

large number of records in databases, but there can also be a very large number of 

attributes (variables). Most techniques that aim to overcome the high 

dimensionality focus on feature selection methods, i.e. choosing an optimum subset 

of features based on their importance to the overall process. Such variable selection 

can be achieved manually using human-based knowledge to identify the relevant 

variables or algorithms-based feature selection. Despite the popularity of feature 

selection paradigms, several drawbacks on the overall accuracy have been reported 

in overcoming the course of dimensionality (Rokach and Maimon 2006). 

 
 Another, perhaps, more significant challenge towards a successful rails data 

modelling is to design a rails data pre-processing framework capable of identifying 

data outliers, redundant variables, correcting wrong data entries, missing value 

decision and checking data conflicts. Rails process problems are similar to most 

real world plant problems that can be considered as having randomness, 

disturbances and complex nonlinear dynamics. This is due to the potential 

variations in operating conditions and changes in material properties. It is widely 

known that rails process manufacturing plants are usually high dimensional, large 

scale, highly uncertain, nonlinear and involve human interactions via qualified 

engineers to apply empirical knowledge to improve final process products. 
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Another well-known potential challenge which has come into light recently is 

the class imbalance problem. Nowadays, Data are being accumulated at a dramatic 

pace across a wide variety of manufacturing processes in many application areas.  

Imbalanced data correspond to data sets where there are many more examples of 

one class than the other class.  
 

Mining from imbalanced domains is indeed a very significant problem from both 

performance and algorithmic prospective. In the development of a classification 

model, choosing the objective function and the class distribution incorrectly can 

hinder the performance of standard classifiers and modelling algorithms. The 

classification would always be biased in favour of the dominating class (majority), 

while the data related to the minority class tend to be misclassified. Such a concern 

can be overcome via data resampling techniques (Batuwita and Palade 2010); 

(Akbani et al. 2004); (Estabrooks et al. 2004) to lead to balanced data. Class 

imbalance learning poses serious impacts on the overall performance of models and 

classifiers.  
 

Data mining and machine learning techniques are known to have weaknesses 

when applied to imbalanced data sets where they tend to be overwhelmed by the 

majority class and lead to a poor classification and modelling performance on the 

minority class. The majority of concept learning tools are beforehand designed with 

the assumption that the training sets are well-balanced. For many domains, 

particularly complex manufacturing systems, this is not usually the case in which 

one class is represented by few numbers of examples and the other class is 

represented by a large number. 
 

For rails manufacturing data, data preparation tasks and data quality 

enhancement have not been discussed yet. Potential efforts relating to data 

exploratory analysis are needed for a better overall modelling and classification 

performance. Data cleaning and consolidation also demand a more generic process 

for the complex rails data to enable a successful performance accuracy. The 

application of exploratory data analysis techniques will significantly determine the 

types of other approaches that data analyst can utilize to examine a given dataset.  

Exploratory data analyses are suitable for both qualitative and quantitative data that 

include; identifying data outliers, redundant variables, correcting wrong data 

entries, missing value decision and checking data conflicts.  Figure 3.8 outlines the 

general concept of the exploratory data analysis that will take place in the next 
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chapter to encounter the above mentioned concerns related to Rails manufacturing 

data. 

 

Figure 3.8: Exploratory Data Analysis via Data Mining 

3.4 Summary 

Mining from large scale-imbalanced datasets is indeed a very important problem 

from both the algorithmic and performance perspective. Therefore, Special 

attention has to be paid to the nature and properties of the data in Data modelling 

and classification implementation. The complexity of models and classifiers 

depends on the number of inputs dimensions and the size of data samples. These 

issues determine both the space complexity and the time to train such models.  
 

This chapter presented an overview of rails manufacturing line and key 

production stages understudy. The rails production project data infrastructure and a 

brief view of the integrated software environment tailored for Rails Data modelling 

is also asserted. Rails data key challenges and opportunities that have significant 
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impact towards a successful data modelling and classification implementation are 

also addressed. 

It is clear that the generalization capability of most modelling techniques is 

highly dependent on the structure and properties of the given data. In the next 

chapter, particular attention will be given to encounter the challenges in rails 

production data structure using firm data exploratory analysis and data pre-

processing techniques. Data reduction and feature selection framework that form 

fewer, most relevant inputs will be designed which are capable of choosing an 

optimum subset of features based on their importance to the overall process. The 

main characteristics of exploratory data analysis, feature selection and input 

reductions algorithms will also be discussed. Moreover, most recent research work 

in these areas will also be presented. Finally, the modelling of the new formed rails 

manufacturing data using the adaptive neuro fuzzy inference system (ANFIS) 

approach will also be presented.  
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Chapter 4 

 

Rails Data Pre-processing, Neural-
Fuzzy Based Model Input Selection 
and Artificial Neural Network 
Modelling 

 
4.1 Introduction 

 
Exploratory data analyses (EDA) are capable of formation, consolidation and 

analysis of large amounts of data. Exploratory data analyses have proven to be 

useful in a variety of fields where large samples are produced and need to be 

analysed; this volume of data could not be practically visualized and analysed by 

hand within a reasonable timeframe.  
 

In order to make the data more suitable for data mining, exploratory data 

analyses are extremely powerful techniques when applied correctly. Practically, 

they are far different to statistical approaches aiming to examine specific 

hypotheses. Exploratory data analysis and data pre-processing techniques are 

quantitative traditions that seek to help researchers clearly understand the data 

when little or no statistical hypotheses exist. 

Based on an initial inspection of rails data, several challenges have been revealed. 

These challenges are related to process complexity and poor quality data.	
  The Rails 
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production process operated by Tata Steel Europe contains a large amount of data 

records and data variables. Such data are often very difficult to model due to class 

imbalance problem and to its high dimensional nature. Class imbalance learning has 

serious implications on the overall performance of models and classifiers. Another 

challenging issue for rails data, apart from those stated above, relates to the 

structure of the data. Typically, the data pertaining to the industrial processes are 

strongly non-linear. Generally, there are two ways to deal with the data complexity 

problem. One way is by transforming the input variables into a newly reduced 

space with less non-linearity, the other way is to select a subset of the data input 

variables.  
	
  

Most techniques that are designed to overcome the high dimensionality problem 

and data complexity focus on variable and feature selection methods, i.e. extracting 

an optimum subset of variables based on their influence and importance to the 

process. Such a variable selection can be achieved either manually via human-based 

knowledge extraction to identify the relevant variables or through an algorithm-

based feature selection approach  (Rokach and Maimon 2006). 

4.2 Exploratory Data Analysis: A Pre-Processing Framework 
 

Data pre-processing or data preparation is a crucial phase for both the machine 

learning and the knowledge discovery process, as most industrial databases tend to 

be incomplete and noisy. This is because the data gathering methods are often 

loosely controlled due to some hardware and/or practical problems (instruments 

malfunction) which would lead to out-of-range and missing values. For instance, 

some process variables are not being measured for a few instances, or their real 

values may be influenced significantly by uncertainty (outliers). Moreover, the data 

gathered are typically of a large size (usually numerous gigabytes or more) and they 

are likely collected from heterogeneous sources. In real-life Industrial processes, 

the true relationship between input variables and process output is hardly 

understood as process units are more likely to be different because of their nature 

and therefore they should be normalized or scaled prior to the application of any 

learning or modelling techniques.  
 

Analysing data that have not been carefully screened for such concerns will not 

reveal the relationship between variables and the output, and also can yield 

misleading interpretations and results. Consequently, the representation and quality 
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of the data are important before executing any analysis which will help improve the 

accuracy and effectiveness of all the subsequent data modelling and mining 

processes. 

The core methods of data pre-processing are data cleaning, data integration, data 

transformation and feature selection. Data being gathered from complex industrial 

processes tend to be noisy, containing outlier values that deviate from the expected 

ones (errors), inconsistent (containing discrepancies between different data items) 

and incomplete (lacking a certain attribute of interest or containing only aggregate 

records). If there exist inappropriate and redundant information present or noisy 

data, then data analysis during training phase is difficult due to the fact that quality 

decisions must be based on quality data set (Han and Kamber 2006). Many Real 

world databases are highly vulnerable to the aforementioned commonplace 

properties.   

The rails data at hand were collected from a rails production process covering  

two years of production period, consisting of 65000 data records and around 200 

data variables (Yang et al. 2011 a).  A preliminary inspection of the rails data 

revealed that the data contain conflicting information and some redundant 

variables. Some records also include significant amount of missing values. Missing 

data, particularly for very large tuples that have missing records for some attributes, 

could not be used for modelling as their inclusion will distort analysis of the rails 

data. Many of data variables are related to production management, as a result, they 

should be removed from the original data set (Yang et al. 2011 a).  

It is not only the above-mentioned concerns that cause difficulties to the pre-

processing, modelling and data analysis stages, but also data dimensionality tends 

to govern the true input-output results. Moreover, it causes difficulties in data 

manipulation and visualisation. The aim of data pre-processing stage is generally 

based on detecting outliers, modifying wrong data entries, identifying missing 

values and irrelevant variables. Owning to the fact that a careful data preparation is 

an essential part of exploratory data analysis, a human inspection can sort through 

the entire database to identify unrelated patterns. A process proficient from Tata 

Steel Europe was closely involved in pre-processing stage to advise and provide the 

necessary knowledge about rails process data collection, demonstrate the most 
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important and correlated data items and detect irrelevant variables (Yang et al. 

2011 a).  

After the ‘human inspection’ stage, the original rails datasets were reduced not 

only in dimension but also in length. Non-relevant data variables were eliminated 

and data records with many missing values were deleted. The resulting rails data 

set, after human inspection stage, consists of 39687 records and 140 data variables 

(Yang et al. 2011 a). The data has only one output consisting of integer values of 

(0, 1, 2 and 3) where 0 represents “good” rails and values (1, 2 and 3) represents 

defected rails with one or several flaws.  

Having pre-processed the data set as above, it still remained very large and the 

data space dimensionality was very high. In order to achieve any meaningful 

feature classification the dimensionality of the input data space needed to be 

reduced even further. As a result, data dimensionality reduction and the selection of 

the most important variables will be outlined in the next section. 

4.3 Model Input Selection and Rails Data Reduction  

Variable and feature selection is a crucial step in complex system modelling that 

has become the focus of research in areas of application where data tend to a 

relatively large number of variables and the input-output relationship is often not 

clearly understood. In the modelling process, the selected data have to satisfy 

certain selection criteria where it is highly important that all process dynamics must 

be included in the consolidated dataset.  

As already stated, the output of rails manufacturing process contains class labels 

of final products where the input-output relationship is ambiguous and needlessly 

large numbers of inputs exist. The presences of irrelevant and redundant inputs as 

well as the high dimensionality space tend to confuse and distort input-output 

results and lead to poor modelling outcomes. As a result, feature selection should 

play an important role and be useful as part of the rails data analysis process, due to 

the fact that it showed which features are important for model elicitation, and how 

these features maybe related.   

Variable and feature selection includes many advantages i.e., enabling data 

visualization and understanding, training time reduction, tackling effectively curse 

of dimensionality to improve the prediction performance of the predictors, 
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enhancing generalization by reducing over-fitting (Guyon and Elisseeff 2003). 

However, in practice, some methods have supplementary emphasis on one aspect 

over another.  

There are many different methods tailored for the purpose of input variable 

selection, including statistical test or correlation analysis (Miller 2002);(Yu and Liu 

2003), principal component analysis (Luo et al. 2008), direct objective optimisation 

based approaches (Perkins et al. 2003). Due to the fact that some methods put more 

emphasis on one approach than another, input variable selection methods in this 

research are designed mainly for finding or for ranking all relevant variables to rails 

manufacturing process that are useful to build a good predictor. The nature of the 

data, however, has a significant influence on what type of input selection algorithm 

should be used. Accordingly, there are several questions one should answer prior to 

solving variable and feature selection problems (Guyon and Elisseeff 2003): 

1) Is there any domain knowledge (Guyon and Elisseeff 2003)?  

Tata Steel process expert has been closely involved in data pre-processing 

stage to clarify variable correlations and redundancy among data items and 

therefore contrast a better set of rails data. 
 

2) Are data features having same units (Guyon and Elisseeff 2003)?  

Rails data contain tens of inputs that have different units and consequently 

they need to be normalized beforehand.  
 

3) Is there any interdependency among features (Guyon and Elisseeff 2003)?  

Correlation analysis is a sufficient tool to observe interdependency of 

features. This step will be discussed in details in the next sections. 

4) Is it important to prune the input variables? Human expert knowledge that is 

applied in the data pre-processing section helps eliminating irrelevant 

variables and deleting missing records. 
 

5) Is it important to assess features individually (Guyon and Elisseeff 2003)?  

Understanding the influence of each input variable on the rails process is a 

crucial step because each data input has a different contribution on the system 

than the other inputs and therefore an input ranking method is to be 

considered. 
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6) Is there any suspicion that the data at hand is dirty?  

Data pre-processing is an important step to overcome such concern via 

finding outliers, removing missing values and identifying relevant inputs. 
 

7)  Is any predictor needed (Guyon and Elisseeff 2003)?  

The answer to this question is ‘yes’ so to assess the influence of each input 

variable. 
 

8) Is there any idea what is to be tried first (Guyon and Elisseeff 2003)?  

If no, a linear predictor is the best solution that can be applied.  

The correlation coefficient analysis, according to the above questions and their 

answers, is to be carried-out first for a better visualization of the data to be 

modelled and to reveal any relationships between inputs and outputs as well as 

detecting any redundancies or non-significant inputs. 

4.3.1 Rails Data Correlation Analysis 
 

The transformation of the variable into a solid and understandable form before the 

training process is common practice in data modelling and machine-learning 

methods. The process is carried-out to reduce the dimensionality of data inputs and 

to optimise the generalization performance (Bishop 2006). This transformation is 

usually implemented before the data is presented to the learning and modelling 

network and is known as data pre-processing. Once the data are pre-processed, a set 

of inputs and the desired set of outputs are presented to the learning agent.  

As mentioned in the previous section, correlation coefficient analysis can 

significantly help identify linear dependencies between inputs and outputs. 

Although the rails production line is characterised by non-linear behaviour, a better 

visualization of the data to be modelled as well as identifying the input-output 

redundancies can be achieved via correlation analysis. The Pearson correlation 

coefficient is the most familiar measure of dependence between two quantities, 

which can be calculated via the following equation: 

                                      𝑝!" =   
(𝑥! 𝑘 − 𝑥!)(𝑥! 𝑘 − 𝑥!  )!

!!!

(𝑥! 𝑘 − 𝑥!)!!
!!! (𝑥! 𝑘 − 𝑥!)!!

!!!

                                                                  (4.1) 
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For a series of 𝑛  measurements of X and Y represented as   𝑥!   and 𝑦!    where 𝑖  ,   

𝑗  =1, 2, …, n, the correlation matrix is a matrix containing all the correlation 

coefficients where 𝑝!" ϵ [-1, +1] is the Pearson correlation coefficient between 

variables  𝑥! , 𝑥!  , it indicates the linear dependency between output and given input if 

one of the variables is the output, otherwise it represents co-linearity or a measure 

of the degree to which two input variables are correlated. 𝑥!(𝑘) is the 𝑘𝑡ℎ  sample of 

𝑥! ,  𝑥! is the sample mean and N refers to the total number of samples (Y. Y. Yang 

et al. 2011). In the case of positive linear relationship (correlation),  𝑝!" is +1 and  

−1 in the case of a perfect negative linear relationship and the values between −1 

and +1 showing the degree of linear dependency between the variables, there is a 

weak relationship (closer to uncorrelated) as the variables approach zero.  

Data sets of high dimensionality are not comprehensively correlated in all the 

features because of the inherent sparsity of the data. Finding linear correlations 

among such dataset leads to very large number of correlation coefficients which 

will be summarized in a compact form of symmetric matrix R, defined as follows: 

                                                                            𝑹 = [𝑝!"]!×! =
𝑝!! ⋯ 𝑝!!
⋮ ⋱ ⋮
𝑝!! ⋯ 𝑝!!

                                                                                    (4.2) 

where 𝑝!"   is the correlation coefficient defined in equation (4.1), 𝑛  is the total 

number of data variables in the given data set and 𝑹  is symmetric with  𝑝!" = 1  , 𝑖 =

{1, 2,… ,𝑛}. In this research, only the data variables that are related to steel-making 

and continuous casting sub-processes have been chosen (called as rails-cast data, 

with process variables  𝑥!  ~  𝑥!"), as the two mentioned sub-processes have 

significant influence on the internal rails quality. Before applying correlation 

analysis on the rails data, it is worthwhile defining rails data variables in terms of 

their weights. Data weights play a role in describing the main features of a 

collection of data, where instead of each of the data variables contribute equally to 

the final effect or result, some data variables contribute more than others. Figure 4.1 

demonstrates the contribution of rails data points based on their weights. 
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Figure 4.1: Rails Data Input Weights 

Figures 4.2 and 4.3 show the correlations among some data inputs, and between 

data inputs and output respectively. The graphs also show that there is a significant 

correlation among some different inputs as presented in Figure 4.2, where many 

correlation coefficients exceed 0.95 (𝑝 > 0.95). In contrast, there is a slight linear 

relationship between data inputs and the number of rejected rails (output) with the 

maximum correlation coefficient being 0.144 related to the 9th input as shown in 

Figure 4.3: 
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Figures 4.2: Rails data input variables correlation analysis where (a) represents the 
correlation between input 11 and input 12, (b) represents the correlation between 
input 24 and input 25, (c) represents the correlation between inputs 24,25 and input 
26, (d) represents the correlations between inputs 11, 12 and input 40, (e) represents 
the correlation between inputs 50,51 and input 52, (f) represents the correlation 
between inputs 50, 51, 52 and input 53, (g) represents the correlation between 
inputs 50, 51, 52, 53 and input 54, (h) represents the correlation between inputs 67, 
68 and input 69, (i) represents the correlation between input 67 and input 68, (j) 
represents the correlation between input 66 and input 67. 
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Figure 4.3: Rails quality data variables, Input/output correlation analysis 
 

Highly correlated input variables reflect significant redundant information 

contained in the corresponding variables, in the sense that no additional information 

is gained by adding them, which need to be eliminated. Table 4.1 includes the top-

10 correlation coefficients.  

Table 4.1: Top 10 significant correlation coefficients 

Rank 
Output 

Correlation 
Variables 

Input  

Correlation 

Input 

Variables  

1 0.144 𝑥! 0.982 𝑥!", 𝑥!" 

2 0.133 𝑥!" 0.981 𝑥!", 𝑥!" 

3 0.111 𝑥! 0.979 𝑥!!, 𝑥!" 

4 0.106 𝑥!" 0.979 𝑥!", 𝑥!" 
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5 -0.097 𝑥! 0.978 𝑥!", 𝑥!" 

6 -0.074 𝑥! 0.975 𝑥!", 𝑥!" 

7 -0.071 𝑥!" 0.967 𝑥!", 𝑥!" 

8 0.060 𝑥! 0.966 𝑥!", 𝑥!" 

9 -0.050 𝑥!" 0.965 𝑥!", 𝑥!" 

10 -0.047 𝑥!" 0.953 𝑥!!, 𝑥!" 

 

According to Table 4.1, a highly non-linear relationship between inputs and 

output has been detected; such non-linearity is caused by having too many variables 

trying to have the same function. Table 4.1 also shows a solid linear relationship 

among data input variables. Such results are not powerful enough to identify inputs 

that are most relevant to describe the output. Consequently, an input variable 

selection-based non-linear predictor becomes desirable to retain the most relevant 

inputs that will be used for the actual modelling.   
 

Many algorithms have been tailored for the purpose of identifying outliers and 

influential points. Embedded methods, which perform input selection in the training 

process and are usually specific to given learning models, improve predictor 

performance in contrast to simpler variable ranking methods such as correlation 

methods; however such improvements are not significant due to the fact that 

domains with large scale data suffer from the curse of dimensionality (Guyon and 

Elisseeff 2003). Other methods are proposed to deal with imbalanced data sets 

where the distributions of class labels are not same. A model input selection using 

neural network based feed-forward selection will be discussed in the next section. 
 

4.3.2 ANN-Based Feed-Forward Model Input Selection Algorithm  
 
In many real world applications, a possible model bias (approximation error) is 

reduced by collecting a high number of variables. Unfortunately, many variables are 

sometimes highly correlated, and a complex model may comprise many irrelevant 

variables. As a result, these models may be difficult to interpret and may have less 

predictive power. In such cases, a more parsimonious model becomes desirable.  
 

Practically, as a separate data pre-processing step, there are several reasons 

behind the interest in reducing rails data dimensionality and discarding irrelevant 

features (Alpaydim 2010):  
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1) The number of input dimensions and the size of the data govern the 

complexity of most learning algorithms. Consequently, technical difficulties 

also arise when learning from large scale data sets, as the training time may 

be increased. Therefore, a sufficient amount of memory is required to hold 

the training set (Alpaydim 2010). 
 

2) Data can be plotted and analysed visually for outliers and structure when it 

is represented in a few dimensions (Alpaydim 2010).  
 

3) Simpler models have proven to be very robust on small datasets (Alpaydim 

2010). 
 
4) A better view of the process that underlies the data can be achieved if the 

Data is represented in fewer features (Alpaydim 2010). 
  
5) Human-based knowledge extraction can be easily applied on small scale 

dataset (Alpaydim 2010). 
 
Approaches such as neural network are proposed to distinguish between the most 

significant input variables based on their importance and the other irrelevant and 

redundant inputs are omitted accordingly. A simple 3-layer feed forward neural 

network has proven to be very effective for the purpose of input-output mapping as 

well as approximating any continuous non-linear function with arbitrary accuracy 

provided that sufficient hidden neurons are employed (Hornik 1991). The iterative 

feedforward input selection algorithm is presented in Figure 4.4: 
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Figure 4.4: Summarized Neural Network Forward Input Selection Procedure 

As it has been summarized in Figure 4.4, the input selection is performed via an 

iterative scheme by choosing a single input for the feed forward neural network 

modeling in the first iteration. The algorithm is designed so that all the input 

variables are trained as the single input candidate 𝑥!   ∈   𝑋! provided that, at each of 

the iterations, the NN modeling is performed with an extended input variable from 

the identified input set  𝑋!.  
 

Having each input variable sampled, a performance evaluator is used to 

categorize the corresponding inputs. Root mean square error (RMSE) is a good 

measure of accuracy and is applied here to quantify the difference between values 

implied by predictor and the real values of the quantity being predicted. The input 

variables with the minimum Root mean square error are ranked as highly important 

inputs; consequently, they are removed from the input data set  𝑋!, and added to a 

new set    𝑥!. In each round of the NN input selection, the corresponding model 

performance is computed based on RMSE; the input with the least RMSE value is 

eliminated from input data set 𝑋! and stored in the set 𝑥! accordingly.  
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The resulted RMSE values of irrelevant and redundant Inputs would always stay 

high, hence they would not be chosen as an important input. The above NN input 

selection scheme is repeated until a sufficient number of inputs identified or the 

model performance is not improved by training more inputs ( Yang et al. 2011a). 

The number of hidden units is to be chosen carefully due to the fact that with a few 

hidden units, the net does not have enough free parameters to fit the training data 

well (Duda et al. 2001). Empirical rules are used to choose the number of hidden 

units based on the number of NN model inputs. 

Having performed the NN forward-based input selection, 40 inputs have been 

selected as the most important input variables where the rest of inputs are omitted. 

All the subsequent analysis will be based only on these inputs. The results achieved 

by applying the aforementioned NN feedforward input selection procedure is 

summarize in Table 4.2.  

 

Table 4.2: Input Ranking Using NN Feed-Forward Selection 

No.	
   Variables	
   No.	
   Variables	
   No.	
   Variables	
   No.	
   Variables	
  

1	
   𝑥!	
   11	
   𝑥!"	
   21	
   𝑥!"	
   31	
   𝑥!"	
  

2	
   𝑥!	
   12	
   𝑥!"	
   22	
   𝑥!"	
   32	
   𝑥!"	
  

3	
   𝑥!	
   13	
   𝑥!"	
   23	
   𝑥!"	
   33	
   𝑥!"	
  

4	
   𝑥!"	
   14	
   𝑥!"	
   24	
   𝑥!"	
   34	
   𝑥!"	
  

5	
   𝑥!"	
   15	
   𝑥!"	
   25	
   𝑥!"	
   35	
   𝑥!"	
  

6	
   𝑥!"	
   16	
   𝑥!!	
   26	
   𝑥!"	
   36	
   𝑥!"	
  

7	
   𝑥!	
   17	
   𝑥!"	
   27	
   𝑥!"	
   37	
   𝑥!"	
  

8	
   𝑥!"	
   18	
   𝑥!"	
   28	
   𝑥!"	
   38	
   𝑥!!	
  

9	
   𝑥!!	
   19	
   𝑥!"	
   29	
   𝑥!	
   39	
   𝑥!	
  

10	
   𝑥!"	
   20	
   𝑥!	
   30	
   𝑥!"	
   40	
   𝑥!"	
  

 
 

As mentioned previously, applying feed-forward neural network model has 

proved to be very effective in selecting the most significant input variables. Such 

variables will lead to a good generalization performance of modelling and learning 

algorithms. The next section will present the application of the neural network 

model to the rails manufacturing process dataset.  
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4.4 RapidMiner Rails Data Neural Network Model 
 

4.4.1 RapidMiner  

Rapid Miner is a free access software that was originally designed in 2001 to 

perform artificial intelligence based tasks. Recently, the open-source software has 

been developed as standalone data-mining engine, data evaluation and 

visualization. An interesting feature of the software is that it is a comfortable user-

interface containing over 500 operators tailored to generate different models and 

execute various tasks such as classification, clustering, regression and data 

transformation. Rapid Miner also comprises powerful high-dimensional plotting 

facilities.  

4.4.2 Neural Network Model 
The neural network operator provided by RapidMiner learns a model by means of a 

feed-forward neural network which is trained by a back-propagation algorithm-

based multi-layer perceptron. Figure 4.5 illustrates the neural network framework 

designed for rails data modelling using the RapidMiner software. 
 

 
 

 Figure 4.5: Rails data Neural Network Modelling Framework 
 

ANN is usually referred to as neural network (NN), is a computational model 

that is motivated by the functional aspect and sophisticated structure of human 

biological neural networks.	
  As a promising artificial intelligence technique, neural 

networks have been widely applied in many application areas. The neural network 

Rails Data 



	
  

65	
  
	
  

paradigm has the ability to organize its structural constituents which are known as 

perceptrons (neurons) so as to execute certain computations better than today’s 

digital computers do (Haykin 1999). Advanced neural networks are more likely 

used for complex relationships modelling between inputs and outputs or to find 

patterns in data. Neural networks offers useful properties and capabilities in 

contrast to other modelling techniques such as non-linearity, input-output mapping, 

adaptivity and simplicity (Haykin 1999). 
 

The neural network processing unit (neurons) is a fundamental feature of neural 

networks. The perceptron computes a weighted sum of the input signals and then 

passes the result through a nonlinear activation function (Yoo et al. 2006). The 

nonlinear model of the perceptron (neurons) is shown in Figure 4.6. However, 

mathematically, the perceptron’s output can be represented as follows (Yoo et al. 

2006), (Haykin 1999):  

  

                                                                                                              𝑢! =    𝑤!"!
!!! 𝑥!                                                      (4.3) 

 

                                                                                            𝑦! =   𝜑(𝑣!) = 𝑤!"!
!!! 𝑥!   + 𝑏!                                      (4.4) 

 

 
Figure 4.6: Nonlinear Model of Neural Network’s Neuron (Haykin 1999) 

  
where 𝑥!, 𝑥!, …, 𝑥! are the input signals; 𝑤!!, 𝑤!!, …, 𝑤!" are the synaptic 

weights of the perceptron k,  𝑢! is the linear combiner output, 𝑏! is the bias or a 

constant threshold value, 𝜑(. ) is the activation function, 𝑣!is the induced local field 

of the perceptron and 𝑦! is the output of the neuron. The activation signal, 
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commonly referred to as the squashing function, limits the perceptron’s output to a 

closed interval, e.g. [0,1] or alternatively [-1,1] (Yoo et al. 2006).  
 

The activation function maps the inputs from linear space to a nonlinear space. It 

is worth mentioning that the nonlinear characteristic of artificial neural networks 

comes from the nonlinearity of the activation function. Although there are many 

types of activation functions such as threshold function and piecewise-linear 

function, sigmoid function, whose graph is s-shaped as shown in Figure 4.7, is 

utilised in the design of artificial neural networks and therefore, the values of the 

attributes are scaled to -1 and +1. The input values are converted into output signals 

based on the activation functions (Che et al. 2011). The sigmoid function satisfies 

the following relationship (Bishop 2006): 

 
 

                                                                                                𝜑 𝑢 =   
1

1+ 𝑒!!"                                                                                                      4.5  

 

where 𝑎  is a slope parameter. The above equation also called the log-sigmoid 

function because the sigmoid can also be formulated using hyperbolic tangent 

function instead of this function where it will be called a tan-sigmoid. The sigmoid 

represented above has the property of being similar to the step function but with the 

addition of uncertainty region. 

 

 
Figure 4.7: Sigmoid Function for Varying Slop Parameter 
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A feedforward neural network-based back-propagation algorithm is employed to 

learn the model. The rails input data are mapped on to a set of appropriate output 

based on the multilayer perceptron (MLP) which consists of multiple layers of 

nodes in a directed graph where every layer is connected to the following one. Each 

node is a processing unit (neuron) with a non-linear activation function. The 

structure of a sequential connections multi-layer neural network is shown in Figure 

4.8 (Haykin 1999), (Yoo et al. 2006): 

 

 

Figure 4.8: Architecture of Multi-layer Neural Network 

The Neural network architecture consists of an input layer of nodes (neurons), 

hidden layers of neurons and an output layer. Each connection in the neural 

network is associated with a numeric number called weight. The back-propagation 

algorithm used for training neural network is popularised by Rumelhart et al. 

(1986). The algorithm has the ability to iteratively adjust the weights between the 

neurons in order to minimize the error function by some smaller amount (Örkcü 

and Bal 2011). This process will be repeated for sufficiently large number of 

training cycles until convergence where the error value is small. Based on the 

previous correlation analysis, human expert knowledge and input weights analysis, 

neural network model is examined on five rails data sets. Figures 4.9- 4.13 present 

the result of NN model on these datasets.  
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Figure 4.9: Neural Network model of full rails data set (143 inputs and 65466 

data records) 

 
Figure 4.10: Neural Network model of full rails data set (70 inputs and 39327 

data records) 
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Figure 4.11: Neural Network model of full rails data set (40 inputs and 39327 

data records based on input weights analysis) 

 

 
Figure 4.12: Neural Network model of full rails data set (40 inputs and 39327 

data records based on Input correlation analysis) 
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Figure 4.13: Neural Network model of full rails data set (27 inputs and 39327 

data records based on Expert Knowledge manual selection) 
 

The results of neural network model are as shown in Table 4.4, where four rails 

datasets are compared. The optimal RMSE values are obtained for all datasets. 

However, the comparison shows poor modelling results with a performance of less 

than 10% were obtained for all rails datasets based on RabidMiner neural network 

model. Such a poor generalization performance is due to the fact that rails data are 

highly imbalanced where the good rails far outnumber the rejected (bad) rails.  A 

significant classification improvement is achievied when applying data resampling 

techniques as will be shown in chapters 5 and 6. Class imbalance problem 

significantly hinders the performance of standard classifiers and modelling 

algorithms. The performance would always be biased in favour of the dominating 

class (majority), while the data related to the minority class tend to be misclassified. 

 

Table 4.3: Rapid Miner Neural Network Performance Summary 

Rails Data 
Size 

Data 
Selection 
method 

Specificity 
Training/ 
Testing 

Sensitivity 
Training/ 
Testing 

Accuracy 
Training/ 
Testing 

RMSE 
(Training)  

RMSE 
(Testing) 

70 inputs 
and 39327 

data 
records 

ANFIS 
model Input 

Selection 
0.994/0.984 0.232/0.110 0.949/0.930 0.410 0.545 

(Output (Y) 

Training Data (RMSE = 0.440) 

Testing Data (RMSE = 0.494) 
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40 inputs 
and 39327 

data 
records 

Input 
Weights  
selection 
( > 0.4) 

0.995/0.987 0.165/0.095 0.949/0.930 0.422 0.533 

40 inputs 
and 39327 

data 
records 

Input 
Correlations 

selection 
0.991/0.987 0.163/0.110 0.942/0.933 0.432 0.513 

27 inputs 
and 39327 

data 
records 

Expert 
Knowledge 

(Manual 
selection) 

1.000/0.997 0.041/0.024 0.943/0.937 0.440 0.494 

 
 

The performance measures of neural network model are assessed as follows: 

Specificity = TN / (TN + FP)                                                                                (4.6) 

Sensitivity = TP / (TP + FN)                                                                                 (4.7) 

Accuracy = (TN + TP) / (TP + TN + FP + FN)                                                    (4.8) 
 
Specificity is the ability of the algorithm to accurately classify the majority class 

whereas Sensitivity is the ability of the algorithm to accurately classify the minority 

class. Accuracy refers to the overall percentage that both classes are correctly 

classified.  The optimal classification metrics are the specificity (4.6) and 

sensitivity (4.7) since the rejected rails, minority class, are more important to be 

correctly classified.  Sensitivity, specificity and accuracy (4.8) performances can be 

employed as performance metrics throughout the confusion matrix. The confusion 

matrix for the neural network modelling problem is illustrated in Table 4.4. 
 

Table 4.4: Confusion Matrix 

 Predicted positive Predicted Negative 

     Real Positive TP (True Positive) FN (False Negative) 

     Real Negative FP (False Positive) TN (True Negative) 
  

As mentioned previously, by applying the feedforward neural network model, 

correlation analysis and input weights selection scheme have proved to be very 

effective in selecting the most significant input variables. Although redundant as 

well as irrelevant input variables were omitted, the rails dataset is significantly 

imbalanced where the number of the majority classes outweighs the number of 

minority classes. Figures 4.14, 4.15 and 4.16 illustrate the class distributions of rails 

data, Heating Time for individual bloom and the influence of blooms changeover to 

rails defect.  
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Figure 4.14: Rails Data Class distribution 

 

 
Figure 4.15: Heating Time for Rails individual bloom 

 

 
Figure 4.16: Rails Defects position vs Change over Blooms 
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Due to the fact that standard modelling algorithms and machine learning techniques 

yield better modelling performance with balance data sets, quality modelling results 

are not reachable with the current rails data set structure. Therefore, a direct data 

resampling approach is to be applied to improve the class distribution of rails data.  
 
4.5 ANFIS Model for Rails Quality Data Classification with  

Bootstrapping-Based Over-sampling 
 

As has been discussed in section 4.4, 40 input variables were selected using the NN 

forward input ranking scheme. The original output of rails production line is varies 

between o and 3, 𝑦   ∈ {0, 1, 2, 3}  based on the NDT ultrasonic testing. 𝑦 = 0 refer 

to a good rails and 𝑦 = {1, 2, 3} representing rejected rails as per flow position 

(end, middle, both) respectively.  An adaptive neural-fuzzy modelling approach 

was developed for the purpose of data classification; only 10 % of the data were 

successfully classified. Such a low success rate, of classifying the rejected rails, 

was found due to the class imbalance in the training data set. Class imbalances 

hinder the performance of standard classifiers and modelling algorithms, the 

classification would always be biased in favour of the dominating class (majority) 

while the data belonging to the minority class tend to be misclassified (Estabrooks 

et al. 2004). In order to overcome such a concern, Bootstrapping-Based Over-

sampling scheme will be adopted in the next section.  
 

4.5.1 Bootstrapping for Rails Data Resampling 
 
A data set is imbalanced if the samples belonging to the majority class outnumber 

the samples belonging to the minority class. Since standard machine-learning 

techniques and other modelling algorithms yield better classification performance 

with balance data sets, quality classification is not reachable with the current rail 

data set structure. Therefore, a direct data resampling approach is to be applied here 

to change the class distribution of rails data. Figure 4.17 displays the class 

distribution of rails data set.  
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Figure 4.17: Rails data Class Distributions (where 0 represents good rails and 

values (1, 2 and 3) represent defected rails) 
 

Changing the class distribution can be conducted via different resampling 

strategies: over-sampling, under-sampling or combination of both (Estabrooks et al. 

2004).  The advantage of such techniques is that they are external and therefore, 

easy transportable as well as very simple to implement (Estabrooks et al. 2004).  

The resampling scheme used here is over-sampling the minority class data as it 

avoids unnecessary information loss (Yang et al. 2011 a).  

 For the over-sampling to be carried out, the original rails-cast data (40 input 

variables) are separated in two sub-sets. One set is for the dominating class and the 

other is for the minor class.  Subsequently, the minority class data is fed in to the 

bootstrapping resampling algorithm. The bootstrapping resampling algorithm yields 

a multiple randomly resampled subsets that have the same size as the size of the 

original minority subset (Yang et al. 2011 a).   

The resampled subsets are combined with the majority class data to shape the 

resampled training data that is ready for the subsequent training procedures. The 

design parameter 𝑅!! which defines as the ratio of the number of samples 

belonging to the majority class to that belonging to the minority class plays a 

crucial role in the bootstrapping over-sampling algorithm as it controls the level of 

imbalance for the resampled training data set. All of the existed resampling 

techniques are tailored to resample until the desired ratio between the majority and 

minority classes is reached.  

Oversampling has proved to be effective as there is no information from the 

original training set is lost since all instances from majority and minority classes are 

kept. However, the drawback is that the training data size is significantly increased. 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4
x 104

Class Labels

Nu
m

be
r o

f D
at

a 
Re

co
rd

s

Distribution of Classes



	
  

75	
  
	
  

Therefore, the training time is also increased and sufficient amount of memory is 

required to hold the training set. Since the dimensionality of rails data set is very 

high, it is importantly to take in to account the resampling time in order to keep 

time as well as memory complexity under reasonable constraints. Figure 4.18 

shows the influence of over-sampling strategy on the rails data. 

	
  	
   

Figure 4.18: The Influence of 𝑅!! on the Resampled Training Data.	
   

4.5.2 An Adaptive Neural-Fuzzy Inference System  
 
4.5.2.1 The Neural-Fuzzy Approach 

Neural network and fuzzy logic are both complementary frameworks rather than 

competitive for many applications. Therefore, it is advantageous to employ these 

techniques as a combination rather than exclusively. Practically, such a 

combination is called a hybrid intelligent system. A neuro fuzzy hybrid system is 

one of the popular combinations that have been applied extensively in various 

domains. The essential part of the neuro fuzzy approach is connected with the 

attempt to unite the advantageous of fuzzy and neural techniques in standalone 

hybrid structure referred to as adaptive network.  

A unique feature of the adaptive network is its ability to identify patterns and 

adapt themselves to cope with varying environment. Neural-fuzzy modelling is 

concerned with model extraction from numerical data that represents a system’s 
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dynamic behaviour. As per the above mentioned methodology, system modelling 

can serve two purposes: 

• The system’s behaviour can be directly predicted from the derived model; 

• The derived model can be utilized to design a controller. 

The crucial steps of neuro fuzzy modelling are: 

• The fuzzification of input variables; 

• Computation of the degree of satisfaction for linguistic terms; 

• Fuzzy inferred parameters and premise conjunction; 

• Output defuzzification. 
 

4.5.2.2 An Adaptive Neural-Fuzzy Inference System 

Classification Based Fuzzy C-means Clustering. 
 

As per their design principles, most of classification algorithms tend to enhance the 

overall classification accuracy without taking into account the class distribution of 

the data at hand. Therefore, the minority classes, when the data is extremely skewed 

as shown in Figure 4.17, are likely to be misclassified. This problem was addressed 

in the previous section using the Bootstrapping-based Over-sampling framework.  
 

Having resampled the rails data set, ANFIS is chosen in this study as a classifier 

since the data labels which can be used as output set are determined.  
 

ANFIS is presented in this research as a neural network that generates the rules 

of a fuzzy logic system. The fuzzy inference model is expressed as a collection of 

fuzzy rules as follows (Yang et al. 2011 a): 

                                            𝑅!: If x1 is Ai1 and x2 is Ai2 ....... and 𝑥! is 𝐴!" then y = 𝑧!   (x)      (4.9) 
 

where 𝑥!, 𝑥!,… , 𝑥! are data samples (𝑥! ∈ 𝑈) and y ∈ V are linguistic variables, 

𝐴!" are fuzzy sets defined on the universe U, 𝑧!   (x) is the calculated output.  A 

simple ANFIS framework with two rules is presented in Figure 4.19. Layer 1 is the 

fuzzy membership mapping of the input, the “and” operation is performed by 

Layers 2 and 3 is the fire strength normalization of each fuzzy rule, the “then” part 

is performed by Layer 4, and the overall output of the fuzzy system is calculated in 

Layer 5.  
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Figure 4.19: A Simplified ANFIS Structure (Yang et al. 2011 a) 

Mathematically, the five layers that form ANFIS architecture can be represented as 

follows (Jang 1993): 

Layer 1: Every node 𝑖 in this layer is an adaptive square node with a node function: 

                                                  𝑂!,! =   𝜇!" 𝑥                                                  (4.10) 

where 𝑥 is the input to node 𝑖, 𝐴!is the linguistic label (small or large) associated 

with this node function and 𝜇!" is the membership function of 𝐴!. 𝜇!" is of the form 

(Jang et al. 1997): 

                                                                                                𝜇! 𝑥 =   
1

1+ 𝑥 − 𝑐!
𝑎!

!!                                                                                   (4.11)       

where {𝑎! , 𝑏!,  𝑐!} is the premise parameter set and 𝑥 is the input. 

Layer 2: Each node in this layer is a fixed node whose output is the product of all 

the incoming signals. The fixed node calculates the firing strength 𝑤! (Jang et al. 

1997): 

                                𝑂!,! = 𝑤! =   𝜇!" 𝑥 . 𝜇!" 𝑦 , 𝑖 = 1, 2.                               (4.12) 

Layer 3: Each node in this layer is a fixed node where the 𝑖!! node calculates the 

ratio of the 𝑖!! rule’s firing strength to the sum of all rules’ firing strengths (Jang et 

al. 1997):   

                                                                                      𝑂!,! =   𝑤! =
!!

!!!!!
, 𝑖 = 1, 2.                                     (4.13) 
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Layer 4: Every node 𝑖 in this layer is an adaptive node with a node function (Jang 

et al. 1997): 

                                                                      𝑂!,! =   𝑤!𝑓! =   𝑤!(𝑝!𝑥 + 𝑞!𝑦 + 𝑟!)                             (4.14) 

where 𝑤! is a normalized firing strength (output of layer 3) and (𝑝! , 𝑞! , 𝑟!) is the 

consequent parameter set. 

 Layer 5: this layer contains a circle node (sum node) that computes the overall 

output as the summation of all incoming signals i.e. (Jang et al. 1997): 

                          The overall output 𝑂!,! = 𝑤!𝑓!! =    !!!!!
!!!

                            (4.15) 

In this study, the fuzzy C-mean clustering (FCM) has been chosen to create fuzzy 

models due to its simplicity and efficiency (Yang et al. 2011 a).  Fuzzy C-Mean 

clustering is a commonly used technique which subdivides the data set in to 𝑃 

clusters where each data element has a degree of belonging to exactly one cluster. 

Having chosen the number of clusters 𝑃 which is equal to the number of fuzzy 

rules, the FCM partitions the data samples in to 𝑃 fuzzy clusters so that the 

minimization of the following objective function is achieved as follows:  

                                                                                                    𝐽! = 𝜇!"! ||𝒙 𝑘 − 𝒄!
!

!!!
||!

!

!!!

                                                        (4.16) 

Where 𝜇!" is the degree of membership of the 𝑘𝑡ℎ data sample in the 𝑖𝑡ℎ cluster,  

𝑐! is the centre of the 𝑖𝑡ℎ cluster, 𝑥(𝑘) is the 𝑖𝑡ℎ of measured data and  𝛼  is the 

exponent value of 𝜇!"   (Babushka et al. 1983).  FCM converges to a local minimum 

of 𝐽! so that the fuzzy membership degree 𝜇!" satisfies the following constraints 

(Babushka et al. 1983):  

                                                         𝜇!" = 1,      ∀𝑘 ∈ 1,𝑁 ;  !
!!!   0 ≤ 𝜇!" ≤ 1,∀𝑘, 𝑖 ∈ 1,𝑝                       (4.17) 

The parameters of the fuzzy inference system are optimised using a hybrid 

learning algorithm. a combination of error back-propagation gradient descent 

method and ‘Least-squares’ method has been applied for training the membership 

function which has Gaussian form and other ANFIS parameters. The final output 𝑓 

can be expressed as a linear combination of the consequent parameters. The output 

𝑓 can be of the form: 
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                                                                                                      𝑓 =   
𝑤!

𝑤! + 𝑤!
𝑓! +

𝑤!
𝑤! + 𝑤!

𝑓!                                                                (4.18) 

 

                                                     =   𝑤!𝑓! +   𝑤!𝑓!                                            (4.19) 

 

           =    (𝑤!𝑥)𝑝! + (𝑤!𝑦)𝑞! + (𝑤!)𝑟! + (𝑤!𝑥)𝑝! + (𝑤!𝑦)𝑞! + (𝑤!)𝑟!      (4.20) 

Where 𝑓 is linear in the consequent parameters (𝑝!, 𝑞!, 𝑟!, 𝑝!, 𝑞!, 𝑟!). 

The majority to minority ratio 𝑅!! and the number of fuzzy rules 𝑃 are two 

crucial parameters that extremely influence the modelling performance. An 

exhaustive search via bootstrapping over-sampling and adaptive neural-fuzzy 

classification framework is carried out In order to identify these optimal design 

parameters; Figure 4.20 illustrates the scheme of iterative optimization algorithm 

(Yang et al. 2011 a).   

 

Figure 4.20: Iterative bootstrapping-ANFIS optimization scheme for 𝑃  & 𝑅!! 
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4.6 ANFIS Model Interpretation and Performance Evaluation 
 

The pre-processed rails-cast data (40 inputs) need to be divided into two data sets 

before applying the iterative bootstrapping-ANFIS optimization scheme shown in 

Figure 4.20. 70 % of data samples are used as training set and 30 % are used as 

testing set.  For a better classification performance, the two fundamental parameters 

mentioned earlier are specified as follow: the majority to minority case data ratio 

𝑅!! is chosen to be within the range of [𝑅!"#~𝑅!"#] = [1, 5] with an increment of 

0.5 at every step length, and the number of fuzzy rules  𝑃, known also as prototype, 

is selected as [𝑃!"#,𝑃!"#] = [2, 10] with an increment step of 1. In addition, the 

number of epochs is 100 (Yang et al. 2011 a).  
 

The ultimate classification performance of the bootstrapping-ANFIS scheme is 

influenced by the variation of data ratio  𝑅!!. Because only using the training data 

set is used for bootstrapping resampling, the performance will be biased towards the 

majority class which has more dominance if a large 𝑅!! arises, i.e., specificity. In 

contrast, the performance will be biased towards the minority class as it has a 

reduced dominance if 𝑅!! is small, i.e., sensitivity (Yang et al. 2011 a).  Figure 

(4.21) shows the classification performance of bootstrapping-ANFIS algorithm 

where the optimal 𝑅!! value is approximately 2.5.   

	
  

 

(a) 𝑅!! for oversampled training data                  (b) 𝑅!! for original testing data 

1 2 3 4 5
0

20

40

60

80

100

Rmm (Increment = 0.5)

Pe
rf

or
m

an
ce

 (
B

oo
ts

tr
ap

pi
ng

 T
ra

in
in

g)

 

 

Specificity
Sensitivity
Accuracy

1 2 3 4 5
0

20

40

60

80

100

Rmm (Increment = 0.5)

Pe
rf

or
m

an
ce

 (O
rig

in
al

 T
es

tin
g)

 

 

Specificity
Sensitivity
Accuracy



	
  

81	
  
	
  

	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
       (c) Classification performance for 𝑅!! = 2.5 

Figure 4.21: classification performance of bootstrapping-ANFIS algorithm 
 

4.7 Algorithm Discussion  
 

Learning from the misclassified points (minority class examples) can reveal a better 

understanding of classifier’s performance on imbalanced dataset. As a result, the 

confusion matrix presented in Table 4.5 is used as a measure of performance 

evaluation of estimators. It allows performance visualization of ANFIS algorithm 

by means of assessing the success rate of majority and minority classes.  The output 

of the optimised ANFIS model 𝑦 = {0, 1, 2, 3} is converted to binary 

numbers  {0, 1}, where the minority class (Rejected rails) is represented by 1 and the 

majority class (good rails) is represented by 0. 
 

Specificity, Sensitivity and accuracy are adopted as binary classification 

performance evaluators, where specificity is the proportion of the negative classes 

that are correctly classified, sensitivity is the proportion of the positive samples that 

are correctly classified and accuracy is the overall percentage of predictions that 

were correctly classified (Yang et al. 2011 a).  Figure 4.21 reveals a good 

generalization performance of ANFIS model when using a balanced data set. On the 

other hand, the success rate of classifying the rejected rails (sensitivity) is very poor 

with only 10 % of the testing data and 16 % of the training data when applying the 

ANFIS algorithm on the original rails data set (Imbalanced data). Figure 4.22 

illustrates the classification performance of ANFIS model using the original rails 

data without balancing. 
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Figure 4.22: ANFIS classification performance using the original rails data 

(imbalanced) 
 

In conclusion, Figures 4.21 and 4.22 illustrate clearly the impact of the class 

imbalance problem on the prediction performance of classification algorithms. 

Class imbalances hinder the learning performance of standard classifiers and 

modelling algorithms. Learning from the original rails data without balancing has 

led to a poor classification performance at around than 10 % of the testing data and 

16 % of the training data when applying the ANFIS algorithm Figure 4.22. Such a 

low success rate, of classifying the rejected rails, was found due to the class 

imbalance of training data. However, the bootstrapping-ANFIS algorithm yields 

better prediction performance for both the majority and minority classes when using 

balanced data set with 65 %. Figure 4.21c illustrates the sensitivity, specificity and 

accuracy performances for the ANFIS model with the re-sampled rails data set 

corresponding to 𝑅!! = 2.5.  
 

4.8 Summary  

This chapter has mainly focused on two concepts as follows: 

1. Handling the complexity of real industrial rails data provided by Tata Steel 

Europe via applying data exploratory data analysis (data pre-processing) 

and input selection algorithm.  

2. The second concept related to utilizing data mining and knowledge 

discovery in databases towards the construction of robust modelling 

frameworks i.e., RapidMiner neural networks and neuro fuzzy-based 

ANFIS approaches. 
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The next chapter will encounter another data re-sampling techniques. Moreover, 

different data classification approach based on SVM will also be applied for rails 

data classification. Finally, a comparison analysis of the proposed support vector 

machines for data classification will be discussed in contrast to the neural network 

modelling results presented in this chapter.	
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Chapter 5 

 

Iterative Support Vector Machines: 
Rails Data Classification Framework  

 
5.1 Introduction 
 
Over the last few years, there has been a growing demand for analysing the 

properties of complex systems and reducing manufacturing costs while enhancing 

process yields based on the data being provided. Support vector machines have 

emerged as a powerful machine learning paradigm for solving classification 

problems in many fields, most particularly those of a complex nature (Yu 2013), 

(Ghaedi et al. 2014), (Janakiraman et al. 2014); this being due to the fact that 

support vector machines are able to reach a high generalization performance which 

can lead to an accurate classification, and to their ability to learn relatively quickly 

from large scale datasets using solid mathematical optimization methods and most 

significantly SVM’s possibility of allowing a theoretical analysis using 

computational learning theory. Although there exist various approaches utilizing 

the “kernel trick”, support vector machines-based classification algorithms are 

probably the most known “kernel algorithms”.  
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SVMs, being computationally powerful techniques for binary classification, 

have gained much popularity in understanding the interaction and influence of input 

features on overall process yield (Widodo and Yang 2007).	
  SVMs are supervised 

learning tools that embody the structural risk minimization principle presented by 

Vapnik and colleagues (Vapnik 1995), (Burges 1998).  
 

From an algorithmic perspective, SVMs have some advantages over other 

classification methods as they have a solid mathematical structure, a significant 

overall classification precision and the ability to terminate to a global classification 

solutions as the hyper-planes are determined by support vectors (Batuwita and 

Palade 2010b). Another attractive feature of support vector machine algorithm is 

that they do not require much manual parameter manipulation which makes their 

use much easier. Despite these computationally attractive features, SVMs are 

known to have weaknesses when applied to imbalanced datasets where they tend to 

be overwhelmed by the majority class and lead to a poor classification performance 

on the minority class (Shao et al. 2014), (Batuwita and Palade 2010a). Imbalanced 

data correspond to data sets where there are many more examples of one class than 

the other class.  
 

This chapter introduces a new iterative SVM formulation for solving the rails 

data binary classification problem that leads to an efficient successive 

classification. This framework referred to as iterative support vector machine is 

proposed for severely imbalanced rails data classification and is based on the 

incorporation of data re-sampling techniques with the SVM algorithm. Data 

resampling techniques, oversampling and under-sampling, are the best choice for 

overcoming the class imbalance problem. In this work, a successful inclusion of a 

unique the learning mechanism of ISVM and the class distribution advantages of 

resampling techniques has been achieved. Experimental results on rail data set are 

effective not only on machine’s overall generalization performance, but also on 

drastically reducing the algorithm’s time complexity and the number of support 

vectors. 

The class imbalance problem could seriously detriment to the prediction 

performance of most classification techniques. As per their design principles, most 

standard learning models tend to ignore the minority class as they are overwhelmed 

by the majority class (Chawla et al. 2004), (Giles 2007), (Liu et al. 2006), (Garcia 

and He 2009). However, the most important task in any classification problem is to 
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also correctly classify the minority class examples. The adverse implication of class 

imbalance learning problem is the capability of imbalanced data to remarkably 

compromise the overall performance of standard classifiers and modelling 

algorithms (Garcia and He 2009), (Liu et al. 2009). With the special attention 

devoted from academia and industry to the class imbalance problem, there are 

many methods tailored to overcome such a concern. 

This chapter will start by demonstrating the formulation of standard SVM for 

pattern classification with a brief review of the past and on-going researches related 

to SVMs classification and the statistical learning theory, upon which the SVM is 

based. Secondly, the iterative SVM formulation will be presented as a maximum 

margin classifier that implements the principle of structural risk minimization. The 

structural risk minimisation principle seeks to minimise the upper bound of the 

generalization error. Thirdly, the development of SVMs from being a linear 

classifier to a non-linear maximum margin classifier will be discussed. This chapter 

also presents the key solutions to the class imbalance problem of rails data. Finally, 

the application of the proposed ISVM on rails data with bootstrapping-based over-

sampling and under-sampling will be discussed.  
 
5.2 Support Vector Machines  

Support vector machines are discriminators that utilize structural risk minimization 

to find decision hyper-plane with a maximum margin between groupings of feature 

vectors. SVMs are often used to classify binary and multi-class datasets. Since their 

introduction by Vapnik  (1995), SVMs have proven to be very effective and 

efficient in solving many classical problems in various application areas, mostly 

those of supervised learning.  
 
SVMs are a relatively new in the field of machine learning that can lead to a number 

of advantages over other approaches, some of which are as follows:  

1) The solution of the problem is unique (the solution is the global minimum of 

the corresponding classification problem). 

2) The sparseness of the solution (the solution is formed by a few training 

examples referred to as  support vectors); 

3) SVMs possess a rigid theoretical structure based on the statistical learning 

theory (optimisation theory and structural risk minimisation); 

4) The solution of SVMs has good generalisation properties;  
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5) SVMs are applicable to linear and non-linear problems through the use of 

‘Kernel trick’; 

6) Generally, the Radial Basis Function and the polynomial are known to be a 

special forms of SVMs. 
 

SVMs are particularly suitable for binary classification, although they can also 

be extended to multiclass applications. The basic idea behind SVMs is to find a 

hyper-plane H which separates the high-dimensional data into its two classes as 

shown in Figure 5.1. The training set is separable if a hyper-plane can divide the 

given dataset into two half-spaces corresponding to the positive and negative 

classes. The hyper-plane that maximizes the margin (minimal distance between the 

positive and negative examples) is then selected as the unique SVM hypothesis. 

Since the given data may often not be linearly separable, the notion of a “kernel 

feature space” is introduced which casts the data into a higher dimensional space 

where the data are separable. However, SVMs are considerably slower in contrast to 

other learning techniques such as neural networks. Overall, SVM’s are intuitive, 

theoretically well-founded, and successful.	
  	
  

	
  

	
  

Figure 5.1: SVM separating Hyper-planes for binary classification 

 

For a given data set S of training points that are labelled as follows: 

                                    𝑦!, 𝑥! , . . . , (𝑦! , 𝑥!)                                          (5.1) 
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where 𝑥! ∈ 𝑅! represents an n-dimensional data points,  𝑦!    represents the classes of 

which these data points are belonging to 𝑦! = {−1, 1}  and 𝑖 = 1,…    ,𝑛. The goal of 

SVM is to find a hyper-plane that separates the data into two classes with as a big 

margin as possible. To find the hyper-planes 𝐻1,𝐻2  that better separate the classes, 

the data records are mapped into a higher dimensional space via a mapping 

function  𝜑, then the separating hyper-plane can be represented as 𝑤  .𝜑 𝑥 + 𝑏 = 0 

(Batuwita and Palade 2010b).                                      

Previous studies from researchers on data classification focused on applying 

kernel techniques (support vector machines, fuzzy support vector machines) on 

real-world dataset such as (Vapnik 1995), (Boser et al. 1992), (Burges 1996) (Duan 

and Keerthi 2005), (Cortes C. and Vapnik V. 1995). Due to the ongoing rapid 

growth of data in a wide variety of real world applications, researchers have 

broadened the idea of SVM into various applications such as Fuzzy SVM (Lin and 

Wang 2002), (Lin and Wang 2004) and Lagrangian support vector machines 

(Mangasarian and Musicant 2001).  

Reviewing past and on-going research that focuses on applying SVMs as a 

knowledge extraction technique is a crucial task for any researcher. Such a review 

can highlight the advantages and disadvantages of specific tasks as well as 

identifying other research paradigms to solve the problem at hand.  

A new algorithm defined as Sequential Minimal Optimization (SMO) for 

training support vector machines is proposed by Platt (1998). The SMO approach is 

unlike standard Support vector machine training algorithms that require numerical 

solution to an extensive large quadratic programming (QP) optimization dilemma. 

The key insight of SMO is that it breaks the QP problem at hand in to a series of 

small QP problems. The obtained small QP problems are then solved using less 

time of QP optimization as an inner loop. In addition, no extra matrix storage is 

required by SMO due to the fact that this approach only solves tow Lagrange 

multipliers analytically. Consequently, SMO is able to handle a large training 

dataset. 

Standard algorithms for training support vector machines require expensive 

computations and as result, a great number of support vectors will be produced. 

Downs et al. (2002) presented an algorithm that distinguishes unnecessary support 

vectors and eliminates them while maintaining the solution otherwise unaffected. 
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Researchers normally employ the SMO proposed by Platt (1998) to produce an 

initial support vectors set and then eliminate support vectors that are  linearly 

independent  in feature space. Linear, polynomial and RBF kernels functions are 

used for this purpose. The Results of this method reduces the number of support 

vectors. Nevertheless, severe reductions in generalization performance can occur 

when discarding even small number of support vectors (Syed et al. 1999). 

Due to the fact that the support vector machine algorithm produces more support 

vectors in a large dimensional  space, other researchers have been interested in 

designing a reduced set methods that can tackle this problem (Burges 1996), 

(Burges et al. 1997), (Schoelkopf et al. 1999), (Scholkopf and Smols 2001). Some 

researchers  (DeCoste and Mazzoni 2003) applied an approximation method 

together with the reduced set methods to speed up the query time (optimization 

phase) of Support Vector Machines (Nguyen and Ho 2005). 

According to Platt (1998), SVMs are considerably slower in the quadratic 

programming (QP) optimization phase in contrast to other methods with similar 

generalization performance. A new reduced set method was presented by Burges 

(1996) to address this problem. This method is to decrease the complexity of 

decision rule using SVM.  It computes an approximation to the decision rule by 

means of a reduced set of vectors. 

Lee et al. (2011) introduced a distance measurement technique that employs the 

Euclidean distance-based function to replace the optimal hyper-plane as 

classification decision making function in the SVMs. In this approach, when a new 

data sample is casted into another vector space, the average distances between the 

new data samples and the support vectors are measured using Euclidean distance 

function. In contrast to the Standard SVM where finding the optimal hyper-plane is 

dependent on the type of the kernel function and the value of the soft margin 

parameter C, the Euclidian-SVM have low impact on the implementation of kernel 

function and soft margin parameter C. Therefore, the issue of choosing an 

appropriate Kernel function and soft margin parameter C can be avoided. However, 

the classification phase of the proposed approach is computationally expensive 

when applied to a large scale dataset.  

For a better classification performance, kernel selection is the main task in applying 

SVMs.  Prajapati and Patle (2010) compare the classification performance of SVM 



	
  

90	
  
	
  

with different types of kernel functions. Linear kernel function, polynomial and 

radial basis kernel function (RBF) were utilized for performing classification. For 

selected feature, the comparison concluded that the RBF is suitable for large scale 

datasets and the kernel selection has a significant impact on the overall performance 

accuracy. 

Twin support vector machine (TWSVM) is a kernel-based paradigm presented 

by Jayadeva et al. (2007). TWSVM is a binary classifier that uses labelled data to 

perform its training procedure. It finds two non-parallel separating hyper-planes by 

solving two SVM problems, each of which is smaller than in standard SVM. 

However, TWSVM lead to a low performance with small number of labelled data. 

To tackle such a weakness, a nonparallel-planes semi-supervised classifier termed 

as ‘Laplacian smooth twin support vector machines Lap-TSVM’ is developed by 

Chen et al. (2014). The formulation of Lap-STSVM converts the optimal 

constrained quadratic programming problems (QPPs) of Lap-TSVM into 

unconstrained minimization problems (UMPs). Secondly, to make the (UMPs) 

twice differentiable, a smooth technique is produced. Finally, a newton-Armijo 

algorithm is designed to solve the UMPs. A comparison results based on real-world 

datasets proved that Lap-STSVM provides good generalization capability than 

TSVM, Lap-TSVM and Lap-SVM. 

An efficient weighted lagrangian twin support vector machine (WLTSVM) is 

proposed by Shao et al. (2014) for class imbalance data classification. The concept 

of the proposed algorithm is based on using different training points for the 

construction of two separating hyper-planes. The (WLTSVM) algorithm introduces 

a graph-based under-sampling strategy to keep the proximity information which is 

robust to outliers. It also introduces a quadratic cost functions that speeds up the 

algorithm’s computations. The algorithm has proven its efficiency and feasibility 

for class imbalance learning in contrast to some other twin weighted support vector 

machines. 

An important challenge for machine learning techniques, especially SVM, is the 

class imbalance problem. A novel framework, referred to as second-order cone 

programming support vector machine (SOCP), has been developed by Maldonado 

and López (2014) for overcoming this concern where the assumption errors cost 

equality is made and each data point is treated independently. The formulation of 
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the algorithm is based on applying a cost-sensitive learning for classifying 

imbalanced data via direct margin maximization. The proposed second-order cone 

programming support vector machine algorithm achieves better results compared to 

other SOCP-SVM formulations. 

Tian et al. (2013) proposed a novel classifier that is completely different from 

the existing non-parallel classifier such as generalized eigenvalue proximal support 

vector machine (GEPSVM)  and the twin support vector machines (TSVM) 

(Jayadeva et al. 2007). The non-parallel support vector machine (NPSVM)   

classifier possesses several advantages over other classifiers such as (GEPSVM) 

and (TSVM). (NPSVM) implements the structural risk minimization principle and 

two primal problems are created. The formulation of the dual optimization problem 

is as same as that of SVM which can be solved efficiently by Sequential 

minimization problem. Finally, (NPSVM) has it’s inherit sparseness as standard 

SVM. Despite the above features, the proposed algorithm has five parameters need 

be carefully tunes and thus is computationally expensive. Moreover, the proposed 

algorithm cannot be extended in a straight forward manner to multi-class 

classification problem.  

5.2.1 Statistical Learning Theory  

5.2.1.1 Binary Classification Problem 

The SVMs paradigm seeks to solve a binary classification problem. However, in 

practice, it can be extended to cover multi-class problems. Simple two-class 

classification problem can be represented as follow:  

For a given data set S of labelled training points   𝑦!, 𝑥! , . . . , (𝑦! , 𝑥!), each sample 

of the training set 𝑥!   is belonging to  𝑦!   ∈ −1,+1 . The aim is to find the classifier 

with decision function  𝑓(𝑥). The overall classification performance is measured 

based on a classification error represented as follows:  

             𝑒𝑟𝑟𝑜𝑟 𝑓 𝑥 ,𝑦 = 𝑓 𝑥 = 0,                                if  𝑓 𝑥 = 𝑦    
  1,                                    otherwise                             (5.2) 
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5.2.1.2 Empirical Risk Minimization and Structural Risk 

Minimization  

For a binary classification problem, the SVM learning algorithm with a set of 

adjustable parameter 𝜶 seeks to find α	
  so it learns the mapping  𝑥 ↦ 𝑦  . This will 

yield a possible mapping 𝑥 ↦ 𝑓 𝑥,𝜶    that defines the algorithm. The algorithm’s 

performance obtained via the empirical risk error as follows: 

                                                                                            𝑅!"# 𝜶 =
1
𝑁    𝑒𝑟𝑟𝑜𝑟(𝑓(𝑥!

!

!!!

,𝜶),𝑦!)                                                    (5.3) 

where  𝜶 is the set of adjustable parameter and N is the training set size. The risk 

minimisation principle is referred to as the empirical risk minimisation (ERM) 

which is implemented by various machine learning techniques. However, over- 

fitting may occur if the complexity of the algorithm is high. The principle of the 

minimisation does not take in to account the algorithm complexity. The empirical 

risk minimization principle guarantees the existence of a solution assuming the lose 

function is continuous. However, this condition is not always satisfied.  

Empirical risk minimization (ERM) principle does not however guarantee the 

stability and uniqueness of the solution. Practically, it is advised to utilize prior 

information to decide which solution from within the correspondence class of 

functions is well-matched for minimal empirical risk. Another known minimisation 

principle that considers the complexity of the learning algorithm is the structural 

risk minimisation (SRM), the expected risk can be minimised as follows: 

                                                                                              𝑅!"# 𝜶 =      𝑒𝑟𝑟𝑜𝑟(𝑓(𝑥! ,𝜶),𝑦!)𝑑𝑃(𝑥,𝑦)                                          (5.4)   

The term 𝑃(𝑥,𝑦) is the prior probability. In some cases, the risk cannot be 

explicitly obtained since the prior probability is unknown. 
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5.2.2 Multi-Class Classification Problem 

As it has already been mentioned, SVMs have been designed to seek binary 

classification and they have been extended to perform multi-class classifications. 

However, a multi-class classification is not straight forward. Accordingly, 

extending the binary classification problem to handle a multi-class classification 

problem is performed by various techniques such as one-against-one (OAO), one-

against-all (OAA), One-against-higher order and Directed Acyclic Graph SVM 

(DAGSVM). Due to the fact that many real-world classification problems involve 

multi-classes, these techniques have shown remarkable success in mapping the 

generalisation abilities of binary classification to multi-class domain.  

Numerous schemes proposed by Evgeniou et al. (2000); Guermeur (2002); 

Guyon et al. (1993); Hsu and Lin (2002) to solve the 𝐾-class pattern recognition 

problems. One-against-one introduced by Knerr et al. (1990) is the most popular 

and successful multi-class SVM technique. The first application of this method is 

introduced by Friedman (1996). One-against-one creates a binary SVM for each 

combination of target label and every unseen data record are classified to its side of 

the decision boundary. As each binary classification assigns one example to one of 

the two classes, this method is also known as a ‘voting scheme’. Splitting the multi-

class problem to a multiple binary sub-problem has the advantages that different 

decision boundaries are created for each class pair. However, this possibly leads to 

a very complex decision boundary.  

Another popular multi-classification scheme is one-against-all in which 𝐾  binary 

SVM is built (Hsu and Lin 2002). It separates one class 𝑐!   from the rest by building 

a decision boundary in each attempt of building the model. The model is created by 

assigning label (+1) to 𝑐! and the target label (-1) to the rest of remaining classes. 

The advantage of this method is that it only needs to contrast the 𝐾  models. 

However, the involvement of all classes in every SVM can be computationally 

expensive. Moreover, in high dimensional datasets, it is sometimes challenging to 

separate one class from the rest. 

The third known method of SVMs multi-classification is Directed Acyclic 

Graph SVM (DAGSVM) proposed by Platt et al. (2000). The training phase of this 

technique is the same as one-against-one by creating  𝐾(𝐾 − 1)/2   binary classifier. 

However, in the training phase, it distinguishes itself as it employs a rooted binary 
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tree graph with 𝐾(𝐾 − 1)/2   internal nodes and 𝐾  leaves. Every node in the tree 

structure is binary SVM of 𝑖  th  and 𝑗  th  classes. The advantage of (DAGSVM) is 

that the unseen examples can be classified using 𝐾 − 1  evaluations (Hsu and Lin 

2002).  

5.2.3 Linear Support Vector Machines Classifier 

SVMs inherently related to the family of Linear Machine learning because their aim 

is to search the optimal (maximum margins) hyper-plane. Two cases of a linear 

classifier can be considered i.e., the separable case where a perfect mapping can be 

achieved and the non-separable case where a perfect mapping is unattainable. 

5.2.3.1 Separable Case 

For a binary classification problem, consider data set S of labelled training 

points   𝑦!, 𝑥! , . . . , (𝑦! , 𝑥!), each sample of the training set 𝑥!   is belonging 

to  𝑦!   ∈ −1,+1 . SVM aims to find the separating hyper-plane that separates the 

positive class examples (+1 labels or red points) from the negative class examples 

(-1 labels or blue circles) with margin maximisation as shown in Figure 5.2.  

 

Figure 5.2: SVM Margin Maximisation for binary classification  

Left figure (a) shows a separating hyper-plane (Solid Line) where there is no margin 
between the two classes in left. Where in figure (b), the maximum margin (the space 
between two solid lines) is resulted and the best generalization is reached via support 
vectors i.e., the two red and blue points lay on the separating hyper-planes (  𝐻!,𝐻!  ). 

−𝑏
|𝑊|  

𝐻!  
𝐻!  

Margin  

W
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The key aspect behind searching a separating hyper-plane with margin 

maximisation is that the hyper-plane with largest margins is more robust, resistant 

to noise and provide good generalization abilities to that with smaller margins. 

Mapping that separates the positive classes (+1 labels or red points) from the 

negative classes (-1 labels or blue circles) is achieved as follows: 

                                           𝑓 x, y = 𝑠𝑖𝑔𝑛  (w. x+ 𝑏)                                   (5.5) 

where w is a weight vector and b is the bias value (offset from origin) 

Having achieved mapping, the hyper-plane is of the form:  

                                                 w. x+ 𝑏 = 0                                                (5.6) 

A successful linearly separating hyper-plane between two datasets is achieved if 

the pair {w, b} is chosen such that the mapping in equation (5.5) is optimal. Figure 

5.2 shows a clear separation between two classes. 

5.2.3.2 Separating Hyper-Plane with a Maximum Margin 

The creation of separating hyper-plane significantly depends on the value of {w, b} 

given in equation (5.6). SVMs classifier seek out the separating hyper-plane that 

best maximise the margin between two classes as shown in Figure 5.2 (b). The 

binary classification problem is said to be optimally separated when such a 

boundary is reached. In the linear separation, the data satisfy the following 

constraints: 

                                       w. x! + 𝑏 ≥ +1                                𝑦! = +1                             (5.7)                

                                        w. x! + 𝑏 ≤ −1                                𝑦! = −1                             (5.8) 

A convenient compact representation of the above constraints is as follows: 

                                     𝑦!(w. x! + 𝑏) ≥ +1                        ∀!                                      (5.9) 

Equation 5.9 holds for the training examples that lie on the canonical hyper-planes 

(𝐻!  ,𝐻!  ) shown in Figure 5.2. The margin 𝑝  can be calculated as the distance 

between 𝐻! and 𝐻!:   

                                                                                                                𝑝 =   
1− 𝑏
𝑤 −

−1− 𝑏
𝑤 =

2
𝑤                                                               (5.10) 
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𝐻!  and 𝐻! are parallel and share the same normal 𝑤 where doted data points fall 

on the two hyper-planes. The optimal maximum margin hyper-plane that separates 

that data is the one that minimises 𝑤 !  subject to the constraints in following 

optimization problem:  

                                          𝑀𝑖𝑛       !
!
   𝑤 2	
  	
  	
  	
  s.t      𝑦!      𝑤  . 𝑥! + 𝑏 ≥ 1,      ∀𝑖	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (5.11)	
  	
  	
  	
  	
  

The solution to equation (5.11) is independent of the bias value  𝑏. The optimal 

hyper-plane will be moved to the direction of 𝑤 for any change in the value of 𝑏 

and the maximum margin. 

5.2.3.3 Lagrangian Formulation 

With a set of inequality constraints, solving the minimisation problem of 𝑤 !  is 

performed using Langrangian multipliers. Langrangian multipliers are effectively 

well known solutions to such problem for two reasons:  

• handling the constraints will be easier; 

• The training data will only appears in a dot product form between vectors. 

The Langrangian multipliers 𝛼!   for each constraint are produced and the 

structure of the minimisation problem given in equation (5.11) becomes: 

            𝑀𝑖𝑛!,!    𝐿 𝑤, 𝑏,𝛼 ≡    !
!
   𝑤 ! − 𝛼!𝑦!(!

!!! 𝑥!   .𝑤 − 𝑏)+ 𝛼!!
!!!         (5.12)  

Subject to the constraints: 

                                                                                                                  𝑤 = 𝛼!𝑦!𝑥!   
!

!!!

                                                                                                             5.13    

     𝛼!𝑦! = 0                                                                                                        (5.14)  
!

!!!

 

The above formulation is convex quadratic programming problem since the 

objective function 𝐿 is convex.  Since the constraints are equal, the dual 

formulation is the result of substituting the inequality constraints into the objective 

function. The dual formulation becomes: 

                                Max 𝐿! =    − !
!

𝛼!𝛼!𝑦!𝑦!𝑥!𝑥!   !
!"

!!
!!!                                (5.15) 
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Subject to: 

                                                                                                                             𝛼!𝑦! = 0  ,                                    𝛼!   ≥ 0                                                        (5.16)
!

!!!

 

The training of SVMs is a problem of maximising equation (5.15) with respect 

to  𝛼!, subject to constraint in equation (5.16) with a positive Lagrangian 

multiplier  𝛼!   ≥ 0. The optimal hyper-plane and the bias are given as: 

𝑤 = 𝛼!𝑦!𝑥!   
!

!!!

                                                                                                       5.17  

𝑏 =
1
2   𝑤 𝑥! + 𝑥!                                                                                                    5.18  

The optimal solution is in the form of a linear combination of 𝑥!𝑠,  where the 

Lagrangian multiplier 𝛼! = 0 for every 𝑥!   excluding the once that lie on the hyper-

planes 𝐻!  and 𝐻!  where  𝛼!   ≥ 0  . The points that lie on the hyper-planes in the 

classification problem are called Support vectors. In data classification problems, 

the number of support vectors is normally much less than the number of the 

training data. However, in the classification problems of large scale datasets, a large 

number of support vectors are more likely to be produced. An interesting feature of 

SVMs is that the quadratic programming is a convex problem where there are no 

local minima. SVMs always find global minima and the solution is optimal.  

5.2.3.4 The Karush-Kuhn-Tucker Condition  

The Karush-Kuhn-Tucker (Kuhn and Tucker 1951) condition establishes the 

requirements needed to achieve an optimal solution to the SVM optimization 

problem. Based on KKT condition, the solutions to 𝑤, 𝑏  and 𝛼  for the primal 

problem in equation (5.12) should satisfy the condition: 

!"(!∗,!∗,!∗)
!"

=   𝑤! − 𝛼!𝑦!𝑥!" = 0                                          𝑣 = 1,… ,𝑑    (5.19) 

𝜕𝐿(𝑤∗, 𝑏∗,𝛼∗)
𝜕𝑤 =    𝛼!𝑦! = 0                                                                                       (5.20) 

                                  𝑦! 𝑥!   .𝑤 + 𝑏 − 1   ≥ 0,     ,      ∀𝑖	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (5.21) 

𝛼!   ≥ 0     ∀!                                                   (5.22) 
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  𝛼!(𝑦! 𝑥!   .𝑤 + 𝑏 − 1   ≥ 0,     ,      ∀𝑖	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (5.23)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

The SVM problem is a convex optimization problem and the above KKT 

conditions are important and appropriate for 𝑤∗, 𝑏∗,𝛼∗ to be a solution. 

Consequently, the solution of SVM problem is equivalent to finding a solution to 

KKT conditions. Practically, the first KKT expresses the optimal separating hyper-

plane as a linear combination of the vectors in the given training dataset where: 

𝑤∗ = 𝛼!∗𝑦!𝑥!                                                                                                           (5.24)
!

!!!

 

Whereas the second KKT condition requires that 𝛼!   coefficients of the training 

examples should satisfy: 

𝛼!∗𝑦! = 0  ,                𝛼!∗ ≥ 0                                                                              (5.25)
!

!!!

 

5.2.3.5 The Linearly Non-Separable Case 

In the previous sections, the idea of linearly separating the training examples via 

support vector machines SVMs has been discussed. This formulation is restricted to 

the problem where the data is linearly separable. However, in many real world 

classification problems, large scale datasets do not satisfy this condition where it is 

inherently nonlinear. The above formulation must be extended to tackle the 

problem of non-linearity and thus the separating hyper-planes can be found. 

Data non-linearity can be handled via the creation of the objective function that 

trades off misclassification against minimizing   𝑤 !. Misclassifications are tackled 

by introducing the slack variable 𝜉 ≥ 0  for every data point. The constraints with 

the applied slack variable become as follows: 

                               w. x! + 𝑏 ≥ +1− 𝜉                  𝑓𝑜𝑟        𝑦! = +1                           (5.26) 

                               w. x! + 𝑏 ≤ −1+ 𝜉                    𝑓𝑜𝑟        𝑦! = −1                           (5.27)           

 

The old constraints in equation (5.7) and equation (5.8) can be violated via 

introducing the slack variable, such violation causes a penalty referred to as C. The 

new problem is the summation of misclassification errors and minimizing   𝑤 !: 
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𝑤 ! + 𝐶   𝜉!
!

                                                                                                          (5.28) 

 

C is the misclassification penalty or the regularization parameter applied to 

adjust the relation between    𝑤 ! and the slack variable. The idea of non-separable 

case is shown in Figure 5.3:  

 
Figure 5.3: SVM non-separable case. The encircled data point is misclassified and 

thus has appositive 𝜉.  
 

As it is shown in the separable case, the solution has the following expansion: 

𝑤 = 𝛼!𝑦!𝑥!   
!

!!!

                                                                                                         5.29  

where the training data examples that satisfy 𝛼!   ≥ 0   are referred to as Support 

vectors. The penalty function belongs to the slack variables is linear, which will not 

be exist in the dual Lagrangian problem. The objective problem of the dual 

formulation is as follows: 

                                         Max 𝐿! =    − !
!

𝛼!𝛼!𝑦!𝑦!𝑥!𝑥!!
!"

!!
!!!                             (5.30)  

Subject to the following: 

                                                                                                 𝛼!𝑦! = 0  ,                                  𝐶 ≥   𝛼!   ≥ 0                                                          (5.31)  
!

!!!

 

!𝝃
|𝒘|

  

𝐻!  
𝐻!  W  
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The dual formulation for non-separable case is much similar to the linear 

separable case, the only difference is the upper bound of C with respect to the 

coefficient 𝛼! . The objective problem converges to the linearly separable case when 

the misclassification penalty 𝐶⟶ ∞. 
 
5.2.4 Non-Linear Support Vector Machines Classifier 

 
In the previous section, the concept of linear support vector machine has been 

discussed, and how such technique could handle the misclassified data points. The 

idea of SVM can be extended to effectively solve real-world problems i.e., the 

classification of non-linear decision boundaries. The linearity restrictions can be 

handled in a way that SVM maps the input space to a higher-dimensional feature 

space (perhaps infinite-dimensional) via some mapping function 𝜑 𝑥   where the 

data is separable. An attractive feature of SVMs is that mapping the data from the 

input space to the new feature space is not necessary to be known, but only the 

kernel mapping, that maps the inner products of the input space to inner products of 

the feature space. This method was proposed by (Guyon et al. 1993). 

 

 

Figure 5.4: The data is mapped from input-space to a higher feature-space by the mapping 
function 𝜑. Complex overlapped data in low dimension space (left figure) is mapped 
via the kernels to a simple higher dimensional space (right figure) where the data is 

separable (Prajapati and Patle 2010). 
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As shown in Figure 5.4 (Prajapati and Patle 2010), with the use of the kernel 

function 𝐾 𝑥,𝑦 = 𝜑 𝑥 ,𝜑 𝑦  presented by Guyon et al. (1993) , the separating 

hyper-plane can be easily obtained. The kernel function can better correspond to 

new feature space in the case when it is symmetric as follow: 

  𝐾 𝑥,𝑦 = 𝜑 𝑥 ,𝜑 𝑦 = (𝜑 𝑦 ,𝜑 𝑥 =     𝐾 𝑦, 𝑥 . In practice, the choice of 

kernel needs to satisfy Mercer’s theory where the kernel matrix 

𝐾 = (𝐾 𝑥! , 𝑥!) !"!!
!

 should be positive semi-definite (it has non-negative 

eigenvalues).  

Although many kernels exist, the kernel choice only applies to the ones that 

satisfy these conditions: 

• The Kernel must satisfy Mercer’ theorem (Burges 1998). 

• The kernel must be symmetric. 

These conditions are described in details in Appendix A. 
The commonly used kernel functions include: 

 

1) The polynomial kernel: 

                                   𝐾 𝑥,𝑦 = ( 𝑥,𝑦 )!                                           (5.32) 

2) The Gaussian kernel (Radial Basis Function): 

 

                                             𝐾 𝑥! , 𝑥! = 𝑒! !!!!!
!/!!!                                 (5.33) 

3) The linear Kernel: 

                                    𝐾 𝑥,𝑦 =   𝑥! . 𝑥!                                                    (5.34) 

4) Sigmoid Kernel Function: 

 

                                          𝐾 𝑥,𝑦 = tanh 𝛾 𝑥,𝑦 − 𝜃                              (5.35) 

The complexity of a given training set can significantly affect the performance 

of learning algorithms that make use of it. Practically, certain types of learning 

algorithms might not be able to learn a suitable prediction function for the training 

dataset. In such case, one has no choice but to manipulate the data where the 

learning become possible. In other cases, the learning algorithm is violated because 

of the structure of the data and as result mapping becomes essential. 
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5.3 Class Imbalance Learning Key Solutions (Rails Data 

Resampling) 
 

Early work investigating the rail data via an iterative SVM classification strategy 

with various options and key parameters built in the iterative strategy have led to a 

successful classification performance of only 25% of rails data.  This is to be 

expected, since the original rail data is severely imbalanced. Imbalanced data refers 

to any data that exhibits unequal class distribution between its classes (Garcia and 

He 2009). Figure 5.5 illustrates clearly the imbalance nature of the rails dataset. 

 

 

 
Figure 5.5: Class distributions of rails dataset 
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As per their design principles, most standard learning models tend to ignore the 

minority class as they are overwhelmed by the majority class (Chawla et al. 2004); 

(Giles 2007); (Liu et al. 2006); (Garcia and He 2009). However, the most important 

task in any classification problem is to correctly classify the minority class 

examples. The adverse implication of class imbalance learning problem is the 

capability of imbalanced data to remarkably compromise the overall performance of 

standard classifiers and modelling algorithms (Garcia and He 2009); (Liu et al. 

2009).  
 

With the great attention devoted from academia and industry to the class 

imbalance problem, there are many methods tailored to overcome such concern. 

These methods can be categorized into three categories as follows: data level 

techniques (external methods) in which the data is pre-processed and rebalanced 

before applying  the classifier (Chawla et al. 2002); (Estabrooks et al. 2004); (Liu et 

al. 2009). The internal or algorithm level approaches only modify the structure of 

the algorithm so to pay extra attention minority class (Tang et al. 2009); (Garcia and 

He 2009); (Hwang et al. 2011). Cost sensitive methods incorporate various 

classification costs for each class by combing both algorithm and data level methods 

(Liu et al. 2006); (Freitas et al. 2007); (Chawla et al. 2008). 
 

Breiman (1996) proposed the concept of bootstrapping aggregation for 

ensembles construction. This method generates multiple types of predictors and 

employing it to obtain an aggregated predictor (Li 2007); (Galar et al. 2012). These 

multiple types are formed by replicating the training set using bootstrap and using 

these as new training set. 

Chawla et al. (2002) proposed a synthetic minority oversampling technique 

(SMOTE). SMOTE is able to generate a new synthetic minority examples via 

combining minority examples that lie together. The oversampling technique 

presented is sophisticated (Estabrooks et al. 2004), but the authors did not consider 

different class distribution ratios. Several sampling methodologies with different 

class distributions were evaluated by (Batista et al. 2004). Different data over-

resampling and under-sampling techniques included SMOTE, TOMEK and 

SMOTE+ENN were examined. SMOTE result in a good performance for databases 

with a small number of majority class examples. 
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A variation of SMOTE, named generative over-sampling, was introduced by Liu 

et al. (2007). The generative over-sampling creates new data examples by learning 

form the existed training points. The new approach selects the probability 

distribution to model the minority class examples and then, from this model, the 

new data points are generated. Generative over-sampling is effective only with 

large number of minority class examples. Whereas, the probability distribution 

estimates may not be accurate when applying to small minority examples.  

Others claim that wrong synthetic minority examples may be produced using 

most of the existing over-sampling approaches (Barua et al. 2014). Consequently, a 

new approach termed as majority weighted minority oversampling technique 

(MWMOTE) is proposed by Barua et al. (2014) to effectively handling the class 

imbalance problem. MWMOTE detects minority class examples and assigns them 

weights based on their euclidean distance from the nearest majority class examples. 

A clustering method will then be applied to generate the synthetic examples for the 

weighted minority class examples. The proposed method shows its effectiveness in 

in terms of performance metrics. 

 In this research, only the prominent sampling techniques which can be 

effectively used to train SVM on large imbalanced data are considered. Under-

sampling and over-sampling are common sampling techniques that have proven 

their usefulness in achieving an optimal sampling rate and therefor aiding classifiers 

yielding a better generalization capability (Batuwita and Palade 2010b), (Garcia and 

He 2009), (Akbani et al. 2004), (Hwang et al. 2011). Data under-sampling and 

bootstrapping-based over-sampling techniques will briefly be discussed in next 

section.  
 
5.3.1 Under-Sampling 

 
Under-sampling is an external independent sampling method that can 

straightforwardly re-balance the training data before training the classifier. In 

random under-sampling, the training dataset is rebalanced by randomly removing 

majority class examples until a desired class ratio 𝑅!! between the majority and 

minority class is achieved. The design parameter  𝑅!! controls the imbalance level 

for the resampled training dataset. 𝑅!! is the ratio of the number of examples 

related to the majority class to that related to the minority class. Despite its 

simplicity, Under-sampling approach has proved to be significantly efficient since 
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the rails data are highly dimensional data. However, under-sampling approach has 

been reported (Hwang et al. 2011), (Akbani et al. 2004), (Liu et al. 2006), (Chawla 

et al. 2002) to discard potentially useful data and some crucial information might be 

lost. It thus could dramatically disturb the decision boundary of the classifier. The 

significant 𝑅!! achieved via under-sampling the rails data is a value of 1. Figure 

5.6 illustrates the influence of under-sampling on rails dataset. 

	
  

Figure 5.6: the influence of undersampling on rail dataset 

	
  

5.3.2 Bootstrapping-Based Over-Sampling 
  
Bootstrapping based-oversampling is another sampling technique that is also 

applied to change the class distribution of rails data. The original rails data are 

firstly segregated into two subsets, one is for the dominating majority class and the 

other is for the minority class. The minority class data is subsequently fed to the 

bootstrapping resampling algorithm which yields a multiple randomly resampled 

datasets each with the same size as the size of the original minority subset. The 

resampled subsets are combined with the oversampled minority class data and then 

mixed with the majority class data to form the final resampled data that is ready for 

subsequent training measures. Due to the dimensionality nature of the rail data, the 

optimal sampling rate 𝑅!! achieved via bootstrapping based oversampling 
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approach is 5. The effect of bootstrapping-based over-sampling on the Training 

Data is shown in Figure 5.7. 

 

 
Figure 5.7: The effect of bootstrapping-based over-sampling on the Training Data  

  
The advantage of this technique is that no information is lost since all instances are 

employed. However, by creating additional examples, oversampling leads to a high 

computational cost. Thus, a sufficient amount of memory is required to hold the 

whole training set. Moreover, randomly replicating the data might contain erroneous 

values which could negatively impact learning performance (Chawla et al. 2002).  
	
  

Practically, Applying only bootstrapping is not enough and oversampling has to 

be done. The reason behind such integration scheme is that bootstrapping utilizes 

the same examples as the original minority class data which could lead to over 

fitting. Moreover, the classifier might lose its generality. Consequently, an 

integrated bootstrapping-based over-sampling framework is designed to increase the 

overall classification performance. Figure 5.8 shows the influence of under-

sampling and oversampling strategies on rails data. 
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Figure 5.8: 𝑅!! Influence on overall size of rails training data 

 

5.4 Iterative Support Vector Machines Algorithm (ISVMs) 
 

Due to the complexity of the Rails manufacturing process and unforeseen 

disturbances, such as variations in process operating conditions, changes in raw 

material properties and equipment faults, Rails product quality could be extremely 

different from specification. In order to enhance the final product quality, modelling 

and classifying the final quality of Rails is inevitably needed to provide process 

operators with information on the product quality and direction of intervention for 

quality assurance. In this section, a new iterative Support vector machine algorithm 

is proposed for rails data classification. 
 

Based on the statistical learning theory (Vapnik 1995), SVM application to 

pattern classification is a powerful supervised machine learning technique that finds 

the optimal hyper-plane by separating the high dimensional data into its two classes. 

In this section, the theory of SVMs in classification problems is briefly reviewed. 

Given a set of labeled instances   𝑥!,𝑦! , 𝑥!,𝑦! … . , 𝑥! ,𝑦! , each 𝑥! has a class 

label 𝑦! ∈ {−1,1} which denotes two classes separately.  For binary classification 

problems, SVM model builds an optimum hyper-plane that better separates the 

classes by margin maximization. Such a hyper-plane can be found by minimizing the 

following objective function (Giles 2007): 
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                                                                  min
1
2𝑤

! .𝑤 + 𝐶 ℰ!

!

!!!

                                                                                                  (5.36) 

𝑆. 𝑡.    𝑦! 𝑤! .𝛷 𝑥! + 𝑏 ≥ 1− ℰ! ,ℰ! ≥ 0      𝑖 = 1,… , 𝑙                   (5.37) 

where ′𝑤′ and ′𝑏′ are the norm of the hyper-plane and the bias respectively. Φ! is 

the mapping function from an input space to a higher dimensional feature space and 

C is the regularization parameter that defines constraint violation cost. ℰ! is the slack 

variable where ℰ! > 0 hold for misclassified points (Akbani et al. 2004). Practically, 

the convex quadratic programming problem (QP) can be solved by introducing the 

nonnegative Lagrangian multiplier 𝛼! and transform it to a dual problem: 

Max  𝑊 𝛼 =    −
1
2 𝛼!𝛼!𝑦!𝑦!𝑥!𝑥!

!

!"

!!

!!!

                                                                (5.38) 

In a higher feature space, finding the optimal hyper-plane is computationally 

expensive and complicated. It was not until Guyon et al. (1993) have showed that the 

so called ‘kernel trick’ can be significantly applied to overcome the above concerns. 

As described in equation 5.38, the training phase only includes the training data as 

scalar inner products form 𝑥! . 𝑥! . Thus, mapping the data to a higher feature space 

can be achieved via the kernel trick as follows: 

max𝑊 𝛼 = 𝛼! −
1
2

!

!!!

𝛼!𝛼!𝑦!𝑦!Φ! 𝑥!   .Φ(𝑥!)
!

!!!

!

!!!

                                                (5.39) 

 𝑠. 𝑡.     𝑦!𝛼! = 0!
!!! , 0 ≤ 𝛼! ≤ 𝐶, 𝑖 = 1,… , 𝑙 

 
An important advantage of the SVM is that the transformation from input space 

to higher dimensional feature space can be done implicitly using the ‘kernel trick’ 

where 𝐾 𝑥! , 𝑥! = Φ! 𝑥! .𝛷(𝑥!) is the Kernel matrix.  

The choice of kernel plays a crucial rule in the proposed algorithm and the 

performance is largely depends on the kernel. However, there is no general role 

available as to which kernel should be used. In the field of machine learning, 

Gaussian, polynomial, and sigmoid functions are three commonly used kernel 

functions. The kernel function utilized in the proposed algorithm is Gaussian Radial 

Basis Function (GRBF) given as follows: 
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              𝐾 𝑥! , 𝑥! = exp −
𝑥! − 𝑥!

!

2𝜎! ,      𝑖 = 1, 2,… ,𝑁                                        (5.40) 

 Where σ is the variance parameter, after solving the QP in equation (5.1) and 

finding the optimal values of  𝛼!, the values fall in the margins which have nonzero 

𝛼! are referred as the support vectors by which the position of the hyper-plane is 

defined. In the ISVM algorithm, the iterative strategy is based on the grid search 

optimization scheme of the regularization parameter (C) and the width of (GRBF). 

The structure of the proposed ISVM algorithm is illustrated as shown in Figure 5.9. 

	
  

Figure 5.9: Architecture of iterative support vector machine algorithm 

	
  

In the classification problem, there are obvious questions that arise when applying 

support vector machines i.e.,  

• Which kernel is the best? 

• How can one find the optimal parameters of the kernels? 

• How one can select the penalty parameter C? 
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In practice, one of the formal and reliable metrics for parameter selection is to 

decide on parameter ranges and the optimal performance assessed using an 

exhaustive grid search over the parameter space. A crucial step for a successful 

SVM classification is data normalization. Fail to normalize the data will increase 

the running time and in some cases, no convergence will occur. 

In the optimization procedure of the ISVMs, a quadratic programming algorithm 

was utilized when SVMs were invented in 1995 (Cortes  and Vapnik 1995). The 

quadratic programming algorithm was slow and only small scale dataset could be 

run successfully. It is until 1998, where another technique referred to as sequential 

minimal optimization (SMO) was proposed by Platt (1998). The SMO procedure is 

decomposed into only a few tasks for optimizing the Lagrangian multipliers 

(alpha). SMO procedure iterates through the given dataset updating Lagrangian 

multipliers (only two of 𝛼! at a time as shown in equation (5.39). In such a way, the 

SMO simplifies the optimization problem in to smaller steps providing a 

remarkable increment in the training time. 
 

Applying the aforementioned framework on the imbalanced rails data set (39 

variables) has led to a poor generalization performance as well as large number of 

support vectors (4949 support vectors). The model’s performance is skewed 

towards the negative (majority) class where the positive (minority) class is poorly 

classified. Figure 5.10 illustrates the classification performance of the iterative 

SVM algorithm when learning from severely imbalanced rails data (Original 

dataset). 

  

Figure 5.10: Preliminary SVM classification result 
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In a classification task, the most important task is to correctly classify the minority 

class instances. Deep investigations were carried out on what are the root causes of 

such skewness of the model’s performance towards the majority classes?  

Due to the fact that classifiers and modelling algorithms are designed to learn 

from sampled data, SVM algorithm tends to be sensitive to class imbalance 

(Batuwita and Palade 2010b),. Subsequently, the majority classes are likely to be 

classified correctly whereas the minority classes are approximately ignored. In 

other words, the classification performance is skewed to the majority class. The 

class imbalance has a dominant influence on the classification performance. 

To overcome this concern and to improve the performance of the iterative SVM 

algorithm, a bootstrapping-Based over-sampling and under-sampling schemes 

(previously discussed in section 5.3) are applied to change the class distribution of 

the data. It is not only the model’ performance has been significantly improved but 

also the number of the support vectors has been also reduced. It is worth 

mentioning that Large Data Modelling is Hungry for Resources and no 

convergence occurs when using 4GB memory due to computationally expensive 

optimization phase. As a result, computer memory is extended to 16 GB instead of 

4GB. The next sections will discuss the application of the proposed iterative 

support vector machine (ISVM) algorithm on Rails dataset with bootstrapping-

based over-sampling and under-sampling. 

5.5 Iterative Support Vector Machines Based Rails Data Under-

Sampling 

Data resampling techniques, oversampling and under-sampling, are the best choices 

for overcoming the class imbalance problem.	
  A separate optimization problem is to 

be performed in the binary SVM classifier. It is of great importance to achieve an 

optimal generalization performance. Training the proposed ISVM model require 

tuning various user-defined parameters. For a better classification performance, 

these parameters need to be learned with great care. Table 5.1 summarises ISVM 

parameters employed in rails data classification. Additionally, the resulted SVM 

model parameters are listed in Table 5.2: 
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Table 5.1: User-defined parameters of ISVM binary classification model 

Kernel 

The choice of kernel plays a crucial rule in the proposed 

algorithm and the performance is largely depends on the 

kernel.  The choices may include linear and nonlinear kernel 

types as described in section 5.2.4. Practically, the kernels 

contain on or more parameters that need to be carefully 

optimized to a good generalization. 

misclassification 

penalty or 

regularization 

parameter (C)  

The regularization parameter C is applied to adjust the 

relation between    𝑤 ! and the slack variable. It trades off 

margin size and training error. 

Training data 

Size 

Practically, training data size significantly effect SVM 

performance, performance increase with more training data. 

However, large scale data might produce large number of 

support vectors and thus expensive computations. 

 

 

Table 5.2: The important factors of the resulting ISVM model 

Number of 

support 

vectors (SVs) 

The number of support vectors in the resulting SVM model  is 

influenced by the size of the training data, Support vector 

machine produce large number of support vectors when 

applying to large datasets 

SVM 

execution 

time 

SVM parameters and training data size can significantly 

influence the training time of SVM model 

 

Performance 

% 

The classification performance is the most important issue in 

applying SVMs and is achieved if one successfully selects and 

optimizes the parameters described in Table 5.1. 
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The data set was randomly split into training and testing set in the ratio of 7 to 3. 

For the under-sampling, the rails data is under-sampled as described in Section 

6.3.1 until both classes were equal and  𝑅!! value of 1 is achieved. Figure 5.11 

shows the classification performance of ISVM algorithm on the under-sampled 

rails dataset. 

 

Figure 5.11: ISVM performance for Under-sampled rails data 
 

It can be clearly seen from Figure 5.11 that sensitivity performance improved 

significantly through data resampling, from about 29% to around 65.5 %. The 

classification accuracy rate of ISVM classifier is not only influenced by the two 

parameters i.e., regularization parameter (𝐶) and the width of the Gaussian RBF (𝜎), 

but also other factors, including the quality and dimensionality of datasets.  

In practice, the most reliable method to parameter selection is to decide on 

parameter ranges and the optimal performance assessed using an exhaustive grid 

search over the parameter space. The maximum number of iterations of the proposed 

algorithm is controlled via the number of parameters employed in the grid search. 

Parameters are selected based on the following ranges: 𝐶  = {1, 2,…, 15} and σ = {4, 

7, 10, 13, 17, 20}.  
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Gaussian radial basis function (GRBF) is the best choice for providing superior 

generalization capability as it has less parameter than other nonlinear kernels. 

Moreover, it is capable of handling the nonlinearity between classes and features. 

The training time of ISVM with under-sampling is 3.67 minutes. It can clearly be 

stated that algorithms-based Under-sampling technique is less time consuming and 

thus superior. The integration strategy with the under-sampling scheme succeeded in 

drastically reducing the number of support vectors to 2171. The speed of ISVM 

classification algorithm depends on the number of support vectors (Manikandan and 

Venkataramani 2009). SVM classification results obtained with under-sampling is 

presented in Table 5.3. 

Table 5.3: Performance result of ISVM classifier with under-sampling 

Classifier Sampling 
Type 

Data 
Size # SVs Execution  

Time  
sensitivity 

% 

ISVM 
                   

Under-
Sampling 

2877 2171 3.67 minute 65.3 % 

 
 

Based on the above obtained results, three observations can be made as follows: 

1) A good generalization performance is achieved via The Gaussian kernel. 

The kernel function potentially maps rails data into infinite dimension 

space where as other kernels such as the linear or polynomial uses feature 

space with fixed number of dimensions. 

2) The classification accuracy rate of SVM classifier is not only influenced 

by the two parameters i.e., regularization parameter (𝐶) and the width of 

the Gaussian RBF (𝜎), but also other factors, including the quality and 

dimensionality of datasets. 
3) Under-sampling produces a datasets with low dimensionality. The class 

distribution advantages of under-sampling enable SVM algorithm to yield 

small number of support vectors. Consequently, the classification time will 

be decreased.  
 

Although the ISVM algorithm provides a good classification performance 

with under-sampling, it is important to examine the same algorithm with other 

sampling techniques. The next section will discuss the application of ISVM 

with bootstrapping-based oversampling scheme. 
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5.6 Iterative Support Vector Machine with Bootstrapping-Based 

Over-Sampling  
 
Bootstrapping based-oversampling is another sampling technique that is also 

applied to change the class distribution of rails data. The oversampling technique 

has gained extra attention. The advantage of  such a technique is that it is external 

and therefore, easily transportable as well as very simple to implement (Estabrooks 

et al. 2004).  Moreover, over-sampling the minority class data avoids unnecessary 

information loss (Yang et al. 2011a). 

Over-sampling has its drawbacks and results in datasets with high 

dimensionality. Consequently, the computational cost associated with SVM is 

increased. The classification performance of SVM algorithm on the over-sampled 

rails dataset is presented in Figure 5.12. 

 
Figure 5.12: ISVM with bootstrapping-based over-sampling classification 

performance  
 

Over-sampling is a resources hungry technique since it creates a multiple 

randomly resampled datasets. Therefore, a significant increment of the overall size 
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and computer memory restrictions, the optimal sampling rate achieved via 

bootstrapping based oversampling approach is 5. 
 

The training time of ISVM with bootstrapping-based over-sampling is 77.86 

hours. Bootstrapping-based over-sampling yields a large number of support vectors 

i.e. 23452. As shown in Table 5.4, ISVM is sensitive to the bootstrapping-based 

over-sampling, which is the only shortcoming of the presented algorithm. 

Bootstrapping-based Over-sampling causes performance degradation for ISVM 

classifier to 47.1% and therefore leads to a poor generalization capability. 

Table 5.4: SVM performance with bootstrapping-based over-sampling 

Classifier Sampling 
Type 

Data 
Size # SVs Execution  

Time  
sensitivity 

% 

ISVM 
                   

Bootstrapping-
Based Over-

Sampling 
30992 23452 77.86  hour 47.11 % 

 
 

5.7 Performance Metrics  
 

The evaluation criterion is the best guidance of modelling and classification 

performance assessment. This section describes the performance measures for class 

imbalance learning that is employed for evaluating SVM results. For binary 

classification problem, Confusion matrix as shown in Table 5.5 is the most effective 

referenced source for performance evaluation.  The classification performance is 

assessed using the accuracy, sensitivity and specificity as follows: 

                                      𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦   % =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁                                                               (5.41) 

                                          𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦   % =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁                                                                                               (5.42) 

                                              𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦   % =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃                                                                                           (5.43) 

 However, with a highly skewed data distribution, the overall accuracy in equation 

(5.41) is not a promising metric since classifiers inherently learn from the majority 

class and therefore ignore the minority class (Tang et al. 2009): 

Rails data are highly imbalanced data where the good rails far outnumber the 

rejected rails. The optimal classification metrics that gain an extra emphasis in this 
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work are based on the sensitivity at equation (5.42) and specificity at equation (5.43) 

since the rejected rails, minority class, are more important to be correctly classified. 

In other words, it is of strategic importance in the rails process to distinguish if a 

combination of input parameters will yield rails with cracks and flaws (Muscat et al. 

2014).  

Sensitivity and specificity refer to the ability of the classifier to correctly classify 

the minority and the majority classes respectively, whereas the accuracy is defined as 

the overall percentage that both classes are correctly classified. Entries of confusion 

matrix along the main diagonal represent the total number of correctly classified 

examples. Whereas, other entries than those on the main diagonal represent 

classification errors. 

Table 5.5: Binary Classification Confusion Matrix 

 Predicted positive Predicted Negative 

Actual Positive TP (True Positive) FN(False Negative) 

Actual Negative FP(False Positive) TN(True Negative) 

 
where: 

• True Positive (TP): Rejected rails accurately classified as rejected rails. 

• True Negative (TN): Good rails accurately classified as good rails. 

• False Positive (FP): Good rails inaccurately classified as rejected rails. 

• False Negative (FN): Rejected rails inaccurately classified as good rails. 

 

5.8 Comparative Analysis and Model Evaluation  
 

As stated earlier, the support vector machine algorithm is sensitive to the class 

imbalance learning (Batuwita and Palade 2010b); (Lin and Wang 2002). In data 

classification, the choice of a Kernel function is challenging and becomes a central 

problem (Micchelli and Pontil 2005); (Prajapati and Patle 2010). Mapping the non-

linear input space to a higher feature space (linear) via a kernel function depends 

significantly on the nature of the data. Therefore, The RBF as a kernel is employed 
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due to its clear implementation and the  potential effectiveness on overall 

performance (Sahoo et al. 2013); (Prajapati and Patle 2010). 
 

 Applying the proposed ISVM framework on the imbalanced (original) rails 

dataset has led to a poor generalization as well as a large number of support vectors. 

Support vector machine parameters i.e., regularization parameter (C) and the width 

of RBF, are optimized based on the grid search approach. The model’s performance 

is skewed towards the majority class where the minority class is poorly classified at 

less than 25%.  

We study the performance of the proposed algorithm with the class distribution 

advantages of sampling techniques. Bootstrapping based over-sampling and under-

sampling schemes with different sampling rates are tailored to overcome the class 

imbalance phenomena. Consequently, it is not only the model’s performance that 

has been significantly improved but the number of the support vectors has also been 

reduced. Table 5.6 illustrates a performance comparison of ISVM algorithm with 

under-sampling and bootstrapping-based oversampling. 

Table 5.6: Performance comparison of SVM algorithm 

 

Number of 

Support 

vectors 

Execution  
Time 

Sensitivity % of 

testing set 

Under-sampling 2171 3.67 minute 65.3 % 

Bootstrapping-Based 

Oversampling 
23452 77.86	
  	
  hour 47.1% 

 

With under-sampling, the ISVM algorithm has shown a good generalization with 

significant classification performance increment of 65.3%. Moreover, under-

sampling technique succeeded in drastically reducing the number of support vectors 

of SVM classifier to 2171. The advantages of fewer support vectors will mostly 

mean short computational time and small memory requirements (Zheng et al. 

2013). Theoretically, under-sampling has mostly the best trade-off between 

algorithm generalization capability and the number of support vectors. The 

maximum number of iterations is controlled via the number of parameters utilized 

in the grid search scheme. The results agree with the hypothesis that under-



	
  

119	
  
	
  

sampling the majority class reduces the total number of training examples, speeding 

up the training time and accordingly ensure promising classification performance.  

The employment of the Bootstrapping-based over-sampling technique causes 

performance degradation to 47.1% and thus weak generalization capability, because 

time complexity grows dramatically as the size of the data increase. The ISVM 

model built from an over-sampled data yields a large number of support vectors. 

The experimental results show that Bootstrapping-based over-sampling increases 

the computational cost associated with the ISVM training algorithm. It is worth 

mentioning that Large Data Modelling is Hungry for Resources and no 

convergence occurs when using 4GB memory due to the computationally expensive 

optimization phase. As a result, the computer memory has been extended to 16 GB. 

Generally, the SVM technique has drawbacks as it can be computationally 

expensive when dealing with large scale data and it tends to produce a large number 

of support vectors. 
  
5.9 Summary 

The main purpose of this chapter is to produce a new approach to rails data 

classification via iterative SVMs with bootstrapping-based oversampling and 

under-sampling. The effectiveness of the proposed classification formulation has 

been applied on two datasets. As can be seen in Table 5.6, the results show that 

SVM is a promising algorithm for the resampled rail data classification problem. 

Resampling techniques adopted in our experiment play crucial role for effective 

data classification, however, under-sampling can suppress the number of support 

vectors and result in a SVM with a significant performance gain. It also shows a 

significant reduction of the complexity of memory and training time.  

Class imbalance is not the only problem which tends to govern the performance 

of the learning algorithms, but there are other elements which potentially hinder the 

classification performance such as the overall size of the data set. The Gaussian 

radial basis function kernel guarantees superior generalization due to its flexibility. 

In the next chapter, a new iterative fuzzy support vector machine (IFSVM) 

classification-based paradigm is introduced. The IFSVM is proposed for severely 

imbalanced rail data classification with bootstrapping-based oversampling and 

under-sampling.  
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Chapter 6 
 

Iterative Fuzzy Support Vector 
Machines: Rails Data Classification 
Framework  

 

6.1 Introduction 

Real world industrial processes are complex environments whose performance in 

terms of expected quality of delivered products and cost management are of a 

strategic importance. In industrial applications, there is a remarkably increasing need 

to reduce manufacturing costs while enhancing process yields. Knowledge discovery 

and data mining techniques have therefore become a significant target for industrial 

and research initiatives to develop frameworks and guidelines to identify bottlenecks 

in the production routes and key areas for improvements. The idea of knowledge 

discovery in data bases and machine-learning revolves around extracting information 

and unknown interesting patterns such as groups, unusual records and dependencies 

from given data set via constructive learning algorithms such as support vector 

machines and fuzzy support vector machines.   

Due to the ongoing rapid growth of data in a wide variety of real world 

applications, the researchers have broadened the idea of SVM into various 

applications such as fuzzy SVM (Lin and Wang 2002), (Lin and Wang 2004), 

Lagrangian support vector machines (Mangasarian and Musicant 2001). FSVMs, 

being computationally powerful techniques for binary classification problem, have 

gained much popularity in understanding the interaction and influence of input 

features on overall process yield. FSVM works similarly to SVM, except that a 



	
  

121	
  
	
  

specific membership degree is given to each data point so that various data points 

can make different contributions to the decision surface learning. FSVM model 

prevents noise and outliers from creating narrower margin by assigning a 

membership degree to each data point. However, in the SVM model case, equally 

training each data point may cause over-fitting. The calculation of membership 

values is based on the sparse distribution of the training points, with outliers and 

noise being assigned proportionally smaller membership values than other points 

(Shilton and Lai 2007). Despite the computationally attractive features of SVMs and 

FSVMs, the class imbalance problem significantly hinders their prediction 

performance in classification problems.  

In this chapter, a new iterative fuzzy support vector machine classification 

framework for the same data used in studies of chapters 4 and 5. To generalize the 

proposed IFSVM so that it overcomes both the problems of learning from highly 

imbalanced data and the influence of data dimensionality on the overall 

generalization performance, a new strategy was designed by incorporating the 

unique learning mechanism of FSVM and the class distribution advantages of 

resampling techniques. Data resampling techniques, oversampling and under-

sampling, are the best choice for overcoming the class imbalance problem.	
   The 

classification results offer a better understanding of the effect of resampling 

techniques on imbalanced datasets.  

A hybrid learning framework using iterative fuzzy support vector machines 

based fuzzy c-means clustering (IFSVM-FCMs) is also proposed in this chapter. 

Fuzzy c-means clustering is an effective clustering scheme which selects the 

informative examples from large scale datasets and prevents the classification 

model to make a full search in the entire training set. This strategy renders 

classification model to be applicable to very large scale datasets which otherwise 

would be computationally very expensive. Combined with the fuzzy c-means 

clustering, IFSVM achieves a fast and scalable solution without prediction 

performance degradation. 
 

 The results show that the proposed active learning strategy (IFSVM-FCMs) can 

be used to address the class imbalance problem and provide a remarkable 

classification performance. It has been proven that as the class imbalance ratio 

decrease, the proposed IFSVM-FCMs can achieve better prediction performance 
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than with highly imbalanced training set. With the implementation of data 

resampling techniques i.e., bootstrapping-based over-sampling and under-sampling, 

more balanced class distributions can be provided to the learner in the earlier steps 

of the learning.  
 

6.2 Fuzzy Systems 

Fuzzy logic systems FLSs are rule-based systems that utilize the theory of fuzzy 

sets and fuzzy logic proposed by Zadeh (1965). Fuzzy logic systems are applied in 

various application areas to represent knowledge in a similar way to human brains 

allowing decisions to be made based on vague information. Fuzzy logic is a branch 

of various-valued logic employs the fuzzy set theory. Fuzzy logic has the ability to 

represent variables and relationships in linguistic terms such as small, medium and 

large and build a model based on fuzzy if-then rules. 
 

Since their introduction by Zadeh in his seminar paper ‘’fuzzy sets’’ (Zadeh 

1965), fuzzy logic systems have been known to be one of the most important areas 

of fuzzy set theory, which includes approximating the membership of objects to a 

set (Zadeh 1965). However, the degree of truth is described by fuzzy logic using 

truth values between 0 and 1. The fuzzy set is characterized by the corresponding 

membership functions. The concept of fuzzy set is that any element is given a 

degree of membership of this set which is different to the ordinary crisp set where 

its membership is defined by either a value of 0 or 1.  

Recently, the theory of fuzzy set has played a crucial role in dealing with 

uncertainty. Fuzzy logic and fuzzy set theory have evolved into powerful tools for 

handling uncertainties inherent in complex systems. In real world engineering 

problems, the uncertainty existed in datasets could not be avoided due to 

instruments malfunction, measurement errors and human inference. A three types 

of uncertainty were presented by Mendel (2003) such as fuzziness, strife and non-

specificity. 

A number of different types of membership function (MF) have been proposed 

for fuzzy logic system. The most used forms of membership functions are those 

which are convex and normal. However, various operations on fuzzy sets lead to 

fuzzy sets with subnormal and nonconvex forms (Ross 2010). Membership 
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functions can be symmetrical and typically expressed in one dimensional universe. 

Nonetheless, they certainly can be defined on multi-dimensional universe. 
 
A cording to membership function shapes, there are eleven shapes of fuzzy 

membership functions. However, Gaussian, triangular, trapezoidal, piecewise linear 

and bell-shaped are by far the most commonly encountered functions in real world 

applications (Mendel 2001). A brief explanation on some of the above mentioned 

membership functions will be discussed below. 
 

6.2.1 Triangular Membership Function 
The construction of triangular membership function is based on three scalar 

parameters i.e., left vertex, centroid and right vertex. The triplet (left vertex, 

centroid and right vertex) is referred as (𝑎,𝑑, 𝑐). The calculation of (𝑎,𝑑, 𝑐)  of the 

triangular function is given as follow: 

 

𝜇! 𝑥 =   

𝑥 − 𝑎
𝑏 − 𝑎

,𝑎 ≤ 𝑥 ≤ 𝑏,
𝑐 − 𝑥
𝑐 − 𝑏

, 𝑏 ≤ 𝑥 ≤ 𝑐

0,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                              (6.1) 

 

Where 𝑎, 𝑏  𝑎𝑛𝑑  𝑐  are the left vertex, centroid and right vertex of the triangular 

membership function. The term 𝜇! 𝑥   represents the membership function of  𝑥. The 

shape of triangular membership function can be either symmetric or asymmetric 

type. The shape of triangular membership function is shown in Figure 6.1. 

 
Figure 6.1: Triangular Membership Function 
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6.2.2  Gaussian Membership Function 

In the Gaussian membership function, which is commonly used to represent 

linguistic terms, there are only two parameters i.e., the width and the centre of the 

Gaussian membership function (𝑣,𝜎)  respectively. The calculation of a symmetric 

Gaussian membership function can be given as: 

𝜇! 𝑥 = exp
−(𝑥 − 𝑣)!

2𝜎!                                                                               (6.2) 

The shape of Gaussian membership function is shown in Figure 6.2. 

 

Figure 6.2: Gaussian Membership Function 

In data classification problems, Gaussian (Radial Basis Function) is the best choice 

for providing superior generalization capability as it has less parameter than other 

nonlinear kernels. Moreover, it is capable of handling the nonlinearity between 

classes and features. 

6.2.3 Bell-Shaped Function 
The bell-shaped membership function has symmetrical shape and its calculation 

given as follows: 

 

𝑓 𝑥;𝑎, 𝑏, 𝑐 =   
1

1+ 𝑥 − 𝑐
𝑎

!!                                                                   (6.3) 
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Where ′′𝑎′′  is the width of the curve, ′′𝑏′′  is the positive parameter and ′′𝑐′′  is 

curve centre. A bell-shaped membership function is shown in Figure 6.3. 

 

Figure 6.3: Bell-shaped Membership Function 

6.2.4 Trapezoid Membership Function 

The construction of trapezoid membership function requires four parameters 

(𝑎, 𝑏, 𝑐,𝑑) which are defined as left convex, upper length starting point, upper 

length terminal point and right convex. The calculation formula of Trapezoid 

Membership function is as follows: 

𝜇! 𝑥 =   

𝑥 − 𝑎
𝑏 − 𝑎 ,              𝑎 ≤ 𝑥 ≤ 𝑏,

1,                            𝑏 ≤ 𝑥 ≤ 𝑐,
𝑑 − 𝑥
𝑑 − 𝑐 ,            𝑐 ≤ 𝑥 ≤ 𝑑,
0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                      (6.4) 

Where 𝑎, 𝑏, 𝑐  𝑎𝑛𝑑  𝑑  are the left vertex, upper length starting point, upper length 

terminal point and right convex of trapezoid function respectively. The term 

𝜇! 𝑥   represents the membership function of  𝑥. A simple trapezoid membership 

function is shown in Figure 6.4: 
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Figure 6.4: Trapezoid Membership Function 

In practice, there is no explicit mothed by which one can choose the membership 

function, it can be chosen either arbitrarily or based on the researcher’s experience 

(Mendel 2001).	
  
 
6.3 Fuzzy C-Means Clustering  
 
Exploring and organizing data into appropriate grouping increase dramatically in 

many engineering and scientific fields. Although many algorithms have been 

proposed for clustering analysis, Fuzzy C means algorithm has  a rich and diverse 

history as it was independently discovered  in different field and it is still one of the 

most widely used algorithms for clustering as it is easy to be implemented, simple, 

efficient, and has empirical success (Jain 2010). In contrast to K means algorithm, 

fuzzy C means algorithm has one drawback is that the probability of membership of 

a data-point in a cluster depends explicitly on the number of clusters and when this 

number is specified incorrectly, serious problems will ensue (Duda et al. 2001). 

As discussed in the previous chapter, growth in both the dimensionality of rail 

data via applying bootstrapping based-oversampling scheme and the large number of 

support vectors yielded via SVMs as well as FSVMs has raised some shortcomings 

in the overall generalization capability. The problems outlined above can be 

eliminated via FCMs clustering scheme. FCM clustering attempt to partition the data 

based on the fuzzy partition criteria by which each data point of fuzzy partition 

relates to different clusters with different membership degrees (Yang et al. 2011 b). 
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FCMs became a useful data mining tool since it was proposed by Dunn (Dunn 

1973) and developed by Bezdek (Bezdek 1981), for identifying interesting patterns 

and discovering clusters in the underlying data. The concept of FCMs is that each 

data point belongs to a cluster based on a membership degree. The mean location of 

each cluster is marked using a cluster centre and keeps updating along with 

membership degrees for each data point in the cluster until an appropriate location 

is reached. The iterative adjustment is based on the following minimization of the 

following objective function which represents the distance between the cluster 

centre and each given data point: 

𝑗 𝑋;𝑈,𝑉 = 𝜇!"!𝑑! 𝑋! − 𝑉! !          
!

!!!

!

!!!

                                                                           6.5  

 

Where 𝑉 = 𝑉!,𝑉!,… ,𝑉!   is center vectors, C is the number of fuzzy clusters, X 

refers to data samples and 𝑈 is Fuzzy partition matrix whose elements 𝜇!" ∈ [0,1] 

represent the membership degree of 𝑋 in cluster  𝑗. 𝑑!"
! = 𝑋! − 𝑉!  is distance 

metric between 𝑋! and 𝑉!. Fuzzy clustering is carried out according to the following 

solutions of 6.5: 

𝜇!" =
1

(𝑑!" 𝑑!")!
!!!

!
!!!

   ; 1 ≤ 𝑖 ≤ 𝑐  , 1 ≤ 𝑘 ≤ 𝑁                                                (6.6) 

 

𝑣! = (𝜇!")!𝑥!

!

!!!

(𝜇!")!
!

!!!

;   1 ≤ 𝑖 ≤ 𝑐                                                                    (6.7) 

 

FCM algorithm iteratively runs through (6.6) and (6.7) to optimize cluster 

centers and fuzzy partition matrix. The fuzzy C means algorithm is summarized as 

follows (Dehariya et al. 2010): 

4) Choose a number of clusters; 

5) Randomly assign to each point coefficients for being in the cluster; 

6) Repeat until the algorithm has converged (that is, the coefficients’ change 

between two iterations is no more than the given sensitivity threshold). 

 
The fuzzy C means method offers an important insight into the data by 

producing a degree of membership to individual data vectors within clusters. 
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Fundamentally, this algorithm seeks a minimum of heuristic global of cost function 

(Duda et al. 2001), where each point has a degree of belonging to clusters rather 

than belonging completely to just one cluster (Dehariya et al. 2010). Thus, points 

on the edge of a cluster, maybe in the cluster to a lesser degree than points in the 

centre of a cluster (Dehariya et al. 2010). 

One of the most important problems in data analysis is cluster validation where 

the researcher needs to test solutions of data mining problems for robustness 

(Buhmann 1995). It is important to note that the data representation issue 

predetermines what type of cluster structures can be discovered in the data 

(Buhmann 1995). An additional issue is correctly selecting proper algorithm and 

correctly choosing the initial set of clusters (Fung 2001). The size of the data set is 

also a crucial issue, because most of the clustering algorithms require multiple data 

scans to achieve convergence (Fung 2001). 

For an effective performance of fuzzy support vector machines on large datasets 

and tackling the sensitivity of SVMs to outliers and noises, Wu et al. (2014a) 

incorporated the fuzzy support vector machines with a novel partition index 

minimization (PIM) clustering scheme. The novel PIM clustering scheme is 

presented to discriminate between outliers and noise involved in training data set 

and generate fuzzy membership to the fuzzy support vector machine algorithm. 

With the aid of PIM clustering scheme, the FSVM shows robust results than other 

algorithms. 
 
A conjunctive use of weighted support vector machines (WSVMs) and fuzzy C-

mean clustering approach is presented by Hu et al. (2007) to predict short term load.  

The training data points are clustered according to their similarity degree and the 

data points that share homogenous features are selected and employed as an input to 

the model. The selected data points are viewed as more important as the older once. 

As result, a new learning machine named as weighted support vector machines 

WSVMs is constructed where each new data is assigned a weight vector.  
 
For an effective acquiring of patterns from data, a fuzzy C-means clustering 

technique based on kernel methods is proposed by Wu and Xie (2003). The new 

algorithm termed as fuzzy kernel c-means (FKCM) is based on an integration 

strategy between FCMs clustering and mercer kernel function that is capable to deal 

with some issues in fuzzy clustering. The advantages of this technique are shown 
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that the FKCM is not only effective on spherical shape clusters, but also annular 

ring shapes. However, the challenge in applying FKCM is in choosing a proper 

kernel function and the way to optimize the associated parameters. 
  
A comparative analysis between two important clustering technique namely 

fuzzy C-means clustering and centroid based fuzzy K-means clustering is presented 

by Ghosh and Dubey (2013). The performance of the two algorithms is evaluated 

based on the efficiency of clustering output. The behaviour patterns of the two 

techniques are analysed based on the number of clusters and data size. Similar 

results are obtained from both algorithms; however, FCMs are more suitable for 

handling the issues related to noisy and incomplete data. 
 

6.4 Iterative Fuzzy Support Vector Machine: Rails data 

Classification approach 
 

Fuzzy support vector machine is defined as an extension of the idea of SVM with 

fuzzy membership to yield FSVM. In SVM, misclassified observations are not a 

concern and one would not care about some training data-points such as noise and 

outliers as to whether they are misclassified or not if the meaningful points are 

classified correctly (Lin and Wang 2002). FSVM provides an effective approach to 

deal with the above concern. The main idea is to allocate a membership function to 

every data point in the data set at hand; this fuzzy membership can be considered as 

the attitude of the corresponding training point towards either the majority or 

minority class (Lin and Wang 2002). Many real world applications calculate the 

membership values based on the sparse distribution of the training points, where 

smaller membership values are given  to the noise  and outliers than other training 

points (Shilton and Lai 2007). 

Reviewing the past and on-going researches that focus on extracting knowledge 

from data set by applying SVM and FSVM is a crucial task for the researcher. The 

review can highlight the advantages and disadvantages of specific task as well as 

identifying other research paradigms to solve the problem at hand. The Rail through 

process data contains a large amount of data records and data variables. Such data 

is often very difficult to model due to class imbalance problem and to its high 

dimensional nature. Consequently, data quality and data dimensionality will 

dominate model performance. Furthermore, the choice of modelling approach will 

also influence the performance of the model (Gunn and Kandola 2002). 
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Previous studies from researchers on data classification focused on applying 

kernel techniques (support vector machines, Fuzzy support vector machines) on 

real-world dataset such as (Vapnik 1995), (Boser et al. 1992), (Burges 1996), 

(Duan and Keerthi 2005), (Cortes C. and Vapnik V. 1995).  

Due to the ongoing rapid growth of data in a wide variety of real world 

applications, the researchers have broadened the idea of SVM into various 

applications such as Fuzzy SVM (Lin and Wang 2002), (Lin and Wang 2004) and 

Lagrangian support vector machines (Mangasarian and Musicant 2001). FSVM 

works similarly to SVM, except that a specific membership degree is given to each 

data point so that various data points can make different contributions to the 

decision surface learning. The FSVM model prevents noise and outliers from 

creating narrower margin. However, in the SVM model case, equally training each 

data point may cause over-fitting. The calculation of membership values is based 

on the sparse distribution of the training points, with outliers and noise being 

assigned proportionally smaller membership values than other points (Shilton and 

Lai 2007). 

Lin and Wang (2002) proposed one type of FSVMs. The main idea of the 

associated algorithm is to apply a fuzzy membership to each data input of SVM and 

reformulate SVM in to FSVM. An appropriate fuzzy membership is chosen in such 

a way that the lower pound of fuzzy memberships must be defined; then, the 

property of the main data is to be selected and finally make connections between 

fuzzy memberships and this property. However, this method is likely to yield good 

results only if the distributions of the given training data of each class happen to be 

around the central means. The formulation of algorithm is not complete where the 

linear separable cases cannot be discussed.  However, comparative experimental 

results against standard SVM on real data set are not provided (Tao and Wang 

2004). 

Further work was carried-out by the same authors to design a noise model which 

can employs two factors in training data vectors, the trashy factor and confidence 

factor, and spontaneously generates fuzzy memberships of the given training data 

vectors from a heuristic strategy by employing the obtained factors and a mapping 

function (Lin and Wang 2004).  The obtained model is utilized to estimate the 

probability of the noisy information and outliers and then, employ this 
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corresponding probability to tune the fuzzy membership in FSVMs. The 

experiments ensure low generalization error; however, the use of FSVMs with 

kernel functions leads to more complicity since there exist many parameters. Also, 

it is computationally expensive to search the optimal parameter in the training 

process.  

Tao and Wang (2004) proposed a new fuzzy support vector machine algorithm 

based on the weighted margin. The basic idea is to employ the fuzzy membership 

function to weight the margin. This approach incorporates the idea from SVM and 

fuzzy neural networks for a better classifier performance. The influence of data 

inputs can be either reduced or avoided by applying the fuzzy membership for each 

training vector to weigh the margin.  The advantage of modifying SVM via the idea 

of neural fuzzy system is to apply some fuzzy membership functions. 

Consequently, experiments on real data sets illustrate that NFSVM can yield robust 

results in contrast to standard SVM. 

Xiong et al. (2005) presented a new algorithm using fuzzy support vector 

machines based on fuzzy c-means clustering.  The algorithm is based on the idea of 

applying fuzzy c-means clustering scheme to each class of data set. The key feature 

is that during clustering with a suitable fuzziness parameter, the algorithm will get 

rid of the data that are less important and will choose the important samples such as 

the support vectors to represent the other similar samples that are close to the 

cluster centres. Experimental results of the proposed fuzzy support vector machines 

showed that less quadratic programing time is needed compared with conventional 

SVMs. 

(Shilton and Lai 2007) introduced a new algorithm for the calculation of 

membership values using an iterative fuzzy support vector machine. In contrast to 

(Lin and Wang 2002), this approach does not take in to account the form of the 

distribution of the training vectors.  It iteratively makes use of the result obtained 

from SVM training process and information about misclassified training vectors 

(error vectors) to adjust and generate membership values, with outliers being given 

smaller values of membership than other training points. The FSVM process will be 

repeated with these new membership values for a certain number of cycles until 

convergence.  
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(Tang and Qu 2008) proposed a new fuzzy membership function to solving 

classification problem for FSVM. The algorithm defines the membership function 

not only based on the distance between each data point and the means of class, but 

also similarity between data points which is defined by K-nearest neighbour 

distances.  Results show that such algorithm can achieve a good performance on 

decreasing the effect of outliers.  

(Batuwita and Palade 2010) proposed an approach to improve FSVMs for class 

imbalance learning CIL (called FSVMs-CIL). This method is presented to handle 

the class imbalance dilemma for the task at hand in the presence of noise and 

outliers.  The basic idea is to assign fuzzy-membership values for the training 

examples based on their importance in order to reduce the effect of the above 

concerns. This approach is evaluated on ten real world data sets, containing around 

ten thousand records.  Experiments show that the proposed algorithm is affective 

and outperform other existing internal and external imbalanced learning methods.  

However, experiments are limited to small data sets and the authors have not proven 

the robustness of their algorithm on large scale data set where much larger 

optimization problem is required. 
 
Fuzzy rough set based support vector machine (FRSVM) was proposed by Chen 

et al. (2010). In this algorithm, a kernel based fuzzy rough set is firstly proposed 

and then, the membership function for every data point is computed using the lower 

approximation operator in the kernel based fuzzy rough set. The hard margin 

standard SVM is reformulated in to FRSVM by transforming constraints in normal 

SVM. Comparison analyses show that the proposed algorithm is efficient in a way 

that improved the generalization of hard margin SVMs. 
 
Wang et al. (2003) outlined the advantages of connecting kernel machines with 

fuzzy systems, produced a link between kernels and fuzzy rules and presented a 

learning paradigm for fuzzy classifier named as positive defined fuzzy classifier 

(PDFC). The proposed PDFC is built from the given data points based on standard 

SVM with the IF-part fuzzy rules given by Support vectors where the fuzzy 

inference on IF-part of fuzzy rules is the evaluation of  the kernel function. In this 

work, PDFCs with various reference functions ensure good performance since the 

upper bound of the expected risk is minimized by the learning process. 
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A novel fuzzy support vector machines approach for multi-class classification 

problem is proposed by Schwenker et al. (2014).  The algorithm is capable of 

benefiting from fuzzy labelled training data and determines fuzzy memberships for 

each data input. The algorithm can be viewed as an extension of the fuzzy support 

vector machine approach for fuzzy labelled data into two class classification 

structure. Based on three benchmark datasets, the inclusion of fuzzy labelled data 

points in the training set demonstrates effective results of the proposed algorithm. 
 
In classification problem, it is known that the choice of the fuzzy membership 

function can effectively reduce the influence of outliers. Jiang et al. (2006) 

proposed a new Fuzzy SVM with a new fuzzy membership function. The 

membership function which is represented by kernels is calculated in the feature 

space for nonlinear classification. The proposed  method shows an improvement in 

the classification performance and generalization in contrast to that presented by 

Zhang (1999). 
 
Due to the fact that support vector machines are more likely to produce large 

number of support vectors in the classification problem, Muscat et al. (2014) 

presented a hierarchical fuzzy support vector machine-based fuzzy C-means 

clustering algorithm for severely class imbalance rails data modelling. An internal 

(biased) fuzzy support vector machine is integrated with external data resampling 

techniques. For a better compromise between model performance and training time, 

the algorithm was integrated with FCMs clustering. Promising results were obtained 

in terms of reducing the number of support vectors while maintaining a good 

generalization performance. 
 
Yang et al. (2011b) proposed a hybrid classification framework based on fuzzy 

support vector machines with kernel fuzzy C-means clustering for binary 

classification problems of noises and outliers. The FCM is firstly employed to 

cluster each class in the high dimensional feature space. The data points located far 

from the centre are selected to form a new training data set with membership 

degrees. Finally, the FSVM algorithm is applied to classify the new dataset. 

Experimental results show that the kernel fuzzy C-means based fuzzy support vector 

machine algorithm present reasonable membership degrees and in more efficient the 

standard FCM-FSVM algorithm. 
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Despite of all the theoretical and practical advantages of SVMs, they can be 

limited in their performance to outliers or noises in the training dataset due to over-

fitting (Wu et al. 2014b). These types of uncertainties result in some examples being 

more important than others for decision making (Yang et al. 2011 b). FSVMs have 

been widely applied to address such uncertain problems. FSVMs introduce a Fuzzy 

membership values 0 < 𝑠! ≤ 1 to each training point  𝑥!; i.e. the less important data 

points are being assigned a lower fuzzy membership. In the classification problem, 

𝑠! is considered as the attitude of the corresponding training point towards one class 

(Lin and Wang 2002). The IFSVM model can be described by reformulating the 

quadratic programming problem as follows: 

                                                              min
1
2𝑤

! .𝑤 + 𝐶 𝑠!ℰ!

!

!!!

                                                                                    (6.8) 

 

𝑠. 𝑡.    𝑦! 𝑤!   .Φ 𝑥! + 𝑏 ≥ 1− ℰ!   ,ℰ! ≥ 0, 𝑖 = 1,… , 𝑙 

 
where 𝑠!ℰ! is the error measurement with different weighting. The term 𝑠!ℰ!!

!!!  is 

also referred as a weighted sum of empirical errors to be minimized in when 

applying fuzzy SVMs. If a misclassified point 𝑥!   is not in a mixed cluster, its fuzzy 

membership 𝑠! is small and hence its error ℰ! can be large. However, if 𝑥!  is in a 

mixed cluster, its fuzzy membership is 1 and hence its error ℰ!  must be small such 

that 𝑠!ℰ!    remains minimized. This means that the decision boundary tends to move 

to overlapping regions to reduce empirical errors in this region. The IFSVM 

optimization problem can be solved by constructing the dual Lagrangian subject to 

these constraints: 

 

𝑠. 𝑡. 𝑦!𝛼! = 0!
!!! , 0 ≤ 𝛼! ≤ 𝑠!𝐶, 𝑖 = 1,… , 𝑙                             (6.9) 

In the IFSVM algorithm, the iterative strategy is based on the grid search 

optimization scheme of the regularization parameter (C) and the width of (GRBF). 

The fuzzy membership function 𝑠!   can be a function of a distance between each 

point and its class center (Lin and Wang 2002) where: 

 

𝑠! =
  1− 𝑥! − 𝑥! /(𝑟! + 𝛿)            𝑖𝑓𝑦! = +1  
1− 𝑥! − 𝑥! /(𝑟! + 𝛿),        𝑖𝑓𝑦! = −1                               (6.10) 
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𝑥! , 𝑥! are the mean of both classes and 𝑟!, 𝑟! are the centers of these classes. 𝛿 > 0 

is a constant to avoid 𝑠! = 0  . The flowchart of the proposed IFSVM algorithm is 

depicted in Figure 6.5. 

 

 

Figure 6.5: Overall procedure of the IFSVM model where RMM is the ratio of majority 
to minority classes, Rmin and Rmax are minimum and maximum ratios respectively, σ is 
the variance parameter of Gaussian function, X0T and X0Ts are training and testing data 
sets respectively, Y0T and Y0Ts are the output of training and testing sets respectively 
and C is the regularization parameter that defines constraint violation cost. 
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For each data point, the membership value influences the misclassification cost 

where the more important data points are assigned a higher cost and thus, an optimal 

hyper-plane can be achieved. By solving the dual-optimization problem in (6.8) 

which is the upper bound of the values of 𝛼!, 𝑤 and 𝑏 can be recovered the same 

way as standard SVM algorithm. The main difference between SVM and FSVM is 

that the regularization parameter (error penalty) C of FSVM is multiplied by fuzzy 

membership  𝑆!. In FSVM model, the concept behind is to set a fuzzy membership to 

each input point and to reformulate SVM so that different input points can make 

different contributions to the learning of the decision surface. FSVM is also based 

on the maximization of the margin similar to the classical SVM. However, it uses 

fuzzy membership function instead of fixed weights to prevent noisy data points 

from making narrower margins (Wang and Chiang 2007). 
 

There exist several methods that combine the standard support vector machines 

with fuzzy theories. However, most of these techniques are based on assigning a 

different misclassification costs that makes different contributions for each data 

point when finding the separating hyper-planes. The misclassification costs can be 

defined via applying different fuzzy membership functions. It is important to 

mention that fuzzy classification methods usually include fuzzification, 

defuzzification and fuzzy reasoning. However, fuzzy support vector machines 

employ only fuzzy membership functions and the aforementioned tasks are not 

involved (Batuwita and Palade 2010). 
 
6.5 Iterative Fuzzy Support Vector Machines-Based Under-

Sampling 
 
As stated in the previous section, in IFSVM, different membership values (or 

weights) are assigned to each data point to reflect their importance.  For overcoming 

the class imbalance problem, a hybrid framework based on the proposed iterative 

fuzzy support vector machine IFSVM with under-sampling scheme is applied in this 

section for rails data classification.  
 

A separate optimization problem with the inclusion of membership function 𝑠!    

is to be performed in the binary IFSVM classifier. It is of great importance to 

achieve an optimal generalization performance. Training the proposed IFSVM 

model require tuning the same pre-defined parameters in the standard SVMs i.e., 

regularization parameter (𝐶) and the width of the Gaussian RBF (𝜎)  in addition to 
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the parameters of the membership function. For a better classification performance, 

these parameters need to be learned with great care. The fuzzy membership defines 

the importance of each data point to the overall classification problem where the 

more important points are assigned a bigger membership value.  

The data set was randomly split into training and testing set in the ratio of 7 to 3. 

For the under-sampling, the rails data is under-sampled as described in chapter 5 

until both classes were equal and  𝑅!! value of 1 is achieved. Figure 6.6 shows the 

classification performance of IFSVM algorithm on the under-sampled rails dataset. 

 

Figure 6.6: Classification Performance of IFSVM with under-sampled data 
 

It can be clearly seen from Figure 6.6 that sensitivity performance improved 

significantly through data resampling, from about 29% (on original imbalanced 

dataset) to around 67.2 %. This work has revealed that the IFSVM algorithm with 
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IFSVM classifier is not only influenced by the two parameters i.e., regularization 

parameter (𝐶) and the width of the Gaussian RBF (𝜎), but also other factors, 

including the quality and dimensionality of datasets.  

The parameter selection criteria tailored for the IFSVM algorithm is based on an 

exhaustive grid search over the parameter space. The maximum number of 

iterations of the proposed algorithm is controlled via the number of parameters 

employed in the grid search. Parameters are selected based on the following ranges: 

𝐶  = {1, 2,…, 15} and σ = {4, 7, 10, 13, 17, 20}. As 𝐶  increase, then the margin is 

wide and the tuning parameter is large. Therefore, many observations violate the 

margin and so there are many support vectors.	
  

Gaussian radial basis function (GRBF) is the best choice for providing superior 

generalization capability as it has less parameter to be optimized than other 

nonlinear kernels. Moreover, it is capable of handling the nonlinearity between 

classes and features. The training time of IFSVM with under-sampling is 3.48 

minutes. It can clearly be stated that algorithms-based Under-sampling technique is 

less time consuming and thus superior. The hybrid architecture of IFSVM with the 

under-sampling scheme succeeded in drastically reducing the number of support 

vectors to 2206. The speed of IFSVM classification algorithm depends on the 

number of support vectors (Manikandan and Venkataramani 2009). Results also 

support the efficiency of our training algorithm not only on the overall classification 

performance but also in producing small number of support vectors. IFSVM 

classification results obtained with under-sampling is presented in Table 6.1. 

 
Table 6.1: Performance result of IFSVM classifier with under-sampling 

Classifier Sampling 
Type 

Data 
Size # SVs Execution  

Time  
sensitivity 

% 

IFSVM 
                   

Under-
Sampling 

2877 2206 3.48 minute 67.14  % 

 
 

The above-stated sensitivity analysis ratifies the good results achieved via under-

sampling approach, finding a good trade-off between the execution time of the 

algorithms and the classification performance. The results agree with the hypothesis 

that under-sampling the majority class reduces the total number of training 
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examples, speeding up the training time and accordingly ensure promising 

classification performance. 

Based on the above obtained results, three observations can be made as follows: 

4) A good generalization performance is achieved via The Gaussian kernel. 

The kernel function potentially maps rails data into a higher dimensional 

space where as other kernels such as the linear or polynomial uses feature 

space with fixed number of dimensions. 

5) The classification accuracy rate of IFSVM classifier is not only influenced 

by the two parameters i.e., regularization parameter (𝐶) and the width of 

the Gaussian RBF (𝜎), but also other factors, including the quality and 

dimensionality of datasets. 
6) Under-sampling produces datasets with low dimensionality. The class 

distribution advantages of under-sampling enable IFSVM algorithm to 

yield small number of support vectors. Consequently, the classification 

time will be decreased.  
 

Although IFSVM algorithm provides good classification performance with 

under-sampling, it is important to examine the same algorithm with other sampling 

technique. Next section will discuss the application of IFSVM with bootstrapping-

based oversampling scheme.                                                 
 

6.6 Iterative Fuzzy Support Vector Machines with Bootstrapping-

Based Over-sampling 
Bootstrapping based-oversampling is another sampling technique that is also 

applied to change the class distribution of rails data. The advantage of such a 

technique is that it is external and therefore, easily transportable as well as very 

simple to implement (Estabrooks et al. 2004). Moreover, over-sampling the 

minority class data avoids unnecessary information loss (Yang et al. 2011 a).  
 

Over-sampling has its drawbacks and results in datasets with high 

dimensionality. Consequently, the computational cost associated with SVM is 

increased. The classification performance of IFSVM algorithm on the over-sampled 

rails dataset is presented in Figure 6.7. 
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Figure.6.7: IFSVM classification performance with bootstrapping-based over-
sampling 

 

The integration strategy of IFSVM with over-sampling is computationally 

expensive since Over-sampling creates a multiple randomly resampled datasets. 

Therefore, a significant increment of the overall size of the data is occurred. Due to 

the dimensionality nature of the data being produced and computer memory 

restrictions, the optimal sampling rate achieved via bootstrapping based 

oversampling approach is 5. 
 

The training time of IFSVM with bootstrapping-based over-sampling is 73.28 

hours. Bootstrapping-based over-sampling yields a large number of support vectors 

i.e. 23452. Although it is a solid mathematical structure, it is worth mentioning that 

the IFSVM technique has drawbacks as it can be computationally expensive when 

dealing with large scale data and it tends to produce a large number of support 

vectors as shown in Table 6.2.  To overcome this concern, IFSVM-FCMs is 

presented in the next section. 

As shown in Table 6.2, IFSVM is sensitive to the bootstrapping-based over-

sampling, which is the only shortcoming of the presented algorithm. Bootstrapping-
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47.1% with large number of support vectors being produced and therefore leads to a 

poor generalization capability. 

Table 6.2: IFSVM performance with bootstrapping-based over-sampling 

Classifier Sampling 
Type 

Data 
Size # SVs Execution  

Time  
sensitivity 

% 

IFSVM 
                   

Bootstrapping-
Based Over-

Sampling 
30992 27675 73.28  hour 45.6 % 

 
 

6.7 Iterative Fuzzy Support Vector Machines-Based Fuzzy C-

Means Clustering  

Class imbalance is not the only problem which tends to govern the performance of 

the learning algorithms, but there are other elements which potentially hinder the 

classification performance such as the overall size of the data set. For a better 

generalization capability of IFSVM and in order to speed up its optimization 

problem, a hybrid IFSVM-FCMs is presented in this section.  

FCMs Clustering seeks to reduce the size of rails dataset. The computational 

cost of the proposed IFSVM_FCMs is composed of the cost of FCMs clustering, 

training data size and the cost for searching IFSVM optimal parameters and finding 

IFSVM model.  The speed of IFSVM classification depends on the number of 

support vectors (Manikandan and Venkataramani 2009), (Kang and Cho 2014).   

A distinct feature of SVM and FSVM is their ability to present the solution by 

means of a small scale dataset of training examples which leads to massive 

computational advantages. With the aid of fuzzy c-means clustering, the IFSM 

seeks to reduce the size of dataset and enhance the classification performance. 

Using the hybrid fuzzy support vector machines based fuzzy C-means clustering 

algorithm, the existence of global minimum solution with less computations is 

therefore guaranteed. The architecture of the proposed IFSVM-based FCM 

clustering algorithm is presented in Figure 6.8. 
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Figure 6.8: Architecture of IFSVM-based FCM clustering algorithm where 
where RMM is the ratio of majority to minority classes, Rmin and Rmax are minimum 
and maximum ratios respectively, σ is the variance parameter of Gaussian function, 
X0T and Y0T are training and testing data sets respectively and C is the 
regularization parameter that defines constraint violation cost. 
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FCM clustering is performed on the down-sampled and bootstrapping-based 

over-sampled dataset which has 2877 and 30992 data points respectively. 

Weighting exponents, 𝑚,    of 2 with random initial number of clusters are used for 

the FCM approach. Parameters are selected with the same ranges as the standard 

SVM presented in chapter 5 where 𝐶  = {1, 2,…, 15} and σ = {4, 7, 10, 13, 17, 20}. 

Due to memory restrictions, only two clustering levels i.e., 10 % and 20 % are 

considered with 10 % represents the least number of cluster centers and results in 

the minimum number of training points. Figures 6.9 and 6.10 show the performance 

of the proposed IFSVM algorithm on the over-sampled dataset with different FCM 

clustering levels (10% and 20 % respectively).  

 

 
Figure 6.9: Performance of IFSVM-FCM algorithm with 10% of data points                                                                                                      
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Figure 6.10: Performance of IFSVM-FCM algorithm with 20% of data points 

 
The integration strategy of IFSVM and FCM clustering led to promising results as 

shown in Table 6.3. Having the rails data clustered and fuzzified, the IFSVM is 

able to build the model using only 10% and 20 % of the training examples and 

therefore reducing the number of support vectors. Such reduction in the training 

points has also reduced the model’s training time. In table 6.3, it is clearly shown 

that the IFSVM based FCM clustering performs better than the IFSVM presented in 

Section 6.6. The results illuminate the proposed IFSVM-FCM have a better 

generalization capability with a sensitivity of 60 % in contrast to the IFSVM which 

led to only 45.6 % as shown in Table 6.2. 
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Table 6.3: IFSVM-FCM algorithm with Different Clustering Levels 

 

Classifier Original 
Data Size 

Clustering [% 
of Max. # of 

data pts.] 

New 
Training 
Data Size 

# 
SVs 

Execution  
Time  

sensitivity 
% 

IFSVM- 
FCM 

30992 10 % 3099 1478 4.32 
(minute) 60.0 % 

IFSVM- 
FCM 

30992 20 % 6199 2654 15.02 
(minute) 59.55 % 

 

For the down-sampled dataset, the proposed IFSVM-FCM algorithm has shown a 

good classification performance in contrast to iterative SVM and IFSVM 

algorithms where 10 % to 60 % of data clustering levels are applied. Figure 6.11 

shows the classification performance of the hybrid IFSVM-FCM algorithm with 

various data clustering ratios i.e., 10%, 20%, 30%, 40%, 50%, and 60% of the 

original training dataset. 

 

(a) Classification performance of 10% of original data 
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(b) Classification performance of 20% of original data 

 

(c) Classification performance of 30% of original data 

 

(d) Classification performance of 40% of original data 
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(e) Classification performance of 50% of original data 
 

 
(f) Classification performance of 60% of original data 

 
Figure 6.11: Performance of IFSVM-FCM algorithm with different clustering 
levels of the original training dataset, where (a) represents the highest clustering 
level which is 10% of the original data set and (f) represents the lowest clustering 
level with only 60 % of the original dataset.  
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number of support vectors. Such reduction in the training points has also reduced 

the model’s training time. In Table 6.4, it is clearly shown that the proposed 

IFSVM-FCM have a better generalization capability on down-sampled dataset with 

a maximum sensitivity of 71.9 % with 10 % of data points in contrast to the IFSVM 

which led to only 67.14 % as shown in Table 6.1. FCM clustering proves its ability 

to overcome the over fitting problem, reduces the number of support vectors and 

ensures a good classification performance. 

Table 6.4: IFSVM-FCM algorithm with Different Clustering Levels  

Classifier 

Type 
Original 
Data Size 

Clustering 
[% of Max. 

# of data 
pts.] 

New 
Training 
Data Size 

# 
SVs 

Execution  
Time  

sensitivity 
% 

IFSVM- 
FCM 

2877 10 % 288 215 2.51 
(minute) 71.93 % 

IFSVM- 
FCM 

2877 20 % 575 436 2.83 
(minute) 69.89 % 

IFSVM- 
FCM 2877	
   30 % 864 671 2.95 

(minute) 69.79 % 

IFSVM- 
FCM 2877	
   40 % 1151 902 3.20 

(minute) 69.48 % 

IFSVM- 
FCM 2877	
   50 % 1439 1111 3.45 

(minute) 69.38 % 

IFSVM- 
FCM 2877	
   60 % 1726 1327 3.60 

(minute) 68.77 % 

 
 

6.8 Comparative Analysis and Models Evaluation 
 
As stated earlier, the support vector machine algorithm is sensitive to the class 

imbalance learning (Batuwita and Palade 2010b); (Lin and Wang 2002). Class 

imbalance is not the only problem which tends to govern the performance of the 
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learning algorithms, but there are other elements which potentially hinder the 

classification performance such as the overall size of the data set.	
  	
  
	
  

In this Chapter, an iterative fuzzy support vector machine IFSVM framework is 

proposed for rails data classification and evaluates its performance by using the 

confusion matrix given in Chapter 5. Two datasets, generated from bootstrapping-

based over-sampling and under-sampling techniques, were utilized for data 

resampling. A poor generalization capability is obtained when applying the 

proposed IFSVM on the original dataset where the model’s performance is skewed 

towards the majority class where the minority class is poorly classified at less than 

25%. 

Having the data resampled using bootstrapping-based over-sampling and under-

sampling, the proposed IFSVM’s classification performance is improved and a 

small number of support vectors were produced. Sensitivity performance improved 

significantly through data resampling. With under-sampling where 𝑅!! is a value 

of 1, the IFSVM algorithm has shown a good generalization with significant 

classification performance increment of 67.14 %. Under-sampling technique 

succeeded in drastically reducing the number of support vectors of IFSVM 

classifier to 2206. The advantages of a fewer support vectors will mostly mean 

shorter computational times and smaller memory requirements (Zheng et al. 2013). 

RBF could be seen as a sensible alternative to other kernels such as polynomial 

function.  
 

The employment of the Bootstrapping-based over-sampling technique causes 

performance degradation to 45.6 % and thus weak generalization capability, 

because time complexity grows dramatically as the size of the data increase. The 

IFSVM model built from an over-sampled data yields a large number of support 

vectors i.e., 27675. The experimental results show that Bootstrapping-based over-

sampling increases the computational cost associated with IFSVM training 

algorithm.  
 
To avoid the computational cost associated with IFSVM when classifying the 

over-sampled dataset, A new IFSVM-based FCM clustering has been proposed as 

shown in section 6.7. The superiority of the proposed IFSVM-FCM algorithm is 

demonstrated by two datasets. The results on the bootstrapping-based over-

sampling and under-sampling datasets have remarkable increment of sensitivity rate 

up to 71.3 % with great reduction in training time. Figures 6.12 and 6.13 show a 



	
  

150	
  
	
  

performance comparison of ISVM, IFSVM and IFSVM-FCM algorithms with 

under-sampled and oversampled data respectively. 

 

 

Figure 6.12: Performance comparison of ISVM, IFSVM and IFSVM-FCM 
algorithms with under-sampling  

 

 

Figure 6.13: Performance comparison of ISVM, IFSVM and IFSVM-FCM 
algorithms with bootstrapping-based over-sampling 
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6.9 Summary  
 

In this chapter, an efficient IFSVM based data resampling is proposed. 

Resampling strategies provide balanced rails datasets for active learning at each 

iterative step instead of utilizing the original imbalanced dataset. The proposed 

method includes the class distribution advantages of efficient data sampling and the 

unique learning mechanism of IFSVM. Two datasets i.e., under-sampled rails data 

and over-sampled rails data are employed for a successful IFSVM classification. 

The above-stated sensitivity analysis approves the good results achieved via under-

sampling approach, finding a good trade-off between the execution time of the 

algorithms and the classification performance. 

Another contribution presented in this chapter is defined as iterative fuzzy 

support vector machines-based fuzzy C-means clustering. Fuzzy C-means clustering 

enables IFSVM learning strategy to be applied on small scale dataset without high 

computational costs. Instead of using large dataset, FCMs presented in section 6.3 is 

used to provide the classifier with a smaller dataset. 
 

Based on experimental results, observations have shown that not all support 

vectors are needed for finding an accurate separating hyper-plane. To capitalize on 

this fact, support Vectors Reduction method based on FCMs clustering has been 

developed to drop the weakest SVs. This method has significantly increased the 

effectiveness of the iterative FSVM and successfully yield a good generalization 

capability. It should also be noted that FCMs clustering inhibit the computational 

complexity of the proposed iterative FSVM and thus improve sensitivity analysis 

since the complexity of the computations is proportional to the number of support 

vectors SVs (Burges 1996). 
 
All computations are carried-out on a computer with 3.10 GHz Intel core i5 

processor, 64 Bits Windows 7 professional operation system and a maximum of 

16.0 GB memory. All the programs are developed using Bioinformatics Toolbox in 

Matlab R2011a and RapidMiner 5 (free access software).  
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Chapter 7 
 

Conclusions and Future Work 
 

This chapter summarises the major contributions of this thesis and projects into the 

future with suggestions for further work. 

7.1 Thesis Summary and Main Contributions 

The overall objective of the present work is to contribute to the scientific research 

and technological development	
  by	
  investigating rails quality data modelling related 

problems in the engineering disciplines from control systems’ perspective. This 

work can also be viewed as a contribution in the process of meeting the needs of 

real world industrial processes in terms of reducing manufacturing costs and 

enhancing process yields given that it highlights some of the most important 

aspects of complex data modelling that must be considered for the process of rails 

production. The achievements of this thesis can be summarized thus: 

The rails manufacturing route operated by Tata Steel Europe can be considered 

as a complex process whose performance in terms of expected quality of delivered 

products and cost management are of a strategic importance. The rails 

manufacturing process compromise multiple interacting sub-processes with many 

wide-ranging characteristics. Therefore, the core challenge in the rails production 

line is an adversity to construct machine learning-based paradigms to predict the 

dynamics of the system. Knowledge-based approaches can also become challenging 

when one needs to specify the influence (correlation) of data variables on the final 

product.   
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Further complications can arise when the basic pre-processing tasks become 

computationally expensive and resource-intensive due to the volume and 

complexity of rails data. Consequently, modelling and optimisation procedures and 

algorithms need to be tailored specifically to alleviate such problem. In the light of 

this, the choice of designing adequate data analysis tools becomes crucial due to the 

fact that a single computing algorithm cannot successfully provide all requirements 

in the rails data modelling cycle. Therefore, an integrated software environment has 

been carefully designed to perform rails data analysis and modelling including: 
 

• Clementine Data Mining (Tata Steel Corus Server); 

• Microsoft Access 2007; 

• Excel for data visualisation and basic pre-processing; 

• RapidMiner for data mining and knowledge extraction; 

• Matlab for advanced rails data modelling. 
 

In this thesis, there are four contributions related to data mining and machine 

learning-based paradigms to address the aforementioned challenges in rails 

manufacturing process data with the goal of improving data efficiency and 

generalization performance of proposed learning algorithms. Figure 7.1 illustrates 

the main contributions of this thesis which have already been discussed explicitly 

within three chapters.  
 

 
Figure 7.1: Illustration of the main contributions in this thesis. Chapter 4 discusses 
the exploratory data analysis and ANFIS-based FCM model whereas Chapters 5 
and 6 describe the machine learning-based paradigms (6B illustrates the 
combination between machine learning and FCM clustering) 
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This research had been initiated by adopting the main concept of exploratory data 

analysis (EDA). Exploratory data analyses are capable of formation, consolidation 

and analysis of large amounts of data; this volume of data could not be practically 

visualized and analysed by hand within a reasonable timeframe. An initial 

inspection of rails data has revealed that simple tasks, copying, paste and plotting, 

cannot be executed in a straightforward manner because they often violate the 

specifications and norms of most commonly used software. Therefore, an adequate 

choice of exploratory data analysis tools i.e., RapidMiner and Matlab becomes 

essential since a single analysis and computing tool cannot best serve the 

diversified requirements needed in the data modelling cycle. A robust model input 

selection and rails data reduction environment based on correlation analysis and 

ANN has been designed to overcome the high dimensionality and complexity 

problem of rails manufacturing data. Data pre-processing and feature selection 

schemes have extracted an optimum subset of variables from the original rails data 

based on their influence and importance to the process. 
 

Bootstrapping-based data over-sampling scheme is utilized to deal with the 

imbalanced problem in rails dataset where the distributions of class labels are not 

same. The imbalance problem has a serious impact on the overall performance of 

models and classifiers. The use of data mining and Knowledge discovery in 

databases i.e., RabidMiner neural networks and neuro fuzzy-based ANFIS 

approaches are presented as rails data modelling frameworks. The use of 

exploratory data analysis (data pre-processing and correlation analysis) and the 

feedforward neural network input selection model have proved to be very effective 

in selecting the most significant input variables with serious implications on the 

overall performance of RabidMiner Neural networks and neuro fuzzy-based ANFIS 

modelling approaches. The bootstrapping-ANFIS algorithm yields good prediction 

performance when using balanced data set with 65 %. 

A new algorithm termed the iterative support vector machine (ISVM) for 

classification problems has been presented. The ISVM combine the good 

generalisation ability with a technique to address the curse of dimensionality. such 

combination results in a global quadratic optimisation problem where the box 

constraints are readily solved via sequential minimal optimization SMO method in 

the higher dimensional feature space. The implementation of SVM theory is not 

straightforward. Even though there exist specific packages tailored to solve such 
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problem, these can effectively be applied on small-scale problems because of 

memory and training-time restrictions. To overcome such concerns and to make a 

large-scale classification possible, the sequential minimal optimization SMO 

technique is applied. SMO (Platt 1998) decomposes the training problem into sub-

tasks of optimizing only two 𝑎!   in each optimization phase in which they are easy 

and fast to find where the rest of 𝑎!   s are kept fixed. SMO technique succeeded in 

drastically reducing the training time. However, the relation between data size and 

training time still remains nonlinear. Another important issue is data normalization; 

a successful data classification requires normalizing the training set, otherwise 

expensive computations will occur and in a few applications the optimization phase 

will fail to converge. The effectiveness of the proposed approach (ISVM) has been 

demonstrated on two rails datasets generated via bootstrapping-based over-

sampling and under-sampling. The solution of the proposed ISVM is achieved as a 

sparse set of support vectors. These lie on the separating hyper-planes and as such 

summarise the information required to classify rails manufacturing data. 
 

The Radial basis function (RBF) Kernel-type applied in this thesis with machine 

learning-based paradigms could be seen as a sensible alternative to the use of 

complex polynomials. Radial basis function offer superior generalization 

performance. Other functions such as polynomial and linear employs a feature 

space in a way that the number of dimensions is fixed whereas the RBF has the 

potential to map rails manufacturing process data into higher dimensions, which 

instinctively offers it better flexibility.  

Inspired by the idea of margin maximization to promote the generalisation 

capacity of the ISVM classifier, a fuzzy margin is proposed and optimized to boost 

the generalisation capacity of ISVM. Following this line, a new iterative fuzzy 

support vector machine for rails data classification is proposed. The idea of SVMs 

is completely reformulated into a new fuzzy support vector machine by assigning a 

fuzzy membership function to each data point. This learning process is carried out 

immediately after the grid parameter selection of support vector machine. 

In this thesis, the performance of two powerful machine learning classifiers, the 

proposed Iterative SVM and Iterative FSVM, is compared each with bootstrapping-

based over-sampling and under-sampling and evaluate their performance by using 

the confusion matrix given in chapter 5. Two datasets, generated from 
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bootstrapping-based over-sampling and under-sampling techniques, were utilized in 

this work.  

As shown in the previous chapters, the results support the efficiency of the 

proposed algorithms where Sensitivity performance improved significantly through 

data resampling. The IFSVM algorithm gives strong generalization ability with 

significant classification performance of 67.14 % with the down-sampled dataset, 

Whereas, ISVM achieves a classification performance of 65.3%. Bootstrapping-

based Over-sampling causes performance degradation for SVM and IFSVM 

classifiers to 47.1% and 45.6% respectively and therefore leads to a poor 

generalization capability. 

The integration strategy with the under-sampling scheme succeeded in 

drastically reducing the number of support vectors of ISVM and IFSVM to 2171 

and 2206 respectively. In contrast, bootstrapping-based over-sampling yields a 

large number of support vectors i.e. 23452 and 27675 respectively. The speed of 

ISVM and IFSVM classification depends on the number of support vectors 

(Manikandan and Venkataramani 2009), however, both the ISVM and IFSVM 

algorithms are sensitive to the bootstrapping-based over-sampling, which is the 

only shortcoming of the presented algorithm. 

This work has revealed that the IFSVM algorithm with under-sampling runs 

quicker i.e. 3.48 minutes as compared to the bootstrapping-based over-sampling 

which takes 73.28 hours. The training time of ISVM on under-sampling and 

bootstrapping-based over-sampling is 3.67 minutes and 77.86 hours respectively. 

On the basis of the results drawn by these experiments, it can clearly be stated that 

algorithms-based Under-sampling technique are less time consuming than that with 

bootstrapping based over-sampling and hence are superior. 

In classification problems, a distinct feature of support vector machine and fuzzy 

SVM is that expressing the solution by means of sparse subset of training points 

called support vectors that give superior computational advantages. Utilizing the 

epsilon intensive loss function, the existence of the global minimum solution is 

guaranteed with good optimization of reliable generalization bound. 

Some solutions to the class imbalance problem have been presented at data level. 

At the data level, two re-sampling techniques are employed to balance class 
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distribution of rails data, including bootstrapping based over-sampling minority 

class instances and under-sampling majority class instances. Although these 

external techniques have been showed to achieve success on rails data, over-

sampling still confronts over-fitting problem and under-sampling has to eliminate 

useful information potentially and this might lead to poor generalizations when 

applying on other real applications. 
 
Having the size of training data increased, the number of support vectors 

increases. This prolongs the time required for classification since the contribution 

of every support vector needs to be calculated individually. Consequently, a new 

iterative fuzzy support vector machines based fuzzy C-means clustering IFSVM-

FCM is proposed. The problem of scaling the IFSVM to handle large-scale datasets 

becomes apparent when applying FCM clustering scheme. The integration strategy 

of IFSVM and FCM clustering led to promising results. The IFSVM is able to build 

the model using only 10% and 20% of the training examples and therefore 

decreasing the number of support vectors. Such reduction in the training points has 

also reduced the model’s training time. The proposed IFSVM-based FCM 

clustering have a better generalization capability on down-sampled dataset with a 

maximum sensitivity of 71.9 % with 10 % of data points in contrast to the IFSVM 

which led to only 67.14 %. 

There are several motivations that drive this research to focus on support vector 

machine (SVM) and fuzzy support vector machine (FSVM) approaches as 

supervised learning techniques. SVM is a useful tool for data analysis and 

classification, in the case of non-regularity in the data, for example when the data 

are not regularly distributed or have an indefinite distribution. It can help evaluate 

information hidden in the data. The SVM is derived from statistical learning theory 

and employs the structural risk minimization (SRM) principle which can 

considerably enhance SVM’s generalization capability (Xia et al. 2005). SVM is 

dimensionally independent whereas other machine learning techniques such as 

neural networks are not. SVM modelling process is unaffected by the number of 

observations encountered in the training data set. Accordingly, the ‘curse of 

dimensionality’ is avoided (Trotter et al. 2001). Unlike previous machine learning 

algorithms, such as the multilayer neural network classifier which has numerous 

local minima, the determination of the SVM model parameters corresponds to a 

convex optimization problem, and so any local solution is unique global optimum 
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(Bishop 2006). Additionally, the SVMs have been found to be very robust to 

outliers. The margin parameter C controls the misclassification error and so the 

outliers can be supressed by choosing a proper value to C (Tang and Qu 2008). 

While in contrast, Multilayer neural network classifiers are vulnerable to outliers 

because they use the sum of square error and so the outliers need to be removed to 

prevent their influence before training. 

 
7.2 Future Work 

Engineering research in rails manufacturing route is still an emerging area and there 

are still various open problems require to be improved. Based on the finding of this 

research, several suggestions for future works are summarized in the following 

paragraphs.   

Despite the fact that machine learning-based paradigms proposed in this thesis 

have proven to be a promising choice of rails data modelling, it is crucial to 

compare and evaluate the performance of these paradigms with other supervised 

learning techniques. Other supervised learning techniques may include artificial 

intelligence (logic-based techniques, perceptron-based techniques) and statistics 

(Bayesian networks, Instance-based techniques). This line of research may focus on 

decision trees, neural networks, bayes networks and other forms of SVMs such as 

least square support vector machines or/and lagrangian support vector machines. 

Support vector machines are relatively slow when applied to large-scale 

problems. Training the proposed ISVMs and IFSVMs require Sequential minimal 

optimization SMO technique for solving the optimization problem to tackle this 

concern which has led to superior generalization abilities. Future research may 

include other solutions to solve the constrained optimization problem of SVMs 

such as chunking, decomposition algorithm and genetic algorithm. However, these 

techniques may well lead to further training complexity. A potential further study 

may investigate other data sampling and data compressing techniques so that the 

proposed algorithms can be examined extensively since the class imbalance 

problem and large-scale datasets could seriously detriment to the prediction 

performance of most classification techniques. The generalization performance, 

speed and complexity of machine learning-based paradigms are also governed by 

the size of the data. However, reducing the size of the underlying data via other 
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data reduction techniques will drastically reduce the number of support vectors and 

may therefore translate into less complex models with better classification. 

A further direction of research is to consider different fuzzy membership 

functions and kernel functions for rails data classification. The fuzzy memberships 

may be derived as functions of higher dimensional feature space instead of using it 

in the input space. However, these may require further parameter optimisation. 

Final important avenue of future work is to exploit the model by inverting its 

structure via multi-objective optimisation frameworks to create particular 

processing routes meant for ‘right-first-time’ manufacturing of rails.   

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  



	
  

160	
  
	
  

Appendix A 

 

Kernel Requirements 
 

A.1 Symmetry Condition  
 

Let 𝐾 𝑥,𝑦   be a real symmetric function on a finite input space, then it is a kernel 

function if and only if the matrix 𝐾  with components 𝐾𝑥! ,𝑦!)is positive semi-

definite (Campbell 2000). 

A.2 Mercer’s Theorem 
This theorem must be satisfied by a functional for a pair Φ, ℋ to exist. 

For a compact subset, 𝐶 ∈   ℜ! , we have: 

If   𝐾 𝑥,𝑦   is a continuous is a continuous symmetric kernel of a positive integral 
operator T (Campbell 2000), i.e., 

𝑇𝑓 𝑦 =      𝐾 𝑥,𝑦 𝑓 𝑥 𝑑𝑥
!

                                                                            (𝐴. 1) 

With: 

𝐾 𝑥,𝑦   𝑓 𝑥   𝑓 𝑦 𝑑𝑥 𝑑𝑦   ≥ 0
!×!

                                                                      (𝐴. 2) 

For all 𝑓   ∈   𝐿! 𝐶  then it can be extended in a uniformly convergent series in the 

eigen functions 𝛷! and positive eigenvalues 𝜆!  of T, therefore: 

𝐾 𝑥,𝑦 =    𝜆!  𝛷! 𝑥 𝛷! 𝑦                                                                                         (𝐴. 3)
!

!!!

 

Where 𝑁  represents the number of positive eigenvalues. 

This theorem generalizes the requirement to infinite feature space and hold for 

general compact spaces. The semi-positive condition for finite spaces presented in 
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the theorem in section (A.1) is generalized via equation (A.2) whereas expression in 

(A.3) represents the generalization of the usual concept of an inner product in 

reproducing Hilbert spaces in which each dimension is scaled by 𝜆!   . 

For specific practical cases, it is important to note that satisfying Mercer’s 

condition is not straightforward. Equation (A.3) must hold for every function  f with 

finite L2-norm (i.e. which satisfies (A.3)). 
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