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Abstract 

Proteins of anoctamin (TMEM16) family are the candidate subunits for Ca2+-

activated Cl- channels (CaCC). In recent years, studies have shown that anoctamin-1 

(TMEM16A or ANO1) plays important physiological roles in processes including 

epithelial fluid secretion, muscle contraction and olfactory transduction. How the Ca2+ 

regulates the activity of ANO1 in different tissue is still not clear. 

In this study, I showed that the excitatory CaCC in nociceptors (small-diameter 

sensory neurons that are responsible for transmission of painful stimuli) was activated by 

the release of Ca2+ from the 1, 4, 5-trisphosphate (IP3)-sensitive intracellular stores in 

response to bradykinin (BK) or proteases (through protease activated receptor 2). 

Interestingly, while in the majority of nociceptors, CaCC was induced by Ca2+ release from 

the stores, only in a few neurons CaCC was activated by the Ca2+ influx through the 

voltage-gated Ca2+ channels (VGCC). Chelating intracellular Ca2+ with the slow Ca2+ 

buffer EGTA did not affect CaCC activation by protease activated receptor 2 (PAR2), 

while BAPTA abolished such activation, suggesting a close proximity of the Ca2+ release 

sites and CaCC. Membrane fractionation demonstrated that in the dorsal root ganglion 

(DRG), ANO1, bradykinin receptor 2 (B2R) or PAR2, were co-purified with lipid raft 

marker caveolin-1. Using various biochemical approaches I further demonstrated that 

ANO1 physically interacted with the IP3 receptor 1 (IP3R1) in DRG. Moreover, IP3R1, 

ANO1, B2R, and/or PAR2 were all assembled into functional signalling complexes and the 

plasma membrane components of the complex which contained ANO1 and GPCRs were 

tethered to the juxtamembrane regions of the endoplasmic reticulum. Disruption of the 

membrane microdomains by methyl-beta-cyclodextrin (MβCD) or competitive peptides 

partially restored coupling of CaCC to VGCC but disrupted coupling between B2R or 

PAR2 signaling and ANO1. Thus, such molecular complexes dichotomize different Ca2+ 

sources to provide ANO1-mediated excitation in response to specific ambient signals but 

protect the channels from global changes in intracellular Ca2+ and prevent sensory neurons 

from overexcitability. 
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Chapter 1 General introduction 

      1.1 Nociceptors and pain transmission 

Nociception is the neural process of encoding painful (noxious) stimuli [1]. Such 

stimuli can be mechanical (e.g. pressure, punctures or cuts to the skin), thermal or chemical 

(e.g. chili powder or burns). Normally nociception is initiated at the free nerve endings of the 

specialized nociceptive sensory fibers. Most nociceptive fibers are either small-diameter, non-

myelinated C fibers, or thinly-myelinated, medium-diameter Afibers, although a small 

proportion of larger Aβ fibers also contributes to nociception [2]. Aδ fibers have higher 

conduction velocity and, thus, they normally mediate acute “fast” pain responses, while C 

fibers are responsible for the slower “second” pain [3]. Most nociceptors (nociceptive neurons) 

are polymodal: they respond to heat, mechanical and chemical stimuli. They can, however, be 

further subdivided into various subpopulations depending on the modality of response or 

expression of specific markers. Thus, “peptidergic” C nociceptors express calcitonin-gene 

related peptide (CGRP) and substance P (SP), while “non-peptidergic” nociceptors bind 

specific plant isolectin IB4. Cell bodies of nociceptive fibers reside within peripheral sensory 

ganglia such as dorsal root ganglia (DRG) and trigeminal ganglia (TG) [4]. Once stimulated, 

nociceptors send the action potentials (APs) to the superficial laminae of the spinal cord where 

first synaptic connection takes place. Most C fibers synapse in laminae I and II, while Aδ fibers 

synapse in laminae II and V [3, 5]. The main neurotransmitter used at the first synapse is 

glutamate, but peptidergic nociceptors also abundantly release SP (see Fig. 1.1 inset). Both 

glutamate and SP are excitatory neurotransmitters. Second order nociceptive neurons decussate 

and ascend contralaterally within the spinothalamic and spinoreticulothalamic tracts to the 

thalamus. Third-order neurons in the thalamus project to the somatosensory cortex where 

nociceptive information is finally processed. There are several other projections besides this 

main pathway, such as the projection to the periaqueductal grey or amygdala. It should be 
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noted that the amygdala is responsible for processing the emotional components of the 

perception of pain (Fig 1.1) [3, 5].  

 

 

Figure 1.1 Schematic representations of nociceptive pathways. The plasma membrane of the free nerve 

ending of the nociceptive fiber (enlarged in the lower part of the figure) is equipped with a specific set 

of ion channels that produce APs in response to noxious stimuli. The nociceptive fibers synapse in the 

superficial laminae of the spinal cord (synaptic terminal is enlarged in the insert above), and second 

order nociceptive neurons project into the thalamus. Third order neurons in the thalamus then project 
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to the somatosensory cortex. Several auxiliary projections, such as those to the rostroventral medulla 

(RVM), the parabrachial nucleus and the periaqueductal grey (PAG) are also indicated. Red arrows 

represent descending inhibitory pathways (based on [3, 5-7]). 

 

1.2. Inflammatory pain 

A specific type of pain develops following local tissue inflammation. When peripheral 

tissue is injured, different types of immune cells will migrate to the injury area releasing 

multiple chemical agents that orchestrate the immune response. These agents released include 

prostaglandins, histamines, adenosine triphosphate (ATP), protons, bradykinin (BK) and many 

other factors which are often referred to as “inflammation mediators”. These inflammation 

mediators not only act on the immune cells, but also often directly excite or sensitize peripheral 

fibers. This direct excitation results in acute pain, hyperalgesia (increased sensitivity to painful 

stimuli) and allodynia (painful sensation from normally non-painful stimuli) [8]. Some 

inflammatory mediators excite or sensitize peripheral nerves by acting directly on ion channels 

(e.g. ATP can activate P2X2 and P2X3 channels expressed in nociceptive neurons [9-11] while 

protons act on the TRPV1 channel [12, 13]). Other inflammatory mediators use intracellular 

signaling cascades by acting via their specific receptors such as the G protein-coupled 

receptors (GPCRs) or receptor tyrosine kinases (e.g. Trk A and TrkB receptors for nerve growth 

factor (NGF) and glial cell line-derived neurotrophic factor respectively [14, 15]). One 

particularly well-recognized mechanism of inflammatory hyperalgesia is the sensitization of 

TRPV1 channels by signaling cascades that activate protein kinase A (PKA) and C (PKC). 

These kinases then phosphorylate TRPV1 and reduce its temperature activation threshold, thus 

increasing sensitivity to noxious heat [16, 17]. 

Another mechanism of inflammatory pain that has recently received attention is the 

activation of Ca2+-activated Cl- channels (CaCCs) and the subsequent efflux of Cl- that 

depolarizes and excites sensory neurons because of their unusually high intracellular Cl- 
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concentrations. As recently demonstrated, inflammatory mediator BK, acting via its receptor 

B2 (B2R), activates a signaling cascade involving depletion of plasma membrane 

phosphatidylinositol 4, 5-bisphosphate (PIP2) and release of Ca2+ from stores in the 

endoplasmic reticulum (ER) (see chapter 5 for detail). Together, these effects inhibit anti-

excitatory M-type K+ channels and activate pro-excitatory CaCC [7], thus delivering a strong 

excitatory impact. Such depolarization of the nerves innervating the inflamed tissue further 

facilitates the release of neuropeptides such as SP and CGRP from the peripheral endings of 

nociceptive neurons themselves [18-20] (Fig 1.2). This may lead to a further enhancement of 

the nociceptive signals (positive feed-back). Over longer periods, inflammatory stimulation 

can increase expression and/or trafficking of voltage-gated Na+ channels and TRPV1 [21, 22], 

and down-regulate expression and/or activity of K+ channels [23-25]. These effects result in a 

sustained overexcitability of the inflamed nerves [26-28]. It is evident that the primary target 

for inflammatory modulation of sensory nerve activity and sensitivity is the pool of ion 

channels that controls sensory neuron excitability. The ion channels of sensory neurons (with 

particular focus on the Cl- channels which are the focus of this work) will be considered in 

detail in the next sections. Some inflammatory mechanisms are outlined in Figure 1.2. 
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Figure 1.2 Interactions between inflammatory and nociceptive responses to tissue injury. Tissue injury 

causes inflammatory cells like mast cells or neutrophils to release a variety of chemical mediators, such 

as ATP, BK, H+, nerve growth factor (NGF), prostaglandins and vascular endothelial growth factor. 

These factors bind their specific receptors expressed by nociceptors and excite or sensitize the 

nociceptors. The nociceptors not only transmit painful stimuli to the spinal cord, but also release 

neuropeptides, such as CGRP and similar substances that cause the local tissue response known as 

“neurogenic inflammation”. 

 

1.3 Ion channel diversity 

Ion channels are a superfamily of ubiquitous proteins that are expressed in virtually 

every cell. They are integral membrane proteins that form transmembrane pores, which provide 

a pathway for diffusion of ions across the membrane. Ion channels are different from other 

transport proteins such as ATP-binding cassette transporters or ion pumps, in that they have 

continuous pores through which ions can flow unobstructed when the channel is open. This 

NGF 
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results in much faster ion transport rates through ion channels (millions of ions per second) as 

compared to transporters (hundreds of ions per second; [29]). 

Ion channels can be subdivided into such large families as ligand-gated channels, 

voltage-gated channels, and mechanosensitive channels. According to their particular range of 

ion selectivity, channels can be grouped into Na+, Ca2+, K+, non-selective anion, and non-

selective cation channels. They can then be further sub-divided into groups based on such 

functional properties such as regulatory mechanism (e.g., Ca2+-activated) or biophysical 

characteristics (e.g., inward rectifiers). 

 

1.3.1 Ligand-gated channels 

Ligand-gated channels open in response to the binding of an extracellular signal 

molecule, or “ligand,” which induces a series of conformational changes in the channel protein 

prompting it to open. Ligand-gated channels can be further divided into cation channels, such 

as acetylcholine, glutamic acid and 5-hydroxytryptamine (5-HT) receptors, and anion channels, 

such as glycine and GABA receptors (see below).  

 

1.3.2 Voltage-gated channels 

Voltage-gated channels are regulated by changes in the membrane potential, which 

controls the channel gate. The sequence and structural analysis of voltage-gated, Na+, K+, and 

Ca2+ channels suggests they evolved independently, but from the same ancestral structure. 

Evolution from a common chemical ancestor is likely because of significant conservation of 

homologous structures within 3 kinds of channels. A prototypic voltage-gated K+ channel is 

formed by four identical subunits, each having 6 transmembrane segments (S1 - S6) with N 

and C terminals located in the cytoplasm [30, 31]. Voltage-gated Na+ and Ca2+ channels have 

more complex structures, as their pore-forming subunits usually have a single polypeptide with 
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four homologous domains. Each domain contains six transmembrane α helices (S1-S6) [30, 

31]. Despite the difference in primary structure, voltage-gated Na+, K+, and Ca2+ channels have 

essentially the same basic design: four subunits or domains, each of which has 6 

transmembrane segment architecture, combine to form a functional channel complex. One of 

the six transmembrane segments (S4) in each subunit or domain acts as a voltage sensor with 

a typical hydrophobic structure containing a number of positively charged lysine and arginine 

residues [32]. A domain connecting the S5 and S6 segments by a hairpin turn is thought to 

constitute the pore-forming region (P-loop) which allows ions to diffuse through the membrane 

[33-35]. The S4 segment controls the gate, possibly via the S4–S5 linker [36]. Recent advances 

in X-ray crystallography have revealed the detailed structures of several major voltage-gated 

ion channels, shedding light on their operation principles [37-42]. A meaningful treatment of 

these operation principles is, however, outside the scope of this thesis.  

 

1.3.3 Cyclic nucleotide-gated (CNG) channels 

Cyclic nucleotide-gated (CNG) channels are gated by intracellular cyclic nucleotides 

such as cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate 

(cAMP). These channels play important roles in sensory perception, including vision and 

olfaction. CNG channels are structured like voltage-gated channels. Specifically, every subunit 

has six transmembrane segments, with intracellular N and C termini, and a P-loop region, 

between S5 and S6, that forms the pore [43]. The P loop and S6 segments regulate CNG channel 

gating and ion conduction. The cyclic nucleotide-binding site is located in the C-terminal 

region [44]. CNG channels are non-selective cation channels for such monovalent cations as 

K+ and Na+, as well as divalent cations like Ca2+. Selective permeability, as measured with 

salamander rod CNG channels [45], was determined to be Li+> Na+∼ K+> Rb+> Cs+ (CNG 

channels are particularly well studied in chemoreceptors and photoreceptors, which convert 
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extracellular signals into membrane currents [45]). Olfactory chemoreceptors, for example, 

contain specific olfactory GPCRs that, when bound to a specific odor, activate adenylate 

cyclase (AC), producing cAMP, and opening the cAMP-gated cation channels. The activated 

CNG channel, in turn, elicits inward Na+ and Ca2+ currents, leading to depolarization of the 

membrane and formation of the olfactory signal.  

 

1.3.4 Mechano-gated channels 

Cells can be mechanically stimulated by such things as friction, pressure, pulling force, 

gravity, and shear stress. Some cells are capable of translating mechanical stimulation into 

electrochemical signals, a process which is called mechanical signal transduction 

(mechanotransduction). There are several types of mechano-gated channel (MS) including 

stretch-activated and stretch-inactivated ion channels [46]. Recent works have suggested that 

the epithelial Na+ channel (ENaC/DEG) family and TRP family channels [47] are plausible 

candidates as mechano-gated channels. A new family of mechanosensitive ion channels, the 

piezo family, has also been identified [48]. In mammals, this family consists of two members, 

piezo-1 and piezo-2, with the latter isoform expressing at high levels in the peripheral 

somatosensory neurons [48, 49]. Several models purport to explain MS channel gating, 

particularly the lipid bilayer and the tethered models [50]. In the bilayer model, MS channels 

can be directly activated by the membrane stretch or lipid bilayer tension. In the tethered model, 

MS channels directly connect with cytoskeletal or extracellular matrix proteins such deflect of 

the tether by external forces causes the channel to open [51]. This model has been proposed for 

ion channels in hair cells and in chick skeletal muscle [52, 53]. Mechano-gated channels have 

been identified in both prokaryotes and eukaryotes, where they have been shown to play roles 

in heat sensation, hearing, touch, taste, smell, and osmotic and cell swelling. 
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1.3.5 Water channels 

In the past, it was generally believed that intracellular and extracellular water molecules 

diffused through the lipid bilayer membrane directly. This assumption was challenged in 1988, 

when Peter Agre’s group found a 28 kDa hydrophobic transmembrane protein [54]. This 

membrane, which they called CHIP28 (channel-forming integral membrane protein 28 kDa), 

turned out to be the first member of the water channel (aquaporin, or AQP) family. When 

CHIP28 was injected into Xenopus oocytes in a hypotonic solution, the oocytes expanded 

rapidly and ruptured within several minutes. This phenomenon was inhibited by Hg2+, which 

is known to decrease the permeability of cells to water. At the present time at least 11 

aquaporins like CHIP28 have been found in human cells. These aquaporins selectively mediate 

the passage of allow water molecules through the plasma membrane [55].  

 

1.3.6 Cl- channels 

There is also a large group of channels that are permeable to anions. Under 

physiological conditions, most of these anionic channels conduct Cl- currents, and therefore are 

commonly referred to as Cl- channels. This is true even though most of them are actually non-

selective anion channels. Cl- channels have been divided into the following six families: 1) 

CLC channels, 2) amino acid receptor Cl- channels, 3) Ca2+-activated Cl- channels, 4) large 

conductance Cl- channels, 5) volume regulated Cl- channels (VRCCs), and 6) cystic fibrosis 

membrane conductance regulators (CFTRs).  

Cl- channels are widely distributed, being found in cell membranes, lysosomes, 

mitochondria, and the ER. Excitable cells such as neurons and skeletal muscle mostly express 

CLC channels, CaCC, VRCC and amino acid receptor Cl- channels [56, 57].  

In most adult mammalian neurons the concentration of Cl- in the cytosol is very low 

(below 10 mM) relative to the extracellular space (over 100 mM), which permits 
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hyperpolarized (viz., more negative than -80 mV) equilibrium potentials in neurons [58]. This 

property of the Cl- gradient makes the opening of Cl- channels in an adult central nervous 

system (CNS) inhibitory –it hyperpolarizes the membrane potential and inhibits AP generation. 

However, the Na+-K+-Cl- cotransporter 1 (NKCC1) is expressed at high levels in early 

development of central neurons and adult peripheral neurons, which differ from adult central 

neurons [59, 62-63].  Because NKCC1 transports Cl- ions from the extracellular space into the 

cytoplasm [64], intracellular Cl- concentration in neonatal CNS neurons and in primary sensory 

neurons (at all ages) remains high, in the range of 30-50 mM [65-71]. This high Cl- 

concentration establishes an equilibrium potential for Cl- (ECl) in the range of -35 to -40 mV in 

DRG neurons [7], which are more positive than the resting membrane potential. Thus, Cl- 

channel activation in sensory neurons leads to depolarization and excitation [7, 72-76]. 

Apart of their role in excitability, Cl- channels also have major roles in the regulation 

of cell volume, cell homeostasis, acidification of organelles, and in assisting the transport of 

substance across cell membranes. 

 

1.3.6.1 CLC channels 

CLCs are the only voltage-gated Cl- channels discovered to date. The first member of 

the family (CLC-0) was cloned from Torpedo marmorata [571]. At present, nine CLC or CLC-

like proteins have been cloned in mammals. According to the gene and protein sequences, 

mammalian CLC channels have been divided into the following three subclasses [77]:  

 The first subclass includes CLC-0, CLC-1 (CLCN), CLC-2, and CLC-K (CLC-

Ka and CLC–Kb) isoforms.  

 The proteins from the second subclass have structures similar to the yeast CLC 

channel (ScCLC). Channels in this second subclass include mammalian CLC-

3, CLC-4, and CLC-5.  
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 The proteins from the third subclass (CLC-6 and CLC-7) are structurally similar 

to plant CLC protein. Channels that localize to the plasma membrane include 

CLC-0, CLC-1, CLC-2, CLC-3, CLC-Ka, and CLC-Kb. Channels CLC-4, 

CLC-5, CLC-6, and CLC-7 localize to intracellular membranes, where and they 

are thought to play roles in facilitating the acidification of intracellular 

compartments (Fig 1.3) [78]. 

These CLC channels are likely assembled from dimers, in which each subunit forms an 

independent pore and the dimeric channel complex functions as a “double-barreled” channel 

[79-82]. It is assumed that all CLC channels have similar topology [83, 84], with each subunit 

having D1-D12 intramembrane helices that span the plasma membrane 10-12 times. The D9–

D12 region spans the lipid bilayer 3 to 5 times, and D4 does not cross bilayer. Therefore each 

subunit has a total of 10 or 12 transmembrane helices, with N and C termini being located in 

the intracellular space (Fig 1.4) [84]. 

The X-ray structures of two prokaryotic CLC Cl- channels from bacteria have been 

determined [85]. The topology structure of the entire CLC channels is needed to be revised: the 

bacterial CLC protein is composed of 18 helices, many of which do not span the membrane 

entirely. Most of the helices are not perpendicular to the membrane plane, but severely tilted 

[85]. CLC proteins have two identical pores, each pore being formed by a separate subunit, 

which is related by a two-fold axis of symmetry perpendicular to the membrane plane [85]. 

Individual subunits are composed of two roughly repeated halves that span the membrane with 

opposite orientations [85]. Each subunit forms its own independent pore and selectivity filter 

[85]. 
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Figure 1.3 Schematic illustration of the cellular localization of CLC proteins. CLC-0, 1, 2, 3, Ka and 

Kb are Cl− ion channels that are localized to the plasma membrane (PM). CLC-4 and CLC-5 appear to 

be Cl−/H+ antiporters and mediate Cl−/H+-exchange across intracellular vesicle membranes (VM). 

Arrows indicate the direction of ion transport. 
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Figure 1.4 The transmembrane topology model of CLC channels [84]. The cylinders represent 

transmembrane helices. The membrane-associated domains contain 10 or 12 α-helices (the D9–D12 

region spans the lipid bilayer 3 or 5 times). Because the number and arrangement of transmembrane 

helices from D9-D12 is difficult to determine, two larger cylinders are shown in the figure. The carboxy 

terminus of all eukaryotic CLC proteins has two CBS domains, each of which contains a three-stranded, 

antiparallel β-sheet with two α-helices on one side. These CBS domains play roles in protein-protein 

interaction through their β-sheets. 

 

The CLC channel has two relatively independent pores which have different gating 

kinetics and voltage-dependency [86]. At least two independent gating mechanisms have been 

proposed, “slow” and “fast” gates. The slow gate operates on both pores simultaneously and 

facilitates pore opening at negative voltages on a time scale of seconds. The fast gate operates 

independently in each pore, promoting pore closing at negative voltages on a timescale of 

milliseconds. The fast gate is influenced mainly by movement of the Cl- ion across the 

transmembrane voltage gradient.  

CLC channels have a wide variety of physiological roles and biophysical properties. 

Thus, CLC-1 is expressed in adult skeletal muscle fibers and conducts a large Cl- current at 

resting potential [87]. CLC-2 is expressed widely in cardiac myocytes and contributes to the 
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inwardly rectifying Cl- conductance in these cells [88]. CLC-2 is probably involved in the 

regulation of neuronal and cardiac excitability [88, 89]. CLC-3 is thought to be a VRCC [90] 

(see Section 1.3.6.3). CLC-4 and CLC-5 have similar sequences and functions, and are 

expressed in intracellular membranes like the anion channels CLC-5 forms in endosomes. 

Anion channels like those formed by CLC-5 play a role in the acidification of organelles [91-

93]. CLC-6 and CLC-7 are widely expressed in different tissues, but little is known of their 

functional roles or physiological properties.  

CLC channels have divergent biophysical properties. Thus CLC-0 and CLC-1 are open 

at 0 mV, and conduct hyperpolarization-activated currents [94]. Overexpressed CLC-0 

channels display linear current-voltage relationships, while hCLC-1 displays an inwardly 

rectifying current-voltage relationship. CLC-2 is closed at positive potentials and conducts 

hyperpolarization-activated currents. The current-voltage relationship of the open channel is 

linear. Human CLC-4 displays outwardly rectifying current-voltage relationship, and is 

activated by membrane depolarization [94]. All CLC channels are actually poorly selective for 

anions and conduct Cl−, Br−, NO3
−, I− and SCN− currents. The permeability sequence of many 

CLC channels is: Cl− > Br− > I− [94]. 

Mutation within CLC channel genes can lead to various human diseases. For example, 

mutations within CLC-1 and CLC-2 can lead to muscle stiffness and systemic epilepsy, 

respectively. Moreover, CLC-2 channel dysfunction can lead to testicular and retinal 

degeneration, and vacuolization in the brain and in the white matter of the spinal cord. 

Deficiencies of CLC-3 and CLC-5 can also cause severe disease. Mice with a deleted CLC-3 

gene develop monogenetic lipid disorders and epilepsy shortly after birth. A functional 

deficiency of CLC-5 may lead to low protein urine and nephrolithiasis. CLC-7 is highly 

expressed in osteoclast folds, and is closely related to osteoclast function. Accordingly, CLC-

7 deficiency in mice results in development of severe bone sclerosis and retinal degeneration. 
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Mutations in CLC-7 were also found to cause infantile malignant osteopetrosis.  

 

1.3.6.2 Amino acid receptor Cl- channels 

This superfamily of Cl- channels includes ligand-gated anion channels. GABAA 

receptors (GABAARs) are important inhibitory ionotropic receptors in the CNS. GABAA 

channels are formed by various combinations of different types of α1 αββ1β3), γ 

(γγ3), δ, ε, π, θ and ρ (ρ1 – ρ3)subunits assembled in a pentameric fashion. Each subunit 

consists of four transmembrane domains, with corresponding sites for binding ligands and 

regulatory molecules. GABAA mediated Cl- currents are selectively blocked by the antagonists 

bicuculline, SR-95531 and picrotoxinin [95]. GABAARs can exhibit both outward and inward 

rectification, depending on subunit composition [96-103]. Such drugs as benzodiazepines, 

barbiturates, anesthetics, alcohol, and some steroids potentiate GABAARs, usually by 

increasing the open probability of GABAARs [56]. Mutations in GABA receptor subunits are 

associated with epilepsy. GABA receptor dysfunction has also been associated with depression 

and affective disorders. 

The glycine receptor (GlyR) is another inhibitory ligand-gated Cl- channel. It is widely 

expressed in the CNS and plays important roles in different physiological processes. Like 

GABAAR, a functional GlyR contains five subunits: either three α1 subunits and two β subunits 

[104], or four α1 subunits and one β subunit [105], arranged symmetrically around a central 

pore. Each subunit is composed of four α-helical transmembrane domains. The α subunits play 

an essential role in ligand binding, while the β subunits contribute to intracellular trafficking 

and channel clusterings. The GlyR displays different biophysical properties in different tissues. 

Thus, rat GlyR (either overexpressed in Human Embryonic Kidney 293 (HEK293) cells or 

native channels in rat olfactory bulb) displays no voltage dependence [106-108], while the 

human GlyR (either overexpressed in Xenopus oocytes or native channels in ciliary ganglion 



16 
 

or hypothalamus neurons) exhibits an outward rectification at hyperpolarized membrane 

potentials [109]. The GlyR is selectively antagonized by strychnine and cesium [110]. Ethanol 

and isoflurane potentiates glycine activation of the GlyR [110]. Mutations in the α1 subunit of 

the GlyR cause Startle disease (hyperekplexia), which is characterized by attacks of muscular 

rigidity in response to unexpected  auditory, visual or  somatosensorial  stimuli [111].  

 

1.3.6.3 Volume regulated Cl- channels (VRCC) 

Cell volume regulation is important for cells as they need to maintain a constant size. 

The VRCCs play an important role in the regulation of cell volume in many cell types [112]. 

In addition, VRCCs are involved in many physiological processes, including cell proliferation 

and apoptosis. VRCCs have been found in different cell types. The major biophysical and 

pharmacological characteristics of VRCCs include current activation in a hypotonic solution, 

time-dependent inactivation at positive potentials, and a moderate tendency to be outwardly 

rectifying. Anion selectivity displays the following sequence: I−>Br−>Cl−>F−>gluconate. 

VRCCs are inhibited by 5-Nitro-2-(3-phenylpropylamino)benzoic Acid (NPPB), 4,4'-

Diisothiocyano-2,2'.-stilbenedisulfonic acid (DIDS), anthacene-9-carboxylic acid (A9C), 

niflumic acid (NFA), tamoxifen and 4-(2-Butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl) 

oxobutyric acid (DCPIB), with DCPIB being the most effective blocker of this channel [113-

116]. There are, however, some differences in voltage dependence and signaling mechanisms 

of VRCCs among different cell types. Cytosolic cAMP (cAMPi), for example, enhances 

VRCCs in canine atrial myocytes and in human atrial and ventricular myocytes [117, 118], 

while cAMPi inhibits the outwardly rectifying VRCC currents in native cardiac myocytes in 

both guinea-pig and canine hearts [119]. 

The molecular correlates of VRCC currents are unclear. Although CLC-2 is implicated 

in cell volume regulation [120], CLC-2 can be activated by hyperpolarization and acidic 
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solutions [121, 122], its current-voltage (I-V) relationships are inwardly rectifying, and the 

channel cannot be inhibited by DIDS. Such characteristics differ from native VRCC [113]. 

CLC-3 is another candidate for VRCC [90, 123]. When expressed in NIH3T3 cells, CLC-3 

currents display outward rectification, voltage-dependent inactivation at positive potentials, 

and modulation by cell volume, with an anion selectivity sequence of I-> Cl-> Asp, and 

inhibition by NPPB, DIDS, A9C, as seen with native VRCCs [123]. Moreover, intracellular 

dialysis with an antibody against CLC-3 inhibited native VRCC currents in guinea pig cardiac 

cells and canine pulmonary arterial smooth muscle cells. Other facts consistent with CLC-3 

being responsible for regulation of cell volume include the following: 

 Oligonucleotides antisense to CLC-3 has been shown to reduce native VRCC 

currents and to decrease regulated volume in bovine non-pigmented ciliary 

epithelial cells [124], HeLa cells and Xenopus laevis oocytes [125].  

 CLC-3 siRNA inhibited native VRCC currents and caused regulatory volume 

decreases in human corneal keratocytes and human fetal lung fibroblasts [126]. 

This positive evidence for CLC-3 being responsible for regulation of cell volume is, 

however, contradicted by the findings of Matsuda and colleagues. The Matsuda group showed 

that when hCLC-3 was expressed in Chinese hamster ovary (CHO) cells, it displayed strong 

outward rectification and failure to conduct at negative voltages. The channels were insensitive 

to NPPB and were more selective to Cl- than to I- [127]. These features are inconsistent with 

the documented behavior of VRCCs. 

Another study suggested that the Ca2+-activated Cl- channel subunit named ANO1 

contributes to VRCC activity [128]. The picture has been made even cloudier by the recent 

cloning of a previously unknown protein named SWELL1. The necessity for SWELL1 in cell 

volume regulation has been demonstrated by the fact that SWELL1 knock-down abolishes the 

VRCC current entirely [129, 130]. It is, however, not known whether SWELL1 is itself a 
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channel, or merely a necessary complement to some other macromolecule that constitutes the 

actual channel.  

 

1.3.6.4 Cystic fibrosis membrane conductance regulator 

Cystic fibrosis (CF) is a lethal exocrine gland disease with autosomal recessive 

inheritance. The main clinical symptoms of CF are gastrointestinal and pancreatic dysfunction, 

progressive bronchiectasis and respiratory failure. CF is caused by the CFTR gene mutation. 

The CFTR is a low conductance Cl- ion channel, which is regulated by cAMP and ATP. 

Although over 200 mutations can lead to CFTR Cl- ion channel defects, about 90% of patients 

with CF have the F508 mutation, which consists of the deletion of phenylalanine at 508 

positions in one or both CFTR gene alleles [131].  

The CFTR is an anion channel that physiologically conducts Cl- and HCO3
-. CFTR 

belongs to a family of ATP-binding cassette transporters. A single polypeptide constitutes the 

entire CFTR channel. The cytosolic N-terminal region is connected to the first transmembrane 

domain (TMD1) which has six helices, and helix 6 forms the pore [132]. The first nucleotide-

binding domain (NBD1) is connected to helix 6, and is then followed by the regulatory (R) 

domain [132]. This R domain then connects with helix 7 of the second transmembrane domain 

(TMB2) [132]. Channel opening depends upon the binding of ATP, and the subsequent 

hydrolysis of ATP closes the channel. The NBD1/NBD2 complex binds two molecules of ATP. 

When ATP binds to the NBD1/NBD2 complex, it triggers a conformational change that induces 

channel opening [133]. The hydrolysis of ATP on NBD2 disrupts the interaction between 

NBD1 and NBD2, resulting in channel closure [134]. The R domain is phosphorylated by PKA 

which, in turn, facilitates the ATP-dependent opening of the CFTR channel [135, 136]. In the 

resting state, the channel has a very low probability of being open (<0.003); phosphorylation 

increases this probability substantially.  PKC also phosphorylates the R domain, but this 
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phosphorylation does not affect the likelihood of the opening of a functional pore [135, 136].  

Many inhibitors block the CFTR channel, including NPPB, A9C, clofibric acid, and 

disulfonic stilbenes. Glibenclamide also inhibits the CFTR channel [56]. It is significant that 

all of these blockers are non-specific and can inhibit other anion channels. Suramin is a more 

effective and specific blocker, although even it is not completely specific, as shown by its 

ability to block P2X receptors [56].  

 

1.3.6.5 Ca2+-activated Cl- channels (CaCCs) 

As most other Cl- channels, the Ca2+-activated Cl- channel (CaCC) is an anion channel 

permeable to various anions including I-, NO3
-, and HCO3

-. However, because Cl- is the most 

abundant anion in biological fluids, the largest fractional currents conducted by CaCC under 

physiological conditions is a Cl- current. CaCCs were first characterized in Rana pipiens eggs 

and photoreceptors, salamander retinas and Xenopus oocytes [137-139]. In recent decades, 

CaCC has been observed in many different cell types and tissues, such as neurons, and 

epithelial and smooth muscle cells (SMCs), where it plays a role in controlling excitability, 

contractility, secretion and proliferation.  

 

1.3.6.5.1 CaCC in the nervous system  

The role of CaCC in the neurons seems to consist in the control of excitability, although 

the effect of CaCC activation may be either inhibitory or excitatory depending on the type of 

neuron that carries it. Thus, CNS neurons from adult mammals have a low intracellular Cl- 

concentration, and the ECl is in the more negative voltage range relative to resting membrane 

potential [140]. However, immature CNS neurons as well as adult peripheral somatosensory 

neurons accumulate significant amounts of intracellular Cl- [69, 141, 142]. Therefore, 
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activation of CaCC in these neurons will depolarize the plasma membrane and may cause AP 

firing. Intracellular Cl- concentration depends on the balance between Cl- uptake and Cl- 

extrusion pathways. As mentioned before, the transporter NKCC1 provides the main route for 

Cl- uptake in neurons, while K+-Cl- cotransporter 2 (KCC2) is an important Cl- extrusion 

pathway. In rodent CNS cells (e.g. neurons in cortex and hippocampus), NKCC1 expression 

level is high during early postnatal days (the first week), but decreases during postnatal 

development (from P14 onward), and is found at low level in adults. The expression of KCC2, 

on the other hand, is minimal at birth, but increases dramatically with age [59-61]. Thus, in 

development, the ECl shifts from values near -40 mV to values of -80 mV or even more 

negative. These facts imply that CaCC activation causes Cl- extrusion, membrane 

depolarization and excitation in the immature CNS, but Cl- influx, hyperpolarization, and an 

inhibitory effect in the mature CNS.  

In contrast to NKCC1 in CNS neurons, NKCC1 expression in the primary afferent 

neurons of the peripheral nervous system (e.g. somatosensory neurons and olfactory sensory 

neurons) does not change significantly during maturation [62, 63]. Importantly, KCC2 

expression could hardly be detected in the peripheral nervous system during maturation [60]. 

It is also noteworthy that NKCC1 was co-localized with TRPV1, a specific marker for 

nociceptive neurons [143]. Thus, in both the immature and mature peripheral somatosensory 

system, CaCC activation results in Cl- efflux and depolarization [71, 144, 145].  

In accord with these general principles, CaCC activation was reported to hyperpolarize 

the membrane potential and play inhibitory roles in the adult Purkinje neurons [140] and in 

hippocampal neurons [146]. Conversely, in immature cortical neurons and in adult peripheral 

neurons, CaCC activation depolarized the membrane potential and played an excitatory role 

[141, 142, 147].  In olfactory neurons, CaCCs can amplify the odorant-induced signal by 

enhancing depolarization in response to Ca2+ influx through the CNG channels [148]. In DRG 
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neurons, CaCC activation leads to prolonged depolarization and occasionally to burst firing 

[149].  

 

1.3.6.5.2 CaCCs in other tissues 

CaCC currents are important for regulation of excitability in vascular smooth muscles 

(VSMs). There are a number of Cl- channels expressed in SMCs [150], and there are at least 

two types of CaCCs, a type that produces a “classical” CaCC current with voltage-dependent 

gating and mediation by ANO1 [151, 152] (see below); and an “unorthodox” CaCC current 

that requires intracellular cGMP for activation [153, 154] and is possibly dependent on 

bestrophins [150, 155]. Like sensory neurons, SMCs accumulate high intracellular Cl- 

concentrations (in the range of 30 to 50 mM) [150, 156-158]. Accordingly, CaCC activation in 

smooth muscles induces depolarization and vasoconstriction. 

CaCCs play an important role in epithelial tissues where these channels (together with 

CFTR and other Cl- channels) control secretion [159, 160]. Another cell type where CaCCs 

play an important excitatory role are the interstitial cells of Cajal, specialised cells of the 

gastrointestinal tract, which control  phasic contractions of gastrointestinal smooth muscle. 

 

1.3.6.5.3 Properties of endogenous CaCCs 

Although several types of native CaCC currents exist, the field agrees that a “classical” 

CaCC satisfies the following conditions [161, 162]: 

1) Sensitivity to intracellular free Ca2+ concentration ([Ca2+]i), at submicromolar and low 

micromolar concentrations (0.2–1.0 μM). 

2) Interrelated voltage- and Ca2+ sensitivities: lower intracellular Ca2+ activates an outwardly 

rectifying Cl- current while at several micromolar [Ca2+]i the current becomes voltage-
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independent and displays linear current-voltage relationships. Another manifestation of the 

same phenomenon is the fact that the Ca2+ sensitivity of the channel is much weaker at 

negative voltages than at positive voltages (e.g. ~2-5 μM at -100 mV as opposed to ~500 

nM at +100 mV).  

3) The channels are preferentially permeable to large anions, with I− and SCN− being more 

permeable than Cl−. The permeability sequence to anions is SCN− > I− > Br− > Cl−> 

F− [163, 164].  

4) The currents are blocked by Cl− channel blockers such as DIDS, NPPB, and NFA.  

Despite these generally accepted bench mark features, native CaCCs in various tissues 

do differ in their properties. For example, CaCC shows low Ca2+ sensitivity (equilibrium 

binding constant (Kd) for Ca2+ at +120 mV was ∼900 nM) when the CaCC occurs in Xenopus 

oocytes [165], as well as when the CaCC occurs in superior cervical ganglion (SCG) neurons 

[166]. In contrast, the Ca2+ sensitivity in parotid acinar cells is much higher – Kd  for Ca2+ at 

+70 mV ∼60 nM [167]. In pulmonary artery myocytes, medullary collecting duct cells, and 

bovine endothelial cells, CaCCs have intermediate levels of Ca2+ sensitivity [168-170]. In the 

sheep parotid gland, the permeability sequence of CaCC is SCN− > I− > Cl−> Br−, which differs 

from the SCN− > I− > Br−>Cl− sequence seen in most native tissues [171].  

The unitary conductance of CaCC in rat pulmonary artery smooth muscle cells 

(PASMCs) measured via single-channel recordings was ~3 pS. A similar value was obtained in 

single-channel recordings from rabbit PASMCs and other VSM cell types [163, 172]. In 

contrast, the single-channel conductance for ANO1 (a strong candidate for CaCC in the 

following introduction) was reported to be ~8.3 pS [202]. 

In rabbit PASMCs and rabbit portal vein myocytes, NFA has a dual effect on Ca2+-

activated Cl- channel current (ICaCC). This is seen by the fact that concentrations of NFA of 10 

M or more increase inward ICaCC at negative potentials but decrease outward  ICaCC under 
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positive potentials ( [Ca2+]i is either 250 or 500 nM) [173, 174]. It is hypothesized that NFA 

might increase the probability of Cl- channel opening in addition to blocking Ca2+-activated 

Cl- conductance. At negative potentials and low [Ca2+]i, the probability of ANO1 opening is 

small, and NFA increases the current. On the other hand, with [Ca2+]i at high concentration (1 

μM), the probability of ANO1 opening is much higher, and therefore the blocking effect of 

NFA is predominant [173, 174]. The other possible reason for dual effect is that NFA is reported 

to induce the release of Ca2+ from the sarcoplasmic reticulum in PASMCs [175].  CaCC in 

vascular smooth muscle cells (VSMCs) can be activated by NS1619 and isopimaric acid and 

blocked by paxilline, tamoxifen, penitrem A, and iberiotoxin, but these modulators also have 

an effect on K+ channel (KCa1.1) [555, 572]. 

Phosphorylation/dephosphorylation has effects on native CaCC in different tissues, I 

will discuss this in the following section. 

 

1.3.6.5.4 Molecular correlates of CaCCs 

Despite the fact CaCCs have been studied in various cell types for over 30 years, 

the molecular identity of CaCCs began to emerge only recently. There are three main reasons 

for that. Firstly, many popular expression systems, particularly Xenopus oocytes, express 

endogenous CaCC, which makes such systems unsuitable for expression cloning; heterologous 

expression of Cl- channel candidates often result in upregulation of endogenous anion currents, 

producing false-positives [161, 162]. Secondly, most pharmacological modulators of CaCC are 

not very specific. For example, NFA increases CLC-Ka and CLC-Kb currents in the 10~1000 

µM range [573]. NPPB is an effective inhibitor of the K+/Cl- co-transporter and the lactate 

transporter [574]. Thirdly and finally, homology cloning is difficult since the gene that finally 

was identified as CaCC (ANO1 or TMEM16A, see below) has no sequence similarity to other 

ion channel genes [161].  
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Several candidate proteins were proposed as potential molecular candidates for CaCCs 

in earlier studies. CLCA channels were considered candidates in several studies [172, 176-178]. 

The CLCA subfamily of CLC Cl- channels includes two bovine isoforms (bCLC1; bCLCA2), 

three mouse (mCLCA1; mCLCA2; mCLCA3) and four human (hCLCA1; hCLCA2; hCLCA3; 

hCLCA4) isoforms. When transiently expressed in HEK293 cells, the CLCA proteins bCLCA1, 

mCLCA1, hCLCA1, and hCLCA2 produce Cl- channels that are activated by high (~2 mM) 

intracellular Ca2+ concentrations. Currents of these isoforms reverse at 0 mV, exhibit some 

outward rectification, and are inhibited by the classic Cl- conductance inhibitor DIDS at 300 

mM, as well as by tamoxifen at 10 mM and NFA at 100 mM) [176, 179-181]. Likewise, 

mCLCA4 also produced Ca2+-dependent currents activated by the application of Ca2+ 

ionophore ionomycin (10 μM) [182]. 

But much evidence suggests that CLCA channels are not true CaCCs. Firstly, the 

currents observed in HEK293 cells expressing CLCA needed higher concentrations of Ca2+ for 

activation (2 mM) as compared to native CaCC [183-185]. Secondly, there are also striking 

differences in the voltage and time dependence of CLCA versus endogenous CaCCs. Most of 

studies show that CLCA currents exhibit time- and voltage-independent kinetics and linear or 

only mildly outwardly rectified current–voltage relationships [183-185], while endogenous 

CaCC shows outward rectification at subsaturating Ca2+ concentrations. In addition, CLCA 

current can be inhibited by the reducing agent Dithiothreitol (DTT), while native CaCCs are 

insensitive to this compound [176, 179-181]. Thirdly, in some instances CLCA channels 

produced Cl- currents that were not inhibited by NFA [176]. Finally, some studies reported that 

CLCA proteins are soluble, secreted proteins which do not form ion channels themselves [186]. 

Another candidate CLC channel that was considered to be CaCC was CLC-3. The 

currents evoked by recombinant hCLC-3 channels stably expressed in TsA cells show Ca2+-

dependent gating [177], but CLC-3 has also been associated with the activity of cell swelling-
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activated Cl− channels. Moreover, CLC-3 knockout mice show normal Ca2+- activated 

Cl− conductances [178, 187], which ruled out CLC-3 from the CaCC candidate list.  

Another group of proteins that were long thought to generate CaCC currents in some 

situations is a family of transmembrane proteins called bestrophins. An isoform of bestrophin 

(Best1-4) has been found in humans [188-190]. Heterologousely expressed bestrophins 

recapitulate Cl- channels that are activated by physiological levels of Ca2+ [191, 192]. Mouse 

mBest1 overexpressed in HEK293 generates a Cl- current which is activated by nanomolar 

concentrations of intracellular Ca2+ without the involvement of kinases. This is likely because 

a Ca2+ binding site has been localized to the C-terminal region of Best1 [193]. The currents 

show modest outward rectification but otherwise are largely time and voltage- independent 

(Fig. 1.5). The mBest1 channel has an anion selectivity sequence of SCN− > I− > Cl−, and 

mutation of the predicted pore domain decreases the anion permeability; the current is blocked 

by 100 µM NFA and DIDS [194, 195]. Channels from mBest2 and mBest3 have similar 

biophysical properties. Although these properties are broadly consistent with some form of 

CaCC, as with the CLCA family, there are differences between “classical” CaCC (see above) 

and bestrophin currents. Firstly, classical CaCCs exhibit voltage-dependent kinetics and 

outward rectification that is not seen with bestrophin channel currents [196]. Secondly, CaCC 

currents are still present in some tissues of Best1 knockout mice [197-199]. Thus, Best1 is 

expressed at high levels in the basolateral membrane of retinal pigment epithelial (RPE) cells 

[200], but the RPE cells show normal Cl− conductance in Best1 knockout mice [201]. 

Recently, a new family of ionic channels, anoctamins (TMEM16) was identified as a 

candidate membrane protein family for the CaCC currents [202-204]. Anoctamins (the term 

derived from ‘anion’ and ‘octo’, designating their function as anion channels and also reflecting 

the fact that these proteins have eight transmembrane domains) comprise a large protein family 

currently consisting of 10 members (ANO1-10). The functions of 8 anoctamin isoforms are 
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unknown or debated, but two members (ANO1 and ANO2) recapitulate most properties of 

native CaCCs and are increasingly being considered to be the main CaCC subunits in most 

mammalian cell types. The ANO1 CaCC is considered in detail in the next section. 

 

1.4 Anoctamins 

1.4.1 ANO1  

Expression of ANO1 in mammalian cell lines or amphibian oocytes results in a CaCC 

current closely resembling the native CaCC current [202-204]. When expressed in HEK293 

cells, ANO1 channel currents exhibit slow kinetics and are activated by increases in cytosolic 

free Ca2+ in submicromolar to micromolar ranges [151, 205-207] (see Fig. 1.5). When cytosolic 

free Ca2+ is less than ∼1 µM, depolarizing voltage steps elicit two components of currents [151, 

205-207]: an instantaneous current, indicating that channels are open at the holding potential, 

followed by a time-dependent current, due to the channels opened by depolarization (Fig. 1.5). 

The time-dependent currents can be well fit by a single-exponential function. The currents have 

an activation time constant in the range of 250 ms at +70 mV with 500 nM [Ca2+]i [151]. As 

the [Ca2+]i increases, the activation time constants decrease [151, 205-207]. The deactivation 

of CaCC also follows a time course that is described by a single exponential, with a time 

constant that is voltage-dependent [151, 205-207]. As [Ca2+]i increases or at less negative 

voltages (depolarization), the deactivation time constants increase, while the deactivation is 

slowing. ANO1 currents are inhibited by typical CaCC blockers, such as NFA and 5-nitro-2-

(3-phenylpropylamino)-benzoic acid (NPPB) [195, 202-204]. These properties of ANO1 are in 

good agreement with those of native CaCCs.  

ANO1 (and native CaCCs) have interacting voltage- and Ca2+-dependence that make 

the channel more sensitive to Ca2+ at depolarizing voltages. Accordingly, the [Ca2+]i half-

maximal concentration (EC50) for ANO1 activation at −60 mV and + 60 mV was reported to 
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be 2.6 μM and 0.4 μM, respectively [202]. Transfection of HEK293 cells with ANO1 along 

with GPCRs such as angiotensin II receptor 1 or endothelial receptor produced an agonist-

induced inward current which has typical properties of native ICaCC induced by the appropriate 

GPCR ligands [202]. Importantly, ANO1 knockout mice had diminished CaCC currents, 

providing additional evidence that ANO1 is a strong candidate for native CaCCs [128, 208]. 

  



28 
 

 

 

Figure 1.5 Electrophysiological properties of the currents produced by ANO1 (A-B) and best1 (C-D) 

stably overexpressed in CHO cells; adapted from reference [195]. 

 

Genetic knockout or ex vivo siRNA-based downregulation of ANO1 suppresses native 

CaCC and abolishes some CaCC-dependent cellular functions. For example, knockdown of 

ANO1 with siRNA strongly attenuated CaCC in human cardiac fibroblasts and rat PASMCs 

[209], as well as in rat sensory neurons [7]. Similarly, ANO1 siRNA reduced vasopressin–

induced contraction of rat mesenteric small arteries via reduced depolarization [210]. In the 
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cerebral vascular bed, ANO1 siRNA knock-down inhibited vascular contraction [152]. In the 

intrahepatic biliary epithelial cell CFTR and ANO1 are both expressed and thought to provide 

the driving force for ion and water secretion [211]. SiRNA knock-down of ANO1 but not CFTR 

abolished CaCC current in these cells thus providing evidence that ANO1 plays a critical role 

in biliary epithelial secretion and bile formation [211]. 

ANO1 was found to be present in cells and tissues associated with CaCC expression. 

These included epithelial cells, smooth muscle and most sensory neurons [160, 161]. In 

epithelial tissues, Cl- channels localize in the apical and basolateral membranes of the epithelial 

cells; cAMP and Ca2+ activate CFTR and CaCC, respectively, thus stimulating Cl-secretion 

across the apical membrane due to intracellular accumulation of Cl- by NKCC1 [212, 213]. 

CFTR contributes to Cl- secretion in epithelial cells of airways, intestine, and the ducts of 

pancreas and sweat gland while CaCC was reported to contribute to Cl- secretion in pancreatic 

acini, salivary and sweat glands [56, 214, 215]. Recent studies show that ANO1 contributes to 

Cl- secretion in these tissues under some conditions [160]. For example, ANO1 knockout mice 

revealed that ANO1 plays major roles in Cl- secretion in the superficial epithelium of neonatal 

murine airways [216]. Likewise, carbachol-induced Cl- secretion was severely reduced in the 

colon of ANO1 knockout mice [217]. ANO1 also moderately contributes to the Cl- secretion in 

airway and intestinal epithelia [218].  It was also reported that some inflammatory mediators 

such as interleukin 4 (IL-4) can upregulate the expression of ANO1 in epithelial cells [203]. 

Epidermal growth factor also can regulate the expression of ANO1 in the intestinal epithelium 

[219].  

In exocrine glands, studies have shown that ANO1 contributes to CaCC current in 

salivary gland acinar cells and contributes to Cl- efflux and fluid secretion [208]. ANO1 was 

clearly detectable in cells of the submucosal glands and it is important for the mucociliary 

clearance in human airways. Accordingly, mucus accumulations, impaired mucociliary 
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clearance, and low Cl- secretion in the airways were found in ANO1 knockout mice (Fig 1.6) 

[216, 217]. 

The role and expression of CaCC in SMCs have been reported by many groups [152, 

170, 173, 220-224]. As discussed above, SMCs, like sensory neurons, accumulate high 

intracellular Cl- levels. Therefore CaCC activation (e.g. in response to Ca2+ release from 

intracellular stores) enables Cl- efflux, which causes membrane depolarization and 

vasoconstriction [163, 225, 226]. Many groups have found ANO1 expressed in SMCs; 

accordingly, it is not surprising that siRNA ANO1 knock-down was shown to reduce CaCC 

currents in SMCs [151, 152]). The expression of ANO1 was shown to correlate with vascular 

remodeling and hypertension. Because of this correlation, the overexpression of ANO1 in 

basilar VSMC is thought to decrease expression of Cyclins D1 and E, thereby inhibiting the 

proliferation of SMCs [227]. Chronic hypoxia upregulated ANO1 expression in PASMCs and 

in a rat model of pulmonary hypertension, and ANO1 in PASMCs contributes to the CaCC 

currents and contractile responses [228, 229]. Chronic inflammation in airway smooth muscle 

cells increased ANO1 expression along with contractility [230]. In most of the cases, ANO1 

inhibitors had a relaxant activity on SMCs [231]. 
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Figure 1.6 Effect of ANO1 knock out on the airways. Permeability for Cl– via CaCC/ANO1 channels 

allows for water transport due to large transepithelial osmotic gradients in normal airways. Flow of 

water clears mucus proteins. In contrast, the surface liquid layer in ANO1 knockout mice is reduced 

due to small transepithelial osmotic gradients and mucociliary clearance is largely impaired. The red 

arrows in Figure 1.6 indicate the direction of Cl- transport. 

 

1.4.1.1 Structure-functional relationships of ANO1 protein 

ANO1 functions as homodimers [232, 233]. Coexpression in HEK293 cells of ANO1 

subunits differentially tagged with fluorescence resonance energy transfer (FRET) paired 

fluorescent proteins demonstrated a significant amount of energy transfer, which is indicative 

of a close physical interaction between ANO1 subunits. Chemical cross-linking and 

coimmunoprecipitation (co-IP) was also used to demonstrate dimer formation. Another study 

has shown that ANO1 proteins form homodimers prior to transport to the plasma membrane 

[233]. Recently, a dimerization domain of ANO1 was localized to the channel’s N-terminus 

[234]. Whether ANO1 can form heteromultimers with other anoctamins is currently unknown. 
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Figure 1.7 Current topology models of ANO1. (A) = Originally proposed topology; (B) = revised 

topology. The ANO1 protein has eight putative transmembrane domains (TMD1-8), and a re-entrant 

loop between the TMD5 and TMD6 that is suggestive of a channel pore. Some consensus 

phosphorylation sites are labelled (dark ovals). White ovals depict HA tags that were inserted into the 

channel in study [206]. Their appearance relative to the plasma membrane was tested by 

immunostaining of non-permeabilized cells. These experiments led to the revised topology shown in 

(B). Positions 614 and 824 can be accessed by extracellular anti-HA antibody. Other positions are not 

accessible, suggesting that the fragment between positions 672 and 700 is located intracellularly. 

 

The predicted topology shows that ANO1 has at least eight putative transmembrane 

segments, with both NH2 and COOH termini located intracellularly (Fig 1.7A). The predicted 

re-entrant loop is located between the fifth (TMD5) and the sixth (TMD6) transmembrane 

segments (Fig 1.7A). Yang and colleagues [202] suggested the re-entrant loop (amino acids 
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from 620 to 650) might form the channel pore. They used mutations of positively charged 

amino acids to change the ionic selectivity of the channel [202]. However, this topology model 

of ANO1 has been challenged by Yu and colleagues [206] (Fig 1.7B). Using the HA epitope 

accessibility method, these authors suggested that the ‘re-entrant’ loop of ANO1 in fact fully 

crosses the phospholipid bilayer, and then generates a cytosolic loop important to Ca2+ binding 

(Fig 1.7B). They also used cysteine accessibility mutagenesis of the putative “re-entrant” loop, 

and replaced each amino acid between 620 and 646 with cysteines and then conducted 

electrophysiological testing of the resulting mutants for the effects of the cysteine-modifying 

agents 2-(trimethylammonium)ethyl methanethiosulfonate, bromide (MTSET) or 2-

aminoethyl methanethiosulfonate hydrobromide (MTSEA). These mutants generally 

responded to MTSET/MTSEA with decreased current amplitude but no changes in ion 

selectivity as compared with the wild-type ANO1. These results suggested that the re-entrant 

loop of ANO1 may contribute to the permeation pathway, but is not critical for forming the 

selectivity filter [206]. Another study has shown that the re-entrant loop region does not form 

the entire pore, but may instead consist of a trafficking domain [235].  

As native CaCCs, ANO1 also has permeability to other anions. The permeability 

sequence is: NO3
−> I−> Br−> Cl−> F− [202]. Another study has shown that ANO1 has different 

open states with different ion selectivities and, thus, the ion selectivity of the channel is not 

rigid [236]. Jung and colleagues reported that the permeability of recombinant ANO1 to anions 

(e.g. HCO3
- and Cl-) can be dynamically modulated by Ca2+. At submaximal cytosolic Ca2+ 

levels of ∼1 μM, ANO1 was more readily permeable to Cl− than to HCO3
−, but when [Ca2+]i 

raised to 3 M, the HCO3
− permeability of ANO1 increased greatly, exceeding that of Cl-. 

Because similar results were found in mouse salivary gland acinar cells, the authors concluded 

that ANO1 may play an important role in cellular HCO3
- transport, especially in transepithelial 

HCO3
- secretion [236]. 
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It has been shown that the intracellular N- and C-termini of ANO1 contain multiple 

phosphorylation sites [160]. This may explain why some native CaCCs, such as these in 

colonic, airway and pancreatic epithelial cells, require Ca2+-dependent phosphorylation or 

calmodulin-dependent kinases (CaMKs) for activation [162, 237-240]. Other studies, however, 

show that CaMK or phosphorylation actually has an inhibitory effect on CaCCs in other tissues 

[170, 222, 241]. For example, in tracheal and arterial smooth muscle cells, inhibitors of CaMK 

augment CaCC. Likewise, CaMK in smooth muscle causes desensitization of CaCCs, so that 

CaCC was inhibited when intracellular Ca2+ increased. Moreover, internal dialysis with active 

Calmodulin-dependent protein kinase II (CaMKII) inhibited ICaCC in pulmonary artery 

myocytes, while Ca2+-dependent dephosphorylation stimulates ICaCC in rabbit pulmonary artery 

smooth muscle [170, 222, 241]. The Ca2+-dependent phosphatase activity of calcineurin has 

been shown to exert a stimulatory effect on CaCC [223]. In summary, there is no unifying 

theory of the effect of phosphorylation on CaCC activity, although a recent study suggested 

that phosphorylation is not a prerequisite for ANO1 activation [242]. 

 

  1.4.1.2 Pharmacology of ANO1  

Classical Cl- channel inhibitors including A9C, NPPB, DIDS, Diphenylamine-2-

carboxylic acid (DPC) and 4-acetamido-4-isothiocyanatostilbene-2, 2-disulfonic acid (SITS) 

inhibit CaCC in a voltage-dependent manner by interfering within the anion permeation 

pathway in an unselective manner. For example, DIDS not only inhibits CaCCs, but also blocks 

Na+/HCO3
- co-transporters [243] and Cl-/HCO3

- exchangers [244]. The most common blockers 

for native CaCCs are NFA and flufenamic acid (FFA) (representative CaCC inhibitors are listed 

in Fig. 1.8). These substances effectively inhibit CaCC currents in epithelial cell and Xenopus 

oocytes at concentrations ranging from 5 to 100 M [195, 203, 245]. NFA 

inhibits spontaneous CaCC currents in rabbit portal vein smooth muscle cells with an IC50 of 
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around 2–5 μM [246], while DPC inhibits CaCC effectively in millimolar concentrations [204]. 

When human ANO1 is expressed in HEK293 cells, NFA and A9C inhibit ANO1 currents with 

IC50 values of 12 and 58 μM, respectively [247]. At concentrations ranging from 16 to 250 

M, 2 to 44 µM and 10 to 1000 µM, respectively, DIDS, NFA and A9C effectively inhibited 

the endogenous CaCC current in Xenopus oocytes [162]. NFA is often considered a relatively 

specific blocker, and is often used to identify CaCCs in different tissues. However, NFA is not 

a perfect tool to identify CaCCs. First of all, NFA also affects other ion channels, such as N-

methyl-D-aspartate (NMDA) and GABAA receptors [56]. Secondly, like A9C, NFA has a 

bimodal effect on ANO1 activation [173, 174, 248, 249]; in vascular myocytes, 100 µM NFA 

inhibits CaCC current at positive potentials incompletely, and even stimulates ICaCC at negative 

potentials (when recorded with [Ca2+]i of either 250 or 500 nM). A similar phenomenon was 

observed for recombinant ANO1 [195]. A9C, FFA and NPPB were also reported to have 

bimodal effect on ANO1 activation [195, 248]. It was hypothesized that at low [Ca2+]i, when 

the open probability of ANO1/CaCC is small, a stimulatory effect of NFA predominates, 

whereas higher (over 1 μM) [Ca2+]i greatly increases the probability of the channel being open. 

Under these high [Ca2+]i conditions, the blocking effect of NFA is predominant [173]. It is 

possible that these compounds have multiple binding sites on ANO1, and that these different 

binding sites may have different affinities for the “bimodal” drugs, thereby mediating opposing 

effects on the channel activity. A similar phenomenon was reported for the CFTR channel [250]. 
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Figure 1.8 Chemical structures of the most widely used CaCC/ANO1 inhibitors (adapted from [195]). 

 

Recently, a series of more selective ANO1 modulators has been developed. Such 

compounds as CaCCinhA01, tannic acid and related compounds have given rise to a new line 

of ANO1 blockers (Fig. 1.8) [218, 251]. CaCCinhA01 inhibits heterologousely-expressed 

ANO1 channels in a voltage-independent manner with IC50 below 10 µM; it also blocks Best1 

mediated CaCC currents with similar potency [195, 218]. 

T16Ainh-A01 is the most recent CaCC inhibitor and is more selective for ANO1, 

having little effect on other Cl- channels, including CFTR and Best1 [195]. It was originally 

reported to block recombinant ANO1 almost completely with IC50 ~1 µM [218, 231, 252]. 

However, in another study, this inhibitor had much lower efficacy, blocking only ~30% of 

mouse ANO1 (mANO1) and ~50% of human ANO1 (hANO1) currents at maximal 

concentrations [195]. Likewise, T16Ainh-A01 reportedly has variable efficacy in native 

tissues, blocking CaCC current poorly in human bronchial epithelial cells. Nevertheless, 
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T16inh-A01 has been successfully used as specific tool to identify the molecular identity of 

native CaCCs in several tissues including transepithelial cells, SMCs, and cancer cells [219, 

228, 231, 253]. 

 Recently, small-molecule activator/potentiators of ANO1 have been also reported 

including N-aroylaminothiazole and tetrazolylbenzamide. Aroylaminothiazole compounds 

strongly activated heterologous ANO1 in the absence of cytosolic Ca2+, producing outwardly 

rectifying currents which became more linear at higher [Ca2+]i. In 

contrast, tetrazolylbenzamide compounds did not activate ANO1 in the absence of cytosolic 

Ca2+, but increased Cl− current at submaximal Ca2+. It is possible that tetrazolylbenzamide 

potentiates the ANO1 current by increasing channel sensitivity to Ca2+ [252]. 

 

  1.4.1.3 ANO1 and nociceptive neurons 

Accumulating evidence indicates that excitability of sensory neurons is supported by 

the activity of Cl- channels. More specifically, Cl- fluxes have been shown to be important in 

the setting of cell membrane resting potential, and in the maintenance of proper cell volume in 

sensory neurons. In sensory neurons, as in other cell types, Cl- fluxes may also play other 

cellular roles including pH and volume homeostasis, transport of organic solutes, and so on 

[56, 144, 254, 255]. ANO1 is abundantly expressed in most DRG sensory neurons [202], 

particularly in small-diameter nociceptors [202, 256]. In the context of small-diameter 

nociceptors, it is interesting to note that earlier studies showed that CaCC currents activated by 

Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) was found in medium- and large-

diameter sensory neurons, but not in small DRG neurons [202, 257]. It was also found that 

nerve injury increased CaCC currents in medium-diameter DRG neurons, best1 and best3 were 

found to mediate this increase [258]. Recently, Liu and colleagues found that BK can induce 

CaCC in small DRG neurons [7]. This action of BK was mediated by a Gq-coupled bradykinin 
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receptor B2 (B2R and phospholipase C (PLC)) cascade, involving inositol 1, 4, 5-triphosphate 

(IP3) production and release of Ca2+ from intracellular stores. It was found that depolarizing 

CaCC current, along with voltage-gated K+ channel (KCNQ) inhibition (also through the PLC-

dependent pathway), contributed to membrane depolarization and to the increase of AP firing 

of nociceptive sensory afferents [7]. Knock-out and gene silencing experiments demonstrate 

that CaCC activity in small DRG neurons depends on ANO1 expression [7, 256]. 

 

  1.4.1.4 Role of ANO1 in human disease 

Relative expression levels of ANO1 are associated with several types of cancers. ANO1 

strongly contributes to breast cancer tumorigenesis, ANO1 can activate CaMKII, subsequently 

inducing activation of Akt and mitogen-activated protein kinase (MAPK) signaling. These 

inductions can lead to increased secretion of epidermal growth factor and transforming growth 

factor alpha (TGF-α), substances that have been implicated in breast cancer tumorigenesis [253, 

259]. Gene expression and immunobiochemistry experiments suggest that ANO1 is highly 

expressed in oral and head and neck squamous cell carcinomas, gastrointestinal stromal tumors, 

and prostate cancers [260-262]. It is certainly noteworthy that overexpression of ANO1 is 

associated with a poor prognosis for human patients with certain cancers [253].  Thus, ANO1 

may become a good diagnostic biomarker for some forms of cancer. While it is not yet clear 

how ANO1 expression is regulated on the transcription level, it was found that epidermal 

growth factor increases ANO1 expression in colonic epithelial cells, both at the mRNA and 

protein levels, and PKCδ was found to mediate epidermal growth factor-induced ANO1 

expression [219, 263]. 

ANO1 regulates cell proliferation and has been implicated in the spread of cancer. This 

has been shown by studies that ANO1 overexpression promoted the proliferation of cancer 

cells in vitro, just as knockdown or pharmacological inhibition of ANO1 significantly slowed 
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the growth of cancer cells [253, 262]. Other studies have shown that ANO1 can regulate the 

expression of cyclin D1 through the MAPK/ERK pathway, which is linked to the G1 cell cycle 

checkpoint [253]. In some cases, CaCCs promotes cell migrations as well as cell growth in 

vitro. It is therefore possible that ANO1 plays a role in metastases. Finally, some studies 

suggested that ANO1 is a negative regulator of hypertension and vascular remodeling, and that 

the expression of ANO1 can decrease the proliferation of vascular cells [227]. 

 

1.4.2 Other anoctamins 

The anoctamin family has 10 members. The ANO2 sequence is ~60% identical to the 

ANO1 sequence; other anoctamins are considerably less similar, with sequence similarities of 

30% or below. ANO2 has also been identified as CaCC, although it has some distinct properties. 

Specifically, ANO2 has lower Ca2+ sensitivity and much faster activation kinetics than ANO1. 

In inside-out patches, the half-maximal concentrations of Ca2+ needed for ANO2 activation are 

4.9 μM at −50 mV, and 3.3 µM at +50 mV [264]. Other studies reported similar values [265, 

266], all of which are lower than the Ca2+ sensitivity of ANO1 [202, 205, 267]. In addition, 

ANO2 lacks voltage dependence in the absence of Ca2+ [266], whereas ANO1 can be activated 

by much depolarized voltages (~200 mV) under Ca2+-free conditions [205]. The activation 

kinetics of ANO2 are voltage independent and become faster by increasing [Ca2+]i. This is 

shown by an activation time constant of 8.1 ± 0.8 ms at 1.5 µM [Ca2+]i  and +100 mV [266]. 

By comparison, the activation time constant of ANO1 is around 250 ms at +70 mV and 500 

nM [Ca2+]i [207]. The deactivation of ANO2 is also relatively faster than the deactivation of 

ANO1; the time required to reach the half-maximal current (0.5) for the deactivating tail 

current of ANO2 was 2.5 ms upon repolarisation to -60 mV, while the comparable figure for 

ANO1 was 41 ms [207]. The magnitude of the whole-cell currents elicited from 

heterologousely expressed ANO1 was six times larger than that from ANO2 [207]. In spite of 
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these differences, the anion permeability sequence for both of these CaCCs is similar: SCN-> 

I-> Br-> Cl-> F-. 

ANO2 can be inhibited by NFA but is insensitive to SITS [268]. ANO2 is highly 

expressed in central neurons, microvilli of mouse vomeronasal sensory neurons, and 

photoreceptor synaptic terminals. It also contributes to endogenous CaCC in cilia, vomeronasal 

sensory neurons, and retinal synapses [268, 269]. The role of ANO2 in olfaction transduction 

is, however, unclear. Many previous studies show that the opening of ANO2/CaCCs causes the 

depolarization of olfactory neurons and induction of APs that reach the olfactory bulb [270, 

271]. Although the high expression of ANO2 in mouse vomeronasal sensory neurons suggests 

a role in vomeronasal transduction [272], the fact that ANO2 knockout mice retain near-normal 

olfactory function shows that that Ca2+-activated  Cl− currents and/or ANO2 are not required 

for olfaction [273].  

Other studies suggest that ANO2 regulates AP and synaptic responses in hippocampus 

neurons [146], to understand the molecular identity of CaCCs in hippocampal neurons, the 

authors analysed the expression of ANO1 and ANO2 [146]. Only ANO2 was detected at mRNA 

and protein levels; accordingly, knockdown of ANO2 by siRNA significantly inhibited the 

neuronal CaCC current in hippocampal pyramidal neurons. The neural circuit is such that the 

postsynaptic terminals of these neurons in the CA1 region of the hippocampus receives 

information from CA3 pyramidal neurons and sends the information out of the hippocampus. 

Since adult CNS neurons have low [Cl]i and very negative ECl, activation of CaCC in these 

cells is inhibitory. Therefore the presence of ANO2/CaCC in hippocampal neurons can 

decrease neuronal activity. It was shown that, indeed, ANO2-mediated CaCC in hippocampal 

neurons is activated by Ca2+ influx via VGCC during the depolarization phase of the AP (note 

the difference with ANO1 coupling in DRG neurons). This activation mechanism raises the AP 

threshold and inhibits synaptic transmission, such that ANO2 acts as a brake on neuronal 
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excitability in the CNS [146]. 

Much less is known about the physiology and biophysics of other members of the family. 

Although Duran and colleagues did not find membrane expression or Ca2+-activated Cl− 

currents for ANO3–7 [274], other groups have demonstrated plasma membrane expression for 

ANO1, 2, 5, 6, 7 and 9 when these were overexpressed in HEK293 and Fischer rat thyroid 

(FRT) cells [275]. One anoctamin which attracted much attention is ANO6, a protein is linked 

to Scott syndrome, a rare congenital bleeding disorder caused by a defect in blood coagulation. 

The root of Scott syndrome is an aberrant phospholipid composition of the outer membrane 

leaflet of platelets which is attributed to a deficit in phospholipid scrambling.  Suzuki et al. 

found that many patients with Scott syndrome have a mutation in ANO6 [276], and 

hypothesized that ANO6 has a lipid scramblase activity. Accordingly, ANO6 knockout mice 

have impaired coagulation, like that seen in patients with Scott syndrome [277]. The same 

group also reported that ANO6 was localized to the plasma membrane, and conferred Ca2+-

dependent scrambling of phospholipids [276, 278]. However, many facts about this protein are 

disputed in the current literature. Thus, Yang and colleagues suggest that ANO6 is a Ca2+-

activated cation channel required for lipid scrambling in platelets, even though it is not itself a 

scramblase [277]. Martins and colleagues suggested that ANO6 is an essential component of 

the outwardly rectifying Cl- channel [279]. Another study showed that ANO6 constitutes a 

Ca2+-activated anion channel [280]. 

It has recently been suggested that the anoctamin family should be divided into two 

subfamilies: a family characterized by Ca2+-dependent Cl- channels (ANO1 and 2), and a 

family comprised of Ca2+-dependent lipid scramblases (3, 4, 5, 6 and 7) [278]. Another 

anoctamin, ANO3, was found to play a role in nociception. ANO3 is expressed in the central 

and peripheral nervous systems (including DRGs), but apparently does not form an ion channel 

by itself. Rather, it somehow enhances the expression of the Na+-activated K+ channel of Slack, 
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thus causing hyperpolarization of the cell membrane and playing an overall anti-nociceptive 

role in pain pathways [281]. 
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1.5 Working hypothesis and aims of the study 

Previous experiments from our group and others have identified ANO1 as a novel pro-

algesic ion channel in DRG neurons that mediates noxious responses to inflammation [7, 256]. 

The evidence for this contention includes the following six observations:  

1. ANO1 is highly expressed in small-diameter DRG neurons in rats;  

2. Activation of ANO1 in these neurons is excitatory;  

3. The inflammatory mediator BK activates CaCC in small DRG neurons via PLC- 

and IP3-mediated Ca2+ release from intracellular stores;  

4. Native CaCC activated by BK in DRGs is reduced by siRNA against ANO1;  

5. Knock-out, knock-down or pharmacological inhibition of ANO1 in DRGs 

reduces BK-induced pain in vivo; and 

6. Ca2+ influx via the VGCC in small-diameter DRG neurons were surprisingly 

ineffective in activating CaCC. Such poor coupling to a particular Ca2+ source 

was not expected from the ANO1 overexpression studies.  

 

These findings point to the central question of this study: 

Why do Ca2+ transients produced by BK activate ANO1/CaCC in DRG neurons, while 

Ca2+ influx from VGCCs fail to do so (activate ANO1/CaCC in DRG neurons)? 

 

My hypothesis is based on the following observations and assumptions:  

1) The Ca2+ sensitivity of ANO1 at voltages near the rest potential of a DRG 

neuron is low (~2-5 µM), suggesting that the channel must be in close 

proximity to the source of intracellular Ca2+ to be activated by an endogenous 

signal;  
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2) Specific molecular interactions coupling ANO1 to a particular Ca2+ source 

must exist; and 

3) Specific coupling of ANO1 to Ca2+ release sites may play an important role 

in conferring specificity and fidelity of inflammatory signaling in 

nociceptive neurons.  

 

The aims of the study are therefore the following. 

1) To investigate the signaling pathway for ANO1 activation by PLC-coupled 

inflammatory mediators in small-diameter DRG neurons, with special 

attention given to  the source of Ca2+ for ANO1 activation; 

2) To probe the molecular mechanisms for preferential coupling of ANO1 

channels in small-diameter DRG neurons to intracellular Ca2+ stores; and 

3) To explore the physiological role of the preferential coupling of ANO1 to 

Ca2+ sources in DRG neurons. 
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Chapter 2 Materials and methods 

2.1 Materials 

All cell culture reagents were obtained from Gibco BRL (Paisley, UK). All other 

reagents were of the highest obtainable grade. Unless stated otherwise, all chemicals were from 

Sigma-Aldrich. 

 

2.2 DRG culture 

All procedures were approved by the Animal Care Committee of the University of 

Leeds. DRG were extracted from all spinal levels of 21-day-old Wistar rats as described 

previously [6]. In brief, animals were euthanized according to schedule 1 protocol, and the 

spinal column was removed and cut in halves along the saggital plane. After removal of the 

spinal cord, DRG were extracted from either side of spinal column with roots cut. Ganglia were 

then incubated in HBSS solution (137.93 mM NaCl, 5.33 mM KCl, 4.17 mM  NaHCO3, 

0.441 mM KH2PO4, 0.338 mM Na2HPO4, 1.26 mM CaCl2, 0.493 mM MgCl2, 5.56 mM D-

Glucose) supplemented with 1 mg/ml collagenase and 10 mg/ml dispase for 30 minutes at 

37oC. The digestion was stopped by addition of 10 ml ice-cold Dulbecco's Modified Eagle's 

Medium (DMEM) supplemented with 10% fetal bovin serum (FBS) and antibiotics 

(Penicillin-Streptomycin, 100 U/mL penicillin, and 100 µg/mL streptomycin). The cell 

suspension was collected by centrifugation at 900x g for 5 min, followed by two washes with 

the DMEM media. After the last wash, the pellet was resuspended in DMEM (with FBS and 

antibiotics) and plated onto cover slips pre-coated with poly-D-lysine and laminine. DRG 

cultures were used from 48 hours (hr) and up to one week after plating.  No growth factors 

were added to the culture media (Fig 2.1). 
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Figure 2.1 Schematic of the DRG dissociation process. The cell bodies of DRG neurons (blue ovals) 

are located outside the spinal cord in ganglia, the ganglia are located along the spinal 

nerves. Dissociation procedure involves removing of the spinal cord (including white and gray matter) 

and extracting DRGs, once carefully dissected, DRGs can be dissociated by enzyme digestion and 
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dissociated cells (yellow ovals) seeded onto culture dishes. Primary cultures from DRG grow well on a 

coverslip surface covered with laminin, an extracelluar matrix protein. 

 

HEK293 cells were maintained on tissue culture plates at 37oC and 5% CO2 in a 

humidified atmosphere. Cells were cultured in DMEM: F12 (DMEM/Nutrient Mix F12 (1:1)) 

with Glutamax ITM containing 10% FBS, 100 U/mLpenicillin, 100 µg/mL streptomycin, and 

passaged cells when confluent. 

 

2.3 Generation DNA constructs 

For construction of plasmids expressing the glutathione S-transferase (GST)-fused 

ANO1 C-terminus, N-terminus, and the loop between TMD2 and TMD3, different parts of rat 

ANO1 were amplified by reverse transcription polymerase chain reaction (RT-PCR) from rat 

mRNA using the appropriate sets of primers (Table 2.1). RNA was extracted from rat DRG 

tissue using Trizol Reagent.  Reverse transcription was conducted using Superscript-II RT 

(Invitrogen) according to manufacturer’s instructions.  Briefly, 50 ng of random primers were 

mixed with 500 ng total RNA and dNTP; the mixture was heated to 65°C for 5 min and quickly 

chilled on ice. DTT (10 mM) and reaction buffer were then added to the mixture; the mixture 

was incubated at 25°C for 2 min, then 1 μL (200 units) of SuperScript™ II RT was added and 

the mixture was further incubated at 25°C (10 min) followed by another incubation at 42°C (50 

min). Finally, reaction was inactivated by heating to 70°C for 15 min.  

PCR amplification was performed from rat cDNA according to the following protocol: 

5 min preincubation at 95°C followed by 30 amplification cycles each consisting of 30 sec 

denaturing at 95°C, 30 sec primer annealing at 55°C, and 45 sec elongation at 72°C. The last 

cycle consisted of incubation at 72°C for 10 min. The details of primers are shown in Table 
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2.1. The PCR fragments were sub-cloned into pGEX-KT (GE Healthcare) using BamHI (sense) 

and EcoRI (antisense) site, to make pGST-C/ANO1, N/ANO1 and Loop/ANO1 plasmids. 

Table 2.1 Details of primer used in this study 

Fragment Primer sequence

pIRES2 EGFP ANO1C-terminal sense GCG CGA ATT C AT GAT GGA CTG GGT 

GAT C 

pIRES2 EGFP ANO1C-terminal antisense GCC GGA TCC CTA CAG CGC GCC CCC 

ATG G 

pIRES2 EGFP ANO1Loop sense CCG GAA TTC ATG ATG GAG CAC TGG 

AAA CG 

pIRES2 EGFP ANO1Loop antisense CGC GGA TCC TTA GAA ATA GGC TGG 

GAA T 

pIRES2 EGFP ANO1N-terminal sense CCG GAA TTC ATG CAG GAC ACA CAG GA

pIRES2 EGFP ANO1N-terminal antisense CGC GGA TCC TCA AAG CCA GGC AAA 

GTA 

pGST ANO1C-terminal sense GCG CGG ATC C AT GAT GGA CTG GGT 

GAT C 

pGST ANO1C-terminal antisense GCG CGA ATT C CTA CAG CGC GCC CCC 

ATG G 

pGST ANO1Loop sense GCG CGG ATC C TG CGA GCA CTG GAA 

ACG GAA 

pGST ANO1Loop antisense GCG CGA ATT C GC AGA AAT AGG CTG 

GGA ATC 

pGST ANO1N-terminal sense GAG AGG ATC CAT GCA GGA CAC ACA G

pGST ANO1N-terminal antisense GAG AGA ATT CAA GCC AGG CAA AGT AC
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The PCR fragments were purified by gel extraction kit (Invitrogen) and ligation was 

done using T4 ligase (NEB) at room temperature overnight. The ligation product was 

transformed into competent cells and plated out on Luria Bertani-ampicillin (LB-Amp) plates. 

After 16 hr, several colonies were picked and confirmed by PCR amplification. Finally, the 

plasmids were prepared by plasmid mini-prep kit (Invitrogen) and sequenced to validate the 

sequence of the constructs. Thus, three plasmid constructs were made. For construction of 

pIRES2 EGFP plasmids expressing the same ANO1 fragments, these were amplified by PCR 

from pGST-C/ANO1, N/ANO1 and Loop/ANO1 plasmids using the appropriate primer pairs 

(Table 2.1) and sub-cloned into pIRES2 EGFP vectors (Clonetech) using BamHI (antisense) 

and EcoRI (sense) sites. Colonies expressing the fragment were identified by kanamycin 

resistance. 

 

2.4 Electrophysiology 

Whole-cell, and current clamp recordings were performed as described in [6, 7]; an 

EPC-10 patch clamp amplifier in combination with Patchmaster V2.2 software (HEKA) was 

used to amplify and record currents and potentials. In intracellular solutions with basal 

physiological [Ca2+]i, intracellular free Ca2+ was adjusted to 100 nM using the Maxchelator 

program (Stanford University). For high concentration of intracellular free Ca2+, intracellular 

free Ca2+ was adjusted to 1 or 10 µM using the Maxchelator program (Stanford University). In 

the ‘fast’ whole cell experiments for testing the activation of CaCCs by GPCRs or VGCC, the 

internal pipette solution contained (in mM): 150 CsCl, 5 MgCl2, 1 K2ATP, 0.1 NaGTP, 1 EGTA, 

10 HEPES (pH 7.4 with CsOH). The external solution contained (in mM): 145 TEACl, 2 CaCl2, 

10 HEPES (pH 7.4 with CsOH). In Ca2+ clamping experiments the internal solution contained 

(in mM): 135 CsCl, 5 MgCl2, 5 HEPES, 1 K2ATP, 0.1 NaGTP, and 10 of either EGTA or 

BAPTA, pH 7.35 with CsOH. The external solution contained (in mM): 145 TEACl, 2 CaCl2, 
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10 HEPES (pH 7.4 with CsOH). In a ‘Ca2+-free’ external solution CaCl2 was omitted and 1 

mM EGTA added to chelate residual free Ca2+.  For recordings with voltage ramp protocols 

used to measure activation of CaCC by GPCR the external solution contained (in mM):155 

TEACl, 2 CaCl2, 0.1 CdCl2, 10 HEPES (pH 7.4 with CsOH). For recordings with voltage ramp 

protocols used to measure voltage-gated Ca2+ channel-induced CaCC, the internal pipette 

solution contained (in mM): 150 CsCl, 5 MgCl2, 1 K2ATP, 0.1 NaGTP, 1 EGTA, 10 HEPES 

(pH 7.4 with CsOH). The external solution contained (in mM): 140 NMDG, 2 CaCl2, 1.5 MgCl2, 

10 HEPES, 10 glucose (pH 7.4 with HCl). In these experiments CaCC was measured as inward 

tail current following a square pulse to 0 mV from the holding potential of -80 mV with a 

subsequent second pulse to 80 mV. This second pulse activated VGCCs but caused little net 

Ca2+ influx due to the small driving force. CaCC amplitude was calculated as a difference in 

the peak tail current amplitudes after the depolarizing pulses with and without Ca2+ influx. 

VGCC current often displayed rapid run-down so the CaCC current amplitude was calculated 

from the first sweep. Current clamp experiments were performed in whole-cell patch mode 

with extracellular solution containing (in mM): 160 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 10 

HEPES, pH 7.4 with NaOH; intracellular solution contained 150 KCl 5 MgCl2, 1 K2ATP, 0.1 

NaGTP, 1 EGTA, 10 HEPES. In a ‘low [Cl-]i’ pipette solution 140 mM KCl was replaced by 

equimolar K-acetate.  
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  2.5 Immunocytochemistry 

DRG neurons from 21-days rats were cultured on the cover slips for 2 days, fixed and 

permeabilised with acetone: methanol (1:1) at -20oC for 20 min. To reduce nonspecific 

antibody binding, the sections were treated with 2% normal donkey serum in PBS for 15 min. 

For ANO1 staining, the sections were incubated in anti-ANO1 antibody (Santa Cruz) in PBS 

containing 2% normal horse serum, and 0.2% Na azide at 4oC overnight followed by the 

incubation with the Alexa Fluor 488 donkey anti-goat IgG (Molecular Probes) for 1.5 hours at 

room temperature. For IP3 receptor 1 (IP3R1) staining, anti-IP3R1 (Calbiochem) and Alexa 

Fluor 555 donkey anti-mouse IgG (Molecular Probes) were used. The antibody dilutions are 

shown in Tables 2.2 and 2.3. Confocal images were taken with an LSM510 META microscope 

(Zeiss). Human umbilical vein endothelial cells (HUVECs) were transfected with green 

fluorescent protein (GFP) along with the ANO1 plasmids using Fugene HD transfection kit 

(according to manufacturer’s instructions). Approximately 1x106 cells were seeded onto cover 

slips in 60 mm cell culture dishes 24 hours before transfection, and cells were transfected with 

600 ng of each plasmid (GFP and ANO1). Cells were cultured for 36 hr in DMEM:F12 medium 

and then cells were fixed and permeabilised with acetone: methanol (1:1) and labelled with 

anti-ANO1 (Santa Cruz) and Alexa Fluor 488 donkey anti-goat IgG (Molecular Probes) as 

shown in DRG protocol.  Confocal images were taken with an LSM510 META microscope 

(Zeiss). 

 

  2.6 Immunoprecipitation and Western blotting 

Generally the procedures were performed as described by previous investigators [282, 

283]. Briefly, entire DRGs (from all levels) from 21 day old Wistar rats were homogenized in 

non-denaturing lysis buffer (20 mM TrisHCl pH 8, 137 mM NaCl, 10% glycerol, 1% Triton X-

100, 2 mM EDTA) with protease and phosphatase inhibitor cocktail including AEBSF at 104 
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mM, Aprotinin at 80 μM, Bestatin at 4 mM, E-64 at 1.4 mM, Leupeptin at 2 mM and Pepstatin 

A at 1.5 mM (Sigma-Aldrich), and incubated for 2 hr at 4°C before centrifugation for 20 min 

at 12,000 rpm (13,000 x g). For immunoprecipitation, 30 µl supernatants (5% of total lysate) 

were saved as input sample and the rest was used for immunoprecipitation. The resultant 

supernatant was incubated overnight at 4°C with 500 ng antibody at a dilution of 1:300. On the 

following day 100 µl protein G sepharose beads (GE Healthcare, London, UK) was added and 

incubation continued at 4°C under rotary agitation for 4 hr. Beads were then washed four times 

with lysis buffer (with inhibitors) and centrifuged; supernatants were discarded. Bound proteins 

were eluted from the beads with 25 µl 2X Laemmli buffer (4% SDS, 20% glycerol, 10% 2-

mercaptoethanol, 0.004% bromphenol blue and 0.125 M Tris HCl, pH 6.8) at 95°C for 5 min 

before immunoblotting (IB). 

For Western blotting analysis, total DRG lysate samples were eluted from protein G 

beads or membrane fractions (20 µg) and boiled for 5 min in 2X SDS–polyacrylamide gel 

electrophoresis (PAGE) sample buffer (4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.004% 

bromphenol blue and 0.125 M Tris HCl, pH 6.8). Proteins were then separated by SDS-PAGE, 

followed by transfer to PVDF membrane by electroblotting. The membranes were incubated 

in blocking buffer (TBS: 50 mM Tris.HCl, pH 7.4 and 150 mM NaCl) supplemented with 5% 

skimmed milk and 0.1% Tween-20 for 2 hr followed by incubation with primary antibody 

diluted in the same buffer at 4°C overnight. The membranes were washed in TBS containing 

0.1% Tween-20 before incubation with an appropriate secondary antibody (horseradish 

peroxidase-conjugated anti-IgG or IRDye®-conjugated anti-IgG). Bound antibodies were 

detected using the super-signal chemiluminescence system (ECL, Thermo) or Odyssey 9120 

Infrared Imaging System (LI-COR, Lincoln, NE).  In co-immunoprecipitation experiments, 5% 

of total lysate protein was run on the same gel for input control. The complete list of antibodies 

used in this study can be found in Tables 2. 2 and 2. 3. 
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Table 2.2 List of primary antibodies 

Primary 

Antibody 

Company  Dilution Cat. number 

ANO1 Santa Cruz 1:500(Western blotting); 

1:100(immunofluorescence) 

sc-69343 

IP3R Cell signaling 

technology 

1:800(Western blotting); 

1:200(immunofluorescence) 

#3760 

CD71 Santa Cruz 1:500 sc-59112 

B2R BD Biosciences 1:1000 610452 

PAR2 Santa Cruz 1:1000 sc-13504 

Caveolin- 1 BD Biosciences 1:1000 610406 

    

GST Santa Cruz  1:500 sc-138 

    

Pan-VGCC Sigma  1:400 C1103 

    

SERCA Badrilla Ltd  1:1000 A010-21AP 

    

 

Table 2.3 List of secondary antibodies 

Secondary Antibody Company Diluted times Cat. number 

donkey anti-goat IgG-HRP SantaCruz 1:5000 sc-2020 

donkey anti-mouse IgG-HRP SantaCruz 1:5000 sc-2096 

donkey anti-rabbit IgG-HRP SantaCruz 1:5000 sc-2077 

Alexa Fluor 488 donkey anti-

goat IgG 

Molecular Probes 1:1000 A-11055. 

Alexa Fluor 555 donkey             Molecular Probes 1:1000 A-31570 
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 2.7 Lipid Raft Isolation 

Lipid raft isolation was performed as described in reference [284]. All steps were 

carried out at 4°C. Entire DRG were isolated from 21 days old Wistar rats (from all spinal 

levels) and frozen at -80°C until use. Lipid rafts were isolated by sucrose gradients. Briefly, 

frozen ganglia were thawed and homogenized using glass Potter-Elvehjem homogenizer in 1.5 

ml MBST buffer (50 mM MES, 150 mM NaCl, pH 7.35, 1% Triton X-100, 5 µg/ml leupeptin, 

5 µg/ml aprotinin and 2 µg/ml pepstatin A). The homogenate was then mixed with 1.5 ml of 

80% sucrose in MBS buffer (50 mM MES, 150 mM NaCl, pH 6.5, 5 µg/ml leupeptin, 5 µg/ml 

aprotinin and 2 µg/ml pepstatin A) before overlaying successively with 3 ml volumes of 35% 

sucrose in MBS buffer and 5% sucrose in MBS buffer. For lipid raft isolation, the resultant 

gradients were ultracentrifuged (100000 g, 18 hr, 4°C), and 9 fractions were collected from 

each (from the top to the bottom of the tube, fractions 1–9). Samples were analysed by SDS-

PAGE followed by Western blotting. 

 

2.8 GST Pulldown Assays 

GST pull-down assays were performed as described previously [285]. Briefly, rat 

ANO1 (UniProt accession D4A915) N terminus (1-407), TMD2-3 loop (505-568) and C 

terminus (963-1040) were PCR cloned from rat DRG cDNA and subcloned into the vector 

pGEX-KT. All constructs were expressed in Escherichia coli strain BL21-gold cells 

(Stratagene) and purified with Glutathione Sepharose 4B beads (GE Healthcare, London, U.K.) 

at 4°C overnight with gentle rotation. For GST pull-down, rat DRG ganglia were homogenized 

in non-denaturing lysis buffer (20 mM TrisHCl pH 8, 137 mM NaCl, 10% glycerol, 1% Triton 

X-100, 2 mM EDTA) with protease and phosphatase inhibitors and incubated for 2 hr at 4°C. 

Insoluble debris was removed by centrifugation for 20 min at 12,000 rpm (13,000 x g). GST 

protein and GST fusion proteins (bound to Glutathione sepharose, GE Healthcare, London, 
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UK) were incubated with rat DRG tissue homogenate overnight at 4°C. The beads were washed 

and bound proteins were eluted in SDS-PAGE sample buffer, and analysed by Western blotting. 

 

2.9 Fluorescent Imaging 

Point mutations H148Q and I152L [286] were introduced intothe pEYFP-N1 vector 

(Clontech) by QuikChange mutagenesis kit (Stratagene). The H148Q/I152LEYFP mutant was 

then subcloned into pcDNA6-V5/His vector (Invitrogen); subcloning was performed by 

Honling Rong. Transfection of DRG was performed as described previously [6, 7] using the 

Nucleofector device and rat neuron Nucleofector Kit (Lonza). Yellow fluorescent protein 

(YFP) fluorescence measurements were recorded using a Nikon Swept Field confocal 

microscope equipped with a 488 nm argon laser, an EM-CCD camera and controlled by the 

NIS Elements 3.2 software (Nikon). The extracellular solution for these experiments contained 

(in mM): 160 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 10 HEPES (pH 7.4 with NaOH). To produce 

iodide influx 30 mM NaCl was replaced with 30 mM NaI. Ca2+ imaging was performed as 

described previously [7, 287]; briefly, neurons were loaded with fluo-4 AM (2 µM) in the 

presence of Pluronic F-127 (0.02%). DRG cultures were treated with 10 mM methyl-β-

cyclodextrin (MβCD) or vehicle for 45 min during the loading with fluo-4 AM and imaged 

immediately using a Nikon TE2000E microscope in epi-fluorescence mode (these experiments 

were contributed by Shihab Shah and Nikita Gamper). 

 

2.10 In Situ Proximity Ligation Assay (PLA) 

Proximity ligation assay (also referred to as ‘in situ co-immunoprecipitation’) allows 

specific labelling of closely associated proteins in situ [288, 289]. The principle of the assay is 

depicted in Fig. 2.2. Briefly, two primary antibodies (raised in different species) recognize the 

target antigens within proteins under investigation. After the primary antibodies bind the 
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antigen(s), a set of secondary antibodies covalently conjugated with unique oligonucleotide 

sequences is used. If these secondary antibodies label proteins that are no more than 30-40 nm 

apart, the conjugated oligonucleotides from both secondary antibodies can be bound by 

complementary connector oligonucleotides and ligated to form a unique circularstructure. This 

structure can be amplified by means of rolling circle amplification (RCA). The oligonucleotide 

of one of the proximity probes acts as a primer for RCA, and DNA-circle acts as template, 

while the oligonucleotide of the other proximity probe is inhibited. The RCA product is 

detected by hybridization with fluorescencently labeled oligonucleotides that tag a sequence 

in the RCA product. If the targeted proteins are indeed in close proximity in situ, the PLA 

produces bright fluorescent “puncta” of 0.5 – 1 µm in diameter which can be detected using a 

confocal microscope (Fig 2.2). 

 

 

Figure 2.2 Schematic illustrating the PLA principle. When two proteins are in close proximity, 

antibodies connected to specific DNA fragments are close enough to bind in a complementary connector 

oligonucleotides, forming a circular structure amplified in the RCA process. The RCA product is 

detected by hybridization of dye-conjugated oligonucleotides complementary to a tag sequence in the 

RCA product (based on [288, 289]). 

 

For PLA assay, cultured DRG neurons were fixed on the round coverglasses and 

permeabilised with acetone: methanol (1:1) for 20 minutes at -20oC. The proximity ligation 
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assays were performed according to manufacturer’s (OlinkBioscience) instructions. Briefly, 

after adding the blocking solution supplied as part of the PLA kit, the cover glasses were 

incubated for 30 minutes at 37°C. After treatment with the blocking solution, the coverglasses 

were incubated with the primary antibodies – anti-ANO1 and anti-IP3R–overnight at 4°C using 

the same dilutions as in the immunocytochemistry experiments. The coverglasses were washed 

twice with buffer A (DuoLink II Detection Reagents Green Kit) for 5 min and a solution 

containing oligo-conjugated secondary antibodies (anti-goat PLUS, anti-rabbit MINUS PLA 

probes; 1:5 dilution as per manufacturer’s protocol) was added. The coverglasses were then 

incubated for 60 min at 37°C and then washed twice with buffer A (5 min). For ligation, a 

solution containing 1:5 dilutions of Ligation Solution (DuoLink II Detection Reagents Green 

Kit) and 1:40 ligase (in high purity water) was used and coverglasses were incubated for 30 

minutes at 37°C. After that, coverglasses were washed twice with buffer A (2 min) and the 

amplification stage (100 minutes at 37°C) was performed in Amplification Solution (1:5 

dilution in high purity water) containing polymerase (1:80 dilution in high purity water). 

Coverglasses were then washed twice with buffer B (10 min) followed by 1 minute in 1:100 

diluted buffer B. The coverglasses were then mounted with mounting medium containing DAPI. 

Confocal images were taken with an LSM510 META microscope (Zeiss). I used Z-stacking to 

quantify number of PLA puncta; each stack consisted of one layer in the nuclear focus plane 

(DAPI) and 16 layers separated by 0.475 nm, 8 above and 8 below that plane. The number of 

PLA puncta per captured multilayer image was analyzed using the Carl Zeiss software ZEN. 

In theory, each PLA spot represents one interaction. Although the in situ PLA signal is 

proportional to the amount of interactions, only a fraction of interactions gives a signal [290, 

291]. As a negative control for the PLA assay, I tested proximity of ANO1 and VGCC using 

pan-VGCC antibody (Table 2.2, also see Chapter 6). 
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2.11 Data Analysis 

All data are given as means ± standard error of the mean (SEM). Unless indicated 

otherwise, only values from responsive cells are included into reported means. Differences 

between groups were assessed by Student’s two-tailed t-test, with the significance level set at 

p<0.05 or 0.01. A X2 test was used to determine whether there were differences in the 

proportions of cells responding to a treatment. 
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Chapter 3. Activation of ANO1 by Ca2+ 

3.1 Introduction 

3.1.1 Ca2+ sensing and gating mechanisms of ion channels 

Ca2+ has a major role in regulation of such cellular functions as neurotransmitter release 

in neurons, excitation-contraction coupling in muscles, gene expression, intracellular signaling 

mediation, and so on. The specificity, speed, reliability and spatial localisation of the Ca2+ 

signals determine the exact physiological response. Ca2+ is also needed for Ca2+-binding 

proteins to perform their functions. One ubiquitous Ca2+-binding protein is calmodulin (CaM), 

which binds Ca2+ through its four EF-hand domains. Other Ca2+-binding proteins include 

calbindins/calneurins, parvalbumine and the neuronal Ca2+ sensor protein family [292].  

One of the best understood examples of ion channel activation by Ca2+ can be found in 

Ca2+- activated K+ channels. Ca2+-activated K+ channels are a family of K+ channels that include 

large-conductance (Slo1 or KCa1.1) channels, intermediate-conductance (IK) channels, and 

small-conductance (SK) channels. The Slo1 channel has a very large carboxy-terminus that 

includes the channel’s own Ca2+-binding sites. The high-affinity Ca2+-binding site called the 

“Ca2+ bowl” contains a domain of five consecutive aspartic acid residues which act as  high-

affinity Ca2+ binding sites and respond to global Ca2+ [293-295]. The low-affinity Ca2+ binding 

site is located in the proximal part of C-terminus, close to the S6 domain. Low-affinity binding 

sites are believed to respond to local Ca2+ signals – that is, highly localised areas near the 

opening of a Ca2+ release point or entry pathway where high a Ca2+ concentration can be 

generated temporarily [296, 297].  

By contrast, the Ca2+-sensitivity of the IK and SK channels depends on the CaM. In 

comparison with the Slo1 channels, KCa3.1 (IK) is much more sensitive to Ca2+ and can thus 

respond to the global level of Ca2+. This high affinity for Ca2+ depends upon four resident CaM 
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molecules bound to the cytoplasmic tails of α-subunits. Channel opening is activated in a 

synergistic manner by both depolarization and by an increase in intracellular Ca2+.  

 

Figure 3.1 Topology model of ANO1 featuring alternative splicing variants and putative Ca2+-

sensitivity sites. The figure shows four alternatively spliced segments. Segment a codes for 116 amino 

acids located in the N terminus. Alternative splicing of this segment affects channel voltage dependence. 

Segment b codes for 22 amino acids located in the N terminus and is important for Ca2+-sensitive gating. 

Segment c codes for four amino acids (448EAVK451) within the first intracellular loop of ANO1. There 

is a sequence of five consecutive glutamates in the loop that ends with E448, which was suggested to 

be important for the Ca2+ sensitivity of the channel [267]. The sequence 444EEEEEAVK451 contributes 

to coupling of voltage and Ca2+-dependent gating mechanisms. Two putative CaM-binding motifs 

(CBM1-2) are shown as blue ovals. An additional regulatory CaM binding site (RCBM) suggested by 

Vocke and colleagues [298] is also depicted. 

 

In contrast to Ca2+-activated K+ channels, ANO1 does not have canonical Ca2+ binding 

domains or full-feature CaM-binding sites such as EF hands, and IQ domains (however see 

below). In addition, Ca2+ binding appear to be cooperative [165, 202], suggesting that ANO1 

should have more than one Ca2+ binding domain. It has been reported that ANO1 can be directly 

activated by Ca2+, and the first cytosolic loop between TMD2 and TMD3 has a short contiguous 

sequence of acidic amino residues (444EEEEEAVK451) which may be the possible Ca2+-binding 
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region [161, 205, 299]. Five consecutive glutamates (444EEEEE448) may be a binding pocket 

for Ca2+, as proposed for the “Ca2+ bowl” of Ca2+-dependent K+ channels [160, 295, 300]. But 

mutation of these amino acids did not alter Ca2+ sensitivity significantly [205]. In contrast, 

deletion of 448EAVK451 in the first intracellular loop decreased the Ca2+ sensitivity [205, 267]. 

It was recently suggested that the third intracellular loop, which contains two glutamic acid 

residues (702E and 705E), binds Ca2+ directly, and is a main domain controlling the Ca2+ 

sensitivity of ANO1 and ANO2. This hypothesis is based on chimeras of ANO1 and ANO2 and 

mutagenesis of these specific residues [301]. Yu and colleagues found that point mutations of 

702E and 705E caused nearly 100-fold decreases in Ca2+ sensitivity [206].  

Despite good evidence for direct activation of ANO1 by Ca2+, several studies identified 

the direct association between ANO1 and CaM. Two putative CaM-binding motifs (CBM1-2; 

Fig. 3.1) were identified. These sites are different from canonical Ca2+ binding domains, but 

both CBM1 and CBM2 were shown to bind CaM in vitro [236]. These two putative CaM-

binding motifs were implicated in the Ca2+/CaM-dependent regulation of the ANO1 

permeability to bicarbonate [236].  

Vocke and colleagues identified another CaM binding site (RCBM), which is located in 

the first intracellular loop of ANO1 in close proximity to CBM1 (Fig 3.1) [298]. Tian and 

colleagues proposed two CaM-binding sites (CAMBD1 and CAMBD2) in ANO1; CAMBD2 

shows an overlap with the distal part of the RCBM domain [242]. Tian and colleagues reported 

that CaM interacts with ANO1 and regulates its activity, while Jung and colleagues showed 

that CaM only interacted with ANO1 under very high Ca2+ concentrations [236]. Finally, it has 

to be pointed out that the role of CaM in ANO1 functioning has been disputed, because the 

channel retains normal Ca2+ sensitivity in the experimental conditions in which CaM is 

excluded [302, 303]. It also has been shown that ANO1 can be activated without ATP, 
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suggesting that channel phosphorylation is not required [303]. Clearly, further studies are 

needed to improve our understanding of the structural basis of ANO1 activation by Ca2+. 

 

3.1.2 Voltage gating mechanisms of ANO1 

ANO1 does not have known voltage sensing region such as S4 in voltage-gated K+ or 

Na+ channels. However Ca2+ sensitivity of ANO1 displays strong voltage dependence, such 

that higher sensitivity is reported at positive membrane potentials as compared to more 

physiological, negative membrane potentials (see Chapter 1). It is likely that Ca2+ binding 

domain lies within the membrane electric field and couples both voltage and Ca2+ binding to 

channel gating [205]. As mentioned above, there are five consecutive glutamic acids 

(444EEEEE448) localized to the first intracellular loop of ANO1 (Fig 3.1). The last glutamic acid 

of this cluster-448E, is the first residue of a naturally occurring alternatively spliced segment, 

448EAVK451 (Fig 3.1) [267]. Exclusion of 448EAVK451 was reported to reduce the voltage 

dependence of ANO1 activation significantly [267]. However, another study reported that the 

deletion of 448EAVK451 decreased apparent Ca2+ affinity of the channel [205]. In contrast, 

mutating the adjacent four glutamic acids to alanines (444EEEE/AAAA447) abolished intrinsic 

voltage dependence without altering the apparent Ca2+ affinity [205]. In light of these results 

the authors suggested that residues of 444EEEEEAVK451 do not encompass the true Ca2+ binding 

site, but may instead be important to the coupling between voltage and Ca2+ sensitivity of the 

channel [205]. The authors hypothesized that the depolarization change the Ca2+ binding site, 

and drive Ca2+ into the binding site under the electrical field [205]. The mechanisms for 

voltage-dependent control of ANO1 channel gating and gating cooperation between Ca2+ and 

voltage require further investigation. 
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3.1.3 ANO1 gating by heat 

Temperature is another gating mechanism which regulates the activity of ANO1. As 

discussed, ANO1 is expressed in nociceptive neurons in the DRG which are excited by noxious 

heat and express a noxious heat sensor, TRPV1. Interestingly, ANO1 was also found to be 

activated by high temperature with a threshold of ~44°C [256, 304]. Heat-induced opening of 

ANO1 depolarized DRG neurons. In addition, pharmacological block or deletion of ANO1 was 

found to reduce thermal hyperalgesia; mice with reduced ANO1 levels by siRNA or tissue-

specific gene disruption displayed reduced sensitivity to hot temperatures. These results 

suggest that ANO1 is a heat sensor that mediates the perception of noxious heat [256]. 

 

3.1.4 Interaction of ANO1 with other proteins 

Perez-Cornejo and colleagues identified potential accessory subunits of ANO1 by a 

highly sensitive quantitative proteomic approach (stable isotope labeling by amino acids in cell 

culture (SILAC) proteomics). The authors made a HEK293 cell line stably expressing ANO1, 

tagged a triple FLAG epitope, and then stabilized the ANO1 protein complex by using a 

crosslinking approach. They found that ANO1 interacted with the actin-based cytoskeleton 

network, including the actin-binding regulatory ERM proteins ezrin, radixin, moesin, and 

RhoA, all of which link actin to the plasma membrane and coordinate cell signaling events 

[305]. The actin cytoskeleton may regulate ANO1 function by modulating ANO1 channel 

gating, directing trafficking ANO1 to the membrane, or assembling ANO1 into signaling 

networks [305]. The same group also identified another group of proteins interacting with 

ANO1, included a SNARE protein complex containing vesicle-associated membrane protein 3 

(VAMP3), syntaxins-2 and -4, and the syntaxin-binding proteins munc18b and munc18c. The 

role of these interactions are presently unknown but may include regulation of ANO1 

trafficking [305].  
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3.1.5 Regulation of ANO1 properties by alternative splicing 

Alternative splicing may also provide us with some clues about the ANO1 function and 

regulation. ANO1 splice variants containing different combinations of four alternatively-

spliced segments, termed a, b, c and d were reported [203] (Fig 3. 1). There are 1,008 amino 

acid residues in ANO1 segments a through d. Segments a and b are located on the N terminus 

while segments c and d are in the first intracellular loop connecting TMD2 and TMD3. Segment 

a codes for 116 amino acid residues and has been considered to role in channel voltage 

dependence [267]. This function was suggested because an ANO1 splice variant lacking this 

segment displays reduced voltage dependence. Segment b is important for Ca2+-sensitive 

gating. The variant (ac) shows higher Ca2+ sensitivity as compared to the variant (abc). In 

addition, high Ca2+ inhibits the activity of the variant (ac), although the exact reasons for this 

phenomenon are not clear [267]. Segment c is located in the first intracellular loop and codes 

for four amino acids (448EAVK451). The splice variant with exclusion of segment c has a 50-

fold lower affinity to cytosolic Ca2+  [205]. However, another group found that the splice variant 

lacking segment c resulted in channels with reduced activation at positive membrane potentials 

[267]. The first intracellular loop includes five consecutive glutamates (444EEEEE448), 

including E448 of segment c. It has been suggested that this domain participates in Ca2+ sensing, 

but studies show that these glutamate residues have no or very little effect on apparent Ca2+ 

affinity, and are more likely involved in sensitivity of ANO1 to voltage [205]. Finally, 

alternative exon 15 codes for 26 amino acids (segment d)  in the first extracellular loop, but the 

physiological significance of this segment is unclear [267]. These results show how alternative 

splicing of ANO1 might provide us with explanations of why CaCCs in various cell types have 

different biophysical properties [162]. 
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3.2 Aims  

The aim of this part of the study was to investigate activation by Ca2+ of ANO1 channels 

heterologousely expressed in HEK293 cells and activation by Ca2+ of native CaCCs in small-

diameter DRG neurons. 

 

3.3 Results 

3.3.1 Ca2+-activated Cl- currents recorded in HEK293 cells transfected with ANO1 

HEK293 cells were transfected with mouse ANO1 cDNA, and recorded using the 

whole-cell patch clamp technique using pipette solutions with free intracellular Ca2+ 

concentration buffered to either 100 nM (control condition) or 1 µM. When untransfected 

HEK293 cells were recorded with 100 nM Ca2+ or 1 µM Ca2+ pipette solutions, steady-state 

currents at a holding potential of –60 mV were negligible (Fig. 3.2A). A different picture was 

observed in ANO1 transfected cells. At 100 nM free intracellular Ca2+, the steady-state inward 

current was still very small – 12 ± 2.5 pA; n=5; Fig. 3.2B. In contrast, when recordings were 

made using 1 µM Ca2+ pipette solution, 13 of 13 ANO1-transfected HEK293 cells displayed 

large inward currents of a mean amplitude of  550 ± 20.8 pA at –60 mV (Fig. 3.2C-D). Five of 

thirteen cells demonstrated a transient activation of the current followed by a decrease in 

inward current amplitude (Fig. 3.2C), while a plateau was seen in the remaining eight cells 

(Fig. 3.2D). When recorded with 1 µM free Ca2+ in the pipette, voltage steps from −120 to 120 

mV (in 10 mV increment) elicited a typical ICaCC characterized by a slow exponentially 

developing current at +120 mV that generally reached a steady-state level at the end of 1 second 

steps (Fig. 3.2E, n=2). ANO1 current-voltage relationships were analysed using voltage ramp 

protocol (Fig. 3.2F). The currents in ANO1-transfected cells were recorded with 17, 225 and 

600 nM free Ca2+ pipette solutions, and currents were evoked by voltage ramps from −60 to 

100 mV (n=5, contributed by Yani Liu). These currents displayed hallmarks of CaCC currents: 
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the reversal potential was about 0 mV as expected (n=5, Fig. 3.2F). Elevating the pipette free 

Ca2+ concentration from 225 nM to 600 nM increased Cl− current density and induced outward 

rectification, increasing the mean rectification index (I60/I−60) from 2.11 ± 0.1 to 4.47 ± 1.5 

(n=5, Fig. 3.2G). 

NFA (100 μM), a common CaCC blocker, potently inhibited such currents (Fig. 3.2E, 

n=3). Shown in Fig. 3.2G is a time series of the steady-state inward current recorded from the 

ANO1-transfected HEK293 cell maintained at a holding potential of –60 mV with 1 µM Ca2+ 

pipette solution. Bath application of NFA reversibly inhibited the Ca2+-activated current (90% 

± 15%, n=4).  
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Figure 3.2 Ca2+ activates a current in HEK293 cells transfected with ANO1. (A) Whole-cell currents 

recorded in untransfected HEK293 cell at a holding potential of –60 mV in the presence of 1 µM free 

Ca2+ in the recording electrode. (B) Whole-cell currents recorded in HEK293 cell transfect with ANO1 

plasmid at a holding potential of –60 mV in the presence of 100 nM free Ca2+ in the recording electrode. 
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(C, D) Whole-cell currents recorded in HEK293 cells transfected with ANO1 plasmid at a holding 

potential of –60 mV in the presence of 1 µM free Ca2+ in the recording electrode. Representative current 

traces showing inward currents induced by intracellular Ca2+ shown in (E). Representative current traces 

recorded in ANO1-transfected cells during 120 ms voltage steps from –120 to +120 mV in the presence 

of 100 nM or 1 µM free Ca2+ in the recording pipette (top and middle panels, as indicated). Also shown 

are current responses in after bath application of NFA (1 µM free Ca2+ in the pipette; lower panel). (F) 

Whole-cell currents recorded in an ANO1-transfected HEK293 cell at a holding potential of –60 mV in 

the presence of 1 µM free Ca2+ in the recording electrode. Bath application of 100 µM NFA was 

performed during the period indicated by the bar. (G) Whole-cell currents recorded from HEK293 cells 

expressing ANO1 in the presence of 17, 225 or 600 nM [Ca2+]i, (as indicated) in response to voltage 

ramps from -60 to +100 mV (n=7). Data are given as mean ± SEM. 

 

3.3.2 Activation of CaCC in DRG neurons by global Ca2+ elevation 

We next analysed CaCC current in cultured small DRG neurons. Recordings were made 

from cultured small-diameter (~20 µm) DRG neurons with whole-cell; as characterised by the 

Gamper’s group earlier, these neurones are predominantly (~70%) capsaicin-sensitive [6, 306]. 

Thus, we consider this neuronal population as predominantly nociceptive. Majority of these 

neurons also express ANO1 and display CaCC [7]. We used high concentration of Ca2+ (10 

µM) in the patch pipette to test if high global Ca2+ rise can activate CaCC in these neurons. As 

shown in Fig. 3.3A, CaCCs were activated in only about ~15% of the small DRG by being 

exposed to high global Ca2+. It is possible that ANO1 was either not expressed or expressed at 

a very low level in the majority of small DRG neurons under our experimental conditions. In 

order to exclude this possibility, 1 µM BK was bath-applied to voltage-clamped DRG neurons. 

Previous evidence from our own laboratory has indicated that stimulation of BK elicits an 

increase [Ca2+]i in DRG neurons [7]. As shown in Fig. 3.3B and C, 12 neurons in which dialysis 

of 10 µM global free Ca2+ did not induce inward current responded to BK with a prominent 

inward current. Some studies suggest that at very high concentrations Ca2+ may inhibit ANO1 

[205]. In order to exclude this possibility, we used 1 µM free Ca2+ pipette solution. However, 
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at 1 µM global free Ca2+, there was still no inward current activation (Fig 3.3 B and D). Our 

data therefore suggested that for whatever reason endogenous ANO1 channels in DRG neurons 

are very poorly sensitive to global Ca2+ elevations.  

 

3.4 Discussion 

In this chapter, we found that heterologous expression of mouse ANO1 in HEK293 cells 

produced CaCC with properties similar to those of recombinant ANO1 currents reported by 

other studies [151, 205-207], such as Ca2+ dependence and outward rectification. When holding 

HEK293 cells at -60 mV, dialysis of 1 µM of free Ca2+ via patch pipette activated inward current 

which was sensitive to the “classical” CaCC inhibitor, NFA. These results were expected. 

 

After ANO1 was  identified as a CaCC candidate in 2008, numerous groups found that 

ANO1 contributed to CaCC current in many native cells, including VSM cells, salivary acinar 

cells, DRG neurons and others [151, 202, 208, 210, 224, 229, 307-309]. 

 



70 
 

 

 

 

Figure 3.3 Ca2+ activates an NFA-sensitive inward current in small DRG neurons. (A) Example steady 

state current at –60 mV recorded from a neuron in which pipette dialysis of 10 µM free Ca2+induced an 

NFA-sensitive inward current. Bath application of 100 µM NFA was performed during the period 

indicated by the bar. (B) Representative current traces showing a neuron in which inward current was 

not induced by 10 µM free Ca2+ but induced by BK (BK, 1 µM), and capsaicin (CAP, 1 µM) in the same 

neuron. Traces were obtained by continuous recording at a holding potential of –60 mV. (C) Example 

of the whole-cell recording from a neuron in which at dialysis of 1 µM free Ca2+ did not induce an 

inward current. (D) Summary data for the (A) showing the proportion of the neurons responded to the 

dialysis of 10 µM free Ca2+ with an inward current. (E) Summary data for (B) showing that in a 

significant proportion of DRG neurons in which dialysis of 10 µM free Ca2+ was unable to produce an 

inward current BK did induce CaCC. 

 

Most of the reported biophysical properties of recombinant ANO1 channels are largely 

in agreement with the properties of native CaCCs in many tissues (see also Chapter 1 and the 

introduction to this chapter). In my study, I used rat DRG tissue to study ANO1 regulation. 

Unfortunately thus far I have been unable to clone a full-length rat ANO1, although I have 
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successfully cloned three intracellular regions of the rat ANO1 channel (see Chapter 6). The 

amino acid sequences of rat ANO1 are 96% identical to the mouse ANO1 and, therefore, the 

mouse ANO1 clone has been used here. However, differences between mouse and rat clones 

are mostly localized to the intracellular N-termini of ANO1. It is therefore possible that this 

divergence affected ANO1 regulation. Therefore, in future, plasmids containing the full-length 

rat ANO1 will be needed to complement studies performed on rat DRGs. 

This study made use of symmetrical Cl- concentrations for intra-and extra-cellular 

solutions. For intracellular solutions, K+ was replaced by Cs+ (impermeable for K+ channels), 

while in extra-cellular solutions Na+ was replaced by TEA (impermeable for most ion channels). 

Thus the permeable ions in our system were Cl- and Ca2+ although only for Cl-  was the 

equilibrium potential near 0 mV. Reversal potentials of the Ca2+-activated currents in ANO1-

transfected HEK293 cells were all near 0 mV (Fig. 3.2F), confirming that these were indeed 

Cl- currents. 

As expected, Cl- current in ANO1-transfected HEK293 cells was blocked by the CaCC 

blocker NFA. We found that inward currents could be reactivated by washing out NFA in the 

presence of 1 µM intracellular Ca2+. A similar effect has also been reported by others [173, 

310]. It is possible that NFA binds to the intracellular pore region of ANO1, and so that the 

anion flux is reduced, while anions still go through from the pore after removing NFA [310]. 

Here we used only a 100 µM concentration of NFA, because our group has determined that 

100 µM NFA can block CaCC in DRG neurons. Similar results have been observed in other 

tissues [7, 307, 311]. Ni and colleagues [310] obtained the dose-dependency of NFA inhibition 

of ANO1 in excised patches. In HEK293 cells transfected with ANO1, the IC50 of NFA was in 

the range of 18–20 µM upon 20 µM Ca2+ at +40 mV [247]. Interestingly, in vascular myocytes, 

NFA had paradoxical effects on CaCC: at 100 µM, NFA partly inhibits CaCC at positive 

potential, but increased inward current upon repolarization to negative potentials [173, 174]. 
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This biphasic effect of NFA on recombinant ANO1 has also been reported [195]. It will be 

important to clarify the mechanism of NFA action on ANO1 and native CaCCs in the future.  

Kunzelmann’s group has found that HEK293 cells have some endogenous ANO1 [312], 

but we did not find any currents upon dialysis of high concentration of Ca2+ into the 

untransfected HEK293 cells using the ramp protocol from -60 to +80 mV. This suggests that 

the levels of endogenous ANO1 expression and/or activity must be low. Similar results were 

obtained by others [195]. HEK293 is a widely used expression system for studying properties 

of recombinant ANO1 [233, 305]. 

In some ANO1-transfected HEK293 cells, Cl- current evoked by pipette solutions 

containing 1 µM free Ca2+ exhibited a rapid rundown immediately after reaching maximal 

amplitude, and then remained constant at a lower steady-state amplitude level (Fig. 3.2C). 

Another group also reported similar results, finding that the CaCC current in Xenopus oocytes 

undergoes a prominent rundown at [Ca2+]i>1 μM [165]. There are several possible mechanisms 

that could account for ANO1 rundown, perhaps one involving a co-factor that is being diluted 

during the whole-cell experiment. For example, PIP2-sensitive ion channels often run-down in 

whole-cell or excised patch experiments due to the loss of membrane PIP2 [313]. Although 

ANO1 channels were reported to be inhibited by PIP2 [314], diffusion of another co-factor 

could be involved here. Similarly, channel phosphorylation status can be affected during the 

dialysis of cytosol during the whole-cell recording which, in turn, could cause the rundown of 

channel activity.  

Although previous reports showed the presence of CaCC in sensory neurons [315-317], 

our group and others observed that Ca2+ influx through VGCC is largely ineffective in 

activating CaCC in small DRG neurons [7, 257]. Strikingly, while in HEK293 cells 

overexpressing ANO1 dialysis of 1 µM Ca2+ or less (Fig. 3.2) induced channel activation. A 

rather different picture was observed in DRG neurons, in which dialysis of as high a 
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concentration of free Ca2+ as 10 µM was relatively ineffective in activating CaCC in cultured 

small-diameter DRG neurons; only a small minority (10-15%) of the neurons were observed 

to be activated by this procedure (Fig. 3.3).  

It is possible that small DRG neurons do not express ANO1. However, our group and 

others have reported robust expression and functional activity of ANO1 in the sensory neurons 

and particularly in nociceptors [7, 202, 256]. Another possibility is that excessively high 

concentrations of intracellular Ca2+ can inhibit ANO1/CaCC. Such a phenomenon has indeed 

been reported [165, 221]. CaCCs have been reported to have several sub-conductance states: 

3.5, 1.8 and 1.2 pS [221], indicating different open states. It has been hypothesized that Ca2+ 

binds site (s) that can be located within the channel pore. Therefore, the binding of Ca2+ ions 

may obstruct the flow of Cl- ions through the channel. As more and more Ca2+ ions are bound, 

the unitary conductance is reduced, such that when three Ca2+ ions bind the pore, the 

conductance for Cl- is lower than the conductance with a single Ca2+ ion [165, 221]. However, 

two observations contradict such Ca2+-dependent inhibition of ANO1/CaCC in our DRG 

recordings: 1) whole-cell dialysis of 1 or 10 µM free Ca2+ was also largely ineffective in 

inducing CaCC current; 2) application of BK induced CaCC in the same neurons in which 

dialysis of 10 µM Ca2+ was unable to induce inward current. ANO1 was shown to underlie 

CaCC in small DRG neurons with the use of siRNA knock-down [7] and by knocking-out 

ANO1 gene in mice [256]. Our previous studies have shown that BK can activate ANO1 in 

small DRG neurons [7]. Therefore, the most likely explanation for the results reported here is 

that while ANO1 is expressed in most small-diameter DRG neurons and is functional, global 

Ca2+ is, for some reason, unable to activate ANO1. Such an interpretation is in agreement with 

the poor coupling between the VGCC and CaCC in small DRG neurons, but it also implies that 

Ca2+ signals produced in DRG neurons by BK represent a different type of Ca2+ signal which 

is preferentially coupled to ANO1/CaCC (and therefore in this sense is not “global”). The 
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mechanisms underlying this specificity will be investigated in the next chapters. Of note here 

is the fact that the percentage of neurons responding to BK with inward current under the high 

global Ca2+ conditions was ~50%, which is similar to the proportion of neurons in which BK 

induced CaCC under physiological Ca2+ concentration [7]. 
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Chapter 4. Activation of ANO1 by GPCR 

  4.1 Introduction 

4.1.1 GPCR families 

The GPCRs comprise a large superfamily of membrane proteins that respond to 

different extracellular stimuli and are expressed in cells of virtually every tissue and organism, 

from yeast to mammal. All GPCRs have a common basic structure: seven membrane-spanning 

regions, an N-terminus facing the extracellular space, a C-terminus lying in the cytoplasm, 

three cytoplasmic loops and three extracellular loops [318]. GPCRs are involved in a wide 

variety of physiological processes such as regulation of behavior and mood, the sense of smell, 

control of cell division/proliferation, regulation of neuronal firing, modulation of ion channels, 

modulation of homeostasis and modification of cell morphology. Ligands of GPCRs bind to a 

pocket formed by membrane-spanning regions, thereby inducing conformational changes that 

activate the receptor. Associated with the receptor is a trimeric G protein complex which 

includes three subunits: α, β and γ. At rest the complex is inactive and is reversibly bound to 

GDP. The G-protein complex is allosterically activated by the binding of a ligand to the receptor, 

which entails the exchange of GDP for GTP at the G-protein's α-subunit. The GDP-GTP 

exchange causes the subunits of the G-protein complex to dissociate into a Gα-GTP monomer 

and a Gβγ dimer, which are now free to trigger their corresponding intracellular signaling 

cascades [319, 320]. There are thousands of genes encoding GPCRs in the mammalian genome. 

Based on structural and functional similarities, GPCRs are split into 6 classes (A-F or 1-6). 

The Gα subunits trigger two main signal transduction pathways: the cAMP signalling 

pathway and the IP3/diacylglycerol (DAG) signalling pathway [321, 322] (Fig. 4.1). In addition, 

some signalling events are mediated by Gβγ; for example, Gβγ activates phosphoinositide-3-

kinase (PI3K) isoforms which modulate the activity of VGCC and K+ channels [323]. 
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GPCRs regulate the activity of many ion channels and signalling molecules in sensory 

neurons including TRPV1 and TRPA1, ATP-gated P2X channels, acid-sensing ion channels, 

Tetrodotoxin-resistant Na+ channels, voltage-dependent Ca2+ channels, and M-type K+ 

channels [324-329]. These mechanisms are responsible for modulation of neuronal excitability, 

and therefore are closely associated with the modulation of pain transmission.  

 

4.1.2 The BK receptor and inflammation pain 

BK is a short, pro-inflammatory peptide which consists of nine amino acids (H-Arg-

Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg-OH) [330]. Carboxypeptidase removes carboxy-terminal 

Arg from BK to generate another active metabolite, desArg9-BK (dBK) [331]; the actions of 

BK are mediated through the activation of B2R, while dBK is the agonist of the bradykinin 

receptor B1 (B1R) [331]. An important difference between the two receptor types is the fact that 

B2Rs are expressed constitutively, while B1Rs are normally absent from tissues unless induced 

by phenomena associated with inflamed and/or damaged tissues [332-334]. 
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Figure 4.1 Schematic summary of heterotrimeric G protein signaling. GPCR forms reversible 

associations with a trimeric G protein complex comprising of α, β, and γ subunits. The activation of 

GPCR induces a conformational change in the receptor that triggers an exchange of GDP for GTP at 

the α-subunit, and a dissociation of βγ subunits. Gα and Gβγ trigger specific intracellular signaling 

pathways. Gα subunits include Gαs, Gαi/o, Gαq/11 and Gα12/13. Gαs enhances the activity of adenylyl cyclase 

(AC) and produces cAMP, which affects the activity of ion channels and PKA isoforms.Gαi/o inhibits 

AC activity and decreases cAMP levels. Gαq/11 activates PLCβ, which cleaves PIP2 into the IP3 and 

DAG. IP3 induces release of Ca2+ from the ER, while Gα12/13 activates the small GTPase, Rho, which 

participates in multiple intracellular cascades including cytoskeletal rearrangements. Gβγ modulates the 

activity of such ion channels as G-protein-regulated inwardly rectifying K+ channels, VGCC, as well as 

PLCβ and PI3K. 
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 The B1Rs and B2Rs are coupled to Gq or G11 types of Gα, and act primarily by 

stimulation of PLCβ and phospholipase A2 (PLA2) pathways [335-337] (Fig. 4.1). Activation 

of PLCβ leads to hydrolysis of PIP2 into IP3 and DAG. IP3 increases in intracellular Ca2+ and 

DAG activates PKC [338]. B1R also leads to activation of PLA and release of prostaglandins 

[339, 340]. Activation of B1Rs has been shown to have an effect on renal function and 

vasodilatation of blood vessels [341]. B2Rs have many effects in a number of tissues. 

Stimulation of B2R contributes to such immune responses as local tissue inflammation in 

rheumatoid arthritis, local tissue inflammation, and vasodilatation of blood vessels. 

In nociceptive somatosensory pathways, most effects of BK, including acute 

inflammatory reactions, oedema, pain and hyperalgesia, are mediated by the B2Rs that are 

constitutively expressed in the peripheral terminals of sensory nerve fibers [342-345]. Tissue 

damage causes local BK production by the kinin-kallikrein system, and the activation of B2Rs 

within peripheral terminals of nociceptive fibers leads to their excitation and the release of SP 

and CGRP. SP and CGRP further amplify local immune responses [346]. Moreover, BK can 

enhance release of prostaglandins, cytokines and nitric oxide from sensory neurons, endothelial 

and immune cells or fibroblasts [3, 342, 347]. The increase of BK-induced release of 

neuropeptides is augmented by prostaglandins, a positive feedback that modulates the activity 

of ion channels and the excitability of sensory neurons [3, 342, 347]. By acting on B2Rs, 

BK sensitizes and depolarizes the peripheral terminals of sensory nerve fibers, thereby 

promoting hyperalgesia [342]. B2Rs play roles in acute inflammation pain, while B1Rs play 

roles in the chronic phase of inflammatory pain processes, because B1R expression is 

upregulated after long-term exposure to inflammatory mediators. Recent studies suggest that 

B1R expression in sensory fibrosisis induced by pro-inflammatory cytokine networks such as 

IL-1β [348-350]. B1R and B2R knockout mice show hypoalgesia against painful stimuli [351, 
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352], which is strong evidence that BK receptors are potent regulators of local inflammation 

which also contribute to inflammatory pain. 

 

4.1.3 Protease activated receptors (PARs) and inflammation pain 

Protease activated receptors (PARs) are a subfamily of related GPCRs that are activated 

by cleavage of their N-terminal domains by serine proteases [353]. Hydrolysis reveals a 

tethered peptide ligand, which binds to the ligand binding domain in a second extracellular 

loop [354] and activates downstream signaling (Fig. 4.2). Most of the PAR family act through 

the actions of Gαi (cAMP system), Gα12/13 (Rho and Ras activation), and Gαq (Ca2+ signalling) 

to cause cellular actions [353]. These receptors are highly expressed in platelets, but also in 

endothelial cells, myocytes, and neurons [353]. Four PAR family members have been identified 

to date: PAR1, PAR2, PAR3 and PAR4. PAR1, PAR3 and PAR4 are thrombin receptors; PAR2 

is not activated by thrombin, but can be activated by trypsin or trypsin-like protease. PAR4 

needs 10 to 100-fold higher concentrations of thrombin as compared to PAR1 and PAR3 [355-

357]. Synthetic peptides corresponding to the “tethered ligand domains of PARs are often used 

as pharmacological activators of these receptors in experiments. Thus, the peptide SLIGKV-

NH2 (Ser-Leu-Ile-Gly-Lys-Val-NH2) selectively activates PAR2; the peptide TFLLR-NH2 

selectively activates PAR1; and peptide AYPGKV-NH2 is specific for PAR4 [358, 359]. In my 

thesis, I used the peptide SLIGKV-NH2 to activate the PAR2 receptors, and I will refer to it as 

the “PAR2 peptide ligand” or “PAR2-PL”. Like BK receptors, the signal transduction pathway 

of PAR2 is mediated by the activation of phospholipase C through Gαq/11 protein (Fig 4. 3). 

Like B2Rs, PAR2 is also found in sensory neurons, especially in C-fibers [360]. 

Mounting evidence suggests that direct activation of PAR2 in sensory neurons contributes to 

inflammatory nociceptive pathways [6]. Intraplantar injection of PAR2-PLs induced the release 

of neuropeptides such as SP and CGRP [361]. Intraplantar injection of sub-inflammatory doses 
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of PAR2-PL induced hyperalgesia in response to a thermal or mechanical stimulation [362]. 

Other studies have shown that PAR2 agonists enhanced capsaicin-evoked release of CGRP in 

isolated DRG neurons [363]. Interestingly, PAR2 is functionally coupled to TRPV1 channels 

in nociceptive neurons. Thus, PAR2 was shown to potentiate responses of TRPV1 to capsaicin 

[364]. In addition, activation of PAR2 decreased the temperature threshold for TRPV1 

activation in HEK293 cells expressing both PAR2 and TRPV1. In accordance with these 

observation, activation of PAR2 leads to amplification and persistence of pain responses, 

producing thermal hyperalgesia [364, 365]. The TRPV1 antagonist capsazepine was able to 

inhibit PAR2-induced thermal hyperalgesia [364, 365].  

In summary, both B2R and PAR2 are coupled to the Gαq11-type of G proteins, which 

causes robust release of IP3 and Ca2+. Both receptor types have been found to express in small 

DRG neurons. Peripheral injections of PAR2-PL or BK produce pain and hyperalgesia. During 

inflammation, CaCCs are recorded in small DRG neurons and genetic knock-out or knock-

down experiments demonstrated that CaCC activity in small DRG neurons depends on ANO1 

expression [7, 256]. It has also been shown that BK activates ANO1 in DRG neurons which, 

in turn, leads to depolarization and an increase in AP firing frequency [7]. Finally, inhibition of 

ANO1 channels in peripheral nociceptive terminals in vivo reduces BK-induced pain [7, 366]. 
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Figure 4.2 Mechanism of activation of PARs by proteinase [367]. PARs are a subfamily of GPCRs 

activated via proteolytic cleavage of their N-terminal domain by serine proteinases. Cleavage reveals a 

“hidden” N-terminal sequence that binds to and activates the receptor. Proteases specific to each PAR 

subtype are listed in the box above. 
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Figure 4.3 PAR2 and its downstream signaling pathways (PLC, PKA, and PKCε) [368]. Activation 

occurs through proteolytic cleavage by trypsin or tryptase, which leads to the dissociation of Gαq/11 from 

βγ subunits, and activation of PLCβ. PLCβ then cleaves PIP2 into IP3 and DAG. IP3 binds to the IP3Rs 

in the ER and triggers Ca2+ release, while DAG activates the PKCε. 

 

4.2 Aims 

In our previous studies, we found that BK induced CaCC in small DRG neurons via 

B2R. B2R is coupled to the same signaling pathways as PAR2 (Fig. 4.3), and PAR2 is also 

abundantly expressed in DRG neurons. Before this work, it was not known that PAR2 could 

activate CaCC in these neurons.  

The experiments in this chapter have two purposes: 1) to test whether PAR2, like B2R, 

can activate CaCC in small-diameter DRG neurons; and 2) to further investigate preferential 

coupling of ANO1/CaCC in DRG neurons to Ca2+ release from the ER. 
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4.3 Results 

4.3.1 BK-and Ca2+-activated Cl- current in HEK293 and small DRG neurons 

In our previous study we found that BK induced an inward current in small DRG 

neurons, and that this current was a Cl- current associated with CaCC/ANO1 [7]. In order to 

test if exogenously expressed ANO1 channels can also be activated by BK, we expressed 

ANO1 and B2R in HEK293 cells along with GFP for visual identification of transfected cells, 

and tested the current response to BK stimulation in whole-cell patch clamp recordings. The 

pipette solution contained 100 nM free Ca2+. Under these conditions, application of 1 µM BK 

to cells expressing B2R only evoked negligible inward currents (Fig. 4.4A, n=5). By contrast, 

application of 1 µM BK to ANO1/B2R-expressing cells evoked robust inward currents (218 ± 

70 pA, n=3) when the membrane potential was held at -60 mV. This inward current was 

completely inhibited by 100 µM NFA (Fig. 4.4B). Next we tested the response of small DRG 

neurons to BK stimulation in whole-cell patch clamp recordings. As shown in Fig. 4.4C and D, 

application of 1 µM BK to small DRG neurons evoked inward currents when the membrane 

potential was held at -60 mV (131 ± 17 pA, n=11). We then compared the BK-activated Cl- 

current in B2R-expressing HEK293 cells and in DRG neurons using the voltage ramp protocol 

(1s voltage ramp form −60 to +80 mV). As shown in Fig. 4.5A, BK-activated Cl- currents in 

B2R-expressing HEK293 cells which were not overexpressing ANO1 was very small 

(negligible currents, n=8). By contrast, BK activated prominent Cl- currents in ANO1/B2R-

expressing cells (Fig. 4.5B and C). These currents displayed hallmarks of CaCC currents, such 

as outward rectification and reverse potential at ~0 mV. The mean rectification index (I60/I−60) 

was 1.52 ± 0.47 (n=3). Very similar BK-activated Cl- currents were also recorded in small DRG 

neurons (Fig. 4.5D and E). These currents also displayed hallmarks of CaCCs such as outward 

rectification, the reversal of potential at 0 mV, and a mean rectification index (I60/I−60) of 5.21 
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± 0.08 (n=3). In these experiments we used TEA to replace Na+, Cs+ to replace K+, and Cd2+ to 

block Ca2+ current. Thereby the membranes were only permeable to Cl-. 

 

 

Figure 4.4 BK activates Ca2+-activated Cl- current. (A) HEK293 cells transfected with B2R only. In the 

presence of 100 nM free Ca2+ in the recording electrode, 1 µM BK indicated negligible inward currents. 

(B) HEK293 cells transfected with ANO1 and B2R. In the presence of 100 nM free Ca2+ in the recording 

electrode, 1 µM BK induced prominent inward current which was inhibited by 100 µM NFA. (C) 

Representative current trace recorded from small DRG neuron showing inward current induced by BK 

(1 µM). Traces were obtained by continuous recording at a holding potential of –60 mV. (D) Summary 

of the amplitudes of BK-induced CaCC current for (A), (B), and (C). Data are presented as mean ± 

SEM. * P<0.05 vs. HEK293 cells transfected with B2R only. 
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Figure 4.5 Ca2+-activated Cl- currents evoked by voltage ramp protocol. (A) HEK293 cells transfected 

with B2R only. In the presence of 100 nM free Ca2+ in the recording electrode, voltage ramps –60 to 

+100 mV induced negligible currents with or without 1 µM BK. (B) HEK293 cells transfected with 

ANO1 and B2R. In the presence of 100 nM free Ca2+ in the recording electrode, 1 µM BK induced 

robust outwardly-rectifying currents. (C) Summary of the I-V relationship of BK-induced CaCC current 

for (B) (n=8); data are given as mean ± SEM. (D) Representative current traces recorded from small, 

capsaicin-sensitive DRG neuron showing currents induced by BK (1 µM). Traces were obtained by 

ramp step protocols from –60 to +80 mV. (E) Summary of the I-V relationship of BK-induced CaCC 

current for (D) (n=7). Data are given as mean ± SEM. (Data shown in panels A-C was contributed by 

Yani Liu). From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] Reprinted with permission from 

AAAS. 

 

4.3.2 PAR2-PL activated Ca2+-activated Cl- current in HEK293 and small DRG 

neurons 

Since PAR2 signaling is very similar to that of B2R in DRG [6], we investigated whether 

PAR2 can also induce CaCC activation. First, we expressed ANO1 and PAR2 in HEK293 cells 

along with GFP for visual identification of transfected cells and tested the responses to PAR2 

agonist (PAR2-PL) application in a whole-cell patch clamp recording. The pipette solution 

contained 100 nM free Ca2+. Under these conditions, application of 10 µM PAR2-PL to PAR2 

expressing cells evoked negligible inward currents at a holding potential of –60 mV (Fig. 4.6A, 

n=5). In contrast, application of 10 µM PAR2-PL to ANO1/PAR2-expressing cells evoked 

robust inward currents when the membrane potential was 181 ± 45pA (Fig. 4.6B, n=3). This 

inward current was strongly inhibited by 100 µM NFA (Fig. 4.6B and D). NFA was applied 

after the inward current reached its maximal amplitude. Next, we tested PAR2-PL can activate 

CaCC in small DRG neurons.  
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Figure 4.6 PAR2-PL activates Ca2+-activated Cl- current. (A) HEK293 cells transfected with PAR2 only. 

In the presence of 100 nM free Ca2+ in the recording electrode, 10 µM PAR2-PL induced negligible 

inward currents. (B) HEK293 cells transfected with ANO1 and PAR2. In the presence of 100 nM free 

Ca2+ in the recording electrode, 10 µM PAR2-PL induced prominent inward current which was inhibited 

by 100 µM NFA. (C) Representative current trace recorded from small DRG neuron showing inward 

current induced by PAR2-PL (10 µM). HEK293 cells transfected with PAR2 only. (E) Representative 

current trace recorded from small DRG neurones dialyzed for 10 min with 10 mM EGTA. Neither BK 
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nor PAR2-PL was able to induce an inward current under such conditions. (F) The number of neurons 

responsive to either PAR2-PL or BK in control conditions and after 10 min EGTA dialysis. 

 

As shown in Fig 4.6C and D, application of 10 µM PAR2-PL to such neurons evoked 

robust inward currents of 185 ± 15 pA (n = 6; holding potential of -60 mV). In order to confirm 

that the Cl- currents induced by BK or PAR2-PL are dependent on Ca2+, we depleted 

intracellular Ca2+ stores with high concentration of EGTA.  Dialysis with high levels of EGTA 

or BAPTA for a sufficiently long time depletes the intracellular stores of Ca2+ [369, 370]. 

Indeed, dialysis of the cytosol with 10 mM EGTA for 10 min completely abolished the inward 

currents induced by both BK and PAR2-PL (Fig. 4.6E and F). 

 

4.4 Discussion 

In this chapter we found that BK and PAR agonists activated ANO1 in HEK293 cells 

transfected with ANO1 along with B2R or PAR2. We also found that both agonists activated 

ANO1-like inward currents in small DRG neurons. These currents were sensitive to the Cl- 

blocker NFA and also to chelation of cytosolic and ER Ca2+. 

 

In our previous study [7], we characterized the BK-induced inward current in small 

DRG neurons as true CaCC, and determined that ANO1 is the most likely molecular correlate 

of this CaCC current. The following evidence was obtained: i) BK-induced inward current was 

inhibited by Cl- channel blockers NFA and NPPB; ii) the reversal of potential of BK-induced 

inward currents was ~-35 mV in gramicidin-perforated patches, which was similar to the 

reversal of potential of Cl- currents induced by GABA under the same conditions; iii) 

substitution of intracellular Cl- with acetate abolished the BK-induced inward current; iv) 

various techniques that blocked ER Ca2+ release also abolished or reduced the BK-induced 
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inward current. Finally, v) ANO1 siRNA strongly reduced the amplitude of the inward current 

in response to BK in DRG neurons. 

Both PAR2 and B2R belong to GPCR that is mainly couple to Gq/11 type of Gα. These 

receptors activate the PLCβ signalling cascade, which results in Ca2+ release from the ER. 

Accordingly, in our previous study, we found that BK-induced CaCC in DRG neurons by 

means of IP3-mediated Ca2+ release from ER Ca2+ stores [7]. In the present study, we further 

characterised the BK-induced currents in DRG neurons and compared these to the currents 

activated by BK in HEK293 cells overexpressing ANO1 through B2R. The I-V relationship 

showed that the BK-activated currents in DRG neurons have approximately the same voltage 

dependence as compared with BK-induced current in HEK293 cells overexpressing ANO1 and 

B2R. Both currents displayed outward rectification and reversed at 0 mV under conditions in 

which Cl- is the only ion with equal concentrations across the plasma membrane. Although we 

applied the same concentration of BK in both the DRG and HEK293 experiments, we observed 

stronger outward rectification in DRG neurons as compared to HEK293 transfected with B2R 

and ANO1 (Fig. 4.5). As ANO1 rectification depends on intracellular Ca2+, such that at higher 

intracellular Ca2+ levels the inward current increases and the rectification becomes less 

prominent [151, 152], it is reasonable to propose that overexpressed B2R in HEK293 cells 

produce stronger Ca2+ transients as compared to the DRG neurons.  

Recently a novel nociceptive pathway mediated by PAR2 has received much attention. 

Stimulation of PAR2 has been reported to decrease nociceptive thresholds and evoke prolonged 

mechanical and thermal hyperalgesia in an inflammatory pain model (hindpaw injection of 

formalin or capsaicin) [362]. As discussed in the introduction, PAR2 is self-activated by 

proteolytic cleavage of the extracellular amino terminus. The tethered peptide ligands are 

produced during the process of cleavage. This cleavage produces soluble synthetic peptides 

matching the sequences of their cognate tethered ligands which activate PAR2 [371], a 
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phenomenon that we have exploited in the present study. Indeed, we found that PAR2-PLs 

induced an inward current in small DRG neurons, and this current was inhibited by the Cl- 

channel blocker NFA and by Ca2+ chelation. This current was very similar to that induced by 

BK; thus, we identified it as CaCC. Interestingly, CaCC currents in response to both BK and 

PAR2-PL were transient in nature. This transience matches well with the shape of Ca2+ 

transients triggered by these agonists in DRG neurons [6, 7]. The likely reasons for the transient 

nature of Ca2+ and CaCC responses are the limited capacity of the intracellular stores and 

receptor desensitization [372-375].  

The observed overall 67% response rate of DRG neurons to PAR2-PLs fits well with 

the report that approximately 60% of these neurons express PAR2 [6, 361, 376]. Similarly, over 

50% of DRG neurons displayed CaCC in response to BK, which is also consistent with 

previous data on the distribution of BK receptors in DRG [377]. In the following chapters, I 

will describe experiments that further probe coupling of CaCC to the B2R and PAR2. Particular 

attention will be given to the functional interactions between ANO1/CaCC and the IP3-sensitive 

Ca2+ stores, and to the role such interactions might play in CaCC activation.  
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Chapter 5. Identification of a source of Ca2+ for ANO1 activation in small 

diameter DRG neurons 

 5.1 Introduction 

There are many ways in which intracellular Ca2+ concentration can be altered. Ca2+ can 

enter the cell through numerous Ca2+-permeable channels such as voltage-gated Ca2+ channels, 

ligand-gated (e.g. P2X) cation channels, sensory channels (e.g. TRPV1) or store-operated 

channels. In addition, Ca2+ can be released from the ER stores via IP3 or ryanodine receptors. 

Other intracellular sources of Ca2+ (e.g. mitochondria) can also contribute to Ca2+ transients. 

Potentially, all of these pathways may result in activation of ANO1/CaCC. Since activation of 

CaCC in nociceptors is excitatory [7], a mechanism is required to ensure selective coupling of 

CaCCs to Ca2+ signals of particular physiological relevance. Nociceptors are normally silent 

and fire APs only in response to potentially damaging mechanical, thermal or chemical stimuli. 

Since excitation of these neurons may result in pain, it is necessary for such a neuron to be able 

to specifically respond to Ca2+ signals originating only from the relevant sensory events. On 

the other hand, it is useful for a CaCC in nociceptive neuron to be able to “ignore” Ca2+ 

transients originating from electrical activity itself (i.e. via VGCC activation during AP firing). 

Therefore, in the following chapters I have investigated the source of Ca2+ for the physiological 

activation of ANO1 in small DRG neurons. The three major pathways for generating cytosolic 

Ca2+ signals are VGCC, ER release channels, and non-selective cation channels of the plasma 

membrane. These pathways are discussed in the next section. 
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5.1.1 Voltage-gated Ca2+ channels 

Voltage-gated Ca2+ channels (VGCCs) are widely expressed in different cell types, 

including the central and peripheral neurons, skeletal muscle, and cardiac myocytes. VGCCs 

play key roles in many physiological processes, including cell proliferation, apoptosis, 

neurotransmitter release, cell migration, gene transcription, and muscle contraction [378]. In 

neurons, one of the most important roles of VGCCs is regulation of synaptic transmission. In 

brief, the APs arriving to the presynaptic terminals cause depolarization which opens the 

VGCC and trigger Ca2+ influx. This, in turn, leads to the activation of synaptic vesicle release 

machinery. For peripheral nociceptors, this would result in release of excitatory 

neurotransmitter glutamate and a peptide co-transmitter SP [379]. 

As discussed below, VGCCs can be classified into L, N, P/Q, R and T-type channels. In 

addition, VGCCs can be divided into, high-voltage activated (HVA) channels that require 

membrane depolarizations of ~ -40 mV, or low-voltage activated (LVA) channels, which can 

be activated by smaller depolarizations of around −60 mV or even more negative [380]. HVA 

channels include L-(CaV1.1-4), P/Q-(CaV2.1), N-(CaV2.2) and R-(CaV2.3) type channels, while 

LVA channels include T-type (CaV3.1-3) channels. VGCCs consist of an assembly of multiple 

subunits that form a functional channel. Subunits include a pore-forming α1-subunit as well as 

auxiliary β-, α2δ and γ-subunits. The cytosolic β subunits can help the α1 subunit trafficking to 

the plasma membrane, as well as adjusting the activation and inactivation properties of the 

channel [381]. 

The α1 subunit of a VGCC consists of four domains (I-IV), each containing six 

transmembrane segments (S1–S6), cytoplasmic N- terminal, C-terminal, and a number of in-

tracellular loops. The pore is formed by the loop between S5 and S6 of each of four domains. 

These loops contain conserved glutamic acid residues that make the pore permeable and 
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selective for Ca2+ [382]. The S6 segment causes channel inactivation [383], while the S4 seg-

ments voltage sensors [384]. N- and C- terminals are largely responsible for channel 

modulation and regulation.  

L-type channels have been found in VSM, skeletal muscle, cardiac tissue, the CNS, and 

peripheral sensory neurons. Neuronal L-type channels are predominately found at postsynaptic 

membranes and in the somata [385]. These channels were reported to localize to microdomains 

along dendritic spines which enables them to modulate some Ca2+-dependent processes quickly 

and accurately [386]. In some cases, L-type channels can regulate gene expression [387]. P/Q-

type channels (CaV2.1) are found in DRG [388] and TG; studies show the P/Q-type channel 

blocker ω-agatoxin IVA does not have much effect on the APs along Aδ-fibers. Instead it 

strongly inhibits nociceptive input to the spinal cord [389]. In the dorsal spinal cord, P/Q-type 

channels are strongly expressed in interneurons, and play a role in modulating synaptic 

transmission in the spinal dorsal horn [390].  

N-type channels are ubiquitously expressed in neurons and in some other cell types, 

e.g.in neuroendocrine cells, where they regulate neurotransmitter release like P/Q-type 

channels [391]. 

T-type channels (Cav3.1-Cav3.3) are another VGCC subtype that is abundantly 

expressed in cell bodies, axons and peripheral terminals of nociceptive DRG neurons [392]. 

The Cav3.2 type is the dominant isoform [392]. In nociceptors, unlike P/Q and N-type channels, 

T-type channels play a larger role in excitability than in neurotransmission [393]. As T-type 

channels activate at voltages near or even below -60 mV, they also may display a significant 

window current at voltages near the neuronal resting membrane potential [393].  
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5.1.2 Inositol 1, 4, 5-triphosphate receptors (IP3Rs), and Ryanodine receptors 

(RyRs) 

The release of Ca2+ from the ER is mediated by two types of receptors/channels, IP3Rs 

and RyRs. Most of the IP3Rs are expressed in the ER, although the Golgi apparatus, nucleus 

and some secretory vesicles also express IP3Rs. There are three different receptor isoforms of 

IP3Rs: 1, 2 and 3. All isoforms have similar biophysical properties, such as IP3-binding sites, 

Ca2+-gating, and ion conduction [394]. IP3R1 is the most widely expressed in all tissue types 

and at all developmental life stages. Functional IP3Rs are large (∼1200 kDa), tetrameric 

proteins, composed of four identical subunits [395]. Each subunit has membrane-spanning 

domains, an N-terminal domain and a C-terminal region, and an IP3- binding site located at the 

N-terminal domain [396, 397]. The last pair of trans-membrane domains together with the 

intervening luminal loop from each of the four subunits forms the central pore [398].  The 

binding of IP3 with the IP3-binding core (IBC, residues 224–604) in the N-terminal domain 

initiates the conformational change that promotes channel opening [396]. 

IP3 is generated from PIP2 in response to agonist binding to plasma membrane receptors 

that activate PLC (see Fig. 4.3 in the previous chapter). IP3 is a soluble molecule which diffuses 

through the cell to the ER and binds to the IP3R. IP3-triggered channel opening causes a rapid 

increase in cytosolic Ca2+ [399]. Although IP3 is necessary to open native IP3Rs, activation of 

these channels is also regulated by Ca2+ concentration. At concentrations up to ~500 nM, Ca2+ 

works synergistically with IP3 to activate IP3Rs, but higher cytosolic Ca2+ 

concentrations inhibit IP3R opening [400]. The inhibition of IP3R by Ca2+ is thought to be a 

crucial mechanism for ending channel activity and thus preventing cytosolic Ca2+ overload. 

Because Ca2+ signals can be encoded in both temporal and spatial domains, the oscillatory 

nature of IP3-evoked Ca2+ release can carry important functional significance. In general, 

cytosolic Ca2+ diffusion from the IP3R is rather limited. This limitation is mainly attributable 
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to the strong Ca2+ buffering capacity of the cytosol, which creates a steep concentration 

gradient originating from the ER release site. Ca2+ buffering in the cytosol is attributable to 

many cytosolic Ca2+-binding proteins, like CaM and parvalbumins and many other proteins. 

These endogenous Ca2+ buffers bind free Ca2+ ions and decrease the amplitude of Ca2+ 

transients. At the mouth of IP3R, the Ca2+ concentration can surpass 100 µM, whereas the 

concentration may be below 1 µM only a few micrometers away [401]. 

While DRG neurons mostly express IP3R, RyRs are also expressed and contribute to 

Ca2+ signalling [402]. Both RyRs and IP3R belong to the same receptor family. Like IP3R, RyRs 

are also large tetrametric proteins with each monomer consisting of ∼5000 amino acid residues 

[403, 404]. RyRs include three family members: RyR1, RyR2, and RyR3. RyRs are similar in 

structure to the IP3R, particularly in the channel pore region. RyRs can release Ca2+ from the 

endo- and sarcoplasmic reticula (ER and SR respectively), and thus control many Ca2+-

dependent processes within the cell. The RyR1 is mostly expressed in skeletal muscles where 

it plays a major role in excitation-contraction coupling and muscle contraction [405]. The RyR2 

is widely expressed in cardiac muscle and the brain. The RyR3 is found in striated, smooth, 

and cardiac muscle, as well as in the brain, particularly in regions involved in learning and 

memory like the cortex and hippocampus [406, 407]. Ca2+ controls RyR opening, and indeed, 

the binding of Ca2+ is a fundamental requirement for channel activation. When Ca2+ enters the 

cytosol, Ca2+ sensors within RyRs bind Ca2+ and facilitate opening, resulting in release of Ca2+ 

from the SR [408]. The RyR is also positively regulated by ATP and negatively regulated by 

Mg2+ [409]. As with the IP3Rs, numerous signaling cascades can also regulate RyR function. 

These cascades include kinases such as PKA, PKC, cGMP-dependent protein kinase, and 

Ca2+/CaMKII [409]. The activity of RyR is also modulated by presenilin, an ER-localized 

protease that cleaves a variety of type I membrane proteins [410, 411]. CaM also modulates 
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RyRs. At high Ca2+ levels, CaM inhibits both RyR1 and RyR2; at low Ca2+ levels, CaM 

activates RyR1 and inhibits RyR2 [412].  

 

5.1.3 Non-selective cation channels 

The mobilization of Ca2+ from internal stores or the influx of Ca2+ from the extracellular 

space, are the two major methods of raising Ca2+ concentrations such that downstream signal 

transduction pathways are activated. However, Ca2+ can also enter the cells not only through 

Ca2+-selective channels, but also through a number of other channels generally referred to as 

“non-selective cation channels.” Normally, these channels are permeable to cations like Na+, 

K+, and Ca2+ instead of anions. Generally, Ca2+ influx from VGCCs induces secretion or 

plasticity in neurons, but Ca2+ entry from non-selective cation channels causes inflammatory 

responses, morphological changes (e.g. a growth cone turning in spinal neurons), cell death 

and other effects [413-416].  

TRP channels form a large superfamily of non-selective cation channels permeable to 

Ca2+. They are encoded by 28 different genes, many of which produce multiple splice variants. 

TRP channels have six transmembrane segments, as do voltage-gated K+ channels. The domain 

between S5 and S6 is believed to form a pore. Like voltage-gated channels, TRPs form 

tetrameric complexes. The two main mechanisms of TRP channel activation are 1) store 

operation, via conformational coupling between TRP and the ER [417]; and 2) store-

independent mechanisms, including activation by external ligands or plasma membrane 

receptors. Thus, many TRPs are activated by lipid-dependent signaling pathways following the 

activation of GPCRs or receptor-tyrosine kinases [418], such as by the activation of PLC and 

the production of second messengers like DAG. 

TRP channels that are specifically activated by extracellular chemicals or physical 

stimuli exist in sensory neurons, hair cells, spindle organs, retinal rods, and taste cells. Sensory 
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TRP channels in nociceptive neurons, like the noxious heat sensor TRPV1 or the cold sensors 

TRPA1 and TRPM8, mediate heightened pain sensitivity and are often sensitized by pro-

inflammatory agents [419-421]. TRPV1, TRPV3, TRPV4, TRPA1, and TRPM8 are distributed 

in nociceptors and respond to physical and chemical stimuli. TRPV1 is activated by 

temperatures above 43°C and capsaicin, as well as by such stimuli as protons or oxidised lipid 

metabolites [422]. TRPV2 is activated by very high temperatures (>52°C), and is sensitized by 

repetitive heating [423]. TRPV3 is activated by warm temperatures (threshold of ∼33°C), 

TRPM8 is activated by cold with a threshold temperature of 25°C, and TRPA1 is activated by 

cold, with a mean threshold of 17°C [424-426]. TRPM8 is also the receptor for the compound 

menthol. 

Ionotropic P2X purinoreceptors are another family of non-selective, Ca2+-permeable 

cation channels. P2X2, P2X3 and P2X2/3 are expressed in primary sensory neurons that 

mediate nociception. These channels have also been implicated in peripheral pain transmission 

and inflammatory pain responses. P2X receptors are gated by ATP and have been found to form 

homo- and heterotrimers [427-429]. It is suggested that P2X3 and P2X2/3 are sensitive to 

changes in Phosphatidylinositol 3, 4, 5- trisphosphate and PIP2  levels [430]. 

There are a number of additional Ca2+-permeable channels like glutamate receptors, 

acid-sensing ion channels, or store-operated Ca2+ channels, all of which also modulate 

cytosolic Ca2+ levels. Detailed coverage of these pathways is, however, outside the scope of 

this thesis. 
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5.2 Aims 

Although there are many pathways by which Ca2+ can enter and leave the cytosol, my 

work to date indicates three things regarding Ca2+ flux and its effects: 

1. Heterologousely expressed ANO1 channels can be activated by global cytosolic 

Ca2+ levels;  

2. Native CaCCs in small-diameter DRG neurons is poorly sensitive to global 

cytosolic Ca2+, but can be activated by ER Ca2+ release. The CaCC in small-

diameter DRG neurons is probably mediated by ANO1 (see Chapter 4); and 

finally, 

3. Gamper’s previous work establishes the fact that activation of ANO1/CaCC 

channels in DRG neurons is excitatory, and can result in pain [7].  

Therefore I hypothesize linking relevant Ca2+ signals directly to the excitation requires 

that ANO1/CaCC channels in small-diameter DRG neurons be directly coupled to specific Ca2+ 

sources. The aim of this chapter is to investigate coupling of ANO1/CaCC in small DRG 

neurons to two types of Ca2+ sources: IP3Rs and VGCCs. 

 

5.3 Results 

5.3.1 VGCCs fail to activate CaCC in the majority of DRG neurons 

To test whether Ca2+ influx through VGCC can activate the CaCC in DRG neurons, I 

used a patch-clamp recording protocol in which VGCC and CaCC could be measured 

simultaneously. A double-pulse voltage protocol was used to activate VGCC and induce Ca2+ 

influx (Fig. 5.1A). In this procedure, the first pulse was from a holding potential of -80 mV to 

0 mV. The second pulse, from -80 mV to +80 mV, activated VGCC but did not produce Ca2+ 

influx because the driving force for Ca2+ was too small at this voltage (ECa~ +100 mV). The 
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CaCC current was calculated as a difference in peak tail current amplitudes between these two 

pulses: 

ICaCC = Itail(0 mV) – Itail(+80 mV) [7, 257, 431]. 

We considered neurons displaying less than 40 pA as not displaying activation of CaCC 

by VGCC; since it is difficult to unambiguously identify inward tail current below 40 pA. We 

restricted our analysis to small-diameter, TRPV1-positive neurons, which were identified by 

exposure to 1 μM capsaicin at the end of the recording (Fig 5.1B). In 1 of 20 (5%) small DRG 

neurons an inward tail current (Fig. 5.1A; red line) was activated on repolarisation to -80 mV 

after the first pulse indicating activation of CaCC [257]. However, in 19 out of 20 (95%) cases, 

such tail currents in small DRG neurons were not observed (Fig. 5.1A; black line). Thus, we 

concluded that in most small DRG neurons Ca2+ influx through VGCC is not coupled to CaCC 

activation. This observation confirmed previous findings from our laboratory [7]. The lack of 

coupling between VGCC and CaCC was striking, particularly because BK and PAR2-PL 

induced CaCC in a large proportion of small-diameter DRG neurons (see chapter 4 and Fig. 

4.6). In order to ensure that lack of coupling between VGCC and CaCC does not in fact reflect 

lack of functional CaCC, we performed measurements in which we applied a double-pulse 

protocol in order to measure VGCC-CaCC coupling. Then, in the same cells, we applied BK 

or PAR2-PL and measured CaCC responses at -60 mV (Fig. 5.1C-E). In neurons in which 

PAR2-PL and BK induced inward currents of 145 ± 47 pA (n = 4) and 259 ± 158 pA (n = 6), 

respectively, VGCC activation failed to induce any measurable CaCC. These experiments 

confirmed that lack of VGCC-CaCC coupling is not due to the lack of CaCC. We also took 

advantage of a recently developed specific ANO1 blocker, T16inh-A01 [218, 231], to further 

confirm the identity of BK-induced current. T16inh-A01 (50 µM) inhibited BK-induced 

current by 88 ± 6% (n = 6), (Fig 5.1F). Lower concentrations of T16inh-A01 were less 
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efficacious. The reasons for moderately less potent effect of T16inh-A01 (as compared with its 

almost complete inhibition of ANO1 in some studies [209, 218]), is currently unclear, however, 

poor block of heterologous ANO1 channels by T16inh-A01 has also been reported [195]. 
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Figure 5.1 VGCC rarely activates ANO1 in small DRG neurons. (A) Majority of small DRG neurons 

(19/20) did not display inward tail current following the activation of VGCC by the voltage steps to 0 

mV (black line); only one such neuron displayed a measurable inward tail current (red line). The Ca2+ 

current via VGCC was blocked by Cd2+ (100 µM, green line). (B) At the end of the recording neurons 

were tested for response to capsaicin (1 µM, CAP) to identify TRPV1-positive neurons. (C) 

Representative traces from the experiment in which coupling of CaCC to VGCC and GPCR was tested 

on the same cell. Double-pulse voltage protocol failed to induce measurable tail current following the 

VGCC activation while BK did induce CaCC. (D, E) Summary data from experiments similar to (C); 

amplitudes of VGCC-induced CaCC (ICaCC (VGCC)) and the GPCR-induced CaCC (ICaCC (GPCR) from 

the same neurons are connected by the lines of the colored lines. (D) Summarizes data for BK (n=4) 
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and (E) summarizes data for PAR2-PL (n=6). (F) Depicts example trace exemplify inhibition of  the 

BK-induced  CaCC by T16inh-A01. From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] Reprinted 

with permission from AAAS. 

 

It is well documented that the Ca2+-dependence of ANO1 is voltage dependent, such 

that at depolarised voltages the channel is more sensitive to Ca2+ [205]. Thus, it is possible that 

Ca2+ influx through VGCC could activate ANO1 at positive potentials. In order to test this, a 

ramp voltage protocol was used in which ramps from a holding potential of -80 mV to +80 mV 

were applied at a rate of one per second. This rapid sampling rate caused an inactivation of 

VGCCs and, thus, the run-down of the VGCC current (seen as disappearance of the “hump” in 

the middle of the traces shown on Fig. 5.2A). As shown in Fig 5.2A, such voltage ramps 

induced a prominent outward current at positive voltages. This outward current was, however, 

completely unrelated to the amplitude of the inward “hump” produced by VGCC activation. 

Indeed, the first sweep (Fig 5.2A, red trace) and the 7th sweep (Fig 5.2A; green trace) produced 

identical outward currents, yet the inward “hump” was prominent during the first sweep and 

almost completely absent during the 7th. Thus, while the nature of this outward current remains 

unknown, it is certainly not a Ca2+-dependent current and therefore is not a CaCC.  
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Figure 5.2 Outward currents which are not CaCC. (A) Small DRG neurons display outward currents at 

positive voltages as measured by the voltage ramp from -80 mV to 80 mV (panel above the traces on 

the left). The first trace is indicated by the red line; the 7th trace is indicated by the green line. (B) 

Summary data for the Ca2+ current amplitude (the “hump”) between 1st and the last sweeps. (C) 

Summary data for the amplitudes of outward current at +80 mV between at 1st and the last sweeps. The 

experiments were contributed by Huiran Zhang. From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] 

Reprinted with permission from AAAS. 

 

5.3.2 Ca2+ release from IP3R activates CaCC 

Experiments discussed to this point established the following: 

 Ca2+ influx via VGCC is mostly ineffective in activating CaCC in small-

diameter DRG neurons;  

 Gq/11-coupled GPCR reliably activates CaCC in such neurons.  
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Previous evidence from our laboratory indicated that stimulation of BK and PAR2-PL 

elicits an increase in cytosolic Ca2+ [6, 7] in DRG neurons. The most straightforward conclusion 

from current and past experiments is that Gq/11-PLC-induced Ca2+ release from the ER is the 

predominant source of Ca2+ for CaCC activation under our experimental conditions. Ca2+ influx 

from the store-operated Ca2+ channels could, however, potentially contribute to the GPCR-

induced Ca2+ transients and therefore might also activate CaCC. In order to test this possibility, 

we applied BK to DRG neurons perfused with Ca2+ free bath solution. Under these conditions, 

application of 1 µM BK to small DRG neurons still induced robust inward currents when the 

membrane potential was held at -60 mV. This was not statistically different from that induced 

by BK in the control neurons perfused with a regular, Ca2+-containing bath solution (187 ± 49 

pA in Ca2+ free, n=5 vs. 159 ± 19 pA in Ca2+-containing, n=16, p>0.05, Fig. 5.3A and C). 

Previous work in the laboratory confirmed that both BK [7] and PAR2-PL [6] prompt release 

of Ca2+ from the ER. To further confirm these findings, we depleted intracellular Ca2+ stores 

by incubating DRG cultures with 2 µM thapsigargin for 3 min. Thapsigargin is an irreversible 

inhibitor of the sarcoplasmic reticulum Ca2+-ATPase pump. We then performed whole-cell 

patch recordings of CaCC currents induced by PAR2-PL. We found that thapsigargin pre-

treatment strongly inhibited the effect of PAR2-PL (Fig. 5.3B and D). We also found that 78% 

(7/9) of the neurons did not respond to PAR2-PL after thapsigargin pre-treatment (Fig 5.4B and 

C, inward current of 215.4 ± 11.2 pA, n=16 in control vs. 52 pA in two thapsigargin-treated 

and responding neurons). All of these results indicated that Ca2+ release from the ER via the 

IP3Rs is the most probable Ca2+ source for ANO1 activation in small DRG neurons under the 

experimental conditions used. 
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Figure 5. 3. Depletion of Ca2+ in the ER inhibits the activation of CaCC in small DRG neurons. (A) 

Representative traces of the whole-cell patch clamp recordings of small DRG neurons performed in 

control (left) and Ca2+ free (right) bath solution. (B) Representative traces of the whole-cell patch clamp 

recordings of small DRG performed after 3 min of bath application of 2 µM thapsigargin.  (C, D) 

Summary data for (A) and (B). Data (bar graphs) are presented as mean ± SEM. From [Jin, X., et al., 

Sci Signal, 2013. 6(290): p. ra73.] Reprinted with permission from AAAS. 

 

      5.4 Discussion 

The major conclusion from the experiments in this chapter is that Gq/11- and PLC-

coupled GPCRs (B2R and PAR2) reliably activate ANO1/CaCC in small DRG neurons, but 

that Ca2+ influx through the VGCC was generally ineffective in activating ANO1/CaCC in 

these neurons. It was also concluded that the major source of Ca2+ for ANO1 activation by the 

GPCR is Ca2+ release from the ER, but not store-operated Ca2+ influx. Thus, we found that 

Ca2+ store depletion abolishes GPCR-induced CaCC, while exclusion of Ca2+ from the 

extracellular milieu does not abolish GPCR-induced CaCC.  

 

These data unambiguously confirm that GPCR, such as B2R and PAR2, activate CaCC 

via the ER-mediated Ca2+ release from the IP3R.  This is in agreement with previous evidence 

from our lab demonstrating that blocking IP3Rs with the specific blocker Xestospongin C 
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strongly reduces BK-induced CaCC [7]. Yet store-operated Ca2+ entry (SOCE) cannot be 

completely ruled out as a source of Ca2+ for CaCC activation. Therefore, while the amplitude 

of Ca2+ transients recorded in Ca2+-free extracellular solution was not smaller relative to control 

conditions, the duration of transients was often reduced (Fig. 53A). Thus SOCE can be a 

secondary factor in supplying Ca2+ for CaCC/ANO1 activation. In this connection, it was 

recently suggested that in Xenopus oocytes, Ca2+ entering from the extracellular media through 

the STIM1/Orai1-mediated SOCE first needs to be channelled into the ER and then out through 

the IP3Rs in order to be able to activate endogenous ANO1 [432]. It was further observed that 

a direct Ca2+ influx through STIM1/Orai1 into the cytosol did not activate ANO1, presumably 

because of lack of proximity between the ANO1 and the STIM1/Orai1 complexes. 

Published evidence suggests that in the ER IP3Rs are in more abundant than RyR [406], 

and that DRG neurons express moderately more IP3R1 than IP3R2 and IP3R3 [433]. Therefore 

we focused on the IP3R1 as a possible major source of Ca2+ for ANO1 activation in small DRG 

neurons. 

Another important outcome of the experiments reported in this chapter is that Ca2+ 

influx through VGCC is poorly (if at all) coupled to CaCC in small, capsaicin-sensitive DRG 

neurons. Here we used a double-pulse protocol to test if VGCC activates CaCC. In most small 

neurons tested, VGCC activation did not activate CaCC as measured by the appearance of slow 

tail currents at – 80 mV. One of the hallmarks of ANO1 is that its sensitivity to Ca2+ is voltage-

dependent. Thus, we investigated if VGCC could activate CaCC in small DRG neurons at 

positive voltages. We found that this was not the case. VGCC were shown to be able to activate 

other Ca2+-dependent channels, like Slo1 channels in cardiac myocytes [434].  Ca2+ sensitivity 

of Slo1 channels is relatively low [294], but is within a range similar to that of ANO1. Thus, in 

order to be able to activate Slo1 channels, VGCC must be co-localized with Slo1 channels in 

tightly-coupled microdomains [435]. Lack of coupling between the VGCC and CaCC therefore 
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may suggest that in small DRG neurons VGCC do not co-localize with ANO1/CaCC. By the 

same logic, however, the tight coupling between ER Ca2+ release and CaCC activation in DRG 

neurons may suggest close spatial colocalization of IP3R and ANO1/CaCC. This hypothesis 

will be tested in the next chapter. 
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Chapter 6. ANO1 activation in small DRG neurons requires local Ca2+ 

microdomains 

6.1 Introduction 

6.1.1 What are the local Ca2+ microdomains 

Ca2+ is a ubiquitous intracellular messenger and a great number and variety of 

intracellular processes are regulated by changes in intracellular Ca2+ concentrations. Therefore, 

appropriate molecular mechanisms must exist to confer the needed specificity to Ca2+ signaling. 

Indeed, Ca2+ signaling is often precision-tuned in terms of spatial localization and temporal 

coding. Normally, the concentration of free Ca2+ in the cytosol at rest is in the range of 50 - 

100 nM [436]. The most effective mechanism of increasing [Ca2+]i  is an inflow from the 

extracellular space via Ca2+-permeable channels. An alternative mechanism is by releasing 

Ca2+ from intracellular Ca2+ stores, such as the SR, the ER or mitochondria. In some cases, 

cytoplasmic Ca2+ signals are restricted to certain regions of the cell. This spatial organization 

of Ca2+ into segregated microdomains is a recognized mechanism for enhancing the versatility 

and specificity of Ca2+ signaling system [437]. The global Ca2+ signal, as measured in the 

cytoplasm, is the average of highly focused, transient, elementary changes of Ca2+ 

concentrations. This mechanism is limited by the diffusion of Ca2+ in the cytoplasm, which is 

hindered by cytoplasmic proteins and neighboring membranes [438]. For example, localized 

IP3-induced local Ca2+ release (10−6 to 10−4 M) far exceeds that of the global Ca2+ signal, 

measured over the whole cell. This allows Ca2+ to regulate even the low Ca2+ affinity effectors. 

The term microdomain is usually applied to transient fluctuations of Ca2+ in strictly localized 

areas (diameter of 10–100 nm) [437, 439, 440]. The term “Ca2+ microdomain” was first 

introduced to denote instances of close spatial colocalization of Ca2+ channels and an 

appropriate Ca2+-sensitive proteins (e.g. Ca2+-activated K+ channel) that are regulated by Ca2+ 

influx from the Ca2+ channels [441, 442]. Recently a new term, “nanodomain,” has been 
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coined, referring to multi-protein structures in which proteins are <100 nm from each other 

[443]. Studies show proteins within micro- or nano-domains are often tightly arranged by 

various adaptors and scaffolding proteins, including PDZ domain containing adaptors such as 

homers, SNARE and neurexin [444-446]. For example, α-neurexins at synapses are involved 

in the coupling between Ca2+ channels and synaptic Ca2+ sensor synaptotagmin and other 

components of the Ca2+-sensitive synaptic vesicle release machinery [446]. 

Different local Ca2+ signals triggered in the cell by activating different signaling 

pathways result in targeting different intracellular effectors. In some cases it is possible to 

clearly demonstrate specificity of particular Ca2+ signals; for instance, local Ca2+ influx through 

Ca2+ release activated Ca2+ (CRAC) channels in mast cells stimulates Ca2+-dependent PLA2 

and 5-lipoxygenase, which generate the intracellular messenger cascades resulting in cytokine 

secretion. Stimulation of these cells with thapsigargin or carbachol applied in Ca2+-free solution 

elicited significant rises in global [Ca2+]i, but these concentration increases were totally 

ineffective in activating cPLA2 or leukotriene C4 secretion [447, 448]. Another example of 

local Ca2+ influx tightly controlling a plasma membrane-restricted enzyme has come from work 

on T lymphocytes [449]. Agonists such as 2-Aminoethoxydiphenylborate (2-APB) increases 

Ca2+-ATPase activity by an effect on local [Ca2+]i, which at low concentration enhances CRAC 

channel activity, and stimulates plasma membrane Ca2+-ATPase activity through local changes 

in [Ca2+]i. The resultant rise in global cytoplasmic Ca2+  does not, however, enhance the activity 

of Ca2+-ATPase. 

Some scaffolding proteins have been found to be involved in the assembly of local Ca2+ 

microdomains. Thus, Ca2+ signaling complex in fly photoreceptors are assembled with the aid 

of the PDZ-containing scaffolding protein inaD, which couples the light-activated GPCR 

rhodopsin to TRP, PLC (norpA) and PKC (ninaC) [450, 451]. Mutating PDZ domains of InaD 

protein disrupted the entire microdomain assembly and severely impeded signal transduction. 
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Homer proteins are another type of scaffolding proteins that regulate local Ca2+ signaling. 

Homer proteins are predominantly localized at the postsynaptic densities in mammalian 

neurons, where they can form protein complexes with other postsynaptic density proteins 

through their N-terminal domains containing an EVH domain. The EVH domain is  a protein 

module of ~115 amino acids which binds to proline-rich sequences present in many proteins 

involved in Ca2+ signaling, including GPCRs, IP3Rs, RyRs, L-type Ca2+ channels and TRPC 

channels [452]. The C-terminal domains of Homer proteins contain a coiled-coil structure 

and leucine zipper motif which are involved in multimerization. Homer-mediated protein 

clustering facilitates signal transduction or cross-talk between different proteins. For example, 

Homer mediates the coupling of glutamate receptors to N-Type Ca2+ channel and regulates 

synaptic activity in superior cervical ganglia (SCG) neurons [453]. In the CNS, Homer1 has 

been shown to interact with metabotropic glutamate receptors (mGluRs) and IP3R and to bridge 

the PM to ER into junctional microdomains [454]. Homer1 also interacts with GPCRs and 

TRPC channels at the PM and IP3Rs at the ER [452], which may play a role in cellular memory 

by modulating the fidelity of GPCR signaling to reflect stimulation history. In the present work 

I discovered a junctional microdomain in DRG neurons which also involve IP3Rs in the ER 

and GPCRs and ion channels at the plasma membrane (see below). Thus, I hypothesize that 

Homer proteins may play roles in the assembly of these microdomains. Preliminary data will 

be presented in the Chapter 8. 
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6.1.2 Functions of local Ca2+ microdomains 

 Although there are reasons to believe that Ca2+ microdomains represent a ubiquitous 

mechanism of signal transduction, I will discuss below several of the most well researched 

examples of such microdomain Ca2+ signaling. 

 

6.1.2.1 Neurotransmitter release 

Neurotransmitter release requires high [Ca2+]i, which is achieved in the presynaptic 

terminals by opening of VGCC in response to depolarization created by the arriving AP.  In 

some experiments, local hot spots of high [Ca2+]i have been shown to relate to neurotransmitter 

vesicle fusion events [455, 456]. Research has shown that “hot-spots” of Ca2+ (200–300 μM) 

appear in presynaptic terminals of the squid giant synapse following an AP [457]. In 

neuromuscular junctions of Xenopus laevis, APs also evoke Ca2+ hot-spots in presynaptic 

terminals [458]. Thus, in synapses, Ca2+ influx appear to be very tightly coupled with 

transmitter release. Using flash photolysis of caged Ca2+, it has been shown that local [Ca2+]i 

at the release sites is in the range 10–300 μM in different neurons. The “slow” Ca2+ buffer 

EGTA usually does not affect synaptic vesicle release, while the “fast” buffer BAPTA inhibits 

neurotransmitter release [459]. This is evidence that local domains of high [Ca2+]i  are 

necessary for transmitter release. Indeed, if the distance between Ca2+ channels and 

Ca2+ sensors of exocytosis is short (less than 100 nm), only the fast Ca2+ chelator BAPTA, but 

not the slow chelator EGTA (at millimolar concentrations), will have enough time to capture 

the Ca2+ on its way from the Ca2+ channels to the Ca2+ sensors and impair transmission. By 

contrast, if the coupling distance is longer, both the fast and the slow Ca2+ chelator will be 

effective [460]. On the other hand, some studies showed that Ca2+ channels are not as tightly 

coupled to exocytosis in these synapses. Borst and Rozov, for example, demonstrated that 
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EGTA can in fact reduce evoked neurotransmitter release in CNS synapses [461, 462]. Thus, 

further research is required to resolve this controversy. 

 

6.1.2.2 Regulation of adenylyl cyclases 

Although two isoforms of adenylyl cyclases are activated by a rise in cytoplasmic Ca2+, 

robust releases of Ca2+ from intracellular stores in response to thapsigargin and the ionophore 

ionomycin were both unable to activate these Ca2+-dependent isoforms [463, 464]. By contrast, 

store-operated Ca2+  influx significantly increased enzyme activity, even though it caused bulk 

Ca2+ to rise to a lesser degree than that achieved by Ca2+ release. Hence it was concluded that 

these isoforms are regulated by a subplasmalemmal (microdomain) [Ca2+]i rise instead of a 

global increase. 

 

6.1.2.3 Regulation of gene expression 

It has been shown that the activation of the transcription factor cAMP-response-

element-binding protein (CREB) needs Ca2+ hot spots in neurons [465]. Direct injection of 

BAPTA into the nucleus (which has no effect on cytoplasmic Ca2+ elevation) prevented CREB 

stimulation. Ca2+ microdomains arising from voltage-gated Ca2+ channels [466, 467] or Ca2+-

permeable NMDA receptors [468] might be capable of impacting nuclear events and inducing 

CREB phosphorylation. Another example of microdomain Ca2+ signaling can be found in the 

nuclear factor of activated T-cell (NFAT) signaling. Thus, it was shown that local [Ca2+]i signals 

from L-type VGCC (CaV1.3) activate calcineurin (CaN) bound to AKAP79/150 in specific 

microdomains. AKAP79/150 then directs CaN to activate NFAT, which translocates to the 

nucleus and regulates gene expression [469]. This process is, for instance, capable of 

upregulating the expression of anti-excitatory KCNQ2 and KCNQ3 genes in response to 

excessive excitation of sympathetic and hippocampal neurons [469]. 
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6.1.3 Ion channels and local Ca2+ microdomain 

Ca2+ influx across the plasma membrane is essential for the regulation of some Ca2+-

dependent channel activity. In some cases, this activity entails the formation of microdomains. 

The relationship between Ca2+ channels and Ca2+-sensitive channels in the immediate 

neighborhood will depend on peak local [Ca2+]i, on the distance between the components of 

the microdomain, and on the diffusion characteristics of Ca2+ in the local environment. What 

can affect the latter parameter? First, endogenous buffers like calbindin and CaM can impede 

diffusion [443]. Second, the intracellular characteristics of buffers like diffusion rates, affinities, 

and reaction kinetics play vital roles in determining the distribution of free Ca2+ [470]. It was 

suggested that the Ca2+-binding rate of CaM is similar to or higher than exogenous fast 

chelators such as BAPTA [443]. Thus, the expression level or location of CaM may interfere 

with local Ca2+ signaling [443].  

The physical interaction between a Ca2+ channel and its target Ca2+-sensitive channel 

often facilitates signaling within Ca2+ microdomains. For example, the coupling between the 

Ca2+-activated K+ channel (Slo1) and P/Q-type VGCCs contributes to the activation of Slo1 in 

many cell types [471], such as vestibular hair cells [472], adrenal chromaffin cells [473] and 

frog neuromuscular junctions [474]. Some studies show that rapid activation of Slo1 channels 

is controlled by P/Q-type channels in Xenopus oocytes expressing recombinant Slo1 and P/Q-

type channels [441]. Accordingly, high concentrations of cytoplasmic EGTA cannot inhibit the 

coupling between Slo1 and P/Q-type channels, but BAPTA inhibits Slo1–P/Q-type channel 

coupling. It was further found that Slo1channels are co-assembled with L-, P/Q- and N-type 

Ca2+ channels as tested by affinity purification in rat brain [442]. All these studies suggest that 

large-conductance Ca2+-activated K+ channels and VGCCs form a macromolecular complex 

with tight coupling. The authors also conclude that local Ca2+ concentration was about ∼10 μM 
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around the mouth of VGCCs, and that the physical distance between VGCCs and Ca2+-

activated K+ channels is a uniform coupling distance in the range of 10–15 nm [441].  

Other studies have shown that store-operated Ca2+ channels couple with the Cl- channels 

in a prostate cancer cell line [475]. Ca2+ influx from store-operated channels partially inhibited 

a VRCC current, while dialysis with 1 µM free Ca2+ failed to inhibit VRCC. These results 

suggest that store-operated Ca2+ channels were colocalized with these Cl− channels. TRPC7 

channels were also suggested to couple with the sarco-endoplpasmic Ca2+–ATPase (SERCA) 

[476]. Activation of TRPC7 channels by DAG was blocked by the SERCA pump inhibitor 

thapsigargin. Even whole cell dialysis with high concentrations of BAPTA failed to affect this 

coupling, suggesting an intimate interaction between TRPC7 and SERCA pumps. 

Interestingly, the Ca2+ affinity of both Slo1 and ANO1 channels is rather low (EC50 in 

the low micromolar range, [202, 477]). This may suggest that ANO1, like Slo1 channels, 

requires a local Ca2+ microdomain for activation. 

 

6.2 Aims 

In chapter 5 I found that Ca2+ release from IP3R activated ANO1 in small-diameter DRG 

neurons, but that Ca2+ but from other sources, such as VGCC, was unable to activate ANO1. 

As discussed in this chapter, local microdomains might achieve relatively high local [Ca2+]i, 

and thereby efficiently couple sources of  intracellular Ca2+ with their effectors. Since Ca2+ 

sensitivity of ANO is low, I hypothesize that ANO1 also requires a microdomain environment 

for its activation in small DRG neurons. The experiments in this chapter were designed to probe 

this hypothesis. 
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6.3 Results 

6.3.1 Imaging of I−-sensitive YFP supports finding that VGCC cannot activate 

CaCC in small DRG neurons 

We previously found that VGCC couples poorly to ANO1 in small DRG neurons, while 

GPCR activation ANO1 is clearly detectable in over 50% of such cells. In order to verify this 

finding with an independent technique that does not depend on selection of the “best” cells for 

a measurement, DRG neurons were transfected with I−-sensing yellow fluorescent protein YFP 

H148Q/I152L. Since ANO1 is permeable to I− ions [299] and H148Q/I152L EYFP 

fluorescence is quenched by I− (a property based on the capability of halides to quench the 

fluorescence by a collision mechanism [478]), overexpressed H148Q/I152L EYFP can be used 

as a tool to measure ANO1 activity [479]. We transfected DRG cultures with YFP 

H148Q/I152L and investigated ANO1 activation by BK and VGCC using fluorescent imaging. 

As shown in Fig. 6.1A and B, perfusion of DRG neurons transiently transfected with YFP 

H148Q/I152L with an external solution in which 30 mM NaCl was substituted by 30 mM NaI 

induced a slow decrease in fluorescence. In control neurons (vehicle, NaI only) the 

fluorescence decreased to 73 ± 5% of initial value after 300 s of application, presumably due 

to the presence of various background anion permeabilities. BK evoked much stronger 

fluorescence quenching reflecting an accelerated I− influx compared with vehicle control (50 

± 4% of initial value). The effect of BK was blocked by NFA. In contrast, activation of VGCC 

by application of extracellular solution in which 50 mM NaCl has been replaced by 50 mM 

KCl (depolarization to ~ -25 mV according to the Nernst equation) did not produce significant 

quenching when compared to the vehicle control. In separate Ca2+ imaging experiments, we 

have confirmed that both BK and “high-K+” solutions induced comparable Ca2+ transients in 

DRG neurons (not shown). 
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Figure 6.1 Representative images from one neuron (A) and summary of data (B) from experiments 

carried out with the YFP H148Q/I152L assay on small DRG neurons. Brown, black green and blue 

traces show the cell fluorescence decrease following I− addition with vehicle (black; N=10) or with 1 

µM BK (blue; N=15), 1 µM BK+100 µM NFA (green; N=8), or with 50 mM KCl (orange; N=27) 

respectively. Obtained  in collaboration with Shihab Shah and  Nikita Gamper. From [Jin, X., et al., Sci 

Signal, 2013. 6(290): p. ra73.] Reprinted with permission from AAAS. 
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6.3.2 ANO1 is in close proximity to the Ca2+ source 

Results reported in chapters 4 and 5 have indicated that IP3-mediated Ca2+ release was 

the main Ca2+ source for CaCC activation in small DRG neurons, while VGCC were generally 

unable to activate CaCC in the majority of DRG neurons. Given the fact that ANO1 has low 

Ca2+ sensitivity, we hypothesized that the Ca2+ sources (the IP3R) must be very close to the 

CaCCs. To assess this possibility, BK or PAR2-PL-induced Cl- currents were assessed in 

recordings with pipette solutions in which we included 10 mM EGTA or 10 mM BAPTA, but 

this time the dialysis time was set for 4 min to avoid massive ER Ca2+ depletion. High 

concentration of EGTA or BAPTA can deplete the ER of Ca2+ if they are present in the 

cytoplasm for a long time [480]. Accordingly, as has been demonstrated in chapter 4, dialysis 

of 10 mM EGTA into DRG neurons for 10 min can deplete the ER completely.  

The coupling distance between Ca2+ sources and their targets can be probed using the 

exogenous Ca2+ chelators EGTA and BAPTA, which have different Ca2+ binding rates, but 

similar Ca2+ affinities [481]). The basic principle is simple: if the distance between Ca2+ source 

and its targets is less than ~100 nm, only the fast Ca2+ chelator BAPTA will have enough time 

to capture the Ca2+ released from the sources at millimolar concentrations of the chelator. On 

the other hand, the same concentration of the slow Ca2+ chelator EGTA would not be able to 

capture Ca2+. If, however, the distance between the Ca2+ source and the target is larger, both 

EGTA and BAPTA will capture Ca2+. This approach was first used by Adler and colleagues 

[460], and subsequent studies have shown that the distance can be further probed by adjusting 

concentrations of chelators and Ca2+ concentrations (when possible) [482]. 

We found that BAPTA inhibited the induction of CaCC by PAR2-PL, while EGTA was 

without an effect (Fig. 6.2). Thus, 53% (8/15) of small DRG neurons responded to PAR2-PL 

in control conditions, while 71% (5/7) of such neurons responded to PAR2-PL when recorded 

with EGTA-containing pipette solution (215.4 ± 11.2 pA in 5/7 neurons from EGTA vs. 176.5 
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± 11.2 pA in 8/15 neurons, p>0.05; Fig. 6.2). Conversely, only 11% (1/9) of small DRG neurons 

responded to PAR2-PL when recorded with EGTA-containing pipette solution (Fig. 6.2). These 

results clearly indicate that probable Ca2+ source (ER) co-localizes with CaCCs in small DRG 

neurons. 

 

Figure 6.2 Ca2+ buffers with different Ca2+-binding dynamics have different effects on CaCC in DRG 

neurons (A) Whole-cell patch clamp recordings of small DRG neurons were performed after 4 min of 

intracellular dialysis with 10 mM EGTA or 10 mM BAPTA. Percentage of PAR2-PL responsive neurons 

and the amplitude of PAR2-PL-induced inward currents were significantly reduced after application of 

BAPTA, but not after application of EGTA. This suggests close proximity of CaCC and Ca2+ stores in 

neurons. (B) and (C) are summary data for (A). Data are given as mean ± SEM. From [Jin, X., et al., 

Sci Signal, 2013. 6(290): p. ra73.] Reprinted with permission from AAAS. 
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6.3.3 ANO1 colocalizes with IP3R1 

I next used an immunostaining technique and confocal microscopy to test if ANO1 

indeed colocalizes with IP3Rs, but not with VGCCs, in small DRG neurons. We first confirmed 

specificity of ANO1 antibodies. To this end we transfected cDNA constructed for mouse ANO1 

together with GFP into HUVECs. HUVECs do not express endogenous ANO1 as tested by RT-

PCR. Fig. 6.3A shows that we detected a robust ANO1 antibody binding in cells which also 

expressed GFP (red arrow), but we detected no ANO1 in cells which did not express GFP 

(white arrows). ANO1 antibody robustly stained small DRG neurons (Fig. 6.3B, upper panel), 

but not glia (identified by the GFAB staining). The IP3R1 antibody labeled characteristic 

reticular structures in the ANO1-positive neurons (Fig. 6.3B, middle panel). To label VGCC 

we used a pan-VGCC antibody that recognizes all major VGCC α-subunits. It robustly stained 

neurons but not glia (Fig. 6.3B, lower panel). 

Confocal experiments indicated that ANO1 and IP3R staining were evident within the 

cytoplasm and some puncta close to the plasma membrane (Fig. 6.4A and B). The exact 

location of ANO1 was not possible to ascertain due to the limitation of confocal microscopy. 

As shown the middle panel of Fig. 6.4A, the same DRG neuron was stained with IP3R antibody. 

Thus ANO1 immunoreactivity overlapped with an IP3R staining in many puncta, as indicated 

by yellow color in Fig. 6.4A, right panel. Similar results were obtained in 33 small DRG 

neurons.  
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Figure 6.3 Antibody specificity experiments. (A) ANO1 antibody specifically labelled cultured 

HUVECs co-transfected with ANO1 and GFP (orange arrow); non-transfected cells (white arrows) are 

not labelled by the antibody. (B) Top row: ANO1 antibody specifically labeled small DRG neuron but 

not glia (immunolabelled with GFAP antibody). Middle row: IP3R1 antibody labelled reticular 

structures in the ANO1-positive DRG neuron cell body. Bottom row: pan-VGCC antibody labeled DRG 

neuron but not glia (visible using bright-field illumination). From [Jin, X., et al., Sci Signal, 2013. 

6(290): p. ra73.] Reprinted with permission from AAAS. 
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Figure 6.4 Colocalization of endogenous ANO1 with IP3R. (A) Fluorescence pattern for endogenous 

ANO1 in small DRG neuron. Cells were labeled with goat polyclonal anti-ANO1 antibody (green) in 

the left panel. The middle panel shows fluorescence pattern for endogenous IP3R in the same DRG 

neuron. Cells were labeled with mouse monoclonal anti-IP3R1 antibody (red). Right panel shows a 

combined visualization of IP3R and ANO1 labeling. Co-localization of both antibodies generates yellow 

spots. (B) Fluorescence pattern for endogenous KCNQ2 in small DRG neuron. Cells were labeled with 

goat polyclonal anti-KCNQ2 antibody (green) in the left panel. The middle panel shows fluorescence 

pattern for endogenous IP3R in small DRG neuron. Cells were labeled with mouse monoclonal anti-

IP3R1 antibody (red). Right panel shows a combined visualization of IP3R and KCNQ2 labeling that 

shows no significant co-localization. 

 

A K+ channel KCNQ2 which is abundantly expressed in small-diameter DRG neurons 

[483] was used a negative control because it failed to co-localize with IP3R. The antibody of 
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KCNQ2 came from the same species (rabbit) as that for the ANO1 antibody (Fig. 6.4B). Similar 

results were obtained in 25 small DRG neurons. These data suggest that IP3Rs may indeed 

colocalize with ANO1 in small DRG neurons. 

To further probe colocalization of ANO1 and IP3R1 in DRG neurons we employed in 

situ PLA, a highly specific and sensitive proteomics method for detecting the close proximity 

(less than ~30 nm) of cellular molecules [288]. The method is based on the immunolabeling of 

two proteins under investigation with specific primary antibodies with subsequent binding of 

appropriate pairs of secondary antibodies that are conjugates of specific oligonucleotides that 

can be ligated only if two secondary antibodies are in very close proximity (see Chapter 2 and 

Fig. 2.2 for method details). If two secondary antibodies are indeed in very close proximity, a 

punctate PLA staining occurs. PLA staining for ANO1 and IP3R1 revealed punctate fluorescent 

signals with a characteristic puncta diameter of ~1 µm [484] in small DRG neurons, but not in 

glia (Fig. 6.5A). As shown in the left panel of Fig. 6.4A, a small DRG neuron is surrounded by 

multiple glia cells (labelled with white arrows and also by DAPI staining). The right panel 

shows that PLA signals appeared in the DRG neuron, but not in glia. No punctate staining was 

detected in untransfected HUVECs processed in the same way as the DRG cultures (Fig 6.5B). 

HUVECs do not express ANO1 but express IP3Rs; thus, lack of PLA signal in HUVECs 

confirms specificity of the assay.  In order to test if VGCC interacts with ANO1, we repeated 

PLA procedure on DRG cultures using ANO1 and pan-VGCC antibodies. We did not detect 

punctate fluorescent signals in this experiment (Fig 6.5B). Thus, PLA assay data suggest that 

at least some ANO1 and IP3R1 molecules were within 30 nm proximity in small DRG neurons, 

while no such proximity between ANO1 and VGCC could be detected.  
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Figure 6.5 Detection of ANO1/IP3R1 complexes using the proximity ligation assay (PLA). (A) DRG 

neuron (white arrow) surrounded by glial cells. Right panel shows bright-field illumination, middle 

panel shows DAPI staining and left panel shows ANO1/IP3R1 PLA staining (green). (B) PLA 

ANO1/IP3R1 staining of HUVEC (right panel) and DAPI (left panel) reveals no PLA signal. (C) DRG 

neurons (white arrows) surrounded by glial cells. Right panel shows bright-field illumination, middle 

panel shows DAPI staining, and right panel shows ANO1/IP3R1 PLA staining which revealed no PLA 

signal. From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] Reprinted with permission from AAAS. 

 

6.3.4 ANO1 interacts with IP3R1 

To determine whether IP3R1 coupling with ANO1 requires a physical interaction, we 

performed co-immunoprecipitation studies followed by Western blotting. First, the antibody 

against IP3R1 was used to immunoprecipitate the total protein from DRG tissue lysate. The 

presence of ANO1 in the immunoprecipitate was analyzed with Western blotting. IP3R1 was 
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detected in no-IP lysates with Western blotting as a loading control (Fig. 6.6A). The data 

showed that IP3R1 antibodies can indeed immunoprecipitate ANO1 from native DRG tissue 

lysates. Next, we performed a reverse experiment: we used the antibody against ANO1 to 

immunoprecipitate the total proteins and to analyze for IP3R presence. ANO1 was detected 

with Western blotting as a loading control. Again, the ANO1 antibody was able to 

immunoprecipitated IP3R1 (Fig. 6.6B). This data strongly suggest that ANO1 and IP3R1 do 

interact. As a negative control we performed co-immunoprecipitation experiments using 

HUVEC lysates. We did not detect any co-immunoprecipitation between ANO1 and the IP3R1 

antibody in untransfected HUVECs (Fig. 6.6C). We also failed to detect any interaction 

between another ER-localized protein, SERCA, and ANO1 in DRG tissue (Fig. 6.6D). 

To examine which parts of ANO1 are involved in the interactions with IP3R1, 

recombinant GST-fusion plasmids were constructed containing the N terminus, the intracellular 

loop between TM2 and TM3, and the C terminus of ANO1 (Fig. 6.7A). These constructs 

(together with GST plasmids as negative controls) were expressed in E. coli and purified by 

GST-agarose beads. These beads were then used to pull down interacting proteins from the 

whole DRG lysates. The proteins retained on the beads were then separated by SDS-PAGE, 

and the IP3R1 were detected by Western blotting using anti-IP3R1 antibody. As shown in Fig. 

6.7B, the intracellular loop between TM2 and TM3 and the C-terminal fragment of ANO1 were 

indeed able to pull down the IP3R1 from the DRG lysates. On the other hand, no pull down 

was detected with the N-terminal construct and the GST on its own. 
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Figure 6.6 ANO1 channels interact with IP3R. (A) Immunoprecipitation of ANO1 by an antibody 

against IP3R1 from the lysates of whole DRG ganglia from rat. (B) Immunoprecipitation of IP3R1 by 

an antibody against ANO1. “IP” and “WB” indicate the antibodies used for immunoprecipitation and 

Western blotting, respectively. Control immunoprecipitations were performed using rabbit (A) or goat 

(B) IgGs. (C) Lack of immunoprecipitation of ANO1 by an antibody against IP3R1 from the lysates of 

untransfected HUVECs. For positive controls, the lysates of HUVECs transfected with ANO1 were 

probed using ANO1 antibody. (D) Lack of immunoprecipitation of ANO1 by an antibody against 

SERCA from the lysates of whole DRG ganglia from rats. The gels represent results of 3 independently 

performed experiments. From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] Reprinted with 

permission from AAAS. 
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Figure 6.7 GST pull-down experiments. (A) Top panel is a schematic depiction of ANO1 channel. 

Below left is a schematic depiction of GST-fusion proteins containing the C-terminus (residues 963-

1040, “C”), the loop between the second and third transmembrane domains (residues 505-568, ‘L’), and 

the N-terminus (residues 1-407, ‘N’) of ANO1. (B) Upper panel, Western blotting shows the purified 

GST-fusion peptides (detected with the antibody against GST); lower panel shows pull-down 

experiments; GST fusion proteins containing the C terminus (“C”) or the loop between the second and 

third transmembrane domains (“L”), but not the N-terminus (“N”) of ANO1 precipitated IP3R1 from 

the DRG lysate. All results shown are representative of experiments that were repeated three times 

independently. From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] Reprinted with permission from 

AAAS. 

 

6.3.5 Identification of other constituents of ANO1/ IP3R1 from signaling complex 

Junctional microdomains bringing together B2R in the plasma membrane and IP3R in 

the ER have been reported in sympathetic neurons [485]. Therefore we hypothesized that 

ANO1-containing plasma membrane microdomains may also contain B2R and/or PAR2. 

Further immunoprecipitation experiments demonstrated that IP3R1 immunoprecipitates also 

contained both B2R and PAR2 (Fig. 6.8A). Moreover, we also found that both B2R and PAR2 

immunoprecipitated from DRG lysates by the antibody against the lipid raft protein cavevolin-
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1(Fig. 6.8B). Cavevolin-1 was detected in DRG lysates with Western blotting as a loading 

control. 

 

 

Figure 6.8 Molecular interactions within ANO1-containing junctional microdomains. (A) 

Immunoprecipitation of B2R (upper panel) and PAR2 (middle panel) receptors by the antibody against 

IP3R1. “IP” and “WB” indicate antibodies used for immunoprecipitation and Western blotting, 

respectively. Control immunoprecipitations were performed using mouse IgG. (B) Immunoprecipitation 

of B2R (upper panel) and PAR2 (middle panel) receptors by the antibody against caveolin-1(Cav-1). 

Control immunoprecipitations were performed using mouse IgG. The gels represent results of 3 

independently performed experiments. From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] 

Reprinted with permission from AAAS. 

 

6.4 Discussion 

In this chapter we found that GPCR (B2R and PAR2), cavoelin-1, IP3R and ANO1 

constitute a local Ca2+ microdomain, and that such an organization supports spatially discrete 

local Ca2+ signals that activate ANO1. The ER-localized IP3R may be closely coupled to 

ANO1, forming part of a hypothetical ER–PM (plasma membrane) junctional complex. 

 

In neurons and many other cell types, Ca2+ triggers different Ca2+-dependent signaling 

pathways. In order to regulate cell function accurately, the Ca2+ signals are often restricted to 
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precise microdomains in which Ca2+ concentration can be changed sharply, rapidly and locally. 

Often the Ca2+  signaling microdomains are assembled around the Ca2+ sources. This may be 

achieved either by direct interaction of Ca2+-sensitive proteins with the Ca2+ source (i.e. Ca2+ 

permeable ion channels), or by other mechanisms, such as partitioning to lipid rafts [486]. Here, 

we used a combination of biochemical and optical methods to determine if ANO1 activation in 

small DRG neurons requires Ca2+ microdomains. First, we used YFP indicator to further test 

coupling of CaCC in small DRG neurons to the Ca2+ release from the ER, and to Ca2+ influx 

from VGCC. YFP indicators are based on diffusion-limited collisional quenching. When the 

Cl- channel is open, iodide will enter the cell and collide with indicators causing quenching of 

the fluorescence. We used a YFP based indicator which was mutated to increase the sensitivity 

of the fluorescent protein to iodide quenching [286]. The results of iodide imaging confirmed 

previous electrophysiological data (chapter 5), suggesting that ANO1/CaCCs in small DRG 

neurons are preferentially coupled to the GPCR-induced Ca2+ release from the ER. 

Next, we tested the proximity of IP3R1 and ANO1 using the EGTA/BAPTA paradigm. 

EGTA and BAPTA have similar binding affinities for Ca2+, however, in comparison to EGTA, 

BAPTA chelate Ca2+ 150 times faster [487]. Accordingly, BAPTA is considerably more 

effective in preventing Ca2+ diffusing from a Ca2+ source such as a Ca2+ channel or Ca2+ stores, 

as compared to EGTA. In general terms, sensitivity of a Ca2+-dependent process to BAPTA and 

a lack of sensitivity to EGTA is an indicator of the close proximity of a Ca2+ sensor to the site 

of Ca2+ entry or release. In my study, I found that EGTA cannot fully inhibit the CaCC 

activation by PAR2-PLs, while BAPTA reliably inhibits the effect of this agonist in DRG 

neurons. Dialysis time was restricted to 4 min in these experiments to avoid ER depletion of 

Ca2+. An early study showed that dialysis of 10 mM EGTA or BAPTA into hippocampal 

neurons for less than 5 min does not deplete the ER, but longer dialysis time (10 min) resulted 

in a complete depletion of the ER Ca2+ load [480]. These experiments suggest that in small 
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DRG neurons, ER Ca2+ stores are in very close proximity to the ANO1/CaCC channels. In 

support of this conclusion, confocal imaging revealed that IP3R1 and ANO1 exhibited punctate 

staining with largely overlapping patterns, suggesting a significant colocalization of IP3R1 and 

IP3R in neurons. This pattern of ANO1 staining and co-localization with IP3R1 was specific 

because it was not observed in neurons stained with KCNQ2 and IP3R. The antibody to KCNQ2 

came from the same species as the antibody to ANO1. In addition, using immunoprecipitation 

and proximity ligation assays, we demonstrated that IP3R1 and ANO1 are located in the same 

protein complexes. Data presented in the previous chapter indicate that Ca2+ release from IP3R1 

in ER mediates ANO1 activation. Here we show that IP3R1 protein in the ER, and GPCR and 

ANO1 proteins in the plasma membrane, is coupled together, possibly within a junctional 

microdomain. PLA assay is designed in a way that ensures that only the proteins that are not 

more than ~30-40 nm apart are detected (see Chapter 2, Fig. 2.2). For negative controls we 

used secondary antibody diluent without primary antibody and also we performed 

IP3R1/ANO1 PLA assay on HUVECs that do not express ANO1 (Fig. 6.3A). Both type of 

controls returned no PLA puncta, further verifying reliability of the assay.  

Coimmunoprecipitation experiments further supported PLA and functional (patch 

clamp and iodide imaging) data to indicate that IP3R1 and ANO1 together with the relevant 

GPCRs are located in the same macromolecular complex. In contrast to data indicating close 

spatial proximity of IP3R1 and ANO1 channels, we detected no co-precipitation of SERCA and 

ANO1 channels in DRG lysates. This result suggests that there is specificity in the way these 

signaling complexes are assembled (or detected). 

To further probe ANO1-IP3R1 interactions we used a GST pull down assay. We found 

the TM2-TM3 loop and C-terminus of ANO1 can interact with IP3R1, but that no such 

interaction was detected for the ANO1 N-terminus. These experiments do not, however, 

discriminate between direct or indirect interactions; thus, we cannot exclude the possibility that 
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ANO1-IP3R1 interactions are mediated by some other protein(s). There are multiple examples 

of functional interactions of proteins within junctional ER-PM microdomains, including 

STIM-Orai interactions that underlie store-operated Ca2+ entry [488-490], colocalization of 

B2R and IP3Rs in sympathetic neurons [485], colocalization of Slo1 channels and IP3Rs in 

cultured glioma cells [491]. Electron microscopy has shown that the SR and plasma membranes 

can be located in very close proximity (∼20 nm) in arterial SMCs [492]. Conceivably, IP3R1 

and ANO1 channels may be present within macromolecular complexes that bridge the ER and 

plasma membranes, allowing local molecular communication between these proteins. The 

physiological function of close localization between IP3R1 and ANO1 channels will be 

investigated in the next chapter. 
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Chapter 7. Role of lipid rafts in the assembly of ANO1-containing signaling 

complexes. 

7.1 Introduction 

7.1.1 The structure and function of lipid rafts 

Lipid rafts are cholesterol- and sphingomyelin-rich microdomains of cell membranes 

(Fig. 7.1) [493]. These membrane structures form relatively stable clusters of ~70 nm in 

diameter [493]. At low temperatures, lipid rafts are resistant to extraction by non-ionic 

detergents such as Triton X-100. Because of their composition and detergent resistance, lipid 

rafts float to light fractions when separated by density-gradient centrifugation, a property that 

enables less separation of lipid rafts from the solubilizable membrane proteins and lipids [494]. 

Lipid rafts have also been called detergent-insoluble, glycolipid-enriched complexes or DIGs, 

glycosphingolipid-enriched membranes or detergent-resistant membranes (DRMs) [495]. The 

DRMs contain 5 times more glycolipids as compared to whole cell membranes. It has been 

demonstrated that lipid rafts can regulate various cell functions such as cell transport, the 

intracellular sorting of proteins and lipids, cell-to-cell communication, homeostasis of 

cholesterol, and signal transduction [496, 497]. The latter role will be discussed in more detail 

below.  

There are two main models for plasma membrane receptor signaling within lipid rafts 

[493, 498-500]. According to one such model, lipid rafts can act as “signaling platforms,” 

which connect receptors and coupling factors, affecting enzymes and substrates, to form fully 

functional signaling complexes. In this way spatial protein-protein proximity produces rapid 

and efficient signal transduction. 
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Figure 7.1 The structure of lipid rafts [501]. Rafts are membrane microdomains formed by high 

concentrations of sphingolipids (purple structures) and cholesterol (yellow structures) immersed in a 

phospholipid-rich (brown structures) environment. GPI-anchored proteins are anchored to membranes 

by covalent linkage to glycosyl-phosphatidylinositol (GPI). These proteins located on the extracellular 

side of the plasma membrane. Sphingomyelin and glycosphingolipids (purple structures) are restricted 

to the outer leaflet of the membrane bilayer, glycerophospholipids are restricted to the inner leaflet, 

whereas cholesterol is in both leaflets. Lipids in the rafts usually have saturated fatty acyl chains, 

whereas those in lipids out of the rafts are unsaturated (grey structures). 

 

In addition, this assembly may represent a way of enhancing signaling specificity. The 

other model suggests that multiple signaling components can be present in different lipid rafts. 

Activated receptors could recruit cross linking proteins that bind to proteins in other rafts, and 

this would result in raft coalescence. In this case, rafts compartmentalization may further 

facilitate spatial localization. Rafts may also serve to limit the diffusion of signaling molecules 

and suppress the activity of signaling proteins by inhibiting the interactions. 

Because of the small size and the dynamic nature of lipid rafts, it is difficult to study 

them by conventional approaches. Historically, lipid rafts have been defined functionally by 

their low density and insolubility in cold 1% Triton X-100. When the whole cell lysates are 

isolated by density gradient centrifugation, the DRM will float to low-buoyancy fractions. 
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MβCD can deplete cellular cholesterol which is a property that can be used to study the role of 

lipid rafts in cellular signaling [502]. Using siRNA to knock down lipid raft protein caveolins 

can also be used for disruption of raft signaling complexes in some cases (see below). 

Lipid rafts are difficult to visualize with the conventional imaging techniques such as 

confocal microscopy because of their small size. However, some raft markers or fluorescent 

probes such as 6-acyl-dimethylaminonapthalene can be used to monitor changes of the lipid 

microenvironments [503]. For some type of rafts (i.e. caveolae), immunogold electron 

microscopy can be used for direct visualization [503]. 

 

7.1.2 Caveolae and caveolin 

Caveolae are 50–100-nm invaginations of the plasma membrane in many cell types that 

are biochemically indistinguishable from lipid rafts (Fig. 7.2). GPI and cholesterol are rich in 

caveolae. Proteins called caveolins are also abundantly present in the caveolae. There are three 

different isoforms of caveolins (caveolin-1, -2, and -3). Caveolin-1 and -2 are expressed in 

many different tissues, whereas caveolin-3 is mostly expressed in muscle tissue, particularly in 

cardiac myocytes [504-506].  Caveolae and caveolin are involved in such different cellular 

processes as cell adhesion, cholesterol transport and homeostasis, vesicle trafficking, and signal 

transduction. Lipid rafts are dynamic assemblies of cholesterol and sphingolipids in the plasma 

membrane, and caveolae can be viewed specialized lipid rafts or derivatives, because the 

caveolins involved in their biogenesis are composed of raft-derived components. There are 

some differences between rafts and caveolae, such as the way either transports cholesterol [507, 

508] or performs endocytosis [509], potocytosis [510], and signal transduction [511-514]. The 

formation of caveolae is associated with the presence of the caveolin-1 protein; indeed, they 

cannot form without caveolin-1 [515-517]. Caveolar membranes are biochemically similar to 

other rafts in that they are also resistant to solubilization by Triton X-100 at 4°C, contain 
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sphingolipids and cholesterol, and  have a light, buoyant density. 

Caveolin forms hairpin-like structures with cytoplasmic N- and C-termini [518] (Fig. 

7.2). The caveolin proteins have an important caveolin scaffolding domain (CSD), which 

mediates the interaction with various other proteins [519] (Fig 7.2). Caveolins can act as 

scaffolding proteins recruiting signaling components to keep highly localized and efficient 

signaling.  It is found that some GPCRs, protein kinases A, B and C, steroid hormone receptors, 

MAP Kinase (p42/44 MAPK), receptor- and non-receptor tyrosine kinases, PI3K, and a range 

of other signaling molecules localize to caveolae [520, 521]. In addition, downstream 

molecules including PLC isoforms, Gαs, Gαi, Gαq, Gβγ and some adenylyl cyclase have been 

detected in caveolae [522]. The caveolin scaffolding domain plays important roles in the 

formation of these macromolecular signaling complexes. Additionally, other scaffolding 

proteins such as membrane associated guanylate kinase proteins may also mediate protein-

protein interactions within caveolae. 
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Figure 7.2 Model for the organization caveolae in the plasma membrane. (A) Caveolae is formed from 

lipid rafts by self-associating caveolin molecules making a hairpin loop in the membrane. The 

compositions of lipid bilayer from caveolae are similar to lipid rafts. Caveolin-1 exists as a homo-

oligomer of ∼14 to 16 monomers; a homodimer is shown in picture for clarity. Both the amino- and 

carboxy-terminal domains are oriented towards the cytosolic face of the plasma membrane, with a 

hairpin loop structure inserted within the membrane bilayer. Modified from reference 

[523]. (B) Structural domains present in caveolin-1. The protein is tethered to the plasma membrane via 

its trans-membrane (TM) domain (blue). The amino-terminal membrane-attachment domain (N-MAD, 

green) and C-terminal membrane-attachment domain (C-MAD, cyan) are also involved in the 

membrane interactions. N-MAD is called the caveolin scaffolding domain (CSD). Homo-

oligomerization is mediated by 40-amino acids known as the oligomerization domain (OD; purple) 

[524]. 
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Caveolae provide a platform for regulation of various membrane proteins. Thus, the α-

subunit of Na+/K+-ATPase has two highly conserved putative caveolin-binding motifs and 

localize to caveolae [525]. TRPC-1, -3 and -4 are enriched in caveolae and caveolin-1 can 

directly regulate TRP channel function, particularly the trafficking [526]. MβCD treatment 

decreases colocalization of caveolin-1 and TRPC1 and prevents Ca2+ influx through the latter 

[527]. Additionally, some voltage- gated K+ channels are also localized in caveolae and play a 

major role as modulators of cellular excitability. For example, voltage-gated K+ channel Kv2.5 

is localized to caveolin-rich lipid rafts; depletion of membrane cholesterol influences the 

functional activities of Kv2.5 [528]. In fibroblasts, the voltage-gated K+ channel Kv1.5 subunit 

colocalizes with caveolin-1 on the cell surface. These findings imply that alteration of caveolae 

and/or caveolin can shift the localization of the channels, thereby altering their functional 

activity. 

 

7.1.3 Ion channels and lipid rafts 

Many ion channels have been reported to function within lipid microdomains. 

Examples include voltage-gated K+ channels; CNG channels; TRP channels; P2X receptors; 

and Cl- channels [503]. Although there is no direct evidence to suggest that Na+ channels are 

located in detergent-insoluble fractions, studies have shown that caveolin-3, Na+ channels, and 

Gαs constitute the microdomain in ventricular myocytes [529-532]. 

VGCC is another type of ion channel that has been found in lipid rafts in some cells. It 

was, for instance, found that L-type Ca2+ channels co-localize with RyR into caveolae, which 

constitute a microdomain in cardiomyocytes and provide an efficient Ca2+-signal producing 

excitation-contraction coupling [533, 534]. Moreover, the α1 subunit of the L-type Ca2+ 

channel is found in Triton X-100 insoluble caveolin-enriched fractions in smooth muscle and 

atrial myocytes [535, 536]. 
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It has been suggested that IP3R co-precipitates with ankyrin-B and CD44, proteins 

which are known to concentrate in caveolin-rich detergent-insoluble fractions [537]. All this 

suggests that plasma membrane lipid rafts can participate in junctional microdomains with 

intracellular organelles such as the ER. 

Many members of various K+ channels families have been shown to localize to lipid 

rafts. Thus, Kv2.1 and Kv1.5 localize to cholesterol-enriched microdomains in rat 

cardiomyocytes or mouse L-cells stably expressing either rat Kv1.5 or Kv2.1 channels [528, 

538]. Treatment with MβCD induced a hyperpolarizing shift of Kv2.1 inactivation and Kv1.5 

activation and inactivation, suggesting that the plasma membrane environment is important for 

channel function. Kv1.4 channels have also been found in detergent-insoluble fractions of 

neurons and HEK293 cells [539]. Kv4.2/4.3 mediate the Ca2+-independent transient outward 

K+ currents. These channels were also found in lipid rafts in rat brain and transfected HEK293 

cells [539]. The inwardly rectifying K+ channels (Kir3 and Kir2) appear to localize into 

detergent insoluble membrane fractions [540]. Increased plasma membrane cholesterol 

decreases Kir2.1 current density, whereas cholesterol-depletion increases current density. ATP 

sensitive K+ channel, Kir6.1, is also expressed in lipid rafts. In rat aortic smooth muscle cells, 

Kir6.1 colocalizes with adenylyl cyclase in caveolin-enriched low-density membrane fractions 

[533]. Caveolin co-immunoprecipitates with Kir6.1 from arterial homogenates [541]. 

Treatment with MβCD reduces Kir6.1 current. Recently, Ca2+-activated K+ channels have also 

been shown to interact with caveolin and to localize into lipid rafts [542]. 

Lipid rafts also modulate ion channels by providing an environment for assembly of 

macromolecular signaling complexes [543]. Signaling proteins such as GPCRs, various classes 

of G proteins, adenylyl cyclase, PKC, nitric oxide synthase, tyrosine kinases, H-ras and 

MAPKs [503, 520] can be recruited to lipid microdomains. Additionally, scaffolding proteins, 

like caveolin or membrane-associated guanylate kinase proteins such as postsynaptic density 
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protein-95 (PSD-95) and synapse-associated protein-97 (SAP97), are able to bind to ion 

channel or several other signaling proteins in order to organize these interacting proteins within 

the lipid rafts [539, 544]. For example, in cardiac myocytes the  β2-adrenergic pathway includes 

caveolin-3, Cav1.2 L-type channels, and a number of other signaling molecules. Disruption of 

lipid rafts abolishes the response of Cav1.2 to β2-adrenergic stimulation [545, 546]. SAP97, a 

membrane-associated protein with PDZ-domain, interacts with Kv1.5 channels in lipid rafts, 

and this interaction affects activation and inactivation of Kv1.5 [544, 547, 548]. PSD-95 and 

voltage-gated K+ channel-interacting protein (KChIP) also interact with Kv1.5 channels within 

lipid rafts [549].  PIP2 has also been found in caveolae and can regulate numerous ion channels 

[529, 550, 551]. The PIP2 modulation of ion channels is beyond the scope of this brief 

introduction. 

 

7.2 Aims 

In chapter 6 we found that cavoelin1 interacts with B2R and PAR2 in small DRG 

neurons. Therefore I hypothesize that lipid rafts may play some a role in the formation of 

ANO1-containing junctional microdomains. As evidenced in the introduction to this chapter, 

lipid rafts often serve as platforms for signal transduction; in many cases these rafts form 

membrane microdomains. Experiments conducted in this chapter were designed to determine 

if ANO1 and its signaling complex also reside in the lipid rafts in small DRG neurons. We also 

tested if such lipid raft-based microdomains facilitate ANO1 activation by Ca2+. Finally, we 

tested the physiological significance of these microdomains. 
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7.3 Results 

7.3.1 B2R, PAR2 and ANO1 are located in cholesterol-rich lipid rafts 

Informed by the experiments reported in previous chapters, we hypothesized that GPCR, 

ANO1 and IP3R1 may be in close proximity in small DRG neurons. We further inferred that 

the plasma membrane part of this signaling complex could be assembled within lipid rafts. To 

investigate whether GPCR and ANO1 are colocalized in cholesterol-rich lipid rafts, we isolated 

lipid rafts from DRG tissue using gradient sucrose ultracentrifugation after solubilization of 

membranes in buffer containing TritonX-100 (see Chapter 2). The gradient fractions were 

analyzed by immunoblotting. As shown in Fig. 7.3A, caveolin-1 was distributed mostly in the 

detergent-insoluble, low-buoyant density fractions, fractions 4 to 6. ANO1, PAR2, and B2R 

proteins were also distributed mostly into these same fractions.  
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Figure 7.3 ANO1 localizes to lipid rafts in DRG neurons. (A) Sucrose density gradient fractionation of 

plasma membranes isolated from rat DRG revealed the enrichment of caveolin-1 containing membrane 

fractions with ANO1, B2R and PAR2. (B) Disruption of lipid rafts with 50 mM MβCD for 2 hours 

disrupts the localization of ANO1, B2R and PAR2. The gels represent results of 3 independently 

performed experiments. From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] Reprinted with 

permission from AAAS. 

 

We used non-raft marker CD71 as a negative control; it localized in high density 

fractions (7, 8, and 9). However, when DRG tissue was treated with 50 mM MβCD for 2 hr, 

the ANO1, PAR2, and B2R peaked in fractions 7, 8 and 9 (heavier fractions). The direct effect 

of MβCD on cells is extraction of cholesterol from the outer layer of plasma membranes. 

Atomic force microscopy revealed that MβCD treatment resulted in a reduction in size and 

eventual dissolution of lipid rafts in a time-dependent manner [552]. 
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7.3.2 Disruption of lipid raft has an effect on DRG excitability 

To examine the physiological roles of ANO1/IP3R/GPCR microdomains located in lipid 

raft/caveolae, we studied the effects of cholesterol depletion and lipid raft/caveolae disruption 

on CaCC and on DRG excitability. As shown in Table 7.1 and Fig. 7.4A and B, pretreatment 

of DRG with 10 mM MβCD analog α-cyclodextrin (αCD), which cannot bind cholesterol [553] 

for 30 min had no effect on PAR2-PL or BK-induced CaCC (50% vs. 46% responsive cells in 

BK-treated group, 50% vs. 53% in PAR2-PL treated group), while MβCD treatment markedly 

reduced the ability of PAR2-PL or BK to induce CaCC as compared to control conditions (6.7% 

vs. 46% responsive cells in BK-treated group, 6.3% vs. 53% in PAR2-PL treated group).  

In a series of current clamp experiments we investigated the effect of cholesterol 

depletion on small DRG neuron excitability. Interestingly, MβCD treatment dramatically 

increased excitability of small DRG neurons. As shown in Fig. 7.6 and Table 7.1, in control 

conditions most of DRG neurons only fired one AP in response to 600 pA of depolarizing 

current injection, and only 3 neurons fired multiple APs. αCD had no effect on DRG AP firing 

rate, while MβCD treatment markedly increased number of cells firing multiple APs. Thus, in 

half of the MβCD-treated small DRG neurons (11/22), multiple APs were recorded (Fig. 7.5A). 

Importantly, when MβCD-treated neurons were recorded under conditions in which 

intracellular Cl- was replaced with acetate (and, thus, Cl- channel opening would result in 

hyperpolarization, not depolarization), only 3/19 neurons fired multiple APs, indicating that no 

increase in the proportion of hyperexcitable neurons occurred (Fig. 7.5B, Table 7.1) under these 

conditions. The latter experiment strongly suggests that the MβCD-induced hyperexcitability 

depends on the Cl- conductance. 
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Table 7.1 Summary of the effects of cholesterol extraction on the coupling of CaCC activity to BK- and 

PAR2-induced Ca2+ release, and to VGCC-mediated Ca2+ influx. Shown are proportions of small DRG 

neurons that displayed properties listed in the right column; data are presented as X/Y where X is 

number of responsive cells and Y is a total number of neurons tested. 

Condition: 

Property: 

No treatment 

(Control) 

MβCD 

10 M 

αCD 

10 M 

BK-induced cytosolic 

Ca2+ transients 

 

18/31 

 

13/31 

 

N/A 

BK-induced CaCC 

current 

 

16/35 

 

1/15* 

 

7/14 

PAR2-PL-induced CaCC 

current 

 

8/15 

 

1/16* 

 

8/16 

CaCC tail current after 

VGCC activation 

 

1/20 

 

10/20* 

 

  1/21 

Multiple AP firing  

3/18 

High [Cl-]i Low [Cl-]i  

2/15& 11/22* 3/19# 

 

*significantly different from control; 
$significantly different from MβCD 
#significantly different from high [Cl-]i; 

&significantly different from MβCD with high [Cl-]i; 2 with p < 0.05 

From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] Reprinted with permission from AAAS. 
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Figure 7.4 Effect of MβCD on the GPCR-induced CaCCs in small DRG neurons. (A) DRG neurons 

were pretreated with 10 mM MβCD or its analogue that cannot bind cholesterol, αCD, for 30min. 

Whole-cell patch clamp recordings were performed on the pre-treated neurons and the responses to 1 

µM BK or 1 µM PAR2-PL were analyzed. Shown are exemplary current traces. (B) Scatter plot 

summarizing the experiments like these shown in (A). From [Jin, X., et al., Sci Signal, 2013. 6(290): p. 

ra73.] Reprinted with permission from AAAS. 
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Figure 7.5 MβCD treatment markedly increases DRG excitability. (A) Exemplary AP traces recorded 

from small DRG neurons in current clamp mode upon injection of 600 pA depolarizing current; control 

neuron (black trace), MβCD treated neuron (10 mM MβCD for 30 min; red trace). (B) Scatter plot 

showing number of APs per 1s current injection in various treatment conditions: Control (untreated); 

MβCD with high intracellular Cl- concentration; MβCD with low intracellular Cl- concentration and 

αCD (10 mM for 10 min). From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] Reprinted with 

permission from AAAS. 

 

In experiments reported in previous chapters, we found that VGCC were mostly unable 

to activate CaCC in small DRG neurons. On the other hands, MβCD treatment dramatically 

reduced coupling of GPCR to CaCC (Fig. 7.4 and Table 7.1). Therefore we tested if MβCD 

affected coupling between VGCC and CaCC. As before, we have used double-pulse voltage 

protocol. Surprisingly, after 10 mM MβCD treatment for 30 min, 50% of the small DRG 

neurons showed an inward tail current upon repolarization to -80 mV after the first voltage 

pulse, indicating activation of CaCC (Fig. 7.6). This is a significant increase in percentage of 

neurons displaying such tail currents compared with the control conditions (5%). The 

amplitude of the VGCC current was not affected by the MβCD treatment (580 ± 85 pA in 

control compared to 522 ± 62 pA in MβCD-treated group). Treatment of the neurons with the 
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MβCD analog αCD, did not significantly change the coupling of CaCCs to VGCCs; the 

proportion of neurons in which Ca2+ influx through VGCCs induced CaCC tail currents (5%) 

was not different from that seen with untreated neurons and was significantly lower than such 

proportion in the MβCD-treated group (Fig. 7.6B, Table 7.1). 

To confirm this effect of MβCD we performed further imaging experiments using I−-

sensitive YFP- H148Q/I152L (Fig 7.7). Application of extracellular solution in which 30 mM 

NaCl was replaced with 30 mM NaI caused a decrease in normalized fluorescence (F/F0) from 

unity to 0.77 ± 0.05 (Fig. 7.7), which was not different from the decrease observed in control, 

MβCD-untreated neurons (Chapter 6, Fig. 6.1; a decrease of F/F0 to 0.76 ± 0.05). However, 

depolarization with 50 mM KCl induced a significantly greater decrease in fluorescence in 

MβCD-treated neurons as compared with untreated cells: a decrease of F/F0 to 0.46 ± 0.03 

(Fig. 7.7).  

Having established that disruption of lipid rafts with MβCD disturbs CaCC activation 

in small DRG neurons, we next tested if the effect of MβCD is due to disruption of the 

IP3R/ANO1/GPCR microdomain. As shown in Fig. 7.8A and C, coimmunoprecipitation 

experiments showed that MβCD treatment significantly decreased the interaction between 

IP3R1 and ANO1, suggesting that the lipid raft is important for the proximity of the ANO1 and 

IP3R1. Coimmunoprecipitation of B2R by IP3R1 was somewhat reduced by MβCD treatment, 

but this effect was not statistically significant (Fig. 7.8B). Perhaps the interaction between the 

B2R and IP3R1 in this complex has a different dependency on the lipid raft environment 

compared to that of ANO1 and IP3R1.   

In the next series of experiments we use PLA assay to test if MβCD treatment of DRG 

culture reduces the IP3R1-ANO1 PLA signal. The Carl Zeiss software ZEN was used to 

automatically detect PLA puncta as local intensity maxima based on the manually set threshold 

which was kept constant throughout the image analysis. As shown in Fig. 7.9, MβCD treatment 



146 
 

indeed decreased the PLA abundance of the IP3R-ANO1 puncta, indicating that the ANO1 and 

IP3R1 complex was disrupted.  

Since MβCD may have non-specific effects, in order to disrupt the microdomain 

specifically, we took an advantage of the identification of IP3R1-interacting domains of ANO1 

reported in the previous chapter. Therefore, we subcloned the C- and N-terminal hydrophilic 

regions and the loop between the TM2-TM3 loop of ANO1 into bicistronic pIRES-EGFP 

vectors and overexpressed these individually into DRG neurons. As shown in Fig. 7.10, 

application of 10 µM PAR2-PL to small DRG neurons evoked robust inward currents (recorded 

at -60 mV holding potential) when the DRG neurons were transfected with the N-terminus of 

ANO1 or the EGFP vector, while PAR2-PL currents were almost abolished when the DRG 

neurons were transfected with C- terminus or the TM2-TM3 loop of ANO1. These experiments 

suggest that the C- terminus or the TM2-TM3 loop of ANO1 may have disrupted IP3R1-ANO1 

coupling by a competition mechanism. Together these data suggested the existence of CaCC 

signaling complexes in DRG neurons that consists of (i) a plasma membrane component 

containing ANO1, B2R and/or PAR2 in a cholesterol- and caveolin-1-enriched microdomain; 

and (ii) a juxtaposed ER region containing IP3R1. The interactions between ANO1 and the 

IP3R1 (mediated by the C-terminus and the TM2-TM3 loop of ANO1) may contribute to 

linking the two membranes, which is required for CaCC activation by the GPCRs. 
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Figure 7.6 VGCC activates CaCC in small DRG neurons after MβCD treatment. (A) Whole-cell patch 

clamp experiments show that 50% of small DRG neurons (10/20) displayed inward tail current 

following the activation of VGCC by the voltage steps to 0 mV after 30 min pretreatment with 10 mM 

MβCD. Voltage protocol is depicted above the traces. (B) Scatter plot of all data from the small DRG 

neurons tested (vehicle control, 10 mM MβCD and 10 mM αCD, as labelled). CaCC (ICaCC-VGCC) was 

calculated as a difference in peak tail current amplitudes after the depolarizing pulses with and without 

Ca2+ influx; neurons were considered as not displaying activation of CaCC by VGCC when the resulting 

amplitude was below 40 pA. Red horizontal bars represent mean values of all neurons tested in each 

group. Numerals above and below the dotted line represent number of neurons with and without VGCC-

induced CaCC, respectively. From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] Reprinted with 

permission from AAAS. 
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Figure 7.7 Mean time courses from experiments carried out with the EYFP-H148Q/I152L assay on 

small DRG neurons after MβCD treatment. Effect of MβCD treatment on I- influx induced by 

depolarization with 50 mM KCl in DRG neurons. Averaged time courses of normalized fluorescence 

(F/F0) of H148Q/I152L EYFP-transfected neurons perfused with 30 mM NaI containing extracellular 

solution either alone (vehicle, n = 7) or in neurons treated with MβCD (10 mM, 30 min) and then 

stimulated with 50 mM KCl (High K+, n = 10) or 50 mM KCl and NFA (100 µM) (High K+ +NFA, 

n=5). From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] Reprinted with permission from AAAS.
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Figure 7.8 MβCD treatment disrupts co-immunoprecipitation of ANO1 with IP3R1. (A) Using of IP3R1 

by the antibody against ANO1 from DRG lysates was reduced when lysates were treated with MβCD. 

“IP” and “WB” indicate the antibodies used for immunoprecipitation and Western blotting respectively. 

Control immunoprecipitations were performed using goat IgG. (B) Experiment similar to (A), but the 

immunoprecipitation of B2R by the antibody against the IP3R1 was tested instead, labeling and 

conditions as in (A). (C) Densitometry of ANO1/IP3R1 signals was performed using Nikon Elements 

3.2. Bar chart summarizes densitometry data from three independent experiments. Mean optical 

densities from identical areas around each coimmunoprecipitation band–data from the experiments as 

these shown on panels (A) and (B) – were normalized to the density of the corresponding WB band 

(lower blots). The density of the bands in MβCD-treated samples is expressed as a fraction of control; 

* p≤0.05 (t-test). From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] Reprinted with permission 

from AAAS. 
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Figure 7.9 MβCD treatment decreases ANO1/IP3R1 interaction as detected with PLA assay. (A) 

Detection of ANO1/IP3R1 complexes (green puncta) in vitro after MβCD treatment (right) or control 

(left) in small DRG neurons; ANO1/IP3R1 PLA staining (green), DAPI (blue). Higher magnification 

images of the boxed areas included. (B) Bar chart summarizes number of puncta per PLA-positive 

neuron (control, n = 14; MβCD, n = 14). Puncta detected as local intensity maxima in z-stacked imaging 

planes. Experiments were repeated at least three times. Data are presented as mean ± SEM; ***p≤0.001 

(t-test analysis). From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] Reprinted with permission from 

AAAS. 
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Figure 7.10 Competitive disruption of IP3R/ANO1 complexes affects activation of ANO1 by PAR2. 

(A) Effect of the 3 cytosolic domains of ANO1 on PAR2-PL-induced inward currents in DRG neurons. 

Each ANO1 cytosolic domain was individually overexpressed in DRG neurons, and inward current was 

tested by patch clamp. Traces are representative recordings from cells transfected with indicated 

constructs. “EGFP” denotes EGFP-only transfected neurons. Periods of PAR2-PL (10 µM) application 

indicated by the black bars (B and C). Bar charts summarizing the current amplitudes (B) and 

proportions (C) of neurons displaying  inward current. From [Jin, X., et al., Sci Signal, 2013. 6(290): p. 

ra73.] Reprinted with permission from AAAS.  
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7.4 Discussion 

In this chapter we found that ANO1 channels in nociceptive neurons are localized to 

the low density membrane fractions enriched with cholesterol and caveolin-1, characteristics 

of lipid raft microdomains. In addition, GPCR receptors B2R and PAR2 in whole DRG lysates 

were found to localize to the same membrane fractions as well. Because ANO1 has similar 

distribution with caveolin-1 in DRG neurons, it is likely that the ANO1 resides in caveolae or 

similar structures in these cells. However, I could not visualize caveolae here due to the 

limitation of the confocal microscopy. I also found that MβCD disrupted the ANO1 

microdomain assembly because MβCD disrupted the coupling between IP3R and ANO1 as 

tested with electrophysiology (no CaCC current activation by BK or PAR2-PL in MβCD-

treated neurons), coimmunoprecipitation (reduced Co-IP of ANO1 and IP3R1 after MβCD 

treatment) and PLA assay. Similarly, GPCR-ANO1 coupling was disrupted by overexpression 

of IP3R1-interacting domains of ANO1 identified in the previous chapter. All this evidence 

suggests that ANO1 and GPCR are localized to lipid rafts and that this localization is important 

for the functional coupling between the GPCRs, IP3R1 and ANO1 channels.  

Another intriguing finding of the experiments reported in this chapter is that in many 

MβCD-treated neurons observed CaCC activation coupled to the VGCC activation. Thus, 

disassociation of the ANO1 signaling complex in a small DRG neuron resulted in a loss of 

functional coupling between the B2R/PAR2 and the ANO1 and gain of coupling between ANO1 

and VGCCs. 

Since CaCC activation is excitatory in nociceptors, and potentially painful [7, 256, 366], 

there must be mechanisms that control coupling of Ca2+ sources to CaCC activation. This is 

particularly obvious for the case of coupling of CaCCs to VGCCs. Indeed, VGCCs are opened 

during AP firing, and if Ca2+ influx generated during this period would activate CaCCs, this 

may generate further depolarization and, in turn, more APs [162]. Our current clump 
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experiments show that most small-diameter DRG neurons fire single APs in control conditions, 

but MβCD treatment resulted in overexcitable neurons that fire multiple APs. Thus, we 

hypothesize (see schematic shown in Fig. 7.11) that ANO1 and relevant GPCRs in nociceptive 

sensory neurons are localized to signaling complexes assembled within lipid rafts at the plasma 

membrane-ER junctions. The complexes are tethered to the ER in a way that ensures close 

proximity between ANO1 and IP3Rs in order to confer efficient activation of the channel by 

the Ca2+ release through the latter. Such assembly may also protect ANO1 from the ambient 

Ca2+ (hence the poor coupling to VGCC). This hypothesis could explain why Ca2+ influx via 

the VGCCs is mostly unable to activate ANO1 in these neurons. It also could provide an 

explanation to the data reported in Chapter 3, showing that in most small-diameter DRG 

neurons dialysis of up to 10 µM free Ca2+ through the patch pipette was unable to activate 

CaCC. 

Yet, this poor accessibility of ANO1 to global Ca2+ (e.g., in this case, Ca2+ influx from 

VGCC or through the patch pipette) is intriguing. While obviously more research is needed to 

clarify this issue, there are few considerations that may provide an explanation.  

i) As said in previous chapters, endogenous Ca2+ in cells is buffered by multiple 

Ca2+ binding proteins (e.g. CaM). Such buffering shortens the range of 

intracellular Ca2+ signals.  

ii) ANO1 channels have rather low Ca2+ affinity, especially at the negative 

voltages that characterize the resting membranepotential of nociceptive DRG 

neurons (~ -60 mV [306]) and at such potentials the Ca2+ EC50 for ANO1 is 

~3-5 µM [202, 205]; global Ca2+ does therefore not normally reach such 

levels in cells.  
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Figure 7.11 Simplified hypothetical scheme of the ANO1-containing junctional signaling microdomain 

in a nociceptive sensory neuron. (A) Control conditions; (B) Proposed rearrangements after the lipid 

raft disruption. From [Jin, X., et al., Sci Signal, 2013. 6(290): p. ra73.] Reprinted with permission from 

AAAS.  
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iii) Finally, when this thesis was already in a revision stage, a crystal structure of a 

prokaryotic anoctamin was published [554]. Among several revelations of the 

structure (including a revised membrane topology of anoctamins which, 

according to the structure, have ten, not eight TMDs), is the Ca2+ binding site of 

anoctamins. The Ca2+ binding site is formed by several aspartate and glutamate 

residues of transmembrane helices 6, 7 and 8 and, surprisingly, it is situated well 

within the hydrophobic core of the inner leaflet of the plasma membrane. This 

feature can explain not only the intrinsically low Ca2+ sensitivity of ANO1, but 

also the poor accessibility of its Ca2+ binding site to cytosolic Ca2+. Indeed, it 

may be that a direct association of ANO1 with the pore vicinity of the IP3R 

creates a “dedicated” pathway for Ca2+ from the ER to the ANO1 Ca2+  binding 

site. One can further speculate that the accessibility of the Ca2+ binding site of 

ANO1 may depend on the properties and composition of the plasma membrane. 

For example, ANO1 channels localised to lipid rafts (which are more tightly 

packed membranes as compared to the non-raft regions) may have more 

restricted accessibility to Ca2+ as compared to non-raft-localized channels. 

Clearly further research is needed to test this hypothesis. 

Another study has demonstrated that, like DRG neurons, ANO1 is enriched within the 

caveolin-1 containing lipid rafts in murine portal vein myocytes [555]. MβCD treatment 

resulted in membrane re-distribution of ANO1 and potentiation of ANO1 activation by voltage 

(at [Ca2+]i = 0.5 µM). Thus, similarly to small DRG neurons, lipid raft-localized microdomains 

in SMCs may play a dual role: provide a platform for coupling of ANO1 to intracellular stores, 

and protecting ANO1 from “‘global” (i.e., incoming from VGCC) cytosolic Ca2+. Lipid raft 

disruption in SMCs may expose ANO1 channels to global Ca2+, making them more easily 

activated. It has to be noted that in murine portal vein myocytes ANO1 resides in less buoyant 
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fractions as compared to DRG. It is possible that the membrane distribution of ANO1 has 

tissue-specific differences. Another difference between the study of Sones and colleagues and 

the present work is that they used lower concentration of MβCD (3 mg/ml) and shorter 

incubation times (15 min) to treat mouse portal vein cells or portal veins. Here we used 10 mM 

MβCD for 30 min in the acute experiments and 50 mM for 2 hours in biochemical experiments 

with native DRG tissue (the higher concentration and incubation time in the latter case is due 

to the reduced penetration of the reagent in the case of the whole ganglia treatment). I found 

the concentrations of MβCD that we used did not significantly affect the distribution of a non-

lipid raft marker CD71, which was similar to the results reported by Sones and colleagues. 

Other groups also used 50 mM or higher concentrations of MβCD to treated cells or tissues 

[556-559]. However, given the possible non-specific effects of cyclodextranes, it is important 

in the future study to design a more specific ways to disrupt lipid rafts. In this study I used 

competition peptides (Fig. 7.10) to disrupt ANO1/IP3R1 complexes more specifically and the 

results of these experiments are consistent with that where MβCD was used for raft disruption. 

Moreover, for most MβCD experiments I have performed αCD controls. 

In some ways ANO1 channels are similar to the Slo1 Ca2+-activated K+ channels; both 

channel types have rather low Ca2+ sensitivity and, thus, need to localize closely to the source 

of Ca2+. Both channels also respond to Ca2+ and voltage. In some cells, Slo1 channels were 

shown to form protein complexes with different Ca2+ sources [560]. Interestingly, recent studies 

have shown that Slo1 channels localize to lipid rafts and couple with IP3R to ensure their 

activation inresponse to IP3-mediated Ca2+ release in glioma cells [491]. Thus, while belonging 

to different protein families, both channels may utilize similar coupling mechanisms. 
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Chapter 8. Conclusions, General Considerations and Future Directions 

The main conclusions of the present study are as follows: 

1) In small, TRPV1-expressing (presumed nociceptive) DRG neurons, B2R, PAR2, 

cavoelin-1, IP3R and ANO1 constitute a local Ca2+ microdomain and more specifically, an 

organization that generates spatially discrete local Ca2+ signals for activation of ANO1. The 

sensitivity of ANO1 to global [Ca2+]i changes is poor, (see Fig.7.11 in the previous chapter) 

making topological provisions for precisely localized delivery essential. 

2) The ER-localized IP3R may be closely coupled to ANO1, forming part of a 

theoretical ER–PM (plasma membrane) complex. At least in part this coupling is supported by 

physical interactions between the C terminus and the first intracellular loop of ANO1 and IP3R1 

(even though it is not yet clear that this interaction is direct). Such junctions may form a 

diffusionally restricted intervening space that prevents Ca2+ from freely diffusing elsewhere 

into the cytosol, generating locally high enough concentration for activation of poorly Ca2+-

sensitive ANO1. At the same time, such junctional microdomains may also shield ANO1 from 

distal cytosolic Ca2+ signals (Fig. 7.11A). 

3)  The interaction of ANO1 with IP3R1 and the ability of the local Ca2+ signals to 

stimulate ANO1 activity were lost when lipid microdomains were chemically disrupted. In 

contrast, ANO1 became receptive to global Ca2+ signals, particularly to the Ca2+ influx from 

VGCC, in the absence of lipid rafts. I propose that lipid raft disruption caused a disturbance to 

the ANO1 signaling complex (Fig. 7.11B) such that the ER Ca2+ release sites were no longer 

close enough to the low-Ca2+-affinity ANO1 channels to supply a sufficient amount of Ca2+ to 

activate the channel. In turn, some delocalized ANO1 channels gain proximity to VGCCs (both 

of these channels reside within the plasma membrane) when lipid rafts are disrupted and 

become susceptible to activation following VGCC opening. 
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4) Disruptions of lipid rafts increases excitability of small-diameter DRG neurons, an 

effect that depends on the Cl- channel activity and, thus, is likely to reflect the “acquired” 

sensitivity of ANO1 channels to global Ca2+ signals. 

One interesting and important question is the physiological and/or pathophysiological 

function of this preference of ANO1/CaCC in coupling to a particular Ca2+ source in a 

nociceptive neuron. I speculate that if CaCC were coupled to global Ca2+ signals, e.g. through 

VGCC activation, then a positive feedback loop would be created in which CaCC would induce 

depolarization which would induce firing of APs and activation of VGCC. That, in turn, would 

further activate CaCC and cause a self-sustaining depolarization cycle, and a nociceptive 

neuron firing all the time. This is obviously not a desirable scenario for a nociceptive neuron 

as it would become a source of constant pain.  

While the present work revealed the existence of ANO1-containing junctional 

microdomains, the exact set-up of these microdomains remains to be elucidated. The peptide 

competition experiments in which I used three different cytosolic fragments of ANO1 not only 

confirmed that C terminus and the TM2-TM3 loop of ANO1 interacted with IP3R1, but also 

provided a strong evidence that ANO1/IP3R1/GPCR microdomains are required for ANO1 

activation. It is tempting to further speculate that the physical interaction of ANO1 with the 

IP3R1 is necessary for delivery of Ca2+ to the ANO1 Ca2+ binding site which, according to the 

crystal structure of the fungal ANO1 orthologue [554], is hidden within the lipid bilayer andis 

therefore relatively inaccessible from cytosol. 

My experiments cannot distinguish whether ANO1-IP3R1 interactions are direct or if 

additional scaffolding proteins are necessary. Scaffolding proteins play important roles in many 

signaling pathways. Firstly, they can interact with multiple proteins, tethering them into 

complexes [561]. Secondly, scaffolding proteins help the signaling components to localize to a 

specific area in the cell such as the plasma membrane, the nucleus and the Golgi [562]. There 
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are many different scaffolding proteins such as Spinophilin, NLRP, Pellino, Homer, AHNAK-

1, KSR, MEKK1, BCL-10 and many others. In particular, the Homer protein family has been 

shown to play an important role in Ca2+ signaling as it interacts with IP3Rs and the proteins 

that are targeted by ER Ca2+ release [563]. For example, it has been found that Homer links the 

glutamate receptors with IP3Rs in the ER of neurons [564]. Such scaffolding is necessary for 

signal transduction, synaptogenesis and receptor trafficking [565]. Importantly, Homer proteins 

are important for assembly of signaling complexes in peripheral sensory neurons [566]. 

Therefore, I hypothesized that Homer protein may also be involved in formation of ANO1-

containing microdomains. Although this is still a hypothesis, in a preliminary experiment I used 

the antibody against ANO1 to immunoprecipitate the total proteins from native DRG tissue to 

try to detect the presence of the Homer1b/c presence. I found the ANO1 antibody was able to 

immunoprecipitate with Homer1b/c (Fig. 8.1); this preliminary data may suggest that 

Homer1b/c is also involved in the assembly of ANO1-containing signaling complexes in 

nociceptive neurons. Clearly, however, further experiments are needed to verify and further test 

this hypothesis. 

 

 

 

 

 



160 
 

 

Figure 8.1 Homer1b/c interacts with ANO1. Immunoprecipitation of Homer1b/c by an antibody against 

ANO1 from the lysates of whole DRG ganglia of four rats. “IP” and “IB” indicate the antibodies used 

for immunoprecipitation and Western blotting respectively. Control immunoprecipitations were 

performed using goat IgG. 

 

There may be further components and interactions within the ANO1-containing 

junctional microdomains which are at present unknown. Such large protein complexes can be 

supported by cytoskeleton. Indeed, interaction of ANO1 proteins with ezrin-radixin-moesin 

cytoskeleton network has been reported recently [305]. Depending on the cell type, these 

microdomains may also contain additional relevant proteins, such as Slo1 channels in SMCs 

or TRPV1 channels in sensory neurons. Indeed, TRPV1 channels are also modulated by B2R 

and PAR2 [365, 567]. In addition, ANO1 [256] and TRPV1 [568] are both activated by noxious 

heat, making functional coupling between Ca2+-permeable TRPV1 and Ca2+-sensitive ANO1 

channels an obvious way to increase the dynamic range of temperature responses in sensory 

neurons. CRAC may also reside within such microdomains, as CRAC is needed to refill ER 

Ca2+ stores. Furthermore, STIM-Orai1 interactions that underlie CRAC activation may provide 

a structural link to the plasma membrane [569]. The list of potential candidates can be 

continued, indicating a large scope for further research that in order to fully elucidate the ANO1 

channel’s interactome. 

Finally, it is still unknown if, like DRG, ANO1-containing junctional microdomains 

also exist in other tissues. Current literature suggests that this might be the case. For example, 
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it has been suggested that CaCC in smooth muscles is closely associated with ryanodine 

receptors [570]. Moreover, ANO1 localizes to lipid rafts in smooth muscle myocytes; and 

disruption of lipid rafts with MβCD results in the enhanced activation of ANO1/CaCC by 

voltage at relatively high intracellular Ca2+ concentrations (500 nM) [555] (see discussion in 

the previous chapter). Thus, ANO1-containing microdomains may exist in SMCs, again (like 

nociceptive sensory neurons), providing a mechanism for specific coupling of ANO1 to 

intracellular stores and protecting the channels from global Ca2+ changes. It is also worth 

pointing out that lipid rafts provide a scaffold for bringing multiple signaling complexes 

together. It is therefore possible that ANO1 may partner with different signaling complexes 

depending on the lipid raft assembly in different cell types.  

In conclusion, the data presented in my thesis establish the existence of specific 

signaling complexes that bring together ANO1, B2R, PAR2 and ER-localized IP3Rs. The likely 

function of these complexes is to ensure the fidelity of acute inflammatory signals in 

nociceptive DRG neurons. But similar structures may also exist in other cell types. 
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