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Abstract

Deterministic dynamical systems are usually examined in terms of individual point
trajectories. However, there are some deterministic dynamical systems exhibiting
complex and chaotic behaviour. In many practical situations it is impossible to
measure the individual point trajectories generated by an unknown chaotic
dynamical system, but the evolution of probability density functions generated by
such a system can be observed. As an alternative to studying point trajectories, such
systems can be characterised in terms of sequences of probability density functions.
This thesis aims to develop new approaches for inferring models of one-
dimensional dynamical systems from observations of probability density functions
and to derive new methodologies for designing control laws to manipulate the

shape of invariant density function in a desired way.

A novel matrix-based approach is proposed in the thesis to solve the generalised
inverse Frobenius-Perron problem, that is, to recover an unknown chaotic map,
based on temporal sequences of probability density function estimated from data
generated by the underlying system. The aim is to identify a map that exhibits the
same transient as well as the asymptotic dynamics as the underlying system that
generated the data. The approach involves firstly identifying the Markov partition,
then estimating the associated Frobenius-Perron matrix, and finally constructing the
underlying piecewise linear semi-Markov map. The approach is subsequently
extended to more general one-dimensional nonlinear systems. Compared with the
previous solutions to the inverse Frobenius-Perron problem, this approach is able to

uniquely construct the transformation over the identified partition.

The method is applied to heterogeneous human embryonic stem cell populations for
inferring its dynamical model that describes the dynamical evolution based on
sequences of experimentally observed flow cytometric distributions of cell surface
marker SSEA3. The model that delineates the transitions of SSEA3 expression over
one-day interval, can predict the long term evolution of SSEA3 sorted cell fractions,

particularly, how different cell fractions regenerate the invariant parent distribution,



and can be used to investigate the equilibrium points which are believed to

correspond to functionally relevant substates, as well as their transitions.

A new inverse problem is further studied for one-dimensional chaotic dynamical
systems subjected to additive bounded random perturbations. The problem is to
infer the unperturbed chaotic map based on observed temporal sequences of
probability density functions estimated from perturbed data, and the density
function of the perturbations. This is the so-called inverse Foias problem. The
evolution of probability density functions of the states is formulated in terms of the
Foias operator. An approximate matrix representation of Foias operator
corresponding to the perturbed dynamical system, which establishes the
relationship with Frobenius-Perron matrix associated with the unknown chaotic

map, is derived.

Inspired from the proposed approach for solving the generalised inverse Frobenius-
Perron problem, a novel two-step matrix-based method is developed to identify the
Frobenius-Perron matrix which gives rise to the reconstruction of the unperturbed

chaotic map.

The asymptotic stability of the probability density functions of the one-dimensional
dynamical systems subjected to additive random perturbations is proven for the first
time. The new result establishes the existence as well as the uniqueness of invariant

densities associated to such transformations.

Finally, this thesis addresses the problem of controlling the invariant density
function. Specifically, given a one-dimensional chaotic map, the purpose of
controller design is to determine the optimal input density function so as to make
the resulting invariant density function as close as possible to a desired distribution.
The control algorithm is based on the relationship between the input density

function and the invariant density function derived earlier on.
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Chapter 1

Introduction

1.1 Research background and motivation

1.1.1 Modelling of chaotic dynamical systems from

probability density functions

It is well known that even simple one-dimensional discrete time deterministic
systems can exhibit complex and unpredictable random-like dynamical behaviour,
the so-called chaos. In many practical situations, the underlying dynamical system
is unknown, and the critical problem is to infer the mathematical description of the
system from the observations. The mathematical model characterising the system
dynamics can be used to predict the evolution of the dynamical behaviour, and
analyse the system stability. Chaotic behaviour can be observed in many natural
systems, and one-dimensional chaotic maps describes many real dynamical
processes, encountered in engineering, biology, physics and economics (Ott 1993),
which generate density of states. Examples include modelling particle formation in
emulsion polymerization (Coen, Gilbert et al. 1998), papermaking systems (Wang,
Baki et al. 2001) bursty packet traffic in communication (Mondrag6 C. 1999),
networks (Rogers, Shorten et al. 2004), cellular uplink load in WCDMA systems
(Wigren 2009). A major challenge is that of inferring the chaotic map which
describes the evolution of the unknown chaotic system, solely based on

experimental observations.

Starting with seminal research of Farmer and Sidorovich (1987), Casadgli (1989),

and Abarbanel et al (1989), the problem of inferring dynamical models of chaotic



Chapter 1 Literature Review

systems directly from time series data has been addressed by many authors using
neural networks (Principe, Rathie et al. 1992), polynomial (Aguirre & Billings
1995a), or wavelet models (Billings & Coca 1999).

In many practical applications, it is more convenient to observe experimentally the
evolution of the probability density functions instead of individual point trajectories,
generated by such systems. There are even many cases in which individual point
trajectories are not allowed to be recorded but sequences of probability density
functions are available (Lozowski, Lysetskiy et al. 2004, Altschuler & Wu 2010).
As a consequence, the traditional perspective of studying the chaotic systems needs
to be shifted. Such systems can be studied in terms of probability density functions
they generate, rather than point trajectories.

The problem of inferring the chaotic map given probability density functions
observed from the unknown systems, known as inverse Frobenius-Perron Problem
(IFPP), has been investigated by a number of researchers in the case when the only
information available is the invariant density function associated with the unknown
map over the past few years. Typical relevant research has been presented by
Friedman & Boyarsky (1982), Ershov & Malinetskii (1988), Géra & Boyarsky
(1993), Baranovsky & Daems (1995), Diakonos & Schmelcher (1996), Pingel,
Schmelcher & Diakonos (1999), Diakonos, Pingel & Schmelcher (1999), etal. In
particular, a matrix approach (Ulam 1960, Géra & Boyarsky 1993, Rogers, Shorten
et al. 2004, Rogers, Shorten et al. 2008a) to the inverse problem has been developed

to reconstruct Markov transformation with prescribed invariant density function.

It needs to be noted that all the existing methods are used to construct a map on the
given condition that the invariant density is known. This leads to the limitation of
these approaches that the solution to the inverse problem is not unique. Typically,
there exist many transformations, exhibiting a wide variety of dynamical behavious,
but which the same invariant density. Therefore, the reconstructed map does not
necessarily exhibit the same dynamics as the underlying systems even though it
preserves the required invariant density. Additional constraints and model validity
tests have to be used to ensure that the reconstructed map captures the dynamical

properties of the underlying system (Lyapunov exponents, fixed points etc.) and
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predicts its evolution. This is of paramount importance in a many practical
applications ranging from modelling and control of particulate processes (Coen,
Gilbert et al. 1998, Crowley, Meadows et al. 2000), characterising the formation
and evolution of the persistent spatial structures in chaotic fluid mixing (Pikovsky
& Popovych 2003), characterising the chaotic behaviour of electrical circuits (Wyk
& Ding 2002), chaotic signal processing (Gotz, Abel et al. 1997, Isabelle &
Wornell 1997), analysing and interpreting cellular heterogeneity (Altschuler & Wu
2010, MacArthur & Lemischka 2013) and identification of molecular

conformations (Schutte, Huisinga et al. 2001).

Another noteworthy limitation of the existing matrix-based reconstruction
algorithms is the assumption that a Markov partition is known. In general, no a
priori information about the unknown map is available, so the partition
identification problem has to be solved as part of the reconstruction method. In a
whole, as for a specific unknown dynamical system, the uniqueness of identified
transformation cannot be guaranteed with current available approaches, which
implies that they cannot be used to predict the long-term evolution of dynamical

behaviour and to analyse the complete stability of the dynamical systems.

In view of the shortages stated above, this research will focus on utilising the
temporal sequences of probability density functions to address the inverse

Frobenius-Perron problem and further generalise the solution to nonlinear systems.

Furthermore, practical systems are usually subjected to stochastic perturbations. It
follows that, given the same initial density function, the perturbed and the noise-
free systems will generate different sequence of probability density functions
compared with those of the noise-free system. To date the research in this area
focused on the study of invariant measures of discrete-time systems with constantly
or randomly applied stochastic perturbations (Lasota & Mackey 1994, Boyarsky &
Gora 1997, Kuske & Papanicolaou 1998, Bollt, Gora et al. 2008, Islam & Gora
2011).

So, whilst the problem of modelling chaotic dynamical systems from noisy time

series data has been widely studied (Billings, Jamaluddin et al. 1992, Brown,
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Rulkov et al. 1994, Aguirre & Billings 1995a, Billings & Coca 1999, Coca &
Billings 2001, Voss, Timmer et al. 2004, Zhiwei & Min 2007), the inverse
Frobenius-Perron problem has only been studied for purely deterministic dynamical
systems. For this reason, one of the objectives of this thesis is to address the more
realistic inverse Foias problem for one-dimensional chaotic maps subjected to

stochastic perturbations.

1.1.2 Modelling the heterogeneity of human embryonic

stem cell populations

Stem cell research has become the frontier field of modern clinical medicine
committed to treating neurodegenerative diseases and conditions such as diabetes,
Parkinson's, Alzheimer's diseases and cancer. In many tissues, stem cells act as a
class of repair system for a live body, having unlimited potential of dividing to
replenish other cells.

Embryonic stem cells (ESCs) are an unspecialised type of cells which are capable
of differentiating to any type of cells with specialised functions such as neurons,
retinal pigment cells, hepatic cells etc. At the same time, when grown in vitro,
ESCs have the capability to divide indefinitely whilst maintaining pluripotency

(self-renewal).

Human embryonic stem cells are pluripotent stem cells derived from the inner cell
mass of blastocysts that are embryos of 4 to 5 days old consisting of 50 to 150 cells.
They can develop into the derivatives of the three primary germ layers: ectoderm,
endoderm and mesoderm that involve a great number of over 200 cell types existing

in adult body.

It has been found that human embryonic stem cell (hESC) cultures are not
homogeneous but are, instead composed of cells occupying inter-convertible
substates (Chambers, Silva et al. 2007, Chang, Hemberg et al. 2008, Hayashi,
Lopes et al. 2008a). These substates represent cells with distinct functions, which
behave differently in response to same stimuli (Olariu, Coca et al. 2009). Cells in

these substates may be biased in their probability of adopting particular fates upon
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differentiation, while interactions between cells in different sub-states may
profoundly influence cell fate decisions during self-renewal and differentiation.
Human embryonic stem cell lines have been used as the best tool to study the cell
differentiation associated with the embryonic development (Andrews 1998).
Changes in the expression of cell surface antigens SSEA3 can be used to
characterise the heterogeneity of stem cell cultures.

In this work, the NTERAZ cell line, a pluripotent human embryonal carcinoma cell
line which exhibits biochemical and developmental properties similar to the cells of
the early embryo, was used as a model for studying the heterogeneity of human

embryonic stem cells.

Specifically, the research was focused on applying the new methods for inferring
the dynamical model based on observed sequences of density functions (i.e. solving
the Inverse Frobenius-Perron Problem) to the problem of characterising the
dynamic evolution of heterogeneous cell populations using sequences of flow
cytometric distributions of cell surface markers.

1.1.3 Controlling the invariant densities of dynamical

systems

Over the past few decades there has been a large number of research on control of
chaotic dynamical systems (Shinbrot, Grebogi et al. 1992, Lai & Grebogi 1993,
Goéra & Boyarsky 1996, Géra & Boyarsky 1998, Bollt 2000a). In the early stage,
the major strategy developed was aimed to stabilise periodic orbits by applying a
local feedback control on the motion of a chaotic attractor to direct the individual
trajectory to a desired periodic orbit. This was achieved by making small
perturbations to the motion. Sensitive dependence to initial conditions of the
chaotic systems requires the control to be applied to each individual trajectory to
achieve overall regulation on the chaotic behaviour. Another disadvantage is that

these methods will change the chaotic nature of the underlying system.

The later proposed methodologies of controlling chaotic systems were focused on
more global strategies (Géra & Boyarsky 1996, Gora & Boyarsky 1998, Bollt
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2000b, Bollt 2000a, Gora & Boyarsky 2001, Rogers, Shorten et al. 2008a).
Specifically, instead of controlling individual trajectories of attractors, the idea is to
take advantage of the probabilistic description of the chaotic dynamics to control
the invariant probability density function which represents the desired long term

statistical behaviour.

It can be clearly seen that, compared with the schemes of controlling individual
orbits, controlling probability density function can avoid continuous local
optimisation for each orbit but can cover all the individual orbits (Boyarsky & Géra
1997). All the existing approaches of controlling probability density function of
chaotic systems work by modifying the original transformation to achieve the
desired invariant density function. The main limitation of these methods is that in
practice the transformation which describes the evolution of the system cannot be

modified arbitrarily to achieve the desired invariant density.

Moreover, the existing methods for controlling invariant density function have not
considered the effect of stochastic perturbations. Since all practical systems are
subjected to stochastic perturbations it is important to devise control schemes that
take into account the effect of such perturbations on the long term evolution of the

system.

Some other research in (Wang, Baki et al. 2001, Wang & Zhang 2001, Wang 2002,
Forbes, Forbes et al. 2003b, Wang 2003, Forbes, Forbes et al. 2004) presented
ideas of controlling shape of probability density functions of stochastic nonlinear

processes through selecting optimal deterministic control input.

This thesis introduces alternative strategies of controlling the invariant density
function of a chaotic dynamical system subjected to an additive input and stochastic

noise.

1.2 Research objectives and strategies

The main aims of this thesis are to develop new methodologies for inferring chaotic
maps based on sequences of probability density functions, to develop new strategies
for controlling the invariant density functions of stochastically perturbed chaotic
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maps and to apply the developed methods to characterise heterogeneous human
embryonic stem cell population.

The aims and objectives of this work can be summarised as following:

e Modelling one-dimensional chaotic systems from sequences of probability

density functions

The aim is to develop new methods for solving the inverse Frobenius-Perron
problem, that is, to infer an unknown chaotic map based on sequences of density
functions estimated from data such that the resulting map exhibits the same
transient as well as asymptotic dynamics as the underlying system that generated
the data. The proposed methodology involves the identification of the Markov
partition, estimation of the Frobenius-Perron matrix and the reconstruction of the
underlying map that generated the data.

e Modelling the dynamical evolution of heterogeneous human embryonic stem

cell populations

The aim is to apply the new methods for solving the inverse Frobenius-Perron
problem to infer models that describe the evolution of subpopulations of NTERA2
cells, stained for the SSEA3 cell surface marker, over a number of days. The
inferred dynamical model can then be used to predict the evolution of stem cell
populations and to determine the equilibrium points which correspond to potential

cellular substates that could be subsequently tested.

e Modelling of chaotic dynamical systems subjected to stochastic perturbations
from sequences of probability density functions

The aim is to develop new methods for inferring the chaotic maps based on
sequences of probability density functions generated by the underlying system
perturbed by additive stochastic perturbation. Two cases of bounded perturbed
systems are to be studied: a chaotic system subjected to an additive bounded input;
a chaotic system subjected to an additive random noise, given the probability
density function of input or noise. The evolution of probability densities will be



Chapter 1 Literature Review

formulated. A matrix based approach is proposed to recover an approximate

Frobenius-Perron matrix associated with the chaotic map.
e Control of invariant density functions for stochastic dynamical systems

The aim is to derive new strategies for controlling the invariant density function of
a chaotic map subjected to an additive bounded input and noise. The objective is to
determine the input density function so as to make the invariant density function of
the system as close as possible to a targeted distribution function. The control
algorithm is derived based on the asymptotic stability of the system by exploiting
the relationship between the invariant density function and the input density

function.

1.3 Overview of the thesis

This thesis consists of eight chapters. Chapter 2 introduces the fundamental
concepts of the Frobenius-Perron operator and Foias operator, and reviews on the
modelling and control problems. Chapter 3 to 7 are dedicated to development of the
new techniques of modelling and control, as well as the related application in stem
cell biology. Finally in Chapter 8, results in previous chapters are briefly
summarised and discussion on further studies is presented. A more detailed

summary of Chapters 2-8 is as follows.

Chapter 2 compares chaotic systems with stochastic systems, and introduces the
Frobenius-Perron operator associated with a one-dimensional piecewise monotonic
and expanding transformation, which describes the evolution of probability
densities under the operation of the transformation. This chapter provides a
comprehensive literature review concerning the inverse Frobenius-Perron problem
and introduces the Foias operator with respect to stochastic dynamical systems. The
literature review on the inverse Foias problem and on controlling the probability

density functions is also presented.

Chapter 3 introduces two special classes of piecewise monotonic transformation,
namely Markov and semi-Markov transformations, the explicit derivation of the

associated Frobenius-Perron operator and the invariant density functions for these
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transformations. The generalised inverse Frobenius-Perron problem is presented in
this chapter and a new methodology for solving it for piecewise-linear semi-
Markov transformations is proposed. The effectiveness of the proposed approach is
demonstrated by numerical simulation examples of a noise-free system as well as in

the presence of additive Gaussian white noise of different magnitudes.

In Chapter 4, the developed approach to reconstructing piecewise linear semi-
Markov transformations from sequences of densities is extended to more general
nonlinear maps. Numerical examples of noise-free as well as noise perturbed

system are provided to demonstrate the performance of the proposed algorithms.

Chapter 5 focuses on applying the developed modelling techniques to
characterising the dynamic evolution of heterogeneous cell populations based on a
sequence of flow cytometric distributions of cell surface markers. The reconstructed
model is used to identify potential cellular substates and to characterize their

stability properties.

Chapter 6 introduces new approaches to modelling for one-dimensional dynamical
systems subjected to additive random inputs or noise given their probability density
functions. The Foias operator associated with the perturbed systems, which

describes explicitly the evolution of the density functions, is derived explicitly.

Chapter 7 introduces a new strategy for controlling the invariant densities of
stochastic dynamical systems. The existence of invariant density functions is
analysed first then, using the newly developed modelling methods, a model of the
chaotic dynamical system subjected to an additive input and random noise is
derived based on from sequences of probability density functions. The model,
which relates the invariant density function to the input density function, is used as

a basis for deriving the controller design algorithm.

Chapter 8 summarises the main contributions of this thesis provides an overview of

potential further work to be carried out.
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1.4 Publications arising from the thesis

Some publications arising from the thesis are as follows

10

X. Nie, D. Coca, A new approach to solving the inverse Frobenius-Perron
problem, The 12" European Control Conference, Zurich, Switzerland, 17-19
July 2013, 2916-2920.

X. Nie, D. Coca, Reconstruction of one-dimensional chaotic maps based on
sequences of probability density functions, Nonlinear Dynamics, 2015, 80(3):
1373-1390. DIO: 10.1007/s11071-015-1949-9.

X. Nie, D. Coca, Modelling of one-dimensional chaotic systems subjected to
additive stochastic noise from sequences of probability density functions, to be
submitted.

X. Nie, D. Coca, Modelling of one-dimensional stochastic chaotic systems from
sequences of probability density functions, to be submitted.

X. Nie, D. Coca, Control of invariant density functions of stochastic chaotic

systems, to be submitted.



Chapter 2

Literature Review

2.1 Introduction

The chapter provides a review of the relevant research literature on the

identification and control law design approaches presented in this thesis.

This chapter is organised as follows: Section 2.2 gives the definition of chaotic
systems and the difference with stochastic systems. Section 2.3 introduces the
Frobenius-Perron operator which plays an important role throughout the work, and
gives the literature review of studies on inverse Frobenius-Perron problem. In
Section 2.4 a new operator defined as Foias operator is introduced for the
dynamical systems with stochastic perturbations, and the inverse Foias Problem is
reviewed. The literature review of research on control of probability density

function is provided in Section 2.5. The summary is presented in Section 2.6.

2.2 Chaotic systems

In contrast with stochastic systems in which future states are not determined from
the previous ones, chaotic systems are deterministic. Chaotic systems are dynamcial
systems that are highly sensitive to initial conditions. It means even small initial
conditions can results in very diverging states, which makes long term predictions
generally impossible. This phenomena is also called deterministic chaos. Although
such displayed dynamical behaviour looks random, the future states of chaotic
systems are fully determined by mathematical formulas and the initial conditions

without stochastic perturbation involved, but not predictable due to the nature of

11
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high sensitivity to initial conditions. Chaotic systems exist in many practical fields
including biology (Gleick 2008), meterology (Lorenz 1995), chemistry (Srivastava,
Srivastava et al. 2013), economics (Medio & Gallo 1995), mechanical devices
(Holmes & Moon 1983), celestial mechanics (Laskar 1989, Laskar 1994), etc.
Particularly, there are many systems that can be described by one-dimensional
chaotic maps, for example, congestion control of communication networks (Rogers,
Shorten et al. 2008a), olfactory systems (Lozowski, Lysetskiy et al. 2004),
electrical circuits (van Wyk & Ding 2002), packet traffic (Mondragé C. 1999), etc.

2.3 Inverse Frobenius-Perron problem

2.3.1 The Frobenius-Perron operator

Let | =[a,b]c R be a bounded interval of the real line. Let S:1 — | be a one-
dimensional non-singular, piecewise monotonic transformation. It is assumed that

)e(Cr for

the interval is partitioned as a=ay < <...<ay =b, and that S|(a. La
1-1»

i=12,...,N, r>1, where C" denotes the space of all r-times continuously

differentiable real functions. If

S'(x)|>1 wherever the derivative exists, S is called

expanding. An example of this class of transformations is illustrated in Figure 2.1.

/ /A

e \ ] \

a=a, ay a, ag a4:b

Figure 2.1 An example of one-dimensional piecewise monotonic transformation.

12
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Let X, ={x}, x2,...,x%} be a set of & states at time n. Through iterating the
transformation with X, , a set of & new states can be yielded as
Xpg =00, X2q, . x84}, where xi  =s(x!) for 1<i<6 . Let f,ell
denotes the probability density function of X, then the probability of the points

falling into an arbitrary measurable set Ac | is given by

0 .
IRACEEE WACH! (2.)
i=1

where X is normalised Lebesgue measure (Boyarsky & Gora 1997) on I, ya(X) is

the characteristic function for the set A, defined by

1, ifxeA

0, ifxgA’ (2.2)

xa(X) Z{

Likewise, the probability density function of set X,,,; is denoted by f.;. It can be

given that

0 .
ROLEES WA @3
i=1

Since S is non-singular, x! ; € A if and only if x| e S(A). Then the following

relationship is held
ZA(XriHl) = Zs—l(x)(xri]) : (2.4)
From (2.3) and (2.4), it can be obtained that
13 -
Jafrn0 8= 530 7oy (060) (2.5)
By contrasting (2.1) and (2.5), it can be seen that

Ja fraG0 dx= oy o fa(0 dx. (26)

(2.6) reveals an integral equation relationship between f,.; and f,. If let

A=[a,x] , it can be wrote as

13
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X
o a0 ax= [y FaO) o 27)

By differentiating both sides of (2.7) with respect to x, the following expression is

obtained

a0 = [ s FaO00K. 28)

(a, x))

To show the transforming of the density functions, an operator is defined by

Ps f, = f,.1, then (2.8) can be written in the following general form

d

P f = ™ js_l([a’ IRIOLS (2.9)

The Frobenius-Perron operator is defined as follows (Lasota & Mackey 1994).

Definition 2.1 If S:1 — 1 is a non-singular transformation, the unique operator

Ps : L' — L' defined by (2.9) is referred to as the Frobenius-Perron operator

associated with S.

Let B; =S((a_1,8)) denotes the image of each interval (&_;,8;) under

transformation S. Let the inverse function for B; be denoted by z; :S‘l‘
i

Because S is piecewise on the intervals, S‘l(A) is allowed to have multiple

branches, and is made up of a union of disjointed intervals, written as

SHA) =ULini (ANBY). (2.10)
By substituting (2.10) into (2.9) we obtain that

d d
P f(x) _&js_lm) f (x) dx ‘&Juikzlri(msi) f (x) dx

k
d
=) — . 211
E dx Li (ANB;) F () dx (2.11)

Thus from (2.10), (2.11) can to be written as

14
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k
R 100= 2 ¢ fosan, OO 212)

After differentiating, since A=[a,x], and B; =S((a;_1,8;)) , (2.12) becomes

< f(SH)
Psf(x) =Y —t 2" yeia - a
S (X) é Sr(si—l(x))‘ Xs((aj-1.a))) (X) ' (2.13)

where S, :S| . This equation describes the Frobenius-Perron operator P
! (aj-1,aj) S

associated with the class of piecewise monotonic transformations.
2.3.2 Solution to the inverse Frobenius-Perron problem

The problem of inferring a point transformation given probability density functions
observed from the dynamical system is referred to as the inverse Frobenius-Perron
problem (IFPP). It is aimed to make use of the probability density functions
observed from a dynamical system, rather than trajectories of individual points to
recover the model of the system.

The inverse problem for one-dimensional maps has been studied under the
assumption that only the invariant density of the unknown dynamical system is
known. Friedman and Boyarsky (1982) proposed a graph-theoretic approach to
construct a piecewise linear transformations given an invariant density function
belonging to a very restrictive class of piecewise constant density functions whose
relative minima points are 0. Ershov and Malinetskii (1988) developed a numerical
algorithm for constructing a one-dimensional unimodal transformation which has a
given unique invariant density. Diakonos and Schmelcher (1996) considered the
inverse problem for a class of symmetric maps that have invariant symmetric beta

density functions given by

22/ 1By 1-7)

f*(X) — (2.14)

x” (1-x)”

15



Chapter 2 Literature Review

where y is an arbitrary real number smaller than unity, and By is the beta function.

For the given symmetry constraints they show that this problem has a unique
solution. A generalization of this approach, which deals with a broader class of one-
dimensional continuous unimodal maps for which each branch of the map covers
the complete interval and assumes that the invariant density belongs to a special

class of two-parametric asymmetric beta density functions

£ () = X% (1—x)”

—m, a,ﬂ>—1, (215)

where B is the beta function, was proposed in (Pingel, Schmelcher et al. 1999).
Huang presented approaches to constructing smooth chaotic transformation with
closed form (Huang 2006, Huang 2009b) and multi-branches complete chaotic map
(Huang 2009a), given invariant densities. (Boyarsky & Gora 2008) studied the
problem of modelling for a dynamical system, of which the trajectories of
probability density function are reversible. Potthast and Roland (Potthast 2012)
investigated solving the Frobenius-Perron equation to derive the evolution law of
nonlinear dynamical automata of Turing machines. Baranovsky and Daems (1995)
investigated the problem of synthesizing one-dimensional piecewise linear Markov
maps with a prescribed autocorrelation function, The desired invariant density was
then obtained by performing a suitable coordinate transformation. They also
considered the problem of reconstructing one-dimensional chaotic maps which have
a given invariant density and their trajectories are characterised by a given
autocorrelation function. An alternative stochastic optimization approach was
proposed by (Diakonos, Pingel et al. 1999) to address the inverse problem for the
class of smooth complete unimodal maps with given combined statistical involving
the invariant density and autocorrelation function. Koga (1991) introduced an
analytical approach to solving the IFPP for two specific types of one-dimensional
symmetric maps by deriving the formula between the difference system and the

invariant density of which an analytic form was given.

Ulam (1960) hypothesised that the infinite-dimensional Frobenius-Perron operator
can be approximated by a finite-dimensional Markov transformation defined over a
uniform partition of the interval of interest. The conjecture was proven by Li (1976)

16



Chapter 2 Literature Review

who also provided a rigorous numerical algorithm for constructing the finite-
dimensional operator when the one-dimensional transformation S is known. Goéra
and Boyarsky (1997) introduced a matrix method for constructing a 3-band
transformation such that an arbitrary given piecewise constant density is invariant
under the transformation. Provided a stochastic matrix M representing the

Frobenius-Perron operator is known, let R be a uniform partition with N intervals,

and the subinterval Q" = (q{", q{",), i=1...,N, k=1...., p(i), then

q|£|) :a+ﬁ(zmi'j +i-1)(b-a), (2.16)
I=h

where ji denotes the column index of positive entry in the i-th row, thus, piecewise

linear transformation on each subinterval can be expressed as

Sl =——(x-q)+ L=,

1k

(2.17)

which demonstrates the relationship between the transformation and the Frobenius-

Perron matrix defined from the invariant density.

Furthermore, a technique of constructing a piecewise linear Markov map that
preserves a given invariant density and has the metric entropy close to observed one
was presented in (Boyarsky & Goéra 2002). A direct method for constructing
discrete chaotic maps with arbitrary piecewise constant invariant densities and
arbitrary mixing properties, using positive matrix theory, was introduced in (Rogers,
Shorten et al. 2004), which was based on the theory of positive matrices. By
choosing the parameters in the Perron eigenvector of the induced Ulam transition
matrix, the dominate eigenvector representing the invariant density can be fully
determined. The approach has been further exploited to synthesise dynamical
systems with desired characteristics i.e. Lyapunov exponent and mixing properties
that share the same invariant density, and to analyse and design the communication
networks based on TCP-like congestion control mechanisms (Rogers, Shorten et al.
2008a). An extension of this work to randomly switched chaotic maps is studied in
(Rogers, Shorten et al. 2008b). It is also shown how the method can be extended to

higher dimensions and how the approach can be used to encode images. In (Bollt
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2000a) the inverse problem was treated for globally stabilising the target invariant
density of a perturbed dynamical system. The open-loop IFPP was solved by
finding a perturbation matrix based on the matrix approach given a stochastic
matrix and invariant density. The inverse problem was reduced into a constrained
optimisation problem that was solved in L2. In view of usefulness of the obtained
solution, an L* algorithm based on linear programming was presented in (Bollt
2000b) to solve the optimisation.

In addition, the problem has been investigated in numerous practical applications.
An optimisation approach to finding the elements of the Frobenius-Perron matrix,
offering a way to characterize the patterns of activity in the olfactory bulb, based on
the invariant density functions of interspike intervals, was also proposed in
(Lozowski, Lysetskiy et al. 2004). Setti, Mazzini et al. (2002) investigated the
Markov approach to constructing piecewise-affine Markov maps with application to
two signal processing issues: generation of low-EMI timing signals and
performance optimisation for DS-CDMA systems. The algorithms were generalised
to the case of piecewise-affine Markov maps with infinite number of Markov
intervals in (Rovatti, Mazzini et al. 2002). Mondragé C. (1999) considered the
problem of modelling for packet traffic in computer networks by introducing the
random wall map and taking advantage of the fact that the invariant density of this

map could be easily approximated analytically.

2.4 Inverse Foias problem

2.4.1 Foias operator

In this section, a more general dynamical system that involves random
perturbations is considered and the derivation of the formula linking the probability

density functions with the potential transformation is reviewed.

The general form of the dynamical system with stochastic perturbations is

represented as follows
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Xoi1 =H(Xy @), forn=0,12,..., (2.18)

where H is the transformation of the perturbed dynamical system, x, is the state
variable defined on Borel measurable | c R, o, is the independent random
variable, o, € 1, c R. For every fixed w, the function H(x,,®,) is continuous in
X, and for every fixed x it is measurable in @. The probability density function of
@, is denoted by g. the random numbers Xy, @y, @, @,,...are independent with

each other.

Assume a bounded measurable function G: 1 — | . The mathematical expectation

of G(X,,1) is given by
E(G(Xn41)) = L G(X41) f(Xq41) dX, (2.19)

Let f,(x) denote the probability density function of X, thus f,.1(X)= f(X,.1).

(2.19) can be expressed as
E(G(Xp1)) = J; G(X) frua (x) dx.. (2.20)

By submitting (2.18) into the right side of (2.19), the expectation can be written as

E(G(Xn+1)) = E(G(H (Xn 1 W ))

=[] G(HX ) (x)g(@) dxdo. (2.21)
Let y=H(X,®),then «o = H ~1(y | x) . (2.21) can be written as
E(G (%) = | [, (1) ()g(H ™ (y|x)) dxd (H(y [ x))

(2.22)

G(y) fa () g(H ™ (y| X)) dxdy.

1
Ll H'(H(y [ %)

Equating (2.19) and (2.22), we can obtain the following formula
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1
"HI(H ™ (x] y))

fora (0 =] fa(Y)a(H (x| y)) dy. (2.23)

It follows that the Foias operator associated with the stochastic dynamical system is

defined as follows

Definition 2.2 if H:Ix1,—1 is a non-singular function, then the operator

Qy : 1 > I defined by

1 1
f = f dy,
Qfn(®) I'H’(H‘l(xly)) n(V(H (x| y)) dy (2.24)

is called the Foias operator (Lasota & Mackey 1994) corresponding to the
dynamical system described in (2.18).

It can be seen from (2.24) that the Foias operator is a Markov operator (Boyarsky &
Goéra 1997). Given an initial density function fy, the evolution of probability

densities can be denoted by f,,; =Q{} f,. The invariant density of the stochastic

dynamical system is defined as follows

Definition 2.3 For a Foias operator Q4 with respect to the dynamical system
(2.18), if Qyf*=1f", the density f* is called invariant or stationary density

preserved by the dynamical system.

The theorem below about the existence of a invariant density for a regular
dynamical system was proved in (Lasota & Mackey 1994).

Theorem 2.1 Let Qy be the Foias operator corresponding to a regular dynamical
system (2.18). Assume that there is a f, e L having the following property. For

every &> 0 there is a bounded set B € 9B(l) such that

f (B)=Ql fo(B)>1-¢, forn=0,12,..., (2.25)

then Qg has an invariant density.
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2.4.2 Solution to the inverse Foias problem

Practical dynamical systems are usually subjected to random perturbations.
Assuming that the probability density function of the perturbation is known, the
problem of reconstructing the deterministic transformation based on a sequence of
probability density functions generated by the stochastic dynamical system (2.18) is

called inverse Foias problem.

In the literature, there are only few solutions to the inverse Foias problem. Most
research studies focus on the invariant measure of the stochastically perturbed
dynamical systems. Kuske and Papanicolaou (1998) considered a chaotic
dynamical system with small noise and developed a method to approximate the
invariant density. Ostruszka & Zyczkowski (2001) addressed the problem of
approximating the spectrum and eigenvectors of the Frobenius-Perron operator
associated with a discrete dynamical system with an additive, small amplitude
stochastic perturbation. Islam and Goéra (2011) also considered a dynamical system
that is stochastically perturbed by an additive noise and employed Fourier
approximation to obtain an approximation to the Frobenius-Perron operator. In
(Bollt, Gora et al. 2008) an algorithm was introduced approximate the stochastic
transition matrix of a finite size N to represent the Frobenius-Perron operator for a
dynamical system with small additive noise.it was concluded that when the size
N — oo the sequence of the invariant densities of the perturbed systems converges

to the invariant density of the deterministic system.
2.5 Controlling the invariant density function

It is well-known that many practical deterministic systems are subjected to
stochastic disturbances. Stochastic control has been widely studied for many years.
The mean and variance of the systems’ outputs have been usually regarded as the
control objectives (Astrém 1970, Goodwin & Sin 1984, Astrom & Wittenmark
1989, Papoulis 1991, Lu & Skelton 1998, lourtchenko 2000, Wojtkiewicz &
Bergman 2001). This is generally applied to the systems that are subjected to

Gaussian perturbations. But for the systems that are subjected to non-Gaussian
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perturbations, it becomes quite limited to continue targeting the two quantities as
these do not characterise in full the probability density function associated with the
systems’ outputs. The general objective of this class of control problems is to find
the optimal input so as to attain a desired target output probability density function,
or to make the shape of the output probability density function as close as possible

to a given distribution.

Over the past decades, a few control algorithms were developed to control the
output probability density function of a dynamical system. Karny (1996) proposed a
randomised controller aimed to find the optimal probability density function
generated by the controller by means of minimising the distance between closed-
loop probability density function and the desired distribution function. The distance
is measured by Kullback-Leibler divergence. The closed-loop probability density
function is calculated by directly multiplying the probability density function of the
stochastic system and that of the controller. The solution was generalised and
extended for stochastic state-space models by solving the fully probabilistic control
design in (Karny & Guy 2006).

For general nonlinear stochastic systems, there is no easy way of analytic methods
to formulate the mathematical relationships between the output probability density
functions and the control inputs due to the nonlinearity of both the systems and
densities. Wang (1999b, 1999c, 2000, 2001, 2002) introduced a B-spline function
based model in which the output probability density functions can be expanded as a
linear combination of the basis functions, thus by relating the control input to the
weights, the system dynamics is converted into a formula linking the weights of
output probability density function to the control input. As a result, based on this
model, the controller is designed to select a deterministic input to make the output
density function as close as possible to a targeted one. The algorithm was applied to
the papermaking systems for controlling the density distribution of paper web
(Wang, Baki et al. 2001), pseudo-ARMAX stochastic systems for bounded control
of the output distribution in (Wang & Zhang 2001), general nonlinear dynamical
systems subjected to non-Gaussian to control the conditional output probability
density function (Wang 2003), and singular stochastic dynamical systems for
shaping the output density function (Yue, Leprand et al. 2005). Based on the linear
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B-spline model, pseudo PID controllers were developed for general non-Gaussian
stochastic systems in (Guo & Wang 2003, Guo & Wang 2005b), moreover, there
are some other new techniques proposed to extend the control strategy to Lyapunov
based control algorithm (Wang, Kabore et al. 2001), control of output probability
density function of NARMAX stochastic systems with non-Gaussian noise (Guo,
Wang et al. 2008), a generalised PI control (Guo & Wang 2005a), constrained Pl
tracking control using two-step neural networks (Yang, Lei et al. 2009), predictive
probability density function control for molecular weight distributions in industrial
polymerisation processes (Yue, Zhang et al. 2004), multi-step predictive control
(Wang, Zhang et al. 2005a), and iterative learning control (Wang, Zhang et al.
2005h, Hong & Afshar 2006, Wang, Afshar et al. 2008).

Crespo and Sun (2002, 2003) proposed a discontinuous nonlinear feedback law to
achieve a target stationary probability density function of a one-dimensional
stochastic continuous-time systems that is described by an 1t0 differential equation.
But this noise involved in the equation is restricted to Gaussian noise. Pigeon,
Perrier et al. (2011) considered a switching linear controller for shaping the output
probability density function. Besides, a feedback control law using Gram-Charlier
function to approximate the stationary probability density was developed for a first-
order and discrete-time nonlinear system with Gaussian noise in (Forbes, Guay et al.
2002, Forbes, Forbes et al. 2003a, Forbes, Forbes et al. 2003b, Forbes, Forbes et al.
2004, Forbes, Guay et al. 2004b, Forbes, Forbes et al. 2006). Moreover, in (Zhu &
Zhu 2011), targeting a given stationary probability density function, a feedback
control of multi-degree-of-freedom nonlinear stochastic systems was investigated,
based on a technique of obtaining five classes of exact stationary solutions of
dissipated multi-degree-of-freedom system. Another approach proposed by the
same authors (2012) uses Fokker-Planck-Kolmogorov equation to target a given
stationary probability density function of nonlinear systems subjected to Poisson

white noise.

Some researchers focused on the control of invariant density of chaotic dynamical
systems without noise. For a given one-dimensional point transformation S which

admits an absolutely continuous invariant density, Géra and Boyarsky (1996)
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proposed a method of slightly modifying S to achieve a desired invariant density.
The modified transformation is approximated by a piecewise linear and expanding
transformation even though the original map is nonlinear or nonexpanding on the
defined partition. Another analytic method was introduced in (Gora & Boyarsky
1998) to attain a desired invariant density which is allowed to have 0 on some

targeted partition. Bollt (2000a, 2000b) considered the control problem that, given a
point transformation S which preserves an invariant density function f*, the aim is

to construct a nearby transformation S + AS whose invariant density is or close to

be a desired one f*+Af . The optimisation algorithm for finding AS was

improved in (Gora & Boyarsky 2001). In (Rogers, Shorten et al. 2008a), a synthesis
approach based on the matrix method was developed for controlling the invariant
densities of chaotic maps.

2.6 Summary

This chapter introduced the Frobenius-Perron operator, the main tool that is used to
study the evolution of probability density functions under the action of a chaotic
transformation, and the inverse Frobenius-Perron problem, moreover, provided an
overview of the existing solutions, a major limitation of which is the fact that they
cannot guarantee uniqueness of the estimated map. As a result the reconstructed
map in general cannot predict the underlying dynamical behaviour. The extended
inverse Foias problem which takes into account the effect of stochastic

perturbations was discussed.

Finally, the chapter introduced the problem of controlling the probability density

function and provided an overview of the relevant literature.
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Chapter 3
Reconstruction of Piecewise Linear
semi-Markov Maps from Sequences of

Probability Density Functions

3.1 Introduction

One-dimensional deterministic maps can display chaotic behaviour. Chaotic maps,
capable of generating density of states, can be used to model a multitude of chaotic
processes encountered in engineering, biology, physics and economics (Ott 1993).
Example applications include modelling particle formation in emulsion
polymerization (Coen, Gilbert et al. 1998), papermaking systems (Wang, Baki et al.
2001), synchronized communication networks (Rogers, Shorten et al. 2004),
cellular uplink load in WCDMA systems (Wigren 2009), etc.

Instead of studying the evolution of individual point trajectories, it is often more
convenient to observe experimentally the evolution of the probability density
functions generated by such systems. A major challenge is that of inferring the
chaotic map which describes the evolution of the unknown chaotic system, solely
based on experimental observations. While solutions exist for the case when
observations of individual point trajectories are available, currently no method is
available to uniquely recover the chaotic map given only sequences of density
functions derived from experimental observations. As reviewed in the previous
chapter, this problem known as the Inverse Frobenius-Perron Problem (IFPP), has

been investigated by a number of researchers in the case when the only information
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available is the invariant density function associated with the unknown map.
Although all existing methods can be used to construct a map with a given invariant
density, the uniqueness of the solution can be guaranteed only under very restrictive
conditions. In other words, whilst the identified transformation may have the same
invariant density, it will not exhibit the same dynamics as the underlying system of
interest. In general, the reconstructed maps will not resemble the actual
transformation that generated the data and therefore these maps cannot predict the
dynamical properties of the underlying system (Lyapunov exponents, fixed points
etc.) or predict its evolution, which is of paramount importance in many practical
applications. Moreover, the matrix-based algorithms proposed so far assume that
the Markov partition is known a priori but in practice this is rarely the case.

This chapter proposes for the first time a systematic method for determining an
unknown piecewise linear semi-Markov map given sequences of density functions
estimated from data. In other words, the inverse problem studied in this work is that
of determining the map that exhibits the same transient as well as asymptotic
dynamics as the underlying system that generated the data. To avoid confusion, this

is called the generalised inverse Frobenius-Perron problem (GIFPP).

This chapter is organized as follows: Section 3.2 introduces some relevant
preliminary fundamental theoretical concepts and results including the evolution of
probability densities for point transformations and the existence of absolutely
continuous invariant measure described in Section 3.2.1, a special class of
piecewise monotonic transformation called Markov transformation and its some
important properties in terms of invariant density introduced in Section 3.2.2, and a
much more general class of piecewise linear transformations, semi-Markov
transformation introduced in Section 3.2.3, where the matrix form of associated
Frobenius-Perron equation, properties with respect to the invariant density are also
presented. Formulation of the GIFPP was given in section 3.3. The new
methodology for solving the GIFPP for piecewise-linear semi-Markov
transformations is presented in Section 3.4. Numerical simulation examples of a
noise-free system and the same system perturbed by an additive white Gaussian
noise of different magnitudes are given in Section 3.5. Conclusions are presented in
Section 3.6.
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3.2 Preliminaries

3.2.1 Evolution of probability densities

The Frobenius-Perron operator associated with a transformation S maps an initial
probability density function to its transformed probability density function by the
action of S. Instead of studying the orbits of individual points of the dynamical
systems, it allows us to take advantage of flow of densities to uncover the

dynamical behaviour. The Frobenius-Perron operator Ps becomes a useful tool to

study the evolution of probability densities.

Let the initial density be denoted by f,, then the evolution of the probability
density functions can be represented by {f,Ps f, Pszf,..., PS'f}. Ps is a bounded

linear operator on L' (Boyarsky & Géra 1997), thus it is a convenient way to study
the asymptotic probabilistic behaviour of the dynamical systems with Ps, and a

mathematical relationship between the dynamics and the transformation S of

underlying system can be revealed from the Frobenius-Perron equation.

The existence of absolutely continuous invariant measure for some examples of
transformations was found by (Ulam & von Neumann 1947), and a defined class of
transformations was firstly proven by (Rényi 1957). The results were generalised
by (Lasota & Yorke 1973) who proved, by means of the theory of bounded
variation, that the Frobenius-Perron operator associated with the class of piecewise
expanding transformations was contractive. It was further extended to be a general
theorem for bounded intervals (Jabtonski, Gora et al. 1996). The following theorem
proves the existence of an absolutely continuous invariant measure for a piecewise

expanding transformation (Boyarsky & Gora 1997):

Theorem 3.1 The transformation S:1 — 1 admits an absolutely continuous
invariant measure whose density is of bounded variation, if S satisfies the following

conditions:
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i) S is piecewise expanding, i.e., there exists a partition R ={R; = (a;_1,a;)}i-1 n
of I such thatS|R_ eCl,and S{(X)>a>1forxe(a_4,a),i=1...,N;
i) % is of bounded variation, where S'(x) is the appropriate one-sided
X
derivative at the endpoints of R .

The Frobenius-Perron operator for the non-singular transformation S is a Markov

operator (Boyarsky & Gora 1997), which is defined as follows
Definition 3.1 A linear operator P : L* — L satisfying
(a) Psf, >0 for f,>0, f, el®;

(6) [Pl <L, and [Py s = fofe  for £,20, 1, <L,

is called a Markov operator.

The strong constrictiveness of a Markov operator is defined as follows

Definition 3.2 A Markov operator Pg: L' — L is called strongly constrictive if

there  exists a compact set FcC ! such that for any

feD={fel':f>0[f|s=1, limdist(P"f,F)=0, where dist(P"f, F)=
Nn—oo

inffe]:

‘f—P“f

L

The density of the invariant measure for the transformation can also be discussed

from the perspective of spectral decomposition of the Frobenius-Perron operator
associated with the transformation. If P is strongly constrictive, according to the
spectral decomposition theorem (Boyarsky & Goéra 1997), there exists a sequence
of densities fy,..., f, and a sequence of bounded linear functionals gy,...,g, such

that

lim

N—o0

=0, forany fel’. (3.1)

Ps”(f—igimfi]
i=1

Ll
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where P¢' is the n-th iteration of P, the densities fi,..., f, have mutually disjoint
supports ( fifj=0 for i=j ), and Psfi=f,4 , where i=1...,r , and

{a()),...,a(r)} is a permutation of the integers {L,...,r}.

Every constrictive Markov operator admits a stationary density (Lasota & Mackey
1994). Let f* denote the invariant density of the transformation S. From (3.1) it

follows that, PS'f converges to an invariant density f*which satisfies f* =Pg f .

The invariant measure on A is denoted by y(A):jAf*(x)dx , then

u(A) = jAPSf*(x) dx = js_l(A)f*(x)dx, therefore, w(S7L(A)=u(A) . f* is

called the fixed point of the associated Frobenius-Perron operator P .

3.2.2 Markov transformation

The focus of this research is on a special class of piecewise monotonic

transformation that is defined as follows

Definition 3.3 Let R =[R;, Ry, ..., Ry] be a partition of I into N intervals, and
int(R;) Nint(R;) =@ if i = j. Atransformation S:1 — I is said to be Markov with
respect to the partition R (or 23-Markov) if S is monotonic on every interval R; and
S(R;) is a connected union of intervals of R for i=1,2,..., N. The partition R is

called a Markov partition with respect to S.

If S; on R; is linear, S is referred to as a piecewise linear Markov transformation.

The Frobenius-Perron operator associated with this class of transformations can be

represented by a matrix that is of the form M = (m; ;)1 j<n, Where
S if Ry < S(R);

mj = (3.2)
0, otherwise.
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Let § be the class of the functions that are piecewise constant on the partition R .

For a step function f(x)e g,

N
F o) =2 hixg (%), (3.3)

i=1

where ygp (x) is the indicator function defined as

1, ifxeR;

0, if xe Ri' (34)

AR (X):{

and h; are the expansion coefficients. f(x) can also be represented in the form of

a row vector h" =[h" h! .. hf1. The relationship between the probability

density functions and the matrix represented Frobenius-Perron operator can be
derived as follows (Boyarsky & Gora 1997)

hsf —hfm, (3.5)
where hPsT =[S hIST  hiST] is the vector form of density Psf .

The following theorem with regard to the eigenvalue of maximum modulus is given
in (Friedman & Boyarsky 1981)

Theorem 3.2 Let S: 1 — | be a piecewise linear Markov transformation, and M be
the induced Frobenius-Perron matrix. Then M has 1 as the eigenvalue of maximum
modulus. If M is also irreducible, then the algebraic and geometric multiplicity of

the eigenvalue is also 1.

This implies that there always exists a piecewise constant invariant density under S.
The existence of invariant density for expanding transformation was further proven

by (Boyarsky & Géra 1997), which is stated as follows

Theorem 3.3 Let S be a piecewise linear Markov transformation, and the absolute
value of the slope of S is greater than 1, then any S-invariant density function f* is

piecewise constant on the partition R .
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Thus, expanding piecewise linear Markov transformations have piecewise constant

invariant densities. This theorem was further generalised for some case when the

transformation cannot satisfy the expanding condition that |Si'| >1. If the derivative

can be equivalently regarded as |S'| , then

after k iterations is greater than 1, ‘(Sk)'

the following theorem (Boyarsky & Gora 1997) can be obtained

Theorem 3.4 Let S be a piecewise linear Markov transformation, as long as there

exist some k >1 such that ‘(Sk)'(x)‘>1, S admits an invariant density function

which is piecewise constant on the partition R .

For a partition )R comprised of N equal sized intervals Ry, R,, ..., Ry, Lebesgue

measure on each interval R; is denoted by A(R;)=1/N. The definition of the

stochastic matrix with respect to R representing the Frobenius-Perron operator can

be simplified as

AR NSTHR)))
TR

(3.6)

which define the fraction of interval R; which is mapped into interval R; by S.

This matrix was applied to the so-called Ulam method by (Ulam 1960) for

approximating the Frobenius-Perron operator. Entry m;; denotes the transition
probability of moving from interval R; to interval R;. The stochastic matrix can be

approximated using a set of finite individual orbits {x, }in the following alternative

way to (3.6)

~

PACTACAFTHCIERN))
m; ; K

& Z){Ri (%) ’ St
k

The resulting matrix M satisfies the following equality
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N

> mj=1,fori=12..,N. (3.8)
j=1

This means that the total sum of the transition probability of given states mapped
from an interval to any other interval of R is 1.

3.2.3 Semi-Markov transformation

A richer class of piecewise linear transformations than piecewise linear Markov

transformation is introduced in this section. For a given partition
R=[Ry, Ry, ..., Ry], Int(R)) Nint(Rj) =D if i = j, this class of transformations is

called R -semi-Markov transformation that is defined as follows

Definition 3.4 A transformation S:1 — I is said to be semi-Markov with respect

to the partition R (or R -semi-Markov) if there exist disjoint subintervals Qgi) o)
that R, =U'§QQ?) for i=1,...,N, S|Q(_i) is monotonic and S(Qgi))eiR where
J
S|Q(_i) denotes the restriction of S to QJU), and S(Q}i)) denotes the image of Qgi)

J

mapped by S.

The restriction S|Q(i) is a homeomorphism from R; to a union of intervals of R
k
p(i) p(i) i)
L= UJReio = JS@Q). (3.9)

k=1 k=1
where R =SQM en, QY =[a{;, a1, i=1...,N ,k=1...,p(i) and p(i)
denotes the number of disjoint subintervals Q,Ei) corresponding to R;.
Piecewise linear semi-Markov transformations preserve the same important
property with piecewise linear Markov transformation that the invariant density is

piecewise constant on each interval of the defining partition (Boyarsky & Gora
1997).
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Theorem 3.5 if a transformation S:1 — | is piecewise linear semi-Markov with

respect to a partition R, and slope of S|Q(_i) is greater than 1, j=1,...,k(i),
i

i=1,...,N, then any S-invariant density is constant on the intervals of R .

The Frobenius-Perron matrix associated with a piecewise linear semi-Markov

transformation S, M =(m; ;)14 jen IS defined by as follows (Boyarsky & Gora

1997)

-1
. ifS(QM) =R en;

!

)

0, otherwise.

m (3.10)

ij =

Then the Frobenius-Perron equation can be converted into the following matrix

form linking the probability density function f and Frobenius-Perron matrix
hst=hfm, (3.11)

where h =[hf hf .. hi]and T —[hsT hDsT . hisT] are the vector form

of density functions f €§ and Psf € § respectively.

Given an arbitrary density function f that is constant on the intervals of R, there
always exists a R -semi-Markov transformation of which f is the invariant density.
(Boyarsky & Gora 1997) utilised a special class of transformation called 3-band
transformation to illustrate the construction of a piecewise linear transformation
from any density and prove the existence of such a transformation. The generalised
mathematic relationship between a given invariant density and the supposed 3-band
transformation is further derived based on the results in (Boyarsky & Géra 1997) as

follows

Let S be a 3-band transformation on the partition R ={R;,..., Ry }with Frobenius-
Perron matrix M =(m; j)i<j jen » and f eF be an arbitrary density invariant

density function of S. The following equations can be obtained from (3.11)
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by -myy+h) omyg =h, (3.12)
for i=1; and
f f f i
by migi+hmy by mig=h (3.13)
for 2<i<N-1;and
M1 M+ My =hy s (3.14)

for i=N.

At the same time, the following equalities should hold

A(Ry) M1+ A(Ry)-my o = A(Ry), (3.15)
for i=1; and
A(RiZ1) My g + A(R)-my i + A(Rijq) - My i = A(R), (3.16)
for 2<i<N-1;and
A(RN_1) My N+ A(Ry) My = A(Ry) (3.17)

fori =N.

Assuming that h' >0, A(R;) >0, it can be obtained from (3.13) and (3.16) that

h', h!y
Mg My Mg =1, (3.18)
h; hy
and
A(Ri_1) A(Ri1)
1=/ m.. A -m: :1_
A(R) ii—1 iLi A(R) ii+l (3.19)
It was proven by (Boyarsky & Gora 1997) that
mi g bt =mg;ehf (3.20)

Then it follows from (3.18) and (3.19) that
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! AR,
r_:i_-:‘_l. i1i = /1(0'?“3) "M - (3.21)
For 1<i<N -1, the entry m,y; in the ith row is given by
ARiun) -
R R N AL AFER (3.22)
AR T

For 2<i<N -1The entry m;;,; in the ith row is obtained from (3.16) as follows

~AR) - AR ) -my i — A(Ry) -
e ARis) |

(3.23)

Fori=1,

_ A(Ry)-(L—my,)
A(Ry)

12 , (3.24)

Consequently, it can be found out that, for a 3-band transformation with respect to a
partition R, if the elements on any band of the associated Frobenius-Perron matrix

are known, the Frobenius-Perron matrix M can be uniquely determined.
3.3 Problem Formulation

Let B be a Borel o-algebra of subsets in I, and x denote the normalized Lebesgue

measure on I. Let S:1 — | be a measurable, non-singular transformation, that is,

u(S7H(A) e B for any AeBand u(SL(A))=0for all Ac®B with u(A)=0. If

X, Is a random variable on 1 having the probability density function

foe®(1,8, 1), D={f el'(1,B,): f >0,|f] =1}, such that

Prob{x, € A}= [ f, du, (3.25)
A
then x,,, given by

Xn4l = S(Xn) 1 (3-26)
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is distributed according to the probability density function f, ., =Psf, where

PS:Ll(I)—>L1(I) is the Frobenius-Perron operator associated with the

transformation S defined in Section 3.2.1.

The inverse Frobenius-Perron problem is usually formulated as the problem of

determining the point transformation S such that the dynamical system
X,.1 = S(x,) has a given invariant probability density function f*. In general, the

problem does not have a unique solution.

The generalised inverse problem addressed in this chapter, is that of inferring the
point transformation which generated a sequence of density functions and has a

6,K

given invariant density function. Specifically, let {X({i}i' j=1 and {xl{i}ﬁ’szl be two

sets of initial and final states observed in K separate experiments, where
xﬂi =S(xg’i), i=1...,0, j=1...,K, and S:I —1lis an unknown, nonsingular
point transformation. It is assumed that for practical reasons we cannot associate to

an initial state x({',ithe corresponding image xlj"i but we can estimate the probability

density functions fg'and f;’associated with the initial and final states, {xJ ;}{; and

{xljli}f':1 respectively. Moreover, let f *be the invariant density of the system. The

inverse problem is to determine S:1 — | such that f I = Ps foj for j=1,...,K and

f*zpsf*.

3.4 A solution to the GIFPP for piecewise

linear semi-Markov transformations

This section presents a method for solving the GIFPP for a class of piecewise
monotonic and expanding semi-Markov transformations defined on the partition R

called R -semi-Markov.

R :{R]_! R21"" RN}:{[CO1C_]_]1 (C_IJCZ]!"'!(CNfvaN ]}! (327)
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is a partition of | =[a,b], ¢y =a, cy =b.

Let S be an unknown piecewise-linear R-semi-Markov transformation and

{f; i}I’ifl be a sequence of probability density functions generated by the unknown

map S, given a set of initial density functions {f, j}_; x . Assuming that the

invariant density function f* of the Frobenius-Perron operator associated to the

unknown transformation S can be estimated based on observed data, the proposed

identification approach can be summarised as follows:

Step 1: Given the samples, construct a uniform partition C and an initial piecewise
constant density estimate f¢ of the true invariant density f* which maximises a

penalised log-likelihood function.
Step 2: Select a sub-partition C (ij) of C.

Step 3: Estimate the matrix representation of the Frobenius-Perron operator over the

partition Cy ( j) based on the observed sequences of densities generated by S.

Step 4: Construct the piecewise linear map s corresponding to the matrix

representation.

Step 5: Compute the piecewise constant invariant density fc*d i associated with the

identified transformation ${1) and evaluate performance criterion.

Step 6: Repeat steps 2) to 5) to identify the partition and map which minimise the

performance criterion.

3.4.1 ldentification of the Markov partition

Let f eF be the invariant density associated with a 9R-semi-Markov
transformation S. Let {x; }?_, be a finite number of independent observations of £,

The aim is to determine an orthogonal basis set { g, (x)}i'il such that
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N
F00 = 2 hixg (%), (3.28)
i=1

where yg. (x) is the indicator function and h; are the expansion coefficients given

by

h =~ MR)ZZR,( D, (3.29)
A(R,) denotes the length of the interval R; .

We start by constructing a uniform partition A with intervals N’ that maximises the

following penalised log-likelihood function (Rozenholc, Mildenberger et al. 2010)

"
Lo(N")— p(N') = {2 D; log(N'D; /9)} N1+ GogN)2S| (3.30)
i=1

0
where 1< N'<8/log@, D; :ZZAi (x?) and

j=1
{[a ,(b—a)/N"], i=1

A = .
((i-)(b-a)/N"jilb—a)/N], i=2,...,N"

The coefficients h{ for the regular histogram are given by

h = e(b Zm() (3.31)

Let C={c,....cy-4} be the strictly increasing sequence of cut points
corresponding to the resulting uniform partition A:{Ai}iN:'l Let L={l; }J 1,

(sa—hj)|/b-a) and L={1;}};, 0<SN"<N'-1, be the longest

strictly increasing subsequence of L.

The final Markov partition ‘R is determined by solving
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- _ * _ * B 2
Ir]ne”l_l J(SR)—JI.(fc(X) fey )N dx}, (3.32)
where Cg4 (l_j) :{Cdl(ij)""'cdp(ij)} is a longest subsequence of C which, for the

selected threshold 1,eL , satisfies di(Ij)=1 if |, >1; and in general

*

di+1(|_j) Zdi(l_j)+1 if lg; 1 >1jfor i=1...,p—1. In equation (3.32), fcd(i,-)
denotes the piecewise constant invariant density associated with the transformation
$U1) identified over the partition

(j) _ ) ) ) _
R ={la,cy i1 (€4 iy Cq,qinyd - €4 iy bI
1) 1(1j)" 7da (1) ) (3.33)

aj ajp ()
R’ R, Rpl

3.4.2 Identification of the Frobenius-Perron matrix

Let R={Ry,R,,...,R\}={[a.¢].(c;,C5],...,(cn_1, D]} be a candidate Markov
partition and {ftyi}tT,’if1 be the piecewise constant densities on R, which are

estimated from the samples.

Let f,(x)be an initial density function that is piecewise constant on the partition ‘R

{000 = o7, (), (3:34)
i=1

N
where the coefficients satisfy > wy;A(R;) =1.
i-1

Let X, :{Xo,j}]?:l be the set of initial conditions obtained by sampling f,(x) and

Xe ={% }-1s (335)

be the set of states obtained by applying t times the transformation S such that

Xt j =S"(xo,;) forsome Xg j € Xg, j=1...,6.
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The density function associated with the states X, is given by
N
fe () = D Weixg; (X) (3.36)
i=1

%
A(R;)-0 2r; (% j) - Let who=wy,....w ] be
J j=1

where the coefficients w; ; =
the vector defining f,(X), t=0,...,T where typically T >N . In practice, the

observed f;(x), t=0,...,T , are approximations of the true density functions,

which are inferred from experimental observations.

It follows that
Wl :WoM s (337)
where
I fo 11w w w. o
w 01 0,2 0N
f
woo| wr o] M Y Y
07| . : A (3.38)
wror | (WMo Wi Wr_in |
and
B )
wt 1 Wi Wi N
f
wo—| W 2 [ Wy Wy Wo N
1= . 7| T (3.39)
f
wT | W W Wrn

The matrix M is obtained as a solution to a constrained least-squares optimisation

problem

min W, ~WoM ¢
{m; j}ij=120 (3.40)

subject to
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N
Emi,j/l(Rj)zﬂ(Ri), fori=1...,N, (3.41)

where || - ||z denotes the Frobenius norm.

The matrix @ =W, W, has to be non-singular for the estimate to be unique.

Proposition 3.1 Given a sequence of density functions fy,..., f; generated by a

transformation S(x), the matrix @ =W, W, is non-singular if fy_,(x) # f*(x) .

Proof. If fy ,(X)=f"(x) then f(x)=f"(x) for t=N-1,...,T , that is, the

matrix W, has at most N-2 rows that are distinct from f’(x).

Using Cauchy-Binet formula, the determinant of ® can be written as

det(Wy W) = [ZdJet(vvoT 5.1 9etWo s rp), (3.42)
o (1]
N

where [T] denotes the set {1,...,T}, [[-II\-I]J denotes the set of subsets of size N of [T]

and W gy isa Nx N matrix whose rows are the rows of W, at indices given in

S. Since W, has at most N-2 rows that are distinct from f*(x), it follows that

Wy s (ryhas at least two rows that are identical, hence det(W, ¢ 1) =0 for any

Se ([L]J Consequently, det(\NoT W;) =0, which concludes the proof.

Proposition 3.2 A R -semi-Markov, piecewise linear and expanding transformation

S can be uniquely identified given N linearly independent, piecewise constant

densities foi e F and their images fli e § under the transformation.

Proof. Let
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) N
000 =2 W ixr (X, i=L..,N, (3.43)
j=1

Since {fo}Y, are linearly independent, {w{}Y; , w? =[w?,,...,wPy] are also

linearly independent. Moreover, given that S is a R -semi-Markov, piecewise linear

and expanding, we have

_ N
()= W xr (0, i=1..,N, (3.44)
j=1
where wi =[Wiy,...,wi y1=wPM, i=1..,N. Alternatively, this can be written
as
Wi=WoM, (3.45)
where
0 0 0 ]
wy Wip o Wip Wi N
0 0 0
W/ = w3 _| W1 W2 W2,N
° : Ll (3.46)
W3 _WI(\)I,l W%,N_
and
wil (Wi owa, e Wiy
W, = w3 _ Wy W - W%,N
e A (3.47)
wh _\Nll\l’l WlN,N_

Since Wy is non-singular, the Frobenius-Perron matrix M is given by

The derivative of S|, is I/m; j , the length of QY is given by
k

QM =q® —q®, =m; jA(R)), (3.49)
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which allows computing iteratively q{) for each interval R; starting with
ai’ =ci4 . By assuming each branch S|, is monotonically increasing, the

piecewise linear semi-Markov mapping is given by

1 .
Sloo (0 =——(x-a )+, (3.50)
1)

for k =1,...,p(i), jis the index of image R; of Q{", i.e. s@Q") = Rj,i=1...,N,

J:]‘llN ,Where mI’J 7‘_‘0

The map is constructed as depicted in Figure 3.1.

In practice, we can choose the piecewise constant probability density functions

1
A(R;)

ij(x): X, (x). These are sampled in order to generate N sets of initial

conditions
Xo={x0 j}j-1. 1=L.N, (3.51)

that will be used in the experiments. For each set of initial conditions Xli we

measure a corresponding set of final states
X1 ={x ¥a, i=1..N, (3.52)

where x} ; = S(x},) for some x§, e X§. The density function f;" associated with

the set Xli of final states is given by

. N
f (x) = ZVij}(Rj (x), i=1...,N, (3.53)
j=1
1 3 i
where V; ; :i(R—j)ﬂkzlle (X k) -
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xn+1 |
T /'J-(Rz)%; y
A(Rz)
. o
1 P ‘i—b
A(R)m,, “AR)m,,
MUR,)
AR )m,
| > (€
A A
AR)m,, AR, )y,
AR)
QI(I) Qé” Q'(g” Ql['l) Q‘(’Z) Q;Z) QMQ)LR) Q_%}' xn

— A(RI) —_— )L(RZ) 4}17/1(}23)—?

Figure 3.1 Construction of 1-D piecewise-linear semi-Markov transformation based on the

Frobenius-Perron matrix.

Remark. We only need to generate initial conditions for the densities that
correspond to the finest uniform partition N = N'. Coarser partitions are obtained

by merging adjacent intervals, for example R; and R;j,;, leading to the new
partition {R1,..., Rn—-1}. It follows that the initial and final states corresponding to
the merged interval Rj=R;UR; are given by Y(J) =xJuxd*? and

Ylj = le ) Xlj+1 respectively. The initial and final densities corresponding to the

—j 1
merged interval are iven b fJ X)=———y= (X and
g g y  fo(¥) A(RJ)ZRJ( )
—i 1 N-146 J
fi(X)=—=— ¥e. (X ) xs. (X) respectively.
(0= 55y s e Oz, () repectively

In general, initial density functions are not piecewise constant over the partition R .

Let f el F(Rq), plo. 1, §(Rq) be the orthogonal projector operator and

zNe = —pNe such that f:PNQerZ'\'Qf=fp+fZ where
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Ry =Y. PP, QM ={Qu Qno} Ri=UPDQW | i=1,...,N ,

N
FRo) = span{;(QS)} and Ng = > p(i).
i-1

Theorem 3.6 A R -semi-Markov, piecewise linear and expanding transformation,
where R; =UP®Q®, i=1, .., N, can be uniquely identified given a set of initial

. N .
densities {fo'}iN:‘f , Ng=>'p(i) , and their images {fl'}i'i‘f under the
i=1

transformation, if {P"'° f,}'¢ are linearly independent.

Proof. The Frobenius-Perron operator associated with S is given by

| fo (z)
P, fd (x) = _ol4)
>0 zi:le(x)l e (3.54)

It follows that

fi! (x) = Ps fg () = Ps pg (X) + Psqp (%)
_ po(z) | (@) (3.55)
zi:fz—:l(x)l fOII(Zi)l zi:fz—“l(xﬂ fOII(Zi)l

where | f'(S |t () {8 By}

PRt (0
= PP ph(x)+ P PG (0
POS I 0 %(S 5 ()
k

-p'e Y i % +PQ >

el
i,j:XeS|Q(i) (ngl))| fO (S |QIEI) (X))l i,j:XeS|Q(i)
k k

[ S
oy 15'(S I ()1 (3-59)

Then,
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i o1
PNQ do(S |Q|£|) (X))

i ixes]_q Q)] fo'(S Blgi) )]
Qk

ZQ(i)(X) N
=X | 20(S [y ())dx=0. (3.57)
Lixesl i @) P o ‘
k
Hence,
N i ; No
P OPs fg(x) =Ps p(IJ(X):ZWil,jZngj)(X)
j
i (X
_ ZQ@)( ) 0,]
= X gk (3.58)
ikexesl iy Q) K
k
i :1,..., NQ

Alternatively, (3.45) can be written as

W'=WgMy (3.59)
where
”O ”0 ”O
Wit Wiz o Wong
O "O "O
Wa1  Wpp o Way
Wo=| = e e | (3.60)
0 n0 n0
Wi Wi e W
| Wt Wng,2 Ng.Nq |
and
ol nl nl ]
Wi Wiz o Wong
1 nl nl
Wap  Wop o Way
W= 7 ) e, (3.61)
nl nl nl
Ngr "No:2 7 WiNg.Ng

- No - : .
M, =Wq ]Wl"z{mi, j}i’f:1 is the Frobenius-Perron matrix that corresponds to a

unique piecewise linear and expanding transformation S given by
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1 .
S|om (X) =———(x-a{’)) +¢j 4, 3.62
|Q" Ms(i)+1,5(j)+1 v (362)

for k=1,..., p(i), j is the index of image R; of Q" i.e. s@Q") = Rj,i=1...,N,
j=1...,N,s(1)=0and s(i)=s(i—-1) + p(i—1) fori>1.

To summarise, the full procedure of the approach is described as follows

Construct & uniform partition A = {A,} ¥, with the
cutting points . and an initial piecewise constant
cslimate f(* of the truc invariant density £ " by
maximising (3.32)

Y
| Caleulate the threshold 7. = {/ j}‘;\:, ‘

4>| Choose a sub-partition with cutting points C; (f,»)uf (l" —>| Determine the final Markov partition from {3.32)

Identify the Frobenius-Perron matrix corresponding Identily the Frobenius-Perron matrix corresponding
to the sub-partition with cutting points (-'d("j) to the identified partition from (3.40}
using the method introduced in Section 3.4.2

Y !

Construct the piecewise linear semi-Markov map Construct the piccewise lincar semi-Markov map
(3.50) corresponding to the identified matrix (3.50) over the identified partition
Compute the corresponding invariant density function End

and evaluate the performance function (3.32)

Figure 3.2 Flow chart of the proposed identification approach.

3.5 Numerical example

The applicability of the proposed algorithm is demonstrated using numerical
simulation. Consider the following piecewise linear and expanding transformation
S:[0,1] —[0,1]

S|Ri (X):ai’jx+ﬁi’j, (363)
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for i=1....4 j=1...4 , defined on the partition

% ={R;}*, ={[0, 0.3], (0.3, 0.4], (0.4,0.8], (0.8,1]}, where

(250 1.67 13.33 2.22
15.00 3.33 20.00 6.67
750 1.25 333 1.25]
(750 250 5.00 5.00

(i, )<, j<a =

0 010 -2.00 0.33

-450 -0.77 -6.60 -1.67
-3.00 -025 -133 0 '
-6.00 -1.80 -4.00 -4.00

(Bi,jh<i,j<a =

The graph of S is shown in Figure 3.3.

0.9+

0.8+

0.7+

06

L 05+

04F

0.3F

0.2F

01

X
n

Figure 3.3 Original piecewise linear transformation S.
A set of initial states X :{xoyj}?zl, 0 =5x10°, generated by sampling from a
uniform probability density function f; (x)= ;([0,1](x), were iterated using S to

generate a corresponding set of final states X; :{XT, j}?zl where T =20,000. The
data set X; was used to determine the uniform partition A with N’ intervals,

1<N'<[0/log6 | =587, which maximizes the penalised log-likelihood function in
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equation (3.30). In this example N'=10, i.e. C={0.1,...,0.9} and the estimated

invariant density fé (x) with respect to the 10-interval partition is shown in Figure

3.4.

2.5

)

05

X
T

Figure 3.4 The invariant density estimated over the initial uniform partition with N’ =10 intervals.

The sequence L :{Ij}?zl, I; =10|h"j,1—h";]is shown in Figure 3.5.

20 ; ;
18}
161
14+
121
~~ 10}

8r s'f‘ .

G_

4+

2,

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

i

Figure 3.5 A piecewise linear example: The L sequence.
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In this example, L={1;}]_; ={0.08, 0.26, 0.30, 0.70, 0.86, 1.24, 7.96,14.62, 15.64}.

In order to explicitly show the process of searching the final Markov partition,

Figure 3.6 illustrates the formation of a Markov partition for I; =7.96. I; =1g.
From Figure 3.5, it can be found that I; <l;,j=12,56,7,9, therefore, the
adjacent uniform intervals connected by the cut points {c;, j=1,2,5,6,7,9} at

which [; <f7, are merged, which results in the non-uniform partition shown in

Figure 3.6. Specifically, intervals {0, 0.1), [0.1, 0.2), [0.2, 0.3)} are merged into
one interval [0, 0.3), and intervals {[0.4, 0.5), [0.5, 0.6), [0.6, 0.7) , [0.7, 0.8)} are
merged into one interval [0.4, 0.8) , and intervals {[0.8, 0.9), [0.9, 1.0)} are merged
into one interval [0.8, 1.0). Based on the new formed non-uniform candidate
partition, sequences of probability density function are generated to identify the

corresponding piecewise linear semi-Markov transformation, as described in
Sectioin 4.2.2 and 4.2.3. Then the associated invariant density function fgd in is

predicted and the loss function

min
ljeL

{J (R) = j (fo(x)— fgd (Ij)(x))zdx} , (3.64)
|

corresponding to I, is calculated.
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25

1.5F

)

0.5

0 o1 02 03 04 05 06 07 08 08 1
x,l.
Figure 3.6 Chapter 3 numerical example: Formation of the final Markov partition corresponding to
the obtained minimum loss function for 17 . The bold line is the invariant density histogram

estimated over the final Markov partition; the dotted line is the invariant density histogram estimated
over the initial uniform partition.

Consequently, the minimum is obtained for 17, as shown in Figure 3.7.

0.3f
0.25F "

0.2r

01} /.;

0.05-

-
[
[

Iz

|

=

—

%]

—_

&

|

B
—~ W
s

|

(=2}

Figure 3.7 Chapter 3 numerical example: The value of the cost function given in equation (3.32) for
each threshold.

This corresponds to the final Markov partition % ={R;,R,,R3,R,} where

R =[0,0.3], R, =(0.3,0.4], R; =(0.4,0.8] and R, =(0.8,1]. Figure 3.8 shows the
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initial density functions used to generate the set of the initial conditions and the

final density functions estimated from the corresponding final states for T=1.

For the identified partition, the estimated Frobenius-Perron matrix is

0.4044 0.5874 0.0753 0.4491
0.0673 0.3062 0.0482 0.1497
0.1363 0.7968 0.2988 0.7996 |

0.1345

0.4052 0.1995 0.1966

1 -1
7 7
2
> ][]
0 0
0 0.30.4 0.8 1 0 0.30.4 0.8 1
2 -2
r: i
10
5 |_| —> 2 |_| —
0
0 0.30.4 0.8 1 0 0.30.4 0.8 1
.3 -3
7 7
2
— >l LT
0 0
0 0.30.4 0.8 1 0 0.30.4 0.8 1
4 -4
7 A
5 2 I—l
_» 1
0 0
0 0.30.4 0.8 1 0 0.30.4 0.8 1

(3.65)

Figure 3.8 A piecewise linear example: The initial and final density functions fOi (x) and fli (x)

corresponding to the identified four-interval partition.

The corresponding identified mapping S is shown in Figure 3.9.
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0.8r

n+l

0.4r

0.3r

X
n

Figure 3.9 Chapter 3 numerical example: The identified transformation $ of the underlying system.

The estimated coefficients of the identified piecewise linear semi-Markov

transformation S - (X) =@, jx+ f5; j are
i ' ‘

(247 170 1328 2.23
. 14.87 327 20.77 6.68
@ijhsiica=| 733 126 334 125
743 247 501 509

K 009 -1.99 0.33

-446 -0.75 -6.89 -1.67
-294 -025 -134 0 '
|-5.95 -1.77 -4.02 -4.09

(ﬁi,j)lsi,jg =

To show the identification performance of the algorithms, the absolute percentage

error is evaluated by

‘S(x) - §(x)‘

| (3.66)
S(x)

5S(X) =100 x

for xe X ={0.01,0.02,...,0.99} . As shown in Figure 3.10 the relative error

between the identified and original map is less than 2.5%.
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Figure 3.10 Chapter 3 numerical example: Relative error between the original map S and the
identified map S evaluated for 99 uniformly spaced points.

Furthermore, Figure 3.11 shows the true invariant density f* associated with S

superimposed on the invariant density f* associated with the identified map S.

The percentage root-mean-square error (PRE) is calculated by

\/j(f*(x)— £ (x))2dx
Jaote:

PRE = x100% . (3.67)

It follows that PRE =1.48%.
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24r- e, TruE Invariant
Density f*
22r Estimated Invariant
Density f*
2r B
1.8+ b
2
Z
5 161 b
o
g 14+ b
g
= 12+ 1
1F _
0.8+ b
0.6F b
0‘4 L i 1 L
0 02 0.4 0.6 0.8 1

X

Figure 3.11 Chapter 3 numerical example: The true invariant density (red dashed line) and the estimated
invariant density (blue solid line) of the identified map.

In practical situations, measurements are corrupted by noise. Given the process

Xns1 = S(Xp) + @y (3.68)
where S:R—R is a measurable transformation and {w,} is a sequence of

independent random variables with density g, it can be shown (Lasota & Mackey

1994) that the evolution of densities for this transformation is described by the

Markov operator P : L} ! defined by

PT ()= f(y)a(x—S(y)dy, (3.69)

Furthermore, if P is constrictive then P has a unique invariant density f* and the

sequence {P" f }is asymptotically stable for every f e D (Lasota & Mackey 1994).

To study how noise affects the performance of the developed algorithm the

following process is considered

Xny1 = S(X,) +aw, (modl), (3.70)
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where S:[0,1]] —[0,1] is a measurable transformation that has a unique invariant
density £, {w,} i1s i.i.d. N (0,1) (the results apply for general density functions)
and a is a known noise level. This leads to an integral operator P, which has a
unique invariant density f; (Lasota & Mackey 1994). It can be shown that

lim||P, f —Pf||=0 for all f € D and that, for0<a <a, if lim f exists then the
—0 a—0
limitis .

To evaluate the performance of the proposed algorithm in the presence of noise, the

map for different values of « is reconstructed and the mean absolute percentage

error (MAPE) between S and S is computed by

100 s (%) - $(%)|
Oss =) S(x) |

5S(xX) = (3.71)

where {x.}% ={0.01,..,0.99}, O55 =99.

Table 3.1 Reconstruction errors for different noise levels — Example: a piecewise linear system
example in Chapter 3.

2,2 0 0 0 0 0 0
a=oc,loy (noise-free) 0.0335% 0.1588% 0.8819% 2.2234% 3.9414%

MAPE (%) 0.43 1.08 1.34 8.52 33.35 37.74

The results demonstrate that the algorithm is robust to noise i.e. the approximation
error remains relatively small even for significant levels of noise which in practice
would make it extremely difficult to reconstruct the map based on time series data
(Aguirre & Billings 1995b, Aguirre & Billings 1995a).

3.6 Conclusions

There are some practical situations in which the individual point trajectories of a
chaotic system cannot be measured directly, and the only information available is in

the form of probability density functions. As a result, the problem of inferring the
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mathematical model can be studied with sequences of probability density functions,
instead of massive individual point orbits by means of traditional strategies of
model identification.

Previous research generally focused on the problem of deriving a potential
transformation only based on the invariant density, which is the so-called classical
inverse Frobenius-Perron problem. The shortcoming of the approach is that it
cannot guarantee uniqueness of the solution. There are many transformations that
share the same invariant density but exhibit distinct dynamical behaviour. The new
methodology introduced in this chapter addresses this issue by using a temporal
sequence of density functions generated by the underlying system, which allows the
unique chaotic map can be recovered. The system identification approach involves
determining the Markov partition by minimising the established cost function firstly,
then recovering the Frobenius-Perron matrix, finally constructing the piecewise
linear semi-Markov transformation on the Markov partition. The effectiveness of
the algorithms was demonstrated using numerical simulations for a noise-free
system. Furthermore, small noise perturbed case was also studied to show the

applicability of the method to practical systems.
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Chapter 4

A Solution to the Generalised Inverse
Frobenius-Perron Problem for
Continuous One-Dimensional Chaotic

Maps

4.1 Introduction

The previous chapter introduced a matrix-based approach to the generalised inverse
Frobenius-Perron problem (GIFPP) for a special class of one-dimensional bounded
piecewise monotonic transformations known as piecewise linear semi-Markov
transforms. These transformations can be regarded as a special type of nonlinear
transformations constituted by finite linear branches on disjointed intervals.
Nonetheless, in general most practical systems are nonlinear on each interval of
domain, and even fractions of transformations are not homeomorphism, therefore,
they are not Markov transformations. It is interesting to explore the strategy of
reconstructing the nonlinear map with observed sequences of probability density
functions yielded by the system.

Since Frobenius-Perron matrix is non-negative, and positive entry is defined by

|(S|Q(i))'|_1, for a known piecewise linear semi-Markov transformation S, there
k

exists a unique corresponding Frobenius-Perron matrix M, but not vice versa. i.e. S

is not the only transformation that possesses the Frobenius-Perron matrix M.
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Therefore, given a Frobenius-Perron matrix, the monotonicity of the transformation

S|R. is not determined as the slope could be positive or negative. The developed
1

approach to GIFPP for piecewise linear semi-Markov transformations is devised

under the assumption that each branch S|R. iIs monotonically increasing. But for
1

continuous nonlinear transformations, it is imperative to determine the

monotonicity of S|R_ i.e. monotonically increasing or decreasing.
|

This chapter extends the approach to reconstructing piecewise linear semi-Markov
transformations from sequences of densities to more general nonlinear maps. Ulam
(1960) conjectured that for one-dimensional systems the infinite-dimensional
Frobenius-Perron operator can be approximated arbitrarily well by a finite-
dimensional Markov transformation defined over a uniform partition of the interval
of interest. The conjecture was proven by Li (1976) who also provided a rigorous
numerical algorithm for constructing the finite-dimensional operator when the one-
dimensional transformation S is known. The purpose in this chapter is to generalise
the developed solution to GIFPP for continuous nonlinear systems, specifically, to

construct from sequences of probability density functions a piecewise linear semi-

Markov transformation S which approximates the original continuous nonlinear

map S.

In the following section, the methodology of deriving the map for continuous
nonlinear systems is presented. In particular, it involves the algorithms of a two-
step optimisation calculation for obtaining the Frobenius-Perron matrix of the
corresponding the approximate piecewise linear R -semi-Markov transformations
to the nonlinear map, and determining the monotonicity of the nonlinear map on
each interval of R . A numerical example is then given to illustrate the applicability

of the algorithms.

4.2 Methodology

The main assumptions of the developed methodology are as follows
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a) The transformation S: 1 — | is continuous, | =[a,b];

b) The Frobenius-Perron operator P : L' — L associated with the transformation

S has a unique stationary density f* which can be estimated based on the
observed data;
¢c) For n>w , P > f" for every fe® ie the sequence {F'} is

asymptotically stable.

Asymptotic stability of {Ps'} has been established for certain classes of piecewise

C? maps. For example, the following theorem was proven in (Lasota & Mackey
1994).

Theorem 4.1 If S:[0,1]—[0,1] is a piecewise monotonic transformation

satisfying the conditions:

a) There is a partition 0<¢c, <...<Cy, <1 such that the restriction of S to an
interval R =(¢;_4,¢;) isa C? function;

b) S(Ri)=(0,1);

c) |S'(X)>1for x=¢;;

d) There is a finite constant y such that

—S")/IS' )P <w, x#¢,i=1...,N-1, (4.1)
then {PJ'} is asymptotically stable.

By using a change of variables, it is sometimes possible to extend the applicability
of the above theorem to more general transformations, such as the logistic map
(Lasota & Mackey 1994) , which does not satisfy the restrictive conditions on the

derivatives of S.
The procedures of the generalised solution are briefly stated as follows

Step 1: Identify the optimal Markov partition R prepared for deriving the
Frobenius-Perron matrix corresponding to the piecewise linear semi-Markov map

close to the original continuous nonlinear map;
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Step 2: Identify the Frobenius-Perron matrix M from the sequences of probability
densities generated by S in the first stage. Then refine the resulting matrix by

implementing a second optimisation in which the zero entries are specified.

Step 3: determine the monotonicity (monotonically increasing or decreasing) of the

constructed point transformation S| oneach interval of R.

Rj

Step 4: Smooth the constructed piecewise linear map to make it more close to the

potential continuous nonlinear map.

4.2.1 ldentification of the optimal Markov partition

For a nonlinear transformation S:1 — 1, | =[a,b], the invariant density f* e®

IS not piecewise constant. The Frobenius-Perron operator associated with S cannot
be represented by a square matrix. By constructing a piecewise linear semi-Markov

transformation S close the original continuous nonlinear map, the Frobenius-Perron

equation can also be written in the following matrix form of equality.
P§ fn = ané’ (42)
where P is the Frobenius-Perron operator associated with S, and Mg is the

Frobenius-Perron matrix induced by S.

For the invariant density, it follows that

f* ="M, (4.3)

A

where f* e denotes the piecewise constant density approximating f*.

As a consequence, the approach used to determine the Markov partition for
piecewise linear transformation in Section 3.3.1 of the previous chapter is also used
here to determine the optimal Markov partition for the piecewise linear

approximation of the unknown nonlinear map.
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4.2.2 ldentification of the Frobenius-Perron matrix

For the Markov partition

R ={Ry,Ry,...,Ry}={[a,¢].(c1,¢o],..., (Cn 1, DI (4.4)

the Frobenius-Perron matrix can be tentatively identified using the approaches

described in Section 3.3.2, and is denoted by M = (M i jen -

: : : p(i) : : :
Since S is continuous on I, U Ry is a connected union of intervals where
k=1

R =SQM) e, i=1,...,N, k=1...,p(i). Here r(i,k) e{L...., N}are the column
indices of non-zero entries on the i-th row of the Frobenius-Perron matrix which

satisfy

r@i,k+1) =r(i,k)+1, (4.5)
for 1=1..,N, k=1..,p@i)-1. This implies that the positive entries are
contiguous, and that the else entries on the i-th row should be 0, which can be
expressed as

m;; =0, (4.6)

fori=1..N, j=1...N,j=r(i k).

In order to ensure the identified Frobenius-Perron matrix meets the above

conditions, the first step is to determine the indices r(i,k) of the non-zero entries

on each row. Let r™(i,k™) be the index of the entry of which

2QM) = max{ Q)Y =max{A(R,)-  }. 47)

It represents the longest subinterval within the interval R; which can be interpreted

as the predominant support of the transformation S K

Ri

Therefore,
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My 0 (4.8)
Thus, r™@i,k™) e {r(i,k)}D, r@,)<r™G, k™) <r(, p(i)).

K

p(i)

k'uk' Ryky is the connected union of intervals involving Romgimy where
=K ,

Reixy =S(Q) et . Consequently, the indices of non-zero entries on the i-th row of
the desired Frobenius-Perron matrix M =(m; j)i j<n associated with the

piecewise linear ‘R -semi-Markov transformation which is more closer to the

nonlinear map can be determined by

r(i,) =r'(i, k),

i, p(i)) = r'(i. k; 4.9
r(i, P(0)) = 'Ky (4.9)
As a result, for the i-th row of matrix M
mij >0, r'(i,k)<j<r'(i,kpa)
{mi‘ j =0, otherwise. (4.10)

The final Frobenius-Perron matrix M is obtained as a solution to the following

constrained optimisation problem

min  [[W;-WoM ||g,
{mi’j}i'\"jzlzo (411)

where W, and W, are the densities matrices produced in Section 3.3.2,

subject to

p(@)
2 MiriiARriik) = A(Ri). (4.12)
k=1

m; ;=0 if j=r(i,k),k=1..,p@),and m; ; =0 if j=r(ik)k=1..p().
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4.2.3 Reconstruction of the transformation from the

Frobenius-Perron matrix

The method for constructing a piecewise linear approximation §(x) over the
partition R is augmented to take into account the fact that the underlying

transformation is continuous and that on each interval of the partition, S|R_ is either
1
monotonically increasing or decreasing. The entries of the positive Frobenius-
Perron matrix are used to calculate the absolute value of the slope of éQ(i) as
K

| S‘Qﬁi) |= 1/miyj . A simple algorithm was derived to decide if the slope of S o on

the interval R; is positive or negative.

Let I; =[c gy, Criipaypl fOr i=1..., N, be the image of the interval R; under the
transformation S which induce the identified Frobenius-Perron matrix M. Cr(ia)-1
is the starting point of R,(; 1y which is the image of the subinterval Q{", and ¢y = a
if r(i1)=1. c (i pqy is the end point of R 54y which is the image of the

subinterval Qg()i). As before, {r(i,k)}’") denote the column indices corresponding

to the non-zero entries in the i-th row of M.
Let ci :%[Cr(i,l)—l’cr(i,p(i))] be the midpoint of the image I;. The sign o (i) of

{§’(X)Q(i)}|f£il) is given by
K

~1, ifG —C_y <O0;
oi)=1 1 ifC-C_,>0;, (4.13)
o(i-1) if ¢ =Cy,

fori=2,...,N and o(1) =0(2).

Given that the derivative of S| is J/m; ;, the end point ) of subinterval Q"
k

o
within R; is given by
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k
- Ci—1+Zmi,r(i,j)ﬂ(Rr(i,j))' if O'(l) :+1;
gl = I (4.14)
Ciit+ 2. Mi rii. p(iy—k+)A(Regi p(iy-ksn ) i o) =—1.
j=1

where k=1,..., p(i)—1 and q(pizi) =G;.

The piecewise linear semi-Markov transformation for each subinterval Qgi) is given

by

L (x—a—q)+ciy, if o)=L

Son (=1 " | (4.15)
<) -1 x—a-ql) e, ifo()=-1
milj

fori=1...,N, j=1...,N, k=1..,p()-1, m;; #0.

The construction of the piecewise linear semi-Markov transformation §(x) to

approximate the original continuous nonlinear map S(x) is depicted in Figure 4.1.

4.2.4 Smoothing of the constructed piecewise linear semi-

Markov map

Since the constructed map is piecewise on the identified Markov partition, in order
to make it more close to the original map that is continuous on I, a smooth version
of the estimated transformation can be obtained by fitting a polynomial smoothing

spline.

A set of initial states X ={XO,J-}?:1 which are uniformly distributed on I were
iterated one time using the constructed piecewise linear R -semi-Markov
transformation S (x) to yield a corresponding new states X ={X; j}‘J?zl. The new

states can be regarded as noise-like data to smooth the piecewise map. The
smoothing spline can be obtained as the solution of the following optimisation

problem
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Ny 2 d%s i
min gz(s(xo,j)—xl,j) +(1—7)f[—2] dx ¢, (4.16)

where y is the smoothing parameter.

Rj+3
(i+2) ~
Q] ' SQE“Z
(i+2)
e L2 —
Ry Spe// |
? S e
Lo
I
A ! it !
R Soof| /1|
i+ | SQ](?;H)
lel)i
R;
Ri+1 Ri+2

Figure 4.1 Construction of a piecewise linear semi-Markov transformation approximating the

original continuous nonlinear map.
4.3 Numerical simulations

To demonstrate the use of the extended algorithm, the following quadratic (logistic)

transformation without noise disturbance depicted in Figure 4.2 is considered.

S(x) =4x(1-x), (4.17)
It can be shown that {P'} associated with this transformation is asymptotically

stable.
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Figure 4.2 Original continuous nonlinear transformation S.

A set of initial states X :{Xo,j}?ﬂ’ 6=5x10°%, generated by sampling from a
uniform probability density function f; (x) =Z[0,1](X), were iterated using S to

generate a corresponding set of final states Xy ={XT1 j}‘?zl where T =30,000. The
data set X; was used to search for an uniform partition A with N’ intervals,

1<N'< LH/ log 0J= 587 , which maximises the penalised log-likelihood function

N’
Lo(N)—p(N" ={z D; log(N'D; /0)} — [N'—1+ (log N')2'5], (4.18)
i=1

defined in Section 3.4.1. It is obtained that N' =145 for this case. The estimated
invariant density fZ(x) with respect to the 145-interval partition is shown in Figure

4.3.
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/o)

Figure 4.3 Chapter 4 numerical example: Initial regular histogram based on a 145-interval uniform

partition.
In this example, the longest strictly monotone subsequence L of L ={l j}lj“fl,
I; =145|h"j ;N[ has 52 elements and the minimisation of
. _ * _ * . 2
WLT{J (%)—Ij(fc(X) fey D) dX}, (4.19)

is achieved for 120 =0.1560 , as shown in Figure 4.4.

This corresponds to a final Markov partition with 72 intervals. The invariant density

on the irregular partition R with 72 intervals is shown in Figure 4.5.

To identify the Frobenius-Perron matrix, 100 densities (see Appendix) were

randomly sampled to generate 100 sets of initial states X(i) :{x(i),j}?zl, i=1,...,100,

6 =5x10°. The initial states X(i) and their images Xli under the transformation S

were used to estimate the initial and final density functions on R . Examples of

initial and final densities are shown in Figure 4.6.

69



Chapter 4 A Solution to the Generalised Inverse Frobenius-Perron Problem for Continuous
One-Dimensional Chaotic Maps

L0202 o e e e e e

025+ [ ]

o
(S}

Figure 4.4 Chapter 4 numerical example: The cost function ‘]i- , =1, ...,52.
j
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*r

Figure 4.5 Chapter 4 numerical example: The invariant density estimated over the partition

72
R={Ri}i1.

The constructed piecewise linear semi-Markov transformation with respect to the

partition ‘R is shown in Figure 4.7.

The smoothed map, obtained by fitting a cubic spline (smoothing parameter: 0.999),

is shown in Figure 4.8.
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Figure 4.6 Chapter 4 numerical example: Examples of initial densities (red lines) and the

corresponding densities after one iteration (blue lines):
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The relative approximation error between the identified smooth map and the
original map calculated in (3.66) is shown in Figure 4.9. It can be seen that for 97
out of the 99 linearly spaced points x € X ={0.01,0.02, ...,0.99} 6S(x) <5%.
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Figure 4.7 Chapter 4 numerical example: Reconstructed piecewise linear semi-Markov map over the
irregular partition R .

09

0.8

0.7}

06}

0.4}

0.3r

0.2

0.1}

Figure 4.8 Chapter 4 numerical example: Identified smooth map.

The estimated invariant density on R, obtained by iterating the smoothed map
20,000 times with the initial states X, and is shown in Figure 4.10, compared with

the true invariant density.
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1

P (4.20)

f*(x) =

45 T

40t .

Figure 4.9 Chapter 4 numerical example: Relative error between the original map S and the

identified map S evaluated for 99 uniformly spaced points.
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n

Figure 4.10 Chapter 4 numerical example: The true invariant density of the underlying system
(dashed line) and the estimated invariant density of the identified map (solid line) on a uniform

partition with 145-intervals.
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To examine how noise affects the performance of the generalised solution for
continuous one-dimensional chaotic maps, an additive random noise is applied to

the logistic map as expressed as follows

Xny = 4%, (1-X,)+aw, (mod 1), (4.21)
where {w,} is i.i.d. N (0,1) (white Gaussian noise), and « is a known noise level.
A set of Gaussian noise Q ={w;}’,,6=5x10°, the noise maximum magnitude

(ie. £=max(w,|)) £=1/50 and & =0.0335% is taken for example in the first

instance.

The invariant density was obtained by iterating S for T times with the noise o,

applied per iteration. Still using the penalised log-likelihood maximisation for
searching the preliminary uniform partition, the resulting invariant density with

respect to the uniform partition containing 67 intervals is shown in Figure 4.11.

45 T T T T

3.5

25

I x)

Figure 4.11 Chapter 4 numerical example: Initial regular histogram based on a 67-interval uniform

partition.

Figure 4.12 shows the results of the loss function (4.19) corresponding to 1; for

i=1...,66. It can be seen that the minimisation is found at I_39 =0.0304 which
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corresponds to a Markov partition involving 31 non-uniform intervals, as shown in
Figure 4.12.

L o e B R R R R R R R R EEEREE N
0.3 -
0.256-
02r- L
0156+ t

01F i

Figure 4.12 Chapter 4 numerical example: The cost function JI—_ , =1, ..., 66.
j

Figure 4.13 shows the estimated invariant density on the obtained Markov partition
R.

4.5 T T T

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1
X

Figure 4.13 Chapter 4 numerical example: The invariant density estimated over the partition

R ={R}.
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The 100 sets of initial states X(i], i=1,...,100, generated in the noise-free case was

used to yield the corresponding sets of images Xli under the noisy system (4.21).

The constructed piecewise linear R -semi-Markov map is shown in Figure 4.14.
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Figure 4.14 Chapter 4 numerical example: Reconstructed piecewise linear semi-Markov map over

the irregular partition 9.

The smoothed map obtained with the same smoothing parameter 0.999 is shown in
Figure 4.15.
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Figure 4.15 Chapter 4 numerical example: Identified smooth map
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Figure 4.16 shows the calculated relative error S on the 99 uniformly spaced

points. It can be seen that 6S < 5% for 96 points out of them.

45

40+

0 0.2 04 086 0.8 1
X

Figure 4.16 Chapter 4 numerical example: Relative error between the original map S and the

identified smooth map S evaluated for 99 uniformly spaced points.

In order to evaluate the performance of the developed algorithms for larger noise
levels, Figure 4.17 and Figure 4.18 give the reconstructed maps and relative error
for noise level a =0.0978%, 0.5431% (& =0.04, 0.10) respectively.

(a) (b) (c)
1 % 1 45
,\\\ 40
08 { 08 35
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0 02 04 06 08 1 0 0z 04 06 08 1 0 02 04 06 08 1
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Figure 4.17 Chapter 4 numerical example: (a) Constructed piecewise linear semi-Markov map for
a =0.0978% (& =0.04); (b) The resulting smooth map from the piecewise linear semi-Markov

map; (c) The relative error calculated on the 99 uniformly spaced points.
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Figure 4.18 Chapter 4 numerical example: (a) Constructed piecewise linear semi-Markov map for
a =0.5431% (£ = 0.10); (b) The resulting smooth map from the piecewise linear semi-Markov

map; (c) The relative error calculated on the 99 uniformly spaced points.

Table 4.1 summarises the MAPE between the reconstructed map S and the

original map S for some various noise levels.

Table 4.1 Reconstruction errors for different noise levels — Example: a continuous nonlinear system
example in Chapter 4.

0 0.0206% 0.0978% 0.5431% 1.3692% 2.4272%
(noise-free)
< 0 0.02 0.04 0.10 0.15 0.20
MAPE (%)  0.61 1.59 2.10 4.424 79.60 84.84

As it can be seen the approximation error remains relatively low (<5%) for levels
a =0.0206%, 0.0978%, and 0.5431% ( noise samples with & =0.02, 0.04,and 0.10

correspondingly) of noise that normally cause severe problems to reconstruction

algorithms that use time series data.

4.4 Conclusions

This chapter proposed an extension to the solution to the generalised inverse
Frobenius-Perron problem for piecewise linear semi-Markov transformations to
more general one-dimensional smooth chaotic maps. The proposed method infers
directly from data a piecewise linear semi-Markov map approximation of the

original map, which can be subsequently smoothed.
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As before, proposed method involves identifying the optimal Markov partition, R
estimating the Frobenius-Perron matrix and reconstructing the map. Additional
algorithms were introduced to identify the non-zero entries Frobenius-Perron matrix
and to determine the monotonicity over each interval of the partition. The last step

smoothing the piecewise linear map further helps reducing the approximation error.

Numerical simulations involving noise-free as well as noisy data were used to

demonstrate the effectiveness of the developed method.
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Chapter 5
Characterising the Dynamical
Evolution of Heterogeneous Human

Embryonic Stem Cell Populations

5.1 Introduction

Human pluripotent stem cells cultured in vitro exist as heterogeneous mixture
(Stewart, Bossé et al. 2006, Chambers, Silva et al. 2007, Chang, Hemberg et al.
2008, Hayashi, Lopes et al. 2008a, Olariu, Coca et al. 2009, Tonge, Olariu et al.
2010, Tonge, Shigeta et al. 2011). It has been proposed that the heterogeneity with
human pluripotent stem cells reflects the existence of a number of functionally
relevant, unstable substates that are interconvertible, each of which could be
characterised by higher propensity to differentiate into particular somatic cell. In
practice, heterogeneity of hESCs has been studied by measuring using flow
cytometry the level of particular stem cell surface marker such as that of the
Surface Specific Embryonic Antigen (SSEA3) which is used to identify pluripotent
hESCs. One of the characteristics of heterogeneous stem cell cultures is that
subpopulations sorted according to their level of SSEA3 expression, can regenerate
the original parent population in about five — seven days after plating. The process
by which the parent population is regenerated produces similar sequence of density
functions in separate experiments, suggesting that it could reflect deterministic

chaos rather than a purely stochastic process. In this context, the equilibrium
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distribution of SSEA3 expression in a population could be seen as the invariant

density function associated with the chaotic map.

Here the aim was to apply the methods developed in previous chapters to infer a
one-dimensional chaotic map to characterise the dynamical evolution of stem cell
populations based on the experimentally observed probability distributions. The
reconstructed model could be used to predict the long term evolution of different
fractions, to determine equilibrium points and perform local and global stability

analysis.

This chapter is organised as follows. The biological background involving NTERA-
2 cell line, heterogeneity of the human embryonic stem cells, the cell surface
marker SSEA3 used for isolating distinct subpopulations, the fluorescence activated
cell sorting machine and the brief experimental process is firstly introduced in
Section 5.1. The modelling algorithms are briefly described in Section 5.3. This is

followed by the simulation results with experimental data shown in Section 5.4.
5.2 Biological background

This section will briefly introduce related knowledge of the background biological
system and the experimental process conducted by the Centre for Stem Cell

Biology at the University of Sheffield which is the data provider.

5.2.1 Heterogeneity of hESCs

Embryonic stem (ES) cell are used for analysis of multilineage differentiation
within in vivo development. The formation of embryoid bodies can show the
multilineage differentiation. The orbits of the cell differentiation can be affected by
the body size. Thus, the differentiation can be changed by manipulating the size.
hESC lines are morphologically and phenotypically heterogenecus. The starting
populations of undifferentiated human ES cells are important, as they may affect
the differentiation to or away from the desired phenotype. If they are heterogeneous,
the differentiated derivatives may also be heterogeneous. Spontaneous

differentiation of cells is a source of cell heterogeneity in ES cell cultures (Tonge,
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Shigeta et al. 2011). hESCs in culture can be divided into different subsets that can
interconvert. The cells are able to interconvert reversibly between different subsets
that are functionally non-equivalent but having the capability of multilineage
differentiation (Enver, Pera et al. 2009). For example, heterogeneity has been
identified in mouse ES cultures for the expression of Nanog and Stella (Tonge,
Shigeta et al. 2011). Mouse ES cell can switch reversibly between Nanog positive
and negative states (Chambers, Silva et al. 2007). A dynamic equilibrium within the
ES cultures is represented by the fluctuating levels of Stella expression (Hayashi,
Lopes et al. 2008b). The different expression marks functionally distinct cells. It
has been known that undifferentiated hESCs contain functionally distinct subsets.
The regulatory genes associated with the pluripotent state are co-expressed with
lineage specific transcription factors at early stage of stem cell differentiation
(Laslett, Grimmond et al. 2007).

5.2.2 NTERA-2

The experimental data was generated using the NTERA-2 cell line which is a
clonally derived, pluripotent human embryonal carcinoma cell line (Stevens 1966,
Solter & Damjanov 1979, Andrews, Damjanov et al. 1984, Lee & Andrews 1986).
It has many similar characteristics to hESCs, in particular, expresses the same
markers of pluripotency as hESCs, including the SSEA3 marker (Pera, Cooper et al.
1989, Draper, Pigott et al. 2002a, Walsh & Andrews 2003). The NTERA-2 cell line
has been extensively used as a model of human neurogenesis. It can differentiate
into neuronal, glial, and oligodendrocytic lineages in vitro (Fenderson, Andrews et
al. 1987, Rendt, Erulkar et al. 1989, Pleasure & Lee 1993, Miyazono, Lee et al.
1995, Bani-Yaghoub, Felker et al. 1999, Philips, Muir et al. 1999), in response to
retinoic acid (Andrews 1984). The differentiated derivatives of the human
embryonal carcinoma cell line contain cells with phenotypic properties of neurons.
By manipulating the exposure to retinoic acid, the differentiation can be easily
controlled. When NTERA-2 cells mature, the differentiation results in a relatively
homogenous population of neurons with functionally appropriate properties.
NTERA-2 cell line is a useful tool to explore the early development of human

nervous system and identify the genes that are engaged in neurogenesis.
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5.2.3 Cell surface antigen maker SSEA3

Undifferentiated hESCs are highly unstable and tend to spontaneously differentiate
under standard culture conditions. The differentiation is characterised by marked
changes in gene expression (Ackerman, Knowles et al. 1994). In other words, the
differentiation can be monitored by observing the changes in the expression of cell
surface antigens, because the expression of cell surface antigen can be readily
evaluated on single cell in complex differentiating populations, and the isolated
single antigen can be used to analyse the properties and explore the further
differentiation of the individual antigen. Functionally distinct subsets of
undifferentiated hESCs can be studied by surface antigen markers such as SSEA3
(Enver, Soneji et al. 2005).

SSEA3 is a cell surface antigen that is rapidly down-regulated as hESCs
differentiate to more mature cell types (Shevinsky, Knowles et al. 1982, Draper,
Pigott et al. 2002b). It can be used to observe the changes from undifferentiated
state to differentiated state of the cells. The NTERA2 pluripotent cell line is
comprised of stem cells which have different expression levels of SSEA3 surface
antigen. It has been reported that SSEA3 expression positively correlates with the
probability of a NTERA2 cell to clonal expansion (Andrews 1984). It has been
found that substates SSEA3P™Ive and SSEA3"9V that are divided from
undifferentiated hESCs in culture have different expression of SSEA3.

5.2.4 Fluorescence activated cell sorting

Fluorescence activated cell sorting (FACS) is a flow cytometry approach that
allows fractionating a population of live cells that are phenotypically different from
each other into sub-populations based on fluorescent labelling. FACS enables fast
and quantitative recording fluorescent signals of individual cells as well as
physically isolating cells of particular interest. Figure 5.1 shows the diagram
explaining FACS. The process begins injecting some samples containing cells into
a flask, and the sample is then funnelled to generate a single cell line. When the
cells flow down, they are scanned by a laser beam that is used to count the cells as
well as measure the size of the cells. Each single cell enters a single droplet which

84



Chapter 5 Characterising the Dynamical Evolution of Heterogeneous Human Embryonic
Stem Cell Populations

is then given electronic charge. When the cells are in the area between the
deflection plates, the cell will be attracted or repelled into corresponding plates.
Then the sorted cell can be cultured.

Unsorted
population

detector

~ L X Deflection
L plate
- [ ) X
° * \.
) o
o [
VAV H
A A A A

Substate A Substate B Substate C

Figure 5.1 Diagram of FACS machine.
5.2.5 Experimental process

Figure 5.2 shows the process of cell culturing experiments. The initial unsorted cell
populations are prepared for sorting by the FACS machine into some different
subpopulations which are isolated by the cell surface marker SSEA3. On the initial
day, the sorted cell subpopulations are treated as the initial state for the following
differentiation. On each sampling day, the flow cytometry distributions of markers
are measured. This will generate the sequences of probability density functions of

the SSEA3 {f;, f,, fi,.. }, which will be used for modelling for the heterogeneous

cell populations.
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Figure 5.2 Diagram of the experimental process example. For each measured distribution, the
horizontal axis represents the SSEA3-FITC (Fluorescein isothiocyanate) fluorescent intensity; the
vertical axis represents the probability density.

5.3 Modelling algorithms

The aim is to reconstruct a piecewise linear semi-Markov transformation for the
stem cell population, which characterises the dynamical evolution of the
heterogeneous cell populations based on temporal sequences of probability density
function generated from the cell culturing experiments. For each substate, starting
from a distinct initial population, a sequence of probability density functions can be

observed as listed in Table 5.1.

Table 5.1 Observed sequences of probability density functions for each fraction.

Fraction Density observations
#1 10, £ £2,.
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#2 f0, 13, £7,..., f)
#3 £, f1, 2, f5
#Fy fe ., fE e . R

It is assumed that a stationary distribution can be reached after T days of evolution

from an initial unsorted population, whereby the invariant density f*associated to

the unknown semi-Markov transformation is measured.

The procedures of reconstructing the piecewise linear semi-Markov estimate are
stated as follows:

Step 1: An initial uniform partition A with N’ equal intervals can be determined

from the invariant density observed from an unsorted cell population q on

Funsorte
the sampling day T, by solving the maximisation of the following penalised log-

likelihood function

max {i D, log(N'D; /9)} - [N '~1+ (log N")® } (5.1)

N'e[L,6/l0g6]|| i

where 0 is the number of F, ., eq Samples {xj—‘}‘l?:1 at sampling day T ,

0
Di = xa; (X))
j=1

Step 2: Select a non-uniform partition of which the cut points are included by that
of the uniform partition A, over which the probability density functions of the
observed experimental data are estimated.

Step 3: Identify the Frobenius-Perron matrix estimate over the non-uniform
partition based on the constructed density functions, using the proposed approach in
Section 3.3.2.

Step 4: Construct the piecewise linear map S corresponding to the Frobenius-

Perron matrix representation.
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*

Step 5: Compute the invariant density de(ij) associated with the identified

transformation S, and evaluate the performance criterion

rpgp{wn) =] (1200~ f;;(.j)(x»de}. 52)

Step 6: Repeat step 2 to 5 to identify the partition and piecewise linear semi-
Markov map which minimise the performance criterion, as introduced in Section
3.4.

5.4 Simulation results

In the experiment, cells were separated by FACS into four subpopulations: SSEA3"
VE SSEA3'% SSEA3MH SSEA3H** -ve, low, MH and H++ correspond to different
sorted fractions based upon SSEAS3 expression, where -ve (negative - no expression
of SSEA3); low (lowly expressing SSEA3); MH (mid-high expression) and H++
(very high expression). The initial densities of the subpopulations of experimental
data Batch #1 are designed as shown in Figure 5.3. The probability density
functions are measured on logarithmic scale of SSEA3 FITC fluorescent intensity
for 1-10* In order to compare the differentiation of each subpopulation, and to
show the evolving shapes of the probability distribution, the probability density
functions were normalised based on the maximum density values, e.g.
f'(x) :M.
max{f}
where x denotes the logarithmic SSEA3 FITC fluorescent intensity.

(5.3)

Apart from the four fractions used for separately observing the differentiation, three
more populations were also cultured, which were UU (unstained for SSEA3
and unsorted); SU (stained for SSEA3 and unsorted) and US (unstained for SSEA3,
but run through the FACS machine). The observed distributions are shown in

Figure 5.4.

To sum up, the available probability density functions of Batch #1 experimentally
observed are given in Table 5.2.
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Batchl -ve DayO0 (409) Batchl H++ DayO (861)

PDF
PDF
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Log Scale Log Scale
Batchl MH Day0 (656) Batchl low Day0 (903)

0.8f

0.6

PDF
PDF

0.4f

0.2r

11 s 1 s s
100 1000 10000 100 1000 10000

Log Scale Log Scale

Figure 5.3 Initial probability distribution of the four subpopulations

Table 5.2 List of probability density functions observed from experiment.

Sorted fractions Unsorted

Date -ve low MH H++ uu SU UsS
0 fd fé f& fo
1 fll f12 flS f14 f15 f16 f17
2 fs 2 ;3 f, f; f; f,/
3 fi f2 f3 fg fo fQ fs
4 f4l f42 f43 f44 f45 f46 f47
5 fd f& fo fo fo fe '

5.4.1 Identification of Markov partition

It is assumed that the density of US on Day 5 is the invariant density of the

underlying dynamical system. It is given that
=1, (5.4)

The uniform partition A with N’ equal sized intervals can be obtained by

maximising the penalised log-likelihood function

Ly(N") = p(N") :{%“ D, Iog(N'Di/H)}— [N'—1+ (logN")%*|, (5.5)
i=1
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where @ =67983 is the number of population of US on Day 5,

(%
1<N'<6/logh=6109, D; = > 7, (x]),and

j=1
{[O,4/N’], i=1

Aj=1" . .
4i-1)/N’, i=2,...,N’",

It is obtained that the finest uniform partition contains N’ =120 intervals. The
estimated invariant density function with respect to the regular partition is shown in
Figure 5.5.

From Table 5.2, it can be seen that 32 sets of density mapping are available for map

reconstruction, which involve 7 sequences of density functions.

. . 119 , ,
The longest strictly monotone sequence is L:{Ij}jzl, I =30‘(hj+1—hj)‘. The

final Markov partition ‘R is determined by minimising

r{}jp{J(iﬁ) =[ (1200 - f;;(.j)(x)fdx}, 6

L={;},, 0<N"<31.

It is found that {I, }ﬁil correspond to partitions with N <32.
L={I;}%

={0.8076, 0.8077, 0.8473, 0.8605, 0.8737, 0.8870, 0.9267, 0.9664, 0.9665,
0.9929, 0.9930, 1.0326, 1.0458, 1.0988, 1.1650, 1.2577, 1.2709, 1.2710, 1.2974,
1.3239, 1.3901, 1.3902, 1.4562, 1.6681}.
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Figure 5.5 Invariant density function estimated on the initial uniform partition with N’ =120
intervals (x axis: logarithmic SSEA3 FITC fluorescent intensity)

Figure 5.6 shows the value of loss function (5.6). The minimum is obtained for I,

which leads to the final Markov partition % = {R; }i°, .

0.1 T T T T T T

0.08F Fa.

l"."E
0.04f ._.,.,..»/I--II 1
T-I‘-I-I--l--l\l:l-l--l'-l‘

i
Figure 5.6 The value of the cost function corresponding to {rj}%il.

Figure 5.7 shows the invariant density function with respect to the identified
Markov partition.
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Figure 5.7 Invariant density function over the identified Markov partition % — (R, }Ilgl (x axis:
logarithmic SSEA3 FITC fluorescent intensity)

5.4.2 ldentification of the chaotic map

Based on the identified Markov partition, the observed density functions are given

by

. 18
fi' (x) = zwtl,jZRj (x) (5.7)
j=1
where R; e®R, wti‘j ZZR (th) 6 denotes the number of cell
}L(R )6 &

population associated with fraction i on day t, for i=1,...4, t=0,...,5, and for

=5,...7,t=1...5.

The Frobenius-Perron matrix associated with the piecewise linear semi-Markov
transformation is obtained as a solution to the following constrained optimisation

problem.

min W, ~WM [|g.,

{mi,j}:il,8j=120

(5.8)

where
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18
> mi jA(R;)=A(R;), fori=1,..18.
i

The Frobenius-Perron matrix is obtained as follows

M =

[0 072 141 066 055
0 0 0 0 043
014 O 0 0 0
0 022 020 047 022
0 0 0 0 0
0 0 0 0 0
0.05 0.08 0.09 0.14 0.23
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0.02
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 003 O 0
0 0 003 0.07 0.10

| 0 014 009 018 031

0.31

0.03
0.10
0.40
0.11

0.09
0.08

o> © O o ©o o

O O O o o

0.19
0.17
0.07
0.18
0.23

L © o o o o

O © O o © © ©

0.18
0.32
0.04
0.21

o © o o

O O O O O o o

0.20
0.63

0.29
0.01

o O o o

O O O O o o o

0.11
0.88

0.03
0.33

o O o o

=

o o
O o ©O O 0O o0 o o o o

w

o

0.29
0.15

0.09

(5.11)
0o 0 0 0 0]
0o 0 0 0 ©
0o 0 0 0 ©
0o 0 0 0 ©
0 0 0 0 ©
0 0 0 0 ©
0 0 0 0 ©
0 0 0 0 0
0.02 0.02 002 003 0
0.67 0.62 047 0.34 0.08|
0 0 0 0 0
0 0 0 0 o001
007 0 013 017 O
039 048 0 0 O
008 0 027 029 O
0 003 014 0 0.06
0 0 0 0 003
0 0 0 0 0|

By assuming the map is continous nonlinear, the monotonocity of each segment is

determined from Section 4.2.3. Figure 5.8 shows the constructed piecewise linear

semi-Markov map. Figure 5.9 shows the smooth map obtained by fitting a cubic

spline (smoothing parameter: 0.999). The model describes the transitions of SSEA3

cell-surface marker expression over one day intervals, and can be used to predict

the long term evolution of SSEA3-sorted cell fractions.

Predictions of SSEA3 probability density functions from day 2 to 5 based on the

density funcitons on day 1 of Batch #1 are demonstrated in Figure 5.10.
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Figure 5.8 Constructed piecewise linear semi-Markov map characterising the dynamics of cell

population.
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Figure 5.9 Identified smooth map from the reconstructed piecewise linear semi-Markov
transformation.
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To quantitatively demonstrate the prediction performance using the training data
Batch #1, the Bhattacharyya distances (Aherne, Thacker et al. 1998) between the

predicted and true densities, calculated by
Dg = —In( j(f«/ £ ) f (x)dx), (5.12)

where f(x) is the true density function, and f(x) is the predicted result, were

given in Table 5.3. Bhattacharyya distance is a measure of divergence between two

probability distributions. Lower Dg implies higher similarity of the compared

density functions, particularly, Dg =0 when f(x) = f(x).

Table 5.3 The Bhattacharyya distances between the true density functions of training data Batch #1
and the predicted results by the reconstructed model.

Day 2 Day 3 Day 4 Day 5 Mean
-ve 0.0207 0.0157 0.0176 0.0138 0.0169
Low 0.0464 0.0339 0.0210 0.0237 0.0312
MH 0.0419 0.0264 0.0404 0.0180 0.0317
H++ 0.0687 0.0563 0.0801 0.0302 0.0588
uu 0.0141 0.0185 0.0319 0.0145 0.0197
SuU 0.0242 0.0168 0.0250 0.0166 0.0206
us 0.0141 0.0168 0.0183 0.0215 0.0176

Another group of experimental data Batch #2 was used to test the identified model.
Figure 5.11 shows the prediction results for day 2 to 5 based on the distribution on
day 1.

Table 5.4 gives the calculated Bhattacharyya distances between the estimated

densities and true densities of Batch #2.
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The identified model reveals how different cell fractions evolve towards and
reconstitute the invariant parent density as well as the presence of unstable
equilibrium points, some of which become stable attractors in response to changes

in culture conditions.

Table 5.4 The Bhattacharyya distances between the true density functions of test data Batch #2 and
the predicted results by the reconstructed model.

Day 2 Day 3 Day 4 Day 5 Mean
-ve 0.0268 0.0208 0.0533 0.0132 0.0285
Low 0.0155 0.0161 0.0210 0.0271 0.0225
MH 0.0265 0.0257 0.0293 0.0378 0.0298
H++ 0.0579 0.0673 0.0771 0.1126 0.0787
uu 0.0720 0.0917 0.0474 0.0600 0.0678
SuU 0.0324 0.0271 0.0203 0.0240 0.0260
us 0.0206 0.0537 0.0360 0.0478 0.0395

Figure 5.12 depicts the bifurcation diagram of a one-parameter family associated

with the identified chaotic map.

S, =aS(x), (5.13)

where the varying parameter « €[0,1], S(X) is the constructed dynamical map for
the cell population. It is found that S, has one equilibrium point when

0<a <0.425. As a increases from 0.425, the attractor becomes period chaotic.

For the first time, the identified model allows for deriving analytically several
equilibrium points of the system that are believed to correspond to functionally

relevant substates. Using cell mapping method (Hsu 1987) where | was divided
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into 9x10% equal cell, the equilibrium points of the model and the domain of

attraction were calculated.

Figure 5.12 Bifurcation diagram of a one-parameter family associated with the reconstructed map.

04

2

Figure 5.13 Predicted state transitions (changes in fluorescent intensity) that give rise to the
observed evolution of the distribution SSEA3 expression following re-plating. Coloured stars
indicate predicted equilibrium points.
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Figure 5.13 shows the predicted equilibrium points and the individual state
transitions. The coloured stars represent the predicted equilibrium points. The
identified states transfer from the domain of attraction to the corresponding unique
equilibrium point. This reveals the changes in the fluorescent intensity that leads to

the observed dynamical evolution of each fracation.
5.5 Conclusions

In this chapter, using the proposed approaches to solving the generalised inverse
Frobenius-Perron problem, the dynamical model of the hESC populations has been
developed based on the sequences of flow cytometric distributions of cell surface
markers. The model describes the one-day period transitions of cells expressed by
SSEAZ cell surface marker, and can be used to predict how different cell fractions
regenerate the equilibrium SSEA3 distribution after isolation and re-culturing. The
equilibrium points of the underlying chaotic system were derived to help
understanding the corresponding functionally relevant substates. The model reveals
unstable equilibrium points become stable attractors by changing cell culture
conditions. The identified equilibrium points are now being validated
experimentally by using FACS to isolate narrow cell fractions for each of the
predicted equilibrium points, plating, monitoring and re-analysing cells in culture

over a number of days.
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Chapter 6

Modelling of One-Dimensional
Dynamical Systems Subjected to
Additive Perturbations with Sequences

of Probability Density Functions

6.1 Introduction

The preceding chapters study methodologies of reconstructing one-dimensional
chaotic maps directly from sequences of probability density functions. In practice,
physical systems are always subjected to additional perturbation (input or random
noise). This chapter considers more rigorously the problem of inferring a one-
dimensional chaotic transformation perturbed by an additive perturbation from
temporal sequences of probability density functions that are measured from the
perturbation-corrupted data. To distinguish from the previous IFPP, this problem is
referred to as inverse Foias problem. Specifically, two cases of perturbations are

analysed respectively:

a) A chaotic map S: 1 — I subjected to an additive input bounded in I. The input
density function can be arbitrarily assigned on 1.
b) A chaotic map S:1 — I subjected to an additive random noise spanning

[-¢, €], € <b/2. The probability density function of noise is assumed to be

known.
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It is aimed to reveal the effects of two separate forms of perturbations that are
usually encountered in practice. Case a) concerns a dynamical system involving an
input variable on I, of which the nature of dynamics can be manipulated by
choosing the input density function. Case b) treats the more realist noisy system
compared with the noise-free system considered in the previous chapters, but for
which the probability density function of the stochastic noise cannot be adjusted in
general. Although many approaches have been presented for solving the IFPP,

really few solutions to the inverse Foias problem has been proposed by far.

This chapter is organised as follows: Section 6.2 introduces the method for
identifying the model of a one-dimensional dynamical system subjected to an
additive input. Section 6.3 presents algorithms of modelling for a one-dimensional
dynamical systems subjected to an additive random noise. Numerical simulation
examples for the two cases are given to demonstrate effectiveness of the developed

algorithms.

6.2 Modelling of a one-dimensional dynamical

systems subjected to an additive input

This section will study the problem of reconstructing a one-dimensional
transformation with an additive input, for which the probability density function is
assumed to be known, given sequences of probability density functions generated

by the unknown system.
6.2.1 Formulation of the evolution of probability densities

In this section, the following one-dimensional, discrete-time and bounded chaotic

dynamical system with an additive input is considered.

Xpp1 =S(Xp)+U, (mod b), n=0,12,..., (6.1)

where S:I —1 , 1=[0,b] , is a measurable nonlinear and non-singular

transformation; x, is a random variable bounded in I, having probability density
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function f,e®(1,8B, ), {u,} is i.i.d. input variable bounded in I having the

probability density function f, € ®.

Since x,,,, is the sum of S(x,) and input u,,, the density function of x foin IS

n+l' 'n+l

related with f, and f,. In the first place the aim is to find out the relationship
between f.,; and f,, f, that reveals mathematically the propagation of densities

functions from one sampling time n to the next time n+1.

The system bounded on | can be rewritten in the following alternative form

S(Xp)+Up, 0<S(x,)+u, <b;
N+l = : (6.2)
S(Xp)+uy—b, b<S(x,)+u, <2b,
or in a more compact way
Xn+1:S(Xn)+un_b'Z(b,Zb][S(Xn)"'un]’ (6.3)

By assuming that z(x,) is a measurable bounded function in terms of x,, the

mathematical expectation of 7(X,.1) can be expressed as

E(r(%n.0)) = [ 700 fraa(X) dx, (6.4)

E((Xy,1)) can also be given in an alternative way in terms of f, and f,.

E(z(Xn41)) = ELe[S (Xn) + U — bz, 207(S (Xn) + )1}
—H{ S(x)+u] —f SO0 ) +7[S(X) +y—b]-= fn(x)fu(u)}dxdu
= [, 71300+ u=bzgp, 207 (S (0 + )] £,(0) £, (u) heclu

(6.5)
Let W' =S(X)+U— x(p, 201(S(X)+U), and v'=Xx. It can be further obtained from

(6.4) that
E(r(xnin))= [, [, 70) £ (V) fu W = S(v) +b7 (S(v) - W) dv'dw . (6.6)
From (6.4) and (6.6), by changing the variables, it can be seen that
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fra(0) = || f0(2) fu(x=S(2) +bz (S(2)- X)) dz, (6.7)

This directly reflects the relationship connecting f,,; with f, and f,, and

formulates the transformation from the density of the states at sample time n into a

new density at sample time n+1.

Assumptions are made as follows: 1) probability density functions {foj}*le and

6,K

{flj}'le can be estimated from the initial and final states {xg,i}f'szl and {le,i}i, i=1

which are observed in practical experiment but lose correspondence; 2) input

density function f, is known.

6.2.2 The Foias operator

Let Qf, = f,,1 in (6.7), where Q : ® — D is referred to as the Foias operator
corresponding to the perturbed dynamical system, which transforms one probability
density function into another under the action of S and f,. Thus, (6.7) can be

written as

Qfh(x) = J'I fn(2) fy (x=S(2) +by, (S(2) - X)) dz, (6.8)

It is supposed that for a specified value of u,, there exist N; intervals {|i(N1)}iN:11 on
which S(x,)+U, €1, and N, intervals {1232 on which S(x,)+u, ¢ 1, the
corresponding partition of | is given by O0=ay <g <...<aypn, =b, then the

right side of (6.8) can be decomposed as follows

N
Qo (0= 2., () fa (X~ S(D)z, ) (@) 2
i=1 '

N
+ZZ‘,L fn(2) fu(X—S(Z)+b)Z|EN2) (2) dz. (6.9)
j=1

By replacing S(z) by vy, then z=S71(y). It follows that
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N
QI (=2, o) Fu (=) 7,000 (S () (S H(Y)
i=1 !

\ (6.10)
+ ZZI, fr (STH(Y)) iy (x— y+b);(|EN2) (S7H(y) d(sH(y)).

=
Then,

N, g1
Qh(9=X [ fux-y S“((S_l((y)’))

RAE
+ZI fu -y +b) 2 ((S_l sgpoymay O

This can be further converted to
Qf,(x)

fo (S (y))
_II U( y)2|:s (S_]_( )) ZS(Ii(p))(y):I dy

i)
+.[ fu(x=y=+ )ZL ST /?«/SUENZ))(y):ldy

& f,(S7(y))
:L fu(x—y+by, W-@){;{W Zsq oy (Y)

Nal f.(STH
+zl: '( J (y))ZS(IgNZ))(y)]}dy

Tl S'(STHyY))

(6.12)

It can be found that the right side can be related to the Frobenius-Perron operator

corresponding to S because of the following equality

fo(Sit fa(S57(¥))
e Zl{m Fyapy )| 69

Therefore, it can be further obtained that

Qfa(x) = [ fulx=y+bzy (y=x)-Ps f(y) dy . (6.14)

This equation reveals that the Foias operator Q associated with the dynamical
system with an additive input is able to be connected with the Frobenius-Perron

operator corresponding to the noise-free map S.
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It is assumed that S is a piecewise linear semi-Markov transformation on a N-

interval partition of I, ®={Ry, Ry, ..., Ry}, for which int(R;)"int(R;)=< if
i # j. The restriction S|R. is @ homeomorphism from R; to a union of intervals of

R
p(i) p(i) (i
URrin = UJs@"), (6.15)
k=1 k=1

where R ¢y =SQM en, QP =[a{";,q®1, i=1...,N ,k=1...,p(@) and p(i)

denotes the number of disjoint subintervals Q,Ei) corresponding to R;.

N N
Let fn(x):Zwi;(,i(x) and Psfn(X)ZZUiﬂtli(X) . The Frobenius-Perron
i=1 i=1

equation can be written as

N (N
Py () = z(z (wim; ,-)Jz.,. (x). (6.16)

j=1\i=1
where M = (m; j)i< j<n - It can be simplified as follows
N
vj =D wim; j, (6.17)
i=1
for j=1,...,N.

By integrating both sides of (6.17) over the interval Ry € R'T1{R{, R, ..., Rp} that

is a regular partition of I into P equal sized intervals, it can be obtained that

Jo Qfa00 dx=[ [ fu(x=y+bz (y=x))-Psfa(y) dydx.  (6.18)

Using rectangle method to approximate the integral, Q f, (x) is given by

p
Qfa(¥) =2 Vi, (%), (6.19)
k=1

As a result, the coefficients of Q f, can be given by
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_ 1
A(Ry)

Vi Jg Jy fuGx=y b1 (y=x))-Ps fo (y) dydx, (6.20)

where 4(Rry) denotes Lebesgue measure on r; . Then, it can be written as follows

1 N

B :A(R{()J.Rf( jZ:ll[Lj fu (x=y+by, (y-x)) dy~uJ}dx
> 6.21
:FEDR{(LJ fu(X—y+b;(|(y—x))dydx.uj} (6.21)

It is defined a matrix D = (0} j)ick<p.1<j<n Where

p
dy :EIRQ J.Rj fu(x—y+by, (y—x)) dydx, (6.22)

as a consequence, (6.8) can be converted into the following equation of matrix form

Vi dig dp - dyy o diy [0
Vo | [dar dyp - dyj o doy | | 0y

_ . . . . : . . : | 6.23
Ve | |Gk A2 o oo Ay || o (6:23)
| Vp | _dPl dpy - de dPN_ | ON |

from which it can be found that an estimated matrix representation of the Foias
operator can be obtained based on the Frobenius-Perron matrix associated with the

transformation S.

By submitting (6.17) into (6.23), it can be obtained that
vi=wh.m.DT, (6.24)
where WfO :[Wl""’WN]! Vf:L :[Vl,...,Vp].

The Foias operator can be represented by an estimated matrix H as follows

H=M-DT, (6.25)
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6.2.3 Identification of the Frobenius-Perron matrix

Provided the evolving probability density function at each sampling time T can be
measured, two scenarios of identifying the Frobenius-Perron matrix are provided
here.

1. F-P matrix identification based on a set of initial probability density

functions fol,..., foN and their images fll,..., le under the transformation

Given a partition R with N intervals, the Frobenius-Perron matrix associated with

S can be identified given at least N distinct initial density functions {foi}iN:1 and
their images {fli}iNzl. Using the same way of constructing the initial conditions

described in Chapter 3, piecewise constant densities foi are constructed in the

following way

_ N
fo()=2 Wz, () i=12....N, (6.26)
-1
where W, | =12(;)=b/N for j=i: and Wi j=0 for j=i. N sets of initial

conditions are generated by sampling each initial density function foi

Xo={%)j}f-1, i=1..N, (6.27)
and & random input values are generated by sampling the input density function

U ={us, (6.28)
which will be used in the experiments. The corresponding set of final states

observed at T=1 are measured as follows

X{={x ¥a i=L1..N, (6.29)

where X{,j =S(x(i,|k)+uk mod b, for some xé,,k € X(i), U €U . The density

function fl' associated with the set Xl' of final states is estimated on the P-interval

uniform partition given by
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. p
FOO=2vijn () i=1. N, (6.30)
=1

- p g :
where the coefficients v; ; =—>" 4, (x],)-
In order to recover the Frobenius-Perron matrix, it can be seen from (6.23) and

(6.24) that the first step is to determine Pg foi (x) which correspond to fOi(x), for

_ P fl f]
1<i<N.Leto % =[Wq,...,Wn], V! =[Vi1,....Vip]. It follows that

T
V=YD, (6.31)
where
o
v Vig V12 o Vgp
f,2 \Vi \Vi R
v 21 V2.2 2,p
v=" = Tt T, (6.32)
.N
vh VN1 VNP
and
-
ofs i Vg Y2 o UIN
OB | o1 0y Loy
Y = S R L (6.33)
' N
ot UNi UN2 " UNN

The matrix Y is obtained as a solution to a constrained optimisation problem

min -Y.-D'| .
{Ui,j}i,\,lj_lzor\/ HF (634)
subject to
N
Y0 AR =1 fori=1.. . N. (6.35)

j=
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Let ng =[w;4,---Cw; ] be the vectors describing foi. From (6.17), the Frobenius-

Perron matrix can be obtained by

Mg =W Y (6.36)
where
wio ] [wy 0 0
foz 0 W 0
T B P (6.37)
wo 0 WN,N

For a continuous nonlinear map S, after obtaining a tentative estimated Frobenius-
Perron matrix, the same step as introduced in Section 4.2.2 for refining the
estimation by specifying the contiguous non-zero entries in each row is needed to
be taken here. Since non-zero entries in Y and M have identical indices, the
optimisation is re-performed with the following constraints

p()
D Viriky =N (6.38)
k=L

for i=1...,N , and O<y;; <N if j=r(ik),k=1..,p(@), and ;=0 if

%1,k k=1, p(i).

The final estimated Frobenius-Perron matrix is then obtained by (6.36) with the

new resulting Y.

2. F-P matrix identification based on sequences of evolving probability

density functions fg,..., f;

Let fy(x) be an initial density function that is piecewise constant on the partition

m:{Rl,...,RN}.

N
fo(X) =D Wo ixr, (%), (6.39)
i=1
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N
where the coefficients satisfy > w;;A(R;) =1. The initial density corresponds to
i=1

the set of initial states X, ={xg j}?zl. The following sets of states X, ={x, j}?zl at

each sampling time t can be observed by applying t times the transformation with

the input samples generated in (6.28), such that x, ; =S(x_3x)+u, (modb) for
some initial point Xo, € Xy, U eU . j=1...,0, k=1...,0, t=1...,T . In

practice, the correspondences between two continuous states may be not available,

I8 % #S(x_1j)+u, (Modb).

The density function on R’ associated with the states X; is given by

P
fr () =2 Wiz (%) (6.40)
i1

. 1
where the coefficients Wi = ————

0 o) 2]
(Xt i) =— (Xt i),
Let w' =[w4,..,w y] be the vector defining fi(x) t=0,..,T where T>N .

Thus, the sequence of densities estimated on R and their images measured on R’

can be represented by

w'o [ Wo1 Woo " Won ]
wo| W M e T e gy
wrot | [Wronn Wrogp 0 Welgn |
and ) )
_W'fl_ _Wi,l Wi, WiP_
W = W,.fz = W;z’l W%’Z W%‘P , (6.42)
| [ v W]
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The first step of estimating P fd(x) which are related with Q fd(x) can be

resolved by the following constrained optimisation

min M —Y-DTH ,
o<y, 3 <N . F (6.43)
subject to
N
Y v ARy =1 fori=1,...,N, (6.44)
j=1
where
pFsfo Vo1 Vo2 - UoN
Ps f 13
I e (6.45)

P f
03T |Urag Urap o Uran

After obtaining Ps fd (x) , the Frobenius-Perron matrix corresponding to S is

obtained as a solution to a constrained optimisation problem

min  [|[Y =WyM ||,
{mi j }INJ 420 (646)

subject to

N
Zlmi’jg(Rj)z/l(Ri), fori=1...,N. (6.47)
j=

For continuous nonlinear map, by identifying the indices of the non-zero entries
from the obtained M, the final Frobenius-Perron matrix can be recovered with the

re-implemented optimisation as described in Section 4.2.2.
6.2.4 Reconstruction of the underlying transformation

Based on the derived Frobenius-Perron matrix, an approximate piecewise linear
semi-Markov transformation can be constructed over R as introduced in Section
4.2.3 and finally the smoothed map can be obtained for continuous transformation

which was shown in Section 4.2.4.
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6.2.5 Numerical example

To demonstrate the applicability of the proposed algorithms, let us consider a

numerical simulation example. The aim is to recover the logistic map on [0, 1]

(4.17), shown in Figure 4.2. The probability density function of the input variable

u, is given by

15136, 0<u<0.25
. 0.4880, 0.25<u < 0.50:
U 10.2776, 0.50 <u <0.75:

1.7208, 0.75<u <],

(6.48)

shown in Figure 6.1.

The number of intervals of a regular partition of | for the initial conditions is set to

N =40. Then 40 constant density functions fg (x),1=1,2,...,40, compactly

1.8

161

1.4

1.2F

H

/)

08}

0.6_ ...... e e e e e e e .-

04r

0.2

U

Figure 6.1 Probability density function of the input f, .

supported on each interval 1; were constructed. To obtain the new densities fli (x),

5x10° initial states and a same number of inputs were randomly generated by

sampling f{(x) and the input density f,. The number of intervals of the regular
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partition for fli(x) is set to R=40. The approximate piecewise linear semi-Markov

map constructed based on the estimated Frobenius-Perron matrix is depicted in
Figure 6.2. The smoothed map, obtained by fitting a cubic spline (smoothing
parameter: 0.999), is shown in Figure 6.3.

To show the identification performance of the algorithms, the relative error between
the identified and original maps is calculated for x e X ={0.01,0.02, ..., 0.99}. As

shown in Figure 6.4, the relative error is less than 5%.

To evaluate the prediction performance of the identified model, two sets of initial

conditions were generated by randomly sampling a uniform distribution 2/(0, 1)
and a Gaussian distribution N(0.5, 0.12). The new input density was set to a
Gaussian density A(0.28, 0.0352), shown in Figure 6.5, and sampled to generate

the inputs values. The n-steps-ahead model predictions where n=1, 2, 3,5, 50, 200,

were used to estimate the predicted density functions which were compared with

the density functions generated by the original model.

‘ N

0.8 .
0.7F 4

08 1

nt+l
o
4]

T

L

04 8

0.3 ]

0.2 i

X
n

Figure 6.2 Constructed piecewise linear semi-Markov transformation for the underlying system.
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Figure 6.3 Identified smooth map.

The predicted densities for 1, 2, 3, 5, 50, and 200 iterations are shown in Figure 6.6

(uniform initial density) and Figure 6.7 (Gaussian initial density).

25 T T T T T T T

20

S (%)

Figure 6.4 Relative error between the original map and the identified map evaluated for 99
uniformly spaced points.
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12- 1

u

S ()

0 0.28 1
U

Figure 6.5 The input Gaussian density function used for model validation (= 0.28, o = 0.035).

The root mean square error (RMSE) between the predicted densities and true

densities calculated by

RMSE = |=>" (v; —V;)%, (6.49)

is shown in Table 6.1, from which it can be clearly seen that the reconstructed map
has high precision for predicting the evolving probability densities of the
considered system.

Table 6.1 Root mean square error of the multiple steps predictions of densities with the identified
model.

Initial density 1 Step 2 Steps 3 Steps 5Steps 50 Steps 200 Steps

U(@0,1) 0.0891 0.1037 0.1448 0.1038 0.1173 0.1134

N(0.5, 0.12) 0.1951 0.1839 0.1547 0.1341 0.1431 0.1283
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Figure 6.6 Predicted densities (blue lines) and true densities (red lines) of 1, 2, 3, 5, 50, and 200
steps from the initial uniform density 2/(0, 1) .
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Figure 6.7 Predicted densities (blue lines) and true densities (red lines) of 1, 2, 3, 5, 50, and 200
steps from the initial Gaussian density A/(0.5, 0.12).
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6.3 Modelling of a one-dimensional dynamical

system subjected to an additive stochastic noise

In Chapter 3 and Chapter 4, noise-free dynamical systems were studied. However,
in all practical physical situations, systems under consideration are inevitably
subjected to stochastic perturbations from external noise. Assuming the noise
density function is known, this section rigorously examines reconstructing the one-
dimensional chaotic map perturbed by an additive random noise, given observed

sequences of probability density functions.
6.3.1 Formulation of the evolution of probability densities

The following one-dimensional non-singular discrete-time dynamical system
subjected to an additive small random noise is considered.
Xne1 = S(X,)+@, (mod b), n=0,12,..., (6.50)

where the transformation S:1 — I, I =[0, b], x, is a random variable bounded in
I, having probability density function f, e ®(1,8, u), {®,} is i.i.d. noise bounded
in [-¢&, €] having the probability density function ge® and satisfying the

following conditions:

1) 0<e<b/2;

2) g(x)=0 for |x]>¢&;

3) j_g o, (X)dx =1.

In order to understand the evolution of probability densities, same with the previous

section, it is essential to derive the mathematical relationship between the density

function f,; and f,,g.

For an arbitrary Borel set B — | , the probability of x,,, falling into B can be given

by
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Prob{x,,,; € B} = j j f(X)g(w)dxdw (651)

S(X)+@w modb

Let y=S(x)+® modb, it can be seen that the noisy system can be represented by

y= S(X) +w-— bZ(b,lIH-S] (S (X) + 0)) + bZ(—S,O) (S(X) + 0)) . (652)

It follows that

@=Y=S(X)+bxp b1 (Y =S(X) =bxpp_sp1 (Y = S(X)) . (6.53)

Then, (6.51) can be rewritten as

Prob{x,.1 € B}

=[5 ], Fr009(Y = S(X) +bz_p sy (¥ = S(X)) ~bzp_s5 (¥ — S (x)))dyelx. (6.54)

By changing the variables, it can be obtained that

fra(X) = L fn(2)9(x=S(2) +bx (b ) (X—S(2)) =bpp— ) (X — S(2))) dz .(6.55)

This formula indicates the mathematical relationship between f, and f,; under

the effect of the additive noise.
6.3.2 The Foias operator

Using the Foias operator defined in Section 6.2.2, the formula (6.55) can be

expressed as

Qf, ()= _[, fn(2)9(x = S(2) + by (b ) (X = S(2)) =bpp—s ) (X — S(2))) dz ,(6.56)
In order to expand the equation, it is supposed that for one single noise value «,,
there exist N, intervals {1NY}Nt on which S(x,)+a, € (b,b+¢], N, intervals
N3Nz on which S(x,)+a, €[¢,0), and Nj intervals {1{"*)}3 on which
S(X,)+u,€[0,b] . These lead to a partition of | given by
0=ay <& <...<anN,+N; =D, thus the right side of (6.56) can be transformed in

the following way
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Ny
Qfa(x) =], fn(2)g(x=S(2) +b) 7,y (2) o2
i=1 :

N
+ EL f,(2)g(x-S(2) —b);(li(Nz) (2) dz

N3
2, @9t 8@ 700 2) ¢ (6.57)

Let y=S(z), then (6.57) can be written as

-1
Q0= z I 0025 o, D

f,(S7H(Y))
ZL S5y 2 sy Y,

fa (S (y)) (6.58)
ZL S5 () g(X—y)}(S(,i(Ns))(y) dy.

It follows that

Qf(0=[ glx-y+ )Z{;((Ss_l((y)))))(s(li(w)(y)}dy

1
tf ox-y- )2[;((5 ((y))));(s(limp)(y)}dy

2(S7HY)
+]9(x V)ZL Sy zs(,img))(y)} dy

- L g(X =y +bx (b, cp)(X=Y) =z 0) (X=Y))
Ul 5y
@L'(Slw» Fsaf W]t

f (7))
| s(s i) o

(S (Y)) ]
W){S(,i(Ns))(Y) }dY-

Let N=N;+Ny+Ny, I={MN oMz oMy -1,

=2
N

Il
|_\

(N 2>)(Y) +
| (6.59)

'ME

I
LN

After merging the accumulations on the right side, it is obtained that
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QF ()= [, 90—y +bz( b, o 7(X=Y) =b2p 5y (X~ Y))

e RACE) ]d -
E[S'(S*(y»““”(y) Y (6.60)

By submitting the Frobenius-Perron operator Pgassociated with the transformation

S into right side of (6.60), finally it is obtained that

Qf(x)= L 9(X=Y+bx(p, s—b](X=Y) =D xpp_s, by (X=¥))Ps f, (y)dy. (6.61)

This formula establishes the mathematical relationship between the Foias operator
corresponding to the noisy dynamical system and the Frobenius-Perron operator

corresponding to the noise-free chaotic map.

The same assumption in Section 6.2 is made here that S is a piecewise linear semi-

Markov transformation on the partition of I, R ={R;, R,, ..., Ry}. Using the same
way of estimating Q f,, on a regular partition R'CI{R{, R5,..., Rp}, Psf, and f,
both on %, the resulting matrix is given by D = (dy j)1<k<p;1<j<n \Where
P
dy,j = EJ. |’< IR_ (X =Y +bx(p, s-0](X—Y) —bx[p_s, ) (X —Y)) dydX. (6.62)
J
Consequently, the following equation can be obtained
vizwh.m.DT, (6.63)

N
where  w' =[wy,...,wy] . Vi=[v,...vp] | fr ()= Wiz (0
i-1
P
an(X):ZVk}(|k(X).
k=1

The Foias operator is represented by the estimated matrix H as follows

H=M-D'. (6.64)
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6.3.3 Model identification

Based on the derived equality (6.63), the two experimentally designed scenarios
described in Section 6.2.3 can be utilised to identify the Frobenius-Perron matrix M.

A set of noise values

2 ={m}, (6.65)
is generated by sampling the given noise density function g. Finally, the map can be
constructed in the same way as presented in Section 6.2.4.

6.3.4 Numerical examples

The following two numerical simulation examples are used to demonstrate the

applicability of the derived algorithms,
1. Example A:

The piecewise linear chaotic transformation (3.39) which is subjected to an additive
stochastic noise

Xns1 =S(Xp) +@n,  (mod 1), (6.66)
is considered here. {w,} is white Gaussian noise of which &=1/50. Given the
partition of the underlying transformation % = {R;,R,,R3,R,} Where R =[0,0.3],
R, =(0.3,0.4], R;=(0.4,0.8] and R, =(0.8,1], a set of initial densities foi,
i=1,...,4 shown in Figure 6.8 is used to generate the set of initial conditions xé,
i=1...,4, and the final density functions fli, i=1...,4 shown in Figure 6.8 are

estimated from the corresponding final states Xli, i=1...,4 for T =1 over the

uniform partition R’ containing P equal intervals. P is set to be equal to N.
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Figure 6.8 The initial and final density functions f, (x) and (x),

The obtained matrix D is given as follows

0.9921 0 0

D- 0.2000 0.4000 0.4000
0 0 1

0.0079 0 0.2000

Psfd, i=1...,4 on % are obtained and figured

Frobenius-Perron matrix is

0.4034
0.0665
~10.1317
0.1340

The corresponding reconstructed map S is shown in

0.5988
0.3033
0.8164
0.4056

0.0641
0.0477
0.3018
0.1962

0.0080
0
0
0.7920

and g (x)

(6.67)

in Figure 6.8. The estimated

0.4674
0.1533

0.7907 |

0.2039

(6.68)
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Figure 6.9 The identified transformation S of the underlying system.

The estimated coefficients of the identified piecewise linear semi-Markov

transformation S o (x) = a; jx+ B j are
i

(248 167
15.04 3.30
759 1.2
746 247

(&, )<i j<a =

0 0.10

(,Bi,j)lsi,js4 =

-451 -0.76
-3.04 -0.24 -133 -0.01]
-5.97 -1.77

1561 2.14
20.97 6.53
331 126
510 4.91

—-242 0.36
-6.95 -1.61

-4.09 -3.91

The relative error for x e X ={0.01,0.02,...,0.99} is plotted in Figure 6.10. It can
be seen that &S < 5% on each point x.
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Figure 6.10 Relative error between the original map S and the identified map S evaluated for 99
uniformly spaced points.

In order to more fully demonstrate the effectiveness of the developed
methodologies for reconstructing the maps of noisy dynamical systems, Table 6.2
shows the MAPE of identified maps for noise of varying magnitudes, compared
with the MAPE using the algorithms for noise-free systems, given the partition of
the underlying transformation.

Table 6.2 Comparison of MAPE (%) of identified maps for additive noise of different magnitudes ¢

using A: the algorithms developed in this section and B: the algorithms for noise-free systems
presented in Chapter 3.

é 0.02 0.04 0.10 0.15 0.20 0.40 0.50
0.5020 | 0.3267 | 0.7154 | 1.6843 | 1.3168 | 3.1725 | 2.9188
B 1.1422 | 14501 | 2.9156 | 4.6891 | 6.4222 | 9.8031 | 10.9585

It can be clearly seen that while the partition % of the underlying transformation is
known, the MAPE of the identified map using the algorithms of this section is
apparently lower than 5% for the selected noise levels, and that the accuracy of
identified maps using the algorithms is strictly higher than the one by directly

applying the developed approach for solving the GIFPP for noise-free systems.
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2. Example B:

To show the effectiveness of the developed algorithms for continuous nonlinear
systems, the example of the logistic map with an additive random noise

Xy = 4X,(1-%,)+@, (mod 1), (6.69)

is considered here. The noise is assumed to be white Gaussian noise with & =1/50.

A set of noise Q :{coi}igzl, was generated by sampling from a Gaussian probability

density function N(O, (5><10‘3)2). The partition R is set to be uniform with

N =40 intervals. 100 densities (see Appendix) were randomly sampled to generate

100 sets of initial states X ={x) ;}/—1, i=1,..,100, @ =5x10°. The initial densities
were estimated from the initial states X(i) and their images Xli ={x;, j}]?:l :

i=1,...,100 obtained by applying the noise per iteration for each set X} were used to

estimate the initial density functions {fofi(i)} on R and the final density functions
{fllji(i)} on R'. It was set that R'=R, thus, P =N . Examples of initial densities
fo{i(i), and the corresponding final densities fllji(i), and PfOJ;i(i) transformed from

fo{i(i) under the undisturbed transformation S are shown in Figure 6.11.
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Figure 6.11 Examples of initial densities (red lines) f i) and the corresponding densities after one

iteration (blue lines) 1) and pf J() (black lines):

ar: £y, T, Plga; e fop, 3, Pigyiae f05, fiF, Plgy;ae 1, £ PRGY as: fo5, fF, Pfoy:
bu: T, fily, PRg g3 bz fly, BTy, PRgyibsr T3, £, PRoSiber T3, 5 PGS bs: f59, 1,5, PRs;
ci: Ta, fg, Plgai ca Tla, fily, Pigss o 03, 3, PRg3s o £05, f3 . Pfgg: o fog, T3, Pigs;
du: fg4, T4, PRgg: do: £y £, PRGy: 0 foy 14 Pfgy: dat T4 £y, PRg4: ds: 105, f15 . PGS

el ol 1. 3 3 3 ... %5 5 5 .. f7 7 7 .,.¢10 10 10
e1: f0’5, f1’5, Pf0’5 , €2 f0’5, f1,5‘ Pf0,5 , €3: f0’5. f1’5, Pf0,5 , €4l f0’5, f1’5, Pf0,5 , es! f0’5, fl,5 y Pf0,5 .

It is noticeable that PfOJ;i(i) is close to flfi(i) for the noise of the magnitude & =1/50.

The identified approximate piecewise linear semi-Markov map is shown in Figure

6.12.

ntl

Figure 6.12 Reconstructed piecewise linear semi-Markov map S over the uniform partition
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The smoothed map obtained with the smoothing parameter 0.999 is shown in
Figure 6.13, and the relative error calculated on the uniformly spaces points is
shown in Figure 6.14.
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Figure 6.13 Identified smooth map S resulted from piecewise linear semi-Markov map in Figure
6.12 with smoothing parameter 0.999.

45

40+

o

0 0.2 0.4 0.6 0.8 1
X

Figure 6.14 Relative error between the original map S and the identified smooth map S in Figure
6.13 evaluated for 99 uniformly spaced points.

Table 6.3 lists the results of MAPE of between the identified map S and the
original map S for some different noise magnitudes & =0.02, 0.04,0.10, 0.20,

0.40, 0.50.
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Table 6.3 MAPE between the identified and original maps for 7 different noise magnitudes.

< 0.02 0.04 0.10 0.15 0.20 0.40 0.50

MAPE (%) 0.9282 0.9809 45791 3.1054 2.7850 4.6319 9.7981

It can be clearly seen that satisfactory results have been obtained. Compared with
the identification results in Section 4.3.2 where the modelling algorithm for noise-
free dynamical systems was directly applied to the same noisy system, the
developed algorithm possesses clearly better performance in reconstructing the
underlying map, which is exactly the desired objective of modelling for this class of

stochastic dynamical systems.
6.4 Conclusions

The chapter introduced new methodologies of reconstructing the maps of one-
dimensional dynamical systems subjected to additive perturbations. The evolution
of probability density functions was formulated. The approximate matrix
representations of the Foias operator corresponding to the perturbed dynamical
system was derived as well as the relationship between the Foias operator and the
Frobenius-Perron matrix corresponding to the noise-free transformation. Assuming
that the partition and probability density functions of perturbation are known,
approaches for solving the inverse Foias problem for two cases of additive
perturbations (input and noise) were presented. These provides solutions to inverse
problems for practical dynamical systems, and modelling scheme used for
designing control law of practical systems. Compared with the simulation results of
applying the algorithms derived for noise-free dynamical systems to noisy
dynamical systems, the proposed techniques have better performance in

reconstructing the underlying transformations.

131



132



Chapter 7
Control of Invariant Densities for

Stochastic Dynamical Systems

7.1 Introduction

Over the past few years there has been a great deal of interest in control of
probability density function for dynamical systems. The main purpose is to regulate
the statistical long-term behaviour so that it can settle down to a desired stable
dynamical behaviour described by probability distribution. The so far developed
control algorithms can be generally classified to two groups: 1) the control of
output probability density function of a stochastic dynamical system through
selecting a deterministic optimal input; 2) the control of the invariant density
function for a chaotic dynamical system by virtue of slightly modifying the
underlying transformation. The first group focuses on how to generate a crisp
control input to make the output density function close to the desired one. Some
representative research has been presented from Wang (1999a, 1999c, 2001, 2001,
2003, 2005a, 2008) and Forbes (2002, 2003a, 2003b, 2004a, 2004, 2004b, 2006).
The second group looks into reconstructing a transformation by direct
modifications (Géra and Boyarsky (1996, 1998, 2001)) or using a small
perturbation to affect the original map to achieve a desired invariant density
function (Bollt 2000a, Bollt 2000b). In this group, there are no assumption that the

dynamical system is subjected to any perturbations.
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In contrast to existing control strategies, the objective of controller design approach
proposed in this work is to determine probability density function of the input in
order to achieve a desired invariant density function for the perturbed chaotic map.

In Section 7.2, the existence and uniqueness of the invariant densities of dynamical
systems subjected to additive perturbations (inputs and noise) are proven. The
algorithm of estimating the invariant density function over a uniform partition is
developed. Section 7.3 studies a more complex stochastic dynamical system which
involves a bounded input and a random noise term. The evolution of probability
density functions is formulated for the first time and used to prove asymptotic
stability. A new algorithm to estimation of the invariant density using the derived
approximate matrix representation of Foias operator is introduced. A numerical
example is given to show the effectiveness of the proposed algorithms. Section 7.4
presents the control design algorithm for this class of stochastic dynamical system
together with a simulated example that is used to demonstrate the applicability of
the algorithm. Conclusions are presented in Section 7.5.

7.2 Invariant densities of stochastic dynamical

systems

The existence of invariant densities of stochastic dynamical systems can be proven

by analysing the asymptotic stability of {Q" f}. The associated invariant densities

are derived using the approximate matrix representation of the Foias operator.
7.2.1 Asymptotic stability of {Q"}

To achieve the control of invariant densities of stochastic dynamical systems, the

asymptotic stability of {Q" f} of the following dynamical system with an additive

input is firstly examined.

Xna =S(X,)+u, (mod b), n=0,12,..., (7.1)
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where S:I —>1 , 1=[0,b] , is a measurable nonlinear and non-singular

transformation; u,, is the independent random input variable bounded on I having

the probability density function f, e (1,8, ). Qf, e D, Q: L1(1) - L}(1) is the

Foias operator corresponding to the stochastic dynamical systems.

The asymptotic stability of {Q" f} is defined as follows (Lasota & Mackey 1994).

Definition 7.1 Let Q: L — L be a Markov operator. Then {Q"} is said to be

asymptotically stable if there exists a unique f* e® suchthat Qf* = f* and

li "f_f*=0,
n'_To‘Q (7.2)
forevery f €®.
It has been obtained that
QFn(0) = [ fa(2) fy (x=S(2) +by (S(2) - X))dz (7.3)

The integration over | is

jl an(x)dx:jl jl f,(x=S(2)+by, (S(2)- X)) f,(z)dzdx

(7.4)
:J'I fn(z)_[I f,(x=S(z) +by, (S(z) - x)) dzdx

Since _[I _[I f,(x,z)dxdz =1,

| Qfa(0dx= | fa(2)dz, (7.5)
and Qf,(x)>0. Q is therefore a Markov operator.

The following theorem is proven in (Lasota & Mackey 1994).

Theorem 7.1 Let K: 1 x1 — | be a stochastic kernel and P be the corresponding

Markov operator. Assume that there is nonnegative ¢ <1 such that for every

bounded B c | thereisa ¢ = ¢(B) >0 for which
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jE K(x, y)dx < ¢, (7.6)

for w(E)<e, yeB, EcB. Assume further there exists a Liapunov function

V : 1 — | such that

LV(X)Pf(x)dXSa'[;OV(x)f(x)dx+ﬂ, (7.7)

O0<a <1, #20, holds. Then P is constrictive. Consequently, for every f €® the

sequence {P"} is asymptotically periodic.

The theorem of asymptotic stability for a constrictive Markov operator is provided
in (Lasota & Mackey 1994).

Theorem 7.2 Let P be a constrictive Markov operator. Assume there isaset Ac |

of non-zero measure, u(A) >0, with the property that for every f € ®there is an
integer ny(f) such that P" f(x) >0 for almost all xe A and all n> ny(f). Then

{P"} is asymptotically stable.

A new theorem concerning the asymptotic periodicity of {Q"} is introduced and

proven below.

Theorem 7.3 For the Foias operator Q : L* — L* defined by (7.3). If there exists a

Liapunov function V : I — | such that

L fu(x=S(2)+by, (S(2) - x)V(x)dx < aV (2) + 3, (7.8)

0<a<1,p20, for all zel, then the Foias operator is constrictive, and for

every f e®, {Q"} is asymptotically stable.

Proof. Since f, is integrable, for every ¢ >0 thereisa ¢ >0 such that

jA f,(x)dx< ¢, for u(A)<g. (7.9)

Then from,
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jE K (x, y)dx =jE f,(x—S(z) + by, (S(z) - x))dx

_ 7.1
E-S(2)+by, (S(2)-x) fu (X)dx. (7.10)

<,

for w(E—-S(z)+by,(S(z)—x)) = (E) <. Thus (7.6) holds.
Further,

[ VOOQfa(dx = [ V([ £a(2) fy (x=S(2) + bz (S(2) - ))dzdx, (7.11)

Let K(x,y) = f,(x=S(z)+by, (S(z) —x)) that is a stochastic kernel. It is given in
(Lasota & Mackey 1994) that

_[I KX, y)V(X)dx<aV (x)+ f. (7.12)
From the assumption (7.8), it is given that
jIV(x)Q f (x)dx = LV(x)jI f.(2) f,(x—S(z) +by, (5(z) - x))dzdx
= [ ] @[ VOO 1, (x=5(2) +bz (S(2) - X))dzdx

< jl f (D)[aV (2)+ Bldz

—a[ V@), ()dz+p. (7.13)

Thus, the inequality (7.8) holds. As a consequence, Q is constrictive.

Since f, >0, Qf,(x)>0. From theorem 7.2, the asymptotic stability of {Q"} is

thus proven.

Based on the above theorem, the new result of the asymptotic stability is derived as

follows.

Theorem 7.4 Let Q:L' > L' be the Foias operator corresponding to the

stochastic dynamical system (7.1), {Q"} is asymptotically stable.

Proof. Let V(x) =|x|, then
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J| fu(x=8(2)+bz (S XV (e = |, (x=5(2) + b1 (S(2) - W)k (7.14)

By changing the variables with y =x—S(z)+by, (S(z)—x), then

L f,(x=S(2) +by, (S(z) - x))V (x)dx

= [ f ]SO0+ Y =bz(p, 26 (S()+ y)|dy

<[ fu(SOO+]y = bzgo, 260 (S + y)ely

=[SO, fu )y + [ fu(]y ~br,200(S () +¥)|dy

=[SOO|+ [ fu (]y ~b2(p.267 (SO + Y)|dy. (7.15)

Since S maps | to I, the following inequality holds
S()| < alx|+b, (7.16)
where 0<a <1. And
B = Tu(y)|y b2 (S()+ y)|dly > 0. (7.17)
Thus, (7.8) is satisfied. It is proven that {Q"} is asymptotically stable.

Since the invariant density of the stochastic dynamical system exists, the following

new theorem regarding the uniqueness of an invariant density f*of Q can be

proven in the similar way as for the theorem 10.5.2 given in (Lasota & Mackey
1994).

Theorem 7.5 Let Q:L1—>L1 be the Foias operator corresponding to the
stochastic dynamical system (7.1). If an invariant density f*for Q exists, then the

k. -
f" is unique.

Proof. Assume there exist two different invariant densities for Q, denoted by f;"

and f, . Let Af =f"—f,.Since Qf" =1, Qf, = f;,
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Qfy (x)-Qf; ()

= [,[f7 (@) = 5 @)1 (x=S(2) + by, (S(2) - X))z

= L AT (2) f,(x=S(2) +by, (S(2) — x))dz

=QAT™(x). (7.18)

Then Q is a linear operator, QAf* =Af ™. Thus,

-

‘Af*

Ly Z‘ L (7.19)

It is defined that f*(x)=max(0, f(x)) , and f~(x)=max(0,—f(x)) , thus

f(x)=f"(x)- f~(x) (Lasota & Mackey 1994).
QAT () =[ AT (2)fy(x—S(2) +byy (S(2) - X))dz. (7.20)

Since f, >0, QAf*+(x)>0 for xe I . Also, QAf* (x) >0, for x e | . Therefore,

HQA £*

‘QAf*Jr—QAf*_

1:‘
L gl

- HQA £

‘QA f*

Ll‘

+ HQA £
Ll

1

(7.21)

<loat*”

‘Af*

:‘ N
1 L

which contradicts the equality (7.19). Thus, f;" and f, should be identical. The

stochastic dynamical system preserves a unique invariant density.

Similarly, by extending the above new derived results concerning the existence and
uniqueness of invariant density of the dynamical system subjected to an additive
input to the dynamical system subjected to an additive random noise, the following

new theorem can be proven.

Theorem 7.6 Let Q:L' —> L' be the Foias operator corresponding to the
dynamical system subjective an additive random noise (6.50), {Q"} s

asymptotically stable and the invariant density f* for Q is unique.
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Proof. Assume there exist two different invariant densities for Q, denoted by f;*

and fz*. Let Af = fl* - fz*. Since Qfl* = fl*’ sz* = fz*,

Qi (x)-Qfy(x)
= L [ (2)~ T2 ()19 (X~ S(2) +07(_p,s5) (X = S(2)) =D [p-s ) (X = S(2))) dz
= L AT (2)g(x=S(2) +by(_p e-p](X=S(2)) b xp_ p) (X—S(2))) dz

oAt (0 (7.22)

Then Q is a linear operator, QAf* =Af™. Thus,

loat” (7.23)

‘Af*

Ll_‘ L

It is still defined that f*(x)=max(0, f(x)), and f~(x)=max(0,—f(x)), thus

f(x)=f"(x)— f(x) (Lasota & Mackey 1994).

QAT* ()

= [ AT ()9 (X~ S(2) + b7 (b oy (= S(2)) =By (X~ S(2)))dz. (7.24)

Since f, >0, QAf*+(x)>O for xel . Also, QAf* (x)>0, for xel . From

(7.21), it can be also obtained that

st

L<far (7.25)

L’

which contradicts the equality (7.23). Thus, f,;" and f, should be identical. Then

the chaotic system subjected to an additive random noise preserves a unique

invariant density.
7.2.2 Approximation of the invariant density functions

The invariant density functions of the stochastic dynamical systems can be

approximated by assuming the partitions R and R’ are uniform and identical. A
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new important result concerning the eigenvalue of the matrix H representing the

corresponding Foias operator Q is stated and proven as follows.

Theorem 7.7 Let the transformation S in (7.1) be a piecewise linear semi-Markov

transformation on a regular partition R ={R;, R,, ..., Ry} comprised of N equal

sized intervals, and it is set that R'=%R, P=N. Then matrix H representing the
corresponding Foias operator has 1 as the eigenvalue of maximum modulus and

also has the unique eigenvalue of modulus 1.

Proof. It has been shown in Section 6.2 that for the stochastic dynamical system the

following equality holds
Qf=f-H, (7.26)

where f :[fl, f2,.., fN] is a row vector, the matrix H=M-D" is a square

matrix,
[ my, m%lJ my |
M = m'i,1 m!,j mi:N , (7.27)
ILUNE My i MN N |
I d.11 dy,j dl.,N |
o-|as - ay | -
|dna dr;1 i dn N |
Let

H = hi,l hi,j hi,N . (729)

Thus, it can be given that
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=D (Mg -d ) (7.30)

N
k=1

The sum of the j-th row of H is given by
Zhi’j :(hi,l+"'hi,j +...+hin)

dig dj

= [mi,l My mi,N] dl,j +...+[mi’1 Mo mi,N] dJ:J

[din | djn |
le_
teet[Mig oo My My ] dl\_l,] , (7.31)
)
dpg+edj e +dyg
=My - My e My d1’j+...+dj;j+...+dN1j ) (7.32)
dyn +o+djy+..+dy |

From (6.22), it can be seen that
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dpj+...+djj+...+dy j
N
=2.4i;
i=1
N
N
=2 fyJe, Ty b (=) o
N N
= 2l Je, Ty b (y =) o

:% | IRJ. fy (X=y +by, (y—x)) dydx

= . 7.33
CN (7.33)
=1.
Thus, (7.32) becomes
0
N : N
zhi,j :[mi,l mi,j mi,N] 1 :zmi,j (7'34)
j=1 : j=1
_1_N><1

p(@) (i
N ZQk N
Since R is a uniform partition, Zmi,j = k- =1, then Zhi.j =1. Thus H is
j=1 /1(Ri) j=1

row stochastic. And H is a positive matrix, so it follows from the Frobenius-Perron

Theorem that the matrix H has 1 as the eigenvalue of maximum modulus, and the
algebraic and geometric multiplicities of the eigenvalue 1 is 1.

Consequently, the equation f* = f*H has a non-trivial solution, which is the left
eigenvector associated with the eigenvalue 1. This is the invariant density function
of the stochastic dynamical systems, estimated by a step function on the uniform
partition R . It further establishes the existence of the invariant density functions of

the stochastic dynamical systems.

Similarly, it can be concluded that the matrix H representing the Foias operator that

is corresponding to the dynamical system subjected to an additive random noise
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Xnp1 =S(X,)+@, (mod b), n=0,12,..., (7.35)

where the transformation S:1 — 1, I =[0,b], @, is the independent noise term

bounded in [—&, ], preserves 1 as the only eigenvalue of the maximum modulus.

The associated left eigenvector is the estimated invariant density function.
7.2.3 Simulation example

Recall the numerical example in Section 6.2.5. Let the Gaussian density shown in

Figure 6.1 be the probability density function f, of the input. A set of initial states
Xo :{Xo,j}?:li 0 =5x10° generated by sampling from a uniform probability
density function fg (X) = z[o1)(X) were iterated with the input U={y }?:1,

0 =5x10° sampled from f, and applied per iteration using the stochastic

dynamical system (7.1) to generate a corresponding set of final states
Xt :{lej}‘J?zl where T =30,000. The probability density function f; estimated
using the identified map and fT estimated using the original map on R :{Ri}i“f1

are shown in Figure 7.1. The estimated unique invariant density function is given

by

fre

br, (7.36)
2

i=1
where z =[n,..., 7yy] IS the normalised left eigenvector of H , and shown in

Figure 7.1 to compare with f; and fT :
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3 T T T

Density after 3x10* iterations with the identified map
m— Estimated invariant density

P A Density after 3x10% iterations with the original map

Figure 7.1 Comparison of the resulting density functions after 3x10* iterations from a set of 5x10°
initial states uniformly distributed on [0 1] with the identified map and the original map, and the
estimated invariant density.

7.3 Dynamical systems subjected to additive

Inputs and stochastic noise

The system considered for controlling the invariant density function in this chapter
is @ more complex one-dimensional dynamical system subjected to an additive

input and a stochastic noise, stated as follows.

Xna =S(X,)+U,+@, (mod b), n=0,12,..., (7.37)

where S:I —>1 , 1=[0,b] , is a measurable nonlinear and non-singular
transformation; x, is a random variable bounded in I, having probability density
function f, e ©(1,8, 1), u,, is the independent random input variable bounded in |
having a manipulated probability density function f, € ©. The additive random
noise {w,} bounded in [-¢, €] is i.i.d. (independent and identically distributed)

with the probability density function g €®©.
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7.3.1 Formulation of the evolution of probability densities
Since the system is bounded in I, assume a measurable function as
G(Xp,Uy) =S(X,)+U, (mod b), (7.38)
which is bounded in I. thus (7.37) can be expressed as
Xy =G(Xy,U,)+@, (mod b), n=0,12,..., (7.39)

Let x/.; =G(x,,u,), thus x/,; 1, then it is obtained from (6.14) that the

probability density function of x/, ., is

frea () = [ fu(X =y +bzy (y = X)) - P Fo (¥) ly . (7.40)

where Py is the Frobenius-Perron operator corresponding to S, Thus, (7.39)
becomes

Xnyg =Xng+@, mod b, n=0,12,.... (7.41)

This can be viewed as a dynamical system only with an additive noise. For an

arbitrary Borel set B — |, the probability of x,,; € B is given by

Prob{x, ., € B}= ” fra(X)g(@)dX'dw, (7.42)

Xns1+@, mod b

Let =Xy, +® modb. Then (7.41) can be rewritten as

Z=Xny1 + O =By (ppie](Xnis + @) +Dx (s 0)(Xnig + @), (7.43)
By substituting

@ =7 Xn1 + 0¥ be-p1(Z = Xhi1) =P [b-s 07 (Z = Xni1) (7.44)

into (7.42), it is obtained that

Prob{x,,; € B}

! ! ' ' , , 7.45
:.[BL fra(X)9(z=X"+by(p ;. 6(2=X)=by(p_sp (2 —X))dXdz. (7.49)
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By changing the variable, it is further obtained that
fra(X) = L fra (X)X =X"+Dxp o—p) (X = X) =D ypp_pspy) (X — X)) dX". (7.46)
By submitting (7.40) into (7.46),

a0 = [ [ fu (X =y+bzy (y=x))-Ps f(¥)

1 A ’ 1A (7l47)
(X=X +byp s—b] (X = X) —by[p_s by (X — X)) dydX'.

As a result, the Foias operator corresponding to the system (7.37) is defined by
Q)= [, fux =y+bz (y=x)

1 r r ’ .(7 48
g(X =X +Dy(p op) (X =X) =B p) (X = X)) - Ps i, (y) dydX".

It is assumed that S is a piecewise linear semi-Markov transformation on the

partition of I, R={R;, Ry, ..., Ry}containing N intervals. The density function of

Xn+10 Q fy, Is estimated on a regular partition R'CI{R;, R5, ..., Rp}.

By integrating both sides of (7.48) over R} e %R’, itis given that

IR(( an(X)dX=I |'<-[| II [fu(x’— y+by (y—x))

- g(X =X +byp . b (X=X) =bapp_. by (x—x)) (7-49)
-Ps f,,(y)] dydx'dx.

N p
Let Psf (X)=> viz), (X), and Qf,(X)=D vz, (X) which is estimated with
i1 k=1

rectangle method with respect to %R’ . Then,

Vi = MRK)J Z{j [ [f =y +bz (y-x))
g(x—x +bZ(—b,g—b](X—X)—bZ[b—g,b)(X—X))'Uj]dx'd)’}dx
N
=%Z{JR,k Ja [ R 0=y b1 (y=x))
j=1
(7.50)
(X=X +by(p o) (X—X) =0 x[psp) (X = X'))] dx'dydx - v; }
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The matrix D = (dy j)ick<p:1<j<n IS defined by

i =1 Jy i [ =y bz (y-x)

(7.51)
g(X=X"+byp —p)(X=X) =D gpp_s by (X— x’))] dx'dydx.
Then, (7.50) can be converted into the following equation.
_Vl_ _d11 dp - dlj le_ _01_
Vs d21 d22 d21 dZN v,
_ : . ‘. : . . ' : . 759
Vi dig dyo o dyj - diy Vj (7.52)
VP | _dPl dpp -+ dpj - dPN_ L UN |
By submitting (6.17) into (7.52), it can be obtained that
Vfl :WfO -M DT
—pPsfo.pT, (7.53)

where w o =[wy,...,wy1, vh =[vy,...,vp], oo =[vy,...,u5]-
7.3.2 Invariant densities

The result concerning the asymptotic stability of {Q" f} of the stochastic dynamical

systems (7.37) is stated as follows.

Theorem 7.8 Let Q:L' —> L' be the Foias operator corresponding to the
stochastic dynamical system (7.37). {Q"} is asymptotically stable and the invariant
density f* for Q is unique.

Proof. The system (7.37) can be represented by (7.39). Since G:1 —» 1, the

original system can be viewed as a dynamical system with an additive noise. From

Theorem 7.6, it readily can be seen that the system admits a unique invariant

density, and {Q"} is asymptotically stable.
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Similarly, given a uniform partition R, the Foias operator can be represented by a
square matrix H. The result concerning the eigenvalue of the matrix H is stated as

follows.

Theorem 7.9 Let the transformation S in (7.37) be a piecewise linear semi-Markov
transformation on a regular partition R ={R;, R,, ..., Ry}, and R'=R, P=N.

Then matrix H representing the corresponding Foias operator has 1 as the

eigenvalue of maximum modulus and also has the unique eigenvalue of modulus 1.
Proof. In fact, (7.51) can be further expanded in the following way.
dk,]
P P
S DRI RCEEDAEY
QX=X+ D77 (X—X) Doy (X=X )] X fdyx

P< : : , ,
:EZ“ _, dXI & g(X=X"+bx(p 0] (X = X) =bpp_ p) (X — X)) dX
i

(7.54)

IRCET—,

Then,

b & b &
= (A -d) =D -di)
P _P3

dy =iz
K, j IR; dx’ ﬁ(Ri,)

ONCIRD

J

_ P i=1 J
b/P

P
= (dg;-di'y),
i

(7.55)

where

P ’ ’ A !
dici zgf kj (9 =X 4y oy (X=X) =Dps ) (X = X)) XX, (7.56)
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P 4 4 '
i = e o, Tl =y b (y=x)) dyex (757)

They forms the following two matrices:

D?=|dgy - d& -+ dp | (7.58)

which is equivalent to the matrix D (6.62) while N =P, R =R for the noisy

system considered in Section 6.3;
_d1u,1 ody iy

DY = dil,Jl dllfj dilfN , (7.59)

which is equivalent to the matrix D (6.22) for the dynamical system with an

additive input considered in Section 6.2.

From (7.55), it can be seen that

D=D“.DY, (7.60)
Thereby, for a Frobenius-Perron matrix induced by the piecewise linear semi-
Markov transformation S, (7.53) can rewritten as
Vfl :Wfo . M (Da) DU)T
—who.m- DUT .DwT_ (7.61)

Thus, the Foias operator can be represented by the estimated matrix H as

H=M.D" .D” (7.62)

Alternatively, this can be obtained in the following way. Firstly only consider the

dynamical systems with an additive input x,,; =S(x,)+u, , (modb),
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n=0,1 2,..., which can be expressed as x,,; = G(x,,U,), G:1 — I . It has been

obtained in (6.24) that

viiowfo.m.pu' (7.63)

From (6.25),

T

H=M. D" . (7.64)
is a row stochastic matrix, which satisfies the definition of a Frobenius-Perron
matrix. Thus, G can be regarded as a piecewise linear semi-Markov transformation

corresponding to the Frobenius-Perron matrix M5 = H . Therefore, (7.63) can be

given by

vit=wio. Mg (7.65)
Then, for a dynamical system with an additive noise x,,; = G(x,,u,)+ @,, mod b,

n=0,12,..., from (6.63) it is obtained that

T

vi—wio.Mg. DO (7.66)

Submitting (7.64) into (7.66) gives rise to the result of (7.61).

Then,

N [N
hi, ZZ(Z(mi,t'dE,t)'dfk]- (7.67)
k=1

t=1
The sum of the j-th row of H is given by

N

2. hj

=1
—(Ryg+. oy +oorhiy)

di
N N N 5

u u u
= [Zmi,tdl,t zmi,tdk,t Zmi,th,t] df)j
t:l t:l t:]. E
d’
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@
jd
N u N u N u :
+"'+[Zmi,td1,t Zmi,tdk,t zmi,th,t] df’;
t=1 t=1 t=1 :
[
BN
_dﬁl_
N . N . N ’ :
ek [ migdry o 2 My o D mgdy ] dnj || (7.68)
t=1 t=1 t=1 :
dy N

[0} [0} (0]
dig+...+djp+...+dy,

N N N :
:[Zml,tdft M Zml,tdkl,t e Zml,tdkl,t] df)J+..+djljJ+..+d|6\el)'J . (769)
t=1 t=1 t=1 :

[0} w w
_dl,N +...+djy +...+leN_

N
From (7.33), it can be obtained that Zdﬁ,’j =1, (7.69) becomes

k=1
N
N N u N u N !
zhi,j =D midry o D omidiy e D midg L (7.70)
j=1 t=1 t=1 t=1
_1_
N N N
:(Zmlytdft +...+ Zml,tdkj,t +...+ Zml,td’L\jl,t] (771)
t=1 t=1 t=1
i | A ] da
:[miyl"'milj"‘mi,N] d]l_"lj +...+ d|l('l7J +...+ dKLJ (772)
din dic dn N
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L=
o
~c
-

=

M=z
o -
xc

=[Mjq-mj-my ] (7.73)
=y
.
D din
L k=1 i
N
From (7.33), D dy j =1. Then,
=]
N N
2 hi=2m =1 (7.74)
i i

Hence, the matrix representation H is a row stochastic matrix, then it has 1 as the
eigenvalue of maximum modulus, and also has the unique eigenvalue of modulus 1.

Consequently, Theorem 7.9 is proved.

The left eigenvector associated with the eigenvalue 1 of H is the invariant density
function of the stochastic dynamical system (7.37) that is estimated with a step

function on a regular partition.
7.3.3 Model identification

Given the probability density functions of the input u, and the noise @,, f, and g,

and the partition %R on which the transformation is to be constructed, the matrix D

can be obtained from (7.60). It is set that P> N . The Frobenius-Perron matrix
associated with the piecewise linear semi-Markov transformation S is identified
using the approaches described in Section 6.3.2. @ random input values
U :{ui}?zl and noise values £ :{a)i}?zl are sampled from f, and g, respectively.
To generated the final densities, each input and noise value are applied per iteration
to yield the final states by x ;=S(x_yj)+ux+a (modb) , j=1...,0 ,

k=1..,0,t=1...T.
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7.3.4 Numerical example

To show the effectiveness of the developed modelling algorithms in this section,
consider the logistic map with an additive input and an additive noise that is stated
as follows.

Xni =4X,1-X,)+u,+@, (mod 1), n=0,12,..., (7.75)

where x, €1 =[0,1], u, €1, and o, €[-0.2,0.2], the input density function is

given by

(u—p)® (u—pp)®

2><012 2><622

1 1
e —€ : 7.76
o2 o927 (7.76)

fu (u) :%

where 44 =0.30, 07 =0.07, u, =0.60, o, =0.10, plotted in Figure 7.2; the noise

density function shown in Figure 7.3 is step function given by

4, -0.20<w<-0.10;
4/3, -0.10<w<0.05]

9O =207, 0.05<w<012; (7.17)
25 012<0w<0.20.
4 5
asl 45
ol
a5l
sl
E’ Sas
: 1
15k
il
0.5}
-%,4 0.3 0.2 0.1 0 0.1 0.2 0.3 04
Figure 7.2 Probability density function of Figure 7.3 Probability density function of
the input f the noise f ,,

The partition R is set to be a uniform partition containing N =40 intervals.

Partition %R’ is set to be same with R, thus P = N . 40 constant density functions
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fa(x), i=12,...,40, compactly supported on each interval I, were constructed.

To obtain the new densities fli (x), 60 =5x10% initial states, € random inputs and 6

random noise were generated by sampling foi (x) , the given input density function
f, and the noise density function g, respectively. The Frobenius-Perron matrix

recovered leads to the approximate piecewise linear semi-Markov transformation
with respect to R that is shown in Figure 7.4. The smoothed map, obtained by

fitting a cubic spline (smoothing parameter: 0.999), is shown in Figure 7.5.

Using the same way in the preceding examples, the relative error between the

identified smooth map and the original map is shown in Figure 7.6. It is obtained
that MAPE = 0.6692% . Starting at a set of initial states X, ={x0,j}‘1?:1, 6 =5x10°

uniformly distributed on I, the final states were arrived after T =30,000 iterations.
The obtained density function f; is shown in Figure 7.7, compared with the

resulting density function after same iterations with the original map, and the

calculated invariant density function from (7.36) and (7.62).

! ' TN '
09r 7 oer
08F 1 08r
07t / 1 07
06 1 06t
tosk / N 1%
=0 / \ = 0.5F
04t 4 \N q{ o4
st 7 \ 1 03t
0.2+ '( > 1 021
/ N
0.1 0.1
\
0 0
0 0.2 0.4 0.6 0.8 1 0 02 0.4 06 08 1
X v
Figure 7.4 Constructed piecewise linear Figure 7.5 Smooth map identified from the
semi-Markov  transformation for the constructed semi-Markov transformation
dynamical system subjected to an additive shown in Figure 7.4.

random input having the probability density
function (7.76) and an additive random noise
with the probability density function (7.77).
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20 T T r T 4.5

Density after 3x%10% iterations with the identified map
= = Density after 3x10* iterations with the original map ||
Estimated invariant density from the matrix H

0 02 0.4 06 0.8 1 0 02 04 08 0.8 1
X X

Figure 7.6 Relative error between the Figure 7.7 Comparison of the resulting

original map and the identified map Figure density functions after 3x10* iterations from

7.5 evaluated for 99 uniformly spaced points. a set of 5x10° initial states uniformly

distributed on [0 1] with the identified map
Figure 7.5 (red line) and the original map
(black dotted line), and the estimated
invariant density (blue line).

It can be clearly seen that the estimated invariant density function of the identified
map and the step function corresponding to the eigenvector associated with

eigenvalue 1 of the matrix H are both very close to f .

7.4 Controller design

The above work lays the foundation for the design of control law. In this section,

the controller design will be presented.
7.4.1 Design algorithm

The purpose of the controller design is to determine the probability density function

of the input, f,(x), so that the invariant density function of the stochastic dynamical

system (7.38) is made as close as possible to a desired distribution function, which
is defined on I. This can be achieved by minimising the following performance

function

J= (£ (0~ 15 () dx. (7.78)
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where f*(x) is the invariant density of the stochastic dynamical system, and

f4 (x) is the targeted distribution function.

Figure 7.8 shows the block diagram of the control system where the stochastic

dynamical system is controlled by the designed controller that provides the optimal

Noise
g | @,

input density function.

Desired PDF Comparer J Inpul PDF | b ndom Input | #: | ystem Vysls H—> 0
—e| Controller o o 3, = S(x, )+, + 0, mod >
- of PDFs Generator :
j(! f‘u Fnt = Fan
A
Invariant density function Measurer
s of PDF -

Figure 7.8 The block diagram of the control system.

The assumed measurable function G (7.38) can be also only related with S and the

noise term e, , written as follows
G(Xp, @,) =S(X,)+®, (mod b), (7.79)
thus, (7.37) can be expressed as

Xni1 =G (X, @) +U, (mod b), n=0,12,.... (7.80)

Since G still maps | into itself, and is independent with u,, it can be shown that the

matrix representing the Foias operator in (7.62) is equivalent to right side of the

following equality
H=M.-D° .D"" . (7.81)
Let v d =[vf* vi*,....v8*] be the vector form of the desired invariant density

N
function on R, then fd’"(x):Zvid’“;mi (x). Thus, the ideal situation is to find an
=

input density function f, which can make the following equation satisfied
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By substituting (7.81) into (7.82), it follows that

vii —vfi . m.D? .pu' . (7.83)

Since R is a uniform partition, from (7.57) and (7.59), it can be obtained that

dlul_dg,Z_ ":dlul = =dKI,N;
d1“2_d5’3_ L=diiy = =dkl—l,N;
’ ! y ! (7.84)
dlj :d2 j+l _di,i+j—1 _dN—J+1N7
ding =03,
where 2< J<N -1, j<i<N-j+1,and
d§,1=déj,2 :---:diu+1,i :-~-:dll<l,N—1;
j1=0f2 = =dij_ 1= =dN N (7.85)
dﬁ—m:dﬁl,z'
where 2< J<N -1, j<i<N.
Moreover, it can be seen that
di =dN_is21; (7.86)

for 2 <i < N. This implies that the matrix D" contains N unique values, which are

{dP' 3N, . Let o; =d}, for i=1,...[N. Then the matrix D" can be represented by
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g ay  aNg ON_p ... O5 Qi O3  dp |
a, o ay  OoNg - . sy as
Qs a, o ay . . . as ay
ay as a, . . T as
DY=| ' ' ' : | (7.87)
an_z L g aNy AN An-2
aN_p anN_3 - .l ay o ay ang
aN On—p ANz - . a3 Gy @ an
L ON  aNa An2 ANz Oy 03 0p  op |

Letv’e .M.D?' =[B, B2, .-, Bis---, By Then

j=1

N N
Bi =Z{df’sz:mi,k]- (7.88)
i1
Thus,

. T T
vii .M.D® .pv

.
By + Pray + faan_g +...+ Byay

_| Paat Bron + o ..+ Puas (7.89)
pran + Poan_g+ Pran_p +...+ By
By extracting the N unique values ¢, it is further obtained that
. TT
vie.M.D® .p!
- T
B By Bna o B
B B By o P

=ly ay az - an]| B B B o Ba - (7.90)

AN Pna B2 o P
Thereby, the problem of minimising the performance function (7.78) is converted to

the following constrained optimisation problem to solve for the unique values ¢;

in the first instance.
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.2
min |- )| | (7.91)
{a 1120 F
subject to
N
Zai:]., (792)
i=1
A B Bna o B o |
o B By o B3 ap
where f=| B3 P B Palia=|a3
O Pna Pn2 o B Lay |
Let f,(x) be approximated over the partition R, represented by
N
fu () =D wizr (X)dx. (7.93)

i=1

Given the obtained {o;}Y;, the coefficients {y,, w3, ...,y } can be estimated by

N
V= ” dxdy
Rk xRy

Nak
b

b
N (7.94)

fork=2,3,...,N, and

1
al_EaN _ (204 —ay )N

1 [[ dxdy b
2 RixRy

b
V1 N (7.95)

As a consequence, f,(x) estimated with the coefficients in (7.94) and (7.95) is the
obtained probability density function of the control input that aims at attaining the

targeted invariant density function g (x).
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It has been proven that {Q"}for the stochastic dynamical system is asymptotically

stable. Given the input density function f, € ® defined on I, the system has a

unique invariant density function f*(x). In other words, Q"f — f*,as n > .

7.4.2 Numerical example

To demonstrate the use of the proposed control algorithm, the following stochastic

dynamical system is considered

Xnyg =S(X,)+Uy+@, (mod 1), n=0,12,..., (7.96)

where S(x,) =4x,(L—x,) is the logistic map of which the approximate Frobenius-
Perron matrix has been identified in Section 6.3.4, @, €[-0.02, 0.02] is a Gaussian

noise of which the density function is shown in Figure 7.9. The desired invariant

density is shown in Figure 7.10.

Vf‘; =[0.14,0.16,0.18,0.19,0.25,0.28,0.35,0.44,0.55,0.67,
0.75,0.931.191.37,1.541.721.781.781.71,1.52,
1.251.04,1.04,1.09,1.36,1.65,1.96,2.24,2.50,2.27,
1.84,1.56,1.02,0.62,0.35,0.21,0.11,0.11,0.12,0.13].

(7.97)

D for the given noise density function has been obtained, thus

(v, Boy - N ]
=[0.824,0.072,0.070,0.071,0.076,0.075,0.079,0.079,0.080,0.079,

0.086,0.086,0.091,0.107,0.123,0.137,0.162,0.182,0.204,0.246, (7.98)
0.292,0.346,0.411,0.502,0.581,0.735,0.869,0.979,1.107,1.257,
1.456,1.678,1.891,2.099,2.272,2.459,2.703,3.133,4.061,8.239].
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Figure 7.9 Probability density function of the noise ¢, of the stochastic dynamical system.

Figure 7.10 The target density function.

By solving the linear least-squares (7.91) problem, it is obtained that

[, ap,...,0N]

=[0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0.0169, 0.0415, 0.0549, 0.0644, 0.0719, (7.99)
0.0641, 0.0339, 0,0, 0,0, 0,0.0168, 0.0534, 0.1186,

0.1202, 0.098, 0.109, 0.0702, 0.0424, 0.0203, 0.006, 0, 0, 0].
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Then the optimal input density function is obtained, as shown in Figure 7.11.

0 0.2 0.4 0.6 0.8 1
X

Figure 7.11 Optimal density function of the input.

[yiwa.wnd
=[0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0.6769,1.6582, 2.1956, 2.5768, 2.8757, (7.100)

2.5648,1.3554,0,0,0,0,0,0.6713, 2.1365, 4.6390,
4.8088, 3.9206, 4.3607, 2.8074,1.6977, 0.8129, 0.2419, 0, 0, 0].

As a result, this leads to the responds of the invariant density function as shown in
Figure 7.12.

4
Obtained invariant density function
a5k wmnns Target density function
3 L
25k P

Invariant density function

0 0.2 0.4 0.6 0.8 1
X

Figure 7.12 Comparison of the resulting invariant density function and the target density function.
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7.5 Conclusions

In this chapter, new theorems regarding the asymptotic stability of {Q" f} for the

dynamical systems subjected to additive inputs or random noise, and the uniqueness
of the existing invariant densities have been proven. It has been proven that the
invariant densities can be estimated from the left eigenvector associated with the

eigenvalue 1 of matrix H representing the corresponding Foias operator. Based on

the derivation of formulation of {Q" f} for the two cases of perturbed chaotic

systems (by an additive input or an additive noise), the evolution of probability
density functions of a more extensive stochastic dynamical system that involves an
additive input and a random input has been inferred mathematically. Also, the
statistical stability of such systems has been proven, and the invariant density
functions have been estimated with the approaximate matrix representation of the
associated Foias operator. Identifying the model of such stochastic dynamical
systems has been addressed based on the earlier developed modelling

methodologies.

The above work laid the theoretical foundation for addressing the control problem.
A new control strategy has been developed which aims for controlling the shape of
the invariant density function of the stochastic dynamical system so as to make it as
close as possible to a given density function. To minimise the established
performance function, connection between the input density function and the
desired invariant density function is derived. The optimisation problem for
determining the input density function can be formulated as a constrained least-
squares problem to solve for the vector that corresponds to the optimal input density
function. A simulated example is used to illustrate the effectiveness of the proposed
algorithm.
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Conclusions and Future Work

8.1 Contributions

Chaotic dynamical systems can exhibit complex and random-like behaviour which
is not predictable in general (Kellert & Sklar 1997). This phenomenon can be
characterised by probability density function as an alternative to study individual
point trajectories, particularly in some situations when probability density functions
are more convenient to be measured than individual point trajectories. The main
purpose of the thesis is that modelling for one-dimensional chaotic dynamical
systems from sequences of probability density functions, and controlling the
invariant density functions of such systems. The work of this thesis focused on the
development of new methods and algorithms of reconstruction of one-dimensional
chaotic maps from sequences of probability density functions. The methods were
successfully applied to model the dynamical evolution of heterogeneous human
embryonic stem cell populations. The reconstruction for dynamical systems
subjected to additive perturbations from sequences of probability density functions
and the design of control laws to achieve desired invariant density function were

also considered. The main contributions are summarised as follows:

e A novel approach to solving the generalised inverse Frobenius-Perron

problem

In Chapter 3 a novel matrix-based approach was proposed to solve the
generalised inverse Frobenius-Perron problem and was extended to general

nonlinear systems in Chapter 4. These addressed in a systematic manner the
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problem of inferring one-dimensional chaotic maps based on sequences of
probability density functions. Compared with previous solutions to solving the
inverse Frobenius-Perron problem, it has been rigorously demonstrated that the
proposed approach can uniquely identify the unknown transformation sufficient
conditions, of which sufficient conditions have been derived. Specifically, the
reconstructed maps can exhibit the same dynamics as the original systems and
therefore can be used to predict the long term dynamical evolution, infer
dynamical invariants and to control the dynamical behaviour of the underlying
system of interest. The applicability of the proposed methodology and its
performance for different levels of noise was demonstrated using numerical
simulations involving a piecewise linear and expanding transformations as well

as a continuous one-dimensional nonlinear transformation.
Modelling heterogeneous populations of human embryonic stem cell

In Chapter 5 the developed solution to the GIFPP was successfully applied to
infer the dynamical model that characterises the dynamical evolution of
heterogeneous stem cell populations (pluripotent carcinoma cell line NTERAZ2),
using densities generated experimentally by fluorescence-based flow cytometry.
The model described the transition of SSEA3 cell surface marker expression
over a single day interval. The reconstructed dynamical model enables us to
characterise and compare rigorously the dynamics of different cell populations,
predict the long term evolution of SSEA3-sorted cell fractions, as well as

identify the particular stationary points which have biological relevance.

A novel approach to modelling chaotic dynamical systems subjected to
additive perturbations from sequences of probability density functions

In Chapter 6 a novel method of inferring models of one-dimensional chaotic
dynamical systems with additive perturbations was proposed based on
sequences of probability density functions measured from the perturbation-
corrupted data. Two forms of additive perturbations were analysed respectively:
a chaotic map subjected to an additive input; a chaotic map subjected to an

additive random noise, for which probability density function of the input and
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noise were both assumed to be known. The evolution of probability densities
was formulated, which gives rise to the description of Foias operator
corresponding to the perturbed dynamical system. An approximate matrix
representation of Foias operator was derived by assuming the chaotic map to be
a piecewise linear semi-Markov transformation. In this way, the density
evolution equation was transformed into a matrix equation that links two
successive density functions and the Frobenius-Perron matrix associated with
the transformation. The modelling problem was then reduced to an inverse
problem to recover the Frobenius-Perron matrix based on the new developed
two-step matrix-based method. Numerical examples were provided to
demonstrate the effectiveness of the developed approaches to modelling for
chaotic dynamical systems subjected to additive perturbation from density

functions.

A new algorithm of controlling the invariant densities of chaotic dynamical

systems subjected to additive stochastic perturbations

In Chapter 7 the asymptotic stability of probability density functions,
equivalently statistical stability, of chaotic dynamical systems subjected to
additive stochastic perturbations was proven, which reveals the unique
existence of invariant densities of such systems. Estimation of the
corresponding invariant density functions was derived. For a stochastic
dynamical system, given the additive input and random noise densities, the
mathematical characterisation of the evolution of densities was inferred,
resulting in the estimated matrix representing the Foias operator. Using the
developed matrix-based approach, the chaotic maps of the perturbed underlying
systems can be reconstructed from the probability density functions measured
from the observed perturbation-corrupted data. Based on the derived
mathematical relationship connecting the control input density function and the
invariant density function, the control algorithm was designed for the objective
of determining the control input density function to manipulate the invariant
density function to be as close as possible to a desired one. A simulation

example was given to illustrate the effectiveness of proposed control strategy.
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8.2 Future work

AS

con

an alternative to the traditional data-based methodology of modelling and

trolling dynamical systems with individual point orbits, the strategies developed

in this thesis have mainly addressed the generalised inverse problem and the

problem of designing control law for one-dimensional chaotic dynamical systems.

Considering the complexity of real systems and potential application prospects of

the

achieved results, the following issues can be further investigated in the future

research.

168

The methods presented in the thesis can be extended to higher-dimensional
maps but this is not necessarily straightforward. As noted in (Bollt 2000a), for
higher-dimensional systems the Ulam’s conjecture has been proven for some
special cases (Boyarsky & Lou 1991, Ding & Zhou 1995, Froyland 1995,
Froyland 1997). A possible solution would be to convert the N-dimensional
problem to a 1-D problem, approximate the Frobenius-Perron operator by a
stochastic matrix (Rogers, Shorten et al. 2008b) and then use Bollt’s approach
(Bollt 2000a) to construct a piecewise linear transformation which approximates

the original map.

The inverse problem for stochastic dynamical systems considered a typical form
of additive perturbations. There are other forms of perturbation appearance in a
multiplicative fashion, and a both additive and multiplicative way. For these
cases, the proposed algorithms provide a starting point to derive the
mathematical description of the evolution of density functions and the matrix
representation of the corresponding Foias operator. Using the matrix-based
approach described in Chapter 6, the Frobenius-Perron matrix associated with
the chaotic map can be identified. Therefore, the proposed method can be

applied to solve the inverse problem for general stochastic dynamical systems.

In Chapter 5 there are five fractions divided by the FACS machine. Fractions of
these cells expressing different levels of SSEA3 generate the whole population
but at differing rates. The equilibrium points can be predicted from the
reconstructed dynamical model. Further experiments can be conducted to
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investigate the regeneration of the cells on the equilibrium points. The cell
sorting can be refined from the predicted equilibrium points. Experimental
results can be used to validate the stability of these fractions which need to take
longer time to regenerate the parent distribution, and on the other hand, this

provides a new way to demonstrate the validity of the model.

Based on the inferred dynamical model of heterogeneous stem cell populations,
the developed control algorithm can be used to design the control strategy. The
control objective is to optimise the cell culture conditions so as to manipulate
the differentiation of the heterogeneous embryonic stem cells into desired cells

that can be used in regenerative therapies.
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Appendix: Initial states generation

The 100 sets of initial states used in the example are obtained by sampling the

following density functions.

n _l.ng(l_x)ﬂl_l i.)(/31—1(1_)()29 B |
for (A1) =15 B(30,4) 10 B(B,30) A=12....30

X211 x)2
B(/3,,30)
X2 (1 x)fs L
B(30, 43)

fol,}zz(x'ﬂz) = . Br=12,...,25

i3 (x B5) =  Pa=12,...,25

X39 (1_ X)ﬂ4+19 +l ‘ X39 (l— X)ﬂ4+19
B(40,4,) 2 B(40,5)

Xﬁ5+19 (1_ X)39 +l‘ Xﬂ5+19 (1_ X)39
B(/B5!4O) 2 B(ﬂ5140)

where B(:,-) is beta function.

1
fo/,)}, (X, Ba) = 5 Pa=12,...,10;

1
foég(xaﬂs)=? . Ps=12,...,10;
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