HARMONIC VECTOR FIELDS
ON RIEMANNIAN MANIFOLDS

Maxwell Alexander Wharton Strachan BSc (Hons)

MSc by research
University of York
Mathematics

December 2014



ABSTRACT. This dissertation investigates harmonic vector fields
which are special mappings on Riemannian manifolds with many
interesting properties. It aims for a sharp definition of these fields
through a focus on several aspects of geometry. Key concepts in-
clude the Weitzenbock formula, the divergence theorem, the Euler-
Lagrange equation and the Sasaki metric. This particular met-
ric contains horizontal and vertical components which are used to
define vertical energy and this, in turn, leads to a definition of
harmonic vector fields which are later generalised by the Cheeger-
Gromoll metric and the general definition of a harmonic vector
field. The dissertation also concentrates on some specific exam-
ples of harmonic vector fields such as harmonic unit vector fields,
the Hopf vector field, conformal gradient fields on the unit sphere
and on the hyperbolic space. The key outcome of this research,
presented in the concluding subsections of the dissertation, is the
discovery of two new examples that give fresh insight into this
important aspect of differential geometry.
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1. INTRODUCTION

This dissertation investigates some special mappings on Riemannian
manifolds called harmonic vector fields which have many interesting
properties. It first aims to describe a definition for these harmonic
vector fields. It then focuses on several examples of harmonic vector
fields, such as harmonic unit vector fields, the Hopf vector field and
conformal gradient fields on the unit sphere and on the hyperbolic
space. It concludes with two new examples of harmonic vector fields
from original research carried out for this dissertation throughout 2013
and 2014.

The sections of this dissertation introduce and then expand on sev-
eral topics related to harmonic vector fields, leading to some new con-
tributions to this area of study. The topics can be summarised as
follows.

Section 2 addresses some definitions from topology, metric spaces
and differentiable manifolds which are necessary for the rest of this
dissertation. These include a manifold, a vector field, a tangent vector,
and a metric. Section 3 introduces some basic ideas of Riemannian ge-
ometry and vector bundles including tensors and many different types
of derivatives. The Weitzenbock formula is proved in a specific case
with a corollary afterwards that will be used again in the final sec-
tion. Section 4 introduces the divergence theorem and more concepts
required for the next section. Section 5 defines the energy of a map-
ping, the Dirichlet property and a harmonic map. Section 6 splits the
energy into horizontal and vertical components by using a special type
of metric called the Sasaki metric which is calculated by adding its
horizontal and vertical components together. The vertical component
of the energy, called the vertical energy, is then used for a definition of
a harmonic vector field that will be generalised later.

Section 7 is about a specific case of harmonic vector fields called
harmonic unit vector fields and Section 8 continues this topic with an
investigation of a specific harmonic unit vector field called the Hopf
vector field with a proof that it is a harmonic unit vector field. Section
9 studies properties of covariant derivatives, defines the flow of a vec-
tor field on a Riemannian manifold and a type of vector field, called
a Killing field, that has an interesting identity between the covariant
derivatives of any two tangent vectors on the Killing field. Section 10
introduces a 2-parameter family of metrics, which includes the Sasaki
metric, called the h, , metrics, also known as the generalised Cheeger-
Gromoll metrics, and applies them to energy and harmonicity for defi-
nitions of (p, q)-energy, (p, ¢)-harmonicity and the general definition of
a harmonic vector field.

The last section, section 11, has five subsections about harmonic
vector fields on Riemannian space forms. Subsection 11.1 introduces
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conformal vector fields and gradient fields then considers a proposition
about the flow of a vector field in relation to conformality. Subsections
11.2 and 11.3 include two known cases of (p, ¢)-harmonic vector fields,
which are conformal gradient fields on the unit sphere and the hyper-
bolic space respectively, with proof that they are conformal and (p, q)-
harmonic. Results from previous work by M. Benyounes, E. Loubeau
and C. Wood are reviewed and expanded in several different ways.

Subsections 11.4 and 11.5 continue the research into harmonic vector
fields by including two new cases of harmonic vector fields with proof
that they are conformal and (p, ¢)-harmonic. This original work results
from the wide research done for this paper. The new cases are confor-
mal gradient fields on the Euclidean space and conformal extension
fields of conformal gradient fields on the unit sphere.

The evolution of the geometry leading to the topic of harmonic vector
fields began with J. Eells and J. H. Sampson’s paper called Harmonic
mappings of Riemannian manifolds published in 1964. Eells then wrote
one of the earliest books about harmonic maps which was published
in 1980, Selected Topics in Harmonic Maps with L. Lemaire. This has
been followed by various papers and books on differential geometry and
harmonic maps written by mathematicians currently researching into
this area such as O. Gil-Medrano who wrote Unit vector fields that are
critical points of the volume and of the energy: characterization and
examples in 2005 and M. Benyounes, E. Loubeau and C. Wood who
together wrote the papers Harmonic sections of Riemannian vector
bundles, and metrics of Cheeger-Gromoll type and Harmonic vector
fields on space forms in 2007 and 2014 respectively.

It is hoped that this dissertation has produced a further contribution
to the evolving topic of harmonic vector fields. It has been presented in
two ways. Firstly, by defining the equation of a conformal gradient field
on the n-dimensional Euclidean space then proving that it is conformal
and a gradient field and that it is a harmonic vector field. Secondly, by
defining the equation for a conformal extension of conformal gradient
fields on the unit sphere then proving that it is conformal and a gradient
field and that it is also a harmonic vector field.

2. RECOLLECTION OF TOPOLOGY, METRIC SPACES AND MANIFOLDS

This section introduces some important definitions from the areas
of differential geometry, metric spaces and topology needed for this
dissertation starting with the definition of a topological space which
will be used to define a manifold.

Definition 2.1. [16] A topological space T'= (X, T) consists of a non-
empty set X together with a fixed family 7 of subsets of X satisfying:
(T1) X, 0eT,
(T2) the intersection of any two sets in 7 is in T,



(T3) The union of any collection of sets in 7 isin T.

An element of 7T is called an open set of T

Definition 2.2. [11] Let X be a topological space. A neighbourhood
U C X of a point x € X is any open set which contains the point x.

Definition 2.3. [4] A topological space is called a Hausdorff topological
space if any two points have non-intersecting neighbourhoods.

Definition 2.4. [16] An open cover of an open subset A of a topological
space X is a collection of open subsets whose union contains A.

Definition 2.5. [4] An n-dimensional manifold M is a Hausdorff topo-
logical space that can be locally be identified with the n-dimensional
Euclidean space R™. This means that it can be covered by neighbour-
hoods which map into open neighbourhoods of R™. Such a map is
called a chart or coordinate system.

Definition 2.6. [3][1] Let M and N be two manifolds and 7 : N — M
be a mapping. A section of m is a map o : M — N with

moo=1dy : M — M
where idy; is the identity of M. A mapping diagram is shown below

M= N

Definition 2.7. [10] Let U C R™ be an open subset of the n-dimensional
Euclidean space R™ and let V' C R™ be an open subset of the m-
dimensional Euclidean space R™. A map f : U — V is smooth if f has
continuous partial derivatives of all orders.

Definition 2.8. [4] Let M be any manifold and let U C M. The
tangent vector X to the curve ¢ at the point p = ¢(a) is defined as a
map from any function f: U — R to a number X f,

XifmXf= Sl )

dt
N i 9f
_;X%

where the relationship between the ¢-th coordinates of X and x € M,
denoted by X* and a?, is

xi= L s

N Et‘:a

This may be used to define the exterior derivative of the function f to
be df given by
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Since a coordinate basis gives X (f) = > | X* 97 then in a coordinate

oxt?
basis the exterior derivative of a function must be given by
n
of
df = -dx
f Z axl

Definition 2.9. [3| The tangent space T, M of a manifold M at a point
x is the set of all tangent vectors that can be made into a vector space.
The tangent bundle is the union of all tangent spaces at every point on
the manifold M. It is denoted by

TM = U T, M
rzeM

Definition 2.10. A wvector field o on an n-dimensional manifold M is
a smooth map ¢ : M — T'M such that o(z) € T, M for all z € M.

Definition 2.11. [16][13][15] The distance between the points a € R™
and b € R™, denoted by d(a, b), is defined by the the equation

d(a,b) = ||b—a|, for all a,b € R"

Then for any r > 0 let S"~! (a) denote the (n — 1)-dimensional sphere
of radius r centred at a

St Ha) ={z € R" : d(x,a) =1}
Let B.(a) be the open ball
B.(a) ={x € R" : d(z,a) < r}
and let D,(a) be the closed ball
D,(a) ={x € R" : d(z,a) <r}.

If =1 and a = 0 then S"! is the (n — 1)-dimensional unit sphere
denoted by S™~!.

An example of a vector field is shown in Figure 2.1 by the vector
field w(z) on the 1-dimensional sphere S! where z varies as points a, b
and c.

Definition 2.12. [16] A subset S C R™ is bounded if there exists an
r > 0 such that S C D,(0). A subset K C R" is compact if K is
bounded and closed.

Definition 2.13. [4] A Riemannian metric of a manifold M, also
known as the first fundamental form, is the inner product on the tan-
gent bundle T'M of M denoted by (X,Y) or X -Y for all X,Y € TM.
A manifold equipped with this metric is called a Riemannian manifold.

Definition 2.14. [15] An n-dimensional vector bundle, denoted by &,
is a combination of five different elements. Two of them are manifolds
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w(a) w(b)

w(c)

FIGURE 2.1. A vector field w on the unit circle S*

and three of them are functions. The functions and manifolds are
defined as follows

gz(‘/:ﬂ-’M7a7/B)

V and M are spaces called the total space and base space of € respec-
tively, m : V' — M is a surjection and a and [ are maps

a: U i p) x 7 p) =V
peM
where p is a point in the base space M and

B:RxV >V

The maps make each inverse image 7—!(p) € V, known as the fibre over
p, into an n-dimensional vector space over R such that the following
conditions are true.

a(m(p) x 7' (p)) C 7 (p)
B (R X W’l(p)) c 7 (p)

For each p € M, there is also a neighbourhood U of p and a homeo-
morphism ¢ : 771 (U) — U x R".

A vector bundle is sometimes informally referred to by the manifold
V or the projection map 7 : V — M.

3. BASIC IDEAS OF RIEMANNIAN GEOMETRY AND VECTOR
BUNDLES

Definition 3.1. [5] The vector space of smooth sections of a vector
bundle m : V. — M is defined as the vector space of smooth maps
o : M — V such that each map is a section of 7. It is denoted by

C(V).
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Definition 3.2. [5] A linear connection on a vector bundle 7 : V- — M
is a bilinear map V on spaces of sections:
V:C(TM)xC(V)—C((V)

written V : (X,0) — Vxo,X € C(T'M),0 € C(V) and such that for
feC(M)

(l) fod = fVXO'

(i) Vx(f-0)=Xf- -0+ fVxo.
V xo is called the covariant derivative of o in the direction of X.

Definition 3.3. [5] If X and Y are vector fields on M then the vector
field VxY — Vy X is called the Lie bracket of X and Y and is denoted
by

(3.1)

[X,Y] = VyY — Vy X

Definition 3.4. [5] On the tangent bundle T'M, the torsion of a con-
nection V is defined by

T(X,)Y)=-VxY +VyX+[X,Y]
for all X, Y € C(TM).

Theorem 3.1 (The Fundamental Theorem of Riemannian Geometry).
[5] If g is a Riemannian metric on TM, the fundamental theorem of
Riemannian geometry asserts that there is one and only one connection
(the Levi-Civita connection) such that

Vg=0and T =0

Proposition 3.1. [15] Covariant derivatives satisfy the following four
properties on a manifold M. For all tangent vectors X,Z € T,M on
the tangent space T, M at a point x, for all vector fields Y on M and
for all real numbers a,b € R

Viex4v2)Y = aVxY +0V,Y (C1)
For all vector fields Y, Z on M
Vx(Y+2)=VxY +VxZ (C2)
For all smooth functions f : M — R
Vx(fY) = f(x)VxY + (X[f)Y (C3)
For all vector fields Y, Z on M
XY, Z)=(VxY,Z)+ (Y, VxZ) (C4)

Definition 3.5. [3]|[14] A covector w at a point z on a manifold M
is defined as a linear map of a vector X on T, M to the 1-dimensional
Euclidean space R denoted by

w:T,M—R

X — w(X)
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The set of all covectors at x is a vector space called the cotangent space
of T,M at x denoted by T;M. The cotangent bundle is the union of
all cotangent spaces at every point on the manifold M. It is denoted
by
M= | ;M
xeM

Definition 3.6. [3]A tensor of type (r,s) is defined as a multilinear
map on r covectors and s tangent vectors which can be denoted by

r times s times
7\ 7\

%*MX...XT*MXTMX...XT]W\%R

Three examples of tensors are a vector, which is a (1,0) tensor, a
covector, which is a (0, 1) tensor, and a scalar which is a (0,0) tensor.

Definition 3.7. [5| If 7 : V — M and n : W — M are two vector
bundles the exterior product of the total spaces V' and W is defined
by using the fibres of 7 and 7 over all points of M as shown in the
following equation

VAW =7 ) An ()

The exterior power of V', denoted by A”V is the exterior product of
V with itself p times. This has the equation

p times

NVv=vnr.av

Definition 3.8. [10] A p-form w is an alternating tensor of type (p,0).
The set of p-forms can be denoted by QP(M) which has the equation

OP(M) =C (/\” T*M)
and the set of p-forms at the point x can be denoted by Q2 (M) which
equals
M)y = N\"T:M
p times
=T*MA .. NTM

p times
7\

=< w: iij X ... X Tm]\/f — R : w is multilinear and alternating

Definition 3.9. Let M be a Riemannian manifold, x € M and X,Y, Z €
T, M The second covariant derivative of Z, denoted by V% Z, is de-
fined by the equation

ViyZ =Vx(VyZ) = Ve vZ
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Definition 3.10. [5][12] The Riemann tensor R is a tensor of type
(3,1) defined for all XY, Z € T, M and all x € M by

R(X.Y)Z =ViyZ—VixZ (3.2)
Recalling Definitions 3.2 and 3.3

R(X,Y)Z =VxVyZ —=VyVxZ —Vxy|Z

This is the general definition of R.
Proposition 3.2. [5]For all X,Y,Z € T,M and all x € M the Rie-

mann tensor satisfies:
R(X,Y)Z =—-R(Y,X)Z
Proof. Using Equation 3.2
—R(Y,X)Z = —(VixZ —ViyZ)
=ViyvZ - VixZ
=R(X,Y)Z O

Definition 3.11. The Ricci tensor at x is the symmetric bilinear pair-
ing Ricci : T, M x T, M — R defined by

Ricciy (X,Y) ng R(X,E)E;Y)

_ng (E;, XY, E;)

where {E;}? , is an orthonormal bas1s of T, M.

Definition 3.12. [15] An endomorphism of a vector space V is a linear
transformation 7" : V' — V. The set of all endomorphisms of V is
denoted by End(V).

Definition 3.13. [5] The associated Ricci operator S € C(End(QPT*M x
V) to a point x and vector-valued p-form field o is defined by

0 if p=0
520 (X1, s Xp) = § SO 1DM(R(Ey, X0)0) (B, X1, oos Xy ooy Xp) ifp > 1
ki

where {E;} is an orthonormal basis of T, M, X, € C(T'M) and 0 €
QP(V).
Definition 3.14. [5] The exterior differential operator d : QP(§) —
QPFL(€) relative to the connection VV is given by

pt1

do(Xy,.., Xpi1) = Z(— YV (0 (X1, ey Xy ooy Xpi1)

+Z D) o([X5, Xj], X1,y Xy oo X5y o)

1<j
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Definition 3.15. [5] The codifferential operator d* : QP(£) — QP7L(E)
of a p-form w € QP(&) is defined by

d*W(Xl, ceey Xp—l) = — Z VEZUJ(E“ X17 ey Xp—l)

Definition 3.16. Let X = (z;;) be an n x n matrix. The trace of X is
the sum of the diagonal entries of X and is denoted by trace (X). The
equation for this is

trace (X) = Z Ty
i=1

Definition 3.17. [5] Let w be a 1-form on the vector bundle V. It is
defined to be metrically dual to the vector field Z if
w(Y) = (Y, Z)

Then the musical isomorphisms, denoted by b and #, are defined such
that w = Z” and Z = w?. Hence

oY) =) = (w()))

Definition 3.18. [15] The vector field X metrically dual to the dif-
ferential df of a smooth mapping on a manifold f : M — R is called
the Riemannian gradient vector field of f and is denoted by V f. This
can be defined in two ways. Firstly, by using the sharp sign # from
Definition 3.17, then V f is equal to

V= (d)*
Hence
(Vf, X) = df(X)
for all X € T, M and all x € M. Secondly, by letting {E;, F;}7,_, be
a basis of T, M, then the matrix from V f is defined as
Vf=Vgf(E))

Lemma 3.1. [5] Let {E;} be a basis of T,M, X; be vectors at x and
g® be the inverse of the metric g(E,, Ey). Then for p € QP(€)

(@p) (X1 Xp) = = 30" (Vi) (Be X1, o X ).
s,t

In particular, if p € QY(€), d*p = — trace Vp.
Definition 3.19. [5] The Hodge-de Rham Laplacian A is defined on
V-valued differential forms by
A=dd* +d'd: V) — Q)
Definition 3.20. The rough Laplacian, V*V : QP(V) — QP(V) is
defined as
V*Vo = — trace Vo for all 0 € QF(V)
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Definition 3.21. [15] The norm of a vector z in R™, which is often
denoted by both ||z|| or |z|, is defined by the square root of the inner
product with itself or the square root of the summation of its coordi-
nates squared as shown in the following equations.

)] = || =

Definition 3.22. [5] Let 0 : M — N be a smooth map and {E;} be an
orthonormal basis of T, M. Its covariant derivative Vo can be viewed
as a section of the bundle C(T*M x T'M), and its norm at a point x of
M can be denoted by both |[|[Vo| or |Vo|. The Hilbert-Schmidt norm
of Vg, o is defined as

IVo|? = Vo> =) (Vg0 Vo)

i=1

Definition 3.23. [10] The summation convention is a convention where,
if an index appears in a summation twice, the summation is implicitly
summed over without the need to write the sum explicitly.

Theorem 3.2. (Weitzenbock formula in the 1-form case)[5] Let & :
V' — M be a Riemannian vector bundle over a Riemannian manifold.
Then for any o € Q)

Ao = — trace V2o + S(0)

Proof. Let {E;} be an orthonormal basis of T, M extended to a local
orthonormal basis of vector fields such that Vy E; = 0 for all Y €
T,.M. Let the vectors X,Y € T, M be extended from the point z to a
neighbourhood of z so that Vg, X = 0 at the point z. When o € Q'(¢),
d*o equals,

d'oc=— Z Vgia(Ei)
do(X,Y) equals,
do(X,Y) = V}/(( (Y) = Vi(o(X)) = o([X,Y])
X(o(Y)) =Y(o(X)) —o([X,Y])
( x0)(Y) = (Vyo)(X)
and (Vxo) (Y) and — (Vyo) (X) equal
(Vxo)(Y) = V(oY) - o(VXY)
—(Vyo)(X) = =VY(o(X)) + o(V¥ X).
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Using the summation convention

—d(d*0))(X) = Vx(VEg,o(E:))
= (VxVg0)(E:) — Vi,o0NxE)

0

= (VxVg,0)(Ei)

The Hodge-de Rham Laplacian on V-valued differential forms is com-
pleted by calculating —(d*(do))(X).

—(d*(do))(X) = Z Vi, (do)(E;, X)

= VEi(dO(Ei,X)) — dU(EEi/EZ X)— dO'(Ei,M)
0 0

= Vg, (do(E;, X))

= Vg, (Vgo)(X) = (Vxo)(E;))

= (Vg,VE,0)(X) + (VE,0)MgX) — (Ve Vx0o)(E)
——

0

+ (Vx0o) (Ve fi)
0

= (Ve Vgo)(X) = (Ve Vxo)(E)
Then —(Ac)(X) equals

—(Ao)(X) = —(d(d*0))(X) + (—(d"(do))(X))
= (VxVgo0)(E:) — (Vg Vxo)(E;) + (Vg VEo)(X)

The rough Laplacian, V*V, equals

V*Vo = — trace Vo

o 2
- z :in,EiU
7

0
- _ininU
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By the equation for the Riemann tensor in Definition 3.10
(R(X, Ey)o)(E;) = (VxVE,0)(E;) — (Vg Vx0)(E;) — Vix,g)(E)
= (Vch g — VJZEi,XUin)
= VxVgo(E) - Vy Eo(E)
——

— VEZVXO'(E1> -+ VMO'(EI)
O’L

= (VxVg,0)(E;) — (Vg Vxo)(E:)
In this case when o € Q(¢)

S (0) (X) = Y _(R(E;, X)o)(Ey)
Using the summation convention and Proposition 3.2

—5(0) (X) = (R(X, Ei)o)(E;)

Therefore
—(A0)(X) = \(VXVEio)(Ei) - (VEZ.VXU)(EZ‘)/—F VEiVEiU(X)/
(R(X,E:)o)(Es)=—S(0)(X) —V*Vo—trace V2o
In conclusion
Ao = — trace V2o + S(0) O

Corollary 3.1. [5] Let £ : V. — M be a Riemannian vector bundle
over a Riemannian manifold. For any o € Q°(&) let F equal

1
F=_|of
2

then AF equals
AF = (V*Vo,0) — |Vo|?

This corollary will be used later in Section 11 Harmonic vector fields
on Riemannian space forms.

4. THE DIVERGENCE THEOREM

Definition 4.1. Let {E;} be an orthonormal basis of T, M and V be
a vector bundle. If ¢ is a smooth vector bundle-valued 1-form on M,
which is a smooth section of the bundle T*M x V, then the covariant
coderiwative V*o is the section of V' defined by
Vio==) (Vo) (E)
i=1
Let V : X — VX be the covariant derivative of X where X is
a vector field which is a (1,0)-tensor and where VX is a (1,1)-tensor
which is a T'"M-valued 1-form. The mapping diagram between V and
V*is
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v
C(TM) = C(T*M ® TM)
V*

Definition 4.2. [10]A linear functional on a vector space V' is a linear
map 6 : V — R. The dual space V* of V is defined as

V* = {linear functionals on V'}

Theorem 4.1 (Stokes’ Theorem). Let M be a compact n-dimensional
manifold with a boundary. Therefore the boundary of the manifold OM
is a compact (n — 1) manifold. If w is an (n — 1)-form on M

/aMw_/ dw

Definition 4.3. Let (M", g) be an n-dimensional Riemannian mani-
fold and let x' be a local coordinate system. Then the volume form
associated with g, denoted by vol(g), is defined by the equation

vol(g) = da' A ... A da™+/det(g)
where det(g) is the determinant of g as a matrix.

Definition 4.4. [5] An alternative way to describe the codifferential
operator d* is to define the Hodge star operator * : QP(§) — Q" 7P(£*)
as the unique linear operator satisfying at each point the relation

n A s = g(n,¥)vol(g)

= <777 W ’ VOl(g)
for all n, 1 € QP(¢). Here n A% is the real valued m-form defined using
the exterior product on forms and the duality pairing between & and £*.
Relative to the Riemannian structures of V and T'M, the codifferential

operator d* : (&) — QP71(€) is characterised as the adjoint of d via
the formula

/M (dn, Byvol(g) = /M (n, d"d)vol(g)

Example 4.1. Let n,¢ € QP(M). A special case of the definition
above is when ¢y = f € Q%(M) (i.e. : M - R) and n=1

nAxf=1xf
= xf

g, ¥) =g(1, f)
=1-f
=f

So * f = f vol(g)
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Definition 4.5. [5] Let w be a 1-form on a vector bundle 7 : V' —
M, let {E;} be an orthonormal basis of T,M and let W = w*. The
divergence of a vector field W on a Riemannian manifold is defined by
the following equation

div W =) (Vi W,E)

i=1

Theorem 4.2 (Divergence Theorem). Let Y be a vector field on M,
where M 1s compact. Then

/ divY vol(g) =0
M

Proof. Let n be a 1-form on M dual to Y. Then the divergence of Y
may be characterised as:

divY =dn
where 0 is the exterior coderivative of (M, g), defined by

= xd*

where d is the exterior derivative, and * is the Hodge star operator.
Abbreviating the volume form vol(g) to w, the Hodge star operator is
characterised by the following equation

¢ Nx) = g(¢,P)w

for all p-forms ¢, on M. In particular, if f is a smooth function
(0-form) on M then

xf = fw
It follows from this, and the involution formula
wx = ()Y
that
(divY)w =« (divY) =%dn =*xxdxn=d(xn)
Now, by Stokes’ Theorem

[ @ivvye= [t~ [ -0 -

Proposition 4.1. Suppose M is compact. Let o be a section of £, and
let a be an E-valued 1-form on M. Then

/M<Va,a>vol(g):/M<U,V*a>vol(g)
and

/M (o, Vo) vol(g) = / (V*a, o) vol(g)

M
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Proof. By the Hilbert-Schmidt norm
/M (Vg.0,0(E;))vol(g) = /M Ei(o,a(E;)) — (o, Vg, (a(E;)))vol(g)
- /M Ei{o,a(E)) — (0,(V,a) (E) + a (Vg E))vol(g)

_ /M (0,V*a) + Ei{o, a(E)) — (0,0 (Vi E;))vol(g)

- /M (o, V*a)vol(g) O

5. HARMONIC MAPS AND THE EULER-LAGRANGE EQUATION

Definition 5.1. [15] Let f : U — V be a smooth map between open
subsets of n and m-dimensional Euclidean spaces U C R™ and V' C R™.
The smooth map f is defined to be a diffeomorphism if f is invertible
and the inverse map f~!: V — U is a smooth map. Then the open
sets U and V are also defined to be diffeomorphic to each other.

Definition 5.2. A subset D C R™*! that is diffeomorphic to an open
set U C R" is defined as a hypersurface patch. Let S C R™! and
V C R™"! be open subsets of the (n + 1)-dimensional Euclidean space
R™*1. Then a hypersurface patch of the form D = SNV is defined as
a chart domain. If each point of S lies in a chart domain then S is a
smooth hypersurface.

Definition 5.3. [15] A smooth hypersurface S € R" is said to be
orientable if there exists a smooth unit normal field on S. This is a
smooth function £ : S — R”™ such that, for all p € S, {(p) is orthogonal
to T,S and |{(p)| = 1. If S is orientable then there are precisely two
smooth unit normal fields, choice of either of which constitutes an
orientation of S.

Definition 5.4. [15] Let M C R? be a hypersurface, with a unit normal
field &, and let ¢ : D — U be a smooth chart with local parametrisation
p: U — D. It is convenient to label the coordinates u = (uy,us) € U
and then abbreviate the partial derivatives of p as

op ’p

8ui — b 616181,1,] — Py

Define three smooth functions W; : U — R? as
Wi=p1, Wo=pa, Waz=E&op

For each u € U the three vectors (Wy(u), Wa(u), W3(u)) form a basis
of R which changes as u varies. The basis (Wy, Wy, W3) is called the
Weingarten frame of M with respect to the chart (D, ¢).
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Definition 5.5. [15] Let g;; be the metric
Gij = (i, pj) = Wi - W;, 1,5 € {1,2}

The Christoffel symbols of M, denoted by I'¥

ij» satisfy the general equa-
tion

1 (Ogay Ogj  Ogi 1
k I Jt_ J ) — = Yy N — (q..
Fijgkl — 9 (au] + au, aul 9 ((gll)j + (g]l)z (g’b])l)

Definition 5.6. [5] Let ¢ : (M,g) — (N,h) be a smooth map. Its
differential d¢ is a section of the bundle Q' (¢TN) = T*M x ¢ 'TN,
and its norm at a point x of M is denoted by |d¢|, equipped with the
metrics g and h. If (z°) and (u®) are local coordinates around x and

é(x), |do|? is defined by the equation
(o) = g7 has(9) 0]
where (¢$) = (%‘%) is the local representation of d¢.

Definition 5.7. [5] The energy density of ¢ is defined as the function
e(¢) = L|dp|? and the energy of ¢ is defined to be the number

E(9) = /M (¢) vol(g)

Example 5.1. In R3 the energy of f over V is:

B =5 [ [ [ 19y

Definition 5.8. [5]A function b has the Dirichlet property on M if b
deforms M less than other comparable functions. This inequality is
written as

E(b) = /M 2 IVb? vol(g) < /M £ IVal?vol(g) = B(a)

Definition 5.9. [5] For a given v, let ¢, be a family of maps such that

¢o = ¢ and %‘t:o =v. Then D,E(¢) is defined as
dE (¢1)
D,E(¢) =
(¢) it |,

Definition 5.10. [5] A map ¢ : M — N is harmonic if and only if
it is an extremum of the energy. This means that D,FE(¢) = 0 for all
v €C(p7'TN).

Theorem 5.1. [5] A map ¢ : M — N is harmonic if and only if it
satisfies the Euler-Lagrange equation T(¢) = 0, where 7(¢) = —d*d¢p =
trace Vdo is called the tension field of ¢.

A proof of this theorem above can be seen in [5]. It is also shown in
[5] that to express the equation for 7 in local coordinates using (z*) on
M and (u®) on N, let g;; and hap be the metrics and *T%, and VT'g
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be the Christoffel symbols of M and N respectively. Then calculate
V.o (dg)

ozt
-0
, — dpd =
Vo (d0)= Ve, (% & aua)
Apply Definition 3.2 to give

- 0 o .0 a T*M j 0 a iy TN 9
Ve (d0) = (aﬂ) ) 05 (Vi do!) g5V, TN B

To continue this calculation note that V7™ daz/ = —MTY da* and
't

-1 0 0 0
v¢ ™~ Y _ vIN _ ﬁNIw v
o Ou” ‘f’fa% ou® O Be Gu
Hence
(Vdo)s; = ¢ — MT5 o + V15,6 ¢)

ij j
Therefore the equation for 7 in local coordinates is

7o =g (Vo) = —A¢" + V15,6707 g"
6. THE SASAKI METRIC AND VERTICAL ENERGY

Definition 6.1. [4] Let ¢ : V' — W be a linear transformation of
vector spaces. The kernel of ¢, denoted by Ker ¢, is defined by

Ker ¢ = {v € V|p(v) =0}

Definition 6.2. [1][9] Let K : T€ — T'M = &£ be the connection map
for V which is characterised by the equation

Vxo =K (do(X)) e T,M
where o : M™ — T'M is a section of a vector bundle 7y, : TM — M™.
A mapping diagram including m;, K and dmy; is shown below
Levi-Civita
connection map

K
(TM = E,h) «—— TE
WMl ‘dﬂ'M
(M, g) 7 TM

Sections of TM and TE, which are ¢ and do respectively, are also
shown in the next diagram below.

(TM = €,1h) <5 7¢

E

(M™, g) ™

TM
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The Sasaki metric is defined as
h(A, B) = g (dn(A),dr(B)) + g (K(A), K(B))

In the mapping diagram above a section of T'M is o and a section of
TE is do because

Ty OO0 = ldM M—-M
and by the chain rule
d7TM odo = d(ldM)

Definition 6.3. [15] At any z € M and € € £ the diagrams in Defini-
tion 6.2 can be applied using the tangent spaces T.€ and T, M and the
maps my(€) = x and dmy(€) : T.E — T, M. The vertical subspace at €
is an n-dimensional subspace V, of T.E defined as

V. = Ker dr(e) C T.E

Definition 6.4. [15] At any x € M and € € £ the diagrams in Defini-
tion 6.2 can be applied using the tangent spaces T.€ and T, M and the
map K : T.E — T, M. The horizontal subspace at € is an n-dimensional
subspace H, of T.£ defined as

H. =Ker K CTE

Proposition 6.1. [15] Using the subspaces in Definitions 6.3 and 6.4,
T.E=V.oH, and TE =V & H.

Proposition 6.2. The energy of o can be split into horizontal and
vertical components

_1 / ldo | vol(g)

= 2 vol(M, 9 / V| vol(g)

Proof. Recall that the energy density of ¢ is the function e(¢) =
1|ld¢||* and the energy of ¢ is the number

E(9) = / e(¢)vol(g)

=5 [ laolvol(o

Let h be the Sasaki Metric and o : (M, g) — (T'M, h) be a vector field
on (M, g) which is also compact. By Proposition 6.1, do(X) can be
split into vertical and horizontal components

do(X) =d"o(X) +d"o(X)
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Using the Sasaki metric and the characterisation of K, the horizontal
component of ||do]|? is

|d?o|?> = h | d?o(E;),d" o (E))
T T
= g (dn(d"o(Ey)), dn(d" o(E)))
+ g (K(d"o(E;)), K(d"o(E;)))
=g (dn(d"o(E))),d"n(E;))
Equation (6.1) leads to
|d"o||? = g (E;, E;) = n

Using the Sasaki metric and the characterisation of K, the vertical
component of ||do||? is

|dVo||> = h | dVo(E;),d" o(E;)
T T
=g (d?T(dVO'(EZ’)), d?T(dVO'(Ei)))
9 (K(dVo(E)), K(d"o(E)))
=g (K(d"o(E:)), K(d"o(E;)))
= g(Vg,0,Vg0o) by Equation (6.2)

= ||Vol?
Adding these two components together
ldo||* = h(do(E;), do(E;))
h(dfo(E;),dFo(E;))
= g(dn(do(E;)), dr(do(E;))) + g (K(do(E;), K(do(E;)))

h(dVU(E:)r,dVU(Ei))

= |ld"0|® + ||d"o]®
—— N —
n Vel?

Therefore the energy of o is

/ ldor||2vol(g)

- 2/ (15> + 14" o |[2) vol(g)

= §vol (M, qg) / |Val|[*vol(g) O
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The equation above leads to the following two definitions including
a definition of a harmonic vector field which will be generalised in
Section 10 called The generalised Cheeger-Gromoll metric and vertical

(p, q)-energy.

Definition 6.5. [1] The vertical energy (or total bending) of o is the
number

1
E(0) = 5 [ IVal*wolls)
2 Ju
Definition 6.6. A vector field o is a harmonic vector field if
d d
—| E(o)=—| EY(0:)=0
il _ B =g F )
for all smooth variations o; of o through vector fields. A smooth vari-
ation o; of o is the map ¥ : M x R — T'M with the conditions that
(1) Sz,1) = oy(x),
(2) oy is a vector field,
(3) o9 = 0.

7. HARMONIC UNIT FIELDS

Definition 7.1. Let (M, g) be a Riemannian manifold and o be a
vector field. The vector field o is a unit vector field if ||o]| = 1 and o
is a harmonic unit vector field if 4 1—o B (01) = 0 for all variations o
of ¢ through unit vector fields.

Lemma 7.1. If 0 is a unit vector field then the following equation is
true

(V'Vo,0) =[|Vo|?

Proof. Using the general equations for the rough Laplacian V*Vo and
the trace of X from Definitions 3.16 and 3.20, —(V*Vo, o) equals

—(V*Vo,0) = — (—trace V0,0
( y=—( )

= <Z V2Ei7Eia,a>
=1
= <VEZVEZU — VinEiU, 0’>
= Ei<inU> J) - <inU7 VE¢J> - <VVE1-E~L0-’ J>

Since ||o||?> = 1 and by the definition of a tangent vector from Definition
2.8,



27

Combining the two equations above leads to the following equation

—(V*'Vo,0) = Ei(VE,0,0) — (VE,0,VE0) — (Vy, £,0,0)
—(V*Vo,0) =0—|Vo|* -0

—(V*Vo,0) = —||Vo|?

= (V*Vo,0) = |Vo|? d

A harmonic unit vector field is also known as a harmonic unit field.
This alternative term will be used for the rest of this dissertation.

Lemma 7.2. If 1 is a vector field such that (¢,0) = 0 and ||o]| = 1,
then there exists a smooth variation o, of o with

(1) Jlo¢ll = 1 for all t,

(2) Gligon =1

Proof. Let o, = ﬁ for small |t| when o is a smooth unit vector

field. By the quotient rule,

dl (ot tllmo Gl g (0 + ) = G, llo+tll (o + 1) )
- , =
dt|,_g lo + 172
d
=) — t
o= (G| ol
Differentiating the denominator of oy
o+l = S (ot t6,0 4+ 1)}
dt|,_g ’ -t 7 "
1 -1d
=—(o+th,o+t), % —| (o+1t),0+1Y)
2 dt|,_,
d
=(— t
(| erm).0)
= (¢,0)
=0
Therefore
d d
—| a=v—{— ||
dt|,_y = =0

g

Theorem 7.1. A unit vector field o is a harmonic unit field if and
only if V*Vo = ||Vo|?c.
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Proof. The equation for a harmonic vector field is equivalent to
E(oy) =0 <— —

d d| 1 ,
z 1(q) =
i3 [ IvedPela) =0

dt |,y
d
= [ —
i

where ||[Va,||? is the Hilbert-Schmidt norm equalling to

IV *vol(g) =0
t=0

n

IVoull> = (V01 Vo0

i=1

Now
d d <
%HVO}/’P = % Z<VEiata VEiat>

i=1

d
< E - VEZ-Uu VEiO't>

d
-s{5e (4] )70

Recall the equation for the vector field ¢ from Lemma 7.2 which is
U(z) = 4| 1o 0t Where o,(z) is a curve in T, M and use it in the previous
d

d
FIval =2(Ve (5] ) Ve

=2 <VE12/}7 inat>
2 <v¢7 vat>

[\]

equation for &{|Voy||?

By the definition of a harmonic vector field and Proposition 4.1

1
= VtQ 1 = V,Vtvl
5 [ Ivedvalte) = [ (90,900 val)

d *
i, Elo0= [ 0.9 a) i)

a
dt

(7.1)
S

Recall from Lemma 7.2 that o, is a unit vector field. Therefore the
following equations are true.

d
1= oul? = 0= 2| (o100)
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Then by Lemma 7.1

4
dt

EV (o)) = / (v, V*Vo, — (V*Vay,01)0)vol(g)
=0 M

- /M (¥, V*Vo, — | Voo )vol(g)

If V*V(Tt == ||Vat||20t

4
dt

EY (o)) = / (b, [VorlPor — | Vor2avol(g)
M

t=0

= [ tw.opvol(y

=0
From the definition of a harmonic vector field recall that oy = o so
o is a harmonic unit field if V*Vo = ||[Vo|?o. The unit vector o is
a harmonic unit field only if V*Vo = ||[Vo|?0 because v is arbitrary
except that it needs to satisfy (¢, o) = 0. Hence o is a harmonic unit
field if and only if V*Vo = ||Vo|?0. O

8. THE HOPF VECTOR FIELD

This section continues studying harmonic unit fields and focuses on
a specific harmonic unit field called the Hopf vector field. Before it can
be defined some more information is needed.

Lemma 8.1. For any unit vector field o, (V% yo,0) = —(Vxo, Vyo).

Proof. By the equation for the second covariant derivative

<V§<,YU7 o) =(Vx (Vyo) —Vy,vo,o0)

— XS%@’UE —(Vyo,Vxo) — (Veeyo, o)

0 0
= —<Vy0', VXo'>
This is true because ¢ is a unit vector field and for all Z7 € T M
1
<VZJ> 0> = §Z<Ua 0>
1
= 520
1
=-7(1
S2(1)

= U

Recall that Theorem 7.1 states that o is a harmonic unit field if and
only if
V*Vo = Vol
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Proposition 8.1. The vector field o is a harmonic unit field if and
only if V*No = fo for some f: M — R.

Proof. Theorem 7.1 implies that this proposition is true with f =
Vol
By Lemma 7.1

= ||Vo||? by the summation convention
If V*Vo = fo then
(V*Vo,0) = (fo,0)

= f{o,0)
= f if o is a unit field

Hence f = ||Vo|]? if o is a unit field

Therefore V*Vo = fo implies that ¢ is a harmonic unit field and this
completes the proof. O

Definition 8.1. The equation for a (2n + 1)-sphere is defined as
SQn—i—l = {(xlv "'7$2n+2) : .CE% +..F x%n—&-? = 1}

This is the same as an n-dimensional unit sphere as defined in Definition
2.11. For example a 1-sphere, S!, is a unit circle and a 2-sphere, S? is
a 3-dimensional unit sphere.

Definition 8.2. [15] Let (G,0) and (H,x) denote vector spaces G
and H equipped with the metrics o and * respectively. A function
0 : G — H is an isomorphism if

O(aob) =0(a)x0(b) for all a,b € G (8.1)

(G,0) and (H,*) are isomorphic, written G = H, if there is an iso-
morphism between them.

There exists an isomorphism I : R?**2 — C"*! such that
I (21, ..y Topyo) = (21 + 129, ..., Top g1 + 1T2,12)
Then for all z € R*"*2 iz € R?>"*? is defined by
iv =11 (il (7))

= (—172,901, —Tg, T3y -y —5E2n+2,$2n+1)
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Lemma 8.2. Let x,y € R**2 and - be the dot product. The following
equation 1s true

(iz) -y = —x - (iy)
Definition 8.3. [8] The Hopf vector field o : S***1 — T,5?""! when
n € N is defined as

o(r) = iz, for all z € S

Remark 8.1. The equation for the tangent space 7, 52"+ of S2"*! ig
T,5 " = {z € "t X e R*™? 2. X =0},

Let o(x) be the Hopf vector field and therefore o(z) € T,5%" ™. Then
by Lemma 8.2 and the equation for the tangent space 7,5?""! the
following equation is true
o(x) x=(ix) z
= —z- (ix) (8.2)
=0
Definition 8.4. Assume f : U — R™ where U C R" is an open

subset. Let z € U, X € R" and X denote the j-coordinate of X. The
directional derivative of f at x in the direction of X is defined as

Dx f(x) = Z agﬁf) X,

J

j=1 z

where f; : U — R is the ¢-th component of f.

Definition 8.5. Using the same functions from the definition above,
the Jacobian matriz of f at x is defined as

Jp(x) = <—a£ij)

The j-th partial derivative of f at x is denoted by

0fi(x)
D. - 2
Another way to write the equation of the directional derivative is by
expanding X = X, E) + ... + X, E,, where X; = X - E;, then
Dx f(z) = XiDif(z) + ... + Xp D f(2)

Example 8.1. Let z = a = (a;,a2) € R? and X = h = (hy, hy) € R?.
Taking the function f : R? — R3 which has the equation

)Wherelgigmandlgjgn

x

T

f (l’l, .%'2) = (.%'1 + 2.132, T1T9, 2ZE1 + (L’g) s

It has the partial derivatives

Dif(a) =(1,a2,2), Daf(a) = (2,a1,1).
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The Jacobian matrix of f at a is

1 2
Ji(a) = a2 a
2 1

The directional derivative of f at X is therefore:

DXf(CL> : (h,l, hg) —> (hl + 2h2, CLth + a1h2, 2h1 + hg)
Definition 8.6. [15] The shape operator (or Weingarten map) A, of
M € R"™ at p is the linear map

A, T,M — T,M; A, =—d&(p)
Where € is the unit normal field as defined in Definition 5.3.
Definition 8.7. [15] The second fundamental form of M at p is the
bilinear form denoted by «, : T,M x T,M — R and defined as
ap(X,Y) = (4,(X),Y)
= —d&(X) - Y where ¢ is the unit normal field.

Remark 8.2. The second fundamental form «a,(X,Y) as defined in
the definition above is symmetric.

Definition 8.8. The Gauss formula for the covariant derivative VxY

is defined as
VxY =DxY —a(X,Y)¢

= DxY —(A(X) Y)¢
= DxY + (d§(X) - Y) ¢
This formula agrees with the more intrinsic definition of the covariant

derivative which was written as V yo in Definition 3.2.

Theorem 8.1. Let o be the Hopf vector field on S***1. Then V*Vo =
2no. Hence o is a harmonic unit field.

Proof. Recall that
V'Vo ==Y Vi o

for any orthonormal basis {E;}. Therefore VX o for all X|Y €
T,S?**! needs to be calculated. Taking the equation for the second
covariant derivative

V§(7yU = VX (VyO‘) - vayo',

then the Gauss formula for the covariant derivative, VxY on S?"+!,
equals

VxY = DxY —a(X,Y)¢, VX € T,5%" !
where DxY is the directional derivative and «(X,Y’) is the second
fundamental form. To find the unit normal field note that in this case
S = 8?1 is the (2n + 1)-dimensional unit sphere therefore the radius
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r = |z|? = 1. This means that |x| = 1 and hence the unit normal field
of §?"*1is ¢ = x. Therefore a(X,Y’) equals
a(X,Y) = A(X)Y

— de(X)-Y

= —dz(X)-Y
——(xY)

(8.3)

where A(X) is the shape operator and £ is the unit normal field.
Calculate Vyo

Vyo = Vy (Z$)
= Dy (iz) — a(X,Y) by the Gauss formula
= Dy (iz) +Y - (iz) by Equation (8.3)

Using the equation of the directional derivative

The Gauss formula for the Hopf vector field equates to

Vyo = Dyo + (Y -0)(§)
=1Y + (Y - 0)¢ by Equation (8.4)

Hence the second covariant derivative for the Hopf vector field is

V.ZX,YU =VxVyo — VVXYU
= Dx (1Y 4 (Y, 0)) + (X - (1Y + (Y056))¢
W—/

—i(VxY) = ((VxY)-0)¢

=iDxY + (X{Y,0)){+ (Y, 0)Dx&+ (X - (1Y) €
—iVxY — (VxY, 0)¢

=i ((X,Y)§) + (Nx¥70) + (Y, Vx0)) ¢
+(Y,0)Dxx + (X - (1Y) § — (V¥;0)E

= —(X,)V)o+ (V- (iX + (X -0)8)¢
+({Y,0) X + (X - (iY)) ¢

= (Y,0)X — (X, Y)o + (Y - (X]TE + (X -YTE

Therefore
Viyo = (Y,0)X — (X,Y)o



34

Finally the rough Laplacian of the Hopf vector field equals

2n+1
V'Vo=-Y V3o
2n+1
=2n+1)o—o0o
= 2no. ]

9. KILLING FIELDS

Definition 9.1. [2] A vector field K on a Riemannian manifold (M, g)
is Killing if

(VxK,)Y)+(X,VyK)=0 (Killing’s identity)
Definition 9.2. [15] The flow of a vector field o on a manifold M,

denoted by ¢; : M — M, is defined to be a function on M that satisfies
the equation

d
o (pi(x)) = at (¢¢(x))
for all t € R and © € M where ¢y = id,,.

Definition 9.3. [16] An isometry f: X — Y is a bijective map such
that

dy (f(x1), f(x2)) = dx(x1, 22)

where dy and dx are metrics.

Example 9.1. Let R? and C denote the 2-dimensional Euclidean space
and the complex space respectively. Let (z,y) be the coordinates of
a point in R? and z be a function z(z,y) = x + iy € C which is an
isometry from R? to C.

Let o(2) : C — C be the vector field

o(z) =22

Define ¢;(z) to be a mapping ¢, : C\ {;} = C\ {7}
2
“il2) = 1—tz
To see if ¢4(z) is the flow of the vector field o calculate o (¢(x)) first

oo = (175

22

(1—t2)°
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FIGURE 9.1. A Killing field in 5>

Then calculate £ (¢(2))

=5 ()

(1 —tz)d(z) — zd(1 —tz)
(1 —tz)?
(1 —=12)0 — z(—2)
(1 —tz)?

22

(1 —tz)?
=0 (¢(2))
Therefore ¢,(z) is the flow of the vector field o(z) on C\ {}}.

Two examples of Killing fields are shown in Figures 9.1 and 9.2 where
the arrows depict the flow, ¢, : M — M, of the unit sphere S? and the
unit circle S! at time t.

Let o be the Hopf vector field o(z) = iz for all x € S?"™'. The
covariant derivative of o is

Vxo=iX +(X,0)¢
Using Killing’s identity on o
(Vxo,Y)+ (X, Vyo) = (iX+(X,0)§) - Y + X - (1Y + (Y,0)¢)
=(0X)-Y+X-@1Y)
=0
Therefore o is a Killing field.

Proposition 9.1. [15] Recall the equation for the Riemann tensor R(X,Y)Z
from section 3

R(X,Y)Z =V5yZ —VixZ
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FIGURE 9.2. A Killing field in S!

The Riemann tensor satisfies the following properties for all X, Y, Z, W €
T,S and all z € S

R(X,Y)Z = —R(Y,X)Z (R1)
(R(X,Y)Z,W) = (R(Z,W)X,Y) (R2)
(R(X,Y)Z,W) = —(R(X,YW, Z) (R3)
R(X,Y)Z + R(Z,X)Y + R(Y,Z)X =0 (R4)
R(X,X)Y =0 (R5)

Remark 9.1. Property (R4) is known as Bianchi’s identity.

Proposition 9.2. Let K be a Killing field in a Riemannian manifold
(M,g). Then

ViyK = —R(K,X)Y
forall XY € T, M and all x € M.

Proof. The first step is to prove the following equation

(VixK. Z) = —(X,V% ;1K) (9.1)
By Killing’s identity

(VxK)Y)=—(X,VyK)
Replacing Y with Z
(VxK,Z)=—(X,VzK)

Taking the equation for the second covariant derivative

VAQXA/O' = VX (VyO’) — VVXyO' (92)
The second covariant derivatives V% y K and V% ;K are
VixK =Vx(VxK) = Vo xK (9.3)

and
VizK =Vx (VzK) = Vy, 2K
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Recall the equation of the Riemannian metric on o and the second
covariant derivative of ¢ from the proof of Lemma 8.1

(Vi—’ya, o) =(Vx (Vyo) —Vy,vo,o) (9.4)

The Riemannian metric on the second covariant derivative V% K
and Z is

(VixK,Z)=(Vx (VxK) - Vy,xK,Z)
The Riemannian metric on the second covariant derivative V%Q 7K and
X is
(X, V&% 2K) = (X, Vx (VzK) = Vy,zK)
Extend X, Z € T,,M to vector fields such that
VyX =0=VyZ
for all Y € T,,M so that
VxX =0
To prove Equation (9.1) use Killing’s identity and the equation above
(VxK,Z)=—(X,VzK)
= X(VxK,7Z) = —-X(X,VzK)
= (Vx(VxK),Z)+ (VxK,VxZ) = —(VxX,VzK)
— (X, Vx(VzK))
= (Vx(VxK) = VyxK,Z)+ (VxK,VxZ) = —(X,Vx(VzK))
= (Vix K. Z) = —(X,Vx(VzK))

—(VxK,VxZ)
= (VixK,Z) = —(X,Vx(VzK))
+ (X, Vy, zK)
= (VixK,Z) = —(X,Vx(VzK)
— Vv, zK)

= (VixK,Z) = —(X, VX ,K)
The second step is to prove the following equation
(VixK, X)=0 (9.5)
Using the equation for the second covariant derivative
VixK =V (VxK)—Vyg,xK

and by Equation (9.4) the following equation is true

(VyxK, X)=(Vz(VxK) - Vy,xK,X) (9.6)



38
To prove Equation (9.5), start with Equation (9.6) and use Proposition
3.1
(VixK, X) = (Vz(VxK) = Vy,x K, X)
= (Vz(VxK) - VoK, X)
= (Vz(VxK), X)
Z(VxK,X)— (VxK,VzX) by property C3
=7Z(VxK,X)— (VxK,0)
Z(

By Killing’s identity
(Vx K, X)+ (X, VxK) =0
= 2<VXK, X> =0
= <VXK, X> =0
Hence (V% v K, X) equals
(Vzx K. X) = Z(VxK,X)

= 2(0)
=0
The third step is to prove
VixK =—-R(K, X)X (9.7)
Recall the equation for R(X,Y)Z and property R1 in Proposition 9.1
R(X,Y)Z = V?X’YZ = V%XZ (9.8)

and
R(X,Y)Z =—-R(Y,X)Z
By Equations (9.1) and (9.5)

(VixK, Z) = (X, VX /K)
=0— (X, VX ,K)
= (Vox K, X) — (X, VX ,K)
= (V7 xK,X) — (V% ;K. X) by the symmetry of (—, —)
— (R(Z, X)K, X)
= —(R(Z,X)X, K) by property R3
= —(R(X,K)Z, X) by property R2
= (R(X,K)X, Z) by property R3
= (—R(K, X)X, Z) by property R1

= VixK = —-R(K, X)X



The fourth step is to prove the following equation
Vievxay K+ RK, X +Y)(X +Y)=2V% K +2R(K,X)Y

Using Equations (C1), (C2) and (9.3)

V§(+Y,X+YK - VX+Y(VX+YK) - VVX+YX+YK
= Vx(VxivyK) + Vy(VxivK) = Vo xiv K
= Vi (VxK) + Vx(Vy K) + Vy(Vx K)
+Vy(VyK) = Vy, v xiv K
— Vx(VxK) + Vi (Vy K) + Vy (Vi K)
+ Vy(VyK) = Vo x40y v K
=Vx(VxK) + Vx(VyK) + Vy(VxK)
+ Vy (Vv K) = Vv xivy x4y v+vy v K
=VxVxK+VxVyK +VyVxK 4+ VyVyK
—VuxK —Vy,wK —Vy,xK - Vg, vK
= ViyK +VixK+VixK+ Vi K

By Equations (9.2), (9.7), (9.8), (C1) and (C2)

RIE, X +Y)(X +Y) = Vi xy (X +Y) = Viyg(X +7)
=Vr (Vxiy(X +Y)) = Vyexir(X +Y)
— Vxuy (Vk(X +Y)) + Vo, k(X +Y)
=Vik (Vxiy X +VxyY) = Vyexv X — VyexyY
— Vxiy (VKX +ViY) 4+ Vo vk X + Vo kY
=Vg (VxX+VyX +VxY 4+ VyY)
— Vuex+vey X — VogxiveyY
Vi (VX + VgY) = Vy (VX + ViY)
+ Voykivyk X + VyykivygY
=Vg(VxX)+ Vg(VyX)+ Vg(VxY)+ Vg (VyY)
—VvexX —Vy,vX = Vy, xY — Vg, vY
—Vx(VgX) = Vx(VkY) = Vy(VgX) — Vy(VgY)
+ Vy kX +VykY +Vy, kX + Vy, kY
=VixX +Viy X +VixY + Vi Y
VX - VX - VR LY S VY
— R(K, X)X + R(K,Y)X + R(K, X)Y + R(K,Y)Y
= —VixK - Vi K+ R(K,Y)X + R(K,X)Y

39
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By Bianchi’s identity and R1
0=R(K,X)Y+R(X,)Y)K+ R(Y,K)X
=R(K,X)Y+R(X,Y)K — R(K,Y)X
= R(K,Y)X = R(K,X)Y + R(X,Y)K
= R(K,X)Y + Vi K - Vi K
Adding VX, y x4y K and R(K, X +Y)(X +Y) together

vX—‘rYX—i-YK + R(K, X+ Y)(X + Y) = V%(,YK + v%(,XK
+VixK+ Vi K
— VixK-ViyK
+ R(K,X)Y
+ ViyK - VixK
+ R(K,X)Y
=2Viy K +2R(K, X)Y
Applying Equation (9.7) to X +Y
Viivxsy K = —R(K, X +Y)(X +Y)
Therefore
2Viy K +2R(K, X)Y = Vi yxy K
+R(K,X+Y)(X+Y)
2ViyK +2R(K, X)Y = —R(K, X +Y)(X +Y)
+R(K,X+Y)(X+Y)
2V y K +2R(K, X)Y =0
= 2ViyK = —2R(K, X)Y
= ViyK = —R(K,X)Y

This concludes the proof of this proposition.

10. THE GENERALISED CHEEGER-GROMOLL METRIC AND
VERTICAL (p, q)-ENERGY

Definition 10.1. [1] Using the same notation for the mappings 7 and
K and the manifold M as in Section 6, The Sasaki metric and vertical
energy, let £ be a vector bundle and let K : TE — £ be the connection

map for V as defined in Definition 6.2.

£ <& ¢

I

M +—— TM
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Let e € £ and A, B € T.£. For any pair of parameters p,q € R a
symmetric 2-covariant tensor hy,, on £ is defined as follows

hpo(A, B) = g(dr(A), dr(B)) + w?(e) (KA, KB) + (KA, e)(K B, ¢))

where
1

MO T

Remark 10.1. [1] If (p,q) = (0,0) then h,, is the Sasaki metric
hoo(A, B) = g(dm(A), dn(B)) + (KA, KB)

Definition 10.2. [1] If (p,q) = (1,1) then h,, is the Cheeger-Gromoll
metric

hi1(A, B) = g(dr(A),dn(B)) + ((KA,KB) 4 (KA, e)(KB,¢))

14 [ef?
In all cases the h, , metric is known as the generalised Cheeger-Gromoll
metric and the set of h,, metrics is known as the 2-parameter family
of metrics of Cheeger-Gromoll type.

If {E;} is an orthonormal basis in M then by the defining equations
of the vertical subspace V. = Ker dr(e), the metric h,, and Vxo =
K (do(X)), the vertical component of ||do||? with respect to the metric
h

dVo|* = h(d"o(E;),d" o(E;))
= g (dn(d"o(E;)), dw(dva(EZ)))
+wP(o) ((K (d"0(E)) , K (dVo(Ey))) + ¢(K (dVo(E;)) ,0)?)
= wP(0) ((VEJ Vg, 0>+q<VE o)?)

() ( )

1 1
= RENEDE (|VU|2 + ZCI|V|0|2|2>

where VF' is the gradient vector of F' which has the following equation

= wP(o

F = |c7|2

Definition 10.3. [1] EV is the notation for the vertical energy func-
tional with respect to the metric hy,,. It is referred to as the vertical
(p, q)-energy of o and has the equation

1 1 1
EV — 2 - 212 1
L0 =5 [ sy (908 + JalTIoRE ) vol(o)
for all o € C(€). When (p, q) are known this is written as EY (o).

Lemma 10.1. If (p,q) = (0,0) then the vertical (p,q)-enerqy of o
equals the total bending of o.
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Proof. The proof of this statement is shown in the following alignment

of equations

1 1 1
EV \v4 2 \V/ 212
- 1
O,O(C) 2 / (1 | |2)p (| C | 4Q| IC | | ) VO (g)

1 1 2 1 212

— - — = 1
5 L i (9o Joiwre ) vl
1

—5 [ 19oPvollg
2 /u

= EY(0)

which is the total bending of o. U

The equation above leads to the generalised definition of a harmonic
vector field as referred to Section 6.

Definition 10.4. [1] A vector field o is a harmonic vector field if o is
stationary due to following the equation being true

d
—_— E;l‘:q(o-t) =0
t=0

with respect to the metric h,, on £ for all smooth variations o; of o
through sections of £. Then ¢ is also defined to be a (p, ¢)-harmonic
section of £.

The following theorem is important and will be used for the proofs
of the later theorems in Section 11. A proof of this theorem can be
found in [1].

Theorem 10.1. [1] A vector field o is a (p, q)-harmonic section of T M
if and only iof

Tp(o) = dpqlo)o
where
T,(0) = (1 + |o]*)V*Vo + 2pVyro
1s a vector field with
1
= 510\2
and
Spa(0) = p|Vol* = pa| VF* — q(1+ |o")AF

15 an R-valued function.

11. HARMONIC VECTOR FIELDS ON RIEMANNIAN SPACE FORMS

11.1. Conformal vector fields and the Lie derivative.
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Definition 11.1. [4] A vector field o on a Riemannian manifold (M, g),
with M C R", is conformal if and only if
9(Vxo,Y)+g(X,Vyo) =2¢-g(X,Y) for all X, Y € R"
where ¥ € R and 9 # 0.
Definition 11.2. [15] For a function (scalar field) ¢ on a manifold N
6:N >R

g+ &(q)

Its pull-back f* to a manifold M is defined as
¢ M =R
p= (f"9)(p) = o(f(p))

Let W be a vector field on M. Its push-forward f, to a vector field
on N is defined by giving its action on the function ¢ on N in the
following equation.

(W) o =W (f*9) (11.1)
Definition 11.3. [14|[15] The Lie derivative of the function ¢ at a
point p along a vector field o is defined as
.
gaqb:%g%z [ft¢_¢]
where f;(p) for fixed p is the flow of 0. Hence

(£:6)(p) = lim + [9(/:(p)) — 6(p)]

d
= Z0fi(p)
= Jpqﬁ

The Lie derivative of the vector field W, denoted by L,W, is defined
by using similar notation from the Lie derivative L, of the function ¢
at the point p along the vector field o together with the push-foward
of the inverse of f; denoted by ( f{l)*. It has the equation

t=0

2 =tim 5 [(7), W (e (0) = W ()]

The Lie derivative of a metric g on X € R™ and Y € R" is defined by
the equation

L) (x.) = L ()

Theorem 11.1. [14] The equation for the Lie derivative of the vector
field W can be simplified to the following equation.

LW = [o, W]
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Definition 11.4. Let ¢ : M — N be a smooth mapping of Riemannian
manifolds. We say that ¢ is conformal if for all X|Y € C(T'M):

(do(X), dp(Y)) = p(x)(X,Y)

where p : M — R is a smooth positive function. The square root of p
is called the conformality factor of ¢.

Remark 11.1. In the definition above d¢, : T,M — Ty, N is the
differential of ¢ at x.

Proposition 11.1. Let the flow of a vector field o on a manifold M be
the function ¢y : M — M where t € R. The vector field o is conformal
if each ¢y is conformal.

Proof. For this proof begin with the inner product of d¢,(X) and
dy(Y').
(de(X), don(Y)) = pu(2)(X,Y)
i an

= G| @X0).da () =
d

(X,Y)

t=0

i _09(d¢t(X)v dﬁbt(y))

d(¢ig
<dt ! 0 (X, Y)
= (ZL9)(X,Y)
=o0(9(X,)Y)) —g(LX,Y)
—9(X, Z,Y)
=9(VoX,Y) + g(X,V,Y)
= 9([lo, X],Y) = g(X,[0,Y])
=g (V,X — [0, X],Y)
+9(X,V,Y —[0,Y])
=9(Vx0o,Y)+ g(X,Vyo)
= (Vxo,Y)+ (X, Vyo)
= 2¢(X,Y) by Definition 11.1
=2¢ - g(X,Y)

Hence o is conformal if each ¢; is conformal. O
11.2. Conformal gradient fields on the unit sphere S".

Definition 11.5. Let (M, g) be a Riemannian manifold with a Rie-
mannian metric g and let X, Y € T, M be linearly independent tangent
vectors of M at a point x. The sectional curvature of X and Y, which
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is denoted by K(X,Y), is defined to have the equation
g (R(X,Y)Y, X)
K(X,)Y)=
XTIV = 9(X, Y)?
where R(X,Y)Y is the Riemann tensor. The Riemannian manifold M
has a constant sectional curvature if K(X,Y) has a constant value for

all tangent vectors X and Y in the tangent bundle T'M of the manifold
M.

Definition 11.6. A complete Riemannian manifold M is a manifold
with infinite geodesics.

Definition 11.7. A Riemannian space form M is a complete Rie-
mannian manifold with a constant sectional curvature.

This section includes several subsections with examples of confor-
mal (p, ¢)-harmonic vector fields on Riemannian space forms and all of
them have a proof that they are conformal and harmonic. They are
also all harmonic sections of the tangent bundle T'M of the specific
Riemannian space form M. This subsection includes the first example
which is a conformal gradient field on the n-dimensional unit sphere
S™ c R, Before this example a definition is needed for the proof
that it is conformal and (p, ¢)-harmonic.

Definition 11.8. [15] In a Riemannian manifold M € R™ the normal
component a; of a vector a in the direction of a vector x is defined by

the equation
a-x

T e
The tangential component as of a in the tangent space T, M of a man-
ifold M is defined as

a-x

o — a4 — a1 — a4 — —5T
]2

Example figures of normal and tangential components are shown
later in this section.

Definition 11.9. A vector field o on the n-dimensional unit sphere S™
is said to be a conformal gradient field if

o(x) =a— (a-x)r for all z € S™ and for some a € R™**\ {0}

Figure 11.1 gives a diagram of a conformal gradient field on the
unit sphere S? with dashed grey lines representing the 3 dimensions
of R? D S? and black arrows representing the tangent vectors of the
conformal gradient field. The dashed grey vector a is known as the
axial vector because it starts at the origin and goes through the north
pole on the vertical axis. The solid grey vector from the origin to the
point z represents the radius of the unit sphere S? from the origin of
the unit sphere to any point z € S? and hence |z|* = 1.



46

Ficure 11.1. A diagram of a conformal gradient field
on the unit sphere S?

Proposition 11.2. The vector field o defined in Definition 11.9 has
the two properties of being a conformal vector field and a gradient field
on the unit sphere S™.

Proof. To prove this proposition first we show that o is a gradient field
then show that it is conformal. To find the equation for a gradient field
on the unit sphere S™, let w : S — R equal w = a -z and calculate
Vw - X which equals

Vw-X =d(a-z)(X)
=a-dx(X)+ x-da(X) by the chain rule
=a-X+ax-0
=a-X

Hence Vw is the tangential component of a. From the definition of a
unit sphere S™ it is known that |z|> = 1 therefore |z| = 1 and hence the
unit normal field of the unit sphere S™ is ¢ = +z. Using Definition 11.8,
Figure 11.2 shows an example of the vectors z and a with the normal
component of a in the direction of x and the tangential component of
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FIGURE 11.2. A diagram of the tangent space 1,52 of
a point x on the unit sphere S? and a vector a with its
tangential component in 775>

a in T,S?. In (n + 1)-dimensions, the normal component of a equals
a-x a-x
W:L‘ =77 because S™ is the unit sphere
x
=(a-z)x

The tangential component equals
a-x a-x

a— Wz =77 because S" is the unit sphere
x

=a—(a-x)z
Hence Vw equals
Vw=a-(a-x)z
= o(x)
Therefore 0 = Vw so o is a gradient field of w. To show that o is
conformal the following equation needs to be true

9(Vx0,Y)+g(X,Vy) =2¢-g(X,Y)

for some ¢y : M — R. By the Gauss formula and the chain rule
V xo can be split into three components, one including the directional
derivative of the vector a, another including the directional derivative
of a dot product of an R-valued function and an R"-valued function
and the third including the second fundamental form of o. This can
be shown in the following equation.

Vxo=Dxa— Dx(a-x)r —a(X,0)
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The first component of Vxo is
Dxa = da(X)
=0
The second component of Vo is
—Dx(a-z)r=-X(a-z)r — (a-x)Dxx
= —d(a-x)(X)xr — (a-z)dx(X)
=—(a-X)z—(a-2)X
The shape operator A(X) equals
A(X) = —dg(X)
= —dz(X)
=-X
Hence the third component of Vo is
—a(X,0)¢ = (A(X) -0)x
=—(=(X-0)(2))

= —(=(X-(a—(a-z)x))(2))

Il
—
S

- X)x — (a-x)0 because z is orthogonal to X
=(a-X)x

Adding the three components together V xo equals
Vxo=—(a-X)x—(a-2)X + (a- X)x

=—(a-2)X
Therefore
9(Vxo,Y)+g(X,Vyo)=—(a-2)(X-Y)= X (a-2)Y
=—2(a-x)(X-Y)
— 4 (X V)
=1 =-2(a-x)

Hence o is conformal.

0

Theorem 11.2. [1] Let M = S™ C R™"! be the n-dimensional unit
sphere and let o be a conformal gradient field on S™. Then o is a
(p, q)-harmonic section of TM and hence a harmonic vector field if

and only if

p=n+1, ¢g=2—n, |a| = and n > 3



49

Proof. In this example the manifold and Riemannian metric being
used are (M, g) = (S™,-) which are the n-dimensional unit sphere and
the dot product. For reference the equation for a conformal gradient

field o on S™ is
olx)=a—(a-z)x

=a—wx
and the equation for Vo is
Vxo=—-wX
—(a-x)X

By Theorem 10.1, o is a (p, g)-harmonic section if and only if

Tp(0) = Ppql0)o
where
T,(0) = (1 + |o|*)V*Vo + 2pVyro
is a vector field with
F = 1|c7|2
2
and
$pa(0) = p|Vol* = pg| VF] = q(1 +[o[)AF
is an R-valued function. To calculate T,(0) and ¢, ,(c) the values F,
VF, |VF|? Vyro, AF, |Vo|?, V*Vo and V% 0 need to be found.
Starting with the calculation of V% o
V;YU =Vx (Vyo) = Vy,vo
=Vx(=(a-2)Y) = (=(a-2)) VxY
=Dx(=(a-2)Y) —a(X,(=(a-2)Y))E+ (a-2) VXY
=X(—(a-2)Y +(—a-2)VxY
—(—(X-—(a- ) Y)x+ (a-2)VxY
=—(a- X)Y+ (X (a-z)2)Y
=((—a+(a-z)x) - X)Y
=(—0-X)Y
—(X-0)Y
Then V*Vo equals

V*Vo = — i V%50

i=1

=Y (ot (@ n)a) B B,

=a—(a-x)x

=0
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where {E;}" , is an orthonormal basis of TR". Recalling the equation
for Vxo, |[Val|? is

n

|Va|2 = Z |VEZO—

i=1

=Y I~ @ 2B

= Z ((a-2)* (B - E))

= n(a-x)?

2

= an

The rest of the values required include F' so that is calculated next by
using the equation for 2F. Let ¢ = |a|? and |z|*> = r? = 1.

2F = |of?
= o~ (a- 2P
= |a]* + (a-2)*r* — 2(a - 2)?
= la|* + (a - 2)*(r* - 2)
=+ W (r? —2)

1 1
= F=_|a*+ =(a-2)*(r* - 2)

2 2
1 1

= 502 + §w2(r2 —2)
1 1

= 502 + 5&)2(1 — 2)
1

_ 12 1w2
2 2

2

2 2
1 1
= V§C2 — V§w2

= 0 — wVw by the chain rule

= —wWo



51

Using the formula for VF' in relation to o from the equation above,
2V yro can be calculated as

2Vyro = —(a-x)2VF
=—2(a-x)(—wo)
= 20

= Vypo = w’o
AF can be found by using Corollary 3.1.

AF = —|Vo|* + (V*Vo) - o
=-—nw’+o 0o
=—nw?+ (a—(a-2)z) (a— (a- 1))
= —nw? + |o|?
= —nw? +2F

= —mu2 + 02 —w2

All of the values for T,(c) have been calculated so they can now be
used in the equation for T,(o).

T,(0) = (1 + |o|*)V*Vo + 2pVyro
= (14 2F)0 + 2pwio
= (1+2F + 2pw?)o

T,(o) is proportional to o so no restrictions can be confirmed yet. The
last part of ¢, (o) required is |VF|* which equals

[VF]? = | - wol*
:w2|0_|2
= 2W°F
_ w2(02 . wQ)
— w2 — ot

Hence ¢, ,(c) equals

bpa(0) = pIVol* = pg| VF|* — q(1 + |o]*)AF
= p(nw?) — pg(2w*F) — q(1 + 2F)(—nw? + 2F)
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Still in the case when o is (p, ¢)-harmonic, the equation T,,(c) = ¢, 4(0)o
can then be simplified to

Tp(0) = dpglo)o
= (14 2F + 2pw’)o = (p(nw?) — pg(20°F)
—q(1 4 2F)(—nw* + 2F))o
= 1+ 2F + 2pw? = p(nw?) — pg(2w*F)
—q(1 4 2F)(—nw?* + 2F)
=1+ — w4+ 2pw’® = p(nw?) — pq (w?(* — w?))
—q(1 4 & — W) (—nw? + & — w?)
=1+ +(2p—1Dw? = p(n + q)w?
—q(1+ - (= (n—p+1)w?)

This is a polynomial in w. Since w is a continuous function on M = S
this polynomial is zero if and only if the coefficients of the powers of

w vanish. Hence the following equations come from the coefficients of

W, w? and w.

From w?,

=1 qc
1
c
o] = —=
al =
vV —q

and from w?,

2p—1:p(n+q)—q(—02+(1+c2) (—(n—p+1)))
=2p—1=pn+q) +q’+ql+)(n—p+1)

and from w?,

0=—¢(-1)(=(n—p+1))
0=—qn—p+1)

= 0=n—-—p+1

=p=n-+1
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Using the results of equations from w® and w* in the equation from w?
it equals
2n+1)—1= (n+1)(n+q)—1+q(1+c Y n—n—1+1)
=2n+1)+0=(n+1)(n+q) +
=2n+1)=(n+1)(n+q)
=2t 1) = (n+ Dt gln+ 1)
= 2—n)n+1) = gln+ 1)
=2—-n=4q
.n > 3 by Equation (11.2)

Hence o is a (p, ¢)-harmonic section of T'S™ if and only if

1
p=n+1,¢=2—n, |a] = and n > 3. O
—q

11.3. Conformal gradient fields on the hyperbolic space H".
This subsection introduces the hyperbolic space H™.

Definition 11.10. [2] Let the (n + 1)-Lorentzian space be denoted by
R™! which equals R"*! equipped with the Lorentzian inner product

(T,y) = T1y1 + ... + TnYn — Tng1Uns1
for all z,y € R™'. Then the hyperbolic space H" is the set
H"={z c¢R™ : (z,2) = —1,2,., >0}
Let a € R™! be any vector and denote u = (a,a). The Lorentzian

inner product @ may be negative. Let w : H™ — R be the Lorentzian
inner product of x € H™ and a

w(z) = (a,z)

for all z € H™.

Definition 11.11. A vector field o on the hyperbolic space H" is said
to be a conformal gradient field on the hyperbolic space H™ if

o =a+ {a,r)x for all z € H" and a € R™'
