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ABSTRACT 

A synchronous concurrent algorithm is an algorithm that is described as a network of intercom- 
municating processes or modules whose concurrent actions are synchronised with respect to a global 
clock. Synchronous algorithms include systolic algorithms; these are algorithms that are well-suited to 
implementation in VLSI technologies. 

This thesis provides a mathematical theory for the design and analysis of synchronous algorithms. 
The theory includes the formal specification of synchronous algorithms; techniques for proving the 
correctness and performance or time-complexity of synchronous algorithms, and formal accounts of the 
simulation and top-down design of synchronous algorithms. 

The theory is based on the observation that a synchronous algorithm can be specified in a natural 
way as a simultaneous primitive recursive function over an abstract data type; these functions were first 
studied by J. V. Tucker and J. I. Zucker. The class of functions is described via a formal syntax and 
semantics, and this leads to the definition of a functional algorithmic notation called PR. A formal 
account of synchronous algorithms and their behaviour is achieved by showing that synchronous algo- 
rithms can be specified in PR. A formal account of the performance of synchronous algorithms is 
achieved via a mathematical account of the time taken to evaluate a function defined by simultaneous 
primitive recursion. 

A synchronous algorithm, when specified in PR, can be transformed into a program in a language 
called FPIT. FPIT is a language based on abstract data types and on the multiple or concurrent assign- 
ment statement. The transformation from PR to FPIT is phrased as a compiler that is proved correct; 
compiling the PR-representation of a synchronous algorithm thus yields a provably correct simulation of 
the algorithm. It is proved that FP1T is just what is needed to implement PR by defining a second com- 
piler, this time from FPIT back into PR, which is again proved correct, and thus PR and FPIT are for- 
mally computationally equivalent. Furthermore, an autonomous account of the length of computation of 
FPIT programs is given, and the two compilers are shown to be performance preserving; thus PR and 
FPIT are computationally equivalent in an especially strong sense. 

The theory involves a formal account of the top-down design of synchronous algorithms that is 
phrased in terms of correctness and performance preserving transformations between synchronous algo- 
rithms specified at different levels of data abstraction. A new definition of what it means for one abstract 
data type to be 'implemented' over another is given. This definition generalises the idea of a computable 
algebra due to A. I. Mal'cev and M. 0. Rabin. It is proved that if one data type D is implementable over 
another data type D', then there exists correctness and performance preserving compiler mapping high 
level PR-programs over D to low level PR-programs over D'. 

The compilers from PR to FPIT and from FPIT to PR are defined explicitly, and our compiler- 
existence proof is constructive, and so this work is the basis of theoretically well-founded software tools 
for the design and analysis of synchronous algorithms. 
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CHAPTER I 
INTRODUCTION 

Recent advances in computer hardware have led to the manufacture of devices comprising a 
(large) number of separate components that compute in parallel. The advantage that a concurrent device 

has over a sequential device is one of speed of course: it takes less time to solve a given task if different 

parts of the task can be tackled concurrently rather than one at a time. The advantage of using con- 
current devices is offset however by the fact that it is difficult to design and analyse concurrent systems 

of processes (for the basic reason that it is difficult to analyse one part of a concurrent system whilst 

simultaneously keeping track of what is happening in other parts of the system). 

The theory of sequential computation has led to greater understanding of what is solvable by 

means of a (sequential) computer, and complementary theories are now sought to surmount the concep- 
tual difficulties involved in concurrent computation, and to thereby exploit the advantages offered by 

concurrency. Most of the theoretical research into concurrency is concerned with asynchronous con- 

currency: in an asynchronous concurrent system the components of the system behave autonomously 

with respect to each other. Significant examples of mathematical models of asynchronous computation 

are CCS (Milner[1980]), CSP (Hoare[1985]), and ACP (Bergstra and Klop[19861); these are models 

with an ̀ arbitrary interleaving' semantics of concurrency. 

This thesis concerns synchronous concurrency: in a synchronous concurrent system the com- 

ponents of the system are forced to compute and to communicate with each other in system-wide simul- 

taneous steps. Whilst there is much interest in synchronous concurrency, much of the published research 
is concerned with (small families of) examples, and is conducted on an informal basis with little theoreti- 

cal content. In this thesis we will present a general theory that encompasses the formal specification and 

verification of synchronous concurrent algorithms and upon which we build mathematical accounts of 

simulation and top-down design. The theory is applied to examples and to the design of software tools. 

Very Large Scale Integration (VLSI) technologies, as described in Mead and Conway[1980] for 

example, support the implementation of both synchronous and asynchronous concurrent algorithms as 

digital devices. Such devices can be extremely complex and may contain in excess of five hundred 

thousand transistors (Beyers[1981]). Due to the availability and overwhelming complexity of VLSI sys- 

tems, the need of structured design methodologies for VLSI is acute (Rem[1981], Mead[1983]) and this 

need has precipitated much research into formal methods for VLSI systems. Whilst this thesis is not 

specifically concerned with VLSI, synchronous VLSI systems are for us an important source of motiva- 

tion and examples. Work on VLSI systems that is relevant to our research, in particular work on systolic 

algorithms, is discussed below in Section 1.2; for work not directly related to this thesis the reader is 

referred to the useful general bibliography Rosenberg[1985]. 
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In the next section we will describe this thesis chapter by chapter. Afterwards we will review 
related research in two sections: in Section 1.2 we review other research that is concerned with the 

specification and design of computer hardware (VLSI); in Section 1.3 we describe some of the practical 
applications of our work in the context of a software engineering project under development here in the 
Department of Computer Studies at the University of Leeds. 

1.1 OVERVIEW AND DISCUSSION. 

In Chapter 2 we begin with an informal model of computation that we call synchronous con- 
current algorithms or `synchronous algorithms' for short. A synchronous algorithm is an algorithm that 
is described as a network of intercommunicating processes or modules whose concurrent actions are syn- 
chronised with respect to a global clock T measuring discrete time t=0,1,2,.... To begin with, a syn- 
chronous algorithm is described as processing data taken from a single set A. (In Chapter 3 we general- 
ise the model by allowing A to be a many-sorted family of sets so that one synchronous algorithm can 

process many different kinds of data. ) A module m comprises a processor and a store: the processor is 

capable of computing a total function f, 
" : 

A' ---). A; the store is capable of holding a single datum from 

the set A. The function f. specifies a module m in the following sense: whenever an n -tuple 
a= (a t,..., a,, ) of input data is available to in, the module computes f, " (a) and places this 

value in its store. As case studies we will investigate two systolic algorithms for sorting, although 
it will become apparent that our synchronous algorithms are more general than systolic algorithms. 

In Section 2.4 we take our first steps towards the formal specification of a synchronous algorithm 

or network: we show how from the communication structure of a synchronous network, and from the 
functional specifications of the network's modules, we can automatically construct a variety of func- 

tional specifications of the behaviour of the entire network. The most important of these functional 

specifications is a uniquely defined function that we call the network's value function which we will now 
explain. 

Synchronous networks process infinite sequences or streams of data: we use a mapping 
a: T --'A" to represent the input to a network with n>0 inputs; here T={0,1,2,... } is the clock with 
respect to which the network's modules are synchronised, and the intention is that a (t) e A" is the input 

available to the network at each time teT. In addition to input data, the behaviour of a synchronous net- 
work is dependent on the values initially held in the stores of the network's modules; that is, the values 
held in the network at time t=0. Modules hold a single datum, and so we use a vector 
x= (x t,..., xk) eAk to represent the values initially held by a network with k>0 modules; here the inten- 

tion is that x; is the value held by the i th module of the network at time t=0 for i =1...., k. 

To specify the behaviour of a synchronous network over time, we need to specify the value held 
by each of the network's modules at each time teT, and this is the role played by the network's value 
function: if N is an n -input, k-module synchronous network over data set A, then N's value function is 

a map VN of functionality 



-3- 

VN :Tx [T --3A"] xA k --3Ak 
(Here '[T ---A"]' is the collection of all functions from Tinto A'; generally `[X --*Y]' is the notation 

we use for the collection of all functions with domain X and codomain Y. ) For given arguments teT, 

a: T --W, and x= (x 1,..., xk) EAk, our interpretation of the expression 'VN (t, a, x )' is straightforward: 
`VN (t ax )' is read as 'the values held in network N at timet when the input to the network is a and the 
initial values were xl,..., xk'. Notice that VN is vector-valued: VN(t, a, x) is a vector in Ak with the inten- 

tion that the i th coordinate of VN (t, a, x) is the value held by the i th module of N at timet for i =1,..., k. 

As we have described it, the vector x denotes the network's initial values, and so VN always 

satisfies the equation 
VN(O, a, x) =x (1) 

for any a: T--'A' and any xe Ak. In fact, VN satisfies this equation because (1) is how we define 

VN(t, a, x) at t =0 (for any q :T ->A" andx e Ak). To define VN(t, ax) at subsequent timest we use a 
form of primitive recursion: because of the network's synchronous operation, the values held by the 

network's modules at a time t+1 can always be effectively determined from the values held by the 

network's modules at time t. We will explain how VN(t+l, a, x) is defined from VN(t, a, z) in due 

course. The important point to notice here is that for a given network N, its value function VN tells us 

everything there is to know about the network's behaviour over time and so a mathematical theory of 

synchronous algorithms is provided by a formal account of `value functions'. 

In Chapter 3 we give a formal account of the simultaneous primitive recursive functions general- 
ised to an abstract data type. These functions, first defined and studied in Tucker and Zucker[1987] 

(work of 1979), are the mathematical setting for the study of value functions. 

We begin by modelling data and operations (ultimately those used by a synchronous algorithm) as 

a many-sorted E-algebra A; this A comprises some data sets A1,..., A� and some operations on these 

sets, and Z (the signature of A) is the syntax of A in the sense that it comprises names for the operations 

of A. In order to define the simultaneous primitive recursive functions we assume that A contains a 

copy of the natural numbers { 0,1,2,... }, the successor function on this set, the Booleans >ß ={ tt ff }, and 

the logical operations not and or; such algebras we call standard. 

The class PR(A) of all simultaneous primitive recursive functions over a (E-) algebra A is built up 
from the operations of A by means of four function-building tools, viz definition-by cases, sequential 

and parallel composition, and simultaneous primitive recursion. Simultaneous primitive recursion 

allows us to define k functions f 1...., fk simultaneously by primitive recursion from functions g 1,..., 9k 

and h 1,..., hk; that is, f 1,... "fk are defined by a system of equations of the form 
f1(0, a)=g1(a) 

fk(O, a) = gk(a 

and 
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f i(t+1, a) = hi(t, af l(t, a),..., ft(t, a)) 

fk(ttl, a) = hk(t, a, f 
l(t, a),..., fk(t, a)) 

Here tET={0,1,2,... 1 and ae A" for any n>0. 

PR(A) is officially defined via a syntax PR(E) (E the signature of A), and a formally defined 

semantics: 
PR(A) = {[a]A : ae PR(E)} 

wherein 1. ]A is the semantic evaluation mapping that sends each ae PR(E) (a PR scheme over L) to a 
function on A. With this definition of PR(A), it should be clear that a function f on A is officially 

simultaneous primitive recursive over A iff there exists some ae PR(E) such that QahA =f . 
We can now explain how we provide a formal account of the concept of a ̀ value function'. From a 

synchronous network N we can abstract a E-algebra A =AN. This A comprises: 

" the natural numbers as a set T={0,1,2,... } and the successor function on T to represent the clock 

with respect to which the modules of the network are synchronised; 

" the Booleans 1B and the usual logical operations on 1B for testing, and 

" the functions on A that specify the modules of N together with the sets that comprise their 
domains and codomains. 

Suppose the sets involved in A are T, IB, and data sets A 1,..., A� say. The next step towards the 
formal specification of N is' to form the algebra A. This A is obtained from A by adding 
[T -*A 1],..., [T --+A� ] as new data sets, and new operations eval1,..., evaim : here the operation 

eval; :Tx [T -'A; ] -->A1 is defined by eval; (t , a) =a (t) for each teT and a: T -->A j for i =1,... on. 
The signature of A is E which is formed from E (the signature of A) by adding names for these new 

operations. 

Formal specification of N is achieved by showing that its value function is simultaneous primitive 
recursive over A =AN, that is, by showing there is some aN e PR(E) such that QaNIA =VN. Since we 
identify a synchronous network with its value function this aN serves as a formal (syntactic) 

specification of N, and ̀ [aN]A' is a formal. (mathematical) expression for the behaviour of N. 

This approach to the specification of synchronous algorithms has two significant consequences: 
first, whilst simultaneous primitive recursion over an abstract data type is not without its intricacies, 

primitive recursion is a simple idea, and primitive recursive specifications lead to simple inductive 

proofs of algorithms. Secondly, one might imagine that primitive recursion over an algebra that includes 

streams would complicate matters; however, many facts about such algebras can be obtained via the fol- 

lowing strategy: if we can prove that some statement about PR(B) holds for any algebra B, then that 

statement must be true in the case B =AN as a simple corollary. (This is the strategy behind the proofs of 

the compiler theorems found in Chapters 7 and 8 for example; see below. ) 

Also in Chapter 3, we begin our account of the performance (synonymously: complexity or execu- 

tion time) of synchronous algorithms. The complexity of synchronous algorithms is important for their 
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application to hardware design. Starting with Thompson[1980] various models for the area-time charac- 
teristics of VLSI circuits have been developed. Some of these models contain conflicting assumptions 
(see Baudet[1983]) and are the subject of experimental work (see Dew and Tucker[1983]. An informal 

complexity model can be incorporated into the formal definition of the simultaneous primitive recursive 
functions. We begin by defining a performance measure P for an algebra A: a performance measure is 

simply a collection of functions (performance estimations) that tell us how long it takes to execute each 

operation of the algebra on any given input. Performance measures can be nearly arbitrary for the reason 
that this allows us to choose an account of the complexity of operation evaluation that best reflects our 
intuition concerning how that operation is implemented. For example, if we think of an operation as 
being atomic or indivisible, then we can choose a performance measure in which that operation takes 

one time unit to evaluate on any input. Performance measures appear in Nielson[1984] and generalise 

the treatment of algorithm complexity in computation over algebraic structures found in Asveld and 
Tucker[1982]. 

We provide a complexity theory for synchronous algorithms by defining a length-of-computation 

function for each PR scheme a: in symbols this function is denoted `Xp (a)' with the intention that 
Xp (a)(a) is the time taken to evaluate a on input a (with respect to performance measure P). An 

account of the performance of a synchronous network N is thus simply provided by choosing a perfor- 

mance measure P for the algebra A1,, and then by considering Xp (a V). 

Subsequently, unqualified, we use `PR' to mean a formal system comprising a syntax PR(E), a 

semantics 1. ]x, and a complexity theory Xp, for some (standard) signature E, (standard) E-algebra A, 

and performance measure P (for A) respectively. 

Chapters 4 and S are devoted to applications of PR. In Chapter 4 we show that PR-specifications of 

synchronous algorithms can be used in mathematical verifications by proving the correctness of the two 

sorting algorithms of Chapter 2. These proofs are important for the following reason: the correctness is 

best explained in terms of a variety of alternative sorting networks and transformations from one net- 

work to another; we use PR to specify each of the networks encountered, and in addition to giving the 

reader some feel for our notation, this work shows that PR-specifications make complicated correctness 

proofs manageable and indeed, mathematically satisfying. 

In Chapter 5 we further test out our formalism by using PR to specify and establish the correctness 

of a variety of synchronous algorithms. First, we consider an algorithm for convolution found in 

Brookes[1983]; this algorithm has parallel loading of data. Second, we consider an alternative algorithm 
for convolution that has serial loading of data. Thirdly, we consider a new algorithm for recognising 

palindromes. Finally we consider the matrix-vector multiplication algorithm of Kung and Leiserson 

(taken from Chapter 8 of Mead and Conway[1980]). 

Chapters 6,7, and 8, are devoted to transformations between equivalent representations of syn- 

chronous algorithms. We think of these chapters as the mathematical foundations of a design environ- 

ment for synchronous algorithms (see Section 1.3). 
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In Chapter 6 we give a scientific account of simulating synchronous algorithms. Simulation is no 
theoretical substitute for formal verification of course, but it is an important aspect of the design and 
analysis of complex algorithms. An obvious idea for providing a simulation of a synchronous algorithm 
is to implement PR in some executable programming language L say. This idea must be treated with 
some caution however, especially with respect to algorithm performance. Suppose a is the PR- 

specification of some synchronous algorithm, and suppose a is implemented as an L -program S. Of 

course, we can simulate our synchronous algorithm a by executing its simulation S on sample input 
data. However, that S runs quickly or otherwise on a given input tells us nothing about the performance 
of a unless we have been told what relationship exists between the complexity of S and the complexity 
of a. Indeed, a similar remark can be made about the behavioural aspect of simulation: unless we have 

some guarantee that the behaviour of S faithfully represents the behaviour of a, experiments with S tell 

us nothing about the behaviour of a. 

These remarks suggest that like the specification language PR, a simulation language should itself 

be a formal language with an independently-defined semantics and complexity theory. The language we 
use is called FPIT. FPIT is a formal, structured programming language based on abstract data types and 
on the multiple or concurrent assignment statement. (These are statements of the form 

x1..... xß := e1,.... e. 

whose intended interpretation is that each expression e; is evaluated and assigned to x; in parallel for 

i =1,..., n. ) To simulate our PR-specified synchronous algorithms we construct a compiler as a mapping 
c from PR into FPIT that we prove is correctness and performance preserving: for each PR scheme a, 

c (a) is an executable FPIT version of a that is firstly provably equivalent to a, and secondly has the 

same execution time as a; in this situation it is proper to infer properties of the behaviour and perfor- 
mance of a synchronous algorithm from the corresponding properties of its simulation. 

Whilst PR is our official specification language for synchronous algorithms, it turns out that syn- 
chronous algorithms can in fact be directly specified in FPIT without using PR as an intermediate stage, 
and thus FPIT can be viewed as an alternative means of specifying or defining the behaviour of a syn- 
chronous algorithm. Now, we have said that the behaviour of a synchronous algorithm is officially 
defined by means of a PR scheme and so we must ask: what is the relationship between FPIT and PR? 
Does a specification of a synchronous algorithm in one system tell us any more about the algorithm than 
its specification in the other? In Chapter 7 we will answer this question (in the negative) by establishing 
that FPIT and PR are equivalent specification languages. Note that the existence of a correct and perfor- 
mance preserving compiler from PR into FPIT implies that every synchronous network (when specified 
in PR) can be simulated in FPIT with no change in performance, and thus the simulation can be regarded 
as an alternative but equivalent means of formalising the network: thus FPIT is at least as good as PR for 

specifying synchronous algorithms. To show that PR is at least as good as FPIT we will define a second 

compiler, this time from FPIT into PR, which we will again prove is both correct and performance 

preserving, and thus PR and FPIT are formally computationally equivalent. whatever we can define 

using PR we can simulate with FPIT, and with equivalent performance, and moreover, whatever we can 

simulate using FPIT we can define with PR, and with equivalent performance. Thus in the case of 
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defining or modelling synchronous algorithms, PR and FPIT are formally equivalent representation sys- 

tems. 

Chapter 8 concludes our mathematical work on synchronous algorithms with a formal account of 

top-down design. In algorithm design generally, we are advised to initially design an algorithm for a 

given task at a high level of computational abstraction: use of high-level `primitive' operations makes 
the algorithm easy to understand and therefore more amenable to formal verification. To provide an 
implementation of the algorithm at a lower level of abstraction we implement the algorithm's high-level 

operations by programs defined over more primitive or lower-level operations, and then we combine 

these implementations with the original algorithm in some way to yield the required implementation of 
the original algorithm. The essence of 'top-down design' is that the way in which we combine the algo- 

rithm with the implementations of its operations should be such that the correctness of the implemented 

algorithm follows automatically from the correctness of the original algorithm and the correctness of the 
implementations of the operations; this obviates the need for verification of the algorithm when imple- 

mented at lower levels where the resulting design may be so complex as to be impossible to formally 

verify in practice. Indeed, one can make a similar remark about algorithm performance: it is usually 

extremely tedious (and therefore error-prone) to calculate the complexity of an algorithm when imple- 

mented at a low level of abstraction. In the same way that correctness at a low level should follow from 

the correctness at a high level, we want to be able to predict the complexity at a low level from complex- 
ity at a high level. 

Our theory of top-down design for synchronous algorithms has both of these properties: algorithm 

correctness and performance at low levels of abstraction are guaranteed by theorems (Implementation 

Theorem 8.4.1 and Hierarchy Theorem 8.4.3 in particular). In essence, our strategy for achieving this 

theory is to first provide a theory of top-down design for PR schema, and then to apply this work to syn- 

chronous algorithms. 

We begin in Section 8.1.1 by investigating the conceptual issues involved in the top-down design 

of synchronous algorithms. In the next three sections we present a theory of top-down design for PR, 

central to which is a new definition of what it means for one (high level) algebra to be `implementable' 

in PR over another (low level) algebra. This definition generalises the idea of a computable algebra due 

to A. I. Mal'cev and M. O. Rabin (see Mal'cev[1961] and Rabin[1960] respectively). In the Mal'cev- 

Rabin theory, an algebra A is said to be computable (over the natural numbers N) if (a) A can be 

Gödel-numbered or coded via a surjection a: N--->A, (b) each operation of A can be computed (with 

respect to a) via a partial recursive function over N, and (c) the relation m, defined by n Earn iff 

a(n) = a(m) is recursive. The main purpose of this theory was to study effective computability over 

algebraic structures such as groups, rings, and fields in mathematics; it is now a standard tool in the 

theory of data types (see Meseguer and Goguen[1985]). In contrast to the Mal'cev-Rabin definition, we 
define an algebra A to be (PR-) computable over another algebra A' if, first, A can be coded via a sur- 
jection ?: A' -tA , and second, each operation of A can be computed (with respect to y) via a simultane- 

ous primitive recursive function over A'. This new definition leads to the idea of a hierarchy 
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A, A', A".... of algebras wherein each algebra is implementable over its successor. Indeed, our 
definition can be seen as the starting-point for a generalisation of computable algebra in which primitive 

recursive operations on A are replaced by generalisations of partial recursive functions on A; this new 
theory has applications to the theory of parameterised data types. 

We will now explain the connection between this PR theory and the top-down design of synchro- 

nous algorithms. 

Suppose that N is a synchronous network whose modules are specified by the operations of a (high 

level) algebra A. Now suppose that each module m of N can be implemented by a synchronous network 
N (m) whose modules are specified by the operations of (lower level) algebra A'. Intuitively, we can 

replace each module of N by the network that implements it, and this substitution will lead to a new net- 

work ff whose modules are specified by the operations of A'. Suppose the signatures of A and A' are E 

and E' respectively. Then N will be formalised as a scheme aN e PR(E), and ff will be formalised as a 

scheme aw e PR(E'). Also, each N(m) will be formalised by some aN(m) e PR(E). Now, from our PR 

theory (Implementation Theorem 8A. 1 to be precise), it is a fact that if we transform aN by substituting 

aN(m) for each occurrence in aN of the operation of A thatN(m) implements, then this transformation is 

a correctness preserving map c : PR(E) -+PR(E'). Furthermore, Qc (aN)]A" = [aR Ix, which, in words 

says that the intuitive idea of network-for-module substitution is formalised by scheme-for-operation 

substitution, thus providing the required theory of top-down design. 

Finally, with Chapter 9 we end with some concluding remarks and some directions for future 

work. 

1.2 RELATED WORK. 

In this section we will review research on the mathematical specification, verification, and design 

of concurrent algorithms that is relevant to this thesis. Research that is otherwise related to our work is 

reviewed in the appropriate chapter. (For example, in Chapter 7 we verify the two compilers that com- 
pile from PR to FP1T and back again; the subject of 'compiler correctness' is therefore discussed in that 

chapter. ) 

After some historical remarks, we review research on systolic algorithms in two sections. Systolic 

algorithms are a restricted kind of synchronous algorithm that have received much attention due to their 

suitability for implementation in, and therefore exploitation of, VLSI technologies: in Section 1.2.1 we 
review research on systolic algorithms and their specification and verification, and in Section 1.2.2 we 

review research on design tools for systolic algorithms. Finally, in Section 1.2.3 we review contem- 
porary research on the specification and formal verification of computer hardware in general. 

Perhaps the earliest examples of synchronous algorithms are the neurone nets of McCulloch and 
Pitts[1943]. McCulloch and Pitts were interested in mathematical models of neural activity (an interest 

fuelled, no doubt, by the seminal work Turing[1936] in which we find the first mathematical characteri- 

sation of a physical device), and neurone nets were devised for exactly this purpose. A neurone net is a 

simplified discrete model of neural activity comprising `cells' (abstract neurones) connected together by 



-9- 

'fibres' (abstract axons and dendrites, the ̀ wires' by means of which electrical pulses are sent from neu- 

rone to neurone). 

Other early examples of synchronous algorithms are cellular automata introduced by von Neu- 

mann in 1948 (see the volume Neumann[1987]). Von Neumann was interested in how one might 
"abstract the logical structure of life" and proposed a mathematical model for analysing how a network 
of processes could evolve over time. One of his principal concerns was the possibility of self- 

reproducing automata; his ideas have since been popularised in the well-known `Game of Life' (see 
Conway, Berlekamp, and Guy[1982]): `Life' is intuitively a synchronous process and is easily seen to be 

a synchronous algorithm (in our technical sense) when played on a finite grid. 

Von Neumann was aware of the significance of his research as the foundations of parallel compu- 
tation, Minsky and Pappen carried further the study of neural networks (Minsky and Pappert[1969]), and 
the mathematics underlying such networks of processes was examined in Hennie[1961] and Codd[1968]. 

However, this line of research does not seem to have been carried further for the reason that it was ahead 

of its time: it was not feasible to make these networks with pre-transistor technology. 

There has been a recent resurgence of interest in synchronous concurrent algorithms that is due to 

two factors, both arising from VLSI: first, it is now possible (in principle) to implement large neural net- 

works as physical devices (as witnessed by research on connectionist and Boltzmann machines; see Aarts 

and Korst[1987] for an overview). Second, in the design of computers it has long been acknowledged 

that using synchronous circuitry alleviates some of the complexities in circuit design (for example, tim- 
ing problems at the circuit level). Today, in custom VLSI circuits, using synchronous circuitry is a VLSI 

design strategy that is epitomised in the concept of a systolic algorithm which we will now discuss. 

1.2.1 Systolic Algorithms. 

A principal application area for VLSI devices is the implementation in hardware of algorithms that 

solve particularly computation-intensive tasks; typically, the kind of task that arises in signal and image 

processing for example. Implementing an algorithm in hardware increases computation speed of course, 

especially so if the hardware is dedicated to that one specific task. With the advent of VLSI technologies 

(wherein it is possible to place many processors in close proximity to each other), it is now possible to 

conceive of hardware implementations that involve a high degree of concurrency, increasing computa- 
. tion speed even further. 

Systolic algorithms, pioneered by H. T. Kung and his colleagues at Carnegie-Mellon University, 

are algorithms that are tailored to VLSI implementation. Essentially, a systolic algorithm is a synchro- 

nous algorithm with the following distinguishing features: 

the algorithm involves only a few simple types of module; 

the algorithm is formulated in such a way that the modules only need to communicate with their 

nearest neighbours; 

the algorithm is laid out (usually as a two-dimensional array) in such a way that the interconnec- 

tions form a simple, regular pattern (for instance, see Figure 2.8 depicting a systolic sorting 
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algorithm), and 

the algorithm uses each piece of input data many times. 

The first three of these features lead to efficient VLSI implementations: to fully exploit the VLSI 

medium, a VLSI design is likely to involve a large number of modules; to minimise design and imple- 

mentation costs it is therefore expedient that the algorithm involves only a few simple types of module. 
Also when a large number of modules are used, communication costs become significant in VLSI it is 

the number of interconnecting channels and hence the physical area required by these channels that dom- 
inates the efficiency (power, time, and area) of the implementation (Sutherland and Mead[1977]); local 

communication and regular structure minimises these costs of course. 

The fourth feature, that a systolic algorithm uses each piece of input data many times, concerns the 
'computation-intensive' quality of the problems for which VLSI implementations are sought: 

A problem is said to be compute-bound if, in the computations required to solve the problem, the 

number operations that must be executed exceeds the number of memory accesses. Thus, intuitively, 

compute-bound problems need fast processing, and this is offered by VLSI. However, existing (general- 

purpose) computers have a von Neumann architecture; that is, an architecture that comprises a memory 
and a single processor. to compute an operation (for example, an addition or a multiplication), the input 
data must first be loaded into the processor from memory, then the processor computes a result, and this 
result is then stored back into memory. Intuitively then, with a von Neumann architecture the speed of 
computation is limited by the speed of input/output (or memory bandwidth): there is no point in having a 
fast processor if data cannot be supplied/retrieved quickly enough to support the processor. The von 
Neumann configuration is thus not well-suited to the implementation of algorithms for compute-bound 
problems. However, by using a systolic architecture, the memory bandwidth versus processing speed 
problem (the 'von Neumann bottleneck') is circumvented by using each piece of input data many times. 

Beginning with the seminal paper Kung and Leiserson[1979], many researchers have become 
interested in systolic algorithms due their attractiveness as a paradigm of VLSI design. Preliminary 

exploratory work on systolic algorithms was concerned with (particular) systolic algorithms for particu- 
lar computational problems, and many such algorithms are now known: see Kung[1982] and Fischer and 
Kung[1985] for surveys of systolic algorithms for a wide variety of problems. 

As the concept of a systolic algorithm is now well-developed, contemporary research has turned to 
larger and more theoretical questions concerning systolic algorithms. One may summarise the issues 

addressed by contemporary research via the the following two questions: 

How do we formally analyse systolic algorithms? 

How do we design a systolic algorithm for a given task? 
The first of these questions concerns the provable correctness of systolic algorithms (a desirable 

property for any algorithm). Whilst the regularity of structure and data-flow make a systolic algorithm 
easy to implement in VLSI (or at least amenable to implementation), this does not necessarily mean that 
it is easy to understand a given systolic algorithm; typically, the sequence of actions performed by a 
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systolic algorithm form a very complex pattern, and the correctness of the algorithm need not be at all 

obvious. 

The question asks for a mathematical model or notation for systolic algorithms in which we can 

establish an algorithm's correctness by proving theorems about the algorithm's behaviour. One approach 
to this verification problem is to use an already existing 'tried and trusted' theory of concurrency, such as 
('synchronous' versions of) CCS as in Hennessy[1986] and Backhouse[1983], or ACP as in Weij- 
land[1987], or our own notation PR. A criticism of the ACP and CCS-type approaches is that these nota- 
tions are principally asynchronous specification tools with an `arbitrary interleaving' interpretation of 

concurrency wherein parallel computation is conceptually reduced to sequential computation plus non- 
determinism. In practice this means that nondeterministic choice appears in specifications of systolic 

algorithms (indeed, synchronous algorithms in general), in effect cluttering the specification with low 

level information about how the modules of an algorithm are synchronised: intuitively, this is not some- 
thing we want to know when we are given that the modules are synchronised. In contrast, synchronous- 

ness and ̀ true parallelism' are built into PR (via the simultaneous primitive recursion mechanism) and 

this leads to concise and rather elegant specifications of algorithm behaviour as we will see in Chapters 2 

and 5. 

An alternative approach is to devise a new model which is tailored to systolic algorithms. Work in 

this direction is Kung and Lin[1983] and Melhem and Rheinboldt[1984]. Both of these approaches 

suffer from the fact that the underlying mathematics is somewhat unclear, although we note that 

Brookes[1983] begins to further explore the work of Kung and Lin. 

1.2.2 Design Tools for Systolic Algorithms. 

The design of complex algorithms needs software tools for exploring the implications of making 
different implementation choices. We will discuss software tools based on our work on PR in Section 

1.3; here we review existing research into software tools for systolic algorithms. 

The second of our two questions above concerns what is often referred to as the ̀ synthesis' of sys- 

tolic algorithms; that is, the systematic construction of a systolic algorithm for a given task from a 

specification of that task; often, use of the term 'synthesis' implies that the construction is 'guaranteed' 

to produce a correct design. There is much work on the synthesis of systolic algorithms to be found in 

the literature; again, the regular structure of a systolic algorithm does not necessarily mean that it is easy 

to devise a systolic algorithm for a given task: the design of nontrivial systolic algorithms requires con- 

siderable expertise and ingenuity. 

The basic idea behind the concept of synthesis (of systolic algorithms) is to circumvent the 

difficulty of conceiving a systolic design for a given task by first coding an algorithm that solves the task 
in some (familiar) algorithmic notation, and then to use some mechanical transformation (software tools) 

to map the algorithm to a systolic implementation. Intentionally, the algorithmic notation (hereafter 

referred to as the `source language') is a familiar one so as to make the original algorithm comprehensi- 
ble and amenable to formal verification, and the transformation is a correctness preserving map. Ideally, 

the source language should be as general-purpose as possible (to facilitate the expression of as many 
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algorithms as possible). However, the problem of finding an appropriate transformation for a truly 

general-purpose source language is a very difficult one, and in practice source languages are tailored to 
the synthesis problem. 

Uniform recurrence equations (Karp, Miller, and Winograd[1967]) are commonly used as the 

starting point for synthesis, see for example: Mongenet and Perrin[1987]; Quinton[1987]; Li and 
Wah[1985]; Rajopadhye and Fujimoto[1987]; Delosme and Ipsen[1987b], and Guerra and 
Melhem[1986]. 

An alternative choice of source language is a language of imperative programs of a special form 

(usually nested loops), see for example: Cappello and Steiglitz[1984]; Fortes and Moldovan[1986]; 

Miranker and Winkler[1984]; Lam and Mostow[1985], and Huang and Lengauer[1987]. Other research 
in this area is: Snepscheut[1985], whose work is cast in trace theory (Rem[1983]), and Chandy and 
Misra[1986a], whose idea is to use traditional tools taken from the design of sequential algorithms 
(specifically, the concept of a `loop invariant'). 

A related research area is the synthesis of systolic algorithms from concurrent algorithms that are 
already described as a network of modules, but that are not systolic. See for example: Kung and 
Lin[1983] who build on Weiser and Davis[1981] and Johnsson and Cohen[1981] (see also 
Brookes[1983]); Leiserson and Saxe[1983], and Ramakrishnan, Fussel, and Silberschatz[1985]. 

Synthesis is a very difficult problem, and one that this thesis does not address. However, we feel 

that much of this research would be improved by formal definitions of the source language, transforma- 
tion, and model of systolic computation employed, since without these there can be no precise sense (and 

certainly no formal sense) in which the transformation can be correctness preserving. Few of the 
researchers mentioned above give an effective characterisation of their source language, and none give a 
precise definition of what is meant by a 'systolic algorithm'. Not only does this mean that the correctness 
implicit in the concept of synthesis is at best rather woolly, but it also makes it impossible to provide a 
comparative survey of the relative merits of the above approaches: we cannot tell whose source language 
is the 'most general-purpose', nor who has the ̀ most implementable' concept of a systolic algorithm. 

To the interested reader we recommend Quinton[1987], Huang and Lengauer[1987], and 
Rajopadhye, Purushothaman, and Fujimoto[1986] as the most tractable introductions to the subject. We 

also note that some of the above research is at a more advanced stage than others in the sense that 
software tools have been produced. Gachet, Joinnault, and Quinton[1987] describes the system DIAS- 
TOL based on the work of Quinton; Mongenet and Perrin have a system called SYSTOL (see Mongenet 

and Perrin[1987]); Huang and Lengauer also have a software system (see Huang and Lengauer[1987]); 
Moldovan has a system called ADVIS described in Moldovan[1984], and Delosme and Ipsen have two 

systems, SAGA and CONDENSE, described in Delosme and Ipsen[1987a]. 



-13- 

L23 Hardware Specification and Formal Verification. 

Our work on synchronous algorithms is inspired by the problems of verifying algorithms that can 
be (or are) implemented in hardware (that is, as physical devices). The verifications found in this thesis 

are mathematical (semantic) proofs rather proofs based on (syntactic) axioms and rules of inference or 
deduction. In this section we will review research that does use such formal reasoning about hardware. 

A substantial research project for us is to re-examine our correctness proofs to find logical languages and 

proof systems that formalise the reasoning involved in these proofs, and to develop software tools such 

as ̀ proof-checkers' to support the verification procedure; we think of the notes below as preparation for 

this future work. (See Section 1.3 and Chapter 9. ) 

The basic idea behind research into formal reasoning about hardware is that if one has a clear cut 

mathematical logic, then one can map an algorithm of interest into the (term) language of the logic and 

then use the logic's axioms and rules of inference to prove theorems about the algorithm, in particular, to 

verify it with respect to some correctness specification (in the language of the logic). A key idea here is 

that the application of rules of inference can be automated; this is a particularly attractive idea when the 

algorithm of interest is either large or complicated and correctness proofs are likely to be lengthy. For 

example, it is reported in Gordon[1987] that Cohn's verification of the VIPER microprocessor (see 

Cohn[1987] and Cullyer[1987] respectively) used over a million deductions in the correctness proof. 

There is much research on this topic to be found in the literature, too much for us to give an 

exhaustive survey; we will review only what we feel to be a representative sample of this work. 

Work Based on First-Order Logic. First-order logics are distinguished by the fact that one can only 

quantify over data objects from the underlying data type. An early example of using first-order logic to 

reason about hardware is Barros and Johnson[1983] in which four kinds of asynchronous circuit are 

proved equivalent. Eveking[1985] develops an approach based on first-order logic that addresses the 

question of how specifications at different levels of abstraction are related. Hunt[1986] describes the 

verification of a complete microprocessor (the FM8501, roughly equivalent to a PDP-11); Hunt uses 

Boyer-Moore logic (a first-order logic; see Boyer and Moore[1979]) to describe his microprocessor, and 

a theorem-prover for the Boyer-Moore logic is used to verify the design. 

Work Based on Higher-Order Logic. Higher-order logics are distinguished by the fact that one can 

only quantify over functions and relations (second-order logic), and/or functions of functions (third- 

order logic) etc. Higher-order logics originate in research into the foundations of mathematics 

(Church[1940]), but the insight that higher-order logic is useful specifying and verifying hardware is 

attributed to K. Hanna; in Hanna and Daeche[1986] Hanna and Daeche argue the appropriateness of 

higher-order logic for describing hardware at a very low level of abstraction: circuit timing issues can be 

addressed within their model for example. Hanna's work (collectively known as the VERITAS project) 
includes a theorem-prover described in Hanna and Daeche[1984]. 

Using higher-order logics to specify and verify hardware at a higher level of abstraction is the 

work of M. Gordon and his colleagues at the University of Cambridge. Gordon argues the case for 

higher-order logic in Gordon[1986], and its use is exemplified in Joyce[1987] and Cohn[1987] which 
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describe the formal verification of microprocessors. Gordon's work (collectively known as the HOL 

project) includes an impressive interactive theorem-prover based on LCF and its metalanguage ML. 

(LCF and ML are due to R. Milner, but these languages have evolved many times before being incor- 

porated in HOL; see Gordon[1987] for a short history. ) 

Work Based on Temporal Logic. A temporal logic is a formal system for reasoning about the 

occurrence of events in time, and as such it is a natural choice of formalism for hardware specification 

and verification. The earliest example of using temporal logic for this purpose is apparently Boch- 

mann[1980] (published as Bochmann[1982]). Another early example is Malachi and Owicki[1981] in 

which temporal logic is used to formalise Seitz's so-called ̀ weak conditions' for composing asynchro- 

nous circuitry (see Seitz[1980]). 

Mishra and Clarke[1983] describes using a kind of temporal logic called Computation Tree Logic 

(CIL) in the automatic verification of asynchronous circuits. The basic idea is that from a circuit one can 

abstract a state transition graph comprising the states that the circuit can be in, and the transitions 
between these states that the circuit admits. The truth or falsity of a formula in CTL (one that asserts the 

circuit's correctness in particular) is determined relative to a state transition graph and this process can 
be automated via a program called a 'model-checker'. This work is notable for the fact that the model- 

checker is very efficient in the sense that it is linear in the size of the formula being checked and the 

number of states in the state transition graph. 

Other notable work in this area is Moskowski[1983] which describes the use of Interval Temporal 

Logic (ITL) to reason about hardware. We are not aware of a proof-checker for 1TL, although we note 
that Moskowski[1986] describes the use of 1TL as a programming language (TEMPURA), and thus 
hardware specified in (a subset of) 17L can be executed (simulated). 

Other Work. As pointed out in Camilleri, Gordon, and Melham[1986], there are dangers involved in 

using a logic that is based on a circuit model that is too inaccurate: the authors give an example of a cir- 

cuit that will not work (reliably) in practice, but that can nonetheless be formally verified. The problem 
here (noted by the authors) is that in the model it is assumed that values (voltages) in the circuit are 

well-defined zeros and ones, whereas in practice there is a range of voltages to be found in an electrical 

circuit. An early attempt to model this fact is Bryant[1984] in which transistors can 'hold' zero, one, or 
'X', the latter denoting an intermediate voltage not corresponding to zero or to one. Bryant's work was 

originally devised for simulation rather than formal verification purposes; it has been extended and refor- 

mulated in Winskel[1987] as a formal multi-valued logic in which low level (electrical) aspects of cir- 

cuits can be represented. (We also note that Bryant has continued his work in Bryant[19861. ) 

Milne[1982] describes a calculus (CIRCAL) in the style of CCS for reasoning about circuits; low 

level details can be specified in this calculus (see Milne[1983]) although it is not necessarily limited in 

this way. Milne[1986] describes how his calculus can be used in top-down design. 

Johnson[1984] uses equations to define circuits; the equations are given a semantics via fixed- 

point theory and are incorporated in a language called DAISY that is based on LISP. 
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Finally, Sheeran[1983] describes a functional notation based on FP (Backus[1978]) to specify cir- 
cuits; algebraic laws are provided for formal reasoning purposes. 

13 THE DEDEIUND PROJECT. 

This thesis is a contribution to a project on methodologies, mathematical theories, and software 

tools for synchronous algorithms that is being developed under the supervision of Dr. J. V. Tucker here 

in the Department of Computer Studies at the University of Leeds. In particular, this thesis is basic to 

the design of a software environment for the design and analysis of synchronous algorithms. The 

environment is provisionally called DEDEKIND after Richard Dedekind, inventor of primitive recursive 
functions (see Dedekind[1888]). In this section we will sketch this project, describe existing software 

tools and mention others that will be included later. Note that this is not an ad hoc list of programs: each 

tool is included only on the basis of a clear cut mathematical idea. 

As we remarked earlier, PR and FP1T can both be viewed as specification languages. Under 

current plans DEDEKIND will include two languages: PRESS (for Primitive Recursive Synchronous 

ystems) based on PR, and CARESS (for Concurrent Assignment R resentation of Synchronous 

ystems) based on FPIT. DEDEKIND has two notations because PR, as a language of function 

definitions, leads to specifications that are suitable for mathematical reasoning and verification; whilst 

FPIT, as an imperative language, is suitable for programming. Indeed, it is in the spirit of programming 

that CARESS is being developed. CARESS has been implemented in C on a VAX 11/780 by our col- 

league A. R. Martin. Martin and Tucker[1987] describes the practical use of CARESS and its associated 

preprocessors for describing synchronous algorithms. 

As we remarked earlier, PR can be compiled into the language FPIT to provide simulations of syn- 

chronous algorithms. The proof that PR and FPIT are computationally equivalent underwrites the idea 

that we can flip between PR- and FPIT representations of a synchronous algorithm at will. A prototype 

compiler from PR to FPI T has been implemented by Martin but a compiler from FPIT back to PR awaits 

realisation. 

Another feature of our mathematical research that has practical implications is our account of 

algorithm complexity or performance. The length of computation function Xp (see Section 1.1) is 

`syntax-directed': it is possible to compile a PR scheme a into a program which computes Xp (a) (a func- 

tion from input data into time) on any input data. Indeed, the same will done for FPIT programs; it will 

be interesting to empirically compare the performance of equivalent PR- and FPIT-specifications of the 

same algorithm (given that the compilers from PR to FPIT and from FPIT to PR are both formally per- 

formance preserving). 

Finally, our account of top-down design in Chapter 8 is a first step towards an enhanced (struc- 

tured) version of PR for expressing PR specifications of hierarchically structured synchronous algo- 

rithms: the mathematics of that chapter supports the idea that algorithms specified in such a notation can 

be compiled back into PR thus providing a simulation at any level of abstraction (given the equivalence 

of PR and FPIT). 
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There is other ongoing theoretical and experimental research worth noting for completeness. 

A graph-theoretic model of synchronous computation has been developed by our colleague K. 

Meinke (see Meinke[1987]). Meinke's work is inspired by the fact that people often describe a synchro. 

nous algorithm by means of an informal 'picture' of the algorithm; these pictures can be formalised 

using (directed) graphs, and computation by such graphs is the basic subject of Meinke's work. Pictorial 

representations of a synchronous algorithm are often helpful for explaining the structure and data flows 

involved: it is possible that DEDEKIND will have a third autonomous notation for specifying synchro- 

nous algorithms, one based on Meinke's model that reflects architectural concerns. Indeed, pictorial 

representations give the designer some intuition for the area required by a synchronous algorithm. One 

can draw a 'floorplan' of a PR scheme in a way that is reminiscent of iFP (Sheeran[1983]). Our col- 
league S. M. Eker has investigated floorplanning from PR schema as part of his undergraduate studies 
(Eker[1986]). 

The verification of synchronous algorithms is further developed with respect to-special-purpose 
hardware for graphics and signal-processing devices. A basic theme is proofs of correctness of algo- 

rithms that have been developed or derived by step-wise refinement. In Eker and Tucker[1987] a study 

of the verification of incremental line-drawing algorithms is undertaken using PR as the primary 

specification tool. This study involves the derivation of Bresenham's algorithm, by geometrical transfor- 

mations and program transformations, and direct proofs in the style of Chapters 4 and 5. Our colleague 
K. M. Hobley is studying the relationships between correctness proofs that arise in the design, by step- 

wise refinement, of a digital correlator specified in Harman and Tucker[1987] (see below). This 

research, like that of Chapters 4 and 5, is prerequisite to attacking formal and mechanical verification. 
Our colleague C. A. Jervis is currently working (Jervis[1988]) on Hoare logics for languages that closely 

resemble FPIT. Possible future work on proof systems and logical languages for PR and FPIT is dis- 

cussed in Chapter 9. 

Finally, language-independent theories of specification are being investigated by our colleague N. 

A. Harman. Harman and Tucker[1987] provides a taxonomy of formal specifications and mathematical 

methodologies encountered in the incremental design of a digital correlator. Harman has also studied 
counters and microprocessors (including the VIPER microprocessor; see Cullyer[1987]). The simultane- 

ous primitive recursive functions on an abstract data type are also used in analysing specifications. Ulti- 

mately this work will be incorporated into DEDEKIND; indeed software tools for executing 

specifications are already being developed by A. R. Martin. 
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CHAPTER 2 
SYNCHRONOUS ALGORITHMS 

In this chapter we will discuss the concept of a synchronous algorithm and identify issues central 
to synchronous computation in general. 

In Section 2.1 we will describe informally, and in general terms, a model of synchronous computa- 

tion which we call synchronous networks. These networks comprise a collection of modules which are 

connected together by communication links that we call channels; the networks are synchronous in the 

sense that computation by and communication between modules is synchronised with respect to an expli- 

citly defined clock. 

In Section 2.2 we show how synchronous algorithms can process streams of data, and discuss the 

correctness of algorithms with respect to certain specifications. These specifications define important 

characteristics of algorithms such as initialisation time and period. 

In Section 2.3 we investigate two synchronous sorting algorithms as case studies. 

In Section 2.4 we take our first steps towards the formal specification of a synchronous algorithm: 

we show how from the communication structure of a synchronous network, and from functional 

specifications of the network's modules, we can systematically construct functional specifications of the 

complete network. 

In Section 2.5 we outline the principal objectives of this thesis. In essence, we seek a theory of 

synchronous computation which has regard for the formal specification, verification, simulation, and 
hierarchical design of a synchronous algorithm. 

2.1 SYNCHRONOUS NETWORKS. 

A synchronous algorithm is a parallel algorithm over a set A that is described as a network of 

modules which are synchronised by means of a clock and which communicate via interconnecting chan- 

nels. The reader can look ahead to Figures 2.1,2.5, and 2.8 for examples of the kind of network we have 

in mind. The networks comprise modules, channels, sources, and sinks, which we will now describe in 

turn: 

We imagine a module to be an atomic computational device comprising a store and a processor: 

the store is capable of holding a single datum from the set A, and the processor is capable of computing 

some total single-valued function defined over A. In a figure, a module is typically represented by: 
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Of course, the arrows in this and subsequent figures represent the channels that are the means by which 
data is passed from module to module. 

The above figure depicts a module m, which is behaviourally specified by the map fm : A* --M. 
This map serves to specify m's behaviour in the following way: 

Initially, we imagine m's store to be holding some value aeA which m is attempting to pro- 

pagate along its output channel; simultaneously, m is expecting input to arrive on its input channels. (In 

this situation we will say `m is ready to compute, holding value a'. ) Subsequently, when some vector 
(a 1,..., a�) of input data is made available to m on its input channels (one datum per channel), the 

module performs a sequence of actions which we call a step. A step comprises reading the current input 

whilst simultaneously propagating the value held by m's store along its output channel; once the input 

(a 1,..., a�) has been read, m then computes the value fm (a t,..., a�) which is placed in m's store, 

overwriting the previous value; thereafter m is ready to compute, holding value f,,, (a t,..., a. ). 

A network's channels we imagine to be unidirectional communication links between the 

network's modules. We will assume the channels have bandwidth 1; that is, a single channel may only 

carry a single datum aeA (and not, for example, a vector (a 1,..., a�) E A"). Thus a module specified by 

an n -ary function has n input channels. Additionally, we allow channels to branch (finitely) as for 

example: 

f. 

with the intention that a datum on a branching channel is reproduced on each branch; however, we do 

not allow channels to merge together as for example: 

I- 

The remaining constituents of a network to be described are the sources and the sinks. Intuitively, 

sources and sinks are the only points at which data held in the network is visible to an external observer. 
A source, or input module, is typically represented in our figures by: 
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(D- 
Sources supply data to the network and are the only points at which a datum may enter the network. A 

sink, or output module, is typically represented by: 

Out 

The purpose of a sink is merely to identify which of the network's channels are regarded as outputs. 
Note that since channels can branch, one source can supply many modules (with the same input data), 

but since channels may not merge together, one sink can only have input from one module; in other 

words, there is a unique module which supplies any given sink with output data. 

Example. Consider the network N of Figure 2.1. N is a network depicting a synchronous algorithm 

over the set 1={O, 1,2,... } of natural numbers. N has source In, sink Out, and N involves modules 

which compute the natural number operations: successor (s); predecessor (p); addition (+), and multipli- 

cation (x). Additionally, N has six distinct channels, three of which branch into two. 

Figure 2.1 - The network N. 

13 

We can now describe what is `synchronous' about a synchronous network or algorithm. 

Let N be an n -source network over data set A. Initially, we imagine N's sources to be (instantane- 

ously) supplying (a 1...., a�) e A" to the network, and we imagine each module m of N to be ready to 

compute, holding some value x =x,,, EA; in this situation we say N is initialised. 

At the instant that N is initialised, every module is being supplied input at precisely a time when 

each expects or requires input; in this way every module starts to perform its first step simultaneously. 
Suppose that the time taken, according to some clock C, for every module to perform any step is less 

than or equal to some fixed constant r> 0. Intuitively, it follows from this assumption that since the 
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modules start a step simultaneously with respect to C, they can be made to end the step simultaneously 
too. Thus the modules of a network can be synchronised: at every step, each module supplies data to its 

neighbours just as the neighbours require input. Furthermore, notice that when the modules are syn- 

chronised, a module which requires a vector (a 1,.... a,, ) of input data receives each ai simultaneously for 
i=1...., n. 

Before we consider an example, it is worth further considering the implications of our `constant 

time' hypothesis above. 

Suppose every module performs each step in time at most T; then the modules are synchronised 
initially (that is at time 0 with respect to C), and then at times T, 2T, 3T,.... We can normalise T to unity 
(that is, take T=1) and our hypothesis, after normalisation, becomes a performance abstraction that 
defines a new virtual clock T measuring discrete time t =0,1,2,.... Notice that for a specific algorithm 
depicted as a network N, the choice of c is dependent on the particular modules that N employs, and 
thus ,r is properly 'VN, and hence T is TN; for this reason we refer to T as the algorithm's clock. 

As we have explained it, the idea behind a functional specification f,,, : A' --9--A of a module m is 

that if the input tom at a given time t is a= (a 1,.... a. ), then f. (a) is the value held by m at time t+l; 

such a module is autonomous with respect to the clock T since the value produced by a module is 

independent of the time t. Later, we will see examples of modules that are nonautonomous with respect 
to T; accordingly, a nonautonomous module m has a functional specification of the form 

f,, :T xA" --3--A when m has n input channels. (Nonautonomous modules will not have an explicit 
(extra) input channel to carry the time t; the current time we imagine to be globally available to all 

modules. ) Similar to an autonomous module specification, the intention behind a nonautonomous 

specification f. is that f. (t, a) denotes the value held by m on completion of a step which began at time 

t (at which time the input a= (a 1,..., a�) was available to the module); that is, f. (t, a) denotes the value 
held by m at time t+1. 

Example. Let us reconsider the network N of Figure 2.1. As we have explained above, if we assume 

each of the network's modules to perform a step in unit time, then we obtain a clock T =TN, where each 
teT is a time point at which the modules are synchronised. 

The network N is intended to compute or implement the function f: N-*N defined by 
f (n) = (n -1) + (n +1) + (n -1) x (n +1) 

To see how N computes f (n) for any argument neN, suppose that the source supplies n to the net- 

work; for simplicity we imagine that N's source constantly supplies n to the network for t =0,1,2,.... 
Also suppose that at t =0 the i th module holds some xi EN for i =1,..., 5. Then we may tabulate the 

value held by the i th module at timet for i =1,..., 5 and t=0..... 3 as in Table 2.2 (Fort 23 the system is 

stable in the sense that no new values are produced. ) 
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time module 
1 2 3 4 5 

0 xt x2 x3 x4 XS 

1 8-1 n+l xI+xZ xlxx2 x3+x4 
2 n-1 R+1 (n-l)+(n+1) (n-1)x(n+l) x1+x2+x1xx2 
3 n-1 n+l (n-1)+(n+l) (n-1)x(n+1) (n-1)+(n+1) 

+(n-1)x (n+1) 

Table 2.2 - Tabulation of the network N in operation on a fixed input. 

We regard the value held by ms at a time t to be the network's output at time t (since ms is the 

only module connected to a sink). Clearly, network output is dependent on the time t, the input to the 

network n, and the vector of initial internal values x =(xl,..., x5). We can formally specify the network's 

output as a function of time and data in the following way: let fN :TxNx N5-- N be defined by 

xs if t=0 

x3+x4 if t=1 
fN(t'n'x) 

xl+x2+zlxx2 if t=2 
(1) 

f(n) ift23 

for each t c- T, neN, and x= (x 1,..., x5) E Ns. 

The network achieves its purpose in the sense that if n is supplied to the network as input, then 
f (n) eventually emerges as output. To be more precise, f (n) emerges after three steps; that is, with 

respect to the virtual clock defined by N, the computation takes three time units. 

It is also important to realise that because of the network's synchronous operation, the value held 

by a module at a time t+1 is always completely determined by the module's specification and the values 
held by neighbouring modules at time t. Q 

The preceding example serves to illustrate the important idea that synchronous networks can be 

formalised via functions of time, input data, and initial values; indeed this idea is basic to this thesis. In 

Section 2.4 we will explain how to define fN (along with other functional specifications) for an arbitrary 

network N: if N is an n-source, k-module, m-sink, synchronous network over A. then this fN will have 

functionalityf, v: T xA" xAk ---->A"; for each n-tuple of (constantly supplied) input data a and k -tuple 
initial values x, 'fN(t, ax)' will denote the output of N at time t. 

Unspecified Values. Observe that in the preceding example, for the first three time cycles (t =0,1,2) the 

network does not produce any meaningful output; during this time the initial internal values are being 

flushed out of the network. Said differently, the network has an initialisation phase (of three cycles). 
Intuitively, as users of the network, we are not interested in the network's output during the initialisation 

phase; having entered an input n we only want to know if and when f (n) appears as output. Further- 

more, specification of the network's output during the initialisation phase clutters the formal 

specification of the network's output (1) with irrelevant detail making it harder to read and understand. 
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We will introduce the symbol `u' to denote a value in which we are not interested. Using this sym- 
bol the network specification (1) can be rephrased more succinctly in the following way: 

u if OSt <3 
fN(t'n'x) = f(n) if t 23 

(2) 

Introduction of the symbol u reflects methodological concerns: we read 'u' as 'an unspecified 

value' and this makes a network specification easier to read and thus the intended purpose of the network 
is more readily determined. For example, (2) reads: 'for each time t, input n, and vector of initial values 

x, the output of the network is unspecified for the first three cycles, f (n) otherwise'; clearly, this is more 
intelligible than the previous specification (1). For the same reasons we will also use u in tabulations of 

network behaviour, for example, Table 2.3 is Table 2.2 but with u replacing any entry in the table in 

which we are not interested; again this clarifies the behaviour of the network considerably. 

i module t me 1 2 3 4 5 
0 u u u U U 
1 n-1 n+1 K u U 
2 n-1 n+l (n-1}F(n+l) (n-1)x(n+l) u 
3 n-1 n+l (n-i)+(n+l) (n-1)x(n+l) (n-1}+{n+l) 

+(n-1)x(n+l) 

Table 2.3 - Retabulation of the network N using the symbol u. 

Note that since we are ultimately concerned with the formal specification of synchronous algo- 

rithms, the formal status of 'u' is at issue: what exactly is u? We will return to this question at the end of 

the next section. (For the time being, the reader should regard u as abbreviating 'some function of time 

and initial internal values, but not input data'; the conscientious reader may care to verify that every 

occurrence of u has this property. ) 

2.2 STREAM PROCESSING AND CORRECTNESS SPECIFICATIONS. 

So far we have only considered synchronous computation on a single input which the sources con- 
tinuously supplied to the network for t =0,1,2,.... What happens when the data supplied by the sources 

varies with time? 

We have seen how a synchronous algorithm defines a clock T={0,1,2,... } where each teT is a 

time-point at which the modules of the underlying network are synchronised. In particular, we imagine a 

module connected to a source to require an input at these times (and only these). Thus, if we can contrive 
for the source to supply data to the network at times teT (only) then the action of reading in input will 
be synchronised with the synchronised computations of the network. Moreover, it is intuitively clear 
from synchronous operation of a network that each time teT is a time at which (new) output is avail- 

able at the sinks. 
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To be more precise, let N be an n -source synchronous network over data set A, and let T= TN. If 

we now define an (n -ary) stream to be a map q: T ---*A ", then for each teT, a (t) e A" is an appropri- 

ate input for the network; specifically, q (t) is, by definition, scheduled to arrive at an appropriate time. 

These remarks suggest that when executed on a stream of input data, the output of a general (n - 
source, k-module, m-sink) network can be specified by a function FN of functionality 

FN :Tx [T _A "] xAk ->A1 ; of course, here the idea is that for each input stream a: T -->A' and 

vector xe Ak of initial values, ̀ FN(t, a, x)' is to denote the output of N at time t. We will explain how 

to define FN for a general network N in Section 2.4; for the time being here is an example: 

Example. If we wish to execute (the algorithm depicted by) N of Figure 2.1 on a sequence of inputs 

no, n 1....., it is clear we need not wait for one computation to finish before entering more data: from the 

structure of N, and from its synchronous behaviour, we notice that computations may be pipelined with 

several (exactly: three) inputs being executed upon simultaneously. Moreover (again from the structure 

of N and its synchronous operation), it is clear that we can enter new data at every tick of the clock 

without disturbing any computations on previously entered data. Generally, the minimum time interval 

between the times at which successive new data may be loaded into a synchronous algorithm is called 

the period of the algorithm. 

Of course, N has period 1. Thus if we wish to execute N on the sequence non 1,..., we can supply 

the sequence as a stream n: T --->IN such that n (t) = n, for t, = 0,1,2,.... In this situation the value held 

by the i di module at time t for i =1,..., 5, for t=0,..., 3, and for the general step tZ3, is as tabulated in 

Table 2.4. 

module 
1 2 3 4 5 

0 u S u u 
1 n(0)-1 n(0)+1 u u u 

2 R(1)-1 R(1}Fl ((0}-1}4. ((0)+1) (n(0)-1)x(n(0)+1) u 
3 R(2}1 n(2)+1 (n(1)-1}+x(1)+1) (n (1)-1)x((1)+1) L(0}-1}+((0 1) 

+(n (0)-1)x( (0)+1) 

t h(t-1}-1 n(t-1)+1 (n(t-2)-1)+ß(t-2)+1) ((1-2)-1)x(n (1-2)+1) ((t-3)-1)+{n(t-3)+1) 
+(n (t-3)-1)x(n (t-3}ßl) 

Table 2.4 - Tabulation of the network N in operation on a stream. 

Clearly, from the final column of Table 2.4, the output of N is given by the map 

FN :Tx [T --a-N] xY5 -- TN defined by 
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u if OSt <3 
FN(t, n, x) = 

lf(fl(t3)) 
if t 23 

(3) 

for each toT, n: T ->N, and xe N5.0 

2.2.1 Stream Processing. 

We have suggested that the output of a general network N can be defined by a map 
FN :Tx [T ->A I] xAk -->A'" 

An alternative idea is to use a function 

GN: [T-. >A"]xA"-*[T--->Am] 

with the intention that for each a :T -31--A " and xe Ak, GN (ax) is the stream of output data generated 
by a and x. Although we have yet to say what `FN' actually is for a given network N, it should be clear 

that given such a function we can define GN by 

GN (a *x)(t) = FN (t, a. x) (4) 

foreach a: T_ A, xEAk, andteT. 

We are suggesting that instead of `FN(t, a, x)' we write 'GN(a, x)(t)' for the output at time t given 
input a and initial values x. Mathematically, the functions FN and GN are very similar. essentially, the 

only difference is the order in which the arguments are supplied. (GN is actually called the curried form 

of FN. ) From a methodological viewpoint however, GN, as a mapping from streams (and initial values) 
into streams, is a more pleasing form of specification since it is natural to think of a synchronous algo- 

rithm as a 'black box' that maps input streams to output streams. Indeed, it is natural to specify the 

correctness of a synchronous algorithm in terms of functions from streams into streams as we will now 

explain. 

2.2.2 User Specifications. 

Typically, the purpose of an (n-source, m -sink) synchronous network is to evaluate some 
f: A" --Am on each element of a sequence a0, a 1, a?,... of input data; that is, to compute the sequence 
f (a0)"f (ai), f (a2),.... It is natural then to represent sequences as streams and to specify the task at 
hand as a stream transformation 

For example, given integers X1,?. 2Z 1 with X12X, consider the stream transformation 

(DN : [T ->A* ] --; -[T _ A] where for each a: T -->A", ON (a) is the stream defined by 

U if05t<X1 
'NL)(t) = tf(a(t_x2)) if t Z11 

for each teT. Clearly, ON asks for an n-source, m-sink synchronous network over A that has initiali- 

sation time X1, has length of computation A2, computes the function f, and has period 1. 

Alternatively, for some X, aZ1, suppose d>N(a)(: ) satisfies the following equation for each 

a: T-->A'and tET: 

U if OSt <X+n or (t-X) Pwd n*0 
ON(a)(t) -f (a(t-n)) if t 2?, +n and (t-? )mod a=0 

Then this ON asks for a network that has initialisation time X, has length of computation it, computes the 
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function f, and has period it. 

Both of the previous specifications are instances of the following more general specification: 

2.23 Definition. 

Let N be an n -source, m -sink, synchronous network over data set A with clock T= TN. Also let 

R: T -'18 be any predicate, and let S: T --+T and f: A -'Am be any functions. We say 

ON : is a user specification of N if for each a :T ->A" and each teT 

ON (a)(t) satisfies the following equation: 

U if -R (t) 
ýN ( Xt) =f (a (s(t ))) if R (t) 

(5) 

13 
A user specification of a network is so called because it is often easy for a user of the network to 

read off what input/output characteristics the network has, irrespective of internal structure. In the gen- 

eral form (5) the predicate R (the ready condition) tells the user when output is ready, and when this is 

so, the function S (the input schedule) tells the user which input gave rise to the current output. 

(We expect R to have the property that there is at leas[ one teT such that R (t) holds; otherwise 

N never produces any (meaningful) output. Similarly, we expect 8 to have the property that whenever 

teT is such that R (t) holds, S(t) <t : the case 8(t) =t is unrealistic since if this is true for a given teT, 

then the specification tells us that f( (8(t))) =f ( (t)) is computed in zero time. The case S(t) >t is 

equally counterintuitive: if S(t) >t then the specification says that the network's output at time t is 

dependent on future input! Whilst we will not rule out such ̀ unreasonable' properties of R and 8, they 

will never arise in this thesis. ) 

'liiere are two other points about Definition 2.2.3 that are worth noting. First, whilst the intention 

and intuition behind (5) are quite clear, the above definition is not entirely mathematically rigorous 

because of the unspecified value symbol V. To circumvent this problem, whenever a user specification 

is encountered in a context where mathematical rigour is an issue, we will regard the definition of a user 

specification to be as given above with exception that (5) is replaced with the following condition: 
R (t) ON (a )(t) =f (a (8(t))) 

This makes a user specification totally rigorous since there is no mention of unspecified values. 

Second, notice that a user specification ON is properly subscripted by a network symbol `N' since 

a user specification is defined over streams over the clock T= TN of a synchronous network N. 

2.2.4 Network Correctness. 

We have intimated above that a user specification serves as a correctness specification. How do 

we formalise the idea that a network meets a specification? 

Suppose N is a synchronous network that is supposed to meet the specification 

ýN " [T -ýA"j-ý[T-ýA"']. Then given an input stream a" T-->A", the output of N at timet must 

be 'N (a)(t ). However, we have said above that the output of a synchronous network N can be defined 
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by a function GN : [T -->A"] xAk with GN(a, z)(t) denoting the output at time t. Note 

that GN depends on initial values whereas 'N does not. Clearly, one way of expressing the correctness 

of N is to say that N meets the specification ON if there is some vector xeAk of initial values such that 
GN(a, x )= cN(a) for all input streams a: T-->A; ; that is if 

(3x E Ak)(Va : T-, A")(V tE T) (GN(q, x)(t) = ON(a)(t) ) 

However, from a methodological perspective, it is a poor idea for an algorithm's correctness to be 
dependent on specific initial values, since in fabricating or implementing the algorithm it may be difficult 

to guarantee that initial values will always be what the algorithm needs to function correctly. For this 

reason we will say thatN meets ON if GN satisfies the stronger condition: 
(fix E AkXV a :T -->A")(V te T) (GN( 

, x)(t) = 0N(a)(t) ) 

or, given our remarks concerning unspecified values above, if 

(VxeAkXVa: T-->A")(dtET) (R(t)=:, -GN(a. x)(t)=ON(q)(t)) 

where R is bN's ready condition. 

We note that the above correctness conditions could be phrased solely in terms of the function FN, 

given that GN is defined in terms of FN (by (4)). 

23 SORTING AS A CASE STUDY. 

In this section we shall introduce two synchronous algorithms that sort n elements from some set 
D that is linearly ordered by some relation SD . These algorithms, as synchronous networks, meet user 

specifications of the general form 

ON: [T-*D->[T->D 

where for each a: T ->D 
U if R (t ) 

ONL)(t) 
sort(a(s(t))) ifR(t) 

Here sort : D" -->D" is the map defined by 

sort(xlý... ýxý) _ (x l)ý... ýx �)) 
ä x, al) Sp ... SD x, (") 

where n is a permutation of { 1�... n J. 

We will show by means of examples that both of our algorithms are sorters, and, indeed, that with 
respect to the clocks defined by these algorithms, both sort n elements in (less than) n+1 time units. 

We will first describe the algorithms informally, and then show how the algorithms are synchro- 

nous networks in the sense of Section 2.1; to do this we must show how the algorithm's modules can be 
formally specified (by single valued functions on D). Also note that for simplicity we will describe the 

operation of the algorithms on a single fixed input; we will explain how to modify the algorithms so that 

they sort on streams of data later. 

23.1 The OE Sorter. 

The first sorting algorithm is called Odd-Even Transposition Sort, or 'OE' for short. 

For sorting n elements the OE sorter is as depicted in Figure 2.5; it comprises an array of n 

modules m 1,..., m., where each module m; may hold one datum from D, and may communicate only 
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with its neighbouring modules as indicated by the connecting channels in the figure; in addition OE 
involves a collection {In 1..... ln� } of n sources which supply the input to the array, and a collection 
{Out p.... Out, } of n sinks which receive output from the array. 

fn l IR 2 _1 
IN-1 In, In; +l In�_1 In. 

H 

out, DYf 2 ut1 _1 
D tuts Outl+1 Oýý-1 Out, 

Figure 2.5 - The OE sorter. 

Initially, that is, at t=0, we assume each module m; to hold some xi eD for i =1,..., n. 
Thereafter, the operation of OE proceeds in steps which determine OE's clock measuring discrete time 

t =0,1,2,...: 

Loading (beginning at t=0, completed by t= 1): Each module m; reads a datum (namely a, when the 
input to the array is a= (a 1,..., a�) e D") from source In; in parallel for i =1,..., n . 

The operation of each module now depends on time, its action alternating between even and odd 
time cycles; without loss of generality we will assume that n is even. 

Odd steps (beginning at t =2k+1, completed by t =2k+2 for k =0,1,2,... ): Each of the constituent 

modules in the module pairs (m;, m; +t) for i =1,3,5,..., n-1 exchanges (in parallel) values with the other 

member of the pair (if necessary) such that on completion of the step m; holds the minimum of the two 

values and m; +l holds the maximum. 

Even steps (beginning at t =2k+2, completed by t =2k+3 for k =0,1,2,... ): This step is similar to an 

odd-step, except that the module pairs are (m;, m; +l) for i =2,4,6,... n-2. During this step ml and m,, do 

nothing; they retain their current values for the duration of the step. 

Example. Let D =A1. Suppose that n =6 and that then sinks collectively supply the vector (6,5,4,3,2,1) 

to the array for sorting. We have tabulated the value held by module m; at time t for in and 

t =0..... 7 in Table 2.6. Notice the data is sorted inn +1 steps as claimed. 
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i module t me 1 2 34 5 6 
0 Z1 Ys 23 24 Zs Z6 

1 6 5 43 2 1 
2 5 6 34 1 2 
3 5 3 61 4 2 
4 3 5 16 2 4 
5 3 1 52 6 4 
6 1 3 25 4 6 
7 1 2 34 5 6 

Table 2.6 - Tabulation of the OE network in operation; 
illustrated for n=6 and input (6,5,4,3,2,1). 

13 
It should be clear from our informal description that OE satisfies the structural constraints of a 

synchronous network except for one minor detail: 

As we have depicted them in Figure 2.5, OE's modules appear to have more than one output chan- 

nel (which we have proscribed), but we have only so depicted them to make the figure plain. In fact, 

since each output channel always carries the value currently held by the module, these channels are con- 

ceptually identified. 

23.2 Module Specification for OE. 

To see OE as a synchronous network in the sense of Section 2.1, it remains for us to show how 

OE's modules may be independently functionally specified, that is, in isolation from the network. what 

are the module specifications ft =f., for i =1...., n? 

For simplicity, let us analyse module m; for i even, i #n. (Analysis of the other cases follows 

easily from this. ) 

From our informal description of OE, it is clear that in general the value held by mj depends upon 

the time t, and the following four values from the set D: a, say, the value supplied from above; l and r, 

say, the values supplied from the left and the right respectively, and v, say, the value currently held by 

the module. Consider Figure 2.7 which illustrates this situation: we see m; holding value v and about to 

receive a, 1, and r. Note that since we regard the module's three output channels as identified, each of 

these channels is shown supplying the same value v (to neighbouring modules). Since m; depends on 

time and four data inputs it is appropriate for A to have the following functionality: 
fi :T XD 4 --*D 

Thus m; is a nonautonomous module and the expression 'ff(t, a, l, v, r)' denotes the value held by in, at 

time t+l. 
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By examining the informal description of the behaviour of OE, we can write down the value held 

by m; at time t+1 by considering the three cases: t+1=1 (or t= 0); t+1 even (or t odd), and t+1 odd, 
1(or t even, * 0). 

If t=0, then m1 loads in the value supplied to it (from above) by In;; in the expression 
'f i (0, a, l, v, r)' (which denotes the value held by m; at time t+1), this value is `a' and so it is appropriate 

to define 
fi(O, a, l, v, r) =a 

If t is odd, then m; compares the value held by the module on its left (m, 
_1) at time t with its own 

value and retains the maximum; in the expression ̀fi(t, a, t, v, r)' these values are denoted by `l' and ̀ v' 

respectively, and so we define 

f; (t, a, i, v, r) = max{ l, v } 

Similarly, if t is even (but nonzero) then m; compares the value held by the module on its right 

(m, ) at timet with its own value and retains the minimum; in the expression 'f1(t, a, l, v, r)' these 

values are denoted by `r' and 'v' respectively, and so we define 
f (t, a, l. vr) = min{v, r } 

Putting these three cases together we obtain: 
a if t=0 

f; (t, aj, v, r) = max{l, v } if t odd 
min[v, r } if t even, *0 

for each teT and a J, v �eD. 

In a similar way we can derive the module specifications fj for i =1,..., n. These are: 
f1: TxD3-D 

where for each teT, and a, vr e D, 
a if t=0 

f l(t, a, v, r) = min{v� } if t odd 
v if t even, #0 

Figure 2.7 -A non-terminal module from the OE network. 
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For i even, i on, 
fj: TxD4-'D 

where for each teT, and a, l, vr E D, 
a if t=0 

fj (t, a, l, v, r) = max{ l, v } if t odd 
min{ v, r } if t even ,*0 

For i odd, i*1, 
fj: TxD4-+D 

where for each teT, and a, l, v, r e D, 
a if t=0 

f1(t, a, l, v, r) = min{v, r } if t odd 
max{ l, v } if t even ,*0 

and, 
fý :T xD3-'D 

where for each teT, and a, lv e D, 
a if 1=0 

f� (t, a, l , v) = max{ l, v } if t odd 
v if t even, #0 

We begin to formalise the OE sorting algorithm by functionally specifying the algorithm's 

modules. Soon we will formalise the complete algorithm by using these module specifications to obtain a 

functional specification of the underlying network. 

233 The EOE Sorter. 

The second of our two sorters is called Expanded Odd-Even Sort, or `EOE' for short. 

For sorting n elements the EOE sorter is as depicted in Figure 2.8; it comprises an array of n+1 

columns of n modules m; j for i =1..... n and j=0..... n, wherein P; j denotes the i th module on the jth 

column. Similar to OE, each module holds a single datum and communicates only with neighbouring 

modules as indicated in the figure. Additionally, EOE involves n sources and n sinks whose purpose is 

identical to those of OE. 

Initially, that is, at t =0, we imagine each module m; j to hold some x;. J eD for i =1,..., n and for 

j =0,.... n. Thereafter, operation of EOE proceeds in steps determining EOE's clock: 

Every m; j now performs the following general step in parallel for i =1,..., n and for j=0,..., n: 

General Step: The action that a module m; j takes is determined according to whether j is zero, odd, or 

even. 

Case (i): j=0. Each module in column 0 (viz, m, 0, . 
for i, 2 1,.... n) reads a datum from its source in 

parallel. 

Case (ii): j odd. The module m;, first reads the value held by m; j_l. Then, if i is even, m; j exchanges 

this value for the value held by m; _lj_1(if necessary), such that on completion of the step m, j holds the 

maximum of these two values. If i is odd then m; j exchanges its value for the value held by m; +1 J_1 

(again, if necessary), such that on completion of the step m; j holds the minimum of the two values. 
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Case (iii): j even. In this case each m1 j for 1<i <n behaves as in the preceding case (dependent on 

whether n; .j is connected to m; -i j-1 or n%-+Ij-i). During this step mjj and m,, j do nothing. 

If we operate a similar (to the case of OE) convention concerning the number of output channels 

that EOE's modules have, then it is clear that EOE satisfies the structural constraints of a synchronous 

network. 

Example. Similar to the OE example, let D =N and take n =6, and suppose the n sinks collectively 

and constantly supply the vector (6,5,4,3,2,1). Then the value held by m1 j at time t is as tabulated in 

Table 2.9 for i =1...., n, j= 0�... n and for t=0..... 7. 

23.4 Module Specification for EOE. 

13 

Similar to the OE network, we can find the module specifications fi j of EOE's modules for 

i =1,..., n and j=0,..., n by considering what inputs a given module has. 

Similar to OE we will introduce names for a module's (possible) inputs. Let a denote the value 

supplied from the left and above, let 1 denote the value supplied from the left, and let b denote the value 

supplied from the left and below. By examining EOE's informal description we arrive at the following 

specifications for i =1...., n and for j =0..... n (note that i+j is odd exactly when i . is odd and j is even 

or vice versa, and that i+j is even exactly when both i and j are both even or both odd): 

Figure 2.8 - The EOE sorter illustrated for n =6. 
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time 
r=0 r"1 

column column 
1O"ß 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

1 u u u u u u u 6 k u u u u 2 
u 1! tl u 1! u 1{ 

5 
Ii u Y 4 Y 4 

3 u u u is is it is 4 u is is u is is 
4 u as as as as as as 3 u is is as as is 
5 K u is is u as as 2 as as as u as as 
6 

4 K K 4 u k IS 1 
K as u 4 is 4 

time 
t-2 t-3 

column column row 0 1 2 3 4 5 6 0 1 2 3 4 5 6 
1 6 5 u is is u is 6 5 5 u is u u 
2 5 6 is u u u u 5 6 3 is is u u 3 4 3 u u u u u 4 3 6 u u u u 
4 3 4 is is is is is 3 4 1 is is is is 5 2 1 is is is as u 2 1 4 as is u u 
6 1 2 u u is is u 1 2 2 u u u u 

time 
t-4 t. s 

Column column 
row 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

1 6 5 5 3 u u is 6 5 5 3 3 u u 
2 5 6 3 5 u is is 5 6 3 5 1 u u 
3 4 3 6 1 u u u 4 3 6 1 5 u u 4 3 4 1 6 is is is 3 4 1 6 2 u u 
5 2 1 4 2 u u u 2 1 4 2 6 u 6 1 2 2 4 u u u 1 2 2 4 4 u u 

time 
t=6 t-7 

ro 
column column w 0 1 2 3 4 5 6 0 1 2 3 4 5 6 

1 6 5 5 3 3 1 u 6 5 5 3 3 1 1 
2 5 6 3 5 1 3 is 5 6 3 5 1 3 2 
3 4 3 6 1 5 2 " 4 3 6 1 5 2 3 
4 3 4 1 6 2 5 " 3 4 1 6 2 5 4 
5 2 1 4 2 6 4 is 2 1 4 2 6 4 5 
6 1 2 2 4 4 6 " 1 2 2 4 4 6 6 

Table 2.9 - Tabulation of the EOE network in operation; 
illustrated for n=6 and input (6,5,4,3,2,1). 

Fori=1,..., n, 
f; A: D ->D 

where for each lED, 
fi, o(1) =1 
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For i+j odd, i *I, j *-O, 
fij: D2-->D 

where for each a. 1 E D. 
ft j(a. l)=max[ aj } 

Fori+jeven, iten, j*0, 
f; J: Dz->D 

where for each 1). 'eD, 
f(lb) = min[ I, b 

and for i =1 with j even (* 0), and i=n with j odd, 

where for each lED, 
fij(1)=1 

2.3S Sorting on Streams. 

Given a sequence ao, a 1, a2,... of vectors from D", let us explore how OE and EOE can be made to 
SOIL ao, a 1, a2,... in turn. 

In the case of OE it should be clear from the informal description of the algorithm there must be a 
delay of at least n +1 time cycles between the times at which we load successive input vectors: loading 

data any faster than this will overwrite the partially sorted previous input vector. Indeed, in our informal 

description of OE, we said that the modules only ever load in data once to circumvent this problem; this 

design decision is reflected in the formal module specifications ffori =1..... n, f; (t, a.... )=a 

only when t=0. 

In the case of EOE however, it is clear that we can load in new data with every tick of the clock 

without disturbing the computations on previously entered data. To be more precise, let 

a= (a 1,..., a�) :T -->D" with the intention that for i =1,..., nai: T-->D is the input stream supplied 

to EOE by the i th source. It is intuitively clear that EOE meets the user specification 

<DEOE : [T ->D -->[T -al-D where 
Ju if 05t<n+l 

ýEOEL)(t) = (6) 
sort(a(t-n-1)) if: Zn+1 

for each a :T --+D" and teT. Thus, as t increases from t =n+1, the output from EOE is sort(a (0)), 

sort (a (1)), sort La (2)),. _; that is, EOE sorts every input supplied to it. 

Now let us return to OE. Of course, it is impossible for OE to sort every input supplied as a stream 

a: T -'D" since at best we can only execute OE on every (n+1)th input supplied by the sources: intui- 

tively, we load a (0) at time t=0 (so that it is held by OE's modules by time t= 1), and by time t= n+l 

a (0) has been sorted so we can begin to load the next input vector at this time (so that it is held by OE's 

modules by time t= n+2). However, at t =n+1 the input to OE is a (n+1); the inputs a (1),..., a (n) have 

been lost or disregarded. Similarly, since a (n+1) has been loaded by time t =n+2 we anticipate that 

a(n+l) will be sorted by time t =2n+2 (since 2n+2=(n+i)+(n+1)), but again a(n+2),..., a(2n+1) will 
have been disregarded. 

Instead of trying to sort every input, let us focus on the problem of redefining OE so that it sorts 

every (n+1)th input; that is, the modified OE algorithm is to implement the user specification 
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cDoE : [T --. D"]-'[T --D"] where for each a: T --*D" and each teT, 
Iu ift=0ortmod(n+1)#0 

t'oE()(t) = sort(a(t-n-1)) if t #0 and t mod (n+1)=0 
(7) 

Let us call OE `ready at time t' if t is such that the next n+1 steps to be executed by OE are, in 

order, a loading step, and then, an odd-step followed by an even-step n! 2 times. Now, whilst we have 

yet to prove that OE actually sorts any given input, let us agree that OE has the following property: if OE 

is ready at any timet (when the input to OE is a (t) of course), then OE's modules collectively hold 

sort (a (t)) at time t+n+1. Thus without modification OE is ready only once, at t =0, and by hypothesis 

OE holds sort (a (0)) at t =n+1. 

Our strategy for making OE sort every (n+i)th input is to modify the algorithm in such a way that 
it is ready at timet iff t is of the form t =m(n+i) for some integer m 20; if we can do this, then fort of 
the form m (n+l) we have by the agreed hypothesis that OE holds sort (a (m (n+1))) at 

t =m(n+1)+(n+1)=(m+l)(n+1) at which time OE is again ready since (m+1)(n+1)mod (n+l)=0. 

Furthermore, if t =(m+1)(n+1) for some m2! 0, then t *0 and t mod (n+1)=0. In other words OE will 

meet the specification (DoE as required. 

Consider what happens if we replace the loading clause in OE's informal description (Section 
2.3.1) with the following new clause (but keeping the odd- and even-step clauses the same): 

Loading (beginning at t =m(n+1) and completed by time t =m(n+1) form =0,1,2,... ): Each module m; 

reads a datum (namely a; when the input to the array is a= (a t,..., a") e D") from source In; in parallel 
for i =1,..., n. 

With the modified loading clause, OE now fulfills the first requirement of being ready when t is of 

the form t=m (n +1) since the next step will be a loading step. However, the new loading clause is not 

enough to guarantee that OE will be ready at times t of the form t =m(n+1): we are assuming that n is 

even, and so form odd, m (n+l) is also odd, and thus the first step executed after the loading step begins 

at t=m (n+1)+1 which is even; thus OE will perform an even-step after the loading step, and so OE is 

not ready at time m(n+1); presumably OE will not sort the input loaded at time t =m(n+1), namely 

a (m (n+1)). However, observe that when t is of the form t=m (n+1)+2k+1 for k=0,..., n r2-1 (which 

is when we want OE to begin performing odd-steps), t may not be odd but t' defined by ((=t mod (n+1) 

certainly is. Similarly, when when t is of the form t =m (n+l)+2k fork =1,..., n/2 (which is when we 

want OE to begin performing even-steps), whilst t may not even, t' again defined by t' =t mod (n+1) 

certainly is. Thus, if we stipulate that an odd-step begins when t mod (n+1) is odd, and that even-steps 
begin when t mod (n+l) is even, then OE will be ready precisely when t mod (n+l)=0, that is when t is 

of the form t=m (n+1) for some m20, and thus OE will meet CDOE as agreed above. 
The full revised OE algorithm is as follows: 

Loading (beginning whenever t mod (n+1) is odd and completed by t= t+1): Each module m; reads a 

datum (namely a; when the input to the array is a= (a 1...., a. ) e D") from source In; in parallel for 

i =1,..., n . 
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Odd steps (beginning whenever t mod (n+1) is odd and completed by time t+l): Each of the constituent 

modules in the module pairs (m;, mi+l) for i =1,3,5,..., n-1 exchanges (in parallel) values with the other 

member of the pair (if necessary) such that on completion of the step m1" holds the minimum of the two 

values and m; +l holds the maximum. 

Even steps (beginning whenever t mod (n+1) is even but nonzero and completed by time t+l): This step 
is similar to the Odd-step, except that the module pairs are (m�m, +1) for i =2,4,6,... n-2. During this step 

m1 and m� do nothing; they retain their current values for the duration of the step. 

2.3.6 Respecification of OE. 

On examining the revised OE algorithm above, it is not difficult to see that by using the same prin- 
cipal of module specification that we have previously used, we obtain the following revised module 

specifications f 
f1: TxD3-->D 

where for each teT, and a, v, r E D, 
a if t mod (n+1)=0 

f t(t, a, v, r) = min{ v, r } if t mod (n+1) odd 
v if t mod (n+1)even, *0 

For i even, i*n, 
ft: TxD4-->D 

where for each tET. and a j, v, r e D, 
a if t mod (n+1)=0 

f; (t, a, l, v, r) = max{l, v } if t mod (n+1)odd 
min{v, r } if t mod (n+1)even, #0 

For i odd, i#1, 
fj: TxD4- .D 

where for each tET. and a, l, vr E D, 
1a if t mod (n+1)=0 

ff(t, a, l, v, r) = min{v, r } if t mod (n+1)odd 
1max{ l, v } if t mod (n+1) even, #0 

and, 
f� : TxD3--. D 

where for each teT. and a. l, v e D, 
1a if t mod (n+1)=0 

f� (t, a J, v) = max{ 1, v } if t mod (n+1) odd 
v if t mod (n+1)even, #0 

2.3.7 Comparison of the Algorithms. 

How do OE and EOE compare when viewed as competing designs? 

We have seen that in terms of the clocks naturally defined by our two algorithms, both OE and 
EOE sort in n+1 steps. This observation is based on the hypothesis that each module operates in unit 

time. Furthermore, if we assume that each module requires unit area then OE and EOE occupy area 
(proportional to) n and n2 respectively. 

However, it is clear from contrasting the functional specifications of typical OE- and EOE- 

modules, that an OE-module is algorithmically more complex than an EOE-module (OE's modules are 
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nonautonomous), and thus unit costs are intuitively not equal (OE's modules being the more expensive). 
Consequently OE and EOE are not directly comparable in terms of length of computation or area. The 

difficulty here is that unit costs differ with respect to implicit external time and area metrics. 

We can make the difference between OE and EOE explicit by contrasting the user specifications 
that (we claim) they meet. The clock in terms of which we write down a user specification of a synchro- 

nous network is parameterised by the network; in the case of OE and EOE, these algorithms determine 

clocks TOE and TEOE respectively. With respect to these clocks the user specifications (7) and (6) are 

properly 
4Doe : [Toe ->D"] --+[T0ß -+D 

where for each a: TOE -->D" and te ToE, 

U if t =O or t mod (n+1)#0 
(DOE ()(t) - sort(a(t-n-1)) if t #0 and t mod (n+l)=0 

and 
4DEOE : [TEOE -+D"] -+[TEOE - D"] 

where for each a: TEOE -*D" and tE TEOE, 
Iu if 05t <n+l 

4DEOE(a)(t) = sort(a(t-n-1)) if t 2n+1 

respectively. 

The algorithms can now be more carefully contrasted with respect to these specifications: it is 

apparent from the algorithms' user specifications that OE and EOE differ as they have different ready 
conditions and input schedules. Moreover, whilst we can certainly read off, for example, that both algo- 
rithms have length of computation n+l, here we are informed that these times are not comparable since 
the user specifications measure these times with explicit reference to different clocks. 

2.4 SPECIFYING NETWORK BEHAVIOUR. 

We have introduced the idea of a synchronous algorithm in general and we have seen three exam- 
ples. We have also seen that the output of a synchronous network can be functionally specified in a 

variety of ways: recall the functions fN, FN, and GN, and the differences between them. In this section 

we will show how from a network's communication structure, and from specifications of the network's 
modules, we can systematically obtain a function VN that formalises the way in which we build up a 
table of a network N in operation. This VN is the most important functional specification of network 
behaviour for it is from VN that we will derive other functional specifications including f N, FN, and GN. 

2.4.1 Value Functions. 

In order to specify a network's behaviour over time, first notice that the network will be com- 

pletely specified if we can write down the value held by every module at any time t. Also observe that 

the value held by any module at any time can always be determined from the input to the network, the 

values initially held by the network's modules, and the current time t. 
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If N has n sources then the input to Nis formalised by a stream a= (a 1,..., a") :T -'A" (with 

the intention that the i th source supplies a 1(t) to the network at time t). Now suppose that N has k 

modules m 1�... mt. Then any vector x= (x i,..., xk) eAk will serve to specify the network's initial inter- 

nal values (with the intention that m; initially holds x; ). Now, the value held by each m; at a time t can 

always be determined from t, a, and x, so let us introduce a function V, :Tx [T -+A"] xA k -->A for 

i =1...., k; these functions we call the network's value functions. Intentionally, 'V, (t, a, x )' is read as: 
'the value in the i th module at time t given input a and initial values x'. 

We can put VI...., Vk together as the coordinates of a function 
Viv = (Vl,..., Vk): T x[T-->A']xAk-+Ak 

which we refer to as the value function for network N. For each teT, a: T ->A*, and xe Ak, 

VN(t, a, x) is the vector VN(t, a, z)=(V1(t, a, x),.... VV(t, a, x)) E Ak that tells us the values held by all the 

network's modules at timet. 

We define VN by exploiting the single most important consequence of a network's synchronous 
behaviour because the network is synchronous, every value in the network at every time is either 

specified initially, or is specified in terms of the values held at the previous time step. 

Here is an informal two-stage algorithm Which describes how to define VN: 

The Synchronous Network Specification Algorithm. Let N have n>0 sources In 1,..., In,,, and k >0 

modules m 1...., mk, and for i =1,..., k let n; >0 denote the number of input channels that m; has from 

adjacent modules and sources, and let m; be specified by ft =f.,. Also let a= (a 1,..., a �) :T --->A' and 

x =(xl,.... xt)E Ak. 

Stage 1: define VN(O, a, x). To define VN(O, a, x) we must define Vi(0, a, x) for i =1,..., k. Since x; is 

intentionally the value held by m; at time t=0, it is appropriate to define 

V; (0, a, x)=x; 
fori=l,.... k. 

Stage 2: define VN(t+l, a, z). To define VN(t+l, a, x) we must define V; (t+l, a, x) for i =1,..., k. There 

are two cases to consider. 

Case 1: m; is autonomous. If m; is autonomous, then f; : A"' -'A. Now notice that the value m; holds 

at time t+1 is already specified by ft in the sense that if bl,..., b,, are the values supplied to m; on its 

input channels at timet then fr (b 1...., b�') is the value held at time t+1. However, for j =1,..., n; , each bj 

is either the value supplied by some source, in which case bj=ap (t) for some pe [1, n ], or, bj is the 

value supplied by another module (possibly itself), in which case bi=V. (t, a, x) for some qE (l, k]. 

Accordingly we define Vj (t+l, a x) by 

Vi (t+1, a, x) = f! (b 1,.... b� ) 

where for j =1..... n;. 

UNIVERSITY I IBRKRV i «^' 
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jg"(t) if the j th input to m; is from source Ino 
b1 = Vq (t, ax) if the j th input to m; is from module my 

Case 2: m; is nonautonomous. If m; is nonautonomous, then fj: T xA "' ---; --A, and similar to Case 1 it is 

appropriate to define V; (t+l, a x) by 

Vj(t+1, a, x) =ft(t, bi,.... ba. ) 

where b 1,..., b, ti are as described above. O 

There are a number of points arising form the above definition of a network's value function(s) 

that warrant discussion. Before we do so however, we give some examples to familiarise the reader with 

the new notation. 

2.4.2 Examples. 

(1) Let us apply the specification algorithm to the networkN of Section 2.1. N has one source and 
five modules whose functional specifications f I...., fs have the following functionalities: 

f IJ 2: IN -->N 
and 

fs, f4, f5: VxN-'N 

Using the communication structure of N (see Figure 2.1) together with specification algorithm we 

obtain a value function VN = (V1,.... V5) :Tx [T -*]N] x! 4 --'. 1T where for each a: T --' N and 

x= (xi,..., xs) e INs, VV (O, a, x) is defined by 
VV(O, a, x) =xi 

for i =1,..., 5, and 
V1(t+1, a, x) =f (a (t)) 

V2(t+1, a, x) =f 2Q! (0) 

V3(t+1, a, x) =f 3(V1(t, a, x), V2(t. a, x)) 

V4(t+1, a, x) =f 4(V1(t, a, x), V2(t. a. x)) 
V 5(t+1, a , x) =f 5(V 3(t .ax). V 4(t ,ax )) 

In fact, f 1...., fS were the following functions: 

. 
ft(n)=n-1 
f2(n)=n+1 

f3(n, m)=n+m 

f4(n, m)=nxm 

fs(nan)=n+m 

(Here n and m are natural numbers of course. ) Using these definitions the definition of Vj(t+1, a, x) for 

i =1...., 5 can be written out as follows: 
V1(t+1, a, x) =q(l) -1 
V 2(t+1, a z) =a (t) +1 
V3(t+1, a, x) = V1(t, a, x) + V2(t, a, x) 
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V4(t+1, a, x) = V1(t, a, x) X V2(t, a, x) 
VS(t+1, a, x) = V3(t, a. x) + V4(t, a. x) 

(2) Let us apply the specification algorithm to the OE network. OE has n sources and n modules 

whose functional specifications f 1,.... f, ý have the following functionalities (see Section 2.3.6): 
fI, ff: TxD3-->D 

and 
f 2,.... f,. -t :T xD4-. >D 

Using the communication structure of OE (see Figure 2.5) together with the specification algo- 

rithm we obtain a value function Vo5 = (V1,..., V") :Tx [T -+D"] xD" -+D" where for each 

a= (a l,.... a ") :T -->D" and x= (xl�.., x") e D", Vi (O, a x) is defined by 
Vi (O, a, x) = x; 

for i =1,..., n, and 
fi (t, a i (t ), Vi (t, a, x ), Vi+i(t, a. x)) if i=l 

Vi(t+1, Q, ri)= 
fi(t, ai(t), Vi-i(t, ax), Vi(tax), Vi+i(tx, a)) if 1<i <n 
fi(t, ai(t), Vi-1(t, a, x), Vi(t, a. x)) if i=n 

foci=1�... n. 

Again, we can use the definitions off 1,.... f, ý to write down the definitions of V; (t+1, a, x) in full: 

al(t) if t mod (n+1)=0 

Vl(t+11-2, x) = min{ VI(t, a, x), V2(t, a, x) } if t mod (n+l) odd 
V1(t, a, x) if t mod (n+l) even, *0 

For i even, i #n, 
ai(t) 

VJ(t+1, a, X)= mä7({Vi-1(tax), Vi(t ax)} 

min[ Vi (ta x ), Vi+i(ta x) } 

For i odd, iý1, 
a: (t) 

V; (t+1, a, x) = min[ Vi (t,. ax), Vi,, (t, ax) 
max[ V, 

-1(t, a x ), Vi (t, a x) } 

and, 
a�(t) 

V�(t+1,42. x) = max{ V�-i(t, ax), V. (t, ax) } 
VR (t, a, x ) 

if t mod (n+1)=0 
if t mod (n+1) odd 
if t mod (n+1)even, *0 

if t mod (n+1)=0 
if t mod (n+1) odd 
if t mod (n+1)even, *0 

if t mod (n+1)=0 
if t mod (n+1) odd 
if t mod (n+1)even, *0 

(3) Let us apply the specification algorithm to the EOE network. EOE has n sources and n+1 

columns of n modules (making a total of n (n+l) modules). Each module m; j is specified by a function 

fjj whose functionality is as given below for i =1...., n and for j =0...., n: 
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For i+j odd, i#1, j #0, and for i+j even, i #n, j #0, 
fib :D -D 

For other i and j in the ranges 15i 5n and O5 j Sn respectively, 
Ii, : D2-D 

Now, according to the specification algorithm, VEOE is a map 
VEOE :Tx [T --;, -D"] xD " (^+i)---; -. D R("+t) 

Since we denote a typical module of EOE by m; j rather than using the notation mT with i in the range 
1SiSn (n +1), it will be helpful if we carry the double indexing to typical elements x of D"(4+1): we will 
write 

x= (xl, a,.... xa, a ... Zii,..., x�i, ... 'X1..,.... X... ) 

rather than x =(xl,..., x�(i+1)), and we denote a typical element of x by xis. Similarly, the codomain of 
VEOE is D"("+I) and so VEOE has n (n+l) coordinate functions: these we will denote VV J for i =1,..., n 
and j=0,..., n; thus we will write: 

VEOE = (V1, o,..., V., o, ... Y1 j,..., V. j, ... 'V1,. N... V.,, ): T x(T--3--DR )xD'(n+1)--3"DR(R+i) 
(Notice the last n coordinates of VEOE correspond to the rightmost column of the EOE network. ) 

Using the communication structure of EOE (see Figure 2.8) together with the specification algo- 
rithm, for each a :T_ D" and ze D"("+1) we obtain the following definitions of VVj (t, a, x) for 
i =1,..., n and j =0�.., n: 

V, J(O, a, x) = xij 
and for i =1,..., n and j=0,..., n, 

fij q (t)) if j=0 
fij(Vr-i, t-i(t, ax), Vj. i-i(tgx)) if i+j odd, i*1, j #0 
fij(Vij-i(t, gx), vi+lj-i(t, a, x)) if i+j even, i *n, j *0 
fQ (Vi, t-i(t, a x )) otherwise 

Discussion. Notice how specification 'by value functions' leads to compact and yet comprehensible for- 
mal definitions of network behaviour. 

Also notice that we can calculate with value functions and so prove facts about synchronous algo- 
rithms. For example, using the defining equations for VN in the first example above, we can calculate the 

output of N, V5(t, a, x ), for any tz3, a: T-N, and xeI, , as follows: 

V3(t, a, x) = V3(t-1, a, x) + V4(t-1, a, x) 

= Vl(t-2, a, Y) + V2(t-2,9, x) + Vl(t-2, a, x) x V2(t-2, a, x) 

_ (a (t-3)-1) + (a (t-3)+1) + (a (t-3)-1) x (a (t -3)+1) 
=f (a(t-3)) 

Clearly, this calculation is the nub of what must be proved to verify N; see the exercise below. 

We will formalise our specification technique and develop a theory of synchronous algorithms by 

mathematically classifying value functions. Note the form of the equations that define the coordinates 
V1..... Vk of a value function VN. Recall the simultaneous primitive recursive definition of f 1,..., fk in 
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Section 1.1 (under `Chapter 3'). The defining equations for f t,..., fk are very similar to those for 

VI...., Vt. With a little work the definition of V 1...., Vk can be easily seen to be an instance of the 

definition off 1..... fk and so VI..., Vk are simultaneous primitive recursive functions made from module 

specifications. This point is the subject of Section 3.4. 

2.43 Output Specifications. 

In this section we will explain how to define the output specifications FN and GN from VN; it is in 

terms of GN (or FN) that network correctness is phrased of course (see Section 2.2.4). 

Let N be an n -source, k-module synchronous network over data set A; then 
VN = (Vl�... Vk) :Tx IT -->A"] xAk ->Ak 

Notice that the value function VN tells us the value held by every module in the network, whereas ulti- 

mately we are only interested in the values held by those modules that are connected to sinks (since this 

is where network output appears). We can restrict our attention to just these modules as follows. Let N 

have m sinks, and for j =1,..., m, let ii be the unique index of the module whose output channel supplies 

the j th sink of N. Now let 7t=nN :Ak ->A" be defined by 

n(a)=(a;...... a: ) 

for each a =(a 1,..., ak) e Ak. Intuitively, when applied to V. (t ax) this it `picks out' the values that are 

sent to the sinks at time t, and so it is appropriate to define 
FN=(F1�.., F,,, ): T x[T-: o-A"]xAk _SAM 

by 
F'N(t, a. x) = nN(VN(t, a, x)) (8) 

for each teT, a: T --ý--A" and xe Ak. Notice that for any arguments t, a, and x, we now have 

FN(t. ax) = irN(VN(tqr)) =7CN(Va(t, ax),.... Vr(t, ax)) = (Vi (tV,. (t, ax)) 

and so for j =1...., in we have 
Fj (t, a , x) =V jI (t ax) 

That is, the jth coordinate of FN tells us the output at the jth sink as a function of time, input data, and 

initial values. (Intuitively, this definition says that there is zero propagation delay from m, 
I 

to the j th 

sink, or, that the value held by m, 
j 
can be accessed or read from outside the network. ) 

As mentioned in Section 2.2.1, the alternative (stream transformation) version of FN, namely 

GN : [T -W] xAk --*[T -->A'I, is readily definable from FN by defining, for each a: T -*AR and 

xe Ak, GN(ax) to be the stream defined by 

GN( x)(t) =FN(t, a, x) 
for each teT. 

Exercise. Let ON : [T ---'IN] -; o [T -; o N] be defined by 

u if 05t <3 
f (n (t -3)) if t 2: 3 

for each n"T -j-1 and teT, where f (n) = n2+2n-1 for each nEV. Prove that the network N of Fig- 

ure 2.1 meets this specification in the sense of Section 2.2.4. 
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2.4.4 Static Specifications. 

The functional specifications that we have defined so far (viz VN, FN, and GM) are dynamic 

specifications in the sense that they specify the behaviour of a network as the input at the sources 

changes with the time t. Later we will need network specifications that define the behaviour of a net- 

work when the input at the sources is held fixed or static throughout the entire execution of the network. 
Actually, we have already mentioned one such 'static specification', namely the function IN of Section 

2.1: recall that whereas 
FN :T x[T->AxAk-*A 

with 'FN(t, a, x)' denoting the output of a network N at timet given input stream a and initial values x, 

we had 

fN :T xA" xA'k ->A'" 
with 'fN(t, a, x)' denoting the output of a network N at timet given constant input a and initial values 

x. The function FN was defined from VN by composing VN with the function ICN that picked out output 

values. In this section we will define IN by composing vv, a 'static version' of VN, with ltN. Whereas 

VN: TX[T--A"IXAk_*Ak 

with `VN (t, a, x )' denoting the values held in network N at timet given input stream a and initial values 

x, this vN will have functionality 

vN :T xAm XAk _Ak 
with 'vN(t, a, x)' denoting the values held in a network N at time t given constant input a and initial 

values x. 

Static Value Functions. As usual, let N be a n-source, k-module synchronous network over A. The 

function VN, as a vector-valued function. will have coordinate functions v1..... vk :T xA" xAA --+A, and 
for i =1..... k we want `v; (tax)' to denote the value held by the i th module at timet given static input 

a and initial values x. Clearly, the appropriate defining equations are (for i =1,..., k): 

v1(O, a. x)=xi 
and, if mit is autonomous with respect to T =TN, then 

v; (t+1, a, x) =ft(bl,.... b�, ) 

where f; is the functional specification of m,, nj is the number of inputs to mj from adjacent modules 
and sources, and for j =1,.... n; , 

a1, if the j th input to m; is from source 1nn 
b1 = v4 (tax) if the j th input to m; is from module mq 

and, if m; is nonautonomous with respect to T, then 

v; (t+l, a, z) = ft(t, bl�.., b, ti) 
where b 1,..., b, 1 are as described above. 

We call vN N's static value function or its static specification. 

Finally, we define IN as promised earlier. It should be obvious now that the appropriate definition 

is 
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fN (t ,a)= 7tN (vN (tax)) 
for each teT, aeA", and xeAt. 

Discussion. What is the relationship between dynamic and static specifications? Since the function VN 

defines the behaviour of N on all possible input streams a: T ->A", we can define the behaviour of N 

on a constant input ae A" by taking a to be a stream such that a Q)= a for all teT. 

For each aeA, let fix (a) :T --->A ̂  be the stream defined by fix (a)(t) =a for each teT. Now 

consider the function wN :T xA" XA k --->A k defined by 

WN(t. a, X)=VN(t (a). x) 

for each teT, ae A", andx e Ak. It is straightforward to prove (exercise! ) that wN(t, a, x)=vN(t, a, x) 
for all arguments t, a, and x, and so it does not seem to matter which way we define a static version of 
VN. However, there is a subtle property associated with the function fix : A" ->[T --->A] ] that we may 

wish to avoid in certain circumstances. We will return to this matter in Section 3.4. 

2.4S Exercises. 

Here are some exercises concerning OE and EOE over D=N. 

(1) Take n =4 and write out (in the style of Section 2.4.4) the defining equations for the coordi- 

nates of vOE and vEOE. Write down the definitions of n/E and ICEOE. 

(2) Use the definitions from part (1) above to show that 
foE(S. a, x) =fEOE(5, a, Y) = sort (a) 

where a= (71,21,9,3), x= (0,0,0,0), and y= (0,..., 0) (twenty times zero). 

(3) By using a computer programming language that supports user-defined functions or procedures 
(such as PASCAL), program OE's module specifications f 1,..., f� (as defined in Section 2.3.2) as user- 
defined functions. Incorporate these functions in a program which evaluates vOE (t, a z) on any given 

arguments teT, ax e D", and hence simulate the OE sorter on a fixed input for a finite amount of 

time. Is it possible to write this program without using either arrays or recursion? 

2.5 OBJECTIVES. 

In this chapter we have identified general concepts that are central to synchronous computation. In 

this section we will outline the objectives that a theory of synchronous systems should achieve. 

2.5.1 Formalisation. 

Our account of specifying synchronous algorithms has been a semantic one: we have assumed that 

the reader understands the principal concepts underlying our specification technique, namely those of 
'data', 'function', and 'definition by means of equations'. 

In Chapter 3 we will introduce our system PR which can be thought of as a formal language for 

defining functions by simultaneous primitive recursion. We will show that the specification algorithm of 
Section 2.4.1 always specifies a network as a (value) function whose definition is a term in this language. 

In this way we formalise our specification technique and hence formalise our account of synchronous 

algorithms. 
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2.5.2 Verification. 

Generally, the most important point about being able to formally specify an algorithm's behaviour 

is that we can write down and ultimately (attempt to) prove assertions about that behaviour. In particular 

we can write down formal correctness specifications CSpec for the algorithm. For example, in the case of 
OE and EOE, possible correctness specifications are (in the style of Section 2.2.4) 

CSpecoE (dx E D")(V tE T)(V a: T_ D") (GOE (a x)(t) = 0oE (a)(t) ) 

and 
CSpecEOE a (Vx E D('+1)(V1 E T)(V a : T--+D~)) (CEDE, x)(t) ='EOE(a)(t) ) 

In Chapter 4 we will formally verify OE and EOE by proving CSpecoE and CSpecEOE, and in Chapter 5 

we will establish the correctness of other synchronous algorithms. Another important kind of formal 

specification of a (synchronous) algorithm is a performance specification PSpec. In Chapter 3 we con- 

sider performance in a general setting, and we will be able to write down performance specifications for 

OE and EOE. 

2.5.3 Simulation. 

Generally, having devised an algorithm for a given task, the first step towards verifying the algo- 

rithm is to simulate the algorithm, either by hand, or by coding the algorithm in an executable form. In 

the case of synchronous algorithms however, the algorithm need not be large to be complex, and this 

makes hand-simulation tedious and therefore error-prone, if not impossible in practice. Clearly, simula- 
tion by means of a computer program is generally preferable; in other words, a designer of synchronous 

systems needs software tools to assist in the design activity. 

In Chapter 6 we will introduce the imperative programming language FPIT which is tailored to the 

evaluation of the functions defined in Chapter 3; in this way we can simulate our networks. 

2.5.4 Hierarchical Design. 

In algorithm design generally, the advantages of structured design are well-known. Specifically, 

an algorithm which comprises a small number of atomic steps is easy to understand and thereby more 
amenable to formal verification. In the case of a large algorithm, the algorithm is decomposed into a 

small number of procedures which are regarded as atomic steps so as to bound the conceptual complex- 
ity of the algorithm, and hence its verification relative to the assumed correctness of the procedures; if 

the procedures themselves are large, then they too are decomposed into sub-procedures, and these into 

sub-sub-procedures, until a level is reached at which the lowest level procedures are atomic steps. 

This top-down approach to the design and verification of algorithms is one which is germane to 

synchronous algorithms: contemporary synchronous (VLSI) designs may incorporate many thousands of 

atomic processing elements (modules); such a design will be incomprehensible unless it has a hierarchi- 

cal structure. We will consider the hierarchical design of synchronous algorithms in Chapter 8. 



-45- 

2.6 SOURCES. 

The isolation of a general concept of a synchronous concurrent algorithm processing streams of 
data is the result of joint work with J. V. Tucker and myself, as is the representation of synchronous 

algorithms by means of value functions (see Thompson and Tucker[1985]). The sources that led our 
concept of a synchronous algorithm were mentioned in Section 1.2: these were the neurone nets of W. S. 
McCulloch and W. Pitts and the systolic algorithms of H. T. Kung. The attempt at a general theory is 

new. We note that streams are mentioned in Melhem and Rheinboldt[1984] (work on systolic algo- 
rithms), Sheeran[1983] (work on design transformations), and Johnson[1984] (work on synthesis of digi- 

tal circuits). 

Parallel sorting networks have received much attention in the literature. Batcher[1968] is generally 
acknowledged as being the first work on the subject; Bitton et al[1984] and Akl[1985] are useful sur- 

veys. The EOE sorter is due to D. E. Knuth: Section 5.3.4 of Knuth[1973] considers general networks of 
'compare-and-exchange' modules, of which EOE is an instance (see Exercise 37, p 241, in 

Knuth[1973]). The OE sorter is accredited to Knuth also; however, (for historical reasons) we call 'EOE' 

what Knuth calls 'OE', and we have been unable to find (what we call) OE in Knuth[1973] despite the 

accreditations of Bitton et al[1984] (p. 291) and Akl[1985] (p. 58). Sorting on streams of data (in the 

sense of processing more than one vector of input data) has not been studied as far as we are aware. 

Finally, our definition of a user specification (Definition 2.2.3) is a special case of the considerably 

more general kind of specification found in Harman and Tucker[1987]. 
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CHAPTER 3 
FORMAL SPECIFICATION 

In this chapter we begin the theory of synchronous systems by introducing PR which we use to 
formalise the specification technique for synchronous algorithms introduced in Section 2.4. 

In Section 3.1 we establish a formal account of the data set(s) and operations over which a syn- 

chronous algorithm is defined. We use the theory of abstract data types as developed by the ADJ group 
(J. A. Goguen, J. W. Thatcher, E. A. Wagner, and J. B. Wright) in their work Goguen, Thatcher, and 
Wagner[1978] and Meseguer and Goguen[1985]. This theory supports the hierarchical analysis of syn- 

chronous algorithms. In particular, we will see how the concept of an augmentation of a data type helps 

us to formalise some aspects of top-down design. 

In Section 3.2 we begin the formal theory of algorithm performance or complexity. We define a 

performance measure which is an abstraction of the time taken to evaluate data and operations involved 

in a data type. This abstraction is the basis of a hierarchical treatment of algorithm performance. 

In Section 3.3 we define the system PR. In essence, PR comprises a formal notation for the simul- 

taneous primitive recursive functions over an abstract data type. These functions, first defined and stu- 

died in Tucker and Zucker[1987] (work of 1979), are the mathematical setting for the study of value 

functions. PR additionally involves an account of the complexity of evaluating a function defined by 

simultaneous primitive recursion that is based on a performance measure for the underlying data type. 

In Section 3A we formalise the specification of synchronous algorithms by establishing the simul- 

taneous primitive recursiveness of value functions. 

In Section 3.5 we begin the theory of PR with an assortment of facts concerning the complexity of 

computation and top-down design in PR. 

3.1 ABSTRACT DATA TYPES. 

In Section 2.1 synchronous algorithms were described in the context of two sets, T and A, and a 

collection of operations on and between these sets. We will now make a modest generalisation by assum- 

ing that a synchronous algorithm involves operations on and between a (finite) number of data sets 

A 1...., A,,, say. 

In order for us to provide a formal account of these data sets and operations we will adopt the 

algebraic approach of the ADJ group. We will first present basic ideas and definitions, and then we will 

extend these ideas to cater for synchronous computation (in Section 3.1.8). The knowledgeable reader 

will find much of our notation and terminology standard, and with the exception of Section 3.1.5, the 

preliminary sections below may be quickly scanned for consistency with Wagner[1981] (for example). 
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3.1.1 Syntax. 

The first step towards formalisation is to introduce names for the data sets of interest: 

Definition. A sort set S is a finite, nonempty set (of sorts or sort symbols). Q 

A sort seS is merely a piece of syntax which we can use to index or label data sets in a con- 

sistent manner. For example, in the case of a general synchronous algorithm, a typical data set will be 

denoted by A, indicating that this set contains data of sort or kind `s'. In the case of a specific algo- 

rithm, we choose sort names that are mnemonic of the kind of data in question: for example, the OE net- 

work of Section 2.3.1 involved a clock T as well as data from the set D; thus the modules of OE can be 

formally specified in the context of the sort set So= {TD } say, with AT and A. denoting the sets T and 
D respectively. 

Here are some definitions and notations relating to sorts that we will find useful throughout the 
remainder of the thesis: 

Definitions. Let S be a sort set. 

(i) We let S+denote the set of all finite words or strings over S; that is, we S+iff for some n 21 and 
some s 1,..., s. e S, w is the concatenation or juxtaposition of symbols w =s 1"""s,,. In this 

situation w is defined to have length n, in symbols: IwI=n. 

(ü) We define S* by S*= Stu {X} where ?. is the empty word satisfying w, %= Xw =w for all words 

we St Accordingly, we define 17l I= 0. 

(iii) For each n 21 we define S" weS. Iwn}. (Notice that we do not define S °; if we S". 

then jwd=n00. ) 

(iv) When we S" for any n 21, we write w; for the i th sort comprising w for i =1,..., n. That is, if 

w=s1"""s,,, then w, = s; for i =1,..., n; alternatively, for all words weS, w=w1"""wIW1.0 

The intention behind a word over a sort set is that each word w names some Cartesian product of 
data sets. For example w =TDnn E S; names the domain of the function f 1: T xD xD xD -+D that 

specified module ml of the OE network (see Section 2.3.6). We use this idea to keep track of the 
domains and codomains involved in a collection of operations in the following way: 

Definition. Let S be a sort set. An S -sorted signature E is an S*xS -indexed family 
I=<E�,, f: wESO, sES> 

of (disjoint) sets (of operation names or operation symbols). 0 

A signature formalises the idea of a (strongly typed) collection of functions available for use (in 

specifying synchronous algorithms); for we S", a symbol ae Ew,, names some operation which maps 

each vector ae Aw x""" xA�, to an element of A,. Conventionally, when ae Ex., we often use the 

symbol 'c' rather than 'a' since such a symbol names a constant (a '0-ary' operation). 
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Notation. 

(i) We write 'a e E', to abbreviate 'a e I.., for some weS* ands e S'. 

(ii) When E is a signature with n constants and operations vl,..., ß, we write E= (ßl,..., a�) when it 

is understood (or of no interest) which E,,,,, each ß; belongs to. 

3.1.2 Semantics. 

The concept of a `data type', that is, `a collection of data sets and operations' can now be formal- 

ised as an algebra: 

Definition. Let E be an S -sorted signature. A algebra or Z-structure A comprises an S -indexed fäm- 

ily 
<A,:: ES> 

of sets (call A, the carrier of sorts), together with, for each wE S" and each seS, a mapping 
d' : A, v x ... xA,,, ->A, 

for each (Ye When aEE,, a'4 E Aj (that is, CA E A, ). We call dA the interpretation of 6 in A. 

Additionally, if S is a singleton S={s} then we say A is single-sorted, otherwise A is many-sorted. 

3.1.3 Examples. 

(1) We can formalise the notion of discrete time as a single-sorted algebra C in the following way. 
First let S={T} and let r be the S*x S -family 

r=<r,.,,: wES-, sES> 

where 

ra, T ={ zero }. rT. T ={ gucc }, 
rwj =0 for other ws 

Then it is easy to check that r is a S-sorted signature. Now let C comprise the single carrier 
Cr= { 0,1,2,... }, the constant zercf =0, and the operation succc :{0,1,2... 1----{0,1,2 .... } where 

swcc (t) = t+1 for each tE {0,1,2,... }. Then woo e CT and succo : CT -*CT; that is, C is a r-algebra. 

(2) We can formalise the data sets and operations involved in the OE sorter of Section 2.3 as a 

many-sorted algebra A in the following way: 

From Section 2.3.6, OE's n modules were specified by the functions f each of which was 

a function of time T and data D; thus it is appropriate to begin with the sort set S={T, D }. Since T is 

intentionally a clock, we need a signature Z with symbols zero e F., T and succ e ET i. Furthermore, the 

functions f I..... f� had the following functionalities: f1 f* :T xD3-'D, and fT xD4--. >D; 

thus if E has a symbol Q; to name f; for i =1,..., n, then we must have a1, ß� e and 

a21-9 Q,, _1 E E, p. 
Now let A =AOE comprise the carriers A,. = { 0,1,2,... } and AD=D, and interpret 

the symbols of E as follows: zeTA = 0; succA (t) = t+l for each te AT, and aA = f; for i =1,..., n. Then A 

is a E-algebra. o 

Here are some simple definitions and notations which relate to algebras A, and to S-indexed sets 

in general. 
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3.1.4 Definitions. 

(i) For each w r= S" we define Aw =A, ,x""" 
xAw . 

(ii) As a short-hand notation for a structure A with family of carriers <A, :s cm S> and n constants 

and operations, we write A= (<A, :sES>; Cri t'.... Q, r). Indeed, we will further abbreviate by let- 

ting A denote the algebra's family of carriers; we will write A= (A; cri,..., (y. A). 

(iii) Let A and B be S-indexed families of sets A, and B, respectively. An S-indexed mapping 
f :A -B is a family 

f =<f,: SES> 

of mappings f, : A, -->B,. If f :A -)B is an S-indexed mapping, then for each wE S" we 
define f, v : A" ->B' by 

(Va=(a1..... ae)EAw) 

(iv) If f is a function of the form f : A" ->A ", we will sometimes write 'fA' rather than just 'f'; 

this use of an algebra as a subscript is purely to emphasise that f is a function on the carriers of 
A. 

(v) Let A be a I-algebra for S -sorted signature E, and let S2 be another S -sorted signature with QGE 

(that is, let 52,,, jcE,,,, for each we S* and se S). Now let B be the fl-algebra whose family of 

carriers <B, :seS> is defined by B, =A, for each seS, and whose operations e are defined 

by a8 =o' for each ve a Then we say B is the restriction of A to S2, in symbols: B =Ala. 
(Intuitively, B is formed from A by `forgetting about' some of A's operations. ) 

(vi) When f : A" -*A` for some u, v e S*we say f has functionality or arity (u, v ). 

3.1.5 Augmentation. 

We have seen how a algebra formalises the idea of a ̀ data type'. In this section we will define a 

construction which allows us to build new data types from old. This construction, which we call an aug- 

mentation, is the basis of a formal transformation between different levels of data abstraction, and thus, 
here we begin to explain the hierarchical aspects of the theory of data types. 

Definitions. LetA be a Z-algebra for S-sorted signature E. 

(i) Let 4 be some new symbol not occurring in T. and let w, E S+and s0E S. Then the (wo, s, )- 

extension of E obtained by adding 4), is the S -sorted signature S2 defined by 
£=<fW0,: WES*, sES> 

where for each wE S' ands E S, 
f %,, v{4)} ifw=wands=so 

fI"'' = Ew,, otherwise 
In symbols we write S2= (E, 4); wo, s, ) or S2= (E, 4)) if wo and s, are understood. 

(ü) Let f2=(E, 4; wo, so) be as above, and let fA : A'ý"-9A, . Then the augmentation of A obtained 

by adding f is the fl-algebra B whose family of carriers <B, :seS> is defined by B, =A, for 
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each seS, and whose operations aB are defined by 
ffA if 0=0 

e if Q#0 
for each a E-f2. In symbols we write B =(A IA). Q 

The natural generalisation of the above definition(s) is to augment an algebra with a collection of 
functions if I,..., fm }. We only need a special case of such a constriction however our ultimate inten- 

tion is to augment E-algebras with vector-valued functions fA : A" -'A". As we cannot do this directly 

(since the operations of an algebra must be single-valued), we add the coordinate functions of fA 

instead: 

Definition. Let A be a E-algebra for S -sorted signature E. 

(i) Let 1= %...., 4,, ) be a vector (ordered list) of new function identifiers not occurring in 

L Also let u, v E S'with vI=m. Then the (u ,v )-extension of E obtained by adding 0 is the S- 

sorted signature f2 defined by S2="`> where t°)= E, and for k=0,..., m-1, 
ý(k+l) = (T-(k), 4k+l+ U Ivk+l) 

In symbols we write fl = (E, (D; u v) or Q= (E, (D) if u and v are understood. 

(ii) Let fl=(T, (D; u, v) be as above, and let f : A" -->A' be any function with coordinates f i..... f, " 
(so IvI=m and f; : A* --->A,, for i =1..... m). Then the augmentation of A obtained by adding 

f is the 12-algebra B defined by B =A ('") where for k =1,..., mA (k) is the E(k)-algebra defined by 

A; )=A and fork =0..... m-1, 
A(k+l) = (iä(k)ýk+l) 

In symbols we write B= (A f ). 

Discussion. Imagine a programmer whose task T, is to resolve by means of a program P, some problem 
involving computations over algebra A. Of course, P will be based on, or written over the signature E; 

typically P will involve expressions or terms t of the form a(tl,..., t1) where aeE and t 1,..., t� are terms 

built up from E (together with some variables perhaps). 

Suppose the task T is a complex one, complex enough that the programmer first assumes that 

some subtask T1, which is to compute a function fA defined over A, has already been accomplished by 

means of a subprogram or procedure P1. Typically Pf will introduce some new identifier 4) say, which 

the programmer can now use in expressions 4(t in constructing the required program P. 

Importantly, the programmer will now regard fA as having status equal to that of any other opera- 

tion a", since like e, fA is a named operation which is conceptually indivisible. 

Our hypothetical programmer is of course developing p `top-down'. Initially T is regarded as a 

problem involving computations over the high-level structure B= (A fA ), and the programmer first 

solves T by means of a program P' say, which is written over the signature S2 = (Z, 4) (and thus 4=fA). 

In order to show that T can be solved by using the operations of (lower-level) A only, the programmer 
implements ff over A; that is, Pf is written over the symbols of Z only. 
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We begin to see the how the hierarchical design and specification of algorithms is intimately 

related to the hierarchical specification of data types. This relationship will be further explored in the 

second part of Section 3.5, and in Section 6.2.18. 

3.1.6 Minimality. 

Consider the {TI-sorted. signature I'= (uro, succ). Intuitively, I' is the signature of a clock as an 
algebra A= (A,.; zero", sucdA). Now suppose zero" = 0, and a=" (t) = t+l for each tE A� but 

A, = {-1,0,1,2,... }. Whilst A is certainly a r-algebra, the inclusion of -1 e AT is redundant in the sense 
that no expression over r will ever evaluate to -1. 

Generally, we can isolate algebras with such values by means of the following 

Definitions. Let A be a I-algebra. 

(i) Let aeA (that is, let aeA, for some carrier A, ). We say a is finitely generated if a can be 

obtained from finitely many applications of the operations of A to the constants of A. 

(ii) We say A is minimal if every element of every carrier of A is finitely generated. 
Example. Let A be the r-algebra defined above. It is obvious that A is not minimal, since zeros =0 *-1 

and s (t) *-1 for any te [-1,0,1,2, """}, and thus -1 is not a finitely generated element. Q 

3.1.7 Abstract Data Types. 

It is possible for A and B to both be Z-algebras, and yet to have A *B. Under what conditions is 

a I-algebra uniquely defined? 

Consider the r-algebras A= ({ 0,1,... }, 0, succ) and B= ({ -1,0,1,... }; 1, succ8) where succA and 

aw,? are successor functions on the carriers of A and B respectively. Notice that both A and B are r- 

algebras (minimal ones in fact), but A *B since z«0A =0 *-1= zeroB. 

Both A and B are 'counting structures': each comprises a 'zero' and a 'next number' function. 
Abstractly, we do not wish to distinguish between A and B: A and B are the same in the sense that we 
can count with either algebra; the only difference between A and B is that in A 'zero' is represented by 
0, whereas in B it is represented by -1. 

We can formalise this sense in which Z-algebras are 'essentially the same' as follows. 

Definitions. LetA and B be S -sorted E-algebras. 

(i) An S-indexed mapping h :A -'B is said to be a I-homomorphism if h satisfies the following 

two homomorphism conditionsr. 

(a) For each ce Ex,,. 

h(CA)=ca 

(b) For each aeE.,, with weS 

(V(al,.... a�)EAW) (h: (a"(ai,..., a�))=a8(h,,, (ai)..... h, ý(a�)) ) 

(ii) A Z-homomorphism h is said to be a isomorphism if each component function h, is a bijection. 
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(iii) We define A to be isomorphic to B if there is a E-isomorphism h :A ->B. In symbols we 

write A-B if there is some 1-isomorphism h :A --B, and if we wish to name the E- 

isomorphism explicitly then we write A ! 51, B (read: A is isomorphic to B via E-isomorphism h). 

Lemma. Let A and B be F. algebras. The following statements are equivalent: 

(i) ACAB 

(ü) There exist E-homomorphisms h 1: A -*B and h 2: B --->A. 

Proof. Omitted. Q 

Exercise. LetA andB be the r -algebras above. Define h :A -->B by 
(VteA, ) (h(t)=t-1) 

Show that h is ar -isomorphism, and hence that A5 kB .Q 
A E-algebra is regarded as uniquely specified in the sense that it is unique up to isomorphism. Now 

notice that the relationship of isomorphism is an equivalence relation on the class of all algebras: it is 

not difficult to prove for any Z-algebras A. B, and C, that A -A , if ALB then BU, and if A ! 5B and 
B=C, then AC. 

Definitions. LetA be a I-algebra. 

(i) The isomorphism class ISO(A) of A is the equivalence class of all I-algebras isomorphic to A. 

That is, 
ISO(A)=<B: Bt-A> 

(ii) An abstract data type is an isomorphism class of Z-algebras, for some signature T. called the sig- 

nature of the abstract data type. 

Definition. Let P be the single-sorted algebra comprising carrier { 0,1,2,... }, constant 0, and operation 

t+l. A clock is an element of ISO(P). (Thus all clocks are isomorphic. ) 

3.1.8 Algebras for Synchronous Computation. 

Since our methodology for specifying a synchronous algorithm is based on specifying values held 

at a given time t, a formal specification of an algorithm must be based on a E-algebra which has a clock 

as a substructure. In fact, since (synchronous) algorithms usually involve tests of some kind, we will 

assume for convenience that our algebras always include a Boolean component as well as a clock; 

such algebras we call standard: 

Definitions. 

(i) A sort set S is standard if S; 2 { T, B } for the distinguished sort symbols T and B. 

(ii) An S -sorted signature E is said to be standard if S is standard, and the following six conditions 
hold. 

(a) zero e YET 

(b) succ E Era 
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(C) tzue, false e F4. 

(d) note 4" 

(e) or, and e F. a.,. 

(f) for each seS, , EEC, , 

(üi) A Z-structure A is said to be standard if E is standard, and the following three conditions hold: 

(a) A= together with its constant and basic operation is a clock. 

(b) A. together with its basic operations is (isomorphic to) the Boolean algebra 
]B = ({ tt ff }; uf, ; V, A). (Here it and ff stand for 'true' and ̀ false' respectively, and , V, 

and A, are logical negation, disjunction, and conjunction respectively. ) 

(c) For each s r: S, the operation in A named by is equality on A,. 

(iv) Given a standard algebra A, we call A, = (0,1,2,... ] and A-, ={ tt, $} the standard domains; 0eT 

and ttffE ]B the standard constants; and sucd", , V, and A. the standard operations. 

Notation. We write T for AT, lB for A� and= for . 
Stream Algebras. Since synchronous algorithms process streams of data, we must extend our algebraic 
formalisation of data types to encompass streams. The way that we will do this is essentially as follows: 

Given a standard algebra A, we first adjoin [T -->A, ] as a new carrier set for each se S-{ T, B } 

(we do not need streams over T or ]B). Secondly, in order to access elements of a stream we also adjoin 

as new basic operations, evaluation functions of the form evall :Tx [T -->A, ] ->A, where for each 

Sc S, evalA (t, a) =2(t) for each teT and a: T --A, . 

These additions determine a new algebra A which appropriately formalises the data and operations 
involved in a synchronous algorithm over A. However, to formally analyse computation over A we must 
introduce formal names for the new carriers and operations. We do this as follows: 

Definitions. Let S be a standard sort set, let E be a standard signature, let A be a standard Z-algebra, 

andletS={s: sc S-[TB }}. 

(i) We define S by S=SuS. As additional notation, for each we S" we define we S" by 
K, =w1 ... EA. 

(ii) We define Z to be the S-sorted signature defined by 
E =<E,,,: wES*, sES> 

where for each we S*ands e S, 

Ew, =Ew,, 

and for each seS, 
ýVI = feval, } 

and for other wES*and seS, 
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Fi 
wd = 

We define the stream algebra A to be the E -algebra whose family of carriers <A, :seS> is 

defined by 
JA, if SES A"_ [T --->A, ] otherwise 

for each seS, and whose operations a"- are defined by 

a" ifaeE 
all 

evall if a=eval, 

for each (TE E. 

Example. Let A =AOE be as defined in Example 3.1.3(2); then A =AoE is constructed as follows: 

We begin with the sort set S={T, D } underlying A. (Actually, this S and A are not officially stan- 
dard since they do not have a Boolean component, but this need not concern us here: we only need A to 

have a clock in order for us to have streams. ) From the preceding definition we have S={T, D, n }. Also, 

if the signature of A is E, then E is defined by E= (E, evalD; TD, D). Finally, A is the E -algebra comprising 

the carriers of A together with the new carrier A, = [T --D ], and whose operations are the operations 

of A with the exception of ev4- which is is the function eval° :Tx [T -->D ] -->D. 

3.1.9 Notation. 

Let T={0,1,2,. » } and let X1 and X2 be any sets. Now let S1 and S2 be defined by 
S1= [T--ýXI]x[T-->X2] 

and 
SZ = [T-+X1 xXj] 

respectively. The sets S1 and S2 are isomorphic (in the sense that one can define a bijection between 

them) and so these sets may be conceptually identified. However, there is a subtle distinction between 

SI and S2 which will be lost when we identify them with each other an element of S1 is a pair compris- 

ing two single-valued streams, whereas an element of SZ is a single pair-valued stream; that is, a stream 

which supplies a pair of values at each time teT. Since the difference between a Cartesian product of 

sets of streams and the corresponding set of streams over Cartesian products is mathematically slight, we 

will choose to use the latter as it is notationally simpler. For example, to represent the set of all streams 

of pairs inputs we use S2 above, although we may speak of S2 as ̀ a collection of pairs of streams'. 

More generally, if A is a S-sorted algebra and we S" then we identify the sets 
[T -ýA�, ý] 

x ... x [T _ýA ] 

and 
[T--), -AM, x ... xA. 

In other words we make the following identification: 
[T --->A,. ] x ... x [T - . AM] = [T -->A"] 
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Notice that further notational simplification is possible: recalling the definitions associated with A, 

we have 

Aw _AW x ... xAy = [Tx ... x[T_. Aw] = [T-4Aw] 

Generally we will use the notation [T--->A'"] rather than A'" since the former is easier to comprehend: 
the latter notation appears in formal calculations only. 

3.2 PERFORMANCE MEASURES. 

The formal theory of the complexity of a synchronous algorithm begins with an account of the 

complexity of the data and operations of the underlying algebra. Our analysis of algorithm complexity 

only extends to algorithm performance or execution time, and does not attempt to account for other 

aspects of algorithm complexity such as area or power consumption. (See Thompson[1980] for a model 

of circuit computation which encompasses these. ) However, in the forthcoming definitions of perfor- 

mance estimations, the reader is invited to consider replacing references to a time metric by an area 

metric (say). 

Definition. Let A be an S-sorted algebra. Also let C be a clock, and let C+= C-{ 0 }. A performance 

measure for A is a family 

P =<a": aeE> 

of mappings a" such that aý : A"' +C* when aeE, r,, for some seS, and a" e C* for aeE,, . 
Here we say P is based on the clock C. Additionally, we say P is standard if E is standard and 

succ" (t) =1 for every teT. Q 

In this way we count the cost of evaluating an operation on an argument if sE Ew,, for some 

we S*and seS, then for each ae A', the time taken with respect to C to evaluate d' on an argument 

ae A'" is the number a" (a). If c r= Ex,, for some seS, there is no data for the evaluation of c" to 
depend upon other than cA itself: for this reason cp is always a (nonzero) constant. Notice that a perfor- 

mance measure is very general: we do not impose any structure on the performance functions a1' other 
than that they have an appropriate domain (and codomain: notice that we do not consider any constant or 

operation to have zero execution time). 

3.2.1 A-time. 

A -time is an important example of a specific performance measure for an algebra A: A -time is the 
formalisation as a performance measure P, of the uniform cost criterion of Asveld and Tucker[1982]. 

According to A -time, every operation and constant of an E-algebra A has unit computation time; that is, 

for each ae Ew,,, with wXX, o' (a) =1 for each ae A", and for each cE Exo, cp =1. 

A -time is an appropriate performance abstraction for A when we consider A as the starting point 
for an algorithm over A; in this situation, the operations of A are intuitively indivisible, and it is from 

these 'atoms' that we construct more complex operations. It is natural then, to consider the operations of 
A as determining an indivisible time metric with respect to which we can measure the length of compu- 

tation of larger designs. 
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However, when the complexity of an algorithm over A is considered in a situation where it is 

either known or intended that the operations of A are to be implemented over another (lower-level) alge- 
bra B, say, then the computation time of such an operation will be determined by the complexity of its 

implementation over B, and thus unit costs are no longer appropriate; it is the generality of a perfor- 

mance measure that allows us to express and analyse algorithm performance from these different per- 

spectives. 

Example. Let P1 and P2 be performance measures for some algebra A which involves addition (+) on 
the natural numbers. Now contrast the following two performance estimations: 

(V n, m e N) (+ '(n, m) =1) 
(dn, meT) (+'(n, m)=kn+c ) 

for some constants k, c 21. Clearly, P1 measures A -time, whereas P2 counts the cost of addition as if, 

perhaps, it were known or intended that to add n to m, we increment m by one n times. 

3.2.2 Extensions of Performance Measures. 

The idea behind the way a performance measure P was defined for an algebra A was that each 

named operation d' had its own performance estimation op. Consequently, when we augment A with a 

new operation we need to extend P with a new estimation function. 

Definition. Let P be a performance measure for algebra A. Also let f : A* -->A, for some we S+ 

and seS, and let ).: A' -3C+ where Cis the clock on which Pis based. Now let (A f) be the 

algebra defined in Section 3.15. We define the extension of P obtained by adding X, to be the perfor- 

mance measure Q where 

ag 

for each c re (E, ý). In symbols we write Q =(P). ). 

if v=$ 
otherwise 
Note that Q is a performance measure for (A f) 

which is based on clock C. O 

We also need to define a performance measure for (A, f) when f is a vector-valued function. We 

do this as follows: 

Definition. Let P be a performance measure for Z-algebra A. Also let f : A" ->A' have coordinates 
f I..... f, " (so m=Iv 1), and let ).: A" -+C+ where C is the clock on which P is based. Now let (A, f) 

be a (Z, tb)-algebra as defined in Section 3.15. We define the extension of P obtained by adding X, to be 

the performance measure Q where 

ag 
a,, 

for each ae (E, (). In symbols we write Q= (P, %). 

ifa=41E 

otherwise 
Note that Q is a performance measure for (A f) 

which is based on clock C. p 

Notice that according to the last definition, we charge the same cost (k) for all the coordinates of 
f. More generally we might expect f; to have its own performance estimation ? for i =1,..., m. How- 

ever, whilst it is easy to frame such a definition, the given definition is adequate for our purposes. 
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3.2.3 Order Notation. 

Given an S-sorted algebra A, we will often want to compare the performance of two (rivaling) 
algorithms which solve the same task: if a1 and a2 are two algorithms with common input domain A" 
for some ueS, then the time complexities of a1 and a2 will be expressed as functions X1,12: A" __- 'C+ 
where C is a clock and X,; (a) is the time taken to execute a; on input a for i =1,2. 

The simplest case is when X1 =X, that is when %1(a) = X2(a) for each ae A", expressing the fact 
that al and a2 have identical performance. However, more generally we wish to express the fact that 
whilst two time complexities may not be equal, they might be equivalent in the sense that they are the 
same to within a constant factor. 

Definition. Let X be any set, let C={0,1,2,... }, and let X1, X2: X --C be any functions. Then we say 
X1 is order ) if there exists a constant cz1 such that for every xeX, 

ß, 1(x) Sc. %(x) 
In symbols we write X1= O(X2). 

Additionally, if )1= O(k) and 72 = O()L1) then we write XI=72 and we say Xt and 72 are of 
equivalent order (or simply: equivalent). 

3.3 THE SPECIFICATION SYSTEM PR. 

We can now define the system PR. In Section 3.3.1 we will define a collection of syntactic terms 
built up from E which we call PR schema. In Section 3.3.2 we define a semantic evaluation mapping (or 
`meaning' function) which interprets each scheme as a function on A, and in Section 3.3.3 we conclude 
the definition of PR by defining a length of computation function for PR schema. In the next section we 
will show how synchronous computation can be formalised using PR. 

Note: throughout the remainder of this chapter, sort sets, signatures and Z-algebras are always 
assumed to be standard. 

33.1 Syntax. 

Let E be an S-sorted signature. We define PR(E) to be the S{kS±indexed family 
PR(E) = <PR(E)k,, : u, v e S+> 

of sets PR(E),,,,, of PR schema. Each set PR(E)U.,, is defined uniformly in u and v by induction as fol- 
lows: 

Basis Schema. 

(i) Constant Functions. Let a=c' for some cE Ex. for some seS, and for some wE St Then 
aE PR(E)w.,. 

(ii) Algebraic Operations. Let cc =a for some aE Ewe, for some we S+ and for some s r= S. Then 
aE PR(L)w,,. 

(iii) Projection Functions. Let a=U; " for some we S+ and some i with 1: 9i: 5 Iw 1. Then 

aE PR(L)ww, 
" 
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Induction: Function Building Tools. 

(iv) Definition-by-Cases. Suppose a=nc((3, a1, a2) where for some u, v e S+ Or= PR(E).,,, and 

al, a2e PR(E),,,,. Then ae PR(E),,,,. 

(v) Vectorisadon. Suppose for some mz1, a= < al...., a,, > where for some uE S+ and ve S", 
a; e PR(E),,,, for i =1,..., m. Then ae PR(E),,,,. (Here al,..., a. are called the coordinates of 

a. ) 

(vi) Composition. Suppose a= a2o al where for some u, v, w e S+, al E PR(E),,, and a2 e PR(E), V.,,. 
Then ae PR(E),,,,. 

(vii) Primitive Recursion. Suppose a= (alai) where for some u, v ES, a1 e PR(E), 
,, and 

a2E PR( rrr,,. Then aE PR(L rr, v 

Notation. 

(i) We write 'a e PR(E)' to abbreviate 'a e PR(E),,,, for some uvE S+'. 

(ii) When ae PR(E),,,, for some u. v E S+, a is intended to denote or define some function on A with 
domain AN and codomain A'; for this reason we refer to the pair (u, v) as the functionality or 

ariry of a. (Sometimes we will refer to u and v as the domain and codomain of a meaning that u 

and v are the ̀ names' of the domain and codomain of the function defined by a). Q 

Sometimes it will be useful to consider PR schema which do not involve instances of `(, )': 

Definition. A scheme ae PR(E) is said to be a polynomial scheme if a does not involve any subscheme 

of the form *(al, a2). More precisely, we define the S+x Stindexed family 

POL(E) = <POL(E)".,, : u, v E S+> 

of all polynomial schema where for each u, v E S+, POL(E)". r-PR(E)",,, comprises exactly those 

schema definable by clauses (i)-(vi) of the previous definition. 

3.3.2 Semantics. 

Let A be an S-sorted algebra. For each ae PR(E), the meaning of a over A is denoted by Qa]A 

where [. ]A is the Sic Stindexed family - 
[AA = <["]Ä'V: u, V E S+> 

of mappings Each mapping LIA" ]A" (ambiguously denoted Il. ]A) is 

defined uniformly in is and v by the induction on the structure of a scheme cc r= PR(E)",,, as follows: 

Basis Schema. 

(i) Constant Functions. If a= cw for some cE Ex, for some seS, and for some we S+, then 
[a]A : Aw --3-A, 

is defined by 
(daEA") ([a]A(a)=cA 

(ü) Algebraic Operations. If cc= C1 for some ae Ewe� then 
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[a]A : A' ->A, 
is defined by 

(Va EA'") (Qa]IA(a)=a'(a) ) 

(Notice that since ae PR(E), w*X. ) 

(iii) Projection Functions. If a=Ui for some we S+and some i with 1515n w, then 

[a]A :Aw _*Aw, 

is defined by 
(Va =(a1,..., aw)E A') ( [a]IA(a) = ai 

Induction: Function Building Tools. 

(iv) Definition-by-Cases. Suppose a=rc(ß, al, a2) where for some u, v e S* (3e PR(E),, and 

ai, a2E PR(E)",,. Then 

[alA : A" _ A' 

is defined by 
[aJA (a) if Qß]A (a)=tt 

(d aE A") I[aJA (a)= 
[ajA (a) if Q3]A (a) =ff 

(v) Vectorisation. Suppose for some m 21, a=<al,..., a, > where for some ue S+ and ve S', 

a; E PR(E),,,,,, for i =1,..., m. Then 

[a]A : A"-BAI 

is defined by 

(Va E A") ([a]A (a) = (QallA (a ),.... Qa. JA (a )) ) 

(vi) Composition. Suppose a= ago al where for some u, v, w ES +P al E PR(E,, r and a2 E PR(E)�,., . 
Then 

[alA : Ak-A' 
is defined by 

(da E ATM) ( [a]IA(a) =Q A(QOIIDA(a) 

(vii) Primitive Recursion. Suppose a=*(al, a2) where for some u. v e S", al E PR(E),,,,, and 

a2 e PR(E),,,,,. Then 

QaIA: T xA" ->A" 
is defined by 

(Va e A") (Q«DA (O, a) = Qalh (a) ) 
and 

(f ite T)(V ae A") (QaJA (t+l, a) = [a2]A (t ,a , QaIA (t, a )) ) 
Definitions. LetfA : A" -+A", and suppose there exists some ae PR(E),,,, such that [a]A =fA. Then 

depending on the context, we say fA is (simultaneous) primitive recursive (over A), fA is PR- 

computable (over A via a), and/or fA is defined by (simultaneous) primitive recursion (over A). The 

collection of all (simultaneous) primitive recursive functions over A is denoted PR(A ); that is, 
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PR(A) ={ [a]A :ae PR(E) } 

When fA e PR(A), 'af' usually denotes that scheme such that Qaf]A =fA; here we say of computes 
fA (overA). 

Discussion. There are three points about the preceding definitions worth mentioning. First, note that the 

use of 'A' as a subscript in ' Qa]A' means more than QaJA being a function on the carriers of A; here it 

means that A is an algebra in which all the operation symbols involved in a have interpretations. 

Second, it is important to realise that the function [. ]A is defined for any standard E-algebra A; in 

particular, if A is standard and B -MA or B =A, then B is also standard and so Q. DB is a well-defined 

quantity. 

Finally, although we call PR(A) the class of 'simultaneous' primitive recursive functions over A, 

there does not seem to be much that is simultaneous about the functions defined by Definition 3.3.2, in 

particular, those defined by clause (vii). However, let us consider the interpretation of a scheme 

ae PR(Z) which is of the form a=*(ai, a2). Suppose al e PR(E),,,, and ate PR(E).,.,, for some 

u, v e S;; then ae PR(E),,.,,, (by clause (vii) of definition 3.3.1). By Definition 3.3.2 we have 

Qai]A : A" -->Av, 
QaJA: TxA"xA'->A", 

and so 
Qa]A :T xA" --"A" 

Since [aIA is just a function on A (for a general scheme ae PR(E)), let us further simplify the 

notation by letting f, g, and h, abbreviate [alA, [a1]A, and [a21A, respectively. Then from clause 

(vii) of Definition 3.3.2 f is defined by: 
f(O, a)=g(a) (1) 

f (t+1, a) =h (t, a ýf (Q, a )) 

for each teT and aE A". We can see that this definition is simultaneous by focusing on how vector- 

valued functions are defined. Just for the moment, let f and g be any functions with fg : A" -*A' 

say, and suppose f and g have coordinate functions f 1..... f. and g l,..., g�, (so Iv =m). If f is defined 

by 
(VaEA") (f(a)=g(a)) 

When expanded in terms of coordinate functions, this definition becomes 

(daeA") ((ft(a)..... f. (a))=(gt(a)..... g. (a))) 

which, when regarded coordinate-wise, is an obvious short-hand for defining f t,..., f,, by 
fi(a)=g1(a) 

fm(a) = g, "(a) 
for each aEA". 

Returning to the function f as defined by (1) above, we see that (1) is simultaneous when we 
`unfold' the definition of f to obtain a definition of the coordinates f t,.... fk of f in terms of the coordi- 

nates g t..... gk of g and the coordinates h t,..., hk of h: 
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f 1(O, a) =g (a) 

fk(O, a) = gk(a) 

f 1(t+1, a) = hl(ta f l(ta),..., fk(t, a)) 

fk(t+l, a) = hk(t, af l(t, a),..., fk(t, a)) 0 
Before we consider an example, let us complete the definition of PR by defining a length of com- 

putation function for PR-schema. 

333 Performance. 

Let P be a performance measure for algebra A. For each ae PR(E), the length of computation 
function for cc with respect to P is denoted by Xp (a) where Xp is the Stindexed family 

Xp =<ÄXp: ueS+> 

of mappings Xp :U PR(E),,,, , [A" -'Cl. Each mapping Xp (ambiguously denoted )) is defined 
'. r 

uniformly in u by induction on the structural complexity of a scheme a r= PR(E),,,., as follows: 

Basis Schema. 

(i) Constant Functions. If a= c* for some cc: Ix,, for some seS, and for some wE S*, then 
alp(a): A"---ý--C' 

is defined by 
(Va e A") ( Xp (a)(a) = c" 

(ü) Algebraic Operations. If a= a for some aeE..,, then 
XP (a): A* , -a-, C+ 

is defined by 
(Va E A*) (X, (a)(a) = c" (a) ) 

(iii) Projection Functions. If a=U; " for some we S*and some i with 1515n = (w 1, then 
Xp (a): Aw -+C+ 

is defined by 

(daEA'') (XP(a)(a)=1 ) 

Induction: Function Building Tools. 

(iv) Definition-by-Cases. Suppose a=nc(ß, al, a2) where for some u, v e S+ ße PR(E),,,,, and 

a10% r: PR(E),,,,. Then 

? p(a): AK - C+ 
is defined by 

(Va e A") Xp(ct)(a) = X. p (ß)(a) + 
Xp (ai)(a) if [PIA (a) = tt 
Xp(a2)(a) if [PIA(a)=ff 
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(v) Vectorisation. Suppose for some m 21, a= < al,.... a,,, > where for some ue S* and veS, 

a; e PR(E)k,,,, for i =1,..., m. Then 

X (a) : A" -ý-C+ 
is defined by 

(Va E Au) ( Xp(a)(a) = maxf). p(ai)(a),..., Xp(am)(a) }) 

(vi) Composition. Suppose a= ago a1 where for some u, v, w e S+, al e PR(E)I,, �, and a2 e PR(E)�,, v. . 
Then ae PR(E),,. 

lp (a) : A" -'C+ 
is defined by 

(Va e A") (XP ((x)(a) = XP (a1)(a) + XP (a2)([Oal]A (a ) 

(vii) Primitive Recursion. Suppose a=*(al, a2) where for some u, v e S+, al e PR(E),,,,, and 

aZ E PR(Z) 
M ,., . Then 

X, p(a): T xA"-->C* 
is defined by 

(Va e A") (Xa (a)(O, a) = Xp (ai)(a) ) 

and 
(V te T)(V ae A") (Xp (a)(t+i, a) =Xp (a)(t 

ra) + X. 
p (a2)(t, a, [a]A (t a )) ) 

Discussion. In this way we calculate the cost of evaluating a scheme over A. For operations of the 

underlying algebra, the cost of evaluation is just the cost as determined by P. Projection functions 

always access a single datum and so we charge one unit for evaluation. For the vectorisation of func- 

tions a= < al,.... 06 > we imagine al,..., a,,, to be executed in parallel, and the time taken to evaluate a 

on an argument a is the maximum time taken to evaluate any coordinate scheme on a. For the composi- 

tion of functions a= ago a1, we imagine each a; to be executed sequentially, and thus we take as the time 

required to evaluate a to be the sum of evaluation ai and a2 on their respective arguments. The costs of 

nc(ß, al, a2) and *(al, a2) are arrived at along similar principles. 

Example. As a simple example of how to calculate with PR schema, let A be an S-sorted E-algebra 

where De S, and E is defined by F.,,, ={ 5} and E,,,, =0 for other w, s. If e is a linear ordering SD 

on A, =D then we can show the maximum function on D is PR-computable over A as follows: 

Semantically, maxo :D xD -->D is defined by 

a if b5Da 
mazD {a, b b otherwise 

for each a, b E D. 

To show maxD e PR(A ), we must find some an= E PR(E),,,, such that Cc . computes the max- 

imum function. To do this, we let the semantic definition of `maxD' guide us in synthesising such a 

scheme. 

We start by considering an element (a, b) eD xD. We must first access a and b by projecting 

them out of the vector (ab). This is achieved by projection functions of course: notice from clause (iii) 
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of Definition 3.3.2 we have 
Q. U1°IIA(a, b) =a and [U2'1A(a'b) =b (2) 

Now, to compute 'b5pa' we must apply 'SD' to the pair (b, a) (and not (a, b) of course). Notice 

U; °e PR(E).,, for i=1,2 (by clause (iii) of Definition 3.3.1), and so if we define a by 

a= <Ui°UjI> 
then ae PR(E)m,,, (by clause (v) of Definition 3.3.1). Furthermore for each (ab) eD xD we have 

[aIA(asb) = 1< UflUl' AA (ab) 

= (EU2 IA(a, b), QU11A(a, b)) 

(by clause (v) of Definition 3.32) 

= (b, a) (3) 

from (2). Now, since the codomain of a is the same as the domain of So, we have that ß defined by 

ß =: 5* a is a well-defined member of PR(E)D,, (by clause (vi) of Definition 3.3.1, via clause (ii)). We 

now calculate as follows for each (ab) eD xD: 
[PIA(a, b) = [s0 «DA(a, b) 

= [ADA ([alp (a, b )) 
(by clause (v) of Definition 3.32) 

=: 94 ([a]IA (ab)) 

(by clause (ii) of Definition 3.32) 

=s"(b, a) 
(from (3)) 

=5D(b, a) (4) 

The three schemes ß, Ul°, and Ur, are of the appropriate arities to combine with the 'DC' opera- 

tor let 
Cýmx = DC(Ui , 

ur) 

Then aE PR(E)�, (by clause (v) of Definition 3.3.1). Furthermore, for each (a, b) eD xD, we calcu- 
late 

Q ]IA (a, b) = QDC(5, UP, Us°°)1A (a, b ) 
[Ul ]A (a 

, 
b) if [P]IA (a, b ) 

[U2 ]A (a 
rb) 

otherwise 

(by clause (iv) of Definition 3.3.2) 

a if : 5D (b, a ) 
b otherwise 

(by (4) and (2)) 

= maxo { ab } 

Thus maxD is PR-computable over A. 

We can calculate the complexity of evaluating a, on an argument (a, b)e DxD according to 

A -time as follows: 
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XP(a)(a, b) = %p(DC(ß, Ui°, U2°))(a, b) 

{xP(Ur)(ab) if QN1A (ß, b) = tt 

= XP (R)(a, b) + Xp (U2°)(a, b) otherwise 
(by clause (iv) of Definition 3.3.3) 

XP(Ur°)(a, b) ifsv(b, a) 
_? p(ß)(a, b) + Xp(Us)(ab) otherwise 

(by (4)) 

1 ifsn(b, a) 
= Xp (R)(a, b) +1 otherwise 

(by clause (iii) of Definition 3.3.3). 

_ Xp(ß)(a, b) +1 

By definition of ß we now have 

pr(a)(a. b) = Xp(ae: 5)(a, b) +1 
=Xp(a)(a, b)+XP(: S)(Q(L]A(ab)) +1 

(by clause (vi) of Definition 3.3.3) 

= Xp (a)(a, b) + 5" (QaJA (ab)) +1 

(by clause (ii) of Definition 3.3.3) 

= 7lp (a)(a, b) +2 
(since P measures A -time) 

= )p(<Ur°, Ur>)(a, b) +2 
(by definition of a) 

= max{ 7lp(Ull)(a, b),? p(Ur')(a, b) }+2 

(by clause (v) of Definition 3.3.3) 

=max[ 1,1}+2 

(by clause (iii) of Definition 3.3.3) 

=3 0 

Discussion. We think of a PR scheme in two ways. First and foremost, we think of a scheme as a func- 

don definition; for example, <U2 , Ui > defines a function which swaps its two arguments. Secondly, we 

think of a PR scheme as a program: there is an algorithmic procedure associated with any PR function 

definition, namely the procedure which begins with a scheme a and an argument a, and comprises the 

step-wise process of calculating [a]A (a) according to the rules given by Definition 3.3.2. Note that this 

procedure is effective in the sense that there are always finitely many steps in calculating Qa]A (a) for 

any a and a. 
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33.4 Derived Schema and Function Building Tools. 

As further examples of how we use PR, we introduce notations for expressing identity functions 

and the iteration of a function. 

Identity Schema. For any we S*we define 

Id" = <Ui ,..., U�> 

where n= 1w I. 

Thus Id' e PR(), and for any weS, IId" DA is the identity function on A"; that is, 

(Va E AW) (Ild*3A(a) =a) 

Iteration. Given a function f : A' -->A' for some we S4, we can define a new function 

g: T xAw-_A* where for each tET and a eAw, g(t, a) is the result of applying f to at times. 
Traditionally g (t, a) is denoted by f ()(a), and g is called the iteration off . It will be useful to include 

iteration as a new function building tool; we do this as follows: 

Let aE PR(E),,,,, for any wc St We define the iteration of a, it (a) by 

Na) _ (Id"', a04U21M... Ul' >) 

where n=Iw1. (Notice it (a) E PR(E),,,,,,,. ) 

The following lemma establishes that [it (a)]A (t, a) = [aQ)(a ): 

EI 

335 Lemma. Let ae PR(E), for any wE StThen for any aE A'", [it (a)DA satisfies: 
lit (a)IA (O, a) =a (5) 

[it (a)]A (t+l, a) = IalA (lit (a)]A (t, a )) 

for each teT. 

Proof. Let n=Iw. Then 

it(a) = *(Jdw, ß) 

where 

)J <U +*,..., Ul > 

Choose ae A'. We must show that for every teT, the value of [it (a)1A (t, a) is as predicted by (5). 

First we consider hit (a)LA (Oa ): 
Q (a)DA (Oa) = [*(Id' IPAA (O, a) 

= [Id' ]A(a) 

=a 
since Id v is an identity scheme. Thus the value of [it (a)DA (O, a) is as predicted by (5). 

Now notice that since Iw I =n, for any vector xe A'"""' the last n coordinates of x are x; for 

i =2+n,..., 1+2n, and thus if x= (tab) for some teT and some ab e A'", then x 1+,,, t =b; for 

i=1...., n. Hence for each teT and ab ee A*, 

[R]A (t, a, b) = ICOA (Q<U2',...., U1f+2 >]IA (t ra, b )) 
= Ia1IA(b) (6) 
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Now choose teT and aE A'". Then, 
[it (a)LA (t+1, a) = [w(Id ', ß)IA (t+1, a ) 

= 151A (t, a. Qit (a)IA (tºa )) 

= QaIA (Qit (a)JA (t, a )) 

by (6). Thus the value of [it (a)]IA (t+l, a) is also as predicted by (5). Q 

3.4 SPECIFYING SYNCHRONOUS ALGORITHMS. 

In Section 2.4 we saw how the behaviour of a synchronous algorithm or network N could be 

mathematically described via the concept of a value function VN, and we noted that this VN was intui- 

tively defined by simultaneous primitive recursion over the network's module specifications. In this 

chapter we have formalised simultaneous primitive recursion over a general collection of functions, and 

so it is now time to make explicit the connection between the account of synchronous algorithms given 
in Chapter 2 and the formal system PR; in doing so we provide the necessary formalisation promised in 

Section 25.1. 

Our principal objective is to show that VN e PR(A) for some algebra A. Before we do so how- 

ever, we need to introduce some notation for describing synchronous networks in the context of a 

many-sorted algebra. (Recall that in Chapter 2 synchronous networks were described as processing data 

taken from a single-sorted algebra A. ) In Section 3.4.1 we introduce many-sorted algebra notation for 

describing the data sets and operations involved in a synchronous network, and in Section 3.4.2 we gen- 

eralise network specifications to the many-sorted case. 

3.4.1 Data Types. 

The formal specification of a synchronous algorithm begins with a formal specification of the data 

sets and operations involved in that algorithm. In this section we will explain how a given synchronous 

network determines an algebra that is the basis for the formal specification of the network. 

Since every synchronous algorithm involves a concept of time, and for convenience we regard 

Boolean values and operations as always available, it is appropriate to begin formal specifications with 

the smallest possible standard sort set S and signature E: thus S={T, B} and 
E= (zero, succ, tnze, false, not, or, and) (see Section 3.1.8). Now let N be a k-module synchronous network. 
We adjoin new sorts to S and new symbols to E in the following way. Suppose we intend the ith 

module m; of N to be specified by a function fj : Awt`)-+AS(; ) or fj: T XA'"(1)--->A, q) for i =1...., k; 

then we extend S by adding the sort symbol s (i) and all the sort symbols comprising the word w (i) for 

i =1,..., k. Also for i =1,..., k we provide a name for f; by adjoining a new symbol a; to E «), '(j) if m1 
is intended to be autonomous, or to E,,,, otherwise. 

(Note that a sort symbol for the kind of data supplied by each source should also be adjoined to S. 

However, since we will always assume that the output channel of every source is an input channel to 

some module, the sort associated with the source is included in S when we consider the domain of the 

function that specifies the module in question. ) 
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A picture of N together with the sort set S=SN and signature E=EN described above are 

sufficient to describe the syntactic aspects of N; of course, to specify the actual data sets and operations 
involved in N we give a E-algebra A =AN. Finally, since network input varies with time in the general 

case, we must introduce streams of data; this is accomplished by moving from A to the stream algebra 
A =AN (see Section 3.1.8). 

3.4.2 Generalised Functional Specifications of Network Behaviour. 

In Section 2.4 we introduced six functions for specifying the behaviour of an n-source, k-module, 

m -sink synchronous network over data set A. In summary, these functions were (in order of appear- 

ance): 
:T X[T-->A"]XAk >Ak VN 

FN :Tx [T -*A"] xA k -->A'" 
GN: [T->A"]xAk->[T-*AM] 

vN, WN :T XA" xA k -. Ak 
f, v: T XA XAk-. -A' 

At this point the reader should recall the definition and interpretation of each of these functions. 

Below we generalise each function to the more general case where different modules can hold different 

kinds of data and different sources can supply streams over different data sets. 

Consider the occurrence of `Ak' in the domains of the above functions: this is the set of all vectors 

of data that can be collectively held by the modules of N at any given time t in the single-sorted case. 
Now, in the many-sorted situation described just above, the ith module holds data from A, y) for 

i =1,..., k, and so at each time teT the k modules will collectively hold some vector from A" where 

w =s(1) "". s(k). Intuitively then, this A" is the appropriate generalisation of Ak to the many-sorted 

case. 

Now consider the occurrence of'A" in the domains of our functional specifications: this is the set 

of all vectors of input data that can be collectively supplied by the sources of N at any given time t in the 

single-sorted case. In the many-sorted case the i th source of N can supply data from A/(j) for some sort 

symbol s' (i) ES =SN for i =1,..., n, and so the appropriate many-sorted generalisation of A" is A" 

where u= s'(1) """ 1(k): at each timet then sources of N collectively supply a vector from A". 

What is the many-sorted generalisation of `A"? For J=1,... 'mß let ij be the (unique) index of 

that module of N that supplies the jth sink with output data; then since that module holds data of sort 

s (i j) (in the many-sorted case described above) the j th sink receives data also of sort s (ij ). Clearly, the 

many-sorted generalisation of A" is A' where v =s (i 1) """sQ. ). 

It should be clear that under these hypotheses on the sorts of data associated with the sources and 

modules of a synchronous network, the specification methodology of Section 2.4 extends uniformly to 

the many-sorted case to yield generalised specifications of the form 
VN :Tx [T ---3.. A u] XA" -+A'" 
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FN: Tx[T-, A"]xAw-, A" 

GN : [T -->A"] xA'" ->[T --'A"] 
vN, WN: TXA"xAw->A"' 

IN :T XAM xA' -'A" 

As far as possible we will use the notation introduced above in a consistent manner. For example, 

we will continue to use n, k, and m, for the number of sources, modules, and sinks, respectively, of a 

synchronous network, and u, w, and v, for the `types' of the vectors collectively held at a network's 

sources, modules, and sinks, respectively. 13 

We now formalise the specification of synchronous algorithms as promised earlier. In Theorem 

3.4.3 we prove VN and FN are members of PR(A), and in Theorem 3.4.4 we prove vv and IN are 

members of PR(A) (note that we do mean `A' here and not `A': static specifications do not involve 

streams of data). 

3.43 Theorem. If N is an n -source, k-module, m-sink synchronous network over S-sorted E-algebra 

A =AN, then VN e PR(A) and FN e PR(A). 

Proof. To prove the theorem we must find some UN , 
ßN e PR(E) such that QaN]A =VN and 

[3NDA =FN. 

Let us consider VN first. Notice that for us to have [aN]IA =VN, IUNIA must have the same func- 

tionality as VN. Now, under the given hypotheses on N, VN must have functionality 
VN :Tx [T -*A"] xA'" -->A'" 

(for some ue S' and we Sk) and so aN must have arity (Tuw, w); that is, aN must be a member of 

PR(E because then we will have 

QaýA : A11-D" ->A 'Y 

that is, 
QalA : TXA"-xA`"->A"' 

But by definition of A for a general algebra A (see Section 3.1.8) A" = [T -->A"] and A'" =A'", and so 
QaN]A :Tx [T --->A"] xA'" --. >Aw 

as required (cf. Notation 3.1.9). 

Define aN by am = 3K(al, a2) where 
al=<U ..... 

U 

and 

where, if the i th module m; of N is autonomous, then for i =1..... k, 
%j "ý 

where n; is the number of inputs to m;, and for j =1,..., n; , 
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eva1; ° <U1 "'" +Ui14p"w> if the jth input to m; is from source In, 
'ni = Ulm +q 

if the j th input to m; is from module my 

and if m; is nonautonomous, then for i =1,.... k, 

where n; and are as above. 

It is not difficult to check that aN e PR(Eas required. Also, a routine inductive proof on t 

(which we also leave as an exercise) yields 
(V tE T)(V a: T -'A")(d xeA 4') (IaN DA (t, x) = VN (t .a x) ) 

That is, VN = QaNIIA and so we conclude VN e PR(A). 

Let us now consider FN. Since N has m sinks we must have 

FN: TX[T_. A"]XAw->AI 

for some ve S"`, and so we seek a scheme ßN e PR(E) of arity (Tuw, v ). 

Recall that FN is defined from VN by 
FN(tAsx) = 1[N(VN(tvgsx)) 

for each t r= T, a :T ->A", and xe Aw, where nN (in the many-sorted case) is the function 

nN : A' ->A' defined by 
7CN (a l,... ak) = (aye 

.... a1 ) 

(Here, as in Sections 2.4.3 and 3.4.2, for j =1,.... m, ij is the unique index of the module whose output 

channel supplies the j th sink of N. ) 

Now define cr.. E PR(E ).,,, by 

acx = <UrI,.... ul > 

Then Qo, JIA =nN. It should now be clear that if we define ON by 

ON =° aN 

then ON e PR(E ,,,,,, as required, and IONIA(t, a, z)=FN(t, a, x) for each teT, a : T-'A", and 

xe A'. (Again we leave the reader to fill in the details. ) Thus FN E PR(A) as claimed. 

3.4.4 Theorem. If N is an n-source. k-module, m-sink synchronous network over S-sorted Z-algebra 

A =AN, then vN e PR(A) and fNEPR(A). 

Proof. To prove the theorem we must find some 7N, 8N E PR(E) such that tyv]A =vN and 18N]A =fN" 

Let us consider vv first. Recall how the definition of vN (Section 2.4A) was almost identical to the 
definition of VN (Section 2.4.1). It should not be too surprising then that the required scheme Ti is 

almost identical to aN: we define TN =*(y1,? 2) where 

, yl = <Ux'+I,..., Ux'+k 
and 

where, if the i th module mi of N is autonomous, then for i =1...., k' 
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YU = a, o«Ii,... 0710ý> 
where n; is the number of inputs to n:;, and for j =1,..., ni, 

1Ulm if the j th input to m; is from source In,, 
ýý - Ul' ý+q if the j th input to m; is from module mq 

and if m; is nonautonomous, then for i =1,..., k, 
Tumw 72i "2 (7i Ul 

9711 ---v Ila, 

where n; and nl...., T)A, are as above. 

We leave the reader to check that TN e PR(E),,, �,, ý, (so that QY]IA has the same functionality as 
fN :T xA" xA'" -'A"), and that 

(Vt E T)(VR E AM)(VX E AW) (L? NIA(t, arx) = vN(t, a, x) ) 

That is, vN = QYNIA and so we conclude vN e PR(A). 

Let us now consider fN. Since N has m sinks we must have 
fN: TxA"xAW--; o. A" 

for some ve S', and so we seek a scheme SN e PR(E) of arity (Tuw, v). 

Recall that fN is defined from vN by 

f0 4A) = nN(VN(t, a, X )) 
for each tET, a: T -+A", and xE A' (where nN is as in the proof of the previous theorem). 

Clearly, the required scheme SN is 
SN -°YN 

(where a, e PR(& )w,,, is as in the proof of the previous theorem). 

3.45 Notation. 

Henceforth we will always use UN, ßx, 7N, and SN, for the schema that formalise VN, FN, vN, and 
fN, respectively. 

Discussion. We have now completed the task of formalising the specification of synchronous algo- 

rithms as promised in Chapter 2. There are two outstanding points to be covered however. 

First, notice that since PR comes equipped with a complexity theory, we have a formal account of 

the performance of synchronous algorithms for free: the time complexity of a synchronous network from 

which we derive performance specifications PSpec (cf. Section 2.5.2), is simply A, p(aN) where P is any 

chosen account of the complexity of the data and operations of A-. The case that P is A -time is of partic- 

ular interest to us, and we will consider this in the next section. 

Second, it is interesting to note that GN, the stream transformation version of FN (see Sections 

2.2.4 and 2.4.3) is not simultaneous primitive recursive over A, that is, GNdPR(A ), despite the facts that 

FN e PR(A) and GN is `almost the same as' FN: in the many-sorted case FN and GN are maps of the 

form 
FN: T X[T-*A"]XAW->A' 

and 
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GN : [T--->Au] XA'" --al, [T --*A"] 
respectively, and (as in the many-sorted case) GN is defined from FN by 

GN@*x)(t) = FN(: 
rarx) 

for each te T, a: T--*A", andxeA'". 

Technically, the non-primitive recursiveness of GN means that unlike VN, FN, vN, and fN, the 

function GN cannot have any formal status within our theory of of synchronous systems. One way of 

resolving this problem is to extend PR by adding functional abstraction as a new function building tool: 

given a map f: XxY -3Z where X. Y, and Z. are any sets, the map g= abs (f) :Y -'[X -'Z] is 

said to be defined from f by functional abstraction if for each yeYg (y) :X ---)-Z is the function 

defined by g (y)(x) =f (x, y) for each xeX. (Note that GN = abs (FN). ) We will not do this because we 

are mainly interested in value functions for which abstraction is not necessary, and adding abstraction 

complicates the class of functions. 

A similar problem arises with the function WN, the alternative version of vN that was defined from 

VN via the operator 'fix' in Section 2.4.4. We noted that wN =vN and vN is simultaneous primitive recur- 

sive over A (Theorem 3.4.4), so wN e PR(A). However, the function fix is not simultaneous primitive 

recursive over A and so we read 'vN' for `wN' whenever the formal status of functional specifications is 

an issue. 

3.4.6 Exercise. 

Prove fix4PR(A) and GN4PR(A). (Hint: recall the definition of A for general A from Section 

3.1.8. Notice that A contains no constants of sort 'stream', and no operations whose codomain is a set of 

streams: that is, for sES, E w, =0 for every wE V) 

3.5 THEORETICAL RESULTS FOR PR. 

In this section we gather together an assortment of facts about PR. The section has three parts: in 

the first part we derive formulae that predict the complexity of simple kinds of PR schema; in particular, 

we give a formula which is useful for calculating the complexity of a synchronous algorithm over A with 
respect to A -time. In the second part we lay the theoretical foundations of PR as a hierarchical 

specification language; in particular, we make more substantial our informal remarks concerning aug- 

mentation of data types made in Section 3.1.5. In the final part we prove that PR-computability is an iso- 

morphism invariant. 

Performance Lemmas. Here are two simple facts whose proofs we leave as exercises: 
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3.5.1 Lemma. Let A be an S-sorted Z-algebra and let P be a performance measure for A. Suppose 

a=)K(a1, a2) E PR(E),.,,.. for some u, v E S" and some cc1 E PR(E),,,, and a2 E PR(E), 
��,,, . 

Further sup- 

pose there exist c, k Z1 such that 

iii ae A") (Xp (ai)(a) _c) 

and 
(d to T)(V ae A")(v/b e A') (Xp(cz)(t, a, b) = k) 

Then 
(V tE T)(V aE A") (7lp (a)(t, a) =c +kt ) 

3.5.2 Lemma. Let A be an S-sorted algebra and let P be a performance measure for A. Also let 

ce POL(E)«, for some u, v e St If P measures A -time then there exists kaZ 1 such that 
(daeA") (Xp(a)(a)=ka) 0 

Putting Lemmas 3.5.1 and 3.52 together yields: 

3.5.3 Lemma. Let A be an S -sorted F. -algebra and let p measure A -time. Suppose 

a=*(al, a2) e PR(E)I,,,,, for some u, v e S+and some a1 e POL(E).,,, and Dais POL(E)T,,,,,,,. Then there 

exist c, k Z1 such that 
(V to T)(Va E A") (kp (a)(t, a) =c +kt ) 

Proof. Immediate from Lemmas 3.5.1 and 3.5.2: in fact, Xp(a)(t, a)=kal+k2t for each tET and 

ae A". 13 

The significance of these lemmas (especially Lemma 3.5.3) is that they hold for all (standard) E 

and A, in particular E and A 

3.5.4 Lemma. Let N be a synchronous network over A =AN, and let aN e PR(E),,,,,, and 

ON e PR(E)T1O1,, be as defined in Theorem 3.4.3. If P measures A -time then 
(VteT)(Va: T--'A")(VxeA') (XX(ax)(t, a. x)=1+3t) (7) 

and 
(Vt E T)(dl1 :T -'A")(Vx E AW) (Xp(ON)(t, a x) = 2+3t) (8) 

Proof To prove (7) first recall that aN is defined by aN =*(al, a2) where 
al = <U:, l,,..., U > 

and 
a2 =< a211..., a2, k > 

where az, j e POL(E); thus by (the proof of) Lemma 35.3, we have 

(Vt e T)(V a :T -*A")(Vx e Aw) (%p(a)(t, a, x) = kau+kgt ) 

Thus it remains to show that k,,, =1 and k, %=3; that is, that 

(V a :T ->A")(VX e A'") (? p(ai)(t, a, x) =I) (9) 

and 
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(fitET)(Va: T---31-A")(VxEA') (AP(a2)(t, a, x)=3) (10) 

The claim (9) is obviously true; let us prove (10). 

Using the relevant scheme definitions and the definition of Xp as given by Definition 3.3.3, for 

each tET, a: T ->A", and x, y e A' we calculate as follows: 

X, («x)(t, ax, y) = ). p(<as. i..... ac2, k >)(t, ax, y) 
=1mas {7lp(ait)(t, axy)} (11) 

Now, for any ie [1, k] with m; autonomous we have 
Xp («23)(t q xy) = Xp (Q, e< ßl...., P., >)(t ,ax, y ) 

_ X'P(<ßlN.., ßR, >)(t, a, X, y) + QP(Q<ß1n... ß., >]A) 

_ X. p(<ß,...., ßý, >)(t. 2, X, y) +1 
(since P measures A -time) 

max. =1 
, 
(Xp(ß, )(t, ax, y)} +1 (12) 

Now, for j =1,..., n; (and for i =1,..., k ), if we let R (i ,j p) abbreviate 'the j th input to module i is from 

source In. ' and R' (i , j, q) abbreviate 'the jth input to module i is from module mq' then 

p(eval . o<j r'4', Ul TUWW 
>)(t, a. x, y) if R(1 ) 

)Lp(ß; )(t, a, x, Y) ý%wP 
Xp(V1 +k+g)(t, a, X, Y) if R'(ij, q) 
l+eval' (Q<UjLP ', Ufl '>]JA(t, a, x, y)) ifR(IJ, P) 

=1 ifR'(i, j, q) 

1 1+1 ifR(i, jp) 
1 ifR'(i, j, q) 

(since P measures A -time) 

2 ifR(i, jp) (13) 
1 ifR'(i, j, q) 

It is equally easy to show that (13) also holds when m; is nonautonomous; this we leave as an 

exercise. Now let us call a module interior if none of its inputs comes from any source. Then from (13) 

we have 

1 if interior (i) 14 
I sa .{X, 

P (01)(t, a, x, y) }=2 
otherwise 

() 

Thus using (14) in (12) we get 

1 if interior (i) (15) ?p (° )(t, a'x, y) =1+ 12 otherwise 

and using (15) in (11) we have 

Xp(%)(t, a, x, Y) =3 (16) 

(since there must be at least one noninterior module). 

Since (16) holds for all teT, a: T->A", andx, y e A'", we have k. =3 as required. 
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We now prove (8). First recall that ON is defined by IN = a, ° aN where a, is as in Theorems 3.4.3 

and 3.4.4. Now, since a,, is a vectorisation of projection functions, we have Xp (a., )(a) =1 for each 

ae A*. Thus, for each teT, a: T ->A", and xe A'", we have 

71r(ßnr)(t. a, X) = Xp(aoax)(t. a, x) 
?P (UN)(t. a rx) + XP (CO((QOLNIA )(t'a 

rx )) 

=1+3t+1=2+3t. 

Discussion. The preceding lemma informs us that when we specify a synchronous algorithm in PR, we 

specify the algorithm in terms of concepts that are lower level than that of an algorithmic clock cycle and 

thus aN actually specifies an implementation of N. Said differently, the lemma reveals that PR(A) is a 

model of synchronous computation: a model in which a `step' of an algorithm is modelled by three 

actions: reading the clock; reading in input, and evaluating a function on the input; if we charge one time 

unit for each action (A -time) then of course n steps of the algorithm requires time 3n. In contrast, if we 
interpret a step as a time metric then the time required to execute a synchronous algorithm for n steps is 

n (by definition: it takes n steps to execute an algorithm for n steps! ). 

For completeness we conclude this part of the current section with the static counterpart of Lemma 

3.5.4: 

3.5.5 Lemma. Let N be a synchronous network over A =AN, and let yN E PR(E)Tww and 
By E PR(E)Tw,,, be as defined in Theorem 3.4.4. If p measures A-time then 

(VIE T)(ba E A")(dx E AW) (Xp(YN)(t, arx) = 1+21) (17) 

and 

Proof. Exercise. 

(VieT)(daEA"XVxEAW) (Xp(SN)(trarx)=2+2t) (18) 

Augmentation Lemmas. In this second part of the current section we will state and prove a lemma 

concerning PR schema defined over an augmented data. type. Ultimately this lemma is not used until 
Chapter 7 where it appears as a preliminary technical result; however since the lemma is of interest in its 

own right, we will explore its implications here at a more leisurely pace. 

Given a (standard) algebra A, PR(A) is the set of all functions definable by primitive recursion 

over A. Alternatively, in an informal way we can think of PR(A) as the collection of all tasks which are 

solvable over A by means of a primitive recursive program. Now suppose thatfA is some single-valued 

function on A; for definiteness, suppose ft : A' -4A, where w and s are drawn from the underlying 

sort set S. We can augment A with fA to form the algebra (A JA ), and intuitively, since (A /A) has more 

basic operations than A we expect to be able to solve more tasks over (A IA) than we could over A; 

mathematically, we anticipate PR(A IA)ZPR(A ). Now consider the following statement: 
IAEPR(A)=:, - PR(AfA) a PR(A) (19) 

This statement (or assertion: (19) is the essence of the lemma we will eventually prove) can be regarded 

as a computability result which has implications for the theory of hierarchical design of algorithms 
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(ultimately synchronous algorithms). 

Generally, computability results express bounds on what can be computed or solved with a partic- 

ular model of computation. Of course, such results are foundational for computer science (there being no 

point in trying to solve a given task if it is already known to be impossible). Again generally, if Lt and 

L2 are programming languages and T(L1) and T(L2) denote the tasks solvable by L1- and L2-programs 

respectively, then the computability theorist is interested in if and when T (L 1) C T(L2), T (L2) CT (L t), 

or T (L 1)=T (L2), expressing that what can be solved with L1 is less than, more than, or just the same as 

what can be solved with L2 respectively. 

Now, we have argued above that (as sets of solvable tasks) PR(A) and PR(A JA) satisfy 

PR(A) c PR(A JA) and (we claim) fAE PR(A) . PR(A f A) a PR(A ). For general sets X and Y, 

X cY and XMY together imply X=Y; furthermore, PR(A)CPR(AJA) independent of whether 
fA e PR(A), and thus 

fAe PR(A) PR(A fA) =PR(A) 
In fact, we can do better than this: primitive recursiveness of fA is not only sufficient for PR(A JA) to be 

equal to PR(A), it is also necessary; that is, 

fAePR(A) = PR(AJA)=PR(A) 

To see why the reverse implication holds, first notice that any operation aA of an algebra A is always 

primitive recursive over A (trivially. if A has signature E, then a= ae PR(E) by clause (ii) of Definition 

3.32, and moreover [a1A is defined to be e). Since fA is an operation of (A JA ), we have 

fA e PR(AJA) and thus fe PR(A) (since PR(AJA) and PR(A) have the same members by 

hypothesis). 

Now let us return to what (19) has to say about hierarchical design. Quite simply, it is this: to 

solve a task by means of a primitive recursive program over A, it is sufficient to find a primitive recur- 

sive program which solves the task over some other algebra (A JA) and then to establish that fA is 

PR(A )-computable (for then it follows that we can solve the task over A). In other words, bearing the 

discussion at the end of Section 3.1.5 in mind, the statement (19) is a theoretical justification of top-down 

design. 

We can elaborate on this last remark by exploring (19) at the level of PR schema. By definition of 

PR(A), fA E PR(A) iff there exists some of E PR(E)W, (when fA : Aw ->A, ) such that Qaf]L =fA. 
Now suppose ae PR(E, 4)) is some scheme which solves a task T, but in doing so involves the symbol 4) 

as a name for the function fA. Since [oc. ]J) e PR(A JA) by definition, (19) asserts that 

QarI(AfA) E PR(A ); to be more precise it asserts that there is some other scheme o4 e PR(E) such that 

QaTIA =QaT](A fA). This means that not only is there a program over (E, ¢) which solves T, but also one 

over E. In other words, (19) implicitly asserts that there is a correctness preserving transformation form 

programs over (E, $) to programs over E. 

Let us consider an example to see where this transformation comes from. 
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Example. Consider the task T of computing the maximum function on a set D that is linearly ordered 
by a relation SD . We suppose that T is to be solved by means of a PR program over some S -sorted E- 

algebra A whereSD is named by :5eE, , _-9t =5D :D xD --']B, D =A, and IB =A, for some symbols 
D, B e S. Thus the required solution to T is a scheme ar e PR().,, such that 

(Va, beD) (flar]JA(a, b)=maxD{a, b}) 

One natural algorithm for solving T is expressed in terms of 2D (rather than ----5D): letting `z' be a 

symbol to name ZD, take a? to be the scheme 
ar = DC(2, ur, Ur) 

Then ao e PR(E, 2; DD, D)mp and if B= (A , ZD) then for each a, b eD we have 

[ar]a (a, b) _ [Dc(>zU r, U °)IB (a ,b) 
[Ui 1iB(ab) if V]B(a, b) 

QU2° 1IB (ab) otherwise 
ja if28(a, b) 

=b otherwise 

a if ZD(ab) 
b otherwise 

= maxD { a, b } 

Thus aT solves T but over B= (A, zD ). 

It is easy to see that 20 e PR(A) however, let a2=5o<U2°, Ur°>, then ate PR(and it is 

easy to check that [oEZ]A (a, b)=2D (a, b) for each a, b e D. According to (19) we should now have 

2D e PR(A) . PR(A, zp) a PR(A) 

so there must be some cTE PR(E) such that [ai ]A = [aTDB (recall B =(A >D)); such a scheme aT is 

the required solution to T over A of course since out uses only the operations of A and 
[a ]JA =[aT]e =maxD 

It is not too difficult to see that aT can be obtained from CET by substituting a2 for the symbol Z in 

aT. Let us denote this substitution by aj. = ccr { %/Z } (generally the notation `{ (3 /0 }' is to be read as 
`except that ß is substituted for 4, '). It is easy to check that cT is the scheme a,. of the previous exam- 

ple, and hence [aL]A =[ DA =ten " Notice that we do not need to prove that aT solves T: correct- 

ness of cc; is already guaranteed by what we have said about (19). 13 

Returning to a more general setting, we let {(3 /0} be the transformation 
[0/ýI: PR(E, ý) -->PR(L) 

where for each ae PR(Z4, ), a{ ß/4, } is obtained by substituting ß for every occurrence of 4, in a. It is 

intuitively clear that (and this is supported by the example) if we S+and sES are such that 4, e 

then ß must have arity (w, s) in order that the transformation {ß /0} preserves the arity of any scheme to 

which it is applied. Moreover, is again intuitively clear that if B is a (E, ¢)-algebra in which 0 is inter- 

preted as [M]A' then {0 /0 1 will not only preserve the arity of a scheme to which it is applied but also 
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its meaning, and hence its correctness. 

Analogously, if P and Q are performance measures for A and B respectively then the complexity 
of evaluating any scheme over (E, ¢) will involve the complexity of evaluating 4, °, namely 4; if 4 is 
identically the cost of evaluating ß, namely Xp(ß), then we expect (ß/0 } to preserve the complexity of 
each ae PR(E, 4), that is, if ae PR(E, 4),,,,, for some uveS; then we expect 

Q= (P. Xp(ß)) (da eAM)( )Lp(a( /ý})(a)= Q(aXa)) (20) 
Importantly (20) predicts the complexity of the transformed scheme without us having to calculate it at 
the lower level (that is, with respect to P: we only need to calculate the complexity of ß with respect to 
higher level Q and the complexity of a with respect to P). 

Exercise. In the context of the previous example, let P be any performance measure for A and let 
Q= (P ap (a2)). Now prove 

(Va, b E D) (Xp(a? ')(a, b) = XU(aT)(ab) ) 

Further Observations. We have seen how PR may be used to make theoretical observations about the 
hierarchical design of algorithms: we have seen a transformation between collections of high- and low- 

level PR schema that is correctness and performance preserving. We think of PR(E) as a programming 
language and thus the principle content of (19) and (20) is that they assert the existence of a correctness 
and performance preserving compiler c: PR(E, ý) -PR(E); existence of this compiler is of paramount 
importance for it underwrites top-down design: we design at a high-level where an algorithm can be 

phrased in terms of abstract primitive operations making the algorithm amenable to formal verification; 
by using a correct and performance preserving compiler, we do not need to verify the algorithm at the 
level of its implementation where the algorithm may be so complex as to be impossible to verify in prac- 
tice. 

We will return to consider compilers in later chapters. Now we must prove (19) and (20). 

Actually, we will prove slightly more general results: we prove that (variants of) (19) and (20) 

hold for vector-valued functions. By way of preliminary explanation, recall that when A is augmented 

with a vector-valued function fA =(f 1,..., fm) we augment A with the coordinates f 1,..., f, 1 of fA, and 

the signature E of A is extended with a symbol 4; for each coordinate f. Now, we want to show that if 

fA e PR(A) then PR(A fA)aPR(A). However, if fA e PR(A) then for some ße PR(E) we have 

ff% =f A" Given a scheme aE PR(E, (D) where to show that there exists some 

a'e PR(Z) with [a']A =[a](AfA), it follows that since each 4j names the ith coordinate of fA (viz fj), 

we must replace 40; by some ß; E PR(E) such that [ß j ]A =fj for i =1,..., m; notice that ß1= Uj'o ß is such 

a scheme when the codomain of ß (or fA) is v (or A"). 

Below we define a map c=c(ß, 0) which realises this substitution; we will then establish that 

given aE PR(E, (b) c (a) has the same arity as a. Finally we prove that c is both meaning and perfor- 

mance preserving thus establishing (19) and (20) (as special cases). 
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3.5.6 Definition. 

Let E be an S -sorted signature for some sort set S. Also let ßE PR(E)�",,, " for some u', v' E S, and 
let _ ($1..... $, ) where m'= I v' I and { 4I,..., 0., }n E= f. Now let (E, c) = (E, D; u', v'). We define 

c=c (ß, b) : PR(F, 4>)--PR(E) 

by induction on the structural complexity of arguments ae PR(7,4D) as follows: 

Basis Cases. 

(i) Constant Functions. If a= cw for some cE for some seS, and for some weSI, then 

c (a) is defined by 

c(a)=a 

(ü) Algebraic Operations. If a=a for some aE (E, ý)W for some we S*and seS, then c (a) is 

defined by 

_a 
ifa¬E 

c(a) Üi cß if a=ýi eD 

(iii) Projection Functions. If a=U; for some wE S+ and some i with I: Si 5n = 1w , then c (a) is 

defined by 

c(a)=a 

Induction. 

(iv) Definition-by-Cases. Suppose a=Dc((i', al, a2) where for some u, v e S' P'e PR(E).,, and 

a1, a2 e PR(). Then c (a) is defined by 

c (a) = nc(c (5'), c (ai), c (co) 

(v) Vectorisation. Suppose for some m 21, a= < a1,..., a,,, > where for some ue S' and ve SM, 

a; E PR(E),,,,, for i =1,..., m. Then c (a) is defined by 

c(a) = <c(al)..... c(aý)> 

(vi) Composition. Suppose a=a2. a1 where for some u, v, w e S*, al E PR(E),,,. and ate PR(E)w. v. 
Then c (a) is defined by 

c(a) = c(2)'c(al) 

(vii) Primitive Recursion. Suppose a=*(a1, a2) where for some u, v e S+, al e PR(E),,,, and 

a2 e PR(E)T. ,.,, " Then c (cc) is defined by 

c (a) = *(c (al), c (a2)) O 

We now show c is well-defined in the following sense: 

3.5.7 Lemma. Let E. P, b. and c=c (ß, (D) be as above. For every u, v e S± 

c: PR(T, (D)., � ->PR(I)M , 
That is, for every ae PR(E, (D)., �, c (a) e PR(E),,,,,. 
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Proof. Choose ae PR(E, (D),.,, for any u, v e St We show c (a) e PR(E),,., by induction on the struc- 
tural complexity of a as follows: 4 

Basis Cases. 

(i) Constant Functions. Suppose a= c' for some ce (E, 0 , for some seS, and for some weS. 

In this case u =w and v =s, and we must show c(a)e PR(E)w,. However, c(a) =a here, and 

since ce (E, 0), we have ceE since c *4; for any ie [1, m7 (by definition of (E, i)). Thus 

c(a)=a=cw e PR(E)w j 
as required. 

(ü) Algebraic Operations. Suppose a= a for some ae for some we Sand seS. 

In this case u =w and v=s, and we must show c(a)e PR(E)�,.,. First suppose a eL Then 

a= ae PR(E),,,, but c(a)=a; thus c (a) e PR(E),,., as required. Now suppose a=4 i for some 
ie [1, m']. Since $i is adjoined to E.,. #, informing we have w =u' and s= vJ ; so we 

must show c (a) e PR(E)W, where w= u' and s=v. However, c (a) =Ujöß, and ße PR(E),,,,. by 

hypothesis; since Ui"' e PR(E) with arity (v',, /i ) we have c (a) e PR(E) with arity (u', Vj) by clause (vi) of 
Definition 3.3.1. 

(iii) Projection Functions. Suppose a=Uj for some we S+and some i with 1 Si Sn = 1w 1. 

In this case we have u =w and v =w;, and we must show c (a) E PR(E), r,,,,, . 
However 

ae PR(E), W, by clause (iii) of Definition 3.3.1 and c (a) = a; thus c (a) e PR(l)W,., as required. 

Induction Cases. Let ae PR(Z 4') be some fixed (non-basis) scheme with the property that for every 

a, E PR(E, 'b) of less structural complexity than a, if o0 is of arity (u,, vo) for some u�vo e S', then 

c (a. ) e PR(E).. ir.. 

We now show that c (a) E PR(E),,,, when ae PR(Ecb)� 
� according to the four possible following 

Cases: 

(iv) Definition-by-Cases. Suppose a=DC(ß', al, a2). Then ß'e PR(E),,,,, and al, a2 e PR(E),,,,,. 

Since ß', a1, and a2 are of less structural complexity than a, by the induction hypothesis applied to 
ß', a1, and a2, we have, respectively: c (0) e PR(E),,,,; c (al)e PR(E),,,,, and c (az) E PR(E)N,. . Thus 

c ((i'), c (al), and c (a2) are of the appropriate arides to combine with the DC operator yielding 
C (a) = DC(C (ß'), c (al), c (a2)) e PR(ýw. r 

as required. 

(v) Vectorisation. Suppose a= < al,..., a, >. Then a; e PR(E),,,,, for i =1,..., m=IvII. 

Since cc is of less structural complexity than a for i =1,..., m, by the induction hypothesis applied 

to a; we have c (a; ) E PR(E),,,,, for i =1,..., m. Thus c (al),..., c (a,,, ) are of the appropriate arides to 

combine in an instance of vectorisation yielding 

c (a) =<c (al),..., c (a. ) >E PR(E),,,,, 
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Cases (vi) Composition and (vii) Primitive Recursion are no more difficult than cases (iv) and (v) 

and we leave them as exercises. Q 

3.5.8 Lemma. Let E be an S -sorted signature, and let (E, b) be a (u', v')-extension of E for some 

u', v' E St Also let A be a Dalgebra, and let P be a performance measure for A which is based on 

clock C. Also let ße PR(1. )e,,, " and let c=c (ß, I)) be the transformation defined above. If B= (A 1101A ) 

then for every uve S+and for every et e PR(E),,,,,, 

Qc(a)LL =h aba (21) 

Furthermore, if Q= (P, X) where X: A'r -'C+ is any function with X= ilp (ß)), then 
XP (c (a)) = XQ (a) (22) 

Proof. Choose ae PR(T, (D)",,, for any u, v e St To prove the lemma we must show that (21) and (22) 

hold for a. To show that (21) holds we must show 
(Va e A") (Qc (a)]IA (a) = Qa]la (a)) (23) 

Also, to show that (22) holds we must show that there exists constants kl, k2Z 1 such that 
(Va e A") (&p (c (a))(a) 5k1. X, Q ((x)(a)) (24) 

thus establishing ?. p (c (a)) = O(XQ (a)), and 
(Va e A") (Xg ((x)(a) 5 k2. Xp (c (a))(a)) (25) 

establishing 7ßg (a)=O(Xp (c (a))). 

Notice that since X =XP (ß) by hypothesis, there are constants k 1, k2 ' such that 
(Vag EA"ý) (%P(ß)(a') Ski. X(d)) (26) 

and 
(day eA"') (). (a') 5 k2. X, p(ß)(a')) (27) 

We now prove (21) and (22) by induction on the structural complexity of a as follows: 

Basis Cases. 

(i) Constant Functions. Suppose a= c"' for some ce (E, c),,, for some seS, and for some weS. 

To see that (21) holds for this a, we choose ae A'" and calculate as follows: 
Ic (a)1A (a) = [c (c'" )]A (a) 

= Ic'"DA(a) 
= CA 

= C(Ar. ) 
= Qcw1a(a) 

(since B= (A fA )) 

= Qalls(a) 

To see that (22) holds for a=c' choose ae A' and calculate as follows: 

X (c(a))(a)=)P(c"Xa) 

= Cp 
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= C(p. 
X) 

(since c it (D) 

= Co 

= lg(c")(a) 

= Xg(a)(a) 

Since Xp (c (a)) = XQ (a), we immediately conclude X1 (c (a)) =X (a). 

(ü) Algebraic Operations. Suppose o: =a for some ae (E I )w, for some we Sands e S. 

First notice that if ad', that is, if c re E, then c (a) = a, and similar to case (I) above it is easy to 

show that Qc (a)JA = QaIB (establishing (21)) and that Xp (c (a)) = (a) (establishing (22)). 

Now suppose a=ý; for some ie [1, m']. To show that (21) holds in this case, first observe that 

the functions f 1,..., f, �" defined by f1(a) = Qc (4; )IA (a) for each ae A"' are the coordinates of [PIA. To 

see this explicitly, we must show that for every ae 

QIDA(a) _ (f i(a)..... fý(a)) 
Choose aE A"'. Then JOTA (a) is a vector be A" with b= (b 1,..., b, ". ); that is 

IPIA (a) = (b 1,..., bm. ) (28) 

when [P]A (a) = (b 1,..., b, 
"). Now, for i =1...., m', we have 

fj (a) IC (MIA (a) 

_ [Ui "-PIA (a) 
[Ui , JA (QUDA (a )) 

= b; 

(using (28)). 

Thus, 
(f 1(a ).. -" "f, " ýa )) = (b 1...., b, 

"") 
= I[ JA (a) 

That is, f 1..... f, "- are the coordinates of [PIA as claimed: Since ýB is defined to be the ith coordinate of 
Q(3]IA we now have for each ae A", 

Qc («)DA (a = Qc (4t )]A (a ) 
=fi(a) 
= ýB(a) 
= Q4j]le (a) 

= [a1B (a) 

To show that (22) holds for a= 4;, we show (24) and (25) hold for a for some choice of k1 and k2. 

For (24) take with k1=2k 1. Then for any ae A"', 

Xp(c(a))(a) = Xp(c(4t)Xa) 

= Xp(Ui oß)(a) 

= XP (Ui )(lPIA (a)) + %, (R)(a ) 
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=1+ Xp (ß)(a ) 

S 1+ki. X(a) 

(by (26)) 
:52. k'1. X(a) 

(since the codomain of ) is C*= { 1,2,3,... }) 

=ki"o¢(a) 

=kt"XQ(44)(a) 

= ki " 
%(a)(a ) 

It is equally easy to prove that (25) holds for the choice k2=2k?; this we leave as an exercise. 

(iii) Projection Functions. Suppose a=U; " for some we Sand some i with 15 iSn=Iw1. 

Since c (a) =a in this case and a involves no symbols of (D it is easy to see that we will have 

[c (a)]A = [a]B and Xp (c ((x)) =? ((x); the details we leave as exercises. 

Induction. Let ae PR(E, I) be some fixed (non-basis) scheme with the property that for every 

a, c PR(E, qD) of less structural complexity than a, if cc. is of arity (uo, vo) for some uo, voe S", then 
Qc (a)1A (a) = [a], & (29) 

and 
JX, (c (a)) = XQ (a) (30) 

We must now show that (21) and (22) hold in the four induction cases namely (iv) Definition-by- 

Cases, (v) Vectorisation, (vi) Composition, and (vii) Primitive Recursion. We will do case (vi) only. The 

remaining cases are no more difficult than this and we leave them as exercises. 

(vi) Composition. Suppose a= ap al. Then for some we S", al e PR(E),, w and a2 e PR(E),,,, since 

ae PR(E),,,, by hypothesis. 

To see that (21) holds for a, first observe that since a1 and a2 are of less structural complexity 

than a, by the induction hypothesis (29) applied to a; for i =1,2 we have 

10% )]A = QaOa 
That is, 

(V aE A") (Qc (ai)IA (a) = Q«iDs (a) ) (31) 
and 

(Va E A'") ([c(aJJA(a) =Q B(a)) (32) 

Now choose ae A" and calculate as follows: 
IC (a)DA (a) = IC (a2° a1)]IA (a) 

= IC (a, jo c (a1)]IA (a 

= IC (CC2)]IA ([c (al)]IA (a )) 

= IC (a2)]A (Ia1]B (a)) 

(by (31)) 
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= Qaile (Qaile (a )) 

(by (32)) 

= Qa° aile (a) 

= Q«Da(a) 
Thus (21) holds for a as claimed. 

To see that (22) holds for a, first notice that again since al and a2 are of less structural complexity 

than a, by the induction hypothesis (30) applied to a; for i =1,2 we have 
Xr (c (a4 )) =1 (a) (33) 

Thus for some constants kai, kg21 we have 

(a E A") (Xa (c (a1))(a) 5 k,,, "X (at)(a)) (34) 

and 
V [l E A') (%p(c ( )(a) s ko.. (a2)(a)) (35) 

To see that (25) holds for some choice of k 1, take k 1= max{ k, , kg }. Now choose ae A" and cal- 

culate as follows: 
! lp (c (a))(a) = Xp (C (a2° al))(a ) 

= X, p (c (aJo c (ai))(a ) 

= Xp (c (ai))(a) + Xp (c (a2))([c (ai)]A (a)) 
= J1, (c (ai))(a) + Xp (c (ai))(Qa1Da (a)) 

(by (31)) 
5kg .) (ai)(a) + Xp(c (a2)([ailis (a)) 

(by (34)) 

5 kaI .A (ai)(a) + kos. Xg (a2)(QaiJa (a)) 
(by (35)) 

5 max{ k,,, kg }. (XQ («1)(a) + XQ (aJ([a1D8 (a))) 
(since m. p +n . q: 5 max{ m, n 1. (p+q) for any numbers nm p, and q) 

=k,. IQ (agoai)(a) 

= k1. Xa(a)(a) 

Thus (25) holds for a and this choice of k1 as claimed. 

It is equally easy to show from (33) that (26) holds for a and some choice of k2, and thus (22) 

holds for a. 0 

Isomorphism Invariance. In this final part of the current section we will prove that primitive recursive 

computability is an isomorphism invariant; that is, given two isomorphic algebras A and B, what you 

can compute with one is no more than what you can compute with the other (up to isomorphism). 



-85- 

3.5.9 Lemma. Let A and B be S -sorted F. -algebras and let h :A -->B be a Z-homomorphism. For 

each u, v ES and for every ae PR(E)",,,, the following diagram commutes for every ae A": 

A" 
ICOA 

A" 

hTM 

lhv 

B" B" 
Qa]e 

That is, 

(pia e A") (h� (100A (a)) = [a]1a (h. (a)) ) (36) 

Proof. Choose ae PR(E),,,,, for some u, v e St We prove (36) uniformly in u and v by induction on 

the structural complexity of a as follows: 

Basis Schema. 

(i) Constant Functions. Suppose a= cw for some we S+and for some cEE,,,, for some seS. 
Choose aE A'". Then by the definition of QcW]IA for any algebra A, and by the the homomor- 

phism property of h, we calculate 
h, ([a]A(a)) = h, (Qc"]A(a)) 

= h, (c") 
= CB 

= [c"]a (b ) 
for any be B". To show (36) holds in this case, take b =k (a). Then, 

A. (Qa]A (a)) = IIc iJB (hw (a)) 

= [ale (hw (a)) 

Thus (36) holds for a=cw. 

(ü) Algebraic Operations. Suppose a= a for some aeE, r,, for some we S*and seS. Then, 

Choose ae A'. hen by the definition of [a]A for any Z-algebra A, and by the the homomor- 

phism property of h, we calculate 
h. ([a]A (a)) = h: (1ß1A (a)) 

=h, (a''(a)) 

=a8 (k (a)) 

= QQI8(h(a)) 

= Q«le(h(a)) 

Thus (36) holds for a=a. 

(iii) Projection Functions. Suppose a= U; " for some we S+and some i with I: 9i --5n =IwI. 
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Choose a= (a 1,..., a�) e A". Then by the definition of JU, -]A for any Z-algebra A, we calculate 
h (QaIA(a)) ýý(a)) 

Now, h,,,, (a; ) is just the i th coordinate of the vector (h�,, (a 1),..., h (a. )) = h,,, (a 1,..., a. ) EBw. Thus 

h(Qa]A(a)) = [U, "]a(h,,,, (ai).... ýh,; (am)) 

= lUi*], g ( (a I..... a� )) 

= [a]a(h(a)) 

Thus (36) holds for a=Uj . 

Induction Cases. Let aE PR(E),,,, for some u, v e S+ be some fixed non-basis scheme with the pro- 

perty that for each uo, v, E S+, if a, E PR(E).,,. is any scheme of less structural complexity than a, then 

(Va e A"7 (h, (QaIe (a )) = hoch (hM (a ))) (37) 

We now show (36) holds for a according to the four following possible cases: 

(iv) Definition-by-Cases. Suppose a=DC(ß, al, a2). Then ßE PR(E),,,,, and a1, a2e PR(E),,,, since 

ae PR(E)M,, by hypothesis. 

Since ß, al, and a2 are all of less structural complexity than a, by the induction hypothesis (37) 

applied to ß, a1, and a2 respectively, we have: 
(V aE A") (h, ([l]JA (a)) = Qßle (h" (a)) ) (38) 

(da e A") (h, (Qa1LL(a)) = Qalhe(h"(a))) (39) 

(Va e A") (h, (QaJA (a )) = QaJß (h" (a ))) (40) 

Now notice that if [ß]A(a)=tt=tt", then h, ([p1A(a))=h, (tt")=tt° since h is a homomor- 

phism. However, from (38) we have h, ([P]A (a )) = [(3]J e (h (a )), and thus 
[RDA (a) = it" [PDa (h. (a )) = tt ° (41) 

Similarly, we can show 

QfJA(a) =ff" [ßßa(h. (a)) =if8 (42) 

To see that (36) holds for o; choose ae A". Then by the definition of ECOA for any I-algebra A. 

we calculate 
by (Q«DA (a)) = by (QDC(P, al, CC2)1JA (a)) 

1hr(Qa1DA(a)) if QPJA(a)=t: A 

hr(Qa2]A(a)) if QF'1A(a)=ffA 

_ 
Qalla(h. (a)) if [PIA(la)=tlA 

QaJ3 (hr (a )) if QF'1A (a) =fA 

(by (39) and (40)) 

_ 
Q«jDB(hM(a)) if Qß]IB(h. (a))_«° 
Q e(h»(a)) if Qf]B(h�(a))=fB 

(by (41) and (42)) 
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= QDc(ß, a1, acl)la (hu (a)) 

= Q«la(%(a)) 

Thus (36) holds for a=Dc(ß, al, a2). 

The remaining cases are no more difficult than this, and we leave them as an exercises. 0 

Notice that the premise of the preceding lemma is that there is a homomorphism h from A to B, 

and the lemma concludes that for each fA e PR(A) there exists some fB e PR(B) such that 

hefA =fa e h. By symmetry, we can argue that if h': B ->A is also a E-homomorphism then for every 

fB e PR(B) there exists fA E PR(A) such that h'afB =fAah'. Since the existence of homomorphisms h 

and h' together implies the existence of a E-isomorphism 4 (see the lemma in Section 3.1.7), we con- 

clude that primitive recursive computability (or definability) is an isomorphism invariant as previously 

claimed. 

3.6 SOURCES. 

Our treatment of data types as algebras (in Section 3.1) is based on the work of ADJ: our notation 

and development of the subject closely follows Goguen, Thatcher, and Wagner[1978], Wagner[1981], or 

Meseguer and Goguen[1985]; the concept of an abstract data type as presented here (Section 3.1.7) is 

from Meseguer and Goguen[1985]. Other useful references are the bibliography Kutzler and Lichten- 

berger[1983] and the text-book Ehrig and Mahr[1985]. The concept of a clock as an abstract data type is 

taken from Harman and Tucker[1987]. The idea of including streams in an algebra is due to joint work 

between N. A. Hannan, J. V. Tucker, and myself. 

The formal semantics of performance of computation on abstract data types is first discussed in 

Asveld and Tucker[1982] (using norms on data). A more general treatment of the cost of computation 

on abstract structures, equivalent to our performance measures (Section 3.2), can be found in Niel- 

son[1984] where this is used to study Hoare-style proof systems for performance. The concept of a per- 

formance measure was obtained independently by myself. 

Primitive recursive functions first appear defined over the natural numbers in Dedekind[1888]. 

Simultaneous primitive recursive functions (over the natural numbers) were first studied by R. Peter. see 

Peter[1967]. A form of (non-simultaneous) primitive recursion over a single-sorted abstract structure 

first appears in Engler[1968]. Simultaneous primitive recursive functions over an abstract structure are 

due to Tucker and Zucker[1987] (work of 1979). 

The revised form (syntax, semantics, performance) of simultaneous primitive recursive functions 

given here (Section 3.3), and their application to the definition of synchronous concurrent algorithms is 

new and the result of joint work by J. V. Tucker and myself, as are the results in Section 3.5; the precise 

formulation and proof of these results is due to myself however. 
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3.6.1 Excursus on Computability in an Abstract Setting. 

The simultaneous primitive recursive functions may be extended to other interesting classes of 

computable functions on abstract structures. For example, Kleene's least number operator may be 

added to complete the obvious generalisation of Kleene's definition of the partial recursive functions on 
N. More interestingly, simultaneous primitive recursion can be replaced with simultaneous course-of- 

values recursion which together with the least number operator defines a stronger generalisation. Both 

of these generalisations are made in Tucker and Zucker[1987] and it is shown that the first (called the 

inductively definable functions) is equivalent to while-programs and the second (called the inductively 

cov definable functions) is equivalent to while-programs with arrays on a standard structure. This means 
that simultaneous course-of-values recursion is stronger than simultaneous primitive recursion and pro- 

vides the 'correct' generalisation of partial recursive functions from YET to an abstract structure A: many 

of the basic results of recursive function theory (such as the existence of universal functions, the halting 

problem etc. ) generalise to this class of functions. In Tucker and Zucker[1987] there is a thorough sur- 

vey of disparate methods of defining computable functions on an abstract data type including the A- 

register machines of Friedman, the axiomatic techniques of Moschovakis-Fenstad, Platek's inductive 

definability, Normann's set recursion, and Herbrand-GLSdel-Kleene equational definability. They also 
discuss connections with the literature on program schemes. See also Greibach[1975] and Shepherd- 

son[19861. 
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CHAPTER 4 
FORMAL VERIFICATION 

In this chapter we will verify the OE and EOE sorters of Chapter 2. The verifications are built on 
PR-specifications of algorithms, and thus with this chapter we begin to test out the PR formalism. 

4.1 CORRECTNESS THEOREMS. 

We verify OE and EOE by proving the following two theorems: 

4.1.1 Theorem. (OE sorts on streams. ) For each a: T -'D" and xE D", and for each teT. 
fu if -R (t ) G0ß ( , x)(t) = lsort (a (8(t))) if R (t) 

whereR(t) a t#0Atmod(n+1)=0, and8: T--3-. Tisdefsnedby8(t)=t-n-1 for each tET. 

4.1.2 Theorem. (EOE sorts on streams. ) For each a: T --4D" and ye Dand for each teT, 

(,, 
fu if -R (t) GEOE Ü')(t) = lsort (a (S(t ))) if R (t ) 

whereR(t) c- t2n+1, andS: T-- 'TisdefinedbyS(t)=t-n-1 foreach teT. 

Our strategy for proving Theorem 4.1.1 is based on the following two facts: 

(i) OE sorts every ae D" when it is presented to the OE network as a fixed input. 

(ii) The behaviour of OE on streams can be related to its behaviour on a fixed input. 

In a similar way Theorem 4.1.2 follows from (i) and the following fact: 

(iii) The behaviour of EOE on streams can be related to the behaviour of OE on a fixed input. 

Below, after some preliminary notes, we will prove Theorems 4.1.1 and 4.1.2 using Theorems 

4.1.3,4.1.4, and 4.1.5, that make precise the statements (i), (ii), and (iii) respectively. The remainder of 

the chapteris devoted to proving these latter theorems. 

Preliminary Notes. Throughout the proofs we take VoE and VoE to be as defined in Examples 2.4.2. 

Also, unless otherwise stated, we use `V; ' and 'Vt j' to denote typical coordinates of VOE and VEOE 

respectively. 

Recall from Section 2.4.3 that for any synchronous network N (in particular OE and EOE), the 

functions Fv and GN are automatically defined once we have defined the network's value function VN. 

In particular, recall how FN is defined by vectorising those coordinates of VN that describe the output 

sent to the network's sinks. 

We have said that the verification of OE and EOE on streams is a consequence of the fact that OE 

sorts a fixed input. Throughout this chapter ̀fix' denotes the function fix : D" -)[T -)D defined by 

fx(a)(t)=a for each aED" andteT. 
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Proof of Theorem 4.1.1. Theorem 4.1.1 is an easy consequence of the following two theorems: 

4.13 Theorem. (OE sorts any fixed input. ) For each ae D" and xeD 
Voz(n+l, fx(a), x) = sort(a) (1) 

4.1.4 Theorem. (The behaviour of OE on streams can be related to its behaviour on a fixed input. ) For 

each teT. a: Tand xED. 
X lit=O 

VOE (t 
,a x) - 

(2) 
VOE (%re(t. a ). z) if t >O 

where t' = (t -1) mod (n+1)+1 and 8: Tx [T -a-D"] --*[T -->D"] is defined by 6(t , a) =fix (2(t-e)) 

for each teT and a :T -p-D". o 

We will return to the proofs of Theorems 4.1.3 and 4.1.4 later let us prove Theorem 4.1.1: 

Given our remarks following Definition 2.2.3 concerning unspecified values, to prove Theorem 
4.1.1 we must show that for each a: T -+D", xe D", and teT. 

R(t) = GO_v(qx)(t) =sort Ca (8(1))) (3) 

where R and Bare as given in the statement of Theorem 4.1.1. Choose a: T -*D", xE D", and teT, 

and suppose R (t) holds. Then by definition of R we can assume that t is of the form t =(k+i)(n+1) for 

some ke 11, and in this case it is easy to show e =n+1 and t-t' =k(n+1) and so 
R(t) Voe(t. a. x) = Voe((k+1)(n+1), ax) 

= Voe(n+1, A((k+1)(n+1), a), x) 

(by Theorem 4.1.4) 

= VOE (n+1 ju (a (k (n+1))), x ) 

(by definition of 0) 

= sort (a(k(n+1))) 

(by Theorem 4.1.3) 

= sort (a (6(t))) 
(by definition of S). 

We have shown that R (t) Voß (t, a, x) =sort (a (S(t ))); it is also easy to check that FOE=Voe 

(since the i th module of OE is connected to the i th source for i =1,..., n), and thus 
R(t) ý+ FOE (t, ax) =sort (a (&(t))) (4) 

But GOE is defined by GoE(a, x)(t)=FOE(t, ax) and so from (4) we have 

R (t) - GOE(a, z)(t) = FoE(t, a, x) = sort (a (S(t))) 

Thus (3) holds, proving Theorem 4.1.1. C3 

Proof of Theorem 4.1.2. Theorem 4.1.2 is an easy consequence of Theorem 4.1.3 and the following 

result 
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4.1.5 Theorem. (The behaviour of EOE on streams can be described in terms of the behaviour of OE on 

a fixed input. ) For each teT. a: T +D". xe D" and ye D"("+1). and for i =1,..., n and for 

j =0,..., n, 
tZ j+1 V4j(Q, a, Y) =V, (j+1 (a(r j-1)), x) (5) 

We will return to the proof of Theorem 4.1.5 later let us prove Theorem 4.1.2: 

Again given our remarks following Definition 2.2.3 concerning unspecified values, to prove 
Theorem 4.1.2 we must show that for each a: T -+D", ye D"(^*'), and teT, 

R (t) GoE ( , y)(t) = sort ( (6(t ))) (6) 

where R and S are as given in the statement of Theorem 4.1.2. Now choose a :T ---->D ", yeD 

and teT with t2 n+1. Then R (t) holds and from Theorem 4.1.5 we have for i =1,..., n, 
VV,,, (t, a, y) = Vj(n+1 fx(a(t-n-1)), x) 

= Vj (n+1 fix (a (S(t ))), x) (7) 

Thus, by definition of FWe we have 

R(t) Fýoe(t. a. J') _ (Vii, (n+l. aºY)..... V, 
ýý, (n+l, a, y)) 

_ (V 1(n+1, fcx ( (S(t ))). z ). -... 
VR (n+l, fix (a (S(t ))). X) ) 

(by (7) with i =1,.... 
= VoE (n+l, fix(, (S(t ))), x ) 

(by definition of VWE) 

= sort ( (8(t))) 

(by Theorem 4.1.3). 

But GEOE is defined by GEOE (a "Y)(t) =FOE (t a, y) and so 

R(t) _ GEOE`,, y)(t) =FEOE(t, a, y) =sort (a(S(t))) 
Thus (6) holds, proving Theorem 4.1.2. Q 

It remains to prove Theorems 4.1.3,4.1.4, and 4.1.5. 

Proof of Theorem 4.1.3. Theorem 4.1.3 is a direct consequence of Theorem 4.1.5 and the following: 

4.1.6 Theorem. (EOE sorts any fined input. ) For each ae D" and ye D"("+1). 
FEE(n+1Jzx(a), y) = sort (a) 

We will return to the proof of Theorem 4.1.6 later: let us prove Theorem 4.1.3: 

To begin with, consider (5) with t= n+1, j =n, and a =fix (a): Theorem 4.1.5 yields 
Vj.. (n+ltAx(a), y) = VV(n+1 (fIx(a)(O))x) 

for i =1 �... n, for any x r= D" and ye D"("+1). However, fa (a)(0) = a, and so for i =1,.... n we have 

V,,, (n+1� (a), y) = v, (n+1, (a)x) (8) 
for any xe D" and ye D"("+i). 

Now, by definition of VOE we have 
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VOE(n+1, I (a), X) _ (Vi(n+1 (a)s),..., V�(n+1, (a), X)) 
_ (VI.. (n+lx(a), Y)..... V.,. (n+l (a), Y)) 

(by (8) with i =1,..., n) 

= FeoE (n +l, (a ), Y ) 
(by definition of FWE ) 

= sort (a) 

(by Theorem 4.1.6). 

Thus (1) holds, proving Theorem 4.1.3. 

It remains to prove Theorems 4.1.4,4.15, and 4.1.6. 

13 

Proof of Theorem 4.1A. Choose tET, a: T -->D", and x= (x 1,..., x") e D". We show (2) holds by 

induction on t as follows: 

Basis. If t=0 then by definition of V0E we have 
VOE(O, a, x) = (Vi(O, ax)...., V�(0, ax)) 

= (xl,..., x� ) 

=x 

Thus (2) holds for t=0. 
Induction. Suppose that for some fixed leN that we have shown for t=0..... 1, 

X if t =0 Voe(tºax) = Voe(1'. 9(ta). x) if t >0 
(9) 

Then taking the equality expressed in (9) coordinatewise with t=1, we have 
1xs if l=0 

V; (l. a, x) = Vj(r. e(l, a)x) if l >0 
(10) 

for i =1,.... n. We will now show that (2) holds for t =1 +1 according to the two cases: 
Case 1: l =k (n+1) for some keN, and 
Case 2: l *k(n+1)foranyk e N. 

Case 1. Suppose 1=k (n+1) for some keN. Then it is easy to show that r =n+1 and (l+1)'=1, and so 
(l+1)-(l+l)'=1. Thus 

8(l+l, a) = fix(a(l+l-(l+l)ý) 

=hx (a (1)) 

Thus for any ie [1, n ] we have 

V1((l+1)', 9(1+1, a), x) = Vt(1, Ax(a(i)), x) 

= (fix (a MA (0) 

(by definition of Vt ) 

_ (fix (a (l))(O))i 

=ar(l) 

= Vj(1+1, a, x) 
(by definition of V;, since l mod (n+1)=0 by hypothesis). 
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Thus (2) holds fort= 1+1 when l is of the form 1=k(n+1). 

Case 2. Suppose l *k (n+1) for any keN. Then it must be that 1 is of the form 1=k (n +1)+r for some 
k r= N and some reN with 0<r <n+l, and in this case it is easy to show that 1'=r and (l+1)'=r+1, 

and so 1-r. Thus for any ie [1, nI we have 
vt((1+1)', 9(1+1, a), z)=V (r+1, e(1+1, a), x) 

However, it is easy to prove 9(1+1, a) = 0(l, a) and so 

V1((r+1)', e(r+1, a), x) =V (r+1, e(1 , a), x) (11) 
There are now four subcases to consider (which originate from the four possibilities for the value 

Vi (t+l, a, x) in the definition of VOE); these are: 
Case 2.1: i=1; 
Case 2.2: i odd, * 1; 
Case 2.3: i even, #n, and 
Case 2.4: i =n. 

We will consider Case 2.2 only. 

Case 2.2. Suppose i is odd, * 1. Then from (11) and the definition of V; we have 

V; ((l+1)', 0(1+1, a), x) = Vj(r+1,8(l, a), x) 
min[ Vj(r, 0(l, a), x), Vi+1(r, 9(l, a), x)} ifr odd 

max{ V1_1(r, 0(1, a ), x), Vj (r, O(l, a), x) } if r even 
(12) 

(since 0 <r 5n so r mod (n+1) =r* 0). 

However, also by definition of V1 we have 

g; (1) if l mod (n+1)=0 

V1(l+l, a, x) = min[ VV(l, a, x), VV+t(l, a, z)} if l mod (n+1) odd 
1max[ Vj_1(l, ax), Vi(l, a, x)} if 1 mod (n+1) even,: AO 

min[ Vj(l, ax), Vi+j(I, ax)} if r odd 
= max{ V, 

_1(I ax), Vj (l, ax) } if r even 

(since I mod (n+1)=r o 0) 

11mini } ifr odd - max[ v, _i(r, e(r, a ), ), vj (r, e(r, a ), x) I if r even 

(by the induction hypothesis (10), and the fact that 1 *0) 

1min{Vi (r, O(l, a), x), V; +i(r, O(1, a), z)} if r odd 
max{ Vj_1(r, O(1, a), x), Vj(r, O(l, a), x) } if r even 

(since r =r) 
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= V4 ((r+i )', e(r+i, a ), z ) 

(from (12)). 

We have now shown that 
Vj(1+1, a, x) =V ((r+1)", e(1+1, a), x) (13) 

in the case that i is odd and * 1. It is equally easy to show that (13) holds in the three remaining cases 
(namely Cases 2.1,2.3, and 2.4 which we leave as exercises), and so we may conclude that (13) holds 

for i =1,..., n. Thus 
Vo (l+l, a, X)=(Vl(l+l. a, x)r... VR(i+1, U, X)) 

= cV1((l+1); e(1+1, a), x),.... V ((I+l)', e(r+l, a), x)) 
(by (13) with i =1,..., 

Ix if 1+1=0 
= VoE ((1+1)', O(1+1, a ), z) if 1+1>0 
= 

(since 1+1 *0). 

Thus (2) holds for t= 1+1 and so by the principle of mathematical induction (2) holds for all teT 

proving Theorem 4.1.4. O 

Proof of Theorem 4.15. For convenience, let us restate what we must prove: for each teT, 

a :T --'D", xe D" and ye D"(' , and for i =1,.... n and for j =0,.... n, we claim 
t2 j+1 =: Dº Vij(t, a, y) = Vj(j+1 f x(a (t j-1)), x) (5) 

Choose teT, a: T -'D", xe D" and yeD* (*+'). Also fix ie[1, n ] and je [On ]. We will show (5) 

holds uniformly in i and j and by induction on t as follows: 

Basis. If t =0 then t is strictly less than every j+l, and so (5) is vacuously true. 

Induction. Suppose for some fixed IeN that for t=0...., 1 we have shown 
t2 j+l Vjj(t, a, y) = Vj(j+1ju(a(% }-1), x) (14) 

for i =1,..., n and for j=0,..., n. 

We must now prove that (5) holds for t= 1+1; that is we must show 
1+1 i +1 V (t+i, a, y) = v, (i+1, fix((I+1 -1), x) 

that is, 
IZ :j Vj j(r+l, a, y) = Vj(J+1 (a(Ij), x) (15) 

We show (15) holds according to the four cases (which originate in the four possible cases for the 

value V; j(t+1, a, z) in the definition of VDE): 
Case 1: j =0; 
Case 2: i+j is odd with i*1 and j*0; 
Case 3: i+j is even with i xn and j *0, and 
Case 4: i +j is odd with i =1 and j ; 60, or i+j is even with i=n and j *0. 
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Case 1. Suppose j=0. Then laj=1Z0. Also, by definition of V0 for i =1,..., n we have 

V1A(1+1, a, ß') = ac(l) 

= (x ( (1))(0))4 

=Vi (1frx(a(1)), x) 

(for any xe D" by definition of V; ) 

= v. (j±1Ju(a(li))x) 

(since j= 0). 

Thus (15) holds for j =0. 

Case 2. Suppose i+j is odd with i*1 and j *0. Then by definition of Vi j we have 

Vj j(l+1, a, y) = max[ V, 
-lr-i(lay), 

V; r-, (l, a, y)1 (16) 

Now, 1 Zj and so 12 (j-1)+1. Thus by the induction hypothesis (14) with t =1 we have 
Vi-iJ-i(l, A, y) = V1-i(! (a(1 j)), x) (17) 

and 
viJ-i(lay) = (ifix + ((I-1)),. x) (18) 

Thus from (16), (17), and (18) we have 
V; j (1+1, a, y) = max{ V1-i(l (a (1! )), x), V1(l (a (1 j )), X) } (19) 

There are now two subcases to consider. 
Case 2.1: j odd, and 
Case 2.2: j even, * 0. 

Case 2.1. If j is odd, then i must be even (since i+j is odd). Also, since 0<j 5n (j is the column 
index) and so j mod (n+1)= j *0; thus j mod (n+l) is also odd. Thus by definition of Vi j we have 

Vi (j+ifix(a (i ! )), z) = max{ Vi-i(j Ax(a(I-l ), x ), V. (i+ffx(a (I -1)), x) } 

= Vtý (l+l, a, y ) 

(from (19)). 

Thus (15) holds in this subcase. 

Case 2.2. Suppose j is even but nonzero. It is easy to see that j mod (n+1) =j and thus j mod (n +1) is 

also even and nonzero. Also, since i must be odd here (but i* 1), we have 

ViU+1Ju(a (1 J)), x) = max{ V; -i(Ax(a(1 j)x), V1(i (a(1-i))x)} 

(irrespective of whether i=n or not) 
=V; j(l+1, a, y) 

(from (19)). 

Thus (15) holds in the second subcase, and so it holds in the case that i+j is odd with j nonzero; 

that is, in Case 2. 

It is equally easy to show that (15) holds in the remaining two cases (Case 3 and Case 4 which we 
leave as exercises), and so we may conclude that (15) holds for all iE [1, n] and all je [O, n], and thus 

(5) holds for t= 1+1; thus (5) holds for all teT by the principle of mathematical induction, proving 
Theorem 4.1.5. 
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0 

It remains to prove Theorem 4.1.6. As we shall see, this theorem is a direct consequence of two 
facts: Lemma 4.1.8 concerning a class of synchronous networks which we call parallel comparison 
algorithms, of which EOE is an instance; and Lemma 4.1.9 which concerns OE. 

4.1.7 Parallel Comparison Algorithms. 

A parallel comparison algorithm, or PCA, is a synchronous algorithm comprising a rectangular 
array of modules m. j (see Figures 2.8,4.1, and 4.2). The modules of a PCA are like those of the EOE 

network: for a linearly ordered set D, each m; j computes (depending on i and j, and in one time step), 

either the maximum function (on D), or the minimum function, or the identity function. The operation 

of an arbitrary PCA will officially be defined using PR. However, a PCA can be informally described as 
follows: a PCA P, comprises ßz1 columns of nZ1 modules, together with n sources, n sinks, and a 

column of n dummy modules m 1,0,..., m. A, as illustrated in Figure 4.1 (where ß=5 and n= 6). For 

j =1...., ß, the j th column of P has a number of pairs (m, j, mt+lj) of modules where each module in the 

pair has the same two inputs (supplied by mtj_I and mi+lj_1); the intention is that mid computes the 

minimum of the two inputs, and m, +1 j the maximum; we call these pairs of modules interchange pairs. 
Other modules, which are not part of such module pairs, are to be regarded as more dummy modules, 
that is, modules that compute the identity function in one time step. 

We need a notation for expressing the communication structure of an PCA. We do this as follows: 

Definition. A parallel comparison algorithm P for n inputs is denoted by a vector (of vectors) of 

numbers, P= (r 1..... rß) where for j =1,..., ß: 

(i) rj=(rIJ,..., rk, j)for some kj21; 

(ü) 15 r; j<n for i=I,..., kj, and 

(iii) rij-r; +ijI>1fori=1�.., kj. 

We denote the collection of all such PCAs by PCA (n), and if P= (r 1,..., r p) then we say P has 

length ß, in symbols: IPI=P. O 

The notation for PCAs is interpreted as follows. Suppose P= (r t,..., rß) e PCA (n) where for 

j =1,..., ß, rj= (r lJ,..., rk j). Of course, to say IPI=ß is to say that P comprises ß columns of modules 

(or (3+1 including column zero). Each rj describes the jth column as having kj interchange pairs. If 

r; j =1 then the i th interchange pair has its uppermost module on the 1 th row; that is, the i th interchange 

pair is (m1,, , mt+i j ). Condition (ü) above tells us that for a network with n rows rfj is always at least 1, 

and that r,,; +l is at most n. Condition (iii) states that any two interchange pairs on the same column 

never have a module in common. 
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Example. Consider the PCA P of Figure 4.1. It has description P= (r 1,..., rs) where r1=(1,3), 

r2=(2,5), r3=(5), r4=(1,3,5), andrs=(2). 

Figure 4.1- The PCA P. 

13 

A PCA is a synchronous network in the sense that all its modules operate synchronously and in 

one time step and so we can use the network specification algorithm of Section 2.4 to construct a value 
function Vp e PR(A) of a PCA in PR (for the appropriate choice of A): if Pe PCA(n) has length ß then 

P comprises n(ß+1) modules, each of which holds a value from D, and so we will have 

Vp :Tx [T -->D"] xD"(p*1)-3, D"(g*I)" 

It will be helpful later to have an explicit definition of Vp : 

Definition. Let Pe PCA (n) have length ß. We say Vp: Tx [T --iD"] xD 1« »--+D"(P+1) is the PR. 

characterisadon of P if the coordinate functions V, j: Tx [T -+D"] xD"(P+' ->D of VP are defined 

thus for i =1,..., n and for j=0...., ß: 

Vi j (O, a , x) = xi j 
and 

g(t) if j=0 
min(VV j_1(t, a ,x), V, +1 j_1(ta x) } if i =rt j for some 1e [l, k; ] 

Vj, ý(t+l, a, z) _ max[ Vj j_i(t, a, x), V; 
_l j_1(t, a, x)} if i=r, j+1 for some 1e (1, k1] 

V, i_i(t, e, x) if irrt j and i*ri j+1 for any lE [1, k1] 
13 
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Exercise. Describe the EOE network (Figure 2.8) as a PCA PEOE and deduce that the PR- 

characterisation of PEOE coincides with the value function VDE as defined in Examples 2.4.2(3). 

p: Tx [T ->D n]x D" 1)-->D" Note. Given PE PCA(n) with IP I =P, notice that the function F 
(which describes P's output over time) is already defined (see the preliminary notes at the beginning of 

the chapter). Again, it will be helpful later if we see this definition written out: for each teT. 

a" T --+D", and ye Dwe have 

Fp(t. a, y) = (V1. p(t"a, y)...., V., p(t"a, y)) 

where V1jj,..., V�js are (the last n) coordinates of Vp. O 

After a preliminary definition, we can now state the basic fact upon which Theorem 4.1.6 depends. 

Definition. Let D be linearly ordered by 5. We say aR = (a 1,.... a�) e D" is a reverse vector if 

al>... >a. 
(where a >b c: z. -(a Sb )). Notice that if a= (a 1�.., a�) is a reverse vector, then for i, j =1,.... n, 
i<f qa. >aj. 

4.1.8 Lemma. (A PCA sorts a reverse vector ff and only if it sorts every vector. ) Let Pe PCA (n) have 

length ß and PR-characterisation Vp, and let aR e D" be a reverse vector. Then Fp satisfies 
(VY E D'e'l))( FP (F'Tl (aR ), y) = sort (aR) ) 

a (Va E D"X V Y' e D'« '))( FP (fl 1, ftx (a ), Y') -sort (a) ) 

Proof. Postponed. 

Proof of Theorem 4.1.6. To prove Theorem 4.1.6, from Lemma 4.1.8 we only need to show that EOE 

as a PCA PEOE, does indeed sort some reverse vector to show that EOE sorts every vector ae D" as 

required. In fact, we have 

4.1.9 Lemma. (OE sorts any reverse vector. ) For any reverse vector aR e D" and any xe D", 

VoE (n +l, fix (aR ), z) = sort (a f) 

Proof. Postponed. 

To conclude the proof of Theorem 4.1.6, let a =fix (aR) for any reverse vector aR e D". Then 

from Theorem 4.1.5 we have 

Vi.. (n+l, a, y) = Vi (n+1 fcx (a (0)), x) 
fori =1...., n, for each a---3-, D, xe D", and ye D'(""). However, a (0) = aR and so 

Vii, (n+l, a , y) = VV (n+1, fu (aR ), x) (20) 

Thus for any ye D"("+1) we have 
Fo (n+lJ'x(aR), Y)=FEOE(n+1, a, Y) 

_ (Y 
1x(n+1, a, 

J 
)r..., 

... 
(n+1, Q,! )) 

(by definition of FEOE ) 

= (Vi(n+1�fix(aR). x)..... V�(n+l(aR). x)) 
(by (20) with i =1...., 
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= VOE(n+l (aR), x) 

= sort (aR ) 

(by Lemma 4.1.9). Thus EOE sorts any reverse vector and so by Lemma 4.1.8 we have 

(Va EDn Xby ED "("+i))( FEOE (n+1 (a ), y) = sort (a) ) 

which of course proves Theorem 4.1.6. 

Postponed Proofs. We will now prove Lemmas 4.1.8 and 4.1.9. 

Proof of Lemma 4.1.8. In order to prove Lemma 4.1.8 for an arbitrary PCA, we first transform each 
PCA P, to a simpler form Seq (P ), which we refer to as the sequentialisation of P. We then prove 
Lemma 4.1.8 for such sequentialisations and then invoke an equivalence result to prove Lemma 4.1.8. 

Sequentialisation. Consider an arbitrary PCA P=(rl,.... rß). We can transform P into a new PCA 

Seq (P) by spreading each column rj of P with kj interchange pairs into kj distinct columns with only 

one interchange pair per column. If we perform this transformation in a (columnwise) consistent 

manner, it should be clear that P and Seq (P) will produce the same output for the same input, but P will 

take time 1+ß to produce output, whereas Seq(P) will take time 1+ß' where ß'=k1+ """ +kp (1+ß' 

being the length of Seq (P )). (Compare Figure 4.1 depicting a PCA P with Figure 4.2 depicting 

C=Seq(P). ) 

Figure 42 - The PCA C= Seq (P) 

Definition. Let P= (r 1...., rO E PCA (n) where for j =1,..., (3, rj= (r 1J,..., rk j ). Then the PCA 

C= Seq (P) is defined by 
C_ (S 1,1,..., Sk1,1,..., ... )y 1JI..., Sk j, ... 0171 J3 .... 0 Skrß) 

where s; j is the singleton (r j) for j =1,..., ß and for i =1,..., k. (Notice Seq : PCA (n) -->PCA (n); that 

is, for every PCA Pe PCA (n), C =Seq (P) is also a PCA with n rows. ) 



-100- 

A routine inductive proof (which we leave as an exercise) on the length of a PCA yields the fol- 

lowing: 

4.1.10 Lemma. (The behaviour of a PCA is invariant under sequentialisation. ) Let Pe PCA (n) and 
C= Seq (P) have respective PR-characterisations 

Vp :T x[T-*D"]xD* l)_*DIOll) 

and 
VV :Tx (T --->D "] xD"(°"1)-ýD*011) 

where a= ICI and 0=IPI respectively. Then the output functions Fc and Fp satisfy; 
(Va e D")(Vx E D"(ý+l))(Vy E D"(°+1)) (Fp( 1Ax(a), x) = Fc(a+1 (a), y) ) 

4.1.11 Lemma. (Every sequentialised PCA sorts a reverse vector if and only if It sorts every vector. ) Let 

C= Seq (P) for some PCA Pe PCA (n), and let aR be a reverse vector in D. If C has length a then 

(V E D"(°`+i))( Fc (a+1 (as ), y) = sort (ax) ) 

= (Va E D")(dye E DJ«0'))( Fc(a+1, f ix(a), y') =sort (a) ) 

Before proving Lemma 4.1.11 notice that Lemma 4.1.8 is an easy consequence of Lemmas 4.1.10 

and 4.1.11; thus it remains to prove Lemma 4.1.11 (and also Lemma 4.1.9 of course). 

Proof of Lemma 4.1.11. First notice that if C= Seq (P) sorts every vector then of course it sorts any 

reverse vector. Thus we only need to prove that if C sorts a reverse vector then it sorts every vector, that 

is, we must show for every Pe PCA (n) that 

(3b e D")( rev (b) A (V y' E D"(°*1))( Fc (a+1 fix (b ), y') = sort(b) )) 

- (Va e D")(V YeD* (°"t))( Fc (a+l �f1x (a ), y) = sort (a) ) 

where C= seq (P), a= IC1, and rev (b) ab is a reverse vector. In fact, our strategy for establishing 

this result is to prove the contrapositive; that is, we prove that if C does not sort every vector then, in 

particular, it does not sort any reverse vector formally, we make the following 

Claim. For every Pe PCA (n), if C =Seq (P) with ICI=a then 
(3a E D)(3Y e DR(a+'))( Fc(a+1 (a)'y) * sort (a) ) 

_ (V bE D")( -rev (b) V (3y' ED "(°`+i))( FC (ct+1 fiz (b ), y') # sort (b)) ) 

Of course, Lemma 4.1.11 follows easily from the Claim. 

Proof of Claim. First notice that if a= (a 1,..., aR) eD" and Fc (a+1, fi s (a ), y) =beD", then 

bý sort (a) iff for some i and j with 151 <j Sn we have bi > bj when b= (b t,..., b�). Now, for 

i 1,..., n bi is the ith coordinate of Fc ((x+1, fcz (a ), y) which is V1, a(a+1, fix (a ), y) when V l, a,.... V,, P 
are (the last n) coordinates of Vc, the PR-characterisation of C. Thus 

FC (a+1 fix (a ), y) * sort (a) (21) 

p (300M 1: 5i <j Sn A Vi, (a+1�fuc(a), y)>Vj, a(a+I Ax(a), y) ) 
If ae D" and ye D"(°*1) are such that Fc(a+1 fix (a ), y) *sort (a) then (from (21)) it must be that for 

some i and j with 1: 5i <j 5n we have Vj,. (a+1 fx (a ), y) > Vj,, (a+l, far (a ), y ). To prove the Claim 

then, we must show that for any reverse vector be D" there exists some y' e D"('0 and some i' and j' 
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with 1S<<fSn such that V,,, (a+l, fix (b ), y') > Vr. c, (a+1 fix (b ), )' ). We will show that i=i and 
f =j have this property for any y' e D(°+1). Before we do so however, we introduce some alternative 

notation for sequentialised PCAs that will make the proof clearer. 

First, if C is a sequentialised PCA with ICI = a, then we write C= (r 1,..., r, ); for j =1,..., a, 
1 =rj e [1, n-1] indicates that (mj j, ml+IJ) is the single interchange pair on the jth column of C. For 

example, the PCA C =Seq (P) of Figure 4.2 has description (1,3,2,5,5,1,3,5,2). 

Secondly, for an arbitrary sequentialised PCA C= (r 1,..., ra), we define the map fc: D" -->D" by 

fc =f ci --- of i where for j= 

where for i =1,..., n each f, j: D" -3D is defined for each a= (a 1,..., a") e D" by 

min{ ai "ai+1 } if i= rj 
f11(a) = max{a;, ai+i } if i =r1+1 (22) 

ai otherwise 

Notice that for j =1..... n, fj describes the action of the j th column of C in isolation from the rest 

of the network. A routine inductive proof (which we leave as an exercise) on the length of C yields the 

following fact 

For i=1..... n and for each ae D" and ye D"(°*1), 
fc(a)i =V; 11(«+l, fz(a), y) (23) 

where for i =1,..., n, fc(. ); is the i th coordinate of fc which satisfies 
1f14(a) if a=1 

fc(a)i = fi. 
a((f , I- ."" of )(a)) if a> 1 

(24) 

for each aE D". 

If ae D" and yEDJ (") are such that for some i and j with 15 i <j: 5 n we have 

Vj, a(a+1 fix (a ), y) >Vj. a(a+1, fcx (a ), y ), then from (23) it must be that fc (a) j>fc (a)j. Now suppose 

we can show that fc (b ); > fc (b) j for any reverse vector bE D"; then again from (23) it must be that 

Vs, a(a+1, Ax (b ), y') >Vj. a(a+1 fix (b ), y') for any y' e D"(°r*1) proving the Claim. 

It remains to show that any C =Seq (P) has the property that for any i and j with 1: 5i <j5 n 
(3a e DR)(fc(a)i >fc(a)j) (Vb e D")( rev (b) (fc(b)i >fc(b)j )) (25) 

We now prove (25) by induction on a= ICI as follows: 

Basis. If a=1, then Cis the singleton C=(r) where r=rl=ra. Furthermore, it is not difficult to 

check that for each a= (a 1,.... a") e D", fc (a) satisfies: 
n11n{ ak, ak+l } if k =r 

fc(a)k =1 max[ak. ak+l } if k =r+1 (26) 

ak otherwise 

for k =1...., n, and so for any reverse vector b= (b 1,..., b") e D" we have 
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bk+i if k=r 

fc(b)k = bk ilk =r+1 (27) 
bt otherwise 

Now suppose the premise of (25) holds for some ae D" and some i and j with 15 i<j5n; then 

we must show fc (b )i >fc (b) j for any reverse vector be D". Superficially, there are nine cases on i 

and j to be considered; these are tabulated below: 

irr i-r+l *r+1 
j-r 1 2 3 

j-r+1 4 S 6 
rxjsr+l 7 8 9 

Notice it cannot be that i =r and j =r+1 (Case 4) since if this were so then from (26) we would 
have 

fc(a)i =fc(a). = min{a�a, +i }5 max[a,, a, +i } =fc(a), +i =fc(a)j 
contradicting the premise fc (a ); > fc (a) j. Also, trivially, Cases 1,2, and S do not arise, since kj by 

hypothesis. The five remaining cases are all simple; we shall consider Case 6 and Case 9 only. 

Case 6. Suppose r*i *r+1 and j= r+1. Then from (27) we have fi (b ); =bi and f c(b )j= bi+1=bj. 

Thusfc (b). =b; >bj =fc (b)j since i <f and b is a reverse vector. 

Case 9. Suppose r *i *r+1 and r *j *r+1. Then from (27) we have fc(b)i=bj and fc(b)j=bj. 

Thus fc(b )i = b; > b1= fc(b) j since i <j and b is a reverse vector. 

Since (25) also holds in Cases 3,7, and 8 (we claim), we conclude (25) holds when ICI =1. 

Induction. Suppose for some fixed 721, that for any sequentialised PCA C with I C' I =y, and for any 
ijj with 15 i <j: 5 n, we have proved 

(3a E D)(fc(a)i >fc(a)j) (V be D")( rev(b). (fr(b)i >fc-(b)j )) (28) 

Now suppose C= Seq (P) for some PCA PE PCA (n) such that ICI= Y+1. It is not difficult to 

see that if C=(rl,..., rrr) for some rl�.., r1�r e [1, n-1], say, then the PCA C=(rl,..., ry) satisfies 
C' = Seq (P') for some Pe PCA (n). 

Now, fc =f 7+i°f -f ... of 1, where for j =1...., 7+1, f/ =(f 1 j,.... f�j) : D" -->D" is as defined 

by (22), so fc =f, i°fcc (since the first y columns of C and C' are identical). That is, for any aeD, 

and for k=1,..., n, 
fc(a)k =fk;, 1(fC(a)) 

min{fc. (a)kJ'C(a)k+1} ifk=r 

= max{ fc. (a)kfc(a)k+l } if k =r+1 (29) 

fc. (a )k otherwise 
(using (24)). We can now show (25) holds for C. There are five cases to consider. 

Case 1: r *i *r+1 andr #j #r+l 
Case 2: i=r 
Case 3: i =r+1 
Case 4: j =r 
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Case 5: j =r+1 

We will show (25) holds in Cases 1 and 2 only; the remaining cases have proofs very similar to that of 
Case 2. 

Case 1. Suppose r *i *r+1 and r *j *r+1. Then by (29) for any aE D" we have 
fc(a)i =fc(a)i (30) 

and 
fc(a)j =fc(a)j (31) 

Thus from (30) and (31) we have 
(7aED*)(fc(a)i >fc(a)j) Ga EDA)(fC(a)i >fc. (a)j ) 

(Vb ED)( rev (b) (fcc(b) >fc. (b)j) ) 

(by the induction hypothesis (28)) 
(Vb ED")(rev(b) (fc(b) >fc(b)j) ) 

again by (30) and (31). Thus the Claim (25) holds in this case. 

Case 2. Suppose i=r. Since r=i <j we must have j =r+1 or j >r+1. In fact, it must be that j> r+l, 
for if j =r+1, then m;, i and mi+l,, +l are the interchange modules on column y+1 of C, and it so for any 

ae D" we have fc (a ); 5 fc (a) j contradicting a premise of the Claim (25) (so there is nothing to 

prove). 

Suppose j >r+1 then. Now, we cannot have either fC (a ); 5fc. (a )j or f. (a ), +i Sfc (a )j since 

then 

and so 

(from (29)) 

min{fcc(a)rýfc(a)i+t 1: 5 fc, (a)j (32) 

fc(a)i = min(fc. (a)ssfc. (a)r+i } 

5 fcc (a)j 

(by (32)) 
=fc(a)j 

again from (29). Thus f c, (a )i Sfc (a) j, contradicting the same premise of the Claim (25). 

Thus, if there is anything to prove, it must be when f c, (a )i and f c, (a )i+l are both strictly greater 

than f c. (a) j. In this case, notice that since ,=i <j and j> r+l, we have i <j and i +1 <j. Thus by the 

induction hypothesis (28) we have 

fc(b)º >fc(b)j (33) 

and 

for any reverse vector be D*. 

Thus. 

fc. (b )i+i > fc, (b ), (34) 

fc (b )i = min{fc. (b )i, fc. (b )4+1 I 
(by (29)) 
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>fc(b)1 
(by (33) and (34)) 

=Ic(b)j 
(by (29)). 

Thus (25) holds in this case also. 

Since (25) also holds in Cases 3,4, and S (we claim), we conclude that (25) holds when ICI 

thus by the principle of mathematical induction the Claim holds for every C. O 

Proof of Lemma 4.1.9. Let us first define Z=(Z1,..., Z"): [0, n]xD"-+D coordinatewise for each 

te [On ] and for each a= (a 1,..., a") E D" by: 

a1 if i+t even, i Sn-t 

a2"-r-i+t if I+t even, i >n-t 
Zi(t, a) = a, -r+1 

if i+t odd, Ist-1 
(35) 

L a. + ifI+t odd, i>t-1 

Notice that taking t =n in (35) we obtain 
(na) = a"-: +l 

fori=1,.... n, andso 
Z(n, a1..... a") = (a"..... a1) (36) 

We now make the following 

Claim. For i =1,..., n: 
(Vt E [O, n])(Va e D")(Vx e D") (rev(a) . o. (VV(t+1, fix(a), x) - ZZ(t, a))) (37) 

where V1..... V,, are the coordinates of the value function Vor. 

Notice that if aR is a reverse vector, then for any xe D" we have 

VOE(n+1, fzx(aR), x) = (VI(n+l ftx(aR), x),..., V"(n+1Jix(aR)x)) 
= (Z1(n, aR),..., Z"(n, aR)) 

(by the Claim (37)) 

=Z(n, aR) 

= sort (aR) 

(by (36)) which proves Lemma 4.1.9. 

Proof of Claim. We prove (37) uniformly in i and by induction on t as follows: 

Basis. If t =0, then immediately by the definitions of Vi and Z1 for any 16 [1, n], we have for any 

a, x e D" that 
V1 (1+fix (a ), x) =fix (a)(0); 

= a, 

= Z1(0, a) 
(here we have used the fact that i cannot be 0 or greater than n). 
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Thus (37) holds for t =0. 
Induction. Suppose for some fixed k50 that for t=0,..., k and for i =1,..., n we have proved 

(Va e D")(dx e D") (rev (a) V; (k+1 fix (a ), x) = Z; (k, a)) (38) 

We now show that (37) holds fort =k+1; that is, we show for i =1,..., n 
(daeD"XVxeD") (rev (a): V; (k+2Jix(a), x)=Z; (k+1, a)) (39) 

There are four cases to consider, these being: 

Case 1: i+(k+2) is even, i*1, 
Case 2: i +(k+2) is even, i =1, 
Case 3: i+(k+2) is odd, i *n, 
Case 4: i+(k+2) is odd, i =n. 

We will prove the Claim in Cases 1 and 2 only; Cases 3 and 4 have proofs almost identical to those of 
Cases 1 and 2 respectively. 

First notice that since the statement of the Lemma only quantifies over tE [O, n], we may assume 

that k+15 n: if k+1 > n, then the induction step will hold vacuously. Also, it is not difficult to prove that 
for te [l, n] the coordinates Vl,..., V, of V0E satisfy the following equation for any a : T-+D" and 

xED: 
min[ VV(t, a, x), Vi+1(t, a, x)} if i+t even, i *n 

VV(t+1, a, x) = max[ V; 
_1(t, ax), V; (t, ax)} if i+t odd, i #1 (40) 

Vi (t, a, x) otherwise 

Now let ae D" be a reverse vector, let xE D" be any vector, and fix ie[1, n j; we will now show 

that V; (k+2 fcz (a ), x) _ 4-(k+1, a) (in Cases 1 and 2). 

Case 1. Suppose i+(k+2) is even and i*1. Then i+(k+1) is odd with i*1; also k+15n and so from 

(40) we have 
Vj(k+2fu(a), x) = V; ((k+1)+1, fx(a), %) 

= max{ V; _1(k+l, fix (a ), x ), V; (k+1 fix (a ), x) } 

= max[ ? _1(k, a), Z, (k, a)} (41) 

by the induction hypothesis (38) applied to Vi-1 and Vj. There are now two subcases to consider, these 
being: 

Case 1.1: i-15k-1, and 
Case 1.2: i-1>k-1. 

Case Ii. Suppose i-15k-1. Then since i+(k+2) is even here, i+(k+1) is odd and since i-15k-1 we 

have i 5k, that is, i 5(k+1)-1. Thus, from (35) we have 
Zi (k+1, a) = a, *+i-i+i = ak-42 (42) 

Also since i+(k+2) is even, we have (i-1)+k is odd and again i-15k-1; thus from (35) we have 

Zi-1(k, a) = ak-(i-1»1 = ak-i+2 

and thus from (41) we have 
V; (k+2, fix (a ). x) =max{ at-i+z+Z; (k+a) } (43) 

There are now two subsubcases: 
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Case 1.1.1: i5n-k, and 
Case 1.1.2: i >n-k. 

Case I. I. I. Suppose i : 5n-k. Then since i+(k+2) is even, we have that i+k is also even, and so from 

(35) we have 
Zi (ka) = aix (44) 

Substituting for Z, (k, a) from (44) in (43) yields 
V; (k+2, fix (a ), x) = max{ ak.;. z, a;, t } (45) 

Now, the greater of aky+2 and a, +k is the one with the smaller index (since a is a reverse vector): notice 

that k-i+22i+k if i =1, but i *1 by the Case 1 hypothesis; thus k-i+2<k+i and so from (45) we 
have 

V (k+i, AX(a), x) = max{akti+bai+k I 

= ak-i+2 

=Zj(k+1, a) 

from (42). Thus (39) holds in this subsubcase. 

Case I12. Suppose i >n-k. Then again since i+(k+2) is even, we have i+k is even, and so from (35) 

we have 
Zi(k, a) = a2. -t-i+t 

(46) 

Substituting for Zj (k, a) from (46) in (43) yields 
Vi (k+2 , Ax (a ), x) = max{ ak-t+ , a2,, +i } (47) 

Similar to Case 1.1.1 we must now determine which of k-i+2 and 2n-k-i+1 Is the smaller (in 

order to determine which of ak: i+2 and a2. -A.; +I is the larger). Since k+15n we have k <n and so 
2k <2n and so 2k+152n; thus k-i+152n-k-i (subtracting k+i from both sides), and so 
k-i+252n-k-i+l. However, it cannot be that k-i+2=2n-k-i+1 (since this would imply that 
2k+2=2n+1; but 2k+2 is even whereas 2n+1 is odd) and so we conclude k-i+2<2n-k-i+1. Thus, 

from (47) we have 

V, (k+2fcx(a), x) = max{a*.; +ya2�-x-iil } 

= ak-j+2 

= Zj (k+1, a ) 
from (42). Thus (39) holds in this subsubcase also. 

Case 12. Suppose i-1>k-1. Then i>k=(k+1)-1. Also, again since i+(k+2) is even, we have that 
i+(k+1) is odd and again i-1 >k-1; thus from (35) we have 

Z; (k+1, a) = ai-<k+l) = a"_1.. (48) 

Also since i+(k+2) is even, (i-1)+k is odd, and so from (35) we have 

Zº-i(k, a )= a, -1-x 
and thus from (41) we have 

V, (k+2, fix (a )x) = max{ a, -I-k. Zi (k, a) } (49) 

Again there are two subsubcases: 
Case 12.1: i Sm -k, and 
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Case 1.2.2: i >n-k. 

Case 1.2.1. Suppose i Sn-k. Then exactly as in Case 1.1.1 we can show that 
ZZ(k, a) = a; +it 

Substituting for 7j (k, a) from (50) in (49) yields 
V, (k+2 fix (a ), x) = max[ a, -i-at, at+k } 

= ai-1-k 

(since i-1-k <i+k, and a is a reverse vector) 

= Zi (k+l, a ) 

from (48). Thus (39) holds in this subsubcase. 

(50) 

Case 1.2.2. Suppose i >n-k. Then exactly as in Case 1.1.2 we can show: 
Z, (k, a) = a2, I-k-; +i (51) 

Substituting for Z; (k, a) from (51) in (49) yields 
V; (k+2, frx(a), x)=max[ a, -i-k, a2i -i+i} (52) 

However, it is easy to check that i-1-k <2n-k-i+i follows from the fact that i <n+1 and so from (52) 

we have 
V. (k+2, fx (a ), x) = max{ a; -i-k, au-, t-: +t } 

= ai-1-, t 

= 7,; (k+1, a ) 

from (48). Thus (39) holds in this final subsubcase, and hence in Case 1. 

Case 2. Suppose i+(k+2) is even but i =1. Then i+(k+1) is odd and so from (40) we have 
V; (k+2fix(a), z) = V; (k+1, fx(a), x) 

= ZZ (k, a) (53) 

(by the induction hypothesis (38) applied to V; ). Now, since k <n, we have k: 5 n-1 and so i =15 n-k ; 

thus from (35) we have Z (k, a)=a; +k =a1 . Also i+k is even since i+(k+2) is even and so from (53) 

we have 
V, (k+2, ix (a )x) =a i+, t 

Thus to show (39) holds in the current case, we must show that Z; (k+1, a) =a 1+k. Since k 21 we have 

i =15 (k+1)-1 and so from (35) we have 
2 (k+lßß) = ak+l-1+1 =a l+k 

(since i =1) as required. 

Since (39) holds in the remaining cases (we claim), we conclude that the Claim (37) holds for 

t =k+1 and so by the principle of mathematical induction, the Claim holds for every teT. 0 

4.2 SOURCES. 

The origins of the OE and EOE sorting algorithms were mentioned in Section 2.6. The proofs the 

algorithms as stream processors are my own work, although the basic strategy behind the proof of 
Lemma 4.1.11 (using `reverse vectors') is due to R. W. Floyd: see Exercise 36(b) in Knuth[1973] (p. 

241). The concept of a PCA is based on the parallel sorting networks found in Section 5.3.4 of 
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Knuth[1973). Knuth and Floyd do not of course consider stream processing. 

Satisfactory proofs of correctness of synchronous algorithms are extremely rare, even in the 
theoretical research literature on systolic algorithms and verification. In the general scientific literature 

such algorithms are not even clearly described. The careful treatment of the sorting networks given here 
is to be contrasted with that found in the text-book Akl[1985]. For example, the treatment of OE in 

Akl[19851 (p. 41) is at best cursory, and the proof of correctness given there (essentially two diagrams of 
the sorter in operation) is not a proof at all. 
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CHAPTER 5 
FURTHER EXAMPLES 

In this chapter we test out our formalism by using PR to specify and establish the correctness of a 

variety of synchronous algorithms. First, we consider an algorithm for finite impulse response filtering 

(or convolution) found in Brookes[1983]; this algorithm has parallel loading of data. Second, we adapt 
the first algorithm to make an alternative algorithm for convolution that has serial loading of data. 

Thirdly, we consider a new algorithm for recognising palindromes. Finally we consider the matrix- 

vector multiplication algorithm of Kung and Leiserson (taken from Chapter 8 of Mead and Con- 

way[1980]). 

The purpose of this chapter is to convince the reader by means of the number and variety of exam- 

ples (recall we have already specified two sorting algorithms), that a large number of synchronous algo- 

rithms are amenable to our specification technique. Thus our interest lies not in a given algorithm per se, 
but rather in showing that it is specifiable by the methodology proposed in Section 2.4 and subsequently 

generalised and formalised in Section 3.4. 

Each example is treated in the following way: first, we write down a user specification cN of the 

problem at hand; second, we present and informally discuss a synchronous network N to solve the prob- 
lem; thirdly, we formalise the network by writing down its value function VN; finally, we establish the 

correctness of the algorithm. 

5.1 FINITE IMPULSE RESPONSE FILTERING. 

Let R be a Z-algebra for some signature E which involves symbols for zero, addition, and multi- 

plication; for example, let R be a ring with 0. Also, for some fixed constants (or weights) w 1,..., w, e R, 

let fir : R" -->R be defined by 
fcr(a)=wl. a�+ ... +w4. a. -i+t+ ... +ww. al (1) 

for each a =(a,.... a. ) e R4 . 
The finite impulse response filtering problem over R is to devise a synchronous network N with 

clock T =TN which implements the following user specification: 
ON : [T -)--R"] --[T -, R ] 

where for each a: T ---R" and for each teT, 

ON(a(t) 
U if -R(t) 

= 
jfir(a(t_n)) 

ifR(t) 
(2) 

where R (t) e*- I2n. (The ready condition R should not be confused with the ring R of course. ) Thus 

the problem is to compute fir on every input a (0), a (1), a (2),.... 

As preliminary notation, for r =1,..., n, and for c =0,1,2,..., let y,, eR be defined by 
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k-r 

Y,, c = Zwk . a. -k+1(c) (3) 
kal 

Notice y,,,, =fir ( (c)); generally, y, F is sum of the first r terms of fir (a (c)) as given by (1). 

5.1.1 The FIR Algorithm. 

A synchronous algorithm for implementing ON is depicted in Figure 5.1. The network FIR of Fig- 

ure 5.1 comprises n modules ml...., m,,, n sources In and a single sink Out. 

... In; ... 

M ----- mi ----- 

Figure 5.1 - The network FIR. 

Each of FIR's n sources supplies elements of R, and so we represent the the input to FIR as a 

stream a :T --->R" (with the intention that for i =1,..., n, the value supplied by In j at time t is ai (t )). 

The FIR network operates as follows. Initially, at t=0, we imagine each module m; of FIR to be 

holding some initial value x1 e R, and to be about to read a1 (0) from source Int for i =1,..., n. 

For t=0,1,2,..., the value held by each m; by time t+1 is calculated as follows for i=1, ..., n: 

Case i=1. Module m1 first reads a 1(t) from In 1 and then multiplies this value by the weight w 1. 
Case i =2,..., n. Module m; first reads ai (t) from Int and multiplies this value by the weight wj. The 

result of this multiplication is then added to the value held by module m; _1 at time t. Q 

The operation of the FIR network is illustrated for the case n=5 and for t =0,1,2,4,6 in Figures 

5.5 - 5.9 (which are to be found at the end of this chapter). The reader is recommended to scan through 

these figures before attempting to follow the detailed description below. The figures are quite detailed 

and warrant some preliminary explanation: 

Consider a typical figure (Figure 5.7 say). In the figure we see the FIR network at a given time t 
(we have not drawn the sources). Above the network, we see the data which is to be supplied to the net- 

work; the column of data above each module is the stream to be supplied to that module. On the extreme 
left of the figure there is a column of numbers that we have included for reference purposes: the i th 
datum (from the left) in the row of data adjacent to a number k in the column is the datum to be supplied 

to m; at time t =k. For example, considering Figure 5.7, a3(0) is the input to m3 at t =2, and a 1(0) will 
be the input to ms at t =4. A feature of the input data is that for c =0,1,2,..., the coordinates 
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a 1(c ),..., a, (c) of each input vector a (c) do not form a row; the elements are supplied in reverse order 
(the ith coordinate is supplied to module m,,.; +1 rather than to m; ) and with a unit delay between each 

successive element. The symbol `. ' in the figures is used in two ways: below the bands of input data a '. ' 

means 'don't care' (for definitiness the reader may think of these values as zeros). Above the input data 

and extending infinitely upwards, a'. ' means ̀whatever comes next': we have only shown the first three 
input vectors to emphasise the pattern of the input data; actually, the input streams extend upwards 
infinitely; for example, considering Figure 5.7 again, the values directly above a3(2) will be a3(3), a3(4), 

a3(5) etc. Finally, the value situated to the right of a module and slightly below the module's output 

channel is intended to be the value held by a module at the current time t; for example, at t=2 m2 holds 

6 y2, o' and ms holds 'don't care'. 

In tracing the behaviour of FIR (in the figures), it is helpful to notice from (3) above that 

Yr+tr = yr, c + wr+I "a R-. (c) (4) 
for r =1..... n-1, and for c=0,1,2,.... Thus for example, in the figures, where n =5, at t =6 the inputs to 

ms are Y4,2 and al(2) (see Figure 5.9), and so by time t =7, ms holds 
)P4+ w5 

.a 1(2) = Y4,2+w4f1 " as-4(2) = Y4,, A = Ys, 2 =fir (q(2)) 
Let us now consider in detail how fir (a (0)) = y,,, o is computed by FIR with the given input 

configuration. 

Since the input tom1 at t=0 is a, (0) (see Figure 5.5), m1 holds w 1. a �(o) =y 10 at t=1 (see Fig- 

ure 5.6). Since this value is the input to m2 at time t=1 together' with a. _1(0), m2 holds 

wt, a �(0)+w2 . a. _i(0) =y2, o at time t =2 (see Figure 5.7). It is not difficult to see that by t =n, m. will 

hold y., 0=fir(a (0)). 
Of course, during these first n cycles FIR is simultaneously computing other partial sums y, f. For 

example, at t =l the input to m1 is a . (l), and so by time t=2, m1 holds w1. a, ß(1)=y1,1. In fact, it is 

not difficult to see that for the particular input configuration of Figure 5.5, m1 holds yy, r-; at time t for 

t 2: i, and hence m� holds yR, r-. =fir (aa (t-n )) at time t fort 2! n. Before we can prove this fact we must 
f FIR below; first we must formalise the operation of FIR on arbitrary input by defining its value func- 

tion VEIR and from this the stream transformation GFIR. 

5.1.2 Formal Specification of FIR. 

We will now formalise the operation of FIR according to our specification technique: first we for- 

malise each module by specifying its behaviour by means of a function on R, and then we specify the 

value held by each module at each timet by means of a value function. 

Module Specification. For i =1...., n, the operation of the i th module m; is specified by means of the 

function ft defined as follows: first, we define 

f1: R--. >R 
by 

(Va ER) (fi(a)=wi. a 

For i =Z,.... n, we define 
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ff: RxR -*R 
by 

(Va, leR) (fi(a, l)=l+wt. a ) 

(Following Chapter 2, the arguments `a' and 'l' in the above definitions are intended to be mnemonic of 
'the value from above' and 'the value from the left' respectively. ) 

Value Functions. Value functions for the modules of FIR can be immediately obtained from the net- 

work of Figure 5.1. Since FIR has n modules each of which holds a value from R, and n sources each 

supplying elements of R, the FIR network is formalised by the value function 

VFm =(Vi,..., V"): T x[T *R8]xR"--), R" 

where for i =1..... n, V; (tax) is defined for each teT, input stream a: T --3R", and initial values 
xe R" as follows: 

VV (O, a, x) = xi, 
and 

f i(a I(t)) if i=l 
V; (t+1, a x) = fj (a j (t), V1_1(t, a, x )) otherwise 

that is, 
1w1. a1(t) if i=1 

(5) V; (t+l, az) = Vj_1(t, a, x)+wj. a j(t) otherwise 

We note that VFm E PR(A) where A =AFm comprises T =TFtR and ID with their standard opera- 

tions, together with the set R (as a carrier) and f 1...., f� (as operations). 

5.13 Correctness of FIR. 

It is not difficult to prove from the definitions of FIR's value functions that V" satisfies: 
k w 

(VteT)(Va: T-->R")(VxeR") (t2n - V. (t, a, x)_1wk. ak(t-n-l+k)) (6) 
k-1 

Note that this formula tells us the value held by m" for arbitrary input streams a. Now recall from Sec- 

tion 2.4.3 how the output function FN and the stream transformation GN were defined from VN for a 

general network N. Since FIR has a single sink we have FFJR =V". thus from (6) we have 

R(t) FFIR(tra, x)= Zwk. ak(t-n-l+k) 
k-1 

for each toT, a: T -W, and xE R". Thus 
k=" 

R(t) GPIR(a, x)(t)= Fwk. ak(t-n-l+k) 
k-s 

for each a: T -*R", xe R", and teT, which we can write as 
U if -R GFLq(aý)(t)= fr(aý(t-1)...., at(t-n)) ifR(t)t 

(7) 

Comparing (2) with (7) we note that GFIR differs from Ov at those times t for which R (t) holds, 

and so FIR does not meet the required specification (in the sense of Section 2.2.4). However, FIR was 
developed in the context of staggered input data, and so rather than consider GFIR(a, x)(t) for general 
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a: T ---O--R", it is more appropriate to consider GFIR (b, x)(t) where b is a appropriately staggered. 

With this last point in mind, let us define a ̀ staggering operator' 

where for each a: T-. i--R" and teT, 
10 if05t<i-1 

2i-1 `Y: (a)(t) 
aR-i+t(ki(t)) if: 

wherein 7ý,; :T ---3, -T is the function defined by X1 (t) = t-i+1 for each teT. 

For i =1,..., n, Tj (a )(t) is intended to be the value supplied to m; at time t. As a quick check, take 

n =5, i=5, and t=6. Then t2 i-1 and so by definition of Wj and X. we have 

`1'; (a)(t) = T5(a)(6) = as-s+i(? 5(6)) = al(6-5+1) =! &(2) 
which is confirmed in the figures. 

Verification. We now show that FIR meets 4DN with respect to the staggering operator T. 

First notice that for t ýn we have t-n 2O and so t-n-l+k 2k-1 for any keN. Thus by 

definition of Wk for k =1,..., n we have 
'Fk(a)(t-n-l+k) = a,,, k+1(Lk(t-n-l+k)) = a, +i(t-n-1+k-k+1) = a, _k+l(t-n) 

(8) 

Now choose a: T -->R", xe R", and teT with t2n. Then R (t) holds and so from (7) we have 
k-a 

GFIR(T)"Y)(t) _ F, Wk "Tk(a)(t-n-1+k) 
k-I 
k-qt 

_ ZWk 
. a, 

-k+I(t-n) 
k: l 

(from (8)) 

-Iu@(t-n)) 

(by definition of fir). 

We have shown that R (t) GF, R (`P(a ), x)(t) =fir (a (t)); that is, for each a: T --'R" and 

xeR", GFG (`Y(a ), x) is a stream such that for each teT, 

u if -R (t) 
GFnt(`ý'(a ), x)(t) = fir(a(t-n)) ifR(t) 

= ON (a)(t ) 

Since the expression `'(a)' formalises the idea of staggered input data, and since 
GFG ('P(u ), x)= I'N (a) for each a: T -R" and xeR*, we conclude that N =FIR is a correct imple- 

mentation. 
5.1.4 A Serial Loading Algorithm. 

A second synchronous algorithm for solving the finite impulse response filtering problem is dep- 

icted in Figure 5.2. Like FIR the network FIR2 of Figure 5.2 comprises n modules m 1,..., m. and a sin- 

gle sink Out, but unlike FIR, FIR2 only has a single source in. 
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Since FIR2 has a single source which supplies (broadcasts) elements of R to every module, we 

represent the the input to FIR2 as a stream a: T --'R (with the intention that the value supplied by In at 
timet is a (t)). 

The FIR2 network operates as follows. Initially, at t=0, we imagine each module mj of FIR2 to 
be holding some initial value x; e R. and to be about to read a (0) from the source In. 

For t =0,1,2,..., the value held by each m; by time t+1 is calculated as follows for i =1,..., n: 

Case i=1. Module mt first reads a (t) from In and then multiplies this value by the weight w 1. 

Case i =2,..., n. Module m; first reads a(t) from In and multiplies this value by the weight ww. The 

result of this multiplication is then added to the value held by module m; _t at time t. Q 

The operation of FIR2 is illustrated for the case n =5 and fort =0,1,2,8,19 in Figures 5.10 - 5.14. 

The reader is again recommended to scan through these figures before attempting to follow the detailed 

discussion below. (In the figures, we have again used the notation y,, c for the sum of the first r>0 terms 

of fir ( (c )), and in tracing the operation of FIR2, the reader should recall the identity (4): 

Yr+t, c =)', +w. +1 "aR-r (c). ) 

In order to make FIR correctly compute fir (a (c)) for c =0,1,2,.. � the coordinates a 1(c ),..., a (c 

of each a (c) are be supplied serially and in reverse order by the source; that is, a �(c) enters first, then 

a, -&), and soon, until al(c) enters. Thereafter, the pattern repeats with a (c+l): a �(c+l) enters, then 

. -1(c+l), etc. This is illustrated in Figure 5.10 (t =0) for the case n =5 and c =0,..., 3. 

Let us now consider in detail how fir (a (0)) is computed by FIR2 with the given input 

configuration. 

Since the input to mt at t =0 is a. (0) (see Figure 5.10), mt holds wt. a (0) =y 1,0 at t =1 (see 

Figure 5.11). Since this value is the input to m2 at t=1 together with a �_t(0), ms holds 

wt, ax (0)+w2 .a x_, (0) =y2, o at time t =2 (see Figure 5.12). It is not difficult to see that by t=n, m� 

will hold y,, o=fir (a (0)). 

Figure 5.2 - The network FIR2. 
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However, unlike FIR, during these first n cycles FIR2 is not simultaneously computing other par- 

tial sums y,,,. Rather, we must wait until t =n before the first coordinate a� (1) of the next vector a (1) 

appears at the source. It is not difficult to see in this case, that for the particular input configuration of 
Figure 5.10, m; holds Yj, y_j)a, � when t is of the form t =i+kn for some ke !N and hence m� holds 

yw., =fir (a (c)) at time t= (c+1)n . 

5.1.5 Formal Specification of FIR2. 

We will now formalise the operation of FIR2 according to our specification technique: first we for- 

malise each module by specifying its behaviour by means of a function on R, and then we specify the 

value held by each module at each timet by means of a value function. 

Module Specification. For i =1..... n, the operation of the i th module m; is specified by means of 

exactly the same function f; that served to specify module m; of FIR (see Section 5.1.2). 

Value Functions. Value functions for the modules of FIR2 can be immediately obtained from the net- 
work of Figure 52. Since FIR2 has n modules each of which holds a value from R, and a single source 
which suplies elements of R, the FIR2 network is formalised via the value function 

VFmm2=(VII .... V�): Tx[T- >R]xR"->R" 

where for i =1�... n Vj (t, a, x) is defined for each teT, a: T -->R, and xe R" as follows: 

Vi(O, a, z)=x;, 

and 

that is, 

i 
V1(t+1, a, z) =f 

(a (t)) if i=1 

fr@(t), V1-1(t, a, x) otherwise 

jwl. a(I)) if i=l 
Vj(r+l, a, x) = Vi_1(t, a, x)+a(t) otherwise 

(9) 

We note that VF1R2 e PR(A) where A =AFIR comprises T=TFIR2=TFIR and ID with their standard 

operations, together with the set R (as a carrier) and f i...., f� (as operations). 

5.1.6 Correctness of FIR2. 

What user specification does FIR2 meet? As we have argued above, it is apparent that 

y�,, =fir (a (c)) emerges from FIR2 at time t= (c +1)n for c=0,1,2,... (assuming the input a is in the 

necessary serial form). We note that DN asks for the network to have period 1, however it is apparent 

that FIR2 will have period n (since it takes n steps to supply the n coordinates of each input vector), and 

thus F]R2 will not meet 1 N; let us consider another correctness specification instead: 

LetcDN: [T->R"]--[T--->R] bedefinedby 

4PN(a)(t) 
U if -R (t) 

(10) 

for each a: T -+R" and for each teT, where R (t) rg> t mod n=0 and t*0. Then (Dv says that FIR2 

must compute fir on every n th input. 
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It is not difficult to prove from the definitions of FIR2's value functions that V, satisfies: 
k-" 

(dt e T)(Va : T-+R)(Vx E R") (t 2n V"(t, a, x) = Ewk. a(t-n-1+k)) (11) 
k-i 

Furthermore, since FIR2 has a single sink we have FF1R2=V", and since R(t)=e,. t kn, from (11) we 

have 
k-a 

R(t) FFIR2(t. a. x) _ ýH'k "a(t-n-l+k) k=1 

for each teT, a :T -'R, andx cm R". Thus 
k-M 

R(t) _ GFLR2(a, z)(t)= Zwk. a(t-n-1+k) 
k-I 

which we can write as 

I,, fu if -R (t) GPIRz( 
IxXt) - fir ! �ýt-1)..... ß t-R )) ifR(t) 

(12, 

Similar to the FIR network, in order to make FIR2 meet ON we must consider FIR2 executing on 

transformed input data. For a given input stream a: T --->R", we need to consider GFIR (b x Xt) where 

b is a appropriately 'serialised'. 

Let us define a `serialising operator' `IF: [T ->R -o. [T -o. R ] in the following way: for each 

a: T -->R" define ̀ F(a) by 

for each teT, wherein 7l: T -->T is the function defined by X(t) =t div n for each teT. 

`Y(a)(t) is intended to be the value supplied by FIR2's source at time t. As a quick check, take 

n=5 and t= kn +3 for any keV. Then by definition of 'i' and X we have 
`Y(a)(t) = `1'(a)(5k+3) =! E s-<st+3 mod 5)(). (5k +3)) =a 5-3((5k +3) div 5) =a 2(k ) 

which is confirmed in Figure 5.13 (t = 8, k= 1). 

Verification. We now show that FIR2 meets ON with respect to the serialising operator ̀ I'. 

First notice that if t =(m+1)n for some me N then t-n-1+k =mn-1+k for any keN, and for 

1: 5k : 5n we see that t-n-l+k 2mn and t-n-1+k <(m+1)n; thus (t-n-1+k)mod n =k-1 and 

(t-n-l+k) div n =m = t-n . Thus, by definition of `Y we have 
`Y(a)(t-n-1+k) = a�{t-R-1+k)ýdR(ý(t-n-1+k)) 

= a.. (k_, )((t-n-l+k)div n) 

= a. -k+i(t-n) 
(13) 

Now choose a :T -*R*, xe R", and tET with t =(m+1)n for some me ! I. Then R (t) holds 

and so from (12) we have 
k. w 

GFUZZ(`P(a), X)(t) _ EWk. 5! ()(t-n-l+k) 
k-i 
k=t 

= ZWk 
"aw-k+l(t-n) 

k-i 

(from (13)) 
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=firia(t-n)) 

(by definition of fir). 

We have now shown that R (t) . GFm 2(''@a ), x)(t) =fir Ca(t)); that is, for each a: T --+R", 
G., 2 2(''(a ), x) is a stream such that for each teT, 

u if-R(t) 
GFm2('L'(a), X Xt)= fr(((-n)) ifR(t) 

= CDN(a)(t) 

Since the expression "P( a ), formalises the idea of serialised input data, and since 
GFm 2(W(a ), x) ='N (a) for each a: T -*R" and xe R", we conclude that N= FIR2 is a correct imple- 

mentation. 
5.2 PALINDROME RECOGNITION. 

Let r be some finite alphabet. We say a vector a= (a 1,..., a�) e I" (that is, a word of length n 

over r) is a palindrome if 

(at=a. ) A ... A (a; =a. -j+i) A ... A (a. =a,, -p+i) 

where p=Z and 'A' denotes logical conjunction, and' (k j' denotes the smallest integer greater than 

or equal to k. 

Let n be even, n =2p say, for some p>0. Now let pal : r' -'lB be defined by 

pal (a) = (ai=a. ) A ... A (a =a, -i+t) A ... A (a. =ap+l) 
for each a= (a 1�.., a, ) e I'". Then equivalently, aeP is a palindrome iff pal (a) = tt. 

The palindrome recognition problem for words of length n =2p over r is to devise a synchronous 

network N with clock T =TN that implements the following user specification: 
ON : [T --->P ] ->[T -->]B] 

where for each a: T --'r and for each teT, 
fu if -R(t) 

ýN(a)(t) = pal(a (t P )) if R (t ) 

wherein R (t) at mod (p -1) =1 and t#1. Thus the problem is to see if a (c (p-1)) is a palindrome for 

each ceN. 

Similar to the previous examples, let us introduce a notation for partially computed results: for 

r and c =0,1,2, ». define y,, by 
k. p-r 

Yr, o =A bk, (14) 
(note the reverse order of conjunction) wherein bk, denotes the result of comparing the the kth and 

(n-k+1)th elements of c th input to be processed; that is, 
bkF = (ak(C(p-1)) = a. 

-k+&(p-1))) 

Thus y, F denotes the conjunction of the last r>0 terms of pal (a (c)). Notice y. -I. =pal (a (c (p-1))) 

/ 
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for each cEN. 

5.2.1 The Algorithm. 

A synchronous algorithm for implementing 1N is depicted in Figure 5.3. The network PAL of 

Figure 5.3 comprises n-1 modules n sources Inl,..., In,,, and a single sink Out. 

Int ! n= ... In, Ini+l ... Iny-1 ! np 

MI ml ... ftý 11-1 MP 

Out N- 
>M�_= 

------ 

- 

------ mp+t 

Figure 5.3 - The network PAL. 

Each of PAL's n sources supplies elements of r, and so we represent the the input to PAL as a 

stream a: T --ter (with the intention that for i=: �.., n the value supplied by In i at timet is at (t)). 

The PAL network operates as follows. Initially, at t=0, we imagine each module mj of PAL to be 

holding some value v, e 1B, and to be about to read aj (0) from source Ini for i =1..... n. 

For t =0,1,2,..., the value held by each m, by time t+1 is calculated as follows for i=1,..., n : 

Case 1: 5 i Sp. If the current time t is an integral multiple of p-1, that is if t satisfies t mod (p-1)=0, 

then module m; first reads aj (t) and a �ti+l(t) from In; and In�_j+1 respectively. Then m; compares 

these values, and by time t+1 the module holds either the truth-value tt if the values were the same, and 

the truth-value ff if the values were different. If the current timet does not satisfy t mod (p-1)=0, then 

the module does nothing; that is, it retains its current value for one clock cycle. 

Case i =p +1. The module mp+l first reads the values held by m, _1 and m, at timet. Then, by time t+1, 

mp+l holds the result of Wing' these values together. 

Case p+25i Sn-1. In this case module m; behaves exactly as mp+l above, except that in this case, m; 

reads the values held by m. ti and m, _1.0 
The operation of PAL is illustrated for the case n= 10 and for t =0..... 5 in Figures 5.15 - 5.20. 

Again the reader is invited to study these figures before attempting to follow the discussion below. 
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Similar to the FIR and FIR2 networks, in tracing through the figures, it is helpful to bear the following 

identity in mind (derived from (14)): 
yr+l. c = y,, A bp-r-1,. ý15) 

Let us now consider in detail how pal (a (0)) is computed by the PAL network. 

For i=,, --., p, the inputs to m; at t=0 area j (O) and a i+l(0), and so by time t=1 m; holds 

(a j(0)=a �i+l(0)) =b;. o (see Figure 5.16). Thus at time t =2, the inputs to mp+l are bpo and bp-1.0, and 
hence mp+l holds bv_l, oAb,. o=yl, o by time t =2 (see Figure 5.17). 

Now, according to the informal description of the modules above, for i =1,.... p each module m; 

retains its value (b,, o) until t =p-1. Thus (in the figures, where n= 10), at t =2(<p-1) the inputs to 

m +2 are Yi, o and bp-2, o, and so from (15), mp+Z will hold yl, oAb, -z, o=Yz, o by t =3 (see Figure 5.18). It 

is not difficult to see that at time t =p-1 the inputs to m, _t will be y, _2, o and b 1,0 and thus by time t =p, 

mP_1 will hold y, _z, oAb1 o=Yp-i, o=Pal(a (0)), again using (15). Thus it takes p cycles to determine 

whether the first input a (O) is a palindrome. However, for subsequent inputs a ((c+l)(p-1)), the compu- 

tation time is only p-1 since the comparison of coordinates of a ((c+1)(p-1)) are overlapped with the 

computation of the last term of pal (a (c (p-1))). Thus, generally, yP_1F =pal (a (c (p-1))) is held by 

m�_1 at time t =1+(c+1)(p-1). (See Figure 5.20 for the case c =0. ) 

5.2.2 Formal Specification of PAL. 

We will now formalise the operation of PAL according our specification technique: first we for- 

malise each module by specifying its behaviour by means of a function on r and ]B, and then we specify 

the value held by each module at each time t by means of a value function. 

Module Specification. For i =1,..., n, the operation of i th module mi is specified by means of the func- 

don fi defined as follows: first, for i =1,..., p, we define 

fi :T xI'xlB xr--SIB 

by 
(a=b) if t mod (p-1)=O 

fj (tavb) =v otherwise 

for each tET, a, bEF, and veM. 

For i =p+1,.... n-1, we define 
fc : ]6x16-->]B 

by 
fj(a, r)=aAr 

for each a, r e lB. 

(Again following Chapter 2, the arguments 'a', 'b', 'v' and 'r' in the above definitions are 

intended to be mnemonic of 'the value from above', 'the value from below, 'the value held by the 

module', and 'the value from the right' respectively. ) 
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Value Functions. Value functions for PAL can be immediately obtained from the network of Figure 

5.3. Since PAL has n-1 modules each of which holds a Boolean value, and n sources each supplying 

elements of r, the PAL network is formalised via the value function 

V,, = (VI..... V"-t): T x(T 

where for i =1,..., n-1, Vj (t, a, x) is defined for each teT, a : T---, or, and xe I"-t as follows: 
V4 (O, a, x) = x;, 

and 
ft(at(t), Vt(t. a, x), a. -j+t(t)) 

if 15i5p 
Vj(t+1, a, x) = ft(V. 

-t(tºax), 
Vt-i(tuz)) if p+15i Sn-1 

Exercise. For what structure A is Vpu, simultaneous primitive recursive over A? 

5.23 Correctness of PAL. 

It is not difficult to prove from the definitions of PAL's value functions that V�_1 satisfies: 

(alteT)(Va: T-*r)(VxeB"'I) (R(t) Va-t(t, , X)=Pal(, a(r? )) (16) 

Furthermore, since PAL has a single sink we have FpAL = V�_1, thus from (16) we have 

R(t) Fpn, (t. a, x)=pal(a_(t P)) 

for each teT, a: T ter, and x r= 1B"-1. Thus 

R (t) G,, j , x)(t) =Pal ((t P )) 

for each a: T -a1", xe ]B*-', and teT, which we can write as 
fu if -R (t ) GpAc (a , x)(t) = lpal(a (t P )) if R (t ) 

= ON(a)(t) 

Since GpAy and cN agree on all inputs we conclude thatN =PAL is a correct implementation. 

5.3 MATRIX-VECTOR MULTIPLICATION. 

Let R be a ring with 0, and let M(nR) be the collection of all n xn matrices over R. Let 

MEM (n, R ). Then we write M, 4 eR for the q th element on th p th row of M for 1Sp, q 5 n. 

Given MeM (n R) and ae R", the matrix-vector product y= mull (M, a) is a vector 

y=(y1,..., yy)ER" such that fori= 
knog 

yi=Yd Mj, k"ak 
kit 

(17) 

Now let A be the algebra comprising the algebras R and M (n R) together. The matrix-vector 

multiplication problem over A is to devise a synchronous network N with clock T =TN that implements 

the following user specification: 
ON : [T -->M (n R )] x [T -->R"] -->[T ->R"] 

where for each M: T -->M (n R ), a: T -+R", and teT, 
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U if -R(t) 
'ON (M-'a xt) - mutt (M (s(t )), a (S(t ))) if R (t) 

where R (t) at mod 2n =0 and t#0, and S(t) = (t-2n) div Zn for each teT. (The ready condition R 

should not be confused with the ring R of course. ) Thus the problem is to compute mult on every pair 

(M (c ), a (c)) for each ceN. 
Similar to previous examples, let us introduce a notation for partial sums: for 15 i, jSn, and for 

c =0,1,2,..., let y, " jeR be defined by 
k=i 

yj=ZM, k(C). ak(c) 
k-I 

(18) 

Then y is the sum of the first j terms in calculating the i th coordinate of mutt (M (c ), a (c )) since 

y; =y; ̀, (cf. (17) above). 

5.3.1 The Algorithm. 

A synchronous algorithm for implementing 1N is depicted in Figure 5.4. The network MV of Fig- 

ure 5.4 comprises 2n -1 modules 2n sources In 1_R ,..., In o,..., In�_I and In., and n 

sinks Out I,.., Out,,. The network is the most complex we have seen so far, and so we will describe it in 

some detail: 

In 1-, In 2-� ... ln! ... Ino ... In, ... 

------ ------ /nl-fe m0 mt 
- 

Out, ... utrý ... 

Figure 5A - The network MV. 

For i =2-n �... n-2, each module Ph. of MV has three inputs: one from the source In;; one from 

the module to its left and one from the module to its right Additionally, m; has two out- 

puts: one going left and one going right (to m; _1 and m; +j respectively). (In Figure 5.4, it appears that for 

i =0,..., n-l, m; has a third output to the sink Out; +l, but in fact, this output channel is intended to be a 

branch of the right-going channel, and so these modules do only have two outputs. ) 

Module mI-,, has two inputs: one from the source In I-,, and one from m2_,,. Additionally, the 

module has two outputs: one going right to m2_,,, and one going left. The latter output is simply lost from 

the network, and so we have not drawn a left-going channel from m t, in the figure. 
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Module m�_1 has three inputs: one from source In. 
-I; one from In,,, and one from m,, _2. 

Addition- 

ally, the module has two outputs: one going left to m�_y and one going right. The right-going output 
from m�_1 is sent to Out,,. 

Each module m; thus holds two values, one value for each output. At first sight this would appear 
to contradict the idea that modules only hold a single datum However, this is not the case as we will 

explain later when we formalise the MV algorithm. 

Let us consider how MV operates in the context of an example. In Figures 5.21 - 5.27, we have 

illustrated the case n=6 for t =0,5,6,13,17,18,22. (Throughout the figures '. ' represents 'don't care'. ) 

Consider Figure 5.21. Here we see the initial input configuration for the input data M (0) and a (0). 

Generally, each matrix M(c) is supplied in the 'diamond' configuration illustrated in Figure 5.21 for 

c =0. Notice (in subsequent figures) how the next matrix M(c+l) follows behind M(c) in the same 

configuration. The coordinates of each input vector a (c) enter the network serially from the right, that 
is, like the input to the FIR2 network, they are supplied by a single source (In,, ), and they enter in the 

order a j(c), a2(c ),..., a ,r (c ), but in this case, the coordinates need a padding element in between each (to 

slow the stream by a factor of two). Notice how the coordinates of the next vector a (c +1) follow behind 

the last coordinate of a (c) with an additional padding element between a �(c) and a 1(c+l). 

We will now describe how the modules of MV operate: we will describe the values sent out on a 

module's left- and right-going channels separately; the left-going values are simplest to describe, and we 

consider them first: 

For each module m;, a value entering from the right is simply propagated left to m; _1 
in one time 

step. Thus, as illustrated in the figures, the stream of vector data marches across the network until it is 

thrown away by ml_�,. 

Now let us focus on the right-going values in the MV network: this is where the coordinates of the 

required matrix-vector products ultimately appear. 

At each time t, the right-going value held by each module m; by time t+1 is calculated as follows 

for i =1-n,..., n-1: 

Case i= 1-n. The right-going value held by module m 1. , 
is `s . x' where s is the the value supplied by 

source In 1, at timet, and x is the value supplied by m2, at timet. 

Case 2-n Si 5n-2. Generally, the right-going value held by module mj is `s . x+y' where s is the the 

value supplied by source In; at time t, x is the value supplied by m; +t at time t, and y is the value sup- 

plied by m; _1 at timet. Exceptionally, if i 50 and t =n-1-i+2nk for some ke IN, then the right-going 

value held by m; at time t+1 is `s x' where s and x are as before. (The reason why m; does not add in 

the left-coming value when t is of the form n-1-i+2k will be explained below. ) 

Case i =n-1. The right-going value held by module m�_1 is `s . x+y' where s is the the value supplied 
by source In�_1 at time t, x is the value supplied by In. at time t, and y is the value supplied by m�_2 at 

time t. 
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Let us now consider how MV begins to compute M (0). a (0) in detail. 

First, there is an initialisation period where very little happens in the MV network: for the first n-2 

cycles, the left-going values slowly begin to fill up with elements of the vector input and (intuitively), the 

matrix data gets closer to the network. Also, because the sources Int_,,..... In. 
_t are supplying `junk' to 

the network for first n2 cycles (that is, we don't care what is supplied), and because the network's ini- 

tial values are also junk, all right-going values are also junk during this period. 

At t =n-1 (see Figure 5.22), the network is initialised and ready to begin computing elements of 

the required matrix-vector product. 

Notice that Ml, l(0) and al(0) are now available to m°. We want m° to compute 

_1 
in the next time cycle as this is the first term of the first coordinate of M(O) .a (0). l,, (0) .a 1(0)=y 

° 

Now recall the 'exceptional' clause in the informal specification of MV's modules above (within the 

case: 2-n 5i5 n-2). If we had not included this exception, m° would compute M 1,1(0) .a 1(0), and then 

attempt to add in the junk value coming from left, which would intuitively corrupt the result. Now 

notice here i =0 and t =n-1 and so t =n-i-1+2k (for k =0). Thus the exception comes into play, and 

m° does not perform the unwanted addition; hence y °1 is correctly computed (see Figure 5.23). 

During the next n-1 cycles, a1(0), as it moves from module to module, meets M21(0),..., M,,, 1(0) 

at modules m1_.,, respectively. To be precise, for r =2,..., n, a1(0) and M,, (0) are simultaneous 

t as long as we inputs to module m1., at time t =n+r-2, and these inputs will yield M,. 1(0) . El(0)=yo 

do not add in the left-coming (junk) value; each y,!, is the first term in the r th coordinate of M (0).!! (0) 

of course (by definition of the notation y,,; see (18)). Exactly as we have said above for m°, mI_, must 

not add in the left-coming value at this time (n+r-2) for fear of corrupting the required product. How- 

ever, when i =1-r and t =n+r-2, we have t =n-1-i, and so the exception clause comes into effect; 

thus the terms y,!, are indeed correctly computed. 

In fact, a similar situation arises 2n time units later (see Figure 5.25 where t =17 =6-1+0+2.6): 
for i =1...., n, at time t =n-i-1+2n, m1_4 will be about to compute M 

, 1(1). al(l)=y, 'ý, and again the 

module must be prevented from adding in the junk value that is supplied from the left. Generally, m1.; 

is about to compute y i., at time t =n-i-1+2nc, and since there will always be junk coming in from the 

left at this time, we must prohibit the module from performing the unwanted addition every 2n time 

units after t =n-i-1 (hence the formula `t =n-i+1+2nk'). 

At the time y, ä appears as a right-going value it is the input to the next module together with 

exactly the right a- and M- values for the next module to compute y, 02, and at the next time-step y, °2 

meets the right values to compute y,!, 3, and so on, until y; °, = y, ° appears. Generally, a new value y j+1 is 

computed from y, "j according to the the identity (derived from (18)): 
` Y"J+1 .0 NJ +Mtf+i(c)"a f+t(c) 

(fori =1...., n, j =1,... n -1, and c=0,1,2,... ). 

For example, in the figures, where n =6, at t =22 the inputs to ml are Y3, ß, M3,4(1), and a4(1), and 

so by time t =23, mi holds 
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Y3.3 +M3.40u"a40)=y3, +1 =YL4 

To be more precise, it is apparent (from the figures) that y°� is the right-going value held by 

module m�i n+i-1 time units after the initialisation time n-1; that is, m,,. j holds y°=y j at 
t= (n -1)+(n+i -1) = 2n+i -2. Now, y° is the ith coordinate of the required product M (0) .a (0), and so 

we anticipate y; ° at sink Out�-j+I at time t =2n+i-2 (assuming zero propagation delay to the sinks). 
(Our placement of the sinks is a necessary one, for we cannot let the values y1o propagate rightwards 
along the array and read them off at the end, since they will meet elements of the next vector a (1), and 
thereby be corrupted. For example, in the figures, at t= 13, ys, s =Y3 meets g1(1). ) 

Generally, for c =0,1,2,..., there is a delay of 2n time units between Mla(c) and M1,1(c+1) enter- 
ing the network, and also between a 1(c) and a 1(c+1), and thus it seems reasonable to speculate that the 

period of MV is 2n; that is, y; appears at m�-j at time 2nc+2n+i-2=2n (c+1)+i 2. 

Formal Specification of MV. Formal specification of the MV network is not quite as straightforward as 
it was for previous networks; this is because modules of MV apparently hold a pair of values. 

In order to not contradict the 'single-valuedness' condition of Chapter 2, we will admit 'pairs of 
R -data' as a new sort of data; that is, the underlying sort set involves some symbol r, say, to name the 

sort of data 'pair', and the Cartesian product P =(R xR) is adjoined to A as the carrier of sort P. In this 

way, a pair of values from R can be regarded as a single datum, that is, a datum from the set P. 

Now, in isolation from the MV network, a nonterminal module mj is pictured thus: 

and so, following Chapter 2, we would like to say that m; is specified by the function: 
f1: R XR XR -. P (19) 

defined by 

ft(a, l, r) = (r , l+a .r) 
for each a ,lreR. However, this causes the following problem when we try to' write down a value 
function for Ph.: 

According to our specification technique the value function for m; (Vi) must have the following 
functionality: 

V; :T x[T--+R2A-1]x[T-, R]xP2"-1--)"P 

since there are 2n-1 modules each of which holds a pair, and 2n-1+1 sources supplying elements of R R. 
Now, given input streams m: T -'R 2`1 and a: T -3-R, and a vector of initial (pair-) values x6P 2"'1, 
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there is no difficulty specifying m; at t =0, for this is simply 
Vi (0, E! ax) = xi 

Now consider what happens when we try to write down m; 's value at time t+l. We must have: 

V, (t+1, m, a, x) =fj(bi, b2, b3) 

where b1, b2, and b3 are the first, second, and third inputs to m, at time t respectively. Again there is no 
difficulty with b 1, for the first input to m; is from In;, and so b 1= mj (t). However, the second input to 

m2 must be ̀ the' value supplied by m, +1, but this is a pair of data from R, whereas the second argument 

to fj is supposed to be a single darum from R (see (19)). (Similar remarks apply to b3 as well. ) 

To rectify this argument-type 'mismatch', we must think of m; as actually depending on both the 
left- and right-going values from each neighbouring module, that is, f; must have the following func- 

tionality: 
f; :R xP XP --->P 

Now, for any peP let pL and pR denote the first and second coordinates of p respectively (thus 

pL, pR E R, and of course, the superscripts 'L' and ̀ R' are intended to be mnemonic of 'left' and 'right' 

respectively). Now let aeR, and let 1r e P, that is, let l and r be pairs of R -data. Then we can define 

fj by 
fi(a, l, r) = (rR IL+a r' ) 

and we can now define Vt at time t+1 by 
v, (t +1, m, a x) =fc (m, (t ), Vi-1(t m, a x ), V, 

+1(t ,m , a, x )) 

The full formal specification of MV now follows: 

Module Specification. For i =1-n...., the operation of the i th module m1 is specified by the func- 

tion f, defined as follows: first, we define 

f 1-,: R xP -->P 
by 

for each a r= R and reP. 

For i= 2-n,..., n 2, we define 

f ý-ý ia, r) = (rR a. rR ) 

f;: TxRxPxP->P 

by 
(rR, IL+a. rR) if i>Oori50and (t-n+i+1)mod2n#0 

f'(t, a, l, r) _ (rRa rR) if i: 5 0 and (t-n+i+1)mod 2n =0 
for each teT, aeR and Ir eP. 

Finally, for i =n-1, we define 

f�_1: R xP xR -3P 
by: 

(Va. rER)(VlEP) (fn-1(a, Ir)=(r, lL'+a. r)) 

(Notice that in the last case of m. -1, the value from the right Cr') is supplied by Ins, which supplies data 



-126- 

from R and not pairs of data. ) 

Value Functions. Since MV has 2n-1 modules each of which holds a value from P, and 2n-1+1 

sources each supplying elements of R, the MV network is formalised via the value function 
V, H, = (VI, ..... V. 

-1): 
T x[T-->Rs"-s]x[T->R] xP21-1 -->P2I6-1 

where for i =1-n ,..., n-1, VV (t, m, a, x) is defined for each tET, m: T ->R 2"-1, a: T ->R, and 
xEP2^-l by 

-- 

Vi (O a x) = xi, 
and for each teT, 

V1-w(t+l, a, x) =f I, (m 1-w(t), V2, (t, mrarz)) 

and for i =2-n ..... n-2, 
Vj (t +1, m , a, x) =f1Qi (t ), Vi-1(t 

, m, a x ), Vi+l (t m ,ax 
)) 

and 
Vý_1(i+1 

ill , x) =f n-1 
(!! 

�i-1(t 
)' Vw-2(t 

'! 'a ,x 
)ra (t)) 

We note that Vmv E PR(A ) where A =A, yv comprises T =TMV and IS with their standard opera- 
tions, together with the sets R and P (as carriers) and f 1M ,..., f�_t (as operations). 

53.2 Correctness of MV. 

For j =1,.... n define R1 by R1(t) t mod 2n =J-2 and t *J-2 for each tET. Also let 
`VR(" "" )' denote the second coordinate of V1(" " ") for i =1-n ,..., n -1. Then with some work, it is 

possible to show that for j =1�.., n, V, satisfies: 
k=w 

Ra(t) V;; ý(t, m, 6, x)= fmk ý(t-n+k-1). b(t-2n J+2k) (20V;; 

for each toT, m: T-->Ry`'1, b: T -. >R, and xe P2"'1. 

We will now use (20) to prove correctness properties of Fes, and Gm,. Let us first introduce func- 
ions 

8o. """. 8a-I : Tx [T-*R2"-1] x [T -->R ] --. ),, R 
where for j =1...., 

k-m 
8mj(t, m, b)= 12! k 1(t-n+k-1). b(t-2n j+2k) (21) 

kI 
for each teT, m: T -)-R 2''1, and b: T -'R . Then (20) can be more compactly expressed as 

Rj(t) Vj (t , b, x) = 8Xj(t. m, b) (22) 
for j =1,..., n. 

Now let us consider the definition of Fes,. At first sight it would appear that Fw, should have 
functionality 

Fmv :Tx [T-3, R 2A-'] x [T ->R ] xP2"'i -->R" 
(since MV has n sinks) and should be defined by 

F, wv (t ,m ,b , x) = (V o (t mbx),.... V, L 1(t , rn ,b x) ) 

since for j =1,..., n Outj is the right-going output of mj_t. However, this is officially incorrect according 
to the methodology of Section 2.4.3 the j th coordinate of Fes, (t, m, b, x) should be 'the' value supplied 
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by mß_1 which is pair of R -data, not a single datum. The correct definition of Fmv is 

Fes, = (F1,..., F. ): Tx [T--, R 2"-1] x [T -, R ] xP2"-1--+P" 

where for j =1,.... n, Fj(t, mbx)=Vj_1(t, m, x) for each teT, m :T -+Rb :T -*R, and 

xE PZ"-1_ 
- 

Now, for j =1.... n, by definition of Fj we have 

Rj(t) F. j+j(t, m, b, x)V. j(t, m, bx) 

(23) 

(using (22)). Thus 
Gmv = (G 1..... G. ): [T -->R 2 11 x [T --ýoR l --->[T ->P"l 

satisfies 
Rj(t) G. /+t( , , x)(t)= (Vw j(týmýbý)ý8R /(t ab)) (24) 

forj=1�.., n (for each teT, m: T-->R2i-1,6: T->R, and xeP2"'I). 

We will eventually use (24) to establish the correctness of MV. However, like the FIR and FIR2 

networks we must introduce operators which transform input matrix- and vector-streams into the 

configuration required by MV. 

An operator 'Y: [T -'R"] -. ), -[T -'R ] to transform a stream a : T--->R' into the necessary 

serial form can be defined as follows: 

0 if t odd T(a)(t) = 
{ai(t» 

if t even 
(25) 

for each a: T -*R" and teT, wherein i= 1+ t mod 2n 
and al(t) =t div 2n for each teT. As an 2 

example of `Y, take n=6 and t =18, then t is even and 
T(q)(t) = `Y(a)(18) = 1+ 18 mod 2m (X(18)) = a4(1) 

2 
which is confirmed in Figure 5.26 for example. 

Now let us define a transformation 6 to `serialise' a stream of matrices. From this point onwards 

we will assume n is even; analysis for the case that n is odd must be done separately but is very similar 

to the case that n is even. Define 
e= (ei-ý..... E), 

-, 
): [T -; -, M (nR )] ->[T -o-R 2"-I] 

by 

ei(m)(t) =0 
if 'Si (t) (26) M p, a (V(t )) if SAO ) 

for each m: C -->M (n, R) and teT for i 1-n..... n -1. Here Si, p and q (for i =1-n ,..., n-1), and X' 

are respectively defined by: 

S; (t) a i+t odd and Ii 15 (t-n+1)mod 2n S (i +2(n-Ii I)-1 

for each teT, and 
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p= 1+-i+(t-n+1)mrtod 
2n 

2 

and 

q= l+it-n+1)mod 2n 
2 

and X'(t)=(t-n+1)div 2n for each teT. As an example, take n=6, i=-3, and t=22. Then i+t is 

odd, and 
IiI= I-31 = 3: 9 5= (22-6+1) mod 12 = (t-n+1) mod 2n 

and 
(t-n+1)mod2n =558= I-31+2(6-131)-1= III+2(n-IiI)-1 

and thus S_3(22) holds. Furthermore, we calculate: 

Q= 1+-i+(t-n+1) mod 2n 
= 1+ 

3+(22-6+1) mod 12 
= 1+ 

3+5 
=S 22 .2 

and 

q= 1+ i+(t-n+1) mod 2n 
= 1+-3+(22-6+1) mod 12, 

= 1+-3+S =2 222 

and 
W(t)= (22-6+1)div 12= 17div 12= 1 

thus 6_3(M)(22)=Ms, (1) which is confirmed in Figure 5.27. 

Before we use 'f' and 9 in verifying MV, notice that ON says that all the coordinates of each 

matrix-vector product are to emerge from the network at the same time (namely 8(t)), whereas we know 

that MV produces the coordinates at different times. To be more precise, as we have argued above , the 

jth coordinate of mult L(c ), a(c )) namely y7=y7. emerges from m� at time t= 2n (c+1)+j-2 for 

each ceN. Thus yi always emerges first, and then y2 one step later, and then y;, and so on, until y, 

emerges n steps after the first coordinate y', . In order to make the coordinates appear to emerge simul- 

taneously at t =2n (c+1) we define 

E= ("Et.... ý): [T->P'l->[T--o-R"l 

-J(b)(t) = 6,, j+l (tß'3'2) 
for each b= (bL, bR) :T -)--P" and teT for j =1...., n. (Note that .. additionally projects out only 
`right-going' values, and reverses the order of its inputs. ) 

We anticipate that E will `unstagger' the output of MV when executed on streams 6(_M) and 
`P(a ); that is, we expect 

R (t) -(Gory (e(M ), ̀ (a ), x))(t) = ON (Af a)(t) (27) 
for each M: T -->M (n, R ), a: T -+R", xe P2i-1, and teT. 
Verification. We will now formally establish thatN =MV is a correct implementation by proving (27). 

Choose M: T -*M(n, R ), a_ :T -'R", and teT. Suppose R (t) holds. Then t must be of the 
form t =2n (c+1) for some ce IN, and so t+j-2=2n (c+1)+j-2 for any J, and thus Rj(t+J-2) holds for 

j =1,..., n. Thus from (24) we have 
GR j+l (e(M), 'i'(a ). x)(t+j-2) =g� -j(t+j-2, 

e(M_). ̀'(a )) 
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k-m 

_ Z0k j(M)(t+j-2-n+k-1). `Y(a)(t+j-2-2n-j+2k) 
k-1 

(from (21)) 
ki 

= Z9k j(M)(t+j-n+k-3). `I'(a)(t-2-2n+2k) 
k: l 
k-u 

=Z 0k-j(j)(2nc+j+n+k-3) 
. ̀ P(a)(2nc+2k-2) (28) 

k=1 

where c =8(t). (Notice thatR(t) t =2n(c+1) for some ce K) 

Now consider `Y(a)(2nc+2k-2). The number 2nc+2k-2 is obviously even, and furthermore, 

(2nc+2k-2) mod 2n=2k-2 and (2nc +2k-2) div 2n =c (since 15k5n). Thus from (25) we have 
T(a)(2nc+2k -2) ß_2 (c) =ak (c) (29) 

Now consider 9k j(f)(2nc+j+n+k-3). We claim that Sk 
-j(2nc+j+n+k-3) 

holds: first notice 

that (k j)+(2nc+j+n+k-3)=2nc+n+2k-3 which is odd since n is even by hypothesis; thus the first 

part of the condition holds, the remaining parts also hold but we leave proof of this to the reader. 

Since Sk (2nc+j+n+k-3) holds, from (26) we have 

where 

that is, 

and 

that is, 

q=1+ 
(k j)+(2nc+j+k-2) mod 2n 

2 
Now, since 15j, k 5n we have 

2nc S 2nc+j+k-2 S 2nc+2n-2 

thus (2nc+j+k-2) mod 2n = j+k-2, and (2nc+j+k-2)dfv 2n =c. Thus p=j, q =k, and 
X'(2nc+j+n+k-3)=c. Thus 8k 

-jL)(2nc+j+n+k-3)=Mjx(c). 
Substituting 9k 

-j(M)(2nc+j+n+k-3)=M jk(c) and'P(a)(2nc+2k-2)=ak(c) in (28) yields 
k-M 

GR /+t(eL). 'i`(a), x)(t+j-2) _ ZM jk(c). ak(c) 
k-1 

= y; (30) 

ek j(f)(2nc+j+n+k 3) = MPA(X'(2nc+j+n+k-3)) 

p=1+ -(k j)+((2nc+j+n+k-3)-(n-1))mod 2n 
2 

p=1+ 7<k-j)+ (2nc+j+k-2) mod 2n 
2 

q=1+ 
(k j)+((2nc+j+n+k-3)-(n-1))mod 2n 

2 

Now, by the coordinatewise definition of ! we have 

-(Gerv (e(M), 'P )x))(t) = (---i (Garv (6(M ), (a ), x))(r )..... . E. (Garv (e(M ), T (a ), x))(t) ) 



-130- 

_ (GR(e( ), 'I'(a), x)(: -1)..... Gi (e(M ). '`L). x)(t-n)) 

_ (yi..... y*> 
(by (30) with j =1..... n) 

= mult (M (c ), a (c )) 

However, c =S(t). Thus 

R(t) '-"(Getv(E(M), T(a)x))(t) = multL(S(t)), a(S(t))) _ ýnrL, a)(t) 
Since (27) holds as claimed, we conclude that N= MV is a correct implementation. 

5.4 SOURCES. 

The source for the FIR algorithm is Brookes[1983] where it is in turn taken from Kung and 
Lin[1983]. Convolution figures in the basic popular article Kung[1982]. Brookes[1983] also considers 
palindromes, but the imprecise account of the algorithm presented there lead me to devise my own algo- 

rithm (viz PAL). The source for MV is Section 8.3.3 of Mead and Conway[1980] although the algo- 

rithm first appears in Kung and Leiserson[1979]. 

As with the analysis of the sorters in Chapter 4, our treatment of the algorithms in this chapter is a 

significant improvement on the (usually sketchy) accounts to be found in the general scientific literature: 

of course, it the use of value functions to formally define the behaviour of the algorithms that 

underwrites this improvement. Moreover. these definitions are of immediate practical use to anyone 

wishing to understand the algorithms in detail because it is easy to implement value functions on a com- 

puter and hence to simulate the algorithms (cf. Exercises 2.4.5(3)). 
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6 a1(2) 

S gz(2) at(1) 

4 a3(2) °_2(1) a1(0) 

3 a 4(2) 93(1) g2(o) 

2 a5(2) a4(1) a3(0) 

1 ! S(1) 04(0) . 

0 a 5(0) 

inl nt2 m3 m4 ms ow 

Figure 5.5 - FIR illustrated for n=5 at t =0. 

7 

6 a t(2) 

5 a2(2) ei(1) 

4 a3(2) ez(1) ei(0) 

3 a4(2) 13(1) al(0) 

2 O2) 44(1) ! 3(O) 

1 45(1) 44(0) 

"`' rtA ý`Z m3 m4 ýs oar 

Figure 5.6 - FIR illustrated for n=5 at t =1. 
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8 

7 . 

6 gt(2) 

5 oi(2) ai(1) 

4 a3(2) 42(1) Qi(O) 

3 04(2) a3(1) a2(0) 

2 as(2) ? dl) 43(0) 

mt Y4zym3 
m4 u t ms0 

Figure 5.7 - FIR illustrated for n =5 at t =2. 

10 

9 

8 

7 

6 a1(Z) 

5 f2(2) a1(l) 

4 a3(2) 92(1) a1(0) 

Oui m1 
. 

mý m2 y y3.1 
m4 y40 

Figure 5.8 - FIR illustrated for n =5 at t =4. 
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12 . 

11 . 

10 . 

9. 

8 

7. 

6 ot(2) 

mt 

4m3m4, 

ms, Out 

Figure 5.9 - FIR illustrated for n=5 at t =6. 

SIM -ý g2(3) ' a3ß) ? 4(3) 

1 94(2) 23(2) a2(2) ý a1(2) "- ? 3(3) 

i a5(2) a1(1) -ý 92(1) "-ý a3(1) -ý Q4(1) 

p4(0) ý-ý C3(0) 'EA - 01(x) - a5(1) 

SO) 

ml m2 m3 m4 ms Out 

Figure 5.10 - FIR2 illustrated for n =5 at t =0. 
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t(3) -r a2(3) - a3(3) 

e3(2) -- g2(2) -- a1(2) -- a1 

! 4(2) - ! S(2) ý-º QI(1) 02(1) - 43(1) 

03(0) ..... _ a2(0) -a1 

4(0) 

MI YtA M2 M3 M M, Out 

Figure 5.11 " FIR2 illustrated for n=5 at t =1. 

!! 1(3) -- a: (3) 

as(2) .. -- al(2) .. ý a s(3) a4(3) ý-- a3(3) 

! 3(2) --" a4(2) 4s(2) a, (, ) ý-" a2(1) 

! 2(0) - al(o) s() 4 ß(1) ,.. _. a7(1) 

43f0) 

m2 Ys. o m M4 , ns Ow 

Figure S. 12 - FIR2 illustrated for n =5 at t =2. 
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I 

SI(3) 

1 
92(3) '! 13(3) 94(3) ! E50) -ý a1(2) 

1 

C1(1) 93(2) ý.. - a4(2) a3(2) a2(2) 

? 2(1) 

MI m2 M3 
Y3,1 

m4 MS Oul 

Figure 5.13 - FIR2 illustrated for n=5 at t=8. 

! EI(3) 

Iris Out ml m2 m3 m4 
Y4.3 

Figure 5.14 - FIR2 illustrated for n=5 at t=19. 
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ei(0) ? z(0) a3(O) 14(0) 23(0) 

M, mz ms m" ms 

oto(O) a9(O) at(b 97(0) go(» 

&E> 
ms m, ms 

Figure 5.15 - PAL illustrated for n= 10 at t=0. 

Figure 5.16 - PAL illustrated for n= 10 at t =1. 
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Figure 5.17 - PAL illustrated for n =10 at t=2. 

Figure 5.18 - PAL illustrated for n= 10 at t=3. 
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Figure 5.19 - PAL illustrated for n= 10 at t=4. 

Figure 5.20 - PAL illustrated for n= 10 at t=5. 
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-S -4 -3 -2 -1 0 1 2 345 

15 M66(0) . 

14 Mß(0) Msý(0) 

13 M6.4(0) Ms. s(0) M4,6(0) 

12 Mbs(0) M5,4(0) M4, s(0) M3ß(0) 

11 M6, (0) Ms, 3(0) M4.4(0) M3,5(0) M2, ß(0) 

10 M6 (0) L, 3,2 (0) M4,3(0) 93,4(» Mz, s(0) M1ä(0) 

9 Ms, l(0) M4 (0) M3,3(0) M2. (0) M1ý(0) 

8 Mý. t(0) mu(0) Mz, s(0) Mt, 4(0) 

7 Msd(0) Mt, z(0) M1.3(0) 

6 M2. i(0) M1.: (0) . 

S 1it. i(0) 

4 

2 . 

1 . 

0 . 

_o. -. ---- _q. -. _; 3%-j _Zwi _ir. 

Figure 5.21 - MV illustrated for n=6 at time t=0. 
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-5 -4 -3 -2 -1 0 1 2 345 

20 M4,1(1) H3,20) M2.3(1) 6,4(1) 

19 M33(1) MU(1) M1.3(1) 

18 ý. M2,1(1) M1 (1) 

17 Mia(1) 

16 

15 M6A(0) 

14 M6j(0) LfSA(0) 

13 M6.4(0) MsO) M4.6(0) . 

12 Mäs(0) Ms. 4(0) M4,5(0) M,, 6(0) 

11 M6,2(0) Ms. 3(0) M4,4(0) Lks(0) Mx6(0) 

10 a61(0) as2(0) Mß(0) M34(0) Mi. 5(0) 6,6(0) 

9 Msl() M4,2(0) M3,3(0) M2.4(0) M1s(0) 

8 M4.1(0) M3,, (0) Mu(0) Ml, g(0) 

7 M31(0) M- 2,2(0) Ml., (0) 

6 Mxi(0) MI, 2(0) 

5 Mt. 1(0) 

Figure 5.22 - MV illustrated for n=6 at time t=5. 

=7. %-y ml%. j !! 6k-) ! IS-) =4N-1 
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17 Ml. i(1) 

16 

1S Ma6(0) 
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13 Mýý(0) M3,5(0) M46(0) . 

12 Mß(0) M 
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11 Mß(0) Msý(0) Aif4.4(0) 93. s(0) Mz(0) 
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9 Ms. i(0) M4.2(0) Ms, s(0) M2,4(0) Ml, s(0) 

8 M4, i(0) M3.2(0) Mz. s(O M1,, (0) 

7 M3.1(0) M3(0) M1ý3(0) . 

6 M, 1(0) M, l(0) . 

at(0) az(p) a3(p) 

aß(1) ?: (1) gt(1) ! 6(0) as(0) a4(0) 

Figure 523 - MV illustrated for n=6 at time t=6. 
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Figure 5.24 - MV illustrated for n=6 at time t =13. 
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Figure 5.25 - MV illustrated for n=6 at time t =17. 
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Figure 5.26 - MV illustrated for n=6 at time t =18. 
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Figure 5.27 - MV illustrated for n=6 at time t= 22. 
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CHAPTER 6 
SIMULATION 

We have seen how PR is a useful tool in formally defining and verifying synchronous algorithms. 
In this chapter we will consider how synchronous algorithms may be executed or simulated. 

Whilst there is no theoretical substitute for formal verification, simulation is an important stage in 

the development of a synchronous algorithm, since it is by simulating the algorithm that we increase our 

confidence in the algorithm's correctness, or indeed, demonstrate the existence of errors. Also, in the 

case of algorithms that are difficult to understand, a simulation of the algorithm can reveal what needs to 

be proved about the algorithm For example, in the case of the MV algorithm of Section 5.3, it is not ini- 

tially obvious at what times and places the required outputs will appear; it is by scrutinising the trace or 

simulation of the algorithm in operation that we first guess the formulae that predict when and where 

outputs arrive, and that we may ultimately attempt to verify. 

Strategy. The obvious way to proceed in providing simulation tools for synchronous algorithms is to 

implement PR. Since the specification of a synchronous algorithm's behaviour in PR (by means of value 

functions) tells us everything there is to know about that behaviour, we can simulate the algorithm by 

implementing its PR-specification in some executable computer programming language. 

What language characteristics are suitable for implementing PR? We think of PR as an algorithmic 

language for defining functions over an abstract data type, and so it is natural to consider implementation 

languages which involve both abstract data types, and a facility for programming functions by means of 

procedures. Also, since PR enjoys some parallelism, it will be helpful if the implementation language 

does also. 

Rather than employ an existing language with (some of) these facilities, such as ML (Gordon, 

Milner, and Wadsworth[ 1979]), HOPE (Burstall, MacQueen, and Sanella[1980]), MIRANDA 

(Turner[1982]), FP (Backus[1978]), or OCCAM (Inmos[1984]), we will invent a von Neumann 

language which is especially tailored to implementing PR. Specifically, we will employ an algorithmic 

language called FPJT. FPIT is an executable von Neumann language comprising an algorithmic notation 

of functional parallel iterative programs, together with a formally defined semantics and complexity 

theory. FP1T is defined over an abstract data type and involves function procedures. Additionally, FPIT 

programs involve the concurrent or parallel assignment statement wherein many assignments are exe- 

cuted simultaneously. 

programs in FPIT are built up from programs in another von Neumann language that we call PIT 

(for parallel iterative). Like all our languages, PIT comes equipped with a formally defined semantics 

and complexity theory. In Sections 6.1 and 6.2 we develop a theory of PIT programs which underpins 

the definition of FP1T. 
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After these preliminary ideas, in Section 6.3 we will define FPIT and then show how PR-schema 

can be implemented in FPIT. In Section 6.4 we address the general problem of implementing arbitrary 
PR-schema: we do this by defining a compiler from PR into FPIT. Importantly, the semantics of FPIT is 

defined independently of the semantics of PR, and so we may consider the correctness of this compiler. 
Indeed, we will ultimately prove (in Chapter 7) that this compiler is correct, and, moreover, we will 

prove that the compiler preserves lengths of computation; that we can relate the performance of a syn- 

chronous algorithm to that of its simulation is an important fact, since in order for a simulation of an 

algorithm to be practicable, it must have a `reasonable' execution-time. That we can predict the com- 

plexity of the simulation from the complexity of the original algorithm is obviously a useful feature. 

We will see in Examples 6.1.8 that synchronous algorithms may be directly simulated in FP1T 

without using PR as an intermediate stage, and thus FPJT can be viewed as an alternative means of 

specifying or defining the behaviour of a synchronous algorithm. Now, until this time, we have said that 

the behaviour of a synchronous algorithm is officially defined by means of a PR scheme and so we must 

ask: what is the relationship between FPIT and PR? Does a specification of a synchronous algorithm in 

one system tell us any more about the algorithm than its specification in the other? In Chapter 7 we will 

answer this question (in the negative) by establishing that FPIT and PR are equivalent specification 
languages. 

6.1 THE LANGUAGE PIT. 

PIT is an imperative programming language (that is, it involves assignment statements), and the 
language has operational or state-transformer semantics. An excellent introduction to semantics can be 

found in Bakker[1980] (this exposition we will subsequently refer to as simply 'de Bakker'). De Bakker 

provides an account of the mathematical theory of computation over the natural numbers; the reader who 
is familiar with the subject of operational semantics will appreciate that much of what follows is simply 

an extension of the definitions and ideas of de Bakker to computation over the more general structure of 

a many-sorted algebra along the lines of Tucker and Zucker[1987] 

After some preliminary definitions, in Section 6.1.5 we define the syntactic part of the language, 

that is, we define PIT programs. In Section 6.1.6 we define the semantics of PIT programs, and in Sec- 

tion 6.1.7 we define the performance of PIT programs by means of length of computation functions. In 

Examples 6.1.8 we give some examples of PIT programs in operation. 

In the same way that PR needs a clock T (which is a copy of the natural numbers) and the Boole- 

ans lB to be able to define 'definition by primitive recursion' and definition-by-cases' respectively, PIT 

needs these sets to define the semantics of iteration and ̀ if-then-else' constructs. For this reason we will 

assume S to be standard sort set, E to be a standard S -sorted signature, and A to be a standard Z-algebra, 

throughout the following technical sections (cf. Section 3.1.8). 
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6.1.1 Variables. 

We begin with some many-sorted notation for variables. 

Definition. We define Var to be the S-indexed family: 

Var = <Var,: s ES> 

of collections Var, xf, xi , x2,... } of variables or identifiers of sorts. (When the sort of some variable 

x' is understood, we will omit the superscript s. ) 

6.1.2 States. 

The idea behind a `variable of sort s' is that x is something which can hold a value from A,. 

When executing a program which involves a collection of variables, the values held by each variable are 

collected together into a state: 

Definition. We define the collection States (A) of states over A to be the collection of all total mappings 
p: Var->VA, 

i(S 

such that pe States(A) only when for each sort s, and for each x' e Var� p(x') E A,; that is, 

pe States (A) only when the codomain of p restricted to Var, is A, .0 
To say that xe Var, is to declare that x is a variable of sort (or type) s; that is, the intention is that 

x should only ever hold a value taken from the set A,. 

A state is essentially just a mapping from variables onto (their) values: if x is a variable and p is a 

state, then p(x) is the value of x under p; of course, the restriction 'p(x') e A, ' amounts to type- 

checking the value held by x' . 
Given a state pE States (A), p(x) is just the value of x. Now suppose we change the value of x to 

be a rather than whatever it was under p. Then we can form a new state p' r= States (A) under which x 

has the value a but all other variables have the same value under p' as they did under p. We formalise 

this state transformation as follows: 

Definition. (Variant of a state. ) Let pe States (A), and let aEA, and xE Var,, for any sES. Then 

p'= p{ a lx }E States (A) is the state defined by 

(Vy e Var) p(y) = 
P(y) if y #x 
a ify=x 

Definition. Let p, p' E States (A ). Then p and p' are said to be equal if they agree on the values of all 

variables. Formally, 

p=p'a(VxEVar) (p(x)=p'(x)) 

6.13 Lemma. Let p c: States (A ). Also let xE Var, and yE Var f for any s, s' e S. Then for any 

a, b e A,, and for any ceA,, 

p{a Ix 11 c/y }{b Ix }= p{c ly }{b lx } 
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Proof. Exercise 

6.1.4 Expressions. 

Given a collection of variables whose values are known via some state p, we can form new values 
by applying operations to combinations of the variables and perhaps also some constants; for example, 

given variables x and y of sort natural number, and a state p under which x and y have the values 3 and 
4 respectively, 'x+y' is an expression whose value under p is 7. 

Below, we formalise the concept of an expression by defining a syntax for expressions of sort s 
(that is, expressions which evaluate to a value in A, ), together with a semantics for expressions which is 

a rule which tells us how to evaluate a given expression under a given state. Also, it is important that we 
have regard for how long it takes to evaluate a given expression (under a given state): this we formalise 

via a length of computation function for an expression. 

Syntax. We define the S -indexed family EXP(E) of expressions over E by 
EXP(E)=<EXP(E),: sES> 

where for each seS the collection EXP(E)L of expressions of sort s is defined uniformly in s by struc- 

tural induction as follows: 

Basis. 

(i) Constants. Suppose ce Ex,, for some seS. Then ce EXP(E),. 

(ii) Variables. Suppose xE Var, for some seS. Then xe EXP(E),. 

Induction. 

(iii) Operations. Suppose a £w,, i for some we S+ and some seS. If ej e EXP(E)w, for 

i =1..... n=Iw1, then ß(e i.... e�) e EXP(E).. Q 

Semantics. For each ee EXP(E), the value of e under a given state pe States (A) is denoted by 

EA (e)(p) where EA is the S-indexed family 

EA=<EA' : sES> 

of evaluation mappings EE: EXP(E), [States (A )-->A, ]. Each mapping EA (ambiguously denoted 

EA) is defined uniformly in s by induction on the structure of an expression eE EXP(E), as follows: 

Basis. 

(i) Constants. If e=c for some ce Ex., then 
EA(e): States (A)--. A, 

is defined by 

(dpe States(A)) (EA(e)(p) = cA ) 

(ü) Variables. If e =x for some xe Var,, then 
EA(e): States (A)-. 3,. A, 

is defined by 
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(V pe States (A )) (EA (e)(p) = p(x) ) 

Induction. 

(iii) Operations. Suppose e =a(e 1,..., e) where for some wE S+ and some seS, aE EH s, and 

e. E EXP(E),,, for i =1..... n=w1. Then 

EA(e): States (A)->A, 

is defined by 

(VPe States(A)) (EA(e)(P) _ aA(Ee(ei)(P)..... EA(e. )(P)) ) 

Discussion. EA (e)(p) is the evaluation of e in A under p. When e is a constant (expression), evaluation 

of e is independent of the state p; the expression simply evaluates to the value of the constant in A. 

When e is a variable x, then the expression denotes the value held by x under p, viz p(x). Finally, when 

e is of the form a(e 1...., e. ), to evaluate e we first evaluate the subexpressions e 1,..., en and then we sup- 

ply the resulting values to d" as arguments. 

Notice that our formal expressions are written in a functional style rather than in the usual infix 

notation. For example, if E is the signature of Peano Arithmetic IN, then a typical expression over Z such 

as O+xxy is written as +(O, x(x, y)). Actually, technically, '0' is a number and not a piece of syntax, and 

thus properly one writes +(zero, x(x, y )) where zero e Fes, is such that zeno'N= 0. 

Example. Let E be the signature of Peano Arithmetic IN. Suppose p: Var. -'N satisfies p(x)=3 and 

p(y) =2 for some xy e Var,,. Then the value of the expression +(zero, x(x )) e EXP(E)N under p is cal- 

culated as follows: 

EN(+(zer%X(x, Y)))(P) = +N(EjN(zero)(P), Eav(x(x, Y))(P)) 
_+N( N, xN(Eav(x)(P), Env(y)(p))) 

= +V(0, (P(x), P(Y ))) 

_ +N(0, ß'(3,2)) 

=6 

Performance. Let P be a performance measure for A which is based on clock C. For each 

ee EXP(E), the length of evaluation function fore with respect to P is denoted by 7l"(e) where il' 

is the S -indexed family 
a. EXP 

=<? $: sES> 

of mappings $p : EXP(E), -o[States (A) 4 C*]. Each mapping $ (ambiguously denoted ? ") is 

defined uniformly ins by induction on the structure of an expression ee EXP(E), as follows: 

Basis. 

(i) Constants. If e=c for some cEI,,, then 
71p (e) : States (A) ---).. C* 

is defined by 

(V pe States (A)) (., "(e)(p) = cp ) 
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(ü) Variables. If e =x for some xe Var� then 
), °'(e) : States (A) --'C+ 

is defined by 

Induction. 

(ý/ pc States (A)) (XF"(e)(p) =1) 

(iii) Operations. Suppose e =a(e1,..., ee) where for some w r= S* and some seS, vE and 

e, e EXP(E),,, for i =1,..., it =Iw1. Then 

7l"(e) : States (A) ->C* 
is defined by 

(VPE States(A)) (Xf''(e)(p) = a"(EA(ei)(P),.... EA(e,, )(P)) 

+ max{ 7l (e t)(P),..., ) p(e,, )(P) }) 

Discussion. The complexity of evaluating a given expression is arrived at by building on the notion of a 

performance measure. The complexity of evaluating a constant (expression) is as determined by the per- 
formance measure. For the complexity of evaluating a(e 1,..., e. ), there are two stages to the evaluation: 
first we evaluate the arguments e 1�.., e,,, and then we apply the operation a. Consequently, we take the 

complexity of evaluating a(e 1,..., e�) to be the sum of the complexities of these two stages: we imagine 

the subexpressions e 1,.... e� to be evaluated in parallel, and so we take the complexity of this stage to be 

the maximum evaluation time over all the subexpressions. Of course, the complexity of evaluating a 

applied to its arguments is just as prescribed by the performance measure P. Finally, as in the case of 

the projection functions in PR (see Section 3.3.3), to access the value held by a variable is to access a 

single datum, and so we charge a single unit for evaluation. 

Example. Let P be a performance measure for N. Then we can calculate the cost of evaluating the 

expression of the previous example as follows: 

Let pr: States (IN) satisfy p(x)=3 and p(y) =2. Then, 

ý, °ý(+(u%x(X, y)))(P) = +P (EN(uro)(P), EN(x(x, y)(P)) 
+ max{ X xP(uro)(p), X, (x(x'y))(p) } 

_ +p (O, xN(P(x), P(Y ))) 

+ max{ zerop, x" (p(x), p(y ))+max{ % (X)(p), X'(Y)(P) }} 

= +p (O, xN(2,3)) 

+ max{ zeropxP (2,3)+max{ 1,1 }} 

+P (0,6) 
+ max{ zem', xP (2,3)+1 } 

Thus, if for example zenö =1 and+P (n, m)=1+m and x"(n, m)=1+m2 for each n, m e ! I, then 
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X EXP (+(zeno, x(x, y)))(p) = 1+6+max{ 1,1+9+1 } 

=7+11=18 

6.15 The Syntax of PIT. 

We define the collection P1T(E) of PIT programs or PIT statements by structural induction as fol- 

lows: 

Basis. 

(i) Multiple Assignment Statements. Suppose for some r>0, that S is the statement 
S =xl,.... xr .= el...., e, 

where for i =1�... r, x, e Var,, and ei e EXP(E),, for some sorts sl,..., s, e S. If x 1,..., x, are dis- 

tinct variables, then Se PIT(]). 

Induction. 

(ii) Sequencing. Suppose S is the statement 
S=S1; S2 

for some S 1, S 26 P1T(E). Then Se PTT(E). 

(üi) Conditional. Suppose S is the statement 
S=ifbthen S1else S2fi 

for some be EXP(E)e and for some S1, S2 e PTT(E). Then Se PIT(S). 

(iv) Bounded Iteration. Suppose S is the statement 
S= do e times S. od 

for some ee EXP(E) and some S. E PTT(E). Then SE PTT(E). (Here we refer to S as a loop, and 

we call So the body of the loop. ) 

6.1.6 The Semantics of PIT. 

We will now define the semantics of PIT. Essentially; the idea is that given some initial state 

pe States (A), the effect of executing a PTT program is to modify or transform p to some final state 

p, r= States (A). In more detail, p tells us what the initial value of every variable is prior to execution. 

During execution, values of the variables are modified by assignment statements, and upon termination 

of the program, the final state tells us what the final value of each variable is. 

The state-transformer semantics of an arbitrary PIT program is defined as follows: 

Definition. For each Se PIT(S), the meaning of S over A is denoted by MA (S) where 
MA : PIT(S) -+[States (A) - >States (A)] 

is defined by induction on the structural complexity of arguments S as follows: 
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Basis. 

(i) Multiple Assignment Statements. If S is the statement 
S =xl..... x, : =e1»... e, 

for some x1...., x, E Var and some e 1,.... e, . r: EXP(E)L then MA(S) is defined by 
(V pe States(A)) (MA(S)(p) = p{EA(el)(p)/xl }{ """ }{EA(e, )(p)/x, } 

Induction. 

(ii) Sequencing. Suppose S is the statement 
S=S1 ; S2 

for some S1, S2e PIT(S). Then we define MA(S) by 

(V Pe States(A)) ( MA (S)(P) = MA (S2)(MA (S 1)(P)) ) 

(iii) Conditional. Suppose S is the statement 
S=ifb then S, else S2 fi 

for some be EXP(E), and for sonne S I, S2 E PIT(S). Then we define MA (S) by 

(V pe States (A )) MA (S)(p) _ 
MA(Si)(P) ifEA(b)(p)=U 

MA (S 2)(P) if EA (b)(P) =1. 

(iv) Bounded Iteration. Suppose S is the statement 
S =doe times So od 

for some eE EXP(E). and some So e PIT(S). Then MA (S) is defined by 
(V pe States (A)) (MA (S)(p) = p, ) 

where n =EA (e XP), 

Po=P 
and for anykZ0, 

Pk+1 = MA (So)(Pk ) 

Discussion. There are two features of the above definition that require comment. First consider the 
defining line for MA(S) when S is a multiple assignment statement (see clause (i) above). At first sight it 

appears that the order in which expressions are evaluated is significant: as the defining line reads, it 

appears that et is evaluated first and e, last. In fact this is not the case: if a and b are any values, and if 

x and y are different variables, then the two states pfa /x }{bly} and p{ bly}{a Ix } are equal. 
Since xt,..., x, are assumed to be different variables, the order in which we write down the state 

modifiers { EA (e1)(p) /x; } is not significant. For example, we could have equivalently defined MA (S)(p) 
by 

(VPE States(A)) (MA(S)(P) = p{EA(er)(P)1x. }{ ... }{EA(et)(P)/xt }) 

The second point to notice is that for any Se P1T(E), the function MA (S) is always total; for any 

pe States (A) the state MA (S)(p) is always well-defined in the sense that it can be calculated in finitely 

many steps. We infer from this observation that every PIT program always terminates (when executed 
from any initial state). 
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6.1.7 Performance of PIT Programs. 

Let P be a performance measure for A which is based on clock C. 

For each SE PTT(E), the length of computation function for S with respect to P is denoted by 

) (S) where 
): PIT(S)- [States (A) ->C+] 

is defined by induction on the structural complexity of arguments S as follows: 

Basis. 

(i) Multiple Assignment Statements. If S is the statement 
S =xl,..., Xr := el, ---, er 

for some x1,...,; e Var and some e 1,..., e, e EXP(E), then Xpfr(S) is defined by 

(V E States (A)) (ýr(S)(P) = max{ X "(e 
1)(P),..., X "(e, )(P) }) p 

Induction. 

(ii) Sequencing. Suppose S is the statement 
S=S1; S2 

for some S 1, S2 E PTT(E). Then we define Xp"(S) by 
(VP E Stales (A )) (XPý(S)(P) = i4pý(S 1)(P) {' %Pý(S2)(MA (S1)(P)) ) 

(iii) Conditional. Suppose S is the statement 
S= if b then SI else S2 fi 

for some be EXP(E), and for some S 1, S 2e PTT(E). Then we define Xp T(S) by 

X "(Si)(P) EA(b)(P)=rt 
(VP e States (A )) Xpý(S)(P) _ (b)(P) + XprT(S2)(P) if EA (b )(P) =f 

(iv) Bounded Iteration. Suppose S is the statement 
S =doe times So od 

for some ee EXP( and some S, E PIT(S). Then )7'(S) is defined by 

(V pE States W) (Xplr(S)(P) = kpp(e)(P) + X. ) 

where n =EA(e)(P)ý 

ao=o, 
and for any k20, 

Xk+l = ilk + %prr(S. )(P. ) 

where Pk is as defined in Section 6.1.6 clause (iv). 

Discussion. The complexity or performance of a PIT program is arrived at by building on the complex- 

ity of expression evaluation in the following way: 

We imagine each assignment in a multiple assignment statement to be executed in parallel, and so 

we take the complexity of execution to be the longest time required to execute any of the individual 

assignments. For sequencing S 1; S 2, we first execute S 1, and then S 2, and so we charge the sum of the 

costs of executing each component statement (from the appropriate initial state). For the conditional 
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statement if b then S1 else S2 fi, we must first evaluate the Boolean expression before executing either 
S1 or S2, and so we charge the sum of the costs of evaluating the Boolean expression and the cost of exe- 

cuting either S1 or S2 as appropriate. The cost of executing a loop do e times S, od is arrived at along 

similar principles. 

6.1.8 Examples. 

Here are three examples of PIT programs. The first is a trivial example that illustrates how to work 

with state-transformer semantics. The second example illustrates the idea that a PIT program can be 

used to compute a function; this is the subject of the next section. The final example is a PTT simulation 

of the OE sorter; this serves to illustrate the important idea that synchronous algorithms can be simulated 
directly in PTT (that is, without using PR). 

Swapping. Swapping the values held by two program variables x and y can be accomplished via the 

single PIT statement S =x, y :=y, x. We can establish that executing S swaps the values held by x and y 
in the following way. Given an initial state p, the initial values of x and y are p(x) and p(y) respec- 

tively. If we now execute S from this initial state, then upon termination the final values of x and y are 

p'(x) and p'(y) respectively, where p'=MA (S)(p). Thus to show S swaps the values held by x and y we 

must show p'(x) = p(y) and p(y) = p(x). 
First, since S is a multiple assignment statement, we have for any initial state p, 

MA(S)(p) = p(EE(y)(P)/x }{EA(x)(P)/y } 

= P{P(y)/x }{ p(x)/y } 
Thus, 

Pa(x) = MA(S)(P)(X ) 

= pip(Y)lx }{p(x)/y }(x) 

= p{p(y)/x }(x) 

(using the definition of a variant of a state; see Section 6.1.2) 

= P(y) 
(again from the definition of a variant of a state. ) Thus the final value of x is p(y), that is, y's initial 

value. In a similar way it is easy to show that p'(y)=p(x); that is, that y's final value is the initial value 

of x. Thus S does indeed swap the values of x and y as claimed. 

Factorial. For each ne Ili let n! denote the factorial of n. That is, let n! be the number defined by 

0! =1 
(n+1)! _ (n+1)xn! 

Also let E be the signature of Peano Arithmetic ti. Then a PTT(E)-program to compute n! for 

each neN is as follows: 
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f ,m :=1,1; 
do num times 

5104 = 
.f x(m J), succ (M) 

od 

In the above program, we imagine num, f, and m to be (distinct) variables of sort natural number whose 

purposes are as follows: the variable nwn is intended to hold the value n for which we wish to compute 

n!; the variable f acts as an accumulator in which we build up the value of n !, and the variable m is the 

multiplier from which we build n!. 

Let us see how S1,,, above computes n! in some simple cases: First, in all cases, the initial multi- 

ple assignment is executed, leaving both f and m with the value 1. If num holds the value 0, then the 

body of the loop is executed zero times, that is, it is not executed at all; thus Sf,,, will terminate with f 

holding the value 1, which is correct since 0! =1 by definition. If num holds the value 1, then the body 

of the loop is executed once: f is multiplied by m, and m is incremented by 1; thus on termination of 
S1 ,f holds the value 1x1=1, which is again correct since 1! =1. If num holds the value 2, then the 

body of the loop is executed twice: after the first execution f and m will hold the values 1 and 2 respec- 

tively, as in the case above (when the value of rum is 1); on the second execution of the loop, f is multi- 

plied by m leaving f with the value 2x1=2, and m is incremented by 1 to 3; thus on termination the 

value off is 2=2!, and m is left with the value 3 ready to compute 3x2=3!. 

It is not difficult to see that, in general, if the value of num is n>0, then the loop is executed n 

times, and immediately prior to the nth execution of the body of the loop, f and m hold the values 

(n-1)! and n respectively; thus upon completion of the last execution of the loop, f is left with the value 

n x(n-1)! =n !. 

We leave it to the interested reader to prove that S1 computes the factorial function in the fol- 

lowing sense: 
(V PE States (N)) (M, (S1 , )(P)(f) = P(num )! ) 

Simulating OE. Let us write a PTT program that simulates the OE sorter of Chapter 2. Recall that the 

informal description of the OE sorter determined an algebra A =AOE comprising the three carrier sets 

T= TOE, ]B, and D, and operations f where for i =1,..., n fi was the function that specified 

module ml; see Section 2.3.6 for the definitions off Now let S= (T, B, D } and let E be the S- 

sorted signature of A. Then E contains a symbol a, to name f; for i =1,..., n; more precisely, for i =1, n 

we have a, E E, p and for i=2,..., n -1 we have a; E with, for example, 
a if t mod (n+l)=0 

a"(t, a, l, v, r) =f j(t, a, l, v, r) = min{v, r) if: mod (n+1)odd 
max{ l, v } if t mod (n+1) even, *0 

for each teT and a, l, vr e D, in the case that i is odd, # 1. Now, according to the general definition 

of the sort set S, the S -sorted signature E, and E -algebra A given in Section 3.1.8, S contains a new 

symbol n which is the formal name of A, = [T --*AD ]= [T 'D ], E contains a new symbol 

.,. a r= E , D� and in addition to the new carrier [T -->D ], A has the new operation 
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eva4 = eval :Tx [T -+D ]-'D defined by eval (t, a) =a (t) for each: eT and a: T-9--D. 

Since E is a standard signature the collection PIT(E) is well-defined, and since A is standard the 

function MA : PIT(E) -, [States (A) ---States (A)] is also well-defined. We construct a simulation 
SOE e PIT(E) as follows: 

To simulate OE we first introduce a variable vi e Varo to represent the value held by m; for 

i =1,..., n. Now, the function ft tells us the value held by m; at time t+1 in terms of the values held by 

m 1,..., m� and the value supplied by source In; at time t. Since vi names fr, the statement 
vi := cri (t. a, v1_1, v1, vi+i) 

will simulate the t th step performed by m; (in the case 2: 51: 5n) when 'a' represents the value supplied 

by In; at time t. (Note that here 't' is a program variable te VarT; by 'the time t' we really mean 'the 

value oft under the current state'. ) 

We can simulate the loading of data into the OE network by means of the steam evaluation func- 

tions. Suppose in is a variable of sort n, that is, suppose in e Var0. Then for any pe States (A) we have 

p(in)e A,,, that is, p(in) :T -4D . To access an element of the stream denoted by in we must apply 

eval to the timet and the stream. Consider the expression e= eval(t, in ); then ee EXP(E )6, and by 

definition of EA the value of e under any pe States (A) is calculated as follows: 

EA (e)(p) = EA (eval(t. in))(p) 

= evald (EA (t)(P), E4 (in)(p)) 

= eval(p(t), p(in)) 

= p(in)(p(t)) 
Thus if p(in) is the stream a: T-->D then as the value oft under p varies 0,1,2,... the expression 

eval(t, in) evaluates to a (0), a (1), a (2),.... 

In the case of the OE network, the input is a stream a= (a 1,..., a ") :T ->D" where for 1=1,..., n 

a, :T -3, -D is the steam supplied by In;. Let int e Vary for i =1,..., n and suppose pe States (A) is such 

that p(in; ) =a; for i =1,..., n. If we additionally denote p(v; _t), p(vi ), and p(vi+1) by 1, v, and r respec- 

tively, then for 25i Sn-1 we have 

MA(v1: =ai(t, eval(tjni), vi-iyi, vi+i))(p) = p{fi(p(z). at(p(t)), l, v, r)/vr } 

= P{fi (k, g i (k ), 1, v, r) / vi } 

when p(t)=k; here we see that vi is assigned the value held by mj at time k+1. 

Intuitively then, the following program SoE E PIT(E) should simulate OE: 

t: =O; 
do l times 

SoE 
vl�... v"'I: =el...., ewrt+l 

od 

where 
e1 = a1(t, eval(tjnl), v1, v2) 

and for i =2,..., n-1, 



-159- 

ei = Qi (t, evai(t, in; ), vi-1"vi, vt+1) 

and 
ew = QR (t , eval(t'n w 

). vw-1 rva 
) 

Note that we cannot simulate OE for infinitely many time cycles in PIT, since PIT only has a 
bounded loop construct. However, in practice we would only ever want to look at the values held by 

OE's modules for a finite time, and thus the bounded loop is appropriate. For example, in SoE, we have 

said to simulate OE for 1 cycles; if p(l) =m (n+1) for some mZ1 then this is enough time to see OE sort 
the first m vectors of input which are read into the network. (Recall that the period of OE is n+1. ) 

Readers may convince themselves that SOE simulates OE by executing SOE on typical input. For 

example, take D=1T, n=6, and calculate MA(SOE)(p) where pEStates(A) satisfies p(l)=n+1, 

p(in; )(O) = n+l-i for i =1...., n, say. However, officially, the behaviour of OE is defined by the value 
function VOE, and thus to claim that SOE simulates OE is to claim that SOE implements or computes VO8, 

or that SOE is a correct simulation of OE. Formally, we offer the following: 

Lemma. For any initial state pe States (A), define PA, for each kZ0 by 

P. = MA (t := 0)(P) 
Pk+l = MA(So)(Pk) 

where So is the body of the do-loop in SoE. Also let p(in; ) = a; :T -'D and p(vi) =xi eD for 

i =1...., n. Then for k=0,1,2,... , 
(Pk (v 1).... 0 Pk (vn)) = VoE (k. a. x ) 

where 2 andx =(xl,..., x. )E D. 

Proof. Exercise. 

Discussion. The last example serves to illustrate the important fact that synchronous algorithms may be 

simulated directly in PTT; it is not difficult to see how a general synchronous network N could be simu- 

lated by a PIT program SN by modifying the OE example. Moreover, since a PIT program is a formal 

object, it is clear that we could alternatively formalise synchronous networks by defining the behaviour 

of the network to be the state transformation MA(SN). Thus, in principle, we now have two ways of for- 

malising synchronous algorithms: by using a PR scheme aN E PR(E) (cf. Notation 3.4.5) and by using a 

PIT program SE PIT(E ). As we have said in the introduction to this chapter we will later prove that 

these methods are equivalent. Actually, it is the language FPIT that we show is equivalent to PR; FPIT 

can be thought of as an extension of PIT and thus synchronous algorithms can also be simulated directly 

in FPIT. See Martin and Tucker[1987] for an account of using CARESS, the implemented version of 

FPIT (cf. Section 1.3), to simulate synchronous algorithms. 

6.2 PROGRAMMING WITH PROCEDURES. 

In this section we will consider how PIT may be extended to include programs which involve 

function procedures. Function procedures are PIT programs which compute a function on the underlying 

data set (in a sense to be defined). 
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Below, we will first consider what it means for a PIT program to compute a function following the 

semantic treatment in Tucker and Zucker[1987] (work of 1979) This done, we will define function pro- 

cedures using syntactic conditions adapted from Jervis[1988] (to appear) We also explore the combined 

use of augmentation (see Section 3.1.5) and function procedures in the top-down design of algorithms; 

ultimately we will implement each PR scheme in a top-down way using FP1T. (As we will see later, a 

program in FPIT is a more general kind of function procedure. ) 

6.2.1 Functionality. 

We have seen two examples of how a PIT program S can compute a function f in an intuitive 

sense: the programs Sf,,, and SOE of the previous examples computed a function f (the factorial func- 

tion and VOE respectively) in the sense that to compute f (a1,..., a�) we chose an initial state under which 
S's input variables held the values a1,..., a,,, and then under the final state S's output variables collec- 

tively held f (a t,..., a. ). 

Let us introduce some definitions that allow us to formalise this idea: 

6.2.2 Definitions. 

(i) Let we S'with Iw =n. Then we define Var r to be the set of all vectors X= (X 1,..., X. ) such that 
{X 1,..., X. } are all distinct variables with Xi e Var., for 1=1,..., n. 

(ii) For each we S*, and for each Xe Var r, we define Xj to be the 1 th variable comprising X for 

IwI. Thus, if X= (x 1,..., x� ), then X, =x; for i=1, .., n. 
(iii) We define aA to be the Stindexed family 

1CA=<7tA': wES> 

of state projection functions nA : Var,,, -[Stares (A)-*A"]. For each we S+with Iw (= n, 7t% 

(ambiguously denoted nA) is defined by 

(VX E Varr)(V pE States(A)) (1CA(X)(P) = (P(X1),.... p(XR)) 

Definition. Let Se PLAT(E), and let In e Var� and Out E Var., for any u, v e St Then we refer to 
(S, In, Out) as an input/output-triple of arity (u, v). (More briefly, we say (S, In, Out) is an ̀ i/o-triple'. ) 

6.23 Definition. 

Let (S, In, Out) be an i/o triple of arity (u, v) for some u, v e S*. Also let f : A"-'A' be any 
function. Then we say S computes f relative to In and Out if the following diagram commutes for 

every pe States (A) : 
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States (A) 
MA(S) 

States (A) 

nA (In) nA (Out) 

A" aim A" 
f 

That is, if 

(V Pe States (A )) (nA (Out)(MM (S)(P)) =f (nA (In)(P)) ) 

Additionally, we say an i/o-triple (SJn, Out) is functional if there is some function f which S computes 

relative to In and Out. 

Example. Let S =x, y : =y, x. Also let In =Out = (x, y). Then we can show S computes f relative to In 

and Out where f is the function defined by f (a, b )= (b, a ). 

Referring back to Examples 6.1.8, choose pe States (A) and calculate as follows: 

nA (Out)(MA (S)(P)) = nA (X'')(MA (S)(P)) 

(by definidon of Out) 

(by definition of aA ) 

(see Examples 6.1.8) 

(by definition off ) 

(by definition of aA ) 

(by definition of In). 

_ (MA (S)(P)(x ), MA (S)(P)(Y )) 

_ (P(Y), P(x)) 

=f (P(X), p(Y)) 

=f (nA(x, Y)(P)) 

=f (nA(In)(P)) 

Thus S computes f relative to In and Out as claimed. 

Note. Let (S, ln, Out) be an i/o-triple of arity (u, v), and let f : A"->A'. Suppose S computes f rela- 

tive to In and Out. Is it the case that we can use S to compute f (a) for every ae A"? If not, then 

surely our definition of a program computing a function is a bad one! Fortunately the answer is 'yes'. To 

see this, choose a= (a 1,..., a�) e A" (so Iu( =n). Now, since States (A) includes all maps from vari- 

ables into A, there is certainly a state p such that p(In; ) = a; for i =1,..., n (assuming In 1,..., In. are dis- 

tinct variables). Of course, we now have aA (In)(p) =a. In other words IVA (In) : States (A )--->A" is a 

surjection, and so there is always a state which we can use to load the variables In 1,..., In� with a 1,..., a� 

respectively, and thus we can use S to compute f (a) for any ae A". 
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Exercise. Let SOE be as in Examples 6.1.8. Prove that SOB computes VOL, relative to 

In = (l, in 1,..., in,,, v 1,..., v�) and Out = (v t,..., v�) .Q 

There are two questions concerning the functionality of i/o-triples which immediately suggest 

themselves, these being: 

(i) If S computes f relative to In and Out, then is f unique? 

(ii) Is it the case that for every (S rn, Out) that S computes some f relative to In and Out? 

In answer to the first question we have: 

6.2.4 Lemma. Let (S, ln, Out) be an i/o-triple of arity (u, v) for some u, v E St If S computes some 
f: A" -->A" relative to In and Out then f is unique. 

Proof. Suppose S computes both f and g relative to In and Out. Then fg: A" -->A", and to prove 

the lemma we must show that f (a) =g (a) for each ae A". 

Choose ae A". Then since nA(In) is a surjection (see the previous note), there must be some 

pe States (A) such that to (In)(p) = a. Now, since S computes f relative to In and Out, we have 

f (a) =f (ns (In)(p)) = nA(Out)(MA (S)(p)) 

=9 (7t (In)(p)) 

(since S also computes g) 
=g(a) 

Thus f (a) =g (a) as claimed. Q 

We can answer the second question (in the negative) by means of the following counterexample: 

Let E be the signature of Peano Arithmetic IN, and let Se PTT(E) be the program S =y : =x+r. 
Now let In = (x) and Out = (y). We can now show that there is no function f of the form f: N-' N 

such that S computes f relative to In and Out. 

First, it is easy to show that 
(VPe States(N)) (nri(Out)(Mrt(S)(P)) = P(x)+P(z)) (1) 

Now, for a contradiction, assume that S does compute some f of the above form. Then for any 

pe States (N) we must have 

f (it (In)(p)) =f (P(x )) = n, (Out)(Mri(S)(P)) = P(x)+P(z) (2) 

from the definition of a functional i/o-triple and from (1). However, now let p and p' be any states with 

p(x) = p(x) but with p(z) * p'(z). Then from (2) we have 
f (P(x)) = p(x)+p(z) 

* p'(x)+p'(z) 
(by hypothesis on p and p') 

= it (Out)(MJN(S)(p')) 
(by (1)) 

=f (P'(x )) 
since S computes f, and thus we have proved 
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f (P(X)) #f (P'(x)) (3) 
Now, p and p' agree on x by hypothesis, so we can let p(x) = p'(x) =n say, for some neN. Thus from 

(3) we have f (n) sf (n) which is plainly a contradiction, and so f does not exist: that is, S does not 

compute any function relative to In and Out. p 

Why did the above i/o-triple (S, In, Out) fail to be functional? On closer inspection of Definition 

6.2.3 we see that an ito-triple is functional when the initial values of the input variables uniquely deter- 

mine the final values of the output variables. This property is not satisfied by the by the last i/o-triple 

since the final value of y depends on the initial value of z, and z is not `declared' to be an input variable. 
Of course, (S, ln, Out) is functional if we take In = (x, z ). 

We are interested in making PIT programs that compute functions so that we can compute func- 

tions denoted by PR schema and so simulate synchronous algorithms. Since not every i/o-triple computes 

a function we need conditions on i/o-triples that guarantee functionality. As explained in Tucker and 
Zucker[1987] in their work on while-programs, the functionality of i/o-triples is ultimately a semantic 

property and is algorithmically undecidable. However, in his work (also on while-programs) C. A. 

Jervis discovered syntactic conditions on i/o-triples that are sufficient (but not necessary) for functional- 

ity. We will now explain Jervis' idea in the context of PIT programs. 

Given an i/o-triple (S jn , Out ), each variable x occurring in S is of one of two kinds: either the 

behaviour of S (and hence the value of each output variable) is `dependent' on the initial value of x or it 

is not. Intuitively, it those variables on whose initial value the behaviour of S depends that need to be 

input variables for (S, In, Out) to be functional. For example, consider S1 and S2 defined by 

S1=y: =z; x: =o; w: =y+x 

and 
S2 = y, x, z : =z, O, y +x 

Here S1 is independent of the initial value of x since this value is overwritten by the assignment x : =0 

before the value of x is used On the other hand S2 does depend on x since the initial value of x is used 

in computing the value of w. More succinctly we can say that in S1 x is initialised before it is used, 

whereas in S2 it is not. Following Jervis[1988] we call variables that are not initialised free. In the obvi- 

ous notation then, we have 

init(S1)={y, x, w }, free(S1)={z }, init(S2)={w }, and free(S2)={x, y, z } 

The key observation made by Jervis is that for a general while-program S, feit (S) can be defined 

by induction on the syntactic structure of S. After a preliminary set of definitions we will define feit (S) 

and free (S) for PiT programs S. 

6.2.5 Definitions. 

(i) For each we S*, and for each Xe Varw, we define var (X) to be the set (rather than vector) of all 

the variables occurring in X. Thus, if X= (x then var (X) ={x1,..., x� }. 

(ii) For each ee EXP(E), we (ambiguously) define var (e) to be the set of all variables occurring in 

the expression e; var (e) can be defined by induction on the structural complexity of e in the 
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following way: 

(a) var (c) = 0. 

(b) var(x) = {x }. 

(C) var(a(e1,..., e�)) = var(e1)u """ vvar(e�) 

Let SE PIT(E). We (ambiguously) define var(S) to be all the variables occurring in S; var(S) 

can be defined by induction on the structure of S as follows: 

(a) var(xl,..., x� := el,..., e�) = {xi,..., x� }uvar(e1)u """ uvar(e�) 

(b) var (S 1; S2) = var (S 1) u var (S2) 

(c) var (if b then S1 else S2 fl) = var(b)uvar(S1)uvas(S2) 

(d) var (do e times So od) = vas (e) u var (S, ) 

6.2.6 Definitions. 

Let Se PIT(S). Then we define 

(i) feit (S), the set of initialised variables of S, by induction on the structural complexity of S as fol- 

lows: 

(a) init(xl,..., x� := el�... e�) _ {xl,..., x� }-(var(e�)u """ uvar(e�)) 

(b) init(S1 ; S2) = init(S1)u(init(S2)-var(S1)) 

(c) init (if b then S1 else S2 fi) = (init (S 1) n init (S2) - var (b )) 

(d) init(doe times S,, od) =0 

(ii) free (S ), the set of f ree variables of S, by free (S) = var (S) - finit (S ). 

6.2.7 Definition. 

Let (S, n, Out) be an i/o-triple of arity (u, v) for some u, v e S' We say (SJn, Out) is an 
input/output program of arity (u, v) if S, In, and Out, satisfy the following two J-conditions: 

(i) var (In) free (S) 

(ii) var (Out) c var (S) u var (In ) 

If u and v are understood, then we refer to (S, ln, Out) as an input/output program, or, more briefly, as 

an i/o-program. Additionally, for each u, v e S* the collection of all i/o-programs of arity (u, v) is 

denoted PmO(E).,,,, and we define the S*cSt-indexed family PITIO(Z) by: 

PTTIO(E) = <PMO(E),,,,, : u, v e S+> 0 

The J-conditions guarantee functionality as is shown by the following theorem and corollary whose 

proofs we postpone temporarily. 
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6.2.8 Theorem. Let (S, In, Out) be an i/o program of arity (u, v) for some u, v e St Then for every 

p, p' e States (A) with nA (In )(P) = nA (In)(p'), 
7CA (OUt )(MA (S)(P)) = 7CA (OUt )(MA (S)(P7) 

13 

6.29 Theorem. Let (S, In, Out) be an i/o program of arity (u, v) for some u, v e St Then there exists a 
function f : Am -->A" such that S computes f relative to In and Out. 13 

Actually, not only can we prove that and i/o-program computes some function, we can also define 

it explicitly. We do this below where we additionally define the complexity of an i/o-program. 

6.2.10 Definition. 

Let A be a E-algebra, and let P be a performance measure for A which is based on clock C. Now 

let u, v e S`. Then for each (S, In, Out) E PTT1O(E)u,,, we define 

(i) the functional meaning of(SIn, Out)inA, FA(S, fn, Out): AM->A" by 

FA(S, ln, Out)(a) = nA(Out)(MA(S)(p)) 
for each ae A", where pe States (A) is any state such that nA (In )(p) = a. 

(ii) the complexity of (S, ln, Out) with respect to P. Xp'O: AU --->C+ by 
7$P (S, In, Out)(a) = X, prr(S)(p) 

breach ae A", where pE States (A) is any state such that nA (In)(p) =a. O 

The functions FA(S, In, Out) and %p' (SJn, Out) arecertainly explicitly defined, but are they well- 

defined? In view of the previous counterexample (concerning the functionality of arbitrary i/o-triples), it 

is is essential we make sure that the values of FA(S, In, Out)(a) and 4 (S, In, Out)(a) are independent 

of the choice of p such that nA (In)(p) =a: 

6.2.11 Lemma. Let (Sin, Out) be an i/o program of arity (u, v) for some u, v ES Then for every 

ae A". F4 (S, fn. Out)(a) and XL°(S in, Out)(a) are well-defined. 

Proof. Let (S1In, Out) e PMO(E)",,, for some u, v e S* To see that F4(Sln, Out) is well-defined, first 

choose ae A" and suppose there are two states p, p' e States (A) such that ltA (In)(p) =a= n4 (In)(p'). 

(Note that at least one such p exists by the surjectivity of n4 (In). ) Then by definition of FA (S,! n, Out ) 

we have F4(S, ln, Out)(a)=ttA (Out)(MA(S)(p)) and FA(S, In, Out)(a)=icA(Oat)(MA(S)(p')). Thus to 

show FA (S , In , Out) is well-defined, we must show nA (Out)(M4 (S)(p)) = it4 (Out)(MA (S)(p')); how- 

ever, this is a simple consequence of Theorem 62.8. 

To show that X L(S, In, Out)(a) is well-defined for each ae A", we must show that 

xprr(S)(p)=X, pff(S)(p') when p and p' are any two states such that ztA(In)(p)=a =nA(In)(p'); however 

this is immediate from the stronger version of Theorem 62.8 which we will discuss below. (See 

Theorem 62.13. ) 13 

a 
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It remains to prove Theorems 6.2.8 and 6.2.9. The latter result is easy to prove from the first and 

so we consider it first: 

Proof of Theorem 6.29. Let (S, ln, Out) e PmO(E)",,, for some u, v e St Then we must show S com- 

putes some f: A" -4A' relative to In and Out. This fact is a direct consequence of the following: 

6.2.12 Lemma. Let (S, ln, Out) be an i/o program of arity (u, v) for some u, v e St Then the following 

diagram commutes for every pe States (A): 

States (A) 
MA(S) 

States (A) 

nA(In) 

t1tAw) 

A" mi. A' 
FA (S, In, Out ) 

That is, S computes FA (S , In , Out) relative to In and Out. 

Proof. To prove the lemma, we must show that for every pe States (A) that 
ttA (Out)(MA(S)(p)) = FA (S Jn, Out)(nA (In)(p)) (4) 

Choose pe States (A). Then by definition of FA (S, In, Out) we have: 

FA(S, In, Out)(rA(In)(P)) = nA(Out)(MA(S)(p')) (5) 

where p' E States (A) is any state such that nA (In )(p) = irA (In )(p). (Of course p is such a state, and so at 

least one such p' exists. ) However, if nA (In )(p') =nA (In)(p), then by Theorem 6.2.8 we have: 

nA (Out)(MA (S)(PD) = nA (OUt)(MA (S)(p)) (6) 

Thus, from (5) we have: 

FA (S, In, Out)(7A (In)(P)) = 7cA (Out)(MA (S)(pj) 

= nA (Out)(MA (S)(p)) 

(using (6)), and thus (4) holds for each pe States (A). 13 

It remains to prove Theorem 6.2.8. Actually, we will prove the theorem simultaneously with 

another statement that says that length of computation is only affected by the values of free variables: the 

theorem we will eventually prove is as follows: 

6.2.13 Theorem. Let (S, ln, Out) be an i/o program of ariry (u, v) for some u, v e St Then for every 

p, p' e States (A) with nA(In)(P)= ne (In)(P')" 

nA(Out)(MA(S)(P)) = 7CA(Out)(MA(S)(V)) 
Furthermore, 

xpfF(S)(P) = XpfF(S)(P) 0 

Before we can prove this theorem we need to establish a similar result concerning functional 

expressions: 
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6.2.14 Definition. 

We define FEXP(E) to be the S+xS-indexed family 

FEXP(E)=<FEXP(E)�,,,: wES, sES> 

of collections FEXP(E)W,, of functional expressions of arity (w, s). For each wE S' and sES, each 
FF. Xp(E)�,,, r- EXP(E): x Var y is defined by 

(V ee EXP(E), )(V XE Varw) ((e , X) E FEXP(E)w a var (X) var (e) ) 

6.2.15 Lemma. Let we S+and seS. Then for every (e, X) E FEXP(E)w,,, if p, p' E States (A) are such 

that nA (X)(P) = nA (X)(P') then 
EA (e)(p) = EA (e)(P) 

Furthermore. 
"(e)(P) 

(7) 

(8) 

Proof. Let (eX) e FEXP(E)w j for some we S*and seS. Also let p, p'e States (A) be any states such 

that 7rA (X)(p) = to (X)(p'). We will prove the lemma by showing that (7) and (8) hold by induction on 

the structural complexity of e as follows: 

Basis Cases. 

(i) Constants. Suppose e=c for some ce Eý,. 

Then by definition of EA (e) we have: 

EA (e)(p) = EA (c)(p) 
= CA 

= EA (c)(P) 

= EA(e)(P) 

Thus (7) holds for e=c (independent of the hypotheses on p and p'. ) 

To see that (8) holds for e=c, we calculate as follows: 
X (e)(p) = X"(c)(p) 

= CP 

_) (c)(P7 

=X (e)(P') 
Thus (8) holds for e=c (again independently of the hypotheses on p and p'. ) 

(ii) Variables. Suppose e =x for some xe Vars. 

First notice that since (e X) e FEXP(E), we have var (X ); 2var (e) ={xI. Thus xe var (X ), and so 

x =X; for some ie [ln] when n= Iw I. Now, lrA(X)(p)=TtA(X)(p') by hypothesis, and so 

p(X j) = p'(X j) for j =1,..., n. In particular, we have 

P(x) = P(XX) = p'(X; ) = p'(x) (9) 

To see that (7) holds for e =x, we calculate as follows: 
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EA (e)(P) = EA (x)(P) 

= P(x) 

=P'(x) 
(using (9)) 

=EA(x)(P) 
= EE (e)(P') 

as required. 
To see that (8) holds for e =x, we calculate as follows: 

XF(e)(P) = Apl(x)(P) 

=1 
= x"(x)(P) 

=X (e)(P) 
Again, this is as required. 

Induction. Suppose that (e, X) e FEXP(E),.,, is some fixed functional expression with the property that 

for each s' eS and for every (e', X)e FEXP(E),,,. e with e' of less structural complexity than e, that 

whenever p, p' e States (A) are any states that satisfy 1c, ß (X)(p) = 7rA (X)(pD, then 
EA (e')(p) = EA (e')(p) (10) 

and 
L° XP (e NO = ILFP(e')(P) (11) 

Let p, p' e States (A) satisfy 7tA (X)(p) ='t4 (X)(p'). We now show that (7) and (8) hold for (e X ). 

(iii) Operations. Without loss of generality, we may suppose e is of the form e= ß(e 1...., e. ), where 
for some ueS, ve E�,,, and e; e EXP(E)M for i=1,..., n= I u. 

First notice that by the definitions of FEXP(E) and vag (e) we have 

var(X) 2 vas(e) = var(e1)v """ uvar(e�) 
and so (e� X) E FEXP(E)w.., for i =1,..., n. 

Also for i =1,..., n, since each ej is of less structural complexity than e, by the induction 

hypotheses (10) and (11) applied to (e;, X) we have 

EA (e1)(P) = EA (e1)(P') 

and 

(12) 

LA (ei)(P)) =7ý°p(eý)(P) (13) 
fori=l..... n. 

We can now show (7) holds for e= ß(e 1,..., e�) as follows: 
EA (e)(P) = EA (6(e l,..., ej(P) 

= CYA (EA (e 1)(P),..., EA (e. )(P)) 
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= CO (EA (e 1)(P)..... EA (ea)(P)) 

(using (12) with i =1...., 
= EA (ß(e 11.... eR))(P) 

= EA (e)(P) 

= ß(e 1,..., en ). Thus (7) holds fore 

We now show (8) holds for e= ß(e 1,..., ea) as follows: 
"(e)(p) = 7l°p(ß(e 1..... ea))(p) 

= oP (EA (e 1)(P)"". ", 
EA (ew)(P)) 

+ max{ X, (e 1)(P),..., X (e. )(P) } 

= crp (EA (e 1)(P)...., EA(e. )(P')) 

+ max{ X, P(e 1)(P),..., Xp(e,, )(P) } 

(by(12)with i=1,..., n) 

_ CIP (EA (e 1)(Pl,.... EA (e,, )(P*)) 
+ Max[ ?. '(e ) (e,, )(p) } 

(by (13) with i =1..... n) 

EXP =; Lp' 

_ I' (e)(P) 

Thus (8) also holds for e= ß(e 1..... e. ). 13 

Before we can prove Theorem 6.2.13 we need the following facts concerning free (). Each can be 

proved from the definition of free (S) using set-theoretic arguments; we leave the proofs as exercises. 

6.2.16 Lemma. Suppose Se PIT(S) is of the form S= S1 ; S2 for some S 1,52 e PI T(E). Then 

(a) free (S1; S2) =free (S 1) v (free (S2)-var (Si)) 

(b) free (S t; 
S2) Q free (S i) 13 

6.2.17 Lemma. Suppose S is of the form S= if b then S1 else S2 fi for some be EXP(E)e, and some 

S 1, S 2E PIT(S). Then for i =1,2, 

(a) free (S) ý free (S; ) 

(b) free (S) init (S; ) - var (S 31) 13 
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Proof of Theorem 6.2.13. We are now in a position to prove Theorem 6.2.13 which guarantees the 
functionality of i/o-programs. 

For convenience we restate what we must prove: 

Theorem. Let (S/n, Out) be an i/o program of arity (u, v) for some u, v e S*. Then for every 
p, p' e States (A) with nA (In XP) = nA (In)(P7, 

IA (Out)(MA (S)(P)) = 7CA (Out)(MA (S)(P)) (14) 

Furthermore, 

Xp`T(S)(P) = apT(S)(P) (is) 
Proof. Let (S, In, Out) e PmO(I: ),,,,, for some u, v e S", and let p and p' be such that 

nA(In)(p)=nA(In)(pD. Also let (u =n and Iv I =m. We prove (14) and (15) simultaneously and uni- 
formly in u and v, and by induction on the structural complexity of S. 

Basis Case. 

(i) Multiple Assignment Statements. Suppose S is of the form: 
S =XI .... ,Xr, :=e1,... 9 er 

for some r>0. 

First notice that since (S, n, Out) is an i/o-program with Sa multiple assignment statement, we 
have 

var (In) free (S) = var (S)-init (S) = var (S) -({ x 1,..., x, }Har (e 1) v"""U var (e, ))) 

and so var (In) var (e 1) u"""U var (e, ) (since the variables of e 1,..., e, are also variables of S). 

Hence, var (In ); 2var (e; ) for i =1�.., r, and so (e; fn) e FEXP(E).,,,, for i =1,..., r. Thus by Lemma 

62.15 we have 

EA (et)(p) = EA (ei)(pl 

and 

(16) 

X (ei)(P) =X (ei)(Pl (17) 
fori=l..... r. 

Let MA(S)(p)=pf (`f' for final state) and MA(S)(p')=pf. Then to show (14) holds for S when S 

is a multiple assignment statement we must show 
pf(Out) = pp(Out1) (18) 

for i =1,.... M. 

To show that (18) holds for i =1,..., m, we first claim that for i =1,..., m, if Out; *xj for some 
je [1, r], then Out, =Ink for some ke [1, n]. To see why this is true, notice that 

var (Out) r- var (S) v var (In ) 

since (S, In , Out) is an i/o-program Thus for i =1...., m, 
Out; E var (Out) a var (S) v var (In) ={xj,..., x, }v var (e 1) v"""v var (e, ) u var (In ) 

Now, if Out 1x1..... x, } then 
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Outi e var (e 1) v"""v var (e, ) u var (In) 

But (S, In, Out) E PTTIO(E) and S is a multiple assignment statement, thus: 

var (In) Q free (S) = var (e 1) v"""u var (e, ) 
and thus 

Out; E var(e1)U """u var (e, ) u var (In) C var (In) 
Thus Out, e var (In), and so Out, =In, for some ke [l, n ] as claimed. 

Now choose ie [1, m]. We show (18) holds in each of the two following cases: 
Case 1: Out; =xj for some je [1, r] 
Case 2: Out; *xi for any je [1, r] 

Case 1. First suppose Out; =x1 for some je [1, r]. Then 

Pf(Outt) = P1(xj) 

= MA(S)(P)(x; ) 

= EA(ej)(P) 

(since S is a multiple assignment statement) 

= EA(ej)(P') 

(by (16)) 

=MA(S)(P')(Xj) 
(since S is a multiple assignment statement) 

= P; (xi) 

= p; (Outi ) 

Thus (18) holds in this case. 

Case 2. Now suppose Out; #x3 for any je [1, r]. Then as we have established above, it must be that 

Out; =Ink for some ke [1, n]. 

We can show (18) holds in this case as follows: 

p1 (0u11) = MA (S)(P)(Outa ) 

= p(Out ) 
(since S is a multiple assignment statement and Out, does not occur on the left hand side of S) 

= P(Inrt ) 

= p'(Ink) 

(by hypothesis on p and p") 

= p'(Out; ) 

= pl (Out, ) 

(again since S is a multiple assignment statement and Out; does not occur on the left hand side of S). 

Thus (18) holds for i =1,..., m, and so (14) holds for S as claimed. 

To show that (15) holds for multiple assignments S we calculate as follows: 
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Xp"r(S)(p) = max{ 7l°p(er)(p) } 

= max{ X, p(er)(P) } 
15iSo 

(using (17) with i =1...., n) 

=X (S)(P) 

Induction. Let Se PIT(E) be some fixed program. Suppose for any u', v' e S* and for every 
(S', In', Out') e PmO(E)1,, 1, where S' is of less structural complexity than S, that for any 

p, p' e States (A) which satisfy nA (In')(p) = a4 (In')(p') we have 

nA (Out')(MA (S')(P)) = nA (OUe)(MA (S')(P')) 

and 
x pý(S')(P) = ), Pý(S')(PI 

We will now show (14) and (15) hold for S and for any In e Vary and Out e Var, according to 

the three following possible cases: 

(ü) Sequencing. Suppose S=S1; S2 for some S 1,52 e PIT(E). 

Let In1=1n, and let OutI be any vector of distinct variables such that 

var(0ut1)=var(S1)uvar(Ini). Also letIn2=Out1 and 0ut2=Out. 

We first show (S;, ln;, Out; ) e P1T1O(E) for i=1,2; that is, we must show (S!, Jn;, Out; ) satisfies the 

J-conditions for i =1,2. (see Definition 6.2.7. ) 

First notice that 

by Lemma 6.2.16(b). 
var (In 1) = var(In) z free (S) free (S1) 

Also, 

var(Out 1)= var(S1)uvar(in1)r- var(S1)uvar(Inl) 
Thus (SI, ln 1,0ut1) e PITIO(E).. 

w where we S'is such that OutI e Var r. 
We can establish (S2, fn2, Out2) E PTITO(E) as follows: 

var(In2) = var(Out 1) 
= var (S 1) u var (In 1) 
= var(S1)uvar(In) 

var (S1) u free (S) 

= var (S 1) v (free (S 1) u (free (S? )-var (S 1))) 
(by Lemma 6.2.16(a)) 

free (S2) 

(since Xv (Y u (Z -X )) Z for any sets X, Y, and Z). 

Also, we have: 
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var (Out2) = var (Out) 

var(S)uvar(In) 

= var(S1)uvar(S2)uvar(In) 

= var(S2)uvar(S1)uvar(In) 

= var (S2) u var (S 1) u var (In l) 
= var (SZ) U var (Out 1) 

(by definition of Out 1) 
= var (S2) u var (In 2) 

(by definition of In2). 

nUS (S2,1n2, Oüt2) E PTTIO(E) 
4, , 

Since (S1Jn 1, Out, ) E PTTIO(E) with S1 of less structural complexity than S by the induction 

hypotheses applied to (S1Jnl, Out I), we have 
7CA (Out 1)(MA (S 1)(P1)) = NA (Out IRMA (S 1)(P2)) (19) 

and 
Xprr(Si)(P1) _ X, pIT(Si)(Pý (20) 

where pl and p2 are any states such that nA (In i)(p) =nA (In 1)(P2). 
Also, since (S2Jn2, Out2) E PTTIO(E) with S2 of less structural complexity than S by the induction 

hypotheses applied to (S2, In2, Out2), we have 
ICA (Out2)(MA (S2)(P3)) = 7CA (Out 2)(MA (S 2)(P4)) ý21) 

and 
%Pff(S2)(P3) = Ä, Pý(S2)(P4) (22) 

where P3 and P4 are any states such that nr (In2)(P3)=ICA(In2)(P4)" 

To show that (14) holds for S=S1; S2, first notice that 

ne (In i)(p) = nA (In )(p) = 2tA (In )(p') = nA (In 1)(p') 
by hypothesis on p and p', and since In, =In. 

Since In2=Out1 we now have 

7CA(In2)(MA(S1)(P)) = XA(Out1)(MA(S1)(P)) 

= ICA (Out 1)(MA(S1)(0) 

(by (19) with p1=p and pz=pl 
= 7CA(In2)(MA(S1)(P7) 

(again since 1n 2=Our 1). 

We have now proved that 

ne (In2)(MA (S 1) (P)) = aA (In 2)(MA(S 1)(PD) (23) 

Now, (21) holds for any states p3 and p4 such that nA (In2)(p3)=ar (In2)(p4). In particular, from (23) we 
know that p3=MA(Sl)(p) and p4=MA (S1)(p') are two such states; thus by (21) and (23) we have 

7CA(Out2)(MA(S, )(MA(Si)(P))) = tA(Outz)(MA(S2)(Me(Si)(P"))) 
That is, 
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nA (Out2)(M4 (S)(P))) = n, 1(Out2)(MA(S)(P))) (24) 

by definition of MA(S). However Out2=Out, and so (14) holds for S =S1; S2 (by (24)). 

To show that (15) holds for S =S1; S2 first notice that (22) holds for any states p3 and p, such that 

nA(In2)(P3)='XA(Ina)(P4). In particular, from (23) we know that p3=MA(S1)(p) and p4=MA(Si)(p') are 

two such states; thus by (22) and (23) we have 
XPR(ST)(MA(S1)(P)) _ XPR(S, (MA(SI)(P)) (25) 

To show that (15) holds for S=SI; S2 we calculate as follows: 

*%PIT(S)(P) _ Xpff(S1)(P) + XPP'rT(S 
2) (MA (S 1) (P)) 

= XP" (Sl)(P) + XPý (S2)(MA(Sl)(P)) 

(by (20) with P1=P and Pz=P') 
), Pff (S1)(P 

J+ 
XPý(Sz)(MA(S1)(P7) 

(by (25)) 

_ ). p"r(S)(P) 

Thus (15) holds for S =S1; S2 as claimed. 

(iii) Conditional. Suppose S is of the form: 
S=ifbthen SlelseS2fi 

for some be EXP(M),, and some S1, S2 e PIT(S). 

First notice that 

var (In) free (S) = var (S) - init (S) = var (S) -((finit (S 1) n finit (S2)) - var (b )) var (b ) 

(since the variables of b are also variables of S). Thus (b , fn) e FEXP(E),,,, and so by Lemma 6.2.15 we 
have 

EA(b)(P) =EA(b)(pi) (26) 

and 
X p'F(6)(P) =X (b)(p) (27) 

We first show (S1 Jn, Out) e P1TIO(E) for i =1,2; that is, we show that (Si Jn, Out) satisfies the J- 

conditions for i =1,2. 

We first show var (1n) free (Si) for i =1,2 as follows: 

var(In) free (S) 

=var(S)-init(S) 

= var (S) - ((finit (Si) n finit (SZ)) - var (b)) 

var(S)-(init(S1)ninit(S2)) 

var(S)-(init(S1)vinit(SZ)) 

(var (S 1) U var (S2)) - (finit (S 1) U finit (S2)) 

Q (var(S1)-init(S1))U(var(S2)Ufinit(S2)) 

(since finit (Si) C var (Si) for i =1,2) 
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=free (S 1) u free (S2) 
free (Se ) 

(for i =1 and i =2). 

It remains to show var (Out) a var (Si) u var (In) for i=1,2. For i =1 we proceed as follows: 

var(Out) Q var(S)uvar(In) 
= var (S 1) u var (S2) u var (In) 

= var(S1)uvar(In)Vvar(S2) 
= var(S1)vvar(In)vfree(S2) vinit(S2) 
Q var (S 1) u var (In) ufree (S) u init (S2) 

(by Lemma 6.2.17(a) with i =2) 
C. var(S1)vvar(In)vinit(S2) 

(since free (S) C var (In )) 
r- var(S1)'. var(In)VUnit (S2)nvar(S1))v(finit(S2)-var(S1)) 

(since X= (X n Y) U (X =Y) for any sets X and Y) 
a vas (S 1)uvar(In) v(init(S j -var(S1)) 

(since XnY aY for any sets X and Y) 

C var(S1)uvar(In)ufree(S) 
(by Lemma 62.17(b) with i =2) 

= var(S1)t var(In) 

The truth of var (Out) c- var (S2) v var (In) can be proved in much the same way; this we leave as 

an exercise. 

Since (S ; In , Out) e P111O(E) for i=1,2 with Si of less structural complexity than S for i=1,2, by 

the induction hypothesis applied to (S1, In, Out), we have 

7rA(Out1)(MA(S8)(P)) = nA(Out; )(MA(SS)(P)) (28) 

and 
X p? (Si ) (P) = JIPý(S, )(Pý (29) 

fori=1,2. 

Now to see that (14) holds for conditional statements S, from the definition of MA (S) we have 

nA (Out)(MA (S t)(P)) if EA (b)(p) = tt 
nA (Out)(MA (S)(P)) = nA (Out)(MA (S2)(P)) if EA (b)(p) =Ä 

nA(Out)(MA(S1)(P)) if EA(b)(pj =tt 

?C A(Out)(MA(S2)(p) ifEA(b)(p)=f 

(using (26) and (28) with i =1,2) 

= nA (Out)(MA (S)(PI) 
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To show that (15) holds for S, we use the definition of )Lp? (S) to calculate as follows: 
ýp"(S 1)(P) if EA (b)(P) = tt 

kpý(S)(P) = XPEP(b)(p) + %prr(S2)(P) if Ee (b)(P) f 
xpIT (S1)(P') if EA(b)(P)=tt 

=x (b)(P)+ Xprr(S2)(Pl) if EA(b)(p)=ff 

(using (29) with i =1,2) 

(using (26) and (27)) 

- EXP 
XC (SI)(P') if EA(b)(P')=u 

=p (b)(Pý + 1(S2)(P) if E (b)(P') =f 

= 71pIT (S)(PI 

Thus (8) holds for conditional statements S as claimed. 

(iv) Bounded Iteration. Suppose S is of the form: 

S =doe times S. od 
for some ee EXP(L), and some So e PIT(S). 

First notice that since finit (S) =0 here, we have 

var (In) free (S) = var (S)-init (S) = vas (S) Q var (e) 
Thus (e Jn) e FEXP(E)u T and so by Lemma 6.2.15 we have 

and 

ALSO, it is easy to see that 

EA (e)(p) = EA (e)(p) (30) 

(31) (e)(P) = xr(e XP) 

var (In) free (S) = var (S) z var (S, ) free (So) 

(since finit (S) = 0) and so (S0Jn, ln) e PMO(E)�... 

Since (S0, In, In)E PTTIO(E) with S. of less structural complexity than S, by the induction 

hypothesis applied to (S�fn, fn ), we have 

nA (In)(MA (So)(P)) = nA (In)(MA (So)(PD) (32) 

and 
XPý(S0)(P) = %6p"r(So)(P) (33) 

Also notice that since (S, fn, Out) is an i/o-program (and since finit (S) = 0) we have 

vas (Out) c var (S) . vas (In) =free (S) u var (In) C var(In) (34) 

To show that (14) holds for loops S we first make the following claim which we will prove later. 
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Claim. For each k 20 let pk and Pk be defined by: 

Po =P 
Pk+i = MA (SO)(Pk) 

and 
P'0=P' 

Pk+i = MA(So)(Pk) 

where p, p' E States (A) are any states such that 7A (In)(p) =aA (In)(p'). Then we claim 

nA (In )(Pit) = aA (I')(Pk) (35) 
for each k20. 

Now, if EA (e)(p) =1 say, then EA (e)(p)=1 by (30). Moreover, from the definition of MA(S), it is 

obvious that MA (S)(p) = pi and MA (S)(p') = 1Y I. Thus to show (14) holds for S we must show that 

Pi (Out1) = Pi (Out; ) (36) 
fori=l,..., m. 

Choose ie [1, m ]. Then from (34) var (Out )cyar (In), and so Out; =Ink for some ke[1, n ]. 
Thus, 

PI (Out+) = Pi (Ink) 

= P' (Ink) 

(by (35)) 

= Pi (Out, ) 

Thus (14) holds for loops S as claimed. 

Proof of Claim. We prove (35) by sub-induction on k: 

Sub-Basis. Fork =0 we calculate as follows: 
nA (In)(Po) = nA (In)(P) 

= nA (In )(P7 

=1ct (In)(Pö) 

by hypothesis on p and p'. 

Sub-Induction. Suppose that (35) holds for some fixed kz0. To show that it holds for k+1 we first cal- 

culate as follows: 

By the sub-induction hypothesis we have 

lrA(In)(Pk) = nA(In)(Pk 
and so by (32) (which is true for any states p and p' such that nA (In )(p) = nA (In)(p')), we have 

nA (In)(MA (So)(Pk)) = nA (In)(MA (So)(Pk )) (37) 

Now, by definition of Pk+l we have 
7CA (In)(Pk+l) = 7CA (IA)(MA (So)(Pk )) 

7CA (In)(MA (So)(Pk )) 

(using (37)) 
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= to (In Xpk+, ) 
(by definition of pk+i)" 

By the principle of Mathematical Induction, the claim holds for every k 20. O 

We now show (15) holds for loops S S. 

First consider k. P"(S)(p) for any pe States (A). Since S is a loop, we have from Definition 6.1.7 

that XCJT(S)(p) is defined by 

xpp, rr(S)(p) =X (e)(p) + ILt (38) 

where 1=EA(e)(p), 

4=0, 

and for anyk20, 
Xk+l = ak + Ä, pIT(so)(Pk) 

where for each k 20, pk is defined byr. 

Po=P+ 
and for any kZ0, 

Pk+i = MA (So)(PA ) 
In order to prove (15) holds for loops S, let us rephrase 71p1T(S) is the following way. First define 

x: Nx States (A) -; C; by: 

ic(aP) =X "(e xP) 
and 

ic(k+1, p) = ic(k, p) + 71Prr(So)(pk) 
for each k20 and any pe States (A ). 

A routine induction on k yields: 
(Vk Z0)(Vpe States(A)) (ic(k, p) = ). "(e)(p) + )Lk ) 

and thus from (38) we have: 

(V Pe States (A)) (X, ' (S)(p) = ic(EA (e )(P), p)) (39) 

We now make the following claim which we will prove later. 

Claim. For everyk Z 0, 

ic(k, p) = K(k, p) (40) 

where p, p' e States (A) are any states such that nA (! n)(p) = ItA (In)(p). 

Assuming the claim holds, we can now show (15) holds for loops S as follows: 

Xm'T(S)(p) = u(EA (e)(p)' P) 
(by (39)) 

= K(EA (e)(P'), P) 
(by the claim, and by (30)) 

_ xpr PTT (s)(PI 

(by (39)). 
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Thus (15) holds for loops S as claimed. 

Proof of Claim. We prove (35) by sub-induction on k: 

Sub-Basis. For k =0 we calculate as follows: 

ic(O, p) = ,, p(e)(P) 

= A, "(e)(P, ) 

(by (31)) 

= K(O, p) 

13 

Sub-Induction. Suppose that (40) holds for some fixed k Z0. To show that it holds for k+1 first notice 
that from the previous claim we have 

nA(In)(Pk) = 7CA(IK)(Pk) 

and thus from (33) we have 
; -p'lr(S. 

)(Pko = %lPrr(s, )(Pk) (41) 

Now we can show that (40) holds for k+1: 

u(k+1, p) = ic(k, p) + 71prr(So)(Pk) 

= K(k, P) + Xp`r(S. )(Pk) 
(by (41)) 

= x(k, P) + xPT(So)(Pk) 
(by the sub-induction hypothesis) 

= u(k+l, p') 
By the principle of Mathematical Induction, the claim holds for every k20. Q 

6.2.18 Augmentation and Top-Down Design. 

Now that we know when a PIT program computes a function, let us explore how such programs 

can be used in conjunction with top-down design. 

Let us consider the problem of 'solving some task T which is specified over a Z-algebra A. Let us 

suppose that it is required we solve T by means of a PIT program S which only uses the operations of A: 

that is, we require Se PIT(E) and in some general sense the solution to T is MA (S). Of course, it is the 
fact that 'MA (S)' is a formally defined concept that allows us to formally analyse S as a solution to T. 

Now suppose that there is a natural algorithm for solving T, but one which is phrased in terms of 

some new function fA : A' --->A, in addition to the operations of A. Then intuitively, to solve T by pro- 

gramming over A only, we are left with the subtask of implementing fA in terms of the operations of A; 

this is top-down design of course. Furthermore, if the algorithm is coded as a PIT program S' say, then 

presumably S' will involve symbols aeE as well as 'f ' which is a new function identifier which names 
fA- 

Now, S' is not the required solution to T since S' involves the identifier fdE, and thus S involves 

computations which are not operations of A (viz fA). However, suppose that we can implement fA by 

means of an i/o-program (Sf, In, Out) E PTITO(E) in the sense that Sf computes fA relative to In and 

out. Then informally, S' and (Sf, In, Out) constitute a solution to T over A when taken together. S' 
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solves T in terms of the operations of A and the function fA ; however, by hypothesis, we can compute 
fA (a) for any ae A' by using operations of A only (since S, e PIT(S)). Let us use the ideas of Section 

3.1.5 concerning the augmentation of a data type to make this argument more rigorous. 

To say that S' is a PIT program which uses the symbols E as well as the function identifier f is to 

say that S' e PIT(f) where f2= (T4); ); that is, 11 is the extension of Z obtained by adding f to E.,, 

(recallfA : A' --3--A, ). 

Now, the original solution to T was supposed to be MA(S) where Se PIT(S). However, the pro- 

gram we have provided, S', involves an identifier f #E for which there is not (necessarily) an interpreta- 

tion in A, and so 'MA (S')' is not defined; in other words S' is not a satisfactory solution since we can not 

use our formal methods to analyse it. Of course, the intention was that f names fA. If we define 

B =(A IA)' then B is an fl-algebra wherein f does have an interpretation, namely f 15, where for each 

ae A'", fB (a) is defined by f8 (a) =ff (a). Thus B is an algebra in which f has the intended interpre- 

tationfA. (Notice that above we should have said 'for each ae B"' rather than 'for each ae A"' since 
technically, f only has an interpretation in B. However, B has the same carriers as A (these algebras 

only differ in the number of basic operations), and so BW =A" for each we St) 

Of course, the meaning of S' in B viz MB (S') is well-defined and so we can formally analyse S' as 

a solution to T, but we still have to answer the question as to the sense in which S' and (S1, In, Out) 

together constitute computation over A. 

Since (S,, x, y) is an i/o-program over E, we know that SS computes F4 (Sf, x, y) relative to x and 

y by Lemma 6.2.12. However, we have saidSf computes fA relative tox and y, and so fA =FA(Sf, x, y) 
by Lemma 6.2.4 and thus B= (A /A) = (A, FA (Sf, x, y )). Now, formal analysis of S' begins with MB (S), 

but by definition of B we now have: 

MB(S') = M(Ap, (,. l1 p, ))(S'): States (A)--*States(A) (42) 

The point to notice here is that the augmentation notation coupled with the functionality of (Sf, x, y) 

allows us to explicitly write down the semantics of S' in terms of the algebra A only. This is as it should 
be since in executing S' we ultimately only ever use the operations of A. 

Since the above function fA is not a primitive operation but a function which is defined by a pro- 

gram, we will call such functions user-defined functions. 
6.2.19 Function Procedures. 

Let us introduce a notation for i/o-programs which tells us by what name the function computed by 

the i/o-program is to be known as: 

Definition. Let S be of the form 

S= function y=f (X ...., X. ) : So 
where ye Var, for some seS, x= (x 1,..., x�) e Var�, for some we S; S, e PIT(S), and f 4L If 

(S0, x, y) E PmO(E), r,,, then we say S is a function procedure of arity (w, s ). We also define f to be the 

identifier of S, in symbols: id (S) =f . 
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13 

Notice that a function procedure such as S above determines a new signature S2 = (E, id (S)), and a 
new (R-) algebra B =(A, FA(Sx, y)); thus f2 is a signature over which we can write programs which 
use FA (S0. x, y) as a basic operation, and since B is an f2-algebra, B is an algebra in which such pro- 
grams have a well-defined formal meaning. 

A function procedure is a convenient notation for expressing the implementation of a user-defined 
function: the intention behind the syntax of a function program of the above form is that xl,..., x� are the 
inputs to the procedure, So is a program which calculates the value `f (xt,..., x1)' which is ultimately 
stored in the output variable y. 

How does a function procedure implement a user-defined function? Given a user-defined function 
fA : A" -a--A,, choose a function procedure of the above form; if FA (S0, x'y) = fA, then there is a strong 

sense in which S implements fA: as we have explained above, the interpretation of the symbol f in the 

algebra B is defined to be FA(S0, xy)=fA; this follows automatically from the definition of 
B =(A, FA(Sox, Y))" 

Let us explore this sense of implementation more carefully. Suppose S' e PIT(12) is a program 

which involves an expression of the form f (el,..., e1); for definiteness, assume S' involves the statement 

z : =f (e t,..., e�). In order to ascertain the value assigned to z, we proceed as though f were any ordi- 

nary symbol aeE: given some initial state p, we first evaluate e t,..., e1 under p (in parallel), and then 

we apply `f '. Suppose e; evaluates to a; under p for i =1,..., n; then the value assigned to z is intended 

to be fA (a t,..., a�). 

Conceptually, we imagine the value fA (a 1,..., a. ) to be calculated as follows: once a 1...., a� have 

been calculated, x p.... x� (of the function procedure) are assigned the values a 1,..., a� respectively, and 

then we execute So. Now, since (S0, x, y) is an i/o-program we know that S, computes FA(S0, x, y) rela- 

tive to x and y (see Lemma 6.2.12), and so 

7rA(Y)(MA(So)(P)) = FA(S0, x, Y)(a1,..., an) =fA(a1,..., a�) 
where p' e States (A) is any state such that nA (x)(p' = (a I,..., a�) (see Definition 6.2.3). However, since 

y is a single variable here we have 

MA (So)(P')(Y) = fA (a i ,..., a�) (43) 

Since we assign at,..., a, to xt�.., x,, prior to executing Si,, we do execute Sa in a state p' where 

nA (x)(p') = a, and thus from (43), the final value of y is fA (a t,..., a. ). Finally, as the function procedure 

notation is intended to imply, we think of y as the output variable of S, that is, the final value of y is the 

value returned to the calling program and so z is assigned the value fA (a 1,..., a�) as intended. 

The concept of an augmentation allows us to prove that z is assigned fA (a 1,..., a. ) in the following 

way. Formally, the value assigned to z is MB (z :f (e t,.... c, ))(p)(z) where p is any initial state. We 

now formally calculate this value as follows: 

MB(z: f (el,... e�))(P)(z) = p{E3(f (el...., e�))(P)Iz }(z) 
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= Ee(f (e1..... e. ))(P) 

=fB (Ea (e i)(P)..... EB (e. )(p)) 

=f (a a. ) 
(when EB (ei)(p) = a; for i =1,..., n) 

= FA (So x, y)(a 1...., a. ) (44) 

(by definition of B) 

='h(ai,.... a. ) 

Alternatively, since (S1,, x, y) computes FA(S0, x, y), from (44) we have 
MB(z: f (e 1.... e�))(P)(z) =FA(S,,. z. y)(a1,.... a�) 

= 7CA (Y)(MA (So07) 

(where p' is any state such that ztA(x)(p')=a ) 

= MA (So)(P7(Y ) 
This last expression for the value assigned to z clearly shows how that value is calculated. 

Vector-Valued Functions. Later we will see instances of top-down design which use vector-valued 

user-defined functions fA : A" --W. 

We extend the definition of a function procedure to the vector-valued case as follows: 

Definition. Let S be of the form 
S= function yl,..., yw =f t(xl,..., X. )'.... f&(xl,..., xn) : S, 

where y= (y 1...., y,, ) E Var� for some ve S*, x= (x 1,..., x�) E Var,, for some ue S+, S. E PIT(E), and 
f 1_. J. 4 E. If (S0, x, y) E PTTIO(I: ),,,,,, then we say S is a function procedure of arity (u ,v). Also we 
define f 1,.... f ,ý to be the identifiers of S, in symbols: id (S) = (f 1,..., f. ). 13 

Notice that a function program of this form defines a new signature Q= (Lid (S)) where fj is 

adjoined to for i =1,..., m. Also, S determines an fl-algebra B= (A, FA (S�x, y )), but in this case A 

is augmented with the coordinates of FA (S�z, y) (see Section 3.1.5). Thus the interpretation of each fi 

in B is defined by 

f B(a) = FA (S,, X, y )i (a) 
for each aE A". (Here FA(S�x, y ); (a) denotes the i th coordinate of FA (SO, x, y)(a) for i =1...., m .) 

The idea behind a function program in the vector-valued case is similar to the single-valued case: 

Since (S,, x, y) is an i/o-program, So computes FA (S,, x, y) relative to x and y, and thus 

xA (y)(MA (So)(p)) = FA (S , y)(a) (45) 

when nA(x)(p)=a. Taking the identity (45) coordinatewise yields: 

MA (Su)(P)(yi) =FA(Sox, y)i(a) 
for i =1,..., M. 

The intention behind the syntax of S is that for each fi e id(S), to evaluate an expression of the 

form f; (e 1,..., e. ), we evaluate e 1,..., e� and then assign the resulting values to x 1,...,; respectively; we 

then execute S. and the final value of y; is the value returned as the value of the expression. 
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Notice that as we have explained it, the process of evaluating f; (e t,..., e. ) is independent of i in 

the sense that we must always execute So for any i. Thus in evaluating f; (e 1...., e1) we also evaluate 
fj (e 1,.... e�) for every other j*i, although the result of these other evaluations is ignored (we only 

return the value of y; ). At first sight this seems rather inefficient, especially if we consider a statement 

such as 

s t, 22 
Here we must execute So twice even though having executed S, once to evaluate f; (e1,..., e�) (the final 

value of y; ), the value of fj (e t,..., eR) is already available (the value of yj). However, because of the 

concurrent interpretation of the multiple assignment statement, there is no loss of performance as we 

shall see below. 

Exercise. In the context of the preceding discussion let S1 be the statement 
S 1= z 1,..., zm :=f 1(e 1,.... e1),.... f. (e 1,.... e. ) 

where z= (z 1,..., z�) E Var, and e; e EXP(f), 5 
for i =1,..., n. Now prove the following: 

(i) SIE PIT((]), and 

(ii) If pe States (A) is such that EB (e; )(p) = a1 for i =1...., n, then 
nA(_)(MB (S1)(P)) =fA (a1,..., aw) 

Performance. We have seen how the concepts of signature extension and algebra augmentation allow 

us to formally analyse a program which is the product of top-down design. We will now explain how the 

performance of such a program may analysed via the extension of a performance measure (see Section 

3.2). 

In the notation of the preceding discussion, when a function procedure S is of arity (w, s) for some 

we S* and s¬ S, S determines a signature Q=(EJ) when id(S)=f, and an S2-algebra 

B= (A , FA (So, x, y )). Recall it was the construction of B that allowed us to writedown the formal mean- 
ing of a program S' E PIT(S2); furthermore, it is a consequence of the way that the augmentation of A is 

defined that the interpretation of f in B is FA(Sx, y); this formalises the intuition behind how 

`f (... )' should be evaluated of course. 

Now let P be a performance measure for A which is based on clock C. Then in order to calculate 

the complexity of S' E P1T(fl), we need to extend P with a new performance estimation function for the 

new symbol f: if FA (SO. x, y) has domain A" then this new estimation function Xf say, must be of the 

form Xf : A* -+C+. Furthermore, since we must execute So to evaluate f (" ""), it is appropriate to 

choose Xf to be the complexity of executing So. 

Let Q =(P)$ (So, x, y)). Then Q is a performance measure for B, and in particular, we have for 

anyaEAw, 
f g(a) = Ip (Sorx"y)(a) 

= aprr(S. XP) 
where pr: States (A) is any state such that nA (x)(p) =a. 
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In the case that S is of arity (u, v) for some u, v e S, then S is of the form: 
S= function yl,..., yI =f : So 

What is an appropriate performance measure for B= (A FA (S (, x, y )) in this case? 

First recall that here we extend E with a vector of function identifiers id (S) = (f 1,..., fm), and A is 

augmented with the m coordinates of FA (S�x, y). Thus if Q is to be a performance measure for B, we 

must extend P with m new performance estimation functions say, with X : A" - . C' for 

i =1,.... m since the domain of FA (SO, r, y) is A". Now, to evaluate fj (" "") we must execute S. for any 
ie [l, m]: the only difference between evaluating fj and fi (on the same arguments) is that the value 

returned is the final value of y; for f i, and the final value of yj for fj; we must execute S. in each case 
however. 

Thus in the case of a vector-valued function, it is appropriate to define Q by defining each 4 by 
7l; (a) = Xp (S0, x, Y)(a) 

for every ae A" and for i =1..... M. 

Notice that the complexity of f; according to Q is independent of the choice of i, and so if S1 is 

the program of the previous exercise, then: 
XQ (Si)(P) =1 max{X "(fi(e1..... e. ))(p)} 

=1 max {f ¢(E, (e i)(P)..... Ea (e )(p)) } 

= max{ý; (al...., a. )} Isism 
(when EB (ei)(p) = a; for i =1..... n) 

= max (X L(S�x, y Xa 1...., a. ) } I aS. " 
= %' (sc, x y)(al.... ýa. ) 

Thus the cost of executing S1 is the cost of executing S. only once although conceptually S. is executed 

m times in executing S 1. 

Further Remarks. In practice the top-down design of an algorithm leads to the use of more than one 
function procedure. Also, top-down design may be repeatedly applied to the task of implementing the 

function procedures themselves. The ultimate extension of the concept of a function program to cover 

these two cases results in two new languages: FPIT and FG. FPIT is a language of function procedures 

which involve lists of further function procedures as sub-programs, and FG is a language of lists of func- 

don procedures which we call function groups. Actually, we are only interested in FPIT since it is the 

target implementation language for PR. For our purposes, FG is only a notational contrivance to smooth 

the definition of FPIT, although from a theoretical perspective, FG is of interest in its own right (see 

Jervis[1988]). 
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6.3 THE LANGUAGE FPIT. 

In this section we will define the syntax, semantics, and complexity theory of our simulation 
language FPIT. After defining the language and establishing some simple facts, we will explain our stra- 
tegy for implementing PR schema in FPIT. 

6.3.1 Syntax. 

Let E be a standard S -sorted signature. Below, we define 

(1) FPIT(E), the collection of function programs over E. FPIT(E) is an Six S+indexed family 
FPIT(Z) = <FPIT(E)�. � : u, v e S+> 

wherein each SE FPIT(l)�, � we call a function program of arity (u, v ). 

(2) FG(E), the collection of E-function-groups. 

Also, for each Se FPIT(E) and Ge FG(E), we define id (S), id (G), all (S), and all (G), which are 

collections of function identifiers, and also depth (S ), depth (G ), which are measures of `nestedness'. 

Further, for each Ge FG(E) we also define sig (G) which is a signature, and IGI which is the length of 
G. 

The definitions of FPTT(E) and FG(E) are mutually recursive and proceed as follows: 

P1 Simple Function Programs. Suppose S is of the form: 
S= function 

where: 

(a) y= (y,,.... ym) E Var, for some ve S' (recall from Definition 6.2.2 that this means the 

variables y 1,.... Y,, are distinct); 

(b) x= (xi...., x�)e Var� for some ue S"; 

(c) {xl...., x4 }r {yi...., y, 0; 

(d) (S0, x, y) E PmO(E); 

(e) {f 1..... fn } is a collection of m>0 distinct identifiers, and 

(t) {fi»... f" }nE=fö. 

Then Se FPIT(E) with: 

(1) 2nty (u, v ); that is, SE FPIT(i: ),,. r ; 

(ii) depth (S) = 0; 

(iii) id (S) = (f and 
(iv) all (S) = id (S ). 

When S is of the above form, we refer to So as the body of S. 
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GI Single Function Groups. Suppose G is of the form G=S for some SE FPIT(E) with arity (u, v) 

say. Then GE FG(E) with: 

(i) depth (G) = depth (S); 

(ii) id (G) = id (S ); 

(iii) all (G) = all (S); 

(iv) sig (G) is the (u , v)-extension of E: sig (G) = (Eid (S )). and 

(v) IGA =1. 

P2 Nested Function Programs. Suppose S is of the form 
S= function G: SQ 

where: 

(a) Y= (y y. ) E Var, for some ve S+; 

(b) x= (x x. ) e Var� for some ue S*; 

(c) {x1,..., x� }n{yt,..., Y. }=Q; 

(d) Ge FG(E); 

(e) (So x Y) e PTTIO(s g (G)); 

(f) if 1...., f. } is a collection of m>0 distinct identifiers, and 

(g) {fý"..., fm }nsig(G)=0. 

Then Se FPTT(E) with: 

(i) anh' (u, v); 

(ii) depth (S) = depth (G) + 1; 

() id(S) = (f and 
(iv) all (S) = id (S) u all (G). 

When S is of the above form, we refer to S, as the body of S, and to G as the group of S. 

G2 Multiple Function Groups. Suppose G is of the form G=G,; S where: 

(a) G. e FG(E), and 

(b) Se FPIT(sig (G, )),,,, for some u, v e S*. 

Then Ge FG(E) with: 

(i) depth (G) = max { depth (G 0), depth (S) }; 
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(ii) id (G) = id (G, ) u id(S ); 

(iii) all (G) = all (G, ) u all (S); 

(iv) sig (G) is the (u, v)-extension of sig (G. ): sig (G) = (sig (G, ), id (S)), and 

(v) IG I= IGo1+1. Q 
Notes. 

(i) The syntax 
function y1,.... y. =f (xl,..., xn) : 

which begins any function program S we call the header of S. 

(ii) Throughout the remainder of this chapter we will use the notation x= (xl,..., x. ) and y= (y 1,.... Y. ) 

for the vectors of a function program's input and output variables respectively: invariably, when S 

is a function program of arity (u v) we denote the lengths of u and v by n and m respectively. 

(iii) Note that for any function group G the quantity 'sig (G )' is dependent on the underlying signature. 
For example, if Ge FG(E), then sig (G) is really sigE(G) since sig (G)is always an extension of 
E. This may seem a rather trivial observation, but in later sections this fact will be significant but 

obscured and so we make the point whilst it is still obvious. 

Discussion. It should be apparent that the concept of a function program generalises the earlier idea of a 
function procedure in a natural way: a function program is a recursively defined function procedure in 

the sense that a function program is a function procedure which may involve further function 

procedures/programs as sub-programs. Before we give the semantics of FPIT and FG we comment on 

the auxiliary definitions made above. 

First, the collection id (S) is simply the identifiers declared in the header of S. Also, it should be 

clear that all (S) and all (G) comprise all the function identifiers declared anywhere in S and G respec- 

tively. The intuition behind depth (S), depth (G) and IGI should be equally obvious. More interesting 

are id (G) and sig (G) since the definition of these collections of identifiers implicitly tell us FPIT's 

scoping rules (that is, the rules that tell us which function identifiers are available in which parts of a 
function program). 

Note that any function group G can be written in the form G=S1; """ ; S,,, for some m 21 and 

some function programs S 1..... S,,,. Now notice that id (G) and sig (G) are defined in such a way that 

sig (G) contains the symbols of E and the identifiers declared by the headers of S 1,.... S., but not the 

identifiers declared within these function programs. For example, if Si has a local group G;, then the 

identifiers introduced by Gj (namely id (G; )) are not included in id (G) and may not be used in the body 

of a function program whose group is G. Alternatively, condition (b) in clause G2 above says that when 

G =S1; """ ; S. the body of Si (for i> 1) may use the identifiers previously introduced by the headers of 

S1, "�, 
S, 

_1 
(but not the identifiers declared within these function programs).. Finally, we note that in 

clause P2 above, from (g) we infer that the identifiers of a nested function program S are not added to 

the operator symbols that the body of S may use, and thus from clause (e) of P2 we infer that function 
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programs may not call themselves; that is FP1T is not a recursive programming language. 

632 Semantics. 

Let A be a standard E-algebra. Below, we define 

(1) For each Se FPI T(E), FA (S ), the functional meaning of S in A: FA is an Sic Stindexed family of 

mappings 
FA =<FA-': u, veS+> 

where for each u, v e S' FA", " is a mapping 

FÄ'': FPIT()M, -. [A" ->A'] 

(2) For each Ge FG(E), Alga (G ), which is a sig (G )-algebra. 

Let SE FPIT(E),,,,, for some u, v e Sand let Ge FG(E). The definitions of FA-I(S) (ambiguously 

denoted FA (S)) and Alga (G) are mutually recursive and follow the definitions of FPTT(E) and FG(E): 

P1 Simple Function Programs. Suppose S is of the form: 
S= function yl,..., Y. =f S. 

Then by definition of FPIT(E), we have (S0, x, y)E PMO(E),,,, for some u, v e S, and thus by 

Theorem 6.2.11, the functional meaning of (S0, x, y) in A, viz FA(SO, s, y), is a well-defined function 

FA(So r, Y): A" -A". 

Here we define FA (S) by: 

That is, 

where for each ae A", 

F4 (S) = FA (SO. X. y ) 

FA(S). A"--3-, Aý 

FA(S)(a) = FA(SO. x, Y)(a) 

G1 Single Function Groups. Suppose G =S for some Se FPIT(E). 

Here sig (G) = (E, id(S )). Also, if S is of arity (u, v) say, and id (S) _{f1...., f,, }, then 

ft E sig (G)",,,, for i =1,..., m. Since A is a T. -algebra, we can turn A into a sig (G )-algebra AG say, by 

augmenting A with an interpretation of fj for i =1,..., m; since fi e sig (G).,,,, the interpretation of fJ in 

AQ must be a function from A" into Av, . Let FA (S )i denote the i th coordinate function of FA (S) for 

i =1...., m. Then, since FA(S): A"-'A", we have FA(S)T : ASince FA(S), is of the appropri- 

ate functionality, we can define AG =Algg(G) to be the augmentation of A obtained by adding fr' for 

i =1,..., m, where f; ° is defined by 

(VaEA") (f! '(a)=FA(S)! (a)) 

Given the notation (A, fA) when fA is vector-valued (see Section 3.1.5), we can equivalently define 

Algg (G) by 

Al8g(G)= (A, FF(S)) 
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P2 Nested Function Programs. Suppose S is of the form 

S= function y1,..., Y, =f (xl,..., x�) :G: S, 

Then Ge FG(E) and (S0, x, y) e PmO(sig (G)).,, for some u, v E S' and hence by Theorem 
6.2.11, the functional meaning of (Sox, y) in Ar =A1gA (G), viz FAe(S,, x, y) is a well -defined function 

FA0: A"--. >A'. 

Here we define FA (S) by: 

FA(S) =FA (S�, x y) 
That is, 

FA(S): A"-->A' 

where for each a r= A", 

FA (S) (a) = F4 (S,, x y) (a ) 
G2 Multiple Function Groups. Suppose G is of the form G =G,; S for some Goe FG(Z) and some 

Se FPIT(sig (G. )). 

Here sig (G) = (sig (G0), id (S )), and if S is of arity (u, v) then id (S) ={f1,..., f,,, }, and 
f; E sig (G for i =1,..., m. Now, since Aa =Alge (G, ) is a sig (G o)-algebra, we can turn A, into a 

sig (G)-algebra AG say, by augmenting A, with an interpretation of fi for since 
fje sig (G ),,,,,, the interpretation off; in AG must be a function from A" into A,,. 

Now, since Se FPIT(sig(G0)), the functional meaning of S is a functional meaning in A0, viz 

FA (S ). Similar to the case of single function groups, let FA (S ); denote the i th coordinate function of 

FA (S ). Then, since FA(S) : A" ->A', we have FA(S) ; : A" --ioA,. Since FA (S ), is of the appropriate 

functionality, we can define AG =AIgA(G) to be the augmentation of A,, obtained by adding fi ° for 
A 

m, where fj° is defined by 

(Va¬A°) (ft°(a)=FF(S); (a)) 

Equivalently, Alga (G) is defined by 
Algt(G) = (A., FA (S)) 

Note. Notice that for any Ge FG(E), A and AG =AlgA (G) have the same carriers, namely the carriers 

of A. (The only difference between A and Ar, is that A0 has more operations. ) A consequence of this is 

that States (A) =States (A0) which in turn means that the state projection function IA is identically aA. 

This usage of algebras as a subscript on functions can be contrasted with the case of the meaning or 
interpretation of a program, viz 'MA ': when S is a PIT program over the signature of a function group 
Ge FG(E), S may use symbols ae sig (G) which do not have interpretations in A but in A0; thus the 

meaning of S is properly MA (S) and not MA (S). 



-190- 

Discussion. Given a function program S with body So, input variables x =(xand output vari- 

ables y =(yl..... ym), (S�x, y) is always an i/o-program and therefore always computes some function on 

the underlying algebra. Since the computation performed by a function program is the computation per- 
formed by its body, it is appropriate to define the semantics of a function program to be the function 

computed by its body (as we have done), and thus it is natural to say that each function program 
Se FPIT(E) computes FA(S). Now, our current objective is to show that every synchronous algorithm 

can be simulated in FPIT by implementing PR in FPIT. We will do this by showing that any scheme 

ae PR(E) can be implemented in FPIT by some S =Sae FPIT(E) which computes [a]A; that is, by 

showing FA (S)(a) = Qa]A (a) for each a in the common domain of FA (S) and Qa]A. We will prove that 

this is the case for any E and A and hence true for a stream algebra A with signature E; this is the ulti- 

mate proof that synchronous algorithms can be simulated in FPTT, in FPIT(E) to be precise. 

We now conclude the definition of FPIT by giving a complexity theory for the language: 

633 Performance. 

Let A be a standard E-algebra, and let P be a performance measure for A which is based on clock 
C. Below, we define 

(1) For each Se FPIT(E), i flT S ), the length of computation of S with respect to P: ? PPS is an S 

indexed family of mappings 
XppJT_<7lp: uES+> 

where for each ue S", Xp is a mapping 
111: U FPIT(Y. ). 

� -->[A" -->C*] 
. as. 

(2) For each GE FG(E), PG, which is a performance measure for the sig (G )-algebra Alge (G) (and 

based on clock C). 

Let Se FPIT(E),,,,, for some u, v e S+ and Ge FG(E). The definitions of Xp(S) (ambiguously 
denoted X, P''rT(S )) and PG are mutually recursive and follow the definitions of FPIT(E) and FG(E): 

P1 Simple Function Programs. Suppose S is of the form: 

S =function yl,.... y. =f : So 

Here we define XXP'rr(S) by 

Xprrr(S) : A" -C' 

where for each ae AM, 
XPP!! '(S)(a) 

= 
XP (S0, x, y)(a) 

G1 Single Function Groups. Suppose G =S for some Se FPIT(E). 

Then here, sig (G) =Ev id (S ). Also, if S is of arity (u, v) say, and id (S) _ ff }, then 

f; e sig (G ),,,,, for i =1...., m. Now, since P is a performance measure for the E-algebra A, we can turn 

P into a performance measure PG for the sig (G )-algebra Alge (G) by extending P with a performance 

estimation for f; for i =1..... m; since f; e sig (G ),,,, ,a performance estimation of fi in Pa must be a 
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function from A" into C+. Now, since X, p '1T(S) : A" -'C*, X" (S) is of exactly the right functional- 

ity, and so we can define PG to be the extension of P obtained by adding f 
p° for i =1,.... m, where fp 

is defined by 
(Va E A") (f 

r°(a) 
=X 

"(S)(a) ) 

(Notice that with respect to PG, the cost of evaluating an expression of the form fj (" " ") is independent 

of i: we charge the cost of executing S for any coordinate i. ) Equivalently, given the definition of Sec- 

tion 3.2.2, PG is defined by 

PG = (P, x; '(S)) 

P2 Nested Function Programs. Suppose S is of the form 
S= function yl�.., ym =f :G: S. 

Then Ge FG(E) and (S �x, y) e PMO(sig (G)).,, for some u, v eSt 

Here we define Xpp'rr(S) by 
AJ : Am _c+ 

where for each ae AM, 

XFPlf(s)(a) = XL°(S0)(P) 

where pe States (A) is any state such that nj(x)(p)=a. (Similar to the case of simple function pro- 

grams, ), " (S) is well-defined by Theorem 6.2.8; however, note that in the statement of that theorem 

we must take E=sig (G). ) 

G2 Multiple Function Groups. Suppose G is of the form G =G,; S for some Gae FG(E) and some 
Se FPIT(sig (G, )). 

Then here, sig (G) =sig (Go) u id(S ), and since S is of arity (u, v), then id (S) = [f 1...., f ,, }, and 
f; e sig (G).,,,, for i =1,..., m. Now, since Po=P( is a performance measure for the sig (G0)-algebra 

Ao=Alge (G, ), we can turn P, into a performance measure PG for the sig (G )-algebra AG =Alge (G) by 

extending PG with a performance estimation for f; for i =1,..., m; since f; E sig (G a performance 

estimation for f, in PG must be a function from A" into C*. 

Now, since Se FPIT(sig (G, )), the length of computation function for S is a length of computa- 

tion function with respect to P. viz Xp "(S). Now, since X 1T(S): A"-'C*, this function is of 
P ° exactly the right functionality, and so we can define Pa to be the extension of P obtained by adding fj 

P 
for 1 =1,..., m, where f; ° is defined by 

(VaeA") (ft°(a)=X, p; rr(S)(a)) 

(Again notice that the cost with respect to pa of evaluating an expression of the form fi(" " ") is 

independent of i. ) Equivalently, PP is defined by 

pc = (P0, % PJT(S)) 
13 

We have now concluded the definition of FPIT. Before we consider some examples, here are 

some simple facts concerning function programs and function groups: 
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63.4 Lemma. Let E and E' be S -sorted standard signatures with E'QE. Then 

(i) for each u, v eS; and for every Se FPIT(E).,, � if all (S) n E'= 0 then Se FPIT(E'),,,,,, and 

(ii) for every Ge FG(E), if all (G) n r= 0 then GE FG(E'). 

Proof. We will not prove this lemma formally since its formal proof is very long: one must prove (i) 

and (ii) by simultaneous induction on the depth of function programs and function groups and by subin- 
duction on the length of function groups. Instead we will explain why the lemma is intuitively true. 

First consider a program Se PIT(E). To say that S is defined `over' E is to say that S only 
involves operator symbols aEE. Thus if E'. 2E then certainly Se PPT(E'): it is simply that S does not 
involve any of the (new) operator symbols in the difference £-L 

For essentially the same reason, if E'ZE and the new symbols in E' do not occur in a function pro- 

gram Se FPIT(E), then Se FPIT(E). The only difference is that to have SE FPIT(E') no function 

identifier introduced in the header of any (sub-) function program involved in S can be a member of E. 

However, since all(S) is the collection of all function identifiers occurring in headers in S (including 

that of S itself), it is clear that all (S) n r=0 is sufficient to guarantee Se FPIT(E') proving part (i) of 

the lemma. (A similar argument can be made for part (ii) of the lemma. ) 0 

63.5 Lemma. Let S 1,.., S� e FPIT(E). Also let (strings) G 1..... G. be defined by 
G1=S1 

Gj+i = Gj ; Sj+i 
If all (S1+1) n sig (G j) =0 for j =1...., n -1, then Gie FG(Z)for l =1,.... n. 

Proof. Omitted. (Hint use induction on n together with the previous lemma. ) Q 

63.6 Examples of FPIT. 

In this section we will illustrate the programming of functions in FPIT; we will see worked exam- 

ples of function groups on the way. We use some simple functions defined by PR schema. In this way 

we will see that FPIT is indeed tailored to the implementation of PR. In the next section we will define 

a compiler that incorporates and generalises the examples. 

Let us first say what we mean by `implementation': 

Definition. Let ae PR(E)",,, and Se FPIT(E)",,, for some u, v E St Then we say S implements a if 

FA (S) = QaIA ; that is, if 
(VaeA") (FA(S)(a)=Qa]A(a)) 

Examples. As a first example, suppose a=a for some aE E�,,, for some we Sand some sES. Then 

aE PR(I)w,,. Now let S be defined by 

S= function y =f (x1,.... x�) : s, 

where: 

yEVCJ 
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X= (X�.... X. ) E Var, , and 

So=y . =a(xl...., x�). 
To show S implements a choose aE A". Then by definition of FA (S) we have: 

FA(S)(a) = FA(S�x, y)(a ) 
= 7LA (Y)(MA (Y : =Q(X 1,.... Xx))(P)) 

(where pE States (A) is any state such that 7rA (x)(p) = a) 

=nA(Y)(P{EA((Y(xl..... x�))(P)IY }) 

ne(Y)(P{&(P(xi)..... P(x,. ))/Y }) 

= 7Ce(Y)(P{d'(7tA(0P))IY }) 

_ C; A (ICA(x)(P)) 

=a"(a) 

= [(; ]A (a) 

ICLIA (a) 

Thus S implements a as claimed. 

It is not difficult to see that the other basis schema can be implemented by essentially the same 
function program S: for a=c' and a=Uw we simply substitute So=y :=c and So=y : =x; respectively. 
(We will prove this later. ) Q 

The next example illustrates our strategy for implementing composite schema: if a is a composite 

scheme that is built up from subschema a,,..., a,, say (for example a= ago a1), then we first compile 

each a; into a function program Si for i =1,..., m; this defines a group G =S1; """ ; S., which in turn 

determines a sig (G)-algebra in which each (coordinate of) Qa; IA is a basic operation: it is then usually a 

simple task to write a PIT i/o-program over rig (G) which implements a. 

(2) Let a be defined by a= nc(ß, al, az) where ß, al and a2 are any schema with ße PR(E),,,, 

and al, aº2 e PR(E),,,,, for some u, v e S*. ('s' names the sort 'Boolean' of course. ) Then ae PR(E),,,,. 

The task we set ourselves is to implement a in FPIT(E) assuming that we can implement ß, al and 
a2 in FPIT(E). 

Let us first assume that there exists Sb e FPTT(E)�, such that Sb implements P. Then 
(da E A~) (FA(Sb)(a) = QßIA(a)) (46) 

Since IBI =1, it must be for some symbol 'b' that id (Sb) = (b). Informally, it must be that the header of 

Sb is of the form: 
function y= b(x1,..., x�) 

where x= (x ,.... x. ) e Varu (thus Iu 1= n), ye Var3, and '"""' is the body of Sb (possibly preceded 

by a local group). 

Now define G 1=Sb . Then since Sb e FPIT(E) we have GIe FG(E) with sig (G 1) = (E, b ). This 

means that sig (G 1) is the signature defined by 
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si8(G1)=<si8(G1)w,: w¬S*, scS> 

where for each weS* ands e S, 
F,,,, u{b} ifw=u ands=B 

sig (G 1)w '=F.. " otherwise 

Also, A 1=AlgA (G 1) is defined by 

A1= (A. FA(Sb)) 
and thus the interpretation of b in A1 is 

bAl = FA(Sb) = QNDA (47) 

(using (46)). 

Now suppose that there exists some function program Si e FPIT(E)",, which implements al. Then 

(Va e A") (FA (St)(a) = QalIA (a) ) (48) 

Also, if Ivý=m it must be that id (Sj) = (g 1,..., g, ") for some function identifiers g 1,..., g.. That is, infor- 

mally, Si must be of the form 

Sj = function 

where y= (y 1,.... y, ß) e Var,,, x= (x 1,..., xx) e Var, and ̀ """' is the body of Ss (possibly preceded by a 

local group). 

Now define G 2= G 1; S, . If we assume that all (St) n sig (G 1) =f then we have Si E FG(sig (G 1)) 
by Lemma 6.3.4, and so G2e FG(E). 

Now, sig (G2) is defined by sig (G2) _ (Sig (G 1), id (S, )). To be precise, sig (G 2) is defined to be the 

extension of sig (G 1) obtained by adding gi to sig (G 1)M,,, ß 
for i =1,..., m. 

Additionally, A2=AlgA(G, ) is defined by 
A2= (A t, FA (S, )) 

Thus for i =1..... m, the interpretation of g; in A2 is the i th coordinate of FA (S8); that is, for i =1,..., m, 
A. 

= (49) gFA (Sj )t 

Notice that the interpretation of be sig (G 2),, A in A2 remains what it was in A1 viz 

bAa =b 
As= I PIA (50) 

(using (47)). 

Finally suppose that there exists some function program Sti e FPrr(E).,,, such that Si, implements 

ace. Then 

(Va E A") (FA (Sj, )(a) = [a ]JA(a)) (51) 

Also, since Ivý=m it must be that id (SA) = (h 1,..., h. ) for some function identifiers h 1,..., h.. 

Now define G3=G2; Sk. If we assume that all(S,, )nsig(G2)=0 then we have S1, E FG(sig(G2)) 

by Lemma 6.3.4, and so G3e FG(E). 

Now, sig (G 3) is defined by sig (G 3) _ (sig (G 2), id (Sk )). To be precise, sig (G 3) is defined to be the 

extension of sig (G 2) obtained by adding hi to sig (G 2)«,,, for i =1,..., m. 
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Additionally, A3 =AlgA (G3) is defined by 

A3 = (A2, FA(Sh)) 
Thus for i =1,..., m, the interpretation of hi in A3 is the i th coordinate of FA (Sh ); that is, for i =1,..., m, 

hA' = FA (Sti )I (52) 

Notice that the interpretation of be sig (G3)�,, in A3 remains what it was in A2 viz 
" bA, = bAa = Q1]IA (53) 

(using (50)). Similarly, for i =1,..., m, the interpretation of each g; e sig (G 3)u, y, 
in A3 remains what it 

was inA2 viz 

Si, ý = öi, ý = FA (S, )i 

(using (49)). 

We can now write down a function program Se FPIT(E),,,,, which implements or 
S= function y1,... 'Y. 

f 
1(xl,..., xn),..., f" (xJ..... x�) :G: So 

where: 

y= (y ý,..., y, K) 
E Var.; 

x (xl..... x. )e Var.; 

G =G3=Sb ; St ; Sj, and 

So = if b(xl,.... x�) then S1 else S2 ß, where: 

Sj = yl. -... y. := and 

S2=y1,.... ym := hi(x1,..., x. ),..., hm(x,,..., xýý. 
Let us first explain why Se FPIT(E),,.., ; afterwards we will prove that S implements ac. 

(54) 

If S is to be admitted to FPTT(E) at all, then it must be as a nested function program. On inspect. 

ing the conditions for membership as a nested function program (see Definition 6.3.1, clause P2, sub- 

clauses (a)-(g)), it is clear that all we really need to establish is that (S0, x y) e PMO(sig (G)); however, 

this should be obvious: certainly (S�x'y) is an i/o-program over some signature, and since So involves 

the operator symbols b, g t,..., g,, and h all of which are members of sig (G ), it is obvious that 

(S0, x, y) is an i/o-program over jig (G). 

Notice how straightforward the program S. is: since Q(31A and (the coordinates of) [a1DA and 

EaJA are available as named basic operations, implementing a is trivial. 

Now let us prove that S implements a: 

First notice that since (So, x, y) E PmO(sig (G)), we have that FA (S0, x, y) is a well-defined func- 

tion (using Lemma 6.2.11 with E= sig (G )). 

Thus for any ae A" we have: 

FA(S)(a) = FA. (S0, x. y)(a) 
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= FF. (S0, x, y)(a) 

(since AG =A3) 

= nA (Y)(MA, (So)(P)) (55) 

where pe States (A) is any state such that nA(x)(p)=a (by definition of FA(S, ln, Out) for arbitrary A 

and (S, In, Out )). 

(Recall the discussion following Definition 6.3.2: in (55) we do not write nor do we say 

'pr= States (A 3)' as might be expected from the definition of the functional meaning of an i/o-program 

(see Definition 6.2.10). As we have said before, the reason for this is that the only difference between A 

and A3 is that the latter has more basic operations; that is, A and A3 have the same carriers, and thus 
States (A) =States (A3) and so nA =1 A3 ) 

Since S, is a conditional statement, from (55) we have for any ae AN, and any pe States (A) such 

that nA (x)(p) =a: 

nA(Y)(P1) if E,. (b(xl1..., x, ý))(P) = rt 
Fý (S)(a) _ (56) 

7CA(Y)(P2) if EA. (b(xl,..., x�))(P) =f 

where pi =MA (S; )(p) for i=1,2. 

Now, using the definition of EA (e) for a general E-algebra A and expression e over E, we calcu- 
late as follows: 

EA(b(xl,.... x. ))(p) = bA°(P(xi)...., P(xg)) 

= bA'(P(xi),..., P(x. )) 

= QP]IA (P(Xt)...., P(xn )) 

(from (53)) 

=I PIA (ICA (x)(p)) 

= [PIA (a) 

Substituting for pl(y; ) for i =1..., m in (56) now yields 
1nA (y)(PI) if [ iA (a) =it 

FA (S)(a) = 
(S7) t1rA)(P2) 

if QF']IA (a) = dl 

Now suppose VIA (a) = tt. Then from (57) we have 

FA(S)(a) = nA(Y)(Pi) 
_ (P1(Yi)..... P1(Y. )) (58) 

Now, since S1 is a multiple assignment statement we have 

Pi = MA (Sl)(P) 

= p{EA (gl(xl,..., x,. ))(p)lyl If ... }{EA, (8m(xl..... xx))(P)IYn } 

Thus for i =1,..., m, we have 

..., x, ý))(P) Pi(Yi) = EA. (8; (x 11 
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= EA, (8t(x1...., xR))(P) 
A 

= 8c '(P(x i),..., P(X. » 

=FA(SS)i(P(xi)..... P(x )) 

(using (54)) 

=FA(St)s(nA(x)(P)) 

=FA(SS)t(a) 

Substituting for EA 
a 
(g; (xl,..., x�))(p) in (58) yields: 

FA(S)(a) =(FA(S, )i(a)...., FA(S, ). (a)) 
=FA(S, )(a) 

(since FA(Ss )1..... FA (S. ). are the coordinate of FA (Se )) 

= laIIA (a) 

(since S. implements a; see (48)). 

We have now proved that 
[PIA (a) = tt = FA (S)(a) = Qal]A (a) (59) 

In a similar way it is easy to show that 
[F']IA(a) =ff= FA(S)(a) = [aJA(a) (60) 

From (59) and (60) we now have for any ae A": 
[a1DA (a) if QßIA (a) = tt 

FA (S)(a) = QaJA (a) j QßIA (a) =ff 

= QDc(ß, al, aj]IA (a) 

= Q«DL(a) 

Thus S implements a as claimed. 

6.4 COMPILATION. 

We now turn our attention to the general implementation problem of showing that we can imple- 

ment every PR-scheme in FPIT; when we can do this we can simulate arbitrary synchronous algorithms 

of course. 

To solve our implementation problem we will define a compiler c '' : PR(E)--'FPIT(E) with the 

intention that for every ae PR(E), cpR (a) e FPIT(E) implements a. Our strategy for compiling schema 
has been exemplified in Section 6.3.6: implementing basis schema is easy, and implementing composite 

schema is easy once the subschema have been compiled into function programs that determine an alge- 

bra in which the subschema are available as named basic operations. 

In Chapter 7 we will prove that c°R (a) implements a and we will additionally prove that the com- 

piler preserves algorithm complexity. 
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6.4.1 Definition. 

We define cPR to be the S <S±indexed family 
Cpl = <c : u, v E S; > 

of mappings cuv: PR(E),,,, - >FPTT(E),,,, ; we call ckR the PR-FPIT compiler. For each u, v E S*, c, 
(ambiguously denoted ciR) is defined uniformly in u and v and by induction on the structural complex- 
ity of arguments a as described after the following 

Notes. 

(1) For each aE PR(L),,,,, we will first construct cp' (a) and then prove it is a well-defined member of 

Fprr(ý), ý, y. 
(2) In the following definition we will continually define c*R (a) to be a function program whose 

header is of the form 

function y1...., Y. =f :.. . 
We will always assume that such headers satisfy the trivial syntactic constraints on membership of 
FPTT(E); that is, we assume {xl,..., x. } and {yi,..., y,,, } are mutually exclusive sets of distinct 

variables. 

(3) We further assume that f 1-. f,,, are always chosen to be new identifiers; that is, function 

identifiers not occurring in E nor in any previous part of the construction of cpR (a). (In particular, 
if S above has a local group G, then we assume (f }n all (G) = 0. ) 

Basis Cases. 

(i) Constant Functions. Suppose a=cw for some ce Ex. for some seS, and for some we S*. Then 

aE PR(i7wý. 

Compilation. Here we define CPR (a) by 

: So CPR (a) = function y=f (x X,, ) 
where: 

yEVar,; 

x =(xi..... x. )E Var., and 

S0=y . -c. 

Well-Definedness. Given notes (2) and (3) above, and the definition of a simple function program, it 

should be clear that (S,, x, y) E PmO(E)., j and thus that cPR (a) e FPIT(E)w,,, as required. 

(ü) Algebraic Operations. Suppose a=a for some aE Ew.,. Then ae PR(E),,.,. 
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Compilation. Here we define cpR (a) by 

cPR(a) = function y=f (x X. ) : S. 

where: 

yeVar,; 

x= (x l,..., x�) E Varw, and "�0. 

s�= y .. a(xl,..., x�). 

Well-Definedness. Again, it should be clear without further comment that (S�z, y) E PMO(E) and thus 

that cpR (cc) E FPIT(E)w,,. 

(iii) Projection Functions. Suppose a= Ui' for some we S' and some i with 15 i: 5 n= 1w I. Then 

OLE PR(Z)w, 
wý. 

Compilation. Here we define cpR (a) by 
cPR(a) = function y=f (xl...., x�) : S. - 

where: 

yeVar; 
x= (xl,..., x�) e Varw, and 

S0=y : =x;. 

Well Definedness. Again, it is easy to see that (S0, x, y) e PTTIO(E) and thus that cPR (a) e FPTT(E), r �, . 

Induction. Let ae PR(E)M,, for some u, v e S. Suppose that a has the property that for every u , v' e S' 

and for every a'e PR(E), t,, r of less structural complexity than a, we have defined cp"(a' and esta- 
blished that ca°(a') e FPTT(E),!,, r. 

We now define cPR (a) according to the four following possible cases: 

(iv) Definition-by-Cases. Suppose a is of the form a=DC(ß, al, a2). Then for some u, v e S", we have 

ße PR(E)�,, and al, a2 e PR(E).,,. 

Since ß, al, and a2 are all of less structural complexity than a, we can assume by the induction 

hypothesis that 
Sb = CPR (ß) E FPIT(E)4p 

Sj = cPR (al) E FPIT(E)u, 
v 

and 

SI _ CPR (a2) E FPTT(E)u, 
r 

Now, since IBI =1, it must be that for some symbol b, we have id (Sb) _ (b ). Also, if (v=m 

say, then for some symbols g 1,.... g,,, and h 1...., h,,,, we have id (St) = (g 1.... g, R) and id (S,, ) = (h 1,..., h, ). 
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Compilation. Here we define cpR (a) by 

CPR (a) = function y1,... -yet =f G: S. 

where: 

Y=(yi"..., y )eVar,, 

x= (X�..., x. ) e Var.; 

G= Sb ; Ss ; Shand 

So = if b(xl,..., x�) then S1 else S2 fi, where: 

and 

S2= Y1"... Ym := ht(xl,.... xa),.... h, (xl,..., x�). 

Well Def redness. It should clear that the second example in Section 6.3.6 was tailored to this stage in 

the compilation: cpR (a) is exactly the function program S of the example. Note that the only assump- 
tions we made in establishing that S= cp' (a) e PR(E) were ones concerning the function identifiers in 

S. and Sh. Specifically, we assumed that 

all(S. )nsig(G1)=0 

and 
all(SS)nsig(G2) =0 

where G1=Sb and G2=G1; Ss. 

In this case of the compilation, the intention is that we first compile ß, then al, and finally a2: by 

note (3) above, we have 

all(cpR(ai))ns g(Gt) =0 
and 

all(cPR(%))nsig(G2) =0 

when GI=c"(5) and G2= G 1; c"R (al). These two conditions are sufficient to guarantee 
cPR (a) E FPIT(E),., (by Lemma 6.3.4 twice). 

(v) Vectorisation. Suppose a is of the form a= < al,..., a,,, > for some m 21. 

Then for some ue S+and v c: S", a; e PR(E),,,,, for i=1,..., m. 

Since a; is of less structural complexity than a for i =1,..., m, we can assume by the induction 

hypothesis that 
Si =CPR(%-) E FPIT(E)M, 

�, 

fori=l,..., m. 

Also, since I v, I =1 for i =1,..., m, it must be that for some symbols g 1..... g,, we have 

id (SS )= (g1) for i =1,..., M. 
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Compilation. Here we define cPR (a) by 

cPR(a) = function 

where: 

Y= (y 1..... y. ) E Var,,; 

x =(X 1,..., x. )EVaTK; 

G=S1; ... ; Sm, and 

S, =Y1,.... Ym := 

Well Definedness. Assume for the moment that Ge FG(E). On inspecting the conditions for member- 

ship as a nested function program (see Definition 6.3.1, clause P2, sub-clauses (a)-(g)), it is clear that 

given note (2) above, we only really need to establish that (S,, x, y) e PMO(sig (G )); however, this 

should be obvious: certainly (S0, x, y) is an i/o-program over some signature, and since S, involves the 

operator symbols g 1,..., g. all of which are members of sig (G), it is clear that (S »x, y) is an i/o-program 

over sig (G). 

To show Ge FG(E), by Lemma 6.35 it is sufficient to show 

all (Si+i) n sib (Ge) (61) 

for i =1,..., m-1, where G 1= S1 and Gk+1= Gk; Sk+1 for k =1,..., m-1. 

In this case of the compilation the intention is that we compile a1,... ß a,,, in order; al first, and a. 

last. Note (3) is sufficient to guarantee that (61) holds for i =1,..., M. 

(vi) Composition. Suppose o cis of the form a= q2o al. 

Then for some uvw r= S, al e PR(E)., �, and a2 c= PR(E)�,,,,. 

Since al and a2 are of less structural complexity than a, we can assume by the induction 

hypothesis that 
S1_ CPR (cc, ) E FPIT(E)u, 

w 

and 
S2 = CPR (CO E FPf(E)w, 

v 

Also, since (w I =k for some k>0, it must be that for some symbols g I..... gk we have 

id(S1)=(gl,..., gk). Additionally, since IvI =m >0, it must be that for some symbols hl,..., hn we have 

id(S2)=(h1..... hm). 

Compilation. Here we define cpR (a) by 

c'R(a) = function y1,.... Y. =f 1(X(X1,..., X*) :G: S. 

where: 

y= (y y. ) E VarV 
x= (xl,..., x. )E Var.; 

G =S1; S2, and 
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s, =yý..... y. :=e1..... em, where: 

ei = 

Well-Definedness. Similar to the two previous induction cases above, it should be clear that 

c" (a) e FPTT(E)4,, if we first compile al and then a2. 

(vii) Primitive Recursion. Suppose a is of the form a=*(al, a2). 

Then for some u, v e S+, al E PR(E),,,, and a2 E PR(E),,,,,.,. 

Since al and a2 are of less structural complexity than a, we can assume by the induction 

hypothesis that 
S` = CPR (al) E FPIT(E),,, 

r 
and 

Sk = CPR (CO E FPrr(E), 
w,, 

Also, since 1v I=m, it must be that for some symbols g1 ..... g. and h1 ,..., h. we have 

id(Ss)_(gi,..., g. ) and id(Sh)_(hi,..., h. ). 

Compilation. Here we define cPR (a) by 

c"R(a) = function G: S. 

where: 

y= (y y. ) e Var,,; 

x= (p, x 1,..., x, ) e Var, 
u; 

G= Ss ; SS, and 

S,, = S1 ; do p times S2 od, where: 

S1= =, yJ...., y,, 1 := and 

S2 = =, y,.... . y, :_ s=(z ), el,..., e., where: 

ze Var� and 

ei = hi(z, x1,.... x,,. yi...., Y,, ) for i =1..... m. 

Well-Definedness. Similar to the three previous induction cases above, it should be clear that 

cPR (a) e FPTT(E)..,, if we first compile al and then a2.13 

6.4.2 Example. 

As with any other compiler, c'R produces a vast quantity of unreadable output when applied to all 
but the simplest input. We would have liked to include cPR (cx ) and cpR (TOE) (see Notation 3.4.5) to 

compare them with SOE (see Examples 6.1.8) and the reader's solution to Exercise 2.4.5(3) respectively. 
Unfortunately however, we do not have the space to do so since cpR (ctOE) and cpR (TOE) are each almost 

400 lines long (for n =4). 
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Let us content ourselves with a much simpler example. Consider the scheme a=+o<U? , Uj'n'> 

over the natural numbers IN. Since a is defined by composition, cpR will first compile a1= <UZ , U11 >, 

then a2=+, and then put the resulting function programs together in a function group over which the 

composition a can be implemented. Considering the compilation of a1, since this scheme is an instance 

of vectorisation, cPR will first compile U2m then UI NN, and then put these together in a function group 

over which ß can be implemented. Thus the order in which the schema comprising a are compiled is first 

UN, then Ui, then al, then a2, and finally a itself. 

A function program to implement a is obtained by routine application of c" according to 

Definition 6.4.1 as follows: 

First UZ is compiled, giving the function program 
function yl =f 1(xl, x2) : 

Yi := xz 
Then U1 '' is compiled giving 

function Y2 =f 2(X3, X4) 

Y2 := x3 
These two function programs are now used to define a function program for a1= <U2 , Ui ">: 

function y3, y4 =f 3(x5+x6), f 
4(x5, X6) 

function y1= f i(xt, x2) : 
Yi: =X2; 

function y2 =f 2(X3, X4) i 

Y2 := x3 : 

Y3, Y4 : =f 1(x3, x6), f 2(XS, X6) 

Now a2=+ is compiled: 
function ys =f 5(x7, x8) : 

Ys := +(x7"x8) 

Finally cPR (al) and cpR (a2) are used to provide and implementation of a: 
function y6 =f 6(x9, x10) : 

function Y3, Y4 =f s(x5, x6), f 4(x3, x6) : 
function y, =. f 1(xi+x2) 

Y1 := x2 
function Y2 =f 2(x3, x4) 

Y2 := x3 : 
Y3"Y4 :=f 1(xs, x6), f 2(xs, x6) 3 

function Ys =fs(x7, xa) 
Ys := +(x7, x8) : 

Y6 :=f S(f 3(x9, x10), f4(x9, x1o)) 
We leave it to the reader to prove that cpR (a) implements a and that cpR (a) and a have the same 

time-complexity (to within a constant factor). 
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6.5 SOURCES. 

The search for an appropriate implementation language for PR and the design of FP1T as such a 
language is the result of joint work between J. V. Tucker and myself. The detailed formal definition of 
the language, in particular the performance part of the definition, is my own work. 

The multiple assignment statement has appeared on many occasions in the literature on program- 

ming language constructs. Since what seems to be its original appearance in Barron et al[1963], the 

multiple assignment statement has been used by E. W. Dijkstra and C. A. R. Hoare and studied by D. 

Gries; see Dijkstra[1976], Hoare[1985], and Gries[1978] respectively. 

Independently of our work, the multiple assignment statment has been used by K. M. Chandy and 
J. Misra (see Chandy and Misra[1986a]) to define one or two systolic algorithms in the context of their 

general theory of algorithm development (see Chandy and Misra[1985] and Chandy and Misra[1986b]). 

The study of i/o-triples and their functionality originates in Tucker and Zucker[1987] (work of 
1979): Definition 6.2.3 is based the definition found in Section 4.3.2 of Tucker and Zucker[1987]. The 

functionality of i/o-triples has been further studied by C. A. Jervis in his work (Jervis[1988]) on the 

specification and implementation of abstract data types by means of while-programs computing over 

single-sorted abstract structures. We are indebted to Mr. Jervis for his original technical work on which 
Definitions 62.6 and 6.2.7 and Theorem 6.2.8 are based. 

The language FPIT and a prototype compiler from PR into FPIT have been implemented on a 
VAX 11/780 by our colleague A. R. Martin as part of the DEDEKIND project (see Section 1.3). 
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CHAPTER 7 
COMPUTATIONAL EQUIVALENCE 

In this chapter we will prove that PR and FPIT are equivalent representation systems for synchro- 
nous algorithms as promised in Chapter 6. Our first task is to prove that the transformation cPR of Sec- 

tion 6.4.1 preserves both the meaning and performance of PR schema; this will establish that every syn- 

chronous algorithm can be simulated in FPIT, and thus as a specification language for synchronous algo- 
rithms, FPIT is no weaker than PR. Our second task is to prove that FPIT is no stronger than PR as a 

specification language (recall that synchronous algorithms may be simulated directly in FPIT without 

using PR as an intermediate stage). To do this we will define a second transformation cFp, which 
transforms arbitrary function programs into PR schema, and which we will prove both meaning and per- 
formance preserving. 

We think of PR and FPIT as programming languages, and as transformations between these 
languages, we think of cpR and cFP as compilers. In Section 7.1 we develop a theoretical framework in 

which we may analyse compilers and compiler correctness; this framework is based on ideas first formu- 

lated in Morris[1973] and subsequently developed and extended in Thatcher, Wagner, and 
Wright[1980]. We will extend this framework to account for performance matters: we enrich our theory 

of compilation by considering when a compiler can be said to be performance preserving. 

After proving cPR is a correct and performance preserving compiler in Section 7.2, we will turn 

our attention to c, ". In Section 7.3, after discussing some preliminary tools, we explain our strategy for 

compiling arbitrary function programs into PR and then define cFP. In Section 7.4 we prove that cFp is 

a correct and performance preserving compiler. 

7.1 COMPILATION. 

The theory of compilers and their correctness begins with the theory of programming languages. 

One may summarise a formal account of a programming language in the following general way: to for. 

malise a given language, one gives a syntax L for the language, a semantic space S containing at least all 

possible behaviours of programs aeL, and a meaning function M :L -->S with the intention that for 

each aeL, M (a) eS is the behaviour of a. 

Given two languages with syntaxes L1 and L2 respectively, a compiler from LI into L2 is intui- 

tively just a mapping c :LI -'L2. When compiling a program aeLI, we call a the source program and 

the image c (a) e L2 the object program. Now let S1 and SZ be semantic spaces for LI and L2 respec- 

tively and let M1 :Lt -->S 1 and M2 : L2-+S2 be meaning functions. Intuitively, a compiler 

c: L1 -L2 should be said to be correct if for every a r= L 1, a and c (a) have the same behaviour. the 

behaviour of a is M1(a), and the behaviour of c (a) is M2(c (a)), and thus to say that a and c (a) have 

the `same' behaviour is to say that MZ(c (a)) is equivalent to M1(a) in some sense. For example, if 

S1=S2, then c could be said to be correct if M2(c(a))=M1(a) for every source program a. More 
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generally, one has S1* S2 and the behaviour of an object program c (a) is related to the behaviour of a 

via a function n: S 1-->S 2 which we think of as a representation or coding of L 1-behaviours over L2- 

behaviours; we say 526 S2 is equivalent to sI E SI if n(s1)=s2. 

Morris[1973] and Thatcher, Wagner, and Wright[1980] offer the following definition: a compiler 

c :L 1->L2 is correct if the following diagram commutes for every a r= L 1: 
M1 

L1 S1 

c 

L2 S2 
M 2 

That is, c is correct if 
(Vae L1) (M2(c(a)) = n(M1(a))) Ei 

Note that when S 1= S2 and it is the identity function (as will be the case in this chapter, but not in 

the next), the right-hand side of the commutative diagram collapses to a single point. 

In this thesis we have insisted that a formal account of a language is incomplete without a com- 

plexity theory for the language: we have formalised the complexity of programs in all of our languages 

by providing a space C of complexity functions and a performance estimator X: L --*C with the inten- 

tion that for each aeL X(a) is the length of computation function for a. The addition of a complexity 

theory to formal accounts of languages allows us to consider compiler performance preservation charac- 

teristics of compilers in the following way: if L1 and L2 have complexity spaces C1 and C2 and perfor- 

mance estimators ) and X2 respectively, then the complexity of any aeL1 is ß. 1(a) and the complexity 

of c (a) is X(c (a)); similar to compiler correctness, we can say that c is performance preserving if in 

some sense the complexity of c (a) is equivalent to that of a. Equality between X 2(c (a)) and ß, 1(a) is too 

strong a condition in general for a performance preservation condition; instead we will say that c is per- 
formance preserving if X2(c (a)) `- ß, 1(a) where ̀ =' is the relation defined in Section 3.2.3. 

Our current objective is to verify cPR and cF' (yet to be defined). We will adopt the theoretical 
framework of compiler correctness given by Morris[1973] and Thatcher, Wagner, and Wright[1980], 

but we will tailor it to our particular needs and extend it to cover compiler performance preservation. 
The verification of cPR is straightforward and could be given now without further ado. However, the 

compiler cF° is defined in terms of four auxiliary compilers which, like cPR and c", are compilers 
between functional languages. Below, after some preliminary definitions, we will customise definitions 

of `compiler' and ̀ compiler correctness' to the case of such languages; these definitions serve to unify 

our theoretical treatment of the six compilers found in this chapter. 
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Definitions. 

(i) Let X and Y be S'c S±indexed families of sets: 
X=<X"": u, v¬S+>, Y=<YU": u, v¬S''> 

Also let f be an S{kStindexed family of mappings: 
f= <fr,, : u, V E S+> 

Then we say f is a word-indexed function if f,,,,, : XX, v --4Y.,., for each u, v c: S*, in symbols we 

write f :X -->Y. (The indexing pair (u, v) appears as a superscript if it is more convenient. ) 

(ii) Let A be an S -indexed family of sets: 
A=<A,: seS> 

Then we define FN (A) to be the collection of all functions on A as an S4X St-indexed family: 

FN(A) = <FN(A)",,, : u, v E S+> 

where FN (A)", y = [A" -'A"] for each uve S'. 

Definitions. Let E be an S -sorted signature, let A be a E-algebra and let P be a performance measure 
for A which is based on clock C. 

(i) Let L (E) be a language over E as a Six S+indexed family of sets: 
L (E) = <L(E),,,,, : u, v E S*> 

Then we say L (E) is a functional language over E. 

(ii) Let L (I) be a functional language over S-sorted signature A, and let MA :L (E)--AFN (A ). Then 

we say L (E) has functional semantics MA. (Note that by clause (i) of the preceding definitions 

this means that MA must be a word-indexed function with MA"-": L (E)",,, --a--[A" -->A"] for each 

u, v e st) 

(iii) Let L (E) be a functional language over S -sorted signature T, and let Xp be an S indexed family: 
ilp=<Xp: ueS+> 

where for each ue S+, 

v4130 

Then we say L (E) has functional complexity theory Xp. 

Exercises. Let E be a standard signature, let A be a standard E-algebra, and let P be a performance 

measure for A. Show 

(i) PR(I) is a functional language with functional semantics [JA (as defined in Section 3.3.2) and 
functional complexity theory Xp (as defined in Section 3.3.3). 

(ii) P1TIO(E) is a functional language with functional semantics FA (as defined in Definition 

6.2.10(i)) and functional complexity theory XP (as defined in Definition 6.2.10(ü)). 

(iii) FPIT(E) is a functional language with functional semantics FA (as defined in Section 6.3.2) and 
functional complexity theory e" (as defined in Section 6.3.3). 
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7.1.1 Definitions. 

For i=1,2, let T., be an S -sorted signature, and let L; (E; ) be a functional language over 1,.. Also 

let A land A2 be T q- and Es-algebras respectively, where A1 and A2 have the same carriers; that is, for 

each seS let (A, ), = (A2), =A, for some S-indexed family of sets A =<A,: sr =S > (so FN(A1) and 
FN(A2) are both equal to FN(A)). Additionally let P1 and P2 be performance measures for Al and A2 

respectively, where both P1 and P2 are based on the same clock C. Then we make the following 

definitions: 

(i) A compiler fromLi(I, ) into L2(F, ) is any mapping c : L1(E1)-'L2(F. l). (Thus a compiler form 

L1(Z1) into L2(E) is any word-indexed family c of mappings with 
for each u, v e Sý) 

(ii) Suppose that Li(E, ) andL2(F2) have functional semantics 
MA(I) : L1(ZI)-*FN(A) 

and 
MAI) : L2(! )->FN(A) 

respectively. Then we say a compiler c from L 1(Z1) into L2(T) is correct with respect to MA(I) 

and MA) if the following diagram commutes for every aeL 1(Z ): 
L1(E1) 

MA` 

C FN(A) 

M(2) 
L2(E ) 

That is, if 

(V aEL i(E1)», ý) ((Mýý; ý )ý, ý (ýK,. (a)) = (M4» )M, V (a) ) 

for every u, v e S`. 

(iii) Suppose Lt(T) andL2(E2) have a functional complexity theories )$» and XP) respectively. Then 

we say a compiler c from L 1(F, ß) into L2(; ) is performance preserving with respect to and 
)L? if 

2 

(V aELß(E1)) () (c(a)) =)$1)(a)) Q 

Clause (iii) of this last definition requires further comment. Suppose aeL 1(El)ý,,, for some 

u, v e Sý Then from Section 32.3 we have that 
x ý(c(a)) = %R, ) (cc) (1) 

iff for some (integer) constants µZ 1 and v 21 we have 
(Va E A") (ý ý(ý (ý))(a) Sµ" ?$ (a)(a)) (2) 

and 
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(Va e A") (), »(a)(a) 5v. XÄ»(c (a))(a)) (3) 

The first part of (1), namely (2), is of more interest than the second part (3): in compiling a program a to 

c (a), it is usually the case that c (a) has more instructions or commands than a and so intuitively we 

expect the complexity of a to be less than of c (a); that is, we anticipate any compiler to have v =1. On 

the other hand, it is of interest to know to a bound on the complexity of c (a), especially when c (a) is a 

program which implements or simulates a; having devised an algorithm a and established that it has 

satisfactory performance characteristics, (2) tells us a bound on the execution time of the implementation 

without us having to calculate the complexity of the implementation explicitly. 

Below, we begin the proof of computational equivalence of PR and FPIT. First, here are some 

preliminary notes: 

Notes. 

(i) In the forthcoming technical work, sort sets, signatures, algebras, and performance measures 

will always be standard. In particular, when we quantify over signatures E with phrases such as 
`Let E be any signature... ', we always mean any standard signature E. (Similar remarks apply to 

sort sets, algebras, and performance measures as well. ) 

(ü) Recall the complexity function Xp for PR (as defined in Definition 3.3.3). To make the notation 

uniform we will subsequently use the notation'XpR' instead of `ap'. 

7.2 VERIFICATION OF THE PR-FPIT COMPILER. 

In this section we will prove that cp' is correct and performance preserving. 

7.2.1 Theorem. Let E be any S-sorted signature, let A be any £-algebra, and let P be a performance 

measure for A which is based on clock C. Then cPR is a compiler from PR(E) into FPIT(E) which is 

correct with respect to I I. ]A and FA. and performance preserving with respect to X. pR and . 
pp. 

Proof. First notice that cPR : PR(E)-4FPIT(E) by Definition 6.4.1: cPR was defined to be an S*xS+ 

indexed family of mappings, and within the definition we showed that when ae PR(E),,, for some 

u ,ve S+we had cPA (a) = <7, (a) e FPIT(E),., ; thus cPR is word-indexed and so a compiler from PR(E) 

into FPIT(Z). 

To prove correctness of cPR we must show that for every u, v e S+and for any ae PR(l)",,, 

cPR (a) satisfies: 
(Va e A") (FA(cPR (a))(a) = QaIA (a)) (4) 

To prove that cPR is performance preserving we must show that for every u, v e S" and for any 

ae PR(E)",,, there exist t, v Z1 such that cbR (a) satisfies: 
(Va e A") (;, FP(cPR (a))(a) 5 µ. 7XP'e(a)(a)) (5) 

and 
(Va e A") (7L°R(a)(a) s v. X "(cpR (a))(a)) (6) 

Choose ae PR(E)",, for some u, v r S*. We prove cPR is correct and performance preserving by prov- 

ing that (4) holds, and by proving that (5) holds for some t= ii«, and that (6) holds for v =1. The proofs 
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are simultaneous, uniform in u and v, and by induction on the structural complexity of o:, and proceed as 
follows: 

Basis Cases. 

(i) Constant Functions. Suppose a=cw for some ce Ex, for some seS, and for some we St Then 

ae PR(L)w,,. 

In this case CPR (a) is defined by 

CPR (a) = function y=f (XI..... X. ) : So 

where: 

yE Var, ; 

x= (X�..., x�) E Var, and 

s, =y : =c. 
Correctness. To show (4) holds for a=c', choose ae A' and calculate as follows: 

FA (CPR ((x))(a) = FA (SO, x, y)(a ) 

nA (Y)(MA (S0)(P)) 

(where pe States (A) is any state such that nA (x)(p) = a) 
= 7CA (Y )(MA (Y := c)(P)) 
=nA( )(PlCA lY 

= CA 

= QCwJA(a) 

= Q«DA (a) 
Thus (4) holds for a= c'" as claimed; that is, c PR correctly compiles schema of the form c'". 

Performance Preservation. To show that cpR preserves the performance of schema of the form cW, we 

must show that (5) holds for some µ EIN, and additionally, that (6) also holds. 

First notice that for any aeAW we have 
X (CPR (a))(a) = kP (S., x'y)(a ) 

_ ; LpIT(S. )(P) 
(where pe States (A) is any state such that rcA (x)(p) =a ) 

= Xprr(y: =e)(P) 
= X"(e)(p) 
= C? 

= ÄpR(a)ia) 

Taking t=1, it is now easy to see that cPR ((x) satisfies both performance preservation conditions 
(5) and (6); that is, cPR preserves the performance of schema of the form cW as claimed. 
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(ü) Algebraic Operations. Suppose a=a for some a¬ E,,., for some we Sand some seS. Then 
ae PR(L)wo. 

In this case cpR (a) is defined by 

cpR(a) = function y=f (xl,..., xi) : So 

where: 

Evar,; 
x= (xl,.... x. )E Var, and 

Sc, =y := a(x1,..., x ). 

Correctness. See the first example in Section 6.3.6. 

Performance Preservation. To show that cPR preserves the performance of schema of the form c", we 

must show that (5) holds for some µe IN, and additionally, that (6) also holds. 

First notice that for any ae A" we have: 
X"(cpR (a))(a) _ Xp°(Su, x, y)(a ) 

_ "Pff(So)(P) 
(where pe States (A) is any state such that aA (x )(p) =a ) 

= ilPff(y: =6(xI,..., x. ))(P) 

= 7l©P(ß(xl...., x. ))(P) 

=a"(P(xi)...., P(x. ))+max XpE (xi)(P)} 

1 
1..... 1} =a"(vA(x)(P)+ { 

Sri sm 

= cf (nA (x)(P)) +1 

=a"(a)+1 

= Xp' (a)(a) +1 

= X'V (a)(a) +1 

To see that (5) holds for a and some choice of µ, take µ=2, ae A'", and calculate as follows: 

XPp(cpR ((x))(a) = X1R((x)(a) +1 

(from (7)) 
5 PR(a)(a) + XPR(a)(a ) 

(since ? (a)(a) 21 for any arguments a and a) 
= 2. XPR(a)(a ) 
= µ" pR(a)(a) 

Thus (5) holds for a and this choice of µ as claimed. 

(7) 

To see that (6) holds for a, choose ae Aw and calculate as follows: 
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I%lp 
)(a) = XP °(c (a))(a) - 

(from (7)) 
< XPP(CPR(a))(a) 

Thus (6) holds for a as claimed. 

(iii) Projection Functions. Suppose a=U; " for some we S+ and some i with 1SiSn =1 w 1. Then 

ae PR(E)w, 
w, 

Then in this case cPR (a) is defined by 

cPR(a) = function y =f (xl,..., x�) : S. 

where: 

ye Var�, ; 
x= (x x. ) e Var , and 

S0=y . =x;. 

Correctness. To show (4) holds for a=UjI, choose ae A* and calculate as follows: 

FA (CPR (a))(a) = FA (S0, x, Y)(a ) 

= 7A (y)(MA 
V := x)(P)) 

(where pe States (A) is any state such that nA (x)(p) =a) 
=ICA(i)(P{EA(XJ)(P)IY }) 

=nA(Y)(P{P(Xi)IY }) 

= P(x1) 
= a; 

(when a= (a 

= [Ur]A (a) 

= Qa]A (a) 

Thus (4) holds for a= UP' as claimed; that is, cpR correctly compiles schema of the form U. 

Performance Preservation. To show that cPR preserves the performance of schema of the form U; ", we 

must show that (5) holds for some µe IN, and additionally, that (6) also holds. 

First notice that for any ae A`" we have 
X (c' (a))(a) = XpI (S., x ry)(a 

) 

= X, prr(S0)(P) 

(where pr= States(A)is any state such that ttA (x)(p) =a) 

= Xprr(y : =xi)(P) 

= 7l(xt)(P) 

=1 
XPR(Utw)(a ) 
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_ ,, 
PR 
p (a)(a ) 

Taking t=1, it is now easy to see that c PR (a) satisfies both performance preservation conditions 
(5) and (6); that is, cPA preserves the performance of schema of the form U' as claimed. 

Induction. Let aE PR(E),, for some u, v e S. Suppose that a has the property that for every u', v' E S* 

and for every a'E PR(E), 
,,,, 

with a' of less structural complexity than a, cPR is correct and perfor- 
mance preserving on a'; that is, assume: 

(a) (Va E A") (FA(cPR(a7)(a) = Qa'DA(a) ) 

(b) there exists We N' such that (Va E A") ()1. pp(cPR (a7)(a) S ix'., %pR(a')(a) ) 

(C) (bra E A") (XPR(a)(a) s)L (cPR(aP))(a) ) 

We now show c1R is correct and performance preserving on a according to the four following 

possible cases: 

(iv) Definition-by-Cases. Suppose a is of the form a=DC(ß, al, a2). Then ßE PR(E),.,, and 
ai, a2 e PR(E),,,,, (since ae PR(E).,, by hypothesis). 

In this case cPR (a) is defined by 

cPR(a) = function yl,.... Y. f i(xl,..., x�)...., f. (xl,..., X. ) :c: S. 

where: 

y= (y y. ) E vary: 
X= (X1..... Xa)E Var ; 

G= Sb ; Sf ; Si, where: 
Sy = caR (ß) E FPIT(E)4A with id (Sb )= (b) for some function identifier b; 

S, r = c, " (al)e FPIT(E),,,,, with id (St) = (g i �.., g,,, ) for some function identifiers 

gi1... "g , and 

SI, = CPR () E FPIT(E: ),,,,, with id (Sh) = (h 1,.... h, K) for some function identifiers 
h1,.... h., 

and 

S, = if b(xl,..., x. ) then S1 else S2 fi, where: 
Si =yl..... yew "= and 

S2=y1,.... Y. := ht(xl,..., x�),... ýhý(xl,..., x�)" 
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Correctness. (It should clear that the second example in Section 6.3.6 was tailored to this stage in the 

compilation: cpR (a) is exactly the function program S of the example. ) 

First notice that since ß, al, and a2 are all of less structural complexity than a, by the induction 

hypothesis (a) applied to ß, al, and a2 respectively, we have: 
(V a EAM) (FA(Sb)(a) = Ih'JjA(a)) (8) 

(since Sb = cPR (R)) 

Ada eA TM) (FA (S, )(a) = [ccl]A (a)) (9) 

(since S. =cPA(a2)) 
(Va EA") (FA(Sh)(a) = Ia2]L(a)) (10) 

(since Sk = cpR (aý)). 

Let AG =AIgA (G). Then to show (4) holds for a, choose ae A" and calculate as follows: 
FA (cPR (a))(a) = FA(S,, x, y)(a ) 

_ XA(3)(MAo(So)(P)) 

(where pe States (A) is any state such that 7tA (x)(p) = a) 

fnA(y)(P1) if EA(b(xj,..., X. ))(p) = tt 
_ (11) 

7CA(Y)(P2) ifEA, (b(xl,.... x, ))(P)=f 

where p; =MA4(S; )(p) for i =1,2 (since S. is a conditional statement). 

Similar to Section 6.3.6, it is easy to show that 
EA (b(xl..... x�))(P) ° FA (Sb)(a) = IPIA(a) (12) 

(using (8)) 

ICA(Y)(P1) = FA(S, )(a) = [at]IA(a) (13) 
(using (9)) and 

XA (Y)(P2) = FA(Sj)(a) = ICE21A (a) (14) 
(using (10)). 

Now using (12), (13), and (14) in (11), we have for any ae A" that 

Qa1]A (a) if Qa]A (a) = it FA (APR (a))(a) - [aJA (a) if Qß]IA (a) = ff 

= QDC(ß, al, a2)JA (a) 

= QallA (a) 

Thus (4) holds for schema a=Dc(ß, al, a2); that is, cPR correctly compiles schema of the form 

DC(ß, al, a? ). 
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Performance Preservation. To see that cPR preserves the performance of a we must show that (5) holds 
for a and for some choice of 14 and we must additionally show that (6) also holds. 

Let us first relate the performance of c°R (a) and a by calculating as follows: 

Choose ae A". Then by definition of Xpp we have: 
X 

pP(cPR (a))(a) = Xlo(S x y)(a ) 

=X (S0)(P) 
(where pe States (A) is any state with nv (x)(p) =a) 

XP; T(S1)(P) if EA (b (xi,..., x"))(P) = it 
= 71p (b (x1,.... x, ý))(P) + 

{x; 
rr(sxp) if EA 

a 
(b(xi..... x�))(P) =f 

(since S. is a conditional statement) 
XPý(S 

1)(P) if Qß]ýA (U) = tt 

_ ýp (b (x1..... x�))(P) + lX(52)(p) if IPIA(a) =ff 
(1S) 

(from (12)). 

Now consider X, p (b (xl..... xx))(p): by definition of X for arbitrary P we have: 

Xp°rr(b(xl,..., x*))(P) = bp"(P(xi),..., P(x, )) + 
ismaa 

{? JX'(xr)(P) } 

=b'°(P(x1)..... P(x. ))+m { 1,..., 1} 

= b°O(NA(x)(P)) +1 

=bp°(a)+ 1 (16) 

However, by the definitions of G and PP, the performance estimation for the symbol 'b' in PO is the 

complexity of executing Sb. Thus from (16) we have: 

X (b(xl..... x. ))(p) = bp°(a)+ 1 

= IPP(SbXa) +1 ý17) 

Now consider Xp! T(S1)(P): 

ýp; T(Si)(P) _A "(Yi..... ym := 8i(xl,... px�),.... 8ý(xl,... px�))(P) 
= imsisax+R{ 

X'rP(8t (x l,..., x. ))(P) } 

_ ýaxx{8P°(ICA(x)(P)) +1} 

=i {gp°(a)+ 1} 
lsfsn 

=mý{gP°(a)}+1 (18) 

However, with respect to PG, the cost of evaluating g; on an argument a is the cost of executing S. 

independent of the choice of i (see Definition 6.3.3). Thus from (18) we have: 
X (S1)(P) = 

max{gi°(a)} 

+1 PO Isism 
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1}t1 
= max[ X (S1)(a) 

=XJ (S, )(a)+ 1 (19) 

Ina similar way it is easy to show that for any pe States (A) with nA (x)(p) =a, 
Xäý(S2(p) =Isis max {h' (a) }+1 

nm (XP'(Sk)(a)}+1 
15iQ" 

= Aj"(Sh X a) +1 (20) 

Substituting for X; (b(xl..... x, ))(p), %pP (S1), and ? (S2)(p) in (15) from (17), (19), and (20) respec- 

tively, we have: 
XP"(Sj)(a) +1 if LIMA (a) = it 

XPP(cPR (a))(li) = aPP(Sb)(a) +1+j XPP(Sk)(a) +1 if [PIA (a) =ff 

XPP(S, )(a) if Qß]IA (a) = it 

. 

). PP(cPR(a))(ll) 
=2+ XpP(Sbxa) + lXpFhl(Sh)(a) 

if [ß]IA(a) _i 
(21) 

To see that (5) holds for a for some choice of µ, first notice that since ß, al, and a2 are all of less 

structural complexity than a, by the induction hypothesis (b) applied to ß, al, and a2 respectively, we 
have that there exist constants µb, µ,, µ, eN such that: 

(Va E A") (XPP(Sb)(a) S µb APR(ß)(a)) (22) 

(since Sb = cpR (ß)) 

(Va e A") (Xp '(S, )(a) 5 t, . XPR(ai)(a)) (23) 
(since S. = cPR (CO) 

(y aE A") (X (Sh )(a) S µA " 
XPR(a2)(a)) (24) 

(since Sti = cPR (a2)). 

Also, by definition of XpR we have that for any ae A", 
XPR(aiXa) if QRIIA (a) = rr ÄPR(OL)(a) = ! 1PR(FR 'Xa) + 

{PR(aa) 

if ffi A (a) =f 
(25) 

We can now show (5) holds for a for the choice µ=2+max{µb, µj, µk } in both of the following 

two possible cases: 
Case 1: QWLA (a) =a 
Case 2: I[ ]IA (a) =ff 

Case 1. Suppose [OIA (a) = tt. Then from (25) we have: 
)PR(a)(a) = XPR(ß)(a) + X"(«1)(a) (26) 

and from (21) we have: 
; LPp(cpR (a))(a) =2+ XPP(Sb )(a) + )J"(51 )(a ) 

52+ µb " 
XPR(ß)(a) + 2LP p(S, )(a ) 

(using the induction hypothesis (22)) 
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S2+ µb "? 
PR(P)(a) + ilt . 

Ä, PR(al)(a 

(using the induction hypothesis (23)) 

52+ max{ µb, µt }" (X. PR(I3)(a) + %IPR(aI)(a )) 

=2+ max[ µb, g, }"Ä. PR(aa)(a 

(from (26)) 
52. X C' (a)(a) + Max[ µb, gs }. XXR(a)(a ) 

(since X, pR(a)(a )Z1 for any a and any a) 

= (2 + max{ µ. a, µ, 1). XpPR((X)(a ) 

S (2 + max[ Pb ,µj , µa, 1). XP R(a)(a ) 
= µ-XpR(a)(a) 

Thus (5) holds for a and µ in this case. 

Case 2. Suppose [PIA (a) =f Then similar to Case 1 above, it is easy to show from (21) and the induc- 

tion hypothesis (24) that 
XPP(c"(cc))(a) S2+ µb " 

XPR(P)(a) + µM - 
XPR(o: 2) (a) 

52+ max{ µb 4µ~ I. (xPR(R)(a) + XPR(ai)(a )) 
=2+ max{ µb 4L,, I. XPR(a)(a 

(using (25) and the case hypothesis: [PIA (a) =ff)- 
:52.? (a)(a) + max{ µb, µk 1. xPR(a)(a ) 
5 (2 + max{ µb, µk 1). XPR(a)(a ) 
5 (2+ max{µb, µß, µk }). ). $R(a)(a) 

= J1 AP'e(a)(a ) 

Thus (5) also holds for a and µ in the case [3IA (a) =ff, and so (5) holds for a for our choice of µ 
for every ae A". 

We now show that the second performance preservation condition also holds for a; that is we now 

show (6) holds: 

First, since ß, al, and a2 are all of less structural complexity than a, by the induction hypothesis 

(c) applied to ß, a1, and a2 respectively, we have: 
(Va E ATM) (XPR(ß)(a) S XPP(Sb)(a)) (27) 

(Va EATM) (XPR(a1Xa) 5X "(S, Xa)) (28) 

and 
(Va E A") ( XPR(co(a) 5 ?P (Sti )(a)) (29) 

Also, from (25) we have for any ae A", 

XPR(a)(a) =X 
pR(R)(a) 

ýpR(al)(a) if [PIA (a) =n 
a'p (o)(a) if [PIA (a) =ff 
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XPR(al)(a) if [PIA (a) = tt S lpp(Sb)(a) + xPR(aj(a) if IPIA (a) =ff 

(using the induction hypothesis (27)) 
XPp(S, )(a) if IPIA(a)=t 

S Äpp(Sb)(a) + 
{ 

x"(sxa) if IPIA(a) =d! 
(using the induction hypotheses (28) and (29)) 

Fp (cpR (a))(a) p 

(from (21)). 

< Xp'p(cpR (a))(a ) 

Thus (6) holds for a as claimed. 

(v) Vectorisation. Suppose a is of the form a= <a,,..., cc. > for some mZ1. Then a; E PR(E),,,,, for 

i =1,..., m (since ae PR(E),,,, by hypothesis). 

In this case cP1e (a) is defined by: 
cPR(a)=function ylr... ryet =f1(X1r... rXýýr... rfý(X1r... rXý) :G: Sp 

where: 

y=(vý..... y. )Evar; 
x= (x x. ) E Var.. 

G =S1; ... ; S,,, where: 

S; =c °' (cc) E FPIT(E).,,, with id (Sj) = (gt) for some function identifier g, for 

1=1,..., M, 

and 

So = yl..... ync "= 8i(xl,..., x�),.... 8ý(xl,..., x�). 

Correctness. First notice that since al,.... a. are all of less structural complexity than a, by the induc- 

tion hypothesis (a) applied to a; for i =1�.., m, we have: 

(\i ae A") (FF (S1)(a) = Q(k LA (a)) (30) 
for i =1,..., m. 

Let Aa =Alge (G ). Then similar to the previous induction case above, it follows from the 

definitions of G and AG, that the interpretation of g; e sig (G ),,,,, in AG is FA (S1); that is, 

(V aE A") (gr ° (a) = FF (SS)(a)) (31) 

fori=1,.... m. 
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To show (4) holds for a, choose ae A" and calculate as follows: 
FA (c PR (a)) (a) = FA0(S0, x, y)(a ) 

= 7CA (Y)(MAo(S0)(P)) 

(where pe States (A) is any state such that 7tA (x)(p) =a) 

= (P'(Yt).... "P'(y. )) (32) 

when p'=MA. (S, )(P)" 

Now, since S. is a multiple assignment statement, we have: 

P' = MA, (S0)(P) 

=p{b11yt}{ """ }{b. /yM } (33) 

where for i =1,..., m, b; be Ay, is defined by 

b1 = EA°(8; (xl,..., x, ))(p) 

= 8i °(P(xl),..., P(xx)) 

= 8A°(TA(x)(P)) 

=8i °(a) 

= FA (SS)(a) (34) 

(from (31)). 

Substituting for b 1,..., bm (as given by (34) with i =1,..., m respectively) in (33) now yields: 

p' = p{FA(Si)(a)1yI }{ ... }(FA(S, K)(a)/ym } 

and so substituting this formula for p' in (32) gives: 
FA (cPR (a))(a) = (FA (S )(a),.... FA (SS)(a )) 

= (Qa1DA (a),.... QajA (a)) 

(by the induction hypothesis (30) with i =1..... M) 
= Q<al,..., aMAA (a) 

= Qa1A (a) 

Thus (4) holds for a as claimed; that is, cPR correctly compiles schema of the form <a,,..., a,,, >. 

Performance Preservation. To see that cPR preserves the performance of a we must show that (5) holds 

for a and for some choice of µ, and we must additionally show that (6) also holds. 

Let us first relate the performance of caR (a) and a by calculating as follows: 

Choose ae A". Then by definition of Xp ° we have: 

XP (cPR (a))(a) _ XP°(S0. x'y)(a ) 

= 7'P. (So)(P) 

(where pe States (A) is any state with nA (x)(p) =a) 
= max { k; } (35) 

where for i =1,..., m, k; 6 IN is defined by 
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kl =X (8! (xl..... x. ))(P) 

Sp°(nA(z)(P)) + 
Imax{ 

L, (xl)(P) } 

= 8p°(iA(x)(P)) +1 

= 8p°(a) +1 (36) 

However, from the definitions of G and PG, it follows that the cost of evaluating gj with respect to PG is 
the cost of executing Si for i =1,.... m. Thus from (36) we have: 

= gP°(a) +1 

). ' (S1)(a) +1 (37) 

for i =1,..., m. 

Substituting for ki from (37) in (35) yields: 
X pp(cPR (a)) (a) = 

imax 
{ ki } 

=1max{X 
"($)(a)+1} 

= 
1max 

{), r(S )(a) }+1 (38) 

To see that (5) holds for a and for some choice of . t, first notice that since al,..., am are all of less 

structural complexity than a, by the induction hypothesis (b) applied to al,..., a,,, we have that there exist 

constants µ1,... µg e N' respectively such that 
(Va E AM) (XpP(SJ)(a) s Iii ")PR(at)(a)) 

(39) 

fori=l,..., m. 

To show (5) holds for a for the choice µ=1 + }t, where µp= max{ µl,..., µ. }, choose ae A" and 
calculate as follows: 

X"(c °' (OC))(a) = 
Imax 

{ JIPP(Si)(a) }+1 

(from (38)) 
5max{µ;. X' (%)(a)}+1 

(by (39) with i =1,..., n) 
S 

1max{p 
}"1 max{ Ä. PR(; )(a)} +1 

(since for any a, b, c, d 21, max{a . b, c .d}5 max{ a, c I. max{ b, d }) 

L. 
m 

x{ 
X, PR(%-)(a) }+1 

Isi 

_. apR(<al,..., a, 1 >)(a) +1 

= p.. 

5 P.. XpR(cc)(a) + XPR(a)(a 

(since XXR(a)(a) z1 for any arguments a and a) 
= FL Ap" (a)(a ) 
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Thus (5) holds for a for our choice of µ as claimed. 

We now show that the second performance preservation condition also holds for a; that is we now 

show (6) holds: 

First, since al,..., a,, 1 are all of less structural complexity than a, by the induction hypothesis (c) 

applied to al,..., a,,, we have: 
(Va E ATM) ( XPR(ai)(a) S XPP(S )(a) 

for i =1,..., m. 

Now, by definition of XpR we have for any ae A" that 
XpR(a)(a) = max { XPR(a, )(a) } 

S max{XP"(S; )(a)} 
las" 

(by the induction hypothesis (40) with i =1,..., M) 

= XP"(c"R (a))(a) -1 

(from (38)) 
< ý, PPýýPR ýaýlýa 

Thus (6) holds for a as claimed. 

(40) 

(vi) Composition. Suppose a is of the form a= a2 o al. Then for some we S+, al e PR(E).,, r and 

ce2 e PR(E),,, (since ae PR(E),,,,, by hypothesis). 

In this case cp' (a) is defined by: 

cPR(a) = function G: So 

where: 

y= cýý...., y, ) E Var,; 

x= (x �..., x. ) E VarM; 

G= Ss ; S, t, where: 

Sj = cMR (al) e FPIT(E),, w 
8i, "-", 8t" and 

Sh = CPR (oy) E FPIT(E)w, 
v 

h 1,.... h. � 
and 

s, = yl...., ym :=eI...., e., where: 

with id (Sr) = (g 1..... gk) for some function identifiers 

with id (Sh) = (h 1,..., hm) for some function identifiers 

ei = h, (g 1 (X 1,.... X. ),.... gk (x 1,..., Xw )) for i =1..... m, where k =I w 1. 



-222- 

Correctness. First notice that since al and a2 are of less structural complexity than a, by the induction 

hypothesis (a) applied to al and a2 respectively, we have: 

(Va E A") (FA(SS)(a) = Qa1DA (a)) (41) 

and 
(Va E AW) (FA(Sh)(a) = Qa2IA(a)) (42) 

Let Ar, =AlgA (G ). Then to show (4) holds for a, choose ae A" and calculate as follows: 
FA (CPR (a))(a) = FA(S., x. y)(a ) 

= nA (Y)(MA°(So)(P)) 

(where pe States (A) is any state such that nA (x)(p) =a) 

_ (P'(Yt)"... ýPý(Y, ")) (43) 

when p'=MA°(SO)(P)" 

Now, for i =1...., k, let cj E A�,, be defined by 

c; = EA(gj(xj,..., x�))(P) (44) 

= gt °(nA(x)(P)) 

= gi°(a) (45) 

Then similar to the previous induction cases above, it follows from the definitions of G and AG, that the 
interpretation of g; E sig (G)",, r in AG is FA (Si ).. Thus from (45) we have: 

, 
A 

ct=g: °(a) 

= FA(S, )j (a) (46) 

Now, since So is a multiple assignment statement, we have: 
P'= MA°(S0)(P) 

= p{ b11yi }(" "" }{b, " /y°, } (47) 

where for i =1...., m, b; E A� is defined by 

b; = EA°(h; (gt(x1..... xK),.... gk(xt,.... xß)))(P) 

= hA°(EA°(gi(xl..... x�))(P)..... EA0(gk(xt..... xR))(P)) 

= h; °(ct..... ck) (48) 

(by definition of c I.... ck; see (44) above). 
It is not difficult to see that similar to previous induction cases, the interpretation of h, E sig (G )� 

,,, ý 
is the i th coordinate of FA (SA, ), viz FA (S1, )i . Thus from (48) we have: 

Aa( 
bi = h; c1.... ýck) 

= FA (SA )i (c 1,.... ck ) 

= FA(Sk )$ (FA(Sß)i(a ),..., FA(Sß )k (A)) 
(using (46) with i =1,..., k) 
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=FA(Sh)i(FA(S, )(a)) 

(since FA(S, ),,..., FA (S, )k are the coordinates of FA (Ss)). 

= FA (Sk )t (Q(XlJA (a)) (49) 

(by the induction hypothesis (41)). 

Substituting for b; from (49) in (47) now yields: 

P" = MA, (SO)(P) 

= p{FA(Sh)i(Qat]IA(a))/yi }{ ... }{ FA(Sk), "(IalIA(a))/ym } (50) 
Thus from (43) we now have for any ae A" that 

FA(cPR (a))(a) = (p'(y i),..., p'(yy)) 
= (FA(Sk)1(Ia1DA(a))...., FA(Sh)m([(XilA(a))) 

(using (50)) 
= FA (Sk X[a1DA (a)) 

(since FA (Sa, )1,..., FA (SA). are the coordinates of FA (Sti )). 
= QOEJA (QallA (a)) 

(by the induction hypothesis (42)). 

= Qa2°allA(a) 

= Qa]A (a) 

Thus (4) holds for a as claimed; that is, c1 correctly compiles schema of the form a2 o a1. 

Performance Preservation. To see that cPR preserves the performance of a we must show that (5) holds 

for a and for some choice of t, and we must additionally show that (6) also holds. 

Let us first relate the performance of cpR (a) and a by calculating as follows: 

Choose ae A". Then by definition of XX" we have: 

). P (APR (a))(a) = XL°(Sorr. y)(a ) 
= XP '(S0)(P) 

=XL' (Yi..... y. : =tI..... e, ý)(P) 
=1 max { -P(et)(P) } 

0 
=1max{lp7(h; (ei..... ek))(P) } (51) 

where e=g; (x 1,..., x�) for i =1,..., k (by definition of the expressions e 1,.... em ). 

Now consider the complexity of evaluating g; for i =1,..., k with respect to PG : from the 
definitions of G and PG, this is the cost of executing S.. Thus, for any pe States (A) with xA (x)(p)=a, 

we have: 
XP"(ei)(P) = kp(81 (xl..... x. )XP) 

8p'(ne(x)(P)) +1 
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=gp°(a)+1 

_ llpp(st )(Cl )t1 

Thus %PT(e )(p) is independent of the index i and so 

max{ )J (e )(p) XPP(SS)(a) +1 (52) 

Similarly, the complexity of evaluating h; for i =1,..., m with respect to Pß is the cost of executing Si v 
Thus, for any pe States (A) with ltA(x)(p) =a, we have: 

kP (h1 (ei..... ek))(P) = hip" (EA (ei)(P)...., EA°(ek)(p)) + 
Im 

{X "(e )ýP) } 

XPp(SA)(EA, (e1)(P),..., EA, (ek)(P))+lm xC7. (d")(P)} 

= )$"(SA)(EA(ei)(P),..., EA. (ek)(P)) + Xpp(Ss)(a) +1 (53) 

(using (52)). 

Now, from (44) and (46) we have that for any pe States (A) with tA(x)(p) = a, 
EA, (e)(P) = FA(S1); (a) 

for i =1,..., k. 

Thus, from (53) we have 

ýP. (h; (ei...., e, ))(p) = XP (Sb )(EAA(ei)(P),..., EA (ek)(p)) + ). "(S, )(a) +1 

=) (SA)(FA(Sj)1ý11).... 
ýFA(Sj)k(a))+ÄP 

Xp"P(S, )I 

(using (54) with i =1,..., k) 

(54) 

='I 
7(SA)(FA (S 

S 
)(a )) + %pP(S, )(a) +1 (55) 

(since FA (S, )1..... FF (St )k are the coordinates of FA (S, )). 

To see that (5) holds for a for some choice of µ4 first notice that since al and a2 are of less struc- 
tural complexity than a, by the induction hypothesis (b) applied to al and a2 respectively, we have that 
there exist constants µl, µ2 eI N+ that 

(Va ¬ AM) (X '(S, )(a) 5 g,. ILP-R(al)(a)) (56) 

(since S. = CPR (%)) 

(since Sk = CPR (a2)). 

(Va EA W) ( %pP(5 )(a)S g2. XPR(a2)(a) (57) 

Now choose µ=1+max{µ1, µi I. Then to show (5) holds for a and this choice of µ, choose ae A" 

and calculate as follows: 

Xpp(cPR (a))(a) = max { X°"(h; (ei,..., ek))(P) } Isis" 11 
(from (51)) 

=X 
P'(S1)(a) + XX P(Sh)(FA (Sß)(a )) +1 (58) 

(using (55)) 
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s µl " XPR(a1)(a) +X (S6 )(FA (S; ) (a )) +1 

(by the induction hypothesis (56)) 
s µl " 

XPR(al)(a) + µ2 ")PF(a2)(FA 
(S, )(a )) +I 

(by the induction hypothesis (57)) 
5 max{ µ1, W: }" (lPR(aI)(a) + xPR(` 

2)(FA (Sj )(a)))+ I 

maX{ µ1"N2 }" (XPR(al)(a) + )LpPR(` c2)([a1]A (a ))) +I 

(since cPR correctly compiles al; see (41) above) 
= max{ g,, L }. XPR(a2 ° a1)(a) +1 

= max{ 9012 }. X, 'R(a)(a) +1 

5 max{ µ1, m }. XP(a)(a) + XPR(a)(a 

(since XXR(a)(a) ý1 for any arguments a and a) 

= A. XPR(a)(a ) 

Thus (5) holds for a for our choice of µ as claimed. 

We now show that the second performance preservation condition also holds for a; that is we now 

show (6) holds: 

First, since al and a2 are of less structural complexity than a, by the induction hypothesis (c) 

applied to al and a2 respectively, we have: 
(Va e A") (XPR(aX a) S Xr(SS)(a)) (59) 

and 
(Va EA W) ( lPR(a2)(a) SX "(Sh )(a)) (60) 

Now, by definition of XPR we have for any ae A" that 
ILPR(a)(a) = XPR(a2 

° al)(a ) 
= A1D (al)(a) +; LPR(O, )(Qa11A (a)) 

S APP(SS)(a) + Ä. PR( (Qa11A (a )) 

(by the induction hypothesis (59)) 
s XpP(Sa)(a) + 4P(Sk)(Qa1IA (a)) 

(by the induction hypothesis (60)) 
SX (S, )(a) + XPP(Sl, )(FA (SI)(a )) 

(since cPR correctly compiles a1) 
= XpP(cPR (a))(a) -1 

(by (58)) 
<1'1%, p 

p(CpR ((X))(a 

Thus (6) holds for a as claimed. 
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(vii) Primitive Recursion. Suppose a is of the form a=*(al, a2). Then the arity of a in this case must 
be (Tuv, v) for some u, v e S, and al e PR(E),,,, and a2 e PR(L)T,,,,,,,. 

In this case c°R (a) is defined by 

cpR (a) = function 

where: 

y= tvý... -. y. 
)E Var,; 

x= (psx1...., x. )E VaTTU; 

G= Ss ; Sk, where 

Sj = cPR (a) e FPIT(E)K, r 
gi...., g., and 

with id(S1) = (g l,..., g,,, ) for some function identifiers 

Sh = CPR (Cr, 2) E FPTT()TUV, 
r 

h h. 

and 

So=S1 ; dop timesS2od, where: 

with id (Sti) = (h 1...., h,,, ) for some function identifiers 

S1= z, yl..... y.: = and 
S2 = zYi..... Y.: = succ(z), ei...., e., where: 

zeVar�and 

e, =; (z. xi,. "". xR. Y1..... Yý. )fori=l..... m. 

Correctness. First notice that since al and a2 are of less structural complexity than a, by the induction 
hypothesis (a) applied to al and a2 respectively, we have: 

(Va e A") (FA (S, )(a) = [ajDA (a)) (61) 

and 
(VteT)(VaeA"XVbeA") (FA(Sk)(trab)=QOJA(t, a, b)) (62) 

Now let S3 = do p times S2 od; then S, =St; S3, and so for any pe States (A), 
MA (SO)(P) = MA (S3)(MA, (Sl)(P)) 

= MA (S3)(P) 

when p'=MA, (SI)(p) and where AG =Algg(G). But since S3 is a loop we have: 

MA, (So)(P) = Pt 
where l =EAA(p)(P)= p(p), and where for each k 20, pt E States(A) is defined by 

Po =P 
and 

Pk+i =MAO(S2)(Pk) 



-227- 

We now make the following claim which we will prove later. 

Claim. Let x' = (xl,.... x�) e Var" and let ae A". Then for every k20, and for every pe States (A) 

with nA (. )(p) =a, 
pk(z) = k, (63) 

n, t(. t')(pk) = a" (64) 

and, 
7CA(Y)(Pk) = I[ct]IA(kra) (65) 

To see that cPR correctly compiles a, we must show that for every k 20 and every aE A", 

FA(CPR ((x))(k, a) = Qc IIA (k, a) (66) 

Now, by definition of FA we have for any kz0 and ae A" that 
FA (cPR (ct))(k, a) = FA, (So, x, y)(k. a ) 

= 7CA(Y)(MAo(So)(P)) (67) 

where pE States (A) is any state such that nA (x)(p) = (k, a ). (Notice here that unlike the previous induc- 

tion cases, the vector x is not (xl,..., x�), but (p, xl,..., x�), that is, x is a member of Var,. and not Var.; 

thus it makes sense that nA (x)(p) should be of the form (k, a) for some number k and some ae Au. ) 

Now, if nA (x)(p) = (k, a ), then it follows that to (x')(p) =a and p(p) =k; thus by the definition of 

MA0(S, ) we have: 

7A(Y)(MAe(So)(P)) = aA(Y)(Pk) 

=0 a11A (k, a) (68) 

(by (65)). 

It is now easy to see that (66) holds for each k 20 and each ae A" from (67) and (68); that is, cPR 

correctly compiles a as claimed. 

Proof of Claim. Let pe States (A) be such that aA (x')(p) = a. We now prove (63), (64), and (65) hold 

by simultaneous sub-induction on k: 

Sub-Basis. For k=0, we have Pk = p, = P= MA (S, )(p). But since S1 is a multiple assignment state- 

ment, we have: 

po = p{0/z }{Si° (a)iyl}{ ... }{g. °(a)iy. 1 (69) 

Similar to the previous induction cases, it is not difficult to see that the interpretation of 

gi e sig (G).,,, in AG is the i th coordinate of FA (St). Thus from (69) we have: 

Po= P{O/z }{FA(S, )i(a)lyi}{ ... }{FA(Sg)m(a)lym 1 (70) 
Hence, 

P0(z)=0 
and so (63) certainly holds fork = 0. 

Also, it easily follows from (70) that for i =1,..., n, 
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Po(xi) = P(xi) = ai 

and so (64) holds for k=0. 

Also from (70) we have for i =1,..., m, 
PO(Yi)=FA(5, ), (a) 

and thus 

ICA (Y)(Po) = (P0(Y l)..... P0(Y. )) 
= (Fe(S, )i(a),.... FA(Sr). (a)) 

=FA(Sj)(a) 

(since FA (S s )1...., FA (Ss). are the coordinates of FA (Si )) 

= Ia1 IA(a) 
(by the induction hypothesis (61)) 

= QE((Xl, ct2)] A (O, a ) 

= QaIL(O, a) 

Thus (65) also holds for k =0. 
Sub-Induction. Suppose for some fixed leN that for any pe States (A) with nA (x')(p) =a that 

P, (z)=I, 

xA(x)(Pr) = a+ 
and, 

nA(YXPl) = QalA(l, a) 
We now show that (63), (64), and (65) hold fork =1+1: 

(71) 

(72) 

(73) 

By definition of pt+l we have 

Pi+i = MA (Si)(PI) 

= Pt{Pi(z)+1/z }{EE, (es)(P, )/yi If ... }{EA (e,, )(p, )lym 1 (74) 

Thus, 
Pi+i(2) = Pi(z)+1 

=1+1 
(by the sub-induction hypothesis (71)), and so (63) holds fork =1+1. 

Also, it is not difficult to see (from (74)) that the values of x 1,..., x� are unchanged in executing S2, 

and so 

Pr+i(x1) = Pi (X1) = ai 
for i =1,..., n. Thus (64) also holds fork =1+1. 

To show that (65) holds fork =1+1, first notice that for i =1,..., m, 
EA(e; )(p, ) = EA°(h; (r, z1,.... x,,, Y i..... Y, ý))(P, ) 

= hý°(P, (z), P, (xi),..., Pi(xx), P, (Yi)..... P, ( ,, )) 
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= hi 0(1OCA(x')(Pl)enA(Y)(p: )) 

(by the sub-induction hypothesis (71)) 

= hi °(l, a, nA(y)(p )) 

(by the sub-induction hypothesis (72)) 

h° (1, a'QalA (la )) =, 

(by the sub-induction hypothesis (73)). 

(75) 

However, is not difficult to see that the interpretation of h; E sig (G ), � in . 4G is the i th coordi- 

nate of FA (Sh). Thus from (75) we have: 

EA (ei)(pl) = FA(Sh )L (la , Q(XIA (l, a )) (76) 

for i =1,..., m. 

Now, 

ICA (Y)(Pl+i) = (Pi+i(Y t)'.... Pi+i(Ym )) 
= (EA 

Q(ei)(Pj)..... 
EAa(e. )(Pt)) 

(using (74)) 

= (FA(Sk)1(I %, 1aIA(1, ))..... FA(Sk)m(1, a, QalA(l, a))) 

(using (76) with i =1,..., M) 

= FA (SA)(l, a, [a1A (l ra )) 

(since FA(S, )1..... FA (Sx ),,, are the coordinates of FA (Si, )) 

= [a21A(1. a, Qa]A(l, a)) 

(by the induction hypothesis (62)) 

= [*(al, a2)]A(1+1, a) 

= (a]IA (l+l, a ) 

Thus thus (65) holds fork = 1+1 as claimed, completing the sub-induction. Q 

Performance Preservation. To see that cER preserves the performance of a we must show that (5) holds 

for a and for some choice of µ, and we must additionally show that (6) also holds. 

Let us first relate the performance of c"R (a) and a by calculating as follows: 

Choose kZ0 and ae A". Then by definition of %, p" we have: 

, 
%Pp(cFR (a))(k, a) = 11 lo(S�x, y)(k. a ) 

= Xpä '(So)(P) 

(where pe States (A) is any state with nA (x)(p) = (k, a )) 

(recall S =Si; S3 and P'=MA(S1)(P))" 
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Now, since S, 3 is a loop, we have: 
Pý(S3)(P)= 11P EXP (P)(P )+ It (78) 

where 1=EA. (p)(p')=p'(p), and where for each k 20, X, k is defined by 

a. =0 Xk+l = ilk t XPPý(SD(Pk) 

where pt is as defined above. 

Now, if av (x)(p) = (k, a) then p(p)=k (recall that the first element of x is pe Vary). Also, since 

p'=MA (S1)(p), and since p does not occur on the left hand side of the multiple assignment S1, it fol- 

lows that p(p)=k =1 and so we can substitute for 7 
$' (S3) from (78) in (77), yielding: 

Xh°(c ° (a))(k, a) = XPý(S1)(P) + XP(p)(p') + Xk 

for any state p such that nA(x)(p)=(k, a). However, since the expression 'p' is just a variable, it 

immediately follows that 
X (c'' (a))(k, a) = ? $tT(Si)(p) +I+Ä. k (79) 

In order to prove that cPR preserves the performance of a, let us define 

ic: IT x States (A) ->IN 
by 

K(O, P) =1 (80) 
x(k+1, P) = ic(k, p) + )-p; (SO(Pk) 

for each k 20 and pe States (A). (Here Pk is as defined immediately prior to the previous claim). 

Then a routine induction on k yields: 
(Vk 2 0)(b/ pe States (A )) (x(k, p) = 1+71k) (81) 

Thus, for any pe States (A) with nA (x)(p) = (k, a ), we have 
ltPP(CPR(CL))(k, a) = XPe (S 1)(p) +1+ %lk 

(from (79)) 

(using (81)) 
_ ; Lp. (S, )(P) + ic(k, p) 

We now make the following claim which we prove below: 

(82) 

Claim. Let k20 and ae A". Then there exists p. e N+ such that for every pe States (A) with 
nA(x)(p)=(k, a), 

XPý(SI)(p) + ic(k, p) 5 p.. X '(a)(k, a) (83) 

To see that (5) holds for a and the choice µ=µ� we calculate as follows: 
X (cpR(a))(k, a) = 71Pý(S1)(P) + ic(k, p) 

(from (82)) 

s p,. XPR(a)(k. u ) 

(by (83)) 
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= p. XPR(a)(k, a 

Proof of Claim. 

To prove the claim, first notice that since al and a2 are of less structural complexity than a, by the 
induction hypothesis (b) applied to al and a2 respectively, there exist µj, µj, eW such that 

(Va E A4) (X "(S, )([l) S ý1 . 
%Ip"ýal)(a)) (84) 

and 

(Vk 2O)(Va E A")(V bE A") (X "(Sh)(ksa, b) 5 µi, " XPR(«2)(k, a. b)) (85) 

Also notice that by the definitions of G and PG, the cost of evaluating each g; is the cost of exe- 

cuting S. for i =1,..., m; that is, 

(da e A") (8p°(a) = XPp(S1)(a)) (86) 

fori=l�... m. 

Similarly, we also have for i =1...., m 

(Vk 2O)(Va E A")(V bE A") (hr (k, a, b) = 7lpp(SA)(k, a. b)) (87) 

Take p, = max{ 1+2. zerop. µa, 1+µ,, } where zerop Z1 is the complexity of evaluating zero e F), t 
with respect to P. Also let kZ0, aE A", and let pr= States (A) satisfy 'cA (x)(p) = (k, a ). We prove (83) 

holds for our choice of µo by sub-induction on k as follows: 

Sub-Basis. First we calculate the complexity of executing S1 as follows: 

X "(S1)(P) = )-Pý(t, Yj..... Y. := 

=max{X5 (zero)(P). ýrE, ilpF', rP(8M(xl...., x. ))(P)} (88) 

By definition of X EXP 
we have 

Xpp(8i(xi,.... x�))(P) = 8P°(P(x1)..... P(x, 1)) + max{ A, p (xi)(P) } 

= 8P° (ICe (x')(P)) +1 

=p g°(a)+1 

= Äýpp(Sj)(a) +1 

(by (86)). 

(89) 

Now, the cost of evaluating ̀ zero' is zeros' of course. Thus, from (88) we have 
$IT(S1)(s') = max{ X, "(zero)(P), Xfr "(g1(x1..... X�))(p)..... alp '(g (x1..... x,, ))(P)} 

= max{ zerop, X "(S, )(a) + 1,...,? $"(S1)(a) +1} 

(using (89) with i =1,..., M) 

= max{ zer/, ) "(SS)(a) +1} (90) 

Now, it is not difficult to see (using basic arithmetic) that: 
max{ zerop) 

p "(S1)(a) +1152. Zero' .X 
pp(SS)(a) (91) 

and 
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max{ zeros' iX "(S, )(a) +I}ZX (S1)(a)+l (92) 

We can now show the claim holds for k=0 as follows: 

71pý(Si)(P) + K(O, P) = 7,. pff (S 1)(p) +1 

(since x(O, p)=1 for any p) 

(by (90)) 

(by (91)) 

(by the induction hypothesis (84)) 

= max{ zero", X (S, )(a) +1}+1 

S 2. zero" .X 
'(S, )(a) +I 

S 2. urop . µs . 
%IPR(al)(ll) +1 

5 2. zero" . µj . 
XpR(al)(a) + %ppo(al)(a 

(since X, pR(a)(a) 21 for any arguments a and a). 
= (1+2. zer i. ýJ. t) .X 

pR(a1)(a ) 

5 max[ 1+2. zerof. µs, 1+µti I. 

=µ,. XPR((%i)(a ) 

(by definition of µ. ) 

_ p.. xpR(*(al, a2))(o. a ) 

p, XpR((%)(O, a ) 

Sub-Induction. Assume we have proved that for some fixed k 20 and any ae A", whenever 

pe States (A) is such that nA (x)(p) = (k, a ), then 
XP; r(S1)(p) + ic(k, p) 5 p,. XPR(a)(k, a) (93) 

Now let pe States (A) be such that nA (x)(p) = (k+1, a ). Then we must show that (83) holds for 

this state. 

First notice that the complexity of S1 under a state p is independent of the value of p (recall 

x= (p, x') E VarTU here) under p (see (88)), and thus if we define p" r= States (A) by p"= p{ k /p } then 

X (S0)(PI = X. p T(S1)(P) (94) 

The value of ic(k, p) is also independent of the value of p under p (see (80)); thus 

x(k, P') = ic(k, p) (95) 

Now, since nA (x)(p) = (k+1, a) we have 11A (x)(p") = (k, a ), and so by the sub-induction hypothesis 

(93) we have: 

'IPf(Si)(P") + ic(k, p") 5 µ,.; LPR(a)(k, a) 

and thus 
XPä (S)(p) + K(k, p) s µo. XPR(a)(k, a) (96) 

by (94) and (95). We will use this fact (96) later. 

L 
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Now consider of ) 
T(S2(p): by definition of Sz, we have for any pe States (A), 

I'r(S2)(P) = APa (zyt...., y. .: = succ(z), ei,.... em)(P) 

= max{ X; (succ(z))(P),? "(e 1)(P)..... X, p (em)(p) 1 (97) 

Since ̀ z' is just a variable, and since the complexity of evaluating `succ' is unity for any argument 
(by definition of a standard performance measure), it should be clear that 

qr EXP ( (z )Xp) =2 (98) 

Also, for i =1,..., m we have 

pF"rP L(ei)(P) = Xp (h, (zx1,..., x. +Yý,..., Y. ))(P) +1 

=p hi 1),..., P(x, 1), P(Y 1),.... P(Y. )) +1 

= hp°(P(z)PICA (x')(P), nA(J )(P)) +1 
'I Fp = J%P (Sh)(P(Z ), nA (x' XP), tA (Y)(P)) +1 (99) 

Notice this formula (99) is independent of i. 

From (97), the complexity of S2 under an arbitrary state p is now: 
IP. (S2)(P) = max[ X 

p"(succ(z))(P), XJ°, '(e i)(P)...., ) (e. )(P) } 

= max{ Z, ) "(ei)(P)...., ýp (e, ý)(P) } 

(from (98)) 

(using (99) with i =1,..., M) 

= max{ 2, X P'(SA)(P(z ), nA (x')(P), nA (Y)(p)) +1} 

=I+ max{ 1,? J"(Sk)(P(z ). nA (x')(P)"nA (Y)(P)) } 

=1 +a, Pp(Sk)(P(z). 7CA(e)(P), 7CA(Y)(P)) (100) 

Note that this formula (100) holds for arbitrary states p. 

Now recall the previous claim concerning the state pt (see equations (63) - (65)): if p is an initial 

state with aA (x')(p) = a, then under pt the value of z is k, and moreover, nA (x')(Pk) = a, and 

nA (Y)(Pk) = Qa]IA (k +a )" Thus, from (100) we have 
; LPý(S2)(Pk)= 1+)LpF (Sk)(kA. Qa]1A(k, a)) (101) 

To complete the sub-induction step we calculate as follows: 
XP"r(St)(p) + u(k+1, p) =$ (S1)(p) + ic(k, p) + Ip? (S2)(pk) 

(by definition of x) 
5 µ,. X'R(a)(k, a) + Ipý(SO(PO 

(by (96)) 

= 1,. Xp (a)(k, a) +I+ llpp(SA)(k, a, [a3e (k, a)) 

(from (101)) 

= p.. X, PR(a)(k, a) +1+ µti " 
XPR(aJ(k, a, Qa]IA (k, a )) 

(by the induction hypothesis (85)) 
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s }b . 7lp'e(a)(k, a) + (1 + PA). XPR(ct2)(k, a, Qa1 A(k, a )) 

(since XpR(a)(a) Z1 for any arguments a and a) 

51b"(XpR(a)(kºa)+XPR( (k, aºQa1A(k, a))) 
(by definition of l. t,,, ) 

= µu . #%pR( (ai, co)(k+la 

µo. XpR(a)(k+1, a) 13 

We must now show that cPR (a) satisfies the second performance preservation condition, namely (6) 

above. 

First, from (82) we have 
"QA' (a))(k'a) = XP1T(Si)(p) + ic(k, p) (102) 

where pe States (A) is any state such that nA (x)(p) = (k a ). 

Claim. Let kZ0 and ae A". Then for every pe States (A) with nA (x)(p) = (k, a ), 

Xp r(S1)(p) + ic(k, p) Z )pR(a)(k, a) (103) 

Of course, (6) easily follows from (102) and (103), thus it remains to prove the claim: 

Proof of Claim. First notice that since a1 and a2 are of less structural complexity than a, by the induc- 

tion hypothesis (c) applied to a1 and a2 respectively, we have 

(Va e A") (XPR(a1Xa) 5 XP'(S, )(a)) (104) 
and 

(Vk 20)(ba E AM)(VG E A') ( $PR( (kArb) s XP°(S*)(k, a, b)) (105) 

Now let kZ0 and ae A", and let pe States (A ) satisfy zrA (x)(p) = (k, a ). Then we will prove 
(103) holds by sub-induction on k as follows: 

Sub-Basis. Fork =0 we calculate as follows: 

'P. (Si)(P) + K(O, P) = %p" (Si)(P) +1 
7ýP? (S1)(P) 

= max{ zero',? "(Ss)(a) +1} 
(by (90)) 

(by (92)) 

(by the induction hypothesis (104)) 

Z: Xp"(S1)(a)+ 1 

Z X"ýalýý(l ýF1 

> X"(al)(a 

= )IPR(*(ai, )(o, a 

=X (a)(O, a 
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Sub-Induction. Let us assume that for some fixed k20 and any ae A", that whenever p r= States (A) is 

such that rcA (x)(p) = (k, a ), then 

Xp; T(Si)(P) + ic(k, p) Z xpR(a)(k, a) (106) 

Now let pr: States (A) be such that nA (x)(p) = (k+1, a ). Then we must show that (103) holds for 

this state. 

Similar to the proof of the previous claim, notice that the complexity of S1 under a state p is 

independent of the value ofp under p, and so is the value of ic(k, p) is equally independent. 

Thus if we define p" e Stares (A) by p"= p{ klp} then since 7cß (x)(p') = (k, a ), by the sub- 
induction hypothesis (106) we have: 

X p; T(Si)(PI + K(k, p'7 Z XPR(a)(k, a ) 

and thus 
XPä (S, )(P) + K(k, p) Z Eb" x: R(a)(k, a) (107) 

We can now complete the sub-induction as follows: 
71p (S 1) + u(k+1, P) _ ?i (S 1) + u(k, P) + %, pö (Ss)(Px ) 

Z XpR(Ct)(k, a)+ k, 
Pý(S2)(Pk) 

(by (107)) 

(by (101)) 

(by the induction hypothesis (105)) 

= XPR(a)(k, a) +1+ Xp' (Sk)(k, a, Qa]A (k 
ra 

)) 

ý XpR(0! )(k, a) +1+Ä, PR(OG2)(k. a, [a]A(k. a)) 

=1+ 7l; R(*((xl, dz))(k+1, a ) 

=1+ XPR(a)(k+1, a ) 

> XpR(a)(k+la) o 

Discussion. The preceding theorem quantifies over all (standard) signatures 7, all (standard) Z-algebras 

A, and all (standard) performance measures P. If we denote cp' by cpR(E) to explicitly name the 

underlying signature, then c"R (E) is a correct and performance preserving compiler from PR(E) into 

FPIT(E ); correct with respect to Q. DA and FA, and performance preserving with respect to )PR and q 

when Q is a performance measure for A. Since PR(E) is a language in which we can formalise any syn- 

chronous algorithm whose modules determine the s-algebra A, the preceding theorem guarantees that 

any such algorithm can be (correctly) simulated in FPTT(E) by a function program with performance 

equivalent to the performance of the original algorithm. This completes one half of our equivalence con- 
jecture of course. 
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73 COMPILING FUNCTION PROGRAMS. 

It remains to establish that every function program can be transformed into a PR scheme whose 

performance is equivalent to the original program. Before we can explain how this transformation is to 

be accomplished, we introduce one new compiler and revisit an old one. In Sections 7.3.1-7.3.6 we will 

prove the existence of a correct and performance preserving compiler c10 : PITIO(Z)--'PR(E); as we 

will see later, c10 will be used for compiling the body of a given function program into PR. In Section 

7.3.7 we revisit the transformation c of Definition 3.5.6; as we will see later, our strategy for defining 

cF° relies on the existence of compilers from PR(sig (G)) into PR(E) for each Ge FG(E); we will use c 

to construct precisely such compilers. 

After defining and verifying c1O we establish some useful technical results concerning c, and then 

in Section 7.3.11 we explain how cF° is to be constructed using c1O and c. 

73.1 Compiling Functional Expressions. 

Shortly, we will define c/O which maps PiT i/o-programs into PR; first however, we need to be 

able to transform expressions (from which programs are built) into PR: 

Definition. We define cW to be the SxS-indexed family: 

CW=<c: wES+, sES> 

of mappings c!; : FEXP(E)�,, --*PR(E)�, j. 
Each c°ý (ambiguously denoted cW) is defined uni- 

formly in w and s and by induction on the structural complexity of the expression part of arguments 

(e, X) as follows: 

Let (e, X) E FEXP(X),.,, for some we S*and seS. We will first construct cW (e, X) and then 

establish that it is well-defined member of PR(E),.,. 

Basis Cases. 

(i) Constants. Suppose e=c for some cE ExO. 

Construction. In this case we define cW (e, X) by. 

c©'(e, X) = cw 

Well-Definedness. In this case it is easy to see that c' (e Y) E PR(E)w,, (See clause (i) of Definition 

3.3.1. ) 

(ii) Variables. Suppose e =x for some xE Var,. 

Construction. In this case we define cW (e X) by: ' 

cw(e, X) = U; 

where i is is the leastk such that Xk =x. 

Well-Definedness. First notice that since (e, X) E FEXP(E), we have var (X )mvar (e) _ {x }. Thus 

xE var (X), and so the number i is well-defined; that is x =Xt for some iE [1, n ] when n= 1w 1. Now, 

x =X; and so the sorts of these two variables must be the same. Since xE Var, by hypothesis, the sort 

of x iss . Also, XE Var.. by hypothesis, and so the sort of Xi is w1. Thus wj =s and so 
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cEXP(ex) = UrE PR(L)w,,. I 
= PR(ILi 

as required. (Refer to the projection clause of Definition 3.3.1). 

Induction. Let ee EXP(E), be some fixed expression. Suppose for every s' eS and for every 
(e , X)e FEXP(E)�,, e, where e' is of less structural complexity than e, that we have constructed 

cW (e', X) e PR(E)�,. e. 

We will now construct cam' (e, X) e PR(E),..,. 

(iii) Operations. Without loss of generality we may assume that e is of the form: e= a(e 1,..., e. ) 

where for some ue S' ae E� j, and e; e FEXP(E)�, for i =1,..., n=IuI. 

Construction. Here we define cE(e, X) by: 

c'(e, X)=ao<c (eiX),..., c '(e�Jf)> 

Well Def redness. First notice that since (e, X) e FEXP(E) it is easy to show (as in the proof of Lemma 

6.2.15) that (ei X) e FEXP(E)�,.,, for i =1,..., n. Now, el,..., e� are all less structurally complex than e, 

and so by the induction hypothesis applied to (e; , X) for i =1,..., n, we have cW (ei y) 6 PR(E),,.,, for 

i =1,..., n. Thus 

< cW (e i. X )...., cW (e� , X) >e PR(E)�,,,, 

and hence, since ve PR()�,,, we have cW (e X) e PR(E),, _ as required. (Refer to the composition 

clause of Definition 3.3.1). 13 

7.3.2 Lemma. For every we Sands ES and for every (e, X) e MP(E)w, j, 
(VpE States (A)) (Qc°" (e. X)]A(nA(X)(p))=EA (e)(p)) (108) 

Furthermore, 
(V Pe States (A )) (X; R(e (e, x ))(A (X)(P)) = 7lP(e)(P)) (109) 

Note. Technically, cw is not a compiler since FEXP(E) does not have a functional semantics (since 

the meaning of an expression is defined in terms of states). However, FEXP(E) is an Sic St-indexed fam- 

ily of sets (with FEXP(E)K,,, =0 for 1v I* 1), and c is word-indexed (since 

c ": FEXP(M)�,,, - PR(E),,,,, for each we S*and se S), so we will refer to c' as a `compiler', and 

we will refer to (108) and (109) as ̀ correctness' and 'performance preservation' conditions, Definitions 

7.1.1 notwithstanding. 

Proof of Lemma 7.3.2. Choose ee EXP(E), for some seS and Xe Vas�, for some wE St We prove 
(108) and (109) uniformly in s by induction on the structural complexity of e. Throughout the proof we 

abbreviate c "by cW. 

Basis Cases. 

(i) Constants. If e =c for some ce Ex,,, then caP(e, Y)=c'". 
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Correctness. Choose pe States (A) and calculate as follows: 
[cExp (e x)]JA (ICA (X)(P)) = cA 

= EA (c)(P) 

= EA (e)(P) 
Thus (108) holds as claimed. 

Performance Preservation. Again choose pe States (A) and calculate as follows: 
XPPR(CEXP (e X))(nA (X)(P)) = cr 

_I 2(c)(P) 

_ ). PE (e)(P) 
Thus (109) holds as claimed. 

(ii) Variables. If e =x for some xe Vas, then cw(e, X)=Uj where i is the least k such that 
X=Xk. 

Correctness. Choose pe States (A) and calculate as follows: 

[c'(e, X)]A(rA(X)(P)) = [Ui"]A(P(X1),..., P(X. )) 
= P(X1) 

= P(x) 

= EA (x)(P) 

= EA (e)(p) 

Thus (108) holds as claimed. 

Performance Preservation. Choose pe States (A) and calculate as follows: 
X, R(, EXP 

I X))(NA(X)(P)) =1 

= X, ° xp(X)(P) 

= ? J'"(e)(p) 
Thus (109) holds as claimed. 

Induction. Suppose that (e , X) e FEXP(E)�,,, is some fixed functional expression with the property that 
for each s' eS and every (e', X) e FEXP(E)�,, with e' is of less structural complexity than e, that we 
have proved: 

(VP e States (A )) (Qa']A (nA (X)(P)) = EA (e')(P)) (110) 

and 
(VPE States(A)) ( XPR(al)(nA(X)(P)) =X (e )(P)) (111) 

where a' = cW (e' X) E PR(E),,, e. 
We now show that (108) and (109) hold for (e, X). 

(iii) Operations. Without loss of generality, we may suppose e is of the form e =a(et,..., es), where 
for some ueS, QEE.,,, and et E EXP(E)�, for i=1,..., n= Iu 
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Now, for i =1,..., n, since each ej is of less structural complexity than e, by the induction 

hypotheses (110) and (111) applied to (ei Y) we have 

(V PE States (A )) ([%-1A (nA (X)(p)) = EA(et)(P)) (112) 

and 
(VPe States(A)) (X7R(%-)(nA(X)(p)) = X, (et)(P)) (113) 

where a; =cw (e; X) e PR(E)�,,,, for i =1..... n. 

Correctness. To show that cW is correct, choose pe States (A) and calculate as follows: 
[cW (e , MA (ICA (X)(P)) = [a 0< al...., a. >]A (IA (X)(P)) 

= a" ([< al..... a. AA (ICA (x)(P))) 

_ (Qa1]IA (ICA (X )(P)),.... [a,. ]A (nA (X )(P))) 
= a" (EA(e 1)(P),.... EA (e. )(P)) 

(using (112) with i =1,..., n) 

= EA (a(e 1,.... e, 1)(P)) 
= EA (e)(p) 

Thus (108) holds as claimed. 

Performance Preservation. Choose pe States (A) and calculate as follows: 
). 

pPR(CEXP (e 
sX))(nA 

(X)(p)) =X 
R(ao 

< a1,..., aR >)(71A (X)(P)) 

_ ap (Q<al..... a. AA (XA (X )(P))) 

+ max[ ÄPR(al)(icA (X)(P)).... 
r 
XpR(aw)(irA (X)(p)) } 

- 
a" (Qa1DA (ICA (X )(P),..., [a ]A (ICA (X)(P))) 
+ max{ X (e i)(P),...,;, p(e. )(P) } 

(using (113) with i =1,..., n) 

_ cyp (EA(e1)(P),.... EA(e. )(P)) 

+ max{ Xpp(e i)(P)..... Xr (e. )(p) } 
(using (112) with i =1..... n) 

x EXP 
P, 

= 7l EX(e)(p) 

Thus (109) holds as claimed. 13 
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7.3.3 Compiling VO-programs. 

We can now define the compiler c/O : PTTIO(E) -PR(E) mentioned above. 

Definition. We define c10 to be the S; <St-indexed family 
C1O =<C! 

°: u, vES+> 

of mappings c10 : PTTIO(E),,,,, -->PR(E),,,,, . For each u, v E S+, ck° (ambiguously denoted c1°) is 

defined uniformly in u, v, In, and Out, and by induction on the structural complexity of the program 

part of arguments (S, In, Out) as follows: 

Choose (SJn, Out)e PmO(E),,,,, for some u, v e St We will first construct c'°(SJn, Out) and 

then prove it is a well-defined member of PR(E),,,,, (thus establishing that c10 is word-indexed and hence 

a compiler from PTTIO(E) into PR(E)). 

Basis Case. 

(i) Multiple Assignment Statements. Suppose S is of the form 

S =xl,... x, := el �.., e, 
for some r>O. 

Construction. Let ß be the scheme defined by 

ß= <al...., a�Ui,..., U�> 

where a; =c (ei, ln) for i =1,..., r (and n=Iu 1). 

Also, let y be the scheme defined by 

Y= <Y1,.... YM> 
where for i =1,..., m, 

Uj if Out; =xj for some je [1, r] 
(114) Y` =I U- if Out; =Ink for some ke [1, n] 

wherein we Skis such that (x1,..., x, )e Varr (so Iw I _r). 

In this case we define c10 (S, In, Out) by 

c1O (S, In, Out) = , yo ß 

Well-definedness. We must show yap e PR(E),,,,,. To do this, we will show Or= PR(E),, ,,, and 

ye PR(E)wu, v: 
To see that ße PR(E),,,,,,,,, first notice that exactly as in the basis case of the proof of Theorem 

6.2.13, it is easy to show that (e;, ln) e FFXP(E),,, 
w, and so cE(e;, n) 6 PR(E)..,, for i =1,..., r. Now, 

Ue PR(E),,,, for i =1 �.., n; thus all the coordinate schemes of ß have the same domain type u, and 

they are all single-valued schemes, so certainly ß is a legal vectorisation. Moreover, it is not difficult to 

see that the codomain type of ß is wu, that is, ße PR(E),,,,,, as claimed. 

We will now show ye PR(E),,,,,,,. First recall from the proof of Theorem 6.2.13, that for 

i =1,..., m if Out, ßx1 for any je [1, r] then there is some ke [1, n] such that Out, =In,,, and hence each 

scheme is unambiguously defined by (114) above. 
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Now, notice that every coordinate scheme of y has common domain type wu. and each is a projec- 
tion scheme and therefore single-valued. Thus y is certainly a legal vectorisation with domain type wu. 
To show that ye PR(E),,..,, we must show yi E PR(E),,,,,,,, for i =1,.... M. 

Choose ie{1, m }. We showy; E PR(E),,,, in each of the following two cases: 

Case 1: Out; =xj for some je [1, r] 
Case 2: Out; *xj for any je [l, r] 

Case I. First suppose Out; =x1 for some j r; [lr ]. Then %=U; Now, since 15 j5r and 1wI =r, we 
have yy e PR(E),,,,,, �,, 

by definition of w. However, x1= Out;, and so the sort of xj is the same as that of 

Out; : the sort of xj is wj and the sort of Out, is vi; thus wj=v; and y, e PR(Z)�,,,, y, as required. 

Case 2. Now suppose Out; *xj for any je (1, r]. Then Out; =Ink for some ke [1, n], and so y; is 

defined to be the projection U, ; thus %e PR(E),.,, (since (wI= r). However, if Out; =Ink then 

these variables must be of the same sort; the sort of Out; is v; and the sort of Ink is Uk, and thus v; = uk 

and so yj e PR(X)�,,,,,, as required. 

Induction. Let Se PIT(E) be some fixed program. Suppose for every u', v' E S* and every 
(S', In', Oue) e PmO(E), ev where S' is of less structural complexity than S, that we have constructed 

c1° (S' Jn', Out') and established that it is a well-defined member of PR(E), e,,,. 

We will now define c1°(SJn, Out)e PR(E),,, for any u, v e S+ and for any In r: Var. and 
Out e Var, according to the three following possible cases: 

(ii) Sequencing. Suppose S =SI; S2 for some S1, S2E PIT(S). 

Construction. Let In1=In, and let Out, be any vector of distinct variables such that 

var(Outl)=var(S1)uvar(In1). Also letIn2=Out1 andQut2=Out. 

In this case we define c1o (S, In, Out) by 

c10(S, ln, Out) = cIo(Sy1n2,0utz)oc'o(Sl, Inl, Out1) 

We claim clo (S, In, Out) e PR(E),,, v : 

Well-Definedness. To show c10 (S, In, Out) E PR(E),,, v, we must show that c10 (S l, ln 1, Out 1) e PR(E)µ, w 
and CIO (SZ, In,, Out2) e PR(E),.,,, for some we St 

First notice that we can show (S; 1n;, Out; ) e P1T1O(E) for i=1,2 exactly as in case (ii) of the 

proof of Theorem 6.2.13. Since (S; )In;, Out; ) e P1T1O(Z) and Si is of less structural complexity than S 

for i=1,2, by the induction hypothesis applied to (S i, 1n 1, Out1), we have that 

c'O (S , In , Out 1) e PR(E)U. w (where we S+ is such that Out Ie Varw ), and by the induction hypothesis 

applied to (S2/n2, Out2), we have c10(S2, fn2, Out2)e PR(E)�,, y. Thus c10(SJn, Out)e PR(E),,,,, as 

claimed. (Refer to the composition clause of Definition 3.3.1. ) 
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(iii) Conditional. Suppose S is of the form 

S= if b then S1 else S2 fi 
for some bE EXP(E)e, and some S1, S2 e PIT(E). 

Construction. In this case we define c10 (Sln, Out) by 

ct0(SJn, Out) = DC(c (b, ln), c'0(S 1, In, Out), cl°(S2/n, Out)) 

We claim c10 (S. In, Out) e PR(E),,,,,: 

Well-Definedness. First notice that exactly as in case (iii) of the proof of Theorem 6.2.13, we can show 
(Si Jn, Out) E PI TIO(E) for i =1,2. Since (Si Jn, Out) E PMO(E) for i =1,2 with Si of less structural 

complexity than S for i=1,2, by the induction hypothesis applied to (S1, In, Out), we have 

c10 (S; , In , Out) E PR(E).,,, for i =1,2. Furthermore, since cW (b In) E PR(E),,,,, we have 

c1O (S, In, Out) e PR(E),,,,, as claimed. (Refer to the definition-by-cases clause of Definition 3.3.1. ) 

(iv) Bounded Iteration. Suppose S is of the form: 

S =doe times S. od 
for some ee EXP( and some S, e PIT(S). 

Construction. In this final case we define c10(S, In, Out) by. 

c'O(S, In, Ous) = ßoyoa 

where: 

<UO(I),. -. N)> 

where 9(%) is the leastk such that Ourj =Ink; 
1_ it (c1o (S0. jn. ln )) 

and 
S=<c (e. ln), Ui,.... U�> 

(Recall the definition of the derived composition tool it (a) from Section 3.3.4. ) 

Well-Definedness. First notice that exactly as in case (iv) of the proof of Theorem 6.2.13, we can show 
(e, In) E FEXP(E)" T and so cW (e, In) is a well-defined member of PR(E)",, (Refer to Definition 

7.3.1. ) 

Also as in the proof of Theorem 6.2.13, we can show (S, dn, In) E PTITO(E), and since So is of 
less structural complexity than S, by the induction hypothesis applied to (S,, ln, In), we have 

a3= c10 (S j, In In) e PR(E)",,. 

Now notice that since aoe PR(E)".., we have ye PR(E)I, ". Also cu"(e, ln) e PR(E)" T and so it 

is easy to see that Se PR(E)",,. ". Thus yob e PR(E)",,. Now, the domain of Qß]IA is certainly A", and so 

to show c1° (S, In, Out) e PR(E)",,, we must show that ße PR(E),,,,,; that is, that the codomain of Qß]lA is 

A" . Since the j th coordinate of ß is UoQ), this means we must show u e(j) =vj for j =1,..., m: 

First notice that since S is a loop, we have free (S) = var (S) and so var (Out )cvar (In) (since 

var (Out )year (S) v var (In)), and hence Out je var (In) for j =1,..., m; that is, the number 9(j) is 

well-defined for j =1,..., m. Now, for j =1,..., m, Outj =In e by definition of 0, and so the sorts of these 
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variables are the same. Thus vj =u 9(j) for j =1,.... m, and hence 0e PR(L),,,, as required. Q 

We now state and prove a result from which it is easy to derive that c'r° is a correct and perfor- 

mance preserving compiler. 

7.3.4 Theorem. For any u, v e S*and for every (S, fn, Out) e PMO(E)�y, 

(Vpe States(A)) (Qcµ°(SJn, Oul)JJA(ICAVON) = lrA(Out)(MA(S)(P))) (115) 
Furthermore, there exists µe ]N such that 

(V Pe States(A)) (X, R(cl, °(S, fn, Out))(itA(In)(P)) - µ. Xp`r(S)(p)) (116) 
Additionally. 

(V E States(A)) (X (S)(p) 5 Xf'(cK, 
V(S, 

In, Out))(aA(In)(p))) (117) 

Proof. Let (S Jn, Out) E PTTIO(E),,,,, for some u, v e St We prove (115), (116), and (117) simultane- 

ously and uniformly in u and v, and by induction on the structural complexity of S. Throughout, we 
abbreviate cM° by c'° . 

Basis Case. 

(i) Multiple Assignment Statements. Suppose S is of the form 

.S =x1.... , x, .= el,..., e, 
for some r>0. Then a= c1O (S, ln, Out) is defined by: 

a=Y°ß 

where 
p=< ap..., «�ui,..., u�> 

where for i =1...., r, cc = cW (e; , In ), and where y is the scheme defined by 

y= <ylý.... y" > 
where for i =1�.., m, 

Uj if Out; =xj for some je [1, r] 
7` =1U, k if Out; =Ink for some kE [1, n] 

and where we Skis such that (x x, ) E Var. 

" Correctness. To show that c! 0 correctly compiles multiple assignment statements we must show 
QaIA OCA (In )(P)) = rA (Out )(MA (S )(p)) ý 118) 

for every pE States (A). 

First let us consider ß. For any pe States (A) we calculate as follows: 
[ßIA (it4 (In)(p)) = 1< al..... a�Ui ..... U: >1I (nA (In)(P)) 

= ([ah A (t4 (In)(P)),..., Qa, D4 (nA (In)(P)), p(In 1)..... P(In. )) 
(since [Uf JA(iA(In)(P))=P(In; )fori =1...., n) 

= (EA (e i)(P)..... EA (e, )(p), p(In 1)...., P(Inj 
This last step follows since for i =1..... r, o; =cw (e;, ln) and cW is a correct compiler. (See Lemma 

7.3.2. ) Thus we have shown: 
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(V Pe States (A)) ( Q1DA (re (In)(P)) = ((EA (e 1)(P),..., EA (e, ), P(In I),..., P(InA))) (119) 

Now let us consider schemes y; for i =1,..., m. Leta e A"and be A". Then we calculate 
Iaj if Outi =xj for some je [1, r] 

[Ti ýA (a b) = bk if Out; =Ink for some ke [1, n 
Now take a' =(EA(ei)(7tA(P))".... EA(e, )(iA(P))) and b'=(p(In1),..., p(In�)). Then a' e A' and b' eA", 
and so 

EA(ej)(p) if Out1=xjfor some je [lr ] 
[Yi L (aý, bý) =1 p(ink) if Out; =Ink for some ke[1, n ] 

(120) 

We can now show (118) holds coordinatewise. For any aE A" we have: 
QaIA (a) = IYO PIA (a) 

= [<Y1'.... YM>L(Qß],, (a)) 
Thus for any pe States (A) we have: 

QaJA ilte (In)(P)) = Q<Yl..... Y. >]IA (QIIA (XA (in)(P))) 

= Q<Y7..... Y->LL(EA(el)(p),..., EA(e, )(p), p(lnl)..... p(In. )) 

using (119). 

Thus the i th coordinate of QahA (nA (In)(p)) is 
QYc]IA (EA (e 1)(p),.... EA (e, ), p(In 1),.... P(1n1)) 

EA(ej)(p) if Out; =x1 for some jE [1, r] 
P(Ink) if Outi =Ink for some ke [1, n] 

(121) 

using (120). 

Now consider the i th coordinate of nA (Out)(MA (S)(p): this is simply MA (S)(p)(Out; ). However, 

MA(S)(P) = p{EA(el)(P)/xl }{ ... }{EA(e, )(P)/x, } 
Thus by definition of a variant of a state, the i th coordinate of nA (Out)(MA (S)(p) is: 

MA(S)(P)(Outt) = P{EA(ei)(P)fxl }{EA(e, )(P)Ix, }(Outr) 
EA(ej)(p) if Outj =xj for some jE [1, r] 

P(Ink) if Outs =Ink for some ke [ln ] 

= IYiIA(EA(ei)(p)..... EA(e, )(p), p(Inl)..... p(ln, 1)) 
Thus the i di coordinates of nA (Out)(MA (S)(p)) and Qa]A (xA (1n)(p)) agree for i =1,..., m and for all 
pe States (A). Thus (118) holds and so c10 correctly compiles multiple assignment statements. 

Performance Preservation. To show that (116) and (117) hold for (S. ln, Out), we will first relate 
XpR(a) to Xprr(S) as follows: 

First consider ß; for any pe States (A) we have: 
xPR(ß)(nA (In )(p)) _ %XX(< Cal,..., a�Ui ...., 

U. >)(nA (In )(p)) 

= max{ i6pR(al)(nA (In)(p))'... ý 
i1PR(ar)(nA (In)(P))ý 1 

ý... ý1} 

max(XPR(al)(icA (ln)(p)),.... %6PR(a, )(nA (In )(p)) } 

(since k. (a)(a ) 21 for any a and any a) 
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= max{ X "(e 1)(P)...... 
'(e, )(P) } 

This last step follows since for i =1,..., r, a; = cW (e; ln) and cW is a performance preserving com- 

piler. (See Lemma 7.3.2. ) Thus we have shown: 
(V Pe States (A )) (XPR(ß)(lA (In)(p)) = max{ )(e i)(P)..... % (e, )(P) }) (122) 

Now let us consider y. Since every coordinate of y is a projection symbol, we have 
(VCEAWXVGEAV) (XP(-b(a b)= 1) (123) 

Choose pe States (A) and calculate as follows: 
XPR(a)(rA (In)(P)) =)-PR(7° 0)(7vA (In)(p)) 

= %LPR(N)(nA (In)(P)) + XPR(y)(QF'IA (CA (In)(P))) 

= max{ XP (e i)(P)..... X, °xp(e. )(P) }+1 

(using (122) and (123)) 

= 7Lpff(S)(p) +1 (124) 

To see that (116) holds for (S, ln, Out) and some choice of µ, take µ=2. Then from (124) we have 

for any pe States (A) that 
XPA(a)(1 CA (In)(P)) = 71p"r(S)(p) +1 

5 X, pý(S)(p) +X "(S)(p) 

(since ?. p"r(S)(p) '? - 1 for any S and any p) 
= 9. xpfT(S)(p) 

Thus (116) holds for this choice of µ as required. 

To see that (117) holds, we have from (124) that for any pe States (A), 
ÄPR(a)(iA (in)(p)) _ %$tF(S)(p) +1 

Z ; Lp"(S)(p) 
Thus (117) holds as claimed, and thus c1O preserves the performance of multiple assignment statements. 

Induction. Let SE PIT(E) be some program with the property that for every S' E PTT(E) of less struc- 

tural complexity than S, whenever (S' /n', Out') E PTITO(E), e,,, for some In' E Var,. and Out' E Var? 

for any u ', v' E S*, we have that c1O correctly compiles (S', In', Out' ), that is: 
(V Pe States (A )) ([c10 (S'P1n's0ut' )]A (ICA (In )(P)) = 'CA (Out')(MA (S' )(P)) ) 

Furthermore, assume that there exists µ' E N' such that: 
(VPE States(A)) (2LPR(CIO(S'. In 

'Out'))(nA(In )(p)) S. t'. AP'(S')(p) ) 

and, additionally, 
(V PE States (A)) (XP'T(S')(p) 5 xPR(cbo (S', fn', Out'))(nA(In )(P)) ) 

Now let In and Out be such that (S Jn, Out) e PmO(E),,,,, for some u, v e St We will now show 

c1O correctly compiles (S, ln, Out) according to the three following possible cases: 

(ii) Sequencing. Suppose S =SI; S2 for some S1, S2e PIT(S). 

In this case we take In 1=In e Var,,, OUt 1E Var. such that var (Out) = var (S 1) v var (In i), 
In2=Outs e Var�, and Out2= Out e Vary, and then a=cf0(SJn, Out) is defined by: 
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a= c1O (S, ln, Out) = a2 o a1 
where a1= cl° (S1, ln 1, Out, ) E PR(E)11,, r, and %=C 10 (S2, In2, Out2) 6 PR(E),,,,. 

Since S1 and S2 are of less structural complexity than S, we have by the induction hypothesis 

applied to (S1, ln 1, Out1) and (S, )n2, Out2), that 

(V Pe States (A )) ([a1]IA (nA (In 1)(P)) = nA (Out 1)(MA (S1)(P))) (125) 

and 
(V Pe States (A )) (Qa 21A (nA (In 2)(P)) = 1CA (Out2)(MA (S2)(P)) ) (126) 

respectively. 

To show c/° correctly compiles (S, ln, Out), choose pe States (A) and calculate as follows: 
0c'° (S, fn 

, 
Out )IA (IVA (In )(P)) =Qcf]IA (ltA (In )(P)) 

_ [az ° al lA (nA (In)(P)) 
= I`"OA (Ia1IA (ICA (In)(P))) 

= IAA (nA (Out 1)(MA (S 1)(P))) 

(by (125) and the fact that In 1=In ) 

= ICA (Out2)(MA (S2)(MA (S 1)(P))) 

(by (126) and the fact that Out1=In2) 

= XA (Out)(MA (S)(P)) 

since Out2=Out and S =S1; S2. 

Thus cJ0 correctly compiles the sequencing operation. 

Performance Preservation. Since S1 and S2 are of less structural complexity than S, we have by the 

induction hypothesis applied to (S 1Jn l, Out 1) and (SZ, In y0ut2), that there exist µ; E! for i=1,2 such 

that: 
(VP e States (A)) (X (a4)(nA (Int)(P)) 5 µt " XP'rr(Si)(p) ) (127) 

for i =1,2, and furthermore, 
(VPE States(A)) (),. P? (Si)(p) S XpPR(ai)(tA(Ini)(p))) (128) 

again for i =1,2. 

We can now show c1O preserves the performance of (Sfn, Out) as follows: 

Choose pe States (A) and calculate as follows: 
A'PR(ct)(nA (In)(p)) = iIPR(a2 

° al)(nA (In )(P)) 

=. XPR(al)(iA (In)(p)) + XPR(a2)(Qa1IA (1CA (In)(P))) 

(129) 
= Ä. PR(al)(, 

A (In )(P)) + XPR(a, )(iA (Out 1)(MA (S 1)(P))) 

since In =In 1 and c10 correctly compiles (S 1Jn , Out 1). 

To see (116) holds for (S, ln, Out) for some choice of µ, take µ= max{ µI, µ2 }, choose 
pE States (A) and calculate as follows: 

XPR(a)(nA (In)(P)) s Al " 
Xp (S 1)(P) + Ä, P VEDOCA (OUt 1)(MA (S 1)(P))) 

(from (129) using (127) with i =1) 
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5 I. t1. XX, P'rr(S 
1)(P) + 112 " 

%PIT(S2)(MA(S 
1)(P)) 

(using (127) with i =2 and the fact that Out1=1n2) 

5 max{ JJ14E, L2 }- (XPr(S1)(P) + XP"(S2)(MA(S1)(P))) 

(using the fact that if a, b, m, n e IId with n ,mZ1, then an+bm 5 max{ a, b }(n+m )) 

5 max{ 91,92 }. XPrr(S ; S2)(P) 

= A. ), Prr(s)(P) 
Thus (116) holds for this choice of µ as claimed. 

To see that (117) holds for (S , ln , Out ), we have from (129) that for any pe States (A), 
)PR((x)(nA (In)(p)) = ilPR(ai)(7A (In)(p)) + XXR(a 

7, 
)(it (out 1)(MA (S i)(P))) 

z ilpIT(S1)(P) + )LPIT(S2)(MA(S1)(P)) 

(using the fact that ln2=Outs, together with (128) for i =1,2) 

= X, pý(SI; S2)(P) 

= )Lpfr(S)(P) 

as required. 
Thus c! 0 preserves the performance of (S, fn, Out). 

(üi) Conditional. Suppose S= if b then S1 else S2 fi for some be EXP(E),, and some 
S 1, S2 E PIT(). 

Then a=c1°(S, Jn, Out) is defined by: 

a= c1°(S, fn, Out) = Dc(cExp (bJn), a1, a2) 
where ot; =c1° (S;, lni, Out; ) for i =1,2. 

Correctness. First notice that by the correctness of the expression compiler, we have: 

(VPe States(A)) ([abL((nA(In)(P)) = E4(b)(p)) (130) 

where ab = cW (b jn ). 

Secondly, since S1 and S2 are of less structural complexity than S, we have by the induction 

hypothesis applied to (S,, 1n;, Out; ) for i =1,2: 
(VpeStates (A)) (1%DA(ne(In)(P))=EA(Out)(MA(Si)(P))) (131) 

for i =1,2. 

To show c! 0 cornoctly compiles (S, ln, Out) choose pe States (A) and calculate as follows: 

[c10(S, fn, Out)IA('CA(In)(p)) = QaJA(ICA(In)(p)) 

= [DC(Ctb, ai+a2)IIA (nA (In)(P)) 
Qai)IA(nA(In)(P)) if QabDA(ltA(In)(p))=tt 
QUA(tA(In)(p)) if Qab1A(iA(In)(p))=f 

Qa1IA (nA (In)(p)) if EA (b)(P) = tt 

Qa2LA (nA (In)(p)) if EA (b)(p) _i 

(by (130)) 
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(by (131) with i =1 and i =2) 

f nA (Out)(MA (S 1)(P)) if EA (b)(P) = tt 

nA (Out)(MA (S 2)(P)) if EA (b)(P) =f 

f nA(Out)(MA(S)(p)) ifEA(b)(P)=tt 
I icA (Out)(MA (S)(P)) if EA (b )(P) =ff 

= nA (Out)(MA(S)(P)) 

Thus clo correctly compiles conditional statements. 

Performance Preservation. First notice that by Lemma 7.3.2 we have: 

(V pe States (A )) (XPR(ab)(nA (In)(p)) =X '(b)(p)) (132) 

where ab = c" (b JA ). 

Secondly, since S1 and S2 are of less structural complexity than S, we have by the induction 

hypothesis applied to (S;, In�Out; ) for i=1,2 that there exists µ; eN such that 

(dpe States(A)) (x; R(a. )(nA(In)(P)) 5 N. "X (S; )(P)) (133) 

for i=1,2, and, furthermore, 

(VP e States (A )) (? fr(S4)(P) s XPR(j)(nA (In)(p))) (134) 

again for i =1,2. 

To show clo preserves the performance of (S !n , Out) choose pe States (A) and calculate as fol- 

lows: 
xpR(a)(nA(In)(p)) = ÄPR(Dc(ab, al, az))(nA (In )(P)) 

)LP 

14PROCI)(94n)(0) if hab ]IA (nA (In)(p)) = tt 
+ XPR(a2)(nA (In)(p)) if Qab NA (2A (In)(P)) ! 

= 
XPR(at)(nA(In)(p)) ifEA(b)(p)=tt 

(135) (b)(p) + ; LPR(a2)(iA (In)(p)) if EA (b)(p) =f 

since c is a correct and performance preserving compiler. 

To see that (116) holds for some choice of µ, take g= max[ µ1, µ2 }. 

First suppose p is such that EA (b)(p) = tt. Then from (135) above we have that for any 
pE States (A), 

XPR(a)(nA (In)(P)) = XP (b)(p) + XPR(al)(icA (In)(p)) 

S ). (b)(P) + µi APIr(S, )(P) 
(using (127) with i= 1) 

5 )J '(b)(P) + g. XP? (S )(P) 
5 µ. (X '(b)(p) + ? P'rr(S i)(P)) 

(since µ21) 

= µ. Xp'(if b then S1 else S2 6)(p) 

(since EA (b)(p) =tt) 
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= A-), P"r(S)(P) 

Thus (116) holds in the case EA (b)(p) = tt. 

In almost identical fashion, it is possible to prove that 
%PR(a)(XA(In)(P)) s XPrr(S)(P) (136) 

when p is such that EA (b)(p) =ff (this we leave as an exercise), and thus we conclude (136) holds for 

every pe States (A); that is, (116) holds for a as claimed. 

To see that (117) holds for (S, ln, Our), first suppose p is such that EA (b)(p) = tt. Then from (135) 

and the induction hypothesis (134) with i=1, we have 

7, PR((x)(xA (In )(p)) Z? (b )(p) + XpI T(S 1)(P) 
= ap"(S)(P) (137) 

Also, if EA(b)(p)=ff, then again from (135) and the induction hypothesis (134) with i =2, we have 
XpR(a)(ne (In)(P)) ZX '(b XP) + 7ýp'r(S2)(P) 

= 71pfr(S)(p) (138) 
Hence from (137) and (138) we have 

(VPe Stares(A)) (XXR(«)(nr(In)(p) 2 Xpp'rr(S)(p) ) 

Thus (117) holds for (S, ln, Out) as claimed. 

(iv) Bounded Iteration. Suppose S= do e times S, od for some ec EXP(E)r and some So e PTT(E). 

Then a=c1O(S, In, Out) is defined by: 

a= c! °(S, In, Out) = ß°7o6 

where: 
ß= <U8(I)-... U4. )> 

where 0(j) is the least k such that Outs =Ink; 

7= it (a0) 

where 

and 

where a, = cW (e jn ). 

orn = c'° (S Jn Jn ) 

S= <ae. Ui,..., U�> 

To show that c" correctly compiles S, let us first consider S. Choose pe States (A) and calculate 

as follows: 

[6]IA (ICA (In)(P)) = Q<a, U1..... U�>IA (nA (In)(P)) 
= ([a. ]IA (tA (In)(P)). [UI ]A (itA (In)(p))..... [UIA (ICA(In)(P))) 

= (EA(e)(P), P(In 1)..... P(In1)) 
(since the expression compiler is correct) 

= (EA (e )(P), 7tA (In)(P)) (139) 
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Now consider P. For any pe States (A) we have: 

IPIA (ICA(In)(p)) = Q<Us0)...., Uý,. )>JA (JtA(In)(p)) 
= (1U41)JJA (itA (In)(P))..... [Ug(n1)1A (nA (In)(P))) 

= (p(In 6(I))..... p(In e(, ))) 
= (P(Outl)...., P(Out. )) 

(by definition of 0) 

_ ICA(0W)(P) (140) 

To conclude the proof of correctness, let us temporarily assume: 
(pik e N)(VPe States(A)) (IY1A(k, nA(In)(P)) =7CA(In)(Pk)) (141) 

where po= p and for each le IN, p1+1 =MA (So)(Pi )" 

To show clo correctly compiles S choose pe States (A) and calculate as follows: 
[c'o(SJn, Out)DA(nA(In)(p)) = [aaA(nA(In)(p)) 

= [ß 'Y° 81A (ICA (In)(P)) 

= [ß]A ([YIA ([6IA (nA (In)(P)))) 

= 1ß1A ([Y]A (k'7rA (In)(p))) 

(where k =EA (e)(p) by (139)) 

= []I4 (n, A (In )(Pit)) 
(by (141)) 

= nA(OUt)(Pk) 
(by (140)) 

nA (Out)(MA (S)(P)) 
by definition of k, pt, and MA. Thus c1O correctly compiles S as claimed. 

It remains to prove (141). First notice that since S. is of less structural complexity than S, by the 
induction hypothesis applied to (Sln In) we have: 

(V pE States (A )) (IaJA (IVe (In)(p)) = nA(In)(MA(S0)(p)) (142) 

To prove (141), we must show that 
(V Pe States (A )) (QY/A (k, nA (In)(P) _ ltA (In)(Pk)) (143) 

holds for all keN; this we do by sub-induction on k as follows: 

Sub-Basis. Using Lemma 3.3.5, for any pe States (A) we have 
QY]IA (Oa A (In)(P) = [it (al)TA (O, nA (In)(P)) 

= nA (In )(p) 

= nA (In )(p0) 

since p, =p by definition. 



-251- 

Sub-Induction. Suppose for some fixed 1EN we have shown that fork =0...., 1, 
(VPE States(A)) (QYDL(k, A(In)(P) = nA(In)(Pk)) (144) 

To show (143) holds fork= 1+1 choose pE States (A) and calculate as follows: 
IY1A (1 +1,1[A (In )(P) = [it (ao)IA (l +1,7CA (In)(P)) 

= IcºJA ([it (ao)1A (lac (In)(P))) 
(using Lemma 3.3.5) 

= IcZODA (nw (In)(p, ))) 
(using the sub-induction hypothesis) 

= nA (In)(MA(So)(P, )) 

(by (142)) 

= nA (In)(PI+t) 

by definition of p: +l. Thus (143) holds for k =1+1, and so by the principle of mathematical induction 

(143) holds for all kcN. 

Performance Preservation. To show that c10 preserves the performance of S, let us first consider S. 

Choose pe States (A) and calculate as follows: 
) R(SXnA (In )(p)) = X°R(< aa, Uu,..., Uý >)(ne (In)(p)) 

= max{ xPR(a. )(ne (In)(p)919...., 1 } 

= ÄPR((y 
* )(nA (In )(p)) 

(since 7.. R(a)(a) Z! 1 for any a and any a) 

_ xlp(e)(p) (145) 

since c' is a performance preserving compiler. 

Also, it is not difficult to see that 
(Va e A") (XPR(R)(a) = 1) (146) 

Also, since S. is of less structural complexity than S, by the induction hypothesis applied to 
(S0 , in , In) e PmO(E)",, there exists µo e P1* such that 

(Vpe States(A)) (%PR(ao)(7tA(In)(p)) : 5po"%Prr(So)(p)) (147) 

and, furthermore, 

(VpE States(A)) ('Pfr(S0)(p) 5 XPR(ao)(nA(In)(p)) (148) 
Now let us consider X7R(y)(k, a) for any ke IN and ae A". Using the definition of y we have: 

! LPR(^j)(k. a) = a, PR(it (ao))(k. a ) 

= XPR((Id", aoo <Ui+,,.... . U+2, >)(k, a ) 

where w= Tuu eS 1+2n. 

Thus 
XPR(Y)(O, a) = XPR(Id")(a) 

= ÄPR(<U1..... Ua >)(a) 
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=1 (149) 
Also, for any ke IN, 

XPR(Y)(k+1, a) =) R(Y)(k, a) + %lPR(O! 
o° <ÜZ+...... Ü1+2R >)(k, a IQYIA (k, a )) 

_ ;, PR(Y)(k, a)+)lPR(<UZ+.,..., Uj 
, >)(k, a, QY]L(k, a)) 

+ APR(ao)([<U2+w,..., Ui+24 >]A (k, a , QYIA (k, a))) 

=1l, R(y)(k, a) +I+a, PR(ao)(MA(k. a)) (150) 

Now consider A. p'(S)(p): since S is a loop, we have from Definition 6.1.7(iv) that 
Xp'r(S)(p) = ; LP (e)(p) +X (151) 

where 1=EA (e)(p), 

1, =o, 
and for any kEN, 

)Lk+l ° ". 
k + "PIT(s)(Pk) 

where for each keW, Pk is defined by: 

Po = P" 
and for any keN, 

Pk+l = MA (S, )(Pk ) 

In order to prove (116) holds for a, let us rephrase X7 (S) is the following way. First define 

x: Nx States (A) -->C+ by: 

K(O, P) = )"(e)(p) 
and 

ic(k+1, P) = ic(k, p) + XXff(So)(Pk) 
for each keN and pe States (A). 

A routine induction on k yields: 
(pik E N)(V Pe States (A )) (K(k "p) =X (e )(P) + Xk ) 

and thus by (151) we have: 

(bp e States (A)) (X, pý'(S)(p) = x(EA (e)(p), p)) (152) 

We now make the following claim which we will prove later. 

Claim. 

(dk E ])(V Pe States (A )) ()! R(Y)(k. nA(In)(P)) + )° "(e)(p) 5 V. x(k'p) ) 

where v= max[ 3,1+µo }. 

Assuming the Claim holds, we can now show (116) holds for (S, ln, Out) for the choice µ=1+v as 
follows: choose pe States (A); then 

XPR(a)(iA (In)(P)) = XPR(ß 
°YO S)(itA (In)(p)) 

= XPPR(S)(nA (In )(P)) + XPR(Y)(IS]A (nA (In) (p))) (153) 
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+ ý, PR(ß)(QY° 81A (nA (In)(P))) 
=X (e)(P) + )pR(Y)(EA(e)(P), RA (In)(P)) +1 

(using (145), (139), and (146) respectively) 
5 Y. u(EA(e)(p), p) +1 

(using the Claim) 

(by (152)) 
=v. X, pfT(S)(p) +1 

5v. X pr(S ) (P) +) (S ) (P) 

(since )Lp'T(S)(p) 21 for any S and any p) 

_ (1+v). Xp"(S)(p) 

=µ ")Lprr(S)(p) 
Thus (116) holds for (S Jn, Out) and this choice of µ as claimed. 

Proof of Claim. We must prove for every ke IT and every pe States (A), that 
X7 ('j(k, 7rA (In)(p)) + Jpw(e)(p) 5 v. x(k, p) (154) 

We prove (154) holds for each keN and pe States (A) by sub-induction on k: 

Sub-Basis. Fork =0, we must prove for every pe States (A) that 
XPR(7)(0, to (In)(p)) +) (e)(p) 5 v. x(0, p) 

that is, that 
1+ X'(e)(p) 5 max{ 3,1+µ, o }. X FP(e)(p) (155) 

(using (149) and the definitions of v and x). 

We can establish (155) as follows: 

1+) (e)(p) 5 2.7X (e Xp) (156) 

(since X, '(e)(p) Z1 for any e and any p). 
However, it is certainly true that 

2. XF"(e)(p) 5 max[ 3,1+µo}. X, (e)(p) (157) 

since in the worst case, max{ 3,1+µo } =2 (because µ,, 21). Thus from (156) and (157) we have 

1+ 7l° p(e)(p) 52. X, '(e)(p) 5 max{ 3,1+µo }. XF(e)(p) 

and hence (155) holds as required. 

Sub-Induction. Suppose for some fixed IeN, that we have proved 
(VPe States(A)) (XpR(-6(1. nA(In)(P)) +X "(e)(P) 5 v. ic(1, p)) (158) 

We now show (154) holds for every pr: States (A) fork =1+1. 

Choose pe States (A ). 'Bien from (150) we have for any ae A", 
)PR(Y)(I+l, a) = XpPR(Y)(l. a) +1 +XPR(ao)(QY]A(I, a)) (159) 

Now, when a =icA(In)(p), we have from (141) 

IYIA (k. a) = ICA (In)(Pk ) 
for any keN and any pe States (A). Substituting for QYDA in (159) yields (for any pe States (A)) 
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XPR(Y)(1+1, 
A (In)(p)) = xPR(Y)(zPICA (In )(P)) +1+ APR(ao)(nA (In)(P: )) 

S i6PR('y(1, nA(In)(P)) +1+ µa. XPT(So)(P! ) 

(using (147)). Thus for any pe States (A) we have 
Xp5(Y)(1+1, nß (In)(p)) + JP(e)(P) s x"(6(1' A(In)(p)) +1+ µo. XpIT(S0)(P, ) +X (e)(p) 

51+p,. XpT(So)(P1) + v. tc(l, p) (160) 

(using (158)). 

Recall v= max{ 3,1+p, 1. There are now two cases to consider. 
Case 1: max[ 3,1+µo}=3 
Case 2: max{ 3,1+µo } =1+µ, 

Case I. Suppose max{ 3,1+µo}=3. Then from (160) we have that for any pe States (A), 
) R(7)(l+1, nß (ln)(P)) + Xp2xp (e)(P) S1+P.. X '(S. )(PI) +v. x(l, P) 

=1+ µo. 7Lprr(So)(p, ) + 3. ic(l, P) 
5 %Pfr(S. )(p, ) + No"XprT(Sc)(P, ) + 3. x(1, p) 

(since Xp''(S)(p) Z1 for any S and any p) 

= (l+µo) .X (S0(p, ) + 3. ic(l, p) 
5 3. XpP'f(S, )(pi) + 3. x(l, p) 

(since max{ 3, +}b }=3 here) 

=max[ 3,1+µo }. (x(!, p) + XpT(S0)(p: )) 

(since max{ 3, +µ, I= 3 here) 
= V. ic(1+1, p) 

(by definition of x). Thus (154) holds in this case. 

Case 2. Suppose max{ 3,1+p, )= I+p,. Then from (160) we have that for any pe States (A ), 
7lPR(7)(1 +107CA (In)(0) 5 1+ Pa. 7lpn (So)(Pt) +V. x(I, P) 

=1+ µo. 7lprr(So)(P, ) + (l+uo) " K(1, P) 
(since max{ 3,1+µ, }=1+µ, here). 

5X (So)(P, )+P,. ), pfr(So)(P1)+ (1+µo). u(l, P) 
(since ? (S)(p) z1 for any S and any p) 

_ (1+P, ) - (K(l, P) +X 1T(So)(Pr)) 

max{ 3,1+µ, 1. (ic(l, p) + )1pý(So)(pi )) 

(since max{ 3,1+µ, } =1+ji, o here) 

=v. (x(1+1, p)) 
(by definition of v and ic). Thus (154) holds in this case also. 

By the principle of mathematical induction, (154). holds for all ke IN, and so the Claim holds. Q 

We will now prove (117) holds for (S, ln, Out ). 
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Claim. 

(Vk e A1)(Vpe Stares(A)) ( x; R(y)(k, nA(In)(p)) + XFP(e)(p) z ic(k, p)) (161) 
Let us prove (117) holds for (S, ln, Out) before we verify this Claim. 

From (153) we have 
XPR(a)(7r (In)(p)) _% EXP(e)(p) + %PR(l)(EA (e)(P), 7t (In )(p)) +1 

> X'(e)(p) + XPR(i)(EA (e)(P). nA (In)(P)) 

Z x(EA (e)(P), P) 
(using (161)) 

= 7xprr(S)(P) 

(by (152)). Thus (117) holds for (S, In, Out). 

Assuming the above Claim holds, we have now shown that c1° preserves the performance of 
(S, In, Out) when S is a loop, and thus c10 preserves the performance of every (S, n, Out) (by structural 
induction). 13 

Proof of Claim. We must show for every keN and every pe States (A) that 
XPR(Y)(k,, A(In)(P)) + ? °"(e)(P) Z K(k, P) (162) 

We show (162) holds by sub-induction on k. 

Sub-Basis. Fork =0, we must prove for every pe Stares (A) that 
1+X "(e)(p) ; -> 

X xp(e)(p) 

(using (149) and the definition of ic); this is obviously true. 

Sub-Induction. Suppose for some fixed 1E IN, that we have proved 
(v pE States (A)) (XPR(7)(1. nA(In)(p)) +X (e)(p) Z lc(l, p)) (163) 

We now show (162) holds for every pe States (A) fork =1+1. 

Choose pe States (A). Then from (150) we have 
XPR(Y)(1+1,? CA(In)(p)) _ XPR(Y)(1,7CA(In)(p)) +1+A, PR(aoX ly]A(k 

' A(In)(p))) 
Z %IPR(1097CA (In)(P)) + XPR(ao)([y]A (k 

979A (ION)) 
= XPR(Y)Y 

INA(In)(P)) + XPR(ao)(t (In)(P! )) 

(using (141)) 

Z XPR(Y)(l, nA (In)(p)) + Xp'T(So)(P! ) (164) 

(using (148)). Adding X©P(e)(p) to both sides of (164) yields: 
X (Y)(l+1, nß (In )(p)) +X (e)(p) XPe(Y)(l, nA (In )(p)) + (e )(p) +X T(S0)(P! ) 

z ic(l, P) +). prr(S, )(P! ) 

(by the sub-induction hypothesis (163)) 

= x(1+1, p) 
(by definition of x). 

By the principle of mathematical induction, (162) holds for all keN, and so the Claim holds. D 
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73.5 Corollary. 

Let u, v E S' and let (S, In, Out) e PTTIO(E).,,,. Then, 

(V ae A") ([c'o (S ln , Out )]IA (a) = FA (S , tn, Out)(a) ) 

Furthermore, there exists t21 such that 
(Va E A") (XPR(cto(S, In, Out))(a) 5 t. X, p (S, fn, Out)(a) ) 

Additionally, 
(Va e A") (Xpl (S, ln, Out)(a) 5 XXR(cja(S, ln, Out))(a) ) 

Proof. Immediate from the previous theorem and the definitions of FA(S, fn, Out) and )$ (S, In, Out) 

(see Definitions 6.2.10). 

7.3.6 Lemma. Let E be any signature and let c10 (E) be the word-indexed transformation of Section 

733 (previously denoted cJ° ). Then 

(i) c10 (E) is a compiler from PTTIO(E) into PR(E); that is, 

c1° (E) : PmO(E)-O-PR(E) 

(ü) Let A be a E-algebra. Then clo (E) is correct with respect to Q. DA and FA; that is, for every 
(S, ln, Out) e PTTIO(E), 

Qc1O(E)(S, In, Out)IA = FA(S, In, Out) 

(iii) Let P be a performance measure for A. Then clo (Z) is a performance preserving compiler with 

respect to X pR and XL; that is, for every (S, ln, Out) e PMO(E), 
7lpR(cJO(E)(S, In, Out)) _ X'°(SJn, Out) 

Proof. Immediate from Corollary 73.5 and the fact that c! O (E) is word-indexed. 13 

7.3.7 Augmentation and Compilation. 

Recall the map c of Section 3.5 (see Definition 3.5.6); given a (u, v)-extension (E, 0) of a signa- 
ture E, c is a map, dependent on D and a scheme ae PR(E),,, V, 

in symbols: c (0, a), which transformed 

each scheme a' e PR(E, (D) into a scheme c (a) e PR(E) by replacing each occurrence in a' of each 
0e db by a coordinate of a. 

Now notice that c is actually properly dependent on E as well as 0 and a, since in applying c to a 

scheme a' e PR(E, (D) we must know if a given symbol ae (E, O) is a symbol of E (if it is, then we leave 

it alone, if not, then we replace it by a coordinate of a). In the forthcoming definition of 

cFp : FPIT(E)--PR(E) we will use c as a basic mechanism for replacing function identifiers by 

schema, but we will use it in the context of a variety of different signatures, and thus we must extend our 

notation to make explicit reference to the underlying signature involved: that is, when a is a scheme over 
Z we must denote the transformation c by c (7,0, a) or c (E)((D, a) for example. We will use the notation 
. cAUG(E)((D, a)', and we will write `CAUG(E)(O, a), and `c"UG(E)(4>, a)(a')' for what was previously 
denoted by `c ((D, ct)' and ̀ c ((D, a)(a')' respectively. 
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Similar remarks apply to the compiler c1O of Section 7.3.3: we will use cý0 to transform an i/o- 

program to a PR scheme in the context of different signatures, and so we will subsequently write c10 (E) 

and c1°(E)(S, In, Out) for what was previously denoted by c1O and c10 (S, fn, Out) respectively. 

Here are three facts concerning cAuG. The first is simply a reformulation of c« as a compiler in 

the sense of Section 7.1; the last two are technical results that will be useful later. 

73.8 Lemma. Let Z be any signature and let (E, Z) be any (u, v)-extension of E. Also, for each 
ae PR(E),,,,,. let cAuc(E)(c, a) be the transformation of Definition 35.6 (previously denoted c((D, a)). 
Then 

(i) c'uc(E)((D, a) is a compiler from PR(E, cb) into PR(E); that is, 

cAUG ( )((D, a) : PR(E, (D) --PR(E) 

(ü) Let A be a E-algebra and let B= (A, Qa]A ). Then c«" (E)(4', a) is correct with respect to 1. hA 

and [. 1,8; that is, for every a' e PR(E, cb), 

QCAuc(E)(0, a)(allA = Ia'Dß 

(iii) Let P be a performance measure for A which is based on clock C. and let Q =(P, )1) where 
X: A" ---C* is any map with X= XXR(a). Then cAUG(E)(c, a) is a performance preserving com- 

piler with respect to ) $R and %, 7; that is, for every a' e PR(E, (D), 
XPR(CAUG(E)(c, a)(a')) = XSR(a) 

Proof. Immediate from Lemma 3.5.8 and the fact that c«uc(E)(c, a) is word-indexed (see Lemma 

3.5.7). Q 

7.3.9 Lemma. Let E be any signature, and let Se FPIT(E),,,,, for any u, v e St Now let Ge FG(E) be 

the single function group G =S. and additionally let ae PR(E)M,,,. Then 

(i) cAUG (E)(id (S ), a) is a compiler from PR(sig (G)) into PR(E); that is, 

c«ua (E)(id (S ), a) : PR(sig (G )) -*PR(E) 

(ii) If A is a E-algebra with QahA =FA (S), then c'«'a (E)(id (S ), a) is correct with respect to [. JJ 

and [. Ag where Ar, =Alge (G), that is, for every a' E PR(sig (G)), 
[CAUG(Exa7]A = Qa'DA. 

(iii) If P is a performance measure for A with XXR(a)-X, "(S ), then cAUa (E)(id (S ), a) is a perfor- 

mance preserving compiler with respect to XPR and X. Po ; that is, for every a' e PR(sig (G )), 
xPIVII (Exco) = XP. (a') 

Proof. Part (i) of the lemma is immediate by Lemma 7.3.8 since rig (G) is defined to be the (u ,v )- 

extension sig (G) = (Lid (S)). 

Part (ii) of the lemma is also immediate by Lemma 7.3.8 since AG = (A, FA (S)), but FA (S) = QaIA 

by hypothesis, and so AG = (A , [a]IA). 
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Similarly, part (iii) of the lemma follows from Lemma 7.3.8 since PP is defined by 

PG = (P ApP(S )), and X; (S)-),; R(a) by hypothesis. Q 

7.3.10 Lemma. Let E be any signature, and let Ge FG(E) be the multiple function group G =G0; S for 

some GoE FG(E) and some Se FPIT(sig(Go)). If S is of arity (u, v) for some u, v E S*. then for every 
ae PR(sig (G. )).,,. 

(i) ceuc (sig (G0))(id (S ), a) is a compiler from PR(sig (G)) into PR(sig (G0)); that is, 

cAUG(sig (G0))(id (S ), a) : PR(sig (G ))-*PR(sig (G0)) 

(ii) If A is a E-algebra with [a]A. =FA(S) where Ao=AlgA(G0), then c«0(sig(Go))(id(S), a) is 

correct with respect to [. ]A. and [. ]Aa where AG =AlgA (G ); that is, for every a' e PR(sig (G )), 

QcAuc(s g (G0))(id (S), a)(a')]IA. = Ia'D, A. 

(iii) If P is a performance measure for A with XXR(a)=XV(S) where Po=PG. then 

ceuc (sig (G, ))(id (S ), (X) is a performance preserving compiler with respect to pR and X; that 

is, for every a' e PR(sig (G)), 
X, R(cAUC(siö (G0))(id (S), a)(a')) = %P; (a') 

Proof. The proof of parts (i)-(iii) of this lemma is a straightforward rewrite of Lemma 7.3.9: simply 
substitute ̀sig (G0)' for 'E', 'A, ' for 'A', and 'P0' for `P'. 13 

7.3.11 Compiling Function Programs. 

We are now in a position to explain our strategy for compiling arbitrary function programs into 

PR. 

Our objective is to define a map cFP : FPIT(Z)--PR(E), such that if Se FPIT(E)�, � for some 

u, v e S', then a=cFP(S) e PR(E).,,, with 
Vp (S)IA = FA (S) (165) 

and 
XPR(CFP(S)) - XPFP(S) (166) 

Thus cFP will be correct with respect to [. ]A and FA, and performance preserving with respect to X, pR 

and xrr. 

As we shall see below, in defining cFP we will use an auxiliary compiler called cFQ; for each 
GE FG(E), cFC (G) is a mapping 

c'G (G) : PR(sig (G )) ->PR(E) 
which, as we will also explain below, is actually a correct and performance preserving compiler. 

To begin with, let us consider the problem of compiling function programs SE FPIT(E),,,,, for 

given u, v e St First suppose S is simple, that is suppose S is of the form: 

S= function S, 

where: 
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y=(vý,.... y,, )EVar; . 
x= (X�..., x�) E Var., and 

(so, x, y)EPmo(E) ,. 

Now, FA (S) is defined by FA (S)(a) = FA (SO, x, y)(a) for each ae A", and so we need to find some a 

such that Qa]IA (a) =FA (Sox, y)(a) for each ae A". However, a= c1O (E)(S, x, y) is precisely such a 

scheme by Lemma 7.3.6. Thus if we define cFP(S) by 

CFP (S) = CIO (E)(Sox, Y) (167) 

then 
[CFP (S )IA = [CIO (E)(S0, X, y )]A 

= FA(SO, x, Y) 

=FA(S) 
That is, 

QcFP(S)]A =FA(S) (168) 

Furthermore, X '(S) is defined by ). PP(S)(a)=Xp (S0, x, y)(a) for each a r: A", and we know that 

cJO (E) is performance preserving, thus 
; LPR(CFP(S)) = l6PR(C10(SXy)) 

=X (S0, x, y) 
_ %PP(S) 

That is, 

2LPR(CFP (S )) =X "(S) (169) 

Hence cFP correctly compiles S to a scheme of equivalent complexity as required. 

Now suppose S is nested, that is, suppose S is of the form: 
S= function yl...., y. =f :G: S. 

where: 

y =(1i..., y. )E Vary; 
x=(xl..... x�)eVas.; 

Ge FG(E), and 

(S0, x, y) E PMO(sig (G)).,, 

Here FA(S) is defined by FA(S)(a)=FA (SO, x, y)(a) for each ae A", and so we need to find 

some ae PR(E)",, such that [a]IA (a)=F4 (So x, y)(a) for each ae A". Now consider the scheme 

a'= c1O (sig (G))(S o, x, y ): since sig(G) is a (standard) signature, we know from Lemma 7.3.6 that 

c1O (sig (G )) is a compiler from PmO(sig (G )) into PR(sig (G )), and since (S �x, y) e PITIO(sfg (G ))",, 

by hypothesis, we have a' e PR(sig (G)). Furthermore, since c1O (sig (G)) is correct and performance 

preserving we have 
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Ecc']Aa = FA (Sox. Y) = FA (S) 

where Ar, =Alge (G), and 
%lp; (a) = %lp°(S0, X, y) = 7XFP(S) 

Thus a' would be the required implementation cF'(S) if only a' were a scheme over E instead of 

rig (G). 

In fact, as we mentioned above and will explain below, the group G determines a correct and per- 
formance preserving compiler cFO(G) from PR(sig (G )) into PR(E). We can apply cFG(G) to a' to 

obtain the required implementation of S: Define cF° (S) by 

cFP(S) = cF0(G)(a) = cFC(G)(c, o(sg(G))(S0, x'y)) 
Then, 

[c'"(S)DA = QCFG(G) CIO(siä(G))(So, x'y))h 
= Qcio (sib (G))(S0, x'Y )1 A0 

= FA. (Sox, y) 

=FA(S) 
That is, 

[CFPM]IA =FAS) 

Furthermore, 
ýpR(CFP(S)) = i1pR(CFG(G)(Cý(Slg(G))(Sorx'y))) 

lp (c1O(sib(G))(S0 y))) 
lp�. (S0, x+Y ) 

_ 2, Pp(S) 

That is, 
XPR(CFP(S)) = ilpp(S 

Hence cFp correctly compiles S to a scheme of equivalent complexity as required. 

(170) 

(171) 

Function Groups. We claimed above that each Ge FG(E) determines a correct and performance 

preserving compiler cFG (G) form PR(sig (G)) into PR(E). Here we will informally explain our strategy 
for constructing such transformations in some simple cases. (We will formally define both c FP and cFc 
in all cases in the next section. ) 

First suppose G is a single function group; that is, suppose G is of the form G =S for some 
Se FPTT(E). Now consider a scheme a' e PR(sig (G )). Then a' involves (as basic operations) the 

identifiers of S as well as the symbols of E, and so to transform a' into a scheme over E, we must replace 

each occurrence of each fe id (S) in a' by some afe PR(E). 

Now suppose a is some scheme with ae PR(E),,,, where (u, v) is the arity of S. If 

QaDA = FA (S) (172) 

and 
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X"R(a) = 
, 
PP(S) (173) 

then by Lemma 7.3.9, c"UO (E)(id (S ), a) is the required transform of a'. To see this explicitly, define 

cFG (G) by cFG (G)(a)= cA°G(E)(id (S), a)(a) for each a' E PR(sig (G )). Then by Lemma 7.3.9(i), 

cF«(G) is a word-indexed mapping 

cFG(G): PR(sig(G))-PR(E) 

Furthermore, for any a' e PR(sig (G)) we have 

[cFG(G)(a'}]Ja = Qceuc(7)(id(S))a)(a")LL 
= QaýAo 

by Lemma 7.3.9(ii). 

Furthermore, 
XPR(cFG(G)(a)) = XPR(CAUG(E)(id(S), a)(a' 

7LP; (a7 

by Lemma 7.3.9(iii). 

We see that cFG correctly compiles each scheme over sig (G) to a scheme over Z with equivalent 

performance. However, the construction of cFO (G) relies on our finding some ae PR(E) satisfying 
(172) and (173) above. However, as we have previously explained, a=c' °(S) is intended to be pre- 

cisely such a scheme: see (168) and (169) in the case that S is simple (we leave the case of S nested to 

the formal definitions below). 

Now suppose G is a multiple function group; that is, suppose G is of the form G =G0; S for some 
G. e FG(E) and some Se FPIT(E). 

Since Go is a shorter function group than G-, that is, I G0I <I G I, let us imagine that by an induc- 

tive argument on the length of G that we have defined cFG(G0) and established that it is a correct and 

performance preserving compiler from PR(sig (G, )) into PR(E). Also suppose there is some scheme a 

such that ae PR(sig (G0))K,, when (u, v) is the arity of S, and 
QaIA = FA(S) 

where A, =Alge (G,, ), and 
; LpR(a) ' )7(S ) 

(174) 

(175) 

where Po=Pq. (Recall that since S is a function program over sig (G0), the meaning of S is a meaning 

in A� and the performance of S is a performance with respect to Po. ) 

Under these hypotheses on a, we know that c«G (Sig (G))(id (S), a)(a') is a correct and perfor. 

mance preserving compiler from PR(sig (G )) into PR(sig (G o)) by Lemma 7.3.10. Thus, if we now 
define cFG(G) by 

cFG(G)(a') = cFG(G))(c'ua(sig(G))(id(S), a)(a)) 
then it is not difficult to see that cFG(G) will be correct and performance preserving compiler from 

PR(sig (G )) into PR(E). For example, it is easy to show that c FG is a compiler. if de PR(sig (G )), then 

a" defined by 
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a" _ ceuG (sig (G))(id (S), a)(a') 
is a member of PR(sig (G o)) (since cA°C (sig (G ))(id (S ), a) is a compiler from PR(sig (G )) into 

PR(sig (Go))). Now, cFG (G)(a) is defined by 

cFG(G)(a') = cFC(G0)(a') 
and so cFG (G)(a') e PR(E) (since cFG(G0) is a compiler from PR(sig (G0)) into PR(E)). 

Furthermore, it is simple to see that cFG (G) is correct: choose a' e PR(sig (G )), then 
[cFG(G)(a')]JA = EcFG(G0)(CAUG(Sig (G))(id (S), a)(a'))]IA 

= QcAUG(s g(G))(id(S), a)(a')DA 

= Qac'1A0 

Performance preservation of cIG is equally easy to prove using the performance preservation of 
cFO(G0) and ceuG (sib (G))(id (S ), a). 

Let us now return to be the problem of finding ae PR(sig (G, )) (the scheme which we assumed to 
exist satisfying (174) and (175) above). 

Since S is a function program over sig(G0), and since we have argued above that cF' correctly 

compiles function programs over a signature E into a PR scheme over E, it is reasonable to expect that 

C (S) is a PR scheme over sig (Go) (and which implements S). Whilst this is essentially correct, we 

will get into difficulties when we try to use formal analysis unless we make cFP explicitly dependent on 
the underlying signature E: we will subsequently write cF° (Z) for c FP and cFP (E)(S) for cFP (S). As we 
will see in the forthcoming formal definition of c' =cFP(E) and cFG, this change in notation means that 

cFG (G) must be written cFG (E)(G) when G is a function group over E. Q 

We are now in a position to formally define the two compilers which we use to compile function 

programs into PR-schema. 

73.12 Definition. 

Let E be any signature. Below we define 

(1) The FPJT-PR compiler cFp (E) : FPIT(E) -ýpR(E), and 

(2) For each Ge FG(E), a map C G(E)(G) which we call an FG-compiler: for each Ge FG(E), 

c' (1: )(G): PR(sig (G)) ->PR(E). 

To establish that c'° (E) is a compiler, for each Se FPIT(E) we will first define cF° (E)(S) and 
then show that cF°(E)(S)e PR(E)..,, when S is of arity (u, v). Similarly, for each Ge FG(E) we first 

define cFG (E)(G) and then show it is a word-indexed mapping from PR(sig (G)) into PR(E). 

The definitions of c" ()(S) and cFG (! )(G) are uniform in E and by simultaneous induction on 
the depth of S and G. Fix Se FPIT(E)µ,, for some u, v e S" and Ge FG(E): then the definitions of 

cF° (E)(S) and cFG (E)(G) proceed as follows: 
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Basis Case (1). Suppose SE FPIT(l) with depth (S) = 0: then S is a simple function program of the 
form: 

S= function So 

where: 

Y= (Yý,..., y. )E Var�; 

x= (x x. ) r= Var., and 

(Sc x, Y) E PMO(E),,,. 

Construction. In this case we define cFP (1)(S) by 

CFp (Y. )(S) = CIO (1: )(S 
0,. x Py 

Well-definedness. It is easy to see that cFp (E)(S) is well-defined in this case: by Lemma 7.3.6, c! 0 (E) is 

a compiler from PTTIO(Z) into PR(E), and (S �x, y) e PMO(E),, y. Hence, 

CFP(E)(S) = cro(E)(So x, y)e PR(E).., 

as required. 

Basis Case (2). Suppose GE FG(E) with depth (G)=O. We will define cFG (E)(G) by sub-induction on 

the length of G as follows: 

Sub-Basis. Suppose IGI=1: then G is of the form G =S for some Se FPIT(E). 

Construction. In this sub-case we define cFG(E)(G) by 
CFG(i(G) = CHUG(E)(id(S), a) 

where a=cFF(E)(S). 

Well-Definedness. Suppose Se FPIT(E),, y for some u, v eS Then since depth (G)=0 it follows that 

depth(S)=0; thus, as in Basis Case (1) above, since a=cFP(E)(S), we know that a is a well-defined 

member of PR(I: ),,, y. By Lemma 7.3.9 then, it follows that cAuG (E)(id (S ), a) is a compiler from 

PR(sig (G)) to PR(E); that is, 
CFG(E)(G) = CAUL(E)(id(S), a): PR(sig(G)). _PR(E) 

as required. 

Sub-Induction. Suppose that for some fixed 12: 1 that for every function group GE FG(E) with 
depth (G) =0 and IGI =1, that we have defined cFG (E)(G) and established that 

cFG (E)(G) : PR(sig (G ))-'PR(E) 

Now suppose Ge FG(E) with depth (G) =0 and IGI =1+1: then G must be of the form G =G0; 5 

for some G, e FG(E) and some SE FPTT(sig (G, )). 

Construction. In this case we define cFG (E)(G) by the composition: 
cFG(E)(G) = cFG (Z)(G0) O cAUG (sig (G0))(id (S ), a) 

where a=cF'(s g(G,, ))(S)" 
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Well-Definedness. To show that cFO (E) is a compiler from PR(sig (G)) into PR(E), we must show 
c' (E) : PR(sig (G )) --PR(E) (176) 

However, since the composition of two word-indexed maps is again a word-indexed map, it follows 
from the definition of cFG (E), that (176) holds if we can show 

c'G(E)(Go): PR(si8(Go))-'PR(E) (177) 

and 

SAUG (sib (Go))(ld (S ), a) : PTTIO(sig (G)) -->PR(sig (Go)) (178) 

Since IG I= I+1 with depth (G)=O, it follows that I G, 1=1 and depth (G o) = 0. Thus by the sub- 
induction hypothesis applied to G. we may immediately assume that (177) is satisfied. 

To see that (178) also holds, again using the fact that depth (G) = 0, it follows that depth (S) = 0, 

and so if Se FPIT(sig (G, )),,,,, then S must be a simple function program of the form 
S= function ylý... ýY. =f I(xl,..., x�),..., ff(xl,..., x, ý) : So 

where: 

y= (y ý...., y. ) E VarT i 

x= (x1,..., x. )e Varu, and 

(S0, x, y) E PMO(sig (G. )).,,. 

Also since depth (S)=0, a=cFP (sig (G0))(S) must be defined as in Basis Case (1) above; that is, 
a= Cep (sig (G 

. 
))(S) = c1O (sig (G 

o))(S y) 
Now, by Lemma 7.3.6 we know that c1O (sig (G, )) is a compiler from PITIO(sig (G o)) into PR(sig (G, )); 

that is, 

c10 (sig (G0)) : PTITO(sig (G0))-. PR(sig (G0)) 
But (S0, x, y) is of arity (u, v) and so a=c'°(sig(G0))e PR(sig(G0)),,, v. Thus, by Lemma 7.3.10, 

cauc (sig (G o))(id (S ), a) is a compiler from PR(sig (G)) into PR(sig (G0)); that is, 

cAuG (sig (G0))(id (S ), a) : PR(sig (G )) --ý-PR(sig (G o)) 
Thus (178) also holds, completing the sub-induction, and also the basis case for function groups G. 

Induction Cases. For some fixed d20 assume the following: 

(1) For any signature F, and for any SE FPrr(F. 4) with depth(S)Sd, we have defined cFp"r(E0(S) 
and shown that it is a well-defined member of PR(z0),,,,, when S is of arity (u, v ). 

(2) For any signature F, and for any Ge FG(1) with depth (G )5d, we have defined c FG (Z, )(G) and 

shown that it is a compiler from PR(sig (G)) into PR(Fb); that is, 

cFG (F. 0)(G ): PR(sig (G ))--ýPR(E0) 



- 265 - 

Induction Case (1). Suppose Se FPTT(E).,,, with depth (S) =d +1: then S must be of the form 

S= function yl,.... ym =f :G: S. 

for some GE FG(E) and where: 

y= (y I..... yin)E Var�; 

x= (X�.... X, ) E Var,,, and 

(S0, x,, Y) e PTTIO(si8 (G)). u, r 

Construction. In this case we define cFP (E)(S) by the composition 
c1 (E)(S) = cFG (1)(G) o c'° (sig (G))(S0, x, y ) 

Well-Definedness. To show that cF' (E)(S) is well-defined here we must show 

cFP (E)(S) e PR(E),,,, (179) 

(since Se FP1T(E),,,, by hypothesis). Now, since the composition of two word-indexed maps is a 

word-indexed map, it follows from the definition of c'Fp (1)(S), that (179) holds if we can show 

cFC (E)(G) : PR(sig (G )) -'PR(E) (180) 

and 
C'° (sib (G)): PMO(sig (G ))- PR(si8 (G)) (181) 

Now, (181) certainly holds by Lemma 7.3.6, and so it remains to see that (180) holds. However, 

since depth (S) = d+l it must be that depth (G) = d, and so by induction hypothesis (2) applied to G it 

follows that cFG (E)(G) is a compiler from PR(sig (G)) into PR(E); that is, 

c' (E)(G) : PR(sig (G )) -'PR(E) 

This is (180) above of course. 

Induction Case (2). Suppose Ge FG(E) with depth(G)=d+1. We will define cFG (E)(G) by sub- 
induction on the length of G as follows: 

Sub-Basis. Suppose IGI =1: then G is of the form G=S for some Se FPIT(E). 

Construction. In this sub-case we define cFG(E)(G) by 

cFC(E)(G) = ceuc(E)(id(S), a) 
where a=c"(E)(S)" 

Well-Definedness. Suppose Se FPIT(E)M, V, for some u, v e St Then since depth(G)=d+1 it follows 

that depth(S)=d+1; thus, as in Induction Case (1) above, since a=cFF(E)(S), we know that a is a 

well-defined member of PR(E),,,,,. By Lemma 7.3.9 then, it follows that cAuG (Z)(id (S ), a) is a compiler 
from from PR(sig (G)) into PR(E), and thus 

cFG(E)(G) = LAUG( )(id(S), (x): PR(s g(G))->PR(E) 

as required. 
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Sub-Induction. Suppose that for some fixed 1Z1 that for every function group Ge FG(E) with 
depth (G) = d+1 and IGI =1, that we have defined cFa (E)(G) and established that 

c FG (E)(G ): PR(si8 (G ))-->PR(Z) 

Now suppose Ge FG(E) with depth (G) = d+1 and IG 1=1+1: then G must be of the form 

G=G,; S for some G, e FG(E) and some Se FPIT(sig (G, )). 

Construction. In this case we define cFG (E)(G) by the composition 
cFG(E)(G) = cFG(Z)(G ,)o ceuc (sib (G0))(id (S ). a) 

where a= cFp (sib (G0))(S )" 

Well Def: nedness. To show that cFG (E)(G) is well-defined we must show 

cFC' (ß%)(G0) : PR(sig (G. )) ---. >PR(E) (182) 

and 

cAUG (sig (G0))(id (S ), a) : PR(sig (G )) -PR(sig (G, )) (183) 

However, it follows from Lemma 7.3.10 that condition (182) will be satisfied if we can show that a is a 

well-defined member of PR(sig (G0)), ß,,, when S is of arity (u, v ); that is, if 

a= cFP (E)(sig (G0))(S) e PR(sig (G. )).,, (184) 

Thus it remains to show that (182) and (184) hold. 

By definition of depth (G ), depth (G) = max{ depth (G o), depth (S) }. But depth (G) = d+1 here, 

and so there are three possibilities for the depths of G. and S: 
Case (a): depth (G. ) 5d and depth (S) =d +I 
Case (b): depth (G,, ) = d+1 and depth (S) = d+1 
Case (c): depth (G,, ) = d+1 and depth (S) Sd 

We will now establish that (182) and (184) are satisfied in each of these cases. 

Case (a). Suppose depth (G, ) Sd and depth (S )= d+1. Then by the main induction hypothesis (2) 

applied to G, we may assume that cFG (E)(G, ) is a well-defined map of the form; 

cf c(E)(G0): PR(sig (G0))-'PR(E) 
This is precisely condition (182) above of course. 

Also, since SE FPIT(sig (G o)) with depth (S) = d+l it must be that S is a nested function program 

of the form 

S= function Y1,.... Yn, =f : G' : S. 

where: 

y= (y1..... y, 3)E 
Var�; 

x= (xi,..., x. )e Var,; 

G' E FG(sig (G, )), and 

(S0, x. y) E PITIO(sig (G» 

Now, since depth (S)= d+l, it must be that cF°(sig(G0))(S) is as defined in Induction Case (1) above, 
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namely, 
cF' (sib (Go))(S) = cFC (sib (Go))(G') o c10 (sib (G'))(S0"x, y ) 

Thus to show that (184) is satisfied, we must show 

cFG(sig (G0))(G' ): PR(sig (G')) -4PR(sig (G0)) (185) 

and 
c10 (sig (G' )) : PITIO(sig (G' ))-+PR(sig (G' )) (186) 

Now, (186) is certainly true by Lemma 7.3.6, and so it remains to show that (185) is satisfied. 
However, since depth (S) = d+l, it must be that depth (G') =d, and so by the main induction hypothesis 

(2) applied to G' we have 

ca't' (sig (G0))(G') : PR(sig (G')) -'PR(sig (G0)) 
This is precisely (185) of course, and so (184) is satisfied as claimed. 

Case (b). Suppose depth(G0)=d+1 and depth (S) = d+l. Then since IGI =1+1 it follows that 

I G, I =1. Thus by the sub-induction hypothesis (2) applied to G, we may assume that cFr, (E)(G0) is a 

well-defined map of the form: 

SFG (1)(G,, ): PR(sig (G0))-ýPR(E) 

This is condition (182) of course. 

Since depth (S)=d+1, condition (184) holds in this case for exactly the same reasons that it did in 

Case (a) above. 

Case (c). Suppose depth (Go) =d+1 and depth (S) Sd. Then since depth (G, ) = d+1 it follows that con- 
dition (182) holds for exactly the same reasons that it held in Case (a) above. 

Finally, it is easy to see that condition (184) holds in this case by the (main) induction hypothesis 

(1). 

This completes the sub-induction and also the main induction for function groups. Q 

7.4 VERIFICATION OF THE FPIT"PR COMPILER. 

We now prove c1 ° (E) is correct and performance preserving. 
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7.4.1 Theorem. Let E be any signature, let A be a I-algebra, and let P be a performance measure for 
A. Then 

(1) cFP (E) is correct with respect to HA and FA; that is, for every Se FPIT(E), 

QcFP(E(S)JA =FA(S) (187) 

Furthermore, cFP(Z) is a performance preserving compiler with respect to X, pR and 7lpFP that is, 
for every Se FPIT(E), 

xPR(CFP(y (s)) = ), pp(S) (188) 

(2) for every Ge FG(E). cFG (E)(G) is correct with respect to I" ]A and [JA 
. 

where 

A,, =AlgA (G); that is, 

(V aE PR(sig (G ))) ([cFO(E)(G)(a)1A = Qa1A0) (189) 

Furthermore, cFa(E)(G) is a performance preserving compiler with respect to X, PR and XPa ; that 

is, 

(VaE PR(si8(G))) (XpR(cFc(E)(G)(a)) = Xp; (a)) (190) 

Proof. Let SE FPIT(I: ),,,,, for some u, v e S", and let GE FG(I). We will prove that (187) and (188) 

hold for S, and that (189) and (190) hold for G simultaneously and by induction on the depth of S and 
G respectively; additionally the proof is uniform in E. 

Basis Case (1). Suppose depth (S) = 0: then S is a simple function program of the form: 
S= function yl,..., yet =f : Sp 

where: 

y= (yý..... y. )E va.,; 
x =(xl,.... x. )eVary, and 

(S0 , y) E PMo(E) 
In this case cFp (E)(S) was defined by 

CFP(r(S) = C"(E)(S.. X y) 

Correctness. It is easy to see that cF° (E)(S) is correct in this case: 
I[c" (E)(S )]A = [CIO (E)(S 

o, X, y)]JA 

= FA (Sox, y ) 
(since c 10 (E) is correct; see Lemma 7.3.6(ii)) 

=FA(S) 
(by definition of FA). 

Thus (187) holds for function programs of depth 0; that is, cFP (E) correctly compiles function pro- 
grams of depth 0. 
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Performance Preservation. It is equally easy to see that cFP (E)(S) is performance preserving: 
XPR(cFP(EXS)) = XXR(c'0(E)(S0, zÜy)) 

X'P (So+z, y) 
(since c70 (E) is performance preserving; see Lemma 7.3.6(iii)) 

%P FP(S) 

(by definition of XpFp). 

Thus (188) holds for function programs of depth 0; that is, cFP (E) compiles any function program 
of depth 0 into a scheme of equivalent complexity. 

Basis Case (2). Suppose GE FG(E) with depth(G)=O. We will prove that (189) and (190) hold by 

sub-induction on the length of G as follows: 

Sub-Basis. Suppose IGI =1: then G is of the form G=S for some Se FPTT(E). 

In this sub-case cFO (E)(G) was defined by 

cF(E)(G) = cI«G(E)(id(S), a) 
where a=c"(E(S). 

Correctness. First notice that ae PR(E),,, (since cFP (E) is a compiler from FPIT(E) into PR(E) and S 
is of arity (u, v)). Also, since depth (G) =0 it follows that depth (S) = 0; thus, as in Basis Case (1) above, 
it is easy to prove that 14A =FA (S). Hence, by Lemma 7.3.9(ii), for every a' e PR(sig (G)); 

Qc'uc(E)(id(S), a)(a')DA = Qcc'1A, (191) 

where AG =AIgA (G). 

Thus, for every a' e PR(sig (G)), 

[cFG(E)(G)(aD]A = [ceuc(j: )qd (S), a)(a')]4 

= Q«IA, 
(from (191)). 

Hence (187) holds for function groups of depth 0 and length 1; that is, for such function groups G 

cFQ (E)(G) is correct with respect to A and AG as claimed. 

Performance Preservation. Again since depth(S)=0 and ae PR(E),,,,,, it is easy to prove that as in 

Basis Case (1) above, XPR(a) =X fP(S ). Hence, by Lemma 7.3.9(iii), for every a' e PR(sig (G)), 
). pR(CAUG(1: )(id(S). a)(aý) = PP(a) (192) 

Thus, for every a' e PR(sig (G)), 
XPR(CFG (Z)(G)(a 

J) = xpR(CAUG (E)qd (S), a)((XD) 
)'Ps (a7 

(using (192)). 

Hence (190) holds for function groups of depth 0 and length 1; that is, for such function groups G 

SFG (E)(G) is performance preserving with respect to P and PG as claimed. 
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Sub-Induction. Suppose that for some fixed l 21 that for every function group Ge FG(E) with 
depth (G) =0 and IGI =1, that we have proved c1 (E)(G) correct and performance preserving; that is, 

(Va' e PR(sig (G ))) (Qc FG (E)(G)(a')1A = Ia1A, ) (193) 

and 
(Va'EPR(si8(G))) (71pR(cFC(E)(G)(a"))', %Pe(a7) (194) 

Now suppose Ge FG(E) with depth (G) =0 and IG (=1+1: then G must be of the form G=G,; S 
for some G. e FG(E) and some Se FPIT(sig (G0)). 

In this case cFG(E)(G) was defined by the composition: 

cFG(E)(G) = cFG (E)(Go) "c «10 (sib (Go))(id (S), ca) 
where a= c Fp (sig (G o))(S )" 

Correctness. To show that cFG(E) is a correct compiler from PR(sig (G )) into PR(E), we must show 
(V a' e PR(sig (G ))) (Qc FG (E)(G)(a')DA _ [(X']IA, ) (195) 

To see that (195) holds, let us first assume that 
(V cz' E PR(sig (G. ))) ([cFC (I)(GO)(a")]Je = [a'A. ) (196) 

and 
(da'e PR(sig (G))) ( [cevc(E)(id(S), a)(a')JA = QalA, ) (197) 

where As =Alge (G) and A, =Alge (G0)" 

Now choose a' e PR(sig (G )), then by definition of cFG (E)(G) we have 

[c'G(E)(G)(a7IA = QcFG(E)(Ga)ocAUG(sig(G0))(id(S), a)(a')]A 
= [CAUL (Sig (G0))(id (S ), aXa')]IA. 

(by (196)) 

=I CCIA0 
(by (197)). 

Hence (189) holds for function groups of depth 0 and length 1+1: by the principle of mathematical 
induction, (189) therefore holds for function groups of depth 0 and of any length 1; that is, for any G 

c with depth (G) = 0, FG (E)(G) is correct with respect to A and Ag as claimed. 

It remains to show that (196) and (197) hold. 

Since IGI =1+1 with depth (G) = 0, it follows that I G. (=l and depth (G, ) = 0. Thus by the sub- 
induction hypothesis (193) applied to G. we may immediately assume that (196) is satisfied. 

To see that (197) also holds, again using the fact that depth (G )=0, it follows that depth (S) = 0, 

and so if S is of arity (u, v ), then S must be a simple function program of the form 
S= function So 

where: 

y= (y 1"-"", y. )E Var,; 

x= (x X. ) e Var., and 
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(Sox, Y) e Pmo(sig (G0)).,, 

Also since depth (S)=0, a= c Fp (sig (G 0))(S) is defined by 

a= c' (sig(G0))(S) = c1°(sig(Go))(So, x. y) 
Now, by Lemma 7.3.6(ii) we know that c1°(sig(G0)) is a correct compiler from PTTIO(sig(G0)) into 

PR(sig (G0)); that is, 

(V (S Jn, Out) e PTTIO(sig (G0))) (Qc1° (sig (G0))(S Jn, Out )]A. = FA(S Jn, Out)) (198) 

Now, since a= c10 (sig (G, ))(S�x, y ), it follows from (198) that 

QaIA" = [cto(sig(Go))(S0xy)DA, = FA (SO. x, y) 
Thus, by Lemma 7.3.10(ii), cA°G(sig (G , ))(id (S ), a) is a correct compiler from PR(sig (G )) into 

PR(sig (G0)); that is, 

(Va' e PR(si8 (G ))) ([ceu0 (sig (G o))(id (S), a)(a')]A = Qa'IlA, ) 

Thus (197) also holds, completing the correctness sub-induction, and also the basis case for the correct- 

ness of c' (Y(G ). 

Performance Preservation. To show that cFG(E) is a performance preserving compiler from 

PR(sig (G)) into PR(E), we must show 
(Va'e PR(si8(G))) (XPPR(cFG(E)(G)(a)) X (a)) (199) 

To see that (198) holds, let us first assume 
(Va' e PR(siö (G 

o))) 
()-pR(cFG (E)(G0)(a')) = XXR(a')) (200) 

and 

where Po=PP. 

(V a' e PR(sig (G))) (XXR(c AUG (E)(id (S), a)(a7) = gyp; (aD) (201) 

Now choose de PR(sig (G )). Then from the definition of cF° (E)(G) we have: 
XPR(cFG(X)(G)(a')) _ XpR(cFG(E)(Go), 

c«G(sig(Go))(id (S)'a)(aD) 
pR(c"' (Sig (G o))(id (S)'a)(a')) 

(by (200)) 

(by (201)). 

XPe (a7 

Hence (190) holds for function groups of depth 0 and length 1+1: by the principle of mathematical 

induction, (190) therefore holds for function groups of depth 0 and of any length 1; that is, for any G 

with depth (G)=O, cFG (Z)(G) is performance preserving with respect to P and PG as claimed. 

It remains to show that (200) and (201) hold. 

Since I G. I =1 and depth (G,, ) = 0, we can apply the sub-induction hypothesis (194) to G, 

immediately yielding (200). 
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To see that (201) also holds, first notice that by Lemma 7.3.6(iii) we know that cJO (sig (G0)) is a 

performance preserving compiler from PMO(sig (G, )) into PR(sig (G0)); that is, 

(`d(S, ln, Out)e PTTIO(sig(G. ))) ( XXR(cJ°(sig(G0))(Sdn, Out)) = XFO(S, ln, Out)) (202) 

Now, since a= c1° (sig (G0))(S0, x, y ), it follows from (202) that 
llpR(c1o(sig(Go))(Soxy)) = ap'O(soxy) 

Thus, by Lemma 7.3.10(iii), c«G(sig(G0))(id(S), a) is a performance preserving compiler from 

PR(sig (G)) into PR(sig (G0)); that is, 
(V aý E PR(sig (G ))) ()lpR(cAUG (sig (G 0))(id (S), a)(a)) =X (a') ) 

Thus (201) also holds as required. 

Induction Cases. Let 10 be any signature, and let Ao be a 1, -algebra, and let Po be a performance 
measure for A, Then for some fixed dZ0 assume the following: 

(1) for every Se FPTT(F. ) with depth(S) 5 d, cFP (E) correctly compiles S into a scheme of 

equivalent performance; that is, we assume 
QcFP(E)(S)IA = FA (S) (203) 

and 
)PR(CFP(E)(S)) =). p (S) 2(W) 

(2) for every Ge FG(Z0) with deprh(G)Sd, cFG(Z)(G) is a correct and performance preserving 

compiler from PR(sig (G)) into PR(E); that is, we assume 
(V a' e PR(sig (G ))) (QcFG (E)(G)(a')1A = NIA. ) (205) 

and 
(V a' E PR(si8 (G») (X''(c' (1: )(G Xa')) = 7ýP; (aP) ) (206) 

Induction Case (1). Suppose Se FPTT(l)�,, with depth (S) = d+1: then S must be of the form 
S= function yi,..., ye1 =f i(X1..., x ).... fnl(X1,..., x) :G: S. 

for some Ge FG(E) and where: 

y= (yý,..., y. 
)E Vary 

x= (X�..., x�) E Vary, and 

(S0, x, y) E Pmo(si8 (G)).,,. 
In this case cFp (E)(S) was defined by the composition 

cFP(T)(S) = c' (E)(G)oclo(si8(G))(Smx y) 

Correctness. To show that cFP (E)(S) is correct we must show 
[CFP (': )(S )IA = FA (S) (207) 

To show that (207) holds first assume: 
(d a' E PR(sig (G))) (QcFC (E)(G)(a')DA = [a'%%, ) (208) 

and 
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(V (S Jn , Out) e PMO(sig (G ))) ([cto (sib (G))(S Jn , Out )DA, = FAA(S Jn , Out)) (209) 

where Ag =AlgA (G). Then by definition of cFP (E)(S) we have 
[c FP (E)(S )IA = QcFG (E)(G) o cJ0 (rig (G ))(Sox'y )IA 

= Qcro (sis (G))(S0, x, y )IIA, 

(by (208)) 

(by (209)) 

(by definition of FA (S)). 

= FA0(SO, X, Y) 

= FA (S) 

Thus (187) holds for function programs of depth d+l; that is, c"(E) correctly compiles function 

programs of depth d+1. 

It remains to show that (208) and (209) hold. 

First, (209) certainly holds by Lemma 7.3.6(ii), and so it remains to see that (208) holds. However, 

since depth (S) =d +l it must be that depth (G) = d, and so by the induction hypothesis (205) applied to 

G it follows that cl (E)(G) is a correct compiler from PR(sig (G)) into PR(E); that is, 

(Va' e PR(sig (G ))) (QcF (E)(G)(aMA = Qa'ii, ) 

This is (208) above of course. 

Performance Preservation. To show that cFP (E)(S) is performance preserving we must show 
;. PR(cFP (1) (S )) = ; Lp (S) (210) 

To show that (210) holds first assume: 
(Va' e PR(si8 (G ))) () PR(cFG (L)(G X a#)) = Xp; (a')) (211) 

and 
(V (S, fn, Out) E PTTIO(sig (G ))) ('(c° (sib (G))(c&')) = XP°(S. ln . Out)) (212) 

Then by definition of c' (E)(S) we have: 
XPR(c (T-)(S )) =) 

R(CFG (E)(G) o c10 (sig (G ))(Sort 
ry 

)) 

7LPR (c1°(sib(G))(S0, x. y)) 

(by (211)) 

(by (212)) 

(by definition of APP(S)). 

='I , 
P°(S 

, y) 

- PP(S) 

Thus (188) holds for function programs of depth d+l; that is, c"1(E) compiles any function pro- 

gram of depth d+1 into a scheme of equivalent complexity. 

It remains to show that (211) and (212) hold. 
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First, (212) certainly holds by lemma 7.3.6(iii), and so it remains to see that (211) holds. How- 

ever, since depth(S) = d+1 it must be that depth (G)=d, and so by induction hypothesis (206) applied to 
G it follows that cFG (E)(G) is a performance preserving compiler from PR(sig (G)) into PR(E); that is, 

(Va'e PR(sig(G))) ( XpR(ct: G(E)(G)(a#) = X, p; (a7 ) 

This is (211) above of course. 

Induction Case (2). Suppose Ge FG(E) with depth(G)=d+1. We will prove that cFG(E)(G) is 

correct and performance preserving by sub-induction on the length of G as follows: 

Sub-Basis. Suppose IGI=1: then G is of the form G =S for some Se FPIT(E). 

In this sub-case c1 (E)(G) was defined by 

cFG(l)(G) = cA'c(E)(id(S), a) 
where a=cFP(E)(S). 

Correctness. Suppose Se FPrF(E),,,, for some u, v e S*. Then since depth (G)=d+1 it follows that 

depth(S)=d+1; thus, as in Induction Case (1) above, since a=cFP(E)(S), we know that a is a well- 
defined member of PR(E),,.,. By Lemma 7.3.9(ii) then, it follows that cAO' (E)(id(S), a) is a correct 

compiler from from PR(sig (G)) into PR(E), and thus for every de PR(sig (G )), 

QcFC(E)(G)(a')LL = QcMuc(X)(id(S), a)(aD]JA = [aIJA, 

That is, cFG (E)(G) is correct as claimed. 

Performance Preservation. Since Se FPIT(E),,,,, and depth(S)=d+1, it follows as in Induction Case 

(1) above, that a is a well-defined member of PR(E),,,,. By Lemma 7.3.9(iii) then, it follows that 

cAUG (E)(id (S ), a) is a performance preserving compiler from from PR(sig (G )) into PR(E), and thus for 

every a' E PR(sig (G)), 
7. PR(cFG (X)(G)(a7) = ). pR(cAUG (E)(id (S), a)(a')) = Xpe (a') 

That is, cFG (E)(G) is performance preserving as claimed. 

Sub-Induction. Suppose that for some fixed 121 that for every function group Ge FG(Z) with 
depth (G) = d+l and IGI =1, we have proved that cFG(E)(G) is a correct and performance preserving 

compiler; that is assume that we have shown: 
(V a' e PR(sig (G))) (QcFC (E)(G)(a')]e = WDlo) (213) 

and 
(Va' e PR(si8 (G ))) (%pR(cFO (E)(G Xaj) gyp; (a)) (214) 

Now suppose G eFG(E) with depth(G)=d+1 and IG 1=1+1: then G must be of the form 

G=G,,; S for some G. E FG(E) and some Se FPrF(sig (G, )). 

In this case cFG(E)(G) was defined by the composition 
c FG (E)(G) = cFC (Z)(G 

o) , cAaa (sig (G 0))(id (S ). a) 
where a= cFP (sig (G, ))(S ). 
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Correctness. As in the case of multiple function groups of depth 0, to show that cFG (E)(C) is correct it 
is sufficient for us show 

(V a' 6 PR(sig (G. ))) ( [cFG (E)(GO)(a')]JA = [a']1A. ) (215) 
and 

(V a' e PR(si8 (G ))) (D c'« (sib (G o))(id(S)"a)(a )DA. = [a']A0) (216) 

where A0 =A1gg (G) and A, =Alge (G, ). 

However, it follows from Lemma 7.3.10(iii) that condition (216) will be satisfied if we can show 
[a]A" = IICFP (7S (G 

o))(S 
)]A, = FA (S) (217) 

Thus it remains to show that (215) and (217) hold: 

By definition of depth (G ), depth (G)= max{ depth (G0), depth (S) }. But depth(G)=d-i-1 here, 

and so there are three possibilities for the depths of G, and S: 
Case (a): depth (G, ) Sd and depth (S) = d+1 
Case (b): depth (Go) = d+l and depth (S) = d+1 
Case (c): depth (G o) = d+1 and depth (S) 5d 

We will now establish that (215) and (217) are satisfied in each of these cases. 

Case (a). Suppose depth (Go) Sd and depth (S) = d+l. Then by the main induction hypothesis (2) 

applied to G. we may assume that cFG(E)(G0) is a correct compiler from PR(sig(G0)) into PR(E); that 
is, 

(Va'e PR(sig(G0))) ( QcFC(E)(Go)(a')]JA = Qa'11A ) 

This is precisely condition (215) above of course. 

Also, since Se FPTT(sig (G o)) with depth (S) = d+l it must be that S is a nested function program 

of the form 
S= function y1..... Ym =f G' : S. 

for some G' e FG(sig (Go)), and where: 

y= (yl,.... y. )E vary; 

x= (xl..... x. )E Var, 4, and 

(S0, x, y) E Pmo(s g (G')). 

To show that (217) holds first notice that since depth(S)=d+1, a=cFP(sig(G0))(S) is as defined 

in Induction Case (1) above; that is, 

a= cep (si8 (Go))(S) = cFG (sig (G. ))(G') a c'o (sig (G'))(S., x, Y ) 
Now assume 

(V a' e PR(sig (G'))) (QcFC (sib (G o))(G')(a)JA. = QalA' ) (218) 

and 
(V (S dn, Out) e PMO(sig (G'))) (Qclo (sig (G'))(a')JA' = FA' (S, fn, Out)) (219) 

where A0=AlgA(G, ) and A' =Alge (G' ). Then by definition of a we have: 
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[«1A. QcFO(sib(Go))(G')oclo(si8(G'))(S ºY)]IA, 
= Qcro (sis (G'))(So, x'y )]L' 

(by (218)) 

= FA" (SO, z, y ) 
(by (219)) 

=FA(s) 
(by definition of FA(S))- 

Hence (217) holds as claimed, assuming we can show (218) and (219) hold of course: 

Now, (219) is certainly true by Lemma 7.3.6(ii), and so it remains to show that (218) is satisfied. 
However, since depth (S) = d+l, it must be that depth (G') =d, and so by the main induction hypothesis 

(205) applied to G' we have 

(d aý E PR(sig (G'F))) (QcFC (sib (Go))(G')(a')]JA = Qa'lA- ) 

This is precisely (218) of course, and so (217) is satisfied as claimed. 

Case (b). Suppose depth (G o) =d+1 and depth(S) = d+l. Then since IG I =1+1 it follows that 

1Goff =1. Thus by the sub-induction hypothesis (213) applied to G. we may assume that cFG (E)(G0) is 

a correct compiler from PR(sig (Go)) into PR(E); that is, 

(V a' e PR(sig (G. ))) (QcFG (E)(G 0)(a')IIA = [a'DA. ) 

This is condition (215) of course. 

Since depth (S) = d+l, condition (217) holds in this case for exactly the same reasons that it did in 

Case (a) above. 

Case (c). Suppose depth (Go) =d+1 and depth (S): 5 d. Then since depth (G, ) = d+1 it follows that con- 
dition (215) holds for exactly the same reasons that it held in Case (a) above. 

Finally, it is easy to see that condition (217) holds in this case by the (main) induction hypothesis 

(203) applied to S. 

This completes the sub-induction and also the main induction for the correctness of cFP(Z). 

Performance Preservation. To show that cFG(E)(G) is performance preserving, as in the case of multi- 

ple function groups with depth 0, it is sufficient for us to show 
(dare PR(sig(G. ))) (X, R(cFm(I(G, )(a? )) = XpR(a)) (220) 

and 

(V (S, ln, Out)e PR(sig(G))) (XpR(c« (g(Go))( (S), «)(«)) =11p; («7) (221) 
where Po=PG . 

However, it follows from Lemma 7.3.10(iii) that condition (221) will be satisfied if we can show 

that 
IPR(a) _ lIPR(cFP(E)(siö(G0))(S)) =X "(S) (222) 

Thus it remains to show that (220) and (222) hold. 
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Again there are three possibilities for the depths of Go and S: 
Case (a): depth (G, ) 5d and depth (S) = d+1 
Case (b): depth (G, ) = d+l and depth (S) = d+1 
Case (c): depth (G, ) = d+1 and depth (S) Sd 

We will now establish that (220) and (222) are satisfied in each of these cases. 

Case (a). Suppose depth (G o) 5d and depth (S) =d +l. Then by the main induction hypothesis (206) 

applied to G. we may assume that cFG (E)(G0) is a performance preserving compiler from PR(sig(G0)) 

into PR(E); that is, 

(Va'e PR(sig(G0))) ( )LpR(cFC(L)(Go)(a)) =). pR((xl ) 

This is precisely condition (220) above of course. 

Also, since Se FPIT(sig (G, )) with depth (S) =d+1 it must be that S is a nested function program 

of the above form. Now, since depth(S)=d+1, cF"(sig(G0))(S) is as defined in Induction Case (1) 

above; that is, 
cF° (sig (G0))(S) =c 'G (sig (Go))(G') o c10 (sib (G'))(So, x'Y ) 

Now assume 
(d a'E: PR(sig (G'))) (X (cFG (sig (G0))(G')(a)) =A (a')) (223) 

and 
(V (S do , Out) e PmO(sig (G' ))) (I, p (coo (sig (G'))(a')) =)$ (S Ja , Out)) (224) 

where P' = (Na (which is a performance measure for A' =A1gA (G' )). Then by definition of a, we 

now have: 

(by (om)) 

(by (224)) 

Xp (S z, y) 

_X 
"(S) 

(by definition of AtP(S )). 

Thus (222) holds as required, assuming (223) and (224) hold of course: 

Now, (224) is certainly true by Lemma 7.3.6(ili), and so it remains to show that (223) is satisfied. 

However, since depth(S)=d+1, it must be that depth(G')=d, and so by the main induction hypothesis 

(206) applied to G' we have 

(d a' e PR(sig (G'))) (X (CFQ (sib (G 
0))(G')(a')) = Xr (a) 

X (a) = ý, PR(cPO(sib(Go))(G')oc10(sib(G'))(S ºY)) 
Xp (c, o(si8(G'))(So, r, y)) 

This is precisely (223) of course, and so (222) is satisfied as claimed. 
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Case (b). Suppose depth(G0)=d+1 and depth(S)=d+1. Then since IG I=1+1 it follows that 
G0 I=l. Thus by the sub-induction hypothesis (214) applied to G, we may assume that cFG (E)(G o) is 

a performance preserving compiler from PR(sig (G, )) into PR(E); that is, 

(Va'e PR(sig(Go))) (XXR(cFG(E)(Go)(a')) = XpR(a) ) 

This is condition (220) of course. 

Since depth (S)=d+1, condition (222) holds in this case for exactly the same reasons that it did in 

Case (a) above. 

Case (c). Suppose depth (G, )= d+1 and depth (S) 5 d. Then since depth (G. )= d+1 it follows that con- 
dition (220) holds for exactly the same reasons that it held in Case (a) above. 

Finally, it is easy to see that condition (222) holds in this case by the (main) induction hypothesis 

(204) applied to S. 

This completes the sub-induction and also the main induction for the performance preservation of 

cFG(Z)(G ). Q 

Discussion. The preceding theorem quantifies over all (standard) signatures E, all (standard) algebras 
A, and all (standard) performance measures P. An immediate consequence of the theorem is that 

cFP (E) is a correct and performance preserving compiler from FP1T(E) into PR(E_ ); correct with 

respect to FA and E. LA, and performance preserving with respect to Xt' and XP where Q is a perfor- 

mance measure for A. Thus whatever we can compute with FPTT(E) we can define by a scheme from 

PR(E) with equal time complexity. 

In the discussion at the end of Section 6.1 we hinted that PIT could be used as an alternative 

means of formalising synchronous algorithms; we suggested that a synchronous network N determined a 
E-algebra A and the algorithm had a PIT(E )-simulation SN. Of course, decorating SN with an appropri- 

ate function header would give a simulation SN e FP1T(E ), and thus FPIT can be viewed as an alterna- 

tive means of formalising synchronous algorithms. Applying cFp (E) to SN yields a PR(E) scheme that 
is a definition of the function computed by S;, and thus if we had promoted FPIT as the specification 
language for synchronous algorithms, then the existence of cF' (E) would imply that PR is an equivalent 
specification language. Given the discussion following Theorem 7.2.1, this completes our equivalence 
conjecture: PR and FPIT are equivalent specification languages. 

An important consequence of the equivalence of PR and FP1T is that any theory of PR-definability 
is automatically a theory of FPIT-computation and vice versa, given the following 

7.4.2 Corollary. 

For any standard signature E and standard E-algebra A. define FPIT(A) by 

FPIT(A) = {FA(S): S E FPIT(E)} 
Then FPIT(A)=PR(A ). that is, for every function fA, 

fAE FPTT(A) ffe PR(A) ) 
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Proof. Immediate from the existence and correctness of c°R and cFp (E). 13 

With this definition of FPTT(A) (which is intuitively the collection of all FPIT(E)-computable 
functions on A), theorems about PR become theorems about FPIT. For example, recall the following fact 

about PR (first considered in Section 3.5): 

PR(A) = PR(A fA) fA e PR(A) 

Intuitively, this says that primitive recursive programming over an algebra A is the same as primitive 
recursive programming over A augmented with fA exactly when fA is PR-computable over A. An 
immediate consequence of Corollary 7A. 2 is: 

FPTT(A) = FPTT(A fA) = fA E FPTT(A ) 

Another fact from Section 3.5 concerning PR that carries over to FPTT is the isomorphism invariance of 
PR-computability: it is trivial to prove that FPIT-computability is an isomorphism invariant. from 

Lemma 3.5.9 and the equivalence of PR and FPPT. 

Here we see that theoretical observations about PR automatically lead to dual observations about 
FPIT; by symmetry, any theoretical statement about FPIT has a dual concerning PR. For example, in the 

next chapter we will discuss the hierarchical implementation of synchronous algorithms; we use PR as 
the principle mathematical tool (since PR is the official specification language for synchronous algo- 

rithms), however, since PR is equivalent to FPIT, the chapter could equally well use FPIT. 

7.5 SOURCES. 

The computational equivalence of independent specification languages for synchronous algorithms 
has been the joint project of J. V. Tucker and myself; all the proofs in this chapter and the strategies 
behind them are my own work however. 

The equivalence of PR and FPTT generalises the fact that the primitive recursive functions on the 

natural numbers are precisely the functions computable by (bounded-) loop programs over the natural 

numbers; this was first proved in Meyer and Ritchie[1967]. This result belongs to the long tradition of 

equivalence between different models of computation starting with the equivalence of the %-calculus and 
Turing Machines proved by Turing. 

The normal proofs of computational equivalence of formalisms pay insufficient attention to (i) the 

matter of when a program can be said to `compute a function', (ii) the precise nature of the transforma- 

tion between formalisms, and (iii) performance aspects. Furthermore, in the context of (many-sorted) 

abstract structures the situation is complicated by the need for simultaneous primitive (or course-of- 

values) recursion since this requires that a parallel feature be added to loop programs. 
These points are made in Chapter 4 of Tucker and Zucker[1987], and from the point of view of the 

synthesis of programming language semantics and the theory of computability as described therein, the 

equivalence of PR and FPIT as proven here is the 'correct' and definitive proof that is required. 

Moreover, to provide rigorous scientific foundations for the practical use of PR and FPIT, 

Theorems 7.2.1 and 7.4.1 are just what is required, containing as they do, compilers and proofs of their 

correctness and performance preservation. 
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Finally, the definition of a correct compiler given here is based on the definitions given in 
Morris[1973] and Thatcher, Wagner, and Wright[1980]; for more information see the volume 
Jones[19801. The idea of a performance preserving compiler appears to be new. 
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CHAPTER 8 
TOP-DOWN DESIGN 

We have seen how PR is a useful tool for specifying, verifying, and simulating synchronous algo- 

rithms. In this chapter we will use PR to study top-down design. 

We begin in Section 8.1 by considering what it means to `substitute' one synchronous network for 

a module in another synchronous network; network-for-module substitution is the principal mechanism 

employed in implementing a given synchronous network at a desired level of data abstraction. For 

example, suppose N is a synchronous network over an algebra A involving the algebra 
7, ={0,1,..., 2"-1 } of integers modulo 2. Suppose that one of N's modules m is specified by addition 

+,: Z�xZ�->Z onZ� defined byzt+� z2=(zl+z2) mod 2" for each z1, z2eZ. Since addition is a 
binary single-valued operation, and since an element of Z, is considered as atomic data in A, in the pic- 

tune of N the module m will have two input channels and one output channel: 

+,. ::: ] m 

Now, there is a familiar sense in which Z� can be represented or coded over Z1= { 0,1 }: with each 

zeZ, we associate the vector b= (b 1,..., b, ) e Zi where b1"""b,, is the binary representation of z. 
Conventionally such a vector b is called an n-bit word. We can now consider implementing N over ZI 

in the following way. With respect to Zl an element zeZ. is an -tuple of elements of Zi. Since chan- 

nels can only carry a single datum in our model this means that wherever N has a channel to carry an 

element zeZ, we need n channels to carry the n bits of z's binary representation, and wherever N has 

a source that supplies elements of ZR, we need n sources each suppling elements of Zl. Since addition 

on Z� is no longer available as a basic operation, it must be implemented by a network N+ over Zl with 
2n input channels and n output channels as illustrated in Figure 8.1; the network inputs and outputs will 
be elements of Zl of course. 

A key idea is that we can substitute this network for the module depicted above wherever it occurs 
in (the picture of) N; if we can implement all the modules of N by networks over Z1, then by substitut- 

ing these networks for the relevant modules the network N will be transformed into a new network N' 

over Zl. 

More generally, given a synchronous network N =N1 over (high level) algebra A =A 1, if we can 

implement each module of Nt by a synchronous network over (lower level) algebra A2, then we can sub- 

stitute these networks for the modules of Nl to obtain an implementation N2 of Nl over A2. If the 

modules of N2 can themselves be implemented by further networks over (even lower level) algebra A3 

then the substitution of these networks for the modules of N2 gives an implementation N3 of N2 (and 
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"{ I 

ý{ 
hence N1) over A3. Our strategy for implementing N =N1 over a given algebra B is therefore to repeat- 

edly apply top-down design generating a sequence N1, N2, N3,... with N1 over A 1, N2 over A 2, etc. until 

we reach some n th stage where A. =B, for then N. is the required implementation of N over B. 

Of course, it is central to the concept of `top-down' design that in the step from Ni to Ni., 

(i =1,..., n-1), the correctness of Ni+1 should follow immediately from the correctness of Ni and the 

correctness of the implementations of Ni's modules; this obviates the need for formal verification at low 

levels of data abstraction where the design may be too complex to verify directly. 

We will formalise the top-down design of synchronous networks using PR. If Ej is the signature of 
A; (i =1,..., n) then Ni is specifiable in PR(E f) and Nt+t in PR(E t+t), and so the transformation from Ni 

to N; +t can be formalised as an instance of compilation via a mapping cj : PR(E j)-->PR(E j+t). In this 

theoretical framework we begin with the PR specification of N =Nj, at = aN E PR(E 1), from which we 

obtain the PR specification of N2 namely a2= c 1(a, ) e PR(E I), and then the PR specification of N3 

namely a3 =c 2(a2) e PR(E 3), and so on, until we reach a,, = c1_1(cc. _t) e PR(E �), the PR specification 

of the required implementation over A� . Note that it is the correctness of the compilers c t,..., c�_t that 
formalises the idea that the step from one design to the next is `correctness preserving'. Moreover, in this 

thesis we have insisted that the formal definition of a data type is incomplete without an account of the 

complexity of data and operations. Thus each algebra Ai in the hierarchy A comes equipped with 
its own performance measure Pi by default; in this way we can account for the complexity of N when 
implemented at lower levels. However, the tediousness and difficulty of calculating algorithm perfor- 

mance increases with algorithm complexity and it will be expedient therefore if c t,..., c�_t have regard 
for algorithm performance: we want to be able to predict the complexity of a� without having to calcu- 
late it directly. 

Actually, in this chapter we will work with a generalisation of synchronous networks that we call 

network systems. The reason for this is that in the transformation from one network to another by 

network-for-module substitution, it is possible that different modules of the first network are imple- 

mented over quite different algebras with different clocks, and so network-for-module substitution does 

not give another synchronous network but a 'network-of-synchronous-networks'; a network system that 

Figure 8.1 - The network N+. 
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is to say. 

In Section 8.1 we introduce network systems. We will show that whilst network systems are not 
strictly synchronous algorithms in the sense of previous chapters, they are still specifiable in PR and so 
our previous work on synchronous algorithms carries over to network systems; for example, a network 
system over a algebra A is specifiable in PR(E) and so can be simulated in FPIT(E ). 

In Sections 8.2 - 8.4 we develop the mathematical tools for analysing top-down design. In gen- 
eral, when transforming or compiling an algorithm over one algebra A1 to an algorithm over another 
algebra A2, Al and A2 need not have the same carrier sets and so it is necessary to formally define what 
it means for the data sets of one algebra to be 'represented' over those of another; the central technical 

concept here is a coding (a generalisation of a Model numbering). Also in general, A1 and A2 will have 

different performance measures P1 and P2 based on different clocks CI and C2 respectively. Thus to 

relate the performance of an algorithm over A1 to that of another algorithm over A 2, it is necessary to 

consider relationships between the underlying clocks, retimings that is to say. Codings and retimings are 
the subject matter of Section 8.2. In Section 8.3 we consider what it means for a PR scheme over one 

algebra to 'implement' a function defined over another. In particular we consider how to implement the 

constants and operations of one algebra by PR schema over another, and we define the complexity of 
these implementations. The ideas of coding, retiming, and implementation of operations, sum up to a 
definition of what it means for At to be 'A 2-computable' (including performance matters); these ideas 

are all key components in the general framework for the analysis of top-down design discussed above. 
In Section 8.4 we complete the general framework by proving a very general result (Theorem 8.4.1) 

which states that under a certain but natural hypothesis on the algebras involved, we only need to pro- 

vide implementations of the operations of the high level algebra by schema over the lower level algebra 

to automatically generate a correct compiler from the high level to the lower level. (The construction of 

these compilers is 'semantics directed' in the sense of the volume Jones[1980]. ) Furthermore, these com- 

pilers are performance preserving in the sense that they preserve the complexity of the implementation 

(of the operations of the high level algebra): 'good' or efficient implementations lead to efficient com- 

pilers, but 'bad' or inefficient implementations lead to inefficient compilers. 

The material of these three technical sections is developed independently of the concept of a syn- 

chronous algorithm since it is of interest in its own right for the following two reasons. First, whilst our 

work explicitly concerns PR, our ideas can be viewed as a theory of top-down design for any functional 

language (in the sense of Section 7.1): in particular, given the equivalence of FP1T to PR, this chapter 

could be exclusively concerned with an FPIT- (rather than PR-) representation of synchronous algo- 

rithms. Second, our mathematics can be seen as the starting-point for a generalisation of the Mal'cev- 

Rabin theory of computable algebra (see Mal'cev[1961] and Rabin[1960]). 

Finally, in Section 8.5, we show that our theory of top-down design is directly applicable to syn- 

chronous algorithms by considering the hierarchical decomposition of the FIR network of Section 5.1 in 

detail. 



-284- 

PR Systems. From the end of the next section onwards, we will be exclusively concerned with imple- 

menting the constants and operations of one algebra by PR schema over another. In order to keep track 

of the sort sets, signatures, algebras, performance measures and clocks involved, we make the following 

Definition. Let S be a (standard) sort set, let E be a (standard) signature, and let A be a (standard) I- 

algebra. Also let P be a (standard) performance measure for A which is based on clock C. Then we say 
L is a PR system where L is the tuple 

L= (S, E, A, C, P, PR(E), [. ]A, X, R) 

(Here 'I -]A' and 9y"' are the usual semantic evaluation and performance estimation functions for 

PR(Z) of course. ) 

We will use a PR system in the following way: we will say 'let L be a PR system' without expli- 

citly writing L as a tuple; the idea is that any PR system with name 'L' is a tuple with sort set S, 5- 

sorted signature E, Z-algebra A, etc. In the case of a subscripted PR system as for example when we say 
'let L; be a PR system for i =1,..., n', we understand L; to be the tuple 

L, = (Sj, E;, A�Cr, Pi, PR(Et), ff. ]A,, A) 

for some sort set Si, S1-sorted signature E;, E; -algebra A; etc. 

We use the letter `L' for PR systems since a PR system is a level of computational abstraction in 

the sense of Thompson and Tucker[1985]. Subsequently we will use ̀ Lt' as an adjective which we read 

as ̀ level P. For example, if Lt and L2 are PR systems, then we refer to a collection of schemes over 11 

that implement the constants and operations of At as 'an L2-implementation of A 1', read: 'a level 2 
implementation of A 1'. Similarly, we will encounter an '(L 1, L. )-compiler' which is a compiler which 
maps 'level one' schema to `level n' schema; that is, a mapping c: PR(F. t)-->PR(E� ). 

Also, since we will be exclusively concerned with PR in this chapter, we no longer need the super- 
script ̀ PR' on our complexity function XXR which will be subsequently denoted simply &, p. 
8.1 NETWORK SYSTEMS. 

In this section we will develop a new model of synchronous computation that we call network sys- 
temr. a network system is essentially a synchronous network whose modules have been replaced by 

other synchronous networks. 

In Section 8.1.1 we explain how network systems are made from synchronous networks, and we 
informally explain the intended semantics of network systems. In Section 8.1.2 we formalise the seman- 
tics of a network system by writing down (generalised) value functions for a network system. 
Throughout Sections 8.1.1 - 8.1.2 we assume that all the algebras involved (are many-sorted but) have 
the same underlying family of carriers: the case where the data sets are not the same is explained in Sec- 
tion 8.1.3. 
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8.1.1 Network Substitution. 

Let us begin with some pictures. Consider Figures 8.2 - 8.6. Figure 8.2 illustrates a 3-module syn- 

chronous network N. In Figures 8.3,8.4, and 8.5 we see networks N1, N2, and N3 respectively, and the 

result of substituting NI, N2, and N3 for ml, m2 and m3 of N respectively is the network system M of 
Figure 8.6. 

Notice that in Figure 8.6 the ̀ bounding boxes' of the subnetworks (shown with a dotted rather than 

solid line for legibility) have been left in the picture of M; as we will explain below, the boundaries are 
intuitively significant in defining the semantics of a network system and cannot simply be 'rubbed out'. 
Two other new features in the figures are modules shown with a double circle, and sources and channels 
drawn with a dashed line. The double circles are just a helpful identification of those modules that supply 

sinks; the significance of such modules will be explained later. The features shown with a dashed line are 

to be ignored for the time being; these features concern nonautonomous modules and will be described 

later also. 

Figure 82 - N. 

In 1,1 -M1.1 Out 

Figure 8.3 - N1. 



-286- 

Figure 8A - N2. 

Inl M3,1 

Ino ------------- m Out 3,3 

In2 mj, 2 

Figure 8.5 - N3. 

More generally, we begin with a synchronous network N defined over an algebra A with clock T; 

N has modules ml,..., mk say, with m; specified by ß" for f =1,..., k. For the time being we will assume 

all of N's modules are autonomous with respect to T; we will extend the model to include nonauto- 

nomous modules after we have introduced the basic ideas. Now let Ni be the synchronous network 

which replaces module m; in a network system M for i =1,..., k. Most generally, each Ni is defined over 

a different algebra, B. say; each Bt will involve a local clock T1 as a carrier. The fact that each B1 has its 

own clock is intended to reflect the idea that Nl,..., Nk will in general compute at different speeds; this is 

why we do not (cannot) 'rub out' the boundaries of subnetworks in the picture of a network system. For 

the time being we assume that the carriers of Bi are the same as those of A except for A's carrier T 

which is replaced by T; in B, . (Actually, when m; is nonautonomous T must appear in Bi, but as another 
data set, not as B1's clock which is Ti. ) 
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............................... 

In 1 M1.1 Out 1 

............................. 

I 

........................................ 

m3.1 

--------------- m3.3 

M3.2 

c 
............................................ 

i 

Out 2 

Figure 8.6 - M. 

Eventually we will want to discuss the correctness of the transformation induced by network sub- 

stitution, so it is necessary for us to first say what constitutes a `legal' substitution. 

Consider an (autonomous) module m; (for ie [1, k]). Since m; will have some n; 21 inputs (and 

one output) it makes sense to require Ni has n; sources (and a single sink). Also, the substitution of Ni 

for m; should be 'sort-preserving': if vA: Av'--*A,, for some word vi e S* and some sort s, e S, then 

(n; =Iv; I and) the sources of Nj should be such that they supply vectors from A% and N, 's sink should 

receive data from A,,. Here we introduce some terminology: let us call the (unique) module of Ni that 

supplies Nj 's sink with output data Ni's exit module; then we require that Ni's exit module to hold data 

from A,,. (Alternatively, the operation of B; that specifies Ni's exit module must have codomain A,,. ) 

Modules that are not exit modules we call interior modules. We will also refer to `the exit modules of a 

network system' meaning the exit modules of the network system's sub-networks. Exit modules are 

shown with a double circle in our figures. 

As further notation, suppose Ni has some 1,21 modules denoted mj j (f =1,.... 1;, i =1,..., k); we 

denote the sort of data held by m; j by s; 3eS. We also define w; by wi = s;, 1 """s; j, for i =1,..., k. For 

future use, note that under these hypotheses on N1,..., Nk, each Ni will have a static output specification 

f, v, functionality. 
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fNN: T; xAv'xAw->A,,, 

for i =1,..., k. (Static output specifications and their formal status are discussed in Section 2.4.4; the rea- 

son why we are interested in a static rather than dynamic specification of Ni will become clear later. ) 

Finally, for i =1,.... k let C, denote some given vector of constants from B;, t =(c;, 1,..., cjA) e Aw'. 

A network system M is obtained from a k-module network N and sub-networks N1..... Nk by sub- 

stituting Ni for m, in such a way that the communication topology of N is preserved: if m; has its jth 

input from source In. (in N) then so does Nj (in M), and if the j th input tom; comes from a module my, 
then the j th input to Ni is from the exit module of N,. (Cf. Figures 8.2 - 8.6. ) 

Operational Behaviour. The essence of our interpretation of the behaviour of M is that like a synchro- 

nous network, M proceeds in 'steps'. These steps (and hence the behaviour of M) are defined in terms of 

some given functions X1,..., Xk and the given vectors ý1,..., lam 
. The purpose of X, :A "' --'T, (i =1...., k) 

will be apparent shortly. Each (; is used as the initial values on which Ni is always to be executed. 

We imagine M to begin in an initial state wherein the modules of M are holding certain initial 

values and the sources are supplying some input data; M is now ready to perform its first step. Gen- 

erally, the nth (n z 1) step proceeds as follows. Each module is about to read data from a neighbouring 

module (possibly the exit module of a neighbouring network) and/or from a source as indicated by the 

channels in the picture of M; thus the input to each sub-network Ni at the start of the n th step is a vector 

a=a;,,, eA "'. Each N; is now executed in parallel on the input ai� and initial values Q for X; (a;,,, ) 

cycles of Ti. We imagine each Ni to be executed in isolation from all the other sub-networks: during 

sub-network's execution it reads no new input data and we imagine the input that was available to the 

sub-network at the beginning of the n th step (a, 
.. 

) to be held fixed for the duration of the sub-network's 

execution. After time t=max{Xj(a;., ) } has elapsed, the nth step is deemed to have ended and the next 
isi sk 

step begins; it is at this time that we imagine the next inputs to M to be available at the sources. (Sub- 

networks that finish before timet simply wait for the others to catch up. ) 

(Notice that this description of the synchronous behaviour of a network system is very similar to 
the original description of what was 'synchronous' about a synchronous network given in Section 2.1: 

network systems are more general than synchronous networks in the sense that in Section 2.1 T was 
assumed to be the maximum execution time over all modules and all inputs to the modules, whereas in 

this chapter r does not need to be an upper bound. ) 

There are three key components in the above informal description of M's behaviour: the functions 
X1,..., Xk ; the assumption that sub-networks are always executed on the same initial values &,.... W, and 
the assumption that input data to a sub-network is held fixed for the duration of the sub-network's execu- 
tion. We will comment on each idea in turn. 

The role played by X1,..., Xk should be clear although we understand NI,..., Nk to operate asyn- 

chronously with respect to each other during each step of M, the functions X1,..., Xk allow us to give Ma 

`synchronous semantics': the steps performed by M are defined or determined by X1,..., Xk; they define a 
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new clock 7' wherein each (e 7' represents the beginning of the nth step when l=n. The roles 

played by the assumptions that sub-networks are executed on the same initial values and that input data 

is held fixed are more subtle: these assumptions make the semantics of a network system modular. 

In the notation used above, let us say that Ni implements a" (or m; ) (with respect to k. and ) if 

fN("i(a), a, y-) = 6± (a) 

for every ae A\ Then, essentially, N, implements m; if it computes at(a) in finite time when the input 

a is held fixed. The crucial aspect of this definition is that if Ni implements at outside M, that is, when 

executed on its own, then it will implement at when executed as a part of M: in general, that the 
behaviour of a component of a system is the same both inside and outside the system is central to top- 
down design of course. By fixing the input to a network we turn the network from a function on streams 

of data into a function on data (this is appropriate since the modules of N are specified by functions on 
data, not streams of data). Moreover, and this is essentially the reason for not 'rubbing out' subnetwork 
boundaries in network systems, without the constant initial values, each execution of a sub-network in M 

would begin on the initial values that were left from the previous step. However, the concept of a 'step 

of M' is intuitively undefined when we consider a sub-network in isolation from M; this makes it 

difficult to say how the behaviour of the sub-networks should be 'the same' inside and outside M. 

Our definition of 'Ni implements m; ' is the 'right' definition in the sense that with this definition, 

network-for-module substitution is behaviour- and hence correctness-preserving as we will now explain. 
(Throughout the following general discussion of a synchronous network N and a network system M, the 

reader should refer to Figures 82 and 8.6. ) 

Consider executing N and M together in a stepwise manner. Suppose m; and the exit module of 
Ni hold the same initial data for i =1,..., k. Suppose also that the sources of N and M are supplying the 

same input data. Assuming that Ni implements m; (with respect to X and C, ) for i =1,..., k, it should be 

clear that when N and M have completed their respective first steps, each module m; will hold the same 

value as that held by the exit module of Nj: if the input to m; is some aeA v' then m; will hold (r (a) at 

the end of N's first step; but by hypothesis the input to Ni is also a, and so after k. (a) steps of Ti, and so 

at the end of M's first step, the exit module of Ni will hold fN(;,. (a), a, c)=v; (a). Intuitively, if the 

sources continue to supply the same data to N and M, the values held by the exit modules of M at the 

end of then th step will be the same as those held by the modules of N at the end of its n th step. 

An interesting point that arises here is the relationship between the clock of N, namely T, and that 

of M, namely 7. Intuitively, T and T' are different clocks since a cycle of T is conceptually indivisi. 

ble, whereas a cycle of r is decomposed into sub-cycles of lower-level clocks. However, in the above 
discussion of the simultaneous 'stepwise' execution of N and M, it is clear that if N computes an output 

value after 5 cycles (say), that is, if an output is available when the time according to T is t=5, then M 

will also produce (the same) output value after 5 cycles, that is, when the time according to T' is (= 5. 

More generally, when the time according to T is t =n, the time according to T will be t' =n, and so to 

compare the behaviour of N and M (in particular, for the purpose of studying correctness) we must use 
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the fact that T and ' are isomorphic. 

The relationship of isomorphism is an identity relationship, and so we must think of T and r as 
being the same. Whilst this may seem a little surprising, it is in fact quite appropriate if we think of N as 
being abstracted from M, instead of M as being made from N. Recall how the clock T of a synchro- 
nous network N was defined originally back in Chapter 2. We said that T was defined by normalising to 

unity the maximum time over all modules taken to compute an output on any given input. Now given a 
network system M that implements N, the time taken for a module to compute on a given input is intui- 

tively the time taken for its (subnetwork-) implementation to compute on that input. In other words, 
when we regard N as being an abstraction of M, T is actually defined to be 7'. 

These remarks notwithstanding, we will often write '7" for a network system's clock, and 't" for 

elements of T'. It is helpful to do this since it is a convenient way of remembering in algebraic calcula- 
tions whether we are considering a synchronous network or a network system. For example, a stream 
input to a synchronous network will continue to be written 'a :T --;, -A', whereas for a stream input to a 

network system we will write 'a': T' -W. (A minor problem with this is that occasionally we will 
encounter mixed expressions such as 'a'(t )' or 'a (t)', but this is of no significance given the fact that 
T =o T' for some isomorphism 4'. ) 

8.1.2 Formalisation. 

We will now formalise the informal description of a general network system's behaviour given 
above. Doing so will allow us to prove the correctness of network-for-module substitution. (In the text 
that follows we continue with the notation used above. ) 

Suppose the original network N has a dynamic specification VN of functionality 

Vv :TX [T ->A"] XA w -*Aw 
for some u, w eSt In fact, since the codomain of a4 is A,, for i =1,..., k, it must be that w =st """ sk. 

Here we call [T ->A"] and Aw N's input space and N's state space respectively. 

The steps performed by M determine the clock T, and new data is read in with each cycle of 2'. 
Since N's input space is [T --->A"], and since M has the same sources as N, it makes sense for us to 

regard [T' ->A"] as M's input space. What should M's state space be? 

The set A" is N's state space in the sense that a vector a= (a t,..., ak) EAw is sufficient to describe 

the values held by the modules of N at each time teT (with the intention that module m; holds a, of 
course). This might suggest that since each subnetwork Ni of M has i modules, a vector of length 
l =11+ """ +Ik is what we want to describe the `state' of M at each time ee T' (since M has 1 

modules). However, we will argue against this choice; we will argue that it should be Aw (the same as 
N's): 

We certainly want to specify the values held by M's exit modules since these form the input to 
neighbouring networks for the next step and so partly determine what happens on the next step. Also, 
since the sinks of M are supplied with output data by exit modules, these values ultimately tell us M's 

output at each time t'. What about the values held by interior modules? We will not specify these 



-291- 

because the values held by the interior modules of each Ni at a given time t' are of no interest: they are 

overwritten by C. the next time Ni is executed and so they do not affect the behaviour of M. Thus we 

only want to specify the values held by M's exit modules at each time t'. However, at each time t' the 

exit modules of N1,.... Nk collectively hold a vector a =(a,,..., ak) e A" (with the intention that a, is the 

value held byNi's exit module for i =1,..., k), and so we take A' as M's state space. 

Returning to the formal specification of our network system M, similar to the way that N was 
dynamically specified by the function 

Vjv = (V1..... Vk): T X[T-*A']XA" ---31, A* 

we will now give a formal dynamic specification UM for M; this UM is of functionality 

UM _ (Ul,.... Uk): T x[r->Am]XAw->Aw 

with the intention that for each t' e T', a' : T' -W, and xe A'", the expression ' U; (c', a', x )' is read as 
, the value held by the i th exit module at time < when M is executed on input stream a' and initial values 

x': when x= (x t,..., xk) E A', x; is intended to be the value held by the exit module of Ni at time t' =0. 
(Note that we only need to specify the initial values of exit modules since the initial values of interior 

modules are overwritten with ta. ) 

We assume for the time being that all of N's modules are autonomous since the case of nonauto- 

nomous modules complicates the basic ideas. 

Like the coordinates V1,..., Vk of VN, it is natural to define the coordinates U1,..., Uk of UM by 

means of equations. For i =1...., k, define Uj at <=0 by 

Uj (O, a', x) = xi (1) 

for each a': T' -a-A" and x =(xl,.... Xk) E Aw. This equation is appropriate given our interpretation of 

the vectorx. 

To define Uj (i =1,..., k) at successive times we use the following equation: 
Ui(t'+l, a', x) =fnr, (ý; (b), b. ) (2) 

where b= (b i.. b. 
,) 

is defined by 

fa; (t') if the j th input to m; is from source In,, 
bj = lU4 (t', a', x) if the j th input to m; is from module m4 

for j =1,..., n; . (Here we could have said ̀ if the j th input to Ni is from the exit module of N4' instead of 
`if the j th input to m; is from module mq', but the latter is shorter. ) 

Discussion. Four points arise here. First, the equations (1) and (2) (when written out for i =1..... k) for. 

malise the idea that M operates in steps which can have a data-dependent duration. Note that the equa. 
dons do not tell us how the sub-networks are to be synchronised, only that they are synchronised. 

Second, note that the defining equations for U1�... Uk are almost identical to those for the coordi. 

nates V1,..., V, of VN. In essence, all that has changed is that in (2) (for Ut) the expression 

- fNi (Xi (b ), b , ý, )' replaces what would be (for Vj) 'a"(b )' where a is the function that specifies m; . 

Now, when Ni implements m; we have fN(X1. (a), a, C; )=a"(a) for any ac Ay', and so it is easy to see 
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that for each t r: T, a : T---9--A" and xe A'", VN (t, a , z) = UM (t, a x) can be proved by a routine induc- 

tion on t; this we leave as an exercise. Network-for-module substitution is therefore correctness preserv- 
ing when the networks implement the modules they replace. 

Third, note that whilst we have introduced the idea of a network implementing a module to help 

explain the semantics of a network system, the definition of UM is independent of this idea: UM is 

defined for the substitution of any sub-networks Nl,..., Nk (subject to sort-theoretic constraints of 

course). 

Finally, we note that we can substitute Nl,..., Nk into any network over A. That is, given another 

network N' which involves (perhaps a subset of) m 1,..., mk, but in a different configuration, the substitu- 

tion of Nl,..., Nk for the modules of N' is still well-defined, as is the definition of UM., the formal 

specification of the result of the substitution M. 

Nonautonomous Modules. We now extend our concept of a network system to include the case that 

the original network involves nonautonomous modules. 

Continuing with the previous notation, suppose a module m; (i e [l, k]) is nonautonomous with 

respect to T; then a" :T xA V'--*A,, for some vi r: S+ and s; e S. Module M3 of N of Figure 8.2 is 

intended to be nonautonomous; the dashed channel is intended to supply the current time teT to the 

module. Whilst we have not included an explicit channel to supply the time to nonautonomous modules 
in figures previous to this chapter, doing so now will make the (pictorial) correspondence between N and 
M much clearer. 

We extend the previous definition of what it means for Ni to implement module m; (with respect 

to a mapping k. and a vector C; of constants) as follows: first suppose 7l, :T xA v---O-T; and that fN, has 

functionality 

fN, : T; x(T xA")xA" - A,, 

for some word w; . (Here the parentheses in the domain of f ,, are purely for emphasis. ) We say that Ni 

implements c: T xA v' 
-ýA, with respect to X1 and QeA w' if 

fN, (7 (t a ), t, a, Q )= 6+ (t , a) (3) 

for every teTandaeA\'. Q 

Two points arise here. First note that T appears in the domain of fN, as a data set and not the clock 

with respect to which we define the behaviour of Ni which is Ti. The second (related) point is that for T 

to appear where it does in the domain of f v,, that is, for fN, to have the given functionality, in addition to 

n; =Iv; I sources to supply 'a' to Ni in (3), Ni needs an additional source to supply data from the set T. 

The `dashed' source in Figure 8.5 corresponds to m3 in N of Figure 8.2 being nonautonomous. 

The appropriate equation to define U; at time t'+1 in the case of m; being nonautonomous is: 

U; (t'+1, a', x) =fv, (Xt(t', b), t', b, rt) (4) 

where b= (b 1,..., b�) is as in the case of an autonomous module. 
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Discussion. The function UM formalises our intuitive idea of a network system in the same way that VN 

formalises the concept of a synchronous network. Also, recall that VN was itself formalised by the PR 

scheme aN (see Theorem 3.4.3); this aN is the starting point for formal analysis of N, analysis of 

correctness and simulation for example. A question that arises here is: what is the formal status of `UM'? 

In particular. is there a PR scheme which formalises it? The answer to this last question is 'yes'; there is 

a scheme aM which, when interpreted in the appropriate algebra, is UM. We will now explain why. 

Consider the function I; : Ay' --'A,, (`I' for implementation) defined by 

(VaeA"') (It(a)=IN, (X. (a), a, )) 

(Notice this function is defined over the algebra determined by Ni, namely Bj. ) To obtain the defining 

equations for UM from those for VN we simply replace `a"(a)' in the equation for Vi at time t+1 by 

`Ij (a)' to get the equation for Ui at time t'+1. Intuitively then, since the scheme aN formalises the 

specification of N `by value function', all we have to do to obtain a corresponding PR-formalisation of 

the definition of UM is find a PR scheme tt for each It, and then replace each occurrence of the operator 

symbol a, in aN with this scheme. Since IN is primitive recursive over Bi (via the scheme SN,; see 

Theorem 3.4.4), it follows that if 7j is also primitive recursive over B1, then so is II; that is, there exists 

some t; E PR(f ,) such that [t; IB, =1; when fl, is the signature of Bi. Now let B be the algebra compris- 

ing all the clocks and operations of Bl...., Bk. Then the scheme-for-operator-symbol substitution c 

defined by 

c(a)=a{tl/al}{ """ tk/Qk} 
(as in the Augmentation part of Section 3.5, the notation {ß /a } is read as ̀ except that ß is substituted 

for a') maps each PR scheme over the signature of A to a PR scheme over the signatiue of B. Moreover, 

it is not difficult to check that if we define aM =c (aN) then a, M satisfies QCM ]B = UM. Importantly then, 

whilst a network system is not strictly a synchronous network in the sense of Chapter 2, it is still 

specifiable in PR indeed, it is specifiable over the algebra that we want it to be specified. 

We will not stop to prove any of the assertions made above here. The point to notice is that with 

our definition of what it means for a synchronous network to 'implement' a module, network-for-module 

substitution is modelled by scheme-for-operator substitution, and so like the way that the theory of syn- 

chronous networks is the theory of PR, the theory of hierarchical network decomposition is the theory of 

implementing the operations of one algebra by PR schema over another. In Sections 8.2.8.4 we will 

develop a general theory of computing one algebra by PR schema over another, and we will apply this 

theory to a concrete example in Section 8.5. 

Before we do so however, there is one final case to be considered: 

8.1.3 Change in Data Sets. 

In this section we will explore how to formalise the result of network substitution when the subnet- 

work implementations of a synchronous network's modules are defined over different algebras with dif- 

ferent data sets. 
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The kind of change we have in mind is where each datum a of a high-level algebra A is 

represented by a vector of data over a lower-level algebra B. We will consider a more general setting in 

the general theory to follow, but for the time being let us assume that A and B are single-sorted, and that 
for each aeA there is some b= (b t...., b, ) e B' to represent a over B. The obvious example here is 

that introduced at the beginning of the chapter, namely: A =Z,,, B =Z1, and r=n; here a datum zE Z� 

is represented by b= (b 1,..., b, ) e Zi iff bl "". b� is the binary representation of z. 

Let us begin with an n -source, k -module, m -sink synchronous algorithm N over A with clock T. 

We will leave the case that N has nonautonomous modules to the general theory in the following sec- 

tions: here we will assume that all of N's modules are autonomous. If we wish to transform N to a net- 

work system M over B, it is intuitively clear that each source and sink of N will become r sources and r 

sinks respectively, and each channel in N will become r channels in M; correspondingly, each l -input 
module in N will become an ! r-input, r -output synchronous network over B (r outputs since a module 
is always single-valued. ) 

We think of such a network system as having a 'synchronous semantics' in essentially the same 

way as before: M operates in steps wherein each sub-network is executed in parallel for a (possibly 

data-dependent) number of clock cycles on a fixed input, and the steps determine a clock 7. The only 
difference here is that since a sub-network now has r outputs, it has r exit modules, the value of each of 

which needs to be specified at each time t' e r. Let us explain how this is accomplished: 

Suppose that VN has functionality 

Vv: T x[T-->A"]xAk--3oAk 
(Recall A is single-sorted here. ) In the transformation fromN to M induced by sub-networks N1...., Nk, 

M will have rn sources and rk exit modules, and so UM needs to have functionality 

UM :rx [r ->Bm] xBrk-*B'* 
Let us use the notation 'Uj j' with i ranging over [l, k] and j over [l, r] to denote the (rk) coordinates of 
UM : here the idea is that for an input stream a': r --B' and a vector ye B''r to specify the initial 

values of the (rk) exit modules, U; j (! , a', y) is to be the value held by the j th exit module of Ni at time 

t'. We carry the double-indexing to a' and y in the obvious way: each source In; of N becomes r 

sources In;, 1..... Ini,, (say) and so we use 'a'jj ' to denote the stream of data supplied by In1 j. Of course 

we use 'y; j' to denote the initial value held by the j th exit module of Ni at 1=0. 

What are the defining equations for each Uj j? At t' =0 this is straightforward: given our interpre- 

tation of the vector y, the equation 

Uj (O, a', y) = yº r 
is appropriate for i =1...., k and j =1,.... r. 

To define UU j at time t'+1 we must first consider how the sub-networks Nl,..., Nk are specified. 
Since each Ni is regarded as being executed on fixed input data it is again appropriate to consider a static 

specification of Ni, and since we are only interested the values held by N1's exit modules we want the 

static output specification fN,. Suppose this function has functionality 
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JNN"TTXBrx'XBk'-+B' 

Here n; is the number of inputs to m; and k; is the number of modules in Ni. Then for a given function 

X,.: B "I --->T1 and vector of constants C; EB 
k', fN, (X; (a ), a, Q) is the vector of values collectively held 

by Ni 's exit modules at the end of a step (of M) when a was the input to Ni at the beginning of the step. 

Now, the defining equation for the i th coordinate Vt of VN is 

Vi (t+1, a, x) = aA(b ) 

where b =(bl,.... b., ) is defined by 
(5) 

jg'. (t) if the j th input to m; is from source In,, 
bý = Vq (t, az) if the j th input to m, is from module mq 

In the case of M, the equation (5) expands to r equations for Utj (t'+l, a', y) (for j =1,..., r). From what 

we have said above, it should be clear that if fN, denotes the j th coordinate function of fN, then the 

appropriate equation is 

U; j (t'+1, a', z) = fx, (OI (bj ), kc, Ci ) 

where b; _ (b;, l...., bi,,, ) is defined by 
if the j th input to m; is from source In,, 

bi j (Uq a(t', a', y ),..., U.., (t', a', y )) if the j th input to m; is from module mq 

for j=L.... n,. Q 

As in the previous case (where there is no change in data sets), we should show that there is a PR 

scheme that formalises the above definition of UM. This we leave to the general theory and the worked 

example in the following sections. 

8.2 CODING AND RETINIING. 

In this section we will first formally define what it means for data from one algebra to be 

`represented' over another algebra; such a definition is essential to compare algorithm behaviour at dif- 

ferent levels of abstraction. Secondly (beginning in Section 8.2.16), we introduce a class of retimings 

that we use to relate algorithm performance at different levels of abstraction. 

Throughout this section let Ai be an Si -sorted algebra for some sort set Si for i =1,2,3. (Actually, 

the material of this section concerns only the carriers of these algebras, and not the constants and opera- 

tions; thus it suffices to take Ai to be an Si-indexed family of sets for the purposes of this section. Ulti- 

mately, Ai and Ai+1 will be the algebras of PR systems Li and Li+1, where we think of A; as being 

`higher-level' than A, +1. ) 

Also, for a general S -sorted algebra (S -indexed family of sets) A, we define 
A+ = UA" 

was* 

Finally, if f :X ->Y is a surjection, then we write 'f :X °°! 2-a-. Y'. 
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8.2.1 Coding Theory. 

In order for us to implement a high level algorithm over a low level data type, we must first dis- 

cuss how high level data can be represented at the lower level. We have already seen one example of 
this: Z� was represented over Zl in the sense that b= (b 1,..., b�) E Zi codes or represents ze Z� iff 

b""" b� is z expressed in binary notation. Of course, every zeZ. has such a representation. 

Most generally, when we wish to represent elements of A1 over A 2, that for every aeA1 there is 

some a' e A2 representing it, is clearly a necessary property, and one that is easily incorporated in the 
following 

8.2.2 Definition. 

Let Y: S 1--ß[A 2 ->A 1]. We say y is an A2-coding of A 1(or A1 is A2-coded by y) if there exists a 

mapping w =wy: St-S2 such that for each se S1, 

y(s): Ait'ý 

When we need to refer explicitly to the mapping w we say y is an A 2-coding of A1 via w. 

Notes. 

(i) When A1 and A2 are both standard, we will always assume the standard domains (viz T and 16) 

are coded by themselves; that is, for se{T, B }, w (s) = s, and y(s) is the identity mapping; in this 

case we say both w and y are standard. (To be more precise, we should say that for each 

se{T, B } 7(s) is the unique isomorphism between A, and A2; recall such an isomorphism does 

exist from Section 3.1.8. ) 

(ii) Notice that an A2-coding y of Al can be rephrased as an S1-indexed family of functions 

y, : A*0) O°t-0->Ai. We will not do this for purely notational reasons: whilst it is consistent with 

our previous definitions (of semantic functions etc. ) to use an S-indexed notation for y, the sub- 
scripts rapidly become unwieldy and so we write 'ry(s )' rather than 'Y, '. Q 

The idea behind the above definition is that each carrier of the algebra A1 is coded by a Cartesian 

product of carriers of the algebra A2 in the sense that every element of ae Ai has a representation or 

code beA? 0) such that y(s)(b)=a. 

8.2.3 Example. 

Let A1 comprise the two carriers Z and Z,,. Then A1 is S t-sorted when St={z, zn } (say) with z 

naming Z and zn naming Z,,. Let A2 comprise IB and N as carriers. Then A2 is S2-sorted when 
S2= { B, N } with B naming IB and N naming N. 

Coding Z. over A2 is straightforward: define w: St -'Si at s= za by w (z, ) =B"""B (n times 

B), and define y: S1-->[A? ->A 1] at s =Z. by 

Y(7, )(b t...., b�) _ 2k . c. -, t k--0 

where b 1,..., b,, e lB, and c; =1 if b; = tt, and c; =0 if b; =ff for i =1,..., n. Clearly, 
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That is, 

j(7, ): Iä~ ontýZ 
a 

7(zJ: A2 
"' (V-ontoýA Z' 

Thus, if we take n =4 (say), then 3e Z� has code (f fftt, tt). 

It remains to code Z over A 2, that is, we must define w (z) and y(z). 

Informally, there are two parts to an integer zeZ its sign (positive or negative), and its modulus 
(or absolute value) Iz1. The modulus of an integer is just a number nE IN of course, and the sign of an 
integer can be represented by a Boolean be 1B: b =it meaning `positive', and b =ff meaning 'negative'. 

We use this idea to define the remaining part of our coding as follows: 

Let w (z) =BN e S? S. Also, define y(z) =O where O: 16 x]r -->Z is defined by 

Then it is easy to check that 

That is, 

and thus AI is A 2-coded by y via w. 

In ifb=tt 
6(b, n) 

_n if b ff (6) 

' (Z): lBXN- Z 

^KZ). Ai(Z)ý'Ai 

Thus for example, -3 eZ has code (, 8 3), whereas +3 EZ has code (tt, 3). Notice that 0eZ has 

two codes namely (f; 0) and (tt, 0); injectivity is not a constraint that we need to impose on our codings. 0 

We now wish to extend a coding of a carrier set to a coding of a Cartesian product of carriers. 

Intuitively, if certain vectors b; are codes of certain elements a; then the vector (b 1,..., b�) is a likely can- 

didate for a code of the vector (a I.... a. ). Before we can formalise this idea, we need the idea of a direct 

product of functions: 

8.2.4 Direct Products. 

LetXj, Yj be any sets for i =1,2. and let f : X1-'Y1 and let g : X2-->Y2. The direct product of 

f and g is the mapping (f x g) : Xl xX 2-ý, Yl x Y2 defined by 

(VX1 EX i)(Vx2E X, ) (U xg)(Xi, x2) _ (f (xi), g(x2)) ) 

Here are three simple facts about direct products: 

8.2.5 Lemma. The direct product operator is associative. 

Proof. Let fj: Xi --->Y1 for any sets X1 and Y1 for i =1,2,3. Then to prove the lemma we must show 

(Vxi E Xl)(Vx2 E X2)(Vx3 E X3) (((1 1 xf 2) xf3)(x1rz2, x3) = (f1 X (f2xf 3))(x1, x2+X3) ) 

This we leave as an exercise. 13 

In view of the preceding Lemma we can write (fix """xf,, ) for the direct product of f 1...., f� 

(that is, without further parentheses). 
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8.2.6 Lemma. Function composition distributes over direct products. 

Proof. Let f, : Y; -->Z1 and g; : Xi --: YY for any sets X,, Y;, Z; for i=1,2. Then to prove the Lemma we 

must show 

(VxiEXi)(Vx2EX2) (((fixf2)o(g1x82))(xix2)=((fio8i)X(f2og2))(Xi, x2) ) 
This we leave as an exercise. 

8.2.7 Lemma. Surjectivity is preserved under direct products. 

Proof. Let fi : X1--Y j for any sets Xj , Yj for i =1,..., n. Then to prove the Lemma we must show 
(f 1x ... xfý): Xlx ... xXn c! o+Ylx ... xy, 

Again, we leave this as an exercise. 

Using the notion of a direct product we can code Cartesian products in the following way: 

8.2.8 Definition. 

Let A1 be A2-coded by y via w. We extend w and y as follows: 

13 

13 

(i) Extend w from w: S 1-+S2 to w: Si- >S2 by defining 

w(v) = w(vi) ... x, (v. ) 
for each veSi with Iv=n. (Here ̀ """' is concatenation over S2 which we understand as the 

point-wise extension of concatenation over S2; for example, if uE SZ and veS?, then by u -v we 

mean the word we SZ*' defined by 
1ui if15i5m 

WI = vi_,,, otherwise 
for i =1...., n+m. ) 

(ü) Extend y from y: S 1-->[A Z ->A 1] to y: Si --->[A2 --30A i] by defining 

y(v) _ (Y(v1)x ... x7(v. )) 
for each veSi with Iv I= n. 

Notice that since 
7(vt): Aw2(v')`° A"'1 

for i =1...., n, we have 

^Ky); gz("fix ... xq2ý: ý ýýqX ... xqi 
by Lemma 8.2.7, that is, 

'y(v): Ai(" c9--. Ai 

Example. Let y and w be as in Example 8.2.3. Then applying the preceding definition to the product 
ZXZ4XZ for example, we have 

w (a4Z) =w (Z)w (Z4)w (Z) = (BN)(BBBB)(BN) 

(where 'Z4' names 7-4) and 

y(ZZ4Z) = y(Z) x7(Z4) xy(Z) : (18 x N) x (16 x iB x]B x 18) x (B x N)-->Zx74 xz 
(Here we have included extra parentheses purely for emphasis. ) Also, if we take z 1=+2, z= 13, and 
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Z2=-2 for example, then (zl, z, z2) e ZxZdxZ has code (tt, 2, tt, ttff, ttf 2). To formally verify this, we 

calculate as follows: 

y(z 4z)(rt, 2, rt, rr, ff, u, {f, 2) _ (y(z) xy(z4) x y(z))(tt, 2, tt, ttf ttf, 2) 

_ (7(z)(rt, 2), 'Y(z4)(tt, r4ß', tt), 7(z)(ff, 2)) 

_ (2,13. -2) 13 

We can now support the intuition above: the following Lemma can be read as saying `a vector of 

codes of elements is a code of the vector of elements'. 

8.2.9 Lemma. If A1 is A2-coded by y via w, then for each veS 

'y(v): A2(' ° °>AT 

Proof. Immediate from Lemma 82.7. p 

We are now in a position to define compiler correctness in the context of two algebras which have 

different carrier sets: 

8.2.10 Definition. 

Let L1 andL2 be PR systems, and suppose A1 is A 2-coded by y via w. Then 

(i) An (LI, L2)-compiler c is a Si xSi -indexed family of mappings 
C =<CM, v: u, YESt > 

such that c"' : PR(E)",,, --'PR(T, 2),, ý"ý, w(, ) for each u, v eSi. 

(ii) An (L1, L2)-compiler c is said to be correct with respect to y if for every u, v e S1. and for every 

a r= PR(Zt)",,, the following diagram commutes for every aeA; ("): 

[UDA 
AA 

7(u ) 'Y(v) 

A2(M) A2(") 
[c (a)IA, 

That is, if 
(V aeA2 (")) (7(v)( [c"'" (a)]A, (a)) = QaIA, ('Y(U)(a)) ) 

Discussion. An (L1, L2)-compiler is correct when for each source program and for each (legal) input, 

given a code of the input, the object program computes the code of the output of the source program. 

Notice that in the case that Al and A2 have the same (or isomorphic) carriers, we can take y to be the 

identity function (or the unique isomorphism) and the above definition of compiler correctness coincides 

with Definition 7.1.1(iä). Additionally, we note that the idea of a coding is independent of PR and so 

whilst the preceding definition mentions PR explicitly, it is easy to see how it can be generalised to other 

functional languages (in the sense of Section 7.1). 
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In Section 82.16 we will consider compiler performance preservation in the current more general 

setting (where L1 and L2 have different underlying algebras, performance measures, and clocks); how- 

ever, before we leave the concept of a coding, we will gather together some useful facts about codings in 

general. In particular, in order to discuss compiling down through many levels of data abstraction 
A1 ,..., A� we need to be able to compose codings. After the following technical lemma we will prove that 

the composition of two codings is again a coding. Thereafter we establish that if A; is Ai+l-coded for 

i =1,..., n-1, then there exists an A�-coding of A 1. 

8.2.11 Lemma. Let y bean A2-coding of A1. let S. be any (sort) set, and let w: S, --->Si be any map- 

ping. Then for every ve So . 
'Kw (v)) =7(w(vi))x . x7(w(v. )) 

where n= 1v I. 

Proof. Let veS; with Ivn, and for i =1...., n let w (v; ) = u; e Si and let rj =Iu; I for i =1,..., n. 
Additionally, suppose u; =si""" si for some sorts sf ES1. Now, from Definition 8.2.8 we have 

7(w (v)) = 7(w (v1) ... w (vi) ... w(v. )) 

=ytul... ui ... u. ) 
(by definition of u 

= Si r... rS; t r... rSir... rS; t .... rS 
i 

r... rSý 

(by definition of s; ' for j =1,..., r;, i =1,..., n) 

=Y(si )x ... X Ks", )x ... xXsi)x ... xy(s, )x ... x7(si)x ... x7(S: ) 
(see Definition 8.2.8) 

= (i(si )x ... X'(s, 1))x ... x('Y(Si)x ... x'(sý))x ... x(7{si)x ... x*; )) 

(by Lemma 8.2.5) 

=. Ksi ... Sr)X... xI(si... S, )X... X S ... S: ý 
(see Definition 8.2.8) 

= 7(ui)x ... X7(u1)x ... xl(u. ) 
(by definition of u 1,..., u. ) 

= 7(w(v1))x ... X'(w(v, )) 0 

The following lemma tells us that we can compose codings in a natural way: 

8.2.12 Composition Lemma. Let yj be an Aj+l-coding of A. via w; : Si -->S1+l for i =1,2, and define 

y: S1-ß[A3-*A1] by 

Y(S) = Ti(5)o72(w i(s )) (7) 

for each se S1. Also define w =w7: S1--S3 by w =w2ow1. Then, 

(i) y is an A 3-coding of Al via w, and 

(ü) For each ve St, y(v) = yl (v )o Y2(w 1(v )) 
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Proof. To show (i), first notice since y, is an A2-coding of A1 via wl we have 

w1: S1-->S2' (8) 

and for each sESi, 

Yi(s): A2w`(f)! 2*Ai (9) 

Secondly, since y2 is an A 3-coding of A2 via w2 we have 

W2: S2+ --3"S3 (10) 
(when the domain of w2 has been extended to S2+; see Definition 8.2.8), and for each ve Si 

Y2(v): A3'(`) ýýýA' (11) 

by Lemma 82.9. 

Thus by (8) and (10), w: SI-+S3 , and by the definition of y (7) and by (9) and (11) (with 

v=w1(s)eS2), wehave 
"'(w()) 

-onto y(s): A3 *Ai 

for each se S1 since surjectivity is preserved under functional composition (proof: exercise), and thus y 
is an A3-coding of A1 via w as claimed. 

To show (ü), choose veSi and let IvI =n. Then from the definition of y(v) (see Definition 

8.2.8) we have 

Y(v)=Y(v1)x ... xXvR) 
=Yt(vt)OY2(WI(vt))x .. " xY1(Vn)°Y2(wl(v�)) 

(by (7)) 

= (Yi(vt)x ... XY1(va)o(Y2(wi(vt))x ... xY2(wt(vv))) 

(by Lemma 8.2.6) 

=Y1(V)°(Y2(wI(V1))X ... xY2(Wt(Va))) 

(see Definition 8.2.8) 

-2 V00112(W IM) 
(by Lemma 8.2.11). 

8.2.13 Notation. 

13 

In the situation of Lemma 8.2.12, we write Y=Yi°Yz for the mapping y defined by (7) of that 

lemma. Q 

An easy corollary to Composition Lemma 8.2.12 is the following 

8.2.14 Hierarchy Lemma. Let Ai be A; +1-coded by y; via wj for i =1.... ßn. and define 

/ ): S1-: [A +i-+Ailby 

J 4)(S) = il(wo(s))o ... o %(wa-1(s)) (12) 

for each se S1. and where wo(s)=s for each se Si. Also define w(")=wy.. ) 
by 

x, (ý) _w "o ... owl (13) 
Then A1 is Ai+1-coded by J') via w(*). 
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Proof. By induction on n. 

Basis. Suppose n=1. Here, Al is A,, +, -coded by 70") via w(") by hypothesis (since A�+1 is A2, and it is 

easy to see 'y 1)=Y1 from (12) and w(l)=w1 from (13)). 

Induction. Suppose for some fixed kZ1 that for n =1,..., k, if A; is A; +t-coded by yj via wi for 

i =1,..., n, andif'yO): St, [A�+t -->At] is defined by 

t"")(s) = Y1(wo(s)). ... -Y"(wR-t(s)) (14) 

for each se S1, and where wo(s)=s for each se S1, then, Al is A"+t-coded by y") via w(")=w,,, ) where 

w(") is defined by 

W(m) = w, 1, ... Owl (15) 

Now suppose A; is Ai+1-coded by y; via w; for i =1,..., k+1. We must show A1 is Ak+2-coded by 

_Ik+t) via w(k+i)= w..,, where 'k+l) :SI -->[Ak+2 -->A 1] and w(k+l) are defined by 1 

7i(x'o(s)iý ... oYt+t(K'k(S)) (16) 
for each se S1, and 

x, (, t+l) = Wk+i° ... owl 

where for i =1,..., k+1, w; = w,,. 

(17) 

By the induction hypothesis, we can assume Al is Ak+l-coded by 'k) via w("`), and by hypothesis 

Ak+l is Ak+2-coded by Yk+i via wk+1. Thus, by Lemma 8.2.12(i) Ai is A, t+2-coded by y via w when for 

each seS1, y(s) is defined by 
-Ks) = Tlk)(S). 7, w(Wlk)(s)) 

and where w is defined by 
K' = wk+1°W(k) 

However, ýk)(S)*^k+, (w(k)(S))= 1'k+1) by (14) and (16), and wk+low(k)=w(k+1) by (15) and (17). 

? iu A1 is Ak+z-coded by Yak+1) via w(k+1) as claimed, completing the induction step. Q 

8.2.15 Notation. 

In the situation of the preceding lemma, we write 

ly -Y 00 -f 

.1 
jx 

for the mapping ̂ I defined by (12) of the lemma. 

8.2.16 Retiming. 

We now wish to consider performance preservation properties of (L IL 2)-compilers c. Notice that 
for given ae PR(E1) we cannot directly compare the complexity of c (a) to that of a since these com- 

plexities are measured with respect to different clocks. 

Suppose ae PR(E)",, and let A1 be A2-coded by y via w; then c (a) e PR(F. l)wt"ý, wtýý. 
Given an 

input ae A2 ("), it is appropriate to want to relate the execution time of c (a) on a to that of a on 

y(u)(a ), formalising the idea that we want to compare a and c (a) on the ̀ same' input. The time taken 

to execute c (a) on a is Xp (c ((x))(a) E C2 whereas the time taken to execute a on y(u)(a) is 
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Xp, (a)(y(u)(a)) e C1. However, as we remarked in Chapter 3, the choice of performance measures PI 

and P2 may reflect different implementation concerns and thus the underlying system clocks are properly 

not identified. 

Definition. Let C1 and C2 be clocks. Then a (C1, C, )-retiming is any mapping 'Y: C1->C2. p 

Intuitively, a retiming `P : CI-- 'C2 tells us the time T(c) on the low level clock C2 when the high 

level clock Ct says that the time is c. Using the idea of a retiming we frame the following: 

Definition. Let c be an (L t, L2)-compiler, and let AI be A2-coded by ^y via w. Now let ae PR(FZ)". V for 

some u, v e Si and let IF be a (C1, C2)-retiming. Then we say c preserves the performance of a with 

respect to `P if 

(Va EA2t"1) (Xp, (c(a))(a) S ̀ I'(Xp, (a)(Y(u)(a))) ) 

Discussion. In the case where A1 and A2 are both S -sorted with the same (or isomorphic) carries and y 
is the identity function (or unique isomorphism), our definition of relative compiler correctness 
(Definition 8.2.10) degenerated into our previous definition of a correct compiler given in Chapter 7. 

However, it is clear that a corresponding remark cannot be made about compiler performance preserva- 

tion: the definition of a performance preserving compiler given in Definition 7.1.1(iii) requires that the 

complexity of c (a) for each scheme a bounds, and is bounded by the complexity of a, whereas the 

above definition of relative performance preservation does not require that the complexity of a be 

bounded by the complexity of c (a). The reason for this is that in this chapter we not interested in the 

computational equivalence of languages per se, rather, we are interested in top-down design and so our 

primary objective is to guarantee the end product c (a) in the senses that (a) it correctly implements a, 

and (b) it is an efficient implementation by which mean that its complexity is bounded by (some function 

of) the complexity of a. Condition (b), the `interesting' half of Definition 7.1.1(iii), can be recovered in 

the following way: 

Suppose C1 and C2 are the same clock C (that is, in addition to supposing that AI andA2 have the 

same carriers and w and y being identity functions). Now suppose that c is an (L1, L2)-compiler which 

preserves the performance of any scheme a with respect to ''=`Y,: C1-- C2 defined by `P(c)=ka. c 

for some constant ka21; this means that 
(Va e A2) (X, (c((x))(a) 5 ka. Xp, (a)(a) ) 

when the domain of B OAS is A?. Such a compiler satisfies the first compiler preservation condition of 

Definition 7.1.1(iii). 

8.2.17 Polynomial Retimings. 

The case of retimings `P which are of the form `P(c) =k. c is a natural case to consider since a 

compiler which preserves the performance of a scheme a with respect to such a retiming preserves the 

complexity of a to within a constant factor; said differently, there is a linear relationship between the 

complexities of a and c (a) which we view as an identity relationship. A straightforward generalisation 

of this idea is a quadratic relationship between the complexities of a and c (a); that is when the 
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complexity of c (a) is bounded by (a constant multiple of) the square of the complexity of a. More gen- 

erally, a compiler can be performance preserving in the sense that there is a polynomial relationship 

between the complexities of a and c (a): 

Definition. Let d 20 and let no...., nd eN where nd #0. Then a polynomial is a mapping p: N->N 

of the form 
p(x) = n,, +nl. x+ """ +nd. xd 

which we also write as 
kmd 

p(x)=Ink-xk 
k-0 

We call d the degree of p, in symbols: deg p =d. The collection of all polynomials (of any degree) is 

denoted N[x ]. (Note that the function p: N --ýN defined by p (x) =0 for each xeN is not a polyno- 

mial according to this definition). 

8.2.18 Definition. 

Let Cl and C2 be clocks. A (C1, C2)-retiming'P is said to be d-adic if'PE N[x] with deg ̀ P=d. 

(For '0-adic' read 'constant', for `1-adic' read ̀ linear', and for '2-adic' read ̀ quadratic' etc. ) 0 

8.2.19 Definition. 

Let L1 and LZ be PR systems, and suppose A, is A2-coded by y via w. Then a (L 1, L Z)-compiler c 
is said to be d-adic if for every u, v c- S1 and for every aE PR(X1)M,,, there exists a d-adic retiming 
`a: C 1--' C2 such that c preserves the performance of a with respect to'P«; that is, if 

(Va E A'(") (? pi(c"'" (a))(a) s `,, ()p(a)(7(u)(a ))) ) 

Discussion. The idea behind a `d-adic' compiler is that the number d is a measure of the efficiency of 

the compiler. For example, if d=0 then the execution time of every compiled scheme is bounded by a 

constant independent of the complexity of the original scheme, which is very efficient indeed! Alterna- 

tively, a 1-adic or linear compiler has the property that the execution time of every compiled scheme is 

bounded by some constant multiple of the execution time of the original scheme; this is not as efficient 

as a 0-adic compiler, but intuitively quite acceptable. Of course, as the number d increases, d -adic com- 

pilers are progressively less efficient objects; for example, a 3-adic or cubic compiler produces object 

schema whose complexity is bounded by (a constant multiple of) the cube of the complexity of the 

source scheme. 

8.2.20 Retiming Theory. 

Below we gather together some isolated definitions and elementary facts concerning N[x] (in its 

capacity as a class of retiming functions ̀ if); the proof of each of the lemmas below is left as an exercise. 

8.2.21 Definitions. 

(a) Let `P E N[x] be defined by 
`fi(x)=a, +ai. x +""" +ad. xd 

Then we say ̀ Y is homogeneous iff ao=0. (Equivalently, `P is homogeneous iff `P(0)=0). 
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(b) Let `Y E N[x]. We say ̀ Pis monotone if for everyx, y e N, 

xsy 'P(x) s'P(y) 
(c) Let'Yl, `f'2 e N[x] be defined by 

t-d 
TI(x) = Ea; xr and `P2(x) = Fbj xi 

i-O J. o 
Then we define ('P1+'P2) e N[x ] by 

k=' 
(W1+'2)(x) =I Ck .Xk 

k +O 

where d" = max{ d, d' } and for k=0..... d" ck is defined by 

(ak+bk) if 05k Smin{d, d } 

ck = ak d> d and k>d 

bk otherwise 
Notice that deg (%+'F'2)= max{ deg ̀F1, deg T2 }. 

(d) Let'P1, P2 E IN[x] be as defined above. Then we define max('Y1, ̀I'2) e IN[x] by 
k-d" 

max('P1, W2)(x)= 
`Ck"Xk 
k=o 

where d" =max{ d, d' } and for k =0,..., d' ck is defined by 

mu{ak, bk } if OSk Smin{d, d' } 

Ck = ak d>d and k> d' 

bk otherwise 
Notice that deg max(`Yl, ̀ V2) = max{ deg ̀Y1, deg ̀Y2 }. 

(e) Let `P1, W2e N[x]. Then we define (`Pio`P2) E N[x] by 

(%Flo`Y2)(x) _ WA VP2(x)) 

Notice that deg (`Ylo ̀Y2) = deg'Y, . deg ̀Y2. 

8.2.22 Lemma. Let ̀ J1, `P2 e N[x ]. If T, and 'P2 are both homogeneous, then for every x, y eN 
WA(X) +'Pz(y) s ('P1+'P2)(x+y ) O 

8.2.23 Lemma. Let 'Y e N[x ]. If `Y is homogeneous then ̀ P is monotone. 13 

8.2.24 Lemma. Let'Y1, T2, T3 E N[x ], and let x and y be any natural numbers. Then, 

(a) max(Pi, ̀P2)(x) _ max('P2, Tl)(x ) 

(b) maa(`I'i, max('1`2, `P3))(x) = max(max(`Pi, 'P2), ̀P3)(x) 

(c) max{ 'Yl(x), `N2(y)} 5 max('Y1, 'P2)(max{x, y }) 

(d) `ß'1(x) 5 max(`Yv`I'2(max{x, y }) O 

(In view of part (b) of the above lemma we will subsequently write max(`Y1,.... 'Ps) without further 

parentheses). 
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For future use we explicitly phrase the two following facts about polynomials in terms of retim- 
ings: 

8.2.25 Composition Lemma. Let C; be a clock for i =1,2,3, and let 'P t: C; --->Ci+1 be a (Cj , 
Ci+1)-d; - 

adic retiming for i=1,2. Then `FEJN[x] defined by 'i'=`Y2o`F1 is a (CI, C3)-d-adic retiming, where 

d=dl. d2.0 

8.2.26 Hierarchy Lemma. Let CF be a clock for i =1,..., n+1, for any n 21, and let `Pj : Ct ->Ci+1 be 

a (C, , C; +1)-d; -adic retiming for i =1,..., n. Then ̀ P e IN[x ] defined by `F ='I'� o""" o'Pl is a (C 1, C�+1)- 

d -adic retiming, where d =d 1x-""xd,,. o 

8.3 IMPLEMENTATION THEORY. 

We wish be able to state (and prove) a theorem concerning the automatic generation of correct 

compilers. As we will see in the next section, the existence of a correct (L1, L2)-compiler will be 

guaranteed when we have implementations of the constants and operations of A1 over A 2. In this section 

we will define the concept of an L2-implementation of an algebra A 1; such an implementation is a for- 

mal package comprising an A 2-coding of A1 together with two collections of PR(E)-schema that tell us 
how to compute the constants and operations of A1 (with respect to the coding) respectively. Also, to 

keep performance matters firmly in view, we will define the complexity of an L2-implementation; as we 

will see later, a compiler that is generated by a given implementation is performance preserving in the 

sense that the compiler never has complexity worse than that of the implementation which generated it. 

The way in which we define an implementation of an operation and its complexity is straightfor- 

ward and will be considered first: 

8.3.1 Definition. 

Let A1 be a E1-structure for Sl-sorted signature EI, and let L2 be a PR system. If A1 is A 2-coded 
by y via w =w7 then we say Al is L2-tracked (or sometimes: ̀ Ai -tracked) if for every ve S1 and 

sE S1, and for every or= there exists some L2-tracking aae PR(1. )�, t, i, w(, ) of a such that the 
following diagram commutes for every aeA2 (" ): 
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0 
A% 

That is, if 

Ai Ai 

7(V) 

Jr(s) 

AZ (") A-2(&) 
Qýllý, 

(Va e A2 (')) (y(s)([a ]A, (a )) =cr )) (18) 
We collect such implementations into a family Tr =< cc, :ße El > and say A1 is (L 2)-tracked by Tr. 

Additionally, if P1 is a performance measure for A1 which is based on clock C1, then we say Tr is d. 

adfc if there exists an (C1, C2)-d-adie retiming `Y such that for every ve Si ,se Si and every 
QE (El)rj, 

8.3.2 Example. 

(Va E A"2()) ( XP, (ac)(a) 5 T(ä 'i7(v )(a ))) ) 

Continuing Example 8.2.3, let neg : Z-'Z be negation on Z (so neg(3)=-3, neg(-2)=2, and 

neg (0) =0 for example). Given the code (b n) e lB x IN of an integer zeZ, the code of neg (z) is sim- 

ply (-b, n ). is logical negation. ) 

Formally, first observe that by definition of 9 (see (6)) we have 

(Vb e ]B)(Vn e Hit) (6(-b, n) = neg(9(b. n))) (19) 

Now define c(,., by aM, =< -oUi", UZ >. Then cc.,, e PR(£. j)eN,,,, =PR(F. 1�, . wz and for each 
(b, n)e ]BxN=A? « we have 

'Y(Z)(Qai ]IA, (b. n )) = 6(IIaMa IIA, (b'n )) 

= 0(-b, n) 

(by definition of cc,., ) 

= neg (O(b, n )) 

(by (19)) 
= g(z)(bn )) 

Thus a.., is an L2-tracking of neg. 

8.33 Implementing Constants. 

We will now consider how to implement or compute the constants of an algebra A1 by a scheme 

over A2. Since constants c4` only ever appear in PR(F, )-schema as constant function schema c* for 

some we Si , our objective is to find L 2-implementations of all constant-valued functions over A1. 

In order for us to be able to compute the constant-valued functions of A1 over A 2, we clearly need 

some means of accessing or `reaching' the constants of A1 from A z. Recall Example 82.3; there, 0eZ 

was accessible from lB uN in the sense that 
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7(z)(rr, 0) =0 (20) 
Here we can `reach' 0eZ by virtue of the fact that Z is (lB u N)+-coded. As a slightly more general 

example, +2 eZ can be ̀ reached' from 0uN in the sense that 

y(Z)(tt, succ (succ (0))) = +2 (21) 

Here we rely on knowing what the coding y actually is. Now, to impose properties on codings is to 
invite them to have properties which may not be isomorphism invariant contradicting the intuitive idea 

that isomorphic algebras are identical. Instead, we will impose a condition on the algebras themselves; 

this condition generalises a common aspect of (20) and (21) above, namely that in both cases the argu- 

ment to y(Z) is obtained by finitely many applications of operations to constants. We formalise this idea 

in the following way: 

83.4 Definition. 

Let E be an S -sorted signature. We define the collection T(E) of (finitely generated) terms by 
T(E) =U T(2)W 

WES' 

where for each we S+, T(E)w is defined uniformly in w by structural induction as follows: 

Basis. 

(i) Constants. For each seS, if ce then ceT (E),. 

Induction. 

(ii) Vectorisation. If p; E T(L),, for some si e S, i=1,..., n 21, then <pl,..., p, i >e T(E)w when 

W=Sl -* S'. 

(iii) Composition. If peT (L),, for some we S+ and c re F.,., for some seS, then ao pET (I), - 
In addition, if A is a I-structure with performance measure P, then we extend the semantic evaluation 

mapping (. )A : E-->A to (. )A :EiT (L) -- .A and the performance estimation mapping (. )P : E-ýP to 
(. )p :EQT (L) --'P by defining 

<pl,.... P. >" _ (Pi ...., P, ") 

<pl...., p� >' = max{ pp } 
MSA 

and, 
(ao p)" = 04 (pA ) 

(a. p)p = pP+aP (pA) 13 

The concept of a constant of A"1 that is 'reachable from' A2 can now be formalised as follows: 

83.5 Definition. 

Let A. be a F, -structure for Si -sorted signature F. t for i=1,2. Also suppose A1 is A 2-coded by 7. 

For each se S1, and for each ce (E1),, we say p, e T(F. 1)wýfi generates CA, if 7(S)(P9A CA,. (We 

will also say p, is an A 2-generation of cA,. ) Additionally, we say A1 is A2-generated if every constant of 
A1 is generated by some p, e T(T-2). 
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As further notation, when A1 is A 2-generated we collect all the A2-generations into a family 

denoted Gn =<p, :ce Z1 >, and say A1 is A 2-generated by Gn. Q 

We now make the central definition of this section, namely that of an L2-implementation of an 

algebra A 1: 

8.3.6 Definition. 

LetA 1 be a EI-structure for St-sorted signature T q, and let L2 be a PR system. Now suppose 

(i) A1 is A 2-coded by some coding y, 

(ii) A1 is A2-generated by some family Gn of L2-generators, 

(iii) At is L2-tracked by some family Tr of L2-tracking functions. 

Then we refer to I= (y, Gn. Tr) as an L 2-implementation (or sometimes an `A 2'-implementation) of A 1. 
As additional notation, when we need to refer to the coding y of I without explicit reference to the rest of 
the triple, we write yl. Also, I is said to bed -adic if Tr is d -adic. 

Discussion. As we have said, our goal is to prove the existence of a correct (L1, L2)-compiler given an 
L2-implementation of A I. The proof of existence is constructive, and so we can think of an implementa- 

tion as generating the compiler. We will additionally prove that a compiler so generated is performance 

preserving in the sense that it preserves the complexity of source schema up to the complexity of the 
implementation that generated it: if I is d-adic then the compiler generated by I is also d-adic. (Actually 

the case d=0 is an exception: 0-adic implementations generate linear compilers. ) However, before we 

can prove this fact we must return to the matter of computing constant functions: 

Generations p, E T(E2) of constants c 
A, 

are the key to implementing the constant-valued functions 

of AI by schema over A2; after a preliminary lemma we will prove this fact. 

8.3.7 Lemma. Let L be a PR system, and let pET (M), for any vES. Then, for any uE S*, there ex- 
ists aE PR(E),,,, such that 

(da E A") (QalA (a) = pA (22) 

and 
(baEAM) (Xp(a)(a) =p' ) (23) 

Proof. We construct a as a function of p and v, in symbols, a=A(p, v). The construction is by induc- 

tion on the structure of p, and is uniform in v. 

Basis Case. 

(i) Constants. Suppose pe Ex. for some seSS. Then p=c for some constant symbol c (and here, 

v =s). 

Take a= A(p, v) = c", then a r= PR(E)", y, and for each ae A" we have 

[a]p (a) = [c"IA (a) 
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= CA 

= pA 
(by definition of p) as required. 

To show (23), choose ae A". Then we calculate as follows: 
Xp(a)(a) = Xp (c")(a ) 

= CP 

_pp 

(by definition of p) as required. 

Induction. Let p be some fixed (non-basis) element of T(E). We assume for every voe S+ and 

po eT (E)y of less structural complexity than p, that for any u0¬ S+, there exists 

a0=A(po, uo) e PR(E)..,,,, such that 

(pia e A"") (QoaJA (a) = Pö) (24) 
and, 

(V aE A") (Xp (IO)(a) = Pö) (25) 

We now show the Lemma holds for p according to the following two possible cases: 

(ü) Vectorisation. Suppose pET (E), but v1 *1. Then p=< pl.... ' p* > for some pie T (E),, for 

i=1,..., n=Ivy. 
For any ue S* define a=A(p, u) by a=<A(pl, u),.... A(pR, u)>. Now, since each p; is of less 

structural complexity than p, we have a; =A(p�u) e PR(E),,,,,,, and 

(Va e A") ([c JA (a) = P") (26) 

by the induction hypothesis (24), for i =1,..., n. Thus ae PR(E).,,, and for each ae A" we have 

MA (a) = 1<al...., a6 >1A(a) 
= ([a1]L(a),.... [a. ]A (a)) 

(by (26)) 

_ <pl,... p P* >e 
= pA 

(by definition of p) as required. 
To show (23), again since each p; is of less structural complexity than p, we have 

(VaEA") (XP((xi)(a)=PP) (27) 

by the induction hypothesis (25), for i=1,..., n. Thus, for each aE A", 
XP (a)(a) Xp (< a11... ß ct. >)(a) ) 

=1max{ Xp(%)(a) } 
Si 14 

P = max 
l{ 

pi } 

(by (27)) 
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=< p1--. PA >p 

= pp 

(by definition of p) as required. 

(üi) Composition. Suppose peT (L), and IvI =1 but pd E. Then v=s for some seS, and p= ao p, 

where for some we S', Qe Z ,, and poe T(L),. 

For any ue S+ define a=A(p, u) by a=aoe(po, u). Now, since p, is of less structural complexity 
than p we have a, =A(p�u) e PR(E)",,, and 

(Va e A") ([aJA(a) = pö) (28) 

by the induction hypothesis (24). Thus ae PR(E)",,, and for each ae A" we have 

[alA(a) = [a"ajA(a) 

= ILIA ([ao]IA (a)) 

= IGJA(Pö) 

(by (28)) 

=ä (Pö ) 

_ (ßßp 
= pA 

(by definition of p) as required. 

To show (23), again since p, is of less structural complexity than p, we have 

(Va e A") (pp (o:, )(a) = pö) (29) 

by the induction hypothesis (25). Thus, for each ae A", 
XP (a)(a) = Xr (ß" (a ) 

= X,, (a, )(a )+%p (a)(QaJA (a)) 
= pö+Xp (ß)(QcjA (a)) 

(by (29)) 
= Pö+x (Q)(P1) 

(by (28)) 

= pö (pö) 

_ (Q. po' 
= pp 

(by definition of p) again as required. 10 
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83.8 Lemma. Let A1 be a F. t-structure for S1-sorted signature El, and let L2 be a PR system. Suppose 

A1 isA2-coded by y via w =w., and A 2-generated by Gn =<p,: ce Li >. Then, for each seS1 and for 

each ce (El)i,, there exists ac. � E PR(IL), 
r(�)w(, )for any ve Si 

, such that 

(Va E A2 (') (i(s)(Qae., ]A, (a )) = 
Al) 

C(30) 

and, 

(Va e Ai (")) (Xp, (a,,.,, )(a) = pp') (31) 

Proof. Take a,, "=A(p,, w(v)) where p, generates cA` (where A is as in the proof of Lemma 8.3.7). 

Then ae PR(E)Wsince p, e T(E2)w(, ). Now, from Lemma 8.3.7 we know that for any ae A2 

'AS)(Qaa, "DA, (a)) = 7(s)(p, 3) 

C 
Al 

= 

(since p, generates cA'), and thus (30) holds as claimed. 

To show that (31) holds, we have immediately from Lemma 8.3.7 that 
(daeA2(")) (XP, (c6. 

r)(a)=Pc) Q ý 

8.4 COMPILER THEOREMS. 

In this section we will first state and. prove our central theorem concerning the generation of 

correct and performance preserving compilers, and secondly we show our theory is compositional in the 

sense that the composition of two correct and performance preserving compilers is again a correct and 

performance preserving compiler, this result allows us to easily prove a theorem concerning the genera- 
tion of a compiler which compiles high level schema down through a hierarchy of PR systems L 1,..., L.. 

8.4.1 Implementation Theorem. Let L1 and L2 be PR systems. Let I be an L2-implementation of A1. 

Then there exists an (L 1, L2)-compiler c, correct with respect to y,. Furthermore, i fl is d -adic, then c is 

d'-adic where d satisfies 
d=l if d=0 (32) 

Sd ifdZ1 

Proof. Let A1 be A 2-coded by y='y, via w. Then to prove the theorem we must show that for each 

ae PR(EI), there exists c (a) e PR(! 2) such that 

(a) if ae PR(E),,,,, for some u, v eS1 then c (a) e PR(EZ) W 
(b) if ae PR(EI)",,, for some u, v eSi then the following diagram commutes for every aE A2("): 
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[alA 

"r Ai Ai 

^KU) ^Xv) 

AZ (") A2 (") 
Qc (a)IA. 

that is, 
(Va EA2(")) (, (v)(Qc((x)JA, (a)) = QalA, (7(u)(a))) (33) 

and, 
(C) there exists a d'-adic retiming'Pa, such that (32) holds of d, and if ae PR(rq)",,, then 

(Va EA w(")) (")) (Xp, (c (a))(a) s'«(? P, (a)(ý'(u)(a )))) (34) 
In contrast to previous compiler theorems, the construction of c and the proof of its well- 

definedness (as a S1 xS1-indexed mapping) is not difficult and so we will define c (a) and establish its 

well-definedness simultaneously with the proofs of correctness and performance preservation (that is, 

d -adicnes s). 

Let us begin the proof by unraveling the rather compact hypothesis of the theorem: 

Let I= (y, Gn, Tr) be an L2-implementation of A 1. Then, from Definition 8.3.1, for each veS1 

and seS1, and for each ae (El),,,, there exists c(, e Tr with as E PR(FJw, (�), w (, ) (here w =w., ) such 

that the following diagram commutes for every aeA? ("): 

Q 
As 

Ai Ai 

Xv) 14s) 

AZ (') A? -(') 
Qaa]IA. 

That is, 

(Va e A2(")) (Y(s)([a,,, JJ (a)) =ä , (. )(a))) (35) 

Furthermore, ifI is d-adic, there exists ̀ P: C1-3-C2 with Te N[x] and deg''=d such that 

(Va e A2*(")) (Xp, (c , )(a) 5 Y(ä '('1'(v)(a )))) (36) 

Now choose ae PR(11),,, " for some u, v e Si . Using an inductive argument on the structural 

complexity of a which is uniform in u and v, we will first define c (a), establish that is well-defined, and 

then we prove correctness; then we construct a retiming `P which we show has a degree d which 

satisfies (32) above, and then finally we show that c preserves the performance of a with respect to T,. 
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Note. Actually, the proof of part (c) the theorem relies on the fact that each "a is homogeneous; this is a 
further property that we establish in the basis steps of the proof and show is preserved in the induction 

steps. 

Basis. 

(i) Constant Functions. Suppose a=cv for some ce (E )ý,, for some se S1 and some ve S1 . Then 

cc r= PR(Zj),,,. 

Compilation. Define c (a) by c (a) = a,,, where a,,, is as in the statement of Lemma 8.3.8. 

Well-definedness. Here it is easy to see that c (a) E PR(E, ),, t�, �, (, ); this is given by Lemma 8.3.8. 

Correctness. To see that c correctly compiles a, that is, that (33) holds for c (a), choose ae A2 "(v) and 

calculate as follows: 

Ii'ts )(QC (a)IA, (a )) _ 7(s )(Qae. 
v 

DA, (a )) 

C 
A, 

= 

(by Lemma 8.3.8) 

= Qc" 1A, (Y(v)(a )) 

= QoaIAI(7(v)(a )) 

Thus c correctly compiles constant functions. 

Retiming. Define 'P E] [x] by 

P[: 1. 

x `fa(x) = 

where (yl denotes the smallest natural number greater than or equal toy . Then T, is homogeneous and 
d =deg IF. =1 satisfying (32). (If d*0 then d 21, and sod =15 d. ) 

Performance Preservation. To see that c is d-adic on a, that is, that (34) holds for c (a) and `Ps, 

choose ae AZ (") and calculate as follows: 
XPa(c (a))(a) = XP2(ae, 

")(a 
) 

P 
p, 

(by Lemma 8.3.8) 
'2 

g CP, 
CPi 

= Ta(cP. ) 

= Ta(?, P. (c")( v)(a))) 
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= `Pa(? P, (a)(7(v )(a))) 

Hence c is d'-adic on constant functions. 

(ü) Algebraic Operations. Suppose a=a for some ae (El)' 
j 

for some ve Si and se S1. Then 

aePR(E), j. 

Compilation. Define c (a) by c (a)= a, where as EI tracks a. 

Well-definedness. Here c (a) e PR(F. 2), r(�ý, r(, ) since 1 is an implementation (see Definition 8.3.6). 

Correctness. To see that c correctly compiles a, that is, that (33) holds for c ((x), choose ae A2"(") and 
calculate as follows: 

(s)(Qc (a)JJAl(a )) = i(s)(Qaa]IAýa )) 

=a , (y(v)(a )) 

(by (35)) 

= QaIA(7(v)(a )) 

= QcLIA, ('Y(v )(a )) 

Thus c correctly compiles algebraic operations. 

Retiming. Define ̀ Ya by 

'Pa(x)=`Y(x)+`Y(0). (x-1) 

Notice 
TC. (0) _ `1'(0) - `I`(0) =0 

thus Ta is homogeneous (see Definition 8.2.21(a)), and it is easy to prove that 
(b/xeN) ('P(x)z`Y(x)) (37) 

We must now prove that d =deg Ta satisfies (32) and that c is performance preserving. There are 

two cases to consider. (a) deg T, =0, and (b) deg ̀TT. > 0. First, we write 
fi(x)=a. +... +ad. xd 

Case (a). Suppose deg ̀1'= O. Then T(x)=a,, and so 
(x)=a,, +a,. (x-1)=a,. x 

Thus d= deg ̀P =1 satisfying (32). 

Performance Preservation. To see that c is d'-adic on a, that is, that (34) holds for c (a) and Ta, 

choose aE A2 (') and calculate as follows: 
Xp, (C (a))(a) = Xp (av)(a ) 

5 `Y(a '(-Kv)(a ))) 

(by (36)) 
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= ao 

(def. W) 

= ao. 1 

5 ao. cF 
P. (7(v)(a)) 

(since do (a)Z1 for anyo, P, and a) 

= `P (ä '(7(v)(a ))) 

'a(Xp (a)(xv )(a ))) 

P,, (Xp (a)(y(v )(a ))) 

Hence c is d-adic on algebraic operations in this case. 

Case (b). Suppose deg ̀Y> 0. Then 

`Ya(X) = `F(x)+`Y. (0). (x-1) 

='F(x)+a,. (x-1) 

= ao+ ... +ad. Xd +ao. X -aa 

= (ao+al). X + ... +ad 
. Xd 

Thus d= deg ̀ I' = deg ̀F satisfying (32). 

Performance Preservation. To see that c is d -adic on a, that is, that (34) holds for c (a) and 'F0, 

choose ae A"') and calculate as follows: 
Xp, (c (a))(a) = Ä, 

p, (o6)(a ) 

5 'Y(ä `(7(v)(a ))) 

(by (36)) 
5 T,, (ää '(I(v)(a ))) 

(by (37)) 

= `I'aOp (a)(7(v )(a ))) 

='a(? Pý(a)((v )(a))) 

Hence c is d -adic on algebraic operations in both case (a) and case (b). 

(iii) Projections. Suppose a=Ui' for some ve Si and some i with 15i5n=IvI. Then 

aE PR(EI),,,,. 

Compilation. In order for some c (a) e PR(F2) to `track' a, we must have c (a) E PR(F. i)w(, ), W (v, ), that is, 

c (a) E PR(F. Z)w (vl) w (; ). w (vý)" Further, given input a= (a i...., a") E Aw Z 
(v`)x 

."" XA 
ZC (a) must 

`project out' a' E A2 (y'). However, as we may only project out single values in PR (and not vectors of 

values), c (a) will be a vectorisation of projections: 
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Let l; _ (w (v; ) I for i =1,..., n, and let 1= i 1i; then 1= Iw (v) 1. Now, for i =1,..., n, if we define 
i-I 

m; by 

10 if i =1 
mi =I k=i 

IIlk ifi>1 
k: l 

then m; is one less than the index of the first element of vector ai e A? (') in 

a =(al,..., ai,..., a") e A? (), That is, when ae AZ (') is written as a list a =(al,.... ai) of elements as 
opposed to a list a= (a ',..., a') of vectors, we have 

i a=a.,,,, ) (38) 

We now define c (a) by c(a)=<al�... a/ > where for k =1,..., 1; ak =U, w+k. 

Well-donedness. It should be clear from what we have just said that ak e PR(F. l)w()where 

si. k =w (V). 
,k 

for i =1...., n and for k =1...., 1; ;a¬ for k =1,.... lß =Iw (vi) 1, and 

hence c(a)e PR(E)W()(, ) as required. 

Correctness. To see that c correctly compiles a, that is, that (33) holds for c (a), choose aeA "2() and 
calculate as follows: 

Y(vi)(Ic (a)JJA, (a )) = 7(vv)(Q< ai... � a% >LL, (a )) 

_ 'Y(vi)(Qalja, (a )..... Qa%]IA, (a )) 

= y(vi)(a. 
, 

a,. 
, .1, ) 

(by definition of ak) 

(by (38)) 

(see Definition 82.8) 

= 

= ('(v1)(a')...... v Xa"))i 

= ('Y(v Xa )); 

_ [UI']A, (Y(v)(a )) 

_ [a]A, (7(v)(a )) 

Thus c correctly compiles projection functions. 

Reriming. Define ̀ I'a by 'P (x)=x. Then 'a is homogeneous and d =degT. =1 satisfying (32). 

Performance Preservation. To see that c is d'-adic on a, that is, that (34) holds for c(a) and `'0, 

choose ae A2 () and calculate as follows: 

Xp (c (a))(a) =) pa(< at,..., a% >)(a) 
=1mýax {X pi(ax)(a) } st' 
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max {? p(U. w(; 2)(a) } 

= lmaýx 
{1} 

=1 

='P (1) 

_ `Y. (%p, (Ufl(Y(v)(a ))) 

_ `Y,, (%p, (a)(y(v)(a ))) 

Thus c is d'-adic on projection functions. 

Induction. Let ae PR(11) be some fixed (non-basis) scheme with the property that for every 

ao e PR(EI) of less structural complexity than a, that 

(I) if a0 e PR(EI),.,,, for some u ,, v, e S1+ then c (a0) e PR(Z wau, . w(v , and 

(II) if ao e PR(E),,.,,. for some u �va e S1, then 

(Va e Ai (u)) ('Y(vo)([c (a0)IA (a )) =1CJA (7(uo)(a )) ) 
and 

(IQ) there exists some homogeneous d; adic retuning IF. such that 

do=1 if d=0 
Sd if dl 1 

and if a, e PR(EJ..,,,, for some u o, vo eS+, then 

(V aEA2 
(4)) 

(X p (C (ao))(a) 5'a (XP, (ao)((u 
o)(a 

))) ) 

Now suppose ae PR(F. 1),,,,, for some u, v e S1 S. According to the four possible cases (definition- 

by-cases, vectorisation, composition, and primitive recursion), we will now construct c (a), establish that 
it is well-defined member of PR(Z), r(, ),, r(, ), and that it is correct; then we construct a homogeneous 

retiming `P such that d =deg'P satisfies (32) and that c is d'-adic on a. 

(iv) Definition-by-cases. Suppose a= Dc((3, at, a2) for some veS1 and some ß, at, a2 E PR(E). Then 

DE PR(F. t)�. and aj e PR(F1)u,, for i =1,2 since ae PR(E1),,, by hypothesis. 

Since (3, a1, a2 are all of less structural complexity than a, by induction hypothesis (I) we have 

c(O)r= PR(F. Z)w (�), w (3) and c (a; ) E PR(E2)W (u), W (�) for i=1,2. (Note that W(B)=B since the coding 7 is 

standard. ) Furthermore, by induction hypothesis (II) we have 
(Va EA2 (M)) (i(B)(QC (ß)]1A. (a )) = QIIA (Y(u)(a ))) (39) 

and for i =1,2, 
(Va eA2 (")) (-(v)(Qc (c4)DA, (a )) = Qa; lA, (Y(u)(a ))) (40) 
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Also, by induction hypothesis (III), there exist homogeneous d; -adic retimings 'Yo = `Pß, and 
Ti=T., for i =1,2, such that for i=0,1,2, d; = deg'P, satisfies 

'1t=1 if d=0 
Sd if d21 

(41) 

and 
(Va EAZ u)) (Xp, (C (j ))(a) 5'l (7, Pi(F')(i(u )(a )))) (42) 

and for i =1,2, 
(da E A2(µ)) (ýPi(ý(aiý)(a) 5 ýt(ýPi(ai)( u)(a)))) (43) 

Compilation. Define c (a) by c (a) = DC(c (ß), c (al), c (a2)). 

Well-defined ess. We have already seen that c(p)r: PR(ý2), q. ), and c(%. ) E PR(FI)w (u), w(v) for i=1,2, 

and thus a c- PR(E, j (, ý), � (, ) as required. 

Correctness. First notice that for any ae A2("), if Qc ((3)]ß, (a) = tt'4' then 

I lA (7(0(a)) = Y(B)(Qc (ß)DA2(a )) 

(from (39)) 

(by hypothesis) 
= xB)<tý>> 
= n"I 

(since T(B) is a homomorphism, see Definition 82.2(i)). 

Thus, 

Qc (F')DA, (a) = ttA' [PIA (Y(u)(a )) = ttA, (44) 

In a similar way it is easy to show that 
QC (P)IA, (a) =ff4' Qß]A, (Y(u Xa )) =ff 

A' (45) 

We can now show c correctly compiles a as follows. Choose aeA2 (") 
. Then by definition of 

c (a) we have 

[c (a)]IA, (a) _ [DC(c (ß), c (a1), c («2)]A, (a ) 
Qc (al)JJA, (a) if [c (R)]IA, (a) = ttA" 

[C (`"2)IA2(a) if [C (ß)IA, (a ) =ff 
A, 

[c (al)]IA, (a) if [ßIA, (7(U)(a )) = ttA' 

[c (a2)DA, (a) if [IIA(Y(U)(a ))f6`'ß' 

(by (44) and (45)). 

Thus. 
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Y(v )(Qc (al)DA(a )) if EPIA, (Y(u)(a )) = tt A, 

7(v K Qý (a)ýA=(" )) 7(v )(Qc (%)]A (a )) if Q1IA, (7(u)(a )) =fl4 
QalIA, (a) if QF'IA, (! l) = ttA, 

Q`"2LA, (l1) if QRDAi(a)=/- 

(by (40) with i =1 and i =2) 

= QDC(ß, ai, a2)1A, (y(u)(a )) 

= Qa]IAýi Ytu Xa )) 

Thus c correctly compiles a as claimed. 

Retiming. Define T, by 

Wa ='Yo+max('Y1, 'P2) 

To show that d= deg ̀Pa satisfies (32), first recall from Definitions 82.21 that 
d= deg (Wo+max(T,, T2)) = max{ deg'I'o, max{ deg'Yl, degT211 

=max[ dmax{ d 1, d2 }}= max{ d�d l, d 2} 
If d= deg T=0 then d, =dl=d2=1 by (41), and thus d=1 as required. Alternatively, if d *0, then 
d, 5d for i =0,1,2 (again by (41)), and so max{ d,,, d l, d2 }5d, again as required. 

Performance Preservation. Choose aE A2("). Then by definition of c (a) we have 
X,, (C (a))(a) = Xp, (DC(ß, (Xl, oºZ))(a ) 

XP, (c (a1))(a) if [c (R)]JA, (a) =!! 
As 

=X (c (ß))(a) + X, p (C (ai))(a) 
(46) 

if [c (P)1A, (a) =., 6a_ 

To show that c preserves the performance of a with respect to'Pa, first suppose Qc (0)IA, (a) =uA'. 

Then from (46) we have 

X (c (a))(a) = XP, (c (ß))(a) + Xp, (c (ai)Xa ) 
5'Fo(Xp, (ß)( u )(a ))) {' T1(AP, (a1)(^Xu )(a ))) 

(by (42) and (43) with i =1) 
5'Yo(7 p, (R)(Y(u)(a ))) + max('Pi, T2)(Xp, («i)(7(u)(a ))) 

(by Lemma 8.2.24(d)) 

s (''o+max('Pi, '2))(. P (ß)(-Y(u)(a )) + Xp, (a1)(7(u)(a ))) 
(by Lemma 82.22) 

='a(XP, (ß)(-Ku)(a )) + X, (al)(7(u)(a ))) (47) 

However, since Qc (ß)]A (a) = tt 
A', 

we have Q(3IA (7(u)(a )) =U 
A, by (44), and so 
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Xr (aX7(u Xa)) = XpI(ß)(7(u)(a )) + ? p, («i)(Y(u)(a )) (48) 

Thus from (47) we have 

ýr, (ý (a))(a) 5 ̀ I'(Xp, (ß)('Y(u)(a )) + %p, (ai)(7(u)(a ))) 
=T 

(from (48)). 

Thus c preserves the performance of a when Ic (ß)]A3(a) = ttAl. It is equally easy to prove that c 

preserves the performance of a when Qc (13)LA 
s(a)=? 

'; this we leave as an exercise. 

(v) Vectorisadon. Suppose a= <al,..., a� > for some %e PR(1q) for i =1...., n 21. Then 

a; e PR(F. 1).,,, for i =1,..., n=Iv1, since by hypothesis ae PR(EI),,,,, . 

Since each a; is of less structural complexity than a, by induction hypothesis (I) we have 

c (a1. ) e PR(Fýz)w, for i =1...., n. Furthermore, by induction hypothesis (U) we have 

(Va eAi (")) ('Ytvc)(Qc («Y )]1A (a )) = la, ]1A, (y(u)(a ))) (49) 
for i=1..... n. 

Also, by induction hypothesis (III), there exists a homogeneous d; -adic retuning `P1 such that 
di=1 if d=0 

5d if dZ1 
(SO) 

and 

for i=l�... n. 

(da EA2(")) (Xp (C(ai))(a) 5 Ti(XP, (ai)( u)(a)))) (S1) 

Compilation. Intuitively, the required scheme c (a) is essentially the vectorisation of the schema c (%); 

however, since we may only vectorise single-valued schema in PR, we must first project out the coordi- 

nates of each c (a; ) before vectorising. 

Let 1; _Iw (v; ) I for i =1,..., n then we define c (a) by 

c (a) = <all, ..., all, ... , al ,.... a! > 

where for i =1.., n and j =1.. 1� 

a3 = U1 oc(c, ) 

Well-def redness. Clearly, since c(as)e PR(F. ý)w(�), w(�, ) 
for i =1,..., n, we have aj e PR(F2)w(m),, 

U 
where sij =w (v; )j for i =1,..., n and j =1,..., 1j; thus c (a) e PR(F. j)w (r), w (v) as required. 

Correctness. First notice that for each ae A2 w(") 
wr) [aj]A(a) = ýj(o c (ai)]JA1(a ) 

w(r) / = [UJ ']IA, (QC (a, )1A, (a )) 

= (Qc ca »A, (a )); (52) 

Tbus, for each ae A2 (") we have 
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7Cv)([c(a)]A, (a)) =7(v)([<a...... aJ..... ai >]A, (a)) 

= (v)(Qai Dý, (a )..... Qa Da, (a )..... Qa; lA(a )) 

_ '%(v)((Qc (al)]A, (a ))i..... (Qc (a; )LL, (a ))ji.... (Qc (a. )DA, (a )h, ) 
(by (52)) 

= 7(v)([c (ai)]IA, (a),..., Qc (a1)LL, (a)..... tic (aO]A, (a )) 

_ (Y(v i)(Qc (ai)DA, (a ))I... I KVi )(tic (a1 )JA, (a ))..... '(v. )(Qc (a�)]A, (a ))) 
(see Definition 8.2.8) 

= ([ailh, (Y(u)(a ))..... lC L (Y(u)(a ))..... [«. ]AI('Y(u)(a ))) 
(by (49)) 

= Q< al1-1 Ctm >L (7(U )(a )) 

= QaIAi(1"(u)(a)) 

Thus c correctly compiles vectorisations. 

Retuning. Define 'I's by 

`P (x) =x+M(`Y, )(x) 

Then 'P is homogeneous. Furthermore, 
d= deg T= max[ 1, max{ d 1...., d� }}= max{ d 1,..., d� } 

(The last step follows since 'Y� are homogeneous and so d; =deg'F >0 for i =1,..., n. ) Now, if 

d= deg ̀P =0 then d; =1 for i =1,..., n by (50), and so d= max{ 1,..., 1 } =1 satisfying (32). Alterna- 

tively, if d#0 then d; 5d for i =1,..., n (again by (50)) and so d= max{ d 1,..., d� 1: 5 d, again, as 

required. 

Performance Preservation. For each aeA? (") we have 
Xp(c (a))(a) _ Xp, (< ai ,..., a j,..., a' >xa ) 

smi, 
sue{ Xpaj)(a) } 

= max { 7lp (U j 1'')o c (a; ))(a) } 
is a"Ists. 3 

(by definition of of for i =1,.... n and for j =1,..., 1j) 

=i max { 1+X (c (a; ))(a) } 

= max { 1+X p, (c (a1))(a) } 
iew 

51 + 
1max 

{'Pi (), P (ai)('(u)(a ))) } 

(by (51) with i =1,..., n) 

51+max (`Y; )( max { ýp (ak)(y(u)(a )) }) 
Isilm 10: 9A 

(by Lemma 8.2.24(c) and induction on n) 
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s max { X. p («k)(y(u)(a )) }+ max (` i)(max { %p (cck)(7(u)(a )) }) LUSH I 15isii las* 

(since Xp (axa) 21 for any P, a4 and a) 

= LYj(lmax { Xpa(ak)(1(u)(a)) }) 

= 'P (Xp, (< at,..., an >)(7(u )(a))) 

='Y,, (). ((x)(7(u)(a ))) 

Thus c is d "adic on vectorisations. 

(vi) Composition. Suppose a=a2o al for some al and a2E PR(EI). Then a1 E PR(EI),,,, and 

a2 e PR(Z ), , for some vo E St, since aE PR(E1), ý,, by hypothesis. 
" 

Since al and a2 are of less structural complexity than a, by induction hypothesis (I) 

c (al) E PR(F2)w(�)., r(, ), and c (al) E PR(EJ,, (, ),,. (, ). Furthermore, by induction hypothesis (U) we have 

(da E Al (U)) (' <vQ)([c (ai)]1A, (a )) = Qai]A, (Y(u)(a )), ) (53) 

and 

(v ao E A2 ̀ rý) ('Y(v)([c (a2)1A, (ao)) = [a21A, (Y(vo)(ao))) (54) 

Also, by induction hypothesis (III), for i =1,2 there exist homogeneous d; -adic retimings `P; =`Y« 

such that 
, 

de=1 if d=0 
Sd if d21 

(SS) 

and 
(Va E A2 (u)) (XP(c(ai)(a)) s ̀ 'i(Xp(a1XY(u)(a)))) (56) 

and 

(a0¬ A2 (') (XP, (c (a2Xao)) 5 `l'2()Lp(aj(Xvo)(ao)))) (57) 

Compilation. Define c (a) by c (a)= c (aJo c (al). 

Well-definedness. Clearly, since c (al) e PR(F2)W("), W(�) and c (az) e PR(1: 2)w(v), �, (y), we have 

c (a) e PR(1;. 1)w("), w(, ) as required. 

Correctness. To see that c correctly compiles a, that is, that (33) holds for c (a), choose ae A'2(") and 

calculate as follows: 

y(v)([c (a)]IA(a )) = 7(v)([c (aa)o C (aJ]IA, (a )) 

= 7(v)([c ( DA, ([c (ai)Lt, (a ))) 

=[A, (7'(vo)([c (ai)DA, (a ))) 

(by (54)) 
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= Qa21A, (Qai]Ia, (Y(u)(a))) 

(by (53)) 

= Qci° C41A(Y(u)(a )) 

= QaIA, (7(U)(a )) 

Thus c correctly compiles compositions. 

Retuning. Define ̀ Ya by 

`P (x) _ (WI+ Xx) 
Thus 'a is homogeneous. Furthermore, 

d= deg'Ya = deg (`P1 +'Y2) = max[ deg'F1, deg ̀Y2 }= max{ d l, d 2} 
Thus, if d =deg'F=O, then d1=d2=1 by (55), and so d= maxi 1,1 }=1 as required. Alternatively, if 

d #0 then d; 5d by (55) and sod = max[ d 1, d 2}5d, again as required. 

Performance Preservation. To see that c is f -adic on a, that is, that (34) holds for c (a) and T., 

choose ae A2 (") and calculate as follows: 

Xp, (c (a))(a) _ ), p(c (oc2)o c ((xi))(a ) 

= A. p(c (ai))(a) + Xp, (c (02))(Qc («i)]A, (a )) 

sW 1(%p, (ai)(7(u)(a ))) +'J. '2(XP, (a2)(Y(vo)([c ((Xi)]A, (a )))) 
(by (56), (57)) 

='Y1(Xp, (ai)(Xu)(a ))+` 2(Op, (a2)(Qal]A, (7(u)(a ))) 
(by (53)) 

s Wa(X. p, (ai)(7(u)(a )) + X, 
, 
(ai)(Qai]I A, (7(u)(a )))) 

(by Lemma 8.2.22) 

='Ya(Ap (aºz° a1)(7(u )(a))) 

= `f' (A. (a)(Y(u )(a))) 

Thus c is d -adic on compositions. 

(vii) Primitive Recursion. Suppose a=, a2) for some al, a2 e PR(EI). In this final case 
a r= PR(E).,,,,, for some u, veS1 so we must have al E PR(Z ),,,, and a2 E PR(Z1),.,,, .. 
Since al and a2 are of less structural complexity than a, by induction hypothesis (I), 

c (ai) E PR(F2)�, (�). W (, ) and c (a2) E PR(F2)ý (u (ý), W (ý) (notice w (T) =T since the coding is standard). 
Furthermore, by induction hypothesis (II) we have 

(Va E A2 (ß)) ( Kv)([c(at)JAi(a)) = Qal1A (7(u)(a))) (58) 
and, 

(ti(E T)(Va EA? ("))(Va'EA'(')) ('Y(v)(Ic(a2)]A, (t, a, a7) =QA, (i(Tuv)(t, a, a'))) (59) 

Also, by induction hypothesis (III), for i =1,2 there exist homogeneous d; -adic retimings'j =`Ya, 

such that 
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di =1 if d=0 
5d if d 21 

(60) 

and, 

and 

(Vac=A2 (")) (ýr, (ý (a1)) s' 1(7ý, (ai)(7(u)(a )))) (61) 

(Vic T )(V R EA 2 
(") )(V a' EA2 (') (X (c ( )(a) S T2(? P, (a(T(Tuv )(t, a, d )))) (62) 

Compilation. Define c (a) by c (a) = *(c (al) ,c (ag)) 

Well-definedness. Clearly, by Definition 3.3.1(vii), since c(a1)e PR(F2)w(�jw(�) and 

c(a2)r= PR(Z2),,,, (. )�, (v). w(, ), we have c(a) E PR('A, (, X, (, )=PR(1: 2)w(,,, ),, (, ) as required. 

Correctness. We show for each teT, 
(Va E A2"(*)) ('Y(v)(Qc (a)1A, (t, a )) = [a]A, (Y(Tu)(t, a ))) (63) 

by sub-induction on t. 

Sub-Basis. Choose aE A2"("). Then 

7(v )([e (a)D4(O, a )) _ 7(V )([*(C (ai) Ie (ax))DA, )(O, a )) 

_ 'Y(v )([c (al)]A, (a )) 

_ [ai]A, (Y(u)(a )) 

(by (58)) 

= [*(a1, a2)]A, (O, Y(u)(a )) 

= [aLL, (O, Ku)(a)) 

= [a]IAt(7(TXO),, Ku)(a )) 

(since y is standard) 

= EcQAI(7(Tu)(O, a)) 
(see Definition 8.2.8). 

Sub-Induction. Assume for some fixed keN, that for t =0,..., k, 

(VaEA2(")) (Y(y)([ct L, (t, a))=Qa]A(Y(Tu)(t, a))) (64) 
We now show (63) holds for t =k+1. 

For each aeA '2(") we have 

7(y)([ß (a)]A, (k+1, a )) _ 7(v)(T*(e (at) ,c (oºj)]YA, (k+1, a )) 

= Y(v)([c (ai)JJA, (k, a. [«DA, (k, a ))) 

_ [aJA, (Y(Tuv )(k. a, [a]IA, (k, a ))) 

(by (59)) 
= QUA (7(T)(k), 7(u)(a ), (v X [a]A, (k a ))) 

(see Definition 82.8) 

= [aJA, (7(T)(k), 7(u Xa ), QalA, (' Tu)(k, a ))) 

(by (64)) 
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= JCOA 
I(7(T)(k), 

7(u)(a ), Qa]A (Y(T)(k), 7(u)(a ))) 

(see Definition 8.2.8) 

= Qa2]A, (k, 'Y(u)(a). Qa]IA, (k, 7(u)(a ))) 

(since y is standard) 

= [*(a1, oc2)1A, (k+1,7(u)(a )) 

= QaIA (k+1, y(u)(a )) 

= 1oaIA, (7(T)(k+1), 7(u)(a )) 

(since y is standard) 
= Qa]A, (y(Tu)(k+1, a )) 

(see Definition 8.2.8). 

Thus (63) holds for each teT and so c correctly compiles primitive recursions. 

Retiming. Define `P by 

'Y (x) = max(` IIT2)(X ) 

Thus T. is homogeneous, and exactly as in case (vi) we can show (from (60)) that d =degT, satisfies 
(32). 

Performance Preservation. We now show for each teT, 
(Va eAi (") (Xp, (c (a))(t , a) s `'a(ýr1(a)('Y(Tu)(t ,a )))) (65) 

by sub-induction on t. 

Sub-Basis. For each ae A2 (M) we have 

? P, (c (a))(O, a) _ Xp2(E(c (a1) ,c (aj))(O, a ) 
= Xp2(c ((xi))(a ) 

5'Yi(Xp, (at)(Y(u )(a ))) 

(by (61)) 
5'PA pI(at)(I(u)(a ))) 

(by Lemma 82.24(d)) 

_'a(Xp, (*(ai, a2))(O, Y(u)(a ))) 
Wa(! gyp, (*(a1, a2))(7(T)(O), i(u )(a))) 

(since y is standard) 

='a(; Lp, ()K(ai . ai))(Y(Tu)(O, a ))) 
(see Definition 8.2.8) 

='Ya(X (a)(7(Tu )(O, a ))) 

Thus (65) holds for t =0. 
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Sub-Induction. Assume for some fixed kEN that for t=0,.... k, 

(Va E A2 (")) (XP, (c (a))(t , a) 5 Wa(Xp ((x)(i(Tu)(t, a ))) ) (66) 
We now show (65) holds for t= k+1. 

For each aeA2 (M) we have 

71P, (c (a))(k+1, a) = 7Xp, (*(c (a1) ,c (a2)))(k+1, a ) 

= Xps (c (aJ)(k, a, Qc (a)JJA, (k, a ))+? p (c (a))(k, a ) 

5 T2(OpI(a2)()(Tuv)(k, a, Qc (a)IA, (k, a )))) 

+ 'P (X (a)(j(Tu)(k, a ))) 

(by (62) and (66)) 

= T2(Xp, (at)(k, 7(u)(a), QaIA, (k. 'Y(u)(a )))) 

+t! (Xp, (a)(7(Tu)(k, a))) 

(by (63) and Definition 82.8) 
5 `Pa(Xp1(ct j(k, Y(u)(a ), Qa]IA (k, 'Y(u)(a )))) 

+ 'I! ()Lp, (a)(Y(Tu)(k, a ))) 

(by Lemma 8.224 parts (a) and (d)) 
STjX, (aJ(Y(Tuv )Qc. u)(a )' QOClA, (k, 7(u)(a ))) 

+XpI(a)('y(Tu)(k, a )) ) 

(by Lemma 8222) 

_'1`a(. p (a)(Qa]1A, (KTU)(k+1, a ))) 

since a=*(a1 co andy(TXk+1)=((T)(k)+1, completing the sub-induction step. 

Thus (66) holds for t =k+1 and so (65) holds for all teT. that is, c is d'-adic on primitive recur- 

sions. Q 

We now prove that our formal methods are hierarchical in the sense that the composition two 

correct and performance preserving compilers is again a correct and performance preserving compiler; 

ultimately, this allows us to automatically compile down through a hierarchy of PR systems L1,.... L,,. 

8.4.2 Composition Lemma. Let L; be a PR system for i =1,2,3. Suppose Ai+1 is At-coded by y; via wj 
for i =1,2, and further suppose c; is an (L, Li+1)-d; -odic compiler, correct with respect to yj for some 
d; eN for i =1,2. Define c: PR(EI)-PR(E) by c=c 2° c 1. Then c is an (L 1, L3)-d -odic compiler, 

correct with respect to Y=Y10Y2. where d =d1. d2. 

Proof We will first show c is well-defined, and then we show it is correct with respect to y, and finally 

we show it is d-adic. 
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Well-definedness. Choose ae PR(II)u,,, for some u, v e S1 and consider c (a). Now, c(a)=c2(cl(a)), 

and c 1(a) E PR(12)w, (, ), w, (, ) since c1 is well-defined and so c2(c 1(a)) e PR(13)w2(w(u)), w3(wl(v)) since C2 is 

also well-defined. Thus, by definition of c and w (=wyow 1), c (a) e PR(Z3)W(U), W (Y), that is, c is an 

(L 1, L3)-compiler. 

Correctness. For i =1,2, since cj is a correct compiler we have 

w (u) 
(Va e Ai+1 ) (Y, (v)(Qci (a)DA, 

, 
(a)) = QaLL, (Yy (u)(a ))) (67) 

for every ae PR(F.; )w, (u). wý(�) for each u, v e S. for i =1 and i =2. 

To see that c is correct, again choose ae PR(EI).,, for some u, v eSi and consider c (a). For 

each ae A3 (") we have 

'Y(v)([c (a)DL, (a )) = y(v)(Qc 2(c i(a))LA, (a )) 

= Yi(V)(YZ(Wi(v))(Qc z(c i(a))]A (a ))) 

(see Notation 8.2.13) 

= Yy(v)(Qc i(a)DL, (Y2(w t(u ))(a ))) 

(by (67) with i =2) 

= Qa]IA (Yi(u)(Y2(W l(u))(a ))) 

(by (67) with i =1) 

= Q«DA (T(vXa)) 
(see Notation 82.13) 

Thus c is correct with respect toy as claimed. 

d-adicness. Since c; is d; -adic for i =1,2, we know that for every u, v e Si" and for each 

ae PR(;. )�,, (u), �,, (v), there exists ̀ I'VE V[x] with degree d� and 

(V aeA, +i4)) (Xp,. (ci (a)(a )) s `I', (`)(Xp, (a)(Yt (u)(a )))) (68) 

To see that cis d-adic where d=d1. dy choose ae PR(EI),,,, for some u, v e S, . Now define 

Wae N[x] by 

T, = lpý? If `gal) (69) 

Then ̀ i'a e IN[x ] with deg'Ya= dl. d2 by Lemma 8.2.25. Furthermore, for each aeA3 "ý , 
XP, (c (a))(a )) = Ap, (c2(ci(a)))(a ) 

5 Y't a)(a)(Xp, (c i(a))(Y2(w i(u))(a ))) (70) 
(by (68) with i =2). 

Now, from (68) with i =1 we have 
Xp, (c i((X))(Y2(w i(u))(a )) s'f' ()Lp, (aXYi(u)(y2(w i(u))(a )))) 

Thus, since'Y, ý&) is homogeneous, it is monotone by Lemma 82.23, and so 

T'?. )(Xp, (Cl(a))(Y2(wl(u))(a))) 5ýP, (a)(Yi(u)(Y2(Wi(u))(a))))) (71) 

From (70) we have 
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71p, (c (a))(a )) 5 `P 2a)(a)(Xp, (c i(a))(Y2(w i(u))(a ))) 

S'Y ýa)(Wä')()L(a)(Y1(u)(Yz(wi(u))(a))))) 

(by (71)) 

= ('Pe ýa)°''ä ))(XP1(a)(Yi(u )(Y2(wi(u ))(a)))) 

='l'ai? p(a)(Y1(u )(Y2(w t(u ))(a)))) 

(by (69)) 

= `Pa(ýp, (a)(1'(u )(a))) 

(see Lemma 82.12). 

Thus c is d-adic as claimed. O 

8.43 Hierarchy Theorem. Let L1...., L"+1 be PR systems for some n;!: 1. Suppose that for i =1...., n 
there exists an Lt+l-d; -adic implementation li of Li for some di e N. Then there exists an (L 1-L"+t)-d - 
adie compiler c,,, correct with respect to L") where d= d(") satisfies: 

d5 x{ d; e (dl,.... d"): di #0} 

and where JO: :S 1--ß(A -->A 1] is the A"+1-coding of A1 defined by: 
j") = 710... 07" 

wherefori =1...., n. 7i =T 

Notes. 

(i) For arbitrary finite ScN, 
+Es 

is the number obtained by multiplying all the elements of S 

together; by convention xS =1 when S is empty. 
ias 

(ii) Throughout the following proof we will abbreviate wy by w;. 

(iii) Recall the definition of yle """ oy, =P) from Notation 8.2.15; notice we, =w(") is defined by 

w(R)_wße ... Owl. 

(iv) Recall from Lemma 8.2.14 ý") is an An+l-coding of A 1; thus that c, should be correct with respect 

to it makes sense. 

Proof. By induction on n. 

Basis. Suppose n=1. We are given an L2-d 1-adic implementation I1 of L1 for some d1eN. By the 

Implementation Theorem then, there exists an (L t-L2)-d o adic compiler c, correct with respect to yi 

such that 
d, =1 if di=0 

5 d1 if d1 Z1 
(72) 

To prove the theorem in this case, take c, = c, then we only need to show 
d5 x( di e (dl...., d. ): d; *0} 

where d =do; but this is obvious from (72) above and note (i), since n =1 here. 
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Induction. Suppose for some fixed keW that for n=1,..., k, if we are given PR systems L1,..., LA+l 

together with, for i =1,..., n, an Li+1-d; -adic implementation I; of Li for some d, E N, then there exists 

an (L 1-Ls+1)-d -adic compiler c,,, correct with respect toi") where d =d() satisfies: 
d 5x(di e(dI,..., d, ): di *0} 

Now suppose we are given PR systems L1,..., Lk+2 together with, for i =1,..., k+1, an L; +t-d; -adic 
implementation I; of L; for some di e AT. 

Now, since Ik+i is an Lk+2-dk+i-adic implementation of Lk+1, by the Implementation Theorem there 

exists an (Lk+l-Lk+z)-d; adic compiler c, correct with respect to yk+l such that 
d01 if dk+t =U (73) 

5 dk+l if dk+i 21 

Also, by the induction hypothesis there exists an (L1-Lk+l)-d(k)-adic compiler ck, correct with respect to 

yak) where 
d (k) S x{ d; e (d l,..., dk) : d; *O) (74) 

We will now construct ck+l and show it to be correct with respect to ýk+l), and V+' -adic: 

Compilation. For each ae PR(E1) define ck+t(a) by 

ck+1(a) _ (cock)(a) 
Then ck+l : PR(EI) -+PR(Ek+2) is a correct (L 1, Lk+2)-d-adic compiler by Lemma 8.4.2 where 
d =do. d(k). 

To see ck+l is d (k+1-adic, we already know ck+l is d-adic where d=do. d (k ), so we must show 
d =do. d(k) S d(k+l) = x{ d; e (dl,..., dk+l) : d; *0 } (75) 

Case (a). Suppose dk+t = 0. Then 

d =d,. d(k) 

= 1. d(k) 

(by (73)) 

= x( di E (dl,..., dk): d; *0} 
(by (74)) 

= x{d; e (dl,..., dk+1): d; *0} 
by the case hypothesis. 

Case (b). 

Suppose dk+l Z 1, then 
d =do. d(k) 

5 dk+i " d(k) 

(by (73)) 

= dk+l. x{d; e (dl,.... dk): d; *01 
(by (74)) 

=X( di e (dl,.... dd+1): d; *0} 

as required. Thus (75) holds in all cases, and ck+l is d(k+i)-adic as claimed. 
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8.5 AN EXAMPLE. 

In this section we will consider two stages in the top-down design of the FIR network of Section 

5.1. In the first stage we will implement the modules of FIR by synchronous (sub-) networks that use 

modules which are more primitive than those of FIR, but which process the same kind of data. In the 

second stage we will implement the modules of the sub-networks by further synchronous networks over 
different, 'lower-level' data. Having explained and formally specified the two levels of implementation, 

we will show that the network implementations lead to an implementation in the formal sense of 
Definition 8.3.6, and that we can apply Hierarchy Theorem 8.4.3 to establish correctness of the final 

design. 

Preliminaries. In the following sections we freely use certain nomenclature and notation that have not 
been seen for some time. In particular, the reader should recall: 

(i) Definitions and notations relating to standard algebras A and stream algebras A (see Section 

3.1.8). 

(ii) The definition of B =A from Definitions 3.1.4(v). In particular note that A =A I :c when E is the 

signature of A. and so e- =0A for each aeE. An easy corollary to this fact is that if B has signa- 

ture f2 and 0E, then ae PR(E),,,,, implies ae PR(f2) and [ale - ff UTA . 

(iii) For a synchronous network N, the definition of, and the differences between: N's dynamic value 
function VN, its static value function vN, and its static output specification IN (see Sections 2.4 and 
3.4). Also recall the primitive recursiveness of VN andfN via the schema aN and SN respectively 
(see Notation 3.4.5). 

(iv) The definition of the 'implementation function' I and its PR formalisation t from the discussion at 

the end of Section 8.1.2. 

Finally, the reader should also recall the discussion at the end of Section 8.1.1 concerning the (iso- 

morphic) clocks T and T' of a synchronous network N and a network system M (obtained from N) 

respectively. In the text below we will usually write `t e T' and 't' e r' for emphasis, although this 

sometimes leads to 'mixed' notation as mentioned at the end of Section 8.1.1. 

8.5.1 The Draft Algorithm. 

Let us begin with the FIR network of Section 5.1. FIR was described as an n -module network over 

a ring R; for simplicity we will take n=3 (see Figure 8.7), and for definiteness we take R to be the ring 

of integers Z={ ... }. In this setting FIR is (semantically) formalised as follows: 

Let A1 be the algebra comprising the three carriers: FIR's clock T; the Booleans 18, and the 

integers Z Then A1 is S 1-sorted where S1 ={T, B, z } (say). In addition to standard constants and opera- 

tions, A1 has the three operations ai `, a2 ', and a3 ' defined as follows (cf. Section 5.1.2): 

vi `: Z-'Z 

where 
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In 1 In2 Ina 

MI 
A 

M2 
A 

M3 
A 

Out 

Ql s a2 i ý3 

Figure 8.7 - FIR illustrated for n=3. 

(dzEZ) (ßi'(z)=wl. z 

and for i =2,3, 

v; '`: ZxZ--)-Z 

where 

(VZ1, z2E Z) (ßA'(z1, z2) = z2+w; . z1) (76) 

Of course, o, ` is the functional specification of module mi of FIR (as depicted in Figure 8.7) for 

i =1,23. 

If we extend A1 with streams over Z, namely [T -->Z], and stream evaluation 

eval1 :Tx [T ->Z] -4Z, then this new algebra is A1 which is S 1-sorted when S1 is S1 extended with 

the symbol `Z' (to name streams over Z, a carrier of A 1). 
FIR is now formalised by its value function VFm where 

VFIR = (V 1, V 2, V 3) :Tx [T -->Z3] xZ3 -->Z3 
is defined coordinatewise by 

V; (O, a, x) =x; 
for i =1,2,3, and 

Vl(t+1, a, x) = vl'(11(t)) 

and for i =2,3, 
V; (t+l, a, x) = ß; ''(a 

l (t ), V; -i(t, a x )) 
for each time teT, input stream a" (a 1, [i yag) :T --' Z3, and initial values x= (x l, x yx3) e Z3. 

Alternatively, if F1 is the signature of A1 then FIR is formalised as a scheme aFIR e PR(& 1) of 
arity (TDD, D) where D=Z72E Si , and [aFIRIA2=VFJR (see Theorem 3.4.3). 
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8.5.2 The First Level of Implementation. 

Let us implement the modules of FIR (or rather, their functional specifications) by synchronous 

networks over a lower-level algebra A 2" 
Ignoring ml for the time being, on inspecting the modules of FIR we see that module n (i = 2,3) 

performs a 'multiplication by a constant' and an addition in one step (see (76)); let us now assume that 
'multiplication by a constant' and addition are the only available primitive operations. 

Consider Figure 8.8 which illustrates a network Nj to implement a' (for i =2,3). Ni is a synchro- 

nous network over an algebra Bi which comprises a clock Ti, the Booleans 1$, the integers Z, and in 

addition to standard constants and operations, Bi has an operation Qj to specify module n; .j of N, for 

j =1,2. These operations are: 

where 

and 

where 

a.,: Z-*Z 

(VzEZ) (a i(z)=w;. z ) 

a, "4: ZxZ-ýZ 

(dz1, z2EZ) (aý(zt, z2)=zt+Z2) 

Figure 8.8 - Network Nj for i=2,3. 

Since Ni has two sources and two modules, Ni is formalised via the static value function vM where 

vNd = (Vi. l, vt, 2): Ti xZ2xZt-->Z2 

is defined coordinatewise by 
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vij (O, a "x) = xl 
for j=1,2, and 

v,, l(t+l, a, x) = aBl(a 1) 
and 

v;. 2(t+1, a, x) =Q 
ý(a2, 

vt. i(t, a, x)) 
for each time te Ti, fixed input a= (a l, a2) e Z2, and initial values x= (xl, x2) E ZZ. 

Since Ni has a single sink supplied by module m;, 2 of Ni, the static output specification fN, is 

fN: Ti xZ2xZZ-+Z 

defined by 
fN, (t, a, x) = v,. 2(t, a x) 

for each tETF, aEZ2, and xEZ2. 

Now let %.: ZZ-; o T, be defined by k. (a)=2 for each ae Z2. Then it is easy to show that for 

each ae ZZ, 

fN(k-(a), a, Sz) = Qi, '(a) (77) 

for any vector ý- E Z2 of initial values, and thus Ni implements ai' with respect to 7X; and (0,0) say. 

For cri', since this operation is just `multiplication by a constant', the network Nl of Figure 8.9 

suffices to implement it. N1 is defined over algebra BI with clock T1, where B1 comprises T 1, ]B, and Z 

as carriers, and (in addition to standard operations) the single operation aBi: Z--'Z defined by 

a1 (z)=ai'(z)=wl. z for each zeZ 

In 1.1 

m1.1 
B 

Out 

Q1. i 

Figure 8.9 - N1. 

Clearly, Nl has static output specification fN. of the form 

fNl: TI xZxZ-'Z 

Moreover, it is obvious that for any initial value ý1 eZ we have 
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fNl(? i(a ), a, bl) = al '(a) (78) 

for each aEZ when X 1: Z-3T1 is defined by ß. 1(a) =1 for each aeZ Thus N1 implements ai ' with 
respect to %1 and CI =0 say. 

On substituting the networks N1, N2, and N3 for modules ml, m2, and m3 of FIR respectively, we 
obtain the network system M of Figure 8.10. 

In In2 Ina 

......... ........... ......... .......... 

m2, i m3,1 

62,1 a3,1 

mlýl B M2.2 B M3,2 B 
v1, i a2, a3, i 

.......................... .........................: ......................... 

Out 

Figure 8.10 - M. 

The steps performed by M determine a (new) clock T' (isomorphic to T). Let A2 be the algebra 

comprising T', iB, and all the carriers, constants, and operations of B t, Bz, and B3 (including their 
dard constants, operations, and domains). Then as explained in Section 8.1, A2 involves all the data sets 
and operations needed to define the behaviour of M. We will now show (by way of preparation for the 
Hierarchy Theorem), that the network implementations of the modules of FIR determine an A2. 
implementation of A 1. 

First note that A2 has carriers r, 1B, T1, T2, T3. and Z, and so A2 is S2-sorted when 
S2 ={T, B, TI, T2, T3, Z }: here the symbol 'Ti' names Tj for i =1,2,3 of course, but note that in A2 `T' names 

A ̀e T and succ ̀= sucCT :T -T, but 7' whereas in A1 it names T. Thus, technically, we have zero 

zero 
A, e 7' and succA'=SUCC : 7' --ter. 

The stream algebra A2 is formed by adding [T' -+Z] to A2 as a new carrier, 

evalAzz : T' X [T --->Z] --->Z as a new operation, and S2 is S2 U{z}: we will now construct an A 2. 
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implementation I1= < Y1, Gn 1, Tr 1> of A 1. 

First we must show that A1 is A2-coded; but this is trivial since all the carriers of A1 are carriers of 
A2. We leave the reader to formally show that if wl : S1--MSZ is the identity function, and if each com- 

ponent 7(s) of y1: S -ß[A 2 -->A 1] are also identity functions on the appropriate sets, then A1 is A 2- 1 
coded by yl via wt. 

It is also easy to see that At is A 2-generated: for any algebra A, the constants of A are the con- 

stants of A, and in our case the constants of At are constants in A2, thus the constants of At are constants 
in A2. Thus At is A2-generated by Gn I=< p, :c re E I> wherein p, =cc T(12) for each constant sym- 
bolc. 

Now we must show that At is A 2-tracked. Of course, the operations of At which are common to 

A1 and A2 implement themselves. For example, we have succ e (E t). r Tand succ e (E 2)?? when Zj is the 

signature of A; for i =1,2. In At the symbol succ is interpreted as the successor function on T: 

sac 
A' 

= S. `= succT :T --*T 

whereas in A 2, 

mA '= succ 
A 

2= sucC f.: ! 

using the fact that J I' =A; for i =1,2. However, T and 7' are the same (isomorphic) and so it is obvi- 

ous that a.. = s, cc tracks s= 
c '; we leave the details to the reader. (Hint use the isomorphism invariance 

of PR-computability; see Lemma 3.5.9. ) 

We now consider the remaining operations of A t, namely cri-' = Q, ' for i =1,2,3. 

Let S2; be the signature of B; for i=1,2,3; then there exists SN e PR(f2; ) such that QSN IB =fN by 

Lemma 3.4.4. Now let axe be defined by 

I i°-Ci ° uroZ if i =1 

s jospcc1ozeroa 
if i =2,3 

(Here `zero; ' and ̀ succ; ' are the names of Ti's zero and successor function respectively, and ̀ ze' and 
`zecoa' are instances of the generic constant function schema ̀c'". ) Then a;, e PR(f2, ) with arity (Z, T, ) 

for i =1 and (zz, Tj) for i=2,3. Furthermore, it should be clear that [ax, ]B, = X; for i =1,2,3. 

Now let tl be defined by 

Ll = 6N a< Cc).,, U,, zeroe> 

Then tl e PR(S21),, � and it is easy to check that for each aeZ we have 

Qtl]la, (a) =fV, (O1(a ), a, C1) = Ql '(a) (79) 
(using (78)). However, since B 1=A 2I 0,1 we have tj e PR(Z Z),, = PR(E 2)w1(, ). wi(y) With [tl]A, = Qt1]B1" 

Using the facts that 'yl(z) is the identity function on Z, and al '=vi `, we have from (79) that 

Y1(Z)(Qt11A, (a )) = Qi '(Yi(Z)(a )) 

for each aeZ; that is, t1 is an A 2-tracking of ai '. 
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We can findA2-trackings of a 
4` for i =2,3 in much the same way: 

Let t; (i = 2,3) be defined by 

tj = 8No<cEx, Ua, U, zeroauroa> 

Then t, e PR(Cli)zx and for each ae Z2 we have 

Qti]e, (a) =fN, (X1(a), a, C-) = CT, '(a) 
(using (77)). However, as in the case i =1, since BI=42191, 

(80) 

for i =2,3 we have 

t; e PR(E 2)2=PR(E 2)wi z), w z) and [ti]A, = [ti]B,. Thus from (80) we have (again since yy(z) is the 

identity function and ßA' = Qý') 

71(Z)(Iti]A, (a)) = vý'(Yi(zz)(a)) 

for each aE Z2; that is, t; is an A 2-tracking of vA' 

Now define Tr1CPR(E2)byTr1=<a : ae E1>where 
if v=a for ie{1,2,3 } 

01° =a otherwise 
Then A1 is A 2-tracked by Trl, and we conclude thatl1= <y1, Gn 1, Tr1 > is an A 2-implementation of A 1. 

Complexity. What is the complexity of I1? Of course, the answer to this question is dependent on the 

performance measures we choose for A1 and A2- Suppose P1 and P2 are uniform performance measures 
for A1 and A2 respectively. 

From Definition 8.3.1 we must show that for some fixed polynomial IF E IIV[x ], for every c re E1 

we have 

kp, (ac)(a) s `Y(Q '(7(u)(a ))) 

for every ae AZ'(") When Ai is the domain of CFA '=Q . However, since Pt is uniform, this means that 

we must show 
Xp, (c, )(a)5`i'(1) (81) 

Now, for a *cri for any ie11,2,31 we have a=Q and so for each a in the common domain of 
Q` and taJA. we have 

Xp, (ao)(a) = 11P. (ß)(a) =Q '(a) =1 

(since P2 is uniform), and so we must show 1 S'I'(1); but this is true for any `Y (since our polynomials 
have natural number coefficients, not all of which can be zero). 

It remains to consider a= ai for ie11,7,3 }. First consider Ql: for any a in the domain of cri, 
we 

have 
Xp. («v, )(a) = ilp2(tl)(a 

=Xp3(SN)(1, a ºO) + max[ X (ax, )(a ), 1,1 } 
(by definition of tl) 
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7Xp2(SNI)(1, a, O) +2 

=2+2.1+2=6 

by Lemma 3.5.5 

Similarly, for i=2,3, for any a in the domain of jwe have 
), P3(OCa, )(a) = Xp. (4 )(a 

_ Xp, (&t)(2, a, 0,0) + max{Xpa(ax, )(a), 1,1,1,1 } 

(by definition oft; ) 
= Ä'p (SN, )(2, a, O, O) +3 

=2+2.3+3=11 

again by Lemma 3.5.5. 

Thus, if we define Te N[x] by'F(x) =11x then we see that l1 is linear implementation of A 1. 

833 The Second Level of Implementation. 

In this section we will further decompose FIR by implementing the operations of A2, that is, the 

modules of M, by further synchronous networks. We will represent the integers Z over lB xN via the 

function 0 : 1B x IN-21t-04Z defined in Example 8.2.3. Without further ado, it is clear that this change in 

data sets will lead to an implementation of M, let us call it M', which will be as sketched in Figure 8.11: 

comparing this figure with Figure 8.10, we see that each source In; of M (which supplies elements of Z) 

has become two sources Ij p and I ix in M' (supplying elements of lB and N respectively). Correspond- 

ingly, each channel in M has become a pair of channels with one of the channels carrying Booleans, and 

the other carrying elements of N. In the same way, M's sink Out has become two sinks 0, and 0�. 

(Here we have adopted the convention that in a vertical pair of channels, the leftmost is the Boolean 

channel, and in a horizontal pair, the lower channel is the Boolean channel). Also, each k-input module 
in M has become a 2k -input, 2-output network over 18 and N. 

We will now describe synchronous network implementations for the modules of M. Since a typi- 

cal module of M is denoted by 'm, j', we will denote a network to implement n% .j by'N, /'; this will be 

a synchronous network over an algebra 'Bi j' whose clock is 'Tja' (here j =1 when i =1, but j ranges 

over[ 1,21 when i =2 or i =3). 

Implementing Multiplication. Let us first implement module m;, l of m for i =1,2,3. Module m;, l is 

specified by the operation aji which multiplies its argument by the constant w; for i =1,2,3. For simpli- 

city let us assume that the weights w 1, w2, and w3, are all positive and so can be regarded as elements of 

IN. 

Given an integer z1EZ let z= cA'(z 1) = w1, z 1. Since wi is positive, z has the same sign as z 1, 
and modulus of z is f; (lz11) where f;: N -- , Nis defined by f; (n) =w;. nfor each neN for i =1,2,3. 
(Note that I. I: Z- N. ) 
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I7a 131+ Il. a 1 tar 
T.. T 

N2. i N31 

...... ... .... ...... ..... ... 

Ni. l NU N3.2 

Figure 8.11. 

Now, given a code (b, n) e ]B x IN of an integer zeZ. z is positive iff b= tt or b =ff and n=0, 
and IzI=n. Thus if (b l, n 1) e i8 x IId is the code of z1 above, then the code of z= wi .z1 is (b, n) where 
b=b1 and n= fi (n1). Thus for i=1,2,3 we have 

(V be iB)(Vn e A1) (0(id(b)ff(n)) = Qýi(O(b. n))) (82) 

where id : lB-;, lB is the identity function. 

The observation or property (82) leads immediately to the network Ni i of Figures 8.12 (1 = 1) and 
8.13 (i =2,3). (Note that these figures show the same network: the reason for the two figures is that for 

i =1 the outputs need to emerge from the right, whereas for i=2,3 they need to emerge from the bottom; 

see Figure 8.11. ) Of course, Ni., is a synchronous network over B,, l when B,, 1 has a clock Ti., and ID and 
N as carriers, and id and fj as operations (in addition to standard constants and operations). Further. 

more N;, 1 will have a static output specification of the form 

fN�: Tj. ixi3xNxi3xN--, %-lBxN 

Trivially, for any C,, I e is xN we have 
(V be IB)(Vn e N) (fN (1, b, n, C., l) = (id(b), ft(n))) (83) 

Thus, if 7.;, 1: iB x N--->T1,1 is defined by 
. 1(b, n)=1 for each be lB and neN, then from (82) and 

(83) we have 

(Vb e IB)(Vn e N) (9(fiv,., (Ar, i(b, n ), b. n. C,, i)) = Qi i(e(b. n ))) (84) 

for any initial values ;j ,jE 
]B x N. 
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Thus N,, 1 implements aA' with respect to 71,1,1 and C;, 1= (tt, 0) say. 

In 1 
:f 

Outs 
i 

&id 

Figure 8.12 - N1.1. 

In2 
l 

m2 

f; 

Out 2 

Figure 8.13 - N;, 1 for i= 23. 

Implementing Addition. It remains to implement the addition modules of M, that is, module m,, for 

i =2,3. We will now describe a network Nj 
.2 

to implement v, ". 
2 (addition on Z) for i =2,3. Note that 

since m2,2 and m3, are specified by the same function, addition on Z, the networks N2.2 and N3.2 (and 

the algebras over which they are defined) will be the same. 

Let +N denote addition on N. Also let -p denote subtraction on N: conventionally, n 1-N n2 is 

defined to be zero if n 2:, n 1. 

Given z l, z 2EZ, let z=z 1+z2. Then we can describe z by describing its sign and modulus in terms 

of the signs and moduli of zl and z2: 
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First, if zl and z2 are both positive or both negative, then the sign of z is the common sign of zl 
and zy and the modulus of z is IZI I+N I z21. Secondly, if zj is positive and z2 is negative, then z is posi- 
tive if Izi12lz21, and negative if Izil<Iz21; also, IzI=Izil NIZzI if Izi12: Iz2I, and 
zI =1221 NI zi I if IziI<I zz 1. Finally, if zl is negative and z2 is positive, then z is positive if 

IzII < Izzl, and negative if Izil Z Izzl; also, Iz I= IZI IN Iz2I if Izil Z IX21, and Iz 1= IZ21-N IZII 
if IziI<IzzI. 

We can use this description to devise a synchronous network N+ to implement addition on Z over 
lB and W in the following way: 

Let (bin; ) e i6 xAi be the code of z; for i =1,2. Then the code of z is (b, n) where 

it if b1=u and b2=tt 
i if bI=ff and b2=f 

it ifb1=itandb2=fandn12nz 
b= ff ifb1=itandb2=fandnI<n2 

i ifb1=ffandb2=tt andn1Zn2 
it if b1=f and b2=tt and n2<n2 

and 

respectively. 

nl+, ßn2 if bi=tt and b2=tt 

nl+r, n2 if b1=,, Fand b2=f 

nl Nn2 if b1=tt and b2=f and n1Zn2 
n= n2 xnl ifbl=ttandb2 fandnl<n2 

nt xn2 if bi=f and b2=tt and n12n2 

n2 r, n1 if b1=f and b2=tt and n2<n2 

More concisely, b and n are equivalently defined by 
b= (b1A(n1Zn2)) V (b2A(nt<n2)) 

and 

n= dc(bi®b2, (nI-$n2)+, (n2-Nn1), nl+Nn2) 
wherein e: ]B2-3iß is ̀ exclusive or' defined by 

(tibi, b2e 16) (bl®b2 = (b1A -bs) V (-b1Ab2) ) 

and dc : lB x ]N2-- 'N is defined by 
ni ifb=tt 

(fib e IB)(Vni, n2e N) dcN, (b, nl, n2) = n2 if b =ff 

(85) 

(86) 

This description of addition on Z leads immediately to the synchronous network N+=Nt 2 (t = 23) 

of Figure 8.14. Note that the ̀ dc' module has three inputs channels: the middle channel carries elements 
of lB and the top and bottom channels elements of A1; we imagine that the modules chooses the top value 
if the Boolean is true, the bottom value otherwise. 
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Figure 8.14 - Ni 
,2 

for i=2,3. 

Of course, N;, 2 is a synchronous network over B;, 2 when B;, 2 has a clock Tj, 2 (say) and lB and N as 

carriers, and (a t V, Z, <, +,,, N, and dc as operations (in addition to standard constants and opera- 

tions). Furthermore, N;, 2 has six modules specified by Boolean-valued functions, five modules specified 
by natural number-valued functions, two pairs of sources supplying pairs from lB x N, and two sinks 

receiving pairs from 13 x N. Thus N;, 2 has a static output specification fN,, of functionality 

fN, 
3 
: Ti, z x (]B x N)z X JB6 X NS -SIB XN 

Moreover, it is easy to show that for any C;, 2 e ]B6 x Ns we have 
(V bl, bz(: - 3B)(Vn1, nzE N) (87) 

f, v�(3, bi, ni, b2, nA*. 2) = (f. (bl, nlrbz, n )'fN(bl nl, bz, nz)) 

where f: (IB X N)2--]B is defined by 

(Vb1, b2E IB)(Vnvn2E N) (f. (bvn1, b2, n2)= (b, A(niZn2))V(b2A(ni<n2)) ) 

and f�: (]B x N)2--+N is defined by 

(Vbi, b2e ]B)(Vni, n2¬ N) (f,, (bi. ni, b2, n2) = dc(blGb2, (nl-Nnz)+(n2-Nnl), nt+Nnz) ) 

(Compare these definitions with (85) and (86) respectively. ) Now, as explained above, given 
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(bi, ni) e (IB x N)2 for i =1,2, the pair (b n) e is x IId is the code of z =Z 1 +Z2 when (b1, n; ) is the code of 

z; for i =1,2 and b and n are defined by 

b =f. (bi, nl, b2, n2) 
and 

n =fN(bl, J l, b2, n2) 
respectively. That is, 
(Vbi, b2e IB)(Vnl n2E N) (88) 

e(f  (b 1, n i, b2, n2), f N(b j, n i, b2, n 2)) = 0(b 1, n i) + 0(b2, n2) = Q;, z(e(b 1, n 1), 8(b2, n2)) 

Thus, if k., 2: (lB x N)2-4 Tt, 2 is defined by k ., 2(a) =3 for each ae (13 x N)2, then from (87) and (88) 

we have 
(Vb1, b2E IB)(dn1, n2E N) (89) 

0(fx�(k;, 2(bl, nt. b2, n2), bl, nl, b2, n2, ýt, 2)) =a 
j(9(bini). 8(b2. n2)) 

for any initial values (, 2 E ]B6 x ]Ns. 

Thus N;, 2 implements aj with respect to X and , 2= (tt, a, tt, tt, tt, tt, 0,0,0,0,0) say. E3 

On substituting the networks Njj for the modules m; j of M, we obtain the network system M' of 
Figure 8.15. Whilst we have not yet considered network systems that are obtained from a synchronous 

network via two levels of substitution, an informal account of the operation of M' can be extrapolated 
from the discussion of Section 8.1 in the obvious way: as before with M, M' operates in steps wherein 

one step is to execute NI, N2, and N3 simultaneously for the requisite number of steps; the only differ- 

ence here is that in M', N1, N,, and N3 are themselves network systems, and so 'one step' of Ni 

(i =1,2,3) in M' is to execute its sub-networks simultaneously for the appropriate number of cycles. 
(Specifically, Njj is executed for ?j (a) cycles of Tip whenever the fixed input to N, is a. ) 

Figure 8.15 - The final design M". 
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Let us denote the clock determined by M"s steps by T". Then M' is specified in terms of T', 

streams of the form b: T' -*IB and n: T" --->N, and the operations of the five algebras B 1,1, B i, 19 B U, 
B 3,1, and B 3,2. More precisely, let A3 be the algebra comprising the carriers 

r, IB, TI, Ti, T3, Tja, T2.1, T2.2, T3.1, T3.2, IB, and IN 

In addition to standard constants and operations, A3 has the operations 
ORI%V, 2, <, +N, N, dc, id, f 1'f2'andf 3 

The first occurrence of 'IB' in the list of A 3's carriers is, as always, there to make A3 into a stan- 
dard algebra. The second occurrence is as the carrier of an algebra B (say) whose single domain is ]B 

and operations are a id, A, and V. 

Now let S3 be defined by S3 ={T, B, TI, T2, T3, TI, 1, TT1, T2,2, T3,1, T3,2, B', N} Then A3 is S3-sorted 

with `T' naming T", `N' naming N, and ̀ B" naming B. 

Of course, A3 is constructed from A3 in the usual way: we add [T" --']B] and [T' --->IN] as new 

carriers, and eva!! : 7' x [7" -->]B] --->B and eva!! : T" x [' ->N] ->A1 as new operations. A3 is 

S3-sorted when S3=S3 u{ s', N }, 

We are now in a position to construct an A3-implementationl2=<ey2, Tr2, Gn2> ofA2: 

First we must show that A2 is A 3-coded. Let W2: S2-ýS3 be defined by 

B'N ifs=Z 

w2(s)= B'N ifs=Z 

s otherwise 

for each se S2. Now let 

e: [r" ->IBxN] ->[r ->z] be defined by 

e(b, n)(: ) = 9(b(t), n(t)) 
for each b: T' -*1B, n: T' -->N, and te7. Now define y2 : S2-[A--A2] y2(z) = e, y2(z) = 8, 

and for other se S2 let y2(s) be the identity function on (A 3),, = (A 2), . It is not difficult to prove that 

y2(s) :A 3°°ýA i for each se S2, and thus A2 is A 3-coded by y2 via w2; we leave the details as an 
exercise. 

To show that A2 is A 3-generated is straightforward: the only constant of A2 which does not gen- 
erate itself in A3 is Or: 7- However, it is easy to see that p. =<crue, uro,,, >E T(E3),,,, generates 0EZ 
We conclude that A2 is A3-generated by Gn2 r-T (E 3) defined by Gn 2= < p, :CE1: 2'> where 

P. if C= zero E (E 2)T 
Pc =C otherwise 

Finally, we must show that A_2 is A3-tracked. It is not difficult to check that all the standard opera- 

tions of A2 are tracked by themselves; the remaining operations to be tracked are evaL'=eva1Al2 and the 

operations that specify the modules of N1, N,, and N3. 
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Let us consider stream evaluation first. Let Z be the signature of A3, and let ac,, be defined by 

a,,. =<al, a2> where 

a1= evaI, a<Un. tu? =N> 

and 
a2 = evaiBo G Ui=, N, U3 J 

Then a,,,, e PR(E 3) with arity (TB't, B'N) which is as required since ev e (E) and w2(n) = TB'N and 

W2(Z) = B'N. 

To show that a,,,, tracks eva', choose te T', b :7' -+]B, and n and calculate as fol- 

lows: 
Y2(Z)(Cc JA3 t, b, n )) = Y2(Z)(b (t ), n (t )) 

= O(b(t), n(t)) 

However, 

evali'(Y2(TJ(t, b, n )) = eval4'(Y2(T)(t)'Y2()(. d )) 

= eva; '(t, 6(b, n )) 

= e(b- I)(r) 
= O(b (t),!! (t)) 

= Y2(Z)([ llA, (t' IS)) 

(from (90)). Thus a.,,, tracks evatý' as required. 

(90) 

Now let us construct an A3-tracking of aAl (for i =1,2,3). Afterwards we will conclude the A 3- 

implementation ofA2 by constructing A3-trackings for q j, 2 i =2,3). 

Let n;, l be the signature of Bj, 1 (for i=1,2,3); then there exists Sv F- PR(fl, l) such that 
8.1 

[SN�De,, =fx� by Lemma 3.4.4. Now let a, be defined by 

aI4t = succr, 1o ze' i 

(Here `zero,,, ' and `aucct, l' are the names of Tj, l's zero and successor function respectively. ) Then 

a),,. 
t 
e PR(f2,, 1) with arity (B'N, Tj, I). Furthermore, it should be clear that Qa )s =X (i =1.2,3). 

Let ti, l be defined by 
Li. 1 = SjVý} <ýLaµrÜjýrÜZ 

krlrtlee'NrZe[oýý> 

Then t, e PR(f2; ), ',,, ', it is easy to see that 
(V bE IB)(Vn E IN) (O(Itt, 1]lB,. 

+(b, 
n)) = e(IN, (Xi(b n), b�ý= QJ, 1(e(6, n)) (91) 

(using (84)). However, since B;, 1=A 3I ný,, we have t;, l e PR(E 3), ß,,., r=PR(E 3)wß(z), w, (z) and 

Q4,1DA3= [t;, l]a,; Thus from (91) we have (using the facts that aý1= v1 and y2(z) = 0) 

Yz(Z)(Qý;, tDý, (bºn)) =ß i(Y2(z)(b, n)) 

for each (b, n) e i8 x N; that is, i" is an A-3-tracking of v i. 
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13 

Now let us construct an A 3-tracking of a, " (for i=2,3). 

Let S2;. 2 be the signature of B;, 2 (for i =2,3); then there exists 6N, E PR(fl1,2) such that 

QSN�)a,, =fN, s 
by Lemma 3.4.4. Now let a, be defined by 

aX, 
i 

r- SUCCi. 2 o SUCCj e SUCCj 
'r 

zeroj 
ýM ,� 

(Here `zero;, 2' and `sott,, 2' are the names of Ta, z's zero and successor function respectively. ) Then 

axoe PR(f2,, 2) with arity (13'NB'N, T,, 2). Furthermore, it should be clear that [a, ]J9 
i= 

k. 2 (i =2,3). 

Let t; a be defined by 
ti, 2 - 

SN,, OCa7ý,; lJ14rV2µrV3urV4u truertrueNrülleµrtmer true, true"r, zer04rzergtzero" > r 

where u= B'NB'N 6 S3 . Then t;, 2 e PR(52,, ), r , ",, and it is easy to see that 
(Vbl, b2e IB)(Vni, n2e Hsi) (92) 

O([Lt, z]J2 (btrnirb2, n2))=8(fN, 
a(k., 2(birn1, b2, n2), b1, ntrb2, n2rý, 2))=Q. 

2(e(b1, 
n1), e(b2rn2)) 

(using (89)). However, since B i, 2=A3 I A,, we have t ;, 2e PR(E 3)uD. N=PR(E 3)w, c), w, (z) and 

Qt;. 2}IA, = Qt; Ia"x Thus from (92) we have (again using qjý=q, ýj and y2(z)=0) 

(V hi, b2e ]B)(Vni, n2e N) 
Y2(z)( Qt ]JA, (bI nl b2 n2)) =Q 

j(Y2(a)(bi"n1, b2, n2)) 

Thus t; is an A 3-tracking of Q. 

Now define Tr2 ýPR(E 3) by Tr2= < c6: aeE 2> where 

ti j if a= cri j for i=1 and j=1, or ie 12,31 and j r= [1,21 

cta = a,,. if a=evaLL 

a otherwise 
Then A2 is A 3-tracked by Tr2, and we conclude that 12 = <y2, Gn 2, Tr2 > is an A 3-implementation of A 2. 
Complexity. Let P2 and P3 be uniform performance measures for A2 and A3 respectively. Then as in 

the calculation of the complexity of I1, to calculate the complexity of 12, we only need to show that com- 

plexity of the tracking with the worst execution time is bounded by a constant to conclude that 12 is a 
linear implementation. The scheme t;, i is the most expensive: it is not difficult to check (using Lemma 

3.5.5) that for each ae (]B x IN)2 
XpA-, 2)(a) = 2+2.4 +4= 12 

Thus 12 is a linear implementation of A 2- 
8.5A Applying the Hierarchy Theorem. 

In this section we will use Hierarchy Theorem 8.4.3 to verify that M' is a correct implementation 

of FIR. - 
First let us make sure we know what it is that should be ̀ correct' about Ar. 
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Observe that the compiler c=c 20 c1 constructed in the proof of Theorem 8.4.3 is a 'two-pass' 

compiler. given ae PR(E 1), on the first pass c (or c1) will first substitute each scheme 't; ' for every 

occurrence of 'a; ' in a yielding c l(a); on the second pass c (or c2) will substitute each scheme 'ti j' for 

every occurrence of 'a; j' in c1(a) yielding c2(c1(a))=c (a). Since the schema tt and ti j formalise the 

static execution of the substituted networks, then the expression 'Qc (aFIR )]A : is the formal expression 

for executing M' (in the same way that expression'Qa, IR ]A, ' is a formal expression for executing FIR). 

Now suppose that the input to FIR is Z= (Z-112.1.3): T->V, and the initial values are 

X= (x l, x21x3) E Z3. Then the state of FIR at time tET is [aF, R IA (t, z , x) e Z3 

To analyse the correctness of M', we must execute it on streams and initial values that correspond 

to those given to FIR. Let 

t D: (r ;Bx NI > [T- *Z] 
be defined by 

(D(b, n)(t) = 6(b(t), n(t)) 

for each b: r- , 1B, n: r' ->IN, and each teT. Then to analyse the correctness of M' it is 

appropriate to compare QaFJR IA, (t, z, x) with Qc (a12 )DA (t, a, y) E (lB x IN)3 where 

a= (a l, a ya3) : r-*(]B x 1N)3 is such that z, = 4D(a t) for i =1,2,3, and y= (y l, y , y3) e (IB x IN)3 is 

such that x, = 0(y; ) for i=1,2,3. Now, since the state of FIR at each timet eT is an element of Z3 and 

the state of M' at each time te r' is an element of (18 x IN)3, the appropriate correctness condition is 

(Ox Ox OX Qc (a, 2)]d, (t, a , Y)) _ ECLFIR ]d, (t 9. =, x ) 

(where ̀ x' is the direct product operator; see Section 8.2A). However, given the relationships between 

a and z and between y and x, an equivalent correctness condition is 

(bt Er Xba :r ---'(IB x N)3)(Vy e (]B x N)3) (93) 

(OxOxO)(Qc(aF, R)JA, (t, a, Y)) = [aFA]A, (t. ((Dx4>xO)(a), (exexe)(r)) 
It is trivial to prove (93) by Hierarchy Theorem 8A. 3: by the theorem, since Al is A ! +1-coded by 

Y; via w; for i =1,2, we know that for each u, v e Si , and for every ae PR(E we have 

c (a) E PR(E 3)w(u) w(v) where w= w2ow1, and for every aEA3 (") we have 

1'(v)( Qc (a)]A, (a)) = QalA, ('Y(u)(a)) (94) 

where Y=Yi°Y2 (cf. Notation 8.2.13). Now, aFIR E PR(E 1), m,, (where D==), and so 

c(aFiR)E PR(E3)w(), �, (D). If we now let E=B'NB'NB'NE Sj, then A3 =(IBxN)3 and 
A3 = [r' -ß(I6 x N)3]. Furthermore, 

w(D) = w(em) = w2(w1(z)) = w2(ß) = w2(Z)w2(Z)w2(Z) = B'NB'NB'N= E 

and sow (TDD) = TEE; that is, c (a, )E PR(E 3).., and so Qc (aFm )IA is a mapping of functionality 

Qc (aFm )D,,, : T' X [T" -. (1B X ]N)3] x (1B X N)3 -+(IB X N)3 

Hence by the correctness of c (see (94)) we have 

7(D)( Qc (CE MM , 
(a)) = QaFm hA, (7(TDD)(a)) (95) 

for each aeA 3'V, that is for each (t, a, y) e'x [' -ß(1B x N)3] x (lB x N)3. 
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Now, it is not difficult to check that (O xAx O) = y(D), y(T) is the identity function, and 
(0 x0x (D) = 7(n), and so 

(e xex OX IC (aFrx)]A, (r, a, y)) = 7(D)([c ((xF, n)DA , 
(r, a'y) ) 

= QaFJRII&(Y(TDD)(r, a, Y)) 
(by (95)) 

= QQFJR DA, (('i(T) X iU X'KD))(1, a, y) ) 

= QaFJRL (*KT)(t), 
i(J), ^KD)(y)) 

= QaFIRLz(t, (gD X0X(D)(a), (0X0X0)(y» 
Thus (93) holds as claimed 

Performance. From the performance part of Hierarchy Theorem 8.4.3, we know that for any perfor- 

mance measures PI and P3 for A1 and A3 respectively, we have 
(Vt E r')(Va : T'-->(]BXN)3X 

vy6 (]öXN)3) 

Xp, (c (anm))(t, a, Y) 5'I`(7La («X7(TDD)(t, g, y ))) 

where the degree of 'P is the product of the (non-zero) degrees of It and 12. We have shown that if if P1 

and P3 are uniform, and if P2 is a uniform performance measure for A 2, then both I1 and I2 have degree 

1, and thus deg'P=1. In other words, the complexity of M' (officially X p, (c ((xFm ))) is bounded by a 

constant multiple of the complexity of FIR (officially Xt(a, JR)). Notice that this informs us, given the 

computational equivalence of PR and FP1T, that the complexity of simulating M' is bounded by a con- 

stant multiple of the complexity of simulating FIR. 

8.6 SOURCES. 

This chapter contains (i) informal and formal analysis of top-down design for synchronous con- 

current algorithms, and (ii) a theory of data type implementation, based on a generalised computability 
theory, and the development of compilers. Both are new and my own work. 

In the case of (i), my colleague Dr. K. McEvoy has independently worked on a theory of hierarch- 
ical network decomposition based on graph substitutions: see McEvoy[1986]; apart from this we are not 

aware of any other theoretical work on the subject. In the case of (ii), data type implementation based on 

generalised computability theory is a subject I will discuss below; the compilers presented here are 
instances of `semantics directed compiler generation' in the sense of the volume Jones[1980]. 

The generalisation of computability theory to algebraic structures begins with Fröhlich and 
Shepherdson[1956] and was subsequently developed by A. I. Mal'cev and M. O. Rabin; see 
Mal'cev[1961] and Rabin[1960] respectively. Mal'cev defined a (single-sorted) algebra A to be comput- 

able if (a) A can be coded via a Gödel numbering cc: IN-->A , (b) each operation of A can be tracked by 

a recursive function on 14, and (c) the relation m. defined by n%m iff a(n)=a(m) is recursive. He 

also defined the notion of a semicomputable and co-semicomputable algebra by taking isa to be r. e. and 

care. respectively; and the primitive recursive algebras by insisting that all the recursive machinery be 

primitive recursive. Independently, Rabin had an equivalent definition of computability applicable to 
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fields. 

The definitions of Mal'cev were imported into the theory of programming languages by the work 

of J. A. Bergstra and J. V. Tucker on the scope and limits of algebraic specifications for data types 
(under both initial and final algebra semantics). See the comprehensive survey Meseguer and 
Goguen[1985] for an exposition. I have found Bergstra and Tucker[1986] to be a particularly useful 

guide to the subject. 

We have chosen to work with algebras that are primitive recursively computable since this is 

appropriate for synchronous algorithms. However, we may also consider more general notions: on taking 

the classes of inductively definable or inductively cov definable functions discussed in Section 3.6.1, and 

adapting Definition 8.3.6, the definitions of inductively definable and cov definable algebras A over an 

algebra B can be made mutato mutandfs. 
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CHAPTER 9 
CONCLUDING REMARKS 

In this final chapter I will summarise what we have seen, point out some of the more interesting 

matters arising, and indicate some directions for future work. 

In Chapter 2 synchronous algorithms and the principal specification technique, `by value func- 

tions' were introduced. - In Chapter 3 the system PR was introduced, and it was shown that the 

specification of synchronous algorithms is formalisable in PR. As a language PR can be extended with 

respect to (i) its use as a notation for synchronous algorithms, and (ii) computability theory. I will dis- 

cuss (i) now and (ii) below with the discussion of Chapters 6 and 7. 

With respect to PR as a notation for synchronous algorithms, the syntax of PR owes its current 

rather austere form to the fact that for the work presented here to be of practical use, the notation should 
be machine-readable. It is also possible that PR can be used as a programming notation for synchronous 

algorithms in which case the notation should certainly be sweetened with constructs that are tailored to 

expressing synchronous algorithms in general, and systolic algorithms in particular. Actually, some work 

on making PR more usable has already been done. In the version of PR that has been implemented by 

my colleague A. R. Martin (for the purpose of implementing the compiler from PR to FPIT), one may 
declare names for Cartesian products of domains and structure PR schema in a nested way. For example, 

the scheme )K(U1, succoUr) which denotes addition on the natural numbers, can be entered thus: 
domain 

nat_pair - nat * nat; 
nat_triple - nat * nat * nat 

function add : natpair -> nat 

function value 
_atzero 

: nat -> nat 
is II[ nat, 1] 

function add one to_third argument : nat_triple -> nat 
is SUCC . U[ nat triple, 3] 

is *( value_at_zero, add one to third argument ) 

The ability to structure schema in this way is obviously advantageous when experimenting with large or 

complicated schema. 

One other point that arises in Chapter 3 is the non-primitive-recursiveness of the specification GN. 

As previously noted, the situation can be rectified by adding function abstraction to PR as a new function 

building tool. This will lead to a new theory of functionals that may well be of mathematical interest, 

and be of use to the theory of synchronous algorithms. 

Also in Chapter 3, performance measures were introduced to provide a general account of the 

complexity of algebraic data and operations upon which I built an account of the performance of PR 
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schema. However, to a hardware designer ̀ performance' is is a broader notion encompassing such con- 

cepts as 'area' and 'power consumption' for example. The refinement of theoretical estimates of perfor- 

mance and their reconciliation with electrical models of circuits is an important subject. 

In Chapters 4 and 5, the PR formalism was tested out by verifying the sorters of Chapter 2 and 

applying the specification methodology to more examples. As far as examples are concerned, future 

work will involve finding new algorithms to test out the expressive power of PR. Work in this direction 

is already in progress: apart from other algorithms that I have specified (but not had the space to include 

here), my colleagues K. M. Hobley and S. M. Eker are using PR to specify synchronous algorithms that 

arise in digital hardware for signal processing and graphics algorithms respectively. 

With respect to the verification of PR-specified synchronous algorithms, the correctness proofs 

given here used conventional mathematical rigour. Naturally, the reason for this is that the approach to 

the formalisation of synchronous algorithms given here is 'model based' rather than 'axiomatic'. Ques- 

tions arise as to the kinds of proof systems that are appropriate for verification based on axioms, and ulti- 

mately for mechanical verification. K. M. Hobley is working on the application of suitable first-order 

many-sorted logical languages, based on the work of Tucker and Zucker[1987]. 

One noteworthy idea that arises from the verification of the sorters is the fact that to prove a PCA 

sorts every input vector one only needs to show that it sorts one particular vector (a 'reverse' vector). 
This fact suggests the idea of a critical point for an algorithm; that is, a single point in the input space of 

the algorithm at which the correctness of the algorithm implies the correctness of the algorithm at all 

points. Perhaps a search for critical points for algorithms in general would be fruitful. 

In Chapter 6 the language FPIT was introduced, and in Chapter 7 the computational equivalence 

of PR and FPIT was proved. The use of compilers in the proof underwrites the idea of a design environ- 

ment in which one can flip between alternative, but equivalent, representations of a given synchronous 

algorithm. The use of FPIT as an independent tool for programming synchronous algorithms has been 

investigated by A. R. Martin in connection with this environment: see Martin and Tucker[1987]. The 

design and implementation of the environment has been undertaken by A. R. Martin also. I hope to con- 

tribute to this project, especially with respect to the programming of streams and the invention of com- 

pilers that produce readable code. 

I will now return to the matter of extensions to PR and FPIT. Of course, on adding a new feature 

to PR (or FPIT), to maintain computational equivalence one must either define the new feature in terms 

of existing ones, or add an corresponding feature to FPIT (or PR). Extensions that make PR more usable 

are of the first kind. As far as the second kind of extensions are concerned, the natural generalisations to 

consider are adding the least number operator and course-of-values recursion to PR, and correspond- 
ingly, the while-statement and arrays to FPIT. Both of these are considered in Tucker and Zucker[1987] 

where the proof of computational equivalence (not including equivalence of performance) is sketched(! ). 

However, in the context of the work presented here, these generalisations must be carefully considered: 

the while-statement seems to be intimately connected with the programming of streams, and arrays can 
be used to model modules with finite memory; a convincing analysis of these ideas is far from clear 
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however. 

Finally, in Chapter 8, a theory of top-down design for synchronous algorithms was presented. This 

theory was based on a new definition of what it means for one algebra to be 'computable' over another. 
There are a number of semantic issues that arise from the definition of network systems that require 
investigation. For example, the semantics of a network system are built `bottom-up' from the lowest 

level synchronous networks, whereas the compiler that produces the PR representation of the system 

works top-down. Another point, strongly related to the last, is whether the clock T of a network system 
M should be the same as, or different from, the clock T of the synchronous network N from which M 

was obtained by network-for-module substitution. 

A final possible area of future study is an investigation of the implications of replacing PR in 

Definition 8.3.6 by any of more general classes of computable functions mentioned above. 
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