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Abstract. This dissertation investigates harmonic vector fields
which are special mappings on Riemannian manifolds with many
interesting properties. It aims for a sharp definition of these fields
through a focus on several aspects of geometry. Key concepts in-
clude the Weitzenböck formula, the divergence theorem, the Euler-
Lagrange equation and the Sasaki metric. This particular met-
ric contains horizontal and vertical components which are used to
define vertical energy and this, in turn, leads to a definition of
harmonic vector fields which are later generalised by the Cheeger-
Gromoll metric and the general definition of a harmonic vector
field. The dissertation also concentrates on some specific exam-
ples of harmonic vector fields such as harmonic unit vector fields,
the Hopf vector field, conformal gradient fields on the unit sphere
and on the hyperbolic space. The key outcome of this research,
presented in the concluding subsections of the dissertation, is the
discovery of two new examples that give fresh insight into this
important aspect of differential geometry.
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1. Introduction

This dissertation investigates some special mappings on Riemannian
manifolds called harmonic vector fields which have many interesting
properties. It first aims to describe a definition for these harmonic
vector fields. It then focuses on several examples of harmonic vector
fields, such as harmonic unit vector fields, the Hopf vector field and
conformal gradient fields on the unit sphere and on the hyperbolic
space. It concludes with two new examples of harmonic vector fields
from original research carried out for this dissertation throughout 2013
and 2014.

The sections of this dissertation introduce and then expand on sev-
eral topics related to harmonic vector fields, leading to some new con-
tributions to this area of study. The topics can be summarised as
follows.

Section 2 addresses some definitions from topology, metric spaces
and differentiable manifolds which are necessary for the rest of this
dissertation. These include a manifold, a vector field, a tangent vector,
and a metric. Section 3 introduces some basic ideas of Riemannian ge-
ometry and vector bundles including tensors and many different types
of derivatives. The Weitzenböck formula is proved in a specific case
with a corollary afterwards that will be used again in the final sec-
tion. Section 4 introduces the divergence theorem and more concepts
required for the next section. Section 5 defines the energy of a map-
ping, the Dirichlet property and a harmonic map. Section 6 splits the
energy into horizontal and vertical components by using a special type
of metric called the Sasaki metric which is calculated by adding its
horizontal and vertical components together. The vertical component
of the energy, called the vertical energy, is then used for a definition of
a harmonic vector field that will be generalised later.

Section 7 is about a specific case of harmonic vector fields called
harmonic unit vector fields and Section 8 continues this topic with an
investigation of a specific harmonic unit vector field called the Hopf
vector field with a proof that it is a harmonic unit vector field. Section
9 studies properties of covariant derivatives, defines the flow of a vec-
tor field on a Riemannian manifold and a type of vector field, called
a Killing field, that has an interesting identity between the covariant
derivatives of any two tangent vectors on the Killing field. Section 10
introduces a 2-parameter family of metrics, which includes the Sasaki
metric, called the hp,q metrics, also known as the generalised Cheeger-
Gromoll metrics, and applies them to energy and harmonicity for defi-
nitions of (p, q)-energy, (p, q)-harmonicity and the general definition of
a harmonic vector field.

The last section, section 11, has five subsections about harmonic
vector fields on Riemannian space forms. Subsection 11.1 introduces
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conformal vector fields and gradient fields then considers a proposition
about the flow of a vector field in relation to conformality. Subsections
11.2 and 11.3 include two known cases of (p, q)-harmonic vector fields,
which are conformal gradient fields on the unit sphere and the hyper-
bolic space respectively, with proof that they are conformal and (p, q)-
harmonic. Results from previous work by M. Benyounes, E. Loubeau
and C. Wood are reviewed and expanded in several different ways.

Subsections 11.4 and 11.5 continue the research into harmonic vector
fields by including two new cases of harmonic vector fields with proof
that they are conformal and (p, q)-harmonic. This original work results
from the wide research done for this paper. The new cases are confor-
mal gradient fields on the Euclidean space and conformal extension
fields of conformal gradient fields on the unit sphere.

The evolution of the geometry leading to the topic of harmonic vector
fields began with J. Eells and J. H. Sampson’s paper called Harmonic
mappings of Riemannian manifolds published in 1964. Eells then wrote
one of the earliest books about harmonic maps which was published
in 1980, Selected Topics in Harmonic Maps with L. Lemaire. This has
been followed by various papers and books on differential geometry and
harmonic maps written by mathematicians currently researching into
this area such as O. Gil-Medrano who wrote Unit vector fields that are
critical points of the volume and of the energy: characterization and
examples in 2005 and M. Benyounes, E. Loubeau and C. Wood who
together wrote the papers Harmonic sections of Riemannian vector
bundles, and metrics of Cheeger-Gromoll type and Harmonic vector
fields on space forms in 2007 and 2014 respectively.

It is hoped that this dissertation has produced a further contribution
to the evolving topic of harmonic vector fields. It has been presented in
two ways. Firstly, by defining the equation of a conformal gradient field
on the n-dimensional Euclidean space then proving that it is conformal
and a gradient field and that it is a harmonic vector field. Secondly, by
defining the equation for a conformal extension of conformal gradient
fields on the unit sphere then proving that it is conformal and a gradient
field and that it is also a harmonic vector field.

2. Recollection of topology, metric spaces and manifolds

This section introduces some important definitions from the areas
of differential geometry, metric spaces and topology needed for this
dissertation starting with the definition of a topological space which
will be used to define a manifold.

Definition 2.1. [16] A topological space T = (X, T ) consists of a non-
empty set X together with a fixed family T of subsets of X satisfying:

(T1) X, ∅ ∈ T ,
(T2) the intersection of any two sets in T is in T ,
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(T3) The union of any collection of sets in T is in T .

An element of T is called an open set of T .

Definition 2.2. [11] Let X be a topological space. A neighbourhood
U ⊆ X of a point x ∈ X is any open set which contains the point x.

Definition 2.3. [4] A topological space is called a Hausdorff topological
space if any two points have non-intersecting neighbourhoods.

Definition 2.4. [16] An open cover of an open subset A of a topological
space X is a collection of open subsets whose union contains A.

Definition 2.5. [4] An n-dimensional manifold M is a Hausdorff topo-
logical space that can be locally be identified with the n-dimensional
Euclidean space Rn. This means that it can be covered by neighbour-
hoods which map into open neighbourhoods of Rn. Such a map is
called a chart or coordinate system.

Definition 2.6. [3][1] Let M and N be two manifolds and π : N →M
be a mapping. A section of π is a map σ : M → N with

π ◦ σ = idM : M →M

where idM is the identity of M . A mapping diagram is shown below

M
σ

�
π
N

Definition 2.7. [10] Let U ⊂ Rn be an open subset of the n-dimensional
Euclidean space Rn and let V ⊂ Rm be an open subset of the m-
dimensional Euclidean space Rm. A map f : U → V is smooth if f has
continuous partial derivatives of all orders.

Definition 2.8. [4] Let M be any manifold and let U ⊂ M . The
tangent vector X to the curve c at the point p = c(a) is defined as a
map from any function f : U → R to a number Xf ,

X : f 7→ Xf =
d

dt

∣∣∣∣
t=a

f(c(t))

=
n∑
i=1

X i ∂f

∂xi

where the relationship between the i-th coordinates of X and x ∈ M ,
denoted by X i and xi, is

X i =
d

dt

∣∣∣∣
t=a

xi(c(t))

This may be used to define the exterior derivative of the function f to
be df given by

df(X) := X(f)
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Since a coordinate basis gives X(f) =
∑n

i=1X
i ∂f
∂xi

, then in a coordinate
basis the exterior derivative of a function must be given by

df =
n∑
i=1

∂f

∂xi
dx

Definition 2.9. [3] The tangent space TxM of a manifold M at a point
x is the set of all tangent vectors that can be made into a vector space.
The tangent bundle is the union of all tangent spaces at every point on
the manifold M . It is denoted by

TM =
⋃
x∈M

TxM

Definition 2.10. A vector field σ on an n-dimensional manifold M is
a smooth map σ : M → TM such that σ(x) ∈ TxM for all x ∈M .

Definition 2.11. [16][13][15] The distance between the points a ∈ Rn

and b ∈ Rn, denoted by d(a, b), is defined by the the equation

d(a, b) = ‖b− a‖, for all a, b ∈ Rn

Then for any r > 0 let Sn−1r (a) denote the (n− 1)-dimensional sphere
of radius r centred at a

Sn−1r (a) = {x ∈ Rn : d(x, a) = r}

Let Br(a) be the open ball

Br(a) = {x ∈ Rn : d(x, a) < r}

and let Dr(a) be the closed ball

Dr(a) = {x ∈ Rn : d(x, a) ≤ r}.

If r = 1 and a = 0 then Sn−1r is the (n − 1)-dimensional unit sphere
denoted by Sn−1.

An example of a vector field is shown in Figure 2.1 by the vector
field w(x) on the 1-dimensional sphere S1 where x varies as points a, b
and c.

Definition 2.12. [16] A subset S ⊂ Rn is bounded if there exists an
r > 0 such that S ⊂ Dr(0). A subset K ⊂ Rn is compact if K is
bounded and closed.

Definition 2.13. [4] A Riemannian metric of a manifold M , also
known as the first fundamental form, is the inner product on the tan-
gent bundle TM of M denoted by 〈X, Y 〉 or X · Y for all X, Y ∈ TM .
A manifold equipped with this metric is called a Riemannian manifold.

Definition 2.14. [15] An n-dimensional vector bundle, denoted by ξ,
is a combination of five different elements. Two of them are manifolds
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a

w(a) w(b)

b

c

w(c)

S1

Figure 2.1. A vector field w on the unit circle S1

and three of them are functions. The functions and manifolds are
defined as follows

ξ = (V, π,M, α, β)

V and M are spaces called the total space and base space of ξ respec-
tively, π : V →M is a surjection and α and β are maps

α :
⋃
p∈M

π−1(p)× π−1(p)→ V

where p is a point in the base space M and

β : R× V → V

The maps make each inverse image π−1(p) ∈ V , known as the fibre over
p, into an n-dimensional vector space over R such that the following
conditions are true.

α
(
π−1(p)× π−1(p)

)
⊂ π−1(p)

β
(
R× π−1(p)

)
⊂ π−1(p)

For each p ∈ M , there is also a neighbourhood U of p and a homeo-
morphism t : π−1(U)→ U × Rn.

A vector bundle is sometimes informally referred to by the manifold
V or the projection map π : V →M .

3. Basic ideas of Riemannian Geometry and vector
bundles

Definition 3.1. [5] The vector space of smooth sections of a vector
bundle π : V → M is defined as the vector space of smooth maps
σ : M → V such that each map is a section of π. It is denoted by
C(V ).
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Definition 3.2. [5] A linear connection on a vector bundle π : V →M
is a bilinear map ∇ on spaces of sections:

∇ : C(TM)× C(V )→ C(V )

written ∇ : (X, σ) 7→ ∇Xσ,X ∈ C(TM), σ ∈ C(V ) and such that for
f ∈ C(M)

(i) ∇fXσ = f∇Xσ

(ii) ∇X(f · σ) = Xf · σ + f∇Xσ.
(3.1)

∇Xσ is called the covariant derivative of σ in the direction of X.

Definition 3.3. [5] If X and Y are vector fields on M then the vector
field ∇XY −∇YX is called the Lie bracket of X and Y and is denoted
by

[X, Y ] = ∇XY −∇YX

Definition 3.4. [5] On the tangent bundle TM , the torsion of a con-
nection ∇ is defined by

T (X, Y ) = −∇XY +∇YX + [X, Y ]

for all X, Y ∈ C(TM).

Theorem 3.1 (The Fundamental Theorem of Riemannian Geometry).
[5] If g is a Riemannian metric on TM , the fundamental theorem of
Riemannian geometry asserts that there is one and only one connection
(the Levi-Civita connection) such that

∇g = 0 and T = 0

Proposition 3.1. [15] Covariant derivatives satisfy the following four
properties on a manifold M . For all tangent vectors X,Z ∈ TxM on
the tangent space TxM at a point x, for all vector fields Y on M and
for all real numbers a, b ∈ R

∇(aX+bZ)Y = a∇XY + b∇ZY (C1)

For all vector fields Y, Z on M

∇X(Y + Z) = ∇XY +∇XZ (C2)

For all smooth functions f : M → R
∇X(fY ) = f(x)∇XY + (Xf)Y (C3)

For all vector fields Y, Z on M

X〈Y, Z〉 = 〈∇XY, Z〉+ 〈Y,∇XZ〉 (C4)

Definition 3.5. [3][14] A covector ω at a point x on a manifold M
is defined as a linear map of a vector X on TxM to the 1-dimensional
Euclidean space R denoted by

ω : TxM → R
X 7→ ω(X)
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The set of all covectors at x is a vector space called the cotangent space
of TxM at x denoted by T ∗xM . The cotangent bundle is the union of
all cotangent spaces at every point on the manifold M . It is denoted
by

T ∗M =
⋃
x∈M

T ∗xM

Definition 3.6. [3]A tensor of type (r, s) is defined as a multilinear
map on r covectors and s tangent vectors which can be denoted by

r times︷ ︸︸ ︷
T ∗M × ...× T ∗M ×

s times︷ ︸︸ ︷
TM × ...× TM → R

Three examples of tensors are a vector, which is a (1, 0) tensor, a
covector, which is a (0, 1) tensor, and a scalar which is a (0, 0) tensor.

Definition 3.7. [5] If π : V → M and η : W → M are two vector
bundles the exterior product of the total spaces V and W is defined
by using the fibres of π and η over all points of M as shown in the
following equation

V ∧W =
⋃
p∈M

π−1 (p) ∧ η−1 (p)

The exterior power of V , denoted by
∧p V is the exterior product of

V with itself p times. This has the equation

∧p
V =

p times︷ ︸︸ ︷
V ∧ ... ∧ V

Definition 3.8. [10] A p-form ω is an alternating tensor of type (p, 0).
The set of p-forms can be denoted by Ωp(M) which has the equation

Ωp(M) = C
(∧p

T ∗M
)

and the set of p-forms at the point x can be denoted by Ωp
x(M) which

equals

Ωp
x(M) =

∧p
T ∗xM

=

p times︷ ︸︸ ︷
T ∗xM ∧ ... ∧ T ∗xM

=

w :

p times︷ ︸︸ ︷
TxM × ...× TxM → R : ω is multilinear and alternating


Definition 3.9. LetM be a Riemannian manifold, x ∈M andX, Y, Z ∈
TxM The second covariant derivative of Z, denoted by ∇2

X,YZ, is de-
fined by the equation

∇2
X,YZ = ∇X (∇YZ)−∇∇XYZ
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Definition 3.10. [5][12] The Riemann tensor R is a tensor of type
(3, 1) defined for all X, Y, Z ∈ TxM and all x ∈M by

R(X, Y )Z = ∇2
X,YZ −∇2

Y,XZ (3.2)

Recalling Definitions 3.2 and 3.3

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z

This is the general definition of R.

Proposition 3.2. [5]For all X, Y, Z ∈ TxM and all x ∈ M the Rie-
mann tensor satisfies:

R(X, Y )Z = −R(Y,X)Z

Proof. Using Equation 3.2

−R(Y,X)Z = −(∇2
Y,XZ −∇2

X,YZ)

= ∇2
X,YZ −∇2

Y,XZ

= R(X, Y )Z �

Definition 3.11. The Ricci tensor at x is the symmetric bilinear pair-
ing Ricci : TxM × TxM → R defined by

Riccix(X, Y ) =
n∑
i=1

gx(R(X,Ei)Ei, Y )

=
n∑
i=1

gx(R(Ei, X)Y,Ei)

where {Ei}ni=1 is an orthonormal basis of TxM .

Definition 3.12. [15] An endomorphism of a vector space V is a linear
transformation T : V → V . The set of all endomorphisms of V is
denoted by End(V ).

Definition 3.13. [5] The associated Ricci operator S ∈ C(End(ΩpT ∗M×
V )) to a point x and vector-valued p-form field σ is defined by

Sxσ(X1, ..., Xp) =

0 if p = 0∑
k,i

(−1)k(R(Ei, Xk)σ)(Ei, X1, ..., X̂k, ..., Xp) if p ≥ 1

where {Ei} is an orthonormal basis of TxM,Xk ∈ C(TM) and σ ∈
Ωp(V ).

Definition 3.14. [5] The exterior differential operator d : Ωp(ξ) →
Ωp+1(ξ) relative to the connection ∇V is given by

dσ(X1, .., Xp+1) =

p+1∑
i=1

(−1)i+1∇V
Xi

(σ(X1, ..., X̂i, ..., Xp+1)

+
∑
i<j

(−1)i+jσ([Xi, Xj], X1, ..., X̂i, ..., X̂j, ..., Xp+1)
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Definition 3.15. [5] The codifferential operator d∗ : Ωp(ξ)→ Ωp−1(ξ)
of a p-form ω ∈ Ωp(ξ) is defined by

d∗ω(X1, ..., Xp−1) = −
∑
i

∇Eiω(Ei, X1, ..., Xp−1)

Definition 3.16. Let X = (xij) be an n×n matrix. The trace of X is
the sum of the diagonal entries of X and is denoted by trace (X). The
equation for this is

trace (X) =
n∑
i=1

xii

Definition 3.17. [5] Let ω be a 1-form on the vector bundle V . It is
defined to be metrically dual to the vector field Z if

ω(Y ) = 〈Y, Z〉
Then the musical isomorphisms, denoted by [ and ], are defined such
that ω = Z[ and Z = ω]. Hence

g(ω], Y ) = ω(Y ) =
(

(ω (Y ))]
)[

Definition 3.18. [15] The vector field X metrically dual to the dif-
ferential df of a smooth mapping on a manifold f : M → R is called
the Riemannian gradient vector field of f and is denoted by ∇f . This
can be defined in two ways. Firstly, by using the sharp sign # from
Definition 3.17, then ∇f is equal to

∇f = (df)#

Hence
〈∇f,X〉 = df(X)

for all X ∈ TxM and all x ∈ M . Secondly, by letting {Ei, Ej}ni,j=1 be
a basis of TxM , then the matrix from ∇f is defined as

∇f = ∇Eif(Ej)

Lemma 3.1. [5] Let {Ei} be a basis of TxM , Xj be vectors at x and
gst be the inverse of the metric g(Es, Et). Then for ρ ∈ Ωp(ξ)

(d∗ρ) (X1, ..., Xp−1) = −
∑
s,t

gst (∇Etρ) (Es, X1, ..., Xp−1) .

In particular, if ρ ∈ Ω1(ξ), d∗ρ = − trace∇ρ.

Definition 3.19. [5] The Hodge-de Rham Laplacian ∆ is defined on
V -valued differential forms by

∆ = dd∗ + d∗d : Ωp(V )→ Ωp(V )

Definition 3.20. The rough Laplacian, ∇∗∇ : Ωp(V ) → Ωp(V ) is
defined as

∇∗∇σ = − trace∇2σ for all σ ∈ Ωp(V )
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Definition 3.21. [15] The norm of a vector x in Rn, which is often
denoted by both ‖x‖ or |x|, is defined by the square root of the inner
product with itself or the square root of the summation of its coordi-
nates squared as shown in the following equations.

‖x‖ = |x| =
√
〈x, x〉

=

√√√√ n∑
i=1

(xi)2

Definition 3.22. [5] Let σ : M → N be a smooth map and {Ei} be an
orthonormal basis of TxM . Its covariant derivative ∇Eiσ can be viewed
as a section of the bundle C(T ∗M ×TM), and its norm at a point x of
M can be denoted by both ‖∇σ‖ or |∇σ|. The Hilbert-Schmidt norm
of ∇Eiσ is defined as

‖∇σ‖2 = |∇σ|2 =
n∑
i=1

〈∇Eiσ,∇Eiσ〉

Definition 3.23. [10] The summation convention is a convention where,
if an index appears in a summation twice, the summation is implicitly
summed over without the need to write the sum explicitly.

Theorem 3.2. (Weitzenböck formula in the 1-form case)[5] Let ξ :
V → M be a Riemannian vector bundle over a Riemannian manifold.
Then for any σ ∈ Ω1(ξ)

∆σ = − trace∇2σ + S(σ)

Proof. Let {Ei} be an orthonormal basis of TxM extended to a local
orthonormal basis of vector fields such that ∇YEi = 0 for all Y ∈
TxM . Let the vectors X, Y ∈ TxM be extended from the point x to a
neighbourhood of x so that ∇EiX = 0 at the point x. When σ ∈ Ω1(ξ),
d∗σ equals,

d∗σ = −
∑
i

∇V
Ei
σ(Ei)

dσ(X, Y ) equals,

dσ(X, Y ) = ∇V
X(σ(Y ))−∇V

Y (σ(X))− σ([X, Y ])

= X(σ(Y ))− Y (σ(X))− σ([X, Y ])

= (∇Xσ)(Y )− (∇Y σ)(X)

and (∇Xσ) (Y ) and − (∇Y σ) (X) equal

(∇Xσ)(Y ) = ∇V
X(σ(Y ))− σ(∇M

X Y )

−(∇Y σ)(X) = −∇V
Y (σ(X)) + σ(∇M

Y X).
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Using the summation convention

−d(d∗σ))(X) = ∇X(∇Eiσ(Ei))

= (∇X∇Eiσ)(Ei)−∇Eiσ(����∇XEi︸ ︷︷ ︸
0

)

= (∇X∇Eiσ)(Ei)

The Hodge-de Rham Laplacian on V -valued differential forms is com-
pleted by calculating −(d∗(dσ))(X).

−(d∗(dσ))(X) =
∑
i

∇V
Ei

(dσ)(Ei, X)

= ∇Ei(dσ(Ei, X))− dσ(����∇EiEi︸ ︷︷ ︸
0

, X)− dσ(Ei,����∇EiX︸ ︷︷ ︸
0

)

= ∇Ei(dσ(Ei, X))

= ∇Ei ((∇Eiσ)(X)− (∇Xσ)(Ei))

= (∇Ei∇Eiσ)(X) + (∇Eiσ)(����∇EiX︸ ︷︷ ︸
0

)− (∇Ei∇Xσ)(Ei)

+ (∇Xσ)(����∇EiEi︸ ︷︷ ︸
0

)

= (∇Ei∇Eiσ)(X)− (∇Ei∇Xσ)(Ei)

Then −(∆σ)(X) equals

−(∆σ)(X) = −(d(d∗σ))(X) + (−(d∗(dσ))(X))

= (∇X∇Eiσ)(Ei)− (∇Ei∇Xσ)(Ei) + (∇Ei∇Eiσ)(X)

The rough Laplacian, ∇∗∇, equals

∇∗∇σ = − trace∇2σ

= −
∑
i

∇2
Ei,Ei

σ

= −

∇V
Ei
∇V
Ei
σ −∇V

��
��∇M

Ei
Ei︸ ︷︷ ︸

0

σ


= −∇Ei∇Eiσ
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By the equation for the Riemann tensor in Definition 3.10

(R(X,Ei)σ)(Ei) = (∇X∇Eiσ)(Ei)− (∇Ei∇Xσ)(Ei)−∇[X,Ei](Ei)

= (∇2
X,Ei

σ −∇2
Ei,X

σ)(Ei)

= ∇X∇Eiσ(Ei)−∇����∇XEi︸ ︷︷ ︸
0

σ(Ei)

−∇Ei∇Xσ(Ei) +∇����∇EiX︸ ︷︷ ︸
0

σ(Ei)

= (∇X∇Eiσ)(Ei)− (∇Ei∇Xσ)(Ei)

In this case when σ ∈ Ω1(ξ)

S (σ) (X) =
∑
i

(R(Ei, X)σ)(Ei)

Using the summation convention and Proposition 3.2

−S (σ) (X) = (R(X,Ei)σ)(Ei)

Therefore

−(∆σ)(X) = (∇X∇Eiσ)(Ei)− (∇Ei∇Xσ)(Ei)︸ ︷︷ ︸
(R(X,Ei)σ)(Ei)=−S(σ)(X)

+ ∇Ei∇Eiσ(X)︸ ︷︷ ︸
−∇∗∇σ=trace∇2σ

In conclusion
∆σ = − trace∇2σ + S(σ) �

Corollary 3.1. [5] Let ξ : V → M be a Riemannian vector bundle
over a Riemannian manifold. For any σ ∈ Ω0(ξ) let F equal

F =
1

2
|σ|2

then ∆F equals
∆F = 〈∇∗∇σ, σ〉 − |∇σ|2

This corollary will be used later in Section 11 Harmonic vector fields
on Riemannian space forms.

4. The divergence theorem

Definition 4.1. Let {Ei} be an orthonormal basis of TxM and V be
a vector bundle. If σ is a smooth vector bundle-valued 1-form on M ,
which is a smooth section of the bundle T ∗M × V , then the covariant
coderivative ∇∗σ is the section of V defined by

∇∗σ = −
n∑
i=1

(∇Eiσ)(Ei)

Let ∇ : X 7→ ∇X be the covariant derivative of X where X is
a vector field which is a (1,0)-tensor and where ∇X is a (1,1)-tensor
which is a TM -valued 1-form. The mapping diagram between ∇ and
∇∗ is
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C(TM)
∇
�
∇∗
C(T ∗M ⊗ TM)

Definition 4.2. [10]A linear functional on a vector space V is a linear
map θ : V → R. The dual space V ∗ of V is defined as

V ∗ = {linear functionals on V }

Theorem 4.1 (Stokes’ Theorem). Let M be a compact n-dimensional
manifold with a boundary. Therefore the boundary of the manifold ∂M
is a compact (n− 1) manifold. If ω is an (n− 1)-form on M∫

∂M

ω =

∫
M

dω

Definition 4.3. Let (Mn, g) be an n-dimensional Riemannian mani-
fold and let xi be a local coordinate system. Then the volume form
associated with g, denoted by vol(g), is defined by the equation

vol(g) = dx1 ∧ ... ∧ dxn
√

det(g)

where det(g) is the determinant of g as a matrix.

Definition 4.4. [5] An alternative way to describe the codifferential
operator d∗ is to define the Hodge star operator ∗ : Ωp(ξ) → Ωn−p(ξ∗)
as the unique linear operator satisfying at each point the relation

η ∧ ∗ψ = g(η, ψ)vol(g)

= 〈η, ψ〉 · vol(g)

for all η, ψ ∈ Ωp(ξ). Here η∧∗ψ is the real valued m-form defined using
the exterior product on forms and the duality pairing between ξ and ξ∗.
Relative to the Riemannian structures of V and TM , the codifferential
operator d∗ : Ωp(ξ) → Ωp−1(ξ) is characterised as the adjoint of d via
the formula ∫

M

〈dη, ψ〉vol(g) =

∫
M

〈η, d∗ψ〉vol(g)

Example 4.1. Let η, φ ∈ Ωp(M). A special case of the definition
above is when ψ = f ∈ Ω0(M) (i.e. : M → R) and η = 1

η ∧ ∗f = 1 ∗ f
= ∗f

g(η, ψ) = g(1, f)

= 1 · f
= f

So ∗ f = f vol(g)
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Definition 4.5. [5] Let ω be a 1-form on a vector bundle π : V →
M , let {Ei} be an orthonormal basis of TxM and let W = ω]. The
divergence of a vector field W on a Riemannian manifold is defined by
the following equation

div W =
n∑
i=1

〈∇EiW,Ei〉

Theorem 4.2 (Divergence Theorem). Let Y be a vector field on M ,
where M is compact. Then∫

M

div Y vol(g) = 0

Proof. Let η be a 1-form on M dual to Y . Then the divergence of Y
may be characterised as:

div Y = δη

where δ is the exterior coderivative of (M, g), defined by

δ = ∗d∗

where d is the exterior derivative, and ∗ is the Hodge star operator.
Abbreviating the volume form vol(g) to ω, the Hodge star operator is
characterised by the following equation

φ ∧ ∗ψ = g(φ, ψ)ω

for all p-forms φ, ψ on M . In particular, if f is a smooth function
(0-form) on M then

∗f = fω

It follows from this, and the involution formula

∗ ∗ ψ = (−1)p(n−p)ψ

that

(div Y )ω = ∗ (div Y ) = ∗δη = ∗ ∗ d ∗ η = d (∗η)

Now, by Stokes’ Theorem∫
M

(div Y )ω =

∫
M

d (∗η) =

∫
∂M

∗η = 0 �

Proposition 4.1. Suppose M is compact. Let σ be a section of E, and
let α be an E-valued 1-form on M . Then∫

M

〈∇σ, α〉 vol(g) =

∫
M

〈σ,∇∗α〉 vol(g)

and ∫
M

〈α,∇σ〉 vol(g) =

∫
M

〈∇∗α, σ〉 vol(g)
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Proof. By the Hilbert-Schmidt norm∫
M

〈∇Eiσ, α(Ei)〉vol(g) =

∫
M

Ei〈σ, α(Ei)〉 − 〈σ,∇Ei(α(Ei))〉vol(g)

=

∫
M

Ei〈σ, α(Ei)〉 − 〈σ, (∇Eiα) (Ei) + α (∇EiEi)〉vol(g)

=

∫
M

〈σ,∇∗α〉+ Ei〈σ, α(Ei)〉 − 〈σ, α (∇EiEi)〉vol(g)

=

∫
M

〈σ,∇∗α〉vol(g) �

5. Harmonic maps and the Euler-Lagrange equation

Definition 5.1. [15] Let f : U → V be a smooth map between open
subsets of n and m-dimensional Euclidean spaces U ⊂ Rn and V ⊂ Rm.
The smooth map f is defined to be a diffeomorphism if f is invertible
and the inverse map f−1 : V → U is a smooth map. Then the open
sets U and V are also defined to be diffeomorphic to each other.

Definition 5.2. A subset D ⊂ Rn+1 that is diffeomorphic to an open
set U ⊂ Rn is defined as a hypersurface patch. Let S ⊂ Rn+1 and
V ⊂ Rn+1 be open subsets of the (n+ 1)-dimensional Euclidean space
Rn+1. Then a hypersurface patch of the form D = S ∩ V is defined as
a chart domain. If each point of S lies in a chart domain then S is a
smooth hypersurface.

Definition 5.3. [15] A smooth hypersurface S ∈ Rn is said to be
orientable if there exists a smooth unit normal field on S. This is a
smooth function ξ : S → Rn such that, for all p ∈ S, ξ(p) is orthogonal
to TpS and |ξ(p)| = 1. If S is orientable then there are precisely two
smooth unit normal fields, choice of either of which constitutes an
orientation of S.

Definition 5.4. [15] LetM ⊂ R3 be a hypersurface, with a unit normal
field ξ, and let φ : D → U be a smooth chart with local parametrisation
p : U → D. It is convenient to label the coordinates u = (u1, u2) ∈ U
and then abbreviate the partial derivatives of p as

∂p

∂ui
= pi,

∂2p

∂ui∂uj
= pij

Define three smooth functions Wi : U → R3 as

W1 = p1, W2 = p2, W3 = ξ ◦ p

For each u ∈ U the three vectors (W1(u),W2(u),W3(u)) form a basis
of R3 which changes as u varies. The basis (W1,W2,W3) is called the
Weingarten frame of M with respect to the chart (D,φ).
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Definition 5.5. [15] Let gij be the metric

gij = 〈pi, pj〉 = Wi ·Wj, i, j ∈ {1, 2}
The Christoffel symbols of M , denoted by Γkij, satisfy the general equa-
tion

Γkijgkl =
1

2

(
∂gil
∂uj

+
∂gjl
∂ui
− ∂gij
∂ul

)
=

1

2
((gil)j + (gjl)i − (gij)l)

Definition 5.6. [5] Let φ : (M, g) → (N, h) be a smooth map. Its
differential dφ is a section of the bundle Ω1(φTN) = T ∗M × φ−1TN ,
and its norm at a point x of M is denoted by |dφ|, equipped with the
metrics g and h. If (xi) and (uα) are local coordinates around x and
φ(x), |dφ|2 is defined by the equation

|dφ|2 = gijhαβ(φ)φαi φ
β
j

where (φαi ) =
(
∂φα

∂xi

)
is the local representation of dφ.

Definition 5.7. [5] The energy density of φ is defined as the function
e(φ) = 1

2
|dφ|2 and the energy of φ is defined to be the number

E(φ) =

∫
M

e(φ) vol(g)

Example 5.1. In R3 the energy of f over V is:

E(f) =
1

2

∫ ∫ ∫
V

‖∇f‖2dxdydz

Definition 5.8. [5]A function b has the Dirichlet property on M if b
deforms M less than other comparable functions. This inequality is
written as

E(b) =

∫
M

1

2
|∇b|2 vol(g) ≤

∫
M

1

2
|∇a|2 vol(g) = E(a)

Definition 5.9. [5] For a given v, let φt be a family of maps such that
φ0 = φ and ∂φt

∂t

∣∣
t=0

= v. Then DvE(φ) is defined as

DvE(φ) =
dE (φt)

dt

∣∣∣∣
t=0

Definition 5.10. [5] A map φ : M → N is harmonic if and only if
it is an extremum of the energy. This means that DvE(φ) = 0 for all
v ∈ C(φ−1TN).

Theorem 5.1. [5] A map φ : M → N is harmonic if and only if it
satisfies the Euler-Lagrange equation τ(φ) = 0, where τ(φ) = −d∗dφ =
trace∇dφ is called the tension field of φ.

A proof of this theorem above can be seen in [5]. It is also shown in
[5] that to express the equation for τ in local coordinates using (xi) on
M and (uα) on N , let gij and hαβ be the metrics and MΓijk and NΓαβγ
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be the Christoffel symbols of M and N respectively. Then calculate
∇ ∂

∂xi
(dφ)

∇ ∂

∂xi
(dφ) = ∇ ∂

∂xi

(
φαj dx

j ∂

∂uα

)
Apply Definition 3.2 to give

∇ ∂

∂xi
(dφ) =

(
∂

∂xi
φαj

)
dxj

∂

∂uα
+φαj

(
∇T ∗M

∂

∂xi
dxj
) ∂

∂uα
+φαj dx

j∇φ−1TN
∂

∂xi

∂

∂uα

To continue this calculation note that ∇T ∗M
∂

∂xi

dxj = −MΓjikdx
k and

∇φ−1TN
∂

∂xi

∂

∂uα
= ∇TN

φβi
∂

∂uβ

∂

∂uα
= φβi

NΓγβα
∂

∂uγ

Hence
(∇dφ)αij = φαij − MΓkijφ

α
k + NΓαβγφ

β
i φ

γ
j

Therefore the equation for τ in local coordinates is

ταφ = gij(∇dφ)αij = −∆φα + NΓαβγφ
β
i φ

γ
j g

ij

6. The Sasaki metric and vertical energy

Definition 6.1. [4] Let φ : V → W be a linear transformation of
vector spaces. The kernel of φ, denoted by Ker φ, is defined by

Ker φ = {v ∈ V |φ(v) = 0}
Definition 6.2. [1][9] Let K : TE → TM = E be the connection map
for ∇ which is characterised by the equation

∇Xσ = K (dσ(X)) ∈ TxM
where σ : Mn → TM is a section of a vector bundle πM : TM → Mn.
A mapping diagram including πM , K and dπM is shown below

(TM = E , h) TE

TM(Mn, g)

Levi-Civita
connection map︷︸︸︷

K

dπM

πM

πM

Sections of TM and TE , which are σ and dσ respectively, are also
shown in the next diagram below.

(TM = E , h) TE

TM(Mn, g)

K

dσ

πM

σ
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The Sasaki metric is defined as

h(A,B) = g (dπ(A), dπ(B)) + g (K(A), K(B))

In the mapping diagram above a section of TM is σ and a section of
TE is dσ because

πM ◦ σ = idM : M →M

and by the chain rule

dπM ◦ dσ = d (idM)

= idTM : TM → TM
(6.1)

Definition 6.3. [15] At any x ∈M and ε ∈ E the diagrams in Defini-
tion 6.2 can be applied using the tangent spaces TεE and TxM and the
maps πM(ε) = x and dπM(ε) : TεE → TxM . The vertical subspace at ε
is an n-dimensional subspace Vε of TεE defined as

Vε = Ker dπ(ε) ⊂ TεE

Definition 6.4. [15] At any x ∈M and ε ∈ E the diagrams in Defini-
tion 6.2 can be applied using the tangent spaces TεE and TxM and the
map K : TεE → TxM . The horizontal subspace at ε is an n-dimensional
subspace Hε of TεE defined as

Hε = Ker K ⊂ TεE

Proposition 6.1. [15] Using the subspaces in Definitions 6.3 and 6.4,
TεE = Vε ⊕Hε and TE = V ⊕H.

Proposition 6.2. The energy of σ can be split into horizontal and
vertical components

E(σ) =
1

2

∫
M

‖dσ‖2 vol(g)

=
n

2
vol(M, g) +

1

2

∫
M

‖∇σ‖2 vol(g)

Proof. Recall that the energy density of φ is the function e(φ) =
1
2
‖dφ‖2 and the energy of φ is the number

E(φ) =

∫
M

e(φ)vol(g)

=
1

2

∫
M

‖dφ‖2vol(g)

Let h be the Sasaki Metric and σ : (M, g)→ (TM, h) be a vector field
on (M, g) which is also compact. By Proposition 6.1, dσ(X) can be
split into vertical and horizontal components

dσ(X) = dV σ(X) + dHσ(X)
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Using the Sasaki metric and the characterisation of K, the horizontal
component of ‖dσ‖2 is

‖dHσ‖2 = h

dHσ(Ei)︸ ︷︷ ︸
A

, dHσ(Ei)︸ ︷︷ ︸
B


= g

(
dπ(dHσ(Ei)), dπ(dHσ(Ei))

)
+ g

(
K(dHσ(Ei)), K(dHσ(Ei))

)
= g

(
dπ(dHσ(Ei)), d

Hπ(Ei)
)

Equation (6.1) leads to

‖dHσ‖2 = g (Ei, Ei) = n

Using the Sasaki metric and the characterisation of K, the vertical
component of ‖dσ‖2 is

‖dV σ‖2 = h

dV σ(Ei)︸ ︷︷ ︸
A

, dV σ(Ei)︸ ︷︷ ︸
B


= g

(
dπ(dV σ(Ei)), dπ(dV σ(Ei))

)
+ g

(
K(dV σ(Ei)), K(dV σ(Ei))

)
= g

(
K(dV σ(Ei)), K(dV σ(Ei))

)
= g (∇Eiσ,∇Eiσ) by Equation (6.2)

= ‖∇Eiσ‖2

= ‖∇σ‖2

Adding these two components together

‖dσ‖2 = h (dσ(Ei), dσ(Ei))

=

h(dHσ(Ei),d
Hσ(Ei))︷ ︸︸ ︷

g(dπ(dσ(Ei)), dπ(dσ(Ei))) + g (K(dσ(Ei), K(dσ(Ei)))︸ ︷︷ ︸
h(dV σ(Ei),dV σ(Ei))

= ‖dHσ‖2︸ ︷︷ ︸
n

+ ‖dV σ‖2︸ ︷︷ ︸
‖∇σ‖2

Therefore the energy of σ is

E(σ) =
1

2

∫
M

‖dσ‖2vol(g)

=
1

2

∫
M

(
‖dHσ‖2 + ‖dV σ‖2

)
vol(g)

=
n

2
vol(M, g) +

1

2

∫
M

‖∇σ‖2vol(g) �
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The equation above leads to the following two definitions including
a definition of a harmonic vector field which will be generalised in
Section 10 called The generalised Cheeger-Gromoll metric and vertical
(p, q)-energy.

Definition 6.5. [1] The vertical energy (or total bending) of σ is the
number

EV (σ) =
1

2

∫
M

‖∇σ‖2vol(g)

Definition 6.6. A vector field σ is a harmonic vector field if

d

dt

∣∣∣∣
t=0

E(σt) =
d

dt

∣∣∣∣
t=0

EV (σt) = 0

for all smooth variations σt of σ through vector fields. A smooth vari-
ation σt of σ is the map Σ : M × R→ TM with the conditions that
(1) Σ(x, t) = σt(x),
(2) σt is a vector field,
(3) σ0 = σ.

7. Harmonic unit fields

Definition 7.1. Let (M, g) be a Riemannian manifold and σ be a
vector field. The vector field σ is a unit vector field if ‖σ‖ = 1 and σ
is a harmonic unit vector field if d

dt

∣∣
t=0

EV (σt) = 0 for all variations σt
of σ through unit vector fields.

Lemma 7.1. If σ is a unit vector field then the following equation is
true

〈∇∗∇σ, σ〉 = ‖∇σ‖2

Proof. Using the general equations for the rough Laplacian ∇∗∇σ and
the trace of X from Definitions 3.16 and 3.20, −〈∇∗∇σ, σ〉 equals

−〈∇∗∇σ, σ〉 = −
〈
− trace∇2σ, σ

〉
=

〈
n∑
i=1

∇2
Ei,Ei

σ, σ

〉
= 〈∇Ei∇Eiσ −∇∇EiEiσ, σ〉
= Ei〈∇Eiσ, σ〉 − 〈∇Eiσ,∇Eiσ〉 − 〈∇∇EiEiσ, σ〉

Since ‖σ‖2 = 1 and by the definition of a tangent vector from Definition
2.8,

〈∇Xσ, σ〉 =
1

2
X〈σ, σ〉

=
1

2
X
(
‖σ‖2

)
=

1

2
X (1)

= 0
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Combining the two equations above leads to the following equation

−〈∇∗∇σ, σ〉 = Ei〈∇Eiσ, σ〉 − 〈∇Eiσ,∇Eiσ〉 − 〈∇∇EiEiσ, σ〉
−〈∇∗∇σ, σ〉 = 0− ‖∇σ‖2 − 0

−〈∇∗∇σ, σ〉 = −‖∇σ‖2

⇒ 〈∇∗∇σ, σ〉 = ‖∇σ‖2 �

A harmonic unit vector field is also known as a harmonic unit field.
This alternative term will be used for the rest of this dissertation.

Lemma 7.2. If ψ is a vector field such that 〈ψ, σ〉 = 0 and ‖σ‖ = 1,
then there exists a smooth variation σt of σ with
(1) ‖σt‖ = 1 for all t,
(2) d

dt

∣∣
t=0

σt = ψ.

Proof. Let σt = σ+tψ
‖σ+tψ‖ for small |t| when σ is a smooth unit vector

field. By the quotient rule,

d

dt

∣∣∣∣
t=0

σt =

(
‖σ + tψ‖t=0

d
dt

∣∣
t=0

(σ + tψ)− d
dt

∣∣
t=0
‖σ + tψ‖ (σ + tψ)t=0

)
‖σ + tψ‖2t=0

= ψ −
(
d

dt

∣∣∣∣
t=0

‖σ + tψ‖
)
σ

Differentiating the denominator of σt

d

dt

∣∣∣∣
t=0

‖σ + tψ‖ =
d

dt

∣∣∣∣
t=0

〈σ + tψ, σ + tψ〉
1
2

=
1

2
〈σ + tψ, σ + tψ〉−

1
2

t=0

d

dt

∣∣∣∣
t=0

〈σ + tψ, σ + tψ〉

=

〈
d

dt

∣∣∣∣
t=0

(σ + tψ) , σ

〉
= 〈ψ, σ〉
= 0

Therefore

d

dt

∣∣∣∣
t=0

σt = ψ −
����������(
d

dt

∣∣∣∣
t=0

‖σ + tψ‖
)

︸ ︷︷ ︸
0

σ

= ψ.

�

Theorem 7.1. A unit vector field σ is a harmonic unit field if and
only if ∇∗∇σ = ‖∇σ‖2σ.
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Proof. The equation for a harmonic vector field is equivalent to

d

dt

∣∣∣∣
t=0

E(σt) = 0 ⇐⇒ d

dt

∣∣∣∣
t=0

1

2

∫
M

‖∇σt‖2vol(g) = 0

⇐⇒
∫
M

d

dt

∣∣∣∣
t=0

‖∇σt‖2vol(g) = 0

where ‖∇σt‖2 is the Hilbert-Schmidt norm equalling to

‖∇σt‖2 =
n∑
i=1

〈∇Eiσt,∇Eiσt〉

Now

d

dt
‖∇σt‖2 =

d

dt

n∑
i=1

〈∇Eiσt,∇Eiσt〉

= 2

〈
d

dt

∣∣∣∣
t=0

∇Eiσt,∇Eiσt

〉
= 2

〈
∇Ei

(
d

dt

∣∣∣∣
t=0

σt

)
,∇Eiσt

〉
Recall the equation for the vector field ψ from Lemma 7.2 which is
ψ(x) = d

dt

∣∣
t=0

σt where σt(x) is a curve in TxM and use it in the previous

equation for d
dt
‖∇σt‖2

d

dt
‖∇σt‖2 = 2

〈
∇Ei

(
d

dt

∣∣∣∣
t=0

σt

)
,∇Eiσt

〉
= 2 〈∇Eiψ,∇Eiσt〉
= 2 〈∇ψ,∇σt〉

By the definition of a harmonic vector field and Proposition 4.1

d

dt

∣∣∣∣
t=0

1

2

∫
M

‖∇σt‖2 vol(g) =

∫
M

〈∇ψ,∇σt〉 vol(g)

⇐⇒ d

dt

∣∣∣∣
t=0

EV (σt) =

∫
M

〈ψ,∇∗∇σt〉 vol(g)

(7.1)

Recall from Lemma 7.2 that σt is a unit vector field. Therefore the
following equations are true.

1 = ‖σt‖2 ⇒ 0 =
d

dt

∣∣∣∣
t=0

〈σt, σt〉

= 2

〈
d

dt

∣∣∣∣
t=0

σt, σt

〉
= 2〈ψ, σt〉
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Then by Lemma 7.1

d

dt

∣∣∣∣
t=0

EV (σt) =

∫
M

〈ψ,∇∗∇σt − 〈∇∗∇σt, σt〉σt〉vol(g)

=

∫
M

〈ψ,∇∗∇σt − ‖∇σt‖2σt〉vol(g)

If ∇∗∇σt = ‖∇σt‖2σt
d

dt

∣∣∣∣
t=0

EV (σt) =

∫
M

〈ψ, ‖∇σt‖2σt − ‖∇σt‖2σt〉vol(g)

=

∫
M

〈ψ, 0〉vol(g)

= 0

From the definition of a harmonic vector field recall that σ0 = σ so
σ is a harmonic unit field if ∇∗∇σ = ‖∇σ‖2σ. The unit vector σ is
a harmonic unit field only if ∇∗∇σ = ‖∇σ‖2σ because ψ is arbitrary
except that it needs to satisfy 〈ψ, σ〉 = 0. Hence σ is a harmonic unit
field if and only if ∇∗∇σ = ‖∇σ‖2σ. �

8. The Hopf vector field

This section continues studying harmonic unit fields and focuses on
a specific harmonic unit field called the Hopf vector field. Before it can
be defined some more information is needed.

Lemma 8.1. For any unit vector field σ, 〈∇2
X,Y σ, σ〉 = −〈∇Xσ,∇Y σ〉.

Proof. By the equation for the second covariant derivative

〈∇2
X,Y σ, σ〉 = 〈∇X (∇Y σ)−∇∇XY σ, σ〉

= ������
X〈∇Y σ, σ〉︸ ︷︷ ︸

0

−〈∇Y σ,∇Xσ〉 −�������〈∇∇XY σ, σ〉︸ ︷︷ ︸
0

= −〈∇Y σ,∇Xσ〉

This is true because σ is a unit vector field and for all Z ∈ TM

〈∇Zσ, σ〉 =
1

2
Z〈σ, σ〉

=
1

2
Z‖σ‖2

=
1

2
Z(1)

= 0 �

Recall that Theorem 7.1 states that σ is a harmonic unit field if and
only if

∇∗∇σ = ‖∇σ‖2σ
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Proposition 8.1. The vector field σ is a harmonic unit field if and
only if ∇∗∇σ = fσ for some f : M → R.

Proof. Theorem 7.1 implies that this proposition is true with f =
‖∇σ‖2.

By Lemma 7.1

〈∇∗∇σ, σ〉 = −
∑
i

〈∇2
Ei,Ei

σ, σ〉

=
∑
i

〈∇Eiσ,∇Eiσ〉

=
∑
i

‖∇Eiσ‖2

= ‖∇σ‖2 by the summation convention

If ∇∗∇σ = fσ then

〈∇∗∇σ, σ〉 = 〈fσ, σ〉
= f〈σ, σ〉
= f if σ is a unit field

Hence f = ‖∇σ‖2 if σ is a unit field

Therefore ∇∗∇σ = fσ implies that σ is a harmonic unit field and this
completes the proof. �

Definition 8.1. The equation for a (2n+ 1)-sphere is defined as

S2n+1 = {(x1, ..., x2n+2) : x21 + ...+ x22n+2 = 1}

This is the same as an n-dimensional unit sphere as defined in Definition
2.11. For example a 1-sphere, S1, is a unit circle and a 2-sphere, S2 is
a 3-dimensional unit sphere.

Definition 8.2. [15] Let (G, ◦) and (H, ∗) denote vector spaces G
and H equipped with the metrics ◦ and ∗ respectively. A function
θ : G→ H is an isomorphism if

θ(a ◦ b) = θ(a) ∗ θ(b) for all a, b ∈ G (8.1)

(G, ◦) and (H, ∗) are isomorphic, written G ∼= H, if there is an iso-
morphism between them.

There exists an isomorphism I : R2n+2 → Cn+1 such that

I (x1, ..., x2n+2) = (x1 + ix2, ..., x2n+1 + ix2n+2)

Then for all x ∈ R2n+2, ix ∈ R2n+2 is defined by

ix = I−1 (iI (x))

= (−x2, x1,−x4, x3, ...,−x2n+2, x2n+1)
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Lemma 8.2. Let x, y ∈ R2n+2 and · be the dot product. The following
equation is true

(ix) · y = −x · (iy)

Definition 8.3. [8] The Hopf vector field σ : S2n+1 → TxS
2n+1 when

n ∈ N is defined as

σ(x) = ix, for all x ∈ S2n+1.

Remark 8.1. The equation for the tangent space TxS
2n+1 of S2n+1 is

TxS
2n+1 = {x ∈ S2n+1, X ∈ R2n+2 : x ·X = 0},

Let σ(x) be the Hopf vector field and therefore σ(x) ∈ TxS2n+1. Then
by Lemma 8.2 and the equation for the tangent space TxS

2n+1 the
following equation is true

σ(x) · x = (ix) · x
= −x · (ix)

= 0

(8.2)

Definition 8.4. Assume f : U → Rm where U ⊂ Rn is an open
subset. Let x ∈ U , X ∈ Rn and Xj denote the j-coordinate of X. The
directional derivative of f at x in the direction of X is defined as

DXf(x) =
n∑
j=1

∂fi(x)

∂xj

∣∣∣∣
x

Xj

where fi : U → R is the i-th component of f .

Definition 8.5. Using the same functions from the definition above,
the Jacobian matrix of f at x is defined as

Jf (x) =

(
∂fi(x)

∂xj

∣∣∣∣
x

)
where 1 ≤ i ≤ m and 1 ≤ j ≤ n

The j-th partial derivative of f at x is denoted by

Djf(x) =
∂fi(x)

∂xj

∣∣∣∣
x

Another way to write the equation of the directional derivative is by
expanding X = X1E1 + ...+XnEn, where Xj = X · Ej, then

DXf(x) = X1D1f(x) + ...+XnDnf(x)

Example 8.1. Let x = a = (a1, a2) ∈ R2 and X = h = (h1, h2) ∈ R2.
Taking the function f : R2 → R3 which has the equation

f (x1, x2) = (x1 + 2x2, x1x2, 2x1 + x2) ,

It has the partial derivatives

D1f(a) = (1, a2, 2), D2f(a) = (2, a1, 1).
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The Jacobian matrix of f at a is

Jf (a) =

 1 2
a2 a1
2 1


The directional derivative of f at X is therefore:

DXf(a) : (h1, h2) 7→ (h1 + 2h2, a2h1 + a1h2, 2h1 + h2).

Definition 8.6. [15] The shape operator (or Weingarten map) Ap of
M ∈ Rn at p is the linear map

Ap : TpM → TpM ;Ap = −dξ(p)
Where ξ is the unit normal field as defined in Definition 5.3.

Definition 8.7. [15] The second fundamental form of M at p is the
bilinear form denoted by αp : TpM × TpM → R and defined as

αp(X, Y ) = 〈Ap(X), Y 〉
= −dξ(X) · Y where ξ is the unit normal field.

Remark 8.2. The second fundamental form αp(X, Y ) as defined in
the definition above is symmetric.

Definition 8.8. The Gauss formula for the covariant derivative ∇XY
is defined as

∇XY = DXY − α(X, Y )ξ

= DXY − (A(X) · Y ) ξ

= DXY + (dξ(X) · Y ) ξ

This formula agrees with the more intrinsic definition of the covariant
derivative which was written as ∇Xσ in Definition 3.2.

Theorem 8.1. Let σ be the Hopf vector field on S2n+1. Then ∇∗∇σ =
2nσ. Hence σ is a harmonic unit field.

Proof. Recall that

∇∗∇σ = −
∑
i

∇2
Ei,Ei

σ

for any orthonormal basis {Ei}. Therefore ∇2
X,Y σ for all X, Y ∈

TxS
2n+1 needs to be calculated. Taking the equation for the second

covariant derivative

∇2
X,Y σ = ∇X (∇Y σ)−∇∇XY σ,

then the Gauss formula for the covariant derivative, ∇XY on S2n+1,
equals

∇XY = DXY − α(X, Y )ξ, ∀X ∈ TxS2n+1

where DXY is the directional derivative and α(X, Y ) is the second
fundamental form. To find the unit normal field note that in this case
S = S2n+1 is the (2n+ 1)-dimensional unit sphere therefore the radius
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r = |x|2 = 1. This means that |x| = 1 and hence the unit normal field
of S2n+1 is ξ = x. Therefore α(X, Y ) equals

α(X, Y ) = A(X) · Y
= −dξ(X) · Y
= −dx(X) · Y
= −(X · Y )

(8.3)

where A(X) is the shape operator and ξ is the unit normal field.
Calculate ∇Y σ

∇Y σ = ∇Y (ix)

= DY (ix)− α(X, Y ) by the Gauss formula

= DY (ix) + Y · (ix) by Equation (8.3)

Using the equation of the directional derivative

DY σ(x) =
2n+2∑
j=1

∂ix

∂xj

∣∣∣∣
x

Yj

= iY

= ∇Y σ

(8.4)

The Gauss formula for the Hopf vector field equates to

∇Y σ = DY σ + (Y · σ)(ξ)

= iY + (Y · σ)ξ by Equation (8.4)

Hence the second covariant derivative for the Hopf vector field is

∇2
X,Y σ = ∇X∇Y σ −∇∇XY σ

= DX (iY + 〈Y, σ〉ξ) + (X · (iY +����〈Y, σ〉ξ︸ ︷︷ ︸
=0

))ξ

− i (∇XY )− ((∇XY ) · σ) ξ

= iDXY + (X〈Y, σ〉) ξ + 〈Y, σ〉DXξ + (X · (iY )) ξ

− i∇XY − 〈∇XY, σ〉ξ
= i (〈X, Y 〉ξ) + (�����〈∇XY, σ〉+ 〈Y,∇Xσ〉) ξ

+ 〈Y, σ〉DXx+ (X · (iY )) ξ −������〈∇XY, σ〉ξ
= −〈X, Y 〉σ + (Y · (iX + (X · σ) ξ)) ξ

+ 〈Y, σ〉X + (X · (iY )) ξ

= 〈Y, σ〉X − 〈X, Y 〉σ +�������
(Y · (iX)) ξ +�������

(X · (iY )) ξ

Therefore

∇2
X,Y σ = 〈Y, σ〉X − 〈X, Y 〉σ
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Finally the rough Laplacian of the Hopf vector field equals

∇∗∇σ = −
2n+1∑
i

∇2
Ei,Ei

σ

= −
2n+1∑
i

(〈Ei, σ〉Ei − 〈Ei, Ei〉σ)

= (2n+ 1)σ − σ
= 2nσ. �

9. Killing fields

Definition 9.1. [2] A vector field K on a Riemannian manifold (M, g)
is Killing if

〈∇XK,Y 〉+ 〈X,∇YK〉 = 0 (Killing’s identity)

Definition 9.2. [15] The flow of a vector field σ on a manifold M ,
denoted by φt : M →M , is defined to be a function on M that satisfies
the equation

σ (φt(x)) =
d

dt
(φt(x))

for all t ∈ R and x ∈M where φ0 = idM .

Definition 9.3. [16] An isometry f : X → Y is a bijective map such
that

dY (f(x1), f(x2)) = dX(x1, x2)

where dY and dX are metrics.

Example 9.1. Let R2 and C denote the 2-dimensional Euclidean space
and the complex space respectively. Let (x, y) be the coordinates of
a point in R2 and z be a function z(x, y) = x + iy ∈ C which is an
isometry from R2 to C.

Let σ(z) : C→ C be the vector field

σ(z) = z2

Define φt(z) to be a mapping φt : C \ {1
t
} → C \ {1

t
}

φt(z) =
z

1− tz
To see if φt(z) is the flow of the vector field σ calculate σ (φt(x)) first

σ (φt(z)) =

(
z

1− tz

)2

=
z2

(1− tz)2
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Figure 9.1. A Killing field in S2

Then calculate d
dt

(φt(z))

d

dt
(φt(z)) =

d

dt

(
z

1− tz

)
=

(1− tz)d(z)− zd(1− tz)

(1− tz)2

=
(1− tz)0− z(−z)

(1− tz)2

=
z2

(1− tz)2

= σ (φt(z))

Therefore φt(z) is the flow of the vector field σ(z) on C \ {1
t
}.

Two examples of Killing fields are shown in Figures 9.1 and 9.2 where
the arrows depict the flow, φt : M →M , of the unit sphere S2 and the
unit circle S1 at time t.

Let σ be the Hopf vector field σ(x) = ix for all x ∈ S2n+1. The
covariant derivative of σ is

∇Xσ = iX + 〈X, σ〉ξ

Using Killing’s identity on σ

〈∇Xσ, Y 〉+ 〈X,∇Y σ〉 = (iX + 〈X, σ〉ξ) · Y +X · (iY + 〈Y, σ〉ξ)
= (iX) · Y +X · (iY )

= 0

Therefore σ is a Killing field.

Proposition 9.1. [15]Recall the equation for the Riemann tensor R(X, Y )Z
from section 3

R(X, Y )Z = ∇2
X,YZ −∇2

Y,XZ
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Figure 9.2. A Killing field in S1

The Riemann tensor satisfies the following properties for all X, Y, Z,W ∈
TxS and all x ∈ S

R(X, Y )Z = −R(Y,X)Z (R1)

〈R(X, Y )Z,W 〉 = 〈R(Z,W )X, Y 〉 (R2)

〈R(X, Y )Z,W 〉 = −〈R(X, Y )W,Z〉 (R3)

R(X, Y )Z +R(Z,X)Y +R(Y, Z)X = 0 (R4)

R(X,X)Y = 0 (R5)

Remark 9.1. Property (R4) is known as Bianchi’s identity.

Proposition 9.2. Let K be a Killing field in a Riemannian manifold
(M, g). Then

∇2
X,YK = −R(K,X)Y

for all X, Y ∈ TxM and all x ∈M .

Proof. The first step is to prove the following equation

〈∇2
X,XK,Z〉 = −〈X,∇2

X,ZK〉 (9.1)

By Killing’s identity

〈∇XK,Y 〉 = −〈X,∇YK〉
Replacing Y with Z

〈∇XK,Z〉 = −〈X,∇ZK〉
Taking the equation for the second covariant derivative

∇2
X,Y σ = ∇X (∇Y σ)−∇∇XY σ (9.2)

The second covariant derivatives ∇2
X,XK and ∇2

X,ZK are

∇2
X,XK = ∇X (∇XK)−∇∇XXK (9.3)

and
∇2
X,ZK = ∇X (∇ZK)−∇∇XZK
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Recall the equation of the Riemannian metric on σ and the second
covariant derivative of σ from the proof of Lemma 8.1

〈∇2
X,Y σ, σ〉 = 〈∇X (∇Y σ)−∇∇XY σ, σ〉 (9.4)

The Riemannian metric on the second covariant derivative ∇2
X,XK

and Z is

〈∇2
X,XK,Z〉 = 〈∇X (∇XK)−∇∇XXK,Z〉

The Riemannian metric on the second covariant derivative ∇2
X,ZK and

X is

〈X,∇2
X,ZK〉 = 〈X,∇X (∇ZK)−∇∇XZK〉

Extend X,Z ∈ TxM to vector fields such that

∇YX = 0 = ∇YZ

for all Y ∈ TxM so that

∇XX = 0

To prove Equation (9.1) use Killing’s identity and the equation above

〈∇XK,Z〉 = −〈X,∇ZK〉
⇒ X〈∇XK,Z〉 = −X〈X,∇ZK〉

⇒ 〈∇X(∇XK), Z〉+ 〈∇XK,∇XZ〉 = −〈∇XX,∇ZK〉
− 〈X,∇X(∇ZK)〉

⇒ 〈∇X(∇XK)−∇∇XXK,Z〉+ 〈∇XK,∇XZ〉 = −〈X,∇X(∇ZK)〉
⇒ 〈∇2

X,XK,Z〉 = −〈X,∇X(∇ZK)〉
− 〈∇XK,∇XZ〉

⇒ 〈∇2
X,XK,Z〉 = −〈X,∇X(∇ZK)〉

+ 〈X,∇∇XZK〉
⇒ 〈∇2

X,XK,Z〉 = −〈X,∇X(∇ZK)

−∇∇XZK〉
⇒ 〈∇2

X,XK,Z〉 = −〈X,∇2
X,ZK〉

The second step is to prove the following equation

〈∇2
Z,XK,X〉 = 0 (9.5)

Using the equation for the second covariant derivative

∇2
Z,XK = ∇Z (∇XK)−∇∇ZXK

and by Equation (9.4) the following equation is true

〈∇2
Z,XK,X〉 = 〈∇Z (∇XK)−∇∇ZXK,X〉 (9.6)
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To prove Equation (9.5), start with Equation (9.6) and use Proposition
3.1

〈∇2
Z,XK,X〉 = 〈∇Z(∇XK)−∇∇ZXK,X〉

= 〈∇Z(∇XK)−∇0K,X〉
= 〈∇Z(∇XK), X〉
= Z〈∇XK,X〉 − 〈∇XK,∇ZX〉 by property C3

= Z〈∇XK,X〉 − 〈∇XK, 0〉
= Z〈∇XK,X〉

By Killing’s identity

〈∇XK,X〉+ 〈X,∇XK〉 = 0

⇒ 2〈∇XK,X〉 = 0

⇒ 〈∇XK,X〉 = 0

Hence 〈∇2
Z,XK,X〉 equals

〈∇2
Z,XK,X〉 = Z〈∇XK,X〉

= Z(0)

= 0

The third step is to prove

∇2
X,XK = −R(K,X)X (9.7)

Recall the equation for R(X, Y )Z and property R1 in Proposition 9.1

R(X, Y )Z = ∇2
X,YZ −∇2

Y,XZ (9.8)

and

R(X, Y )Z = −R(Y,X)Z

By Equations (9.1) and (9.5)

〈∇2
X,XK,Z〉 = −〈X,∇2

X,ZK〉
= 0− 〈X,∇2

X,ZK〉
= 〈∇2

Z,XK,X〉 − 〈X,∇2
X,ZK〉

= 〈∇2
Z,XK,X〉 − 〈∇2

X,ZK,X〉 by the symmetry of 〈−,−〉
= 〈R(Z,X)K,X〉
= −〈R(Z,X)X,K〉 by property R3

= −〈R(X,K)Z,X〉 by property R2

= 〈R(X,K)X,Z〉 by property R3

= 〈−R(K,X)X,Z〉 by property R1

⇒ ∇2
X,XK = −R(K,X)X
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The fourth step is to prove the following equation

∇2
X+Y,X+YK +R(K,X + Y )(X + Y ) = 2∇2

X,YK + 2R(K,X)Y

Using Equations (C1), (C2) and (9.3)

∇2
X+Y,X+YK = ∇X+Y (∇X+YK)−∇∇X+YX+YK

= ∇X(∇X+YK) +∇Y (∇X+YK)−∇∇X+YX+YK

= ∇X(∇XK) +∇X(∇YK) +∇Y (∇XK)

+∇Y (∇YK)−∇∇X+YX+YK

= ∇X(∇XK) +∇X(∇YK) +∇Y (∇XK)

+∇Y (∇YK)−∇∇X+YX+∇X+Y YK

= ∇X(∇XK) +∇X(∇YK) +∇Y (∇XK)

+∇Y (∇YK)−∇∇XX+∇YX+∇XY+∇Y YK

= ∇X∇XK +∇X∇YK +∇Y∇XK +∇Y∇YK

−∇∇XXK −∇∇XYK −∇∇YXK −∇∇Y YK
= ∇2

X,YK +∇2
X,XK +∇2

Y,XK +∇2
Y,YK

By Equations (9.2), (9.7), (9.8), (C1) and (C2)

R(K,X + Y )(X + Y ) = ∇2
K,X+Y (X + Y )−∇2

X+Y,K(X + Y )

= ∇K (∇X+Y (X + Y ))−∇∇KX+Y (X + Y )

−∇X+Y (∇K(X + Y )) +∇∇X+YK(X + Y )

= ∇K (∇X+YX +∇X+Y Y )−∇∇KX+YX −∇∇KX+Y Y

−∇X+Y (∇KX +∇KY ) +∇∇X+YKX +∇∇X+YKY

= ∇K (∇XX +∇YX +∇XY +∇Y Y )

−∇∇KX+∇KYX −∇∇KX+∇KY Y

−∇X (∇KX +∇KY )−∇Y (∇KX +∇KY )

+∇∇XK+∇YKX +∇∇XK+∇YKY

= ∇K(∇XX) +∇K(∇YX) +∇K(∇XY ) +∇K(∇Y Y )

−∇∇KXX −∇∇KYX −∇∇KXY −∇∇KY Y
−∇X(∇KX)−∇X(∇KY )−∇Y (∇KX)−∇Y (∇KY )

+∇∇XKX +∇∇XKY +∇∇YKX +∇∇YKY
= ∇2

K,XX +∇2
K,YX +∇2

K,XY +∇2
K,Y Y

−∇2
X,KX −∇2

Y,KX −∇2
X,KY −∇2

Y,KY

= R(K,X)X +R(K,Y )X +R(K,X)Y +R(K,Y )Y

= −∇2
X,XK −∇2

Y,YK +R(K,Y )X +R(K,X)Y
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By Bianchi’s identity and R1

0 = R(K,X)Y +R(X, Y )K +R(Y,K)X

= R(K,X)Y +R(X, Y )K −R(K,Y )X

⇒ R(K,Y )X = R(K,X)Y +R(X, Y )K

= R(K,X)Y +∇2
X,YK −∇2

Y,XK

Adding ∇2
X+Y,X+YK and R(K,X + Y )(X + Y ) together

∇2
X+Y,X+YK +R(K,X + Y )(X + Y ) = ∇2

X,YK +∇2
X,XK

+∇2
Y,XK +∇2

Y,YK

−∇2
X,XK −∇2

Y,YK

+R(K,X)Y

+∇2
X,YK −∇2

Y,XK

+R(K,X)Y

= 2∇2
X,YK + 2R(K,X)Y

Applying Equation (9.7) to X + Y

∇2
X+Y,X+YK = −R(K,X + Y )(X + Y )

Therefore

2∇2
X,YK + 2R(K,X)Y = ∇2

X+Y,X+YK

+R(K,X + Y )(X + Y )

2∇2
X,YK + 2R(K,X)Y = −R(K,X + Y )(X + Y )

+R(K,X + Y )(X + Y )

2∇2
X,YK + 2R(K,X)Y = 0

⇒ 2∇2
X,YK = −2R(K,X)Y

⇒ ∇2
X,YK = −R(K,X)Y

This concludes the proof of this proposition. �

10. The generalised Cheeger-Gromoll metric and
vertical (p, q)-energy

Definition 10.1. [1] Using the same notation for the mappings π and
K and the manifold M as in Section 6, The Sasaki metric and vertical
energy, let E be a vector bundle and let K : TE → E be the connection
map for ∇ as defined in Definition 6.2.

E K←−−− TE

π

y ydπ
M ←−−− TM
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Let ε ∈ E and A,B ∈ TεE . For any pair of parameters p, q ∈ R a
symmetric 2-covariant tensor hp,q on E is defined as follows

hp,q(A,B) = g(dπ(A), dπ(B)) + wp(ε)(〈KA,KB〉+ q〈KA, ε〉〈KB, ε〉)
where

w(ε) =
1

1 + |ε|2

Remark 10.1. [1] If (p, q) = (0, 0) then hp,q is the Sasaki metric

h0,0(A,B) = g(dπ(A), dπ(B)) + 〈KA,KB〉

Definition 10.2. [1] If (p, q) = (1, 1) then hp,q is the Cheeger-Gromoll
metric

h1,1(A,B) = g(dπ(A), dπ(B)) +
1

1 + |ε|2
(〈KA,KB〉+ 〈KA, ε〉〈KB, ε〉)

In all cases the hp,q metric is known as the generalised Cheeger-Gromoll
metric and the set of hp,q metrics is known as the 2-parameter family
of metrics of Cheeger-Gromoll type.

If {Ei} is an orthonormal basis in M then by the defining equations
of the vertical subspace Vε = Ker dπ(ε), the metric hp,q and ∇Xσ =
K (dσ(X)), the vertical component of ‖dσ‖2 with respect to the metric
hp,q is

|dV σ|2 = h
(
dV σ(Ei), d

V σ(Ei)
)

= g
(
dπ(dV σ(Ei)), dπ(dV σ(Ei))

)
+ wp(σ)

(
〈K
(
dV σ(Ei)

)
, K
(
dV σ(Ei)

)
〉+ q〈K

(
dV σ(Ei)

)
, σ〉2

)
= wp(σ)

(
〈∇Eiσ,∇Eiσ〉+ q〈∇Eiσ, σ〉2

)
= wp(σ)

(
|∇σ|2 + q|∇F |2

)
=

1

(1 + |σ|2)p
(
|∇σ|2 +

1

4
q|∇|σ|2|2

)
where ∇F is the gradient vector of F which has the following equation

F =
1

2
|σ|2

Definition 10.3. [1] EV
p,q is the notation for the vertical energy func-

tional with respect to the metric hp,q. It is referred to as the vertical
(p, q)-energy of σ and has the equation

EV
p,q(σ) =

1

2

∫
M

1

(1 + |σ|2)p
(
|∇σ|2 +

1

4
q|∇|σ|2|2

)
vol(g)

for all σ ∈ C(E). When (p, q) are known this is written as EV (σ).

Lemma 10.1. If (p, q) = (0, 0) then the vertical (p, q)-energy of σ
equals the total bending of σ.
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Proof. The proof of this statement is shown in the following alignment
of equations

EV
0,0(σ) =

1

2

∫
M

1

(1 + |σ|2)p
(
|∇σ|2 +

1

4
q|∇|σ|2|2

)
vol(g)

=
1

2

∫
M

1

(1 + |σ|2)0

(
|∇σ|2 +

1

4
0|∇|σ|2|2

)
vol(g)

=
1

2

∫
M

|∇σ|2vol(g)

= EV (σ)

which is the total bending of σ. �

The equation above leads to the generalised definition of a harmonic
vector field as referred to Section 6.

Definition 10.4. [1] A vector field σ is a harmonic vector field if σ is
stationary due to following the equation being true

d

dt

∣∣∣∣
t=0

EV
p,q(σt) = 0

with respect to the metric hp,q on E for all smooth variations σt of σ
through sections of E . Then σ is also defined to be a (p, q)-harmonic
section of E .

The following theorem is important and will be used for the proofs
of the later theorems in Section 11. A proof of this theorem can be
found in [1].

Theorem 10.1. [1] A vector field σ is a (p, q)-harmonic section of TM
if and only if

Tp(σ) = φp,q(σ)σ

where

Tp(σ) = (1 + |σ|2)∇∗∇σ + 2p∇∇Fσ
is a vector field with

F =
1

2
|σ|2

and

φp,q(σ) = p|∇σ|2 − pq|∇F |2 − q(1 + |σ|2)∆F
is an R-valued function.

11. Harmonic vector fields on Riemannian space forms

11.1. Conformal vector fields and the Lie derivative.
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Definition 11.1. [4] A vector field σ on a Riemannian manifold (M, g),
with M ⊂ Rn, is conformal if and only if

g(∇Xσ, Y ) + g(X,∇Y σ) = 2ψ · g(X, Y ) for all X, Y ∈ Rn

where ψ ∈ R and ψ 6= 0.

Definition 11.2. [15] For a function (scalar field) φ on a manifold N

φ : N → R
q 7→ φ(q)

Its pull-back f ∗ to a manifold M is defined as

f ∗φ : M → R
p 7→ (f ∗φ)(p) = φ(f(p))

Let W be a vector field on M . Its push-forward f∗ to a vector field
on N is defined by giving its action on the function φ on N in the
following equation.

(f∗W )φ = W (f ∗φ) (11.1)

Definition 11.3. [14][15] The Lie derivative of the function φ at a
point p along a vector field σ is defined as

Lσφ = lim
t→0

1

t
[f ∗t φ− φ]

where ft(p) for fixed p is the flow of σ. Hence

(Lσφ)(p) = lim
t→0

1

t
[φ(ft(p))− φ(p)]

=
d

dt
φ(ft(p))

∣∣∣
t=0

= σpφ

The Lie derivative of the vector field W , denoted by LσW , is defined
by using similar notation from the Lie derivative Lσ of the function φ
at the point p along the vector field σ together with the push-foward
of the inverse of ft denoted by

(
f−1t
)
∗. It has the equation

LσW = lim
t→0

1

t

[(
f−1t
)
∗W (ft (p))−W (p)

]
The Lie derivative of a metric g on X ∈ Rn and Y ∈ Rn is defined by
the equation

(Lσg) (X, Y ) =
d(φ∗tg)

dt

∣∣∣∣
t=0

(X, Y )

Theorem 11.1. [14] The equation for the Lie derivative of the vector
field W can be simplified to the following equation.

LσW = [σ,W ]
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Definition 11.4. Let φ : M → N be a smooth mapping of Riemannian
manifolds. We say that φ is conformal if for all X, Y ∈ C(TM):

〈dφ(X), dφ(Y )〉 = ρ(x)〈X, Y 〉

where ρ : M → R is a smooth positive function. The square root of ρ
is called the conformality factor of φ.

Remark 11.1. In the definition above dφx : TxM → Tφ(x)N is the
differential of φ at x.

Proposition 11.1. Let the flow of a vector field σ on a manifold M be
the function φt : M →M where t ∈ R. The vector field σ is conformal
if each φt is conformal.

Proof. For this proof begin with the inner product of dφt(X) and
dφt(Y ).

〈dφt(X), dφt(Y )〉 = ρt(x)〈X, Y 〉

⇒ d

dt

∣∣∣∣
t=0

〈dφt(X), dφt(Y )〉 =
dρt
dt

∣∣∣∣
t=0

〈X, Y 〉

=
d

dt

∣∣∣∣
t=0

g(dφt(X), dφt(Y ))

=
d(φ∗tg)

dt

∣∣∣∣
t=0

(X, Y )

= (Lσg)(X, Y )

= σ(g(X, Y ))− g(LσX, Y )

− g(X,LσY )

= g(∇σX, Y ) + g(X,∇σY )

− g([σ,X], Y )− g(X, [σ, Y ])

= g (∇σX − [σ,X], Y )

+ g(X,∇σY − [σ, Y ])

= g(∇Xσ, Y ) + g(X,∇Y σ)

= 〈∇Xσ, Y 〉+ 〈X,∇Y σ〉
= 2ψ〈X, Y 〉 by Definition 11.1

= 2ψ · g(X, Y )

Hence σ is conformal if each φt is conformal. �

11.2. Conformal gradient fields on the unit sphere Sn.

Definition 11.5. Let (M, g) be a Riemannian manifold with a Rie-
mannian metric g and let X, Y ∈ TxM be linearly independent tangent
vectors of M at a point x. The sectional curvature of X and Y , which
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is denoted by K(X, Y ), is defined to have the equation

K(X, Y ) =
g (R(X, Y )Y,X)

‖X‖2‖Y ‖2 − g(X, Y )2

where R(X, Y )Y is the Riemann tensor. The Riemannian manifold M
has a constant sectional curvature if K(X, Y ) has a constant value for
all tangent vectors X and Y in the tangent bundle TM of the manifold
M .

Definition 11.6. A complete Riemannian manifold M is a manifold
with infinite geodesics.

Definition 11.7. A Riemannian space form M is a complete Rie-
mannian manifold with a constant sectional curvature.

This section includes several subsections with examples of confor-
mal (p, q)-harmonic vector fields on Riemannian space forms and all of
them have a proof that they are conformal and harmonic. They are
also all harmonic sections of the tangent bundle TM of the specific
Riemannian space form M . This subsection includes the first example
which is a conformal gradient field on the n-dimensional unit sphere
Sn ⊂ Rn+1. Before this example a definition is needed for the proof
that it is conformal and (p, q)-harmonic.

Definition 11.8. [15] In a Riemannian manifold M ∈ Rn the normal
component a1 of a vector a in the direction of a vector x is defined by
the equation

a1 =
a · x
‖x‖2

x

The tangential component a2 of a in the tangent space TxM of a man-
ifold M is defined as

a2 = a− a1 = a− a · x
‖x‖2

x

Example figures of normal and tangential components are shown
later in this section.

Definition 11.9. A vector field σ on the n-dimensional unit sphere Sn

is said to be a conformal gradient field if

σ(x) = a− (a · x)x for all x ∈ Sn and for some a ∈ Rn+1 \ {0}

Figure 11.1 gives a diagram of a conformal gradient field on the
unit sphere S2 with dashed grey lines representing the 3 dimensions
of R3 ⊃ S2 and black arrows representing the tangent vectors of the
conformal gradient field. The dashed grey vector a is known as the
axial vector because it starts at the origin and goes through the north
pole on the vertical axis. The solid grey vector from the origin to the
point x represents the radius of the unit sphere S2 from the origin of
the unit sphere to any point x ∈ S2 and hence |x|2 = 1.
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a

|a|
a

x

|a|
- a

Figure 11.1. A diagram of a conformal gradient field
on the unit sphere S2

Proposition 11.2. The vector field σ defined in Definition 11.9 has
the two properties of being a conformal vector field and a gradient field
on the unit sphere Sn.

Proof. To prove this proposition first we show that σ is a gradient field
then show that it is conformal. To find the equation for a gradient field
on the unit sphere Sn, let ω : Sn → R equal ω = a · x and calculate
∇ω ·X which equals

∇ω ·X = d (a · x) (X)

= a · dx(X) + x · da(X) by the chain rule

= a ·X + x · 0
= a ·X

Hence ∇ω is the tangential component of a. From the definition of a
unit sphere Sn it is known that |x|2 = 1 therefore |x| = 1 and hence the
unit normal field of the unit sphere Sn is ξ = ±x. Using Definition 11.8,
Figure 11.2 shows an example of the vectors x and a with the normal
component of a in the direction of x and the tangential component of
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Figure 11.2. A diagram of the tangent space TxS
2 of

a point x on the unit sphere S2 and a vector a with its
tangential component in TxS

2

a in TxS
2. In (n+ 1)-dimensions, the normal component of a equals

a · x
|x|2

x =
a · x

1
x because Sn is the unit sphere

= (a · x)x

The tangential component equals

a− a · x
|x|2

x =
a · x

1
x because Sn is the unit sphere

= a− (a · x)x

Hence ∇ω equals
∇ω = a− (a · x)x

= σ(x)

Therefore σ = ∇ω so σ is a gradient field of ω. To show that σ is
conformal the following equation needs to be true

g(∇Xσ, Y ) + g(X,∇Y ) = 2ψ · g(X, Y )

for some ψ : M → R. By the Gauss formula and the chain rule
∇Xσ can be split into three components, one including the directional
derivative of the vector a, another including the directional derivative
of a dot product of an R-valued function and an Rn-valued function
and the third including the second fundamental form of σ. This can
be shown in the following equation.

∇Xσ = DXa−DX(a · x)x− α(X, σ)ξ
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The first component of ∇Xσ is

DXa = da(X)

= 0

The second component of ∇Xσ is

−DX(a · x)x = −X(a · x)x− (a · x)DXx

= −d(a · x)(X)x− (a · x)dx(X)

= − (a ·X)x− (a · x)X

The shape operator A(X) equals

A(X) = −dξ(X)

= −dx(X)

= −X

Hence the third component of ∇Xσ is

−α(X, σ)ξ = (A(X) · σ)x

= − (− (X · σ) (x))

= − (− (X · (a− (a · x)x)) (x))

= (a ·X)x− (a · x)x (x ·X)

= (a ·X)x− (a · x)0 because x is orthogonal to X

= (a ·X)x

Adding the three components together ∇Xσ equals

∇Xσ = −(a ·X)x− (a · x)X + (a ·X)x

= −(a · x)X

Therefore

g(∇Xσ, Y ) + g(X,∇Y σ) = −(a · x)(X · Y )−X · (a · x)Y

= −2(a · x)(X · Y )

= ψ · (X · Y )

⇒ ψ = −2(a · x)

Hence σ is conformal. �

Theorem 11.2. [1] Let M = Sn ⊂ Rn+1 be the n-dimensional unit
sphere and let σ be a conformal gradient field on Sn. Then σ is a
(p, q)-harmonic section of TM and hence a harmonic vector field if
and only if

p = n+ 1, q = 2− n, |a| = 1√
−q

and n ≥ 3
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Proof. In this example the manifold and Riemannian metric being
used are (M, g) = (Sn, ·) which are the n-dimensional unit sphere and
the dot product. For reference the equation for a conformal gradient
field σ on Sn is

σ(x) = a− (a · x)x

= a− ωx
and the equation for ∇Xσ is

∇Xσ = −ωX
= −(a · x)X

By Theorem 10.1, σ is a (p, q)-harmonic section if and only if

Tp(σ) = φp,q(σ)σ

where

Tp(σ) = (1 + |σ|2)∇∗∇σ + 2p∇∇Fσ
is a vector field with

F =
1

2
|σ|2

and

φp,q(σ) = p|∇σ|2 − pq|∇F |2 − q(1 + |σ|2)∆F
is an R-valued function. To calculate Tp(σ) and φp,q(σ) the values F ,
∇F , |∇F |2, ∇∇Fσ, ∆F , |∇σ|2, ∇∗∇σ and ∇2

X,Y σ need to be found.

Starting with the calculation of ∇2
X,Y σ

∇2
X,Y σ = ∇X (∇Y σ)−∇∇XY σ

= ∇X (− (a · x)Y )− (−(a · x))∇XY

= DX (− (a · x)Y )− α (X, (− (a · x)Y )) ξ + (a · x)∇XY

= X (− (a · x))Y + (−a · x)∇XY

− (− (X · − (a · x)Y ))x+ (a · x)∇XY

= −(a ·X)Y + (X · (a · x)x)Y

= ((−a+ (a · x)x) ·X)Y

= (−σ ·X)Y

= − (X · σ)Y

Then ∇∗∇σ equals

∇∗∇σ = −
n∑
i=1

∇2
Ei,Ei

σ

= −
n∑
i=1

((−a+ (a · x)x) · Ei)Ei

= a− (a · x)x

= σ
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where {Ei}ni=1 is an orthonormal basis of TRn. Recalling the equation
for ∇Xσ, |∇σ|2 is

|∇σ|2 =
n∑
i=1

|∇Eiσ|2

=
n∑
i=1

‖ − (a · x)Ei‖2

=
n∑
i=1

(
(a · x)2 (Ei · Ei)

)
= n(a · x)2

= nω2

The rest of the values required include F so that is calculated next by
using the equation for 2F . Let c = |a|2 and |x|2 = r2 = 1.

2F = |σ|2

= |a− (a · x)x|2

= |a|2 + (a · x)2r2 − 2(a · x)2

= |a|2 + (a · x)2(r2 − 2)

= c2 + ω2(r2 − 2)

⇒ F =
1

2
|a|2 +

1

2
(a · x)2(r2 − 2)

=
1

2
c2 +

1

2
ω2(r2 − 2)

=
1

2
c2 +

1

2
ω2(1− 2)

=
1

2
c2 − 1

2
ω2

⇒ 2F = c2 − ω2

Since σ = ∇ω, ∇F can be calculated in this way

∇F = ∇
(

1

2
c2 − 1

2
ω2

)
= ∇1

2
c2 −∇1

2
ω2

= 0− ω∇ω by the chain rule

= −ωσ
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Using the formula for ∇F in relation to σ from the equation above,
2∇∇Fσ can be calculated as

2∇∇Fσ = −(a · x)2∇F
= −2(a · x) (−ωσ)

= 2ω2σ

⇒ ∇∇Fσ = ω2σ

∆F can be found by using Corollary 3.1.

∆F = −|∇σ|2 + (∇∗∇σ) · σ
= −nω2 + σ · σ
= −nω2 + (a− (a · x)x) · (a− (a · x)x)

= −nω2 + |σ|2

= −nω2 + 2F

= −nω2 + c2 − ω2

All of the values for Tp(σ) have been calculated so they can now be
used in the equation for Tp(σ).

Tp(σ) = (1 + |σ|2)∇∗∇σ + 2p∇∇Fσ
= (1 + 2F )σ + 2pω2σ

= (1 + 2F + 2pω2)σ

Tp(σ) is proportional to σ so no restrictions can be confirmed yet. The
last part of φp,q(σ) required is |∇F |2 which equals

|∇F |2 = | − ωσ|2

= ω2|σ|2

= 2ω2F

= ω2(c2 − ω2)

= ω2c2 − ω4

Hence φp,q(σ) equals

φp,q(σ) = p|∇σ|2 − pq|∇F |2 − q(1 + |σ|2)∆F
= p(nω2)− pq(2ω2F )− q(1 + 2F )(−nω2 + 2F )
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Still in the case when σ is (p, q)-harmonic, the equation Tp(σ) = φp,q(σ)σ
can then be simplified to

Tp(σ) = φp,q(σ)σ

⇒ (1 + 2F + 2pω2)σ = (p(nω2)− pq(2ω2F )

− q(1 + 2F )(−nω2 + 2F ))σ

⇒ 1 + 2F + 2pω2 = p(nω2)− pq(2ω2F )

− q(1 + 2F )(−nω2 + 2F )

⇒ 1 + c2 − ω2 + 2pω2 = p(nω2)− pq
(
ω2(c2 − ω2)

)
− q(1 + c2 − ω2)(−nω2 + c2 − ω2)

⇒ 1 + c2 + (2p− 1)ω2 = p(n+ q)ω2

− q(1 + c2 − ω2)(c2 − (n− p+ 1)ω2)

This is a polynomial in ω. Since ω is a continuous function on M = Sn

this polynomial is zero if and only if the coefficients of the powers of
ω vanish. Hence the following equations come from the coefficients of
ω0, ω2 and ω4.

From ω0,

1 + c2 = −q(1 + c2)c2

⇒ 1 = −qc2

⇒ q = − 1

c2

∴ |a| = 1√
−q

(11.2)

and from ω2,

2p− 1 = p(n+ q)− q
(
−c2 +

(
1 + c2

)
(− (n− p+ 1))

)
⇒ 2p− 1 = p(n+ q) + qc2 + q(1 + c2)(n− p+ 1)

and from ω4,

0 = −q (−1) (− (n− p+ 1))

0 = −q(n− p+ 1)

⇒ 0 = n− p+ 1

⇒ p = n+ 1
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Using the results of equations from ω0 and ω4 in the equation from ω2

it equals

2(n+ 1)− 1 = (n+ 1)(n+ q)− 1 + q(1 + c2)(n− n− 1 + 1)

⇒ 2(n+ 1) + 0 = (n+ 1)(n+ q) + 0

⇒ 2(n+ 1) = (n+ 1)(n+ q)

⇒ 2(n+ 1) = (n+ 1)n+ q(n+ 1)

⇒ (2− n)(n+ 1) = q(n+ 1)

⇒ 2− n = q

∴ n ≥ 3 by Equation (11.2)

Hence σ is a (p, q)-harmonic section of TSn if and only if

p = n+ 1, q = 2− n, |a| = 1√
−q

and n ≥ 3. �

11.3. Conformal gradient fields on the hyperbolic space Hn.
This subsection introduces the hyperbolic space Hn.

Definition 11.10. [2] Let the (n+ 1)-Lorentzian space be denoted by
Rn,1 which equals Rn+1 equipped with the Lorentzian inner product

〈x, y〉 = x1y1 + . . .+ xnyn − xn+1yn+1

for all x, y ∈ Rn,1. Then the hyperbolic space Hn is the set

Hn = {x ∈ Rn,1 : 〈x, x〉 = −1, xn+1 > 0}

Let a ∈ Rn,1 be any vector and denote µ = 〈a, a〉. The Lorentzian
inner product µ may be negative. Let ω : Hn → R be the Lorentzian
inner product of x ∈ Hn and a

ω(x) = 〈a, x〉

for all x ∈ Hn.

Definition 11.11. A vector field σ on the hyperbolic space Hn is said
to be a conformal gradient field on the hyperbolic space Hn if

σ = a+ 〈a, x〉x for all x ∈ Hn and a ∈ Rn,1

Figure 11.3 gives the 2-dimensional hyperbolic space H2 in the 3-
dimensional Euclidean space R3 with black arrows showing the vectors
of a conformal gradient field on this Riemannian manifold.

Definition 11.12. [2] The light cone is defined by the set

{x ∈ Rn,1 : 〈x, x〉 = 0}

There are three different cases in which the vector a could be, as defined
as follows. The vector a is timelike if µ < 0. The vector a is spacelike
if µ > 0. The vector a is lightlike if µ = 0.
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Figure 11.3. A conformal gradient field on the 2-
dimensional hyperbolic space H2

Figure 11.4 gives a diagram of the light cone including the three
different cases of the vector a. If a is timelike a is a vector inside the
cone as shown by the black arrow going straight through the cone. If
a is spacelike a is outside the cone as shown by a diagonal black arrow
outside the cone. If a is lightlike a is on the cone and an example of
this is shown by the third black arrow on the boundary of the cone.

Proposition 11.3. [2] The vector field σ defined in Definition 11.11
has the two properties of being a conformal vector field and a gradient
field on the hyperbolic space Hn equipped with the Lorentzian inner
product, denoted by 〈−,−〉, where

σ(x) = a+ ω(x)x

= a+ 〈a, x〉x
and σ is the gradient field ∇ω of

ω(x) = 〈a, x〉

Proof. To prove this proposition first show that σ is a gradient field
then show that it is conformal. To find the equation for a gradient field
on the hyperbolic space Hn, calculate 〈∇ω,X〉. Since ω = 〈a, x〉 is a
1-form in R, 〈∇ω,X〉 equals

〈∇ω,X〉 = d〈a, x〉(X)

= 〈a, dx〉(X) + 〈x, da〉(X) by the chain rule

= 〈a,X〉+ 〈x, 0〉
= 〈a,X〉

Hence ∇ω is the tangential component of a. From the definition of the
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Figure 11.4. The light cone with arrows representing
the 3 different cases of the vector a

Figure 11.5. A diagram of the tangent space TxH
2 of

a point x on the 2-dimensional hyperbolic space H2 and
a vector a with its tangential component in TxH

2

hyperbolic space it is known that 〈x, x〉 = −1. Using Definition 11.8,
Figure 11.5 shows an example of the vectors x ∈ H2 and a ∈ R3 with
the normal and tangential components of a. In (n+ 1)-dimensions, the
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normal component of a in TxH
n equals

a1 =
〈a, x〉
〈x, x〉

x

=
〈a, x〉
−1

x because x is in the hyperbolic space

= −〈a, x〉x

then the tangential component of a in TxH
n equals

a2 = a− 〈a, x〉
〈x, x〉

x

= a− 〈a, x〉
−1

x because x is in the hyperbolic space

= a+ 〈a, x〉x

Hence ∇ω equals

∇ω = a+ 〈a, x〉x
= σ(x)

Therefore σ = ∇ω so σ is a gradient field of ω. To show that σ is
conformal the following equation needs to be true

〈∇Xσ, Y 〉+ 〈X,∇Y 〉 = 2ψ〈X, Y 〉

for some ψ : M → R. By the chain rule DXσ can be split into two
components, one including the directional derivative of the vector a
and the other including the directional derivative of a dot product of
an R-valued function and an Rn-valued function. This can be shown
in the following equation.

DXσ = DXa+DX〈a, x〉x

The first component of DXσ is

DXa = da(X)

= 0

The second component of DXσ is

DX〈a, x〉x = X(〈a, x〉)x+ (〈a, x〉)DXx

= d(〈a, x〉)(X)x+ 〈a, x〉dx(X)

= 〈a,X〉x+ 〈a, x〉X

Adding the two components together DXσ equals

DXσ = 0 + 〈a,X〉x+ 〈a, x〉X
= 〈a,X〉x+ 〈a, x〉X
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By the Gauss formula∇Xσ is the tangential component of DXσ. Hence
∇Xσ equals

∇Xσ = DXσ(x) + 〈DXσ(x), x〉x
= 〈a,X〉x+ 〈a, x〉X + 〈〈a,X〉x+ 〈a, x〉X, x〉x
= 〈a,X〉x+ 〈a, x〉X + (〈〈a,X〉x, x〉+ 〈〈a, x〉X, x〉)x
= 〈a,X〉x+ 〈a, x〉X + (〈a,X〉(−1) + 〈a, x〉(0))x

= 〈a,X〉x+ 〈a, x〉X − 〈a,X〉x
= 〈a, x〉X

Therefore
〈∇Xσ, Y 〉+ 〈X,∇Y σ〉 = 〈a, x〉〈X, Y 〉+ 〈X, 〈a, x〉Y 〉

= 〈a, x〉〈X, Y 〉+ 〈a, x〉〈X, Y 〉
= 2〈a, x〉〈X, Y 〉
= 2ψ〈X, Y 〉

⇒ ψ = 〈a, x〉
Hence σ is conformal. �

Theorem 11.3. [2] Let σ be a conformal gradient field on the hyper-
bolic space M = Hn equipped with the Lorentzian metric 〈−,−〉. Let
a be any vector in the (n + 1)-Lorentzian space Rn,1 and denote the
inner product of a with itself by µ = 〈a, a〉. Let x be any vector in
the hyperbolic space Hn. Then σ = a + 〈a, x〉x is a (p, q)-harmonic
section of TM and hence a harmonic vector field if and only if any of
the following conditions are true

• if µ > 0 then µ = 1
n−2 , n > 2, p = n+ 1 and q = 2− n,

• if µ < 0 and n = 2, then µ = −1, p = 3 and q = −1
2
,

• if µ < 0 and n > 2, then µ = −1, p = n+ 1 and q = 1− n+ 1
n

,

• if µ < 0 and n > 2, then µ = −1, p = 1
2−n and q = 0

Proof. In this example the manifold and Riemannian metric being
used are (M, g) = (Hn, 〈−,−〉) which are the n-dimensional hyperbolic
space and the Lorentzian metric. For reference the equation for σ is

σ(x) = a+ 〈a, x〉x
= a+ ωx

and, from the proof of Proposition 11.3, the equation for ∇Xσ is

∇Xσ = ωX

= 〈a, x〉X
By Theorem 10.1, σ is a (p, q)-harmonic section if and only if

Tp(σ) = φp,q(σ)σ

where
Tp(σ) = (1 + |σ|2)∇∗∇σ + 2p∇∇Fσ
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is a vector field with

F =
1

2
|σ|2

and

φp,q(σ) = p|∇σ|2 − pq|∇F |2 − q(1 + |σ|2)∆F
is an R-valued function.

Again, to calculate Tp(σ) and φp,q(σ) the values F , ∇F , |∇F |2,
∇∇Fσ, ∆F , |∇σ|2, ∇∗∇σ and ∇2

X,Y σ need to be found. Starting with

the calculation of ∇2
X,Y σ

∇2
X,Y σ = ∇X (∇Y σ)−∇∇XY σ

= ∇X (〈a, x〉Y )− 〈a, x〉∇XY

= DX (〈a, x〉Y )− α (X, 〈a, x〉Y ) ξ − 〈a, x〉∇XY

= X (〈a, x〉)Y + 〈a, x〉∇XY

− (−〈X, 〈a, x〉Y 〉) (x)− 〈a, x〉∇XY

= 〈a,X〉Y + 〈X, 〈a, x〉x〉Y
= 〈a+ 〈a, x〉x,X〉Y
= 〈σ,X〉Y

So ∇∗∇σ equals

∇∗∇σ = −
n∑
i=1

〈a+ 〈a, x〉x,Ei〉Ei

= −a− 〈a, x〉x
= −σ

where {Ei}ni=1 is an orthonormal basis of TRn. Recalling the equation
for ∇Xσ, |∇σ|2 is

|∇σ|2 =
n∑
i=1

|∇Eiσ|2

=
n∑
i=1

‖〈a, x〉Ei‖2

=
n∑
i=1

(
〈a, x〉2〈Ei, Ei〉

)
= n〈a, x〉2

= nω2

The rest of the values required include F so that is calculated next by
using the equation for 2F . Since µ is the inner product of a ∈ Rn,1 with
itself it can also be denoted as µ = |a|2. From the definition of Hn, the
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Lorentzian inner product of x ∈ Hn with itself is 〈x, x〉 = |x|2 = r2 =
−1.

2F = |σ|2

= |a+ 〈a, x〉x|2

= |a|2 + 〈a, x〉2r2 + 2〈a, x〉2

= |a|2 + 〈a, x〉2(r2 + 2)

= µ+ ω2(r2 + 2)

⇒ F =
1

2
|a|2 +

1

2
〈a, x〉2(r2 + 2)

=
1

2
µ+

1

2
ω2(r2 + 2)

=
1

2
µ+

1

2
ω2(−1 + 2)

=
1

2
µ+

1

2
ω2

⇒ 2F = µ+ ω2

Since σ = ∇ω, ∇F can be calculated in this way

∇F = ∇
(

1

2
µ2 +

1

2
ω2

)
= ∇1

2
µ2 +∇1

2
ω2

= 0 +
1

2
2ω∇ω by the chain rule

= ωσ

Using the formula for ∇F in relation to σ from the equation above,
2∇∇Fσ can be calculated as

2∇∇Fσ = 〈a, x〉2∇F
= 2〈a, x〉 (ωσ)

= 2ω2σ

⇒ ∇∇Fσ = ω2σ

∆F can be found by using Corollary 3.1.

∆F = −|∇σ|2 − 〈∇∗∇σ, σ〉
= −nω2 − 〈σ, σ〉
= −n〈a, x〉2 − 〈(a+ 〈a, x〉x) , (a+ 〈a · x〉x)〉
= −n〈a, x〉2 − |σ|2

= −n〈a, x〉2 − 2F

= −nω2 − µ− ω2
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All of the values for Tp(σ) have been calculated so they can now be
used in the equation for Tp(σ).

Tp(σ) = (1 + |σ|2)∇∗∇σ + 2p∇∇Fσ
= −(1 + 2F )σ + 2pω2σ

=
(
−(1 + 2F ) + 2pω2

)
σ

Tp(σ) is proportional to σ so no restrictions can be confirmed yet. The
last part of φp,q(σ) required is |∇F |2 which equals

|∇F |2 = |ωσ|2

= ω2|σ|2

= 2ω2F

= ω2(µ+ ω2)

= ω2µ+ ω4

Hence φp,q(σ) equals

φp,q(σ) = p|∇σ|2 − pq|∇F |2 − q(1 + |σ|2)∆F
= p(nω2)− pq(2ω2F )− q(1 + 2F )(−nω2 − 2F )

Still in the case when σ is (p, q)-harmonic, the equation Tp(σ) = φp,q(σ)σ
can then be simplified to

Tp(σ) = φp,q(σ)σ

⇒ (−(1 + 2F ) + 2pω2)σ = (p(nω2)− pq(2ω2F )

− q(1 + 2F )(−nω2 − 2F ))σ

⇒ −(1 + 2F ) + 2pω2 = p(nω2)− pq(2ω2F )

− q(1 + 2F )(−nω2 − 2F )

⇒ −(1 + 2F ) + p(4F − 2µ) = p(n(2F − µ))− pq((4F − 2µ)F )

− q(1 + 2F )(−n(2F − µ)− 2F )

⇒ −1− 2F + 4Fp− 2µp = n2Fp− npµ− pq4F 2 + 2pqµF

+ qn2F − qnµ+ q2F + qn4F 2 − qnµ2F

+ q4F 2

⇒ 0 = (1− nqµ− pnµ+ 2pµ)(2F )0

+ (−2p+ 1 + nq + pqµ+ nq + q − qnµ)2F

+ (−pq + qn+ q) (2F )2

This is a polynomial in 2F . Since 2F is a continuous function on
M = Hn this polynomial is zero if and only if the coefficients of the
powers of 2F vanish. Hence the following equations come from the
coefficients of (2F )0, 2F and (2F )2.
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From (2F )0,

1− nqµ− pnµ+ 2pµ = 0

⇒ ((2− n)p− nq)µ = −1
(11.3)

and from 2F ,

−2p+ 1 + nq + pqµ+ nq + q − qnµ = 0

⇒ p(n− 2) + (n+ 1)q + (p− n)qµ = −1
(11.4)

and from (2F )2,

−pq + qn+ q = 0

⇒ (n+ 1− p)q = 0

To prove the four conditions, analyse the resulting equations from
(2F )0, 2F and (2F )2. If q = 0, Equation (11.3) equals

((2− n)p− n0)µ = −1

⇒ ((2− n)p)µ = −1

⇒ p =
1

2− n
and µ = −1

⇒ n > 2

Hence the fourth condition of the theorem is true. If p = n + 1 and
µ = −1 then Equation (11.3) equals

((2− n)(n+ 1)− nq)(−1) = −1

⇒ (2− n)(n+ 1)− nq = 1

⇒ nq = 1 + n− n2

⇒ q =
1

n
+ 1− n

Hence the third condition is true. Let p = n+1 so that the subtraction
of Equation (11.3) from Equation (11.4) equals

(n−2)(n+1)+(n+1)q+(n+1−n)qu−((2− n)(n+ 1)− nq)µ = −1+1

⇒ (n− 2)(n+ 1) + (n+ 1)q + qµ− ((2− n)(n+ 1)− nq)µ = 0

⇒ (n− 2)(n+ 1)(1 + µ) + nq(1 + µ) + q(1 + µ) = 0

⇒ (n− 2 + q)(1 + µ)(n+ 1) = 0

⇒ (n− 2 + q)(1 + µ) = 0

From this equation the rest of the conditions can be proved. Let
q = 2− n

(n− 2 + 2− n)(1 + µ) = 0(1 + µ)

⇒ 0(1 + µ) = 0
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a

Figure 11.6. A conformal gradient field σ on the Eu-
clidean space R2

So the equation from the subtraction is true if q = 2−n. Then Equation
(11.3) equals

((2− n)(n+ 1)− n(2− n))µ = −1

⇒ (2− n)µ = −1

⇒ µ =

{
1

n−2 if n > 2

−1 if n = 2

If n = 2 then q = 0 and p = 3. Hence the first and second conditions are
true. One can also show that the four cases are the only possibilities.

�

11.4. Conformal gradient fields on the Euclidean space Rn.
Here is another example of a harmonic vector field which is a (p, q)-
harmonic section of the tangent bundle TRn of the n-dimensional Eu-
clidean space Rn.

Definition 11.13. A vector field σ on the Euclidean space Rn is said
to be a conformal gradient field if

σ(x) = k(x− a) for some k ∈ R, where k 6= 0 and x, a ∈ Rn.

Figure 11.6 gives an example diagram of a conformal gradient field
σ on the 2-dimensional Euclidean space R2. In this diagram the point
a is the centre of the vector field.
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Proposition 11.4. The vector field σ = k(x−a) defined in Definition
11.13 has the two properties of being a conformal vector field and a
gradient field on the n-dimensional Euclidean space Rn equipped with
the dot product, denoted by any of the two equal functions − · − =
g(−,−), where σ is the gradient field ∇ω of

f =
1

2
k‖x− a‖2

Proof. To show that σ is conformal the following equation needs to
be true

g(∇Xσ, Y ) + g(X,∇Y ) = 2ψ · g(X, Y )

for some ψ : M → R. In the case of M = Rn

∇Xσ = DXσ

= dσ(X)

= kX

Therefore

g(∇Xσ, Y ) + g(X,∇Y σ) = kX · Y +X · kY
= 2k(X · Y )

= 2ψ · g(X, Y )

where ψ = k

Hence σ is conformal. To show that σ is a gradient field and prove that
σ = ∇f , note that ∇f = grad f which is characterised by the equation

g(∇f,X) = df(X)

so

∇f =
n∑
i=1

g(∇f, Ei)Ei

=
n∑
i=1

df(Ei)Ei

Starting with 2df(X) to find df(X) and then find ∇f

2df(X) = dk
(
‖x− a‖2

)
(X)

= k
(
d
(
|a|2
)

(X)− d (2(a · x)) (X) + d
(
|x|2
)

(X)
)

= k(0− d (2(a · x)) (X)

+ d
(
|x|2
)

(X)) by the chain rule and because da = 0

= k
(
−2d(a · x)(X) + d

(
|x|2
)

(X)
)
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Let |x|2 = r2. To calculate d(r2)(X) the Jacobian matrix of r2 can be
used. This is

Jr2(x) =

(
∂x2i
∂xj

∣∣∣∣
x

)
where 1 ≤ i ≤ m and 1 ≤ j ≤ n

= (2x1, ..., 2xn)

Using Definition 8.4, d(r2)(X) equals

d(r2)(X) = DXr
2

=
n∑
j=1

∂fi(x)

∂xj

∣∣∣∣
x

Xj

= Jr2(x) · (X)

= (2x1, ..., 2xn) · (X1, ..., Xn)

= 2x ·X

For d(a · x)(X) recall that

d(f · g)(X) = f · dg(X) + g · df(X)

Therefore
d(a · x)(X) = a · dx(X) + x · da(X)

= a ·X + x · 0
= a ·X

Hence 2df(X) equals

2df(X) = k
(
d(r2)(X)− 2d(a · x)(X)

)
= 2k(x− a) ·X

⇒ df(X) = k(x− a) ·X
= σ ·X
= g (∇f,X)

= ∇f ·X
⇒ σ = ∇f

Therefore σ is the gradient field of f . Since σ is conformal and a
gradient field, σ is a conformal gradient field on the Euclidean space
Rn. �

Theorem 11.4. Let σ be a conformal gradient field on M = Rn. Then
σ is a (p, q)-harmonic section of TM and hence a harmonic vector field
if and only if one of the following conditions is true

• p = n and q = 2− n,
• q = 0 and p = 0,
• q = 0 and n = 2.
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Proof. For this proof the manifold and Riemannian metric being used
are (M, g) = (Rn, ·) which are the n-dimensional Euclidean space and
the dot product. The equation for σ is

σ(x) = k(x− a) where k ∈ R and x, a ∈ Rn

As stated in Theorem 10.1, σ is a (p, q)-harmonic section if and only
if

Tp(σ) = φp,q(σ)σ

where

Tp(σ) = (1 + |σ|2)∇∗∇σ + 2p∇∇Fσ
is a vector field with

F =
1

2
|σ|2

and

φp,q(σ) = p|∇σ|2 − pq|∇F |2 − q(1 + |σ|2)∆F
is an R-valued function. To calculate Tp(σ) and φp,q(σ) the values F ,
∇F , |∇F |2, ∇∇Fσ, ∆F , |∇σ|2, ∇∗∇σ and ∇2

X,Y σ need to be found.

Recalling the equation for ∇Xσ, |∇σ|2 equals

|∇σ|2 =
n∑
i=1

|∇Eiσ|2

=
n∑
i=1

‖kEi‖2

=
n∑
i=1

k2

= nk2

where {Ei}ni=1 is an orthonormal basis of TRn. The equation for F can
be found by using the equation for 2F .

2F = |σ|2

= |k(x− a)|2

= σ(x) · σ(x)

= k2(x− a) · (x− a)

= k2
(
|x|2 − 2a · x+ |a|2

)
= k2

(
r2 − 2a · x+ |a|2

)
⇒ F =

1

2
k2
(
r2 − 2a · x+ |a|2

)
∇F = grad F is characterised by the equation

g(∇f,X) = dF (X)
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so

∇F =
n∑
i=1

g(∇F,Ei)Ei

=
n∑
i=1

dF (Ei)Ei

Starting with 2dF (X) to find dF (X)

2dF (X) = d
(
k2
(
r2 − 2a · x+ |a|2

))
(X)

= k2
(
d(r2)(X)− 2d(a · x)(X) + d(|a|2)(X)

)
= k2

(
d(r2)(X)− 2d(a · x)(X)

)
because da = 0

The equations for d(r2)(X) and d(a ·x)(X) in the proof of Proposition
11.4 lead to the equation for dF (X).

2dF (X) = k2
(
d(r2)(X)− 2d(a · x)(X)

)
= k2 (2x ·X − 2a ·X)

= 2k2(x− a) ·X
⇒ dF (X) = k2(x− a) ·X

= ∇F ·X
⇒ ∇F = k2(x− a)

= kσ

so |∇F |2 equals

|∇F |2 = |kσ|2

= k2|σ|2

= k2(2F )

= 2k2F

= k2
(
k2
(
r2 − 2a · x+ |a|2

))
= k4

(
r2 − 2a · x+ |a|2

)
Using Equation (3.1)(i) from Definition 3.2, ∇∇Fσ is

∇∇Fσ = ∇kσσ

= k∇σσ

= k (kσ)

= k2σ

By the definitions of the associated Ricci operator S, the covariant
coderivative ∇∗, the Weitzenböck formula and the rough Laplacian the
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equation for ∆F is

∆F = ∇∗∇F + S(F )

= ∇∗(∇F ) + 0 because F is a 0-form

= −
n∑
i=1

(∇Ei (∇F )) · Ei

= −
n∑
i=1

(∇Ei (kσ)) · Ei

= −
n∑
i=1

(k∇Eiσ) · Ei

= −
n∑
i=1

k (kEi) · Ei

= −nk2

To find ∇∗∇σ = −
∑n

i=1∇2
Ei,Ei

σ, the equation for ∇2
X,Y σ needs to be

calculated first.

∇2
X,Y σ = ∇X(∇Y σ)−∇∇XY σ

= ∇X(kY )− k∇XY

= k∇XY − k∇XY

= 0

Therefore

∇∗∇σ = −
n∑
i=1

∇2
Ei,Ei

σ

= 0

Hence all the equations needed for Tp(σ) and φp,qσ have been cal-
culated. By Proposition 11.4, σ can be defined as σ = ∇f where
f = 1

2
‖x− a‖2. The mapping f : Rn → R can be simplified to

f =
1

2
‖x− a‖2

=
1

2k
|σ|2

⇒ 2kf = |σ|2

This equation can be used in the equality of Tp(σ) = φp,q(σ)σ when σ
is (p, q)-harmonic. Applying the previous formulae to the equations for
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φp,q(σ) and Tp(σ), the equation of φp,q(σ) in terms of f is

φp,q(σ) = p|∇σ|2 − pq|∇F |2 − q(1 + |σ|2)∆F
= pnk2 − pqk2|σ|2 − q(1 + |σ|2)(−nk2)
= pnk2 − pqk4(r2 + |a|2 − 2a · x)

− q(1 + k2(r2 + |a|2 − 2a · x))(−nk2)
= pnk2 − pqk4r2 − pqk4|a|2 + 2pqk4a · x

+ qnk2 + qnk4r2 + qnk4|a|2 − 2qnk4a · x
= nk2

(
(p+ q) + (qn− pq)|σ|2

)
= nk2 ((p+ q) + 2(qn− pq)kf)

and the equation for Tp(σ) in terms of σ is

Tp(σ) = (1 + |σ|2)∇∗∇σ + 2p∇∇Fσ
= (1 + |σ|2)0 + 2pk2σ

= 2pk2σ

Since Tp(σ) is porportional to σ, the equation Tp(σ) = φp,q(σ)σ can be
simplified to

Tp(σ) = φp,q(σ)σ

⇒ 2pk2σ =
(
nk2 ((p+ q) + 2(qn− pq)kf)

)
σ

⇒ 2p = (p+ q)n+ 2(qn− pq)kf
⇒ 2pf 0 = (p+ q)nf 0 + 2(qn− pq)kf 1

⇒ 0f 0 = ((n− 2)p+ nq)f 0 + 2(qn− pq)kf 1

⇒ 0f 0 = ((n− 2)p+ nq)f 0 + 2(n− p)qkf 1

This is a polynomial in f . Since f is a continuous function on M = Rn

this polynomial is zero if and only if the coefficients of the powers of f
vanish. Hence the following equations come from the coefficients of f 0

and f 1.
From f 0

(n− 2)p+ nq = 0 (11.5)

and from f 1

2(n− p)qk = 0

⇒ 2(n− p)q = 0

⇒ (n− p)q = 0

Equation (11.5) leads to two cases for σ to be (p, q)-harmonic. If p = n
then

(n− 2)n+ nq = 0

⇒ (n− 2) + q = 0

⇒ q = 2− n
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Figure 11.7. A conformal extension field

If q = 0 then

(n− 2)p+ n0 = 0

⇒ (n− 2)p = 0

∴ either p = 0

or n = 2

This completes the proof of this theorem. �

11.5. Conformal extension fields.

Definition 11.14. [4] Let D ⊂ Rn be any subset of the n-dimensional
Euclidean space and f be a mapping f : D → Rm. An extension field
of f at a ∈ D is a mapping f̃ : U → Rm from a neighbourhood U of a
which equals f on the intersection of U and D denoted by U ∩D. This
relationship between f̃ and f is denoted by the equation

f̃
∣∣∣
U∩D

= f |U∩D

Definition 11.15. Let σ̃(x) = a − (a · x)x be a conformal gradient
field on Sn−1 ⊂ Rn. Hence σ̃(x) is a mapping σ̃(x) : Sn−1 → Rn. A
vector field σ on the Euclidean space Rn is a conformal extension field
of σ̃(x) if

σ(x) =

(
1

2
(r2 + 1)

)
a− (a · x)x where r = |x|

Figure 11.7 gives a diagram showing a conformal extension field.
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Proposition 11.5. Let σ̃(x) be a conformal gradient field on Sn−1 ⊂
Rn. Hence the equation for σ̃(x) is

σ̃(x) = a− (a · x)x

The vector field σ on the Euclidean space Rn defined in Definition 11.15
has the two properties of being a conformal vector field and an extension
field of σ̃(x) where the equation for σ is

σ(x) =

(
1

2
(r2 + 1)

)
a− (a · x)x

Proof. To show that σ is conformal the following equation needs to
be true

g(∇Xσ, Y ) + g(X,∇Y ) = 2ψ · g(X, Y )

for some ψ : M → R. In the case of M = Rn

∇Xσ = DXσ

= dσ(X)

Recall Equation (3.1)(ii) which can also be stated as

∇X(fY ) = (Xf)Y + f∇XY where f ∈ R and Y ∈ Rn

Hence ∇Xσ can be split into two components both including a dot
product of R-valued function and an Rn-valued function. This is shown
in the following equation.

∇Xσ = ∇X

(
1

2
(r2 + 1)

)
a−∇X(a · x)x

The first component of ∇Xσ is

∇X

(
1

2
(r2 + 1)

)
a = X

(
1

2
(r2 + 1)

)
a−

(
1

2
(r2 + 1)

)
∇Xa

= X

(
1

2
(r2 + 1)

)
a−

(
1

2
(r2 + 1)

)
0

= X

(
1

2
r2
)
a

=
1

2
d(r2)(X)a

=
1

2
(2X · x) a

= (X · x)a

The second component of ∇Xσ is

−∇X(a · x)x = −X(a · x)x− (a · x)∇Xx

= − (d(a · x)(X))x− (a · x)dx(X)

= − (a ·X)x− (a · x)X
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Adding the two components together ∇Xσ equals

∇Xσ = (x ·X)a− (a ·X)x− (a · x)X (11.6)

Therefore
g(∇Xσ, Y ) + g(X,∇Y σ) = (x ·X)(a · Y )− (a ·X)(x · Y )

− (a · x)(X · Y ) + (x · Y )(a ·X)

− (a · Y )(x ·X)− (a · x)(X · Y )

= −2(a · x)(X · Y )

= 2ψ · g(X, Y )

⇒ ψ = −(a · x)

Hence σ is conformal. To prove that σ is an extension field of σ̃, let
x be a unit vector starting at the origin. Then x ∈ Sn−1 ⊂ Rn and
|x|2 = r2 = 1. So σ(x) equals

σ(x) =

(
1

2
(r2 + 1)

)
a− (a · x)x

=

(
1

2
(1 + 1)

)
a− (a · x)x

=

(
2

2

)
a− (a · x)x

= a− (a · x)x

= σ̃(x)

Hence
σ̃(x)|Rn∩Sn−1 = σ(x)|Rn∩Sn−1

Therefore σ(x) is an extension field of σ̃(x). In conclusion, σ(x) is a
conformal extension field of σ̃(x). �

Theorem 11.5. Let σ be a conformal extension field of σ̃ as denoted
in Proposition 11.5. Then σ is a (p, q)-harmonic section of TM and
hence a harmonic vector field if and only if n = 2 and q = 0.

Proof. In this case the manifold and Riemannian metric being used
are (M, g) = (Rn, ·) which are the n-dimensional Euclidean space and
the dot product. For reference, the equation for σ is

σ(x) =
1

2
(r2 + 1)a− (a · x)x where r ∈ R and x, a ∈ Rn

The vector field σ is a (p, q)-harmonic section if and only if

Tp(σ) = φp,q(σ)σ

where
Tp(σ) = (1 + |σ|2)∇∗∇σ + 2p∇∇Fσ

is a vector field with

F =
1

2
|σ|2
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and

φp,q(σ) = p|∇σ|2 − pq|∇F |2 − q(1 + |σ|2)∆F

is an R-valued function. To calculate Tp(σ) and φp,q(σ) the values F ,
∇F , |∇F |2, ∇∇Fσ, ∆F , |∇σ|2, ∇∗∇σ and ∇2

X,Y σ need to be found,

starting with the calculation of∇2
X,Y σ. Using Equation (11.6) for∇Y σ,

∇2
X,Y σ equals

∇2
X,Y σ = ∇X(∇Y σ)−∇∇XY σ

= ∇X ((x · Y )a− (a · Y )x− (a · x)Y )

− (x · ∇XY )a+ (a · ∇XY )x+ (a · x)∇XY

= (X · Y )a+ (x · ∇XY )a

− (a · ∇XY )x− (a · Y )X

− (a ·X)Y − (a · x)∇XY

− (x · ∇XY )a+ (a · ∇XY )x+ (a · x)∇XY

= (X · Y )a− (a · Y )X − (a ·X)Y

Hence ∇∗∇σ equals

∇∗∇σ = −

(
n∑
i=1

∇2
Ei,Ei

σ

)

= −

(
n∑
i=1

(Ei · Ei)a− (a · Ei)Ei − (a · Ei)Ei

)
= 2a− na
= (2− n)a
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Again let |x|2 = r2. By Equation (11.6), |∇σ|2 is

|∇σ|2 =
n∑
i=1

|∇Eiσ|2

=
n∑
i=1

‖ ((x · Ei)a− (a · Ei)x− (a · x)Ei) ‖2

=
n∑
i=1

((x · Ei)2|a|2 + 2(−(a · x)Ei)((x · Ei)a)

+ (a · Ei)2|x|2 + 2((x · Ei)a)(−(a · Ei)x)

+ (a · x)2(Ei · Ei) + 2(−(a · Ei)x)(−(a · x)Ei))

=
n∑
i=1

(
(x · Ei)2|a|2 + (a · Ei)2r2 − 2(x · Ei)(a · Ei)(a · x)

)
+ n(a · x)2

= n(a · x)2 − 2(a · x)2 + |a|2r2 + |a|2r2

= (n− 2)(a · x)2 + 2|a|2r2

The rest of the values required include F so that is calculated next by
using the equation for 2F .

2F = |σ|2

=

∣∣∣∣12(r2 + 1)a− (a · x)x

∣∣∣∣2
=

1

4
(r2 + 1)2|a|2 + (a · x)2r2 − (r2 + 1)(a · x)2

=
1

4
(r2 + 1)2|a|2 − (a · x)2

⇒ F =
1

8
(r2 + 1)2|a|2 − 1

2
(a · x)2

∇F = grad F is characterised by the equation

g(∇f,X) = dF (X)

so

∇F =
n∑
i=1

g(∇F,Ei)Ei

=
n∑
i=1

dF (Ei)Ei
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Starting with 2dF (X) to find dF (X) and then find ∇F

2dF (X) = d2F (X)

= d

(
1

4
(r2 + 1)2|a|2 − (a · x)2

)
(X)

=
1

4
2(r2 + 1)d(r2 + 1)(X)|a|2 − 2(a · x)d(a · x)(X)

=
1

2
(r2 + 1)d(r2)(X)|a|2 − 2(a · x)d(a · x)(X)

=
1

2
(r2 + 1)2x ·X|a|2 − 2(a · x)a ·X

= |a|2(r2 + 1)x ·X − 2(a · x)a ·X

⇒ dF (X) =
1

2
|a|2(r2 + 1)x ·X − (a · x)a ·X

=

(
1

2
|a|2(r2 + 1)x− (a · x)a

)
·X

= ∇F ·X

⇒ ∇F =
1

2
|a|2(r2 + 1)x− (a · x)a

Now that ∇F has been found, 2∇∇Fσ can be calculated

2∇∇Fσ = ∇2∇Fσ

= (x · 2∇F )a− (a · 2∇F )x− (a · x)2∇F
= |a|2(r2 + 1)r2a− 2(a · x)2a

− |a|2(r2 + 1)(a · x)x+ 2|a|2(a · x)x

− |a|2(r2 + 1)(a · x)x+ 2(a · x)2a

= |a|2r2(r2 + 1)a− 2|a|2r2(a · x)x

= 2|a|2r2σ

All of the values for Tp(σ) have been calculated so they can now be
used in the equation for Tp(σ).

Tp(σ) = (1 + |σ|2)∇∗∇σ + 2p∇∇Fσ
= (1 + |σ|2)(2− n)a+ 2p|a|2r2σ



75

Tp(σ) needs to be divisible by σ if σ is (p, q)-harmonic so n = 2. By
Corollary 3.1, ∆F equals

∆F = −|∇σ|2 + (∇∗∇σ) · σ

= −
(
(n− 2)(a · x)2 + 2|a|2r2

)
+ (2− n)a ·

(
1

2
(r2 + 1)a− (a · x)x

)
= −(n− 2)(a · x)2 − 2|a|2r2 + (2− n)

(
1

2
(r2 + 1)|a|2 − (a · x)2

)
= (2− n+ n− 2)(a · x)2 +

(
−2 +

2

2
− 1

2
n

)
|a|2r2 + (2− n)

1

2
|a|2

= −1

2
(n+ 2) |a|2r2 +

1

2
(2− n)|a|2

The last part of φp,q(σ) required is |∇F |2 which equals

|∇F |2 =

∣∣∣∣12 |a|2(r2 + 1)x− (a · x)a

∣∣∣∣2
=

(
1

2

)2

|a|4(r2 + 1)2r2 + (a · x)2|a|2 − 2

(
1

2
(r2 + 1)|a|2(a · x)2

)
=

1

4
|a|4(r2 + 1)2r2 + (a · x)2|a|2 − (r2 + 1)|a|2(a · x)2

=
1

4
|a|4(r2 + 1)2r2 − r2|a|2(a · x)2

= 2|a|2r2
(

1

8
(r2 + 1)2|a|2 − 1

2
(a · x)2

)
= 2|a|2r2F

As proved in the equation for Tp(σ), σ is (p, q)-harmonic if and only if
n = 2. Therefore φp,q(σ) equates to

φp,q(σ) = p|∇σ|2 − pq|∇F |2 − q(1 + |σ|2)∆F
= p

(
(n− 2)(a · x)2 + 2|a|2r2

)
− pq

(
2|a|2r2F

)
− q(1 + |σ|2)

(
−1

2
(n+ 2) |a|2r2 +

1

2
(2− n)|a|2

)
= 2|a|2r2p− 2pq|a|2r2F + 2q(1 + |σ|2)|a|2r2

= 2|a|2r2(p− pqF + q(1 + 2F ))
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Still in the case when n = 2, the equation Tp(σ) = φp,q(σ)σ can then
be simplified to

Tp(σ) = φp,q(σ)σ

⇒ 2p|a|2r2σ =
(
2|a|2r2(p− pqF + q(1 + 2F ))

)
σ

⇒ p = p− pqF + q(1 + 2F )

⇒ 0 = −pqF + q(1 + 2F )

⇒ 0 = q + q(2− p)F
This is a polynomial in F . Since f is a continuous function on M = Rn

this polynomial is zero if and only if the coefficients of the powers of
F vanish. Hence the following equations come from the coefficients of
F 0 and F 1.

From F 0

q = 0 (11.7)

and from F 1

q(2− p) = 0 (11.8)

Due to Equation (11.7), q must always equal 0 therefore Equation
(11.8) equals

q(2− p) = 0(2− p)
= 0

(11.9)

which is true for Equation (11.8). Hence p can be any real number.
Therefore a conformal extension field σ of σ̃ is a (p, q)-harmonic section
of TRn and hence a harmonic vector field if and if only if n = 2 and
q = 0. �
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