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Abstract

This thesis aims to develop an efficient methodology to construct efficient discrete choice

experiments (DCEs) for health state utility estimation within the QALY framework.

The use of the QALY measure in health economic evaluation together with meth-

ods related to measuring the QALY weight/health state utilities are reviewed in order

to establish the fundamental knowledge needed for valuing health. DCEs are used to

value health state utilities, which is simpler than other direct valuation methods. Nev-

ertheless, DCEs are still undergoing research to improve their uses in valuing utilities,

in particular in designing experiments which are used to construct the DCEs

The main issues with the current choice designs together with design considerations

for valuing utilities are identified in this thesis. Advanced work for constructing choice

designs, particularly Bayesian optimal design, is reviewed to construct more efficient de-

signs for valuing utilities. Since constructing Bayesian optimal designs requires a prior

distribution for the unknown choice model parameters, Bayesian analysis is performed

for a real data to obtain appropriate prior distributions.

Constructing Bayesian optimal choice designs for valuing utilities within QALY

framework using the existing choice design software is investigated. We find there

are limitations because of the design considerations for valuing health state utilities

particularly in terms of anchoring utility values into the QALY scale (0-1 scale). We

then develop a new algorithm based on modifying the latest advanced choice design

algorithms such that they account for the design considerations which overcomes the

limitations with the existing design software. Methods for simplifying the choice design

questions are also provided.

We demonstrate the use of our design algorithm by constructing Bayesian choice

designs for asthma quality of life classification system (AQL-5D), and then investigate

the effect of the choice of the prior distribution on the choice of Bayesian designs.
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Chapter 1

Introduction

1.1

Introduction

In this thesis, we tackle the problem of producing efficient surveys (choice experiments)

for valuing health outcomes (i.e. health states) to be used within health care evaluation

studies. In particular, we develop experimental design strategies to construct efficient

choice studies through bringing to bear the latest advanced work in design theory to

this important area of research in health economics.

This chapter introduces the main concepts of health economic evaluation, and the

use of choice experiments to value health outcomes. In the following section, we present

the importance of health economic evaluation in allocating limited health resources,

followed by a description for discrete choice experiments in Section 1.3. In Section

1.4, the motivation behind the needs to modify choice design in the health economic

field, particularly for valuing health utilities, is discussed briefly. Then, we highlight
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the main objective of our research in Section 1.5, and present the outline of the thesis

in Section 1.6.

1.2

Economic Evaluation in Health

Care

Recently, there has been a rapid advance in modern medicine, where there might be

many treatments or health care interventions for a single health condition. There are

many conditions to be treated with sometimes scarce health resources (e.g. funds,

people, time, facilities, equipment and knowledge). Publicly funded health care organ-

isations, such as the NHS, cannot necessarily offer the best possible treatment for each

condition; choices have to be made to allocate limited financial health resources wisely

so that the best health benefit is returned.

In making such choices, it is essential to consider both the quality and length of

someone’s life gained under each treatment. Health decision makers, such as those at

the National Institute for Health and Care Excellence (NICE) in England and Wales,

take these factors into account when carrying out a Health Technology Appraisal (HTA)

on a new health care intervention. The process of the appraisal takes into account the

clinical and cost effectiveness of a technology (e.g. a drug) along with other specified

considerations through three phases; scope, assessment and appraisal. During the

scope phase, the question of interest for a technology appraisal is formulated in order

to be addressed later on the assessment procedure. In the assessment process, a health

technology is evaluated based on the relevant evidence available to produce an estimate
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of a technology’s clinical and cost effectiveness for a specific appraisal question and

context, while taking into account uncertainty around both quantities. This phase

usually consists of two parts; a systematic review and an economic evaluation. The

assessment and its analysis are then reported together with additional information

supplied by consultees, patient experts and the general public to formulate an appraisal

decision. A guidance of the technology appraisal is then produced and sent to the health

care providers at the NHS, who revise the recommendations made by NICE and decide

whether the new treatment or health intervention provides good value for their money.

A comprehensive analysis is required to ensure that the final guidance issued by the

Institute is appropriate and robust. Thus, it is essential to provide a high standard and

transparent health economic evaluation study for any new intervention. Health eco-

nomic evaluation is described by Drummond et al. (2005) as a comparative assessment

of alternative courses of action in terms of both their costs and consequences (health

care benefits). There are several evaluation techniques to provide evidence for cost

effectiveness of an intervention. These techniques, such as Cost-effectiveness Analysis

(CEA), Cost-minimisation Analysis (CMA) and Cost-utility Analysis (CUA), mainly

differ in the way that health care benefits are measured (see Drummond et al. 2005

for more details about the key distinctions and analysis of each evaluation technique).

CEA has been regarded as the dominant method for decision making policy. In

CEA, effectiveness is commonly measured in natural units such as life-year gained or

death adverted. The results are expressed as cost per unit of effectiveness. However,

using such measures makes it inappropriate to compare interventions with different

primary outcomes. For example, kidney transplantation could be compared to heart

surgery if the common effect of interest is only life-years gained, but the comparison

become difficult if outcome measures differ.

In the 1980s and 1990s, an alternative generic outcome measure that combines

the morbidity (quality of life) and mortality (quantity gains) in a single measure was

developed. This measure is the quality-adjusted life-year (QALY) which describes
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both the quantity and quality of life gained from a particular health intervention.

An evaluation method using this measure is termed a cost-utility analysis (CUA).

The utility term is used here to refer to individuals’ preferences for any particular

set of health outcomes. The QALY measure allows for a comparison of the relative

effectiveness between interventions for the same disease and interventions from different

therapies even if there is no common effect of interest. The results from the CUA are

expressed as cost per QALY gained, where one QALY is equivalent to living one year

in perfect health.

Though other generic measures have been suggested as an alternative to the QALY,

such as health years equivalent (HYE), save young life equivalent and disability ad-

justed life-year (DALY), few economic evaluations have used these methods as their

strengths and weaknesses are not fully established (Drummond et al., 2005). There-

fore, many health care decision-maker guidelines recommend the use of analyses that

use cost per QALYs gained, as in the reference case of NICE (2008) in UK (NICE

guidance to perform HTA), and similar bodies in the USA and Australia (Ryan et al.,

2006). The NICE reference case allows the Institution to make a comparison across

different health interventions, since it makes sure that the appraisals for all interven-

tions adopt the same approach for the analysis of clinical and cost effectiveness. The

reference case specifies the most appropriate methods to conduct an HTA including,

for example, whose preference to elicit for valuing health (e.g. patients, carers) and the

most appropriate approach to measure health outcomes, together with other aspects of

analysis. The methods should be appropriate for the Appraisal Committee’s purposes

and meet the objective of the NHS of maximising health gain from limited resources.

The QALY measure is particulary useful for those organisations where decisions must

be made across different interventions which usually have different primary outcomes.

In CUA, making the choice of the most effective intervention depends on comparing

the expected change in costs to the expected change in QALYs gained by choosing one

intervention over another. This cost effectiveness outcome measure is expressed as
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incremental cost effectiveness ratio (ICER):

ICER =
∆C

∆E
< κ, (1.2.1)

where ∆C and ∆E are the mean difference in costs and effects, respectively, and κ is

the threshold value of willingness to pay per QALY gained (e.g. in NICE reference case

(2008) a threshold value of £20,000–£30,000 per QALY gained is used). Therefore, for

any two interventions A and B, intervention B is said to be cost effective and provide

a good value for NHS budget if ICER = CB−CA
EB−EA

< κ.

However, a decision made based on the estimated change in cost and effect only

would ignore uncertainty associated with these quantities. Thus, sensitivity analysis

is often required by the decision maker in order to account for any source of bias and

uncertainty around the cost effectiveness model used to inform the estimate of costs

and health effects. The model should account for the uncertainty and limitations on

the evidence used to estimate costs and effects. NICE (2008) identifies three sources of

uncertainty in cost effectiveness analysis: structural uncertainty of the decision model,

uncertainty surrounding the sources of collected data, and parameter uncertainty as-

sociated with inputs to the model.

It is of interest for health decision makers to minimise bias and uncertainty sur-

rounding the overall decision, to reduce the risk of making inappropriate decisions.

This is partly related to uncertainty in the estimated value of cost per QALY gained.

Thus, in the following section, we firstly discuss how QALYs are determined and then

introduce different methods to value the quality of health outcomes, i.e. the ‘Q’ part

of the QALY, mainly using the discrete choice experiment (DCE) technique.
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1.3

Discrete Choice Experiments and

Valuing Health

In the NICE reference case for CEA, the value of health effect should be expressed

in term of QALYs for the appropriate time horizon. The calculation of the QALY is

straightforward when the values of health related quality of life (HRQoL) associated

with health outcomes become available: the QALY is calculated as individual’s length

of life weighted by a valuation of their HRQoL over that period (Drummond et al.,

2005). The valuation of the HRQoL consists of two parts: (1) the description of changes

in HRQoL as a result of treatment, and (2) a valuation of that description of HRQoL.

However, there are many health conditions treated by the NHS, and the description

of quality of life might consider different aspects of individuals health. Thus, it is

not possible to conduct a survey that values all possible changes in HRQoL for all

health conditions. Therefore, changes in health/HRQoL need to be measured using a

particular health instrument that reduces the number of health conditions evaluated

so as to make the survey manageable, while being able to value all changes in health

using a statistical model. In health economics, the change in HRQL is described using

different multi-attribute health status classification systems such as European qality of

life with five dimensions/attributes (EQ-5D), short form with three dimensions (SF-

3D) (developed in ScHARR, Brazier et al. 2002) that can used for any illness, and

other systems developed for specific conditions (e.g. AQL-5D for asthma).

Different classification systems produce different quality weights (utility scores),

and hence results from different systems are not always comparable. Given that com-

parability is important for policy decision makers such as NICE, a single classification
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system should be used for the measurement and valuation of HRQoL. Based on the

comparative nature of NICE work and the need for consistency across appraisals, NICE

prefers the EQ-5D measure from the EuroQol Group for preference measure. The EQ-

5D consists of five dimensions/attributes of health: mobility, ability to self care, ability

to perform usual activities, pain and discomfort, and anxiety and depression. Each at-

tribute in turn consists of three levels ordered from less to most severity. Each health

state is described in the form of a five-digit code using the three levels. For instance,

the EQ-5D health state 11232 indicates no problems with mobility and self care, some

limitation in the usual activities with extreme pain, and a moderate level of depression.

There has been some argument around the applicability of using a single preference

measure for all interventions and patient groups, since some generic measures have been

found to be sensitive or lacking in relevance to the conditions (Brazier and Tsuchiya,

2010). In the circumstance where EQ-5D is not an appropriate measure to describe

the change in HRQoL, NICE requires empirical evidence to illustrate why it is not

appropriate, and how the choice of other instrument would impact on the valuation of

the QALYs.

Using these classification systems, health conditions can be then mapped to those

health states defined by the underlying classification system, such as the EQ-5D, and

hence be able to estimate the quality value of any conditions. The question now is

how to elicit the quality values of these health descriptions (HRQoL), i.e. the ‘Q’

part of the QALY or also known as utility related to the HRQoL, in order to be used

in computing the QALY values. These values are elicited directly from patients or

general public using a choice based method. Two commonly used choice methods

to value health outcomes (here, health states defined by the underlying classification

system) are the time trade-off (TTO) and standard gamble (SG) methods. In the

TTO technique, respondents are asked to choose between living for t years in their

current health state (e.g. EQ-5D health state 11232) or living for x years in full health

(EQ-5D state 11111), where x < t. The SG method captures the risk attitude, where
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respondents have to make a choice between a certain outcome (e.g. EQ-5D health

state 11232) and an uncertain outcome that has two possibilities; either return to full

health with probability P or immediate death with probability 1−P . Both evaluation

techniques involve questions that might be complicated and contain biases as measures

of preference (Brazier et al., 2007). Recently there has been increased interest in using

an easier preference elicitation method to value health states within QALY framework:

discrete choice experiment (DCE).

The methodology of deriving individuals’ preferences/utilties using DCEs has been

developed in market research since it was first introduced in the early 1970s (Louviere

et al., 2000). The choice experiment involves asking consumers to choose the preferred

product from a set of hypothetical products called a choice set. Each product is

described by a combination of attribute levels which is called a profile. The technique

is used in marketing to identify the importance of each characteristic of the product

(attribute and its level) based on the specified preferences. This can tell economists

how to improve the product based on consumer preferences, and hence maximise sales

(Carson et al., 1994). In health economics, DCEs have been used recently to value

health states utilities within the QALY framework. Patients are assumed to value

different health states based on their attribute levels defined by the classification system

under study. For instance, using the EQ-5D classification system a respondent might

be asked to choose the preferred health state (profile) from the following choice set

{11232, 12321}, where more preferred health states have higher health-related utility

values.

Utilities are required for all health states defined by a classification system to be used

within a health economic evaluation study. Nevertheless, it is not feasible to directly

value all these health states using DCE, since a classification system might produce

hundreds or thousands of health states which results in large choice experiments. For

example, EQ-5D has 243 possible health states, and considering a DCE of pairwise

comparisons, i.e. each choice set consists of two health states/profiles, this only would
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require a valuation of 29,403 possible pairwise comparisons, which is infeasible. Because

participants can only value a limited number of choice sets, rarely exceeding sixteen in

health economic evaluation studies and more usually around eight (Ryan and Gerard,

2003). Therefore, a selection of those health states and choice sets should be evaluated.

This collection of choice sets presented to individuals constitutes the design of the

experiment. Accordingly, the choice of health states to be evaluated is essential if an

efficient choice design is to be generated.

In most health economic evaluation studies, these health states are typically se-

lected based on a simple design such as an orthogonal design (de Bekker-Grob et al.,

2010), although generating choice experiments for health economic evaluation is a much

more complex problem that requires more than just standard design methods. This is

because, in addition to the basic choice of health states/profiles, consideration must be

given to excluding unrealistic health states (e.g. health states with a combination of

serious mobility health problem and no limitation in self care) as well as other design

considerations for valuing health utilities within QALY framework.

1.4

Motivation for Better Choice

Design

The main issue with choice studies conducted to value health state utilities is related

to the design methods used to construct the DCEs. A recent overview of DCEs in

health economics by de Bekker-Grob et al. (2010) shows that despite the advanced

development of DCEs in different areas outside health economics, particularly in terms
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of experimental designs and methods of analysis, the construction of the choice designs

for valuing health state utilities is still rudimentary, such as using existing orthogonal

rays design in SAS or SPSS programmes (e.g. the DCE study conducted by Brazier

et al. (2009) to value asthma health states). The orthogonal designs, usually chosen for

convenience, are based on linear principles, thereby ignoring the nonlinear nature of

the choice model, and this might reduce the efficiency of the choice design. Therefore,

we need to improve the methodology of constructing choice designs to produce more

reliable assessments for health-related utility values.

Recently there has been a considerable development concerning the experimental

design for choice studies, particularly within optimal design theory. There are al-

gorithms for producing choice experiments that are optimal for different statistical

measures (e.g. work by Kessels et al. 2006, 2008, 2011b). However, these devel-

opments have not received much attention from researchers in health economics. In

addition, there is still further development required, for instance in terms of using

more complex models that allow for taste variation in individual’s preferences; and

using prior assumptions about choice models’ parameters, obtained from pilot studies,

in the design development (Rose and Bliemer, 2008). This thesis employs the latest

advanced work in design theory, while incorporating available information about both

individuals’ preferences and health state instruments, obtained from prior studies, in

generating the choice design particularly for paired comparisons. We will use Bayesian

optimal design theory, and aim to improve the statistical efficiency of the choice design

and consequently the reliability of health state utility values.

Developing the survey design of health study is important to obtain precise es-

timates for the QALY values, and consequently improve the accuracy of the overall

decision made using the views of the general public.
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1.5

Aim of the Thesis

The use of DCEs for evaluation health states within the QALY framework seems

promising. However, this technique still needs considerable development to produce

reliable assessments for health state utility values. In this thesis, we consider how to

improve the efficiency of choice designs for valuing health states. Our aims are the

following.

1. Search the literature for the latest advanced work in discrete choice experiments,

particularly within optimal design theory. The search will cover algorithms and

software used to construct choice designs in different fields. We will investigate

the ability of available software to construct a choice design for health evaluation

studies.

2. Develop an efficient methodology for generating optimal or near optimal choice

designs for health state utility determination within the QALY framework.

3. Provide different methods to assign an appropriate prior distribution for the

choice model’s parameters. Since constructing choice designs for non-linear mod-

els, here discrete choice models, depends on the unknown model’s parameters

where Bayesian approach will be used to overcome the dependency problem.

4. Investigate the effect of the choice of prior distribution on the design efficiency,

and assess the robustness of the choice design to the choice od prior distribution.
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1.6

Thesis Outline

The thesis consists of three parts. Part one provides a background knowledge of

the main concepts of health economics and measuring health outcomes using QALYs,

alongside a description of health state evaluation techniques, particularly using DCEs

and their models (Chapter 2). This is followed by an overview of the current appli-

cations of DCEs in health economics, particularly those used for valuing health state

utilities, and a literature review for the latest work in the optimal design theory for non-

linear models (specifically discrete choice models) in other economic areas (Chapter

3).

The second part of the thesis (Chapters 4–6) describes the application of a DCE

conducted to value health states defined for asthma using the AQL-5D health instru-

ment, and presents methods to produce and improve choice design for health evaluation

studies.

• Chapter 4 presents two real health economic studies conducted to value asthma

health states utilities using the TTO and DCE techniques. It also provides an

analysis for the choice data collected from those studies in both classical and

Bayesian manner to obtain appropriate prior distributions for the construction

of Bayesian choice designs.

• Chapter 5 presents the software noted in the literature that generates choice

designs for nonlinear models, and our attempt to construct choice design for

the AQL-5D instrument using such software. In addition, it illustrates prob-

lems and difficulties in using this software to generate efficient choice design for

health valuation purpose. And finally, it proposes our design algorithm to con-
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struct choice design, particularly paired comparison design for the logit model,

for valuing health states, taking into account health design requirements during

the design phase. Thus, our design algorithm considers optimising the correct

design criterion that takes into account the including of the death state in the

choice model, i.e. the logit model, to anchor health state utility values within

the QALY scale, as well as excluding unrealistic and dominant states from the

optimal choice design.

• Chapter 6 investigates the effect of using the prior information about the indi-

viduals’ preferences on developing the efficiency of the design choices, and studies

how a different choice of prior distribution could affect the choice of Bayesian op-

timal design.

The final part is a discussion of the results obtained, and presents a number of

design limitations and recommendations for future work (Chapter 7).
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Chapter 2

Valuing Health and Discrete Choice

Experiments

2.1

Introduction

In health economic evaluation, it is essential to have a common health effect mea-

sure to be able to make a decisions about resources allocation across different health

programmes or treatments which usually have different primary outcomes. Therefore,

many health care organisations, such as NICE, recommend the use of cost-utility anal-

ysis (CUA). This type of health economic evaluation allows for comparisons across

various health programmes by using a single health effect measure called the QALY

that considers both the quality and quantity of life gained.

This chapter begins by defining the term QALY, and discusses how QALY are

determined and used in CUA. This is followed by classifying the change in health-
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related quality of life using different health descriptive systems in Section 2.3, and

presenting methods to value these changes in health, particularly using discrete choice

experiments (DCEs), discussed in Section 2.4. The final section of this chapter discusses

modelling discrete choice data, and illustrates the derivation of a widely used discrete

choice model, namely the multinomial logit model (MNL).

2.2

QALYs

In health economics, an extremely useful innovation has been developed to assess the

benefits of different interventions in terms of health-related quality of life (HRQoL) and

survival (in years), using a single measure called quality-adjusted life years (QALYs).

Weinstein et al. (1996) define the QALY as a measure of health outcomes which assigns

to each period of time a weight, ranging from 0 to 1, corresponding to the health-related

quality of life during that period, where a weight of 1 corresponds to optimal health

and a weight of 0 corresponds to health state judged to be equivalent to death.

The number of QALYs associated with a health outcome (e.g. health state) is

expressed as time of life spent in a specific health state weighted by a valuation of that

state. If an individual is expected to live Y years in less than full health, then the

number of QALYs experienced is equivalent to living X years in perfect health where

X < Y (Brazier et al., 2007). Thus, a year of perfect health is equivalent to one QALY.

This could be divided between several individuals or years. For instance, one QALY

is equivalent to four people experiencing one year in a health state valued at 0.25, or

one person living for two years worth 0.5 QALY weight.

The weights, also known as utilities, should be based on a preference measure such
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that the more desirable health state receives more weight, and hence will be preferred

in the analysis. They also must be measured on an interval scaled relative to perfect

health and death. These two points are required since they both occur in any health

programme evaluated using QALY analysis, and weights will be required for them. In

the literature the most convenient scale for the utility scores is the 0–1 scale, where zero

represents death and one reflects perfect health (Drummond et al., 2005). However,

it is still possible to assign negative values for states that are worse than death, and

values more than one for states better than perfect health if they exist.

The QALY weights are used in the CUA to determine the most cost effective treat-

ment for the NHS budget. This can be illustrated by considering the following example.

2.2.1 Illustrative Example

In this section we illustrate the way of computing QALYs gained from different treat-

ments and their uses in CUA to determine the most cost effective treatment.

Suppose there are two treatments to be considered by the NHS to recover from

back pain. Treatment 1 is a new drug that costs £10, 000 per patient, and is expected

to extend patient life for 4.25 years (4 years 3 months) with a quality of life less than

perfect worth 0.6. Treatment 2 is the standard care that costs £3, 000 per patient, and

receiving such treatment is assumed to generate 4 additional years in a health state

valued at 0.55.

Suppose that the NHS has to prioritise funding for one treatment, so that a choice

has to be made between the treatments. In CUA, such a decision is made based on

comparing cost effectiveness of both treatments using the ICER, to decide whether the

extra cost of the new drug is worth the small changes in the quality of life. The ICER

can be calculated as defined in equation (1.1.1),

ICER =
∆C

∆E
< κ,
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where ∆C and ∆E are the mean differential costs and effects (population mean number

of QALYs gained), respectively. Treatment is said to be cost effective if ICER is less

than κ, which is a predefined value of willingness to pay per QALY gained.

Now, to compute the cost effectiveness of the provided treatments, we need to

compare the additional cost of the new drug, £7, 000, to its extra effect compared to

the standard treatment (QALYs gained). Comparing the new drug with the standard

treatment in terms of QALYs gained indicates that the new drug leads to an additional

0.35 QALY – that is, QALYG = QALYT1 − QALYT2 = (4.25 × 0.6) − (4 × 0.55) =

2.55 − 2.2QALYs = 0.35 QALY. Thus, the ICER = £7000
0.35

= £20, 000 per QALY,

so the new drug would cost an additional £20, 000 per additional case successfully

treated. Using a threshold value of £30, 000, for example, for κ indicates that the new

drug is cost effective and provides good value for NHS budget, although its changes to

the quality of life compared with the standard care is small.

The determination of the quality weight or the ‘Q’ part of the QALY needs a

measure to describe the effect of disease or its treatment in the HRQoL, as explained

in Section 2.3, and a technique to value these description of health consequences, which

will be discussed in Section 2.4.

2.3

Classification Systems

The quality of life experienced during a specific time covers a whole range of different

aspects of individual’s health, including physical state, mental capacity and social ac-

tivities, and hence not only the absence of disease. This multidimensional definition of

health or HRQoL and the variety of illnesses treated by the NHS make it impossible to
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assign a QALY value to each health condition directly. Therefore, a health instrument

is needed to define and value a finite set of health states while being able to estimate

the QALY values for all possible health conditions. The health instrument describes

the impact of diseases or their treatment on HRQoL in terms of the most important

features related to a health condition (e.g. symptoms, general well-being). These fea-

tures are called attributes. For each attribute various levels of severity are defined, for

example, no problem, little problem, and extreme problems. A set of attributes and

levels constitute what is called the multi-attribute health status classification system,

and a combination of the attribute levels defines a health state.

Those health classification systems enable health economists to assign QALY values

for all possible health conditions. This is possible through obtaining QALY values for

a subset of health states defined by a classification system, then estimating the QALYs

for all health states defined by the system using a statistical model, as described in

Section 2.3.3. QALY values are then obtained for any real world state of health by

mapping this state on to the classification system.

Health economists discriminate between two types of health instruments based on

their contents: generic classification systems general to any health condition, and con-

dition specific classification systems more specific for disease symptoms. A description

and examples for each type are provided in Sections 2.3.1 and 2.3.2, respectively.

2.3.1 Generic Classification System

The generic classification systems, used for any type of population, cover general char-

acteristics of health such as mobility, pain, activity limitation and depression. They

do not cover small and important aspects of specific conditions or diseases as this

may make them inappropriate for all conditions. In health economics, there are many

generic health instruments, such as the EQ-5D, SF-6D and health utility index (HUI)

In this section, we review the widely used EQ-5D instrument.
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• EQ-5D

The European Quality of Life (EUuroQoL) group was initially developed by Eu-

roQol (1990) with six attributes, and then revised to include five attributes: mo-

bility, self care, usual activity, pain/discomfort, and aniety/depression (Brooks,

1996). Each attribute has three levels of severity ordered from no problem (level

1) to major problem (level 3). This produces 35 = 243 possible health states

which is raised to 245 states when dead and unconscious are added for scaling

purpose. The perfect health state is defined as the combination of the best level

of each attribute. Each health state is described as a five-digit code using the

three levels. For instance, health state 11222 indicates no problem with mobility

and self care, some limitation with usual activities, and moderate pain and level

of depression.

NICE recommends measuring HRQoL, and hence QALYs, using the EQ-5D to

ensure that all patients in different conditions are being assessed against the same

health features. This allows for the comparison of health interventions with different

primary outcomes (NICE 2008). NICE argues that the generality of this measure makes

it applicable for all interventions and groups of patients. However, this instrument has

been shown to perform poorly with some conditions, such as in visual impairment in

macular degeneration (Espallargues et al., 2005), hearing loss (Barton et al., 2004), and

leg ulcers (Walters et al., 1999), as its attributes focus on general rather than specific

aspects of health. An alternative is to use a more specific descriptive system that

captures the impact on HRQoL of patients with specific diseases. In this case, NICE

requires the provision of evidence to explain why the EQ-5D health status system is

not appropriate for a specific class of patients, and clarification of the use of the new

instrument.
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2.3.2 Condition Specific Classification System

Condition specific health state instruments are used with specific populations who have

a particular condition or disease. The health state utilities obtained using condition

specific preference-based measures (CSPMs) might produce more relevant economic

evaluations than generic preference-based measures (GPMs) (Yang et al., 2010), as

they are more relevant to changes in HRQoL associated with a specific illness. An

example of such an instrument is the Asthma Quality of Life classification with five

dimensions/attributes (AQL-5D), shown in Table 2.1. This health instrument will be

used for constructing and producing the analysis of the choice designs throughout this

thesis.

• AQL-5D

The Asthma quality of life (AQL-5D) is a specific descriptive system derived

from the condition specific instrument AQLQ. It is designed to describe HRQoL

in adult patients with asthma. Initially, the AQLQ consists of 32 items covering

four dimensions of health: asthma symptoms (12 items), activity (11 items),

emotional function (5 items), and environmental stimuli (4 items). Each item

has seven levels, ranging from no problems to extreme problems. This numerous

number of health dimensions and levels produces millions of possible health states,

where each health state involves a considerable amount of information to be

evaluated by respondents. This complicates the valuation process, as respondents

have difficulty in valuing health states with more than 9 attributes (Brazier et al.,

2012).

To simplify the valuation of HRQoL described by the AQLQ instrument, Yang

et al. (2007) developed an approach to produce a health state classification sys-

tem from the large AQLQ instrument with five attributes only: concern about

asthma, shortness of breath, effect of weather and pollution, the impact of asthma

on sleep and general activities. Each attribute has five levels of severity as shown
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in Table 2.1, where level 0 is used to indicate no problem and level 4 for extreme

problems, defining 3,125 possible health states. For example, asthma health state

11244 indicates that a patient feels concern about having asthma and short of

breath a little of the time, his/her health is affected by the weather and pollu-

tion sometimes, and he/she cannot have a good night’s sleep, and has extreme

limitations in all activities.

Table 2.1: Asthma Quality of Life Classification System (AQL-5D)

Attributes Attribute Levels

Concern

Feel concerned about having asthma none of the time.
Feel concerned about having asthma a little or hardly any of the time.
Feel concerned about having asthma some of the time.
Feel concerned about having asthma most of the time.
Feel concern about having asthma all of the time.

Short of Breath

Feel short of breath as a result of asthma none of the time.
Feel short of breath as a result of asthma a little or hardly any of the time.
Feel short of breath as a result of asthma some of the time.
Feel short of breath as a result of asthma most of the time.
Feel short of breath as a result of asthma all of the time.

Weather and Pollution

Experience asthma symptoms as a result of air pollution none of the time.
Experience asthma symptoms as a result of air pollution a little or hardly of the time.
Experience asthma symptoms as a result of air pollution some of the time.
Experience asthma symptoms as a result of air pollution most of the time.
Experience asthma symptoms as a result of air pollution all of the time.

Sleep

Asthma interferes with getting a good night’s sleep none of the time.
Asthma interferes with getting a good night’s sleep a little or hardly any of the time.
Asthma interferes with getting a good night’s sleep some of the time.
Asthma interferes with getting a good night’s sleep most of the time.
Asthma interferes with getting a good night’s sleep all of the time.

Activities

Overall, not limited with all the activities done.
Overall, a little limitation with all the activities done.
Overall, moderate or some limitation with all the activities done.
Overall, extremely or very limited with all the activities done.
Overall, totally limited with all the activities done.

These classification systems produce hundreds or thousands of health states, and

this number increases as the number of attributes and levels increases. The main

questions now are how to evaluate and estimate the utility value for all health states

defined by a classification system, and which of these health states should be presented

to respondents?
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2.3.3 Modelling Health State Classification System Valuation

Eliciting the utility values, directly, for all health states defined by a classification sys-

tem is not practical, since there are too many health states produced by a classification

system (e.g., AQL-5D produces 3,125 health states). The solution to this difficulty is

to value a selection of health states using one of the preference measures illustrated in

Section 2.4 (e.g., time trade-off or standard gamble methods), then estimate a model for

predicting the utility values for all health states defined by that classification system.

A range of models have been developed to fit and analyse the elicited preference

data, and estimate health state valuations. Here, we consider the fundamental statis-

tical model used to estimate health state values. The basic model defines health state

utility as a function of that state, that is the attributes and attribute levels of the

classification system. This is typically expressed as in McFadden (1974) by equation

(2.3.1), where the latent utility of individual i valuing health state xij is decomposed

into two parts: a systematic component, g(xij), defined as the population mean utility,

which is a function of the attributes that make up the states; and a random component,

εij, that represents the variation around the population mean utility.

Uij = g(xij) + εij. (2.3.1)

In this thesis, the population mean utility, g(xij), is defined as a linear additive

model of the attribute levels:

g(xij) = 1− βxTij, (2.3.2)

where βxTij represents the utility loss from perfect health, which is here mapped as the

best health state defined by the classification system, to health state xij. We write the

22



health state xij as a vector of dummy variables with elements defined as

xλδ =

 1 if attribute δ of health state xij is at level λ or higher,

0 otherwise.

For example, in terms of the AQL-5D classification system, where each health state

is defined by 5 attributes each with 5 levels of severity, health state xij would be a

vector of 20 dummy variables; rij = (x11, x21, . . . , x41, . . . , x15, . . . , x45). For instance,

health state 13402 would result in rij = (1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0).

Health state valuations must follow the convention that utilities are defined relative

to the utilities of perfect health and death, where perfect health has a utility of 1

and death has a utility of 0 as discussed in Section 2.2; therefore, a dummy variable

corresponding to death, xd, is included in the representation of health state utility,

where

xd =

 1 if health state xij is the death state,

0 otherwise.

Thus, health state 13402 would be represented by a vector of 21 dummy variables with

xd = 0, and the death state is represented by a vector where the first 20 elements are

0, and the last element is 1.

The first 20 elements of the corresponding vector to the unknown parameters of the

utility model, β = (β11, . . . , β41, . . . , β15, . . . , β45, βd), represent the decrease in utility

associated with moving one level on one attribute, and βd represents the decrease

in utility associated with moving from perfect health to immediate death. Thus, the

mean utility value of any health state is computed as 1 minus the sum of the coefficients

corresponding to the attribute levels defining the health state. However, based on this

definition, the utility value of death is not anchored at zero, so the estimated utility

values are not anchored on the 0-1 scale required for calculating the QALYs. Following

the rescaling method in McCabe et al. (2006) of dividing all parameters of the proposed

health state utility model by the death coefficient, that is βrλδ = βλδ/βd, ensures that
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death has zero utility.

According to this definition of the population mean utility, g(xij), perfect health

would have utility of 1, since the dummy variables in xij are all zero. For the death

state, βxTij = 1 and hence the mean utility value is defined to be 0. This follows

since for death state the dummy variables in xij are all zero except the death variable,

and the parameter of death βd = 1. Using this statistical model, utility values can

be estimated for any state defined by the AQL-5D classification system within the

required scaled of the QALYs, while retaining the possibility of having health states

worse than death (i.e. Uij < 0).

2.4

Measuring Preference

Having introduced different classification systems to describe health conditions, and

modelled their health state valuations; it is essential to present how these values or

health state utilities are elicited for a subset of health states. In this section, we

review various valuation techniques used in health economics for measuring health state

utility that reveal individuals’ preferences for particular health states; time trade-off

and standard gamble methods are discussed in Section 2.4.1, and some alternatives in

Section 2.4.3.

2.4.1 Direct Valuation Techniques

Direct valuation techniques, also know as cardinal techniques, are used to measure

individuals’ preference of health state for particular health conditions. In such tech-
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niques, a health state is assigned a weight/value reflecting the strength of preference of

this health state relative to the worst and the best defined health states, often death

and full health, respectively. Thus, cardinal values are anchored directly on the 0–1

scale. In this section we review the most widely used techniques; time trade-off (TTO),

standard gamble (SG), and visual analogue scale (VAS).

2.4.1.1 Time Trade-Off

The time trade-off (TTO) technique was developed by Torrance et al. (1972). In this

method, respondents are asked to trade off between the improvement in their quality

of life and the number of life years they are willing to sacrifice in order to avoid a

certain poorer health state (Brazier et al., 2007). For health states considered better

than death, the respondent is asked to choose between two certain options:

1. Living for t years in health state i, worse than perfect health, followed by death.

2. Perfect health for time x < t years followed by death.

The time x is varied until the respondent is indifferent between the two choices, for

which the utility of health state i is given by x
t
.

If health state i is considered worse than death, the respondent will be given two

alternatives:

1. Health state i for time t− x, where x < t, followed by perfect health.

2. Immediate death.

Again time x is varied until the respondent is indifferent between the two alterna-

tives. The utility for health state i is then defined as −x
t−x .

• Example:

Consider the TTO exercise in Yang et al. (2007) that interviews 300 individuals
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Figure 2.1: Time-trade off (TTO) technique for asthma health state preferred to death,
redrawn from Brazier et al. (2007)

to elicit utility values for 98 asthma health states. Considering asthma health

state 00122, an individual is asked to imagine being in AQL-5D state 00122 for

a remaining life expectancy of 10 years; and then he/she is provided with two

options: either living for 10 years in state 00122 or living shorter time, x < 10,

in perfect health (the best health state defined by the AQL-5D, 00000) followed

by death, as shown in Figure 2.1.

The individual is then asked to consider a number of shorter periods in perfect

health that makes him/her indifferent between choices. Now as the provided

health state is pretty good, the individual may not be willing to trade much

time. The study shows that the health state utility value of an individual is

0.829 QALYs – that is, the individual is unable to choose between health state

00122 and being healthy when x = 8. The task is then repeated for several

individuals for all the selected health states. The elicited TTO values for each

health state can be used to estimate utility model parameters using individual

level models, which considers variation between respondents (e.g. a random effect

model), or aggregate level models that are estimated based on the mean TTO

values of each health state.
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2.4.1.2 Standard Gamble

The standard gamble (SG) is a classical method to measure utility. In the SG method,

respondents are faced by two choices: a certain health state and a risky option. The

method varies, depending on whether the health state is preferred to death or is consid-

ered worse than death. For a health state considered better than death the respondent

is offered two alternatives:

1. Treatment with uncertain outcomes: either return to perfect health and live for

an additional t years then death, with probability P ; or immediate death with

probability 1− P .

2. Health state i with certainty for t years followed by death.

The probability P is varied until the respondent is indifferent between the two alter-

natives. The utility value of health state i for t years is equal to the given probability

P for the better outcomes in the risky option.

For a health state considered worse than death, the participant is shown two alter-

natives:

1. Treatment with uncertain outcomes of perfect health for t years with probability

P , and health state i with probability 1 − P of living for t years, again both

followed by death.

2. Immediate death.

The probability P is varied until the respondent is indifferent between the two alter-

natives. In this case, the utility value of health state i is given as the negative value of

the probabilities ratio, −P
1−P .

• Example:

Consider the example of being in asthma health state 00122 for 10 years followed
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Figure 2.2: Standard gamble technique for asthma health state preferred to death,
redrawn from Brazier et al. (2007)

by death, where here time is consider to be fixed). The SG technique asks a

different type of question. In this method, respondents would be provided with

two alternatives; living for 10 years in asthma state 00122, or taking a risky option

with two uncertain outcomes: either living an additional 10 years in perfect health

(the best health state defined by the AQL-5D, 00000) or immediate death, with

probabilities P and 1− P respectively, as illustrated in Figure 2.2.

Individuals are then asked to provide the probability value that makes them

indifferent between the two alternatives. A probability wheel is typically used

in the SG task to help individuals to elicit the probability value. The wheel is

divided into two parts with a different colour representing each outcome of the

risky option: death and full health. Equal parts would show a 50/50 chance

of receiving either outcome of full health or death. Given this probability, the

asthma state may be more attractive for respondents than the risky option. Thus,

the interviewer would keep increasing the probability of perfect health in the

probability wheel until respondents are indifferent between the two alternatives.

Now, suppose an individual chose 0.8 and 0.2 as the probabilities for perfect

health and death, respectively, that make both choices equally attractive. The

choice task will be done, and the utility value of state 00122 is equal to 0.80.
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2.4.1.3 Visual Analogue Scale

In the visual analogue scale (VAS) technique, which is also called a rating scale, re-

spondents are asked to value health states on a scale that is usually arranged from

0 to 100. An individual is first asked to rank a given set of health states from most

preferred (represents one end of the scale) to least preferred (represents the other end

of the scale). The health states are then allocated relative to each other on a scale

such that spaces between health states correspond to the difference in preference as

perceived by the subject. Therefore, health states with similar preference should be

placed close to each other, whereas health states that are very different in desirability

would be placed far apart (Drummond et al., 2005, pp.147–149).

To measure preference for health states using the rating scale method, individuals

must consider every given health state as a permanent state, and they all last for the

same time and are followed by death. If the individual chooses perfect health and death

as the most and the least preferred states, respectively, the utility value for health state

i would be placed between these two states, represented by the value associated with

its placement x (Brazier et al., 2007). In the case where death is not allocated as the

worse health state, the utility value of health state i is defined as x−d
1−d , where x and d

are the values corresponding to the placement of health state i and death, respectively.

In practice, the VAS method is often used as a warm-up exercise before performing a

valuation technique such as SG and TTO methods. This allows respondents to become

more familiar with comparing health states, and hence value health more accurately

(Brazier et al., 1999). Further descriptions of these techniques can be found in Brazier

et al. (2007) and Drummond et al. (2005, pp.147–153).
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2.4.2 Direct Valuation Method Issues

In this section, we discuss the empirical issues of the cardinal methods, particularly the

TTO and SG methods. In general, different valuation techniques may produce different

utility values for the same health state, and health economists mainly advocate the use

of choice-based methods such as TTO and SG over the rating methods, for example,

the VAS method Tolley (2009). However, both the TTO and SG techniques have

been criticized by many researchers for the difficulty some respondent groups have in

understanding them (e.g., Brazier et al., 2007 and Flynn, 2009), as cognitive ability

varies across individuals and might be limited in particular groups of the population.

The SG method, for example, requires some understanding of the probability concept

in order to perform the task, and this might be limited in an uneducated population.

Thus, an interview is usually required to administrate such a task, and that might be

time consuming and expensive.

In addition, the utility value estimates using these methods are affected by other

non-health factors such as time preference (longevity) in the TTO method and risk

attitude in SG methods (Brazier et al., 2007). The different effects of these factors

on the individuals’ preferences produced by SG and TTO techniques is explained by

Bleichrodt (2002). He identifies four possible sources of biases in these methods which

could move the utility values upward or downward depending on the technique used

to measure the preferences: utility curvature, probability weighting, loss aversion and

scale compatibility. For example, utility curvature does not lead to bias in SG utility

values, since the utility is not restricted on duration of health states, whereas the TTO

utility function is assumed to be linear in duration. Thus, it is expected that most

respondents would show positive time preference that leads to upward bias in TTO

values. The opposite is observed for the probability weight, as it affects the SG utility

values only.

Additionally, both techniques are limited in their ability for valuing health benefits
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beyond direct health outcomes. Thus, in general, for studies that consider valuing

indirect health care benefits such as non-health outcomes (e.g, provision of information,

and reassurance) and process attributes (e.g., treatment location, and route of drug

administration) the use of a cardinal method is not appropriate.

The limitations of these measurement methods in their cover of non-health out-

comes and their complexity has lead to an increase interest in seeking alternative

measurement techniques. Recently there has been increased interest in improving the

choice technique so that it becomes simpler and easier for respondents to use. Some

alternative techniques are illustrated in the following section, with an emphasis on the

discrete choice experiment method.

2.4.3 Indirect Valuation Techniques

Indirect valuation methods are an alternative technique to elicit preference for health

outcomes of particular interventions. They are also know as ordinal methods. In such

techniques, health outcomes typically need to be rank ordered to allow the selection

of the most preferred option. There are several techniques for eliciting ordinal values

for health states. We describe the ranking and discrete choice experiments (DCEs)

methods in Sections 2.4.3.1 and 2.4.3.2, respectively.

2.4.3.1 Ranking

In a ranking task respondents are asked to order a set of health states from the best

to the worst state (Brazier et al., 2007). The ranking method is typically used as a

warm-up task rather than as the main method for deriving health state utility. It has

been used in many health evaluation studies, such as Brazier et al. (2002) and Dolan

et al. (1996a).
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2.4.3.2 Discrete Choice Experiments

A discrete choice experiment (DCE), usually consists of several choice tasks. In each

task, respondents are faced by two or more hypothetical health states called profiles or

alternatives and asked to choose the most preferred state. Choices are then modelled

to make inferences about the underlying utility function, which we discuss in Section

2.5.

• Example

To illustrate the DCE technique consider the following paired comparison of

asthma health states defined by the AQL-5D classification system from a study

by Brazier and Tsuchiya (2006) to estimate the health state utility values for

QALYs computation.

Health State A (12101) Health State B (43220)
Feel concern about having asthma a little of
the time.

Feel concern about having asthma all of the
time.

Feel short of breath as a result of asthma
some of the time.

Feel short of breath as a result of asthma
most of the time.

Experience asthma symptoms as a result of
air pollution a little of the time.

Experience asthma symptoms as a result of
air pollution some of the time.

Not having a good night sleep as a result of
asthma none of the time.

Not having a good night sleep as a result of
asthma some of the time

Have a little limitation with all activities
done.

Have no limitation with all the activities
done.

Which health state would you prefer? A or B

In the choice task, respondents would be shown either a representation or a full

description of health states, and then asked to select their most preferred health

state. It is assumed that respondents will consider all the information provided

to them and make their choices based on the maximum utility; the alternative

with the highest utility will be chosen. For the provided pair-wise comparison,

the study shows that health state A is more preferred to health state B with

observed choice probability of 0.846 (33 out of 39 respondents preferred health
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state A). The observed choices from the multi choice tasks in the DCE enable the

researchers to model the probability of an alternative being selected as a function

of the attributes and the socio-economic characteristics of the respondents, and

then make inference about the underlying utilities.

Ranking a set of states could be regarded as a series of discrete choice tasks. For

example, for ranking three health states A,B and C, a subject might treat it as a

sequence of discrete choice tasks (Brazier et al., 2007). Thus, it might be considered

as either a paired comparisons, A over B, and B over C, or as choices within subsets

A from the set {A,B,C} and B from {B,C}. This assumes “independence from

irrelevant alternatives (IIA)” – that is, ordering any two health states is independent

from the other alternatives available. This is also called Luce’s choice axiom (Luce

1995).

Discrete choice experiments have been used widely in different areas since they

were introduced in marketing in the early 1970s and have started to receive more

attention from both academic and industrial fields. They have been used in different

economic fields to explore consumers’ preferences for attributes of goods and services,

and to model consumers’ decisions to predict future market demand (Carson et al.,

1994). The technique was introduced to health economics in Propper (Propper, 1990)

to estimate the cost that patients are willing to pay to reduce the waiting times spent

in NHS for non-urgent care. Since then interest has been increased in using DCEs

in health evaluation studies to value health outcomes and health care benefits beyond

direct health outcomes, as health benefits might extend to include non-health outcomes,

such as provision of information, reassurance, autonomy and dignity in the provision of

care, and process attributes, such as treatment location, route of drug administration

and patient experienced burden of testing (Ryan, 1999). More recently, there has

been increased interest in using such techniques for valuing health outcomes (health

states) within the QALY framework. In the following section, we briefly discuss the

advantages and disadvantages of using such techniques to value health outcomes to
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produce cardinal values or utility value within the QALY framework.

2.4.4 Advantages and Disadvantages of DCE Techniques

The main advantage of ordinal methods is that they are relatively easy to comprehend

and administrate. Thus, they might be more appropriate in most applications rather

than cardinal methods such as TTO and SG techniques, particularly in situations and

populations where educational ability and numeracy are limited. Measurement errors

are reduced and this increases the reliability of health state valuations.

Additionally, elicited preferences from ordinal techniques are not contaminated by

other factors such as risk (as in the SG method) or time preference (as in the TTO

method). This is because the choice task in the ordinal techniques is designed such that

respondents are forced to make choices over health states by trading their attributes

and attribute levels without the need for external factors. So preferences or utility

values can be interpreted as pure valuation of health states.

The main issue with health state utility values inferred using discrete choice data

is that they are not directly anchored on the death and perfect health scale required

for the QALY calculation (Flynn, 2010). Therefore, they cannot be used immediately

for estimating the QALYs, or consequently in CEA or CUA that use cost per QALYs

analysis. In the health economic literature, there have been several suggestion to

overcome this problem.

1. Re-scale the coefficients on a latent utility scale using the TTO value of worst

health state defined by the classification system (Ratcliffe et al., 2009). The

DCE value for the worst state is anchored at the elicited TTO value of the worst

state. Anchoring DCE values using this method has been criticized by many

researchers (e.g., Bansback et al., 2010 and Rowen et al., 2011), as this method

depends on an external cardinal measure, TTO technique, and this contradicts

with the motivation of using DCE as an alternative for the conventional methods.
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2. Include survival as a separate attribute in the DCE task. The resulting DCE

would resemble the TTO exercise, as respondents choose between health states

based on their description and the length of life provided for each health state.

However, this might increase the complexity of the choice task for respondents.

Also, this anchoring method complicates the design and modelling problems,

as discussed by Bansback et al. (2010), since survival has a multiplicative (not

additive) relationship to health-related quality of life in the QALY model.

3. A more recent method is to include death state comparisons in the choice design;

this allows the estimation of the death coefficient and the scaling of the param-

eters of the latent utility model relative to the death parameter, as discussed in

Section 2.3.3. This method has been investigated by Brazier et al. (2009). The

study concludes that problems may only arise when many respondents do not

regard any state defined by the classification system as worse than being dead,

and so effectively not be willing to trade.

4. There are two new methods proposed recently in Rowen et al. (2011) that show

improvement in anchoring DCE values for the AQL-5D states onto the 0–1 QALY

scale, and predicting the mean TTO value of AQL-5D health states usign the

DCE data. These are mapping and hybrid models methods. The first method is

based on mapping the DCE values on a latent scale onto the TTO values using

the simple mapping function

TTOj = f(DCEj) + εj,

where TTOj and DCEj represent the mean TTO value and the latent utility

value of state xj modelled using DCE data, respectively, and εj is the error

term. The second method anchors the DCE latent utility values by estimating

the utility model coefficients by analysing both DCE and TTO data at individual

level using a hybrid model. However, both anchoring methods require the TTO

values for a subset of health states defined by the underlying classification system,
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which again conflicts with establishing the DCE as an alternative for the cardinal

methods.

DCEs seem to be a promising alternative to the cardinal techniques, which would

reduce survey administration times and effort for collecting data. However, more work

is still required to improve the data collected from this technique. In particular, further

research is needed in terms of using more sophisticated design approaches to construct

the DCEs (e.g. selecting health states presented to respondents and grouping them

into choice tasks) while taking into account anchoring health state utility values and

other design consideration for valuing health that will be discussed in Chapter 3. This

is the key objective of our project.

An issue with health state valuations generated with these techniques is that dif-

ferent methods may produce different values, and not all generated values represent

utilities in the formal sense described in O’Hagan et al. (2004, pp.41–46). From the

preference methods reviewed above, only the SG method produces health state values

that are considered as utilities (Drummond et al., 2005, pp.143–147). This method

captures the risk attitude that is related to preference measurement and utility theory.

Methods such as TTO generate a health state value that is not necessarily a formal

utility. Ordinal techniques such as DCEs are assumed to produced utilities, since re-

spondents are assumed to make their choice based on comparing different health states

in their head, considering the level of severity provided for each health state; hence

the most preferred health state is assumed to maximise their utility. However, as this

thesis mainly considers the design phase of a choice study, the term ’utility’ will be

used to represent the value of a health state regardless the method used to generate it.
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2.5

Discrete Choice Models

As we mentioned earlier in Section 2.3.3, the mean health state utility can be estimated

for all health conditions through eliciting the utility values for a subset of health states

defined by a classification system, and then estimating a model for predicting the

utility value as discussed. However, utility values cannot be elicited directly from

DCE techniques, as they provide choice frequencies of one chosen state over another,

probabilities, rather than measuring the actual individual’s preference of a specific

health state (health state utility). Therefore, a method is needed to model the observed

DCE data such that health researchers are able to make inferences about the parameters

of the underlying utility model, and hence computing the utility and the QALY values

for all health conditions.

In this section, we explain how to model DCE data related to the attribute levels

that make up the states (mean utility) using random utility theory (RUT), and give

an example of a widely used choice model, which is also the main model used through-

out this thesis, namely the multinomial logit (MNL) model. The section begins with

reviewing the basic concept of the random utility approaches, and then presents the

identifiability issues associated with the discrete choice models (DCMs) in Section

2.5.2. Modelling health state valuations using the MNL model, and the derivation of

the likelihood function are described in Section 2.5.3.

2.5.1 Modelling Discrete Choice Data

As we mentioned earlier, it is necessary to elicit health state utility for a subset of health

states in order to estimate the preferences/weights associated with the attribute levels
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defined the states, and consequently predict health state utility for all possible health

states of particular conditions. However, utility cannot be elicited directly from DCE

data, and therefore a method is needed to infer the parameters of the utility model

from the discrete choice data.

The DCE data are modelled using different DCMs, such as conditional logit and

probit models. The choice models are based on utility maximisation behaviour of

respondents assumed by the RUT proposed by Thurstone (1927) in psychology and

introduced to economics in Marschak (1960) and then developed further by McFadden

(1974). The choice models basically relate the observed choices to the utility function

defining the states, without reference to exactly how choice is made (Train, 2003, pp.

14-18).

In a choice experiment respondents are assumed to compare health states based on

their attributes and attribute levels, where the most preferred state is assumed to have

the highest utility. And the idea behind RUT theory in economic is that respondents

obtain utility for each alternative in their head, and choose alternative that maximises

their utility. This utility cannot be observed directly by researchers. The researchers

actually observe the choices made based on the attributes and levels of the states beside

other attributes of respondents (e.g., individual’s income and socio-economic factors).

Therefore, the researchers can specify a function to relate an individual’s utility of any

health state to these attributes, and then use DCM to infer the parameter in the utility

function using the choice data. And since this thesis is considering the construction of

efficient choice design to estimate health state utilities within the required QALY (0–1

scale), the utility function can be defined as in equation (2.3.1):

Uij = g(xij) + εij,

where g(xij) is the population mean utility defined by g(xij) = 1 − βxTij as proposed

in McCabe et al. (2006) to analyse the ranking data and discussed in Section 2.3.3,

and εij represents the variation around the population mean utility.
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Under RUT, individuals are assumed to be utility maximisers, that is individual

i will choose health state xij out of J alternatives offered in a choice set s, Cs =

{xi1s, . . . ,xiJs}, if and only if Uijs > Uits for all t 6= j. Thus the probability of state

xijs being chosen by individual i in choice set s is

Pijs = P [Uijs > Uits ∀t 6= j] ,

= P [g(xijs) + εijs > g(xits) + εits ∀t 6= j] .
(2.5.1)

If the value of g(xijs) is given for all j, then the choice probability pijs would depend

on the distribution of the error terms εi1s, . . . , εiJs. Different discrete choice models are

obtained from different specifications of the joint density of the random errors.

The choice of random error distribution is considered as a starting point for selecting

DCM models. The random errors could be assumed uncorrelated and identically type 1

extreme value distributed (i.e. having the same variance), which results in what is called

the multinomial logit (MNL) model. This model is widely used in choice studies, though

it has some restrictive assumptions: (i) independent and identically distributed (i.i.d.)

errors, (ii) independence of irrelevant alternatives (IIA), which states that choosing

between any two options is independent from other states provided in a choice set, (iii)

homogenous preferences across individuals (i.e. preferences/weights of the utility model

parameters is fixed over individuals). However, the popularity of this model is due to

the fact that those assumptions allow a closed form for the choice probability, as will

be shown in Section 2.5.3, which simplifies the calculation of the likelihood function

as well as the constructing of the choice design. Nevertheless, they might be very

restrictive in describing human choice behaviour. Therefore, other models have been

developed from relaxing some of those assumptions and allowing for correlation between

alternatives (relaxing the IIA assumption) as in the generalized extreme value (GEV)

model, and individual’s heterogeneity (heterogenous preferences/random coefficients

across individuals) in the mixed nested logit (MNL) model (de Bekker-Grob et al.,

2010).
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The errors could also be assumed normally distributed with correlation or i.i.d nor-

mally distributed, which results in what is called a probit model. The probit model

can also allow for individual’s heterogeneity (random taste variation); this assumes

that the utility model coefficients are normally distributed. The flexibility of the error

correlation is the main advantage of this model, as it relaxes the first two assumptions

of the logit model. However, the normality assumption for the coefficients might by

considered a limitation of this model, since this assumption is not appropriate in all sit-

uations (Train, 2003, pp.97–114). For instance, the normality assumption for the price

coefficient in a probit model with random taste variation implies that some respondents

would have a positive price coefficient (i.e. positive preference for the price), as the

normal distribution allows for negative as well as positive values. In this case, other

distributions might be more appropriate, but this cannot be accommodated within the

probit model yet. Other models can be specified for different research purposes (see

Train, 2003, pp.17–18 for more details).

2.5.2 Model Identification

Discrete choice models depend on the structure of the random errors as well as the

specification of the population mean utility function. However, there are two properties

of discrete choice models that are implied by utility theory which could affect the

specification of the utility function: only the difference in utility matters and the scale

of utility is arbitrary. These properties affect the identifiability of the model parameters

as described below.

• Only Difference in Utility Matters

The choice probability of a particular alternative is determined by comparing its

utility with the utilities for the offered alternatives in the same choice set, as

shown in equation (2.5.1). This probability can be written as

Pijs = P (Uijs − Uits > 0 ∀t 6= j). (2.5.2)
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This indicates that the choice probability of any alternative depends on the dif-

ference between the utilities only, and hence the absolute value of the utility is

irrelevant to the choice behaviour. Therefore, adding a constant α to all alterna-

tives’ utilities does not change the alternative with the highest utility, and results

in the same choice probability. as shown below.

Pijs = P [g(xijs) + α + εijs > g(xits) + α + εits ∀t 6= j] ,

= P [g(xijs) + εijs > g(xits) + εits ∀t 6= j] .
(2.5.3)

This makes it impossible to estimate a unique value for α, since any value gives

the same choice probability. To make such constant identifiable, the constant of

one alternative should be normalised to zero and estimate the other constants

relative to the normalised one (Train, 2003, pp.19-23). To produce utility value

within the required QALY scale, we set α = 1 corresponds to the utility value of

the full health state that is represented by the best possible health state defined

by the classification system.

• The Scale of Utility is Arbitrary

Multiplying the utility by any positive constant does not change the alternative

with the highest utility; the scale of utility is irrelevant to the choice behaviour.

Hence, the two models defined below are equivalent.

U1
ijs = g(xijs) + εijs,

U2
ijs = λg(xijs) + λεijs ∀λ > 0.

(2.5.4)

The probability of choosing alternative xj from a set of alternative j = 1, . . . , J

on the transformed scaled becomes

Pijs = P [λg(xijs) + λεijs > λg(xits) + λεits ∀t 6= j] ,

= P [g(xijs) + εijs > g(xits) + εits ∀t 6= j] ,
(2.5.5)

which is the same as the choice probability on the non-transformed scaled in
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equation (2.5.1). Again, it is not possible to identify a unique value of λ, as

different values give the same results for the choice probability. Therefore, the

scale of utility should be normalised in order to be able to estimate unique utility

values. Normalising the scale of utility is equivalent to normalising the variance

of the random component of the utility (εijs). This follows since the scale of

utility is usually defined by the variance of εijs and this variance increases by λ2

when multiplying the utility by λ. Normalising the utility scale varies depending

on the property of the variance of the random errors. Here, we briefly discuss

the normalising issue for independent and identical errors, heteroscedastic errors

and correlated errors, as described by Train (2003, pp.23–29).

1. Independent Errors

Assume that the random errors of the latent utility in equation 2.3.1 are

independent and identically distributed. Then normalising the utility scale

is equivalent to normalise any of those error variances to a specific number,

since errors are identically distributed (all have the same variance).

Typically, the error variance is normalised to 1. This is done by setting

λ = 1
σ

in equation (2.5.4), and the utility becomes equivalent to

Uijs
σ

=
g(xijs)

σ
+
εijs
σ
, j = 1, . . . , J (2.5.6)

where the error variance becomes equal to 1, V ar(
εijs
σ

) = 1
σ2σ

2 = 1.

In this thesis, we scale the utility by setting the utility of death equal to

zero, i.e. λ = −1
βd

where βd is the death coefficient as described in Section

2.3.3. Therefore, the error variance become equal to σ2

β2
d
.

2. Heteroscedastic Errors

In some cases, the variance of the random errors varies across different

groups of the population. In such situations, the scale of utility is nor-

malised by normalising the variance for one group and then estimating the

variance for the other relative to that group.
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3. Correlated Errors

If the random errors are correlated over alternatives, the utility scale cannot

be normalised by normalising the variance of one alternative. In this situ-

ation, it is more appropriate to consider the variance of utility differences.

Normalising one variance of the error differences leads to set the scale of the

utility differences, and consequently the scale of the utility.

2.5.3 Multinomial Logit Model

In this section, we consider the case where the random errors in the utility model are

independent and identically distributed with a type 1 extreme value distribution, to

model DCE data using the multinomial logit model (MNL) model. In general, if a

random variable X follows a type 1 extreme value distribution, the probability density

function (pdf) is defined as

fX(x) =
1

σ
exp

(
−x+ µ

σ

)
exp

[
− exp

(
−x+ µ

σ

)]
, −∞ < x <∞ (2.5.7)

where µ and σ are the location and the scale parameters, respectively. The random

variable X has mean E(X) = µ+0.5722σ and variance V ar(X) = 1
6
π2σ2. The mean of

the random error defined in Equation (2.3.1) is required to be zero in order to interpret

the function g(xij) as the population mean utility. Therefore, we set the location

parameter µ = −0.5722σ.

The cumulative distribution function (cdf) is given by

FX(x) = exp

[
− exp

(
−x+ µ

σ

)]
. (2.5.8)

Now assuming that the utility is defined as in equation (2.3.1), then the choice

probability that individual i chooses alternative xj from a set of J possible alternatives
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in a choice set can be written as

Pijs = P [εits < g(xijs) + εijs − g(xits) ∀t 6= j] . (2.5.9)

By conditioning on εijs the choice probability can be computed as

Pijs =

∫ ∞
−∞

∏
t6=j

P (εits < g(xijs) + εijs − g(xits)|εijs)f(εij)dεij, (2.5.10)

where

f(εijs) =
1

σ
exp

(
−εijs + µ

σ

)
exp

[
− exp

(
−εijs + µ

σ

)]
,

and the conditional choice probability is

P (εits < g(xijs) + εijs − g(xits)|εijs) = exp

[
− exp

(
g(xits)− g(xijs)− εijs + µ

σ

)]

Therefore, the choice probability of choosing alternative xj is derived as

Pijs =

∫ ∞
−∞

∏
t6=j

exp

[
− exp

(
g(xits)− g(xijs)− εijs + µ

σ

)]
× 1

σ
exp

(
−εijs + µ

σ

)
exp

[
− exp

(
−εijs + µ

σ

)]
dεijs,

=

∫ ∞
−∞

J∏
t=1

exp

[
− exp

(
g(xits)− g(xijs)− εijs + µ

σ

)]
× 1

σ
exp

(
−εijs + µ

σ

)
dεijs,

=

∫ ∞
−∞

exp

[
− exp

(
−εijs + µ

σ

) J∑
t=1

exp

(
g(xits)− g(xijs)

σ

)]

× 1

σ
exp

(
−εijs + µ

σ

)
dεijs.

The computation of this integral can be simplified by defining z = exp
(−εijs+µ

σ

)
where
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dz = − 1
σ

exp
(−εijs+µ

σ

)
dεijs, and c =

∑J
t=1 exp

(
g(xits)−g(xijs)

σ

)
. Thus, it becomes

Pijs =

∫ 0

∞
− exp(−cz)dz

=
1

c
exp(−cz)|0∞ (2.5.11)

=
1

c

=
exp

(
g(xijs)

σ

)
J∑
t=1

exp
(
g(xits)
σ

) . (2.5.12)

The MNL model is then given by equation (2.5.12).

This model has been used in many choice studies due to its simplicity and having

a closed form for the choice probability and consequently the likelihood function. This

property of the MNL model simplifies the calculation of many statistical quantities

and optimality criteria that are used to construct choice designs, as will be seen in the

following chapters when generating choice design.

This thesis considers including death state in the choice design for scaling purpose.

Therefore, it is important to derive the formula of the MNL model when one state

in a choice set is death. Under RUT and assuming that in a choice set that includes

death xiJs = xids, i.e. Cs = {xi1s, . . . ,xi(J−1)s,xids}, then individual i will choose

alternative xj for all j 6= J from such choice set only if Uijs > Uits for all t 6= j where

Uijs > Uids = 0 means that εijs > −g(xijs).

Thus, conditioning on εijs > −g(xijs), the choice probability of alternative xijs in

equation (2.5.10) can be written as

pijs =

∫ ∞
−∞

∏
t6=j

P (εits < g(xijs) + εijs − g(xits)|εijs > −g(xijs))f(εijs)dεijs,

=

∫ ∞
−∞

∏
t6=j

P (εits < g(xijs) + εijs − g(xits)|εijs)I(εijs > −g(xijs))f(εijs)dεijs,
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where I(εijs > −g(xijs)) = 1 if εijs > −g(xijs) and 0 otherwise. Thus, the choice

probability can be computed as

Pijs =

∫ ∞
−g(xijs)

∏
t6=j

P (εits < g(xijs) + εijs − g(xits)|εijs)f(εijs)dεijs. (2.5.13)

It can be shown from equation (2.5.11) that the choice probability is equal to

Pijs =
exp

(
g(xijs)

σ

)
J−1∑
t=1

exp
(
g(xits)
σ

)
{

1− exp

[
−

J−1∑
t=1

exp

(
g(xits) + µ

σ

)]}
, (2.5.14)

where Pijs is the choice probability of health state compared to death. Hence the choice

probability of the death state can be written as

PiJs = 1−
J−1∑
j=1

Pijs,

= exp

[
−

J−1∑
t=1

exp

(
g(xits) + µ

σ

)]
. (2.5.15)

Inference about the utility function can be carried out by analysing choices observed

for each alternative in a choice set, since choices depends on the mean utility values,

g(xijs), that is a function of the parameters β. The choices from a sample of N

respondents made over all alternatives in S choice sets can be considered as independent

draws from a multinomial distribution, due to the assumption of independent random

errors over alternatives and respondents. Therefore, the likelihood function of the

multinomial logit model for the observed choices over S choice sets, can be written as

L(y|β, σ) =
S∏
s=1

J∏
j=1

N∏
i=1

p
yijs
ijs , (2.5.16)
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where yijs is defined as

yijs =

 1 if health state xijs is chosen,

0 otherwise.

and Pijs is the corresponding probability for health state xijs which is defined as in

equation 2.5.12 if the underlying choice set does not include death state, and as in

equation 2.5.14 and 2.5.15 for health state in a death choice set and for death state,

respectively.

The log likelihood function is then defined as

l(y|β, σ) =
S∑
s=1

J∑
j=1

N∑
i=1

yijs logPijs. (2.5.17)

The full likelihood for our analysis is given in Chapter 4.

2.6

Summary

In this chapter, we have reviewed the use of the QALY in health economics as a measure

for health in terms of quality and quantity of life. To compute the QALY gained

of a health intervention, health outcomes need to be described and then evaluated

using a preference method to elicit health state utility values. This chapter introduced

different classification systems to describe health outcomes, which can be generic (e.g.

EQ-5D) or specific (e.g. AQL-5D). It then reviewed various valuation techniques to

derive the health state utilities such as TTO and SG methods. These methods have

been criticized by many researchers due to their complexity. Therefore, there has been
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increased interest in using discrete choice experiments (DCEs) as an alternative to those

methods. A description of DCEs and modelling their choice data, particulary using the

MNL model, have been presented in this chapter. However, DCE methods still need

plenty of work before they can be established as an alternative for the ordinal methods

such as TTO and SG methods, particularly in terms of choice design construction and

selecting choices presented to respondents such that reliable estimates for health state

utilities are obtained, as will be discussed in Chapter 3.
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Chapter 3

Literature Review: DCEs and their

Design in Health Economics

3.1

Introduction

Discrete choice experiments (DCEs) have been widely used in many market research

studies (e.g., transport, environment, banking etc.) to identify the most important

features/attributes in specific products or services from consumers perspective. In the

last 15 years, there has been increasing interest in using DCEs in a health economics

evaluation context. In particular, recently, this method has been increasingly used

to estimate health state utilities/quality weights within the QALY framework. This

technique, as discussed in Chapter 2, seems to be a promising alternative to cardinal

methods for eliciting utility values within the required QALY scale. Nevertheless, it

requires considerable developments, particularly in terms of designing the choice exper-
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iment (e.g., selecting alternatives, constructing the choice tasks, number of choices) to

improve the quality of the choice data and, hence, provide a more reliable assessment

for health state utilities.

There is increasing evidence that using more sophisticated methods to generate

DCE designs, together with appropriate analytical techniques, improves the quality of

the choice data collected and the final outputs (de Bekker-Grob et al., 2010). There has

been development in the methodology of deriving efficient DCEs in various areas outside

health economics. In this chapter, therefore, we recognise how health economics has

benefited from these improvements in DCE designs, and identify the remaining design

issues before a robust methodology for generating DCEs for valuing health utilities can

be developed.

The chapter begins with reviewing the applications of DCEs in health economics,

specifically the experimental designs used to construct the choice designs for valuing

utilities and their methodological issues in Section 3.2. In Section 3.3, we discuss the

main experimental design considerations in a health valuation context, and the need

for an algorithmic procedure to search for an optimal, or near optimal, design that

satisfies the study constraints. Section 3.4 reviews the main concepts of optimal design

theory and the statistical measures known as optimality criteria. Optimal design theory

has been used for linear and non-linear models; however, since our project focuses on

generating DCEs for discrete choice models (DCMs), we will place greater emphasis on

reviewing optimal design for nonlinear models, particularly choice models. In Section

??, we present the main problem with generating optimal choice designs for DCMs,

and then discuss the use of a Bayesian approach to overcome this problem. We also

review different methods for deriving Bayesian design criteria in Section 3.6. In the

last section, we review Bayesian design strategies and algorithms used in the design

literature to construct choice designs for DCMs, which then might be applied in health

economics to improve the construction of choice designs for health valuation.
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3.2

DCEs in Health Economics

The use of DCEs to value health benefits has increased rapidly since they were in-

troduced to health economics in 1990 by Propper. The DCE techniques, also known

as conjoint analysis (CA), have been developed in health economics to simplify the

valuation process for respondents, and assess health benefits beyond direct health.

We briefly summarise the applications of DCEs in health economics, with greater

emphasis on the applications that are similar to our design objective, that is, con-

structing choice design for valuing health state utilities within the QALY framework,

in Section 3.2.1. Then, we discuss experimental design methods used in those applica-

tions to construct choice designs together with their methodological issues in Sections

3.2.2 and 3.2.3, respectively.

3.2.1 DCEs in Health Economics: A Review

The DCE technique was first used in health economics to value a health service using

patient preference in Propper (1990). Since then, many discrete choice studies have

been used to assess the benefits of different health services beyond simple health out-

comes. For example, Ryan and Farrar (1994) used conjoint analysis to investigate the

trade-offs that patients make between the location of the clinics and waiting times in

the provision of orthodontic services. Their study shows the importance of these non-

health outcomes, as patients were indeed concerned about these features of the overall

health service provided. There are other similar studies, cited in Ryan (1999), that

looked at valuing the benefits of different health services beyond direct health outcomes

using patient preferences, and the trade-off made between direct health outcomes and
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non-health outcomes (e.g., Ryan and Hughes, 1997; Bryan et al., 1998; and Pol and

Cairns, 1998).

Over the last two decades there have been a considerable number of applications

of DCEs in health economics that cannot be discussed in detail here. So it is worth

mentioning several systematic reviews conducted in the health economic literature.

The first substantial review, by Ryan and Gerard (2003), identifies 34 applications of

DCEs conducted between 1990 and 2000, the majority of them (about 58%) in the

UK. This baseline review (covering the period 1990–2000) was updated by two other

systematic reviews: de Bekker-Grob et al. (2010), who identify 114 applications of

DCEs between 2001 and 2008; and Clark et al. (2014), who update the latest review

up to 2012. Both later reviews follow the same search procedure as the baseline review;

thus they use the same database to find the related DCE applications (PubMed) and

the same search criteria and terminologies.

The latest review shows a dramatic increase in use of DCEs in health economics,

with 179 applications published in four years. That is on average 45 applications

per year compared with just 14 applications per year during the period 2001–2008.

The reviews show that while the UK remain the largest producer of these applications

among the developed countries, the number of applications from lower income countries

such as Kenya, China and Thailand increased.

The majority of these applications consider valuing health outcomes beyond direct

health and trading between direct health outcomes and process attributes, with recent

reviews showing more interest in valuing health outcomes within a QALY framework.

Focusing on those applications which used DCEs to value health outcomes for provision

of the QALY weights considered in these reviews, we found five key studies, as shown

in the first five lines of Table 3.1.

During the period 1990–2000, there were no applications that aimed to estimate

utility weights within the QALY framework. In the period 2001-2008, two studies (2%
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of the applications) had this as their main objective. In particular, two studies use

DCEs as an alternative to cardinal methods such as SG and TTO techniques (Ryan

et al., 2006; Burr et al., 2007). The amount of work in this area has continued to

rise: during the period 2009–2012 Clark et al. found four studies directed towards

QALY estimates, of which three are of particular interest. These analyses used DCEs

to estimate health state utility for the AQL-5D and the EQ-5D states as in Brazier

et al. (2009) and (Stolk et al., 2010), respectively, and constructed a choice experiment

to resemble the TTO task by including years of survival as an attribute in the choice

experiment (Bansback et al., 2010).

Using the same search terms as in the previous systematic reviews, we found that the

number of applications of DCEs in the health economics field has continued to increase

rapidly. Our current search shows that there have been around 200 applications of

DCEs applied to valuing health outcomes in different areas of health economics from

2013 onwards. In addition, the current search shows an increase in the number of

analyses that used DCE to estimate health state utility within the QALY scale, in

which we found five studies published in 2013 and 2014. Table 3.1 summarises these

applications together with the previous findings, showing also the methods used to

create choice designs and anchor health state utility values onto the required QALY

0-1 scale.

3.2.2 Methods Used to Create Choice Sets

An important phase in constructing any DCE is the choice of experimental design, i.e.

how to combine the attribute levels to create choices and then group them efficiently

into a choice set. The experimental design is used to reduce the number of possible

choices to manageable numbers while ensuring the analyst is able to estimate the main

effects of interest and possible interactions. The majority of the relevant studies – all the

studies shown in Table 3.1 – used a fractional factorial design approach, except Prosser

et al. (2013) who used full factorial design that includes all possible combinations of
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the attributes’ levels in the choice designs.

In general, the studies show that the methods employed to construct the choice

design during the last decade have all been similar. Orthogonal designs, obtained from

orthogonal arrays available in different statistical software such as SAS, have been

used in some studies, such as Ryan et al. (2006), Burr et al. (2007) and Viney et al.

(2014), to construct the fractional factorial design. These arrays have the properties

of orthogonality (each pair of levels of different attributes appears an equal number

of times in the alternatives) and level balance (levels of attributes appear an equal

number of times, i.e. for an attribute with five levels each level has to occur at exactly

one-fifth of the design points). For binary DCEs (i.e. would you choose a specific

health condition, yes or no?) the profiles generated from the orthogonal design are the

choices. However, for multiple DCEs, choosing between two or more profiles, a method

is needed to move from an orthogonal design to the choice sets. Louviere et al. (2000)

proposed two methods to create choice sets from orthogonal designs:

• ‘Foldover’, also known as the shifting and cycling method, begins by constructing

a mirror image of the original design in which each profile in the orthogonal design

is paired with its foldover or complement. Thus for five-level attributes we replace

0→ 1, 1→ 2, 2→ 3 and 4→ 0 for five levels, for example, AQL-5D state 11233

would be paired with 22344. Each pair of the original profile and its complement

then creates a single choice set; hence all the combinations of all pairs construct

the choice design.

• ‘Foldover with random pairing’, where profiles in the original orthogonal design

and their foldover are randomly paired. That is, all profiles and their foldovers

are used in the choice sets, but a profile from the original design and its mirror

image are randomly paired, not used in the complementary pairs.

In recent marketing design literature, there has been a development of using optimal

design theory in the experimental design used to construct choice experiments. The
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optimal designs are constructed based on different statistical efficiency measures called

‘optimality criteria’, as will be discussed in Section 3.4.1. The D-optimality criterion,

which is related to minimising the determinant of the variance-covariance matrix of

the parameter estimators, is one of the most commonly used efficiency measures. This

is presumably due to its simplicity, general applicability and lower computational cost

compared with other criteria.

Health economists show more awareness of the importance of efficient designs and

increased interest in using computerised search algorithms (Huber and Zwerina, 1996;

Zwerina et al., 1996 and Kuhfeld, 2000) to generate choice sets. The algorithms search

for the choice design that minimises the D-optimality criterion given prior estimates

for the unknown model parameters. Prior information is required in this case, since the

optimality criterion for a nonlinear model, unlike that for a linear model, depends on

the values of the unknown parameters, as will be illustrated in Section ??. Neverthe-

less, designs constructed for valuing utilities using these search algorithms (e.g., Brazier

et al., 2009; and Bansback et al., 2010 and 2014; Gu et al., 2013) were mainly con-

structed ignoring the dependency of the choice design on the parameters by assuming

zero priors for the preference parameters.

A recent development is to use what is called Bayesian optimal designs that in-

corporate genuine prior assumptions about the unknown parameters in generating the

choice design to improve the statistical efficiency (e.g., Sándor and Wedel, 2001, 2002,

2005; Rose and Bliemer, 2008; Kessels et al., 2009; and others that will be discussed

further in Section 3.7.2). Up to now, there have been only two studies, Stolk et al.

(2010) and Ramos-Goñi et al. (2013), which attempt to use Bayesian design to con-

struct the choice design for estimating health state utilities. Here Bayesian optimum

design is generated, simply, based on random search algorithm that selects the optimal

choice design using random search over a large number of choice designs. The algo-

rithm uses Monte Carlo simulation to determine the design efficiency by computing

the D criterion value (Bliemer et al., 2008). The algorithm returns the design with
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the desirable number of choice sets that minimises the D criterion value over the prior

distribution of the parameters.

None of these studies used advanced search algorithms to construct the Bayesian

choice designs, and nor did they investigate the effect of the prior knowledge on im-

proving the design properties and final model outputs (utility estimates). This area of

research deserves more attention from health economics researchers, to produce efficient

choice designs and improve the quality of data collected. This will be one of our main

concerns throughout the thesis: to develop an efficient methodology for constructing

choice design for estimating health state utility within the QALY framework.

Despite the fact that the current review finds some development in methods used

to construct DCEs for valuing health state, there are still crucial methodological is-

sues associated with the experimental designs and algorithms used to generate choice

designs. We refer the reader to de Bekker-Grob et al. (2010) and Johnson et al. (2013)

for a discussion of general issues related to using DCEs in health evaluation studies,

while, in the following section, we discuss those issues related specifically to the design

methods and search algorithms used to construct the DCEs for valuing health state

utilities.

3.2.3 Methodological Issues

In this section, we discuss the methodological issues related to constructing choices

design for valuating health state utilities. In particular, we discuss the issues with ex-

perimental designs and algorithms used so far in health economics to generate efficient

choice design for provision utilities within the QALY scale. We stratify these issues by

the type of experimental design used.

1. Orthogonal Arrays

The construction of orthogonal choice designs is based on orthogonal arrays.
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These arrays are used to construct the first option (here health state) in each

choice set, and then to create the subsequent option(s) using the foldover method

proposed in Louviere et al. (2000) or one of the pairing strategies suggested in

Street et al. (2005). These orthogonal arrays have desirable statistical proper-

ties that allow for estimating the main effects of interest independently, while

assuming all interactions are zero. However, they might not be appropriate for

constructing choice designs. This is because these orthogonal arrays are based

on linear design principles and using such designs to construct DCEs ignores the

nonlinear nature of the choice models, which reduces the efficiency of the choice

designs (Ryan et al., 2006).

Another issue is that the efficiency of orthogonal design is optimised based on

the fact that choices are made randomly. This is true only under the restrictive

assumption that all the preference parameters identified in the utility model are

equal to zero. Thus, if the true parameter values deviate from zero, then the

orthogonal design will not be optimal for estimating the true parameter effects

accurately (Stolk et al., 2010).

In addition, orthogonal arrays select health states irrespective of the realism of

their attribute level combinations. This might result in implausible/unrealistic

health states that increase the variability in the responses (Johnson et al., 2013).

Also, the subsequent pairing method, such as foldover, may produce ‘dominant’

choices (e.g., it might pair AQL-5D health state 11123 with 22234, where 11123

is always preferred). This type of choice reduces the efficiency of the designs, as

will be discussed in Section 3.3.

2. Locally D-efficient Design

A key determinant of the efficiency of a choice design is the algorithm used

to generate the choice sets. For example, Huber and Zwerina (1996) identify

four design principles they believe to be characteristic of optimal choice designs.

These are: orthogonality (each pair of levels of different attributes appears an
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equal number of times in the alternatives) and level balance (levels of attributes

appear an equal number of times); minimum overlap (attribute levels are not

repeated within a choice set); and utility balance (choices within a choice set

are equally attractive). Zwerina et al. (1996) state that for certain families of

shifted designs (e.g. designs constructed using the orthogonal array and foldover

method) and assuming that all the preference parameters are zero, these designs

will jointly satisfy the four principles and hence are optimal. This has not been

proved analytically, but Street and Burgess (2007) show that these designs are

more efficient than other designs that are not generated from those principles.

However, it may not be possible to construct a choice design that satisfies all the

four principles because, for particular design problems, these principles might

conflict with each others (Huber and Zwerina, 1996). In addition, Street and

Burgess (2007) argue that even satisfying these four principles does not guarantee

that the resulting design is optimal, nor that it can estimate all the main effects

of interest. Also, the orthogonality property might lead to less efficient designs,

as we discussed earlier.

Other studies, such as Bansback et al. (2010, 2014), used a computerised search

algorithm (see Zwerina et al., 1996; or Kuhfeld, 2000) to calculate the D-optimum

design instead of using these principles. These algorithms, described in Section

3.7.1, optimise the design efficiency using particular exchange procedures in which

the efficiency of the design is determined by directly computing the D criterion

value given the prior estimates. The algorithms return the choice design with the

required number of choice sets that minimises (within the limit of the search) the

D criterion value. However, they require a candidate set that includes all or some

of possible health states defined by a classification system, which is built using

full or fractional factorial design and typically has orthogonal and level balance

properties. Restricting the elements of the candidate set to those properties (i.e.

orthogonality and level balance) might produce implausible health state as in this

case, once again, health states are selected irrespective to their attribute levels
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combinations as discussed earlier in the orthogonal designs. This reduces the

efficiency of the choice design.

In addition, to construct a choice design using these algorithms, prior estimates

are usually required for the unknown model parameters, because of the nonlinear

nature of DCEs. Nevertheless, efficient designs constructed using these search

algorithms are usually derived based on zero priors for the preference parameters.

This approach assumes no preference for any attribute levels, and hence choices

are made randomly. However, this is unrealistic, since respondents are assumed

to make their choices by trading-off between attribute levels of the alternatives

provided. Thus, a design based on this assumption might not be optimal and

might produce insufficient information to estimate true parameter effects. Huber

and Zwerina (1996) illustrated that incorrectly assuming zero parameter values

might require from 10% to 50% more respondents to perform the experiment

compared with a design built based on more realistic prior estimates.

Also, for choice design with ordinal attributes, this assumption might result in

more dominant choices, i.e. choices always preferred by all respondents as they

have the best levels in all attributes as will be described in Section 3.3, than a

design based on more reasonable point parameter estimates or even more infor-

mative prior distributions. This is because incorporating prior information about

the preference parameters, as opposed to zero priors, can account for the differ-

ences between the attribute levels of the alternatives presented in a choice task

and, hence, the mean utility differences between alternatives. Thus, the assump-

tion of zero priors can result in alternatives with high level differences which

decrease the efficiency of the design, i.e. the amount of information obtained

from the design to infer the preference parameters associated with the attribute

levels of the underlying classification system, (Kessels et al., 2011b), where less

efficiency design will result in larger standard errors of the estimated parameters

and, hence, mean utilities.
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3. Bayesian D-efficient Design

The Bayesian designs in Stolk et al. (2010) and Ramos-Goñi et al. (2013) incorpo-

rate more realistic prior information through the prior distribution; however, they

were constructed based on a random search algorithm. The algorithm determines

design efficiency, by computing the D criterion value over the prior distribution,

for many designs randomly selected from the full factorial design, and then re-

turns that design with minimum criterion value. The procedure often produces

dominant and implausible choices in the final design, which therefore has to be

examined manually for the presence of implausible and dominant choices.

Therefore it would be better to use more advanced and flexible experimental

design algorithms that allow for the incorporation of prior information in the

design and control the presence of the dominant and implausible health states,

instead of manually having to check for the plausibility of the attribute levels

combinations generated by the simpler algorithms.

There are more sophisticated search algorithms developed in marketing especially

for generating Bayesian choice designs that might be able to do so, but these have

so far received little attention from health economists. These seek to improve the

search procedure and hence the efficiency of the choice design. Examples are

Kessels et al. 2009, 2010, 2011; and Rose and Bliemer 2012 (see Section 3.7.2

for more details). In this thesis, therefore, we will mainly consider the issue

of improving experimental choice designs used to estimate health state utilities

within the QALY framework by using these latest developments in Bayesian

optimal design and employing and adapting their design algorithms to our design

problem.

Besides the experimental design issues discussed above, there are other non-

mathematical issues, such as the complexity of the choice task, the number of choice

sets that respondents could answer and other psychological issues, which are beyond

the scope of this review. We refer the reader to Street and Burgess (2007, pp.11–13)
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who provided a good reference for these issues. In the following section, we discuss the

main design considerations that should be addressed when constructing choice designs

for health evaluation, in general, and for health state utility estimation, in particular.

3.3

Context-specific Design

Considerations

Besides the general methodological issues illustrated earlier, there are some other as-

pects that should be considered when constructing choice sets for health evaluation

studies.

• Constraint on Implausible Alternatives

In DCEs, choices are collected based on hypothetical profiles or alternatives de-

fined by the attribute levels of the underlying classification system as illustrated

in Section 2.3. However, some of the attribute level combinations are unrealistic

or illogical and would make no sense to respondents. For example, consider the

AQL-5D classification system introduced in Table 2.1, where each health state

is defined by five-digits each reflecting the degree of severity (ordered from best

level 0, to worst level 4) of particular attributes. In this system AQL-5D health

state 00140 does not make a good sense, since in a situation where a person never

has a good night’s sleep (level 4 for sleep attribute), it would not be logical to

assume that he/she would have no limitation at all with his/her daily activities

(level 0 for the activity attribute).

Thus, for any AQL-5D health state xij that is represented by a vector of dummy
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variables with elements defined as

xλδ =

 1 if attribute δ of health state xij is at level λ or higher,

0 otherwise,

if two of the first three attributes are at very mild level, say 0, while the rest of

the attributes are at severe level, say 3 or 4, for example AQL-5D health state

00044, then the health state is likely to be unrealistic or very rare. Formally, the

AQL-5D health state can be defined as unrealistic if

4∑
λ=1

3∑
δ=1

xλδ < 2 &
4∑

λ=1

5∑
δ=4

xλδ > 4. (3.3.1)

Respondents might find it difficult to evaluate such alternatives, since they do

not make good sense to them. This might reduce the response efficiency, and

hence affect the precision and the accuracy of the parameter estimates which is

typically the main interest of experimenters. Therefore, it is important to prevent

this type of combination appearing in the choice designs.

• Constraint on Dominant Alternatives

Dominant alternatives occur with ordinal attribute levels, as in health classifica-

tion systems where attribute levels are ordered based on their severity from best

to worst or vice versa. An alternative that has all or most of its attribute levels

better than the other is said to be dominant.

The alternative might dominate all the possible level combinations defined by a

classification system, or only the alternatives offered in a particular choice set. To

illustrate these situations, return to the AQL-5D example. The best health state

(00000; no concern about having asthma, no feeling short of breath, no problem

with weather and pollution, no sleep problems, no limitation in activities at all)

dominates all other possible health states defined by the classification system.

This is because this health state has all the best level combinations, so it is clear

that all respondents will choose the best health state no matter what other health
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states are offered to them. On the other hand, a choice set such as {00011, 01212}

has an alternative that dominates the other option offered in this given choice set

– health state 00011 has attribute levels that are better (or as good as) than the

corresponding level of the other alternative – but it does not dominate all other

possible level combinations defined by the classification system, such as 00000,

or perhaps even 11000. Mathematically, for any two AQL-5D health states xij

and xit where t 6= j, health state xij is formally said to be dominant over xit if

4∑
λ=1

xjλδ 6 xtλδ, for all δ = 1, . . . , 5. (3.3.2)

Informally, the term is also applied if the inequality holds for ‘most’ attributes.

This type of choice question does not provide valuable information regarding the

preferences for the attributes. This follows since all respondents will choose the

dominant alternative. Since these choices are modelled to infer respondents’ pref-

erence for the attributes, as illustrated in Section 2.5, a choice design with many

dominant choice sets will reduce the precision of the parameter estimates. There-

fore it is usually better to avoid this type of question in the actual choice design.

Nevertheless, it may occasionally be sensible to use them to test respondents’

understanding for the choice task and the definition of the attribute levels.

• Anchoring Health State Utility

As mentioned earlier in Chapter 2, a major problem with using DCEs for estimat-

ing health state utility is that the resulting estimates are not directly anchored

on the dead-full health scale required to compute QALYs. Therefore, in this

thesis, we suggest following the idea of including the death state in the choice

design to anchor the utility values using the death coefficient, as discussed in

Section 2.4.4. This idea was originally proposed in Brazier et al. (2009) and has

been applied by many researchers, such as Stolk et al. (2010) and Ramos-Goñi

et al. (2013). In these studies, the death state was either added manually to the

original choice design as an extra choice task or added as a common option to

64



all choice sets, to perform a ranking exercise and estimate the death coefficient.

However, this might affect the efficiency of the choice design, since the original

design is optimised based on a particular criterion that does not account for the

death state.

Therefore, it would be better if we could use an approach that allows us to involve

the death state in the construction of the choice design. This will be another of

our concerns in generating a choice design for valuing health state utility.

It is essential to construct a choice design for health evaluation studies that takes

into account all of these features if we wish to gather information on choices as efficiently

as possible. Constraints imposed on the implausible and dominant alternatives can

act in opposition to the general aim to maximise the information that can be gained

through the design. This, in addition to the complexity of constructing the choice

design for a nonlinear DCM model, means that ‘standard’ designs such as orthogonal

designs are unsuitable. Tailored approaches must be sought to generate optimal choice

designs for health evaluation studies.

3.4

Optimality Theory

Constructing the choice tasks of DCEs, i.e. selecting the combinations of the attribute

levels and grouping them efficiently into choice sets, requires an efficient experimental

design that yield the maximum amount of information at the least cost and amount

of work. We mentioned in the previous section that standard designs such orthogonal

designs are not practical in many circumstance as they cannot cover the experimental

constraints specified by the researchers. Also, they might not exist for complicated
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and large choice design problems (e.g. designs with larger numbers of attributes and

attribute levels, number of choice sets etc.).

An algorithmic optimal design methodology is required in such cases to generate the

choice designs. Optimal designs (also called optimum designs) are constructed based

on different statistical measures called optimality criteria. The selection of the design

criterion is based on the objective of the experiment, as discussed in Section 3.4.1.

Generally, optimal designs cannot be obtained theoretically and are constructed using

search algorithms that use a specific search procedure to return the required number of

choice questions with the specified number of alternatives that optimises the specified

criterion given any design constraints (see Section 3.7 for more details about optimal

design algorithms). The resulting optimal design is not the best of all possible designs;

it is just the best found within the limitations of the search strategy and only with

respect to the particular criterion chosen. Therefore, some authors word optimal.

The main advantage of optimal designs is that they are more flexible than the stan-

dard designs, particularly orthogonal designs, as they allow researchers to construct

a good choice design, providing the required statistical properties and taking into ac-

count the design constraints. In addition, they are available for any design problem

with any required number of choice questions, alternatives, and attributes, and for any

type of model. Also, they may reduce the cost of experimentation in comparison with

non-optimal designs, such as the full factorial designs, which require many choice tasks

of the experiment to obtain the same precision in the parameter estimates. However,

the reliance of the optimal designs on the model being specified before observing the

effects of the experimental factors is a drawback, since this model dependence means

that the quality of the data collected from the design and the final conclusion de-

rived from analysing such data is based on the correctness of the model specified for

generating the optimal design.

The first optimal design was constructed by Smith (1918) who stated the first

optimality criterion for a linear regression problem and obtained an optimal design
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based on what is called the G-optimality criterion. Optimal experimental designs

for regression models subsequently received more attention in the design literature

(Atkinson et al., 2007). However, the main contribution to the development of this

area is due to Kiefer (1959, 1961, 1974) and Kiefer and Wolfowitz (1959, 1960, 1965)

cited in Chaloner (1984). In-depth information regarding optimal experimental designs

for linear models in a non-Bayesian framework can be found in works by Federov (1972)

and Silvey (1980) (Atkinson et al., 2007).

For the past two decades, interest in Bayesian experimental designs has increased,

with much work carried out to construct Bayesian designs for linear and nonlinear

models. More details can be found in the review paper by Chaloner and Verdinelli

(1995). Also, optimal experimental designs for both linear and nonlinear models have

been discussed in depth by Atkinson et al. (2007). In this chapter, we mainly discuss

Bayesian optimal designs for nonlinear models, and even more specifically only for

DCMs. However, before that, we review some optimal design criteria and general

aspects of the optimal design theory in Sections 3.4.1 and 3.4.2, respectively, and then

illustrate the calculation of the optimal design for the general linear model in Section

3.4.3, to illustrate the difference between linear and nonlinear optimal design problems.

3.4.1 Optimality Criteria

Optimal designs are based on different statistical measures called optimality criteria.

These criteria are also known as alphabetic optimality criteria, since they are named

by different letters of the alphabet. The optimality criterion is a single value or mea-

sure used to explain how good a design is. This value summarises and describes the

properties and variability of the parameter estimators. Thus, an optimal experimental

design allocates the support points xj, j = 1, . . . , J , of a design ξ in the experimental

design region X such that the optimality criterion value is optimised. The vector xj

defines the levels of the explanatory variables of the jth design point, and these are

used to define the design matrix, X, and hence summarise the amount of information
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provided by an experiment by the information matrix of a design M(ξ) .

The optimality criteria are typically defined as a function of the information matrix

or its eigenvalues of a design ξ, denoted as M(ξ). The importance of this matrix is

its proportionality to the inverse of the variance–covariance matrix of the parameter

estimators of the model, since that is usually used as a measure of a good estimation

procedure. In this section we give a brief overview of the most frequently used design

criteria in practice. These are:

• D-optimality: This criterion was introduced by Wald (1943), and has been the

most extensively studied criterion in Bayesian and non-Bayesian design literature

(Rady et al., 2009). It seeks to maximise the determinant of the information

matrix of the design, denoted by |M(ξ)|, or equivalently minimise the determinant

of its inverse (the variance–covariance matrix of the estimators). Formally this

can be written as

D = |M−1(ξ)|. (3.4.1)

This criterion is typically used when the interest is in estimating all parameters

of interest, β, in a particular model precisely, since the optimal design minimises

the volume of the confidence ellipsoid of the estimated parameters. The kth

root, where k is the number of parameters of interest, of the determinant of

the information matrix is typically used to standardise the statistical measure to

result in a measure for which the dimension of the model is irrelevant (Atkinson

et al., 2007). Thus, the criterion would be written as

D = |M−1(ξ)|1/k. (3.4.2)

Other criteria, such as DA (also known as generalised D-optimality) and DS, are

extensions of D-optimality. The former is used if the interest is in minimising

the variance of r linear combinations of the parameter estimates AβT , where A

is a r × k matrix with rank r < k; the latter is suitable when the interest is in
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estimating a subset of the parameters as precisely as possible.

If r = 1, i.e. the interest is in estimating a single linear combination of the

parameter estimates cβT with minimum variance, then DA is reduced to what is

called c-optimality criterion. In this case, the design criterion to be minimised is

defined proportional to the variance of cβT as

var(cβT ) ∝ cM−1(ξ)cT , (3.4.3)

where c is a row vector with dimension equal to the number of parameters k, and
k∑
i=1

c2
i > 0. We refer the reader to Atkinson et al. (2007, pp.135–150) for more

details about these criteria.

• G-optimality: This criterion was named by Kiefer and Wolfowitz (1959) after

it was first introduced by Smith (1918) who constructed a G optimal design

for a regression model. This criterion looks for designs minimising the maximal

prediction variance, dmax(ξ), over the design region X

dmax(ξ) = max
x∈X

d(x, ξ), (3.4.4)

where d(x, ξ) = f(x)M−1(ξ)f(x)T is the standardised variance of the prediction

at the design point x, and f(x) is a row vector of known functions of x. Thus, a

G-optimum design is calculated as the one that minimises dmax(ξ). The computa-

tional time of this criterion grows exponentially as the design region X increases.

Thus, to make this design criterion more feasible it is much more convenient to

restrict the design region.

• A-optimality: This criterion seeks to minimise the trace, the sum of the diagonal

elements, of the inverse of the information matrix, denoted by tr[M−1(ξ)]. This

means minimising the sum of the variance of the parameter estimators.

• V-optimality: This criterion has been known by several other names; such as

I- and Q- optimality criterion and is called the integrated or average variance
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criterion. The V-optimal design minimises the average prediction variance, d(ξ),

over the design region X .

d(ξ) =

∫
X

d(x, ξ)dx, (3.4.5)

where d(x, ξ) is defined as in equation 3.4.4.

Despite the fact that there are many criteria in the design literature, until now

the efficiency of a design has been mostly expressed in terms of D-optimality (Kessels

et al., 2009). This is because D-optimum designs are easier to construct and consume

less computer resources and time compared with the other criteria, particularly for

Bayesian designs that require larger computer resources in any case. This follows since

the criterion value for the D-optimality is computed at the design points only and not

averaged over the design region X as in, for example, G-optimality criterion where the

time grows exponentially with the design region. In addition, theD-optimality criterion

has been observed to perform well in terms of other criteria, such as G-optimality and

V-optimality that are optimal for prediction (Kessels et al., 2004). However, one has

to be aware that optimality of a design is related to the optimality criterion used to

construct the design. Thus, a design that is optimal with respect to one criterion might

not be optimal for another; for example, a D-optimum design might not be V-optimal.

Optimum designs are based on optimising the selected design criterion within the

limitation of the search strategies to satisfy the design constraints. For most nonlinear

models, specifically DCMs, the optimisation problem cannot be solved analytically, and

hence a numerical optimisation procedure is required. This optimisation method uses

different search algorithms which might result in different optimum design based on the

search strategies used (see Section 3.7 for different choice design algorithms). Therefore,

the optimisation procedure may result in a local, instead of global, optimum design,

particularly when the optimisation function is not concave. The resulting design might

be near optimum design but not necessarily the global optimum design. However, the

term optimum is often used to represent near optimum design or to reflect a design
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which is satisfactory from practical point of view.

In the optimal design literature, the optimality of different designs can be investi-

gated using the general equivalence theorem introduced in the following section.

3.4.2 The General Equivalence Theorem

Kiefer and Wolfowitz (1960) prove that there exist ξ∗ where the three following state-

ments are equivalent:

• The design ξ∗ maximises |M(ξ)|.

• The design ξ∗ minimises max
x∈X

d(x, ξ).

• max
x∈X

d(x, ξ∗) = k.

This is known as the general equivalence theorem (GET) and it indicates that

D-optimum design is G-optimal. However, the key value of the theorem is that it

states that the optimal design obtained by these criteria can be identified as having

the maximum variance of the prediction equal to the number of the parameters in the

model, k.

The optimality of different designs can be compared using the efficiency property

introduced by Atkinson et al. (2007).

• D-efficiency: This is used to compare the information content of an arbitrary

design ξ to the optimum design ξ∗, and is defined as

Deff =

{
|M−1(ξ∗)|
|M−1(ξ)|

}1/k

. (3.4.6)

This measure shows how much better the optimal design is ξ∗ compared to its

competitor ξ.
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• Relative D-efficiency: This is used to compare the information content of any

two designs. Thus, the relative D-efficiency of design ξ2 to ξ1 is defined as

Drel−eff =

{
|M−1(ξ1)|
|M−1(ξ2)|

}1/k

. (3.4.7)

In this case, unlike the D-efficiency, the relative efficiency value could be greater

than one if design ξ2 outperforms ξ1 with respect to the optimality criterion value.

3.4.3 Example: Deriving the D-optimal Design for the Gen-

eral Linear Model

In this section, we consider deriving the D-optimum design for a simple linear model

described in Atkinson et al. 2007, pp.44-57. The general form of the linear model can

be written as

y = XβT + ε,

where y and ε are a column vectors of the observations and the random errors, respec-

tively, X is an n×k design matrix, and β is a vector of the unknown model parameters.

We usually assume that the random errors are independent and identically normally

distributed with mean zero and finite variance σ2 (i.e. E(ε) = 0 and V ar(ε) = σ2In,

where In is n× n identity matrix).

There are different ways to fit the regression line; however, in this example we

consider the most common method for fitting general linear model – ordinary least

squares (OLS). In this method, the best fitting line for the observed data is computed

through minimising the sum of squares of the error in fitting the lines, i.e. minimising

the differences between each data point and the corresponding fitted value on the line.

Assuming that n > k, then the minimisation process searches for the best estimators

of β by solving k equations. If, as is usual, the random errors are assumed to be

independent and identically normally distributed, the least squares estimators are the
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same as the maximum likelihood estimators of the unknown parameters. Thus, in

general, for the general linear model defined above, the estimators of the parameters

can be written as

β̂
T

= (XTX)−1XTy,

given that (XTX)−1 exists. The variance-covariance matrix of the least squares esti-

mator is given by

V ar(β̂) = σ2(XTX)−1.

If D-optimality is to be considered as the design criterion, the design points must be

selected such that the determinant of the variance-covariance matrix of the estimators

is minimised (i.e. the confidence ellipsoid of the estimators is minimised), where the

D-optimality criterion is defined as

D = |σ2(XTX)−1|1/k. (3.4.8)

This is equivalent to maximising the determinant of the information matrix XTX,

where the higher the value of the determinant the lower the variance of the parameters

will be that lead to higher design efficiency. To illustrate this consider computing

D-optimal design for a first-order linear model with one explanatory variable x and

intercept as defined in equation 3.4.9:

yi = β0 + xiβ1 + εi (i = 1, . . . , n), (3.4.9)

In matrix notation this can be written as y = XβT + ε, where X is a n × 2 design

matrix, βT = (β0, β1)T and ε are a column vectors of unknown model parameters

and random errors, respectively. If n > 2, and the random errors are assumed to

be independent and identically normally distributed, the parameter estimates and the

variance covariance matrix of the least squares estimators can be computed as defined
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above, where

XTX =

 n
∑
xi∑

xi
∑
x2
i

 .
Thus, the determinant of the information matrix is

|XTX| =

∣∣∣∣∣∣ n
∑
xi∑

xi
∑
x2
i

∣∣∣∣∣∣
= nSxx

where Sxx =
∑

(xi − x̄)2. For a given sample size D-optimum design selects design

points such that the determinant of the information matrix is maximised. Conse-

quently, design points should be selected where Sxx is as large as possible. Therefore,

for range of x over a finite interval [xmin, xmax], the design points of a D-optimum

design must be chosen at the boundaries of that interval so the determinant of XTX

is minimised.

From a frequentist perspective, this D-optimum design minimises the volume of

the confidence ellipsoid of all parameters. This is because the volume of the confidence

ellipsoid of the parameters is inversely proportional to the determinant of the informa-

tion matrix XTX. This ellipsoid is derived from the 100(1−α)% confidence region for

all parameters that has the following form

(β − β̂)XTX(β − β̂)T ≤ ks2Fk,v,α,

where k is the total number of parameters, s2 is the estimator of σ2 on v degrees of

freedom and Fk,v,α is the α% point of the F distribution on k and v degrees of freedom.

From this equation, the volume of the confidence ellipsoid can be derived as

(πks2Fk,v,α)k/2

Γ(k/2 + 1)|XTX|1/2
,
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whereΓ(k/2 + 1) = (k/2)!. Therefore, the D-optimum design minimises the volume

of the confidence ellipsoid, through maximising the determinant of the information

matrix, |XTX|.

In a Bayesian approach, D-optimality can be interpreted as minimising the vol-

ume of the credible ellipsoid of the unknown model’s parameters, i.e. minimising the

determinant of the posterior variance-covariance matrix (VCM). For a normal linear

model with conjugate priors for the mean and the variance, this VCM would have a

closed form and would not be depend on the unknown model parameters. Therefore

the Bayesian optimum design would be simply obtained by minimising this VCM over

the design points, as in the non-Bayesian design, to return the required design with

smallest values for the posterior VCM (see Atkinson et al., 2007; and Chaloner and

Verdinelli, 1995, for more details about Bayesian design for linear models).

However, for nonlinear models, unlike linear models, the VCM of the estimators, and

hence the design criterion, depends on the unknown model parameters (Atkinson et al.,

2007). This complicates the computation of the optimality criterion, and consequently

the construction of the optimum design for nonlinear model, here DCMs. Recently,

however, the Bayesian approach has become the most usual method for coping with the

problem of design dependency on the unknown parameters of the choice model. This

approach and the construction of Bayesian optimal design for DCMs are discussed in

the following section.
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3.5

Nonlinear Optimal Design Problem

Calculating optimal designs for nonlinear models, particularly DCMs, is more compli-

cated than for linear models. This is because the design criterion is usually a function

of the information matrix of the design or its inverse which for nonlinear model itself

depends on the specification and parameter values of the model, denoted as M(ξ,β).

For instance, Kessels et al. (2004) showed that the information matrix M(ξ,β) for

the multinomial logit model (MNL) model depends on the unknown model parameters

through the choice probability as

M(ξ,β) =
S∑
s=1

Xs(Ps − psp
T
s )XT

s , (3.5.1)

where Xs is the k×J design matrix for each choice set s, k is the number of parameters,

and the concatenated Xs matrices constitute the design matrix X of the choice exper-

iment. Ps and ps are a diagonal matrix and a J × 1 vector of the choice probabilities

of each alternative presented in the choice set s which is a function of the unknown

model parameters as Pjs = e
βxTjs∑J

t=1 e
βxTts

.

A Bayesian approach has been used to circumvent such dependency problems

through incorporating prior information regarding the parameter values into the exper-

imental design. In the design literature, there are two approaches to incorporating the

prior information about the unknown model parameters, which are either: using prior

point estimates (which results in what are called locally optimal designs), or using the

entire prior distribution (that results in what are called Bayesian optimal designs) as

discussed in the following sections.
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In this thesis, we consider using a Bayesian optimal design approach to deal with

the dependency of the optimal choice design on the values of the unknown model

parameters while assuming that the specified model is correct (i.e. the dependency of

the optimal design on the specification of the model is ignored here by assuming the

underlying model is the correct model).

3.5.1 Locally Optimal Designs

As mentioned earlier, for nonlinear models, the information matrix, or any function of

it, depends on the model parameters, and consequently so does the optimality criterion

and the construction of the choice design. The local optimal design is constructed by

optimising the criterion value given the best prior guess for the parameter values, β.

This approach was first introduced to DCEs in Bunch et al. (1996) who assume zero

prior values for the preference parameters β0, which results in what are called utility-

neutral designs. However, this assumption is unrealistic, as it implies respondents have

no preference over all attribute levels, and hence all alternatives, for any possible choice

questions. Huber and Zwerina (1996) argue that this assumption might be costly and

result in inefficient choice designs, particularly when the true parameter values are not

zero, as is the case in most practical marketing choice studies. In their study, they

introduced non-zero prior point estimates, βp, to calculate the local optimal choice

designs. It can be noticed that the utility-neutral design is a special case of the local

optimal designs with zero prior point estimate.

In local optimal design, researchers usually use the optimality criterion with sub-

script p to refer to the point prior estimate approach, to distinguish it from the criterion

that is used for linear model, where no prior is required. For example, for D-optimality

a criterion is denoted as Dp when a non-zero prior point estimate is used, and for

the special case of a zero prior it is denoted by D0. The locally D-optimum design is

calculated by maximising the information matrix of the DCM model M(ξ, β), or equiv-

alently minimising its inverse, given the prior point estimates. Formally, the design
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criterion is defined as

Dp = |M−1(ξ,βp)|1/k, (3.5.2)

and, for the zero prior case, as

D0 = |M−1(ξ,β0)|1/k. (3.5.3)

The prior information about the parameters could be obtained from previous stud-

ies, pilot studies, or expert judgments. A zero prior is typically used to simplify the

choice design problem. However, as mentioned earlier, this assumption is unrealistic

and impractical, and might reduce the efficiency of the designs.

A more general problem with this approach is that any point estimate does not take

into account the uncertainty around the assumed parameter value, and a poor guess

for the prior point estimate may result in inefficient choice design. Therefore, in the

next section, we introduce a more advanced experimental design approach, Bayesian

optimum design, that allows researchers to account for the uncertainty by assuming a

prior distribution for the possible parameter values.

3.5.2 Bayesian Optimal Designs

As has been discussed, the efficiency of locally optimal designs depends on the choice

of the point prior: a poorly defined prior leads to inefficient choice designs. There-

fore, more recently, Bayesian optimum designs have been widely used in the design

literature to provide a more robust design solution. In this approach, the dependence

on single values is avoided by using a prior distribution for the unknown parameter

vector, denoted by π(β), and, hence, constructing the optimum design based on several

plausible parameter values. This approach might lead to a more informative design,

as it accounts for uncertainty in the parameter values. One should note that locally

optimal design is a special case of Bayesian design, with point priors either zero, β0,
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or non-zero, βp.

This approach was first introduced to DCEs in Sándor and Wedel (2001) who

showed an improvement in constructing optimal choice designs for the MNL model us-

ing a manager’s prior belief over the local optimal design, particularly, with poor guesses

for the point estimates. This approach was then implemented by many researchers in

different fields to construct Bayesian optimum designs for DCEs (e.g. Kessels et al.,

2004, Kessels et al., 2006, Rose and Bliemer, 2008, Kessels et al., 2011).

The approach requires a prior distribution for the unknown model parameters. In

general, the multivariate normal distribution, N (β|µ,Σ), has been used, though it

might not be appropriate in some situations (e.g. when the price is included as an

attribute in the experiments, or for parameters associated with decrement in ordered

attributes). As a result, more attention should be given to selecting the prior distribu-

tion of the parameters so that it reflects, for example, the correct sign of the parameter

values, and the expected size of effects. The prior information about the sign or the

values of the unknown parameters could be collected from previous studies, pilot stud-

ies, expert judgments and other method such as sequential design strategies discussed

in Carlsson and Martinsson (2003).

A Bayesian optimal design is calculated by optimising an appropriate function

of the information matrix or its inverse over a prior distribution of the parameter

values. For example, a Bayesian D-optimum design can be computed by minimising

the expectation of the determinant of the inverse of the information matrix, M(ξ,β),

that is given by

DB = Eβ|M−1(ξ,β)|1/k

=

∫
|M−1(ξ,β)|1/kπ(β)dβ, (3.5.4)

where the subscript B is used to refer to Bayesian optimality criterion, reflecting the

use of a Bayesian approach.
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From a Bayesian perspective, both Dp-optimality and DB-optimality criteria should

minimise the expected posterior VCM of the unknown parameters. Therefore, the

corresponding design criterion should be formulated using the exact posterior VCM

of the unknown parameters in order to generate Bayesian optimal designs in a true

Bayesian approach. However, for nonlinear models in general, and DCMs particularly,

this matrix does not have closed form, and, hence, neither does the optimality criterion.

Thus, Bayesian optimal designs are typically based on different approximations of the

posterior VCM instead, as described in the following section.

3.6

Bayesian Experimental Design

Criteria for Nonlinear Models

As stated above, constructing Bayesian optimum designs for nonlinear models requires

calculating the posterior VCM of the unknown model parameters to form the Bayesian

design criterion. However, this matrix cannot be derived analytically for the DCMs,

since it depends on the unknown parameters of the choice model and an alternative

approach must be sought. In the design literature, there are different approximation

methods, which result in different forms for the design criterion.

Berger (1985) gives several asymptotic approximations for the posterior VCM; how-

ever, in this section, we mainly focus on two approximation methods described in Yu

et al. (2008). The first method approximates the expected posterior VCM based on

asymptotic theory using either the second derivative of the log likelihood function,

the Fisher information matrix, or the second derivative of the log posterior density of
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model parameters, the generalised Fisher information matrix. This results in what is

called asymptotic Bayesian design criteria as illustrated in Section 3.6.1. The alterna-

tive approach does not depend on asymptotic theory. It is based on a true Bayesian

approach using the exact expected posterior covariance matrix that leads to an exact

Bayesian criterion, as in Section 3.6.2, or a Bayesian information approach, as described

in Section 3.6.3.

3.6.1 Asymptotic Bayesian Criteria

The posterior distribution of the choice model parameters is often approximated using

an asymptotic normal approximation of the maximum likelihood estimators (m.l.e.).

This approximation assumes that the posterior distribution looks increasingly like a

normal distribution as the sample size become larger (Train, 2003, pp.284–291). The

VCM of this asymptotic distribution is approximated by the inverse of the Fisher

information matrix (FIM) of design ξ as

V̂ ar(β) = FIM−1(ξ,β), (3.6.1)

where the FIM is defined as the negative (value) of the expectation of the Hessian

matrix, H, or the second derivative of the log likelihood function of the underlying

model, denoted, in general, as L(y|β):

FIM(ξ,β) = −EY [H(ξ,β)] ,

= −EY

[
∂2 logL(y|β)

∂β2

]
. (3.6.2)

Thus, the information in a design ξ is quantified as the negative value of the expected

derivative of the score function ∂ logL(y|β)
∂β

as defined in Equation (3.6.2). An alternative

for the FIM approximation, also rooted in asymptotic theory, is the generalised Fisher

information matrix (GFIM), in which the expected posterior variance is approximated
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as the inverse of the GFIM of the design, that is computed as the negative value of the

expectation of the second derivative of the log posterior density, π(β|y) ∝ L(y|β)π1(β),

as

GFIM(ξ,β) = −EY

{
∂2 log [L(y|β)π1(β)]

∂β2

}
,

= −EY

{
∂2l(y|β)

∂β2

}
− EY

{
∂2 log π1(β)

∂β2

}
,

= FIM(ξ,β)− EY

{
∂2 log π1(β)

∂β2

}
, (3.6.3)

where the FIM is defined as in equation (3.6.2), π1(β) is the inference prior, and

−EY

{
∂2 log π1(β)

∂β2

}
is the amount of information that the prior carries about the pa-

rameters. Based on asymptotic theory, this is equal to the inverse of the covariance

matrix of the prior distribution; thus, supposing that the prior distribution follows a

multivariate normal distribution with covariance matrix Σ,

EY

{
∂2 log π1(β)

∂β2

}
= −Σ−1.

The GFIM therefore becomes

GFIM(ξ,β) = FIM(β, ξ) + Σ−1. (3.6.4)

The asymptotic Bayesian design criteria are formulated using the asymptotic ap-

proximation of the posterior VCM using the FIM and GFIM. However, both the FIM

and the GFIM depend on the unknown parameters of the choice model. As a re-

sult, optimum designs are constructed in this framework using an appropriate prior

distribution, design prior denoted as π2(β), to take into account the uncertainty in

the possible parameter values. Using the asymptotic approximation of the expected

posterior VCM, the D-optimality criterion is computed as

DBFIM =

∫
|FIM−1(ξ,β)|1/kπ2(β)dβ, (3.6.5)
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or

DBGFIM =

∫
|(FIM(ξ,β) + Σ−1)−1|1/kπ2(β)dβ. (3.6.6)

Note that in Equation (3.6.6), different priors could be used for the inference (esti-

mating the posterior VCM), π1(β), and the design prior (constructing Bayesian design),

π2(β). However, using one prior, π(β), for both is more sensible, as analysis and design

are part of the same overall study. Also, the FIM criterion is just a special case of the

GFIM, as the later converges to the FIM when assuming a non-informative prior dis-

tribution in which Σ−1 becomes close to zero (e.g. if the prior is a normal distribution

with large variance).

These asymptotic approximations of the posterior VCM rely on large-sample theory,

i.e. a large sample size is required to ensure the validity of the asymptotic approxima-

tion. McCulloch and Rossi (1994) state that a large sample size, perhaps more than

1,000 observations per model parameter, is essential to ensure the validity of the asymp-

totic approximations of the posterior distribution. Nevertheless many researchers in

the choice design literature use Bayesian asymptotic criteria approximated using the

FIM as a basis for constructing efficient choice design due to its computational simplic-

ity (e.g. Huber and Zwerina 1996; Zwerina et al. 1996; Sándor and Wedel 2001; and

Kessels et al. 2006). However, in a situation where sample size is an issue, the FIM

might result in a poor approximation of the posterior VCM, and consequently result

in inefficient designs. In this case, it would be better to use another approximation

method such as the GFIM that is known to have better finite sample properties than

the FIM, or even better use a better approximation for the true posterior distribution,

as discussed in the following section.

3.6.2 Exact Bayesian Criteria

This method uses the exact value of the expected posterior variance-covariance matrix

(EPVC), and does not depend on the asymptotic theory. In this approach, the EPVC
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is estimated by the expected posterior covariance matrix of the Bayesian estimators

after conducting the experiment. Here, and assuming that the prior for the inference

is the same as the one for the design (i.e. π1 = π2), the posterior density of β given

the data y is given by

π(β|y) =
L(y|β)π(β)

pY(y)
, (3.6.7)

where pY(y) is the marginal distribution of the observations y, and π(β) is the prior

distribution of the parameters. Thus, the posterior VCM of the parameter estimators

is given by

V ar(β|y) =

∫
(β − β̄)(β − β̄)Tπ(β|y)dβ,

=
1

pY(y)

∫
(β − β̄)(β − β̄)TL(y|β)π(β)dβ,

(3.6.8)

where β̄ is the posterior mean, given by

β̄ =

∫
β π(β|y)dβ.

Note that the posterior VCM depends on the response values y (here choices),

which will not be observed before conducting the experiment. Therefore, the posterior

variance of the estimators is calculated by taking the expectation of the posterior

variance in Equation (3.6.8) over the marginal distribution of the responses, pY(y), as

follows:

E [V ar(β|y)] =

∫
V ar(β|y) pY(y)dy,

=

∫ [
1

pY(y)

∫
(β − β̄)(β − β̄)TL(y|β)π(β)dβ

]
pY(y)dy,

=

∫ ∫
(β − β̄)(β − β̄)TL(y|β)π(β) dy dβ.

Hence finding an exact Bayesian D-optimum design requires minimising the determi-
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nant of the EPVC of the parameter estimators, that is

DEPV C =

∣∣∣∣∫ ∫ (β − β̄)(β − β̄)TL(y|β)π(β)dydβ

∣∣∣∣1/k . (3.6.9)

A design that minimises Equation (3.6.9) is called an exact Bayesian D-optimum de-

sign.

3.6.3 Bayesian Information Criteria

The Bayesian information approach, which computes the gain in knowledge about

Bayesian estimators when moving from the prior distribution to the posterior dis-

tribution, was introduced to the experimental design field by Lindley (1956). The

information design criterion is based on the concept of the Shannon information in-

troduced by Shannon (1948) to measure the uncertainty associated with a random

variable. Using this concept, an optimal design must maximise the expected gain in

Shannon information or, equivalently, the amount of information provided by a design.

In a Bayesian framework, the gain in Shannon information is calculated as the

difference between the information provided by the posterior distribution, denoted by

g1(y), and that provided by the prior distribution, denoted by g0. Formally, the amount

of information provided by the prior distribution is given by

g0 = Eβ {log[π(β)]}

=

∫
log[π(β)]π(β)dβ. (3.6.10)

The posterior Shannon information, obtained after conducting the experiment and
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observing the response vector y, is given by

g1(y) = Eβ {log[π(β|y)]}

=

∫
log[π(β|y)]π(β|y)dβ

=
1

pY(y)

∫
log[π(β|y)]L(y|β)π(β)dβ. (3.6.11)

Note that, again, the posterior Shannon information depends on the response vector y

which has not been observed yet at the design stage. Therefore, the expected Shannon

information is computed instead. Thus,

g(π(β),y) = EY[g1(y)− g0]

=

∫
[g1(y)− g0] pY(y)dy. (3.6.12)

The optimal design should maximise the expected Shannon information gain pro-

vided in Equation (3.6.12). However, the amount of information provided by the prior

distribution, g0, does not depend on the the design. Therefore, it can be ignored, and,

hence, the Bayesian optimality criterion based on Shannon information can be defined

as

DShannon =

∫ ∫
log [π(β|y)]L(y|β)π(β)dydβ. (3.6.13)

The EPVC and Shannon information criteria, unlike the asymptotic criteria, do

not rely on asymptotic theory. Thus, their approximation to the exact VCM of the

model parameters and the amount of information gained, respectively, is often valid no

matter what sample size is available (e.g. number of respondents or choice questions).

Also, both criteria take into account the prior knowledge about the model parameters

in the design and estimation stages, thus providing efficient designs for a fully Bayesian

framework, whereas the asymptotic Bayesian criteria consider the prior information for

the design phase only (Yu et al., 2008).

Nevertheless, the EPVC and Shannon information criteria value depend on the
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response vector, y, that has not been observed yet at the design phase. This means

that using these criteria as a basis for constructing optimal designs comes at large

computational cost, as they require an intensive computational integration over the

marginal distribution of the responses. This makes them less practical.

Therefore, for computational simplicity, the asymptotic criteria will be used as the

basis for constructing Bayesian choice designs throughout this thesis. Constructing

Bayesian designs based on even these simpler criteria requires a numerical/algorithmic

approach to optimise the criterion over a suitable prior distributions of the parame-

ters, and often involves complicated integrals. In the following section, we review the

algorithms and software available to construct Bayesian choice designs.

3.7

Design Algorithms and Software

The computation of the optimality criteria and hence selection of the optimal choice

designs requires search algorithms and computer software to identify the design which

best satisfies the study constraints. In this section, we review the most widely used al-

gorithms and design software available to calculate locally optimal designs and Bayesian

optimal choice designs for discrete choice models in Sections 3.7.1 and 3.7.2, respec-

tively. An investigation of the ability of these algorithms and design software, partic-

ularly ones for Bayesian designs, to accommodate our design model and constraints

is provided in Chapter 5; here we mainly focus on recent developments in Bayesian

optimal choice design algorithms.
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3.7.1 Local and Utility-neutral Optimal Design Algorithms

In the previous sections, we illustrated that the calculation of the optimal design crite-

rion and hence the choice design depends on the unknown model parameters; therefore

prior knowledge is required to construct the choice design. In the Bayesian choice

design literature this is mainly done by constructing locally optimal designs using the

best prior point estimates. Either a noninformative point prior (i.e. assuming all

the preference parameters are zero) or non-zero point prior is used to construct the

optimal choice design. In this section, we review design algorithms used to generate

utility-neutral and local optimal designs.

Anderson and Wiley (1992) argue that design strategies used to construct optimal

designs based on D-optimality criteria for linear models can work well for nonlinear

choice models ignoring the dependence of the optimality criterion on the unknown

model parameters by assuming zero priors. This is because this assumption simplifies

the optimisation problem and reduces it to a linear design problem. They provide

a catalogue of utility-neutral designs for the MNL choice models based on the D-

optimality criterion for linear models. The catalogued designs enable users to estimate

the attribute effects.

Nevertheless, this catalogue might not be efficient to construct a design for a real

choice design problems, since, in practice, most choice design problems are compli-

cated and might required larger designs than those covered by the catalogue. There-

fore, Kuhfeld et al. (1994) recommended the use of computerised search algorithms to

find optimal designs for discrete choice models. They reviewed general computerised

approaches for generalised linear models built in SAS software.

In their study, they reviewed the Dykstra (1971) algorithm and the DETMAX al-

gorithm of Mitchell (1974) which are faster than, but not as efficient as, the Mitchell

and Miller (1970) simple exchange algorithm. The DETMAX and simple exchange

algorithms require an initial design, while the Dykstra (1971) algorithm starts with an
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empty design and sequentially adds design points from a pre-defined candidate set (a

set of all possible attribute level combinations that can be included in the design) in

which the design criteria is optimised. These algorithms then all improve the efficiency

of the current proposed design by adding a candidate point and deleting a design point

one at a time. Kuhfeld et al. (1994) make use of the Cook and Nachtsheim (1980)

algorithm, which is a modified version of the Federov (1972) exchange algorithm. Both

these algorithms require a random starting choice design, and are based on an exchange

procedure that adds a candidate point and deletes a design point simultaneously. This

makes them more reliable, but slower, in finding the optimal design than the earlier

algorithms. The modified algorithm speeds up the exchange procedure and hence the

search for D-optimum design by executing any beneficial exchange as soon as it is dis-

covered rather than only performing the best exchange. Therefore, the modified design

is as efficient as the simple Federov (1972) algorithm in terms of finding the optimal

design, but is much faster in finding the best candidate point from the candidate set

to switch with each point in the starting design (Kuhfeld et al., 1994).

All these search algorithms are based on classical linear design principles that ig-

nore the nonlinear nature of the choice models. This reduces the efficiency of their

choice designs. Therefore, Huber and Zwerina (1996) identified four principles that

they believed to be characteristic of an optimal choice design, i.e. satisfying these

principles jointly produces optimal choice designs. These principles are level balance,

orthogonality, minimal overlap and utility balance, described in Section 3.2.3. Their

algorithm uses orthogonal arrays to generate the first alternative in each choice set,

via the OPTEX procedure in SAS, and then uses the shift/foldover procedure, first

developed by Louviere et al. (2000), to produce the subsequent alternatives in each

choice set. The resultant design has perfect level balance, orthogonality, and minimal

overlap, as the foldover procedure generates alternatives that imitate the perfect level

balance and orthogonality of the initial array. Designs satisfying these three proper-

ties provides an efficient utility-neutral design or D0-optimum design, since the fourth

principle, utility balance, is intuitively satisfied by assuming β = 0k.
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Huber and Zwerina (1996) argue that the assumption of zero prior parameter values

might be inappropriate for many real design problems, especially when there is some

knowledge available about the model coefficients. They introduce two methods to

improve the utility balance of the orthogonal design or utility-neutral design when

the parameter values are not zero. These are swapping and relabelling methods, as

described in 3.7.2. This algorithm is known as the RS-algorithm and is also written in

SAS language.

The study illustrated that relabelling improves the utility balance property without

affecting other design properties, whereas swapping can result in a better utility bal-

anced design by sacrificing some orthogonality and degrading the D0 criterion value.

They show that, for a design of 15 pairs with 4 attributes each with 3 levels, denoted as

34/2/15, the swapping procedure raises the design efficiency by 10% (this improvement

might exceed 50% for more complex designs) and degrades the D0 criterion value by

32%. Therefore, they recommend using the relabelling over the swapping procedure

and selecting the best relabelling design instead of the swapping design, or an algorithm

that includes both procedures, if the researchers are not sure whether β 6= 0.

However, as discussed in Section 3.2.3, in most design problems these principles can-

not be jointly satisfied, and even if they were it does not guarantee that the design is

optimal (Street and Burgess, 2007). In addition, generating choice designs directly from

these principles still follows linear design principles, and hence might not optimise the

correct criterion for the choice model. Therefore, Zwerina et al. (1996) recommended

using computerised search algorithms that construct efficient choice designs by directly

optimising the correct design criterion for the MNL, while allowing the user to incor-

porate any anticipated parameter values instead of assuming zero priors or generating

optimal design directly from the formal principles. In their work, they extend the

work of Kuhfeld et al. (1994) and modified their search algorithm, itself a modification

of the Federov (1972) exchange algorithm, to account for the correct design criterion

corresponding to the MNL model and incorporate any anticipated parameter values in
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the optimisation process. This new version of the exchange algorithm is known as the

modified Fedorov choice algorithm which built in SAS/IML program.

The modified Fedorov choice algorithm, like the Kuhfeld et al. (1994) algorithm,

requires a random starting choice design and pre-specified candidate set of all possible

alternatives. The exchange procedure starts with replacing the first alternative in the

choice design with the alternative from the candidate set that optimises the D value.

The procedure is repeated with all alternatives in the design and continued until no

more improvement is possible. The optimisation search procedure must be repeated for

different starting designs, storing the best design among these tries, in order to avoid

poor local optima. The resulting design, unlike the RS optimal design, is not restricted

to the optimal design principles (level balance, orthogonality, minimal overlap and

utility balance). Also, the modified Fedorov algorithm is more general and can be

applied to any level of design complexity, which might not exist with the orthogonal

arrays in the RS algorithm.

Several studies have since been conducted to develop the optimal theory of choice

designs, particularly for the MNL model. Kessels et al. (2009) describe the work

conducted by Street et al. (2001), and Street and Burgess (2003; 2004) who constructed

A0-optimum choice designs for the MNL model and generated D0-optimum designs for

experiments with two-level attributes for any equal choice set size. This was then

extended by Street and Burgess (2005) to generate D0-optimum designs for the MNL

model for attributes with any number of levels. In general, Street and Burgess’s designs

are constructed using a shifting procedure applied to a starting design based on an

orthogonal array, where they shift the first profile in each choice question to create the

subsequent alternatives, as in the Huber and Zwerina (1996) algorithm. Refer to Street

and Burgess (2007) for more details about Street and Burgess’s design algorithms.

As this thesis mainly considers Bayesian choice design using a prior distribution,

in the following section we review the development in the design algorithms that allow

incorporation of a prior distribution for the unknown model parameters.
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3.7.2 Bayesian Optimal Design Algorithms

Local optimal designs do not take into account the uncertainty in the assumed pa-

rameter values; however, Bayesian designs deal with this problem by assuming a prior

distribution for the unknown parameters and optimising the design over this prior be-

lief. This approach was introduced in Sándor and Wedel (2001) who constructed a

Bayesian D-optimum design for the MNL model using the relabelling and swapping

(RS) algorithm developed in Huber and Zwerina (1996) in addition to another proce-

dure called cycling (C) to construct what is called the RSC algorithm. However, the

swapping procedure in the RSC algorithm is slightly different from the one used by

Huber and Zwerina (1996). The RSC algorithm is written in the GAUSS programming

language. Here, we explain this algorithm briefly; refer to Sándor and Wedel (2001)

for simple examples and more detail about each procedure in the algorithm.

• Relabelling: In the relabelling procedure the levels of the attributes are per-

muted across choice sets searching for a combination of permutations that gives

the best design with the highest efficiency. The procedure starts with the first

attribute in the first choice set and passes that through all attributes and choice

sets. So, returning to AQL-5D example, the method involves an investigation of

5! × 5! × 5! × 5! × 5! = 1205 possible designs, as each of the attributes has five

levels, and hence 5! = 120 possible permutations. The method returns the best

possible reliable design, i.e. the relabelled design with the smallest DB value.

This design is called the optimal R-design.

• Swapping: This involves switching two attribute levels between alternatives

within a choice set. Further, this procedure, unlike the swapping procedure

developed in Huber and Zwerina (1996), considers simultaneously swapping the

levels of several attributes within a choice set.

Thus the procedure starts with the first choice set of the best relabelled design,

and swaps the attribute levels of the first attribute in the first alternative with
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the level of this attribute in the second alternative. The change is executed if it

improves the criterion value. The same procedure is passed to the following choice

set where the swapping procedure will start over if an improvement occurred.

For instance, consider the following choice sets from the AQL-5D classification

system: the procedure starts with the first choice set and swaps the attribute

levels of the first attribute between alternatives and then compares the value of

the D optimality criterion.


1 2 3 2 4

2 1 0 2 4

0 1 2 1 0

1 2 0 1 0


D1

−→


2 2 3 2 4

1 1 0 2 4

0 1 2 1 0

1 2 0 1 0

 .
D2

If D2 < D1 then the change is executed, and move to swap the attribute levels of

this attribute in the second choice set as follows:
2 2 3 2 4

1 1 0 2 4

1 1 2 1 0

0 2 0 1 0

 .
D3

If D3 < D2 then the exchange is executed, and the swapping procedure should

start over again from the first choice set and so on until no more improvement is

possible. The swapping continues through all attributes an choice sets until all

swaps and simultaneous swaps have been investigated. When all choice sets have

been examined, the best modified design returned is called the optimal RS-design.

• Cycling: This algorithm involves two procedures: cyclically rotating the at-

tribute levels (e.g. for an attribute with three levels, level 1 is replaced by level

2, level 2 by level 3, and level 3 by level 1), and swapping them. Thus it starts

with cyclically rotating the levels of the first attribute in the first choice set of the
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optimal RS-design until all possibilities are examined, and adopts the one that

most improves the design criterion. Swapping is applied then to the attribute

levels among alternatives within that choice set, and once again cycles through a

rotation of the attribute levels. The algorithm moves to the first attribute in the

second choice set and continues until the last choice set. The same procedure is

repeated for the remaining attributes until all cycles and swaps are verified. At

each stage of the cycling algorithm, if an improvement occurs then the change is

returned and the procedure starts all over again from the first attribute in the first

choice set. The procedure will stop if there is no further possible improvement.

The last modified design is called the optimal RSC-design.

The Sándor and Wedel (2001) study illustrates that the DB-optimum design is

more efficient than the locally Dp-optimum design, especially when there is a large

uncertainty in the assumed parameter values. However, when the prior point estimates

of the parameter values are close to the real values or the value of the parameters are

known for certain, then the locally RS optimal design generated by Huber and Zwerina

(1996) tends to perform better. On the other hand, Bayesian designs are still more

robust against a poor initial guess for the parameter vector than non-Bayesian ones

(Yu et al., 2008).

The RSC algorithm requires a starting design that satisfies level balance and the

minimal overlap properties. An updated version of the RSC algorithm has been de-

veloped by Sándor and Wedel (2002). In the new version, they modify the cycling

procedure: they replace the combination of the cyclically rotating the attribute levels

and swapping them by cycling the attribute level through the choice design. Also, the

modified RSC algorithm is not restricted to the level balance and the minimal overlap

properties. This makes the algorithm more amenable to design improvements.

Since the introduction of Bayesian design in 2001, the Bayesian approach has been

increasingly used to cope with the problem of design dependence on unknown param-

eter values. Many studies have been carried out to develop different design algorithms
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to produce optimal Bayesian choice designs. Kessels et al. (2004) start with adapting

the modified Fedorov choice algorithm developed in Zwerina et al. (1996) in a Bayesian

framework to account for the uncertainty on the prior point estimate through incorpo-

rating the prior distribution of the parameters in the optimisation procedure. The new

version of the algorithm is available in SAS/ChoicEFF as a macro, and is known as the

Bayesian modified Fedorov choice algorithm or Monte Carlo modified Fedorov (MCMF)

algorithm, since the design criterion is approximated using Monte Carlo samples from

the parameter distribution. This algorithm is also based on an exchange algorithm, so

it requires a random starting choice design and then considers exchanging every alter-

native in the starting design with one from a predefined candidate set of all possible

alternatives. If an improvement in the design efficiency with respect to the specific

criterion occurs in the altered design, then the exchange is performed. The first it-

eration is completed by finding the best exchange for all alternatives in the starting

design. The iteration is continued until no more improvement is possible; see Kessels

et al. (2004) for more details of the algorithm. Also, in their study they recommend

repeating the algorithm using different starting designs in order to avoid poor local

optima. Each starting design is called a try, and the optimal Bayesian choice design is

the most efficient design among these tries.

Kessels et al. (2004) compare Bayesian designs generated using the Bayesian mod-

ified Fedorov algorithm with those obtained from the RSC algorithm developed by

Sándor and Wedel (2001). They show that, based on the underlying design type in

their study (34/2/15), their algorithm provides more efficient designs than those gen-

erated using the RSC algorithm. This follows since their design algorithm does not

impose any design restrictions such as minimal overlap property on the search algo-

rithm, as opposed to the RSC algorithms developed in Sándor and Wedel (2001). Also,

using the MCMF they were able to generate Bayesian optimal designs for the main

effects MNL model based on other design criteria (e.g. A, V and G) rather than re-

stricting themselves to the widely used D-optimality criterion. A comparison between

Bayesian designs based on DB-, AB-, VB- and GB-optimality criteria was then carried
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out to investigate their performance in terms of parameter estimation and prediction

validity. The comparison showed that DB- and AB-optimal designs give more accu-

rate parameter estimates than those based on VB- and GB- optimality criteria, while

prediction-based criteria such as VB and GB designs provide more precise predictions.

Nevertheless, DB-optimal designs perform well in term of prediction compared with

the prediction criteria.

Kessels et al. (2006), continuing their work started in 2004, have generated a

Bayesian optimal design for the main effects MNL model. They used the MCMF

based on different design criteria, aiming to compare DB-, and AB- design criteria to

VB- and GB-optimality criteria and their computation time, while emphasising the

performance of these criteria in terms of predicative ability. A result from their simu-

lation study shows that DB-optimal design criterion has the highest expected efficiency

in terms of other criteria, particularly VB- and GB-design criteria that are developed

especially to make precise predictions, and the shortest computation time. They there-

fore recommend using the DB-optimality criterion to generate optimal choice design for

prediction purpose instead of the prediction criteria, as VB- and GB-optimality criteria

require a larger computational effort for only a small amount of efficiency gained in

predictive ability (Kessels et al., 2006).

The computational time that VB- and GB-design criteria consume to generate

Bayesian optimal designs using the MCMF algorithm makes them impracticable, par-

ticularly for complex design problems where there are many attributes and attribute

levels (Kessels et al., 2006). This problem motivated Kessels et al. (2009) to develop

another algorithm that could accelerate the computational time of these criteria, to

make them more feasible. In their next study, they presented a new algorithm, the

adaptive algorithm, that is faster than the MCMF algorithm in generating Bayesian

choice designs. There are four features in the adaptive algorithm that contribute to

speeding up the calculation of the prediction-based criteria, as below.

1. An economical method is used that calculates only the criterion values of the
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design that differ in one profile from another design, through an update approach.

2. Computing the VB-optimality criterion in an efficient way allows calculating the

average prediction variance without need for computing the prediction variance

for each profile separately.

3. The use of Meyer and Nachtsheim’s (1995) coordinate-exchange algorithm, which

changes one coordinate of an alternative at a time, reduces the computational

time of the optimal choice designs compared to the MCMF algorithm, particularly

for complex large design problems. This is because the MCMF algorithm requires

a pre-defined candidate set to replace each alternatives in the starting design with

one from the candidate set and then examine the improvement in the design

efficiency after each change. This takes a long time for large design problems as

the candidate set becomes very large.

4. Minimum potential designs are employed, i.e. a small designed sample of prior

parameters is used to compute the Bayesian design criterion. This is considered

the main improvement of the new algorithm over the MCMF algorithm.

A full description of the adaptive design algorithm is provided in Kessels et al.

(2009). Based on this development in the search design algorithm, the construction of

VB-optimum designs becomes more feasible in practice. However, Kessels et al. (2009)

show that constructing VB-optimum design is faster than one based on a GB-optimality

design criterion. This is because minimising the average prediction variance is faster

than minimising the maximum prediction variance over the design region. Recently

many studies have been conducted to compare Bayesian designs for different optimality

criteria, and the performance of locally and utility-neutral optimum designs to Bayesian

designs for the MNL model, as well as the effect of misspecifiying the prior distribution

of the preference parameters on the efficiency of the design (e.g. Kessels et al., 2008;

Rose et al., 2008; Rose and Bliemer, 2009; Kessels et al., 2011). Kessels et al. (2011b)

illustrate that, based on several simulation studies for the underlying design type 26/2/8

97



constructed using coordinate-exchange algorithm, Bayesian optimal design provides

the best estimates for the model parameters compared with the locally and utility-

neutral designs. In addition, orthogonal or utility-neutral design produce estimation

problems for some simulated data sets, and increases the number of dominant choice

sets contained in the design. Also, they state that though Bayesian optimal design

might produce a dominant choice set, this can be limited by using an appropriate prior

distribution or adapting the design algorithm in such a way that it prevents this type

of choice appearing in the design (e.g. using design constraints), which is one of our

design considerations.

Software developed specifically to construct Bayesian choice designs is now avail-

able, such as the JMP12 software (Kessels, 2010), and the Ngene software based on

a syntax programming language (Rose and Bliemer, 2012). In general, the JMP de-

sign software is less flexible than the Ngene software, particularly in terms of choice

model, prior distribution, design criterion and even the optimisation algorithms avail-

able to construct the choice designs in addition to other features. Therefore, the Ngene

software is expected to receive more attention in the choice design literature, and par-

ticularly in the health economics literature. In this thesis, we investigate the ability

of these softwares to construct the Bayesian pairwise choice design for valuing health

state utilities while satisfying our design constraints, as will be discussed in Chapter 5.

3.8

Summary

DCEs have been used widely in health economics to value direct and indirect health

outcomes. Recently, there has been increased interest in using such techniques to value
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health states for provision of the utility values within a QALY framework to replace

the cardinal methods such as TTO and SG. However, this technique requires many

developments, particularly in terms of experimental design, before it can be established

as an alternative to the cardinal methods.

This chapter reviewed the main issues with the experimental design used to con-

struct choice designs in health economics in general, and for estimating health state

utilities within the QALY scale in particular, and identified the main requirements

in the experimental designs for successful implementation of DCEs to estimate health

state utilities. Generally, the review showed that the main design issue is that most

of the choice experiments constructed for valuing health state utilities are generated

using orthogonal array designs or are based on other required statistical properties

such as level balance, and minimal overlap. Restricting the construction of choice de-

signs to these properties might result in dominant and implausible combinations of the

attribute levels that reduces the design efficiency. However, imposing constraints on

the attribute level combinations together with other health evaluation design require-

ments (particularly including the death state in the choice design to anchor health

state utilities into the QALY scale) and the complexity of nonlinear design problems,

require deviation from orthogonal design principles and more advanced design methods

to construct an efficient choice design.

There has also been increased interest in using computerised search algorithms to

construct the choice design, particularly using optimal design theory. However, the

construction of optimal designs for nonlinear models, unlike linear models, depends on

the unknown model parameters, and hence requires prior information. In the design

literature, there have been two solutions to overcome this problem: assuming either

prior point estimates (resulting in what are called locally optimal designs), or prior

distributions (that result in Bayesian optimal designs). A description of both design

approaches together with the most widely used design criteria to generate the optimal

designs, for example the D-optimality criterion, has been presented in this chapter.
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Because Bayesian design requires minimising the posterior VCM of particular estima-

tors of interest, and this matrix cannot be derived analytically for nonlinear models,

and particularly for DCMs, we also reviewed different methods for approximating this

matrix either asymptotically using the likelihood function or exactly using the posterior

density.

Although Bayesian designs provide more robust design solutions than local optimal

designs, as they account for the uncertainty around the possible parameter values, in

health economics less attention has been paid to Bayesian designs. Designs have been

mainly based on zero priors for the unknown preference parameters, which results in

utility-neutral designs, to simplify design construction. However, this assumption is un-

realistic, since it assumes no preference for the attribute levels across alternatives, and

might reduce the choice design efficiency. In particular, design have been restricted to

the optimal design principles (orthogonality, level balance, minimal overlap and util-

ity balance) defined by Huber and Zwerina (1996) who state that jointly satisfying

these principles returns an optimal choice design. Nevertheless, for large and more

complex designs that involve real constraints (e.g. avoiding dominant and implausi-

ble choices) these principles might conflict with each other, and even satisfying these

principles might not produce efficient design as illustrated in Street and Burgess (2007,

pp.89-91).

This chapter therefore discussed advanced work in optimal design theory, particu-

larly Bayesian optimal designs. We reviewed the advanced algorithms and software that

directly optimise the design criterion and allow for incorporating prior distributional

information into the construction of the choice designs, to investigate the possibility

of adapting these algorithms to our design constraints (e.g. avoiding dominant and

implausible health states) and employing them to construct better experimental de-

signs and obtain more reliable estimates for health state utilities. Now, since Bayesian

designs require a prior information about the parameter, in Chapter 4, therefore, we

analyse real choice data sets for the underlying classification system (i.e. AQL-5D
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system) to derive appropriate prior distributions for the unknown parameters of our

choice model.
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Chapter 4

Analysis of the AQL-5D Data

4.1

Introduction

In this chapter, we illustrate how preference data can be used to estimate the utilities

of health states defined by the AQL-5D classification system, and to which extent the

type of data can affect the estimated values. In particular, we analyse two empiri-

cal preference data sets, elicited using TTO and DCE techniques, using classical and

Bayesian approach to estimate asthma health state utilities on the QALY scale. The

asthma health state is described by the AQL-5D classification system described in Sec-

tion 2.3.2. This descriptive system has five attributes: concern about having asthma,

shortness of breath, weather and pollution, the impact of having asthma in sleep and

activity limitation. Each attribute has five levels of severity ordered from ‘very mild’

to ‘more severe’ as shown in Table 2.1. Of course, such a classification system produces

too many health states for direct valuation of each individually. Therefore, a sample of
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AQL-5D health states is selected to be evaluated using TTO and DCE methods and

then a statistical model can be used to predict the utility value for all possible health

states defined by the AQL-5D classification system.

This chapter starts in section 4.2 by describing both data sets and methods used for

selecting and valuing health states. Methods used for valuing all possible health states

defined by the AQL-5D classification system based on the data, concerning only a small

sample of states, is recalled in Section 4.3. In Section 4.4, we fit an ordinary linear model

and a logit model for the TTO and DCE data, respectively, to infer the parameters

in the identified utility model and estimate the utility values for all possible health

states defined by the AQL-5D classification system in a classical manner. A Bayesian

approach is then used for the same purpose while providing a simple description of

the uncertainty in the utility estimates in Section 4.5. In particular, we present a

full Bayesian analysis for the TTO data in order to use the posterior inferences of the

parameters as a source of prior distribution in constructing Bayesian optimal design for

the same case study (AQL-5D) in later chapters. In addition, we consider reanalysing

the DCE data using logit model, though it has been analysed in a Bayesian manner

previously using both logit and probit models in Cain (2011), mainly to compare the

results in terms of uncertainty in the mean utility values with the ones obtained from

the TTO Bayesian model. A summary and conclusion of the analysis are presented in

Section 4.6.

103



4.2

Data Description

In this section, we provide a description for both TTO and DCE valuation surveys used

to elicit AQL-5D health state preferences/utilities. Sections 4.2.1 and 4.2.2 describe

the TTO and DCE data sets used in this analysis, respectively, as well as the design

methods used to select health states presented to respondents.

4.2.1 TTO Data

The TTO data were elicited for a sample of AQL-5D health states based on a represen-

tative sample from general UK population in south Yorkshire described in Yang et al.

(2007). A total of 307 people were interviewed to elicit the TTO value for 98 health

states out of the 3,125 possible ones defined by the AQL-5D classification system. The

selection of the states was based on balanced design, which ensured that every level

of every attribute had an equal chance of being combined with each level of other at-

tributes. These health states were stratified into mixed severity groups based on the

sum of their attribute levels, and then allocated into 14 blocks in which each block had

7 health states in addition to the worst state defined by the classification (state 44444).

This ensured that each respondent, to whom allocated one block, was all received a set

of states balanced in terms of severity, and each state was valued the same number of

times except for the worst health state, which is valued by all respondents. Thus, in

total there were 2,456 (307×8) health state utility values generated by all respondents.

As a warm-up exercise to help respondents understand the task of eliciting presence

for different health states, respondents were ask to rank 10 states in order of preferences.

This ranking task involved the 7 intermediate AQL-5D health states allocated in the
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blocks in addition to the best health state (state 00000), the worst health state (state

44444) defined by the classification system and immediate death. Each respondent was

then asked to elicit the TTO value as described in Section 2.4.1.1 for a practice health

state, that is excluded from the analysis, followed by a valuation for the 7 intermediate

states allocated in each respondent’s block and the worst health state. The valuation

study used time board, that is a visual aid, to elicit the TTO value described by the

Measurement and Valuation of Health group. This version of the TTO technique was

shown to be more reliable than the one without visual aid (Gudex, 1994).

In addition to the TTO questionnaires, respondents were also asked to report their

socio-economic characteristics, general health, and which health service they used, as

well as other questions related the difficulties in the preference elicitation method used.

Table 4.1 summarises the general characteristics of the interviewed sample, showing

their sex, age and experience of having asthma.

Table 4.1: Characteristics of the respondents in the TTO valuation survey

Number Percentage (%)

Sex
Male 139 45.3

Female 168 54.7

Age

18-25 34 11.1
26-35 57 18.6
36-45 61 19.9
46-55 50 16.3
56-65 45 14.7
> 65 60 19.5

Having asthma
Yes 53 17.3
No 254 82.7

Total 307 100

These demographic terms and personal characteristics have been considered in the

classical modelling of the TTO data in Yang et al. (2007) as illustrated in Section 4.4.1.

Nevertheless, they showed that model excluding these terms perform better in terms

of the predictive ability of the mean utility values. Therefore, none of these personal
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characteristics are considered in our classical or Bayesian model for the TTO data.

4.2.2 Discrete Choice Data

In this section, we present another valuation study that used the DCE technique to

estimate the AQL-5D health state utilities. In the valuation survey, the choice data

were collected for 32 pairwise comparisons from 307 people who had been interviewed

in the TTO valuation survey and consented to the postal DCE survey as described in

Brazier et al. (2009).

As mentioned earlier, the large number of health states produced by the classi-

fication system make it infeasible to value all possible pairwise comparisons, that is(
3125

2

)
= 4, 881, 250. An experimental design is needed to reduce the number of possi-

ble pairwise comparisons to a manageable number of health state comparisons, while

still being able to infer the valuation for all possible health states defined by the clas-

sification system.

Thus, in this valuation survey, pairs were selected for the choice design based on

statistical properties: level balance, orthogonality, minimal overlap and utility balance,

using an application in the statistical package SAS developed by Huber and Zwerina

(1996). The programme produced 24 pairwise comparisons from the AQL-5D, and

these were allocated randomly into four versions of a questionnaire, each with six

pairwise choices. Two additional pairwise comparisons, which compare death state to

the worst health state defined by the classification system (AQL-5D health state 44444)

and another health state in the AQL-5D that could be considered worse than death

by some respondents (AQL-5D health state 33244), were added to all versions of the

questionnaire to be valued by all respondents, as shown in the Appendix A.2.1. We

call this design a level balanced design (LBD), for ease of reference in later chapters

Respondents were asked to value a practice pairwise comparison before starting the

actual valuation survey, to familiarise themselves with the choice task, which is excluded
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from the final discrete choice data. They were then asked to state which health state

they preferred for the six pairs of states in addition to the two pairs of death state. Out

of 307, potential respondents, 168 people returned a completed questionnaire with only

eight observations missing for some choice tasks, generating 1,336 observed pairwise

comparisons. Table 4.2 shows the characteristics of the respondents who participated

in the DCE survey.

Table 4.2: Characteristics of the respondents in the postal DCE valuation survey

Number Percentage (%)

Sex
Male 72 43

Female 96 57

Age

18-25 6 3.6
26-35 22 13.1
36-45 28 16.7
46-55 38 22.6
56-65 39 23.2
> 65 35 20.8

Having asthma
Yes 44 26
No 110 66

Unknown 14 8
Total 168 100

As in the TTO volution exercise, most participants were from the general public

though the AQL-5D is a condition specific classification system. This is because health

decision makers such as those at NICE recommended using general public values rather

than collecting the data from the asthma patients only. Nevertheless, all participants

should understand the condition and complete the questionnaire while considering

themselves as having asthma to provide more reliable preference data.
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4.3

Method for Modelling Health State

Utilities

In this section, we recall the method for generating utility values for all health states

defined by a classification system, particularly for the AQL-5D classification system,

using a statistical model. We mentioned that the AQL-5D classification system pro-

duces too many health states, and it is impractical to elicit health state utility values

for all possible health states defined by the classification system. Therefore, a sample

of these health states were evaluated using TTO and DCE methods. Nevertheless,

we wish to obtain the health state utility for all AQL-5D health states. To achieve

this, a parametric model is fitted to the TTO and discrete choice data, parameters

in this model are evaluated, and then utilities for any state defined by the AQL-5D

classification system are inferred.

In Chapter 2, we defined health state utility as function of the attribute levels that

make up the health states, giving the population mean utility g(xij), plus a random

component that describes the variation around the mean as presented in equation 2.3.1:

Uij = g(xij) + εij.

In general, the mean health state utility is defined as a linear additive function of the

attribute levels of the classification system as

g(xij) = 1− βxTij,
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where xij is a vector of 20 dummy variables that defines the AQL-5D health states

with elements defined as

xλδ =

 1 if attribute δ of health state xij is at level λ or higher,

0 otherwise.

For the purpose of anchoring the utility values produced by the DCE data, we

added a dummy variable that defines the death state. This dummy variable is equal

to zero unless the health state represents the death state, in which case the first 20

elements are 0 and the last element is 1.

The vector β consists of 21 unknown parameters where the first 20 elements rep-

resent the decrease in utility associated with moving one level on one attribute hence

they are expected to be positive, and the last one corresponds to moving from perfect

health to immediate death, which is set at 1 for scaling purposes, as described in Sec-

tion 2.3.3. This statistical model allows us to estimate the utility values for any state

defined by the AQL-5D classification system within the required scaled of the QALYs

(0-1 scale), while retaining the possibility of having negative values for health states

worse than death.

To be able to estimate the health state utility for all possible states defined by the

classification system, we have to make inferences about the preference parameter values,

β = (β1, . . . , β20). Therefore, in the following sections, we illustrate how TTO and

choice data are modelled to infer the parameter vector β first in a classical framework

in Section 4.4, and then using a Bayesian approach in Section 4.5.
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4.4

Classical Inference for Health State

Utilities

In this section, we describe the structure of the TTO and DCE models and summarise

their classical inferences using the maximum likelihood approach as illustrated in Sec-

tions 4.4.1 and 4.4.2, respectively.

4.4.1 Modelling TTO Data

Yang et al. (2007) present an analysis of TTO data elicited for the 98 AQL-5D health

states and the worst health state (AQL-5D health state 44444) using different regression

models. In their study, one-way error components random effect and fixed effect models

were considered to model the TTO data at individual and aggregate levels. The general

form of this model is

Uij = g(xijβ
T + rijθ

T + ziδ
T ) + εij, (4.4.1)

where Uij represent the TTO value for health state xij evaluated by respondent i; xij is

a vector of 20 dummy variables, xλδ, for each level λ of attribute δ of the classification

system, where λ = 0 is taken as the baseline level for each attribute; r is a vector

of interactions between attributes and z is a vector of personal characteristics such as

sex, age and asthma condition; εij is an error term whose autocorrelation structure and

distributional properties depend on the assumptions underlying the model used. The

parameter vectors β, θ and δ are vectors of the unknown model parameters associated
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with attribute levels of the AQL-5D, the interaction between the attributes and the

personal characteristics, respectively.

All proposed models were estimated using 1-TTO values as the dependent variable,

where 1 represents the utility of full health (AQL-5D health state 00000) in order to

avoid a negative values for the preference parameters β. This variable indicates how

far a given health state is away from full health, i.e. the utility lost when moving

from perfect health to health state xij. The models were then compared on the basis

of different criteria, such as adjusted R square, goodness of fit, likelihood ratio, the

size and the significance of the parameter estimates, and the over all predictive ability.

However, since predicting utility values for all health states is the main aim of modelling

preference data, the predictive ability was chosen as the main criterion to compare and

select the best model.

In this way, Yang et al. (2007) select both the ordinary linear model at the in-

dividual level and at the aggregate level with no interactions or demographic terms

(e.g. age, gender) as being the most appropriate. Further, in economic evaluation the

average utility value of any health state is required rather than the individual health

state utility; therefore the model at aggregate level is regarded as the best model for

estimating health state utilities.

Following the results in Yang et al. (2007), we re-analyse the TTO data at the

aggregate level using the simple regression model, with no interactions or demographic

terms, and summarise the main results and the estimated mean utilities. We then

investigate the uncertainty around the utility estimates using a Bayesian approach,

and compare it with that estimated using maximum likelihood estimators.

The simple regression model takes the form

1− Uj = xjβ
T + εj, j = 1, . . . , 99, (4.4.2)

where 1 − Uj is the observed mean 1-TTO value for health state xj, xj and β are,
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as defined previously, vectors of dummy variables defines the underlying health state

and the unknown parameters, respectively, and εj is the error term associated with the

mean utility value.

In matrix notation, we can write this as follow

1−U = XβT + ε, (4.4.3)

where U = (U1, . . . , UJ)T is a column vector of J observed TTO values, X is J × 20

design matrix with rows each represents one health state; β = (β1, . . . , β20) is a vector

of the unknown model parameters, and ε = (ε1, . . . , εJ)T is a column vector of random

errors assumed to be independent and normally distributed with mean zero and equal

variance, i.e. ε ∼ N(0, σ2I).

The estimation of the parameter values can be derived using the maximum likeli-

hood given that 1 − U ∼ N (XβT , σ2I). Nevertheless, under the normal assumption

of the random errors, the maximum likelihood estimators (m.l.e) are equivalent to the

ordinary least square(OLS) estimators. The ordinary least squares regression coeffi-

cients are derived by minimising the difference between observed and fitted values, i.e.

minimising the residual sum of square. The general form for the OLS estimators is

given by

β̂ = (XTX)−1XT (1−U ), (4.4.4)

To estimate the range of each parameters values and assess the model fit, one need

to estimate the scale parameter of the error variance, σ, since the variance-covariance

matrix of the least square estimators depends on the value of σ as

V ar(β̂) = σ2(XTX)−1 (4.4.5)

Using the least squares estimators, an estimate for σ is computed using the residual
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sum of squares as

σ̂ =

J∑
j=1

[(1− Ûj)− (1− Uj)]2

J − k
, (4.4.6)

where 1− Ûj = xjβ̂
T

is the estimated loss in the mean utility value for state xj, J and

k are the total number of observation and unknown model parameters, respectively.

Table 4.3 illustrates the parameter estimates after fitting the OLS model to the

1-TTO data. Each parameter estimate represents the incremental decrease in mean

utility when moving one level on one attribute. Therefore, the estimated decrease in

mean utility from the best level to the worst level of an attribute is computed as the

sum of these increments. For instance, the estimated mean decrease in utility when

moving from level 0 on the attribute concern (no concern about having asthma at

all) to the most severe level 4 (feel concern about having asthma all of the time) is

0.02989 + 0.02624 + 0.00709 + 0.00265 = 0.06587.

Table 4.3: OLS estimators for TTO model

Attribute
Level Concern Breath Weather Sleep Activities

1 0.02989 -0.00845 0.00589 0.04550 0.01244
2 0.02624 0.03000 0.01917 0.01482 0.05134
3 0.00709 0.07615 0.02399 0.01927 0.12366
4 0.00265 0.00090 0.05741 0.02265 -0.00654
σ 0.07325

The size of the parameter estimates ranges from -0.00845 to 0.12366, and there is

no clear pattern in these sizes. Nevertheless, for most attributes, the decrease in mean

utility when changing from level 2 to level 3 is larger than changing from level 3 to

4. This seems consistent with the description of these attribute levels, as the state of

suffering from having asthma some of the time (level 2) is closer to a little of the time

(level 1) than those suffering from asthma most of the time (level 3), and similarly the

description of level 3 (most of the time) is closer to level 4 (all the time). For instance,

considering the attribute breath in the following AQL-5D states, 13112, 14112 and
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12112, a person would have a similar mean utility for the state suffering from short of

breath most of the time as a result of having asthma (13112) and that suffering from

the same symptom all of the time (14112) than to state 12112. The largest decrease in

mean utility is a move from level 2 to level 3 for the attribute activities in which the

mean utility is decreased by 0.12366.

The TTO model produces the expected positive sign for all the estimated parame-

ters, except for level 1 and level 4 for the attributes breath and activities, respectively.

This is because no constraints were imposed in the parameter estimates as in Yang

et al. (2007), which results in a negative value for the levels of these attributes. These

negative values are inconsistent with the natural ordering of the attribute levels of

the AQL-5D, but statistically insignificant (i.e. these attribute levels do not influence

respondents’ valuations and, hence, do not differ from zero).

Using the OLS estimates for the preference parameters, we can now calculate the

estimated mean utility value for the 99 health states presented in the TTO survey or

any health state defined by the AQL-5D system as

Ûj = 1− xjβ̂
T
. (4.4.7)

Figure 4.1 illustrates the estimated mean utility values, i.e. the TTO values of

each health state averaged over all respondents, for 99 AQL-5D health states presented

in the TTO survey together with the mean observed TTO value. Also, it shows the

95% confidence interval of the estimated mean health state utilities, Ûj, where the

confidence interval of the mean utility of each health state is computed as

Ûj ± tJ−k,0.975 xj
σ̂I√
J
xTj . (4.4.8)

The points representing the mean TTO value of each state, as well as the upper and

lower bound of the confidence intervals, are joined in this and subsequent plots simply to
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Figure 4.1: the estimated mean utilities for the 99 AQL-5D health states evaluated in
the TTO survey together their 95% confidence intervals and the observed TTO values

aid visual interpretation. In general, the model fits the data reasonably well with a little

over-estimation for health states near the best state (state 11111). Nevertheless, most

of the observed mean utility lies within the 95% confidence interval of the fitted utility

values, but this does not account for the uncertainty in the estimated mean utility

values, and consequently the QALY values required for cost-effectiveness analysis.

We mentioned earlier in Section 4.3 that the mean utility values should be lie within

the QALY scale where full health has a utility of one and the death state has utility of

zero, while allowing health states worse than death to take negative values. Therefore,

to find the complete range of the mean utility, it is important to compute the mean

utility value for the worst health state (AQL-5D health state 44444) and compare it

115



with the utility value of death (zero). The mean utility of this state is represented by

1 minus the sum of all the preference parameter estimates shown in Table 4.3 which

is estimated as 0.4459, with a 95% confidence interval that ranges from 0.37899 to

0.51280. This indicates that this health state is considered to be substantially better

than death. This might indicates that there is a substantial number of poorer health

states that are not described by the AQL-5D system, or most respondents are not

willing to trade much time in order to live healthier and most of them are considering

all health states as worth living.

4.4.2 Modelling Discrete Choice Data

In Chapter 2, we mentioned that health state utilities cannot be elicited directly from

a DCE task, and therefore choice models are used to relate the observed choices to

the identified utility function such that it infers the parameters of the utility model.

The pairwise choice data presented in Section 4.2.2, for the AQL-5D, was analysed by

fitting a probit model to the data in Brazier et al. (2009), and in Cain (2011) using the

logit and probit models.

Assuming that the AQL-5D choice data are independent over respondents, and the

random errors are independent over time in repeated choice task, then the logit model

would be an appropriate model to capture the dynamics of repeated choice data. Cain

(2011) showed that both logit and probit models with main effects are appropriate for

the AQL-5D discrete choice data. Other models such as the mixed logit model, that

allows for preference heterogeneity across individuals, might be more appropriate to

describe human choice behaviour. However, in this thesis, we consider the logit model

with main effects only and no interaction terms, to simplify the choice design problem

as it has a close form for the choice probability and, hence, the likelihood function.

Therefore, in this section, we re-analyse the DCE data for the AQL-5D to (1) describe

our main design model, i.e. the logit model with main effects only, and (2) compare the

DCE results to those obtained from the TTO model particulary in terms of parameters
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and utility estimates.

In a pairwise choice experiment, each individual is asked to select the preferred

health state in each pair Cs = {xi1s,xi2s}. The probability that individual i selects the

first health state, xi1s, is equivalent to the probability that the utility individual has

for health state xi1s is greater than the utility for the second health state xi2s. That

is:

Pi1s = P [g(xi2s) + εi2s < g(xi1s) + εi1s], (4.4.9)

or if the second alternative is the death state,

Pi1s = P [0 < g(xi1s) + εi1s], (4.4.10)

where g(xijs) is the mean health state utility defined as in Section 4.3.

In Section 2.5.3, we showed that if the random errors in the utility model, εijs, are

assumed to be independent and identically type 1 extreme value distributed, then the

probability of choosing a health state is given by the multinomial logit model defined

in Equations (2.5.12) and (2.5.14). From these equations, it can be deduced that the

probability that individual i chooses the first alternative, xi1s, is

Pi1s =
1

1 + exp
(
g(xi2s)−g(xi1s)

σ

) , (4.4.11)

and for death state comparisons

Pi1s = 1− exp

[
− exp

(
g(xi1s) + µ

σ

)]
, (4.4.12)

where the death state is the second alternative, µ = −0.5772σ and σ are the location

and the scale parameters of the random errors εijs, respectively.

Each choice made for particular pair by a specific respondent can be considered as

an independent draw from a Bernoulli distribution, in which it has a value of 1 if the

117



first health state is chosen and zero otherwise. This follows since random errors are

assumed to be independent over alternatives and respondents. Therefore, we derive

the likelihood function of the logit model for all the observed choices, made over all

pairs, based on this assumption as

L(y|β, σ) =
32∏
s=1

Ns∏
i=1

P yis
is (1− Pis)(1−yis), (4.4.13)

where

yis =

 1, if the first state xi1s is chosen;

0, otherwise.
(4.4.14)

and Pis is the corresponding choice probability for the first health state in each pairs

s, where for s = 1, . . . , 24, non-death comparisons, the choice probability is defined as

in Equation (4.4.11), and for s = 25, . . . , 32, death comparisons, the choice probability

is defined as in Equation (4.4.12); and Ns is total number of respondents evaluating

choice set s where
32∑
s=1

Ns = N = 168.

The log likelihood function is derived then as

l(y|β, σ) =
32∑
s=1

Ns∑
i=1

yis log(Pis) + (1− yis) log(1− Pis) (4.4.15)

The preference parameters identified in the utility model can then be estimated by

maximising the likelihood function. Nevertheless, the likelihood function defined in

Equation (4.4.15) has many parameters and it is non-linear. Therefore, it is difficult to

obtain the maximum likelihood estimators (m.l.e) analytically and, hence, a numerical

method should be sought. Here, the maximum likelihood estimators are obtained

numerically using optimisation algorithms in R software called ‘optimisation’. The

algorithm searches for the optimal values of the parameters that maximise the log

likelihood function over a given parameter space. The resulting parameter estimates

are illustrated in Table 4.4.

Similar to the TTO model, the parameter estimates presented in Table 4.4 show
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Table 4.4: Maximum likelihood estimators for logit model

Attribute
Level Concern Breath Weather Sleep Activities

1 0.00362 0.00412 7.070e−07 4.451e−06 0.03164
2 4.391e−07 2.645e−08 0.02173 0.05593 0.02682
3 0.13354 0.12490 0.07937 0.02225 0.24128
4 0.03375 0.00001 0.02555 0.02927 0.00017
σ 0.24140

the incremental decrease in the mean utility value when changing an attribute by one

level, after normalising using the death coefficient to anchor the utility value into the

QALY scale. The preference parameter estimates range from 2.645e−08 to 0.24128,

where the smallest change in mean utility is approximately zero when rounded to five

decimal places. This change is associated with moving from level 1 to level 2 for the

attribute breath. This means that health states that differ only on this attribute level

would have similar utility value, for instance, states 12112 and 11112. There are several

other parameters that also have very small values. For example, a change from level

0 to level 1 in the weather and sleep attributes does not produce a substantial change

in the estimated mean utility from the full health state (AQL-5D health state 00000).

The largest decrease in mean utility is associated with moving from level 2 to level 3

for the activities attribute which is consistent with the result for the TTO model.

Imposing constraints on the estimation procedure produces positive coefficients for

all preference parameters of the fitted logit model. This produces an incremental

decrease in mean utility that is consistent with the logical order of the attribute levels

of the AQL-5D, i.e. the decrease in mean utility increases as we move to more severe

levels in each attribute.

Using the parameter estimates from the logit model, shown in Table 4.4, we can

estimate the mean utilities for all the health states presented in the DCE survey or
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any health state defined by the AQL-5D system as

g(xij) = 1− β̂xTij.

Figure 4.2 shows the estimated mean health state utility values for these states, where

health states in this plot, and the subsequent plots of the mean health state utilities,

are ordered from worst to best state based on the sum of the attribute levels of the

state, where larger value of this sum refers to more worse health state.
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Figure 4.2: The estimated mean utilities for the 51 AQL-5D health states evaluated in
the DCE survey using the maximum likelihood estimators of the preference parameters
in the logit model

We notice that the mean health state utility of the worst health state is estimated

as 0.16602, and so it is considered to be better than death state. Thus, the estimated

utility values for all AQL-5D health states using the fitted logit model are ranged

between 0.16602 and 1, with no health state being worse than death.

Since we cannot observe the utility values directly from the DCE task, then we
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investigate the model’s predictive ability by plotting the predicted choice probabilities

for the first health state in each choice set against the observed choice probabilities.

Figure 4.3 presents the fitted choice probability of choosing the first health states

against the observed choice probability in the choice survey together with the 95%

confidence interval of the fitted proportions. The confidence interval is computed using

the normal approximation of the binomial proportion as

P̂is ± Z1−α/2

√
P̂is(1− P̂is)/Ns,

where P̂is is the fitted proportion and, Z1−α/2 = 1.96 is the percentile of the standard

normal distribution, and Ns is total number of respondents evaluated choice set s.
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Figure 4.3: The estimated logit choice probability of the first health state in each
pairwise comparison together with its 95% confidence interval against the observed
choice probability in the DCE survey

In general, we might conclude that the logit model fits the data reasonably well,

though there is a slight suggestion of over-estimations when the proportion is low and

under-estimation for larger proportions. Nevertheless, most of the observed proportion

lie within the 95% confidence interval of the fitted proportion except for some points.
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4.4.3 Comparing Classical Inference for Health State Utilities

In this section, we compare the classical inference for both TTO and logit models.

We should not expect to obtain the same results for the TTO and DCE models (logit

model), since they follow different valuation procedures and completely different model

assumptions. However, we could compare the models in terms of the size of the coeffi-

cients as well as the predictive ability of the model. In terms of the prediction ability

of the model, we compare the pattern of the models’ predictions to the observed TTO

values, though it is not necessarily the case that the TTO values represent the correct

valuations for a given health state as it is affected by other non-health factors, such as

time preference (Brazier et al., 2007).

From Tables 4.3 and 4.4, it can be seen that logit model produces smaller parameter

estimates than the TTO model, but larger values for those parameter associated with

the decrease in mean utility when moving from level 2 to level 3 in all attributes.

However, the models have similar patterns for the incremental decrease in mean utility.

For instance, in both models the largest decrease in the mean utility is associated with

a change from level 2 to level 3 for the attribute activities, though it is larger for the

logit model.

The models’ predictions for the observed mean TTO values are illustrated in Figure

4.4. The TTO model predicts the observed mean TTO values more accurately than

the DCE model, as expected, with mean absolute differences from the observed TTO

values of 0.0472 and 0.106, for the TTO and the logit predictions respectively. However,

this might be related to the fact that the numbers of respondents and health states

evaluated in the DCE survey are smaller than the ones used for the TTO exercise as

shown in Table 4.5.

In general, the DCE model produces prediction values that are less than the ob-

served TTO values for more severe health states (involving a low TTO value), whereas

for mild AQL-5D health states the DCE predictions are more evenly spread around
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Figure 4.4: A plot of the predicted mean TTO values for the 99 AQL-5D health states
presented in the TTO survey using TTO and logit models against the observed mean
TTO values

with the DCE model producing similar predicted values to the TTO model for the

mild health states. The estimated mean utility for the worst health state, using both

models, is greater than zero, which indicates that generally this health state is con-

sidered better than death. However, the predicted value for the worst health state

from the DCE model is nearer to zero (0.16602) than the equivalent value from the

TTO model (0.4459). This means that there are some more worse asthma health state

that cannot be described by the attributes and the levels in the AQL-5D classification

system, since the utility value of the worst health state is far apart from the utility

of death (i.e. the worst health state is not comparable to death state). Nevertheless,

this might be related to the difficulty of the TTO valuation task and the effect of the

time in respondents’ preferences as discussed in Section 2.4.2 rather than the descrip-

tion of the classification system itself, as most respondents not willing to trade much

of their life expectancy off against being more healthy though with the worst health
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Table 4.5: The total number of respondents, health states, observations as well as the
method used to select the health states in the TTO and DCE surveys

Data
TTO DCE

Respondent 307 168
Health state 99 52
Observation 2456 1336

Design balanced design Huber and Zwerina (1996) design

state (44444) and most of them considered this state worth living compared to death.

Whereas, simpler evaluation task such as the pairwise comparison eliminates this effect

and force respondents to trade-off between this state and the death state.

However, neither form of classical model estimates delivers an easily interpreted

measure of the uncertainty in the parameter estimates, and hence the estimated mean

utility values. Although standard errors are, at least approximately, provided for each

estimated β, uncertainty is much more easily propagated and handled within a Bayesian

framework where it can be represented by a probability distribution rather than range

of values that represented by the confidence intervals. Also, health economists usually

require a a probability distribution for the QALY gained (utility gained) instead of a

range of values for the QALYs (utilities), and Bayesian approach provides probability

distributions of the parameters that allows to account for the uncertainty in the utility

values, and, hence, the possible change in the QALY values for being in particular

health state. This accounts for the uncertainty in the decision made through the cost-

effectiveness analysis by providing a probability distribution for a treatment being cost

effective at a particular threshold (e.g. £20, 000 − £30, 000 per QALY gained) when

comparing different treatments.

Therefore, in the following section we analyse both data sets using Bayesian meth-

ods. This allows us to (1) make a comparison of classical and Bayesian approaches and

account for the uncertainty in the utility values, (2) use the probability distributions
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of the parameters as prior information for construction of Bayesian choice designs in

later chapters.

4.5

Bayesian Inference for Health State

Utility

Health state utility values are used to compute the QALYs in an economic evaluation

models, and it is important for the decision makers to account for the uncertainty

in these quantities in order to arrive at an appropriate decision. However, classical

analysis is usually used to give a single point estimate value for the mean utility for

each AQL-5D health state, which ignores the uncertainty in the utilities, and therefore

Bayesian inference is usually required. In a Bayesian approach, a posterior distribution

for each preference parameter is obtained, and consequently a posterior distribution

instead of the single value can be obtained for the utility value of each health state

defined by the classification system, as well as for the possible change in the QALY

values.

Generally, in the Bayesian approach, the prior beliefs π(θ) about the unknown

parameter vector θ are converted into posterior beliefs, which represents the probability

distribution of the unknown parameters conditional on the observed data, through

Bayes Theorem

π(θ|y) =
L(y|θ)π(θ)

PY (y)
, (4.5.1)

where PY (y) is the marginal distribution of the observed data y.
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Thus our first task is to identify an appropriate prior distribution for the unknown

model’s parameters.

4.5.1 Prior Distribution

Deriving a posterior distribution for the population mean utility for each health state

in the AQL-5D requires a prior distribution for the unknown parameters identified in

the utility model. Therefore, a prior is needed for the parameter vector θ = (β, σ),

where β and σ are a vector of the preference parameters and the scale parameter of

the random component of the utility function described in Section 4.3.

Firstly we consider selecting an informative prior distribution for the preference

parameters β = (β1, . . . , β20). Each parameter β1, . . . , β20 represents the decrease in

the mean utility when changing one attribute by one level as illustrated in Section 4.3.

Therefore, the values of these parameters should be positive to be consistent with the

logical order of the attribute level in the AQL-5D. Also, the size of these parameters is

not likely to exceed one, since worsening one attribute by one level is not expected to

produce a change in utility greater than the change from perfect health to death that

is represented by one.

In this analysis, we consider a collection of prior distributions that exhibit these

features in the parameter values. First, we propose independent Gamma priors for

each element of the parameter vector β as in Cain (2011). The probability density

function (pdf) of the Gamma distribution is given by

f(βi) =
ba

(a− 1)!
βa−1
i e−bβi , i = 1, . . . , 20, (4.5.2)

where a and b are shape and rate parameters, respectively. The mean and variance of

the Gamma distribution are given by a
b

and a
b2

, respectively. Since the βi values should

be positive and are not likely to be greater than 1, we consider different Gamma

distributions that fall within the range of [0,1].
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Figure 4.5: A plot of the pdf of Gamma distributions

Three prior distributions, as in Cain (2011), are considered. Firstly Gamma(1,10)

and Gamma(5,15) are assumed. These priors give parameter values that are more

likely to be close to zero and have a small probability of being greater than 1, as

shown in Figure 4.5. The prior distribution with shape parameter a = 1 and scale

parameter b = 10 provides more parameter values that are close to zero than the

Gamma(5,15) distribution. Also, it has a small probability for the parameters to

be larger than 0.2. Hence, the Gamma(1,10) prior might provide more appropriate

prior for the parameters. Nevertheless, we perform the analysis for both priors as we

are not sure about the exact range of each parameter value, and to investigate the

sensitivity of the posterior inferences to the prior distribution chosen. A continuous

uniform distribution between 0 and 1 is considered as well to investigate the sensitivity

of posterior inference to the prior distribution. This prior illustrates the extreme case

where the prior information about individuals’ preferences for attribute levels, βi, has

a substantial amount of uncertainty. The prior assumes that all parameters are equally

likely to take any value between 0 and 1. Thus, this can be considered as a vague prior
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for the parameter vector β. In addition, we consider the beta distribution with shape

parameters of 1 and 10, respectively, to study the effect of this prior on the posterior

inference.

Also, we must consider including a prior information about the scale parameter σ.

This parameter should have similar properties as β, that is the value of this parameter

should be also positive and small in magnitude (e.g. not larger than one). This is

because the variability in the utility values obtained from different individuals for the

same health state is not likely to exceed one. Therefore, for simplicity, we use the same

suggested prior distribution for the preference parameters though different distribution

can be used.

4.5.2 Obtaining the Posterior Distribution

The posterior distribution is derived as in Equation (4.5.1). However, given the like-

lihood function of the TTO model, N (XβT , σ2I), and the likelihood function of the

logit model defined in Equation (4.4.13) together with the prior distributions considered

earlier, the posterior distribution for each parameter cannot be derived analytically be-

cause the analysis involves non-conjugate priors and complicated integrals. Therefore,

Markov Chain Monte Carlo (MCMC) sampling is used to simulate the posterior dis-

tribution of the unknown parameter vector, θ = (β, σ), in the TTO and logit models.

In general, the MCMC method draws values for the parameter vector from the

starting distribution (prior distribution), and then updates these draws based on a

specific iteration procedure to improve the approximation of the target posterior dis-

tribution. Therefore, the posterior distributions of the 21 unknown parameters in the

TTO and logit models, θ = (θ1, . . . , θ21) where θi = βi for i = 1, . . . , 20 and θ21 corre-

sponds to the scale parameter σ, are approximated using MCMC method by drawing

several independent sequences for the parameter vector, θt, t = 1, 2, 3, . . . , where the

first sequence, θ1, is generated from the transition distribution Tt(θ
t|θt−1) using a stat-
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ing values θ0, and then each sequence θt is drawn from the same distribution based on

the previous sample θt−1 (Gelman et al., 2004, pp.285-287).

The first sequence vector is generated by updating an initial vector θ0 drawn from

the starting distribution of the parameters π(θ). At any time t, where t = 1, 2, . . . ,

the state of the Markov chain at time t, θt = (θt1, . . . , θ
t
21), is updated to the state

at time t+ 1, θt+1 = (θt+1
1 , . . . , θt+1

21 ), using the single component Metropolis-Hastings

algorithm. The algorithm updates the state of the chain by updating one element of θ

at a time, that is in 21 steps taken in natural order. Each complete update represents

one iteration of the MCMC. To illustrate this further denote θ−i to be the vector of

all elements of θ except θi

θ−i = (θ1, . . . , θi−1, θi+1, . . . θ21),

and define θt−i as the state of θ−i after updating the i− 1 the component of θt at time

t+ 1 as

θt−i = (θt+1
1 , . . . , θt+1

i−1 , θ
t
i+1, . . . θ

t
21).

For θt+1
i we sample a candidate value θ∗i from the proposal distribution qi(θ

∗
i |θt−i, θti),

where θti is the current value of the parameter θi. Then set θt+1
i = θ∗i with acceptance

probability

α(θt−i, θ
t
i , θ
∗
i ) = min

(
1,
π(θ∗i )L(y|θt−i, θ∗i )qi(θti |θt−i, θi)
π(θti)L(y|θt−i, θti)qi(θi|θ

t
−i, θ

t
i)

)
, (4.5.3)

where π(θ∗i ) and π(θti) are the prior distributions of the candidate and current values

of the parameter θi, respectively, and L(y|θt−i, θ∗i ) and L(y|θt−i, θti) are the correspond-

ing likelihood functions. The acceptance of the candidate value θ∗i is determined by

sampling a value, u, from the uniform distribution U [0, 1]. Thus, if u < α(θt−i, θ
t
i , θ
∗
i ),

then θt+1
i is set equal to θ∗i ; otherwise θt+1

i = θti . The iterations are continued for all

parameters until the Markov chain reaches equilibrium at time T , where time before

T is regarded as a burn-in period. Therefore, to obtain n draws from the posterior
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distribution of the parameter θi, a further n updated simulations θT+1
i , . . . , θT+n

i are

generated from the stationary distribution of the Markov chain. This sample is used

to calculate different summary statistics for the posterior distribution of the parameter

θi, such as the mean and 95% posterior intervals.

The convergence of the Markov chain can be investigated visually by plotting the

values of the parameter against the number of iterations and inspecting the plot for

signs of convergence. However, in our analysis we assess the convergence more formally

by generating several independents chains, here three chains, and investigating the

convergence by inspecting the mixing between the values of these chains visually by

looking at the graph of the chains provided by WinBugs history in WinBugs software

(Lunn and Spiegelhalter, 2000; version 1.4.3). We then compare the corresponding

statistical summaries such as mean, median, and posterior intervals of the parameter

obtained from each chain. A more formal test that uses the potential scale reduction

factor R̂ of the parameter θi defined in equation 4.5.4 is used to assess the convergence

of the chains to the required posterior distribution of the parameter.

R̂i =

√
v̂ar(θi|y)

W
, (4.5.4)

where

v̂ar(θi|y) =
n− 1

n
W +

1

n
B,

where W and B are within and between chain variances of θi, and each chain is of

length n after discarding the first half of the simulations, that is the burn-in period

T = n (Gelman et al., 2004, pp.296-297). This factor indicates the mixing index of the

generated chains for the parameter θi, where a value of one indicates good mixing of

the chains and convergence to the required posterior distribution of that parameter. A

value of R̂ that is greater than one, particularly if R̂ > 1.1, indicates that one would

need to generate more simulations in order to reach equilibrium and improve the target

distribution, since the scale of the sampling distribution of the underlying parameter

decreases to one as n→∞. Having satisfied this condition for all parameters, that is
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R̂→ 1 for all θi, one can combine the n simulations from each chain and regard them

as a sample from the required posterior distribution of the underlying parameter.

Having specified the prior distributions and the MCMC method to sample from

the posterior distribution, we use the R2WinBUGS package (Sturtz et al., 2005), that

calls the WinBUGS software from the R package (R Core Team, 2013; version 3.0.2),

to perform the Bayesian analysis for the TTO and DCE models. To sample from the

posterior distribution of each parameter in the TTO and logit models under the sug-

gested prior distributions: Gamma(1,10), Gamma(5,15), Uniform[0,1] and Beta(1,10),

we generate three chains under each prior each with 10,000 iterations. To investigate

the convergence of the chains to the required posterior distribution, we visually inspect

the history of the generated chains using the sample monitoring tool in WinBUGS,

and use the value of the mixing index of the chains to more formally investigate the

convergence. If well-mixed, then we treat the second halves of these chains all together,

i.e. 15,000 iterations, as a sample from the posterior distribution of the underlying pa-

rameters, and use this sample to calculate a summary of the posterior distribution for

the parameter.

4.5.3 MCMC Results for TTO Model

For all the prior distributions, the scale reduction R̂ for each parameter in the TTO

model appears to be near to 1, indicating convergence, as shown for the Gamma(1,10)

prior in Figure 4.6.

Therefore, we regard the second halves of the three chains generated under each

prior - 15,000 iterations from all chains - as a sample from the posterior distribution

(see Appendix A.1 for the posterior distribution of each parameter). The posterior

mean and 95% posterior intervals for each parameter in θ are then estimated from

their corresponding draws, as illustrated in Table 4.6
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Figure 4.6: The mean and 80% posterior intervals for each parameter obtained from
each chain, together with the mixing index of the chains R̂ using Gamma(1,10) prior

• Model Parameters

For all proposed prior distributions, the OLS, i.e. the same as the m.l.e, differs

slightly from the posterior mean. In general, a parameter with smaller m.l.e

tends to have a larger posterior mean, and vice versa. Nevertheless, the m.l.e

is still included within the range of the posterior mean, as shown by the 95%

posterior intervals, except for the inconsistent estimates for level 1 and level 4 for

the attributes breath and activities, respectively. Also, small m.l.e. values (e.g.,

β3 and β8) lie outside the posterior intervals of the parameters obtained using

the Gamma(5,15). However, the general trend of the posterior mean for the

parameters is consistent with the trend of the m.l.e., where the largest decrease

in the mean utility is still associated with the change from level 2 to level 3 for

the attribute activities.

In terms of the sensitivity of the posterior inference to the choice of prior distribu-
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Table 4.6: Mean and 95% posterior intervals for the TTO model parameters by prior
distribution, together with the maximum likelihood estimators

Attribute Level OLS Gamma(1,10) Gamma(5,15) Uniform[0,1] Beta(1,10)

Concern

1 0.02989 0.0226(0.0013,0.0537) 0.0205(0.0073, 0.0383) 0.0224(0.0012, 0.0538) 0.0235(0.0013, 0.0557)
2 0.02624 0.0193(0.0009, 0.0483) 0.0211(0.0078, 0.0391) 0.0195(0.0010, 0.0488) 0.0189(0.0009, 0.0476)
3 0.00709 0.0146(0.0005, 0.0409) 0.0235(0.0087, 0.0434) 0.0146(0.0006, 0.0414) 0.0144(0.0006, 0.0406)
4 0.00265 0.0144(0.0006, 0.0415) 0.0308(0.0116, 0.0562) 0.0156(0.0006, 0.0445) 0.0148(0.0005, 0.0425)

Short of Breath

1 -0.00845 0.0118(0.0004, 0.0360) 0.0184(0.0064, 0.0354) 0.0119(0.0004, 0.0369) 0.0121(0.0004, 0.0371)
2 0.03000 0.0232(0.0012, 0.0575) 0.0262(0.0099, 0.0477) 0.0228(0.0012, 0.0567) 0.0229(0.0012, 0.0570)
3 0.07615 0.0603(0.0204, 0.0972) 0.0439(0.0194, 0.0722) 0.0609(0.0214, 0.0982) 0.0601(0.0203, 0.0964)
4 0.00090 0.0165(0.0006, 0.0484) 0.0341(0.0130, 0.0617) 0.0172(0.0006, 0.0499) 0.0166(0.0006, 0.0481)

Weather & pollution

1 0.00589 0.0127(0.0005, 0.0379) 0.0178(0.0062, 0.0340) 0.0126(0.0004, 0.0372) 0.0129(0.0005, 0.0378)
2 0.01917 0.0169(0.0007, 0.0448) 0.0217(0.0079, 0.0401) 0.0168(0.0007, 0.0447) 0.0169(0.0007, 0.0440)
3 0.02399 0.0268(0.0017, 0.0628) 0.0301(0.0117, 0.0540) 0.0269(0.0018, 0.0624) 0.0265(0.0018, 0.0608)
4 0.05741 0.0475(0.0083, 0.0887) 0.0494(0.0214, 0.0823) 0.0494(0.0095, 0.0909) 0.0469(0.0083, 0.0880)

Sleep

1 0.04550 0.0301(0.0021, 0.0661) 0.0214(0.0079, 0.0396) 0.0291(0.0021, 0.0642) 0.0303(0.0022, 0.0662)
2 0.01482 0.0200(0.0009, 0.0513) 0.0236(0.0088, 0.0430) 0.0204(0.0009, 0.0513) 0.0197(0.0009, 0.0498)
3 0.01927 0.0192(0.0009, 0.0502) 0.0261(0.0098, 0.0476) 0.0192(0.0008, 0.0504) 0.0189(0.0009, 0.0499)
4 0.02265 0.0285(0.0019, 0.0660) 0.0419(0.0172, 0.0723) 0.0300(0.0023, 0.0686) 0.0290(0.0021, 0.0670)

Activities

1 0.01244 0.0208(0.0009, 0.0556) 0.0239(0.0085, 0.0440) 0.0204(0.0009, 0.0535) 0.0200(0.0009, 0.0538)
2 0.05134 0.0496(0.0096, 0.0912) 0.0454(0.0194, 0.0760) 0.0499(0.0097, 0.0922) 0.0501(0.0104, 0.0917)
3 0.12366 0.1030(0.0584, 0.1444) 0.0774(0.0420, 0.1139) 0.1035(0.0585, 0.1466) 0.1023(0.0588, 0.1440)
4 -0.00654 0.0181(0.0007, 0.0525) 0.0478(0.0193, 0.0826) 0.0194(0.0007, 0.0555) 0.0184(0.0007, 0.0524)

Scale σ 0.07325 0.0717(0.0620, 0.0835) 0.0786(0.0670, 0.0929) 0.0721(0.0623, 0.0838) 0.0717(0.0617, 0.0838)

tion, Table 4.6 shows that posterior inferences, mean and 95% credible intervals,

are similar for all parameters for the choice of uninformative prior uniform[0,1]

and the more informative prior Gamma(1,10) and Beta(1,10) distributions. How-

ever, the posterior mean changes substantially when the prior mean moves away

from zero as in the Gamma(5,15) prior, that is for a prior distribution with higher

probability for larger values. The concentration of this prior at the larger values

translates into a larger posterior mean for parameters with small values in the

Gamma(1,10), Uniform[0,1] and Beta(1,10) priors. For illustration, in Figure 4.7

we present the posterior distribution for the parameters associated with levels 3

and 4 for the attribute activities (i.e. β19 and β20) by the four prior distributions.

The plot shows that the posterior mean of the largest decrease in the mean

utility, associated with a change from level 2 to level 3 for the attribute activ-

ities, β19, decreases in Gamma(5,15) compared with those obtained when using

Gamma(1,10), Uniform[0,1] and Beta(1,10) priors, whereas the posterior mean

increases for the small decrease in the mean utility, β20. Thus, if the researchers

are sure about the range of the parameter values, but less confident whether the
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Figure 4.7: Posterior distribution for parameters associated with level 3 and 4 for the
attribute activities, β19 and β20, and the maximum likelihood estimates

parameter values lie very close to zero, it might be better to use the Uniform[0,1]

prior. This is because the posterior distribution seems to be robust to the choice

of prior distribution unless it has high probability for larger values.

The posterior means of the scale parameter, σ, are approximately similar under

all prior distributions, and the m.l.e. of this parameter lies within the credible

interval obtained under each prior. The posterior inferences of this parameter

is less sensitive to the prior distribution chosen though the Gamma(5,15) still

produces slightly more large value for this parameter as shown in Figure 4.8.

• Health State Utilities

Using the 15,000 draws from the posterior distribution of each parameter, we

calculate the posterior mean for each health state presented in the TTO exercise
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Figure 4.8: Posterior distribution of the scale parameter, σ, by the prior distribution
together with the maximum likelihood estimate

as follows:

g(xij) =
1

n

15000∑
n=1

(
1− βnxTij

)
, n = 1, . . . , 15000, j = 1, . . . , 99, (4.5.5)

where βn = (β1,n, . . . , β20,n) is the n draws from the posterior distribution of the

parameters, and xij is a vector of dummy variables represents the health state as

described in Section 4.3. Figure 4.9 shows the posterior mean utilities and 95%

posterior intervals for each health state, together with the mean health state

utilities computed using the m.l.e.

Comparing the maximum likelihood estimates with the posterior results, the

plot illustrates that for Gamma(1,10), Uniform[0,1] and Beta(1,10) priors the

posterior mean utilities for each health state are similar to those estimated using

m.l.e, whereas, for Gamma(5,15), the posterior mean utilities are smaller than

the maximum likelihood estimates. In general, the maximum likelihood estimates
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Figure 4.9: The mean and 95% posterior intervals for the mean health state utilities
for the 99 health states used in the TTO survey by the prior distributions
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for the utility values of those states are included in the 95% posterior intervals

for Gamma(1,10), Uniform[0,1] and Beta(1,10) priors, whereas more of these

estimates are excluded when Gamma(5,15) prior is used.

Comparing the results from different prior distributions, the posterior mean

utilities for each health state are similar for Gamma(1,10), Uniform[0,1] and

Beta(1,10) priors, but slightly different from those obtained using Gamma(5,15)

prior, particularly for the severe health states. This is due to the fact that the

Gamma(5,15) prior has large parameter estimates for the small decrease in mean

utility, that is for parameters associated with change in the attributes from level

3 to level 4. This leads to larger decreases in the mean utility value, and, hence,

produces smaller utility values for those states in comparison with those obtained

when Gamma(1,10), Uniform[0,1] and Beta(1,10) priors are used.

For instance, consider the worst health state, where all the attributes are at the

worst level (level 4 for each attribute). The posterior mean utility of this state

is 0.355 when the Gamma(5,15) is used, whereas, for the Gamma(1,10) and the

Uniform[0,1] priors the health state has a mean utility values of 0.4241, 0.4172,

and 0.4243, respectively, and the posterior distributions are pulled further from

zero, as illustrated in Figure 4.10.
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Figure 4.10: The posterior distributions for the worst health state defined by the AQL-
5D classification system by the prior distributions
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4.5.4 MCMC Results for the DCE Model

Similarly to the TTO data, for all prior distributions used in the analysis, the pos-

terior distribution for each parameter in the logit model seems to converge to the

true distribution as shown in Figure 4.11 by the mixing index of the chains R̂ for the

Gamma(1,10) prior.

Figure 4.11: The mean and 80% posterior intervals for each parameter obtained from
each chain, together with the mixing index of the chains R̂ using Gamma(1,10) prior

The plot shows that the values of the index appears to be close to one for all

parameters, except for the scale parameter, σ, where R̂ = 1.07. Nevertheless, this is

still acceptable as it is less than 1.1, but it might require a higher level of precision in

the final analysis (Gelman et al., 2004, p.297). Thus, we consider the second halves of

the chains, i.e. 15,000 iterations in total, as a sample from the posterior distribution

to compute different summary statistics for the parameters and estimate the posterior
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Table 4.7: Mean and 95% posterior intervals for the logit model parameters by prior
distributions, together with the maximum likelihood estimators

Attribute Level m.l.e Gamma(1,10) Gamma(5,15) Uniform[0,1] Beta(1,10)

Concern

1 0.00362 0.0223 (0.0008, 0.0661) 0.0369 (0.0133, 0.0686) 0.0223 (0.0008, 0.0656) 0.0228 (0.0008, 0.0675)
2 4.391e−07 0.0172 (0.0005, 0.0536) 0.0338 (0.0124, 0.0624) 0.0172 (0.0006, 0.0540) 0.0171 (0.0005, 0.0539)
3 0.13354 0.1008 (0.0477, 0.1494) 0.0641 (0.0309, 0.1001) 00.1001 (0.0473, 0.1496) 0.1003 (0.0476, 0.1502)
4 0.03375 0.0374 (0.0026, 0.0860) 0.0544 (0.0240, 0.0898) 0.0390 (0.0028, 0.0892) 0.0376 (0.0027, 0.0866)

Short of Breath

1 0.00421 0.0184 (0.0006, 0.0558) 0.0323 (0.0116, 0.0601) 0.0182 (0.0006, 0.0554) 0.0187 (0.0006, 0.0561)
2 2.645e−08 0.0194 (0.0006, 0.0590) 0.0337 (0.0126, 0.0627) 0.0193 (0.0006, 0.0595) 0.0193 (0.0006, 0.0591)
3 0.12490 0.0902 (0.0414, 0.1350) 0.0603 (0.0289, 0.0950) 0.0903 (0.0416, 0.1361) 0.0899 (0.0419, 0.1340)
4 0.00001 0.0168 (0.0005, 0.0513) 0.0371 (0.0140, 0.0678) 0.0177 (0.0006, 0.0543) 0.0171 (0.0006, 0.0530)

Weather & pollution

1 7.070e−07 0.0080 (0.0002, 0.0282) 0.0215 (0.0073, 0.0426) 0.0080 (0.0002, 0.0278) 0.0081 (0.0002, 0.0283)
2 0.02173 0.0284 (0.0014, 0.0707) 0.0344 (0.0133, 0.0617) 0.0275 (0.0013, 0.0697) 0.0284 (0.0014, 0.0711)
3 0.07937 0.0563 (0.0089, 0.1058) 0.0450 (0.0191, 0.0770) 0.0577 (0.0096, 0.1090) 0.0557 (0.0092, 0.1052)
4 0.02555 0.0339 (0.0017, 0.0864) 0.0445 (0.0173, 0.0788) 0.0356 (0.0018, 0.0882) 0.0342 (0.0018, 0.0862)

Sleep

1 4.451e−06 0.0152 (0.0005, 0.0488) 0.0282 (0.0098, 0.0538) 0.0156 (0.0005, 0.0508) 0.0156 (0.0005, 0.0504)
2 0.05593 0.0345 (0.0023, 0.0799) 0.0334 (0.0127, 0.0607) 0.0341 (0.0021, 0.0787) 0.0346 (0.0024, 0.0797)
3 0.02225 0.0295 (0.0013, 0.0762) 0.0353 (0.0133, 0.0638) 0.0297 (0.0014, 0.0761) 0.0295 (0.0014, 0.0760)
4 0.02927 0.0289 (0.0014, 0.0732) 0.0354 (0.0134, 0.0642) 0.0288 (0.0014, 0.0733) 0.0286 (0.0014, 0.0733)

Activities

1 0.03164 0.0314 (0.0015, 0.0792) 0.0427 (0.0163, 0.0766) 0.0311 (0.0015, 0.0801) 0.0317 (0.0016, 0.0796)
2 0.02682 0.0415 (0.0025, 0.0973) 0.0618 (0.0264, 0.1033) 0.0417 (0.0025, 0.0998) 0.0417 (0.0026, 0.0985)
3 0.24128 0.1887 (0.1195, 0.2526) 0.1189 (0.0682, 0.1707) 0.1898 (0.1204, 0.2553) 0.1874 (0.1187, 0.2520)
4 0.00017 0.0300 (0.0013, 0.0817) 0.0537 (0.0216, 0.0930) 0.0306 (0.0013, 0.0823) 0.0307 (0.0013, 0.0825)

Scale σ 0.24140 0.2392(0.2138, 0.2597) 0.2254 (0.2057, 0.2477) 0.2363 (0.2143, 0.2610) 0.2351 (0.2134, 0.2595)

mean utilities.

• Model Parameters

Table 4.7 shows the mean and 95% posterior intervals for each parameter in the

logit model. Similar to the TTO model, the posterior mean has a comparatively

large value when the maximum likelihood estimates are small and vice versa.

Also, most of the maximum likelihood estimates are included within the 95%

posterior intervals in Gamma(1,10), Uniform[0,1] and Beta(1,10) priors, but sev-

eral more fall outside the posterior intervals when the Gamma(5,15) prior is used;

more so than for the TTO model, that is 12 parameters compared with 8.

Once again as in the TTO model, the posterior distributions for each parameter

are similar when using Gamma(1,10) Uniform[0,1] and Beta(1,10) priors, but

change dramatically for the Gamma(5,15) priors, as shown for the parameter

associated with the largest decrease in the mean utility, i.e. change from level

two to level three in the activities attribute, β19, in the left panel of Figure

4.12. Similarly for the parameters with large values for the m.l.e such as the

parameters associated with level three for attributes concern and short of breath,

i.e. β3 and β7, respectively. The figure also presents the posterior distributions

139



0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
5

1
0

1
5

2
0

2
5

 Posterior Dsitribution in Logit model

β19

f(
β

1
9
)

Gamma(1,10)
Gamma(5,15)
Uniform[0,1]
Beta(1,10)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
5

1
0

1
5

2
0

2
5

Posterior Distrbution in TTO Model

β19

f(
β

1
9
)

Gamma(1,10)
Gamma(5,15)
Uniform[0,1]
Beta(1,10)

Figure 4.12: The posterior distributions for β19 using logit and TTO models by the
prior distributions

for this parameter using the TTO models. The plot shows that the change in

the posterior distribution with respect to Gamma(5,15) prior, i.e. the prior with

high probability for the large values, is larger in the logit model than in the TTO

model. Thus, the logit model might be more sensitive to the prior distribution

with higher probability for large value than the TTO model.

Comparing the mean and posterior intervals for each parameter using the logit

and TTO Bayesian models, we observe that, in general, the posterior mean in the

TTO model is lower than those obtained in the logit model, as shown in Figure

4.13 for the Gamma(1,10) prior. However, as discussed earlier, the logit model

is not expected to produce the same results as the TTO model. Therefore, we

compare the parameter uncertainty produced by each model instead using the

95% credible interval of the posterior mean of the parameters, where the wider the

interval the more uncertainty in the posterior mean values. Considering the width

of the posterior intervals of each parameter under the Gamma(1,10) prior shown
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Figure 4.13: Mean and 95% posterior intervals together with the widths of the intervals
for each parameter using the logit and TTO models and Gamma(1,10) prior

in the right panel of Figure 4.13, it can be seen that the logit model produces

a slightly larger uncertainty in the posterior mean values compared to the TTO

model, particularly for those parameter associated with larger change in the mean

utility values such as β3, β4 and β19 as well as the scale parameter σ, where

the logit model results in a wider credible interval. Similar results are obtained

under the other prior distributions, i.e. the Gamma(5,15) and uniform[0,1] priors.

Nevertheless, this might be related to the fact that the TTO survey has more

respondents and observations compared to the DCE exercise, as shown in Table

4.5. This would result in smaller variation in the collected data and, hence, more

precise estimates for the preference parameters and the mean utilities.

• Health State Utilities

The mean utilities for each health state presented in the pairwise choice ex-

periment survey are calculated using the 15,000 iterations from the posterior
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distribution of the parameters as follows:

g(xijs) =
1

n

15000∑
n=1

(
1− βnxTijs

)
, n = 1, . . . , 15000, j = 1, 2, s = 1, . . . , 32,

(4.5.6)

where βn is the nth draw from the posterior distribution of the parameter vector

β. Figure 4.14 presents the mean and 95% posterior intervals for these health

states (excluding death state which has a utility of zero) using different prior

distributions, together with the estimated utilities values using the maximum

likelihood estimates. The plot shows that, generally for all prior distributions,

the posterior mean utilities are lower than utility values estimated using the

m.l.e. Nevertheless, the mean health state utilities estimated using the maxi-

mum likelihood estimates are included within the 95% posterior intervals when

Gamma(1,10), Uniform[0,1] and Beta(1,10) priors are used, whereas most of these

estimates fall outside the 95% posterior intervals in Gamma(5,15) prior. In addi-

tion, as in the TTO model, the plot shows that the posterior distribution for the

mean utilities are similar when using Gamma(1,10), Uniform[0,1] and Beta(1,10)

priors, but is dramatically different when Gamma(5,15) prior is used.

To compare the predictive ability of the TTO and logit models, we first predict

the value of the 99 health states presented in the TTO survey using the logit

model and then compare it with those obtained using the TTO model. This is

because it is not possible to directly compare states in the TTO and DCE surveys

as they evaluate different health states. In our analysis, we expect that the logit

model would produce lower posterior mean utility values compared to the TTO

model particularly for the severe states. Comparing the predicted posterior mean

utilities of the 99 states shown in Figure 4.15 for the TTO and logit models, it

can be seen that the mean utility values are pulled more toward zero in the logit

model compared to the TTO model particularly for the more sever states (e.g.

the worst health state 44444). This follows since the logit model produces larger

values for the posterior mean of the parameters particularly those associated with
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Figure 4.14: Mean and 95% posterior intervals for the utility values for the health states
evaluated in the DCE survey, excluding the death state, by different prior distributions
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the change from level 2 to level 3 in each attribute (e.g., β3 and β19) as show in

Figures 4.13.

●

●

●

●

●
●●●

●

●●

●●

●
●

●

●

●

●

●

●●

●●●

●

●●●

●

●

●

●
●
●

●

●

●●

●●

●
●

●

●

●
●
●
●
●

●
●

●
●

●
●

●●●
●

●

●

●
●

●

●

●●

●

●
●

●
●●

●

●

●●●

●

●

●
●
●

●

●
●
●
●

●●

●

●
●
●

●

●●
●

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Health State (ordered from worst to best)

U
til

ity

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●

●

●

●

●

●

TTO Model
Logit Model

Figure 4.15: The posterior mean utilities for 99 health states presented in the TTO
survey estimated using logit and TTO models by the Gamma(1,10) prior

Now, since either TTO or logit model can be used to estimate the mean utility

of any health state defined by the classification system, both models are not

expected to produce the same results. Therefore, we compare the uncertainty in

the mean utility values produce by both models instead of comparing the absolute

utility values. This can be done by comparing the 95% posterior intervals of the

posterior mean utilities in both models, which can be represented more clearly

using the width of those intervals as shown in Figure 4.16 for the Gamma(1,10)

prior distribution.

The plot shows that the DCE data seems to produce larger uncertainty, partic-

ularly for the more severe health states, as it results in wider posterior interval

that implies larger uncertainty. Nevertheless, for the worst health state (AQL-5D

144



●

●
●●

●●

●

●
●
●
●

●
●
●

●

●
●

●●
●
●
●●

●

●

●

●●

●

●
●
●●

●
●●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●
●
●

●
●
●

●●

●●
●
●●

●
●●●

●

●●●
●●

●

●●●●

●

●

●

●

●

●●

●

0 20 40 60 80 100

0.
05

0.
10

0.
15

0.
20

0.
25

Health State (ordered from worst to best)

W
id

th
 o

f t
he

 P
os

te
rio

r 
In

te
rv

al
 o

f t
he

 M
ea

n 
U

til
ity

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

TTO Model
Logit Model

Figure 4.16: The width of the posterior interval of the mean utilities of the 99 health
states presented in the TTO survey using logit and TTO models by the Gamma(1,10)
prior

health state 44444) the logit model seems to have slightly less uncertainty around

the posterior mean utility value compared to the TTO model, similarly for the

other priors. This might be related to the fact that the TTO values, as opposed

to the DCE methods, are affect by time preference and require altering the choice

task when the state is consider worse than death. This might affect the average

mean utility value of this state and increase the variations in the respondents’

valuations of this states, where some respondents might consider this state as

worth living and not willing to trade much of their life expectancy for being in a

healthier state while other might consider it worse than being dead.
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4.6

Summary and Discussion

In this chapter, we analysed two data sets, TTO and pairwise comparisons data, using

classical and Bayesian approaches. The ordinary linear model and logit model were

fitted to the TTO and DCE data, respectively. In general, the logit model produces

higher maximum likelihood estimates for those parameters associated with more se-

vere levels of the attributes (i.e. level 3 and 4), and hence results in lower estimates

for the mean utility values for the most severe health states defined by the AQL-5D

classification system.

The Bayesian approach has been used to obtain probability distributions for the

preference parameters and the health state utility values, as they are usually required

by health economists to perform a probabilistic sensitivity analysis to account for

the uncertainty in their decision. Also, in this chapter, we analysed the data using

the Bayesian approach to obtain posterior distributions for the unknown logit model

parameters, and then use this information about the parameters when constructing

the choice design for the same classification system. In the Bayesian analysis, we used

the MCMC method to sample from the posterior distribution of each parameter in the

model, since we cannot derive the posterior distribution analytically. Different prior

distributions were considered to investigate the robustness of the Bayesian inference

to the choice of prior. In particular, Gamma(1,10), Gamma(5,15), Uniform[0,1] and

Beta(1,10) priors were used to investigated the effect of using informative and less

informative priors, such as the Uniform[0,1] where all the parameters have an equal

probability of being anywhere between 0 and 1. Also, the Gamma(5,15) prior has been

used to investigate the effect of the prior distribution with higher probability for the

larger values in the posterior inference.
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For both the TTO and logit models, the posterior mean utilities were smaller

than those obtained using the maximum likelihood estimates as shown in Figures

4.9 and 4.14, particularly when a Gamma(5,15) prior is used. The Gamma(1,10),

Uniform[0,1] and Beta(1,10) priors produce similar mean utilities and posterior dis-

tributions, whereas the results change dramatically when the Gamma(5,15) was used,

particularly in the logit model. Thus, the posterior inference is robust to the choice of

prior unless the prior used has a high probability for larger parameter values. How-

ever, since in reality some parameters are expected to produce a larger decrease in the

mean utility than others, specifying different priors for each parameter might be more

appropriate. That is, for small parameter values, it would be more appropriate to use

a prior distribution that favours small values and vice versa.

Comparing the uncertainty produced by both TTO and DCE models, generally, the

uncertainty in the parameter and utility values is larger in the logit model compared

to the TTO model. Nevertheless, this might be related to the number of respondents

and choice data used in each survey, since the TTO survey has more respondents

and observations than the DCE. This would result in more precise estimates for the

preference parameters, and consequently the mean utilities. Though the TTO data

might provide less uncertainty in the parameters and the utility values here; they

might not reflect the true values for these quantities. This is because TTO data are

affected by other non-health factors such as time preference, and also it might be harder

for respondents to perform than the pairwise choices.

Therefore, in practice, DCEs might be more appropriate to value health state utility

as they are not effected by non-health factors and they are simpler than the TTO

valuation technique. Nevertheless, we cannot rule out the impact of the choice of the

DCE design on the results of the DCE data, since obtaining reliable parameter values

depends on the information collected from the DCE survey, which itself depends in

the way that the choice design is constructed. Here, the DCE survey used a limited

number of choice sets that are constructed based on the four principles of the optimal
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choice design developed in Huber and Zwerina (1996): level balance, orthogonality,

minimal overlap, and utility balance (that is satisfied in level balanced design used

here by assuming zero point priors for the preference parameters). However, this design

method, as discussed in Section 3.2.3, does not guarantee obtaining an optimal design,

or the ability to estimate the main effects of interest. Also, the assumption of zero

priors produces some dominant choices in the DCE survey (three dominant choices).

This will reduce the efficiency of the choice design, and have an impact on the results

and might increase the uncertainty in the parameter and the utility values.

A more sophisticated choice design approach might improve the quality of the col-

lected data from the DCE, and hence the logit model results. In the design literature,

there has been concern regarding experimental design methods used for DCEs and

some developments to produce more efficient choice designs, as shown for the Bayesian

design literature in Chapter 3. Therefore, in the following chapter, we concentrate on

improving the DCE design for valuing health state utilities within the QALY frame-

work, particularly for the AQL-5D case study, using these developments such that it

produces more reliable values for the parameter estimates and hence the utility values.

In particular, using a Bayesian optimal choice design approach, that accounts for un-

certainty in the unknown model parameters through incorporating a prior information

about the parameters in constructing the choice design.
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Chapter 5

Bayesian Optimal Choice Designs

for Valuing Health State Utilities

5.1

Introduction

In this chapter, we present our design algorithm to construct Bayesian optimal designs

for valuing health states within the QALY framework. The developed choice design

algorithm is then used to construct Bayesian optimal pairwise comparison designs for

the AQL-5D classification system. We compare the resulting Bayesian designs to the

level balanced design (LBD) introduced in Chapter 4.

Constructing Bayesian optimal designs, as discussed in Chapter 3, requires speci-

fying the choice model, the design criterion and a prior distribution for the unknown

model parameters. Therefore, we next derive the Bayesian DS-optimality criterion for

our design model, i.e. the multinomial logit (MNL) model. This criterion is chosen
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such that the volume of the posterior credible ellipsoid of the unknown preference pa-

rameters, β, is minimised, and hence more reliable parameter estimates and health

state utility values are obtained. In Section 5.3, we discuss the problems with the

available software to construct Bayesian choice designs for valuing health states. We

introduce our design algorithm in Section 5.4, and demonstrate how the choice task

could be simplified to reduce the response errors in Section 5.5. The developed choice

algorithm together with the simplification of the choice task are then applied to gen-

erate Bayesian optimal pairwise comparisons for the AQL-5D, in which the resulting

designs are compared with each other and with the LBD as illustrated in Section 5.6.

A summary and discussion of the main findings in this chapter is presented in Section

5.7.

5.2

Deriving the Optimality Criterion

for the MNL model

In this section, we derive the appropriate form of the BayesianD-optimality criterion for

the MNL model including the death state, using the asymptotic normal approximation

to the posterior distribution for the unknown model parameters as described in Section

3.6.1. We base our derivation of the design criterion on the work of Kessels et al. (2004)

who derived the Bayesian D-optimality criterion for the general MNL model – the MNL

model without the death state – using the asymptotic approximation for the posterior

distribution.

The posterior variance-covariance matrix (VCM) of this asymptotic distribution is
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approximated by the inverse of the Fisher information matrix (FIM) or the generalised

Fisher information matrix (GFIM), where the Bayesian D-criterion seeks to minimise

the determinant of the VCM to minimise the posterior credible ellipsoid of the model

parameters θ = (β,σ). However, the goal of performing a choice experiment, here, is

to estimate the preference parameters, β, as precisely as possible, therefore our interest

is in a subset of the MNL model parameters. This interest should be reflected in the

D-optimal design criterion as discussed in Goos et al. (2010) who use the DS-optimality

criterion to construct their choice design. Therefore, an appropriate design criterion

will be the DS-optimality criterion which seeks designs that minimise the variance of

the parameters of interest, here the preference parameters, β. The derivation of this

optimality design criterion requires partitioning the information matrix as

FIM(ξ,θ) =

FIM11(ξ,θ) FIM12(ξ,θ)

FIM21(ξ,θ) FIM22(ξ,θ)

 ,
=

−EY

{
∂2l(y|β,σ)

∂βT ∂β

}
−EY

{
∂2l(y|β,σ)
∂σ∂β

}
−EY

{
∂2l(y|β,σ)

∂βT ∂σ

}
−EY

{
∂2l(y|β,σ)

∂σ2

}
 , (5.2.1)

where l(y|β, σ) is the log likelihood function of the MNL defined as in Equation (2.5.17):

l(y|β, σ) =
S∑
s=1

J∑
j=1

N∑
i=1

yijs logPijs,

where yijs is a dummy variable that equals 1 if health state xijs is chosen and is 0

otherwise.

The posterior VCM of the parameters β can be estimated asymptotically using the

results on the inverse of a partitioned matrix as a submatrix of the inverse of FIM(ξ,θ)

(Atkinson et al., 2007) as

V̂ ar(β) =
{

FIM11(ξ,θ)− FIM12(ξ,θ)
[
FIM22(ξ,θ)

]−1
FIM21(ξ,θ)

}−1

. (5.2.2)
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Hence, the DS-optimality design criterion is defined as the determinant of this inverse,

where DS-optimal design is obtained by minimising the determinant∣∣∣∣{FIM11(ξ,θ)− FIM12(ξ,θ)
[
FIM22(ξ,θ)

]−1
FIM21(ξ,θ)

}−1
∣∣∣∣ , (5.2.3)

or, equivalently maximising the determinant of the inverse of the posterior VCM of the

preference parameters, that is the amount of information a design ξ carries about the

unknown preference parameters in the MNL model, β, denoted as FIMβ(ξ,θ),

FIMβ(ξ,θ) = FIM11(ξ,θ)− FIM12(ξ,θ)
[
FIM22(ξ,θ)

]−1
FIM21(ξ,θ). (5.2.4)

Thus, to derive the Bayesian DS-optimality design criterion for the MNL model, we

need to calculate the components of the partitioned FIM or the corresponding GFIM

for the MNL model, and then deduce the optimality criterion for the binary logit model

to construct a pairwise experiment.

In a choice experiment each individual i is presented with a set of health states to

choose from, Cs = {xi1s, . . . ,xiJs}, where each health state is represented by a vector

of dummy variables xijs with elements defined as

xλδ =

 1 if attribute δ of health state xij is at level λ or higher,

0 otherwise.

For valuing health states within the QALY scale, an individual may also be asked to

evaluate a set of health states that includes the death state Cs = {xi1s, . . . ,xi(J−1)s,xd},

in which case xiJs = xd, where xd is a vector of a dummy variable with elements of 0

corresponding to each attribute level differences and a last element of 1 representing

the death state as defined in Section 2.3.3. In Section 2.5.3, we defined the MNL model

including the death state, where the MNL choice probability that individual i chooses
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health state xijs in a non-death choice set, i.e. xd 6∈ Cs, is derived as

Pijs =
exp

(
g(xijs)

σ

)
J∑
t=1

exp
(
g(xits)
σ

) ,

where g(xijs) = 1 − βxTijs is the population mean utility for health state xijs, and β

is a vector of the unknown model parameters associated with the incremental decrease

in the mean utility when moving one level within one attribute, as defined in Equation

(2.3.1). The parameter σ is the scale parameter of the random component of the utility,

εijs.

For health state xijs in a choice set that includes death, i.e. xd ∈ Cs, the MNL

choice probability is derived as

Pijs =
exp

(
g(xijs)

σ

)
J−1∑
t=1

exp
(
g(xits)
σ

)
{

1− exp

[
−

J−1∑
t=1

exp

(
g(xits) + µ

σ

)]}
,

and for the death state it is given by

PiJs = exp

[
−

J−1∑
t=1

exp

(
g(xits) + µ

σ

)]
.

The components of the FIM for a design ξ are computed by deriving the sub-Fisher

information matrices (sub-FIMs) defined in Equation (5.2.1), that is computed as the

negative value of the expected second derivative of the log likelihood function defined

in Equation 2.5.17. Since the MNL model assumes homogenous preference across

respondents (i.e. individuals have the same choice probability for the alternative xijs),

we can drop the i index from the choice probability. Also, to simplify the calculation,

we start by computing the sub-FIMs defined in Equation (5.2.1) for one respondent

(i.e. taking N = 1), and then multiply it by the total number of respondents N , as

in Kessels et al. (2004). Thus, the sub-FIMs for one respondent, which we denote by
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FIMI , can be written as

FIM11
I (ξ,θ) = −EY

{
S∑
s=1

J∑
j=1

yjs
∂2

∂βT∂β
log(Pjs)

}
, (5.2.5)

FIM12
I (ξ,θ) = −EY

{
S∑
s=1

J∑
j=1

yjs
∂2

∂σ∂β
log(Pjs)

}
, (5.2.6)

FIM22
I (ξ,θ) = −EY

{
S∑
s=1

J∑
j=1

yjs
∂2

∂σ2
log(Pjs)

}
, (5.2.7)

and FIM21
I (ξ,θ) =

[
FIM12

I (ξ,θ)
]T

.

To evaluate these matrices, we need to compute the derivatives for the correspond-

ing choice probabilities in each choice set. The derivative is taken with respect to

the parameter vector β and σ after substituting the definition of the population mean

utility, g(xijs) = 1 − βxTijs, in the defined choice probabilities. Therefore, we start

by computing the derivative for the MNL choice probabilities in non-death choice sets

with respect to β and σ as

∂2

∂βT∂β
log(Pjs) =

∂

∂βT


∂

∂β
log

 exp
(
g(xjs)

σ

)
J∑
t=1

exp
(
g(xts)
σ

)

 ,

=
∂

∂βT


1

σ

−xTjs +

J∑
t=1

exp
(
g(xts)
σ

)
xTts

J∑
t=1

exp
(
g(xts)
σ

)

 ,

= − 1

σ2

(
J∑
t=1

Ptsx
T
tsxts −

J∑
t=1

Ptsx
T
ts

J∑
t=1

Ptsxts

)
,

= − 1

σ2

[
Xs(Ps − psp

T
s )XT

s

]
, (5.2.8)
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where Xs = [xT1s, . . . ,x
T
Js] is the design matrix for choice set s. The terms Ps and ps

are a J × J diagonal matrix and a J × 1 vector, respectively. Element j, j of Ps and

element j of ps are both equal to Pjs =
exp

(
g(xjs)

σ

)
J∑
t=1

exp
(
g(xts)
σ

) .

Taking the derivative with respect to β and then σ gives

∂2

∂σ∂β
log(Pjs) =

∂

∂σ


∂

∂β
log

 exp
(
g(xjs)

σ

)
J∑
t=1

exp
(
g(xts)
σ

)

 ,

=
∂

∂σ

{
1

σ

[
−xTjs +

J∑
t=1

Ptsx
T
ts

]}
,

=
1

σ3

[
σ(xTjs −Xsps)−Xs(Ps − psp

T
s )UT

s

]
, (5.2.9)

where Xs, Ps and ps defined as in Equation (5.2.8), and Us = [g(x1s), . . . , g(xJs)] is a

row vector of the mean utility value of each alternative in choice set s.

The second derivative of the choice probability with respect to the scale parameter

σ is derived as

∂2

∂σ2
log(Pjs) =

∂

∂σ


∂

∂σ
log

 exp
(
g(xjs)

σ

)
J∑
t=1

exp
(
g(xts)
σ

)

 ,

=
∂

∂σ

{
1

σ2

(
−g(xjs) +

J∑
t=1

Ptsg(xts)

)}
,

=
1

σ4

[
2σg(xjs)−

J∑
t=1

Ptsg(xts) (2σ + g(xts)−

J∑
t=1

Ptsg(xts)

)]
. (5.2.10)
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When xd ∈ Cs we have

Pjs =
exp

(
g(xjs)

σ

)
J−1∑
t=1

exp
(
g(xts)
σ

)
{

1− exp

[
−

J−1∑
t=1

exp

(
g(xts) + µ

σ

)]}
, (5.2.11)

and the derivatives of the choice probabilities are derived as

∂2

∂βT∂β
log(Pjs) =

∂

∂βT

[
∂

∂β
log(Pjs)

]
,

=
∂

∂βT


1

σ

−xTjs +

J−1∑
t=1

exp
(
g(xts)
σ

)
xTts

J−1∑
t=1

exp
(
g(xts)
σ

) −
exp

[
−

J−1∑
t=1

exp
(
g(xts)+µ

σ

)] J−1∑
t=1

exp
[
g(xts)+µ

σ

]
xTts{

1− exp

[
−

J−1∑
t=1

exp
(
g(xts)+µ

σ

)]}

 ,

=
∂

∂βT


1

σ

−xTjs +
J−1∑
t=1

Ptsx
T
ts −

PJs
J−1∑
t=1

exp
[
g(xts)+µ

σ

]
xTts

1− PJs


 ,

= − 1

σ2

[
J−1∑
t=1

Ptsx
T
tsxts −

J−1∑
t=1

Ptsx
T
ts

J−1∑
t=1

Ptsxts+

PJs
1− PJs

J−1∑
t=1

exp

(
g(xts) + µ

σ

)
Ktsx

T
tsxts

]
,

= − 1

σ2

[
Xs{−d}(P s{−d} − ps{−d}p

T
s{−d}

)XT
s{−d}

+

PJs
1− PJs

J−1∑
t=1

exp

(
g(xts) + µ

σ

)
Ktsx

T
tsxts

]
, (5.2.12)

where Xs{−d} = [xT1s, . . . ,x
T
(J−1)s] is the corresponding design matrix for choice set s

excluding the representation of the death state, Ps{−d} and ps{−d} are a (J−1)×(J−1)

diagonal matrix and a (J − 1) × 1 vector with elements j, j and j both given by the

choice probabilities for each health state xjs in a death choice set except the death
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state, respectively, and

Kts =

{
J−1∑
t=1

exp

[
g(xts) + µ

σ

]
− 1 +

PJs
1− PJs

J−1∑
t=1

exp

[
g(xts) + µ

σ

]}
.

Taking the derivative with respect to σ gives

∂2

∂σ∂β
log(Pjs) =

∂

∂σ

[
∂

∂β
log(Pjs)

]
,

=
∂

∂σ

{
1

σ

[
−xTjs +

J−1∑
t=1

Ptsx
T
ts −

PJs
1− PJs

J−1∑
t=1

exp

(
g(xts) + µ

σ

)
xTts

]}
,

=
1

σ3

[
σ(xTjs −Xs{−d}ps{−d})−Xs{−d}(Ps{−d} − ps{−d}p

T
s{−d}

)UT
s{−d}

+

PJs
1− PJs

Ftsx
T
ts

]
, (5.2.13)

where Xs{−d} , Ps{−d} , and ps{−d} as defined in Equation (5.2.12), and Us{−d} is a row

vector of the corresponding mean utility values of the alternatives in choice set s ex-

cluding the mean utility value of death; and

Fts = σ
J−1∑
t=1

exp

(
g(xts) + µ

σ

)
+

J−1∑
t=1

(g(xts) + µ) exp

(
g(xts) + µ

σ

)
×[

1− 1

1− PJs

J∑
t=1

exp

(
g(xts) + µ

σ

)]
.
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The second derivative with respect to σ is derived as

∂2

∂σ2
log(Pjs) =

∂

∂σ

[
∂

∂σ
log(Pjs)

]
,

=
∂

∂σ

{
1

σ2

[
−g(xjs) +

J−1∑
t=1

Ptsg(xts)−

PJs
1− PJs

J−1∑
t=1

(g(xts) + µ) exp

(
g(xts) + µ

σ

)]}
,

=
1

σ4

{
2σg(xjs)−

J−1∑
t=1

Ptsg(xts)

[
2σ + g(xts)−

J−1∑
t=1

Ptsg(xts)

]
+

PJs
(1− PJs)

J−1∑
t=1

(g(xts) + µ) exp

(
g(xts) + µ

σ

)
[2σ + g(xts) + µ−

1

1− PJs

J−1∑
t=1

(
g(xts) + µ

σ

)
exp

(
g(xts) + µ

σ

)]}
. (5.2.14)

For the death state, where PJs is the probability of death state,

∂2

∂β2 log(PJs) =
∂

∂βT

{
∂

∂β
log exp

[
−

J−1∑
t=1

exp

(
g(xit) + µ

σ

)]}
,

= − 1

σ2

J−1∑
t=1

exp

(
g(xts) + µ

σ

)
xTtsxts, (5.2.15)

∂2

∂σ∂β
log(PJs) =

∂

∂σ

{
∂

∂β
log exp

[
−

J−1∑
t=1

exp

(
g(xit) + µ

σ

)]}
,

= − 1

σ3

[
σ

J−1∑
t=1

exp

(
g(xts) + µ

σ

)
+

J−1∑
t=1

(g(xts) + µ) exp

(
g(xts) + µ

σ

)]
xTts, (5.2.16)
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and

∂2

∂σ2
log(PJs) =

∂

∂σ

{
∂

∂σ
log exp

[
−

J−1∑
t=1

exp

(
g(xit) + µ

σ

)]}
,

= − 1

σ4

J−1∑
t=1

(g(xts) + µ) exp

(
g(xts) + µ

σ

)
×

[2σ + g(xts) + µ]. (5.2.17)

The sub-FIMs of the partitioned FIM for the MNL model from one respondent

defined in Equations (5.2.5), (5.2.6) and (5.2.7) are then computed by substituting the

corresponding second derivative derived in Equations (5.2.8), (5.2.9), (5.2.10), (5.2.12),

(5.2.13), (5.2.14), (5.2.15), (5.2.16) and (5.2.17), and then taking the negative expec-

tation. Using the fact that responses are independent and each represent a random

draw from a multinomial distribution, together with some simple algebra, then the

partitioned FIM obtained for one respondent can be written as

FIMI(ξ,θ) =


S∑
s=1

FIM11
s (ξ,θ)

S∑
s=1

FIM12
s (ξ,θ)

S∑
s=1

FIM21
s (ξ,θ)

S∑
s=1

FIM22
s (ξ,θ)

 ,
where FIMs is the Fisher information matrix obtained for choice set s, defined as

FIM11
s (ξ,θ) =



1
σ2

[
Xs(Ps − psp

T
s )X

T
s

]
, if xd 6∈ Cs;

1
σ2

[
(1− PJs)Xs{−d}

(
P s{−d} − ps{−d}p

T
s{−d}

)
XT

s{−d}
+

PJs
(1−PJs)

J−1∑
t=1

[
exp

(
g(xts)+µ

σ

)]2
xTtsxts

]
, if xd ∈ Cs.
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FIM12
s (ξ,θ) =



1
σ3

[
Xs(Ps − psp

T
s )U

T
s

]
, if xd 6∈ Cs;

1
σ3

{
(1− PJs)

[
Xs{−d}(Ps{−d} − ps{−d}p

T
s{−d}

)UT
s{−d}

]
+

PJs
1−PJs

[
J−1∑
t=1

(g(xts) + µ) exp
(
g(xts)+µ

σ

) J−1∑
t=1

exp
(
g(xts)+µ

σ

)
×

J−1∑
t=1

exp
(
g(xts)+µ

σ

)]
xTts − σPJsXs{−d}ps{−d}

}
, if xd ∈ Cs.

and

FIM22
s (ξ,θ) =



1
σ4

[
J∑
t=1

g(xts)
2Pts −

(
J∑
t=1

g(xts)Pts

)2
]
, if xd 6∈ Cs;

1
σ4

{
(1− PJs)

[
J−1∑
t=1

g(xts)
2Pts −

(
J−1∑
t=1

g(xts)Pts

)3
]
+

PJs
1−PJs

[
(g(xts) + µ) exp

(
g(xts)+µ

σ

)]2
−

σPJs
J−1∑
t=1

Ptsg(xts)

}
, if xd ∈ Cs.

.

Hence, the FIM from N independent respondents becomes

FIM(ξ,θ) = N FIMI(ξ,θ)

= N


S∑
s=1

FIM11
s (ξ,θ)

S∑
s=1

FIM12
s (ξ,θ)

S∑
s=1

FIM21
s (ξ,θ)

S∑
s=1

FIM22
s (ξ,θ)

 . (5.2.18)

The derivation of the Bayesian DS-optimal design requires minimising the volume of

the credible interval of the parameter vector β, which is asymptotically equivalent

to minimising the determinant of the inverse of the FIMβ(ξ,θ) after substituting the
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definition of the sub-FIMs in Equation (5.2.4), that gives

FIMβ(ξ,θ) = FIM11(ξ,θ)− FIM12(ξ,θ)
[
FIM22(ξ,θ)

]−1
FIM21(ξ,θ),

= N


S∑
s=1

FIM11
s (ξ,θ)−

S∑
s=1

FIM12
s (ξ,θ)

[
S∑
s=1

FIM22
s (ξ,θ)

]−1

×

[
S∑
s=1

FIM12
s (ξ,θ)

]T (5.2.19)

However, this information matrix depends on the value of the unknown parameter

vector θ = (β, σ) through the choice probabilities and the mean utility values, and

hence so does the construction of the Bayesian design. In the Bayesian approach,

we average the value of the design criterion over a suitable prior distribution for the

unknown model parameters, π(θ). Formally, the asymptotic Bayesian DS-optimality

criterion based on the FIM for the MNL model can be defined as

DB
S,FIM =

∫ ∣∣FIM−1
β (ξ,θ)

∣∣ π(θ)dθ, (5.2.20)

where k is the total number of the unknown model parameters. We raise the determi-

nant to the power of 1/k to standardise the statistical measure and make irrelevant to

the dimension of the model.

An alternative for the FIM approximation, particularly with small sample sizes, is

the GFIM. This approximation, as mentioned in Section 3.6.1, has better finite sample

properties than the FIM, is a better approximation for the posterior VCM of the model

parameters, and hence might result in better choice design. The asymptotic Bayesian

DS-optimality criterion based on the GFIM for the MNL model can be formulated as

DB
S,GFIM =

∫ ∣∣GFIM−1
β (ξ,θ)

∣∣1/k π(θ)dθ, (5.2.21)
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where

GFIMβ(ξ,θ) = N


S∑
s=1

GFIM11
s (ξ,θ)−

S∑
s=1

GFIM12
s (ξ,θ)

[
S∑
s=1

GFIM22
s (ξ,θ)

]−1

×

[
S∑
s=1

GFIM12
s (ξ,θ)

]T (5.2.22)

and the sub-matrices of the partitioned GFIM can be obtained from the partitioned

FIM as

GFIM(ξ,θ) =


S∑
s=1

GFIM11
s (ξ,θ)

S∑
s=1

GFIM12
s (ξ,θ)

S∑
s=1

GFIM21
s (ξ,θ)

S∑
s=1

GFIM22
s (ξ,θ)

 ,
= FIM(ξ,θ) + Σ−1 (5.2.23)

where Σ−1 is the inverse of the prior VCM that represents the amount of information

a prior carries about the unknown model parameters, θ.

The design criteria derived above are for multinomial choice experiments. However,

in this thesis, we only consider pairwise choice experiments. We simplify the notation

by setting J = 2. Thus, assuming that, for choice sets including death, the death state

is the second alternative, the sub-FIMs can be simplified to

FIM11
s (ξ,θ) =


1
σ2 (x1s − x2s)

TP1s(1− P1s)(x1s − x2s), if xd 6∈ Cs;

1
σ2

PJs
(1−PJs)

[
exp

(
g(x1s)+µ

σ

)]2
xT1sx1s, if xd ∈ Cs,

(5.2.24)

FIM12
s (ξ,θ) =



1
σ3 (x1s − x2s)

TP1s(1− P1s) [g(x1s)− g(x2s)] , if xd 6∈ Cs;

1
σ3

{
P 2

1s(1− P1s)g(x1s)− σP1s(1− P1s)+

PJs
1−PJs (g(x1s) + µ)

[
exp

(
g(x1s)+µ

σ

)]2
}
xT1s, if xd ∈ Cs,

(5.2.25)
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and

FIM22
s (ξ,θ) =



1
σ4P1s(1− P1s) [g(x1s)− g(x2s)]

2 , if xd 6∈ Cs;

1
σ4

{
P1s[g(x1s)

2P1s − g(x1s)
3P 3

1s]− 2σP1s(1− P1s)g(x1s)+

PJS
1−PJS

[
(g(x1s) + µ) exp

(
g(x1s)+µ

σ

)]2
}
, if xd ∈ Cs,

(5.2.26)

and (x1s−x2s) is the difference between attribute levels of first and second alternatives

presented in choice set s, P1s and PJs are the choice probabilities of the first alternative

in each choice question and the death state, respectively. The asymptotic Bayesian

DS-optimality criteria based on FIM and GFIM for the binomial logit model, which

is also called the logit model, is then obtained by substituting these sub-FIMs defined

in Equations (5.2.24) and (5.2.25) and (5.2.26) in Equations (5.2.19) and (5.2.22),

respectively.

5.3

Constructing Choice Design Using

Available Software

In this section, we investigate the ability of Bayesian choice design algorithms available

in software such as SAS, JMP (Kessels, 2010) and Ngene (Rose and Bliemer, 2012) to

generate a pairwise experiment for valuing health states while taking into account our

design considerations. In particular, we consider their ability to

• allow the death state to appear automatically in the choice design, hence opti-

mising the correct design criterion which accounts for the inclusion of death state
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in the MNL model;

• set up design constraints to avoid implausible attribute combinations and domi-

nant choice sets, to improve the efficiency of the choice design;

• specify different prior distributions for the unknown model parameters, β and σ,

to construct Bayesian choice designs, since we aim to investigate the effect of the

choice of prior on the choice of the optimal design itself.

We start by looking at the properties of the software in terms of DCMs covered,

design criteria, and algorithms used to construct choice sets, in addition to other options

provided by the software as shown in Table 5.1.

We found that Ngene was the most flexible software in terms of having variety of

DCMs, Bayesian design criteria, design algorithms and prior distributions, as illustrated

in Table 5.1, as well as other design options such as the possibility of having a different

definition for the utility function and including the death state as a common choice.

However, we have not managed to construct Bayesian choice designs that totally handle

our design problem, particularly in terms of including the death state automatically

in the choice design and hence optimising the correct design criterion. This is because

the design software is built generally to construct choice designs in any field and not

specifically for health economic evaluation studies. Therefore, they do not necessarily

cover the specific requirements for generating choice designs for valuing health states,

particularly in terms of including the death state to anchor health state utility values.

The general limitations of the design software can be summarised as follows.

1. Design Criterion

Our design problem is to construct Bayesian optimal pairwise choice designs that

minimise the variance of the preference parameters, β, and hence the variance

of the mean health state utilities estimated within the QALY scale. Following

our method of anchoring health state utility into the QALY scale, by including
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the death state in the choice design, this requires optimising the Bayesian DS

optimality criterion

DB
S,FIM =

∫ ∣∣FIM−1
β (ξ,θ)

∣∣ π(θ)dθ,

where

FIMβ(ξ,θ) = FIM11(ξ,θ)− FIM12(ξ,θ)
[
FIM22(ξ,θ)

]−1
FIM21(ξ,θ),

= N


S∑
s=1

FIM11
s (ξ,θ)−

S∑
s=1

FIM12
s (ξ,θ)

[
S∑
s=1

FIM22
s (ξ,θ)

]−1

×

[
S∑
s=1

FIM12
s (ξ,θ)

]T ,

and the sub-matrices of the partitioned FIM are defined as in Equations (5.2.24)

and (5.2.25) and (5.2.26).

However, the software does not allow us to optimise the choice design with re-

spect to the DS-optimality criterion defined above, as the provided D-optimality

criterion do not account for the addition of the death state in the choice design

which is represented by, for example, 1
σ2

PJs
(1−PJs)

[
exp

(
g(x1s)+µ

σ

)]2

xT1sx1s in the

FIM11
s (ξ,θ). This is because the design criterion in the software is derived for

the general MNL model, which does not account for the addition of death, and

this results in a slightly different design criterion.

Additionally, the softwares use Bayesian D-optimality criterion, i.e. seek designs

that minimise the posterior credible ellipsoid of the MNL model parameters,

whose approximation is based on the FIM. In this approximation, the poste-

rior VCM of the preference parameters is approximated using the inverse of the

FIM of the parameters treating the scale parameter in the MNL, σ, as a fixed

parameter. However, this thesis considers calculating Bayesian optimal paired

comparison design for the logit model considering the preference parameters β

and assuming the scale parameter σ is unknown nuisance parameter, which re-
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sults in slightly different FIM and, hence, design criterion. Also, we consider the

GFIM approximation of the VCM of the MNL model parameters, that result in

the DB
S,GFIM design criterion, in order to study the effect of incorporating the

prior information in the approximation of the posterior VCM in the choice of the

optimal design. This approximation is known to be a better approximation for

the posterior VCM of the unknown model parameters (Yu et al., 2008), which

might lead to more efficient choice designs. This cannot be investigated using the

available software.

2. Prior Distribution

All the design softwares, except Ngene, assume a multivariate normal distribution

for the unknown model parameters to generate a Bayesian choice design. In our

design problem, the values of the parameters should be positive, as each represents

the incremental decrease in mean utility when moving one level in one attribute.

This distribution is not appropriate as it produces negative values, except under

some very restrictive conditions on the mean and the variance. Hence, other

prior distributions with zero probability for negative values are required, such as

Gamma and Beta distributions.

3. Design Software Modification

Design software such as JMP and Ngene are not available for all users, as they are

commercial software. Therefore, modifying design models and criteria specified

in these softwares to handle a specific design problem is not an easy task and

typically requires a higher upfront cost to purchase the application.

Given these limitations, we consider the need for deriving a efficient methodology

to generate Bayesian optimal choice design for provision of health state utilities within

the required QALY scale and considering the correct design criterion. This can be done

by modifying the advanced choice design algorithms introduced in Section 3.7.2 and

used in some of these software to handle our specific design applications.
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5.4

Bayesian Design Algorithm for

Generating DCE for Valuing

Health State Utilities

In this section, we describe our design algorithm that we used to generate efficient

Bayesian paired comparison designs, particulary for pairwise experiments, based on

the logit model and Bayesian design criteria defined in Section 5.2. Initially, we pro-

duce a computer search algorithm that relies on a random search through a reasonably

large number of choice designs, each with the required number of alternatives and

choice questions, as will be described in Section 5.4.1. To further improve the random

design, we use a more efficient search algorithm, namely the coordinate-exchange al-

gorithm by Meyer and Nachtsheim (1995), together with an updating formula for the

information matrix to accelerate the computational time of Bayesian DS optimal design

as described in Sections 5.4.2 and 5.4.3, respectively. The algorithm is programmed

in the R language (R Core Team, 2013), and applied to construct Bayesian pairwise

choice design for the AQL-5D case study in Section 5.6.

5.4.1 Random Search Algorithm

The random search algorithm is basically an iterative search procedure based on a

random search over a large number of designs. These designs are based on the desirable

number of choice sets, pairwise comparisons. Each satisfies our design constraints of

excluding dominant and implausible options as well as including the death state. The
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procedure of this algorithm can be described in the following three steps.

1. We generate a reasonable number of choice designs, each with the required num-

ber of pairs, where at least one of these pairs is a death comparison. For each

design, the alternatives in non-death pairs were selected randomly, but with con-

straints to prevent implausible and dominant alternatives from appearing in the

final choice design. The algorithm identifies and excludes these alternatives dur-

ing the construction of each choice design based on the attribute levels of each

alternative and using conditional statements in the R program to define our con-

straints on the attribute levels.

For the AQL-5D classification system, a health state xijs is more likely to be

unrealistic if it has most attributes levels at very mild level (e.g. at levels 0 and

1) with the remaining attributes at very severe levels (e.g. levels 3 and 4) or vice

versa. An example of an implausible health state is the AQL-5D health state

00034 where a person has no concern about having asthma and no problem with

breathing or the weather condition while suffering from an extreme limitation on

all activities done. Therefore, in our design we define the state as unrealistic if

the sum of the first three attributes’ levels is less than two while the sum of last

two attributes is greater than four. In terms of the definition of the health state

xijs ,this can be defined as in Equation (3.3.1)

4∑
λ=1

3∑
δ=1

xλδ < 2 &
4∑

λ=1

5∑
δ=4

xλδ > 4.

Therefore, in our algorithm when generating the alternatives for any pair in the

choice design, if the sum of the first three attributes of an alternative is less than

two, then the algorithm excludes the option of selecting very severe levels, such

as levels 3 and 4, for the last two attributes, sleep and activities and vice versa.

For pairwise comparison with dominant option (e.g. AQL-5D health state 02111

that dominates 02123), the algorithm generates another alternative for that pair.
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In death pairwise comparisons, the alternative for the death state is selected such

that it could be compared to the death state and respondents are able to make

trade-off between both states. Therefore, the alternative for the death state is

usually represented by the more severe health states defined by the underlying

classification system such as the AQL-5D health states 44444 and 44434.

2. We then compare the generated random designs based on their Bayesian DS

criterion values computed as

DB
S,FIM =

∫ ∣∣∣FIM−1
β (ξ,θ)

∣∣∣π(θ)dθ,
=

∫ ∣∣∣∣∣ 1N
{

S∑
s=1

FIM11
s (ξ,θ)−

S∑
s=1

FIM12
s (ξ,θ)×

[
S∑
s=1

FIM22
s (ξ, θ)

]−1 [ S∑
s=1

FIM12
s (ξ, θ)

]T
−1∣∣∣∣∣∣

1/k

π(θ)dθ,

or when GFIM is used, as

DB
S,GFIM =

∫ ∣∣∣GFIM−1
β (ξ,θ)

∣∣∣π(θ)dθ,
=

∫ ∣∣∣∣∣ 1N
{

S∑
s=1

GFIM11
s (ξ,θ)−

S∑
s=1

GFIM12
s (ξ,θ)×

[
S∑
s=1

GFIM22
s (ξ, θ)

]−1 [ S∑
s=1

GFIM12
s (ξ, θ)

]T
−1∣∣∣∣∣∣

1/k

π(θ)dθ,

where

FIM11
s (ξ,θ) =


1
σ2 (x1s − x2s)

TP1s(1− P1s)(x1s − x2s), if xd 6∈ Cs;

1
σ2

PJs
(1−PJs)

[
exp

(
g(x1s)+µ

σ

)]2
xT1sx1s, if xd ∈ Cs,
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FIM12
s (ξ,θ) =



1
σ3 (x1s − x2s)

TP1s(1− P1s) [g(x1s)− g(x2s)] , if xd 6∈ Cs;

1
σ3

{
P 2

1s(1− P1s)g(x1s)− σP1s(1− P1s)+

PJs
1−PJs (g(x1s) + µ)

[
exp

(
g(x1s)+µ

σ

)]2
}
xT1s, if xd ∈ Cs,

and

FIM22
s (ξ,θ) =



1
σ4P1s(1− P1s) [g(x1s)− g(x2s)]

2 , if xd 6∈ Cs;

1
σ4

{
P1s[g(x1s)

2P1s − g(x1s)
3P 3

1s]− 2σP1s(1− P1s)g(x1s)+

PJS
1−PJS

[
(g(x1s) + µ) exp

(
g(x1s)+µ

σ

)]2
}
, if xd ∈ Cs,

and the sub-matrices of the partitioned GFIM are obtained from the sub-FIMs

of the partitioned FIM as defined in Equation (5.2.23).

The calculation of the Bayesian design criterion involves an integral that cannot

be computed analytically. Therefore, we use Monte Carlo simulation to estimate

the expected value of the design criterion over the prior distribution chosen for

the model parameters. Thus, using R independent draws from the underlying

prior distributions for each of the unknown logit model parameters, the optimality

criterion value is approximated as

D̂B
S,FIM =

1

R

R∑
r=1

Dr
S,FIM, (5.4.1)

where Dr
S,FIM is the design criterion value computed at the rth draw from

the prior distributions. A similar approximation is derived for the asymptotic

Bayesian criterion based on the GFIM, where

D̂B
S,GFIM =

1

R

R∑
r=1

Dr
S,GFIM. (5.4.2)

There are different ways of generating the draws from the given prior distribu-

tions for the model parameters; pseudo random sampling method is often used. In
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this thesis the Bayesian design criterion values are approximated using the Latin

hypercube sampling (LHS) instead of using simple random sampling, which is

also known as the simple Monte Carlo (SMC) method. The reliability of the

estimated value of the Bayesian DS-optimality criterion depends on the variation

in the random sample used, where the SMC requires larger number of draws to

reduce the variation in the sample than the LHS. The LHS reduces the variation

in the sample, and hence the variance of the estimator, by using a more sys-

tematic technique in generating the random sample from the prior distribution

of each parameter, whereas the SMC method directly generates random draws

from the required prior distribution. For a vector of k independent parameters,

θ = (θ1, . . . , θk), we use the simple LHS technique that produces a random sample

of size R for θ by:

(a) dividing the sample space of θi into R regions of equal probability, 1
R

;

(b) randomly sampling a value from each region to obtain {θi,1, . . . , θi,R};

(c) randomly permuting the resulting R draws for θi to obtain {θ∗i,1, . . . , θ∗i,R};

and

(d) combining the resulting rth draw for each parameter θi for i = 1, . . . , k

to obtain the rth LHS random sample for θ as (θ∗1,r, . . . , θ
∗
k,r).

Bliemer et al. (2008) showed that the SMC method performs badly in approx-

imating the Bayesian optimality criterion value in comparison with other sam-

pling methods such as LHS. Also, they showed that LHS performs equally well

in terms of other advanced sampling methods such as the Halton and Sobol se-

quence sampling methods. The authors concluded that designs generated using

the SMC method are less likely to be truly efficient, unless they were constructed

using a substantially large number of random draws.

3. The algorithm returns the choice design with the smallest Bayesian DS criterion

value. This design is selected out of 1,000 random choice designs, each evaluated

using a sufficient number of LHS draws from the given prior distributions for
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the unknown model parameters. The determination of the sufficient number of

the LHS draws is based on the convergence of the criterion values, which will

be considered in Section 5.6 when constructing Bayesian choice designs for the

AQL-5D classification system.

The best random Bayesian optimal choice design returned by this procedure might

not be the optimal choice design, as this depends on the number of iterations or random

designs used. This can be investigated by running the algorithms for large numbers

of designs (more than 1,000), which could take a long time, particularly for a large

design problem. Therefore, the best random design produced by this random search

procedure could be improved instead using a more advanced search algorithm, namely

the coordinate-exchange algorithm developed in Meyer and Nachtsheim (1995). This

algorithm is used in many software programs, such as JMP and Adaptive algorithm

in MATLAB, to construct Bayesian optimal choice designs. The algorithm searches

for the best attribute levels for each alternative in the choice design that optimises the

underlying criterion value, as described in the following section.

5.4.2 Coordinate-exchange Algorithm

The coordinate-exchange algorithm is used here to improve the best random choice

design resulting from the random search procedure. The algorithm is a column-based

exchange algorithm that changes one attribute level of an alternative in a starting

design (e.g. the best random design) at a time, and replaces it with the best exchange

that improves the criterion value. The procedure of this algorithm can be summarised

as follows.

1. Start with the first attribute for the first alternative in the starting design, the

best random design, and cycle its level over all possible options (e.g. for an

attribute with 5 levels, if the attribute is at level 2 then it is cycled over levels

3,4,5, and 1).
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2. Compute the criterion value after each change, and execute the one that improves

the Bayesian DS criterion value.

3. Pass the procedure through all the alternatives and attributes in the choice design

until all exchanges have been investigated.

4. Start over again and repeat step 1-3 until no further possible improvement in the

criterion value.

5. Return the design with the corresponding attribute levels that produce the best

value for the underlying Bayesian optimality criterion.

The coordinate-exchange algorithm is usually run for many random starting designs

to find the global or near global optimal designs. In our design algorithm, however,

we will consider using 15 different starting designs to find the optimal or near optimal

Bayesian design. This is because each of these starting designs is selected out of 1,000

Bayesian random designs using our random search algorithm, which is considerably

time-consuming. Also, using the best Bayesian random design is expected to require

less number of different starting design to find the global or near global Bayesian

optimal design.

In addition, we modify this algorithm to account for the inclusion of the death state

in the choice design, as well as the requirements of excluding unrealistic alternatives

produced by the underlying classification system. We coded this algorithm such that

it proceeds over all choice sets in the designs except the death choice sets, in order to

avoid altering alternatives compared to the death state. In addition, to avoid producing

unrealistic health states by the exchange procedure, we coded the algorithm such that

it identifies all possible level exchanges for each attribute in each alternative while

excluding attribute levels more likely to turn the underlying health state to implausible

state. For instance, the possible level exchanges for the first attribute of the AQL-5D

health state 31043 would be 4, 2, and 1, where level 0 is excluded as it turns the health

state to an unrealistic alternative, 01043, by the given definition for the unrealistic
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AQL-5D health state in Section 5.4.1.

The selection of the coordinate-exchange algorithm is based on the fact that it dra-

matically reduces the computational time for finding the best Bayesian choice design

that optimises the criterion value compared to other choice design algorithms, partic-

ularly for large design problems, as shown in Kessels et al. (2009), who show that the

coordinate-exchange algorithm is much more faster than the Monte Carlo Modified

Fedorov (MCMF) algorithm developed in Kessels et al. (2004). This is because the

former, as opposed to the MCMF algorithm, does not require a candidate set of all

possible health states to do the exchange which grows exponentially with the number

of attributes and attribute levels. For a large design problem, i.e. a design with a large

number of attributes and attribute levels, the coordinate-exchange algorithm is more

effective than the MCMF algorithm.

To further accelerate the computational time of the Bayesian D optimality criterion,

Kessels et al. (2009) use an update formula for the FIM and the Cholesky decomposition

of the updated FIM to economically compute the Bayesian criterion value for each

possible change made by the coordinate-exchange algorithm. We use similar idea as in

Kessels et al. (2009) in our design algorithm to economically compute the underlying

Bayesian DS criterion value. In the following section, we derive the update formula for

the FIM and GFIM after each change for our design model, and show how this formula

is used to compute the DS criterion value using the Cholesky decomposition.

5.4.3 Updating the Information Matrix and the Cholesky De-

composition

The coordinate-exchange algorithm changes one attribute level of an alternative at a

time. Hence the modified design, ξ∗, differs only in one alternative from the starting

design, ξ. This means that the FIM of the modified design can be obtained by updating

the FIM of the starting design according to this change, which we denote as ξ∗.
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Since the coordinate-exchange algorithm in our pairwise experiment is applied over

non-death pairs only, and following a similar idea in Meyer and Nachtsheim (1995) who

use the coordinate-exchange algorithm for linear optimality, for each profile change the

FIM∗ can be computed by adding and deleting the corresponding information matrices

for the deleted and added alternatives in a particular non-death pair, denoted as FIM−s

and FIM+
s respectively, defined for N respondents as

FIM11
s (ξ,θ) =

N

σ2
(x1s − x2s)

TP1s(1− P1s)(x1s − x2s),

FIM12
s (ξ,θ) =

N

σ3
(x1s − x2s)

TP1s(1− P1s) [g(x1s)− g(x2s)] ,

FIM22
s (ξ,θ) =

N

σ4
P1s(1− P1s) [g(x1s)− g(x2s)]

2 .

For illustration, suppose the first health state x1s in a non-death pairwise com-

parison s is replaced by x+
1s, where the health state x+

1s differs only in one attribute

from the deleted health state, which we denote as x−1s. The second alternative x2s

remains fixed, and hence the corresponding information matrix given this change can

be computed as

FIM(ξ∗,θ) = FIM(ξ,θ) + FIM+
s (ξ,θ)− FIM−s (ξ,θ),

= FIM(ξ,θ) +

FIM11+
s (ξ,θ)− FIM11−

s (ξ,θ) FIM12+
s (ξ,θ)− FIM12−

s (ξ,θ)

FIM21+
s (ξ,θ)− FIM21−

s (ξ,θ) FIM22+
s (ξ,θ)− FIM22−

s (ξ,θ)

 ,
= FIM(ξ,θ) +

 N
σ2 X

−
s Ps(X

+
s )T N

σ3 X
−
s Ps(U

+
s )T

( N
σ3 X

−
s Ps(U

+
s )T )T N

σ4 U
−
s Ps(U

+
s )T

 ,
=

FIM11(ξ∗,θ) FIM12(ξ∗,θ)

FIM21(ξ∗,θ) FIM22(ξ∗,θ)

 , (5.4.3)

where X−s = [(xT1s)
+,−(xT1s)

−,xT2s] and X+
s = [(xT1s)

+, (xT1s)
−,xT2s] are a k × 3 de-

sign matrix corresponding to adding and deleting one alternative at a time, U−s =
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[g(x+
1s),−g(x−1s), g(x2s)] and U+

s = [g(x+
1s), g(x−1s), g(x2s)] are a row vector of the mean

utility values corresponding to the added and deleted alternatives; and Ps is defined

as

Ps =


a 0 −a

0 b −b

−a b a− b

 , (5.4.4)

where a = P+
1s− (P+

1s)
2, b = P−1s− (P−1s)

2, and P−1s and P+
1s are the corresponding choice

probabilities for the deleted and added alternatives, respectively, which is defined as in

Equation (2.5.12) for non-death choice sets.

Hence, the DS-optimality criterion for the modified design, ξ∗, is computed as

DB
S,FIM =

∫ ∣∣FIM−1
β (ξ∗,θ)

∣∣1/k π(θ)dθ, (5.4.5)

where,

FIMβ(ξ∗,θ) = FIM11(ξ∗,θ)− FIM12(ξ∗,θ)
[
FIM22(ξ∗,θ)

]−1
FIM21(ξ∗,θ),

=

(
FIM11(ξ,θ) +

N

σ2
X−s Ps(X

+
s )

T

)
−
(
FIM12(ξ,θ) +

N

σ3
X−s Ps(U

+
s )

T

)
×(

FIM22(ξ,θ) +
N

σ4
U−s Ps(U

+
s )

T

)−1(
FIM12(ξ,θ) +

N

σ3
X−s Ps(U

+
s )

T

)T
.

Kessels et al. (2009) suggest that it is faster to compute the Bayesian design criterion

value using the Cholesky decomposition of the FIM, which for a positive definite matrix

is defined as

FIM(ξ,θ) = LTL, (5.4.6)

where L is an upper triangular matrix called the Cholesky factor. This is because using

the triangular matrix reduces the number of operations required to compute the inverse,

or any other functions of the FIM, from inverting the original FIM (since in general

inverting a k×k matrix takes about k3 operations, whereas using the triangular matrix

requires k3

3
). This decomposition also makes it much easier to compute the determinant
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of the FIM, which is equal to the square of the product of the diagonal elements of the

Cholesky Factor L. Thus, the DS-optimality criterion can be economically calculated

using the Cholesky decomposition as

D
S,FIM =

∣∣FIM−1
β (ξ,θ)

∣∣1/k ,
=

1

|FIMβ(ξ,θ)|1/k
,

=
1

(|LT ||L|)1/k
=

1(
k∏
i=1

lii

)2/k
, (5.4.7)

where lii is the diagonal element of the Cholesky factor L of FIMβ(ξ,θ).

The computational time saved by using the Cholesky decomposition to compute the

criterion value of a random design using a single draw from the prior distribution of the

parameters appear to be negligible, approximately 4e−04 seconds. However, since we

consider using the Bayesian approach, where the criterion values is average over a large

numbers of random draws, here 1000 draws, as well as using more than one starting

design to find the optimal Bayesian design, then it might be worth using Cholesky

decomposition to compute the criterion value and finding the optimal design.

Therefore, it might be more cost effective to compute the Bayesian design criterion

value of the modified design based on updating the Cholesky factor for the FIM of the

starting design, L, rather than directly solving the inverse in Equation (5.4.5). This

factor is updated using the additional matrix to the original FIM matrix defined in

Equations (5.4.3), to obtain the corresponding Cholesky factor of FIMβ(ξ∗,θ).

The DB
S,FIM criterion value for the modified design is then computed as follows.

1. For each LHS draw from the given prior distribution for the unknown param-

eters, θr = (βr, σr), compute the FIM(ξ,θ) of the starting design, denoted as

FIMr(ξ,θ) ;

2. Update the FIMr(ξ,θ) after each single change using the formal in Equation
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(5.4.5), to obtain the FIMr(ξ
∗,θ), and then compute the corresponding Choelsky

factor of FIMβ(ξ∗,θr), denoted as L∗r;

3. Compute the criterion value for each draw as

Dr
S,FIM =

∣∣FIM−1
β (ξ∗,θr)

∣∣ ,
=

1(∏k
i=1 l

∗
ii

)2/k
,

where l∗ii is the diagonal element of the Choelsky factor L∗r of FIMβ(ξ∗,θ);

4. Compute the DB
S,FIM as

D̂B
S,FIM =

1

R

R∑
r=1

Dr
S,FIM.

We do not need to compute the FIM of the modified design, ξ∗, for each alternative

change: instead we update the FIM and the Cholesky factor for the starting design

computed for each draw using the additional matrix to the original FIM matrix of the

starting design. A similar procedure is used to economically compute the Bayesian DS

criterion value based on the GFIM for each profile change made by the coordinate-

exchange algorithm, where

GFIM(ξ∗,θ) = GFIM(ξ,θ) +

 N
σ2X

−
s Ps(X

+
s )

T N
σ3X

−
s Ps(U

+
s )

T

( N
σ3X

−
s Ps(U

+
s )

T )T N
σ4U

−
s Ps(U

+
s )

T

 (5.4.8)

and X−s , Ps, (X+
s ), U−s and U+

s are as defined in equation 5.4.3.
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5.5

Simplifying the Choice Task

The design algorithm described previously produces Bayesian optimal pairwise choice

experiments with alternatives that can vary in all attributes under study. This is known

as a full profile design, and the design as a Bayesian optimal full profile design. For

a large design problem, however, many studies found that increasing the number of

the varied attributes within alternatives in a choice task to more than four attributes

affects the ability to choose, and hence contributes to an increase in the error variance

(e.g., Green, 1974; Arentze et al., 2003; Caussade et al., 2005; and Schwabe et al.,

2003).

In addition, respondents’ choices are assumed to be made by making a compen-

satory decision. That is, respondents trade off between attributes and attribute levels

such that the unattractive level of an attribute can be compensated by attractive levels

of another attribute. However, it has been shown that for choice tasks with large num-

bers of attributes (more than four), respondents violate the compensatory assumption,

since they usually make their choices based on trading off between the level of one or

a small subset of attributes while ignoring the others (Kessels et al., 2011a). Thus, the

decision making process is dominated by these attributes, which affects the accuracy

of the estimated preference values.

To accurately measure respondents’ choices, and consequently the preference pa-

rameter values, it is more reasonable to simplify the choice task by fixing the level of

some attributes in each choice set. For instance, in the pairwise comparison of the

AQL-5D health states 11231 and 11423, respondents can ignore the fixed attributes in

this choice task and make their choices based on the remaining non-fixed attributes
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without violating the compensatory decision assumes main effects. A profile with some

fixed attributes is called a partial profile, and the resulting choice design is known as

a partial profile design.

To generate Bayesian optimal partial profile designs, one needs first to specify the

number of fixed attributes in the choice design. In our design problem for valuing AQL-

5D health states, we fix two attributes in each choice task while allowing the remaining

three attributes to vary. The fixed attributes should not be the same in all choice

sets, so that the preference values for all attributes under study can be evaluated and

estimated (Kessels et al., 2011a). Therefore, methods are needed to determine the fixed

attributes in each choice set, and the levels of fixed and non-fixed attributes in a choice

design as discussed in Kessels et al. (2014) and Cuervo et al. (2015). Sections 5.5.1 and

5.5.2 describe the methods used to specify the fixed attributes in each choice set, and

select the levels for fixed and non-fixed attributes in our design problem, respectively.

5.5.1 Determining the Fixed Attributes in Each Choice Set

The selection of fixed attributes in each choice task is based on the total number of

fixed attributes and choice sets required in the design. In our design algorithm, we

attempt to balance the number of times each attribute is held fixed through the choice

design, so that each attribute is evaluated an equal number of times. Also, since we

are willing to fix more than one attribute, mainly two attributes in our design problem,

we also attempt to balance the number of times each attribute is held constant with

another attribute, as in the balanced incomplete block design (BIBD) used in Kessels

et al. (2014).

To do so, we specify all possible combinations of fixing particular number of at-

tributes based on the number of attributes under study, say ∆, and the required num-

ber of constant attributes in each alternatives, denoted as ∆f . We then spread these

combinations through the choice design based on the total number of choice sets, such
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that each combination appears an equal number of times in the choice design. Thus,

for a design with S choice sets the number of times each combination appears in the

choice design is computed as S/
(

∆
∆f

)
, where

(
∆

∆f

)
is the total number of all possible

combinations for fixing some attribute ∆f out of ∆ attributes. This procedure ensures

that each fixed attribute and combination of constant attributes appear an equal num-

ber of times through the choice design, and hence all attributes under study can be

evaluated.

For instance, for an AQL-5D design problem that contains 20 pairwise

comparisons for 5 attributes where 2 attributes are fixed in each choice set,

there are 10 possible combinations of fixing 2 attributes in each choice set:

{(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}. Each attribute can be

fixed four times. However, to satisfy the property of attribute balance through the

choice design each combination must occur two times in the design, i.e. 20/10 = 2. If

the total number of choice sets is not divisable by the total number of all possible com-

binations, says 21 pairwise comparisons, then we repeat each combination two times

and randomly select one more combination to proceed in the choice design. Thus, the

algorithm is flexible enough to produce partial profile design for any number of choice

sets and any number of fixed attributes.

5.5.2 Assigning Attribute levels for Fixed and Non-fixed At-

tributes

The levels for the constant attributes can be chosen randomly for each choice set. This

follows since the main effects do not have any effect on the information provided by

the pairwise experiments. The selection of non-fixed attributes is firstly based on the

random search algorithm described in Section 5.4.1. Using this algorithm the levels for

these attributes are selected randomly such that the Bayesian DS criterion is optimised.

Then, the coordinate-exchange algorithm is applied over the non-fixed attributes only
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in each profile to select the best level for the non-fixed attributes in the choice design

such that it optimises the design criterion value as described in Section 5.4.2.

This procedure, however, might produce more constant attributes than required in

some choice sets, since for a Bayesian design the number of constant attributes in a

choice set can be affected by the prior distribution chosen to optimise the underlying

design criterion. Kessels et al. (2011b) illustrate that a prior distribution of the prefer-

ence parameters that has a large variance and prior mean far away from zero is more

likely to produce more fixed attributes in the Bayesian choice designs. Therefore, in

order to prevent any additional fixed attributes produced by the prior distribution in

our choice designs, we further modify the coordinate-exchange algorithm so that all

the levels of the non-fixed attributes are restricted to vary within each choice sets.

Having described our design algorithm, in the following sections, we employ this

algorithm to generate a Bayesian optimal pairwise choice experiment for valuing AQL-

5D health states within the required QALY scale.

5.6

Bayesian Optimal Choice Design for

the AQL-5D Classification System

In this section, we apply our design algorithm to construct Bayesian pairwise opti-

mal choice experiments for the AQL-5D classification system based on the asymptotic

Bayesian criteria DB
S,FIM and DB

S,GFIM. First, we construct the Bayesian designs us-

ing a sensible prior for the preference parameter, β, that exhibits the expected features

of the parameter values such as signs and effect sizes. Since the preference parameters,
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β, are associated with the incremental decrease in the mean utility when moving one

level in one attribute of the AQL-5D system, the parameter values are expected to be

positive and small in magnitude, as discussed in Section 4.5.1.

For the construction of the Bayesian designs in this chapter, we mainly consider

using one type of prior distribution, in particular the independent Gamma(1,10) prior

distribution, for each of the preference parameters, βi for i = 1, . . . , 20, and the scale

parameter of the random error, σ. Assuming the same prior distribution for the pref-

erence parameters means that permuting the attribute levels of a health state will not

change the utilities of the resulting states. For instance, both AQL-5D health states

02314 and 43210 will have the same utility values under this assumption. Nevertheless,

this might not be the case in reality as usually a respondent has more preference for one

attribute over the other. Therefore, in Chapter 6, a more realistic prior distribution

derived from a real AQL-5D data is considered to generate a Bayesian optimal design

for the AQL-5D case study, to study the effect of the prior distribution on the choice

of Bayesian optimal design.

In this section, we mainly describe the construction of different BayesianDS-optimal

choice designs with full and partial profiles for the AQL-5D case study using our design

algorithm, as will be described in Section 5.6.1. We then compare Bayesian partial

profile design to Bayesian full profile design, and our Bayesian designs to the LBD,

based on their optimality criterion values and the design efficiencies, as illustrated in

Section 5.6.2 and Section 5.6.3, respectively.

5.6.1 Constructing Bayesian Pairwise Experiments for the

AQL-5D Classification System

Having specified the prior distribution, we generate different DB
S,FIM and DB

S,GFIM

optimal designs with full and partial profiles using our Bayesian design algorithms

described in Sections 5.4 and 5.5. In constructing these designs, we restrict the number
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of pairwise comparisons to be equal to that in the LBD described in Section 4.2.2, i.e.

32 pairwise comparisons, in order to be able to compare the designs. Also, all Bayesian

optimal designs are generated in the same way, so we can compare the resulting designs

based on their optimality criterion value. Each Bayesian optimal design is generated

as follows:

• The best random Bayesian DS-optimum design is selected from 1,000 random

Bayesian designs with either full or partial profiles (two fixed attributes) using

the random search algorithm described in Section 5.4.1. The algorithm returns

the choice design that minimises the underlying asymptotic Bayesian criterion

value, i.e. either DB
S,FIM or DB

S,GFIM defined in equations 5.2.20 and 5.2.21 for

the logit model, respectively, as the best random Bayesian DS-optimum design.

The Bayesian criterion values are computed by averaging the criterion value over

the underlying prior distribution, here the Gamma(1,10) prior for each parameter.

• The Bayesian criterion value is estimated using a Monte Carlo method based on

a reasonable number of LHS draws from the prior distribution that assures the

convergence of the criterion value as will be shown later on this section, where,

for R LHS draws, the Bayesian criterion value is estimated as

D̂
B

S,FIM =
1

R

R∑
r=1

∣∣FIM−1
β (ξ,θr)

∣∣1/k ,
and

D̂
B

S,GFIM =
1

R

R∑
r=1

∣∣GFIM−1
β (ξ,θr)

∣∣1/k ,
where FIMβ(ξ,θ), and GFIMβ(ξ,θ) are defined as in Equations (5.2.19), (5.2.22).

However, before generating and comparing random Bayesian designs, we check

the convergence of the estimated design criterion value, DB
S,FIM, to the true value,

DB
S,FIM. To do so, we investigate the convergence of the DB

S,FIM criterion value
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for a random design generated by our design algorithm using different numbers

of draws and sampling methods from the given prior distribution. Figure 5.1

shows the D̂
B

S,FIM criterion values for different numbers of draws from the prior

distribution for the unknown logit model parameters, Gamma(1,10), and for the

LHS and SMC sampling methods.
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Figure 5.1: Convergence of DB
S,FIM value using LHS and SMC methods

The plot indicates that the estimated design criterion value converges faster to

the ‘true’ value estimated for 10,000 LHS draws, 5.30e−04, when using the LHS

sample method than it does when the SMC method. For our design problem, it

seems that samples of 1,000 LHS draws are enough to approximate the asymptotic

Bayesian DS criterion value. Therefore, 1,000 LHS samples are used to estimate

all the criterion values for the generated Bayesian designs throughout this thesis.
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• The coordinate-exchange algorithm is then applied to the best random Bayesian

designs with full or partial profiles, generated in the first stage. The algorithm

searches for the best levels for all attributes in each profile such that the underling

optimality criterion is optimised. This is done through cycling the attribute level

of each attribute and alternative in the choice design over all possible options, as

described in Section 5.4.2, where the underlying Bayesian criterion is evaluated for

each change using the updated Cholesky factor for the FIMβ or GFIMβ described

in Section 5.4.3. The change is executed if it improves the criterion value. The

cycling procedure is stopped after evaluating all possible exchanges in the pairwise

choice design, and returns the design with the alternatives that optimise the

criterion value.

In our illustration example, the coordinate-exchange algorithm shows improve-

ment in the design efficiency compared of the best random Bayesian design by

approximately 30% − 50% for the partial and full profile designs, respectively.

The design returned from this stage using 15 different best random designs is

named the optimal or near optimal Bayesian choice design, and it is then used

to perform the choice experiment and collect the choice data to estimate the

preference parameters.

The following section presents the design criterion values for the generated Bayesian

optimal designs with full and partial profiles for the AQL-5D classification system, and

then compares these designs based on their optimality criterion values.

5.6.2 Comparing Bayesian Optimal Designs

In this section, we compare Bayesian optimal partial profile choice designs to Bayesian

full profile choice designs generated for the AQL-5D case study. The designs are based

on DB
S,FIM and DB

S,GFIM assuming Gamma(1,10) prior distributions, each with 32

pairwise comparisons where each includes one death comparison as shown in the Ap-
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pendix A.2.2. Table 5.2 illustrates the criterion values for each design and the conver-

gence of the design criterion value using different number of the LHS draws. We also

calculate the corresponding value of the design criterion for which the design was not

optimised, to investigate the effect of using different design criteria on the choice of the

Bayesian designs.

Table 5.2: Bayesian DS design criterion values for full and partial profiles DB
S,FIM-

and DB
S,GFIM-optimal choice designs evaluated under the Gamma(1,10) prior distri-

bution for the underlying design criterion (shaded values) and the criterion for which
the design was not optimised (evaluation criterion), together with the criterion values
corresponding to different number of LHS draws evaluated under the underlying design
criterion

Design Design Number of LHS Draws Evaluation Criterion
Criterion 1000 5000 10000 DB

S,FIM DB
S,GFIM

Full profile design
DB

S,FIM 0.000208 0.000208 0.000209 0.000208 0.000194

DB
S,GFIM 0.000195 0.000194 0.000194 0.000210 0.000195

Partial profile design
DB

S,FIM 0.000302 0.000301 0.000304 0.000302 0.000279

DB
S,GFIM 0.000278 0.000278 0.000280 0.000305 0.000278

The values of the design criterion estimated for each design in Table 5.2 using

increasing numbers of LHS random draws illustrates little variation. This suggests

that a sample of 1,000 random draws is adequate to achieve convergence the value of

the design criterion to the true value.

Comparing design criterion values for DB
S,FIM-optimum designs and DB

S,GFIM op-

timum designs with full and partial profiles (shaded values), it can be seen that, for

both full and partial profile designs, DBGFIM-optimum choice designs have slightly bet-

ter criterion values. This is because the aim here is to minimise the determinant of

the posterior VCM of the preference parameter, β, and the optimality criterion values

of the DB
S,GFIM-optimum choice designs with full and partial profiles, i.e. 0.000195

and 0.000278, respectively, are smaller compared to the one observed for the DB
S,FIM-

optimum choice designs, i.e. 0.000208 and 0.000302. Nevertheless, to be able to in-

vestigate the effect of using different criteria on the choice of the optimal design itself,

we evaluate each design under other design criteria for which it was not optimised, as
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shown in Table 5.2, and then compare how well each design performs with respect to

other criterion.

In our example, Bayesian optimal choice designs optimised for particular design

criterion perform as efficient as the optimal choice designs that were not optimised with

respect to the underlying design criterion. This is because, for both full and partial

profile choice designs, the efficiency loss of Bayesian designs optimised for particular

design criterion relative to other choice designs is small, approximately 1%, where the

efficiency of a design ξ to the optimal design ξ∗ is calculated as in Equation (3.4.6).

For Bayesian DS design the design efficiency is defined as

DBS,eff =
DBS (ξ∗,θ)

DBS (ξ,θ)
. (5.6.1)

Bayesian partial profile designs produce a negligible amount of efficiency loss, around

0.9%, when the design is optimised using different design criterion than the evaluation

criterion. For instance, the DB
S,FIM criterion values for Bayesian partial profile design

optimised using DB
S,FIM and DB

S,GFIM are similar, 0.000302 and 0.000305, respectively.

Therefore, either criteria can be used to construct an efficient Bayesian choice design

with full or partial profiles, as shown by our illustration example for the AQL-5D

classification system.

To investigate the effect of fixing two attributes in each choice set on the design

efficiency, we compare Bayesian partial profile design based on particular design cri-

terion to the corresponding full profile designs. The designs are compared based on

their optimality criterion values, using the Bayesian DS efficiency measure defined ear-

lier, where here the Bayesian full profile design based on the underlying asymptotic

Bayesian criterion represents the optimal choice design, ξ∗. Based on this comparison

we could learn how much we lose in design efficiency when the Bayesian partial profile

design is used instead of the Bayesian full profile design.

Table 5.3 shows the criterion values for each design, together with their DBS,eff val-
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Table 5.3: DB
S,FIM and DB

S,GFIM criterion values for Bayesian design with full and

partial profiles, and the design efficiency with respect to Bayesian full profile design

Design
Design Criterion
DB

S,FIM DB
S,GFIM

Full profile design 0.000208 0.000195
Partial profile design 0.000302 0.000278

DBS,eff 68.87% 70.14%

ues. In general, fixing two attributes in each choice set reduces the design efficiency

by approximately 30% − 32%, as shown in Table 5.3, for partial profile designs gen-

erated based on DB
S,FIM and DB

S,GFIM. Therefore, partial profile designs provide less

information on the parameter values compared to Bayesian full profile designs. Never-

theless, one could use 30%−32% more respondents in order to obtain the same amount

of information and efficiency as in Bayesian full profile designs.

On the plus side, this efficiency loss does simplify the choice task for respondents

and hence increase the response efficiency, i.e. decreasing the error in respondents’

choices associated with complexity of the choice tasks or any other unobserved cognitive

factors that could affect respondents’ choices. Thus, this simplification of the choice

task gives more accurate measurement for respondents choices which reduces the error

variance associated with these measurements, and hence return more reliable estimates

for the preference parameters, β. This might improve the overall design efficiency, and

hence the overall precision of the estimated parameter of interested, since the overall

design efficiency depends on balancing both the statistical efficiency, i.e. associated

with minimising the variance of the parameter estimates, and the response efficiency

(Johnson et al., 2013). The statistical efficiency can be improved by asking respondents

many difficult choice questions, nevertheless, this might affect the response efficiency

and increase the error variance of respondents choices and hence reduce the overall

design efficiency. Therefore, in practice, there might be trade-off between maximising

the statistical and response efficiencies to obtained best design practises.

Additionally, simplifying the choice questions has the benefit of forcing respondents
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to make trade-off between the non-fixed attributes even if a dominant attribute exists

(Kessels et al., 2011a). Therefore, the reduction on the design efficiency of 30%− 32%

can be considered as a moderate loss when taking into account the impact of using

Bayesian full profile designs in respondents choices and the validity of the compensatory

decision assumption of the discrete choice model. This makes the use of Bayesian partial

profile optimal design, generated for our the AQL-5D system or even more complex

choice design problems, more attractive in reality.

5.6.3 Comparing LBD and Bayesian Optimal Designs

In this section, we compare Bayesian optimal designs based on the DB
S,FIM and

DB
S,GFIM as described in the previous section to the level balanced design (LBD)

presented in Section 4.2.2. Assuming that the specified prior distributions for the

parameter values, Gamma(1,10) prior, are correct, then we can compare our Bayesian

optimal designs with the LBD using the corresponding values of the underlying asymp-

totic Bayesian criterion for the LBD – either DB
S,FIM or DB

S,GFIM evaluated at the

given prior distribution for the preference parameters. Also, we compare the efficiency

of the LBD to the generated Bayesian designs, again using the DBS,eff measure defined

earlier, to investigate the effect of using LBD instead of Bayesian design optimised for

particular design criterion under the suggested prior (Table 5.4).

Table 5.4: DB
S,FIM and DB

S,GFIM criterion values for the LBD and Bayesian optimal

designs with full and partial profiles together with the efficiency of the LBD with
respect to the optimal Bayesian full profile design and partial profile design (value
between brackets)

Design
Design Criterion
DB

S,FIM DB
S,GFIM

LBD 0.000685 0.000593
Full profile design 0.000208 0.000195

Partial profile design 0.000302 0.000278

DBS,eff
30.36% 32.84%

(44.08%) (47.04%)
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In general, our Bayesian choice designs with full and partial profiles outperform

the LBD design. Comparing the LBD with Bayesian full and partial profile designs

based on the DB
S,FIM criterion (Table 5.4), and assuming the specified prior is correct,

the indications are that using the LBD design instead of Bayesian optimal designs

produces much less information about the preference parameter values. This is because

the LBD produces an efficiency loss of 65% and 70% compared to Bayesian partial and

full profiles designs, respectively. Therefore, we need more than twice the number of

respondents in order to obtain the same amount of information as from the Bayesian

optimal design constructed based on DB
S,FIM and Gamma(1,10) prior. The same kinds

of results are obtained when comparing LBD to Bayesian full and partial profile designs

based on the DB
S,GFIM design criterion, with slightly lower efficiency loss of the LBD

design compared to the Bayesian optimal full and partial profile designs.

The outperformance of the LBD by Bayesian choice designs might be related to the

method used to construct the choice design as well as the incorporation of the prior

information in constructing the choice design. Our design algorithm uses an advanced

choice algorithm that allows the incorporation of any suitable prior information in op-

timising the choice design, and prevents the choice design from having implausible and

dominant profiles that might reduce its efficiency. This is in contrast to the LBD that is

constructed using the statistical package SAS developed by Huber and Zwerina (1996),

which is restricted to orthogonality, level balance and minimal overlap properties, and

ignores any prior information about the preference parameters.

Restricting the LBD to these statistical properties, particularly orthogonality, pro-

duces three dominant choice tasks and other implausible health states such as AQL-5D

health states 00041 and 41000. Respondents might have difficulty in evaluating the

illogical alternatives and this could lead to increased error variance, and hence a reduc-

tion in the efficiency of the LBD choice design. Also, dominant choice tasks provide

no valuable information about the preference parameters as all respondents will choose

the dominant health state. Therefore, increasing the number of the dominant choice
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Table 5.5: DB
S,FIM and DB

S,GFIM criterion values for LBD and Bayesian optimal de-

signs evaluated at zero prior for the preference parameters, β = β0

Design Design Criterion Evaluation Criterion D0
S

LBD - 0.000226

Full profile design
DB

S,FIM 0.000194

DB
S,GFIM 0.000194

Partial profile design
DB

S,FIM 0.000320

DB
S,GFIM 0.000324

tasks in a choice design contributes to reducing the design efficiency. Additionally, the

orthogonal array used to generate the LBD is based on linear design principles which

ignore the nonlinear nature of the choice model in constructing the choice design, and

this too affects its efficiency.

The outperformance of LBD by Bayesian choice designs might also depend on the

specification of the prior distribution used to construct the Bayesian optimal design.

The LBD can be considered as the best utility-neutral design that optimises the D0
S-

optimality criterion, since it satisfies all the three statistical properties; orthogonality,

level balance and minimal overlap, as well as the utility balance property when assum-

ing zero prior values for all the preference parameters, β = β0. Therefore, we compare

the efficiency of Bayesian full and partial profile designs generated based on DB
S,FIM

and DB
S,GFIM and Gamma(1,10) prior to the LBD assuming that the true parameter

values are zero. This can be done by evaluating the design criterion for the Bayesian

designs and the LBD at β0 as illustrated in Table 5.5, and then comparing the design

efficiency of the Bayesian designs to the LBD design based on these values.

The table shows that assuming the true parameter values are zero, DB
S,FIM and

DB
S,GFIM-optimum full profile designs still outperform the LBD, where the LBD pro-

duce and an efficiency loss of approximately 14% compared to these designs. However,

the LBD seems to perform better than DB
S,FIM and DB

S,GFIM-optimum designs with

two constant attributes, as there is approximately 30% efficiency loss when using the

partial profile design instead of the LBD if the true parameter values are zero. Also,
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Bayesian partial profile designs do not have dominant choices, whereas the LBD has

three dominant choice tasks, see A, that provide no valuable information to aid esti-

mating the preference parameters. In addition, simplifying the choice design allows us

to obtain information about all the attributes under study even with the presence of

dominant attributes, through holding the dominant attribute constant in some choice

sets and then trading off between the non-fixed attributes.

5.7

Summary and Discussion

This chapter illustrates how to construct a Bayesian optimal choice design for a health

evaluation study, in particular for the AQL-5D case study. Constructing optimal de-

signs requires identifying the discrete choice model and the corresponding design crite-

rion. The chapter started by deriving the asymptotic Bayesian design criteria DB
S,FIM

and DB
S,GFIM for our design model, the logit model including the death state defined

in Section 4.4.2, then presented our attempt to construct a Bayesian choice design for

the AQL-5D case study using available design software such as SAS, JMP and Ngene.

However, we have not managed to generate Bayesian optimal choice designs for valuing

AQL-5D health states using these programs, as they are limited in handling our design

problem, particularly in terms of including the death state and optimising the correct

design criterion.

Therefore, we derived a new method to generate a Bayesian optimal choice design

for provision of health state utilities within the QALY scale using the latest advanced

Bayesian design algorithms available in the design literature. Our design algorithm con-

sists of two stages: first generating designs using a random search algorithm through a
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large number of random designs of an appropriate form, and then improve the best ran-

dom Bayesian choice design, returned by the first stage, using the coordinate-exchange

algorithm of Meyer and Nachtsheim (1995). We modified this algorithm so that it

handles our design problem. The exchange algorithm finds the best level for each at-

tribute in each alternative in the design through cycling the level of an attribute over

all the possible options, and returns the one that improves the criterion value, i.e. that

minimises the DB
S,FIM or DB

S,GFIM criterion value. The time required to employ the

exchange algorithm over a choice design increases with the number of attributes and

attribute levels under study as well as with the required number of choice sets. To

reduce the computation time of the exchange procedure, we used an update formula

for the FIM and GFIM matrices to economically compute the Bayesian design criterion

value for each exchange.

We simplified the choice task by holding two attributes constant in each choice set.

Thus, we modified our design algorithm to account for the fixed attributes in the choice

design, as described in Section 5.5. An application for our design algorithm is then

given in this chapter by generating Bayesian optimal pairwise comparisons with full

and partial profiles for the AQL-5D case study. The Bayesian designs are constructed

based on the asymptotic Bayesian criteriaDB
S,FIM andDB

S,GFIM and assuming Gamma

(1,10) prior distribution for each of the unknown logit model parameters. We compared

our designs with an existing level balanced design (LBD), previously used in a discrete

choice experiment.

Our illustration study indicates that our Bayesian designs are not sensitive to the de-

sign criterion used to optimised the choice design. That is, both DB
S,FIM and DB

S,GFIM

optimum designs produce approximately the same amount of information about the

preference parameters, with a negligible reduction of 0.4%−1.0% in the design efficiency

when using a criterion other than the one used in the optimisation procedure, as shown

in Table 5.2. In addition, simplifying the choice task by fixing two attributes in each

choice set reduces the design efficiency by 30% − 32% compared to Bayesian optimal
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design with non-fixed attributes. However, this reduction is not remarkable compared

with the detrimental effect that Bayesian full profile designs have on the respondents’

choices and consequently the reliability of the estimated preference parameter values.

Our study also shows that, if the true preference parameter values are not zero,

then using LBD design instead of DB
S,FIM a or DB

S,GFIM optimum designs with full

and partial profiles produces a large amount of design efficiency loss, of more than

60%. This reduction is smaller when the true parameter values are zero; however, our

Bayesian optimal designs are still the better design options. This reflects the benefit of

using more advanced choice design algorithms to generate the choice design, allowing

the incorporation of prior information about the parameter values in constructing the

choice design. However, the results in our illustration example might depend on the

prior distribution specified for optimising the criterion value, and hence finding the

optimal choice design. Therefore, in the following chapter, we further investigate the

effect of the prior distribution in the choice of the optimal design, and how better or

worse priors might affect the design efficiency.
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Chapter 6

Sensitivity of the Bayesian Optimal

Choice Design to the Prior Distribu-

tion

6.1

Introduction

Optimum designs for nonlinear models, more specifically for logit choice models, depend

on the values of unknown model’s parameters, θ = {β, σ}. In the design literature,

this dependency is overcome by using a prior point estimate, θp, or a prior distribution

π(θ) for the unknown parameter vector θ. This yields locally and Bayesian optimum

designs, respectively, as mentioned in Section 3.5. Bayesian choice designs incorporate

prior information into the design by taking the expectation of the underlying design

criterion over the prior distribution. In this chapter, we investigate the effect of the
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prior distribution on the Bayesian optimal design by comparing different Bayesian

designs optimised with respect to different prior distributions.

The chapter begins with presenting different methods to select a suitable prior

distribution for each parameter of the logit model to generate Bayesian optimal choice

designs for health economic evaluation studies, particularly for the AQL-5D case study.

In Section 6.3, we discuss the considerations of the efficient choice task to optimise the

information obtained from the choice data, and how the prior distribution might affect

the selection of efficient design choices. In Section 6.4, we demonstrate the effect of

the choice of the prior distribution on the choice of the Bayesian optimal designs by

comparing Bayesian designs optimised for different prior distributions. Section 6.5

presents a summary and the main findings of this chapter.

All analysis in this chapter is performed for Bayesian pairwise choice designs with

partial profiles constructed for the AQL-5D classification system. These designs are

calculated for the logit model based on Bayesian DS-optimality criterion derived in

Section 5.2.

6.2

Prior Distributions for Designing

Optimal Choice Experiment for

Valuing Health States Utilities

Constructing Bayesian optimal designs for choice models requires specifying prior dis-

tributions for the unknown model’s parameters (unlike the equivalent process for linear
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models). The posterior variance-covariance matrix (VCM) of the parameters of inter-

est, here β, derived based on the Fisher information matrix (FIM) or the generalised

Fisher information matrix (GFIM), depends on the unknown parameter values through

the choice probability and the mean utility values of the alternatives in the choice task,

hence so does the optimality criterion and the generating of the choice designs, as il-

lustrated for the logit model in Section 5.2. So, Bayesian choice designs are computed

by averaging the underlying design criterion over a given prior distribution as follows:

DB
S,FIM =

∫ ∣∣∣FIM−1
β (ξ,θ)

∣∣∣π(θ)dθ,
=

∫ ∣∣∣∣∣ 1N
{

S∑
s=1

FIM11
s (ξ,θ)−

S∑
s=1

FIM12
s (ξ,θ)×

[
S∑
s=1

FIM22
s (ξ, θ)

]−1 [ S∑
s=1

FIM12
s (ξ, θ)

]T
−1∣∣∣∣∣∣

1/k

π(θ)dθ,

and for the GFIM as

DB
S,GFIM =

∫ ∣∣∣GFIM−1
β (ξ,θ)

∣∣∣π(θ)dθ,
=

∫ ∣∣∣∣∣ 1N
{

S∑
s=1

GFIM11
s (ξ,θ)−

S∑
s=1

GFIM12
s (ξ,θ)×

[
S∑
s=1

GFIM22
s (ξ, θ)

]−1 [ S∑
s=1

GFIM12
s (ξ, θ)

]T
−1∣∣∣∣∣∣

1/k

π(θ)dθ,

where

FIM11
s (ξ,θ) =


1
σ2 (x1s − x2s)

TP1s(1− P1s)(x1s − x2s), if xd 6∈ Cs;

1
σ2

PJs
(1−PJs)

[
exp

(
g(x1s)+µ

σ

)]2
xT1sx1s, if xd ∈ Cs,
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FIM12
s (ξ,θ) =



1
σ3 (x1s − x2s)

TP1s(1− P1s) [g(x1s)− g(x2s)] , if xd 6∈ Cs;

1
σ3

{
P 2

1s(1− P1s)g(x1s)− σP1s(1− P1s)+

PJs
1−PJs (g(x1s) + µ)

[
exp

(
g(x1s)+µ

σ

)]2
}
xT1s, if xd ∈ Cs,

and

FIM22
s (ξ,θ) =



1
σ4P1s(1− P1s) [g(x1s)− g(x2s)]

2 , if xd 6∈ Cs;

1
σ4

{
P1s[g(x1s)

2P1s − g(x1s)
3P 3

1s]− 2σP1s(1− P1s)g(x1s)+

PJS
1−PJS

[
(g(x1s) + µ) exp

(
g(x1s)+µ

σ

)]2
}
, if xd ∈ Cs,

and the sub-matrices of the partitioned GFIM can be obtained from the partitioned

FIM as defined in Equation (5.2.23).

The row vector (x1s − x2s) represents the differences between the attribute levels

of the first and the second alternatives presented in the choice set Cs = {x1s,x2s}. P1s

and PJs are the logit choice probabilities of the first state in the non-death choice set

and death state in the death comparison, respectively, which can be deduced from the

MNL choice probability defined in Section 2.5.3 as

P1s =
1

1 + exp
(
g(x2s)−g(x1s)

σ

) ,
and

PJs = exp

[
− exp

(
g(x1s) + µ

σ

)]
,

where g(x1s) = 1 − βxT1s is the population mean utility for health state x1s, defined

as a linear function of the logit model parameters, β. The parameter σ is the scale

parameter of the random component of the utility, ε.

In Section 3.2.2, we showed that the majority of the DCEs conducted in health

economic evaluation study to value health state utilities are constructed based on

orthogonal array designs or optimal design principles, ignoring the dependency of the
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choice designs on the parameter values. This is usually done by assuming a zero prior

for the preference parameters, i.e. replacing the preference parameters of the choice

model β with a zero vector β0. However, this assumption is unrealistic, since it is

assumed that respondents have no preference for attribute levels across all choices,

i.e. all presented options have equal choice probability. In Chapter 5, we illustrated

that incorporating the prior information in generating the choice design improves the

efficiency of the design, where a Bayesian choice design is observed to outperform the

level balanced design (LBD) that ignores any prior information about the preference

parameters. Noticeably, the performance of the choice design depends in some way on

the prior distribution as it has to be incorporated when generating the choice tasks

such that the design criterion is optimised. Therefore, in this chapter, we investigate

the effect of the choice of different prior distribution on the choice of Bayesian optimal

design.

To perform this investigation, we select different prior distributions to construct

different Bayesian choice designs, particularly for the AQL-5D cases study. The priors

are chosen by recalling the methods used to assign a suitable prior distribution for the

unknown parameters of the logit model, θ = (β, σ), in Section 4.5.1 and the Bayesian

analysis of the TTO data presented in Section 4.5.3. Prior distributions are assigned

then based on these methods:

1. simple prior judgment, based on understanding of the AQL-5D;

2. prior from a previous study on the same health state instrument, i.e. the AQL-

5D.

The first method is based on summarising existing knowledge of the unknown pa-

rameters, such as the sign and the range of the parameter values, into a prior distri-

bution. In Section 4.5.1, we argued that the value of the preference parameters, β,

are not likely to exceed one and should be positive, since they are associated with the

incremental loss in the mean utility when moving one level on one attribute of the
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AQL-5D. Also, a change in a level of one attribute is not expected to produce a change

in the mean utility greater than the change from perfect health to death, which is

one. Similarly, the scale parameter σ is also almost certainly less than one, since the

utilities obtained from different individuals for the same health state are not expected

to deviate by a large amount (e.g. more than 1). In this chapter, we consider different

simple prior distributions that range from 0 to 1. Following Cain (2011), we consider

a set of independent Gamma and Uniform prior distributions for each element of the

parameter vector θ as illustrated in Section 4.5.1. In particular, we consider Gamma

(1,10), Gamma(5,15) and Beta(1,10) prior distributions, as well as the U[0,1] prior

distribution to illustrate the effect of the extreme case where the prior information

about individuals’ preferences for attribute levels, β, contains a substantial amount

of uncertainty. In addition, other uniform prior distributions with smaller and larger

prior mean values of the parameter are considered, to investigate the effect of the range

of the parameter values on the choice of Bayesian designs.

The second method uses a Bayesian approach where the prior distribution of the

unknown model’s parameters, θ = (β, σ), is derived by analysing a real health care

data set from a previous experiment for the same health instrument of interest, the

AQL-5D, in a Bayesian manner. The posterior distribution of each parameter can

then be used as a prior distribution for that parameter when generating the Bayesian

optimal choice designs. In this section, we consider the Bayesian analysis illustrated in

Section 4.5.3 for the TTO preference data collected for different AQL-5D health states

to assign more realistic prior distributions for the preference and scale parameters. The

posterior distributions of the model’s parameters are obtained using a Markov Chain

Monte Carlo (MCMC) sampling method using different prior distributions such as the

Gamma(1,10), Gamma(5,15) and U[0,1] (see Table 4.6 in Section 4.5.3 for a summary of

the mean and the 95% posterior interval of the model parameters obtained under each

prior distribution). In this section, we use 1,000 draws from the posterior distribution

of each parameter generated using Gamma(1,10) prior to set as a prior distribution

for that parameter when generating the Bayesian choice design for the AQL-5D case
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study. For simplicity, we denote the prior distribution obtained from this analysis as

the TTO prior throughout this chapter.

Having specified different prior distributions for the model parameters, it is of

interest to investigate the effect of the choice of the prior distribution on the choice of

the Bayesian optimal design, i.e. the sensitivity of the Bayesian optimal choice design

to the prior distribution used in optimising the underlying Bayesian design criterion

value. To understand the effect of the prior distribution on the choice of Bayesian

optimal choice design, it is worthwhile considering the role of the prior distribution in

selecting efficient choice designs and, hence, optimising the information obtained from

the Bayesian choice designs - as illustrated in the following section.

6.3

Appropriate Choice Tasks and the

Prior Distribution

In this section, we discuss how the choice of the prior distribution might affect the

selection of the choice design questions, and hence the choice of the Bayesian DS-

optimum designs. We first illustrate the main choice task considerations, and then

demonstrate the role of the prior distribution in the selection of efficient choice tasks

by considering the DS-optimality design criterion defined in the previous section for

the logit choice model.

The DB
S,FIM-optimality design criterion seeks to minimise the determinant of the
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posterior VCM of the preference parameters, β, that is defined as

DB
S,FIM =

∫ ∣∣∣FIM−1
β (ξ,θ)

∣∣∣π(θ)dθ,
=

∫ ∣∣∣∣∣ 1N
{

S∑
s=1

FIM11
s (ξ,θ)−

S∑
s=1

FIM12
s (ξ,θ)×

[
S∑
s=1

FIM22
s (ξ, θ)

]−1 [ S∑
s=1

FIM12
s (ξ, θ)

]T
−1∣∣∣∣∣∣

1/k

π(θ)dθ,

This is equivalent to maximising the determinant of the FIMβ(ξ,θ) which is ob-

tained by maximising the information regarding the preference parameters, i.e. FIM11
s ,

gain from each choice task, Cs = {x1s,x2s}, which is define as in Section 6.2.

For death choice sets, more information is obtained from the choice tasks Cs =

{x1s,xd} as health state x1s becomes more comparable to the state of being dead

and respondents will be able to trade between the states. This is possible by compar-

ing death to the worse health state defined by the AQL-5D classification system, as

discussed in (Brazier et al., 2009) and as will also be considered in this thesis.

To identify the essential condition on the alternatives of the non-death choice sets,

consider the following two cases for the choice set Cs = {x1s,x2s}.

1. If the alternatives in the choice set are far apart from each other, i.e. ‖x1s−x2s‖

is large and the alternatives have large differences between their attribute levels,

then the choice task will provide no valuable information about the mean utility

difference and consequently the preference parameters. This is because such a

choice task is considered as one-sided and provides extreme choice probabilities

for the alternatives, i.e. P1s = 1 or 0, since the logit choice probability is a

function of this differences as defined below

P1s =
1

1 + exp
(
β(x1s−x2s)T

σ

) .
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Thus, a large difference between alternatives results in

FIM11
s (ξ,θ) =

1

σ2
(x1s − x2s)

TP1s(1− P1s)(x1s − x2s) = 0,

FIM12
s (ξ,θ) =

1

σ3
(x1s − x2s)

TP1s(1− P1s) [g(x1s)− g(x2s)] = 0,

FIM22
s (ξ,θ) =

1

σ4
P1s(1− P1s) [g(x1s)− g(x2s)]

2 = 0,

and, hence, minimises the information obtained about β, i.e. FIMβ −→ 0.

2. If the alternatives are closed from each other, i.e. ‖x1s−x2s‖ −→ 0, then this also

would provide less information from the choice task. This follows since such choice

question means comparing the same health states or states with many overlap

(i.e. choices with the same level for most attributes) such as Cs = {11220, 11221},

which will provide no or less information. Hence FIMβ −→ 0 as ‖x1s−x2s‖ −→ 0.

Both these types of choice questions are considered to be poor and inefficient design

choices. To produce more informative choice task it would be better to increase the

discrepancy between the two alternatives, as long as it does not lead to extreme choice

probability, i.e. P1s is not close to one or zero.

Since optimising the DB
S,FIM design criterion depends on the prior distribution

through the definition of the logit choice probability, then the conditions on the at-

tribute level difference between alternatives, (x1s − x2s), to avoid extreme choices,

might be affected by the choice of the prior distribution, and consequently does the se-

lection of the efficient choice task that optimise the design criterion values. Thus, if in a

choice study some attributes are more important than the others, more efficient choices

would be obtained by keeping the most important attributes similar while increasing

the difference between the less important attributes.

For instance, consider the two choice questions C1 = {30023, 10024} and C2 =

{20021, 10023}, if the fifth attribute corresponding to the activities attribute in the

AQL-5D classification system is more important than the first attribute, as shown

205



by the TTO prior distribution for this attribute, then the first choice task will be

more appropriate than the second choice set. This is because the second choice set

has a larger difference between the levels of the activities attribute but smaller level

difference between the less important attribute (i.e. the first attribute), which makes

this attribute dominates the choices. The opposite is also true: if the first attribute is

more important than the fifth attribute, then the second choice set is more appropriate.

This makes intuitive sense in terms of individual’s preference perspective, as increasing

the level difference between the more important attributes while reducing the level

difference between the less important attributes results in one-sided choices - choices

with extreme choice probabilities - which reduces the design efficiency, as discussed

earlier in this section. Hence, different priors would favour different choice sets.

In the case where the attributes are judged a priori to be equally important, we

conjecture that choices with similar level differences between all attributes in the two

alternatives will be more efficient. However, it is less clear how the conditions on the

attribute level differences will be affected by different choice of identically distributed

priors for the preference parameters.

The role of the prior distribution in selecting the appropriate choice task suggests

that the selection of the efficient DB
S,FIM design choices might depend on the prior

distribution chosen for optimising the design criterion, and hence misspecifying the

prior distribution might lead to a substantial loss in the design efficiency particularly

for non-identical prior distributions of the parameters.

As for the DB
S,GFIM-optimal designs, we would expect similar effects of the prior

on the choice of Bayesian designs. This is because this design criterion seeks to min-

imise the posterior VCM which is equivalent to maximising the determinant of the

GFIMβ(ξ,θ) over a suitable prior distribution, and this is itself a function of the sub-

matrices of the partitioned FIM as

GFIM(ξ,θ) = FIM(ξ,θ) + Σ−1,
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where FIM is the partitioned Fisher information matrix, and Σ is the prior VCM of

the MNL model parameters as defined in Equation (5.2.23). In Section 5.6.2, we found

that Bayesian choice designs optimised using both criteria based on the Gamma(1,10)

prior distribution perform at approximately the same level of efficiency: hence choices

optimised by the DB
S,FIM will perform well according to the DBGFIM design criterion.

We would expect a similar effect of the prior on the choice of the Bayesian designs.

Thus, in the following section we investigate the effect of the choice of the prior dis-

tribution on the choice of Bayesian designs considering the DB
S,FIM design criterion

only.

6.4

Sensitivity to the Prior

Distribution: Illustrative Study

This section provides an illustrative study that investigates the effect of the choice of

prior distribution on the choice of Bayesian optimal choice design, and to what extent

using more sensible priors might improve the choice and efficiency of Bayesian designs.

This is illustrated by generating DB
S,FIM-optimum choice designs for different choices

of prior distributions, and examining how Bayesian designs optimised for particular

prior distribution perform in terms of other priors.

The study is conducted by computing DB
S,FIM-optimum pairwise choice designs for

the AQL-5D classification system using different forms of simple prior distributions

of the unknown parameters of the logit model, θ = (β, σ). These priors are selected

based on the available information about the relative size and sign of the parameters, as
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discussed in Section 6.2. Each design consists of 32 pairwise comparisons with partial

profiles, two constant attributes, constructed using our design algorithm as described

previously in Section 5.6.1. Thus, each choice design is generated by firstly using

the random search algorithm to obtain the best Bayesian random choice design out

of 1,000 random designs, and then by applying the coordinate-exchange algorithm to

select the best attribute levels for each alternative in the best random design such that

the DB
S,FIM optimality criterion is optimised over the given prior distribution. We

then compare the efficiency of the Bayesian choice design optimised for a particular

prior distribution, referred to as the ‘design’ prior, relative to other choice designs that

were not optimised for the underlying prior distribution. This is done by comparing

the design criterion values evaluated for a particular prior distribution, referred to as

the ‘evaluation’ prior, with respect to different Bayesian choice design, where a smaller

value gives a more efficient designs for that prior.

Additionally, to study whether a more sensible prior distribution of the parameters

improves the choice and the efficiency of the Bayesian design, we compare the resulting

DB
S,FIM choice designs optimised with respect to different simple prior distributions to

the one optimised based on the TTO prior, i.e. the prior distribution obtained from

real TTO data for the AQL-5D system, presented in Chapter 4.

In this section, we first investigate the effect of non-identical prior distributions of

the parameters on the choice of the DB
S,FIM-optimum choice designs ( Section 6.4.1),

and then consider the case where the parameters are identically distributed a priori

(Section 6.4.2). In Section 6.4.3, we study the effect of the choice of the prior distri-

bution of the scale parameter, σ, on the choice of the Bayesian designs, and illustrate

how a poorly defined prior for this parameter might lead to less efficient design choices.
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6.4.1 Comparing Design Efficiency for Non-identical Priors of

the Parameters

In this section, we investigate how DB
S,FIM choice designs optimised for i.i.d priors of

the parameters perform when the ‘true’ prior distributions of the parameters are not

identical, i.e. when the AQL-5D attributes are not equally important in reality, and

vice versa.

For illustration, we generate Bayesian pairwise choice designs for identical and non-

identical prior distributions of the logit model parameters, θ = (β, σ), and then com-

pare the resulting designs based on their optimality criterion evaluated for particular

prior distribution. For non-identical prior distributions of the parameters, we assume

that the last two attributes in the AQL-5D system, sleep and activities, are more im-

portant for individuals than the other attributes. Therefore, we allow the preference

parameters associated with these attribute level differences, that is β13, . . . , β20, to have

more weight than those associated with the first three attributes, that is β1, . . . , β12.

Another non-identical prior distribution is represented by the one obtained from the

TTO data where the activities attribute seems to be more important than the re-

maining attributes. Thus, in our illustrative example, we consider the following prior

distributions:

• prior 1: β1, . . . , β20
iid∼ U [0, 1], and σ ∼ U [0, 1]

• prior 2: β1, . . . , β12
iid∼ U [0, 0.2], β13, . . . , β20

iid∼ U [0.9, 1] and σ ∼ U [0, 1].

• prior 3: β1, . . . , β20 and σ follow the TTO prior distribution.

Table 6.1 presents the DB
S,FIM criterion values of Bayesian choice designs optimised

for the proposed prior distributions of the parameters together with the corresponding

criterion values for each design evaluated under the other prior distributions that have

not been used in the optimisation procedure. Thus, for each design we compute the
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Table 6.1: DB
S,FIM design criterion values for different DB

S,FIM-optimum choice designs

evaluated at the design prior (shaded value) and the other suggested prior distributions
together with the efficiency of the optimal design with respect to other designs

DBFIM Design Prior
Evaluation Prior

Optimal Design U[0,1] U [0, 0.2]&U [0.9, 1] TTO

I U[0,1] 0.0042∗ 0.0071 3.44e−05

II U [0, 0.2]&U [0.9, 1] 0.0106 0.0028∗ 4.30e−05

III TTO 0.0063 0.0082 2.87e−05∗

DBS,eff
- 39.62% 39.43% 83.43%
- 66.66% 34.15% 66.74%

∗ The best criterion value in each column.

Bayesian criterion value under the three priors using Monte Carlo simulation based

1,000 LHS draws from the suggested prior distribution as

D̂
B

S,lm =
1

1000

1000∑
r=1

∣∣FIM−1
β (ξl,θ

r
m)
∣∣1/k , for l,m = 1, 2, 3, (6.4.1)

where l and m are indexes refer to the ‘design’ and the ‘evaluation’ priors, respectively.

To study the sensitivity of the Bayesian choice design to the choice of the prior

distribution, we compare the value of DB
S,FIM for a particular prior distribution with

respect to different Bayesian choice designs. The ratio between any two criterion values

for particular prior represents the relative efficiency of one design over another.

Considering the design criterion values of the i.i.d U[0,1] priors corresponding to

different choice designs presented in Table 6.1, it can be seen that design II optimised

using the non-identical prior distribution, prior 2, is less efficient than design I opti-

mised under the i.i.d U[0,1] with an efficiency loss of around 60%. Thus, using design

II instead of design I when the ‘true’ prior distributions of the parameters are i.i.d

U[0,1] requires more than twice the number of respondents used in a study in order

to achieve the same expected error around the parameter values as in design I. Simi-

larly, if the ‘true’ prior distributions of the parameters are not identically distributed
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as in prior 2, design I performs badly in terms of this prior. This design reduces the

efficiency by more than a half relative to the design optimised directly for prior 2, i.e.

design II.

Now comparing the efficiency of Bayesian choice design optimised for the TTO prior

distributions, design III, relative to both designs I and II, it is observed that design

III is less efficient than both designs with respect to their design priors, i.e. priors 1

and 2. Nevertheless, design III performs worse for the non-identical U[0,1] prior than

the i.i.d U[0,1] prior, as it leads to an efficiency loss of 65% compared to 33% for the

i.i.d U[0,1] prior distribution. Also, if the ‘true’ prior of the parameters is the TTO

prior distribution, then using design I or design II instead of design III reduces the

efficiency of the choice design by 16% and 33%, respectively.

A concern with these results is that the observed effect of the prior distribution

on the design criterion and hence the Bayesian choice design might be related to the

starting design used in the optimisation procedure rather than the prior distribution

itself. To asses the importance of this concern, we perform a robustness analysis by

replicating the same analysis provided earlier fifteen times, each with a different starting

design used in the optimisation. Each run of the design algorithm with respect to a

different starting design is denoted as a ‘try’, hence we have fifteen tries in total for

each prior distribution. For simplicity, we display the design criterion values of each

prior distribution with respect to the resulting Bayesian designs from each try in a

scatter plot instead of a table, as shown in Figure 6.1 for the set of priors presented

earlier in this section.

The plot indicates that, for each prior distribution, the design criterion values with

respect to different tries are similar to those shown in Table 6.1 with a little variation

in these values. This reflects the fact that the observed effect of the prior distribution

on the design criterion values is not really related to the choice of the starting design

used in the optimisation procedure, but it rather to the efficient design choices selected

based on the type of prior distribution used in optimising the choice design.
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Figure 6.2: The absolute value of the sum of the attribute level differences between
alternatives for Bayesian choice designs optimised using different prior distributions of
the parameters: i.i.d U[0,1], non-identical U[0,1] and the TTO priors

To investigate the cause of this effect, we compare the choice tasks selected for

the Bayesian design based on each prior distribution using the absolute utility sum

differences that represents the absolute value of the sum of the attribute level differences

of the alternatives within a choice task as shown in Figure 6.2. This is because this

value reflects the distance between alternative within a choice task in terms of the

mean utility, where larger utility sum difference indicates larger distance between the

alternatives and their attribute levels in a choice task. For instance, a choice set of

the AQL-5D health states 20033 and 14423 has an absolute utility sum difference of

|(2− 1) + (0− 4) + (0− 4) + (3− 2) + (3− 3)| = 6, larger than health states that are

more close to each other such as 20033 and 21123 which has a difference of one. In

this case, therefore, health states with the same utility sum difference, such as choices

in the AQL-5D choice sets C1 = {01222, 01130} and C2 = {01402, 01013}, will have
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similar distance between the alternatives in terms of utility.

Figure 6.2 indicates that designs II and III have more choices with large absolute

differences, i.e. large distance between alternatives within choice tasks, than design I.

Also, designs II and III give rise to choices with larger level differences between the

less important attributes, while keeping the difference between the important attributes

as small as possible. This is illustrated for design II in Figure 6.3, where the last two

attributes, sleep and activities, typically have small level differences of one, and the

other attributes such as the concern attribute typically have a larger difference of three

and four.
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Figure 6.3: Attribute level differences between choices in the Bayesian design II which
is optimised based on non-identical prior distributions of the parameters (level differ-
ences of zero that related to the constant attributes are not displayed here)

This is because, in prior 2 (the design prior), the sleep and activities attributes

are more important than the remaining attributes. The design constructed based

on identical prior distributions of the parameters typically has level differences of 1
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Figure 6.4: Attribute level differences between choices in the Bayesian design I that
optimised based on non-identical prior distributions of the parameters (level differences
of zero that related to the constant attributes are not displayed here)

between all the attributes, i.e. it reflects the small distances between the alternatives

within a choice task, as shown in Figure 6.4 for design I optimised for the i.i.d U[0,1]

prior of the parameters.

The investigation shows that poorly defined prior distributions might result in a

large reduction of the design efficiency, particularly, when non-identically prior dis-

tribution for the parameters is used to generate the choice design, while the ‘true’

parameter values are identically distributed and vice versa.
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6.4.2 Comparing Design Efficiency for i.i.d Priors of the Pa-

rameters

In this section, we conduct a similar investigation as in the previous section, but for

different simple i.i.d priors for the logit model’s parameters, θ = (β, σ). We consider

two sets of simple i.i.d priors. The first consists of distinct i.i.d prior of the parameters

with a small and a large prior mean values of the parameters as follows:

• prior 1: β1, . . . , β20
iid∼ U [0, 0.1], and σ ∼ U [0, 0.1];

• prior 2: β1, . . . , β20
iid∼ U [0.9, 1], and σ ∼ U [0.9, 1].

The second set consists of prior distributions that provide values between 0 and 1 for

the parameters but mainly differ in the shape of the distribution as follows:

• prior 3: β1, . . . , β20
iid∼ Gamma(1, 10), and σ ∼ Gamma(1, 10);

• prior 4: β1, . . . , β20
iid∼ Gamma(5, 15), and σ ∼ Gamma(5, 15).

• prior 4: β1, . . . , β20
iid∼ Beta(1, 10), and σ ∼ Beta(1, 10).

We generate Bayesian choice designs for the suggested priors in both sets, and compare

the effect of the choice of the prior on the choice of Bayesian design based on the design

criterion values, as described earlier in Section 6.4.1. The resulting designs from each

set of priors are also compared to those generated based on the i.i.d U[0,1] prior as

illustrated in Tables 6.2 and 6.3, respectively.

Table 6.2 illustrates that the choice of the Bayesian design is robust to particular

choice of the uniform distributions, where misspecifying the prior distribution results

in a small loss of the design efficiency unless the uniform distribution has large mean

for the parameter values. For instance, if the ‘true’ prior distribution is U[0,0.1], using

design II instead of design I produces an efficiency loss of 11% which is larger than the
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Table 6.2: DBFIM design criterion values for different DB
S,FIM-optimum choice designs

evaluated at the design prior (shaded value) and the other suggested prior distributions
together with the efficiency of the optimal design with respect to other designs

DB
S,FIM Design Prior

Evaluation Prior

optimal Designs U[0,0.1] U[0.9,1] U[0,1]

I U[0,0.1] 2.35e−05∗ 0.0098 0.0047
II U[0.9,1] 2.64e−05 0.0084∗ 0.0052
III U[0,1] 2.36e−05 0.0086 0.0042∗

DBS,eff
- 89.01% 85.71% 89.36%
- 99.57% 97.67% 80.77%

∗ The best criterion value in each column.

one produced when using design III (i.e. efficiency loss of 0.4%). This loss increases

if the ‘true’ prior distribution is U[0,1], where using design II instead of design III

results in an efficiency loss of approximately 19%.

Similar results are obtained when comparing the effect of the similar i.i.d priors of

the parameters in the second set, i.e. G(1,10), G(5,15), Beat(1,10) and U[0,1] prior

distributions as shown in Table 6.3.

Table 6.3: DBFIM design criterion values for different DB
S,FIM-optimum choice designs

evaluated at the design prior (shaded value) and the evaluation prior together with the
efficiency of the optimal design with respect to other designs

DB
S,FIM Design Prior

Evaluation Prior

Optimal Designs Gamma(1,10) Gamma(5,15) Beta(1,10) Unif(0,1)

IV Gamma(1,10) 0.00030∗ 0.0016 0.00015 0.0047
V Gamma(5,15) 0.00031 0.0014∗ 0.00013 0.0043
V I Beta(1,10) 0.00030 0.0016 0.00014 0.0047
V II Uniform(0,1) 0.00030 0.0014 0.00013∗ 0.0036∗

DBS,eff
- 96.77% 87.50% 93.33% 89.36%
- 99.99% 87.50% 92.85% 97.67%
- 99.99% 99.99% 92.85% 89.36%

∗ The best criterion value in each column.
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Nevertheless, the impact of misspecifying the prior distribution for similar i.i.d

priors is much more smaller than that observed earlier for the distinct i.i.d uniform

priors of the parameters (Table 6.2). The maximum efficiency loss of 12% is produced

with respect to Gamma(5,15) prior distribution when design IV or V I is used instead

of design V .

To assess the robustness of these results to the choice of the starting designs, we

replicate the analysis with fifteen different starting designs, as in Section 6.4.1. Figures

6.5 and 6.6 show the results of the robustness analysis.

The plots indicate a great consistency with the results shown in Tables 6.2 and

6.3, where misspecifying the prior distribution does not have a significant effect on

the design criterion values, and the effect of the distinct prior distributions on the

choice design is still larger than that observed for similar prior distributions. Also,

the plots show some variation on the performance of particular prior distribution with

respect to other Bayesian designs optimised based on different prior using different

starting designs, where some of these designs perform as well as or better than design

optimised with respect to the correct prior. Thus, in this case, the small effect of the

prior distribution on the choice of the Bayesian designs might be related to the choice of

the random starting design used in the optimisation procedure rather than the actual

choice of the i.i.d prior for the parameters.

6.4.3 The Sensitivity of Bayesian Choice Design to the Prior

Distribution of the Scale Parameter

In the previous investigations, the same prior distributions are assumed for both the

preference parameters β and the scale parameter of the random error variance, σ. In

this section, we examine the impact of the choice of the prior distribution of σ only on

the choice of the Bayesian optimal design. This is done by generating Bayesian choice

designs for different choices of the prior distribution of the scale parameter σ, while
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Figure 6.6: Panel plots of the DB
S,FIM design criterion values computed for different

prior distributions with respect to different Bayesian designs, where designs I, II,
III and IV are the corresponding Bayesian choice designs obtained based on the
Gamma(1,10), Gamma(5,15), Beta (1,10) and the U[0,1] priors, respectively
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fixing the prior distributions of the preference parameters, β. We then compare the

efficiency of the resulting designs using the design criterion values as described in the

earlier sections.

For illustration, we assume that β1, . . . , β20
iid∼ U [0, 0.1], and allow the prior distri-

bution of the scale parameter σ to take different uniform distributions with relatively

a larger value compared to the value of the preference parameters, as well as the TTO

prior of the scale parameter as follows:

• prior 1: σ ∼ U [0, 0.1]

• prior 2: σ ∼ U [0, 1];

• prior 3: σ ∼ U [0.5, 1];

• prior 4: σ ∼ U [0.9, 1];

• prior 5: σ ∼ U [2, 3];

• prior 6: σ ∼ TTOσ prior;

where TTOσ represents the posterior distribution of the scale parameter obtained form

Bayesian analysis of the TTO data. We then evaluate the resulting Bayesian choice

designs for these priors with respect to each prior distribution for which the design was

not optimised, and compare these values to those obtained using a design generated

based on the same prior for both the preference and the scale parameters, i.e. the

U[0,0.1] prior, as shown in Table 6.4.

To study the effect of misidentifying the prior distribution of the scale parameter, σ,

on the choice of Bayesian design itself, we compare the criterion values for particular

prior distributions with respect to different choice designs. Considering the design

criterion values to the U[0,0.1] evaluation prior, it can be seen that Bayesian designs

II to V , i.e. designs optimised with respect to prior distributions with a large expected
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Table 6.4: DB
S,FIM design criterion values for different DB

S,FIM-optimum choice designs

evaluated at the design prior distribution of the variance parameter (shaded value) and
the other proposed prior distributions

DB
S,FIM Variance Design Variance Evaluation Prior

Optimal Designs Prior U[0,0.1] U[0,1] U[0.5,1] U[0.9,1] U[2,3] TTOσ

I U[0,0.1] 2.35e−05∗ 0.0013 0.0023 0.0034 0.0240 2.65e−05

II U[0,1] 2.75e−05 0.0012 0.0023 0.0034 0.0236∗ 3.03e−05

III U[0.5,1] 4.20e−05 0.0006 0.0026 0.0035 0.0244 4.39e−05

IV U[0.9,1] 4.03e−05 0.0004∗ 0.0026 0.0032 0.0249 4.27e−05

V U[2,3] 3.45e−05 0.0006 0.0020∗ 0.0031∗ 0.0246 3.66e−05

V I TTOσ 2.44e−05 0.0014 0.0023 0.0037 0.0247 2.60e−05∗

∗ The best criterion value in each column.

value for σ, reduce the design efficiency by approximately 15% to 44% compared to

design I (design optimised for the correct prior, U[0,0.1]).

This reduction is observed because prior distributions with large expected values

for σ generate more choices with a large absolute differences compared to designs

optimised for prior distributions with smaller expected values of σ, such as the U[0,0.1]

and the TTO prior distributions, as illustrated in Figure 6.7. These choices with a large

attribute level digfferences would maximise the vector of the attribute level difference

between alternatives, (x1s − x2s), but produce less balanced choice probabilities for

these alternatives and hence reduce the efficiency of the choice design under the U[0,0.1]

and the TTO prior distribution.

Also, a larger expected value for the scale parameter might result in a dominant

choice task if no constraints on the dominant alternatives are specified in the exchange

algorithms. Looking more closely at designs III to V , we observe that the number

of dominant choice sets in these designs increases as the expected value of the scale

parameter increases. This follows since the logit choice probability is a function of the

mean utility difference and the scale parameter, as in

P1s =
1

1 + exp
(
β(x1s−x2s)T

σ

) ,
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Figure 6.7: The absolute value of the sum of the attribute level differences between
alternatives for Bayesian choice designs optimised using different prior distributions of
the scale parameter presented in Table 6.4

and increasing the value of the scale parameter relative to the preference parameter

values improves the balance of the choice probabilities of the alternatives irrespective

of the actual difference between their attribute levels. Therefore, optimising the design

criterion using the exchange algorithm cannot distinguishes between dominant and

non-dominant alternatives as σ →∞. In this case, dominant choices are more likely to

be selected as they improve the value of the design criterion. For instance, the U[0.9,1]

prior distribution of σ provides similar mean utility values and, hence, balanced choice

probabilities for the dominant alternatives in the choice task Cs = {00000, 44444},

which is unrealistic.

Therefore, a poorly defined prior distribution of the scale parameter, e.g. a prior dis-

tribution with a large expected value for the scale parameter relative to the preference

parameters, produces choices with large gaps between attribute level (i.e. one-sided
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choices), which impact badly on design efficiency. Therefore, it is worthwhile to obtain

a more informative prior of the scale parameter, σ, in order to avoid one sided options

and generate a more efficient Bayesian choice design.

6.5

Summary and Discussion

In this chapter, we used two different methods to assign prior distributions for the

unknown logit model parameter vector θ: simple prior distributions constructed based

on the available information about the unknown parameters, and prior distributions

derived from Bayesian analysis of a previous study presented in Chapter 4. We then

carried out an analysis to study the effect of the choice of the prior distribution of the

parameters on the choice of Bayesian designs.

The analysis showed that overall the choice of the prior distribution influences

the choice of Bayesian design, and consequently the design efficiency. Nevertheless,

the amount of efficiency loss with respect to particular prior distribution depends on

the type of prior used to optimise the choice design. Thus, if in the ‘true’ prior the

parameters are not identically distributed, i.e. some attributes are more important

than the others, then designs optimised for i.i.d priors for the parameters may reduce

the design efficiency by more than a half relative to the choice design optimised based

on the ‘true’ prior distribution and vice versa. This reduction is due to the fact that

non-identical prior distributions, as opposed to identical prior distributions, prefer

more choices with larger attribute level differences while keeping the level of the most

important attributes similar and increasing the differences between the less important

attributes.
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The analysis also suggest that if i.i.d priors are appropriate for the parameter values

(i.e. when the attributes are equally important to respondents), the precise choice of

the prior is less important. We also investigated the effect of the prior distribution of

the scale parameter, σ, on the choice of the Bayesian designs. The analysis showed that

a poorly defined prior distribution for this parameter reduces the efficiency of the choice

design. In particular, increasing the values of this parameter relative to the values of

the preference parameters will increase the number of dominant choices in the design

if no constraint is specified in the exchange algorithm. This is because the logit choice

probability depends on the value of the scale parameter, and larger values for this

parameter relative to the preference parameters balance the choice probabilities of the

alternatives within a choice task irrespective of their actual attribute level differences.

Overall, our illustration study shows that the choice of Bayesian designs is robust to

particular choices of identical prior distributions, whereas switching between these prior

and non-identical prior distributions of the parameters results in significant loss in the

design efficiency. In our analysis, the TTO prior distribution was the most appropriate

prior of the parameters, as it was based on previous data. This prior favours some

attributes as more important, and hence prefers choices with larger attribute level

difference between the less important attributes while keeping the levels of the most

important attribute similar. The analysis showed that this prior performs badly in

terms of Bayesian choice designs constructed based on the i.i.d priors, and more worse

with respect to Bayesian designs optimised for the non-identical prior that mimics

the TTO prior in terms of presenting the most important attributes but with larger

expected values for the parameter associated with these attributes. Therefore, poorly

specified priors for the parameters really do matter, they might results in a large loss

of design efficiency.

This efficiency loss requires more respondents to perform the choice experiment-

possibly twice the number of respondents used in the choice experiment - to return the

same level of precision in estimating the preference parameter values as in Bayesian
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design optimised based on the correct prior distribution. The number of respondents

is usually a significant matter in many health evaluation studies, where the number of

participants is limited. This is because many health researches have research-sources

constraints or study rare health conditions that limit the number of sample size between

100-300 respondents (Marshall et al., 2010). Therefore, we suggest that it is worthwhile

for experimenter to work to derive more appropriate prior distributions, particularly

in terms of identifying the most and least important attributes under study, as well as

the relative importance of these attributes, to generate a more efficient choice design

instead of just increasing the number of participants. The prior of the parameters can

be obtained from previous study as in our case study. Nevertheless, in the case where

there is no data available for the underlying classification system, then one can derive

an appropriate prior by:

1. eliciting experts’ prior beliefs about the relative importance of the attributes

under study;

2. mapping the data from other classification systems with pre-existing health state

values (e.g. EQ-5D system) to the underlying case study (e.g. the AQL-5D sys-

tem). This method allows us to predict the utility scores for the AQL-5D health

states, and hence estimate the preference parameters associated with attribute

levels of this classification system using different regression techniques. These

techniques require specifying the classification system to map from and map to

(see Franks et al., 2004; Gray et al.,2006; and Ara and Brazier, 2008, for more

details about these techniques)
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Chapter 7

Conclusion

In this chapter, we discuss the main findings of the thesis. This thesis has aimed

at developing a efficient methodology to construct efficient choice designs for valuing

health state utilities using the latest advanced work in the optimal design theory.

To achieve that, the main experimental design issues and considerations to generate

choice experiments for health evaluation studies were firstly identified. Then, related

advanced work in optimal design literature, particularly Bayesian optimal design, was

reviewed to investigate its ability to improve the choice design for valuing health.

In this chapter, we begin by summarising the contributions previous chapters make

to our objective, and then in Section 7.2 discuss the main findings of each chapter.

Sections 7.3 and 7.4 provide the limitations of the thesis and direction for further

work, along with recommendations based on the findings of the thesis, respectively.
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7.1

Summary of the Thesis

The main concepts for health economics evaluation are reviewed in Chapter 2 to identify

relevant background knowledge. In particular, the chapter presented the use of QALYs

in making a decision for allocating limited financial health resources, and different

classification systems to describe health outcomes/health states (e.g. EQ-5D and AQL-

5D systems); as well as different techniques to measure the utility values of these states,

i.e. the ‘Q’ part of the QALY. The main issues with each technique were discussed,

with a view to identifying new evaluation methods that give more reliable health state

utility values, with more emphasis on the discrete choice experiments (DCEs) technique

and their modelling.

The DCE method seems to be a promising alternative for the direct valuation

methods, which would reduce survey administration times and efforts for collecting

data. This is because DCEs are relatively easy to comprehend and administrate, and, as

opposed to the TTO method, respondents usually do not require face to face interview

to perform such choice task. However, the literature review in Chapter 3 illustrated

that more work is still required to improve the choice data collected from this technique

and consequently the estimated utility values, particularly in terms of the experimental

design used to select choices presented to respondents and group them efficiently into

choice tasks, as well as anchoring the utility values within the required QALY scale (0–

1 scale). In Chapter 3, therefore, advanced methodologies for deriving efficient DCEs

in various areas outside health economics were reviewed, particularly for Bayesian

optimal choice designs, in order to construct better experimental designs for valuing

health state utilities. Constructing Bayesian optimal design for discrete choice models,

unlike linear models, depends on the unknown model parameters in the information
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matrix, and hence so does the optimal design criterion. Therefore, a prior distribution

of the unknown model parameters is required to construct an efficient choice design.

In Chapter 4, two datasets for the AQL-5D health states using time trade-off (TTO)

and pairwise choice experiment methods were analysed using classical and Bayesian

approaches to obtain prior information about our model parameters, and demonstrate

the effect of the type of data on estimating the health states utilities. In particular, a

Bayesian analysis was performed on the TTO data to provide a prior distribution of

the unknown model parameters for generating Bayesian optimal designs for the same

classification system. Also, a Bayesian analysis was used to compare the uncertainty

in the mean utilities produced by the TTO and discrete choice models. The result

of the analysis illustrated that DCE data produces slightly higher uncertainty in the

estimated mean utility values compared to TTO data. However, this might be related

to the number of respondents and health states used in each method as well as the way

the choice design is constructed, where more observations is obtained under the TTO

exercise than for the DCE task.

Therefore, we suggested using more sophisticated methods to improve the quality

of the collected choice data and hence the final results – in particular, using Bayesian

optimal designs that account for uncertainty in the model’s parameters and the utility

values by incorporating the prior information in the phase of constructing the choice

design. Chapter 5, therefore, provided the optimal design criterion for our model, here

a logit model, and then investigated the possibility of using available design software

such as SAS, JMP or Ngene to construct Bayesian pairwise choice design for valuing

AQL-5D health states within the QALY scale. We have not managed to generate

Bayesian optimal choice designs using these programs, as they are limited in handling

our design problem, particularly in terms of including the death state in the choice

design to anchor the utility values and optimising the correct design criterion.

Thus, we proposed our design algorithm that is based upon combining and modi-

fying different advanced search algorithms available in the Bayesian design literature

229



in such a way that it handles our design considerations. The algorithm is particularly

developed to construct Bayesian pairwise choice designs for the logit model based on

the Bayesian DS-optimality criterion that accounts for the inclusion of death. An ap-

plication for our algorithm using the AQL-5D case study and logit model is provided

in Chapter 5.

Chapter 5 also provided a method to simplify the choice designs by holding some

attributes constant in the choice tasks, to reduce the error in the respondents’ choices

(i.e. increase the response efficiency). This simplification results in a reduction of

the statistical efficiency of the choice design, while on the other hand it increases the

response efficiency and consequently the reliability of the choice data.

The performance of our Bayesian choice designs might depend on the prior distri-

bution chosen to construct the designs. Therefore, the effect of the prior distribution

on the actual choice of the Bayesian choice designs was investigated in Chapter 6. The

chapter compared different Bayesian designs optimised based on different type of prior

distributions based on their optimality design criterion values, i.e. the efficiency of

particular design compare to the other. The analysis illustrated that misspecifying the

prior distribution may badly affect the efficiency of the choice design.

7.2

Discussion of the Main Findings

In health economics, health states utilities are evaluated using different techniques.

Chapter 2 illustrated that contamination of the utility values produced by the direct

valuation methods, such as time trade-off (TTO) and standard gamble (SG) techniques,

by non-health factors, together with their complexity, increase the interest in using the
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discrete choice experiments (DCEs) method. This method is more straightforward

than, for example, the SG method, and reflects more accurately the type of decision

that individuals make every day.

Nevertheless, there are still some issues related to using the DCE technique within

a health evaluation context, particularly in terms of the experimental design for con-

structing the DCE, which can be summarised as follows.

• Health state utility values inferred using discrete choice data are not directly

anchored on the death and perfect health scale (0–1 scale) required for the QALY

calculation, and hence cannot be used directly in cost-utility analysis (CUA).

In this thesis we considered including the death state comparison in the choice

design to anchor the health state utilities, as in Brazier et al. (2009). Since other

anchoring methods either depend on other valuation techniques rather than the

DCE, such as the TTO method, or complicate the design choice problems by

including the survival attribute in the design. This is conflict with our aim of

establishing an efficient DCE as an alternative for the direct valuation methods

and simplifying the choice design problem. Thus, experimental design should

account for the inclusion of the death state in the choice designs.

• The construction of efficient choice design requires many constraints to improve

the collected choice data, and consequently the reliability of the preference pa-

rameter estimates and the utility values. In particular, it is necessary to impose

constraints on attribute level combinations to avoid dominant and implausible

health states defined by a classification system, since they reduce the efficiency

of the choice design.

• The non-linear nature of the discrete choice models complicates the design prob-

lem, and usually standard designs such as orthogonal designs are not suitable.

• The construction of the choice design depends on the values of the unknown

model’s parameters. Therefore, usually prior information about the parameters
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is required, and a Bayesian approach is sought to generate the design.

Generating an efficient choice design for valuing health states therefore requires

an algorithmic experimental design to account for the design considerations. But the

results of the literature review in Chapter 3 showed that most of the choice designs

used for valuing health state utilities are based on either orthogonal array designs or

the optimal design principles – i.e. level balance, orthogonality, minimal overlap and

utility balance – developed in Huber and Zwerina (1996). Also, most designs ignore

the dependency of the choice designs on the model’s parameters by assuming zero prior

point estimates for the preference parameters instead of using a Bayesian approach.

This might result in dominant and implausible choices, as in the level balanced design

(LBD) generated for the AQL-5D system, which reduces the efficiency of the choice

design. Since respondents might have difficulty in evaluating implausible health states,

that complicates the choice task and increases the error variance, and in dominant

choice tasks all respondents will choose the dominant state and hence such tasks would

provide no valuable information about the preference parameters.

Having identified the main design considerations and issues for valuing health states

utilities, we considered improving the methodology for constructing the choice design

based on the latest optimal Bayesian experimental design method in the design litera-

ture. The main key features of our design algorithm are as follows:

• it uses the correct design criterion; i.e. it consider optimising the design with

respect to the parameters of interested and accounts for the including of the

death state in the choice model, to optimise the choice design;

• it is flexible to any choice of prior distributions and any design constraints; and

• it considers simplifying the choice task to reduce the error in the respondents’

choices.

Applying our design algorithm to generate a Bayesian pairwise choice design for the

232



AQL-5D case study illustrates a substantial improvement over the LBD, particularly

when the true parameter values are not zero (which is almost certainly the case in most

choice studies). This is because our design algorithm accounts for the uncertainty in

the model parameters by incorporating a priori information when constructing the

choice design. Also, the use of the coordinate-exchange algorithm together with a

suitable prior distribution for the preferences parameters accounts for the separation

between alternatives in a choice task, and this results in more efficient choice questions

and eliminates dominant choices from the choice designs. This improves the efficiency

and the information collected from the choice design, and consequently the estimated

preference parameter and utility values.

Simplifying the Bayesian choice design introduces some reduction in the design effi-

ciency. But this reduction is not remarkable compared with the detrimental effect that

non-simplified choice design might have on the respondents’ choices and consequent

reliability of the utility values. This is because respondents usually violate the com-

pensatory assumption when varying many attributes in alternatives within a choice

task, and hence make their choices based on trading off between a subset of the at-

tributes instead of considering all the attributes under study, which might affect the

final results. Therefore, to obtain a reliable assessment of health state utilities, we

recommend using the simplified Bayesian choice design, particularly for a design with

a large number of attributes and attribute levels.

The choice of the prior distribution might have an impact on the choice of the

efficient Bayesian design. Our illustration study, which compared different Bayesian

pairwise choice designs optimised with respect to different prior distributions, indi-

cated that misspecifying the prior distribution might have a substantial effect on the

Bayesian designs, particularly when switching between identical and non-identical prior

distribution of the preference parameters. In case all attributes are equally attractive

to respondents, the choice of the identical prior distribution of the parameters is less

important as it has a smaller effect on the choice of the efficient Bayesian design. Also,
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poorly defined prior distributions for the scale parameter of the random error, e.g. a

prior with a large value for the scale parameter relative to the preference parameter

values, produces a less efficient choice design. This is because such a choice of prior dis-

tribution prefers a large distance between alternatives within a choice task irrespective

of the actual difference between their attribute level, and that might result in dominant

choices if no constraint is specified in the exchange algorithm.

A large design efficiency loss requires a large number of respondents to perform

the choice experiment in order to return the same level of precision in estimating the

preference parameter values as in Bayesian design optimised with respect to the correct

prior distribution. This might mean more than twice the number of respondents being

used in the choice experiment, particularly when switching between identical and non-

identical prior distributions. Therefore, it would be worthwhile for an experimenter

to derive appropriate prior distributions that reflect the preference of the attributes

under study from the point of view of the respondents (e.g., most and least important

attributes), and use this prior information to generate more efficient choice designs

instead of increasing the number of participants.

7.3

Limitation and Further Work

In this thesis, the Bayesian optimal choice designs were based on the Bayesian DS-

optimality criterion assuming a large sample size (i.e. respondents to value the choice

design). The calculation of what sample size is required for a particular study is

one problem worth studying in the Bayesian optimal designs, particularly for health

evaluation studies where usually the number of participants is limited.
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Figure 7.1: Standard error for the preference parameter associated with the attribute
level difference in the AQL-5D system estimated using the FIM of the Bayesian design
optimised for Gamma (1,10) prior distribution

The specification of the required sample size depends on the aim of the experi-

ment, which is usually to estimate the parameters with high reliability. Our Bayesian

designs minimise the DS-optimality design criterion, which translates into minimising

the volume of the posterior credible ellipsoid of the unknown preference parameters

associated with the attribute level differences. However, this might result in less reli-

able estimates for some parameters compared to the other (i.e. larger standard error

for some parameters). For instance, Bayesian DS-optimum choice design constructed

based on the Gamma (1,10) prior distribution provides larger standard error for the

parameter associated with level 4 of the short of breath, β8, as shown in Figure 7.1.

Therefore if experimenters are interested in estimating all the parameters with

a high precision of, say, 0.05, then a preliminary solution to specify an appropriate

number of sample size would be to set the maximum sample size required to increase

the level of the precision for the less reliable parameters (i.e. β8) as the minimum
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boundary for the total number of sample size required (e.g. 150 respondents or more

in this case).

Another suggestion would be to modify the choice design in such a way that it gains

more information about the less reliable parameters and, hence, minimises the sample

size required, as suggested in Rose and Bliemer (2013). However, this may require

sacrificing some information about the other parameters. Thus, we encourage further

research to develop more sophisticated methods to specify and minimise the sample

size required to estimate the parameters with high reliability using Bayesian optimal

choice designs.

In health economics, decision makers are more interested in increasing the relia-

bility of decisions made between treatments, which depends on the reliability of the

differences between the health state utilities. Thus it would be worth investigating and

specifying the sufficient sample size required to detect particular differences between

utilities, which represent treatment effect, as cost-effective within a certain level of

precision, using our Bayesian choice designs and with respect to different prior distri-

butions. Indeed, a further research of interest would be deriving a new optimal design

criterion that aims to optimise the choice design so that the variance of a particular

health difference is minimised, and then compare how the design efficiency and sample

size required might be affected, compared to the Bayesian DS-optimum design. In

addition, it would be of interest to develop a prediction design criterion, such as the

V-optimality criterion, for predicting the mean utility value within the required QALY

scale, since it is a key of activity in health economics.

As in our study, Bayesian choice designs involve many choice questions than can be

performed by a single respondent (here 32 choice tasks); respondents typically cannot

evaluate more than 12–20 choice questions before they become exhausted and start to

provide less reliable choices (Johnson and Orme, 1996). Therefore, we suggest that

a number of choice questions from the entire choice designs are randomly assigned to

each respondent (e.g., 8 choice questions including the death comparison). Another
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method to reduce the number of choices evaluated by each respondent is to allocate

the choice questions into different blocks of equal size and then randomly assign each

respondent to these blocks, or use the balanced incomplete block design approach that

has been shown to yield suboptimal designs. However, an efficient method is needed

to block the choice design such that it does not reduce the design efficiency.

7.4

Main Recommendations for

Practical Applications

To increase the statistical efficiency of the choice design given a particular sample

size, our results suggest using more appropriate prior distribution for the unknown

model parameters, particularly when the attributes under study are not equally im-

portant. In practice, of course, the choice designs are constructed before observing the

data in the field, where eliciting expert’s prior beliefs about the relative importance of

the attributes under study is important in this case. Nevertheless, obtaining experts

judgements about these quantities might be an expensive and difficult task in prac-

tice. Therefore, one could use a prior that, at least, reflects the relative importance

of each attribute from respondents’ perspectives, i.e. the most and least important

attributes under study. Also, using such a prior distribution together with an efficient

search algorithm, such as the coordinate-exchange algorithm used in our approach,

dominant choices can be eliminated from the final design without the need to impose

many constraints in the design algorithm.

Additionally, though simplifying the choice design will result in slightly less sta-
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tistical efficiency for a given simple size, we suggest using the simplified design in

practice, particularly for a large design with a large number of attributes and at-

tribute levels. This is because simplifying the choice tasks might reduce the error in

respondents’ choices, and force respondents to trade-off between attributes even if a

dominant attribute exists. This then could increase the reliability of the choice data

and consequently the estimated values for the preference parameters and the utilities,

as the overall precision of these quantities depends on balancing both the statistical

and response efficiencies (Johnson et al., 2013).
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Appendix

A.1

Posterior Distributions

The posterior distribution of the preference parameters, β, and the scale parameter σ

obtained from the TTO data and Gamma(1,10) prior distribution are presented in this

section.
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Figure 4: The posterior distribution of the scale parameter, σ, obtained from the TTO
data and Gamma(1,10) prior distribution
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A.2

Discrete Choice Designs

A.2.1 DCE for Asthma Health States Using Huber and Zwe-

rina (1996) Approach

Table 1: DCE for asthma health states together with the total number of respondents
evaluate each choice set, N , and the number of respondent select the first state over
the second state in each choice set,n

Choice Set Alternative I Alternative II N n

1 3 4 2 0 3 2 1 3 3 1 39 7
2 2 0 3 0 4 1 2 1 2 0 39 4
3 2 4 4 0 3 4 0 1 4 4 38 17
4 1 2 1 0 1 4 3 2 2 0 39 33
5 2 1 0 2 1 4 0 4 3 3 38 35
6 1 3 0 3 0 4 4 1 2 1 38 29
7 4 3 0 1 1 1 0 3 2 2 35 15
8 2 1 4 4 3 4 3 3 0 0 35 11
9 3 1 4 2 4 2 2 2 4 2 35 4
10 0 4 4 3 0 1 0 0 1 3 35 16
11 1 4 2 3 4 3 3 4 4 2 34 13
12 2 4 2 2 3 4 1 3 0 4 34 22
13 3 1 3 3 4 2 0 4 1 0 51 10
14 1 4 4 4 1 2 2 1 3 3 52 19
15 1 3 2 4 4 0 0 0 2 0 52 4
16 3 4 0 3 2 0 1 2 0 0 52 3
17 0 2 0 4 4 3 0 2 3 1 52 11
18 3 2 3 4 0 0 3 1 0 2 52 12
19 0 1 2 1 2 2 3 1 2 4 42 38
20 0 0 0 4 1 4 1 3 1 2 42 26
21 4 1 0 0 0 0 3 3 1 3 42 39
22 3 2 2 1 4 4 4 3 4 3 42 34
23 3 4 1 1 0 4 2 4 2 1 42 34
24 2 2 3 2 1 3 3 2 3 2 42 40
25 4 4 4 4 4 -1 -1 -1 -1 -1 37 29
26 4 4 4 4 4 -1 -1 -1 -1 -1 35 25
27 4 4 4 4 4 -1 -1 -1 -1 -1 52 41
28 4 1 0 0 0 -1 -1 -1 -1 -1 42 41
29 -1 -1 -1 -1 -1 3 3 2 4 4 39 5
30 -1 -1 -1 -1 -1 3 3 2 4 4 35 9
31 -1 -1 -1 -1 -1 3 3 2 4 4 52 8
32 -1 -1 -1 -1 -1 3 3 2 4 4 42 2
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A.2.2 DCE for Asthma Health States Using Bayesian Ap-

proach

A.2.2.1 Bayesian Designs with Full Profiles

Table 2: Bayesian paired comparisons with full profiles for asthma health states gener-
ated based on the DB

S,FIM and assuming Gamma(1,10) prior distribution for the logit

model parameters

Choice Set Alternative I Alternative II

1 -1 -1 -1 -1 -1 4 4 4 4 4
2 3 2 1 4 1 4 1 2 2 3
3 0 4 1 2 4 1 3 2 3 1
4 4 3 3 2 1 3 2 4 1 2
5 3 4 2 3 2 2 3 3 4 3
6 1 2 4 2 3 3 1 3 4 2
7 2 1 0 1 4 3 0 1 2 3
8 4 4 2 0 3 2 3 3 2 2
9 1 1 1 4 4 2 3 0 3 3
10 0 2 3 1 4 2 1 4 2 3
11 4 0 3 3 1 3 1 2 2 2
12 1 0 0 1 2 2 2 1 0 1
13 1 1 1 2 3 2 0 2 1 4
14 0 4 1 1 3 3 2 0 0 4
15 1 3 2 4 3 4 4 1 3 2
16 0 4 4 4 1 1 3 2 3 2
17 2 2 2 3 2 3 3 0 1 4
18 1 4 3 2 2 0 1 4 4 3
19 1 1 3 3 2 0 3 2 4 1
20 4 3 1 0 2 3 4 0 2 1
21 0 0 1 2 1 1 2 3 1 0
22 2 0 1 2 2 0 1 2 3 1
23 1 0 2 0 4 3 1 0 1 3
24 2 1 1 3 4 3 0 3 1 3
25 0 2 4 2 1 3 1 1 0 3
26 0 2 3 2 3 1 3 4 1 2
27 2 4 1 3 3 4 1 4 2 2
28 3 2 1 2 4 2 4 3 0 2
29 3 2 3 3 3 4 4 0 4 1
30 4 2 2 2 2 1 0 4 3 4
31 2 0 1 1 0 1 3 0 0 2
32 3 3 4 2 1 4 2 0 4 2
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Table 3: Bayesian paired comparisons with full profiles for asthma health states gen-
erated based on the DB

S,GFIM and assuming Gamma(1,10) prior distribution for the

logit model parameters

Choice Set Alternative I Alternative II

1 -1 -1 -1 -1 -1 4 4 4 4 4
2 0 1 3 1 2 1 0 2 0 4
3 4 1 2 0 1 3 0 1 2 2
4 4 3 2 3 2 2 4 4 2 1
5 3 4 2 2 4 2 3 4 3 3
6 3 0 3 4 4 4 2 4 1 3
7 0 2 4 0 4 1 1 2 2 3
8 1 2 3 4 3 4 1 4 2 2
9 2 3 0 2 0 0 4 1 1 1
10 4 4 3 2 1 2 1 2 4 2
11 2 1 2 3 3 3 3 3 1 1
12 2 4 1 1 4 0 3 3 2 2
13 0 1 1 3 3 1 0 4 1 2
14 4 4 1 0 2 3 1 2 1 4
15 2 1 1 4 0 1 2 0 3 1
16 4 0 3 4 1 3 3 1 3 2
17 4 2 3 0 2 0 1 4 2 3
18 3 4 3 3 2 4 3 1 4 3
19 1 2 1 4 0 2 3 0 2 3
20 1 2 1 4 2 0 4 2 1 1
21 4 2 0 3 1 1 3 3 1 3
22 0 0 2 1 0 2 1 0 0 1
23 1 0 4 0 4 2 4 0 1 1
24 2 2 0 4 2 1 3 1 3 1
25 3 1 3 0 3 2 3 2 2 1
26 3 2 1 2 2 1 4 0 4 1
27 3 2 2 4 3 2 1 3 3 4
28 2 2 3 2 4 3 0 4 3 3
29 1 4 1 2 3 3 3 2 3 1
30 1 1 4 4 2 2 0 3 3 3
31 1 2 3 0 0 0 0 0 1 2
32 2 2 2 1 3 0 3 0 4 4

A.2.2.2 Bayesian Designs with Partial Profiles
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Table 4: Bayesian paired comparisons with partial profiles for asthma health states
generated based on the DB

S,FIM and assuming Gamma(1,10) prior distribution for the

logit model parameters

Choice Set Alternative I Alternative II

1 -1 -1 -1 -1 -1 4 4 4 4 4
2 * * 3 4 1 * * 4 3 0
3 * * 3 1 0 * * 2 0 2
4 * * 3 2 4 * * 4 4 3
5 * 0 * 0 4 * 1 * 2 2
6 * 4 * 2 3 * 3 * 3 4
7 * 0 * 4 3 * 4 * 3 1
8 * 0 1 * 2 * 1 3 * 0
9 * 0 3 * 1 * 1 0 * 4
10 * 3 2 * 3 * 4 1 * 4
11 * 1 4 * 1 * 4 2 * 0
12 * 3 2 1 * * 2 1 3 *
13 * 2 4 2 * * 1 3 3 *
14 * 0 2 2 * * 3 1 0 *
15 3 * * 4 0 2 * * 3 3
16 2 * * 4 4 3 * * 3 3
17 0 * * 2 3 1 * * 1 2
18 4 * 1 * 3 3 * 4 * 1
19 3 * 3 * 2 4 * 2 * 1
20 0 * 3 * 2 2 * 1 * 1
21 1 * 1 1 * 2 * 0 0 *
22 1 * 4 2 * 3 * 2 3 *
23 4 * 3 0 * 2 * 0 4 *
24 1 1 * * 4 2 3 * * 2
25 0 2 * * 1 4 0 * * 0
26 4 2 * * 2 3 3 * * 3
27 0 4 * 3 * 3 2 * 2 *
28 1 3 * 2 * 4 2 * 1 *
29 0 4 * 1 * 1 3 * 3 *
30 2 1 1 * * 1 2 0 * *
31 0 3 1 * * 1 4 0 * *
32 2 2 2 * * 4 3 0 * *

246



Table 5: Bayesian paired comparisons with partial profiles for asthma health states
generated based on the DB

S,GFIM and assuming Gamma(1,10) prior distribution for

the logit model parameters

Choice Set Alternative I Alternative II

1 -1 -1 -1 -1 -1 4 4 4 4 4
2 * * 1 4 1 * * 4 2 0
3 * * 0 4 3 * * 2 0 4
4 * * 3 2 4 * * 2 3 3
5 * 0 * 1 4 * 1 * 2 2
6 * 0 * 4 3 * 2 * 3 2
7 * 2 * 4 2 * 4 * 3 1
8 * 0 2 * 2 * 1 3 * 0
9 * 0 3 * 1 * 1 0 * 4
10 * 3 2 * 3 * 4 0 * 2
11 * 1 4 * 1 * 4 2 * 0
12 * 1 2 4 * * 3 1 3 *
13 * 2 4 2 * * 1 3 3 *
14 * 0 2 3 * * 3 1 0 *
15 4 * * 4 0 3 * * 2 3
16 0 * * 4 4 3 * * 1 3
17 0 * * 0 3 1 * * 1 2
18 1 * 3 * 3 0 * 4 * 2
19 0 * 3 * 2 4 * 0 * 1
20 0 * 0 * 3 3 * 1 * 0
21 0 * 1 1 * 2 * 0 0 *
22 2 * 4 3 * 4 * 2 2 *
23 1 * 4 0 * 2 * 1 2 *
24 1 4 * * 2 2 3 * * 1
25 1 2 * * 1 4 0 * * 2
26 4 2 * * 3 3 1 * * 4
27 3 2 * 3 * 2 3 * 2 *
28 3 0 * 2 * 2 2 * 1 *
29 0 4 * 1 * 1 0 * 3 *
30 4 1 1 * * 3 3 0 * *
31 1 3 2 * * 3 2 0 * *
32 2 4 1 * * 4 3 0 * *

247



Table 6: Bayesian paired comparisons with partial profiles for asthma health states
generated based on the DB

S,FIM and assuming TTO prior distribution for the logit

model parameters

Choice Set Alternative I Alternative II

1 -1 -1 -1 -1 -1 4 4 4 4 4
2 * * 1 3 0 * * 3 0 1
3 * * 0 2 2 * * 4 0 0
4 * * 2 3 1 * * 3 4 0
5 * 0 * 3 1 * 2 * 1 2
6 * 2 * 4 4 * 4 * 1 3
7 * 3 * 4 1 * 0 * 0 3
8 * 3 2 * 0 * 1 4 * 1
9 * 0 3 * 4 * 3 0 * 3
10 * 2 4 * 4 * 3 3 * 3
11 * 4 4 * 0 * 3 1 * 2
12 * 0 4 1 * * 2 3 3 *
13 * 2 2 4 * * 4 3 0 *
14 * 3 4 2 * * 4 1 4 *
15 0 * * 4 2 1 * * 1 4
16 4 * * 3 2 2 * * 0 3
17 1 * * 2 1 4 * * 0 2
18 1 * 4 * 2 2 * 0 * 4
19 0 * 1 * 3 2 * 2 * 2
20 4 * 2 * 1 3 * 0 * 0
21 0 * 4 3 * 4 * 0 2 *
22 3 * 2 2 * 2 * 0 3 *
23 2 * 1 2 * 3 * 0 1 *
24 0 3 * * 4 4 2 * * 3
25 4 1 * * 0 3 0 * * 2
26 3 4 * * 1 0 1 * * 3
27 2 0 * 1 * 1 1 * 0 *
28 0 4 * 2 * 1 3 * 1 *
29 0 2 * 1 * 1 0 * 4 *
30 0 0 3 * * 3 1 1 * *
31 2 1 2 * * 4 2 1 * *
32 1 4 0 * * 3 1 3 * *
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