
 

 

 

An investigation into mesenchymal stromal 

cells’ behaviour in 3D environment of 

PNIPAM-based hydrogel 

Dmitrijs Limonovs 

 

PhD 

 

 

University of York 

Biology 

September 2014 

  



2 
 

Abstract 

Mesenchymal stromal cells (MSCs) are multipotent cells, known for the ability to 

differentiate into cells of bone, fat and cartilage. MSCs are commonly sourced from 

the bone marrow environment, where these cells reside in a 3-dimensional (3D) 

environment and are exposed to components of the extracellular matrix (ECM), other 

cells types, biochemical and mechanical stimuli. Conventional monolayer culture 

cannot replicate the complexity of the in vivo bone marrow environment. Therefore, 

a more representative MSC culture environment is required.  

The aim of this project was to develop a highly tunable synthetic hydrogel, on the 

basis of poly(N-isopropylacrylamide) (PNIPAM), to allow temperature-driven 

encapsulation and subsequent study of MSC behaviour in three dimensional (3D) 

environment. The highly branched (HB) architecture of PNIPAM polymer was 

obtained by means of living radical polymerisation. Further polymer 

functionalisation with tri-arginine peptide sequence (RRR) has stabilised hydrogel 

structure and reduced solvent expulsion (syneresis). Rheological studies have 

revealed overall resistance to deformation (G*; complex modulus) of 5wt% HB 

PNIPAM+RRR to be equal to 542.3 Pa at 37˚C.  

MSC single cell suspensions were successfully encapsulated in HB PNIPAM+RRR 

3D droplet hydrogels, demonstrating rounded morphology, absence of proliferation 

and stable cell viability. Differentiation potential studies of the cell-loaded 

hydrogels, cultured in osteogenic or adipogenic media, demonstrated osteo-

conductive, osteo-inductive and adipo-inhibitive responses. 

In summary, HB PNIPAM+RRR is a novel chemical entity with a thermo-

responsive nature, which forms a porous and hydrated scaffold with osteo-inductive 

properties for MSC encapsulation at physiologically relevant temperature. HB 

PNIPAM is a highly functional and amenable hydrogel platform for assessment of 

MSC behaviour and guidance of differentiation in 3D environment. 
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1 Introduction 

Global population, especially in Europe, is aging rapidly. At present, every sixth 

person in the UK is 65 or over, and by 2050 every fourth will be of this age 

(Cracknell 2010).  

These demographic changes were termed “Silver tsunami” in the field of medicine 

and economics, as the consequences of global aging are expected to have a lasting 

effect on all aspects of human life (Economist.com 2010; Balducci et al. 2010). From 

the medical perspective, an increase in the elderly population will also escalate 

problems with treating age-relating diseases (Balducci et al. 2010; Woolf & Pfleger 

2003). 

Increase in age-related diseases is connected to organ function loss (Dugdale 2013; 

Stolzing et al. 2008), and when taken in account with existing lack of organs for 

transplantation, creates an unprecedented demand for organ regeneration and repair 

solutions (Organdonation.nhs.uk 2014).  

The field of tissue engineering and regenerative medicine has been addressing the 

needs of organ regeneration for the last two decades (Langer & Vacanti 1993). 

Especially in the last 10 years a tendency towards using the autologous cell-centred 

approach has become one of the principal ideas in tissue engineering. Atala and his 

colleagues were the pioneers of the “transplantation without a donor” concept, where 

patient’s bladder tissue was restored with use of autologous cells (Shay 2001; 

Oberpenning et al. 1999). The shift in the organ repair paradigm was also stimulated 

in large part by findings of the tissue and organ forming cells: embryonic stem cells 

(ESC) and mesenchymal stromal/stem cells (MSC)(Thomson et al. 1998; Caplan 

1991; Pittenger et al. 1999). These totipotent and multipotent cells, ESC and MSC 

respectively, became a focal point of numerous studies, medical solutions and even 

industries.  

At this introductory stage it is important to clarify MSC nomenclature. In the 

literature, MSC, as an abbreviation, is used interchangeably to describe 

mesenchymal stem and stromal cells. Use of the term ‘stem cell’ implies specific 
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functional characteristics, which this cell must demonstrate, i.e. capacity for long-

term self-renewal, in addition to ability for differentiation into several cell types in 

vivo (Horwitz et al. 2005). Hence, to describe surface adherent cells, displaying 

differentiation potential and a specific set of markers, multi-lineage differentiation 

potential and self-renewal has to be clearly demonstrated in vivo. No up-to-date 

studies have verified this property in vivo (Bianco et al. 2013). In addition, due to the 

lack of 100% specific and unique marker of mesenchymal stem cells, current 

methods of isolation produce heterogeneous population, where only a fraction of 

cells display multipotency (Boxall & Jones 2012; Pittenger et al. 1999). Therefore, to 

provide more scientifically accurate description of surface-adherent cells with 

differentiation potential, International Society for Cellular Therapy (ISCT) has 

proposed the term ‘multipotent mesenchymal stromal cells’ to indicate unique 

properties of the cells and avoid connection to homogeneity and upper-mentioned 

characteristics of a stem cell (Horwitz et al. 2005; Dominici et al. 2006).  

Furthermore, such separation in nomenclature helps to distinguish in vitro cultured 

cells from their in vivo precursors. Therefore, throughout this thesis the ‘MSC’ 

abbreviation will represent multipotent mesenchymal stromal cells.   

Research on ESCs is of a great importance, as it provides fundamental understanding 

of the organism development processes (Koehler et al. 2013) and is used in disease 

models (Yazdani et al. 2012). At the same time, clinical translation of these cells is 

limited due to high probability of teratoma development after implantation (Fong et 

al. 2010), requirement for specialised growth conditions and ethical roadblocks 

(Findikli et al. 2006). 

In contrast, MSCs are currently dominating the clinical trial arena (Clinicaltrials.gov 

2014). Attractiveness of MSCs for use in clinical applications is explained by a host 

of beneficial properties, which are exhibited by these cells. MSCs are characterised 

by their ability to undergo symmetrical and asymmetrical division (Matsumoto et al. 

2011). As a result of symmetrical division, two identical cells are produced. 

Conversely, asymmetrical division gives rise to a duplicate cell of itself and a 

daughter cell, which will undergo tissue specific differentiation.  
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Differentiation potential of the MSCs is currently paving the way for cell therapies 

and tissue regeneration solutions (Grayson et al. 2010; Bhumiratana et al. 2014; Frith 

et al. 2010). MSCs are recognised for their ability to differentiate into cells of bone, 

cartilage and adipose tissue (Pittenger et al. 1999). However, these multipotent cells 

have been also found to differentiate into other cells of mesenchymal origin, such as 

tenocytes and myocytes (Wakitani et al. 1995; Caplan 1991). In addition, reports are 

showing capacity of MSCs to differentiate into neurons, cells of non-mesenchymal 

lineage (Zhao et al. 2002; Black & Woodbury 2001). However, clinical applicability 

of non-mesenchyme sourced cells, is questionable due to findings of MSC-derived 

neuron-like cells not being able to demonstrate key function of a neuron – generation 

of the action potential (Augello & De Bari 2010; Hofstetter et al. 2002).  

Alongside with differentiation, MSCs have demonstrated immuno-regulating 

properties: immune response modulation (Aggarwal & Pittenger 2005) and 

supportive interaction with hematopoietic stem cells (HSC) within one of the 

specialised stem cell environments – the bone marrow niche (Méndez-Ferrer et al. 

2010). Moreover, Caplan group claims that the most important function of MSCs 

under injury settings is secretion of the bioactive molecules, including growth 

factors, chemokines and cytokines (Meirelles et al. 2009). Lastly, MSCs are 

inherently free from the risk of teratoma formation after implantation, in contrast to 

ESCs, what demonstrates an added benefit of using multipotent MSCs in cyto-

therapeutic applications (Fong et al. 2010).  

In order to harness full regenerative potential of MSCs, it is crucial to conduct pre-

clinical experiments in physiologically relevant conditions. Current MSC research is 

stagnated by rudimentary culture method, monolayer culture, where cell innate in 

vivo growth requirements are poorly accounted for. Popularity of this culture method 

is explained by the fact that for most of the last century, cell biology research was 

conducted in two-dimensional monolayer cultures (Ryan 2008; Carrel 1923). 

However, as a result of development in the tissue engineering field,  shift in the cell 

culture convention is taking place: natural scaffolds, like collagen, silk, chitosan and 

alginate, are widely used in 3D cell culture (Thiele et al. 2014; Mobini & Solati-

Hashjin 2013). 
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Bioactivity and biocompatibility is an inherited property of the natural hydrogels, as 

majority of these gels are extracellular matrix-derived, and therefore, may contain 

components of hyaluronic acid, hydroxyapatite (HA), glycosaminoglycans (GAG) 

and others (Gutowska et al. 2008). Moreover, bioactivity of these materials is 

stemming from numerous endogenous factors, that can direct cell proliferation and 

differentiation in various cell types (Muzzarelli et al. 1988; Colorado et al. 2000; 

Anselme 2000; Mobini & Solati-Hashjin 2013). At the same time, lack of control 

over architecture and complexity of the gel creates a substantial drawback for the 

whole natural scaffold class. Specifically, due to chemical complexity of the natural 

hydrogel it is very challenging to rule out exactly which signals are provoking 

cellular response (Cushing & Anseth 2007). In addition, other factors that limit 

application of the natural hydrogels are: batch-to-batch variability, causing an 

uncontrolled effect on cell proliferation, migration and differentiation; problematic 

tuning of the mechanical properties; risk of contamination, contracted from the 

original tissue  (Tibbitt & Anseth 2009).  

On the other hand, fully synthetic materials, like polyacrylamide (PAA) and 

polyethylene glycol (PEG), are also frequently used for 3D culture and provide 

control over the architecture (Salinas & Anseth 2008; Fischer et al. 2012). However, 

in their original formulation these hydrogels lack chemical moieties that the cells 

may respond to, what makes these materials biologically inert. In order to create a 

truly physiologically-representative scaffold, a highly functional (i.e. chemically 

amenable) and synthetic material with controlled architecture is needed.   

Therefore, the research work, conducted in this study, was directed towards 

generation of the 3D environment, based on a thermo-responsive hydrogel poly(N-

isopropylacrylamide) (PNIPAM), which would support MSC viability and allow 

analysis of the cellular behaviour within the physiologically relevant conditions. 

Prior to presenting the research finding of this project, it is vital to demonstrate 

literature-derived context of this project. Firstly, the description of MSC origin and 

properties will be provided (section 2.1 – 2.7), followed by introduction of the tissue 

engineering concept (section 2.8). Secondly, fundamental importance of the 3D in 

vivo mimicking environment will be illustrated on the basis of hydrogel scaffolds 
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(section 2.10). Finally, the route to choosing PNIPAM hydrogel as a 3D scaffolding 

environment and unique properties of this material will be covered (sections 2.11 - 

2.14).  
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2 Literature review 

2.1 MSC discovery and initial characterisation 

The initial concept of the multipotent stem cell was proposed by A. Maximow in 

1909, where he stipulated that all blood cells are derived from the same parental cell 

(Maximow 2009; Maximow 1909). One century later, an extensive understanding of 

the hematopoietic and mesenchymal stem cells location, structure and function is 

accumulated (Charbord 2010). However, the stem cell field has not become less 

disputable over time.  

MSCs were found to reside in various tissues around the body, including bone 

marrow, cord blood, dental pulp, tendon, cartilage, muscle tissue and gut (Lindner et 

al. 2010). However, bone marrow and adipose-derived mesenchymal cells are 

currently cells of choice for musculoskeletal cell therapy clinical trials (Labusca et 

al. 2013; Clinicaltrials.gov 2014).  

The concept of a mesenchymal stem cell was initially experimentally demonstrated 

by Friedenstein and his group in 1970s. They were the first to note that the bone 

marrow contains a population of plastic surface-adherent cells; when seeded 

individually, these were able to form colonies of fibroblasts (Friedenstein 1976). 

Friedenstein and colleagues have successfully demonstrated differentiation capacity 

of these colony-forming and surface-adherent cells by implantation of the diffusion 

chambers into mice (Friedenstein et al. 1966; Friedenstein 1976). Implanted cells 

were observed to form tissues of bone, cartilage and fibrous tissues in vivo 

(Friedenstein et al. 1987).  Due to inclination of these cells to form primarily bone 

tissue, Friedenstein referred to these cells as “determined osteogenic progenitors” 

(Friedenstein 1976; Boxall & Jones 2012). Subsequently,  the progress in the field 

was reviewed by Caplan, who has focused on multipotentiality of these cells and 

coined the term “mesenchymal stem cell” (Caplan 1991). 

Thereafter, seminal study of Pittenger and colleagues identified first definitive 

markers of MSCs and provided reproducible in vitro assays for MSC differentiation 

towards bone, fat and cartilage progenitor lineages (Pittenger et al. 1999).   
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2.2 Developmental view on MSC origin 

To gain a better understanding of the functions, such as self-renewal and multi-

lineage differentiation, and therapeutic properties exhibited by MSCs, it is vital to 

clarify the origin of these cells.  

Schematic representation of the key stages in human embryogenesis and post-natal 

development is depicted in Figure 1. After fusion of the sperm cell and the egg 

gametes, followed by the pluripotent diploid zygote formation, the process of cells 

division initiates. This process results in the blastocyst formation. Inner cell mass, 

contained in the blastocyst, can be extracted and used for embryonic stem cell 

generation in vitro (Thomson et al. 1998). Embryonic stem cells in culture 

conditions are pluripotent and undergo self-renewal without differentiation, and with 

appropriate stimuli, are capable to differentiate into cell lineages of endodermal, 

mesodermal and ectodermal germ layers (Thomson et al. 1998; Reubinoff et al. 

2000).  

During the next key stage of embryogenesis in utero, gastrulation, clear germ layer 

specialisation takes place. At this stage, each germ layers gives rise to the germ-

specific tissues. However, there are exceptions to the germ-specific differentiation. 

For example, ectoderm layer is classically recognised for the ability to form cells of 

epidermis, spinal cord and neurons. However, during neurulation (the process of 

neural tube formation) neural crest is formed, close to neural tube (Figure 1). Neural 

crest is represented by multipotent migratory cells, which are involved in 

development of tissues of mesodermal (i.e. smooth muscle cells, adipocytes, 

chondrocytes, osteoblasts and osteoclasts) and ectodermal origin (melanocytes, 

Schwann cells and neurons) (Hauser et al. 2012; Widera et al. 2009; Isern et al. 

2014). 

After gastrulation and extensive differentiation, fetal tissues are formed, which 

develop into systems of organs. Multipotent somatic, or adult, stem cells can be 

found in numerous fetal and post-natal tissues (Hass et al. 2011; Robel et al. 2011; 

Gronthos et al. 2000). These somatic cells exhibit self-renewal, and with appropriate 
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signals, multi-lineage differentiation is observed, what together confirms “stemness” 

of the cells (Blanpain et al. 2004; Sung et al. 2010).  

 

Figure 1: Different types of stem cells are developed during embryogenesis and 
post-natal development. Stem cell potency and availability is reduced as the 
specialist tissues are formed. Pluripotent embryonic stem cells can self-renew 
and are able to become cells of any germ layer, giving rise to any organ in the 
body. Multipotent somatic stem cells are present virtually in every developed 
organ and are able to remain quiescent, to self-renew and to differentiate into 
germ layer-specific cells or undergo trans-germal differentiation.   
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In an established view, somatic stem cells are capable of differentiating into cell 

lineage of an organ, from which they were derived (Pittenger et al. 1999; Gronthos et 

al. 2000). However, a growing collection of studies is suggesting that some somatic 

stem cells have a trans-germal differentiation potential, also known as plasticity 

(Wislet-Gendebien et al. 2005; Planat-Benard et al. 2004; Wagers & Weissman 

2004). This view still remains controversial, as extent of the stem cell plasticity is 

not studied in full (Leychkis et al. 2009). 

Partial understanding of the MSC phenotype and functions can be drawn from the 

describing adjective – mesenchymal. The terms mesenchyme is of a Greek origin 

and it represents a composite of two words: “middle” (mesos), referring to 

mesoderm germ layer, and “infusion” (enkhuma), referring to high migratory 

capacity of a cell (Mosby 2009).   

Mesenchymal cell migration is most pronounced during the early embryonic 

development, where these cells cross between the endodermal and ectodermal layers. 

In addition, migratory and space-filling function of the mesenchymal cells is 

instrumental for wound repair processes in the adult tissues. (Caplan 1991) 

Whereas, mesenchyme as a tissue, can be described as an embryonic connective 

tissue meshwork of a mesodermal origin. Mesenchyme is harbouring unspecialised 

cells with a potential to give rise to connective and skeletal tissues, as well as to 

circulatory/hematopoietic and lymphatic systems. However, some (e.g. craniofacial 

skeleton; smooth muscle, dermis and  adipose tissue of skin in the head and neck 

region) of the mesenchymal tissues can be also derived from the ectoderm germ 

layer through neural crest cell migration (Gilbert 2000; Olsen et al. 2000).   

2.3 MSC functions and unique identity   

MSCs are universally known for their ability to self-renew and to demonstrate 

commitment to towards osteogenesis, chondrogenesis, adipogenesis, myogenesis, 

tendeno/ligamentogenesis and formation of the marrow stroma (Pittenger et al. 1999; 

Young et al. 1998). 
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Alongside with the ability of the MSCs to undergo differentiation and play key role 

in tissue repair and homeostasis, these cells are also recognised for providing 

supportive environment (expression and presentation of growth factors; secretion of 

the ECM proteins) for other cells in the shared organ (Caplan & Dennis 2006), such 

as hematopoietic stem cells (HSCs) in the bone marrow (Majumdar et al. 1998). In 

recent years more attention was drawn to trophic factor production by the 

mesenchymal stem cells, as means of providing stimulating environment for 

specialised (organ-specific) cells to drive the regeneration process (Caplan & Dennis 

2006). With appropriate environmental stimuli (e.g. inflammatory cytokines, 

hypoxic environment, exposure to ligands of tall-like receptors (TLR)) MSCs can act 

as the growth factor factories, producing vascular endothelial growth factor (VEGF), 

insulin-like growth factor 1 (IGF-1), basic fibroblast growth factor (bFGF), 

hepatocyte growth factor (HGF), interleukin-6 (IL-6) and others (Wei et al. 2013; 

Crisostomo et al. 2008; Uccelli et al. 2006; Caplan & Dennis 2006).    

In addition to direct regenerative capacity of the MSCs (DiMarino et al. 2013), 

reports are showing immunologic properties of these cells, which can be grouped 

under two terms: immunosuppression and immunoprivilege. Mesenchymal stem 

cells are able to suppress activity of T-, B-, dendritic and natural killer (NK) cells, as 

well as being immunoprivileged by avoiding lysis by cytotoxic T- and NK-cells 

(Uccelli et al. 2006; Hass et al. 2011; Le Blanc 2003).  

Mesenchymal stem cells are also known for being motile when mobilised, most 

often, by inflammatory cytokines (Spaeth et al. 2008). This property is particularly 

important for tumour targeting. Tumour tissue is an active inflammatory cytokine 

producer (Dvorak 1986), and affinity of the mesenchymal stem cells to inflammatory 

cytokines can be therapeutically explored, as these versatile cells can also be used as 

carriers for tumour-killing agents (Loebinger et al. 2009; Ren et al. 2008) and 

nanoparticles (Roger et al. 2010). 

Established immuno-modulation and injured tissue repair capacity of MSCs is being 

actively explored in clinical studies. MSC-based treatments which are being most 

investigated in the clinical studies are myocardial infarction, graft-versus-host 

disease, diabetes and liver cirrhosis (Wei et al. 2013).    
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Such diverse functionality of MSCs raises the question – where precisely these 

multipotent cells are located in the tissues? In vivo identification of MSCs is a long-

standing and unresolved issue in the field. However, several concepts were proposed, 

which are suggesting relationship between MSCs, pericytes (Meirelles et al. 2009) or 

adventitial reticular cells (ARC) (Jones & McGonagle 2008).  Pericytes are similar 

to MSCs in vitro, in terms of differentiation potential and surface marker expression 

(Crisan et al. 2008; Covas et al. 2008). Pericytes, also known as periendothelial cells, 

are located on the outer (abluminal) side of the blood vessels. Some research groups 

are equating the bone marrow pericytes with ARC, by taking in consideration their 

location and functional characteristics (Meirelles et al. 2009; Bianco et al. 2001). 

Assumed association between ARC, pericytes and MSCs is based on the linkage of 

these cells and the vasculature density (da Silva Meirelles et al. 2009). However, in 

avascular tissues, such as articular cartilage, a subset of MSCs was found (Barbero et 

al. 2003), suggesting that MSCs, ARC and pericytes may have common properties 

and functions, but ultimately these cells most probably are representing different 

subsets of multipotent adult stem cells, which perform unique role in tissue repair. 

This idea is further supported by analysis of the differentiation potential and gene 

expression between MSCs and pericytes. Work of Meirelles and colleagues 

demonstrates that the gene expression in the fetal MSCs and fetal pericytes is 

different, suggesting that these discrepancies are formed during the prenatal 

development (Meirelles et al. 2009).  

In addition, a recent study, done by Isern et al., has demonstrated presence of two 

distinct populations of MSCs in the bone marrow, which originated from different 

sources and are demonstrating dissimilar properties. First population, mesoderm-

derived nestin- MSCs, is involved in fetal skeleton development, but the MSC 

activity is lost after birth. Where second population is nestin-positive, with preserved 

mesenchymal stem cell activity, and is of neural crest origin. Instead of developing 

skeletal tissues, nestin+ cells are involved in HSC niche formation. (Isern et al. 2014) 

It can be concluded that the bone marrow is comprised of the mesenchymal stem cell 

populations with non-overlapping functions, which play unique roles in tissue 

development and homeostasis.  
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2.4 Definition of “stemness” in MSCs  

Maintenance of “stemness” of the stem cells in the adult organism is essential for 

injury response, tissue homeostasis and regeneration (Kuhn & Tuan 2010). 

Additionally, in order for any cell to be considered a stem cell, it needs to 

demonstrate two parameters: 1) extensive proliferation with retention of the 

mulitpotency; 2) multilineage differentiation (Caplan 1991). The concept of 

“stemness” can be analysed from following positions: “stemness” as a pattern of 

gene expression, which is shared by all stem cells (Pyle et al. 2004; Wagner et al. 

2005); or “stemness” as a description of exogenous and endogenous factors, which 

are playing key roles in maintaining stem cells in their undifferentiated and post-

multipotent states. Both approaches allow to identify “stemness” markers. However, 

in order to obtain genuine “stemness” markers, the initial population of stem cells 

should be homogenous (Wagner et al. 2006).     

In order to trace changes in “stemness”, Song and colleagues has compared gene 

expression between undifferentiated MSCs, tri-lineage differentiated MSCs (cells 

formed osteoblasts, chondrocytes and adipocytes) and de-differentiated MSCs. 11 

shared genes of “stemness” were highly expressed in both non-differentiated and de-

differentiated cells. Expression of the same genes was found to be significantly 

lowered during MSC differentiation into adipocytes, chondrocytes and osteoblasts 

(Song et al. 2006). To ensure that the identified “stemness” gene is not a 

housekeeping gene and it will produce a functional protein, which will effect 

“stemness” of the cell, products of the gene translation are required. From the list of 

“stemness” genes, identified by Song et al., which may serve as markers of MSCs or 

regulatory factors of differentiation, were selected. By analysing gene transcripts, 

cytokine interleukin-6 (IL-6) was found to be important for MSC maintenance, as it 

stimulated proliferation, inhibited serum starvation-induced apoptosis, suppressed 

adipogenic and chondrogenic differentiation (Pricola et al. 2009). In addition to IL-6, 

ECM molecule, α4-laminin, is secreted by the MSCs and is commonly found in the 

bone marrow; α4-laminin stimulates cell proliferation, at the same time inhibiting 

conventional tri-lineage differentiation into adipocytes, chondrocytes and osteoblasts 

(Kuhn & Tuan 2010).  
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Assessment of “stemness” can be also performed on stem cells from different 

sources and stages of development. Sung et al. has compared “stemness” of the cells 

from placentas, at different stages of development, and MSCs from the adult bone 

marrow, according to these parameters of “stemness”: mesoderm differentiation, 

expression of the pluripotency markers (including telomerase activity), immuno-

phenotypic expression and proliferation capacity. All of the analysed cells shared 

similar mesodermal differentiation potential, where other parameters did not match. 

(Sung et al. 2010) 

Finally, surface marker expression is a common method for “stemness” and in 

vivo/vitro phenotype identification in populations of MSCs (Lv et al. 2014). 

2.5 MSC-specific surface markers  

In order to identify MSCs from a highly heterogeneous population within the cell 

aspirate, flow cytometry is routinely employed. A unifying surface marker for MSC 

identification has not yet been agreed on. As a result, a combination of surface 

markers are used as indicators for putative MSC properties (Frith et al. 2010; Prins et 

al. 2014).  

Typical cell surface molecules, also termed “clusters of differentiation”, used for 

initial MSC identification are CD105, CD73 and CD90 (mentioned markers should 

be present on 95% or more of the cell fraction). These surface markers were 

standardised by the ISCT position statement (Dominici et al. 2006). The ISCT has 

also suggested that MSCs should not express (or have less than 2%) following 

markers: HLA-DR, CD45, CD34, CD79a or CD19, CD14 or CD11b. These negative 

markers are primarily required to exclude possibility of contaminations with 

hematopoietic cells.  

MSCs in culture display stable and positively-strong expression of CD73, CD90 and 

CD105 (Pittenger et al. 1999; Jones et al. 2010). The CD73 marker represents ecto-

5’-nucleltidase and is involved in production of an active adenosine and may also 

function as cell adhesions molecule. The CD90 marker, also known as Thy-1, is 

involved in cell-matrix and cell-cell interactions. And the CD105 marker, also 
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known as endoglin, is involved in mediation of cellular response to TGF-β 

superfamily ligands. (Lin et al. 2013) However, these markers are not exclusive to 

MSCs (Lin et al. 2013; Boxall & Jones 2012). Skin fibroblasts do also express CD73 

and CD105 (Ishii et al. 2005; Jones et al. 2004). Similarly, CD73 and CD105 

markers are expressed by umbilical vein endothelial cells (Narravula et al. 2000; 

Chan et al. 2004), suggesting that adherent cell selection by CD73 and CD105, 

without CD90, is not sufficient for MSC identification.  

Fundamental issue with relying on CD73, CD90 and CD105 as markers of MSCs 

became apparent, when Digirolamo and colleagues have demonstrated reduction in 

MSC’s capacity to form colonies with increase in cell passage number (Digirolamo 

et al. 1999), when CD73, CD90 and CD105 were stably expressed in MSCs, 

regardless of the passage. This fact suggests that CD73, CD90 and CD105 are being 

applicable for basic MSC characterisation in vitro, but not for potent cell 

identification.  

In search for highly specific markers of MSCs, CD106  (vascular cell adhesion 

molecule 1 (VCAM-1)) and Stro-1 markers have shown high selectivity for CFU-F-

rich cell fraction (Gronthos et al. 2003). In addition, expression of these markers is 

dependent on the time in passaging (Halfon et al. 2011; Jung et al. 2011; Jones et al. 

2010). Furthermore, recent finding of Liu et al. demonstrated CD106 as a marker of 

the potent (naïve) MSC in monolayer culture, as the marker expression was much 

lower after differentiation of the cells towards bone, fat and cartilage (Liu et al. 

2008).  

Observing expression of the passage dependant and independent markers for MSC 

characterisation, Boxall et al. has proposed a categorising approach for the MSC 

marker panel design (Boxall & Jones 2012). Surface markers, which are 

continuously expressed at the same level during MSC culture and are donor-

independent, can be referred to as the 1st tier markers (e.g. CD73, CD90 and CD105) 

to identify “generic” MSCs.  Whereas, markers which show expression-dependence 

on passage, donor, as well as attachment properties, seeding density and other 

variables, can be attributed to the 2nd tier (e.g. CD106 (Liu et al. 2008)).  
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Knowledge of the markers that would allow MSC identification is essential for 

fundamental research and clinical application. However, a constant strive to find 

unique marker(s) of MSCs also leads to finding new markers which are able to 

suggest differentiation potential of MSCs. It is a well-accepted  view that the gene 

and miRNA expression, and subsequently alterations in phenotype and 

differentiation potential, are acquired by MSCs with increase in passage number 

(Wagner et al. 2008). In addition, with increase in passage number MSCs were 

observed to have a predisposition to differentiate into cells of osteogenic lineages, 

and reduced differentiation potential towards adipogenic and chondrogenic lineages, 

when compared to early passage cells (Muraglia et al. 2000).  Furthermore, CD73 

and CD105 markers are expressed on initially in vitro-expanded and later sub-cloned 

MSCs (Pittenger et al. 1999). However, after differentiation towards osteogenic, 

adipogenic and chondrogenic lineages, only approximately 30% of the cells were 

actually multipotent (Pittenger et al. 1999; Boxall & Jones 2012).  This observation 

suggests that markers, such as CD106 (Jones et al. 2010; Jung et al. 2011; Liu et al. 

2008), whose expression is reduced with progression of differentiation, can be 

instrumental in selection of the truly multipotent MSCs.  

Despite the concerted effort the in vivo identity of MSCs is not yet established, as it 

is for HSCs (Wognum et al. 2004). The list of candidate-markers for MSCs is 

continuously being extended (Lv et al. 2014). With increase in numbers of candidate 

markers, a new issue becomes apparent – co-expression of the same markers by 

different cell types (reviewed by Boxall et al.).  Majority of common MSC surface 

markers are shared by endothelial lineage cells. However, CD90 and CD271 are not 

expressed by endothelial cells, but are present on the MSCs. (Boxall & Jones 2012) 

The CD271+ (low-affinity nerve growth receptor) surface marker was found as an 

effective MSC discriminator by Quirici and colleagues (Quirici et al. 2002). To 

increase the purity of the fraction, the removal of hematopoietic cells, which carry 

CD45 receptor, is often required. CD45 gaiting is also performed to avoid selection 

for false-positive MSCs, as hematopoietic progenitor cells of erythroid lineage 

express CD271 `at low levels (Tormin et al. 2011; Cuthbert et al. 2012). Several 

studies have identified CD271+ as one of the key markers for achieving high MSC 

purity (Cuthbert et al. 2012; Jones et al. 2010; Poloni et al. 2009). 
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Alongside with CD271+ marker, MSCA-1 (mesenchymal stem cells antigen-1) was 

also found to be a highly selective marker for MSC isolation and specific 

differentiation potential (Bühring et al. 2009). Battula et al. has used positive 

MSCA-1+, together with negative CD56- (neural cell adhesion molecule (NCAM)) 

markers to show 90-fold enrichment in CFU-F, with strong cellular propensity to 

differentiate into adipocytes. Whereas, cell fraction positive for MSCA-1+ and 

CD56+, yielded 180-fold enrichment in CFU-F, and differentiation progression of the 

cells towards chondrocytes and pancreatic-like islets (Battula et al. 2009). 

Another surface marker, which can be an excellent identifier of multipotent MSCs in 

vivo is Leptin (fat-specific hormone) Receptor, also known as CD295. In the study of 

Zhou et al. 0.3% of the mice bone marrow cells were CD295+, where these cells 

formed 94% of CFU-F colonies. CD295+ were also able to from bone, cartilage and 

adipocytes in monolayer culture and after in vivo transplantation. Through fate-

mapping CD295+ cells were found to be a major source of bone and adipocytes in 

the bone marrow. In addition, Zhou et al. has observed CD295+ to be quiescent 

under normal physiological conditions, but being active and bone-forming after an 

injury (in vivo). (Zhou et al. 2014) 

Alternatively to surface markers, MSC identity can also be elucidated by analysing 

intracellular proteins, such as Nestin (Isern et al. 2013) – an intermediate filament 

protein, or gene transcripts could be used to identify MSC with further verification of 

in vivo functions through expression in knock-out animal models (Boxall & Jones 

2012).   

A single and unique marker for BM MSC, which would guaranty 100% purity of the 

subset, has not yet been found. However, it is already possible to pre-select MSCs 

with desired properties through marker analysis for clinical application  (Cuthbert et 

al. 2015; Battula et al. 2009; Zhou et al. 2014). Recommendations, provided by the 

ISCT back in 2006, was a key step towards standardising the MSC field (Dominici et 

al. 2006). However, the search for unique markers of MSCs from different locations 

should continue, as BM MSCs are expressing MSCA-1, but placenta-derived MSCs 

don’t (Battula et al. 2007). The future milestone for the field is to identify an in vivo 

BM MSC phenotype, potentially leading to new therapy applications. 
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2.6 Differentiation in MSCs: identification and regulation  

It is vital to develop a rigorous systematic approach to identifying MSCs. However, 

it is equally important to be able to precisely characterise differentiation potency of 

the MSCs at various stages of development, as differentiation capacity is the key 

characteristic of MSCs.   

Differentiation is the process of cell transition from a less-specialised to a more-

specialised cell, what is reflected in phenotype and function of the cell. As it was 

described above, surface markers and gene expression can be used to reveal 

“stemness” and MSC identity. Identical methods can be used to trace differentiation 

fate of MSCs and characterise their progenitors.  

Ability of the MSCs to demonstrate osteogenesis, adipogenesis and chondrogenesis 

– is a fundamental requirement for identifying this cell type in vitro. Differentiation 

is an elaborate process with multiple stages, which is orchestrated by cascades of 

biochemical and mechanical signals (Engler et al. 2006; Augello & De Bari 2010). 

Progression of the differentiation can be monitored through expression of specific 

markers. Numerous factors are affecting differentiation progression, but several 

master regulators, which act as differentiation markers, will be highlighted (Table 1). 

For MSC osteogenesis and adipogenesis such regulators are Runt-related 

transcription factor 2 (Runx2) and peroxisome proliferator-activated receptor-� 

(PPAR�), respectively. Both of these transcription factors are cytokine mediators 

(James 2013; Marie 2008).  

Apart from being a key regulator of adipogenesis, PPAR� has also an anti‐

osteogenic effect (Akune et al. 2004). PPAR� is considered to be a master 

regulator of adipogenesis, as it is a single known transcription factor, which is able to 

recover adipocyte generation when PPAR� is knocked out. In addition, majority of 

the pro-adipogenic cell signalling pathways are connected with PPAR�. (Tzameli et 

al. 2004; Siersbæk et al. 2010)  
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It is important to note, that in case of osteogenesis and adipogenesis an inverse 

relationship is observed – progression of osteogenesis prevents development of 

adipogenesis (James 2013). 

Osteogenic differentiation is activated and regulated by Runx2 (Marie 2008). 

Importance of Runx2 in vivo was demonstrated by Otto et al., when Runx2-deficient 

mutant mice would die short after birth, and would demonstrate absence of 

osteoblasts and bone tissue (Otto et al. 1997).  

Kulterer et al. has conducted gene expression profiling of expanded human bone 

marrow MSCs and differentiated osteoblasts (MSC-derived), where through 

microarray analysis crystalline-αB (CRYAB) was identified as a candidate marker 

for osteogenesis in MSCs (Kulterer et al. 2007). After observing several fold 

increase in CRYAB protein expression in MSCs, differentiating towards osteogenic 

lineage, Graneli et al. has confirmed CRYAB protein to be a specific marker for 

osteogenesis in MSCs (Granéli et al. 2014). 

In the same study Graneli et al. has looked at adipogenesis in MSCs as well. Two 

surface markers, CD10 (neprilysin) and CD92 (choline transporter-like protein 1), 

were identified as markers of adipogenesis differentiation in vitro. However, the 

same markers were also shared by differentiated osteoblasts. (Granéli et al. 2014) 

Considering osteogenesis-adipogenesis inverse relationship, differentiation marker 

sharing is rare, however, it can be observed at signalling pathway level: bone 

morphogenic protein (BMP) and insulin growth factor (IGF) signalling have 

adipocytic and osteogenic stimulating properties (James 2013).        

Endochondral type of bone formation clearly demonstrates relationship between 

osteogenesis and chondrogenesis  on a morphological level (Olsen et al. 2000). 

These processes are also related on signalling pathway level, where fibroblast growth 

factor (FGF) signalling,  orchestrates osteogenesis in cortical and trabecular bones, 

as well as chondrogenesis in the growth plate (Liu et al. 2002). FGF signalling 

pathway is not an exclusive signalling pathway in the development process of bone 

and cartilage. The Wnt signalling pathway is also observed in both differentiation 

lineages (Hartmann & Tabin 2000; Etheridge et al. 2004).  
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Apart from signalling pathways, chondrogenesis in MSCs is tightly regulated by 

SOX9 (SRY (sex determining region Y)-box 9) transcription factor during the 

lineage commitment stage (Cheng & Genever 2010). Where progression towards 

terminally-differentiated chondrocyte can be traced by the expression of aggrecan 

and collagen II markers (Williams et al. 2003; Banfi et al. 2000). Chondrogenic 

stimulation of MSCs has an inhibitory effect on osteogenesis, as SOX9 can inhibit 

trans-activation of RUNX2 and induce dose-dependent degradation of RUNX2 

(Cheng & Genever 2010). 

In summary, differentiation potential in MSCs commonly is being traced with 

surface marker, transcription factor and gene expression. However, considering 

multi-stage nature of the differentiation process (Augello & De Bari 2010), several 

lineage-specific markers should be monitored to enable accurate demonstration of 

differentiation progression. Apart from all of the differentiation markers listed above, 

there are available other well-recognised markers of differentiated MSCs. Most 

commonly used markers are presented in the Table 1. 

Table 1: Key transcription factors and genes, which are expressed particularly 
during osteogenesis, adipogenesis or chondrogenesis, and are acting as specific 
markers of differentiation in MSCs. 

Osteogenesis Adipogenesis Chondrogenesis 

 Runx2 (Otto et al. 

1997; Cheng & 

Genever 2010) 

 Osteocalcin (OCN) 

(Banfi et al. 2000) 

 Alkaline phosphatase 

(ALP) (Whyte 1994) 

 PPARγ (Zhang et al. 

2010; Siersbæk et al. 

2010) 

 Lipoprotein Lipase  

(LPL) (Clabaut et al. 

2010) 

 Leptin (LEP) 

(Rodriguez et al. 2008) 

 SOX9 (Cheng & 

Genever 2010) 

 Aggrecan (Williams et 

al. 2003)  

 Collagen II (Banfi et al. 

2000) 
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2.7 MSCs in monolayer culture 

Alongside with surface marker and gene expression, MSCs are also selected on the 

basis of adherence to the tissue culture plastic (TCP) (Dominici et al. 2006). After 

attachment to the TCP surface, bone marrow MSCs (BM MSCs) are taking up 

fibroblast-like morphology (Figure 2).  

 

Figure 2: A brightfield micrograph of the bone marrow MSCs on 2D TCP, 
displaying representative fibroblast-like morphology. 

Loss of a dimension, as a result of transfer from 3-dimensional (3D) architecture into 

2-dimensional (2D), has a substantial effect on the native MSC phenotype. A 

summary view of the negative effects of the monolayer culture onto MSC native 

phenotype and genotype is presented in the Table 2. 
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Table 2: Effects of culture in 2D conditions on MSC and fibroblast natural 
phenotype 

Effects of 2D 

monolayer culture on  

MSC and fibroblast in 

vivo phenotype and 

genotype 

Notes References 

Loss of stemness. 

Subculture of MSCs for more than 10 

passages has shown to significantly 

reduce population doubling count, cell 

cycle arrest, increased senescence and 

reduction in MSC marker expression.  

(Otte et al. 2013) 

ECM production delay. 

After initial adhesion to the TCP 

surface, MSCs are demonstrating 

retardation in ECM production. 

(Treiser et al. 

2010) 

MSC-produced ECM 

structure alteration. 

Deposited ECM in 2D is not 

analogous to one produced in vivo. In 

vivo-like ECM is needed to retain 

multipotency of MSCs. 

(Scadden 2006) 

Phenotype of the 

connective tissue cells 

is drastically affected 

by monolayer culture. 

Fibroblasts in 2D demonstrate cell 

polarity, but it is absent in vivo. (Cukierman et al. 

2001) 

Only primitive 

adhesion complexes 

are formed between the 

cell and the substrate in 

2D culture. 

In 3D ECM scaffolds mature integrin-

containing focal adhesion complexes 

are formed in minutes, compared to 72 

hours required on the 2D glass surface 

for ECM to be deposited.  

(Cukierman et al. 

2001; Chen 2010; 

Treiser et al. 

2010) 

Autocrine growth 

factor secretion into 

surrounding culture 

media. 

During MSC culture on 3D ECM 

substrates, autocrine growth factors 

are deposited into the surrounding 

matrix. As a result, growth factor 

presentation to the cells is more 

physiological. 

(Chen 2010) 

Alterations in gene 

expression 

MSC culture in 3D spheroids produces 

gene expression more representative 

of ex-vivo, than in 2D culture. 

(Frith et al. 2010) 
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Figure 3: Conceptual view of the tissue engineering (TE) paradigm, also known 
as the tissue engineering triangle, represented by a reciprocal interplay between 
cells, scaffolds and stimuli. 

 

Unsuitability of 2D culture methods for analysis of the physiological response by the 

cells was voiced several decades ago (Bissell et al. 1982), however the importance of 

the third dimension was fully recognised in 1997. In a landmark study, Bissell’s 

group has demonstrated that inhibition of the β1-integrin surface receptor in breast 

cells, within a 3D cancer model, leads to functional and morphological reversion to a 

non-cancerous phenotype of the same cells (Abbott 2003; Weaver et al. 1997).  

2.8 Tissue engineering - concept introduction 

With growth in understanding of potency, cellular growth and differentiation 

requirement, together with increasing availability of biomaterials, a discipline of 

tissue engineering was formed (Langer & Vacanti 1993). The vision of the tissue 

engineering concept is often represented by reciprocal interplay of three central 

factors: cells, scaffolds and stimulating signals (Figure 3).  

 

Each of the key tissue engineering factors represents a list of parameters, which 

should be considered during the design stage of the tissue engineering solution.  

MSCs are an integral part of the tissue engineering paradigm and in many aspects 

these cells are unique, due to their regenerative and immuno-regulating capacity. In 

order to produce a successful tissue engineering solution, cellular components are 

often supported by a mechanical “skeleton”, most frequently represented by a 

scaffolding structure. In its core principle, scaffolding material is designed to provide 

a supporting 3D architecture for the cells, in order to mimic physiologically-relevant 
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conditions. Central part of the scaffold design process should include understanding 

of the target tissue architecture and internal processes, to ensure in vivo-like cell 

behaviour within final scaffold structure. To achieve the objective of matching 

scaffold properties with target tissue requirements, numerous scaffolding materials 

were designed over the last two decades (Thiele et al. 2014).  

Tissue engineering and cell biology studies are inseparable, where cell culture is a 

fundamental aspect in both areas. At the same time, the cell culture process involves 

exposure of the cells to a non-natural environment. Currently, none of the available 

scaffolding materials can replicate cell-matrix interactions, found in vivo, and entire 

complexity of natural tissues. (Thiele et al. 2014) 

Moreover, due to high variability in scaffold architecture, mechanical properties, 

porosity and other cell growth-related factors, the selection process should be based 

on the physiological requirements of the natural tissue of interest. 

Concurrently, scaffold selection process can be generalised by grading the 

fundamental factors of the scaffold by their relative importance for viable scaffold 

design. Figure 4 represents core parameters that should be considered as guidelines 

in most of the scaffold design processes, with cell viability and scaffold toxicity 

being of paramount importance for successful scaffold design and function. 

 

Figure 4: Central parameters in scaffold design process  
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2.9 MSCs in 3D environment 

Mesenchymal stromal cells (MSCs) are commonly sourced from the bone marrow 

environment, where these cells reside in 3D and are exposed to components of the 

extracellular matrix (ECM), other cells types and biochemical and mechanical 

stimuli (Charbord 2010). Biochemical and mechanical gradients, coupled with a 

cascade of signals from adjacent different types of cells and ease of access to the 

capillary system, makes bone marrow a unique “niche” environment that facilitates 

MSC proliferation, preservation in non-differentiated state and cell release from the 

niche when required (Kolf et al. 2007; Scadden 2006).  

MSC exit from the bone marrow niche is assumed to be triggered by circulating 

signals produced by the immune system that signals possible trauma, as well as 

hormonal system that helps to maintain homeostasis of the system (i.e. scheduled 

maintenance) (Jones & McGonagle 2008; Kim et al. 2012). It is also believed that 

the mechanical stimulation is an effective impetus for MSC release from bone 

marrow (Jones & McGonagle 2008). These finely-tuned mechanisms of tissue repair 

demonstrate importance of interconnected integrity of homeostatic processes in-vivo, 

which operate in a 3D context. 

In attempts to trigger and manipulate innate tissue repair mechanisms of the 

organism or alter the development of harmful processes in the body, various drugs 

are being administered, most frequently intravenously or directly to the affected 

tissue (Hay et al. 2014; Oh et al. 2009). Along with conventional drug 

administration, drug-releasing scaffolds are also implanted, providing chemical and 

bio-mechanical stimulation at the site of implantation (Roux & Ladavière 2013). 

Success of any drug, addressing any process in the body, along with interaction 

between scaffold and the surrounding milieu, initially has to be verified in the 

preliminary in vitro tests, followed by the animal testing, culminating by testing in 

humans.  

2.9.1 Approaches to obtaining clinically-relevant information: 2D vs 3D  

The gold standard and the ultimate assessment of safety and efficacy for any therapy 

is clinical testing in humans. This final stage of preclinical testing is very costly and 
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time consuming. In order to obtain clinically relevant insight in to therapy’s 

suitability a robust testing framework is used.  

Fundamentally, all clinically-targeted research frameworks are built on the “ground-

up” principle, where initial therapy testing stages are based on using system with 

least number of uncontrolled variables, rapid turn-around in data collection and 

analysis, lowest possible cost and lowest complexity of implementation. 

Traditionally such systems were based on 2 dimension (2D) monolayers. However, 

in the recent years constantly growing collection of finding suggests that overly-

simplified in vitro models perform poorly in predicting response in animal and 

clinical studies (Martin et al. 2008; Härmä et al. 2010; Hirschhaeuser et al. 2010). In 

addition, only 10.4% of the drugs that have passed the phase 1 trial tests will reach 

the FDA approval (Hay et al. 2014). 

Testing of novel clinical compounds on 2D monolayers became possible after 

invention of culture flasks in 1923 (Carrel 1923). This simplistic system gained 

popularity owing to relative ease of cell expansion and low operational costs. Almost 

100 years later it is widely known that cells may lose their original phenotype and 

gene expression alterations can be acquired due to long term culture in monolayers  

(Røsland et al. 2009; Bara et al. 2014; Pampaloni et al. 2007; Baker & Chen 2012). 

The presence of a 3D structural support is often essential for non-aberrant gene 

expression and cell functioning, as exemplified by mammary epithelial cells (Bissell 

et al. 1982; Bissell et al. 2002). The importance of a 3D organisation has also been 

identified in MSCs (Martino et al. 2009; Jongpaiboonkit et al. 2009) and their 

differentiated progeny (Darling & Athanasiou 2006), where MSC expansion and 

long-term culture in monolayers will lead to retardation in proliferation, loss of the 

multi-lineage differentiation capacity and a 36-fold reduction in bone forming 

efficiency in vivo (Banfi et al. 2000).  

Rapid progress in the fields of gene sequencing and high throughput systems during 

the last decade has provided new sophisticated research tools (Cheng et al. 2008; 

Huang et al. 2008), simultaneously allowing new questions to be posed regarding 

cell behaviour in environment that more closely resembles the complex interactions 

of the in vivo milieu. 
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2.10 Natural and synthetic scaffolds, commonly used in tissue 
engineering  

In attempt to model in vivo environment of a cell as closely as possible, and to 

provide tissue engineering solutions for cell therapies, numerous natural and 

synthetic scaffolds were designed, characterised and adopted for the need of the 

fundament research and biomedical applications.  

Table 3 represents a summary view of the key hydrogel materials used for cell 

encapsulation, analysis and therapy delivery. In addition, a description of each 

hydrogel’s gelation method, characteristic properties, cell support and encapsulation 

capacity is provided. 
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Table 3: Natural and synthetic hydrogels, commonly used in biomedical applications 

Hydrogel Class 
Gelation method 
(Phase transition) 

Key properties Cell support ability 

Fibrin Natural Thrombin-driven association 
of the fibrinogen into a 
fibrillar network. 

 Contains binding sites (RGD and 
AGDV) (Janmey et al. 2009) 

 Elastic modulus ≤ 0.1 kPa (Thiele et al. 
2014) 

 Strain-stiffening (Janmey et al. 1983) 

 3D fibrin beads used to study 
angiogenesis by endothelial cells (Nehls 
& Drenckhahn 1995; Nakatsu et al. 
2007) 

 Myoblasts in fibrin glue were injected 
into infarcted heart tissue, and 
demonstrated increased transplant 
survival and decreased infarct size after 
5 weeks. (Christman et al. 2004) 

Collagen Natural Three polypeptide chains 
interweave into a helical 
structure   which forms 
collagen fibre. Peptide bonds 
at the end of each helix 
crosslink with adjacent fibres. 

 Is a major component of the ECM. 
 Responsible for bone tissue flexibility 

and soft tissue elasticity (Mano et al. 
2004) 

 Carries a potential of the antigenic and 
immunogenic response during in vivo 
use. (Lynn et al. 2004) 

 Fabrication of the 3D stable matrices, 
which support cell seeding and 
spreading (Gillette et al. 2008) 

 Keratinocytes were successfully cultured 
in spongy collagen scaffolds in static 
conditions. Whereas dynamic perfusion 
settings demonstrated higher cell 
proliferation in the identical constructs 
(Navarro et al. 2001). 

Gelatin Natural It is a mixture of peptides 
derived from collagen by 
hydrolysis. Gelation occurs at 
30˚C.  Is in need of 
crosslinking as it lacks 
thermal stability. (Thiele et 
al. 2014) 
 

 Can be degraded by a broad range of 
proteases. (Palmer 1993) 

 Has reduced potential of an antigenic 
response, than collagen. (Rose et al. 
2014) 

 Endothelial cell sheet delivery (Lai 
2010) 

 3D CAD scaffold supports porcine 
MSC’s adhesion and proliferation 
(Ovsianikov et al. 2011) 
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Matrigel Natural It is a mixture of the 
basement membrane proteins, 
isolated from a mouse 
sarcoma. Rapid protein 
polymerisation takes place 
between 22˚ and 35˚C. 
(Corning 2013) 

 Composition after isolation:   ca. 60% 
laminin, 30% collagen IV, and 8% 
entactin. (Corning 2013) 

 It also contains perlecan and various 
growth factors (i.e. TGF-β and IGF-1). 
(Corning 2013) 

 Promotes tumour cell growth in vivo 
(Fridman et al. 1990) 

 Promotes self-renewal and pluripotency 
in stem cells in 2D cultures (McElroy & 
Reijo Pera 2008) 

 Endothelial differentiation of MSCs in 
3D setting (Portalska et al. 2012) 
 

Hyaluronic 
acid 

(hyaluronan) 
 
 
 

Natural Hyaluronan is structurally-
simplest glycosaminoglycan 
(Kogan et al. 2007). 
However, to forma hydrogel 
it requires a chemical 
modification (often 
crosslinking) (Burdick & 
Prestwich 2011). 

 It is an immunoneutral and non-
sulphated  ECM component with 
important role in tissue homeostasis and 
repair. (Burdick & Prestwich 2011) 

 It can be degraded in vivo by  
hyaluronidase (Leach et al. 2003) 

 Fibroblast, hepatocyte, MSC and 
endothelial cell expansion in 3D with 
following cell recovery via gel 
dissolution. (Zhang et al. 2008) 

 Hyaluronic acid – tyramine conjugates 
can undergo crosslinking in vivo. 
Resultant injectable scaffold supported 
caprine MSCs in 3D and modulated 
matrix biosynthesis and cartilage tissue 
histogenesis. (Toh et al. 2012) 

Alginate Natural Non-modified alginate gels 
through inter-molecular 
electrostatic interactions. 
(Thiele et al. 2014) 

 Alginate is inherently does not support 
cell adhesion, is non-fouling and not 
cleavable by natural enzymes (Lee & 
Mooney 2012) 

 Low immuno-response showed by the 
alginate implants (Zimmermann et al. 
1992) 

 Alginate gels, chemically conjugated 
with RGD peptide sequences, support 
myoblast adhesion and proliferation in 
2D. (Rowley et al. 1999) 

 Alginate was photo-patterned into a 3D 
microfluidic system for co-culture of 
preosteoblasts and endothelial cells. 
(Chueh et al. 2010) 
 

Chitosan Natural Through adjustment of pH, 
spontaneous gelation is 
triggered via balancing out of 

 Chitosan, derived from natural chitin, 
shares some monomer units with 
hyaluronic acid and it closely simulates 

 Chitosan-encapsulated primary rat 
hepatocytes demonstrated rounded 
morphology and production of albumin. 
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the hydrogen bonding, 
hydrophobic and interchain 
electrostatic interactions. 
(Thiele et al. 2014) 

glycosaminoglycans in the ECM of the 
tissue. 

 Non-modiefied chitosan is fully soluble 
below pH 5 and it is insoluble (forms a 
gel) above  pH 7 due to cationic nature 
and semi-crystalline properties of a high 
charge density. (Yoon & Fisher 2009) 

(Li et al. 2003) 
 Rat osteoblasts were cultured in chitosan 

sponges for 56 days, where cell 
proliferation and subsequent osteogenic 
differentiation was observed. (Seol et al. 
2004) 

Agarose 
 
 

Natural 
 

Agarose chains interact 
through hydrogen bonding to 
form a double helix. (Yoon & 
Fisher 2009) 

 Presence of the hydroxyl groups on the 
backbone of the agarose induces 
polarity in the structure. Hence, agarose 
is water soluble at high temperatures 
and it forms a gel at lower temperatures. 
(Yoon & Fisher 2009) 

 Strength and permeability of the gel is 
dictated by the concentration. 

 

 MSCs, encapsulated in agarose capsules, 
have demonstrated increased survival. 
(Karoubi et al. 2009) 

 ECM is readily formed by disc cells 
within 3D agarose gels. (Gruber et al. 
2006) 

Hydrogel Class 
Gelation method 
(Phase transition) 

Key properties Cell support ability 

PNIPAM 

 

Synthetic At the LCST point, enthalpic 
contribution of hydrogen-
bonded water molecules is 
dominated by the entropic 
gain within the whole system 
(Alarcon et al. 2005). As a 
result, polymer-water 
separation takes place with, 
and at the sufficient polymer 
concentration a colloidal gel 
structure is formed. 

 PNIPAM is thermo-responsive and 
reversible hydrogel. With further 
functionalisation and co-polymerisation 
other phase transition triggers can be 
introduced (i.e. pH, ultrasound, salt 
concentration, magnetic and electric 
fields) (Ebara et al. 2014; Ilic-
Stojanovic et al. 2011) 

 Molecular weight and polarity of the 
chain ends greatly affects temperature 
of the phase transition (LCST point) 
(Rimmer et al. 2007) 

 PNIPAM hydrogel, co-polymerised with 
acrylic acid, has supported bovine 
articular chondrocytes in vitro for at 
least 28 days. Formation of a cartilage-
like tissue was also observed. (Stile et al. 
1999) 

 Modification of the PNIPAM hydrogel 
with cell-adhesive peptide (GRGDS) 
produced a thermo-responsive substrate 
for adhesion, proliferation and 
subsequent detachment (without 
trypsinisation) of the human dermal 
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endothelial cells on demand. (Hopkins et 
al. 2009) 

PAA 

 

Synthetic Poly(acrylic acid) (PAA) 
requires crosslinking in order 
to form a hydrogel. The ionic 
network structure of PAA is 
strongly affected by the pH, 
the monomer concentration 
and the ionic strength during 
the polymerisation. (Elliott et 
al. 2004)   
 

 PAA hydrogel network is able to absorb 
many times its’ weight in water, making 
this polymer a super-absorbent. Such 
swelling capacity is attributed to 
presence of the carboxylic acid groups 
on the chain ends. (Elliott et al. 2004) 

 Polymer films were graft-polymerised 
with PAA, forming covalently bound 
brushes. Smooth muscle cells have 
successfully adhered and proliferated on 
such substrate. (Bisson et al. 2002) 

 Acrylic acid-functionalised scaffold 
supported human hepatocyte adhesion. 
(Hayward et al. 2013) 

PEG Synthetic Pure poly(ethylene glycol) 
(PEG) requires 
functionalization or a 
crosslinker for gel formation. 
However, when PEG is 
functionalised vinyl sulfone 
and conjugated with cysteine-
containing peptides, gelation 
occurs at physiological 
temperatures and near-
physiological pH (Lutolf, 
Raeber, et al. 2003).  

 PEG is inherently biocompatible, but it 
does not promote cell adhesion. (Thiele 
et al. 2014) 

 PEG hydrogel is often used as an inert 
structural substrate with inherent 
hydrophilicity and resistance to protein 
adsorption. (Raeber et al. 2005) 

 At high molecular weights PEG is an 
extremely hydrophilic polymer. (Place 
et al. 2009) 

 Non-functionalised PEG gels are able to 
encapsulate MSCs, however, 
encapsulated cells undergo apoptosis 
due to a lack of cell-matrix binding sites. 
(Thiele et al. 2014) 

 Functionalised PEG gel has supported 
primary human dermal fibroblasts 
spreading on the surface of the gel with 
further migration within the gel, creating 
a 3D interconnected cellular meshwork 
after 3 weeks. (Lutolf, Raeber, et al. 
2003) 

 
 

PVA Synthetic Poly(vinyl alcohol) (PVA) 
gels are commonly formed by 
physical crosslinking (via 
repeated freezing-thawing 

 Non-modified PVA is hydrophilic and 
water-soluble, but non-degradable 
(Place et al. 2009). 

 Non-functionalised PVA gels are 

 Functionalised PVA was used to 
encapsulate murine neuroblastoma cells, 
demonstrating cell viability after 
crosslinking and during short culture 
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methods), or chemically 
crosslinked with 
glutaraldehyde or 
epichlorohydrin. 
Additionally, PVA can form 
hydrogels by blending with 
other water-soluble polymers. 
(Zhu & Marchant 2011) 
 

inherently non-adhesive (Schmedlen et 
al. 2002) 

 

period. (Ossipov et al. 2007) 
 RGDS-functionalised PVA gels were 

seeded with dermal fibroblast, and 
demonstrated adhesion and cell survival 
during 2 weeks of culture. (Schmedlen 
et al. 2002)  

PLA Synthetic Poly(lactic acid) (PLA) 
polymer is hydrophobic 
aliphatic polyester. In order 
to form a hydrogel, 
functionalization with 
hydrophilic PEG is required 
(Metters et al. 2000).  

 With increase in the molecular weight 
of the PLA polymer, degradation rate in 
vivo decreases. Up to 50% weight loss 
is observed after 6 months of in vivo 
implantation. (Gogolewski et al. 1993) 

 

 PLA scaffold degradation products can 
elicit a strong inflammatory response in 
vivo. (Bergsma et al. 1993) 

 Composite scaffold of PLA and bioglass 
were seeded with mesenchymal stem 
cells and endothelial progenitor cells to 
be tested in a rat calvarial critical size 
defect model for 3 months. 
Consequently, no long-term 
inflammatory reaction or tumour 
formation was observed. In addition, 
formation of new bone mass was also 
observed. (Eldesoqi et al. 2014) 
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2.11 Optimal mimicking environment of the bone marrow – synthetic 
hydrogel 

In order to obtain understanding of the MSC behaviour within its’ natural 

environment – bone marrow, it is important to employ a testing environment that 

would mimic key structural, mechanical and biochemical parameters of the bone 

marrow in a controlled fashion. Such particular requirements are met by a synthetic 

hydrogel scaffolds.  

Firstly, the synthetic parameter allows precise control over structure’s 

macromolecular architecture and defined functional group addition. Secondly, 

hydrogels, by definition, are cross-linked three-dimensional polymer chain networks, 

where water, the main component by weight, is the intra-chain space filler. In 

addition, the name, hydrogel, implies ability of the material to hold substantial 

amounts of water, where this dispersive component may serve as a transport medium 

for macro-molecule (i.e. nutrient and waste transport). Thirdly, any scaffold 

represents a supportive structure for the cell; and keeping in mind synthetic nature of 

the scaffold – structural parameters can be fine-tuned for the needs of the cell.  

Synthetic hydrogels, which are commonly used as scaffolds for biomedical 

applications, can be exemplified by poly(ethylene glycol) (Burdick & Anseth 2002), 

poly(N-isopropylacrylamide) (Lapworth et al. 2011), poly(vinyl alcohol) and 

poly(acrylic acid) (Lee et al. 1996)). 

However, in search for scaffolds with physiologically-exploitable properties, 

increasing number of research groups are conducting studies on hydrogels with 

environment-sensing properties (Ilic-Stojanovic et al. 2011). A particular subset of 

such materials is represented by hydrogels with thermo-sensitive and state-reversible 

properties. Thermo-sensitive properties, which are biologically-applicable, are 

exhibited by poly(methyl vinyl ether), poly(N-vinylcaprolactam) and poly(N-

isopropylacrylamide), amongst many (Schmaljohann 2006). Due to high sensitivity 

of the polymer to environmental condition change and a resulting prompt phase 

transition, such hydrogels are named “smart” or “intelligent”. Poly(N-

isopropylacrylamide) is a prime example of a temperature responsive “smart” 

hydrogel (Maeda et al. 2000). Alongside with temperature, phase transitions 
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processes within “smart” hydrogels can be also triggered by pH, salt concentration, 

ultrasound, irradiation, electric and magnetic fields (Ilic-Stojanovic et al. 2011; 

Ebara et al. 2014). Furthermore, recent studies have shown that “smart” hydrogels, 

sensitive to biochemical agents (e.g. ligands, enzymes, antigens), hold a great 

promise for clinical application (Wang et al. 2010; Ebara et al. 2014; Gil & Hudson 

2004). The list of “smart” hydrogels is constantly supplemented with novel gel 

systems, where several gelation stimuli are integrated into one polymer architecture 

(Glazer et al. 2013; Klaikherd et al. 2009). 

Response to external stimuli by “smart” hydrogels is exhibited in two processes: 

swelling-deswelling or solution-gel transition (Gutowska et al. 1992; Maeda et al. 

2000). The mode of polymer phase transition is predetermined by the nature of the 

polymer crosslinking - physical or chemical.  

In contrary to chemically cross-linked hydrogels, where polymer chains are 

covalently bound, physically cross-linked hydrogels are held together by ionic, 

hydrophobic or hydrogen bonding interactions (Ebara et al. 2014; Song et al. 2013; 

Omidian & Park 2010). Due to the nature of the polymer chain interaction within the 

network, physically cross-linked hydrogels are of a particular interest for simulating 

in vivo tissue properties, as they precisely mimic the molecular integration of the 

biological systems. In biological systems, non-covalent intermolecular interactions 

are predominant (Lodish et al. 2000). Such interaction mechanism ensures dynamism 

in assembly and function of the biological systems (Ebara et al. 2014; Mohammed & 

Murphy 2009). 

At the same time, physically cross-linked hydrogels represent following limitations, 

important for scaffold design: inability of controlling degradation and gelation times, 

pore size, mechanical strength and chemical functionalisation, independently from 

other parameters (Ebara et al. 2014).  In contrast, chemically cross-linked hydrogels 

form an interconnected structure, which is formed, most commonly, via radical 

polymerisation or UV radiation (Ahmed 2013; Doycheva et al. 2004). Due to 

permanently linked network structure, chemically cross-linked hydrogels are 

mechanically strong, stable and exhibit relatively long degradation times (Hennink & 

van Nostrum 2012). 
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Despite the drawbacks, physically cross-linked hydrogel, like PNIPAM, 

demonstrates physiologically relevant properties, such as temperature or pH 

sensitivity, stimuli-driven reversible hydrogel assembly and in vivo-like non-

covalent bonding. Such properties make PNIPAM a very attractive platform for 

simulation of the in vivo-like interactions between cells and the hydrogel. In 

addition, by employing polymer architecture with high number of amenable 

functional groups, for example highly branched architecture, it becomes possible to 

fine-tune the hydrogel properties for cell encapsulation. 

2.12 PNIPAM architecture: synthesis and properties   

In the process of exploration of the PNIPAM’s stimuli-responsive nature and due to 

the drive to increase versatility of this “smart” material, polymers with distinct 

architectures were synthesised (Figure 5): “comb-like” graft, random (Lapworth et 

al. 2011) and block copolymers (Klaikherd et al. 2009), interpenetrating networks 

(IPN) (Gutowska et al. 1994) and branched polymers (Hopkins et al. 2009).  

Every polymer architecture mentioned provides unique benefits (Table 4). For 

example, advantage of the copolymer architecture is the ability to combine properties 

of two or more polymers in one structure (Lapworth et al. 2011). Whereas, 

interlacing of two polymer networks, but without covalent bonding between them, 

results in formation of IPN with increased elasticity and improved mechanical 

strength (Guilherme et al. 2006). At the same time, highly branched polymers are 

demonstrating very different mechano-chemical properties, when compared to their 

linear analogy: reduction in viscosity is commonly seen with highly branched 

polymers, as the level of chain entanglement is reduced (Carter, Hunt, et al. 2005); 

introduction of the branched architecture into linear PNIPAM improves solubility of 

the polymer in conventional solvents (Carter et al. 2007). 

  



47 
 

Table 4: Examples of the PNIPAM-based polymer architecture types 
Architecture 

type 

PNIPAM-based 

polymer examples 

Environment-responsive (“smart”) 

properties 

Linear polymer 

Poly(N-
isopropylacrylamide) 
(PNIPAM) 
 
(Kubota et al. 1990) 

The phase transition of linear PNIPAM 
occurs above 31˚C, being also reversible 
and reproducible. 

Block 
copolymer 

PNIPAM-co- (2-
hydroxyethyl 
methacrylate) 
(PNIPAM-co-HEMA) 

(Klaikherd et al. 2009) 

Resultant polymer self-assembles into a 
micellar structure in aqueous environment 
and is able to encapsulate hydrophobic 
molecules.  

Assembly and degradation can be 
stimulated through thermal and pH 
triggers.    

Linear random 
copolymer 

Poly(NIPAM-co-
styrene) (PNS)  

(Lapworth et al. 2011) 

Reversible thermos-gelation was observed, 
allowing cell release. 

With increase in styrene content, gelation 
temperature decreased from 33.9 ˚C to 
24.2 ˚C. In addition, with increase in 
styrene proportion, water retention has 
reduced dramatically. At the same time, 
culture media retention was improved.  

“Comb-like” 
graft copolymer 

PNS with poly(N-vinyl 
pyrrolidinone) (NVP) 
pendant grafts (PNS-g-
NVP)  

(Lapworth et al. 2011) 

Introduction of the NVP graft into PNS 
system separated temperature of gelation 
and solvent retention functions into 
different polymer sections (i.e. the 
backbone and the grafted chains 
(brushes)). Inclusion of the NVP improved 
culture media retention and an overall 
stability of the gel.   

Highly-
branched 
polymer 

PNIPAM co-
polymerised with 3H-
imidazole-4-
carbodithioic acid 4-
vinylbenzyl ester. 

(Carter, Hunt, et al. 
2005) 

Increase in branching has reduced the 
intrinsic viscosity, when compared to 
linear analogues. 

Clouding of the branched PNIPAM was 
lower, compared to equivalent linear 
PNIPA polymers.  

Interpenetrating 
network (IPN) 

Semi-IPN of cross-
linked PNIPAM and  
linear 
poly(ether(urethane-
urea)) 

(Gutowska et al. 1994) 

IPN architecture accelerated swelling and 
increased mechanical strength of the gel, 
when compared to cross-linked PNIPAM 
network. 

Swollen thermosensitive gel has 
demonstrated controlled release 
mechanism after heparin loading.  
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During polymerisation of the highly branched polymer many unreacted functional 

groups are formed. In theory, the number of these unreacted groups is equal to the 

number of repeating units. Therefore, the higher is the level of branching, the more 

functional groups are available for interaction, what affecting polymer’s properties. 

Contrary to branched polymers, the number of functional groups in linear polymers 

is constant, and the effect of these groups on polymer properties diminishes with 

increase in molecular weight. (Jikei & Kakimoto 2001) 

 

Figure 5: Main polymer chain architecture in physically and chemically cross-
linked hydrogel systems. 
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Highly branched polymers owe their functionality to architecture of the 

polymerisation method used. By employing a type of a living polymerisation 

reaction (i.e. where chain termination ability is removed) with a free radical on the 

chain end, a fine control over the molecular weight and narrow molecular weight 

distribution can be obtained. Use of the free radical-based synthesis allows step-wise 

growth of the chains, so that by the end of the first polymerisation stage formed 

polymer chain is “capped” by a free radical. Further addition of the monomer and the 

initiator will propagate chain growth. In addition to control over molecular weight, 

functional groups of interest can be introduced in a controlled manner at every stage 

of polymerisation. A vastly popular living polymerisation technique that allows 

generation of branched polymers is reversible addition-fragmentation transfer 

polymerisation (RAFT), first introduced in 1998 by Chiefari and colleagues 

(Chiefari et al. 1998). In the RAFT system, dithioate ester, a chain transfer agent 

(CTA), is introduced into living polymerisation process to form a dormant-type of 

radical chains ends. As a result, these chain-ends are available for further 

polymerisation or functionalisation (Rimmer et al. 2007). A detailed description of 

the RAFT mechanism has been published by Moad and colleagues (Moad et al. 

2005). 

In case of highly branched poly(N-isopropylacrylamide) (HB PNIPAM), a material 

of interest in the current study, RAFT polymerisation method has produced a 

physically cross-linked hydrogel (Hopkins et al. 2009). After initial RAFT 

polymerisation, obtained highly-branched polymer structures are akin to dendrimer 

architecture (England & Rimmer 2010). However, instead of perfect symmetry in 

Brach shooting (a unique feature of dendrimer architecture), a proportion of the 

branches in the HB PNIPAM are not propagated, as the branching process is heavily 

dependent on uniform initiator decomposition and consecutive free radical formation 

under high temperatures (England & Rimmer 2010). 

Furthermore, when the HB PNIPAM polymer is mixed with water it forms a 

colloidal dispersion (Hopkins et al. 2009). And when the temperature is below the 

lower critical solution temperature (LCST) point, all accessible hydrophilic regions 

become fully saturated with water molecules, what is manifested as dissolution. This 

dissolution process is driven by hydrogen bond formation between the solvent and 
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the hydrophilic sites of the polymer chains (i.e. polar and hydrophilic amide 

functional regions of the polymer) (Maeda et al. 2000; Tanaka et al. 2011). However, 

when the phase transition temperature is reached, representing solution-gel 

transition, these hydrogen bonds are disrupted and prevailing intrachain hydrophobic 

forces are driving initial coil-globule condensation and following polymer-solvent 

phase separation, which results in colloidal gel formation (Ding et al. 2005). The 

described mechanism of gelation process is indicative of the physical crosslinking of 

the polymer.  

The LCST point and the gelation mechanism in PNIPAM has been recognised in 

1967 by Scarpa and colleagues (Scarpa et al. 1967). After years of research, a 

conceptual view of this phase-transition process in PNIPAM can be described in 

thermodynamics terms as follows: at the point of LCST phase transition, enthalpic 

contribution of hydrogen-bonded water molecules is dominated by the entropic gain 

within the whole system (Alarcon et al. 2005). As a result, polymer-water separation 

takes place with, and at the sufficient polymer concentration a colloidal gel structure 

is formed.  

The LCST point of linear PNIPAM is 31-32˚C  - a physiologically relevant 

temperature (Scarpa et al. 1967; Heskins & Guillet 1968). Therefore, a system that 

allows generation of a 3D polymer network (Wu et al. 2014), that entraps water at 

physiologically-relevant temperature, is of interest and potential benefit for clinical 

application. 

2.13 Biomedical application of the PNIPAM hydrogel 

Thermo-responsive and phase transition property of NIPAM-based hydrogels has 

been explored by numerous research groups, with main focus on production of a 

“smart” drug-releasing mechanisms (Wei et al. 2006), scaffolding materials for cell 

encapsulation (Gan et al. 2009; Ibusuki et al. 2003) and affinity studies (Carter, 

Rimmer, et al. 2005).  

Controlled drug release capacity of the PNIPAM systems was the initial driver for 

this “smart” material. By the end of 1980’s, popularity of PNIPAM-based hydrogels 
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in the biomedical field was rapidly gaining momentum, as this material was 

providing novel means of controlling drug release (Schild 1992). Fine-tuning 

capabilities over the releasing process can be exemplified by the study of Gutowska 

et al., where chemically-cross-linked PNIPAM hydrogel was studied as a loading 

and release mechanism for heparin, an anti-coagulation factor in surface induced 

thrombosis (Gutowska et al. 1992). Application of this hydrogel-based system was 

further tested in a canine in vivo model, which showed significant reduction of 

thrombus formation (Gutowska et al. 1995).   

Currently, the most promising application of the thermos-sensitive PNIPAM 

hydrogels – is substrate and scaffolding material design. Despite obvious benefits of 

the PNIPAM-based hydrogel properties for tissue engineering, several limiting 

factors are well known: expulsion of water at temperatures above LCST (also known 

as syneresis), low mechanical rigidity and opaqueness at temperatures above LCST. 

All of these factors hinder the applicability of the PNIPAM, where the issue of 

syneresis is of particular importance. In some cases overly active syneresis can lead 

to a complete hydrogel collapse, effecting overall mechanical strength and pore size 

within the gel (Gan et al. 2010).  

These drawbacks are characteristic for conventional linear PNIPAM (Wu et al. 2003; 

Maeda et al. 2000). Practical issue of opaqueness and low mechanical rigidity are 

addressed by copolymerisation with mechanically strong and transparent hydrogel 

(Cheng et al. 2012; Ibusuki et al. 2003). In order to reduce or prevent the syneresis 

effect, PNIPAM polymer chains are most frequently functionalised with hydrophilic 

groups, like acrylic and carboxylic acids (Jha et al. 2014; Gutowska et al. 1992; 

Rimmer et al. 2007).  

Along with affecting water retention with functional group addition, biologically 

active molecules can be also integrated into hydrogel architecture to direct cellular 

response. Perhaps, most frequently used biomolecule with NIPAM-based hydrogels 

is arginine–glycine–aspartic acid, also known as RGD peptide sequence (Stile & 

Healy 2001; Rimmer et al. 2007). RGD sequence is a recognised effector of cell 

saviour, both in 2D and 3D environments (Martino et al. 2009; Tibbitt & Anseth 

2009; Mager et al. 2011).  
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With an increase in understanding of the regenerative capacity of MSCs, selective 

testing of the biomimetic factors, like RGD, has become commonplace with MSCs. 

Optimised presentation of RGD in bio-inert 3D environment has a stimulating  effect 

on cell viability (Salinas & Anseth 2008) and differentiation (Jha et al. 2014). RGD 

is only one out of numerous molecules available for hydrogel functionalisation 

(Yokoi et al. 2005; Fonseca et al. 2011; Jongpaiboonkit et al. 2009). Another popular 

functionalisation molecule is a matrix metalloproteinase (MMP)-sensitive peptide 

sequence (Fonseca et al. 2011; Lutolf, Lauer-Fields, et al. 2003). By means of using 

MMP sequences, scaffold degradation is driven by cell activity, aiding adaptation of 

the 3D environment to the needs of the cell. Furthermore, in a recent study Jha and 

colleagues combined RGD functionality with MMP-sensitive architecture within 

PNIPAM polymer (Jha et al. 2014). 

It is well understood, that function of the ECM is not only to structurally support the 

cells with its’ architecture, but also to be a guide the development of the cells. This 

guiding process can be simulated by using light patterning approach, pioneered by 

Kloxin and colleagues (Kloxin et al. 2009). By using a multi-photon microscope and 

photodegradable hydrogel in the light patterning method, it has become possible to 

attain cellular organisation with “tissue-like” hierarchy within a scaffold 3D 

environment (Lutolf 2009).  

2.14 Highly branched PNIPAM – focus of the research study 

Thermo-responsive nature of the PNIPAM, functionalisation options, 

biocompatibility and versatility of application in tissue engineering is the driving 

force behind the interest for this “smart” hydrogel.  

The central area of interest for tissue engineering filed is the understanding of the in 

vivo environment and the repair processes involved, with an ultimate intent to 

translate new findings into clinical applications. In order to gain this understanding, 

ever more research groups are employing 3D culture methods, as the conventional 

monolayer culture systems poorly represent in vivo conditions (see Table 2).  
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Over the last three decades, PNIPAM polymers of numerous designs were produced 

to obtain in-depth knowledge of the phase transition process and to explore new 

applications of this material. Review of the literature has highlighted the beneficial, 

as well as limiting, properties of PNIPAM hydrogels. It is evident, that this “smart” 

material holds a great promise in providing an in vivo mimicking environment for 

fundamental research and clinical application, as a non-invasive injectable scaffold.  

 

Figure 6: Conceptual view of the 3D encapsulation of MSCs by highly branched 
PNIPAM.  

Prior to clinical translation it is vital to collect as much as possible of clinically 

relevant information by means of in vitro testing and analysis. As the literature 

review has demonstrated, PNIPAM hydrogels can be used for 3D cell encapsulation 

in attempt to generate a cell supporting environment and simulate in vivo conditions. 

Therefore, the central aim of this research is to develop a novel 3D scaffolding 

environment, on the basis of highly branched PNIPAM polymer, for analysis of 

MSC behaviour in 3D in vivo-like environment (Figure 6). Detailed description of 

the aims and objectives is presented in the next section.  



54 
 

2.15 Project aims and objectives 

PNIPAM-based hydrogels hold a great promise for generation of the scaffolding 

environment for cell encapsulation. From the vast selection of the hydrogel 

architectures, highly branched PNIPAM hydrogel is of particular interest for cell 

encapsulation, due to the control over functional group presentation this polymer 

architecture can provide.  

Previously, Hopkins and colleagues has demonstrated that highly branched PNIPAM 

with RGD-functionalised chain ends can be used for fibroblast and endothelial cell 

adhesion, monolayer culture and subsequent trypsin-free detachment upon cooling 

below LCST point (Hopkins et al. 2009).  

Despite a considerable potential of PNIPAM in cell encapsulation, competence of 

the HB PNIPAM in encapsulation of MSCs has never been investigated. Therefore, 

the aim of this project is to develop a HB PNIPAM-based synthetic hydrogel 

scaffold, and employ this scaffold as a platform for assessment of MSC behaviour 

and guidance of differentiation in 3D environment.  

Project-specific objectives are: 

1. To synthesise a stable thermo-responsive PNIPAM hydrogel with highly 

branched architecture. 

2. To characterise chemical and mechanical properties of the HB PNIPAM 

hydrogel  

3. To optimise HB PNIPAM for encapsulation and long term culture of MSCs 

4. To investigate viability, proliferation and differentiation capacity of MSCs 

within HB PNIPAM 3D environment.  

5. To assess role of HB PNIPAM properties in fate determination by the MSCs. 

The result of this research work will be a synthesis method and a characterisation 

data of a highly-branched PNIPAM, optimised for long-term culture of MSCs within 

3D environment. This study will also yield biocompatibility data for a novel 

hydrogel environment, which will assist in further design and testing of the 

PNIPAM-based hydrogels for cell studies in 3D. 
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Finally, findings of this project will broaden the understanding of MSC behaviour 

within 3D biomimetic environment, and the effect of 3D synthetic milieu on 

differentiation potential of MSCs. Taken together, outcomes of this study will form a 

contribution for vitally important area of tissue engineering research – understanding 

of MSC behaviour within 3D biomimetic environment.  
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3 Hydrogel scaffolds: PNIPAM synthesis and 
characterisation  

3.1 Introduction  

Unprecedented need for replacement organs (Organdonation.nhs.uk 2014), which is 

hugely unmet, has stimulated research into organ repair by means of scaffolding 

materials. Decades of active research has resulted in a plethora of materials that hold 

a great potential for tissue engineering strategies (Roux & Ladavière 2013; 

Hutmacher 2000; Lee & Mooney 2001). Central idea of the scaffold use is to provide 

an ECM-like environment, that would stimulate tissue repair and function restoration 

(Daley et al. 2008). Scaffold systems, primarily targeted towards soft (i.e. non-

mineralised) tissue repair, are widely represented in the tissue engineering field by 

hydrogels from natural polymers (e.g. collagen (Winer et al. 2009), gelatin 

(Dolatshahi-Pirouz et al. 2014), fibrin (Ahmed et al. 2008), alginate (Domm et al. 

2002), agarose (Aizawa & Shoichet 2012), chitosan (Hong et al. 2007)) and 

synthetic polymers (e.g. poly(ethylene glycol) (Burdick & Anseth 2002), poly(N-

isopropylacrylamide) (Lapworth et al. 2011), poly(N, N-diethylacrylamide) (Idziak 

et al. 1999), poly(N-vinylcaprolactam) (Laukkanen et al. 2004), poly(vinyl alcohol) 

and poly(acrylic acid) (Lee et al. 1996)).  

Hydrogels, formed by both polymer types, represent various modes of gelation. 

However, few hydrogels stand out due to their unique thermo-sensitive and state-

reversible properties. Thermo-sensitive properties are exhibited by poly(methyl vinyl 

ether), poly(N-vinylcaprolactam) and poly(N-isopropylacrylamide) amongst many 

(Schmaljohann 2006). Hydrogels, which demonstrate LCST properties, are most 

suitable for biological application, as the gelation process takes place after gradual 

increase in temperature. Whereas, upper critical solution temperature (UCST) gels 

often require large amounts of heat energy to denature original gel structure and 

liquefy the gel, making these materials less suitable from the processing aspect, as 

well as for cell release from the structure and injection therapies. Problematic  

applicability of UCST gels can be exemplified by agarose and gelatin gels, where the 

hydrogel first has to be heated above 60˚C in order to denature the original structure, 

followed by cooling to form a gel (Hunt & Grover 2010).  
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Whereas some polymer hydrogels, that demonstrate LCST, undergo phase transition 

at physiologically relevant temperatures, therefore being of a greater interest for 

tissue engineering applications: for example poly(N, N-diethylacrylamide), 

poly(methyl vinyl ether) and poly(N-vinylcaprolactam) (Schmaljohann 2006). This 

list would not be complete without PNIPAM, the most studied thermo-responsive 

polymer with a distinct LCST point at ~31˚C in its original formulation (Scarpa et al. 

1967).  

The solution-gel transition process in PNIPAM is orchestrated by enthalpy-driven 

hydrogen bond disruption between the hydrophilic functional groups and the 

surrounding solvent. This phase-transition mechanism is a product of PNIPAM’s 

amphiphilic nature, where hydrophobic isopropyl group is counteracting hydrophilic 

and polar amide group (Rimmer et al. 2009). Amide groups form hydrogen bonds 

with surrounding aqueous phase, where isopropyl group are avoiding contact with 

water and represent the force that drives collapse of the chain when hydrogen bonds 

with amide groups are broken. At temperatures below LCST polymer chains are 

relaxed and fully hydrated. However, when the temperature is increased past LCST 

point, hydrogen bonds between water molecules and amide groups are disrupted and 

hydrophobicity of isopropyl groups is starting to prevail, chain contraction into 

globular shape occurs (in order to minimise contact with water). The final result of 

this process manifests in collapse and entanglement of the polymer chains, producing 

in physically cross-linked network (Zeng et al. 1998; Liao, Zhang, et al. 2011; 

Rimmer et al. 2007).  

Phase transition properties of PNIPAM were first noted by Scarpa et. al., where 

water-dissolved polymer was precipitating from a solution at 31o C (Scarpa et al. 

1967) . This report was shortly followed by work of Heskins and Guilette, 

confirming phase transition of PNIPAM and providing a detailed polymer 

characterization (Heskins & Guillet 1968).  

Over the years various approaches were employed to alter transition temperature of 

PNIPAM, where most recently functionalisation with hydrophilic or hydrophobic 

moieties and addition of surfactants has been shown to provide great level of control 

over the LCST point (Chung et al. 1998; Wu & Zhou 1996). In addition, work of our 
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group has shown that by controlling degree of branching and functionalisation with 

polar groups it is possible to fine-tune LCST point of PNIPAM (Rimmer et al. 

2007). 

However, after reaching the LCST temperature PNIPAM hydrogel demonstrates 

further progression of the gelation processes, which in heating up stage is expressed 

as continuous shrinkage of the structure via solvent expulsion, known as syneresis 

(Gan et al. 2010). Where during cooling process, a lag in dissolution is often 

observed – i.e. dissolution takes place at temperatures below original LCST point. 

Such process is known as hysteresis (Cheng et al. 2006). Both of these processes are 

affected by the molecular weight of the polymer, degree of branching and 

introduction of hydrophilic or hydrophobic functional groups. Hydrophilic 

modification of PNIPAM leads to reduction or ablation of syneresis (Gan et al. 

2010). Addition of the hydrophilic groups is also known to improve stability of the 

PNIPAM gels (Rimmer et al. 2007).  

3.2 Study rationale 

From the array of available hydrogels, PNIPAM is highly suitable for biological 

application due to its’ thermo-responsive nature, lack of batch-to-batch variability 

and control over synthetic composition, virtually–absent cytotoxicity (Cooperstein & 

Canavan 2013), readiness for functional (Hopkins et al. 2009) and mechanical 

modification (Chung et al. 2006), controlled porosity (Galperin et al. 2010),  

suitability for cell expansion (Lei & Schaffer 2013), and ability to release 

encapsulated drugs (Zhang et al. 2009) and cells (Lapworth et al. 2011). 

At the same time, rapid advances in the field of multipotent cell biology helps to 

understand what chemical and mechanical stimuli are effecting cells in vivo (Jones & 

Wagers 2008; da Silva Meirelles et al. 2008). By fine-tuning the surrounding 

environment of the cell, a control over cellular fate can be obtained (Engler et al. 

2006; Pek et al. 2010; Giobbe et al. 2012). This insight in to regulation of cell and 

tissue development is of fundamental importance for treatment of degenerating 

diseases. Therefore, it is crucial to create a truly physiologically-relevant hydrogel 

scaffold that will match the biological needs of the multipotent cell. 
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The core objective of this study is to design, synthesise, characterise and validate a 

fully synthetic scaffolding material with highly amenable and thermo-sensitive 

nature, which would support viability of encapsulated cells. 

Lack of cell-encapsulating scaffold, that would provide control over synthetic 

architecture with functional group presentation, has been a driving force behind this 

project. Highly branched architecture, contrary to dendrimer (England & Rimmer 

2010), is more practical to synthesise, also providing versatility of functional 

modification. Despite active research of the highly branched polymers in the last two 

decades, complete understanding of how these materials can be utilised in the 

biomedical application has not been reached due to continuous discovery of control 

factors of cellular development (Yang et al. 2014) and molecular signalling factors 

(Colombres et al. 2008).  

Outcomes of this scaffold-focused study are expected to provide a synthesis protocol 

for a novel cell-culture-suitable material with highly functional architecture. In 

addition, understanding of the mechanical and structural properties of this material, 

which will be obtained as a result of this study, will be of substantial importance for 

analysis of encapsulated cell behaviour during in vitro experiments. 
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3.3 Materials and methods  

3.3.1 Branched PNIPAM synthesis 

Previously, successful highly branched poly(N-isopropyl acrylamide) (HB 

PNIPAM) polymer synthesis was demonstrated by our group (England & Rimmer, 

2010; Hopkins et al., 2009). In brief, 25 molar equivalents (m. e.) of NIPAM were 

reacted with 1 molar equivalent of RAFT agent to produce a highly-branched 

polymer with average number of 25 NIPAM units per branching point, formed by 

RAFT agent.  

Also, one molecule of RAFT gives rise to one RAFT-functionalised chain end. 

Theoretical conversion is 100%, where in practice it will be lower. To account for 

this variability, number of functional ends were calculated as follows: 

1g of polymer (NIPAM:RAFT) = MolesPNIPAM  x (Mr NIPAM) + MolesRAFT x (Mr 

RAFT) 

For a PNIPAM:RAFT=25:1 ratio (with 100% (theoretical) conversion): 

 1g =  25 MolesRAFT x (113.1) + 1 MolesRAFT x (259.1) 

 1g = 2827.5 MolesRAFT +259.1 Moles RAFT = 3086.6 MolesRAFT 

 MolesRAFT = 1g/3086.6 = 3.2398 x 10-4 moles per 1 g of polymer  

For a PNIPAM:RAFT=25:1 ratio (with X (actual) conversion, confirmed by NMR) 

 1g =  25 MolesRAFT x (113.1) x Y + 1 MolesRAFT x (259.1) 

 Y = ratio between PNIPAM and RAFT NMR signal 

 1g = 2827.5 MolesRAFT x Y + 259.1 Moles RAFT 

 MolesRAFT = 1g/(2827.5 x Y + 259.1) 
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Prior to synthesis of the 4-vinylbenzyl-pyrrolecarbodithioate RAFT agent, pyrrole 

(99%, Sigma-Aldrich, UK) was distilled over calcium hydride (95%, Sigma-Aldrich, 

UK) under reduced pressure and kept at 4 °C with molecular sieves. 50 g (74.53 

mmol) of distilled pyrrole was added dropwise over 30 min to a rapidly stirring 

mixture of sodium hydride (3 g, 125 mmol; 60%, in mineral oil dispersion; Sigma, 

UK) and anhydrous dimethylformamide (10 ml, DMF; from Grubbs solvent 

purification system). This solution was stirred for 30 min at room temperature, 

followed by cooling down to 0˚C with an ice bath. Carbon disulphide (5.68 g, 74.59 

mmol; ≥99.5%, Sigma-Aldrich, UK) and DMF (10 ml) were added dropwise over 10 

min at 0˚C to form a dark red solution, which was stirred for 30 minutes at room 

temperature and cooled to 0˚C again thereafter. Further, 4-vinylbenzyl chloride 

(11.37 g, 74.49 mmol; 90%, Sigma-Aldrich, UK), distilled under reduced pressure, 

and DMF (10 ml) were added dropwise over 20 min. The formed brown solution 

was allowed to steer for 16 hours at room temperature. Distilled water (80 ml) and 

diethyl ether (80 ml; Laboratory Reagent Grade, Fisher, UK) were added to the 

stirred solution. The organic layer was separated and the aqueous layer extracted 

with diethyl ether (3 x 160 ml). Collected extracts were dried over magnesium 

sulphate (Sigma-Aldrich, UK), followed by filtration and rotary evaporation of the 

excess solvent. Obtained brown oil was purified by flash chromatography on a silica 

column with n-hexane as an eluent. (Yield = 7.03g, 36.6%) 

1H NMR (CDCl3, rt, 400 MHz): δ/ppm 4.6 (2H, s, Ar-CH2-S-); 5.3 (1H, d, vinyl); 

5.8 (1H, d, vinyl); 6.3 (2H, m, =CH-, pyrrole); 6.7 (1H, dd, vinyl); 7.7 (2H, m, N-

CH=, pyrrole); 7.4 (4H, s, C6H4-) 

To increase purity, N-isopropyl acrylamide monomer (NIPAM, 97 %, Sigma-

Aldrich, UK) was recrystallized from 40/60 hexane/toluene mixture 3 times.  Highly 

branched PNIPAM was synthesised by dissolving N-isopropyl acrylamide monomer 

(9.834 g, 86.646 mmol;), RAFT agent (0.9 g; 3.474 mmol) and  4,4′-Azobis(4-

cyanovaleric acid) (ACVA) (0.57 g; 2.029 mmol; Sigma-Aldrich, UK) in dioxane 

(40 cm3; Sigma-Aldrich, UK). Formed solution was transferred into an ampule, 

where it was subjected to 4 cycles of pump-assisted freeze-thawing cycles at 10-3 

mbar pressure during freezing, followed by sealing of the ampule with the blow 

torch. Polymerisation process was carried out in a water bath at 60˚ C for 12 hours, 
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forming a viscous but still pliable product. Collected product was precipitated into 

cold diethyl ether three times, followed by gentle N2 blow-drying and two days in 

vacuo at room temperature, providing 79.36% product recovery. 

1H NMR (CDCl3, rt, 400 MHz): δ/ppm 1.14 (br s, isopropyl -CH(CH3)2), 1.44 – 2 

(br m, overlapping, polymer backbone CH2 and CH), 3.72  (br m, PNIPAM NH-

CH), 4 (s, br, 1H (CH3)2CH-) 6.35 (s, 2H, N-pyrrole-Hb), 6.4-7.2 (br m, 

overlapping), 7.68 (br d, 9 Hz, 2H, N-pyrrole-Ha) 

Chain ends of the HB PNIPAM were functionalised with 4,4′-azobis(4-cyanovaleric 

acid) (ACVA, 98%, Sigma-Aldrich, UK) in order to achieve carboxylic acid chain-

ends. 20 molar equivalents (m.e.) of ACVA were dissolved in dry DMF and reacted 

with 1 molar equivalent RAFT in HB PNIPAM for 24 hours at 70˚C under N2 

atmosphere. 20 m.e. of ACVA were added twice more under the same conditions. 

Unreacted excess of ACVA and traces of DMF were removed by triple ultrafiltration 

through a cellulose filter with 3000 molecular weight cut-off. Polymer  product, 

dissolved in DMF, was added to 250 ml mixture of 90%:10% ethanol:deionised 

water, under positive pressure of  N2 gas at 4 atmospheres, reducing the mixture to 

50 ml. 250 ml of EtOH:H2O were added and the ultrafiltration process was repeated 

twice more, where post-filtration fraction was freeze-dried. 

To prepare resulting polymer for amino acid coupling, highly branched PNIPAM 

(3.17g), functionalised with ACVA, was dissolved in DMF (45 ml), followed by 

addition of dissolved dicyclohexyl carbodiimide ( DCC, 0.5155 g, 4.479 mmol; 

99%, Sigma-Aldrich, UK) and N-hydroxysuccinimide ( NHS, 0.90187 g, 4.371 

mmol; 98%, Sigma-Aldrich, UK). DCC and NHS were dissolved in 10 ml of DMF.  

Formed solution was stirred under nitrogen atmosphere for 24 hours at room 

temperature. Reaction by-product dicyclohexylurea (DCU) was filtered off. Traces 

of reagents and DMF were removed from the product by ultrafiltration process, 

repeated twice, followed by freeze-drying. 
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3.3.2 RRR synthesis 

Peptide synthesis was performed in-house on an automated synthesizer PSW100 

(Chemspeed Technology, Switzerland). Wang resin (2000 mg; Novabiochem, 

Germany) was swollen in DMF (25 ml) overnight by vortex at 350 rpm. Following 

DMF aspiration, for the first α-amino group deprotection, 20% piperidine (99%, 

Sigma-Aldrich, UK) / 80% DMF mixture (30 ml) was added to the swollen resin for 

15 minutes under gentle (100 rpm) vortex. Deprotection mixture addition and vortex 

step was repeated once more. 

Further, deprotection mixture was aspirated by vacuo. Traces of piperidine were 

removed by six washes with DMF (30 ml), with 100 rpm vortex for 1 minute during 

every wash. For the coupling step arginine (Pbf)-OH (4.0864 g in 12.6 ml of DMF; 

Fluorochem, UK), HBTU (9.557g; Apollo Scientific, UK) and 2-MBT (4.221 g; 

Sigma-Aldrich, UK) in 12.348 ml of DMF were added to the deprotected resin, 

followed by DIPEA (2.195 ml; Apollo Scientific, UK). The coupling reaction was 

performed for 1 hour with stirring at 350 rpm. In order to improve reactivity, 

identical amounts for arginine (pbf)-OH, HBTU, 2-MBT and DIPEA were 

repeatedly added, followed by 1 hour of stirring. Resin was washed with DMF (30 

ml) six times. 

The cycle of double deprotection and double coupling, described above, was 

repeated once more in order to complete peptide chain extension. After chain 

extension, the resin was washed 6 times with DMF, 6 times with DCM and 6 times 

with methanol. 

Cleavage of the extended peptide sequence from the resin and side-chain protective 

group removal was done by addition of 90/10 trifluoroacetic acid (TFA, 99%, 

Sigma-Aldrich, UK) /dH2O (125 ml) and stirring for 4.5 hours. The cleaved resin 

was separated from the cleavage cocktail and peptide product by filtration. TFA was 

removed from the mixture by rotary evaporation, where peptide product was 

recovered by precipitation into cold diethyl ether. The peptide trituration was 

repeated 5 more times, followed by rotary evaporation of diethyl ether and freeze-
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drying from dH2O and 0.5% acetic acid mixture. Recovered peptide was stored at -

20˚C. 

3.3.3 Tri-arginine (RRR) addition 

2.5 g of NHS and DCC functionalised PNIPAM were mixed with 150 ml of 

ultrapure water and stirred over ice for 20 minutes under nitrogen atmosphere. 600 

mg of RRR peptide (mixture of R , RR and RRR sequences; RRR sequence fraction 

is present at 73.1%; Figure 7) were dissolved in 75 ml of dH2O and added to stirring 

polymer solution, followed by immediate addition of 25 ml of phosphate buffer (0.1 

M pH 8.5; resulting concentration 0.01 M). Reaction was allowed to proceed for 16 

hours, with the ice bath warming up to room temperature during the reaction time. 

Collected reaction solution was ultra-filtered 3 times and freeze-dried, as described 

above. 

1H NMR (CDCl3, rt, 400 MHz): δ/ppm 1.14 (br s, isopropyl -CH(CH3)2), 1.44 – 2 

(br m, overlapping, polymer backbone CH2 and CH), 3.72  (br m, PNIPAM NH-

CH), 4 (s, br, 1H (CH3)2CH-) 6.35 (s, 2H, N-pyrrole-Hb), 6.4-7.2 (br m, 

overlapping), 7.68 (br d, 9 Hz, 2H, N-pyrrole-Ha) 

3.3.4 Nuclear magnetic resonance (NMR) characterisation 

NMR spectra was obtained from Bruker Advance 400. 20 mg of polymer sample 

were dissolved in 1.5 ml of chloroform-d (99.8 atom % D, Sigma-Aldrich, UK). 

3.3.5 Gel permeation chromatography (GPC) characterisation 

Molecular weight of PNIPAM+RRR was determined by GPC with DMF eluent for 

mobile phase. GPC setup consisted of a Polymer Laboratories LC1150 pump and 

Viscotek TDA 300 refractive index detector. Mobile phase was eluted through 3x30 

cm PL gel mixed-B columns (Polymer Laboratories, UK). Poly(methyl 

methacrylate) standards (Polymer Laboratories, UK) were used for calibration of the 

instrument and data was analysed by using Cirrus software package. 
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3.3.6 Zeta potential and particle size characterisation 

Zeta potential analysis was performed on ZetaPALS instrument (Brookhaven 

Instruments, USA) with heat controlled sample holder. The PNIPAM and 

PNIPAM+RRR samples were prepared in 1 mM potassium chloride  (KCl, 99%, 

Sigma-Aldrich, UK)  ( solution at 0.025 and 0.1 mg/ml concentration respectively. 

Particle size analysis was conducted on the same instrument, where polymer samples 

were prepared in 10 mM KCl at identical concentrations as for the zeta potential 

measurement. Every plotted value is an average of 3 analysis cycle results with 10 

runs in every cycle. 

3.3.7 Cloud point measurement with UV-visible spectrophotometry 

LCST quantification was performed on 0.05-0.1 wt% polymer solutions in ultrapure 

water by using Varian CARY3-bio UV-visible spectrometer. All samples were 

subjected to sequential heating and cooling steps at 1˚C/min rate. Change in solution 

absorbance was recorded at 500 nm wavelength. Temperature point, at which 

collected turbidimetry data would cross 1% absorbance reference line, was 

considered to be an LCST point during heating step. Identical measurement was 

done during the cooling step in order to quantify amount of hysteresis in the system. 

3.3.8 Scanning electron microscope (SEM) 

Samples of 5 wt% PNIPAM+RRR were prepared in ultrapure water and basal cell 

culture media (i.e. DMEM media containing 1% penicillin/streptavidin (10,000 

U/mL; Life Technologies, UK), supplemented with 10% foetal bovine serum (FBS; 

Gibco, Life Technologies, UK). Polymer solutions were deposited drop wise on the 

etched copper plates followed by heating to 37˚C and maintained at this temperature 

for 30 seconds to allow complete gelation to occur. Following gelation, polymer 

samples on the copper plates were promptly transferred into liquid nitrogen. Further, 

samples were freeze-dried overnight at -60˚C, following stepwise elevation of 

temperature by 10˚C every 30 minutes until temperature was normalised to room 

temperature. Dried polymer samples were fractured and sputter coated with Pd/Au. 

SEM analysis was performed with field emission JSM-7600F SEM (Jeol, USA) with 

accelerating voltage set to 3kV. 
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3.3.9 Infra-red (IR) spectroscopic analysis of the NIPAM polymers 

Fourier transform infrared (FTIR) spectra of PNIPAM and PNIPAM+RRR (10 wt%, 

prepared in deionised water) were collected using a Golden Gate™ single reflection 

attenuated total reflectance (ATR) module (SpectraTech) coupled with a Thermo 

Nicolet Nexus FTIR spectrometer. Every collected spectrum was averaged 64 times 

at 4 cm-1 resolution. Prior every measurement 5 minute temperature equilibration 

hold was applied. ATR-FTIR spectra were processed with Omnic v6.1 ATM 

(ThermoNicolet) software. 

3.3.10 Phase transition analysis with micro-scale differential scanning 
colorimeter (µDSC) 

Temperature dependent phase transition of PNIPAM and PNIPAM+RRR, dissolved 

in deionised water at 1.5 mg/ml concentration, was analysed on differential scanning 

micro calorimeter (GE Life Sciences). Prior analysis, polymer solutions were 

degassed and cooled down to 5˚C. Heating and cooling cycles were repeated 20 

times at 1˚C/min rate. Data analysis was performed with MicroCal Origin Software. 

3.3.11 Rheological behaviour analysis 

Rheological analysis of the PNIPAM+RRR in aqueous solution was performed on 

AR-2G cone (40 mm; 2˚) and plate viscometer (TA Instruments, USA). Heat flow in 

the Peltier plate was controlled by a Julabo F24 water bath. Samples at 2.5, 5 and 10 

wt% concentrations were analysed at a fixed strain rate of 2.5, 1 and 3.5 Hz 

respectively and controlled temperature rate of 1˚C/min. Elastic (G’) and plastic 

(G’’) moduli were recorded, where crossover between G’ and G’’ considered an 

onset of the gelation  process. 

3.3.12 Tri-arginine (RRR) peptide purity assessment with liquid 
chromatography mass spectrometry (LC-MS). 

Synthesised RRR peptide was fractionated on a Kinetex™ 2.6  μm HILIC 100 Å (50 

x 2.1 mm; Phenomenex®) liquid chromatography column, followed by time of flight 

mass spectrometry analysis using following settings: 70% acetonitrile / 30 % 100 

mM ammonium formate (pH 3.2) at 0.5 ml/min.
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Scheme 1: HB PNIPAM and RRR functionalisation steps 

3.4 Results 

3.4.1 Polymer synthesis  

Highly branched (HB) PNIPAM was synthesised via the RAFT route, a reliable 

method of radical polymerisation that provides high degree of control over the 

reaction. Initial PNIPAM polymerisation and further functionalisation with RRR 

peptide sequence is shown in Scheme 1. 

Molecular weight and number distribution of the initial polymer was assessed by 

GPC, where obtained data is summarised in the table below (Table 5). 

Table 5: Molecular weight of parental PNIPAM (i.e. no COOH or RRR chain 
ends) 

In-house synthesised RRR peptide was not fractionated due to high product losses 

during liquid chromatography separation. The liquid chromatography and mass 

spectrometry tandem analysis identified the proportion of RRR peptide sequence to 

be equal to 73.12% of the total product. Whereas RR an R sequences were 

represented at 22.77% and 4.1% respectfully (Figure 7). Initial separation of the 

peptide fractions has demonstrated loss of yield below required. Therefore, the 

Mp Mn Mw PDI 
46755.67 (g/mol) 17933 (g/mol) 58817 (g/mol) 3.28 
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collected peptide product was used as a mixture of tri-peptide (RRR), di-peptide 

(RR) and mono-peptide (R). 

 

Figure 7: HPLC-MS analysis of RRR collected product, where 3 peptide 
fractions were identified, with 73.12% of the product composition represented 
by RRR. 

Prior to addition of the RRR peptide functionality to carboxylic acid ended HB 

PNIPAM, polymer solubility in water was poor. Hydrogels, prepared in water, were 

contracting and expelling most of the entrapped water in the period of 20 minutes at 

37˚C. However, following RRR functionalisation, solubility of the polymer 

improved and formed hydrogels, which retained structural integrity after prolonged 

incubation periods with a minimal expulsion of water (Figure 8).  

 

Figure 8: Solubility and water expulsion by carboxylic acid (COOH) and 
peptide (RRR) functionalised PNIPAM at various concentrations. After 
functionalisation with RRR peptide, polymer hydrogels became self-supporting 
at a sufficient concentration (i.e. 5 wt%). 
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After heating the sample beyond the gelling point, PNIPAM+RRR, prepared in 

water at 5wt% concentration, forms a self-supporting gel with high micro-porosity 

(Figure 9). Hydrogel reconstitution in serum-supplemented cell culture media results 

in increased pore size and more randomised network structure.  

 

Figure 9: SEM micrographs of a freeze-dried and fractured PNIPAM+RRR, 
prepared in deionised water (A) or cell culture media (B). The accelerating 
voltage was set to 3kV.  

3.4.2 Uv vis: LCST and hysteresis window determination 

Alongside with gelation stability (Figure 8), functionalisation of PNIPAM with RRR 

sequence has increased lower critical solution temperature (LCST) from 18˚C to 

24˚C, as the turbidimetry analysis demonstrates (Figure 10). Whereas hysteresis 

window has widened up from 4.5˚ C to 6.5˚ C after RRR sequence addition. 
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3.4.3 µDSC: detailed analysis of the phase transition 

Heat input, required for solution-gel transition to occur, has been recorded by μDSC 

(MicroCal VP-DSC; GE Healthcare) for both parental and RRR functionalised 

PNIPAM in aqueous solution and at identical concentration (Figure 11).  During 

heating and cooling cycles parental PNIPAM demonstrated a single peak appearance 

(17.77˚ and 17.15˚C, respectively), whereas PNIPAM+RRR has shown two clear 

peaks during heating step (at 22.34˚ and 27.49˚C) and two crossing over peaks 

during cooling, with dominant peak centre  at 24.19˚C. In addition, heat flow 

requirement for the transition to take place in PNIPAM+RRR sample is 19-fold 

lower than for parental polymer sample.  

Figure 10: UV-Vis analysis of parental and RRR functionalised PNIPAM in 
aqueous solution. The onset of LCST process for non-functionalised (parental) 
HB PNIPAM was at 18˚C, and addition of the RRR peptide to the polymer has 
increased LCST onset point of the polymer to 24˚C. Dissolution points were 
13.5˚C and 17.5˚C in the parental HB PNIPAM and the PNIPAM+RRR, 
respectively. 
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Figure 11: Thermal analysis of the solution-gel transition in parental and RRR 
functionalised PNIPAM. Selected dotted area shows an enlargement of plotted 
data for PNIPMA+RRR with higher resolution in y-axis. 

3.4.4 Zeta potential and particle size: colloidal stability and dehydration effect 

Zeta potential measurement is a convenient way to elucidate polymer interaction 

with the solvent, flocculation parameters, colloidal stability and polymer adsorption 

by means of determination and tracking of the effective charge at the surface of the 

particle. PNIPAM polymer, as a colloidal solution, is also known to demonstrate 

change in particle conformation, from opened (i.e. coil) to closed (i.e. globule) after 

passing the LCST point (Hopkins et al. 2009). As a result of this conformational 

change hydrophobic isopropyl group is becoming more prevalent at the interface 

with the solvent. Hydrophobic bond formation between colloidal bodies of the 

polymer takes places. If the hydrophobic forces are overpowering and concentration 

of the polymer is too high, most probably flocculation and precipitation will occur. 

Such colloidal aggregation can be analysed by particle size analysis at different 

temperatures.  

Zeta potential of parental PNIPAM (i.e. polymerised NIPAM monomer into HB 

variant, without functionalisation with carboxylic acid) was initially analysed at 0.1 

mg/ml concentration, identical to the concentration used during UV-Vis analysis 

(Figure 10) and matching concentration of PNIPAM+RRR sample during zeta 

potential and particle size measurement (Figure 14). However, 0.1 mg/ml 

concentration was not fully suitable for particle size measurement due to count rate 

being much higher than the recommended testing range. Therefore, parental 
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PNIPAM sample at 0.025 mg/ml was used for zeta potential and particle size 

measurement.  

Zeta potential analysis of parental PNIPAM at 0.025 mg/ml demonstrated particle 

charge of -5.78 and -5.26 mV at 15 and 20˚C, respectively (Figure 12A). Whereas at 

following measurement point (at 25˚C), particle charge is equal to -8.82 mV. 

Therefore, in the 20 to 25˚C range a change in the trend of the plot is observed, 

suggesting that the LCST point lies in the 20-25˚C range.  After 25˚C temperature 

point, zeta potential charge continues to decrease, and by reaching 37˚C, zeta 

potential is equal to -11.2 mV (Figure 12A).  

 

Figure 12: Zeta potential measurement of parental PNIPAM at 0.025 (A) and 
0.1 mg/ml (B) concentrations and temperatures from 10 to 45˚C. Change in the 
trend of the plot is observed in the 20-25˚C range in both samples, where 
increase is concentration results in the increase of the response magnitude. n=3. 

Parental PNIPAM at 0.1 mg/ml concentration has demonstrated change of trend in 

the 20-25˚C range, identical to 0.025 mg/ml sample (Figure 12A and B). However, 

by 37˚C zeta potential is equal to -47.56 mV, demonstrating an effect of the 

concentration on zeta potential.  
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Figure 13: Particle size and average count rate in parental PNIPAM (0.025 
mg/ml). n=3. 

During particle size analysis of the parental PNIPAM a rapid increase of the particle 

size was observed between 15˚C and 20˚ temperature points, where effective 

diameters of the particles were 1272.2 and 3215.6 nm, respectively (Figure 13). Such 

behaviour can be explained by a low particle count rate in this particular temperature 

range, and as a consequence, inability of the instrument to detect particle size 

accurately.  In addition, 500-1000 thousand counts per second is a recommended 

range.  

However such prompt increase in particle size can also be explained by a rapid 

aggregation of the dispersed polymer particles during temperature increase. 

Therefore, particle sizes of 1272.2, 3215.56 and 2509.13 nm at 15, 20 and 37˚C, 

respectively, may suggest that by 20˚C polymer particles have formed multi-unit 

complexes which exhibited progressive aggregation with linear increase in 

temperature.  

Zeta potential measurement in PNIPAM+RRR sample demonstrated a positive 

charge on the particle surface, where at 20 and 37˚C charges were 19.2 and 31.5 mV, 

respectively (Figure 14A). 

Analysis of the particle size in PNIPAM+RRR has demonstrated a linear decrease in 

the particle diameter (Figure 14B), however no initial rapid aggregation was 

observed in the 10-20˚C temperature range, as in parental PNIPAM (Figure 13).  In 
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addition, particle size at 20˚C was 460.37 nm and 238.13 nm at 37˚C, what 

demonstrated a 1.9-fold decrease in diameter.  

In addition, zeta potential signal of parental PNIPAM becomes more positive with 

increase in temperature (Figure 14), where parental PNIPAM samples demonstrates 

an opposite effect – originally negative values are becoming more negative (Figure 

12). Such difference in polarity is attributed to highly polar nature of 

PNIPAM+RRR, when compared to parental PNIPAM. 

 

Figure 14: Zeta potential and particle diameter of PNIPAM+RRR solution. At 
0.1 mg/ml PNIPAM+RRR demonstrates an increase in zeta potential past 30 
mV with increase in temperature, what suggest colloidal stability of the polymer 
at 37˚C (A). Particle size of the same polymer has reduced sharply after 20˚C, 
representing a 1.9-fold diameter shrinkage by 37˚C (B). n=3. 

3.4.5 Infra-red spectroscopic analysis 

The phase transition mechanism of PNIPAM involves changes in vibrational energy 

of the chemical bonds, where the attenuated total reflectance Fourier transform 

infrared spectroscopy (ATR-FTIR) is a particularly robust method for quantitative 

analysis of these changes. 
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The ATR-FTIR approach was chosen because of its high sensitivity to change in 

functional group environment and change in molecular interactions as a function of 

temperature. 

PNIPAM-based systems have been previously characterised by FTIR spectroscopy, 

where PNIPAM specific peaks were assigned. Most common functional groups used 

are PNIPAM characterisation are: amide 1, amide 2 and antisymmetrical methyl 

stretch (νas(CH)). (Maeda et al. 2000; Sun et al. 2007; Sammon et al. 2006) 

In order to study phase transition mechanism of a highly branched PNIPAM and its’ 

peptide-functionalised derivative, amide 1, amide 2 and antisymmetrical methyl 

stretch region (νas(CH)) were used to track change in their chemical environments 

with increase and decrease of the temperature (Figure 15).  
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Figure 15: ATR-FTIR spectra of 10 wt% HB PNIPAM:non-functionalised (A) 
(parental) and RRR-functionalised (B) during 10˚C and 40˚C of the heating 
stage, and during 10˚C of the cooling stage. Regions of interest (antisymmetric 
methyl stretch, amide 1 and amide 2) are emphasised. 
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Figure 16: Quantitative assessment of bond vibrational energy between non-
functionalised PNIPAM polymer chains and the solvent (i.e. water) via ATR-
FTIR analysis. Left column represents positional shift of the peak centres in 
amide 1, 2 and CH3 antisymmetric stretch regions of parental PNIPAM (10 
wt%) during heating and cooling stages (10˚C - 40˚C - 10˚C); right column 
provides measurement of area under the peak for the same regions of interest. 
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Figure 17: Quantitative assessment of bond vibrational energy between RRR-
functionalised PNIPAM polymer chains and the solvent (i.e. water) via ATR-
FTIR analysis. Left column represents positional shift of the peak centres in 
amide 1, 2 and CH3 antisymmetric stretch regions of PNIPAM+RRR (10 wt%) 
during heating and cooling stages (10˚C - 40˚C - 10˚C); right column provides 
measurement of area under the peak for the same regions of interest. 
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Regions of interest: amide 1, amide 2 and antisymmetrical CH3 stretch were tracked 

during heating stage from 10˚C to 40˚C with a 2˚C step, and back to 10˚C during 

cooling. Shifts in the peak centres and area under the curve for parental PNIPAM 

and PNIPAM+RRR are plotted in Figure 16 and Figure 17, respectively.  

Analysis of the peak positioning in PNIPAM-associated functional groups during 

heating and cooling stages has identified peak centre shifts, summarised in Table 6. 

Table 6: ATR-FTIR analysis summary of parental PNIPAM and 
PNIPAM+RRR in aqueous solution. Peak shifts in PNIPAM-characteristic IR 
regions were analysed during heating from 10˚ to 40˚C with 2˚C step, and 
cooling back to 10˚C.  

 

3.4.6 Rheology: hydrogel’s visco-elastic properties under oscillatory shear 
force 

Majority of studies that have assessed mechanical properties of the two-dimensional 

or three-dimensional culture substrates have used measure of stiffness, most 

commonly known as Young’s modulus (Legant et al. 2010; Discher et al. 2005; 

Trappmann et al. 2012; Balaban et al. 2001). During Young’s modulus 

measurement, tested material is under a tensile loading, where uni-axial stress and 

strain is measured. Whereas, in the cone and plate viscometry, utilised in the 

presented study, sinusoidal shear (oscillatory) force is applied. Collected information 

of the ratio between shear stress and shear strain is known as a shear modulus, which 

also provides a measure of material stiffness.  

Application of the oscillatory force in the cone and plate viscometer allows to 

measure stress-response of visco-elastic materials, such as PNIPAM hydrogels, with 

high sensitivity. Despite the difference in the mode of force application in shear and 

Young moduli, both of these moduli are calculated in closely-related manner.  
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During oscillatory testing of PNIPAM+RRR, complex modulus (G*), a direct 

measure of material stiffness or total rigidity, was obtained. G* is a summation 

product of absolute value of elastic (G’) and viscous (G”) components of the tested 

material. G’ is often referred to as a storage or elastic modulus, as it describes 

material rigidity when it is exposed elastic deformation. Where G”, known as a 

viscous modulus, is used as an indicator of viscous flow in the material. In addition, 

G’, as a measure of elasticity, is often reported together with G* to describe material 

performance under mechanical stress. (Rheologyschool.com 2013)  

 

Figure 18: Total rigidity of the PNIPAM+RRR hydrogels is represented by the 
complex modulus (G*), which can be seen in the temperature scan plot at 2.5, 5 
and 10 wt% polymer concentrations. 

Complex modulus (G*) was chosen to represent overall mechanical stability of the 

PNIPAM+RRR sample, as it is a direct measure of material’s rigidity (performance 

under stress). Maximal values of G* for 10, 5, 2.5 wt% samples are 6334 Pa (at 28.6 

˚C), 542.3 Pa (at 36.9 ˚C) and 96.7 Pa (at 25.6 ˚C) (Figure 18). As expected, 10 wt% 

sample has demonstrated highest rigidity, but at physiological temperature of 37 ˚C 

this value was reduced down to 184.97 Pa – a 34-fold drop. Such prompt drop in 

material rigidity can be explained by loss of traction between polymer and the cone 

due to rapid expulsion of water out of the polymer network at high sample 

concentration. Where 5 wt% sample was found to show maximal rigidity at 37 ˚C 
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(542.3 Pa). 2.5 wt% sample has showed a slight drop in rigidity at 37˚C, equating to 

50.25 Pa (1.9-fold decrease). 

Similarly to G*, G’ and G” were plotted to demonstrate solution-gel phase change, 

indicated by G’ and G” cross over (Figure 19). Cross over between the elastic 

moduli (G’) and the plastic moduli (G”) is considered as an onset point for the 

gelation process of PNIPAM hydrogels (Liao, Zhang, et al. 2011). Therefore, 

gelation onset temperatures for 2.5, 5 and 10 wt% PNIPAM+RRR samples were 

18.8˚, 17.3˚ and 16.4˚C, respectively. This observation demonstrated inverse 

relationship between hydrogel concentration and the onset temperature of the 

gelation processes. 

 

Figure 19: Rheological properties of PNIPAM+RRR in aqueous solution, at 2.5, 
5 and 10 wt% hydrogels concentrations, were tested on a cone-plate viscometer. 
A temperature scan of all three concentrations is represented in (A), where (B) 
provides a closer look at the region where G’ and G’’ gelation-related cross-
overs are taking place.   
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Similarly to G*, not all maximal G’ values were obtained at 37˚C. Maximal G’ value 

for 2.5 wt% sample was 58.7 Pa at 24.9˚C; for 5 wt% sample maximal G’ value was 

266.5 Pa at 36.9˚C; for 10 wt% maximal G’ was equal to 3497 Pa at 28.6˚C. At the 

same, G’ values at physiologically-relevant temperature (i.e. 37˚C) were as follows: 

G’37˚C at 2.5, 5 and 10 wt% were 23.92, 266.5 and 95.43 Pa. Presented values of G* 

and G’ are collated in the Table 7 below. 

Table 7: A summary table of PNIPAM+RRR performance under shearing 
oscillatory force and during gradual heating (1˚/min). Observed G* and G’ 
maximal and physiological values are presented at corresponding temperatures. 

PNIPAM+RRR 

in dH2O 

Concentration 

(wt%) 

Maximal value 
Modulus at 

physiologically 

relevant 

temperature (i.e. 

at 37˚C) (Pa) 

Modulus 

(Pa) 

Corresponding 

temperature 

(˚C) 

G* 

2.5 wt% 96.7 25.6 50.25 

5 wt% 542.3 36.9 542.3 

10 wt% 6334 28.6 184.97 

G’ 

2.5 wt% 58.7 24.9 23.92 

5 wt% 266.5 36.9 266.5 

10 wt% 3497 28.6 95.43 
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3.5 Discussion 

In recent years, particularly during the last decade, a marked increase in research of 

non-linear polymers was observed due to the fact that the new levels of polymer 

complexity can provide exploitable properties of the material in the biomedical field 

(Jikei & Kakimoto 2001; Hopkins et al. 2009; Carter, Rimmer, et al. 2005; Lapworth 

et al. 2011). The key driving force for spurring up the interest was the discovery of 

new polymerisation methods, such as reversible addition−fragmentation chain-

transfer polymerization (RAFT) (Chiefari et al. 1998). Discovery of these methods 

allowed convenient synthesis of polymers with highly-branched architecture. 

Three core properties of a highly-branched polymer have an instrumental effect on 

the properties of the end polymer. These properties are degree of branching, chain 

end functionality and repeat unit structure (England & Rimmer 2010).  

Degree of branching is directly correlated with amount of available RAFT agent. 

Reduction in RAFT presence results in decrease of degree of branching and 

generally lower number average molecular weight (Rimmer et al. 2007). Also, the 

level of polymer branching effects the ability of the polymer chains to slide past one 

another, what in turn affects the intermolecular force balance and is manifested in the 

bulk physical polymer properties.  

During PNIPAM polymerisation, repeat unit propagation is done by using RAFT 

monomer, which is a dithioate ester with alkene functionality (Rimmer et al. 2007). 

Alternative polymerisation method, based on atom transfer radical polymerisation 

(ATRP), will also yield a highly branched PNIPAM but with different repeat unit 

structure and LCST point of 36˚C (Allı et al. 2012). 

Linear polymers provide basic functionality, where monomers often offer only two 

bonding sites essential for chain propagation. Whereas highly branched polymers, 

PNIPAM+RRR designed in this study being a great example, provide a highly 

tunable mechanism of controlling number of reaction sites on every accessible chain 

of the polymer structure (Hopkins et al. 2009). As a result, further functionalisation 

with molecules of interest (e.g. peptides) in a controlled manner becomes possible.  
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3.5.1 Highly branch polymer synthesis and initial functionalisation  

NIPAM monomer polymerisation with RAFT-based method resulted in product with 

number and weight average molecular weight of 17933 and 58817 g/mol, 

respectively (Table 5). These molecular values are lower than in the product 

previously synthesised by Lapworth, from whom the original synthesis protocol was 

adopted (Lapworth 2009). Number and weight average molecular weight of the 

product, synthesised by Lapworth, was 33942 and 114863 g/mol, respectively. Such 

deviation in the current study can be explained  by following factors: substitution of 

the original 4,4’-azobis(isobutyronitrile) (AIBN) initiator for more reactive 4,4’-

azobis(4-cyanopentanoic acid) (ACVA) initiator; reduction in polymerisation time 

from 48 hours to 12 hours; reduced use of ACVA initiator (i.e. 1.7-fold molar 

equivalent difference between RAFT and ACVA; 

NIPAM:RAFT:ACVA=25.045:1:0.5844).  

Collected product, the highly branched parental PNIPAM, demonstrated a rapid 

increase in absorbance at 17.5˚C during UV-Vis turbidimetry analysis (Figure 10). 

However, during initial dissolution of the parental PNIPAM poor solubility was 

observed. In order to improve solubility of the polymer, pyrrole carbodithioate end 

groups were reacted with ACVA, producing carboxylic acid functionality. Due to 

hydrophilic and polar properties of the carboxylic acid, solubility of the polymer was 

greatly improved. However, at concentration, sufficient for gel formation, very 

active syneresis was observed in all PNIPAM+COOH samples tested (Figure 8).  

Syneresis in hydrogels presents a substantial barrier for utilisation of this hydrogel 

for cell culture purposes (Gan et al. 2010). To overcome this barrier, highly branched 

architecture of PNIPAM+COOH was further functionalised with extremely polar 

and hydrophilic peptide sequence - tri-arginine. Introduction of the tri-arginine 

peptide sequence was thought to provide an impetus for retention of hydrogen bonds 

between water molecules and hydrophilic groups. As a result, peptide functionalised 

PNIPAM demonstrated substantial retardation in water expulsion from the hydrogel: 

minimal syneresis was observed in 5 wt% sample, and even gel formation was noted 

in 1 wt% sample (Figure 8).  
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Syneresis is a long-standing issue with non-functionalised PNIPAM architecture. A 

well-established route to syneresis reduction is co-polymerisation of NIPAM with 

acrylic acid (AA) (Gutowska et al. 1992; Gan et al. 2010). Where the current study 

reports successful synthesis of a new chemical moiety – HB PNIPAM+RRR 

addition, which was not previously reported Scheme 1: Scheme 1). It is worth 

noting, that HB PNIPAM was functionalised with an arginine peptide mixture, 

dominated by RRR sequence (i.e. 73.12%) (Figure 7). 

Presence of the RRR peptide functionality had a substantial effect on the gelation 

properties of the HB PNIPAM. Along with reduction of syneresis, LCST point has 

been shifted from 18˚C to 24˚C after peptide addition, and was complemented by 

extension of the hysteresis window (Figure 10). From the position of practicality, 

liquification of the hydrogel at a lower temperature due to extended hysteresis 

window is very beneficial – during in vitro experiments, flexibility in sample 

manipulation and handling will be greater.  

Turbidimetry analysis for LCST point identification is a routine method in PNIPAM 

studies (Duan et al. 2006). In the current study UV-vis analysis was supplemented by 

highly sensitive methods, µDSC and ATR-FTIR, for elucidation of PNIPAM’s 

gelation mechanism on a molecular level. 

3.5.2 SEM: architecture and porosity 

An essential parameter of a cell-supporting material is porosity, presence of which 

will ensure nutrient delivery and waste removal from the cells (Lawrence & 

Madihally 2008). Snap-freezing and dehydration of the PNIPAM+RRR hydrogels, 

followed by imaging of the fracture surface with scanning electron microscope 

(SEM) allowed to assess structural organisation and porosity of the gel (Figure 9).  

Preparation of the hydrogel with culture media had a substantial effect on pore size 

and organisation, when compared to one prepared with water. Change in hydrogel 

architecture is contributed to presence of serum in the media – a rich source of 

protein, such as bovine serum albumin (BSA), may affect intrachain interaction and 

aggregation process of the polymer chains during phase transition. 
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It is clearly seen that the porosity is interconnected, however, volumetric or 

percentile quantification of the hydrogel porosity was not possible to perform. In the 

future work, this issue will be addressed by employing beads of nano and micro 

scale and known size to be used as reference for pore measurements.  

Qualitative assessment of the pore size in PNIPAM+RRR hydrogel, prepared with 

cell culture media, suggests the range of the pores to be ca. 0.5 – 1 µm in diameter. 

Taking in the account the diameter of encapsulated MSCs in 3D, represented by 18 

to 30 µm range (data not shown; personal observations), it is valid to assume that 

there will be no void between a cell and the scaffold structure. However, this level of 

porosity and pore size should be sufficient for nutrient influx and waste removal, and 

in this regard, preparation of the hydrogel with serum-rich culture media is of great 

benefit. 

3.5.3 Conventional DSC vs µDSC of HB PNIPAM and HB PNIPAM+RRR 

Thermo-responsive property of the PNIPAM polymer is based on chain aggregation 

and coil-globule transition, accompanied by solvent expulsion, during heating 

process beyond LCST point.  

Whereas at temperatures below LCST point polymer chains are relaxed and reside in 

their hydrated state. High degree of sensitivity to changes in energy requirements 

provided by µDSC has been employed to analyse phase transition mechanism in 

PNIPAM-based polymers (Graziano 2000).   

Importantly, PNIPAM architecture has a major impact on the gelation mechanism 

(Chung et al. 2006; Sammon et al. 2006). DSC analysis of PNIPAM polymers has 

commonly revealed an endothermic single peak around 32˚ C point and a single 

exothermic peak at ca. 30-31˚C during cooling phase (Maeda et al. 2000; Ding et al. 

2005).  

µDSC analysis of PNIPAM+RRR has provided observations, that differs with 

established understanding of the phase transition (see above). Parental PNIPAM has 

demonstrated conventional endothermic peak at 17.77˚C during heating cycle 

(Figure 11). Where PNIPAM+RRR sample at the same concentration presented two 
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distinct peaks at 22.34˚C and 27.49˚C. Throughout literature review no studies were 

identified where DSC analysis would show two endothermic and exothermic peaks 

in the heating cycle. However, two studies been found to show exothermic spectra 

with  double peak appearance in linear and block PNIPAM co-polymers, during the 

cooling phase of the DSC analysis (Ding & Zhang 2006; Lu et al. 2013). Exothermic 

spectrum from PNIPAM+RRR demonstrates a broad peak, consisting of two 

overlapping peaks with highest intensity at 24.19˚C. In order to identify centres of 

the overlapping peaks, spectral de-convolution is required and will be addressed in 

the future work. 

Furthermore, Ding and Zhang have analysed state transition behaviour of PNIPAM 

in dilute and semi-dilute aqueous solutions with DSC microcalorimeter. In that study 

a bimodal transition during cooling process, represented by two exothermic peaks, 

was observed (Ding et al. 2005). The first peak, at 31o C, was assigned to the 

disruption of the additional intrachain hydrogen bonding, which has formed between 

chains at the collapsed state, while polymer macromolecules were maintained at 

temperatures above LCST point. The second peak, at 30.2o C, was attributed to 

dissolution of the collapsed chains. This bimodal behaviour was recorded in a dilute 

sample when temperature scanning rate was lower than 0.328 oC/min. At higher 

scanning rates bimodal acitivy was not detectable, suggesting kinetic control of the 

process. In addition, performing heating cycles at rates as low as 0.03˚C/min did not 

show any signs of bimodal nature of the coil-globule transition process. This 

observation highlighted validity of their original hypothesis, which stated that during 

cooling stage globule-coil transition commences with intrachain hydrogen bonding 

disruption, followed by gradual dissolution from outer layer to the interior (Ding et 

al. 2005). 

Follow up study by the same authors has further elucidated the mechanism of 

collapsed globule-coil transition throughout cooling stage. During solution heating 

past LCST point PNIPAM chains associate together to form large aggregates; where 

during cooling process polymer aggregates are swollen first, prior to inner chain 

egression from the swollen core and dissolution in surrounding solvent as individual 

chains (Ding & Zhang 2006).  
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In addition, detection of the intrachain hydrogen bonding in collapsed globules 

provides mechanistic explanation of the hysteresis process. Extra hydrogen boding, 

that has partly caused bimodal relaxation mechanism in PNIPAM during cooling, 

has been identified in the collapsed state of PNIPAM chains, and it is attributed to 

the dehydration process (Cheng et al. 2006). Also, dehydration, driven by increase in 

temperature, has caused shortening of the average interchain distance, what in turn 

creates a lag between LSCT of heating and cooling stages, which is manifested as 

hysteresis (Ding et al. 2005; Cheng et al. 2006; Ding & Zhang 2006). Compilation of 

the observed facts about hysteresis from bimodal transition, during the cooling stage 

of DSC, suggests a following conclusion: hysteresis phenomenon is caused by the 

additional time required for the relaxation and reversion of polymer aggregates into 

their hydrated state and regaining of chain-solvent equilibrium.  

In the current study hysteresis has also been observed in highly branched PNIPAM 

during UV-vis, DSC and FTIR analysis (Figure 10, Figure 11 and Figure 17). 

Furthermore, micro calorimetric DSC analysis of the PNIPAM+RRR has revealed 

bimodal transition in heating and cooling cycles (Figure 11). Extensive literature 

search shows that such transition mechanism was not documented previously. 

Comparison of DSC spectra from PNIPAM and PNIPAM+RRR demonstrates 

absence of multiple peaks in either endotherm or exotherm in PNIPAM (parental) 

sample, what suggests that presented functionality of PNIPAM+RRR can be 

attributed to RRR peptide addition. Further investigation is required to elucidate 

underlying transition mechanism that resulted in a double peak spectrum of the 

endotherm signal in PNIPAM+RRR sample.  

By taking in consideration collected data in the current study and the theories, 

proposed in the literature, it can be hypothesised that RRR peptides provide 

amphiphatic properties to the branched polymer chains, what may result in a better 

retention of water molecules in the aggregating polymer globules. As a results, initial 

coil-globule organisation and dehydration can be attributed to the first peak on the 

DSC endotherm (at 22.34 oC), where the second peak (at 27.49 oC) is likely to 

represent an energy barrier that requires additional input of heat energy in order for 

the system to achieve colloidal stability. In addition, out of the 20 essential amino 

acids arginine has the ability to form most of hydrogen bonds (Luscombe et al. 
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2001). This property of arginine provides further insight into bimodal phase 

transition mechanism in HB PNIPAM+RRR. 

PNIPAM chain dehydration during heating is described by two processes: interchain 

association and interchain contraction, where first process incurs lower cost of 

conformational entropy, compared to the second process (Ding & Zhang 2006). 

Therefore, during heating cycle, the earliest endothermic peak should represent 

interchain association, if a bimodal spectrum is presented. I assume identical 

sequence of interchain processes to take place in the HB PNIPAM+RRR sample.  

By comparing DSC spectra from both samples at identical concentrations, parental 

HB PNIPAM and HB PNIPAM+RRR, substantial difference in heat flow intensity is 

observed (Figure 11). Considering that the heat flow measurement provides 

quantitative insight into how much thermal energy is required for phase transition to 

occur – it is possible to show that the heat energy requirement for the phase 

transition in HB PNIPAM+RRR is 19 times lower, when compared to parental HB 

PNIPAM. Thus, this observation allows to conclude that the RRR peptide addition  

lowers requirement in the heat energy to produce an equilibrated globule structure.  

3.5.4 Zeta potential: colloidal stability and peptide effect on particle size 

To further understand how structural stability of the hydrogel was affected by 

peptide functionalisation and provide predictions on hydrogel performance during in 

vitro testing with cells, zeta potential and particle size of parental HB PNIPAM and 

HB PNIPAM+RRR were measured.  

Initial difference between functional groups of parental HB PNIPAM (Figure 12) 

and HB PNIPAM+RRR (Figure 14A) was reflected in zeta potential measurement, 

where parental polymer carried negative net charge in contrary to positive charge of 

the peptide functionalised polymer. Increase in temperature has resulted in 

corresponding increase in zeta potential. Commonly, zeta potential progression past 

+/-30 mV suggests formation of a stable colloidal suspension, that will not flocculate 

and precipitate (Malvern Instruments Ltd n.d.). Colloidal stability of HB 

PNIPAM+RRR was confirmed, as the zeta potential at 37˚C was equal to 31.496 



90 
 

mV. Whereas, analysis of parental HB PNIPAM does not give a clear conclusion: 

when parental polymer sample is tested at concentration, identical to HB 

PNIPAM+RRR, zeta potential was equal to -47.56 mV at 37˚C, suggesting colloidal 

stability; however, this concentration was not optimal for the instrument. After 

concentration optimisation, parental sample demonstrated zeta potential of -11.203 

mV at 37˚C, opposing previous assumption regarding colloidal stability. As the 

initially tested concentration was not optimised, the zeta potential result should be 

disregarded for this particular concentration.  

Along with zeta potential, particle size of HB PNIPAM (Figure 13) and HB 

PNIPAM+RRR (Figure 14B) was also measured. In both of the samples identical 

trend was observed – with increase in temperature particle size is gradually 

decreasing. This observation is consistent with prevailing view of PNIPAM gelation, 

where fully relaxed and hydrated coil structure condenses into compact globular 

structure at phase transition temperature (Maeda et al. 2000).  

3.5.5 Infra-red spectroscopy: closer look at the hydrogen bond formation 
between polymer and solvent 

During DSC data analysis bimodal phase transition was identified in 

PNIPAM+RRR, and in order to gain a greater insight into causes of this 

phenomenon, a descriptive analysis method was required. 

The attenuated total reflectance Fourier transform infrared spectroscopy (ATR-

FTIR) became a method of choice because of its’ high sensitivity to change in 

functional group environment and change in molecular interactions as a function of 

temperature (Sammon et al. 2006). 

The aforementioned mechanism of phase transition of PNIPAM involves changes in 

vibrational energy of the chemical bonds, where ATR-FTIR is a particularly robust 

method for quantitative analysis of these changes. 

More precisely, ATR-FTIR looks into interaction between molecule and infra-red 

spectrum of radiation at a broad range of wavelengths, where raw data is being 
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converted from a time domain into frequency domain by means of Fourier 

transformation.  

Vibration of the molecular bonds is often compared to vibration in spring-connected 

system and described by Hooke’s law of harmonic oscillation (Figure 20). 

Knowledge of the reduced mass value and the bond strength between the atoms can 

suggest where particular bond stretches can be found on the FTIR spectra.  

(1) � =
1

2�
�

�

�
       (2) � =

�� ∗ ��

�� + ��
 

Figure 20: Hooke's law model of a harmonic oscillation process. (1) describes 
frequency of the oscillating body, where the constant k defines the stiffness of 
the spring. (2) provides information on the effective mass of a two-body system, 
also known as reduced mass value. 

PNIPAM-based systems have been previously characterised by FTIR spectroscopy, 

where PNIPAM specific peaks were assigned. Most common functional groups used 

are PNIPAM characterisation are: amide 1, amide 2 and antisymmetrical methyl 

stretch (νas(CH)). (Maeda et al. 2000; Sun et al. 2007; Sammon et al. 2006) 

The amide 1 peak mostly describes stretching vibrations of the carbonyl (C=O) bond 

and is often found in the 1600 -1700 cm-1 range , where amide 2 is mainly 

representative for in-plane N-H bond bending, but it is more complex than amide 1, 

as C-N stretching is often integrated in this peak. Amide 2 is often found in the 

1510-1580 cm-1 range (Jabs n.d.). Whereas, antisymmetric stretch of the methyl 

group (i.e. –C(CH3)2 of the isopropyl group) is commonly found at a higher 

wavenumber position (e.g. 2982 cm-1) (Maeda et al. 2000). 

In order to study phase transition mechanism of a highly branched PNIPAM and its’ 

peptide-functionalised derivative, amide 1, amide 2 and antisymmetrical methyl 

stretch region were used to track change in their chemical environments with 

increase and decrease of the temperature.  

As previously mentioned, PNIPAM can form hydrogen bonds between water 

molecules and the amide functional groups via C=O and NH linkages. Bond shifts in 



92 
 

these functional groups by more than 4 cm-1 to the higher and lower wavenumbers, 

respectively, were found to indicate a reduction in hydrogen bonding between the 

amide functional groups and water molecules (Maeda et al. 2000; Sammon et al. 

2006). 

Moreover, it has been previously demonstrated that the shift towards higher 

wavenumber in the νas(CH) peak is indicative of the increase in the hydrophobic 

interaction between PNIPAM polymer chains (Maeda et al. 2000; Sammon et al. 

2006). Such observation is consistent with the coil-globule transition mechanism, 

which is observed during PNIPAM gelation (Wang & Wu 1999). 

In the current study, presented analysis of PNIPAM polymer demonstrates peak 

centre shifts in all 3 regions of interest: amide 1 and 2, and νas(CH). Quantification of 

the shifts in the parental PNIPAM (Figure 16) and PNIPAM+RRR (Figure 17) 

samples is summarised in the Table 6.  

After comparing shifts in amide 1, 2 and νas(CH), for both PNIPAM samples, it can 

be clearly seen that the amide 1 peak demonstrates a shift in the expected direction, 

towards higher wavenumbers. However, the observed shift values for amide 1 are 

below the set signal resolution of 4 cm-1, what diminishes significance of the shifts in 

this particular band. Whereas, amide 2 and νas(CH) bands demonstrate a substantial 

magnitude of peak shifting in expected directions (i.e. 7-10 cm-1, towards lower 

wavenumbers), and where amide 2 region was particularly responsive to the 

temperature change. 

Additionally, modification of the PNIPAM polymer with RRR peptide sequence did 

not have a substantial effect on the magnitude of the peak shifting.  

Alongside with peaks shift analysis, area under the curves for the same peaks was 

also quantified, as it provides complementary data on the nature of the hydrogen 

bonding (Sammon et al. 2006). Due to horizontal architecture of the ATR accessory, 

increase in band intensity can also be related to gelation of the polymer, as during 

aggregation process water is being expelled from polymer branches and the formed 

gel comes into a closer contact with the ATR crystal, resulting in increase of 
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intensity. Therefore, the change in the band intensity is indicative of the onset of the 

gelation process, as well as polymer relaxation-disaggregation, during which, 

process of hysteresis is commonly observed (Ding et al. 2005; Wang & Wu 1999).   

Analysis of the peak areas for both polymer samples demonstrates an increase in 

area as a function of temperature (PNIPAM: Figure 16; PNIPAM+RRR: Figure 17). 

The peak area analysis in the parental PNIPAM sample showed an interesting curve 

shape, which closely resembles the UV-Vis data curves.  

One of the primary reasons for employing IR spectroscopic analysis was to elucidate 

origins of the double-peak µDSC spectra in the PNIPAM+RRR sample (Figure 11). 

By correlating highest temperature points from DSC data, that represent phase 

transition in PNIPAM and PNIPAM+RRR, with quantified FTIR data presented 

above, a correlation table was compiled to demonstrate if the infra-red spectroscopy 

data is in agreement with DSC and UV-Vis results (Table 8). 

When DSC data is compared to UV-vis, both data sets appear to be in an agreement, 

where the onset of phase change during heating is consistent in both methods of 

analysis (Figure 11 and Figure 10). 

In summary, the polymer hydration and hydrogen bond formation in PNIPAM and 

PNIPAM+RRR was investigated by ATR-FTIR studies at variable temperatures. 

Shifts towards the higher wavenumber in the amide 2 and the νas(CH) region 

confirmed hydrogen bond disruption, an expected part of the solution-gel transition 

process. Moreover, shift in the peak position of the νas(CH) band towards lower 

wavenumbers during heating stage is indicative of a hydrophobic interaction 

between polymer branches. 

Furthermore, a comparative analysis between UV-Vis, DSC and FTIR results 

suggested that FTIR data matches the observations made with other two methods 

only partially.  However, FTIR measurements of the peak area are representative of 

the solution-gel transition mechanism, particularly in the parental PNIPAM sample. 
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Onset of a sharp phase transition in parental PNIPAM sample takes place at very 

similar temperature, as seen in DSC and UV-Vis spectra. 

Table 8: DSC peak data correlation with FTIR data 

 
Heating 

PNIPAM PNIPAM+RRR 

  Peak Peak 1 Trough Peak 2  

µDSC 
correlation 
with ATR-

FTIR 

17.76˚C 22.34˚C 24.31˚C 27.48˚C 

Amide 1 
(peak 

centre) 
X X 

0.7 cm-1 peak 
shift (←) 

X 

Amide 1 
(area) 

X X 
Onset of the 

peak area 
increase 

End of the onset 

Amide 2 
(peak 

centre) 

8 cm-1 shift 
(→); linear, in 
few data points 

2 cm-1 
shift (→) 

X 
End of shift at 

28˚C 

Amide 2 
(area) 

ca. 18-20˚C 
onset of the 

rapid peak area 
increase 

X 
Onset of the 

peak area 
increase 

End of the onset 
at 28˚C 

A.s. CH3 
(peak 

centre) 

4 cm-1 shift 
(→); note, may 
be due to noise 

X 
From 2 to 5 
cm-1 peak 
shift (→) 

X 

A.s. CH3 
(area) 

X X 
Onset of the 

peak area 
increase 

X 
(Peak area 
increase 

continues in a 
linear fashion) 

In order to further elucidate phenomenon of a double peak response, seen in the DSC 

data from PNIPAM+RRR, a peak fitting around the 1600-1100 cm-1 region is 

required. The peak fitting process would help to identify presence and the effect on 

the strength of hydrogen bonding, provided by the multiple amide functional groups 

of the arginine peptide. 
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3.5.6 Rheology: a dynamic mechanical analysis of PNIPAM+RRR at various 
concentrations 

Hydrogen bond re-organisation, intrachain interaction and phase transition processes 

are manifested in mechanical properties of PNIPAM+RRR hydrogel on a macro-

scale, which can be assessed with rheological analysis. Understanding of the 

mechanical properties in the hydrogel is of principal importance for this project, as 

numerous biological studies demonstrated key contribution of the cell culture 

substrate stiffness in directing differentiation fate of the cell (Pek et al. 2010; Engler 

et al. 2006; McBeath et al. 2004). 

One of the earliest studies on network formation within linear PNIPAM hydrogel 

was done by Zheng and colleagues, setting out key requirements for representative 

rheological analysis of PNIPAM (i.e. linear viscoelasticity framework)(Zeng et al. 

1998). 

Rheological parameters of three PNIPAM+RRR concentrations (2.5, 5 and 10 wt%) 

were assessed. In order to represent data from the viscoelastic strain region, strain 

and frequency settings were optimised for all three concentrations. As a result, 

dynamic mechanical analysis with constant frequency and varying temperature of the 

sample, also known as a temperature sweep, was performed to show phase transition 

temperature and viscoelastic properties of all three concentrations (Figure 18 and 

Figure 19).  

3.5.7 Rheology correlation with previous characterisation methods 

Each of the characterisation methods, used in this study, has provided different 

insights into gelation mechanism of PNIPAM+RRR. Fundamental parameter like 

LCST was defined differently by each method, where UV-vis predicted LCST at 24 

oC (Figure 10), DSC at 22.34/27.49 oC (Figure 11) and viscometry at 16.4, 17.3, 18.8 

oC in 10, 5, 2.5 wt% samples, respectively (Figure 19B). It is difficult to do a direct 

comparison between all three methods due to difference in the nature of analysis 

method and concentrations. 



96 
 

Most importantly, rheological analysis has provided an understanding, what 

mechanical stiffness can be expected from the hydrogel at 37˚C, a physiologically 

relevant temperature. Results of the rheological analysis are collated in Table 7. 

Analysis of rheological data for PNIPAM+RRR suggests that all three concentration 

samples undergo expected solution-gel transition and hydrogel network formation, 

where increase in concentration leads to lowering of the LCST point. Such 

observation is attributed to more rapid polymer chain collapse and dehydration 

processes at higher polymer concentrations caused by higher number of chains in the 

solution and shorter interchain distance. 

According to rheological results (Figure 18 and Figure 19), 5 wt% sample 

demonstrates obscene of syneresis that led other two concentration to G* reduction 

after certain temperature point, indicating loss of traction with the hydrogel due to 

water expulsion. In addition, complex modulus (G*) of the 5 wt% sample was 

highest at 37˚C and being equal to 542 Pa. 

Knowledge of the complex and elastic moduli of PNIPAM+RRR at 37˚C (Table 7) 

allows comparison of this particular hydrogel with other bio-compatible hydrogels. 

For example, Chung and colleagues has synthesised a semi interpenetrating polymer 

network (sIPN) on the basis of linear PNIPAM, functionalised with acrylic acid and 

enzymatically sensitive peptide sequences (Chung et al. 2006). Resulting hydrogel 

with complex moduli range of 100-200 Pa (G* depended on the peptide 

concentration) has shown an increase in osteoblast proliferation with increase in 

complex modulus. Induction of bone regeneration was also observed in in vivo rat 

femoral ablation model, but only when peptide-functionalised hydrogels were used. 

(Chung et al. 2006) 

Another study by Pek and colleagues involved use of polyethylene glycol-silica 

nanocomposite gel with RGD functionality. Results of the study demonstrated an 

increase in neural (ENO2), myogenic (MYOG) and osteogenic (Runx2, OC) 

transcription factor expression when MSCs were cultured in 7, 25 and 75 Pa gels, 

respectively. (Pek et al. 2010) This study highlights importance of hydrogel stiffness, 

where a material with stiffness of 7 Pa can direct differentiation of MSCs.  
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4 MSC behaviour in 3D and hydrogel encapsulation  

4.1 Introduction  

4.1.1 Cells in 3D  

As all cells in the human body are residing in 3D environment, and are constantly 

exposed to mechanical and chemical gradients, it is crucial to account for numerous 

parameters during model system design, including: cell-cell and cell-matrix 

interaction (Cukierman et al. 2001; Chung et al. 2006; Bissell et al. 1982; Ingber 

1997), mechanical properties of the 3D substrate (Winer et al. 2009; Yang et al. 

2014), nutrient supply and waste removal (inter-connected porosity) (Lawrence & 

Madihally 2008; Kraehenbuehl et al. 2011; Yow et al. 2009), bio-activity (Lutolf, 

Lauer-Fields, et al. 2003) and bio-degradability (Galperin et al. 2010) of the culture 

substrate.  

Numerous platforms which are designed to test cell behaviour in 3D are currently 

available (Meng et al. 2014; Pampaloni et al. 2007). These 3D platforms can be 

divided into two sub-groups: mechanically soft (normally gel-based environment 

that is designed to match mechanical properties of the soft tissues) and mechanically 

rigid (often consists of non-organic components and demonstrates high ultimate 

stress, which is required to match weight-bearing requirements, set by the skeletal 

system). The soft systems include spheroids (cell aggregates), culture on micro 

carriers, alginate microencapsulates, thermo-reversible hydrogels and nanostructure 

scaffolds composed of self-assembling peptides, amongst others (Table 9). Whereas 

rigid systems are mainly represented by non-organic porous scaffolds like bioglass 

and hydroxyapatite (HA) based materials (Willerth & Sakiyama-Elbert 2008), and 

non-porous substrates and scaffolds with engineered nano-pillar-patterned surface 

(Fu et al. 2010). Each method is unique as it provides different levels of biological 

complexity and density of information that can be collected during the 

experimentation process.  

In addition, soft scaffold and organoid (scaffold-free) systems in comparison with 

mechanically rigid culture and implant systems are advantageous in terms of cell 

behaviour analysis by currently available imaging methods (Pampaloni et al. 2007; 
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Dickinson 2006). In most cases, soft-type scaffolds are more translucent, which 

eases the imaging methodology. Also, cell seeding in soft gels is more efficient (i.e. 

cell seeding is not dependent on the scaffold geometry) and the encapsulation or 

seeding process is often rapid.   

4.1.2 Scaffolds, particularly hydrogels, drive revolution in understanding cell-
cell, cell-matrix interactions and tissue formation. 

Over the years numerous test models have been designed for the analysis of MSC 

behaviour in 3D environment. The list below is not exhaustive, but it represents main 

testing solutions from a range of soft scaffolds (Table 9): 

Table 9: Mechanically soft 3D culture systems 

3D culture method Unique benefits 

Cell aggregates (spheroids) (Frith 

et al. 2009; Kunz-Schughart et al. 

2004) 

Low material and running costs 

Microcarriers (Meng et al. 2014) 
Better cell quality and high purity can be 

provided  due to effective mass and gas transfer. 

Alginate microencapsulates (Serra 

et al. 2011) 
Provides protection to cells from shear-force 

induced cell death. 
Thermo-reversible hydrogels (Lei 

& Schaffer 2013; Lapworth et al. 

2011) 

Self-assembling peptides (nano-

scale scaffolds) (Meng et al. 

2014) 

Allow introduction of biologically active 

structural segments (i.e. RGD) 

Animal models (Kang et al. 2009) 
Collected information is more clinically-

relevant 

Organotypic explants (Toda et al. 

2002) 

Original structural and cellular organisation is 

retained during culture. Collected results are 

more representative of in vivo conditions. Organ slices (Holopainen 2005) 
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Spheroids, microcarriers, alginate microencapsulates, thermo-responsive hydrogels 

and self-assembling peptides share following benefits: ease of setup and use, 

scalability and reproducibility. The listed benefits made these platforms more 

attractive for clinical translation due to highly controlled manufacturing processes 

that underlay these platforms. Full control over the design of the scaffold is explored 

by the tissue engineers (Galperin et al. 2010; Cheikh Al Ghanami et al. 2010), where 

cell-supporting environment is tailored to the needs of a particular cell type and 

tissue repair process (Bissell et al. 2002). 

From the range of mechanically soft scaffolds, PNIPAM-based hydrogels are highly 

suitable for generation of cell-supporting environments (Lei & Schaffer 2013; 

Lapworth et al. 2011; Ibusuki et al. 2003). Particularly, the highly-branched sub-

class of PNIPAM gels provides the ease of structural modification (highly 

amenable), highly accessible sites for functionalisation and tight control over the 

molecular weight, that results in a high degree control of the bulk properties in the 

resulting hydrogel (England & Rimmer 2010; Hopkins et al. 2009).  

Hydrogels represent a subset of mechanically soft scaffolds, where the structural 

properties are partly determined by the organic nature of the structure. Highly 

branched polymers like PNIPAM are well suited for mechanical and functional 

modification to cater for needs of the cells (Rimmer et al. 2007; Nakayama et al. 

2007). The required properties of the hydrogel are formed via control of the 

molecular weight and the degree of branching, attachment of functional groups and 

other chemical entities (Carter, Hunt, et al. 2005; R England & Rimmer 2010; 

Lapworth et al. 2011). In this study, PNIPAM with highly branched architecture was 

designed to encapsulate and provide supporting environment for MSCs. In order to 

identify an appropriate 3D environment for this cell type, key structural parameters 

of the bone marrow were considered during the design of the of the highly branched 

PNIPAM.  

Multiple attempts were taken to simulate, at least partially, complexity of the bone 

marrow environment by use of hydrogel systems, with common ultimate goal to 

recreate properties of the niche settings (Nuttelman et al. 2005; Aizawa & Shoichet 

2012; Giobbe et al. 2012).  
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The bone marrow is a unique homing environment for myriad of cells and secreted 

chemical factors. Also, the bone marrow is one of the sites of choice for MSC 

harvesting, a highly porous, mechanically weak (compared to surrounding 

cancellous bone tissues (Bayraktar et al. 2004)), with an extensively developed blood 

supply network. In order to mimic such a complex environment, key structural 

factors of the bone marrow, which have fundamental effect on cell viability, 

differentiation and proliferation were selected. The factors that were considered 

included: inter-connected porosity (Lawrence & Madihally 2008; Galperin et al. 

2010), mechanical elasticity (Engler et al. 2006; Pek et al. 2008) and ability to 

encapsulate cells, providing cell-matrix interaction (Lai et al. 2010; Bissell et al. 

2002). The resulting HB PNIPAM+RRR hydrogel system was structurally stable and 

porous, with no apparent shrinkage and mechanical properties close to value range of 

soft human tissues, such as brain tissue and bone marrow (Butcher et al. 2009; 

Higuchi et al. 2013).  

4.1.3 PNIPAM modification and MSC differentiation within hydrogels 

In the past, PNIPAM-based hydrogels were used as 3D scaffolds for different cell 

types: hepatocytes (Wang et al. 2011), chondrocytes (Lapworth et al. 2011; Ibusuki 

et al. 2003) and fibroblasts (Cheikh Al Ghanami et al. 2010), amongst many others 

(Guan & Zhang 2011). However, MSC’s behaviour within PNIPAM environment 

was assessed very rarely. Available studies in their majority suggest an ability of the 

hydrogel to successfully encapsulate MSCs (Peroglio et al. 2013; Na et al. 2007; 

Liao, Chen, et al. 2011), however a high level of syneresis (Gan et al. 2010), optical 

opaqueness (Lapworth et al. 2011) and limited information on cell viability suggests 

that structural and functional modifications are required to improve the usability of 

the PNIPAM hydrogels (Galperin et al. 2010), with micro-environment sensitive 

cells, such as MSCs (Saleh et al. 2012).  
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Table 10: Modified PNIPAM-based hydrogels with biomedical potential.

 Hydrogel name Description Key application properties 

PNIPAM-gelatin 

(Ibusuki et al. 
2003) 

Gelatin was grafted 
onto PNIPAM polymer 
backbone. 

Supports cartilage viability and 
natural phenotype. 

Mechanical properties are similar to 
the native hyaline cartilage.  

Stability of the hydrogel structure is 
independent of the cell culture 
period.  

PNIPAM-PLGA 

(Fraylich et al. 
2010) 

A graft polymer of 
anionic poly(D,L-
lactide-co-glycolide) 
(PLGA) and cationic 
PNIPAM 

High and interconnected porosity  

Gels are flexible, with critical yield 
strain of up to 160%.  

PNIPAM-DBA 

(Vo et al. 2014) 

A dimethyl-γ-
butyrolactone acrylate 
(DBA) copolymer with 
PNIPAM 

Calcium-binding properties, coupled 
with ability to accelerate bone 
mineralisation within critical size 
bone defects in vivo. 

P(NIPA-co-
AAm) 

(Zhang et al. 
2009) 

A copolymer of 
acrylamide (AA) and 
PNIPAM 

Formed nanohydrogel particles are 
efficient at anti-tumour drug (i.e. 
docetaxel) loading and release in 
vivo.  

AHA-g-
PNIPAAm 

(Tan et al. 2009) 

A graft polymer 
formed by coupling of 
aminated hyaluronic 
acid (AHA) to 
PNIPAM through 
amide bond linkages. 

AHA-g-PNIPAAm demonstrates 
interconnected pores.  

Viability of encapsulated adipose 
stem cells (ASC) is supported in 
vivo.   

PNIPAM-AA-
MMP13-RGD  

(Chung et al. 
2006) 

PNIPAM was co-
polymerised with 
acrylic acid (AA) to 
form interpenetrating 
polymer network 
(IPN), which was 
further functionalised 
with 
metalloproteinase-13 
(MMP-13) sensitive 
degradable crosslinker 
and integrin-binding 
domain RGD. 

Hydrogel stiffness and peptide 
concentration can be tuned 
independently to generate cell 
response.  

Presence of MMP-13 degradable 
crosslinker in the hydrogel induces 
bone regeneration in vivo. 
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From the currently known thermo-responsive hydrogels, PNIPAM-based gels are the 

most investigated (Delair 2012). To date, numerous PNIPAM-based hydrogels with 

a plethora of modifications have been designed and synthesised for application in the 

field of biology (Guan & Zhang 2011; Roux & Ladavière 2013). Table 10 provides 

examples of modified PNIPAM-based hydrogels with successful application in 

biological settings and biomedical potential. Various cell types were studied in 

multitude of PNIPAM hydrogel’s architectures. However, very little is known about 

MSC differentiation in 3D environment of PNIPAM hydrogel. Work of Na et al., 

Liao et al., Peroglio et al. research groups demonstrates that: i) functionalisation of 

PNIPAM structure with hydrophilic functional groups will result in an improved 

structural stability, reduce shrinkage and will allow cellular encapsulation; ii) 

structural integration of biologically active molecules, like peptides and growth 

factors, in PNIPAM hydrogels is often required to trigger osteogenesis in 3D 

environment, in addition to stimulation with common osteo-induction factors  

(Peroglio et al. 2013; Na et al. 2007; Liao, Chen, et al. 2011). 

For instance, Na et al. looked into extent of osteogenic differentiation within 

PNIPAM hydrogels, functionalised with acrylic acid and mixed with hydroxyapatite 

(HA), forming a composite. These composite hydrogels were seeded with rabbit 

MSCs, with or without addition of the osteogenesis stimulator – bone morphogenic 

protein 2 (BMP-2), and were injected into nude mice for 8 weeks. In vitro 

differentiation experiments were performed as well. After 8 weeks of in vivo culture, 

ALP activity in PNIPAM+AA+HA hydrogels, with added BMP-2, was twice as 

high, when compared to samples without BMP-2. However, ALP activity in both 

hydrogel types was significantly higher than in the cell-only controls. Whereas 

strong mineralisation response was observed only in BMP-2 treated hydrogels, both 

in vivo and in vitro settings. (Na et al. 2007) Therefore, this particular PNIPAM-

based hydrogel was observed to be osteoinductive. However, to demonstrate 

noticeable osteogenic differentiation in vitro and ectopic bone formation in vivo, a 

potent chemical osteogenic stimulator, such as BMP-2, is required.   

Osteoinduction, and particularly osteoconduction, of MSCs and osteoblasts has been 

previously shown in various functionalised hydrogels as well. Osteogenic 

differentiation was evidently demonstrated by Chun and colleagues. A 
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thermosensitive hydrogel poly(organophosphazene), functionalised with GRGDS 

peptide sequence, was seeded with rabbit MSCs and injected into a nude mouse, 

where a cell-supporting hydrogel would form. After 4 weeks post-implantation, a 

sharp increase in osteocalcin gene, a typical marker of late osteogenic differentiation, 

expression was observed.  Furthermore, extensive mineralisation, based on calcium 

content and collagen type I immuno-staining, also confirmed induction and 

conduction of osteogenesis in hydrogel-encapsulated rabbit MSCs. (Chun et al. 

2009) 

Hydrogel functionalisation with peptide sequences is common, particularly with 

RGD sequence, which is the most researched adhesion-related peptide sequence 

(Ruoslahti 1996). Yang et al. has covalently bound RGD sequence to the 

poly(ethylene glycol)diacrylate (PEODA) hydrogel, and encapsulated goat bone 

marrow MSCs into this conjugated hydrogel via UV cross-linking. After 3 weeks of 

culture in osteogenic medium, hydrogel-cell composites with 2.5 mM concentration 

of the RGD peptide demonstrated several-fold increase in OCN and ALP expression.  

Most interestingly, a minimal concentration (i.e. 1.25 mM) of RGD peptide was 

required to observe Runx2 expression, as at 0 and 0.025 mM concentration Runx2 

expression was not detectable in the MSC-containing hydrogels. At the same time, 

Runx2 was actively expressed in RGD-free monolayer cultures. Furthermore, Yang 

and colleagues demonstrated that oversaturation of the PEODA+RGD hydrogel 

during culture and pre-treatment of the cells with soluble RGD peptide leads to 

saturation of the RGD receptors on the cell surface, consecutively inhibiting cell-

hydrogel attachment. Such adhesion inhibition resulted in complete abolishment of 

mineralisation, when assessed with calcium assays and von Kossa staining. (Yang et 

al. 2005)  

Osteogenesis of BM hMSCs can be also stimulated by unconventional, but simple 

method within a hydrogel. Chen et al. has exposed BM hMSCs in monolayers and 

self-assembling peptide hydrogels (i.e. PuraMatrix™, a RADA peptide sequence-

based gel) to a mild heat shock – samples were kept at 41˚C for 1 hour once a week, 

and at 37˚C thereafter. After ca. 3 weeks of treatment, both 2D monolayer and 3D 

gel samples demonstrated significant increase in calcium deposition. After 25 days in 

3D gel culture, a significant upregulation of Runx2 was observed in hMSCs. In 
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addition, 24 hours after the heat shock treatment, a significant upregulation in the 

heat shock protein 70 (HSP70) was detected. (Chen et al. 2012) This study reveals a 

factor, neither chemical nor structural, which can induce osteogenesis in a culture 

substrate-independent fashion.  

4.1.4 PNIPAM+RRR as a suitable 3D environment model for MSCs 

The PNIPAM architecture employed in this study stems from the findings of the 

Rimmer lab, which showed successful synthesis of highly branched PNIPAM via 

RAFT route (Carter, Hunt, et al. 2005). Along with design of a novel chemical 

architecture, biocompatibility and cell analysis studies were performed. Lapworth 

and colleagues have used a PNIPAM-based co-polymer with comb architecture to 

encapsulate chondrocytes in 3D (Lapworth et al. 2011). Where Hopkins and 

colleagues have demonstrated that a highly-branched PNIPAM  with RGD 

functionality can be used as a trypsin-free method for cell detachment in monolayer 

culture (Hopkins et al. 2009).  

The work of Hopkins et al. has demonstrated the biocompatibility of HB 

PNIPAM+RGD and dermal fibroblasts in 2D monolayer culture. Therefore the 

highly branched architecture via RAFT synthesis method was chosen for fabrication 

of PNIPAM for further MSC encapsulation. 

Functionalisation of a HB PNIPAM with tri-arginine (RRR) sequence was 

performed to increase water retention in the structure, resulting in reduced gel 

syneresis and retention of the stable 3D architecture.  

Stable 3D architecture is one of the initially set out prerequisites for the MSC 

scaffold design. Along with promise of successful encapsulation, HB PNIPAM 

presents the following advantages for cell culture in three dimensions. 

 HB PNIPAM has a sharp phase transition at biologically relevant 

temperatures (Carter, Rimmer, et al. 2005). Attachment of hydrophilic groups 

results in an increase of transition temperature, where hydrophobic group 

attachment has an opposite effect (Tao & Yan 2010). 
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 Highly branched architecture of PNIPAM provides numerous reaction sites 

on each chain, where the degree of branchness is controlled by the number of 

available RAFT agents (Hölter et al. 1997; Carter, Rimmer, et al. 2005). 

Virtually full control over hydrogel’s structural design allows parameter 

optimisation for the needs of the encapsulated cells, such as mechanical 

properties and LCST point, where these parameters can be manipulated via 

functional groups addition and feed control (Rimmer et al. 2007).  

 Due to the nature of the RAFT polymerisation reaction, where the available 

monomer is exhausted during controlled polymerisation, and consecutive 

ultra-filtration steps during purification stage, the resulting PNIPAM polymer 

has a low monomer content, suggesting virtually zero toxicity (Chiefari et al. 

1998; Carter, Hunt, et al. 2005; Scales et al. 2006).  

 The colloidal structure of PNIPAM, together with rapid hydrogen bond 

formation and disruption during change of temperature, is responsible for 

solution-gel and gel-solution transition (Ding et al. 2005; Cheng et al. 2006; 

Ding & Zhang 2006). When the colloidal nature of PNIPAM is coupled with 

highly-branched architecture and a highly polar RRR sequence, the resulting 

gel produces a  highly-hydrated and mechanically supporting 3D milieu  - 

properties shared by the natural ECM (Tibbitt & Anseth 2009; Chen 2010).  

 As the temperature is lowered past the gel’s LCST point, the polymer chains 

undergo relaxation steps where the intra-gel hydrogen bonds are broken, 

allowing the colloidal structure to revert to a non-aggregated state, which in 

turn will trigger cell release from the hydrogel (Lapworth et al. 2011; Wang 

et al. 2011).  

 The branched architecture of PNIPAM+RRR generates inter-connected 

pores, which are of paramount importance for cellular nutrient and waste 

transport within 3D environment.  

4.1.5 Work rationale  

The in vivo environment of the MSCs is extremely complex. Therefore, assessment 

of the MSC behaviour on 2D surfaces is limited and non-representative of MSC’s 

natural environment (Table 2). Ability to study single cell or micro-tissue (spheroid) 

behaviour and development in 3D environment is of paramount importance for 
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design of the cell therapies (Jakob et al. 2012), cancer treatment (Martin et al. 2008) 

and tissue repair (Pampaloni et al. 2007). 

On the basis of the chemical characterisation, HB PNIPAM+RRR hydrogel holds a 

great promise in generating MSC specific environment, owing to the following 

features: in vivo-like physical molecular bonding, mechanical properties in the range 

of the soft tissues, highly hydrated structure and chemical functionalisation ability. 

Therefore, encapsulation of MSC spheroids and single cell suspensions in HB 

PNIPAM+RRR would provide an adjustable platform for studying MSC behaviours 

in in vivo-like 3D environment.   

4.1.6 Hypothesised performance of PNIPAM+RRR hydrogel in biological 
settings 

Based on the literature review of PNIPAM and chemical characterisation of the HB 

PNIPAM+RRR (Section 3.1 and 3.4), it can be hypothesised that: 

i) HB PNIPAM+RRR hydrogel allows rapid MSC encapsulation and subsequent 

release after temperature drop below the LCST point.  

ii) HB PNIPAM+RRR hydrogel is biocompatible with MSCs, with high cell 

viability during long term cultures. 

iii) MSC culture within the 3D HB PNIPAM+RRR environment may stimulate 

osteogenic or adipogenic differentiation. 

4.1.7 Importance of the study 

Assessment of HB PNIPAM+RRR hydrogel biocompatibility will help to validate 

applicability of this material for tissue engineering. Also, findings on MSC 

phenotype changes (proliferation and differentiation) within 3D hydrogel will 

contribute towards fundamental understanding of multi-potent cell behaviour in in 

vivo-like environment. In addition, analysis of differentiation capacity in MSC’s 

within 3D will aid in identification of factors that affect the cell fate decision-making 

process.  
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Finally, exploration of links between mechanical properties of the hydrogel and cell 

motility within 3D will help to advance current understanding of scaffold design, 

what in turn will allow to emulate in vivo conditions as close as possible.  



108 
 

4.2 Materials and methods  

4.2.1 MSC extraction and culture 

Primary human MSCs were isolated from femoral heads or knee plates, removed 

during joint-replacement operations. Both tissue types were received following 

informed consent from the donors. Cell isolation from the femoral heads was 

performed by removal of the bone marrow and expansion in cell growth media 

(Dulbecco’s modified eagle medium (DMEM; GIBCO No: S41966-052) (with 4.5 

g/l glucose) containing 100 U/ml penicillin (Life Technologies, UK), 100 μg/ml 

streptomycin (Life Technologies, UK) and 15% foetal bovine serum (FBS; Gibco, 

Life Technologies, UK)) in 75 cm2 flask (Corning, UK) at 37˚C and 5% CO2 

atmosphere. Non-adherent cells were removed after 7 days of incubation and the 

medium was replaced every 3 days thereafter.  Upon reaching confluency the cells 

were passaged at a 1:3 ratio. Cell isolation from knee plates was performed as 

follows: knee plates were broken up and pieces were placed into tissue culture grade 

10 cm2 Petri dishes (PK200; BD Falcon) and 10 ml of cell growth media was added. 

After incubation for 7 days at 37˚C and 5% CO2 atmosphere, knee bones were 

removed and the medium was replaced every 3 days thereafter. Upon reaching 

confluency the cells were passaged at a 1:3 ratio. 

4.2.2 MSC (single cell suspension) encapsulation and PNIAPM+RRR 
preparation for cell culture 

Freeze-dried HB PNIPAM+RRR was dissolved in ethanol and centrifuged at 315g 

for 5 minutes. Liquid phase was transferred into a sterile glass Petri dish and left on a 

heating plate at 37˚C in a cell culture cabinet overnight. The dry product was 

collected with a sterile scalpel. 

The sterilised PNIPAM+RRR polymer solution was prepared at 10 wt.% in cell 

growth media (DMEM, containing 4.5 g/l glucose, 100 U/ml penicillin, 100 μg/ml 

streptomycin and 10% FBS). Identical volume of primary MSC suspension at 1x106 

cells/ml concentration was added to the polymer solution. The resulting 

concentration of hydrogel and cells was 5 wt.% and 5x105/ml, respectively. 
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For 3D environment generation, a hydrogel droplet approach was used, where the 

surface tension of the culture surface and the volume of the cell-polymer mixture 

would define geometry of the droplet. For cell-hydrogel droplet formation, 4.5 μl of 

polymer-cell mixture was placed into wells of a 96-well flat bottomed tissue culture 

plate (C3595; Corning), followed by incubation at 37˚C and 5% CO2 atmosphere for 

90 minutes lid-side down. A second incubation step of 30 minutes was performed in 

lid-side up position. In between incubation steps, 200 μl of sterile water was added to 

each well at the periphery of the plate to minimise medium evaporation. After 

incubation, 200 μl of pre-warmed osteogenic, adipogenic or cell growth media were 

added to corresponding sample wells. Cells growth media consisted of glucose (4.5 

g/l) and penicillin/streptomycin (100 U/ml and 100 μg/ml, respectively) 

supplemented DMEM and 15% FBS. Osteogenic media was prepared on the basis of 

15% FBS cell growth media with addition of L-ascorbic acid -2- phosphate 

(50μg/ml), β-glycerophosphate (5 mM) and dexamethasone (10 nM). Media for 

adipogenic differentiation was prepared with 15% FBS cell growth media containing 

dexamethasone (1 μM), 3-Isobutyl-1-methylxanthine (IBMX; 500 μM), insulin (1 

μg/ml) and indomethacin (100 μM). All of the differentiation-stimulating factors 

were purchased from Sigma-Aldrich (UK).  MSC-only control samples were seeded 

into identical wells with 200 µl osteogenic, adipogenic or cell growth media at 

2x104/cm2 seeding density. Media were replaced every 3 days thereafter until the end 

of the differentiation protocol on day 21.   

4.2.3 MG63.EGFP culture and encapsulation in PNIPAM+RRR 

Fluorescent MG63.EGFP osteosarcoma cells were generated in-house by stable 

transfection as previously described (Dyson et al. 2007). Prior to hydrogel 

encapsulation MG63.EGFP cells were cultured on tissue culture plastic (TCP) in 

basal media at 37oC and 5% CO2. 

For hydrogel encapsulation, 40,000 MG63.EGFP cells in 12.5 µl culture media (i.e. 

32x105 cells/ml) were mixed with 12.5 µl of media containing 1.33 mg of 

PNIPAM+RRR (i.e. 10.64 wt.%) and seeded into a well of a 96-well plate, forming a 

cell-polymer solution with 5.32 wt.% final polymer content. After 1 hour incubation 
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at 37˚C, 150 µl of pre-warmed culture medium was added on top of a newly formed 

hydrogel. Cell culture media was refreshed every 2-3 days. 

4.2.4  Methylcellulose stock solution preparation 

MSC spheroids were generated in methylcellulose-containing medium, 6g of 

methylcellulose (m-0512, 4000 centipoises; Sigma-Aldrich, UK) were autoclaved in 

a 250 ml flask. Autoclaved methylcellulose was dissolved in 150 ml of pre-heated 

(60˚ C) DMEM (free from FBS and antibiotics) by stirring for 20 minutes. Further, 

150 ml of supplement-free DMEM media was added and the methylcellulose stock 

solution was stirred for 3 hours at 4˚C, generating a clear and viscous solution. In 

order to separate undissolved solid fractions, the collected solution was centrifuged 

for 2 hours at room temperature at 3600 g. The clear and viscous supernatant was 

collected and stored at 4˚C. 

4.2.5 MSC spheroid formation and encapsulation in PNIPAM+RRR 

3.35 ml of cell culture media, containing 0.25 wt.% methylcellulose, was mixed with 

1 ml of MSC suspension (8.7x105 cells/ml). Prior to mixing, the suspended MSCs 

were stained with CellTracker Red CMTPX (Invitrogen) according to 

manufacturer’s protocol. Spheroids containing 30,000 MSCs were formed by placing 

150 µl of the methylcellulose-cell mixture in each well of a U-bottomed 96-well 

plate (FB56412, Fisherbrand) and incubated for 16 hours at 37˚C with 5% CO2. 

Afterwards, individual spheroids were placed into 75µl of cell culture media with 5 

wt.% of PNIPAM+RRR within a well of a flat-bottomed 96-well plate (C3595; 

Corning). 175 µl of cell culture media was added on top of formed hydrogels after 1 

hour incubation at 37˚C. 

In polymer-free (control) samples, spheroids were placed into U-bottomed 96-well 

plate wells with 250 µl of cell culture media. Samples were imaged on day 1, 6 and 

8. 
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4.2.6 Cell viability assessment in PNIPAM+RRR hydrogels by Cell Counting 
Kit 8 assay 

Single MSC suspensions were encapsulated in 4.5 µl of polymer-cell mixture with 

5x105 cells/ml (for encapsulation method, see MSC (single cell suspension) 

encapsulation and PNIAPM+RRR preparation for cell culture section). Cell-free 

hydrogel control samples were formed in identical manner. Further, 200 µl of basal 

culture media was added to each well with samples, and the plate was incubated at 

37˚C and 5% CO2 for 16 hours. 

On the following day, 200 µl of basal culture media was aspirated and 100 µl of 

fresh culture media with 10 µl Cell Counting Kit 8 (CCK-8, Dojindo Molecular 

Technologies) was added for an 8.5 hour incubation at 37˚C and 5% CO2. An 

identical volume of sterile water was added to periphery wells in order to reduce 

media evaporation. 

After the incubation period, 100 µl of culture media with CCK8 reagent was 

transferred into fresh 96-well plate and absorbance measurement was done at 450 nm 

on a microplate reader. 

The same hydrogel samples were re-used for this assay, where absorbance data was 

collected on day 1, 4 and 8. Following absorbance measurement, the hydrogel 

samples were washed with PBS (magnesium and calcium-free; Invitrogen) twice and 

200 µl of basal culture media were added to each well with the samples and 

incubated until next assay run. 

4.2.7 Cell viability assessment in PNIPAM+RRR hydrogels with the 
Live/Dead assay 

Live/Dead assay (Invitrogen) was optimised for 3D settings of the experiment.  2 

µM of calcein AM and 20 µM of EthD-1 were prepared in pre-warmed basal culture 

media, vortexed and added to wells.  Prior to the assay, hydrogel-containing wells 

were washed with pre-warmed PBS. 200µl of the assay solution was added on top of 

hydrogel-cell constructs in 96-well plates, wrapped loosely in foil and followed by 

incubation at 37°C and 5% CO2 for up to 10 hours. 
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4.2.8 Staining of the cells with CellTracker Red 

To permit identification and tracking of MSCs in the hydrogel, the cells were 

fluorescently labelled before encapsulation.  5x105 MSCs/ml were stained with 5µM 

solution of CellTracker Red CMTPX (Invitrogen), according to the manufacture’s 

protocol. 

4.2.9 Encapsulated cell volume and motility analysis 

PNIPAM+RRR samples with encapsulated MSCs, and prestained with CellTracker 

Red as described above, were incubated for 12 days, where media was refreshed 

every 3 days. The top edge section of the sample well was imaged (z-axis sections of 

the visible cells) every 4 days on Zeiss LSM 780 multiphoton microscope, where the 

edge of the well was used as a reference point. Volocity 6.1.1 software 

(PerkinElmer) was used to create 2 regions of interest, which included 17 non-

touching cells. These regions of interest were replicated in every image dataset to 

measure motility, proliferation and volume of the selected cells. 

4.2.10 Release of encapsulated MSCs by cooling 

After a period of culturing, MSC-loaded hydrogels in the 96-well plates, covered 

with 200 µl of culture media, were placed on ice bed and agitated for 16 hours. 

Undissolved hydrogel fractions were further broken down by pipetting. Collected 

solution was centrifuged at 315g for 5 minutes, where formed supernatant was 

replaced by the fresh culture media. The pellet was dispersed in the freshly added 

media and seeded into 24 well-plate well (SVC7300, Corning). After 3 days of 

culture at 37˚C cells were assessed. 

4.2.11 MSC differentiation staining: donor samples 

All differentiation assays were performed on MSCs harvested from the tissues of 

three donors. Donor tissue details are collated in the Table 11. 
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Table 11: Details of the tissue samples used for MSC harvesting. 

Sample 
reference 

Age on 
extraction 

Gender BMI 
A 

smoker? 
Site of 

extraction 
Tissue 

condition 

FH496 78 Female 21.6 No Left hip OA 

K89 68 Male 37 No 
Left and 

right knee 
Arthritis 

K118 62 Male 34 No Left knee OA 

 

4.2.12 Osteogenesis and mineralisation: ALP staining 

For alkaline phosphate (ALP) activity staining, 1 mg/ml Fast Red TR (Santa Cruz 

Biotechnology) was pre-weighted and, immediately prior to use, was added to 0.2 

mg/ml napthol AS-MX (Sigma) dissolved in 1% N,N-dimethylformamide, followed 

by addition of 10 ml 0.1 M Tris buffer (pH 9.2). Prior to application, all liquid 

reagents were pre-warmed to 37˚C. 

Before applying the ALP stain, 96 well plates with cell-loaded PNIPAM+RRR 

hydrogels were rested on a heating platform at 37˚C and hydrogel constructs were 

washed with PBS twice. The Fast Red stain was filtered through a sterile 0.22 μm 

filter (Millex 0.22µm, Millipore) and applied onto 3D constructs and cell monolayers 

for 5 minutes. Afterwards, the stained samples were washed with PBS twice, 

followed by fixation in 4% paraformaldehyde (PFA, Sigma-Aldrich) for 20 minutes 

and two PBS washes. Sample wells were filled with PBS and the plates were 

covered with aluminium foil. 

4.2.13 Osteogenesis and mineralisation: von Kossa staining 

Samples were washed with deionised water, followed by addition of 1% silver 

nitrate solution in deionised water for 60 minutes, whilst keeping samples on a light 

box. Samples were washed three times with deionised water, followed by 5 minute 

incubation with 2.5% sodium thiosulphate (pH 9.2) at room temperature and double 

deionised water wash. 

4.2.14 Adipogenesis: lipid staining 

Cells in monolayers and encapsulated in PNIPAM+RRR hydrogels were treated with 

basal or adipogenic media for 21 days, with media being replaced every 3 days. On 
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time-points of day 7, 14, and 21, BODIPY® 493/503 (Molecular Probes®), a stain 

for natural lipids, was added to wells with media to produce a 0.5 µM final 

concentration of the stain. After incubation for 30 minutes at 37˚C, media was 

removed followed by rinsing with PBS. Rinsed samples were fixed with pre warmed 

4% PFA for 10 minutes, followed by a triple wash with PBS. All samples were 

covered with PBS to prevent dehydration of the hydrogels. The sample plate and all 

reagents used were kept at 37˚C throughout the experiment. 

4.2.15 Sectioning 

Hydrogel droplet samples, which were used in osteogenesis experiments, but not 

treated with osteogenesis and mineralisation stains, were sectioned to cross-validate 

mineral deposition.  These samples were fixed with pre warmed 4% PFA in 96-well 

plate for 10 minutes at 37˚C, followed by triple PBS washes. Further, sample wells 

were filled with optimal cutting temperature compound (OCT, Tissue-Tek®), 

followed by snap-freezing in liquid nitrogen. Frozen plates were mechanically 

broken in order to retrieve the samples. Collected samples were stored at -80˚C 

overnight prior sectioning. Mounted samples were sectioned at 7 μm thickness and 

were collected on Superfrost slides (Merck). 

4.2.16 Polarised light analysis 

Sectioned samples were analysed on Zeiss LSM 510 Meta microscope with 

polarising filter insert. 
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4.3 Results  

4.3.1 Cell encapsulation in PNIPAM+RRR hydrogels 

MG63.EGFP osteosarcoma cells were successfully encapsulated in PNIPAM+RRR 

and incubated for 8 days (Figure 21). On day 1, cells encapsulated in 3D had a 

distinct rounded morphology (Figure 21C and D), where MG63.EGFP cells cultured 

in monolayers on TCP had a typical fibroblast-like appearance (Figure 21 A and B). 

In addition, encapsulated cells on day 1 were clustered in groups of 2-5 cells (Figure 

21C), but by day 4 such associations were no longer observed (Figure 21E). 

Throughout the culture period of 8 days, the overall majority of encapsulated cells 

retained a spherical morphology, although some cells started to adopt a fibroblast-

like morphology (Figure 21G).  
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Figure 21: MG63.EGFP osteosarcoma cells, encapsulated in 5wt% 
PNIPAM+RRR for up to 8 days. Cells, cultured on the well surface, 
demonstrated typical fibroblastic morphology (A, B). On day 1, hydrogel-
encapsulated cells were fully rounded and aggregated into groups of 2-5 cells 
(C, D). Starting from day 4, cell grouping is minimal (E, F) and small 
proportion of cells starts to adopt fibroblast-like morphology by day 8 (G crop-
in). n=2.   
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4.3.2 Eencapsulation of MSC spheroids in HB PNIPAM+RRR hydrogel 

Encapsulation of MG63.EGFP cells was done to confirm capacity of the 

PNIPAM+RRR to form a stable 3D hydrogel structure, and verify capability of the 

confocal microscope to collect fluorescent signal despite opaque appearance of the 

hydrogel.  

The PNIPAM+RRR’s ability to generate a hydrogel scaffold was further tested with 

MSC spheroids in 96-well flat bottom tissue culture plates. Control (hydrogel-free 

samples) spheroids were cultured in the 96-well U-bottom plates. With progress in 

culture time, hydrogel-encapsulated spheroids have gradually travelled through the 

hydrogel structure and made contact with the TCP surface, as confirmed by the 

fibroblastic morphology of the MSCs on the spheroid periphery (Figure 22: A3 and 

A4). Concurrently, control spheroids maintained original rounded appearance and 

demonstrated diameter reduction (Figure 22: B1 and B3).  
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Figure 22: MSC spheroid (30,000 cells) encapsulation in 5wt% PNIPAM+RRR 
in flat bottom plate (A).Control spheroids (30,000 cells) were cultured in basal 
media within U-bottom plates (B). Both encapsulated and control samples were 
cultured for 8 days at 37˚C and 5% CO2. All cells are pre-stained with 
CellTracker Red. Colour of the emission channel is changed to yellow for 
improved contrast. After 1 day of culture, hydrogel-encapsulated spheroid (A1) 
has a less rounded morphology compared to control spheroids (B1). By day 6, 
morphological discrepancy is eliminated (A2 and B2). On day 8 encapsulated 
spheroid is seen to be in contact with the surface of the well, where the cells of 
the leading edge are adopting fibroblastic morphology (A3 and A4). All scale 
bars are 200 µm. n=3.  
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4.3.3 Spheroid encapsulation in U bottom well-plates  

Due to the adhesive properties of the tissue culture plastic, the encapsulated 

spheroids adhered to the surface of the well, with cells adopting a fibroblastic 

morphology (Figure 22A3 and A4). Therefore, experiments were repeated with using 

u-bottom plate for both encapsulated and control samples. 

Use of non-adherent U-bottom plates has prevented cell adhesion to the plastic 

surface in hydrogel-encapsulated spheroids (Figure 23A). Therefore, applicability of 

HB PNIPAM+RRR for MSC spheroid encapsulation was confirmed. 

Additionally, control spheroid culture in non-adherent U-bottom well plates results 

in active spheroid compaction (Saleh et al. 2011). This process affects microscope’s 

laser penetration and results in uneven signal strength across the section of the 

spheroid. As a result, cells on the spheroid periphery appear to be brighter, than in 

the centre of the spheroid (Figure 23B). In contrast to control spheroids, hydrogel 

encapsulated spheroids demonstrated a uniform emission signal across the section of 

the spheroids during all 16 days of culture (Figure 23A). This observation suggests 

that the 3D environment of the hydrogel prevents spheroid compaction. 

Closer examination of the hydrogel-encapsulated spheroids revealed presence of 

“voids” in the spheroid’s structure, highlighted by the white arrows (Figure 23A). 

Probability of these “voids” being penetrating hydrogel was tested with “excitation 

finger printing” approach (data not shown), where a wavelength bandwidth of 200 

nm (100 nm below and 100 nm above the original excitation wavelength) was 

analysed for presence of the autofluorescent signal from the hydrogel. The hydrogel 

penetration was not confirmed, as HB PNIPAM+RRR was not found to be 

autofluorescent. 
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Figure 23: MSC spheroids (30,000 cells) encapsulated within the 
PNIPAM+RRR hydrogel in a non-adherent U-bottom plate for 16 days (A); 
identical spheroids cultured in a U-bottom plate without PNIPAM+RRR 
addition (B). All cells are pre-stained with CellTracker Red. To increase the 
contrast, colour of the emission channel was set to yellow. After 16 days in 
culture, encapsulated spheroids did not demonstrate a substantial change in 
morphology, nor any evidence of fibroblast-like cells on the leading edge of the 
spheroid. White arrows are pointing at the development of a potential hydrogel-
filled void. Excitation fingerprinting analysis did not confirm presence of the 
polymer of the basis of autofluorescence. All scale bars are 200 µm. n=3. 



121 
 

4.3.4 MSC single cell encapsulation in PNIPAM-RRR hydrogel 

 

Figure 24: MSCs encapsulated in 5wt% PNIPAM+RRR discs in the cell-
adherent flat-bottomed 96 well plate and cultured for 7 days. Cells were pre-
stained with CellTracker Red, where emission channel was recoloured to yellow 
for better contrast. Throughout the culture period, encapsulated cells retained 
rounded morphology with no signs of adherence to the TCP. At all analysis 
time-points MSCs were distributed in one plane of the imaged section (see the z-
stack of the crop-in section). n=2. 

 

Single MSC suspensions were encapsulated in PNIPAM+RRR and cultured for 7 

days, where no cells were observed to adhere to the well plate bottom (Figure 24). 

Analysis of the z-stack images identified that all CellTracker-stained cells had a 

rounded morphology and predominantly distributed in one plane of the imaged 

section (Figure 24 (z-stack)). 
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4.3.5 Motility of encapsulated primary MSCs 

Encapsulated cells were cultured for 12 days, where relative distances between cells 

in the region of interest were measured on day 1, 4, 8 and 12. The same region was 

analysed at every time point. After 12 days of culture, encapsulated cells 

demonstrate no significant motility, retaining rounded morphology and stationary 

positioning (Figure 25; A). 

4.3.6 MSC volume analysis after encapsulation in PNIPAM+RRR hydrogel. 

Cells in the region of interest, analysed for change in volume over 12 days, 

demonstrated multiple responses to hydrogel’s 3D environment. Volumes of 

analysed cells formed three distinct groups, when plotted (Figure 25B). First group 

(❶), representing cells with initial averaged cell volume of 1075.4 μm3, presented 

an increase in cell volume by 65.38% on day 12. Whereas, groups two (❷) and 

three (❸), having an averaged starting volume of 5790.5 μm3 and 8275.5 μm3 

respectively, showed a decrease in cell volume with time in culture. Cellular volume 

in the second group dropped by 23.44%, where in the third group cell shrinkage 

resulted in 11.06% volume reduction. In all three groups most substantial change in 

volume was observed on day 4, with following time points showing a steady change 

in volume. 
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Figure 25: Motility and cell volume tracking of MSCs, encapsulated in 
PNIPAM+RRR. Identical section of the well, with PNIPAM+RRR-encapsulated 
and CellTracker Red pre-stained MSCs, was imaged every 4 days (up to day 
12) via a z-stack method, to obtain a cell representation in 3D environment. On 
the basis of the z-stacks, 3D model of every selected cell was virtually rendered 
with the Volocity software (A, crop-in example), allowing to measure relative 
distance between the cells (an indication of the cell motility)(A) and volume 
changes in every individual cell (B). Plotting of the relative distances (A) 
demonstrated no active motility in encapsulated cells over 12 days. Where the 
volume-change tracking (B) has identified 3 distinct groups of cells across a 
broad range of initial cell volumes. Cell groups with the highest starting cell 
volume (B; groups 2 and 3) are experiencing a cell volume loss, especially 
between day 1 and 4. The cells with the lowest initial cell volume (B; group 1) 
are expanding throughout the period of the experiment. n=2. 
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4.3.7 Cell release from PNIPAM+RRR hydrogels 

The theoretical and empirically observed temperature-reversible nature of the HB 

PNIPAM+RRR during polymer characterisation (Section 3.4.2) was further tested by 

conducting cell release experiments.  

The ability of the HB PNIPAM+RRR hydrogel to release the encapsulated MSCs 

after period of culture by lowering the temperature below LCST point was tested 

(Figure 26). Cell release experiment was performed on ethanol-treated and non-

treated polymer samples (ethanol treatment method is described in section 4.2.2). 

After 16 hours of sample plate agitation on ice, both of the HB PNIPAM+RRR 

sample types were partially dissolved, and the residual hydrogel was mechanically 

broken down by vigorous pipetting. Cells were precipitated by centrifugation, 

resuspended in fresh basal media and transferred into a 24 well plate for 3 days of 

culture. After examination with brightfield microscope of both sample types, 

ethanol-pretreated and non-treated, the overall majority of the cells were found to be 

rounded and non-adherent (Figure 26). 
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Figure 26: MSC release from PNIPAM+RRR, before and after EtOH 
sterilization . (A) Encapsulated MSCs (5x105 cells/ml) were incubated at 37˚C 
with 5% CO2 for 16 days in a 96-well plate, followed by 16 hour agitation on ice 
bed. Undissolved hydrogel fractions were further broken down by pipetting. 
Collected solution was centrifuged at 315g for 5 minutes, where formed 
supernatant was replaced by the fresh culture media. The pellet was dispersed 
in the freshly added media and seeded into 24 well-plate well. After 3 days of 
culture at 37˚C, cells were assessed. Almost all of the cells were rounded and 
detached. Very rarely, a fibroblast-like adhered cells were also observed (see 
white arrows (A)). (B) Prior cell encapsulation, PNIPAM+RRR polymer was 
dissolved in ethanol (EtOH), spun down at 315g for 5 minutes. Supernatant was 
collected and transferred into sterilised glass Petri dish. The petri dish was left 
on coverslip drying plate at 37˚C for 24 hours within a class 2 flow hood. Dried 
polymer was collected aseptically and used for MSC encapsulation. 
Encapsulated MSCs (5x105 cells/ml) were incubated for 6 days. The cell 
retrieval and following culturing process was identical to the one described 
above (see (A)). After incubation, cells were rounded and surface-detached (see 
white arrows (B)). Both scale bars are 100 µm. n=3. 

Synthesis process of HB PNIPAM+RRR has produced a soluble polymer by bulk. 

However, after analysis of the hydrogel under confocal microscope it was noted that 

a fraction of solid particles and debris is present. Presence of the debris became 

particularly evident during MSC volume analysis within HB PNIPAM+RRR (Figure 

25), as the Volocity software algorithm was recognising more objects for analysis in 

the region of interest, than the number of cells in the same region of interest. To 

reduce the number of non-soluble debris, ethanol treatment of HB PNIPAM+RRR 

was performed. Dissolution of HB PNIPAM+RRR in ethanol and following 

centrifugation resulted in substantial decrease in amount of debris present with 

consequent reduction of instances of auto-fluorescence of the gel. In addition, after 



126 
 

solute fractionation, polymer recovery from ethanol was performed in sterile 

environment what reduces the risk of the cell infection.  

4.3.8 MSC viability within PNIPAM+RRR 

It was of a paramount importance to determine MSC viability within the 

PNIPAM+RRR, in order to allow further assessment of cell responses within the 

hydrogel. MSC viability within same PNIPAM+RRR hydrogels was assessed with 

Cell Counting Kit 8 (CCK8) assay on days 1, 4 and 8 after encapsulation (Figure 

27). Cell-free control hydrogels were treated in identical manner to test the 

specificity of the assay in this 3D culture system. On day 1, samples with 

encapsulated MSCs demonstrated substantial difference compared to cell-free 

samples. However by day 8 change in the absorbance reading from the cell-

containing samples, was not substantial when compared to day 1. In addition, on day 

8 there was also no substantial difference in absorbance readings between both 

sample types. Taken together, it can be concluded that the CCK8 assay does not 

provide definite MSC behaviour within HB PNIPAM+RRR environment. 

 

Figure 27: Viability assessment of MSCs in PNIPAM+RRR with the CCK8 
assay. K41 MSCs (0.5x106/ml) were encapsulated in PNIPAM+RRR and treated 
with CCK8 assay on day 1, allowing to reuse the original samples on day 4 and 
8. Cell-free hydrogel samples were treated alongside. After 8 days in culture, 
cell-loaded hydrogels did not demonstrate enzymatic activity level, substantially 
differing from the cell-free hydrogels.   
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In order to obtain reliable viability data, the Live/Dead® staining assay 

(LifeTechnologies) was used. After optimisation of concentrations and incubation 

time, samples were imaged with a confocal microscope. 

This experiment was designed to assess viability of encapsulated MSCs in ethanol 

treated and non-treated HB PNIPAM+RRR hydrogel. Application of the 

Live/Dead® staining assay onto MSCs in monolayer culture demonstrated high 

assay specificity, where enzymatically active cells showed strong calcein AM signal, 

together with nucleus-specific EthD-1 staining in the cells with raptured cell 

membranes (Figure 28A). Concentrations and staining time, used for monolayer 

control staining,  was identical to hydrogel samples. 

To validate Live/Dead® dye specificity in hydrogel samples, methanol (MeOH) pre-

treated MSCs (i.e. “dead” controls - MSCs with methanol-disrupted cell membranes; 

Figure 28 B4-6 and Figure 28 C4-6) were encapsulated into hydrogels, identical to 

ones, used for methanol non-treated MSC (i.e. “live” samples Figure 28 B1-3 and 

Figure 28 C1-3) encapsulation: ethanol (EtOH)-treated (Figure 28B) and non-treated 

HB PNIPAM+RRR (Figure 28C).  

The EtOH-treated hydrogels with “live” MSCs demonstrated strong calcein AM 

signal and a minuscule number of EthD-1-stained nuclei (Figure 28 B1-3, see white 

pointers), suggesting overall active enzymatic activity of MSCs and cell membrane 

rapture in very few cells through the culture period of 10 days.  

Examination of the calcein AM staining in the “dead” controls within EtOH-treated 

hydrogels showed expected very weak signal on day 1 and 4, and absence of signal 

on day 10 (Figure 28 B4-6). Whereas with EthD-1 stain no prominent signal was 

observed, along with low specificity (i.e. cell area highlighted by the EthD-1 dyes 

was identical to the area of the cell, highlighted by the calcein AM)(Figure 28 B4-6; 

see white pointers). This observation conflicts with expectation of a strong signal 

from EthD-1, as all of the cells in this sample had methanol-raptured cell 

membranes. Therefore, this observation suggests that the EthD-1 dye is unsuitable 

for identification of the cells with raptured membranes. On the basis of the same 
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observation it can be concluded that the calcein AM stain, an indicator of enzymatic 

activity, is a specific marker of encapsulated MSCs viability. 

Similarly to “live” MSCs in EtOH-treated hydrogels, non-treated hydrogels 

demonstrated a strong calcein AM stain within “live” MSCs on day 1 and 4 (Figure 

28 C1-2). However, by day 10 very few cells were calcein AM-positive (Figure 28 

C3). This observation suggests that the EtOH-treated hydrogels are more suitable for 

long-term culture of MSCs. Additionally, unsuitability of EthD-1 for damaged cell 

identification was confirmed again by absence of strong nuclear-specific signal in 

“dead” control cells within non-treated hydrogel (Figure 28 C4-6). 
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Figure 28: Viability 
assessment of MSC in 
PNIPAM+RRR 
hydrogel using the 
Live/Dead® assay. (A) 
Monolayer control 
sample demonstrates 
assay specificity in 2D, 
where viable cells are 
stained green with 
Calcein AM and the 
nuclei of cells with 
raptured cell 
membrane stained red 
with EthD-1 dye. 
Assay dye 
concentration and 
incubation time is 
identical to one used in 
3D hydrogel set up. (B) 
HB PNIPAM+RRR 
hydrogel recovered 
from ethanol with 
encapsulated “live” 
(methanol non-treated) 
and “dead” (cell 
membrane damaged 
by methanol pre-
treatment) cells. (C) 
Ethanol non-treated 
PNIPAM +RRR 
hydrogel with “live” 
and “dead” cells. 
Live/Dead® assay dye 
concentrations were 
optimised for the 3D 
hydrogel setting. All 
scale bars are 100 µm. 
n=2 
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4.3.9 Progression of MSC differentiation in 3D hydrogel  

Osteogenic potential in all three donors was assessed by the alkaline phosphatase 

(ALP) activity assay and the von Kossa staining. Birefringence studies were 

performed on FH496 and K118 MSCs to validate specificity of the von Kossa stain 

within the HB PNIPAM+RRR hydrogel environment. In addition, adipogenic 

potential of K89 and K118 donor cells was also assessed, where lipid deposition was 

tracked with BODIPY® 493/503 stain.  

ALP is a commonly-used marker of osteogenesis, and its’ role in osteogenesis was 

originally confirmed by a study of  a genetic disease, which leads to under 

mineralisation of the bone tissue, known as hypophosphatasia (Whyte 1994). Along 

with enzymatic activity of ALP, osteogenesis can be also identified by cellular 

mineral deposition. The von Kossa stain was used to assess level of mineralisation 

within hydrogel and monolayer cultures. To cross-confirm specificity of the von 

Kossa stain and indicate calcium deposition, polarised light microscopy, which 

provides measure of birefringence of the material, was employed. Moreover, 

progression of adipogenesis in differentiating MSCs is defined by expanding lipid 

droplet formation within the cells. The main component of the BODIPY® 493/503 

stain is a lipid-specific fluorescent compound, which allows visualisation of the 

lipid-depositing cells in monolayer and 3D settings.  
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4.3.10 Osteogenesis: ALP enzymatic activity 

Osteogenic differentiation capacity of all three donors was assessed within cell-

loaded hydrogel and monolayer cultures with the ALP assay on day 7, 14 and 21, 

after treatment with osteogenic or basal media. 

ALP enzymatic activity of the FH496 donor cells was observed in monolayer 

cultures, where samples treated with osteogenic media demonstrated much higher 

ALP activity, when compared to control samples, treated with basal media (Figure 

29). Whereas, hydrogel-encapsulated MSCs demonstrated high levels of ALP 

activity throughout the whole culture period and within both treatment conditions: 

osteogenic and basal (see white arrows). 

 

Figure 29: Analysis of ALP activity in primary FH496 MSC monolayers and 
cell-loaded hydrogel droplets. Samples were exposed to osteogenic 
differentiation cocktail and control media for up to 21 days. Monolayer cultures 
in osteogenic conditions demonstrated consistently strong ALP activity on day 
14 and 21. Basal monolayers have shown lower ALP activity on the same days. 
Cell-loaded hydrogels, in osteogenic and basal media, demonstrated strong ALP 
signals throughout differentiation experiment, with peak activity on day 14 (see 
white arrows). 2D samples on day 7 have peeled off during pre-imaging washes 
(*). All scale bars are 100 µm. n=2.  
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ALP signal wtihin the K89 donor sample followed a pattern, similar to FH496 

sample. Monolayer MSCs exhibited ALP acitivty, where the strongest signal was 

observed on day 15 in samples treated with osteogenic media (Figure 30). Hydrogel-

encapuslated MSCs did not show any ALP signal on day 7 in either of the 

differentiation conditions. However, ALP-positive cells were observed in osteogenic 

and basal conditions on day 15, as well as day 21 (Figure 30, white arrows).  

 

Figure 30: ALP activity in K89 monolayers and cell loaded PNIPAM+RRR 
hydrogel droplets. Hydrogel-encapsulated cells demonstrate no ALP signal on 
day 7, and a consistently strong ALP activity on day 15 and 21 in both 
treatment conditions, osteogenic and basal (white arrows). The ALP activity of 
varying intensity was also observed in monolayer cultures. In osteogenic 
condition, strongest ALP signal was seen on day 15. Cells, treated with basal 
media, have demonstrated very weak ALP signal, peaking at day 15. All scale 
bars are 50 µm. n=2. 
 

Osteogenic differentiation capacity of MSCs from the K118 sample was analysed in 

an identical manner to FH496 and K89 samples. ALP-positive cells were only found 

in monolayer samples, treated with osteogenic media, where ALP activity was most 
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evident on day 14 and 21 (Figure 31). Neither of the 3D samples, treated with the 

osteogenic or basal media, had ALP-positive cells.  

 

Figure 31: ALP activity within K118 donor cells was only found in osteogenic 
conditions of monolayer cultures, where most prominent signal was observed on 
days 14 and 21. The ALP signal channel was merged with photomultiplier tube 
(PMT) channel to show morphology of the ALP-positive cells and presence of 
the cells within the hydrogels. All scale bars are 100 µm. n=2. 
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4.3.11 Osteogenesis: von Kossa mineralisation staining 

Mineralisation activity within monolayer and cell-loaded hydrogel samples was 

tracked with the von Kossa and ALP stains after 7, 14 and 21 days of culture with 

osteogenic and basal media. Samples, which are von Kossa and ALP positive are 

represented by brown and pink-red stains, respectively. 

 

Figure 32: Von Kossa and ALP staining of FH496 MSC monolayers and cell-
loaded PNIPAM+RRR droplets. MSC monolayers in basal conditions 
demonstrated no mineral deposition and minimal ALP activity on day 21. 
Treatment of MSC monolayers with osteogenic media resulted in strong ALP 
activity from day 7, with mineralisation onset on day 14 and active 
mineralisation by day 21. Hydrogel encapsulated MSC single cell suspension in 
osteogenic and basal conditions demonstrated active mineral deposition on day 
14 and 21 (white arrows). 2D samples on day 7 have peeled off during pre-
imaging washes (*).All scale bars are 100 µm. n=2 
 

The FH496 donor cells in monolayer culture and basal conditions did not show 

active mineralisation, however, traces of ALP activity were observed on day 21 

(Figure 32). Whereas, monolayer MSCs in osteogenic media demonstrated ALP 

activity on day 14. Furthermore, progressive mineral deposition was observed on day 

14 and 21 (white arrows). No evident ALP signal was detected in either of the cell-

loaded hydrogel settings. At the same time, starting from the day 14, strong von 
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Kossa stain was observed in cell-loaded hydrogels in osteogenic and basal conditions 

(Figure 32, white arrows).  

 

Von Kossa staining of K89 cell monolayers in basal conditions did not show any 

mineralisation, where osteogenic conditions promoted active mineral deposition 

from day 15 (Figure 33). Similarly, hydrogel-encapsulated MSCs in osteogenic 

conditions demonstrated an onset of active mineralisation on day 15 and 

omnipresence of von Kossa staining on day 21 (white arrows). Hydrogel samples in 

basal conditions did not demonstrate von Kossa positive staining up until day 21. 

 

Figure 33: ALP and von Kossa stained K89 MSC monolayers and cel-loaded 
PNIPAM+RRR droplets. A progressive von Kossa stain was observed in 
monolayer and cell-loaded hydrogel cultures in osteogenic conditions on day 15 
and 21. Where no von Kossa stain was observed in basal media conditioned 
samples, except for hydrogel-encapsulated samples on day 21. All scale bars are 
100 µm. n=2. 
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Osteogenic potential of the K118 samples was assesed in an identical manner to the 

FH496 and the K89 donor samples. Progressive mineral deposition in K118 cells 

was observed only in osteogenic conditions of hydrogel-encapsulated cells on day 14 

and 21 (Figure 34, white arrows). Monoloayer cultures in osteogenic conditions 

demonstrated traces of ALP activity at every analysed timepoint. Monolayer and 

hydrogel samples showed neither von Kossa, nor ALP staining at any timepoint. 

 

Figure 34: Mineralisation and ALP activity assessment with von Kossa and 
ALP stain in K118 MSC monolayers and cell-loaded PNIPAM+RRR droplets. 
Active mineralisation was observed only in hydrogel-encapsulated MSCs on day 
14 and 21 (white arrows). Traces of ALP activity were seen in osteogenic 
monolayer cultures. Neither von Kossa, nor ALP stain was observed in basal 
media treated sample monolayers and hydrogel-encapsulated cells. All scale 
bars are 100 µm. n=2. 
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4.3.12 Osteogenesis: birefringence as the von Kossa stain validation  

In order to cross-confirm von Kossa staining results, polarised light microscopy was 

employed. Prior imaging, cell-loaded hydrogels were sectioned and transferred onto 

glass slides. In addition, sectioned samples were not pre-stained with any 

differentiation assays.  

Hydrogel samples were collected from two donors: FH496 and K118. Analysis of 

the FH496 sample under polarised light demonstrated absence of birefringence 

signal on day 7 in osteogenic conditions, however, already by day 14 a strong 

birefringent signal was observed (Figure 35, white arrows). Identical response was 

observed on day 21. Likewise, MSCs in basal hydrogel conditions on day 21 were 

found to have a clear birefringence signal. 

 

Figure 35: Examination of birefringence effect in FH496 PNIPAM+RRR-
encapsulated MSCs under polarised light. No birefringence was observed in 
MSCs in osteogenic conditions on day 7 under polarised light. Thereafter, on 
day 14 and 21, a strong birefringence signal was detected (see white arrows). 
After 21 days of culture in basal conditions, hydrogel-encapsulated MSCs were 
also found to be birefringent (see arrows). Day 7 and 14 samples in basal 
conditions were damaged during cryosectioning. All scale bars are 50 µm. n=2. 
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The response of the K118 cells in osteogenic conditions  to polarised light was very 

similar FH496 cells in the same conditions – birefringent signal was observed on day 

14 and 21 (Figure 36, white arrows). However, no signal was collected from samples 

in basal conditions in either of the days (Figure 36).  

 

Figure 36: Micrographs of cryo-sectioned hydrogel-encapsulated K118 samples 
under polarised and transmitted light. No birefringence was observed in basal 
conditions, where in osteogenic conditions day 14 and 21 samples 
demonstrated a birefringence signal (white arrows). n=2. 
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4.3.13 Adipogenesis: BODIPY® staining 

Osteogenesis and adipogenesis differentiation in MSCs are mechanistically 

reciprocal processes (Beresford et al. 1992). According to the collected osteogenesis 

data, majority of the patient samples are demonstrating active mineral deposition and 

ALP activity in osteogenic environment, as well as in basal conditions (ALP: Figure 

29 and Figure 30; von Kossa: Figure 32 and Figure 33). These observations suggest 

osteogenesis-inductive effect of the HB PNIPAM+RRR 3D hydrogel environment. 

Therefore, it can be hypothesised that the same environment will demonstrate 

adipogenesis-inhibitive properties. To prove or reject this hypothesis, adipogenic 

potential of the K89 and the K118 donor samples was assessed during 21-day 

differentiation experiment.  

Assessment of the adipogenic potential of the K89 sample MSCs is presented in 

Figure 37. The monolayer MSCs, which were exposed to adipogenic media for 7 

days demonstrated signs of active adipogenesis, by forming spherical structures 

which were positively stained by tracer for nonpolar lipid - BODIPY® 493/50.  By 

day 21, adipogenic-treated monolayer cells demonstrated widespread lipid vesicle 

formation within the cells. This observation confirms sensitivity of primary K89 

MSCs to osteogenic stimulation.  

At the same time, monolayer cells in basal conditions did not produce any visible 

lipid vesicles, nor were the cells positive to lipid stain at any timepoint. Likewise, 

hydrogel-encapsulated cells in both, adipogenic and basal conditions did not exhibit 

any lipid positive staining. 
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Figure 37: K89 cells in monolayers or PHIPAM+RRR droplets, stained with 
BODIPY® 493/503 stain for lipid deposits, Both sample types were exposed to 
adipogenic and basal conditions for up to 21 days. Only cells that have 
demonstrated adipogenic activity were monolayer MSC cultures in adipogenic 
conditions (white arrows). The BODIPY signal channel was merged with 
photomultiplier tube (PMT) channel to show morphology of the lipid-forming 
cells. All scale bars are 100 µm. n=3.  
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Adipogenic potential of K118 was assessed in identical manner to K89 sample. 

Following 21 day treatment with adipogenic media, cells in monolayers did not 

demonstrate lipid vesicle formation and BODIPY positive staining (Figure 38). 

Likewise, hydrogel-encapsulated cells were not found to be BODIPY-positive in 

adipogenic conditions. Identical cell response was observed in 2D and 3D samples 

treated with basal media. 

 

Figure 38: K118 MSCs in monolayers or PHIPAM+RRR droplets, stained with 
BODIPY® 493/503 stain for lipid deposits, Both sample types were exposed to 
adipogenic and basal conditions for up to 21 days. No BODIPY-positive signal 
was observed in either of the samples throughout the differentiation assay. All 
scale bars are 100 µm. n=3. 
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4.4 Discussion  

4.4.1 Addition of an extra dimension and adaptation to the unique 
environment  

Results of the studies conducted on 2D TCP surface are often misleading in the long 

run, as numerous factors, which are inherent to in vivo conditions in 3D, are not 

taken in consideration (Meng et al. 2014). One of the key areas that this particular 

project was designed to cover is extending understanding of BM MSC behaviour in 

3D environment, by using PNIPAM-based hydrogel.  

PNIPAM as a chemical entity has attracted copious amount of interest from the 

tissue engineering community due to its phase-transitioning nature (Alarcon et al. 

2005; Guan & Zhang 2011; Rimmer et al. 2009; Galperin et al. 2010). Particularly in 

the last decade, numerous PNIPAM-based solutions for the needs of tissue 

engineering became available (Gan et al. 2009; Wu et al. 2014; Mazumder et al. 

2012). The objective of this project, specifically regarding 3D culture system, was to 

design a novel, highly tuneable synthetic material, which could be optimised for the 

needs of MSCs.  

The fundamental initiative to design a hydrogel system, based on PNIPAM, was to 

create an environment which could be used in tissue repair, either by closely 

mimicking the native environment of the MSCs (i.e. bone marrow or the putative 

MSC niche) or by directing differentiation.  

At the early stage of hydrogel design, highly-branched architecture of PNIPAM was 

functionalised with tri-arginine peptide. It is important to mention that this 

architecture of the hydrogel was not previously reported in the literature, and 

therefore, it was essential to conduct biocompatibility testing that would confirm 

suitability of HB PNIPAM+RRR for biological application, most importantly with 

MSCs.  

To obtain preliminary understanding of how PNIPAM+RRR hydrogel may perform 

as a 3D scaffold in cell culture conditions, MG63.EGFP osteosarcoma cells were 

placed in the gel for 8 days (Figure 21). Cells were successfully encapsulated, 
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demonstrating rounded morphology, and minimal amount of hydrogel shrinkage was 

observed.  

The core focus of this project is the understanding of the ex vivo MSC behaviour in 

3D environment. Ex vivo MSCs, cultured on 2D TCP, lack structural organisation of 

the in vivo setting. On the contrary, ex vivo MSCs, cultured in spheroids, provide an 

in vivo-like morphology, phenotype and cell-cell interaction, representing a better 

model system of the natural tissue (i.e. force and diffusion gradients are present in 

spheroids) (Saleh et al. 2011; Kunz-Schughart et al. 2004). In addition, MSC 

spheroids hold a great promise to be used as building units of artificial organs 

(Mironov et al. 2009). 

Taking in consideration benefits of the spheroidal organisation, MSCs were formed 

into spheroids and encapsulated in the hydrogel. Spheroids were placed into HB 

PNIPAM+RRR hydrogel for 8 days in a 96-well flat-bottomed TCP plate (Figure 

22). For the first 6 days of culture spheroid encapsulation appeared to be successful, 

but on day 8 it was evident that encapsulated spheroids regained contact with the 

surface of the plate and cell growth in monolayer was initiated. An identical spheroid 

encapsulation protocol was repeated with use of non-adherent U-bottom plates, no 

adhesion of the spheroid to the surface of the well was observed even after 16 days 

of culture (Figure 23). Success in spheroid encapsulation was compromised by 

substantial shrinkage of the gel structure, presumably due to lack of anchorage for 

the gel and centre-directed pressure imposed on cell-gel composite by the well U-

shaped design. 

The core focus of this study was the behaviour of the MSC single-cell suspension 

within 3D environment of the HB PNIPAM+RRR (Figure 24). After 7 days of 

culture encapsulated MSCs were not found to be adhering to the bottom of the 96-

well TCP flat-bottom plate, as no cells have taken up a fibroblastic morphology, but 

retained their rounded shape. In addition, cells were found to localise themselves at 

various distances from each other in 3D space of the gel, with majority of the cells 

organised around one plane, parallel to the TCP surface.  
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These initial compatibility experiments verified that MSCs can be encapsulated in 

PNIPAM+RRR hydrogel and observed under multi-photon and confocal 

microscope, despite its opaque appearance. In addition, MSC morphology was 

affected dramatically after encapsulation in the hydrogel – flattened fibroblast-like 

appearance of MSCs, previously cultured on TCP, was replaced by a rounded shape 

without evident projections. 

Cell migration in vivo is a complex process, which is accompanied by ECM 

remodelling via MMPs, cytoskeletal reorganisation and development of the leading 

edge (protrusion)  (Friedl 2004; Petrie & Yamada 2012). Analysis of the relative 

distances between encapsulated MSCs in identical region of interest (ROI) for 12 

days identified virtually no migratory activity in the cells (Figure 25A,C). Most 

commonly, migrating cells form membrane extensions, also known as protrusions. 

Hydrogel-encapsulated MSCs did not change the shape substantially and remained 

rounded.  

Cell volume changes in encapsulated MSCs were also analysed (Figure 25C). The 

particular cell population analysed presented a broad range of cell volumes on day 1, 

but with progression of time 3 distinct groups of cells were identified (Figure 25B). 

The majority of the cells demonstrated a reduction in cell volume by ca. 23% after 

first 4 days in culture, followed by a plateau. Whereas, a small sub-group of analysed 

cells showed a marked increase in cell volume on day 4 of culture with a further 

gradual increase in cell volume. Possible explanation for this behaviour by MSCs 

comes from the fact that the MSC population is heterogeneous and the initial broad 

range of cell volumes is inherent property of the population.  

Moreover, the observation that the starting cell population divided into 3 discrete 

groups by volume range and demonstrating non-linear volume change with time in 

culture, suggests that the cells were undergoing active adaptation to new 3D 

environment (Figure 25B). Interestingly, the volume increase observed in a minority 

of cells, in contrast to the shrinkage trend observed in the majority of the cells, may 

suggest that MSCs are remodelling their own cytoskeleton to occupy an optimal cell 

volume for this particular material. This observation supports the assumption that the 
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cellular cytoskeleton is constantly remodelling (Rodríguez et al. 2004) in order to 

facilitate adaptation to the new environment. 

4.4.2 MSC release from EtOH-treated PNIPAM+RRR 

Key understanding of the hydrogel biocompatibility with MSCs was obtained by 

conducting cell viability testing. MSCs at their primary stages of culture are selected 

on the basis of their plastic-adherence property. The initial attempt to assess MSC 

viability after culture in hydrogel’s 3D environment was to be performed by means 

of cell recovery from the gel. In addition, PNIPAM-based approach to MSC culture 

was initially chosen because of the thermo-reversible nature of the polymer (i.e. 

hydrogel structure dissolution takes place after  temperature lowering past LCST 

point and exceeding hysteresis time window), as one of the beneficial properties of 

this particular polymer.  

The thermo-reversible nature and gel dissolution was observed during polymer 

synthesis and analysis stage (e.g. gelation test, UV-vis, µDSC results; Section 3.4). 

However, process of cells culture made the thermo-reversible property of the gel less 

usable, as the hydrogel dissolution was not complete even after 16 hours on the 

rotating ice bed and mechanical break up was required (Figure 26).  This loss of 

function in PNIPAM+RRR can probably be attributed to protein-rich serum, present 

in the media, and long term culture process that may have altered dissolution 

mechanism of the PNIPAM+RRR gel. 

Furthermore, analysis of the released cells from both, EtOH-sterilised and non-

sterilised, hydrogels types showed that an overall majority of the released cells are 

rounded and non-adherent (Figure 26). Figure 26A provides an example of an 

individual MSC reattaching following release from the gel after 16 days of culture 

and subsequent culture for 3 days. Whereas, Figure 26B exemplifies the majority of 

MSC being non-adherent with rounded morphology. These observations suggest that 

the interaction between MSCs and the TCP surface was affected, either via TCP 

surface modification or the alterations in the MSC surface-binding properties. 

Cell adhesion on common tissue culture grade polystyrene is enabled by corona 

discharge treatment. Following this treatment, initially hydrophobic surface becomes 
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hydrophilic and negatively charged. This surface modification promotes fibronectin 

and vitronectin binding, which are present in abundance in the serum-enriched 

media. Presence of the integrin-responsive sequences, like fibronectin and 

vitronectin, stimulates cell binding and spreading. (Ryan 2008) 

On the other hand, loss of adhesion or development of anchorage independence is 

often linked to the tumour cells with metastatic potential (Mori et al. 2009). 

However, loss of adhesion in this particular case can probably be explained by 

saturation of the TCP surface with polymer and peptide sequences that may have 

inhibited binding site of integrin receptors. In addition, the recovery conditions after 

the gel disaggregation were identical to conditions prior disaggregation, where 

released cells may require some adjustments to the culture settings in order to 

reinitiate the cell attachment. Moreover, Yang and colleagues has provided 

evidences, that one week of culture is enough for matrix elasticity to promote MSC 

commitment to osteogenesis (Yang et al. 2014). The work of Yang and colleagues 

has demonstrated that MSCs have a mechanical memory, where YAP/TAZ 

transcriptional activators represent an internal mechanical rheostat, which stores 

information on previous microenvironments and cell specialisation choices (Yang et 

al. 2014). Therefore, hydrogel-released cells could be involved in the early 

differentiation process and are not able to bind to TCP after exposure to a less stiff 

hydrogel environment.  

4.4.3 MSC biocompatibility with HB PNIPAM+RRR  

A fundamental requirement of any scaffolding material, which is intended for use in 

tissue engineering, is its ability to support cell viability. Previous experiments in this 

study have identified a propensity of encapsulated MSCs to maintain rounded 

morphology (Figure 24), limited motility and reduction of the volume in the majority 

of the cells (Figure 25). These observations, taken together, predict lack of active 

proliferation of the MSCs within PNIPAM+RRR environment.  

In order to validate viability of the encapsulated cells, the CCK8 kit was used 

(Figure 27). An active component of the CCK8,  a water-soluble tetrazolium salt, is 

converted into media-soluble formazan yellow dye by active dehydrogenases in the 
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cell (Dojindo n.d.). In theory, concentration of the formazan dye is directly 

proportional to the number of viable cells. However, this dye appeared to be non-

optimal for cell viability testing in PNIPAM+RRR hydrogel. After 8 days of culture, 

cell-free hydrogels have demonstrated identical formazan concentrations, when 

compared to cell-loaded hydrogels (Figure 27). Such behaviour may be explained by 

possible retention of the dye within the hydrogel structure. 

As the CCK8, a method for cell viability assessment, rendered itself as inappropriate 

for the HB PNIPAM+RRR system, a qualitative imaging approach was used instead. 

The Live/Dead assay, used in this study, is a composite of 2 dyes: calcein AM and 

ethedium homodimer-1 (EthD-1). Fluorescent signal, obtained from calcein AM, is a 

product of calcein AM conversion by intracellular esterase activity into polyanionic 

dye calcein. Whereas EthD-1 can only penetrate cells with raptured cell membrane, 

and binding of the EthD-1 to nucleic acids results in 40-fold enhancement of 

fluorescence signal. 

Ethanol-treated and non-treated hydrogel samples were exposed to calcein AM and 

EthD-1 treatments on day 1, 4 and 10 (Figure 28). Analysis of EthD-1 staining in 

both sample types, ethanol-treated and non-treated, revealed low specificity of this 

dye in the 3D hydrogel setting: samples, with methanol-treated cells, did not 

demonstrate a strong nucleus-specific EthD-1 signal on neither of the days.  

At the same time, calcein AM has demonstrated consistently strong signal in both 

sample types, with non-treated “live” cells, as the culture time progressed. Whereas, 

samples with methanol-treated “dead” cells demonstrated only traces of intracellular 

esterase activity and complete absence of the signal on day 10 in both sample types. 

This observation validates the specificity of the calcein AM dye, and also verifies 

that the encapsulated cells are viable within the 3D PNIPAM+RRR setting on the 

basis of observed esterase activity. Importantly, ethanol-recovered PNIPAM+RRR 

polymer produced less autofluorescence, making the samples more suitable for 

microscopic analysis and future studies.  
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4.4.4 MSC differentiation in HB PNIPAM+RRR 

The ability of MSCs to undergo differentiation is well known, where the capacity to 

form osteogenic, chondrogenic and adipogenic progenitor cells is considered to be a 

key characteristic feature (Roberts et al. 2011).  

Recent work of our group has demonstrated that articular chondrocytes are viable 

and increase in number in graft and random PNIPAM-based hydrogels (Lapworth et 

al. 2011). In the current study, a highly functional and branched hydrogel was 

developed, allowing cell encapsulation. Assessment of the MSC phenotype within 

3D environment of the hydrogel will help to prove or disprove the hypothesis that 

PNIPAM+RRR hydrogel can be used as a model environment to support and study 

MSC function in 3D milieu. 

The ability of MSCs to undergo osteogenesis in the 3D environment of 

PNIPAM+RRR was tested first in order to establish the sensitivity of encapsulated 

cells to differentiation cocktails. 

The encapsulated cells in the osteogenic and control conditions were found to be 

ALP positive, suggesting progression of osteogenic differentiation (Figure 29 and 

Figure 30). Further, these observations were confirmed on independent samples by 

ALP and von Kossa staining (Figure 32 and Figure 33). In order to cross-validate 

results of the von Kossa staining and eliminate possibility of non-specific staining of 

the phosphate groups, introduced by the washing solution, hydrogel sections were 

analysed under polarised light microscope (Figure 35 and Figure 36). Polarised light 

analysis method was used as it was previously found to provide birefringent signal 

from calcium phosphate structures (Clineff et al. 2005). 

The osteogenesis study with FH496 donor sample has provided clear evidences of 

osteoinductive effect of PNIPAM+RRR polymers on MSCs in osteogenic and also 

basal conditions. 

It is important to remember that MSCs used in this project were extracted from 

donors, who differed by age, sex, body mass index (BMI), tissue source and may 

also have had a history of degenerative disease (Table 11). Taking these facts in 
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account, together with inherent mutability in genetical make up between each 

individual and possibly non-homogeneous MSC population, may result in variability 

in cells’ phenotypic characteristics (da Silva Meirelles et al. 2006; Sivasubramaniyan 

et al. 2012). In order to account for this potential variability, osteogenesis 

experiments were conducted on MSCs, which were obtained from 3 donor tissue 

samples. 

MSCs, harvested from the second donor sample – K89, have demonstrated similar 

osteogenesis results to FH496 donor, however with a slight difference. Highest ALP 

activity in K89 3D samples was observed on day 15 in osteogenic and basal 

conditions, yet the number of ALP-positive cells was low, relatively to FH496 

sample (Figure 30). Assessment of mineralisation in K89 revealed strong cellular 

response to the von Kossa stain in hydrogel samples on day 15, and particularly on 

day 21 in osteogenic environments (Figure 33). Whereas hydrogels under treatment 

with basal media did not demonstrate active mineral deposition on day 15, but von 

Kossa-positive cells were seen on day 21 (Figure 33). These observations support 

osteo-inductive nature of the hydrogel, first seen in FH496 donor sample. 

In addition to osteogenesis, adipogenic capacity of K89 MSC within 3D hydrogel 

environment was also studied. MSCs in monolayer culture, treated with adipogenic 

media, have demonstrated lipid vesicle development on day 7 and further 

progressive lipid formation with time in culture (Figure 37). No lipid vesicles were 

observed in monolayer cultures, treated with basal media. Identical cell response was 

observed in 3D hydrogels, where encapsulated cells were exposed to adipo-inducing 

cocktail, no lipid forming cells were observed, suggesting adipogenesis-inhibiting 

properties of the PNIPAM+RRR gel. 

K118 MSCs from the third donor sample demonstrated relatively weak ALP 

response in cell monolayers after osteogenic treatment (Figure 31). Contrary to 

monolayers in osteogenic media, no other sample has demonstrated ALP activity at 

any time point. Interestingly, mineralisation development was not observed in either 

of the tested samples, excluding 3D hydrogel samples under osteogenic conditions 

on day 14 and 21 (Figure 34).  This observation was cross-confirmed by presence of 
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the birefringence in osteo-induced 3D hydrogel samples on day 14 and 21, and 

absence of the birefringence in hydrogels under basal conditions (Figure 36).  

In addition, K118 MSC sample cells were not responsive to adipogenic media 

treatment: neither 2D monolayers nor 3D hydrogels showed lipid vesicle formation 

(Figure 38).  

Summative assessment of MSC osteogenic differentiation potential within 3D 

PNIPAM+RRR samples indicates an osteo-conductive nature of the hydrogel 

environment in MSCs from all 3 donors; and osteo-inductive property of the same 

environment was seen in 2 donors. Adipogenic differentiation was induced in 2 

donor samples, and collected results suggested adipo-inhibitive properties of the 

PNIPAM+RRR hydrogels.  

Phenotype comparison between all 3 donor cells exemplifies variability in cell 

response. The link between age and gender effect on MSC mesodermal 

differentiation capacity would be initially assumed. However, a recent study on  

bone marrow MSCs from 20 male and 18 female (male, age 54.4 ± 11.3 years SD; 

18 female, age 50.3 ± 16.9 years SD) donors identified no correlation between age, 

gender and mesodermal differentiation capacity of MSCs (Siegel et al. 2013). 

Concurrently, Prins and colleagues has demonstrated high discrepancy in tri-lineage 

differentiation capacity between sub-clones from the same donor (Prins et al. 2014). 

In addition, only 4 out of 7 donor MSC samples were able to form bone tissue in 

vivo, highlighting intrinsic variation in differentiation capacity of primary BM MSCs 

(Prins et al. 2014).   

4.4.5 MSC osteogenic differentiation within PNIPAM-based hydrogels 

Understanding of the fundamental stages in in osteogenic differentiation is essential 

for complete exposure of the beneficial effects that an engineered hydrogel 

environment has on differentiation in MSCs. An excellent example of this concept is 

a recent study by Dai and colleagues. BM MSCs of mice were cultured in 

monolayers until confluent, followed by coverage with thermos-sensitive PNIPAM-

based hybrid gel, which forming a “sudo 3D” environment for the cells. This hybrid 

gel consisted of PNIPAM microgels with varied acrylic acid content (AA; AA 
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addition increased solution-gel transition temperature to 37˚C and provided pH 

sensitivity as an additional trigger for gelation). After 14 days of culture in control 

media (no differentiation stimulators added) a significant increase in mRNA 

expression of ALP, collagen 1 and Runx2 was observed in gel-covered samples with 

20% AA content, what indicated progress in lineage specification. With onset of 

lineage specification, calcium deposition was expected. However, when cell-

hydrogel samples were treated with Alizarin Red S on day 21 to assess 

mineralization, no staining was seen in all of the samples in control media, 

regardless of the AA content. Even the samples, which were kept in the osteogenic 

media (supplemented with conventional stimulating factors), did not demonstrate 

mineralisation, except for the sample with 10% AA content (lowest tested 

concentration; mineralisation was minimal). Hence, lack of mineralisation staining is 

suggesting induction of an early differentiation, followed by inhibition of the later 

stages of differentiation - maturation and mineralisation. However, when the MSCs 

in monolayers were first cultured for 7 days in osteogenic media (media was not 

replaced), followed by hydrogel with osteogenic or control media addition for the 

next 14 days (media was replaced every 3 days), all of the hydrogel-covered samples 

exhibited mineralization activity, especially in samples with osteogenic media. 

Therefore, by allowing MSCs first to deposit sufficient quantities of calcium in the 

first 7 days, followed by hydrogel addition, strong osteoconductive and 

mineralization-inductive properties of PNIPAM+AA microgels are observed. Dai et 

al. attributed absence of mineralization in hydrogel-cell composites, lacking initial 

cell pre-treatment with osteogenic stimulants, to sequestering of the cationic Ca2+ 

ions by the anionic carboxylic (COO-) chain ends of the hydrogel polymers. Lineage 

specification was observed, but due to the absence of the Ca2+ ions, matrix 

maturation and mineralization processes were unable to progress. Considering 

Ca2+/COO- interaction, Dai and colleagues are proposing that the calcium, which 

was deposited in the first 7 days of osteogenic culture, is the chemo-attractant  for 

PNIPAM+AA with COO-
 functionalities. Such calcium-hydrogel interaction may 

model a mechanical stress transducer, which mediates mechanical forces, generated 

by ionic interaction between the microgels, to the cell. (Dai et al. 2014) In summary, 

this PNIPAM-based hydrogel demonstrates dual differentiation functionality. This 

hydrogel can act as an inhibitor, as well as the promoter, of osteogenic 



152 
 

differentiation in MSCs, depending on the stage at which it is added to the 

differentiation process. 

Despite the diversity in PNIPAM architectures and functionalities, exemplified in 

Table 4 and Table 10 above, this material has been rarely used to study 

differentiation of MSCs. Specifically, evidences of osteoconductive and 

osteoinductive properties of PNIPAM are being published, but they are not common 

(section 4.1.3). Furthermore, no studies are published, demonstrating stimulation of 

osteogenesis in highly branched PNIPAM. Therefore, osteogenesis-stimulating 

nature, demonstrated by PNIPAM+RRR hydrogel, is extending applicability of the 

branched PNIPAM hydrogels in tissue engineering strategies and providing novel 

3D model environment for MSC function examination. 

4.4.6 Exploration of relationship between MSC morphology, proliferation and 
differentiation in 3D. RRR peptide – as a potential adhesion molecule  

In the current project triple arginine sequence was used for hydrogel 

functionalisation, in order to improve solubility and stability of the highly branched 

PNIPAM hydrogel. Tri-arginine sequence is a novel peptide, which has not been 

researched previously. The only study on tri-arginine effect, currently available, is by 

Gilmore and colleagues, where she shows sequestering interaction of RRR with 

heparin (Gilmore et al. 2013). However, few studies on L-arginine show an 

important role it plays in cell adhesion. Work of Yeh et al. show that arginine 

treatment increases adhesion molecule (i.e. CD11b – an integrin family member that 

regulates leukocyte adhesion and migration) expression in bone marrow-sourced 

neutrophils (Yeh et al. 2007).  

Furthermore, Rhoads and colleagues have found L-arginine to stimulate intestinal 

cell migration via an increase tyrosine phosphorylation of the focal adhesion kinase. 

Rhoads et al. further states that the arginine is digested by arginase, producing 

ornithine amino acid – the precursor of polyamines. (Rhoads et al. 2004) 

Polyamines are involved in cell adhesion, as these polycations are required in a 

migrating cell during stress fibres and lamellipodia development (Rhoads et al. 
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2004). Interestingly, polyamines are also implicated in regulation of transcriptional 

and translational activity during bone development by stem cells (Borzì et al. 2014).  

Upper mentioned studies that highlight involvement of arginine in cell migration, 

adhesion and differentiation via arginine metabolite are performed with non-bound 

form of arginine. Whereas in HB PNIPAM, RRR sequences were cross-linked to the 

carboxylic acid end of the parent branched structure via carbodiimide cross linker. 

Hence, availability of the interaction between the cells and the arginine is limited to 

surface receptor level in case of HB PNIPAM+RRR.  

Even if the peptide-functionalised groups of PNPAM+RRR were not cross-linked, it 

is highly probable that permeation of tri-arginine through the cell membrane would 

be restricted. Work of Futaki et al. has vividly shown that peptide sequence, 

consisting out of 4 arginine repeats, will show very low translocation through the 

macrophage membrane. However, increase in arginine peptide length up to 8 

members will improve translocation dramatically. 8 member sequence of arginine 

appears to be most optimal, as at 12 and 16 unit length translocation through 

membrane will be gradually reduced. (Futaki et al. 2001) 

Hence, interaction of RRR with the MSC is most probable at the ligand-receptor 

level. It is an important hypothesis, as it may explain phenotypical changes in 

encapsulated MSCs.  

Taking in account low stiffness of PNIPAM+RRR gel (G*=542.3 Pa), imposed 

spatial restrictions on MSCs by encapsulation in 3D environment and proliferation 

arrest, I hypothesise that combination of these 3 factors may provide osteoinductive 

environment for MSCs. 

Equally, proliferation arrest closely describes a cell in a quiescent/G0 phase. Cell 

residence in G0 phase is common in terminally differentiated cells  as well as in pre-

differentiation cells (Filipak et al. 1989).  

It is widely known that in differentiation of osteoblasts, a reciprocal process takes 

place: decrease in proliferation upregulates differentiation (Buttitta & Edgar 2007). 
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Therefore, MSC encapsulation in 3D hydrogel may mechanically restrict 

proliferation and prime cells for differentiation. Capacity for differentiation is an 

inherent and default property of non-differentiated cells. Stoppage of proliferation 

precedes differentiation and it is often described by withdrawal from the cell cycle 

(Walsh & Perlman 1997; Buttitta & Edgar 2007). 

Along with stoppage in proliferation, MSCs were observed to take up rounded 

morphology. Winner and colleagues has demonstrated that MSCs with rounded 

morphology were non-proliferative when cultured on soft substrate (i.e. 250 Pa 

polyacrylamide gels, coated with collagen type 1 and fibronectin), but still 

responsive to chemical triggers of adipogenic differentiation (Winer et al. 2009). 

Osteogenesis and adipogenesis processes are closely interconnected – Jaiswal and 

colleagues more than a decade ago has provided evidences that inhibition of ERK 

signalling in MSCs results in blocking of osteogenic differentiation and promotion of 

adipogenesis (Jaiswal et al. 2000). 

4.4.8 Rounded morphology of encapsulated MSCs 

Multiple studies have found that osteogenic or adipogenic differentiation can be 

promoted by various substrate characteristics. As such, spreading inhibition on 2D 

substrate (McBeath et al. 2004), along with cell shape restriction to a circle-like 

shape (Kilian et al. 2010)(i.e. individual cell cultured on square-shaped substrate, 

opposed to elongated, rectangle – like shape) have shown promotion of adipogenesis 

and  diminished osteogenic potential in MSCs. Whereas, appropriate stiffness of the 

substrate that facilities force translation (Discher et al. 2005; Pek et al. 2010), 

substrate functionalisation (Mauney et al. 2004; Polini et al. 2011) and hypoxic 

environment (Lennon et al. 2001) supported osteogenesis. 

Furthermore, maintenance of a high differentiation potential, either osteogenic or 

adipogenic, requires suitable substrate. Mauney et al. demonstrated the importance 

of denatured collagen type I substrate in maintaining and supporting of the 

differential potential in both osteogenesis and adipogenesis (Mauney et al. 2005; 

Mauney et al. 2004). Whereas, inhibition of MSCs’ integrin binding to fibronectin, 
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through treatment with heparin, resulted in upregulation of adipogenesis-related 

genes (Luo et al. 2008). 

This collective insight into substrate effect and cell shape on differentiation suggests 

that MSCs with poor focal adhesion and rounded morphology should exhibit pre-

adipogenic commitment.  

Analysis of encapsulated MSCs in HB PNIPAM+RRR showed active osteogenesis 

and absence of adipogenesis. This finding contrasts with current view of the cell 

phenotype, as a predictor of differentiation fate, in a pliant culture environment. 

Research by Rodriguez et al., McBeath et al. and Kilian et al. suggests, that MSCs 

with rounded morphology on a soft substrate are likely to demonstrate an opposite 

effect – strong adipogenesis and inhibition of osteogenesis (Rodríguez et al. 2004; 

McBeath et al. 2004; Kilian et al. 2010).  

Differentiation capacity modulation of MSCs within HB PNIPAM+RRR may be 

explained by recent findings of Pek et al. who used polyethylene glycol-silica (PEG-

silica) nanocomposite hydrogel, with the capacity to liquefy after exposure to a sheer 

stress (ranging from 7 Pa to 100 Pa) and presence or absence of the functional RGD 

domains as a 3D environment for MSC encapsulation (Pek et al. 2010). The analysis 

of cellular response, in terms of gene expression and proliferation, showed that 

increase in stiffness resulted in RUNX2 and osteocalcin expression increase, 

especially in the gel with stiffness of 75 Pa. At the same time, morphology of the 

cells in 100 Pa gels was strictly rounded, regardless of the RGD presence. 

This observation made by Pek and colleagues, regarding the shape of the 

encapsulated MSCs, suggests that morphology of the MSCs is not a universal 

predictor of the lineage commitment and differentiation capacity of the cell. Further 

confirmation of this hypothesis can be drawn from analysis of the osteoblast 

morphology from bone marrow smears, where osteoblast cells are seen as large cells 

(25-50 µm in diameter) with rounded or oval shape  (PathologyOutlines.com & 

Dragos 2012). Whereas myocytes, which are sharing the same germ layer origin with 

osteoblasts, are long and tubular cells (Evans et al. 2003). 
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Morphology of cells in 3D environment is a result of cell interaction with 

surrounding microenvironment, where focal adhesions play a pivotal role. Focal 

adhesions are instrumental for tensile or compressive force translation from the 

ECM. Balaban et al. calculated that typical fibroblast is capable of exerting 5500 Pa 

of stress on the surrounding matrix via focal adhesions  (Balaban et al. 2001). 

The focal adhesion complex is an intricate structure, which represents a dynamic 

interaction between three main components: cytoskeletal actin filaments, 

intramembranous integrins and ECM proteins (e.g. fibronectins). Each of these 

components plays a significant role in MSCs’ fate determination. Furthermore, 

formation of focal adhesion complexes is essential for osteogenic differentiation 

(Salasznyk et al. 2007; Luo et al. 2008).  

As one of the primary structures of focal adhesion complex, actin filaments are 

responsible for providing the basic shape to a cell by contracting and expanding 

cell’s outer membrane. Furthermore, from all of the cytoskeletal filaments, actin’s  

structural stability appears to have the highest impact on the differentiation fate of 

MSCs (Treiser et al. 2010). Where disruption of the actin cytoskeleton results in a 

rounded morphology of a cell (Rodríguez  et  al.,  2004). In addition, a landmark 

study by McBeath and colleagues has demonstrated that  actin  disruption  in  MSCs  

leads  to  adipogenesis,  what  in turn  links  rounded  morphology  with  actin  

disruption  and adipogenesis (McBeath et al., 2004). This correlation was also 

confirmed by Kilian and colleagues (Kilian et al., 2010).  

Integrins in particular are recognised  as  key  drivers  of  osteogenesis (Salasznyk et 

al. 2007; Treiser et al. 2010). Work of Ingber enhanced understanding of the role of 

integrins as mechanoreceptors, which are capable of sensing and transmitting force 

between cytoskeleton and ECM instantaneously (Ingber 1997). This property of 

integrins may explain correlation between substrate stiffness and MSC 

differentiation fate, where soft substrate stimulates neurogenic differentiation and 

increase in substrate stiffness promotes osteogenic development in MSCs, both in 

2D and 3D settings (Pek et al. 2010; Engler et al. 2006). Therefore, stiffness of the 

cells’ microenvironment translates into tension within cytoskeleton and 

consequentially generates stimulus for MSCs’ differentiation (McBeath et al. 2004).  
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ECM has been repeatedly shown to have a major effect on orchestrating cellular 

differentiation decisions (Martino et al. 2009; Daley et al. 2008). In order to produce 

osteogenesis-stimulating effect, ECM has to be in direct contact with integrins to 

allow force translation (Martino et al. 2009). Whereas in this project, the PNIPAM 

hydrogel was functionalised with a RRR peptide sequence, which may play a role of 

a ligand in MSCs’ adhesion to the ECM.  

This study set out with the aim of assessing the importance of MSC differentiation in 

3D hydrogel structure does not propose that RRR peptide sequence is a proven 

adhesion molecule; however, only this chemical entity in theory is accessible for cell 

contact and may provide some degree of focal adhesion (Yeh et al. 2007). Prevailing 

opinion on MSC differentiation suggests that absence of focal adhesion results in 

abolition of osteogenic differentiation (Shih et al. 2011; Lu et al. 2011; Salasznyk et 

al. 2007; Luo et al. 2008; Trappmann et al. 2012; Higuchi et al. 2012). In contrast to 

earlier findings, however, MSCs in PNIPAM+RRR demonstrate clear signs of 

osteogenesis and inhibition of adipogenesis. This discrepancy could be attributed to 

a very weak adhesion which is probably present between the cell and the 3D 

environment, so that the actin cytoskeleton is in a collapsed or compacted state, but 

the ECM-integrin adhesion is sufficient to translate mechanical signals for 

osteogenic differentiation commencement. At the same time this degree of adhesion, 

formed by the MSCs, is not sufficient to promote remodelling of the external 

synthetic scaffold environment by the encapsulated cells and provide required space 

for cell cycle progression (i.e. growth and preparation for cell division). As a result, 

an active osteogenesis and a lack of proliferation is observed. 
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5 Study conclusion 

The aim of this project was to develop a HB PNIPAM-based synthetic hydrogel 

scaffold, and employ this scaffold as a platform for assessment of MSC behaviour 

and guidance of differentiation in 3D environment.  

To reach this aim, 5 objectives were set out for completion. The first objective was 

to synthesise a stable thermo-responsive PNIPAM hydrogel with highly branched 

architecture. The highly branched architecture of the polymer was achieved by 

employing RAFT polymerisation method, where structural stability of the polymer 

was attained after RRR peptide addition.  

The second objective of this study was to characterise chemical and mechanical 

properties of the HB PNIPAM hydrogel. A thorough chemical characterisation of the 

non-functionalised HB PNIPAM and RRR-functionalised HB PNIPAM was done by 

numerous methods, including by UV-vis, zeta potential and µDSC. Whereas, 

mechanical properties of the peptide functionalised hydrogel was assessed on a cone-

plate viscometer.  

Thirdly, it was essential to optimise HB PNIPAM for encapsulation and long term 

culture of MSCs. As previously mentioned, RRR peptide functionalisation has 

improved stability of the polymer structure, as well water retention by the hydrogel 

network. As a result of peptide functionalisation it was possible to encapsulate the 

cells. 

The central area of interest is this project were MSCs and their behaviour within 3D 

environment of the PNIPAM+RRR hydrogel. Key phenotypic parameters of MSCS, 

such as viability, proliferation and differentiation, were successfully assessed within 

3D hydrogel environment. Hydrogel-encapsulated MSCs were found to be non-

proliferating, but viable for up to 21 days. Finally, HB PNIPAM+RRR was found to 

have an osteo-conductive, osteo-inductive and adipo-supressing properties in 

majority of the donor samples. 
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6 Future work  

Presented data and conclusions are demonstrating potential of the thermo-responsive 

HB PNIPAM+RRR hydrogel in providing a supportive 3D environment for MSCs 

functioning for up to 21 days. This hydrogel system was found to have an osteo-

conductive and osteo-inductive effect on encapsulated MSCs. The results, presented 

in this study, have verified suitability of HB PNIPAM+RRR hydrogel as a MSC 

assessment platform. However, full potential of this material is yet to be explored. 

Following experiments will allow to expand applicability of the highly branched 

PNIPAM hydrogels: 

1. In the presented study only one architecture (i.e. 25 m.e. NIPAM : 1 m.e. RAFT) 

of HB PNIPAM was synthesised and characterised in detail. The dissolution 

mechanism in this architecture after a period of cell culture was found to be 

greatly retarded. Synthesis of architectures with different NIPAM:RAFT ratios 

will yield polymers with varying degrees of branching and molecular weight. 

These new architectures may undergo prompt dissolution with consequent release 

of the cells, making genotyping of the encapsulated cells possible. 

2. Include degradation functionality, such as MMP-sensitive peptide sequences, into 

HB PNIPAM architecture to encourage cell migration and hydrogel remodelling. 

3. Seed 500-1000 MSC spheroids into HB PNIPAM+RRR hydrogel to assess 

differentiation potential of multi-cellular organoids and observe spheroid fusion 

by means of time-lapse confocal microscopy.  

4. Use HB PNIPAM+RRR in a high-throughput platform as an encapsulating 

environment for individual MSCs, to allow assessment of differentiation potential 

and trophic factor production at various temperature regimes.  

5. Assess potential of minimally-invasive MSC delivery at the site of trauma in small 

animal model and consequent tissue regeneration.  



160 
 

7 Definitions 

µDSC Micro-scale differential scanning calorimetry 

2-MBT 2-Mercaptobenzothiazole 

a.u. Arbitary unit 

ACVA 4,4’-azobis(4-cyanopentanoic acid) 

AIBN 4,4’-azobis(isobutyronitrile) 

ALP Alkaline phosphatase 

ATR-FTIR 
Attenuated total reflectance Fourier transform infrared 

spectroscopy 

BM Bone marrow  

BMI  Body mass index 

BSA Bovine serum albumin 

DIPEA Diisopropylethylamine 

Dkk-1 Dickkopf-1 

DMF N,N-Dimethylformamide 

ECM  Extracellular matrix  

FHxxx(e.g. 

FH123)  
Femoral head 

GAG Glycosaminoglycan 

GRGDS  

Glycine-Arginine-Glycine-Aspartic acid-Serine peptide 

sequence 

HB Highly-branched 

HBTU (Benzotriazole-1-yl) tetramethyluronium hexafl uorophosphate 

HPLC High Performance Liquid Chromatography 

Kxxx (e.g. K123) Knee plate tissue 

LCST Lower critical solution temperature  

LRP  Low-density lipoprotein receptor-related protein 

MMP Matrix metalloproteinase 

Mn Number average molecular weight 

Mp Peak molecular weight 
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MS Mass Spectrometry 

MSC Mesenchymal stromal cells 

Mw Weight average molecular weight 

OA Osteoarthritis  

pbf 2,2,4,6,7-Pentamethyldihydrobenzofurane-5-sulfonyl 

PDI Polydispersity index  

PNIPAM Poly(N-isopropylacrylamide)  

pX (e.g. p3) Cell passage number  

ROI Region of interest 

ROS Reactive oxygen species 

rpm Revolutions per minute 

RRR Tri-arginine peptide sequence 

Runx-2 Runt-related transcription factor 2 

SD Standard deviation 

sIPN Semi interpenetrating polymer  network 

TCP Tissue culture plate 

TFA Trifluoroacetic acid  

TMTP Transmitted light photomultiplier  

UCST Upper critical solution temperature  

xxxg (e.g. 315g) Gravitational force 
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