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Abstract 

Sandwich restoration technique was one of the proposed procedures with the 

intention of improving marginal integrity of direct resin composite restorations, 

especially when the cervical margin is situated below the cemento-enamel 

junction. Co curing, which defined as the simultaneous photo polymerization of 

two different light activated restorative materials, claimed to decrease the 

internal stresses in resin composite sandwich restorations. The aim of this 

research project was to investigate the cause of failure with this type of 

restoration. This research included two approaches; experimental and 

numerical analysis. The experimental part included three experiments; (1) the 

main study which included 104 proximal RMGIC/RC sandwich restorations in 

premolar teeth using Fuji II and Herculite, to investigate the effect of the co-

curing technique in comparison to separate curing on the presence of 

microleakage. Two further studies were undertaking using Typodont premolar 

teeth. (2)The first one was to investigate the effect of tooth angulation on the 

adhesive thickness. (3)The second one was to assess the effect of the 

application technique on the adhesive thickness Experimentally, it was found 

that: 1. there was no difference in microleakage between the two curing 

protocols, 2. the thickness of the adhesive layer was far thicker than the 

manufacturer’s recommendations of 10 microns, 3. angulation of the tooth 

during adhesive application may have an effect on adhesive pooling and lead to 

a thick adhesive layer, 4. adhesive application is a sensitive multi-stage 

procedure and further work may be needed to develop a consistently thin 

adhesive layer. The numerical approach was a Finite Element Analysis, 1. to 

investigate the stresses distribution in the sandwich restoration.2. to investigate 
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the effect of a thick adhesive layer on stresses distribution. The FEA results 

revealed that, 1. the stresses generated in the sandwich restoration were within 

the limits for tensile, compressive and shear stresses for the dentine, enamel, 

adhesive, Fuji II and Herculite materials; 2. the addition of each new layer can 

relieve (reduce) the magnitude of the stresses induced by the curing of the 

previous layer, 3. polymerisation shrinkage of the thick adhesive layer 

generated high stresses at the tooth restoration interface. Conclusion: 

Polymerisation shrinkage of the thick adhesive layer was responsible for the 

marginal failure of the sandwich restoration.  
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Chapter 1 

Introduction 

 

1.1 Introduction 

This chapter provides the reader with an overview of this thesis. It introduces 

the aims and objectives of the study. A framework for the dissertation is 

provided at the end of this chapter. This research study is a collaborative work 

between School of dentistry and School of Mechanical Engineering in the 

Faculty of Engineering at the University of Leeds. 

 

The integrity and durability of the margins of resin composite restorations is 

fundamental to the prevention or minimization of microleakage. This important 

interface has been a key focal point for research (Dietrich et al., 2000; Al-Saleh 

et al., 2010; Rodrigues Junior et al., 2010; Kasraei et al., 2011; Khoroushi et al., 

2012; Hafer et al., 2013). The sandwich restoration technique was one of the 

procedures investigated with the intention of improving marginal integrity of 

direct resin composite restorations, especially when the cervical margin was 

situated below the cemento-enamel junction (McLean et al., 1985; Welbury and 

Murray, 1990).  

 

Conclusive clinical evidence for the efficacy of the sandwich technique to 

restore proximal posterior preparations is still lacking (van Dijken, 1994; 

Lindberg et al., 2000; Lindberg et al., 2007). Co- curing has been proposed as a 
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solution to reduce gap formation and was found to eliminate the internal 

stresses within the restoration and minimize marginal leakage (Knight et al., 

2006). 

 

1.2      Aim: 

The aim of this research was initially to examine the marginal leakage of 

proximal resin composite open sandwich restorations using Resin modified 

glass ionomer Cement (RMGIC) to investigate the effect of curing the two 

materials together or separately. 

 

1.3       Objectives 

            1.3.1 Dye penetration test  

To assess the dye penetration at the tooth /restoration interface using 

sectioning technique and Micro-Computed Tomography (Micro CT).  

            1.3.2. Finite Element Analysis  

To analyse the stresses generated with sandwich restoration in order to detect 

the areas of high stress, which could be more susceptible to gap formation and 

microleakage. 

 

1.4      The framework of the thesis 

This research project is a combination of a laboratory and a numerical (FEA) 

study. The main laboratory experiment was conducted to investigate the effect 
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of a co-curing protocol on microleakage of RMGIC/RC restorations. The FEA 

was established to investigate stress distribution in the sandwich restoration. 

The result of these early studies led the investigator to follow an alternative 

investigation which then changed the initial aim from the investigation of the co-

curing protocol to investigating the causes of marginal failure of adhesive 

restorations. Two pilot experimental studies were then carried out in order to 

assess the effect of tooth angulation and application techniques on the 

adhesive thickness. Another FEA study was conducted to assess the effect of 

the unexpectedly thick adhesive layer on the stress distribution. 

 

The manuscript of this thesis is divided into ten chapters as follows: 

 

Aim, objectives, and the layout of the thesis were covered in Chapter One.  

 

Chapter Two is a literature review that presents the historical background of 

resin composite restorations and previous research in relation to microleakage 

in posterior resin composite sandwich restorations. The literatures on the 

factors which could lead to microleakage, as well as suggested solutions to the 

problem, were also presented. It also covers different methods of investigation 

used in vitro to assess microleakage. The chapter presents the use of finite 

element analysis in dental research and reviews previous research using finite 

element analysis. 
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The preparation for the laboratory part of the study which includes sample size 

calculation, sample collection, ethical approval application, selection and 

storage media for the sample were covered in Chapter Three. 

 

Chapter Four includes the preliminary investigation of the study protocol on a 

small number of teeth to identify any deficiencies in the study design before 

undertaking the main laboratory study. This chapter details the materials and 

instruments used during placement of the restorations. The preliminary results, 

modifications to the study design, the conclusion and limitations of the study 

were also presented.  

 

Chapter Five presents the main study which investigates the effect of the 

curing protocol on microleakage of RMGIC/RC sandwich restorations. In this 

chapter modifications to the study protocol were outlined. The aim and objective 

and the methodology were presented. The results were then discussed. These 

results led the investigator to alter the aim of the study from investigation of the 

effect of the curing protocol to investigating the reasons for adhesive restoration 

failure. The adhesive thickness was measured and result was then analysed 

and discussed. 

 

Chapter Six includes two pilot studies to investigate the cause of a thick 

adhesive layer found in chapter 5. The first experiment was to investigate the 

effect of tooth angulation on the adhesive thickness. The second experiment 

was to determine operator compliance with the manufacturer’s application 

instructions and to investigate the effect of any deviation from these instructions 
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or inconsistencies in technique on the thickness of the adhesive layer. The 

chapter includes materials and methods used in the investigations. The result, 

discussions and conclusions were presented at the end of the chapter. 

 

To begin the finite element analysis, some preparation was required. Chapter 

Seven covers the preparation undertaken which included the gathering of the 

material properties for the restorative materials and tooth structure from 

previous research. The development of a numerical model was undertaken, 

starting with the preliminary model, leading then to the generation of the 

idealised model using the details of the restoration and the tooth outline from 

the experimental tooth section. 

 

Assessment of the stress generated in the sandwich restoration using FEA was 

presented in Chapter Eight. This included the steps followed to simulate the 

volumetric shrinkage of the applied materials (Fuji II, Herculite) and the 

determination of the temperature required to simulate shrinkage. The final part 

of the chapter presents the results, discussion and conclusion. 

 

The aim of Chapter Nine was to investigate the effect of the adhesive layer 

thickness on the generated stresses using FEA. It includes the methods of 

calculating the volumetric shrinkage of the adhesive material used in the study 

and the determination of the temperature required to simulate area shrinkage. 

The result, discussion and conclusion were then presented. 



 

6 
 

Finally, the achievements of this dissertation and the overall conclusions were 

presented in Chapter Ten. The limitations and suggestions for future work were 

also outlined. 
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Chapter 2 

Literature review 

 

 

2.1      Historical background of resin composite restoration 

Resin composites are the most widely used direct aesthetic tooth-coloured 

restorative materials. They were introduced in the 1960s, and were initially 

recommended only for the restoration of anterior teeth because of their poor 

wear resistance (Abell et al., 1983).The development of new formulations and 

more advanced technology for both the polymerization and application of resin 

composite materials has led to significant progress in their clinical performance 

and predictability and expanded potential uses (Leinfelder, 1997; Jackson and 

Morgan, 2000; Braga et al., 2005). 

 

Traditional posterior resin composites had been shown to be inappropriate as 

filling materials for posterior teeth due to lack of condensability and packability. 

They also exhibited significant polymerisation shrinkage and showed poor wear 

resistance (Vanherle and Smith, 1985). At this point, amalgam was the most 

widely used material for occlusal and proximal restorations because of its high 

strength; good wear resistance, technique insensitivity, low cost and adaptability 

for restoring small, medium and large lesions with an estimated success rate of 

about 87% after 6 years (Roulet, 1997). 
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During the late eighties, the physical and mechanical properties of resin 

composites were improved significantly to suit the requirement of posterior 

restorations. Patients have become more attracted to the idea of “white fillings” 

and increasingly request a restoration that matches the colour of their natural 

teeth. They are, despite the lack of scientific evidence, increasingly concerned 

about the hazards of using mercury containing materials and health implications 

(Widstrom et al., 1992; Tyas, 1994). That has led to resin composite becoming 

the most widely placed direct restoration alternative to dental amalgam (Jordan 

and Suzuki, 1991; Walmsley, 2002; Lyons, 2003).  

 

Alongside, a significant decline in the acceptance of amalgam has been 

reported because of the problems encountered with the corroision of amalgam 

and the difficulty in bonding to tooth structure with the need to sacrifice sound 

tooth structure to gain retention (Jokstad and Mjor, 1991). These, in addition to 

aesthetic concerns and the continuing debate about potential mercury toxicity, 

have led to a decline in the use of amalgam (Lutz et al., 1996). 

 

Amalgam, compared with resin composite, requires undercuts, pits or grooves 

to provide mechanical retention, which can be at the expense of healthy tooth 

structure. In contrast resin composite requires minimal tooth preparation, and 

provides more aesthetic results (Bedran-Russo and Swift, 2007). Welbury et al 

(1990) reported that the surface occupied by the restoration was larger with 

amalgam than when resin composite was placed for an equivalent lesion size, 

which confirms that amalgam is necessarily more destructive.  
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Since its inception, resin composite materials have improved substantially by 

the introduction of new formulations and the development of dentine adhesive 

systems (Kugel and Ferrari, 2000; Hervas-Garcia et al., 2006). They remain, 

however, technique-sensitive, difficult to place and their long term performance 

is still compromised by polymerization shrinkage stress (Yoshikawa et al., 2001). 

The generated stress can result in the development of micro-crack propagation 

(Kanca and Suh, 1999; Jorgensen et al., 1975); cuspal movement (Suliman et 

al., 1994; Alomari et al., 2001) inadequate marginal seal and gap formation that 

consequently leads to microleakage (Campos et al., 2005).  

 

2.2      Microleakage 

Microleakage is defined as “the clinically undetectable passage of bacteria, 

fluids, molecules or ions between a cavity wall and the restorative material 

applied to it” (Kidd, 1976). A considerable number of researchers identified this 

phenomenon and reported its association with post-restoration hypersensitivity, 

discoloration at restoration margins, recurrent caries, pulp inflammation and / or 

decisive failure of restorations (Pashley, 1990; Cox, 1994; Sasafuchi et al., 

1999; Fleming et al., 2005; Arora et al., 2012) (Figure 2.1). 
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Figure 2.1: Microleakage and its consequence on tooth restoration. 

Image source: http://pocketdentistry.com/7-the-tooth-coloured-
restorative-materials-i-resin-composites/ 

Consequently resin composite materials continue to attract much laboratory and 

clinical research with the purpose of improving handling characteristics, curing 

methods and compensating for polymerization shrinkage (Deliperi and Bardwell, 

2002; Ritter, 2005; Idriss et al., 2007; Majeed et al., 2009) aiming to attain 

perfect and complete seal of the restoration’s margin, which in turn may help to 

prevent or eliminate microleakage.  

 

The integrity and durability of the restoration margins to prevent or at least 

minimize microleakage constitutes a key focal point for researchers (Dietrich et 

al., 2000b; Rodrigues Junior et al., 2010). Therefore microleakage studies using 

dye penetration methods are still the most common and simplest approach in 

dental research in terms of obtaining information about the quality and 

behaviour of dental restorations (Fabianelli et al., 2010; Roberts, 2011; 

Moazzami et al., 2014; Parolia et al., 2014).  

 

 

Chapter 8 

Evaluating the effect of the 

adhesive layer thickness on 

the generated stresses using 

the FEA 
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2.3      Factors influencing microleakage  

Microleakage can be related to a number of factors, such as dimensional 

changes of the material due to polymerization shrinkage, thermal contraction 

and mechanical stress (Staninec et al., 1986). Several other factors can 

indirectly contribute to microleakage of resin composite restorations such as the 

curing variables; application techniques; geometry of the preparation and 

position of preparation margin (Braga and Ferracane, 2004; Alomari et al., 

2007). 

 

2.3.1    Polymerization shrinkage of resin composite restorative 

materials 

Polymerization shrinkage is one of the main concerns for dental practitioners 

when using resin composite materials. It can be defined as volumetric reduction 

of the bulk of the composite during the conversion of monomer molecules into 

the polymer network (Venhoven et al., 1993; Davidson and Feilzer, 1997; 

Davidson and Davidson-Kaban, 1998). This conversion can set up stresses 

which could increase contractile forces and bulk contraction of the materials 

with consequent reduction in volume. This process sequentially generates a 

gap between the resin composite and the tooth structure and consequently 

allows microleakage (Haller and Trojanski, 1998). The stress could potentially 

initiate adhesive failure in the composite/ tooth interface if the contraction stress 

exceeds the dentine bond strength (Davidson et al., 1984). On the other hand, if 

the bond to the tooth structure is strong enough, tooth structure will be exposed 

to a stress and potential fracture (Alomari et al., 2007).  
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2.3.2    Curing light variables 

The effect of curing light and its related variables on microleakage of resin 

based restorations has been well documented in the literature (Shortall and 

Harrington, 1996; Danesh et al., 2004; Strydom, 2005). 

Those variables can be divided into: 

1. Curing equipment related factors such as bulb frosting or degradation, light 

reflector degradation, light tip contamination, light intensity and wave length. 

2. Procedure related factors including light tip direction, access to restoration 

surface, distance from surface and time of exposure. 

3. Restoration factors such as restoration thickness, cavity design, filler content 

and size and restoration shade. 

All of the above mentioned factors have an effect on the polymerization of resin 

composite restorations (Roberson et al., 2006; Strydom, 2002a; Strydom, 

2002b).  

 

Several sources of curing light for resin based materials are available. These 

include; halogen lamps, plasma arc lamps, laser and light-emitting diode (LED) 

lights. The conventional curing light (halogen lamp), however, showed better 

results than using the plasma arc curing light and was comparable to the soft 

start curing protocol (Cavalcante et al., 2003; Danesh et al., 2004). Fleming et 

al. (2007), has reported that using a light-emitting diode (LED) light curing unit 

significantly increased the microleakage scores. The LED light has shown to be 

less efficient in curing the resin composite in comparison with the halogen light 
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which was shown to deliver greater total energy and produced a hardest resin 

composite (Price et al., 2003). 

The intensity of the curing light has been considered as the main factor which 

can considerably affect the degree of polymerisation, and the depth of curing of 

resin composites. A reduction in light intensity as stated by Shortall and 

Harrington (1996) can lead to: 

 A decrease in curing depth which results in a lower surface 

microhardness which also affects the integrity of the restorative interface 

with the preparation walls. 

 An increase in the incidence of restorative margin fracture. 

 Enamel margin fracture and marginal openings. 

 Increased shrinkage stresses, which probably results in significant 

interfacial leakage and early failure of the restoration (Feilzer et al., 1995; 

Dennison et al., 2000; Feilzer AJ et al., 1987). 

 

 

 

Figure 2.2: Curing light radiometer 
Image source: 
http://www.citicon.com.hk/products/optilux-radiometer-
23/ 
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The intensity of the curing light unit can deteriorate significantly by use over 

time and it is recommended that this is checked before each use by using a 

curing light radiometer (Poulos and Styner, 1997) (Figure 2.2), though this is not 

common practice. Changes in light intensity may occur as the distance 

increases from the tip of the light guide (Price et al., 2003); ideally, the tip of the 

curing unit should be within 1 to 2 mm of the restoration surface to obtain 

efficient curing. This concept cannot always be achieved in a clinical situation 

due to the anatomy of the tooth and the extension of the preparation margins. 

Light-transmitting wedges and light-focusing tips have been introduced in order 

to provide closer approximation of the curing light to the proximal composite 

restorations (Ericson and Derand, 1991; Ciamponi et al., 1994). 

 

Inadequate curing may occur if the light source is not in close proximity to the 

surface of the material being polymerised as well as if the intensity of the light is 

inadequate or the light is attenuated by passing through a restoration or tooth 

substances (Strydom, 2002a; Dunne and Millar, 2008). Any of the previous 

reasons can result in a material with a hard outer ‘skin’, which is soft at the base 

of the preparation. Dentists should bear in mind that darker shades of resin 

composite materials absorb more light and therefore need longer curing times 

to obtain the same depth of cure as a lighter shade (Combe and Burke, 2000). 

When all these factors are considered, investigators advise prolonged curing 

times rather than shortened exposure times (Combe and Burke, 2000; Strydom, 

2002a). 
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Light source exposure time can be considered as an important factor in 

reducing or at least minimising gap formation at the tooth/restoration interface. 

A number of studies have shown that increasing the depth of preparation can 

lead to a significant decrease in the effectiveness of the polymerisation of resin 

composite materials. In contrast, an extended exposure time of more than 40 

seconds could result in greater extent of polymerisation (Yap, 2000). 

 

2.3.3     Application techniques 

The longevity of resin composite restorations not only depends on the 

composition of the materials but also to some extent to the handling and 

application technique as well as the skill of the clinician (Christensen, 2005).In 

other words, longevity seems to be reliant on many different interrelated factors 

which are the materials, the patient and the dentist (Hickel and Manhart, 2001). 

 

Direct use of resin composites in posterior teeth has been shown to be a 

technique-sensitive procedure, especially with proximal restorations (Lyons, 

2003). Careful technique at each step of application and placement may result 

in more accurate and predictable restorations and can also improve clinical 

performance (Lopes et al., 2004; Opdam et al., 1996). Moreover, the use and 

selection of suitable material with a controlled placement technique may reduce 

polymerisation shrinkage (Deliperi and Bardwell, 2002). 

 

The effect of the application techniques of resin-based composite materials on 

microleakage was investigated by a number of researchers. A significant 

reduction in microleakage scores was reported when the material was placed 
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and cured in layers, whilst bulk placement generates more polymerization 

contraction stresses which inevitably lead to gap formation and subsequent 

bacterial infiltration (Nash et al., 2001; Poskus et al., 2004; Yamazaki et al., 

2006). To establish a uniform and maximum cure it has been suggested that an 

increment of no more than 1.5-2 mm thick should be used with composite 

restorations (Fan et al., 2002). 

 

2.3.4    The Geometry of the cavity preparation  

The geometry of the cavity preparation, also known as configuration factor (C-

Factor), defined as the ratio between the bonded and unbonded surfaces of the 

specimen (Feilzer et al., 1987) (Figure 2.3) can compromise the adaptation of 

the restorative material to the tooth preparation margins. It has been elucidated 

that “the less the restoration is bonded to opposing walls, the less obstruction 

there is for the shrinkage” (Davidson and Feilzer, 1997). C-factor has been 

reported to have a negative potential on dentine bond strength (Nikaido et al., 

2002a; Nikaido et al., 2002b). Cavities with high C-factors have more potential 

risk of causing debonding within the resin-dentine interface (van Dijken, 2010). 

It is considered to be an influencing factor in the occurrence of microleakage 

(Hakimeh et al., 2000; Braga et al., 2006; Moreira da Silva et al., 2007; dos 

Santos et al., 2009; van Dijken, 2010; Alomari et al., 2011). 
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Image source:  (Li et al., 2011)  

 

Image source: 
(http://commons.wikimedia.org/wiki/File:C_factor.png)  

Figure 2.3: C-factor (Ratio between bonded and unbonded surface of tooth 
restoration) in different cavity preparartion 



 

19 
 

2.3.5    Position of tooth preparation margin 

The position of the preparation margins, in general, can affect the incidence of 

microleakage (Araujo Fde et al., 2006; Ozel et al., 2008). Resin composite 

restorations with margins located in enamel could exhibit consistent bonding 

and are less likely to show microleakage compared with those situated in 

dentine (Dietschi et al., 1995; Hilton et al., 1997; Ausiello et al., 1999; Dietrich et 

al., 1999; Araujo Fde et al., 2006). One of the weakest aspects with proximal 

restorations is the frequent placement of the margin apical to the cemento-

enamel junction on dentine or cementum, where moisture control and access 

for finishing are more problematic. The oral environment, which includes 

moisture, physical stresses, changes in temperature and pH, dietary 

components, and chewing habits, has an apparent effect on the adhesive 

interaction between materials and tooth tissues (Summitt, 2006b). In addition to 

these factors, the deficiency of enamel at gingival margins, results in a less 

stable cementum-dentine substrate for bonding.  

 

To explain this, from a theoretical point of view, enamel near to or close to the 

cemento-enamel junction is usually thin, aprismatic and shows weak bonding 

compared with occlusal enamel. This may explain gap formation at the interface 

with dentine or cementum where the bonding is much weaker than that to the 

occlusal enamel. This can be explained by the fact that when the resin 

composite polymerises, it shrinks toward the stronger bond at the occlusal 

margin and away from the weaker bond at the gingival margin (Jorgensen et al., 

1985; Hansen, 1982; Brannstrom et al., 1984). This could explain, in part, the 
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difficulty of finding a solution to the problem of microleakage, especially in 

restorations with margins below CEJ where it is difficult to obtain moisture 

control.  

 

2.3.5    Adhesion to the tooth structure 

A series of papers have dealt with the influence of adhesive systems on the 

extent of microleakage. Harada and co-workers (2006) have studied the effect 

of the number of coats of different adhesive systems on dentine margin 

microleakage. They concluded that all adhesive systems demonstrated 

microleakage; however, this could be minimized by using two coats of non-filled 

or one coat of a filled adhesive bonding system. The total-etch adhesives 

revealed significantly less microleakage scores than the self-etching adhesive 

systems in a clinical based study of cervical restorations (Koliniotou-Koumpia et 

al., 2004). Using 37% phosphoric acid has been shown to be effective in 

reducing microleakage significantly compared with the use of a dentine 

conditioner as polyacrylic acid (Retief et al., 1992). It also permits the total 

removal of the smear layer compared with other concentrations and other 

etching agents (Rontani et al., 2000). It has also demonstrated higher shear 

bond strength values, regardless of the adhesive system. Some recently 

introduced methods for etching the preparation walls using a laser technique 

illustrated extreme marginal leakage compared with acid etching using 37% 

phosphoric acid (Ceballos et al., 2001; Yazici et al., 2001). The OptiBond Solo 

adhesive (total etch adhesive) was the most effective in reducing microleakge at 
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the dentin margins when compared with self-etching adhesive system (Arias et 

al., 2004).  

 

2.4    Bonding resin based restorative material to the tooth 

structure (Enamel and Dentine): 

In terms of bonding resin based material to enamel, the mechanism of bonding 

to enamel basically is an exchange process involving replacement of the 

minerals from the etched tooth tissues by resin monomer which becomes micro-

mechanically interlocked in the created porosity. Thus, a secure, strong and 

durable micro-mechanical bond is achieved (Swift et al., 1995a; Buonocore, 

1955). Buonocore (1968) suggested that resin tag formation was the main 

element in the adhesion between resins and acid etched enamel, in which resin 

penetrates the microporosities of etched enamel and leads to a 

micromechanical bond.  

 

In dentine, the primary bonding mechanism of the adhesives is primarily 

diffusion-based and depends upon hybridization or micro-mechanical 

interlocking of resin within the exposed collagen fibril (Peumans et al., 2005; 

Nakabayashi et al., 1982). Adhesion to dentine however, is more problematic 

(Perdigao et al., 2000) and there is little evidence of chemical bond formation to 

dentine using currently available adhesive systems. Therefore, they are still 

unpredictable and require further work, in order to generate an efficient 



 

22 
 

adhesive system capable of adequate interaction with this delicate structure 

(Eick et al., 1991; Lopes et al., 2003).  

 

In order to achieve an optimally bonded interface, clinicians should bear in mind 

certain requirements. These include that, firstly, the surface of the tooth 

substrate should be clean and free from any debris or what is called the smear 

layer. Secondly, the applied adhesive should wet the surface well and be cured 

properly to avoid under-curing (Craig et al., 2006). Smear layer removal by acid 

etching has been recommended in order to enhance adhesion and subsequent 

adaptation of resin composite or resin modified glass ionomer cements to the 

enamel and dentine surface. In addition, it can be effective in minimising 

bacterial microleakage (Murray et al., 2002). 

 

2.4.1    Adhesive system: 

At the present time, three main approaches to dentine bonding are advocated 

and classified according to the adhesion strategy and clinical steps in their 

application (Eliades et al., 2005; De Munck et al., 2005). They include etch & 

rinse; self-etch; and resin modified glass ionomer adhesive.  

Following cavity preparation, a smear layer is created on the prepared surface. 

This layer can be either totally removed by using etch and rinse option or it can 

be left over the surface using an adhesive that can penetrate the smear layer 

following the self-etch approach (Van Meerbeek et al., 2003). 
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With regards to the total etch approach (Etch and rinse); firstly, the tooth is 

etched (mostly 30–40% phosphoric acid) and rinsed off. This step is followed by 

a priming step and application of the adhesive resin, resulting in a conventional 

three-step application procedure. In an attempt to simplify the three step 

procedure a two-step etch and rinse adhesive system (often known as ‘one-

bottle’ adhesive) in which the primer and adhesive are combined into one 

application was developed (Peumans et al., 2005). The efficiency of the acid 

etching process is dependent on type, concentration of the used acid and the 

duration of the acid etching procedure (Kugel and Ferrari, 2000). 

 

Bonding efficiency can be affected by other factors, including moisture 

contamination and incomplete infiltration of resin into the demineralized layer of 

the tooth tissues. The latter may result from excessive etching or over-drying, 

which causes the collapse of collagen fibrils (Bouillaguet et al., 2001). These 

could consequently have a negative impact on the material’s ability to achieve 

an effective seal at the gingival margin (Stockton and Tsang, 2007). 

 

The major drawback of etch & rinse adhesives is its technique sensitivity and 

lengthy working procedure. Most of the laboratory based studies employed the 

technique on flat dentine surfaces in which a relatively uniform surface wetness 

can be obtained. The clinical situation has, however, shown a different scenario 

in which it is inevitable that over drying of the pulpal or axial wall of complex 

cavities occurs whilst water pools at cervico-axial line angles (too wet to achieve 

perfect bonding). This results in a non-uniform degree of surface wetness and 
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uneven resin infiltration. This may explain why the technique was found to 

increase microleakage and clinical sensitivity especially at the gingival floor of 

proximal boxes (Pashley, 2003) when compared with the flat dentine surface 

which is mostly used in the laboratory based studies.  

 

In the self-etching systems, there is no need for using a separate acid etch step 

which eliminates the need for rinsing (Sensi et al., 2005). Following this 

approach, the non-rinse acidic monomers are incorporated in the adhesive 

system and used to condition and prime enamel and dentine. It was assumed 

that this approach could lessen the clinical application time and noticeably 

reduces technique sensitivity (Peumans et al., 2005). Self-etching systems 

exhibited low bond strength and a high rate of spontaneous failure as reported 

by Perdigao et al (2006), meanwhile, the "total etch" technique has been shown 

to provide better results (Perdigao et al., 2006; Salim et al., 2006). 

 

Thus far, research has indicated that etch and rinse approach is the most 

effective in achieving an efficient and stable bond to enamel and dentine (Shirai 

et al., 2005). In comparison with self-etch adhesive techniques it produces the 

most reliable bond in the longer-term (van Dijken, 2000; Bouillaguet et al., 2001; 

Inoue et al., 2001; Van Meerbeek et al., 2003; Peumans et al., 2005).  

 

Considerable research has gone into improving the formulation, marginal quality 

and sealing ability of adhesive systems. Filler particles have been incorporated 

in the adhesive system for the purpose of increasing the adhesive strength, 
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modifying the viscosity, and to act as a stress buffer to release stress generated 

during polymerisation shrinkage. They have also provided a radio-opaque 

particle which allows detection of adhesive resin on the dental x-ray film and 

avoid misinterpretation of the unfilled adhesive radiolucency to gap formation or 

recurrent caries which may require restoration replacement (Mirmohammadi et 

al., 2014; Can Say et al., 2006). Though, filled adhesive was reported to yield 

dentine bond strength equivalent to or more than that of the unfilled adhesive 

(Gallo et al., 2001). Filled adhesive has demonstrated a thick adhesive layer 

when compared with unfilled adhesive due to its increased viscosity (Grossman 

and Setzer, 2001). The thickness of the adhesive required in resin composite 

restoration is still a matter of debate. An adhesive layer of a thickness more 

than 100 µm was reported to have a substantial effect in stress reduction and 

was claimed to improve marginal integrity of the restoration as reported by Choi 

et al (2000) and this is in contrast to the manufacturer’s recommendation of a 

thin layer. They have found that uniform adhesive thickness is only possible on 

a flat tooth surfaces. Three dimensional cavities may show a different 

distribution of the adhesive as thin adhesive could be seen in the margin of the 

cavity, a thick layer was more pronounced in the floor, angle and in the irregular 

surfaces of the cavity. That was attributed to the gravity and surface tension 

effects. It was postulated that a high concentration of stress and an increased 

possibility of leakage at the margin of the restoration can be attributed to the 

thin adhesive layer (Choi et al., 2000). This finding was in agreement with the 

finding of Opdam et al (1997). Studies by other researchers have reported the 

opposite and found that thick adhesive leads to increased crack propagagtion 
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and reduced bond strength (Hilton and Schwartz, 1995; de Menezes et al., 

2013). 

 

Bonding to dentine is still problematic and challenging compared with bonding 

to enamel (Kugel and Ferrari, 2000; Lopes et al., 2002; Perdigao, 2002). 

Improvement of the bond strength of restorative materials is not only dependent 

on the adhesive system but could also be obtained by appropriate tooth 

preparation and careful positioning of increments of resin composite during 

placement (Yoshiyama et al., 1996; Carvalho et al., 1996; Andersson-Wenckert 

et al., 2002; Owens and Johnson, 2005) 

To date, microleakage is still considered to be one of the major problems 

associated with proximal composite restorations especially when the margin is 

at or below the cemento-enamel junction (Araujo Fde et al., 2006; Xie et al., 

2008; Majeed et al., 2009). Therefore, many in-vivo and in-vitro studies have 

been conducted, aimed at eliminating or at least reducing microleakage, in 

order to prevent restoration failure and increase their long term success (Al-

Saleh et al., 2010; Kasraei et al., 2011; Hafer et al., 2013). 

 

2.5    Techniques used to control microleakage in posterior 

resin composite restorations 

In an attempt to address the problem of microleakage, a number of techniques 

have been proposed, such as indirect restorations (inlay type) (Robinson et al., 

1987; van Dijken, 1994; Duquia Rde et al., 2006), the use of fibre inserts (El-
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Mowafy et al., 2007), the use of surface sealant (Silva Santana et al., 2009), 

preheating resin (dos Santos et al., 2011), the use of different light curing units, 

intensities, curing times and curing protocols (Amaral et al., 2002; Cavalcante et 

al., 2003; Danesh et al., 2004; Fleming et al., 2007; Hardan et al., 2008; Froes-

Salgado et al., 2009; Hardan et al., 2009). The sandwich restoration technique 

is one of the proposed procedures to relieve the contraction stress of direct 

resin composite restoration. 

 

2.5.1    Sandwich restoration technique (Bonded base restoration) 

“Sandwich” restorations, also referred to as a bonded base restoration, was first 

presented by McLean (McLean and Wilson, 1977) and was suggested with the 

intention of improving marginal integrity of direct resin composite restorations, 

especially when the cervical margin was situated in dentine. Conventional 

glass- ionomer cement was used to seal the cervical dentine, the cement was 

acid etched; subsequently a thin coat of resin bonding agent was applied, cured 

and a resin composite material was then inserted (McLean et al., 1985; Welbury 

and Murray, 1990).  

 

The sandwich restoration can be placed in two different manners one called a 

closed sandwich technique in which the cement replacing the cervical portion 

was completely covered with the resin composite materials. Alternatively, 

cement can be extended to the periphery of the proximal box exposed to oral 

environment over which the resin composite is placed, in what is called an open 

sandwich technique (Knibbs, 1992; van Dijken, 1994). 
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Several restorative materials have been suggested as lining materials in deep 

and moderate proximal cavities where resin composite sandwich restorations 

are considered. Among these are glass ionomer cement, resin modified glass 

ionomer materials, compomer (polyacid modified composite resins) (Wucher et 

al., 2002; Lindberg et al., 2003) and flowable composites (Hagge et al., 2001). 

However, their long-term efficiency as cavity liners on enhancing marginal 

adaptation is still limited, (Wibowo and Stockton, 2001; Moazzami et al., 2014). 

 

Conventional glass ionomer cement has the drawback of being hydrolytically 

unstable in the early stage of setting and sensitive to water uptake (Ngo et al., 

1997). 

 

High clinical failure rates after 6 years have been reported with the traditional 

sandwich technique when conventional GIC was used as the base (van Dijken, 

1994). Failure was due to dissolution of the GIC and continuous loss of material 

due to early moisture contamination.  

 

The effect of using a flowable resin composite liner on the interfacial adaptation 

of the restoration was studied in-vivo in an attempt to improve adaptation and 

decrease microleakage. The study investigated the clinical performance of a 

resin composite material with and without a flowable composite liner, but 

showed no clinical benefit from using a flowable liner (Lindberg et al., 2005). 

This finding is in agreement with more recent result by Fabianelli et al. (2010) 
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who reported that flowable resin composite was not able to prevent dye 

penetration when placing sandwich restoration. More recently, the use of an 

intermediate layer of flowable resin after the adhesive application has shown a 

slight improvement to the bond strength and marginal sealing to dentine. This 

technique has however, displayed an increased cohesive failure percentage 

when using flowable composite (Abdalla, 2010). 

 

Dual cure composite has recently been used as a dentine substitute with the 

sandwich technique and showed microleakage reduction when delayed light 

activation was employed (Atlas et al., 2009). Delayed light polymerization of a 

dual cured composite base was one of the suggested methods when employing 

the sandwich restoration,  as delayed curing has demonstrated that the self-

cure mode yields a lower polymerization contraction  stress than light-cure 

mode (Feng and Suh, 2006; Kamath et al., 2012). However, the use of dual 

cure composite (Koubi et al., 2010) has exhibited a higher microleakage score 

when compared with the use of resin modified glass ionomer cement, the water 

sorption properties of which may help to relieve polymerisation shrinkage. Koubi 

et al. (2010) have stressed that RMGICs remains the best intermediate material 

when open-sandwich restorations are implicated.  

 

Resin-modified glass ionomer restorative materials were introduced in the late 

1980s by Mathis and Ferracane (1989) to overcome the disadvantages of 

traditional glass ionomer cements and to increase the number of clinical 

applications as an alternative to conventional glass ionomer cements (Uno et al., 

1996).These materials are used as a liner or base and can be valuable in 
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controlling microleakage (Davidson and Feilzer, 1997). They have three main 

setting reactions; a glass ionomer acid /base reaction, a resin light activated 

polymerization reaction and an auto-cure initiator-catalyst for the resin 

(Christensen, 1997). A light cured system was incorporated in these materials 

for the advantage of reducing setting time (Mount, 1994). The three curing 

phenomena allow the material to set, even if the restoration extends into areas 

inaccessible to light curing (Christensen, 1997). 

 

The introduction of resin modified glass ionomer materials has made a 

significant impact on the practice of restorative dentistry. Compared with their 

conventional predecessors, they demonstrated better aesthetic properties and 

are less technique sensitive. They have been shown to be less sensitive to 

contamination with saliva and blood during the bonding procedure compared 

with conventional glass ionomer cements (Dietrich et al., 2000c). Moreover, 

RMGICs exhibit higher bond strengths with resin composites (Taher and Ateyah, 

2007) and have shown a reliable adhesion to both enamel and dentine, 

depending on the so called absorption layer which is formed immediately after 

water sorption (Triana et al., 1994; Pereira et al., 2002; Palma-Dibb et al., 2003). 

This, as reported by Tay et al (2004), mediates better bonding of RMGIC to 

deep dentine, and functions as a stress-relieving layer to reduce stresses 

induced by desiccation and shrinkage. Resin-modified glass ionomer cements 

are proposed to be more tolerant of "temperature/relative humidity" parameters 

when compared with the conventional glass ionomer cement (Besnault and 

Attal, 2003). Furthermore, they have a propensity for enhancing mechanical 

properties (compressive and flexural strength) over a 24-h period and 
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subsequently maintain a constant strength (Miyazaki et al., 1996). The use of 

these materials in the sandwich technique as reported in the literature (Suzuki 

and Jordan, 1990; Wilson, 1990; Loguercio et al., 2002; Tantbirojn et al., 2009), 

can improve chemical adhesion to dentine and micromechanical bond to the 

overlying resin. Additionally, RMGICs were shown to preserve the sealing 

integrity of the restoration and exhibited a low marginal microleakage (Chuang 

et al., 2003). 

 

There are relatively few long-term in vivo clinical trials reporting on sandwich 

resin composite restorations. However, this technique has been well 

documented in several in vitro studies. 

 

The first reported clinical trial concerning application of conventional glass 

ionomer cement with resin composite in sandwich restorations was reported by 

Welbury and Murray (1990). Forty-nine proximal restorations, placed in 

permanent premolar and molar teeth of 23 patients, were studied over a 2-year 

period. The margins of the prepared boxes were all in enamel. This technique 

failed however, to provide acceptable restorations as the vast majority of the 

restorations failed due to progressive loss of glass ionomer cement. This finding 

is in line with the findings of Van Dijken (1994), who also reported a 75% failure 

rate of open bonded-base resin composite restoration after 6 years evaluation. 

This, in turn, confirmed the findings of an early study by Knibbs (1992), in which 

he concluded that this type of filling cannot be advocated for the restoration of 

proximal lesions.  
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Van Dijken et al. (1999) conducted a clinical trials aimed at evaluating the 

durability of modified open sandwich restorations in large cavities, using resin 

modified glass ionomer cement. The numbers of the restorations were 274 

class II formed by 4 dentists in 168 adults to replace failed large amalgam 

restoration. The cement was either applied as a thick or thin layer after cavity 

conditioning with polyacrlyic acid or maleic acid. They evaluated the 

restorations at baseline and after 6, 12, 24, and 36 months. They concluded 

that the modified version of sandwich restorations using resin modified glass 

ionomer as an intermediate layer can perform better than the conventional 

GIC/resin composite laminates and resulted in good clinical quality and low 

failure rate of 5% after three years in clinical service. They have however; found 

that the numbers of failure rates were increased to 19% after 6 years 

(Andersson-Wenckert et al., 2004). The most common reasons cited for the 

failures were tooth fracture, and secondary caries following slight dissolution of 

the RMGIC. Opdam et al. (2007) also observed the same reason for failure, 

which was more pronounced after a period of more than three years, in a 

retrospective study for a 5 year observation period. In addition, more failures 

were found in restorations with cervical margins in dentine than those with 

enamel bordered margins. The use of polyacrylic acid to condition the cavity 

has been shown to contribute to the higher failure rate of the restorations when 

compared with the use of the maleic acid. This finding confirmed the finding of 

Hinoura et al. (1991) who showed that polyacrylic acid conditioning lowered the 

shear bond strength of RMGIC whereas maleic acid gave a better shear bond 

strength. This study also demonstrated increased failure rates when a thick 

layer of cement was used. The size of the cavities and also the position of the 
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cervical margin were not standardized and were predetermined by existing 

amalgam restorations. These large undermined amalgam cavities may have 

contributed to the tooth fracture (van Dijken et al., 1999). The operators’ skill 

could also be considered to have a great effect on the longevity of restorations 

(Kubo et al., 2011) as 4 dentists were placing the restorations. 

 

Aboush et al (2000), after a one year clinical evaluation of the same technique 

(resin composite/resin modified glass ionomer open sandwich restoration) in 

comparison to the total bond resin composite restorations, reported no 

significant differences in the clinical performance of the two types of the 

restorations. The dimensions of the preparations, however, were not 

standardized and were predetermined by the extent of the carious lesion or the 

existing restorations. This could have had an impact on the outcome of the 

results and could also influence the quality of adaptation of the restorative 

materials (Van Meerbeek et al., 1994). Moreover, a one-year study gives limited 

insight into the potential clinical service of such restorations. The sample was 

composed of different type of teeth (molar and premolar) which has shown to 

have a significant effect on the longevity of the restorations (Kubo et al., 2011). 

Premolar teeth could show a better survival rate than the molar teeth when 

considering the greater occlusal forces on molar restorations compared with 

that on the premolar restorations (Opdam et al., 2007) and also the accessibility 

to the operating field which may affect the size of the preparation (Kubo et al., 

2011). 
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Andersson-Wenckert and colleagues (2002) conducted a clinical study aimed to 

evaluate the durability of sandwich restorations interface of RMGIC/RC when 

compared with the resin composite restoration. The number of restored teeth 

was 20 premolars scheduled for extraction after one month for an orthodontic 

reason. They had reported a significant difference in gap formation and found a 

gap free adaptation to dentine in 81.5% and 65% for RMGIC/resin composite 

and resin composite restorations respectively. They concluded that RMGIC 

sandwich restorations have better adaptation to the dentine and cervical enamel 

than resin composite. This difference when compared with previous study by 

Aboush and colleagues (2000) may be explained by the difference in study 

design as they used 20 premolar teeth that were free of caries. This result has 

been confirmed with many in vitro studies which have shown that using the 

bonded-base technique in proximal and cervical restorations may significantly 

reduce marginal leakage when compared with total bonded resin composite 

restorations (Miller et al., 1996; Friedl et al., 1997; Dietrich et al., 1999; Dietrich 

et al., 2000a; Loguercio et al., 2002). 

 

Despite the efforts exerted by a number of investigators, to reduce 

microleakage with resin composite restorations, polymerization contraction still 

occurred and the consequent microleakage could not predictably be prevented 

by the use of this technique (Dietrich et al., 2000c). Conclusive clinical evidence 

for the efficacy of the sandwich technique to restore proximal posterior 

preparations is still lacking (van Dijken, 1994; Lindberg et al., 2000; Lindberg et 

al., 2007). Simultaneous curing (co- curing) of the restorative material with resin 



 

35 
 

composite sandwich restoration was proposed to have an effect in reducing the 

stress generated during polymerization. 

 

2.5.2    Co-curing technique with sandwich restorations: 

The co-cure technique, which was introduced in the early 1990s, had been 

anticipated to reduce both technique sensitivity and placement time (Knight, 

1994). Co-curing was defined as the simultaneous photo polymerization of two 

different light activated restorative materials and claimed to decrease the 

internal stresses in composite restorations (Knight et al., 2006). The initial 

concept of co-curing emerged after an accidental observation of the effect that a 

two seconds light cure of glass ionomer cement and resin composite located 

together on a glass slab, had on the hardness of the two materials. While the 

resin composite exhibited a hardened surface, the glass ionomer cement stayed 

a viscous paste. It was suggested therefore that as the resin composite is 

activated before the glass ionomer cement, the polymerization shrinkage which 

leads to dimensional changes in the resin composite could be compensated by 

the uncured glass ionomer when the two materials are employed in the 

sandwich restorative technique. In view of that, co-curing may perhaps help to 

eliminate the internal stresses in the restoration and reduce marginal leakage 

(Knight, 1994). It has also been found that delaying the polymerization of resin 

modified glass ionomer may improve marginal integrity (Khoroushi et al., 2012b). 

 

The co- cure technique has been tried with different adhesive systems when 

placing direct resin composite restorations. Tulunoglu et al. (2000), reported 
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that co-curing the adhesive with the resin composite did not produce any 

significant increase in microleakage when compared with the pre-curing 

technique using different adhesive systems (total etch and self-etch adhesive), 

in class V resin composite restorations. The same technique has been 

assessed recently by Chapman et al. (2007) who used three self-etch adhesive 

system applied on a flat dentine and enamel surface by either curing the 

adhesive material first and then curing the overlying resin composite or 

simultaneously curing the two materials. They found that co-curing the adhesive 

and composite resulted in decreased bond strength to dentine in comparison 

with separate curing. The reason behind that was demonstrated by the 

investigators as follows; curing resin composite generated stress, which may 

affect the penetration of the resin tags into the dentinal tubule and lead to a 

weak bond that cannot withstand polymerisation stress.  

 

Boruziniat and Gharaei (2014) investigated the bond strength between RMGIC 

and composite and employed the simultaneous curing concept with sandwich 

restoration by simultaneous curing RMGIC and different adhesive systems. 

Their assumption was that co curing of the two materials (RMGIC/adhesive) 

may increase penetration of adhesive systems into RMGIC before curing and 

so enhance bond strength. They concluded that the co-curing increased shear 

bond strength of RMGIC to dentine when using self-etch adhesive, yet reduced 

it when total etch adhesive was employed. In the total-etch pre-cured group 

they observed severe cracks and voids in the composite-adhesive interface 

while in the co-cured group of this adhesive, severe crack and voids appeared 

in the RMGI-adhesive interface. This finding was in agreement with other 
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studies (Kerby and Knobloch, 1992) which reported that, the  acid etching 

required with the total etch adhesive system may lead to a partial elimination of 

HEMA and un-reacted methacrylate groups in the air-inhibited layer and 

consequently decrease the bond strength when applied over a cured RMGIC. 

 

A recent study by Shafiei and Akbarian (2014), on the effect of simultaneous 

curing, of nano-glass ionomer cement with nano adhesive using a modified 

sandwich restorations, on microleakage, have concluded that the technique has 

shown similar effect in terms of cervical sealing when compared with total 

bonding restoration. They have both shown good marginal seal. It has also 

demonstrated a significantly lower microleakage and reduced clinical 

application steps and time when compared with conventional sandwich 

restoration. The advantages of using this type of material were the slow 

polymerization reaction in which the viscous flow of the molecules may have a 

high potential for relieving stress associated with polymerization shrinkage. 

 

Resin modified glass ionomer Cements have been credited with the ability to 

truly adhere to both enamel and dentine via a specific glass-ionomer interaction. 

Their adhesion to tooth tissue includes both chemical adhesion between 

calcium in hydroxyapatite and polyalkenoic acid (acid/ base reaction), and 

micromechanical hybridization through subsequent infiltration and mechanical 

interlocking (Van Meerbeek et al., 2000). This type of material has the 

advantage of having a self-adhesive, biocompatible and cariostatic potential 

through fluoride release, which encourages remineralization of the adjacent 



 

38 
 

calcified dental tissues (Wiegand et al., 2007; Tantbirojn et al., 2009; Basso et 

al., 2011). Coutinho et al (2007) concluded that self-adhesiveness of RMGICs is 

generally claimed to be dependent not only on ionic bonding to hydroxyapatite 

around collagen, but also to micro-mechanical interlocking for RMGICs that 

additionally hybridize dentine. On the other hand, numerous previous studies 

have reported that bond strength of resin modified glass ionomer cements to 

the tooth structure were greater than those of conventional glass-ionomers 

(Mitra, 1991; Friedl et al., 1995; Swift et al., 1995b) but with a level of adhesion 

less than that obtained with composite restorations bonded with adhesive 

systems (Fritz et al., 1996; Khoroushi et al., 2012a).The use of adhesive 

systems when compared with a conventional cavity conditioner (polyacrylic 

acid) has shown to improve the marginal integrity of cervical RMGIC 

restorations at dentine margins (Khoroushi et al., 2012a) that was explained by 

the presence of resin components in both the adhesive and resin modified glass 

ionomer which allows for covalent bond formation between the two materials. 

The combination of the adhesive system with resin modified glass ionomer to 

adhere to the dentine was recommended by many previous researchers 

(Pereira et al., 1998; Besnault et al., 2004; Geerts et al., 2010; Dursun and Attal, 

2011; Poggio et al., 2014) for the benefit of increasing the bond strength of resin 

modified glass ionomer to dentine as an alternative method to the conventional 

dentine conditioner which provides a lower bond strength to dentine. As stated 

by Dursun and Attal  (2011), both the adhesive material and the Fuji (RMGIC) 

contain a constituent with unsaturated carbon-carbon bonds which allow for a 

direct covalent bonds to be achieved between the two materials after 
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polymerization. They proved this alternative approach to be a very promising 

technique for the ionomer/tooth interface. 

 

When the sandwich restoration was considered, resin modified glass ionomer 

cement, showed a higher bond strength to the overlying resin composite (Li et 

al., 1996) as the hydroxyl-ethyl-methacrylate (HEMA) content of resin modified 

glass ionomer cement (Wilson, 1990; Fortin et al., 1995) forms a chemical bond 

with the resin composite (Summitt, 2006a) and for that reason etching is not 

required for bonding the cement with resin composite (Farah et al., 1998). 

According to Tale et al. (1996), acid etching of RMGIC has no effect on bond 

strength, and could even decrease shear bond strength of this cement to resin 

composite material (Sidhu and Watson, 1995). This finding was supported by 

Taher and Ateyah (2007) who pointed out that RMGICs are not influenced by 

acid etching owing to their high resin content. That has allowed for further 

reduction of the time required for sandwich restoration application. The literature 

has reported contradictory results regarding the effects of acid etching on bond 

strength of RMGIC to composite although some reported  that etching of 

RMGIC may have no effect (Taher and Ateyah, 2007; Navimipour et al., 2012), 

others have found adverse effects (Kerby and Knobloch, 1992), or improved 

bond strength (Brackett and Huget, 1996).  

 

The placement of the restorative material using a sandwich technique, however, 

appears to be technique sensitive and time consuming and showed a higher 

microleakage when compared with the incremental techniques (Moazzami et al., 
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2014). Even with a newly introduced material, (commercial name Biodentine) 

tricalcium silicate, significant leakage was reported when compared with the 

resin modified glass ionomer cement (Camilleri, 2013).  

 

2.6      Assessment of microleakage  

Microleakage is one of the parameters that have been in use by dental 

researchers to assess the adaptation of dental restorative materials to prepared 

teeth. The extent of microleakage around restorations can be investigated in 

vitro, either on extracted teeth or artificial models. Many techniques have been 

proposed to test microleakage in vitro. The techniques conducted in vitro have 

included: the use of dyes, chemical tracers, radioactive isotopes, air pressure, 

bacteria, neutron activation analysis, scanning electron microscopy, artificial 

caries techniques, and electrical conductivity (Powis et al., 1988; Going et al., 

1968; Going, 1972; Chan and Jones, 1992).  

 

2.6.1 Dye penetration test  

The dye penetration test is one of the most commonly used methods for 

detecting microleakage in vitro, due to its speed of obtaining results and its 

ease of implementation (Camargo DA, 2002; Taylor and Lynch, 1992). There 

are a wide variety of dye materials used in an in-vitro testing of microleakage 

including rhodamine b, methylene blue, basic fuschin, and silver nitrate and 

many more (Mente et al., 2010). With the dye penetration test, a number of 

different protocols have been used: sectioning the specimens into single or 
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multiple longitudinal slices (Gwinnett et al., 1995) or using clearing protocol 

(Robertson and Leeb, 1982; Saunders and Saunders, 1990). 

 

One of the most commonly used tracers in microleakage studies is silver nitrate 

which has the advantage of strong optical contrast of the silver particles 

(Gonzalez et al., 1997) and has been shown to penetrate the dentinal tubules to 

a similar extent to other commonly used tracers (Eosin, methylene blue, indian 

ink) (Youngson et al., 1998). 

 

The wide variety of dye materials used in an in-vitro testing of microleakage, 

has produced conflicting findings and difficulty in comparing many of the study 

outcomes (Dejou et al., 1996) as they lack standardisation of the parameters. 

Accordingly, it has been advocated that comparison of studies using different 

tracers should be avoided (de Almeida et al., 2003). 

 

2.6.2    X ray Micro computed tomography (Micro CT) 

Micro computed tomography is a computer-aided 3D reconstruction of the 

structure of a material. It is a non-invasive, non-destructive tool used to 

visualize the structure of the object. The development of this system was 

referred to as long ago as the early 1980s. It has a high resolution in the range 

of 5-50 μm. Its use can include examination of a wide range of specimens, for 

instance mineralised tissue such as teeth, bone and also many types of 

materials including ceramic, polymers, biomaterial scaffold, etc. Its use 

indicated within different scientific fields such as cancer diagnosis, engineering. 
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This tool has received more significant consideration in dental research during 

the last decade (Swain and Xue, 2009; Mackerle, 2004). The dental literature 

has shown many applications of this technology which incorporates 

measurement of tooth and enamel thickness (Olejniczak and Grine, 2006), 

analysis of root canal morphology (Oi et al., 2004) and evaluating mechanically 

stressed dentine- adhesive- composite interfaces (De Santis et al., 2005). 

Micro CT scanning can provide a large range of information, help in the 

generation of a more precise finite element model of a small object such as a 

tooth, dental implants and dental restorations (Verdonschot et al., 2001). 

Imaging from Micro CT scans can be classified as either two dimensional (2D) 

or three dimensional (3D) images and can be assessed both qualitatively and 

quantitatively. Images can be recreated and displayed in any plane (Dowker et 

al., 1997). The internal features of the same sample may be examined many 

times and the sample remains available after scanning for additional testing 

(Swain and Xue, 2009). 

 

The advantage of this method in investigating microleakage is that the sample 

is not destroyed as in the commonly used traditional sectioning technique; the 

deepest point of tracer penetration can be assessed therefore providing more 

accurate measurement of the maximum depth of marginal leakage (De Santis 

et al., 2005).  

 

Chen et al (2010) employed Micro CT scanning techniques to compare 

marginal leakage of various sealant materials at the sealant enamel interface 
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using 50% silver nitrate as a tracer. The 2D image generated was not clear 

enough to allow assessment of the total area of the non-bonded surface which 

was attributed to the density of the sealant rather than the accuracy of the 

image. De Santis et al. (2005) used it to evaluate mechanically stressed dentine- 

adhesive- composite interfaces. They concluded that the X-ray micro-CT 

technique is a very powerful tool to investigate silver nitrate leakage at the 

dentine bonding/composite interface, providing very sharp images of the silver 

ions penetration at tooth–restoration margins. Moreover, depth of dye 

penetration can be analysed in a non-destructive manner. 

 

2.6.3    Thermocycling 

The vast majority of microleakage studies have included a Thermocycling test, 

which is a regime of artificial aging of a dental restoration by transferring the 

specimens from hot to cold solutions (Kidd et al., 1978) in order to simulate the 

thermal changes which occur in the mouth during eating, drinking, and 

breathing (Gale and Darvell, 1999). This method promoted an iterative 

procedure of contraction/ expansion stresses loaded on the tooth-restoration 

interface by subjecting it to warming and cooling which may lead to crack 

propagation, gap formation (Amaral et al., 2007) and microleakage at the tooth-

restoration interface (Momoi et al., 1990). The difference in the coefficients of 

thermal expansion between the restorative materials and the tooth structure is 

the reason behind the thermally induced stresses at the tooth restoration 

interface which may lead to gap formation and microleakage (Nelsen et al., 

1952). This concept constituted the early basis for using Thermocycling in terms 

of simulating the temperature changes in the oral cavity (Wendt et al., 1992). 
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A reduction or no change in microleakage pattern following Thermocycling led 

others to suggest that when resin composite restoration is considered, thermal 

percolation may have no clinical significance (Kidd et al., 1978) attributing that 

to increased water sorption (Yap and Wee, 2002; Fujii et al., 1999) which may 

allow for relaxation of the polymerization stresses and compress the composite 

restoration against the cavity wall (Harper et al., 1980) and on the other hand 

may lead to staining and breakage in the marginal contour of the restorations. 

 

A debate can be inferred from reviewing the literature on the advantages and 

disadvantages of utilising a Thermocycling regime in microleakage studies. 

Some researchers support the use of Thermocycling in order to simulate the 

thermal element of the intra-oral situation which could generate stresses on the 

restorative materials (Momoi et al., 1990) and consequently lead to increase in 

the microleakage (Cooley and Barkmeier, 1991; Wahab et al., 2003). Others 

however, have reported no significant increase in microleakage when 

Thermocycling was used (Wendt et al., 1992; Bijella and da Silva, 2001). The 

test has however, been very questionable in terms of validity and clinical 

significance (Kidd et al., 1978; Wendt et al., 1992; Harper et al., 1980) as the 

temperature extremes that are used in the test may not be true simulation of the 

real temperatures of food and beverages that can be tolerated by oral tissue 

and are suitable for clinical conditions. The wide range of the temperature 

extremes, transfer times between baths, number of cycles and dwell time as 

reported in the literature (Nalcaci and Ulusoy, 2007) has shown no 

standardization for Thermocycling methodology employed in microleakage 

studies. The lack of general agreement on a definitive thermal cycling regime 
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has led some researchers to refrain from the use of thermal cycling (Youngson 

et al., 1991). Others have suggested combining the Thermocycling with load-

cycling to facilitate comparison between clinical and laboratory investigation 

(Qvist, 1983).   

 

Systematic reviews of Thermocycling procedures for laboratory testing of dental 

restorations (Gale and Darvell, 1999) found that the mean low-temperature 

point used for Thermocycling tests was 6.68C (range 0 –36.8C, median 5.08C) 

and the mean high temperature point was 55.58C, with the vast majority of the 

researchers using just hot and cold temperatures points. Some were using an 

intermediate temperature of 37.8C. An enormous variation in the number of 

cycles was reported with a mean of  about 10 000 and median of 500 cycles, 

with a dwell time (i.e. the duration of thermal insult) ranging from 4 seconds to 

20 minutes. Dwell time of exposing the specimens to extreme temperature 

ranges in the water baths has shown to be different amongst the in vitro 

Thermocycling tests. A difference in the number of thermal cycles from 250 to 

1000 cycles revealed no significant difference in microleakage (Mandras et al., 

1991; Pazinatto et al., 2003).   

 

Previous work supported that a short dwell time of 30 seconds or less in resin 

composite restorations even for an increased number of cycles for up to 5000 

cycles revealed no significant difference in the extent of leakage (Retief et al., 

1988; Mandras et al., 1991). Rossomando and Wendt (1995) attributed this 

finding to the insulating properties of the resin based “plastic” restorations, 



 

46 
 

which showed good thermal insulating properties in comparison to amalgam 

based restorations. An extended dwell time should not be considered clinically 

relevant (Rossomando and Wendt, 1995) as the patient is unable to tolerate 

extreme hot or cold substances for an extended period of time (Harper et al., 

1980).  

 

Lowering the number of cycles could minimize the effect of other variables 

which include water sorption and possible hydrolization of the bond of the 

dentine bonding agent (Wendt et al., 1992). Excessive stresses for a longer 

time could have poor unreasonable influence on materials which may serve 

perfectly well in practice. Additionally, to represent the typical situation of 

thermal changes in the oral cavity, sufficient time should be allowed for the 

restoration to return to the reference resting temperature in order to avoid 

sudden alteration from one to the other extreme temperature (Gale and Darvell, 

1999). 

 

In conclusion, a fluctuating thermal cycle has been included in the vast majority 

of laboratory tests investigating microleakage, marginal gap, and the bond 

strength of dental materials. There was, however, a lack of any apparent 

justifications or standardization for the protocols used. Most of Thermocycling 

reports published are inconsistent and contradictory (Leloup et al., 2001; 

Amaral et al., 2007). 

 

As stated by the International Organization for Standardization on their 

guidance on testing of adhesion to tooth structure (ISO, 2003) Thermocycling 
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test should comprise 500 cycles in water between 5 oC and 55 oC. The 

exposure time in each bath should be at least 20 seconds, and the transfer time 

should be 5 seconds to 10 seconds. 

 

2.7    Finite element analysis and its use in dentistry 

Finite element analysis is a computational numerical method that is currently 

widely used in all forms of engineering including civil, aerospace and automated 

nuclear engineering  and many more fields since its development in 1956 

(Turner et al., 1956). 

 

Its use in dentistry for stress analysis was referred to as far back as the 1970’s 

(Thresher and Saito, 1973). The application of this method in dentistry included 

orthodontics, prosthodontics, oral and maxillofacial surgery, implantology, 

periodontology, endodontology and restorative dentistry (Fennis et al., 2004). In 

conducting dental research, the finite element analysis (FEA) has become an 

important tool to identify the failure mechanisms of resin based restorations and 

may help to suggest possible alternatives which could minimize failure 

(Rodrigues et al., 2011).  

 

This method has become more commonly used owing that  to the ease of 

modelling and simulating more complex geometries and the possibility of 

providing greater insight into the internal stress of both tooth and restorations. It 

permits modelling the mechanical properties of tooth structure, restoration, 

stress and strain and also enables the investigator to isolate variables of 
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interest to study their individual effects and in turn compare it with other 

variables if needed (Rodrigues et al., 2011). Finite element (FE) modelling 

however requires experimental validation in order to support the generated 

results and also necessitates the help of an expert engineer who has mastered 

this technique (Shetty et al., 2010; Chuang et al., 2011). 

 

The technique is based on the concept of building a complicated object with 

simple blocks, or subdivisions of a complicated object, into small and 

manageable pieces of a simpler geometric shape (elements) which are 

interconnected at a finite number of points (nodes) (Selna et al., 1975). There 

are two types of Finite Element Analysis employed by researchers in this field; 

these are two and three dimensional modelling (2D and 3D). Adoption of a 2D 

or 3D model for the investigation of  the biomechanical behaviour of complex 

structures using the finite element method (FEM), relies on  many factors such 

as: The complexity of the geometry, mode of analysis, the required accuracy; 

the applicability of general findings and the required time for analysis (Poiate et 

al., 2011). The 2D model is the most commonly employed by many researchers 

because of its simplicity, time and cost effectiveness. It requires a relatively 

normal computer to run the analysis comparing with the 3D model. 

 

For model creation, some researchers in the dental field use computerised 

tomography scanning data, whilst others depend on the averaged tooth 

dimensions obtained from the literature to develop a model (Romeed et al., 

2006; Magne, 2007; Tajima et al., 2009). 
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For the purpose of analysing stress using FEA, some essential information is 

needed such as geometric shape, the material properties which include Young’s 

modulus and Poisson’s ratio, in addition to identifying the total number of nodal 

points and total number of elements, type of boundary constraint etc. Once this 

information is specified the stress generated can be investigated through 

specific finite element computer programme (Selna et al., 1975). The analysis 

can demonstrate internal stresses by which the failure mode can be predicted. 

Finite element modelling is extensively used by many researchers to analyse 

the polymerization shrinkage and stress pattern which could initially determine 

the area where a restoration is likely to fail.  

 

Shrinkage stresses that occurs during the curing process of resin composite 

materials have been widely studied using the finite element method considering 

different variables. FEM has been used to simulate the polymerization process 

(Barink et al., 2003), assess stress distribution and its effect on cuspal 

movement and tooth deformation (Ausiello et al., 2001; Versluis et al., 2004). 

The development of stresses at tooth-restoration interfaces in terms of its 

geometry, thickness and type of material (Ausiello et al., 2002; Ding et al., 2009; 

Coelho et al., 2008; Ensaff et al., 2001) were also studied using this method. 

The C-factor and its effect on the stress peak (Rodrigues et al., 2012), use of 

resin composite Class II inlay restorations (Ausiello et al., 2004) and many other 

variables were considered using FEA, etc. 

 

Winkler et al. (1996) used the FEM to compare the effect of using three different 

filling techniques (bulk, horizontal increments and three wedge increments) on 
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transient stresses generated at the resin composite /tooth interface in a class V 

cavity preparation during polymerization. They found that the transient stress 

generated from the bulk filling technique is lower than that of incremental filling 

accordingly they suggested using bulk filling with a shallow restorations and 

incremental filling with a deep restorations. 

 

Versluis et al. (1998) studied the direction of composite shrinkage after curing 

using FEA. They concluded that there was no significant influence of the 

orientation of the incoming curing light on the shrinkage direction. Otherwise, it 

may be determined by quality of bonding and the free surfaces. 

 

Ensaf et al. (2001) has examined the interfacial stress around the margins of 

resin composite restorations using the FEA on 3D half idealised models of tooth 

structures. They found that the area of the maximum stress is located at the 

restoration-tooth interface area. They confirmed the role that the lining material 

has in relieving stresses associated with the polymerisation shrinkage of resin 

composite materials. 

 

Ausiello et al. (2002) employed FEA to determine the effect of the adhesive 

layer thickness on the stress relief using 3D models of upper premolar teeth 

with MOD restorations. They concluded that the intensity of the stresses 

generated as a result of polymerisation shrinkage of composite restoration, can 

be limited by using a thicker adhesive layer to absorb material deformation and 

provide more uniform stress distribution. However, a thick layer does not 

comply with the manufacturer instruction for use. 
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Different application techniques using resin composite restoration were studied 

using 3D FE model of upper premolar teeth with MOD resin composite 

restorations. Insignificant differences in stress developed at the tooth-

restoration interface were found between bulk and layering restoration 

techniques (Kuijs et al., 2003). Another FEA study by Kowalczyk (2009) 

considered the effect of the shape of the layer on the shrinkage stress peaks 

simulating class I resin composite restorations of premolar teeth. They found 

that the application of a thin pre-layer of resin composite with the rounded layer 

or wedged technique are likely to give a highest stress reduction.  

 

2.8    Summary 

Multiple factors have been shown to effect microleakage of resin composite 

restorations. These include, polymerization shrinkage, curing variables, 

application technique, geometry of the cavity preparation, position of the tooth 

preparation margin, adhesive composition (filled versus unfilled), and the 

thickness of the adhesive layer. The multiplicity of factors influencing 

microleakage has led to microleakage studies being difficult and complex. It is 

difficult to investigate for one variable, whilst controlling for the others. Most of 

the studies tended to look at each factor in isolation which makes comparison 

with other studies problematic. 

 

Microleakage assessment techniques employed different materials; however 

the dye penetration test is considered to be one of the most widely used 

methods, due to its ease of implementation. In order to assess the dye 
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penetration score and extension, different tools were employed. Micro CT was 

one of these tools; it has the advantage of being a non-destructive and provides 

a large range of information when compared with the commonly used traditional 

sectioning technique.   

 

Thermocycling which used with the vast majority of microleakage studies is still 

debatable as some support its use and others considered it un-necessary in 

terms of validity and clinical significance. This technique on its own includes 

many variables which can affect the final result results. These variables include 

range of temperature extremes, transfer times between baths, number of cycles 

and dwell time.  

 

Finite element analysis is one of the most popular numerical methods used to 

assess the distribution of the stress and identify the failure mechanisms of resin 

based restorations. This technique has shown great ability to simulate more 

complex geometry and provide greater insight into internal stresses of both 

tooth and restorations.    

 

Polymerisation shrinkage stress generated especially with proximal resin 

composite restoration with the margin below the CEJ is still considered as a 

fundamental cause of marginal failure and a subject of concern and attention for 

the vast majority of the current research. The main focus of the conducted 

research in this field is to improve marginal seal and prevent early failure of the 

resin composite restorations. 
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Based on the previous literature search the co-curing technique was claimed to 

have clear effect on reducing polymerisation shrinkage stress of resin 

composite restoration as stated by Knight (1994, 2006).The use of the adhesive 

system before the application of the RMGIC has shown to increase its bond 

strength to dentine when compared with polyacrylic acid conditioner (Pereira et 

al., 1998; Besnault et al., 2004; Geerts et al., 2010; Dursun and Attal, 2011; 

Poggio et al., 2014) and the use of the low viscosity resin after the application of 

the adhesive layer has an advantage of absorbing a part of the polymerisation 

shrinkage stress (Abdalla, 2010). In other words the low shrinkage and low 

rigidity materials combined together result in less damage to the interface 

(Labella et al., 1999).  

 

There is no information in the literature about stress distribution with the use of 

resin composite sandwich restorations when a co-curing protocol is employed 

and also the extent to which that stress could result in gap formation and 

microleakage. The previous research conducted to assess polymerisation 

stress generated with resin composite restorations were mainly using a flat 

dentine surface as a bonding substrate, which is far different from the same 

stress generated on three-dimensional tooth preparations (Braga et al., 2006).  
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Chapter 3: 

Fundamental preparation for the in-vitro study (initial steps) 

3.1      Introduction 

As this study included two parts; Experimental and Finite Element Analysis, the 

preliminary preparation for the study was divided into two stages; the first stage 

was to prepare for the experimental work which included teeth collection, 

obtaining the ethical approval and all the preparation of the samples before 

starting the experimental work. The second stage was to develop a tooth model 

to accomplish the finite element analysis and gathering the physical materials 

properties for both the restorations and the tooth structure. Only the preliminary 

preparation steps which were required to begin the in-vitro investigations are 

presented in this chapter.   

 

3.2      Preparation for the in vitro study 

 

3.2.1    Sample size calculation from the pilot study: 

Sample size calculation plays an important role at the planning stage to confirm 

that there are sufficient numbers of subjects to provide for an accurate and 

reliable assessment of the investigated subjects. It may be performed based on 

precision analysis, power analysis, probability assessment, or other statistical 

inferences (Chow et al., 2003). 
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A review of the literature in the same field of the applied study can provide 

guidance about “typical” sample sizes which can be used. This is one of the 

methods used to determine sample size, in which the researchers use the same 

sample size as those of studies similar to the planned study. Another method is 

by pre-study power analysis which is probably the most commonly used method 

for sample size calculation.  However, unless there is a formal calculation of the 

sample size it is not possible to decide whether the previously used sample size 

truly gives the proposed power or not. 

 

To determine the sample size for this study, a review of the literature was 

conducted to review the procedures employed not only to determine the sample 

size used in previous studies but also to avoid the risk of repeating errors that 

were made in determining the sample size for previous studies.  

 

From the reviewed literature of the same subject and similar investigations, the 

most commonly used sample size in previous studies (similar to the current 

one) was 10, 11 or 12 per group. To get a more accurate result, and to 

compensate for mistakes or fracture during preparation this study used a 

sample size of 16 per group (32 in total). 

 

On completion of the experiment, the power for study was calculated 

retrospectively. The result of this study was used in the calculation of the odd 

ratio, which was needed to find the power of the study.  
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A retrospective calculation of the sample size needed for this kind of study may 

reveal how appropriate the previously used sample size was. Moreover, it may 

help in avoiding the risk of having the same errors in the future studies as 

underpowered sample sizes might distort the validity and integrity of the 

intended investigations. 

 

To establish an accurate and reliable sample size calculation, it is necessary to 

identify the appropriate statistical test for the hypothesis of interest under the 

study design. The proposed statistical test for the current study was Mann-

Whitney U-test which is recommended to be used where the outcome measure 

of interest for the undertaken study is an ordered scale (variable) in which one 

subject can be described as being in a higher (or lower) category than another 

(Machin et al., 1997). 

 

From a previously conducted pilot study, a retrospective power calculation was 

established and a sample size was calculated. 

 

3.2.2     Retrospective power calculation 

The first requirement is to use the odds ratio (OR), which defined as the ratio of 

odds of having the target disorder in the experimental group relative to the odds 

in favour of having the target disorder in the control group. 
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The odds ratio could be anticipated by the experimenter in the instances of new 

therapy or the experimenter may know the proportions for one group. 

Another way of determining the odds ratio is to follow an equation (Machin et 

al., 1997). 

OR1=        Qs1 (1- Q T1) / QT1 (1- Qs1)           

         =     2/ 16 (1-1/ 16) /    1/ 16 (1-2/ 16)                               

OR1 =    15/7  

m =       6(Z1-α/2 +Z1-β)
2 /    (Log OR)2 

16 =         6(Z1-α/2 +Z1-β)
2 /  (Log 15/7)2  

(Z1-α/2 +Z1-β)
2 =        16 (Log 15/7)2/ 6                                         

Z1-α/2 +Z1-β =        √16(𝑙𝑜𝑔 15/7)
2 / 6 

Z1-α/2 +Z1-β =   1.5 

 

Table 3.1: Explanation of the Symbol in the equations 

OR1 Odd ratio of having score 1 

Qs1 Proportion having score 1 following separate curing 

QT1 Proportion having score 1 following together curing  

Z1-α/2 +Z1-β Value that can be obtained from certain table at α=0.05 for the 
current study 

M The sample size per group 
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Table 3.2: Table generated via SPSS to determine the values of Qs1 and QT1 

 Score of microleakage  

Dye 
penetration 
that 
extended 
up to 1/3 of 
the 
preparation 
depth 
(score 1) 

Dye 
penetration 
greater than 
1/3, up to 
2/3 of the 
preparation 
depth (score 
2) 

Dye 
penetration 
extending to 
the axial wall 
(score 3) 

Dye penetration 
past the axial 
(score 4) 

Total 

Mode 
of 
curing 

Separately 1 1 11 3 16 

Together  2 1 13 0 16 

Total  3 2 24 3 32 

 

Using table 2.3 (Machin et al., 1997) by using the value of (Z1-α/2 +Z1-β), it can 

be found that the power for the current pilot study was about 30%. 

 

Using table 3.3 (Machin et al., 1997) and by looking for the odds ratio which 

was calculated from the previous equation the sample size needed to achieve a 

power of 80% was 39 per group, while for a power of 90% the number per 

group was 52. 

It was decided to use the power of 90% for the current study requiring a sample 

size of 52 restorations per group a total of 104 restorations. 

 

3.2.3     Sample collection 

Freshly extracted premolar teeth were collected from Leeds Dental Institute 

tissue bank. Due to initial difficulties in accessing sufficient numbers of freshly 
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extracted teeth, an application to start collecting sound freshly extracted 

premolar teeth was submitted to the tissue bank at Leeds Dental Institute. The 

application was approved and tooth collection was carried out. However, it was 

found that the number of available teeth was very low.  

 

Following difficulties in accessing sufficient teeth from the Dental Institute, an 

application was made to the Local Research Ethical Committee, (Yorkshire & 

the Humber Leeds Central) to obtain ethical approval to start collecting the 

required number of teeth for the experimental work from four General Dental 

Practices. The documentation for the application included; two patient 

information sheets, one for children aged 12-17 (Appendix A.1) and other one 

for adults (Appendix A.3); an assent and consent forms (Appendix A.2, A.4). 

The application was approved (Appendix A.5) and the collection of the teeth 

commenced, after the tissue transfer agreement was signed by the dentists 

contributing to the study (Appendix A.6). 

 

3.2.4    Sample selection and storage medium 

Extracted teeth were cleaned and any adherent hard and soft tissues deposits 

were removed using periodontal hand scalers (refinement scaler, Dentsply). 

The teeth were initially stored in a 0.5% chloramine solution (Chloramine T GPR, 

VWR International, Lutterworth, Leicester, UK) for a maximum of one week and 

thereafter in distilled water in a refrigerator at a nominal 4oC until the 

commencement of the experiment. These procedures were in accordance with 
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the recommendations of the International Organization for Standardization (ISO, 

2003). 

 

Subsequently, the teeth were trans-illuminated and visually inspected to detect 

any cracks, fracture, defect and caries. Any teeth found to include any 

significant defects, or other abnormalities were excluded from this experiment; 

in order to avoid unwanted ingress of dye material during the microleakage test. 
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Chapter 4 

Preliminary investigation 

4.1      Pilot study (Preliminary investigation) 

A pilot study was conducted to assess the feasibility of the experiment and 

develop methodology for the main study. This pilot study was a preliminary 

investigation to develop a protocol for the restoration. 

 

Freshly extracted premolar teeth were collected from Leeds Dental Institute 

tissue bank. Due to initial difficulties in accessing sufficient numbers of freshly 

extracted teeth, four preparations per tooth were prepared in order to obtain the 

proposed sample size and reduce the number of the teeth required for the 

experiment, Seven premolar teeth were collected and included in the pilot study.  

 

The teeth were prepared according to the method described in Chapter 3.  

 

4.2      Experimental design:  

The study design was an in-vitro investigation of open-sandwich restorations 

using two different curing protocols 

 The conventional protocol: in which the resin modified glass ionomer (the 

base) was cured first and then the first layer of the resin composite was 

applied and cured; 
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 The co-curing protocol: in which the two materials were cured together 

(resin modified glass ionomer and resin composite). 

 

4.2.1    For the control group:  

Open sandwich restorations were placed using light cured resin modified glass 

ionomer cement (base) and resin composite (main restoration). A conventional 

protocol, for curing using halogen light curing unit, was followed by fully curing 

the RMGIC for 20 seconds prior to the additional incremental curing of the resin 

composite for 40 seconds for each layer.  

 

4.2.2    For the test group:  

Open sandwich restorations were placed using light cured resin modified glass 

ionomer cement (base) and resin composite (main restoration). In contrast to 

the control group the two materials were light cured simultaneously for 40 

seconds. 

 

4.3      Sample allocation:  

No randomization was needed as both the test and control groups were placed 

in the same tooth. A consistent order was followed by considering both the 

buccal and mesial surfaces of the tooth to have the separate curing protocols 

while lingual and distal surfaces to have the co-curing protocol.  
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4.4      Teeth mounting 

All teeth included in the experiment for this study were mounted in maxillary and 

mandibular Columbia rubber moulds (Novo dental products Pvt.Ltd. RM-22 for 

32 teeth). In each case the test tooth was located in the mould between two 

Typodont plastic teeth to simulate the clinical situation in order to establish 

appropriate anatomical relationships and contact points Fig (4.1).  

 

 

Figure 4.1: Columbia mould with natural second premolar tooth in 

between two Typodont teeth (first premolar and first molar). 

 

The mould was poured using dental plaster (Crystacal D stone; BPB Formula, 

Nottinghamshire, England) and then allowed to completely set fig (4.2). 

Subsequently, the casts including the mounted teeth were covered with wet 

gauze to keep the teeth hydrated all the times. The specimens were then stored 

in plastic bags and care was taken to ensure that the models did not dry out. 
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Figure 4.2: Cast with the mounted teeth 

4.5      Preparation of the cavities 

Four slots were prepared on each tooth on mesial, distal, buccal and lingual 

surfaces. All the slots were prepared by the chief investigator to ensure a 

standardised cavity preparation. 

 

4.6      The features of the preparation  

The slots were prepared as follows: 

o A bucco-palatal / bucco-lingual width of 3.0 mm for both mesial and distal 

preparations. 

o A mesio-distal width of 3.0 mm for both buccal and lingual preparation 

o A cervical wall width of about 2 mm. 

o Pulpal wall was parallel to the long axis of the tooth. 

o The gingival cavosurface margins were located 1 mm below the cement-

enamel junction (CEJ). 
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All the preparations were standardised by using fine-pointed water proof pen 

( Lumocolor, Staedtler, Germany) to mark the  occlusal outline of the 

preparation which was determined using a periodontal probe (Michigan O probe 

with Williams markings which has circumferential lines at 1, 2, 3, 5, 7, 8 , 9, and 

10 mm). The length needed to place the gingival margin entirely apical to the 

CEJ was different amongst teeth and dependent on the anatomy of the 

individual tooth. A reduction of the buccal and lingual cusp tips was made in 

order to match the height of the mesial and distal surfaces. 

 

All of the slots were prepared in each tooth using a water-cooled diamond bur 

held in a high speed handpiece (KAVO Dental Excellence, Biberach, Germany). 

A new cutting bur was used after the preparation of every five cavities. 

 

To ensure consistency in preparation size a check was performed on each 

preparation using a periodontal probe to determine if any inaccuracy in the 

dimensions of the preparation had occurred. Any faulty preparations were 

discarded and replaced.  

 

After finishing the preparations, the plaster casts including the prepared teeth 

were covered with wet gauze and inserted in plastic sealed bags and stored at 

room temperature (20◦ C).  

 

Using the water proof pen, marks were then placed on the cast to determine the 

control and test preparations. 
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4.7      Materials and instruments used during restorations and 

finishing: 

1. The resin composite used in the study was an injectable micro-

hybrid light-cured resin composite (XRV Herculite; Kerr U.K. Ltd), which 

contains approximately 79% by weight (59% by volume) inorganic filler 

with an average particle size of 0.6 microns. Shade A3 was used. 

2. A radiopaque light cured resin modified glass ionomer cement 

(GC Fuji II LC, GC Corporation, Japan) (Shade A3). 

3. 37% phosphoric acid (Super etch, Southern Dental Industries, 

Australia). 

4. Dentine adhesive system (OptiBond Solo Plus, Kerr, USA). 

5. Sectional matrices (Palodent® sectional matrix system, Dentsply) 

(Figure 4.3). 

6. Wooden wedges (Wizard wedges; Teledyne Dental, Bremen, 

Germany). 

7. Curing light unit (QHL75® Lite, Dentsply) with an output of 400 

mw/cm². 

8. Curing radiometer (Demetron research corporation, Danbury, USA)

 . 

9. Finishing strips. 

10. soflex discs which ranged from coarse, medium and fine (3M Sof-

LexTM; 3M ESPE, St. Paul, MN) 

11. White and green stone, finishing burs. 
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Table 4.1: Manufacturer instruction for use for the materials 
used in the study 

 

Materials Manufacturers’ instructions Batch 
Number 

 

37% phosphoric acid 
etchant 

1.Etch enamel and dentin for 15 seconds 

2. Rinse thoroughly, ensuring that all 
etch is removed. 

3. Dry lightly, do not desiccate. 

120648 

 

OptiBond Solo Plus 

1.Apply to enamel/dentine surface with 
applicator tip for 15 seconds, using light 
brushing motion. 
2.Air thin for 3 seconds. 
3.Light cure for 20 seconds. 

4785282 

 

GC Fuji II LC (resin 
modified glass 
ionomer cement) 

1.Mixing time 10 seconds. 
2.Working time 3 minute and 15 
seconds. 
3.Light curing time 20 seconds. 
4.Depth of cure 1.8 mm. 
5.Extrude cement directly into 
preparation avoid air bubbles. 

6.Place light source as close as possible 
to the cement surface. 

1210225 

Micro-hybrid light-
cured composite 
( XRV Herculite) 

Unidose delivery. 

1.Insert Unidose tip and properly align 
within Dispenser. 
2.Place the Unidose tip at the deepest 
portion of the preparation. Caution: 
extrude slowly with even pressure. 
3.Increments should be no more than 
2mm at a time. 
4.After placing an increment stroke the 
composite to ensure marginal 
adaptation. 

5.Light cure each increment for 40 
seconds. 

4668053 

 

4.8      Restoration technique: 

4.8.1     Treatment common to both groups 

A sectional matrix band (Palodent system, Dentsply) was placed around each 

prepared tooth on both mesial and distal slots and further adapted using 

wooden wedges (Wizard wedges; Teledyne Dental, Bremen, Germany).  A 

spring ring was then placed using ring placement forceps (Palodent system, 

Dentsply). 
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Figure 4.3: Palodent matrix bands system 

 

All the preparations were etched with 37% phosphoric acid (Super etch, 

Southern Dental Industries, Australia) according to the manufacturer’s 

directions of use (Table 4.1). The etchant was placed on the preparation’s walls 

for 15 seconds. The preparations were then washed thoroughly with water and 

then lightly dried using a soft blow of oil-free compressed air. Subsequently the 

etched surfaces were coated with adhesive (OptiBond Solo Plus, Kerr, USA) 

which was then air thinned for 3 seconds, and light cured for 20 seconds in 

accordance with the manufacturer instructions table (4.1). 

All of the etching and adhesive applications was accomplished after placement 

of the matrix band. 
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Figure 4.4: Acid etching 

 

GC Fuji II capsule was loaded into the GC capsule applier; an increment of 

about 1mm thickness of the GC Fuji II was injected directly into the preparation.  

After that, each group was cured in a different manner as specified below. The 

intensity of the curing light (halogen curing light unit) was checked prior to each 

use with a radiometer (Demetron research corporation, Danbury, USA) to 

deliver 400 Mw/cm2. 

 

4.8.2     Treatment specific to each group 

4.8.2.1   Control group  

The RMGIC increment was light cured for 20 seconds, and subsequently resin 

composite was then injected incrementally into the remaining part of the 

preparation following the manufacturer’s direction for use table (1.4). Each 

increment was less than 2 mm thick and was carefully adapted by applying light 

pressure using hand instruments, and light cured for 40 seconds.  
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4.8.2.2   Test group 

The same technique as that of the control group was employed for this group 

except that the layer of the RMGIC and the first increment of composite were 

cured simultaneously.  

 

The final layer of resin composite was carefully placed and sculpted before 

curing.  

The matrix band and wooden wedge were then removed and the restorations 

were then finished occlusally using the green and white stone finishing burs 

held in a slow speed hand-piece. Proximally the restorations were finished 

using finishing strips, and  a series of soflex discs  which ranged from coarse, 

medium and fine (3M Sof-LexTM; 3M ESPE, St. Paul, MN, USA). Subsequently, 

the teeth were carefully removed from the casts, a small dot was then prepared 

on the end of the root to define the control restorations and kept wet using water 

soaked gauze and stored in plastic storage bags at room temperature (20º C). 

 

4.9      Specimens ageing 

All teeth were placed in the Thermocycling apparatus at the University of 

Manchester, School of Dentistry, Biomaterial Science Lab and subjected to 500 

cycles. The temperature of the baths was maintained at 5 ± 2 o C and 55± 2 o C. 

The teeth were left for 15 seconds dwell time in each bath and approximately 

10s to transfer from one bath to another following the ISO standard (ISO, 2003). 

Following this, the teeth were returned to the plastic bag and kept wet using 

water soaked gauze at room temperature (20º C). 
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Figure 4.5: Thermocycling machine 

4.10      Microleakage investigation: 

Following Thermocycling, specimens were prepared for microleakage testing. 

Before immersing the teeth in dye solution the root apices were sealed with 

sticky wax to prevent unwanted ingress of tracer, and then two layers of nail 

varnish were applied to additionally seal the apex and tooth surfaces. Care was 

taken not to cover the restoration itself and to be within 1mm of the tooth-

restoration interface. 

 

The restored teeth were immersed in 50% silver nitrate solution for 4 hours at 

room temperature (20º C). The teeth were placed in a UV light box in a small 

container filled with 1:9 developer solutions (ILFORD ILFOSOLS.10 ml of the 

solution mixed with 90 ml of distilled water) for 6 hours. After this, teeth were 
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rinsed under running water. Each tooth was then wrapped with wet tissue and 

inserted in a small plastic pot covered with a secured lid. 

Two techniques were used in order to investigate the microleakage and the 

level of the dye penetration.  

 

 The first technique was by scanning the teeth using the x- ray micro 

computed tomography. 

  The second technique was by sectioning the teeth. 

 

4.11     X-ray Micro Computed Tomography (Micro CT): 

Micro Computed Tomography (Scanco medical100) was used to scan the teeth 

by mounting the specimen into the Micro CT cylindrical holder.  

The plastic pot was placed in a cylindrical holder size 34mm× H 110 mm and 

secured in place by using small pieces of foam sponges. Once the tooth was 

secured in place the cylinder was mounted into the machine and the carousel 

number noted, the area for scanning was selected using a scout scan. The x-

ray setting was (90 kvp, 14 W) with high resolution of 17.2 µm, using the 0.5 

aluminium filter.  Once the adjustment for the scanner was finalized the 

scanning procedure was started. The raw data were then generated and further 

reconstructed and converted to 16-bit-mapped images files showing 2D images. 

Images were then analysed using public domain software; image J (imaging 

processing and analysis in Java) by using the orthogonal views (Fig 4.6, 4.7, 

4.8, and 4.9). In those views the restoration appeared to be radio-opaque and 

air gaps and adhesive were radiolucent.  
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        Figure 4.6: Orthogonal view of the buccal restoration 

 

       Figure 4.7: Orthogonal view of the lingual restoration 

Lingual 
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        Figure 4.8: Orthogonal view of the mesial restoration 

 

    

     Figure 4.9: Orthogonal view of the distal restoration 

 

 

 

Distal 
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4.11.1    Results from the Micro CT scanning image: 

From the 2D orthogonal view generated via Image J (as in Figures 4.6, 4.7, 4.8, 

and 4.9) the main findings were  

1. Air gaps in the restoration. 

2. Space left between the resin composite restoration layers.  

3. Adhesive layer which can be identified by its radiolucent (black) colour.  

4. Overhanging restoration 

5. Silver nitrate penetration was not recognized. 

 

4.12      Sectioning technique: 

Each tooth was embedded in place on a round plastic disc using warmed green 

stick compound (Fig 4.10.). The plastic disc was then tightly screwed on the 

sectioning machine (precision diamond wire saw with constant water coolant) 

(Fig 4.11). 

 

 

                       Figure 4.10: Plastic disc with the green compound 
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Figure 4.11: Sectioning machine 

 

The teeth were sectioned twice mesio-distally using a slow-speed diamond wire 

saw under copious water coolant. The buccal and lingual (palatal) restorations 

were then sectioned separately bucco-lingually (palatally) two sections each. 

The two sections provided four surfaces to score in each restoration (Fig 4.12).  
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                 Figure 4.12: Sectioning technique 

 

Each specimen was then examined under a stereo zoom microscope at x20 

magnification to be scored using a protocol described by (Gharizadeh et al., 

2007). The assessment of the microleakage scores was based on the depth of 

the dye     penetration, according to the following ordinal 5 point scale from 0 to 

4 (Fig 4.13). 

Mesio-distal sections Lingual sections 

Buccal sections 
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           Figure 4.13: Dye penetration scoring scale 

 

4.12.1 Sectioning technique result: 

As can be seen from the Table (4.2) most of the restorations were leaking to the 

highest score (score 4), only one of the restoration showed no leakage (zero 

score), in which the restoration showed an overhanging margin which could 

have prevented the dye from penetration. 

 

Table 4.2: Microleakge scores from sectioning technique. 

Tooth 
Number 

Surface Sections Microleakage 
score 

Highest score 

1 Buccal 1 4 4 

2 4 

3 4 

4 4 

Lingual 1 4 4 

2 4 

3 4 

4 4 

Mesial 1 4 4 

2    1    0 

 3 

4 

Scoring scale 

 

0   No dye penetration. 

1   Dye penetration that extended up     

to 1/3 of the preparation depth. 

2   Dye penetration greater than 1/3, up to 
2/3 of the penetration depth. 

3   Dye penetration extending to the axial 
wall.  

4   Dye penetration past the axial wall. 
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2 4 

3 4 

4 4 

Distal 1 4 4 

2 3 

3 Out 

4 Out 

2 Buccal 1 4 4 

2 4 

3 4 

4 4 

Lingual 1 Out 4 

2 4 

3 4 

4 4 

Mesial 1 4 4 

2 3 

3 3 

4 2 

Distal 1 4 4 

2 4 

3 Out 

4 Out 

2 4 

3 4 

4 Out 

3 Buccal 1 4 4 

2 4 

3 4 

4 Out 

Lingual 1 4 4 

2 4 

3 4 

4 Out 

Mesial 1 3 4 

2 3 

3 3 

4 4 
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Distal 1 0 0 

2 0 

3 0 

4 0 

4 Buccal 1 Out 4 

2 4 

3 4 

4 4 

Lingual 1 4 4 

2 4 

3 4 

4 4 

Mesial 1 4 4 

2 4 

3 4 

4 4 

Distal 1 4 4 

2 4 

3 4 

4 Out 

5 Buccal 1 4 4 

2 4 

3 4 

4 4 

Lingual 1 4 4 

2 4 

3 4 

4 4 

Mesial 1 4 4 

2 4 

3 4 

4 4 

Distal 1 4 4 

2 4 

3 4 

4 4 

6 Buccal 1 3 3 

2 3 
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3 3 

4 3 

Lingual 1 4 4 

2 4 

3 4 

4 4 

Mesial 1 4 4 

2 4 

3 4 

4 4 

Distal 1 3 4 

2 3 

3 4 

4 4 

7 Buccal 1 4 4 

2 4 

3 4 

4 4 

Lingual 1 4 4 

2 4 

3 4 

4 4 

Mesial 1 3 3 

2 3 

3 3 

4 3 

Distal 1 4 4 

2 4 

3 4 

4 4 
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Figure (4.14) showed the highest microleakage score of score 4 which was 

found on the vast majority of the samples. One of the sample showed no dye 

penetration of score 0 (Fig 4.15). 

Adhesive pooling in cervico-axial angle in the floor of the restoration was a 

common phenomenon in almost all the samples. 

 

    

Figure 4.14: Stereomicroscope image showing dye penetration 
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Figure 4.15: stereomicroscope image for no dye penetration 

4.13      Discussions: 

4.13.1     Number of the preparations per tooth  

After performing the initial experimental design, it became apparent that four 

preparations per tooth were not practical, as they were likely to increase the 

number of mechanical variables therefore affecting the final result.  

 

4.13.2     The use of the matrix band during adhesive application 

Certainly in the base of the cavity the adhesive was pooled and created a thick 

inconsistently distributed layer. The presence of the matrix band during the 

application of the adhesive may have prevented any excess adhesive from 

seeping away from the cavity margin especially after the air thinning procedure 

leading the adhesive to accumulate at the corner of the restoration which is 

commonly called adhesive pooling. This was in agreement with the finding of 

the research conducted by (Ernst et al., 2002) who recommended the adhesive 

be placed prior to the placement of the matrix system in class II cavities owing 
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to different factors which included: the presence of the matrix band could first 

impair the insertion of the micro brush applicator into the proximal cavity to 

apply the adhesive to all the cavity walls and lead to insufficient conditioning, 

second; make it difficult to air dry the adhesive which is essential to remove the 

solvent, third; prevent removal of the excess material in the cervical direction 

resulting in a thick adhesive layer, fourth; adhere strongly to the adhesive 

material and  potentially cause a disruption of the interface upon the matrix 

removal.   

 

4.13.3     Sectioning technique  

During sectioning, the tooth become gradually weaker, very fragile slices were 

obtained and there was more risk that the interfaces might become 

contaminated by the sectioning process. The fragility also increased the 

possibility of restoration fracture and separation from the tooth surface.  

 

4.13.4     Number of sections  

A single midline section is the most commonly applied technique for dye 

penetration assessment. It is however; difficult to represent the total dye 

distribution through the whole restoration using only one section (Youngson et 

al., 1998; Federlin et al., 2002). Multiple sections are necessary for the 

detection of the deepest leakage site at the tooth-restoration interface. Two 

sections were chosen to avoid underestimation of microleakage (Raskin et al., 

2003). The maximum dye penetration scores on each restoration were recorded 
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as it is the most relevant criterion in evaluating microleakage (Dejou et al., 

1996). 

 

4.13.5     Micro CT  

Micro.CT is an expensive tool to use and needs specific training and mastery of 

the image processing software. It has the advantage of being a non-destructive, 

non-invasive method when compared with the sectioning technique. However, 

the micro CT technique was not appropriate to use for the purpose of this study 

owing to the large number of slices generated per tooth and also dye 

penetration was not clearly defined with this technique. 

Moreover the Micro CT scan resulted in about 600 slices which was hard to 

match with the tooth section from the sectioning technique and resulted in a 

difficulty in comparing the result from the two techniques. It was also hard to 

view the full section of the tooth  

From the researcher point of view more training was needed in order to be able 

to acquire a detailed image which would allow for assessment of the total area 

of the restoration. 

 

4.14      Limitations of the study: 

4.14.1     Dye penetration test  

Dye penetration testing is widely used to test microleakage (Haller et al., 1993). 

The wide variety of dye materials used in in-vitro tests of microleakage, results 

in conflicting findings and difficulty in comparing many of the study outcomes 
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(Dejou et al., 1996) as they lack standardization of the parameters for 

comparison. It has been advised, therefore, not to compare the results of 

microleakage studies that used different tracers (de Almeida et al., 2003). 

 

Silver nitrate was used in this study as it is a metal dye which can be visible 

when using Micro CT, and it is the most widely used dye in other microleakage 

studies, although some investigators have shown that the acidic nature (PH of 

3.4) of the dye can demineralise dentine and allow for the penetration of the dye 

even with no gap in the interface which compromises the validity of the result, 

(Li et al., 2003). Another researcher found that the pH of the tracer has no 

significant effect on dye penetration when they compared a buffered and a non-

buffered solution (Youngson et al., 1998). 

 

4.14.2     Storage media  

The effect of the storage media on microleakage must also be considered. 

Extracted teeth used in the in-vitro studies are usually stored in disinfecting 

solution during the collection period in order to prevent bacterial colonization 

(Pagniano et al., 1986). Different storage solutions have been used such as 

ethanol, formalin, and thymol. It has been reported that they may have an effect 

on the bond strength to dentine. 1% Chloramine T, has been shown to have no 

effect on the size of the marginal gap compared with water storage (Jorgensen 

et al., 1985); it was also reported to allow adhesion comparable to that 

achievable to freshly extracted teeth (Haller et al., 1993). 
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4.15      Conclusions 

To conclude, the micro CT technique was not suitable to use for the purpose of 

this study. 

Application of the adhesive in the presence of the matrix band was thought to 

have an effect on the adhesive pooling in the cervico-axial angle of the 

restoration. 

The number of cavities (four cavities per tooth) was not practical in terms of 

sectioning, examination of the samples and also overstressing the tooth 

structure.  

Some sections were out of the restoration which could affect the overall result.  

Accordingly, some modifications for the study protocol were proposed in order 

to avoid the previously mentioned issues in the main study. The modifications 

included: 

1. The adhesive material should be applied before inserting the matrix band. 

2. More attention should be given during the sectioning stage to avoid out of 

restoration tooth section. 

3. No more than two cavities per tooth would be prepared.  
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Chapter 5 

 

Main study 

 

5.1     Intoduction 

Following the findings of the pilot study, the initial study protocl was applied in 

the main study apart from modified some modifications as described in Chapter 

4. These were: 

1.Number of cavity preparations in each tooth. 

2.Sample randomization. 

3.Adhesive placement before applying matrix band. 

 

1.Number of cavity preparations in each tooth 

Only two proximal slots per tooth were prepared; one on the mesial surface and 

the other one on the distal surface; with the same preparation features 

described in Chapter 4. 

 

2. Sample randomization 

Proximal slots were randomized using research randomizer website (research 

randomizer) for both the control and the test group, in which the control group 

was the separate curing group and the test group was the co–curing (Appendix 

C.1). 

Mesial and distal slot cavities were prepared. Randomization was carried out to 

determine the order of cavity restoration for the two techniques under 
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investigation. The second restored slot could potentially be affected by the 

stresses already generated from the first restoration.This could lead to crack 

propagation which could cause the second restoration to develop defects 

unrelated to the technique followed in the restoration. 

 

3.Adhesive application with no matrix band 

A matrix band was used in the pilot study and was thought to predispose to 

adhesive pooling. For the main study the adheisve was applied without placing 

the matrix band for all the samples. 

 

5.2      Aim: 

The aim of this research was to investigate the effect of curing resin modified 

glass ionomer cement (RMGIC) and resin composite in open sandwich 

restorations, either together or seapartely on the marginal leakage of the 

restorations.  

 

5.3      Objective 

             5.3.1    Dye penetration test  

To assess the dye penetration between the tooth and restoration interface using 

a sectioning technique. 
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5.4      Investigation of dye penetration: 

All of the teeth sections when examined under the stereomicroscope at x20 

magnification showed that the dye was absorped by the adhesive  and therefore 

scoring the depth of dye penetration between the restoration and the tooth was 

not possible. The main finding was that the adhesive thickness appeared to be 

much greater than anticipated and adhesive pooling was present despite the 

modification of the methodology to place the adhesive before applying the 

matrix band. 

Ten sections of teeth were then examined under the SEM (Scanning Electron 

Microscope ) in order to examine the restoration/ tooth margin for gap formation. 

 

5.5      Preparation of the sample for the SEM investigation 

The surface of the tooth section was polished with 1600-grit Silicon carbide (SiC) 

paper to smooth the surface and rinsed with water to remove any debris. The 

specimen was dipped in a 50% (w/v) H3 PO4 (phosphoric acid solution for 3 

seconds (demineralization step), then immersed in a 1% NaOCl (Sodium 

hypochlorite) solution for 10 minutes to remove the non-encapsulated collagen 

fibrils. The specimen was then mounted in the SEM [HITACHI, S-3400N] for 

high resolution examination, using the wet stage in which the sample was 

placed on the stage (Deben Ultra Mk3, cool stage) and cooled to -20°C with a 

pressure of 70 MPa.  
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5.6      Results of SEM imaging: 

The SEM images showed that the tooth restoration interface was intact 

(Appendix.C). However, failure was detected at the cervico-axial angle of the 

restoration where the adhesive was at its  greatest thickness. The adhesive 

material exhibited crack formation which was propagated into the resin modified 

glass ionomer cement as can be seen in Figure 5.1.  

 

A possible explanation for this result may be an adhesive film thickness greater 

than the 10 µm thickness claimed by the manufacturer to be the optimium 

required. This increased volume of resin would have had a large volumetric 

shrinkage generating high stresses within the tooth and restoration. 
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Figure 5.1: Intact margin and crack propagation in the adhesive. 

RMGIC 

Adhesive 

Resin composite 
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Figure 5.2: Magnified image from SEM of 400 µm 

Figure 5.2 has shown a resin tag formation between the adhesive layer and the 

dentine.  

 

From the SEM results it can be postulated that there were variations in the 

adhesive thickness from the film thickness of 10 micron claimed by the 

manufacturer. This could have a significant effect on the stress generated in the 

tooth and the restoration. 

 

At this stage of the current study it became clear that further investigation was 

indicated in relation to the increased adhesive thickness and its effect on 

restoration failure.This was in response to the finding that the adhesive 

thickness was found to be greater than that anticpated by the manufacturer As 

the adheisve thickness showed to be greater than that anticpated by the 

manufacturer.  

Adhesive 

Dentine 
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This increased adhesive thickness was an unanticipated finding and could have 

had an effect on the marginal integrity of the restoration, leading to failure. It 

was decided that this aspect required further experimental investigation. The 

aim of this additional study was to determine whether the thickness of the 

adhesive showed a large variation within the sample when applied by the main 

investigator. 

 

5.7      Methods: 

The adhesive thickness was measured in all the teeth sections, which had 

previously been examined for dye penetration. The measurment was 

accomplished using a photographed tooth section captured using a Motic 

camera connected to the stereomicroscope. Calibration of the software was 

made in order to obtain an accurate measurment. A line was drawn through the 

thickest part of the adhesive (Figure 5.3). The area with the greatest thickness 

was measured. 

 

  

Figure 5.3: adhesive pooling and thickness measurment 
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Table 5.1: Precured adhesive thickness of all teeth 
sections 

Tooth Precured adhesive thickness 

Separate curing of 
RMGIC/RC 

Co- curing 
RMGIC/RC 

1 542.96 411.83 

2 386.44 593.61 

3 95.03 591.34 

4 625.31 505.75 

5 520.35 602.84 

6 306.15 424.33 

7 378.28 699.71 

8 629.82 503.3 

9 454.92 421.69 

10 517.47 93.5 

11 458.1 306.98 

12 930.92 36.55 

13 412.8 649.51 

14 442.94 175.03 

15 445.95 315.8 

16 258.78 365.34 

17 240.05 303.04 

18 502.59 231.86 

19 527.6 409.44 

20 216.86 434.2 

21 639.48 621.96 

22 575.28 517.03 

23 799.25 291.05 

24 600.15 184.56 

25 709.95 358.24 

26 389.67 74.34 

27 317.28 847.24 

28 421.84 661.57 

29 508.22 646.65 

30 636.55 494.71 

31 394.35 336.85 

32 328.12 879.78 

33 518.69 624.01 

34 345.78 646.64 
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The Table 5.1 presented the adhesive thickness measured on a microscopic 

photograph . 

 

Table 5.2: Descriptive Statistics of all data (separate curing and co-curing group) 

 N Minimum Maximum Mean Std. Deviation 

All data (test and 

control group) 
104 36.55 930.92 465.9977 192.47122 

      

 

5.8      Results: 

It is apparent from the Table 5.2 that the thickness of the adhesive ranged 

between a minimum of 36.55 µm and a maximum of 930.92 µm, the mean layer 

thickness was 465.9± 192.47µm. 

35 160.51 243.46 

36 411.56 540.76 

37 126.67 236.71 

38 389.37 680.79 

39 495.85 908.06 

40 854.18 431.11 

41 637.99 538.76 

42 615.51 684.13 

43 599.05 318.82 

44 483.31 571.83 

45 344.86 36.86 

46 608.83 380.22 

47 290.36 421.74 

48 735.42 617.98 

49 545.29 412.8 

50 646.08 638.58 

51 472.56 490.73 

52 383.08 170.56 
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Figure 5.4: frequency of the adhesive thickness applied by the same operator 

 

As can be seen from Figure 5.4 the adhesive thickness measurement showed 

that 77 out of 104 (74%) of the sample revealed a thickness ranging between 

301 and 700 µm. However only 8 out of 104 (7.7%) presented a thickness 

ranging between 701 and 1000 µm. This is substantially low in comparison to 

the number of samples which had thickness of between 301 and 700 µm. Only 

10 samples showed a thickness between 0 and 200 µm.  
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5.9      Discussion 

5.9.1    Adhesive pooling 

The manufacturer states that the mean film thickness for Optibond Solo plus 

adhesive is 10 µm (Kerr, 2009). That may have been measured on a flat 

experimental surface. From the results of this study the variabilty of the 

adheisve thickness ranged between 36.55 to 930.92 µm with a mean thickness 

of 465.9± 192.47µm. This variabilty in thickness was reported by Grossman and 

Setzer (2001) for a class I restoration comparing the thickness achieved by 

using two adhesive systems (filled and unfilled adhesive) in which the measured 

thickness for the Optibond Solo plus was ranged between 0 to 1150 µm with a 

mean thickness of 221± 130 µm. They found that the cavity site played a role in 

the adhesive thickness and resulted in inconsistency of bonding agent thickness 

along the cavity wall. Optibond Solo plus (adhesive material) showed a 

maximum thickness at the cavity angle which then decreased toward the cavity 

margin. They attributed the significant difference found between the two 

systems to the type of bonding agent (filled or unfilled adhesive). This finding 

was in agreement with the current study as the adhesive revealed a maximum 

thickness at the axio-cervical angle and decresased toward the margins.  

 

In the current study, adhesive pooling at the cervico-axial angle of the 

resoration led the thickness to be greater than the manufacturer’s claimed 

optimum thickness. The uniformity of the adhesive material throughout the 

interface could have a great impact on the elastic buffering role of the bonding 

agent which relies on the even distribution of the physical and mechanical 
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forces generated by polymerisation shrinkage, temperature changes and 

masticatory forces (Opdam et al., 1997; Staninec et al., 1995). As stated by 

Peter et al (1997), adhesive pooling at the cavity angle arises as a result of 

increased viscosity of the filled adhesive and the technique of air thining is 

unable to evenly distribute the high viscous adhesive material throughout the 

cavity wall because of the “damming” effect of the preparation angle. 

 

Differences in the adhesive thickness was cited to be related to different 

variables including air thining; application technique; viscosity and incomplete 

curing of the bonding agent (Griffiths and Watson, 1995; Opdam et al., 1997; 

Staninec et al., 1995). Any of the above mentioned variable could by applied to 

this study. 

 

A literature review revealed some controversy in relation to a finding on 

adhesive thickness. Opdam et al. (1997) suggested that a thick adhesive layer 

could prevent gap formation between tooth and  restoration and perform as an 

elastic buffer when compared with thin layer. However, Hilton and Schwartz 

(1995) found that a thick adhesive layer adversely effected the longevity of the 

restoration by increasing crack propagation and minimizing bond strength. Also 

de Menezes et al, (2013) stated that excess adhesive may negatively affect 

bond strength of the adhesive material to the tooth structure. 
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Film thickness of the adhesive material has to be of an even thickness along the 

entire restored cavity with the purpose of ensuring consistent bonding and 

uniform stress distribution (Grossman and Setzer, 2001). 

 

5.9.2    Absorption of the silver nitrate by the adhesive 

Following the finding that the resin took up the silver nitrate, the literature was 

again reviewed to investigate why this may have occurred. 

The hydrophilic nature of the adhesive used in the study was speculated to be 

the reason why the material was permeable to the silver nitrate dye as stated by 

Yiu et al.(Yiu et al., 2005). The sample of this study were kept wet at all times to 

avoid dryness which may consequently result in further water sorption leading 

to a propagation of water trees in resin matrices which could be permeable to 

small ions such as silver nitrate.  

 

Hydrophilic monomer was added to the adhesive material by the manufacturer 

for the purpose of promoting effective bonding between hydrated dentine and 

resin composite. It was however, reported to cause extensive amount of water 

sorption  

which not only  affects the mechnical stability but also compromises the 

durabilty of resin–dentine bonds  (Malacarne et al., 2006; Yiu et al., 2004). 

 

In this study, as all the samples showed that the adhesive material had taken up 

the silver nitrate dye, the dye penetration test was considered to be invalid test 
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to assess the microleakge in this situation. Going back to Chapter 4, it was 

assumed that the vast majority of the samples leaked to the highest score of 4. 

This assumption is now believed to be incorrect and on reviewing the 

photograph Figure 4.14 it clearly shows that the pattern in which the dye 

penetrated the dentine may come from the adhesive side which absorbs the 

silver nitrate and acts as a reservoir which leads to the spread of the dye into 

the dentine.  

A recent study by Malacarne-Zanon et al (2010) claimed that  hydrophilic dental 

adhesive material performs as permeable membranes after polymerization, 

which allow water to flow through the adhesive layer. The greater permeation 

and deposition of silver tracer within  the adhesive material was interpreted as a 

visual show of the water diffusion process and greatly attributed to  the 

material’s hydrophilicity which facilitate water sorption of these adhesive system. 

This finding has been confirmed by Yiu et al (2006).  

 

5.9.3    Application of the resin modified glass ionomer cement 

The clinical procedure which was employed in the sandwich restoration with 

resin-modified-glass ionomer cement as a base was by applying the cement on 

the base of the preparation, polymerizing it and then etching the cement. The 

final restoration was then built up using resin composite (Liebenberg, 2005). 

 

The aim of this study was to examine the effect of co-curing the resin modified 

glass ionomer with resin composite, in relation to the microleakage of the 

sandwich restoration. Accordingly, etching the RMGIC was not possible.  
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The result of this study has shown that the failure was mostly within the 

adhesive layer which revealed crack propagation. In actual fact, good adhesion, 

in certain cases, may result in an undesirable outcome of crack propagation into 

the dentine due to stresses within the material (Czarnecka et al., 2014).  

 

5.10      Conclusion 

The Dye penetration test failed to show a difference between the two 

techniques (separate curing and co-curing) due to dye absorption by the 

adhesive resin. The stereomicroscope examination showed no difference 

between the two techniques. However, the adhesive thickness varied 

considerably between the samples. 

Adhesive pooling was still evident without the use of the matrix band. 

The thickness of the adhesive layer was far thicker than manufacturer’s 

recommendations which was 10 microns. 

 

5.11      Summary: 

To summarise the findings from this part of the study, the adhesive material was 

found to pool in the cervico-axial angle of the restoration. Crack propagation 

associated with the pooled adhesive could potentially cause early restoration 

failure. It was not possible to assess the degree of dye penetration, due to the 

uptake of silver nitrate by the adhesive resin. The majority of samples showed 

an unacceptably thick resin layer Based on these findings, it was important to 

investigate the effect of the adhesive thickness on the stresses generated. 
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Therefore, FEA was conducted aiming to evaluate the effect of the adhesive 

thickness on stress generation.  

 

The film thickness of the adhesive was greater than the manufacturer’s 

recommendation of 10 micron, which could mean that even when the 

application instructions were followed, the required thickness could not be 

achieved. This therefore implies that the manufacturer’s instructions may have 

not been sufficiently detailed or specific to ensure that the appropriate thickness 

would be achieved in all cases when an operator complied with the instructions 

fully. It might also mean that even if detailed instructions were developed there 

might be factors that could influence the thickness which were not easy to 

control. 

 

In this case, a single investigator conducted the experimental restoration 

placement, however, varying results were produced. In view of this a number of 

further investigations were planned in order to identify why such variation in 

thickness of the adhesive layer had occurred. These investigations included: 

1.Angulation of the tooth during application and curing. 

2.Inter-operator factors and compliance with the manufacturer’s instructions. 

 

The next chapter presents the FEA to investigate the effect of the adhesive 

layer thickness on the stresses generated. 
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Chapter 6 

A.Tooth angulation and its effect on the adhesive thickness 

6.1     Introduction 

As can be seen from the current research presented in chapter 5, much 

variability in the thickness of the adhesive layer was noted. Adhesive pooling in 

the cervico-axial angle of the restorations was predominant in most of the 

samples. All of the experimental work was accomplished on the flat laboratory 

bench in which the prepared cavity was positioned facing upward at right angles 

to the bench. It was hypothesised that one possible factor that could affect the 

adhesive thickness and consequently affect the bond strength could be the 

position of the tooth in both maxillary and mandibular arch and its angulation. 

 

The position of the tooth either in maxillary or mandibular arch has been thought 

to have an effect on the longevity of the restoration (Demarco et al., 2012). To 

date, no previous research was found showing the effect of tooth angulation 

and its position on the thickness of the adhesive layer.   

 

6.2      Aim: 

The aim of this experiment was to investigate the effect of tooth angulation 

during placement of the adhesive resin on the adhesive thickness. 
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6.3      Materials and methods:  

In an attempt to control the variables associated with variability of the tooth 

structure and acid etching techniques, typodont teeth (Frasaco Gmbh, Germany) 

were used in this experiment. The acid etching stage was omitted in this 

experiment to focus more on the adhesive application technique.  

 

A small bench top device was constructed (Figure 6.1) in order to simulate 

different angulations of the teeth in patients’ mouths during tooth restoration. 

 

The device was composed of three pieces of rectangular wood. One of the 

pieces was positioned as a backboard, the other piece was a horizontal 

stationary board that was fixed to the backboard and the final piece was 

attached to the horizontal board with a hinge. The hinged element could be held 

against the backboard at 12 different angulations relative to the horizontal (15º, 

30º, 45º, 60º, 75º, 90º, 105º, 120º, 135º, 150º, 165º, 180º). At each angle a hole 

was drilled so that a nail could be slotted in; to allow the hinged element to rest 

at the required angulation. 

 

An upper typodont jaw with a prepared upper second left premolar tooth 

(Frasaco Gmbh, Germany) was secured to the hinged element of the device 

(Figure 6.1).  The number of teeth used for this experiment was 24 typodont 

second left premolar teeth, two teeth per angle starting at 0º angle to 180º angle. 
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2 mm

3 mm

6 mm

 

 

Figure 6.1: Device for simulating tooth angulation in the patient mouth 

 

Class II mesial slot cavities were prepared in the typodont upper left premolar 

teeth. 

The dimension of the slot were as follows (Figure 6.2): 

Bucco-palatal width 3 mm.  

Cervical wall width 2 mm.  

Cervico-occlusal height 6 mm.  

           

Figure 6.2: Dimensions of the slot cavities 

Occlusal view Vertical view 
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All the preparations were standardised using fine-pointed water proof pen 

(Lumocolor, Staedtler, permanent black marker) to mark the occlusal outline of 

the preparation which was determined using a periodontal probe ( Michigan O 

probe with Williams markings which has circumferential lines at 1, 2, 3, 5, 7, 8 , 

9, and 10 mm) as in Figure 6.3. 

 

Figure 6.3 : Periodontal probe used to measure 

the extent of the preparation 

 

All of the slot cavities were prepared in each tooth using a water-cooled 

diamond bur held in a high speed handpiece (KAVO Dental Excellence, 

Biberach, Germany). 

 

To ensure consistency of the preparation size, a check was performed on each 

preparation using a periodontal probe to determine if any inaccuracy in the 

dimensions of the preparation had occurred. Any faulty preparations were 

discarded and replaced. 
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Optibond solo plus adhesive (Kerr,USA) was applied to the cavity surface with a 

disposable sponge tipped applicator, according to the manufacturer instructions 

(Table 6.1) at different angulation see Appendix E.1. 

Table 6.1: Manufacturer instructions for Optibond solo plus 

Material Manufacturer instruction 

OptiBond Solo Plus (unidose) 

Kerr corporation 

 

1. Apply to enamel/dentine surface with 
applicator tip for 15 seconds, using light brushing 
motion. 

2. Air dry for 3 seconds. 

3. Light cure for 20 seconds. 

 

6.4      Tooth sectioning 

Each tooth was secured on a round plastic disc using warmed green stick 

compound (Kerr, USA). The plastic disc was then tightly screwed on the 

sectioning machine (precision diamond wire saw with constant water coolant) 

(Figure 6.4).  

 

Each Typodont tooth was sectioned twice in the midline mesio-distally using a 

diamond wire saw with constant water coolant, to give a tooth slice of about 

1mm thick to be examined under the stereomicroscope for adhesive thickness 

measurement. Motic camera (digital microscope camera), connected to a laptop, 

was inserted in the microscope tube to measure the adhesive thickness. 

Calibration of the camera software for accurate measurement at x20 

magnification was undertaken prior to measurement. The adhesive was 

measured at the greatest area of thickness. All measurements were performed 

by the main investigator. 
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Figure 6.4: Tooth sectioning using precision diamond wire saw 

  

6.5      Result:  

  

 

Figure 6.5 : Adhesive thickness at different angulations  
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Figure 6.5 shows the adhesive thickness at different placement angulations, 

carried out by the main investigator (Appendix E.3). From the graph, it can be 

seen that there was no clear trend in relation to the effect of placement 

angulation on the thickness of the adhesive layer. However, it can be seen that 

with one anomaly, a lower value for thickness of the resin layer was recorded 

until the jaw was placed at 105º. The anomaly occurred at tooth 11 at an angle 

of 75º with the adhesive thickness of 320.8 µm and at tooth 12 at the same 

angle with a thickness of 483.2 µm. All measurements of adhesive thickness at 

angulation of 105º and greater, showed considerably greater values than at 90º 

angulation and below with the exception described at 75º. There was also 

variability in the thickness between the two teeth investigated at the same angle.  

 

As a final point, the thickness of the adhesive varied considerably, even 

between the teeth treated at the same angle. There appeared to be a trend 

towards greater adhesive thickness when applied to the jaw at angles greater 

than 90º. 

 

6.6      Discussion 

As can be seen from this experimental work although there was no clear trend 

in terms of increasing the adhesive thickness with the rise in the angulation, it 

was clear that angulation of the tooth may play an important role in allowing 

pooling of the adhesive in the corner of the cavity which may be due to gravity. 

This result was in agreement with the finding by Lee et al (2007) who found that 

a thicker adhesive area can be measured in the internal line angle of the cavity 
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while a thinner area can be measured in the cavity margin and the half way 

cavity wall showing the effect of gravity causing pooling of adhesive at the 

internal line angle of the preparation, when the current experiment replicates the 

position of a tooth in lower arch (angulation of 105 º and above), with the cavity 

facing upward. Adhesive pooling was also found especially at the line angle of 

the preparation. When the tooth is in the maxillary arch (angulation 90º or less) 

with the cavity facing downward this could allow the flow of the adhesive outside 

the cavity and reduce the chances of adhesive pooling.  

 

The uniform film thickness (10 µm) that was suggested by manufacturer in order 

to achieve durable and successful adhesive may therefore be difficult to obtain 

clinically in all sites around the mouth. 

 

The uniform thickness of the adhesive which is claimed in the literature was 

mostly produced on the flat surface of a tooth. However, adhesive applied in a 

proximal slot cavity (as the case in this study) could result in a thicker adhesive 

as the shape of the cavity and the gravity effects can cause the adhesive to flow 

into the line angle of the preparation (adhesive pooling) which may lead to a 

higher contraction stress at this site (Choi et al., 2000). 

 

9.7      Conclusion: 

Angulation of the tooth during adhesive application may have an effect on, 

adhesive pooling and lead to a thick adhesive layer.  
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B. Investigating the effect of application technique on the 

adhesive thickness: 

 

From the previous experiment A, the main finding was that the thickness of the 

adhesive layer was not consistent, even in teeth treated at the same angle. A 

further experiment was conducted in order to check the technique sensitivity 

when the adhesive application was completed by different operators.  

6.8      Aim 

The aim of this experiment was to determine operator compliance with the 

manufacturer’s application instructions and to investigate the effect of any 

deviation from these instructions or inconsistencies in technique on the 

thickness of the adhesive layer.  

 

6.9      Materials and methods: 

Ten clinical dental restorative postgraduate students were recruited to the study 

to apply the adhesive. The same method of placement was followed as in the 

previous experiment. Written manufacturer’s instructions for use were given to 

each postgraduate student to be followed during the application. 

The techniques of adhesive application by the postgraduate students were 

monitored by the main investigator who recorded the techniques in details. 

The main investigator (subject 11) (Figure 6.6) also took part in this experiment. 

6.10      Result 

 



 

113 
 

 

  
  
  
  
  

 C
le

a
rl
y
 m

e
n
ti
o

n
e
d

 i
n

 t
h
e
 m

a
n

u
fa

c
tu

re
r 

in
s
tr

u
c
ti
o

n
. 

  
  
  
  
 D

if
fe

re
n
t 

in
te

rp
re

ta
ti
o

n
 b

y
 t
h

e
 o

p
e
ra

to
rs

 a
p
p
ly

in
g

 t
h
e
 a

d
h

e
s
iv

e
. 

Figure 6.6:  Manufacturer instruction and different interpretation by the operators (from operator 

1-11) 
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Figure 6.6 shows the manufacturer’s instructions for Optibond solo plus 

adhesive material and the adherence to and variation within the use of the 

instructions. As can be seen from the Figure the manufacturer instructions only 

included three main steps with a brief explanation for each step. The green 

colour code refers to the instructions stated in the manufacturer instruction for 

use, any one followed the same steps was coded with the green colour, while 

the orange coded colour was the detailed criteria for each step as interpreted by 

different operators, however, the white code denoted an operator who did not 

carry out that step of application at specified angles. 

 

The first step of the instruction which stated “apply the adhesive to the enamel 

and dentine surface” did not give the operator a clearly defined method of 

application. Therefore, as a consequence of this ambiguity, various methods of 

application arose. One operator may submerge the brush into the pot and pull it 

out without scrapping the margin of the container, as the case with operators 

(2,3,4,5,6,7,8,9,10,11); whilst another operator, may only insert the tip of the 

brush and wipe the margin of the container as can be seen with operator 

number 1 at 75º. There are many different methods that could have been used 

in putting the adhesive on the brush. 

 

This part of the instruction was however, only the first step; the second part was 

applying the air for 3 seconds. Again various different techniques could have 

been used in the application of the air which include; positioning of the tip of the 

air syringe either close to or far away from the tooth margin; strength of the 
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applied air (light, medium, strong); nature of the applied air (continuous, 

interrupted), Length of air application (3 seconds or more). 

 

The initial position of the air syringe poses a very large problem, as some may 

position it very close to the occlusal margin as can be seen with operator 

(1,3,4,5,7,8,9,10,11) of the tooth whilst others might perhaps use a different 

angle and distance when attempting to position the syringe for air thinning as in 

operator (2). It was also noted that same operator may employ different 

positioning of the air syringe close to the tooth margin in one situation and far 

away from the tooth margin in the other 3 situation as the case in the operator 

number (6).   

 

Another aspect of the instruction which was left to the chance was the strength 

of the applied air thinning. Whilst one operator used a very strong air as in 

operator (2), another may only apply the air very gently as the case of operators 

(1,4,7,8,10,11), medium force air blow was also applied as in operator (6). The 

difference in the application technique in relation to this criterion could be clearly 

seen with the same operator who showed inconsistency in the application 

technique as operator (3.5.9). This factor is quite significant in determining the 

outcome of the experiment. 

 

The ambiguity of the instruction in relation to the air application was factor that 

could influence the final result of the experiment. As there were two potential 
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ways of approaching this aspect, either by application of a continuous (operator 

1,3,4,5,6,7,10,11) or interrupted air stream (2,8) which also shows 

inconsistency of the same operator as in operator number (8,9). 

 

The length of air application has shown a difference between operators while 

some applied it for the specified time by the manufacturer for 3 seconds as in 

operator (5,11), others were either applied for less than 3 seconds as in 

operator (4,10) or more than 3 seconds as in operator (1,2,6,8,9), inconsistency 

even with the same operator was also shown with operator (3,7). 

 

The only steps followed by all operators as specified in the manufacturer 

instructions were the adhesive application time which was “alarm” timed at 15 

seconds, and the light curing time of 20 seconds which was timed by the curing 

light machine.  

Table 6.2.: adhesive thickness measured at 75 
and 90 degree angle (different operators) 

Tooth Angle Thickness operator 

1 75 182.7 1a 

2 75 121.9 1b 

3 90 40.6 1c 

4 90 170.6 1d 

5 75 227.4 2a 

6 75 154.3 2b 

7 90 143.7 2c 

8 90 143.9 2d 

9 75 219.3 3a 

10 75 211.2 3b 

11 90 300.5 3c 

12 90 775 3d 

13 75 361.4 4a 

14 75 173 4b 

15 90 337.1 4c 

16 90 207.1 4d 
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17 75 109.5 5a 

18 75 269.9 5b 

19 90 193.5 5c 

20 90 121.9 5d 

21 75 189.7 6a 

22 75 134 6b 

23 90 391.8 6c 

24 90 405.4 6d 

25 75 328.9 7a 

26 75 269.4 7b 

27 90 100 7c 

28 90 288.3 7d 

29 75 194.1 8a 

30 75 174.6 8b 

31 90 77.6 8c 

32 90 345.2 8d 

33 75 219.3 9a 

34 75 159.1 9b 

35 90 190.9 9c 

36 90 160.4 9d 

37 75 179.8 10a 

38 75 192.6 10b 

39 90 194.9 10c 

40 90 182.3 10d 

41 75 320.8 11a 

42 75 483.2 11b 

43 90 137.5 11c 

44 90 143.5 11d 
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Figure 6.7: Adhesive thickness at 75
º
 angle by different operator including main 

investigator (11) 

Figure 6.7 represents the data collected from measuring the adhesive thickness, 

at the 75º angulation. All operators achieved varied results from the same 

experiment. Consequently, different operators interpreted these limited 

instructions in different ways (Figure 6.6). Some operators managed to acquire 

same results; they have however used different application techniques.it can be 

seen from Table 6.2 in teeth numbers 3a and 9a, operator produced an 

adhesive thickness of 219.3 µm. In tooth 3a operator applied the adhesive with 

strong up and down brushing motion and immersed the brush for a second time 

in the adhesive container and continued the application for the 15 seconds, the 

air syringe was close to the tooth margin and the strength of the air was a 

strong continuous blow. Tooth 9a operator had however, used light up and 

down brushing motion and immersed the brush only once, the air syringe was 

close to the tooth margin with a very light air blow and used three interrupted air 

blow for more than 3 seconds.   
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Most other results did not have any other similar sets of data, as they all used 

less consistent ways of applying the adhesive. For example, the difference in 

adhesive thickness between tooth 1b and tooth 11b is markedly different with 

361.3 µm between the two readings. The significant difference in application 

between these two samples is the time for which the air had been applied and 

also the immersion of the brush for a second time during adhesive application to 

the tooth 11b. It was also clear that same operator showed very different results 

even at the same angulation which meant that they have altered the way they 

applied the adhesive between each tooth. An example of this would be tooth 4a 

in which the adhesive thickness was fairly high at 361.4 µm and then it 

drastically decreased to 173 µm in 4b, although they have followed the same 

method they have achieved very different results. The differences can also be 

seen in teeth 6a and 6b teeth where the measured adhesive thicknesses were 

189.7, 134 µm respectively, the only difference in the application was that the 

air syringe was close to the margin of the tooth 6a and far away from the margin 

in tooth 6b.  
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Figure 6.8: Adhesive thickness at 90º angulation by different operators 

 

 

Figure 6.8 shows data collected from measuring adhesive thickness at 90º 

angulation. In this graph the majority of operators also recorded different data. 

Although the same device and angle had been used, only one operator was 

able to achieve almost identical results and this was in teeth 2c and 2d. The 

adhesive thickness was 143.7 in 2c and 143.9 µm in 2d. This operator followed 

the exact same method each time which meant that he was able to achieve the 

same result.  

Other operators kept to the same technique at each time, yet have acquired 

very marked differences in the results, as with operators 1,2,4,6,7,10,11 at c 

and d tooth number. For example, operator 1 achieved 40.6 and 170.6µm 

adhesive thickness at teeth 1c and 1d respectively and operator 11 who 
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acquired an adhesive thickness of 483.2 and 173.5 µm at teeth 11c and 11d 

respectively. 

Another operator who followed different techniques and also achieved different 

results was the operator 3 at teeth 3c and 3d. The adhesive thickness in 3c was 

300 µm whilst 3d was 775 µm this was a difference of 475 which is significant 

considering that the same operator was applying the adhesive material. 

Observation showed that the air strength was drastically different. On tooth3c it 

was strong and continuous whilst on 3d it was light and continuous. Moreover, 

the time of air application was also different. The operator air dried the adhesive 

layer in 3c for more than 3 seconds whilst in 3d it was dried for less than 3 

seconds. Both of these factors contributed to the significant variation between 

the two teeth.  

 

6.11      Discussion: 

A systematic review by (Demarco et al., 2012) of publications between 1996 

and 2011 concerning adhesive posterior composite restorations concluded that 

the patient, operator and material could play an important role in the success 

and the longevity of the restoration. From the current experiment in which 

different operators followed the same manufacturer’s instructions supplied with 

the adhesive material used in the study, it was clear that every operator was 

interpreting those instructions in different ways. As recommended by Finger and 

Balkenhol (1999) the manufacturer should provide a more clear, detailed and 

unambiguous description for the application technique in their instructions so 

that the operator could follow them pedantically to achieve a satisfactory result 
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and also avoid operator variability. In order to obtain a consistent, predictable 

and reliable clinical result, Hiraishi et al (2007) suggested that the 

manufacturer’s instructions should meticulously describe how to dry adhesive. 

 

Technique sensitivity of dental adhesive is a well-documented subject in the 

literature. Previous research has demonstrated that bond strength is 

significantly influenced by the technique variability of the operators (Miyazaki et 

al., 2000). Particularly the total etch adhesive, which was more sensitive to 

operator skill than the self-adhesive system (Giachetti et al., 2007) and revealed 

its efficacy only when applied by skilled operator. The total etch adhesive 

system used in this study was condemned for its technique sensitivity which 

may compromise bonding efficacy and marginal seal of this type of adhesive as 

stated by (Frankenberger et al., 2000; Peschke et al., 2000).  

 

Since the introduction of the total etch adhesive system and wet bond technique 

(Kanca, 1992), the manufacturer’s instructions for use appears to follow the 

same protocol with very brief instructions for use (Barkmeier et al., 2009; 

Soappman et al., 2007; Lopes et al., 2006; Vargas et al., 1997). This includes 

instructions to etch and condition the prepared tooth surface to remove the 

smear layer, wash, dry and apply the adhesive with light brushing motion, air 

thinning, then curing. Each step was applied for a period of time suggested by 

the manufacturer instructions for use. All of the previous steps when a detailed 

description is not included could demonstrate variation even between qualified 

and experienced clinicians or potentially the same clinician undertaking the 
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procedures at different times. From the main investigator point of view, each 

step should be explicitly defined to ensure the accuracy and consistency of the 

adhesive application. 

 

All operators achieved varied results from the same experiment. This could be 

due to the imprecise nature of the manufacturer’s instructions for the adhesive 

placement 

Even though the instructions may have been imprecise, some operators 

managed to acquire similar results.  

6.12      Conclusion: 

 

From the results of this study, it can be concluded that: 

Adhesive application is a sensitive multi-stage procedure and further work may 

be needed to develop a consistently thin adhesive layer. 

 

Lack of detailed and vague instructions could lead to many different 

interpretations which could affect the accuracy and consistency of the 

experiment. More attention should be given by the manufacturer to explain each 

step of the instruction explicitly in order to avoid any problem which could 

consequently lead to restoration failure 

 

Multiple variables such as air thinning, position of the syringe and also time of 

air application could result in considerable differences in the adhesive thickness.  
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Chapter 7 

Development of numerical tooth model 

 

The second stage in this study was to develop a tooth model to accomplish the 

finite element analysis by first gathering the material properties for both the 

restorations and the tooth structure and second by development of numerical 

tooth model. 

 

7.1    Gathering mechanical properties for the restorative 

material and the tooth structure. 

The literature was reviewed and the mechanical properties for both the 

restorations and the tooth structure were collected. This information was then 

put together as Table 7.1. 
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Table 7.1: Properties for the tooth and restorative material    

 Material Elastic 
Modulus 

Poisson’s 
Ratio 

Compressive 
Strength 

Tensile 
Strength 

Shear 
Strength 

Thermal 
Expansion 



Volumetric 
shrinkage 

  E (GPa)  C (MPa) T (MPa)  (MPa) (/
o
C x10

-6
) (V/V) % 

 Adhesive 
material 

(Optibond 
Solo) 

[1, 18] 

1 0.3  25   9.04 

        [Determined 
in chapter 9] 

 Bonded with Enamel    34
[15] 

  

 Bonded with Dentine    31.3 ±2.7
[18] 

  

 Dental plaster 
(Calestone)

[7] 
11.7 0.19 56.5

[32] 
4.83 – 
5.52 

14.5
[32] 

  

 Dentine
 [1, 2, 3, 

4, 9, 16] 
18 0.31 297

[8] 
105

[8] 
138

[27] 
11

[20] 
 

 Enamel
 [12, 16, 

25,26] 
80 0.3 384

[8] 
10

[8] 
90

[27] 
17

[20] 
 

 Pulp 
[9, 16, 26] 

2.07x10
-3 

0.45      

 Resin 
composite 

Herculite XRV 
[1,9, 10] 

9.5 0.24 380
[30] 

52
[30] 

15.4±3.7
[14] 

32.6±1.6
[30] 

2.73±0.31
[1] 

 bond Optibond     17.61±4.34
[13] 

  

 Glass  
Ionomer 

Cement, Fuji 
II LC 

[6] 

20 0.3
[11] 

200 15 62.6
[22](a) 

10.2 - 11.4 2.53
[21] 

      70.2
[22](b) 

Average 
used. 10.8 

 

      68.9
[22](c) 

  

 bond with 
dentine 

   21.8 
[29] 

   

 Z100
[5,17, 21, 33] 

15.200
[17] 

0.28
[17] 

161.22
[5] 

 29.3±7.2
[21] 

22.5±1.4
[30] 

2.80
[33] 

(a) 1 day after light activation, (b) 3 days after light activation, (c) 9 days after 

light activation 

    

 

 

The references included in the table were numbered to fit the table and are 

listed below in the same style (Harvard) used throughout this thesis.  

[1] Ausiello et al. (2002), [2] Ausiello et al. (2001), [3] Ausiello et al.(2004), [4] 

Barink et al. (2003), [5] Brandao et al. (2005), [6] (COOK, 2000), [7] L Cridland 

and Wood (1968), [8] Dhuru (2004), [9] Dejak and Mlotkowski (2008), [10] 
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Ensaff et al.(2001), [11] Frankel et al. (1998), [12] Ichim et al. (2007), [13] 

Jumlongras and White (1997), [14] Kamel et al. (1990), [15] KERR. [16] 

Kowalczyk (2009), [17] Kwon et al. (2009), [18] LU et al. (2008), [20] Magne et 

al. (1999), [21] Mondragon and Soderholm (2001). [22] Mount et al. (2002). [25] 

Rees and Jacobsen (2000), [26] Rodrigues et al. (2012), [27] Sakaguchi and 

Powers (2012), [29] Tanumiharja et al. (2000). [30] Taylor et al. ( 2008), [32] 

Williams (1979), [33] Yazici et al. (2004). 

 

7.2      Model development 

The preliminary model of the maxillary second premolar was generated 

primarily by using CorelDraw software (CorelDraw x6). The tooth dimensions 

were sought from Wheeler’s dental anatomy book (Nelson et al., 2010). The 

enamel thickness was averaged to 1.54 mm and dentine at about 3.27 mm 

(Shillingburg and Grace, 1973). Half of the tooth was modelled using 

axisymmetric line, the tooth morphology was de-featurized in order to simplify 

the model and obtain a preliminary result.  

 

The restored part of the tooth was captured from the tooth section of the 

restored tooth from the previous experimental work presented in Chapter 4. The 

tooth section was placed on a photographic paper with scales on both the upper 

part and the left side of the paper which was then photographed (Figure 7.1).  

The tooth photograph was imported into CorelDraw software, the angulation of 

the tooth was then corrected by drawing a line in the middle of the tooth (central 



 

127 
 

line, CL) and the photograph was then adjusted to position the tooth section at 

right angles using the central line as a reference (Figure 7.1). 

The restoration area was then sketched, the curved area was represented with 

circles and the straight areas with lines and the distance to each component 

was measured using CorelDraw software (Figures 7.2, 7.3). 

 

Figure7.1: Adjustment of the tooth angulation 
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Figure 7.2: Capturing the restorations outline 
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Figure 7.3:First sketch of the tooth with the restoration from 

measurments extracted using CorelDraw 
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Figure 7.4: Outline of the tooth restoration 

 

The sketched outline of the restoration (Figure 7.4) was inverted about the 

vertical axis to the right direction to match the restoration part of the preliminary 

model (Figure 7.5) and superimposed on the preliminary model. The sketched 

outline of the restoration was then scaled to match the dimensions of the 

preliminary model (Figure 7.6). 
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Figure 7.5: Drawing of the restoration outline inverted 
about the vertical axis to match the preliminary model 

 

The restoration outline was captured through adding points to each line and 

curve of the restoration’s outline. Two points were added for the line and three 

points for the curved area (Figure 7.6). The co-ordinates of all points of the 

restoration outline were numbered from 1 to 25 in a clockwise direction. The 

points for the tooth structure and the dental plaster were numbered with letters 

from (A) at the root area following the dentine outline, enamel outline to U at the 

dental plaster outline. All of the co-ordinate points are given in Table 7.2. 
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Figure 7.6: Preliminary restoration model 
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Figure 7.7:Details of the restoration section 
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Table 7.2: Coordinates of all points in the 
preliminary restoration model 

 
Number xTrue (mm) yTrue (mm) 

T
o

o
th

 s
e
c
ti

o
n

 

A 0.5 0 

B 1 0 

C 2.6616 14.942 

D 1.95 20.95 

E 0 20.95 

F -1.95 20.95 

G -2.4893 16.4289 

H -2.739 16.4289 

I -2.5638 14.938 

J -1 0 

K -0.5 0 

L -0.5 17.7 

M 0 17.7 

N 0.5 17.7 

O 0 22.5 

P -3.4533 22.5 

Q -10.5 2.5264 

R -10.5 -5.9736 

S 0 -5.9736 

T 10.5 -5.9736 

U 10.5 2.5264 

R
e
s
to

ra
ti

o
n

 

1 2.7155 15.4271 

2 2.9269 16.032 

3 3.108 16.6558 

4 3.4055 18.0694 

5 3.5415 19.2801 

6 3.5736 20.1517 

7 3.5578 20.899 

8 3.5095 21.5671 

9 3.4485 22.0944 

10 2.9357 22.5 

11 2.7157 22.5 

12 2.8762 22.4254 

13 2.9227 22.2541 
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14 2.8208 22.108 

15 2.6863 21.9492 

16 2.607 21.7488 

17 2.5121 21.3526 

18 2.1506 19.8443 

19 2.117 19.5559 

20 1.895 17.6492 

21 1.8777 17.4949 

22 1.6577 16.6236 

23 1.6844 15.8653 

24 2.1463 15.5917 

25 2.271 17.5366 

    

 

7.3      Process of generating complete/anatomical model: 

The final model shape was created to include the detailed features of the tooth 

structure and the restorations. The plan was to create a model for each 

premolar tooth (two maxillary and the two mandibular) and superimpose the 

relative restoration outline from the tooth sections photographs to the created 

model. 

The external shape of the all four premolar teeth was generated using the 

shape and size definition from Nelson and Ash (2010).  The process of doing 

this required the following 37 steps (Figure 7.8): 

1. The sketch of the tooth from Nelson and Ash (2010) was scanned, 

imported into CorelDraw and proportionally scaled until it had a vertical 

dimension of approximately 250 mm. This size was scaled by a factor of 

10 to allow for approximately 26 sections to be inserted. 
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2. Starting with the top of the tooth, lines at approximately 10mm spacing 

were drawn all the way down to the bottom of the tooth. If there were 

regions in the tooth where its curvature changed considerably between 

each line, further lines were added to capture the change in curvature. 

3. At the intersection of these horizontal lines and the outer boundary of the 

tooth, a point was defined by placing a cross over the intersection. 

4. Two rough spline curves were drawn, one around the enamel, and the 

other around the dentine. The starting point of each spline was placed on 

the left enamel/dentine boundary. A new control point was added on 

each spline curve where each point defined in step 3 was located. The 

gradient of each generated point was altered so that the spline followed 

the contour of the tooth. 

5. The outline of the tooth was then scaled horizontally so that the mesio-

distal diameter of the crown matched the dimension specified in Nelson 

and Ash (2010).  The outline was then stretched vertically so that the 

vertical length of the tooth matched the sum of the length of the crown 

and root given in Nelson and Ash (2010).  The outline was stretched so 

that the drawing of the tooth has a scale factor of 10 compared to a real 

tooth. (At times, it was necessary to shift the crosses inwards so that the 

drawn outer boundaries matched the outer bounds of the tooth, making it 

easy to then scale it to the right size).  

6. Although the cemento-enamel junction (CEJ) should be specified 

according to the measurements found in Nelson and Ash (2010), their 

specified location is based on an average calculation. Therefore, it was 
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extremely hard to match it exactly to an individual tooth. Hence, the 

photograph of the restored tooth was superimposed below the tooth 

boundary and scaled to fit as closely as possible within the dimensions of 

the tooth boundary. 

7. The location of the start of the restoration was defined on the tooth 

outline. 

8. The start of the restoration was always created 1 mm below the CEJ 

(Stockton and Tsang, 2007; Loguercio et al., 2002). Hence a line 1 mm 

above the start of the restoration was drawn to define the CEJ. 

9. All horizontal lines were removed from the model, apart from the CEJ 

line. 

10. Based on the work of Shillingburg and Grace (1973), horizontal lines 

above and below the CEJ were drawn at the specific locations where the 

enamel and dentine thicknesses were measured. 

11. Extra points were added on the tooth surface where these new horizontal 

lines intersect the surface of the tooth. 

12. Based on the measurements taken by Shillingburg and Grace (1973) 

(Appendix B.1), these points were shifted inwards from the surface of the 

tooth to define the enamel/dentine boundary and also the dentine/pulp 

boundary. 

13. All remaining horizontal and vertical construction lines in the drawing 

were removed, only the CEJ line was left. 

14. Since the tooth restorations were done on either the mesial or distal 

sides, both the upper boundary of the general tooth and of the 
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enamel/dentine boundary did not coincide with that of the restored tooth. 

To correct for this difference, vertical lines were drawn through each of 

the control points on the upper boundary of the tooth and also from those 

points generated in step 12 where the dentine/enamel boundary differed 

from that of the photograph. Adding more lines was necessary to capture 

the new tooth upper boundary and that of the enamel/dentine boundary. 

15. The boundary points were moved to match the upper boundary of the 

photograph of the tooth, extra ones was added as necessary.  

16.  The spline control points were moved from the upper boundary onto 

these points, making certain that the tooth boundary closely matched the 

photograph. New control points were added as necessary. 

17. Points were added along the enamel/dentine boundary where the 

photograph matched the vertical lines drawn in step 14. 

18. All vertical lines were removed.  

19. A spline was drawn going through each of the control points which 

defined the enamel/dentine boundary. 

20. For any control point in the dentine/pulp boundary defined in step 12 

which did not match the pulp boundary of the photograph, these control 

points were shifted to match the photograph. 

21. A spline was then drawn going through each of the control points to 

define the dentine/pulp boundary. 

22. Over the restoration smooth curves were traced and defined the 

boundary between the Herculite and Fuji. 
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23. The scaled photograph was removed; all spline lines were turned to 

black and the restoration lines to another visible colour (i.e. green). 

24. New points were generated where the boundary of the tooth intersected 

the restoration (On the enamel and dentine). 

25. The enamel and dentine boundaries which were overlapped by the 

restoration were removed. Thus leaving the tooth and its restoration. 

26. Sufficient extra points were added on the boundary of the restoration 

section to be able to represent it with splines (2 points for straight line, 3 

or 4 points for curves). 

27. A horizontal line 1 mm below the CEJ was added, to define the beginning 

of the plaster base used to encase the tooth. 

28. Two points where this line intersected the tooth boundary were defined. 

Then a point half way between these two points was added. 

29. A vertical line through this new point was drawn to define a vertical 

symmetry-line of the tooth. 

30. Two horizontal lines were drawn, one 10 mm and the other 17 mm below 

the line generated in step 27. 

31. Two copies of the vertical central line generated in step 29, one 10.5 mm 

to its left and the other 10.5 mm to its right. 

32. The two lines drawn in step 30 were extended to the two vertical lines 

drawn in step 31. 

33. From the two points drawn in step 28 lines were drawn to the upper two 

points from the connections of step 32. 
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34. The two vertical lines from step 29 were shrunk to the extreme of step 

33. 

35. The line drawn 10 mm below the line generated in step 27 and the 

horizontal line drawn in step 27 were deleted. 

36. The coordinates of all of the points defining the plaster, dentine, enamel 

and restoration could then be extracted. For ease of finding the 

coordinates, it is preferable to name all enamel points with the prefix E, 

all dentine points with the prefix D, all restoration points with the prefix R 

and all plaster points with the prefix P. 

37. The coordinates of all points were extracted (Appendix B.2,). 

 

The teeth that were numerically represented were the: 

1. Mandibular 1st Premolar (Figure 7.8a) 

2. Mandibular 2nd Premolar (Figure 7.8b) 

3. Maxillary 1st Premolar (Figure 7.8c) 

4. Maxillary 2nd Premolar (Figure 7.8d) 
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                           (a) 

 

(b) 

 

(c) 

 

                               (d) 

Figure 7.8: (a) Mandibular 1
st
 Premolar, (b) Mandibular 2

nd
 premolar, (c) Maxillary 1

st
 

premolar and (d) Maxillary 2
nd

 premolar: external shape definition, Nelson and Ash (2010). 
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Steps 1,2,3 

 

step 4 

 

steps 5,6,7,8 

 

Steps 9,10,11 
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Step 12                              

 

Steps 13,14,15,16,17,18,19,20,21           

 

Step 22         

Steps 23,24,25,26,27,28,29,30,31, 32, 33, 34,35 
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Steps 36,37 

Figure 7.9:Different steps of model generation 
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Following all the previously mentioned steps an idealised model of the tooth 

was generated as shown in Figure 7.10. The model was then used for the finite 

element analysis. 

 

Figure 7.10: Complete/ anatomical model of the Maxillary 2
nd

 premolar tooth with only one 
restoration section 
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The details of the upper part of the idealised model of maxillary 2nd premolar 

was presented in Figure 7.11 and that for the lower part of the tooth idealised 

model was presented in Figure 7.12.    

 

Figure 7.11: Detail of the Maxillary 2
nd

 premolar tooth model – Upper half 
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Figure 7.12: Detail of the Maxillary 2
nd

 premolar tooth model – Lower half 
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To conclude, development of numerical model for the current study was started 

with preliminary model which had been de-featurized in order to simplify the 

model and obtain a preliminary result, the model include the detailed restoration 

outline as shown in Figure 7.6 and finally generate the complete/aatomical 

model including all of the tooth and restoration outlines details as shown in 

Figure 7.10. 

The models in this study were analyses using the software tool COMSOL 

(2015). The finite element meshes were generated using Physics-Controlled 

meshes using Normal finite element size, which generated models with 

between 24,000 and 32,000 degrees of freedom. 
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Chapter 8 

Finite element analysis and the assessment of the stress 

generated in sandwich restoration 

8.1      Introduction 

As a first assumption; from the previous literature review; the material properties 

for the resin based materials was interpreted to be linear static and at no time 

where they ever elasto-plastic in nature, thus deforming plastically with no 

change in the stress level of the physical domain. The articles by Hübsch et al 

(2000), Dauvillier et al (2000, 2003), Barink et al (2003), Koplin et al (2008; 

2009) clearly demonstrated that the properties of the resin based material 

exhibited viscoelastic behaviour during the curing shrinking stage of these 

resins.  

Such behaviour means that the original linear static analysis which was planned 

to be carried out with the finite element analysis for this study was technically 

incorrect and that a new way of running the analysis is required. Although a 

viscoelastic model would be the ideal model to use, looking at the way that the 

material behaves, a simplification of the behaviour can be constructed using a 

linear static model using different properties at different stages of the curing 

process. Since the idea of this analysis is to provide an indication of the effect of 

the curing process on the microleakage of sandwich restoration using resin 

based material, as long as the model shows the regions of where high stresses 

may be induced, this would be an appropriate first step in isolating the regions 

of high stresses and also looking at possible changes in the shape/ type of 

filling process to minimise any unduly high stress regions of the restorations. It 
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is of course noted that to obtain accurate stress values, a viscoelastic model 

should be used. But that was deemed inappropriate complicated and limitations 

in the available time meant that only-linear static analysis could be performed. 

According to the literature review, there were no previous researches 

considered analysing stress distribution around resin composite sandwich 

restorations using Finite element Analysis. 

8.2      Aim 

The aim of this chapter was to investigate the stress distribution in the open 

sandwich restorations using resin modified glass ionomer cement (RMGIC) 

when curing the two materials together or separately. 

 

8.3      Objective 

Finite Element Analysis was used to analyse the stresses within the tooth 

structure in order to detect the areas of high stress, which could be more 

susceptible to gap formation and microleakage in sandwich restorations .this 

was achieved by a two step analysis. Firstly, using a preliminary resstoration 

model (7.6) and secondly a more complete/ anatomical model (7.10). 

 

8.4      Methods 

With the purpose of analysing stress in the resin composite sandwich 

restoration, tooth model was generated as explained in Chapter 7. Further more, 

to acomplish the FEA, it was necessary to imitate the volumetric shrinkage of 

the restorative materials.  
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The actual shrinkage of the specimens was generated by using an artificial 

thermal load. The first step was to find the temperatures that could be applied to 

the restoration to get the specified volumetric shrinkage in the literature review 

for the restorative materials which include; the resin composite (Herculite) and 

the resin modified glass ionomer cement (Fuji II LC). 

Since the analysis carried out in this study was 2D, rather than 3D, the 

volumetric shrinkage for the Herculite and Fuji II cement was converted from 

volumetric to area shrinkage. Assuming that there was a linear change in the 

length of the specimen denoted by the symbol sL, then the change in the area, 

Figure 8.1, and volume are given below: 

 

 

Figure 8.1: Square element showing linear and area shrinkage 

8.5       Calculating area shrinkage 

The original area is defined as: 
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2
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The area after a linear reduction in the length of both sides is defined as:  
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And the area shrinkage is then given by: 
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8.6      Calculating volume shrinkage: 

The original volume is defined as: 

3

0 LV    

 

The volume after a linear reduction in the length of the three sides is defined as:  
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And the volume shrinkage is then given by: 
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The Volumetric shrinkage (V/V) % for Resin composite Herculite XRV is 

2.73±0.31% and for Glass Ionomer Cement, Fuji II LC is 2.53 %. 

 

The corresponding linear and area reductions required to produce the 2.73% 

and 2.53% volumetric shrink are given in Table 8.1: 

 

Table 8.1: Linear and area volume changes to produce the required volume changes for Fuji and 
Herculite 

 L L L/L % A A A/A % V V V/V % 

Fuji  1 0.0085 0.85 1 0.017 1.69 1 0.025 2.53 

Herculite  1 0.0091 0.92 1 0.018 1.82 1 0.027 2.73 
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In order to determine the amount of shrinkage for which there is no stress 

generated, the paper by Dauvillier et al. (2003) was analysed as it provided the 

linear shrinkage rate for a light activated resin. The material used in that study 

had different properties than both the Fuji and Herculite materials, but as 

detailed material properties for Fuji and Herculite are not available to the depth 

as specified by Dauvillier et al. (2003), several assumptions had to be made in 

order to carry out the stress analysis of the cured Fuji and Herculite. These 

were that: 

1. Both the Fuji and Herculite material exhibit a viscoelastic behaviour 

similar to that of Z100 MP A3, and hence by examining the % linear 

shrinkage change and % Young’s modulus change with time for Z100, 

the same % changes for both Fuji and Herculite could be extrapolated; 

2. The discrepancy between the measured maximum Young Modulus and 

that reported by the manufacturer are proportional for Fuji and Herculite 

as was the case for Z100 (Dauvillier et al., 2003), where only 50% of the 

reported Young’s modulus was measured 1 hour after curing. 

3. Although in Figure 8.2(a) there was a dip in the Young’s modulus 

between the 40 and 100 second gap, for the purpose of this analysis it 

was assumed that this dip wasn’t present and instead that the Young’s 

modulus value increases gradually up to its 50% level after 1 hour.  

Both images in figures 8.2 (a, b) were analysed, and the data from these two 

curves were extracted to produce the actual shrinkage rates and Young 

Modulus values at the different curing times. 
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(a)  

(b)  

Figure 8.2: Standard linear solid model and shrinkage rate diagram showing how the properties vary 

with time Dauvillier et al (2003) 

Dauvillier et al. (2003) stated that “the material undergoes 15% of the measured 

axial shrinkage strain without generating shrinkage stress.”  
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Although the analysis should consider the viscoelastic effect of the material, a 

step wise approach was used in this study. Since the properties of Fuji and 

Herculite are comparable with those of Z100, the % variation of Z100 was used 

to estimate the % variation of both the shrinkage rate and Young’s modulus of 

Fuji and Herculite. Figure 8.3, shows the % variation of Z100. 

 

Figure 8.3: Percentage (%) variation of material and shrinkage properties of Z100 

Dauvillier et al. (2003) also stated that “The Young’s modulus (E) after 1h curing 

(approximately 6.5 GPa) is not in agreement with the value of 13 GPs provided 

by the manufacturer.” For this reason, it was assumed that the highest Young’s 

modulus achievable within a 1 hour period was 50% of that suggested by 

manufacturers. 

 

8.7      The step-wise analysis 

The analysis carried out was as follows: 

1. For the first 2 seconds, the first 15% of shrinkage does not seem to 

generate any stresses, then disregard this amount of shrinkage for both 
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Fuji and Herculite. As the actual displacement of the tooth restoration is 

negligibly small, there is no need; to analyse it and determine the 

variation in the surface of the restoration. As such small changes in the 

geometry will not have any measurable effect in the stress generation. 

2. For the next 25 seconds, a further 35% of the shrinkage takes place. 

Although the Young’s modulus varies during this time, an average 

young’s modulus was calculated by determining the area under the %E 

graph between t = 2s and t = 27s and divided by 25s to give that the 

average %E = 23%. So this value was used to calculate the 35% of 

shrinkage. 

3. For the remaining 50% of shrinkage, the same averaging process of the 

Young’s modulus was used, and up to the 1 hr time limit as specified by 

Dauvillier et al. (2003), the average %E = 44%. 

4. So, only 2 linear elastic analysis were required to be carried out: 

a. 35% shrinkage with E = 23% of manufacturer given value 

b. Further 50% shrinkage with E = 44% of manufacturer given value 

 

From the material properties of Table 7.1 and the equivalent linear shrinkage 

rates for the required volumetric shrinkage rates as given in Table 8.1, the 

required properties for Fuji and Herculite used in the FEA were extracted and 

presented in Table 8.2. 
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Table 8.2: Properties for the restorative material 

 
Material 

Max. E 
(GPa) 

Max. Linear 
shrinkage 

(L/L) % 

35% shrinkage 50% shrinkage 

E 
(GPa) (L/L) % 

E 
(GPa) (L/L) % 

 Resin composite 
Herculite XRV 

[1,9, 10]
 

9.5 0.91 2.18 0.32 4.18 0.46 

 
Resin modified 
Glass  Ionomer 

Cement, Fuji II LC 
[6]

 
20 0.85 4.6 0.29 8.8 0.43 

Dauvillier et al. (2003) imposed a volume conservation constraint to account for 

the incompressibility associated with the uncured paste. For this study, no 

volume constraints were imposed, two models where investigated: 

1. Using a Poisson’s ratio of 0.49 to simulate volume conservation; 

2. Using the Poisson’s ratio of Table 7.1 for both materials. 

 

8.8      Determination of Temperatures to simulate 35% of 

maximum shrinkage:  

The model of Figure 8.4 represents a quarter of a square plate of size 2 m  

which was used to determine the temperature required for both the Herculite 

and Fuji to shrink by 35% of their maximum shrinkage. The 2D approximation 

used was plain stress, as it disregards any 3D induced stresses which are 

present in the plain strain solution.  
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Figure 8.4: Quarter of plate design domain 

 

8.9      Herculite Model Properties and Results 

The properties used for the Herculite model are given in Table 8.3. 

Table 8.3: Material properties and thermal load for the square plate Herculite Model 

Young’s Modulus (E) 2.185 GPa 

Poisson’s' ratio () 0.24 

Coefficient of Thermal Expansion () 32.6±1.6 x10
-6 

°/K 

Density () 0 kg/m
3
 

TRef 0 °K 

The results for this numerical experiment are given in Table 8.4 and Figure 8.5. 

Table 8.4: Results of temperature shrinkage (35%) numerical experiment for Herculite  

T (°C) (L/L) (L/L) % T (°C) (L/L) (L/L) % 

0 0.0000 0 -110 -0.0036 -0.359 

-10 -0.0003 -0.033 -120 -0.0039 -0.391 

-20 -0.0006 -0.065 -130 -0.0042 -0.424 

-30 -0.0009 -0.098 -140 -0.0045 -0.456 

-40 -0.0013 -0.131 -150 -0.0049 -0.489 

-50 -0.0016 -0.163 -160 -0.0052 -0.522 

1 m

1
 m
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-60 -0.0020 -0.196 -170 -0.0055 -0.554 

-70 -0.0023 -0.228 -180 -0.0059 -0.587 

-80 -0.0026 -0.261 -190 -0.0062 -0.619 

-90 -0.0029 -0.293 -200 -0.0065 -0.652 

-100 -0.0033 -0.326    

 

 

Figure 8.5: Plot of the data from Table 8.4 to determine line of best fit 

The line of best fit for this data, as expected is linear, and is given by Eq. (8.1). 

T
L

L
00326.0% 







 
 (8.1) 

Using equation (8.1) and the required shrinkage value for Herculite from Table 

8.2, 322.0% 






 

L

L
, this equation can then be rearranged to determine the 

actual value of the temperature to be applied in order to produce this 

displacement. 
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The model was re-run with this temperature change, producing the result given 

in Figures 8.6 and 8.7.  

As can be seen from Figure 8.7, the von Mises stress generated in this 

unconstrained square element was very small to be equivalent to a zero stress 

field. 

 

Figure 8.6: Displacement plot showing the displacement due to the -98.60°C temperature 

applied 
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Figure 8.7: von Mises stress plot showing the stresses in (Pa) due to the -98.60°C temperature 

applied 

 

8.10   Study on the different Poisson’s ratio to maintain 

constant volume due to shrinkage process. 

The poison’s ration was changed to the maximum value allowable by the 

programme COMSOL, before it break down. The value is given in Table 8.5. 

The results are given in Figures 8.8 and 8.9. 

 

Table 8.5: Poisson’s ratio for Herculite Model to model constant volume 

Poisson’s' ratio () 0.49 
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Figure 8.8: Displacement plot showing the displacement due to the -98.60°C temperature 

applied 

 

Figure 8.9: von Mises stress plot showing the stresses in (Pa) due to the -98.60°C temperature 

applied for  = 0.49 
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As can be seen from Figures 8.8 and 8.9, there was no effect at all on the 

temperature which was necessary to provide the required shrinkage, however, 

a considerable increase in the von Mises stress was noted. Although the 

maximum stress experienced was 0.0197 Pa, this value was negligibly small. 

8.11      Fuji Model Properties and Results 

The properties used for the Fuji model are given in Table 8.6. 

Table 8.6: Material properties and thermal load for the square plate Fuji Model 

Young’s Modulus (E) 4.6 GPa 

Poisson’s' ratio () 0.3 

Coefficient of Thermal Expansion () 10.8 x10
-6 

°/K 

Density () 0 kg/m
3
 

TRef 0 °K 

 

The results for this numerical experiment are given in Table 8.7 and Figure 8.10. 

 

Table 8.7: Results of temperature 

shrinkage (35%) numerical experiment 

for Fuji   

T (°C) (L/L) (L/L) % 

0 0.0000 0 

-20 -0.0002 -0.02 

-40 -0.0004 -0.04 

-60 -0.0006 -0.06 

-80 -0.0008 -0.09 

-100 -0.0011 -0.11 

-120 -0.0013 -0.13 

-140 -0.0015 -0.15 

-160 -0.0017 -0.17 

-180 -0.0019 -0.19 

-200 -0.0022 -0.21 
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-220 -0.0024 -0.24 

-240 -0.0026 -0.26 

-260 -0.0028 -0.28 

-280 -0.0030 -0.30 

-300 -0.0032 -0.32 

-320 -0.0035 -0.35 

-340 -0.0037 -0.37 

-360 -0.0039 -0.39 

-380 -0.0041 -0.41 

-400 -0.0043 -0.43 

 

 

Figure 8.10: Plot of the data from Table 6.7 to determine line of best fit 

 

The line of best fit for this data, as expected is linear, and is given by Eq. (8.2). 

 

T
L

L
001081205.0% 







 
 (8.2) 

y = 0.001081204878x 
R² = 0.999967885541 
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Using equation (8.2) and the required shrinkage value for Fuji from Table 8.2,

2976911.0% 






 

L

L
, this equation can then be rearranged to determine the 

actual value of the temperature to be applied in order to produce this 

displacement. 

CT

T








333.275
001081205.0

2976911.0

001081205.02976911.0

  

The model was re-run with this temperature change; however the linear 

shrinkage value obtained was -0.0029736, which is -0.29736%. This value is 

0.11347% too small, so the temperature value should be increased by a factor 

of 1.00111347, meaning that the temperature should be: T = -275.6396°C. 

Working shown in equation (8.3) 

 

CT

T

New

Fraction









64.275333.275001113465.1

001113465.1
29736.0

2976911.0

 (8.3) 

 

This new slightly increased temperature gave the correct required shrinkage. 

The results of the analysis are therefore given in Figures 8.11 and 8.12.  
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Figure 8.11: Displacement plot showing the displacement due to the -275.64°C temperature 

applied 

 

Figure 8.12: von Mises stress plot showing the stresses in (Pa) due to the -275.64°C 

temperature applied 

As can be seen from Figure 8.12, the von Mises stress generated in this 

unconstrained square element is negligible enough to be equivalent to a zero 

stress field. 
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8.12      Study on the different Poisson's ratio to maintain 

constant volume due to shrinkage process. 

The Poisson's ratio was changed to the maximum value allowable by the 

programme COMSOL, before it break down. The value is given in Table 8.8. 

The results are given in Figures 8.13 and 8.14. 

 

Table 8.8: Poisson’s ratio for Fuji Model to model constant volume 

Poisson’s' ratio () 0.49 

 

As can be seen from Figures 8.13 and 8.14, there was no effect at all on the 

temperature which was necessary to provide the required shrinkage, there was 

however, a considerable increase in the von Mises stress. Although the 

maximum stress experienced was 0.0374 Pa, this value was negligible small. 

 

Figure 8.13: Displacement plot showing the displacement due to the -275.64°C temperature 

applied for  = 0.49 
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8.13      Determination of Temperatures to simulate 50% 

shrinkage  

Exactly the same process as that for the 35% shrinkage was repeated for a 50% 

shrinkage, where the properties are different, as denoted in Table 8.2. 

 

8.14      Herculite Model Properties and Results 

The properties used for the Herculite model are given in Table 8.9. 

Table 8.9: Material properties and thermal load for the square plate Herculite Model 

Young’s Modulus (E) 4.18 GPa 

Poisson’s' ratio () 0.24 

Coefficient of Thermal Expansion () 32.6±1.6 x10
-6 

°/K 

Density () 0 kg/m
3
 

TRef 0 °K 

 

Figure 8.14: von Mises stress plot showing the stresses in (Pa) due to the -275.64°C 

temperature applied for  = 0.49 
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The results for this numerical experiment are given in Table 8.10 and Figure 

8.15. It was noted that the amount of shrinkage was not affected by the change 

in the Young’s modulus. The generated stress was shown to be affected as 

shown in Figure 8.17.  

 

Table 8.10: Results of temperature shrinkage (50%) numerical experiment for Herculite 

T (°C) (L/L) (L/L) % T (°C) (L/L) (L/L) % 

0 0.0000 0 -110 -0.0035 -0.36 

-10 -0.0003 -0.03 -120 -0.0039 -0.39 

-20 -0.0007 -0.07 -130 -0.0042 -0.42 

-30 -0.0009 -0.09 -140 -0.0046 -0.46 

-40 -0.0013 -0.13 -150 -0.0049 -0.49 

-50 -0.0016 -0.16 -160 -0.0052 -0.52 

-60 -0.0019 -0.19 -170 -0.0055 -0.55 

-70 -0.0023 -0.23 -180 -0.0059 -0.59 

-80 -0.0026 -0.26 -190 -0.0062 -0.62 

-90 -0.0029 -0.29 -200 -0.0065 -0.65 

-100 -0.0032 -0.33    

 

The line of best fit for this data was exactly the same as that for the 35% 

shrinkage and is also represented by Eq. (8.1). 

T
L

L
00326.0% 







 
 (8.1) 

Using equation (8.1) and the required shrinkage value for Herculite from Table 

8.2, 459204.0% 






 

L

L
, this equation can then be rearranged to determine the 

actual value of the temperature to be applied in order to produce this 

displacement. 
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CT

T








86.140
00326.0

459204.0

00326.0459204.0

 (8.1) 

The model was re-run with this temperature change, producing the result given 

in Figures 8.16 and 8.17. As can be seen from Figure 8.17, the von Mises 

stress generated in this unconstrained square element is negligible enough to 

be equivalent to a zero stress field. 

 

Figure 8.15: Plot of the data from Table 5 to determine line of best fit 

 

y = 0.003260000000x 
R² = 1.000000000000 
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Figure 8.16: Displacement plot showing the displacement due to the -140.86°C temperature 

applied 

 

 

Figure 8.17: von Mises stress plot showing the stresses in (Pa) due to the -140.86°C 

temperature applied 
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8.15      Study on the different Poisson's ratio to maintain 

constant volume due to shrinkage process. 

The Poisson's ratio was changed to the maximum value allowable by the 

programme COMSOL, before it break down. The value is given in Table 8.11. 

The results are given in Figures 8.18 and 8.19. 

Table 8.11: Poisson’s ratio for  Herculite Model to model constant volume 

Poisson’s' ratio () 0.49 

 

As can be seen from Figures 8.18 and 8.19, there was no effect at all on the 

temperature which was necessary to provide the required shrinkage, however 

there is a considerable increase in the von Mises stress. However although the 

maximum stress experienced is 0.0521 Pa, this value is still negligible small. 

 

Figure 8.18: Displacement plot showing the displacement due to the -140.86°C temperature 

applied for  = 0.49 
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Figure 8.19: von Mises stress plot showing the stresses in (Pa) due to the -140.86°C 

temperature applied for  = 0.49 

8.16      Fuji Model Properties and Results 

The properties used for the Fuji model are given in Table 8.12. 

Table 8.12: Material properties and thermal load for the square plate Fuji Model 

Young’s Modulus (E) 8.8 GPa 

Poisson’s' ratio () 0.3 

Coefficient of Thermal Expansion () 10.8 x10
-6 

°/K 

Density () 0 kg/m
3
 

TRef 0 °K 

 

As was the case for Herculite with the 50% shrinkage rate, for Fuji the Young’s 

modulus variation did not affect the actual shrinkage value. It has however, 

affected the stress level. This means that Equation (8.2) can be used to 

determine the temperature to provide the 50% shrinkage for the Fuji. 
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T
L

L
001081205.0% 







 
 (8.2) 

 

Using equation (8.2) and the required shrinkage value for Fuji from Table 8.2,

425273.0% 






 

L

L
, this equation was rearranged to determine the actual value 

of the temperature to be applied in order to produce this displacement. 

CT

T








33.393
001081205.0

425273.0

001081205.0425273.0

  

 

The model was re-run with this temperature change; however the linear 

shrinkage value obtained was -0.004248, which is -0.4248%. This value is 

0.111347% too small, so the temperature value should be increased by a factor 

of 1.00111347, meaning that the temperature should be: T = -393.7704°C. 

Working shown in equation (8.3) 

 

CT

T

New

Fraction









77.3933324.393001113465.1

001113465.1
4248.0

425273.0

 (8.3) 

This new slightly increased temperature gave the correct required shrinkage. 

The results of the analysis are given in Figures 8.20 and 8.21.  
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Figure 8.20: Displacement plot showing the displacement due to the -393.77°C temperature 

applied 

 

 

Figure 8.21: von Mises stress plot showing the stresses in (Pa) due to the -393.77°C 

temperature applied 
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As can be seen from Figure 8.21, the von Mises stress generated in this 

unconstrained square element was very small to be equivalent to a zero stress 

field. 

 

8.17      Study on the different Poisson's ratio to maintain 

constant volume due to shrinkage process. 

The Poisson's ratio was changed to the maximum value allowable by the 

programme COMSOL, before it break down. The value is given in Table 8.13. 

The results are given in Figures 8.22 and 8.23. 

Table 8.13: Poisson’s ratio for Fuji Model to model constant volume 

Poisson’s' ratio () 0.49 

  

 

Figure 8.22: Displacement plot showing the displacement due to the -393.77°C temperature 

applied for  = 0.49 
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Figure 8.23: von Mises stress plot showing the stresses in (Pa) due to the -393.77°C 

temperature applied for  = 0.49 

 

As can be seen from Figures 8.22 and 8.23, there was no effect at all on the 

temperature which was required to provide the required shrinkage. There was 

however, a considerable increase in the von Mises stress. The maximum stress 

experienced was 0.1043 Pa, this value was negligible small. 
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8.18      Summary of Temperatures and Properties for the 35% and 50% 

Shrinkage Models 

All necessary property values for the 35% and 50% shrinkage models were 

listed in Table 8.14. 

 

Table 8.14: Temperature required to provide the 35% and 50% shrinkage in 

Herculite and Fuji materials 

 

 

 

 

 

 

 

 

 

 

E (GPa) T (°C) E (GPa) T (°C)

Resin 

composite 

Herculite 

XRV 
[1,9, 10]

2.185 -98.60°C 4.18 -140.86°C

Glass  

Ionomer 

Cement, 

Fuji II LC 
[6]

4.6 -275.64°C 8.8 -393.77°C

Material
35% shrinkage 50% shrinkage
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8.19      Evaluation of stress distribution in Preliminary 

Restoration Model 

 

Figure 7.6 : Preliminary restoration model 
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Figure 7.6 represent the 2D model which was constructed and explained in 

chapter 7. All the coordinates as calculated were in mm as can be seen from 

Table 7.1. Once they are imported into the FE programme (COMSOL) they 

were all converted to metres for consistency with the material properties. The 

model was represented in Plane Stress. 

8.20      Addition of restorations sections in the preliminary 

model  

All models can be analysed using one FE model by using COMSOL software. 

The idea was to build one FE model (with all the restorations layers) which then 

has each layer deactivated until all the Herculite layers were applied and its 

stresses calculated. 

The numbers of the layers that were activated at different times are given in 

Figure 8.24.  

 

Figure 8.24: Stylised tooth with the different layers to be activated, starting with layer 7, then 6, 

8 and finally 9 
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To begin with, for Step 1, domains 6, 8 and 9 are deactivated, leaving only 

domain 7, in which the thermal load by means of a temperature of -275.64°C 

was applied to the Fuji material to represent the shrinkage. 

The three stresses analysed are the two local principal stresses (11 and 22) 

and the shear stress (12). These are plotted in Figures 8.25, 8.26 and 8.27 

respectively. 

 

8.20.1    Step 1: Addition of the Fuji II layer  

 

Figure 8.25: Principal stress (11), which shows the direct stresses in the structure due to the 

addition of the Fuji II layer 
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Figure 8.26: Principal stress (22), which shows the direct stresses in the structure due to the 

addition of the Fuji II layer 

 

 

Figure 8.27: Shear stress (12), which shows the maximum shear stresses in the structure due 

to the addition of the Fuji II layer 
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As can be seen in all previous figures 8.25; 8.26, 8.27, the stresses are within 

the bounds of the limits tensile, compressive and shear stresses for the dentine, 

enamel, adhesive and Fuji II materials. Therefore, there are no indications from 

the curing process that high stresses are generated from the application of the 

Fuji II material. 

 

8.20.2    Step 2: Addition of the 1st Herculite restoration layer. 

Domain 6 was added to the model. The thermal load on the Resin composite 

Herculite XRV was of -98.60C to represent its shrinkage. The corresponding 

results for the two principal stresses (11 and 22) and the shear stress (12) were 

plotted in Figures 8.28, 8.29 and 8.30 respectively. 

 

Figure 8.28: Principal stress (11), which shows the direct stresses in the structure due to the 

addition of the 1
st
 Herculite layer 
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Figure 8.29: Principal stress (22), which shows the direct stresses in the structure due to the 

addition of the 1
st
 Herculite layer 

 

Figure 8.30: Shear stress (12), which shows the maximum shear stresses in the structure due 

to the addition of the 1
st
 Herculite layer 
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As can be seen in all previous figures 8.28; 8.29, 8.30, the stresses are within 

the bounds of the limits of tensile, compressive and shear stresses for the 

dentine, enamel, adhesive, Fuji II and Herculite materials. 

 

8.20.3    Step 3: Addition of the 2nd Herculite restoration layer. 

Domain 8 was added to the model. The thermal load on the Resin composite 

Herculite XRV was of -98.60°C to represent its shrinkage. The corresponding 

results for the two principal stresses (11 and 22) and the shear stress (12) are 

plotted in Figures 8.31, 8.32 and 8.33 respectively. 

 

Figure 8.31: Principal stress (11), which shows the direct stresses in the structure due to the 

addition of the 2
nd

 layer of the Herculite 
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Figure 8.32: Principal stress (22), which shows the direct stresses in the structure due to the 

addition of the 2
nd

 layer of the Herculite 

 

Figure 8.33: Shear stress (12), which shows the maximum shear stresses in the structure due 

to the addition of the Fuji layer 
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As can be seen in all previous figures 8.31; 8.32, 8.33., the stresses are within 

the bounds of the limits of tensile, compressive and shear stresses for the 

dentine, enamel, adhesive, Fuji II and Herculite materials. One other thing 

which can be seen was that the addition of a new layer can reduce the 

magnitude of the stresses induced by the curing of a previous layer. 

8.20.4    Step 4: Addition of the 3rd Herculite restoration layer. 

Domain 9 was added to the model. The thermal load on the Resin composite 

Herculite XRV was of -98.60209°C to represent its shrinkage. The 

corresponding results for the two principal stresses (11 and 22) and the shear 

stress (12) are plotted in Figures 8.34, 8.35 and 8.36 respectively. 

 

Figure 8.34: Principal stress (11), which shows the direct stresses in the structure due to the 

addition of the third layer of the Herculite 
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Figure 8.35: Principal stress (22), which shows the direct stresses in the structure due to the 

addition of the third layer of the Herculite 

 

 

Figure 8.36: Shear stress (12), which shows the maximum shear stresses in the structure due 

to the addition of the 3
rd

 layer of Herculite 
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As can be seen in all previous figures 8.34; 8.35, 8.36, the stresses are within 

the bounds of the limits tensile, compressive and shear stresses for the dentine, 

enamel, adhesive, Fuji II and Herculite materials. One other thing which can be 

seen was that the addition of a new layer can relieve (reduce) the magnitude of 

the stresses induced by the curing of a previous layer. 

 

8.21      Preliminary results: 

For this model, the analysis consisted of applying only the 35% shrinkage to the 

Fuji and then Herculite. The reason for this was that in preliminary analysis to 

test the model it was found that the 35% shrinkage model gave a reasonable 

representation of the stress distribution. But more importantly it was found that 

the entire Fuji and Herculite material realistically behave in a viscoelastic 

manner, so using a liner elastic model can at best show how the stresses are 

distributed once the material hardens and becomes linear-elastic. However, as 

there is no published data on both the viscoelastic nature of these two materials 

before curing and after curing, this analysis is then qualitative, in that it could 

show the regions where stresses are induced from the shrinkage process at 

each stage of the restoration.  
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8.22 Evaluation of the stress distribution in the 

complete/anatomical tooth Model  

In the previous section the preliminary model was explored. In this section a 

more complete/anatomical model was considered. 

Stress analysis using the complete/anatomical model of the maxillary second 

premolar (Figure 7.10) which was developed as mentioned in Chapter 7 to 

investigate the stress distribution in sandwich restoration. 
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Figure 7.10:  Complete/anatomical model of the Maxillary 2
nd

 premolar tooth with only one 

restoration section 
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8.22.1    Step 1: Addition of Fuji II layer. 

 

Figure 8.37: Principal stress (11), which shows the direct stresses in the structure due to the 

addition of the Fuji II layer 

 

 

Figure 8.38: Principal stress (22), which shows the direct stresses in the structure due to the 

addition of the Fuji II layer 
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Figure 8.39: Shear stress (12), which shows the maximum shear stresses in the structure due 

to the addition of the Fuji layer 

 

8.22.2    Step 2: Addition of the 1st Herculite layer. 

 

 

Figure 8.40: Principal stress (11), which shows the direct stresses in the structure due to the 

addition of the 1
st
 Herculite layer 
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Figure 8.41: Principal stress (22), which shows the direct stresses in the structure due to the 

addition of the 1
st
 Herculite layer 

 

 

Figure 8.42: Shear stress (12), which shows the maximum shear stresses in the structure due 

to the addition of the 1
st
 Herculite layer 
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8.22.3    Step 3: Addition of the 2nd Herculite layer. 

 

 

Figure 8.43: Principal stress (11), which shows the direct stresses in the structure due to the 

addition of the 2
nd

 Herculite layer 

 

 

Figure 8.44: Principal stress (22), which shows the direct stresses in the structure due to the 

addition of the 2
nd

 Herculite layer 
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Figure 8.45: Shear stress (12), which shows the maximum shear stresses in the structure due 

to the addition of the 2
nd

 Herculite layer 

 

8.22.4    Step 4: Addition of the 3rd Herculite layer. 

 

Figure 8.46: Principal stress (11), which shows the direct stresses in the structure due to the 

addition of the 3
rd

 Herculite layer 
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Figure 8.47: Principal stress (22), which shows the direct stresses in the structure due to the 

addition of the3
rd

 Herculite layer 

 

 

Figure 8.48: Shear stress (12), which shows the maximum shear stresses in the structure due 

to the addition of the 3
rd

 Herculite layer 

 



 

199 
 

It is clear from all of the results presented from Figures 8.37 to Figure 8.48, that 

the shape of the Fuji II layer and that of the Herculite has an effect on the stress 

level. Very steep sharp edges between the Fuji II and the dentine seem to 

suggest regions of high stresses on both the Fuji and dentine. The stresses are 

however, within the bounds of the limits of the tensile, compressive and shear 

stresses for the dentine, enamel, adhesive, Fuji II and Herculite materials. 

 

8.23      Discussions  

The result of Preliminary and the idealised FEA models showed clearly that the 

stresses generated, when the Fuji II material was cured separately in the 

proximal RMGIC/RC sandwich restoration, were within the limits of the tensile, 

compressive and shear stresses for the dentine, enamel, adhesive, Fuji II, and 

Herculite materials. As the stress level is not exceeding the limit, the proposed 

co-curing protocol by Knight (2006) did not appear to provide any further benefit 

in this regards. Previous work by (van Dijken et al., 1999) has reported that 

modified open-sandwich restoration using resin modified glass ionomer can be 

considered as an alternative to amalgam restorations. They have however, 

postulated a failure rate of about 19% after 6 years follow up. The failure was 

linked to tooth fracture, and secondary caries following dissolution of the 

RMGIC. They have also found that the use of polyacrylic acid to condition the 

cavity has been shown to contribute to the higher failure rate. This finding has 

led other researcher to start using the adhesive system before the application of 

the RMGIC which has shown to increase its bond strength with the tooth 

structure (Khoroushi et al., 2012a). This approach was supported in part with 



 

200 
 

the presence of resin components in both the adhesive and resin modified glass 

ionomer which allows for covalent bond formation between the two materials. 

This method was also recommended by many previous research (Besnault et 

al., 2004; Geerts et al., 2010; Dursun and Attal, 2011; Poggio et al., 2014).  

 

From the stress distribution using the idealised model, areas of high stress were 

detected in areas of the restoration with sharp angulations and edges (Figures 

8.37-8.48). This may have clinical implications, indicating that the restoration 

and the preparation outline should be kept as rounded as possible. However, it 

should be kept in mind that this analysis was only a linear elastic model. In 

order to obtain an accurate stress values, a viscoelastic model should be used.  

 

The difficulty of comparing the results of this study to others derives from the 

fact that there is no previous research concerning investigation of the stress 

distribution of sandwich restoration using FEA. 

 

The adhesive layer was initially omitted from this analysis as it was assumed to 

be very thin as per the manufacturer instruction of use (10 micron). This 

thickness could only have had negligible effect on the stresses and therefore 

there was no value in including it in the model. 
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8.24      Conclusion 

Within the limitation of this FEA study, Sandwich restoration using Fuji II and 

Herculite using conventional curing protocol has generated stresses within the 

limits of tensile, compressive and shear stresses for the dentine, enamel, 

adhesive, Fuji II and Herculite materials. 
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Chapter 9 

Evaluating the effect of the adhesive layer thickness on the 

generated stress using the FEA 

 

9.1      Introduction 

Previous research has found that thick adhesive layer may have an adverse 

effect on the longavity of the restoration through debonding and crack 

propagation which leads to gap formation and induce microleakage. The 

shrinkage stress generated from the thick adhesive layer could negatively affect 

the bond strength of the adhesive material to the tooth structure (Hilton and 

Schwartz, 1995; de Menezes et al., 2013). The aim of this part of the study 

was to investigate the effect of the adhesive layer thickness on the generated 

stress using the FEA. 

 

8.2      Calculation of Volumetric Shrinkage of the adhesive 

material used in the study 

Since there was no data exists from the manufacturer and also from the 

previous research on the volumetric shrinkage for the adhesive layer, this part 

of the study required the use of the sections which was generted from the 

experimental work conducted in Chapter 6 (section 6.4) in which the adhesive 

was applied to the prepared cavity on the Typodont plastic teeth. The teeth 

section which showed a clear shrinkage of the adhesive was chosen in order to 

measure the area after shrinkage and compared with the area before shrinkage. 

All of the measurment were done by using CorelDraw software. Appendix D., 
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shows the results on the area shrinkage and the corresponding volumetric 

shrinkage of the adhesive layer on the speciemens tested. 

Table 9.1: Area shrinkage for specimens tested 

Specimen Name Area Ratios Area Shrinkage 

13-90 0.917 0.083 

16-105 0.963 0.037 

19-135 0.956 0.044 

17-120 0.919 0.081 

  Average Area Shrinkage 0.061 

  SD in Area Shrinkage 0.021 

      

  % Area Shrinkage 6.12 

  % Volumetric Shrinkage  9.04 

 

Table 9.2: Relationship between linear, area and volumetric shrinkage for the 6.12% area 

shrinkage calculated from experiments 

L L L/L% A A A/A % V V V/V % 

1 0.031 3.109 1 0.061 6.121 1 0.090 9.04 

 

This shows that the adhesive has a considerable volumetric shrinkage which 

was over 3 times greater than that for the Fuji or Herculite material. Such 

shrinkage could produce excessive stresses and hence lead to debonding of 

the tooth restoration, if the adhesive layer is excessively thick. 

 

9.3      Determination of Temperatures to simulate 6.12% Area Shrinkage  

The model of Figure 9.1 represents a quarter of a square plate of size 2 m 

which was used to determine the temperature required for the adhesive to 

shrink by 6.12% of its area. The 2D approximation used was Plain Stress, as it 
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disregards any 3D induced stresses which are present in the plain strain 

solution. 

 

Figure 9.1: Quarter of plate design domain 

The known properties for the Optibond Solo adhesive are given in Table 7.1, 

but are repeated below in Table 9.3. The value for its coefficient of thermal 

expansion is not known; however, in the current study as the researcher was 

trying to determine a nominal artificial temperature that combined with the 

coefficient of thermal expansion which would give the desired 6.12% area 

shrinkage, the nominal value of 10x10-6/°C was used. 

Table 9.3: Properties for the Optibond Solo adhesive 

 

 

1 m

1
 m

Elastic 

Modulus

Poisson’s 

Ratio

Compressive 

Strength

Tensile 

Strength

Shear 

Strength

Thermal 

Expansion 



Volumetric 

shrinkage

E (GPa)  C (MPa) T (MPa)  (MPa) (/oC x10-6) (V/V) %

25

Bonded with 

Enamel
34[15]

Bonded with 

Dentine

31.3 

±2.7[18]

1 0.3 9.04
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The results for this numerical experiment are given in Table 9.4 and Figure 9.2. 

 

Table 9.4: Results of temperature shrinkage to achieve 6.12% 

Area Shrinkage or 3.11% linear shrinkage  

T (°C) (L/L) (L/L) % 

0 0 0 

-100 -0.001 -0.1 

-200 -0.002 -0.2 

-500 -0.005 -0.5 

-1000 -0.01 -1 

-2000 -0.02 -2 

-3000 -0.03 -3 

-4000 -0.04 -4 

 

 

Figure 9.2: Plot of the data from Table 20 to determine line of best fit 

 

The line of best fit for this data, as expected is linear, and is given by Eq. (9.1). 

T
L

L
001.0% 







 
 (9.1) 

y = 0.001x + 5E-13 
R² = 1 

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-5000 -4000 -3000 -2000 -1000 0

(DL/L)

(DL/L) %
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Using equation (9.1) and the required shrinkage value of, 109.3% 






 

L

L
, this 

equation can then be rearranged to determine the actual value of the 

temperature to be applied in order to produce this displacement. 

CT

T








3109
001.0

109.3

001.0109.3

 (1) 

9.4      Evaluating Stresses Generated by Excessive Adhesive 

Layer Size 

In most photographs for the tooth section taken of the adhesive material, it was 

found that the adhesive layer was as large as the Fuji layer. On account of this, 

the same model as shown in Figure 7.10 was analysed again, but this time, the 

Fuji layer was replaced with the material properties of the Optibond Solo 

adhesive of Table 9.3. The resulting principal stresses are given in Figures 9.3, 

9.4 and 9.5. 

 

Figure 9.3: Principal stress (11), which shows the direct stresses in the structure due to the addition 

of the Optibond Solo Plus 
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Figure 9.4: Principal stress (22), which shows the direct stresses in the structure  

due to the addition of the Optibond Solo Plus 

 

 

Figure 9.5: Shear stress (12), which shows the maximum shear stresses in the  

structure due to the addition of the Optibon Solo Plus 
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9.5      Evaluating Stresses Generated by Adhesive Layer Size 

of the real Experiment 

The numerical models of the section 9.4 used the size and shape of the Fuji II 

cement to assess the stress generated by that type of shape.  

In this section, the actual adhesive layer shape of Figure 9.6 was superimposed 

on the model of Figure 7.10. The extra points to represent the adhesive layer 

were measured and are given in Table 9.5. The results of this analysis are then 

given in Figures 9.8, 9.9 and 9.10. 

 

 

Figure 9.6: Adhesive layer thickness using Typodont tooth section (Chapter 6) 
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        Figure 9.7: Detail of the Maxillary 2
nd

 premolar tooth model with the adhesive layer of Figure 64 added 

 

Table 9.5: Coordinates of Adhesive Layer 

RL1 -2.3774 14.7185 

RL2 -1.9569 14.8692 

RL3 -1.6705 15.1541 

RL4 -1.4896 15.5061 

RL5 -1.5189 16.0393 

RL6 -1.6669 16.4142 

RL7 -1.8101 16.9169 

RL19 -2.4233 15.573 

RL20 -2.3173 15.1502 

RL21 -2.0642 15.8669 

RL22 -1.9179 16.1915 

RL23 -1.8635 16.5311 
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9.6      Result: 

 

Figure 9.8: Principal stress (11), which shows the direct stresses in the structure  

due to the addition of the adhesive layer 

 

 

Figure 9.9: Principal stress (22), which shows the direct stresses in the structure  

due to the addition of the adhesive layer 
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Figure 9.10: Shear stress (12), which shows the maximum shear stresses 

 in the structure due to the addition of the adhesive layer 

The result of Figures 9.8, 9.9, 9.10 shows that stresses induced by shrinkage of 

the adhesive layer were very high. Those regions of high stress correlate with 

the area of the tooth section (Figure 9.6) which shows adhesive debonding. 

 

9.7      Discussion: 

The ambivalence of much of the published research in relation to the effect of 

the adhesive thickness on adhesion to the tooth is problematic. Researchers 

have presented different findings in terms of whether using a thick adhesive 

layer under the restoration could provide a good seal and elastic buffer or 

conversely lead to an early failure of the restoration. One study Opdam et al. 

(1997) proposed that a thick adhesive layer could prevent gap formation 

between tooth and restoration and perform as an elastic buffer when compared 

with thin layer. Another study (Hilton and Schwartz, 1995) presented a 

contradictory finding, showing that a thick adhesive layer adversely effected the 
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longevity of the restoration by increasing crack propagation and minimizing 

bond strength. This finding was supported by de Menezes et al, (2013) who 

stated that excess adhesive may negatively affect bond strength of the 

adhesive material to the tooth structure. The results of the previous studies, 

which showed the negative effect the thick adhesive layer have on the early 

failure of the restoration, are consistent with the findings of the current study in 

which the adhesive employed (Optibond solo) has shown  high volumetric 

shrinkage of 9.04 % and early debonding. 

Grossman and Setzer, (2001) recommended that to ensure consistency of 

bonding and uniform stress distribution along the restoration margin, the film 

thickness of the adhesive material has to be even. 

The difference in the results of the previous studies may be explained by the 

different types of materials used, the location of the restoration, type and size of 

the cavities, the operator skills and methodology followed in the study. It is 

therefore difficult to make comparisons between these research findings. 

 

9.9      Conclusion 

Use of the adhesive material in proximal restorations showed a high stress 

distribution so its use under RMGIC cement may lead to increased stress 

generated at the gingival margin and consequently lead to debonding and gap 

formation.  

The next chapter presents two pilot studies undertaken to attempt to investigate 

the reasons for the adhesive pooling.  
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Chapter 10 

Conclusion 

In this final the main focus was on what has been achieved in these studies 

along with the conclusion and the analysis of the limitation of the studies 

10.1      Achievements  

The achievements of this work add to the existing scientific knowledge in the 

dental field in the following areas: 

1. The development of a numerical tooth model for the FEA for the 

sandwich restoration technique 

2. A qualitative linear elastic FE analysis investigated the stress distribution 

in a RMGIC/RC sandwich restoration. 

3. A stylus model of a clinical cavity preparation was developed. 

4. The findings of the laboratory study show an unexpectedly thickened 

adhesive layer when following the manufacturer’s application instructions. 

5. The thickened adhesive layer showed crack propagation into the body of 

the restoration. 

6. This work also demonstrated that the placement of a matrix band after 

adhesive application does not eliminate pooling of the adhesive at the 

cervio-axial cavity angle. 

7. Although the angulation of the tooth appeared to influence the presence 

of a thickened adhesive layer at some angulations, it appeared to have 

no influence at others.   
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8. This work showed that the production of a thin adhesive layer, as 

recommended by the manufacturer, appeared to be unpredictable and 

difficult to achieve when following the instructions supplied. 

9. The instructions provided for the placement of the resin adhesive were 

open to wide interpretation by different clinicians and even where it 

appeared that consistent technique was used, the thickness of adhesive 

layer achieved was unpredictable. 

 

10.2      Conclusions 

Within the limitation of these studies, it can be concluded that: 

 

1. The Dye penetration test failed to show a difference between the two 

techniques (separate curing and co-curing) due to dye absorption by 

the adhesive resin. It can be concluded that silver nitrate is not 

compatible with Optibond solo plus adhesive and not advocated for 

dye penetration studies using this adhesive material. The 

stereomicroscope examination showed no difference between the two 

techniques. However, the adhesive thickness varied considerably 

between the samples. 

2. FEA of stress generated using RMGIC/RC sandwich restoration 

revealed that the stress was within the limits of tensile, compressive 

and shear stresses for the dentine, enamel, adhesive, Fuji and 

Herculite materials. Addition of a new layer can relieve (reduce) the 

magnitude of the stresses induced by the curing of a previous layer. 
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3. Pooling of the adhesive was still evident without the use of the matrix 

band.  

4. The thickness of the adhesive layer was far thicker than 

manufacturer’s recommendations which was 10 microns.  

5. FEA has shown that the use of the adhesive material in proximal 

restoration showed a high stress distribution so its use under RMGIC 

cement may lead to increase stress generated at the gingival margin 

and potentially lead to debonding and gap formation. 

6. Adhesive application is a sensitive multi-stage procedure and further 

work may be needed to develop a consistently thin adhesive layer.  

7.  Angulation of the tooth during adhesive application may have an 

effect on, adhesive pooling and lead to a thick adhesive layer. 

8. Lack of detailed and vague instructions for adhesive application could 

lead to many different interpretations which could affect the accuracy 

and consistency of the application of the adhesive. Manufacturers 

should be made aware of this and seek to develop protocols for use 

which can be applied consistently by different operators in different 

working environments working with a range of dental equipment. If 

necessary, new equipment may need to be developed to facilitate 

consistent use which maximises the attributes of the material.  

9. Multiple variables such as air thinning, position of the syringe and 

also time of air application could result in considerable differences in 

the adhesive thickness. 
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10.3      Limitations of the study 

1. This study has been unable to demonstrate stress distribution using a 

viscoelastic model as there is currently no published data on the viscoelastic 

nature of the materials used in this study (Fuji II, Herculite) before and after 

curing. The complexity of generating this model and the limitation in available 

time, only allowed for a linear static analysis.  

2. The use of the silver nitrate dye penetration test when using a hydrophilic 

adhesive such as Optibond Solo Plus was shown to be inappropriate as the dye 

was taken up by the resin and therefore did not allow dye penetration between 

the resin and the tooth to be detected. 

4. From the results of the multiple operator pilot study investigating the operator 

compliance with the manufacturer’s adhesive application instructions, there are 

likely to be numerous complex factors affecting the ability to achieve a thin 

adhesive layer and it was not possible to investigate these within this thesis. 

 

10.4      Suggestions for future research 

There are a number of areas of further research indicated by the findings of this 

thesis. 

1. Based on the previous analysis, one area for the future research could 

be the identification of the viscoelastic properties of the adhesive material 

and its volumetric shrinkage. It would then be possible to undertake 

viscoelastic FE analysis for sandwich restorations to investigate the 

effect of a simultaneous curing protocol on stress distribution. 



 

217 
 

2. Further research is required to identify which of the many variables in 

adhesive placement influences the production of a thin adhesive layer. 

3. Identification of an appropriate dye in order to carry out dye penetration 

tests using the micro CT technique without dye uptake by the adhesive. 
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Appendix A. Chapter3 Documents prepared for ethical approval 

for teeth collection 

A.1 Patient information sheet (for children aged 12-17)  
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A.2 Assent form for children aged 12-17 years 
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A.3The adult information sheet  
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A.4The adult consent form 
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A.5 Approval letter for this research by NHS Airedale, Bradford 

and Leeds Research Management and Governance support 

team 

 



 

248 
 

A.6 Copy from the tissue transfer agreement document which 

was signed by the dentists contributing extracted teeth to the 

study 

Tissue Transfer Agreement 

Between the SUPPLIER, RECIPIENT and SPONSOR (if applicable) as described 
below. 

Agreement for the transfer of human tissues / organs for non-commercial, non-
therapeutic research, when the Human Tissue Act, 2004 does not apply (eg NRES 
project specific approval has been obtained). 

 

RECIPIENT: Leeds Dental Institute  Oral Biology Department 

 

RECIPIENT’S LOCAL INVESTIGATOR: Sakina Edwebi 

 

SUPPLIER: Dental Practice 

 

SUPPLIERS LOCAL INVESTIGATOR:  

 

SPONSOR (if applicable): Leeds University 

 

PROTOCOL [ref]:Version 1    07 September 2011 

 

ETHICAL OPINION ref: 001_01_05_12_0000 

 

STUDY: The Effect of a simultaneous Curing Protocol on Microleakage 

 

MATERIALS: Extracted Teeth 

 

FORM OF MATERIALS SUPPLY: 

 

PURPOSES: research as a part of PhD  

 

RECIPIENT’S PREMISES: 
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1. The relevant PROTOCOL and ETHICAL OPINION is attached to this Agreement.  If there 
is any proposed change to the PROTOCOL or ETHICAL OPINION that would have an 
impact upon the use, storage or otherwise of the MATERIALS, the RECIPIENT’S LOCAL 
INVESTIGATOR must obtain the written consent of the SUPPLIER’S LOCAL 
INVESTIGATOR and the SPONSOR. A change in the type of NRES approval from project 
specific to research tissue bank status will require a new Tissue Transfer Agreement.  All 
agreed changes to the PROTOCOL or ETHICAL OPINION are to be attached by both 
parties to their copies of this Agreement. 

 

2. The RECIPIENT agrees to only use the MATERIALS for the PURPOSES and in 
accordance with the PROTOCOL and ETHICAL OPINION.  The MATERIALS are only to 
be used and stored on the RECIPIENT’S PREMISES. 

 

3. The SUPPLIER confirms the necessary informed consents of donors/donor’s 
representatives have been given or ETHICAL OPINION has provided an exemption to the 
requirement to obtain consent.  

 

 

4. The SUPPLIER will deliver the MATERIALS to the RECIPIENT on the agreed delivery 
date(s) in the FORM OF MATERIALS SUPPLY prescribed above. A copy of the ”Tissue 
Sample Form” to be supplied by the SUPPLIER will be forwarded with the MATERIALS.  

 

5. The RECIPIENT agrees to ensure that all persons involved in access or use of the 
MATERIALS shall be made aware of, and bound by, the terms of this Agreement.  

 

6. The RECIPIENT agrees not to transfer or distribute any part of the MATERIALS or any 
extracts, replications, summaries or derivatives thereof to any third party without the prior 
approval of the SUPPLIER, the SPONSOR and any relevant ethics committee. The 
RECIPIENT will provide assurance that any such transfer or distribution is within the scope 
of the relevant consents. Any such transfer or distribution will be subject to a separate 
material transfer agreement. 

 

7. MATERIALS cannot be used for any purpose that is commercial or therapeutic. Sponsored 
academic or clinical research is not for these purposes deemed to be commercial. 

 

8. The MATERIALS are supplied without warranty as to its properties, merchantable quality 
or fitness for any particular purposes and without any other warranty whatsoever, 
expressed or implied. 

 

9. The RECIPIENT confirms that the LOCAL INVESTIGATOR is suitably qualified and will be 
responsible for the proper and safe handling, storage, use and disposal of the 
MATERIALS. 

 

10. As soon as the STUDY has been completed by the RECIPIENT, the RECIPIENT’s LOCAL 
INVESTIGATOR shall inform the SUPPLIER. Used MATERIALS may be retained under 
the terms of this Agreement only for audit and verification purposes relating to the STUDY. 
Unused MATERIALS will be returned to the SUPPLIER. 

 

11. On or before expiry of NRES project specific approval (if applicable), unused MATERIALS 
taken from a diagnostic archive will be returned to the archive.  Any other unused 
MATERIALS and products of the STUDY that contain human cells will be returned to the 
SUPPLIER and stored in premises licenced by the Human Tissue Authority. The 
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SUPPLIER’s LOCAL INVESTIGATOR agrees to inform the DESIGNATED INDIVIDUAL 
for research should this situation arise, and to follow all relevant policies and standard 
operating procedures on the instruction of the Designated Individual.  

  

12. Subject to the SUPPLIER meeting its commitments under this Agreement, the RECIPIENT 
agrees to hold harmless the SUPPLIER from any and all claims, suits and liabilities arising 
from any use by the RECIPIENT of the MATERIALS. 

 

13. This Agreement may be terminated by a party upon written notice if the other party shall 
be in material breach of its commitments and not remedied such commitments following 
thirty days’ written notice of the breach upon termination.  Upon request the RECIPIENT 
shall on termination securely and confidentially either dispose of or return the MATERIALS 
as directed by the SUPPLIER . 

 

14. MATERIALS shall be returned to the SUPPLIER or securely and confidentially destroyed 
where required for ethical reasons by the relevant ethics committee or if the donor 
withdraws consent. 

 

15. This Agreement represents the entire understanding of the parties relating to the use of 
the MATERIALS and supersedes and overrides all other understandings.  Variations 
require the written consent of both parties nominated representatives. 

 

16. All communications between the parties relating to the substance of this Agreement shall 
take place through the RECIPIENTS LOCAL INVESTIGATOR and the SUPPLIER'S 
LOCAL INVESTIGATOR.  

 

17. This Agreement shall be interpreted in accordance with English Law and be subject to the 
jurisdiction of the English Courts. 

 
No third party may rely upon the provisions of this Agreement 

 

 

 

Authorised by the HEAD OF 
DEPARTMENT holding the tissues 
(essential for tissues from LTHT 
diagnostic archives) 

Authorised by the RECIPIENT’S 
LOCAL INVESTIGATOR 

 

Department: 

 

Designation:  

 

Signature: 

 

Signature: 

 

Name:  

 

Name:  

 

Date: 

 

Date: 
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Signed for and on behalf of the 
SUPPLIER 

 

Signed for and on behalf of the 
RECIPIENT 

 

Signature: 

 

Signature: 

 

Name:  

 

Name:  

 

Designation: 

 

Designation: 

 

Date: 

 

Date: 

Signed for and on behalf of the SPONSOR (only if applicable and the 
SPONSOR is not the SUPPLIER) 

 

Signature: 

 

Name:  

Date: 
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Appendix B: Tables for Chapter 7 

B.1: Enamel and dentine thickness at different areas Shillingburg 

and Grace (1973) 

Table B.1: Enamel and dentine thickness at different areas 

Maxillary second premolar (page 41) Mesial (mm) Distal (mm) 

Thickness of the Enamel at 1mm from the 
cervical area 

0.21 0.23 

Thickness of dentine at 1mm from the cervical 
area 

1.96 2.00 

Average thickness of enamel (occlusal 
thickness) 

1.55 

Average thickness of dentin (occlusal 
thickness) 

3.27 

Enamel thickness at  4 different 
points from the cervical toward 
the occlusal (at 1mm interval) 
Page 41 

2 0.50 0.56 

3 0.81 0.87 

4 1.10 1.10 

5 1.27 1.21 

Dentine thickness 2mm above 
the cervical area 

2 x x 

Thickness of dentin in the root 
area at 4 point (in 3mm intervals 
between each point).  

cervical 1.95 1.93 

3 1.53 1.66 

6 1.21 1.39 

9 1.03 1.06 
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B2: Coordinates for the maxillary 2nd premolar of Figure (7.10) 

Table B.2: Coordinates for the maxillary 2
nd

 premolar of Figure 
(7.10) 

  Number xTrue (mm) yTrue (mm) 

  

Reference Point 
(D1) 

0 0 
D

e
n

ti
n

e
 

D1 0 0 

D2 0.3634 0.9409 

D3 0.5417 1.8376 

D4 0.6158 2.7342 

D5 0.6694 3.6309 

D6 0.6369 4.5069 

D7 0.6264 5.4065 

D8 0.6263 6.2849 

D9 0.5734 7.1633 

D10 0.6475 8.1052 

D11 0.8486 8.9942 

D12 0.965 9.9233 

D13 1.2296 10.804 

D14 1.4836 11.7141 

D15 1.6847 12.6137 

D16 1.9387 13.4816 

D17 2.1715 14.3608 

D18 2.5755 15.3912 

D19 2.6952 16.3912 

D20 2.6355 17.3912 

D21 2.4663 18.3912 

D22 2.1637 19.2852 

D23 1.6997 19.0312 

D24 1.1993 19.01 

D25 0.5939 19.2281 

D26 0.0068 19.4651 

D27 -0.3932 19.6662 

D28 -0.6841 19.7191 

D29 -1.4404 19.6556 

D30 -2.2009 19.8461 

D36 -2.2226 14.3912 

D37 -2.1173 13.4945 

D38 -2.1868 12.5978 

D39 -2.1888 11.7011 

D40 -2.1522 10.8045 

D41 -2.1156 9.9078 
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D42 -2.1465 9.0111 

D43 -2.1774 8.1144 

D44 -2.1571 7.2268 

D45 -2.0512 6.2849 

D46 -1.9184 5.4243 

D47 -1.6976 4.5276 

D48 -1.6022 3.6309 

D49 -1.3845 2.7342 

D50 -1.1728 1.8376 

D51 -0.9669 0.9409 

D52 -0.359 0.1341 

D53 -1.0606 6.3912 

D54 -0.924 9.4016 

D55 -0.6677 12.3912 

D56 -0.6464 15.3912 

D57 -0.379 15.9051 

D58 0.0444 15.3912 

D59 0.0655 12.3491 

D60 -0.3631 9.3912 

D61 -0.4372 6.3536 

E
n

a
m

e
l 

E1 2.8468 16.1846 

E2 3.0705 17.0813 

E3 3.2334 17.978 

E4 3.2869 18.8747 

E5 3.1915 19.7714 

E6 2.839 20.1107 

E7 2.1694 20.2219 

E8 1.5281 19.9317 

E9 0.9858 20.1966 

E10 0.5939 20.5431 

E11 0.0068 20.6917 

E12 -0.3932 20.6417 

E13 -0.8506 20.5517 

E14 -1.3815 20.5995 

E15 -1.8135 20.7888 

E16 -2.1299 21.0362 

P
la

s
te

r 

P1 -2.147 13.8912 

P2 -10.5487 3.8912 

P3 -10.5432 -3.1027 

P4 10.4513 -3.1088 

P5 10.4513 3.8912 

P6 2.0497 13.8912 

R
e
s
to

ra
ti

o
n

 

(L
e
ft

) 
c
o

-

c
u

ri
n

g
 RL1 -2.3774 14.7185 

RL2 -1.6924 15.0755 

RL3 -1.4783 15.2989 

RL4 -1.4548 15.6556 



 

255 
 

RL5 -1.5361 15.9796 

RL6 -1.6583 16.4194 

RL7 -1.8101 16.9169 

RL8 -2.1318 18.5959 

RL9 -2.367 19.8052 

RL10 -2.3771 19.9696 

RL11 -2.3067 21.1097 

RL12 -2.7688 21.2144 

RL13 -3.2619 21.2594 

RL14 -3.6647 21.0147 

RL15 -3.9117 20.4532 

RL16 -3.9373 19.9599 

RL17 -3.9155 19.7092 

RL18 -3.6013 17.8636 

RL19 -2.887 15.6553 

RL20 -2.7323 15.6607 

RL21 -2.5249 15.7696 

RL22 -2.2129 16.1871 

RL23 -1.9376 16.6456 

RL24 -2.8274 18.167 

RL25 -3.2082 19.7156 
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Appendix C: Chapter 5 Table and Figures 

C.1: Sample randomization 

Table D.1: Sample randomization 

Sample  
Randomization   

Separate 
curing  

Co-curing 

0 1M 1D 

1 2D 2M 

1 3D 3M 

1 4D 4M 

0 5M 5D 

1 6D 6M 

1 7D 7M 

0 8M 8D 

0 9M 9D 

0 10M 10D 

0 11M 11D 

1 12D 12M 

1 13D 13M 

1 14D 14M 

0 15M 15D 

1 16D 16M 

0 17M 17D 

0 18M 18D 

0 19M 19D 

1 20D 20M 

0 21M 21D 

0 22M 22D 

0 23M 23D 

1 24D 24M 

0 25M 25D 

1 26D 26M 

1 27D 27M 

1 28D 28M 

0 29M 29D 

1 30D 30M 

1 31D 31M 
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1 32D 32M 

1 33D 33M 

0 34M 34D 

1 35D 35M 

1 36D 36M 

0 37M 37D 

1 38D 38M 

1 39D 39M 

0 40M 40D 

1 41D 41M 

1 42D 42M 

0 43M 43D 

1 44D 44M 

1 45D 45M 

0 46M 46D 

0 47M 47D 

0 48M 48D 

0 49M 49D 

0 50M 50D 

0 51M 51D 

0 52M 52D 

0 = start with the separate curing 

1 = start with co-curing 
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Appendix C.2: Chapter 5. SEM images showing adhesive 

thickness and crack propagation 

 

      

    

Figure C.1:SEM images showing intact margin and crack propagation in the adhesive 
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Appendix D: Measurement of adhesive area on Typodont teeth sections 

photographs from the experimental work in chapter 9 which used in 

chapter 8  

Adhesive before shrinkage

 

Before shrinkage 

Adhesive after shrinkage

 

After shrinkage 

 

 

Figure D.1: Measuring adhesive area before and after adhesive 
shrinkage tooth section sample (number 13-90º) 
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Table D.1:Measurment of the adhesive area before and after shrinkage using CorelDraw(Tooth-13-90º) 
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Before shrinkage 

 

After shrinkage 

 
 

Figure D.2:Measuring adhesive area before and after adhesive shrinkage tooth 

section sample (number 16-105º) 
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Table D.2:Measurment of the adhesive area before and after shrinkage using CorelDraw tooth 

section sample (number 16-105º) 
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Before shrinkage 

 

After shrinkage 

 

 

Figure D.3:Measuring adhesive area before and after adhesive shrinkage tooth section 

sample (number 17-120º) 
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Table D.3:Measurment of the adhesive area before and after shrinkage using CorelDraw tooth 

section sample (number 17-120º) 
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Before shrinkage 

 

After shrinkage 

 

 

Figure D.4:Measuring adhesive area before and after adhesive shrinkage tooth section sample 
(number 19-135º) 
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Table D.4:Measurment of the adhesive area before and after shrinkage using CorelDraw tooth section 

sample (number 19-135º) 
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Appendix E: Figures for Chapter 6 

 

E.1: Tooth position at different angulation during adhesive 

application 

 

Angle = 15º  

Angle = 30º 

 

 

Angle = 45º  
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Angle =  60º   

Angle = 75º  

Angle = 90º  

Angle = 105º 
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Angle = 120º  

Angle = 135º  

Angle = 150º  

Angle = 165º  
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Angle = 180º  

Figure E.1: Tooth position at different angulation during adhesive application 

 

E.2: Photographs of Typodont teeth from the experimental work 

(Chapter 6) adhesive thickness at different angulation 

 

Tooth 
number 

angle photograph Tooth section 

1 0º 

 

 

2 0º 
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3 15º 

 

 

4 15º 

 

 

5 30º 

 

 

6 30º 
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7 45º 

 

 

8 45º 

 

 

9 60º 

 

 

10 60º 
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11 75º 

 

 

12 75º 

 

 

13 90º 

 

 

  

 

14 90º 
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15 105º 

 

 

16 105º 

 

 

17 120º 

 

 

18 120º 
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19 135º 

 

 

20 135º 

 

 

 

 

21 150º 

 

 

 

22 150º 
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23  165º 

 

 

24 165º 

 

 

25 180º 

 

 

26 180º 

 

 

Figure E.2: Photographs for the prepared teeth before and after 
sectioning showing the adhesive thickness 

 

 

 



 

277 
 

E.3: Adhesive thickness at different angulation (main 

investigator) 

 Table E 1: Tooth position at different 

angulation during adhesive application 

Tooth  Angle Adhesive 

Thickness 

1 0 º 126.3 

2 0 º 121.9 

3 15 º 156.7 

4 15 º 152.4 

5 30 º 113.2 

6 30 º 113.2 

7 45 º 178.5 

8 45 º 187.2 

9 60 º 139.3 

10 60 º 139.3 

11 75 º 320.8 

12 75 º 483.2 

13 90 º 137.5 

14 90 º 143.5 

15 105 º 517.6 

16 105 º 653.8 

17 120 º 491.4 

18 120 º 395.2 

19 135 º 615.2 

20 135 º 588.1 
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21 150 º 583.4 

22 150 º 577.8 

23 165 º 339.4 

24 165 º 335.3 

25 180 º 442.3 

26 180 º 291.1 


