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Despite the remarkable yield improvements of recombinant proteins produced in mammalian 

cells, some ―difficult-to-express‖ (DTE) proteins achieve considerably lower production titres. 

The bottlenecks are exacerbated in the case of transient gene expression (TGE) systems as 

the host cells are easily overloaded with recombinant genes, hence necessitating intensive 

cell line and process development. The aims of this thesis are to study the limitations to high 

TGE yields of DTE proteins, and subsequently investigate strategies to efficiently alleviate 

the bottlenecks. For this purpose, we used a model DTE Fc-fusion protein (Sp35:Fc; 

proprietary of Biogen Idec) expressed in Chinese hamster ovary (CHO) cells, as well as 

secreted alkaline phosphatase and green fluorescent protein for comparisons. Through 

analyses of intracellular and extracellular Sp35:Fc polypeptides, we found that post-

translational mechanisms were limiting in the cells. The saturation of Sp35:Fc expression 

coincided with the retention of folded proteins in the ER and the increase in disulphide 

bonded aggregates. Further in silico analysis via a mathematical model enabled 

identification of the relative importance of specific cellular process on Sp35:Fc productivity 

(qP). Based on these observations, three strategies aimed at improving the transient 

production of Sp35:Fc were investigated. 

The first strategy involved the evaluation of functional performance of clonally derived 

cell populations to produce Sp35:Fc. We critically assessed the key intrinsic functional traits 

of the clones, and their impact on Sp35:Fc production. The data indicate that cell lines with 

the capability to accumulate high biomass while maintaining relatively high specific growth 

rate (µ) were likely to be high producers for DTE proteins. For the second strategy, we 

utilised a novel vector system specifically beneficial for DTE proteins by incorporating ER 

stress response elements (ERSE) into the SV40 vector expressing Sp35:Fc or the UPR 

transactivator ATF6c. The ERSE-SV40 vectors acted as a synthetic "amplifier/dual activator" 

circuit, where expressed ATF6c amplified both its own and Sp35:Fc expression via activation 

of ERSE-SV40, whilst generally transactivating cellular ER capacity via endogenous ERSE. 

In the third approach, we addressed the hypothesis that specific functional proteins and 

chemical chaperones could improve ER capacity for Sp35:Fc folding reactions, increase 

secretion rate and/or relieve host cells from ER stress. We employed cell/process 

engineering by co-expressing a variety of molecular chaperones or UPR transactivators with 

Sp35:Fc, as well as a range of chemicals and hypothermic condition. We observed that 

Sp35:Fc production could be improved via two distinct modes; (i) increase in qP correlated 

to repression of µ, and (ii) stimulation of µ with general reduction in qP. In this regard, genes 

and chemicals could work synergistically to provide an optimal solution.  



 

iii 

Overall, this study illustrates that effective cell line and process development for DTE 

protein production requires a synergistic combination of vector, cell and process engineering 

strategies designed to alleviate cellular bottlenecks simultaneously, enabling the host cell to 

attain both high qP and cell density. Using two clonal variants and combinations of cell and 

process engineering, the transient Sp35:Fc production yield could be increased by more 

than six-fold. Rapid, high-throughput predictive mathematical tools would be particularly 

valuable in assessing the relative/synergistic impact of different engineering interventions. 

 

Keywords: Chinese hamster ovary cells; transient gene expression; difficult-to-express 

protein; aggregation; unfolded protein response; mathematical modelling; genetic 

heterogeneity; screening; vector engineering; cell engineering; chemical chaperones. 
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This chapter provides an overview of biopharmaceuticals and their expression systems. Specific 

emphasis is given to mammalian cell culture and challenges faced in the production process. The 

objective of this chapter is to contextualise the research presented in this thesis, with regard to 

the body of literature describing transient production and difficult-to-express proteins. 
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The term biopharmaceutical may refer to therapeutic biological drugs derived from living 

cells such as antibodies, vaccines, hormones and nucleic acid-based products. Today, 

there are more than 200 approved biopharmaceuticals for use in diverse clinical settings. 

Among these, recombinant protein-based products particularly monoclonal antibodies 

(MAbs) and Fc-fusion proteins, constitute the most rapidly growing class of 

biopharmaceuticals and currently dominate the biologic drug market. In terms of market 

value, MAbs and Fc-fusion proteins together account for 54% of the US$ 140 billion global 

sales of therapeutic proteins in 2013 (Walsh, 2014). The majority of recombinant protein-

based products are used against various types of cancer while other main treatment areas 

include autoimmune diseases such as arthritis, as well as transplantation and respiratory 

disorders (Huggett, 2013; Sommerfeld and Strube, 2005). 

The number of therapeutic MAb in development has continued to increase 

tremendously over the last three decades due to the flexible and robust nature of the 

immunoglobulin molecule, as well as advances in molecular biology and technology. 

Indeed, since the approval of the first MAb product Orthoclone OKT3® in 1986, MAb 

formats have evolved from entirely murine structure to "chimeric" form and later, fully 

humanised antibodies containing human sequences. Engineered human MAbs present a 

generally improved effector function, reduced immunogenicity and increased stability 

(Johnston, 2007; Sommerfeld and Strube, 2005). Gene cloning/synthesis and recombinant 

DNA technologies allow the production of new MAbs against a virtually unlimited number 

of target antigens (Igawa et al., 2011; Tachibana et al., 1999). Today, therapeutic MAbs 

boast the most active pipeline in the recombinant biopharmaceutical industry, with six of 

the top-ten selling biologics in 2013 being MAbs (Table  1.1). 

Meanwhile, many other biologically active protein and peptide drugs have very short 

serum half-lives due to fast renal clearance that limit the therapeutic efficacy. Considerable 

efforts have been made to develop techniques to extend the half-life of these therapeutic 

proteins (Kontermann, 2011). Fc fusion technology, by which the Fc domain of IgG is 

joined to a therapeutic protein, is arguably the most effectual solution where it extends a 

protein's in vivo half-life via the neonatal Fc receptor recycling mechanism. In addition to 

the enhanced pharmacokinetics and pharmacodynamics, this technology also confers 

novel properties to the hybrid molecule such as Fc receptor and protein A bindings. With  



Biopharmaceuticals and Their Production Systems 

 

3 

Table 1.1: Ten global top selling therapeutic proteins in 2013 (Hugget, 2013; Walsh, 2014). 

Product 
Lead 
company 

Molecule 
type 

Production 
host 

Main treatment 
Sales 
($ billions) 

 
     

Humira® 
(adalimumab) 

AbbVie MAb CHO Arthritis 11.00 

Enbrel® 
(etanercept) 

Amgen Fc-fusion 
protein 

CHO Arthritis 8.76 

Remicade® 
(infliximab) 

Johnson & 
Johnson 

MAb Murine 
myeloma 

Arthritis 8.37 

Lantus® 
(insulin glargine) 

Sanofi Protein E. coli Diabetes 7.95 

Rituxan® 
(rituximab) 

Roche MAb CHO Arthritis, cancer 7.91 

Avastin® 
(bevacizumab) 

Roche MAb CHO Cancer 6.97 

Herceptin® 
(trastuzumab) 

Roche MAb CHO Cancer 6.91 

Neulasta® 
(pegfilgrastim) 

Amgen Protein E. coli Neutropenia/ 
leukopenia 

4.39 

Lucentis® 
(ranibizumab) 

Roche MAb E. coli Macular 
degeneration  

4.27 

Epogen® 
(epoetin alfa) 

Amgen Protein CHO Anaemia 3.35 

 

 

these advantages, Fc fusion technology is used in nine FDA-approved drugs for the 

treatment of chronic diseases including rheumatoid arthritis, platelet disorders and 

psoriasis whilst several more are awaiting approvals or in the development pipelines (Mei 

et al., 2013; Walsh, 2014). 

 

 

A new range of engineered proteins, such as fusion proteins and bispecific antibodies, 

have begun to fill the development pipelines of many biopharmaceutical companies. These 

so called next-generation biologics can be significantly more ‗‗difficult to express‘‘ (DTE) 

compared to natural protein formats―generally host cells cannot correctly fold and 

process the recombinant polypeptide where factors such as translation rate and redox 

potential can be limiting, therefore resulting in low production titres. Additionally, many 

complex proteins involve post-translational modifications (glycosylation, phosphorylation, 

etc) that are absent or vary from expression host to expression host, and the problems can 

extend to protein insolubility, degradation and aggregation, thereby affecting product 

qualities (DePalma, 2012; Hall, 2007). Artificial fusion proteins, for instance, have not 
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coevolved in which the interdomain interactions might not contribute to overall 

conformational stability or could even destabilise the confirmation (Fast et al., 2009). 

Therefore, DTE proteins require effective cell line and process development to achieve a 

good balance between drug manufacturing costs (i.e. prices) and therapeutic benefits. 

 

 

 

A wide range of hosts are available for the production of biopharmaceuticals including 

bacteria, yeast, insect, plant and mammalian cells. Prokaryotic systems, especially E. coli, 

have the advantage of low cost and high productivity compared to eukaryotic expression 

systems. However, bacterial cells are unable to carry out the post-translational 

modifications required for the biological function of many recombinant proteins (Pandhal 

and Wright, 2010). On the other hand, yeast, insect and plant cells have a limited 

capability in synthesising proteins that are similar to those naturally occurring in humans. 

For instance, yeast cells are known to provide N-linked and O-linked high-mannose-type 

glycans that could be immunogenic in humans. In this regard, mammalian cells become 

the preferential host as they have the correct molecular machinery to perform human-like 

post-translational modifications (Dasgupta et al., 2007; Durocher and Butler, 2009). 

Accordingly, more than 55% of therapeutic proteins on the market are produced 

using mammalian cells, with Chinese hamster ovary (CHO) cells being the predominant 

host (Walsh, 2014). This is reflected in Table  1.1 where seven of the ten best-selling 

biologics are produced in mammalian cells, and of those seven, six are from CHO cells. 

Similarly, CHO cells are the major host for Fc-fusion protein production—six Fc-fusion 

molecules on the market are expressed in CHO cells, while two more are expressed in 

human embryonic kidney (HEK293) cells and one in E. coli (Mei et al., 2013; Walsh, 2014). 

Nevertheless, other established mammalian cell lines such as NS0 murine myeloma and 

baby hamster kidney (BHK) cells have been, and to a certain extent, continue to be used 

to develop biologics (Estes and Melville, 2014; Wurm, 2004). 

 

 

Large scale manufacturing of therapeutic recombinant proteins involves development of 

recombinant cell lines. Principally, the generation of stably expressing cell clones consists 
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of the transfection of the cell with a gene of interest cloned into a plasmid vector, followed 

by the selection of host cells that have the recombinant gene integrated into the cell 

genome, and the characterisation of the clones for production process (Figure  1.1A; Lai et 

al., 2013). To isolate cells that have successfully integrated the transgene, a selection 

marker is used in which the gene of interest is flanked with a gene coding for a vital 

enzyme. The glutamine synthetase (GS) and dehydrofolate reductase (DHFR) systems 

are commonly used in the industry. In both systems, selection takes place in culture media 

lacking the appropriate metabolite(s), namely glutamine for GS and glycine, hypoxanthine, 

and thymidine for DHFR (Hacker et al., 2008).  

 

 

Figure 1.1: Stable expression and transient expression approaches to recombinant 

protein production. (A) The generation of stably expressing cell lines enables selection of 

clones with desirable production and growth characteristics for large-scale manufacturing of 

kilogram quantities. The plasmid DNA encoding for the protein of interest is randomly integrated 

in the genome of the host cell. (B) Transient gene expression represents an attractive 

alternative to stable expression in which small (gram) quantities of product can be generated in 

days rather than months. Unlike stably expressing cells, the recombinant DNA is maintained as 

an extrachromosomal unit within the cell nucleus that results in impermanent, lower productivity 

(Codamo et al., 2011; Lai et al., 2013). 

Cells surviving selection are characterised by the integration of one or several copies 

of the expression vector into a transcriptionally active region of the host cell chromosomes. 

With both GS- and DHFR-based selection, the copy number of the integrated recombinant 

DNA can be amplified by exposure of the selected cells to increasing levels of methionine 
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sulphoximine (MSX) or methotrexate (MTX), respectively, that inhibits the enzymatic 

activity of the selection marker. This approach for cell line generation relies on the 

screening of hundreds to thousands of individual cell lines for the desired phenotype with 

regard to cell growth rate and recombinant protein productivity. The rare, superior cell lines 

are also eventually evaluated for the stability of protein production over time and in the 

absence of selection marker (Hacker et al., 2008). Consequently, the generation and 

selection of stable, high-performing mammalian cell lines is regarded as a major bottleneck 

in process development for the production of biologics (Browne and Al-Rubeai, 2007).  

To shorten the overall developmental time frame for therapeutic proteins, an 

alternative approach using stable transfection pool technology is also being employed. The 

technology is similar to the stable gene expression approach except that the step of 

isolating and characterising clonal cell lines is omitted. Following selection and 

amplification, the stably transfected pools is used for bioreactor production of recombinant 

proteins, yielding gram quantities of recombinant proteins within two months post-

transfection (Ye et al., 2010). In addition to the relatively high yields, stable pools offer an 

advantage over transient expression platforms in that their production does not require 

large amounts of high-purity, endotoxin-free plasmid DNA (Bertschinger et al., 2006; 

Schmid et al., 2001). 

 

 

The vast expansion in the number of recombinant protein molecules needed both as 

therapeutic candidates and for research purposes demands a means of rapid high-

throughput production of good-quality recombinant protein in mammalian cells (Figure  1.2). 

Transient gene expression (TGE) systems are an attractive alternative for rapid production 

of research-grade protein during the early stages of drug development due to the 

substantial time and resources associated with stable cell line generation. TGE methods 

can be employed to fast track the production of multiple biologics to perform biochemical 

study and early preclinical evaluation of drug candidates (Figure  1.1B). 

TGE has been used for decades in cell biology laboratories for small-scale research 

and analytical purposes, and in the last 15 years or so the technique has been scaled-up 

for rapid supply of biopharmaceuticals. HEK293 cells were originally used for scaled up 

TGE owing to its well established system for episomal replication, whereas systems for 

episomal replication in CHO cells came later (Baldi et al., 2007; Geisse, 2009). Whilst 
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Figure 1.2: Research and development (R&D) process in the biopharmaceutical industry. 

The development of a new drug is a lengthy multi-stage process and costs $1.2 billion for one 

successful drug launch. A way to ease this predicament would be to reduce the time and the 

costs associated with the preclinical research by providing a rapid, high-throughput production 

platform including using transient gene expression technology. Adapted from PhRMA (2012). 

HEK293 cells are regularly used in TGE for the early preclinical stage, it is desirable to 

align the early stage production with later manufacturing stage through use of the same 

cell line. For example HEK293 cells and CHO cells are known to have different post-

translational modifications such as glycosylation, thereby reducing predictability of drug 

candidate development (Suen et al., 2010). Therefore, recent works on TGE processes 

have focused on CHO cells which is the industry's major cell line for biomanufacturing. To 

date, the highest TGE titre for HEK293 cells reported within the literature is 1.1 g/L 

(Backliwal et al., 2008), whereas more recent work using CHO cells achieved 2 g/L 

(Daramola et al., 2014). 

A plethora of transfection methods have been described within the literature, with 

electroporation, cationic lipids and cationic polymers being the most commonly employed 

(Kim and Eberwine, 2010). With respect to the former, direct physical electroporation of 

expression plasmids into the cell nucleus ensures very high transfection efficiency and 

consistency. The recent advent of MaxCyte® technology (Fratantoni et al., 2003) has 

enabled large-scale electroporation for TGE, although the relatively expensive equipment 

and reagents practically limit its use. Similarly, despite their widespread use for microscale 

research applications, cationic lipids (commonly available in proprietary formulations such 
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as Lipofectamine®) are not used for large scale TGE due to its prohibitive cost. 

Consequently, the cationic polymer polyethylenimine (PEI) is arguably the most suitable 

method for large scale TGE. The technique requires low cost with relatively high 

transfection efficacy, and is now immerging as the leading TGE method for bioproduction 

(Backliwal et al., 2008; Daramola et al., 2014; Rajendra et al., 2011; Raymond et al., 

2011). 

 

 

Heterogeneity in a clonal cell population is readily revealed by phenotypic marker 

analyses, which typically result in Gaussian distribution histograms for the abundance of a 

certain protein per cell in a population of cells (Figure  1.3). Within the histogram, the 

abundance of the protein in the cells with the highest and lowest expression level usually 

varies by 10 to 1000 orders of magnitude—disparities which could not be attributed to 

signal measurement noise (Brock et al., 2009; Chang et al., 2008). This variation in 

phenotype is often explained by genetic heterogeneity, which in turn, is thought to be 

promoted by genetic instability in cells (Huang, 2009; O'Callaghan and James, 2008). The 

term genetic, or genomic, instability refers to an increased mutation rate that alter the 

normal organisation and function of genes and chromosomes (Kuttler and Mai, 2006; 

Smith et al., 2010). In other words, the heterogeneity with respect to a given protein (or 

any other quantifiable functional parameters) between individual cells is due to alteration to 

the genes that control the protein expression in the cells. 

 

 

Figure 1.3: Heterogeneity in three clonal cell populations in fluorescent protein 

expression as manifested by the width of the Gaussian distributions. A cell line may also 

have two or more distinct subpopulations of cells (e.g. population A plus population B) having 

different levels of protein expression. 
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Although cell lines are generally required to maintain functional genetic stability 

throughout a period of 30–60 generations beyond the production of a manufacturer‘s 

working cell bank (Brown et al., 1992; Robinson and Chu, 2007), transformed mammalian 

cell lines are artificially immortalised cells, and thus have an inherent temperament of 

genetic instability (Barnes et al., 2006). With the exception of the study of Kaneko et al. 

(2010), it has been shown that mammalian production cell lines are genetically unstable, 

especially after long periods of cultivation and in the absence of selective agents (Derouazi 

et al., 2006; Heller-Harrison et al., 2009; Kim and Lee, 1999). CHO cells, for example, are 

known to have a very unstable karyotype due to chromosome rearrangements arising from 

homologous recombination and translocations, primarily in response to gene amplification 

(Kim et al., 2001; Yoshikawa et al., 2000). 

In the absence of selective pressure, amplified genes localised to extrachromosomal 

double minutes are often lost by disproportionate segregation at mitosis (Kaufman et al., 

1983; Wahl et al., 1982). Consequently, clonally-derived cell lines can display erratic and 

uncontrollable behaviour in culture such as variation in specific growth rate (Barnes et al., 

2006), variations in protein modifications such as N-linked glycosylation (van Berkel et al., 

2009) and loss of productivity (Heller-Harrison et al., 2009). With respect to the latter, cell 

lines may exhibit a relatively stable qP profile, gradual instability over numerous population 

doublings, or a dramatic loss of recombinant protein expression (Heller-Harrison et al., 

2009). In some cases, the instability has also been shown to be transient, with productivity 

reverting to a specific level after a period of time in culture (Merritt and Palsson, 1993). 

Nevertheless, the rapid mutation capability of a host cell provides a mechanism to enrich 

clonal populations with cells that have survival advantages and the ability to grow 

autonomously, for instance with regard to ―ease of adaptation‖ to a selective culture 

condition (O'Callaghan and James, 2008). 

 

 

 

Mammalian cell hosts, such as CHO, do not have a dedicated secretory phenotype and 

are poorly efficient to handle elevated trafficking load or complex secreted proteins (Dalton 

and Barton, 2014). At low levels of mRNA expression, cell-specific recombinant protein 

production and mRNA abundance are positively correlated. When mRNA expression is 
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high, this correlation often breaks down due to limiting translational and/or post-

translational mechanisms, including for non-engineered proteins such as immunoglobulins 

(Barnes and Dickson, 2006; Carpentier et al., 2007; Le Fourn et al., 2014) and luciferase 

(Mead et al., 2009; Takahashi et al., 2011). The limitation can also be due to saturation of 

ER export machinery as reported by Hasegawa et al. (2011) for a CHO phenotype. In this 

particular case, the IgG synthesis and oxidative folding reactions exceeded the ER 

transport rate, resulting in accumulation of export-ready IgG in the ER lumen until a 

threshold concentration was reached to nucleate crystals. 

The cellular bottlenecks are exacerbated in the case of DTE recombinant protein 

production using TGE systems as the host cells can be easily overloaded with transgenes 

and nascent recombinant polypeptides. As a result, for many recombinant proteins, 

productivity is unpredictably low, even MAb products in the same isotype/sub-class can 

display variable expression levels due to different translational and post-translational 

process rates (Pybus et al., 2014a,b). This can also be expected from artificial fusion 

proteins which have not coevolved; the two (or more) combined components are thought 

to have different folding and/or secretion requirements (Lee et al., 2007). On the other 

hand, stable transfectants capable of efficient DTE recombinant protein expression 

avoid/minimise unfolded protein response (UPR) induction by lowering the rate of 

recombinant gene transcription resulting in low stable expression system. Therefore, the 

amount of available recombinant mRNA often appeared to become the limiting event in 

stably producing cells, whereas translational and post-translational mechanisms are 

generally the bottlenecks in transient production of DTE proteins (Davies et al., 2011; 

Mason et al., 2012; O'Callaghan et al., 2010). 

 

 

The transport of secretory proteins typically consists of several stages and involves various 

molecular chaperones along the processes. In eukaryotic cells, the transport into the ER 

lumen represents the first secretion step, and for the majority of these proteins (particularly 

those with more than 100 amino acids) this transport occurs during translation―a process 

referred to as co-translational translocation (Figure  1.4). The binding of the signal-

recognition particle (SRP) to the sequence signal is thought to induce translational arrest 

to allow time for a ribosome-nascent chain complex to diffuse to the ER membrane. This 

would prevent premature folding of a secreted protein in the cytoplasm as well as enable 

the removal of the cleavage of the signal peptide, leading to the synthesis of properly 
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processed and translocated polypeptides. Moreover, the ER luminal Hsp70 and Hsp40 

chaperones, namely immunoglobulin binding protein (BiP) and Sec63, respectively, have 

been shown to play important roles during co-translational translocation in mammalian 

cells. For example, the gating of the channel in the ER membrane is performed by BiP 

(Alder et al., 2005; Schäuble et al., 2012), whereas the initial insertion of several protein 

polypeptides into the Sec61 complex has been associated with Sec63 (Lang et al., 2012).  

 

 

Figure 1.4: Co-translational translocation of secretory proteins into the ER. Translocation 

begins when a (signal-recognition particle) SRP binds to the signal sequence of a nascent 

polypeptide chain. The complex of SRP, nascent chain and ribosome then binds to the SRP 

receptor (consisting of α and β subunits) in the ER membrane. After SRP and its receptor 

dissociate from the nascent polypeptide chain, the signal sequence binds to the Sec61 

translocon, thus opening the translocon gate that blocks the internal channel. The signal 

sequence is inserted as a loop into the central cavity of the translocon and the polypeptide 

chain elongates. Then the signal sequence is cleaved and rapidly degraded, while the chain 

continues to elongate until translation is completed and the chain is extruded into the ER lumen. 

ER lumen molecular chaperones BiP and Sec63 are known to assist the translocation process. 

Finally, the ribosome is released, the translocon gate shuts, and the secreted protein assumes 

its tertiary conformation. Adapted from Lodish et al. (2000) and Nyathi et al. (2013). 

Furthermore, approximately two-third of therapeutic proteins and biologics candidates 

are proteins modified post-translationally by glycosylation (i.e., the attachment of 

oligosaccharide chains). This complex post-translational modification has multiple roles in 

the cell and is characterised by various glycosidic linkages, with N-linked and O-linked 

glycosylation being the most commonly observed types (Pandhal and Wright, 2010; 

Sethuraman and Stadheim, 2006). In the ER, glycosylation is performed to check the 
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status of protein folding, functioning as a quality control system to ensure that only 

correctly folded glycoproteins are exported to the Golgi complex. In the trans Golgi 

network, the sugar components can be bound by specific receptors to assist their delivery 

to the appropriate cellular destination. These sugar moieties can also potentially stabilise a 

protein (e.g. by enhancing the solubility), act as ligands for receptors on the cell surface to 

stimulate signal transduction pathways or mediate cell attachment, as well as regulate 

protein half-life (e.g. sialic acid may improve half-life) and biological activity (Walsh and 

Jefferis, 2006). 

While glycosylation is generally characterised as a post-translational process, N-

glycosylation often occurs co-translationally, in that the glycan is attached to the nascent 

polypeptide as it is being translated and translocated into the ER (Figure  1.5). N-linked 

glycans are essential in proper protein folding (90% of glycoproteins are N-glycosylated), 

in which the oligosaccharides trimming (i.e. sugar hydrolysis by glycosidases) is used to 

both monitor protein folding and specify when proteins must be degraded. The process 

involves the hydrolysis of two terminal Glc from the precursor glycan by glycosidases I and 

II, after which molecular chaperones calnexin and calreticulin bind to the nascent 

glycoprotein via the remaining Glc and assist the protein to fold. The final Glc is soon 

removed by glycosidase II, releasing the glycoprotein from the chaperones. If the protein 

fails to fold properly, glucosyltransferase transfers a Glc to the protein, and the chaperones 

again are bound to the protein to assist proper folding. This cycle of Glc removal and 

addition continues until the protein is properly folded, at which time it is not reglycosylated 

(Ellgaard et al., 2003; Roth et al., 2002). To this point, all N-linked glycoproteins have the 

same precursor glycan structure, and the glycoprotein is transported to the Golgi complex 

for further processing. 

In addition to calnexin and calreticulin, various other molecular chaperones are 

involved in building efficient protein folding machinery within the ER. As nascent 

polypeptides enter the ER in the reduced state, disulphide bonds are rapidly formed to 

stabilise the folded structure of the protein. Protein disulphide isomerase (PDI) catalyses 

the disulphide-bond formation (i.e. oxidation) between cysteine residues intra- and 

intermolecularly, thereby allowing the nascent proteins to quickly find the appropriate 

configuration in their folded state. The reoxidation of PDI is accomplished by the ER 

oxidoreductins (ERO), although the lumen of the ER also provides an oxidising 

environment and substrate glutathione. Interestingly, the reduced form of PDI is able to 

catalyse a reduction of thiol residues, which is particularly important with terminally 

misfolded proteins that must be reduced before dislocation to the cytosol for proteasomal 
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Figure 1.5: N-linked glycosylation in mammalian cells. Oligosaccharide chains attached 

through N-glycosidic linkages are derived from a 14-sugar precursor glycan composed of N-

acetylglucosamine (GlcNAc), mannose (Man) and glucose (Glc) that are added in sequence 

onto dolichol. The first 7 sugars (Man5GlcNAc2) are provided by sugar nucleotides (UDP- and 

GDP-sugars) in the cytoplasm and bound to dolicholpyrophosphate (dolichol-PP). After the 

intermediate is completed, the entire unit is flipped into the ER lumen, after which Man- and 

Glc-P-dolichol molecules provide the remaining 7 sugars to make the Glc3Man9GlcNAc2-PP-

dolichol precursor glycan. The oligosaccharyltransferase (OST) then transfers the sugar moiety 

(Glc3Man9GlcNAc2) to the nascent protein emerging from the Sec61 translocon, specifically the 

free amide group of the Asn (N) with sequence Asn-X-Ser/Thr. The glycan structure for all 

correctly folded glycoproteins that progress to the Golgi complex is Man9GlcNAc2. Adapted from 

Pandhal and Wright (2010). 

degradation (Anelli and Sitia, 2008; Hatahet and Ruddock, 2009). BiP, the most abundant 

ER chaperone with multi-functions, has been demonstrated to cooperate with PDI and 

calnexin in oxidative folding and refolding of glycoprotein, respectively (Mayer et al., 2000; 

Stronge et al., 2001). On the other hand, ER mannosidase (ERManI) plays a key role in 

identifying proteins that are unable to fold correctly. The hydrolysis of mannose residues 

by ERManI would remove the glycoproteins from the reglucosylation and calnexin binding 

cycles, where they would be retro-translocated into the cytosol and eventually delivered to 

ERAD via ubiquitination, a process where ubiquitin binds to lysines on the protein and acts 

as a tag for proteasomal degradation (Frenkel et al., 2003; Tsai et al., 2002). 
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Glycan processing in the Golgi complex involves both trimming and addition of 

sugars to generate diverse oligosaccharides on individual glycoproteins for different 

functions (see below). As with precursor glycan biosynthesis in the ER, this maturation 

pathway to diversify the glycans is highly ordered. The final glycan structures can be 

broadly classified into three types; (i) complex oligosaccharides (multiple sugar types), (ii) 

high-mannose oligosaccharides (multiple mannose residues), and (iii) hybrid-branches 

which consist of both complex and high mannose oligosaccharides. N-glycosylation does 

not prohibit other types of glycosylation from occurring, as O-glycosylation normally occurs 

on glycoproteins that were N-glycosylated in the ER. Unlike N-glycosylation, O-

glycosylation occurs post-translationally on Ser and Thr side chains in the Golgi complex 

and the glycans typically have much simpler oligosaccharide structures. Additionally, in O-

glycosylation the sugars are added one-at-a-time to Ser or Thr residues, which is in 

contrast to N-glycosylation in which the precursor glycan is transferred en bloc to Asn 

(Hossler et al., 2009).  

Proper glycosylation is a critical parameter for the manufacturing of glycoprotein 

therapeutics as it can affect protein stability, bioactivity, pharmacokinetics, immunogenicity 

and protein clearance in the circulation system (Walsh and Jefferis, 2006). For example, 

the clearance mechanisms for recombinant Factor VII have been associated with N-

glycosylation (Appa et al., 2010) while the removal of N-glycosylation sites on recombinant 

erythropoietin (EPO) were shown to significantly reduce its in vivo activity (Delorme et al., 

1992). Additionally, for both N-linked and O-linked oligosaccharide chains, sialic acid is 

typically the desired terminal sugar, with N-acetylneuraminic acid (Neu5Ac) and its N-

glycolylneuraminic acid (Neu5Gc) derivative being the two most common forms (Borys et 

al., 2010; Chen et al., 2011). However, Neu5Gc is not typically expressed in humans (but 

abundantly expressed in most mammals) and has been suggested to elicit human immune 

responses (Irie et al., 1998; Virki et al., 2001). In this regard, anti-NeuGc antibodies is 

detectable in 85% of healthy humans (Zhu and Hurst, 2002), whereas high Neu5Gc levels 

on a chimeric CT4-IgG fusion protein were linked with faster protein clearance profiles in 

vivo (Flesher et al., 1995). 

 

 

Protein aggregation continues to be a major complication in the development and 

manufacturing of biopharmaceuticals. The term "protein aggregation" may be referred to 

as a broad class of protein species with higher molecular weight (oligomers) than the 
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desired native or native-like protein monomer (Mahler et al., 2009; Philo, 2006). These 

protein aggregates may exhibit adverse effects such as immunogenicity, reduced or no 

biological activity, as well as production, formulation and storage problems (Wang et al., 

2010). The potential for protein aggregate formation presents at all stages of mammalian-

based biomanufacturing including during the protein folding reaction in the ER.  

Studies suggest that the poorly populated protein folding intermediates are 

precursors in protein aggregation (Figure  1.6) where these intermediates, for example, can 

have higher flexibility and expose more hydrophobic patches than the folded state. In 

contrast, unfolded (nascent polypeptide chains) and completely folded proteins do not 

aggregate easily (Wang, 2005). Under ER stress (e.g. accumulation of unfolded proteins in 

the ER), proteins can be misfolded, which can then undergo physical interaction (e.g. 

hydrophobic interaction) or cross-linking reactions that lead to formation of protein 

aggregates (Ioannou et al., 1992; Kopito, 2000; Tyedmers et al., 2010). With respect to the 

latter, the most common cross-linking reaction is the intermolecular disulphide bond 

exchange/formation, although other non-disulphide cross-linking pathways such as 

oxidation, dityrosine formation and formaldehyde-mediated cross-linking have also been 

described (Wang et al., 2010). 

 

 

Figure 1.6: Overview of cellular protein folding, misfolding and aggregation. After a 

polypeptide is synthesised at the ribosome, it folds through an intermediate to its native, three-

dimensional conformation. Inefficient ER-folding machinery to fold the synthesised proteins as 

they accumulate in the ER can cause ER stress and protein misfolding. The misfolded 

intermediates can be refolded to their native state via activation of UPR mechanism, or be 

degraded by ER-associated degradation (ERAD) and other cellular proteolysis systems that 

avert the accumulation of misfolded proteins. If the quality-control network is inundated (e.g. 

through increased amounts of aberrant proteins) aggregates can form. Adapted from Kopito 

(2000) and Tyedmers et al. (2010). 
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As mentioned earlier, the formation of disulphide bonds is a critical step in the 

maturation of therapeutic proteins in which they fold into their native conformation vital for 

their structure and activity (Cromwell et al., 2006; Zhang et al., 2011). However, in the case 

of MAbs, which require coordinated synthesis and folding of multiple polypeptides, in vitro 

studies have shown that the folding rate is relatively slow (Goto and Hamaguchi, 1981; 

Lilie et al., 1994), whilst comparative analyses revealed that different CHO cell lines 

(O'Callaghan et al., 2010) and different MAbs (Pybus et al., 2014a) have significantly 

different folding rates. To overcome the folding limitation, mammalian cells have a number 

of mechanisms that give them protection against protein misfolding and aggregation, 

primarily the UPR and ERAD (Dinnis and James, 2005). During the UPR, molecular 

chaperones such as BiP assist protein folding at high concentrations through binding of 

unfolded nascent polypeptides, which also helps in preventing aggregation by sheltering 

hydrophobic surfaces from forming unwanted intra- or intermolecular contacts (Kopito, 

2000). However, depending on cell lines and protein products, the capacity of these 

chaperones can become overwhelmed, resulting in decreased protein folding efficiency. In 

many cases, inefficient ER-folding machinery to fold and assemble the synthesised 

proteins as they accumulate in the ER, often result in the formation of aggregates with 

anomalous intra- and intermolecular disulphide linkages (Gomez et al., 2012; Marquardt 

and Helenius, 1992; Schröder et al., 2002).  

Accordingly, while disulphide bonds formed from the coupling of unpaired free thiols 

on cysteines are vital for the correct configuration of glycoproteins, they may also be the 

basis of protein misfolding and covalent aggregate formation. The presence of free thiols 

can also affect long-term stability of protein products where they are able to propagate 

aggregation by forming disulphide bonds during storage. This has been observed in the 

case of a lyophilised MAb stored at 30°C (Liu et al., 2005) and an Fc-fusion protein in 

liquid solution stored at ‒30°C (Wang et al., 2013). The formation of disulphide mislinkages 

may further promote physical aggregation of proteins, for example via hydrophobic 

interactions (Cabra et al., 2008; Wang et al., 2013), whereas correctly-folded disulphide-

bonded proteins with no free cysteine residues can still undergo aggregation via disulphide 

exchanges through β-elimination (Wang, 2005). 

Various approaches have been taken by manufacturers to control aggregates in 

protein-based products. Although it is technically possible to remove the aggregates at a 

later stage during downstream processing, preventing/minimising the accretion of 

aggregation-prone misfolded proteins is the first and most effectual intervention point to 

control protein aggregates (Cordoba-Rodriguez, 2008; Cromwell et al., 2006; Tyedmers et 
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al., 2010). MAbs susceptible to aggregation due to elevated free thiol can be prevented, for 

example, by adding low amounts of oxidising agent copper sulphate to the culture medium, 

which have been shown to result in a 10-fold decrease of free thiols and improved 

disulphide bond formation (Chaderjian et al., 2005). It is also evident that mutational 

changes can improve the stability of recombinant proteins which inclined to aggregate 

under stress-induced condition. In the study of Lu et al. (2008) for instance, when the 

serine residue 241 of an IgG4 produced in CHO cells was converted to proline, the hinge-

mutant antibody appeared to be more resistant to freeze-thaw-induced aggregation 

compared to its wild type. 

 

 

When the ER protein folding demand is excessive relative to the protein folding capacity, 

unfolded/misfolded proteins would accumulate in the ER, resulting in ER stress. To 

overcome ER stress, a cell activates several signalling pathways, collectively known as the 

UPR, to coordinate between the load of client proteins and the capacity of the protein 

folding machinery. The UPR promotes an adaptive cellular response to ER stress and re-

establishes homeostasis in the ER, as well as induces an apoptosis programme. Double-

stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), 

activating transcription factor 6 (ATF6) and inositol-requiring enzyme 1 (IRE1) are the 

three main sensors of unfolded proteins in the ER and are therefore key transducers of 

UPR. PERK, ATF6 and IRE1 are activated when unfolded protein levels increase and BiP 

is released from the three proteins (Figure  1.7; Chakrabarti et al., 2011; Dinnis and James, 

2005; Schröder and Kaufman, 2005). 

The main function of the PERK pathway is to modulate translation following the 

accumulation of unfolded/misfolded proteins in the ER, although it is also responsible for 

the transduction of both pro-survival and pro-apoptotic signals. Dissociation of BiP from the 

N-terminus of PERK triggers dimerisation and autophosphorylation of the protein kinase 

domain. Activated PERK phosphorylates the α-subunit of eukaryotic initiation factor 2 

(eIF2α) at Ser51, inhibiting the guanine nucleotide exchange factor eIF2B that recycles 

eIF2 to its active GTP-bound form. Lower levels of active eIF2 globally attenuates 

translation initiation as well as downregulates gene transcription (DuRose et al., 2009), 

hence reducing the influx of protein into the ER and reducing the folding load. Additionally, 

phosphorylated eIF2α paradoxically induces translation of the transcription factor ATF4 

mRNA. ATF4 upregulation stimulates the expression of pro-survival functions including  
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Figure 1.7: The major intracellular signalling during the UPR in mammalian cells. In 

unstressed cells, BiP binds to the lumenal domains of PERK, ATF6 and IRE1. Upon 

accumulation of unfolded/misfolded proteins in the ER lumen, PERK released from BiP 

dimerises, autophosphorylates, and phosphorylates eIF2α. eIF2α phosphorylation attenuates 

global translational initiation and paradoxically induces translation of ATF4 mRNA. ATF4 

regulates pro-survival functions such as amino acid import and ER redox control and activates 

transcription of CHOP which leads to apoptosis via downregulation of anti-apoptotic Bcl-2 

protein. CHOP also serves in a negative feedback loop ultimately reducing the phosphorylation 

of eIF2α. Secondly, ATF6 released from BiP translocates to the Golgi complex where for 

cleavage by S1 and S2 proteases to create a cytosolic domain ATF6c that travels to the 

nucleus to stimulate transcription of genes encoding ER chaperones and foldases. Similarly, 

IRE1 released from BIP dimerises to activate its kinase to initiate XBP1 mRNA splicing, yielding 

a strong transcriptional activator to further enhance transcription of chaperones and foldases. 

Additionally, key targets that need IRE1 or XBP1 pathway for induction include genes encoding 

functions in ERAD, particularly EDEM. 

amino acid import and ER redox control (Harding et al., 2003) as well as the expression of 

pro-apoptotic factors through the transcription factor C/EBP homologous protein (CHOP). 

Whilst CHOP induces apoptotic cell death by repression of B-cell lymphoma 2 (Bcl-2) 

expression (McCullough et al., 2001), it also induces a negative feedback loop involving 

the direct dephosphorylation of eIF2α by promoting the expression of growth arrest and 

DNA damage-inducible protein 34 (GADD34; Novoa et al., 2001). 

In addition to PERK, the general control non-derepressible-2 (GCN2) kinase, heme-

regulated inhibitor (HRI) kinase, and protein kinase R (PKR) can also activate this pathway 

(i.e. phosphorylation of eIF2α) independently of ER stress, and therefore this branch of the 
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UPR is termed the integrated stress response (ISR; Ron and Walter, 2007). A well-

characterised precedent for such mechanism is the eIF2α kinase GCN2. Besides inhibiting 

global rates of mRNA translation, GCN2 activation by amino acid starvation or exposure to 

oxidants and the subsequent eIF2α phosphorylation preferentially promotes the synthesis 

of ATF4 (see above). Similarly, low levels of iron lead to depletion of heme in erythroid 

cells, activating HRI autophosphorylation, which in turn phosporylates eIF2α (Han et al., 

2001). PKR participates in an antiviral defense mechanism triggered by interferon, in which 

double-stranded RNA accumulation in virus-infected cells leads to PKR 

autophosphorylation and enhanced p-eIF2α (Dey et al., 2005). 

The second branch of the UPR consists of a complex series of ATF6 translocation to 

the Golgi complex and irreversible proteolytic processing steps, eventually driving the 

upregulation of a pro-survival gene expression programme. Unlike the PERK and IRE 

kinase pathways, ATF6 activation does not involve phosphorylation but cleavage by serine 

protease site-1 (S1) and metalloprotease site-2 (S2) pr6789oteases. Cleaved ATF6 

(ATF6c), in conjunction with other basic-leucine zipper (bZIP) transcription factors and 

required co-regulators, induces a transcriptional programme that increases ER chaperone 

activity and CHOP (Kokame et al., 2001; Yoshida et al., 2000). Furthermore, ATF6c can 

enter the nucleus and bind ER stress response elements (ERSE) of X-box binding protein 

1 (XBP1) to increase its transcription which, after processing by activated IRE1α, also 

induces the expression of chaperones, foldases, lipid biosynthesis enzymes as well as 

other control elements (Yoshida et al., 2001).  

On removal of BiP, IRE1 (like PERK) homodimerises and undergoes 

autophosphorylation of the kinase domain. The endoribonuclease activity of IRE1 removes 

a 26-base pair intron from XBP1 transcripts, which generates a potent 41 kDa transcription 

factor XBP1s (Yoshida et al., 2001). XBP1s then travels to the nucleus and binds to ERSE 

and unfolded protein response elements (UPRE) of a variety of ER chaperones and ERAD 

related genes. With regard to ERAD, ER degradation-enhancing α-mannosidase-like 

(EDEM) protein is known to directly involve in recognition and targeting of unfolded and 

misfolded proteins for degradation, in which the induction is dependent on XBP1 and 

stimulated by ATF6. Since activation of ATF6 precedes XBP1 splicing, it has been 

proposed that the UPR takes place in two phases, (i) ATF6-dependent induction of ER 

chaperones to facilitate protein folding, and (ii) both protein refolding and XBP1-dependent 

induction of ERAD to degrade unfolded/misfolded proteins (Hosokawa et al., 2003; 

Yoshida et al., 2003). 



Chapter 1 

 

20 

 

 

 

 

 

 

 

 

 

 

 

 



  

21 

 

 

This chapter provides an overview of cell line development and engineering strategies for the 

production of biopharmaceuticals. Specific emphasis is given to approaches utilised to improve 

or optimise the production platform, as well as computational tools to assist the development 

and engineering processes. The objective of this chapter is to contextualise the data presented in 

this thesis, with regard to their industrial applications. 
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CHO cells have the most established history of regulatory approval and thus are an 

attractive, safe option for biomanufacturing and remain the industry "workhorse" (Estes 

and Melville, 2014). Yet, the increasing demand and complexity of therapeutic proteins call 

for novel host cell types to meet the challenges of high productivity. In recent years, 

human-derived cell lines, particularly retina derived PER-C6® cells and amniocyte derived 

CAP® and CAP-T® cells, have emerged as an attractive alternative. These cell lines do 

not require amplification of the recombinant genes, thus providing enhanced stability in the 

absence of selection pressure. Additionally, their ability to confer human post-translational 

modifications reduces the potential immunogenic reactions against non-human epitopes 

(Schiedner et al., 2008; Swiech et al., 2012). The CAP-T cell line, developed for high 

transient gene expression (TGE), had been demonstrated to possess intrinsic capabilities 

to synthesise and secrete complex proteins that could not be expressed in sufficient yield 

or adequate quality in CHO and HEK293 cells (Fischer et al., 2012). PER-C6 cells are 

currently being used for production of many therapeutics in clinical trials, and with CAP 

cells they are expected to be a major production platform in the near future (Durocher and 

Butler, 2009; Swiech et al., 2012). 

 

 

Genetic heterogeneity and clonal variation are the basis of the development of mammalian 

cell production systems. Whilst randomly arising clonal genetic heterogeneity contributes 

significant negative side effects, the increased genetic instability/mutation may also grant a 

benefit by producing genetically variant cells with improved phenotypes. This form of 

mutation may be supposed to encompass the regular adaptation of cell lines to suspension 

culture (Astley and Al-Rubeai, 2008), and to serum (Sinacore et al., 2000), cholesterol and 

protein-free media (Birch et al., 1994; Hartman et al., 2007) through growth in selective 

culture conditions. In this way, it can be hypothesised that increased genetic instability is 

an inherent trait to clonally-derived cell populations and is directly linked to cell metabolism 

as well as recombinant gene expression. Therefore, from a cell line development 

perspective, it is desirable to take advantage of this natural variation to generate 

advantageous cell hosts capable of supporting biomanufacturing processes. The host cell 
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factory is a major manufacturing parameter itself, and enhancement of parental cell 

functional capacity, as well as elimination of ineffectual variants from the cell population, 

enable the selection of production process attuned cell lines.   

The maintenance of cell culture involves drastic, periodic contractions in population 

size when fresh media are inoculated during serial passage. A dilution ratio of below 0.1, 

which is a standard practice, diminishes the possibility that rare beneficial mutations are 

established (Wahl et al., 2002). In order to generate superior cell lines, desirable novel 

phenotypic traits are often selected through cloning and extensive screening, or by 

applying a suitable selective pressure. In the context of the latter approach, the genetic 

changes may characterise a developed adaptation of the overall population to a new 

surrounding condition, though in many studies it entails death of most of the cells and 

outgrowth of the surviving cells―allowing the formation of a genetically and phenotypically 

different sub-population that can tolerate that particular culture condition (Browne and Al-

Rubeai, 2011; Hartman et al., 2007). In fact, even a slight advantage in cell survival (i.e., 

higher cell proliferation rate) will allow a clonal sub-population to overgrow a culture within 

a limited number of generations (Kromenaker and Srienc, 1994; Lee et al., 1991).  

Similarly, an iterative process of extended batch culture eliminates inferior cells with 

low resistance to environmental stresses, and thus allows the selection of cells which 

exhibit improved and/or new characteristics (Browne and Al-Rubeai, 2011; Prentice et al., 

2007). Successful examples of selective strategies include the isolation of variant CHO cell 

lines with the ability to be transfected with adenovirus (Condon et al., 2003), the ability to 

survive harsh culture conditions (Keightley et al., 2004; Prentice et al., 2007), and 

improved growth rate (Prentice et al., 2007) and specific productivity (Pichler et al., 2011). 

Moreover, genetically diverse cell populations can be induced artificially, for instance by 

temporarily suspending the DNA mismatch repair mechanism, which has been shown to 

generate high-osmolarity resistant cells (Liu et al., 2010). Although such host-cell 

enhancements may also be achieved via a more direct approach of genetic engineering 

(e.g., introduction of anti-apoptotic genes, knock-out of lactate dehydrogenase gene), this 

strategy requires extensive knowledge of the genes and cellular mechanisms involved and 

proves to be largely intractable (Dietmair et al., 2011; Dinnis and James, 2005; Lim et al., 

2010).  

Nevertheless, it is also important to note that the selection of functionally superior cell 

lines and managing the consequences of cell-specific functional/genetic instability is time-

consuming and resource intensive, and with its own limitations. As mentioned earlier, all 
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inherent traits in mammalian cells may vary over time by means of point mutation, gene 

loss, etc. Consequently, the heritability of the desirable phenotypic/functional trait may be 

considered an issue; i.e. does the screened phenotypic/functional trait remain stably 

heritable over numerous sub-cultures? The rate at which genetic and its associated 

functional characteristic drift away is itself clone-specific, and therefore is likely to be the 

key parameter that needs to be evaluated.  

 

 

 

The final recombinant protein titre is a function of two culture parameters, (i) the integral of 

viable cell density, IVCD and (ii) the cell specific productivity, qP. For fed-batch 

manufacturing processes, the optimal combination is a rapid accretion of productive host 

cells to high culture density for prolonged duration (Bibila and Robinson, 1995). Indeed, 

improvements in culture conditions for recombinant protein biomanufacturing have been 

remarkable in the last three decades, leading to over 100-fold increase in product yield. In 

the late 1980s, standard batch culture production runs had a production phase of 1 week 

and a peak cell density of around 2 million cells/mL, with a product titre of 50‒100 mg/L. 

By comparison, current fed-batch production runs start with a lower cell density and last 3 

weeks with a peak cell density of over 25 million cells/mL, while the product titre can reach 

10–13 g/L (Huang et al., 2010). Much of these improvements have come from innovative 

and progressive developments of media and feeds of fed-batch operations, leading to 

more and healthier cells over a longer cultivation duration (De Jesus and Wurm, 2011). 

In addition to the media compositions, researchers also found that specific MAb 

production rate of hybridoma cells increased when the cell division rate was slowed or 

halted by either small molecule inhibitors (Suzuki and Ollis, 1990) or nutrient limitation 

during chemostat culture (Miller et al., 1988). This apparently inverse correlation between 

qP and cell growth formed the basis of a controlled proliferation strategy to enhance 

recombinant protein expression (Fussenegger et al., 1998). The logic behind this approach 

is that a cell inevitably draws energy and resources away from recombinant protein 

production in order to generate new cellular biomass during mitosis. To circumvent the 

drawback of lower cell density, a "biphasic" cell culture is often employed. According to this 

scheme, cell growth is unrestrained during the first phase to accumulate viable cell density, 
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whereas during the second phase cell cycle is arrested to allow an extended period of high 

productivity (Dinnis and James, 2005).  

Specific productivity may also be induced by increasing medium osmolarity, for 

instance through the addition of sodium chloride. Even though cell growth is depressed 

and apoptosis is induced at elevated osmolality, this can be resolved by the two-stage 

culture or by use of osmoprotectants as well as adaptation of cells to hyperosmotic 

pressure (Ryu et al., 2000). The main objective is to utilise a way of arresting cell division 

without inducing cell death and (in)directly interfere with the increase in recombinant 

protein productivity (Dinnis and James, 2005). Similarly, controlled proliferation by the use 

of lower culture temperature causes, in many cases, an increase in qP. This is particularly 

advantageous as hypothermic condition effectively extends culture longevity. However, 

several studies have shown that the enhancement effect of low temperature on 

recombinant protein production is not due to the G0/G1-phase growth arrest. Instead, the 

improvement is largely as a result of improved mRNA stability and elevated mRNA levels, 

and that a cell may still exhibit growth-associated productivity in hypothermic condition 

(Becerra et al., 2012; Fox et al., 2005; Kou et al., 2011). 

 

 

Chemical chaperones are a group of low molecular weight compounds with a common 

feature mimicking the chaperone function of molecular chaperones. These compounds are 

usually osmotically active, such as glycerol and dimethyl sulfoxide (DMSO), but other 

classes such as histone deacetylase (HDAC) inhibitors are also members of the chemical 

chaperone group. The exact mechanisms by which chemical chaperones function are not 

fully understood, but they are known to suppress ER stress, improve the folding capacity of 

ER, inhibit protein aggregation, enhance protein secretion, among others (Perlmutter, 

2002). Owing to their positive effects, various osmolytes and HDAC inhibitors are in clinical 

use/trials for folding problem-related disease (e.g. Alzheimer's disease) and cancer 

treatments (Kim and Bae, 2011; Papp and Csermely, 2006).  

In cell culture processes, chemical chaperones have been reported to grant a wide 

range of benefits as illustrated in Table  2.1. For example, HDAC inhibitors sodium 4-

phenylbutyrate (PBA), sodium butyrate (NaBu) and valproic acid (VPA) are useful in 

enhancing the production of recombinant proteins in CHO cells (Hwang et al., 2011a; Sung 

and Lee, 2005; Wulhfard et al., 2010), and at the same time are able to reduce the  

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CDMQFjAB&url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3105144%2F&ei=N8rUU534A4PA7Abf3ICABg&usg=AFQjCNHJIjW1jJ3wm1b41OKjCzYUfwwBGw&sig2=lLSoX8ab3Okg79hQdaMygw&bvm=bv.71778758,d.ZGU
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CDMQFjAB&url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC3105144%2F&ei=N8rUU534A4PA7Abf3ICABg&usg=AFQjCNHJIjW1jJ3wm1b41OKjCzYUfwwBGw&sig2=lLSoX8ab3Okg79hQdaMygw&bvm=bv.71778758,d.ZGU
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Table 2.1: Examples of effects of various chemical chaperones on cell culture processes. 

Cell 
Chemical 
chaperone 

Effect Reference 

    

BHK, Neuro2a DMSO, glycerol, 
TMAO 

Reduce aggregate formation and cell 
death 

Yoshida et al. 
(2002) 

CHO Betaine Enhances cell viability and recombinant 
protein production 

Follstad and 
Potter (2006) 

CHO Betaine Suppresses protein aggregation and 
improves protein trafficking 

Roth et al. 
(2012) 

CHO, HEK293 PBA Rescues cells from ER stress and 
apoptosis from misfolded myocilin 

Yam et al. 
(2007) 

CHO DMSO Enhances hepatitis B surface antigen 
production 

Wang et al. 
(2007) 

CHO DMSO Enhances expression of various 
exogenous genes 

Liu et al. (2001) 

CHO DMSO Enhances recombinant HBsAg 
intracellular accumulation 

Ma et al. (2008) 

CHO Glycerol Enhances recombinant M-CSF 
production 

Liu and Chen 
(2007) 

CHO Glycerol Reduces protein aggregation Kim and Lee 
(1993) 

CHO 
 

Glycine betaine Protects cells in hyperosmotic culture Kim et al. 
(2000) 

CHO NaBu Enhances recombinant human 
thrombopoietin production  

Sung and Lee 
(2005) 

CHO NaBu Enhances recombinant tPA production Palermo et al. 
(1991) 

CHO NaBu Minimises Neu5Gc content of fusion 
protein 

Borys et al. 
(2010) 

CHO NaBu Enhances production and minimises 
Neu5Gc content of antibody 

Chen et al. 
(2011) 

CHO PBA, proline, 
glycerol, DMSO 

Enhance production and minimise 
aggregation of FCA1 protein  

Hwang et al. 
(2011a) 

CHO PBA Restore the functionality of misfolded 
mutant low-density lipoprotein receptor 

Tveten et al. 
(2007) 

CHO Trehalose Suppresses recombinant antibody 
aggregation  

Onitsuka et al. 
(2014) 

CHO VPA Enhances recombinant mRNA and MAb 
levels 

Wulhfard et al. 
(2010) 

COS-1, human 
neuroblastoma  

PBA Suppresses Pael receptors aggregation 
and ER stress 

Kubota et al. 
(2006) 

E. coli Arginine, sorbitol Improve recombinant protein solubility in 
cells 

Prasad et al. 
(2011) 

E. coli Proline Inhibits P39A protein aggregation Ignatova and 
Gierasch (2006) 

HEK293 PBA Reduces ER stress and prevents mutant 
HFE aggregation  

de Almeida et 
al. (2007) 

HEK293 PBA, VPA Promote assembly of functional α7 
AChRs 

Kuryatov et al. 
(2013) 

HT-1080, SW-
1353 

Glycerol, TMAO Reduces thermolabile collagen II 
mutants intracellular accumulation 

Gawron et al. 
(2010) 

Hybridoma Betaine Protects cells from hyperosmotic stress Berg et al. 
(1991) 

Mice fibroblasts PBA Rescues trafficking incompetent mutant 
α-galactosidase A 

Yam et al. 
(2007) 
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potentially immunogenic N-glycolylneuraminic acid (Neu5Gc) content of glycoproteins 

(Borys et al., 2010; Chen et al., 2011). The latter results are of particular importance as the 

chemical(s) can conveniently be employed to minimise or control Neu5Gc in the 

manufacturing processes, thereby improving product quality. 

Similarly, enhancement in productivity can also be obtained using glycerol, DMSO 

and proline, even though they are probably more recognised for their ability in 

suppressing aggregate formation (Hwang et al., 2011a; Liu and Chen, 2007; Wang et al., 

2007). On the other hand, methylamine osmolytes such as  betaine and trimethylamine N-

oxide (TMAO) are associated with a protective effect on cells, for instance against 

hyperosmotic condition (Kim et al., 2000), although betaine has also been reported to 

suppress aggregation and improve trafficking of factor VIII in CHO cells (Roth et al., 2012). 

Other chemical chaperones that have been shown to yield positive effects in cell culture 

include arginine, sorbitol (Arakawa et al., 2006) and trehalose (Onitsuka et al., 2014). 

Despite the versatility of general and specific effects, chemical chaperone treatment 

strategy is still underutilised. As low yield and aggregation have become recognised as 

critical issues in a growing number of complex and difficult-to-express proteins, the use of 

chemical chaperones is theoretically attractive because of their applicability to a broad 

range of cell culture processes. Moreover, the strategy has its practical advantage in which 

the chemical dosage can be easily and accurately titrated or applied at any time point of 

culture. 

 

 

 

Examples of constitutive promoters that are often used in mammalian expression systems 

include the human/mouse cytomegalovirus (CMV) promoter, the simian virus 40 (SV40) 

promoter and the non-viral elongation factor 1α (EF1α) promoter. As the nature/design of a 

promoter has profound effects on transgene expression level and overall productivity 

(Backliwal et al., 2008; Davies et al., 2011), developments in mammalian gene expression 

technology to increase transcriptional activity have occurred subsequently. For example, 

Running Deer and Allison (2004) cloned a Chinese hamster EF1α gene and its flanking 

sequences to generate CHEF1 vectors that had 6‒35-fold higher expression levels than 

vectors utilising the CMV or EF1α promoter. On a similar note, Chatellard et al. (2007) 

cloned an enhancer from the mouse CMV immediate early 2 region (IE2), identified as a 
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potent expression-promoting element. The IE2's unique bi-directional promoter 

architecture can be used to efficiently express multi-chain proteins, which was shown to 

result in high recombinant protein production levels. Furthermore, recent work in this 

laboratory successfully created a library of numerous synthetic promoters designed to 

precisely regulate recombinant gene expression in CHO cells over a large transcription 

range (Brown et al., 2014). 

Significant efforts have also been carried out to increase the recombinant gene copy 

number, especially in the transient gene expression (TGE) system. In the stable gene 

expression system, the transgene is inherited by the daughter cells upon mitosis, and thus 

allowing a rather constant transgene copy number in cells of succeeding generations. In 

contrast, in the TGE system the transgene copy number per cell is reduced during cell 

division, and it is therefore inevitable that the cell specific productivity decreases with 

subsequent generations. To overcome this issue, several episomal TGE systems have 

been developed that allow autonomous replication of the recombinant plasmid within 

mammalian cells. A widely used system is the Epstein-Barr virus (EBV) nuclear antigen 1 

(EBNA1), which consists of cells constitutively expressing the EBNA1 protein combined 

with an expression vector containing the EBV origin of replication (OriP) for plasmid 

retention. Other episomal systems include the SV40 large T-antigen and the Py large-T 

antigen (Epi-CHO), where the former supports the episomal amplification of plasmids 

containing the SV40 OriP, while the latter supports the amplification of plasmids containing 

the Py virus and EBV OriPs (Kunaparaju et al., 2005; Piechaczek et al., 1999).  

The ability of plasmids containing OriP to be maintained stably in antigen-positive 

cells makes such systems very efficient. For example, EBNA1 has a specific binding ability 

to the OriP, and with its ability to anchor EBV plasmid to chromosomal site, allows the 

plasmid to mediate replication and (non-random) segregation of the episome during 

division of the host cell. However, as EBNA1 is the only EBV protein necessary for plasmid 

maintenance but lacks any enzymatic activities (e.g. DNA helicase), the replication is 

mainly performed by the host cell replication apparatus (Van Craenenbroeck et al., 2000; 

Yates et al., 1985). This is consistent with studies which demonstrated that the total EBV 

chromosome did not require the replication-initiation function of OriP in latently infected 

proliferating cells. Therefore, the vital function of EBNA1 would be the maintenance 

(segregation) of the circular EBV chromosome, most likely in concurrence with the 

extrachromosomal maintenance function of OriP (Lee et al., 1999; Little et al., 1995). 
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Several investigators observed that the expression of a number of ER chaperones were 

upregulated under stressful culture conditions where recombinant protein productions were 

enhanced (Dorner et al., 1989; Mazzarella et al., 1994). More recently, functional 

proteomic profiling of MAb-producing NS0 cell lines with varying production rate revealed a 

positive relationship between qP and the relative abundance of various molecular 

chaperones and foldases including immunoglobulin binding protein (BiP), protein 

disulphide isomerase (PDI) and endoplasmin (Dinnis et al., 2006; Smales et al., 2004; 

Stansfield et al., 2007). Similarly, high-producing CHO cells (Carlage et al., 2009) and 

HEK293 cells (Jones et al., 2005) were also found to have elevated expression of BiP. 

These observations show that high-level recombinant protein production links to 

upregulation of the ER-resident proteins involved in protein folding and secretion. 

As such, the most ordinary strategy in secretion engineering to date has been one 

involving overexpression of ER chaperones like BiP and PDI (Table  2.2) which catalyses 

intra- or intermolecular disulphide bond formation. Unfortunately, while such an approach 

effectively increases heterologous protein production in insect cells (Ailor and Betenbaugh, 

1998; Hsu and Betenbaugh, 1997) and yeast (Shusta et al., 1998; Smith et al., 2004), 

genetic upregulation of discrete chaperones in mammalian cells to increase qP has not 

always been successful. For example, BiP overexpression in mammalian cells has been 

reported to generically decrease the secretion of recombinant proteins it associates with 

(Borth et al., 2005; Dorner and Kaufman, 1994; Dorner et al., 1988; Dorner et al., 1992). 

Accordingly, the reduction of the amount of endogenous BiP, rather than its 

overexpression, was found to improve secretion of proteins in CHO and BHK cells (Brown 

et al., 2011; Dorner et al., 1988). Similarly, inducible overexpression of PDI did not improve 

antibody production in hybridomas (Kitchin and Flickinger, 1995) and caused reduced 

secretion of a disulphide rich Fc-fusion protein in CHO cells (Davis et al., 2000).  

Despite previously published data, oxidation reactions catalysed by PDI that are vital 

for recombinant protein folding/assembly remain a rationale target. Certainly, specific 

reaction steps could limit the rate of folding of particular proteins (especially multimeric, 

difficult-to-express molecules) more than others. More recent reports by Mohan et al. 

(2007), Pybus et al. (2014a) and Borth et al. (2005) had specifically shown that PDI 

overexpression in CHO cells increased qP by 15‒40%, where the latter specifically 

showed that this was achieved by decreasing intracellular retention of MAb heavy chain 

polypeptides. Additionally, the active site of PDI contains disulphides that become reduced 
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Table 2.2: Examples for co-overexpression and down-regulation of molecular chaperones and foldases in mammalian cells. 

Host System Molecule Recombinant protein Results (titre) Reference 

BHK Stable BiP Human factor VIII 50% decrease Brown et al. (2011) 

BHK Stable BiP down-regulation Human factor VIII 2-fold increase Brown et al. (2011) 

BHK Stable BiP Procine factor VIII No effect Brown et al. (2011) 

BHK Stable BiP down-regulation Procine factor VIII 1.3-fold increase Brown et al. (2011) 

CHO Stable BiP MAb 35% decrease Borth et al. (2005) 

CHO Stable BiP M-CSF 10–50-fold increase Dorner et al. (1992) 

CHO Stable BiP Von Willebrand factor 3–4-fold increase Dorner et al. (1992) 

CHO Stable BiP Factor VIII 5–30-fold increase Dorner et al. (1992) 

CHO Stable BiP down-regulation Mutant tPA 2–3-fold increase Dorner et al. (1988) 

CHO Stable BiP Firefly luciferase Decreased secretion Dorner and Kaufman (1994) 

CHO Transient BiP MAbs 0.9–1.5-fold change Pybus et al. (2014a) 

CHO Stable BiP Antibody 2-fold increase Nishimiya et al. (2013) 

CHO Stable Calnexin and calreticulin Thrombopoietin 1.9-fold increase Chung et al. (2004) 

CHO Transient CypB MAbs 0.8–1.3-fold change Pybus et al. (2014a) 

CHO Stable SRP14 MAbs Increased secretion Le Fourn et al. (2014) 

CHO Stable ERO1Lα and XBP1s MAbs 5.3–6.2-fold increase Cain et al. (2013) 

CHO Transient ERO1L Antibody 37% increase Mohan and Lee (2010) 

CHO Transient ERO1L and PDI Antibody 55% increase Mohan and Lee (2010) 

CHO Stable PDI Thrombopoietin No effect Mohan et al. (2007) 

CHO Stable PDI Antibody 15–27% increased secretion Mohan et al. (2007) 

CHO Transient PDI MAbs 0.7–1.1-fold change Pybus et al. (2014a) 

CHO Stable PDI MAb 37% increase Borth et al. (2005) 

CHO Stable PDI Interleukin 15 No effect Davis et al. (2000) 

CHO Stable PDI TNFR:Fc Decreased secretion Davis et al. (2000) 

CHO Stable PDI MAb No effect Hayes et al. (2010) 

COS-1 Transient ERO1Lβ Antibody 1.5-fold increase Nishimiya et al. (2013) 

COS-1 Transient PDI Antibody 2-fold increase Nishimiya et al. (2013) 

Rat hepatoma Transient PDI Apolipoprotein B 37% increased secretion Grubb et al. (2012) 

Rat hepatoma Transient ERp57 Apolipoprotein B 33% decreased secretion Grubb et al. (2012) 

Rat hepatoma Transient ERp72 Apolipoprotein B 33% decreased secretion Grubb et al. (2012) 
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Table 2.3: Examples for co-overexpression of UPR and anti-apoptotic proteins in mammalian cells. 

Host System Molecule Recombinant protein Results (titre) Reference 

BHK Stable HBx Antibody 5.3-fold increase Jin et al. (2010) 

BHK Stable XBP1s Antibody 2.3-fold increase Jin et al. (2010) 

BHK Stable XBP1s and HBx Antibody 14-fold increase Jin et al. (2010) 

CHO Stable ATF4 Human antithrombin III 2-fold increase Ohya et al. (2008) 

CHO Stable ATF4 MAb 2.4-fold increase Haredy et al. (2013) 

CHO Transient ATF6c MAbs 0.8–1.5-fold change Pybus et al. (2014a) 

CHO Stable Bcl-2 Antibody 2–3-fold increase Kim and Lee (2000) 

CHO Transient Bcl-xL Fusion protein 70–270% increase Majors et al. (2008) 

CHO Stable Bcl-xL ErbB2 Increased expression O'Connor et al. (2009) 

CHO Stable Bcl-xL EPO No effect Kim et al. (2011b) 

CHO Stable Bcl-xL EPO 10–30% increase Han et al. (2011) 

CHO Stable Bcl-xL MAb 90% increase Chiang and Sisk (2005) 

CHO Stable 30Kc6 MAb 3.8-fold increase Wang et al. (2012) 

CHO Stable GADD34 Human antithrombin III 1.4-fold increase Omasa et al. (2008) 

CHO Transient XBP1s MAb 28% increase Codamo et al. (2011) 

CHO Stable XBP1s and ERO1Lα MAbs 5.3–6.2-fold increase Cain et al. (2013) 

CHO Transient XBP1s MAbs 0.8–1.7-fold change Pybus et al. (2014a) 

CHO Stable XBP1s SEAP 6-fold increase Tigges and Fussenegger (2006) 

CHO Stable XBP1s Secreted α-amylase 4-fold increase Tigges and Fussenegger (2006) 

CHO Stable XBP1s MAb 1.4-fold increase Becker et al. (2008) 

CHO Stable XBP1s MAb 1.4-fold increase Becker et al. (2010) 

CHO Stable XBP1s and XIAP MAb 2.1-fold increase Becker et al. (2010) 

CHO Stable XBP1s MAb No effect Ku et al. (2008) 

CHO Transient XBP1s EPO 2.5-fold increase Ku et al. (2008) 

CHO Transient XBP1s Factor VIII No effect Campos-da-Paz et al. (2008) 

COS-1 Transient CHOP (GADD153) Antibody 2-fold increase Nishimiya et al. (2013) 

HepG2 Transient XBP1s Factor VIII No effect Campos-da-Paz et al. (2008) 

NS0 Stable XBP1s MAb No effect Ku et al. (2008) 

NS0 Stable XBP1s Interferon γ No effect Ku et al. (2008) 

NS0 Transient XBP1s EPO 2-fold increase Ku et al. (2008) 
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during catalysis and their reoxidation is thought to be catalysed by the oxidoreductase 

enzyme ER oxidoreductin 1 (ERO1; Sevier and Kaiser, 2006). ERO1 overexpression 

therefore may create an altered oxidising environment suitable for MAb (or other 

disulphide-containing proteins) production within the CHO cells (Cain et al., 2013). 

 

 

Given the complexity of mammalian cellular regulation, engineering a single component of 

protein folding may not always lead to the desired results especially if the secretory 

pathway suffers from several limitations (Delic et al., 2014). A strategy that can modulate 

the secretory machinery in a more global manner holds promise to increase concentrations 

of several chaperones in a functionally meaningful ratio. Accordingly, basic leucine zipper 

(bZIP) transcription factors ATF4 (activating transcription factor 4), ATF6 (activating 

transcription factor 6) and XBP1 (X-box binding protein 1) can be more effective gene 

targets compared to particular ER chaperones (Table  2.3). XBP1 for example is a key 

regulator of the UPR where expression of the protein induced a wide spectrum of secretory 

pathway genes including BiP and PDI (Lee et al., 2003). XBP1 is also known to physically 

expanded the endoplasmic reticulum and the Golgi compartments, resulting in an increase 

in the overall production capacity (Shaffer et al., 2004; Tigges and Fussenegger, 2006). 

Several recent approaches have been described to introduce heterologous XBP1 

into mammalian host cells resulting in higher production rates of various recombinant 

protein products (Becker et al., 2008; Ku et al., 2008; Pybus et al., 2014a). It is interesting 

to note that the study of Ku et al. (2008) highlighted that overexpression of XBP1s had no 

detectable effects on EPO productivity in stable CHO cell lines but significantly enhanced 

transient production in EPO-saturated CHO cells. Pybus et al. (2014a) on the other hand 

had shown, using a panel of difficult-to-express MAbs, that the effects of XBP1s were 

more pronounced in cells with limiting folding and assembly reactions, and that no effect 

was observed with an easy-to-express (ETE) MAb. Together, these data suggest that 

overexpression of XBP1 can be more beneficial when the accumulated level of the 

nascent recombinant polypeptide exceeds the secretory capacity of host cells. 

Overexpression of UPR transcription factors AFT4 and its target CHOP and GADD34 have 

also been reported to positively affect recombinant protein production—likely by promoting 

translation through dephosphorylation of eIF2α, thereby enhancing the protein secretion 

(Nishimiya et al., 2013; Ohya et al., 2008; Omasa et al., 2008). 
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Despite the positive effects, induction of apoptosis upon transfection of the UPR-

related genes could be a drawback for this cell engineering strategy (Becker et al., 2010; 

Pybus et al., 2014a). Becker et al. (2010) overcame this issue by co-expressing the 

caspase-inhibitor x-linked inhibitor of apoptosis (XIAP) with XBP1s, resulting in both 

improved qP and CHO cell survival. Similarly, apoptosis induced by various stresses such 

as hyperosmolarity, nutrient depletion and chemicals (e.g. DMSO and butyrate) can be 

suppressed by overexpression of B-cell lymphoma 2 (Bcl-2) or its Bcl-xL counterpart, 

leading to extended culture longevity and higher recombinant protein production (Chiang 

and Sisk, 2005; Kim and Lee, 2000; Majors et al., 2008). Bcl-2 and Bcl-xL proteins, both 

commonly known to be apoptotic inhibitors, are also thought to play a vital function in 

autophagy through inhibitory interaction with Beclin-1 protein (Levine et al., 2008; 

Thorburn, 2008). 

 

 

 

Mathematical models are beneficial in elucidating biological phenomena (O'Callaghan et 

al., 2010; Stockholm et al., 2007), organising disparate information such as in the case of 

high-throughput data (Hatzimanikatis et al., 1999; Schilling et al., 1999) or rationally 

identifying optimal strategies to improve a production process (Kontoravdi et al., 2007; 

Pybus et al., 2014a). Reported models in the literature show various degrees of biological 

process and mathematical complexity, though in mammalian cell culture substantial works 

are directed towards kinetic modelling. A kinetic model is usually represented by a set of 

differential mass balance equations that are integrated over time, either to a pre-defined 

time duration or a steady state. Kinetic models therefore can account for dynamic 

behaviour and are able to represent the complex biochemistry of cells in a more complete 

way (Almquist et al., 2014). 

Conventionally cell culture models can be divided into two categories, namely, 

"unstructured" and "structured" models (Figure  2.1). The former describes culture 

dynamics encompassing cell growth/death, nutrient consumption, metabolite production 

and recombinant protein synthesis, and their dependence on various culture environmental 

factors (Jang and Barford, 2000; Pörtner et al., 1996). In contrast, the latter is based on 

single cell behaviour and attempt to explicitly describe the detailed phenomena of 
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intracellular metabolism (Bibila and Flickinger, 1991; McKinney et al., 1995). The 

unstructured and structured models can be further categorised into "unsegregated" or 

"segregated" biophases (Figure  2.1) where the latter can be applied for population balance 

modelling (Kromenaker and Srienc, 1994; Lee et al., 1991). In the recent years, several 

hybrid models for MAb production have been also developed in which the unstructured 

model of average cell population behaviour is linked to the structured synthetic model of 

MAb (Ho et al., 2006; Kontoravdi et al., 2005). 

 

 

Figure 2.1: Model classification for cell culture systems. The term ―structured‖ designates a 

formulation in which the cellular model is composed of multiple components (e.g. endoplasmic 

reticulum vs. Golgi complex), while the term ―segregated‖ indicates explicit accounting for the 

existence of heterogeneous cell variants within a population (e.g. producing vs. non-producing 

cells). Adapted from Bailey (1998) and Sidoli et al. (2004). 

Once a model is developed, they may be used for understanding and predicting the 

effects of adding, removing, or modifying molecular components of a mammalian cell 

factory, as well as for supporting/optimising the design of a culture process (e.g., feed 

strategies, medium formulation). With respect to the former, the analysis of fundamental 

cellular or metabolic processes and their ensuing elucidation (Karra et al., 2010; 

O'Callaghan et al., 2010) may lead to the design of more efficient cell culture systems, 

both from a bioprocess control and cell engineering perspectives. Importantly, several 

recent studies have successfully tested in silico predictions by implementing the suggested 

process engineering (Kiparissides et al., 2011; Kontoravdi et al., 2010) or cell engineering 

(Ho et al., 2012; Pybus et al., 2014a) strategies in vivo, resulting in improved recombinant 
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protein production. However, compared to chemical processes, biotechnology processes 

involve numerous reactions of the host cells with many of them being unknown or too 

complex for model application. Therefore, challenges still remain before kinetic modelling 

reaches the level of maturity to be a routine practice in the bioindustry. 

 

 

Traditionally, experiments are conducted to establish the effect of a single input factor 

upon one output response―known as one-factor-at-a-time (OFAT) method. The design-of-

experiment (DOE) technique develops models in a systematic way in order to obtain the 

maximum information from an experimental apparatus being modelled whilst minimising 

the number of experiments (i.e., time and resources) required (Franceschini and 

Macchietto, 2008). Several types of DOE methodology exist, each one has specific 

functions and benefits. Among the commonly used methodology in process development 

are factorial designs and response surface designs. The former are used for screening the 

factors affecting the responses, as well as for identifying the effects of interactions 

between the factors. On the other hand, the response surface methodology (RSM) 

consists of more advanced DOE designs aimed at mapping responses across a defined 

range of input factors (Figure  2.2). Thus, the designs capable of predicting the responses 

of a given coordinate of the design space that is not experimentally tested (Mandenius and 

Brundin, 2008). 

Despite the obvious benefits, the DOE methodology is not fully adopted in the 

bioindustry. A recent report, for example, showed that only about 5% of all biological 

assays were developed using DOE approach, even though the general anticipation was 

that considerable cost reduction (3X) could be achieved by employing DOE. The lack of 

use of the DOE method is mainly due to two reasons. Firstly, many biologists are not well 

familiarised with the technique which involves complex statistics, even with the help of 

statistical packages. Secondly, the significantly more complex biological processes 

compared to chemical processes lead to many researchers believing that DOE methods 

can lead to "illogical" biological recommendations (Comley, 2009). Nevertheless, reports 

have shown that the FDA actively encourages biopharmaceutical companies to adopt a 

DOE driven methodology towards process development and validation including in its 

Process Analytical Technology (PAT) initiative (Baseman, 2012; FDA, 2004). 
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Figure 2.2: Response surface methodology (RSM) for three factors with three levels 

using the Box-Behnken and central composite designs. By conducting experiments at the 

designated points, RSM allows navigation inside and around the design space to study effects 

of interactions between the factors, and identify combinations of factors for optimal response(s). 

The centre point provides the estimation of curvature and pure error and axial points that allow 

accurate modelling of the process responses. For central composite design, the distance of the 

axial points from the centre point can vary and specify the nature of the experiment.  

One common use of DOE in the production of recombinant proteins from mammalian 

cells is the optimisation of basal variables underpinning PEI-mediated transfection (Bollin 

et al., 2011; Daramola et al., 2014; Mozley et al., 2014; Thompson et al., 2012). The 

method enables the identification of optimal transfection conditions for high transfection 

efficiency and minimal polyplex cytotoxicity, and reveals that choice of host cell line is a 

critical parameter that should rationally precede the transient production platform. Other 

applications of DOE in process development include the optimisation of medium 

formulations to increase cell growth and production (Chun et al., 2003; Jiang et al., 2012; 

Kim and Lee, 2009; Sandadi et al., 2005) as well as the investigation of the combined 

effects of medium components on MAb N-glycan processing (Grainger and James, 2013). 

Such applications could further boost the multi-gram titres currently obtainable in the 

bioindustry and at the same time achieve high product qualities. Additionally, the DOE 

methodology has also been shown to be valuable in assessing scaled down culture 

systems such as cultiflask (Strnad et al., 2010) and microbioreactor (Legmann et al., 2009) 

as high-throughput tools for process development. 

 

 

Very low productivity is often associated with DTE recombinant proteins produced in 

mammalian cells. In Chapter 4, the Sp35:Fc cellular production is first studied to identify 
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the limiting processes, and the impact on the UPR and protein aggregation. The study 

provides a detailed understanding of the cellular constraints normally associated with DTE 

protein, whilst the data obtained enables the identification of rationale engineering targets 

to improve the production process. In Chapter 5, we subsequently utilise mathematical 

modelling approach to systematically and quantitatively describe the cellular kinetics and 

evaluate the relative impact of each cellular process. A model framework for Sp35:Fc 

synthesis and secretion processes is developed based on the empirical data obtained in 

Chapter 4. The in silico analysis reveals cell functions in maintaining cellular homeostasis 

and importantly predicts the relative significance of different engineering targets. 

In Chapter 6, we explore the possibility of exploiting the genetic and functional 

heterogeneity within the CHO cell population for improved Sp35:Fc production by isolating 

numerous clonal variants. The phenotypic/functional variations are characterised at 

different generations over prolonged culture, leading to the identification of several clones 

with inherent, superior characteristics for Sp35:Fc production. The data provides important 

knowledge for CHO host cell choice to express difficult to produce recombinant proteins. 

Chapter 7 describes a novel vector engineering approach specifically beneficial for DTE 

protein production. The system incorporates ER stress elements into the SV40 vector and  

manipulates endogenous and exogenous UPR transactivors. We show that the synthetic 

amplifier circuit produced a dynamic recombinant protein expression that permits rapid cell 

growth and high Sp35:Fc production in fed-batch culture.  

In order to resolve the Sp35:Fc expression bottlenecks, Chapter 8 investigates the 

effects of various cell and process engineering strategies including the co-expression of 

functional proteins and treatment of cells with chemical chaperones. The interactions 

between different strategies are also studied including using DOE methodology. Based on 

the preliminary data, we formulate integrated cell and process engineering strategies for 

fed-batch culture in which up to a six-fold increase in volumetric titre was achieved. 

Additionally, the integrated strategies are tested on two clones obtained in Chapter 6 as 

well as on the production of SEAP as a model ETE protein. In the final chapter of this 

thesis (Chapter 9), work within previous chapters is summarised as a whole, followed by a 

brief description on the prospect of future work. 
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The materials and methods used for experiments described throughout this thesis are described 

in this chapter. All materials used were of the highest purity available, unless otherwise stated.  
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The plasmid vector pCMV SEAP2-Control (Appendix A) encoding secreted alkaline 

phosphatase (SEAP) under the control of a CMV promoter was provided by Dr Nathan 

West. The plasmid was modified from pSEAP2-Control vector (Clontech, Mountain View, 

CA) which originally used SV40 promoter as described in West (2014). 

 

 

 

A CHO-S cell line was provided by Biogen Idec (Cambridge, MA). The cells were cultured 

in CD CHO medium (Life Technologies, Paisley, UK) supplemented with 8 mM L-

glutamine (Life Technologies) within Erlenmeyer shake flasks (Corning Incorporated, 

Acton, MA) maintained at 37°C under 5% CO2 and shaken at 140 rpm. Cells were seeded 

at 2×10
5
 viable cells mL

-1
 and were sub-cultured every 4 days, unless otherwise stated. 

Spent medium was removed by pelleting the cells using centrifugation at 200×g for 5 min. 

Cell culture viability and viable cell concentration were measured using a Vi-CELL™ Cell 

Viability Analyser (Vi-CELL XR; Beckman Coulter, Brea, CA) using Dulbecco's phosphate 

buffered saline (DPBS; Life Technologies) as diluent where necessary. The 

growth/proliferation rate (µ; day
-1

) and the integral of viable cell density (IVCD; cell day mL
-1

) 

were determined using Equations 3.1 and 3.2, respectively: 

µ =
ln(𝑋2/𝑋1)

Δ𝑡
                                                                                                                       (3.1) 

IVCD =  
𝑋2 + 𝑋1

2
× Δ𝑡 + IVCD2−1                                                                                (3.2) 

where X2 and X1 are the viable cell concentration at second time point and first time point, 

respectively, and t is the time. 

 

 

Cells were harvested at mid-exponential culture (day 4), centrifuged at 200×g for 5 min 

and supernatant was removed. Cell pellets were re-suspended in cold culture media 

supplemented with 10% v/v dimethyl sulfoxide (DMSO; Sigma-Aldrich, Poole, UK) to 

6.67×10
6
 cells mL

-1
 at 1.5 mL per vial. Cryovials were frozen to –80°C for 24 h before 
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transferring to cryostats containing liquid nitrogen (–196°C) for long term storage. Cells 

were brought up from liquid nitrogen storage by thawing the cells in a waterbath at 37°C 

and resuspending in warmed culture media. 

 

 

 

1% w/v agarose gel was used to visualise or separate DNA fragments of different sizes. 

Each gel block was prepared by dissolving 0.4 g of agarose into 40 mL of 1X TBE buffer 

by heating the mixture up, followed by the addition of 10 μL of ethidium bromide. After the 

gel was set, 100–500 ng of DNA was loaded into each well using 5X loading buffer (Bioline 

Reagents, London, UK) with a final volume of 10 μL. Nuclease-free water (Qiagen, 

Crawley, UK) was used as diluent where necessary and HyperLadder™ I (Bioline 

Reagents) was used as a molecular weight marker. The gels were run at a constant 

voltage of 110 V for 1.5 h and then visualised using a UV transilluminator (ImageQuant™-

RT ECL™ Imager; GE Healthcare, Amersham, UK). 

 

 

The Sp35:Fc gene was provided by Biogen Idec and inserted into pcDNA™3.1(+) vector 

(Life Technologies) at the NheI and EcoRI restriction sites. Briefly, digestion was 

performed on the GeneArt® pMA cloning plasmid containing the Sp35:Fc gene and the 

pcDNA3.1 vector at NheI and EcoRI restriction sites using the respective enzymes and 

Buffer C from Promega (Southampton, UK) according to the manufacturer's protocol. The 

Sp35:Fc gene was separated from the pMA plasmid backbone and the linearised 

pcDNA3.1 vector was separated from the small DNA fragment using gel electrophoresis. 

The Sp35:Fc gene and linearised pcDNA3.1 vector were extracted from the gel slices 

using QIAquick® Gel Extraction Kit (Qiagen) according to the manufacturer‘s protocol. The 

Sp35:Fc gene was then inserted into the linearised pcDNA3.1 vector by NheI and EcoRI 

sticky-sticky ligations using T4 DNA ligase (Promega) according to the manufacturer's 

protocol. To verify the plasmid construct (Figure 3.1), the purified product (see below) was 

subjected to single and double digests followed by gel electrophoresis prior to 

visualisation. The recombinant gene insert was confirmed by DNA sequencing using nine 

sequencing primers designed using Vector NTI® software (Life Technologies). 
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Figure 3.1: pcDNA3.1 plasmid vector containing the Sp35:Fc gene. The Sp35:Fc protein is 

encoded under the control of a CMV promoter. 

 

Plasmid DNA was transfected into E. coli MAX Efficiency® DH5α™ competent cells (Life 

Technologies) according to the manufacturer's instructions and successful transformants 

were selected by spreading the cells on LB agar (Fisher Scientific, Loughborough, UK) 

containing 100 µg mL
-1

 ampicillin. A single colony was picked and inoculated in 5 mL LB 

broth containing ampicillin and incubated for 8 h at 37°C and 250 rpm. Following 

amplification, the plasmid was purified using the QIAGEN® Plasmid Maxi Kit (Qiagen) 

according to the manufacturer‘s instructions and stored in TE buffer pH 8.0 (Sigma-Aldrich, 

Poole, UK) at ‒20°C. Plasmid DNA concentration (ng µL
-1

; Equation 3.3) was determined 

by measuring the A260 and the purity was determined via the A260/A280 ratio using a 

Biomate 3 Spectrometer (Thermo Scientific, Cramlington, UK). For accurate 

spectrophotometric DNA quantification, the A260 readings were taken in the range of 0.4 

and 0.6 absorbance unit using Nuclease-free water (Qiagen) as diluent. To control the 

purity of the DNA, only preparations with a ratio of greater than 1.8 were used. 

DNA conc.  =  50 ×  A260 × dilution factor                                                                  (3.3) 

 

 

The plasmid DNA copy number per nanogram of a given vector was determined from its 

length using the following equation; 
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Number of copies =   
amount  ng × 𝑁A

length (bp)  × 650 × 109
                                                          (3.4) 

where NA is the Avogrado's number (6.022×10
23

 molecules mol
-1

), 650 is the average 

weight of a base pair in g mol
-1

 (Dalton), and 10
9
 is unit the conversion from gram to 

nanogram. 

 

 

 

Electroporation-mediated transfection was conducted using the Amaxa® Cell Line 

Nucleofector® Kit V system (Lonza, Basel, Switzerland). Cells were seeded at 1.5×10
5
 

viable cells mL
-1

 and were sub-cultured every 2 days for 2 passages prior to transfection. 

Transient transfection was conducted at Day 2 of culture when the cell density was <1×10
6
 

cells mL
-1

. 4.5×10
6
 cells per cuvette were centrifuged at 100×g for 8 min. Cell pellets were 

resuspended in the Nucleofector solution and transfected with up to 4.6 µg plasmid DNA 

using programme U-024. Immediately after electroporation, cells were diluted in 700 µL of 

culture medium and transferred to a TubeSpin (TPP, Trasadingen, Switzerland) containing 

10 mL pre-warmed culture medium at a seeding density of 2.5×10
5
 cell mL

-1
. To scale up, 

samples from 3 cuvettes were pooled and cultured in a 125 mL Erlenmeyer flask. After 1‒2 

h of incubation at 37°C and 5% CO2, sample was taken to determine cell viability and anti-

clumping agent (Life Technologies) was added at 1:200 dilution. To determine the 

transfection efficiency, 4.5×10
6
 cells were transfected with 1–4 µg of pmaxGFP® vector 

(Lonza) using the same procedure and analysed using flow cytometry. 

 

 

Lipofectamine-mediated transfection was conducted using Lipofectamine® LTX with 

PLUS™ reagent (Life Technologies). One day before transfection, cells were sub-cultured 

at a seeding density of 3.7×10
5
 cells mL

-1
 in CD-CHO supplemented with 8 mM glutamine 

in 1 L Erlenmeyer flask. The cells were grown for 24 h to a density of 1.0×10
6
 cells mL

-1
 

and aliquots of 25 mL were added to each 125 mL Erlenmeyer flask. For each transfection, 

20 µg of plasmid DNA was diluted in 1.2 mL Opti-MEM® I Reduced Serum medium (Life 

Technologies) with 20 µL PLUS reagent, and then combined with 70 µL Lipofectamine pre-

diluted in 1.2 mL Opti-MEM® medium. The Lipofectamine/DNA mixture was allowed to 
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stand at room temperature for 5 min before being added to the culture. Anti-clumping 

agent (Life Technologies) was added 24 h post-transfection at 1:200 dilution. To determine 

the transfection efficiency, cells were transfected with pmaxGFP® vector (Lonza) using the 

same procedure and analysed using flow cytometry. 

 

 

Cells were fixed with paraformaldehyde (PFA; Sigma-Aldrich) prior to flow cytometry 

analysis. 4% w/v PFA was prepared by adding 2 g PFA to 50 mL 1X PBS (Fisher 

Scientific). An aliquot of cells to be fixed were harvested by centrifugation at 200×g for 5 

minutes and washed with 1X DPBS (Sigma-Aldrich). The cells were incubated in cold 4% 

w/v PFA solution at a concentration of 1×10
7
 cells mL

-1
 for 15 minutes. After incubation, 

the cells were then centrifuged and resuspended in cold DPBS and stored at 4°C until use 

(<2 weeks). Flow cytometry was performed using Attune® Acoustic Focusing Cytometer 

(Life Technologies). A sample of 10,000 cells was measured and negative control cells 

without GFP plasmid were used to determine cellular auto-fluorescence. Data was 

analysed using Attune® Cytometric software (Life Technologies). 

 

 

 

To determine the recombinant protein titre, 0.5 mL of culture medium was filtered through 

a 0.22 µm Costar® Spin-X® Centrifuge Tube Filter (Sigma-Aldrich) by centrifugation at 

10,000×g for 5 minutes. Sp35:Fc protein concentration was measured using FastELISA® 

Human IgG Quantification Kit (RD-Biotech, Besançon, France) whereas SEAP protein 

concentration was measured using SensoLyte® pNPP Secreted Alkaline Phosphatase 

Reporter Gene Assay Kit (AnaSpec, Fremont, CA) according to the manufacturer‘s 

instruction in both cases. A PowerWave™ XS microplate reader (Bio-Tek, Bedfordshire, 

UK) was used for absorbance measurement while KC4 3.1 software (Bio-Tek) was used to 

generate the Sp35:Fc and SEAP standard curves and interpolate the recombinant protein 

concentrations (Figure  3.2). 
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Figure 3.2: Example of standard curves generated using ELISA-based methods. 

Absorbance measurement was used to determine the concentration of recombinant Sp35:Fc 

fusion protein (A) and SEAP (B) in culture media. For sample concentrations above 1 µg mL
-1

, 

serial dilution was performed on the samples. 

 

The daily cell-specific productivity (qP; pg cell
-1

 day
-1

) based on viable cell number, X (cells 

mL
-1

) and volumetric titre, T (pg mL
-1

) was calculated from the titre at second time point 

and first time point using the following equation: 

𝑞P =
𝑇2 − 𝑇1

 
𝑋2 + 𝑋1

2  × Δ𝑡
                                                                                                            (3.5)     

The average qP through culture was determined from the volumetric titre and IVCD as 

follows: 

𝑞P =
𝑇2−𝑇1

IVCD2−1
                                                                                                                         (3.6)     

 

 

 

For intracellular polypeptides, 5×10
6
 cells were harvested and lysed in 500 µL of RIPA 

buffer (50 mM Tris–HCl, pH 8.0, with 150 mM sodium chloride, 1.0% Igepal CA-630 (NP-

40), 0.5% sodium deoxycholate, and 0.1% sodium dodecyl sulfate (Sigma-Aldrich)) and 

incubated at 4°C for 10 min. Lysates were centrifuged at 8,000×g for 10 min at 4°C, 
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supernatant fractions removed and stored short-term at 4°C. For analysis of extracellular 

polypeptides, 1 mL of 0.22 µm filtered culture supernatant was stored short-term at 4°C. 

SDS-PAGE was performed using 3–8% NuPAGE® Tris-Acetate gels (Life Technologies) 

with LDS sample buffer (Life Technologies) under reducing and non-reducing conditions, 

in which the latter contained 25 mM N-ethylmaleimidine (NEM) as an alkylating agent. For 

absolute quantification method, protein samples were resolved alongside a serial dilution 

of purified Sp35:Fc protein of known concentration at constant 150 V for 1 h. Biotinylated 

protein ladder (Cell Signaling, Danvers, MA), Novex® Sharp (Life Technologies) and 

HiMark™ marker (Life Technologies) were used for estimation of molecular weights where 

the latter was stained with SimplyBlue™ SafeStain (Life Technologies) according to the 

manufacturer's instructions. 

 

 

Resolved Sp35:Fc protein samples were transferred to nitrocellulose membranes by iBlot® 

semi-dry blotting (Life Technologies) according to manufacturer‘s instructions. Each 

membrane was washed with 20 mL 1X TBS-T for 5 min and blocked in 10 mL 5% w/v 

milk/TBS-T for 1 h at room temperature. After three washings with 15 mL 1X TBS-T (5 min 

each), the membrane was incubated overnight at 4°C with HRP-conjugated goat anti-

human IgG Fc γ fragment in 10 mL 4% w/v BSA/TBS-T solution (1:20,000; Jackson 

ImmunoResearch, West Grove, PA), followed by three washings and incubation with HRP-

conjugated anti-biotin antibody in 5% w/v milk/TBS-T solution (1:1000; Cell Signaling) for 1 

h at room temperature. Finally, the membrane was washed three times to remove 

unbound antibodies prior to quantification. 

 

 

Detected polypeptides were visualised with an Immobilon™ Western chemiluminescent 

HRP substrate according to the manufacturer's instructions (ECL; Millipore, Watford, UK) 

and chemiluminescence signals collected using a CCD camera (ImageQuant™-RT ECL™; 

GE Healthcare, Amersham, UK). Western blot images were analysed using ImageQuant 

TL image analysis software (GE Healthcare) and Sp35:Fc polypeptides were quantified by 

relative quantification method or by external calibration using the band densities (known-

concentrations) of the purified Sp35:Fc standards ran on the same gel (Figure  3.3). 
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Figure 3.3: Example of standard curve generated by ImageQuant TL software for external 

calibration. Band densities of purified Sp35:Fc standard at different concentrations were used 

to quantify Sp35:Fc polypeptide samples. 

 

SigmaPlot 12.0 software (Systat Software, San Jose, CA) was used for statistical analysis. 

To test for linear correlation, Pearson's product moment correlation coefficient (PPMCC) 

was used. To test for statistical significance, an unpaired, two-tailed student‘s t-test was 

used. A P value of <0.05 was considered to be significant. 
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This chapter provides a detailed understanding of the cellular constraints normally associated 

with difficult-to-express protein production, as well as broader insights to the potential 

repercussions such as formation of protein aggregates. The aims are to identify the CHO cell 

constraints in manufacturing Sp35:Fc fusion protein at elevated transgene expressions, as well 

as to study the impact of the unfolded protein response. The data obtained, in turn, enable the 

identification of engineering targets to improve the production process. 
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Major successes have been achieved in the production of recombinant therapeutic 

proteins from cultured mammalian cells, particularly with monoclonal antibodies (MAbs) 

and Fc-fusion proteins. Amplification methods to increase the recombinant DNA (rDNA) 

copy number yield efficient production of many recombinant products, with typical specific 

productivities (qP) of 10 pg/cell/day a decade ago have now increased to around 50 

pg/cell/day (Butler and Meneses-Acosta, 2012). Considerable efforts have also been 

directed to targeting rDNA to transcriptionally active sites (Nehlsen et al., 2009), and to 

include chromatin opening elements (Antoniou et al., 2003). In the case of transient 

expression systems, powerful transfection method like Nucleofection (Zeitelhofer et al., 

2007) and optimisation of transfection conditions (Mozley et al., 2014; Thompson et al., 

2012) have led to very high transfection efficiency and low toxicity, thus enabling very high 

rDNA copy number delivered per cell. Transient expressions can also be enhanced by 

using post-transcriptional regulatory elements (Mariati et al., 2012). 

Nevertheless, increased transgene copy number and transcriptional and translational 

activities do not necessarily improve the amount of secreted recombinant proteins, where 

very high rDNA copy number and/or mRNA levels have been shown not to correlate to the 

increase in protein output in both stable (Barnes et al., 2004; Schröder et al., 1999) and 

transient productions (Ku et al., 2008) as well as in vivo (Takahashi et al., 2011). 

Improvements through rDNA/mRNA strategy will ultimately reach a plateau beyond which 

no increases productivity can be achieved if no concurrent improvements in post-

translational processes are made. Moreover, such strategy can easily fail for some 

particular difficult-to-express (DTE) proteins, for which even moderate levels of protein 

expression cannot be attained. In such cases, the host cells are often incapable of 

handling the folding or processing of the recombinant proteins, thus triggering cellular 

stress responses and apoptotic effects leading to reduced cell growth and/or productivity 

(Le Fourn et al., 2014; Pybus et al., 2014a).  

The secretion of proteins by mammalian cells is a complex pathway. It involves 

translocation of nascent polypeptide from the cytosol into the endoplasmic reticulum (ER) 

where they fold with various chaperones and foldases, followed by post-translational 

modifications in the Golgi complex (e.g. glycosylation) before being transported to their 

final destination. Fundamental understanding of how mammalian cells cope with high 

levels of rDNA expression are critical to further enhance the recombinant protein titres (as 

a measure of qP), and particularly to the development of new, ever increasing difficult to 
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produce recombinant proteins. In this regard, several recent reports (e.g., Le Fourn et al., 

2014; Mason et al., 2012; Pybus et al., 2014a) have provided a detailed description of 

cellular mechanisms of MAb production, which in turn provided strategies in designing 

better expression systems during the production process. On the other hand, 

comparatively little has been done to investigate the production of Fc-fusion proteins at 

cellular level, where studies on these proteins primarily focus on the aggregation 

mechanisms (e.g., Fast et al., 2009; Shukla et al., 2007; Strand et al., 2013). 

Therefore, the mechanism for a difficult-to-express Fc-fusion protein production is 

presented here to better understand the potential cellular constraints in manufacturing this 

growing class of therapeutic proteins. In this work, we used a model Sp35:Fc fusion 

protein (proprietary of Biogen Idec, USA; Figure  4.1) to study the transient expression of 

DTE Fc-fusion protein in CHO cells. The recombinant protein was developed to provide 

means of treating diseases, disorders and injuries involving demyelination and 

dysmyelination (e.g. multiple sclerosis), by the administration of an Sp35 antagonist, 

whereas the potential advantages of the Fc fusion include solubility, in vivo stability, and 

multivalency (Mi et al., 2013). The leucine-rich repeat (LRR) motif functions by interacting 

with specific receptor complex found on neurons to constitute a functional receptor for 

myelin-derived inhibitors, which in turn suppress myelination and prevent the repair of 

damaged axons. Therefore, Sp35-derived products could have therapeutic applications for 

central nervous system injury (Mi et al., 2004; Pepinsky et al., 2014). 

 

 

Figure 4.1: Schematic representation of homodimeric Sp35:Fc fusion protein. Each Sp35 

molecule (also designated as LINGO-1 in the literature) consists 12 leucine-rich repeat (LRR) 

motifs flanked by N- and C-terminal capping domains, 1 immunoglobulin (Ig) domain and a 

stalk, and is fused to the Fc domain (CH2 and CH3) of an IgG1 via a non-covalent bond. The 

Fc-domain is linked via a disulphide bond in the hinge region. Adapted from Mi et al. (2004). 

The Sp35:Fc fusion protein is secreted as a homodimeric molecule comprising two 

identical polypeptide chains covalently linked through interchain disulphides in the hinge 

region, with each chain consists of a therapeutic Sp35 molecule fused to the Fc domain of 
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human IgG1 via a non-covalent bond (Figure  4.1). The recombinant protein, however, is 

particularly difficult to produce with very low productivity/titre and significant product 

aggregates. Throughout this thesis, the "monomer" for Sp35:Fc protein is defined as one 

of the two identical polypeptide chains. Each chain has 10 potential N-linked and 3 

potential O-linked glycosylation sites. Additionally, each Sp35 molecule contains 12 

cysteine amino acids that could potentially form mismatched disulphide bonds (Scott 

Estes, personal communication). 

Here we examine the impact of elevated Sp35:Fc DNA loads on the transient protein 

expression by analysing the recombinant mRNA copy number, intracellular polypeptide 

content, secreted proteins, as well as the potential repercussions of protein aggregation. 

We observe that the host cells have a very restricted cellular capability in manufacturing 

the recombinant protein even at low transgene copy numbers, and that there is a specific 

threshold level that the cells are able to process nascent polypeptides in the ER without 

significantly invokes the unfolded protein response (UPR). By elucidating the core cellular 

mechanisms responsible for differential expression at varying rDNA loads, we hope to gain 

broader insight of how CHO cells regulate DTE protein production, which can then be 

utilised to design engineering strategies for improved bioproduction process. 

 

 

 

1×10
6
 cells were harvested by centrifugation at 200×g for 5 min and cell pellets were 

immediately resuspended in 300 µL of RNAprotect® Cell Reagent (Qiagen) and stored at 

–20°C. RNA was purified using the RNeasy® Plus Mini Kit (Qiagen) and genomic DNA 

(gDNA) was eliminated by using the Ambion® TURBO DNA-free™ Kit (Applied 

Biosystems, Warrington, UK) according to the manufacturer‘s instructions in both cases. 

gDNA-free RNA was converted to cDNA in a 20 µL reaction by using the High-Capacity 

cDNA Reverse Transcription Kit (Applied Biosystems) and an Applied Biosystems Veriti™ 

96-well Thermal Cycler according to the manufacturer‘s instructions. The cDNA was 

quantified by quantitative real-time polymerase chain reaction (qRT-PCR) using an Applied 

Biosystems 7500 Fast Real-Time PCR system and the calibration curve method.  

Standard curves were generated using known quantities of the linearised rDNA 

plasmids as a template (Figure  4.2; Pfaffl et al., 2002). The PCR reactions were performed 

in a final volume of 20 µL using TaqMan® Universal Master Mix II with UNG (Applied 
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Biosystems), 1 µL of cDNA, 500 nM of forward and reverse primer each and 200 nM of 

probe. Primers and probes were designed using Applied Biosystems Primer Express® 3.0 

software and TAMRA and FAM dyes were used as the quencher and reporter dyes, 

respectively. Primers and probes (Eurofins MWG Operon, Ebersberg, Germany) for 

amplification and quantification of the Sp35:Fc cDNA and SEAP cDNA were as follows: 

Sp35:Fc forward primer 5'-TGCCTGGTCAAAGGCTTCTATC-3', reverse primer 5'-

GTTCTCCGGCTGCCCATT-3' and probe 5'FAM-CCGTGGAGTGGGAGAG-3'TAM; and 

SEAP forward primer 5'-CCGCTTTAACCAGTGCAACA-3', reverse primer 5'-

CCCGATTCATCACGGAGATG-3' and probe 5'FAM-ACACGCGGCAACG-3'TAM. The 

PCR thermal cycle profile was as follows: 50°C for 2 min; 95°C for 10 min; 40 cycles of 

95°C for 15 s and 60°C for 1 min. 

 

 

Figure 4.2: The recombinant plasmids served as an external homologous DNA standard 

of known copy number to generate a standard curve for quantitative real-time PCR. (A) 

An example of ΔRn vs. cycle number profile for 10-fold dilution series ran in duplicate. (B) The 

corresponding standard curve generated for determination of mRNA copy numbers. 
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Sp35:Fc protein was purified from cell culture supernatant and cell lysates (prepared as 

described above) using NAb™ Protein A Spin columns (Thermo Scientific) and 

concentrated by ultrafiltration using Pierce® Concentrator 20 kDa cutoff membrane 

(Thermo Scientific) according to the manufacturer‘s instructions in both cases. Protein 

samples were denatured by heating the samples in the supplied glycoprotein denaturing 

buffer at 100°C for 10 min. 0.5–1 µg of intracellular Sp35:Fc was digested with 500–1,000 

NEB units of Endo Hf (New England Biolabs, Hitchin, UK) in 40 µL total reaction volume 

using the supplied G5 reaction buffer for 1 h at 37°C. Digestion was also performed 

without prior denaturation. RNase B and secreted Sp35:Fc protein were used as positive 

and negative control, respectively, for enzyme digestions. Samples were resolved by SDS-

PAGE under reducing conditions and subjected to immunoblotting prior to imaging and 

analysis as described Chapter 3, Section 3.6. Resolved RNase B was stained with 

SimplyBlue™ SafeStain (Life Technologies) according to the manufacturer's instructions.   

 

 

Cell lysates were prepared as described above using RIPA buffer supplemented with 10 

mM NEM and Protease Inhibitor Cocktail Set III (Merck Chemicals, Nottingham, UK). 

Ubiquitinated proteins were isolated using a Ubiquitinated Protein Enrichment Kit (Merck 

Chemicals) according to the manufacturer‘s instructions. Briefly, cell lysate protein was 

incubated with polyubiquitin affinity beads at 4°C for 4 h, washed and ubiquitinated 

proteins extracted by boiling the beads in Laemmli sample buffer (Sigma-Aldrich) for 5 min. 

After centrifugation at 10,000×g for 1 min, ubiquitinated proteins in the supernatant and a 

serial dilution of Sp35:Fc standard were resolved on non-reducing SDS-PAGE and 

subjected to immunoblotting prior to imaging and analysis (Chapter 3, Section 3.6). 

 

 

Cell lysates were prepared as described above using RIPA buffer supplemented with 

Halt™ Protease and Phosphatase Inhibitor Cocktail (Thermo Scientific) and stored at        

–80°C. Electrophoresis was carried out on 4–12% NuPAGE Bis-Tris gels (Life 

Technologies). Resolved protein was blotted and the membrane was blocked with 5% 

BSA/TBS-T for 1 h at room temperature, washed three times with 1X TBS-T (5 min each) 
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and then probed for 1 h at room temperature with anti-BiP, PDI, eIF2α, p-eIF2α, GAPDH, 

unspliced XBP1 (all 1:2000; Cell Signaling) or unspliced XBP1 (1:1000; Abcam, 

Cambridge, UK) primary antibodies. After three washings, the membrane was incubated 

with HRP-conjugated goat anti-rabbit IgG secondary antibody (1:2000; Cell Signaling) for 1 

h at room temperature, followed by three more washings to remove unbound antibodies 

prior to imaging and analysis as described in Chapter 3, Section 3.6.3.  

 

 

 

An important prerequisite for the study was to ensure that the cells were not influenced by 

the transfection procedure per se. Transfections were therefore performed by means of the 

Nucleofector system using the same batch of cells and with the same total plasmid DNA 

load, where the latter was achieved by varying the ratio of rDNA : empty vector. The 

Nucleofector system has been shown to give very high cell viability and transfection 

efficiency and uniform plasmid uptake compared to other systems such as Lipofection (e.g. 

Davies et al., 2013; Zeitelhofer et al., 2007). Cell viabilities attained post-transfection were 

90±2% with >99% transfection efficiency as analysed by flow cytometry using GFP (Figure 

 4.3). To study the intrinsic ability of the cells to manufacture recombinant Sp35:Fc, the 

cells were transfected with varying quantities of rDNA ranging from 0 to 3 µg rDNA per 

4.5×10
6
 cells and Sp35:Fc expression levels were quantified 48 h after transfection. 

 

 

Figure 4.3: Determination of transfection efficiency using intracellular GFP marker and 

flow cytometry. Cells were harvested 48 h post-transfection. (A) Cell population gated for 

granularity and size. (B) The percentage of GFP-positive cells of the transfected population 

(black line) was quantified against mock-transfected negative control cells (grey line). 
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Analysis of the qP revealed that the expression of Sp35:Fc did not show a linear 

response to increasing rDNA load—at high levels of gene copy number, no further 

increase in the expression level of Sp35:Fc was observed (Figure  4.4A). To substantiate 

this saturation phenomenon, transfection was also performed using SEAP which is widely 

used to study promoter activity and gene expression as a model ETE glycosylated protein. 

Comparison of the two recombinant proteins showed a clear difference in recombinant 

protein expression in which the Sp35:Fc productivity gradually became saturated as the 

rDNA load increased, whereas SEAP productivity increased linearly to a much higher rate 

(Figure  4.4B). In both cases, the mRNA copy numbers increased proportionally to rDNA 

load (Figure  4.4C), indicating that no restriction of gene expression occurred in the system 

at the level of transcription. However, the influence of transcription efficiency, size of 

plasmid and mRNA stability can be expected to introduce some variation between the 

levels of Sp35:Fc mRNA and SEAP mRNA.  

As shown in Figure  4.4A, there was also an inverse relationship between cell specific 

growth rate (µ) and qP, with the highest Sp35:Fc-producing cells had a 28% lower µ 

compared to the non-producing mock-transfected cells. This however, was less apparent 

in the case of SEAP-producing cells even at high qP (Figure  4.4B), implying that the 

Sp35:Fc synthesis imposed a substantial metabolic burden onto the cells. For both 

Sp35:Fc and SEAP-producing cells, the analysis of cell diameter and cell protein biomass 

by image analysis and biochemical assay, respectively, showed that there were no 

significant variations in average cell size and total intracellular protein content per cell (P > 

0.05; data not shown), suggesting that there was neither change in cell morphology nor 

inhibition of cell biomass accumulation. 

 

 

Quantitative Western blot analysis was carried out to assess intracellular and extracellular 

Sp35:Fc polypeptides per unit cell at different rDNA expressions. To inhibit artefactual 

disulphide bond scrambling, protein samples (culture supernatant and cell lysates) were 

treated with the alkylating agent NEM during sample buffer preparation (Taylor et al., 

2006). Assignment of bands to particular Sp35:Fc protein species was achieved by 

comparison of the apparent molecular weight following non-reducing SDS-PAGE. Tris-

acetate gels were calibrated with HiMark and Novex Sharp molecular mass standards in 
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Figure 4.4: Recombinant protein production kinetics in CHO cells at different transgene 

copy numbers. (A) 4.5×10
6
 CHO-S cells were transiently co-transfected with Sp35:Fc plasmid 

DNA and empty vector at varying ratios (3 µg total plasmid DNA). Cell-specific productivity (qP) 

and growth rate (µ) were measured at 48 h after transfection while post-transfection cell viability 

was measured at 2 h after transfection. (B) Similar transfection procedure and analysis were 

performed using SEAP plasmid DNA. (C) Copies per cell of Sp35:Fc and SEAP mRNAs at 48 h 

post-transfection were determined by absolute quantification RT-PCR. Data shown is mean 

value of two biological replicates and three technical replicates. Error bars represent the 

standard deviation. 
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the 40‒500 kDa and 30‒260 kDa ranges, respectively, and biotinylated protein ladder 

(30‒200 kDa) for resultant blots. Combination of these calibrations allowed a highly 

reliable estimation of the molecular weights of very large species (Hannemann et al., 

2009). Using this approach the Sp35:Fc protein was observed to have an apparent mass 

of approximately 100 kDa per monomer and 200 kDa per native dimer under non-reducing 

conditions (Figure  4.5). Additionally, the intra- and extracellular Sp35:Fc polypeptides 

resolved were found to contain tetramer (400 kDa) and (likely) hexamer aggregates (600 

kDa). Other aggregate species were not observed, specifically trimer and pentamer, as 

well as higher oligomers (e.g., octamer). Under reduced condition, all bands were reduced 

to 100 kDa, indicating that the fully folded Sp35:Fc dimer as well as the aggregates were 

covalently bonded via intermolecular disulphide bridges. To rule out that Sp35:Fc self-

aggregated extracellularly in the culture medium, cell culture supernatant was harvested 

24 h post-transfection, incubated at 37°C for an additional 24‒48 h and immediately 

resolved by non-reducing SDS-PAGE. No increase in protein aggregates was observed 

during the additional incubation period (data not shown). 

 

 

Figure 4.5: Western blot analysis of extracellular and intracellular Sp35:Fc polypeptides 

at different rDNA transfections. Sp35:Fc has an apparent mass of 100 kDa per monomer and 

200 kDa per native dimer and may form 400 kDa tetramer and 600 kDa hexamer disulphide-

bonded aggregates. Other aggregate species were not detected. Culture supernatant and cell 

lysate samples were prepared 48 h post-transfection and resolved by non-reducing SDS-PAGE 

in the presence of the alkylating agent NEM to inhibit disulphide bond reduction and scrambling. 

Under reduced condition, all bands were reduced to 100 kDa monomer. The figure shows a 

representative Western blot of duplicate culture flasks analysed in triplicate. 
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The amount of each Sp35:Fc polypeptide species in Figure  4.5 was determined by 

comparing the relative band intensity obtained with anti-IgG Fc γ specific primary antibody. 

Thin 1.0 mm 3–8% polyacrylamide gels were used in this study to ensure the highest gel-

to-membrane transfer efficiency of the high molecular weight species. Western blot was 

calibrated using purified Sp35:Fc (native dimer) over a range of concentrations run on the 

same gel as an external standard. Purified Sp35:Fc was also added to non-Sp35:Fc 

producing CHO-S cell lysates as an internal standard to verify that no disulphide reduction 

or rearrangement occurred during sample processing. Under the conditions employed, no 

artefactual loss of dimer (i.e. formation of monomer from dimer) or formation of aggregates 

was observed (data not shown).  

From the quantitative Western blot analysis, the cell-specific production rate of each 

extracellular protein species was calculated using Equation 3.6 (Figure  4.6A), whilst 

analysis of the intracellular species were carried out in terms of polypeptides copies per 

unit cell (Figure  4.6B). With respect to the former, determination of qP using this method 

was highly comparable to orthogonal analysis of Sp35:Fc productivity by ELISA in Figure 

4.4A. Both the extracellular and intracellular quantification analyses (Figure  4.6A and B) 

revealed that the amount of protein aggregates per cell became significant at high rDNA 

loads. The composition of extracellular tetramer aggregate in Figure  4.6A for example rose 

from less than 0.5% w/w of the total Sp35:Fc at 0.5 µg rDNA to about 5% w/w at 3 µg 

rDNA load. There were also marked increases in the amount aggregates at 1 µg rDNA 

load which concurred with the saturation of Sp35:Fc production. 

Moreover, the 2-fold increase in cellular content of Sp35:Fc dimer between 0.5 µg 

and 1 µg rDNA loads (Figure  4.6B) yielded in only one-third increase in dimer secretion 

rate (Figure  4.6A) which implies a limited protein transport capacity. From the intracellular 

analysis (Figure  4.6B), it is also obvious that the cells differed considerably in their 

relative proportion of Sp35:Fc intermediates when transfected with different amount of 

rDNA. The amount of assembled intracellular dimer appeared to become saturated at 1–3 

µg rDNA even though the amount of nascent monomer increased linearly—indicative of 

variation between cell translation and folding/assembly processes. With regard to the 

monomer species, the amount increased from about 1.4% w/w of total intracellular 

Sp35:Fc content (at 0.25‒1 µg rDNA) to 3.8% w/w (at 3 µg rDNA) which indicates an 

accumulation of unfolded monomer polypeptides in the endoplasmic reticulum (ER).  

To quantify the relative proportion of intracellular Sp35:Fc in different parts of the 

secretory pathway, Sp35:Fc polypeptides were isolated from cell extracts using Protein A,  
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Figure 4.6: Elevation of recombinant gene expression does not result in linear increase 

in Sp35:Fc native dimer and promotes formation of aggregates and retention of the 

recombinant protein in the ER. (A) Cell-specific productivity (qP) was calculated from the 

level of respective Sp35:Fc species in the supernatant determined by quantitative Western 

blotting and the viable cell density. (B) Intracellular Sp35:Fc polypeptide copy numbers per cell 

determined from whole cell lysates by quantitative Western blotting. (C) The proportion of fully 

folded intracelullar (IC) Sp35:Fc species in the latter section of the secretory system decreases 

as rDNA load increases. Secreted extracellular (EC) Sp35:Fc was used as a negative control. 

Data shown is representative of duplicate culture flasks analysed in triplicate. 
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quantitated by ELISA and subjected to treatment with Endoglycosidase H (Endo H) 

enzyme. Endo H selectively cleaves N-glycan side-chains of the high-mannose form that 

present in the ER and intermediate compartment (between the ER and cis-Golgi), whereas 

glycoproteins that are transported beyond the medial Golgi generally possess N-glycans 

that are resistant to Endo H digestion. Analysis of the treated proteins by reducing SDS-

PAGE showed that the vast majority (>97%) of the fully disulphide bonded Sp35:Fc within 

the cells was associated with high-mannose N-glycans and was located in the early 

secretory compartments (ER/intermediate compartment; Figure  4.6C). These data were 

analysed in reduced condition as Endo H sensitive and resistant high molecular weight 

proteins (dimer and other oligomers) could not be separated adequately using non-

reducing SDS-PAGE. Analysis of non-reducing SDS-PAGE however showed that the 

monomer polypeptide was entirely Endo H sensitive (data not shown), implying that this 

species did not leave the early secretory pathway. 

Figure  4.6C also shows that the proportion of high mannose to complex glycans was 

greatly increased at 1 µg rDNA onwards to nearly 100%, signifying a molecular crowding in 

the ER/intermediate compartment secretory pathway and reduction in the rate of ER-to-

Golgi transport of Sp35:Fc. This molecular crowding coincided with the saturation of 

intracellular assembled dimer and marked increase in protein aggregation (Figure  4.6B), 

suggesting that the concentration of Sp35:Fc dimer within the ER might influence the 

extent to which Sp35:Fc can be found in disulphide-bonded aggregates. Combining all 

observations made above, we infer that Sp35:Fc protein production bottlenecks were due 

to the combination of (i) limited folding/assembly capacity, which in turn catalysed 

aggregate formation, and (ii) inefficient ER export rate. 

 

 

Since there were saturation of fully-folded Sp35:Fc and retention of the protein in the ER, 

as well as significant amounts of intracellular aggregates, we compared the extent of UPR 

induction in the cells with different amounts of rDNA. Perturbations of folding process (e.g. 

accumulation of nascent polypeptides) activate the UPR pathways in an attempt to 

reinstate the homeostasis between folding load imposed on the ER and its folding 

capacity. In response to ER stress, protein ER kinase (PERK) phosphorylates eIF2α which 

inhibits general protein synthesis, whilst IRE1 splices XBP1 mRNA which is then translated 
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into an active, strong transcription factor to increase the expression of molecular 

chaperones and induce the ERAD pathway. ATF6 transcription factor is also triggered 

which produces downstream targets whose functions overlap with those of IRE1 (Chapter 

1, Figure  1.7). When a set of UPR related proteins were examined by Western blotting, all 

the proteins tested were upregulated in Sp35:Fc-producing cells compared to the non-

producing as well as SEAP producing cells (Figure  4.7A). 

Firstly, the PERK pathway activation was analysed by quantifying the relative 

abundance of phosphorylated eIF2α (p-eIF2α) over total eIF2α. Cells transfected with 

Sp35:Fc DNA showed increased phosphorylation of eIF2α with the first band observed at 

0.5 µg rDNA load (Figure  4.7A). This suggests that at 0.5 µg rDNA, there was a low-level 

UPR response to cope with the increased protein folding demand. However, the cell 

growth data in Figure  4.4A also suggested that evoking a UPR might have undesirable 

impacts upon the cells―we observed a significant reduction in cell biomass production 

rate (i.e., lower µ) in the 0.5 µg rDNA transfectants when compared with those transfected 

with 0.25 µg, potentially arising from reduced global translation. Additionally, the 

progressive PERK pathway activation (Figure  4.7B) suggests a gradual translational 

attenuation of Sp35:Fc mRNA (see Chapter 5 for quantitative analysis of the translational 

kinetics). The eIF2α phosphorylation was a consequence of PERK activation due to 

intracellular stress and did not occur via the GCN2 kinase due to lack of specific media 

component (Zhang et al., 2002) as no/insignificant bands were observed at low Sp35:Fc 

DNA load and SEAP-producing cells (Figure  4.7A). 

Secondly, the IRE1 pathway activation was analysed by measurement of the 

proportion of active spliced XBP1 (XBP1s) and inactive unspliced XBP1 (XBP1u) 

abundance. Similar to p-eIF2α, cells transfected with Sp35:Fc DNA showed increased 

splicing of XBP1 with the first band observed at 0.5 µg rDNA load (Figure  4.7A), and the 

marked increase at 1 µg rDNA (Figure  4.7B) corresponds to the saturation Sp35:Fc qP 

(Figure  4.4A). Importantly, we note that the XBP1s induction was strongly correlated to the 

upregulations of BiP (see below; Pearson‘s product moment correlation coefficient,  

PPMCC r = 0.985, P < 0.0001) and PDI (see below; PPMCC r = 0.957, P < 0.001), as well 

as to the Sp35:Fc polypeptide ubiquitination targeted for ERAD (see below; PPMCC r = 

0.997, P < 0.0001). Together, these data imply that the overexpression of Sp35:Fc 

transactivated downstream UPR signalling in an attempt to restore the ER homeostasis by 

inducing chaperone synthesis and ERAD. 



Cellular Mechanism of a DTE Fusion Protein Production in CHO cells 

 

63 

 

Figure 4.7: Measurements of UPR induction in Sp35:Fc-producing and SEAP-producing 

CHO cells. Whole cell extracts were prepared 48 h post-transfection and subjected to Western 

blotting and probed with antibodies detecting UPR-related proteins. (A) Representative 

immunoblots of PDI (57 kDa), BiP (78 kDa), phosphorylated eIF2α (p-eIF2α; 38 kDa), total 

eIF2α (38 kDa), spliced XBP1 (XBP1s; 55 kDa), unspliced XBP1 (XBP1u; 27 kDa) and GAPDH 

(37 kDa) in Sp35:Fc and SEAP-producing cells at varying rDNA loads. GAPDH was used as a 

housekeeping protein. (B) Quantitation of p-eIF2α and XBP1s levels. Expression of total eIF2α 

was detected to serve as p-eIF2α loading controls. Percent XBP1s was calculated based on its 

respective XBP1u. (C) Relative quantitation of BiP and PDI levels.   
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Furthermore, we assessed the relative abundance of BiP and PDI, known to be 

induced by the UPR (Chakrabarti et al., 2011). BiP is the major ER chaperone and the 

regulator of the activation of three arms of ER stress transducers (PERK, IRE1 and ATF6) 

whereas PDI is an ER-based enzyme that catalyses the formation of disulphide bonds in 

secretory proteins. BiP was found to be highly expressed in the cells transfected with 

Sp35:Fc DNA compared to SEAP DNA, and was 3.6-fold more abundant in cells 

transfected with 3 µg Sp35:Fc DNA than in mock-transfected control cells (Figure  4.7A and 

C). The rapid increase from 1 µg rDNA (Figure  4.7C) coincided with the saturation in fully-

assembled Sp35:Fc and increase in aggregates (Figure  4.6B). On the other hand, 

immunoblot analysis of PDI showed a slight expression saturation at high Sp35:Fc DNA 

load, with only up to a 2.1-fold increase at 3 µg rDNA (Figure  4.7A and C). This data 

suggests that PDI could potentially be a limiting factor that was responsible for the reduced 

Sp35:Fc folding/assembly activity.  

The degradation of a protein via the ubiquitin-proteasome pathway involves the 

tagging of the protein substrate by covalent attachment of ubiquitin molecules, followed by 

degradation of the ubiquitinated protein to small peptides by the 26S proteasome complex 

(Lecker et al., 2006). Therefore, we tested if the Sp35:Fc overexpression resulted in the 

appearance of tagged Sp35:Fc protein targeted for degradation. Sp35:Fc protein 

associated with ubiquitin was examined by specific affinity adsorption of ubiquitinated 

proteins and blotting the immunoprecipitates with anti-IgG Fc γ fragment antibody (Figure 

 4.8 inset). This analysis demonstrated that both unfolded monomer and fully assembled 

Sp35:Fc were targeted for degradation, although the former was only apparent at 1–3 µg 

rDNA loads (Figure  4.8).  

As no Sp35:Fc monomer polypeptides were visualised at 0.25 and 0.5 µg rDNA 

loads even when higher concentration sample was used (data not shown), we assumed 

that the rate of Sp35:Fc degradation at these rDNA loads were negligible. In contrast, 

although no ubiquitinated Sp35:Fc aggregates were observed, it was likely that the 

aggregates were still targeted for degradation but below the detection level as the 

proportions of the high molecular weight aggregates were very small (<5%). Additionally, 

as Sp35:Fc monomer did not leave the early secretory compartment as tested by Endo H, 

the proteins targeted for degradation via the ubiquitin pathway is thought to be transported 

from the ER back into cytoplasm via ERAD retro-translocation mechanism and degraded 

by the proteasome (Ron and Walter, 2007). 
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Figure 4.8: Overexpression of Sp35:Fc in CHO cells led to ER-associated degradation. 

Whole cell extracts were prepared 48 h post-transfection and Sp35:Fc polypeptides targeted for 

degradation were determined by ubiquitin pull-down and immunoblotting using anti-human IgG 

Fc fragment antibody. The insert shows a representative Western blot showing the observed 

trend in Sp35:Fc polypeptide ubiquitination. Data shown is representative of two biological and 

two technical replicates. Error bars represent the standard deviation. 

 

Mammalian cells, particularly CHO cells, have proven to be invaluable for stable, high-

productions of recombinant therapeutic proteins which require various co- and post-

translational modification reactions for folding, function, stability and/or subcellular 

targeting (Walsh, 2010). However, generation of recombinantly produced Fc-fusion 

derivatives can be problematic in which the production is often limited at a post-

translational level. The main cause for that is thought to lie in the different and partially 

incompatible folding and secretion requirements of protein of interest and Fc domain 

entities in mammalian cells (Haas et al., 2012; Lee et al., 2007). To engineer mammalian 

cells to better manufacture Fc-fusion proteins or other DTE proteins with high specific 

productivity, it is essential to identify the rate-limiting step(s) in the protein production at 

elevated gene expression levels.  

Advancements in gene expression technology have successfully increased 

recombinant DNA copy number and transcriptional activity in mammalian expression 

systems (Kalwy et al., 2006). However, in practical terms cell-specific production rate can 

only be proportional to recombinant mRNA abundance to a limited extent as observed with 

many (easy-to-express) recombinant proteins including SEAP (Carpentier et al., 2007), 
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antithrombin III (Schröder et al., 1999) and MAb (Barnes et al., 2004). Similarly, our 

preliminary data showed the linear increase in SEAP qP observed in this study quickly 

broke down when the cells were transfected with more than 3 µg rDNA (Figure  4.9A), 

although we note that the significant decrease in cell viability could also contributed to the 

plateau. Importantly, we found that this constraint was exacerbated in the case of DTE 

Sp35:Fc protein where increasing expression of using multiple gene copies did not 

correspondingly result in improved specific productivity even at low rDNA loads. Although 

a linear relationship between the amount of Sp35:Fc mRNA (Figure  4.4C) and the amount 

of intracellular nascent Sp35:Fc monomer (Figure  4.6B) exists and extends over the whole 

range of gene expression level, further analysis via mathematical approach in Chapter 5 

revealed that this linear relationship is essentially preserved by the translational 

attenuation mechanism. 

 

 

Figure 4.9: Recombinant protein productions including ETE proteins display “Michaelis-

Menten kinetics” with saturation of qP at a certain point. (A) Overexpression of SEAP 

above 3 µg rDNA in this study would rapidly saturate the SEAP productivity, although this could 

(partly) be due to the decreases in cell viability post-transfection and µ (due to higher total DNA 

loads). (B) The TGE diagnostic assay utilised in this study is analogous to the Michaelis-

Menten model of enzyme kinetics, where a cell‘s (cf. enzyme‘s) specific productivity (cf. 

reaction rate) is measured at varying substrate (recombinant gene) concentrations. 

The TGE diagnostic assay presented in this work can be considered analogous to 

the Michaelis-Menten model of enzyme kinetics (Figure  4.9), where qP (cf. reaction rate) is 

measured at varying rDNA (substrate) amounts. We anticipate that different recombinant 

proteins synthesised using the same cell line (cf. enzyme) would have different 

characteristic kinetics profiles. The gradient of initial linear phase at low rDNA load, where 



Cellular Mechanism of a DTE Fusion Protein Production in CHO cells 

 

67 

qP is proportional to recombinant gene (or mRNA) amount, allows comparison of the 

intrinsic ease (cf. an enzyme‘s Km for a substrate) of expression of a given product (e.g. 

translation and secretion). If a saturation phase is evident as in the case of Sp35:Fc, then 

cellular synthetic processes inflicts a finite constraint, therefore limiting the cellular capacity 

of the cell (cf. enzyme Vmax). Importantly, the other primary output parameter (cell specific 

growth rate) identifies feedback mechanisms that may fundamentally limit the level of 

transient and stable expression of the recombinant protein. With respect to the stable 

expression, only stable clones with (undesirably) low transcriptional output would 

proliferate rapid enough to persist competitively in stable transfectant pools. 

Sp35:Fc is a relatively large and structurally complex glycoprotein. Elevation of 

expression level overloads the folding/assembly capacity of the host cells and triggers 

aggregation and accumulation of the recombinant protein in the ER. With respect to the 

former, studies have shown that the rate of multimeric MAb folding and assembly is 

relatively slow (Goto and Hamaguchi, 1981; Lilie et al., 1994) as well as protein and cell 

line specific (O'Callaghan et al., 2010; Pybus et al., 2014a). It is therefore not surprising 

that the folding/assembly process of an Fc-fusion protein easily becomes a production 

bottleneck for which the protein comprise two distinct protein groups (i.e., a therapeutic 

protein and the Fc domain) and require coordinated assembly of two polypeptide chains. 

Intracellular aggregation, especially disulphide-bonded, is also a common feature of Fc-

fusion proteins (Fast et al., 2009; Lee et al., 2007; Strand et al., 2013) where the aberrant 

covalent bonds can be caused by thiol-mediated disulphide shuffling or disulphide bond 

formation between free thiol groups. Since separate work is needed to further elucidate the 

Sp35:Fc aggregation pathway, we can only speculate that the Sp35:Fc tetramer and 

hexamer formations were due to aggregation of misfolded proteins that escape the cellular 

quality-control mechanisms, which is common in eukaryotic systems (Dobson, 2003). The 

ubiquitination of fully-folded protein was a good indicator that misfolded fully-assembled 

Sp35:Fc dimer was present in the ER (Chakrabarti et al., 2011). Moreover, we did not 

observe any trimer and pentamer aggregates, suggesting that the aggregation process 

was an interaction between (mis)folded, assembled Sp35:Fc proteins. 

Folding and assembly reactions in the ER require a considerable cellular energy and 

involve the concerted action of a variety of molecular chaperones and foldases (Dobson, 

2003). With regard to the latter, specific reaction steps may restrict the folding rate of 

particular proteins more than others. For example, oxidation reactions catalysed by PDI, a 

folding enzyme that catalyses the formation and breakage of disulphide bonds between 

thiol groups, is one the main cell engineering targets. As the PDI abundance in our system 
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did not correspond to the increase of nascent monomer polypeptide at high rDNA loads, 

overexpression of PDI may improve the qP (via improved folding) and possibly curb the 

rate of aggregation. To achieve efficient protein folding in the ER, PDI must be rapidly re-

oxidized, a mechanism that is largely accomplished by ER oxidoreductin-1-like α 

(ERO1Lα) and its ERO1Lβ homologue. The latter is of physiological interest because it is 

induced by the UPR to regulate oxidative protein folding under ER stress where it can 

form, besides ERO1Lβ-PDI dimers, homodimers and mixed heterodimers with ERO1Lα 

(Dias-Gunasekara et al., 2005; Pagani et al., 2000). Therefore, the overexpression of 

ERO1 can also potentially create an altered oxidising environment suitable for Sp35:Fc 

folding (Mezghrani et al., 2001). 

However, there was a negative correlation between the PDI abundance and rate of 

ER-to-Golgi transport of Sp35:Fc where the rate decreases at higher level of PDI. This 

data is very similar to data reported on the influence of PDI on retention of TNFR:Fc fusion 

protein in the ER (Davis et al., 2000), although the retention could also be due to the 

abnormal disulphide-linked oligomerisation (Lobito et al., 2006). Indeed, the outcomes of 

several attempts to improve the rate of recombinant protein production by overexpressing 

PDI in mammalian cells have been mixed and inconclusive (Borth et al., 2005; Davis et al., 

2000; Hayes et al., 2010; Kitchin and Flickinger, 1995). Other genetic upregulations of 

discrete chaperones in mammalian cell hosts to improve qP have also not been 

particularly successful. For example, BiP overexpression in CHO cells has been reported 

to generically decrease the secretion of recombinant proteins it associates with (Dorner 

and Kaufman, 1994; Dorner et al., 1988; Dorner et al., 1992). Therefore, cell engineering 

strategy for improved Sp35:Fc production likely requires engineering of multiple targets, 

either by co-expressing two or more molecular chaperones, or a specific transcription 

factor such as XBP1 that can simultaneously up-regulate a range of secretory pathway 

genes (Lee et al., 2003). 

It is noteworthy that protein folding and glycosylation are interconnected, where the 

latter acts as a quality control mechanism and aids protein folding. For example, the 

glycocomponent of interferon-γ has been implicated in facilitating folding and dimerisation 

of the protein (Sareneva et al., 1994). Therefore we also hypothesise that the limitation in 

Sp35:Fc folding/assembly was due to improper glycosylation. This is particularly pertinent 

given the level of glycosylation of Sp35:Fc, where inability of the cells to properly 

glycosylate any of the sites could leave the polypeptides susceptible to misfolding and 

aggregation. In this regard, the distribution of glycan structures (microheterogeneity) can 

be regulated by modulating culture conditions including nutrient content, temperature, pH, 
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oxygen and ammonia (Butler, 2006). Moreover, it was feasible that the inefficiency of the 

Sp35:Fc protein folding occurred further upstream, i.e. during translocation. Proper 

processing of complex, DTE proteins may necessitate an extended translational arrest if 

the kinetics of ER docking is slow. Particular combinations of IgG variable domain and 

signal sequences, or possibly complex compositions of fusion protein, could create 

unfavourable structures of nascent polypeptides that in turn lead to improper functioning of 

the SRP complex or lack of signal sequence removal (Le Fourn et al., 2014). To improve 

ER docking and the translocation of DTE MAb polypeptides, Le Fourn et al. (2014) 

modulated the translation arrest kinetic via overexpression of exogenous SRP14 

component, which eventually restored the efficiency of signal sequence processing. 

A further consideration is that the glycans may play a role in upholding the folded 

structure by minimising the conformational freedom of the polypeptide backbone (Petrescu 

et al., 2004). However, like N-glycosylation, disulphide bond formation is co-translational in 

the ER and may interfere with the accessibility of some amino acids for glycan transfer. 

This may result in variable occupancy of a specific site, leading to macroheterogeneity of 

glycoforms (Allen et al., 1995). Reduction in cell growth rate (by lowering culture 

temperature, addition of butyrate, etc) has been demonstrated to alter the levels of site 

occupancy in tissue plasminogen activator and interferon-γ (Andersen et al., 2000; Nyberg 

et al., 1999). This is also consistent with the notion that the glycosylation efficiency (and 

therefore protein folding) improves at a reduced rate of protein translation. N-glycosylation 

takes place co-translationally in the ER in which the precursor glycan is exposed to the 

active site of the oligosaccharyltransferase enzyme over a short period of time. This 

means lowering of the rate of polypeptide elongation would increase the exposure time 

(Butler, 2006). With respect to this, Shelikoff et al. (1994) showed that when the elongation 

rate of prolactin polypeptides was inhibited by cycloheximide, the site occupancy was 

increased, thereby enhancing the glycosylation of the translocated proteins. 

As expected for transfectants with relatively high Sp35:Fc DNA, UPR was 

constitutively activated during the cell cultivation in response to ER stress. In this scenario, 

the UPR has three primary functions: (i) to restore normal function of the cell by halting 

protein translation, (ii) to increase the synthesis of molecular chaperones involved in 

protein folding and secretion and (iii) to degrade excess unfolded proteins (and misfolded 

proteins) via ERAD mechanism thereby diminish the folding demand. In certain cases, 

however, the activation of the UPR may be insufficient to overcome ER stress and the 

prolonged accumulation of unfolded and misfolded proteins in the ER may have toxic 

effects, eventually leading to apoptosis (Chakrabarti et al., 2011). The comparisons of 
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UPR signalling branch activation reveal intrinsic features of UPR stress sensor induction in 

response to varying degree of ER stress. The complexity of cell cellular mechanisms, 

however, may necessitate empirical modelling approach to systematically elucidate 

differences in the cell functions under different conditions (Trusina et al., 2008). 
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This chapter presents a mathematical model for the synthesis and secretion processes of Sp35:Fc 

fusion protein in CHO cells. The aims are to systematically and quantitatively describe the 

cellular kinetics, and evaluate the impact of each cellular process to improve the production of 

this difficult-to-express protein. Overall, the in silico analysis reveals cell functions in 

maintaining cellular homeostasis, and importantly predicts the relative importance of different 

engineering targets. 

 



Chapter 5 

 

72 

 

Systems and synthetic biology have significantly improved our understanding of the 

recombinant protein synthetic process and how to improve/control it in both stable and 

transient gene expression systems (O'Callaghan and James, 2008). Whilst progression in 

molecular biology and analytical techniques have provided imperative information on 

intricate cellular systems, mathematical modelling has been recognised as a rational 

approach to systematise the empirical data with the objective of identifying the key 

bioreactions, reactants and process parameters (Naderi et al., 2011). Although the 

application of mathematical models are still by and large limited in the development and 

production of biologics (mainly due to the complexity and unpredictability of host cell 

systems; Ho et al., 2012), the advancement of computational research have successfully 

led to the identification of growth limiting factors (deZengotita et al., 2000) and optimisation 

of medium design and feeding strategies (Dhir et al., 2000; Xie and Wang, 1994). More 

recent works have also demonstrated that mathematical tools are highly valuable for rapid 

identification and/or testing of rational engineering targets (e.g. Ho et al., 2006; 

O'Callaghan et al., 2010; Pybus et al., 2014a). 

Mechanistic models can be built using a priori knowledge such as chemical, physical 

or biological laws and/or a posteriori knowledge based on experimental or empirical 

evidence. Such knowledge dictates the model structure that normally contains adjustable 

parameters which may or may not have physical meaning. Structured modelling for 

instance incorporates biological knowledge by dividing the cells into cellular processes and 

compartments that are physically or chemically distinct. Typically, one desires to include all 

explicit model components and precisely determine the parameter values as well as to 

validate the model statistically. Nevertheless, collecting the data that are needed to 

construct and validate a biological model, especially in the case of mammalian cell 

systems, are often resource intensive and time consuming (Franceschini and Macchietto, 

2008; Kontoravdi et al., 2007). It is therefore a challenge to have a "reduced" model while 

maintaining an accurate description of the components/reactions that is required to provide 

reliable results (e.g., an unfolded protein response (UPR) model; Trusina et al., 2008).  

In order to systematically understand the production mechanism of the Sp35:Fc 

fusion protein used in this study, we employ an empirical modelling approach to 

quantitatively describe the cellular constraints on recombinant Sp35:Fc synthesis and 

secretion. The main benefits of this mathematical approach lie in its ability to elucidate the 

behaviour of a multicomponent system and calculate the relative importance of specific 



Systematic Understanding of a DTE Protein Production in CHO Cells via In Silico Analysis 

 

73 

cellular reactions on overall flux (i.e. qP). This information can be subsequently utilised to 

identify/predict corresponding cellular processes for cell or process engineering. For 

instance, while the experimental data presented in Chapter 4 (Figures 4.4‒4.8) indicate a 

connection between cell growth, Sp35:Fc synthesis and secretion and UPR induction by 

elevated expression, we have no systematic information of their relative influence―it is 

reasonable to assume that UPR induction by DTE Sp35:Fc can occur via several routes, 

which may include combinations of Sp35:Fc folding/assembly kinetics, aggregate 

formations and transport/secretion rates. Consequently, it is difficult to identify specific 

cellular engineering targets that could result in significant improvement of DTE Sp35:Fc 

production. 

The structured model of Sp35:Fc secretory pathway presented in this study stems 

from the antibody synthetic model originally proposed by Bibila and Flickinger (1991, 

1992), which also formed the basis of previous MAb models built in this laboratory (Davies 

et al., 2011; McLeod et al., 2011; O'Callaghan et al., 2010; Pybus et al., 2014a). Based on 

the previous experimental observations in Chapter 4, a simplified cellular structure for 

homodimeric Fc-fusion protein production is introduced with respect to the process of 

synthesis, folding and secretion in order to develop a modelling framework that could be 

used in identifying major cellular rate limiting steps (Figure  5.1). However, we are reluctant 

in our approach to extending our model to include UPR-related proteins such as eIF2α and 

XBP1 and their effects (e.g. upregulation of ER chaperones; see below). 

 

 

Figure 5.1: Proposed Sp35:Fc fusion protein synthesis, folding and aggregation pathway 

in CHO cells that forms the structured model of Sp35:Fc production. The translation of 

Sp35:Fc mRNA in the cytoplasm would produce a nascent Sp35:Fc monomer polypeptide 

which is then transported to the endoplasmic reticulum. Two monomer polypeptides fold and 

assemble into a functional dimer before being transported to the Golgi complex followed by 

secretion into the extracellular medium. A dimer protein may also form a tetramer aggregate by 

cross-linking with another dimer, or a hexamer aggregate by linking to a tetramer. 
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Indeed, the UPR comprises a complex series of network that dynamically vary. For 

example, recent studies have identified a translation suppression network that is 

independent of the phosphorylated eIF2α signalling (Guan et al., 2014). Even though it is 

possible to introduce a reduced UPR system in our model (e.g., a minimal UPR regulatory 

loop to capture the link between recombinant polypeptide level, cell growth rate and ER 

folding capacity; Pybus et al., 2014a), such empirical model is also incapable of predicting 

the effects of engineering specific UPR components that can be particularly useful for DTE 

protein productions. The guiding principle in our model development is to minimise the 

number of parameters needed for estimation from the available empirical/experimental 

measurements (Jaqaman and Danuser, 2006). This reduces the need for model validation 

and removes excessive degrees of freedom in our mathematical description of the key 

intracellular processes of Sp35:Fc synthesis and regulation. Nevertheless, our model does 

capture the major UPR events observed, namely the reduction in cell growth and ERAD 

pathway (via protein ubiquitination). 

Figure  5.2 summarises the major steps of model development framework of this 

study. On the whole, the Sp35:Fc model developed consists of 24 differential and 

algebraic equations containing 26 parameters. The parameters were fitted to the empirical 

data obtained in Chapter 4 for five different CHO transfectants (containing different rDNA 

loads), followed by local sensitivity analysis to evaluate the impact of specific cellular 

mechanisms on Sp35:Fc productivity at different transgene copy numbers. This 

computational approach enables systematic understanding of cellular regulation in 

producing Sp35:Fc, and at the same time provides a rational and predictive cell 

engineering platform to increase Sp35:Fc protein productivity based on in silico 

engineering of discrete cellular functions. 

 

 

Figure 5.2: Model development framework for Sp35:Fc fusion protein production system. 
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A mathematical model consisting of a set of ordinary differential equations was developed 

based on a previously published model for MAb synthesis in this laboratory (McLeod et al., 

2011; O'Callaghan et al., 2010). In order to reflect the Sp35:Fc synthesis mechanism, 

several structural modifications were made on the previous MAb model by (i) removing the 

unrelated light-chain polypeptide equations and expressions, and (ii) adding protein 

aggregate formations and secretion pathways based on the experimental observations. 

The model topology is shown in Figure  5.3. We acknowledged that protein synthesis is a 

complex mechanism that could not be fully captured in our model. For example, to 

characterise the actual translational frequency in a cell, one also need to determine the 

protein turnover rate (half-life) in addition to the pure production and ubiquitination levels. 

Therefore, this simplified model was merely an estimation of the main cellular activities to 

allow systematic comparisons of the different transfectants. 

 

 

Figure 5.3: Schematic representation of the mathematical model of Sp35:Fc 

biosynthesis, aggregation, degradation and secretion pathway. Rectangles represent 

reactions (e.g. transcription) and grey circles represent species (e.g. mRNA). The numbers 

indicate the associated model's continuity equation described in the text. Dimer and aggregate 

formations were assumed to be irreversible events. 
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The structured model of the complete Sp35:Fc protein synthesis and secretory 

pathway is presented below. It describes the process of recombinant protein synthesis and 

secretion in the nucleus, ER and the Golgi complex for a homodimeric Fc-fusion protein-

producing cell. The zero, first or second-order rate equation for a chemical reaction was 

applied in order to obtain the reaction (formation) rate based on the concentration of the 

reactants. For example, the formation rate of nascent Sp35:Fc monomer molecules was 

determined according to the formation kinetics, TP and the mRNA concentrations, [m]. A 

description of the mathematical notations can be found in the Nomenclature section.  

 

Firstly, the accumulation of Sp35:Fc mRNA molecules within a cell can be represented as 

follows: 

𝑑[𝑚]

𝑑𝑡
= 𝑁gene 𝑆𝑚 − 𝑘deg  𝑚 − µ 𝑚                                                                                 (1) 

where 

𝑘deg =
ln 2

𝑡1/2,𝑚
                                                                                                                          (1𝑎) 

The intracellular balance of Sp35:Fc monomer, dimer, tetramer and hexamer in the ER are 

represented by the following equations: 

𝑑 P 

𝑑𝑡
= 𝑇P 𝑚 − 2 𝑅P2 − 𝑘ubq ,P P − µ P                                                                      (2) 

𝑑[P2]ER

𝑑𝑡
= 𝑅P2 − 2 𝑅P4 − 𝑅P6 − 𝑘ER ,P2[P2]ER − 𝑘ubq ,P2[P2]ER − µ[P2]ER             (3) 

𝑑[P4]ER

𝑑𝑡
= 𝑅P4 − 𝑅P6 − 𝑘ER ,P4[P4]ER − 𝑘ubq ,P4[P4]ER − µ[P4]ER                             (4) 

𝑑[P6]ER

𝑑𝑡
= 𝑅P6 − 𝑘ER ,P6[P6]ER − 𝑘ubq ,P6[P6]ER − µ[P6]ER                                         (5) 

where R is the rates of consumption of protein polypeptides in the assembly or 

aggregation process determined using second-order kinetics; 

𝑅P2 = 𝑘fa  P  P                                                                                                                      (3𝑎) 

𝑅P4 = 𝑘agg ,P4 P2  P2                                                                                                            (4𝑎) 

𝑅P6 = 𝑘agg ,P6 P4  P2                                                                                                            (5𝑎)   

and 

𝑘ER ,P2 =
ln 2

𝑡1/2,[P2]ER
                                                                                                               (3𝑏) 



Systematic Understanding of a DTE Protein Production in CHO Cells via In Silico Analysis 

 

77 

𝑘ER ,P4 =
ln 2

𝑡1/2,[P4]ER
                                                                                                               (4𝑏) 

𝑘ER ,P6 =
ln 2

𝑡1/2,[P6]ER
                                                                                                               (5𝑏) 

The ubiquitinated Sp35:Fc monomer and dimer in the ER are described as follows: 

𝑑[P]ubq

𝑑𝑡
= 𝑘ubq ,P P − µ P ubq                                                                                           (6) 

𝑑[P2]ubq

𝑑𝑡
= 𝑘ubq ,P2[P2]ER − µ[P2]ubq                                                                                (7) 

where 

𝑘ubq ,P =
ln 2

𝑡1/2,[P]
                                                                                                                      (6𝑎) 

𝑘ubq ,P2 =
ln 2

𝑡1/2,[P2]
                                                                                                                  (7𝑏) 

The fully formed dimeric Sp35:Fc and tetramer and hexamer aggregates are then 

transported to the Golgi apparatus. 

𝑑[P2]G

𝑑𝑡
= 𝑘ER ,P2[P2]G − 𝑘G,P2[P2]G − µ[P2]G                                                                   (8) 

𝑑 P4 G

𝑑𝑡
= 𝑘ER ,P4 P4 G − 𝑘G,P4 P4 G − µ P4 G                                                                   (9) 

𝑑[P6]G

𝑑𝑡
= 𝑘ER ,P6 P6 G − 𝑘G,P6 P6 G − µ[P6]G                                                                   (10) 

where 

𝑘G,P2 =
ln 2

𝑡1/2,[P2]G
                                                                                                                   (8𝑎)   

𝑘G,P4 =
ln 2

𝑡1/2,[P4]G
                                                                                                                   (9𝑎) 

𝑘G,P6 =
ln 2

𝑡1/2,[P6]G
                                                                                                                   (10𝑎) 

Finally, biomass-specific secretion rates of Sp35:Fc native dimer and tetramer/hexamer 

aggregates are described by the following equations: 

𝑞Pdimer = λP2𝑘G,P2 P2 G                                                                                                      (8𝑏)                                                                                      

𝑞Ptetramer = 2 λP2𝑘G,P4 P4 G                                                                                              (9𝑏)                                                                                 

𝑞Phexamer = 3 λP2𝑘G,P6 P6 G                                                                                              (10𝑏)        
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The model was built and solved using Systems Biology Toolbox 2 (SBToolBox2; Schmidt 

and Jirstrand, 2006) for MATLAB software (MathWorks, Natick, MA). The full model syntax 

is presented in Appendix B. For each transfection condition the model of Sp35:Fc 

synthesis was solved using a steady-state assumption. All model parameters were fitted to 

the experimental data (Chapter 4) using a particle swarm optimisation method to yield the 

best-fit model parameters. The method utilises a stochastic pattern search algorithm to 

minimise the sum of squared errors between measurement (empirical data) and simulation 

outputs. A detailed description of the underlying algorithm is described in Vaz and Vicente 

(2007). A successful fit was defined to have a sum of squared errors <0.5.  

 

 

A local sensitivity analysis was performed on the fitted model to calculate sensitivity 

coefficients for each cellular reaction/process involved in Sp35:Fc production. For each 

parameter, pi, the response coefficient R
qP

 was numerically calculated using 1% 

perturbations as follows: 

𝑅𝑖
𝑞P

=
 𝑞P|1.01𝑝𝑖 − 𝑞P|0.99𝑝𝑖 

 𝑞P|1.01𝑝𝑖 + 𝑞P|0.99𝑝𝑖 0.01
                                                                                     (5.1)   

The response coefficient was calculated using a programme written within MATLAB 

software (Appendix C). 

 

 

 

To further investigate which trafficking step is the main rate-limiting in the model Sp35:Fc 

biosynthesis and secretion, we utilised an empirically-based mathematical modelling 

technique to systematically analyse the influence of specific cellular processes on qP. For 

each rDNA load transfection an empirically derived mathematical model of Sp35:Fc 

production was built using the model topology outlined above (Figure  5.3) based on the 

previous work in this laboratory for MAb synthesis (McLeod et al., 2011; O'Callaghan et al., 

2010). The parameters of each model were fitted to the empirical data using statistical 
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best-fit parameter sets determined using the particle swarm algorithm. A successful fit was 

defined to have a sum of squared residuals <0.5, where the residual is the absolute 

difference between the model calculated value in logarithmic space and the empirically 

derived level. This analysis produced a transfectant-specific set of estimated model 

parameter values representing the statistical best fit to the biological data. 

The mean value of the sum of squared residuals was 0.127 with a standard deviation 

of 7.8% of the mean, indicating that the model-calculated species (e.g. mRNA) levels are 

highly comparable to the empirically derived data points. The fitted parameter values are 

tabulated in Table  5.1. The following assumptions and/or qualifications regarding the 

model were made. Firstly, it was assumed that the tetramer aggregate was an irreversible 

product of two dimer molecules and the hexamer aggregate must necessarily pass through 

a tetramer state before merging with another dimer. Secondly, as ubiquitinated tetramer 

and hexamer aggregates were below minimum detection threshold, dimer ubiquitination 

rates were used as the minimal degradation rates. The rate constants for ubiquitinated 

protein tetramer and hexamer in this study could be set to their nominal values as the 

proteins present in minute amount and did not affect the qP. Lastly, as Endo H sensitive 

and resistant high molecular weight Sp35:Fc could not be resolved using non-reducing 

SDS-PAGE and had to be analysed in the reduced form, the proportions of Sp35:Fc dimer, 

tetramer and hexamer in the ER and Golgi were assumed to follow the overall percentage 

of fully disulphide bonded oligomers in the ER/Golgi shown in Figure  4.6B of Chapter 4. 

This set of model-derived parameter values (Table  5.1) is generally comparable to 

the previous reports from this laboratory using mathematical approaches to improve our 

understanding of the control of MAb production (Davies et al., 2011; McLeod et al., 2011; 

O'Callaghan et al., 2010; Pybus et al., 2014a) and does not deviate from the biologically 

plausible values. For instance, the transport rates (kER and kG) are close to the typical rates 

for ER-to-Golgi and Golgi-to-medium transports in constitutive secretory pathways which 

have been reported to be 0.2–1.4 h
-1

 and 2–25 h
-1

, respectively (Bibila and Flickinger, 

1992; Dahm et al., 2001). Nevertheless, model-derived parameters are influenced by a 

wide variety of factors including the recombinant protein product, host cell line and cell 

culture process which can be expected to generate considerable model variation. This 

means mathematical models often require recombinant protein product, cell line and cell 

culture process-specific empirical measurements to optimise their usefulness as a tool to 

inform cellular constraints on productivity and/or cell engineering strategies. 
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Table 5.1: Best-fit parameter values for transfectants with different Sp35:Fc DNA loads. The 

nomenclature used is described in the Nomenclature section. 

Parameter 
Sp35:Fc plasmid DNA per 4.5×10

6
 cells 

0.25 µg 0.5 µg 1 µg 2 µg 3 µg 

Cell growth  

   µ (h
-1
) 0.0282 0.0259 0.0232 0.0226 0.0226 

Transcription and translation  

   Sm ((mRNA copy) gene
-1
 h

-1
) 1.33×10

-3
 1.33×10

-3
 1.33×10

-3
 1.33×10

-3
 1.33×10

-3
 

   kdeg (h
-1
) 0.058 0.058 0.058 0.058 0.058 

   TP (molecule (mRNA copy)
-1
 h

-1
) 253.9 177.1 110.9 59.5 42.0 

Folding/assembly and aggregation  

   kfa (cell molecule
-1
 h

-1
) 1.07×10

-1
 1.79×10

-2
 4.87×10

-3
 9.32×10

-4
 4.06×10

-4
 

   kagg,P4 (cell molecule
-1
 h

-1
) 4.18×10

-8
 3.70×10

-8
 6.45×10

-8
 6.03×10

-8
 6.02×10

-8
 

   kagg,P6 (cell molecule
-1
 h

-1
) 4.04×10

-9
 1.04×10

-8
 7.80×10

-8
 8.03×10

-8
 8.04×10

-8
 

Degradation 

   kubq,P (h
-1
) – – 3.63×10

-4
 6.60×10

-4
 9.17×10

-4
 

   kubq,P2 (h
-1
) 2.33×10

-5
 2.07×10

-5
 2.53×10

-5
 4.78×10

-5
 7.92×10

-5
 

Transport and secretion  

   kER,P2 (h
-1

) 1.044 0.468 0.267 0.233 0.224 

   kER,P4 (h
-1

) 1.234 0.503 0.188 0.156 0.137 

   kER,P6 (h
-1

) 1.288 0.557 0.274 0.200 0.128 

   kG,P2 (h
-1
) 36.25 38.36 42.31 42.76 42.52 

   kG,P4 (h
-1
) 43.24 41.53 38.15 37.94 43.32 

   kG,P6 (h
-1
) 44.58 44.72 44.72 45.15 39.84 

 

 

Overall, the model-derived parameters exhibit clear trends across the transfection 

conditions (Table  5.1). Whilst the cells managed to maintain the Sp35:Fc mRNA 

transcription rate Sm at high rDNA loads thus resulting in a proportional increase in the 

mRNA content (Chapter 4, Figure  4.4C), they were unable to retain the rate of post-

transcriptional processes, specifically translation (TP), folding/assembly (kfa) and ER-to-

Golgi transport (kER). Conversely, the rate of aggregate formation (kagg) and protein 

degradation (kubq) were intensified at 1 µg rDNA load onwards. Therefore it was obvious 

that the cellular process rates were transfectant-specific depending on the recombinant 

gene copy abundance. Cells with 0.5 µg rDNA load characterise the most efficient cell 

factory via a fast/proper recombinant mRNA translation, folding and secretion in 
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conjunction with rapid cell proliferation rate, resulting in a relatively high product titre and 

low aggregate content. 

 

 

In order to understand how individual model parameters affect the qP (of native dimer), we 

performed metabolic control analysis (MCA) to obtain a quantitative description of 

substrate flux in response to changes in system parameters. MCA is a type of local 

sensitivity analysis that can be applied to protein synthesis and secretion pathways around 

a given steady state (Dimelow and Wilkinson, 2009; O'Callaghan et al., 2010). The 

empirical data obtained in Chapter 4 imply that the polypeptide synthesis processes (i.e. 

transcription/translation) would not have a significant effect at high rDNA loads, whereas 

post-translational activities would become limiting. We calculated response coefficients 

(RCs) for each cellular process involved in Sp35:Fc production which define the extent to 

which qP changes relative to a 1% perturbation of a discrete cellular process. This analysis 

is shown in Figure  5.4, where all parameters vary in a biologically meaningful manner. 

 

 

Figure 5.4: Parameter local sensitivity analysis demonstrating the qP response 

coefficient in each transfectant resulting from a 1% change in the rate constant of each 

synthetic process. Response coefficients were derived from a 1% increase in transcription 

rate (Sm), translation rate (TP), folding/assembly rate (kfa), ER-to-Golgi transport rate (kER) and 

Golgi-to-medium secretion rate (kG,P2) and from a 1% decrease in mRNA degradation rate (kdeg) 

and aggregation rate (kagg). 
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Overall, the intracellular transport rates of the Sp35:Fc molecule from the ER to the 

Golgi complex (kER) and subsequently to the extracellular medium (kG) have little impact on 

the qP as reflected by the low response coefficients. This is in contrast to the protein 

synthesis processes, namely transcription (Sm) and translation (TP). Indeed, transcription 

and translation parameters have been reported to display a universal, full control over 

recombinant protein production (e.g. Ho et al., 2006; O'Callaghan et al., 2010). Moreover, 

the mRNA degradation rate (kdeg), although not directly measured in this study, also 

showed significant influence on qP as reported by other studies (O'Callaghan et al., 2010). 

The difference in the response sensitivities may be explained by the fact that an increase 

in the rate of intracellular transport will lead to a depletion of the intracellular recombinant 

protein pool that is mainly regulated through the processes of transcription and translation, 

i.e. the increased transport rate cannot be sustained without a parallel increase in 

transcription and translation rates (Ho et al., 2006). Consequently, the effects of transport 

rates kER and kG on increasing Sp35:Fc productivity tend to be significantly lower than 

those of the transcription (Sm) and translation (TP) parameters. 

However, the sensitivity analysis reveals that the ER-to-Golgi secretory rate constant 

(kER) became more sensitive at higher rDNA loads which exhibits a specific limitation in 

this process (Figure  5.4). This is consistent with the finding that high gene expression 

resulted in the retention of intracellular Sp35:Fc in the ER which eventually led to limited 

secretion rate. The consequence is also evident as observed earlier where an increase in 

intracellular dimer did not result in a corresponding increase in dimer secretion rate 

(Chapter 4, Figure  4.6A and B). Additionally, the aggregation rate constant (kagg) also 

displayed sensitiveness, albeit at insignificant levels (RC ≤ 0.05), when the rate of 

aggregate formation competed with ER export machinery for the supply of newly folded, 

export ready Sp35:Fc in the ER lumen. In this case, the yield of native protein was 

determined by the rates of the competing first-order ER-Golgi secretion and second-order 

aggregation reactions. The formation of aggregates, however, did not make a considerable 

impact on the qP due to the fact that they made up only up to 5% w/w of the total secreted 

Sp35:Fc protein yield.  

Unexpected results were observed with the transcription (Sm) and translation (TP) 

processes where the high sensitivities were maintained at high rDNA loads (Figure  5.4). 

These results indicate, on the contrary to the empirical data (Chapter 4), that qP could be 

increased at high rDNA loads by these two processes. Equally, the response of the 

folding/assembly rate constant (kfa) unpredictably appeared to be of negligible importance 
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even though the rate became notably low at 3 µg rDNA transfection (Table 5.1)—implying 

that the assembly process was not a rate-limiting step as hypothesised. With regard to kfa, 

in silico retro-engineering test showed that the response coefficient became significant (RC 

> 0.1) only when the lowest reaction rate in Table 5.1 was further decreased from 10
-4

 to 

10
-7

 cell molecule
-1

 h
-1

. Such large reduction is biologically possible, where MAb heavy and 

light chain assembly rates are known to differ over six orders of magnitude (Bibila and 

Flickinger, 1992). This large variation is largely due to the nature of second-order 

assembly reaction compared to first-order reaction of transcription, translation, etc. 

Previous work in this laboratory (O'Callaghan et al., 2010) for instance had shown that GS-

CHO cell lines with varying qP had assembly rate constant of heavy chain dimer between 

10
-7

 and 10
-1

 cell molecule
-1

 h
-1

. To understand these unexpected results, we performed in 

silico retro-engineering on the cellular parameters (see below). 

 

 

In order to investigate as why the drop in dimer assembly rate kfa at high rDNA load was 

relatively insignificant even though there was an apparent saturation in assembled dimer 

(Chapter 4, Figure 4.6B), we analysed the cell translational rate (TP) across the 

transfectants (Table  5.1). The decrement in translational rate at higher rDNA loads 

suggests the effect of mRNA translational attenuation in the cells. Increased levels of 

unfolded and/or misfolded proteins in the ER of all eukaryotes are known to trigger the 

UPR which in turn activates global translational attenuation (Chakrabarti et al., 2011). 

Therefore, this translational attenuation enabled the unfolded nascent monomers (Chapter 

4, Figure  4.6B) to increase almost proportionally to the mRNA copy numbers (Chapter 4, 

Figure  4.4C) or else there would be a rapid accumulation of unfolded monomers due to the 

decrease in dimer assembly rate (note the slightly exponential curve of the monomer 

species in Figure  4.6B). In other words, the translational attenuation mechanism cushioned 

the impact of saturated assembled dimer in the ER—resulting in only a relatively small 

decrease in the assembly rate and at the same time keeping the unfolded monomer at an 

appropriate level in order to retain the cell's normal cellular function.  

If our hypothesis is correct, the mathematical model would predict that without the 

translational attenuation (i.e., invariable translational rate at different rDNA loads) the 

folding/assembly rate would decrease drastically as the saturation of intracellular dimer 
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would be solely due to the folding/assembly factor, and this in turn would result in an 

adverse accumulation of the unfolded monomer. To verify this, we performed in silico cell 

engineering on the empirical/experimental data (Figure  5.5A) by artificially keeping the 

translational rate TP at different rDNA transfections constant as illustrated in Figure  5.5B. 

The model was simulated to see the changes in the monomer amount and then re-fitted as 

described earlier to obtain a new folding/assembly rate kfa for each transfectant. 

 

 

Figure 5.5: In silico cell engineering reveals the intrinsic ability of cells to restore 

homeostasis between folding demand imposed on the ER and its folding capacity. (A) 

The empirical data showed that a translational attenuation (TA) mechanism, i.e. a decrease in 

translational rate (TP), enabled nascent monomers to increase linearly and resulted in an 

insignificant decrease in the folding/assembly rate (kfa) from 10
-1

 to 10
-3

. (B) By artificially 

keeping the translational rate TP at different rDNA loads constant to mimic the absence of 

translational attenuation, the accumulation of unfolded monomers increases exponentially. 

Without the translational attenuation mechanism to prevent the rapid accumulation of unfolded 

monomers, the folding/assembly rate decreases by nine orders of magnitude from 10
-1

 to 10
-10

. 
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In agreement to the hypothesis, the simulation outcome demonstrated that at a 

constant translational rate (TP) of 254 molecule mRNA
-1

 h
-1

, the folding/assembly rate (kfa) 

decreased dramatically from 10
-1

 to 10
-10

 cell molecule
-1

 h
-1

 as the amount of monomer 

increased rapidly (Figure  5.5B). The sensitivity analysis also revealed that the response 

coefficient of folding/assembly rate constant became notably significant (RC up to 0.72; 

Figure  5.6) indicating that in the absence of translational attenuation the folding/assembly 

process is now a rate-limiting step in the Sp35:Fc production mechanism. Conversely, the 

response coefficient of the transcription rate Sm and the translation rate TP became 

progressively lower, indicating that the parameters exerted less control at higher rDNA 

loads. To this end, the model predicts that engineering the folding/assembly could produce 

a greater return in terms of qP―much in agreement to our hypothesis. 

 

 

Figure 5.6: The response coefficient pattern changes when the translational attenuation 

mechanism of the cells is artificially removed via in silico engineering. Without cell's 

translational attenuation mechanism, the folding/assembly rate (kfa) becomes highly sensitive at 

high rDNA load. Conversely, the sensitivity of transcription rate (Sm) and translation rate (TP) is 

reduced implying that the parameters exercise less control at higher rDNA loads. 

 

Two imperative outcomes of the mathematical modelling and sensitivity analysis are (i) the 

identification of the major cellular production constraint at elevated expression and (ii) a 

systematic understanding of how cells cope with intracellular stress. With respect to the 

latter, it is important to note that cellular rates of mRNA translation and protein folding are 
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functionally linked by complex intracellular signalling pathways such as the UPR which is 

not readily perceived by empirical data alone. Mathematical modelling therefore allows the 

organisation of experimental information systematically and coherently, which in turn 

facilitate the analysis and identification of essential, qualitative features in complex 

biological systems. Our study highlights that UPR regulates the protein-folding capacity of 

the ER according to cellular demand. As such, it gives further insights toward 

understanding how ER stress sensors can confer different responses to achieve optimal 

cellular function and their impact on DTE protein production rate. 

A persistent UPR, however, would be highly undesirable in a stable production cell 

line as it would reduce protein synthesis and lead to ERAD and ultimately cell apoptosis. 

Previous studies in this laboratory comparing the proteomes of MAb-producing GS-NS0 

cell lines showed that cells with relatively high qP had a considerably higher abundance of 

ER functional proteins including the chaperones BiP, PDI and GRP94. Despite the 

variations in ER resident proteins, the levels of spliced XBP1 and cleaved ATF6 were 

similar in all cells lines studies, i.e. the UPR was not induced in cells with high qP, 

suggesting that stable cell lines utilise some cellular strategies to avoid or minimise UPR 

activation (Dinnis and James, 2005; Dinnis et al., 2006; Smales et al., 2004). Thus we 

predict that the generation of stably transfected cells with >1 µg Sp35:Fc DNA using the 

present system will mostly result in instability of Sp35:Fc production (loss of protein 

production, protein aggregation, cell death, etc), rendering the clone screening and 

selection processes difficult and with a low probability of success. 

Apart from systematic understanding, mathematical models can be utilised for the 

effective control and optimisation of bioprocess performance. Using our model, we 

propose that the rational design of cell engineering strategies to improve volumetric 

Sp35:Fc product yield for this system would be increases in (proper) folding/assembly rate, 

for example through metabolic and cell engineering approach. This is comparable to the 

previous study in this laboratory modelling transient difficult-to-express MAbs (Pybus et al., 

2014a), and in contrast to easy-to-express MAb production in stable cell lines which 

emphasised on transcription and translation processes (Davies et al., 2011; McLeod et al., 

2011; O'Callaghan et al., 2010) as rational targets to improve productivity. An increase in 

Sp35:Fc translation rate (and recombinant mRNA abundance) without improving the 

folding and assembly machinery would exacerbate the accumulation of nascent 

polypeptides in the ER and destroy cell's translational attenuation control capability, and is 

likely to shift the bottleneck further downstream in the Sp35:Fc secretion pathway.  
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Finally, while sensitivity analysis is a valuable tool to evaluate the control of 

recombinant protein synthesis exerted by specific cellular processes and aid rational 

engineering strategy, it does not represent the effect per se. The model can be further 

utilised/developed as a predictive tool for cell engineering and/or cell line selection. For 

example, using the observed range of parameter values across the transfectants (Table 

 5.1) as biologically possible cellular processing rates within this CHO host cell, we created 

a theoretical engineered cell line in silico using the optimal translation, folding/assembly 

and secretion rates. The modelled qP increased from 0.18 to 1.17 pg cell
-1

 day
-1

 for a 3 µg 

rDNA load transfectant, a substantial 6.5-fold increase. Certainly, for another Fc-fusion 

protein product or cell line different limitations on cellular productivity may pertain. We 

propose that this iterative cell factory reverse-engineering approach could be implemented 

as a generic framework for Fc-fusion proteins, with the objective of using it as an initial 

groundwork to better understand the factors underlying Fc-fusion protein synthesis and 

processing, and subsequently propose predictive, rational engineering strategies to 

overcome the limiting production factors in mammalian cultivation systems. 
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This chapter explores the hypothesis that it is feasible to exploit functional/genetic 

heterogeneity in the parental CHO cell population to select clonal variants with desirable 

characteristics. The aims are to identify functional variations that may contribute to enhanced 

production of difficult-to-express Sp35:Fc protein, and eventually generate new cell lines that 

are inherently more fit for this purpose. 
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Mammalian cell populations are highly and inherently heterogeneous. Discrepancies 

among clonal cells are present at both genetic (Derouazi et al., 2006; Oh et al., 2003) and 

phenotypic levels (Barnes et al., 2006; Pilbrough et al., 2009). Stockholm et al. (2007) 

have demonstrated, using both in silico and in vitro approaches, that the phenotypic 

heterogeneity in a clonal mammalian cell population can arise due to ―extrinsic‖ and 

―intrinsic‖ mechanisms of the cells. Even though the impacts can be unfavourable (e.g. 

loss of productivity; Lee et al., 1991) and difficult to be dealt with, it is also desirable to find 

out which components of the observed variation serve a biological function that may be 

harnessed for cell line development. In this context, genetic heterogeneity allows the 

selection of cell lines with advantageous phenotypes as a complement to or replacement 

for cell engineering method. 

The potential exists in many cases to select natural variants with a desired feature, 

either as candidate lines for production or to provide a platform for the analysis of factors 

contributing to improved characteristics. Whilst cell selections typically focus on 

productivity and cell growth/density (Pichler et al., 2011; Prentice et al., 2007), novel 

variant cell lines have also been selected with the ability to consume lactate (Browne and 

Al-Rubeai, 2011), the ability to grow in glutamine-free medium (Hernández Bort et al., 

2010), the ability to be transfected with adenovirus (Condon et al., 2003), resistance to 

oxidative stress (Keightley et al., 2004) and resistance to high medium osmolarity (Liu et 

al., 2010). Unlike cell engineering method, this approach does not require extensive 

knowledge of the genes and cellular mechanisms of the cells which can be a bottleneck in 

cell development process (Dietmair et al., 2011; Dinnis and James, 2005). However, to our 

knowledge, there are no reports describing how genetic/phenotypic heterogeneity can be 

purposely managed or controlled to produce improved mammalian cell hosts specifically 

for difficult-to-express (DTE) protein production. 

In this study, we evaluate the functional performance of clonally derived Chinese 

hamster ovary (CHO) cell populations to produce DTE Sp35:Fc in transient expression 

systems. This is theoretically possible as mammalian host cells have been shown to vary 

considerably in their intrinsic ability to manufacture a given recombinant protein 

independent of transgene copy numbers (Charaniya et al., 2009; Kennard et al., 2009). 

Nevertheless, previous studies analysing clonally-derived cell populations transiently or 

stably expressing MAb and/or green fluorescent protein (GFP) have also demonstrated 

that a functional trait is subject to stochastic cell-to-cell variation (Merritt and Palsson, 
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1993; Pilbrough et al., 2009) and not always heritable (Davies et al., 2013; Pichler et al., 

2011). With this in mind, we purposely utilise population-averaged measurements taken 

over many generations (i.e. extended serial subculture) to assess the heritability of key 

functional traits, in which temporary cell-to-cell phenotypic variability that may arise from 

micro-environmental differences (Snijder and Pelkmans, 2011) or stochastic gene 

expression (Raj and van Oudenaarden, 2008) is effectively irrelevant. Somewhat on the 

contrary, we also hypothesised that the routine cell culture procedures are a logical route 

to effectively increase genetic and functional variations within and between sub-

populations that in turn may increase the probability of selecting new cell lines with 

superior capabilities to produce DTE Sp35:Fc. Over many generations, the physically 

isolated cultures evolve randomly/independently and undergo genetic drift to yield their 

own heterogeneous parental CHO cell populations (Merlo et al., 2006)  

The CHO-S cell lineage used in this study had been previously bioreactor adapted as 

a pool by Biogen Idec and remained that way subsequently (i.e., not sub-cloned) with the 

idea of providing as much population heterogeneity as possible (Marty Sinacore, personal 

communication). Taking advantage of this high heterogeneity potential, we isolate 70 

clonal variants and subject a subset of 33 untransfected clonal populations to parallel 

prolonged culture (over 120 generations) to intensify the naturally occurring variations. We 

evaluate the variation/heritability of key phenotypic traits, namely specific proliferation rate 

(µ), peak viable cell density VCD, cell size and cell biomass content. By expressing 

Sp35:Fc and GFP in a sub-subset of 16 clones at 3 different generations, we critically 

assess the effect of routine cell culture procedures on the clones‘ functional performance 

in manufacturing the two distinct recombinant proteins. We effectively identify several 

CHO-S host cell variants that possess superior cellular machinery for transient Sp35:Fc 

production as well the general cell characteristics that could be beneficial in producing 

DTE proteins. 

 

 

 

Single cell clones were isolated by one round of limiting dilution cloning (LDC) of the 

parental CHO-S cell line (Biogen Idec, Cambridge, MA). Cells were plated out into Greiner 

CellStar® 96-well plates (Greiner Bio-One, Frickenhausen, Germany) at 0.125 cells per 

well in CD-CHO medium supplemented with 8 mM L-glutamine (Life Technologies, 
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Paisley, UK). The probability of clonality by LDC was calculated according to Clarke et al. 

(2002) using the following equation: 

𝑃 clonality =
𝑃  one colony per well 

𝑃  at least one colony per well 
=
𝑠𝑑 × 𝑒−𝑠𝑑

1 − 𝑒−𝑠𝑑
                                 (6.1) 

where sd is the seeding density. Individual wells were further subjected to image analysis 

(CloneSelect™ Imager, Genetix, Hampshire, UK) to ensure selection of clonal populations 

derived from a single cell. Plates were incubated in a humidified incubator at 37°C in 5% 

CO2 and culture medium was replenished on Day 9. On Day 13, static culture of 70 

colonies at 40–70% confluency were scaled up to 24-well plate at 5‒10% seeding 

confluency (3 days culture) followed by 6-well plate (3 days culture), and eventually to 125 

mL shake flasks (Corning Incorporated, Acton, MA) at which the generation number was 

reset to zero. Shake-flask cultures were maintained at 37°C in 5% CO2 under 140 rpm 

agitation. Cells were sub-cultured every 4 days by centrifuging at 200×g for 5 min to 

remove the spent medium and re-seeding into fresh medium at a concentration of 2×10
5
 

cells mL
-1

. Accumulated generation number was calculated using Equation 6.2;  

Generation number =
ln (𝑋2/𝑋1)

ln(2)
=
𝜇 (Δ𝑡)

ln(2)
                                                                  (6.2) 

where X are the viable cell density (VCD) at the first or second time point, µ is the cell 

proliferation (growth) rate and t is the time. Cryopreservation in liquid nitrogen was carried 

out on the clonally derived cell populations at 15, 45 and 105 generations as described in 

Section 3.1.2. 

 

 

Average cell diameter based on forward scatter was determined using a Vi-CELL™ Cell 

Viability Analyser (Beckman Coulter, Brea, CA). Diameter range was determined to be 

between 6 and 24 µm to exclude cell debris and aggregates (Seewöster and Lehmann 

1997). 5,000‒8,000 cells at mid-exponential phase were used for the analysis and 

duplicate readings were taken from two passages. The average cell diameter (D) was 

used to calculate the average cell volume (V) by assuming a spherical shape: 

𝑉 =
4

3
𝜋  

𝐷

2
 

3

                                                                                                                          (6.3) 
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Total cellular protein content was determined from whole cell lysates. Triplicate samples of 

1×10
6
 cells were washed twice in DPBS (Sigma-Aldrich, Poole, UK) then immediately 

stored at –20°C. Prior to extraction, samples were rapidly thawed on ice and then lysed in 

100 µL RIPA buffer (50 mM Tris–HCl, pH 8.0, with 150 mM sodium chloride, 1.0% Igepal 

CA-630 (NP-40), 0.5% sodium deoxycholate, and 0.1% sodium dodecyl sulfate (Sigma-

Aldrich)) supplemented with 1X Protease Inhibitor Cocktail Set III (Merck Chemicals, 

Nottingham, UK) at 4°C for 10 min. Samples were clarified by centrifugation at 8,000×g for 

10 min at 4°C. Soluble protein concentration was determined using Pierce™ BCA Protein 

Assay Kit (Thermo Scientific, Cramlington, UK) microplate procedure according to the 

manufacturer‘s instructions using BSA as a calibrant. Samples were diluted 1:8 in working 

reagent and concentrations determined using a PowerWave™ XSTM (Bio-Tek, Potton, 

UK) microplate reader at 570 nm. KC4 3.1 software (Bio-Tek) was used to generate the 

standard curve and interpolate the protein concentration in cell lysate (Figure  6.1). The 

average protein biomass content per cell was calculated from the total protein amount and 

the number of cells lysed. 

 

 

Figure 6.1: Example standard curve generated using BCA protein assay. The curve 

generated was used to determine the protein concentration in whole cell lysate. 

 

33 selected clones and the parental cell line were revived from the cell bank and seeded at 

3×10
5
 cells mL

-1
 in 125 mL Erlenmeyer shake flasks. Prior to transfection, clonally derived 
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cell populations were maintained for 4 passages (15 generations). All clones utilised CD-

CHO medium supplemented with 8 mM L-glutamine at 37°C in 5% CO2 and 140 rpm 

agitation. For a small-scale production, transient transfection was conducted at Day 2 of 

culture and each clone was transfected in triplicate using the Amaxa® Nucleofector® 96-

well Shuttle
TM

 protocol for CHO-S cells (Lonza, Basel, Switzerland). Briefly, 1.5×10
6
 cells 

per well were centrifuged at 90×g for 10 min. Cell pellet was resuspended in 20 µL 

Nucleofector solution SG and transferred onto the Nucleocuvette® plate with 0.33 µg of 

Sp35:Fc DNA. Following transfection, cells were diluted in 100 µL of culture medium and 

transferred into a 6-well plate at a seeding density of 1×10
5
 cell mL

-1
. Cells were cultured 

in CD-CHO supplemented with 8 mM L-glutamine at 3 mL/well working volume and 

incubated in a static incubator at 37°C, >85% humidity and 5% CO2 for 48 h prior to 

Sp35:Fc quantitation. For a larger scale suspension culture production, a subset of 16 

clones were co-transfected with 1 µg Sp35:Fc plasmid and 1 µg pmaxGFP® vector 

(Lonza) using the Amaxa Cell Line Nucleofector Kit V system (Lonza) and cultured in a 

TubeSpin for 96 h as described in Section 3.3.1.  

 

 

 

CHO-S clones were derived from the parental cell line in static microplate culture using a 

single LDC procedure at a probability of clonality of 0.939. The presence of a single cell-

derived colony was identified using automated image analysis of individual wells. After 19 

days of static microplate culture, 70 individual subpopulations were transferred to shake 

flask suspension culture with a strict 4-day sub-culturing regime in which clone-specific 

proliferation rate (µ) and accumulated generation number were routinely calculated. At 30 

generations of suspension culture, the clonal populations exhibited 1.5-fold variation in µ 

and 2.6-fold variation in peak VCD and there was a significant positive correlation between 

the two traits (Pearson‘s product moment correlation coefficient, PPMCC r = 0.849, P < 

0.0001; Figure  6.2). As we were parsimonious in our approach to study the 

heritability/evolution of clone functional phenotypes, a subset of 33 clones with varying µ 

and peak VCD were selected from this data and subjected to parallel prolonged culture 

(>120 generations, up to 100 days). 
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Figure 6.2: CHO-S clonal populations isolated by limiting dilution cloning exhibit large 

variations in phenotypic traits. At 30 generations of suspension culture, the specific 

proliferation rate, µ, varied by 1.5-fold while the peak viable cell density (VCD) varied by 2.6-

fold. The two traits are also positively correlated (PPMCC r = 0.849, P < 0.0001). The donor 

CHO-S parental cell population (white symbol) had an average µ and peak VCD of the clones. 

The clonally-derived cell populations varied markedly in µ throughout long-term 

suspension culture (Figure  6.3). This was most obvious at the first passage immediately 

following transfer from static into suspension (µ ranged from 0.398 to 0.914 day
-1

, or 2.3 to 

5.3 generations), although by the third passage, clone-to-clone variation in µ had narrowed 

to 0.655–1.037 day
-1

 (3.8‒6.0 generations). Additionally, the majority of clones displayed 

larger fluctuation in µ early in suspension culture and gradually became stable. Despite the 

general increase and stabilisation in µ during the long-term culture, the isolated clonal 

variants did not necessarily achieve the same growth fitness under the governing selective 

pressure (i.e., reach the maximum proliferation rate achievable by other variants). At 120 

generations, the µ still varied between 0.951 and 1.176 day
-1

 (up to 24% difference). 

In order to systematically quantify and compare the rate at which clone specific µ 

converged during the long-term suspension culture, the calculated values of µ for each 

clone during serial sub-culture were fitted to either a linear, second-order polynomial or  

logarithmic regression model depending upon the line that best fitted each data (mean R
2
 

= 0.605). For each clone, we then determined the average specific rate of increase in µ (% 

per generation) between 5 and 120 generations in suspension culture using values for μ 

derived from the line of best fit and Equation 6.4. 

Δ𝜇 =   
𝜇120

𝜇5
 

(1/(120−5))

 − 1                                                                                    (6.4) 
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Figure 6.3: CHO-S clones exhibit great variation in specific proliferation rate and peak 

viable cell density during long-term shake flask culture. (A) Specific proliferation rate (µ) of 

33 individual CHO-S clones and the parental cell line during shake flask culture for >120 

generations. The clones display a general increase in µ over time. (B) For each clonal isolate in 

A, calculated values for µ during serial sub-culture were fitted to the best fit model in each case. 

Plot shows that the clone-specific rate of change of µ (Δµ) is inversely proportional to initial µ 

(fitted µ at 5 generations). (C) Fast-growing clones tend to have higher peak viable cell density 

(VCD), and as the clones increase their µ between 30 and 120 generations, their peak VCD 

also increases. 

where µ5 is fitted µ at 5 generations in shake flask culture and µ120 is fitted µ at 120 

generations in suspension culture. Figure  6.3B shows that the clone-specific rate of 

change in µ varies greatly between 0.048 and 0.494% per generation (median Δµ = 

0.118% per generation), and that there was a strong negative correlation between initial µ 

(fitted at 5 generations) and the subsequent average rate of increase in µ (PPMCC r = 
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‒0.821; P < 0.0001). Together, the data in Figure 6.3A and B corroborate a recent study in 

this laboratory using CHOK1SV cells (Davies et al., 2013) that whilst clones further from 

the maximal observed µ at the beginning of serial-sub culture tend to increase their µ more 

rapidly than those with an intrinsically higher initial µ, clonal variation in growth 

characteristic persisted throughout prolonged culture. 

Interestingly, 12 clones and the parental cell line demonstrated significant increases 

in peak VCD (P < 0.001; mean increase 4.25×10
6
 cells mL

-1
) as they acquired their optimal 

µ after 120 generation, while 10 clones displayed slight improvements in peak VCD (P < 

0.05; mean increase 1.69×10
6
 cells mL

-1
). The rest of the clones (12 clones) did not show 

significant changes (P > 0.05). This data is illustrated in Figure  6.3C which shows a 

general shift in µ and peak VCD from 30 generations to 120 generations. We note that at 

both points of culture there was a positive correlation between µ and peak VCD (overall 

PPMCC r = 0.805, P < 0.0001). As the population-averaged cell culture processes and 

measurements are devoid of population and temporal noises (Brock et al., 2009), we 

deduce that the majority of clonally derived populations gradually underwent genetic drift 

where fast proliferating clonal variants were in sufficient abundance to permit their 

selection during serial sub-culture procedures and eventually became predominant. 

 

 

To study if the observed variations in clone-specific proliferation rate were correlated to 

differences in cell biomass and volume control, both parameters were examined using the 

33 clonal populations and the parental population that had undergone 60 generations. We 

reasoned that at this generation number, the cell populations were relatively stable (i.e., 

less susceptible to stochastic temporary variations in µ) and had minimal phenotypic 

diversity within a population. Clones were revived from the cell bank at 45 generations, 

cultured for 4 passages (approximately 15 generations) then sampled simultaneously at 

mid-exponential phase (Day 4). Average cell spherical volume was determined by image 

analysis (measured as mean diameter in µm of 5,000‒8,000 cells per sample) and total 

extracted cellular protein was determined by biochemical assay as an estimate of mean 

cell biomass content. These data are shown in Figure  6.4.  

Data from the biochemical assay revealed the variation in cell protein content (1.42-

fold) was positively correlated to cell volume (PPMCC r = 0.718; P < 0.0001, Figure  6.4A)  
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Figure 6.4: Relationship between the specific proliferation rate, protein biomass content, 

size and density at 60 generations. Clones were sampled simultaneously 96 h post-

inoculation. (A) Mean cell protein biomass of the clones positively correlates with mean cell size 

(volume) determined by automated image analysis, and (B) negatively correlates to clone-

specific proliferation rate, µ. (C) µ is also influenced by cell size, but (D) not by cell density. 

and was negatively correlated to µ (PPMCC r = –0.774; P < 0.0001; Figure 6.4B). 

Additionally, we note a negative correlation between µ and cell volume (PPMCC r =           

–0.745; P < 0.0001; Figure  6.4C). In other words, those clones that had large mean 

biomass and volume essentially required longer time to accumulate their biomass (lower µ) 

whereas clones with small mean cell biomass and volume required shorter time (higher µ). 

These data imply, in contrast to Davies et al. (2013), that the biomass accumulation rate of 

the clones are a largely similar of around 92‒115 pg cell
-1

 day
-1

 (1.25-fold variation). 

Accordingly, the variation in cell density (1.27-fold) was less clear than that of size (1.41-

fold) and there was no relationship between the former and µ (PPMCC r = –0.112; P > 

0.05; Figure  6.4D). Nevertheless, at the extremes of the observed diversity, the clonal 
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phenotypes could also be either "biomass efficient" (high cell protein content and high µ) or 

"biomass inefficient" (low cell protein content and low µ) that could potentially impact 

biomanufacturing processes. Significant clone-to-clone heterogeneity in size/biomass 

control was therefore evident. 

 

 

To narrow down the number of clones to be tested for Sp35:Fc expression capabilities, 

preliminary small-scale transient transfections were performed using plate-based 

Nucleofection system on the subset of 33 clones and the parental population (all at 30 

generations). Cell line specific recombinant protein production has been demonstrated to 

be significantly less variable using this transfection method (i.e. Nucleofection) than for 

lipoplexes (Davies et al., 2013) and polyplexes (Thompson et al., 2012) mediated 

transfections, as well as other electroporation methods (Zeitelhofer et al., 2007). After 48 h 

of static culture, the supernatant from each transfectant pool was analysed using ELISA. 

This analysis shows that the Sp35:Fc production capability of the clones vary by up to 2-

fold (P < 0.0001; Figure  6.5).  

 

 

Figure 6.5: CHO-S clones exhibit variation in transient difficult-to-express Sp35:Fc 

protein production. 33 clones and the parental population at 30 generations were each 

transfected in triplicate using plate-based Nucleofection system. The extracellular Sp35:Fc titre 

was measured by ELISA after 48 h of static culture. Clone-specific Sp35:Fc production is 

shown relative to that of parental CHO-S cell line used to normalise assays. Error bars 

represent the standard deviation of three technical replicates. 
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Based on the data in Figures 6.3A and 6.5, a sub-subset of 16 clones with varying 

proliferation rates and volumetric titres were selected. This is akin to the traditional 

screening of the highest stable producers in static culture following cloning before analyses 

in suspension culture. We acknowledge that there are differences in static and suspension 

cultures (e.g. oxygen transfer rate, cell confluency/density) that could affect cells behaviour 

and recombinant protein production. Therefore, cells with low productivities/titres in static 

culture might actually exhibit high production in suspension mode, or vice versa. Despite 

the differences, studies have shown that there are still good confidence intervals―for 

example, if one were to obtain the highest producer in suspension culture, the selection of 

the top 30% of the highest producers in static culture would give a 1% probability of 

incorrect rejection (Brand et al., 1994). As we were to select 50% of the clones, this small-

scale production data gave a higher chance in selecting high, mid and low producers than 

relying on the cell proliferation data alone. 

For each clone (from the sub-subset) as well as the parental population, transient 

transfections were performed at 30, 60 and 120 generations and cultured in suspension. At 

the latter generation number, the clonal populations were the most "evolved" with regard to 

µ and peak VCD. Thus, we hypothesised they exhibited the greatest genetic and functional 

diversities deriving from genetic drift and population dynamics both between and within 

physically isolated clonal populations. Additionally, to test the hypothesis that it was 

possible to obtain clonally-derived cell lines with intrinsic cellular capability to produce 

specific (DTE) recombinant proteins, the clones were tested for their ability to 

simultaneously express the difficult-to-express Sp35:Fc and an easy-to-express GFP. Both 

recombinant genes utilised CMV promoter encoded on different plasmid expression 

vectors, and transfected at the same DNA load. We reasoned that co-expression of two 

recombinant proteins with inherently distinct cellular requirements and using the same type 

of promoter would permit direct evaluation of both generic (e.g., cell transfectability) and 

protein specific (e.g., intracellular or extracellular secretion, cytosolic or ER 

folding/assembly) functional capabilities with minimal promoter interference (Huliak et al., 

2012). 

Transfections were performed using cuvette-based Nucleofection and cultured in 

suspension for a restricted 96 h period to minimise loss of recombinant plasmids (i.e., the 

effect of plasmid dilution on protein expression; Codamo et al., 2011). Cell viability of the 

clones measured 2 h post-transfection was 75.3‒85.6% (median 82.9%). The transfection 

efficiencies determined by measurement of intracellular GFP fluorescence by flow 

cytometry (example plot shown in Figure  6.6) at 48 h post-transfection revealed that 
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transfection efficiency of the clones were highly comparable, i.e. between 96.5% and 

99.6% (median 98.4%), with relatively homogenous transfected population compared to 

the parental cell line (Chapter 4, Figure 4.3). However, we observed that the mean and 

median fluorescence between clones varied by up to 5-fold (Figure  6.6B). Similar results 

were observed at 96 h post-transfection but with slightly lower clone-specific mean/median 

fluorescence intensity (data not shown) that can be ascribed to the effect of recombinant 

plasmid dilution/loss at high cell generation number post-transfection. 

 

 

Figure 6.6: Example flow cytometry plots of GFP content of different clones. Cells were 

co-transfected with an equal amount of Sp35:Fc and pmaxGFP plasmids. GFP fluorescence 

was quantified 48 h post-transfection against negative control cells that were mock-transfected. 

Transfection efficiency obtained was 96.5–99.6% and mean/median fluorescence varied by up 

to 5-fold. (A) Cell population gated for granularity and size. (B) Example histogram of two clonal 

populations with low fluorescence (black) and high fluorescence (grey).  

Figure  6.7 shows the transient Sp35:Fc production and IVCD for 16 selected clones 

and the parental population at 30, 60 and 120 generations. With respect to the IVCD, the 

majority of clones acquired significant increases in µ (effectively the "efficiency" of biomass 

synthesis) between 30 and 120 generations which was consistent with the long-term 

culture data (Figure  6.3A), indicating that it was possible to maintain the clones growth 

characteristic during cryopreservation procedure. Furthermore, it is interesting to highlight 

that all of maximally "evolved" clones (i.e., cells at 120 generations) except clone 8 

exhibited an IVCD below that of the donor CHO-S parental population (Figure  6.7). This 

could be explained by the population dynamics within the highly heterogeneous donor 

population, in which fast proliferating clonal variants progressively became predominant 

resulting in a relatively high population-averaged µ (Davies et al., 2013).  
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Figure 6.7: "Evolution" of CHO-S clones impact their transient recombinant Sp35:Fc 

protein production capability. Each clone at 30 generations (A), 60 generations (B) and 120 

generations (C) was transfected in duplicate and maintained in suspension culture for 96 h. 

Integral of viable cell density (IVCD) was calculated from the daily viable cell density, while 

secreted Sp35:Fc was measured 96 h post-transfection. Clones are ranked in order of 
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ascending titre at 30 generations. Clone-specific IVCD, Sp35:Fc titre and qP are shown relative 

to that of parental cells at 30 generations used to normalise assays. Error bars represent the 

standard deviation of two biological and two technical replicates. 

Unlike the generally acquired increment in clone µ during the long-term culture, 

divergence in the clone-specific ability to manufacture recombinant Sp35:Fc was bi-

directional (Figure  6.7). In this case, difference in qP changed on a clone-by-clone basis 

and therefore there was not a similar conserved trend in the change in clone Sp35:Fc 

process titre. On the extremes, C24, which was the lowest producer at 30 generations, 

evolved to become the highest producer after 120 generations, whereas C46 and C56 

which were among the early promising candidates (at 30 and 60 generations) lost the 

production capability during long-term culture. Several high-producing clones exhibited 

heritably improved transient Sp35:Fc production, and this could be achieved via an 

increase in either IVCD (C13) or qP (C20 and C69). 

We observed in Figure 6.7 that there was an inverse relationship across the clones 

where fast proliferating clones had relatively low Sp35:Fc qP (e.g. C8, C39) compared to 

slower growing cells (e.g. C26). Additionally, despite the 25% average increase in IVCD 

from 30 to 120 generations, the clones‘ average qP decreased by 9% and only one clone 

(C24) showed significant improvement. Analysis of these data show that there was a 

significant negative correlation between the qP and IVCD (PPMCC r = –0.784, P < 0.0001; 

Figure  6.8A). This inverse relationship was not (solely) due to the faster dilution of Sp35:Fc 

plasmid DNA in fast-proliferating cells as no correlation was observed with median (or 

mean) GFP fluorescence on any day of culture (best PPMCC r = 0.126, P > 0.05; Figure 

 6.8B). Indeed, our early transfection optimisation work using GFP on the parental cell line, 

as well as other work in this laboratory using different cell lines, demonstrated that GFP 

fluorescence intensity was always in proportion to the transgene copy numbers (data not 

shown). Therefore, we hypothesise that the negative correlation between µ and Sp35:Fc 

qP was rather derived from increased host cell competition for energy and synthetic 

resources for the production of either cell own protein biomass or the DTE protein. 

We further analysed the relationship between the specific productivity and the protein 

biomass of each clone (untransfected clonal populations) at their respective generations. 

This analysis revealed that qP was directly correlated to the cell size/biomass content 

(PPMCC r = 0.759, P < 0.0001; Figure  6.8C) but this was not the case with GFP where 

there was no correlation between cell biomass and median (or mean) fluorescence (best 

PPMCC r = 0.060, P > 0.05; Figure  6.8D). Together, these data show that cell lines with the  
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Figure 6.8: Difficult-to-express Sp35:Fc production rate correlates to cell-specific 

proliferation rate and biomass content but no relationship is observed in the case of 

GFP. (A) Fast-growing cells tend to have low Sp35:Fc specific productivity (qP), (B) whilst no 

such correlation is observed with GFP. (C) Cells that are good in manufacturing cell protein 

biomass (and thus have large size) are good in manufacturing Sp35:Fc, (D) but not necessarily 

GFP. (E) No apparent relationship is observed between GFP content and Sp35:Fc productivity, 

(F) although a weak correlation is observed with the volumetric titre. Data shown are for 96 h 

culture. 
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capability to accumulate high biomass while maintaining relatively high proliferation rate 

compared to the parental cell line were very likely to be high producers for DTE Sp35:Fc 

protein. In contrast, cells that were good in producing GFP were not necessarily good 

Sp35:Fc producers (Figure 6.8E), even though we did observe a weak correlation between 

median GFP fluorescence and Sp35:Fc volumetric titre (PPMCC r = 0.352, P < 0.05; 

Figure 6.8F). However, we acknowledge that the lack of correlation, although unlikely, 

could also be due to different ratio of GFP plasmid to Sp35:Fc plasmid uptake. We deduce 

that it is feasible to isolate variant parental clones that exhibit enhanced, heritable trait(s) to 

produce a particular DTE protein such as Sp35:Fc, or to harness the heterogeneity within 

the cell populations for this purpose. 

 

 

Non-reducing SDS-PAGE and immunoblotting for Sp35:Fc showed the presence of high 

molecular weight complexes (i.e., 400 kDa tetramer and 600 kDa hexamer aggregates) in 

all clonal cell lines (at different generations) tested as shown in Figure  6.9A. Under 

reducing condition, these high molecular weight complexes were reduced to 100 kDa 

monomer (data not shown) as previously observed with the parental cell line (Chapter 4, 

Figure  4.5), which indicated that the aggregates were disulphide bonded.  

Despite the significant clone-to-clone variations in qP (Figure  6.7), the quantitative 

analysis showed that all clones at different generations produced comparable amount of 

aggregates (Figure  6.9B). Only two clones, C26 and C69, demonstrated appreciably (and 

consistently) lower aggregate levels compared to the CHO-S parental cell line at 30 

generations (P < 0.1). Even though we were still able to establish a negative correlation 

between qP and aggregate amount (PPMCC r = -0.571, P < 0.0001; Figure  6.10), the 

large measurement noise/error produced from the immunoblotting technique might 

diminish the statistical confidence. An orthogonal method for aggregate quantification, 

preferably a more robust and sensitive one such as analytical ultracentrifugation or 

dynamic light scattering (Arakawa et al., 2007), is required to cross-check the Western blot 

data. However, it is worth noting that the two clones with noticeably lower aggregates (C26 

and C69) had relatively high qP compared to other clones and the parental cell line (Figure 

 6.7). We contemplate that these two clonal cell lines had better ER processing facilities for 

the production of DTE proteins. 
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Figure 6.9: CHO-S clones and the parental cell line at different generations did not differ 

significantly in the amount of Sp35:Fc aggregates produced. Cell culture supernatants 

from the parental cell line and 16 clones at 30, 60 and 120 generations were harvested 96 h 

post-transfection and subjected to quantitative Western blotting. (A) Representative Western 

blot image showing Sp35:Fc native dimer (200 kDa) and aggregates (400 and 600 kDa) 

produced by the parental cell line and clones at 60 generations. Under reducing condition, all 

bands were reduced to 100 kDa (data now shown). (B) Relative quantification reveals that most 

clones produce comparable amount of aggregates relative to the parental cell line. C26 and 

C69 demonstrated appreciably and consistently lower aggregate levels compared to the 

parental cell line at 30 generations (P < 0.1). Error bars represent the standard deviation of two 

biological and two technical replicates. 

 

This work demonstrates that it is practically possible to harness the intrinsic variability of 

CHO cells in heterogeneous parental populations to acquire clonal derivatives that exhibit 

heritable variations in key functional attributes (e.g. µ, biomass accumulation) that favour 

DTE protein productions. The most basic observations were related to the adaptation 

response of clonally-derived host cell populations in their µ during routine sub-culture. 

Importantly, rapidly proliferating CHO-S clones with enhanced Sp35:Fc production rate 

compared to the donor parental cell line could also be obtained. The clones steadily 
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Figure 6.10: Clones that have a high capacity to manufacture difficult-to-express Sp35:Fc 

may produce less aggregates. There is a weak but highly significant negative correlation 

between clone specific Sp35:Fc productivity and the amount of aggregates produced across the 

clones at different generations. 

increased their capability to efficiently acquire cell biomass (i.e., increase µ) towards their 

clone specific maximum as well as to achieve high peak cell density, although this was not 

the case for all clonally derived populations. We also observed a number of clones that did 

not respond to the imposed selective pressure, exhibiting a relatively constant, sub-

maximal µ and peak VCD throughout the study (e.g., C26 and C51), and two clones 

displayed a similar maximal µ and peak VCD throughout the long-term culture, constantly 

in excess of the CHO-S parental average. Underpinning this averaged evolution 

progression were diverse clone-specific adaptive phenotypes derived from genome 

mutation and genetic drift (Davies et al., 2013).  

The exact origins and molecular mechanisms underpinning genetic mutation or 

instability in mammalian cell lines are not yet fully understood. The most relevant and 

convincing evidence arises from the genetic instability models of cancer cell progression 

(O'Callaghan and James, 2008). Genetic instability is a characteristic of most cancers in 

which cancer cells display highly rearranged karyotypes characterised by translocations, 

deletions, inversions, abnormally banding chromosome regions, and extrachromosomal 

double minutes (Ma et al., 1993; Ruiz and Wahl, 1990). These, in turn, give rise to new 

(mutated) cells that tolerate some degree of malfunction in mitotic homeostasis and have 

survival advantages over their normal progenitors (Boland et al., 2009). Epigenetic 

changes may also be relevant in which they can collaborate with genetic changes to 
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perturb multiple key pathways in ways that promote carcinogenesis (Jones and Baylin, 

2007). For example, DNA hypomethylation has been associated with chromosomal 

instability (Wilson et al., 2007) whereas methylation of CpG island promoters is known to 

cause silencing of key regulatory genes, which leads to an increased frequency of 

mutations (Jones and Baylin, 2007). 

In the CHO-S donor parental cell population used in this study, such altered 

genotypes/phenotypes were apparently present at a frequency high enough to yield, after 

sorting 70 individual cells, at least 3 different stably improved subclones (C13, C20 and 

C69) with regard to µ and qP. Using these new clones, 1.4‒1.6-fold increases in volumetric 

titre were achievable, whilst further increase (up to 1.8-fold) could be obtained using the 

"highly evolved" C24 clone at 120 generations. Even though we were unable to identify 

host cell lines with significantly lower Sp35:Fc aggregates, this was not unexpected 

considering the fact that biopharmaceutical companies normally screen several hundred to 

several thousand clones to obtain a desirable production cell line. The fact that some of 

our top producers at 30 generations (e.g. C46 and C56) had a temporarily stable 

production characteristic was also not surprising—we had observed this in other 

experiments in this laboratory which dealt with phenotypic/functional properties that vary 

over long term culture (Davies et al., 2013; Fernandez-Martell et al., unpublished data). 

However, our long-term culture data suggest that the rate of acquirement of 

genetic/functional diversity in some clonal populations was sufficient to respond to the 

imposed selective pressure to yield high Sp35:Fc producers. In view of this, we 

hypothesise that subsequent cloning of Clone 24 at 120 generations, which displayed the 

substantial improvement in both growth rate and productivity, will yield sub-clonal 

populations with significantly improved transient Sp35:Fc production. 

It was observed that the CHO-S sub-populations exhibited substantial clone-specific 

difference in size and cell protein biomass that is directly correlated to µ. This data is in 

agreement with a mathematical analysis showing that mammalian cells exhibit variable 

control in mitotic timing mechanisms where cell proliferation rate is size-dependent 

throughout the cell cycle (Tzur et al., 2009). Additionally, difference in biomass 

accumulation rate obviously impacts mammalian cell-based manufacturing processes that 

utilise cellular protein biomass to create recombinant proteins. Recent studies have shown 

that biomass accumulation rate impacts the ability of clonal variants to perform specific N-

glycan reactions (Davies et al., 2013), whilst deliberate engineering of cell biomass 

synthesis, either via engineering amino acid transport (Tabuchi et al., 2010) or cell 

signalling systems (Dreesen and Fussenegger, 2011), has been positively associated with 
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increased productivity. In the case of DTE Sp35:Fc, we found that it was possible to 

directly compare the host cell‘s own commitment to biomass synthesis to that of the 

product, i.e. clones with high unit biomass per cell and large size had more efficient 

regulation of Sp35:Fc production (and potentially with minimal aggregates). Although it 

may be argued that the variation in clone-specific proliferation rate may influence the 

Sp35:Fc productivity (due to variation in plasmid dilution rate in the cell), another study in 

this laboratory by Syddall et al. (unpublished data) also demonstrated that large/high 

biomass CHOK1SV cells were better producers compared to their smaller CHOK1V 

counterpart that had similar µ. 

We speculate that the large CHO-S clones with high biomass have superior protein 

folding capacities in the ER, which in turn can be associated with large ER size and high 

mitochondrial mass (Bi et al., 2004). This leads to better processing and secretion of 

recombinant proteins that are relatively difficult to fold, resulting in higher productivity and 

better cell survival. Hu et al. (2013) showed that CHOK1 cells, which had relatively large 

ER size and mitochondrial mass, enabled stable cell line development for MAbs that are 

difficult to express in DUXB11-derived cells. Indeed, protein folding process consumes 

considerable energy (Dobson, 2003) which is supplied by the mitochondria, and therefore 

high mitochondrial mass may be advantageous for the production of DTE proteins (Bravo 

et al., 2011; Simmen et al., 2010). On the other hand, the significance of ER size can be 

recognised from the unfolded protein response (UPR), which drives expansion of the ER to 

boost its protein folding capacity and induce ER-associated degradation (ERAD) to 

degrade misfolded proteins (Bommiasamy et al., 2009; Sriburi et al., 2007). 

Overexpression of the active form of X-box binding protein 1 (XBP1s) in CHOK1 cell lines 

has been shown to expand the ER and the Golgi that lead to an increase in overall 

production capacity (Tigges and Fussenegger, 2006). 

In cell line development, GFP fluorescence represents a useful surrogate correlated 

to levels of the protein of interest. Often, there is a high correlation between clone 

production of GFP and (easy-to-express) protein of interest including MAb (Davies et al., 

2013; Kim et al., 2012) and growth factors (Freimark et al., 2010; Meng et al., 2000), thus 

enabling easy, rapid identifications of high producers. Yet, this could not be applied in the 

case of Sp35:Fc and possibly other difficult-to-express proteins. We hypothesise that this 

is due to the activation of the UPR during DTE protein expression that altered the cellular 

processes. Instead, we found that higher probability of success could be achieved by 

screening fast-growing cells (high µ) with large size or high biomass content. This data 

provides an important understanding for CHO host cell choice to express difficult to 



Chapter 6 

 

110 

produce recombinant proteins, even though advanced studies at cellular levels 

(transcriptomics, proteomics, etc; Charaniya et al., 2009; Dinnis et al., 2006) are required 

to reveal the underpinning factors. Increasingly complex recombinant protein products 

necessitate host cells with dedicated cell factories to achieve both high IVCD and qP. We 

anticipate that such cell lines would require an extensive "directed evolution" approach 

(Hernández Bort et al., 2010; Prentice et al., 2007) rather than mere exploitation of natural 

variation/mutation within the host cell populations. 
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This chapter describes a novel vector engineering approach specifically beneficial for difficult-

to-express (DTE) protein production. The objective is to construct an expression vector that can 

circumvent the impact of overexpression of DTE protein on cell growth whilst achieving high 

productivity. By incorporating ER stress elements into a vector and manipulating endogenous 

and/or exogenous UPR transactivors, we show that it is feasible to create a synthetic amplifier 

circuit that could lead to improved DTE protein production. 
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The CMV-ATF6c vector (Appendix A) was constructed by Dr Stefan Schlatter. The ERSE-

SV40 vectors driving Sp35:Fc, SEAP or ATF6c, as well as SV40 vectors driving Sp35:Fc 

or ATF6c (Appendix A) were constructed by Dr Nathan West. Recombinant SEAP assay 

for this chapter was performed by Dr Nathan West. 

 

 

Viable cell density (VCD) and cell specific productivity (qP) are two key factors in a 

biomanufacturing process using mammalian cells. As a molecular basis to the latter, 

efficient promoter/enhancer systems are a prerequisite for achieving high recombinant 

protein expression levels, especially for characteristically ―easy-to-express‖ (ETE) proteins 

where transcriptional rates have been quantitatively shown to exert high levels of control 

over production (Ho et al., 2006; McLeod et al., 2011; O'Callaghan et al., 2010). 

Accordingly, expression is generally directed by strong constitutive promoter/enhancer 

combinations to maximise recombinant gene transcription levels.  

Today, the human cytomegalovirus (CMV) promoter is utilised to drive expression of 

many biopharmaceutical products (Xia et al., 2006). It is a complex genetic element 

evolved by the virus to allow it to infect many different mammalian host cells including 

Chinese hamster ovary (CHO) cells (Stinski and Isomura, 2008). Yet, given its use for 

more than 25 years, the search for new expression promoting elements has become of 

major importance (Makrides, 1999). For example, powerful expression systems have been 

constructed from the promoter region of the Chinese hamster elongation factor-1α (EF-1α) 

gene and its 5' and 3'flanking sequences (Running Deer and Allison, 2004). Novel, strong 

promoters have also been synthetically derived (Brown et al., 2014; Schlabach et al., 

2010) in which they offer a potentially attractive advantage of removing repeat elements 

from the vectors that could contribute to long-term expression instability via promoter 

methylation and gene deletion events (Kim et al., 2011a). 

 Apart from the strength of a promoter, the design of a vector also plays an important 

role to yield high expression levels. For instance, a bi-directional promoter system 

(Chatellard et al., 2007) has been reported to achieve similar expression levels for multi-

chain proteins (antibodies, heterodimeric peptide hormones, etc) compared to 

conventional promoters without the use of gene amplification steps. Additionally, a single 
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open reading frame (ORF) expression vector driving both MAb heavy chain and light chain 

expressions can yield higher expression compared to dual ORF vector (Jostock et al., 

2010), even though contrary reports (Davies et al., 2011) have also been published. On 

the other hand, for difficult-to-express (DTE) proteins that have mis-matched kinetics of 

transcription, translation and folding reactions, maximising transcription alone is unlikely to 

be beneficial. Therefore, efficient expression systems also require optimised vector 

designs for specific proteins and/or mammalian cell hosts.  

Recent work in this laboratory by West (2014) has demonstrated that the 

transcriptional activity of the simian virus 40 (SV40) promoter can be increased when an 

ER stress response element (ERSE) is incorporated into the promoter's upstream region 

and is activated (Appendix D). ERSE, possessing a consensus sequence of CCAAT-N9-

CCACG, is present in the proximal promoter regions of many ER stress-responsive genes. 

This sequence is necessary and adequate for the induction of a number of ER chaperones 

including BiP, GRP94, and calreticulin during the unfolded protein response (UPR; 

Yoshida et al., 1998). Under normal conditions, only the general transcription factor NF-Y 

binds to the CCAAT motif of the ERSE. Under ER stress conditions, the cleaved ATF6 

(ATF6c) and spliced XBP1 (XBP1s) bind to the CCACG motif of the ERSE, resulting in the 

transcriptional activation of the ER chaperones and foldases (Yamamoto et al., 2004; 

Yoshida et al., 2000). Even though the enhancement effect of ERSE on SV40 promoter 

was not observed when the ESRE was fused to a human CMV promoter (West, 2014), the 

relatively weak ERSE-SV40 promoters could be utilised to provide optimised protein-

specific transcription activity kinetically coordinated with polypeptide-specific translation or 

folding rates. 

Clearly, some aspects of an endogenous UPR (e.g. translation attenuation, ERAD 

and apoptosis) and its sustained activation are incompatible with high expression of DTE 

recombinant proteins. Stable transfectants capable of DTE protein production effectively 

avoid UPR induction via minimisation of ER load through reducing the rate by which 

recombinant polypeptides enter the ER including reduced rDNA transcription and/or mRNA 

translation (Davies et al., 2011; Mason et al., 2012). On the other hand, for any given 

transient expression of DTE protein, a balance of recombinant polypeptide synthesis 

activity (i.e., mRNA transcription and translation rates) and host cell UPR activation act in 

concert to define the sub-optimal productivity. Consequently, cell engineering solutions to 

improve DTE protein production typically act to minimise UPR induction (Pybus et al., 

2014a), whereas conventional gene expression control via gene copy number or promoter 



Chapter 7 

 

114 

strength (Brown et al., 2014) does not allow discrete control/change over expression 

during the culture process.  

We hypothesised that it was possible to control recombinant protein expression by 

incorporating ERSE into an expression vector and manipulating endogenous/exogenous 

UPR transactivation. To achieve this, we constructed several vectors containing the ER-

stress responsive promoter (ERSE-SV40) driving Sp35:Fc, SEAP (as a model ETE 

protein) or the active form of the UPR transactivator ATF6. We then expressed these in 

CHO cells in various combinations using short-term transient platforms as well as in a fed-

batch mode. We tested the general hypothesis that we can create a small synthetic 

"amplifier/dual activator" circuit specifically beneficial for DTE proteins, where expressed 

ATF6c both amplifies its own expression via transactivation of ERSE-SV40, and activates 

Sp35:Fc expression via the same mechanism, whilst generally transactivating cellular ER 

capacity via endogenous ERSEs (Figure  7.1). 

 

 

 

 

 

 

Figure 7.1: Schematic diagram of the synthetic "amplifier" circuit designed for a dynamic 

rDNA expression. Expression of difficult-to-express Sp35:Fc activates the UPR and cellular 

ER capacity via endogenous ERSEs. Expressed ATF6c both amplifies its own expression and 

Sp35:Fc expression via transactivation of ERSE-SV40 whilst the endogenous UPR proteins 

further amplify the recombinant gene expressions. 

 

 

pSEAP2-Control plasmid (Clontech, Mountain View, CA) was used as the SV40 vector 

backbone for all ERSE-SV40 vectors as well as the SV40-Sp35:Fc and SV40-ATF6c 

vectors. The ERSE vectors were created by inserting oligonucleotides containing the 

ERSE sequence upstream of the SV40 promoters using a method described by Jobbagy 

et al. (2002) for the unidirectional (same orientation) insertion of repeated DNA sequences. 

ATF6c Sp35:Fc 

ATF6c UPR Sp35:Fc 

Vector 

Protein 

ERSE-SV40 ERSE-SV40 
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The CMV-ATF6c vector was created by inserting the ATF6c gene, which is based on the 

mouse (Mus musculas) coding DNA sequences, into the pcDNA™3.1(+) vector backbone 

(Life Technologies, Paisley, UK). GeneArt® pMA DNA vector (Life Technologies) 

containing Sp35:Fc gene but no promoter was used to equalise DNA load where 

necessary. 

 

 

Transient transfection was conducted using Lipofectamine® LTX with PLUS™ reagent 

(Life Technologies) as described in Chapter 3, Section 3.3.2. The cell cultures were 

agitated at 140 rpm and incubated at 37°C under 5% CO2. Nutrient supplementation 

started 6 h post-transfection using 10% v/v CHO CD EfficientFeed™ B (Life 

Technologies), followed by 10% v/v EfficientFeed B each on Days 2, 4, 6 and 8, giving a 

total of 50% v/v EfficientFeed B throughout culture. 

 

 

 

A total of nine different expression vectors were constructed, harbouring either the CMV 

promoter, SV40 promoter or an ER-stress responsive promoter that drives either SEAP, 

Sp35:Fc or the active form of the UPR transactivator ATF6 (Figure  7.2). The ER-stress 

responsive promoter consisted of nine copies of ERSE units for optimal response, where 

these ERSEs were fused with an SV40 promoter in the vector construct, giving rise to the 

ERSE-SV40 promoter (henceforth called 'ERSE promoter'). Additionally, UPR 

transactivator ATF6c was utilised as it had been shown to give higher induction effect on 

ERSE than XBP1s (West, 2014; Appendix D). Both SEAP and Sp35:Fc were used to show 

whether the addition of ERSE had any significant impact on DTE protein expression. CHO-

S cells were transfected with the same recombinant plasmid copy number (48,000 copies 

per cell) using the transient Nucleofection platform in various combinations as shown in 

Figure  7.3. Cloning plasmids containing no promoter were used to maintain the same total 

DNA load in all transfection experiments.  
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Figure 7.2: Schematic representation of nine different vectors containing CMV promoter, 

SV40 promoter or an ER-stress responsive promoter (ERSE-SV40) driving either 

Sp35:Fc, secreted alkaline phosphatase (SEAP) or the active form of the UPR 

transactivator ATF6 (ATF6c). The ERSE-SV40 promoter was constructed by fusing nine 

copies of ERSEs with an SV40 promoter. 

Figure  7.3A shows the transient expression experiments of the ETE SEAP, 

normalised to the CMV control culture. On their own, the SV40 and ERSE promoters 

possess less than one-third the activity of a control construct harbouring the CMV 

promoter, in agreement with previously published literature that the CMV promoter is 

stronger than the SV40 promoter in many cell lines especially CHO (Foecking and 

Hofstetter, 1986; Liu et al., 1997; Qin et al., 2010; Zarrin et al., 1999). Comparison of the 

control for both SV40-SEAP and ERSE-SEAP showed that their levels of expression were 

identical, showing that the incorporation of ERSE alone has no effect on recombinant 

promoter expression from a vector using the SV40 promoter. Co-expression CMV-SEAP 

vector with CMV-ATF6c vector resulted in 1.8-fold increase in qP compared to the CMV 

control culture. When the CMV-ATF6c vector was replaced with an equal amount of 

ERSE-ATF6c vector, an increase of 1.4-fold was observed. Even though the effect was 

halved, this is evidence that recombinant ATF6c is capable of transactivating a vector 

containing ERSE upstream of a SV40 promoter (considering the fact that SV40 promoter 

has only one-third activity of that of the CMV). Increasing the ERSE-ATF6c copy number 

ratio would also further increase the qP. In all cases, the cell growth was hardly affected, 

leading to net 1.3‒1.5-fold increases in volumetric titre. 

When comparing the SEAP protein expression between the SV40 vector transfection 

(alone) and the ERSE-SEAP and CMV-ATF6c vectors co-transfection, there was a 3.1-fold 

difference in qP (Figure  7.3A). This highly significant boost in SEAP expression is a good 

reflection on the positive effect of the inclusion of ERSE sequences upstream of the SV40 

promoter and the response to the ATF6c transactivator. However, the strength of SV40-

ATF6c and ERSE-ATF6c vectors were too weak to produce noteworthy effects on ERSE-  
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Figure 7.3: Effects of CMV, SV40 and ERSE-SV40 (ERSE) promoters on transient SEAP 

and Sp35:Fc productions, with and without ATF6c co-expression. The transfections were 

performed with an equal amount of 48,000 SEAP or Sp35:Fc DNA copies with a cloning vector 

used to equalise the total DNA load of 3.6 μg per 4.5×10
6
 cells. Cell culture supernatant was 

harvested 96 h post-transfection and analysed by ELISA. (A) Transfections were carried out in 

various formats to systematically understand the effect of the ERSE system on easy-to-express 

SEAP expression. Each co-transfection was carried out at a specific SEAP to ATF6c rDNA 

copy number ratio as indicated under each transfection format. (B) Similar transfection formats 

were performed for difficult-to-express Sp35:Fc. All data are expressed as a relative (fold 

change) of the production exhibited by their respective CMV control promoter without any 

ATF6c co-expression. Error bars represent standard deviation of two biological and two 

technical replicates. 
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SEAP, even when the ERSE-ATF6c were doubled to 1:1 ratio. Indicatively, when a mixture 

of CMV-SEAP and ERSE-SEAP (1:1 ratio) was used, the SEAP expression was at about 

75% of the CMV control culture which was roughly the average of individual CMV promoter 

and ERSE promoter expression levels. 

Figure  7.3B shows the results for the DTE Sp35:Fc protein, in which very different µ 

(reflected in the IVCD) and qP profiles were observed. Firstly, even though the SV40 

promoter maintained its relative activity (qP) compared to the CMV control, the low-level 

expression of DTE protein also reduced the metabolic burden and minimised the impact of 

the UPR on the cells, hence enabling the cells to grow better. However, the presence of 

low-level endogenous UPR transactivators could still be observed where expression using 

the ERSE-Sp35:Fc vector alone was able to increase the recombinant protein expression 

compared to using SV40 vector, although this was offset by a reduction in cell growth. 

Unlike SEAP, the effects of ATF6c co-expression were less profound on CMV-Sp35:Fc 

productivity, with improvements of only around 1.3‒1.5-fold. We infer that this is related to 

the pre-existence of endogenous UPR transactivators in the cells that diminished the 

apparent effect of recombinant ATF6c. Moreover, the cell growth was significantly 

depressed, resulting in no benefits in terms of volumetric titre. Similarly, the ERSE-

Sp35:Fc vectors were generally less responsive to CMV-ATF6c co-expression.  

Interestingly, co-expression of either SV40-ATF6c or particularly ERSE-ATF6c with 

ERSE-Sp35:Fc resulted in relatively high activity of Sp35:Fc productivity (Figure  7.3B), 

especially when compared to SEAP production using the same strategies (Figure  7.3A). 

This suggests that a positive feedback loop existed between the ATF6c/endogenous UPR 

transactivators and ERSE-SV40 promoter activation, and that the system is particularly 

beneficial for DTE protein production. Furthermore, the mixture of CMV-Sp35:Fc and 

ERSE-Sp35:Fc (1:1 ratio) was able, to some extent, to induce the ERSE-Sp35:Fc vector 

that resulted in higher expression activity compared to SEAP. This again demonstrates 

that a vector containing ERSE upstream of an SV40 promoter is capable of responding to 

endogenous UPR transactivators. In the hindsight, as Sp35:Fc production was generally 

less responsive to ATF6c and/or resulted in considerable growth depression, no significant 

improvements in volumetric titre was observed in all cases. On the other hand, as we did 

not measure the levels of ATF6c, further work is required to validate that the lack of 

responses to ATF6c were not due to the inability of the cells to overexpress the UPR 

transactivator. Similarly, additional work is required to validate the synthetic circuit by 

measuring the levels of recombinant mRNA and UPR induction in each case. 
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In order to further understand the relationship between the ERSE system and endogenous 

UPR induction during DTE protein overexpression, we transfected the cells with 50% 

higher Sp35:Fc DNA copy number (72,000 copies per cell) to induce a higher UPR 

response as previously shown in Chapter 4 (Figure  4.7; equivalent to an increase from 2 to 

3 µg of Sp35:Fc DNA). We anticipated that the ERSE promoters would become more 

active at very high Sp35:Fc overexpression that in turn could lead to an increase in 

volumetric product titre. These results are shown in Figure  7.4. 

 

 

Figure 7.4: Cells were transfected with higher rDNA load (72,000 DNA copies per cell) to 

invoke more UPR response. A cloning vector used to equalise the total DNA load of 4.5 μg 

per 4.5×10
6
 cells. Cell culture supernatant was harvested 96 h post-transfection and analysed 

by ELISA. Data are expressed as a relative (fold change) of the production exhibited by CMV 

control promoter without any ATF6c overexpression. Error bars represent standard deviation of 

two biological and two technical replicates. 

At this high Sp35:Fc DNA copy number (72,000 copies per cell; Figure  7.4), the 

relative activity (qP) of SV40 promoter was approximately half of the CMV control culture, 

which is higher than the one-third activity achieved when 48,000 copies were used (Figure 

 7.3B). Together, these data reflect the saturation phenomenon of DTE protein expression 

using CMV as observed in Chapter 4 (Figure  4.4A). Significant activity of the ERSE 
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promoter can also be observed when the ERSE-Sp35:Fc vector was used on its own―a 

positive consequence of the high endogenous UPR transactivator activity (Figure  7.4). 

Expectedly, the qP of the ATF6c-overexpressing cells was considerably higher (1.5‒1.9-

fold increase compared to the CMV control culture; Figure  7.4) as opposed to the 1.3‒1.6-

fold increases obtained with 48,000 copies shown earlier (Figure  7.3B). Additionally, the 

ERSE-ATF6c promoter became slightly more active than the CMV-ATF6c (Figure  7.4), 

hence granting more benefit compared to cells with lower DNA copy number (Figure  7.3B). 

Importantly, we observed that the co-expression of ERSE-SP35:Fc with CMV-ATF6c or 

ERSE-ATF6c resulted in significant enhancement in the ERSE promoter activities and qP 

levels (Figure  7.4) compared to when 48,000 Sp35:Fc copies were used (Figure  7.3B). 

The combination of CMV-Sp35:Fc and ERSE-Sp35:Fc (1:1 ratio) also appeared to yield 

similar results to the CMV control. Yet again, in all cases, cell growth was substantially 

oppressed at high Sp35:Fc expression, and this negative relationship resulted in little or no 

improvement in product volumetric titre compared to the normal CMV culture control. We 

deduced that the full potential of the synthetic amplifier circuit could only be realised during 

fed-batch culture. 

 

 

We hypothesised that transition of CHO cells through an extended Sp35:Fc production 

process, with the associated dynamic variation in cell physiology and function (e.g., growth 

rate, UPR induction) may further amplify the relative proportion of hetero/endogenous 

factors affecting ERSE promoter activity. However, an initial experiment using 

Nucleofection system showed complete loss of productivity after 7‒8 days post-

transfection, and therefore transient transfection was performed using lipoplex-mediated 

transfection where cell culture and productivity could be maintained for about 8‒9 days in 

fed-batch mode. The lipid-based method was preferred over polymer-based (e.g. 

polyethylenimine) to ensure production variability was directly linked to differences in 

promoter activity rather than mediator-specific artefacts, where lipoplex-delivered plasmids 

have been shown to be more efficiently expressed than polyplex-delivered plasmids on the 

basis of protein expression per plasmid number in the nucleus (Cohen et al., 2009). 

Transfection efficiency was determined by measurement of intracellular GFP by flow 

cytometry which showed that transfection efficiency using this method was >96% at 96 h 

post-transfection (Figure  7.5). 
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Figure 7.5: Example flow cytometry plots of intracellular GFP content of different clones. 

25×10
6
 cells were co-transfected with 16.67 µg pmaxGFP plasmid and GFP fluorescence was 

quantified 96 h post-transfection against negative control cells that were mock-transfected with 

empty vector. (A) Cell population gated for granularity and size. (B) Example histogram of cells 

with fluorescent label with transfection efficiency >96%. 

In order to comprehend the dynamic ERSE promoter activity during fed-batch culture, 

we studied the co-expression of different Sp35:Fc and ATF6c vectors at a 1:0.5 ratio, 

namely the combinations of (i) CMV-Sp35:Fc promoter and CMV-ATF6c promoter 

(CMV/CMV), (ii) CMV-Sp35:Fc promoter and ERSE-ATF6c promoter (CMV/ERSE), and 

(iii) ERSE-Sp35:Fc promoter and ERSE-ATF6c promoter (ERSE/ERSE). The transfected 

cells were cultured alongside a CMV control culture with no ATF6c co-expression (CMV/‒). 

We observed that the differences in promoter activity observed in the 4 days culture 

(Figure  7.4) were further amplified in the fed-batch transient system.  

Figure  7.6A shows the VCD profile of the different vector engineering strategies. 

Most notably, the CMV/CMV and CMV/ERSE strategies had lower cell densities in the first 

4‒5 days due to the effect of Sp35:Fc and ATF6c overexpressions on cell growth. 

Additionally, the latter strategy appeared to further reduce the cell growth on Day 4 post-

transfection, as well as resulted in the lowest peak VCD. We infer this was the effect of the 

dynamic loop where expressed ATF6c amplifies its own expression over time via 

transinduction of ERSE-SV40. Despite the negative effect on cell growth, the CMV/ERSE 

strategy yielded the highest Sp35:Fc volumetric titre, which was 53% higher than that was 

obtained by the CMV control culture. This was followed by the ERSE/ERSE strategy (38% 

increase), and the lowest titre (23% increase) was obtained with the conventional 

CMV/CMV promoters. It is also interesting to point out that the ERSE/ERSE strategy had a 

relatively low titre level at the beginning of the culture, which was consistent with the 4 

days culture data (Figures 7.3B and 7.4), but eventually surpassed the control and 
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Figure 7.6: ERSE-SV40 (ERSE) promoters exhibit dynamic profile in Sp35:Fc fed-batch 

transient production process. CHO-S cells were co-transfected with different Sp35:Fc and 

ATF6c vector combinations (1:0.5 ratio), namely CMV-Sp35:Fc and CMV-ATF6c promoters 

(CMV/CMV,   ); CMV-Sp35:Fc and ERSE-ATF6c promoters (CMV/ERSE,   ); and ERSE-

Sp35:Fc and ERSE-ATF6c promoters (ERSE/ERSE,    ), and cultured alongside a CMV control 

culture with no ATF6c co-expression (CMV/‒,    ). The total DNA load was equalised using a 

cloning plasmid with no promoter. (A) Viable cell density (VCD) profile post-transfection. (B) 

Sp35:Fc titre profile measured by ELISA method. (C) Daily cell specific productivity (qP) profile 

based on the VCD and Sp35:Fc titre. The data represent two biological replicates. 
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CMV/CMV levels. This again demonstrated the dynamic, beneficial feature of ERSE 

promoters for DTE protein production over long-term culture. 

To understand the variations in the different CMV and ERSE promoter combinations, 

we further analysed the Sp35:Fc expressions in term of daily qP (Figure  7.6C). The 

CMV/CMV strategy showed a continuous decline in qP over time post-transfection that can 

be attributed to the dilution of plasmid DNA into daughter cells after successive rounds of 

cell division (Codamo et al., 2011). This normal cell engineering strategy, lacking the 

dynamic feature of ERSE promoter and combined with slow initial growth rate, resulted in 

only a 23% increase in volumetric product titre (Figure  7.6B) despite the very high initial 

qP. The most optimal strategy appeared to be the CMV/ERSE combination as 

demonstrated by the consistently high qP, yielding the highest improvement in volumetric 

product titre. Interestingly, the combination of ERSE/ERSE exhibited the most dynamic qP 

profile over the fed-batch culture, in which the qP level increased by about 1.5-fold from 

Day 1 to Day 7. Even though the peak qP achieved with this strategy was still considerably 

lower than the peak qP of CMV/CMV and CMV/ERSE strategies, a moderate increase 

(37%) in volumetric titre was still attainable. It is also worth mentioning, even though the 

data is not included here, that the combination of ERSE-Sp35:Fc with CMV-ATF6c 

(ERSE/CMV) in fed-batch culture was not particularly beneficial. The relatively weak 

ERSE-driven Sp35:Fc expression, combined with the progressive loss of CMV-driven 

ATF6c expression over time, resulted in an insignificant 11% increase (P > 0.05) 

compared to the CMV control culture (data not shown). 

 

 

Tunable promoters for controlled protein expression is not a new concept in synthetic and 

systems biology. Regulated transcription/translation can be achieved through the redesign 

of endogenous promoters (Alper et al., 2005; Tornøe et al., 2002), the creation of fully 

synthetic promoters (Brown et al., 2014; Yim et al., 2013) and the insertion of regulatory 

sequences (Bulter et al., 2004; Stapleton et al., 2012). To date, discrete control of protein 

expression in eukaryotic systems has been achieved in the form of promoter activation and 

repression for programmable expression (Blount et al., 2012; Farzadfard et al., 2013; 

Hurley et al., 2012) as well as an oscillating gene expression system for periodic induction 

of specific target genes (Tigges et al., 2009). With the further progression of biological 

research and development, including in the biopharmaceutical industry, the need for 

controlled expression of recombinant proteins is ever increasing. 
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This study describes a novel tunable vector system that utilises a UPR transcription 

factor and its DNA binding element. UPR, activated in the event of ER stress, regulates 

expression of genes encoding the resident ER molecular chaperones and folding enzymes 

(Chakrabarti et al., 2011). In view of that, UPR activating elements ATF6 and XBP1 

transcription factors have been extensively used in cell engineering to increase the 

expression of therapeutic recombinant proteins in mammalian cells, albeit with varying 

degrees of success (e.g., Campos-da-Paz et al., 2008; Ku et al., 2008; Pybus et al., 

2014a; Tigges and Fussenegger, 2006). Recently, their DNA binding elements, ERSE and 

UPRE, have also been introduced into DNA vectors as a non-invasive system for the 

detection and quantification of endogenous and induced UPR factors in CHO cells (Du et 

al., 2013). However, these two UPR components (i.e., the transcription factors and their 

binding elements) have not been utilised together as part of a cell/synthetic biology 

engineering strategy. We therefore, for the first time, simultaneously used the transcription 

factor ATF6c and ERSE incorporated SV40 promoter, and tested the synergistic effect of 

various co-expression formats on easy-to-express (SEAP) and difficult-to-express 

(Sp35:Fc) protein productions. 

For the ETE recombinant protein, we observed that the qP and volumetric titre could 

be increased by co-expressing UPR transactivator ATF6c, and the use of weak SV40 and 

ERSE-SV40 promoters were not desirable compared to CMV. Under these circumstances 

ERSE-SV40 promoter offers fewer advantages for ETE proteins as the expression of these 

proteins is limited primarily by transcription/translation (Chapter 4, Figure  4.4) and its 

overexpression does not easily invoke a UPR (Chapter 4, Figure  4.7). In contrast, for DTE 

production, the (originally) weak ERSE-SV40 promoter effectively reduces UPR induction 

via minimisation of ER ―input rates‖, which in turn grants the much needed rapid cell 

growth at the beginning of culture. Additionally, the relatively high level of endogenous 

UPR transactivators associated with DTE production forms an active, continuous loop with 

ERSE-SV40 promoter and amplifies its activity―yielding a dynamic (increasing) 

recombinant gene expression over time. From a mechanistic perspective we conclude that 

the ERSE-SV40 promoter enables a shift from fast-growing cells to high-producing cells 

during the transient production of DTE recombinant proteins using extended culture. 

Further work will validate this mechanism by measuring the levels of recombinant mRNA 

and UPR induction at different time points of culture. 

The dilution of recombinant plasmid DNA after repeated rounds of cell division post-

transfection is a major factor limiting yields with transient systems, where the expression 

level of the transgene per cell inevitably decreases with every generation. Even though it is 
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possible to (slightly) extend the transgene expression by using non-physical transfection 

methods such as lipofection and polyfection, this is likely due the different kinetics of gene 

delivery into host cells (Mehier-Humbert and Guy, 2005), as previous studies showed that 

the internalisation of cationic lipid/polymer–DNA complexes into cell nucleus is relatively 

slow (Carpentier et al., 2007; Zabner et al., 1995). To circumvent this issue, a range of 

episomal expression vectors has been developed that enable plasmid DNA amplification 

and/or maintenance extrachromosomally using viral genetic elements such as the Epstein-

Barr virus nuclear antigen-1 (EBNA-1; Kunaparaju et al., 2005). Even so, the qP in many 

cell lines employing these systems appears to peak between 1 and 3 days post-

transfection (Carpentier et al., 2007; Wulhfard et al., 2012) thus still leaving some room for 

improvement. Our data show that whilst the CMV promoter suffered from progressive loss 

of productivity, the ERSE-SV40 promoter maintained or even increased the qP during the 

exponential and stationary phases. Therefore we propose the ERSE-SV40 vector as an 

alternative or complement to episomal-based expression systems. 

One obvious drawback of the ERSE system is that it requires high expression level of 

DTE protein (to induce endogenous UPR) or co-transfection/expression of UPR 

transactivators, where the former can be difficult to achieve with the relatively weak ERSE-

SV40 promoter while the latter is not always desirable (e.g., limiting rDNA load of protein of 

interest, increased transfection toxicity). Additionally, the current system might not be 

compatible with stable expression systems where studies have shown that stable cell lines 

effectively avoid UPR as there were no indication of UPR-transactivator upregulations 

even in high producing cells (Dinnis et al., 2006; Smales et al., 2004), whilst the generation 

of stable UPR-transactivator expressing cell lines can be very difficult (Becker et al., 2008). 

Nevertheless, where co-expression of UPR transactivator is undesirable or intractable, it is 

possible to attain an adequate expression of a given DTE protein by combining the strong 

CMV promoter and the dynamic ERSE promoter at specific ratios. Our data on Sp35:Fc 

demonstrated that the CMV-driven Sp35:Fc expression was sufficient to transactivate the 

ERSE promoter to achieve at least the same qP to the CMV only control during short-term 

culture. Moreover, for ETE proteins or stable cell lines with low/no endogenous UPR, we 

surmise that the system limitation can be possibly overcome by invoking the UPR using 

chemicals such as dithiothreitol (DTT) and tunicamycin, where they can be easily titrated 

and added into culture medium at the desired time point for optimal results.  

We anticipate that the combination of ERSE-Sp35:Fc and ERSE-ATF6c vectors in 

this study would yield lower, or at least similar, amount of Sp35:Fc aggregates due the 

relatively low ER stress imposed (i.e., low qP) on the host cells throughout fed-batch 
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culture (Figure  7.6C). Accordingly, even though the combination of CMV-Sp35:Fc and 

ERSE-ATF6c resulted in the highest improvement in volumetric titre (Figure  7.6B), the 

repercussion of improved qP on aggregate formation needs to be determined as the 

system might not resolve the cellular bottlenecks associated with Sp35:Fc production 

(Chapters 4 and 5). Further study would address the impacts of the dynamic nature of 

ERSE systems on product qualities such as protein aggregates and glycosylation profile. 

Additionally, it would be interesting to know if XBP1s may yield better results when used 

on the systems (as a replacement or complement to ATF6c) where this UPR transactivator 

has been widely demonstrated to improve the secretory capacity of CHO cells (Codamo et 

al., 2011; Ku et al., 2008; Tigges and Fussenegger, 2006). 

The data presented in this study is only the first steps towards developing a 

mammalian controlled/dynamic expression system for difficult-to-express recombinant 

proteins and there are various potential applications including controlling the expression of 

multiple genes for heterologeous proteins as well as increasing ETE protein productions 

via artificial UPR induction. For example, for DTE monoclonal antibodies (MAbs) where the 

productivity is affected by the proportion of light to heavy chain polypeptides (Pybus et al., 

2014a), the optimal production condition may be self-regulated using an ERSE-SV40 

promoter transcribing the light chain polypeptide―under ER stress, the UPR will induce 

the light chain synthesis to improve the MAb assembly rate, and as ER homeostasis is 

restored the light chain synthesis is reduced to the preceding level. For other DTE 

recombinant proteins, the optimal engineering strategy is likely to be unique. Further 

refinement and expansion of this system will make it a very valuable tool not only for the 

production of recombinant proteins but many areas of biotechnology. 
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This chapter investigates the effects of cell and process engineering approaches on difficult-to-

express protein production. The aims are to find out which mitigation strategies can be utilised 

to alleviate the Sp35:Fc protein production bottlenecks, as well as the combined effects of 

specific strategies. We show that the integrated cell and process engineering strategies were 

able to improve the Sp35:Fc production by several fold due to restoration of normal cellular 

function. 
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Plasmid vectors encoding an activated form of UPR transactivator (cleaved ATF6 or 

spliced XBP1) were constructed by Dr Stefan Schlatter (Appendix A). 

 

 

Mammalian cells, including Chinese hamster ovary (CHO) cell lines, can be poorly efficient 

for high production levels of biologics due to limiting translational and/or post-translational 

mechanisms. The bottlenecks are exacerbated in the case of difficult-to-express (DTE) 

recombinant protein production using transient gene expression (TGE) systems as the 

host cells are easily overloaded with transgenes and nascent recombinant polypeptides. 

Consequently, for many recombinant products, productivity is unpredictably low; even 

monoclonal antibody (MAb) protein products in the same isotype/sub-class can display 

variable expression levels due to different translational and post-translational process rates 

(Pybus et al., 2014a). This can also be expected from artificial fusion proteins where they 

have not coevolved in which the two (or more) combined components are thought to have 

different folding and/or secretion requirements (Lee et al., 2007).  

Stable transfectants capable of efficient DTE recombinant protein expression avoid 

unfolded protein response (UPR) induction through reducing the rate of recombinant gene 

transcription and/or mRNA translation resulting in low stable expression (Mason et al., 

2012). Therefore, engineering strategies for improved TGE processes are desirable not 

only to increase the rapid preclinical supply of DTE recombinant proteins but also can 

provide strong preliminary data on stable ―manufacturability‖. Very low transient production 

titres indicate that considerably more cell development and/or process development may 

be needed to generate a stable production cell line with desirable attributes. Whilst the 

bioengineering of host cells may reduce the effort required to select clonal lines with high 

productivities (Cain et al., 2013), the transient production data itself can be used to inform 

on how to engineer the host cell line or process platform for enhanced stable performance 

(Nishimiya et al., 2013).  

Various studies have shown that endoplasmic reticulum (ER) chaperones, UPR 

components, and stress-mediated apoptosis pathway components could be co-expressed 

to improve the cell survival or to solve bottlenecks and cellular limitations caused by 

recombinant protein overflow (Dietmair et al., 2011; Schröder, 2008). With respect to the 
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latter, co-expression of functional proteins involved in protein secretion including binding 

immunoglobulin protein (BiP), protein disulphide isomerase (PDI) and signal recognition 

particle 14 (SRP14) had successfully improved the expression of DTE MAbs (Le Fourn et 

al., 2014; Pybus et al., 2014a). Other attempts included the ectopic expression of the 

activating transcription factor 6 (ATF6) and X-box binding protein 1 (XBP1), two 

transcription factors that regulates ER maintenance and expansion, to decrease ER stress 

and increase protein processing and secretion in CHO cells (Pybus et al., 2014a; Tigges 

and Fussenegger, 2006).  

Furthermore, treatment of mammalian cell cultures with the so-called chemical 

chaperones to increase expression/secretion of recombinant proteins is a method with a 

long-standing history. Sodium butyrate, a histone deacetylation (HDAC) inhibitor and 

arguably the most frequently used chemical chaperone, is known to increase gene 

transcription by enhancing gene accessibility to transcription factors (Jiang and Sharfstein, 

2008). This leads to the upregulation of many genes involved in protein processing, 

secretion and redox activity (Yee et al., 2008). Interestingly, different chemicals appear to 

act via distinct mechanisms and therefore can confer different/multiple benefits. There are 

various reports on the applications of chemical chaperones in reducing protein aggregation 

and suppressing ER stress (Chapter 2, Table  2.1) that can be particularly beneficial for 

DTE proteins. With regard to the former, chemical chaperones have the ability to help the 

correct folding of aggregation-prone proteins by promoting the expression of molecular 

chaperones, or to maintain their native state by interacting directly with them (Papp and 

Csermely, 2006; Vagenende et al., 2009).  

Despite the extensive reports on cell engineering and chemical chaperone strategies 

in mammalian cell-based production process, the combinatorial effects of different 

chemical and/or molecular chaperones have not been adequately explored. This is 

particularly relevant in mammalian cells which have very complex cellular regulations and 

may suffer from multiple production bottlenecks. Recombinant protein overexpression has 

been reported to induce a UPR that can affect global mRNA translation rates that lead to 

reduced cell growth and biomass content (Pybus et al., 2014a). On the other hand, the 

beneficial effects of many chemical chaperones on recombinant protein production are 

often compromised by their cytotoxic effect on cell growth via the activation of cellular 

apoptosis (Rodriguez et al., 2005). Therefore it is necessary to identify the most effective 

external manipulations that can overcome/minimise deleterious cellular regulation in 

optimising both the integral of viable cell density (IVCD) and cell specific production rate 

(qP) to achieve maximum volumetric product titre. 
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We have previously shown in Chapter 4 that the Sp35:Fc expression system became 

saturated above a specific threshold level as cells were not capable of processing more 

than a certain amount of nascent polypeptides. The overexpression, in turn, resulted in 

considerable protein aggregation and triggered the UPR to restore cellular homeostasis. 

Therefore, to overcome the cellular bottlenecks we compare the benefits of (i) co-

expressing a variety of molecular chaperones, foldases and UPR transactivators, and (ii) 

using chemical chaperones/inhibitor and mild hypothermic condition, to improve either the 

rate/capacity of folding reactions or cell growth as well as to suppress aggregate formation. 

Various combinations of the engineering strategies were also tested, while the design of 

experiment (DOE) methodology was employed to study and optimise the interactions 

between different effectors. We further show that the combined cell and process 

engineering strategies were able to improve the TGE system by several fold due to 

restoration of normal cellular function and was particularly beneficial for DTE recombinant 

protein production. 

 

 

 

Molecular chaperone and foldase genes, specifically human BiP, human PDI, human 

ERO1Lβ and human Cyclophilin B (CypB), were driven by CMV promoters encoded on 

plasmids from OriGene (Rockville, MD). UPR transactivators (active forms of ATF6 and 

XBP1) inserted into a pcDNA™3.1(+) (Life Technologies) vector backbone were driven by 

CMV promoters. Chemical chaperones sodium 4-phenylbutyrate (PBA), betaine, dimethyl 

sulfoxide (DMSO), glycerol and trimethylamine N-oxide (TMAO) were purchased from 

Sigma-Aldrich (Poole, UK) with deionised Milli-Q water used as a solvent and diluent. 

PERK inhibitor was purchased from Merck Chemicals (Nottingham, UK) with DMSO used 

as a solvent and diluent. Chemicals were added and cells were shifted to 32°C at 3 h post-

transfection. 

 

 

Transient transfection was conducted using Lipofectamine® LTX with PLUS™ reagent 

(Life Technologies) as described in Section 3.3.2. The cell cultures were agitated at 140 

rpm and incubated at 37°C under 5% CO2. Nutrient supplementation started 6 h post-
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transfection using CHO EfficientFeed™ Kit (Life Technologies) with a total of up to 60% v/v 

CHO CD EfficientFeed™ A and B throughout culture as follows; 10% v/v each on Days 0, 

3, 5, 7, 9 and if necessary, on Day 11. 

 

 

DOE software Design-Expert® 8.0 (Stat-Ease Inc, Minneapolis, MN) was used for the 

analysis of responses to chemical/molecular chaperones. The programme provided a 

mixture matrix, a fitted linear or quadratic mixture model, and a contour plot of the 

predicted elongation values of the three responses, namely recombinant product titre, 

IVCD and qP. The design analysis was performed using analysis of variance (ANOVA) 

where it provided the weights of the experimental factors for all of the responses. Each 

response was described by either a first-order linear model (Equation 8.1) or a second-

order polynomial model (Equation 8.2). 

𝑦 = 𝑏0 +  𝑏𝑖𝑥𝑖 +

𝑖

 𝑏𝑖𝑗 𝑥𝑖𝑥𝑗 + ℰ

𝑖𝑗

                                                                                  (8.1) 

𝑦 = 𝑏0 +  𝑏𝑖𝑥𝑖 +  𝑏𝑖𝑗 𝑥𝑖𝑥𝑗
𝑖𝑗

+  𝑏𝑖𝑖𝑥𝑖
2 + ℰ

𝑖𝑖

                                                            (8.2) 

where y is the response, b is the model coefficients that are estimated using a least square 

fit of the model to the experimental results, x is the input factor, i and j are the design 

variables and ε is the error. 

 

 

 

As Sp35:Fc folding and assembly reactions were limiting, we attempted to address the 

hypothesis that co-expression of specific functional proteins could improve ER capacity for 

Sp35:Fc folding and assembly reactions, increase secretion rate and/or relieve host cells 

from ER stress, where the major consequence of UPR activation is a decrease in cell 

growth. Specifically, we engineered the CHO cell protein factory by overexpressing the 

ER-resident proteins known to be involved in chaperone machineries (BiP, PDI, ERO1Lβ, 

CypB) and activated forms of UPR transactivators (the cleaved 50 kDa form of ATF6 and 
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spliced 54 kDa XBP1) known to generically upregulate the expression of ER 

chaperones/foldases, as well as by inhibiting PERK, which is involved in translation 

attenuation and cell cycle arrest mechanism (Pybus et al., 2014a; Schröder, 2008). 

ERO1Lβ was chosen (over ERO1Lα) as this isoform is induced during the UPR to alleviate 

ER stress (Pagani et al., 2000) and has been reported to enhance antibody production in 

transient systems rather than stable (Chapter 2, Table 2.2). All functional genes were 

human cDNAs driven by the human CMV promoter, while PERK inhibition was achieved 

by using an inhibitor (IC50 = 0.4 nM) added 3 h post-transfection at 0.04% v/v of total 

culture volume. For each transfection, Sp35:Fc gene load was kept constant and empty 

vector was utilised to equalise total DNA load where necessary. The ERSE vector system 

developed in Chapter 7 was not utilised so as to obtain a direct readout of the relative 

effect of functional genes or chemicals without interference from promoter transactivation. 

Cell viabilities measured 2 h post-transfection were 84.5%–89.9% (mean 87.9%).  

Molecular chaperones, foldases and UPR transactivators exerted molecule-specific 

effects on either Sp35:Fc productivity and/or cell growth (Figure  8.1A). Overexpression of 

BiP significantly improved the volumetric titre, mediated via an increase in qP, where 

higher quantities of chaperone having a proportionately higher effect (up to 1.6-fold 

increase). PDI also improved the production in a similar fashion but to a limited extend, 

and further improvement was obtained when it was co-expressed with ERO1Lβ. At the 

optimal amount of 20‒40% w/w rDNA, CypB substantially increased the volumetric titre 

(1.4-fold increase), however this was mediated via an increase in IVCD. Expression of 

either UPR transactivator gave similar effect to BiP expression, with maximum specific 

productivity observed at 80% w/w rDNA. However, both transactivators functioned to 

suppress cell growth rate, leading to a considerably lower IVCD (with no effect on cell 

viability) that in turn resulted in no significant improvement in volumetric titre. On contrast, 

PERK inhibitor functioned in the way of CypB, where increased in cell growth was 

observed (dependent upon inhibition level) although this did not lead to an improvement in 

product titre due to substantial reduction in qP. 

Additionally, we utilised chemical chaperones and mild hypothermic condition (32°C) 

to induce protein folding and stabilisation. Whilst this intervention may not be considered 

directly specific to cellular processes that govern difficult-to-express recombinant protein 

production rate, we chose to investigate the relative potency of chemical chaperones that 

may improve the Sp35:Fc folding and assembly interaction and/or offset the consequence 

of Sp35:Fc induction of the UPR (de Almeida et al., 2007; Roth et al., 2012). We tested 4-

phenylbutyrate (PBA), dimethyl sulfoxide (DMSO), glycerol, betaine and trimethylamine N-  
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Figure 8.1: Co-expression of molecular chaperones, foldases or UPR transactivators and 

use of chemical chaperones or hypothermic condition can improve difficult-to-express 

Sp35:Fc production via two distinct modes. (A) Molecular chaperones, foldases or active 

form of UPR transactivator gene was co-transfected at 10‒80% (w/w) of Sp35:Fc plasmid, while 

PERK inhibitor (IC50 = 0.4 nM) was added 3 h post-transfection. An empty vector was used to 

equalise total DNA load in all cases. (B) Each chemical chaperone was titrated at its active 

concentration, added 3 h post-transfection. For hypothermic condition, the cells were shifted to 

32°C 3 h post-transfection. Data are normalised with respect to control transfection of Sp35:Fc 

gene alone with equalised total DNA load and cultured under normal condition. Cell culture 

supernatant was harvested 96 h post-transfection and analysed by ELISA. Error bars represent 

the standard error of two biological replicates and two technical replicates. 
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oxide (TMAO) at different concentrations where purified water was used as a solvent and 

diluent and added at 2% v/v of total culture volume. Concentrations above 2 mM PBA, 3% 

v/v DMSO, 3% v/v glycerol, 200 mM betaine and 200 mM TMAO resulted in severe growth 

cessation and cytotoxicity and thus the chemicals were titrated below these 

concentrations. These data are illustrated in Figure  8.1B. 

As shown in Figure  8.1B, the IVCDs of PBA, DMSO and glycerol treated cultures 

were significantly lower than that of control culture due to depressed cell growth depending 

on the chemical dosage. The volumetric titres however were largely the same or higher, 

which imply that the improved Sp35:Fc production in these chemical chaperone-treated 

cultures were attributed to improved qP. In all cases, the productivity appeared to be 

strongly induced by the chemical concentration, where the highest increase in qP was 

observed at the highest concentration, with up to 3.7-fold increase using 2% v/v glycerol. 

However, taking the effect of reduction in IVCD, improvement in volumetric titre of product 

was observed only at a specific (mid) concentration of each chemical. Similar effect was 

observed with hypothermic condition, although the increase in qP was not sufficiently high 

to counteract the effect of depressed cell growth resulting in a net decrease in volumetric 

titre. In contrast, the methylamines (betaine and TMAO) appeared to improve cell growth, 

possibly by protecting host cells from ER stress although at the expense of recombinant 

protein productivity. This cell growth benefit however was suppressed at 100 mM betaine 

and 50 mM TMAO concentrations, likely due to high osmolality. Interestingly, the 

improvement in volumetric titre for betaine was observed at 50 mM with increase in IVCD 

and sub-optimal qP, whereas the improvement for TMAO was observed at 50 mM TMAO 

which was due to increase in qP.  

To verify that the effect of CypB, PERK inhibitor, betaine and TMAO on cell growth 

was due to the recombinant protein production, cells were ―mock-transfected‖ with empty 

vector and either with CypB gene or addition of PERK inhibitor, betaine or TMAO into 

culture medium. Results show that the IVCDs were similar in all cases compared to the 

mock-transfected control culture (data not shown). It is important to note that the increase 

in volumetric titre for slow growing cells could not be attributed to the effect of slower 

dilution of plasmid (i.e. higher rDNA copies per cell; discussed briefly in Chapter 7). Higher 

Sp35:Fc DNA copy number will not increase qP due to the expression saturation (Chapter 

4; Figure  4.4), and this saturation theoretically allows some dilution of the plasmids without 

affecting the qP. Additionally, without a significant increase in qP to counteract the lower 

IVCD, this would actually result in a net decrease in volumetric titre as observed in the 

32°C culture. Further analysis of the engineering strategies in Figure 8.1 showed that there 
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was a strong negative correlation between their impact on qP and on cell growth (Figure 

 8.2). This data highlights the importance of identifying genes and/or chemicals that can 

work synergistically to provide an optimal solution, i.e. enable the host cell to achieve both 

high qP and IVCD.  

 

 

Figure 8.2: Improvement in qP using cell and process engineering strategies correlates 

to repression of cell growth and vice versa. The stimulation of Sp35:Fc productivity is 

achieved at the expense of cell growth, whilst the stimulation of cell growth would result in a 

reduction in productivity.  

 

Having understood the effect of single molecular gene or chemical chaperone, we studied 

the effect of combining two cell/process strategies on Sp35:Fc production. These 

combined engineering strategies resulted in mixed outcomes (Figure  8.3). Firstly, whilst no 

further improvement was observed in single co-expression of PDI above 20% w/w 

(Figure  8.1A), further increases of 14% and 29% in volumetric titre were observed when 

20% w/w BiP was co-expressed with 20% and 40% w/w PDI, respectively (Figure  8.3). 

Simultaneous co-expressions of CypB and BiP, where the two proteins acted via different 

mode of actions, also further enhanced the volumetric titre where a 1.6-fold increase 

compared to control culture obtained using 20% w/w CypB and 20% w/w BiP.  

On the contrary, attempts to re-programme the UPR by co-expressing 40% w/w 

ATF6c or 40% w/w XBP1s while inhibiting PERK did not significantly enhance the  
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Figure 8.3: Combinations of cell and/or process engineering strategies yielded mixed 

results. Functional protein plasmids (BiP, PDI, CypB, ATF6c and XBP1s) were co-transfected 

with Sp35:Fc plasmid at specific functional protein to Sp35:Fc plasmids w/w percentage. 

Chemicals were added 3 h post-transfection. For hypothermic condition, the cells were shifted 

to 32°C 3 h post-transfection. Data are normalised with respect to control transfection of 

Sp35:Fc plasmid alone with equalised total DNA load and cultured under normal condition. Cell 

culture supernatant was harvested 96 h post-transfection and analysed by ELISA. Error bars 

represent the standard error of two biological replicates and two technical replicates. 

volumetric titre—whilst the IVCD was improved by PERK inhibitor (i.e. by avoiding the 

translational attenuation mechanism), the improvement in qP was not sufficiently high to 

confer benefit on the production titre (Figure  8.3). Similar results were obtained using 80% 

w/w ATF6c or 80% w/w XBP1s and 40 nM PERK inhibitor in which the IVCD benefit was 

offset by a relatively lower qP level (data not shown). Moreover, we found out that 

combining PERK inhibitor and CypB or betaine did not further improve the IVCD, whereas 

the use of PBA, even at a moderate concentration of 0.5 mM, fully inhibited CypB and 



Cell and Process Engineering for Improved Transient Production of a DTE Fusion Protein 

 

137 

betaine's cell growth benefit (Figure  8.3). In fact, the use of 0.5 mM PBA and 50 mM 

betaine resulted in lower IVCD compared to 0.5 mM PBA alone although the reason 

behind this is unclear. 

We found that simultaneous utilisation of moderate concentrations of PBA (0.5 mM) 

and glycerol (1% v/v) in culture substantially increased the qP to 7.2-fold compared to 

control culture, implying that there was a synergistic effect between the two chemicals on 

Sp35:Fc production (Figure  8.3). This synergistic effect yielded a far higher cell productivity 

compared to individual and other combined cell/process engineering strategies (Figure 

 8.4). However, at this combined concentration the cell growth was reduced dramatically 

(with no effect on cell viability) resulting in only a 1.2-fold increase in volumetric titre. 

Utilising both 1 mM PBA and 32°C strategies resulted in 5.2-fold increase in qP (Figure 

 8.3) compared to the respective 2.7-fold and 2.4-fold increases when used individually 

(Figure  8.1B), indicating that both strategies are only additive. Despite having a lower 

combined specific productivity compared to the dual chemical chaperones strategy, 

employing this strategy in fed-batch culture may yield better result due to the extended 

culture duration associated with hypothermic condition. 

 

 

Figure 8.4: Combined engineering strategies can profoundly impact Sp35:Fc production. 

The combination of PBA and glycerol (open circle) is identified as an outlier that deviates from 

the general correlation between qP and IVCD of individual and combined cell/process 

engineering strategies (black and grey circles, respectively). 

Furthermore, to assess whether the cell and process engineering strategies are cell 

line-and protein-specific, we tested a number of strategies on two best-performing clones 
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isolated from the parental population that have distinct characteristics (C13 and C69; 

Chapter 6), as well as on SEAP-producing cells. These data are shown in Figure  8.5. With 

respect to the clones, C13 exhibited improved Sp35:Fc production via rapid cell growth 

without compromising productivity whereas C69 displayed inherently high qP with similar 

growth rate compared to the parental population (Chapter 6, Figure  6.7). Engineering 

strategies on C13 using CypB, betaine and PBA further enhanced the IVCD or qP (Figure 

 8.5), comparable to the results obtained in the parental population shown in Figure  8.1B.  

 

 

Figure 8.5: Cell and process engineering strategies can be clone and protein specific. In 

addition to Sp35:Fc, several engineering strategies were tested on Clones 13 and 69 and SEAP 

production. The C13 and C69 data including the no treatment (NT) controls were normalised to 

the parental population control culture, whereas SEAP data was normalised to SEAP control 

culture. Cell culture supernatant was harvested 96 h post-transfection and analysed by ELISA. 

Error bars represent the standard error of two biological replicates and two technical replicates. 

CypB and betaine made less appreciable impact on C69 in which only slight 

improvements in IVCD were observed (1.2-fold increase; Figure  8.5). We hypothesise that 

C69 had an innate cellular capability in producing Sp35:Fc (reflected in its higher qP) with 

lower ER stress and therefore was less responsive to CypB and betaine. This is 

corroborated by the results obtained with easy-to-express (ETE) SEAP where no effects 

were observed using CypB and betaine as well as the more limited improvement in SEAP 

specific productivity using PBA. However, treatment with PBA on both C13 and C69 



Cell and Process Engineering for Improved Transient Production of a DTE Fusion Protein 

 

139 

significantly increased their qP regardless of their initial level, illustrating that the chemical 

could affect Sp35:Fc production in a more universal way. Overall, these data illustrated 

that the effect of molecular and chemical chaperones can be cell line and protein-specific 

depending on the cell's cellular capability to produce a particular protein. 

 

 

In an attempt to reduce Sp35:Fc aggregation, the culture supernatants from the individual 

engineering study were analysed as described in Chapter 4 (Figure 4.5). Western blot 

analysis of the secreted Sp35:Fc revealed that the molecular chaperones, foldases, 

chemical chaperones and culture temperature greatly influenced the amount of aggregates 

produced (Figure  8.6). Whilst chemical chaperones generally suppressed aggregate 

formation, the increase in folding and assembly rate through overexpression of PDI 

(particularly in combination with ERO1Lβ) appeared to increase the amount of aggregates. 

Higher oligomer, likely to be octamer (800 kDa), also became apparent as shown in the 

Western blot image of Figure  8.6A.  

At the extreme, the total amount of Sp35:Fc aggregates increased from 4.8% w/w in 

the control culture to 10.5% w/w when the recombinant protein was co-expressed with PDI 

and ERO1Lβ (Figure  8.6B). We hypothesise that whilst ER induction in disulphide bond 

formation accelerated the Sp35:Fc folding and the overexpression of ERO1Lβ created an 

altered oxidising environment that was favourable for this reaction, they did not resolve 

the limiting ER-to-Golgi transport rate in the cells (Chapter 4, Figure  4.6C). Indeed, 

addressing a limitation in the early secretory pathway without solving the downstream 

bottleneck may not lead to desired results (Delic et al., 2014) and in the case of Sp35:Fc it 

would amplify the ER stress and further deteriorate product quality control. In contrast, 

CypB appeared to have the ability to partially suppress aggregates formation with a 41% 

reduction from the control (Figure  8.6B). This effect might owe to the dual function of the 

lumenal protein where it has been implicated both in protein folding (Feige et al., 2009; 

Kim et al., 2008) and in ERAD of soluble lumenal substrates (Bernasconi et al., 2010). On 

the other hand, the UPR transactivators and PERK inhibitor did not effectively reduce the 

amount of aggregates (P > 0.05) even though the former is known to regulate the secretory 

machinery in a global fashion (Schröder, 2008).  
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Figure 8.6: Quantitative Western blot of Sp35:Fc from cell culture supernatant revealed 

the varying amount of aggregates produced under different systems. (A) Representative 

Western blot image. Culture supernatant was harvested 96 h post-transfection and separated 

by non-reducing SDS-PAGE in the presence of the alkylating agent NEM to suppress 

disulphide bond reduction and scrambling. Under reducing condition, all bands were reduced to 

100 kDa (data not shown). (B) Relative amount of aggregates were quantified using image 

analysis software. The bar number in the chart corresponds to lane number of the 

representative Western blot image. Data shown is mean value of two biological and two 

technical replicates. Error bars represent the standard deviation. 

The use of chemical chaperones particularly PBA, as well as hypothermic condition, 

effectively suppressed aggregates formation (between 52% and 96% reduction; Figure 

 8.6B). Indeed, several previous studies have shown that chemical chaperones and low 

culture temperature can reduce the aggregation of recombinant proteins such as β-

interferon (Rodriguez et al., 2005; Tharmalingam et al., 2008) and cartilage oligomeric 

matrix protein angiopoietin-1 (Hwang et al., 2011a,b). As Sp35:Fc aggregates formed 

intracellularly, we propose that CypB and the chemicals efficiently mediated intracellular 

folding and target misfolded proteins for further refolding or degradation process, whereas 

the hypothermic condition shifted the cellular energy used on cell growth/maintenance to 

the energy extensive recombinant protein folding (discussed in Chapter 4). 
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We employed a design of experiment–response surface modelling (DOE-RSM) approach 

to further study the effect of combining two molecules with distinct modes of action, namely 

BiP and CypB, and a chemical chaperone (PBA) on Sp35:Fc production. Only two 

functional genes were utilised in order to minimise the transfection cytotoxicity effect. We 

defined DOE design space boundaries (rDNA amount and chemical concentration ranges) 

for the three Sp35:Fc production effectors based on the individual study. The Box-Behnken 

design was chosen due to its minimal number of experiments required while still providing 

sufficient information to identify key interactions and generate model predictions. Each 

effector was deployed at a notional low, medium, or high amount/concentration within its 

design space, yielding 12 discrete coordinates. The mid-point coordinate was replicated 

five times to determine pure error. Three response variable outputs were measured at 

each coordinate, specifically the volumetric titre, IVCD and qP. All outputs were normalised 

against control culture that contained neither functional genes nor chemical chaperone.  

Quadratic response surface models were used to compare the relationship between 

CypB, BiP and PBA effectors on titre and IVCD output variables, while two-factor 

interaction (2FI) response surface model was used on qP. The quadratic model derived 

from the relative titre analysis is as follows: 

Titre = 1.9 + 0.13 CypB + 0.18 BiP + 0.22 PBA − 0.004 CypB  BiP −

           0.098 PBA  BiP − 0.045 CypB  PBA − 0.12(CypB)2 − 0.092(BiP)2 −

           0.27(PBA)2                                                                                                                               (8.3)  

Based on the ANOVA, it was found that there were a number of insignificant model terms 

for IVCD and qP outputs, thereby reducing model fit (goodness of fit). CypB for instance 

was an insignificant effector on qP, both individually and in combination with other 

effectors, where the interaction term was eventually removed from the model equation. 

The reduced quadratic model for relative IVCD and the linear 2FI model for relative qP are 

described in Equations 8.4 and 8.5, respectively. 

IVCD = 1.04 + 0.064 CypB − 0.069 BiP + 0.17 PBA − 0.034 PBA  BiP −

           0.036 CypB  PBA − 0.045 BiP 2 − 0.71 PBA 2                                                         8.4   

𝑞P = 1.76 + 0.024 CypB + 0.33 BiP + 0.55 PBA + 0.085 PBA  BiP              8.5   
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Table  8.1 summarises the response surface models employed. Highly significant 

models were obtained (P < 0.05) for each response and all models displayed an 

insignificant ―lack of fit‖ indicating comparable variance of modelled and empirical data. 

Additionally, all models achieved a good agreement between the predicted and adjusted 

R
2
 values (< 0.2 difference) signifying the reliability of the models in predicting the output 

response to the combination of effectors (Mandenius and Brundin, 2008). The response 

surface models for relative titre, IVCD and qP are graphically represented in Figure  8.7, 

8.8 and 8.9, respectively, illustrating the modelled response surfaces for the interaction of 

two parameters at a constant, mid amount of the third parameter. 

 

Table 8.1: Summary of DOE-RSM analysis of parameters and parameter interactions 

controlling Sp35:Fc production and CHO cell proliferation. 

Response Factor 
Goodness 

of fit 
Probability data > 

random error 
Significant? 
(P < 0.05) 

Model predictability 
(Pred/Adj R

2
) 

Titre Model 1.23 0.0001 Yes 0.90/0.94 

 CypB 0.13 0.0013 Yes  

 BiP 0.25 0.0002 Yes  

 PBA 0.37 < 0.0001 Yes  

 (CypB)(BiP) 0.00 0.9117 No  

 (PBA)(BiP) 0.04 0.0265 Yes  

 (CypB)(PBA) 0.00 0.2371 No  

 (CypB)
2
 0.06 0.0097 Yes  

 (BiP)
2
 0.04 0.0308 Yes  

 (PBA)
2
 0.31 < 0.0001 Yes  

IVCD Model 0.34 < 0.0001 Yes 0.72/0.90 

 CypB 0.04 0.0041 Yes  

 BiP 0.03 0.0027 Yes  

 PBA 0.23 < 0.0001 Yes  

 (PBA)(BiP) 0.00 0.1893 No  

 (CypB)(PBA) 0.00 0.1642 No  

 (BiP)
2
 0.00 0.0839 No  

 (PBA)
2
 0.02 0.0137 Yes  

qP Model 3.35 < 0.0001 Yes 0.88/0.93 

 CypB 0.00 0.5922 No  

 BiP 0.89 < 0.0001 Yes  

 PBA 2.43 < 0.0001 Yes  

 (PBA)(BiP) 0.03 0.1967 No  
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Figure 8.7: DOE response surface models predict Sp35:Fc volumetric titre as a function 

of CypB and BiP co-expressions and PBA treatment. Modelled response surfaces (96 h 

culture) are illustrated for the CypB/BiP interaction at fixed 0.3 mM PBA concentration (A), the 

PBA/BiP interaction at fixed 25% CypB gene load (B), and the PBA/CypB interaction at fixed 

50% BiP gene load (C).  
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Figure 8.8: DOE response surface models predict CHO cell IVCD as a function of CypB 

and BiP co-expressions and PBA treatment. Modelled response surfaces (96 h culture) for 

IVCD are illustrated for the PBA/BiP interaction at fixed 25% w/w CypB gene load (A) and the 

PBA/CypB interaction at fixed 50% w/w BiP gene load (B). The CypB/BiP interaction was 

insignificant and was removed from the model to improve model fit. 

Statistical analysis revealed that all parameters significantly influenced titre 

individually (P < 0.01; Table  8.1) which is reflected in Figure  8.7. High amount of BiP and 

PBA was particularly favourable on product titre, and there was a significant synergistic 

effect between the two parameters (P < 0.05; Table  8.1). However, the titre appeared to 

decrease when the concentration of PBA was increased above 0.4 mM (Figure  8.7B and 

C)―the point at which the inhibition of cell growth by PBA outweighed the increase in qP. 

All parameters were also found to have strong individual influence on IVCD (P < 0.01) 

where the response surface models are presented in Figure  8.8. However, CypB did not 
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Figure 8.9: DOE response surface models predict CHO cell specific productivity as a 

function of BiP co-expression and PBA treatment. Modelled response surfaces (96 h 

culture) for qP is illustrated for the PBA/BiP interaction at fixed 25% w/w CypB gene load.  

exhibit any interaction with BiP as analysed at fixed 0.3 mM PBA and was removed from 

the quadratic model in order to improve the model predictability (Pred/Adj R
2
; Table  8.1). 

The deleterious effect of PBA on CypB is also evident in Figure  8.8A and B, where it is 

clear that CypB's cell growth benefit was completely suppressed at 0.5 mM PBA. 

Additionally, as the specific productivity is dependent on BiP and PBA (Figure  8.9) and not 

on CypB (P > 0.05; Table  8.1), it can be concluded that the use of CypB alongside such 

chemical chaperone is incompatible and of limited advantage. The combination of BiP and 

PBA was able to enhance the qP by up to 2.9-fold (Figure  8.9) although there was no 

interaction between the two strategies (P > 0.05; Table  8.1). 

Using the response surface models (Equations 8.3‒8.5), it is theoretically possible to 

predict a desired combination of effectors to achieve a specific objective. For example, the 

models predict that a maximal 2.0-fold increase in volumetric titre with 1.0-fold change in 

IVCD can be achieved by using the combination of 32% w/w CypB, 70% w/w BiP and 0.32 

mM PBA. Moreover, even though our models did not take into account the cell 

growth/death and protein production during stationary and decline phases, it is still 

possible to utilise the short-term batch culture data presented here for improved fed-batch 

culture. Specifically, the combination of 37% w/w CypB, 45% w/w BiP and 0.21 mM PBA is 

predicted to yield an optimal titre and IVCD (equal weight) of 1.9-fold and 1.1-fold 

increases, respectively, that could be more advantageous in longer culture duration (i.e., 

fed-batch culture). 
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Derived from our cell and process engineering data on short-term Sp35:Fc production, we 

designed two different biphasic culture strategies for transient fed-batch production. For 

both biphasic culture strategies, the first phase was centred on cell growth in which we 

employed co-expression of 20% w/w CypB to enable rapid proliferation of cells. The 

second phase began once the cells reached the peak VCD (approximately 24×10
6
 cells 

mL
-1

) on Day 6 where we utilised two different process combinations; (i) 1 mM PBA and 

temperature shift to 32°C, and (ii) 0.5 mM PBA and 1% v/v glycerol. Additionally, we 

employed a biphasic culture with only a shift in culture temperature (i.e. without CypB co-

expression and chemical addition) to mimic the commonly used biphasic process strategy. 

This culture was shifted to 32°C on Day 7. 

 As shown in Figure  8.10A, CypB co-expression facilitated the growth of Sp35:Fc-

producing cells, allowing the cultures to reach peak VCD one day earlier compared to 

the control as well as the "pure" 32°C biphasic culture. With regard to the second phase 

culture, the combination of 1 mM PBA and 32°C extended the stationary phase 

substantially, leading to a 24% increase in IVCD compared to the 0.5 mM PBA and 1% v/v 

glycerol strategy, and a 70% increase over the control (Figure  8.10B). Nevertheless, 

despite the lower IVCD (Figure  8.10B), the synergistic effect of the latter process strategy 

outperformed the former in terms of volumetric titre (Figure  8.10C). Specifically, 20% w/w 

CypB, 0.5 mM PBA and 1% v/v glycerol resulted in a 5.9-fold increase in volumetric titre 

compared to the control culture of 6.6 µg mL
-1

 while 20% w/w CypB, 1 mM PBA and 32°C 

gave a 4.4-fold increase. In both cases, the combinations of cell and process engineering 

strategies are far better than the typical process strategy of shift in culture temperature 

only (which gave only 1.9-fold increase compared to control).  

Furthermore, we tested the optimised strategy (20% w/w CypB, 0.5 mM PBA and 1% 

v/v glycerol) on the C13 (improved production via rapid cell growth) and C69 (inherently 

high DTE Sp35:Fc productivity). Results show that C13 displayed significantly improved 

cell growth and peak VCD during fed-batch culture (Figure  8.11A) which in turn resulted in 

a 47% increase in IVCD compared to the parental cell line control culture (Figure  8.11B). 

However, the volumetric titres of both C13 and C69 were limited to about 12 µg mL
-1 

(1.9-

fold increase; Figure  8.11C), illustrating the natural "productivity boundary" of the host cell 

background. Using the optimised, biphasic culture strategy, the volumetric titres were 

increased to about 41 µg mL
-1

 (Figure  8.11C) hence demonstrating that the use of cell and 
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Figure 8.10: Integrated engineering strategies for transient Sp35:Fc productions. 2.5×10
7
 

cells were transfected with 16.67 µg Sp35:Fc plasmid and subjected to different strategies; a 

shift to hypothermic condition (   ), co-transfection with 20% w/w CypB and addition of 1 mM 

PBA and shift to hypothermic condition (  ), or co-transfection with 20% w/w CypB and 

treatment with 0.5 mM PBA and 1% v/v glycerol (   ). The cells were cultured alongside a 

control that contained neither CypB gene nor chemical chaperones and maintained at 37°C       

(   ). Arrows indicate the timing of chemical addition and/or temperature shift. (A) Viable cell 

density (VCD) profile. (B) Integral of viable cell density (IVCD) profile. (C) Sp35:Fc titre profile. 

Error bars represent the standard deviation of two biological and two technical replicates. 
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Figure 8.11: Integrated engineering strategies for transient Sp35:Fc productions using 

two clonally derived cell lines. 2.5×10
7
 cells were co-transfected with 16.67 µg Sp35:Fc 

plasmid and 20% w/w CypB, and treated with 0.5 mM PBA and 1% v/v glycerol using either 

C13 (   ) or C69 (   ) cell lines. The cells were cultured alongside a C13 control (   ), a C69 

control (   ) and the parental cell line control (   ) that contained neither CypB gene nor chemical 

chaperones. All cells were maintained at 37°C. Arrow indicates the timing of chemical addition. 

(A) Viable cell density (VCD) profile. (B) Integral of viable cell density (IVCD) profile. (C) 

Sp35:Fc titre profile. Error bars represent the standard deviation of two biological and two 

technical replicates. 
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Figure 8.12: Integrated engineering strategies for transient SEAP productions and using 

two clonal cell lines. 2.5×10
7
 cells were transfected with 16.67 µg SEAP plasmid using C13    

(   ) and C69 (   ) cell lines, or co-transfected with 20% w/w CypB and treated with 0.5 mM PBA 

and 1% v/v glycerol using the parental cell line (   ). The cells were cultured alongside a SEAP-

producing parental cell line control (  ) that contained neither CypB gene nor chemical 

chaperones. Arrows indicate the timing of chemical addition. (A) Viable cell density (VCD) 

profile. (B) Integral of viable cell density (IVCD) profile. (C) SEAP titre profile. Error bars 

represent the standard deviation of two biological and two technical replicates. 
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process engineering was a much more effectual strategy in controlling the production of 

DTE protein than exploiting the inherent heterogeneity in the host cell population for 

improved production. 

Conversely, the implementation of the optimised strategy (20% w/w CypB, 0.5 mM 

PBA and 1% v/v glycerol) on ETE SEAP showed that CypB had no effect on the cell 

growth (Figure  8.12A) resulting in no improvement in IVCD (Figure  8.12B). Moreover, the 

additions of PBA and glycerol into the SEAP culture increased the volumetric titre by only 

1.9-fold which was comparable to the volumetric titre achieved by C13 without any 

engineering strategies (Figure  8.12C). Together, these data indicate that the designed 

engineering strategies employed were more valuable for DTE protein productions. 

However, as we still observed some improvement on the SEAP titre using PBA and 

glycerol, this suggests that the treatment of cell culture with chemical chaperones could be 

an easy-to-implement, generic tool (owing to their versatility of general and specific effects) 

in improving transient expression compared to the cell engineering strategy. 

 

 

To assess the aggregate contents and whether the improvements in Sp35:Fc productivity 

were due to improvement in cellular activities, cell culture supernatant of the final harvest 

and equal amount of cells on Day 8 of the fed-batch culture were lysed. The extra and 

intracellular Sp35:Fc polypeptides were immunoblotted as shown in Figure  8.13A. In both 

cases, no Sp35:Fc aggregates were detected for culture employing chemical(s) treatment, 

hence proving that the combinations of the molecular/chemical chaperones were effective 

in inhibiting intracellular aggregate formation during fed-batch culture. Additionally, the 

amount of aggregates were considerably reduced (67% reduction compared to control) in 

cells subjected to hypothermic condition alone. A slight decrease (29% reduction 

compared to control) was also observed with C69 employing no engineering strategies 

which was consistent with the previous data obtained in Chapter 6 (Figure  6.9). 

Further quantitative image analysis of the intracellular samples (Figure  8.13B) 

revealed that the engineering strategies resulted in increases in the amount of nascent 

monomer by up to 2.4-fold, likely through an increase in transcriptional rate and/or mRNA 

stability (Hwang et al., 2011a; Jiang and Sharfstein, 2008). Importantly, we observed that 

the engineering strategies resulted in increases in dimer to monomer ratio (indicated by 
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Figure 8.13: Western blot analysis revealed that the improvements in Sp35:Fc production 

were due to improvement in cellular activities. (A) Representative Western blots of Sp35:Fc 

polypeptide species in extracellular culture supernatant (final harvest) and intracellular species 

of equal amount of cells (2×10
4
 cells) on Day 8 of fed-batch culture of different culture 

strategies and clones. The lane number corresponds to the bar chart number for different 

engineering strategy and/or clone used. (B) Intracellular Sp35:Fc unfolded monomer and 

assembled dimer per cell determined by quantitative Western blot. Error bars represent the 

standard deviation of two biological and two technical replicates. The dimer to monomer ratio 

per cell for each engineering strategy and/or clone is indicated above the bars. 

the number on respective bars) which imply that the molecular/chemical chaperones, and 

to a lesser extent the hypothermic condition, restored the cells' cellular function. It is also 

interesting to point out that C69 which had a relatively high qP and low aggregates 

(Chapter 6, Figures 6.7 and 6.9), had an intrinsically high dimer to monomer ratio (Figure 

 8.13B) that indicate an inherent efficient folding/assembly processes. We conclude that the 

integrated cell and process engineering effectively improved the DTE protein production 

and product quality. 



Chapter 8 

 

152 

 

TGE systems are an attractive method for rapid production of research-grade biologics but 

suffer from relatively low product titres. Whilst improvements through optimisation of large-

scale transfection protocols and/or culture media during transient expression are well 

established (Cain et al., 2013; Daramola et al., 2014; Rajendra et al., 2011; Raymond et 

al., 2011), for DTE proteins it is imperative to study the effects of engineering the secretory 

pathway and exocytosis to relieve the posttranslational bottlenecks. Therefore, in this 

study we investigated the effect of a range of molecular and chemical chaperones and 

UPR re-programming on CHO cell growth and Sp35:Fc production. Fundamentally, we 

observed that Sp35:Fc production could be improved via two distinct routes albeit at 

varying degrees; (i) stimulation of qP with general suppression in cell growth (BiP, PDI, 

ATF6, XBP1, PBA, DMSO, glycerol and hypothermic condition), and (ii) stimulation of cell 

growth correlated to repression of qP (CypB, PERK inhibitor, betaine and TMAO).  

The effects of molecular chaperones and foldases are likely to be protein specific and 

often do not result in the desirable outcomes in the host cells (Borth et al., 2005; Davis et 

al., 2000; Dorner and Kaufman, 1994; Grubb et al., 2012). In this study, the 

overexpression protein folding catalyst PDI in CHO cells resulted in increase in aggregates 

formation, which is in contrast to report by van den Berg et al. (1999) demonstrating that 

PDI was particularly effective in preventing lysozyme aggregation under crowded 

conditions in vitro. In this context, cell engineering with UPR-related genes is a more useful 

strategy for enhancing the secretion of recombinant proteins by increasing concentrations 

of several chaperones in a functionally meaningful ratio (Delic et al., 2014). However, the 

overexpression of UPR-related genes leads to a general survival disadvantage via 

increased apoptosis where the effects had been observed in both stable cell lines (Becker 

et al., 2008) and transient expression of DTE MAbs (Pybus et al., 2014a) which was 

consistent with our data on Sp35:Fc production. Even though the combination with anti-

apoptotic engineering may rescue the cells (e.g., co-expression of x-linked inhibitor of 

apoptosis; Becker et al., 2010), we also did not observe any benefit of UPR transactivators 

in preventing Sp35:Fc aggregation, thus rendering them a less attractive strategy.  

For DTE Sp35:Fc, our data show that CypB and PERK inhibitor had positive impacts 

on cell proliferation where the former corroborates recent work in this laboratory on CHO 

cells expressing DTE MAbs (Pybus et al., 2014). While we may infer that the basic function 

of the PERK inhibitor is to restrain eIF1α phosphorylation and hence retain global mRNA 

translation rates, it was interesting to note that CypB was able to partially suppressed 
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Sp35:Fc aggregation, as well as act in concert with BiP to simultaneously increase both µ 

and qP. These effects might owe to the dual function of the lumenal protein where it has 

been implicated both in protein folding (Feige et al., 2009; Kim et al., 2008) and in ERAD of 

soluble lumenal substrates (Bernasconi et al., 2010). However, the impacts of the 

functional proteins were generally lower compared to the use of chemical additives. As we 

did not measure the amounts of the functional proteins expressed nor their mRNA levels, 

further work is required to verify that the limited effects of the cell engineering strategy 

were not actually due to the inability of the cell hosts to overexpress the functional genes. 

On a different note, in order to achieve high transfection efficiency with low toxicity, we 

found that the cell engineering strategy for our fed-batch system was limited to co-

expression of a single functional protein, hence necessitating additional process 

engineering approaches to effectively improve the production titre.  

Chemical chaperones, despite have been intensively studied/used for clinical 

applications (reviewed in Papp and Csermely (2006) and Perlmutter (2002)), are still 

under-utilised in the therapeutic protein production industry. With the exception of sodium 

butyrate (and its HDAC inhibitor counterparts), there are limited reports on how these small 

molecules can benefit the biomanufacturing process, especially for DTE proteins. Another 

interesting finding of our work is that a moderate concentration of methylamines (betaine 

and TMAO) in CHO cell culture facilitated cell growth, possibly by alleviating ER stress via 

improved intracellular Sp35:Fc trafficking (Roth et al., 2012). Even though qP was 

compromised, we speculate that the chemicals could potentially be used in cell line 

development for DTE protein production. Obviously, sustained UPR activation due to DTE 

protein overexpression is incompatible with high cell specific growth rate, and stable 

transfectants whose proliferation is compromised by induction of a UPR do not persist (the 

main selective pressure within functionally heterogeneous cell populations; Davies et al., 

2013). Therefore, by treating a stable clone (or transfectant pool) with a methylamine (or 

PERK inhibitor) at the beginning of cell line development stage, we may be able to 

sustain/enrich the cell populations with high producing cells. The UPR-suppressing 

chemical can then be withdrawn during the manufacturing process and replaced with other 

chemicals aiming at optimising productivity such as PBA. 

Consistent to previous reports, we observed that the addition of PBA, DMSO and 

glycerol to culture medium significantly increased qP and at the same time restrained CHO 

cell growth in a dose-dependent manner (Hwang et al., 2011a). Importantly, we found that 

there could be a synergistic effect between two chemicals, where a 7.2-fold increase in qP 

was obtained by combining PBA with glycerol. Different chemical chaperones are known to 



Chapter 8 

 

154 

act in different ways on recombinant proteins. For example, tauroursodeoxycholic acid has 

been shown to block the UPR activation in HFE C282Y-producing cells by acting directly 

on its signal transduction pathway, whereas PBA suppresses the ER stress by enhancing 

the ER capacity to degrade misfolded HFE C282Y protein therefore preventing the 

formation of intracellular aggregates (de Almeida et al., 2007). In this study, we 

hypothesise that PBA and glycerol complemented each other's function in facilitating 

Sp35:Fc expression, yielding a far higher cell productivity compared to when used alone. 

However, as the combination of "protective" betaine (Chapter 2, Table  2.1) with PBA did 

not avert the cytotoxic effect of the latter (Figure  8.3A) we consider that overexpression of 

antiapoptotic proteins Bcl-2 (Kim and Lee, 2000; Sung and Lee, 2005) and Bcl-xL (Kim et 

al., 2011b) or antisense RNA of caspase-3 (Kim and Lee, 2002) may be the effectual way 

to inhibit chemical chaperone-induced apoptosis. Additionally, our data show that the 

chemical chaperones were extremely effective in suppressing Sp35:Fc aggregates 

formation. However, the exact mechanisms underlying the ability of chemical chaperones 

to inhibit aggregate formation are less clear, and although a number of studies have 

provided some detailed understanding on this subject (e.g. by shifting the native protein 

toward more compact confirmation via preferential hydration; Vagenende et al., 2009), the 

mechanisms are likely to differ from one chemical to another.  

Besides chemical additives, it has been reported that the formation of aggregates of 

recombinant proteins may be reduced by hypothermic culture temperatures (Estes et al., 

2015; Hwang et al., 2011b), which was also observed in this study. This is in general 

agreement with our previous hypothesis (Chapter 4) that Sp35:Fc misfolding/aggregation 

was due to improper N-glycosylation. The distribution of N-glycan structures 

(microheterogeneity) and the levels of site occupancy (macroheterogeneity) may be 

regulated via culture conditions (including low culture temperature and addition of butyrate; 

Butler, 2006), which in turn lead to proper functioning of the quality control mechanism to 

ensure that only correctly folded proteins are transported to the Golgi complex. 

Additionally, the physical effects of low culture temperature can described by the second 

law of thermodynamics, where stable systems occupy the states with lowest Gibbs free 

energy (ΔG = ΔH – TΔS). The rate-limiting step in the folding process is the formation of 

the folding intermediate, i.e. the conformation that has the highest Gibbs free energy. 

Lowering the system‘s temperature (T) would minimise this rate-limiting step, as well as 

further reduces the enthalpy (ΔH) by lowering the reaction rates of non-bonding 

interactions, therefore promoting protein folding and stability (Szilágyi et al., 2007). 
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In addition to their advantages in cell culture processes as presented in this study, 

chemical chaperones also hold the prospect for utilisation in the downstream formulation 

process to improve product stability. Likewise, chemicals that have been used in product 

formulations hold promise to improve the production process. For example, trehalose, 

which is used as a protectant for several commercially available therapeutic antibodies and 

proteins, has recently been demonstrated to significantly effective in minimising antibody 

aggregates as well as in improving the specific and volumetric antibody production titre 

(Onitsuka et al., 2014). This is highly relevant considering that chemical chaperones are 

protein and cell line specific. For example, whilst treatment of CHO cell lines with butyrate 

stimulated up to 15-fold enhancement of yellow fluorescent protein (YFP) production, only 

up to a 2-fold increase was observed in MAb production (Hunt et al., 2002). Additionally, 

HDAC inhibitor valproic acid (VPA) had been shown to be more effective in HEK293 cells 

with 4-fold increase in MAb titres compared to in CHO cells (1.5-fold increase; Backliwal et 

al., 2008). The data from this study also corroborate those observations in which PBA 

appeared to have less impact on SEAP production while betaine did not confer any growth 

benefit onto the SEAP-producing cells. 

We have shown that Sp35:Fc production can be controlled through the DOE 

methodology or biphasic culture strategy. With respect to the former, it was possible to 

pinpoint the exact functional genes and chemical chaperone concentration required to 

produce Sp35:Fc with defined levels of cell growth. Desirability analysis identified the 

combination of CypB, BiP and PBA predicted to yield the highest volumetric titre, without 

compromising cell growth (i.e., similar IVCD to control). However, the PBA effectively 

suppressed the CypB's growth benefit. Instead of attempting to reverse the apoptotic effect 

of the chemical chaperones by transfecting in Bcl-2 or Bcl-xL (Kim and Lee, 2000; Sung 

and Lee, 2005), we used a simple biphasic culture that allowed high productivity without 

compromising cell growth―enabling up to 6-fold increase in volumetric titre. Interestingly, 

the same strategies were also able to increase SEAP production, although the fact that the 

impact was less profound (1.9-fold increase) suggested that engineering strategies still 

need to be protein specific. 

Overall, from a functional perspective, for a host cell with a product induced UPR it is 

feasible to closely control the negative relationship between qP and µ (Figure 8.4). Our 

data imply that inducing cellular folding/assembly capacity or the UPR components are 

effective for short-term specific productivity enhancement but incompatible with the 

creation of productive biomass over the longer term. This is consistent with our preceding 

observation (Chapter 4, Figure 4,7) where the activation of the UPR to promote protein 
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folding would prevent cell growth, and it was unlikely that overexpression of ER 

chaperones actually served to directly ―switch-off‖ the UPR-mediated growth arrest. In 

contrast, using specific functional genes or chemicals it is possible to either inhibit or 

offset, via different mechanisms, the effects of the UPR to either permit cell proliferation 

(e.g. using CypB) or DTE protein expression (e.g. using PBA). Therefore, whilst the 

optimal combination of functional genes and/or chemicals tends to be protein-specific, from 

the recognised function(s) of the ER functional effectors we utilised, we can deduce that 

direct inhibition or alleviation of ER load/stress may be preferable to attempts to indirectly 

reduce ER load by a general increase in secretory pathway capacity or the rate of forward 

folding/assembly reaction within the ER. This is also consistent with our in silico analysis 

(Chapter 5, Figures 5.5 and 5.6) which suggests that the translational attenuation 

mechanism of the UPR (i.e. direct reduction of ER load) is required and sufficient in 

maintaining cellular homeostasis, whereas engineering the rate of folding/assembly 

reaction has no apparent benefits, nor it could solve the secondary trafficking bottleneck 

(rate of ER to cis-Golgi) to reduce UPR severity and permit cell biomass accumulation. 

Finally, our study illustrates that the optimal engineering strategy for a given 

recombinant protein requires synergistic combination of genes, chemicals and/or process 

conditions designed to overcome cellular rate limiting steps simultaneously, enabling the 

host cell to attain both high qP and IVCD. Indeed, the highest TGE titre of 2 g/L reported 

by Daramola et al. (2014) in CHO cells was obtained by combining powerful expression 

vector technologies with optimised polyethyleneimine (PEI)-based transfection condition 

and fed-batch cell culture process. Comparatively, Backliwal et al. (2008) achieved 1.1 g/L 

titre in HEK293 cells with a combination of optimised expression vector, highly efficient PEI 

transfection, use of specific growth factor and cell cycle regulators, as well as treatment of 

cells with VPA. We envisage that the increasingly complex, difficult to produce biologics in 

the biopharmaceutical industry will necessitate a multi-component cell/process design and 

engineering platform to create attuned cell phenotype and process condition. Such an 

approach would require an appropriate multi-gene expression technology (Chatellard et 

al., 2007; Kriz et al., 2010) and rapid high-throughput statistical assessment of the optimal 

combination of multiple genetic and chemical components. 
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This chapter summarises the data presented in this thesis by highlighting the important findings 

and outcomes, specifically for the production of Sp35:Fc fusion protein and difficult-to-express 

proteins in general. The prospect of continuation work is also briefly described. 
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In biologics development, it can be said that the low-hanging fruits have been harvested. 

Today, the bioindustry invests far more on R&D and produces fewer new molecules than it 

did two decades ago. Indeed, while the approval of 112 biopharmaceuticals in the period 

of 2006–2014 suggests a vibrant sector, only half (51%) were genuinely new 

biopharmaceutical entities whilst the rest of the products approved were biosimilars, 

reformulated or me-too versions of previously approved substances (Walsh, 2010, 2014). 

As the market moves towards treatment for uncommon diseases and more effective drugs, 

more complex, difficult to express proteins such as bispecific antibodies and fusion 

proteins are being developed. Consequently, the industry is likely to be impeded by an 

imposing and growing obstacle resulting from the inability to rapidly and efficiently produce 

large quantities of recombinant protein at low cost.  

The TGE technology platform has the advantage of short development times and low 

overall cost, and hence is actively pursued to produce a broad range of therapeutic MAbs, 

proteins and vaccines for preclinical studies. However, transient expression processes 

employ genetically/functionally diverse parental cell populations, whose intrinsic functional 

heterogeneity has not been utilised to generate a host cell clone intrinsically suited to the 

production of the recombinant product. As a result, transient production processes are 

generally low yielding, and the problems are exacerbated in the case of DTE recombinant 

proteins. Therefore, several strategies had been developed in this study to improve the 

transient production of DTE proteins in mammalian systems. The cellular production of  

model Sp35:Fc fusion protein was first systematically studied through a simple, rapid TGE 

assay and a mathematical model (Chapters 4 and 5), followed by various mitigation 

strategies, i.e. clone screening, controllable expression vector, and cell/process 

engineering (Chapters 6‒8). 

Data presented in this study support the notion that mammalian cells have limited 

secretory capacity, and that post-translational mechanisms are often limiting in transient 

systems (Mason et al., 2012) especially for DTE proteins (Pybus et al., 2014a). The simple 

and rapid TGE assay system enabled comparable measurement of the basic parameters 

that underpin product manufacturability, i.e. the relative ability of the host cell to synthesise 

and secrete a given recombinant product and to proliferate during the production process. 

In the case of DTE Sp35:Fc, it appears that a sweet-spot exists between the protein 

folding and aggregates formation to achieve a sub-optimal transgene expression. Even 

though we tested only two recombinant products in this work (i.e. Sp35:Fc vs. SEAP), the 
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assay is amenable to medium-high throughput operation and compatible with subsequent 

analyses of protein molecular variations such as aggregation or glycosylation. Similarly, 

whilst the intracellular behaviour modelled in this study was specific to Sp35:Fc produced 

in CHO cells, the model does offer a practical adjunct to other experimental studies. The 

iterative in silico engineering approach can be implemented as a generic framework for Fc-

fusion protein productions, with the aim of using it as a platform to better understand the 

factors underlying cell factory processes, and subsequently propose predictive, rational 

strategies to overcome the limiting production factors in mammalian production systems.  

The data of subclones of the parental CHO-S cell line showed the wide diversity and 

flexibility of metabolic capacities of CHO cells―a fact known for decades. Indeed, this 

know-how is used, intuitively, in the bioindustry by evaluating productivities and qualities of 

product in clonally derived cell populations. Our results provide a fundamental 

understanding for CHO host cell choice to express difficult to produce recombinant 

proteins, where the improvement in titre could be achieved either via increase in µ or qP, 

indicating variations in cellular machinery. However, analysis of the clones revealed that, 

unlike the production of characteristically easy-to-express GFP, Sp35:Fc productivity was 

negatively correlated to cell growth, which indicates that it is relatively difficult to obtain 

clones with improved DTE protein titres. Additionally, the fed-batch data in Chapter 8 

demonstrate that the two best-performing clones responded in the same way to the 

cell/process engineering strategies applied to the parental cell population. Together, these 

data suggest clone selection is more appropriate for ETE proteins, whereas for DTE 

proteins cell/process engineering strategy is likely to be far more effective than a reliance 

on intrinsic clonal heterogeneity. Nevertheless, transcriptomics and proteomics (Charaniya 

et al., 2009; Dinnis et al., 2006) of the clones that displayed superior DTE protein 

production functionality could facilitate future employment of direct cell line engineering 

strategies (reverse engineering). 

DTE proteins have mis-matched kinetics of transcription, translation and folding 

reactions, where overexpression of such proteins using strong promoters generally results 

in the induction of the UPR (and therefore reduced µ). Cell line engineering for enhanced 

DTE protein expression to improve cellular machinery is likely to require multi-gene 

modulation. Therefore, at the initial stage a vector engineering strategy might be more 

appropriate to achieve both high qP and IVCD, than gene by gene cell line engineering 

methods. The novel ERSE vectors employed in this study enabled a positive feedback 

loop within the system, thus enabling a shift from fast-growing cells to high-producing cells 

during the transient production of DTE Sp35:Fc in fed-batch culture. Although the ERSE-
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SV40 vector achieved less than 2-fold increase in Sp35:Fc volumetric titre (and thus 

required a more effective engineering approach), this study was only the first step towards 

developing a mammalian controlled/dynamic expression system for DTE proteins and the 

system has various potential applications. Additionally, as cell/process engineering 

approach requires identification of a bespoke, protein-product specific strategy, we 

speculate that this system could be a more generic strategy to mitigate the UPR induction 

(low µ) associated with DTE recombinant proteins while having control over qP. 

The results from cell and process engineering strategies demonstrate that it is 

possible to closely control the inverse relationship between µ and qP using either 

functional genes or chemicals. However, given the complexity of mammalian cellular 

regulation, targeting individual components of the secretory pathway discretely by 

overexpressing specific functional proteins may not always lead to the desired result (e.g. 

increase in Sp35:Fc aggregates), and as we have shown for Sp35:Fc, resulted in only 

modest improvements in µ or qP (<1.5-fold change). These results, however, are not 

entirely unexpected as our modelling work (Chapter 5, Figure  5.5) suggests that the 

translational attenuation mechanism played a vital role in maintaining cellular homeostasis, 

and with this mechanism in place, engineering the folding processes would yield no 

effects. Moreover, as our early diagnostic assay (Chapter 4, Figure  4.7) detected high 

levels of endogenous UPR-related proteins, it is also unsurprising that overexpression of 

these proteins did not lead to significant improvements in qP. This is in contrast to 

overexpression of ATF6c in SEAP producing cells (Chapter 7, Figure  7.3) which led to a 

1.5-fold in SEAP titre. 

On the other hand, chemical additives appeared to be very versatile where they were 

able to both significantly improve cell productivity and growth as well as suppress 

aggregates formation. Moreover, our work suggests that the use of small molecules should 

precede other development or engineering strategies for DTE proteins, especially when 

resources (i.e. time and money) are limited. In addition to having profound effects (Chapter 

8, Figure 8.1) and easy implementation (less preparation/validation, easy to titrate, etc), 

chemical additives appeared to be largely cost-effective. With the exception of TMAO, the 

costs of chemicals at the highest concentrations used in this study were highly 

affordable―approximately between 0.2‒18% of the cost of CD CHO culture medium 

($104/L; Table  9.1). This would enable cost-effective manufacturing should the chemicals 

be used in large-scale transient/stable productions. 
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Table 9.1: Cost of different chemical additives per litre culture. 

Chemical Concentration Cost/L culture ($) 

PBA 1 mM 0.2 

PERK inhibitor 40 nM 0.6 

Glycerol 2% v/v 2.6 

DMSO 2% v/v 7.7 

Betaine 100 mM 19 

TMAO 50 mM 113 

 
 

Due to protein-product specificity, there is unlikely to be a generic solution which can 

be utilised for all recombinant proteins and cell lines. Our data also demonstrated that the 

optimal engineering intervention for a given DTE recombinant protein requires synergistic 

interaction between cell engineering and modulation of culture environment to alleviate 

cellular bottlenecks (and the associated poor expression) without compromising productive 

cell biomass accumulation. Nevertheless, the number of potentially useful 

product/process-specific effectors is likely to be very large. For this reason, a high-

throughput, standardised platform to determine the optimal balance of functional effectors 

is highly desirable. Yet, it has to be based on combinatorial, context-dependent empirical 

modelling approaches to identify the optimal solution. In this regards, our study serves as a 

paradigm for multivariate optimisation in enabling host cells to achieve both high qP and 

IVCD, and therefore improved DTE protein production titres. We need to replace the 

current notion that some products are ―difficult-to-express‖ with the concept that a 

―designer product‖ requires a ―designer cell factory‖ that does not solely rely on screening 

natural biological variation for functionality. 

 

 

Based on work presented in this thesis, the direction of future work could follow several 

branches. One avenue to explore would be the transient production using a bioreactor 

under fully optimised conditions. The highest 40 mg/L yield of Sp35:Fc protein in this study 

was obtained in a small-scale, non-optimised feeding strategy and is still relatively low 

compared to characteristically easy-to-express protein productions. Large scale transient 

transfections can be carried out using polyplex-based methods where the detailed 

underlying mechanisms (Mozley et al., 2014), optimisation technique (Thompson et al., 

2012) and large-scale protocols (Daramola et al., 2014) have been described in the 

literature. Moreover, one major limitation in this study was the progressive loss 
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recombinant plasmid over long-term culture. Therefore, it would also be useful to include 

the ERSE-SV40 vectors or other episomal-based expression system in the optimised 

system. With regard to the former, it could be worth studying whether co-expression of 

XBP1s (as a replacement or complement to ATF6c) could further improve the yield of the 

ERSE system. Although our data indicate that the production of Sp35:Fc is limited at post-

translational processes, it may also be worthwhile to perform codon optimisation (Chung et 

al., 2013) on the Sp35:Fc gene to further enhance the expression. Larger volume and/or 

higher titre would eventually enable comprehensive analysis of product quality especially 

the N- and O-glycosylation patterns that presently cannot be tested using our methods due 

to insufficient quantities. 

Building on data presented in Chapter 8 highlighting the various effects of functional 

gene co-expressions and chemical chaperone treatments, a future line of experimentation 

could employ a rapid, high-throughput DOE platform to assess various cell lines and 

recombinant proteins by testing for the optimal combination of multiple genetic/chemical 

components for a desired synthetic phenotype and appropriate culture processes. While 

the use of multiple plasmid vectors (i.e. high DNA loads) could result in high transfection 

toxicity, an alternate strategy for the expression of multiple genes could be through the use 

of multi-gene engineering technology (Kriz et al., 2010) or a bi-directional promoter system 

(Chatellard et al., 2007). Factorial designs can be employed to screen the factors affecting 

the responses and identify the basic interactions between the factors. Alternatively, if some 

of the factors are known to have little/no interactions or applied during different process  

 

 

Figure 9.1: Parallel Box-Behnken designs can be used to obtain the optimal responses of 

5 factors at a reduced number of experiments (21 design points). Factors A, B and C may 

represent co-expressions of CypB, XBP1s and BiP, while Factors D and E may represent 

additions of PBA and glycerol during stationary phase, respectively. The interaction among 

XBP1s (B), PBA (D) and glycerol (E) is also studied (but not among all 5 factors) as these 3 

factors can induce apoptosis. A normal 3-level, 5-factor design would have 46 design points. 
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condition (e.g. during a biphasic culture), parallel response surface designs (Figure  9.1) 

can also be utilised. Such parallel technique could significantly reduce the number of 

experiments required and has been successfully applied to optimise the transient 

production of MAbs (Daramola et al., 2014) by studying the effects of PEI and DNA 

concentrations, cell density, culture media, and nutrient supplements. It is also useful to 

further explore the general and specific effects of different chemical chaperones on the 

cellular processes such as rDNA/mRNA stability, transcription, secretion and the UPR. 

Promising drug candidates in preclinical studies will eventually require stable 

production of kilogram quantities for the subsequent testing phases and commercialisation. 

The mathematical model presented in Chapter 5 can potentially be developed as a 

predictive tool for stable performance from a transient expression platform (i.e., to aid cell 

line selection), especially for DTE proteins (Figure  9.2). Obviously, the selection of stable 

cell lines (or the transfectant pool) requires the host cell to combine both reasonable cell 

growth and recombinant protein expression. For DTE proteins, it seems likely that stable 

production cell lines would utilise cellular strategies to minimise/avoid UPR induction by 

decreasing recombinant protein synthesis. As transient production with increasing rDNA 

dose can determine the specific expression saturation point, further development of the 

existing model by coupling it to a measurement of cell proliferation and UPR induction may 

give it the capability to predict the likely specific production range of stable transfectants, 

and in the case of Sp35:Fc, whether the transfectants will produce aggregates. 

 

 

Figure 9.2: Prediction of stable performance from a transient expression platform. UPR 

induction inhibits cell growth, and stable cell lines effectively avoid UPR induction by decreasing 

recombinant protein synthesis. This leads to lower stable transcriptional output of DTE proteins 

compared to ETE proteins (A). A linkage between cell proliferation and UPR induction 

measurements may grant the existing model a capability to predict the likely specific production 

range and distribution of stable transfectants (B). 
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Figure A1: Plasmids constructed/provided by other people for use in this study. (A) The 

CMV SEAP vector encoding SEAP. The plasmid was modified from pSEAP2-Control vector 

(Clontech) by replacing the original SV40 promoter with a CMV promoter and removing the 

SV40 enhancer. (B) The 9xERSE-SV40 vector encoding SEAP. 9 units of ERSE sequence 

were inserted upstream of the SV40 promoter of pSEAP2-Control vector. Similar 9xERSE-

SV40 vectors encoding Sp35:Fc or ATF6c were also constructed (not shown). (C) The SV40 

Sp35:Fc vector encoding Sp35:Fc was constructed by replacing the SEAP gene in pSEAP2-

Control with an Sp35:Fc gene. (D) The pcDNA3.1(+) vector (Life Technologies) driven by a 

CMV promoter with ATF6c gene insert. A pcDNA3.1(+) vector encoding XBP1s was also 

constructed (not shown). 
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********** MODEL NAME 

Sp35:Fc fusion protein production in CHO cells 

 

********** MODEL NOTES 

Aggregation is assumed to be irreversible and occur in the ER 

Parameter values shown are for 3 ug rDNA load 

 

********** MODEL STATES 

%Define mass balance equations 

d/dt(mRNA) = Ngene*Sm-kdeg*mRNA-u*mRNA %mRNA 

d/dt(P) = TP*mRNA-2*RP2-u*P %Monomer 

d/dt(P2ER) = RP2-2*RP4-RP6-kERP2*P2ER-kuP2*P2ER-u*P2ER %Dimer in ER 

d/dt(P4ER) = RP4-RP6-kERP4*P4ER-kuP2*P4ER-u*P4ER %Tetramer in ER 

d/dt(P6ER) = RP6-kERP6*P6ER-kuP2*P6ER-u*P6ER %Hexamer in ER 

d/dt(Pu) = kuP*P-u*Pu %Ubiquitinated monomer 

d/dt(P2u) = kuP2*P2ER-u*P2u %Ubiquitinated dimer 

d/dt(P2G) = kERP2*P2ER-kGP2*P2G-u*P2G %Dimer in Golgi complex 

d/dt(P4G) = kERP4*P4ER-kGP4*P4G-u*P4G %Tetramer in Golgi complex 

d/dt(P6G) = kERP6*P6ER-kGP6*P6G-u*P6G %Hexamer in Golgi complex 

 

%Define initial conditions 

mRNA(0) = 1e3 

P(0) = 7e3 

P2ER(0) = 9e4 

P4ER(0) = 400 

P6ER(0) = 50 

Pu(0) = 300 

P2u(0) = 300 

P2G(0) = 300 

P4G(0) = 1 

P6G(0) = 0.1 

 

********** MODEL PARAMETERS 

%Define parameters (fitted values) 

u = 0.0225714 
Ngene = 72000 

Sm = 0.001333 
tdeg = 11.9463 
TP = 42.0174 
kfa = 0.000406347  
kaggP4 = 6.01546e-8 
kaggP6 = 8.04124e-8  
kuP = 0.000917286  
kuP2 = 7.91967e-5 
thERP2 = 3.1003 
thERP4 = 5.04359  
thERP6 = 5.41146 
thGP2 = 0.0104184   
thGP4 = 0.0155464    
thGP6 = 0.0173787 
 

********** MODEL VARIABLES 

%Define mRNA degradation and Sp35:Fc transport rates 

kdeg = 0.6931/tdeg 

kERP2 = 0.6931/thERP2 

kERP4 = 0.6931/thERP4 
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kERP6 = 0.6931/thERP6 

kGP2 = 0.6931/thGP2 

kGP4 = 0.6931/thGP4 

kGP6 = 0.6931/thGP6 

 

%Define folding/assembly and aggregation reactions 
RP2 = kfa*P*P 

RP4 = kaggP4*P2ER*P2ER 

RP6 = kaggP6*P2ER*P4ER 

 

%Define specific productivity rate of Sp35:Fc species 

qP = 3.32e-7*(kGP2*P2G)*24 %qP for dimer 

qPaggP4 = 6.64e-7*(kGP4*P4G)*24 %qP for tetramer 

qPaggP6 = 9.96e-7*(kGP6*P6G)*24 %qP for hexamer 

 

********** MODEL REACTIONS 

 

 

********** MODEL FUNCTIONS 

 

 

********** MODEL EVENTS 

 

 

********** MODEL MATLAB FUNCTIONS 
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%%This m file calculates local sensitivity analysis for Sp35:Fc model for 

3 ug rDNA load 

  

%Initialise global parameters  

global u Ngene Sm kdeg TP kfa kaggP4 kaggP6 kuP kuP2 kERP2 kERP4 kERP6 

kGP2 kGP4 kGP6  

  

%Define fixed parameters  

u = 0.0226; 

Ngene = 72000; 

lamda = 3.32e-7; 

 

%Define perturbable parameters to their initial value 

Smi = 0.001333; 

tdegi = 11.95;    

TPi = 42.02;  

kfai = 0.0004063;    

kaggP4i = 6.015e-008;    

kaggP6i = 8.041e-008;    

kuPi = 0.0009173;    

kuP2i = 7.920e-005;  

thERP2i = 3.100;  

thERP4i = 5.044;    

thERP6i = 5.411;      

thGP2i = 0.01042;  

thGP4i = 0.01555;    

thGP6i = 0.01738;     

 

%Define variables 

kdegi = log(2)/tdegi; 

kERP2i = log(2)/thERP2i;    

kERP4i = log(2)/thERP4i;    

kERP6i = log(2)/thERP6i;    

kGP2i = log(2)/thGP2i;    

kGP4i = log(2)/thGP4i;    

kGP6i = log(2)/thGP6i;  

   

%Perform local sensitivity analysis on the parameters 

for parameterchange = 1:8  

       

    %Define/reset parameters to their initial value 

    Sm = Smi; 

    kdeg = kdegi;    

    TP = TPi; 

    kfa = kfai;    

    kaggP4 = kaggP4i;    

    kaggP6 = kaggP6i;    

    kuP = kuPi;    

    kuP2 = kuP2i;   

    kERP2 = kERP2i;    

    kGP2 = kGP2i;    

          

    x0 = [1e3 7e3 9e4 400 50 300 1 0.1 300 300]; %Initial conditions 

    tspan = [0 700]; 
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    if parameterchange == 1 %Perturb Sm 

        %Run mass balance equations with +1% perturbation 

        Sm = Smi*1.01; 

        [t,x] = ode45(@Sp35Fc,tspan,x0); %Call ODE function 

        qPupper = lamda*kGP2*x(:,8)*24; 

        matsize = size(x); 

        qPupperf = qPupper(matsize(1)); 

        %Run mass balance equations with -1% perturbation 

        Sm = Smi*0.99;  

        [t,x] = ode45(@Sp35Fc,tspan,x0); %Call ODE function 

        qPlower = lamda*kGP2*x(:,8)*24;  

        matsize = size(x); 

        qPlowerf = qPlower(matsize(1)); 

        %Calculate response coefficient on qP 

        RCSm = (qPupperf - qPlowerf)/(qPupperf + qPlowerf)/0.01  

     

    elseif parameterchange == 2 %Perturb kdeg 

        kdeg = kdegi*0.99; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPupper = lamda*kGP2*x(:,8)*24;    

        matsize = size(x); 

        qPupperf = qPupper(matsize(1)); 

        kdeg = kdegi*1.01; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPlower = lamda*kGP2*x(:,8)*24;  

        matsize = size(x); 

        qPlowerf = qPlower(matsize(1)); 

        RCkdeg = (qPupperf - qPlowerf)/(qPupperf + qPlowerf)/0.01 

         

   elseif parameterchange == 3 %Perturb TP 

        TP = TPi*1.01; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPupper = lamda*kGP2*x(:,8)*24;    

        matsize = size(x); 

        qPupperf = qPupper(matsize(1)); 

        TP = TPi*0.99; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPlower = lamda*kGP2*x(:,8)*24; 

        matsize = size(x); 

        qPlowerf = qPlower(matsize(1)); 

        RCTP = (qPupperf - qPlowerf)/(qPupperf + qPlowerf)/0.01 

     

    elseif parameterchange == 4 %Perturb kfa 

        kfa = kfai*1.01; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPupper = lamda*kGP2*x(:,8)*24;   

        matsize = size(x); 

        qPupperf = qPupper(matsize(1)); 

        kfa = kfai*0.99; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPlower = lamda*kGP2*x(:,8)*24;  

        matsize = size(x); 

        qPlowerf = qPlower(matsize(1)); 

        RCkfa = (qPupperf - qPlowerf)/(qPupperf + qPlowerf)/0.01 

                 

     elseif parameterchange == 5 %Perturb kagg 

        kaggP4 = kaggP4i*0.99; 

        kaggP6 = kaggP6i*0.99; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPupper = lamda*kGP2*x(:,8)*24; 

        matsize = size(x); 

        qPupperf = qPupper(matsize(1)); 
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        kaggP4 = kaggP4i*1.01; 

        kaggP6 = kaggP6i*1.01; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPlower = lamda*kGP2*x(:,8)*24; 

        matsize = size(x); 

        qPlowerf = qPlower(matsize(1)); 

        RCkagg = (qPupperf - qPlowerf)/(qPupperf + qPlowerf)/0.01 

         

     elseif parameterchange == 6 %Perturb kuP 

        kuP = kuPi*0.99; 

        kuP2 = kuP2i*0.99; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPupper = lamda*kGP2*x(:,8)*24;   

        matsize = size(x); 

        qPupperf = qPupper(matsize(1)); 

        kuP = kuPi*1.01; 

        kuP2 = kuP2i*1.01; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPlower = lamda*kGP2*x(:,8)*24;  

        matsize = size(x); 

        qPlowerf = qPlower(matsize(1)); 

        RCku = (qPupperf - qPlowerf)/(qPupperf + qPlowerf)/0.01 

  

    elseif parameterchange == 7 %Perturb kERP2 

        kERP2 = kERP2i*1.01; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPupper = lamda*kGP2*x(:,8)*24;  

        matsize = size(x); 

        qPupperf = qPupper(matsize(1)); 

        kERP2 = kERP2i*0.99; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPlower = lamda*kGP2*x(:,8)*24; 

        matsize = size(x); 

        qPlowerf = qPlower(matsize(1)); 

        RCkERP2 = (qPupperf - qPlowerf)/(qPupperf + qPlowerf)/0.01 

        

    else %Perturb kGP2 

        kGP2 = kGP2i*1.01; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPupper = lamda*kGP2*x(:,8)*24; 

        matsize = size(x); 

        qPupperf = qPupper(matsize(1)); 

        kGP2 = kGP2i*0.99; 

        [t,x] = ode45(@Sp35Fc,tspan,x0);  

        qPlower = lamda*kGP2*x(:,8)*24;  

        matsize = size(x); 

        qPlowerf = qPlower(matsize(1)); 

        RCkGP2 = (qPupperf - qPlowerf)/(qPupperf + qPlowerf)/0.01           

    end 

end    

 
_______________________________________________________________________ 
 
 
 

%%This ODE function is called for to simulate mass balance equations 
function [massbalance] = Sp35Fc(t,x) 

 

  %Initialise global parameters 

  global Ngene u Sm kdeg TP kfa kaggP4 kaggP6 kuP kuP2 kERP2 kERP4 

kERP6   
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  kGP2 kGP4 kGP6  

  
  %Define folding/assembly and aggregation reactions 
  RP2 = kfa*x(2)^2; 
  RP4 = kaggP4*x(3)^2; 
  RP6 = kaggP6*x(3)*x(4); 
 

  % x(1): mRNA = Ngene*Sm-kdeg*mRNA-u*mRNA 

  % x(2): [P] = TP*mRNA-2*RP2-kuP*[P]-u*[P] 

  % x(3): [P2]ER = RP2-2*RP4-RP6-kERP2*[P2]ER-kuP2*[P2]ER-u*[P2]ER 

  % x(4): [P4]ER = RP4-RP6-kERP4*[P4]ER-kuP2*[P4]ER-u*[P4]ER 

  % x(5): [P6]ER = RP6-kERP6*[P6]ER-kuP2*[P6]ER-u*[P6]ER 

  % x(6): [Pu] = kuP*[P]-u*[Pu] 

  % x(7): [P2u] = kuP2*[P2]ER-u*[P2u] 

  % x(8): [P2]G = kERP2*[P2]ER-kGP2*[P2]G-u*[P2]G 

  % x(9): [P4]G = kERP4*[P4]ER-kGP4*[P4]G-u*[P4]G 

  % x(10): [P6]G = kERP6*[P6]ER-kGP6*[P6]G-u*[P6]G 

 

  %Run mass balance equations 

  massbalance =  

      [Ngene*Sm-kdeg*x(1)-u*x(1);  
      TP*x(1)-2*RP2-kuP*x(2)-u*x(2);  
      RP2-2*RP4-RP6-kERP2*x(3)-kuP2*x(3)-u*x(3);  
      RP4-RP6-kERP4*x(4)-kuP2*x(4)-u*x(4);  
      RP6-kERP6*x(5)-kuP2*x(5)-u*x(5); 
      kuP*x(2)-u*x(6); 
      kuP2*x(3)-u*x(7);  
      kERP2*x(3)-kGP2*x(8)-u*x(8);  
      kERP4*x(4)-kGP4*x(9)-u*x(9);  
      kERP6*x(5)-kGP6*x(10)-u*x(10)]; 
end 
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Figure D1: The effect of ATF6(90), ATF6(50), XBP1μ and XBP1 on SEAP protein 

expression from three different SEAP DNA vectors. SEAP protein expression for 0.5 μg of 

SV40-SEAP, 9xERSESV40-SEAP and CMV-SEAP vector DNA co-transfected with the 0.5 μg 

of UPR activator vectors (ATF6(90), ATF6(50), XBP1u and XBP1s) in CHOK1SV cells. The 

total amount of transfected DNA was kept constant using the –ve control DNA vector. Cell 

media was collected 48 hours post-transfection and analysed for SEAP protein expression. For 

each SEAP vector, mean values significantly different (Dunnett‘s test) from their control are 

indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001). N = 3, error bars represent + 1 S.D. 

Figure and text are reproduced with permission form West (2014). 
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Figure D2: The effect of different numbers of the ERSE sequence on SEAP protein and 

mRNA copy number when co-transfected with the ATF6(50) DNA vector. (A) SEAP protein 

expression for 0.5 μg of SV40-SEAP, 1xERSE-SV40-SEAP, 3xERSE-SV40-SEAP, 6xERSE-

SV40-SEAP, 9xERSE-SV40-SEAP and CMV-SEAP vectors when co-transfected with 0.125 μg 

ATF6(50) vector DNA in CHOK1SV cells. (B) SEAP mRNA copy numbers for the different 

SEAP vectors taken form samples as used in A. Cell media was collected 48 hours post-

transfection and analysed for SEAP protein expression. For each SEAP vector, values with 

different letters differ significantly from each other (Tukey‘s test, p < 0.05). N = 3, Error bars 

represent + 1 S.D. Figure and text are reproduced with permission form West (2014). 


