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Abstract 

Accurate depiction of existing traffic states is essential to devise 

effective real-time traffic management strategies using Intelligent 

Transportation Systems (ITS). Existing applications of Dynamic 

Traffic Assignment (DTA) methods are mainly based on either the 

prediction from macroscopic traffic flow models or measurements 

from the sensors and do not take advantage of traffic state 

estimation techniques, which produce estimate of the traffic states 

with less uncertainty than the prediction or measurement alone.  

On the other hand, research studies highlighting estimation of real-

time traffic state are focused only on traffic state estimation and 

have not utilized the estimated traffic state for DTA applications. 

This research introduces a framework which integrates real-time 

traffic state estimate with applications of DTA to optimize network 

performance during uncertain traffic conditions through traveller 

information system.  

The estimate of real-time traffic states is obtained by combining 

the prediction of traffic density using Cell Transmission Model 

(CTM) and the measurements from the traffic sensors in Extended 

Kalman Filter (EKF) recursive algorithm. The estimated traffic 

state is used for predicting travel times on available routes in a 

traffic network and the predicted travel times are communicated 

to the commuters by a variable message sign (VMS). In numerical 

experiments, the proposed estimation and information framework 

is applied to optimize network performance during traffic incident 

on a two route network. The proposed framework significantly 

improved the network performance and commuters’ travel time 

when compared with no-information scenario during the incident. 

The application of the formulated methodology is extended to 

model day-to-day dynamics of traffic flow and route choice with 

time-varying traffic demand. The day-to-day network performance 
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is improved by providing accurate and reliable traveller 

information. The implementation of the proposed framework 

through numerical experiments shows a significant improvement 

in daily travel times and stability in day-to-day performance of the 

network when compared with no-information scenario. 

The use of model based real-time traffic state estimation in DTA 

models allows modelling and estimating behaviour parameters in 

DTA models which improves the accuracy of the modelling 

process. In this research, a framework is proposed to model 

commuters’ level of trust in the information provided which 

defines the weight given to the information by commuters while 

they update their perception about expected travel time. A 

methodology is formulated to model and estimate logit parameter 

for perception variation among commuters for expected travel 

time based on measurements from traffic sensors and estimated 

traffic state. The application of the proposed framework to a test 

network shows that the model accurately estimated the value of 

logit parameter when started with a different initial value of the 

parameter.          
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Chapter 1: Introduction 

1.1 Motivation 

Traffic congestion has been increasing on urban arterials and freeways as a 

result of steady growth in vehicular traffic at a higher pace than the increase in 

capacity of transportation networks. The increase in capacity of road network 

is constrained by the available space to add more lanes and the finances 

available to improve the road network capacity. Traffic congestion costs 

commuters in terms of fuel, extra time to commute the journey and anxiety due 

to extended delays to arrive at the destination. Traffic congestion also impacts 

on the economy and society by additional consumption of fuel and by affecting 

the air quality. Schrank et al. (2012) estimated based on INRIX traffic data that 

congestion on the US roads cost $121 billion due to delays and additional fuel 

consumption in the year 2011. The extra time spent by a commuter increased 

from 16 hours in 1982 to 38 hours in 2011, amounting to 5.5 billion extra hours 

spent on roads in 2011. Schrank et al. (2012) estimated that approximately 

37% of the total delay is experienced outside the peak hour and day-to-day 

variation in travel time triggers commuters to plan their journeys for important 

appointments with extra time. Gordon and Pickard (2014) reported that the 

cost of traffic congestion to London’s economy in 2013 was $8.5 billion and it is 

estimated to increase to $14.5 billion in 2030. The total cost of congestion to 

the UK economy in 2013 was $20.5 billion dollar with $2,230 per car-

commuting household. With the current trend of increase in traffic congestion, 

the future forecasts are alarming and need appropriate measures to tackle this 

problem.  

The effective utilization of existing road network capacity has been proven to 

significantly reduce the level of traffic congestion. Various Adaptive Traffic 

Control Systems (ATCS) have been developed and deployed in many cities 

around the globe. SCOOT (Hunt et al. 1981), SCATS (Lowrie 1982), OPAC 

(Gartner 1983), PRODYN (Henry 1983), SPOT (Donati et al. 1984), and RHODES 

(Mirchandani and Head 2001) are among the ATCS packages developed to 

reduce traffic delays. SCOOT and SCATS are the most widely used ATCS for 
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adaptive control of signalized traffic intersection, which adjust signal timings 

based on real-time observations obtained from loop detectors installed at 

appropriate locations in road links. The implementation of these systems has 

been reported to reduce the congestion in the application areas.  Based on the 

earlier implementation of SCOOT in Glasgow and Coventry, a 12% reduction in 

delay due to signalized intersection is observed (Hunt et al. 1981).  A 19% 

reduction in delay at signalized intersections in London is achieved by 

implementing ATCS using SCOOT (Chandler and Cook 1985). Similar 

improvements have been reported from ATCS implementations in other urban 

traffic networks. The adaptive traffic control systems and other research 

studies focusing real-time traffic management are extensively based only on the 

observations of traffic flow obtained from the sensors.   

Real-time traffic control systems based on the measurements from traffic 

sensors usually use measurements of occupancy and traffic flow from inductive 

loop detectors. Other fixed point traffic measurement sensors include 

pneumatic tubes, magnetic loop, video cameras, active and passive infrared 

sensors and acoustic sensors. The sensors should be installed at a close 

distance to each other (500m~1000m) and at specific locations in road links to 

obtain sufficient information to perform the optimization task. The 

measurements obtained from the sensors are contaminated with noise and 

errors. The measurements are processed for filtering and smoothing before 

they can be used as input for any optimization task. Furthermore, the 

breakdown of a sensor, fault in a local controller or disruption in the 

communication can lead to ineffective optimization by the real-time traffic 

controller. 

Traffic flow models have been used for offline applications of traffic planning, 

devising traffic management strategies and for evaluation and prioritization of 

various traffic management strategies. These models use historic or predicted 

traffic demand to perform the required task. Traffic flow models can predict the 

evolution of traffic flow for any study period and any size of the network. 

However, prediction of traffic patterns using traffic flow models based on 

historic traffic demand may lead to significantly inaccurate traffic management 
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plan when the traffic demand and/or network capacity depart from their 

historic trend.  

Traffic flow model based real-time traffic state estimation combines the 

advantage of real-time observations from traffic sensors with the prediction 

power of traffic flow models. In traffic state estimation, the state represents the 

traffic flow variables modelled using the traffic flow model employed and the 

parameters of traffic flow model estimated in the estimation algorithm. The 

prediction of traffic state from traffic flow model is corrected based on the 

observations from the sensor in the estimation algorithm in such a way that the 

final estimate of the traffic state is more reliable than the prediction or the 

measurement alone. There has been significant amount of research in traffic 

flow model based traffic state estimation during last decade. However, it has 

not been utilized for real-time traffic management and adaptive traffic control. 

Thus, this research is aimed at integrating real-time traffic state estimation 

with dynamic traffic assignment to improve the modelling/ estimation 

component of dynamic traffic assignment models.  

This research provides an alternative to measurement/prediction based 

applications of dynamic traffic assignment models for traffic management by 

introducing real-time traffic state estimation technique to determine the 

prevailing traffic conditions. This research can be useful for developers of ATCS, 

as they can update their measurement based optimization tools with the real-

time traffic state estimation, which may significantly reduce the number of 

sensors required, improve the accuracy of the estimate and provide a better 

alternative in case of sensor breakdown. This research is also useful for traffic 

management authorities and city councils for real-time traffic management and 

deriving traveller information.                        

1.2 Introduction 

This section provides details about the developments in the fields of real-time 

traffic state estimation and dynamic traffic assignment and introduces recent 

research studies in these two fields, as integrating these two distinguished and 

well developed fields is the aim of this thesis.   
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Real-time traffic state estimation has been an active field of research for many 

years. With the development of new technologies and the improvement in 

existing techniques for acquiring real-time traffic data, more emphasis is being 

given to proper utilization of such data, to obtain a more accurate and 

widespread picture of the state of a network. However, there are limitations in 

the data directly obtained from traffic sensors. Firstly, such data does not 

include the required parameters for devising traffic management strategies in 

real-time such as link/route travel times, queue lengths, level of congestion, 

etcetera. Another problem with obtaining real-time traffic data is that it 

requires a good communication infrastructure, which requires huge capital 

investment and continuous maintenance expenditure. On the other hand, the 

prediction of traffic state using only traffic flow models based on long-term 

historic information might contain significant error in prediction, especially 

when actual traffic conditions depart from their historical trend due to external 

factors. The external factors can affect the traffic demand such as weather, 

shopping events, festivals, exhibitions, sports, or due to variation in departure 

time of commuters. The network capacity can also be affected due to external 

factors such as extreme weather, traffic incident and road maintenance. To 

obtain complete traffic data for the whole network, traffic flow models along 

with measurements from sensors are used for better estimation with less 

uncertainty in the final estimate of traffic state compared to prediction or 

measurement alone. Thus, ‘real-time traffic state estimation’ refers to the 

estimation of traffic flow variables (traffic flow, density) for a segment of road 

or network, with an adequate time and space resolution based on limited 

available measurements from traffic sensors (Wang et al. 2008).   

Recently, many research studies have focused on traffic state estimation 

problem (Wang et al. 2011; Ngoduy 2008; Ngoduy 2011; Tampere and Immers 

2007; Munoz et al. 2006; Sun et al. 2004; Munoz et al. 2003). Of particular 

relevance to this research is the work of Wang and Papageorgiou (2005). They 

presented a methodology for estimating traffic states by combining real-time 

traffic data from sensors with predictions from a second-order traffic flow 

model. In this approach, they utilized the Extended Kalman Filter (EKF) 

variation on the approach originally proposed by Kalman (1960) for dynamic 
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systems represented by nonlinear equations. The Kalman filter operates 

recursively on streams of noisy input data to produce a statistically optimal 

estimate of the underlying system state. Wang and Papageorgiou (2005) also 

proposed a method for real-time estimation of the model parameters by 

converting these parameters into stochastic variables. They estimated 

unknown parameters of second order traffic flow model such as free-flow 

speed and traffic flow capacity. The proposed model was designed and applied 

for a stretch of freeway with on-ramps and off-ramps. Wang et al. (2011) 

applied the framework proposed by Wang and Papageorgiou (2005) to a 

sizeable freeway network of 100 km in Italy, for real-time traffic state 

estimation and surveillance purpose. Ngoduy (2008) proposed a framework 

that utilizes a particle filtering algorithm with a second-order traffic flow model 

to estimate traffic for a section of freeway; and in Ngoduy  (2008; 2011) utilized 

an unscented Kalman filter algorithm with a macroscopic traffic flow model for 

freeway traffic state estimation. Park and Lee (2004) used a Bayesian technique 

to estimate travel speed for a link of an urban arterial using data from a dual 

loop detector.  

The Cell Transmission Model (CTM) has been applied for estimation of traffic 

state (Tampere and Immers 2007; Munoz et al. 2006; Munoz et al. 2003) and 

modelling traffic flows for traffic networks. Gang et al. (2007) presented a 

traffic state estimation scheme based on the CTM and Kalman filter for a single 

urban arterial street under signal control. Liu et al. (2012) proposed a travel 

time estimation approach for a long corridor with signalized intersections 

based on probe vehicle data. Long et al. (2008) developed a model based on the 

CTM for congestion propagation and bottleneck identification in an urban 

traffic network. They also estimated average journey velocity for vehicles in the 

network. Long et al. (2011) applied CTM for simulating traffic jams caused due 

to an incident in a traffic network. They assumed that traffic flow parameters 

and the duration of the incident were known during the incident and used a 

CTM alone for traffic prediction. Zhang et al. (2013) compared travel-time 

computed using three different traffic flow models that could be used for 

predicting network traffic, namely the point queue model, the spatial queue 

model and the CTM, and concluded that the CTM is better than the other two 
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models for predicting travel times especially when queue spillback prevails. 

Sumalee et al. (2011) and Zhong et al. (2011) proposed a Stochastic CTM for 

network traffic flow prediction, the stochasticity intended to address 

uncertainties in both traffic demand and capacity supplied by the network. 

Alongside the problem is that of control, by which some network controller 

may attempt to influence the system in some desirable way, by adjusting signal 

timings or speed limits, by providing information through variable message 

signs or in-vehicle navigation systems, or by charging tolls at some points in the 

network. In this case the controller may influence both the dynamic flow of 

traffic and the time-dependant route choices of travellers; the mutual 

interaction of these phenomena is the focus of Dynamic Traffic Assignment 

(DTA).  Within this field, Kachroo and Ozbay (1998) highlighted the problem of 

short-term non-recurrent congestion which might be caused due to some 

incident, addressing this issue by dynamic traffic routing and assigning time-

dependent split parameters at some diversion points. They used a feedback 

linearization method to obtain optimum split rate, so as to optimize network 

performance. In their method, they assumed availability of data from 

measurement sensors and only utilized these measurements, without using any 

kind of traffic flow model. Lo (2001) proposed a method for determining 

dynamic signal control timing plans based on system optimal principle using 

CTM based network model, which optimize network performance by keeping 

the density at an optimum level so as to ensure maximum flow on all links 

approaching a signalized intersection. The results indicated that green 

progression could reduce delays on the network. Smith and Mounce (2011) 

presented an idealized splitting rate model when travellers seek to change their 

route either day-to-day or within a day. This model uses splitting rates at nodes 

to change exit flows in such a way that Wardrop equilibrium is obtained. This 

approach also incorporates dynamic signal green-time reallocation to reduce 

delays. The model is an extension of formulation proposed by Smith (1984), 

which suggests that for each pair of routes joining the same O-D pair, traffic 

flow swaps from a more costly route to a less costly route at a rate which is 

proportional to the product of the flow on the more expensive route and the 

difference in cost between the two routes. Many other studies (e.g. Chow 2009; 
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Wu and Huang 2010; Carey and Watling 2012) presented DTA-based solution 

for improving traffic congestion without considering utilization of traffic state 

estimation techniques. In contrast, Ziliaskopoulos (2000) developed a CTM-

based approach to compute the dynamical system optimal assignment for a 

network with single origin and destination, formulating the DTA problem as a 

linear program. In conclusion, then, DTA-based research studies into the 

control/optimization of networks have typically not considered the availability 

and reliability of real-time estimates of the traffic states. Such studies have 

generally assumed that all the data for the scenario is known, and there is no 

data available on underling changes in the traffic or road environment 

conditions during the time period under study.   

The existing gap in the literature for utilizing real-time traffic state estimation 

techniques in DTA applications to improve network performance during 

uncertain traffic conditions is the main motivation of this research. This 

research is aimed at integrating real-time traffic state estimation and DTA, 

focusing on traveller information systems that influence route choice behaviour 

to improve network performance.     

1.3 Research gap and expected contribution 

The main contribution of this research work is to combine traffic state 

estimation and DTA, as the application of real-time traffic state estimation 

techniques for DTA has not been published before. Traffic state estimation can 

be considered equivalent to traffic flow prediction or traffic state 

reconstruction using observations from measurement sensors, as all these 

techniques aim to determine the state of the network (traffic flow, density, 

speed, travel times, etc.). Existing literature contains many studies combining 

traffic flow models and DTA, for example, Lo (1999), Ziliaskopoulos (2000), Lo 

(2001), Gomes and Horowitz (2006), Liu et al. (2006), Chiu et al. (2007). 

Similarly, measurements from traffic sensors have also been used for DTA and 

traffic management in real-time, e.g., Kachroo and Ozbay (1998), Mirchandani 

and Head (2001), Dotoli et al. (2006). However, traffic flow model based real-

time traffic state estimation has not been applied to optimize network 

performance using DTA models. This research integrates traffic flow model 
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based traffic state estimation with DTA, as the estimated traffic state is 

considered more reliable than the prediction of traffic state using a traffic flow 

model or observations from traffic sensors. 

This research, therefore, will focus on developing methods that combine real-

time traffic state estimation with a DTA-based model of driver’s route choice, 

with an aim to produce accurate and effective traffic management strategies. 

Therefore, the novelty of the research presented in this thesis is the 

combination of real-time traffic state estimation with DTA, as the existing 

literature in DTA only utilizes prediction from traffic flow models or 

measurements from the sensors and the literature focusing traffic state 

estimation problem has not utilized traffic estimation techniques for traffic 

management using DTA. A framework is proposed in this research in which 

predictive traveller information is estimated based on real-time traffic state 

estimates for a traffic network with unexpected variation in traffic flow 

conditions. The uncertainty in traffic conditions can be caused either with 

unexpected variation in network capacity or variation in traffic demand. The 

objective is that travel times predicted based on real-time traffic state 

estimation for available routes in a network can make travel time more reliable 

and travel decisions more appropriate during uncertain traffic conditions.  

The proposed framework for integration of real-time traffic state estimation 

with DTA is applied for selected application to demonstrate the significance of 

the proposed framework. The approach of numerical implementation of the 

proposed framework allows testing the effect of various model parameters and 

other factors on the effectiveness of the framework in a controlled simulation 

environment. Furthermore, the significance of the proposed framework is 

tested by using an evaluation model, while knowing a complete picture of the 

network and traffic conditions. In this research, real-time traffic state 

estimation is applied for within-day and day-to-day applications of DTA 

models. For within-day application of the proposed framework, a traffic 

network affected with an incident is considered. The capacity drop due to the 

incident is determined using real-time parameter estimation of fundamental 

traffic flow diagram. The Advanced Traveller Information System (ATIS) is used 

to inform commuters about expected travel times and divert commuters from 



- 9 - 

the congested route to an alternative route. The expected travel time is 

determined by predicting the evolution of traffic flow based on current 

estimate of traffic state, which is based on the measurements from traffic 

sensors. The proposed framework is further extended for day-to-day modelling 

of traffic flows and route choices using real-time traffic state estimation with 

time varying traffic demand. With time varying traffic demand, a commuter 

may experience a different travel time than his experience on a given day when 

departing at the same time. The experienced travel time of commuters might 

become insignificant due to unexpected day-to-day variation in traffic demand. 

With time varying traffic demand, traveller information based on real-time 

estimated traffic state informs commuters about expected travel times on 

available routes.  

In day-to-day DTA models for route choice, the parameters representing the 

behaviour of commuters play a significant role in accurate modelling of route 

choice behaviour and resulting traffic flows. This research utilizes observations 

from measurement sensors and real-time estimated traffic state to model these 

parameters and estimate their values. The behaviour parameters such as the 

weight given to the information in updating expected travel times and 

perception variation for expected travel time also change with uncertainty in 

network traffic conditions. This research proposed to estimate these behaviour 

parameters to improve modelling accuracy of day-to-day route choice 

behaviour and resulting traffic flows. 

The expected contribution from this thesis can be summarized into following: 

i) The proposed framework of integrating real-time traffic state 

estimation and DTA is applied to a within-day application, when one 

of the routes in a network is affected with an incident (chapter-6). 

ii) Day-to-day variation in traffic flows and route choice of commuters 

are modelled using traffic flow model based traffic state estimation 

model when traffic demand is varying day-to-day as well as within a 

day (chapter-7). 

iii) The parameters of DTA models representing behaviour of 

commuters are determined using observations from traffic sensors 

and real-time traffic state estimation (chapter-8).     
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1.4 Objectives 

The main objective of this research is to integrate two distinguished and well 

developed fields, namely, real-time traffic state estimation and dynamic traffic 

assignment. The traffic state estimated in real-time is utilized to predict travel 

times for traveller information system, which is used to improve the network 

performance during uncertain traffic condition. Real-time traffic state 

estimation and observations from traffic sensors are applied to estimate the 

dynamic parameters which are significant in accurate modelling of traffic flow 

dynamics. To integrate the fields of real-time traffic state estimation and 

dynamic traffic assignment, the following aims are defined for this thesis.  

i) Improve the accuracy of traveller information by extracting 

predictive traveller information using real-time estimated traffic 

state.  

ii) Utilize real-time parameter estimation technique to detect drop in 

capacity during a traffic incident and route commuters to alternative 

routes using ATIS.  

iii) Apply real-time traffic state estimation for modelling day-to-day 

traffic flows and route-choices under time varying traffic demand 

and improve network performance using ATIS.  

iv) Estimate behaviour parameters of DTA models using observations 

from traffic sensors and real-time traffic state estimation.  

To achieve the aims set for this research, following objective are defined: 

i) A CTM-EKF based framework is formulated to extract predictive 

traveller information from real-time estimated traffic state (chapter-

5) 

ii) The CTM-EKF based framework for traveller information is extended 

to include within-day route choice using multinomial logit model 

(chapter-6) 

iii) A CTM-EKF based methodology is formulated to model day-to-day 

dynamics of traffic flow and route choice by introducing weighted 

average learning model, perception update model for integration of 
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traveller information with experienced travel time and logit model 

based route choice model (chapter-7).   

iv)  A CTM-EKF based framework is formulated to model and estimate 

two selected behaviour parameters in DTA models. The parameters 

selected for estimation include commuters’ level of trust in the 

traveller information and perception variation among commuters 

about expected travel time (chapter-8). 

v) Numerical experiments are carried out to test the formulated 

methodologies and highlight the significance of integrating real-time 

traffic state estimation with DTA using a simple traffic network 

(chapters 6, 7 , 8)     

1.5 Thesis layout 

The thesis highlights integration of real-time traffic state estimation techniques 

with application of DTA models to traveller information systems and en-route 

choice of commuters. All the models used as a component of the proposed 

framework in this research are described in detail with a comparison of 

alternative models and reasons for selection of a particular model. Traffic state 

estimation is based on prediction of traffic state from a macroscopic traffic flow 

model, which is corrected at each simulation time-step using observations of 

traffic state in an estimation algorithm. The real-time estimated traffic state is 

then utilized for optimizing network performance using DTA models. Thus, 

second chapter of the thesis provides an overview of traffic flow models, 

suitability of selected ‘cell transmission model’ and describes the selected 

traffic flow model for network traffic flow modelling. The prediction of traffic 

state from chapter-2 is forwarded to the estimation algorithm described in 

chapter-3. Chapter-3 highlights estimation algorithms, measurement 

techniques and real-time traffic state estimation model using extended Kalman 

filter and CTM. The DTA models and their applications are briefly described in 

chapter-4. Chapter-5 highlights the recent developments in DTA and ATIS, 

highlighting the existing gap in literature and then describing the contribution 

of this thesis in detail. A framework to extract predictive traveller information 

based on the traffic state estimation is described in chapter-5, which is 
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extended for applications of DTA models in the following chapters. In chapter-

6, the proposed framework is applied to a within-day application of DTA for a 

network affected with traffic incident. The within-day application is extended 

to model day-to-day dynamics of route choice and traffic flows with time-

varying traffic demand in chapter-7. Chapter-8 extends the day-to-day 

modelling framework from chapter-7 to model and estimate behaviour 

parameters of DTA models. Finally, chapter-9 concludes the finding of this 

research and highlights further research work. Figure 1.1 describes the 

contents and connection between different chapters in the thesis. 
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Chapter 2: Traffic Flow Modelling 

2.1 Introduction 

Scientific mathematical models are widely used in all fields of applied and 

social sciences to mimic real life phenomena. The mathematical models are 

applied to understand a process, study the effect of various parameters and 

variables, and forecast the changes due to variation in some parameters and 

variables. The modelling of a process is generally carried out by one of the 

three existing methods (Papageorgiou 1998). The ‘deductive’ modelling 

approach is based on using existing laws of nature to model a process. On the 

other hand, ‘inductive’ approach uses actual data collected in past to develop a 

relationship between input and output variables and forecasts the output 

variable in future based on current observations of input variables. In 

‘intermediate’ approach, a mathematical model is developed based on the 

deductive approach and then adjusted with actual observations. Advances in 

technology and computation efficiency have facilitated the modelling of 

complex processes and more emphasis is given to improve the capability of 

existing models and implementation of these models for large scale problems. 

Rapid increase in vehicular traffic from beginning of 20th century attracted the 

interest of researchers to model the process of traffic flow. When compared 

with modelling of other stream of flows such as fluid, heat or electricity, traffic 

flow is more complicated as it involves human interaction. Each particle in the 

stream of traffic is controlled by a driver, which makes the process of traffic 

flow more dynamic and diverse. Furthermore, there is hardly any hope to 

achieve the descriptive accuracy in traffic flow modelling similar to 

thermodynamics or Newtonian physics. The only accurate physical law for 

traffic flow modelling is the conservation equation (Papageorgiou 1998). 

Numerous models have been proposed in past few decades to model the 

process of traffic flow but still no single model claims to perfectly model this 

phenomenon. However, with the existing limitations of these models related to 

either the scale of traffic network or type of traffic system, they are valuable 

tool to evaluate the existing traffic condition, devise real-time traffic control 
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strategies, forecast the impact of new infrastructure or traffic control plan, and 

to understand and simulate the process of traffic flow.  

This chapter briefly reviews the existing models of traffic flow and implement 

one of the existing frameworks to model network traffic flow for real-time 

traffic state estimation. This chapter consists of six sections. Section-2 describes 

classification of traffic flow models. Macroscopic traffic flow models are 

discussed in section-3. The illustration of microscopic traffic flow models is 

provided in section-4. The model implemented for prediction of network traffic 

state is described in section-5 and section-6 summarizes the finding of this 

chapter.   

2.2 Classification of traffic flow models 

Based on existing literature, traffic flow models can be classified into various 

groups based on their distinct properties. Traffic flow models can be 

distinguished based on the following characteristics (Hoogendoorn and Bovy 

2001): 

a) Time scale 

b) Type of process  

c) Level of detail  

2.2.1 Time scale 

All traffic flow models are function of time and space, as the propagation of 

traffic along roads is modelled for a specific timeframe for vehicular movement 

from an origin to a destination. Discrete traffic flow models divide the space in 

small segments and time in small intervals to make the modelling process 

simpler and easier to obtain a unique solution of the process. Whereas, 

continuous traffic flow models describe the change in system as continuous 

over time and space. The continuous traffic flow models are impossible to solve 

analytically, therefore discretization in continuous traffic flow models is 

proposed. The LWR model proposed by Lighthill and Witham (1995) and 

Richards (1956) is a continuous model and it is impossible to obtain a unique 

solution using LWR model. However, discretization in LWR model as proposed 

by Daganzo (1994) makes the model simpler to implement on a larger network 
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and obtain a solution for traffic state. In Daganzo’s model, the partial 

differential equation of LWR model is replaced by a simple difference equation, 

which makes it easier to obtain an analytical solution for any size of the 

network. The discretization of continuous traffic system compromises the 

details and dynamics in term of time and space, as traffic is assumed to be 

homogenously divided within a discretized segment of the road and during an 

interval of time. 

2.2.2 Type of process 

In a deterministic mathematical model input and output variables are related 

by a deterministic relationship, which means that if a model is processed with 

same input variables for many times, the output remains the same. A stochastic 

model contains at least one random variable, which is defined by a probability 

distribution or a histogram. Most of the microscopic traffic flow models are 

stochastic and contain more than one random variable, for example, the 

parameters defining reaction of drivers are stochastic. A deterministic model 

such as the CTM can be transformed into a stochastic model by transforming a 

parameter or boundary condition into a random variable. Transforming a 

variable or parameter from deterministic to stochastic allows incorporation of 

random variations in real life such as random variation in traffic flow capacity 

or travel demand around a mean value.  

2.2.3 Level of detail 

Traffic flow models can be classified into three main categories based on the 

level of details modelled. There are various entities in a traffic system, such as 

road network, traffic controls, vehicles, drivers, environment, etcetera and 

traffic flow models are classified based on number of entities considered in a 

modelling framework. Traffic flow models with higher level of details need 

more information and parameters to model a traffic system. On the contrary, 

traffic flow models with fewer entities to consider require comparatively less 

parameters and information about the traffic system. The level of details 

considered in a model is linked with the computing time and thus scale of the 

network feasible for implementation of the model. Traffic flow models with 

higher level of details are computationally more demanding and are feasible for 
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modelling smaller network with higher accuracy, whereas the models with 

lower level of details are computationally less expensive and suitable for 

modelling lager networks. Based on this criterion, traffic flow models can be 

classified as microscopic, mesoscopic and macroscopic traffic flow models.  

Microscopic traffic flow models consider all the major entities in a traffic 

system from road network to driver behaviour. Microscopic traffic flow models 

consider each vehicle as a particle in the system and model the interaction of a 

vehicle with the road environment as well as with other vehicles and also 

consider dynamics in behaviour of drivers. Mesoscopic models consider 

medium level of details in modelling a traffic system. In mesoscopic traffic flow 

models, individual vehicles or driver behaviour is not considered, however 

these details are considered at an aggregate level and modelled using a 

probability distribution function. Macroscopic traffic flow models are based on 

aggregated traffic flow properties and describe relation between the 

aggregated traffic flow parameters, such as traffic density, traffic flow and mean 

speed. Due to fewer number of parameters in such models, the amount of 

information required to model a traffic system is significantly lower than other 

models and require fewer parameters to calibrate. Macroscopic traffic flow 

models do not model individual vehicles and driver behaviour, thus 

computationally less demanding and perform a comparatively faster simulation 

of the traffic system. This characteristic of macroscopic traffic flow models 

make them suitable for real-time traffic condition assessment and devise traffic 

management strategies. Macroscopic and microscopic traffic flow models are 

discussed in more details in the following sections of this chapter. Table 2.1 

summarizes some important characteristics of macroscopic and microscopic 

traffic models.   
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Table 2.1 Some important characteristics of selected macroscopic and 
microscopic traffic flow models (Hoogendoorn and Bovy 2001) 

Detail 

Level 
Model name Time scale 

Process 

representation 

Model 

implementation 

Scope of 

application 
M

ac
ro

sc
o

p
ic

 

LWR Continuous Deterministic Analytical 
Aggregate 

lane stretches 

CTM Discrete Deterministic Simulation 
Motorway 

network 

Payne-type 

model 
Continuous Deterministic Analytical 

Aggregate 

lane stretches 

Papageorgiou 

Model 
Discrete Deterministic Simulation 

Motorway 

network 

Helbing-type 

models 
Continuous Deterministic Analytical 

Aggregate 

lane stretches 

M
ic

ro
sc

o
p

ic
 

Safe distance 

model 
Continuous Deterministic Analytical 

Single-lane 

stretches 

Stimulus 

response 

model 

Continuous Deterministic Analytical 
Single-lane 

stretches 

Psycho-

spacing 

models 

Continuous Stochastic Simulation 
Multilane 

stretches 

2.3 Macroscopic traffic flow models 

Macroscopic traffic flow models consider flow of traffic on an aggregate level 

and define relation between aggregated parameters of traffic flow. The 

aggregated parameters of traffic flow considered in modelling of traffic flow are 

traffic density, traffic flow rate, and mean speed. Traffic density is number of 

vehicles in a unit length of a road section per lane at any given time instant. 

Traffic flow rate is the number of vehicles passing through a point in a unit time 

interval. Based on the number of dynamic output equations in macroscopic 

traffic flow models, these models are classified as first, second or third order 

traffic flow models. First order traffic flow models treat traffic density or 

occupancy as an output variable. Second order traffic flow models also consider 
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the dynamics of average speed with traffic density, and third order traffic flow 

models consider variance of speed along with traffic density and mean speed 

when modelling dynamics of traffic flow.        

2.3.1 First order traffic flow models 

2.3.1.1 The LWR model 

The first popular model in traffic flow modelling was developed independently 

by Lighthill and Whitham (1955) and Richards (1956), thus named as LWR 

model. The model became popular as it was the first model to translate the 

physical phenomenon of conservation from hydrodynamics for modelling of 

traffic flow. This is a continuous model with space s and time t as independent 

variables and speed u(s, t), traffic density ρ(s, t), and flow rate q(s, t) are 

functions of time and space. LWR model provides a fundamental relation 

between these traffic flow variables and suggests that the traffic flow rate is a 

product of traffic density and average speed. 

                                     (2.1) 

LWR model proposes a conservation of vehicles equation analogous to fluid 

dynamics in a continuous space-time scale. 

        

  
 

        

  
                 (2.2) 

Average speed of vehicles at any point depends on traffic density and it is 

described by a function f of traffic density. 

                                 (2.3) 

The LWR model can accurately reproduce a significant number of actual traffic 

flow phenomena, such as decreasing speed with increasing density, formation 

and dissipation of shock waves, etcetera. Furthermore, LWR model shows 

consistency with a class of car-following models (Papageorgiou 1998).  

However, it is not possible to analytically obtain an exact and unique 

continuous solution using partial differential equation (2.2). Another deficiency 

in LWR model is highlighted by Papageorgiou (1998) about the assumption in 

equation (2.3) that the average speed u(s, t) at any point s adjusts 

instantaneously to current traffic density ρ(s, t). This implies that a vehicle 
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accelerates or decelerates with a very high and unrealistic value to adjust its 

speed when there is change in traffic density along the road stretch. LWR-based 

models are adequate to model urban traffic flows where the traffic flow 

dynamics are governed by external factors such as stop lines and traffic signal, 

compared to the freeway traffic where traffic flow is affected by its inherent 

characteristics such as slow moving vehicles, overtaking and rapid stop-and-go 

waves. Despite of its above mentioned deficiencies, LWR model can achieve a 

certain level of accuracy when modelling freeway traffic (Papageorgiou 1998). 

In conclusion, LWR was the first significant contribution to model the process 

of traffic flow and the model can accurately reproduce many real traffic flow 

phenomena. However, due to the continuous nature of the model, it becomes 

practically difficult to implement it for a larger road networks and it is 

impossible to analytically obtain a unique solution using the LWR model.  

Vaughan, Hurdle and Hauer (1985) proposed a framework to address the 

limitation of LWR model to implement it for a multi origin-destination network 

with time-dependant departure times. This framework develops vehicle 

trajectories for each vehicle from its origin to the destination to observe its 

behaviour in traffic. Vaughan and Hurdle (1992) further extended their initial 

framework to model traffic flows on urban arterial network. However, this 

framework is tedious and computationally expensive to implement for the 

larger networks. Newell (1993) proposed a kinematic wave model based on 

geological erosion model proposed by Luke (1972). Newell (1993) suggested 

determining cumulative inflows and outflows for a link instead of determining 

traffic density at every intermediate point on the link. Unlike the LWR model, 

this model can be applied to model time-dependant multi origin-destination 

traffic flows. The traffic flow at a given point is influenced by the downstream 

traffic condition if traffic condition is saturated, whereas if the traffic condition 

at a point is not saturated, traffic flow is governed by upstream traffic 

condition. The formation and dissipation of queues is better modelled by this 

condition. However, using this approach traffic flows can only be determined at 

entry and exit point and traffic flow variables cannot be determined at any 

intermediate point. Furthermore, Newell (1983) model is suitable for a traffic 

system with triangular fundamental traffic flow diagram but it become 
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complicated to model a traffic system with non-homogenous relation between 

traffic density and traffic flow.  

2.3.1.2 The cell transmission model 

Daganzo (1994) proposed a simple approximation of LWR model to determine 

traffic state using analytical method. He discretised space into small segments 

called cells and time into small simulation time-steps, thus the model is named 

as cell transmission model (CTM). The CTM transforms differential equation 

from LWR model into a simple difference equation to update traffic density for 

each future time-step and for all the cells in a road network. This model is 

described in detail in section-2.5 of this chapter for modelling traffic network.    

2.3.2 Second order traffic flow models 

First order traffic flow models have deficiency in modelling some of the 

freeway traffic flow phenomena such as rapid stop and go waves. First order 

traffic flow models assume that traffic flow rate passing through any point 

along a road or from an upstream section to the downstream section only 

depends on traffic density and assume an equilibrium density-dependent speed 

function (fundamental diagram). Second order traffic flow models treat mean 

speed as dynamic and as an additional variable. An additional output equation 

is added to model mean speed dynamics. Determining mean speed along with 

traffic density improves the capability of model and address the deficiency of 

unrealistic acceleration and deceleration in first order traffic flow model. 

However, the addition of another variable and output equation adds more 

parameters to calibrate and increases the number of output variables, which 

leads to complex calibration and optimization, making these models 

computationally more demanding than the first order traffic flow models.  

Payne (1971) proposed a second order traffic flow model which is based on the 

concept of car-following model that describes the behaviour of a vehicle when 

it follows a lead vehicle. Payne (1971) modelled the dynamics of average speed 

and proposed that the traffic flow passing through any point along a road is a 

function of traffic density and average speed. This model includes two 

differential equations, one similar to the conversation equation from LWR 

model and the other to determine dynamic mean speed. The model proposed 
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by Payne (1971) improved some of the modelling deficiencies in LWR model by 

introducing a partial differential equation for mean speed dynamics. However, 

it further complicates to obtain an analytical solution and traffic state using this 

model. The Payne’s model shows qualitative deficiencies when modelling lane 

drop on freeways or merging of on-ramp traffic flows. Del Castillo et al. (1994) 

with a simulation model showed that wave characteristics resulting from Payne 

(1971) model are faster than average traffic speed of simulated traffic. Daganzo 

(1995) also criticized this deficiency of Payne’s model. Phillips (1979) 

proposed that relaxation time in Payne (1971), which models the driver 

behaviour to achieve the desired speed, is dependent on traffic density. He also 

approximated traffic pressure term in Payne (1971) model. Kerner and 

Konhauser (1993) introduced viscosity term and modelled speed variance as a 

positive constant. Liu et al. (1996) summarizes the improvements in Payne-

type models and implements the model to numerical schemes.       

Papageorgiou et al. (1990) proposed discretization of Payne (1971) second 

order traffic flow model and addressed the issue of on-ramp merging traffic and 

dynamics of traffic flow with lane drop. Discretization of continuous model 

significantly improves computing efficiency, however this model contains a 

number of tuning parameters and proper tuning of these parameters is 

essential for proper functioning of the model. Furthermore, it requires 

considerable amount of real-data to calibrate these parameters and perform a 

simulation.  

2.3.3 Higher order models 

The second order traffic flow models based on Payne (1971) assume that traffic 

density and average speed can completely describe the existing condition of 

traffic. Helbing (1996) suggested that the distribution of mean speed also plays 

a significant role in modelling traffic flow. Helbing (1996) extended Payne-type 

models and introduced an additional partial differential equation to model 

variance of speed and proposed that traffic density and mean speed are 

function of speed variance. Helbing (1996) derived his model based on gas 

kinetic assumptions. In addition to the conservation of traffic (equation 2.2) 

and mean speed, another partial differential equation is added to model the 
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speed variance. Treiber et al. (1999) proposed a model based on Helbing (1996) 

by incorporating the effect of non-local vehicular interaction in relaxation term.  

2.4 Microscopic traffic flow models 

Microscopic traffic flow models have been one of the effective tools in traffic 

flow modelling and simulation for more than sixty years. Microscopic traffic 

flow models provide a powerful tool to model traffic flow and simulate the flow 

of traffic with a higher level of detail. These models describe the movement of 

individual vehicle and interaction of a vehicle with other vehicles and with the 

road environment. Microscopic traffic flow models also consider the behaviour 

of drivers in more detail compared to macroscopic traffic flow models. 

Macroscopic traffic flow models generally model the stream of traffic on 

aggregate level, whereas microscopic traffic flow models describe the 

behaviour of each particle of the vehicular stream.  

Microscopic traffic flow models are based on two distinct groups of models. Car 

following models describe movement of vehicles in a single lane section of a 

road without any intermediate entrance or exit points. These models are based 

on follow-the-leader approach, where a vehicle follows its leading vehicle and 

anticipate and reacts to the action of leading vehicle. Pipes (1953) proposed 

car-following model based on safe distance principle for the following vehicle, 

which was further improved by Forbes et al. (1958), Leutzbach (1988), and 

Jepsen (1998). Chandler et al. (1958) and Gazis et al. (1961) proposed stimulus 

response approach for car following models. Wiedemann and Reiter (1992) 

identified deficiencies in stimulus-response models and introduced Psycho-

spacing approach to model the movement of vehicles in a lane.   

Lane-changing models describe lateral movement of vehicles and model lane-

changing behaviour of drivers. Lane-changing models are basic component of a 

microscopic traffic flow model. Lane-changing is a complex phenomenon and it 

is performed by a driver either for downstream turning or overtaking a slow 

moving vehicle ahead. A Lane-changing phenomenon also impacts the flow of 

upstream traffic. Cassidy and Bertini (1999) and Laval and Daganzo (2006) 

concluded based on experiments that lane-changing attributes to the 

congestion at bottlenecks. Munoz and Daganzo (2004) termed the lane-
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changing vehicles as a moving obstacle and impacting factor on a freeway 

capacity. Gipps (1986) proposed a rule-based lane-changing model for 

describing lane-changing decision on freeways and urban arterials. Several 

modifications in rule-based approach are proposed by Halati et al. (1997), 

Rickert et al. (1996), Kita (1999) and Hidas (2005). Ahmed et al. (1996) and 

Toledo et al. (2002) proposed lane-changing models based on discrete choice 

principle. McDonald et al. (1997) proposed a lane-changing model based on 

fuzzy-logic and Hunt and Lynos (1994) proposed a neural network based lane-

changing framework. Rahman et al. (2013), Toledo (2007) and Moridpour et al. 

(2010) can be referred for a detailed review of lane-changing models. 

2.5 The cell transmission model (CTM) 

2.5.1 Suitability of CTM for this research 

A detailed review of basic macroscopic and microscopic traffic flow models has 

been provided in earlier sections of this chapter. Based on the review of 

microscopic traffic flow models it can be concluded that microscopic traffic flow 

models provide a detailed description of traffic flow process, but these models 

are computationally more expensive. Thus, microscopic traffic flow models are 

regarded suitable for smaller networks and offline simulation of a traffic 

system. Furthermore, microscopic traffic flow models are only suitable to test 

and simulate an already devised traffic control strategy and cannot be used to 

develop a traffic control strategy. Whereas, macroscopic traffic flow models can 

be used to devise a traffic control strategy as well as to evaluate it. Therefore, a 

macroscopic traffic flow model is more suitable for this research as it is aimed 

to develop a traffic control strategy for network traffic in real-time which 

requires both formulation and evaluation of the control strategy.  

Using second order model for traffic state prediction significantly increases 

number of variables and parameters compared to other first order traffic flow 

model such as CTM. Long et al. (2008) developed a model based on the CTM for 

congestion propagation and bottleneck identification in an urban traffic 

network. They also estimated average journey speed for vehicles in the 

network. Long et al. (2011) applied CTM for simulating traffic jams caused due 

to an incident in an urban network. They assumed that both traffic flow 
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parameters and the duration of the incident were known during the incident 

and used a CTM alone for traffic prediction. Zhang et al. (2013) compared travel 

times computed using three different traffic flow models that could be used for 

predicting network traffic namely the point queue model, the spatial queue 

model and the CTM, and concluded that the CTM is better than the other two 

models for predicting travel times especially when queue spillback prevails. 

Zhong et al. (2011) proposed a stochastic CTM for network traffic flow 

prediction, the stochasticity intended to address uncertainties in both traffic 

demand and capacity provided by the network.  

Despite the fact that CTM is simpler to implement on a network than other 

higher order models, it fits well with the measurement data as discussed by Lin 

and Ahanotu (1995) and Lin and Daganzo (1994). In comparison to other 

higher order traffic flow models, CTM has fewer numbers of output variables 

and input parameters which qualifies CTM as a suitable model for real-time 

applications. CTM has been used for traffic state estimation (Munoz et al. 2003; 

Munoz et al. 2006; Gang et al. 2007; Tampere and Immers 2007, Long et al. 

2008; Long et al. 2011) as well as for DTA applications of traffic network 

optimization (Lo 1999, Ziliaskopoulos 2000, Lo 2001, Gomes and Horowitz 

2006, Liu et al. 2006, Chiu et al. 2007).  

CTM has been used in recent research studies for modelling network traffic 

flow and estimation of real-time traffic states. The KF method is based on 

minimizing the square of error between the predicted and measured values for 

the traffic state. The EKF is an extension of KF for non-linear systems and 

obtaining optimal solution using EKF is not always guaranteed. CTM is a non-

linear model and therefore is more suited to estimation using the EKF rather 

than KF. Munoz et al. (2003, 2006) transformed CTM into a linear model by 

introducing the Switch Mode Model (SMM). CTM-based SMM was derived 

based on five different traffic modes to avoid the non-linearity caused due to 

the minimum condition in the CTM. At any given time-step, one of the five 

modes is selected for the whole link to estimate traffic density, based on the 

measurement of densities at the upstream and downstream cells of the link. 

CTM-SMM assumes existence of a maximum of one wave front in the whole 

link. This means that the whole link is considered to have the same traffic flow 
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condition and road segments with more than one wave-front are impossible to 

model using CTM-SMM. Furthermore, the selection of mode for the segment 

requires direct measurements of traffic density at the upstream and 

downstream of the segment, which might not be available for every urban link 

or freeway stretch. Sun et al. (2004) used mixture Kalman filter with CTM-SMM 

for appropriate selection of switch mode. Tampere and Immers (2007) adapted 

the estimation model proposed by Wang and Papageorgiou (2005) and applied 

linear Kalman Filter for non-linear CTM.  

2.5.2 Modelling network traffic flow using CTM 

Traffic flow models for a single link may be translated into models for a 

network in two main ways, based either on simple node models (Zhang et al. 

2013; Daganzo 1995) or link-node model (Zhong et al. 2011; Szeto et al. 2009). 

In this study we adopt the link-node model proposed by Szeto et al. (2009) for 

the CTM, which mainly comprises the methodology proposed by Daganzo 

(1995) to model uncontrolled merging and diverging intersections, with that 

proposed for signalized intersections by Lo (1999, 2001). 

In the CTM representation for network traffic, the network is divided into 

homogeneous cells and each upstream cell is connected to a downstream cell 

by a connector. The traffic outflows from upstream to downstream cells and the 

traffic inflows to downstream from upstream cells are dictated by properties of 

the connector. The properties of the connectors are defined based on their 

location in the link and the network. To incorporate the effects of different 

geometries of intersections and traffic control, eight different types of 

connectors are defined. An ‘ordinary connector’ connects the upstream cell of a 

link to the downstream cell of the same link. A ‘signalized simple connection’ 

connects a cell of an upstream link to a downstream link controlled by a traffic 

signal. An ‘origin connection’ connects an origin dummy cell to the first cell of a 

link. A ‘destination connection’ connects the last cell of a link to the destination 

dummy cell. An 'unsignalized merge connection’ is used to model unsignalized 

merging intersections. A ‘signalized merge connection’ models flow of traffic at 

a signalized merging intersection. The modelling of unsignalized diverging 

intersection is carried out by ‘unsignalized diverge connection’ and for 

signalized diverging intersection, ‘signalized diverge connection’ is used.  
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We suppose that the network is divided into j links such that j=1, 2, 3..., and i 

homogeneous segments labelled i=1, 2, 3, ..., with the duration of each 

simulation time-step Δ, measured in hours. The free-flow speed on link j is uj 

and length of a cell in link j is chosen such that a vehicle can traverse the cell in 

one time-step if the cell is in a free flow condition, thus the length of each cell in 

link j is lj=uj*Δ km. The simulation horizon is divided into k time-steps labelled 

k=1, 2, 3, … We assume that each cell in the network has a maximum flow 

capacity of   (   veh/hr, a corresponding critical density of   
     veh/km and a 

jam-density represented by   
     veh/km based on a triangular fundamental 

traffic flow diagram as shown in figure 2.1. 

 

Figure 2.1 Fundamental traffic flow diagram 

In this research, a triangular fundamental traffic flow diagram is assumed. 

However, the proposed approach is not limited to this shape of fundamental 

diagram and a trapezoidal fundamental diagram can also be incorporated in 

this research framework. Different types of connectors used to connect an 

upstream cell with a downstream cell are illustrated below.  

2.5.2.1 Unsignalized simple connection 

An unsignalized simple connection describes flow of traffic from an upstream 

cell to the downstream cell of a link. Consider two consecutive simple cells of a 
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link, A and E connected by a simple connection as shown in figure 2.2. Traffic 

flow using a simple connection is given by: 

                                         [  
          ]          (2.4) 

In equation (2.4), ZA (k) is outflow from upstream cell A at time-step k which is 

equal to the inflow by downstream cell E, YE(k), when there is a simple 

connection between cell A and cell E. First two terms on the right-hand side of 

equation (2.4) describe the amount of traffic flow which can flow from cell-A to 

cell-E, while last the two terms define available capacity from the downstream 

cell. The maximum possible flow from cell A at time-step k is u  ρ     which is 

restricted by its flow capacity      . Therefore, traffic demand from cell A is the 

minimum of u  ρ     and      . If traffic in cell E is in free flow condition then 

the available capacity from cell E is      , whereas, if traffic in cell E is not in 

free flow condition then the available capacity from cell E equals to the space 

available w[ρ
 
    -ρ

 
   ].  The term w[ρ

 
    -ρ

 
   ] in equation (2.4) represents 

the available space in cell E, when the cell is in congested condition and the flow 

of traffic to the downstream cell is dictated by the shockwave speed.  

 

Figure 2.2 A Simple connection between two consecutive cells in a link 

2.5.2.2 Unsignalized merge connection 

An unsignalized merge connection describes traffic flow from two different 

upstream cells to a downstream cell. Figure 2.3 describes a merge connection 

which models merging traffic flows. Cells A and B are two different cells 

sending flow to the downstream cell E. If cell E has sufficient available capacity, 

it will accommodate flows of traffic from both the cell. If the available capacity 

of cell E is insufficient to accommodate traffic flows from cells A and B, then the 

outflows from cells A and B are based on existing traffic in those cells and 

priority parameters pA and pB associated with cells A and B, respectively. At any 

time instant, the sum of pA and pB must be one and total inflow to cell E is sum 

of outflows from cells A and B.  
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Figure 2.3 A merging intersection for CTM network model 

To model traffic movements from two separate links merging into one link, 

some additional variables are defined. Let       and       are the maximum 

possible outflows from cells A and B, respectively. Maximum possible outflow 

from a cell depends on its local traffic demand and flow capacity. 

                                        (2.5) 

                                                     (2.6) 

      is the maximum possible inflow to cell E at time-step k and it is equal to 

flow capacity of the cell if the cell is in free flow condition or else it is equal to 

the available space in cell E to accommodate the traffic inflow.  

                  [  
            ]               (2.7) 

      and       are the actual outflows from cells A and B, respectively at time-

step k and       is the actual inflow to cell E. If sum of maximum possible flows 

from cells A and B is less than the receiving capacity of cell E, then the 

maximum possible flows from the sending cells are their actual outflows.  

                       

                                           (2.8) 

When receiving capacity of cell E is smaller than the sum of maximum possible 

flows from sending cells A and B, actual outflows are calculated as follows: 

                       

                                                     (2.9)  

                                        }           (2.10) 

The actual inflow to receiving cell E is the sum of actual outflows from sending 

cells A and B. 
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                                 (2.11) 

2.5.2.3 Unsignalized diverge connection 

An unsignalized diverge connection describes traffic flow from the last cell of a 

link to first cells of two different downstream links. Figure 2.4 shows an 

intersection to describe the diverging flows. Traffic from cell A takes two 

different downstream cells, B and E, with proportion βB of traffic demand from 

cell A taking cell B and βE proportion of traffic is directed toward cell E. Daganzo 

(1995) assumed that these ratios are already known and can be time-varying 

based on route choice behaviour of commuters. This research study models the 

split rate as time-varying which are provided by an external component of the 

research framework that models route choice behaviour of travellers.  

 

Figure 2.4 A diverge connection to model diverging traffic flows 

Cell A contains traffic that will take two different paths. A proportion of the 

traffic in cell A passes through cell B and the remaining proportion through cell 

E. If the receiving capacities of cells B and E are higher than the demand for 

these cells then the proportions of traffic for their respective cells flow without 

any interruption. However, if the receiving capacity of either of the cell B or cell 

E is lower than the demand for these cells then the flow towards cell B or E is 

restricted and results in interruption of all downstream flow of traffic. This 

condition ensures compliance of diverge model with first-in-first-out (FIFO) 

principle by restricting the flow of upstream vehicles and ensuring that the 

traffic entered the link first, leaves the link first.  Thus outflow from cell A, ZA(k) 

and inflows to cells B and E, YB(k) and YE(K,) as expressed in Daganzo (1995) 

and Szeto  et al. (2009) are given by : 

            {

                     

                
                  ⁄   

                
                    ⁄

         (2.12) 
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                                                (2.13) 

2.5.2.4 Origin connection 

An origin connector connects an origin cell with first cell of a link. Origin 

connector is similar to an ordinary connector that draws traffic demand from 

the origin cell. 

 2.5.2.5 Destination connection 

A destination connection connects last cell of a link to destination cell and it is 

also similar to ordinary link. The destination cell has infinite storage capacity 

and zero outflow capacity.  

2.5.2.6 Conservation of traffic flow 

After determining inflows and outflows for all the connectors in the network 

for current time step k using equations (2.4-2.13), traffic state for future time-

step k+1 can be predicted using discretized form of the conservation equation 

as follows: 

                 
  

  
                          (2.14) 

2.6 Summary 

A brief overview of fundamental traffic flow models is provided in this chapter. 

Macroscopic traffic flow models consider stream of traffic and model aggregate 

variables such as traffic density, traffic flow rate, and mean speed. Macroscopic 

traffic flow models are divided into three main categories, based on the number 

of traffic flow variables determined using a traffic flow model. First order traffic 

flow models determine traffic density or occupancy. The LWR model and its 

discretised form CTM are discussed in detail in this chapter. Second order 

traffic flow models also consider the dynamics of mean speed along with traffic 

density. A basic second order model proposed by Payne (1971) and its 

discretised form proposed by Papageorgiou et al. (1990) are described in this 

chapter. Higher order macroscopic traffic flow models assume that traffic 

density and mean speed are function of variance in speed. Microscopic traffic 

flow models provide a detailed description of the phenomena of traffic flow and 

model each vehicle and its interaction with other vehicles and road 
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environment. The car-following models describe movement of vehicles on a 

single lane stretch of a road, when a vehicle follows its lead vehicle. The lane-

changing models provide description of lane-changing behaviour of drivers. 

Some basic car-following and lane-changing models are discussed in section 2.4 

of this chapter.  

The review of existing traffic flow models and their applications in different 

traffic systems suggests that first order traffic flow model, such as CTM can 

adequately model the flow of traffic for a traffic network. The number of output 

variables and parameters in CTM are significantly lower than the other higher 

order traffic flow models. This characteristic of CTM makes it feasible for real-

time estimation of traffic state and its application for dynamic traffic 

assignment applications. Therefore, CTM is selected to model network traffic 

flow and the model is elaborated in detail in this chapter.  
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Chapter 3: Real-time Traffic State Estimation 

3.1 Introduction to traffic state estimation 

Real-time traffic state estimation has been an active field of research for many 

years. With the development of new technologies and the improvement in 

existing techniques for acquiring real-time traffic data, more emphasis is being 

given to proper utilization of such data, to obtain a more accurate and 

widespread picture of the state of a network. However, there are limitations in 

the data directly obtained from traffic sensors. Firstly, such data do not include 

all the required parameters for devising traffic management strategies in real-

time and do not portray a complete picture of the traffic state across a network. 

Another problem with obtaining real-time traffic data is that it requires a good 

communication infrastructure and covering every part of a road network with 

traffic sensors requires a big capital investment and maintenance cost. On the 

other hand, the prediction of traffic state using only traffic flow models based 

on long-term historic information might contain significant error in prediction, 

especially when actual traffic conditions depart from their historical trend due 

to external factors. To obtain complete traffic data for the whole network, 

traffic flow models along with measurements from sensors are used for better 

estimation with less uncertainty in the final estimate of traffic state compared 

to prediction or measurement alone. Thus, ‘real-time traffic state estimation’ 

refers to estimation of traffic flow variables (traffic flow, density, speed) for a 

segment of road or network, with an adequate time and space resolution based 

on limited available measurements from traffic sensors (Wang et al. 2008). 

Recently, many research studies have focused on such estimation problems in 

the particular context of freeways (Munoz et al. 2003; Munoz et al. 2006; 

Tampere and Immers 2007; Sun et al. 2004). Of particular relevance to this 

research is the work of Wang and Papageorgiou (2005). They presented a 

comprehensive methodology for estimating traffic state by combining real-time 

traffic data from sensors with predictions from a second-order traffic flow 

model. In this approach, they utilized the Extended Kalman Filter (EKF) 
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variation on the approach originally proposed by Kalman (1960) to combine 

predictions and measurements by minimizing the sum of squares of errors 

between the measurement and prediction. Wang and Papageorgiou (2005) also 

proposed a method for online estimation of the model parameters by 

converting these parameters into stochastic variables. The proposed model was 

designed and applied for a stretch of freeway with on-ramps and off-ramps. In a 

similar spirit, Ngoduy (2008) proposed a framework that utilizes a particle 

filtering algorithm with a second-order traffic flow model to estimate traffic for 

a section of freeway; and in Ngoduy (2008; 2011) utilized an unscented Kalman 

filter algorithm with a macroscopic traffic flow model for freeway traffic state 

estimation. Park and Lee (2004) used a Bayesian technique to estimate travel 

speed for a link of an urban arterial using data from a dual loop detector. Gang 

et al. (2007) presented a traffic state estimation scheme based on the Cell 

Transmission Model (CTM) and Kalman filter for a single urban arterial street 

under signal control. Liu et al. (2012) proposed a travel time estimation 

approach for a long corridor with signalized intersections based on probe 

vehicle data.  

This chapter provides a brief account of CTM and EKF based real-time 

estimation framework adapted from Wang and Papageorgiou (2005). An 

overview of existing estimation techniques and sensor technologies to obtain 

real-time traffic observations is also given in this chapter. Section-2 of this 

chapter highlights some of the most commonly used estimation techniques. 

Section-3 describes the sensor technologies for observation of traffic flow 

parameters. The framework for traffic state estimation for this research is 

elaborated in section-4 and section-5 summarizes the findings of this chapter. 

3.2 Overview of estimation techniques 

State estimation theory has been widely used in the field of dynamic system 

state estimation and process control. The state of a dynamic system is 

estimated based on the mathematical description of the process and 

measurements of variables obtained from the sensors. The prediction of state 

of a process contains uncertainty either in modelling of the process or in the 

input parameters and boundary conditions. The observations obtained from 
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sensors are also noisy and incomplete. Hence, estimation is the process of 

deducing the value of a quantity of interest from indirect, inaccurate and 

uncertain observations (Yaakov et al. 2001). Estimation techniques are applied 

to determine a better estimate for dynamic processes in social and applied 

sciences for problems ranging from microscopic level to planetary orbital 

parameters. Estimation techniques are applied for various applications, which 

include (Yaakov et al. 2001): 

 Statistical inference; 

 Aviation, to determine the position and velocity of aircrafts for air 

traffic control system; 

 stochastic control, controlling production process from a plant in 

presence of uncertainty; 

 system identification, determination of state of a physical system or 

forecasting economic variables; 

 Communication theory, to filter the noise from  received signals; 

 Image processing, to determine some parameters and characteristics 

of an image.  

The estimation techniques were first developed to improve the estimate of 

positioning of celestial bodies to improve the navigation and reliance on 

astronomical observations. After the initial contributions by many scientists, 

first comprehensive estimation technique was proposed by Gauss and 

Legendre in early nineteen century. The method of least square proposed by 

Gauss and Legendre provides an optimal estimate based on noisy data. The 

least square method minimizes the estimated measurement error. The further 

advancement in the field of estimation was proposed by Norbert Wiener during 

World War II. The objective of estimation algorithm proposed by Norbert 

Wiener was to improve the prediction of target aircrafts using noisy tracking 

data from radar. This algorithm determines the solution based on least-mean-

squared prediction error in terms of autocorrelation function of the 

measurement and the noise (Grewal and Andrews, 2001).  

In 1960, Rudolf E. Kalman proposed a state estimation framework by 

introducing state variables to the Wiener filtering approach and this framework 

is known as Kalman filter. Kalman filter is considered as the greatest 
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achievement in the estimation theory during the 20th century. The Kalman filter 

provides an optimal estimate of a linear dynamic system. McGee and Schmidt 

adapted Kalman filter approach to estimate the state of non-linear dynamic 

systems at NASA and proposed an estimation framework which linearizes 

about an estimate of mean and covariance. This variant of Kalman filter is 

known as Extended Kalman Filter (EKF) and generally not considered as an 

optimal state estimator. The performance of EKF reduces with increase in the 

nonlinearity of the dynamic system and for such a system, the Unscented 

Kalman Filter (UKF) is applied. Kalman filter and EKF assume that the noises in 

state prediction and measurements are Gaussian and uncorrelated. In 1993, 

Gordon et al. proposed the Particle Filter (PF) approach based on online 

posterior density estimation by implementing Bayesian recursive equations. 

This approach can be used for state estimation of nonlinear and non-Gaussian 

dynamic systems. The above discussed models are discussed and described in 

detail in the following section.  

3.2.1 Least square methods 

The method of estimation using least square (LS) was invented by Carl Gauss in 

1809 and independently by Legendre in 1806. Gauss developed the method of 

least square when predicting the motion of planets using observations from a 

telescope. This method is simple and many other estimation techniques are 

based on least square method. Least square method can be applied to linear 

and nonlinear systems with multiple input and output variables.  

The least square estimator minimizes the sum of square of errors in fitting the 

data and determines least squares of difference between the model predictions 

and the observations. The observations in this method of estimation should be 

linearly related to the outputs and the noise is assumed to be additive zero-

mean Gaussian distribution. The least square estimation is equivalent to the 

maximization of the likelihood function of the parameters (Yakoov et al. 2001).   

The linear least square estimator is applied to estimate an unknown parameter 

by processing the entire observation set of the parameter. To implement the 

recursive LS estimator, an initial estimate of the parameter is required, which 

can be obtained by first using batch technique on a small number of initial 
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observations. Fletcher (1987) and Blackrnan and House (1999) introduced an 

iterative LS estimator which iteratively improves the current estimate using 

observations until the convergence criteria is achieved.    

3.2.2 Kalman filter 

Rudolf E. Kalman (1960) published a solution for the discrete-time linear 

filtering problem. The Kalman filter consists of a set of mathematical equations 

that provides an efficient recursive computation framework to estimate the 

state of a process by minimizing the mean of the squared error.  Since its 

invention, Kalman filter has been a subject of extensive research and 

applications in the field of process state estimation and control. The Kalman 

filter can be used to determine past, current and future states of a system. 

Furthermore, Kalman filter is also useful in determining the state of a process 

when the system model is not precise.  

The Kalman filter estimates the value of variable xk in a dynamic discrete 

process, represented by a linear stochastic equation. 

                                     (3.1) 

where A is a n x n matrix which relates the state at time-step k-1 with the state 

at current time-step k. The matrix B is n x l order matrix, which relates the 

current state of the process to optional control input  k-1. The random variable 

  represents noise in modelling the process. The observations zk are linearly 

related to the system state xk and noise in measurement is represented by a 

random variable   .  

                           (3.2) 

The random variables   and   are assumed to be independent, white and 

described using normal probability distribution with zero mean and variance Q 

and R, respectively.  

                             (3.3) 

                             (3.4) 
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To elaborate the computation using Kalman filter, a priori x̂ 
-
 and a posteriori x̂  

estimates of process state are defined. The a priori state estimate at time-step k 

is based on the knowledge of the process prior to time-step k and a posteriori 

state estimate is based on the observation obtained at time-step k.  The errors 

in estimating a priori and a posteriori states are defined as follows: 

  
        ̂ 

                 (3.5) 

         ̂                       (3.6) 

The a priori and a posteriori estimate covariance is given by: 

  
       

   
             

                   (3.7) 

           
               

                 (3.8) 

The Kalman filter estimates a posteriori state of the process using a linear 

combination of a priori state and a weighted difference between the actual 

measurement and the predicted measurement of the state.  

 ̂    ̂ 
           ̂ 

                  (3.9)  

In equation (3.9), the factor (  - x̂ 
-
  is known as residual and it represents the 

discrepancy between observations and predicted observations. A factor K, 

known as Kalman Gain is computed so as to minimize the a posteriori error 

covariance.  

     
       

                     (3.10) 
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Figure 3.1 The prediction-correction feedback cycle of Kalman filter 

Based on equation (3.9), the estimation process using Kalman filter can be 

divided into two steps as shown in figure 3.1. The first step is prediction and the 

second step is correction. The prediction equations in Kalman filter project the 

state of the system and covariance for current time-step based on the past state 

of the system to obtain a priori estimate. The correction equations provide a 

feedback on the prediction by incorporating a new measurement to update a 

priori estimate and obtain an improved a posteriori estimate of state of the 

process.  

Kalman filter provides a computationally efficient framework to obtain optimal 

estimate of a process state, when the process is modelled using a linear 

relationship and the observations are also linearly related to the state of the 

system. Thus, the applications of Kalman filter are limited as it does not 

estimate the state of a nonlinear and non-Gaussian system.  

3.2.3 Extended Kalman filter 

Most of the real life phenomenon cannot be modelled using a linear relation 

and Kalman filter cannot be applied to estimate the state of such non-linear 

systems. The extended Kalman filter (EKF) was proposed to estimate the state 

of nonlinear dynamic systems. The EKF linearizes the estimation about the 

  ̂ 
     ̂                  
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            ̂ 
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current mean and covariance by taking partial derivatives of the process and 

measurement functions using Jacobian matrices. The EKF works on the 

principal that the linearized transformation of the process and measurement 

functions are true approximation of the actual functions. Therefore, the 

solution obtained using EKF is not guaranteed to be an optimal estimate of the 

process state. 

The dynamic state of the process is governed by a non-linear stochastic 

difference equation represented by differentiable function f. 

                                      (3.11) 

The measurements zk are related to the output variable with a nonlinear 

stochastic function h. 

                           (3.12) 

Since, it is difficult to determine the values of noise    and     for each time-

step, equations (3.11) and (3.12) can be approximated by omitting them.  

 ̃        ̂                         (3.13) 

 ̃       ̃                  (3.14) 

The linearized transformation of process state equation (3.11) about equation 

(3.13) and measurement equation (3.12) about equation (3.14) is given as 

follows: 

     ̃            ̂                       (3.15) 

     ̃     (x -x̃                      (3.16) 

Where, xk and zk are actual state and measurement vectors approximated to  ̃  

and  ̃ , respectively.  ̂  is an a posteriori estimate of process state. A, 𝜞, B, and Π 

are Jacobian matrices of partial derivatives. 

  
 

  
                              (3.17) 

  
 

  
                              (3.18) 
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     ̃                   (3.19) 

  
 

  
     ̃                              (3.20) 

The estimated state of a process using EKF can be determined using a 

relationship similar to KF.  

 ̂    ̃                 ̃                 (3.21) 

Where Kk is Kalman gain matrix and determined for each time-step using the 

following relation. 

       
    

        
    

            
               (3.22) 

The a priori error covariance matrix   
  and the a posteriori covariance matrix 

Pk is defined as follows:  

  
              

              
             (3.23) 

                
               (3.24) 

 

 

Figure 3.2 The prediction-correction feedback cycle for EKF 
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Similar to Kalman filter, the EKF process can also be divided into prediction and 

correction feedback cycle. The framework defined for EKF, linearizes the state 

of a non-linear process about current estimate of mean and covariance. The 

EKF provides a framework to estimate state of non-linear dynamic process 

which cannot be estimated using Kalman filter.  However, the estimated state 

using EKF is generally not an optimal estimate due to the linear approximation. 

Furthermore, incorrect initial estimate of the state and inaccurate physical 

description of the process may cause the filter to quickly diverge.  

 3.2.4 Unscented Kalman filter 

Kalman filter provides an optimal estimate of a process state when the process 

is modelled using a linear relation. The process state in extended Kalman filter 

is approximated by Gaussian random variable and it is analytically propagated 

through the linearization, which could corrupt the mean and covariance of the 

state estimate. Unscented Kalman filter (UKF) provides a derivative free 

approach to estimate the state of a nonlinear process.  

Julier and Uhlmann (1997) proposed a framework to estimate state of a 

nonlinear process using statistical linearization technique.  The UKF is 

developed on the principle that it is easier to approximate a probability 

distribution than the approximation of an arbitrary nonlinear function (Julier 

and Uhlmann 2004). The UKF selects a set of points to propagate them through 

the actual nonlinear function such that these points completely represent the 

mean, variance and higher order moments of the Gaussian random variable. 

The selection of sample points is deterministic. For a Gaussian random variable 

of dimension n, the number of selected points is 2n+1.  

Unscented Kalman filter selects a set of points deterministically to estimate the 

mean and covariance of nonlinear dynamic process. The basic limitation of 

Kalman filter and all its variants is that the noise in process and measurement 

should be Gaussian and the processes represented by non-Gaussian noise 

cannot be estimated using family of Kalman filters. 
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3.2.5 Particle filter 

Kalman filter based estimating techniques are formulated to determine the 

state of a process represented by Gaussian random variable and do not address 

estimation of process corrupted with non-Gaussian noise. Particle filter is 

designed to estimate the state of nonlinear dynamic system and it is also useful 

to estimate the process represented by non-Gaussian random variables. 

Particle filter also has advantage over UKF, as the number of sigma points in 

UKF are based on an algorithm and are much smaller than the number of 

samples points selected in particle filter. The estimation error in UKF filter does 

not converge to zero, however in particle filter algorithm the error can 

converge to zero with increase in number of sample particles.  

Gordon et al. (1993) proposed particle filter (PF) based on sequential Monte 

Carlo method which provides an effective solution for nonlinear and non-

Gaussian problems and it has been widely applied for many important 

processes in science and engineering. The PF samples a number of points from 

hypothesized states of the process, called particles. The uncertainty and the 

distribution of process state are represented by a diverse set of particles. All the 

sampled particles are compared and weighted with the measurement of the 

state variable. The particles with higher weights are retained and propagated 

through the function while the particles with lower weights are rejected. Thus, 

the particles selected for estimation tend to concentrate in the region of higher 

probability. The PF represents the posterior density by a set of weighted 

particles and the state is estimated based on these particles.  

Particle filter provides a sophisticated estimation technique based on 

simulation which is also applicable to nonlinear and non-Gaussian processes. 

However, it needs analysis of large number of particles and optimal number of 

particles cannot be determined. This deficiency makes particle filter unfeasible 

for real-time applications of complex dynamic systems.  

3.3 Real-time traffic state measurements 

The increase in traffic congestion and growth of cities needs batter traffic 

management strategies. Intelligent traffic systems (ITS) have been widely used 
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in urban and freeways traffic systems to improve network performance and 

optimally utilize the existing capacity of road network. Accurate observation of 

existing traffic condition is essential to devise, implement and evaluate traffic 

management strategies. With advancement in detection and communication 

technologies, measurement of vehicular traffic flow has been significantly 

improved in past few decades.  

Many busy cities and freeways are covered with different traffic measuring 

devices to obtain measurements of traffic flow parameters. The parameters 

measured using traffic sensors include traffic count, vehicle classification, 

vehicle occupancy, space-mean speed and travel time. Traffic counts can be 

obtained using portable counters, permanent counters, or video recordings. 

The automatic counts are taken for every one hour interval for a period of 24 

hours, which can be extended for a week, month or year. The traffic count data 

is mostly used for traffic planning and improvement in existing traffic network 

capacity or traffic control. The data related to different vehicle types is also 

collected along with vehicle count. The vehicle classification data generally 

classifies vehicles into cars, trucks, buses, motorcycles and HTVs (Heavy 

Transit Vehicles). Vehicle classification data is utilized in structure design of 

pavement, environmental impact analysis, revenue and toll estimation, and to 

estimate capacity of the highway. The sensor occupancy is an important 

measure of traffic congestion and road performance and it depends on the 

speed and length of the vehicle. The occupancy is measured in percentage of 

time occupied by a vehicle in the detection zone. Traffic density can be 

calculated based on the sensor occupancy data and traffic density observations 

are widely used in traffic surveillance and ITS applications. The observation of 

‘presence’ from measurement sensors detects if the sensor is occupied with a 

vehicle or not. The measurement of travel time is of prime importance for 

commuters, traffic planners, and traffic management authorities. Travel time 

observations are used for congestion management, transportation planning and 

ATIS. Traffic management systems use performance measures which are based 

on travel time to evaluate and monitor traffic system performance. Some traffic 

management authorities provide predicted travel times using ATIS. Travel time 
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data can be obtained directly using test vehicle, licence plate matching, and ITS 

probe vehicle techniques.  

Traffic observation sensors installed at a fixed location to obtain traffic 

measurements are defined as in-situ detectors. The location of detectors and 

number of detectors installed in a network play a significant role in quality of 

traffic measurements. All in-situ traffic detectors provide a measure of traffic 

flow with some additional parameter observed, depending on specific type of 

the detector.  Table 3.1 provides a list of in-situ traffic observation technologies, 

with the parameters of traffic flow measured using the sensor technology. 

Table 3.1 A list of different in-situ sensor technologies (Klein et al. 2006) 

Sensor 

Technology 

Count Speed Vehicle 

classification 

Occupancy Presence Multilane 

Pneumatic 

tubes 

Yes Yes Yes No No No 

Magnetic 

loop  

Yes With 

dual 

No Yes Yes No 

Inductive 

loop 

Yes With 

dual 

Yes Yes Yes No 

Video 

processing 

Yes Yes Yes Yes Yes Yes 

Active 

Infrared 

Yes Yes Yes No No  Yes 

Passive 

Infrared 

Yes Yes No Yes Yes No 

Microwave 

Radar 

Yes Yes Yes Yes Yes Yes 

Ultrasonic Yes No No Yes Yes No 

Passive 

acoustics 

Yes Yes No Yes Yes Yes 
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3.4 Real-time traffic state estimation model 

Based on the discussion on traffic flow models in chapter 2, the Cell 

Transmission Model (CTM) is selected to model traffic flow propagation for 

traffic network. CTM is a discretized form of first order LWR traffic flow model 

and it is considered sufficient to model network traffic flow. It is 

computationally less expensive than other higher order traffic flow models, 

which makes it more suitable for application to real-time traffic state 

estimation and DTA problems. CTM predicts traffic density for current time-

step for the entire network based on traffic densities estimated for a previous 

time-step.  

The Extended Kalman Filter (EKF) is selected to estimate traffic state using 

nonlinear CTM and linear relationship between predicted and measure state. 

EKF is suitable filtering technique for nonlinear traffic flow model and it is 

computationally feasible for real-time applications. The framework proposed 

by Wang and Papageorgiou (2005) for nonlinear second order traffic flow 

model is adapted to implement with CTM for real-time traffic state estimation.  

Wang and Papageorgiou (2005) applied second order traffic flow model 

(METANET) with non-linear EKF. Tampere and Immers (2007) applied the 

framework proposed by Wang and Papageorgiou (2005) for CTM with linear 

Kalman filter. The approach proposed in this thesis uses non-linear EKF 

framework proposed by Wang and Papageorgiou (2005) along with CTM for 

estimation of traffic state. Table 3.2 compares the approach applied in this 

research with the approaches used by Tampere and Immers (2007) and Wang 

and Papageourgiou (2005).  However, applying EKF for CTM based on Wang 

and Papageorgiou (2005) is not the main contribution of this research. Deriving 

predictive traveller information and integrating route choice models from DTA 

is the main contribution of this research, which is highlighted in chapter-5 and 

applied to various applications in chapters 6, 7 and 8.  
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Table 3.2 Comparison of traffic state estimation approaches 

Approach Traffic flow model Estimation algorithm  

Wang and Papageorgiou 

(2005) 

METANET  Extended Kalman Filter 

Tampere and Immers 

(2007) 

CTM Linear Kalman Filter 

Ahmed (2015) CTM Extended Kalman Filter 

 

The components of traffic state estimation framework are described in this 

section of the chapter.  

3.4.1 State-space representation of CTM for traffic state estimation 

The CTM model described in section 2.5 is redefined in a compact form using 

state-space form for better representation and implementation of EKF. The 

conservation equation defined in equation (2.14) predicts traffic density for all 

cells in the network for current time-step based on estimated traffic state for 

previous time-step and it given as follows: 

           ̂      
  

 
                            (3.25) 

Where ρ
 
      is predicted traffic density for all cells   = , 2, 3, … at time-step 

k+1, based on estimated traffic density for current time-step  ρ̂
 
    and q

 
    is 

the inflow to cell-i with outflow as q
   
   . The inflows and outflows are 

determined based on type of the cell as defined in equations (2-4-2.13). The 

predicted traffic densities for all the cells in the network can be represented in 

a vector form as follows: 

                                     (3.26) 

The accuracy of traffic density predicted using equations (3.25) is highly 

dependent on accuracy of parameter values of the fundamental traffic flow 

diagram. Fundamental traffic flow diagram shown in figure 2.1 is based on 

initial values of traffic flow parameters and it is not constant for the simulation 

horizon, as it changes with the new estimate of traffic flow parameters. 

Accurate estimate of traffic flow parameters such as critical density, flow 



- 48 - 

capacity and jam density significantly impacts estimate of traffic state. The 

values of traffic flow parameters can be affected by severe weather condition, 

change of traffic mix, traffic incidents etc. The proposed framework is also 

applied to an application when traffic network is affected with an incident and 

the prediction model is not provided with any information about occurrence 

and duration of the incident. In this scenario, when estimating traffic density 

during incident with naive model, accurate estimation of traffic flow 

parameters plays a significant role. Following other research studies (Wang 

and Papageorgiou 2005; Wang et al. 2008; Ngoduy 2011) for parameter 

estimation, this research applies a similar approach to estimate the parameters 

of fundamental traffic flow diagram by converting these parameters into 

stochastic variables and use measurements from traffic sensors to track any 

changes in parameters of fundamental traffic flow diagram.  

Traffic flow parameters such as critical density, jam-density and traffic flow 

capacity can be included in the estimation scheme for real-time parameter 

estimation of CTM. Other parameters of fundamental traffic flow diagram such 

as free flow speed and backward wave speed can be determined based on 

estimated values of critical density, jam-density and traffic flow capacity. 

However, in this research, to keep the number of variables minimum in the 

estimation model, only critical density is estimated for each cell with a 

measurement sensor. Traffic flow capacity and jam-density are calculated for 

each time-step using estimated critical density by assuming that free-flow 

speed and backward wave speed are unchanged. Furthermore, addition of all 

three unknown parameters in the estimation model might lead to a 

nondeterministic system and cause the EKF-based estimation model not 

converging for solution.   

          
                      (3.27) 

  
        

          
                       (3.28) 

Critical traffic density is transformed into a stochastic variable by adding a 

white Gaussian noise with standard deviation   
    . 

  
         

       
                 (3.29) 
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All the parameters of fundamental traffic flow diagram and boundary 

conditions for CTM can be included in the estimation scheme and represented 

by a vector.   

      
     

     
      

                (3.30) 

Where a is the number of cells in the network equipped with a sensor. The 

outputs from estimation model which include traffic density from CTM and 

unknown model parameters can be merged into an array. 

                           (3.31) 

If error in prediction of traffic density is   
 
   , the nonlinear function f1 

representing traffic density using CTM is given by: 

                  
                   (3.32) 

The augmented state-space form of prediction function is given by: 

                                 (3.33) 

Where 

                          (3.34) 

Equation (3.33) represents a recursive dynamic function for prediction of 

traffic state.   

3.4.2 State-space representation of real-time observations 

Various types of traffic observation sensors collecting real-time measurements 

of traffic flow parameters are discussed in the previous section of this chapter. 

For illustrative purpose, this research work assumes that there are traffic 

measurement sensors installed along various links in the network, which 

measure traffic density and communicate it to the controller in real-time. In 

reality, the observations obtained from the sensors include sensor occupancy, 

flow rate, vehicle classification and speed. Most of the sensor technologies such 

as magnetic loop detector, inductive loops, video cameras, passive infrared, 

microwave radar and passive acoustic sensor collect measurements for traffic 

occupancy (Klein et al. 2006).  Traffic density can be determined based on 

measurements of traffic occupancy obtained from the sensors. However, the 
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proposed model can be used for any other type of real observations obtained 

from measurement sensors such as traffic flow or speed.  

In this research, we generate synthesized measurements by simulating reality 

using a CTM model. The CTM model to generate traffic density measurements is 

based on actual network capacity and provided with the values of traffic flow 

parameters which reflect the impact of any real-time changes on cell/route 

capacity. Furthermore, a white Gaussian noise is also added in the simulated 

reality to depict stochasticity in the measurements obtained in real-world. Let 

  
 
    denotes the measurement of traffic density during time period [(k-1)t, 

kt] and Øi(k) is Gaussian white noise in measurement of traffic density. The 

frequency for acquiring sensor measurements is assumed equal to the CTM 

prediction frequency (30 seconds), but this assumption does not limit the 

application of proposed framework to the systems with different measurement 

and prediction frequencies. The measurements obtained from a traffic sensor 

for a given time-step is related to predicted traffic density based on the 

following equation: 

  
                             (3.35) 

The measurements obtained from sensors can be represented using a vector y. 

      
 
    

 
      

 
               (3.36) 

The measurement vector y is linked with prediction vector x with a 

differentiable function g as follows: 

                               (3.37) 

3.4.3 Extended Kalman filter for traffic state estimation 

The EKF is considered as a de facto estimation algorithm for estimating state of 

a non-linear dynamic system and traffic flow models including CTM are 

nonlinear in nature. EKF has been consistently used for estimation of traffic 

state (Wang et al. 2011; Wang et al. 2008, Wang and Papageorgiou 2005; Meier 

and Wehlan 2001). Other estimation algorithms for nonlinear systems such as 

particle filters and unscented Kalman filter are computationally expensive 

algorithms when compared to EKF. The EKF is more efficient in computation 

and may be applied in large scale networks. 
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For traffic density estimation of traffic network, the framework described in 

Wang and Papageorgiou (2005) is adapted for CTM. The objective of EKF at 

each time-step k is to find a state estimate which minimizes covariance of 

estimation error using all available measurements till time-step k. 

           ̂     ⁄              ̂     ⁄     (3.38) 

For any estimation problem using EKF, the following three conditions must be 

satisfied. 

i) Noises in measurement  (   and in prediction process  (   are zero-

mean Gaussian white random processes. For any     and    :  

                       (3.39) 

                        (3.40)

  

             {
         
           

            (3.41) 

             {
         
           

            (3.42) 

             {
         
           

           (3.43) 

Where, Q and R are known symmetric matrices representing variance of noise 

in prediction of model and noise in measurements, respectively. 

ii) Initial state x(0) is a Gaussian random with known mean and 

covariance matrix. 

 ̂                                     (3.44) 

            ̂           ̂             (3.45) 

iii) Initial state x(0) is not correlated with model prediction or 

measurement noise at any time instant.  

The recursive equation of EKF that recursively estimates the current traffic 

state based on prediction of traffic state from CTM and observation of traffic 

state is given by: 

 ̂      ⁄      ̂      ⁄                     ̂      ⁄            (3.46) 
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Where K is Kalman Gain Matrix and which is estimated at each time-step: 

                ⁄                                 ⁄        

                                                                                (3.47) 

The covariance for next time-step is also predicted and given by:  

      ⁄                          ⁄                     

                                         (3.48) 

In equation (3.47) and (3.48), A(k) represents first-order partial derivative of 

prediction function f with respect to the x, which contains all output variables. 

This is also known as Jacobian matrix. Jacobian matrix B(k) represents first-

order partial derivative of function g with respect to vector x. Jacobian matrix 

     is first-order partial derivative of prediction function f with respect to 

prediction error  (k) and Jacobian matrix Π(   is first-order partial derivative of 

function g with respect to measurement error φ.    

     
  

  
  ̂      ⁄                 (3.49) 

     
  

  
  ̂      ⁄                 (3.50) 

     
  

  
  ̂      ⁄                 (3.51) 

     
  

  
  ̂      ⁄                 (3.52) 

The proposed CTM-EKF real-time traffic state estimation framework is applied 

to a simple link to elaborate the equations and matrices defined in the 

formulation and to demonstrate the working of the proposed framework.  

3.4.4 Application of CTM-EKF model to a simple link 

The CTM-based real-time traffic state estimation framework is elaborated here 

with an example of a simple link. A two-lane stretch of road is considered, 

which is equipped with a measurement sensor which provides real-time 

measurements of traffic density. For illustrative purpose, these measurements 

are generated using an independent CTM model with slightly different link 

demand. A Gaussian white noise is added in the simulated measurements of 

traffic density to depict actual noise in observations. Figure 3.3 shows the 

simple link considered for this example. 
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Figure 3.3 A simple link to illustrate CTM-EKF framework 

3.4.4.1 Traffic density prediction based on CTM 

A simple link with a length of 1500 m is considered in this application of CTM-

EKF model. The link is divided into three cells of equal lengths, each of 500 m, 

with one dummy cell to generate traffic demand and another dummy cell to 

absorb traffic arriving at the destination. There is a measurement sensor in cell-

2 of the link which provides real-time observations for traffic density. The free-

flow speed of link is 60 km/hr and shockwave speed is 20 km/hr. All the cells in 

the link have traffic flow capacity of 1800 veh/hr/ln, critical density of 30 

veh/km/ln and jam-density of 120 veh/km/ln.  Since all the cells in the link 

have same parameter values which do not change during the simulation 

horizon, equation (2.4) to compute inflow qi to cell i from cell i-1 can be 

simplified as follows: 

                           
                    (3.53) 

Equation (2.4) has been simplified by replacing actual outflow Yi(k) and actual 

inflow Zi(k) with qi(k), as inflow to a downstream cell is always equal to the 

outflow from the upstream cell for a simple link. Based on the calculated traffic 

flow for time-step k, traffic density is predicted for future time-step k+1 based 

on equation 2.14.  

                 
  

 
                             (3.54) 

The link is simulated for a time period of 30 minutes, which is divided into 60 

time-steps, each of 30 seconds. Traffic demand profiles for traffic density 

prediction and to generate simulated measurements are shown in figure 3.4. 

The state estimation using Kalman filter based estimation frameworks assumes 

that there is an underlying modelling error represented by white Gaussian 

noise. In predicting traffic density using CTM, this error could be due to change 

in traffic demand, inaccurate fundamental traffic flow diagram and 

inappropriately calibrated CTM model.  

Cell-1 Cell-2 Cell-3 
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3.4.4.2 Measurements from traffic sensors 

The synthetic measurements are generated in this research using an 

independent CTM model based on simulated reality and provide measurements 

of traffic density polluted with white Gaussian noise. The CTM model to 

generate simulated traffic reality is provided with actual traffic demand and 

parameter values representing any changes due to incident, compared to naïve 

CTM prediction model with constant parameter values and unable to represent 

real-time changes in traffic demand and/or traffic flow capacity. To elaborate 

the process of traffic state estimation, the measurements of traffic density are 

generated with slightly different traffic demand compared to the demand 

provided to CTM model for prediction of traffic density. In this application of 

proposed CTM-EKF model, it is assumed that there is a measurement sensor in 

cell-2. Thus, traffic density from simulated reality for cell-2 is forwarded to 

CTM-EKF model after addition of noise. 

The measurement of traffic density obtained from traffic sensor in cell-2 is 

mapped with the estimated output of CTM-EKF model based on equation 3.35. 

  
                              (3.55) 

3.4.4.3 State-space representation of predictions and measurements   

Based on methodology described in sections 3.4.1 and 3.4.2 for state-space 

representation, the predicted traffic density and measurements are 

transformed into state-space form as followed.  

Traffic density prediction for three cells: 

                              (3.56) 

Traffic density prediction for future time-step derived based on equation (3.54) 

with a prediction error defined by   
 
   . 

      
 
     

 
     

 
                (3.57) 

                  
                   (3.58) 

In this example, no parameters are included in the estimation scheme, thus: 

        [

    
    
    

]               (3.59)  
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The recursive dynamic function f for traffic density prediction based on CTM is 

given by: 

                                  (3.60) 

Similarly, the measurements obtained from a sensor in cell-2 can be written in 

vector form. 

     
 
                 (3.61) 

The measurement vector y is linked with predicted traffic state x using function 

g based on equation (3.55). 

                               (3.62) 

3.4.4.3 Traffic density estimation using CTM-EKF framework   

The CTM-EKF model recursively estimates traffic density for given link based 

on equations (3.46-3.48). All the matrices mentioned in equations (3.46-3.48) 

are described here in detail for application to the simple link. For simplicity of 

presentation, the time-script k is removed from the description of equations. 

Jacobian matrix A:  

  
  

  
  ̂      ⁄     

 

[
 
 
 
     

  

 
            

 

    
  

 
            

 

    
  

 
           

 
]
 
 
 
 

 [

    
    
    

]

               (3.63) 

Where q is the link outflow representing outflow from cell-3 to the dummy 

destination cell and    is traffic demand for cell-1 originating from dummy cell. 

Determining Jacobian matrix also involves partial derivatives of q1, q2, and q3 

with respect to   ,   , and   . These partial derivatives are determined as 

follows: 
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The partial derivatives are described above to explain in detail the process of determining derivatives of components of Jacobian matrix A. 

The Jacobian matrix A can be written in a compact for as follows: 
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(3.64) 

Jacobian matrix B:  

  
  

  
  ̂      ⁄    = 
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                                (3.65)
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Jacobian matrix :  

  
  

  
  ̂      ⁄      
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  [
   
   
   

]         (3.66) 

Jacobian matrix :  

  
  

  
  ̂      ⁄     

     

     
                       (3.67) 

Covariance matrix Q: 

If ψ is the standard deviation of Gaussian noise in prediction of traffic density 

using CTM, the positive diagonal matrix representing covariance matrix Q for 

process noise is given as follows: 

  [

    

    

    

]               (3.68) 

It is assumed that standard deviation of the process noise is same for prediction 

of traffic density for all three cells in the link.  

Covariance matrix R: 

If r is the standard deviation of measurement noise, the covariance matrix R 

representing noise in measurements is given by: 

                     (3.69) 

Cross-covariance matrix M: 

The cross-covariance matrix M is given by: 

  [
 
  
 
]                (3.70) 

Based on the matrices and vectors defined in equations (3.66)-(3.73), which are 

determined for each time-step, Kalman gain K (3x1) and state covariance 

update P (3x3) are determined and used in equation (3.63) for estimating 

traffic density.  
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3.4.4.3 Simulation results 

The proposed CTM-EKF framework elaborated for a three cell link is simulated 

for a time period of 30 minutes, which is divided into 60 time-steps. The traffic 

demand for generating measurements for cell-2 is assumed with a different 

demand profile than the demand profile for CTM-EKF estimation model and 

naïve CTM model for traffic density prediction. The prediction from CTM model 

with the same noise as CTM-EKF process noise is compared with the estimated 

traffic density and measured traffic density to highlight the significance of 

estimated traffic density. Figure 3.4 compares traffic demand profiles used for 

measurement and CTM/CTM-EKF model. 

 

Figure 3.4 Traffic demand profiles for measurements and CTM-EKF model 

The estimated traffic density using CTM-EKF model for cell-1 of the link is 

compared with the only CTM based prediction model, with same level of noise 

in the prediction. The CTM-EKF estimation model and CTM prediction model 

are simulated with the same demand as shown in figure 3.4. Figure 3.5 shows 

that CTM-EKF model estimated traffic density and CTM prediction for cell-1 are 

overlapping and equal for all the time-steps in the simulation horizons. Since 

the link is in a free-flow traffic condition throughout the simulation horizon, the 

traffic flow in link-1 is dictated by upstream traffic condition and unaffected by 

the estimated traffic density in the downstream cell. However, in congested 

traffic situation, when the downstream cell affects the flow of traffic from 

upstream cell, the CTM-EKF model will also affect traffic density estimate of the 

upstream cell. Figure 3.6 compares estimated traffic density from CTM-EKF 
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model with the prediction of traffic density from CTM and measurements from 

the sensor for cell-2. Figure 3.6 shows a significant improvement in estimation 

of traffic density with CTM-EKF model compared to prediction from CTM 

model. As the naïve CTM and CTM-EKF models are simulated with different 

demand profiles, while the measurements are reflecting actual traffic density in 

cell-2. CTM-EKF model recursively improves the estimated traffic density by 

using the measurements from the sensor, thus estimated traffic density 

improves significantly when compared with prediction from CTM model. A 

similar improvement can be observed from figure 3.7 for cell-3, as the 

corrected traffic density for cell-2 is propagated to the downstream cells.  

 

Figure 3.5 Comparison of estimated and predicted traffic density for cell-1 

 

Figure 3.6 Comparison of estimated and predicted traffic density for cell-2  
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Figure 3.7 Comparison of estimated and predicted traffic density for cell-3  

3.5 Summary 

A brief overview of different estimation algorithms is presented in this chapter 

which include least square method, Kalman filter, extended Kalman filter, 

unscented Kalman filter, and particle filter. Kalman filter provides an optimal 

estimate for state of a linear dynamic system, based on unreliable model 

prediction and noisy measurement data. Extended Kalman filter, unscented 

Kalman filter and particle filter are designed to estimate the state of nonlinear 

dynamic systems. The EKF is more feasible for real-time applications compared 

to other estimation techniques, as it is computationally less expensive. The 

framework proposed by Wang and Papageorgiou (2005) is adapted to estimate 

traffic state using the cell transmission model. The parameters of fundamental 

traffic flow diagram are also estimated in real-time to capture any unexpected 

variation of these parameters due to external factors such as extreme weather, 

incident etcetera. A brief overview of advancement in obtaining traffic 

measurements is also provided in this chapter. Finally, the proposed CTM-EKF 

framework for real-time traffic state estimation is elaborated and applied to a 

simple link to demonstrate the significance of the proposed framework.  
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Chapter 4: Dynamic Traffic Assignment 

4.1 Introduction to dynamic traffic assignment 

Dynamic Traffic Assignment (DTA) models are widely used to model 

propagation and distribution of traffic along a network with time dependant 

traffic demand and network capacity. Static traffic assignment (STA) models 

can deal with steady-state traffic to model traffic flow based on average daily 

traffic or peak-hour traffic. These models are based on well-defined equilibrium 

principles and can provide reliable estimates for large networks, which are 

useful for planning purpose. On the other hand, microscopic simulation models 

consider the movement and interaction of individual vehicles with other 

vehicles as well as with its environment (roads and traffic control). Microscopic 

simulation models require comparatively larger dataset to model driver 

behaviour. Due to high computational and data requirements for microscopic 

simulation models, these models are well suited for analysis of intersections or 

small level networks (Chiu et al. 2010). Microscopic simulation models can be 

applied to evaluate various traffic control strategies on a corridor level scale. 

The gap between static traffic assignment models and microscopic simulation 

models is filled by Dynamic Traffic Assignment (DTA) models, as DTA models 

are useful to model time-dependent traffic demands or network capacity 

variations for real-size traffic networks. The variation in traffic demand or 

network capacity can be across the days or within a day. DTA models in 

contrast to STA models can represent dynamics of traffic flow in network 

loading component of the traffic assignment process. Different approaches to 

implement DTA using dynamic network loading models include Cell 

Transmission Model (CTM) (Lo 1999, Ziliaskopoulos 2000, Lo 2001), 

Deterministic Queuing Model (Cascetta and Cantarella 1991, Kuwahara and 

Akamatsu 1997) and Exit Flow Function (Merchant and Nemhauser 1978, 

Friesz et al., 1989, Wie et al. 1995). 

DTA models are used for variety of applications from long-term transportation 

planning and control policy evaluation to real-time traffic management. Gomes 
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and Horowitz (2006) and Meng and Khoo (2010) utilized DTA approach for 

freeway traffic congestion management using ramp-metering. Heydeccker 

(2002), “Brain” Park et al. (2009) and Park and Kamarajugadda (2007) used 

DTA applications to improve network performance through changing traffic 

signal settings.   Lo and Szeto (2004) and Szeto and Lo (2005) applied within 

day DTA application to guide travellers using advanced traveller information 

systems. Zhong et al. (2012), Watling (2006), Heydecker and Polak (2006), and 

Lo and Szeto (2005) applied DTA notion for dynamic toll and road pricing for 

congestion management. Ukkusuri and Waller (2008) evaluated various 

strategies for transportation planning. Szeto et al. (2009) applied DTA model to 

forecast future traffic patterns on highways and Abdelghany et al. (2000) 

evaluated the benefits for proposed policy on congestion management in 

highways.      

There are two possible approaches used in implementation of DTA, simulation-

based and analytical-based. Simulation-based DTA models simulate probable 

results of a certain traffic management strategy but cannot determine a traffic 

management strategy. On the other hand, DTA models developed using 

analytical approaches are useful for both devising and evaluating traffic 

management strategies. To find equilibrium in DTA approaches, the following 

three algorithms are applied iteratively, until a convergence criteria is satisfied 

(Chiu et al. 2010).  

Network Loading:  In this component of DTA, a network loading model is 

assigned with a set of route choices and demand for all the links in the network. 

The network loading model determines travel times for assigned traffic 

demand and these travel times are assigned to the next component of DTA 

model to determine a new set of route choice and link demands, based on 

current estimate of travel times. 

Path Set Update: This component of DTA model determines shortest route for 

each O-D pair for a given departure time, based on the travel times obtained 

from the network loading component. Travel times for each O-D pair and 

congestion pattern is analysed to determine time-dependant shortest path and 

it is combined with results of pervious iterations to update the path sets.   
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Path Assignment Adjustment:  Path assignment adjustment algorithm adjusts 

traffic flows assigned to different routes based on updated path set. If all the 

traffic is assigned to the shortest path, this will not be the shortest path 

anymore. Thus, a portion of traffic from the path with higher travel times is 

assigned to the path with lower travel time. In general, this component of DTA 

model identifies the routes to increase and decrease traffic flows and the 

magnitude of assignment adjustment.  

The output of path assignment adjustment algorithm is again assigned to the 

network loading component and these steps are performed iteratively in a 

sequence, until a convergence criterion is satisfied by the output. The quality of 

a solution obtained using DTA model is determined by the following 

characteristics: 

i) Convergence:  This quality of a solution obtained using a DTA model 

is determined by evaluating the deviation in flow pattern in 

successive iteration and comparing it with a pre-defined tolerance 

level. The tolerance level specifies the amount of permitted error in 

the final solution. A smaller value of the tolerance level is ideal; 

however it can significantly increase the computational time. 

Therefore, selection of tolerance level is a trade-off between the 

accuracy of the final solution and the computational time. The two 

commonly used approaches to define the tolerance level are the 

absolute change and relative gap.  

ii) Sensitivity and stability: This characteristic of a DTA model output 

defines the robustness of a solution. Generally, a minor local change 

in the network should not have a significant impact on the ultimate 

solution. If a minor change in the network causes a big difference in 

the output, the solution is sensitive and non-stable.  

4.2 Review of DTA models 

Based on the existing literature in DTA, these models can be classified in the 

following categories.   
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4.2.1 Dynamic system optimal traffic assignment    

Dynamic system optimal (DSO) traffic assignment is based on the principle that 

a central controller distributes the commuters on the network so that the total 

travel time of all the commuters is minimized and it is assumed that all the 

commuters adhere to the traffic assignment strategy proposed by the 

controller. The second principle of Wardrop (1952) for system optimal traffic 

assignment which states that at equilibrium total journey time is minimized was 

extended by Merchant and Nemhauser (1978) for dynamic traffic system. The 

DSO principle assumes that all travellers cooperate with each other in choosing 

their routes so that total system travel time over modelling horizon is 

minimized. Merchant and Nemhauser (1978) optimized departure pattern of 

commuters travelling from multiple origins to a destination using different 

links in the network to optimize the total system cost. The model is shown as a 

generalize form of static SO traffic assignment problem and a global solution 

can be obtained by piecewise linearization of the model. Carey (1987) 

improved DSO application by using link exit functions, which improved 

mathematical and algorithmic representation of the model. Chang et al. (1988) 

and Chow (2007) proposed system optimal traffic assignment for departure 

and route choice. Birge and Ho (1993) extended the DSO problem by treating 

O-D demands as stochastic variables and optimized the O-D assignment. Ran 

and Shimazaki (1989) utilized optimal control theory to develop a model for an 

urban traffic network with multiple origins and destinations. Papageorgiou 

Messmer (1991) proposed a framework based on feedback control using a 

macroscopic traffic flow model. Ziliaskopoulos (2000) formulated a DSO traffic 

assignment problem using CTM. The DSO model proposed by Ziliaskopoulos 

(2000) is linear in nature and computationally efficient but violates FIFO when 

applied with multiple destinations. Jahn et al. (2005) proposed a solution which 

is close to system optimal solution under route guidance traffic system. Qian et 

al. (2012) proposed a framework to approximate path marginal costs used for 

DSO traffic assignment problems. Carey and Watling (2012) determined and 

implemented system marginal costs using CTM and concluded that the DSO 

tolls implementation results in a solution which matches the criteria for 

dynamic user equilibrium solution.          
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In reality, system optimal does not represent actual traffic distribution along 

the network. However, system optimal solution provides a benchmark for 

system performance and traffic control measures and policies are compared 

with system optimal solution to evaluate the effectiveness of a particular traffic 

control strategy Chow (2007).  

4.2.2 Dynamic user optimal traffic assignment    

The user optimal principle for static traffic assignment was proposed by 

Wardrop (1952) and states that the travel times on all the routes in use are equal 

and not greater than the travel time that would be experienced by a commuter on 

any unused route. Unlike system optimal, this principle assumes that 

commuters do not cooperate with each other in selecting their routes and know 

the exact travel time of their selected routes. This principle has been extended 

to include generalize cost of travel which includes other components such as 

parking charges, tolls and fuel consumption. Friesz et al. (1989) extended the 

notion of user equilibrium for dynamic traffic systems by considering the 

dynamics of commuter’s departure time. According to principle for dynamic 

user optimal (DUO) traffic assignment for route choice, the travel cost for all the 

routes used by commuters departing at a given departure time for each O-D 

pair are equal and minimal. This principle is mostly used in pure dynamic route 

choice applications (Szeto and Wong 2012). The DUO traffic assignment 

principle for departure time optimization proposed by Vickery (1969) treats 

route choices as fixed and commuters optimize their travel cost by selecting a 

departure time for each pair of O-D. The generalized DUO traffic assignment 

principle that combines optimization of route choice and departure time was 

proposed by Mahmassani and Herman (1984) and it states that the travel costs 

for all the commuters departing any time and selecting any route for a given O-D 

are equal and minimal. 

DUO traffic assignment problem was formulated as an algorithm and 

mathematical program by Janson (1991). Janson (1991) used experienced 

travel times to determine an equilibrium solution. Smith (1993) proposed a 

DUE model for capacity-constrained roads in urban network. Friesz et al. 

(1993) proposed a DUO framework based on variational inequality approach. 

Lo and Szeto (2002a) for the first time proposed to use CTM to determine 



- 66 - 

idealized dynamic user optimal solution. The proposed approach accurately 

captured dynamic traffic phenomenon such as shock-waves, queue formation 

and dissipation, and dynamic traffic interaction across multiple links. Lo and 

Szeto (2002b) used CTM-network model to ensure FIFO compliance of the 

proposed model and used variational inequality approach to determine 

dynamic user optimal equilibrium. Szeto and Lo (2004) extended the CTM-

based variation inequality approach for optimizing departure and route choice 

simultaneously. Nie and Zhang (2010) used a LWR-consistent traffic flow 

model for optimizing simultaneous departure and route choice by commuters. 

Han et al. (2011) proposed a CTM-based model for a single O-D pair with 

multiple paths to determine DUE with elastic demand. Ukkusuri et al. (2102) 

developed a framework to determine network level DUE using CTM with 

multiple O-D. Ukkusuri et al. (2102) used a path-based CTM to avoid holding-

back issue in order to ensure FIFO.  Formulations based on DUO traffic 

assignment principle assume that travellers have perfect knowledge about 

their expected travel times and exact travel times for a given route and 

departure time are known to travellers before their departure.    

4.2.3 Dynamic stochastic user optimal traffic assignment    

Daganzo and Sheffi (1977) extended the concept of user equilibrium in static 

traffic assignment to incorporate perception error in expected travel time when 

selecting a route. In stochastic user equilibrium (SUE), travellers select their 

route based on perceived travel times for the candidate routes and travellers 

are allowed to have different perceived travel time for the same route. 

Perceived travel time consists of expected travel time and a perception error 

defined using a probability distribution. If the perception error is removed, 

then SUE becomes a special case of UE problem, when all commuters select 

their routes based on expected travel times. Small (1982) extended the DUE 

principle for departure time choice to allow perception error in generalized 

expected travel cost. The DSUE principle for departure time and route choice 

states that at DSUE commuters cannot improve their perceived travel cost by 

unilaterally changing the combination of departure time and route choice. The 

route choice DUO traffic assignment principle was extended for perceived 

travel times by Ran and Boyce (1996) and Vythoulkas (1990) proposed 
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dynamic stochastic user equilibrium (DSUE) approach for simultaneous 

departure time and route choice optimization. Cascetta and Cantarella (1991) 

proposed a framework for within day and day to day traffic assignment with 

stochastic process. Maher and Hughes (1997) used a probit-based route choice 

model to determine DSUE. Watling (2002) proposed a framework that 

endogenously considers the variability of travel costs due to stochastic nature 

of traffic flows when addressing DSUE problem. Han (2003) used a 

deterministic queuing model to determine travel cost, logit model to find splits 

on links and method of successive average to obtain DSUE. Lim and Heydecker 

(2005) proposed a framework to obtain departure time and route choice DSUE 

model based on logit model. Watling (2006) introduced the later arrival penalty 

in considering the total travel cost.          

4.2.4 Day-to-day DTA models   

Day-to-day dynamic traffic assignment models deal with the route/ departure 

time choices of commuters in a longer study time horizon and model evolution 

of route flows for peak-period over a defined number of days. These models 

determine the route and/or departure time choice of commuters on a given 

day, based on the experienced travel cost in past days during the study horizon. 

Some DTA models also combine the pre-departure and en-route traveller 

information in selecting departure time/ route. Horowitz (1984) discusses the 

stability of stochastic equilibrium and models day-to-day route choice 

adjustment by introducing learning model based on weighted average 

approach. Cascetta (1989) discusses learning and route-choice models for day-

to-day traffic assignment and introduced stochastic process model for day-to-

day traffic assignment. Ben-akiva et al. (1991) proposed a model for day-to-day 

route adjustment under the traveller information. Watling and Hazelton (2003) 

discus the behavioural models of route-choice and impact of various factors on 

the day-to-day equilibrium solution obtained. A brief overview of day-to-day 

learning models is provided in section 4.4 and further applications of day-to-

day DTA models are discussed in chapter-7 of this thesis.  
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4.2.5 Within-day DTA models   

The within-day DTA traffic models address travel decision taken during the 

study horizon for a specific day without explicitly modelling the adjustment 

from previous days. The within-day DTA models are used for departure time 

optimization, route choice optimization and simultaneous optimization of 

departure time and route choice. These models are more extensively 

researched and applied in DTA compare to day-to-day DTA models. Real-time 

applications of ATIS and advanced traffic management systems are usually 

designed to implement for a given day, such as traffic management during 

incidents. The application of within day traffic models are briefly discussed in 

chapter-6 and the proposed framework of real-time traffic state estimation is 

applied to a within-day DTA application in chapter-6 of this thesis. 

4.2.6 Doubly dynamic traffic assignment models 

Day-to-day traffic assignment models only consider day-to-day dynamics in 

route choice and/ or departure time. On the contrary, within-day DTA models 

ignore day-to-day learning from previous experience and day-to-day adaption 

of commuters’ behaviour under traveller information system.  Doubly dynamic 

traffic assignment models fill this gap by combining within-day DTA models 

and day-to-day learning models.  Cascetta and Cantarella (1991) proposed a 

doubly dynamic simulation model which determines the route flows on a given 

day using adaptive expectation approach proposed by Ben-Akiva et al. (1991). 

To model within-day dynamics, Cascetta and Cantarella (1991) utilized a 

queuing model to quantify delays on the link. Balijepalli and Watling (2005) 

discussed equilibrium distributions based on a stochastic doubly dynamic 

traffic assignment model.  

The research presented in this thesis is applied for various applications for 

integration of real-time traffic state estimation with DTA. To achieve this 

objective, a within-day route choice DTA model based on CTM-EKF is applied to 

a small traffic network disrupted with an incident. In another application, the 

CTM-EKF framework for real-time traffic state estimation is used with a doubly 

dynamic traffic assignment model to determine route flows based on day-to-

day learning model under time-varying traffic demand.   
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4.3 Route choice models 

Route choice models are basic component of traffic assignment models. Route 

choice models are used in modelling the behaviour of commuters in selecting a 

route, based on expected/ perceived travel cost. Random utility models 

(discrete choice models) measure the attractiveness or utility of an alternative, 

when the decision maker faces more than one option to select from (Sheffi 

1985). Dijkstra (1959) proposed ‘all or nothing’ algorithm to find the shortest 

path in a network for a given O-D pair. Almond (1967) proposed a framework 

known as ‘method of successive average’ (MSA) which assigned fixed weights 

to different links in the network. ‘All or nothing’ and MSA approaches are 

applied to determine user optimal routes in a network. This research is 

focusing DTA under traveller information system, which involves perception 

error and variation of perception among commuters. Therefore, stochastic 

route assignment models are more appropriate for application of the 

framework proposed in this research.  

Multinomial Logit (MNL) model is one of the widely used random utility models 

to determine route choice behaviour of commuters. MNL assumes that the 

utility of commuters have the same error distribution, represented by Gumbel 

distribution. If    is the perceived travel cost for route i and    is the perceived 

travel cost for alternative route j, the probability of selecting route i by a 

commuter using MNL model is given by: 

   
     

       
    

                 (4.1) 

Where θ is the spread parameter and in DSUE assignment it reflects the 

variation in perception of travel cost while selecting a route. By assuming 

homogenous characteristic of travellers, Pi can be interpreted as the proportion 

of traffic from an upstream link to the downstream link. Dial (1971) proposed 

an algorithm, STOCH, based on MNL model to assign traffic on candidate links 

without explicitly defining the set of candidate links. Fisk (1980) proposed a 

minimization problem to determine SUE using MNL model. The limitation of 

MNL model because of assuming that error term is independent and identically 

distributed Gumbel, which ignores path overlapping, was highlighted by 
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Cascetta et al. (1996). C-logit model was proposed by Cascetta et al. (1996) to 

overcome this shortcoming of MNL model by adding another parameter in 

travel cost of the link to represent path overlapping. Other variations in MNL 

model were proposed by Ben-Akiva and Bierlaire (1999) as path-size logit 

model and Vovsha and Bekhor (1998) as cross-nested logit model. Huang and 

Li (2007) applied a multiclass logit model for stochastic traffic assignment 

under ATIS.  

Danganzo and Sheffi (1977) proposed to model route choice behaviour using a 

multinomial probit model. Probit model assumes that the error in random 

utility term is normally distributed and the joint density function of the error 

terms is multivariate normal function (Sheffi 1985). Probit model is 

theoretically sound to describe the route choice behaviour and overcomes the 

deficiency of logit model. However, it is computationally expensive, 

enumerating routes is difficult, and convergence to the solution poses 

challenges in implementing probit model for traffic assignment problems 

(Prato 2009). Therefore, we select MNL model for route choice modelling in 

this research, as it has been widely used and accepted method for modelling 

route choice with perceived travel time.  

4.4 Modelling of day-to-day learning behaviour       

Most of the trips commuted by travellers are repeated on a regular pattern and 

travellers update their perception about the expected travel time on a given day 

based on travel time experienced on a route in previous days. Modelling of this 

day-to-day learning about expected travel time is an important aspect of day-

to-day DTA models (Watling 1996). The consideration of past travel times 

while selecting a route becomes comparatively less significant under uncertain 

traffic conditions, whereas under stable traffic conditions experienced travel 

time is given more weight. This section provides a brief review of models used 

for quantifying learning behaviour of commuters while updating their 

perception about expected travel time.  

Horowitz (1984) proposed a weighted average approach to model the day-to-

day learning behaviour of commuters that has been applied by many other 
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researchers (Cascetta 1989, Cantarella and Cascetta 1995, Nakayama et al. 

1999, Watling and Hazelton 2003, Zhang et al. 2013). This approach assigns 

different weights to the experienced travel times on past days based on the 

assumption that the more weight is assigned to the most recent experience and 

comparatively lesser weights are assigned to the older commuted journeys.  

                                            (4.2) 

Where C(d) is the expected travel cost of a route on day d and λ is the weight 

assigned for a day,  within a specific length of memory m such that ∑     . 

This approach has been criticized to ignore the perception about expected 

travel cost on a given day, which also includes information from external 

sources such as weather reports and ATIS. Ben-Akiva et al. (1991) proposed an 

adaptive expectation framework which also considers perceived travel time for 

a journey on day d, in addition to the experienced travel time. If Cp(d) is the 

perceived travel cost for a journey on day d and C(d-1) is the experienced travel 

cost on previous day, the expected travel cost for day d is given as follows: 

                                            (4.3) 

Where α is the weight given to the perceived travel time. In equation (4.3), the 

perceived travel time allows to include information about the journey obtained 

through ATIS. Other research studies (Cascettea and Cantarella 1991, Iida et al. 

1992) have also used the convex combination model for integration of 

perceived travel time. Jha et al. (1998) utilized Bayesian algorithm to model the 

updating of perceived travel time. In Bayesian approach perceived travel time 

and traveller information from ATIS are modelled as random variables with a 

specified probability distribution. Pre-trip updating process combines traveller 

information for planned trip and experienced travel time from previous days. 

Post-trip updating process stores the experienced travel time by combining the 

experienced travel time of completed trip with the perception of travel time 

about the trip. Tian et al. (2010) used weighted sum of experienced travel times 

and expected travel times on previous days to establish an expectation of travel 

time for journey on the current day. 
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4.5 Summary        

In this chapter, a brief overview of existing DTA models is provided. The 

importance of DTA models compared to STA models is highlighted. An 

overview of DTA model implementation and solution attributes is also 

provided. Traffic assignment models classified based on principle of traffic 

assignment such as dynamic system optimal, dynamic user optimal and 

dynamic stochastic user optimal, are described with some recent applications 

of these models. A classification of DTA models based on study horizon such as 

within-day and day-to-day DTA models is discussed. An overview of route 

choice models and day-to-day learning behaviour is also provided in this 

chapter. These DTA models will be employed in the following chapters with 

CTM-EKF based model for selected applications.   
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Chapter 5: Dynamic traffic assignment and traveller 

information based on real-time traffic state estimation 

5.1 Introduction 

In previous chapters, the overview of various models applied in this research 

along with their alternatives is provided. Chapter-2 highlighted models in 

traffic flow modelling and selection of CTM for this research. Chapter-3 focused 

on available tools in model based estimation of state of a dynamic process and 

described CTM-EKF based real-time traffic state estimation approach. The 

selected models in DTA literature, relevant to this study, are discussed in 

chapter-4 of this thesis. This chapter is intended to highlight the gap in existing 

literature of DTA, which utilize either traffic flow model for prediction of traffic 

state or use only measurements from traffic sensors to devise and evaluate the 

traffic improvement plans. Along with highlighting the contribution of this 

research, a framework to extract predictive traveller information based on real-

time traffic state estimation is provided in this chapter. Section 5.2 reviews the 

existing literature in DTA along with highlighting the expected contribution of 

this research. Section 5.3 introduces the framework for predictive traveller 

information based on real-time traffic state estimation and section 5.4 

summarizes the finding of this chapter. The proposed framework of extracting 

predictive traveller information is extended and applied to various application 

of DTA in the following chapters.  

5.2 DTA based on real-time estimated traffic state 

Research studies that focus on application of DTA for traffic management and 

travel time optimization in traffic networks, do not consider availability and 

reliability of real-time traffic estimate. Such studies have generally assumed 

that all the data for the scenario is known, and there is no data available on 

underlying changes in the traffic or road environment conditions during the 

time period under study. Furthermore, the impact of proposed control 

parameters on network traffic and compliance of road users cannot be 
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evaluated without availability of real-time traffic observations. Existing 

applications of DTA are based on either macroscopic traffic flow models or 

cost-flow functions, which consider historic traffic demand for implementation 

and analysis of proposed improvement strategies. Within this field, Kachroo 

and Ozbay (1998) highlighted the problem of short-term non-recurrent 

congestion which might be caused due to some incident, addressing this issue 

by dynamic traffic routing by assigning time-dependent split parameters at 

some diversion points. They used a feedback linearization method to obtain 

optimum split rate, so as to optimize network performance. In their method, 

they assumed availability of data from measurement sensors and only utilized 

these measurements, without using any kind of traffic flow model. Lo (2001) 

proposed a method for determining dynamic signal control timing plans based 

on system optimal principle using CTM based network model, which optimize 

network performance by keeping the density at an optimum level so as to 

ensure maximum flow on all links approaching a signalized intersection. The 

results indicated that green progression could reduce delays on the network. 

Smith and Mounce (2011) presented an idealized splitting rate model when 

travellers seek to change their route either day-to-day or within a day. This 

model uses splitting rates at nodes to change exit flows in such a way that 

Wardrop equilibrium is obtained. This approach also incorporates dynamic 

signal green-time reallocation to reduce delays. The model is an extension of 

formulation proposed by Smith (1984), which suggests that for each pair of 

routes joining the same O-D pair, traffic flow swaps from a more costly route to 

a less costly route at a rate which is proportional to the product of the flow on 

the more expensive route and the difference in cost between the two routes. 

Many other studies (e.g. Chow 2009; Wu and Huang 2010; Carey and Watling 

2012) presented DTA-based solution for improving traffic congestion without 

considering utilization of traffic state estimate. In contrast, Ziliaskopoulos 

(2000) developed a CTM-based approach to compute the dynamical system 

optimal assignment for a network with single origin and destination, 

formulating the DTA problem as a linear program. In conclusion, then, DTA-

based research studies into the control/optimization of networks have typically 

not considered the availability and reliability of real-time estimates of the 

traffic states.  
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The main contribution of this research work is to combine traffic state 

estimation and DTA, as it has never been published before. Traffic state 

estimation can be considered equivalent to traffic flow prediction or traffic 

state reconstruction using observations from measurement sensors, as all these 

techniques aim to determine the state of the network (traffic flow, density, 

speed, travel times, etc.). Existing literature contains many studies combining 

traffic flow models and DTA, for example, Lo (1999), Ziliaskopoulos (2000), Lo 

(2001), Gomes and Horowitz (2006), Liu et al. (2006), Chiu et al. (2007). 

Similarly, measurements from traffic sensors have also been used for DTA and 

traffic management in real-time, e.g., Kachroo and Ozbay (1998), Mirchandani 

and Head (2001), Dotoli et al. (2006). In a similar manner, this research 

combines model-based traffic state estimation and DTA as the estimated traffic 

state is considered more reliable than the prediction of traffic state using a 

traffic flow model or observations from traffic sensors alone. 

This research work, therefore, will focus on developing methods that combine 

real-time traffic state estimation with a DTA-based model of driver’s route 

choice, with an aim to produce accurate and effective traffic management 

strategies. Therefore, the novelty of the proposed framework is the 

combination of real-time traffic state estimation with DTA, as the existing 

literature in DTA only utilizes prediction from traffic flow models or 

measurements from the sensors and the literature focusing traffic state 

estimation problem has not utilized traffic estimation techniques for traffic 

management using DTA. A framework is proposed in this chapter in which 

predictive traveller information is estimated based on real-time traffic state 

estimates for a traffic network. The predictive traveller information is derived 

through a real-time traffic estimation model for the traffic network with online 

parameter estimation (In our case, this involving online estimation of the 

parameters of a CTM, from which future travel times are forecasted). 

5.3 ATIS based on real-time estimated traffic state  

Advanced Traveller Information Systems (ATIS) have been widely used to 

inform commuters about real-time changes in road capacity, traffic congestion 

and delays. ATIS help commuters to take informed decision about their route-
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choice and improves network performance. Ben-Akiva et al. (1998) proposed a 

comprehensive model called DynaMIT which can be used to devise and 

implement real-time traffic management strategies. DynaMIT consists of 

various components. It stores historic demand and modifies it for any given day 

by applying impact of proposed guidance strategy and daily fluctuations. The 

demand is mapped to links using routing strategy and several iterations are 

performed to obtain a balance between demand and supply. This predicted O-D 

matrix is corrected using real-time measurements in Kalman filter. Queuing 

models are used in DynaMIT to model dynamics of traffic flow and further a 

microscopic model is used to model behaviour of drivers in ATIS. Zhang and 

Levinson (2008) conducted a field experiment with 115 commuters, who 

commuted different trips with and without having prior information about 

alternative routes. The commuters’ vehicles were equipped with GPS to record 

all the journey details. The study concluded that other than travel time, route 

choice also depends on trip purpose, suitability of route for desire trip purpose, 

number of stops and perceived distance. Kusakabe et al. (2012) presented an 

experiment in which commuters were informed about incident on one of the 

alternate routes through VMS. The study concluded that the commuters 

perceived their travel time based on the incident information and considered 

the information in en-route choice decision. Khattak et al. (1995) evaluated the 

effect of traveller information distributed through radio and media in the city of 

Chicago on selection of route and departure time.  Commuters through 

downtown Chicago area were surveyed and it revealed that commuters use 

travel information to reduce their anxiety even if they do not change their 

route. More than 60% of respondents had used this information to modify their 

travel route. This study also concluded that commuters will comply with the 

information if they perceive information as accurate and reliable.  Abdel-Aty et 

al. (1997) modelled route choice behaviour under ATIS using data collected 

from stated preference survey. This study concluded that ATIS affects route 

choice behaviour of commuters and commuters prefer to choose a route where 

travel time information is available even travel times are higher compared to 

other route with shorter travel time without information. Al-Deek and Kanafani 

(1993) model a hypothetical network with two alternate routes, where one of 

the routes was affected by traffic incident. User optimal strategy is employed by 



- 77 - 

sending real-time information to vehicles equipped with ATIS. It was concluded 

that equilibrium is achieved when a significant number of vehicles take 

alternate routes, however overreaction of travellers will have negative impact 

on network performance. Mahmassani (1990) discussed the en-route decision 

making based on the information acquired during a journey. Review of above 

literature suggests that significant work has been carried out to study effect of 

traveller information on route choice behaviour and it can be concluded that 

accurate traveller information impacts the route choice behaviour of 

commuters and performance of the network.  

Travellers give more weight to the information provided, if they assess the 

information is accurate and it can help them in improving their journey’s 

experience. Hall (1996) criticized the traveller information provision for 

obtaining a system optimal solution and suggested that commuters will follow 

the information if they perceive it as accurate and if it optimizes their travel 

cost. Bonsall (1992) and Vaughn et al. (1993) presented evidence that 

travellers ignore the information if the information is found to be misleading. 

Bifulco et al. (2007) suggested that a higher number of compliance from 

commuters is required to improve the network performance using ATIS. Ben-

Elia et al. (2013) proved based on an experiment that a higher compliance rate 

can be achieved with the provision of highly accurate traveller information. The 

commuters compare their experienced travel time with the information 

provided to assess the quality of information. Therefore, one of the objectives of 

this research is to develop a framework which improves the quality of 

information. 

The CTM-EKF based model for real-time traffic state estimation described in 

chapter-3 is applied to derive information for ATIS, as estimated traffic state is 

more reliable than the prediction using traffic flow model or traffic 

observations from sensors. The conceptual framework of extracting the 

information based on real-time estimated traffic state is described in figure 5.1. 

In figure 5.1, x̂(   -   represents the estimated traffic state; x(k+n) is predicted 

traffic state based on estimated traffic state; y(k) is the measurement obtained 

from traffic sensor and   (   is predicted travel time for link j.  
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The state-space model for the prediction of traffic densities and for mapping 

the prediction to the measurement, ∑     , predicts the traffic density for a 

future time-step, based on the estimated traffic density which was obtained 

using CTM-EKF model at the previous time-step. The traffic density prediction 

function based on CTM,    ̂          , is used to predict traffic density for 

time step k, based on all available measurements until time-step k-1. A 

differentiable function    ̂           transforms the predicted output for 

time-step k into the variable measured by the traffic sensor     . The 

measurement of traffic density at time-step k is compared with the predicted 

output and a correction factor called the Kalman Gain K is estimated using the 

variance in the prediction and the measurement of the traffic density. This 

correction is then added to the pure model-based output to obtain a final 

estimate of traffic density for time-step k+1. The estimated traffic density 

 ̂        for current time-step is then forwarded to another similar CTM-

network prediction model          ̂       which predicts traffic 

conditions for further n time-steps, until all the vehicles entered link j at time-

step k traverse the link. The predicted time taken to traverse the link j for a 

vehicle that entered at time-step k,            ̂             , thus depends 

on all measurements until the current time-step, the estimated traffic density 

for one time-step ahead and the predicted traffic density for the future n time-

steps. The predicted travel times are then communicated to travellers using a 

VMS and this process is repeated for all the time-steps in the study horizon.  

The predictive travel times for traveller information are derived based on real-

time traffic state estimated using CTM-EKF model for time-step k. This is 

accomplished by modelling link travel time that would be experienced by last 

entering vehicle in link j at time-step k, as this is most likely the time taken by 

the next entering commuter to traverse the link. The estimated traffic densities 

for all the cells of link j at time-step k along with real-time estimated parameter 

values are assigned to another CTM model which propagates traffic entered the 

link at time-step k for another n number of time-steps. The additional n number 

of time-steps for each link is determined based on predicted traffic densities for 

future time-steps and n is the time-step when traffic density in all the cells in 

that link becomes zeros. This is achieved by taking sum of traffic densities in all 
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the cells in a link and determining the time-step when this sum becomes zero. 

In case of no traffic in the link at time-step k, free-flow travel time is assigned 

for that link.  

            ∑   
 
                        (5.1) 

Where∑   
 
         represents sum of traffic densities in all the cells of the 

link.  

 

Figure 5.1 Predictive traveller information based on real-time estimated traffic 

state  
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The proposed framework for extraction of traveller information based on real-

time estimated traffic state is applied to various applications in the following 

chapters to improve network performance by facilitating commuters with more 

accurate and reliable traveller information.    

5.4 Summary 

In this chapter, the existing gap in literature is highlighted with the 

contribution of this research to integrate real-time traffic state estimation and 

DTA models. A summary of research studies focusing DTA applications for 

improving traffic is provided to emphasize that the existing research in DTA 

has not exploited the advantage that real-time traffic state estimation offer over 

traffic state prediction based on traffic flow modelling or direct measurements 

from traffic sensors. The significance of accurate and reliable traveller 

information is discussed by citing the relevant literature. A framework to 

extract predictive traveller information from real-time traffic state estimation 

is provided, which will be extended in the following chapters for numerical 

implementation of selected DTA applications to improve network performance 

during disrupted traffic conditions. 
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Chapter 6: Within-Day Application of Real-time Traffic State 

Estimation based DTA model 

6.1 Introduction 

The existing literature for managing short-term non-recurrent traffic 

congestion is based on only real-time measurements from traffic sensors. This 

chapter formulates a within-day route choice model based on real-time traffic 

state estimation and implements it to a test network affected with a traffic 

incident.  Real-time traffic state estimation including parameter estimation 

incorporates the effect of any unexpected changes in link capacity due to 

external factors such as severe weather conditions or incidents. The predictive 

traveller information based on real-time traffic state estimation is 

communicated to the commuters to inform them about prevailing traffic 

condition on the affected route and attract them to alternative route with lesser 

travel time.   The methodology to formulate DTA problem based on real-time 

traffic state estimation is described in section 6.2. Section 6.3 describes the 

simulation scenario and the hypothetical network for numerical 

implementation of the proposed framework. The outputs from implementation 

of the proposed research framework are presented in section 6.4 and section 

6.5 summarizes the findings of this chapter.   

6.2 Methodology 

The research methodology described in section 5.3 to extract traveller 

information based on real-time estimated traffic state is extended to integrate 

route choice modelling to improve network performance when the traffic 

network is disrupted with traffic incident. Figure 6.1, an extension of figure 5.1, 

describes the formulation for within-day application of DTA using real-time 

estimated traffic state.  

A traffic network disrupted with an incident is considered to demonstrate the 

significance of the formulated framework. The estimation algorithm detects the 
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drop in capacity by using real-time parameter estimation, described in section 

3.4. Predictive travel time based on prevailing traffic condition are determined 

as described in section 5.3 of this thesis and communicated to the commuters 

using a VMS, installed upstream of the diverging intersection. A discrete choice, 

multinomial logit model is applied to model the behaviour of drivers in 

adapting their route choice, when the information about expected travel times 

on the alternative routes is available. The multinomial logit model for route 

choice based on perceived travel time is described in section 4.3. If there are j 

number of exit links/routes emerging from a diverging intersection such that j= 

 , 2, 3… , the number of travellers choosing exit link/route  j is given by:   

β
 
     =  -θ  (          ̂                ∑  -θ  (          ̂                 

 = ⁄          (6.1) 

where   (          ̂        (      is the predicted travel time for link/route j at 

time-step k which depends on all measurements available until current time-

step       , one step ahead estimate of traffic state using CTM-EKF model 

  ̂         and CTM prediction model          that predicts travel time by 

simulating traffic flow for another n time-steps by using traffic that entered 

link/route j at time-step k such that  = , 2, 3, …    x. θ is the logit coefficient 

which is specified so as to represent commuters’ variation in perception of 

expected travel times. In practice, this coefficient could also be estimated in 

real-time, or by using offline data by performing logit regression with known 

split-rates obtained from measurements and traveller information resulting in 

measured split-rates. 
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Figure 6.1 Within-day application of DTA based on real-time traffic state 

estimation 

6.3 Simulation scenario 

The framework formulated in previous section for within-day DTA application 

of real-time traffic state estimation is applied to a test network to highlight the 

performance of the proposed framework. Real-time traffic state estimation 

becomes more important when actual traffic conditions depart from their 
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historic trend due to variation in traffic demand or network capacity. Real-time 

parameter estimation of fundamental traffic flow diagram enables to track any 

unexpected changes in traffic flow capacity of a link in the network. Similarly, 

any unexpected variation in traffic demand can also be identified and 

quantified using observations from traffic measurement sensors. For within-

day application of the proposed framework, a test network as shown in figure 

6.2 is simulated. The network is disrupted with an incident and commuters are 

informed about expected travel times on the alternative routes using ATIS to 

improve their travel times and network performance during disruption period.   

A hypothetical diverging network is considered for numerical implementation 

of the proposed traffic estimation and en-route choice model. Figure 6.2 

describes the network used for this experiment. The network consists of three 

links, each of length 4.5 km and divided into 10 cells of equal lengths. The first 

cell (cell-1) of link-1 is a dummy cell which generates traffic demand, with the 

last cells (cell-20 and cell-30) of link-2 and link-3 also dummies absorbing 

traffic arriving at the destination. There are two measurement sensors 

installed, one in cell-15 along link-2 and other in cell-25 along link-3, which 

measures traffic density in real-time and communicate to the controller.  

 

Figure 6.2 A Simple network for real-time traffic estimation and en route 

choice modelling 

All the links in the network are three lane roads. The traffic demand for the 

network is show in figure 6.3. There is a diverging intersection at downstream 
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of cell-10, and traffic is diverging at this intersection on link-2 and link-3, each 

of these links leading traffic to the same destination. For illustrative purpose, 

the lengths, traffic flow capacities and speed limits of the alternative routes are 

considered equal, as it allows an easy base scenario for comparison of the 

incident scenario with the normal traffic conditions. In dynamic user 

equilibrium for this symmetric network, for any given departure time at the 

origin, the traffic will be equally divided between the routes when there is no 

incident. However, the methodology is general and can be applied to a network 

with any lengths and capacities of the alternative routes. A variable message 

sign is installed at link-1, at an appropriate distance before the intersection 

which displays the predicted travel time on the alternative routes.  

This experiment was simulated for 700 time-steps of 30 seconds each, with a 

traffic incident occurring at time-step k=120 in cell-14 of link-2. The accident 

blocks two lanes of link-2 until time-step k=360, i.e. a duration of two hours. All 

the cells in the network have the same initial parameter values with traffic flow 

capacity of 5400 veh/ hr, critical density of 90 veh/ km and jam-density of 360 

veh/ km.  The free flow speed of all cells remains constant at 60 km/hr and 

backward wave speed is 20 km/hr. The characteristic of fundamental traffic 

flow diagram is shown in figure 2.1. The link demand profile in veh/hr is shown 

in figure 6.3.  

 

Figure 6.3 Traffic demand for the network 
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6.4 Simulation results 

The algorithm proposed for estimation of traffic flow parameters was tested 

with different traffic volumes and different conditions of traffic incident along 

the link. The proposed algorithm was able to correctly track the drop in 

capacity due to the incident and also able to bring the parameter values back to 

their normal values once the incident is cleared. Figure 6.4 shows that 

reduction in traffic flow capacity due to the incident (which occurred during 

time-steps 120-360) was accurately identified and estimated by CTM-EKF 

model. The incident occurred in cell-14 of link-2, but it can only be identified 

and capacity can be estimated at the downstream measurement location. When 

there are several sensors installed along the road, any change in traffic flow 

parameters can be tracked and estimated at the downstream sensor of the 

incident location. The estimated capacity, which dropped due to the traffic 

incident, was subsequently brought back to its actual value by the estimation 

method, once the measurement of traffic flow becomes high and the link 

acquires its capacity flow as can be seen in figure 6.4.  

 

Figure 6.4. Estimation of traffic flow capacity at cell-15 and cell-25 

The performance of the proposed model, which influences the dynamic route 

choice of commuters through the provision of predicted travel times conveyed 

to commuters through VMS, is compared with the case of real-time traffic state 

estimation model without any traveller’s information. In the no information 



- 87 - 

scenario, the split rate is static since commuters are unaware of the incident 

and prevailing/predicted travel times on the alternative routes.  

For the scenario, in which predicted travel times are provided to drivers, figure 

6.5 shows the dynamic split-rate obtained through traveller information. It can 

be seen that, as anticipated, information provision helps alleviate congestion on 

the affected link by diverting traffic to the alternative route with lesser travel 

time. This also improves underutilization of existing network capacity and 

network travel time for all commuters. 

 

Figure 6.5 Dynamic split-rate obtained through traveller information system  
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Figure 6.6 Comparison of traffic densities for link-1(cell-5) with and without 
traveller information 

 

Figure 6.7 Comparison of travel times for link-1 with and without traveller 
information  

Figure 6.6 compares the estimated traffic density for cells 5 of link-1 with 

traveller information and dynamic split rate with the scenario of no 

information. Only one cell is selected to compare the state of traffic in the link, 

as all other cells of link-1 show a similar profile. Figure 6.6 shows that the 

traffic flow in Link-1 with traveller information is most of the time either at 
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capacity flow or is free-flowing, but for a short period of time it also exceeds 

capacity flow. Whereas, in the case of no information, it can be observed that 

after several time-steps of the incident occurrence, congestion starts to build on 

link-1. This is because travellers are unaware of the incident ahead on link-2, 

and still the same proportion of traffic selects link-2 as a route as in normal 

traffic condition. Since the travellers trying to take link-2 are not able to 

propagate, this causes a blockage for vehicles directed towards link-3. Thus, 

congestion spills back to affects all upstream cells of link-1 as well. The 

comparison of estimated traffic density for link-1 with and without traveller 

information system reveals that with the traveller information system, traffic 

flow in link-1 was in good condition when compared with the no information 

scenario. All the cells of link-1 throughout simulation horizon were almost in 

free-flow condition with a dynamic split-rate, whereas with a constant split-

rate the cells of link-1 become congested during the incident interval. Similarly, 

a significant improvement in travel times for link-1 can be observed from figure 

6.7. The maximum experienced travel time on link-1 with traveller information 

was 7.5 minutes which lasted for a short interval of time, whereas without 

traveller information the maximum travel time on link-1 increased to 25 

minutes and it remained for a longer interval of time. 

 

Figure 6.8 Estimated traffic density (veh/km/ln) for link-2 with traveller 
information 
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Figure 6.8 shows estimated traffic density for link-2 with the traveller 

information and dynamic split rate and figure 6.9 shows estimated traffic 

density for link-2 without traveller information and constant split rate. Before 

occurrence of traffic incident, link-2 was in a free flow condition. After the 

incident, congestion starts building up in cells upstream of the incident location 

in link-2. The comparison of figure 6.8 and 6.9 reveals that the traffic state in 

link-2 shows a significant improvement with a dynamic split-rate when 

compared with the scenario of no information. Only Cells 13 and 14 were partly 

congested during the traffic incident with a dynamic split-rate, whereas 

without traveller information all the cells upstream of the sensor location are in 

a congested state for a comparatively longer interval of time. This fact is further 

supported by the comparison of travel times for link-2 in figure 6.9.  The 

maximum value of travel time with a dynamic split-rate for link-2 was 12.5 

minutes whereas without traveller information and dynamic split-rate, the 

maximum travel time increased to 22 minutes.  

 

Figure 6.9 Estimated traffic density (veh/km/ln) for link-2 without traveller 
information 
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Figure 6.10 Comparison of travel times for link-2 with and without traveller 
information 

 

Figure 6.11 Comparison of estimated traffic density for link-3 (cell-24) with 
and without traveller information 
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Figure 6.12 Comparison of travel times for link-3 with and without traveller 
information 

 

Figure 6.13 Comparison of network travel delay with and without traveller 
information 
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Figure 6.14 Comparison of total network travel time with and without 
traveller information 

Figure 6.11 compares the estimated traffic density for cell-24 on link-3 with 

and without traveller information. All the other cells in link-3 exhibit a similar 

pattern; therefore, only one cell is selected for the comparison of traffic state in 

link-3. It can be observed from the figure 6.11 that during the interval of the 

incident, for no-information scenario, while other links are in a congested 

traffic state the available capacity on link-3 is underutilized. This is due to the 

fact that vehicles trying to take link-3 are blocked because traffic directed 

towards link-2 is unable to propagate. The comparison of the estimated traffic 

density with and without traveller information further confirms that the 

available capacity of link-3 was better utilized with the dynamic split-rate 

acquired through the traveller information system. The comparison of link 

travel times for link-3, with and without traveller information is shown in 

figure 6.12. It can be observed from figure 6.12 that link-3 remains in a free 

flow state throughout the simulation horizon, as the inflow to link-3 is not 

exceeding the available capacity of the link in either of the scenarios. Therefore, 

travel times on link-3 are unaffected with the provision of traveller 

information. 

The overall improvement in the network performance by applying the 

proposed framework for integrating real-time traffic state estimation and DTA 
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for this application is shown in figures 14-15. Figure 14 compares total delay 

that each vehicle had to encounter to arrive at the destination for both the 

scenarios. The traffic is in free-flow condition throughout the network for the 

beginning of the simulation period, therefore no delay is observed till departure 

time-step 90. A small amount of delay can be observed from figure 14 between 

time-steps 90 to 120, which is same for both the scenarios. The delay in 

arriving at the destination increases gradually after the incident. The total delay 

in the case of no-information is significantly higher than the delay in the 

scenario with traveller information. The delay in the no-information scenario 

increased to 37 minutes per vehicle, whereas with the information the 

maximum value of delay per vehicle was recorded as 10 minutes per vehicle. 

Figure 15 shows total vehicle hours travelled (VHT) for the vehicles entering 

the links at each time-step during the simulation horizon. The total VHT is 

equal in both the scenarios till the occurrence of the incident. However, after 

the incident the VHT becomes significantly higher in the no-information 

scenario when compared with the scenario of traveller information.Table-2 

provides a link-wise breakdown of total vehicle hours travelled for each link. 

An overall improvement of 5337.4 vehicle-hours (55.9%) in total VHT is 

obtained by the implementation of the proposed framework, which is highest 

for link-1 with 74.3% improvement. A higher value of VHT is observed for link-

3 with the provision of traveller information when compared with no-

information scenario, as number of vehicles selecting link-3 has increased with 

the provision of traveller information while travel time on link-3 is similar in 

both the scenarios.       

Table 6.1 Comparison of total travel time for traffic network  

 
Vehicles hours 

travelled without ATIS 
(veh.hrs) 

Vehicles hours travelled 
with ATIS (veh.hrs) 

Improvement in vehicle 
hours travelled (veh.hrs) 

Link-1 6871.1 1766.1 5105 (74.3%) 

Link-2 1774.8 1114.3 660.5 (37.2%) 

Link-3 899.8 1327.9 -428.1 (-47.5%)  

Total 9545.7 4208.3 5337.4 (55.9%) 

 

The proposed framework in this chapter can be extended to model large traffic 

systems. However, while extending the proposed methodology for larger 
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network, computational time might be a limiting factor as the traveller 

information or traffic state is updated with high temporal and spatial resolution 

in the proposed model. The spatial and temporal resolution of traffic state 

estimation and frequency of updating traveller information can be reduced to 

make it feasible for larger networks. A more aggregate macroscopic traffic flow 

model, such as Two-regime Transmission Model (TTM) by Balijepalli et al. 

(2013) can be applied for traffic state prediction to improve computation and 

modelling demand. Modelling of split-rates at intersections with multiple 

origin-destinations can be improved by pre-defining a subset of available 

routes that travellers can follow for each destination at any node. For a traffic 

network with multiple O-D flows, the CTM for multiple O-D flows can be used 

which distinguish traffic occupancy and flows based on origin and destination 

of traffic departed at each time-step by following Ukkusuri et al. (2012) or 

Carey et al. (2014) .  

Another practical issue in implementing the proposed framework other than 

modelling large network using CTM is related to the information provided to 

the commuters and traffic management authorities can encounter these 

challenges. For example, the definition of destinations to which the travel time 

on a particular road is communicated to users could be an issue. There could be 

various routes leading to a destination from the location of a VMS and the 

consideration of communicated number of routes leading to the destination 

could be another implementation problem. The design of a VMS regarding the 

information provided can be significant and various designs of VMS can be 

considered while implanting the ATIS. In this research we have not addressed 

this issue explicitly. However, the details of implementation in real-world will 

depend on the nature of the problem, so a general solution is difficult to suggest 

and not covered in the scope of this research.   

6.5 Summary 

In this chapter, the proposed model for predicting traveller information based 

on real-time estimated traffic state is applied to a within-day application of 

DTA. It has been demonstrated in our numerical experiment that real-time 

traffic states estimated based on measurements from the sensor using EKF can 
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improve the reliability of the estimate.  Online estimation of traffic flow 

parameters enables the model to track any unexpected changes in capacity of 

the network. The main contribution of this research work is to combine traffic 

state estimation with the application of DTA method, whereby the real-time 

estimated traffic state is utilized for influencing route choice through the 

provision of predicted travel time information and thus improving travel times 

and network performance during a traffic incident.   

The proposed method has been applied to a simple, hypothetical, two-route 

network with one of its links affected by an incident. In our numerical 

experiment, the proposed model was seen to accurately identify and estimate 

the drop in capacity due to the incident. Predicted travel times communicated 

to travellers were seen to reduce demand for the affected link and helped 

traveller to utilize existing capacity on the alternative route. The proposed 

traffic management model significantly improved network performance and 

reduced vehicle travelled hours by 55.9% when compared with no-information 

scenario during the incident. 
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Chapter 7: Day-to-day traffic flow and route choice modelling 

under ATIS using real-time estimated traffic state 

7.1 Introduction 

In this chapter, the proposed framework to integrate real-time traffic state 

estimation and DTA is utilized to model day-to-day dynamics of traffic flow and 

route choice for traffic network under traveller information with time-varying 

traffic demand. The existing literature in day-to-day modelling of traffic flow 

and route-choice utilize either macroscopic traffic flow models or cost-flow 

functions using historic traffic demand. Day-to-day traffic assignment models 

based on macroscopic traffic flow models and historic demand are not capable 

of capturing unexpected variation in traffic demand or network capacity, thus 

the travel times obtained and used for modelling commuter’s route choice 

could be significantly different from actual travel times.  

For numerical illustration, the proposed framework is applied to a hypothetical 

traffic network with time-varying traffic demand. The travel times for traveller 

information are predicted based on real-time estimated traffic state as 

described in section 5.3. Section 2 of this chapter reviews existing literature in 

day-to-day DTA models and highlights the significance of the proposed 

framework. The methodology to implement the proposed framework to 

integrate real-time traffic state estimation and day-to-day traffic flow and route 

choice is described in section-3 of this chapter. Section 7.4 describes the 

simulation set-up for implementation of the proposed framework and section 

7.5 presents the simulation results from day-to-day modelling of traffic flows 

and route choice. A summary of findings from this chapter is provided in 

section 6 of this chapter.  

7.2 Modelling of day-to-day traffic flows and route choice 

Travellers tend to change their route choices when travel time uncertainty 

increase on their preferred routes. The uncertainty in travel time is caused 
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when the equilibrium is disturbed either by variation in traffic demand or 

change in a route capacity. The change of route capacity could be due to change 

in traffic controls, road works or traffic incidents. Similarly, traffic demand for a 

route or network for a given departure time can also vary due to various 

possibilities such as weather, shopping events, festivals, exhibitions, sports, or 

due to variation in departure time of commuters.  When the traffic demand is 

varying day-to-day for a given departure time, a commuter will experience a 

different travel time on the same route compared to his past experience. 

Similarly, if the traveller information communicated to the travellers using 

ATIS does not model the variations in traffic demand or network capacity, the 

travel time experienced by commuters can be significantly different from the 

one predicted by ATIS, which may cause travellers to doubt the information 

and ultimately start ignoring it. Therefore, this chapter highlights the 

significance of accurate traveller information in day-to-day route choice under 

traveller information when the traffic is demand is varying day-to-day and 

within day.   

The research studies discussing day-to-day evolution of traffic pattern are 

mainly focused on equilibrium of system, user behaviour to adapt alternative 

routes or system induced day-to-day traveller’s adaption of routes. Watling and 

Hazelton (2003) highlight the importance of day-to-day traffic assignment 

models, as these models allow flexibility in wide range of behaviour rules and 

level of aggregation. Smith (1984) proposed that travellers from routes with 

higher travel cost will switch to the routes with the lower cost at a rate 

proportional to the difference in the cost. Contrary to Smith (1984), Zhang and 

Nagurney (1996) modelled a projected dynamical system, which uses a 

minimum norm projection operator to model route flows. Friesz et al. (1994) 

proposed a model for day-to-day traffic assignment which captures dynamics in 

route flows and O-D demands. Bie and Lo (2010) discuss stability of user 

equilibrium in modelling day-to-day traffic dynamics in a dynamical traffic 

system. Cascetta (1989) and Hazelton and Watling (2004) proposed stochastic 

traffic assignment models based on Markov process. Horowitz (1984), 

Cantarella and Cascetta (1995) and Watling (1999) developed models which 

are based on weighted average of driver’s experienced travel time for a selected 
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memory length. Smith et al. (2013) demonstrates a day-to-day stochastic model 

which combines notions from deterministic and stochastic processes. Parry et 

al. (2013) present numerical examples to demonstrate that doubly stochastic 

day-to-day traffic assignment models are more suitable to model the process of 

day-to-day traffic assignment. He et al. (2010) highlight the problem with path 

based day-to-day traffic assignment models and proposed a link-based model.     

The existing literature in day-to-day modelling of traffic flow and route-choice 

utilize either macroscopic traffic flow models or cost-flow functions using 

historic traffic demand. Day-to-day traffic assignment models based on 

macroscopic traffic flow models and historic demand are not capable of 

capturing unexpected variation in traffic demand or network capacity, thus the 

travel times obtained and used for modelling commuter’s route choice could be 

significantly different from actual travel times. He and Liu (2012) proposed a 

model to capture the dynamics of day-to-day variation in route selection when 

the network is significantly disrupted for a longer period of time. The proposed 

model by He and Liu (2012) introduced a prediction-correction process and 

suggested that the route choice for next day also depends on a predicted travel 

time component along with experienced travel time for past days. The 

predicted travel time is based on traveller’s perception of future traffic pattern 

under disrupted network conditions. Cho and Hwang (2005) developed a 

model that combines users’ behaviour with the predicted information provided 

by ATIS and assumed the traveller information provided by ATIS based on 

flows from previous days. Duong and Hazelton (2001) proposed a Markov 

process based model for day-to-day traffic assignment that incorporated the 

influence of pre-trip information in route choice of travellers. Jha et al. (1998) 

proposed a framework based on Baysian approach to update the perception of 

travellers based on information provided by ATIS and experienced travel time. 

In conclusion, significant amount of studies has been conducted to integrate the 

effect of traveller information with experienced travel time to update the 

perception of commuters about their route choice but assumptions on 

experienced travel time and traveller information provided by the ATIS are 

abstract. Furthermore, the perception update process of commuters does not 
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consider dynamics in reliability of traveller information and assumes the 

parameter reflecting this behaviour as constant.  

As discussed above, extensive research has been carried out in the fields of 

traffic state estimation and day-to-day modelling of traffic flows. Integrating 

real-time traffic state estimation with day-to-day modelling of traffic flows can 

significantly improve the modelling accuracy, especially during disruption in 

network capacity or variation in traffic demand. The estimation of behaviour 

parameters based on estimated traffic state provides further opportunity to 

improve the accuracy of the modelling process. Travel times obtained based on 

real-time observations depict unexpected variation in demand or network 

capacity, whereas travel times obtained from traffic flow models or travel cost 

functions based on historic average, as used in existing models for day-to-day 

traffic assignment, are not capable of capturing these variations. The 

contribution of the thesis illustrated in this chapter is to combine day-to-day 

traffic modelling with real-time traffic state estimation by replacing the 

macroscopic traffic flow model/cost-flow function in network loading 

component with CTM-EKF based estimation model.  

7.3 Methodology 

This research proposes utilization of real-time traffic state estimation in 

modelling day-to-day evolution of traffic flows under fluctuating traffic 

demand. Traffic measurements from upstream traffic sensors are used to 

generate traffic demand for the network. The proposed model is doubly 

dynamic, as it considers within-day dynamics for prediction of traveller 

information and recording experienced travel time for each departure time-

step. The day-to-day modelling component stores experienced travel time on 

past days for route selection on a given day. 

The methodology to implement the proposed framework for day-to-day 

modelling of traffic flows and route choice is described in two components. The 

first component shown in figure 7.1 is an extension of figure 6.1 for modelling 

within-day dynamics, while figure 7.2 illustrates day-to-day component of the 

methodology to implement the proposed model for day-to-day applications. 
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Section 6.2 can be referred for a detailed description of figure 7.1. However, 

there are two additional elements in figure 7.1, when compared with figure 6.1. 

One element links the day-to-day dynamic component to the within day 

component. It stores the experienced travel time of commuters for each 

departure time-step for all the days in the simulation horizon and provides the 

experienced travel time for the selected memory length on a given day. The 

second additional element in figure 7.1 is about the information integration and 

updating of perception about expected travel time based on experienced travel 

time and real-time traveller information.  

The within-day component of the research methodology described in figure 7.1 

records the experienced travel time for commuters departing at each time-step 

based on estimated traffic state using EKF-CTM model. A commuter updates his 

perception about expected travel time based on the experienced travel time 

and traveller information provided through ATIS. The experienced travel time 

of commuters is modelled using weighted average approach, described in 

section 4.4. A memory length of 3 days is assumed in this application, with 

experienced travel time on day d-1 given a weight of 0.5, the weight given to 

experienced travel time on day d-2 is 0.3 and the weight given to experienced 

travel time on day d-3 is 0.2. The average experienced travel time for route 

choice modelling on day d for departure time-step k, based on equation (4.2) is 

given as follows: 

 ̅ 
          

            
            

                  (7.1) 

This research does not explicitly model day-to-day learning of individual 

commuters; instead day-to-day learning of experienced travel time is modelled 

for the group of commuters departing at one simulation time-step. In modelling 

day-to-day route choices based on experienced travel time, it is assumed that 

commuters’ departure time does not change and the commuters depart at time-

step k on day d departed on the same time-step on previous days. The day-to-

day variation in traffic demand for a given time-step with constant departure 

time can be attributed to various factors which result in commuters’ decision to 

abandon a journey on day d. Thus, this assumed day-to-day variation is due to 

commuters’ flexibility in calling off a journey on some days and not on the other 

days. It is assumed in day-to-day modelling of commuters’ average experience 
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travel time that they have knowledge of past travel times on the alternative 

routes, which they obtain from ATIS when there is a VMS and from other 

commuters in case of no-information.  

To model the perception update, the convex combination approach proposed 

by Ben-Akiva et al. (1991) for information integration is applied. If  ̅ 
    is 

weighted average of experienced travel time based on a selected length of 

memory for departure time-step k and   
   is predicted travel time for the 

current journey on day d, the updated perception about expected travel time is 

given by: 

 ̂     ̅        
      ̅ 

                            (7.2) 

Where,   is the parameter that represents the weight assigned to the predicted 

travel times and reflects the commuters’ level of trust in the information 

provided and  ̂     ̅      is updated perception about expected travel time. The 

value of    varies from 0 to 1. A smaller value of   implies comparatively lesser 

trust in the information and more weight to the experienced travel time and 

vice versa.  

For day-to-day modelling of route choice, a similar multinomial logit model is 

applied to model the behaviour of drivers in adapting their route choice, based 

on the updated perception about travel time, given in equation (7.2). The 

proportion of traffic selecting a link j, based on the updated perception about 

expected travel time on a given day is: 

  
          ̂ 

     ̅     ∑     ̂ 
     ̅       

   ⁄                     (7.3) 

In equation 7.3, θ is the logit coefficient which is specified so as to represent 

commuters’ perception variation about expected travel time. The value of this 

parameter plays a significant role in quality of the solution obtained and in the 

stability of the modelling process. This research also proposes to estimate logit 

parameter based on the observations of traffic flow and estimated traffic state. 

The proposed framework for estimation of θ is described in the next chapter of 

this thesis. 
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Figure 7.1 Framework for within-day modelling component of the day-to-day 

application  

 

Figure 7.2 Process flow for day-to-day dynamics 
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7.4 Simulation setup 

The proposed model for day-to-day modelling of traffic flows and route choice 

under influence of traveller information is applied to a hypothetical traffic 

network to numerically illustrate the significance of the proposed model. Figure 

7.3 describes the network used for numerical illustration of proposed 

framework. The network is similar in topography with the network used for 

within-day application in chapter 6. The network consists of three links, each of 

length 4.5 km and divided into 10 cells of equal lengths. The first cell (cell-1) of 

link-1 is a dummy cell which generates traffic demand, with the last cells (cell-

20 and cell-30) of link-2 and link-3 also dummies absorbing traffic arriving at 

the destinations. There are three measurement sensors installed, first in cell-1 

of link-1, second in cell-15 along link-2 and third in cell-25 along link-3, which 

measures traffic density in real-time and communicate to the controller. The 

measurement sensor in cell-1 measures time-varying traffic demand for the 

network. A variable message sign is installed at the diverging point, displaying 

predicted travel-times for the alternative routes (links-2 and link-3) and 

updates it at each time-step. 

 

Figure 7.3 A Simple network for modelling day-to-day route choice 

All the links in the network are three lanes, with two lanes of link-2 blocked 

from cell-16 to the end of the link. This causes asymmetry in the network and a 

bottleneck is developed in link-2 when the demand is higher than the 

downstream traffic flow capacity of link-2. The blockage of lanes in link-2 is 
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permanent and it does not change during entire period under study. In reality 

bus dedicated lanes, bus bays, infrastructure breakdown or road works can 

cause long-term or permanent lane drops in a road link. There is a diverging 

intersection at downstream of cell-10, and traffic is diverging at this 

intersection on link-2 and link-3, each of these links leading traffic to the same 

destination.  

This experiment simulates peak-hour traffic which is spread over two hours for 

100 days duration and traffic demand changes every day for a given departure 

time as well as within a day for each departure time. All the cells in the network 

have traffic flow capacity of 1800 veh/hr/ln, critical density of 30 veh/km/ln 

and jam-density of 120 veh/ km/ ln. The free flow speed of all cells remains 

constant at 60 km/hr and backward wave speed is 20 km/hr.  

7.5 Simulation results 

This section presents the outputs from implementation of the proposed 

research framework to the simulation scenario described in the previous 

section. The simulation results are divided into two subsections, according to 

the application. The section 7.5.1 describes simulation results from day-to-day 

traffic flow modelling of traffic flows and route choice under ATIS using real-

time traffic state estimation. The analysis of sensitivity of the route choice 

behaviour to the logit model parameter is provided in subsection 7.5.2. 

7.5.1 Day-to-day traffic flow modelling using real-time traffic state 

estimation 

The proposed framework for integration of real-time traffic state estimation 

and DTA is applied to a test network shown in figure 7.3. The significance of 

proposed model under time varying traffic demand is highlighted by comparing 

the simulation results under ATIS based on real-time traffic state estimation 

with the simulation scenario without traveller information. The simulation 

horizon is 100 days, simulating peak-hour traffic for each day. The peak-hour is 

spread over 2 hours and traffic demand is varying day-to-day, as well as within 

day for each departure time-step. It is assumed that the traffic demand for the 

network is measured in real-time using the sensor installed in link-1. The 

scenarios with and without traveller information are simulated using the same 
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traffic demand profiles. Time-varying traffic demand is generated using a 

normal distribution, with mean gradually increasing from zero at time-step 1 to 

peak-hour traffic demand at time-step 60. The peak-hour traffic demand is 

generated with a mean of 5400 veh/hr and standard deviation of 500 veh/hr. 

The peak-hour traffic demand starts depleting from time-step 300 and obtains 

a mean of 1000 veh/hr with standard deviation of 500 veh/hr from time-step 

360 onwards. Figure 7.4 shows traffic demand for three selected days; day-30, 

day-60 and day-90. The level of variation in traffic demand for a given time-

step across days of analysis period can be observed from figure 7.4. 

 

Figure 7.4 Traffic demand for some selected days   

A comparison of travel times experienced on selected days for the simulation 

horizon of that day, with and without ATIS is provided. The split-rates at the 

diverging intersection are also compared for the above mentioned scenarios to 

assess the impact of information on route choice and stability of the system. 

Figure 7.5 compares experienced travel times on link-1, with and without ATIS 

on day 30 for all the simulation time-steps. Similarly, the comparison of 

experienced travel times with and without ATIS is shown in figure 7.6 and 

figure 7.7, for link-2 and link-3, respectively. 
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Figure 7.5 Experienced travel times on link-1 for day-30 

 

Figure 7.6 Experienced travel times on link-2 for day-30 

The comparison of experienced travel with and without ATIS for link-1 on day-

30 is shown in figure 7.5. The experienced travel time for link-1 also includes 

waiting time outside the link, in the dummy cell, when the demand is higher 

than the inflow/ available capacity of the link. It can be observed from figure 

7.5 that travel times for link-1 were comparatively unaffected with the 

provision of traveller information. The link-1 is observed under free-flow traffic 

condition till time-step 60, as the demand for traffic link till time-step 60 is less 
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than the inflow capacity of the link. Traffic demand from time-step 60 to time-

step 300 fluctuates around the capacity of link-1. However, due to the capacity 

restriction of the diverging intersection, congestion is observed to gradually 

increase from time-step 60. Similarly, the drop in congestion pattern can be 

observed from experienced travel times from time-step 300 onwards, as the 

traffic demand gradually reduces from time-step 300. It can also be concluded 

that the travel times for link-1 are not affected with the provision of traveller 

information. Figure 7.6 compares experienced travel times with and without 

traveller information for link-2 on day-30. Due to reduced number of lanes and 

capacity from cell-16 in link-2, a bottleneck effect is created when traffic 

demand is higher than the capacity at bottleneck. It can be observed from figure 

7.6 that a significant improvement in travel times is observed during peak-hour 

traffic. The experienced travel time on link-2 under traveller information 

remains slightly higher than free-flow travel time (4.5 minutes) during peak-

hour. Whereas, in the scenario of no-information, travel time gradually 

increases as the congestion increases on link-2. The maximum travel time on 

link-2 was observed to be 7.5 minutes with traveller information. On the other 

hand, the maximum travel time increased to 15 minutes without information 

on day-30. Furthermore, the experienced travel time with traveller information 

shows a steady and stable trend, whereas in no-information scenario travel 

times are showing higher fluctuation, which ultimately affect the route choice 

for the next day. Figure 7.7 shows travel times for link-3 on day-30, with and 

without traveller information. As there is no capacity reduction in link-3 and 

inflow to link-3 is always lower than the capacity flow, the link is observed in 

free-flow condition throughout the simulation period on day-30. The 

experienced travel times with and without traveller information varies around 

free-flow travel times on link-3.  
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Figure 7.7 Experienced travel times on link-3 for day-30 

The comparison of experienced travel on day-60 for link-1 is shown in figure 

7.8. Figure 7.8 shows a trend in travel times, similar to the one shown in figure 

7.5. The travel time on link-1 for day-60 fluctuates around free flow travel time 

for initial time-steps, when traffic demand is smaller than the link capacity. 

With the increase in traffic demand after time-step 60, the travel times are 

increased due to congestion in the link, due to downstream intersection and 

vehicles queuing in the dummy cell to start their journey. The travel times on 

link-1 gradually reduce after time-step 300, when the peak-hour traffic demand 

starts depleting. The analysis of figure 7.8 reveals that the experienced travel 

times on link-1 are unaffected with the provision of traveller information and 

travel times with and without traveller information are almost equal for all 

departure time-steps. The comparison of experienced travel times for link-2 on 

day-60 is shown in figure 7.9. This figure further validates the observation from 

figure 7.6 that traveller information has significantly improved the experienced 

travel times on link-2 during peak-hour traffic. Traffic is observed in congested 

states in both the scenarios during peak-hour traffic. However, the level of 

congestion, as observed from the travel times, is significantly lower when the 

traveller information is provided. The highest value of travel time observed in 

the scenario of ATIS is 7 minutes. In the scenario of no-information, travel times 
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experienced during peak-hour traffic are significantly higher and the maximum 

travel time is recorded as 13.5 minutes. Figure 7.9 indicates a significant 

improvement in travel times with the provision of information. The comparison 

of travel times on day-30 and day-60 under ATIS shows a similar pattern, which 

indicated stable condition of network performance across days as well as 

within day for peak-hour traffic. On the other hand, the comparison of figure 

7.6 and figure 7.9 for travel times without information reveals the shift in 

pattern of congestion across days. The peak of travel time curve on day-30 is at 

time-step 225, whereas the peak of travel time curve for day-60 is shifted to 

time-step 170 on day-60. This shift of curve indicates fluctuation and instability 

in network performance and variation across days. The travel times for link-3 

on day-60 are not shown here, as it is unaffected by the variation in traffic 

demand and shows a pattern similar to figure 7.7 for all the days in the 

simulation horizon.  

       

Figure 7.8 Experienced travel times on link-1 for day-60 
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Figure 7.9 Experienced travel times on link-2 for day-60 

The observations from outputs for day-30 and day-60 are further validated 

from the outputs for day-90. Figure 7.10 compares experienced travel times on 

link-1 for day-90. The comparison of figure 7.10 with figure 7.5 and figure 7.8 

reveals similarity in the pattern of travel time curves for link-1. As evident from 

outputs from day-30 and day-60, provision of traveller information does not 

impact travel time on link-1. Figure 7.11 compares travel time experienced on 

link-2 for day-90. Figure 7.11 shows a similar trend; following figure 7.6 and 

figure 7.9 that traveller information significantly improves the traffic flow and 

alleviates traffic congestion during peak-hour traffic on day-90. The travel 

times with ATIS on day-90, show a similar pattern to the travel times observed 

on day-30 and day-60. Whereas, the curve for travel times on link-2 for day-90 

without traveller information has a different shape compare to travel time 

curves on day-30 and day-60. The comparison of these two scenarios based on 

travel times for link-2 across days indicates the significance of provision of 

traveller information. With the provision of information, the network 

performance stabilizes under time varying traffic demand, whereas without 

traveller information, the travel time curves have different pattern for different 

days.  
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Figure 7.10 Experienced travel times on link-1 for day-90 

 

Figure 7.11 Experienced travel times on link-2 for day-90 

Figures 7.5-7.11 show within day dynamics for selected days and time-step to 

time-step variation for peak-hour traffic flows and compare the two scenarios. 

The variation across days is highlighted by comparing the outputs from day-30, 

day-60 and day-90. However, figures 7.5-7.11 cannot represent day-to-to 

dynamics in travel time experienced by commuters. Thus, another set of 
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analysis from outputs is discussed here to appropriately highlight the day-to-

day variations in travel time for selected departure/ link-entry time-steps. As 

evident from figures 7.5-7.11 that travel times for link-1 with and without 

traveller information are identical and similar across days, it is not included in 

the following analysis. Similarly, link-3 is always in free-flow condition in either 

of the scenarios, thus omitted from the day-to-day analysis. For day-to-day 

dynamics on link-2, the time-steps are selected so as to represent various traffic 

flow conditions which include free-flow, transition from free-flow to 

congestion, congestion and transition from congestion to free-flow. The time-

steps to discuss the day-to-day dynamics are chosen based on observations 

from figures 7.5-7.11. Figure 7.12 compares day-to-day variation in 

experienced travel times for link-2 for commuters entering the link at 

simulation time-step 50.  

 

Figure 7.12 Experienced travel times on link-2 for link-entry time-step 50 

Figure 7.12 shows travel time for link-2 based on link-entry time-step 50. It can 

be observed from figure 7.4 that traffic demand at this time-step is smaller than 

the available capacity and figures 7.5-7.11 endorse that the network is in free-

flow state at this time-step. Figure 7.12 presents day-to-day variation in travel 

time under free-flow condition. It can be observed from this figure that under 
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free-flow condition there is a small day-to-day fluctuation in travel times. 

Furthermore, travel times under free-flow traffic condition are similar for both 

the scenarios. Time-step 150 is selected to indicate the day-to-day variation in 

travel times when the traffic demand is gradually increased to the level, when 

traffic network starts getting congested. Figure 7.13 compares travel times 

under ATIS with the travel times experienced without ATIS under a traffic state 

showing transition from free-flow to the congested one. Figure 7.13 reveals 

that there is stability in travel-times experienced by commuters entering the 

link at time-step 150 under ATIS. Whereas in the scenario of no-information, 

the travel time experienced are higher with a significant level of day-to-day 

fluctuations in travel times.  

 

Figure 7.13 Experienced travel times on link-2 for link-entry time-step 150 
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Figure 7.14 Experienced travel times on link-2 for link-entry time-step 250 

The Day-to-day variation in travel times and significance of accurate prediction 

of traveller information under congested traffic condition with fluctuating 

traffic demand can be observed from figure 7.14. At time-step 250, link-2 is in 

congested traffic state as observed from within-day outputs for day-30, day-60 

and day-90. Figure 7.14 shows that there is a significant improvement with the 

provision of traveller information as the travel time with information are 

improved and stable across the days. The predicted traveller information based 

on real-time traffic state estimation takes into account any unexpected 

variation in traffic demand or network capacity, which travellers are unaware 

of. This significantly improves the performance of the network under uncertain 

traffic conditions. Travel times without ATIS are higher and there is a 

significant variation in day-to-day travel times.  

Another interesting output of day-to-day traffic flows and route choice 

modelling based on real-time traffic state estimation is the route choices 

represented through the split-rates at the intersections. The route choice 

behaviour of commuters is modelled using logit model. The logit parameter θ, 

which defines perception variation of commuters about expected travel time, is 

assumed different for both the scenarios. Huang and Li (2007) assumed 
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different values for perception variation based on the assumption that 

commuters’ perception variation reduces with the provision of accurate 

information. Thus, the commuters without traveller information are modelled 

with higher perception variation as compared to the commuters with traveller 

information. The value of logit parameter in no-information scenario is 

assumed to be 0.1, reflecting higher perception variation. Whereas, in the case 

of traveller information, commuters are modelled with comparatively lower 

perception variation with logit parameter as 0.25.  

  

Figure 7.15 Split-rates for link-2 on day-30 

 

Figure 7.16 Split-rates for link-2 on day-60 
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Figure 7.15 compares split-rates (proportion of traffic selecting route-2) with 

and without ATIS on day-30. The equal split of traffic for link-2 and link-3 can 

be observed when traffic demand is low and smaller than the available capacity, 

for example, during time-steps 1 to 50. With the increase in congestion in link-

2, the proportion of traffic selecting link-2 gradually reduces. The comparison 

of split-rates on day-30 reveals that the split-rate variation is higher with no-

information scenarios, whereas with information the split-rates seem to 

fluctuate around a fixed value during peak-hour traffic. Furthermore, 

comparison of figure 7.15 and figure 7.16 indicates that the pattern of split-rate 

curve for day-30 and day-60 is similar under ATIS. On the contrary, the shape 

of the curve for split-rates significantly changes from day-30 to day-60 in no-

information scenario. It can also be observed from figures 7.15-7.16 that peak-

hour traffic dispersed through the network earlier when traveller information 

is provided. The dynamics of variation in split-rates within the day for day-30 

and day-60 is described in figures 7.15-7.16. The day-to-day dynamics in 

variation of split-rates is highlighted by comparing the split-rates with and 

without information for specific link-entry time-steps. The link-entry time-

steps chosen to elaborate day-to-day dynamics in travel time are used in 

discussion of day-to-day dynamics in route choice and resulting split-rates.  

     

Figure 7.17 Split-rates for link-2 for link-entry time-step 50 



- 118 - 

        

Figure 7.18 Split-rates for link-2 for link-entry time-step 150 

 

Figure 7.19 Split-rates for link-2 for link-entry time-step 250 

The split-rates for departure time-step 50 are shown in figure 7.17. At time-

step 50 traffic demand is smaller than the available capacity and all the links in 

the network are in free-flow traffic condition. It can be observed from figure 

7.17 that under free-flow traffic condition, the split-rate for link-2 varies 
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around a mean value of 0.5, as the capacities of downstream links are higher 

than the traffic demand from upstream link. Figure 7.17 shows that the level of 

variation is higher with traveller information when compared to no-

information scenario under free-flow traffic condition. This difference can be 

attributed to the difference of values for perception variation in both the 

scenario. As in free-flow traffic condition, the commuters in both the scenarios 

have similar experienced and expected travel times and variation in traffic 

demand is not affecting the free-flow travel times. With a lower perception 

variation in ATIS scenario, the fluctuation in route choice behaviour is 

comparatively higher than no-information scenario. This also indicates that the 

value of logit parameter greatly influences the route choice behaviour and 

stability of the network performance.  

The day-to-day variation in route choice during congestion in peak-hour is 

described in figures 7.18-7.19. Figure 7.18 compares split-rates for link-2 based 

on link-entry time-step 150. At time-step 150, the network starts getting 

congested and figure 7.18 describes route-choice behaviour under mild 

congestion in the network. It can be observed from figure 7.18 that under mild 

level of congestion, the split-rates are identical in both the scenarios. However, 

the level of day-to-day variation in the split-rates without information is 

comparatively higher although the perception variation is assumed to higher in 

no-information scenario when compared with the scenario of traveller 

information. Figure 7.19 shows day-to-day variation in route choice for a 

departure time when traffic congestion is highest within the peak-hour period. 

It can be observed from figure 7.19 that the day-to-day fluctuation in route 

choice under time-varying traffic demand is much higher in no-information 

scenario, compared to route choice under traveller information. The fluctuation 

in route choice is caused due to day-to-day variation in travel time and time-

varying traffic demand. A higher experienced travel time on a given day d 

influences the route choice behaviour on day d+1 and consequently reduces the 

demand in no-information scenario, as the commuter is unaware of expected 

travel time on day d+1 under fluctuating traffic demand. On the other hand, in 

the other scenario of route choice under traveller information the commuters 

are provided with the accurate information of expected travel times at 
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downstream links. This information accounts for any unexpected changes in 

network capacity or traffic demand, thus provide stability in route choice and 

network performance.  

The route choice behaviour and resulting experienced travel times are highly 

dependent on logit parameter for perception variation in expected travel time. 

In the comparison of two scenarios, the no-information scenario is modelled 

using higher perception variation compared to that of with information.  

7.5.2 Sensitivity analysis 

7.5.2.1 Sensitivity of route choice behaviour to perception variation in 

travel time 

The dependency of the route choices and resulting traffic flows and travel times 

on the logit parameter for perception variation is discussed in this section. As 

described earlier, that route choice behaviour of commuters is sensitive to the 

assumed values of the perception variation of expected travel times. This is 

elaborated with the help of simulation results by changing the values of the 

parameter and comparing the split rates obtained for the scenarios with and 

without traveller information.  The values of logit parameter are changed from 

0.1 to 0.9 with a difference of 0.1 for both the scenarios.  To evaluate the 

sensitivity of route choice behaviour to the logit parameter, the split rates 

obtained for a selected link entry time-step are compared. The difference in 

experienced travel times on link-2 and link-3 (τ2- τ3) is also compared for 

various values of logit parameter to study the impact of split-rates on the 

resulting traffic flows and travel times and vice versa. The comparison of split 

rates and difference in travel times is shown for link entry time-step 250, as 

this time-step belongs to the congested period during the peak-hours.  

The comparison of split rates obtained with and without traveller information 

for values of logit parameter from 0.1-0.9 is shown in figure 7.20. The day-to-

day variation and sensitivity of route choice behaviour to the logit parameter 

can be evaluated from figure 7.20. With higher values of logit parameter (from 

0.6 to 0.9), it can be observed from the figure 7.20 that the traffic flows on the 

network become more unstable and a  higher day-to-day fluctuation in traffic 

flows is observed in both the scenarios. The comparison of split rates with and 
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without traveller information for all the values of logit parameter reveals that 

the provision of traveller information significantly improves the day-to-day 

fluctuation of route choices (split rates). It can be observed from figure 7.20 

that even for higher values of the logit parameter, which implies that the 

perception variation among commuters is small and commuters react more 

coherently, the day-to-day variation in split-rates are significantly lower than 

the variation in split-rates without traveller information. A comparatively 

higher variation in the split rates under traveller information is observed for 

higher values of the logit parameter (0.6-0.9), whereas the day-to-day route 

choice behaviour shows stability for smaller values of the logit parameter (0.1-

0.3). A significant improvement in day-to-day variation in split rates is evident 

from figure 7.20 with the provision of traveller information.  

 

Figure 7.20 Comparison of split-rates for link entry time-step 250 for various 
values of logit parameter  
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Figure 7.21 The difference in travel times on link-2 and link-3 for various 
values of logit parameter 

The difference of travel times on link-2 and link-3 for values of logit parameter 

from 0.1 to 0.9, with and without traveller information is compared in figure 

7.21. It can be observed from figure 7.21 that in the scenario of no-information, 

the difference of travel times on alternative links is very high and it fluctuates 

to very high level. For all higher values of logit parameter (except 0.1), the 

difference in travel times is unstable without traveller information. Whereas, 

with the provision of accurate traveller information, the difference in travel 

time on alternative links is very small and shows a stable trend for all values of 

the logit parameters. It can be concluded from figure 7.20 and 7.21 that split 

rates are sensitive to the perception variation among commuters for both the 

scenarios, with and without traveller information. However, the split rates 

without traveller information are comparatively more sensitive to the change 

in the value of logit parameter. Similarly, the difference in travel times on link-2 

and link-3 is observed much higher with higher variation, without provision of 

the traveller information.  
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7.5.2.2 Sensitivity of route choice behaviour to memory length 

Figure 7.14 exhibits a periodic variation in experienced travel times on link-2 

without traveller information. In the case of no-information, the route choice 

for a given journey is purely based on experienced travel times and the length 

of commuters’ memory and modelling assumptions play a significant role in 

determining the shape of travel time and resulting route choice variations. The 

day-to-day variation in experienced travel times for departure time-step 50 

(figure 7.12) and departure time-step 150 (7.13) are comparatively smaller, as 

link-2 is not completely congested for these time-steps. However, for time-step 

250 the link-2 is in a congested state without provision of traveller information, 

where the assumed memory length becomes important. It can be observed 

from figure7.14 that one cycle of fluctuation is spread over three days, which is 

assumed memory length. Based on the model described in equation (7.1) for 

weighted average experienced travel time, the length of memory for this 

application was assumed three days, with most recent experienced given the 

highest weight. When commuters have equal expected travel times for both the 

routes, the traffic demand from upstream link is equally divided for 

downstream alternative routes. The equal capacities of cell-11 and cell-21 

result in equal inflows to link-2 and link-3 when the perceived travel times are 

equal for the alternative routes. The downstream capacity of link-2 is one-third 

of its upstream capacity which results in traffic jam in link-2, especially when 

the demand from upstream link-1 was higher, e.g. for departure time-step 250. 

On the day with equal splits on the alternative routes, the commuters who 

selected link-2 experienced much higher travel time than the commuters who 

selected link-3. This results in commuters switching to link-3 on the following 

day, which causes a sudden drop in experienced travel time on link-2. After few 

consecutive days with free-flow travel time on link-2, the effect of the journey 

with higher travel time becomes less relevant which again results in almost 

equal perceived travel times for alternative routes and the same cycle is 

repeated. The effect of memory length on this type of fluctuation is further 

validated by increasing the memory length to 10 days. Figure 7.22 shows 

experienced travel time for departure time-step 250 with a memory length of 

10 days. 
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Figure 7.22 Experienced travel times on link-2 for link-entry time-step 250 
with a memory length of 10 days 

 

Figure 7.23 Split-rates for link-2 for link-entry time-step 250 with a memory 
length of 10 days 
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The comparison of figure 7.22 with figure 7.14 shows a significant stability in 

route choice behaviour with a memory length of 10-days.  The experienced 

travel time without ATIS has improved significantly with increase in memory 

length. The comparison of figure 7.22 with figure 7.14 also highlights the 

significance of memory length assumption and selection of appropriate model 

to determine commuters’ experienced travel times. A similar improvement in 

route selection is observed by comparing figure 7.19 with figure 7.23 for link-

entry time-step 250. The day-to-day variation has been significantly reduced in 

no-information scenario by increasing the assumed memory length of 

commuters. Based on this comparison, it is anticipated that the simulation 

results for modelling route-choice in no-information scenario can be further 

improved if the memory length is further increased and more stability will be 

achieved as memory length is increased to infinity.  

7.5.2.3 Sensitivity of route choice behaviour to random noises in CTM-EKF 

framework 

There are various sources of variation in the framework employed in this 

research, which include demand variation, random noise in modelling of traffic 

flow using CTM and random noise in measurements obtained from the sensors. 

The effect of these noises in day-to-day variation of route choices is analysed by 

reducing one of the noises to zero and analyse its impact on the resulting split-

rates. The results obtained from no variations are compared with the results 

obtained with the random variations. For this purpose, the memory length of 

three days is selected and logit parameter for perception variation is kept at 

0.3. Thus, the results shown in this section for sensitivity of route choice 

behaviour can be compared with bottom-left plot in figure 7.20 (for theta=0.3 

and memory length of three days). 

The effect of random variation in traffic demand on split-rate is analysed by 

reducing the standard deviation in traffic demand from 500 veh/hr to 0 veh/hr 

during peak-hour traffic. Figure 7.24 shows day-to-day variation in traffic 

demand for departure time-step 250, with and without random variation in 

traffic demand.  
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Figure 7.24 Comparison of traffic demand with and without random variation 
for departure time-step 250 

 

Figure 7.25 Comparison of split-rate with and without random variation in 
traffic demand 

Figure 7.25 compares split-rates obtained with and without random variation 

in traffic demand. It can be observed that the variation in split-rate is 

comparatively lower with constant daily demand for departure time-step 250.  

The variation in split-rate for link-2 without demand variation can also be 
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attributed to the shorter memory length assumed in this research, as longer 

memory length results in lower variation in split-rate, as observed from figure 

7.23. The impact of random noise in modelling prediction of traffic density is 

analysed by reducing the standard deviation of normally distributed noise in 

prediction to zero. 

 

Figure 7.26 Comparison of split-rate with and without noise in prediction of 
traffic density  

Figure 7.26 shows that there is no significant improvement in the fluctuation of 

split-rate by removing the random noise in prediction of traffic density using 

CTM. The effect of normally distributed noise in measurement is studied by 

removing the noise in measurement of traffic density with zero mean and 

standard deviation of 2 veh/km. Figure 7.27 compares the day-to-day variation 

in split-rates with and without random noise in measurement of traffic density. 

It can be concluded based on figures 7.26 and 7.27 that the noise in prediction 

of traffic density and noise in measurements do not affect the day-to-day 

variation in split-rates observed in figure 7.20. Whereas, the length of memory 

and variation in traffic demand significantly affects day-to-day variation in 

split-rates.            
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Figure 7.27 Comparison of split-rate with and without noise in measurements 

7.6 Summary 

In this chapter the proposed framework to integrate real-time traffic state 

estimation and dynamic traffic assignment is applied to model day-to-day 

traffic flows and dynamics in route choices. The network loading component of 

day-to-day traffic flow model is replaced with CTM-based real-time traffic state 

estimation algorithm. The real-time estimated traffic state is utilized to predict 

the expected travel time under fluctuating traffic demand. Commuters update 

their perception about expected travel time for a given journey based on their 

experience and the information obtained through the ATIS. The simulation 

results obtained by numerical implementation of the proposed framework 

suggest that with the reliable and accurate traveller information, commuters 

are facilitated to adopt a lesser congested route and avoid a congested 

alternative route.  A significant improvement in travel times and stability of the 

network performance is observed by comparison of the scenarios with and 

without traveller information. The use of observations from traffic sensors in 

day-to-day modelling of traffic flows provides an opportunity to calibrate and 

estimate critical modelling parameters, which can improve the accuracy of the 

modelling process.    
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Chapter 8: Modelling Behaviour Parameters of DTA Models  

8.1 Introduction 

This chapter introduces modelling and estimation of some critical parameters 

of dynamic traffic assignment models used in this research. It was observed 

during simulation tests of scenarios presented in chapter-6 and chapter-7 that 

the accurate values of these parameters play a significant role in obtaining 

accurate results and improve the accuracy of the modelling process. Model-

based estimation of traffic state provides an opportunity to model and estimate 

the parameters of traffic flow model, as exhibited in chapter-6, as well as the 

parameters of DTA models applied to model the route choice behaviour of 

commuters. In this research, two of the parameters from DTA models are 

selected for modelling and estimation using the measurements and real-time 

traffic state estimation. These two parameters include the parameter which 

assigns the weight to the traveller information in comparison to their own 

experience and the logit parameter which represents perception variation 

among commuters for expected travel time.     

A methodology is proposed to model the commuters’ level of trust in the 

information as a dynamic parameter, as commuters’ level of trust in the 

information system changes with the accuracy of the information provided. The 

commuters’ level of trust in the information is modelled as a dynamic 

parameter by comparing the experienced travel time with the travel time 

predicted for those commuters and communicated through ATIS. The 

behaviour parameter which represents perception variation in the expected 

travel time to model route choice behaviour is estimated based on real-time 

observations from the sensor and estimated traffic state. The split-rates 

predicted using logit model are compared with the observations after the 

simulation horizon for a given day and the logit model parameter θ is estimated 

based on the observations from the sensor using archived travellers 

information and resulting split-rate obtained using measurement sensors.  

Section 8.2 describes the proposed model and applies it to a test network to 
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model day-to-day variation in commuters’ level of trust in the information.  

Section 8.3 explains the models for estimation of logit parameter and 

implements it to a test network to demonstrate the application of the proposed 

model. The findings of this chapter are summarized in section 8.4. 

8.2 Commuters’ level of trust in ATIS 

This research proposes to model commuters’ level of trust in traveller 

information as a dynamic parameter. With day-to-day variation in traffic 

demand, a commuter may experience completely different travel time for the 

same departure time on a given day. In contrast to his own experience, when 

the commuter learns that traveller information is more accurate than his past 

experience, the commuter gives more weight to the information in planning his 

next journey.  Yin and Yang (2003) suggested modelling the commuters’ 

compliance rate based on the accuracy of the traveller information. Yin and 

Yang (2003) considered the traveller information provision through premium 

devices and divided the commuters into three groups, which include equipped, 

unequipped and equipped but non-complying drivers. They modelled drivers’ 

compliance as a probability of travel time experienced by complied drivers less 

than or equal to the travel time experienced by unequipped and non-complying 

users. Yin and Yang (2003) also modelled yearly penetration of ATIS devices 

based on the travel time saving using the information. Yang and Huang (2004) 

extended the model of ATIS penetration rate and suggested applying social 

growth and diffusion approach to model increase in usage of ATIS devices. 

Huang et al. (2008) applied the ATIS compliance rate model to determine route 

choice dynamics using logit model and discussed establishment of stochastic 

user equilibrium for different groups of commuters. Kantowitz et al. (1997) 

conducted an experiment using a simulator to quantify the threshold of 

accuracy to obtain compliance of commuters. The drivers were provided with 

the information which was 100% accurate, 71% accurate or 43% accurate. 

Kantowitz et al. (1997) concluded that the 100% accurate information resulted 

in best user performance and subjective opinion about the information 

provided. Whereas, the 71% accurate information was also accepted and 

utilized by the commuters but the information with 43% accuracy resulted in 



- 131 - 

significant incompliance and strong opinion against the information. The 

research further concluded that subsequent accurate information can improve 

the compliance rate, damaged due to inaccurate information. Based on the 

review of existing literature, this research proposes a framework to model the 

level of trust in the information as a function of accuracy of the information 

provided to the commuters. In comparison to the literature cited for this thesis, 

this research determines the commuters’ experienced travel time based on 

real-time estimated traffic state and provides a complete framework to include 

this parameter in the modelling framework.  

In the proposed framework to model commuters’ level of trust in the 

information, a commuter compares the experienced travel time with the 

predicted travel time provided through ATIS after completion of his journey 

and evaluates the accuracy of the information. The Commuter updates the 

weight for the traveller information based on the difference of predicted and 

experienced travel time. One of the three proposed relation is selected based on 

the accuracy of the information to determine the weight that commuters’ give 

to the information for a future trip. There can be three possibilities in day-to-

day modelling of weight given to the information. The first possibility is that the 

commuter determines that the information provided is very accurate and more 

relevant than his experienced travel time. This causes commuter to give more 

weight to the information in planning the trip or en-route decision to select a 

route. In second case scenario, commuters’ level of trust remains constant, 

which is the case when the information is acceptable and applied but a 

commuter is not completely satisfied with the accuracy of the information 

provided. In third possibility, a commuter decided to give less weight to the 

information in the next trip, when his experience significantly differs from the 

information provided. For the first possibility, we assume a threshold of 85% 

accurate information. If the difference between the predicted and experienced 

travel time is less than 15%, there will be an increase in the level of trust in the 

information which is inversely proportional to the magnitude of the difference 

in predicted and experienced travel times. The updated value of the weight 

parameter based on the learning behaviour model is given as follows: 
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Where   
    is the actual experienced travel time for journey on day d and Ψ is 

the weight assigned to the updating factor. Similarly, the level of trust in the 

information will be unaffected if the percentage difference in the predicted and 

experienced travel time is between 15%-25%.  
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On the other hand, if commuters find a significant difference in the traveller 

information and their own experience, they will give lesser weight to the 

information in their future journeys. The threshold value for a negative impact 

on level of trust is assumed to be 25%. If the difference in commuter’s 

experience and ATIS’s information is greater than 25%, there will be a decline 

in the commuter’s level of trust in the information.  
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The threshold values assumed for the model described in equations (6.2-6.4) 

are assumed based on the findings of Kantowitz et al. (1997), with modified 

threshold values. This model can be further improved by conducting surveys to 

obtain empirical threshold values to model the expectations of commuters from 

the ATIS. 

8.2.1 Methodology 

The methodology described in section 7.3 for day-to-day modelling of route 

choice and traffic flows based on real-time traffic state estimation is extended 

to model the commuters’ level of trust in traveller information. Figure 8.1 

shows modified day-to-day component of the research framework described in 

chapter 7. The within-day component remains same, as shown in figure 7.1.  A 

commuter compares his experienced travel time for a journey on day d with the 

travel time communicated through ATIS to assess the accuracy of information 

provided. Based on the accuracy of the information, the commuter updates the 

weight given to the information, which is applied to the journey on day d+1.  
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Figure 8.1 Day-to-day modelling component in modelling commuters’ level of 
trust in the information  

8.2.2 Simulation scenario 

The proposed model for modelling commuters’ level of trust in ATIS and weight 

given to the information is applied to the test network shown in figure 7.3. All 

the simulation conditions are similar to the conditions defined in section 7.4 for 

modelling day-to-day route choices and traffic flows. The traffic network is 

simulated for 100 days with time-varying traffic demand during the peak-

hours. The variation in traffic demand causes to change their experienced 

travel time on the preferred route. In this application, the VMS which displays 

the information is assumed to be 1 km upstream of the diverging intersection. 

The distance between the VMS and the diverging intersection is not modelled to 

induce some error in the information, so that all three conditions defined in the 

model (equations 8.1-8.3) can be achieved.  

8.2.3 Simulation results 

The simulation is started with a lower bound of the parameter value, assuming 

that the information system is recently installed and commuters asses the 

accuracy of the information with time and the weight to the information 

becomes a dynamic parameter and a function of the accuracy of the 

information. The commuters’ level of trust is modelled for each departure time-

step for all the days in simulation horizon. To highlight within day variations in 

level of trust in ATIS, three representative days are discussed in the following 

figures.  
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Figure 8.2 Level of trust and accuracy of traveller information on day-30 

 

  Figure 8.3 Level of trust and accuracy of traveller information on day-50 
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Figure 8.4 Level of trust and accuracy of traveller information on day-50 

The within day variation in dynamic level of trust in information is highlighted 

using three representative days in figures 8.2-8.4. Figure 8.1 shows the relation 

between weight given to the information and the percentage inaccuracy of the 

information provided to the commuters on day-30. It can be observed from 

figure 8.2 that the information provided between time-step 60 and time-step 

100 was not so accurate and the inaccuracy level was observed up to 50%. This 

caused the weight to the information declining to the lower bound, assumed as 

0.3. During this time interval, the traffic state in link-2 changes from free-flow 

to congested traffic flow. The inaccuracy in prediction of traveller information 

is caused due to the fact that the variable message sign is assumed to be 

installed at a distance of 1 km from the diverging intersection. The travel times 

estimated to traverse link-2 at link entry time-step k are communicated to the 

commuters. The commuters entering link-2 at time-step k+n experience a 

different travel time due to change in traffic condition during n number of time-

steps. The number of time-steps taken to travel from the location of variable 

message sign to enter the link-2 is defined as n. After time-step 100, the 

accuracy of traveller information increases which results in a higher weight to 

the traveller information by commuters departing after time-step 100. Figure 

8.2 further reveals that the accuracy of traveller information again reduces 

from time-step 330 to time-step 360, as the condition of traffic flow changes 
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from congested to free-flow when peak-hour traffic demand reduces. The 

inaccuracy in traveller information impacts commuters’ trust in the traveller 

information and the weight given to the information. Figure 8.3 shows within 

day dynamics of accuracy of traveller information and commuter’s level of trust 

in the information on day-50. The trend observed from figure 8.2 for within day 

dynamics of day-30 is further validated from figure 8.3. It can be observed from 

figure 8.3 that the average value of weight given to the information during 

peak-hour traffic demand increases from 0.5 on day-30 to 0.57 on day-50. The 

level of trust during the period of time-step 50 to 100 and 330 to 360 remains 

at the lower bound with 0.3, due to the quality of information provided to the 

commuters. Figure 8.4 illustrates variation in quality of information and weight 

given to the information by commuters on day-70. Figure 8.4 shows that the 

trend observed on day-70 is similar to the trend observed on day-30 and day-

50. The average value of weight given to the information during peak-hour 

traffic increased to 0.66 on day-70.   

 

Figure 8.5 Day-to-day variations in weight to the information 

The day-to-day variation in weight given to the information for selected 

departure time-steps is shown in figure 8.5. As observed from figures 8.2-8.4 

that quality of information decreases between time-step 50 and 100, it can be 

observed from figure 8.5 that the weight given to the information for departure 

time-step 50 increases slowly compared to the commuters departing at other 
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time-steps. The quality of information is compromised when the traffic 

condition changes from free-flow to congested. This affects the commuters’ 

level of trust in the traveller information. Day-to-day variation in the 

commuters level of trust for departure time-step 75 in figure 8.5 shows the 

trend that it remains at the lowest level of 0.3 during entire simulation horizon 

of 100 days. Similarly, the weight given to the information by commuters 

departing at time-step 100 increases with comparatively lower gradient than 

the commuters departing after time-step 100. However, commuters departing 

at other time-steps during peak-hour traffic demand show a similar behaviour 

in day-to-day adaption to traveller information due to the consistency in 

accuracy of the information, as evident from figures 8.2-8.4. In figure 8.5, the 

weight given to the information by commuters does not exceed 0.7, as this has 

been set as the upper bound for the weight given to the information.  

The day-to-day modelling of level of trust in traveller information allows to 

model the behaviour of commuters, as they continuously asses the quality of 

information provided to improve their travel times. The results shown in this 

section suggest drop in quality of information, when the traffic state changes 

from free-flow to congested or vice-versa. This is caused due to not considering 

the time lag in covering the distance from the VMS location to the downstream 

link after diverging intersection. This distance is intentionally ignored to induce 

error in the information. This also highlights the importance of providing 

predicted travel times based on real-time traffic state estimation, as travel 

times change so rapidly that a lag of few time-steps in prediction of travel times 

can make the prediction significantly different when the traffic flow is changing 

from one condition to another.  

8.3 Estimation of Logit model parameter  

The knowledge about existing perception variation is critical to accurately 

model route choice behaviour and day-to-day dynamics of route choice. In this 

research, logit model is applied to model route choice behaviour of commuters. 

The logit model is described in section 4.3 and applied in chapter-6 and 

chapter-7 for modelling route choice behaviour. The logit parameter θ in logit 

model is very important in stability of the modelling process and obtaining 
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accurate outputs from the estimation model. In DTA applications for improving 

network performance, this parameter is also critical in implantation and 

evaluation of proposed changes/improvements in traffic network and control 

policies when the route choice is modelled using logit model. Therefore, this 

research proposes to estimate the value of θ, based on the observations 

obtained from the sensors and real-time estimated traffic state.    

A smaller value of θ depicts a higher variation in perception of commuters 

about expected travel time, whereas a higher value of this parameter reflects 

smaller perception variation. In modelling traffic flow under ATIS, this 

parameter also reflects the quality of information provided to the commuters 

(Huang et al. 2008). When the information is perceived to be more accurate, 

commuters’ perception variation decreases and commuters react in a more 

coherent way, whereas with the provision of less accurate information 

commuters’ perception is more varied and commuters’ response is more 

diverse.  Furthermore, the uncertainty in expected travel time due to variation 

in traffic demand or capacity can also cause a higher perception variation 

among commuters. In this research, we propose to estimate this parameter 

based on the observations of turning movements from the sensors and traffic 

state estimated in real-time.  

The difference between predicted and observed turning movements is 

evaluated and analysed. Based on the assumption that perception about 

expected travel time is modelled accurately, the difference in observed and 

predicted turning ratio is attributed to the logit parameter θ. The observed 

split-rates using measurements of traffic flow rates from the sensors at a given 

time-step are modelled backward in time to determine the time-step when the 

en route information was communicated. Based on the perceived travel times at 

that time and the split rates observed in result of the information, the logit 

parameter is estimated for each simulation time-step for a given day, after the 

simulation period for that day is completed. Upon completion of the simulation 

period for each day, the average of logit parameter values is determined to 

update it for the simulation of traffic flow and route choice for the following 

day. Using equation (7.3), the relation to determine logit-parameter based on 

observed split rates and traveller information is given as follows: 
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In equation (8.4),  ̂    is the estimated value of logit parameter for a given day d 

at time-step k. The average of these within-day estimated values is obtained to 

update the logit parameter for the simulation horizon of day d+1. 
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In Equation (8.4),  ̃     is the ratio of traffic flows observed from the sensors 

installed along the links after a diverging intersection. In determining logit 

parameter for perception variation, it is assumed that the observations 

obtained from the sensors represent the observed split rate at the diverging 

intersection upstream of the sensors. This assumption will be more 

representative of the actual conditions if the distance of the intersection from 

the downstream sensor is smaller. The term  ̂ 
       in equation (8.5) represents 

the updated perception about expected travel time based on equation (7.2) for 

commuters selected route-1 (link-2) and an adjustment factor к is estimated by 

determining the travel time of vehicles from the VMS to the measurement 

sensor. The updated perception modelled at k-к time steps is utilized to 

determine the logit parameter. This estimation is carried out after a day of 

traffic simulation is completed and averaging of estimated values within a day 

minimizes the effect of any extreme value for the predicted logit parameter for 

upcoming day. Since, the estimation of this parameter is performed offline; it 

does not increase the computational demand for real-time traffic state 

estimation and DTA applications. 

8.3.1 Methodology 

For estimation of logit model parameter, the framework applied in chapter-7 

for modelling day-to-day dynamics in route choice and traffic flows is extended. 

The within-day component, as described in section 7.3, remains unaltered. The 

day-to-day component for estimating logit model parameter for perception 

variation is shown in figure 8.6. The split-rates obtained using modelling of 

route choice based on logit model and pre-defined logit parameter value  are 

compared with the split-rates obtained from the measurement sensors.  The 
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observations of split-rates are obtained by using the measurements of traffic 

flows from the sensors located in alternative routes, as shown in figure 7.3. The 

measured split-rates along with the traveller information provided to the 

commuters are used to determine the logit parameters. The traffic flow is 

modelled backward in time to determine the time of the information, which 

resulted in the measured flow. The logit parameter is determined for all the 

time-steps of day d, and the mean value is determined to update the parameter 

for the next day in the modelling horizon.    

 

Figure 8.6 Day-to-day component of the model for logit parameter estimation 

8.3.2 Simulation scenario 

The logit parameter estimation model is applied to a similar scenario 

considered for day-to-day modelling of route choice and traffic flows in 

chapter-7. The network described in figure 7.3 is simulated for 100 days with 

time-varying traffic demand described in section 7.4.  

8.3.3 Simulation results 

In simulation experiment, the synthetic measurements are generated using a 

different value of logit parameter than the model used for prediction and 

estimation of traffic state. The synthetic measurements generated using logit 

parameter value as 0.25, reflect the existing perception variation among 

commuter. While the CTM-based prediction and estimation model is initialized 
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with a value of logit parameter as 0.1. The objective of logit parameter 

estimation is to estimate the prevailing perception variation using 

measurements from the sensor and traffic state estimation. Figure 8.7 shows 

day-to-day estimation of logit parameter based on the proposed estimation 

model.  

 

Figure 8.7 Estimation of logit parameter for perception variation 

The proposed model for estimation of logit parameter was able to accurately 

estimate the perception variation using observations from the sensors and the 

traveller information provided to the commuters. The CTM-based prediction 

and estimation model was initialized with logit parameter as 0.1. The 

estimation model correctly estimated the logit parameter, after the warmup 

period of the simulation model on day-5. After day-5, the estimated value of 

logit parameter for perception variation remains very close to the actual value 

of the parameter. The proposed model for day-to-day estimation of the logit 

parameter can be more useful, when the commuters’ behaviour also changes. 

The unexpected variation in traffic demand, network capacity, planned network 

improvement work, or changes in traffic control can cause uncertainty and 

variation in commuters’ travel times. With these variations, the behaviour and 
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response of commuter might also change with time and their perception about 

expected travel time can become a dynamic parameter.  

In this application of proposed model for logit parameter estimation, the model 

is applied not only to estimate the actual perception variation but also to 

determine and estimate day-to-day dynamics in perception variation. This 

scenario is based on the assumption that with the provision of accurate 

traveller information, commuters learn that traveller information is more 

accurate and their perception variation reduces with their day-to-day journeys. 

In this scenario, the synthetic measurements are generated using a dynamic 

logit parameter, with a small linear day-to-day increase in the parameter value. 

Figure 8.8 shows estimation of dynamic logit-parameter and compares the 

estimated values with the actual values, used for generating synthetic 

measurements. The proposed model for estimation of logit parameter 

accurately estimated the day-to-day variations in perception variation of 

commuters. Figure 8.8 shows that the estimated value of logit parameter is 

always very close to the actual value of the parameter. This also highlights the 

robustness of estimation model which estimated the accurate value of the logit 

parameter, despite a different initial value and day-to-day variation of the 

parameter.  

The logit parameter is an important parameter in modelling route choice 

behaviour and day-to-day dynamics of route choice under fluctuating traffic 

conditions. The model proposed in this research can accurately estimate the 

perception variation of commuters, as well as any changes in the behaviour of 

commuters caused due to dynamics of travel times. The proposed model can 

also be applied to calibrate the perception variation of commuters using actual 

observations from previous days. Furthermore, the proposed framework can 

be extended to calibrate/estimate similar behaviour parameters in other 

random utility models. 
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Figure 8.8 Estimation of logit parameter for perception variation 

8.4 Summary 

In this chapter, the framework of integrating real-time traffic state estimation 

and DTA is extended to estimate the parameters of DTA models based on 

measurements from traffic sensors and real-time traffic state estimation. The 

parameter of day-to-day traffic flow models which represent driver’s behaviour 

in adapting travel choices are modelled and estimated using the proposed 

framework. The commuters’ level of trust in the information is modelled as a 

dynamic parameter and as a function of the accuracy of the information 

provided. The logit parameter for perception variation in commuters is also 

estimated using the observations from the sensors and real-time traffic state 

estimation technique.  
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Chapter 9: Conclusions and recommendations  

9.1 Summary  

The review of existing literature in applications of dynamic traffic assignment 

models suggests the need of improvement in the network loading component of 

the models, as the existing applications of DTA models based on the prediction 

of traffic state using historic demand are unable to incorporate the effect of 

unexpected variation in traffic demand or network capacity. 

Traffic flow model based traffic state estimation techniques provide an 

attractive alternative to the traffic flow models or cost-flow functions used in 

network loading of DTA models.  The existing literature in traffic state 

estimation has not been utilized for improvement in network performance 

using DTA models. The existing real-time applications of DTA models for 

improving network performance use only measurements from traffic sensors. 

The model-based traffic state estimation provides a more accurate and reliable 

estimate of the existing traffic condition and offer promising improvement over 

the measurement only based estimate of actual traffic state. Thus, traffic state 

estimation can replace the existing estimates in DTA application for real-time 

traffic management from observations only to the model and observation based 

estimation. 

The main contribution of the research presented in this thesis is to integrate 

two different fields of research, which are active and attract significant number 

of research studies. This research proposed to integrate the fields of real-time 

traffic state estimation and dynamic traffic assignment. The applications 

discussed in this thesis were based on the traveller information extracted using 

real-time estimated traffic state. The proposed framework for integrating real-

time traffic state estimation and dynamic traffic assignment models is applied 

to selected applications, when there is uncertainty in prediction of traffic state 

due to unexpected variation in traffic demand or the network capacity.  

A brief overview of traffic flow models is provided in chapter-2 of the thesis. 

Traffic flow models classified in macroscopic and microscopic traffic flow 
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models are briefly described in chapter-2 of the thesis. Macroscopic traffic flow 

models consider stream of traffic and model aggregate variables such as traffic 

density, traffic flow rate, and mean speed. The review of existing traffic flow 

models and their applications in different traffic systems suggests that first 

order traffic flow model, such as CTM can adequately model the flow of traffic 

for a traffic network. The number of output variables and parameters in CTM 

are significantly lower than the other higher order traffic flow models. This 

characteristic of CTM makes it feasible for real-time estimation of traffic state 

and its application for dynamic traffic assignment applications. Furthermore 

CTM has been applied in estimation of traffic state, as well as in applications of 

DTA models to optimize network performance. Therefore, CTM is selected to 

model network traffic flow and the model is elaborated in detail in chapter-2 of 

the thesis. 

The overview of estimation algorithm is provided in chapter-3 of the thesis 

with overview of sensor technologies to measure traffic flow parameters. Most 

commonly used estimation algorithms including least square method, Kalman 

filter, extended Kalman filter, unscented Kalman filter and particle filter are 

described briefly in this chapter. Kalman filter provides an optimal estimate for 

state of a linear dynamic system, based on unreliable model prediction and 

noisy measurement data. Extended Kalman filter, unscented Kalman filter and 

particle filter are designed to estimate the state of nonlinear dynamic systems. 

The EKF is more feasible for real-time applications compared to other 

estimation techniques for nonlinear dynamic system, as it is computationally 

less expensive compared to other estimation techniques. The framework 

proposed by Wang and Papageorgiou (2005) is adapted to estimate traffic state 

using the cell transmission model. The parameters of fundamental traffic flow 

diagram are also estimated in real-time to capture any unexpected changes in 

variation of these parameters due to external factors such as extreme weather 

and traffic incidents. Chapter-3 also describes the estimation algorithm based 

on CTM and EKF. 

The dynamic traffic assignments models are described in chapter-4.  A 

classification of DTA models is discussed with brief overview of different 

aspects of DTA models. Chapter-5 further extends the review of DTA models 
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and highlights the existing gap and contribution of this research. The 

significance of accurate traveller information systems and their applications to 

improve commuters’ journey times are discussed in chapter-5. Finally, the real-

time traffic state estimation model based on CTM and EKF is extended to derive 

predicted traveller information, which includes the effect of any unexpected 

variation in traffic demand or network capacity. 

The proposed framework for real-time traffic state estimation and predictive 

traveller information is applied to a within-day application of DTA in chapter-6. 

A small traffic network with one of its link affected with a traffic incident is 

simulated with the proposed framework. The parameter estimation of 

fundamental traffic flow diagram enables to identify and quantify any change in 

traffic flow capacity. The traffic state estimation using naïve prediction model 

with parameter estimation incorporates the impact of unexpected drop in 

traffic flow capacity during traffic incident. The predicted traveller information 

based on real-time traffic state estimation is communicated to the drivers to 

inform about prevailing travel times on the alternative routes in the affected 

traffic network. The commuters reroute themselves to avoid the congested 

route, which improves the network performance during the incident. The travel 

times and traffic densities for the proposed framework are compared with the 

scenario of no-information when commuters are unaware of the prevailing 

travel times on the downstream routes. The no-information scenario can also 

represent the scenario with traveller information based on historic values of 

travel times. The comparison of the scenarios indicates a significant 

improvement in traffic flow and travel time, not only on the affected link, but 

also for the upstream link. Furthermore, the underutilized capacity of the 

alternative link is better utilized by attracting commuters from affected 

alternative link. 

The within-day application of the proposed framework is extended to day-to-

day application in chapter-7 of the thesis. A network, similar to the one used in 

within-day application is simulated to model day-to-day variation in route 

choices and traffic flows with time varying traffic demand. The network is 

simulated for a period of 100 days, when traffic demand changes within day for 

all departure times as well as day-to-day for the same departure time. This time 
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varying traffic demand causes uncertainty in travel time and a commuter may 

experience a different travel time on a given day compared to the experienced 

travel time. This triggers commuters to give less weight to the travel times for 

journeys completed in previous days.  The traveller information based on real-

time traffic state estimation becomes more significant under such uncertainties. 

The simulation results obtained from implementation of the proposed 

framework are compared with the no-information scenario. The results are 

shown for selected days and selected departure times in chapter-7.  The 

comparison of the two scenarios shows a significant improvement in travel 

time within a day for peak-hour traffic on a given day. Furthermore, it is also 

observed that the traveller information based on real-time traffic state 

estimation improves the stability of the network performance. The split-rates 

and travel times obtained using the proposed framework showed a consistent 

pattern, whereas in the other scenario route choices and travel times were 

instable and fluctuating.  

The framework described in chapter-7 for modelling day-to-day route choice 

and traffic flows using real-time traffic state estimation is extended in chapter-8 

to model and estimate parameters of DTA models. The parameters 

representing the behaviour of commuters in day-to-day learning behaviour and 

route choice are estimated based on the observations from traffic sensors and 

real-time estimated traffic state. The commuters’ level of trust in the 

information is modelled as dynamic parameter and function of the accuracy of 

the information. It was concluded that the commuters’ level of trust in the 

information increases as they find the predicted travel times more useful under 

uncertain traffic conditions. This research also models and estimates the logit 

parameters for perception variation in commuters. This parameter plays a 

significant role in modelling the route choice of commuters and simulation 

results obtained from the model. 

9.2 Conclusions 

Based on the findings of the research presented in this thesis, this section 

concludes the outcome of the thesis. 
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a) A framework to extract predictive traveller information based on real-

time traffic state estimation is formulated in this thesis. The CTM to 

model network traffic is employed to predict traffic density for current 

time-step based on estimated traffic state for previous time-step. The 

current prediction of traffic density is corrected using measurement of 

traffic density in EKF. Based on the existing traffic state for a link, the 

link travel times are predicted that the last entering vehicle in the link at 

current time-step will experience.  This improves the accuracy of the 

traveller information which ultimately results in more users complying 

with the information provided. In this research, the travel times for links 

are predicted and communicated to the commuters, while in predicting 

travel times the distance between the location of the VMS and the 

downstream link is not modelled. The inclusion of this distance in 

modelling predicted travel time can further improve the accuracy of the 

information. In reality, the travel time between the VMS to the 

destination should be modelled for ATIS.  

b) The CTM-EKF traffic estimation model was formulated to model within-

day dynamics and route choice behaviour during an incident. The drop 

in capacity was identified using real-time parameter estimation 

techniques. The utilization of real-time traffic state estimation for 

incident management provides an attractive alternate to existing real-

time traffic management strategies based on measurements from traffic 

sensors, as the estimated traffic state is comparatively more reliable 

than the measurements from the sensors. The formulated framework 

has shown to significantly improve the performance of the network 

during the incident when compared with the scenario in which no 

traveller information is provided to the commuters. In the parameter 

estimation, only critical density is estimated, as inclusion of more 

parameters in the estimation scheme could lead to a nondeterministic 

system with the increase in number of unknown variables.    

c) The within-day DTA framework based on CTM-EKF is extended to model 

day-to-day dynamics of route choice and traffic flows for a network with 

time varying traffic demand. The CTM-EKF model based predicted 

traveller information is provided to commuters to inform about 
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expected travel times on the alternative routes. The application of the 

formulated framework on a test network and its comparison with no-

information scenario shows a significant improvement and stability in 

the network performance by employing the formulated methodology.  

d)  The use of real-time traffic observations and traffic state estimation in 

DTA models provides an opportunity to model, calibrate and estimate 

the parameters of DTA models to improve the accuracy of the modelling 

process. A model is formulated in chapter-8 to model commuters’ level 

of trust in the traveller information as a dynamic parameter and 

function of accuracy of the information provided to the commuters. It 

was observed that with provision of accurate traveller information, the 

commuter gave more weight to ATIS in selecting their route. The logit 

model parameter for perception variation was accurately estimated by 

the application of the formulated framework.     

9.3 Recommendations for future research 

a) The proposed framework in this research can be extended to model 

large traffic systems. However, while extending the proposed framework 

for larger network, computational time might be a limiting factor as the 

traveller information or traffic state is updated with high temporal and 

spatial resolution in the proposed model. The spatial and temporal 

resolution of traffic state estimation and frequency of updating traveller 

information can be reduced to make it feasible for larger networks. A 

more aggregate macroscopic traffic flow model, such as Two-regime 

Transmission Model (TTM) by Balijepalli et al. (2013) can be applied for 

traffic state prediction to improve computation and modelling demand. 

Modelling of split-rates at intersections with multiple origin-destinations 

can be improved by pre-defining a subset of available routes that 

travellers can follow for each destination at any node. For a traffic 

network with multiple O-D flows, the CTM for multiple O-D flows can be 

used which distinguish traffic occupancy and flows based on origin and 

destination of traffic departed at each time-step by following Ukkusuri et 

al. (2012) or Carey et al. (2014) .  
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b) Another practical issue in implementing the proposed framework other 

than modelling large network using CTM is related to the information 

provided to the commuters and traffic management authorities can 

encounter these challenges. For example, the definition of destinations to 

which the travel time on a particular road is communicated to users could 

be an issue. There could be various routes leading to a destination from 

the location of a VMS and the consideration of communicated number of 

routes leading to the destination could be another implementation 

problem. The design of a VMS regarding the information provided can be 

significant and various designs of VMS can be considered while implanting 

the ATIS. In this research we have not addressed this issue explicitly. 

However, the details of implementation in real-world will depend on the 

nature of the problem, so a general solution is difficult to suggest and not 

covered in the scope of this research and can be addressed in an extension 

of this research. 

c) In this research the objective of integrating traffic state estimation with 

DTA is achieved by providing predictive traveller information, which leads 

to stochastic user optimal traffic assignment. However, real-time traffic 

state estimation can also be integrated with user optimal and system 

optimal dynamic traffic assignment models. For example, an urban traffic 

network with signalized traffic controls can be optimized using real-time 

traffic state estimation to achieve a dynamic system optimal traffic 

assignment. This could be an expected improvement in existing real-time 

traffic management packages such as SCOOT and SCATS. 

d) The CTM-EKF based framework formulated in this this research is 

suitable for measurement sensors collecting observations from fixed 

location such as inductive loop detectors.  With the advancement in 

technologies for obtaining traffic measurements, in-vehicle devices are 

also being utilized in addition to in-situ traffic sensors to obtain additional 

information to improve the observation of traffic condition along the 

network. The vehicles equipped with Automatic Vehicle Location (AVL) 

devices provide information to the sensors installed at specific location in 

the network. The data acquisition from equipped vehicles includes GPS, 
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Bluetooth, Wi-Fi and cellular mobile data. Quiroga and Bullock (1999), 

D’Este et al. (1999), Li et al. (2002), and Herreraa et al. (2010) discussed 

obtaining data from GPS-based sensors for estimating travel times. The 

radio-frequency identification (RFID) transponders attached to the public 

transport vehicles which communicates to a central system by wireless 

data transmitted through antenna is also utilized in measuring congestion 

and estimating travel times (Mandal et al. 2011; Ban et al. 2009; Wright 

and Dahlgren 2001). . Puckett et al. (2010), Malinovskiy et al. (2010), 

Quayle et al. (2010) and many other researchers have discussed the 

significance and reliability issues related to observations obtained from 

Bluetooth devices. The data obtained from in-vehicle detection devices 

can also be integrated in real-time traffic management, especially when 

used with model based traffic state estimation. 

e) The research framework proposed in this thesis should be used with 

actual observation from real network to assess the significance of the 

proposed framework. The day-to-day traffic flow models lack validation 

using actual observations. This research framework can be used with 

actual data to validate the day-to-day traffic modelling approaches. 

f) The model suggested for commuters’ dynamic level of trust in the 

traveller information can be improved by calibrating the threshold values 

for acceptable accuracy of the information and compliance of the 

commuters to the information. This can be achieved by conducting stated 

preference survey to obtain threshold values of accuracy of the 

information to be acceptable.  

g) The logit parameter estimation algorithm should be used with actual 

observation from a real traffic network to assess the accuracy of the 

model. The model proposed to estimate logit parameter can be extended 

for estimation of parameters of other route choice models, such as probit 

model.  
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