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ABSTRACT

A synchronous concurrent algorithm is an algorithm that is described as a network of intercom-
municating processes or modules whose concurrent actions are synchronised with respect to a global
glock. Synchronous algorithms include systolic algorithms; these are algorithms that are well-suited to
implementation in VLSI technologies.

This thesis provides a mathematical theory for the design and analysis of synchronous algorithms,
The theory includes the formal specification of synchronous algorithms; techniques for proving the
correctness and performance or time-complexity of synchronous algorithms, and formal accounts of the
simulation and top-down design of synchronous algorithms,

The theory is based on the observation that a synchronous algorithm can be specified in a natural
way as a simultaneous primitive recursive function over an abstract data type; these functions were first
studied by J. V. Tucker and J. 1. Zucker. The class of functions is described via a formal syntax and
semantics, and this leads to the definition of a functional algorithmic notation called PR. A formal
account of synchronous algorithms and their behaviour is achieved by showing that synchronous algo-
rithms can be specified in PR. A formal account of the performance of synchronous algorithms is
achieved via a mathematical account of the time taken to evaluate a function defined by simultaneous
primitive recursion.

A synchronous algorithm, when specified in PR, can be transformed into a program in a language
called FPIT. FPIT is a language based on abstract data types and on the multiple or concurrent assign-
ment statement, The transformation from PR to FPIT is phrased as a compiler that is proved correct;
compiling the PR-representation of a synchronous algorithm thus yields a provably correct simulation of
the algorithm. It is proved that FPIT is just what is needed to implement PR by defining a second com-
piler, this time from FPIT back into PR, which is again proved correct, and thus PR and FPIT are for-
mally computationally equivalent, Furthermore, an autonomous account of the length of computation of
FPIT programs is given, and the two compilers are shown to be performance preserving; thus PR and
FPIT are computationally equivalent in an especially strong sense.

The theory involves a formal account of the top-down design of synchronous algorithms that is
phrased in terms of correctness and performance preserving transformations between synchronous algo-
rithms specified at different levels of data abstraction. A new definition of what it means for one abstract
data type to be ‘implemented’ over another is given. This definition generalises the idea of a computable
algebra due to A. 1. Mal'cev and M. O. Rabin. It is proved that if one data type D is implementable over
another data type D’, then there exists correctness and performance preserving compiler mapping high
level PR-programs over D to low level PR-programs over D’.

The compilers from PR to FPIT and from FPIT to PR are defined explicitly, and our compiler-
existence proof is constructive, and so this work is the basis of theoretically well-founded software tools
for the design and analysis of synchronous algorithms.
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In science nothing capable of proof ought to be accepted without proof.
Richard Dedekind

... anything which can be done will be done...
Kurt Vonnegut
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CHAPTER 1
INTRODUCTION

Recent advances in computer hardware have led to the manufacture of devices comprising a
(large) number of separate components that compute in parallel. The advantage that a concurrent device
has over a sequential device is one of speed of course: 1t takes less time to solve a given task if different
parts of the task can be tackled concurrently rather than one at a time. The advantage of using con-
current devices is offset however by the fact that it is difficult to design and analyse concurrent systems
of processes (for the basic reason that it is difficult to analyse one part of a concurrent system whilst
simultaneously keeping track of what is happening in other parts of the system).

The theory of sequential computation has led to greater understanding of what is solvable by
means of a (sequential) computer, and complementary theories are now sought to surmount the concep-
tual difficulties involved in concurrent computation, and to thereby exploit the advantages offered by
concurrency. Most of the theoretical research into concurrency is concerned with asynchronous con-
currency: in an asynchronous concurrent system the components of the system behave autonomously
with respect to each other. Significant examples of mathematical models of asynchronous computation
are CCS Mner[lQSO]), CSP (Hoare[1985]), and ACP (Bergstra and Klop[1986]); these are models
with an ‘arbitrary interleaving’ semantics of concurrency.

This thesis concerns synchronous concurrency: in a synchronous concurrent system the com-
ponents of the system are forced to compute and to communicate with each other in system-wide simul-
taneous steps. Whilst there is much interest in synchronous concurrency, much of the published research
is concerned with (small families of) examples, and is conducted on an informal basis with little theoreti-
cal content. In this thesis we will present a general theory that encompasses the formal specification and
verification of synchronous concurrent algorithms and upon which we build mathematical accounts of

simulation and top-down design. The theory is applied to examples and to the design of software tools.

Very Large Scale Integration (VLSI) technologies, as described in Mead and Conway[1980] for
example, support the implementation of both synchronous and asynchronous concurrent algorithms as
digital devices. Such devices can be extremely complex and may contain in excess of five hundred
thousand transistors (Beyers[1981]). Due to the availability and overwhelming complexity of VLSI sys-
tems, the need of structured design methodologies for VLSI is acute (Rem[1981], Mead([1983]) and this
need has precipitated much research into formal methods for VLSI systems. Whilst this thesis 1S not
specifically concerned with VLSI, synchronous VLSI systems are for us an important source of motiva-
tion and examples. Work on VLSI systems that is relevant to our research, in particular work on systolic
algorithms, is discussed below in Section 1.2; for work not directly related to this thesis the reader is
referred to the useful general bibliography Rosenberg[1985).
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In the next section we will describe this thesis chapter by chapter. Afterwards we will review
related research in two sections: in Section 1.2 we review other research that is concerned with the
specification and design of computer hardware (VLSI); in Section 1.3 we describe some of the practical
applications of our work in the context of a software engineering project under development here in the
Department of Computer Studies at the University of Leeds.

1.1 OVERVIEW AND DISCUSSION.

In Chapter 2 we begin with an informal model of computation that we call synchronous con-
current algorithms or ‘synchronous algorithms’ for short. A synchronous algorithm is an algorithm that
is described as a network of intercommunicating processes or modules whose concurrent actions are syn-
chronised with respect to a global clock T measuring discrete time ¢ =0,1,2,.... To begin with, a syn-
chronous algorithm is described as processing data taken from a single set A. (In Chapter 3 we general-
ise the model by allowing A to be a many-sorted family of sets so that one synchronous algorithm can
process many different kinds of data.) A module m comprises a processor and a store: the processor is
capable of computing a total function f,, :A® —>A ; the store is capable of holding a single datum from
the set A. The function f, specifies a module m in the following sense; whenever an n-tuple
a =(a,....,a,) of input data is available to m, the module computes f,, (a) and places this

value in its store, As case studies we will investigate two systolic algorithms for sorting, although
it will become apparent that our synchronous algorithms are more general than systolic algorithms,

In Section 2.4 we take our first steps towards the formal specification of a synchronous algorithm
or network: we show how from the communication structure of a synchronous network, and from the
functional specifications of the network’s modules, we can automatically construct a variety of func-
tional specifications of the behaviour of the entire network. The most important of these functional

specifications is a uniquely defined function that we call the network’s value function which we will now
explain.

Synchronous networks process infinite sequences or streams of data: we use a mapping
a:T—>A" to represent the input to a network with 2 >0 inputs; here T={0,1,2,... } is the clock with
respect to which the network’s modules are synchronised, and the intention is that a(¢) € A”® is the input
available to the network at each time ¢ € T'. In addition to input data, the behaviour of a synchronous net-
work is dependent on the values initially held in the stores of the network’s modules; that is, the values
held in the network at time ¢=0. Modules hold a single datum, and so we use a vector
X =(xy,....x; )€ A* to represent the values initially held by a network with k >0 modules; here the inten-
tion is that x; is the value held by the i th module of the network at time ¢t =0 fori =1,..., k.

To specify the behaviour of a synchronous network over time, we need to specify the value held
by each of the network’s modules at each time ¢ € T, and this is the role played by the network’s value

function: if N is an a -input, k-module synchronous network over data set A, then N’s value function is
a map Vy of functionality
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Vn :TX[T —>A"]xA*—>A*
(Here ‘[T —>A™]’ is the collection of all functions from T into A*; generally ‘(X —>Y]’ is the notation
we use for the collection of all functions with domain X and codomain Y.) For given arguments t € T,
a:T—>A", and x =(xy,...,. %) € A*, our interpretation of the expression ‘Vy(t,a,x)’ 1s straightforward:
‘Vn(t,a,x)’ is read as ‘the values held in network N at time ¢t when the input to the network is a and the
initial values were xy,...,x, '. Notice that Vy is vector-valued: Vy(t,a,x) is a vector in A* with the inten-

tion that the i th coordinate of Vy (¢,a,x) is the value held by the i th module of N at time ¢ fori =1,..., k.

As we have described it, the vector x denotes the network’s initial values, and so V) always
satisfies the equation
Vn(0,ax)=x (1)
for any a :T—>A" and any x € A*. In fact, V) satisfies this equation because (1) is how we define
Vy(t,ax)att=0(foranya :T—>A" and x € A*). To define Vn(t,a,x) at subsequent times ¢ we use a
form of primitive recursion: because of the network’s synchronous operation, the values held by the
network’s modules at a ime t+1 can always be effectively determined from the values held by the
network's modules at time t. We will explain how Vy(¢+1,a,x) is defined from Vy(t,a,x) in due
course. The important point to notice here is that for a given network N, its value function Vy tells us
everything there is to know about the network’s behaviour over time and so a mathematical theory of
synchronous algorithms is provided by a formal account of ‘value functions’.

In Chapter 3 we give a formal account of the simultaneous primitive recursive functions general-
ised to an abstract data type. These functions, first defined and studied in Tucker and Zucker[1987]
(work of 1979), are the mathematical setting for the study of value functions.

We begin by modelling data and operations (ultimately those used by a synchronous algorithm) as
a many-sorted Z-algebra A; this A comprises some data sets A,,...,A, and some operations on these
sets, and X (the signature of A) is the syntax of A in the sense that it comprises names for the operations
of A. In order to define the simultaneous primitive recursive functions {ve assume that A contains a
copy of the natural numbers {0,1,2,... }, the successor function on this set, the Booleans B ={ #,ff}, and
the logical operations not and or; such algebras we call standard.

The class PR(A ) of all simultaneous primitive recursive functions over a (Z-) algebra A is built up
from the operations of A by means of four function-building tools, viz definition-by cases, sequential
and parallel composition, and simultaneous primitive recursion. Simultaneous primitiveﬁ recursion
allows us to define k functions f,..., f, simultaneously by primitive recursion from functions gy..... &
and h,..., by ; that is, f ..., f3 are defined by a system of equations of the form:

f1(0,a) = g((a)

f1(0,a) = g (a)
and
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fi(t+l,a) = hy(t,a f1(t,.@).....fr(1,a))

frt+l,a) = h(t,a,f(t,a).... f1(2,2))
Heret e T={0,1,2,...}anda € A" for any n > 0.

PR(A) is officially defined via a syntax PR(Z) (Z the signature of A), and a formally defined
semantics:
PR(A) = {[a],4 :ae PR(Z)}
wherein [.], is the semantic evaluation mapping that sends each a € PR(Z) (a PR scheme over ) to a
function on A. With this definition of PR(A ), it should be clear that a function f on A is officially
simultaneous primitive recursive over A iff there exists some € PR(Z) such that [o]l, =f.

We can now explain how we provide a formal account of the concept of a ‘value function’. From a
synchronous network N we can abstract a Z-algebra A =A,,. This A comprises:

. the natural numbers as a set T ={0,1,2,... } and the successor function on T to represent the clock
with respect to which the modules of the network are synchronised;

- the Booleans 1B and the usual logical operations on IB for testing, and

. the functions on A that specify the modules of N together with the sets that comprise their
domains and codomains.

Suppose the sets involved in A are T, IB, and data sets A,,...,A, say. The next step towards the
formal specification of N is"to form the algebra A. This A is obtained from A by adding
[T —>Aq{].....[T—>A,] as new data sets, and new operations evali,...,eval,: here the operation
eval; : T X[T —>A;]—>A; is defined by eval;(t,a)=a(t) foreacht e T and a : T —>4; fori =1,...,n.
The signature of A is £ which is formed from Z (the signature of A) by adding names for these new

operations.

Formal specification of N 1is achieved by showing that its value function is simultaneous primitive
recursive over A =Ay, that is, by showing there is some oy € PR(Z ) such that [oy ], =V. Since we
identify a synchronous network with its value function this oy serves as a formal (syntactic)
specification of N, and ‘[oyy ], ° is a formal (mathematical) expression for the behaviour of N.

This approach to the specification of synchronous algorithms has two significant consequences:
first, whilst simultaneous primitive recursion over an abstract data type is not without its intricacies,
primitive recursion is a simple idea, and primitive recursive specifications lead to simple inductive
proofs of algorithms. Secondly, one might imagine that primitive recursion over an algebra that includes
streams would complicate matters; however, many facts about such algebras can be obtained via the fol-
lowing strategy: if we can prove that some statement about PR(B) holds for any algebra B, then that
statement must be true in the case B =Ay as a simple corollary. (This is the strategy behind the proofs of
the compiler theorems found in Chapters 7 and 8 for example; see below.)

Also in Chapter 3, we begin our account of the performance (synonymously: complexity or execu-
tion time) of synchronous algorithms. The complexity of synchronous algorithms is important for their
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application to hardware design. Starting with Thompson[1980] various models for the area-time charac-
teristics of VLSI circuits have been developed. Some of these models contain conflicting assumptions
(see Baudet[1983]) and are the subject of experimental work (see Dew and Tucker[1983]. An informal
complexity model can be incorporated into the formal definition of the simultaneous primitive recursive
functions. We begin by defining a performance measure P for an algebra A : a performance measure is
simply a collection of functions (performance estimations) that tell us how long it takes to execute each
operation of the algebra on any given input. Performance measures can be nearly arbitrary for the reason
that this allows us to choose an account of the complexity of operation evaluation that best reflects our
intuition concerning how that operation 1s implemented. For example, if we think of an operation as
being atomic or indivisible, then we can choose a performance measure in which that operation takes
one time unit to evaluate on any input, Performance measures appear in Nielson[1984] and generalise
the treatment of algorithm complexity in computation over algebraic structures found in Asveld and
Tucker[1932].

We 'provide a complexity theory for synchronous algorithms by defining a length-of-computation
function for each PR scheme a: in symbols this function is denoted ‘Ap(c)’ with the intention that
Ap(0)(a) is the time taken to evaluate & on input a (with respect to performance measure P). An
account of the performance of a synchronous network N is thus simply provided by choosing a perfor-
mance measure P for the algebra Ay, and then by considering Ap (o).

Subsequently, unqualified, we use ‘PR’ to mean a formal system comprising a syntax PR(Z), a
semantics [.1,, and a complexity theory Ap, for some (standard) signature Z, (standard) Z-algebra A,
and performance measure P (for A) respectively,

Chapters 4 and 5 are devoted to applications of PR. In Chapter 4 we show that PR-specifications of
synchronous algorithms can be used in mathematical verifications by proving the correctness of the two
sorting algorithms of Chapter 2. These proofs are important for the following reason: the correctness is
best explained in terms of a variety of alternative sorting networks and transformations from one net-
work to another; we use PR to specify each of the networks encountered, and in addition to giving the
reader some feel for our notation, this work shows that PR-specifications make complicated correctness
proofs manageable and indeed, mathematically satisfying.

In Chapter 5 we further test out our formalism by using PR to specify and establish the correctness
of a variety of synchronous algorithms. First, we consider an algorithm for convolution found in
Brookes[1983]; this algorithm has parallel loading of data. Second, we consider an alternative algorithm
for convolution that has serial loading of data. Thirdly, we consider a new algorithm for recognising
palindromes. Finally we consider the matrix-vector multiplication algorithm of Kung and Leiserson
(taken from Chapter 8 of Mead and Conway([1980]).

Chapters 6, 7, and 8, are devoted to transformations between equivalent representations of syn-

chronous algorithms. We think of these chapters as the mathematical foundations of a design environ-
ment for synchronous algorithms (see Section 1.3),
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In Chapter 6 we give a scientific account of simulating synchronous algorithms. Simulation is no
theoretical substitute for formal verification of course, but it is an important aspect of the design and
analysis of complex algorithms. An obvious idea for providing a simulation of a synchronous algorithm
is to implement PR in some executable programming language L say. This idea must be treated with
some caution however, especially with respect to algorithm performance. Suppose o is the PR-
specification of some synchronous algorithm, and suppose « is implemented as an L -program S. Of
course, we can simulate our synchronous algorithm o by executing its simulation S on sample input
data. However, that § runs quickly or otherwise on a given input tells us nothing about the performance
of o unless we have been told what relationship exists between the complexity of § and the complexity

of o. Indeed, a similar remark can be made about the behavioural aspect of simulation: unless we have
some guarantee that the behaviour of § faithfully represents the behaviour of o, experiments with § tell
us nothing about the behaviour of c.

These remarks suggest that like the specification language PR, a simulation language should itself
be a formal language with an independently-defined semantics and complexity theory. The language we
use is called FPIT, FPIT 1s a formal, structured programming language based on abstract data types and
on the multiple or concurrent assignment statement. (These are statements of the form

Xreer Xy = €110ees &,
whose intended interpretation is that each expression e; is evaluated and assigned to x; in parallel for
i =1,...,n.) To simulate our PR-specified synchronous algorithms we construct a compiler as a mapping
¢ from PR into FPIT that we prove is correctness and performance preserving: for each PR scheme o,
¢ (o) is an executable FPIT version of o that is firstly provably equivalent to o, and secondly has the
same execution time as «; in this situation it is proper to infer properties of the behaviour and perfor-
mance of a synchronous algorithm from the corresponding properties of its simulation.

Whilst PR is our official specification language for synchronous algorithms, it tumns out that syn-
chronous algorithms can in fact be directly specified in FPIT without using PR as an intermediate stage,
and thus FPIT can be viewed as an alternative means of specifying or defining the behaviour of a syn-
chronous algorithm. Now, we have said that the behaviour of a synchronous algorithm is officially
defined by means of a PR scheme and so we must ask: what is the relationship between FPIT and PR?
Does a specification of a synchronous algorithm in one system tell us any more about the algorithm than
its specification in the other? In Chapter 7 we will answer this question (in the negative) by establishing
that FPIT and PR are equivalent specification languages. Note that the existence of a correct and perfor-
mance preserving compiler from PR into FPIT implies that every synchronous network (when specified
in PR) can be simulated in FPIT with no change in performance, and thus the simulation can be regarded
as an alternative but equivalent means of formalising the network: thus FPIT is at least as good as PR for
specifying synchronous algorithms. To show that PR is at least as good as FPIT we will define a second
compiler, this time from FPIT into PR, which we will again prove is both correct and performance
preserving, and thus PR and FPIT are formally computationally equivalent: whatever we can define
using PR we can simulate with FPIT, and with equivalent performance, and moreover, whatever we can

simulate using FPIT we can define with PR, and with equivalent performance. Thus in the case of
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defining or modelling synchronous algorithms, PR and FPIT are formally equivalent representation sys-
tems.

Chapter 8 concludes our mathematical work on synchronous algorithms with a formal account of
top-down design. In algorithm design generally, we are advised to initially design an algorithm for a
given task at a high level of computational abstraction: use of high-level ‘primitive’ operations makes
the algorithm easy to understand and therefore more amenable to formal verification. To provide an
implementation of the algorithm at a lower level of abstraction we implement the algorithm’s high-level
operations by programs defined over more primitive or lower-level operations, and then we combine
these implementations with the original algorithm in some way to yield the required implementation of
the original algorithm. The essence of ‘top-down design’ is that the way in which we combine the algo-
rithm with the implementations of its operations should be such that the correctness of the implemented
algorithm follows automatically from the correctness of the original algorithm and the correctness of the
implementations of the operations; this obviates the need for verification of the algorithm when imple-
mented at lower levels where the resulting design may be so complex as to be impossible to formally
verify in practice. Indeed, one can make a similar remark about algorithm performance: it is usually
extremely tedious (and therefore error-prone) to calculate the complexity of an algorithm when imple-
mented at a low level of abstraction. In the same way that correctness at a low level should follow from
the correctness at a high level, we want to be able to predict the complexity at a low level from complex-
ity at a high level.

Our theory of top-down design for synchronous algorithms has both of these properties: algorithm
correctness and performance at low levels of abstraction are guaranteed by theorems (Implementation
Theorem 8.4.1 and Hierarchy Theorem 8.4.3 in particular). In essence, our strategy for achieving this
theory is to first provide a theory of top-down design for PR schema, and then to apply this work to syn-
chronous algorthms.

We begin in Section 8.1.1 by investigating the conceptual issues involved in the top-down design
of synchronous algorithms. In the next three sections we present a theory of top-down design for PR,
central to which is a new definition of what it means for one (high level) algebra to be ‘implementable’
in PR over another (low level) algebra. This definition generalises the idea of a computable algebra due
to A. I. Mal’cev and M. O. Rabin (see Mal’cev[1961] and Rabin[1960] respectively). In the Mal’cev-
Rabin theory, an algebra A is said to be computable (over the natural numbers IN) if (a) A can be
Gddel-numbered or coded via a surjection o.: N—>A, (b) each operation of A can be computed (with
respect to o) via a partial recursive function over N, and (c) the relation =, defined by n s m iff
a{n)=a(m) is recursive. The main purpose of this theory was to study effective computability over
algebraic structures such as groups, rings, and fields in mathematics; it is now a standard tool in the
theory of data types (see Meseguer and Gogueq[l9851). In contrast to the Mal’cev-Rabin definition, we
define an algebra A to be (PR-) computable over another algebra A’ if, first, A can be coded via a sur-
jection y: A’ —>A, and second, each operation of A can be computed (with respect to ¥) via a simultane-
ous primitive recursive function over A”. This new definition leads to the idea of a hierarchy
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A,A’,A”,.. of algebras wherein each algebra is implementable over its successor. Indeed, our
definition can be seen as the starting-point for a generalisation of computable algebra in which primitive
recursive operations on A are replaced by generalisations of partial recursive functions on A ; this new
theory has applications to the theory of parameterised data types.

We will now explain the connection between this PR theory and the top-down design of synchro-
nous algorithms.

Suppose that N is a synchronous network whose modules are specified by the operations of a (high
level) algebra A . Now suppose that each module m of N can be implemented by a synchronous network
N(m) whose modules are specified by the operations of (lower level) algebra A’. Intuitively, we can
replace each module of N by the network that implements it, and this substitution will lead to a new net-
work N whose modules are specified by the operations of A’. Suppose the signatures of A and A’ are X
and X’ respectively, Then N will be formalised as a scheme oy € PR(X ), and N° will be formalised as a
scheme o € PR(Z). Also, each N(m) will be formalised by some o,y € PR(Z"). Now, from our PR
theory (Implementation Theorem 8.4.1 to be precise), it is a fact that if we transform oy, by substituting
Oy (m) fOr each occurrence in oy of the operation of A that N (m) implements, then this transformation is
a correctness preserving map ¢ :PR(Z )—>PR(Z"). Furthermore, [c (o )14 = [0ty 114-, Which, in words
says that the intuitive idea of network-for-module substitution is formalised by scheme-for-operation
substitution, thus providing the required theory of top-down design.

Finally, with Chapter 9 we end with some concluding remarks and some directions for future
work.

12 RELATED WORK.

In this section we will review research on the mathematical specification, verification, and design
of concurrent algorithms that is relevant to this thesis. Research that is otherwise related to our work is

reviewed in the appropriate chapter. (For example, in Chapter 7 we verify the two compilers that com-

pile from PR to FPIT and back again; the subject of ‘compiler correctness’ is therefore discussed in that
chapter.) '

After some historical remarks, we review research on systolic algorithms in two sections. Systolic
algorithms are a restricted kind of synchronous algorithm that have received much attention due to their
suitability for implementation in, and therefore exploitation of, VLSI technologies: in Section 1.2.1 we
review research on systolic algorithms and their specification and verification, and in Section 1.2.2 we
review research on design tools for systolic algorithms. Finally, in Section 1.2.3 we review contem-
porary research on the specification and formal verification of computer hardware in general.

Perhaps the earliest examples of synchronous algorithms are the neurone nets of McCulloch and
Pitts[1943]. McCulloch and Pitts were interested in mathematical models of neural activity (an interest
fuelled, no doubt, by the seminal work Turing[1936] in which we find the first mathematical characteri-
sation of a physical device), and neurone nets were devised for exactly this purpose. A neurone netis a
simplified discrete model of neural activity comprising ‘cells’ (abstract neurones) connected together by
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‘fibres’ (abstract axons and dendrites, the ‘wires’ by means of which electrical pulses are sent from neu-
rone to neurone).

Other early examples of synchronous algorithms are cellular automata introduced by von Neu-
mann in 1948 (see the volume Neumann[1987]). Von Neumann was interested in how one might
‘‘abstract the logical structure of life’’ and proposed a mathematical model for analysing how a network
of processes could evolve over time. One of his principal concerns was the possibility of self-
reproducing automata; his ideas have since been popularised in the well-known ‘Game of Life’ (see

Conway, Berlekamp, and Guy[1982]): ‘Life’ is intuitively a synchronous process and is easily seen to be
a synchronous algorithm (in our technical sense) when played on a finite grid.

Von Neumann was aware of the significance of his research as the foundations of parallel compu-
tation, Minsky and Pappert carried further the study of neural networks (Minsky and Pappert[1969)), and
the mathematics underlying such networks of processes was examined in Hennie[1961] and Codd[1968].
However, this line of research does not seem to have been carried further for the reason that it was ahead
of its time: it was not feasible to make these networks with pre-transistor technology.

There has been a recent resurgence of interest in synchronous concurrent algorithms that is due to
two factors, both arising from VLSI: first, it is now possible (in principle) to implement large neural net-
works as physical devices (as witnessed by research on connectionist and Boltzmann machines; see Aarts
and Korst[1987] for an overview). Second, in the design of computers it has long been acknowledged
that using synchronous circuitry alleviates some of the complexities in circuit design (for example, tim-
ing problems at the circuit level). Today, in custom VLSI circuits, using synchronous circuitry is a VLSI
design strategy that is epitomised in the concept of a systolic algorithm which we will now discuss.

1.2.1 Systolic Algorithms.

A principal applicaton area for VLSI devices is the implementation in hardware of algorithms that
solve particularly computation-intensive tasks; typically, the kind of task that arises in signal and image
processing for example. Implementing an algorithm in hardware increases computation speed of course,
especially so if the hardware is dedicated to that one specific task. With the advent of VLSI technologies
(wherein it is possible to place many processors in close proximity to each other), it is now possible to
conceive of hardware implementations that involve a high degree of concurrency, increasing computa-
" tion speed even further.

Systolic algorithms, pioneered by H. T. Kung and his colleagues at Carnegie-Mellon University,
are algorithms that are tailored to VLSI implementation. Essentially, a systolic algorithm is a synchro-
nous algorithm with the following distinguishing features:

. the algorithm involves only a few simple types of module;

. the algorithm is formulated in such a way that the modules only need to communicate with their
nearest neighbours;

. the algorithm is laid out (usually as a two-dimensional array) in such a way that the interconnec-
tions form a simple, regular pattern (for instance, see Figure 2.8 depicting a systolic sorting
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algorithm), and
. the algorithm uses each piece of input data many times.

The first three of these features lead to efficient VLSI implementations: to fully exploit the VLSI
medium, a VLSI design is likely to involve a large number of modules; to minimise design and imple-
mentation costs it is therefore expedient that the algorithm involves only a few simple types of module.
Also when a large number of modules are used, communication costs become significant: in VLSI it is
the number of interconnecting channels and hence the physical area required by these channels that dom-

inates the efficiency (power, time, and area) of the implementation (Sutherland and Mead[1977]); local
communication and regular structure minimises these costs of course.

The fourth feature, that a systolic algorithm uses each piece of input data many times, concerns the
‘computation-intensive’ quality of the problems for which VLSI implementations are sought:

A problem is said to be compute-bound if, in the computations required to solve the problem, the
number operations that must be executed exceeds the number of memory accesses. Thus, intuitively,
compute-bound problems need fast processing, and this is offered by VLSI. However, existing (general-
purpose) computers have a von Neumann architecture; that is, an architecture that comprises a memory

and a single processor: to compute an operation (for example, an addition or a multiplication), the input
data must first be loaded into the processor from memory, then the processor computes a result, and this
result is then stored back into memory. Intuitively then, with a von Neumann architecture the speed of
computation is limited by the speed of input/output (or memory bandwidth): there is no point in having a
fast processor if data cannot be supplied/retrieved quickly enough to support the processor. The von
Neumann configuration is thus not well-suited to the implementation of algorithms for compute-bound

problems. However, by using a systolic architecture, the memory bandwidth versus processing speed
problem (the ‘von Neumann bottleneck’) is circumvented by using each piece of input data many times.

Beginning with the seminal paper Kung and Leiserson[1979], many researchers have become
interested in systolic algorithms due their attractiveness as a paradigm of VLSI design. Preliminary

exploratory work on systolic algorithms was concemned with (particular) systolic algorithms for particu-

lar computational problems, and many such algorithms are now known: see Kung[1982] and Fischer and
Kung[1985] for surveys of systolic algorithms for a wide variety of problems.

As the concept of a systolic algorithm is now well-developed, contemporary research has turned to

larger and more theoretical questions concerning systolic algorithms. One may summarise the issues
addressed by contemporary research via the the following two questions;

. How do we formally analyse systolic algorithms?
. How do we design a systolic algorithm for a given task?

The first of these questions concerns the provable correctness of systolic algorithms (a desirable
property for any algorithm). Whilst the regularity of structure and data-flow make a systolic algorithm
easy to implement in VLSI (or at least amenable to implementation), this does not necessarily mean that
it is easy to understand a given systolic algorithm; typically, the sequence of actions performed by a



«11-

systolic algorithm form a very complex pattern, and the correctness of the algorithm need not be at all
obvious.

The question asks for a mathematical model or notation for systolic algorithms in which we can
establish an algorithm’s correctness by proving theorems about the algorithm’s behaviour. One approach
to this verification problem is to use an already existing ‘tried and trusted’ theory of concurrency, such as
(‘synchronous’ versions of) CCS as in Hennessy[1986] and Backhouse[1983], or ACP as in Weij-
1and[1987], or our own notation PR. A criticism of the ACP and CCS-type approaches is that these nota-
tions are principally asynchronous specification tools with an ‘arbitrary interleaving’ interpretation of
concurrency wherein parallel computation is conceptually reduced to sequential computation plus non-
determinism. In practice this means that nondeterministic choice appears in specifications of systolic
algorithms (indeed, synchronous algorithms in general), in effect cluttering the specification with low
level information about how the modules of an algorithm are synchronised: intuitively, this is not some-
thing we want to know when we are given that the modules are synchronised. In contrast, synchronous-
ness and ‘true parallelism’ are built into PR (via the simultaneous primitive recursion mechanism) and
this leads to concise and rather elegant specifications of algorithm behaviour as we will see in Chapters 2
and 5.

An alternative approach is to devise a new model which is tailored to systolic algorithms. Work in
. this direction is Kung and Lin[1983] and Melhem and Rheinboldt[1984]. Both of these approaches
suffer from the fact that the underlyling mathematics is somewhat unclear, although we note that
Brookes[1983] begins to further explore the work of Kung and Lin.

1.2.2 Design Tools for Systolic Algorithms,

The design of complex algorithms needs software tools for exploring the implications of making
different implementation choices. We will discuss software tools based on our work on PR in Section
1.3: here we review existing research into software tools for systolic algorithms.

The second of our two questions above concerns what is often referred to as the ‘synthesis’ of sys-
tolic algorithms; that is, the systematic construction of a systolic algorithm for a given task from a
specification of that task; often, use of the term ‘synthesis’ implies that the construction is ‘guaranteed’
to produce a correct design. There is much work on the synthesis of systolic algorithms to be found in
the literature; again, the regular structure of a systolic algorithm does not necessarily mean that it is easy
to devise a systolic algorithm for a given task: the design of nontrivial systolic algorithms requires con-
siderable expertise and ingenuity.

The basic idea behind the concept of synthesis (of systolic algorithms) is to circumvent the
difficulty of conceiving a systolic design for a given task by first coding an algorithm that solves the task
in some (familiar) algorithmic notation, and then to use some mechanical transformation (software tools)
to map the algorithm to a systolic implementation. Intentionally, the algorithmic notation (hereafter
referred to as the ‘source language’) is a familiar one so as to make the original algorithm comprehensi-
ble and amenable to formal verification, and the transformation is a correctness preserving map. Ideally,
the source language should be as general-purpose as possible (to facilitate the expression of as many
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algorithms as possible). However, the problem of finding an appropriate transformation for a truly
general-purpose source language is a very difficult one, and in practice source languages are tailored to
the synthesis problem.

Uniform recurrence equations (Karp, Miller, and Winograd[1967]) are commonly used as the
starting point for synthesis, see for example: Mongenet and Perrin[1987]; Quinton[1987]; Li and
Wah[1985]; Rajopadhye and Fujimoto[1987]; Delosme and Ipsen[1987b], and Guerra and
Melhem([1986].

An alternative choi'ce of source language is a language of imperative programs of a special form
(usually nested loops), see for example: Cappello and Steiglitz[1984]; Fortes and Moldovan[1986];
Miranker and Winkler[1984]; L.am and Mostow([1985], and Huang and Lengauer{1987]. Other research
in this area is: Snepscheut{1985], whose work is cast in trace theo}y (Rem[1983]), and Chandy and

Misra[1986a], whose idea is to use traditional tools taken from the design of sequential algorithms
(specifically, the concept of a ‘loop invariant’).

A related research area is the synthesis of systolic algorithms from concurrent algorithms that are
already described as a network of modules, but that are not systolic. See for example: Kung and
Lin[1983] who build on Weiser and Davis[1981] and Johnsson and Cohen[1981] (see also
Brookes[1983]); Leiserson and Saxe[1983], and Ramakrishnan, Fussel, and Silberschatz[1985].

Synthesis is a very difficult problem, and one that this thesis does not address. However, we feel
that much of this research would be improved by formal definitions of the source language, transforma-
tion, and model of systolic computation employed, since without these there can be no precise sense (and
certainly no formal sense) in which the transformation can be correctness preserving. Few of the
researchers mentioned above give an effective characterisation of their source language, and none give a
precise definition of what is meant by a ‘systolic algorithm’. Not only does this mean that the correctness
implicit in the concept of synthesis is at best rather woolly, but it also makes it impossible to provide a
comparative survey of the relative merits of the above approaches: we cannot tell whose source language
1s the “most general-purpose’, nor who has the ‘most implementable’ concept of a systblic algorithm,

To the interested reader we recommend Quinton[1987], Huang and Lengauer[1987], and
Rajopadhye, Purushothaman, and Fujimoto[1986] as the most tractable introductions to the subject. We
also note that some of the above research is at a more advanced stage than others in the sense that
software tools have been produced: Gachet, Joinnault, and Quinton[1987] describes the system DIAS-
TOL based on the work of Quinton; Mongenet and Perrin have a system called SYSTOL (see Mongenet
and Perrin[1987]); Huang and Lengauer also have a software system (see Huang and Lengauer[1987]);
Moldovan has a system called ADVIS described in Moldovan[1984], and Delosme and Ipsen have two
systems, SAGA and CONDENSE, described in Delosme and Ipsen[1987a).
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1.2.3 Hardware Specification and Formal Verification.

Our work on synchronous algorithms is inspired by the problems of verifying algorithms that can
be (or are) implemented in hardware (that is, as physical devices). The verifications found in this thesis
are mathematical (semantic) proofs rather proofs based on (syntactic) axioms and rules of inference or
deduction. In this section we will review research that does use such formal reasoning about hardware.
A substantial research project for us is to re-examine our correctness proofs to find logical languages and
proof systems that formalise the reasoning involved in these proofs, and to develop software tools such
as ‘proof-checkers’ to support the verification procedure; we think of the notes below as preparation for
this future work. (See Section 1.3 and Chapter 9.)

The basic idea behind research into formal reasoning about hardware is that if one has a clear cut
mathematical logic, then one can map an algorithm of interest into the (term) language of the logic and
then use the logic’s axioms and rules of inference to prove theorems about the algorithm, in particular, to
verify it with respect to some correctness specification (in the language of the logic). A key idea here is
that the application of rules of inference can be automated; this is a particularly attractive idea when the
algorithm of interest is either large or complicated and correctness proofs are likely to be lengthy. For
example, it is reported in Gordon[1987] that Cohn’s verification of the VIPER microprocessor (see
Cohn[1987] and Cullyer{1987] respectively) used over a million deductions in the correctness proof.

There is much research on this topic to be found in the literature, too much for us to give an
exhaustive survey; we will review only what we feel to be a representative sample of this work.

Work Based on First-Order Logic. First-order logics are distinguished by the fact that one can only
quantify over data objects from the underlying data type. An early example of using first-order logic to
reason about hardware is Barros and Johnson[1983] in which four kinds of asynchronous circuit are
proved equivalent. Eveking[1985] develops an approach based on first-order logic that addresses the
question of how specifications at different levels of abstraction are related. Hunt[1986] describes the
verification of a complete microprocessor (the FM8501, roughly equivalent to a PDP-11); Hunt uses
Boyer-Moore logic (a first-order logic; see Boyer and Moore[1979]) to describe his microprocessor, and
a theorem-prover for the Boyer-Moore logic is used to verify the design.

Work Based on Higher-Order Logic. Higher-order logics are distinguished by the fact that one can
only quantify over functions and relations (second-order logic), and/or functions of functions (third-
order logic) etc. Higher-order logics originate in research into the foundations of mathematics
(Church[1940]), but the insight that higher-order logic is useful specifying and verifying hardware is
attributed to K. Hanna; in Hanna and Daeche[1986] Hanna and Daeche argue the appropriateness of
higher-order logic for describing hardware at a very low level of abstraction: circuit timing issues can be
addressed within their model for example. Hanna’s work (collectively known as the VERITAS project)
includes a theorem-prover described in Hanna and Daeche[1984].

Using higher-order logics to specify and verify hardware at a higher level of abstraction is the
work of M. Gordon and his colleagues at the University of Cambridge. Gordon argues the case for
higher-order logic in Gordon[1986]), and its use is exemplified in Joyce[1987] and Cohn[1987] which
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~ describe the formal verification of microprocessors. Gordon’s work (collectively known as the HOL
project) includes an impressive interactive theorem-prover based on LCF and its metalanguage ML.
(LCF and ML are due to R. Milner, but these languages have evolved many times before being incor-
porated in HOL; see Gordon[1987] for a short history.)

Work Based on Temporal Logic. A temporal logic is a formal system for reasoning about the
occurrence of events in time, and as such it is a natural choice of formalism for hardware specification
and verification. The earliest example of using temporal logic for this purpose is apparently Boch-
mann[1980] (published as Bochmann[1982]). Another early example is Malachi and Owicki[1981] in
which temporal logic is used to formalise Seitz’s so-called ‘weak conditions’ for composing asynchro-
nous circuitry (see Seitz[1980]).

Mishra and Clarke[1983] describes using a kind of temporal logic called Computation Tree Logic
(CTL) in the automatic verification of asynchronous circuits. The basic idea is that from a circuit one can
abstract a state transition graph comprising the states that the circuit can be in, and the transitions
between these states that the circuit admits. The truth or falsity of a formula in CTL (one that asserts the
circuit’s correctness in particular) is determined relative to a state transition graph and this process can
be automated via a program called a ‘model-checker’. This work is notable for the fact that the model-

checker is very efficient in the sense that it is linear in the size of the formula being checked and the
number of states in the state transition graph.

Other notable work in this area is Moskowski[1983] which describes the use of Interval Temporal
Logic (ITL) to reason about hardware, We are not aware of a proof-checker for ITL, although we note

that Moskowski[1986] describes the use of ITL as a programming language (TEMPURA), and thus
hardware specified in (a subset of) ITL can be executed (simulated).

Other Work. As pointed out in Camilleri, Gordon, and Melham[1986), there are dangers involved in
using a logic that is based on a circuit model that is too inaccurate: the authors give an example of a cir-
cuit that will not work (reliably) in practice, but that can nonetheless be formally verified. The problem
here (noted by the authors) is that in the model it is assumed that values (voltages) in the circuit are
well-defined zeros and ones, whereas in practice there is a range of voltages to be found in an electrical
circuit, An early attempt to model this fact 1s Bryant[1984] in which transistors can ‘hold’ zero, one, or
‘X’, the latter denoting an intermediate voltage not corresponding to zero or to one. Bryant’s work was
originally devised for simulation rather than formal verification purposes; it has been extended and refor-
mulated in Winskel[1987] as a formal multi-valued logic in which low level (electrical) aspects of cir-
cuits can be represented. (We also note that Bryant has continued his work in Bryant[1986].)

Milne[1982] describes a calculus (CIRCAL) in the style of CCS for reasoning about circuits; low
level details can be specified in this calculus (see Milne[1983]) although it is not necessarily limited in
this way: Milne[1986] describes how his calculus can be used in top-down design.

Johnson[1984] uses equations to define circuits; the equations are given a semantics via fixed-
point theory and are incorporated in a language called DAISY that is based on LISP,
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Finally, Sheeran[1983] describes a functional notation based on FP (Backus[1978]) to specify cir-
cuits; algebraic laws are provided for formal reasoning purposes.

1.3 THE DEDEKIND PROJECT.

This thesis is a contribution to a project on methodologies, mathematical theories, and software
tools for synchronous algorithms that is being developed under the supervision of Dr. J. V. Tucker here
in the Department of Computer Studies at the University of Leeds. In particular, this thesis is basic to
the design of a software environment for the design and analysis of synchronous algorithms. The
environment is provisionally called DEDEKIND after Richard Dedekind, inventor of primitive recursive
functions (see Dedekind[1888]). In this section we will sketch this project, describe existing software
tools and mention others that will be included later. Note that this is not an ad hoc list of programs: each
tool is included only on the basis of a clear cut mathematical idea.

As we remarked earlier, PR and FPIT can both be viewed as specification languages. Under
. current plans DEDEKIND will include two languages: PRESS (for Primitive Recursive Synchronous
Systems) based on PR, and CARESS (for Concurrent Assignment Representation of Synchronous
Systems) based on FPIT. DEDEKIND has two notations because PR, as a language of function
definitions, leads to specifications that are suitable for mathematical reasoning and verification; whilst
FPIT, as an imperative language, is suitable for programming. Indeed, it is in the spirit of programming
that CARESS is being developed. CARESS has been implemented in C on a VAX 11/780 by our col-
league A. R. Martin. Martin and Tucker[1987] describes the practical use of CARESS and its associated
preprocessors for describing synchronous algorithms.

As we remarked earlier, PR can be compiled into the language FPIT to provide simulations of syn-
chronous algorithms. The proof that PR and FPIT are computationally equivalent underwrites the idea
that we can flip between PR- and FPIT-representations of a synchronous algorithm at will. A prototype
compiler from PR to FPIT has been implemented by Martin but a compiler from FPIT back to PR awaits
realisation.,

Another feature of our mathematical research that has practical implications is our account of
algorithm complexity or performance. The length of computation function A, (see Section 1.1) is
‘syntax-directed’: it is possible to compile a PR scheme « into a program which computes A, () (a func-
tion from input data into time) on any input data. Indeed, the same will done for FPIT programs; it will
be interesting to empirically compare the performance of equivalent PR- and FPIT-specifications of the
same algorithm (given that the compilers from PR to FPIT and from FPIT to PR are both formally per-
formance preserving).

Finally, our account of top-down design in Chapter 8 is a first step towards an enhanced (struc-
tured) version of PR for expressing PR specifications of hierarchically structured synchronous algo-
rithms: the mathematics of that chapter supports the idea that algorithms specified in such a notation can
be compiled back into PR thus providing a simulation at any level of abstraction (given the equivalence
of PR and FPIT).
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There is other ongoing theoretical and experimental research worth noting for completeness.

A graph-theoretic model of synchronous computation has been developed by our colleague K.
Meinke (see Meinke[1987]). Meinke’s work is inspired by the fact that people often describe a synchro-
nous algorithm by means of an informal ‘picture’ of the algorithm; these pictures can be formalised
using (directed) graphs, and computation by such graphs is the basic subject of Meinke’s work, Pictorial
representations of a synchronous algorithm are often helpful for explaining the structure and data flows
involved: it is possible that DEDEKIND will have a third autonomous notation for specifying synchro-
nous algorithms, one based on Meinke’s model that reflects architectural concerns. Indeed, pictorial
- representations give the designer some intuition for the area required by a synchronous algorithm. One
can draw a ‘floorplan’ of a PR scheme in a way that is reminiscent of uFP (Sheeran[1983]). Our col-
league S. M. Eker has investigated floorplanning from PR schema as part of his undergraduate studies

(Eker[1986])).

The verification of synchronous algorithms is further developed with respect to-special-purpose
hardware for graphics and signal-processing devices. A basic theme is proofs of correctness of algo-
rithms that have been developed or derived by step-wise refinement. In Eker and Tucker[1987] a study
of the verification of incremental line-drawing algorithms is undertaken using PR as the primary
specification tool. This study involves the derivation of Bresenham's algorithm, by geometrical transfor-
mations and program transformations, and direct proofs in the style of Chapters 4 and §. Our colleague
K. M. Hobley is studying the relationships between correctness proofs that arise in the design, by step-
wise refinement, of a digital correlator specified in Harman and Tucker[1987] (see below). This
research, like that of Chapters 4 and 5, is prerequisite to attacking formal and mechanical verification.
Our colleague C. A. Jervis is currently working (Jervis[1988]) on Hoare logics for languages that closely

resemble FPIT. Possible future work on proof systems and logical languages for PR and FPIT is dis-
cussed in Chapter 9.

Finally, language-independent theories of specification are being investigated by our colleague N.
A. Harman. Harman and Tucker[1987] provides a taxonomy of formal specifications and mathematical
methodologies encountered in the incremental design of a digital correlator, Harman has also studied
counters and microprocessors (including the VIPER microprocessor; see Cullyer[1987]). The simultane-
ous primitive recursive functions on an abstract data type are also used in analysing specifications. Ulti-

mately this work will be incorporated into DEDEKIND: indeed software tools for executing
specifications are already being developed by A. R. Martin,
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CHAPTER 2
SYNCHRONOUS ALGORITHMS

In this chapter we will discuss the concept of a synchronous algorithm and identify issues central
to synchronous computation in general.

In Section 2.1 we will describe informally, and in general terms, 2 model of synchronous computa-
tion which we call synchronous networks. These networks comprise a collection of modules which are
connected together by communication links that we call channels; the networks are synchronous in the
sense that computation by and communication between modules is synchronised with respect to an expli-
citly defined clock.

In Section 2.2 we show how synchronous algorithms can process streams of data, and discuss the

correctness of algorithms with respect to certain specifications. These specifications define important
characteristics of algorithms such as initialisation time and period.

In Section 2.3 we investigate two synchronous sorting algorithms as case studies.

In Section 2.4 we take our first steps towards the formal specification of a synchronous algorithm:
we show how from the communication structure of a synchronous network, and from functional
specifications of the network’s modules, we can systematically construct functional specifications of the
complete network.

In Section 2.5 we outline the principal objectives of this thesis. In essence, we seek a theory of
synchronous computation which has regard for the formal specification, verification, simulation, and
hierarchical design of a synchronous algorithm.,

2.1 SYNCHRONOUS NETWORKS.

A synchronous algorithm is a parallel algorithm over a set A that is described as a network of
modules which are synchronised by means of a clock and which communicate via interconnecting chan-
nels. The reader can look ahead to Figures 2.1, 2.5, and 2.8 for examples of the kind of network we have
in mind. The networks comprise modules, channels, sources, and sinks, which we will now describe in

turn.

We imagine a module to be an atomic computational device comprising a store and a processor:
the store is capable of holding a single datum from the set A, and the processor is capable of computing
some total single-valued function defined over A. In a figure, a module is typically represented by:
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A=) —

Of course, the arrows in this and subsequent figures represent the channels that are the means by which
data is passed from module to module.

The above figure depicts a module m, which is behaviourally specified by the map f,, :A* —>A.
This map serves to specify m’s behaviour in the following way:

Initially, we imagine m’s store to be holding some value a € A which m is attempting to pro-
pagate along its output channel; simultaneously, m is expecting input to arrive on its input channels. (In
this situation we will say ‘m is ready to compute, holding value a’.) Subsequently, when some vector
(@y,...,a,) of input data is made available to m on its input channels (one datum per channel), the
module performs a sequence of actions which we call a step. A step comprises reading the current input
whilst simultaneously propagating the value held by m’s store along its output channel; once the input
(ay,....a,) has been read, m then computes the value f,(a;,...a,) which is placed in m’s store,
overwriting the previous value; thereafter m is ready to compute, holding value f,(ay...., a,).

A network’s channels we imagine to be unidirectional communication links between the
network’s modules. We will assume the channels have bandwidth 1; that is, a single channel may only
carry a single daum a € A (and not, for example, a vector (ay,...,a,) € A"). Thus a module specified by

an n-ary function has n input channels. Additionally, we allow channels to branch (finitely) as for
example:

with the intention that a datum on a branching channel is reproduced on each branch; however, we do
not allow channels to merge together as for example:

The remaining constituents of a network to be described are the sources and the sinks. Intuitively,
sources and sinks are the only points at which data held in the network is visible to an external observer.
A source, or input module, is typically represented in our figures by:
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@——

Sources supply data to the network and are the only points at which a datum may enter the network. A
sink, or output module, is typically represented by:

The purpose of a sink is merely to identify which of the network’s channels are regarded as outputs.
Note that since channels can branch, one source can supply many modules (with the same input data),
but since channels may not merge together, one sink can only have input from one module; in other
words, there is a unique module which supplies any given sink with output data.

Example. Consider the network N of Figure 2.1. N is a network depicting a synchronous algorithm
over the set N={0,1,2,...} of natural numbers. N has source In, sink Qut, and N involves modules
which compute the natural number operations: successor (s ); predecessor (p); addition (+), and multipli-
cation (X). Additionally, N has six distinct channels, three of which branch into two.

Oar=O

Figure 2.1 - The network N.

We can now describe what is ‘synchronous’ about a synchronous network or algorithm.

Let N be an n-source network over data set A . Initially, we imagine N ’s sources to be (instantane-

ously) supplying (a1.-...d,) € A" to the network, and we imagine each module m of N to be ready to
compute, holding some value x =x,, € A; in this situation we say N is initialised.

At the instant that N is initialised, every module is being supplied input at precisely a time when
each expects or requires input; in this way every module starts to perform its first step simultaneously.
Suppose that the time taken, according to some clock C, for every module to perform any step is less
than or equal to some fixed constant T>0. Intuitively, it follows from this assumption that since the
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modules start a step simultaneously with respect to C, they can be made to end the step simultaneously
too. Thus the modules of a network can be synchronised: at every step, each module supplies data to its
neighbours just as the neighbours require input. Furthermore, notice that when the modules are syn-
chronised, a module which requires a vector (ay,...,a,) of input data receives each a; simultaneously for

i=1,.,n.

Before we consider an example, it is worth further considering the implications of our ‘constant
time’ hypothesis above.

Suppose every module performs each step in time at most T; then the modules are synchronised
initially (that is at time O with respect to C), and then at times 7,27,37,.... We can normalise T to unity

(that is, take T=1) and our hypothesis, after normalisation, becomes a performance abstraction that
defines a new virtual clock T measuring discrete time ¢ =0,1,2,.... Notice that for a specific algorithm
depicted as a network N, the choice of T is dependent on the particular modules that N employs, and
thus T is properly Ty, and hence T is T ; for this reason we refer to T as the algorithm’s clock,

As we have explained it, the idea behind a functional specification f,, :A® —>A of a module m is
that if the input to m at a given time ¢ is a =(ay,....a,), then f,,(a) is the value held by m at time ¢+1;
such a module is autonomous with respect to the clock T since the value produced by a module is
independent of the time ¢. Later, we will see examples of modules that are nonautonomous with respect
to T; accordingly, a nonautonomous module m has a functional specification of the form
fm:TXA® —>A when m has n input channels. (Nonautonomous modules will not have an explicit
(extra) input channel to carry the time ¢; the current time we imagine to be globally available to all
modules.) Similar to an autonomous module specification, the intention behind a nonautonomous
specification f,, is that f,, (¢,a) denotes the value held by m on completion of a step which began at time

t (at which time the input a =(a;,..., a,) was available to the module); that is, f,, (¢,a) denotes the value
held by m at time #+1.

Example. Let us reconsider the network N of Figure 2.1. As we have explained above, if we assume

each of the network’s modules to perform a step in unit time, then we obtain a clock T =Ty, where each
t € T is a time point at which the modules are synchronised.

The network N is intended to compute or implement the function f : N—>IN defined by
f(n)=(n=1)+(n+1)+(n-1)x(n+1)
To see how N computes f (n) for any argument n € IN, suppose that the source supplies n to the net-
work; for simplicity we imagine that N’s source constantly supplies n to the network for ¢ =0,1,2,....
Also suppose that at ¢ =0 the ith module holds some x; € N for i =1,...,5. Then we may tabulate the

value held by the i th module at time ¢ fori =1,...,5 and ¢ =0,..., 3 as in Table 2.2 (For ¢t 23 the system 1S
stable in the sense that no new values are produced.)
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x3Hxy
(r=11+(n+1) (n-1x(n+1) X1+X 2a+X 1 X X9

-H (a-D+n+1) | (a-Dx@a+l) | (a=1)}n+1)
Hn-1)x (2 +1)

Table 2.2 - Tabulation of the network N in operation on a fixed input.

We regard the value held by mgs at a time ¢ to be the network’s output at time ¢ (since mg is the
only module connected to a sink). Clearly, network output is dependent on the time ¢, the input to the
network 2, and the vector of initial internal values x =(x,...,xs). We can formally specify the network’s
output as a function of time and data in the following way: let fy : T X IN X IN°~>NN be defined by

Xe if t=0
Xq+x, if t=1

In(tnx) = X+xo+xXxy if t=2 ()
f(n) if £ 23

foreacht € T, n € N, and x = (xy,...,x5) € N3,

The network achieves its purpose in the sense that if n is supplied to the network as input, then
f (n) eventually emerges as output. To be more precise, f (n) emerges after three steps; that is, with
respect to the virtual clock defined by N, the computation takes three time units.

It is also important to realise that because of the network’s synchronous operation, the value held
by a module at a time ¢+1 1s always completely determined by the module’s specification and the values
held by neighbouring modules at time 7. N

The preceding example serves to illustrate the important idea that synchronous networks can be
formalised via functions of time, input data, and initial values; indeed this idea is basic to this thesis. In
Section 2.4 we will explain how to define f (along with other functional specifications) for an arbitrary
network N: if N is an n-source, k-module, m-sink, synchronous network over A, then this f will have
functionality fy : T XA”® XA* —>A™; for each n-tuple of (constantly supplied) input data @ and k-tuple
initial values x, *fy(¢,a,x)" will denote the output of N at time ¢.

Unspecified Values. Observe that in the preceding example, for the first three time cycles (¢ =0,1,2) the
network does not produce any meaningful output; during this time the initial internal values are being
flushed out of the network. Said differently, the network has an initialisation phase (of three cycles).
Intuitively, as users of the network, we are not interested in the network’s output during the initialisation
phase; having entered an input » we only want to know if and when f (n) appears as output. Further-
more, specification of the network’s output during the initialisation phase clutters the formal
specification of the network’s output (1) with irrelevant detail making it harder to read and understand.
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We will introduce the symbol ‘z’ to denote a value in which we are not interested. Using this sym-
bol the network specification (1) can be rephrased more succinctly in the following way:

u if 0t <3 \
SNGRX)=9 rny ife23 @

Introduction of the symbol u reflects methodological concerns: we read ‘u’ as ‘an unspecified
value® and this makes a network specification easier to read and thus the intended purpose of the network
is more readily determined. For example, (2) reads: ‘for each time ¢, input n, and vector of initial values
x, the output of the network is unspecified for the first three cycles, f (n) otherwise’; clearly, this is more
intelligible than the previous specification (1). For the same reasons we will also use « in tabulations of
network behaviour; for example, Table 2.3 is Table 2.2 but with u replacing any entry in the table in

which we are not interested; again this clarifies the behaviour of the network considerably.

s
s
o w
2 | A=l | adl | =) | -l | W

Table 2.3 - Retabulation of the network N using the symbol u.

Note that since we are ultimately concerned with the formal specification of synchronous algo-
rithms, the formal status of ‘u’ is at issue: what exactly is u ? We will return to this question at the end of
the next section. (For the time being, the reader should regard u as abbreviating ‘some function of time

and initial internal values, but not input data’; the conscientious reader may care to verify that every
occurrence of u has this property.)

2.2 STREAM PROCESSING AND CORRECTNESS SPECIFICATIONS.

So far we have only considered synchronous computation on a single input which the sources con-
tinuously supplied to the network for 1 =0,1,2,.... What happens when the data supplied by the sources
varies with time?

We have seen how a synchronous algorithm defines a clock T ={0,1,2,...} where eacht e T is a
time-point at which the modules of the underlying network are synchronised. In particular, we imagine a
module connected to a source to require an input at these times (and only these). Thus, if we can contrive
for the source to supply data to the network at times ¢ € T (only) then the action of reading in input will
be synchronised with the synchronised computations of the network. Moreover, it is intuitively clear

from synchronous operation of a network that each time ¢ € T is a time at which (new) output is avail-
able at the sinks.



-23-

To be more precise, let N be an n -source synchronous network over data setA, and letT =T),. If
we now define an (n-ary) streamto be amapa : T —>A", thenforeacht € T,a(t)e A" is an appropri-
ate input for the network; specifically, a(t) is, by definition, scheduled to arrive at an appropriate time.

These remarks suggest that when executed on a stream of input data, the output of a general (n-
source, k-module, m-sink) network can be specified by a funcdon Fy of functionality
Fy:T X[T —>A"]xA* —>A"™; of course, here the idea is that for each input stream a : T —~>A" and
vector x € A® of initial values, ‘Fy(¢,a,x)’ is to denote the output of N at time ¢. We will explain how
to define Fyy for a general network N in Section 2.4; for the time being here is an example:

Example. If we wish to execute (the algonthm depicted by) N of Figure 2.1 on a sequence of inputs
oot -0 it 1S Clear we need not wait for one computation to finish before entering more data: from the
structure of N, and from its synchronous behaviour, we notice that computations may be pipelined with
several (exactly: three) inputs being executed upon simultaneously. Moreover (again from the structure
of N and its synchronous operation), it is clear that we can enter new data at every tick of the clock
without disturbing any computations on previously entered data. Generally, the minimum time interval
between the times at which successive new data may be loaded into a synchronous algorithm is called
the period of the algorithm.

Of course, N has period 1. Thus if we wish to execute N on the sequence ny,n4,..., we can supply
the sequence as a stream n : T —>IN such that n(t)=n, for ¢ =0,1,2,.... In this situation the value held

by the ith module at time ¢ for i =1....,§, for ¢ =0.,...,, 3, and for the general step ¢ 23, is as tabulated in
Table 2.4.

A (
n(1)+1
n(2y+1

a (0)-1
n(l)-1
n(2)-1

(1 (0)=1)+x (0)}+1)
(2 (1)=-1)y+a (1)+1)

(2 (0)-1)x(n (0)+1)
(2 (1)=D)x(a(1)}+1) (2 (0)-2)y+n (0)+1)

Hn (0)-1)x(a (0}+1)

a(t=1-1 | a@-131 | @E=2D+Hr(@-2)+1) | @E=-D-Dx(a@¢-2+1) | (@E@=3)-1Ha@=3)+1)

Hn (t=3)=1)x(a (t=3)+1)

Table 2.4 - Tabulation of the network N in operation on a stream.

Clearly, from the final column of Table 2.4, the output of N is given by the map
Fy :T X[T —>N]xIN’—>N defined by
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u if0st <3
FnURX)= 19 £(n@-3) if£23 )

foreacht € T,n:T—>N, andx € N°, 0

2.2.1 Stream Processing.

We have suggested that the output of a general network N can be defined by a map
Fy:TX[T—A"]xA¥—A™
An alternative idea is to use a function
Gy :[T—A"]1 XA —>[T —>A"]

with the intention that for each a : T —>A" and x € A*, Gy (a,x) is the stream of output data generated
by e and x. Although we have yet to say what ‘F* actually is for a given network N, it should be clear
that given such a function we can define Gy by

Gy(ax)(t) = Fy(t,a,x) 4)
foreacha :T —>A",xc A, andreT. '

We are suggesting that instead of ‘Fy(¢,a,x)’ we write ‘Gy(a,x)(t)’ for the output at time ¢ given
input @ and initial values x. Mathematically, the functions Fy, and Gy are very similar: essentially, the
only difference is the order in which the arguments are supplied. (Gy is actually called the curried form
of Fy.) From a methodological viewpoint however, Gy, as a mapping from streams (and initial values)
into streams, is a more pleasing form of specification since it is natural to think of a synchronous algo-
rithm as a ‘black box’ that maps input streams to output streams. Indeed, it is natural to specify the

correctness of a synchronous algorithm in terms of functions from streams into streams as we will now
explain.

2.2.2 User Specifications.

Typically, the purpose of an (n-source, m-sink) synchronous network is to evaluate some
f :A*—>A"™ on each element of a sequence a,,ay,a,,... of input data; that is, to compute the sequence

fay).f(ag),f(ay,... It is natural then to represent sequences as streams and to specify the task at
hand as a stream transformation @y, : [T —>A"]—>[T —A"].

For example, given integers A A,21 with A;2A,, consider the stream transformation
Oy : [T —>A"*]—>[T —>A™] where foreach a :T —>A", Oy (a) is the stream defined by
u if0<t <A,
Dy(a)(t) = {f(E("M)) if £ 2,
for each t € T. Clearly, @y asks for an n-source, m-sink synchronous network over A that has initiali-
sation time A, has length of computation A,, computes the function f, and has period 1.

Alternatively, for some A,x2>1, suppose ®y(a)(t) satisfies the following equation for each
a:T—>A" andrteT:

u if 0t <A+ or (¢t=A)mod ®+#0
Dy(a)t) = f(@a(@-m) ift2A+x and (t1-A) mod t=0

Then this @y asks for a network that has initialisation time A, has length of computation 7, computes the
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function f, and has period x.
Both of the previous specifications are instances of the following more general specification:

2.2.3 Definition.

Let N be an n-source, m-sink, synchronous network over data set A with clock T=T,,. Also let
R :T—>B be any predicate, and let 6:T—>T and f :A® —>A™ be any functions. We say
Oy : [T —>A"]—>[T—>A"] is a user specification of N if for each a:T—>A" and each teT
&y (a)(t) satisfies the following equation:
~|u if ~R(t)
v@XD =1 r @@ iR )
O

A user specification of a network is so called because it is often easy for a user of the network to
read off what input/output characteristics the network has, irrespective of internal structure. In the gen-
eral form (5) the predicate R (the ready condition) tells the user when output is ready, and when this is
s0, the function o (the input schedule) tells the user which input gave rise to the current output. |

(We expect R to have the property that there is at least one ¢ € T such that R (¢) holds; otherwise
N never produces any (meaningful) output. Similarly, we expect o to have the property that whenever
¢ € T is such that R (t) holds, &(¢) <t: the case &(t )=t is unrealistic since if this is true fora givent € T,
then the specification tells us that f (@ (0(t))=f (a(t)) is computed in zero time. The case 6(t)>? is
equally counterintuitive: if &(¢t)>¢ then the specification says that the network’s outiaut at time ¢ 1s
dependent on future input! Whilst we will not rule out such ‘unreasonable’ properties of R and O, they
will never arise in this thesis.)

There are two other points about Definition 2.2.3 that are worth noting. First, whilst the intention
and intuition behind (5) are quite clear, the above definition is not entirely mathematically ngorous
because of the unspecified value symbol ‘u’. To circumvent this problem, whenever a user specification
is encountered in a context where mathematical rigour is an issue, we will regard the definition of a user
specification to be as given above with exception that (5) is replaced with the following conditon:

R(t) => Dy(a)(t) =f(a(d(1))

This makes a user specification totally rigorous since there is no mention of unspecified values.

Second, notice that a user specification @y is properly subscripted by a network symbol ‘N" since
a user specification is defined over streams over the clock T =Ty of a synchronous network V.

2.2.4 Network Correctness.

We have intimated above that a user specification serves as a correctness specification. How do
we formalise the idea that a network meets a specification?

Suppose N is a synchronous network that is supposed to meet the specification
@y : [T —>A*]—>[T —>A"]. Then given an input stream @ : T —>A", the cutput of N at time ¢ must
be ®y (a)(t). However, we have said above that the output of a synchronous network N' can be defined
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by a function Gy : [T —>A"] xA¥ —>[T —>A™] with Gy (a,x)(t) denoting the output at time ¢, Note
that Gy depends on initial values whereas @y does not. Clearly, one way of expressing the correctness
of N is to say that N meets the specification ®y if there is some vector x € A* of initial values such that
Gx(a,x)=®y(a) for all input streams a : T —>A"; that is if
(Jx e A*XWa:T—>A*XYt€T) (Gylax)t)=dy(a)t))

However, from a methodological perspective, it is a poor idea for an algorithm’s cormrectness to be
dependent on specific initial values, since in fabricating or implementing the algorithm it may be difficult
to guarantee that initial values will always be what the algorithm needs to function correctly. For this
reason we will say that N meets @y if G, satisfies the stronger condition:

(VxeA*XVa:T—A")(VteT) (Gylax)t)=Oy@)t))
or, given our remarks concerning unspecified values above, if
(VxeA*XVa:T—>A")XVteT) (R(t)=>Gy(a,x)t)=Dy(@)t))
where R is @y ’s ready condition.

We note that the above correctness conditions could be phrased solely in terms of the function Fy,
given that Gy is defined in terms of Fy (by (4)).

2.3 SORTING AS A CASE STUDY.

In this section we shall introduce two synchronous algorithms that sort n elements from some set

D that is linearly ordered by some relation <p. These algorithms, as synchronous networks, meet user
specifications of the general form ’

Oy : [T —D*)—>[T —D"]
where for each g : T —>D",
u if ~R(¢)
Pn(@)t) = {son@_(&r))) if R (1)
Here sort : D* —>D*" is the map defined by

Sort(xl....,xn) = (xx(l).....xt(u)) 'l-“—;' xﬂl) SD ° e SD xt(ll)
where 1t is a permutationof { 1....,n }.

We will show by means of examples that both of our algorithms are sorters, and, indeed, that with
respect to the clocks defined by these algorithms, both sort n elements in (less than) n+1 time units.

We will first describe the algorithms informally, and then show how the algorithms are synchro-
nous networks in the sense of Section 2.1; to do this we must show how the algorithm’s modules can be

formally specified (by single valued functions on D). Also note that for simplicity we will describe the

operation of the algorithms on a single fixed input; we will explain how to modify the algorithms so that
they sort on streams of data later.

2.3.1 The OE Sorter.
The first sorting algorithm is called Odd-Even Transposition Sort, or ‘OE’ for short.

For sorting n elements the OE sorter is as depicted in Figure 2.5; it comprises an array of n
modules m;,...,m,, where each module »; may hold one datum from D, and may communicate only
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with its neighbouring modules as indicated by the connecting channels in the figure; in addition OE
involves a collection {In,,....In,} of n sources which supply the input to the array, and a collection
{Out,,...,Out, } of n sinks which receive output from the array.

ONOBONBONOBONO
€)== ) rvvvin () ) e () i () e )
CHCOMCHONOESEO

Figure 2.5 - The OE sorter.

Initially, that is, at ¢t =0, we assume each module m; to hold some x;€ D for i=1,..,n.
Thereafter, the operation of OE proceeds in steps which determine OE’s clock measuring discrete time
t=0,1,2,..:

Loading (beginning at £ =0, completed by ¢ =1): Each module m; reads a datum (namely a; when the
input to the array is @ =(ay,....a,) € D") from source In; in parallel for i =1,....n.

The operation of each module now depends on time, its action alternating between even and odd
time cycles; without loss of generality we will assume that » is even.

Odd steps (beginning at t =2k+1, completed by ¢ =2k+2 for k=0,1,2,...): Each of the constituent
modules in the module pairs (m; m;4,) for i =1,3,5,...,n—1 exchanges (in parallel) values with the other
member of the pair (if necessary) such that on completion of the step m; holds the minimum of the two
values and m;,; holds the maximum.

Even steps (beginning at ¢t =2k+2, completed by ¢ =2k+3 for k£ =0,1,2,...): This step is similar to an
odd-step, except that the module pairs are (m; m;,,) for i =2,4,6,..n=2. During this step m; and m, do
nothing; they retain their current values for the duration of the step.

Example, Let D =IN. Suppose that n =6 and that the » sinks collectively suppl} the vector (6,5,4,3,2,1)
to the array for sorting. We have tabulated the value held by module m; at time ¢t for i =1....,n and
t =0.....7 in Table 2.6. Notice the data is sorted in n+1 steps as claimed.
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0
1
2
3
4
5
6
7
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Table 2.6 - Tabulation of the OE network in operation;
illustrated for n =6 and input (6,5,4,3,2,1).

»

It should be clear from our informal description that OE satisfies the structural constraints of a
synchronous network except for one minor detail:

As we have depicted them in Figure 2.5, OE’s modules appear to have more than one output chan-
nel (which we have proscribed), but we have only so depicted them to make the figure plain. In fact,
since each output channel always carries the value currently held by the module, these channels are con-
ceptually identified.

2.3.2 Module Specification for OE.

To see OE as a synchronous network in the sense of Section 2.1, it remains for us to show how

OE’s modules may be independenty functionally specified, that is, in isolation from the network. what
are the module specifications f; = f,,,' fori=1....,n?

For simplicity, let us analyse module m; for i even, i #n. (Analysis of the other cases follows
easily from this.)

From our informal description of OE, it is clear that in general the value held by m; depends upon
the time ¢, and the following four values from the set D : a, say, the value supplied from above;! and 7,

say, the values supplied from the left and the right respectively, and v, say, the value currently held by
the module. Consider Figure 2.7 which illustrates this situation: we see m; holding value v and about to

receive a, I, and r. Note that since we regard the module’s three output channels as identified, each of
these channels is shown supplying the same value v (to neighbouring modules). Since m; depends on
time and four data inputs it is appropriate for f; to have the following functionality:

fi:TxD*—>D
Thus m; is a nonautonomous module and the expression ‘f;(t,a,l,v,r)’ denotes the value held by m; at
time ¢+1.
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By examining the informal description of the behaviour of OE, we can write down the value held
by m. at time ¢+1 by considering the three cases: t+1=1 (or t=0); ¢+1 even (or ¢ odd), and ¢+1 odd,

#1 (ort even, #0).

If ¢ =6. then m; loads in the value supplied to it (from above) by In,; in the expression
‘f:(0,a,l,v,r)’ (which denotes the value held by m; at time ¢+1), this value is ‘a’ and so it is appropriate

to define
f:i(0,a,l,v,r)y=a

If ¢ is odd, then m; compares the value held by the module on its left (m;_;) at time ¢ with its own
value and retains the maximum; in the expression *f;(¢t,a,l,v,r)’ these values are denoted by ‘I’ and ‘v’
respectively, and so we define
fi(t,alv,r)=max{l,v}

Similarly, if ¢ is even (but nonzero) then m; compares the value held by the module on its right
(m.,,) at time ¢ with its own value and retains the minimum; in the expression °f;(¢,a,l,v,r)’ these
values are denoted by ‘r’ and ‘v’ respectively, and so we define

fi(t,al,vyr)=min{v,r}
Putting these three cases together we obtain:
a if t=0
fit,alyvr)= {max{l.v } if t odd
min{v,r} if ¢t even,#0
foreachte T andal,v,yreD.

In a similar way we can derive the module specifications f; fori =1,...,n. These are:

f1:TxD3—D
where foreachte T,anda,v,r €D,
a if t=0
fi(ta,v,r)= {min{v,r} if t odd
v if ¢t even,#0

Figure 2.7 - A non-terminal module from the OE network.
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Fori even, i #n,
f;:TXD‘-—-)D
where foreachte T,anda,l,v,r €D, _
a if t=0
f‘(:!ailiv’r)={max{l'v} if ¢t odd
min{v,r } if ¢t even,#0
Fori odd,i #1,
f;:TXD‘——)D
where foreachte T, anda,l,v,r €D,
a if t=0
f;(t,a,l,v,r)= {min{v,r} if ¢t odd
max{l,v } if t even,#0

and,
fo:TXD3*—D
where foreachte T,andal,ve D,
a if t=0
fﬂ(‘!alllv)= {max{l,v} if ¢t odd
14 if t even ,#0

We begin to formalise the OE sorting algorithm by functionally specifying the algorithm’s
modules. Soon we will formalise the complete algorithm by using these module specifications to obtain a
functional specification of the underlying network.

2.3.3 The EOE Sorter.
The second of our two sorters is called Expanded Odd-Even Sort, or ‘EQE’ for short.

For sorting n elements the EOE sorter is as depicted in Figure 2.8; it comprises an array of n+1

columns of # modules m; ; fori =1...,n and j =0....,n, wherein m; ; denotes the i th module on the jth
column. Similar to OE, each module holds a single datum and communicates only with neighbouring

modules as indicated in the figure, Additionally, EOE involves n sources and n sinks whose purpose is
identical to those of OE.

Initially, that is, at ¢ =0, we imagine each module m; ; to hold some x; ; € D fori =1,..,n and for
j =0.....n. Thereafter, operation of EOE proceeds in steps determining EOE’s clock:

Every m; ; now performs the following general step in parallel for i =1,...,n and for j =0,...,:

General Step: The action that a module m; ; takes is determined according to whether j is zero, odd, or
even.

Case (i): j=0. Each module in column 0 (viz. m; o, for i =1,...,n) reads a datum from its source in
parallel.

Case (ii): j odd. The module m; ; first reads the value held by m; ;_;. Then, if i is even, m; ; exchanges
this value for the value held by m;_; ;. (if necessary), such that on completion of the step m; ; holds the
maximum of these two values. If i is odd then m; ; exchanges its value for the value held by m; 4 ;-1

(again, if necessary), such that on completion of the step m; ; holds the minimum of the two values.
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Figure 2.8 - The EOE sorter illustrated for n =6.
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Case (iii): j even. In this case each m; ; for 1<i <n behaves as in the preceding case (dependent on
whether m; ; is connected to m;_y ;_1 OF m;41 ;1) During this step m, ; and m, ; do nothing.

If we operate a similar (to the case of OE) convention concerning the number of output channels
that EOE’s modules have, then it is clear that EOE satisfies the structural constraints of a synchronous

network.

Example. Similar to the OE example, let D =N and take n =6, and suppose the n sinks collectively
and constantly supply the vector (6,5,4,3,2,1). Then the value held by m; ; at time ¢ is as tabulated in
Table 2.9 fori=1.....n, j =0...,n and for ¢t =0.,...,7. O

2.3.4 Module Specification for EOE.

~ Similar to the OE network, we can find the module specifications f;; of EOE’s modules for
i=1,..,n and j =0.....n by considering what inputs a given module has.

Similar to OE we will introduce names for a module’s (possible) inputs. Let @ denote the value
supplied from the left and above, let ! denote the value supplied from the left, and let b denote the value
supplied from the left and below. By examining EOE’s informal description we arrive at the following
specifications for i =1....,n and for j =0....,n (note that i+j is odd exactly when i -is odd and j is even
or vice versa, and that i +j is even exactly when both i and j are both even or both odd):



Tabulation of the EOE network in operation;

illustrated for n =6 and input (6,5,4,3,2,1).

Table 2.9

f,'_o:D ——>D

l,...,n,

Fori

where foreachl € D,

fiol)=1
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Fori+j odd, i #1, j #0,
f,‘J :Dz—')D

fij(all) = max{arl }

where foreacha,l e D,

Fori+j even, i #n, j #0,
f;J :DZ—B’D

fiy(,b) = min{l,b },

and for i =1 with j even (#0), and i =2 with j odd,
f;J +D —>D

fig)=1

where foreachl,b € D,

where foreachl e D,

2.3.5 Sorting on Streams.

Given a sequence a,,a1,d1,... of vectors from D*, let us explore how OE and EOE can be made to
. SOl't ao,a l,a p Ll in mm'

In the case of OE it should be clear from the informal description of the algorithm there must be a
delay of at least n+1 time cycles between the times at which we load successive input vectors: loading
data any faster than this will overwrite the partially sorted previous input vector. Indeed, in our informal
description of OE, we said that the modules only ever load in data once to circumvent this problem; this
design decision is reflected in the formal module specifications f ,...,f,: for i =1.....n, f;(t,a,..)=4a
only when ¢ =0.

In the case of EOE however, it 1s clear that we can load in new data with every tick of the clock
without disturoing the computations on previously entered data. To be more precise, let
a=(ayn.rG,):T—>D" with the intention that for i =1.....n a;:T—>D is the input stream supplied
to EOE by the ith source. It is intuitively clear that EOE meets the user specification
&gop 2 [T —>D*]1—>[T —>D"] where

_ | u if 0<t <n+l
Peoe(@)(*) = sort(a(t-n-1)) if t2n+l
for each a :T—>D" and ¢t € T. Thus, as ¢ increases from ¢ =n+1, the output from EOE is sort(a (0)),
sort(a(1)), sort(a(2)),...; that is, EOE sorts every input supplied to it.

(6)

Now let us return to OE. Of course, it is impossible for OE to sort every input supplied as a stream
a :T —>D* since at best we can only execute OE on every (n+1)th input supplied by the sources: intui-
tively, we load a (0) at time ¢ =0 (so that 1t is held by OE’s modules by time ¢ =1), and by time ¢ =n+1
a (0) has been sorted so we can begin to load the next input vector at this time (so that it is held by OE’s
modules by time ¢ =n+2). However, at ¢ =n+1 the input to OE is a (n+1); the inputs a(1),...,a(n) have
been lost or disregarded. Similarly, since a(n+1) has been loaded by time ¢ =n+2 we anticipate that
a(n+1) will be sorted by time ¢ =2n+2 (since 2n+2=(n+1(n+1)), but again a(n+2)....,a(2n+1) will
have been disregarded.

Instead of trying to sort every input, let us focus on the problem of redefining OE so that it sorts
every (n+1)th input; that is, the modified OE algorithm is to implement the user specification
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Oor [T —>D"*]—>[T —>D"] where foreacha :T—>D" andeacht e T,

u ift=0o0rt mod (n+1)#0
Poe(a)(*) = {sort@(t—n-l)) if ¢ #0 and t mod (n+1)=0 ()
Let us call OE ‘ready at time ¢’ if ¢ is such that the next n+1 steps to be executed by OE are, in
order, a loading step, and then, an odd-step followed by an even-step n/2 times. Now, whilst we have
yet to prove that OE actually sorts any given input, let us agree that OE has the following property: if OE
is ready at any time ¢ (when the input to OE is a(¢) of course), then OE's modules collectively hold

sort(a(t)) at time ¢+n+1. Thus without modificaton OE is ready only once, at ¢ =0, and by hypothesis
OE holds sort(a(0)) att=n+1.

Our strategy for making OE sort every (n+1)th input is to modify the algorithm in such a way that
it is ready at time ¢ iff ¢ is of the form t =m(n+1) for some integer m 20; if we can do this, then for ¢ of
the form m(n+l) we have by the agreed hypothesis that OE holds sort(a(m(n+1))) at
t=m(n+1)+{(n+1)=(m+1)}n+1) at which tme OE is again ready since (m+1)(n+1)mod (n+1)=0.
Furthermore, if ¢t =(m+1)(n+1) for some m 20, then ¢ £0 and ¢ mod (n+1)=0. In other words OE will
meet the specification @,y as required.

Consider what happens if we replace the loading clause in OE's informal description (Section
2.3.1) with the following new clause (but keeping the odd- and even-step clauses the same):

Loading (beginning at t =m(n+1) and completed by time ¢t =m (n+1) for m =0,1,2,...): Each module m;
reads a datum (namely a; when the input to the array is a =(a,,...,a,) € D") from source In; in parallel
fori=1,...,n.

With the modified loading clause, OE now fulfills the first requirement of being ready when ¢ is of
the form t =m(n+1) since the next step will be a loading step. However, the new loading clause is not
enough to guarantee that OE will be ready at times ¢ of the form ¢ =m (n+1): we are assuming that n is
even, and so for m odd, m(n+1) is also odd, and thus the first step executed after the loading step begins
at t =m(n+1)3+1 which is even; thus OE will perform an even-step after the loading step, and so OE is
not ready at time m(n+1); presumably OE will not sort the input loaded at time ¢t =m (n+1), namely
a(m(n+1)). However, observe that when ¢ is of the form t =m(n+1)+2k+1 for k =0,...,2/2-1 (which
is when we want OE to begin performing odd-steps), ¢ may not be odd but ¢ defined by ¢* =t mod (n+1)
certainly is. Similarly, when when ¢ is of the form ¢ =m(n+1)+2k for k =1,..., n/2 (which is when we
want OE to begin performing even-steps), whilst ¢ may not even, ¢ again defined by ¢’ =t mod (n+1)
certainly 1s. Thus, if we stipulate that an odd-step begins when ¢ mod (n+1) is odd, and that even-steps
begin when ¢ mod (n+1) is even, then OE will be ready precisely when ¢t mod (n+1)=0, that is when ¢ is
of the form £ =m (n+1) for some m 20, and thus OE will meet &, as agreed above.

The full revised OE algorithm is as follows:

Loading (beginning whenever ¢ mod (r+1) is odd and completed by ¢ =¢+1): Each module m; reads a

datum (namely a; when the input to the array is a =(a;,...,a,) € D*) from source In; in parallel for
I=1,..,1.
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0dd steps (beginning whenever ¢t mod (n +1)Lis odd and completed by time #+1): Each of the constituent
modules in the module pairs (m, m,,,) for i =1,3,5,...,n~1 exchanges (in parallel) values with the other
member of the pair (if necessary) such that on completion of the step m; holds the minimum of the two
values and m;,; holds the maximum.

Even steps (beginning whenever ¢ mod (n+1) is even but nonzero and completed by time ¢+1): This step
is similar to the Odd-step, except that the module pairs are (m;,m; ) for i =24,6,...n=2. During this step
m, and m, do nothing; they retain their current values for the duration of the step.

2.3.6 Respecification of OE.

On examining the revised OE algorithm above, it is not difficult to see that by using the same prin-
cipal of module specification that we have previously used, we obtain the following revised module
specifications f 1,e.s f "

fﬁTXDs—-)-D
where foreachte T,anda,v,yr €D,

a if t mod (n+1)=0

fit.aw,r)= {min{v,r } if t mod (n+1) odd

v if t mod (n+1) even,#0
Fori even, i #n,

fi:TxD*—>D
where foreachteT,anda,l,v,r €D,

a if t mod (n+1)=0

fi(fndnlrv,f)={max{l.\’} if t mod (n+1) odd
min{v,r} if t mod (n+1)even,#0
Fori odd,i#1,

f; :TXD‘——)D

where foreacht e T,anda l,v,r €D, _
a if ¢t mod (n+1)=0

fitalyv,r)= {min{v,r} if t mod (n+1) odd
max{{,v } if ¢t mod (n+1)even,#0

and,
fo:TxD3—>D
where foreacht e T,anda,l,ve D,
a if t mod (n+1)=0
[altsa,ly)= {max{l,v } if ¢t mod (n+1) odd
v if t mod (n+1)even,#0

2.3.7 Comparison of the Algorithms.
How do OE and EOE compare when viewed as competing designs?

We have seen that in terms of the clocks naturally defined by our two algorithms, both OE and
EOE sort in n+1 steps. This observation is based on the hypothesis that each module operates in unit

time. Furthermore, if we assume that each module requires unit area then OE and EOE occupy area
(proportional to) n and n? respectively.

However, it is clear from contrasting the functional specifications of typical OE- and EOE-
modules, that an OE-module is algorithmically more complex than an EOE-module (OE’s modules are
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nonautonomous), and thus unit costs are intuitively not equal (OE’s modules being the more expensive).
Consequently OE and EOE are not directly comparable in terms of length of computation or area. The
difficulty here is that unit costs differ with respect to implicit external time and area metrics.

We can make the difference between OE and EOE explicit by contrasting the user specifications
that (we claim) they meet. The clock in terms of which we write down a user specification of a synchro-
nous network is parameterised by the network; in the case of OE and EQE, these algorithms determine
clocks Top and Tgoe respectively. With respect to these clocks the user specifications (7) and (6) are
properly

Qo : [Tog —>D" )| —>[Tog —>D"}
where foreach @ : T —>D" and ¢t € T,
u if t=0o0r ¢t mod (n+1)#0
Dog(a)(t) = {sort(g(:-n-l)) if t #0 and ¢t mod (n+1)=0
and |
Qeog : (Tgog —>D"* | —>[Tgog —>D"]
where for each @ : Tgop —>D" and t € Tgog,

BL if 0<t <n+l
Peoe@X1) =9 sort(a(e-n-1)) ifr2n+1

respectively.

The algorithms can now be more carefully contrasted with respect to these specifications: it is
apparent from the algorithms’ user specifications that OE and EOE differ as they have different ready
conditions and input schedules. Moreover, whilst we can certainly read off, for example, that both algo-

rithms have length of computation n+1, here we are informed that these times are not comparable since
the user specifications measure these times with explicit reference to different clocks.

2.4 SPECIFYING NETWORK BEHAVIOUR.

We have introduced the idea of a synchronous algorithm in general and we have seen three exam-
ples. We have also seen that the output of a synchronous network can be functionally specified in a
variety of ways: recall the functions fy, Fy, and Gy, and the differences between them. In this section
we will show how from a network’s communication structure, and from specifications of the network’s
modules, we can systematically obtain a function Vi that formalises the way in which we build up a
table of a network N in operation. This Vy is the most important functional specification of network
behaviour for it is from V), that we will derive other functional specifications including fy, Fx, and Gy.

2.4.1 Value Functions.

In order to specify a network’s behaviour over time, first notice that the network will be com-
pletely specified if we can write down the value held by every module at any time ¢. Also observe that

the value held by any module at any time can always be determined from the input to the network, the
values initially held by the network’s modules, and the current time ¢.
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If N has n sources then the input to N is formalised by a stream a =(a;,...,a,):T —>A" (with
the intention that the ith source supplies a;(t) to the network at time ¢). Now suppose that N has
modules m,...,m,. Then any vector x =(xy,....X;) € A* will serve to specify the network’s initial inter-
nal values (with the intention that m; initially holds x;). Now, the value held by each »; ata time ¢ can
always be determined from ¢, a, and x, so let us introduce a function Vi :TX[T—>A*]xA* —A for
i=1,..,k; these functions we call the network’s value functions. Intentionally, ‘V;(t,a,x)’ is read as:
‘the value in the i th module at time ¢ given inputa and initial values x”’.

We can put V;...., V; together as the coordinates of a function
VN = (Vi Vi ): TX [T —>A* ] xAF —A®
which we refer to as the value function for network N. For each te€ T, a :T—>A", and x € A*,

Vy(t,a,x) is the vector Vy(t,a.x)=(V(t,a,X)..... V; (t.a,x)) € Ak that tells us the values held by all the
network’s modules at time ¢.

We define Vy by exploiting the single most important consequence of a network’s synchronous
behaviour: because the network is synchronous, every value in the network at every time is either
specified initially, or is specified in terms of the values held at the previous time step.

Here is an informal two-stage algorithm Which describes how to define Vy,:

The Synchronous Network Specification Algorithm. Let N have n >0 sources Iny,...,In,, and k >0
modules m,...,m;, and for i =1,...,k let n; >0 denote the number of input channels that m; has from
adjacent modules and sources, and let m; be specified by f; =f,,. Alsoleta=(ay....a,):T—>A" and

x=(X{mox)€AL.
Stage 1: define Vy(0,a,x). To define Vy(0,a,x) we must define V;(0,a,x) for i =1....,k. Since x; 1s
intentionally the value held by m; at time ¢ =0, it is appropriate to define

Vi(0,a x) = x;
fori=1...k.
Stage 2: define Vy(t+1,a.,x). To define Vy(t+1,a,x) we must define V;(t+1,a,x) for i =1,....k. There
are two cases to consider:
Case 1: m; is autonomous. If m; is autonomous, then f; :A™—>A. Now notice that the value m; holds
at time ¢+1 is already specified by f; in the sense that if b 1= b, are the values supplied to m; on its
input channels at time ¢ then fi(Dgrees b,,‘) is the value held at time ¢+1. However, for j =1....,n;, each b,

is either the value supplied by some source, in which case b; =a ,(¢) for some p € [1,2], or, b; is the
value supplied by another module (possibly itself), in which case b;=V,(t,a,x) for some g € [1,k].
Accordingly we define V;(¢+1,a ,x) by

Vi(t+l,a.x) = f; (bywniby)

where fmj= l.----nil

UNIVERSITY {IBRARY Y ET™
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a,(t) if the jth inputto m; is from source In,
bj = {Vq(:,g_,.x) if the jth input to m; is from module m,
Case 2: m; is nonautonomous. If m; is nonautonomous, then f; :T XA *—>A, and similar to Case 1 it is
appropriate to define V;(¢t+1,a ,x) by
Vi(t+1,a,x) = f;(¢,by..... b, )

where by...., b, are as described above. 0

There are a number of points arising form the above definition of a network’s value function(s)
that warrant discussion. Before we do so however, we give some examples to familiarise the reader with
the new notation.

2.4.2 Examples.

(1) Let us apply the specification algorithm to the network N of Section 2.1. N has one source and
five modules whose functional specifications f ..., f  have the following functionalities:

fnfz:N—"'N
and

fufofsi NXN—N

Using the communication structure of N (see Figure 2.1) together with specification algorithm we
obtain a value function Vy=(Vy,...,Vs):T X[T —>N]xN3—>N where for each a :T—>N and
x =(X(rX5) € IN°, V;(0,a %) is defined by

Vi(Q.a,x) = x;
fori=1...,5, and
Vi(t+l,a x) = f(a(t))
Va(t+l,a,x) = f 3(a(t))
Vi(t+l,a.x) = f3(V1(1,8,x),Va(t,a,x))
Vat+l,ax) = f (Vi(t,a.x)Va(t,a.x))
Vs(e+l,a,x) = f s(Vi(t,a,x),V ((t,a,%))
In fact, f 4,..., f s were the following functions:
fi(n)=n-1
fa(n)=n+l
falnm)y=n+m
f4nm)=nXm
fs(n.m)=n+m
(Here n and m are natural numbers of course.) Using these definitions the definition of V;(t+1,a,x) for
i =1,..., 5 can be written out as follows:
Vit+l,ax)=a(t) -1
Viit+l,ax)=a(t)+1
Vi(t+l,a,x) =V (t,ax) + V,(t,a,x)
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Vit+l,ax)=V(t,ax) X Vyt,ax)
Vs(""l:_@sx) = VS(I!E'I) + V4(‘!Erx)

(2) Let us apply the specification algorithm to the OE network. OE has n sources and n modules
wflose functional specifications f ..., f, have the following functionalities (see Section 2.3.6):
f1ofa:TXD>*—D
and
[ 200ees ey : T XD*—>D

Using the communication structure of OE (see Figure 2.5) together with the specification algo-
rithm we obtain a value function Vog=(Vi.,V,): T X[T—>D"*]xD*—>D" where for each
a=(aym..a,):T—>D" and x =(xy....,x,) € D", V;(0,a ,x) is defined by

V:(0,a,x) =x;
fori=1,..,n, and

fi(‘:Ei(‘):Vi(‘:ﬂ,x).V.-ﬂ(t,g_,x)) ifi=1
Vit+l,a,x) = { fi(t.a;(t),Vi4(t,a.x),V;(t,a x),V;,1(t,x,a)) if l<i<n
fit,a;(),Vi((t,ax),V;(t,ax)) if i =n

fori=1.,....,n.

Again, we can use the definitions of f 1,..., f, t0 write down the definitions of V;(¢+1,a,x) in full:

a(t) if t mod (n+1)=0
Vit+l,a,x)= 1 min{V(t,a,x),V,(t,ax)} iftmod (n+1)odd
Vi(t,ax) if t mod (n+1) even ,#0
Fori even, i #n,
a;(t) if t mod (n+1)=0

Vi(t+l,a,x) = { max{V;_,(t.ax),V;(t,ax)} iftmod (n+1)odd
min{ V;(t,a x),V; . (t,ax)} ift mod (n+1)even,#0
Fori odd,i#1,
a;(t) if t mod (n+1)=0
Vi(t+l,a,x) = { min{V;(t,.a x),V;, (t.ax)} if t mod (n+1)odd
max{ V;_,(t.ax),V;(t,a,x)} iftmod (n+1)even,#0

and,
a.(t) if ¢t mod (n+1)=0
Vn (t+lrg_rx) = max{ Vn-l(‘ r;a_rx)rvu (f:&,x)} if ¢t mod (n+1) odd
Va(t,ax) if t mod (n+1) even,#0

(3) Let us apply the specification algorithm to the EOE network. EQE has n sources and n+1
columns of n modules (making a total of n(n+1) modules). Each module m; ; is specified by a function
fiy whose functionality is as given below fori =1....,n and for j =0,...,n:
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Fori+j odd,i #1, j #0, and fori+j even,i #n, j #0,
' f;J D —>D

Forotheri and j in theranges 1<i<n and 0Sj <n respectively,
fl‘J :Dz—')D

Now, according to the specification algorithm, Vg is a map
Veoe : T X [T —>D*1x D ()5 pa(atl)

Since we denote a typical module of EOE by m; ; rather than using the notation m; with { in the range
1<i <n(n+1), it will be helpful if we carry the double indexing to typical elements x of D***1); we will
write
X = (Xggeeer Xy o * ol WIS AP SIS 2

rather than x =(x,..., Xy (s41)), and we denote a typical element of x by x; J+ Similarly, the codomain of
Veoe is D***) and so Vg has n(n+1) coordinate functions: these we will denote Vijfori=1,.,n
and j =0,..., n; thus we will write:

Veor = (VI.O-"--Vn.Or .o ’VIJI---rVnJr oo -Vl,u----V.,..):T X[T—-)D"]XD'(’HI)_*D'(“D
(Notice the last n coordinates of Vo correspond to the rightmost column of the EOE network.)

Using the communication structure of EQE (see Figure 2.8) together with the specification algo-
rithm, for each @ :T—>D" and x € D***) we obtain the following definitions of V;(t,ax) for
i=1,..,n and j=0,..,n:

Vi (0ax) = Xi
and fori =1,...,n and j =0,...,n,
fiy(a;(t)) if j=0
[iyVicgjat,@ x)V; j4(tax)) if i+j odd, i=1, j=0
[iiWViju1(t,@x)Vig jo1(t,8,x)) i i+j even, i #n, j+0
fi g Vi j-1(t,a,x)) otherwise

V.'J(""LEJ-’) =

Discussion. Notice how specification ‘by value functions’ leads to compact and yet comprehensible for-
mal definitions of network behaviour.

Also notice that we can calculate with value functions and so prove facts about synchronous algo-
rithms. For example, using the defining equations for Vj in the first example above, we can calculate the
outputof N, V¢(t,a,x), foranyt 23,a :T—>IN,and x € IN?, as follows:

Vs(t,a,x) = Vi(t-1,a,x) + V,(1-1,a,x)
= Vi(t-2,a,x) + Vy(t-2,a,x) + V(t-2,a,x) X Vy(t-2,a,x)
= (a(1-3)-1) + (a(t=3)+1) + (a(t=3)~1) x (a(t-3)}+1)
= f(a(t-3))

Clearly, this calculation is the nub of what must be proved to verify N : see the exercise below.

We will formalise our specification technique and develop a theory of synchronous algorithms by

mathematically classifying value functions. Note the form of the eqilations that define the coordinates
Vi Vi of a value function Vy. Recall the simultaneous primitive recursive definition of f y,..., f3 in
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Section 1.1 (under ‘Chapter 3'). The defining equations for f,....f; are very similar to those for
V,.....Vs. With a little work the definition of Vy,...,V, can be easily seen to be an instance of the

definition of f y.....f3 and so V..., V, are simultaneous primitive recursive functions made from module
specifications. This point is the subject of Section 3.4.

2.4.3 Output Specifications.

In this section we will explain how to define the output specifications Fy and Gy from Vy; it is in
terms of Gy (or Fy) that network correctness is phrased of course (see Section 2.2.4).

Let N be an n-source, k-module synchronous network over data set A ; then
V=V Vi): TX[T —>A*] XAk —>AL
Notice that the value function V) tells us the value held by every module in the network, whereas ulti-
mately we are only interested in the values held by those modules that are connected to sinks (since this
is where network output appears). We can restrict our attention to just these modules as follows. Let N
have m sinks, and for j =1,...,m, leti; be the unique index of the module whose output channel supplies
the jth sink of N. Now let t=mty :A* —>A"™ be defined by

n(a) = (ait.....a;_)
for each @ =(@ ...+ 3} ) € A, Intuitively, when applied to Vy(t,a,x) this t ‘picks out’ the values that are
sent to the sinks at time ¢, and so it is appropriate to define
Fy=(FirFp):TX[T —>A*] XA —>A™

by

Fn(tax)=ny(Vy(t.ax)) (8)
foreachteT,a:T—>A" andx € A*. Notice that for any arguments ¢, a, and x, we now have

Fy(t,a.x) =y (Va(t,a,x)) = Ty (Vy(2,2,x)...., Vi (.8 %)) = (V; (1,8 %)..... V;_(£,2,%))
and so for j =1,...,m we have
Fi(t,a,x) =V, (t,a.x)

That is, the jth coordinate of Fy tells us the output at the jth sink as a function of time, input data, and
initial values. (Intuitively, this definition says that there is zero propagation delay from m; o the jth

sink, or, that the value held by m; can be accessed or read from outside the network.)

As mentioned in Section 2.2.1, the alternative (stream transformation) version of Fy, namely
Gy :[T—A"] xA¥ —>[T —>A™), is readily definable from Fy by defining, for each a : T —>A" and
x € A*, Gy(a,x) to be the stream defined by
Gn(ax)(t) = Fy(t,a.x)
foreachteT.

Exercise. Let @y : [T —>N]—>[T —>N] be defined by

u if 0<t <3
On(@)) = {f(g(:-—:i)) ift23

for eachn :T—>Nandt € T, where f (r)=n"+2n-1 for each n € IN. Prove that the network N of Fig-
ure 2.1 meets this specification in the sense of Section 2.2.4.
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2.4.4 Static Specifications.

The functional specifications that we have defined so far (viz Vyy, Fy, and Gy) are dynamic

specifications in the sense that they specify the behaviour of a network as the input at the sources
changes with the time ¢. Later we will need network specifications that define the behaviour of a net-
work when the input at the sources is held fixed or static throughout the entire execution of the network.

Actually, we have already mentioned one such “static specification’, namely the function fy of Section
2.1: recall that whereas

Fy:TX[T —>A*]xAt—>A"
with ‘Fy (t,a,x)’ denoting the output of a network N at time ¢ given input stream @ and initial values x,
we had
fn:TxXA®xXA*—>A™
with ‘fx(¢t,a,x)’ denoting the output of a network N at time ¢ given constant input a and initial values
x. The function Fy was defined from Vyy by composing Vyy with the function xy that picked out output
values. In this section we will define f) by composing vy, a ‘static version’ of Vy, with ty. Whereas
Vi :TX[T—>A"]1xA* —>At
with ‘Vy(t,a,x)’ denoting the values held in network N at time ¢ given input stream a and initial values
x, this vy will have functionality
vy T XA XAk —>AY
with ‘vy(t,a,x)’ denoting the values held in a network N at time ¢ given constant input a and initial
values x.

Static Value Functions. As usual, let N be a n-source, k-module synchronous network over A. The
function vy, as a vector-valued function, will have coordinate functions vy...., v : T XA® XA*—>A, and

fori=1,...k we want ‘v;(t,a,x)’ to denote the value held by the ith module at time ¢ given static input
a and initial values x. Clearly, the appropriate defining equations are (for { =1...., k):
v;(0,a,x) = x;
and, if m; is autonomous with respect to T =Ty, then
vi(t+l,a,x) = fi(Dgseens bn,)

where f; is the functional specification of m;, »; is the number of inputs to m; from adjacent modules
and sources, and for j =1,..., n;,

a, if the jth input to m; is from source In,
bj = {v, (t,a,x) if the jth inputto m; is from module m,
and, if m; is nonautonomous with respect to T, then
v;(t+l,a,x) = f; (:,b,,....b,,')

where b,,..., b, are as described above.

We call vy N’s static value function or its static specification.

Finally, we define fy as promised earlier. It should be obvious now that the appropriate definition
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In(t,ax)=ny(vn(t,a,x))
foreachteT,ac A", andx e A®.

Discussion. What is the relationship between dynamic and static specifications? Since the function Vy
defines the behaviour of N on all possible input streams g : T —>A", we can define the behaviour of N
on a constantinputa € A" by taking a to be a stream such thata(¢)=a forallz e T.

Foreacha € A", let fix(a): T —>A" be the stream defined by fix(a)(¢)=a foreach t € T. Now
consider the function wy : T XA™ xA* —>A* defined by
wy(t,a,x) = Vy(t.ix(a)x)
foreachte T,ae€ A", andx € A*. Itis straightforward to prove (exercise!) that wy(t,a,x)=vy(t,a,x)
for all arguments ¢, a, and x, and so it does not seem to matter which way we define a static version of
Vy. However, there is a subtle property associated with the function fix : A® —>[T —>A"] that we may
wish to avoid in certain circumstances. We will return to this matter in Section 3.4.

2.4.5 Exercises.

Here are some exercises concerning OE and EOE over D =IN.

(1) Take n =4 and write out (in the style of Section 2.4.4) the defining equations for the coordi-
nates of YoE and VEOE » Write down the definitions of oE and NEOk |

(2) Use the definitions from part (1) above to show that

foe(5.a.x) = fgoe(5,a,y) = sort(a)
where a =(71,21,9,3), x =(0,0,0,0), and y =(0...., 0) (twenty times zero).

(3) By using a computer programming language that supports user-defined functions or procedures
(such as PASCAL), program OE’s module specifications f,...,f, (as defined in Section 2.3.2) as user-
defined functions. Incorporate these functions in a program which evaluates vz (t,a,x) on any given
arguments t € T, a,x € D*, and hence simulate the OE sorter on a fixed input for a finite amount of
time, Is it possible to write this program without using either arrays or recursion?

2.5 OBJECTIVES.

In this chapter we have identified general concepts that are central to synchronous computation. In
this section we will outline the objectives that a theory of synchronous systems should achieve.

2.5.1 Formalisation.

Our account of specifying synchronous algorithms has been a semantic one: we have assumed that
the reader understands the principal concepts underlying our specification technique, namely those of
‘data’, ‘function’, and ‘definition by means of equations’.

In Chapter 3 we will introduce our system PR which can be thought' of as a formal language for
defining functions by simultaneous primitive recursion. We will show that the specification algorithm of
Section 2.4.1 always specifies a network as a (value) function whose definition is a term in this language.
In this way we formalise our specification technique and hence formalise our account of synchronous
algorithms.
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Generally, the most important point about being able to formally specify an algorithm’s behaviour
is that we can write down and ultimately (attempt to) prove assertions about that behaviour, In particular
we can write down formal correctness specifications CSpec for the algorithm, For example, in the case of
OE and EOE, possible correctness specifications are (in the style of Section 2.2.4)

CSpecor <= (WVxeD"XVteT)XVa:T—>D") (Gop(ax)(t) =Dog(a)s))
and

CSpecor <> (WxeD*t*X\/te TV a:T—>D")) ( Grop(@x)(t)=Dpoe(a)t)) °
In Chapter 4 we will formally verify OE and EOE by proving CSpecoz and CSpecgor, and in Chapter 5
we will establish the correctness of other synchronous algorithms. Another important kind of formal
specification of a (synchronous) algorithm is a performance specification PSpec . In Chapter 3 we con-
sider performance in a general setting, and we will be able to write down performance specifications for
OE and EOE.

2.5.3 Simulation.

Generally, having devised an algorithm for a given task, the first step towards verifying the algo-
rithm is to simulate the algorithm, either by hand, or by coding the algorithm in an executable form. In
the case of synchronous algorithms however, the algorithm need not be large to be complex, and this
makes hand-simulation tedious and therefore error-prone, if not impossible in practice. Clearly, simula-

tion by means of a computer program is generally preferable; in other words, a designer of synchronous
systems needs software tools to assist in the design activity.

In Chapter 6 we will introduce the imperative programming language FPIT which is tailored to the
evaluation of the functions defined in Chapter 3; in this way we can simulate our networks.

2.5.4 Hierarchical Design.

In algorithm design generally, the advantages of structured design are well-known. Specifically,
an algorithm which comprises a small number of atomic steps is easy to understand and thereby more
amenable to formal verification. In the case of a large algorithm, the algorithm is decomposed into a
small number of procedures which are regarded as atomic steps so as to bound the conceptual complex-
ity of the algorithm, and hence its verification relative to the assumed correctness of the procedures; if

the procedures themselves are large, then they too are decomposed into sub-procedures, and these into
sub-sub-procedures, until a level is reached at which the lowest level procedures are atomic steps.

This top-down approach to the design and verification of algorithms is one which is germane to
synchronous algorithms: contemporary synchronous (VLSI) designs may incorporate many thousands of
atomic processing elements (modules); such a design will be incomprehensible unless it has a hierarchi-
cal structure. We will consider the hierarchical design of synchronous algorithms in Chapter 8.



2.6 SOURCES.

The isolation of a general concept of a synchronous concurrent algorithm processing streams of
data is the result of joint work with J. V. Tucker and myself, as is the representation of synchronous
algorithms by means of value functions (see Thompson and Tucker[1985]). The sources that led our
concept of a synchronous algorithm were mentioned in Section 1.2: these were the neurone nets of W. S.
McCulloch and W, Pitts and the systolic algorithms of H. T. Kung. The attempt at a general theory is
new. We note that streams are mentioned in Melhem and Rheinboldt[1984] (work on systolic algo-
rithms), Sheeran[1983] (work on design transformations), and Johnson[1984] (work on synthesis of digi-
tal circuits).

Parallel sorting networks have received much attention in the literature. Batcher[1968] is generally
acknowledged as being the first work on the subject; Bitton et al[1984] and AkI[1985] are useful sur-
veys. The EOE sorter is due to D. E. Knuth: Section 5.3.4 of Knuth[1973] considers general networks of
‘compare-and-exchange’ modules, of which EOE is an instance (see Exercise 37, p 241, in
Knuth[1973]). The OE sorter is accredited to Knuth also; however, (for historical reasons) we call ‘EQE®
what Knuth calls ‘OE’, and we have been unable to find (what we call) OE in Knuth[1973] despite the

accreditations of Bitton et al[1984] (p. 291) and AkI[1985] (p. 58). Sorting on streams of data (in the
sense of processing more than one vector of input data) has not been studied as far as we are aware.

Finally, our definition of a user specification (Definition 2.2.3) is a special case of the considerably
more general kind of specification found in Harman and Tucker[1987].
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CHAPTER 3
FORMAL SPECIFICATION

In this chapter we begin the theory of synchronous systems by introducing PR which we use to
formalise the specification technique for synchronous algorithms introduced in Section 2 4.

In Section 3.1 we establish a formal account of the data set(s) and operations over which a syn-
chronous algorithm is defined. We use the theory of abstract data types as developed by the ADJ group
(J. A. Goguen, J. W, Thatcher, E. A. Wagner, and J. B. Wright) in their work Goguen, Thatcher, and
Wagner[1978] and Meseguer and Goguen{[1985]. This theory supports the hierarchical analysis of syn-
chronous algorithms. In particular, we will see how the concept of an augmentation of a data type helps
us to formalise some aspects of top-down design.

In Section 3.2 we begin the formal theory of algorithm performance or complexity. We define a
performance measure which is an abstraction of the time taken to evaluate data and operations involved
in a data type. This abstraction is the basis of a hierarchical treatment of algorithm performance.

In Section 3.3 we define the system PR. In essence, PR comprises a formal notation for the simul-
taneous primitive recursive functions over an abstract data type. These functions, first defined and stu-
died in Tucker and Zucker[1987] (work of 1979), are the mathematical setting for the study of value
functions. PR additionally involves an account of the complexity of evaluating a function defined by
simultaneous primitive recursion that is based on a performance measure for the underlying data type.

In Section 3.4 we formalise the specification of synchronous algorithms by establishing the simul-
taneous primitive recursiveness of value functions.

In Section 3.5 we begin the theory of PR with an assortment of facts concerning the complexity of
computation and top-down design in PR.

3.1 ABSTRACT DATA TYPES.

In Section 2.1 synchronous algorithms were described in the context of two sets, T and A, and a
collection of operations on and between these sets. We will now make a modest generalisation by assum-
ing that a synchronous algorithm involves operations on and between a (finite) number of data sets

A 1.....A,| y $dY.

In order for us to provide a formal account of these data sets and operations we will adopt the
algebraic approach of the ADJ group. We will first present basic ideas and definitions, and then we will
extend these ideas to cater for synchronous computation (in Section 3.1.8). The knowledgeable reader
will find much of our notation and terminology standard, and with the exception of Section 3.1.5, the
preliminary sections below may be quickly scanned for consistency with Wagner[1981] (for example).
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3.1.1 Syntax.
The first step towards formalisation is to introduce names for the data sets of interest:
Definition. A sort set S is a finite, nonempty set (of sorts or sort symbols). [

A sort s € S is merely a piece of syntax which we can use to index or label data sets in a con-
sistent manner. For example, in the case of a general synchronous algorithm, a typical data set will be
denoted by A, indicating that this set contains data of sort or kind ‘s’. In the case of a specific algo-
rithm, we choose sort names that are mnemonic of the kind of data in question: for example, the OE net-
work of Section 2.3.1 involved a clock T as well as data from the set D ; thus the modules of OE can be
fonnélly specified in the context of the sort set S,={T,D } say, with A, and A, denoting the sets T and
D respectively.

Here are some definitions and notations relating to sorts that we will find useful throughout the
remainder of the thesis:

Definitions., Let S be a sort set.

(i) We let S*denote the set of all finite words or strings over S ; that is, w € S *iff for some n 21 and
sOme Sq,...,S, € §, w 1S the concatenation or juxtaposition of symbols w=s, * -+ s,. In this
situation w is defined to have length n, in symbols: |w | =n.

(ii) We define " by S° = S*U{A} where A is the empty word satisfying wA=Aw =w for all words
w € S* Accordingly, we define |A| =0.

(iii) For each n 21 we define $*= {we §*: |w|=n}. (Notice that we do not define $% if w € §*,
then |w | =n #0.)

(iv  When w € §” for any n 21, we write w; for the ith sort comprising w for i =1,...,n. That is, if
W=S51°°'° 8, then W; =S§; fori=1.....n;alternatively, for all words w € S*;w=w1 "W C]

The intention behind a word over a sort set is that each word w names some Cartesian product of
data sets. For example w =TDDD € §¢ names the domain of the function f,:T XD xD xD —>D that

specified module m; of the OE network (see Section 2.3.6). We use this idea to keep track of the
domains and codomains involved in a collection of operations in the following way:

Definition. LetS be a sort set. An § -sorted signature Lis an S xS -indexed family
E=<Ew‘,:weS',seS>
of (disjoint) sets (of operation names or operation symbols). "
A signature formalises the idea of a (strongly typed) collection of functions available for use (in

specifying synchronous algorithms); for w € §*, a symbol € X, , names some operation which maps
each vector 2 € A, X * - - XA, to an element of 4,. Conventionally, when g€ I,,, we often use the

symbol ‘c’ rather than ‘c’ since such a symbol names a constant (a ‘O-ary’ operation).
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Notation.
(i) Wewrite ‘ce L', to abbreviate ‘ce Z,, , forsomew e S ands e S’

(i) When I is a signature with n constants and operations oy,...,G,, we write = (0j,..., 0, ) when it
is understood (or of no interest) which Z,, , each o; belongs to. |

3.1.2 Semantics.

The concept of a ‘data type’, that is, ‘a collection of data sets and operations’ can now be formal-
ised as an algebra:

Definition. Let  be an § -sorted signature. A Z-algebra or Z-structure A comprises an S -indexed fam-
ily
<A,:5€85>
of sets (call A, the carrier of sort s ), together with, for each w € $” and each s € §, a mapping
ok t4, X * X4, —>4,
for each o€ £, ,. Whenoe I,,, 0" € A, (thatis, ¢4 € A,). We call 6 the interpretation of G inA.
Additionally, if S is a singleton S ={ s } then we say A is single-sorted, otherwise A is many-sorted.

3.1.3 Examples.

(1) We can formalise the notion of discrete time as a single-sorted algebra C in the following way.

FirstletS ={T} and let T be the §” xS -family
F=<l,,:weS',seS>
where |
= {zw}, l-"r.:r‘"“ { succ },
I, =10 for other w,s

Then it is easy to check that I" is a S-sorted signature. Now let C comprise the single carrier
Cc,={0,12,...}, the constant zero” =0, and the operation succ€ :{0,1,2,...}—>{0,1,2,...} where
succC (¢)=t+1 for each t € {0,1,2,... }. Then zenc® € Cy and succ® : Cp —>Crp; that is, C is a I'-algebra.

(2) We can formalise the data sets and operations involved in the OE sorter of Section 2.3 as a
many-sorted algebra Agg in the following way:

From Section 2.3.6, OE’s n modules were specified by the functions f y,.... f,» €ach of which was
a function of time T and data D ; thus it is appropriate to begin with the sort set S ={T,D}. Since T is
intentionally a clock, we need a signature Z with symbols zero € Z, ; and succe Z,,. Furthermore, the
functions £ y.....f» had the following functionalities: f,f, :T XD3*—>D, and f 3...., fa-1 : T XD*—>D;
thus if £ has a symbol o; to name f; for i=1...,n, then we must have 0,0, € Zmpmop and
Cypeens Oy € Erpocopr INOW let A =Aop comprise the carriers A,={0,1,2,...} and A,=D, and interpret
the symbols of Z as follows: zero® =0; succ” (¢)=t+1 for eacht € A, and A=, fori =1,...,n. Then A
is a Z-algebra, a

Here are some simple definitions and notations which relate to X-algebras A , and to S -indexed sets
in general.
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3.1.4 Definitions.
() Foreachw e §"wedefineA™ =4, X - XA,

(ii)  As a short-hand notation for a structure A with family of carriers <A, :5 € § > and n constants

and operations, we write A =(<A, :s € § >; cl.....04). Indeed, we will further abbreviate by let-
ting A denote the algebra’s family of carriers; we will write A =(A ;6\,..., 64).

(iii) Let A and B be S-indexed families of sets A, and B, respectively. An §-indexed mapping
f :A—B is a family
f=<f,is5€§>
of mappings f, :A,—B,. If f :A—>B is an §-indexed mapping, then for each w € §”, we
define f,, :AY —>B" by
(Va=(a1,8,) € A”) (£ (@)= (fu (@ D)serrfw (3)))

(iv) If f is a function of the form f :A* —>A", we will sometimes write ‘f,’ rather than just ‘f’;

this use of an algebra as a subscript is purely to emphasise that f is a function on the carriers of
A,

(v) LetA be a Z-algebra for S -sorted signature X, and let Q2 be another S -sorted signature with QC X
(thatis, letQ, , X, , foreachwe § “and s € S). Now let B be the Q-algebra whose family of
carriers <B, :s € § > is defined by B, =A, for each s € §, and whose operations o” are defined
by o® =o* for each o€ Q.. Then we say B is the restriction of A 1o L, in symbols: B =A|qg.
(Intuitively, B is formed from A by ‘forgetting about’ some of A ’s operations.)

(vi) Whenf :A* —>A" for some u,v € S*we say f has functionality or arity (u,v).
3.1.5 Augmentation.

We have seen how a Z-algebra formalises the idea of a ‘data type’. In this section we will define a
construction which allows us to build new data types from old. This construction, which we call an aug-

mentation, 1s the basis of a formal transformation between different levels of data abstraction, and thus,
here we begin to explain the hierarchical aspects of the theory of data types.

Definitions. Let A be a Z-algebra for § -sorted signature Z,

(i) Let ¢ be some new symbol not occurring in Z, and let w,e S*and s, € S. Then the (w,5,)-
extension of I obtained by adding ¢, is the S -sorted signature Q2 defined by
Q=<Q,,:weS'seS>
where foreachwe S ands e S,
ZwsV{¢} ifw=w, and s=s,
Q., = {E,', otherwise
In symbols we write 2= (Z,0; wo,5,) or Q=(Z,¢) if w, and s, are understood.

(i) Let Q=(Z,d;w,,5,) be as above, and let f, :Aw'—a-A,'. Then the augmentation of A obtained
by adding f is the Q-algebra B whose family of carriers <B, : s € § > is defined by B, =A, for
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each s € S, and whose operations o are defined by

fa ifo=
=4 10
o' ifo#d
for each ce 2. In symbols we write B =(A ,f4). | )

The natural generalisation of the above definition(s) is to augment an algebra with a collection of
functions { f 1..--»fm }. We only need a special case of such a construction however: our ultimate inten-
tion is to augment Z-algebras with vector-valued functions f, :A* —>A". As we cannot do this directly
(since the operations of an algebra must be single-valued), we add the coordinate functions of f,
instead:

Definition. Let A be a Z-algebra for § -sorted signature Z.

(i) Let @ =(d(,.... 0 ) be a vector (ordered list) of new function identifiers ¢,..., ¢,, not occurring in
T. Also let u,v € S*with |v | =m. Then the (u,v)-extension of T obtained by adding ® is the S -
sorted signature Q defined by Q=X™) where £?=g, and for k£ =0,...,m-1,

T = O, 0y 15 4,v01)
In symbols we write Q=(Z,®; u,v) or Q=(Z,®) if u and v are understood.

(ii) LetQ=(L,®;u,v)be as above, andletf :A* —>A" be any function with coordinates f....,f
(so |v]|=m and f; : A" -—)'A,‘ for i =1,...,m). Then the augmentation of A obtained by adding
f is the Q-algebra B defined by B =A™ where for k =1,..,m A®) is the Z*)-algebra defined by
A®=A and for k =0,...,m-1,
A=A £
In symbols we write B =(A ,f ).

Discussion. Imagine a programmer whose task T, is to resolve by means of a program P, some problem
involving computations over Z-algebra A. Of course, P will be based on, or written over the signature Z;
typically P will involve expressions or terms ¢ of the form o(¢,,...,1,) where o€ L and ¢,...., ¢, are terms

built up from I (together with some variables perhaps).

Suppose the task T is a complex one, complex enough that the programmer first assumes that
some subtask T, which is to compute a function f, defined over A, has already been accomplished by
means of a subprogram or procedure P,. Typically P, will introduce some new identifier ¢ say, which
the programmer can now use in expressions ¢(¢1,..,¢, ) in constructing the required program P.

Importantly, the programmer will now regard f, as having status equal to that of any other opera-
tion o?, since like o*, f, is a named operation which is conceptually indivisible.

Our hypothetical programmer is of course developing P ‘top-down’. Initially T is regarded as a
problem involving computations over the high-level structure B =(A,f,), and the programmer first
solves T by means of a program P’ say, which is written over the signature Q=(Z,¢) (and thus ¢® =£,).
In order to show that T can be solved by using the operations of (lower-level) A only, the programmer
implements f, over A; thatis, Py is written over the symbols of I only,
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We begin to see the how the hierarchical design and specification of algorithms is intimately
related to the hierarchical specification of data types. This relationship will be further explored in the
second part of Section 3.5, and in Section 6.2.18.

3.1.6 Minimality.

Consider the {T}-sorted signature I"=(zero,succ). Intuitively, I" is the signature of a clock as an
algebra A =(A,;zero” succ®). Now suppose zer =0, and suwcc*(t)=t+1 for each te A, but
A.={-1,0,1,2,..}. Whilst A is certainly a I'-algebra, the inclusion of ~1 € A, is redundant in the sense
that no expression over I" will ever evaluate to —1.

Generally, we can isolate algebras with such values by means of the following

Definitions. Let A be a X-algebra.

(i) Let a € A (thatis, let a € A, for some carrier A,). We say a is finitely generated if a can be
obtained from finitely many applications of the operations of A to the constants of A .

(ii) Wesay A is minimal if every element of every carrier of A is finitely generated.

Example. Let A be the I'-algebra defined above. Itis obvious that A is not minimal, since zero® =0 #~-1
and succ? (¢) #—1 forany ¢ € {-1,0,1,2, - - - }, and thus -1 is not a finitely generated element. O

3.1.7 Abstract Data Types.

It is possible for A and B to both be Z-algebras, and yet to have A #B. Under what conditions is
a Z-algebra uniquely defined?

Consider the I'-algebras A =({0,1,... };0,succ*) and B =({-1,0,1....};-1,succ3) where suce® and
succ are successor functions on the carriers of A and B respectively, Notice thatboth A and B are I'-
algebras (minimal ones in fact), but A #B since zero® =0#~1=zerc?,

Both A and B are ‘counting structures’: each comprises a ‘zero’ and a ‘next number’ function.
Abstractly, we do not wish to distinguish between A and B: A and B are the same in the sense that we

can count with either algebra; the only difference between A and B is thatin A ‘zero’ is represented by
0, whereas in B it is represented by -1,

We can formalise this sense in which Z-algebras are ‘essentially the same’ as follows.

Definitions. Let A and B be S -sorted Z-algebras.

(i) An § -indexed mapping 4 :A —>B is said to be a Z-homomorphism if h satisfies the following
two homomorphism conditions:

(A) Foreachc € Z,,,
| h(c?)=c?®

(b) ForeachoceZ, , withweS",

(V (al"“'au) € Aw) ( h: (OA (alp---: an)) - ca(hwl(a l)r"-l hw.(an )) )

(ii) A Z-homomorphism & is said to be a Z-isomorphism if each component function 4, is a bijection.




-53.

(i) We define A to be Z-isomorphic to B if there is a Z-isomorphism A :A —>B. In symbols we
write AEB if there is some X-isomorphism 4 :A —B, and if we wish to name the X-
isomorphism explicitly then we write A=, B (read: A is isomorphic to B vig Z-isomorphism A ).

Lemma. Let A and B be Z-algebras. The following statements are equivalent:
(i) AS,B
(ii)  There exist Z-homomorphisms h{:A —>B and h,:B —>A.

Exercise. LetA and B be the I'-algebras above. Define 4 :A —B by
(Vted;) (h(t)=1t-1)
Show that A is a ["-isomorphism, and hence that A=, B. 0

A Z-algebra is regarded as uniquely specified in the sense that it is unique up to isomorphism. Now
notice that the relationship of isomorphism is an equivalence relation on the class of all Z-algebras: it is
not difficult to prove for any X-algebras A, B, and C, that A=A, if AZB then B2A, and if AZB and
B=C,thenA=C.

Definitions. Let A be a Z-algebra.

()  The isomorphism class ISO(A) of A is the equivalence class of all Z-algebras isomorphic to A.
That 1s,
ISO(A)=<B :BS2A >
(ii) An abstract data type is an isomorphism class of Z-algebras, for some signature Z, called the sig-
nature of the abstract data type.

Definition. Let P be the single-sorted algebra comprising carrier {0,1,2,... }, constant 0, and operation
t+1. A clock is an element of ISO(P). (Thus all clocks are isomorphic.)

3.1.8 Algebras for Synchronous Computation.

Since our methodology for specifying a synchronous algorithm is based on specifying values held
at a given time ¢, a formal specification of an algorithm must be based on a Z-algebra which has a clock
as a substructure. In fact, since (synchronous) algorithms usually involve tests of some kind, we will
assume for convenience that our Z-algebras always include a Boolean component as well as a clock;
such algebras we call standard:

Definitions.
i) AsortsetS is standardif S 2{ T,B } for the distinguished sort symbols T and B.

(i) An S-sorted signature X is said to be standard if S is standard, and the following six conditions
hold:

(3) 2er0 € Iy
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(C)  truefalse€ 2, ,
(d) note X,
(e or,and € znn,a

(f) foreachse §,=,€ 2,

(iii) A Z-structure A is said to be standard if Z is standard, and the following three conditions hold:

(a) A, together with its constant and basic operation is a clock.

(b) A, together with its basic operations is (isomorphic to) the Boolean algebra
B=({f}:uff,~VN). (Here ¢t and ff stand for ‘true’ and ‘false’ respectively, and ~, V,
and A, are logical negation, disjunction, and conjunction respectively.)

(c) Foreachs €S, the operation in A named by =, is equality on A,.

(iv) Given a standard algebra A, we call A,={0,1,2,...} and A, ={ &, ff} the standard domains; 0e T
and 12,ff € 1B the standard constants; and succ’ ~ V, and A, the standard operations.

Notation. We write T for A, IB for A,, and = for =4,

Stream Algebras. Since synchronous algorithms process streams of data, we must extend our algebraic
formalisation of data types to encompass streams. The way that we will do this is essentially as follows:

Given a standard algebra A, we first adjoin [T —>A, ] as a new carrier set for eachs € S-{T,B}
(we do not need streams over T or IB). Secondly, in order to access elements of a stream we also adjoin

as new basic operations, evaluation functions of the form evalf : T X [T —»A,]—>4A, where for each
s€S,evall(t,a)=a(t)foreacht €T and a : T —>A,.

These additions determine a new algebra A which appropriately formalises the data and operations
involved in a synchronous algorithm over A . However, to formally analyse computation over A we must
introduce formal names for the new carriers and operations. We do this as follows:

Definitions. Let S be a standard sort set, let X be a standard signature, let A be a standard Z-algebra,
and letS={s:se S—{TB}}.

(i) We define S by § =8 US. As additional notation, for each w € §* we define we S* by

W=W1°" " Wy

(i) Wedefine T to be the § -sorted signature defined by

L =<X, ,;weS seS>

where foreachwe S ands e S,

Z ws — zw.:
and foreachs e S,

.§ T2 = {eval, }
and for otherw € S and s € §,
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(ili) We define the stream algebra A to be the X -algebra whose family of carriers <A, :s€ S > is

defined by

A A, ifses

Z¢ = 1 [T—>A,] otherwise
for each s € S, and whose operations o4 are defined by

. |t ifoceX
ol = .
eval{ 1if O=eval,

for eachce L.

Example. Let A =A,z be as defined in Example 3.1.3(2); then A = A, is constructed as follows:

We begin with the sort set S ={ T,D } underlying A. (Actually, this § and A are not officially stan-
dard since they do not have a Boolean component, but this need not concemn us here: we only need A to
have a clock in order for us to have streams.) From the preceding definition we have § ={ T,D,D}. Also,
if the signature of A is Z, then X is defined by X =(Z,eval,; TD,D). Finally, A is the X -algebra comprising
the carriers of A together with the new carrier A ,=[T —>D], and whose operations are the operations
of A with the exception of eval] which is is the function eval?: T X [T —>D]—>D.

3.1.9 Notation.

LetT={0,1,2,..} and let X; and X, be any sets. Now let S, and S, be defined by
Sy = [T —=X{]1X[T —X,}
and
Sy = [T —XxX,]

respectively. The sets S; and §, are isomorphic (in the sense that one can define a bijection between
them) and so these sets may be conceptually identified. However, there is a subtle distinction between
S, and S, which will be lost when we identify them with each other: an element of § is a pair compris-
ing two single-valued streams, whereas an element of S, is a single pair-valued stream; that 1s, a stream
which supplies a pair of values at each time ¢ € T. Since the difference between a Cartesian product of
sets of streams and the corresponding set of streams over Cartesian products is mathematically slight, we
will choose to use the latter as 1t is notationally simpler. For example, to represent the set of all streams
of pairs inputs we use S 3 above, although we may speak of §, as “a collection of pairs of streams’.

More generally, if A is a S -sorted algebra and w € §” then we identify the sets
[T —A, ]X - - - X[T—>4,, ]

and
[T —>A,, X -+ XA, ]

In other words we make the following identification: .
[T—4,]1%X - X[T=—>A,,] = [T —>A")
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Notice that further notational simplification is possible: recalling the definitions associated with A,
we have

é!’. =é£lx s o e )(ér- = [T-——}Aw‘]x ¢ o x[T_.;.Aw.] - [T—*Aw]
Generally we will use the notation [T —>A"] rather than A= since the former is easier to comprehend:
the latter notation appears in formal calculations only.

3.2 PERFORMANCE MEASURES.

The formal theory of the complexity of a synchronous algorithm begins with an account of the
complexity of the data and operations of the underlying algebra. Our analysis of algorithm complexity
only extends to algorithm performance or execution time, and does not attempt to account for other
aspects of algorithm complexity such as area or power consumption. (See Thompson[1980] for a model
of circuit computation which encompasses these.) However, in the forthcoming definitions of perfor-
mance estimations, the reader is invited to consider replacing references to a time metric by an area
metric (say).

Definition. Let A be an S-sorted Z-algebra. Also let C be a clock, and let C*=C~{0}. A performance
measure for A is a family |

P =<c":0eX>
of mappings o such that ¢* :A¥ —>C* when ce X, , for some s € S, and o” € C* for 5€ Z,,.

Here we say P is based on the clock C. Additionally, we say P is standard if I is standard and
suc’ (t)=1foreveryteT. O

In this way we count the cost of evaluating an operation on an argument: if o€ Z,, , for some
w € S*and s € S, then for each a € A", the time taken with respect to C to evaluate 6* on an argument

a € A” is the number ¢” (a). If ¢ € I, , for some s € S, there is no data for the evaluation of c* to
depend upon other than ¢4 itself: for this reason ¢ is always a (nonzero) constant. Notice that a perfor-

mance measure is very general: we do not impose any structure on the performance functions o other

than that they have an appropriate domain (and codomain: notice that we do not consider any constant or
operation to have zero execution time).

302-1 A-time-

A -time is an important example of a specific performance measure for an algebra A: A -time is the
formalisation as a performance measure P, of the uniform cost criterion of Asveld and Tucker[1932].

According to A -time, every operation and constant of an Z-algebra A has unit computation time; that is,
foreachoe Z,, ,, withw #), ¢’ (a)=1foreacha € A”, and for each ¢ € Z,,, ¢’ =1.

A -time is an appropriate performance abstraction for A when we consider A as the starting point
for an algorithm over A; in this situation, the operations of A are intuitively indivisible, and it is from
these ‘atoms’ that we construct more complex operations. It is natural then, to consider the operations of

A as determining an indivisible time metric with respect to which we can measure the length of compu-
tation of larger designs.
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However, when the complexity of an algorithm over A is considered in a situation where it is
either known or intended that the operations of A are to be implemented over another (lower-level) alge-
bra B, say, then the computation time of such an operation will be determined by the complexity of its
implementation over B, and thus unit costs are no longer appropriate; it is the generality of a perfor-
mance measure that allows us to express and analyse algorithm performance from these different per-
spectives.

Example. Let P, and P, be performance measures for some algebra A which involves addition (+) on
the natural numbers. Now contrast the following two performance estimations:

(VnmeN) ( +P‘(n,m) =1)
(VnmeN) (+n,m)=kn+c )
for some constants k,c 21. Clearly, P; measures A -time, whereas P, counts the cost of addition as if,
perhaps, it were known or intended that to add n to m, we increment m by one n times.

3.2.2 Extensions of Performance Measures.

The idea behind the way a performance measure P was defined for an X-algebra A was that each

named operation o* had its own performance estimation 6" . Consequently, when we augment A with a
new operation we need to extend P with a new estimation function.

Definition. Let P be a performance measure for Z-algebra A. Also let f :A™ —>A, for some w e §*
and s € S, and let A:A” —>C" where C is the clock on which P is based. Now let (4,f ) be the (Z,9)-
algebra defined in Section 3.1.5. We define the extension of P obtained by adding A, to be the perfor-
mance measure Q where

A ifo=d
o? = {0’ otherwise
" for each o€ (T,0). In symbols we write @ =(P,A). Note that Q is a performance measure for (A,f)
which is based on clock C. ]

We also need to define a performance measure for (A,f ) when f is a vector-valued function. We
do this as follows:

Definition. Let P be a performance measure for Z-algebra A. Also let f :A¥ —>A" have coordinates
f v fm (SOm=1v}), and let A:A* —>C* where C is the clock on which P is based. Now let (A,f )
be a (Z,d)-algebra as defined in Section 3.1.5. We define the extension of P obtained by adding A, to be

the performance measure Q where
A ifc=¢;e¢
. {

g’ otherwise

for each g€ (Z,®). In symbols we write Q =(P,A). Note that Q is a performance measure for (A,f)
which is based on clock C. 0

Notice that according to the last definition, we charge the same cost (A) for all the coordinates of
f . More generally we might expect f; to have its own performance estimation A; for i =1,...,m. How-
ever, whilst it is easy to frame such a definition, the given definition is adequate for our purposes.



3.2.3 Order Notation.

Given an §-sorted algebra A, we will often want to compare the performance of two (rivaling)
algorithms which solve the same task: if &, and o, are two algorithms with common input domain A*

for some u € §7; then the time complexities of a; and a, will be expressed as functions A\, 4% —>C*
where C is a clock and A;(a) is the time taken to execute o; on inputa fori=1,2.

The simplest case is when A;=A4,, that is when A,(a)=2,(a) for each a € A*, expressing the fact
that oy and o, have identical performance. However, more generally we wish to express the fact that

whilst two time complexities may not be equal, they might be equivalent in the sense that they are the
same to within a constant factor:

Definition, Let X be any set, let C ={0,1,2,... }, and let A,As 1 X —>C be any functions. Then we say
A1 is order A, if there exists a constant ¢ 21 such that for every x € X,

A(x) < ¢ . Ay(x)
In symbols we write A; =O(A,).

Additionally, if A;=0(A;) and A,=0(A,) then we write A,;=A, and we say A; and A, are of
equivalent order (or simply: equivalent).

3.3 THE SPECIFICATION SYSTEM PR.

We can now define the system PR. In Section 3.3.1 we will define a collection of syntactic terms
built up from T which we call PR schema. In Section 3.3.2 we define a semantic evaluation mapping (or
‘meaning’ function) which interprets each scheme as a function on A, and in Section 3.3.3 we conclude

the definition of PR by defining a length of computation function for PR schema. In the next section we
will show how synchronous computation can be formalised using PR.

Note: throughout the remainder of this chapter, sort sets, signatures and Z-algebras are always
assumed to be standard.

3.3.1 Syntax.

Let Z be an § -sorted signature. We define PR(Z) to be the §*x S tindexed family
PR(Z) = <PR(Z), , :u,v e S*>
of sets PR(Z),,, of PR schema. Each set PR(Z), , is defined uniformly in 4 and v by induction as fol-
lows:

Basis Schema.

(i) Constant Functions. Let ao=c" for some ¢ & Z,, for some s € §, and for some w € S*, Then
a€ PR(2), ,.

()  Algebraic Operations. Let a.=0 for some o€ Z,, , for some w € S*and for some s € S. Then
ae PR(2), ,.

(1)  Projection Functions. Let aa=U}" for some we S* and some i with 1<i<|w|. Then
o€ PR(Z), , -
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Induction: Function Building Tools.

(iv)  Definition-by-Cases. Suppose o=DC(B,01;,0;) where for some u,v € S* Be PR(Z),,, and
oy, € PR(Z), ,. Then ae PR(Z), .

(v)  Vectorisation. Suppose for some m 21, a=<aqy,..., 0, > where for some ue S*and ve $™
o; € PR(2),, fori=1..,m. Then ae PR(Z),,. (Here a,...,a, are called the coordinates of

o)

(vi) Composition. Suppose o.= 00 where for some u,v,w € §%, o; € PR(Z), . and o, € PR(Z), ,.

Then a€ PR(2), ,.

(vil) Primitive Recursion. Suppose a=»(oy,0) where for some u,ve€S% o, e PR(Z),, and
0, € PR(Z)yy - Then a € PR(Z),, , .

Notation.

(i) We write ‘a € PR(Z)’ to abbreviate ‘a € PR(Z), , for some u,v € §*°.

(i) When e PR(Z), , for some u,v € S a is intended to denote or define some function on A with

domain A* and codomain A”; for this reason we refer to the pair (u4,v) as the functionality or
arity of o (Sometimes we will refer to 4 and v as the domain and codomain of o meaning that u
and v are the ‘names’ of the domain and codomain of the function defined by o). ]

Sometimes it will be useful to consider PR schema which do not involve instances of ‘%(,)’:

Definition. A scheme ace PR(Z) is said to be a polynomial scheme if o does not involve any subscheme
of the form x(ct;,0;). More precisely, we define the $*x § “indexed family

POL(Z) = <POL(Z), , :u,v € §*>
of all polynomial schema where for each u,v € S5 POL(Z), ,CPR(Z),, comprises exactly those
schema definable by clauses (i)-(vi) of the previous definition.

3.3.2 Semantics.

Let A be an S-sorted Z-algebra. For each a € PR(Z), the meaning of o over A is denoted by [all,
where [.], is the S S*indexed family
[.J, =<[.}{":u,vesS*
of mappings [.]4":PR(Z),,, —>[A* —>A"]. Each mapping [.]}” (ambiguously denoted [.1,) is
defined uniformly in # and v by the induction on the structure of a scheme ae PR(Z), , as follows:

Basis Schema.

(i) Constant Functions. If a=c¢" for some ¢ € I, , for some s € §, and for some w € S¥ then
[a], :AY —4,
is defined by |
(VaeA™) (lols(a)=c*)

(i) Algebraic Operations.If a=G for somece Z,, ,, then
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[a], :AY —>A,
is defined by

(VaeA”) ([als(a)=0c"(a))
(Notice that since ace PR(Z), w #A.) |

Projection Functions. If a=U}" for some w € S*and some i with 15 Sn =|w |, then
[al, :A™ _"A"'.
is defined by
(Va=(a,...a,)€A”) ([0ls(a)=a; )

Induction: Function Building Tools.

(iv)

V)

(vi)

(vii)

Definition-by-Cases. Suppose a.=DC(B,a;,0,) where for some u,v € §* fe PR(Z),, and
ay,0p € PR(Z), . Then
[a], :A¥——>A"
is defined by
[oy]a(a) if [Pla(a)=4
[opla(a) if [Bla(a)=ff

Vectorisation. Suppose for some m 21, a=<aqy,..., 0, > where for some u € S*and v e §”,
o; € PR(2),,,, fori=1,..,m. Then

(VaeA"*) [als(a) = {

[a], :A¥—>A"

is defined by
(VaeA®) ([als(a)=([oyds(a)..... [ty T4 (a)) )

Composition. Suppose a.=000; where for some u,v,w € S, a; € PR(Z), ,, and o, € PR(Z),, .
Then

[al, :A*—>A"
is defined by

(VaeA®) ([als(a) = Topl, (Toy],(a) )

Primitive Recursion. Suppose a=%(0y,0,) where for some u,veS*% a,€PR(),, and
o, € PR(Z);,y,v. Then
[ol, :TxXA%—AY
is defined by
(VaeA®) ([al,(0,8)=[;]4(a))

and

(VieT)VaeA®) ([als(t+1,a) = [o,]4(¢,a,[04(2,a)) )

Definitions. Letf, :A“—>A", and suppose there exists some o€ PR(Z),,, such that [a], =f4. Then
depending on the context, we say f, is (simultaneous) primitive recursive (over A), fa 18 PR-
computable (over A via o), and/or f, is defined by (simultaneous) primitive recursion (over A). The

collection of all (simultaneous) primitive recursive functions over A is denoted PR(A); that 1s,
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PR(A) = {[a], :ae PR(Z)}
When f, € PR(A), ‘a,’ usually denotes that scheme such that [o, I, =f4; here we say o, computes
fa (overA).

Discussion. There are three points about the preceding definitions worth mentioning, First, note that the
use of ‘A’ as a subscript in ‘[a]l, ’ means more than [a], being a function on the carriers of A ; here it

means that A is an algebra in which all the operation symbols involved in o have interpretations.

Second, it is important to realise that the function [ . ], is defined for any standard Z-algebra A ; in
particular, if A is standard and BEA or B =A, then B is also standard and so [.]3 is a well-defined
quantity.

Finally, although we call PR(A) the class of ‘simultaneous’ primitive recursive functions over A,
there does not seem to be much that is simultaneous about the functions defined by Definition 3.3.2, in
particular, those defined by clause (vii). However, let us consider the interpretation of a scheme
ae PR(T) which is of the form a=x(a,,a,). Suppose oy € PR(Z), , and o, € PR(Z)y,,, for some
u,v € $*; then ae PR(Z), , (by clause (vii) of definition 3.3.1). By Definition 3.3.2 we have

fogds :A*—A7,
foolly : T XA* XA —A",
and so
[al, :TxXA*—>A"

Since [a]l, is just a function on A (for a general scheme ae PR(X)), let us further simplify the
notation by letting f, g, and A, abbreviate fal,, [c;]4, and [o,1,, respectively. Then from clause
(vii) of Definition 3.3.2 f 1s defined by:

fQa)=g(a) (1)
f(t+l,a) = h(t,af(t,a))

for each t € T and a € A*. We can see that this definition is simultaneous by focusing on how vector-
valued functions are defined. Just for the moment, let f and g be any functions with f,g :A* —>A"
say, and suppose f and g have coordinate functions fy..... f, and g;...., g,, (sO |v | =m). If f is defined
by

(VaeA*) (f@)=g(a))
When expanded in terms of coordinate functions, this definition becomes

(VaeA®) ((f1(@)u..fn(@)) =(81(a)....8n(a)))
which, when regarded coordinate-wise, is an obvious short-hand for defining f4,..., f bY

fi(a) = g,(a)

Im(a) = g,.ia)

foreachae A" .

Retumning to the function f as defined by (1) above, we see that (1) is simultaneous when we

‘unfold’ the definition of f to obtain a definition of the coordinates f,...,f, of f in terms of the coordi-
nates gy,..., gy of g and the coordinates Ay,..., 4, of 4:
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f1(0,a) = gy(a)

fk(ora) = gk(a)
and
fi(t+l,a) = hy(t,a,.f1(t,a).....f(t,a))

[i(t+1,a) = By (t,a.f1(¢,3)n0 f1(2,2)) -

Before we consider an example, let us complete the definition of PR by defining a length of com-
putation function for PR-schema.

3.3.3 Performance.

Let P be a performance measure for Z-algebra A. For each ae PR(Z), the length of computation
function for o, with respect to P is denoted by A, () where A, is the S tindexed family
Ap =<Ap:uesS*

of mappings A5 : ) PR(Z), , —>[A* —>C"]. Each mapping A} (ambiguously denoted A,) is defined
ves'

uniformly in u by induction on the structural complexity of a scheme a € PR(Z), , as follows:

Basis Schema.

(i) Constant Functions. If a=c™ for some ¢ € £, , for some s € S, and for some w € S then
Ap(0):AY —C*
is defined by
(WaeA™) (Rp(a)(a)=cF)

(ii)  Algebraic Operations.If a=c forsomece Z,, ,, then
Ap(Q):A” —>C*
is defined by
(VaeA”) (Ap(a)a)=0c"(a))

(iii) Projection Functions. If a=U," for some w € S*and some i with1<SiSn=|w|, then
lp (a) :AY —>C7
is defined by
(VaeA™) (Ap(a)(a)=1)

Induction: Function Building Tools.

(iv)  Definition-by-Cases. Suppose o=DC(B,a;,0,) where for some u,v € S* Be PR(X),,, and
04,0, € PR(Z), ,. Then
lp (a): A" —>C*
is defined by
) Ap(0y)(a) if [BIa(a)=1
(VaeA®) Ap(a)(a)=Ap(B)(a) + {lp(az)(a) if 1B (@)=F
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(v}  Vectorisation. Suppose for some m 21, a=<0y,..., 0, > where for some u€ S*and ve S™,
o; € PR(Z),, fori=1,...,m. Then

}'P (a) A*¥—C*
is defined by
(VaeA®) (Ap(a)(a)=max{Ap(a;)@),... Ap (0, )(a) } )

(vi) Composition. Suppose a=0,00t; where for some u,v,w e §% o, € PR(%),, and o, € PR(D),, ,.
Then € PR(2), ,.
Ap(0):A* —>C*?
is defined by
(VaeA") (Ap(a)(a)=Ap(ay)(a) + Ap(0)([0yTa(a) )

(vii) Primitive Recursion. Suppose o.=%(0;,0,) where for some u,v €S o€ PR(Z),, and
o€ PR(Z)ryy - Then |
Ap(0): T XA*~—>C*
is defined by
(VaeA”) (Ap(a)0,a)=Ap(0y)(a))

and

(VteTXVaeA") (Ap(a)t+la) = Ap(a)(t,a) + Ap(o)(t,a, [0, (2,a)) )

Discussion. In this way we calculate the cost of evaluating a scheme over A. For operations of the
underlying algebra, the cost of evaluation is just the cost as determined by P. Projection functions
always access a single datum and so we charge one unit for evaluation. For the vectorisation of func-
tions QL=< 0y,..., Oy > WE imagine a;,..., o, to be executed in parallel, and the time taken to evaluate o
on an argument g is the maximum time taken to evaluate any coordinate scheme on a. For the composi-
tion of functions o= 0,0 @, we imagine each o; to be executed sequentially, and thus we take as the time
required to evaluate o to be the sum of evaluation a; and @, on their respective arguments. The costs of
pc(B, oy, 01,) and x(a;,0,) are arrived at along similar principles.

Example. As a simple example of how to calculate with PR schema, let A be an §-sorted Z-algebra
where De S, and I is defined by £,,,={ <} and I, , =@ for other w,s. If <* is a linear ordering <
on A,=D then we can show the maximum function on D is PR-computable over A as follows:

Semantically, maxp : D XD —>D is defined by
a if b SD a
maxp{a,b} =1, otherwise

foreacha,beD.

To show maxp € PR(A), we must find some a;me PR(Z),pp Such that oy, computes the max-
imum function. To do this, we let the semantic definition of ‘max,’ guide us in synthesising such a

scheme.

We start by considering an element (a,b)€ D xD . We must first access a and b by projecting
them out of the vector (a,b). This is achieved by projection functions of course: notice from clause (iii)



of Definition 3.3.2 we have

[Ui"Is(ab)=a and [QU;"14(a,b)=b (2)
Now, to compute ‘b<pa’ we must apply ‘<p’ to the pair (b,a) (and not (a,b) of course). Notice
U € PR(Z),p for i =1,2 (by clause (iii) of Definition 3.3.1), and so if we define a by

a=<U”,U”>
then ot € PR(Z)5 50 (Y clause (v) of Definition 3.3.1). Furthermore for each (a,b)e D xD we have
[ala(a.b) = [<U°Uf" >4 (a,b)

= ([U2"14(a,b),IU"1s(a,b))
(by clause (v) of Definition 3.3.2)

= (b,a) (3)
from (2). Now, since the codomain of a is the same as the domain of <, we have that B defined by

B = <o @ is a well-defined member of PR(Z),, 5 (by clause (vi) of Definition 3.3.1, via clause (ii)). We
now calculate as follows foreach (a,b)e D xXD:

[[B]IA (a :b) = [S° a]]A (d !b)

= [s]4(Tad4 (a b))
(by clause (v) of Definition 3.3.2)
=<' ([als(a,b))
(by clause (ii) of Definition 3.3.2)
=< (b.a)
(from (3))
=Sp(b,a) (4)

The three schemes f3, U, and U;", are of the appropriate arities to combine with the ‘DC’ opera-
tor: let
Omax = DC(B,UT%,UZ)
Then c.e PR(Z),, 5 (by clause (v) of Definition 3.3.1). Furthermore, for each (a,b)€ D xD, we calcu-
late

[0max]a (a,0) = [DC(B, U U], (a,b)
[U;"Ia(a,b) if [Bla(a,b)
- {[Uf”] a(a,b) otherwise
(by clause (iv) of Definition 3.3.2)

{d ist(bra)

b otherwise
(by (4) and (2))

= maxp{a,b }

Thus max, is PR-computable over A.

We can calculate the complexity of evaluating ot,,, on an argument (a,b)€ D xD according t0
A -time as follows:
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Ap(0)(@,b) = Ap (DC(B, U™ U))(a,b)
Ap(Ur°)a,b) if [BI4(a,b)=1t
=Ap(B)(a.b) + {lp (U;°)a,b) otherwise
(by clause (iv) of Definition 3.3.3)
Ap(Ui"Xa,b) if <p(bsa)
=Ap(P)a.0) + {1,. (UP)(a,b) otherwise

(by (4))

1 lf sJ‘D (b ,G)
1 otherwise

= Ap(B)(a,b) + {
(by clause (iii) of Definition 3.3.3).

=Ap(B)(a,b) + 1

By definition of B we now have
Ap(a)(a,b) = Ap(00S)(a,b) + 1

= Ap(@)(a,b) + Ap (S)([0d4 (a,b)) + 1
(by clause (vi) of Definition 3.3.3)

= Ap(0)(a,b) + < (Lo, (a,b)) + 1
(by clause (ii) of Definition 3.3.3)

= Ap(a)a,b) + 2
(since P measures A -time)

= Ap(<UPUP>Xa,b) + 2
(by definition of o)

= max{Ap (Ur°)a,b),Ap (U7°Xa,b) } + 2
(by clause (v) of Definition 3.3.3)

=max{1,1}+2
(by clause (iii) of Definition 3.3.3)

=3 0

Discussion. We think of a PR scheme in two ways. First and foremost, we think of a scheme as a func-
tion definition; for example, <U3",U{*> defines a function which swaps its two arguments. Secondly, we
think of a PR scheme as a program: there is an algorithmic procedure associated with any PR function
definition, namely the procedure which begins with a scheme o and an argument a, and comprises the
step-wise process of calculating [al]l, (a) according to the rules given by Definition 3.3.2. Note that this
procedure is effective in the sense that there are always finitely many steps in calculating [a]4 (a) for

any ¢ and a.



66 -

3.3.4 Derived Schema and Function Building Tools.

As further examples of how we use PR, we introduce notations for expressing identity functions
and the iteration of a function.

Identity Schema. For any w € S*we define
d” =<Uyf,...Uy>
where n = |w|.

Thus Id* € PR(Z),, ., and for any w € S, [Id™ ], is the identity function on A™; that is,
(VaeA”) ([ld"],(a)=a)

Iteration. Given a function f :AY —A™ for some we S% we can define a new function

g :TxXA” —>AY where for each teT and a € A™, g(t,a) is the result of applying f to a ¢ times.

Traditionally g (z,a) is denoted by f“)(a), and g is called the iteration of f. It will be useful to include
iteration as a new function building tool; we do this as follows:

Let o€ PR(Z), ,, for any w € S* We define the iteration of a, it (ot) by
it(a) = x(Id” ,00<ULY,..., UL >)
where n = |w |. (Notice it (a) € PR(Z),,, ., .) -

The following lemma establishes that [it ()14 (t,a) = [a]{)(a):

3.3.5 Lemma. Let o€ PR(Z),,, foranyw € S™. Then for any a € A”, [it(a)], satisfies:

Lit(a)]4(0a)=a (5)
Lit (o)1, (¢ +1,a) = [ad, (Dt (o), (2,a))

foreachteT.

Proof. Letn=|w|.Then
it(o) = x(Id” ,B)
where
B=0o<US..... UTian >
Choose a € A™. We must show that for every ¢ € T, the value of [it ()] (¢,a) is as predicted by (35).
First we consider [it ()] 4 (0,2 ):
[ (c)l4 (0,a) = [¥(1d™,B)]4 (0,a)
= [Id"].(a)
=a

since /d"™ is an identity scheme. Thus the value of [it (o)l (0,a) is as predicted by (5).

Now notice that since |w | =n, for any vector x € A™ the last n coordinates of x are x; for
i =2+n,..,142n, and thus if x=(t,a,b) for some t €T and some a,b € A", then x,, =b; for
i=1,.,n. Henceforeachte T anda,be € A",
[BB4 (t.a,b) = [al  (I<ULR,.... UTi2n >14 (2,a,0))
= [l (D) (6)
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Nowchooset € T anda € A”. Then,
it ()], (¢+1,a) = [*(Id™,B)], (t+1,a)
= [Bl4 (t,a,[it ()14 (t,2))
= [oB4 ([iz ()14 (£,2))
by (6). Thus the value of [it(a)] (#+1,a) is also as predicted by (5). O

3.4 SPECIFYING SYNCHRONOUS ALGORITHMS.

In Section 2.4 we saw how the behaviour of a synchronous algorithm or network N could be
mathematically described via the concept of a value function Vy, and we noted that this V), was intui-
tively defined by simultaneous primitive recursion over the network’s module specifications. In this
chapter we have formalised simultaneous primitive recursion over a general collection of functions, and
so it is now time to make explicit the connection between the account of synchronous algorithms given
in Chapter 2 and the formal system PR; in doing so we provide the necessary formalisation promised in
Section 2.5.1.

Our principal objective is to show that Vy € PR(A) for some algebra A. Before we do so how-
ever, we need to introduce some notation for describing synchronous networks in the context of a
many-sorted algebra. (Recall that in Chapter 2 synchronous networks were described as processing data
taken from a single-sorted algebra A.) In Section 3.4.1 we introduce many-sorted algebra notation for

describing the data sets and operations involved in a synchronous network, and in Section 3.4.2 we gen-
eralise network specifications to the many-sorted case.

3.4.1 Data Types.

The formal specification of a synchronous algorithm begins with a formal specification of the data
sets and operations involved in that algorithm. In this section we will explain how a given synchronous
network determines an algebra that is the basis for the formal specification of the network.

Since every synchronous algorithm involves a concept of time, and for convenience we regard
Boolean values and operations as always available, it is appropriate to begin formal specifications with
the smallest possible standard sort set § and signature X: thus S={T,B} and
¥ = (zero, succ, true, false, nct, or, and) (see Section 3.1.8). Now let N be a k-module synchronous network.
We adjoin new sorts to S and new symbols to Z in the following way. Suppose we intend the ith
module m; of N to be specified by a function f; :A¥¢)—>A, ;) or f; : T XA —>4,;, for i =1.....k;
then we extend S by adding the sort symbol s (i) and all the sort symbols comprising the word w (i) for
i=1,..k. Also for i =1....k we provide a name for f; by adjoining a new symbol &; to I, qy.,¢) if m;
is intended to be autonomous, or t0 Z,,, iy , i) Otherwise.

(Note that a sort symbol for the kind of data supplied by each source should also be adjoined to S.
However, since we will always assume that the output channel of every source is an input channel to

some module, the sort associated with the source is included in S when we consider the domain of the
function that specifies the module in question.)
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A picture of N together with the sort set S =Sy and signature T=X, described above are
sufficient to describe the syntactic aspects of N; of course, to specify the actual data sets and operations
involved in N we give a Z-algebra A =Ay. Finally, since network input varies with time in the general
case, we must introduce streams of data; this is accomplished by moving from A to the stream algebra
A =A__N_ (see Section 3.1.8).

3.4.2 Generalised Functional Specifications of Network Behaviour.

In Section 2.4 we introduced six functions for specifying the behaviour of an n-source, k -module,
m-sink synchronous network over data set A. In summary, these functions were (in order of appear-
ance):

Vi :TX[T—>A*]xA* —>At
Fy:TX[T—>A"]xA*—>A"
Gy : [T—>A*|xA* —[T —>A™)
vwwy i T XA"® XAt —>AL
fn:T XA'_XA"—;A"'

At this point the reader should recall the definition and interpretation of each of these functions.

Below we generalise each function to the more general case where different modules can hold different
kinds of data and different sources can supply streams over different data sets.

Consider the occurrence of ‘A*’ in the domains of the above functions: this is the set of all vectors
of data that can be collectively held by the modules of N at any given time ¢ in the single-sorted case.
Now, in the many-sorted situation described just above, the ith module holds data from 4, for
i=1,...k, and so at each time ¢t € T the k& modules will collectively hold some vector from A* where

w=s(1) - - - s(k). Intuitively then, this A* is the appropriate generalisation of A* to the many-sorted
case.

Now consider the occurrence of ‘A™”’ in the domains of our functional specifications: this is the set
of all vectors of input data that can be collectively supplied by the sources of N at any given time ¢ in the
single-sorted case. In the many-sorted case the ith source of N' can supply data from A,y for some sort
symbol 5" (i)e § =Sy for i =1...,n, and so the appropriate many-sorted generalisation of A" is A"
where u =s"(1) - - - s’ (k): at each time ¢ the n sources of N collectively supply a vector from A ¥,

What is the many-sorted generalisation of ‘A™*? For f=1,...,m, let {; be the (unique) index of
that module of N that supplies the jth sink with output data; then since that module holds data of sort

s (i;) (in the many-sorted case described above) the jth sink receives data also of sort s (i;). Clearly, the
many-sorted generalisaion of A™ isA” where v=5s(iy) - * - s(i,,).

It should be clear that under these hypotheses on the sorts of data associated with the sources and

modules of a synchronous network, the specification methodology of Section 2.4 extends uniformly to
the many-sorted case to yield generalised specifications of the form:

Vv :T X[T —>A*]xXAY —>A"™
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Fy:TX[T —>A*]1xAY —A"
Gy : [T —>A*]1xXAY —>[T —>A"]
VyWy o T XA XAY —>AY
fn :TXAYXAY —>A"

As far as possible we will use the notation introduced above in a consistent manner. For example,
we will continue to use »n, k, and m, for the number of sources, modules, and sinks, respectively, of a

synchronous network, and u, w, and v, for the ‘types’ of the vectors collectively held at a network’s
sources, modules, and sinks, respectively. O

We now formalise the specification of synchronous algorithms as pmnﬁsed earlier. In Theorem
3.4.3 we prove Vy and Fy are members of PR(A), and in Theorem 3.44 we prove vy and fy are
members of PR(A) (note that we do mean ‘A’ here and not ‘A’: static specifications do not involve
streams of data).

3.4.3 Theorem. If N is an n-source, k-module, m-sink synchronous network over § -sorted X-algebra
A=Ay, then Vy € PR(A)and Fy € PR(A).

Proof. To prove the theorem we must find some ay,By € PR(Z) such that [oy], =Vy and
[Brv1a =Fy.

Let us consider Vy first. Notice that for us to have [oy]l4 =Vy, [oy1, must have the same func-

tionality as V. Now, under the given hypotheses on N, Vyy must have functionality
Vy :TX[T —>A*]xXAY —>A"
(for some u € S" and w € $*) and s0 oy must have arity (Tuw,w); that is, oy must be a member of
PR(Z )pov wo because then we will have
- I[a]é : éry —>A w
that is,
fal, :TXA® XA —A”
But by definition of A for a general algebra A (see Section 3.1.8) A% =[T —>A*]and A¥ =A", and so
[onDs :TX[T—>A*] XA —A"

as required (cf. Notation 3.1.9).

Define oy by oy =*(0,,0p) where

o; = <Uitea U >

and

Oy = <02 1see0n g >
where, if the i th module m; of N is autonomous, then for i =1....,k,

UQ"' = O}“ <T11.....T|ﬂ' >

where n; is the number of inputs to m;, and for j =1....,n;,



-70 -
mlu"“:Uf ** Ul > ifthe jth input to m; is from source In,
N =7 uynew . if the jth input to m; is from module m,

and if m; is nonautonomous, then for i =1....,k, |
oy; = c;o-ch‘-?""’.nl.....n,' >

where »; and 1;...., M, are as above.

~ Itis not difficult to check that oy € PR(Z )y, a8 required. Also, a routine inductive proof on ¢
(which we also leave as an exercise) yields

(VteT)Va:T—A*)VxeA”) ([oy]s(t,ax) =Vy(t,ax))
That is, Vy =[oy ], and so we conclude Vy € PR(A).

Let us now consider Fy. Since N has m sinks we must have
Fy:TX[T —>A"]XA” —>A"

for some v € S™, and so we seek a scheme By € PR(Z ) of arity (Tuw ,v).

Recall that Fy is defined from Vy by

Fn(t.ax)=ny(Vy(t,2.x))
for each teT, a:T—>A%, and xe A”, where my (in the many-sorted case) is the function
nty :AY —>A" defined by
TN(QyrerGy) = (a;l..... a;_)
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