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Abstract

Spatially localized, time-periodic structures, known as oscillons, are common in pattern-
forming systems, appearing in fluid mechanics, chemical reactions, optics and granular
media. This thesis examines the existence of oscillatory localized states in a PDE model
with single frequency time dependent forcing, introduced in [70] as phenomenological
model of the Faraday wave experiment. Firstly in the case where the prefered
wavenumber at onset is zero, we reduce the PDE model to the forced complex Ginzburg—
Landau equation in the limit of weak forcing and weak damping. This allows us to use
the known localized solutions found in [15]. We reduce the forced complex Ginzburg—
Landau equation to the Allen—Cahn equation near onset, obtaining an asymptotically
exact expression for localized solutions. In the strong forcing case, we get the Allen—Cahn
equation directly. Throughout, we use continuation techniques to compute numerical
solutions of the PDE model and the reduced amplitude equation. We do quantitative
comparison of localized solutions and bifurcation diagrams between the PDE model, the
forced complex Ginzburg—Landau equation, and the Allen—Cahn equation. The second
aspect in this work concerns the investigation of the existence of localized oscillons
that arise with non-zero preferred wavenumber. In the limit of weak damping, weak
detuning, weak forcing, small group velocity, and small amplitude, asymptotic reduction
of the model PDE to the coupled forced complex Ginzburg—Landau equations is done.
In the further limit of being very close to onset, we reduce the coupled forced complex
Ginzburg—Landau equations to the real Ginzburg—Landau equation. We have qualitative
prediction of finding exact localized solutions from the real Ginzburg-Landau equation
limited by computational constraints of domain size. Finally, we examine the existence
of localized oscillons in the PDE model with cubic—quintic nonlinearity in the strong
damping, strong forcing and large amplitude case. We find two snaking branches in the
bistability region between stable periodic patterns and the stable trivial state in one spatial
dimension in a manner similar to systems without time dependent forcing. We present

numerical examples of localized oscillatory spots and rings in two spatial dimensions.
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Chapter 1

Introduction

1.1 Patterns

Patterns appear throughout nature, including convection, animal coat markings,
fingerprints, ripples on flat sandy beaches and desert dunes. The observation of pattern
formation has attracted the attention of scientists for a long time, and has motivated
both theoretical and experimental research. When a control parameter of a homogeneous
system is increased above a critical value, spatially periodic structures can emerge. The
study of convection between two horizontal plates (Rayleigh-Bénard convection) is one
famous physical example of pattern formation [41], in which a container of fluid is heated
from below. As the heat is applied from underneath the container, the fluid expands at
the bottom and becomes less dense. Thus, the fluid rises through the colder fluid at the
upper boundary to be away from the heat source, it cools and becomes denser than the
fluid at the lower boundary, so that it sinks. As a consequence of this, the fluid falls
from the upper surface back down to the bottom. Repeated rising and sinking in different
locations causes the fluid to form spatial patterns. An important review of theoretical and
physical examples of pattern formation is the paper by Cross and Hohenberg [25], and
an introduction to common analytical methods that are used to study pattern formation

mathematically can be found in the book by Hoyle [41].
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Figure 1.1: Soliton-like structure on the surface of a ferrofluid generated by applying
magnetic field vertically. Figure is reprinted from [68], and the copyright (2005) is by the
American Physical Society.

Turing patterns are steady patterns that arise in reaction—diffusion systems, predicted in
Turing’s original paper [81]. Non-oscillatory Turing patterns appear through a linear
instability when there are two reacting and diffusing chemicals, with one diffusing much
faster than the other. Steady localized states near the Turing instability can exist if the
system has bistability [22,85,91]. This occurs when the Turing instability is subcritical,
and so a stable zero state, a small amplitude unstable pattern, and larger amplitude
stable pattern can all coexist. The localized solution consists of a patch of stable pattern
surrounded by the stable zero state [27, 52, 53], rather than having the periodic pattern

filling the whole domain.

An example of spatially localized states was observed on the surface of a ferrofluid [68]

(see Figure 1.1). This fluid is placed in a spatially homogeneous time-independent vertical
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Figure 1.2: A triad of oscillons in a in a vertically vibrated colloidal suspension by
O. Lioubashevski, Y. Hamiel, A. Agnon, Z. Reches, and J. Fineberg, taken from [51],
Physical Review Letters, 1999.

magnetic field. The deformation in the surface of the fluid creates one or more stationary,

isolated peaks [68].

Spatially localized structures appear in many other pattern-forming systems driven by
external forcing. The formation of localized states has been of interest to the scientific
community for many years. Localized states have been found in many experiments, such
as in ferromagnetic fluids [68], in fluid surface wave experiments [4, 50,76, 89], chemical
reactions [47,49,65,84,87], colloidal suspensions [51], and granular media [10,54,83,92].
Examples of spatially localized structures have also been observed in theoretical studies,
for example in optics [19, 33, 79], and in mathematical neuroscience, where localized
bursts of activity might be related to short-term memory formation [48, 74], as well
as in models of granular media [16, 30], surface wave in fluids [59, 60] and chemical

reactions [84, 86].

Our interest in this thesis is to investigate specific types of localized structures, called
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oscillons. Much progress has been made on steady problems, where bistability between a
steady pattern and the zero state leads to steady localized patterns bounded by stationary
fronts between these two states [13,26]. In contrast, oscillons, which are oscillating
localized structures in a stationary background, are relatively less well understood.
Oscillons have been found experimentally in fluid surface wave experiments [4, 50, 51,
76, 89], chemical reactions [65], and vibrated granular media problems [9, 54, 82, 83].
In the surface wave experiments, the fluid container is driven by vertical vibrations.
When these are strong enough, the surface of the system becomes unstable (the Faraday
instability) [32], and standing waves are found on the surface of the fluid. Oscillons have
been found when this primary bifurcation is subcritical [24], and these take the form of
alternating conical peaks and craters against a stationary background. Figure 1.2 shows

an example with three oscillons in a colloidal suspension.

A second striking example of oscillons was found in a vertically vibrated thin layer of
granular particles [83]. As with the surface wave experiments, oscillons take the shape of
alternating peaks and craters: Figure 1.3 shows spatially localized oscillons in a thin layer

of bronze beads.

The observation of oscillons in these experiments has motivated our theoretical
investigation into the existence of these states and their stability. In both of these
experiments, the forcing (vertical vibration) is time-periodic, and the oscillons themselves
vibrate with either the same frequency as the forcing (harmonic) or with half the frequency

of the forcing (subharmonic).

Previous studies to these parametrically forced problems have averaged over the fast
timescale of the forcing and have focused on PDE models where the localized solution
is effectively steady [3, 15, 24]. In a variety of pattern-forming systems, stable oscillons
arise in numerical simulations of these PDEs. Models like the Swift—-Hohenberg equation
[24, 36], the forced complex Ginzburg—Landau equation [15, 21, 58, 61, 90], the forced

complex Ginzburg-Landau equation with a conservation law [28], and the nonlinear



Chapter 1. Introduction 5

Figure 1.3: Localized oscillon in a vertically-vibrated layer of bronze beads (photo
courtesy of Paul Umbanhowar, Northwestern University).

Schrodinger equation [5, 59] are designed to capture the features of pattern-forming
systems in one-, two- and three- dimensions. In all these models, numerical study
revealed that the equations give a qualitative explanation of the observations of patterns

in experiments.

‘We will discuss first the existence of localized solutions with zero wavenumber at onset
(Chapter 2), because we know that in this case the amplitude equation is in the form of

the forced complex Ginzburg-Landau equation [21], which is given by

Ar = (i+iv)A+ (14 ir)Axx — (1 +ip)|A?PA+TA, (1.1)

where A is a complex amplitude representing the oscillation in a continuous system
near a Hopf bifurcation point in one spatial dimension; and the real coefficients [ is
the distance from the onset of the oscillatory instability, v is the detuning between the

Hopf frequency and the driving frequency, « represents the dispersion, p is the nonlinear
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frequency correction, and I is the forcing amplitude. We also know from [15] that the
forced complex Ginzburg—Landau equation has localized states. By carrying out all stages
of the calculation explicity, we are able to make a quantitative connection from start to

finish.

However, in the Faraday wave experiment, the preferred wavenumber at the onset of
pattern formation is non-zero [64, 77]. We consider this more complicated case in

Chapters 3 and 4, and derive the coupled forced complex Ginzburg—Landau equations:

DA | PA 94 ) .

T = (p—i—w)A—Q(oz—i—zﬁ)W+vga—X—|—C’(|A| +2|B|*) A+ i'B. 2
8—Bf( +iv)B — 2( +'B)62—B— a—B+C(2|A\2+|B\2)B+'PA |
or — T T X2 T Yax e

where A and B represent the amplitudes of slowly varying left- and right-travelling waves;
and p, v, o, B, v, and I' are real parameters and measure the dissipation, detuning,

diffusion, dispersion, group velocity and forcing of the wave; C' is a complex parameter.

Throughout this thesis we will seek localized oscillatory states in a PDE with explicit
time dependent parametric forcing that is based on the PDE in [70]. We will present this
PDE model in section 1.4. We find excellent agreement between oscillons in this PDE
and steady structures found in appropriate amplitude equations; this is the first complete

study of oscillatory localized solutions in a PDE with explicit time dependent forcing.

In the next sections we will discuss some basic theoretical approaches in order to study

localized states.

1.2 Theoretical approaches

A fundamental theoretical approach to studying pattern-forming problems is based on
describing the slow dynamics of a driven system as a phase transition or symmetry-

breaking bifurcation. The basic idea is to study the transition in stability of a trivial state
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as a control parameter (in our study, ) passes through its critical value, with the critical
value determined from a linear stability analysis. The analysis then lies in the study of

weakly nonlinear dynamics of the problem slightly beyond the instability point.

If we consider the linearized problem about the trivial state and examine the stability of

Fourier modes e?tt=

where k is a wavenumber, the trivial state is linearly stable if the
real part of the growth rate o is negative for all k. An instability corresponds to the real
part of o (for some wavenumber) first passing through zero; we define the corresponding
F value as F' = F,. The critical wavenumber |k| = k. for which this determines whether
the bifurcation is finite-wavelength (k. > 0) or uniform (k. = 0). The amplitude of the

unstable modes will grow exponentially until nonlinear effects become important.

The theoretical analysis of pattern-forming systems can be often described by reducing the
governing equations to their amplitude equations (equations for the nonlinear evolution
of the amplitude of the unstable modes) by studying dynamics between different modes:
active modes, which are growing, and passive modes, which are decaying, or neutrally
stable modes, which are neither growing nor decaying. Amplitude equations have become
an important tool in the study of pattern formation problems. They have been successfully
applied to a wide range of physical systems. Amplitude equations are often studied
as general models for pattern formation phenomena as they are the simplest nontrivial
models that enjoy the correct properties. In large or infinite boxes, the amplitude equations
are known as envelope equations. In this case the behavior of the active modes is
modulated by the envelope over a slow timescale and a large spatial scale [62]. Often

the term amplitude equation is used to refer to both amplitude and envelope equations.

Fourier modes of the form e(‘2++%)

, with real frequency () and wavenumber k, are
travelling waves, and move from place to place with constant speed, and transport energy.
Standing waves refer to waves that remain in a constant position. They can arise as a result
of interference between two waves travelling in opposite directions. When the amplitude

of the wave is modulated, the variation in the amplitude is called the envelope of the wave.
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Modulated waves can vary in space and time.

The behavior of a system near the bifurcation point with a slowly varying envelope was
studied by Newell and Whitehead [63] and Segel [75]. They investigated the formation of
stationary patterns in convection systems. Amplitude equations also appear in the work

of Ginzburg and Landau, though their study was in superconductivity [35].

In this thesis, we use weakly nonlinear analysis in order to derive the amplitude equations
of a particular PDE model. We will briefly talk about the procedure of this method in the

next section.

1.2.1 Weakly nonlinear analysis

The governing equations of motion in most pattern-formation systems are nonlinear
and can not be solved analytically. Weakly nonlinear analysis is a common approach
to analyzing such equations, dating back to the middle of the last century [56]. The
presentation of the method in this section follows [41,88]. We consider a nonlinear system
of the form

LU = foon(U,x,t, F), (1.3)

where Uz, t) is a (vector-valued) complex function, L is a (matrix) linear operator (which
can include the forcing F' and differentiation in time and space), and f,,, is a function
that contains the nonlinear and forcing terms. We assume that F' is the control parameter
of the system (1.3). Usually, the zero flat state loses stability at a critical value F' = F,,

and the critical eigenfunction can have zero or non-zero wavenumber and frequency.

Weakly nonlinear theory is a method that is used for studying the dynamics of a system
when £ is close to the critical value F,.. Thus, the amplitude of the perturbations is just
large enough for the nonlinear terms to become relevant. In this case there are only a
few unstable modes. The purpose of using weakly nonlinear analysis is to get a set of

reduced amplitude equations that describes the motion of the governing equation, and
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which captures the nonlinear interaction between the few unstable modes.

However, using weakly nonlinear theory can be very tricky to approach. The difficulty
comes from the fact that there are a number of ways of constructing weakly nonlinear
equations, and also because the methodology and the result are not unique. However,
the key is to determine, ahead of time, the type of dynamics we aim for. Over time, it
gets easier to do the reduction by experience and practice. Additionally, the method will
determine whether a subcritical or supercritical bifurcation occurs. A small parameter is
introduced, using the distance above the bifurcation point |F' — F,| in a multiple scales
analysis. Therefore, we begin the analysis with the near-threshold condition F' = F.(1 +

€2Fy), where 0 < e < 1.

In order to modulate the envelope of the wave e?*<%, so that the amplitude of the governing
equation varies in slow time and slow space, we apply an appropriate multiple scales
analysis. Thus we introduce the temporal and spatial variables, T' = €'t and X = €', for

some integers i and j. We then expand the variable U (x, t) as series in powers of €:
U= €"Un, (1.4)
m=1

where U, is O(1) complex functions for all m € Z.

We substitute (1.4) into (1.3), and then we solve the problems that occur at successive
orders of €. The linear analysis appears at the lowest order of €. As we mentioned before,
it takes some thought to get the scaling right (selecting correct values of ¢ and j) until

eventually we end up with the required nonlinear amplitude equation.

At O(e), the linear problem arises

LU, =0, (1.5)

which normally has a non-zero explicit solution that contains a combination of

components evolving over the fast scales of space z and time ¢, multiplied by the
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modulation of the amplitudes in slow space and time. At higher order of ¢, we can
determine the evolution of these amplitudes. At a specific order (m) of €, we get problems
of the following form

Lu,, = f. (1.6)

non’

where [ refers to the slow derivatives, forcing, and nonlinear terms at O(€™). We must

ensure that there are no resonant terms at the equation of U,,, so that U,, is bounded.

Another way to investigate this problem is to look at the adjoint linear operator of (1.5).

The adjoint linear operator L is defined by

(f(x,1), Lg(x,)) = (L'f(x,1), g(w, 1)), (L.7)

for all sufficiently smooth functions f and g, where (f(x,t), g(z,t)) is the inner product

given by

<f(m,t),g(x,t)> :A—L/A/pr(a:,t)g(x,t)dtdx,

where f is the complex conjugate of f, A is the spatial domain, and 1) is the temporal
domain. The procedure we must follow requires the imposition of solvability conditions,
applied through the Fredholm Alternative Theorem [46]. This theorem says that for a

bounded linear operator L with a problem of the form
Lu=f and Llv=yg (1.8)

for some continuous functions f and g, one of the following holds:

e cither the inhomogeneous equations (1.8) have unique solutions u and v

respectively, and the corresponding homogeneous equations,

Lu=0, and L'v=0
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have only the trivial solutions v = 0 and v = 0.

e or the homogeneous equations
Lu=0, and L'v=0,

have the same number of linearly independent solutions. In this case,

inhomogeneous equations (1.8) have a solution if and only if f and g satisfy
(v, f) =0, and (g,u)=0, (1.9)

for each u, v satisfying LTv = 0 and Lu = 0.

In our study in this thesis, the operator L contains differential operator and is hence
unbounded. However, we can make L bounded by choosing appropriate boundary
condition and restricting its domain to an appropriate function space [37]. We will not

consider these functional analytic details in this thesis.

As we explained above, equation (1.5) has a non-zero solution, so it is the second of these
alternatives that applies to weakly nonlinear theory. Therefore, if LU,, = f/: has a

non

solution, then

(V, fim) =V, LUp) = (L'V,Uy) = 0, (1.10)

> Jnon

for any non-zero V that satisfies L'V = 0. This is often called the solvability condition,
and having imposed this condition, (1.6) can be solved for U,,. It is equations of the form

(1.10) that lead to the amplitude equations.

We do not explicitly outline the weakly nonlinear method and derivation of the solvability
conditions for the parametrically forced PDE of interest here. We will give direct

derivation and application of solvability conditions in Chapter 2 and Chapter 3.
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1.3 Localized states in the Swift—-Hohenberg equation

There have been many studies in recent years of the Swift-Hohenberg equation, which
is a model for pattern-forming features introduced by Swift and Hohenberg [78], in their
study of random thermal fluctuations in Boussinesq convection in the limit of an infinite

domain. Additionally, it is considered as a generic model of pattern formation:
Ou=ru— (1 +82)°u+ N(u;b), (1.11)

where u(z, t) is a real scalar variable that represents the pattern-forming activity, r and b
are real parameters, and N (u; b) refers to nonlinear terms. There are two common choices
of the nonlinear terms NN (u;b) that produce the essential element of finding localized
states, bistability: the quadratic—cubic nonlinearity Nos(u;b) = bu? — u® and the cubic—
quintic nonlinearity Ns5(u;b) = bu® — u®. These nonlinear terms allow a subcritical
bifurcation of a small amplitude state and stability of a large amplitude state. Equations
such as the Swift-Hohenberg equation have the advantage that they are simple enough
to be studied analytically in detail, while having the same qualitative pattern formation

features that can be observed in experiments or more realistic systems. It is a variational

model in time and the steady form of the equation is conservative in space.

In the Swift—-Hohenberg equation with /No3, a common approach is to consider a fixed b
and to treat r as the primary bifurcation parameter [12]. The quadratic term allows small
amplitude destabilization, while the negative cubic term gives large amplitude stability.
The trivial state u(z, t) = 0 exists and is linearly stable for all values of b when the control
parameter r is negative. The trivial solution undergoes a pattern-forming instability when
it loses stability at » = 0, and Fourier modes e*** with wavenumber k close to one
become unstable for positive . At r = 0, the secondary parameter b identifies the type
of criticality of the pattern-forming instability. The bifurcation diagram is supercritical if
b* < 2L and subcritical if b > ZI. The Swift-Hohenberg equation with cubic—quintic

nonlinearity N35, has the same linear stability properties as the quadratic—cubic equation.
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The pattern-forming pitchfork bifurcation is subcritical when b is positive.

The Swift—-Hohenberg equation in both cases of quadratic—cubic and cubic—quintic
nonlinearities has some important symmetries. In both cases, the model has translation
symmetry and is reversible, that it is equivariant under spatial reflections (z,u) —

(—z,u). The model with the N3; nonlinearity has in addition the symmetry (z,u) —

(x, —u).

Localization mechanisms were first introduced in one dimension by Pomeau in [66],
who showed that localized states require a bistability between the trivial and cellular
pattern states in a subcritical bifurcation to exist. The Swift-Hohenberg equation with
cubic—quintic nonlinearity was first studied by Sakaguchi and Brand in [71, 73], where
they showed that stable localized solutions with a large range of lengths can be found.
Sakaguchi and Brand did not discuss how the different branches of localized solutions
are connected. Much of the current understanding of localized states is due to work
by Burke and Knobloch [12-14]. Stationary localized states occur in the parameter
region where the trivial state is stable, and so bistability is an important ingredient for
the existence of localized states. In one space dimension, examples of localized states
in the Swift-Hohenberg model with N,3 nonlinearity from [11] are presented in Figure
1.4. It was found that when the domain size increases, more turns appear in the snaking
curve [27]. Burke and Knobloch investigated spatially localized states in the Swift—
Hohenberg equation with N35 nonlinearity in one spatial dimension [14], which organized

in a characteristic of snakes-and-ladders structure.

Localized states also exist in the extended Swift—-Hohenberg equation with more general
nonlinearity N (u;b) that include terms such as u,, U, and u,,, [11]. These terms can
destroy the variational structure of the Swift-Hohenberg equation; nonetheless, a snaking

bifurcation diagram can still be found.

In two dimensions, localized stationary axisymmetric solutions of the Swift—Hohenberg

equation were studied by Lloyd and Sandstede in [52], in which the existence of radial
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Figure 1.4: Bifurcation diagram of the Swift-Hohenberg equation with the N3
nonlinearity from [11] at b = 1.8. The shaded region is where snaking occurs. Ly and L
indicate the two snaking branches. P is the periodic spatial pattern curve, which includes
the Maxwell point M. The right panel (b) gives several localized solutions along the two
snaking branches. Solid line presents stable branches, and dashed line presents unstable
branches.

pulse, was demonstrated analytically near the pattern-forming instability of the trivial
state. Their numerical investigation found snaking diagrams in the subcritical region,

with localized radial structures of rings and spots.

However, in our research we study localized states in a non-variational PDE problem that

we present in the next section.

1.4 The PDE model

The aim of this study is to investigate localized solutions in a PDE with parametric

forcing, introduced by Rucklidge and Silber in [70] as a generic model of parametrically
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forced systems such as the Faraday wave experiment. This model is not the same as
the Faraday wave experiment, but it is invented in a way that the linear theory can be
reduced to the Mathieu equation as in the Faraday wave experiment. There is no derivation

between the PDE model and Faraday wave experiment. The model PDE is given by

U = (p+iw)U + (a+iB8)Uss + (7 +160) Upagw + Q1U* + Qo|U* + C|UPU +iR(U) f(¢),

(1.12)
where U (x,t) is a complex function, < 0 is the distance from onset of the oscillatory
instability, w, «, 3, 7, and 0 are real parameters, and ()1, ()2, and C' are complex

parameters. The forcing function f(¢) is a real 27 periodic function in time.

In this model the dispersion relation can be readily controlled, and the nonlinear terms are
chosen to be simple in order that the weakly nonlinear theory and numerical solutions can
be computed easily. The model shares some important features with the Faraday wave
experiment but does not have a clear physical interpretation. The forcing term is chosen
to be iF cos(2t)R(U) in order to result the Mathieu equation. The frequency and the
growth rate depend on wavenumber. It has quadratic nonlinear terms, so it allows three-
wave interactions. Additionally, the PDE model has a Hamiltonian limit, as does the
fluid problem with low viscosity. The linearized problem reduces to the damped Mathieu
equation in the same way that hydrodynamic models of the Faraday instability reduce to

this equation in the inviscid limit [7] when viscusity is zero and the depth is infinety.

The model was introduced in order to understand how quasipatterns are stabilized in
the Faraday wave experiment. Here, we use the same model (with different choices of

parameters) to interpret the oscillons that are found in the Faraday wave experiment.

1.5 Structure of the thesis

This thesis contains five chapters, including this chapter. We begin our investigations

in Chapter 2 by considering the case where the wavenumber k is zero at onset. We
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start our analysis by this case because we know that localized states can be found.
Analytically, in the weak forcing, weak damping, weak detuning and small amplitude
limit, we do a reduction of the model PDE (1.12) to its amplitude equation, the forced
complex Ginzburg-Landau equation (1.1). Furthermore, we reduce the forced complex
Ginzburg-Landau equation to the Allen—Cahn equation near onset, which has exact sech
localized solutions. We also extend this analysis to the strong forcing case recovering the
Allen—Cahn equation directly from the model PDE without the intermediate step. We find
excellent agreement between numerical localized solutions of the model PDE, localized
solutions of the forced complex Ginzburg—Landau equation, and localized solutions of
the Allen—Cahn equation. This is the first time that a PDE with time dependent forcing
has been reduced to the Allen—Cahn equation, and its localized oscillatory solutions
quantitatively studied. In this chapter the preferred wavenumber is zero, so results are

directly relevant to localized patterns found in Turing systems.

In Chapter 3 we investigate the existence of localized oscillons with non-zero preferred
wavenumber. This chapter includes work that is more relevant to the Faraday wave
experiment, where the preferred wavenumber at onset is non-zero. The PDE model
(1.12) is reduced to the coupled forced complex Ginzburg-Landau equations (1.2) in
the limit of weak damping, weak detuning, weak forcing, small group velocity, and
small amplitude. We find localized structures in the coupled forced complex Ginzburg—
Landau equations numerically for the first time. Near onset, we reduce the coupled forced
complex Ginzburg-Landau equations (1.2) asymptotically to the real Ginzburg—Landau
equation, which also has exact sech localized solutions. We compare quantitatively the
localized solutions from the real Ginzburg—Landau equation with oscillons that we find

numerically in the PDE model.

In Chapter 4, we find examples of localized oscillons in the PDE model with cubic—
quintic nonlinearity in the strong damping, strong forcing and large amplitude case.
Numerical results we present in this chapter were found by time-stepping. In one spatial

dimension, we find evidence for two snaking localization curves. In two dimensions, we
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give examples of axisymmetric and non-axisymmetric oscillons.

We conclude and discuss future work in Chapter 5.

17
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Chapter 2

Localized patterns with zero

wavenumber

2.1 Introduction

The complex Ginzburg—Landau (CGL) equation is the normal form description of pattern
forming systems close to a Hopf bifurcation with preferred wavenumber zero [20].
Adding time dependent forcing to the original problem results in a forcing term in
the CGL equation, the form of which depends on the ratio between the Hopf and
driving frequencies. When the Hopf frequency is half the driving frequency (the usual
subharmonic parametric resonance), the resulting PDE is known as the forced complex

Ginzburg—Landau (FCGL) equation [15]:
Ap = (i +iv)A+ (1 +ir)Axx — (1 +ip)|APA+TA, 2.1)

where all parameters are real, and £ is the distance from the onset of the oscillatory
instability, v is the detuning between the Hopf frequency and the driving frequency,
represents the dispersion, p is the nonlinear frequency correction, and I' is the forcing
amplitude. The complex amplitude, A(X,T"), represents the oscillation in a continuous

system near a Hopf bifurcation point in one spatial dimension. In the absence of forcing,
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Figure 2.1: Localized solutions of the FCGL equation (2.1) with i = —0.5, p = 2.5,
v =2,k = —2,and I' = 1.496; the bifurcation point is at Iy = 2.06, following [15].

the state A = 0 is stable, so i < 0. The amplitude of the response is |A|, and arg(A)

represents the phase difference between the response and the forcing.

The FCGL equation is a valid description of the full system in the limit of weak forcing,
weak damping, small amplitude oscillations and near resonance [21,31]. This model is
known to produce localized solutions in 1D [15] and in 2D [61]. It should be noted that
these localized solutions have large spatial extent (in the limits mentioned above) and so
are different from the oscillons observed in fluid and granular experiments. In spite of
the cubic coefficient in (2.1) having negative real part, the initial bifurcation at I' = I'j is
subcritical, the unstable branch turns around in a saddle-node bifurcation, and so there is a
non-zero stable solution (the flat state) close to I'g. The localized solution is a homoclinic
connection from the zero state back to itself (Figure 2.1). Further from Iy, there are fronts

(heteroclinic connections) between the zero and the flat state and back.

In this chapter we simplify the PDE (1.12) by removing quadratic terms, by taking
the parametric forcing to be cos(2t), where ¢ is the fast time scale, by working in one

rather than two spatial dimensions, and by removing fourth-order spatial derivatives. The
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resulting model PDE is:

Up = (p+iw)U + (a4 iB)Ups + C|UPU + iR(U) F cos(2t), (2.2)

where the forcing amplitude F'is real, and C' is a complex parameter.

We first seek oscillon solutions of (2.2) by choosing parameter values where (2.2) can
be reduced to the FCGL equation (2.1). In particular, the preferred wavenumber will be
zero, and we will take F' to be small, 1 < 0 to be small, and w will be close to 1. We will
also consider strong forcing and damping below. In the Faraday wave experiment the
k = 0 mode is neutral and cannot be excited, which means experimental oscillons can
only be seen with non-zero wavenumbers. This indicates a qualitative difference between

this choice of parameters for the PDE model and the Faraday wave experiment.

Here we study equation (2.2) in two ways. First, in Section 2.2 we reduce the model
PDE asymptotically to an amplitude equation of the form of the FCGL equation (2.1) by
introducing a multiple scales expansion. The numerically computed localized solutions
of the FCGL equation (e.g., Figure 2.1) will then be a guide to finding localized solutions
in the model PDE. Second, we solve the model PDE itself numerically using Fourier
spectral methods and Exponential Time Differencing (ETD2) [23]. We are able to
continue the localized solutions using AUTO [6], and we make quantitative comparisons
between localized solutions of the model PDE and the FCGL equation. In Sections 2.3
and 2.5 we will do reductions of the FCGL equation and the PDE to the Allen—Cahn
equation [1, 34] in the weak and strong damping cases respectively; the Allen—Cahn
equation has exact localized sech solutions. We give numerical results in Section 2.4 and

we conclude in Section 2.6. The results of this chapter appear in [2].
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Figure 2.2: The growth rate of equation (2.2) with © = —0.005 and o = 1.

2.2 Derivation of the amplitude equation: weak damping

case

In this section we will take the weak forcing, weak damping, weak detuning and small
amplitude limit of the model PDE (2.2), and derive the FCGL equation (2.1). Before
taking any limits and in the absence of forcing, let us start by linearizing (2.2) about

€Ut+ika:

U = 0, and consider solutions of the form U(z,t) = , where o is the complex

growth rate of a mode with wave number k. The growth rate o is given by
o =p—ak®+ilw— pE?), (2.3)

where 0 = o, + 10;. Figure 2.2 presents the real part of the growth rate o,.. The forcing
F cos(2t) will drive a subharmonic response with frequency 1; by choosing o > 0 and w
close to 1, we can arrange that a mode with k close to zero will have the largest growth

rate. With weak forcing we also need p, which is negative, to be close to zero, otherwise
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all modes would be damped. In this case, we are close to the Hopf bifurcation that occurs

at p = 0.

We now consider the linear theory of the forced model PDE:
U= (p+iw)U + (a+if)Uy + iRe(U)F cos(2t), (2.4)

This can be transformed to a Mathieu-like equation [70]. The normal expectation would
be that cos(2t) would drive a subharmonic response at frequencies +1 and —1. However,
because w is close to 1, the leading behavior of (2.4) is

0 : 2 .
EU—ZU, or €1U— (E—Z)U—O

The component of U at frequency —1 cancels at leading order, while the component at
frequency +1 dominates. Furthermore, since w = 1 4+ v with v small, and since the
strongest response is at or close to wavenumber k& where w — 8k? = 1, modes with
wavenumber k£ = 0 will be preferred. Therefore, the leading solution is proportional to
e', and so we will seek solutions of the form U(xz,t) = Ae', where A is a complex
constant. The argument of A relates to the phase difference between the driving force and

the response, and is not arbitrary. Later, we will allow A to depend on space and time.

A necessary condition for the existence of localized states is that the trivial states have at
least one spatial eigenvalue with positive real part and one with negative real part. Thus,
in Figure 2.3 we show the motion of the eigenvalues in the complex plane as F’ varies.
Figure 2.3 (a) shows the spatial eigenvalue structures of the trivial state that is determined
by linearizing the PDE model (2.2). When F' < Fj, there are four eigenvalues, two there
are approching zero as well as 12 others. As [’ continues to increase one of the pairs of

eigenvalues moves towards the origin and collides at zero when F' = F{. The uniform flat
+

unt

state A- . bifurcates from the A = 0 state at F' = F{, so that this collision corresponds

to the bifurcation. When F' > Fj the zero eigenvalues spilt along the imaginary axis.
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Therefore, spatially localized states may exist everywhere in F' < Fj. Figure 2.3 (b)
presents the spatial eigenvalues of the non-trivial flat state. All these eigenvalues were

computed using AUTO. In fact, AUTO computes Floquet multipliers in space at each

Floquet Izlxultlplwrs) _where L, is

value of F', and the spatial eigenvalues are then log <

the domain size.

To apply standard weakly nonlinear theory, we need the adjoint linear operator EI. First

we define an inner product between two functions f(¢) and g(¢) by

(000 =5 [ Foatrar @5

where f is the complex conjugate of f. With this inner product, the adjoint operator o,

defined by <f, €1g> = <€1f, g>, is given by

The adjoint eigenfunction is then UT = e, We take the inner product of (2.4) with this

adjoint eigenfunction:

0= (U (U)+ (U, (u+iv)U +iRe(U)F cos(2t))

1 . F _ .
=0+ — (p+iv)Ue ™ + Z—(U + U)(e" + e %) dt.
2m Jo 4

We write U = Y2 °° _ Uje'", and U = S Uiemiit, so

j=—o00

L[ io G-
— i(j—1)t
=5 /. (u—Hv)j_ooUeJ

F [ . - o o
+ ZZ ( Z Ujel(J-f-l)t + Ujel(ﬂ—3)t + Ujel(—]-‘rl)t + Ujel(—J—3)t) dt

j=—00

F ~ ~
= (IU—FZV)Ul—FZI(U,1+U3+U1+U,3)
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Figure 2.3: Temporal stability of (a) the zero and (b) the non-zero flat solutions as a
function of the forcing amplitude F. Solid (dotted) lines represent stable (unstable)

solutions in time. The insets represent the spatial eigenvalues in the complex plane, which
do not govern temporal stability.
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Since the frequency +1 component of U dominates at onset, as discussed above, we retain

only U; and U, which satisfy

W+ % U, 0
—% w—iv| | 0

This system has a non-zero solution when its determinant is zero; this gives the critical

forcing amplitude Fy = 44/ p? + v2. This equation also fixes the phase of U;.

To perform the weakly nonlinear calculation, we introduce a small parameter € and make
the substitutions: w = 1 + €?v, F — €2F, u — €*u, and expand the solution U in
powers of € as

U=eU, + Uy + Uz + ..., (2.6)

where Uy, Us, Us, ... are O(1) complex functions.
At O(e), we get (,U; = (£ — i)U; = 0, which has solutions of the form

Uy = A(X,T)e",

where the amplitude A is O(1), and X and T are slow space and time variables: T = €*t,

and X = ex. At O(e?), we have Uy(z,t) = 0. At O(e?), equation (2.2) is reduced to

oU . _O%U
OUs + == = (n+ww)Uy + (a +1if) 8X21

a7 + C|UL|*Uy + i F cos(2t) Re(Uy),

We take the inner product with U- f , and use <U f 0 U3> = 0 to find the amplitude equation

for a long-scale modulation:
. . 2 i
Ar = (p+iv)A+ (a+if)Axx + ClA|"A + IA. (2.7)

We can do a rescaling of the equation (2.7) in order to bring it to the standard FCGL form

by rotating A — Ae'i, which removes the 7 in front of the A term but does not affect
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any other term. With this, the amplitude equation of the model PDE reads
Ap = (u+iv)A+ (a +iB)Axx + C|APA+TA, (2.8)

where [' = %. A similar calculation in two dimensions yields the same equation but with

Axx replaced by Axx + Ayy.

One can see that the amplitude equation (2.8) takes the form of the FCGL equation (2.1).
We are now in a position to use the results from [15], where they find localized solutions of
(2.1), to look for localized solutions of the model PDE (2.2). The stationary homogeneous

solutions of (2.8), which we call the flat states, can easily be computed. These satisfy:
0= (p+iv)A+ C|A?A+TA.

To solve this steady problem we look for solutions of the form A = Re'®, where R is real

and ¢ is the phase. Dividing by Re® results in:
0= (u+iv)+CR*+Te 2 (2.9)

We can then separate the real and imaginary parts and eliminate ¢ by using sin® ¢ +

cos? ¢ = 1 to get a fourth order polynomial:
(C? 4+ CHR* + 2(uCy + vC)R? —T% 4 12 + 1> = 0, (2.10)

where C' = C, + iC;. This can be solved for R?, from which ¢ can be determined using

(2.9).

Examination of the polynomial (2.10) shows that when the forcing amplitude I' reaches

'y = \/p? + v2, a subcritical bifurcation occurs provided that C,. +vC; < 0. A flat state

. . . i 2
A . is created, which turns into the A} . state at Ty = \/ —% + p? + v2, when a

saddle-node bifurcation occurs. We will reduce (2.8) further in Section 2.3 by assuming
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we are close to onset, and finding explicit expressions for localized solutions.

2.3 Reduction to the Allen—-Cahn equation: weak

damping case

The FCGL equation (2.8) can be reduced to the Allen—Cahn equation [15, Appendix A]
by setting I' = Ty + €2\, where T’y = /2 + 12 is the critical forcing amplitude, ) is the
bifurcation parameter, and ¢; is a new small parameter that controls the distance to onset.

We expand A in powers of ¢ as

A(X, T) = €1A1<X7 T) + G%AQ(X, T) + G?Ag(X, T) + ceny

where A;, Ay, As are O(1) complex functions. We further scale ;2 to be O(e?) and &

aT
to be O(€y).
At O(e;) we get

0= (u+iv)A + 2+ 24,
which defines a linear operator
ptiv pr+ | | A 0
\/m JI 1% Ay 0
The solution is A; = B(X,T)e'**, where B is real, and the phase ¢; is fixed by e=2¢1 =

__ ptiv

. This gives

()
v Y
At O(€3), we have

Bre'® = (p +iv)As + (a4 i8) Bxxe™ + CB3et + ABe ™" +TA;.  (2.11)
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We take the complex conjugate of (2.11) and multiply this by e~%!, and then add (2.11)
multiplied by e** to eliminate As;. With this, equation (2.8) reduces to the Allen—Cahn

equation

12 2 C. Cl
By = A g leptpr)p o 1CtvGips 2.12)
u 7 7

We can readily find localized solutions of (2.12) in terms of hyperbolic functions. This

leads to an approximate oscillon solution of (2.8) of the form

_ /22 _ /22 ‘
A:\/Z(F Lo) v/t +Vsech \/(F Loy +VX el (2.13)

puCy 4+ vC; (ap + Br) ’

provided I' < 'y, u < 0, uC,. + vC; < 0, and ap + Br < 0. Note that in the PDE (2.2)
we have the assumption U; = eAe”, therefore the spatially localized oscillon is given

approximately by

F — Fo)\/u2 + 172 F— B\t 2 \ .
UZOCZ\/( D)V K Y cech \/< 0) Vi Rl eltHon) (2.14)

2(pCy 4+ v(Cy) 4(ap + Pr)

again provided [’ < Fj. We compare the approximate solution Uj,. with a numerical

solution of the PDE below, as a dotted line in Figure 2.9(a).

2.4 Numerical results: weak damping case

In this section, we present numerical solutions of (2.1) (in the form written in (2.8)) and
(2.2), using the known [15] localized solutions of (2.1) to help find similar solutions of

(2.2), and comparing the bifurcation diagrams of the two cases.

We use both time-stepping methods and continuation on both PDEs. For time-stepping,
we use a pseudospectral method, using FFTs with up to 1280 Fourier modes, and the
exponential time differencing method ETD2 [23], which has the advantage of solving the

non-time dependent linear parts of the PDEs exactly. We treat the forcing term (I' A and
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Figure 2.4: The truncated Fourier series in time of a localized solution of the PDE (2.2),
showing that e%, with frequency +1, is the most important mode, that frequencies —3,
—1, and +3 have similar importance, and that higher frequency modes have amplitudes
at least a factor of 100 smaller. The parameter values are ; = —0.005, a = 1, § = —2,
v=2,F =0.0579,and C = —1 — 2.5:.

Re(U) cos(2t)) with the nonlinear terms.

For continuation, we use AUTO [6] (see Appendix A), treating x as the time-like
independent variable, to find steady solutions of the FCGL (2.8). For the PDE (2.2),
we represent solutions with a truncated Fourier series in time with the frequencies —3,
—1, 1 and 3 (see Figure 2.4). The choice of these frequencies comes from the forcing

Re(e™) cos(2t) in the PDE, taking U = ¢ as the basic solution, as described above.

Following [15] we will take illustrative parameter values for the amplitude equation
(2.8): p=—-0.5,a=1,8=—2,and C' = —1 — 2.57, and solve the equation on domains
of size Lx = 207. For (2.2), we use € = 0.1, which implies © = —0.005, F' = 0.041",
w = 1.02, L, = 2007, and use the same «, 3, and C'. We show examples of localized

solutions in the FCGL equation and the PDE (2.2) in Figure 2.5, demonstrating the
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Figure 2.5: (a) Example of a localized solution to the FCGL equation (2.7) with p =
—0.5, and F' = 5.984. (b) Example of a localized solution to the PDE model (2.2) with
u = —0.5¢%, and F' = 5.984¢2, where ¢ = 0.1. In both models o = 1, 3 = —2, and
v =2,and C' = —1 — 2.5i. Note the factor of ¢ in the scalings of the two axes.

quantitative agreement as expected between the two.

In all bifurcation diagrams we present solutions in terms of their norms

2 [le
N = —/ |U|? dx,
L, J,

We computed (following [15]) the location of these stable localized solutions in the

(v,I') parameter plane, shown in green in Figure 2.6. In this figure one can see that the
region of localized solutions starts where uC,. + vC; = 0, when the primary bifurcation
changes from supercritical to subcritical [29,45], and gets wider as v increases. We also
show the bistability region of the amplitude equation between the primary (I'y) and the

saddle-node (I'y) bifurcations.

Part of the difficulty of computing localized solutions in the PDE comes from finding
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Figure 2.6: The (v, I')-parameter plane for FCGL equation (2.8), 1 = —0.5, o = 1,
B = —2,and C' = —1 — 2.5¢, recomputed following [15]. Stable localized solutions exist
in the shaded green region. The dashed red line is the primary pitchfork bifurcation at
'y = /1?2 + v2, and the solid black line is the saddle-node bifurcation at I';.

parameter values where these are stable. In the FCGL equation with v = 2, stable
localized solutions occur between I'] = 1.4272 and I'; = 1.5069. In the PDE with
parameter values as above, we therefore estimate that the stable localized solutions should
exist between [T = 0.04I'7 = 0.0573 and F; = 0.0600. We found by time-stepping
a stable oscillatory spatially localized solution in the PDE model (2.2) at ' = 0.058
and used this as a starting point for continuation with AUTO. We found stable localized
solutions between saddle-node bifurcations, at F}" = 0.05688 and £ = 0.06001, which
compares well with the prediction from the FCGL equation. In addition, the bistability
region was determined by time-stepping to be between F,; = 0.04817 and F{y = 0.08165.
As v is varied, the grey shaded region in Figure 2.7 shows the region where stable

localized solutions exist in the PDE.

As the branch of localized solutions is continued the central flat part gets wider as the

parameter I' snakes back and forth (see Figure 2.8 and 2.9). This was first described as
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Figure 2.7: The (v, F')-parameter plane of the PDE model (2.2) with = —0.005, a = 1,
B = —2,and C' = —1 — 2.5:. Stable localized solutions exist in the shaded grey region.
The dashed black line is the primary pitchfork bifurcation and the dashed red line is the
saddle-node bifurcation at F;.

homoclinic snaking by [44], and later described as collapsed snaking [58]. Figure 2.8
presents the snaking regions of the PDE model and the FCGL equation. In this figure we
rescale the PDE, so we can plot the bifurcation diagrams of the amplitude equation and
the PDE model in top of each other. The agreement is excellent. Examples of localized
solutions are given in Figure 2.9 (a)-(f) as we go along the localization curve. Our
comparison between results from the FCGL equation (2.8) in Figure 2.6 and results from

the model PDE (2.2) in Figure 2.7 shows excellent agreement.

Note the decaying spatial oscillations close to the flat state in Figure 2.9 (c)-(f): it is these
that provide the pinning necessary to have parameter intervals of localized solutions.
These parameter intervals become narrower as the localized flat state becomes wider (see
Figure 2.8) since the oscillations decay in space, in contrast with the localized solutions
found in the subcritical Swift—-Hohenberg equation [13]. Figure 2.10 shows an example

of an oscillon in space and time for a period of 27.
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Figure 2.8: The red curves correspond to bifurcation diagram of the PDE model and the
blue curves correspond to the FCGL equation. Solid (dashed) lines correspond to stable
(unstable) solutions. For the PDE we use F' = 4¢2I'. Parameters are otherwise as in
Figure 2.5. Example solutions at the points labeled (a)-(f) are in Figure 2.9. Bifurcation
point in the FCGL is I'y = 2.06, and in the PDE is 'y = 2.05.

In this study so far our calculations have been based on assuming weak damping and

weak forcing. Next, we study the PDE in the strong forcing case.

2.5 Reduction of the PDE to the Allen—-Cahn equation:

strong damping case

In the strong damping, strong forcing case, the linear part of the PDE is not solved
approximately by U; = e, Rather, a Mathieu equation must be solved numerically to
get the eigenfunction [70]. In this case, weakly nonlinear calculations lead to the Allen—
Cahn equation directly, without the intermediate step of the FCGL equation (2.1) with its
I'A forcing. The advantages of reducing the PDE to the Allen—Cahn equation are that
localized solutions in this equation are known analytically, and that demonstrates directly

the existence of localized solutions in the PDE model.
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Figure 2.9: Examples of solutions to (2.2) equation at ¢ = 0 along the localized branch
with p = —0.005, « = 1, § = =2, v = 2, and C = —1 — 2.5;. Bistability region is
between F; = 0.08165 and F; = 0.048173, and localized oscillons branch is between
Fi1* = 0.05688 and F>* = 0.06001. (a) F = 0.07499. (b) F' = 0.05699. (¢)F = 0.06015.
(d) FF = 0.05961. (e) F' = 0.05976. (f) F' = 0.05975. Dot lines represent the real (blue)
and imaginary (red) parts of Uj,.
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Re(U)

Im(U)

Figure 2.10: Example of oscillon in space and time for one period 27 with ;4 = —0.005,
a=1,0=-2,vr=2,F =0.0579,and C = —1 — 2.5i.

We write the solution as U = u + v, where u(z,t) and v(x,t) are real functions. Thus,

equation (2.2) is written in terms of real and imaginary parts of U as

ou 0? 0? 5 9 5 o
o (;H—oza 2)u—<w+6@>v+@(u + v)u — Ci(u + v)v,

(91)_ 0 0 O (02 4+ 02 O (12 4+ 02 "
5 ( —I—B ) (u—l—aa 2)v+ (w4 v + Ci(u® + v¥)u + f(t)u.

(2.15)
We begin our analysis by linearizing (2.15) about © = 0 and v = 0. We write the periodic
forcing function as f(t) = f.(t)(1 + €2)), where f.(t) = F.cos(2t). Here, F, is the
critical forcing amplitude, which must be determined numerically, and is where the trivial

solution loses stability. We seek a critical eigenfunction of the form

U =pi(t) +iqa(t), (2.16)

where p;(t) and ¢;(t) are real 27-periodic functions. Note that in writing « + v in
this form, we are taking the critical wavenumber to be zero. The analysis follows that
presented in [70], but in the current work the spatial scaling and the chosen solution are

different, again because the critical wavenumber is zero. Substituting into (2.15) at onset
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leads to

9 _
ot b1 = —waq,

(2.17)
9 _ = wpy + fe(t)
875 q1 = Wp1 c\l)P1,
which can be combined to give a damped Mathieu equation
d 2
{a — M:| p1+ (w2 + fc(t)w) p1 =0,
or
By = 2ppr + (1 + @ + fe(t)w) pr = Lp = 0, (2.18)

defining a linear operator

L= & 28 (12 + w* + wf.(t))
o Mg T ¢

The critical forcing function f.(¢) = F. cos(2t) is determined by the condition that (2.18)
should have a non-zero solution p; (t), from which ¢ (¢) is found by solving the top line

in (2.17). Using the inner product (2.5), we have the adjoint linear operator, given by

2

0
Lt = 5 2+ (1 4 w? + wfa(t)).

The adjoint equation is LTpi = 0, where p{ is the adjoint eigenfunction, which is
computed numerically. In order to reduce the model PDE (2.2) to the Allen—Cahn

equation, we expand solutions in powers of €; as

U = €U + efug + G?Ug + ..,
(2.19)

2 3
V= €101 + €]V + €]U3 + ...,

where ¢; < 1 and uq, usg, us, ..., v1, Vs, v, ... are O(1) real functions. We introduce the
slow time variable T' = €2t and the slow space variable X = ¢;x. Substituting equation

(2.19) into (2.15), the associated equations at each power of ¢; are as follows. At O(e;),
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Figure 2.11: Examples of solutions to (2.2) in the strong damping limit with ¢ = 0.5,
F=2304,u=-0125,a=1,8=-2,v=2,w=1+ve?, and C = —1 — 2.5i. The
bistability region is between F{y = 2.3083 and F,; = 1.2228. Dotted lines in (a) represent
the real (blue) and imaginary (red) parts of the analytic solution Uj,.. The last panel is a
stable solution obtained by time-stepping the PDE (2.2) at [’ = 1.5, between (b) and (c).
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the linear argument above arises, and we have u; + vy = B(X,T)(p1 + iq1), where
p1 + iq is the critical eigenfunction, normalized so that (p; + iq1, p1 + iq;) = 1, and B
is a real function of X and 7'. Note that the phase of the response is determined by the
critical eigenfunction. At O(€?), the linear problem arises, so there is no interesting terms
appear at this order of ¢;. At O(€3), the problem is written as

8 8u (92u1 821)1
(E - ) ug + o7 = WU + Oan BW + Cp(uf +v])uy — Ci(ud + vi)vy,

0 vy 0*v
(E — >v3 - BT = Wus + fo(t)us + Afe(t)uy +ozaX2 —1—68)(2 + Cp(uf + 7)o,

+ Ci(u? + v})uy

Eliminating vs, we find

o 8 8U1 (%1
Ly = <8t _“> ar Yot

9 0y
() (o - o)

82"01 0 Uy 22
~o (oG + 05 ) eMlom o

—w (G (uf +v7) v1 + C; (u] +v7) wy)
0
. (a _ ) (Cy (12 +2) 11 — G (i +07) vy)
We apply the solvability condition to equation (2.20) (pI, Lus) = 0. We substitute the

solution u; = Bp, and v; = Bgq; into equation (2.20), and then we take the inner product

between p1 and this equation. Note that we use ( gt u) p1 = —wq1, so the equation can
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Figure 2.12: Bifurcation diagram of the PDE with strong forcing and strong damping
black lines represent the zero and flat states, and blue lines represent oscillons. The
parameters as in Figure 2.11. Example solution at the points labelled (a)-(d) are in Figure
2.11.

be then written as
0 0B
oY _ —

+

RS

plwfc(t)p1> AB

2
pl, ((% - ) (ap1 = Bq1) — w (aq + ﬁpl)) %>

pl—w (Cr (P} + @) @+ Ci (0 + ¢7) 1)

_|_
P S

+

0
(a - ) (Co (07 + ) pr — Ci (P} + F) @) >sz
2.21)

We find coefficients of the above equation by computing the inner products numerically.

Therefore, the PDE is reduced to the Allen—Cahn equation as

Br = 1.5687AB + 11.1591Bx x + 9.4717B?, (2.22)
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Figure 2.13: The truncated Fourier series in time of a localized solution of the PDE (2.2),
showing that even with strong forcing, the modes +1, +3, —1, and —3 dominate. The
parameter values are the same as in Figure 2.11.

for the parameter values in Figure 2.11 (a). Note that U = ¢,U;, X = €12, and ef)\ =

£

7 — 1, so that the spatially localized solution takes the form

. ~3.1374(£ — 1) . —1.5687(f — 1) A 1o (s 523
o S sec ERE z | (pi(t) +iqi(t)) . (2.23)

Thus, we have found approximate examples of localized solutions of the PDE, which are
qualitatively similar to those found in the weak damping case. Figure 2.11 (a) shows the
comparison between the numerical solution and Uj,.. This solution is continued using
AUTO to compute a bifurcation diagram in Figure 2.12 and further example solutions
are shown in Figure 2.11 (b)-(d), again qualitatively similar to the weak damping case.
These solutions represent the truncated PDE with —3, —1, +1, 43 Fourier modes, which
continued to dominate the modes that have been discarded (see Figure 2.13). Figure 2.11

(e) is a time-stepping example of a stable localized solution of the PDE.
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2.6 Conclusion

In the present study we examine the possible existence of spatially localized structures in
the model PDE (2.2) with time dependent parametric forcing. Since bistability is known
to lead to the formation of localized solutions, we consider subcritical bifurcations from
the zero state. The localized solutions we find are time dependent, unlike most previous
work on this class of problems; they oscillate with half the frequency of the driving force.
In the weak damping, weak forcing limit, the solutions and bifurcations of the PDE are
accurately described by its amplitude equation, the forced complex Ginzburg-Landau
(FCGL) equation. Our work uses results in [15], where localized solutions are observed
in the FCGL equation in 1D. We reduce the FCGL equation to the Allen—Cahn equation
to find an asymptotically exact spatially localized solution of the PDE analytically, close

to onset.

By continuing the numerical solution of the PDE model (2.2) that we take from time-
stepping as an initial condition, we found the branch of localized states. The stability
of this branch was determined by time-stepping, and the region where stable localized
solutions occur was found. The saddle-node bifurcations on the snaking curve arise from

pinning associated with the decaying spatial oscillations on either edge of the flat state.

The numerical examples we give in this chapter indicate how localized solutions exist
in 1D, and show excellent agreement between the PDE model and the FCGL equation.
The agreement remains qualitatively good even with strong damping and strong forcing.
In the strong damping limit, we reduce the PDE directly to the Allen—Cahn equation
analytically, close to onset. By continuing the approximate solution, examples of stable

localized oscillons are observed numerically.

In the current work the preferred wavenumber is zero, so our results are directly relevant
to localized patterns found in Turing systems, such as those found in [80, 86]. In contrast,
in the Faraday wave experiment, the preferred wavenumber is non-zero, and so this work

is not directly relevant to the oscillons that are observed there. Our interest next is to find



Chapter 2. Localized patterns with zero wavenumber 42

and analyze spatially localized oscillons with non-zero wave number in the PDE model,
both in 1D and in 2D. This will indicate how localized solutions might be studied in
(for example) the Zhang—Vifals model [93], and how the weakly nonlinear calculations

of [77] might be extended to the oscillons observed in the Faraday wave experiment.
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Chapter 3

Localized patterns with non-zero

wavenumber

3.1 Introduction

In the Faraday wave experiment, the preferred wavenumber is away from zero as we
discused in Chapter 1. Consequently, in this chapter we will investigate the existence of
localized oscillons that arise with non-zero preferred wavenumber. Our aim is to find and
analyze spatially localized oscillons with non-zero wavenumber in the PDE model (1.12)
theoretically and numerically in 1D. The approach will be similar to that in Chapter 2,
though more complicated. Although we will work with a model PDE, our approach will
show how localized solutions might be studied in PDEs more directly connected to the
Faraday wave experiment, such as the Zhang—Vifials model [93] or the Navier—Stokes
equations [77], and how weakly nonlinear calculations from the Navier—Stokes equations

might be extended to the oscillons observed in the Faraday wave experiment.

We simplify the PDE as in Chapter 2 by removing quadratic terms, and by taking the
parametric forcing to be cos(2t), where ¢ is the fast time scale. In contrast to Chapter
2, here we will retain the fourth-order spatial derivatives in the PDE model (1.12) with

parametric forcing. The extra term ((y + ¢0)U,...) is needed because we require more
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control over the dispersion relation. The resulting model PDE is then
U = (4 iw)U + (a + iB)Ups + (7 + 10)Uppee + C|UPU + iR(U)F cos(2t), (3.1)

where U(x,t) is a complex function, ;1 < 0 is the distance from onset of the oscillatory
instability, w, «, (3, 7, 0 and F' are real parameters, and C' is a complex parameter as

defined in Chapter 2.

In this case we can model waves with a slowly varying envelope in one spatial dimension

by looking at solutions of the form
Ulz,t) = AX, T)e!™®) 4 B(X,T)e't=2), (3.2)

where X and 7' are slow scales, and x and ¢ are scaled so that the wave has critical
wavenumber k. = 1 and critical frequency (2. = 1. In order to cover the symmetries of the
PDE model, we include both the left- and right-travelling waves but the time dependence
will be e only, without e, In section 3.2.1, we explain in detail how the solution of
the linear operator, that we will define later, involves e only. The +1 frequency will
dominate at leading order because of our choice of dispersion relation. Since the analysis
at this stage of our research study is complicated, we will consider the one-dimensional
case rather than having A and B depend on another long-scale Y, although we consider

two-dimensional patterns numerically in Chapter 4.

In this chapter we will do an asymptotic reduction of the model PDE (3.1) to the
coupled forced complex Ginzburg—Landau (coupled FCGL) equations in the limit of weak
damping, weak detuning, weak forcing, small group velocity, and small amplitude, and
we will study the properties of the coupled FCGL equations. Some numerical examples
of spatially localized oscillons in the coupled FCGL equations will be given. We will also
investigate the effect of changing the group velocity. Furthermore, we will reduce the

coupled FCGL equations to the real Ginzburg—Landau equation in a further limit of weak
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forcing and weak amplitude close to onset, which is known to have exact localized sech
solutions. Throughout, we will use weakly nonlinear theory by introducing a multiple
scale expansion to do the reduction to the amplitude equations as in Chapter 2. Finally,

we give numerical examples of oscillons in the PDE model.

3.2 Derivation of the coupled forced complex Ginzburg-—

Landau (FCGL) equation

In this section we will study the PDE model (3.1) in the limit of weak damping, weak
detuning, weak forcing and small amplitude in order to derive its amplitude equation. In
addition, we will need to assume that the group velocity is small. We start with linearizing

ot+ikx

(3.1) about zero, and as before we consider solutions of the form U(x,t) = e , Where

o is the complex growth rate of a mode with wavenumber k. Without taking any limits

and without considering the forcing, the growth rate is given by the following expression
o= p—ak® +yk* +i(w — Bk* + 5k*), (3.3)

where 0 = o, + i0;, so o, gives the damping rate of modes with wavenumber k, and o;

gives the frequency of oscillation:
Q(k) = 0y = w — Bk* + oK™
We will also need the group velocity of the waves, defined by
vy, = ———> = —28k + 45k>.

We will choose parameters so that we are in a weak damping, weak detuning, and small
group velocity limit for modes with wavenumber £ = 1. Specifically, in order to find

spatially localized oscillons and to do the reduction to the amplitude model, we will
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impose the following:

e All waves have to be damped, so that we need o,.(k) < 0, for all k.

The growth rate o,.(£1) is close to zero.

Waves with k£ ~ 41 are most weakly damped, so ddo;: =0atk==1

Waves with & ~ +1 are driven subharmonically by cos(2t), so o;(%1) is close to 1.

Note that 0;(41) could be close to —1 but not both +1 and —1.

The group velocity v, at & ~ £1 is small.

e The forcing F' cos(2t) is weak.

To have all waves damped we choose ;1 < 0, @ < 0, and v < 0. Choosing o < 0 allows
a non-monotonic growth rate; and o, < 0 requires o > —2,/uy. We also need to make
the growth rate o, to be close to zero when k£ = k. = 1. Therefore, we introduce a new

parameter p, so we have

or(k=1)=p—a+y=¢ép,

where 0 < € < 1 and p < 0. Figure 3.1 shows the real part of the growth rate where the
dissipation p can be determind at k¥ = 1. It indicates that the damping rate is O(¢?). The

growth rate o, achieves a maximum when the wavenumber £ is one, so that

do,
dk

(k=1)=—-2a+4y =0,

which gives the condition o = 2, and so p = 5 + e2p.

The frequency of the oscillation Q(k,) is close to 1 at k = 1, so we can write
QUk=1)=w—-B+5=1+¢,

where v is the detuning. Figure 3.2 shows the dispersion relation (k).



Chapter 3. Localized patterns with non-zero wavenumber 47

Figure 3.1: The growth rate of equation (3.1) with p = —0.255, @ = —0.5, and v =
—0.25. Here 0,.(k = 1) = ¢?p = pu — a + v = —0.005.

To scale the group velocity to be O(¢), we calculate the maximum of the frequency of the

oscillationat k = +1or k = —1:

dO'i
dk

= —2kf3 + 45k> = ev,,

which for k£ = 41 gives 6 = 2&?%. The group velocity at £ = —1 is —ev,.

To perform the weakly nonlinear theory, we assume that the forcing is weak, and so we

scale the forcing amplitude with € as

F = éF, or F =4é€T.
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Figure 3.2: The dispersion relation o;(k) of the linear theory of (3.1) equation with w =
1+8—-0+er=152,8=1,and § =0.4995, v = 2,and ¢ = 0.1.

We relate the parameters in the PDE model with the parameters in the amplitude equations
of the PDE model in a way that we can connect examples of localized oscillons in both
equations. In table 3.1 all PDE parameters are defined in terms of parameters that will

appear in the coupled FCGL equations.

3.2.1 Linear theory

With the parameters as in table 3.1, the linear theory of the PDE (3.1) at leading order is

given by
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The PDE model (3.1) The coupled FCGL (3.16)

s w, a, 3,7, 0, and F p.v, a, B, vy, and T
p=a-ytep=5+ep p =15t
=%
6= vy = —2EH
w=1+5-2 4y y = eslopts
F = 4€T = F

— 4

Table 3.1: Relationships between parameters of the PDE model and the coupled FCGL
equations. Note these relationships depend on the choice of €. The parameters o and 3
are the same in both models.

which defines a linear operator L as

) (B 5 2 N
[ () v (3£}

or we can write it as

A a B 9 \?

2
Note that the term (1 + ;—;) is similar to a term that appears in the classic pattern-
forming PDE, the Swift-Hohenberg equation [78]. To find all solutions, we substitute

U = % into the above equation to get

. a f 2
—o+1+ (§+z§) (1—k2) =0,

which becomes

0:i+<%+i§> (1- k).
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We assume that our problem has periodic boundary conditions. The periodic boundary
condition implies that £ € R. Furthermore, we require o, = 0 since we are considering

neutral modes. The real and imaginary parts of this equation give
k=41 and o =1.

Therefore, LU = 0 implies that neutral modes are a linear combinations of U(z,t) =

e+ and U(z, t) = e't=2).

3.2.2 Weakly nonlinear theory

In order to apply the standard weakly nonlinear theory, we need the adjoint linear operator

L'. Therefore, we define an inner product between two functions f(x,t) and g(z,t) by

<f(:zc t),g 472/ / f(z, t)g(x,t) dt dz, (3.5)

where f is the complex conjugate of f. We will do integration by parts since we have
periodic boundary conditions. The adjoint linear operator L' is defined with the above

inner product by

(Fla,), Lg(a, 1)) = 4—12/2 /2ﬂf(—gt+ (% i <1+§)> g> dt o
+@ ; /zw (ozﬂﬁ)gm (%Hg) gmm) dt de,
W 2ﬁ/%(f ( (1+§))f>g dt dx
A ( %(omﬂ Vow (5 415 ) Fone ) a1

= (L'f(, )(
(3.6)

and so
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This adjoint linear operator changes the sign of % term and takes the complex conjugate of
other terms of L. The adjoint eigenfunctions are given by solving L f = 0; the solutions

are linear combinations of ¢(£%)

We expand U in powers of the small parameter € as in Chapter 2:
U=elUy + €Uy + EUs + ..., (3.7)

where Uy, Us, Us, ... are O(1) complex functions. Recall that

[\

&+

=—+4e€

w 5 p;

o«

7_27

w:1+§—69—|—621/,
B ev

§="4 -1
2 4"’

F = 4¢€T.

We will derive solutions U;, Us, Us, ..., at each order of e.

At O(e), the linear theory arises and the linear operator defined above acts on U; as
LU, =0.
The solution U; takes the form
Uy = A(X,T)e'"™™ 4 B(X, T)e =), (3.8)

where the amplitudes A and B are functions of X and 7', the long and slow scale

modulations of space and time variables:

T=¢e and X =ex.
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The multiple scale expansions below will determine the evolution equations for A(X,T")

and B(X,T).

92U,
0x0X

Rl
0r30X

At second order in €, we get LU; = (. Note that term cancels with term. We

8,

would have had a 755\

as a forcing term at O(e?) if we had not ensured that the group

velocity is O(e).

At third order in ¢, we get

oUuy oU, (o | B £ 0?Us
E_‘_a_T_(2+Z(1+2))U3+(a+zﬂ)8x2

a B\ 0*Us . 02U,
+ (5‘{—25) e +(p+ZV)U1+(Oé+ZB> X2 (39)

+6 9+ié Uy 1w R
2 2 ) 0x20X?2 I0x30X

+ 44T cos(2t) Re(Uy) + C|U, Uy,

which becomes U7
8_T1 = LUs + (p + iv)Uy + (a + i)

0*U;
0X?

(6% 6 84U1 . 84U1
a0 3.10
0 (2 “2) 20X V1930 10

+ 4iT cos(2t) Re(Uy) + C|U, |*Us.

The linear operator L is singular so we must apply a solvability condition: we take the

inner product between the adjoint eigenfunction e’***) and equation (3.10), which gives

ei(t+z) % — <e’i(t+x) LU3> + (p+ZV) <ei(t+x) U1> + (a‘i‘lﬁ) e’i(tJr:r) %
Y aT Y ) 7aX2

4 4
i(t+e) @, B 0"t » i(t+a) ﬂ
* <e 6 (2 +Z2) azoxz) T\ amax

+ 4T () cos(2t) Re(Uh)) + C (') UL 20 )

(3.11)
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We have
<€i(t+x)’ LU3> — <[jrei(t+ﬂc)7 U3> =0,

so Uj is removed, and equation (3.11) becomes an equation in U;:

i(t+x aUl . i(t+x . it 82U1
<€(tJr )’6_T> = (p+iv) (e v )7U1> + (a+ip) <€(tJr )’W>

4 4
i(t+z) @ ﬁ U - it+a) U
+<6 ’6<2“2) o2ox2 ) T \C amax

+ 44T () cos(2t)Re(Uh)) + C (') |U|PUL )

(3.12)
Substituting the solution U; leads to
sitt+a) O (AciC+0) 4 Beit=)
ToT
) . ) . 0? .
_ (p + iV) <ez(t+$), (Aez(t—i-x) + Bez(t—x))> + (a + Zﬁ) <€z(t—i-ar)7 m(AeZ(t—m)
i(t—x i(t+x a 6 84 i(t+ax i(t—x
+ Beitt ))> + <€(t+ ). 6 (5 +z§> e (Ae (t+z) 4 Beilt )) >
. i(t+x) o' i(t+x) i(t—x)
+'M)g 61( m,m(Ael( r +B€Z a:)
) 1 ) . . _
+ 4@'F<ez(t+x), 3 cos(2t) (Aez(”t) + Bell™®) 4 AemitH®) 4 Be_z(t_x)) >
+ C<€i(t+x)7 <|A|2 + AB€2i$ + ABG—Qiaz + |B|2) (Aei(t+a:) + Bei(t—w))
(3.13)

The left hand side of (3.13) is

i(t+z) i (A ir | B fiw) it \ L/Zﬂ /zﬂ —ixi (A g 7”) P
e T e e e = 1 ; ; e T e € X
04

==
(3.14)
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We compute the right hand side of (3.13) in three parts. The first five lines are:

0? a B\ 0? . . .
((p +iv) + (a + i) oz 6 (2 + z—) W) (D) (At 4 Beilt=2)) )
84

axa3

27 27 . 82
- / (i) + (a+i8) as
—6(2+ )aX2+gaX)Aedt(m

: 02 0
- ((p +iv) — 2(a + zﬁ)m + Uga—X) A.

+ ivg<ei(t+‘”) (Aeit+2) 4+ Beitt==)) )

The forcing term is:

1
42F<e t+x) cos(2t)(Ae’(t+x + Beillt=2) | fe—iltta) | Bo—ilt— x))>
= 1462;2/ / i(t+x) A —i(4t+2z) +€—2m> +A( 21t+6—21t)

+ B(e'G2) o7ty 4 B(eltTe) 4 e 3 q d

=i'B.
The nonlinear terms are:
C<€i(t+x) <|A|2 + AB€2’i$ + ABG—Zix + |B|2) (Aei(t—i-x) + Bei(t—x)) >

47rz/ / e (JAF+ ABe™ 4+ ABe™" +|B[) (Ae” + Be™") dt  dx

=C (AP +2|B?) A
(3.15)

The above equations result in the following equation for the amplitude A(X,T")

0A 0?A 0A

_ pnoaA oA 2 2 B
57 =(p+iw)A 2(oz+zﬁ)aX2—l—vgaX C (JA” +2|B|?) A+I'B.

By the symmetry A <+ B, and X — —X, we get the equation for B. Therefore the
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amplitude equation is given by

0A 0?A 0A _
— =(p+w)A—2(a+i8)~— + vy + C (JA]* + 2|B|*) A+ iT'B,
or 0X?2 0X 3.16
05 =(p+iv)B —2(a+ ‘5)823 0B +C (2|A]* + |B]?) B+iTA oo
oT = \p (2% « 1 8X2 UgaX 7 .

Thus the PDE model has been reduced to the coupled FCGL, in the weak damping, weak

%A

X2 term

detuning, small group velocity and small amplitude limit. We note that the —2«
makes the above equations look like it might be an ill-posed problem, but recall that

a < 0.

If the group velocity were zero, which means the condition 5 = 20 is valid, the resulting

system becomes

0A DA _
— = (p+iv)A—2(a+ip) + C(|A]* + 2|B|*)A 4 iT'B.
OB _ OB ) ) . '
9T = (p+iv)B —2(« +z5)aX2 + C(2|A]* + |B|*)B + il A.

These equations have solutions where A = B, representing two travelling waves sitting
exactly on top of each other. In equations (3.16) the group velocity terms have different
signs, which makes the envelopes travel in opposite directions. In the next section we
will represent briefly a study of a related problem to equations (3.16), where the group

velocity is O(1) and the domain size L takes a significant role.

3.3 The effect of scaling of the group velocity in the
coupled FCGL equations

In the derivation of the coupled FCGL equations in Section 3.2, we assumed that the group
velocity v, is O(e); but in reality, v, is O(1). Our study reveals that the O(e) assumption
on the group velocity is needed to make progress. Although, in this thesis we scale

the group velocity with O(e), this could be avoided by following the approach in [57],
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which is a study of a related problem. In [57], Martel, Knobloch and Vega investigated
the possible solutions of a pair of parametrically driven weakly dissipative nonlinear
Schrodinger equations with nonlocal coupling. Their work was based on studying the
average of the coupled FCGL equations with the assumption that the group velocity is

O(1). They studied the following system

Ay =iBAu +v,A, + (p+iv)A +iCi(|A* + k| B]*) A+ TB, Gs)
B; = i8Byy — vyB, + (p + iv) B +iCi(|B]* + k|A]*) B + T A,
where the wave amplitudes A and B vary slowly in both space and time, and assumed
to be small. The real coefficients p < 0, v, 3, v, and I' > 0 measure the decay rate,
detuning, dispersion, group velocity of the waves, and the amplitude of the parametric
forcing. The coefficients C; € R and x represent the nonlinear self- and cross-interaction
terms, and they are assumed to satisfy C;(1 + ) # 0. With the choice o = 0, C,. = 0,

Kk = 2, equations (3.16), and (3.18) are the same up to a change of phase.

It was assumed that dissipation, detuning and forcing amplitude are weak. The authors
used a multiple scales analysis based on the domain size L, with A and B representing
the amplitudes of slowly varying left- and right-travelling waves, as in (3.2). They used
left-travelling and right-travelling coordinates, with each wave seeing only the average of
the other. The resulting averaged equations are the nonlocal. These equations were valid

close to threshold of the primary parametric instability. The averaged equations are

A, =iBA,, + (p+iv)A +iCi(|A” + x(|B|*))A + T'(B),

B, = ifBe + (p +iv) B +iCi(| B> + s(|A]*)) B + T(A),

(3.19)

where 7 = © +t, £ = x — ¢, and 7 = 5. The notation (...) refers to an average over the

spatial variable 7 or &.

Spatially uniform and non-uniform solutions with both simple and complex time-

dependence were found. The spatially uniform solutions are in the form of standing
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waves. The properties of the linear stability were studied in the averaged coupled
equations for the trivial and of nontrivial spatially uniform states. The authors looked
at the role of the domain size L, and the effect of distant side boundaries. They did not
study spatially localized solutions. The approach in [57] could allow us to lift the O(e)

assumption on the group velocity v, in future work.

In the next section we will examine the properties of equations (3.16), where the group

velocity plays an important role in the dynamics of the equations.

3.4 Properties of the coupled FCGL equations

In our study we assume that the group velocity v, is small, of order ¢, which means that
we can study the coupled FCGL equations without averaging. Recall that the coupled

FCGL equations are:

Ar = (p+iv)A—2(a+iB)Axx + v,Ax + C(|A]* + 2|B]*)A +iT'B, 320,
Br = (p+iv)B — 2(a +i8)Bxx — v,Bx + C(2|A|* + |B|*) B +il'A,

where p < 0, v, « < 0, 8, v, and I" are real and measure the dissipation, detuning,
diffusion, dispersion, group velocity and forcing of the wave; C' is the original complex

cubic coefficient from (3.1). In the absence of forcing, I' = 0, all waves decay.

Following [41] we can identify the symmetries and how they affect the structure of (3.20):

(i) translation in z: since * — x + ¢*, we get

where A(X,T) — A(X + e¢*, T)e'", B(X,T) = B(X + €¢*, T)e™". If we suppress

the change from X to X + €¢*, then (3.20) is equivariant under

A— A", B — Be ',
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where ¢* is arbitrary.

(ii) reflection in z: since x — —x, we write
U(—z,t) = A(—X,T)e'™ + B(—X, T)e't+e),

Equation (3.20) is equivariant under A — B, Ax — —Bx, and Axx — Bxx.

Amplitude equations arising from a Hopf bifurcation usually have time ¢ translation
symmetry, which manifests as equivariance under phase shifts of the amplitudes.
However, the underlying PDE is non-autonomous, and so rotating A and B by a common
phase is not a symmetry of (3.20). Indeed the cos(2t) term in (3.1) spoils the ¢ translation
symmetry of the original problem. Equations (3.20) do have 7’ translation symmetry, but

this is an artifact of the truncation at cubic order.

The equations (3.20) have solutions made up from travelling waves, standing waves, and
amplitude-modulated waves. Travelling waves move from place to place with constant
speed, and transport energy. Standing waves refer to waves that remain in a constant
position. They can arise as a result of interference between two waves traveling in
opposite directions, and the phase of a standing wave does not depend on position.
When the amplitude of the wave is modulated, the variation in the amplitude is called

the envelope of the wave. Modulated waves can vary with space and time.

The parametric forcing provides an interesting coupling between the two travelling waves
with amplitudes A and B. The coupling terms in the coupled FCGL equations make it
impossible to find pure travelling waves (i.e. A # 0, B = 0 is not a solution of (3.20)).
Solutions of (3.20) can have A and B of unequal amplitude. A special class of solutions is
at small and equal amplitudes, with travelling waves combining to form standing waves.
Indeed, standing waves are typically seen in the Faraday wave experiment. The equations
also have spatially uniform and nonuniform solutions. In the next sections we will analyze

the zero and non-zero flat solutions of the coupled FCGL equations (3.20).
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3.4.1 The zero solution

Here we will study the zero state of the coupled FCGL equations, A = B = 0. The
stability of the zero state under small perturbations with complex growth rate s and
wavenumber ¢ can be studied by examining the dispersion relation, which relates the

+igX

growth rate s € C of a Fourier mode e with wavenumber ¢ € R, so that the

amplitudes A and B take the form
A= AeTtX and B = Be®T X,

where |A| < 0 and |B| < 0 for A, B € C. Substituting these solutions into equation
(3.20), linearizing and taking the complex conjugate of the second equation for B gives
(dropping hats):

sA=(p+iv)A+2(a+iB)g*A +ivyqgA + il B.
3.21)

sB = (p—iv)B+2(a—iB)¢*B — iv,gB — il A.
Note that we chose BesT—%X in order that the exponential term cancel. We can write

equations (3.21) as

p+iv+2(a+iB)g* + iv,g — s il A 0
—il p—iv+2a—if)g* —iv,g—s| |B 0

There is a nontrivial solution only when the determinant of the above matrix is zero, so

(s = (p+iv) —2(a+iB)q* —ivgq) (s — (p — iv) — 2(a — iB)¢* + ivyq) = I
(3.22)
We are interested in locating the bifurcations at which zero solutions is neutrally stable,
so the real part of s is zero. We will show in addition that s must be real. This is not

easy to see directly from (3.22), so we consider first the case where ¢ = 0, and s is pure
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imaginary, so s = 1s;.

The determinant in this case is
(is; — (p+iv)) (is; — (p —iv)) = T2 = 0.

The real and imaginary parts of the above equation give
Re: p? + 12 — 57 =T2
Im: 25,p=0—735,=0 or p=0.

Since p < 0, this gives s; = 0, and
o>+ i =T2
Next, we consider ¢ # 0 with s still purely imaginary; so equation (3.22) becomes
((p+2a¢%) +i(v + 28¢° + vyq — 1)) ((p+ 20¢°) — i(v + 2B¢° + vgq + 5;) =2

The real and imaginary parts of the above equation are
Re: (p+ 2aq%)? + 2v,(V* + 2B¢%)q + (vyq)? — s7 = T2
Im: 2s;(p +2aq¢*) =0 — s; =0, since (p+ 2aq?) # 0, with p < 0 and o < 0.

Therefore, we have a neutral stability condition (s = 0):
(p+2a¢*)* + (v + 2B¢* + vyq)* = T2 (3.23)

Figure 3.3 shows solutions of this equation in the (¢ — I') plane. The stability of the zero
state changes when [' = I', the minimum of the neutral stability curve, and the non-zero
flat state is created with ¢ = ¢.. This corresponds to a uniform pattern in the PDE (3.1)
with wavenumber 1 + €q. The critical wavenumber ¢. can be computed by solving a cubic

equation in ¢ at the minimum of the neutral stability curve (3.23), which is given by

20q(2p + 2a¢%) + (v + 28¢% + vyq)(4Bq + vy) = 0. (3.24)
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10

-1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 3.3: The linear theory of the zero state of the coupled FCGL equations (3.23) with
p=—05v=2 a=-05,3=1,and v, = —2. The blue line is the neutral stability
curve, so above this curve modes grow, while below it modes decay.

The wavenumber ¢, is positive if vv, < 0 and negative if vv, > 0.

3.4.2 Non-zero homogeneous solutions

We study the non-zero flat state, which represents a spatially uniform steady pattern in
A and B with wavenumber 0 (so U(z) has wavenumber 1). In section 3.4.3 below we
consider the case of patterns with wavenumber 1 + eq. With ¢ = 0, the pattern satisfies

the following:

0= (p+iv)A+ C(A]* +2|B]*)A +iTB.
) (3.25)
0= (p+iv)B+ C(2|]A> +|B|*)B + il A.
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In order to solve this steady system we consider solutions of the form A = Rye* and
B = Rye'®2, where Ry is real, and ¢, and ¢, are different phases. We expect these equal
amplitude solutions because of the A <+ B symmetry, but they are not necessarily the

only solutions that can be found.

Substituting the steady uniform solutions into equations (3.25) gives

0= (p+iv)Roe'® + 3CR3'" + il Rye "2,

0 = (p+iv)Rye'® 4+ 3CR3e'* 4 il Rye ™.

In the above equations, Ry = 0 is a solution. For R, # 0, we divide the system by Ry, so

we have

0= (p+iv)e' +3CRye +ile .

0= (p+iv)e + 3CR2e"? + iTe 1,

Dividing the first equation by ¢! and the second equation by ¢%2 results in the same
equation

0= (p+iv)+3CR:+ile™™®, (3.26)

where ® = ¢, + ¢-. This is similar to equation (2.9). Now we can separate the real and

imaginary parts as

0=p+3C.R: +T'sin®.
(3.27)
0=v+3C;R; + I'cos P,

where C' = C, + iC;.

Eliminating ® by using the equality cos? ® + sin? ® = 1 gives the following polynomial

9(C? + CHRy + 6(pC, + vC) RS + p* + 12 — T2 = 0. (3.28)
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This equation can be solved for R3. Moreover, we can solve equation (3.27) for @, which

leads to
_ p+3C.R;

tan® = ———.
T U 3COR?
We compute the discriminant of (3.28) (a degree-2 polynomial in R?) in order to

determine a saddle-node bifurcation. The discriminant of (3.28) is given by
A = 36(pC, +vC;)? — 36(p* + v —T?)(C? + C3).

Studying the polynomial (3.28) shows that the critical forcing amplitude is +/p? + /2,
and a subcritical bifurcation occurs if pC, + vC; < 0. The non-zero flat states A, ,; and

B, are created, which become A/ . and B;

uni uni

at a saddle-node bifurcation (A = 0) when

I' =T, where

(pCr+VCi)2
.

A supercritical bifurcation occurs when pC,. + vC; > 0.

3.4.3 Steady states with constant amplitude

Now we can look at steady uniform amplitude states of the form A = Rye’(@X+1)  and
B = Rye'=1X+92) where R, and q are real, and ¢; and ¢, are the phases. These represent
uniform patterns with wavenumber 1 + €q in U(z). We substitute these solutions into

equations (3.20)

0= (p+ Z'V)Roei(qu) +2(a + w)QZROei(qul) + ivquoei(qx+¢1)
+ 3C R3990 il Rye'eX —92),
0= (p+ i) Roe' "9 4 2(ar +i3) > Rye "9 F%2) 1y q Ryl 95 +92)

+ 30Ry e T9XH92) 4T Rye~aX 01,
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In the above equations, iy = 0 is a solution. For Ry # 0, we divide the system by R,
as before and by €*(@X+%1) (top equation) and e*(-7¥+%2) (bottom equation) to get a single

equation:
0= (p+iv)+2(a+if)g* +ivyg + 3CR; +ile™ ™,
where ® = ¢ + ¢,. The real and imaginary parts of the above equation are

Re: 0=p+2aq¢”+3C,R; + I'sin®.
(3.29)
Im: 0=v+28¢°+ Vgq + 3C;R3 + T cos ®.

We eliminate ® once again by using the equality cos? ® +sin? ® = 1 to give the following

polynomial for Ry:

0=9(C2+ CHR;+ 6 ((p+ 20¢*)C, + (v + vyq + 28¢*)C;) Ry + (p + 204%)?

+ (v +v,q + 2B¢%)* — T2
(3.30)

This equation can be solved for R2. Solving equations (3.29) for ® gives

p+2aq¢* + 3C. R}

tan ® = )
a v+ vyq + 20¢? + 3C; R}

The discriminant of (3.30), as a polynomial in 12, is given by

A =36 ((p +20¢%)C, + (v + vyq + 28¢*)C3)” = 36((p + 2a¢%)* + (v + vyq + 28¢*)?
— ) (C2+C).

Examination of the polynomial (3.30) shows that when the forcing amplitude I' reaches

V(p+2a¢?)? + (v + vyq + 284?)?, a subcritical bifurcation occurs provided that (p +
20¢°)Cy + (v + vyq + 268¢%)C; < 0. Spatially oscillatory states A, and By, are created,

which turns into the Ajp and B;‘; states at a saddle-node (A = 0) bifurcation at I' = I,
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Figure 3.4: The (v — I') parameter plane of the coupled FCGL equations (3.23) with
p = —05,a= 05,8 =1,and vy, = —1. The blue line is the the primary pitchfork
bifurcation at I'., and the red line is the saddle-node bifurcation at I';

with

((p+2a¢®)C + (v + vyq + ZBqQ)C'Z-)2
C2+C? '

[y= \/(p +20¢%)% + (v + vyq + 26¢%)* —
(3.31)

Putting ¢ = 0 in the above expression recovers the results from section 3.4.2. Figure
3.4 shows equations (3.23) and (3.31) in the (v — I') parameter plane of the coupled
FCGL equations for v > 0. It also shows a close up of the intersection point, where
the primary bifurcation changes from supercritical to subcritical at (p + 2a¢®)C, + (v +
vyq + 26¢*)C; = 0 with v = 0.284 (see Figure 3.5). Localized solutions can be found
in the bistability region between I'. and I';. Our investigation reveals that for v < 0 two

preferred wavenumbers can be detected. However, in this section we study the case when
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)Cr + (v + vgq. + 26¢2)C;

2
p

2
c

(p + 2aq;

Figure 3.5: The point where the primary bifurcation of the coupled FCGL equations (3.23)
changes from supercritical to subcritical with p = —0.5, « = —0.5, 8 = 1, and v, = —1,
q. = 0.1.

v > 0, and we leave the v < 0 case for future work.

3.4.4 Localized solutions

Without further simplifications (see section 3.5) analytic expansions for localized
solutions of the coupled FCGL equations (3.20) are not possible. In this section we will
present some numerical examples of stable spatially localized oscillons in the coupled
FCGL equations found by using the time-stepping method. We use a pseudospectral

method as in Chapter 2 with 128 Fourier modes.

We will take the following parameter values p = —0.5, v = 2, « = —0.5, f = 1, and
C = —1— 2.5i. We solve the coupled equations on a domain size Lx = 207. With group

velocity v, = 0, localized solutions have A and B the same, but otherwise A and B are

unequal.
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Figure 3.6 shows an example of a localized oscillon in the coupled FCGL equations with
vy = —0.2. As we increase the magnitude of the group velocity v,, so that v, = —0.75
(Figure 3.7), we can see that A and B start to move apart. Note that in Figure 3.6 and
Figure 3.7 we fixed I' to be I' = 1.462. Figure 3.8 presents localized oscillons with
vy = —1, withI' = 1.4 and I' = 1.438. Solutions of the coupled FCGL equations are

constant in time 7" as shown in Figure 3.9.

3.5 Reduction to the real Ginzburg-Landau equation

In this section we will reduce the coupled FCGL equations to the real Ginzburg—Landau
equation close to the subcritical bifurcation from the zero solution to the flat state. The
reduction from the coupled FCGL equations to the real Ginzburg—Landau equation was
done by Riecke [67], in the supercritical case. Therefore, we take the complex conjugate

of the second equation of (3.20), so the coupled FCGL equations become

0A PA 0A ) o
0B - - - OB 0B ) s '
a_T = DIB+D2ﬁ —Uga—X+C(2|A| + |B| )B—ZFA,

For simplicity, we write D1 = p+iv, and Dy = —2(a+if). In order to reduce the coupled
FCGL equation to the real Ginzburg—Landau equation, we apply weakly nonlinear theory
close to onset. The real Ginzburg—Landau equation has an exact sech solution, which can

be used as a starting point to find spatially localized solutions in the PDE model.

We begin the analysis by scaling the forcing " as
[T, (1+€0y),

where 0 < e5 < 1, and I, is the critical forcing at critical wavenumber ¢. as shown in

Figure 3.3, I'; is the new bifurcation parameter. We expand the solution in powers of the
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Figure 3.6: Solutions to the coupled FCGL equations (3.20) with Lx = 207, p = —0.5,
v=2a=-05p8=1uv,=—-02T = 1462, and C = —1 — 2.5¢. For this choice
of parameters, I'. = 2.04, 'y = 1.21. See Figure 3.10 for solutions of the PDE (3.1) at
similar parameter values.
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Figure 3.7: Solutions to the coupled FCGL equations (3.20). All parameters are the same
as those in Figure 3.6 except the group velocity v, = —0.75.
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Figure 3.8: Examples of solutions to (3.20) with the same parameter values as in Figure
3.6, and v, = —1. The left column is at I' = 1.4, whereas the right column is with
I' = 1.438. We did not find stable oscillons where I' < 1.4. The values of I', and I'; are
I'.=195andI'y; = 1.21.
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Im(A)
Im(B)

Figure 3.9: Example of solutions to (3.20) in space and time for one period of time 7" =
[0, 27], which shows that the solutions are constant in time with I' = 1.4. Other parameter

values are the same as in Figure 3.6. The left column represents the amplitude A, whereas
the right column represents the amplitude 5.
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new small parameter ¢, as follows

A EQAl + EgAQ + E%Ag + ...
B 6231 + EEBQ + 6%83 + ...

From section 3.4.1, the growth rate is real with frequency zero (locked to the forcing), so

and the preferred wavenumber ¢, # 0, so

9,90 _ 8
ax ' ox  “ax

where X and T are very long and slow scales.

At O(e;), we have

0? A, 0A; -
=DiA1+ D '.B
0 141 + 25x? +Tv gaX+2 1

_ _ 9B, 0B,
0= D1B1 + D aXQ — Vg oy 0X ZFCAl-
We can solve the above system by assuming that
A = fl()}' T) X and B, = B(X f) —igeX
At this order of ¢, and by dropping tildes, the coupled FCGL equations become

0= DA — Dyg? A +ivgg. A+l B,
(3.33)

0=D,B— ngEB — ivgch — i A.

Or we can write the system as (see section 3.4.1)
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Dy +ivgq. — Doq? il A 0
—il'. D, — 1Wgqe — Dy?| | B 0

Since the determinant is zero (same as before), we get
(D1 + 1gqe — ng?) (Dl — Wyqe — qug) — F? = 0. (3.34)

We separate the real and imaginary parts of this equation. The real part of (3.34) is given

by

|Ds|? + | Dao|q; — 2'ng2iq§’ - (2 (D2iD1i + Doy D1y) — ’03) @ + 2D1v4qc — I?=0,

[

where Dy = Dy, +iDy; = p+ivand Dy = Do, + iDy; = —2(a + i3). We can solve
this quartic equation in ¢.. The forcing I' = I, is the minimum at ¢. as shown in Figure
3.3. Recall that the wavenumber ¢ is positive if Dy;v, < 0 and negative if Dy;v, > 0, as

in section 3.4.1.

From the first equation of (3.33) we get

_ Dy + ivyqe — Dag?
B—_<1+wﬁ M)A (3.35)
(28

By applying (3.34) or equivalently applying (3.23) from section 3.4.1, we get

} 2
D, + Wyqe — DQQS

ol

o (Dy + 1Wgqe — D2q§)(D1 — 0yqe — quf) -1
— o =1.

[

Therefore, we can write

B = Ae'?,
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where ¢ is real, and

| Dy + ivyge — Dag?
e’d):—( 1““;{{{ 2‘10)_ (3.36)

At O(€3), equations (3.32) become

0*Ay DA, _ OA 9A
0=D;As + D T.B —— "X 4 2 Dyg——= "X,
142 + 25X +Uga +1 2+vga et + 21 2(]8 e 53
A D ~ 0B, OBy OB . _ OB . :
0=DB Dy— — —_'I‘CA — ~ ptaeX 2i Dyo— zch‘
159 + Do X2 vga 1 9 Ug@ e + 21 Dsq, 3 e

At this stage we might need to define a linear operator in order to impose the solvability
condition. We chose to do the weakly nonlinear theory here without studying the linear
operator, but by using a quicker method that we show next. We solve this system

effectively by setting

0. X _ S X
AQ — Agezq and By — Bgezq s

to focus attention on e*dX

component of (3.37), the only component to have an
inhomogeneous part, and for which the linear operator is singular. Substituting these

expressions for Ay, B, and B into the above equations leads to the following

Dy +ivgq. — Dog? il Ao N Vg + 2iq.Ds 0A 0
il Dy — ivgge — Da?| |Ba| | (v, + 2iq.D2) ¢?| 90X o]
(3.38)
where ¢ = — (%Z_D”z) We know that the determinant of the square matrix is

zero since it is a singular matrix. We write

. - A 4 0A
0= (D1 + iv,q. — ngg)Ag + il By + (vy + 2iq.Ds) o

—qg + ZZQCDQ)(DI + Z.UgQC - DQQ?)) 0A

il 0X
(3.39)

0= (Dl — i?}gqc — DQQS)BQ — iFCAQ — ((
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We multiply the first equation for A by il and the second equation for B by (D; +iv,q.—
ngz), which is effectively the left eigenfunction of the matrix, and then add them. This

is similar to applying the solvability condition. Therefore, we end up with

0. (3.40)

— 2iq.D5)(D V.q. — Dag?)?\ 0A
(irc(vg + QZQCD2> + (Ug Y 2)( ‘1 + ngq 2qc> ) -

T, X
. DA
Since 5= # 0, we need
—(vg + 2iqcD2)(D1 — yq. — ngf) + (vg — QiQCDg)(Dl + ivyq. — ngﬁ) =0,

in order to make progress. This is the same as (3.24), which is equivalent to taking diq of

the relationship (3.34), at the minimum g, (see Figure 3.3).

Since the square matrix in (3.38) is singular, the determinant is zero and zero is an
Dl - Z.,quc - DQQE
il

eigenvalue. Thus, the left eigenvector of zero is

From the top line of (3.39), we have

Bg — ((Ug +2?‘QCD2)% + (Dl + i'Ug'qC - qug)Ag) )
ZFC aX Zrc

The solution is

AQ A2

> _ (vg+2igeD2) A (D1+ivgge—Dag?)
By iTe  oX iTe Az

Thus, we have A, to be arbitrary at this order of €. It is determined at higher order of ¢

but since we are not going to higher order [69], we take

(’Ug + QZQCDQ) aAl

Ay =0 d By=-—
2= ad iT, 0X

)
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iqe X

or, restoring the e , we have at this order of ¢,

_ 2iq.D A 4
Ay=0, and B, = ot 2GeDs) 04 G,k
il 0X

At O(e3) the problem has the following structure (with A, = 0):

dA, 2As  OAs RA;
ﬁ = D1A3 + DQ 8X2 + Vg 8X + ZFCB3 + D2 aXZ + ZFCFQBl
+ C(|AL]? + 2|B1?) Ay,
- - - . 3.41)
OB, - - 9By OBy I, I oB, (
o _DBs+D —w T Ay 4 2Dy—2 By — 0, 222
of 77T TPax? YoX T oxax T Yox

_ 9°B, . -
+ D, af(zl — T Ty Ay + C(2|A, | + |Bi*) By.

We write A3 and Bs as Fourier modes with spatial dependence %%~ :

Ag — AgeiqCX and Bg — Bgeich.

As at O(e2), we multiply the first equation for A by i and the second equation for 5 by
(D1 +ivgq. — qug), and then add them. The coupled FCGL equations (3.41) become

- 0A4 , 0B, . 0? A, =
i'y— + (Dy +iv,9. — D f—~:chD = —FgFB +il.C (|A* +2|By?) A
o7 ( 1 94 2(]) o7 2(9X2 201 (’ 1| | 1|) 1
_ 0?
+ 2 (Dy + ivyq. — Dag? - B
( 1 94 2CI) 23X(9X 2
, 0B, - 0°B
2
_ (D1 + Wgqe — DQqc) (’Ug 8X — .D2 35(2

— il Ty (D1 + ivgg. — Dag?) A

+C (D1 + 104G — ngf) (2|A1’2 + ‘Bl|2) B.
(3.42)

Substituting A, B;, By into the above equation, dividing by the common factor of e X
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and dropping tilde in A; and B; gives

Dy + ivyge — Dag?)?\ DA

) | ,
+ (tiDz _ Do (D + ivgge = Do) ) oA

il 0X?2
- <2qcD2(D1 + ivyge — Dag?) (v + 2ig.Dy)

L

i, 0X2
(D1 + 1vyq. — D2g?)?
il

vg(D1 + ivyq. — Dag?) (v, + 2iqcD2)> 0?A
¢ |AI2A.
(3.43)

+3 <iFCC’ -

Using Dy + ivyq. — Dag? = —il'.€', leads to

; A . _ ) 2A
(iTe — il ) o4 _ —2T2T5e® A + (iT.Dy — il Doe®?) 0
oT HX2
) , . PA
+ <2zqcD2(vg + 2iq.Ds) + vg(vy + 2quD2)) 85(26

+3 (il.C —il.e**C) |APA.

Applying the relationships (3.34), and (3.36) to the parameter value in the left hand side

gives

—I? - (Dy + 1Wgqe — D2Q§)2 _ —(Dy + 1Wgqe — DQQE)(Dl + D, — (D2 + DQ)(]E)

il il

Therefore, we multiply all terms in (3.43) by

—il°,
(D1 +ivyq. — qug)(D1 + Dy — (D2 + D2)q?)
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Accordingly, equation (3.41) reduces to the real Ginzburg—Landau equation

oA _ ! [
oT D)+ D, — (D2 + Dy)q?

— 22T A + ((Dl — i0yqe — Dag?) Dy

0*A
X2

+ (D1 + ivyq. — D2q?) Dy + 2iv,Doq. — 2iv,Dagq. — 4| Da|*q> — U§>

+ 3 (D1 — ivgq. — D2q2)C + (D1 + ivgqe — D2q2)C) |A|2A} :

We return values of D and Ds, so the real Ginzburg—Landau equation becomes

9A 1 2 U; 2 2y 2\ A
) (v + 090+ 28¢2) Ci\ | 4 12
+6(p+ 20?) (C, + ey )14124).

We calculate the parameters in the amplitude equation above to give the real Ginzburg—

Landau equation:

0A _ —Tily  dpat dvftoj+12v,0q. +24(a” + 5%)q; 0°A
9T ~ p+20¢2 20+ dag? 0X* (3.4)
v+ vgq. + 28q; > '
3(@ g c C,) APA.
+ g |Al

Flat solutions of this equation are consistent with the simple constant solutions of equation
(3.30). The real Ginzburg-Landau equation is known to have steady sech solutions, so
we can find localized solutions of (3.41) in terms of hyperbolic functions. This leads to

an approximate oscillon solution of (3.41) of the form

~ 2121 ry - -
A(X) =4/ h;leech ( ;22X> et (3.45)
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where ¢, is an arbitrary phase and

hy =3 ((p+20q2)Cr + (v + vgqe + 284¢2)C;)

U2
hy = —2 <p0z +vp+ Zg + Ug8q. + 6(0® + 52)93) ;

where 'y, h; and hy must all have the same sign for the sech solution to exist. From the

linear theory we have B(X) = A(X)e®, which gives

_ 2r2r Mry -\ |
B(X) = }; 2sech (, / 2_22X> e'@1+9), (3.46)

At leading order

AX) = 4,(X) = %l_rc)sech F"(Fh—;mx ellaXtor) (3.47)
and

B(X) = e,B1(X) = %:msech FC(Fh—;FC)X HaXH01+9) (3 48)

provided I' < I'., h; < 0, and hy < 0. Note that in the PDE (3.1) we have the assumption
U=l =e(AX,T)e"™ + B(X,T)e "™)e",

which becomes

2¢2I'.(I' = T, (=T, (@
U= \/%sech e(h—)x cos((1 + eq.)x + %5 + ¢y)eitE),
1 2

Using table 3.1, we return all parameter values. Therefore the spatially localized oscillon
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is given approximately by

F(F - F, F(F - F,
Uie(i,1) =2 ¥h< Gk 2

¢ i(t-2)
673 x) cos((1 + eq.)x + 5 + ¢1)e'V 2

again provided F' < F,, and where

Ry =3((n—a+v42a(eq)?)Cr + (w— B+ — 1+ (=28 + 40)eq. + 2B(eq.)*) Ci)

(—28 + 40)?

fg:—%Mu—a+ﬂ+ﬁ@—B+5—U+ .

+6@P+ﬁ%@%f)

+36(—28 + 49)eq.

where g. and I'. can be determined from (3.34), so that

F.(F - F F.(F - F A
Uloc(ﬂja t) =2 C(TTC)SCCh ( C(]‘T;C)I> COS(ka + % + ¢1)el(t_%), (349)

where h] and hj become (since k. = 1 + €q.):

h{:3<(u—a+7+2a(kc—1)2)C’T+(w—6—|—5—1—|—(—25+45)(k:c—1)

+ 28k — 1)))C3),

N (—B+24)?
+

;gz—qmu—a+w+ﬁ@—ﬁ+5—n 36(—28 + 48) (k. — 1)

+6@?+6%M%—1f)

This solution Uj,. gives an approximate solution of the model PDE (3.1) valid in the
limit of weak dissipation, weak detuning, weak forcing, small group velocity, and small
amplitude. In the next section we compare the approximate solution Uj,,. with a numerical

solution of the PDE model.
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Figure 3.10: Numerical simulation of stable localized oscillon to (3.1) found by time-
stepping, with e = 0.1, u = —0.255, « = —0.5, 3 =1, v = —0.25, 6 = 0.4995, v = 2,
w=14+8—-0+¢er=152,C = —1—25i, and F = 0.0585. The top panel shows the
time evlution of the Fourier modes, where U is the Fourier transform of U.

3.6 Numerical results

Similar to the methodology we used in Chapter 2, we present numerical simulations of
the PDE model (3.1) by continuation and time-stepping. For the time-stepping we use a
domain size of L, = 607 and N, = 1024 points. The localized solution that we used as

a starting point for continuation is plotted in Figure 3.10.

Using AUTO, we represent solutions by a truncated Fourier series in time with

frequencies —3, —1, 1 and 3. Note that the choice of these frequencies comes from
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Figure 3.11: Amplitudes of the different frequencies when expanding the solution of
Figure 3.10 in a Fourier series in time: frequency +1 is strongest, followed by frequencies
—3, —1 and +3, as expected.

the choice of parameters: the linearized PDE at wavenumber +1 looks like % = U, SO
the strongest Fourier component of U looks like e*; then putting u = €’ into the forcing
Re(e™) cos(2t) generates the frequencies —3, —1, 1 and 3, as described in Chapter 2. We

also checked numerically that the frequencies dominate (see Figure 3.11).

The bifurcation diagram of (3.1) as computed by AUTO is given in Figure 3.12. The
transition between the stable zero state to the unstable pattern occurs at the bifurcation
point F, = 0.08205. The saddle-node point where unstable periodic patterns become
stable periodic patterns is F;; = 0.056. The bistability region where we look for the branch
of localized states is between F,. and Fj;. The branch of localized patterns bifurcates
from the branch of periodic patterns at F} = 0.07706, which is away from F. because
of the finite domain. Stable localized patterns are located between F; = 0.05695 and

F5 = 0.05987, but the snaking region is small.

Examples of localized solutions along the localization curve in Figure 3.12 are given in
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Figure 3.12: Bifurcation diagram of (3.1) in the weak damping regime with parameters
as in Figure 3.10. The bistability region is between F,. = 0.08205 and Fy; = 0.056. The
bifurcation point F} = 0.07706.

Figure 3.13 and 3.14 (a)-(e). Near the point F7 where the localized curve bifurcates,
the localized solutions look like the periodic patterns: small amplitude oscillations which
are not very localized (see Figure 3.13 (a)). As we go along the localization curve, the
amplitude increases and the unstable oscillons become more localized (Figure 3.13 (a)-
(c)). At F; = 0.05695, the localized oscillons stabilize (Figure 3.14 (d)) and then they
lose stability again at F, = 0.05987 (Figure 3.14 (e)). Beyond F, the localization curve
connects to the pattern branch close to the saddle-node point F; without further snaking.

The right panel of Figure 3.14 shows a typical periodic pattern.

Figure 3.15 shows the approximate solutions from (3.49), which we derived in the
previous section, of the envelope equations for three different values of the forcing
amplitude, starting close to the bifurcation point F. We can compare the numerical

solutions of the model PDE in Figure 3.13 with the asymptotic solutions of the real
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Figure 3.13: Solutions (a)-(c) along the bifurcation diagram in Figure 3.12. The blue
curve represents the real part of U(z), and red curve represents the imaginary part of
U(x). At(a) F = 0.07569, (b) F' = 0.07013, and at (c) F' = 0.06486.
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Figure 3.14: Solutions to (3.1) along the bifurcation diagram 3.12, (d) is at F' = 0.05695
and (e) is at F' = 0.05987. Right panel shows an example of the pattern on the upper
branch.

Ginzburg-Landau equation in Figure 3.15. The difference between the two figures
is because in an infinite domain the localization curve bifurcates from the zero state
(F¥ = F.), while in a finite domain the bifurcation point is on the periodic branch
(F} < F.). Solutions on the localization curve close to this bifurcation point are like
spatially periodic solutions with small attenuation of the amplitude of the oscillations. As
we go away from the bifurcation point, the attenuation grows until it is comparable to the

amplitude of the periodic pattern and a clearly localized solution appears.

As we increase the domain size, the localization of the asymptotic solution becomes
clearer. In the next section we will discuss the effect of the domain size for finding

spatially periodic patterns in the model PDE (3.1).
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Figure 3.15: Asymptotic solutions (3.49) at the same parameter values as Figure 3.13 (a)-
(c). The blue curve represents the real part of U(z), and red curve represents imaginary
part of U(z). At (a) F = 0.07569, (b) F' = 0.07013, and at (c) F' = 0.06486.
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Figure 3.16: Asymptotic solution of (3.49) with the same parameter value as in Figure
3.10 at F' = 0.07013. The size of the box increases (a) L, = 30m, (b) L, = 60w, (c)
L, = 1207, and (d) L, = 2407.

3.7 The effect of the domain size

The results we simulate numerically using time-stepping and continuation methods in the
previous section are in a domain with size L, = 60m. In this section we give examples of

localized oscillons with bigger domain size.

In Figure 3.16 (a)-(d) we plot the asymptotic solution (3.49) at F' = 0.07013 for different
domain sizes to show the effect of making the domain size large but still finite. Figure

3.17 (a) shows an example of a localized solution, which we found in the PDE (3.1) by
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Figure 3.17: Examples of localized solutions in the PDE (3.1) with same parameters as
in Figure 3.10, but different domain size. The forcing amplitude is F' = 0.05856. The
domain size in (a) is L, = 1207. and in (b) is L, = 240.

time-stepping, in a box of size L, = 1207 that is twice as big as the size of the domain in
Figure 3.13 and Figure 3.14. In Figure 3.17 (b) the domain size is L, = 2407. The time

that we need to evaluate localized patterns increases as we make the domain size bigger.

Although dealing with bigger domain size is not easy, we were able to do continuation in
a domain with size L, = 1207. Figure 3.18 shows that the localization curve bifurcates
at ' = 0.080829. As expected, this point is closer to F, = 0.08205 than when the
domain size was L, = 607. Examples of localized solutions along the localization curve

are given in the left panels of Figure 3.19 (a)-(c) and in Figure 3.20 (d) and (e). The right
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Figure 3.18: Bifurcation diagram of (3.1) in the weak damping limit in a domain size
L, =120r withe = 0.1, p = —0.255, a = —0.5, S =1, v = —0.25, 0 = 0.4995, v = 2,
w=1+B-5+¢€*v,and C = —1 — 2.5i. The bistability region is between F,, = 0.08246
and F; = 0.056. The bifurcation point of the localization curve is F' = 0.08027.

panels of Figure 3.19 (a)-(c) shows solutions of (3.49). The left and right panels of Figure

3.19 are at the same value of F'.

We tried to make the domain size even bigger, but we did not manage to get a bifurcation

diagram for L, = 2407 using AUTO.

3.8 Discussion

The current discussion was about constructing the PDE model (3.1) for the formation of
localized states in the presence of forcing. Our aim was to show the existence of a branch

of localized solutions in the bistability region by applying weakly nonlinear theory. The
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Figure 3.20: Solutions (d) and (e) along the bifurcation diagram in Figure 3.18, at (d)

F'=0.05701, and at (e) F' = 0.06014.
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Figure 3.21: The wavenumbers of localized solutions of the PDE model (3.1) with g =
—0.02, 0 = 0.02, w = 0.96, and v, = 0.4. Note that (2(k) is close to 1 over a wide range

of k.
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Figure 3.22: The wavenumbers of localized solutions in the PDE (3.1) with v = —1,
B=1,0=04825,w =1+ — 0§+ (¢v) = 1.5075, ¢ = 0.1. Note that Q(k) = 1 is
close to 1 at two distinct wavenumbers.
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Figure 3.23: Localized solution in the PDE model (3.1) with two wavenumbers with
pw=—0255,v=—-1,a=-05 =1 v=—-0256 = 04825, ' = 0.15, ¢ = 0.1,
w=1+p8-0+(v),and v, = —0.7. N, = 1280, L, = 2007.
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Figure 3.24: Approximation to the wavenumbers of the solution in Figure 3.23 with the
same parameters.

existence of these solutions is subject to the scaling we applied in this chapter being
valid; in particular we assumed that the group velocity is small. However, with such
an assumption we have to be careful because waves with a wide range of wavenumbers
can be excited. Figure 3.21 shows the dispersion curve for a fairly small group velocity
(vg = 0.4); it is clear that many wavenumbers are close to resonant (€2 is close to 1). It is

also possible to get two wavenumbers being resonant; see Figure 3.22 for an example.

Localized solutions with two wavelengths have been observed in the PDE model (3.1).
An example is given in Figure 3.23. We found more examples, but this problem is beyond

this thesis. We will do more study in localized states with two wavenumbers in the future.

In order to avoid this problem, we might think of making the group velocity to be O(1) and
then reducing (3.1) to the averaged FCGL equation, rather than reducing it to the actual
FCGL model, as was done in [57]. The averaged FCGL equation then might be reduced to

the real Ginzburg—Landau equation, which could have sech solution. Therefore, spatially
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localized oscillons can be found in the PDE model (3.1) even for O(1) group velocity.

As we change the group velocity v, we found that the biggest magnitude of the group
velocity we can reach and still find localized oscillons is at v, = —0.75. If we want to
extend the group velocity more we need to reduce the forcing amplitude " and change

(see for example Figure 3.8).

In this chapter, we found oscillons in the model PDE (3.1), which give an idea of how
oscillons might be studied in a model like the Zhang—Vifals model [93], and how the
weakly nonlinear calculations of [77] might be extended to the oscillons observed in the

Faraday wave experiment.
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Chapter 4

Localized oscillons in the
parametrically forced PDE model with

a cubic—quintic nonlinearity

4.1 Introduction

In Chapter 3, spatially localized oscillons were found in the form of many oscillations
of the periodic pattern underlying the envelope equation (see Figure 3.10). Our results
did not give a single-peak oscillon as seen in Figure 1.2, observed in the Faraday wave
experiment. We tried to find a single-peak oscillon in the PDE model (3.1), but we could

not find any examples as Figure 2.9, where the preferred wavenumber is zero.

In the large amplitude regime, we need to control the subcriticality of the PDE model to
make the oscillon sufficiently nonlinear that it will form a single-peak. The subcriticality
in Chapter 3 comes from the forcing term balancing the —|U|*U term. An alternative
way to control the subcriticality is to modify the PDE model (3.1) to include a quintic
nonlinear term. With a —|U|*U term, it is possible to make the cubic coefficients as big
(positive) as we want without losing the stable branch. An alternative way to control

the subciticality would be to reinstate the quadratic nonlinearity. However, it is easier to
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investigate the PDE model with cubic-quintic nonlinearity.

Localized solutions to the Swift-Hohenberg equation with cubic—quintic nonlinearity
were studied first by Sakaguchi and Brand in [71-73]. Sakaguchi and Brand studied
stationary stable localized solutions with a circular symmetry [72], in one and two
dimensions [73]. These solutions depended on the initial conditions as expected, but not
on the size of the domain. Burke and Knobloch in [13] investigated the Swift-Hohenberg
equation with a cubic—quintic nonlinearity in order to give more detailed description of

the resulting spatially localized solutions that were found in [71].

All previous work on cubic—quintic were done with autonomous PDEs. Here we are
interested in explicit time-dependent forcing. Therefore, our analysis is carried out by

altering the PDE model to include a quintic nonlinear term:
U= (p+iw) U+ (a +iB)VU + CJUPU — |U[*U +iR(U) f(t),  (4.1)

where C, € R and C, > 0, and f(t) is a 27 periodic function. We will study localized
oscillons in this cubic—quintic PDE with strong damping, so we do not need the V4U term,
and with values of parameters i, w, <, and [ chosen so that the preferred wavenumber at

onset is non-zero. This equation has a U — —U symmetry.

In the strong damping, strong forcing case, the linear part of the cubic—quintic PDE is
reduced to the damped Mathieu equation, which has to be solved numerically to get the
eigenfunction as we discussed in Chapter 2. We present the linear theory in the next
section, and we present examples of spatially localized oscillons numerically in both one

and two dimensions in Section 4.3 and 4.4.

4.2 Linear Theory

This chapter is based on studying the linearized PDE (4.1) in the strong damping and

strong forcing case. The linear part of the PDE reduces to the damped Mathieu equation.
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As in Chapter 2, we write the solution as U = u + iv, where u(z,t) and v(x,t) are real
functions. Thus the PDE becomes

ou

ot 0x?

(/L + aa—Z) u— (w + 588—;) v+ Cp(u? +v?)u — (u? + v?)%u,
v 0 0 2 2 2 212
% ( —i—ﬂ ) (/H—oza 2)v—|—f(t)u+Cr(u +v7)v — (u” +v°)*
4.2)
We linearize the PDE problem about zero in order to reduce it to the damped Mathieu
equation for a periodic forcing function f(¢) = F cos(2t). The critical forcing amplitude

F. is the forcing at which the zero solution loses stability. Since in this case the critical

wavenumber is not zero, we seek solution of the form

U =™ (pi(t) +iq(t)), (4.3)

where p;(t) and ¢;(t) are 27 periodic functions. Note that this is different from the
analysis in Chapter 2, and it is the same as the analysis in [70, Appendix A]. Substituting
(4.3) into (4.2) leads to

0

{E — (- akZ)] p = —(w— Bk,

5 = 0| = o= R+ SO,

which can be combined to give a damped Mathieu equation
B+Ap+ (22 + Q) =0, (4.4)

where 4 = 2(—p + ak?), Q = w — Bk% and Q = 1/(2)2 + Q2. Thus a linear operator is
defined as
L—a—2+ 24—(924-f() Q), with Lp=0
o " ot b=
As in Chapter 2 we solve the damped Mathieu equation (4.4) numerically to determine

the critical wavenumber k., and the critical forcing amplitude F.. The critical forcing
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Figure 4.1: Linear theory for one-frequency forcing, with damping coefficients y = —0.5,

a = 0.5, and dispersion relation coefficients w = %, and § = _?2 The left panel shows
the critical forcing amplitude £, = 5.02736, at k. = 0.69113. The right panel presents
the Floquet multipliers at F' = F|, with a critical Floquet multiplier F'm = —1 at k = k..

amplitude, where the transition between stable to unstable trivial state ocurrs, is given in
the left panel of Figure 4.1. It shows that minimizing this forcing amplitude over £ with
w=—05a=050= %2, and w = % yields the critical wavenumber k. = 0.69113
at F, = 5.02736. The right panel of Figure 4.1 represents the Floquet multipliers at the
critical forcing amplitude as a function of wavenumbers k (see Appendix B and C.1). We
could apply weakly nonlinear theory to the PDE model (4.1) as in [70], but we are not

going to do that in this thesis.

4.3 Numerical results: one dimension

In this section we solve the cubic—quintic PDE (4.1) by time-stepping. We use a
pseudospectral method, and the exponential time differencing method ETD2 as in Chapter

2. We did continuation by using time-stepping to plot the stable periodic pattern curve
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Figure 4.2: Bifurcation diagram of the cubic—quintic PDE (4.1), with y = —0.5, a = 0.5,
B = _?2, w = %, and C, = 1. Blue and purple branches present even and odd localized
oscillons respectively. The right panel shows periodic patterns at F' = 3.8.

and stable localization curves.

In one spatial dimension, we use a domain with size L, = 2,?—: = 91.0607, and FFTs with
up to 256 Fourier modes. Figure 4.2 shows the bifurcation diagram of (4.1) as computed
by time-stepping. The right panel of Figure 4.2 presents the periodic pattern, which we

use to do continuation to find the periodic patterns curve in the bifurcation diagram in the

left panel.

Generally speaking, localized states arise as a result of bistability between a zero flat state
and periodic patterns. The bistability region, as shown in the left panel of Figure 4.2, is

between the bifurcation point F,. = 5.021 and the saddle-node point F; = 3.48.

In order to find oscillons of different widths, we choose initial conditions that are different
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combinations between the zero flat state at the edges and the periodic pattern in the
center. Which spatially localized oscillons is found depends on the initial conditions. It
is possible to detect them by setting a random initial condition, but this makes it difficult
to generate oscillons in a systematic fashion. As we change the initial condition, we
get different examples of spatially localized oscillons, which are shown in Figure 4.3
and 4.4. We continue each of these solutions, so we end up with a range of stable
localized branches. Therefore, the bifurcation diagram in Figure 4.2 shows the region of
localization in the bistability region. Since we use time-stepping to find spatially localized
oscillons, the localized branches that we found are only the stable branches. Thus, they are
not connected with unstable branches, which normally can be seen if we did continuation

by AUTO.

Following the solutions in Figure 4.3 (a)-(h) shows that they are even about z = %, and so
are maximum or minimum at midpoint . Figure 4.4 (a)-(h) shows that the localized state is
always zero at x = % Therefore, we expect that there are two curves of stable localized
oscillons, which are similar to results found in the Swift-Hohenberg equation (see Figure
4.5, that is taken from [14]). In the Swift—-Hohenberg equation, there have been many
studies where similar results were discussed, for instance in [12—-14,39, 40,71, 73]. We
expect that branches in each of these curves be connected by unstable localized oscillons
to give two snaking curves (see Figure 4.6). In Figure 4.3, we use the U — —U symmetry
to present localized oscillons in such a way that their outer edges are all the same. As a
consequence of this choice, (a), (c), (), and (g) have a local maximum at the centre, while
(b), (d), (f), and (h) have a local minimum. Similarly, we could use also the U — —U

symmetry in Figure 4.4 to make the outer edges the same but instead we have chosen to

Ly

have positive slope at the midpoint in all cases. All solutions were plotted at x = .

These results confirm the universal picture arising from the Swift-Hohenberg equation,
even with parametric forcing. We expect that localized oscillons in Figure 4.3 to be
connected by a snaking branch of even solutions, and localized oscillons in Figure 4.4

to be connected by another snaking branch of odd solutions. Figure 4.6 shows sketches
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Figure 4.3: Examples of spatially periodic oscillons in the cubic—quintic PDE (4.1) along
the blue branches in Figure 4.2 with parameters as in Figure 4.2. All these spatially
localized oscillons arise at F' = 3.8.
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Figure 4.5: Bifurcation diagram and localized examples of the cubic—quintic Swift—
Hohenberg equation, reproduced from [14]. Bifurcation diagram showing the two
homoclinic branches. Thick lines indicate stable solutions.
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Figure 4.6: Localized branches from Figure 4.2 with the same parameter values. The thin
lines are sketches of the expected unstable branches.

of the expected unstable branches. It had been found numerically in [13, 14] that the two
snaking branches in the Swift-Hohenberg equation are connected by ladder branches.
Therefore, we expect to have ladder branches that connect the two localization curves in

the cubic—quintic PDE (4.1) model.

4.4 Numerical results: two dimensions

In two dimensions, we use a domain with size of L, = L, = 91.0607 and N, = N, = 256
Fourier modes to find spatially localized spots in the cubic-quintic PDE model (4.1), also
by time-stepping. To find axisymmetric spots, we use axisymmetric initial conditions,

centred in the middle of the box. Axisymmetric solutions U(r) depend on the radial
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variable r = \/ (x— L2+ (y— %)2 In the Swift-Hohenberg equation, localized
radial structures were studied by Lloyd and Sandstede [52], and also by McCalla and
Sandstede [55]. In this section we investigate the existence of localized spots, which
do not require bistability between the trivial state and a patterned state as in [52], and

localized rings.

We set the initial condition to be one spot in the centre, which is surrounded by more
rings, and then we set the rest of the domain to be zero. Specifically, we used in the time-
stepping a function in radial coordinate cos(k.r), multiplied by an amplitude. The initial
condition is given in Appendix C.2 as

_ 0.65cos(kcr)

U(T) o 14+ e0-5ke(r—n)

As we change n, we get different axisymmetric rings. The initial condition that is given
in the Appendix is related to solution (e) in Figure 4.7. In our study we give only a sample
of axisymmetric spots that can be found in the cubic—quintic PDE; more examples can be

found by changing the initial condition.

Figure 4.7 shows 6 examples of axisymmetric spots. We follow these solutions to find
the stable localization branches of the snaking curve. Figure 4.8 shows the bifurcation
diagram of axisymmetric spots (blue branches) and stripes (red branch). Figure 4.9
represents stripes at /' = 3.8. The longest stable blue branch at the bottom of Figure
4.8 refers to the one spot oscillon in Figure 4.7 (a). As we mentioned above, more
examples of these type of spots can be found by changing the n in the initial condition.
Our investigation shows that an initial condition with more rings than Figure 4.7 (f) breaks

into stripes.

Next, we examine the existence of non-axisymmetric oscillons in the cubic—quintic PDE.
In this case the domain size is the same as in the axisymmetric case, but with fewer

Fourier modes N, = N, = 128. We used different initial condition in the time-stepping



Chapter 4. Localized oscillons in the parametrically forced PDE model with a
cubic—quintic nonlinearity 106

Figure 4.7: Solutions of the cubic—quintic PDE following the bifurcation diagram with
p=—05a=05=-2/3,w=1/3,and C, = 1.
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Figure 4.8: Bifurcation diagram of the cubic—quintic PDE in 2D spatial dimensions with
branches of axisymmetric and non-axisymmetric oscillons with parameters as in Figure
4.7.

to find these non-axisymmetric oscillons, (see Appendix C.2). Figure 4.10 shows three
examples of non-axisymmetric localized states. These solutions represents interaction
between oscillons as expected in experiments (see Figure 1.2 in Chapter 1). These
solutions include dipoles, triple, and chains of square polarity. Similar numerical results
of non-axisymmetric oscillons were observed in the cubic—quintic Swift-Hohenberg
equation [24]. As we continue these examples of oscillons, we find branches of stable
localization, shown in Figure 4.8. In two spatial dimensions, we made movies to show
the dynamic of axisymmetric and non-axisymmetric spots. Snapshots of axisymmetric
and non-axisymmetric oscillons at different times are given in Figure 4.11 and 4.12

respectively.



Chapter 4. Localized oscillons in the parametrically forced PDE model with a
cubic—quintic nonlinearity 108

©
S

o
< < N .
E)

15}
S

©
S
-3
=3
©
S
o

Figure 4.9: Example of stripes at /' = 3.8 with other parameters the same as in Figure
4.7.

4.5 Conclusion

In this Chapter, we studied the cubic—quintic PDE with parametric forcing (4.1)
numerically in one and two dimensions. In one spatial dimension, we found evidence for
two snaking localization curves. Our expectation is that these two curves are connected
by ladders as in the Swift-Hohenberg equation. The results we presented in this chapter
were found by time-stepping, so the localization branches that we found are only the
stable branches. It is complicated to do continuation by AUTO in the cubic—quintic PDE
(4.1), because of the quintic nonlinearity. However, it would be interesting to find the
stable and unstable branches in the bifurcation diagram. Also, by doing continuation

using AUTO, it would be possible to find ladder branches. This is work for the future.

In two dimensions, examples of localized solutions can be found by varying the initial
condition. We also expect to have more than one snaking curve for the axisymmetric
oscillons. Non-axisymmetric examples can also be found in this problem. The cubic—

quintic PDE is still an open problem for the future.

Analytically, we would expect weakly nonlinear calculations to lead to a cubic—quintic

Complex Ginzburg-Landau equation close to the transition from a supercritical to a
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subcritical bifurcation with non-zero wavenumber, if we scaled the cubic term to be small.
This was studied in the Swift-Hohenberg equation by Kozyreff and Chapman [17,45] and
by Dean, Matthews, Cox, and King [29] using exponential asymptotic. Weakly nonlinear

analysis will be included in our future work.
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Chapter 5

Conclusion: summary and discussion

This thesis describes the existence of spatially localized states in a periodically forced
system. The appearance of localized states is associated with the presence of bistability
between the trivial state and the non-trivial state in the system. The subcriticality of the
bifurcation diagram from the zero state is an essential element to find localized solutions.
The localized solutions that we find are time dependent, unlike most previous work on
this class of problems; they oscillate with half the frequency of the driving force. We
have used the technique of weakly nonlinear theory to reduce the PDE model (1.12) with
time dependent parametric forcing to its amplitude equations in order to find localized
states that are presented in Chapters 2 and 3. In Chapter 4, examples of localized
oscillons exhibited the typical snaking behavior that is familiar from the Swift-Hohenberg

equation.

In Chapter 2, in the weak damping and weak forcing limit, the solutions and bifurcations
of the PDE model (1.12) are accurately described by its amplitude equation, the FCGL
equation (1.1). Analytically, we reduce the FCGL equation near onset to the Allen—Cahn
equation (2.12) to find exact sech localized solution of the PDE. Numerically, we used
continuation in the PDE model (1.12) to detect the branch of localized states. The saddle-
node bifurcations on the snaking curve arise from pinning associated with the decaying

spatial oscillations on either edge of the flat state. Numerical results show excellent
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agreement between the PDE model and the FCGL equation. The agreement remains

qualitatively good even with strong damping and strong forcing.

In this chapter our results are directly relevant to localized patterns found in Turing
systems, such as those found in [80, 86]. These results are not directly relevant to the
oscillons observed in the Faraday wave experiment, where the preferred wavenumber is
non-zero. Therefore, in Chapter 3 we investigate spatially localized oscillons with non-
zero wavenumber in the PDE model (1.12). Our study might indicate how localized
solutions could be studied in (for example) the Zhang—Vifials model [93], and how the
weakly nonlinear calculations of [77] might be extended to study the oscillons observed
in the Faraday wave experiment. By using multiple scale analysis, and in the limit of
weak damping, weak detuning, weak forcing, small group velocity, and small amplitude,
we reduce the PDE model (1.12) to the coupled FCGL equations (1.2). We successfully
found (for the first time) numerical examples of spatially localized oscillons in the coupled

amplitude equations and in the PDE model at related parameter values.

The existence of localized solutions in the bistability region in the PDE model is subject to
the scaling that we applied in this chapter being valid. We assumed that the group velocity
is small, and with such an assumption we have to be careful not to get a wide range of
wavenumbers excited. In the case where this happens, we found localized solutions with
two wavelengths in the PDE model. These states resemble those found by Bentley [8] in
an extended Swift—-Hohenberg model, and by Riecke [67] in the coupled FCGL equations
with small group velocity, in the supercritical case. We will study localized states with

two wavenumbers in the future.

The coupled FCGL equations are derived with the assumption that the group velocity is
small, of the same order as the amplitude of the solution, which is not true in reality. In
fact, the group velocity is O(1), but we consider the assumption that it is small in order to
make progress in our problem. We have discussed the averaging approach taken by [57]

in the O(1) group velocity case in Chapter 3.
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We also make further reduction of the coupled FCGL equations to the real Ginzburg—
Landau equation, which has exact sech localized solutions. Numerically, we compare
spatially localized oscillons in the model PDE with sech solutions of the real Ginzburg—
Landau equation. In the strong damping, strong forcing limit, we could directly reduce
the PDE model to the real Ginzburg—Landau equation (3.44) after solving the Mathieu
equation numerically to get the eigenfunction from the linear terms of the PDE, and doing

the weakly nonlinear theory numerically.

Numerically we studied in Chapter 4 the cubic—quintic PDE with parametric forcing (4.1)
in the strong damping and strong forcing case. In one spatial dimension, we found
evidence for two snaking localization curves, that are possibly connected by ladders as
in the Swift-Hohenberg equation. It would be interesting in future to find the stable and
unstable branches and ladders by doing continuation using AUTO. In two dimensions, we
found examples of localized solutions by varying the initial condition. Our expectation
is also to have more than one snaking curve for the axisymmetric oscillons. Examples
of non-axisymmetric solutions were found in this problem. Analytically, we would
expect weakly nonlinear calculations to lead to a cubic—quintic CGL equation close to the
transition from a supercritical to a subcritical bifurcation with non-zero wavenumber, if
we scaled the cubic term to be small. This was studied in the Swift-Hohenberg equation
by Kozyreff and Chapman [17,45] and by Dean, Matthews, Cox, and King [29] using
exponential asymptotics. We will study weakly nonlinear analysis in our future work in

the cubic—quintic PDE model.



116

Bibliography

[1]

[7]

S. M. ALLEN AND J.W. CAHN, A microscopic theory for antiphase boundary motion

and its application to antiphase domain coarsening, Acta. Metall, 27 (1978), pp.
1084-1095.

A. S. ALNAHDI, J. NIESEN, A. M. RUCKLIDGE, AND T. WAGENKNECHT,

Localized patterns in periodically forced systems, SIAM J. Appl. Dyn. Syst.,13
(2014), pp. 1311-1327.

I. S. ARANSON AND L. S. TISIMRING, Formation of periodic and localized patterns

in an oscillating granular layer, Phys. A, 249 (1998), pp. 103-110.

H. ARBELL AND J. FINEBERG, Temporally harmonic oscillons in Newtonian fluids,

Phys. Rev. Lett., 85 (2000), pp. 756-759.

D. ARMBRUSTER AND T.-C. Jo, Pattern formation and parametric resonance.
In: Dynamics and bifurcation of patterns in dissipative systems, World Sci. Ser.
Nonlinear Sci. Ser. B Spec. Theme Issues Proc. World Sci. Publ., Hackensack, NJ,
(2004), pp. 158-173.

AUTO, 1995-2010 Corporation on National Research Initiatives and 2001 Python

Software Foundation.

T. B. BENJAMIN AND F. URSELL, The stability of the plane free surface of a liquid

in vertical periodic motion, Proc. R. Soc. Lond. A, 225 (1954), pp. 505-515.



BIBLIOGRAPHY 117

[8] D. C. BENTLEY, Localised solutions in the magnetorotational Taylor-Couette flow

with a quartic marginal stability curve, thesis, University of Leeds (2012).

[9] C. Bi1zON, M. SHATTUCK, J. SWIFT, W. MCCORMICK AND H. SWINNEY, Patterns

in 3d vertically oscillated granular layers: simulation and experiment, Phys. Rev.

Lett., 80 (1998), pp. 57-60.

[10] M. BORDBAR AND P. ZAMANKHAN, Dynamical states of bubbling in vertical

vibrated granular materials. Part I1: Theoretical analysis and simulations, Commun.

Nonlinear Sci. Numer. Simul., 12 (2007), pp. 273-99.

[11] J. BURKE AND J. H. P. DAWES, Localized states in an extended Swift-Hohenberg

equation, SIAM J. Appl. Dyn. Syst., 11 (2012), pp. 261-284.

[12] J. BURKE AND E. KNOBLOCH, Localized states in the generalized Swift-

Hohenberg equation, Phys. Rev. E, 73 (2006), 056211.

[13] J. BURKE AND E. KNOBLOCH, Homoclinic snaking: structure and stability, Chaos,
17 (2007), 037102.

[14] J. BURKE AND E. KNOBLOCH, Snakes and ladders: Localized states in the Swift-

Hohenberg equation, Phys. Lett. A, 360 (2007), pp. 681-688.

[15] J. BURKE, A. YOCHELIS, AND E. KNOBLOCH, Classification of spatially localized
oscillations in periodically forced dissipative systems, SIAM J. Appl. Math., 7 (2008),
pp. 651-711.

[16] E. CERDA, F. MELO AND S. RICA, Model for subharmonic waves in granular

materials, Phys. Rev. Lett., 79 (1997), pp. 4570-4573.

[17] S.J. CHAPMAN AND G. KOZYREFF, Exponential asymptotics of localized patterns
and snaking bifurcation diagrams, Phys. D, 238 (2009), pp. 319-354.

[18] A. R CHAMPNEYS AND G. J LORD , Computation of homoclinic solutions to

periodic orbits in a reduced water-wave problem, Phys. D, 102 (1997), pp. 101-124.



BIBLIOGRAPHY 118

[19] C. CHONG, R. CARRETERO-GONZALEZ, B.A. MALOMED, AND P.G.
KEVREKIDIS, Multistable solitons in higher-dimensional cubic-quintic nonlinear

Schrodinger lattices, Phys. D, 238 (2009), pp.126-136.

[20] P. COULLET, Commensurate-Incommensurate transition in nonequilibrium

systems, Phys. Rev. Lett., 56 (1986), pp. 724-727.

[21] P. COULLET AND K. EMILSSON, Strong resonances of spatially distributed
oscillators: a laboratory to study patterns and defects, Phys. Lett. D, 61 (1992),
pp- 119-131.

[22] P. COULLET, C. RIERA, AND C. TRESSER, Stable static localized structures in one

dimension, Phys. Rev. Lett., 84 (2000), 3069.

[23] S. M. Cox AND P.C. MATTHEWS, Exponential Time Differencing for Stiff Systems,
J. Comput. Phys., 176 (2002), pp. 430-455.

[24] C. CRAWFORD AND H. RIECKE, Oscillon-type structures and their interaction in

a Swift-Hohenberg model, Phys. D, 129 (1999), pp. 83-92.

[25] M. C. CrOSS AND P. C. HOHENBERG, Pattern formation outside of equilibrium,

Rev. Mod. Phys., 65 (1993), pp. 851-1112.

[26] J. H. P. DAWES, Localized pattern formation with a large-scale mode: Slanted

snaking, SIAM J. Appl. Dyn. Syst., 7 (2008), pp. 186-206.

[27] J. H. P. DAWES, The emergence of a coherent structure for coherent structures:
localized states in nonlinear systems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys.
Eng. Sci., 368 (2010), pp. 3519-3534.

[28] J. DAWES AND S. LILLEY, Localized states in a model of pattern formation in a

vertically vibrated layer, SIAM J. Appl. Dyn. Sys., 9 (2010), pp. 238-260.

[29] A. D. DEAN, P. C. MATTHEWS, S. M. Cox AND J. R. KING, Exponential
asymptotics of homoclinic snaking, Nonlinearity, 24 (2011), pp. 24-3323.



BIBLIOGRAPHY 119

[30] J. EGGERS AND H. RIECKE, Continuum description of vibrated sand, Phys. Rev.

E, 59 (1999), pp. 4476-4483.

[31] C. ELPHICK, G. Io0SS, AND E. TIRAPEGUI, Normal form reduction for time-

periodically driven differential equations, Phys. Lett. A, 120 (1987), pp. 459-463.

[32] M. FARADAY, On a peculiar class of acoustical figures; and on certain forms
assumed by groups of particles, Philos. Trans. R. Soc. Lond., 121 (1831), pp. 299-
340.

[33] W. J. FIRTH, L. COLUMBO, AND T. MAGGIPINTO, On homoclinic snaking in

optical systems, Chaos, 17 (2007), 037115.

[34] Y. FUKAO, Y. MORITA AND H. NINOMIYA, Some entire solutions of the Allen—

Cahn equation, Taiwanese J. Math., 8 (2004), pp. 15-32.

[35] V.L.GINZBURG AND L. D. LANDAU, On the theory of superconductivity, Springer
Berlin Heidelberg, (2009), pp. 113-137.

[36] A. GOLOVIN, B. MATKOWSKY AND A. NEPOMNYASHCHY, A complex Swift—

Hohenberg equation coupled to the Goldstone mode in the nonlinear dynamics of

flames, Phys. D, 179 (2003), pp. 183-210.

[37] M. GOLUBITSKY AND D. G. SCHAEFFER,, Singularities and Groups in Bifurcation

Theory, Springer-Verlag, New York Berlin, 1 (1985).

[38] J. K. HALE AND H. KOCAK, Dynamics and Bifurcations, Springer-Verlag, New

York, (1991).

[39] M’ F. HILALIL, S. METENS, P. BORCKMANS, AND G. DEWEL, Pattern selection

in the generalized Swift—-Hohenberg model, Phys. Rev. E, 51 (1995), 2046.

[40] S. M. HOUGHTON AND E. KNOBLOCH, Swift-Hohenberg equation with broken

cubic—quintic nonlinearity, Phys. Rev. E, 84 (2011), 016204.



BIBLIOGRAPHY 120

[41] R. HOYLE, Pattern Formation An introduction to methods, Cambridge University

Press (20006).

[42] D. W. JORDAN AND P. SMITH, Nonlinear ordinary differential equations, Oxford

University Press Inc., New York, third edition (1999).

[43] C. A. KLAUSMEIER, Floquet theory: a useful tool for understanding

nonequilibrium dynamics, Theor Ecol, 1 (2008), pp. 153-161.

[44] J. KNOBLOCH AND T. WAGENKNECHT, Homoclinic snaking near a heteroclinic

cycle in reversible systems, Phys. D, 206 (2005), pp. 82-93.

[45] G. KOZYREFF AND S.J. CHAPMAN, Asymptotics of large bound states of localized

structures, Phys. Rev. Lett., 97 (2006), 044502.

[46] E. KREYSZIG, Introductory functional analysis with applications, John Wiley and
Sons. Inc (1978).

[47] K. V. KUMAR, J. S. Bois, F. JULICHER, AND S. W. GRILL, Pulsatory patterns in

active fluids, Phys. Rev. Lett. 112 (2014), 208101.

[48] C. R. LAING, W. C. TROY, B. GUTKIN, AND G. B. ERMENTROUT, Multiple
bumps in a neuronal model of working memory, SIAM J. Appl. Math., 63 (2002), pp.
62-97.

[49] K. J. LEE, W. D. McCoORMICK, J. E. PEARSON, AND H. L. SWINNEY,

Experimental observation of self-replicating spots in a reaction-diffusion system,

Nature, 369 (1994), pp. 215-218.

[50] O. LIOUBASHEVSKI, H. ARBELL, AND J. FINEBERG, Dissipative solitary states

in driven surface waves, Phys. Rev. Lett., 76 (1996), pp. 3959-3962.

[51] O. LIOUBASHEVSKI, Y. HAMIEL, A. AGNON, Z. RECHES, AND J. FINEBERG,

Oscillons and Propagating Solitary Waves in a Vertically Vibrated Colloidal
Suspension, Phys. Rev. Lett., 83 (1999), pp. 3190-3193.



BIBLIOGRAPHY 121

[52] D. J. B. LLOYD AND B. SANDSTEDE, Localized radial solutions of the Swift-

Hohenberg equation, Nonlinearity, 22 (2009), pp. 485-524.

[53] D. J. B. LLoYD, B. SANDSTEDE, D. AVITABILE, AND A. R. CHAMPNEYS,

Localized hexagon patterns of the planar Swift—-Hohenberg equation, SIAM J. Appl.
Dyn. Syst., 7 (2008), 1049.

[54] S. LONGHLI, Spatial solitary waves in nondegenerate optical parametric oscillators

near an inverted bifurcation, Opt. Commun.,149 (1998), pp. 335-340.

[55] S. McCALLA, B. SANDSTEDE, Snaking of radial solutions of the multi-

dimensional Swift-Hohenberg equation: a numerical study, Physica D, 239 (2010),
pp- 1581-1592.

[56] W. V.R. MALKUS AND G. VERONIS, Finite amplitude cellular convection, J. Fluid

Mech., 4(1958), pp. 225-260.

[57] C. MARTEL, E. KNOBLOCH, J. M. VEGA, Dynamics of counterpropagating waves

in parametrically forced systems, Phys. D, 137 (2000), pp. 94-123.

[58] Y.-P. MA, J. BURKE AND E. KNOBLOCH, Defect-mediated snaking: A new growth

mechanism for localized structures, Phys. D, 239 (2010), pp. 1867-1883.

[59] J. MILES, Parametrically excited solitary waves, J. Fluid Mech., 148 (1984) , pp.
451-460.

[60] J. MILES AND D. HENDERSON, Parametrically forced surface-waves, Annual
Reviews Inc, (1990), pp. 94303-0139.

[61] K. MCQUIGHAN AND B. SANDSTEDE, Oscillons in the planar Ginzburg-Landau

equation with 2:1 forcing, Nonlinearity, 27 (2014), 3073.

[62] A.C. NEWELL, Envelope equations, Lect. Appl. Math., 15:157-163 (1974).



BIBLIOGRAPHY 122

[63] A. C. NEWELL AND J.A. WHITEHEAD, Finite bandwidth, finite amplitude

convection, J. Fluid Mech., 38 (1969), pp. 279-303.

[64] N. PERINET, D JURIC, L. S. TUCKERMAN, Numerical simulation of Faraday

waves, J. Fluid Mech., 635 (2009), pp. 1-26.

[65] V. PETROV, Q. OUYANG AND H. SWINNEY, Resonant pattern formation in a

chemical system, Nature, 388 (1997), pp. 655-657.

[66] Y. POMEAU, Front motion, metastability and subcritical bifurcations in

hydrodynamics, Phys. D, 23 (1986), pp. 3-11.

[67] H. RIECKE, Stable wave-number kinks in parametrically excited standing waves,

Europhys. Lett., 11 (1990), pp. 213-218.

[68] R. RICHTER AND I. V. BARASHENKOV, Two-dimensional solitons on the surface

of magnetic fluids, Phys. Rev. Lett., 94 (2005), pp. 1-4.

[69] A. M. RUCKLIDGE AND W. J. RUCKLIDGE, Convergence properties of the 8, 10

and 12 mode representations of quasipatterns, Phys. D, 178 (2003), pp. 62-82.

[70] A. M. RUCKLIDGE AND M. SILBER, Design of parametrically forced patterns and

quasipatterns, SIAM J. Appl. Math., 8 (2009), pp. 298-347.

[71] H. SAKAGUCHIA AND H. R. BRAND, Stable localized solutions of arbitrary length

for the quintic Swift-Hohenberg equation, Phys. D, 97 (1996), pp. 274-285.

[72] H. SAKAGUCHIA AND H. R. BRAND, Stable localized squares in pattern-forming

nonequilibrium systems, Europhys. Lett., 38 (1997), pp. 341-346.

[73] H. SAKAGUCHIA AND H. R. BRAND, Localized patterns for the quintic complex

Swift-Hohenberg equation, Phys. D, 117 (1998), pp. 95-105.

[74] H. SCHMIDT AND S. COOMBES, Snaking behavior of homoclinic solutions in a

neural field model, BMC Neuroscience, 10 (2009), (Suppl 1):P 297.



BIBLIOGRAPHY 123

[75] L. A. SEGEL, Distant side-walls cause slow amplitude modulation of cellular

convection, J. Fluid Mech., 38 (1969), pp. 203-224.

[76] M. SHATS, H. X1IA AND H. PUNZMANN, Parametrically excited water surface

ripples as ensembles of oscillons, Phys. Rev. Lett., 108 (2012), 034502.

[77] A. C. SKELDON AND G. GUIDOBONI, Pattern selection for Faraday waves in an
incompressible viscous fluid, SIAM J. Appl. Math., 67 (2007), pp. 1064-1100.

[78] J. SWIFT AND P. C. HOHENBERG, Hydrodynamic fluctuations at the convective

instability, Phys. Rev. A, 15 (1977), pp. 319-328.

[79] M. TLIDI, P. MANDEL, AND R. LEFEVER, Localized structures and localized

patterns in optical bistability, Phys. Rev. Lett., 73 (1994), pp. 640-643.

[80] C. M. ToPAZ AND A.J. CATLLA, Forced patterns near a Turing-Hopf bifurcation,

Phys. Rev. E, 81 (2010), 026213.

[81] A. M. TURING, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond.
Ser. B Math. Phys. Eng. Sci., 237 (1952), pp. 37-72.

[82] L. TSIMRING AND I. ARANSON, Localized and cellular patterns in a vibrated

granular layer, Phys. Rev. Lett., 79 (1997), pp. 213-216.

[83] P. B. UMBANHOWAR, F. MELO, AND H. L. SWINNEY, Localized excitations in a

vertically vibrated granular layer, Nature, 382 (1996), 793.

[84] V. VANAG AND 1. EPSTEIN, Stationary and oscillatory localized patterns, and

subcritical bifurcations, Phys. Rev. Lett., 92 (2004), 128301.

[85] V. VANAG AND 1. EPSTEIN, Subcritical wave instability in reaction-diffusion

systems, J. Chem. Phys. 121 (2004), 890.

[86] V. K. VANAG AND I.R. EPSTEIN, Resonance-induced oscillons in a reaction-

diffusion system, Phys. Rev. E, 73 (2006), 016201.



BIBLIOGRAPHY 124

[87] V. VANAG, A. ZHABOTINSKY AND I. EPSTEIN,Oscillatory clusters in the

periodically illuminated, spatially extended Belousov-Zhabotinsky reaction, Phys.
Rev. Lett. 86 (2001), 552-555.

[88] D. M. WINTERBOTTOM, Pattern formation with a conservation law, Thesis,

University of Nottingham (2005).

[89] J. WU, R. KEOLIAN AND I. RUDNICK, Observation of a non-propagating

hydrodynamic soliton, Phys. Rev. Lett., 52 (1984), pp. 1421-1424.

[90] A. YOCHELIS, J. BURKE, AND E. KNOBLOCH, Reciprocal oscillons and

nonmonotonic fronts in forced nonequilibrium systems, Phys. Rev. Lett. 97 (2000),

254501.

[91] V. 1. ZARNITSINA, F. I. ATAULLAKHANOV, A. I. LOBANOV, AND O. L.
MOROZOVA, Dynamics of spatially nonuniform patterning in the model of blood
coagulation, Chaos, 11 (2001), 57.

[92] P. ZAMANKHAN AND J. HUANG, Localized structures in vertically vibrated

granular materials, J. Fluids Eng., 129 (2007), pp. 236-244.

[93] W. ZHANG AND J. VINALS, Pattern formation in weakly damped parametric

surface waves, J. Fluid Mech., 336 (1996), pp. 301-330.



125

Appendix A

Generating ordinary differential equations from the PDE

model and the FCGL equation in Fourier space

In this appendix we will derive the set of equations in Fourier space that we used to find
the bifurcation diagram (Figure 2.8) of the PDE model (2.2) for the zero wavenumber
case, and also for the non-zero wavenumber case. First, we will present the approximate
equations that represent the FCGL equation (2.1) as a set of ordinary differential equations

(ODEs).

A.1 Set of equations for the FCGL equation

AUTO treats localized solution as a periodic orbit, with Y(X) = Y(X + Lx), so
effectively we have periodic boundary condition with fixed period Ly. Often in pattern
formation problems, using AUTO is problematic because of (multiple) neutral modes
with zero eigenvalue. In this problem there is only one neutral mode correspond to spatial
translation, and this neutral mode can be treated by AUTO in the same way that it treats
the neutral time translation mode for periodic orbits in ordinary dynamical systems, and

so it poses no difficulties.

Here we write A as A = Y] +1iY3, where Y7 and Y3 are functions of x, and % =Yo+1Yy.
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The model is given as 5% = F(Y), where Y = (V1,Y5,Y3,Y}), and F(Y) is given by

F(1) =Y,

F(2) = (1/(1+ a®)(—a(pYs + vYi — (Y7 + Y3)Ys — B2 + Y)Ys — TV3) — (u¥s — v¥s
— (VP + Y)Y+ BV + Y)Ys +TN))

F(3) =Y,

F(4) = (1/(1+o”) (s — v¥s — (Y7 + YY1 + BV + YF)Ys + TV1) — (uY3 + 0V

= (Y7 + Y)Ys = B(Y? + Y7)Y1 — TV5)) + AV

Homoclinic orbits are codimension-zero in this system because of the transversal in the
intersection of the stable and unstable manifolds of origin. The solution is approximated
by a periodic orbit of length Lx, and Lx > 1. To make this periodic orbit an isolated
solution of the spatial dynamical system, the system needs to be modified slightly, which
we do by adding a small term (\Y}) to the last equation. This breaks the Hamiltonian
structure of the equation, thus allowing AUTO to continue the periodic orbit [18]. The
value of A is set to zero initially, but AUTO is allowed to vary it in order to continue
the periodic orbit as a function of (e.g.) I'. We monitored the value of A and find that it

satisfies |A\| < 1078, and is typically O(10719).

A.2 Equations for the PDE model in Fourier space: zero

wavenumber case

We write solutions of the PDE model (2.2) with a truncated Fourier series in time with

the frequencies —3, —1, 1 and 3 as
U= (Y1 +1iYs)e ™ + (Y +4Y7)e ™ + (Yo + Vi )e + (Yis +iVis)e™,  (A2.1)

where Y7, Y3, Vs, Y7, Yy, Y11, Yis, and Y5 are functions of x. The choice of these modes

is based on the choice of the forcing R(U) cos(2¢). The dependent variables Y2, Yy, Y5,
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Y3, Yio, Y12, Y14 and Yig are the first derivatives in x of Y7, Y3, Y5, Y7, Yy, Y71, Y13, and Yi5
respectively. Here the problem is 16-dimensional since we have 8 complex variables in
(A.2.1) and the problem is second order in space (see (2.2)). As discussed in A.1, AUTO
treats the localized solution as a periodic orbit in space (with fixed period L,), and the
representation in (A.2.1) forces U to be periodic in time. For a domain size (for example)
L, = 2007, we use the order of 1000 grid points in AUTO (NT'ST = 1000, NCOL = 4).

We add a term (\Y74) to the last equation to break the Hamiltonian structure.
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We used Maple to generate the following equations for AUTO to do continuation and to

find the bifurcation diagram:

F(1) =Y,

F(2) = (—0.4D18Y; + 0.4D1aYs — ve* Y] + vetaYs — uBYs — paYy + E(aY;
/0.2D1 — aY11/0.2D1 — 8Y5/0.2D1 — $Y,/0.2D1)/0.2D1)/(a® + 52)
— (2C;8Y1Yy* — 2C;aY3Yy” — CiBY7*Yy + C;BY5°Yy + 2C,8Y1 Y1,
— 2C,aY3Y15° + C;8Y3%Y) — CiaYy*Ys + 20:8Y1Y1,% — 2C;aY3
Yii® — CiaY7*Yi1 + CiaYs?Yyy + 20 8Y1 Y7 — 2CiaY3Y7* + 2C;8Y;
Ys? — 2C;aY3Y5° + 20;8Y1Y15° — 2C;aY3Y13% — CiaYs? 4 2C,aY)
Yo? +2C, BYaYy® — CraY7’Yy + C,aY5’Yy + 2C,aY1Yis* + 26,8
Y3Yis® + C.8Y1%Ys + CraYs?Y) + 2C,.aY1Yy,? — 2C.aY7Y11Yis + 20,3
YsY:Yii 4 Ci8Y:% 4 20, BY5YxYy + 2C,aYsYeYis + 2C,8Y-Ye Y15 + 2C,
BY:Y11 Y15 + CraYi3 — 2C;8Y7Y11Y13 — 2C;aY5Y11 Y13 — 2C5aY7YgY3 + 2
CiBYs5YyYis + 2C;aY5YeY15 + 2C;8Y5Y11 Y15 — 2C;aY7Y11 Y15 + 2C;8Y7
YoYi5 + CfYs” — 2C;aY5Y7Yy 4 2C, fY5Y11 Vi3 + 2C,a¥7YoYi5 + 2C.aY;
Yi1Yis — 20, 8Y5Yy Y15 4 2C,aYsY7Y1y + 2C,8Y3Y1,* — C,fY5°Y1; + 2
CraY1Y7? + 2C, BY3Y7” + 2C,aY1Ys? + 2C, 8Y;3Y5” + 2C.aY Y5>

+ 2C,B8Y3Y15” + C.BY7*Y11) /(o® + B?)



Appendix A 129

F(3) =Y,

F(4) = (-0.4D1aY; — 0.4D18Y3 — ve’aY; — paYs — ve? 3Ys
+ uBYi — E(aYs/0.2D1 + aYy/0.2D1 + 3Y;/0.2D1 — BYi,/0.2D1)/0.2D1)
/(0 + B%) — (CraYs® — C, Y% + 2CiaY7Yy
Vis — 2C,BYsY:Y1 + 2C;aY Y1 + CiBY3® + CiaY3?Y; + 2C,aY7Yy
Yis — 20, B8Y5YoY13 + 2C,.aY7YeYis + 2C,aY5Y11Yi3 + 20, 8Y7Y11Yi3 — 20,
BYYyY15 — 2C,aYsYoYis — Ci8Y5* Y1 + CiaY:® + 2C;8Y3Yy” + 2C;a
Y1Ye? + CiaY5?Yy — CiaY7*Yy + 20:8Y3Y15% + 2CiaY1 Y52 + C) 3
Y1?Ys + C;BY7* Y1y + 2C:8Y3Y11” 4 2C;8Y5Y7Yy — 2C;8Y5 Yy Y15 + 2C;
aYsY11Yis + 2C5aY5Y7Y1 + 20 8Y7YoY13 + 2C5aY5Y Y13 + 2C;8Y5
Yi1Yis — 2C;aY7Y11Yig + 2C;8Y3Y7” + 2C;aY1Y7* + 20:8Y3Y5” + 2C;
aY1Ys® + 2C8Y3Y15° 4 2CiaY Y5 — 20, BY5Y11 Y5 — 2C, BV Yy
+ 2C,aY3Yy” + CfY7?Yy — C,fY5%Yy + 2C,aY3Y15° — 2C, 8Y1Y15°
— C,pY1Ys* — 20, Y1 Y11” — CraYs*Yiy 4 CraY7?Yi + 2C,aYsYy,?
— 20, 8Y1Y7* + 2C,aY3Y7” — 20, 8Y1Y5” + 2C,aY3Y5” + CraY:?Ys

— 20, 8Y1Yis? + 2C,aY3Vig® + 20, 8Y;Y 11 Vis + 2C,aY3YiYy) /(o + 62)
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P() =Y
F(6) = (=0.2D15Y; + 0.2D1aY; — veé? Y5 — pBYs + velaYs — paYs
+ B(—aY;/0.2D1 + aYi;/0.2D1 — 8Y5/0.2D1 — 8Y,/0.2D1)/0.2D1 + E
(—aY15/0.2D1 + aY3/0.2D1 — 8Y;/0.2D1 — BY13/0.2D1)/0.2D1) /(o + 5?)
— (—2C;aY3YyY13 — 2C, BY1Y7Yy — 20 8Y5Y5Y1 + 2C,8Y1Y7Y1 — 2C5a
Y3Y7Y1 — 2C5aY3Y5Yy — 2C;aY3Y1 Y15 — 2C;0Y1YoYs + 2C;8Y1 Y11 Y15
+2C;8Y1YyYi3 + 2C;0Y1 Y11 Y13 — 2C5aY Y11 Y13 + 2C5aY1Y7Yy + 2058
YsY7Yy + 2C,aYeY11Yi5 + 20, 8Y1YeY15 + 2C,aY1Y5Yy — 20, 8Y1Y11 Y13
+ 2C, BY3Yy Y13 — 2C;8Y3Yo Y15 + C;8Y5* — CiaY:® — 2C,aY3YoYi5 + 2
CraY1Y7Y11 + 2C.aY3Y7Yy + 20, BY3Y5Yy + 20, 8Y3Y11 Y15 + 2C,aY1 Y1
Yis — 2C,aY3Ys5Y11 + 20, Yo Y11 Y1z + 2C.aY3Y11 Y13 + 2C,aY YoY3 + 2
C,BYsY7Y11 + 2C, BY1Y5Y11 + 2C;8Ye Y11 Y15 + 2C;8Y3Y11 Y13 — 2CaY;
YsYii + CraVs® + C.0Y7% + 2C;8YsYy? — 2CiaY;Yy? — CifY11°Yi3 + 2
CiBYsY15" — 2C;aY7Y15" + CiaYy*Yis — CiaY11°Y1s + 203 8Y5Y15°
— 2C,0Y7Y15% 4 20, 8Y5Y11? — 2C;aY7 Y1 + 2C:8Y:1°Ys5 + 203
Y5%Ys — CiaYs?Yr — 2CiaY1%Y; — 2Ci0Y35?Yr + CifY7Y5 4 CifYy’?
Vi3 + 2C38Y1Y5Yy + 2C,aY5Yy? 4 2C,8Y7Yy? 4 2C,aY5Y15” — Cra
Y11°Yis + 20, 8Y7Y13* — C, Yo Y15 + 2C,aY5Y15% + C,8Y11°Y15 + 2
C.BY7Y15* + 2C,aYsYn® + 2C, BY:Yn® + 2C,aY1?Ys + CraY7*Ys
+ C.BY5%Y7 + 20, Y1 Y7 + 20, 8Y5?Y7 + CraYy?Yis + 2C,aYs?

Ys)/(a® + 67)
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P(T) = Y
F(8) = (—0.2D1aY; — 0.2D18Y7 — ve*aYs + uBYs — ve? Yy — paYs
— E(aY5/0.2D1 + aY,y/0.2D1 — 8Y7/0.2D1 + 8Y1,/0.2D1) /0.2D1
— E(aY1/0.2D1 4 aY13/0.2D1 — 8Y15/0.2D1 + (Y3/0.2D1)/0.2D1) /(o + %)
— (—2C,fY1Y7Y11 + 2C;0Y1?Ys — 20, 8Y1Y5Yy 4 2C,aY3YYi3 + 2C,a
YoY11Y13 — 20, 8Y3Y11 Y13 — 2C,aY1Y11 Y13 + 2C.aY Yo Y15 + 20, 5Y3Yy
Yis — 2C.0Y1Y11 Y15 — 20, Yo Y11 Y15 + 2C.aY3Y11 Y15 + 2C,aY3Y7 Y + 2C,
BY3Y5Y11 + 2C,aY1YsY11 — 2C,8Y1YY1s + CiaYs® + 2C;8Y1Yy Y15 + Crax
Y73 — 20, 8Y1Y7 Yy + 2C;aY1YsYy + 20:aY3Y7Yy 4 2C;8Y3Y5 Yy + 2C;
aY1YeYis + 20 8Y3YeY13 + 20 Yo Y11 Y13 + 2C;aY3Y11 Y13 — 20,8,
Y11Y1s — 2C;aY3YoY15 + 2C;aY1 Y11 Y15 + 2CaYeY11 Y5 + 2C:8Y3Y7Y1 + 2
CiBY1Y5Y1 — 2C,aY3Ys5Y1 — 2C.aY1Y7Yy — C,.8Ys® + C Y7 + 2C,3
V3Y11Yis — 20, 8Y3Y7Yy + 2C;8Y;Y1? + 2CiaYsY1* 4 Ci Y5 + C
aY7?Ys + 2C,8Y3°Y7 + 2C,8Y7Yy” + 2C;aY5Yy” — CiaY11*Yis
+ CiaYy*Yis 4 2C;aY5Y15% + 20, 8Y7Y15? + CifY11 Y15 — CifYy*Vis
+ 2C;0Y5Y15% + 2C;8Y;Yi5° + 2C;aY5%Y5 4 2C;8Y1°Y; + 2C,aY;3
VY + 2C,aY;Y1,? — 20, 8YsY1? + CraYs?Ys + 2C,aY5%Y7 4 2C,a
Y2Yy® — 2C,BY5Yy® — CBYsY7? + CofY11*Yis + 2C,aY7Y1s% — G 3
Yo?Yi3 — 2C,BY5Y13® + CraY112Yis + 2C,aY7Yi5* — CraYy?Yis — 20,

BY;Yis® — 20, 8Y1%Ys — 2C,8Y3Ys + 2C,aY3%Ys + 2C,aYiYaYi))/(® + 67)
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F<9) =Y

F(10) = (—paYy — uBY1 + vetaYy, — ve?BYy + E(—aYs/0.2D1
+ aY15/0.2D1 — 3Y1/0.2D1 — 3Y15/0.2D1)/0.2D1 4 E(aY-/0.2D1
— aY11/0.2D1 — 8Y;5/0.2D1 — 8Y,/0.2D1)/0.2D1) /(o + %)
— (2C,BY11Y13” + 2C,aYe Y13 + 20, Y11 Y15 + 2C.aYyYi5” + 2C.aY; Yy
+ 2C,aY3%Yy + 2C:8Y7*Yy + 2C;8Y5°Yy — 2C;aY7*Yy; — 2CiaY5% Y,
— GV Y7 — CiaY3Y7® + CifY1Ys? + CiaYsYs® + CifYy® — CiaYy,®
+2C,aY7°Yy 4 2C,aY5°Yy + 2C,aY7Y11 Vi3 + 20, 8Y5Y7Y) + 2C,.aYsY7Y;
— 20, Y1 Y7Y13 + 2C,aY1Y5Y13 + 20, BY3Y7Y15 + 20, BY1Y5Y15 — 2C,.aY3Y5Y15
+ 2C,aY1Y;Y5 — 2C;aY3Y;Yi5 — 2C;aYsY7Y1 + 2C:8Y5Y;Ys + 203 8Y5°Yy
+2C;8Y3Y7Y13 + 2C5aY1Y7Y13 + 20 8Y1Y5Y13 — 2C;aY3Y5Y13 + 205 8Y)
Y7Yis — 2C;aY1Y5Y15 — 208Y3Y5Y 15 + 20, 8Y3Y5Y13 + 2C,.aY5Yy Y5 + 2
C,BY7YsY13 + 2C, 8Y7Y11Y15 + 2C,aY3Y7Y13 4+ CraYy® + 2C;8Y7Y11Y13
+2C;aY5Y11 Y13 — 2C;0Y7YeY13 + 20 8Y5Yo Y3 — 2C5aY5YeY1s + 2058
YsY11Yis — 2CiaY7YnYis — 2C;8Y7YY1s — 2C:aY1%Y11 + CifY11°Yy — Ci
aYy?Yy — 2C;aY3%Y1 — 2CiaY11Yi3? + 20:8YoY13% — 2C;aY11Y15°
+ 2C;8YoY15% 4 2C; 8Y1%Yy — 2C, BY5Y11 Y13 — 2C,aY7YeY5 + 2C,
aY5Y11Yis + 20, 8Y5YeYi5 4 20, 8Y5°Yy — CraY1Y7 + C,BY3Y7 + C,
aY1Ys® — C.BY3Ys? + 2C,8Y1* Y1y + C,fYy* Y1y + CraY1 Yy + 2C,

5}@23/11 + 2Cr5Y72Y11 + Crﬁyng)/((%2 + 52)
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F(11) = Yo
F(12) = (—ve? Y11 + puBYy — paYi — vetaYy — E(aY;/0.2D1 + aYi3/0.2D1

— BY3/0.2D1 + 3Y15/0.2D1)/0.2D1 — E(aY5/0.2D1 + aYy/0.2D1

+ BY7/0.2D1 — BY1,/0.2D1)/0.2D1) /(® + B%) — (2C,aY1*Yi — C,fYo Y1)
+ CraYy®Yiy + 2C,aY3%Y1; + 2C,aY11Yi3? — 20, 8YeY13* — 20, 8Y,Y15>
+2C,0Y11Y15* — 2C,8Y1*Yy — 2C,8Y5°Yy + CiaYy® + 2Ci8Y5Y;
Y1 = 2C;aY7YeY1s — 20, 8Y3Y7Y13 — 20, Y1 Y5Y13 + 2C,.aY3Y5Y13 — 20«
Y1Y7Yis + 2C,aY1Y5Y 15 + 20, 8Y3Y5Y 5 + 2C,.aY5Y7Y, — 20, 8Y5Y7Y3

— 2C,BY1Y7Y15 + 2C,aY3Y;Y15 + CraYiy® + 2C,8Y1* Y1 + CifYy* Y,

+ CiaYyY1? + 2C;8Y3*Yq1 + 2C;8Y11 Y15 + 2C;8Y11Y15° + 2CiaYy

Vis® + 2C;aY1%Yy + 2C;aY3%Yy + 2C;aYoYi3® + 2C;aY3Y7 Y13 + 2C;
aY1YsYis + 20, 8Y3Y5Y13 — 2C;8Y1Y7Y13 + 2C;aY1Y7Y15 + 2C;8Y3Y7

Y15 + 2C;8Y1Y5Y15 — 2C;0Y3Y5Y15 + 2C5aY5Y7Y3 + 2C,aY7Y11 Y35

— 20, BY5YeY13 + 2C,aY7YeYi3 — 2C.aY5Y11 Y13 — 20, Y7Y11 Y13

+ 20, 8Y7Yo Y15 + 2C,aY5YeY1s + C;B8Y11° + 2C:8Y5* Y11 + 2C;aY5°Y,

+ 2C;aY7%Yy + 2C;8Y7*Y11 + 2C;8Y5Y,Yi5 + 2C;aYs5Y11Y15 + 2C;8Y7Y,Y1s
+ 2C;0Y;5Yg Y13 — 2C;8Y5Y11Vis + 2C;aY7Y 11 Vi + CifY3Y7” — CiaYY7?
— CiBYsYs? + CiaY1Ys? — 2C, Y5 Y11 Y15 — C,Yy” — 2C,8Y7%Yy
—2C,8Y5%Yy 4 2C,aY5°Yy1 + 2C,aY7* Y1y + C.BY1Y7? + CraYsYs?

— C.p1Y5? — CaYsYs® 4 2C,8Y;Y11Yis) /(o + 57)
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F(13) =Yy

F(14) = (0.2D13Y13 — 0.2D1aYs + velaYis — paYys — ve2Yis — uf
Yis + B(—aY;/0.2D1 + aY;;/0.2D1 — BY3/0.2D1 — BY,/0.2D1)/0.2D1)
[(a® + 3%) = (2C,BY7*Y15 + CoBY15" Y15 + C;
aY15%Y15 + 20, 8Y1Y15 + 20, 8Y5*Y15 + 20, Y3 Y15 + 2C,aY7°Yis
+2C,aY1 Y13 + 2C,aY5°Yi3 4 2C,aY3%Yi5 + 2C,8Y V7Y, + 208
Y3YsY — 20 8Y1Y7Y 1 — 2C5aY3Y7Y0 + 2C50Y3Y5Yy — 2C50Y1Y7Yg + 2
CiBYsY7Yy + 2C,aY1Y5Yy — CiaYys® + CifYis® + 20, fYeY11Y; — 2C;
04Y72Y15 - CiOéY132Yl5 - 201'04Y12Y15 - 201043%23/15 - 201'043/323/15
+ C;BY15* Y15 + 2C:8Y1°Y13 + 2CiBY5°Y13 + 2C;8Y3*Y15 + 2C;8Y7°Y13
+ 2C;8Yy Y11 Y7 — 2C;aYeY11Ys + C, Y15 — 2C,aY1Y7 Y11 + 2C,«
Y3Y7Yy — 20, BY3Y5Yy + 2C,aY3YsY1 + 20, BY3Y7Y1 + 20, 8Y1Y5Y 1
— 2C;aY1Y5Y11 + CiBY5Yy” + CiaYrYe? 4+ 2C;8Y11°Y13 — 2CiaYy*Yis
— 2C;aY11%Y15 — CiYsY1? — CiaYeYi? + 2C;8Y*Y13 + 2C;8Y1Y5
Yy + CraYsYe? — C,.8Y7Ye? + 2C,aY11?Y13 + 20, 8Ye* Y15 + 20, 8Y1
Y15 — CraYsYii? + CBY7Y11% 4 2C,aYe* Y13 + CraYis® 4+ 2C,aYy

YuYs)/(e® + 87
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F(15) = Yi

F(16) = (0.2D1aYis + 0.2D13Y15 — ve*aYis — paYys — ve? Y5
+ ufBY1s — E(aYs3/0.2D1 + aYy/0.2D1 — BY;/0.2D1
+ B8Y1,/0.2D1)/0.2D1)/(a® + B%) — (CiBY15” — 2C,BY7* Y13 — 2C,
BY1*Y1s3 — 20, BY5%Y15 — 2C, Y3*Y13 + 2C,aY7°Yi5 — C,8Y13Y15°
+ CraY13%Yys + 2C,aY1%Y15 + 2C,aY5Y15 + 2C,aY3?Yi5 + 2C, 8Y)
Y7Y — 20, 8Y1Y5Yg + 2C,.aY3Y7Y1 — 20, 8Y3Y5Y1 + 2C,aY 1 YsY1 + 2C;
BYs*Yi5 + 2C,8Y3%Y 5 + CiaYis® + 20 8Yy Y11 Yy — C,3Y15° + 2C,«
YoV11Ys — 20, 8YyY11Yr + 2CiaYo Y11 Y7 + 2C;8Y1%Y 5 + 2C:8Y1 Y7 Yy
+ 2C;aY1Y5Yy + 2C;aY3Y7Yy — 20, BY3Y5Yy + 2C8Y3Y7Y1 + 2083
VsV + 2C;aY3Y5Y1 + 2C;aY7* Y13 + 2CiaY1°Yis + 2C;aY5° Y15 + 2
CiaY3?Yi3 + 2C,8Y7*Y5 + CifY13° Y15 + CiaY13Y15° + 2C,aY Y7 Yy
—2C,8Y3Y7Yy 4 C;8Y7Y11* — CiaYsYii® — CifY7Yy® + CiaYsYy® + 2
CiaY11°Y13 + 2C50Yy Y13 + 203 8Y11°Y15 + 203 8Yy* Y15
+CraYis® - 2C,aY3YsYs + CraYrYn® + G, 55
Yii? = CraYrYe? — C.8Ys3Yy? — 2C,8Y11°Y13 — 2C, Y13 + 2C,.a

Y112Yi5 + 2C,aYy?Yi5 — QCiOé}/i}/?}/il)/(OéQ + 52) + A\Yie

A.3 Equations of the PDE model generated by Maple in Fourier

Space: non-zero wavenumber case

We write solutions of the PDE model (1.12) with a truncated Fourier series in time with

the frequencies —3, —1, 1 and 3. We expand U in Fourier space as

U= (Y] +iYs)e ™ 4+ (Yo +iYis)e ™ + (Yir + iYa1)e™ + (Yo 4 iYag) ™.
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2 3
—%;;1, Y, = 9% and so

Here, with four derivatives in space, we need Y, = %, Y = = 54

on. We also add a term (\Y32) to the last equation to break the Hamiltonian structure as

before. The equations are

F(1)=Y,
F(2)=Y3
F33)=Y,
F(4) = (-0.3D10Y1 + 0.3D1pY 5 — pupY1 +wpY's — wdY 1 — udYs — apYs — adYy

+ BpY 7 — B6Y 3+ E(pY13/0.2D1 — pY 51 /0.2D1 — §Y/0.2D1 — §Y 17 /0.2D1)
/0.2D1)/(p* + 6%) — (2C;:0Y Y3, — 2C;pY 5Y 1, — Ci6Y3,Y 17 + CidY Y 17

+ 20:0Y 1Y 0g? — 205pY 5Y 2y + Ci6Y2Y | — CipY2Y5 + 20:6Y Y2, — 2C;pY's
Vi — CipYLYo + CipY Yo 4+ 20:0Y Y2, — 20:pY 5Y 2, + 2C:6Y

Y3 —20:pY5Y s+ 20:0Y Y5 — 20:pY 5Y 35 — CipYs + 20, pY

Y1, +2C.0Y5Y5, — CopY 1Y s + CopY oY g + 2C,.pY 1Y + 20,0

YsY2 + C6Y2Y 5 + CopY 2V + 20,pY Y2, — 2C,pY 13Y 1Y o5 + 2030
YoY13Y o1 + CidYS + 2C,8Y oY 13Y 17 + 2C,pY oY 17Y o5 + 2C,.8Y 13Y 17Y 25 + 2C,
0Y15Y 21Y 99 + CrpY§ — 2C:0Y 13Y 21Y 95 — 2C;pY Y 21V 25 — 2C;pY 13Y 17Y 25 + 2
CidY gY'17Y 95 + 2CipY oY 17Y 29 + 2C;0Y oY 1Y 29 — 2CipY 13Y 21 Y 99 + 2C;0Y 13
Y17V a9 4 Cr0Ys — 2C;pY oY 13Y 17 + 2C,6Y oY 1Y 95 + 2C,pY 13Y 17Y 99 + 2C,pY g
Y01Y 99 — 2C,6Y oY 17Y 99 + 2C,pY oY 13Y 91 + 2C,0Y 5Y 35, — C.0Y 2Y o1 + 2

CopY 1Y, +2C,8Y 5Y 3, + 2C,pY 1Y + 2C,8Y 5Y 2 + 20, pY 1Y 957

+2C,8Y5Y % 4+ C.oY2,Y 1)/ (0% + 0%)
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Y74 adYs — BpYs — B6Y 7 — E(pY/0.2D1 4 pY17/0.2D1 + §

Y13/0.2D1 — §Y5,/0.2D1)/0.2D1)/(p* + 6%) — (C,pYs — C.0Y3 + 2C;pY 13Y 17
Y9 — 2C.0Y oY 13Y 91 + 2CipY Y5, + Ci6Y2 + CipY2Y 1 + 20, pY 13Y o

Yog — 2C0Y oY 17Y 25 + 2C,pY 13Y 17Y 95 + 20, pY oY 21Y 95 4+ 2C,.0Y 13Y 21Y 95 — 20,
6Y 13Y 17Y 99 — 2C,pY oY 17Y 99 — Ci0Y 2Y 51 + CipY3 + 2C:6Y 52, + 2Csp
Y1V 4+ CipYaY s — CipY2,Y 17+ 2C:6Y 5Y 5 4+ 20:pY Y59 + Cid

YIV5 + CidY 1Y 0 + 2Ci0Y 5Y 3, + 2Ci0Y oY 13Y 17 — 20i6Y oY 17Y 99 + 2C;

Y 13Y 17Y 95 + 2C;pY oY 17Y 95 + 2Ci0Y oY 21 Y 95 — 2CipY 13Y 1Y 95 + 2C;:8Y 5Y 3,
+2C,pY 1Y 3, 4+ 2C,8Y Y 5 + 2CipY 1Y + 2C:0Y 5Y 55 + 2C:pY

Y2 —2C,6Y oY 1Y 99 — 2C8Y Y2 +2C,pY 5Y 2 + C.6Y %Y 1, — C6Y2
Y7+ 2C,pY5Y 39 — 2C.0Y 1Y 99> — C.0Y Y3 — 2C,6Y Y3, — Crp

Y2V 4+ CopY2Yor 4+ 2C,.pY 5Y 5% — 2C.0Y Y2, + 2C,pY Y3, — 20,

8Y Y5 +2C,pY Y3+ CopYiYs — 2C,.0Y Y5 + 2C,pY 5Y 5

+2C;0Y 13Y 1Y 29 + 2C,pY oY 13Y 17) / (0° + 6%)
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F(9) =Y
F(10) =Yy,
F(11) = Yo
F(12) = (=0Y 9+ pY13 —wdY g — pudY13 — ppYo + wpYi3 — apYpy

— Y 15+ BpY 15 — BOY 11 + E(—pY13/0.2D1 + pY 5, /0.2D1 — §Y,

/0.2D1 — §Y17/0.2D1)/0.2D1 + E(—pY 29/0.2D1 + pY5/0.2D1 — 6Y;/0.2D1

— Y 55/0.2D1)/0.2D1)/(p* + 6%) — (—2CipY5Y 17Y 95 — 2C,.6Y 1Y 13Y 17 — 2
Ci0Y 5Y gY 91 4+ 2C;0Y 1Y 13Y 91 — 2Cz'PY5Y13Y21 - 2Cz‘PY5Y9Y17 - 2Cz’/)Y5Y21
Y9 — 2C5pY 1Y 17Y 29 + 2C;0Y 1Y 1Y 09 + 2C;0Y 1Y 17Y 05 + 2C;pY 1Y 91 Y 95 — 2
CipY17Y 1Y 95 + 2C;pY 1Y 13Y 17 + 2C30Y 5Y 13Y 17 + 20, pY 17Y 21 Y 29 + 2C.0Y 1Y 17
Yoo +2CpY 1YY 17 — 2C.0Y 1Y 21Y 95 + 2C,.0Y 5Y 17Y 95 — 2C30Y 5Y 17Y 99 + C0
Yo — CipY3, —2C,pY 5Y 17Y 99 + 2C,pY 1Y 13Y 91 + 20, pY 5Y 13Y 17 + 2C,.6
Y5Y oY 17 +2C.0Y5Y 01Y 99 + 20, pY 1Y 21Y 99 — 2C,pY 5Y gY 91 + 2C0Y 17Y 1Y o5
+2C,pY 5Y 51Y 05 + 20, pY 1Y 17Y 95 + 2C,.0Y 5Y 13Y 21 + 2C.0Y 1Y oY 91 + 2C50
Y17Y 1Y 99 + 2C:6Y 5Y 1Y 95 — 2CipY 1Y oY 91 + CopY s + C.0Y 35 4+ 2Ci0Y g

Y1, —2CipY 13Y 3, — CidY 3, Y 95 + 20:0Y oY 55 — 2CipY 13Y 55 + Cip

Y2 Y9 — CipY 3, Yo + 2Ci0Y oY 59 — 2C;pY 13Y 59 + 2Ci0Y gY 5, — 2

CipY 13Y3, +2Ci0Y 7Y g+ 20:6Y2Y g — CipY 3Y 13 — 2C;pY 1Y 13

—20ipY Y 13+ CidY3,Y g + CidY 1, Y 95 + 2Ci0Y 1Y oY 17 + 2C,pY oY1,

+2C,6Y 133, 4+ 2C,pY oY 55 — CrpY 3, Y 95 + 2C,0Y 13Y 5 — C,.0Y3,

Yag + 2C,pY oY 2 + Cr6Y 2, Y 99 4 2C,.6Y 13Y 59 4 2C,.pY oY 3, + 20,6

Vi3Y2 +2C.pY2Y g + CopY 2V + CooY2Y 15 + 2C,0Y 2V 15 + 20,0

Y2V 134+ CopY2Y o5 + 20,.pY 2Y 9) /(p* + 67)
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F(13) =Y14
F(14) = Y15
F(15) =Y
F(16) = (—pY9 — 0Y13 — wpYg — ppY 13 + p10Y g — wdY 13 — apY s

+adY 1 — BpY 11 — B0Y 15 — E(pY/0.2D1 + pY17/0.2D1 — §Y 13

/0.2D1 + §Y 5, /0.2D1)/0.2D1 — E(pY1/0.2D1 + pY 95/0.2D1 — §Y 59/0.2D1

+8Y5/0.2D1)/0.2D1)/(p* + 6%) — (—2C,.0Y 1Y 13Y 91 + 2CipY3Y g — 2

CroY 1Y oY 17 + 2C,pY 5Y 17Y o5 + 20, pY 17Y 91Y 05 — 2C,.0Y 5Y 91 Y 95 — 20, pY'

Ya1Yos +2C,pY 1Y 17Y 99 + 2C,0Y 5Y 17Y 99 — 2C0Y 1Y 91Y 99 — 2C0Y 17Y 21 Y 99

+2C,pY 5Y 51Y 99 + 2C,pY 5Y 13Y 51 + 2C,.0Y 5Y gY 91 + 2C,.pY 1Y oY 51 — 2C,.0Y

Y17Yos5 + CipY s 4 2C:6Y 1Y 17Y 99 4+ CrpY'sy — 2C:0Y 1Y 13Y 17 + 2C;pY 1Y oY 17

+ QCipY5Y13Y17 + 201(5Y5Y9Y17 -+ QCipY1Y17Y25 + 2015Y5Y17Y25 + 202(5

Y17Y01Y o5 + 2CpY 5Y 21Y 95 — 2C;0Y 1Y 1Y 05 — 2C;pY 5Y 17Y 99 + 2C;pY 1Y 51Y o9

+2C5pY 17Y 21Y 99 + 2C;0Y 5Y 13Y 91 + 2C50Y 1Y gY 91 — 2C50Y 5Y 9Y 91 — 2C,p

Y1Y13Y 17 — CdY g + CidY 35 4+ 20:6Y 5Y 21V 99 — 2C,8Y 5Y 13Y 17 + 2C:0Y 13
Y3 +20:pY oY5 + CidY3Y 134+ CipY3,Y g + 2C:6Y2Y 13 + 2C;6Y 13

Y% + QCl-ngYf7 — CipY31Y25 + Cz-pY%7Y25 + QCingYgg) + 2C;0

Y1335 4+ Ci0Y 3, Y9 — Ci6Y2.Y 99 + 2C;pY oY 5 + 2C;:6Y 13Y 54 + 2C;
PY2Y o+ 20:6Y3Y 13+ 20, pY 5Y oY 17 + 20, pY 13Y 5, — 2C,0Y 4Y5,

+ CopY2Y 15 + 20, pY 2Y 15 + 2C,pY 13Y 2, — 2C,.0Y oY%, — C,8Y 4Y?2,

+ C0Y 3 Y95 + 2C,pY 13Y 2 — C.0Y 2. Y 95 — 2C,8Y Y35 + CpY 3,

Yag + 2C,pY 13Y 59 — CrpY 1Y 99 — 20,8Y oY 39 — 2C,.0Y 1Y g — 2C,6Y 5*Y g

+ 2CTpY%Y13 + 2C¢pY1Y13Y21)/(p2 + 62)
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FOT) = Vi

F(18) = Y1

F(19) = Yao

F(20) = (Y17 =Y o1 — pdY 21 — wdY 17 + wyY o1 — pyY17 — ayYyg

—adY o3 + 7Y 3 — BOY 19 + E(—7Y 5/0.2D1 + 7Y 99/0.2D1 — §Y

/0.2D1 — §Y 55/0.2D1)/0.2D1 4+ E(7Y 13/0.2D1 — Y5, /0.2D1 — §Y4/0.2D1
—6Y17/0.2D1)/0.2D1)/(v* + 6?) — (20,6Y 91 Y 55 4+ 2C,7Y 17Y 55
+2C,6Y 1Y 59 4+ 20,7Y 17Y 59 4+ 20, 7YY 17 + 2C,7YEY 17 + 20:6Y 13°Y 17
+2C0Y3Y 17 — 207Y3,Y 91 — 207Y 3Y o1 — C0Y 1Y, — CiyY's

Y2+ CidY 1Y+ OnYsY2+ CioYs — O Y, +2CY3.Y 17 + 2C,

VYV 17 + 20,4 13Y 91 Y o5 + 2C,8Y oY 13Y 1 + 2C,7Y oY 13Y 5 — 2C,.0Y Y 13

Yos +2C7Y 1Y oY 95 + 2C,0Y 5Y 13Y 99 + 2C,.0Y 1Y 9Y 99 — 20, 7Y 5Y gY 99 + 2C,
VY 1Y 13Y 99 — 207Y 5Y 13Y 29 — 207Y oY 13Y 1 + 2C;0Y oY 13Y 5 + QCiéngN
+2C0Y 5Y 13Y 95 + 2C7Y 1Y 13Y 95 + 2C;0Y 1Y Y 95 — 2C;7Y 5Y gY o5 + 2C50Y
Yi3Y9 — 2C7Y 1Y gY 99 — 2C50Y 5Y 9Y 29 + 2C,.0Y 5Y oY 95 + 2C,7Y oY 17Y 95 + 2
Cr0Y13Y 17Y 25 + 2C,6Y 13Y 1Y 99 + 20,7 5Y 13Y 05 + C7Y T, + 2C56Y 13Y 91V o5
+2C7Y oY 01Y 95 — 2017Y 13Y 17Y 25 + 2C50Y oY 17Y 95 — 2C7Y 9Y'17Y 99 + 2C;0
YoV 1Yo — 207Y 13Y 21 Y99 — 2C;:0Y 13Y 17Y 99 — 2C¢’7Y%Y21 + C¢5Y%1Y17 -
VY 3;Y 91 — 207Y Y 51 — 207Y 51 Y 55 + 2C0Y 17Y 55 — 2C17Y 1Y 5
+2C:0Y 17Y 59 + 2C:0Y 7Y 17 — 2C,6Y gY 91 Y 95 — 2C, 7Y 13Y 17Y 99 + 20,

VY oY 01V 99 + 2C,8Y oY 17Y 99 + 2C,8Y Y o1 — CoyY Y3, + C0Y Y3, + O,

VY 1Ye — CdY5Y s+ 2C,6Y Y o1 + CodY 3, Yo + CoyY 5, Y17 + 20,

SYZ2Y 91 + 2C,.6Y 1Y o1 + Co0Y5) /(2 + 6%)
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F21) = Vo
F(22) = Yy
F(23) = Vs
F(24) = (WY17 4+ 0Y 91 —woY o1 — pyYor + pdY 17 — wyYir — ayYos

+ adY 9 — 7Y 19 — B6Y 23 — E(7Y1/0.2D1 + 7Y 95/0.2D1 — §Y'5

/0.2D1 + §Y 59/0.2D1)/0.2D1 — E(7Y4/0.2D1 4 7Y 17/0.2D1 + 6Y 13/0.2D1
—0Y'21/0.2D1)/0.2D1)/(y2 4 62) — (2C,7Y 12Y 91 — C,6Y 17Y 512 + Crry

Y 172Y 91 + 2C9Y 52Y 91 + 2C,7Y 91V 952 — 2C,.0Y 17Y 252 — 2C,6Y 17Y 992

+ QCT’}/Y21Y292 - 20r5Y12Y17 - 2CT(SY52Y17 + OZ"}/Y173 + 20¢5Y9Y13

Y1 —207Y 13Y17Y 99 — 2C,0Y 5Y 13Y 95 — 2C,0Y 1Y Y 95 + 2C7Y 5Y oY 95 — 2C,y

Y1Y13Y 95 + 2C7Y 1YY 99 + 2C.0Y 5Y gY 99 + 2C,7Y oY 13Y 1 — 2C,.0Y oY 13Y 5
—2C.0Y 1Y 13Y 29 + 2C7Y5Y 13V 09 + CoyY 213 + 2C30Y12Y o1 + Ci0Y 172Y 51
4 CAY 1Y 12 + 2058Y 52V 91 + 2056Y 1Y 952 + 2058 31V 202 + 20/ Y 17
Y292 + 207Y 12Y 17 + 207 Y 52Y 17 + 2C7Y 17Y 252 + 2C7Y 5Y 13Y o5 + 20

VY 1Y oY 95 +2C;0Y 5Y Y 95 — 2C;0Y 1Y 13Y 95 + 2Ci7Y 1Y 13Y 99 + 2C;6Y 5Y 13

Yoo +2C;0Y 1Y 9Y 99 — 2C:7Y 5Y gY 09 + 2C:7Y oY 13Y 5 + 2C,7Y 13Y 91Y 99 — 2C,6

YoY17Y o5 + 2C7Y 13Y 17Y 95 — 2C,7Y 9Y 91Y 95 — 2C,0Y 13Y 21 Y 95 + 2C,0Y 13Y 17Y 99

+20,7Y oY 17Y 99 + Ci8Y3, 4+ 20:6Y2Y 91 + 20i7Y Y 17 + 2C7Y 2,
Y17 4+ 2C:8Y3,Y 91 + 20i0Y oY 17Y 29 + 2C17Y oY 21 Y 99 + 20i0Y 13Y 17Y o5 + 2C;
’7Y9Y17Y25 - 2Ci5Y9Y21Y25 + 20i7Y13Y21Y25 + Cl(SYE)Y%?, - Ci’VYIY?:s - CZ
§Y Y2+ CyY Y2 —2C,.0Y Y 1Y 99 — C.0Y 3. — 2C,6Y2,Y 17 — 2C,6
Y2Y 17 +2CqY Y o1 +2C,7Y3,Y o1 + C0Y 1Y, + CoyYsYi, — O

YlY; — Cr7Y5Yg2) + 20i5Y13Y21Y29>/(72 + 52)
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=Y

= (0.3D16Y 95 — 0.3D17Y 99 — 7Y 95 — wdY 95 — 10Y 29 + wyY o9
—ayYor — adY g + fyY a1 — B6Y o + E(—7Y13/0.2D1 + 7Y o
/0.2D1 — §Y4/0.2D1 — §Y17/0.2D1)/0.2D1)/(7* + 6°)
— (2C,6Y2,Y 99 + Cr0Y 35Y 29 + CoyY 3gY 95 + 20,6 7Y 99 + 2C,.0Y 5Y 59
+2C.0Y2Y 99 + 2C,7Y2,Y 95 + 2C,7Y 2Y 95 + 20,7V 2Y o5 4+ 20,7 Y 2Y o5
+2C.0Y 1Y 13Y 17 + 2C50Y 5Y gY oy — 2C;0Y 1Y 13Y 01 — 2C7Y 5Y 13
Yo +207Y5Y oY 17 — 207 Y 1Y 13Y 17 + 2C0Y 5Y 13Y 17 + 2C,7Y 1YY 17
— CyY 99 + Ci6Y 35 +2C,.0Y 17Y 1Y g — 207Y 1Y 99 — CiyY55Y 99 — 2Ci7Y7
Y9 — 207Y Y 99 — 20:7Y 2Y 99 + Ci8Y 5Y 95 + 2Ci0Y 7Y 95 + 2C;
SY2Y 95 + 2C:0Y 2Y 95 + 2C36Y 13%Y 95 + 20:0Y 17Y 1Y 13 — 2C7Y 17Y 2, Y g
+ Cr0Y 39 — 2C,9Y 1Y 13Y 91 4+ 2C,7Y 5Y 13Y 17 — 2C,0Y 5Y oY 17 + 2C7Y 5Y g
Yo +20.0Y5Y 13Y 91 + 20,.0Y 1YY o — 20:7Y 1YY 9y + Ci6Y oY, + CiyY 13
Y, +2Ci0Y 35, Y95 — 20i7Y 1Y 29 — 20i7Y 3, Y 99 — Ci0Y o5, — Ci
Y13Y2 +20:0Y2 Y 95 +2C:6Y 1Y oY 17 + CoyY Y2 — C.0Y 13Y 2, +2C,y
Y3, Y5 4+ 20,6Y2Y 99 4+ 20,6Y 212Y 99 — C,7Y oY 3, + C.0Y 13Y 5, + 2

CoyY 1Y o5 + CY s + 2C,7Y 17Y 1Y 13) /(72 + 67)
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= Y30

= (0.3D17Y 95 + 0.3D16Y 99 — 7Y 29 — wyY a5 — wdY 99 + pdY 25
—avYs + adYor — fyYor — B6Y 51 — E(7Y9/0.2D1 + 7Y 17
/0.2D1 — §Y 13/0.2D1 + §Y 5, /0.2D1)/0.2D1) /(7* + 6°)

— (C8Y 3 — 2C.0Y 3,Y o5 — 2C,0Y 1Y o5 — 2C,0Y Y o5 — 2C,.6Y ;
Yos + 2C,7Y3,Y 99 — Cr6Y 95Y 59 + CpyY 55 Y 99 + 2C,7Y Y o9 + 20,7y
Y§Y29 + 2CT’YY§Y29 +2C0Y 1Y 13Y 91 — 20,01 Y oY 17 + 2C,7Y 5Y 13Y oy

- QCT5Y5Y9Y21 + QCT’)/Y1Y9Y21 + QOz(SYngg + 2015Y§Y29 + Cl’)/Ygis

+2Ci0Y 17Y 1Y g — C.8Y a5 + 2C,7Y 17Y 1Y g — 2C,6Y 17Y 21 Y 13 + 2C7Y 17Y o1

Y13 -+ 201(51/%}/29 + 20i6Y1Y13Y17 + 20{YY1Y9Y17 + 20,'7Y5Y13Y17 - ZCZ

5Y5Y9Y17 + 2015Y5Y13Y21 + 20i5Y1Y9Y21 + QCi’}/Yg)YgYQl =+ 201")/}/33}/25

2Y g9 + CiyYos5Y 39 + 2C,4Y 1Y 13Y 17 — 2C,.8Y 5Y 13Y 17 + CidY 13Y5, — CiyYg

Y3 — CidY 13Y 5, + CiyYoY T, + 2C7Y 5, Y o5 + 2C7Y 3. Y o5 + 20,6
Y§1Y29 + 2016Y%7Y29 + Cr")/Ygg — QCT’}/Y5Y9Y17 + Crﬁ)/Yll’)Ygl + CT(SYQ
Y3 — CAY3Y3 — C0Y YT, — 2C,.0Y 35, Y o5 — 2C,.0Y 1Y 95 + 20,

Y§1Y29 —|— 2CT’)/Y%7Y29 — QOi’)/YlYl:;YQl)/(’yZ -+ 52) —+ >\Y32
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Floquet multiplier theorem
Consider an n-dimensional first-order system as
= AT (B.2)
where A is an n X n matrix function with minimal period 7', which satisfies
Alt+T)=A(t), —oo<t< o0,

for the smallest positive 7". The Floquet multiplier theorem [42] stats that the system has

at least one non-trivial solution. Under some conditions, solutions of (B.2) take the form
T(t) = B0 ciel'pi(t) (B.3)

where ¢; are constants that depend on initial conditions, p;(t) are vector-valued functions
with period 7', and p; are called characteristic numbers or Floquet multipliers of (B.2).

The Floquet exponents are related to j; by the relationship

pi = el

The zero equilibrium is stable if all Floquet multipliers have magnitude less than 1, or

if all Floquet exponents have negative real parts. The zero equilibrium is unstable if any
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Floquet exponent has a positive real part or, equivalently a Floquet multiplier has modulus

greater than one [43]. More information can be found in [38,42].
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Matlab programs

C.0 Mathieu equation

1 function zdot = odel(t,p,F,k,n);
2 f =Fxcos(nxt);

3 % strong damping k=0 case

146

4 Yanu=—0.125; beta=—2; omega=1.5; alpha=1; gamma=0; delta=0;

5%strong damping k=0.6911 case.

6 mu=—.5; beta=-2/3; omega=1/3; alpha=.5; gamma=0; delta=0;

7 9weak damping case k=1

8 % mu=—.255; beta=1; alpha=—1/2; gamma=—1/4; delta=0.495;
9 % rho=-0.5;

10 % epsilon=sqrt ((mu—alpha+gamma)/rho ) ;

11 % nu=2;

12% w=beta+l+(epsilon”2 xnu);

13 Om_hat = omega—betaxk.” 2+ deltaxk."4;

14 Ga = 2+«(—mu+alphaxk.”2 —gammaxk."4) ;

15 Om = sqrt((Ga."2/4)+ Om_hat."2);

16 zdot = [p(2);—Gaxp(2)—Om"2 + Om_hatxf)xp(1)];
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C.1 Floquet multipliers

Eigenvalue of Mathieu equation with /' = F| and vary the wavenumber k.

1 F=5.02736;

2 n=2;

3 El=[];E2=[];

4 for k=0:0.01:3

5 tspan= [0 2xpi/n]; p0O = [1; O]; t= [0 2xpi/n];
6 options = odeset(’reltol’,1e—10);

7 [t.,p] = oded5(@(t,p) me(t,p,F,k,n), tspan , pO,options);
8 v=pC,1); w=p(,2);

9 a=v(end) ;

10 c=w(end) ;

11 p0O = [0; 1];

12 [t,p] = oded5(@(t,p) me(t,p,F,k,n), tspan , pO,options);
13 v=pC,l); w=p(,2);

14 b=v(end) ;

15 d=w(end) ;

16 A=[a b; ¢ d];

17 e=eig (A);

18 El=[El;e(1)];

19 E2=[E2;e(2)];

20 end

21 k=0:0.01:3;

22 figure(1);

23 plot(k,El1,k,E2, LineWidth’ ,1.5);

24 xlabel (’k’),ylabel (’e—values’);

25 set(gca, fontsize’ ,14)

2 2

26 ylabel ('’ Floquet multipliers’,’ Interpreter’,’latex ’,
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27 "FontSize’ ,18)

28 xlabel (’$\boldmath{k}$’,  Interpreter’,’latex’,’ FontSize’

,18)

C.2 Cubic—quintic PDE model in 2D

The cubic-quintic PDE model in 2D

1 kc=0.6911;

2 F=3.98;

3 Nx =128 ; Lx=(2xpi/kc)*10;
4 Ny = 128; Ly=(2*pi/kc)*10;
5 x =(Lx/Nx)*(0:Nx—1) ’;

y =(Ly/Ny) «(0:Ny—1)";

)}

7 [xx,yy]=meshgrid(x,y);

8 mu=-—0.5; beta=—-2/3;nu=0; alpha=0.5; gamma=0; delta=0;

9 omega=1/3;
10 C=1;

11 Nits_twic_per=120;% the number of points in two period

12 h = 4xpi/Nits_twic_per;
13 number_twic_per=20;
14 tmax=4xpisnumber_twic_per;

15 nmax=number_twic_per*x Nits_twic_per;

16 nplt = Nits_twic_perxfloor (number_twic_per/10);

17

18 %Initial condition of axisymmetric oscillon
19 r = sqrt((xx—Lx/2)."2+(yy—Ly/2).72);

20 u = 0.65xcos(kcxr)./(1+exp(0.5xkcx(r—27)));
21 u=u+1.0e—6x(2xrand (Nx,Ny)—1);

148
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22 %lInitial conditions should be even in r if U._xx is to be
finite .

23 %This initial condition is not quite even but it gives
rings

24 % Initial condition of nonaxisymmetric (example 1)

25 1 = sqrt(xx."2+yy."2);

26 u = 1.9%xr.xsech(r/4).xbesselj(l,r);

27 u=u+1.0e —6+(2xrand (Nx,Ny)—1);

28 u=circshift(u,[Nx/2,Ny/2]);

29 u_hat fft2 (u);

30 udata = u_hat; tdata = O;udatal=u_hat(11);
31 % set wavenumbers

[0:Nx/2—1 Nx/2 —Nx/2+1:—1]"*2xpi/Lx;
33 ky = [0:Ny/2—1 Ny/2 —Ny/2+1:—1]"*2*pi/Ly;
34 [kkx ,kky]=meshgrid (kx,ky);

35 kl=kx .xkx;

36 k2=ky.xky;

32 kx

37 % linear part
383 ¢ = (mu+lixomega) — (alpha+(lixbeta))+x(kkx. " 2+kky."2)
39 + (gamma+(lixdelta))*(kkx."4+kky."4);

40 E exp (hxc);

41 etd =(E—1)./c;

42 etd2a = (E.x(1 +1./c/h) — 1./c/h — 2 )./ c;

43 etd2b = (E.x(—1./c/h) + 1./c/h + 1 )./ c;

44

45 u = ifft2 (u_hat);

46 t = 0;

47 f=Fxcos(2xt);

48 nlold=fft2 (Ql*xu."2+Q2*xabs(u)."2+Cxu.xabs(u)."2



49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75
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—u.xabs(u).”4+ f.xlixreal(u));

nldata =[];

% start the main loop n

for n = 1:round(nmax)
u =(ifft2 (u_hat));

(n—1) * h;

Fxcos(2xt);

t
f

is step No.

nl=fft2 (Qlxu."2+Q2xabs(u).”2+Cxu.xabs(u)."2

—u.xabs(u)."4+ f.xlixreal(u));

u_hat= E.xu_hat + nl.xetd2a + nlold.xetd2b; % ETD2

nlold = nl;

Y%u_hat= E.xu_hat + nl.xetd ; % ETDI

if mod(n—1,nplt)==
u = ifft2 (u_hat);

udata = [udata ,u_hat];

udatal =[udatal ,u_hat(11)];

nldata=[nldata ,nlold |;
tdata = [tdata ,t];
umax=max (max(u)) ;

figure (1);

surf(xx,yy,real(u));view([—90 90]);

shading interp;
colorbar
end
end
u_last2r=ifft2 (u_hat);

u_hat;

axis equal;

axis

tight; drawnow;
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