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Abstract 

 

 

Most concrete is produced using calcium (alkali) aluminosilicate hydrate (C-(N-)A-

S-H)-based cement. However, the chemistry of this phase in many cement-based 

materials is still not fully understood. This thesis presents a structural and 

thermodynamic investigation of C-(N-)A-S-H and C-(N-)A-S-H-based cements to 

provide insight into the chemistry of these materials.  

 

A mixed cross-linked and non-cross-linked tobermorite-like structural model for C-

(N)-A-S-H is developed (the CSTM), which more appropriately describes the 

spectroscopic information available for this phase. Application of the CSTM to a 

Na2SiO3-activated slag cement cured for 56 and 180 days indicates the presence of a 

poorly-crystalline zeolite-like phase. The role of Al in cross-linking of C-(N-)A-S-H 

is also studied, which provides a more advanced description of the chemistry and 

structure of C-(N-)A-S-H than previously reported.  

 

A thermodynamic model for C-(N-)A-S-H (CNASH_ss) is derived, which greatly 

advances the utility of thermodynamic modelling of C-(N-)A-S-H-based cements by 

explicitly defining Al and alkali uptake in this phase. The chemistry of alkali-

activated slag (AAS)-based cements is simulated using CNASH_ss and an ideal solid 

solution thermodynamic model for MgAl-OH-LDH that is also developed in the 

thesis. This analysis provides a good description of Na2SiO3-activated slag cement 

chemistry and accurately predicts chemical shrinkage in this material. Phase 

diagrams for NaOH, Na2SiO3, Na2Si2O5 and Na2CO3-activated slag-based cements 

are also simulated. These results can be used to design the chemistry of AAS-based 

materials. 

 



IV  Abstract 

 

A detailed analysis of C-(N-)A-S-H solubility is presented, for Ca, Al, Si and alkali 

concentrations most relevant to C-(N-)A-S-H-based cements and at temperatures of 

7-80°C. Solubility products for alkali-free C-(N-)A-S-H change slightly between 7°C 

and 80°C and as a function of Al/Si ratio. However, less soluble C-(N-)A-S-H is 

formed at higher Ca and alkali content. These results are important for understanding 

the stability of C-(N-)A-S-H in the majority of cement-based materials used 

worldwide. 
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conclusions chapter (Chapter 10) and recommendations for future work (Chapter 11) 

provided to unify the thesis as a whole. The literature review includes additional 

discussion of thermodynamics, and structural and thermodynamic models that are not 

included in the publications from the thesis. Most of the experimental details are 

provided in the materials and methods chapter (Chapter 3), although some 

information is provided separately in the results and discussion chapters for 

improved clarity and flow, such as the thermodynamic data used to describe solid 

phases.  
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Nomenclature   XLV 

 

 

  

Glossary of symbols continued 

ω 
Interlayer Ca

2+
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1 

Introduction 

 

 

Concrete is by far the most widely used construction material. On a per volume 

basis, concrete is the second most used commodity after fresh water (Aı̈tcin, 2000). 

Concrete is comprised of at least three key ingredients: coarse and fine aggregates 

e.g. crushed rocks and sand; water; and cement. Cement, the integral component of 

concrete that gives the material its binding properties when hydrated, is also used in 

vast amounts: 4 Gt of cement were produced in 2013 (U.S. Geological Survey, 2014) 

(Figure 1.1), which is equivalent to ~1.5 kilograms/person/day at current world 

population levels. Cement production is projected to increase greatly over the 

forthcoming decades, due mostly to the continued industrialisation of developing 

countries e.g. India (Taylor et al., 2006).  

 

 
Figure 1.1. Global cement production from 1994 to 2013, showing the top nine 

cement producing countries and the rest of the world (other). Data from U.S. 

Geological Survey (2014). 
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The enormous quantities of cement and concrete used are reflected in the ubiquity 

and importance of the construction industry to the world economy, which accounts 

for approximately 5-10% of global employment and gross value added (Choy, 2011; 

Ng et al., 2009). The impact of the construction industry on the environment is also 

significant, with 5-8% of all anthropogenic CO2 emissions attributable to the 

manufacture of cement alone (Olivier et al., 2012; Worrell et al., 2001). Improving 

the sustainability of the construction industry is a key driver in the development of 

modern construction materials.  

 

Cement and concrete were developed approximately 2000 years ago by Romans, and 

these cements were principally produced using a mixture of volcanic ash, lime and 

water (Jackson et al., 2013). However, today, the great majority of cements used are 

Portland cement (PC)-based. PC is made by firing a mixture of limestone, clay and 

similar minerals to ~1450°C to produce clinker (Figure 1.2), which is then mixed 

with additives such as gypsum and finely ground to a powder (Taylor, 1997). Modern 

reinforced concrete structures made from PC-based materials have low embodied 

CO2 content relative to other construction materials in heavy load applications 

(Purnell, 2012), despite the large CO2-footprint of the global construction industry.  

 

Approximately half of the CO2 emissions from PC manufacture are produced from 

the calcination of limestone (CaCO3) added as raw feed in the clinker production 

process (Figure 1.2). This CO2 is intrinsic to the production of PC clinker; the 

embodied CO2 content of modern PC-based materials varies between 0.73 and 0.99 t 

CO2/t cement depending largely on the amount of PC clinker used in the cement 

formulation (Bernstein et al., 2007). The CO2-footprint of the construction industry 

can therefore be reduced by replacing PC clinker with supplementary cementitious 

materials (SCMs) that contain lower embodied CO2 content, do not require 

additional energy and CO2-intensive processing, but have some cementitious value. 

These materials are called blended cements or blended PC-based materials.  
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Figure 1.2. Schematic representation of the PC production process, adapted from 

(Habert et al., 2010). The thicknesses of the arrows correspond to the typical amount 

of material used. SCMs are supplementary cementitious materials and GBFS is 

ground granulated blast furnace slag (see text). 

 

In 2011, the average PC clinker to cement ratio reported by the World Business 

Council for Sustainable Development (2012) was ~76% (representing ~20% of the 

global cement production capacity, although the data are mostly from Europe, North 

and Central America, and Brazil), reflecting the success of this strategy in the 

development of modern construction materials. The efficiency of the clinker 

manufacturing process is also important, but reducing the PC clinker to cement ratio 

is the most effective way to reduce the CO2-footprint of the construction industry 

unless expensive and untried carbon capture and storage technology is adopted 

(Schneider et al., 2011).  

 

An additional benefit of replacing PC clinker with SCMs is the utilisation of 

industrial by-products (Figure 1.2). Two of the most commonly used SCMs are 

ground granulated blast furnace slag (GBFS), which is a by-product from pig iron 

production, and fly ash, which is a by-product from coal-fired power generation. 

Metakaolin, which is a type of calcined clay, is another widely used SCM. The 

performance of hydrated PC-based materials can be improved substantially if the PC 
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clinker to cement ratio is designed correctly for the intended application, because 

SCMs are typically less reactive than PC clinker (Lothenbach et al., 2011). This 

reduced reactivity limits the extent to which SCMs can be used in high performance 

PC-based materials (Snellings et al., 2012), but can be overcome for some SCMs if 

an additional source of alkalinity is added. This additional alkaline source is called 

an activator. Activators can be present in solid or aqueous form, but water is essential 

to form a hardened solid binder.  

 

Blended PC-based cements reacted with an activator (in addition to water) are called 

‘hybrid’ alkali-activated cements (Figure 1.3). Alkali-activated cements are the class 

of cementitious materials formed from the reaction between an activator, water (if an 

anhydrous activator is used) and one or more solid precursors excluding PC, which 

are typically fly ash (FA), GBFS and metakaolin (MK) (Provis and Bernal, 2014), i.e. 

the same SCMs as used in blended PC-based materials. The increased alkalinity of 

these materials generally means that a greater variety of precursors can be used 

relative to the selection of SCMs available in hydrated PC-based materials, such as 

metallurgical slags with poorer hydraulic reactivity than GBFS (Shi and Qian, 2000). 

Alkali-activated cements can also offer substantial CO2 savings relative to plain PC 

materials by avoiding the energy and CO2-intensive PC clinkering process, but the 

savings depend greatly on the local availability of activators and precursor materials 

(McLellan et al., 2011). There are other important alternative cements with lower 

embodied CO2 content relative to neat PC materials (Juenger et al., 2011), but these 

are not discussed further here.  
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Figure 1.3. Flow diagram representing the materials used to produce blended PC, 

hybrid alkali-activated cements and alkali-activated cements, and reaction products 

in alkali-activated cements, adapted from (Provis and Bernal, 2014). 
†
 Blended PC 

typically contains SCMs not specifically mentioned here (e.g. gypsum). 

 

The lower availability of SCMs and other precursors for alkali-activated cements, 

relative to the enormous quantities required by the construction industry, is a key 

limitation for their use. This limitation is apparent in the European context, as many 

European countries achieved 90-100% utilisation rates of fly ash more than two 

decades ago (Manz, 1997). Other countries have much lower fly ash utilisation rates 

(Bhattacharjee and Kandpal, 2002), although development of more CO2 and energy-

efficient industrial processes will likely further constrain the availability of the most 

commonly used SCMs in the future (Scrivener and Kirkpatrick, 2008). However, the 

widespread and continued use of SCMs in blended PC-based materials and the 
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development of alternative construction materials with lower embodied CO2 content, 

such as alkali-activated cements, mean that the complexity and number of different 

cement formulations will continue to increase in the future. This demonstrates an 

essential and growing need to more fully understand the fundamental chemistry of 

cement-based materials, because their mechanical strength and durability properties 

can change greatly as a function of the cement formulation (Jennings and Bullard, 

2011), and because cement chemistry is intrinsically linked to cement and concrete 

durability (van Deventer et al., 2012).  

 

Therefore, this thesis aims to develop a deeper understanding of the chemistry of 

modern cementitious materials, with a particular focus on alkali-activated cements, 

although the work is also relevant to some hybrid alkali-activated cements and 

blended PC-based materials. This work is presented in three stages in addition to the 

literature review presented in Chapter 2. Chapters 4-5 discuss the nanostructure and 

chemical composition of calcium (alkali) aluminosilicate hydrate (C-(N-)A-S-H), 

which is the dominant reaction product in many modern cements, and is thus a key 

contributor to cement and concrete performance. This insight is used to develop and 

apply a thermodynamic model for C-(N-)A-S-H in Chapters 6-7, with the aim of 

advancing the utility of thermodynamic modelling in simulating the chemistry of 

modern cementitious materials. Chapters 8-9 provide additional analysis of C-(N-)A-

S-H solubility, chemical composition and nanostructure, which is important for 

future development of thermodynamic models for this phase. The underlying 

thermodynamic principles used in the thesis provide a broadly-applicable theoretical 

framework from which the chemistry, and therefore durability, of modern 

cementitious materials can be better understood. 

 

The literature review presented in Chapter 2 includes a detailed discussion of 

hydrated PC-based and alkali-activated slag (AAS)-based cement chemistry (i.e. 

alkali-activated cements derived from metallurgical slag precursors), with a 

particular focus on the C-(N-)A-S-H phase, although secondary and minor products 

are also discussed. A critical overview of the existing structural models for C-(N-)A-
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S-H is presented, which is referred to later in the discussion of thermodynamic 

models for this phase. A discussion of some important thermodynamic concepts is 

provided to assist in the discussion of thermodynamic models for C-(N-)A-S-H and 

other cement phases, and thermodynamic databases.  

 

Chapter 3 presents an overview of the materials and methods used in the thesis, 

including details of the thermodynamic modelling approach applied here. Detailed 

descriptions of the materials used in the thesis, GBFS and laboratory-synthesised C-

S-H, C-(A-)S-H and C-(N-)A-S-H,
1
 are presented. The experimental details and brief 

descriptions of the experimental techniques used in the thesis are also discussed.  

 

A structural model for mixed cross-linked/non-cross-linked tobermorite-like C-(N-

)A-S-H is proposed in Chapter 4; the ‘Cross-linked Substituted Tobermorite Model’ 

(CSTM). The CSTM is formulated to allow calculation of C-(N-)A-S-H structural 

parameters such as the mean chain length (MCL) and cross-linked phase fraction, 

and chemical composition information such as Al/Si and Ca/Si ratios, from 
29

Si 

magic angle spinning nuclear magnetic resonance (MAS NMR) spectral 

deconvolution results. This structural model is shown to greatly advance the detail in 

which C-(N-)A-S-H chemistry can be analysed by correct application of structural 

constraints to deconvolutions of 
29

Si MAS NMR spectra. 

 

In Chapter 5, the role of Al in the nanostructural development of C-(N-)A-S-H in a 

Na2SiO3-activated slag cement is analysed by X-ray diffraction (XRD), and 
27

Al and 

                                                 

1
 The C-S-H, C-A-S-H, C-(A-)S-H and C-(N-)A-S-H notation describes calcium silicate 

hydrate type solid phases with similar nanostructure but with different overall chemical 

composition, in cement chemistry notation: C is CaO, S is SiO2, H is H2O, A is Al2O3 and N 

is Na2O (although N refers more generally to oxides of alkali elements, typically Na2O and 

K2O, that are not intrinsic structural components of this solid phase, as identified by the 

parentheses). The hyphens indicate that the chemical compositions of these solid phases are 

variable and non-stoichiometric. This notation strictly implies that C-S-H contains only Ca, 

Si, H and O, and C-A-S-H contains these elements and additionally Al, but this distinction is 

not always needed because these phases form part of the same C-(N-)A-S-H solid solution. 

Therefore, the most general notation possible is used to describe C-S-H, C-A-S-H and C-(N-

)A-S-H in the thesis unless the distinction between these phases is important. 
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29
Si MAS NMR up to 180 days of curing. Additional 

27
Al MAS NMR spectra for 

samples cured for 2 years are also analysed. Application of the CSTM to the 
29

Si 

MAS NMR spectral deconvolution results demonstrates the advanced structural 

description of C-(N-)A-S-H provided by the model. 

 

A thermodynamic model for C-(N-)A-S-H, CNASH_ss, is developed in Chapter 6. 

The discussion of C-(N-)A-S-H nanostructure presented in Chapters 4-5 is used to 

guide development of the structural component of this thermodynamic model, which 

is formulated in terms of tobermorite-like phases. This structural definition is 

applicable to AAS cements and hybrid alkali-activated cements and blended PC-

based materials with bulk Ca/Si ≤ 1.5. The thermodynamic model is validated 

against a large set of solubility data in the CaO-(Na2O,Al2O3)-SiO2-H2O and AAS 

cement systems, chemical composition data for C-A-S-H, and the volumetric 

properties of C-(N-)A-S-H in AAS cements.  

 

The CNASH_ss thermodynamic model is applied in Chapter 7 to simulate the 

chemistry and volumetric properties of AAS-based cements. An ideal solid solution 

model for MgAl-OH-LDH is also presented and applied. Thermodynamic modelling 

of the experimental Na2SiO3-activated slag cement studied in Chapters 4-5 is 

performed, and the results are compared to the experimentally-determined chemistry 

of this material. Additional thermodynamic modelling is performed for Na2SiO3-

activated slag cements over a range of CaO, MgO and Al2O3 slag chemical 

compositions, and a Na2CO3-activated slag cement, and compared to the available 

information for these materials in the literature. Phase diagrams for the relevant 

range of CaO-Al2O3-MgO compositions in AAS-based cements are simulated, 

showing the composition envelope where zeolites and C-(N-)A-S-H are both stable. 

These results are important for the design of high-performance AAS-based materials.  

 

Chapter 8 provides an analysis of the solubility, chemical composition and 

nanostructure of C-A-S-H as a function of temperature between 7 and 80°C, and Al 

content under equilibrium conditions. The results are important for further 
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development of thermodynamic models for this phase and for understanding the 

stability of C-A-S-H in cementitious materials.  

 

C-(N-)A-S-H samples are synthesised similarly in Chapter 9, although the analysis of 

chemical composition nanostructure and solubility is performed at 50°C and in the 

presence of alkali. The results are compared with the solubility products for the end-

members of the CNASH_ss thermodynamic model, and show important trends in the 

stability and nanostructure of C-(N-)A-S-H products as functions of Al, Ca and alkali 

concentrations. 

 

The results from each Chapter 4-9 are then summarised in Chapter 10. Therefore, 

this chapter describes the improved utility of the thermodynamic modelling 

technique and the advanced chemical understanding of C-(N-)A-S-H-based 

cementitious materials, particularly AAS-based cements, resulting from the work 

undertaken in the thesis.  
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2 

Literature Review 

 

 

2.1 Cement Chemistry 

 

2.1.1 Portland Cement-Based Materials  

 

Most cementitious binders used in the construction industry are produced from 

Portland cement (PC), which is a material that dates back nearly two hundred years 

(Moir, 2003). The main reaction product that results from the hydration of plain PC 

is a Ca-rich (1.5 ≤ Ca/Si ≤ 2) calcium silicate hydrate (C-S-H) (Taylor, 1997), which 

is thought to be comprised of non-cross-linked tobermorite-like structures with Ca-

OH linkages (Chen et al., 2004; Grangeon et al., 2013; Richardson, 2008). Although 

the chemistry of hydrated plain PC materials is now relatively well established, most 

modern cements are comprised of PC blended with Al-containing supplementary 

cementitious materials (SCMs), which react to form binders containing calcium 

aluminosilicate hydrate (C-A-S-H) with significantly lower Ca content (Ca/Si ≤ 1.5) 

as the dominant reaction product (Lothenbach et al., 2011; Richardson and Groves, 

1992a). This phase plays an influential role in the performance of these materials 

(Jennings and Bullard, 2011) and contains relatively low Al content (Al/Si < 0.1 

(Gallucci et al., 2013; Richardson and Groves, 1993a; Skibsted and Andersen, 

2013)). 

 

The most typical SCMs are ground granulated blast furnace slag (GBFS), metakaolin 

(MK), fly ash (FA) and silica fume (SF) (Lothenbach et al., 2011; Snellings et al., 

2012). The solid phase assemblages in binders produced from blended cements vary 

greatly as a function of the SCMs used (Lothenbach et al., 2011), but the nature of 

the C-A-S-H products formed show a broad similarity to C-S-H in PC binders 
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(Richardson, 2004). The main secondary products formed in these materials are 

portlandite (Ca(OH)2), ‘aluminoferrite-mono’ (AFm) type phases such as calcium 

monosulfoaluminate hydrate (C4AS̄H12) and ‘aluminoferrite-tri’ (AFt) type phases 

such as ettringite (C6AS̄3H32) (Lothenbach et al., 2011), Figure 2.1. 

 

 
Figure 2.1. Modelled solid phase assemblage and pH of hydrated blended SF/PC 

pastes, assuming thermodynamic equilibrium and complete reaction of the PC, and 

representing C-(A-)S-H as a solid solution of jennite-like and tobermorite-like 

constituents. Reproduced from Lothenbach et al. (2011). 

 

2.1.2 Alkali-Activated Slag (AAS) Cement  

 

Most SCMs react slower than PC clinker phases during cement hydration 

(Lothenbach et al., 2011), but high-performance binders can be produced from the 

reaction between SCMs and a concentrated alkaline solution (called an alkali 

activator). GBFS is a SCM with ‘latent hydraulicity’, i.e. it reacts with water at a 

much slower rate than PC (Snellings et al., 2012), that can be used to produce high 

performance construction materials when reacted with an alkali activator; these 

materials are called alkali-activated slag (AAS). AAS has been developed and 

commercialised in many parts of the world as a high-performance alternative to PC 
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(Provis and Bernal, 2014), and durable concretes made using AAS binders have been 

used in structural applications for decades (Xu et al., 2008). 

 

The level of Ca in alkali-activated slag cements is lower than in hydrated PC-based 

materials, which are formed through the reaction between GBFS and a highly 

alkaline solution, most commonly NaOH, KOH or Na2O∙mSiO2∙xH2O. These 

materials are typically Na-based, although the products of activation with alternative 

alkalis such as K are generally similar (Provis and Bernal, 2014). The compositions 

of the C-A-S-H products formed in these materials (denoted C-(N-)A-S-H to reflect 

the increased alkali content in addition to the high levels of Al incorporated into this 

phase) vary depending on the activation conditions, but are typically poorer in Ca 

(Ca/Si ≈ 1 (Shi et al., 2006)) and richer in Al (Al/Si > 0.1 (Le Saoût et al., 2011; 

Myers et al., 2013; Richardson et al., 1994)) than the C-S-H products formed in PC-

based binders (Taylor et al., 2010). C-(N-)A-S-H is the main strength-giving phase in 

AAS (Chen and Brouwers, 2007; Shi et al., 2006). AAS materials are a particularly 

relevant model system for the analysis of C-(N-)A-S-H chemistry in general because 

GBFS is a widely used replacement material in modern cements (Juenger et al., 

2011), the chemical compositions of AAS cements sit within the compositional 

region which forms C-(N-)A-S-H (Lothenbach et al., 2011), and AAS chemistry is 

relatively well understood (Shi et al., 2006). 

 

A detailed chemical-level understanding of AAS materials is a prerequisite for 

developing and increasing the commercial uptake of AAS technology in modern civil 

infrastructure, but this information has not yet been fully elucidated. This is due 

largely to the low crystallinity and complex chemistry of C-(N-)A-S-H, which varies 

in AAS according to:  

i) the activator type and concentration (Ben Haha et al., 2011a; Schneider et 

al., 2001);  

ii) the composition and reactivity of the GBFS precursor (Ben Haha et al., 

2011b; 2012);  
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iii) the curing conditions to which the material is subjected (Schneider et al., 

2001).  

 

Secondary reaction products are intimately mixed with C-(N-)A-S-H in AAS 

cements, because the bulk composition of these materials generally falls outside the 

domain of stability of phase-pure C-(N-)A-S-H (García-Lodeiro et al., 2011; 

Lothenbach et al., 2011) (Figure 2.2). These products can include Mg-Al layered 

double hydroxide (LDH) phases (Richardson et al., 1994; Wang and Scrivener, 

1995), AFm type phases including strätlingite (C2ASH8) (Ben Haha et al., 2012), and 

calcium monocarboaluminate hydrate (C4AcH11) in alkali carbonate-activated slag 

cement (Shi et al., 2006), katoite (C3AH6) (Bonk et al., 2003), which is an end-

member of the hydrogarnet solid solution series (Ca3Al2(SiO4)3-y(OH)4y; 0 ≤ y ≤ 3) 

(Passaglia and Rinaldi, 1984), zeolites including gismondine and heulandite (Bernal 

et al., 2015; Bernal et al., 2011b), and the third aluminate hydrate (TAH) (Andersen 

et al., 2006), which is described as a poorly ordered Al(OH)3 phase (Taylor et al., 

2010).  
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Figure 2.2. Projection of the chemical compositions of a typical slag (pink circle), 

proposed composition envelope of phase-pure C-(N-)A-S-H (grey shaded area), and 

synthetic samples and phase mixtures representing C-(N-)A-S-H and alkali 

aluminosilicate (hydrate) (N-A-S(-H))-based cements (small symbols and text) onto 

the CaO-SiO2-Al2O3 ternary system. Adapted from García-Lodeiro et al. (2011). 

 

2.1.3 Calcium (Alkali) Aluminosilicate Hydrate (C-(N-)A-S-H)  

 

C-(N-)A-S-H chemistry has been studied for more than half a century (Kalousek, 

1957), and the key solid product in this system is generally described as being similar 

in structure to the calcium silicate hydrate phase C-S-H(I) (Shi et al., 2006; Taylor, 

1997). The structure of this phase is comprised of ‘dreierketten’ units, which are 

repeating sets of three silicate tetrahedra (Figure 2.3). C-S-H(I) is described to be a 

poorly ordered form of 14 Å tobermorite (Bonaccorsi et al., 2005). The tobermorite 

mineral group contains various structures differentiated by their basal spacing (14 Å, 

11 Å or 9 Å) (McConnell, 1954), and 11 Å tobermorites can contain Si-O-Si cross-

links between adjacent silicate chains while 14 Å and 9 Å tobermorites do not 

(Bonaccorsi et al., 2005; Merlino et al., 2000; 2001). Hydrated 14 Å tobermorite 
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(plombierite) has a bound water to Si ratio (H2O/Si) of 7/6 and 0.5 atoms of 

interlayer Ca per dreierketten unit, giving an overall formula of 

Ca5Si6O16(OH)2·7H2O (Bonaccorsi et al., 2005), although small variations in 

chemical composition can exist (Taylor, 1997). There are two types of 11 Å 

tobermorite; those that shrink during dehydration and contain interlayer Ca are 

termed ‘normal’, while those that do not shrink during dehydration and contain no 

interlayer Ca are called ‘anomalous’ (Merlino et al., 2001). The bound water content 

also varies, with a reduction in bound water content associated with a decrease in the 

interlayer spacing (Merlino et al., 1999). Merlino et al. (2001) elucidated the 

structures of normal and anomalous 11 Å tobermorites, and found that anomalous 11 

Å tobermorite has H2O/Si = 5/6 and no interlayer Ca (Ca4Si6O15(OH)2 ∙5H2O), 

whereas normal 11 Å tobermorite also has H2O/Si = 5/6 but an interlayer Ca content 

of 0.25 atoms per dreierketten unit (Ca4.5Si6O16(OH)∙5H2O). In an earlier study, 

Merlino et al. (2000) also analysed 9 Å tobermorite (riversideite), finding no bound 

water and an interlayer Ca content of 0.5 atoms per dreierketten unit, corresponding 

to a crystal chemical formula of Ca5Si6O16(OH)2. 

 

A simplified representation of these tobermorites, shown in terms of sublattice sites, 

is provided in Figure 2.3, with complete descriptions provided in contributions by 

Merlino and co-workers (Bonaccorsi et al., 2005; Merlino et al., 1999; 2000; 2001). 

Representation of these structures in terms of ‘sublattice sites’ is clearer from a 

modelling perspective, and has been used throughout the thesis to construct 

structurally relevant formulae for these tobermorite phases, which can then be used 

to develop fully descriptive models for C-(N-)A-S-H chemistry. 
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Figure 2.3. Schematic sublattice representations of A) 14 Å tobermorite; B) 

anomalous 11 Å tobermorite; C) normal 11 Å tobermorite; D) 9 Å tobermorite, all 

with ‘infinite’ chain length (no Si site vacancies). Paired and bridging tetrahedra are 

represented by blue and green triangles respectively, intra-layer Ca by the red 

oblongs, interlayer species associated with bridging tetrahedra by the orange circles, 

and interlayer species associated with the rest of the structure by purple squares. The 

specific size, location and number of these symbols are approximate; readers are 

referred to (Bonaccorsi et al., 2005; Merlino et al., 1999; 2000; 2001) for 

crystallographic structures. The combined bridging site is illustrated here to clarify 

its use in cross-linked C-(N-)A-S-H sublattice formulae. A dreierketten unit (three 

kinked repeating tetrahedra) is marked in A), and the interlayer spacing is also 

marked. 
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C-(N-)A-S-H contains finite chain length (alumino)silicate chains flanked on either 

side by an ‘interlayer’ comprised of H2O and aqueous species (e.g. Ca
2+

, H
+
, Na

+
 and 

K
+
), and a Ca-O sheet, analogous to the ‘infinite’ chain length tobermorites shown in 

Figure 2.3 but with the chains disrupted by vacancies. The chains are comprised of 

Al-substituted ‘dreierketten’ units with vacancies located in the bridging sites 

(Richardson et al., 1993). The C-(N-)A-S-H structure, in common with almost all 

tetrahedral aluminosilicate structures, is believed to exclude Al-O-Al bonding 

(Loewenstein, 1954). Al substitution is only significant in the bridging sites, not in 

the paired sites (Pegado et al., 2014). The mean chain length (MCL) is defined 

throughout the thesis as the number of silicate and aluminate tetrahedra per chain; 

the MCL and the Ca/Si ratio are known to have a significant effect on the mechanical 

properties of 14 Å tobermorite (Manzano et al., 2009a).  

 

Studies analysing laboratory-synthesised C-(N-)A-S-H specimens have identified 

that phase-purity decreases as the Al/Si and Ca/(Al+Si) molar ratios of the solid 

phase increase, suggesting that a ‘soft’ upper bound on the Al content of C-(N-)A-S-

H exists in the composition range relevant to hydrated cements of Al/Si ≈ 0.2 

(L'Hôpital et al.; Pardal et al., 2009; Sun et al., 2006). Laboratory-synthesised solids 

containing approximately phase-pure C-(N-)A-S-H have typically shown chemical 

compositions of 0.5 < Ca/(Al+Si) ≤ 1 and Al/Si ≤ 0.20 (Faucon et al., 1999a; Pardal 

et al., 2009; Sun et al., 2006), although the maximum theoretical Al/Si ratio of this 

phase is 0.5 (Richardson and Groves, 1993b). 

 

Bound water is present in variable amounts in the interlayer spacing in C-(N-)A-S-H, 

with H2O/Si ratios between 1.3-1.7 excluding adsorbed water (Jennings, 2008). MCL 

values for C-(N-)A-S-H in AAS cements produced using KOH or NaOH activators 

are typically between 4 and 8 (Bonk et al., 2003; Puertas et al., 2011; Richardson et 

al., 1993; Richardson et al., 1994) using a non-cross-linked tobermorite 

representation of this phase (Richardson and Groves, 1993b), compared with 8-10 

for C-(N-)A-S-H derived from slag reacted with Na2SiO3 activators (Le Saoût et al., 

2011). MCL values of C-(N-)A-S-H in hydrated blended cements depend on the 
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curing conditions and the type and amount of SCMs used, and can vary from ~2 in 

hydrated PC (Dai et al., 2014; Gallucci et al., 2013) to ~15 in hydrated blended 

cements with ≥50% replacement of PC with SCMs (Taylor et al., 2010). 

 

C-(N-)A-S-H can incorporate large amounts of alkalis, up to 20% of the amount of 

Na or K added (Hong and Glasser, 1999), and alkali uptake increases as a direct 

function of the Ca/Si ratio (Hong and Glasser, 1999; 2002). A good understanding of 

C-(N-)A-S-H solubility currently exists up to bulk Na concentrations of 0.8 M NaOH 

(Hong and Glasser, 1999; Kalousek, 1944; L'Hôpital et al.; Lognot et al., 1998; 

Macphee et al., 1989; Way and Shayan, 1992), which represents the pH range 

relevant to most cement-based materials (pH ≤ 13.5), but fewer solubility data are 

available for this phase at bulk K concentrations up to 0.8 M KOH (Hong and 

Glasser, 1999; Macphee et al., 1989; Nieto and Zanni, 1997; Stade, 1989). These 

data are important for understanding the long-term stability of C-(N-)A-S-H and 

developing thermodynamic models for this phase, to simulate the chemistry of 

cement-based materials in service (Lothenbach et al., 2012a). The Ca-O sheets, 

interlayer regions and aluminosilicate chains in C-(N-)A-S-H are thought to stack 

together such that the chain structures form the external surfaces (Labbez et al., 

2011) (Figure 2.4).  

 

The variable molecular structure of C-(N-)A-S-H, as well as the nanoparticulate 

nature of the gel formed through agglomeration of structural units around several 

nanometres in size (Allen et al., 2007; Skinner et al., 2010), results in a structure 

with limited long-range ordering. Elucidation of the gel structure in AAS and 

hydrated blended SCM/PC materials is challenging when using conventional 

analytical techniques such as X-ray diffraction (XRD) because of this high level of 

structural disorder, and also because C-(N-)A-S-H almost always coexists with 

unreacted remnant precursor particles and secondary or minor reaction products. 
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Figure 2.4. Schematic representation of infinite chain length non-cross-linked C-(N-

)A-S-H as a structural analogue of 14 Å tobermorite (Bonaccorsi et al., 2005), with 

stacked layers to show alkali species adsorbed on the external surface and in the 

interlayer region of this phase. The red diamonds are Ca atoms in the Ca-O sheet, 

and the blue and green triangles are tetrahedral aluminate or silicate units in paired 

and bridging sites respectively, within the dreierketten chains. The yellow circles and 

purple squares represent positively-charged species that charge-neutralise the 

bridging sites and the rest of the layered structure respectively (typically H
+
, Ca

2+
 

and/or alkali cations such as K
+
 or Na

+
). The orange hexagons are diffuse layer 

anions (e.g. OH
-
 and Cl

-
) that compensate the excess positive charge supplied by 

adsorbed cations (Labbez et al., 2011). The pink square is an additional diffuse layer 

cation (e.g. Ca
2+

, Na
+
). The positive and negative symbols represent the local 

distribution of charge in the structure. The size, number and location of the symbols 

are schematic rather than crystallographically exact, and different types of hydrated 

alkali complexes are not distinguished. 

 

As a consequence of the complexity of this multi-phase system, elucidation of the 

structure of C-(N-)A-S-H has not yet been achieved. Important questions remain 

about its molecular chemistry, including:  

i) the possibility of Al substitution into paired tetrahedra (Faucon et al., 

1999a; Manzano et al., 2009b; Pardal et al., 2012; Pegado et al., 2014);  

ii) the mechanism and selectivity of alkali uptake in C-(N-)A-S-H;  
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iii) the presence of cross-linked chains, for example in Na2SiO3-activated 

slag cements (Brough and Atkinson, 2002; Fernández-Jiménez et al., 

2003; Le Saoût et al., 2011; Puertas et al., 2011); and 

iv) the role and importance of five and six-coordinated Al (denoted Al[5] and 

Al[6]) (Andersen et al., 2006; Renaudin et al., 2009a; Sun et al., 2006). 

 

Al substitution is widely considered to occur exclusively in bridging sites in C-(N-

)A-S-H, consistent with the nearest-neighbour Al avoidance rule described by 

Loewenstein (Loewenstein, 1954), and the (3n-1) chain length rule (Richardson, 

2004). Although some authors have proposed Al substitution in paired sites (Faucon 

et al., 1999a; Pardal et al., 2012), published 
29

Si magic angle spinning nuclear 

magnetic resonance (MAS NMR) spectra show little or no contribution from the 

Q
1
(1Al), Q

2
(2Al) and Q

3
(2Al) units that would be expected in systems with Al 

substituted into paired tetrahedra (Richardson et al., 1993; Skibsted and Andersen, 

2013; Sun et al., 2006; Taylor et al., 2010). Atomistic simulations of C-(N-)A-S-H 

have also shown that Al is bound in these chains in the bridging sites with great 

preference over the paired sites (Abdolhosseini Qomi et al., 2012; Manzano et al., 

2009b; Pegado et al., 2014). 

 

Incorporation of alkali species into the interlayer region and adsorption onto the 

external surfaces of C-(N-)A-S-H is thought to occur via a charge-compensation 

mechanism (Bach et al., 2013; Labbez et al., 2011; Renaudin et al., 2009a; Skibsted 

and Andersen, 2013; Viallis et al., 1999) (Figure 2.4), although no consensus exists 

regarding the exact mechanism of alkali uptake in this phase. This is corroborated by 

the large variation in existing results reported for Na and K uptake as a function of 

Al content in C-(N-)A-S-H: direct correlations (Hong and Glasser, 2002; Skibsted 

and Andersen, 2013), an inverse correlation (Stade, 1989), and the apparent absence 

of a direct relationship (Bach et al., 2013; Chappex and Scrivener, 2012) between the 

two parameters have been reported. There is also a lack of consensus on the 

selectivity of C-(N-)A-S-H for Na or K species, with existing publications reporting 
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no significant difference between uptake of these two alkali types (Hong and Glasser, 

1999; 2002; Stade, 1989) or preferential selectivity for K over Na (Bach et al., 2013).  

 

It is thought that the aluminosilicate chains in C-(N-)A-S-H products in low-Ca 

cements (bulk Ca/Si ≤ 1) can cross-link under ambient conditions to form disordered 

analogues of ‘double chain’ calcium silicate minerals, e.g. 11Å tobermorite (Merlino 

et al., 2001). Recent experimental results support a partially cross-linked structure for 

C-(N-)A-S-H formed in Na2SiO3 and Na2CO3-activated slag cements: Q
3
 type 

species have been identified in deconvolutions of 
29

Si MAS NMR spectra of these 

materials (Fernández-Jiménez et al., 2003) and in laboratory-synthesised specimens 

(Pardal et al., 2012; Sun et al., 2006). A mixed cross-linked/non-cross-linked 

structural model was also needed to describe the mechanical properties of hydroxide 

and Na2SiO3-activated slag cements (Puertas et al., 2011). Schematic representations 

of cross-linked and non-cross-linked tobermorite-like C-(N-)A-S-H products are 

shown in Figure 2.5. 

 

 
Figure 2.5. Schematic representation of finite chain length A) cross-linked and B) 

non-cross-linked C-(N-)A-S-H products as structural analogues of double chain 11 Å 

tobermorite (Merlino et al., 2001) and 14 Å tobermorite (Bonaccorsi et al., 2005) 

respectively. The grey diamonds are Ca atoms in the Ca-O sheet, and red and blue 

triangles are aluminosilicate units in paired and bridging sites respectively. The green 

circles and yellow squares represent sites which can be occupied by hydrated species 

that charge-neutralise the structure as a whole (typically H
+
, Ca

2+
 and/or alkali 

cations such as K
+
 or Na

+
). 
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It is thought that Al[5] can act as an interlayer charge-balancing species, although 

there is no consensus regarding the location of Al[6] uptake by C-(N-)A-S-H; it is 

not yet clear whether this can be located only on surfaces, or additionally in the 

interlayer (Andersen et al., 2006; Renaudin et al., 2009a; Sun et al., 2006).  

 

2.1.4 Structural Models for C-(N-)A-S-H 

 

The key value of a structural model is that the chemical composition and 

nanostructural parameters (e.g. MCL) of C-(N-)A-S-H can be directly calculated 

from experimental data such as 
29

Si MAS NMR spectral deconvolutions, and it can 

be validated by relating its predictions to independent experimental results.  

 

Bernal and coauthors 

The first tobermorite-like structural models for C-S-H were proposed by Bernal et al. 

(1952) based on powder XRD measurements that showed the same dreierketten-

based structures in C-S-H and riversideite (9 Å tobermorite). Bernal et al. (1952) 

considered two types of dreierketten-based C-S-H phases: they described a solid 

solution between CSHx and C3S2Hy as CSH(I), and C2SHx as CSH(II), with both C-

S-H types partly crystalline and closely structurally related.  

 

Stade and Wieker 

Stade and Wieker (1980) proposed a structural C-S-H model based on a dimeric 

tobermorite-like structure, with charge-balancing of silanol groups by interlayer Ca
2+

 

and H
+
 species following the constraints: 0.4 ≤ y ≤ 2 with x > z for y < 1 and x ≤ 2 

for y ≥ 1 in eq.(2.1): 

 

    
2

4 2 7 21
2

·xy z
Ca HO H Si O nH O 

  (2.1) 
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Glasser et al. (1987) used this model to develop a thermodynamic model for C-S-H, 

although additionally attributed no specific structural assignment to the Ca(OH)2 

component of the model. 

 

Taylor 

The C-S-H structural model proposed by Taylor (1986) represents this phase as a 

mixture of jennite-like and 14 Å tobermorite-like phases, with chain vacancies 

present in bridging sites only. The structural model also allows substitution of Al for 

Si in bridging sites only (Figure 2.4). Taylor’s model precedes the ‘General Model’ 

(GM) (Richardson and Groves, 1992b) and the ‘Substituted General Model’ (SGM) 

(Richardson and Groves, 1993b); a detailed discussion of the similarities between 

these models is available in published comments by Richardson, Groves and Taylor 

(Richardson and Groves, 1993c; Taylor, 1993).  

 

Richardson and Groves: the ‘Substituted General Model’ (SGM) 

The SGM (Richardson and Groves, 1993b) is widely used in the cement chemistry 

literature (Skibsted and Andersen, 2013; Taylor et al., 2010), and describes a mixture 

of 14 Å tobermorite-like, jennite-like and Ca(OH)2 structures (eq.(2.2)): 

 

 
    

     
 000

26 2 9 21 23 13 1
· · ·a

c

c

X an X na nn
Ca H Si R O I zCa OH mH O

  

  (2.2) 

 

Here, R is a trivalent cation in tetrahedral coordination in the bridging sites (usually 

Al
3+

), I is a charge-balancing interlayer cation for the bridging sites (such as Ca
2+

 or 

an alkali metal) with a positive charge of c, m defines the amount of bound interlayer 

water, n is the number of dreierketten units per 14 Å tobermorite chain, and a0 is the 

extent of substitution of I into the structure (Figure 2.6).  
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Figure 2.6. Schematic representation of the 14 Å tobermorite-like structures 

represented by the SGM. Yellow spheres are Na, light blue tetrahedra are Al and 

dark blue tetrahedra are Si. Adapted from Richardson (2004). 

 

The parameters X, z, a0 and n are defined in terms of w (the degree of protonation of 

the chain units) and y (the amount of Ca(OH)2 in the model), according to eq.(2.3) 

(Richardson and Groves, 1993b): 
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  (2.3) 

 

The MCL and Al/Si ratio can then be calculated, using the assumption that C-(N-)A-

S-H and 14 Å tobermorite are structurally similar, and the Ca/Si ratio can be 

determined from eqs.(2.2-2.3), leading to eqs.(2.4-2.6) (Richardson et al., 1994): 

 

 
   

[ ]

1 2 23
2
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2 1
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where [NC] denotes non-cross-linked C-(N-)A-S-H structures.  

 

The SGM is more generalised than the GM because it allows for structural 

incorporation of trivalent cations in bridging sites (e.g. Al
3+

) and uptake of charge-

balancing anions for these sites (e.g. Na
+
), whereas the GM does not. The structural 

model of Taylor (1986) is less generalised than the GM and SGM: Taylor (1986) 

assumed that ‘chain-end’ Si-O groups (Figure 2.5) are protonated only, whereas the 

SGM allows bonding of ‘chain-end’ Si-O units to H
+
 and Ca

2+ 
(Richardson and 

Groves, 1993b); and although Taylor’s model and the SGM both represent C-(N-)A-

S-H in terms of tobermorite-like/jennite-like structures, the SGM additionally 

describes mixtures of tobermorite-like/‘solid solution Ca(OH)2’.  

 

The SGM has replicated experimental (electron microscopic) observations of C-(N-

)A-S-H chemical compositions in hydroxide-activated AAS paste (Richardson, 

1999) and hydrated blended PC (Taylor et al., 2010) using 
29

Si MAS NMR results. 

Many of the preexisting structural models are based on a mixture of non-cross-linked 

tobermorite-like, jennite-like and Ca(OH)2 structures that can describe C-S-H 

chemical compositions and structure (described above and by Richardson (2008)), 

but none are as flexible as the SGM (Richardson, 2004; 2008). The key limitation of 

the SGM is that it does not describe cross-linked C-(N-)A-S-H structures; 

Richardson (2014) proposed an extension of the SGM that includes fully cross-

linked or non-cross-linked tobermorite-like structures only, i.e. without considering 

the mixed cross-linked/non-cross-linked structures found in C-(N-)A-S-H and 

addressed in Chapters 4-6 and 8-9 of this thesis in the formulation and application of 

a more generalised structural C-(N-)A-S-H model. The SGM is also limited by the 
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lack of a specific structural description attributed to the ‘solid solution Ca(OH)2’ 

component of the model, although this is only important for Ca/Si ratios > 1.5.  

 

Chen and coauthors 

Chen et al. (2004) formed their structural and compositional model from a 

comprehensive analysis of C-S-H solubility, and described C-S-H as a mixture of 

tobermorite-like and jennite-like structures, with different C-S-H solubility curves 

assigned to different structural configurations of Ca-OH bonds. This structural 

representation of C-S-H is equivalent to the GM (Richardson and Groves, 1992b).  

 

Sun and coauthors 

Sun et al. (2006) synthesised a series of C-(N-)A-S-H products with chemical 

compositions of 0.86 ≤ bulk Ca/(Al+Si) ≤ 1.4 and 0 ≤ bulk Al/(Al+Si) ≤ 0.30, 

characterised the samples using X-ray fluorescence (XRF), 
29

Si and 
27

Al MAS NMR, 

and XRD, and developed a structural model from the results. Their structural model 

describes C-(N-)A-S-H in terms of tobermorite-like structures over the range of bulk 

chemical compositions studied.  

 

Structural incorporation of Al[4] was only allowed in bridging sites (Figure 2.5) in 

the model, with structural Al[5] and Al[6] assigned to cross-linked Al[4]-O-Al[5,6]-

O-Al[4] sites. Sun et al. (2006) used these Al[4]-O-Al[5,6]-O-Al[4] sites to explain 

the much higher basal spacings found for their synthesised C-(N-)A-S-H products 

(up to 16.4 Å) relative to tobermorite (up to 14 Å, Figure 2.3). While Al-O-Al 

bonding is strongly energetically disfavoured in tetrahedral T-O-T (T = Si, Al) 

configurations in aluminosilicates (Loewenstein, 1954; Provis et al., 2005a), 

energetically favourable Al[4]-O-Al[6]-O-Al[4] configurations are observed in some 

minerals e.g. phlogopite (Langner et al., 2012), meaning that the assignment of cross-

linked Al[4]-O-Al[5,6]-O-Al[4] sites in C-(N-)A-S-H may be possible.  The 

structural model also includes Al[5] and Al[6] interlayer species without precluding 

incorporation of these units on C-(N-)A-S-H surfaces. Although 
27

Al MAS NMR 
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and transmission electron microscopy (TEM) with energy-dispersive X-ray 

spectroscopy (EDS) analysis (Andersen et al., 2006) and 
27

Al{
1
H} HETCOR NMR 

spectra (Rawal et al., 2010) of hydrated white Portland cement (wPc) pastes do not 

support Al[6] uptake in C-A-S-H interlayers, the same analysis has not been applied 

to lower Ca/Si C-(N-)A-S-H such as the tobermorite-like phases described by this 

structural model (Sun et al., 2006), meaning that the assignment of interlayer Al[6] is 

potentially plausible. Na
+
 is also considered to be both loosely-bound on C-(N-)A-S-

H surfaces and rigidly-bound in the interlayer, and Ca
2+

 and H
+
 are additionally 

described as being interlayer charge-balancing species. Many of these assignments 

are discussed further in this thesis, particularly in Chapters 8-9. 

 

Pellenq and coauthors 

The atomistic model of C-S-H by Pellenq et al. (2009) is based on extensive 

modifications of the 11 Å non-cross-linked tobermorite structure proposed by Hamid 

(1981), although later applications of the model also considered cross-linking and 

structural incorporation of Al (Abdolhosseini Qomi et al., 2012). The model 

describes finite chain length C-S-H at Ca/Si > 1, with structural Si monomers 

defined as intrinsic components of this phase at Ca/Si > 1.5 (and so the model does 

not follow the 3n-1 chain length rule in this chemical composition range). The 

limited Ca/Si ratio range described by the model (Ca/Si ≥ 1) precludes its application 

to many alkali-activated materials and other C-(N-)A-S-H-based cements with lower 

bulk Ca content. The combinatorial approach used in formulation of the model 

means that C-S-H structural parameters cannot be calculated from independent 

experimental input additional to the data used in model derivation, but does allow the 

prediction of important chemical-structural parameters e.g. Gibbs free energy and 

bulk modulus (Abdolhosseini Qomi et al., 2014). 

 

The main criticism of the C-S-H model derived by Pellenq et al. (2009) is that the 

bonding environments of some of the atoms present are unrealistic when compared 

to calcium silicate hydrate phases such as tobermorite (Richardson, 2013a). For 

example, the model contains Ca atoms with Ca-O bond lengths <2 Å, which is much 
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shorter than the known Ca-O bond lengths of 2.26-2.74 Å in 14 Å tobermorite 

(Bonaccorsi et al., 2005), 2.31-3.19 Å  in non-cross-linked 11 Å tobermorite (Hamid, 

1981) and 2.24-2.89 Å in cross-linked 11 Å tobermorite (Merlino et al., 2001). There 

also are three, four, five and nine-coordinated Ca atoms in the model, whereas 

coordination states of six and seven are typical of calcium silicate hydrate minerals 

(Bonaccorsi et al., 2005; Bonaccorsi et al., 2004; Hamid, 1981; Merlino et al., 2001). 

Further criticism of the model is incurred by the cross-linked C-A-S-H structures 

assigned in later development of the model (Abdolhosseini Qomi et al., 2012): Q
3
-

type (alumino)silicate units are not experimentally observed in C-A-S-H with Ca/Si 

> 1 at ambient or slightly elevated temperatures (Chen et al., 2004; Cong and 

Kirkpatrick, 1996a; Gallucci et al., 2013; Taylor et al., 2010), which contradicts the 

inclusion of these structures in the model. In addition, hydrated Si monomers are not 

always identified in 
29

Si MAS NMR spectra of C-S-H (Chen et al., 2004) and 

hydrated wPc materials (Dai et al., 2014), which casts doubt on the inclusion of these 

units as intrinsic structural components of Ca/Si > 1.5 C-S-H. 

 

Puertas and coauthors 

Puertas et al. (2011) proposed a structural and compositional model for C-(N-)A-S-H 

in AAS cements, described as a mixture of jennite-like, and Al-containing 14 Å and 

11 Å tobermorite-like phases with chain lengths ≤ 14. This model was validated 

against mechanical and compositional properties of AAS cement pastes determined 

by scanning electron microscopy (SEM)-EDS, 
29

Si MAS NMR and nanoindentation 

measurements, although no formulae for calculating MCLs and chemical 

compositions were provided. A key limitation of the Puertas et al. (2011) model is its 

lack of flexibility in describing C-(N-)A-S-H structure and chemical composition. 

 

2.1.5 Secondary and Minor Cement Hydrate Phases  

 

Some of the most common secondary and minor reaction products in hydrated PC-

based materials and AAS cements are discussed in this section. 
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Portlandite 

Portlandite contains layers of octahedrally-coordinated Ca bound to tetrahedrally-

coordinated O atoms (Taylor, 1997), and has a trigonal crystal structure. The 

solubility of portlandite decreases with increasing pH (Duchesne and Reardon, 

1995), and it is a typical reaction product in hydrated PC-based materials 

(Lothenbach and Winnefeld, 2006), as the Ca/Si ratio of PC clinker (Ca/Si > 2.5) is 

much higher than that which can be accommodated in C-S-H type phases. 

 

Mg-Al layered double hydroxide (LDH) 

Mg-Al LDH is a minor reaction product in hydrated PC (Lothenbach and Winnefeld, 

2006) but is the main secondary product in AAS cements (Brough and Atkinson, 

2002). The majority of Mg incorporated into the solid binder in AAS (Wang and 

Scrivener, 1995) and hydrated PC-based materials (Taylor et al., 2010) is bound in 

Mg-Al LDH phases, and the solubility of Mg is very low in these cements 

(Gruskovnjak et al., 2006; Lothenbach and Winnefeld, 2006; Puertas et al., 2004; 

Song and Jennings, 1999). The primary layer of this phase contains partially Al-

substituted brucite-like sheets (brucite is structurally-similar to portlandite but has a 

chemical formula of Mg(OH)2). These Al atoms are randomly substituted at low Al 

content (MacKenzie et al., 1993), but form an ordered distribution at high Al content 

(Taylor, 1997). The secondary layer contains H2O and dissolved anions (typically 

CO3
2-

 and OH
-
 in cements, although a variety of other species are possible (Allada et 

al., 2005b)), that balance the positively-charged brucite-like layers.  

 

AFm/AFt 

AFm and AFt phases also contain LDH type structures, but the positively-charged 

main layers are derived from portlandite rather than brucite. These sheets are 

typically substituted by Al
3+

 or Fe
3+

 cations, and the excess positive charge is 

balanced by an interlayer containing negatively-charged dissolved species and H2O. 

The typical negatively-charged species are OH
- 

(C4AHx, where x depends on the 

relative humidity (Taylor, 1997) and occurs naturally as the mineral hydrocalumite 
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(Tilley et al., 1934)), SO4
2-

 (C4AS̄H12 and ettringite), CO3
2-

 (C4AcH11 and C6Ac3H32) 

and AlSi(OH)8
-
 (strätlingite). The aluminosilicate species in the interlayer of 

strätlingite can be represented by the more general formula 

[(V,T)4(OH,O)8·0.25H2O]
-
, where V is a vacancy and T is Si or Al; around 45% of 

the T sites are vacant in strätlingite (Rinaldi et al., 1990). The type of AFm/AFt 

phases formed in hydrated cements depends greatly on the bulk chemical 

composition; for example, cements with high bulk SO3/Al2O3 ratios tend to form AFt 

phases such as ettringite rather than AFm phases such as C4AS̄H12 (Matschei et al., 

2007a). Temperature also greatly affects the stability of AFm/AFt phases, for 

example C4AHx decomposes to C3AH6 and portlandite at 25°C and 1 bar in systems 

with high OH
-
 and low SO3 and CO2 content (Matschei et al., 2007a), but is 

thermodynamically stable below 8°C at high OH
-
 content and low SO3 and CO2 

concentrations (Matschei and Glasser, 2010) (Figure 2.7).  

 

 
Figure 2.7. Stable phase assemblage in the CaO-CO2-Al2O3-H2O system at 

portlandite saturation (1 bar pressure). Adapted from Matschei and Glasser (2010). 
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Hydrogarnet 

The Al-Fe hydrogarnet solid solution series, (Ca)3(AlxFe1-x)2(SiO4)3-y(OH)4y 0 ≤ x ≤ 1 

and 0 ≤ y ≤ 3, contains the end-members grossular (C3AS3), andradite (C3FS3), 

katoite (C3AH6) and Fe-katoite (C3FH6). Fe-katoite is a stable phase in hydrated PC-

based materials (Dilnesa et al., 2014) and katoite has been identified in AAS cement 

(Bonk et al., 2003), although these phases are only typically present in minor 

amounts. The anhydrous and hydrous garnets are structurally similar, containing 

eight (A), six (B), and fourfold coordinated (C) atoms, and an anionic species (D, 

typically O
2-

), so may also be represented by the formula (A)3(B)2(C)3(D)12 (Locock, 

2008). Substitution of Si
4+

 for 4H
+
 and a fraction of site vacancies occurs in the C 

site (related to the y parameter in the chemical formula above), and causes expansion 

of the site and unit cell volume (Lager et al., 1987).  

 

Third aluminate hydrate (TAH) 

It was shown by Andersen et al. (2006) that an amorphous aluminium hydrate (the 

‘third aluminate hydrate’, TAH) is observable in 
27

Al MAS NMR spectra of hydrated 

wPc pastes at δiso = 5.0 ppm. This phase decomposes upon heating to 70-90°C 

(Andersen et al., 2006). Andersen et al. (2006) described TAH as a separate 

precipitate, or a precipitate on C-(N-)A-S-H surfaces, because their NMR results 

could not be reconciled with chemical analysis from TEM-EDS measurements of C-

(N-)A-S-H in hydrated PC. This phase is described as a poorly-ordered Al(OH)3-type 

phase intimately mixed with other hydrate phases in hydrated PC/GBFS materials 

(Taylor et al., 2010), and has also been identified in AAS cement (Bernal et al., 

2014b). 

 

Zeolites 

Zeolites (e.g. heulandite, CAS7H1.7) are formed in minor amounts at very high bulk 

Al content in laboratory-synthesised C-(N-)A-S-H samples (Sun et al., 2006), and 

can be identified in AAS cements in synchrotron-resolution XRD patterns (e.g. 

gismondine, CAS2H4) (Bernal et al., 2011b). Zeolites are more commonly produced 
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in hydrated cements with lower Ca content, such as alkali-activated 

metakaolin/GBFS cements (Bernal et al., 2011b), as these phases are structural 

analogues of the alkali aluminosilicate (hydrate) (N-A-S(-H)) gels formed through 

alkali-activation of low-Ca precursors such as metakaolin and fly ash (Provis et al., 

2005b).  

 

2.2 Thermodynamic Modelling 

 

2.2.1 Applications in Cementitious Systems 

 

The increasing complexity and number of modern cement formulations in 

development and use in the construction industry (Scrivener and Kirkpatrick, 2008), 

means that there is now, more than ever, an urgent need to develop general predictive 

methods for the durability of cement-based materials in service using design 

parameters such as the cement type and curing conditions. Thermodynamic 

modelling is a computationally inexpensive and theoretically rigorous technique that 

can be used to predict the chemistry, and thus important durability-related properties, 

of hydrated cement-based materials under the assumption of thermodynamic 

equilibrium. Metastable equilibrium constraints are normally employed to more 

realistically represent cement phases over the typical design life of engineered 

structures; for example, C-(N-)A-S-H is a poorly-crystalline material in cements 

cured under ambient conditions for years (Richardson et al., 1994) or even decades 

(Taylor et al., 2010), but has been observed to crystallise to Al-rich tobermorite in 

Roman concrete exposed to seawater for over 2000 years (Jackson et al., 2013), and 

so is normally described as a metastable phase in thermodynamic modelling of 

cement-based materials.  

 

This approach has been validated for hydrated PC and some blended SCM/PC 

materials using the CEMDATA thermodynamic database (Kulik and Kersten, 2001; 

2002; Lothenbach et al., 2008b; Lothenbach and Winnefeld, 2006; Matschei et al., 

2007b; Möschner et al., 2008; Möschner et al., 2009; Schmidt et al., 2008), but has 



34  2. Literature Review 

 

 

 

been used to describe these materials with other thermodynamic databases for more 

than two decades (Atkins et al., 1992a). CEMDATA has also been applied to 

perform thermodynamic modelling of AAS cements (Lothenbach and Gruskovnjak, 

2007), however the thermodynamic model (Kulik and Kersten, 2001) used to 

describe C-(N-)A-S-H in that study does not explicitly define the uptake of Al and 

Na into this phase. Explicit definition of Al chemistry in a thermodynamic model for 

AAS is essential because many of the reaction products formed in this material 

contain Al; this is also the case for many hydrated SCM/PC blends, and hybrid 

alkali-activated SCM/PC materials. The inclusion of alkalis as a key component in 

these models is important to correctly describe the solubility relationships of C-(N-

)A-S-H under the pH conditions (>12) and alkali concentrations (tens to hundreds of 

mmol/L) relevant to the majority of cementitious materials. Therefore, the lack of a 

C-(N-)A-S-H thermodynamic model (formulated explicitly with Al uptake) that 

accurately represents this phase under pH > 12 conditions is the main limitation in 

applying thermodynamic modelling to describe the chemistry of a greater variety of 

hydrated cement types.  

 

2.2.2 General Concepts 

 

Thermodynamic modelling of cements is primarily concerned with the minimisation 

of free energy during hydration (or activation) of a cementitious precursor with water 

(or an activator) to form a hardened binder that typically contains several solid 

constituents (e.g. C-(N-)A-S-H). This is illustrated here by considering the chemical 

reaction shown in eq.(2.7): 

 

 aA bB cC dD    (2.7) 

 

where A and B are reactants, C and D are products, and a, b, c, d are the respective 

stoichiometric coefficients. The equilibrium constant (K) for this reaction is shown in 

eq.(2.8): 
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c d

a b

C D
K

A B
   (2.8) 

 

where curly brackets denote activity and the value of K indicates whether the forward 

reaction (K > 1) or backward reaction (K < 1) is energetically favoured. A system is 

defined to be at equilibrium when there are no internal driving forces for change, i.e. 

when the Gibbs free energy function (G) is minimal. Local and global minima for G 

are denoted ‘metastable’ and ‘stable’ equilibrium states respectively (Figure 2.8).  

 

 
Figure 2.8. The different states of equilibrium represented by balls on a surface, 

where the height represents the Gibbs free energy function. 

 

The equilibrium constant is related to the standard Gibbs free energy change of 

reaction (ΔrG°) by eq.(2.9): 

 

    lno o

r j f j

j

G G RT K       (2.9) 

 

where R is the universal gas constant (8.3145 J.mol
-1

.K
-1

), T is temperature (K), and 

ζj and ΔfGj° are the stoichiometric coefficients (negative for reactants, positive for 
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products) and standard Gibbs free energies of formation for the j
th

 species 

participating in the reaction, respectively. Eq.(2.9) is extremely useful because it 

allows equilibrium constants for many reactions to be calculated from a much 

smaller set of known ΔfGj° values, and thus allows the determination of standard 

thermodynamic functions: Gibbs free energy (G°); enthalpy (H°); and entropy (S°), 

from solubility experiments and known thermochemical data. The thermodynamic 

functions are related by eq.(2.10): 

 

 G H TS    (2.10) 

 

where H and S are enthalpy and entropy functions, respectively. The standard Gibbs 

free energy change of reaction for the reaction defined by eq.(2.7) can be written as 

shown in eq.(2.11) because G is a state function, i.e. it depends only on the state of a 

system and is independent of the way in which a system changes from one state to 

another. 

 

 .(2.7) ( ) ( )o o o o o

r eq f C f D f A f BG c G d G a G b G           (2.11) 

 

In the special case when a reaction is written for the dissolution of a pure solid phase 

or a solid solution of constant composition the equilibrium constant is called the 

solubility product (Ks or Kso). The subscript ‘o’ indicates zero ionic strength. The 

solubility product is a particularly useful parameter in thermodynamic modelling of 

cement-based materials because it can be determined experimentally for individual 

solid phases and then used to provide information about the stability of these phases 

in different cement formulations. For example, the solubility product for portlandite 

(Ca(OH)2) can be expressed by eq.(2.13), which corresponds to the reaction shown in 

eq.(2.12): 

 

  
2

2( ) ( ) ( )( ) 2s aq aqCa OH Ca OH    (2.12) 
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, ( ) ( )so Ca OH Ca OHK Ca OH IAP     (2.13) 

 

where the activity of (pure) Ca(OH)2(s) is set equal to 1 by definition. The ion activity 

product (IAP) is defined similarly to the expression for Kso, but is also for 

disequilibrium (eq.(2.13)). 

 

2.2.3 Solid Solutions 

 

Several of the solid phases discussed in this thesis, including C-(N-)A-S-H, are 

described as (sublattice) solid solutions. The chemical formula of a solid solution 

phase with mixing on two sublattice sites can be represented in the form 

Q
*
[A,B]

1
[C,D]

2
, which can have any of the following end-members: Q

*
[A]

1
[C]

2
, 

Q
*
[A]

1
[D]

2
, Q

*
[B]

1
[C]

2
 or Q

*
[B]

1
[D]

2
. Each of the two sublattice sites (identified by 

the square brackets) can accommodate two possible sublattice species; A or B can be 

present in the first site (denoted by the superscript 1), and C or D in the second 

(superscript 2). The sublattice species A, B, C and D partition into the sublattice sites, 

while component Q
*
 represents the common component(s). Sublattice solid solutions 

are not limited to two sublattices or sublattice species, however the mathematical 

complexity of the related thermodynamic functions increases dramatically beyond 

such cases. 

 

The Gibbs free energy of mixing (Gm) of a solid solution phase can be conceptualised 

in terms of three main contributions: mixing of simple components to the solid 

solution phase (analogous to Raoult’s law); effects of atoms substituting in different 

configurations in the structure of the solid solution phase; and an (excess) non-ideal 

mixing component. These contributions are emphasised in the expression for Gm 

shown by eq.(2.14) (Hillert and Staffansson, 1970): 

 

 
mech id E

m m mG G TS G     (2.14) 
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where G
mech

 is the Gibbs free energy of a compositionally-equivalent ‘mechanical 

mixture’ of simple components to the solid solution phase, Sm
id

 is the difference in 

entropy between an ideal solid solution and its pure end-member components (i.e. 

the configurational entropy), and Gm
E
 is the excess Gibbs free energy of the solid 

solution. ‘Simple ideal mixing’ or a ‘mechanical mixture’ is defined as Gm = G
mech

, 

i.e. for solid solutions with Sm
id

 and Gm
E
 terms equal to 0. The configurational 

entropy term is expressed by Sm
id

 = -RΣj[yjln(yj)], where yj is the site fraction of 

species j if the species in each sublattice mix randomly. If each sublattice species is 

only allowed to enter into one sublattice site (i.e. ‘simple random mixing’) then the 

configurational entropy term can be expressed as Sm
id

 = -RΣj[χjln(χj)], where χj is the 

mole fraction of species j. The Gm
E
 term represents the deviation of the solid solution 

from ideality and is commonly expressed in the form of a ‘Guggenheim expansion 

series’ to describe mixing in solid solutions (Glynn and Reardon, 1990), which is 

shown in eq.(2.15) for a binary solution solution Q
*
[A,B]: 

 

 
 

* *

0 1 * *

E

m AQ BQ

AQ BQ
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A A

 

 



    
 

  (2.15) 

 

where A0 and A1 are Guggenheim interaction parameters. The Redlich-Kister form of 

the Guggenheim expansion series is another commonly used expression for Gm
E
 

(Glynn, 1991), and is similar but contains dimensionless interaction parameters (a0, 

a1), eq.(2.16): 

 

 
 

* *

0 1 * *

E

m AQ BQ

AQ BQ

G RT

a a

 

 



    
 

  (2.16) 

 

Real systems can generally be described quite closely by using the first two terms on 

the RHS of eqs.(2.15-2.16) only; this simplification makes these expressions 

functionally equivalent to the ‘subregular’ or ‘two-parameter’ asymmetric Margules 

equation. Therefore the interaction parameters A0, A1, a0, and a1 are related to 
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Margules parameters and may be conceptualised in terms of describing the 

interactions between atoms or components in the solid solution phase.   

 

2.2.4 Thermodynamic Models for C-A-S-H 

 

Only one C-A-S-H thermodynamic model had been published (Haas et al., 2011; 

2012) prior to the commencement of this thesis. 

 

Haas and coauthors 

The thermodynamic model of Haas et al. is based on C-A-S-H solubility data at bulk 

Ca/Si ratios of 0.66, 0.8 and 0.95 at various bulk Al concentrations (Haas and Nonat, 

2015; Haas et al., 2011; 2012; Pardal et al., 2009). It is presumed that the 

thermodynamic model is formulated as a mechanical mixture or set of independent 

C-(A-)S-H phases because Haas et al. provide no information about the mixing rules 

used in their model. Solubility product values are specified in this thermodynamic 

model by fitting equilibrium constants for a set of aluminosilicate chain 

condensation/surface reactions, and Al(OH)
2+

/Ca
2+

 complexation reactions and 

protonation reactions with internal and surface silanol groups, to C-(A-)S-H 

solubility data (Haas et al., 2011; 2012; Pardal et al., 2009). Optimised solubility 

products of the C-(N-)A-S-H phases described by the thermodynamic model were 

reported by (Haas and Nonat, 2015). The relatively low pH and Ca/Si ratios of the 

data set described by the model (pH ≤ 12.2 and 0.66 ≤ Ca/Si ≤ 0.95) suggests that it 

may not accurately represent the solubility of C-(N-)A-S-H in most hydrated PC-

based materials and alkali-activated cements. 

 

2.2.5 Thermodynamic Models for C-S-H 

 

A substantial amount of research has been devoted to understanding the solubility of 

C-S-H (Atkins et al., 1992b; Atkinson et al., 1989; Chen et al., 2004; Cong and 

Kirkpatrick, 1996a; Flint and Wells, 1934; Fujii and Kondo, 1981; Glasser et al., 

1999; Greenberg and Chang, 1965; Grutzeck et al., 1989; Harris et al., 2002; 
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Jennings, 1986; Roller and Ervin, 1940; Suzuki et al., 1985; Taylor, 1950; Walker et 

al., 2007), and development of solubility-based thermodynamic models for this phase 

has been ongoing over several decades (Atkins et al., 1992a; Berner, 1992; Flint and 

Wells, 1934; Gisby et al., 2007; Glasser et al., 1987; Greenberg and Chang, 1965; 

Kulik and Kersten, 2001; Reardon, 1990; Suzuki et al., 1985; Walker et al., 2007). 

The majority of published C-S-H solubility data have been identified to collapse onto 

several distinct solubility curves (Chen et al., 2004; Jennings, 1986), indicating that 

an important and complex structure-solubility relationship exists for this phase 

(Figure 2.9).  

 

 
Figure 2.9. C-S-H solubility data compiled by Chen et al. (2004), with curves A, B, 

C, C’ and C” representing C-S-H with different structural configurations of Ca-OH 

bonds. Numbers are Ca/Si ratios of the solids analysed. Numbers in parentheses 

indicate the Ca/Si ratios of solids containing Ca(OH)2. Adapted from (Chen et al., 

2004). 
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Kulik, Lothenbach and coauthors 

The Kulik and Kersten (2001) C-S-H thermodynamic model contains two ideal solid 

solutions (i.e. the excess Gibbs free energy (G
EX

) = 0) describing mechanical 

mixtures of i) tobermorite-like and jennite-like C-S-H structures of the type modelled 

by Taylor (1986) between 0.83 ≤ Ca/Si ≤ 1.67; and ii) a Ca/Si = 0.83 tobermorite-

like phase and amorphous SiO2 at lower Ca content. End-member solubility products 

were selected to fit the solubility data published by Greenberg and Chang (1965) in 

the original version of the thermodynamic model, but were later refitted to match a 

much more comprehensive set of C-S-H solubility data compiled by Lothenbach et 

al. (2008b). Lothenbach et al. (2008b) also adjusted the enthalpies of formation 

(ΔfH
o
) and standard entropies (S

o
) of the tobermorite-like and jennite-like end-

members to fit published C-S-H solubility data between 20 and 80°C. This 

thermodynamic model has been applied extensively to accurately predict hydrated 

PC solid phase assemblages and pore solution compositions as functions of bulk 

solid binder chemical compositions (Lothenbach, 2010; Lothenbach and Winnefeld, 

2006) (Figure 2.10). 

 

 
Figure 2.10. Predicted phase assemblage of hydrated PC as a function of the time of 

curing, assuming thermodynamic equilibrium. C4AF, C3A, C2S and C3S are PC 

clinker phases. Adapted from (Lothenbach, 2010). 
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More recently, Kulik (2011) developed two thermodynamic models for C-S-H based 

on the GM (Richardson and Groves, 1992b), which are therefore more structurally-

consistent than the existing formulation of Kulik and Kersten (2001), using a much 

larger set of solubility data in the CaO-SiO2-H2O system at ambient conditions 

(Figure 2.11): the downscaled CSHQ and CSH3T models. The downscaled CSH3T 

model is formulated as an ideal (G
EX

 = 0) sublattice solution model with ‘simple 

random mixing’ to define the configurational entropy component, and describes a 

solid solution of tobermorite-like phases between 0.67 ≤ Ca/Si ≤ 1.5. The 

downscaled CSHQ model is defined in terms of an ideal (G
EX

 = 0) mechanical 

mixture model describing a solid solution of mixed tobermorite-like/jennite-like 

phases between 0.67 ≤ Ca/Si ≤ 2.25. The downscaled CSHQ model has been used in 

a recent publication to describe the hydration and long-term chemistry of a PC/SF-

based shotcrete cement (Lothenbach et al., 2014). 
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Figure 2.11. Predicted C-S-H solubility curves (traces) using the downscaled (A, B) 

CSHQ and (C, D) CSH3T thermodynamic models compared to reported solubility 

data for this phase (points). Data from Chen et al. (2004) are represented by large 

squares, diamonds and circles. Adapted from Kulik (2011).  

 

Walker and coauthors 

Walker et al. (2007) developed a C-S-H thermodynamic model to describe the total 

solubility of this phase for Ca/Si ratios ≥ 1. The thermodynamic model describes a 

non-ideal subregular binary solid solution, formulated using CSH and Ca(OH)2 end-

members, with activity coefficients calculated from Guggenheim interaction 

parameters used to describe the excess Gibbs free energy term. Thermodynamic 

modelling was performed to calculate ‘stoichiometric saturation’ (Glynn and 

Reardon, 1990) solubility products for CSH and Ca(OH)2 using a comprehensive 

solubility dataset in the CaO-SiO2-H2O system that was also determined by Walker 
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et al. (2007). The lower Ca boundary of the CSH-CH miscibility gap was determined 

from Fourier transform infrared spectroscopy (FTIR) and XRD results (Walker et al., 

2007) to fall at Ca/Si = 1.64, and least squares fitting of the Guggenheim parameters 

was performed to best match the solubility data to obtain the upper Ca miscibility 

gap boundary (Ca/Si = 12.2). 

 

Atkins, Glasser and coauthors 

Thermodynamic models for C-S-H were developed by Atkins, Glasser and coauthors 

over a period of several years (Atkins et al., 1992a; Glasser et al., 1999), which were 

primarily utilised to predict the pore solution chemistry of hydrated blended PC-

based cements in radioactive waste disposal applications (Atkins and Glasser, 1992; 

Glasser and Atkins, 1994). Two of the early models developed by Atkins, Glasser 

and coauthors were called the ‘partial’ and ‘full’ crystallisation models (Atkins et al., 

1994), which were intended for use at temperatures <80°C and between 80 and 90°C 

respectively. Both models described C-S-H as a set of phase mixtures or single 

phases in discrete Ca/Si intervals between 0.8 and 1.5, with solubility products 

specified for each solid phase to best match the model to C-S-H solubility data 

obtained between 25 and 85°C. For example, the ‘partial’ crystallisation model 

contained: 

i) C5S6H5 (tobermorite) between Ca/Si = 0.8 and 0.85;  

ii) C5S6H5 and CSH between Ca/Si = 0.85 and 1;  

iii) CSH and C3S2H3 (afwillite) between Ca/Si = 1 and 1.5; and 

iv) C3S2H3 and Ca(OH)2 for Ca/Si > 1.5.  

 

Later development of the model expanded this composition range from Ca/Si = 0.85 

to >2, increased the number of phase mixtures/single phases (Ca/Si intervals of 0.85-

1, 1-1.2, 1.2-1.6, 1.6-2, >2), and adapted the solubility products for each phase to 

improve the fit of the model to a larger C-S-H solubility dataset. 
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Davies, Gisby and coauthors 

The C-S-H solubility data at temperatures between 25 and 85°C used to parameterise 

the thermodynamic models of Atkins, Glasser and coauthors (Atkins et al., 1992a; 

Glasser et al., 1999) were used in the development of a non-ideal sublattice solid 

solution model by Davies, Gisby and coauthors (Davies et al., 2014; Gisby et al., 

2007). This thermodynamic model describes C-S-H in terms of two solid solutions: a 

low Ca/Si ratio (≤1.11) solid solution for ‘SiO2 gel’ and a higher Ca/Si ratio (0.78 ≤ 

Ca/Si ≤ 1.67) solid solution for C-S-H. Mixing in the C-S-H solid solution model is 

specified using five sublattice sites and four C-S-H end-members, and is based on the 

compound energy model (Hillert, 1998).  The Gibbs free energies of the C-S-H end-

members were adjusted to fit a large set of solubility data for C-S-H at ~25°C. The 

thermodynamic model generally predicts lower Si concentrations than shown by the 

C-S-H solubility dataset used for model validation at Ca/Si ratios > 1.3 and does not 

match the concentrations of Ca measured in C-S-H solubility experiments performed 

by Glasser et al. (2005) at Ca/Si ratios > 1.5 and temperatures from 25-85°C. The 

thermodynamic model was extended to include mixing of UO3, NaOH and KOH 

species in the C-S-H interlayer. No thermodynamic data for the ‘C-S-H’ or ‘SiO2 gel’ 

solid solution models were provided.  

 

Thomas and Jennings 

The thermodynamic model developed by Thomas and Jennings (1998) describes C-

S-H as a solid solution with five sublattice sites: a paired site (SiO2), a bridging site 

containing a vacancy represented by 2(OH
-
) or H2SiO4

2-
, a Ca-O layer site (CaO), a 

site for interlayer charge-balancing species (Ca
2+

 or 2H
+
), and an interlayer H2O site, 

to describe an overall composition range of 0.78 ≤ Ca/Si ≤ 1.67. Four end-members 

were selected from this definition (i.e. all possible combinations of species in the 

bridging site and the site for interlayer charge-balancing species were allowed), and 

the mixing rules for the sublattice solid solution model were defined as a mechanical 

mixture with a subregular Redlich-Kister (Guggenheim) type excess Gibbs free 

energy term (Glynn and Reardon, 1990), but without mention of the configurational 

entropy. The Gibbs free energies of the end-members and excess interaction 
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parameters were fitted to best match the C-S-H solubility data measured by Cong and 

Kirkpatrick (1996a).  

 

Berner 

The C-S-H thermodynamic model formulated by Berner (1992) describes a mixture 

of a SiO2 end-member (Ca/Si = 0) with ideal (G
EX

 = 0) solid solutions of SiO2-

CaH2SiO4 between 0 < C/S ≤ 1, Ca(OH)2-CaH2SiO4 between 1 < C/S ≤ 2.5, and 

CaH2SiO4-Ca(OH)2 for C/S > 2.5. The solid solutions are described as mechanical 

mixtures. Solubility products were specified for each of the end-members as 

constants or as functions of the Ca/Si ratio of the C-S-H phase. The thermodynamic 

model was applied to predict the pore solution chemical composition of hydrated PC, 

including a hydrated PC/(Ca-Si-)uranium oxide matrix, under thousands of 

groundwater exchange cycles, to simulate the long-term leaching behavior of these 

materials in a radioactive waste repository. 

 

Reardon 

Reardon (1990) developed a thermodynamic model for C-S-H using the Pitzer 

interaction model (Pitzer, 1991) to calculate ion activity coefficients in the aqueous 

phase. The model defined the C-S-H solubility product as an empirical function of 

the Ca/Si ratio of this phase, which was selected to match the low-Si solubility curve 

of Jennings (1986). Solid phase assemblages and aqueous phase chemical 

compostions were calculated to describe the reaction between sulfuric acid and a 

hypothetical mixture of C-S-H, Ca(OH)2 and C4AH13 as a preliminary demonstration 

of the thermodynamic model. 

 

2.2.6 Thermodynamic Data for Secondary and Minor Cement Phases 

 

Thermodynamic models have also been developed for secondary and minor cement 

phases such as Fe-Al hydrogarnet (Dilnesa et al., 2014) and C4AcH11-C4A s̅H12 

(Matschei et al., 2007b). These models, thermodynamic models for C-(N-)A-S-H, 
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and thermodynamic data for pure secondary and minor cement phases are compiled 

in thermodynamic databases. Several thermodynamic databases for cement phases 

have been developed (Atkins et al., 1992a; Blanc et al., 2010a; 2010b; Lothenbach 

and Winnefeld, 2006; Savage et al., 2011), although the most widely used 

thermodynamic database in the cement chemistry literature is CEMDATA (Kulik 

and Kersten, 2001; 2002; Lothenbach et al., 2008b; Lothenbach and Winnefeld, 

2006; Matschei et al., 2007b; Möschner et al., 2008; Möschner et al., 2009; Schmidt 

et al., 2008). Development of this database has been ongoing for nearly a decade. 

However, the thermodynamic model for C-(N-)A-S-H in CEMDATA is based on the 

C-S-H model of Kulik and Kersten (2001), so does not describe structural 

incorporation of Al in this phase. Consequently, the utility of CEMDATA is 

generally limited to relatively low-Al cement-based materials such as hydrated PC. 

 

2.3 Conclusions 

 

The main hydration product in hydrated PC-based materials and AAS is C-(N-)A-S-

H. The chemistry of this phase has been studied for decades, although its exact 

structure is not fully understood. It is generally thought that C-(N-)A-S-H resembles 

a solid solution of poorly-crystalline tobermorite-like phases over a large range of 

Ca-Al-Si compositions: the theoretical composition envelope is 0.67 ≤ Ca/(Al+Si) ≤ 

2.5 and Al/Si ≤ 0.5, although the Ca and Al-content of this phase is greatly limited by 

secondary and minor cement phases at high Ca and Al concentrations, so maximum 

Al/Si ratios of ~0.2 are typically obtained in phase-pure samples. Cross-linking of 

aluminosilicate chains in C-(N-)A-S-H is possible in low-Ca (Ca/Si ≤ 1) materials 

such as Na2SiO3 and Na2CO3-activated slag cements. Al is generally thought to be 

structurally incorporated only in bridging sites in C-(N-)A-S-H, in accordance with 

the Al-O-Al avoidance principle of Loewenstein. Al may also be present as 

positively-charged aqueous species in the interlayer of C-(N-)A-S-H in five-fold 

coordination, although there is no consensus on the location of Al[6] incorporation 

into this phase. Other dissolved interlayer and surface complexes bound to C-(N-)A-
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S-H include Ca
2+

 and alkalis, although the exact mechanism of alkali uptake in this 

phase is not fully understood. 

 

Many structural models have been developed for C-(N-)A-S-H, but none are as 

flexible for determining chemical compositions and structural parameters as the 

SGM. The major limitation of this structural model is that it does not contain a 

description of cross-linked C-(N-)A-S-H phases. The SGM is also limited by its non-

specific structural description of ‘solid solution Ca(OH)2’.  

 

The secondary and minor phases formed in hydrated cements depend greatly on the 

cement formulation and curing conditions; however, portlandite and AFm/AFt 

phases typically form in hydrated PC-based materials, and Mg-Al LDH and AFm 

phases are common precipitates in AAS cements. Thermodynamic modelling 

exploits this link between phase formation, cement formulation and curing 

conditions, which makes it a key technique in the development of a general 

framework to understand the durability of modern cement-based materials. Many 

thermodynamic models for C-S-H are available, although none have been developed 

for C-(N-)A-S-H that include structural incorporation of Al at pH conditions >12.5, 

which is the pH range of interest for most hydrated PC materials and AAS. This has 

limited the utility of the thermodynamic modelling technique to describe the 

chemistry of these materials in the past. Therefore, the development of a 

thermodynamic model for C-(N-)A-S-H, formulated with a description of Al 

structurally incorporated into this phase and parameterised to more accurately 

describe the solubility of cement-based materials at pH > 12.5, would represent a 

major step towards being able to predict the chemistry, and durability properties, of 

many more cement-based materials in service.  
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3 

Materials and Methods 

 

 

3.1 Introduction 

 

Chapter 3 describes the materials, experimental techniques and the thermodynamic 

modelling approach used in the thesis. The chemistry of AAS cements and the 

constituent solid reaction products formed in these materials are analysed using X-

ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray 

spectroscopy (SEM-EDS), and 
27

Al and 
29

Si magic angle spinning nuclear magnetic 

resonance (MAS NMR). Laboratory-synthesised C-S-H, C-A-S-H and C-(N-)A-S-H 

products are analysed by XRD with Rietveld analysis, 
29

Si MAS NMR, 

thermogravimetric analysis (TGA), ion chromatography (IC), pH analysis and 

thermodynamic modelling. The contributions of co-workers (i.e. other than Rupert J. 

Myers) to the thesis, in particular to the experimental program, are listed at the start 

of Chapters 4-9.  

 

3.2 Materials 

 

3.2.1 Alkali-Activated Slag (AAS) Cement 

 

The AAS cement studied here was synthesised using GBFS supplied by Zeobond Pty 

Ltd. (Australia), with chemical composition given in Table 3.1 (measured by the 

Analytical X-ray Unit, Latrobe University, Australia). This GBFS has a specific 

gravity of 2800 kg/m
3
, a Blaine fineness of 410 m

2
/kg, a particle size range of 0.1-74 

μm as determined through laser granulometry, and a d50 of 15 μm. 
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Table 3.1. Chemical composition of the GBFS used in this work as determined by X-

ray fluorescence. LOI is loss on ignition at 1000°C. 

Component (mass % as oxide) 

SiO2 33.8 

Al2O3 13.7 

Fe2O3 0.4 

CaO 42.6 

MgO 5.3 

Na2O 0.1 

K2O 0.4 

Others 1.9 

LOI 1.8 

 

The alkali activator was prepared by dissolution of solid NaOH pellets (Sigma-

Aldrich, Australia) into D grade (PQ, Australia) sodium silicate, to reach a modulus 

(SiO2/Na2O molar ratio) of 1.0. The AAS cements were activated using this solution, 

added at a ratio of 8g Na2SiO3/100g GBFS. Water was added to achieve a 

water/binder (w/b) ratio of 0.40, and the activator was allowed to cool to room 

temperature prior to preparation of the specimens. The AAS cements were cured in 

sealed bags at 23°C until testing, and were crushed by hand before analysis. 

 

3.2.2 Laboratory-Synthesised C-(N-)A-S-H 

 

C-(N-)A-S-H samples were prepared by mixing Milli-Q water (Merck Millipore), 

SiO2 (Aerosil 200, Evonik), CaO (obtained by burning CaCO3 (Merck Millipore) at 

1000°C for 12 hours), CaO·Al2O3 and 0 to 1 M solutions of NaOH and/or KOH 

(Merck Millipore) at a solution/solid ratio of 45 in an N2-filled glovebox to obtain 

the bulk molar Al/Si ratios (Al/Si*) and bulk molar Ca/Si ratios (Ca/Si*) investigated 

in this thesis (Al/Si* ≤ 0.15 and 0.6 ≤ Ca/Si* ≤ 1.6). The CaO·Al2O3 (99.1 wt.% 

determined by XRD with Rietveld analysis) was made from CaCO3 and Al2O3 

(Sigma Aldrich) by heating for 1 hour at 800°C, 4 hours at 1000°C and 8 hours at 

1400°C in a Carbolite HTF 1700 furnace (the heating rate to 800°C and between 

each subsequent temperature was 300°C/hour), then cooled at 600°C/hour under 
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laboratory atmosphere and ground with a Retsch PM100 ball mill to a Blaine surface 

area of 3790 cm
2
/g (Lothenbach et al., 2012b).  

 

Samples were equilibrated at 7°C, 20°C and 50°C in polyethylene vessels and at 

80°C in teflon vessels. The 7°C, 50°C and 80°C samples were shaken twice per week 

and the 20°C samples were shaken continuously at 100 rpm. Once equilibrium was 

approached (1 year at 7°C, 182 days at 20°C, and 56 days at 50°C and 80°C), the 

samples were vacuum filtered with 0.45 µm nylon filters in a N2-filled glovebox. 

Equilibration times were selected following the study of C-(A-)S-H kinetics at 20°C 

in (L'Hôpital et al.), which showed approximately constant supernatant compositions 

after 182 days; additional analysis generally showed small differences (< ±25%) in 

dissolved Si, Al and Ca concentrations between 91 days and 1 year for the 7°C 

samples and 56 and 91 days for the 50°C samples. The filtered solids were washed 

with a 50% v/v water-ethanol solution, followed by a >94 vol.% ethanol solution, 

and then freeze-dried for 7 days. The dried solids were stored in N2-filled desiccators 

with humidity and CO2 traps made from saturated CaCl2 solutions (~30% relative 

humidity, RH) and solid NaOH pellets, until analysis. 

 

3.3 Experimental Techniques 

 

3.3.1 X-ray Diffraction (XRD) and Rietveld Analysis 

 

XRD describes the phenomenon that occurs when an X-ray beam is diffracted by a 

surface. When the diffraction surface is approximately flat relative to the incident 

beam (e.g. ordered crystal planes), the diffracted X-rays that undergo constructive 

interference can be described by Bragg’s law (eq.(3.1)): 

 

 2 sin( )n d    (3.1) 

 

where n is an integer, λ is the wavelength of the incident X-rays, d is the depth 

between diffraction surfaces and θ is the scattering angle between the incident X-rays 
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and the diffraction surface. Constructive interference typically occurs at multiple 

scattering angles, rather than at a single value of θ. The measured intensity of the 

diffracted X-rays, typically plotted as a function of θ, yields a diffraction pattern. 

Identification of solid phases from diffraction patterns is possible because each 

crystalline phase has its own unique diffraction pattern; individual phases can be 

identified in materials containing more than one crystalline solid phase with XRD. 

XRD is a powerful characterisation tool for cements because the solid binders in 

these materials typically contain several (semi-)crystalline solid reaction products. 

 

AAS Cement 

Powder XRD analyses of AAS cement specimen were conducted using a Bruker D8 

Advance instrument with Cu Kα radiation and a nickel filter. The tests were 

conducted with a step size of 0.020°, for a 2θ range of 5° to 70°. Solid phases were 

identified by comparison with reference cards in the Powder Diffraction File (PDF) 

as noted in Chapters 4-5. 

 

Laboratory-Synthesised C-(N-)A-S-H 

Powder XRD patterns of laboratory-synthesised C-(N-)A-S-H samples were recorded 

on a PANalytical X’Pert Pro MDF diffractometer equipped with a Ge(111) 

Johansson monochromator for Cu Kα radiation, and an X’Celerator detector, and a 

step size of 0.017° 2θ. An external CaF2 standard was used for Rietveld analysis, 

enabling quantification of the amount of C-(N-)A-S-H in each sample (O'Connor and 

Raven, 1988). Average basal (d(002)) spacings of the C-(N-)A-S-H products were 

determined by visual inspection. Rietveld analysis was performed in PANalytical 

HighScore Plus software. The PDF reference cards used to identify the solid phases 

present in the samples are provided in Chapters 8-9. 
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3.3.2 Scanning Electron Microscopy (SEM) 

 

Energy-dispersive X-ray spectroscopy (EDS) is used to determine the (near-)surface 

elemental composition of a sample imaged by a scanning electron microscope 

(SEM). This technique is referred to as SEM-EDS. In a SEM, a high energy electron 

beam of specified energy and cross-sectional area is fired at the surface of a sample 

in a vacuum-sealed chamber. On impact with the sample, the electrons release energy 

in an impact volume in the vicinity of the impact spot (the typical impact volume for 

SEM-EDS analysis of cements is ~1 μm
3
). Some electrons in the incident electron 

beam impact and eject inner-shell electrons residing in atoms within the impact 

volume, to create electron holes. These electron holes are filled with higher-energy 

outer-shell electrons, which generate characteristic X-rays that can be counted with a 

detector. Characteristic X-rays have energies that are equivalent in magnitude to the 

energetic differences between the inner and outer-shells of the excited atoms. The 

identity of the excited atoms can be determined because the energy levels of electron 

shells in each element are unique. For SEM-EDS analysis of materials containing 

multiple elements, characteristic X-rays can be classified according to their energy 

and counted to determine the relative amount of each element (chemical 

composition) in the impact volume.  

 

AAS Cement 

An FEI Quanta environmental SEM with a 15 kV accelerating voltage and a working 

distance of 10 mm was used to analyse AAS cement specimen. Polished, uncoated, 

samples were evaluated in low vacuum mode using a backscatter detector. A Link-

Isis (Oxford Instruments) energy dispersive X-ray detector was used to determine 

chemical compositions. An average of approximately 30 data points were collected 

for elemental analysis at each time of curing studied. 
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3.3.3 
29

Si Magic Angle Spinning Nuclear Magnetic Resonance (MAS NMR) 

 

Nuclear magnetic resonance (NMR) spectrometers are used to probe the interactions 

between nuclei with intrinsic magnetic moments (non-zero spin) and applied 

magnetic fields to resolve the local chemical environment of nuclei such as 
29

Si. In 

an NMR experiment, relaxation of spinning nuclei back to thermal equilibrium in an 

applied static field (B0), after perturbation by radiofrequency (rf) radiation, generates 

voltage in a coil surrounding the sample. The voltage response is time-dependent, is 

called the free induction decay (FID), and is recorded by the NMR spectrometer. 

Fourier transformation of a FID results in an NMR spectrum, which is a plot of the 

amount of resonating nuclei as a function of frequency, or more commonly chemical 

shift (δ). 

 

The FID generated by a NMR experiment is intrinsically linked to the total nuclear 

spin Hamiltonian, which represents the total energy of a non-zero spin atomic 

nucleus and consists of several components: the dipolar and chemical shift 

Hamiltonian components are important for resolving the total spin Hamiltonian of 

29
Si nuclei (spin = 1/2). The time-averaged value of the dipolar Hamiltonian is equal 

to 0 and chemical shift anisotropy is removed when a sample is spun rapidly at the 

magic angle spinning (MAS) condition, i.e. at an angle of cos
2
(θMAS) = 1/3 (θMAS ≈ 

54.74°) with respect to the static magnetic field (B0). Therefore, local chemical 

environments for 
29

Si nuclei can be represented in terms of the isotropic chemical 

shift (δiso, the average chemical shift) in MAS NMR spectra. Solid-state 
29

Si MAS 

NMR spectra are referenced to an external standard, typically tetramethylsilane 

(TMS), so that local chemical environments can be determined from known isotropic 

chemical shift assignments reported in the literature. NMR spectra for samples that 

are not spun sufficiently rapidly contain spinning sidebands, which are separated 

from each other and the central transition by the spinning frequency and can 

complicate this analysis. The Q
n
(mAl) notation is used to describe 

29
Si site 

environments, as shown in Figure 3.1. 
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Figure 3.1. Q

n
(mAl) notation and 

29
Si shift range for the Q

n
(mAl) sites discussed in 

the thesis, adapted from (Engelhardt and Michel, 1987). 

 

AAS Cement 

Solid-state 
29

Si MAS NMR spectra for the AAS cement specimen were collected at 

119.1 MHz on a Varian VNMRS-600 (14.1 T) spectrometer using a probe for 4 mm 
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o.d. zirconia (PSZ) rotors and a spinning speed (νR) of 10.0 kHz. The 
29

Si MAS 

experiments employed a pulse width of 4 µs, a relaxation delay of 20 s, and 4096 

scans. 
29

Si chemical shifts are referenced to external TMS. 

 

Deconvolutions of the 
29

Si MAS NMR spectra for these samples are performed using 

the minimum number of component peaks needed to describe the spectra. These 

spectra were manually fitted with Gaussian functions, with the full width at half 

height (FWHH) of each component peak constrained to <10 ppm and assigned to 

connectivity states based on information available in the literature for cements 

(Richardson et al., 1993; Skibsted and Andersen, 2013), zeolites (Engelhardt and 

Michel, 1987), and silicate-activated slag cements (Bernal et al., 2013c). Peak 

positions and widths for each identified species were held constant throughout the 

deconvolution process. The component peaks assigned to the remnant anhydrous slag 

are rescaled vertically by a single factor in each spectrum, to provide the appropriate 

lineshape in the corresponding regions of the spectra and determine the slag reaction 

extent. A recent study (Le Saoût et al., 2011) showed that 
29

Si MAS NMR spectra of 

AAS cements can be appropriately quantified in this way. 

 

Quantification of the Q
4
(4Al) component in the 

29
Si MAS NMR spectral 

deconvolutions for the AAS cement specimens is performed using eq.(3.2) assuming 

that the only Q
4
 units are Q

4
(4Al) and Q

4
(3Al), and that these sites are present in a 

separate Al-rich phase additional to the C-(N-)A-S-H gel: 

 

 
 

 
4 4
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* 5

*(4 ) (3 )

/ 1
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Si Al
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Si Al
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 
 

  (3.2) 

 

where 4 (3 )Q Al
I is the relative intensity of the Q

4
(3Al) component determined from 

deconvolution analysis of the experimental 
29

Si MAS NMR spectra, 4

*

(4 )Q Al
I  is the 

calculated relative intensity of Q
4
(4Al) components and (Si/Al)

*
 is the assumed Si/Al 

ratio of the Q
4
-containing phase. An Si/Al ratio of 1.2 is used here, which is 
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consistent with the composition of N-A-S(-H) (geopolymer) gels determined from 

MAS NMR (Duxson et al., 2005) and statistical thermodynamic model predictions 

(Provis et al., 2005a).  

 

Laboratory-Synthesised C-(N-)A-S-H 

Solid-state 
29

Si MAS NMR spectra for the laboratory-synthesised C-(N-)A-S-H 

samples were collected at 79.49 MHz on a Bruker Avance 400 MHz NMR 

spectrometer with a 7 mm CP/MAS probe. The measurements were recorded using a 

4500 Hz spinning rate, 9216 scans, π/3 pulses of 2.5 μs, and 20 s relaxation delays. 

29
Si chemical shifts were referenced to external TMS. Spectral deconvolutions are 

carried out using component peaks with a Lorentzian/Gaussian ratio of 0.5, full 

width at half height ≤ 3 ppm, constant chemical shifts for each peak, and constrained 

peak amplitudes. These constraints are for tobermorite-like nanostructures with 

nearest-neighbour Al-O-Al avoidance (Loewenstein, 1954) and are required for 

consistency with ‘dreierketten-type’ (3n-1) chain structures (Richardson, 2004). A 

ratio of Q
2

p/Q
2

b = 2 is specified for the non-cross-linked C-(N-)A-S-H products. The 

following additional constraints are specified for the cross-linked C-(N-)A-S-H 

products (Myers et al., 2013):  

i) Q
2
(1Al) ≥ 2Q

3
(1Al);  

ii) Q
2 

+ Q
2
(1Al) ≥ 2(Q

3
 + 2Q

3
(1Al));  

iii) Q
2

p* ≥ 0;  

iv) Q
2
(1Al)* ≥ 0; and 

v) Q
2

p*/Q
2

b = 2 

where Q
2

p* = Q
2

p – 2(Q
3
 + Q

3
(1Al)) and Q

2
(1Al)* = Q

2
(1Al) – 2Q

3
(1Al). 

 

3.3.4 
27

Al MAS NMR 

 

The principles of 
27

Al and 
29

Si MAS NMR are similar, except the quadrupolar 

interaction Hamiltonian is non-zero for 
27

Al nuclei (spin = 5/2). High magnetic field 

strengths are used in NMR analysis of 
27

Al because this reduces second-order 

quadrupolar effects, which are inversely proportional to the magnetic field strength 
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(first-order quadrupolar effects can be removed by spinning at the magic angle). 

Chemical shifts for 
27

Al are typically referenced to an external standard such as 

Al(H2O)6
3+

(aq). 
27

Al site environments are referenced using the q
n
 notation, where this 

notation for Al sites is equivalent to the Q
n
 notation for Si sites (Harris et al., 1997).  

 

AAS Cement 

Solid-state 
27

Al MAS NMR spectra were acquired at 156.3 MHz on a Varian 

VNMRS-600 (14.1 T) for AAS cement specimen cured for 1-180 days, with a pulse 

width of 0.5 µs, a relaxation delay of 2 s, and at least 1000 scans. All spectra were 

collected with a tip angle of 51°. Additional 
27

Al MAS NMR spectra were acquired 

at 104.2 MHz on a Varian VNMRS 400 (9.4 T) spectrometer for the anhydrous slag 

precursor and the sample cured for 2 years with νR = 14 kHz, a pulse duration of 1 

μs, recycle delay of 0.2 s and 7000 repetitions. 
27

Al chemical shifts are referenced to 

external 1.0 M aqueous Al(NO3)3 via internal referencing using the hydrotalcite peak 

at δiso = 9.68 ppm, using the parameters CQ = 1.2 MHz and ηQ = 0.8 as determined 

for a pure hydrotalcite sample (S.A. Walling and S.A. Bernal, unpublished data) and 

the calculation method reported in (Engelhardt and Koller, 1991). 

 

27
Al MAS NMR spectra are deconvoluted manually using the Dmfit software 

(Massiot et al., 2002) and the (Czjzek) Gaussian Isotropic Model (Neuville et al., 

2004) (exponent of the standard deviation of the Gaussian distribution for each 

component = 5) to model quadrupolar peak shapes. Secondary reaction products 

identified from the XRD data are quantified in the spectra using component peaks 

matched to coordination and connectivity states that are consistent with the literature 

(Andersen et al., 2006; Sideris et al., 2012). Quadrupolar coupling parameters (CQ) 

used to define the peak shapes for these secondary products are taken from the 

literature, as shown in Chapters 4-5. The component peaks of the remnant anhydrous 

slag and the C-(N-)A-S-H gel are defined using quadrupolar coupling parameters that 

provided a good fit to the experimental spectra and are consistent with the 

established values for aluminosilicates such as zeolites (Klinowski, 1984). The first 

order spinning sidebands in the spectra for the samples cured up to 180 days (νR = 10 
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kHz) were fitted using symmetric quadrupolar lineshapes around the central 

transitions for the Al[4] and Al[6] components, and were taken into account in the 

quantification of deconvoluted spectra. It has been shown that the manifold of 

spinning sidebands in MAS NMR spectra of quadrupolar nuclei can be relatively 

accurately approximated by symmetric first-order contributions (Skibsted et al., 

1991), which supports the methodology applied here. 

 

The Al[4] component of the remnant anhydrous slag is rescaled by the same factors 

used in analysis of the 
29

Si MAS NMR spectra, assuming congruent dissolution of 

the slag and corrected to exclude silica supplied by the activator, so that the extent of 

reaction of the slag is identical in both sets of spectra at each time of curing. The 

Al[6] component of the anhydrous slag peak is excluded from the rescaling 

procedure because only <4% of the total spectral intensity remained in this region 

after subtracting contributions from the Al[4] spinning sidebands overlapping in the 

Al[6] region. The assumption of full incorporation of Si present in the activator into 

the solid binder leads to eq.(3.3): 

 

 
1

1 2 2100

1

(1 )( )
Y

X X X
R

X

  
   (3.3) 

 

where R is the fraction of Si in the slag that has reacted, Y1 is the percentage of the 

total Si added to the mix that has not reacted (i.e. the percentage of the ‘anhydrous 

Q
0
’ peak in the deconvoluted 

29
Si MAS NMR spectra), X1 is the number of moles of 

Si in the slag and X2 is the number of moles of Si in the activator. The fraction of Al 

in the slag that has reacted is then defined as R’, thus the fraction of Al in the slag 

that has not reacted is 1 - R’. Hence, the congruent slag dissolution assumption can 

be applied to eq.(3.3) to yield eq.(3.4): 

 

 
1

1 2 2100

1
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The lineshape of the Al[4] component of the anhydrous slag (determined through 

analysis of 
27

Al MAS NMR spectra for the anhydrous slag) is rescaled using eq.(3.4) 

in fitting of 
27

Al MAS NMR spectra to determine the fraction of Al in the slag 

remaining in the mix at each time of curing. 

 

Component widths were unchanged and peak positions were held approximately 

constant (maximum variation of δobs ± 0.5 ppm) in the deconvolution process. 

Simulated line broadening of LB = 50 ppm is performed using Gaussian LB for the 

reaction products and Lorentzian LB for the anhydrous slag. Isotropic chemical shifts 

(δiso) were calculated for the peaks in the deconvoluted spectra using the method 

described in (Andersen et al., 2006), using the observed chemical shift (δobs) values 

determined here. 
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3.3.5 Thermogravimetric Analysis (TGA) 

 

TGA is the study of how materials change in mass as a function of temperature. TGA 

of cements is typically performed up to ~1000°C to measure mass losses due to 

release of H2O and CO2 from constituent phases in the solid binder. This technique is 

used for phase characterisation because the chemistry and mass loss temperatures of 

a solid phase are related. Phase characterisation is typically performed using the first 

derivatives of TGA traces, where the temperatures at which mass losses occur are 

more apparent. 

 

Laboratory-Synthesised C-(N-)A-S-H 

Thermogravimetric analysis (TGA) data were recorded on a Mettler Toledo 

TGA/SDTA851
e
 at a heating rate of 20°C/min under an N2 atmosphere. Mass losses 

between 30°C and 550°C were assigned to the combined dehydration and 

dehydroxylation effects of C-(N-)A-S-H, katoite, Al(OH)3, strätlingite and 

portlandite products during heating; mass losses assigned to portlandite were 

measured between 400°C and 520°C. 

 

3.3.6 Ion Chromatography (IC) and pH Analysis 

 

An IC experiment separates aqueous species based on their affinity to bond to an ion 

exchange bed; those with greater affinity for the ion exchange bed are eluted slower 

than those with lower affinity. The eluted species are counted and classified in terms 

of residence time. Therefore, element concentrations in aqueous solutions can be 

determined using IC.  

 

A pH meter measures the potential over a pH-sensitive glass membrane of a pH 

electrode that is referenced to an electrode with constant potential. Temperature 

probes are also commonly integrated into pH meters. Calibration of the pH electrode 

and conversion of measured potentials to pH values is performed via the Nernst 

equation (eq.(3.5)): 
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  (3.5) 

 

where E is the potential difference, E0 is the standard electrode potential, R is the 

universal gas constant (8.3145 J.mol
-1

.K
-1

), T is temperature (K), n is the 

stoichiometric amount of electrons transferred in the electrochemical reaction (mol), 

F is the Faraday constant (96485.34 C/mol) and pH is defined by eq.(3.6): 

 

  10logpH H     (3.6) 

 

where the curly brackets denote activity. 

 

Laboratory-Synthesised C-(N-)A-S-H 

A Dionex DP ICS-3000 ion chromatograph was used to determine Ca, Si and Al 

concentrations in the filtrates (relative measurement error ±10% in the concentration 

range of interest and detection limit of 0.1 ppm). Si was detected using a sodium 

carbonate/bicarbonate eluent and a postcolumn reagent of sodium molybdate/sodium 

lauryl sulphate in metasulfonic acid. Al was measured using a HCl eluent and a 

Tiron/ammonium acetate postcolumn reagent. Aqueous hydroxide concentrations 

were determined at ~23°C with a Knick pH meter (pH-Meter 766) equipped with a 

Knick SE100 electrode that was calibrated against KOH solutions of known 

concentrations. 

 

3.4 Thermodynamic Modelling 

 

3.4.1 Modelling Method 

 

Thermodynamic modelling is performed in GEM Selektor v.3 software 

(http://gems.web.psi.ch/) (Kulik et al., 2013; Wagner et al., 2012) using the 
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PSI/Nagra 12/07 thermodynamic database (Thoenen et al., 2013), which is updated 

from (Hummel et al., 2002) via the inclusion of two additional aqueous 

(alumino)silicate species, and the CEMDATA07 thermodynamic database (Kulik 

and Kersten, 2001; 2002; Lothenbach et al., 2008b; Lothenbach and Winnefeld, 

2006; Matschei et al., 2007b; Möschner et al., 2008; Möschner et al., 2009; Schmidt 

et al., 2008) updated to include recently published data for Al(OH)3 and hydrogarnet 

phases (Dilnesa et al., 2014; Lothenbach et al., 2012b), and C-(N-)A-S-H, MgAl-

OH-LDH, zeolites and alkali carbonate minerals as described in Chapters 6-9 of this 

thesis. The thermodynamic properties of the gases and aqueous species used in these 

calculations are shown in Tables 3.2-3.3, with full details of the solid phases used 

described in each thermodynamic modelling chapter (Chapters 6-9). 

 

The ideal gas equation of state is used to describe the gases and the Truesdell-Jones 

form of the extended Debye-Hückel equation, eq.(3.7) (Helgeson et al., 1981), is 

used to describe the aqueous species. 
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  (3.7) 

 

Here, γj and zj are the activity coefficient and charge of the j
th

 aqueous species 

respectively, Aγ and Bγ are temperature and pressure-dependent electrostatic 

parameters, I is the ionic strength of the aqueous electrolyte phase, ȧ is the ion size 

parameter, bγ is a parameter that describes short-range interactions between charged 

aqueous species in an electrolyte solution (representing the predominant electrolyte 

in the system), xjw is the molar quantity of water, and Xw is the total molar amount of 

the aqueous phase. Constant values of ȧ (3.31 Å) and bγ (0.098 kg/mol) are taken to 

represent the average ion size and common short-range interactions of charged 

aqueous species in a NaOH-dominated solution (Helgeson et al., 1981) in Chapters 

6-7. Ion size and extended term parameters for KOH (ȧ = 3.67 Å and bγ = 0.123 

kg/mol) (Helgeson et al., 1981) are used in Chapters 8-9. The water activity is 

calculated from the osmotic coefficient (Helgeson et al., 1981). 
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Table 3.2. Thermodynamic properties of the gases used in the thermodynamic modelling simulations. The reference state is 298.15 K and 1 bar. 

Gas 
V° 

(cm
3
/mol) 

ΔfH° 

(kJ/mol) 

ΔfG° 

(kJ/mol) 

S° 

(J/(mol.K)) 

Cp° 

(J/(mol.K)) 
Reference 

N2 24790 0 0 191.6 29.1 (Wagman et al., 1982) 

O2 24790 0 0 205.1 29.3 (Wagman et al., 1982) 

H2 24790 0 0 130.7 28.8 (Wagman et al., 1982) 

 

Table 3.3. Thermodynamic properties of the aqueous species used in the thermodynamic modelling simulations. The reference state is unit 

activity in a hypothetical one molal solution referenced to infinite dilution at any temperature and pressure for aqueous species (Helgeson et al., 

1981). 

Species 
V° 

(cm
3
/mol) 

ΔfH° 

(kJ/mol) 

ΔfG° 

(kJ/mol) 

S° 

(J/(mol.K)) 

Cp° 

(J/(mol.K)) 
Reference 

Al
3+

 -45.2 -530.6 -483.7 -325.1 -128.7 (Shock et al., 1997) 

AlO
+
 (+ H2O = Al(OH)2

+
) 0.3 -713.6 -660.4 -113 -125.1 (Shock et al., 1997) 

AlO2
-
 (+ 2H2O = Al(OH)4

-
) 9.5 -925.6 -827.5 -30.2 -49 (Shock et al., 1997) 

AlOOH
o
 (+ 2H2O = Al(OH)3

o
) 13 -947.1 -864.3 20.9 -209.2 (Shock et al., 1997) 

AlOH
2+

 -2.7 -767.3 -692.6 -184.9 56 (Shock et al., 1997) 

AlHSiO3
2+

 (+ H2O = AlSiO(OH)3
2+

) -40.7 -1718 -1541 -304.2 -215.9 (Matschei et al., 2007b) 

AlSiO4
-
 (+ 3H2O = AlSiO(OH)6

-
) 25.5 -1834 -1681 11.1 -4.6 (Matschei et al., 2007b) 

AlSO4
+
 -6.0 -1423 -1250 -172.4 -204.0 (Matschei et al., 2007b) 

Al(SO4)2
-
 31.1 -2338 -2006 -135.5 -268.4 (Matschei et al., 2007b) 

Ca
2+

 -18.4 -543.1 -552.8 -56.5 -30.9 (Shock et al., 1997) 

CaOH
+
 5.8 -751.6 -717 28 6 (Shock et al., 1997) 

Ca(HSiO3)
+
 (+ H2O = CaSiO(OH)3

+
) -6.7 -1687 -1574 -8.3 137.8 (Sverjensky et al., 1997) 
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Table 3.3. Continued. 

Species 
V° 

(cm
3
/mol) 

ΔfH° 

(kJ/mol) 

ΔfG° 

(kJ/mol) 

S° 

(J/(mol.K)) 

Cp° 

(J/(mol.K)) 
Reference 

CaSiO3
o
 (+ H2O = CaSiO2(OH)2

o
) 15.7 -1668 -1518 -136.7 88.9 (Matschei et al., 2007b) 

CaSO4
o
 4.7 -1448 -1310 20.9 -104.6 (Sverjensky et al., 1997) 

K
+
 9.0 -252.1 -282.5 101 8.4 (Shock et al., 1997) 

KOH
o
 15 -474.1 -437.1 108.4 -85 (Shock et al., 1997) 

KSO4
-
 27.5 -1159 -1032 146.4 -45.1 (Sverjensky et al., 1997) 

Na
+
 -1.2 -240.3 -261.9 58.4 38.1 (Shock et al., 1997) 

NaOH
o
 3.5 -470.1 -418.1 44.8 -13.4 (Shock et al., 1997) 

NaSO4
-
 18.6 -1147 -1010 101.8 -30.1 (Matschei et al., 2007b) 

HSiO3
-
 (+ H2O = SiO(OH)3

-
) 4.5 -1145 -1014 20.9 -87.2 (Sverjensky et al., 1997) 

SiO2
o
 16.1 -887.9 -833.4 41.3 44.5 (Kulik and Kersten, 2001; Shock et al., 1989) 

SiO3
2-

 (+ H2O = SiO2(OH)2
2-

) 34.1 -1099 -938.5 -80.2 119.8 (Matschei et al., 2007b) 

S2O3
2-

 27.6 -649.9 -520.0 66.9 -238.5 (Shock et al., 1997) 

HSO3
-
 33.0 -627.7 -529.1 139.7 -5.4 (Shock et al., 1997) 

SO3
2-

 -4.1 -636.9 -487.9 -29.3 -281.0 (Shock et al., 1997) 

HSO4
-
 34.8 -889.2 -755.8 125.5 22.7 (Shock et al., 1997) 

SO4
2-

 12.9 -909.7 -744.5 18.8 -266.1 (Shock et al., 1997) 

H2S
o
 35.0 -39.0 -27.9 125.5 179.2 (Shock et al., 1989) 

HS
-
 20.2 -16.2 12.0 68.2 -93.9 (Shock et al., 1997) 

S
2-

 20.2 92.2 120.4 68.2 -93.9 (Hummel et al., 2002) 

Mg
2+

 -22.0 -465.9 -454.0 -138.1 -21.7 (Shock et al., 1997) 

MgOH
+
 1.6 -690.0 -625.9 -79.9 129.2 (Shock et al., 1997) 

MgHSiO3
+
 (+ H2O = 

MgSiO(OH)3
+
) 

-10.9 -1614 -1477 -99.5 158.6 (Shock et al., 1997) 

MgSO4
o
 1.8 -1369 -1212 -50.9 -90.3 (Hummel et al., 2002; Shock et al., 1997) 
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Table 3.3. Continued. 

Species 
V° 

(cm
3
/mol) 

ΔfH° 

(kJ/mol) 

ΔfG° 

(kJ/mol) 

S° 

(J/(mol.K)) 

Cp° 

(J/(mol.K)) 
Reference 

MgSiO3
o
 (+ H2O = MgSiO2(OH)2

o
) 12.1 -1597 -1425 -218.3 98.2 (Hummel et al., 2002) 

OH
-
 -4.7 -230 -157.3 -10.7 -136.3 (Shock et al., 1997) 

H
+
 0 0 0 0 0 (Shock et al., 1997) 

H2O
o
 18.1 -285.9 -237.2 69.9 75.4 (Johnson et al., 1992) 

N2
o
 33.4 -10.4 18.2 95.8 234.2 (Shock et al., 1989) 

O2
o
 30.5 -12.2 16.4 109 234.1 (Shock et al., 1989) 
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The extended Debye-Hückel equation is accurate to moderate ionic strengths (up to ~ 

1 molal) (Helgeson et al., 1981), so is appropriate for the laboratory-synthesised C-

(N-)A-S-H products (Chapters 8-9), but this limit is lower than the ionic strength in 

AAS pore solutions (~1-3 mol/kg in sodium silicate activated slag cements, e.g. 

(Gruskovnjak et al., 2006)). This equation is chosen for thermodynamic modelling of 

AAS cements (Chapters 6-7) because it is directly encoded in GEM-Selektor and this 

thesis presents the first step in the development of a thermodynamic model for C-(N-

)A-S-H in these materials.  

 

Laboratory-Synthesised C-(N-)A-S-H 

Solubility products for laboratory-synthesised C-(N-)A-S-H products are calculated 

from experimental data obtained in the thesis using the reaction represented by 

eq.(3.8): 

 

         

   

2 2 3 2

2 2

3 ( ) 2

2 2

( ( ) () ( )

( ) ( )

)

2

  2 2 2

2

)

  

(

aq

d e

aq aq aq aq

aq l

a b c f

sK
CaO SiO Al O H O

Ca bSiO cAlO dNa eK

a b c d e OH b c

Na O K O

f d H O

a

a e

    



   

          

  (3.8) 

 

where a, b, c , d, e and f are the respective stoichiometric coefficients for CaO, SiO2, 

Al2O3, Na2O, K2O and H2O in C-(N-)A-S-H. This reaction implies the following 

relationships for Ks (eq.(3.9)):  
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2 2
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2
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s aq aq aq

aq aq aq l
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d e a b c d e b c f a d e

K Ca SiO AlO

Na K OH H O

  

  
        

  

   
  (3.9) 

 

Activities of Ca
2+

(aq), SiO3
2-

(aq), AlO2
-
(aq), Na

+
(aq), K

+
(aq), OH

-
(aq) and H2O(l) species 

were determined in GEM-Selektor v.3 (Kulik et al., 2013; Wagner et al., 2012). The 

OH
-
 concentration is matched to the measured pH values in these calculations in 
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Chapter 8, and the measured concentrations of Ca, Si, Al, Na, K and OH
-
 in the 

supernatants were used in Chapter 9. 

 

Effective saturation indices (SI*) are calculated from solubility and ion activity 

products using eq.(3.10), which indicates whether a solid phase is likely to 

precipitate from an aqueous solution at equilibrium:  

 

 10

,

1
* log i

i

i so i

IAP
SI

n K

 
   

 
  (3.10) 

 

where IAPi and Kso,i refer to the dissolution reaction defined for solid i and ni is the 

total number of species in the i
th

 dissolution reaction. These calculations define 

effective supersaturation (SIi* > 0, precipitation), saturation (SIi* = 0) and 

undersaturation (SIi* < 0, dissolution) states with respect to solid i at equilibrium. At 

equilibrium, solid phases may form from supersaturated or saturated aqueous 

solutions but not from undersaturated aqueous solutions. 
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4 

Cross-Linked Substituted Tobermorite 

Model (CSTM) 

 

 

This chapter is based on the paper ‘Generalized Structural Description of Calcium-

Sodium Aluminosilicate Hydrate Gels: The Cross-Linked Substituted Tobermorite 

Model’, published in Langmuir 2013, 29, 5294-5306. AAS cement samples were 

prepared by Susan A. Bernal and Rackel San Nicolas. The SEM-EDS measurements 

were carried out by Rackel San Nicolas with assistance from Roger Curtain (Bio21 

Institute, University of Melbourne). The 
27

Al and 
29

Si MAS NMR experiments were 

performed by Susan A. Bernal with assistance from John Gehman (Bio21 Institute, 

School of Chemistry, University of Melbourne). 

 

 

4.1 Introduction 

 

While the Substituted General Model (SGM) developed by Richardson and Groves 

(1993b) (section 2.1.4) provides good descriptions of the nanostructure and chemical 

composition of C-(N-)A-S-H in alkali hydroxide-activated slag cements and PC-

based materials (Richardson, 2004; Taylor et al., 2010), and some sodium silicate-

activated slag cements (Le Saoût et al., 2011), recent experimental results for sodium 

silicate-activated slag cements have supported alternative C-(N-)A-S-H 

nanostructures not described by that structural model. The SGM represents C-(N-)A-

S-H as a mixture of non-cross-linked tobermorite-like nanostructures if the ‘solid 

solution’ Ca(OH)2 component of the model is deactivated (Richardson, 2004), which 

corresponds to the chemical composition of C-(N-)A-S-H in cementitious materials 

with bulk Ca/Si ≤ 1.5, such as alkali-activated cements. 
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Evidence supporting alternative C-(N-)A-S-H nanostructures in Ca/Si compositions 

≤1.5 is found in high resolution 
29

Si MAS NMR results of sodium silicate-activated 

slag cements (Bernal et al., 2013c; Brough and Atkinson, 2002; Puertas et al., 2011), 

sodium carbonate-activated slag cements (Fernández-Jiménez et al., 2003), and 

laboratory-synthesised C-A-S-H products (Pardal et al., 2012), where the formation 

of cross-linked Si sites (Q
3
 and/or Q

3
(1Al)) has been identified. Q

3
 type silica 

bonding environments can only be explained in tobermorite-like structural models by 

cross-linking between bridging sites in the silicate chains (e.g. as displayed in Figure 

2.5 for cross-linking in the c direction). Therefore, the small but non-zero 

concentration of Q
3
 units found in C-(N-)A-S-H supports the description of this 

phase as a mixture of cross-linked and non-cross-linked tobermorite-like structures.  

 

It was also shown by Oh et al. (2012) that the model structure of 14Å tobermorite 

could only describe the mechanical properties of C-S-H(I) in the a-b plane (parallel 

to the Ca-O sheets); the response to compression in the c direction (perpendicular to 

the Ca-O sheets) was significantly different. This result indicates that the species 

present in the interlayer spacing between the silicate chains of 14Å tobermorite and 

C-S-H(I) are significantly different, meaning that alternative C-(N-)A-S-H structural 

models to those based on 14Å tobermorite-like nanostructures are needed to describe 

the observed mechanical properties. A structural model that can describe C-(N-)A-S-

H using a flexible definition of nanostructure and chemical composition would 

enable a greater understanding of the mechanical behaviour of modern cement-based 

materials. Therefore, it is both appropriate and necessary to conceptualise and model 

C-(N-)A-S-H nanostructures in an alternative way, generalising from the SGM of 

Richardson and Groves (1993b).  

 

The aim of this investigation is to derive a structural model formulated in terms of 

9Å, 11Å and 14Å tobermorite-like structures, and develop rigorous analytical 

methods using this model for the calculation of structural and chemical parameters 

such as Ca/Si, Al/Si and mean chain length (MCL). The structural model is validated 
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by comparison with experimental SEM-EDS, and 
27

Al and 
29

Si MAS NMR data for 

an Na2SiO3-activated slag cement cured for 7, 28 and 56 days.  

 

4.2 Derivation of a Generalised Structural Model for  

C-(N-)A-S-H 

 

4.2.2 Non-Cross-Linked Tobermorite-Like Structural Model 

 

The structural model for non-cross-linked tobermorite-like C-(N-)A-S-H is derived 

from eq.(2.2) (section 2.1.4) but rewritten in terms of sublattice sites. This is shown 

in eq.(4.1) by limiting substitution in the chain structures to bridging sites, and 

selection of Al as the tetrahedrally coordinated trivalent cation (R) and Na as the 

charge-balancing interlayer cation (I): 

 

       
    

2

2 3.5 2 21 12 2 1 1  
4 22

· · · · ·u y a ua a u
Ca OH CaSiO Si Al O Na Ca H mH O






 
      

      

   
              

 (4.1) 

 

where a is the extent of substitution in bridging sites; ν = 1/n (0 ≤ ν ≤ 1), the ratio of 

chains to dreierketten units (a measure of chain site vacancies); and u = w/n, the 

amount of hydroxyl water (or equivalently the number of protons) per dreierketten 

unit. All other symbols have the same definitions as provided for eq.(2.2).  

 

9Å tobermorite consists of non-cross-linked silicate chains, which means that its 

structure can be represented according to the same formulation (eqs.(2.2-2.6, 4.1)) 

used to describe 14Å tobermorite in the SGM (Richardson et al., 1994). The extent 

of protonation (u) is specified to maintain charge balance in eq.(4.1). Further 

derivation of the non-cross-linked structural model replaces the u parameter with a 

measure of the concentration of Ca cations in the interlayer region, φ, with φ = 1 - 

u/2 (0 ≤ φ ≤ 1). This is more consistent with the important role that the interlayer Ca 

content has on the way that the layer spacing of tobermorite minerals change as a 
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function of temperature (Merlino et al., 2000). It must also be noted that this 

substitution is possible because tobermorite contains no ‘solid solution’ Ca(OH)2, i.e. 

u + y = 2 (Richardson, 2004; Richardson and Groves, 1993b), thus u is not an 

independent parameter in eq.(4.1) for tobermorite-like structures. This relationship (u 

+ y = 2) is also now specified for consistency with tobermorite-like structures. 

 

The MCL and Al/Si relationships are the same for C-(N-)A-S-H with non-cross-

linked 9Å or 14Å tobermorite-like nanostructures (eqs.(2.4-2.5). Eq.(4.1) is 

reformulated with these changes and also written in terms of one dreierketten unit, 

leading to eqs.(4.2-4.3): 

 

     
 

  
2

3.5 2 21 2 12
1

· · · ·a aa
CaSiO Si Al O Na Ca H mH O 



 

 


            
  (4.2) 

 

  
  [ ]

2
/

2 1 1NC
Ca Si

a








  
  (4.3) 

 

where [NC] denotes non-cross-linked C-(N-)A-S-H. The Ca/(Si+Al) ratio is then: 

 

 
 

[ ]

2
/ ( )

2 1
NCCa Si Al






 

 
  (4.4) 

 

Eq.(4.2) reduces to the chemical formula for non-substituted infinite chain length 9Å 

tobermorite, Ca5Si6O16(OH)2 (Merlino et al., 2000), when φ, a, ν and H2O/Si are 0.5, 

0, 0, and 0 respectively. The formula for non-substituted infinite chain length 14Å 

tobermorite, Ca5Si6O16(OH)2∙7H2O (Bonaccorsi et al., 2005), is similarly recovered 

from eq.(4.2) when φ, a, ν and H2O/Si are 0.5, 0, 0, and 7/6 respectively. 

 

The parameters ν and a can be determined from eqs.(4.5-4.6) using the relationships 

for the Al/Si ratio and MCL of non-cross-linked tobermorite (eqs.(2.4-2.5)): 
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4.2.1 Cross-Linked Tobermorite-Like Structural Model 

 

The derivation of a cross-linked tobermorite-like structural model begins by defining 

a cross-linked tobermorite unit (including 2 bridging and 4 paired aluminosilicate 

tetrahedra), as shown for anomalous and normal 11Å tobermorite in Figure 2.3. This 

structural model excludes Al-O-Al bonding in bridging sites for consistency with the 

Al-avoidance principle of Loewenstein (1954), and leads to the relationships shown 

in eq.(4.7-4.8) for the Al/Si ratio and MCL of cross-linked C-(N-)A-S-H. These 

relationships can be solved directly using 
29

Si MAS NMR spectral deconvolution 

results. 
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where [C] denotes cross-linked C-(N-)A-S-H. 

 

The Ca content of cross-linked tobermorite-like C-(N-)A-S-H is defined in the 

structural model by grouping the cross-linked bridging tetrahedra together to form a 

‘combined bridging site’ (Figure 2.3) and using Na as the alkali charge-balancing 

species (I in eq.(2.2)). The chemical formula for a cross-linked C-(N-)A-S-H, shown 
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in terms of one cross-linked tobermorite unit, can be expressed according to eq.(4.9) 

(equivalent to eq.(4.2) for the non-cross-linked case): 
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  (4.9) 

 

where  is the fraction of Al substitution in cross-linked C-(N-)A-S-H gel, δ = 1/(σ + 

1) is the fraction of combined bridging site vacancies per cross-linked tobermorite 

unit, σ is the number of cross-linked tobermorite units per C-(N-)A-S-H chain, ω = 1 

- u/2 (0 ≤ ω ≤ 1 + δ) is the interlayer Ca content per cross-linked tobermorite unit, 

and all other parameters have the same definitions as in eqs.(4.1).  

 

Eq.(4.9) is now rewritten using 2u y   for consistency with tobermorite-like 

structures, leading to eq.(4.10) as a charge-balanced formula in terms of one 

dreierketten unit:  
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  (4.10) 

 

Giving: 
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Eq.(4.10) reduces to the chemical formula for non-substituted infinite chain length 

normal 11Å tobermorite, Ca4.5Si6O16(OH)∙5H2O (Merlino et al., 2001), when ω, α, δ 

and H2O/Si are 0.5, 0, 0, and 5/6 respectively. The formula for non-substituted 

infinite chain length anomalous 11Å tobermorite, Ca4Si6O15(OH)2∙5H2O (Merlino et 

al., 2001), is similarly obtained from eq.(4.10) when ω, α, δ and H2O/Si are 0, 0, 0, 

and 5/6 respectively.  

 

While non-substituted normal 11Å tobermorite was identified by Merlino et al. 

(2001) to contain 0.25 interlayer Ca atoms per dreierketten unit, it is reasonable to 

suggest that the interlayer Ca content is non-constant in C-(N-)A-S-H. The δ 

parameter has therefore been left variable in eq.(4.10). The parameters δ and α can 

then be determined from eqs.(4.13-4.14) using the relationships for the Al/Si ratio 

and MCL for cross-linked C-(N-)A-S-H (eqs.(4.7-4.8)): 
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  (4.14) 

 

These formulae, eqs.(2.3-2.4, 4.2-4.14), are suitable for structural modelling of 

mixed cross-linked/non-cross-linked C-(N-)A-S-H, and can be solved using 

structural parameters obtained from 
29

Si MAS NMR spectral deconvolutions, as will 

be demonstrated in detail in section 4.3.  
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4.2.3  ‘Cross-Linked Substituted Tobermorite Model’ (CSTM) 

 

It is reasonable to expect that C-(N-)A-S-H in AAS cements can be represented as a 

mixture of 14Å, 11Å and 9Å tobermorite-like components, as discussed in sections 

2.1.3 and 4.1 (Bernal et al., 2013b; Brough and Atkinson, 2002; Fernández-Jiménez 

et al., 2003; Oh et al., 2012; Pardal et al., 2012; Puertas et al., 2011). Here a simple 

and flexible structural model is proposed, the ‘Cross-linked Substituted Tobermorite 

Model’ (CSTM), which can be used to determine the relative contributions of non-

cross-linked and cross-linked tobermorite-like components, and the chemical 

compositions and MCL of a particular C-(N-)A-S-H gel. The CSTM only allows for 

Al substitution in bridging sites (Richardson et al., 1993), and does not include Al-O-

Al bonding (Loewenstein, 1954), single tetrahedron vacancies in the combined 

bridging site, or incorporation of Q
0
 or Q

1
(1Al) species into C-(N-)A-S-H 

(Richardson et al., 1993).  

 

Single vacancies in the combined bridging site are not allowed in the CSTM to 

circumvent an explicit description of the two-coordinated bridging Si (Q
2

B) sites, and 

is possible because the aluminosilicate chains in C-(N-)A-S-H can be represented as 

a mixture of non-cross-linked and cross-linked structures. This is illustrated in Figure 

4.1, which shows that a realistic section of C-(N-)A-S-H with cross-linked structure 

containing a single bridging site vacancy is conceptually equivalent to a mixture of 

non-cross-linked and cross-linked tobermorite-like components in the CSTM 

formulation. 

 

 
Figure 4.1. An illustration of how the CSTM represents single bridging site 

vacancies in C-(N-)A-S-H. 
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The CSTM is derived using the following structural constraints: i) there are twice as 

many (Q
2
+Q

2
(1Al)) silicate species as there are (Q

3
+Q

3
(1Al)+Al[4]) silicate species 

in cross-linked tobermorite; ii) the fraction of Al substitution into Q
3
 type sites is 

equivalent to the ratio of Q
2
(1Al) to Q

2
 sites in cross-linked tobermorite, because Al 

is only substituted into bridging sites; and iii) the substitution of one Al[4] species 

into cross-linked tobermorite introduces one Q
3
(1Al) and two Q

2
(1Al) Si species. 

These assumptions and structural constraints are shown in Figure 4.2. 

 

 
Figure 4.2. An illustration of the structural constraints and assumptions included in 

the CSTM. 

 

These structural constraints lead to eqs.(4.15-4.17):  
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where [C] denotes that the coordinated aluminate or silicate species are present in 

cross-linked C-(N-)A-S-H gel. Eqs.(4.15-4.17) are solved to obtain eq.(4.18): 
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Eq.(4.18) is then used together with eqs.(4.19-4.22) to calculate the MCL and Al/Si 

molar ratios for non-cross-linked and cross-linked C-(N-)A-S-H (eqs.(4.25-4.26)): 
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where [NC] denotes that the silicate species is present in non-cross-linked C-(N-)A-

S-H gel, η (0 < η < 1) is a parameter describing the partitioning of Q
1
 species into 

non-cross-linked and cross-linked C-(N-)A-S-H, adjusted to satisfy the structural 

constraints of this phase for the calculated Al-substitution extents (eqs.(4.6, 4.14)) 

and match experimentally observed chemical compositions, and i (0 ≤ i ≤ 4) denotes 

the connectedness of silicate tetrahedra in C-(N-)A-S-H. The Al/Si and MCL values 

for non-cross-linked and cross-linked tobermorites can be calculated from eqs.(2.4-

2.5) and eqs.(4.7-4.8) respectively, leading to eqs.(4.23-4.26), the relationships that 

describe the total amount of Al and Si present, and average Al/Si and MCL values 

for the entire C-(N-)A-S-H phase: 
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Eqs.(4.25-4.26) are derived from the fractional concentrations of Si and Al in 9Å, 

11Å and 14Å tobermorite chains, i.e. Al/Si = (1 - Si)/Si. The Ca/Si and Ca/(Al+Si) 

ratios are calculated similarly, but vary depending on the level of interlayer Ca and 

the extent of protonation of the C-(N-)A-S-H chains: 
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where (Ca/Si)[NC] is given by eq.(4.3) and (Ca/Si)[C] can be calculated from eq.(4.11). 

Eqs.(4.27-4.28) give the overall Ca/Si and Al/Si ratios for the C-(N-)A-S-H phase as 

calculated by the structural model. The CSTM also describes the more general case 

where the chemical compositions can be specified separately for 9Å, anomalous 



80 4. Cross-Linked Substituted Tobermorite Model (CSTM) 

 

 

 

11Å, normal 11Å and 14Å tobermorites, but the corresponding Ca/Si and Ca/(Al+Si) 

relationships are considerably more complicated than eqs.(4.27-4.28) (Myers et al., 

2013). 

 

The following sections of the chapter present the application of the CSTM to a series 

of Na2SiO3-activated slag cements, as well as a discussion of the implications of the 

model results. 

 

4.3 Application of the CSTM 

 

4.3.1 Characterisation of an Alkali-Activated Slag (AAS) Cement 

 

A complete description of the experimental details for this investigation is given in 

Chapter 3. Figures 4.3-4.4 show the SEM-EDS results, and the 
29

Si MAS NMR 

spectra and associated deconvolution results are shown in Figure 4.5 and Table 4.1 

respectively. The 
27

Al MAS NMR spectra are shown in Figure 4.6 with 

corresponding spectral deconvolutions presented in Table 4.2.  

 

The solid binder chemical composition data in Figures 4.3-4.4 show that C-(N-)A-S-

H coexists with at least one additional solid phase. Hydrotalcite has been identified 

through XRD in Na2SiO3-activated slag cements produced using similar raw 

materials to those used here (Bernal et al., 2013c), consistent with Figures 4.3-4.4. 

However, the existence of additional Ca, Al and/or Si-containing solid phases cannot 

be discounted purely on the basis of a good correlation between the observed 

chemistry of the AAS cement and a mixture of C-(N-)A-S-H and hydrotalcite, as 

phases such as hydrogarnet and AFm are sometimes observable by XRD in aged 

AAS cements (Bernal et al., 2012a).  
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Figure 4.3. Molar ratios of the solid binder in the Na2SiO3-activated slag cement 

measured through SEM-EDS, as a function of curing time. Lines in the figures 

plotting Mg/Si vs Al/Si are provided as eye guides only. 

 

The Al/Si molar ratios of the C-(N-)A-S-H gel, which can be viewed as the trendline 

x-axis intercepts in Figure 4.3 for the AAS cements studied here because the 

amounts of Mg-free secondary products are low (2% of the total Al intensity for each 

sample), are in the range 0.19 ≤ Al/Si ≤ 0.26; Ca/Si molar ratios vary from 

approximately 0.8 ≤ Ca/Si ≤ 1.2 with the exception of the 7 day sample where Ca/Si 

ratios up to 1.4 are observed. The trendlines drawn in Figure 4.3 do not preclude very 
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low levels of Mg-Ca substitution in the C-(N-)A-S-H gel. These measured chemical 

compositions correlate well with existing AAS studies where chemical compositions 

of 0.20 < Al/Si < 0.25 and 0.8 < Ca/Si < 1.2 are consistently reported for AAS 

cements produced from GBFS with moderate Al (12-14 wt.%) and Mg (7-9 wt.%) 

content (Ben Haha et al., 2011a; Ben Haha et al., 2011b; 2012; Brough and 

Atkinson, 2002; Pardal et al., 2009; Richardson et al., 1994; Wang and Scrivener, 

1995).  

 

 
Figure 4.4. Projection of AAS chemistry onto the ternary CaO-SiO2-Al2O3 system, 

showing elemental compositions of the Na2SiO3-activated slag cements measured by 

SEM-EDS at different times of curing, along with the compositions of some model 

phases. The average solid binder chemical composition is marked, assuming 

congruent slag dissolution, complete incorporation of the silica supplied by the 

activator into the solid binder, and without distinction between product phases. 
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Figure 4.5. 

29
Si MAS NMR spectra (14.1 T, R = 10 kHz) of the Na2SiO3-activated 

slag cement and the anhydrous slag: A) as a function of curing time; and 

deconvoluted spectra for the B) 7 days, C) 28 days and D) 56 day cured samples, 

with Q
n
(mAl) sites shown in D). The dark grey band represents the contribution of 

the remnant anhydrous slag.  

 

The 
27

Al MAS NMR spectra in Figure 4.6 corroborate the formation of secondary 

phases in addition to C-(N-)A-S-H gel in the AAS cement, as there are significant 

contributions from six-coordinated Al (Al[6]). The presence of Al[6] in the interlayer 

and structural incorporation of these species into C-(N-)A-S-H has been 

hypothesised by some authors (Abdolhosseini Qomi et al., 2012; Faucon et al., 

1999a; Rawal et al., 2010; Stade and Müller, 1987), but Al[6] is not considered in 

the CSTM. In a recent study (Rawal et al., 2010), associations in solid-state 2D 

27
Al{

1
H} HETCOR NMR spectra were only observed for bands of narrow line width 

(which were assigned to AFt/AFm type products and TAH) in the Al[6] region of 
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27
Al MAS NMR spectra. From these data, and from the discussion presented by 

Andersen et al. (2006), it can be tentatively concluded that not much Al[6] 

substitutes for Ca in the interlayer of C-(N-)A-S-H.  

 

  
Figure 4.6. 

27
Al MAS NMR spectra (14.1 T, R = 10 kHz) of the Na2SiO3-activated 

slag cement and anhydrous slag: A) as a function of curing time; and deconvoluted 

spectra for the B) 7 days, C) 28 days and D) 56 day cured samples, with q
n
 sites 

shown in D). In D), the green sub-peaks are spinning sidebands, the blue traces are 

the deconvoluted sub-peaks, and the red line is the sum of the deconvoluted 

components of the spectrum. 
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Figure 4.6. Continued. 
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Table 4.1. Summary of Q
n
 environments identified in 

29
Si MAS NMR spectra of the Na2SiO3-activated slag cement as a function of curing time. 

Estimated uncertainty in site percentages is ±2%, based on the influence of the signal/noise ratio of the spectra on the deconvolution procedures. 

Age Unreacted slag 

Reaction products 

Q
0
 Q

1
(I) Q

1
(II) Q

2
(1Al) Q

2
 Q

3
(1Al) Q

4
(4Al) Q

4
(3Al) 

-74 ppm -78 ppm -80 ppm -83 ppm -86 ppm -89 ppm 
a
 -89 ppm 

a
 -93 ppm 

Unreacted 100 - - - - - - - - 

7 days 39 4 14 11 18 11 4 - - 

28 days 24 7 18 13 22 12 5 - - 

56 days 21 10 18 11 19 13 5 2 1 
a
 A single peak at -89 ppm is used to describe both Q

3
(1Al) and Q

4
(4Al) components as discussed in the text 
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Table 4.2. Summary of Al coordination environments identified in 
27

Al MAS NMR spectra of the Na2SiO3-activated slag cement as a function of 

curing time. Estimated uncertainty in site percentages is ±3%, based on the influence of the signal/noise ratio of the spectra on the deconvolution 

procedures. HT represents hydrotalcite. 

Assignment 
Al[4] in 

unreacted slag 
q

2
(I) q

2
(II) q

3
 
a
 Al[5] HT(I) HT(II) TAH 

Isotropic chemical shift, δiso (ppm) 
f
 65 75 68 62 38 9.68 

b
 9.1 4.6 

CQ (MHz) and reference 6.7 
c
 1.1 

c
 2.0 

c
 3.0 

c
  4.0 

c
 1.2 

b
 3.55 

d
  1.13 

e
  

Age         

Unreacted 100 - - - - - - - 

7 days 44 9 27 3 1 11 3 2 

28 days 26 9 32 7 6 8 10 2 

56 days 23 9 37 10 5 8 5 2 
a
 It is likely that the q

3
 site contains contributions from q

4
 aluminate species, but attempts to resolve this site into two separate sub-peaks led to an 

underconstrained deconvolution process. 
b
 Values determined through analysis of a pure hydrotalcite sample; S.A. Walling and S.A. Bernal, unpublished data. 

c
 (Klinowski, 1984) 

d
 (Sideris et al., 2012) 

e
 (Andersen et al., 2006) 

f
 Isotropic chemical shifts were calculated using an additional 

27
Al MAS NMR spectra acquired at 104.2MHz, νR = 14 kHz, for the Na2SiO3-

activated slag cement cured for 2 years. 
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The secondary products containing Al[6] are hydrotalcite (Bernal et al., 2013c; 

Schilling et al., 1994b; Wang and Scrivener, 1995) and TAH (Andersen et al., 2006). 

The spectral deconvolutions (Table 4.2) also show significant contributions from q
3
 

Al (where the q
n
 notation for Al sites is equivalent to the Q

n
 notation for Si sites 

(Harris et al., 1997)), suggesting a high degree of cross-linking. Broad contributions 

from q
2
 units indicate significant local disorder in these sites, as Al in C-(N-)A-S-H 

can coordinate with various positively-charged species in the interlayer region.  

 

The 
29

Si MAS NMR spectra (Figure 4.5) show small but distinct contributions from 

Q
3
(1Al) sites, in addition to Q

1
, Q

2
 and Q

2
(1Al) silicate species, indicating high 

levels of Al substitution in C-(N-)A-S-H. The band at -74 ppm is tentatively assigned 

to Q
0
 sites, without precluding some intensity in this peak also from Q

1
(1Al) or Q

1
 

species (due to the various charge-balancing cations present in the system). This peak 

has previously been identified in deconvoluted 
29

Si MAS NMR spectra of sodium 

silicate-activated slag cements (Le Saoût et al., 2011), but no definitive assignment 

for this band has been established to date. Although the absolute concentrations of 

Q
3
(1Al) sites are low, the structural constraints of cross-linked tobermorite (Figure 

4.2 and eqs.(4.15-4.18)) lead to the calculation of highly cross-linked C-(N-)A-S-H, 

as will be discussed in detail below. The 
29

Si MAS NMR spectra also show non-zero 

levels of intensity at chemical shifts of approximately -93 ppm, indicating the 

presence of Q
4
(3Al) units in the solid binder. This assignment necessitates 

contributions from at least one additional four-connected silicate unit (Q
4
 type) in the 

experimental spectra (Provis et al., 2005a). Therefore, it is assumed that Q
4
(4Al) 

sites are present the 
29

Si MAS NMR spectra, which is consistent with the significant 

levels of intensity in the low-ppm range (52-62 ppm) for four-coordinated Al species 

as observed by 
27

Al MAS NMR, statistical thermodynamic model predictions (Provis 

et al., 2005a) and experimental NMR data (Duxson et al., 2005) for Al-rich 

metakaolin-based geopolymers.  

 

Assignment of the peak located at a chemical shift of -93 ppm to Q
4
(3Al) species is 

justified because this is the only plausible assignment consistent with a mixed cross-
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linked/non-cross-linked tobermorite-like C-(N-)A-S-H gel for the spectral 

deconvolution results found in this work. The only possible alternative silicate 

coordination environment that is located at approximately -93 ppm and is consistent 

with the established nature of AAS cements are Q
3
 units (Engelhardt and Michel, 

1987). Hypothetical deconvolution of the 
29

Si MAS NMR spectra to exclusively 

assign the peak at -93 ppm to Q
3
 units yields the results shown in Table 4.3.  

 

It is readily observed in Table 4.3 that the hypothetical spectral deconvolution for the 

56 days sample is inconsistent with the structural definition of mixed cross-

linked/non-cross-linked C-(N-)A-S-H gels, as described by the structural constraints 

of the CSTM (Figure 4.2). This is because there are not enough Q
2
 units to account 

for the amount of Q
3
(1Al) and Q

3
 units identified in the hypothetical deconvolution 

for the 56 days sample, i.e. 2(Q
3
(1Al)+Q

3
) > Q

2
. Therefore, the only remaining 

possibility is to attribute the peak located at -93 ppm to Q
4
(3Al) species. 

 

4.3.2 An Additional Aluminosilicate Reaction Product? 

 

The CSTM, when applied to the 
29

Si MAS NMR spectral deconvolution data 

presented in Table 4.1, yields the results shown in Table 4.4. 
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Table 4.3. Summary of hypothetical Q
n
 environments in 

29
Si MAS NMR spectra of the Na2SiO3-activated slag cement as a function of curing 

time, given that the assignment of the peak located at a chemical shift of -93 ppm corresponds exclusively to Q
3
 units. 

Age Unreacted slag 

Reaction products 

Q
0
 Q

1
(I) Q

1
(II) Q

2
(1Al) Q

2
 Q

3
(1Al) Q

3
 

-74 ppm -78 ppm -80 ppm -83 ppm -86 ppm -89 ppm -93 ppm 

Unreacted 100 - - - - - - - 

7 days 39 4 14 11 18 11 4 - 

28 days 24 7 18 13 22 12 5 - 

56 days 21 10 18 11 19 13 7 1 
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Table 4.4. The calculated output of the CSTM from the 
29

Si MAS NMR spectral deconvonlution results in Table 4.1. A constant interlayer Ca 

content of φ = 𝜔 = 0.25 and maximum partitioning of Q
1
 sites into the cross-linked C-(N-)A-S-H component (i.e. maximising η) is specified. 

Curing time Component Q
1
 Q

2
(1Al) Q

2
 Q

3
(1Al) MCL Al/Si Ca/Si Ca/(Al+Si) 

7 days 

non- 

cross-linked 
0.098 0.1 0.033 0 5.8 0.22 1.1 0.88 

cross-linked 0.15 0.074 0.074 0.037 10 0.11 0.94 0.85 

28 days 

non- 

cross-linked 
0.085 0.11 0.016 0 6.2 0.26 1.1 0.87 

cross-linked 0.22 0.11 0.11 0.054 10 0.11 0.94 0.85 

56 days 

non- 

cross-linked 
0.092 0.086 0.035 0 5.6 0.2 1.1 0.88 

cross-linked 0.2 0.099 0.099 0.049 10 0.11 0.94 0.85 

Bulk C-(N-)A-S-H gel properties 

Curing time η MCL Al/Si Ca/Si Ca/(Al+Si) 

7 days 0.6 7.6 0.15 1 0.86 

28 days 0.72 8.3 0.16 0.99 0.86 

56 days 0.68 7.9 0.14 0.98 0.86 
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The calculated chemical compositions of the C-(N-)A-S-H gel (Table 4.4) agree well 

with the chemistry of laboratory-synthesised C-(N-)A-S-H products, where the molar 

Al/Si ratio of phase-pure C-(N-)A-S-H has generally been found to be less than or 

equal to 0.20 for relevant Ca/(Al+Si) molar ratios in AAS cements (0.7 ≤ Ca/(Al+Si) 

≤ 1.3) (Faucon et al., 1999a; Pardal et al., 2012; Pardal et al., 2009; Sun et al., 2006). 

The formation of strätlingite (an AFm phase) is typically observed in AAS cements if 

the Al/Si molar ratio is higher than this (Sun et al., 2006). This must then be 

contrasted with the results presented in Table 4.4, which show that the CSTM can 

reproduce the experimentally observed Ca/Si ratios, but does not agree with the Al/Si 

molar ratios for the Mg-free C-(N-)A-S-H gels and the experimental AAS cements as 

identified by SEM-EDS (Figure 4.3). In all cases the Al content of the C-(N-)A-S-H 

gel is significantly underestimated by the assumption that all of the tetrahedral Al is 

contained within tobermorite-type phases.  

 

This disagreement is also corroborated by the average chemical compositions of the 

solid binders calculated using the experimentally determined GBFS reaction extents 

in these samples (as determined from the 
29

Si MAS NMR spectral deconvolutions, 

Table 4.1), of overall Al/Si molar ratios of 0.396, 0.413 and 0.415 for the solid 

binders in the 7, 28 and 56 day samples respectively (Figure 4.4). These calculations 

are performed using the elemental compositions of the mix formulations assuming 

congruent slag dissolution and full incorporation of the silica supplied by the 

activator into the binder, but without distinction between Al in C-(N-)A-S-H or 

secondary phases. 

 

However, secondary phases are evident in the 
27

Al MAS NMR spectra (Figure 4.6), 

which show that Al present in secondary products corresponds to 15-20% of the total 

Al in the AAS cements. The 
27

Al MAS NMR spectral deconvolutions also show that 

hydrotalcite is always the dominant secondary phase in these systems, contributing 

≥87% of the Al[6] present in the samples (Table 4.2). Hydrotalcite can therefore be 

expected to account for up to 18-24% of the Al in the solid binder (i.e. excluding 

contributions from remnant GBFS particles). Using this information to correct the 
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Al/Si molar ratios predicted by the CSTM to account for the presence of hydrotalcite 

gives Al/Si molar ratios of 0.21, 0.21 and 0.18 for the sum of the C-(N-)A-S-H and 

hydrotalcite components of the solid binder after 7, 28 and 56 days respectively. 

Incorporation of five-coordinated Al (Al[5]) and Al in the TAH phase (assuming that 

the TAH phase is not Si-bearing), which are minor (≤8% of total Al intensity for 

each sample), would give a slight further increase in the calculated Al/Si molar 

ratios, but the variable or unknown chemistry of each of these phases prevents their 

use in direct calculations at this time.  

 

In any case, it is unlikely that inclusion of these phases in the calculations would be 

sufficient to increase the Al/Si molar ratio of the solid binder, compared to the 

predictions based on combinations of C-(N-)A-S-H and hydrotalcite phases, to a 

large enough extent to reconcile the difference between the average chemical 

composition of the solid binder as determined by SEM-EDS and the calculated 

chemical composition from the CSTM (Figure 4.3 and Table 4.4). Possible 

explanations for this discrepancy, given that recent developments in the literature 

strongly support the presence of cross-linked C-(N-)A-S-H gels in AAS cements 

(Bernal et al., 2013c; Brough and Atkinson, 2002; Fernández-Jiménez et al., 2003; 

Puertas et al., 2011), include:  

i.) significant, non-zero amounts of four-coordinated Al (Al[4]) species 

substituting into paired sites in C-(N-)A-S-H gel;  

ii.) the interlayer region containing significant amounts of Al; or 

iii.) the presence of an Al-rich gel that is more cross-linked than C-(N-)A-S-

H, but is poorly ordered and is present in sufficiently low quantities so as 

to be not readily identifiable through XRD, SEM-EDS, 
27

Al MAS NMR 

or 
29

Si MAS NMR experiments. 

 

The possibility that Al[4] can substitute into paired sites in C-(N-)A-S-H has been 

previously explored in the literature (Manzano et al., 2008; Pegado et al., 2014); 

inclusion of these species in the CSTM would lead to an increase in the calculated 

Al/Si molar ratio of the C-(N-)A-S-H gel because cross-linked structures that include 
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Al substitution in paired sites can accommodate much higher concentrations of Al. 

However, the presence of Al[4] in paired sites is believed to be strongly disfavored in 

C-(N-)A-S-H chains (Pegado et al., 2014; Richardson et al., 1993). Using atomistic 

simulations, Manzano et al. (2008) concluded that Al[4] substitution in paired sites 

in C-(N-)A-S-H was possible, depending on the Al content of this phase, but only 

reaching significant concentrations at Al contents notably higher than those which 

are generally observed in C-(N-)A-S-H in experimental studies. Other atomistic 

simulations of Al substitution into silicate chains have identified a thermodynamic 

preference for the bridging site over the paired site in isolated pentameric chains 

(Manzano et al., 2009b), in pentameric chains confined within an environment 

representative of 14Å tobermorite (Abdolhosseini Qomi et al., 2012), and in a single 

sheet (on the a-b plane, i.e. one Ca-O layer) of tobermorite (Pegado et al., 2014), 

indicating that it is unlikely that Al in paired sites will be a major contributor to the 

chemistry of AAS cements. Substitution of a small amount of Al into a fraction of 

the paired sites cannot be entirely discounted, but it is unlikely that these species 

could solely account for the significant differences between calculated and 

experimental Al/Si ratios found here. 

 

The possibility that Al can act as a charge-balancing species in the interlayer region 

of C-(N-)A-S-H has been discussed in the literature (Andersen et al., 2006; Faucon et 

al., 1999a; Sun et al., 2006), but is not included in the CSTM. Interlayer Al has been 

hypothesised to exist as Al[5] (Andersen et al., 2006; Sun et al., 2006) because Al[4] 

is anionic and thus cannot act as a charge-balancer for anionic chain sites. Al[6] has 

been proposed to be present in the interlayer (Abdolhosseini Qomi et al., 2012; 

Rawal et al., 2010) but is not considered in the CSTM, as discussed above. The 

potential contributions of these species to the chemical composition of the solid 

binder can thus be determined from the 
27

Al MAS NMR spectral deconvolutions, 

particularly in the Al[5] region of the spectra. However, it is evident that inclusion of 

interlayer Al species will not resolve the significant discrepancies between the 

modelled and experimentally measured chemical compositions of the AAS cement, 

as this difference is founded in the Al[4] concentrations alone. 
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Having eliminated the other possible Al-containing phases from consideration, it is 

therefore proposed that an additional Al-containing activation product must be 

present. This phase must be long-range disordered, and probably has a characteristic 

size on the order of nanometers so as to not be observable by SEM-EDS or XRD. 

This product is also not readily detectable in 
27

Al or 
29

Si MAS NMR spectra, most 

likely due to its presence at a low concentration with peaks overlapping those 

assigned to the established silicate and aluminate species in C-(N-)A-S-H. The most 

likely answer is that some part of the intensity in the 
29

Si bands at -89 ppm and -93 

ppm is actually representing Q
4
(4Al) or Q

4
(3Al) silicate species in this additional 

phase, and that a fraction of the 
27

Al peak assigned to the q
3
 aluminate species is also 

related to this product. An obvious candidate for such an assignment would be a 

disordered nanoparticulate zeolite-like product with Si/Al ratio close to 1, similar to 

the conceptual structural model which has been proposed for gels formed through 

alkali-activation of low-Ca aluminosilicate precursors (Provis et al., 2005b). Such an 

assignment would be consistent with the fact that crystalline zeolites are sometimes 

observed in AAS cements, particularly in systems where there is insufficient Mg to 

form hydrotalcite (Bernal et al., 2011b; Talling and Krivenko, 1997). This strongly 

supports the inclusion of Q
4
(3Al) and Q

4
(4Al) species in the deconvolution results 

for the 56 days sample (Table 4.1). 

 

However, the assignment of some of the Q
3
(1Al) (or Q

3
) intensity in the 

29
Si MAS 

NMR spectra to a phase other than C-(N-)A-S-H would indicate that cross-linking 

between aluminosilicate chains in the C-(N-)A-S-H gel may occur to a lower extent 

than would be predicted based on complete assignment of Q
3
, Q

3
(1Al) and q

3
 silicate 

and aluminate species to this phase. This is actually to some extent consistent with 

the observations of low or zero concentrations of Q
3
 and Q

3
(1Al) silicate species in 

some hydroxide-activated slag cements (Richardson et al., 1993), because the 

chemistry of these cements can be well explained by existing non-cross-linked 

tobermorite structural models (Richardson and Groves, 1993b). Contributions 

assigned to q
3
, Q

3
 and Q

3
(1Al) species are typically observed in 

27
Al MAS NMR and 
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29
Si MAS NMR spectra of AAS cements activated by alkali silicate solutions (Bernal 

et al., 2013c; Brough and Atkinson, 2002; Fernández-Jiménez et al., 2003; Puertas et 

al., 2011), but non-zero intensities for silicate and aluminate species in cross-linked 

sites have also been observed in laboratory-synthesised and hydroxide-activated slag 

pastes (Palacios and Puertas, 2006; Pardal et al., 2012; Renaudin et al., 2009a; Sun et 

al., 2006). The increased intensity of the bands in the regions traditionally assigned to 

cross-linked C-(N-)A-S-H suggest that this additional Al-rich, potentially zeolite-like 

phase will be more prevalent in silicate-activated AAS cements.  

 

Therefore, the application of the CSTM to the analysis of experimental NMR data 

does provide a strong indication of the presence of an Al-rich phase distinct from the 

C-(N-)A-S-H gel in silicate-activated slag cements, because the structure of cross-

linked tobermorite-like chains is unable to accommodate as much Al as is supplied 

by the slag precursor in this system. This means that the model predictions of the 

degree of cross-linking between chains in AAS should be viewed as an upper bound, 

rather than as an exact value. However, it is clear that a mixture of cross-linked and 

non-cross-linked tobermorite-like structures provides a more readily generalised 

view of C-(N-)A-S-H chemistry than the previous models based solely on the non-

cross-linked silicate chain structure. This is likely to be useful in application to some 

blended PC-based materials in addition to the alkali-activated slag cement systems 

discussed here. 

 

4.4 Conclusions 

 

This chapter has presented a generalised structural model for tobermorite-like C-(N-

)A-S-H, incorporating the possibility of cross-linking between tobermorite chains to 

better describe the chemistry of high-Al cements. The model is named the ‘Cross-

linked Substituted Tobermorite Model’, CSTM. The structures modeled in the 

CSTM are consistent with Loewenstein’s rule of Al-O-Al avoidance, and exclude Al 

substitution into paired tetrahedra. The partitioning of Al into secondary phases such 
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as hydrotalcite is considered through the use of 
27

Al MAS NMR spectra to identify 

the concentrations of Al in different coordination states. 

 

The CSTM differs from previous structural models for the C-(N-)A-S-H phase, 

which are primarily based on non-cross-linked tobermorite-like structures, and so is 

more consistent with recent developments regarding the density and nanostructure of 

C-(N-)A-S-H in AAS cements. The CSTM is the first structural model that enables 

mixed non-cross-linked/cross-linked C-(N-)A-S-H to be studied over the full range 

of chemical compositions observed in AAS cements. The CSTM supports 

aluminosilicate chain cross-linking in C-(N-)A-S-H formed in AAS cements, but 

also indicates the presence of an additional Al-containing activation product in 

Na2SiO3-activated slag cements. Therefore, this study provides a profoundly deeper 

and more detailed description of sodium silicate-activated slag cement chemistry 

when compared with the existing literature in this area, and is more readily 

reconciled with the recent developments in the literature.  
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5 

Nanostructural Analysis of Na2SiO3-

Activated Slag Cement 

 

 

This chapter is based on the paper ‘The Role of Al in Cross-Linking of Alkali-

Activated Slag Cements’, published in Journal of the American Ceramic Society, 

2015, DOI: 10.1111/jace.13360. AAS cement samples were prepared, and XRD, and 

27
Al and 

29
Si MAS NMR experiments, were performed by Susan A. Bernal. The 

27
Al 

MAS NMR data for the pure hydrotalcite sample were obtained by Sam A. Walling 

and Susan A. Bernal (University of Sheffield). 

 

 

5.1 Introduction 

 

AAS cements are particularly relevant systems for studying the chemistry of C-(N-

)A-S-H because they are produced by the reaction between an alkali source and 

GBFS, which is one of the most common replacement materials used in modern 

cements. These materials have also been studied for over half a century (Juenger et 

al., 2011; Provis and Bernal, 2014; Purdon, 1940; Roy, 1999) with a view toward the 

production of concretes with high mechanical performance, low life cycle CO2 

emissions relative to PC, and good durability (Bernal and Provis, 2014; Juenger et 

al., 2011). Understanding the durability of modern concretes remains the primary 

scientific challenge in the development of this technology, because durability is 

closely related to the chemistry and the pore network geometry of the binding phase 

in these systems (Provis et al., 2012). Therefore, elucidation of the chemistry of the 

cement binder, and in particular the C-(N-)A-S-H gel which is the key space-filling 

and strength-giving component, is essential. Work in this area has been ongoing for 
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more than two decades (Richardson and Groves, 1992a; Roy, 1999), but the 

chemistry and structural details of the binding phases in these systems are not yet 

fully understood.  

 

Various studies applying 
29

Si MAS NMR and 
27

Al MAS NMR spectroscopy to 

silicate-activated slag cements have been published (Bonk et al., 2003; Puertas et al., 

2011; Wang and Scrivener, 2003), but where deconvolution of the spectra has been 

undertaken, the contribution of unreacted slag is not always distinguished and 

quadrupolar lineshapes are not always used in deconvolutions of 
27

Al MAS NMR 

spectra, which greatly affects the calculated contributions of the different identifiable 

site environments. 

 

Therefore, this study presents 
29

Si and 
27

Al MAS NMR analysis of a sodium silicate-

activated slag cement as a function of the time of curing, to clarify the complex 

relationship that exists between the chemical composition and nanostructure of C-

(N-)A-S-H, and the solid phase assemblage in these materials. The spectra are 

deconvoluted with consideration of remnant unreacted slag particles and quadrupolar 

coupling effects, enabling quantification of the chemistry of the reaction products, 

with secondary phases identified by XRD. Application of a model that represents C-

(N-)A-S-H as a mixture of non-cross-linked/cross-linked tobermorite-like structures 

(Myers et al., 2013) to the 
29

Si MAS NMR deconvolution results provides 

information regarding the structure and chemical composition of this phase.  

 

5.2 Experimental 

 

The AAS sample studied was synthesised in sealed bags at 23°C using a Na2SiO3 

activator at a dose of 8 g Na2SiO3/100g slag and a w/b = 0.40. Tests were conducted 

at room temperature on the unreacted GBFS and on the AAS paste at 1, 3 7, 28, 56, 

90 and 180 days using XRD, and 
27

Al and 
29

Si MAS NMR. A complete description 

of the experimental details for this investigation is given in Chapter 3. 
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5.3 Results and Discussion 

 

5.3.1 X-ray Diffraction  

 

The XRD results are presented in Figure 5.1. There is a small quantity of åkermanite 

(Ca2MgSi2O7, PDF#00-035-0592) in the remnant slag (Bernal et al., 2013c). Peaks 

corresponding to a poorly crystalline tobermorite-like C-S-H type gel are observed 

(similar to Ca5(Si6O16)(OH2), PDF#01-089-6458), consistent with the literature for 

sodium silicate-activated slag cements (Bernal et al., 2013c; Fernández-Jiménez and 

Puertas, 2003; Wang and Scrivener, 1995). Hydrotalcite (Mg6Al2(CO3)(OH)16∙4H2O, 

PDF#00-041-1428) is also identified as a reaction product, which is consistent with 

other studies of AAS with significant magnesium content (Ben Haha et al., 2011b; 

Bernal et al., 2013c; Bernal et al., 2014b; Fernández-Jiménez et al., 2003; 

Richardson et al., 1994; Wang and Scrivener, 1995). The increase in intensity of the 

main hydrotalcite peak (11.4° 2θ) with increasing time of curing, and similarly the 

peak of the C-S-H type gel at 29.5° 2θ, are consistent with the activation reaction 

continuing with age.  

 

 
Figure 5.1. Cu K diffractograms of the Na2SiO3-activated slag cement as a function 

of curing time. 
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Minor traces of calcite (PDF#01-083-0577) and vaterite (PDF#01-074-1867), along 

with thermonatrite (Na2CO3·H2O, PDF#01-072-0578), are associated with slight 

atmospheric carbonation of the specimens during sample preparation and analysis.  

 

5.3.2 
29

Si MAS NMR 

 

The 
29

Si MAS NMR spectrum of the unreacted slag (Figure 5.2) is in good 

agreement with results for a melilite-type glass (Kirkpatrick, 1988), consistent with 

the identification of åkermanite by XRD in the slag used in this study. The activation 

of the slag precursor results in the formation of at least three intense bands at -80 

ppm, -83 ppm and -86 ppm in the 
29

Si MAS NMR spectra (Figure 5.2), which are 

assigned to Q
1
, Q

2
(1Al) and Q

2
 sites respectively in C-(N-)A-S-H (Bernal et al., 

2013c; Brough and Atkinson, 2002; Richardson et al., 1993; Schneider et al., 2001; 

Wang and Scrivener, 2003).  

 

 
Figure 5.2. 

29
Si MAS NMR spectra of the Na2SiO3-activated slag cement as a 

function of curing time. 
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A reduction in the intensity of the band corresponding to the remnant slag is 

observed, which is attributed to the progress of the activation reaction. A Q
0
 site at -

74 ppm and an additional Q
1
 site at -78 ppm (Figure 5.3), distinct from the site at -80 

ppm, were assigned because the lineshapes of the experimental spectra in the less 

negative chemical shift region (> -80 ppm) could not all be matched using a single 

peak attributed to the remnant slag, or to any two out of the three aforementioned 

components, under the deconvolution constraints applied here.  

 

  
Figure 5.3. Deconvoluted 

29
Si MAS NMR spectra (14.1 T, R = 10 kHz) of Na2SiO3-

activated slag cement cured for A) 1 day, B) 3 days, C) 7 days, D) 28 days, E) 45 

days, F) 56 days and G) 180 days, with Q
n
(mAl) sites shown in G). The dark grey 

band represents the contribution of the remnant slag, which is directly scaled from 

the spectrum collected for the unreacted slag. 
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Figure 5.3. Continued. 

 

The identification of two non-equivalent Q
1
 environments in the binder is consistent 

with molecular dynamics studies of non-isolated C-S-H gels, which identified 

significant differences between the shielding behavior (and hence chemical shifts) of 

Q
1
 sites charge-balanced by Ca

2+
 or H

+
 (Figure 5.4) (Rejmak et al., 2012). Charge-

balancing by Na
+
 is also likely in the systems studied here. There are many possible 

combinations of potential charge-balancing species for Q
1
 sites; these are represented 

in the deconvolutions by two Gaussian peaks as this is the smallest number of peaks 

which can adequately represent this region of the spectra, while acknowledging that 

there are in fact many more chemically distinct sites than this within the material. For 

the purposes of the analysis, these peaks are labelled Q
1
(I) and Q

1
(II), where it is 
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likely that Q
1
(I) at -78 ppm corresponds generally to sites connected to charge-

balancing atoms (e.g. H
+
, Na

+
) with less strong positive charges than those associated 

with Q
1
(II) at -80 ppm (e.g. Ca

2+
). It is also noted that the differences in calculated 

chemical shift values for Q
2
 units as a function of charge-balancing species are much 

less pronounced (Rejmak et al., 2012), supporting the assignment of a single site for 

structurally-similar Q
2
 species in the deconvolutions. The site environments marked 

in Figure 5.3 are shown in Figure 5.5. 

 

 
Figure 5.4. Illustration of the variety of charge-balancing species which can bind to a 

Q
1
 site in C-(N-)A-S-H, leading to multiple peaks in the spectra. The Ca species are 

located in the Ca-O sheets.  

 

 
Figure 5.5. Schematic representation of cross-linked and non-cross-linked chain 

structures which represent the generalised structure of C-(N-)A-S-H. The red and 

white tetrahedra are aluminate and silicate species respectively. 
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Significant non-zero intensity at approximately -91 ppm becomes apparent at 56 and 

180 days of curing (Figure 5.3). This signal is assigned in part to Q
4
(3Al) and 

Q
4
(4Al) in a disordered aluminosilicate product, tentatively proposed here to 

resemble an alkali aluminosilicate (hydrate) (N-A-S(-H)) gel, and in part to Q
3
(1Al) 

units in C-(N-)A-S-H. In the deconvolutions here, a combined band for 

Q
4
(4Al)/Q

3
(1Al) and a peak for Q

4
(3Al) are positioned at -89 ppm and -93 ppm 

respectively, consistent with a recent structural model and interpretation of 
29

Si MAS 

NMR results (Myers et al., 2013), without precluding the presence of a small 

concentration of Q
3
 units that could also be present at approximately -93 ppm in 

AAS cements (Pardal et al., 2012; Puertas et al., 2011). These assignments are also 

chosen because this is the minimum number of peaks that can satisfactorily fit the 

lineshape of the spectra in this chemical shift range. 

 

In Chapter 4 (Myers et al., 2013), a generalised model for Al-substituted, alkali 

charge-balanced cross-linked and non-cross-linked tobermorite-like structures, the 

‘Cross-linked Substituted Tobermorite Model’ (CSTM), was developed and applied 

to describe C-(N-)A-S-H in AAS cements. It was found that a mixture of cross-

linked and non-cross-linked tobermorite-like C-(N-)A-S-H and established secondary 

product phases could not fully explain the chemistry of the sodium-silicate activated 

slag binder alone, due to the inherent structural constraints of C-(N-)A-S-H gels, 

suggesting the presence of an additional Al-containing activation product. If this 

product contains aluminosilicate species contributing to the intensity of the -89 ppm 

and -93 ppm bands in 
29

Si MAS NMR spectra, these are most likely Q
4
(4Al) and 

Q
4
(3Al) units respectively and the additional product is probably a N-A-S(-H) gel 

with Si/Al ≤ 1.2 (Provis et al., 2005a). Therefore, the assignment of the -93 ppm 

peak to Q
4
(3Al) in a N-A-S(-H) gel, rather than Q

3
 in C-(N-)A-S-H, is necessary to 

satisfy the structural constraints of mixed non-cross-linked/cross-linked tobermorite-

like C-(N-)A-S-H gels (Myers et al., 2013).  

 

The small band at -89 ppm (Figure 5.3) increases slightly in intensity with curing 

time. This peak is attributed to cross-linked Q
3
(1Al) silicate sites in C-(N-)A-S-H, as 
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well as Q
4
(4Al) in N-A-S(-H) gel, which is again consistent with the structural model 

and interpretation of 
29

Si MAS NMR results recently proposed by Myers et al. (2013) 

and with previous studies on sodium silicate-activated and sodium carbonate-

activated slag cements (Bernal et al., 2013c; Brough and Atkinson, 2002; Fernández-

Jiménez et al., 2003; Palacios and Puertas, 2006). It is necessary here to attribute part 

of this band to Q
4
(4Al), because the inclusion of Q

4
(3Al) sites into the 

29
Si MAS 

NMR spectral deconvolution results requires the presence of additional Q
4
 type 

units; there is no aluminosilicate gel which consists solely of Q
4
(3Al) sites (Provis et 

al., 2005a). It was previously shown (Provis et al., 2005a) that Al-rich (Si/Al ≤ 1.2) 

geopolymers contain almost exclusively Q
4
(3Al) and Q

4
(4Al) units. This strongly 

supports the inclusion of Q
4
(3Al) and Q

4
(4Al) into the 

29
Si MAS NMR spectral 

deconvolutions here, and indicates that AAS cements may contain disordered 

nanoparticulate, possibly zeolite-like, products similar to the N-A-S(-H) gels formed 

through activation of low-calcium aluminosilicate precursors (Bell et al., 2008; 

Provis et al., 2005b). This assignment is also consistent with the observation of 

zeolites in some AAS cements after extended curing periods (Bernal et al., 2011a; 

Bernal et al., 2013a; Provis and Bernal, 2014). The assigned Q
4
(3Al) and Q

4
(4Al) 

peaks may alternatively be attributed to Q
4
(mAl)-containing aluminosilicate gels 

formed through degradation of C-(N-)A-S-H during superficial carbonation of the 

specimen (Bernal et al., 2013c), however the XRD results (Figure 5.1) do not show 

the systematic increase in carbonation with curing time needed for full consistency 

with this assignment (Q
4
(mAl) sites are only apparent at 56 and 180 days here).  

 

Quantification of 
29

Si sites, determined through deconvolution of the 
29

Si MAS 

NMR spectra as a function of curing duration, is reported in Table 5.1. As much as 

54% of the slag is seen to have reacted within the first day of curing, and 77% after 

56 days, assuming congruent dissolution of the slag and complete uptake of the silica 

supplied by the activator into the solid binder The reaction extent of the slag 

identified by this method is greater than was determined by SEM image analysis for 

slag particles (of unspecified fineness) reacted with a Na2SiO3·5H2O activator (~3 g 

Na2O equivalent/100 g slag) at w/b = 0.40 and 23°C (Le Saoût et al., 2011), which 
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gave hydration degrees of approximately 40% at 1 day and 55% at 56 days. Similar 

or lower extents of reaction have been observed for AAS cements activated at 20°C 

using sodium silicate and NaOH solutions (~3 g Na2O equivalent/100 g slag) (Ben 

Haha et al., 2011a), and in water-activated blended slag/PC materials (Kocaba et al., 

2012), suggesting that the slag precursor used here is more reactive under alkaline 

activation conditions compared to the slags used in those studies.  
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Table 5.1. Results of deconvolution of 
29

Si MAS NMR spectra of the Na2SiO3-activated slag pastes as a function of curing time. The estimated 

uncertainty in absolute site percentages is ± 2%. 

Age 

Total 

unreacted 

slag (%) 

Reaction products 

Q
0
 Q

1
(I) Q

1
(II) Q

2
(1Al) Q

2
 Q

3
(1Al) Q

4
(4Al) Q

4
(3Al) 

-74 ppm -78 ppm -80 ppm -83 ppm -86 ppm -89 ppm* -89 ppm* -93 ppm 

Unreacted 100 - - - - - - - - 

1 day 41 5 12 10 17 10 5 0 0 

3 days 39 4 14 9 18 11 5 0 0 

7 days 39 4 14 11 18 11 4 0 0 

28 days 24 7 18 13 22 12 5 0 0 

45 days 23 9 20 13 18 13 5 0 0 

56 days 21 10 18 11 19 13 5 2 1 

180 days 21 10 19 13 17 12 4 2 1 

* A single peak at -89 ppm is used to describe both Q
3
(1Al) and Q

4
(4Al) components, and distributed among these two site types based on the 

concentration of the Q
4
(3Al) site, as discussed in the text. 
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A single band was fitted for Q
2
 sites despite the known ~2 ppm difference between 

Si present in paired (Q
2

p) environments relative to bridging (Q
2

b) sites within C-S-H 

gels (Pardal et al., 2012), because assigning peaks for both Q
2

b and Q
2

p sites would 

lead to an unconstrained deconvolution procedure.  

 

Significant amounts of Q
2
(1Al) are present, indicating high levels of Al substitution 

in the C-(N-)A-S-H gel. The presence of Q
3
(1Al) units also shows that the C-(N-)A-

S-H gel is significantly cross-linked. Constant non-zero quantities of Q
4
(3Al) and 

Q
4
(4Al) sites are resolved at 56 and 180 days of curing. Quantification of the 

Q
4
(4Al) site was performed assuming that the additional N-A-S(-H) gel only 

contains Q
4
(3Al) and Q

4
(4Al) units at an Si/Al ratio of 1.2, and the remainder of the 

intensity of the peak at -89 ppm was assigned to Q
3
(1Al). This Si/Al ratio was 

selected as it is at the upper end of the range in which an aluminosilicate gel would 

be comprised almost entirely of Q
4
(3Al) and Q

4
(4Al) units (Duxson et al., 2005; 

Provis et al., 2005a); a higher Si/Al ratio would also require the presence of Q
4
(2Al) 

sites, and these are not evident in the spectra here.  

 

The evolving structure of the C-(N-)A-S-H gel is represented in Figure 5.6, by 

normalising the contributions of reaction products to sum to 100%. 
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Figure 5.6.  Deconvolution results of the 

29
Si MAS NMR spectra, normalised to the 

total intensity of the reaction products. 

 

The normalised 
29

Si MAS NMR spectral deconvolutions (Figure 5.6) show that the 

relative concentrations of the Q
1
(II) and Q

2
 sites do not vary greatly from 1 to 180 

days of curing. An increasing trend in the relative concentrations of Q
0
 and Q

1
(I) 

sites, and a decreasing trend in the relative concentrations of Q
2
(1Al) and Q

3
(1Al) 

sites, are observed over the entire range of curing ages studied. The increasing 

prevalence of Q
1
(I) sites, and the corresponding reduction in the concentrations of 

Q
2
(1Al) and Q

3
(1Al) units, are associated with the gradual transformation of the C-

(N-)A-S-H gel to structures with lower mean chain length (MCL; see section 5.3.4) 

and increasing secondary product formation (Figure 5.1 and section 5.3.3) as the time 

of curing increases. This reduction in MCL can also potentially be reconciled with 

the relative increase in percentage of the bands at -74 ppm (tentatively assigned to Q
0
 

here) if these peaks represent surface-bound Q
0
 units, as increasing the relative 

surface area of C-(N-)A-S-H gel can be consistent with a reduction in MCL. The 

decreasing trend in the concentration of Q
3
(1Al) sites (in cross-linked C-(N-)A-S-H) 

is also consistent with the observed decreasing relative percentage of Q
2
(1Al) sites, 

because a reduction in Q
3
(1Al) necessitates a lower concentration of Q

2
(1Al) (Figure 

5.5). Therefore, these results indicate that the degree of cross-linking of the C-(N-)A-
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S-H gel decreases over time, which is to some extent a counterintuitive result, and 

which will be explored in more detail in section 5.3.4 below. 

 

The Q
0
 site at -74 ppm is assigned to partially hydrated silicate monomers or Q

0
 

components of the remnant slag that have not reacted congruently without precluding 

the possibility that Q
1
(1Al) species contribute to a small fraction of this peak. The 

presence of Q
1
(1Al) in the 

29
Si MAS NMR spectra would imply Al substitution in 

paired tetrahedral sites in C-(N-)A-S-H, given that tetrahedral site vacancies only 

occur in the bridging position (as described by 3n-1 chain length models for C-(N-

)A-S-H (Richardson, 2004)). Al substitution into paired sites is not expected because 

atomistic simulations of Al-substituted pentameric chains in environments 

representative of 14 Å tobermorite (Abdolhosseini Qomi et al., 2012), in sheets 

representing 14 Å tobermorite (Pegado et al., 2014), and in isolated chains (Manzano 

et al., 2009b), have shown significant energetic preferences for Al substitution in 

bridging sites instead. Deconvolutions of the 
29

Si MAS NMR spectra have also been 

performed without including Q
n
 components related to Al substitution into paired 

sites, because Q
1
(1Al) units are not often observed in published 

29
Si MAS NMR 

spectra of calcium silicate hydrate-based gels (Brough and Atkinson, 2002; 

Richardson et al., 1993; Schilling et al., 1994a; Sun et al., 2006; Wang and 

Scrivener, 2003), and also because inclusion of these additional Q
n
 components 

(Q
1
(1Al), Q

2
(2Al) and Q

3
(2Al) species) would lead to an underconstrained 

deconvolution procedure. This band at -74 ppm has been observed previously in 

sodium silicate-activated slag cements (Le Saoût et al., 2011), where (similar to the 

conclusion reached here) it was assigned to Q
0
 units, but no strongly established 

assignment for this peak to a specific site environment within the AAS cement phase 

assemblage currently exists. 

 

5.3.3 
27

Al MAS NMR 

 

Three distinct Al environments (Al[4], Al[5] and Al[6]) are observed in the 
27

Al 

MAS NMR spectra (Figure 5.7), at δobs = 52-80 ppm (i.e. the observed chemical 
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shift), 30-40 ppm and 0-20 ppm, respectively (Engelhardt and Michel, 1987). The 

profiles of the experimental spectra remain similar as the duration of curing 

increases, but some variation in all three environments is observed between 1-180 

days, including:  

i) formation of two distinct Al[4] sites at δobs = 74 ppm and 68 ppm, which 

is consistent with the dissolution of the slag and the formation of 

aluminosilicate reaction products;  

ii) an increase in the concentration of Al[5] sites, and a sharpening of the 

peaks corresponding to Al[5] with increasing curing time; and 

iii) the increased sharpness and intensity of the Al[6] peak at δobs = 4 ppm.    

 

 
Figure 5.7. 

27
Al MAS NMR spectra of the Na2SiO3-activated slag paste up to 180 

days of curing (14.1 T, R=10 kHz) and the spectrum for the sample cured for 2 years 

(9.4 T, R=14 kHz). 

 

The four-coordinated Al environments are assigned to the remnant slag particles in 

the AAS cement, according to the spectrum of the unreacted slag, and also to C-(N-

)A-S-H. Three distinct Al sites in C-(N-)A-S-H are identified at δobs = 74 ppm, 68 

ppm and 62 ppm (δiso = 75 ppm, 68 ppm and 62 ppm respectively), in agreement 
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with the literature (Faucon et al., 1999a; Pardal et al., 2012; Sun et al., 2006). The 

peaks present in the Al[6] region are assigned to hydrotalcite at δobs = 9.3 ppm and 

5.9 ppm (δiso = 9.68 ppm and 9.1 ppm respectively) (Sideris et al., 2012; Vyalikh et 

al., 2009), which is consistent with the observation of this phase in the XRD results 

(Figure 5.1), as well as the third aluminate hydrate (TAH) at δobs = 3.9 ppm (δiso = 

4.6 ppm). Contributions from TAH are evident because the sharp lineshape of the 

δobs ≈ 4 ppm peak cannot be described as hydrotalcite alone.  

 

The quadrupolar coupling parameters used to describe the component peak shapes 

for the reaction products in the 
27

Al MAS NMR deconvoluted spectra and the 

quantified site fractions for these phases are illustrated in Figures 5.8-5.9 and 

reported in Table 5.2. Accurate descriptions of the quadrupolar coupling effects 

(d’Espinose de Lacaillerie et al., 2008) in these phases are typically absent in the 

alkali-activated cement chemistry literature (where Gaussian/Lorentzian peak shapes 

are often assumed, even for quadrupolar nuclei), despite the importance of the 

quadrupolar coupling parameter in determining the component peak shapes and 

hence intensities, although quadrupolar effects have been accounted for in analysis of 

27
Al MAS NMR spectra for hydrated PC-based materials (Bach et al., 2012; 

d’Espinose de Lacaillerie et al., 2008) and laboratory synthesised C-A-S-H (Pardal et 

al., 2012). It is therefore noteworthy that the 
27

Al MAS NMR spectral 

deconvolutions presented here provide a greatly enhanced description of the 

experimental spectra. The proposed peak assignments (where the q
n
 notation for Al 

sites is equivalent to the Q
n
 notation for Si sites (Harris et al., 1997)) are also 

consistent with the phases identified through XRD (Figure 5.1). 

 



 

 

 
5. Nanostructural Analysis of Na2SiO3-Activated Slag Cement 115 

 

 

  
Figure 5.8. Deconvoluted 

27
Al MAS NMR spectra (14.1 T, R=10 kHz) of the A) 

anhydrous slag and sodium silicate-activated slag cured for B) 1 day, C) 3 days, D) 7 

days, E) 28 days, F) 45 days, G) 56 days and H) 180 days, with q
n
 sites shown in H). 

The contribution of the remnant slag is directly scaled according to the extent of 

reaction defined from the 
29

Si MAS NMR spectra. The bold orange traces represent 

the contribution of the remnant anhydrous slag, the green sub-peaks are spinning 

sidebands, the blue traces represent product phase and the red line is the sum of the 

deconvoluted components of the spectrum. 
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Figure 5.8. Continued. 
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Figure 5.9. Deconvoluted 
27

Al MAS NMR spectra (9.4 T, R=14 kHz) of the A) 

anhydrous slag and B) sodium silicate-activated slag cured for 2 years, with q
n
 sites 

shown in Figure 5.8H. The bold orange trace represents the contribution of the 

remnant anhydrous slag in B). The blue and red traces represent product phases and 

the sum of the deconvoluted peaks respectively. 
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Table 5.2. Deconvolution results of the 
27

Al MAS NMR spectra for the Na2SiO3-activated slag pastes as a function of curing time. The estimated 

uncertainty in absolute site percentages is ± 3%. Samples aged for 1-180 days were measured at 14.1 T, R=10 kHz, and the sample cured for 2 

years was measured at 9.4 T, R=14 kHz. 

Assignment 

Al[4] in 

unreacted 

slag 

q
2
(I) q

2
(II) q

3
† Al[5] HT(I) HT(II) TAH 

Isotropic chemical 

shift, δiso (ppm) 
65 75 68 62 38 9.68* 9.1 4.6 

CQ (MHz) and 

reference 

6.7  

(Klinowski, 

1984) 

1.1  

(Klinowski, 

1984) 

2.0  

(Klinowski, 

1984) 

3.0  

(Klinowski, 

1984) 

4.0  

(Klinowski, 

1984) 

1.2* 

3.55  

(Sideris et 

al., 2012) 

1.13  

(Andersen et 

al., 2006) 

Age         

Unreacted 100 - - - - - - - 

1 day 46 4 32 4 2 7 4 0 

3 days 44 8 30 4 2 8 4 1 

7 days 44 9 27 3 1 11 3 2 

28 days 26 9 32 7 6 8 10 2 

45 days 25 8 32 11 6 7 10 2 

56 days 23 9 37 10 5 8 5 2 

180 days 23 6 31 13 6 7 11 3 

2 years 22 16 23 9 6 15 6 4 

* Values determined through analysis of a pure hydrotalcite sample; S.A. Walling and S.A. Bernal, unpublished data. 

† It is likely that the q
3
 site contains contributions from q

4
 aluminate species, but attempts to resolve this site into two separate sub-peaks led to 

an underconstrained deconvolution process. 
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The 
27

Al MAS NMR deconvolution results (Table 5.2) show that hydrotalcite is the 

dominant Al[6]-containing phase at all ages, which is consistent with the prominent 

reflections for this phase in the XRD results (Figure 5.1). Contributions from 

hydrotalcite are represented by two asymmetric peaks here (marked as HT(I) and 

HT(II) in Figure 5.8H and Table 5.2), to match the known spectrum of this phase 

(Sideris et al., 2012; Vyalikh et al., 2009). Here, the HT(II) site (δiso = 9.1 ppm) is 

assigned specifically to octahedral Al in hydrotalcite that are coordinated to CO3
2-

 as 

the interlayer charge-compensating anion (Sideris et al., 2012), whereas the HT(I) 

site (δiso = 9.68 ppm) is assigned to contain contributions from octahedral Al bonded 

to OH
-
 in addition to CO3

2-
. Despite careful handling and preparation to minimise 

carbonation of the paste specimen, the XRD results (Figure 5.1) do show that the 

samples were slightly carbonated, and recent results by Bernal et al. (2014b), which 

suggest that carbonation of hydrotalcite occurs preferentially to the other reaction 

products in AAS cements, indicates that the hydrotalcite phases formed here may 

contain carbonate species. The deconvolution results show that the intensity of the 

HT(II) band is generally greater relative to the HT(I) peak at advanced ages of 

curing, which is also consistent with the assignment made here because it is 

reasonable to expect that the specimens are slightly more carbonated at later times of 

curing. However, the isotropic chemical shift of the reference HT(I) peak and the 

HT(II) band are 2-3 ppm lower than the reported values of δiso = 11.8 ppm (Sideris et 

al., 2012) and δiso = 11 ppm (Vyalikh et al., 2009), meaning that this assignment 

cannot be made unequivocally. 

 

The q
2
 aluminate species at δobs = 74 and 68 ppm are assigned to two different local 

environments, q
2
(I) and q

2
(II) respectively, with lower electron density in the q

2
(I) 

site. The q
2
(I) peaks are significantly narrower (Figures 5.8-5.9), suggesting more 

ordered environments in these sites. Earlier studies have assigned this site to Al 

substituted into paired tetrahedra in C-A-S-H (Pardal et al., 2012); however, this site 

has been left to the more general q
2
(I) assignment here, analogously to the Q

1
(I) and 

Q
1
(II) silicate sites discussed above. The peak widths of the specific site types are 

also likely to be affected by the disorder of the aluminosilicate chains in C-(N-)A-S-
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H gel (Taylor, 1997). The q
2
(II) site is assigned to Al[4] in bridging sites of the 

aluminosilicate chains in C-(N-)A-S-H (Figure 5.5) (Houston et al., 2009; Pardal et 

al., 2012) .  

 

The deconvolutions show significant intensity at chemical shifts corresponding to q
3
 

(and possibly q
4
) coordinated Al (δiso = 62 ppm), suggesting high levels of cross-

linking in the C-(N-)A-S-H gel. This is consistent with the literature for silicate-

activated slag cements (Fernández-Jiménez et al., 2003; Palacios and Puertas, 2006). 

It is expected that this site contains overlapping contributions from q
3
 units with 

different charge-balancing environments, similar to the situation discussed above for 

the q
2
(I), q

2
(II), Q

1
(I) and Q

1
(II) sites, and potentially also from q

4
 sites. These are 

expected given the assignment of Q
4
(3Al) and Q

4
(4Al) silicate units in the 

29
Si MAS 

NMR spectral deconvolutions. However, quantification of q
4
 sites in the 

deconvoluted 
27

Al MAS NMR spectra has not been performed here because the 

deconvolution becomes underconstrained with the inclusion of an additional q
4
 peak.  

 

The evolving nature of the Al environments in the AAS cement can be illustrated by 

normalising the reaction product intensities to 100% and removing the contributions 

attributed to the remnant slag component (Figure 5.10), comparable to Figure 5.6 

describing Si environments. The relative intensities assigned to the q
3
 (and possibly 

q
4
) and q

2
 sites, and the HT(I) and HT(II) sites, have also been combined in Figure 

5.10 because these site environments are not yet well defined in AAS cements.  
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Figure 5.10. Deconvolution results for the 

27
Al MAS NMR spectra normalised to the 

total intensity of the reaction products as a function of the time of curing. Samples 

aged for 1-180 days were measured at 14.1 T, R=10 kHz, and the sample cured for 2 

years was measured at 9.4 T, R=14 kHz. 

 

In general, the normalised 
27

Al MAS NMR spectral deconvolution results (Figure 

5.10) show that as curing time increases, the relative percentage of Al[4] 

environments in the solid binder decreases and the combined relative intensity of the 

HT peaks remain approximately constant. The intensity of the TAH and Al[5] peaks 

increase as a function of curing time. Here, Al[5] is tentatively assigned to interlayer 

species in C-(N-)A-S-H that charge-balance the aluminosilicate chains present in this 

phase (Andersen et al., 2006; Love et al., 2007; Sun et al., 2006). The increased 

amount of this component at 28 days and later in the 
27

Al MAS NMR spectra is 

consistent with experimental 
27

Al MAS NMR spectra of AAS cements (Bonk et al., 

2003; Richardson et al., 1994), laboratory-synthesised C-(N-)A-S-H (Faucon et al., 

1999a; Sun et al., 2006), and PC-based materials (Andersen et al., 2006; Love et al., 

2007; Taylor et al., 2010). 

 

No clear contributions from AFm or hydrogarnet are observed in the 
27

Al MAS 

NMR spectra, which is consistent with the absence of prominent reflections 

corresponding to these phases in the XRD results (Figure 5.1). These results indicate 
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that the solid phase assemblage varies only slightly between 1 day and 2 years of 

curing (noting again that the effect of the extent of reaction has been removed from 

these data), with the exception of the appearance of a small amount of N-A-S(-H) gel 

at 56 days and later, as discussed in section 5.3.2.  

 

5.3.4 Characterisation of the C-(N-)A-S-H Gel 

 

The deconvoluted 
29

Si MAS NMR spectra (Table 5.1) are interpreted using the 

CSTM structural description of cross-linking in tobermorite-like gels (Myers et al., 

2013), to characterise the chemistry and structure of the C-(N-)A-S-H gel formed 

here (Table 5.3). 
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Table 5.3. The structure and chemistry of the C-(N-)A-S-H gel formed here as calculated by the CSTM structural description (Myers et al., 

2013). A constant interlayer calcium content of ω = ϕ = 0.25, maximal partitioning of Q
1
 sites into the cross-linked component of the gel (η), 

Si/Al = 1.2 for the additional disordered activation product, and complete assignment of the band at -93 ppm to Q
4
(3Al) units are specified for all 

pastes. Uncertainty in the deconvoluted Si site percentages gives a relative error of ~±10% in all model outputs. 

Age 

C-(N-)A-S-H gel Cross-linked (C) and non-cross-linked (NC) phases 

Cross-linked 

phase 

fraction 

% of Al in 

cross-linked 

phase 

Partitioning of Q
1
 

into the cross-

linked phase (η) 

MCL Al/Si type MCL Al/Si 

Fraction of bridging 

sites substituted by 

Al † 

1 day 0.81 60 0.92 11 0.16 
NC 14 0.39 0.98 

C 10 0.11 1 

3 days 0.77 56 0.88 10 0.16 
NC 11 0.35 0.94 

C 10 0.11 1 

7 days 0.57 42 0.60 7.6 0.15 
NC 5.8 0.22 0.82 

C 10 0.11 1 

28 days 0.67 50 0.72 8.3 0.16 
NC 6.2 0.26 0.91 

C 10 0.11 1 

45 days 0.62 55 0.60 6.7 0.13 
NC 4.4 0.16 0.76 

C 10 0.11 1 

56 days 0.66 53 0.68 7.9 0.14 
NC 5.6 0.20 0.79 

C 10 0.11 1 

180 days 0.59 51 0.55 6.4 0.13 
NC 4.2 0.16 0.79 

C 10 0.11 1 

† with Al-O-Al avoidance maintained, i.e. only one Al is allowed in each cross-linked C-(N-)A-S-H unit (Figure 5.5). 
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Fixed values of interlayer calcium content (ω = ϕ = 0.25) were used in the model to 

match the average binder composition (Ca/Si and Ca/(Al+Si)) of this AAS cement 

measured by environmental scanning electron microscopy with energy-dispersive X-

ray spectroscopy (ESEM-EDS) as a function of curing time (Myers et al., 2013). The 

structure of the C-(N-)A-S-H gel is mostly cross-linked between 1-180 days, despite 

the low apparent intensity of the Q
3
(1Al) component in the deconvoluted 

29
Si MAS 

NMR spectra (Table 5.1). The Al/Si ratio of the C-(N-)A-S-H gel decreases slightly 

as curing time increases, reflecting the reduction in the relative Q
2
(1Al), Q

3
(1Al) and 

Al[4] site percentages (Figures 5.6 and 5.10). The decreasing fraction of the cross-

linked component of the gel at later ages is a consequence of the relative reduction in 

Q
3
(1Al) sites and the formation of the additional disordered (Q

4
 and possibly q

4
 

containing) activation product at extended ages. A similar decreasing trend in MCL 

is found with increasing curing time, indicating that the cross-linked phase fraction – 

so also the intensities of the Q
3
(1Al) sites and the formation of the additional Q

4
-

containing product – are the key parameters influencing the extent of polymerisation 

of the partially cross-linked C-(N-)A-S-H gels characterised here. The Ca/Si ratio of 

the binder was not found to increase from 7 to 56 days by ESEM-EDS (Myers et al., 

2013), in support of this analysis. The percentage of Al in the cross-linked 

component of the gel is between 40-60 % at all curing times, which suggests that Al 

substitutes into both cross-linked and non-cross-linked components of C-(N-)A-S-H 

without a clear preference for either structural type. 

 

The percentages of Al in the cross-linked gel components are calculated according to 

eq.(5.1): 

 

 
 

  

1 2 2 3 3

[ ] [ ]

[ ]
1 2 2 3 3

/ (1 ) (1 )
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C C

C
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k

Al Si Q Q Al Q Q Al Q
Al

Al Si Q Q Al Q Q Al Q

     


     
  (5.1) 

 

where the subscripts [C] and [NC] represent the cross-linked and non-cross-linked 

components of the C-(N-)A-S-H gel respectively,  [ ],[ ]k C NC , the Q
n
 site 
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fractions are taken from the 
29

Si MAS NMR spectral deconvolution results (Table 

5.1), and (Al/Si)[C] and (Al/Si)[NC] are defined by eqs.(5.2-5.3): 

 

  
   

3

1 2 2 3 3[ ]

(1 )
/

1 1C

Q Al
Al Si

Q Q Q Al Q Q Al


   
  (5.2) 

 

  
  21

2

1 2 2[ ]

(1 )
/

(1 )NC

Q Al
Al Si

Q Q Q Al


 
  (5.3) 

 

The maximum partitioning of Q
1
 units into the cross-linked C-(N-)A-S-H component 

(η → ηmax) was specified because the MCL and Al/Si ratio of this phase are similar 

(MCL ≈ 10 and Al/Si ≈ 0.11) at all values of η that satisfy the structural constraints 

of the gel (Myers et al., 2013), for the C-(N-)A-S-H gel formed here. Partitioning of 

Q
1
 sites can be defined differently (e.g. specifying the minimum value of η that 

satisfies the structural constraints of the gel), but as long as the method used is 

consistent, the structural trends obtained from the CSTM are the same. Hence the 

trends related to the structure of the C-(N-)A-S-H gel, rather than the absolute values, 

are the key targets for analysis. The choice of η does not affect the calculated overall 

Al/Si ratio of the C-(N-)A-S-H gel or the concentration of Al in the cross-linked 

component of the gel.  

 

A strong link between the Al content and MCL of the C-(N-)A-S-H gel is found by 

distinguishing the cross-linked and non-cross-linked components (Table 5.3). This is 

a consequence of the low capacity of cross-linked C-(N-)A-S-H structures to 

incorporate Al, as illustrated by Figure 5.5: only one in each six tetrahedral sites in 

cross-linked C-(N-)A-S-H units can accommodate Al, compared to one in three 

tetrahedral sites in non-cross-linked C-(N-)A-S-H units. The data in Table 5.3 

indicate that if the average Al/Si ratio of the C-(N-)A-S-H gel is significantly greater 

than 0.11 (the Al/Si ratio of Al-saturated, MCL = 10 cross-linked tobermorite), then 

the non-cross-linked chain structures are significantly more polymerised and Al-rich 

than the C-(N-)A-S-H gel as a whole, because these structures must incorporate all of 
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the remaining Al. Therefore, small variations in the overall Al/Si ratio of the C-(N-

)A-S-H gel can lead to major structural and chemical changes in the non-cross-linked 

component of C-(N-)A-S-H gels, meaning that significant variations in the structure 

and chemistry of the C-(N-)A-S-H gel can be expected in AAS cements of 

superficially similar composition.  

 

5.3.5  Perspectives  

 

This new understanding of C-(N-)A-S-H further highlights the importance of a 

fundamental scientific approach to the design and formulation of modern cement 

materials. The relationship between structure and Al content in C-(N-)A-S-H may be 

important in determining the mechanical and thermodynamic properties of blended 

PC/Al-containing SCM materials and alkali-activated cements. The results presented 

here indicate strongly that single-phase structural representations of C-(N-)A-S-H are 

insufficient to accurately characterise the chemical composition and structure of this 

phase; multi-phase or solid solution models for C-(N-)A-S-H gels (Kulik, 2011; 

Puertas et al., 2011) should be used to describe these materials. 

 

However, because the CSTM does not embody a description of the Q
4
-containing 

disordered aluminosilicate phase, separate quantification is needed. Here, this phase 

is discussed as resembling an intimately-mixed zeolite-like phase similar to the N-A-

S(-H) gels formed through the alkali-activation of low-calcium aluminosilicate 

precursors (Provis et al., 2005b), which was quantified from the 
29

Si MAS NMR 

spectral deconvolutions, enabling use of the CSTM to fully characterise the structure 

and chemistry of the C-(N-)A-S-H gel formed here. It may also possibly be described 

as a degradation product of carbonated C-(N-)A-S-H gel, although the application of 

multinuclear NMR techniques to better distinguish the Q
n
(mAl) environments in the 

solid binder seems to be essential in further refining the understanding in this area. 

The identification of this disordered aluminosilicate phase also indicates a need to 

understand the influence of this phase on the chemical stability of the solid binder, 
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because the chemical stability of calcium-deficient sodium-aluminosilicate gels and 

C-(N-)A-S-H are known to differ significantly (van Deventer et al., 2012). 

 

5.4 Conclusions 

 

Spectroscopic and diffractometric analysis of the nanostructural development of a 

sodium silicate-activated slag cement up to 180 days of curing shows the presence of 

a dominant C-(N-)A-S-H gel, with hydrotalcite and TAH secondary products. Five-

coordinated Al, tentatively assigned to interlayer charge-balancing species in the C-

(N-)A-S-H gel, was also observed at all ages.  

 

Application of the ‘Cross-linked Substituted Tobermorite Model’, describing mixed 

cross-linked/non-cross-linked tobermorite-like structures, showed decreasing trends 

in the MCL, extent of cross-linking and Al/Si ratio of the C-(N-)A-S-H gel over 

time. The C-(N-)A-S-H gel was highly cross-linked despite the low relative intensity 

of Q
3
(1Al) sites, and an additional highly-polymerised aluminosilicate phase, 

containing Q
4
(3Al) and Q

4
(4Al) sites and proposed here to potentially resemble the 

nanocrystalline products found in calcium-deficient sodium-aluminosilicate hydrate 

(‘geopolymer’) gels, was required for consistency with the spectra collected at later 

ages. This has important implications for understanding the durability of AAS 

cement-based materials, as the phase stabilities of geopolymer gels and C-(N-)A-S-H 

are known to differ significantly. The chemical and structural nature of the C-(N-)A-

S-H gel varied significantly across a relatively narrow range of chemical 

compositions. A complex relationship exists between the Al content and the extent 

of polymerisation of the C-(N-)A-S-H gels, due to the lower relative capacity of 

cross-linked C-(N-)A-S-H to structurally incorporate Al. Increasing the Al content of 

cross-linked C-(N-)A-S-H gels may not necessarily induce increased polymerisation.  

 

These results, and the methods for analysis of 
29

Si and 
27

Al MAS NMR spectra 

developed here, will have significant implications for the ways in which AAS 
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cements and blended PC/Al-containing SCM materials are described, understood and 

modelled. 
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6 

Thermodynamic Model for  

C-(N-)A-S-H: Derivation and 

Validation 

 

 

This chapter is based on the paper ‘A Thermodynamic Model for C-(N-)A-S-H Gel: 

CNASH_ss. Derivation and Validation’, published in Cement Concrete Research 

2014, 66, 27-47.  

 

 

6.1 Introduction 

 

A key factor governing the long-term performance of any cement or concrete is the 

stability of the reaction products constituting the solid binder. The chemistry of the 

reaction products in hydrated neat PC materials is relatively well established (Taylor, 

1997), and these cements can be accurately modelled at equilibrium (Lothenbach et 

al., 2008b; Lothenbach and Winnefeld, 2006) using existing thermodynamic models 

for C-S-H gel (Kulik, 2011; Kulik and Kersten, 2001).  

 

However, the existing descriptions of PC/SCM blended cements (Atkins et al., 1994; 

Lothenbach et al., 2011) and AAS cements (Ben Haha et al., 2012) at equilibrium are 

not as accurate. This is partly because empirical descriptions of Al substitution in C-

(N-)A-S-H gels (e.g. by attributing amounts of Al to these gels to match 

experimentally measured Al/Si values of the solid binders in the materials), or no 

description of Al uptake into this phase, have been utilised in the modelling 

performed. These methods have been used because existing C-S-H thermodynamic 
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model formulations do not contain explicit definitions of Al (Atkins et al., 1992a; 

Berner, 1992; Kulik, 2011; Kulik and Kersten, 2001; Walker et al., 2007). The 

ability to formally account for the extent of Al incorporation into these models is 

important because it offers scope to significantly improve the level of detail and 

confidence in predictions of the solid phases formed in the CaO-Al2O3-SiO2-H2O 

system as simulated by thermodynamic modelling. Hence, the development of 

thermodynamic models with explicit descriptions of Al in C-(N-)A-S-H signifies an 

important advancement in how cementitious materials are modelled and understood. 

 

Here, a thermodynamic model is proposed to account explicitly for the tetrahedral Al 

and Na species bound in C-(N-)A-S-H gel, and applied to simulate the chemistry of 

AAS cements as an initial example. This model may also be applicable to high-

volume blended PC/SCM materials (e.g. CEM III blast furnace cements specified 

under the EN 197-1 standard) because the structurally-bound Al and alkali species 

are specified independently in the model formulation, and because the C-(N-)A-S-H 

gels formed in these materials and in AAS cements are similar in nanostructure and 

chemical composition (Lothenbach et al., 2011). 

 

6.2 Sublattice Solid Solution Model for C-(N-)A-S-H 

 

6.2.1 Sublattice Solid Solution Definition 

 

There exist several structural models that can describe C-S-H gels, as reviewed in 

detail by Richardson (Richardson, 2004; 2008). However, only the ‘Substituted 

General Model’ (SGM) (Richardson and Groves, 1993b) and the ‘Cross-linked 

Substituted Tobermorite Model’ (CSTM) (Chapter 4) (Myers et al., 2013), can 

explicitly account for Al-substituted, alkali charge-balanced structures such as C-(N-

)A-S-H using a fully flexible formulation of the gel chemistry. For Ca/Si ≤ 1.5 the 

treatments of non-cross-linked C-(N-)A-S-H gel components in the SGM and the 

CSTM are identical, with structural incorporation of Al and charge-balancing by 

positively-charged interlayer species such as Na
+
. These structural models can be 
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used to constrain thermodynamic models because they provide a structurally-

consistent basis from which chemical compositions of C-(N-)A-S-H end-members 

can be determined. 

 

Cross-linked and non-cross-linked C-(N-)A-S-H structures cannot always be 

distinguished from one another by bulk chemical composition alone, which 

complicates the ability to differentiate between these two structural types in 

thermodynamic models for this phase. Therefore, the SGM has been used as a basis 

from which to derive the chemical composition of the C-(N-)A-S-H gel here 

explicitly in terms of non-cross-linked structures, without precluding the possibility 

that the thermodynamic model may also implicitly represent the bulk chemistry of 

cross-linked C-(N-)A-S-H. It is also important to note that the C-S-H gel models 

derived by Kulik (2011) used the ‘General Model’ (GM) developed by Richardson 

and Groves (1992b), which is a simpler model related to the SGM. The notation used 

by Kulik (2011) and Richardson and Groves (1993b) has been conserved where 

possible for clarity. 

 

Derivation of the C-(N-)A-S-H thermodynamic model begins by rearranging the 

SGM (eq.(2.2), (Richardson and Groves, 1993b)) into an alternative structural form, 

by normalising eq.(2.2) to a basis of one dreierketten unit by dividing by n, expressed 

in terms of w and n for X and z, and then simplified to obtain eq.(6.1):  
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The following notation is now introduced into eq.(6.1): ν = 1/n (0 ≤ ν ≤ 1), defines 

the ratio of chains per dreierketten unit, which is a measure of the number of vacant 

bridging tetrahedra; u = w/n, the content of chemically incorporated (hydroxyl) water 

per dreierketten unit; and h = m/n, the bound water content. The introduction of this 

notation results in eq.(6.2): 
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Eq.(6.2) is then re-written to isolate two distinct sublattice sites within the chain 

structure, being a ‘main chain dreierketten unit’ (TU) and a ‘bridging tetrahedral 

unit’ (BT). This leads to a subtle change in the substitution parameter, a0, which is 

now written as a, the extent of substitution in bridging sites. The resulting equation 

is: 
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  (6.3) 

 

Eq.(6.3) is then represented in terms of one dreierketten unit in eq.(6.4): 
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  (6.4) 

 

where R is a trivalent cation in tetrahedral coordination (e.g. Al
3+

), l is a charge-

balancing interlayer cation (such as Na
+
, Ca

2+
 and/or H

+
) with a positive charge of c, 

a is the extent of R substitution in bridging sites (Figure 6.1), ν is the fraction of 

bridging site vacancies per dreierketten unit, u is the interlayer H
+
 content per 

dreierketten unit for the main chain sites (TU, CaSiO3.5
-
), and h defines the amount 

of water per dreierketten unit. The SGM explicitly defines Al substitution in bridging 

sites only, and excludes Al-O-Al bonding, consistent with Loewenstein’s rule 

(Loewenstein, 1954).  
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Figure 6.1. Schematic representations of infinite chain length non-cross-linked A) 

and crosslinked B) C-(N-)A-S-H structures, with sublattice sites labelled: TU; BT; 

CB; IC; IW, as defined in the text (eqs.(6.5,6.7)). Light green and dark blue triangles 

are paired and bridging tetrahedral sites respectively, dark red circles represent Ca 

sites in the Ca-O sheets, and the orange and purple circles are positively charged 

species (typically Ca
2+

, H
+
, Na

+
 and/or K

+
) that charge-balance the aluminosilicate 

tetrahedra in the BT and TU sites respectively. 

 

Eq.(6.4) can be equivalently written in sublattice notation as eq.(6.5): 
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  (6.5) 

 

where CU represents interstitial ‘solid solution’ Ca(OH)2 (Richardson and Groves, 

1992b), BT are the bridging tetrahedra (Si(1-a)RaO2(1-ν)
a(1-ν)-

), CB are the interlayer 

charge-balancing species for the bridging tetrahedra (la(1-ν)/c
a(1-ν)+

), IC are the 

interlayer charge-balancing species for the TU sites (Ca(1-u/2)Hu
2+

), and IW represents 

interlayer water (H2O). The CU sites in tobermorite are vacant (there is no interstitial 

‘solid solution’ Ca(OH)2), and are therefore eliminated from the structural definition 

in eqs.(6.4-6.5). This limits the chemical composition of the sublattice solid solution 

model to 0.67 ≤ Ca/Si ≤ 1.5 and leads to eqs.(6.6-6.7):  
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This elimination of Ca(OH)2 therefore provides the major limitation on the domain 

of applicability of the model described here; it is not able to be used for Ca/Si ratios 

> 1.5, but is valuable for alkali-activated cements and blended PC/SCM materials in 

which the composition of the C-(N-)A-S-H gel formed falls below this ratio. The 

sublattice sites shown in eq.(6.7) are illustrated in Figure 6.1. 

 

The IC sites are now modified to enable the TU sites to be charge-balanced by Na
+
 

species in addition to the BT sites. The possible interlayer charge-balancing species 

in C-(N-)A-S-H gel are not limited to Ca
2+

, H
+
 and Na

+
, but these are the only 

species for which sufficient data have been published to enable validation of the 

thermodynamic model developed here. Na-based solutions are also the most relevant 

alkaline activators for commercial use because they are relatively inexpensive and 

widely available (Shi et al., 2006). The BT sites in C-(N-)A-S-H are mostly filled by 

vacancies, Si and/or Al species, meaning that R = Al can also be specified. Eq.(6.6) 

is re-written with the modified IC sites and with similarly modified CB sites, and 

with Al-substitution in the BT sites, which results in eq.(6.8): 

 

 

  
 

 

 

 

 1 21 2 1 21 2 1 2
2 2

3.5 2

1 21

2 21    1
(1 )

N

CaSiO

Si Al O C aa H Ca H ONa Hd d e e

a
a

a d d e ea

a

h







   



   






  
 

     
             

  (6.8) 

 

where d1 + d2 ≤ 1 and e1 + e2 ≤ 2. 

 

While eqs.(6.7-6.8) are satisfactory for thermodynamic modelling, it is desirable to 

obtain a thermodynamic model which is consistent with existing validated 
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formulations such as the downscaled CSH3T model (Kulik, 2011). In that model, the 

BT, CB and IC sites are combined into two potentially-equivalent BCI sites that 

could have different substitutions via the choice of two sublattice species, and the 

sublattice formula was ‘downscaled’ to 0.5 dreierketten units. The use of two such 

sites, rather than a single BCI site, is beneficial because it increases the number of 

unique chemical compositions that can be represented by the sublattice solid solution 

and can greatly improve the fit of the thermodynamic model output to the validation 

data (e.g. solubility measurements) for the same set of mixing rules used (e.g. simple 

random ideal mixing). However, this means that end-member stoichiometries, and 

sublattice species and formulae are more likely to be represented in terms of 

fractional quantities rather than integer amounts. Fractional expressions obviously 

cannot directly correspond to atomistic-level structures, which means that 

thermodynamic models developed in this way can only describe the chemistry of 

solid solutions on the bulk scale rather than at the atomistic scale. Therefore, 

downscaling is useful in the development of thermodynamic models to describe 

complex phases such as C-(N-)A-S-H with atomistic structures that have not yet 

been fully resolved. Here, downscaling is essential to improve the number of unique 

chemical compositions and the volume of experimental data described by the 

sublattice solid solution model while keeping its formulation relatively simple, 

particularly because this model is required to describe C-(N-)A-S-H chemistry in the 

complex AAS cement system. The downscaled chemical and sublattice formulae (to 

0.5 dreierketten units), written in terms of potentially-equivalent BCI sites (BCI = BT 

+ CB + IC) and thus consistent with the downscaled CSH3T model (Kulik, 2011), 

are shown in eqs.(6.9-6.10) respectively: 
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Here, at least one additional (Al,Na)-containing sublattice species is necessary to 

represent C-(N-)A-S-H chemistry, compared to previous thermodynamic models for 

the CaO-SiO2-H2O system. Increasing the number of sublattice species and sites 

allows the description of a greater diversity of bulk C-(N-)A-S-H gel chemical 

compositions, and facilitates independent incorporation of Na and Al in C-S-H type 

structures. Additionally, as the quantities of bound water in C-(N-)A-S-H and C-S-H 

gels are significantly different (Allen et al., 2007; Thomas et al., 2012), it is also 

necessary to allow for variation in the IW site. Here, C-(N-)A-S-H is assumed to 

contain one mole of H2O in the IW site per 0.5 dreierketten units (h = 2), because this 

is approximately equal to the chemistry of 11 Å and 14 Å tobermorites (Bonaccorsi 

et al., 2005; Merlino et al., 2001) and the C-(N-)A-S-H gels formed in AAS cements 

(H2O/Si ≈ 1) (Thomas et al., 2012).  

 

These factors thus require the use of a sixth-order sublattice solid solution for the C-

(N-)A-S-H thermodynamic model developed here. This solid solution contains five 

BCI sites, with each carrying a positive charge of 0.125 and grouped as shown in 

eqs.(6.11-6.12), and one variable IW site: 
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  (6.12) 

 

where IW
*
 represents a fixed interlayer water site (with full occupancy of H2O but 

otherwise identical to the IW site depicted in Figure 6.1). Eqs.(6.11-6.12) are the 

fundamental formulae that represent the C-(N-)A-S-H thermodynamic model 

developed here. 
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6.2.2 End-Member Selection 

 

As discussed in section 6.1, a goal of this study is to develop a sublattice solid 

solution model that can describe the solubility and chemical composition of C-(N-

)A-S-H in AAS cements. Based on the sublattice solid solution definition established 

in eqs.(6.11-6.12), it is now necessary to select a set of end-members, sublattice sites 

and species that can represent the chemistry of C-(N-)A-S-H gel.  

 

Six species that can substitute into the five BCI sites given in eq.(6.12), and which 

are compatible with the chemical formula for these sites (eq.(6.11)) and the 

chemistry of C-(N-)A-S-H in AAS cements, were selected to represent a sublattice 

solid solution of the form shown in eq.(6.13): 
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Here, species A,F,K,N,T are Ca0.0625O0.0625H0.125
0.125+

, B,G,L,O,U are 

Si0.0625O0.125H0.125
0.125+

 and D,I,M,Q,V are Si0.0625O0.125Na0.125
0.125+

, which can be 

present in five different BCI sites, the species C,H,P are Al0.0625O0.125H0.1875
0.125+

 and 

E,J,R are Al0.0625Na0.0625O0.125H0.125
0.125+

, which can fill four of the BCI sites, the 

species S,W are Ca0.0625O0.0625Na0.125
0.125+

, which can fill two of the BCI sites, X is 

H2O, Y is a vacancy (VIW), and Q
*
 is CaSiO3.5ˉ∙H2O. This combination of sublattice 

sites and species was chosen as it comprises the least complex formulation of the 

sublattice solid solution that can represent the chemistry of C-(N-)A-S-H in AAS 

cements. In this work the coefficients I=2, II=2, III=2, IV=1, V=1 and VI=1 define 

the stoichiometry of the sublattice sites, and the superscripts n1, n2, n3, n4, n5 and n6 

correspond to the five BCI sites and single IW site in eq.(6.12). Vacancies in BCI 

sites are included in the thermodynamic model via the ν parameter in eq.(6.11).  
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A minimal set of eight end-members was chosen within this sublattice solid solution 

model to define the C-(N-)A-S-H gel in this work, as shown in Table 6.1. This is the 

smallest number of end-members that can resemble the chemistry of C-(N-)A-S-H 

gels (section 2.1.3) and describe the available solubility data for AAS cement and the 

CaO-(Na2O,Al2O3)-SiO2-H2O systems (section 6.4). The solid solution contains 

three C-S-H end-members, one C-(N-)S-H end-member, two C-A-S-H end-members 

and two C-(N-)A-S-H end-members. The C-S-H end-members have the same 

chemical compositions as the T2C, T5C and TobH end-members of the downscaled 

CSH3T model (T2C*, T5C* and TobH* respectively) (Kulik, 2011), which contain 

the TU site, h = 4, and two BCI sublattice species, Si0.25O0.5H0.5
+
 and Ca0.25O0.25H0.5

+
, 

for a = 0, to cover the range 0.67 ≤ Ca/Si ≤ 1.5 in the CaO-SiO2-H2O system. One 

H2O molecule is also added per vacancy in the bridging tetrahedra for each of the 

eight end-members (determined by the value of ν). 
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Table 6.1. Chemical compositions of the eight end-members of the C-(N-)A-S-H thermodynamic model, and parameters chosen for use in 

eq.(6.11). One H2O molecule is added to the BCI site per bridging site vacancy for consistency with the C-S-H thermodynamic model developed 

by Kulik (2011). 

End- member ν a i1 i2 u1 u2 M Chemical formula 

5CA 0.5 1 1 0 1 0 2 (CaO)1.25(Al2O3)0.125(SiO2)1(H2O)1.625 

INFCA 0 0.625 1 0 2 0 2 (CaO)1(Al2O3)0.15625(SiO2)1.1875(H2O)1.65625 

5CNA 0.5 1 0 1 0.5 0.5 2 (CaO)1.25(Na2O)0.25(Al2O3)0.125(SiO2)1(H2O)1.375 

INFCNA 0 0.625 0 1 1.25 0.75 2 (CaO)1(Na2O)0.34375(Al2O3)0.15625(SiO2)1.1875(H2O)1.3125 

INFCN 0 0 1 0 0.75 1.25 2 (CaO)1(Na2O)0.3125(SiO2)1.5(H2O)1.1875 

T2C* 
a
 1 0 0 0 0 0 4 (CaO)1.5(SiO2)1(H2O)2.5 

T5C* 
a
 0.5 0 0 0 1 0 4 (CaO)1.25(SiO2)1.25(H2O)2.5 

TobH* 
a
 0 0 0 0 2 0 4 (CaO)1(SiO2)1.5(H2O)2.5 

a 
The asterisks for the T2C*, T5C* and TobH* end-members indicate that these components have the same bulk chemistry but slightly modified 

thermodynamic properties relative to the T2C, T5C and TobH end-members of the downscaled CSH3T model (Kulik, 2011). 
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Table 6.1. Continued. 

End- member Sublattice formula 
b
 

5CA 
[(CaSiO3.5)

-
]1·[H2O]1·[Al0.0625O0.125H0.1875

0.125+
]2·[Al0.0625O0.125H0.1875

0.125+
]2· 

[Ca0.0625O0.0625H0.125
0.125+

]2· [Ca0.0625O0.0625H0.125
0.125+

]1·[Ca0.0625O0.0625H0.125
0.125+

]1·[VH2O]1 

INFCA 
[(CaSiO3.5)

-
]1·[H2O]1·[Al0.0625O0.125H0.1875

0.125+
]2·[Al0.0625O0.125H0.1875

0.125+
]2· 

[Si0.0625O0.125H0.125
0.125+

]2·[Al0.0625O0.125H0.1875
0.125+

]1·[Si0.0625O0.125H0.125
0.125+

]1·[VH2O]1 

5CNA 
[(CaSiO3.5)

-
]1·[H2O]1·[Al0.0625Na0.0625O0.125H0.125

0.125+
]2·[Al0.0625Na0.0625O0.125H0.125

0.125+
]2· 

[Ca0.0625O0.0625H0.125
0.125+

]2·[Ca0.0625O0.0625Na0.125
0.125+

]1·[Ca0.0625O0.0625Na0.125
0.125+

]1·[VH2O]1 

INFCNA 
[(CaSiO3.5)

-
]1·[H2O]1·[Al0.0625Na0.0625O0.125H0.125

0.125+
]2·[Al0.0625Na0.0625O0.125H0.125

0.125+
]2· 

[Si0.0625O0.125Na0.125
0.125+

]2·[Al0.0625Na0.0625O0.125H0.125
0.125+

]1·[Si0.0625O0.125Na0.125
0.125+

]1·[VH2O]1 

INFCN 
[(CaSiO3.5)

-
]1·[H2O]1·[Si0.0625O0.125Na0.125

0.125+
]2·[Si0.0625O0.125Na0.125

0.125+
]2· 

[Si0.0625O0.125H0.125
0.125+

]2·[Si0.0625O0.125Na0.125
0.125+

]1·[Si0.0625O0.125H0.125
0.125+

]1·[VH2O]1 

T2C* 
a
 

[(CaSiO3.5)
-
]1·[H2O]1·[Ca0.0625O0.0625H0.125

0.125+
]2·[Ca0.0625O0.0625H0.125

0.125+
]2· 

[Ca0.0625O0.0625H0.125
0.125+

]2·[Ca0.0625O0.0625H0.125
0.125+

]1·[Ca0.0625O0.0625H0.125
0.125+

]1·[H2O]1 

T5C* 
a
 

[(CaSiO3.5)
-
]1·[H2O]1·[Si0.0625O0.125H0.125

0.125+
]2·[Si0.0625O0.125H0.125

0.125+
]2· 

[Ca0.0625O0.0625H0.125
0.125+

]2·[Ca0.0625O0.0625H0.125
0.125+

]1·[Ca0.0625O0.0625H0.125
0.125+

]1·[H2O]1 

TobH* 
a
 

[(CaSiO3.5)
-
]1·[H2O]1·[Si0.0625O0.125H0.125

0.125+
]2·[Si0.0625O0.125H0.125

0.125+
]2· 

[Si0.0625O0.125H0.125
0.125+

]2·[Si0.0625O0.125H0.125
0.125+

]1·[Si0.0625O0.125H0.125
0.125+

]1·[H2O]1 
b  

VH2O is a vacancy in the IW sublattice site. 
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As each species (A to Y) is defined to only substitute into one site (i.e., species with 

the same chemistry but occupying different sites are treated as being distinct), the site 

fraction of a species i in a given site ns, 
sn

i
y , is defined as  , ss

i nn

ki
y   for 

  1s

i

n
y  . Here  1 2 3 4 5 6, , , , ,

s
n n n n n nn   is the sublattice site, , si n

k  is the effective 

mole fraction of end-member k containing the species i in the sublattice site ns, with 

  1
kk

  . In defining an end-member of the sublattice solid solution model, the 

species present in the s
th

 sublattice site may be identified by the same subscript 

number i.e. i1 is the species present in the sublattice site n1, and  1
, , , ,A B C D Ei  . 

Thus an end-member can be equivalently written in terms of its substituting species, 

i.e. k = i1i2i3···is.  

 

The chain length (CL) for each of the end-members, and the MCL of the C-(N-)A-S-

H gel as a whole, can then be calculated from eq.(6.14). 

 

 
 
3

  1

k k k

CL
 

 


  (6.14) 

 

The fraction of bridging site vacancies per dreierketten unit, ν, is shown in Table 6.1 

for each end-member of the C-(N-)A-S-H thermodynamic model. This equation 

represents the minimum chain length possible for the end-members, and thus the 

minimum MCL of the C-(N-)A-S-H gel, because eq.(6.14) implies that the end-

members are strictly non-cross-linked. The chain lengths of cross-linked C-(N-)A-S-

H end-members would be calculated in the same way, but with a factor of two 

included (i.e. CLcross-linked = 2CL) to reflect the double chain structures in these 

phases. Here, these cross-linked and non-cross-linked structures were not explicitly 

differentiated in defining the end-members (eqs.(6.11-6.12)), meaning that eq.(6.14) 

provides a lower bound on the MCLs of partially (or fully) cross-linked C-(N-)A-S-H 

gels. 
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6.2.3 Thermodynamic Basis of the Sublattice Solid Solution Model 

 

The chemical potential (partial molal Gibbs free energy), 
1 2 3 si i i i , of end-member 

i1i2i3···is in a multi-component solid solution can be represented by eq.(6.15) (Hillert, 

1998): 

 

   
1 2 3 31 2

1 2 3

 
s s

s

m m m m m
i i i i m in nn n

ii i i i i

G G G G G
G y

y y y y y


        
          

         
   (6.15) 

 

where Gm is the Gibbs free energy of mixing using the notation previously 

introduced, and can be expressed by eq.(2.15) (section 2.2.2).  

 

Here, the ‘compound energy formalism’ is used to define the surface of reference for 

the Gibbs free energy of mixing as a weighted average of the Gibbs free energy of 

each of the (pure) end-members in the C-(N-)A-S-H solid solution (Hillert, 1998). 

This is formally expressed by eq.(6.16) for a multi-site, multi-component sublattice 

solid solution, assuming random mixing within each sublattice (Andersson et al., 

1986): 

 

 

           

31 2

1 2 3 1 2 3

1 2 3

1 1 2 2 3 3

1 2 3

I ln II ln III ln   ln

s

s s

s

s s

s

n nn n o

m i i i i i i i i

n n n n

E

i i i i i i i i m

i i i i

G y y y y G

RT y y y y y y y y G

 
   
 

 
     

 

 

   

 (6.16) 

 

where 
1 2 3 s

o

i i i iG  is the standard Gibbs free energy of end-member i1i2i3···is, R is the 

universal gas constant, T is temperature and ζ is the stoichiometric coefficient of the 

s
th

 sublattice site. The random mixing assumption is appropriate here because it 

greatly simplifies the expression for the configurational entropy and because the 

solid solution definition (eqs.(6.11-6.12)) does not represent atomic-scale structures; 

assigning hypothetical weightings to non-physical mixing combinations would not 
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make physical sense. This choice is reasonable given that this is the first attempt to 

develop a sublattice solid solution model for C-(N-)A-S-H gel, and will be validated 

in section 6.4 through the ability of the model to accurately describe chemical 

composition and solubility data for this phase.  

 

Eq.(6.16) can be expanded explicitly for the sublattice solid solution defined by the 

eight end-members shown in Table 6.1. Substituting this expanded version of 

eq.(6.16) into eq.(6.15), defining a generalised end-member with species A, F, K, N, 

T, X in sublattice sites n1, n2, n3, n4, n5, n6 and then simplifying, results in eq.(6.17): 

 

           

 

2ln 2ln 2ln ln ln ln

o

AFKNTX AFKNTX

E

A F K N T X m

G

RT y y y y y y G U

  

        

  (6.17) 

 

Equivalent relationships for μAFKNTX can be written for all other combinations of 

sublattice site occupancies. The U term contains the Gibbs free energies for the 

reciprocal reactions (Δrcp
o
G), which denotes the difference in Gibbs free energy 

between combinations of end-members in the sublattice solid solution (which must 

by definition contain equal numbers of reactant and product terms). For example, the 

reciprocal reaction (eq.(6.18)) has a corresponding Gibbs free energy of reaction 

given by eq.(6.19): 

 

 AFKOTX AFLNTX AFKNTX AFLOTX    (6.18) 

 

 
o o o o o

rcp LO AFKOTX AFLNTX AFKNTX AFLOTXG G G G G       (6.19) 

 

It is possible to make two key simplifications here. The first is setting Gm
E
 = 0, i.e. 

interactions between atoms in the same sublattice sites are neglected, meaning that 

the sublattice solid solution model is ideal. The second is that the Gibbs free energies 

of the reciprocal reactions in the solid solution are numerically approximated to zero 
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(U = 0). The reciprocal reaction terms describe the nearest-neighbour interactions in 

the solid solution, so are likely to influence end-member chemical potentials more 

than the next-nearest-neighbour interactions described by the excess Gibbs free 

energy terms. These terms are likely to be non-zero in C-(N-)A-S-H gels, because it 

is known that thermodynamic energetic differences arise from nearest-neighbour Si-

Al substitution in aluminosilicate systems (Provis et al., 2005a), but this approach 

can be validated by the good fit of the thermodynamic model to the published 

solubility and chemical composition data in the CaO-(Na2O,Al2O3)-SiO2-H2O 

systems (section 6.4). In defining the mixing rules in this way, the accuracy of the 

thermodynamic model is determined semi-empirically through the use of end-

members with carefully selected chemical compositions and Gibbs free energies that 

internalise the nearest and next-nearest neighbour interactions in C-(N-)A-S-H gels, 

rather than through the explicit definition of these interactions. However, 

quantification of these interactions in terms of chemical potentials for hypothetical 

C-(N-)A-S-H end-members, and a better understanding of the solubility of C-(N-)A-

S-H gels, will be important future steps in the model development. 

 

Application of these assumptions to eq.(6.17) leads to the final, simplified formula 

for the chemical potential of an end-member in the C-(N-)A-S-H sublattice solid 

solution model (eq.(6.20)): 

 

           

 

2ln 2ln 2ln ln ln ln

o

AFKNTX AFKNTX

A F K N T X

G

RT y y y y y y

  

      
  (6.20) 

 

The C-(N-)A-S-H thermodynamic model developed here is implemented in the 

GEM-Selektor v3 thermodynamic modelling software (http://gems.web.psi.ch/) 

(Kulik et al., 2013; Wagner et al., 2012). Sublattice solid solution models can be 

specified in GEM-Selektor by modifying the activities of the chosen end-members 

(Table 6.1) through the introduction of a ‘fictive activity coefficient’ λ, which 

internalises the thermodynamic mixing relationships within the solid solution. This 
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method was used in the C-S-H thermodynamic model developed by Kulik (2011). 

The fictive activity coefficient is defined by eq.(6.21): 

 

 k
k

k





   (6.21) 

 

where αk is the activity of the k
th

 end-member, eq.(6.22): 

 

  lno

k k kRT      (6.22) 

 

The fictive activity coefficient is defined by eliminating μk and the 
o
GAFKNTX term 

(equivalent to μk
o
 as defined here) from eqs.(6.20,6.22), then substituting eq.(6.21) 

into the resulting equation and simplifying to obtain eq.(6.23): 

 

             

 

l 2ln 2ln 2ln ln ln n

l

n

n

lAFKNTX A F K N T X

AFKNTX

y y y y y y


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
  (6.23) 

 

Relationships equivalent to eq.(6.23) can thus be obtained for all eight end-members 

(Table 6.1). The relationships for the fictive activity coefficients for the end-

members of the C-(N-)A-S-H sublattice solid solution model are defined here in 

terms of the following notation (eqs.(6.24-6.31)): 5CA = 0, INFCA = 1, 5CNA = 2, 

INFCNA = 3, INFCN = 4, T2C* = 5, T5C* = 6, TobH* = 7. 
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  (6.24) 

 
 1 0 1 0 1 1 4 7

1 1 4 7 0 1 2 3 4 1

ln 2ln( ) 2ln( ) 2ln( )

ln( ) ln( ) ln( ) ln( )

       

         

       
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  (6.25) 
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 3 2 3 2 3 3

3 3 0 1 2 3 4 3
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6.3 Modelling Method 

 

6.3.1 Modelling System Definition 

 

The kernel Nagra/PSI (Hummel et al., 2002), which is the default thermodynamic 

database for GEM-Selektor v3 (http://gems.web.psi.ch/) (Kulik et al., 2013; Wagner 

et al., 2012), and the CEMDATA07 thermodynamic database (Kulik and Kersten, 

2001; 2002; Lothenbach et al., 2008b; Lothenbach and Winnefeld, 2006; Matschei et 

al., 2007b; Möschner et al., 2008; Möschner et al., 2009; Schmidt et al., 2008), 

which contains data for various compounds commonly found in cement systems, 

were used during simulations. Thermodynamic data for the gases and aqueous 

species are shown in Tables 3.2 and 3.3 respectively (section 3.4.1). The solid phases 

used in the thermodynamic modelling simulations in this chapter are shown in Table 

6.2. 
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Table 6.2. Thermodynamic properties of the solid phases used in the thermodynamic modelling simulations. The reference state is 298.15 K and 

1 bar. 

Phase V° (cm
3
/mol) 

ΔfH° 

(kJ/mol) 

ΔfG° 

(kJ/mol) 

S° 

(J/(mol.K)) 

Cp° 

(J/(mol.K)) 
Reference 

Al(OH)3 (microcrystalline) 32.0 -1265 -1148 140 93.1 (Lothenbach et al., 2012b) 

Portlandite, Ca(OH)2 33.1 -984.7 -897 83.4 87.5 (Robie and Hemingway, 1995) 

Amorphous SiO2 29.0 -903.3 -849 41.3 44.5 
(Helgeson et al., 1978; Kulik and 

Kersten, 2001) 

C2AH8 90.1 -5278 -4696 450 521 (Lothenbach et al., 2012b) 

C3AH6 150 -5537 -5008 422 446 (Lothenbach et al., 2012b) 

C4AH13 27.4 -8302 -7327 700 930 (Lothenbach et al., 2008b) 

C4AH19 382 -1002 -8750 1120 1382 (Lothenbach et al., 2012b) 

C4AH10 194 -5388 -4623 610 668 (Lothenbach et al., 2012b) 

Monosulfate, C4AsH12 309 -8750 -7779 821 942 (Matschei et al., 2007b) 

Stratlingite, C2ASH8 21.6 -6360 -5705 546 603 (Matschei et al., 2007b) 

Ettringite, C6As3H32 707 -17535 -15206 1900 2174 (Lothenbach et al., 2008b) 

Hydrotalcite, M4AH10 220 -7196 -6395 549 649 (Lothenbach et al., 2008b) 

Brucite, Mg(OH)2 24.6 -923 -832 63.1 77.3 (Helgeson et al., 1978) 

The ‘downscaled CSH3T’ model 
a
 

TobH, (CaO)1(SiO2)1.5(H2O)2.5 85.0 -2833 -2562 153 231 (Kulik, 2011) 

T5C, (CaO)1.25(SiO2)1.25(H2O)2.5 79.3 -2782 -2519 160 234 (Kulik, 2011) 

T2C, (CaO)1.5(SiO2)1(H2O)2.5 80.6 -2722 -2467 167 237 (Kulik, 2011) 
a
 The mixing rules used to describe the downscaled CSH3T model and the thermodynamic properties that define the TobH, T5C and T2C end-

members in GEM-Selektor are the same as those described in (Kulik, 2011) for this model. The Gibbs free energies (and thus the enthalpies) of 

these components are modified slightly to the corresponding values used to define the TobH*, T5C* and T2C* end-members of the CNASH_ss 

model (Table 6.4). 
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Aqueous phase activity coefficients were calculated using the Truesdell-Jones form 

of the extended Debye-Hückel equation, as described in section 3.4.1.  

 

6.3.2 Thermodynamic Property Estimation 

 

The standard absolute isobaric heat capacity (Cp
o
) and absolute entropy at standard 

state (S
o
) of the five (Al,Na)-containing C-(N-)A-S-H end-members were estimated 

using the additivity method and eq.(6.32), defined in terms of structurally-relevant 

constituents: T2C (the Ca-rich end-member of the downscaled CSH3T model (Kulik, 

2011), (CaO)1.5(SiO2)1(H2O)2.5), portlandite (Ca(OH)2), amorphous SiO2, gibbsite 

(Al(OH)3) and NaOH (s). 
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  (6.32) 

 

Here Φ
o
 denotes the standard thermodynamic property undergoing estimation (Cp

o
 or 

S
o
), a’, b’, c’, d’, e’ are the stoichiometric coefficients for the respective oxide 

components CaO, SiO2, Al2O3, Na2O and H2O, and the numerical coefficients for 

these terms are the values that result from solving the elemental balance for 

eq.(6.32). The thermodynamic properties of the constituent phases, shown in Table 

6.3, are consistent with the Nagra/PSI (Hummel et al., 2002) and CEMDATA07 

thermodynamic databases (Kulik and Kersten, 2001; 2002; Lothenbach et al., 2008b; 

Lothenbach and Winnefeld, 2006; Matschei et al., 2007b; Möschner et al., 2008; 

Möschner et al., 2009; Schmidt et al., 2008).  
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Table 6.3. Thermodynamic properties of the solid constituents used to estimate Cp
o
 and S

o
 for the C-(N-)A-S-H end-members. The reference 

state is 298.15 K and 1 bar. 

Phase 
V° 

(cm
3
/mol) 

ΔfH° 

(kJ/mol) 

ΔfG° 

(kJ/mol) 

S° 

(J/(mol.K)) 

Cp° 

(J/(mol.K)) 
Reference 

Portlandite, Ca(OH)2 33.1 -984.7 -897.0 83.4 87.5 (Robie and Hemingway, 1995) 

Amorphous SiO2 29.0 -903.3 -848.9 41.3 44.5 (Helgeson et al., 1978; Kulik and Kersten, 2001) 

Gibbsite, Al(OH)3 32.0 -1289 -1151 70.1 93.1 (Helgeson et al., 1978) 

NaOH (s) 18.8 -425.8 -379.6 64.4 59.5 (Chase, 1998; Robie and Hemingway, 1995) 

T2C, 

(CaO)1.5(SiO2)1(H2O)2.5 
80.6 -2722 -2467 167 237 (Kulik, 2011) 
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The additivity method is expected to yield relatively small errors in estimated values 

for Cp
o
 and S

o
 if suitable constituents are chosen (Anderson and Crerar, 1993). The 

changes in S
o
 and Cp

o
, and the solubility product (Kso) of the (Al,Na)-containing C-

(N-)A-S-H end-members for the dissociation reaction represented by eq.(6.33), were 

determined to enable thermodynamic property calculations in GEM-Selektor: 
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  (6.33) 

 

The ReacDC module in GEM-Selektor was used to determine the standard partial 

molal Gibbs free energies (ΔfG
o
) and enthalpies of formation (ΔfH

o
) for the proposed 

C-(N-)A-S-H end-members by specifying ‘optimised’ solubility products for the 

reaction shown in eq.(6.33), the value of S
o
 determined via the additivity method 

(using the components listed previously), and the change in S
o
 of the dissociation 

reaction (eq.(6.33)). The Gibbs free energies (and thus the enthalpies) of the T2C*, 

T5C* and TobH* end-members were modified slightly from the values reported in 

the downscaled CSH3T model (Kulik, 2011), and solubility products of the (Al,Na)-

containing C-(N-)A-S-H end-members were selected, to obtain the optimised fit of 

the thermodynamic model to the solubility and solid phase chemistry data in the 

CaO-(Na2O,Al2O3)-SiO2-H2O (Atkins et al., 1992b; Atkinson et al., 1989; Chen et 

al., 2004; Cong and Kirkpatrick, 1996a; Faucon et al., 1999a; Flint and Wells, 1934; 

Fujii and Kondo, 1981; Glasser et al., 1999; Greenberg and Chang, 1965; Grutzeck 

et al., 1989; Harris et al., 2002; Hong and Glasser, 1999; Kalousek, 1944; Lognot et 

al., 1998; Macphee et al., 1989; Pardal et al., 2012; Renaudin et al., 2009a; Renaudin 

et al., 2009b; Roller and Ervin, 1940; Sun et al., 2006; Suzuki et al., 1985; Taylor, 

1950; Walker et al., 2007; Way and Shayan, 1992) and AAS cement systems 

(Gruskovnjak et al., 2006; Lloyd et al., 2010; Puertas et al., 2004; Song and 

Jennings, 1999) used in model validation (section 6.4). All other thermodynamic 
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parameters of the T2C*, T5C* and TobH* end-members were adopted directly from 

the downscaled CSH3T model. 

 

Standard molar volumes (V
o
) of the (Al,Na)-containing C-(N-)A-S-H end-members 

were determined from density calculations using the method proposed by Thomas et 

al. (2012), but extended to include Na via eq.(6.34): 

 

       2 3 2 2

2 2 3 2 22 2 2 2
'

Al O Na O H Osc sc sc sc scCaO
CaO SiO Al O Na O H OSiO SiO SiO SiOsc

CNASH A CNASH

CNASH

b b b b b
N

MW
 

    
 
 
 

 (6.34) 

 

where the b
sc

 parameters are the established neutron scattering lengths for CaO, SiO2, 

Al2O3, Na2O and H2O, ρ
sc

 is the scattering length density taken from the literature 

(Thomas et al., 2012), ρ’CNASH is the predicted density of a C-(N-)A-S-H end-

member, NA is Avogadro’s number, MWCNASH is the molecular weight of a C-(N-)A-

S-H end-member, and the ratios CaO/SiO2, Al2O3/SiO2, Na2O/SiO2, and H2O/SiO2 

are molar composition ratios of a C-(N-)A-S-H end-member. The optimised 

thermodynamic properties for the C-(N-)A-S-H end-members are summarised in 

Table 6.4. 
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Table 6.4. Thermodynamic properties, densities and the change in thermodynamic 

properties for the dissociation reaction (eq.(6.33)) for the end-members of the  

C-(N-)A-S-H solid solution (25°C, 1 bar). 

Standard thermodynamic properties and density 

End-member 
V° 

(cm
3
/mol) 

ΔfH° 

(kJ/mol) 

ΔfG° 

(kJ/mol) 

S° 

(J/(mol.K)) 

Cp° 

(J/(mol.K)) 

ρ'CNASH 

(g/cm
3
) 

5CA 57.3 -2491 -2293 163 177 3.01 

INFCA 59.3 -2551 -2343 154 181 2.92 

5CNA 64.5 -2569 -2382 195 176 2.84 

INFCNA 69.3 -2667 -2474 198 180 2.72 

INFCN 71.1 -2642 -2452 186 184 2.63 

T2C* 
a
 80.6 -2721 -2465 167 237 2.35 

T5C* 
a
 79.3 -2780 -2517 160 234 2.40 

TobH* 
a
 85.0 -2831 -2560 153 231 2.25 

Change in thermodynamic properties for the dissociation reaction (eq.(6.33)) 

End-member 
ΔrV° 

(cm
3
/mol) 

ΔrH° 

(kJ/mol) 

ΔrG° 

(kJ/mol) 

ΔrS° 

(J/(mol.K)) 

ΔrCp° 

(J/(mol.K)) 
log10(Kso) 

5CA -17.9 -4.0 61.4 -219 -29.3 -10.75 

INFCA 5.1 0.58 50.8 -168 160 -8.90 

5CNA -37.1 -18.8 59.4 -262 -115 -10.4 

INFCNA -21.3 -10.8 57.1 -228 41.5 -10.0 

INFCN -12.5 -6.2 61.1 -226 144 -10.7 
a
 The log10(Kso) values for the T2C*, T5C* and TobH* end-members, for the 

dissociation reaction eq.(6.33), are -11.6, -10.5 and -7.9 respectively. 

 

6.4 Application of the C-(N-)A-S-H Thermodynamic Model 

 

6.4.1 Approach 

 

The success of a thermodynamic model is measured in terms of its ability to describe 

the available thermochemical data in the target system(s) - here, for Ca-rich alkali-

activated cements such as AAS cements and hybrid alkali-activated/PC materials - 

and its ability to predict the chemistry of simulated systems where experimental data 

are either not available or are difficult to obtain. Hence, thermodynamic models for 

cements must be developed using existing experimental results such as solubility 

measurements (Chen et al., 2004; Pardal et al., 2009), solid product assemblages 

(Bonk et al., 2003; Richardson et al., 1994; Wang and Scrivener, 1995), and/or C-(N-

)A-S-H chemistry (Sun et al., 2006). An extensive set of experimental solubility data 

in the CaO-SiO2-H2O system is available for the development of thermodynamic 
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models for C-S-H gels (Atkins et al., 1992b; Atkinson et al., 1989; Chen et al., 2004; 

Cong and Kirkpatrick, 1996a; Flint and Wells, 1934; Fujii and Kondo, 1981; Glasser 

et al., 1999; Greenberg and Chang, 1965; Grutzeck et al., 1989; Harris et al., 2002; 

Roller and Ervin, 1940; Suzuki et al., 1985; Taylor, 1950; Walker et al., 2007), but 

the use of such information to develop models for C-(N-)A-S-H is significantly more 

complicated. Solubility measurements in the CaO-Na2O-Al2O3-SiO2-H2O system are 

not available in sufficient detail to enable development of thermodynamic models 

using this information alone, meaning that validation against other data is necessary. 

In this light, AAS cements provide an opportunity to validate the thermodynamic 

model; these materials are described mostly in terms of the more complex CaO-

Na2O-Al2O3-SiO2-H2O-MgO system, but are relatively well characterised. Hence, 

the thermodynamic model here is validated for the less complex CaO-(Na2O,Al2O3)-

SiO2-H2O systems, and also AAS cements. The ability of the thermodynamic model 

to predict solid phase assemblages in these systems will be discussed in a subsequent 

publication. 

 

GEM-Selektor simulations for the CaO-SiO2-H2O and CaO-(Na2O,Al2O3)-SiO2-H2O 

systems were performed at a constant temperature and pressure of 25°C and 1 bar, 

using 1 g of each of the gases O2 (g) and N2 (g). Simulations were performed by adding 

H2O, NaOH, CaO, Al(OH)3 and SiO2 at a fixed liquid/solid ratio = 50 using a basis 

of 1000 g H2O. The C-(N-)A-S-H thermodynamic model developed here 

(CNASH_ss) was used in all simulations.  

 

6.4.2 Model Validation in the CaO-SiO2-H2O System 

 

An extensive body of solubility data for the CaO-SiO2-H2O system is available 

(Atkins et al., 1992b; Atkinson et al., 1989; Chen et al., 2004; Cong and Kirkpatrick, 

1996a; Flint and Wells, 1934; Fujii and Kondo, 1981; Glasser et al., 1999; Greenberg 

and Chang, 1965; Grutzeck et al., 1989; Harris et al., 2002; Roller and Ervin, 1940; 

Suzuki et al., 1985; Taylor, 1950; Walker et al., 2007), which has been used to 

develop thermodynamic models for C-S-H gels in the past (Berner, 1992; Gisby et 
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al., 2007; Kulik, 2011; Kulik and Kersten, 2001; Walker et al., 2007). The fit of the 

new model to these data (Figure 6.2) is very good regarding description of the 

available data for pH, for concentrations of [Ca] < 2 mmol/L and [Si] > 0.1 mmol/L, 

and for Ca and Si solubilities up to a molar Ca/Si ratio in the solid ≈ 1.3. The 

thermodynamic model is less consistent with the full body of available data at higher 

dissolved Ca concentrations, lower aqueous Si concentrations, and higher Ca/Si 

ratios in the solid, but matches more closely with the more recently published data, 

particularly the measurements reported in (Chen et al., 2004). The poorer fit of the 

thermodynamic model to these data indicate that it is partly limited by the 

assumption of no additional solid solution Ca(OH)2; the simulated C-S-H gels are in 

equilibrium with portlandite for Ca/Si > 1.4 and amorphous SiO2 is simulated at 

Ca/Si ratios in the solid ≤ 0.67 (Figure 6.2). It has previously been proposed (Chen et 

al., 2004) that C-S-H solubility varies as a function of the nanostructure of this 

phase, which is much more pronounced for Ca/Si > 1 when many nanostructural 

configurations and potential bonding environments for Ca are possible (for example, 

Ca can be accommodated in the CB and IC sites here). This would mean that C-S-H 

thermodynamic models with a single curve for the solubility-structure relationships 

in these gels are inherently unable to describe the full range of available solubility 

data for this phase. However, the compositional region that is described accurately by 

the thermodynamic model is the region of principal importance for cementitious 

materials with compositions in the CaO-Na2O-Al2O3-SiO2-H2O system, which 

typically contain C-(N-)A-S-H with Ca/Si ≤ 1.2 (as discussed in section 2.1.2).  
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Figure 6.2. Comparison of the simulation results (25°C, 1 bar, water/solids mass 

ratio = 50) using the thermodynamic model developed here (CNASH_ss, bold red 

traces) to the downscaled CSH3T model (dashed blue traces) (Kulik, 2011) and 

published solubility data in the CaO-SiO2-H2O system (Atkins et al., 1992b; 

Atkinson et al., 1989; Chen et al., 2004; Cong and Kirkpatrick, 1996a; Flint and 

Wells, 1934; Fujii and Kondo, 1981; Glasser et al., 1999; Greenberg and Chang, 

1965; Grutzeck et al., 1989; Harris et al., 2002; Roller and Ervin, 1940; Suzuki et al., 

1985; Taylor, 1950; Walker et al., 2007). mM = mmol/L. 
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Figure 6.2. Continued. 

 

6.4.3 Model Validation in the CaO-Na2O-SiO2-H2O System 

 

Significantly fewer thermochemical data are available for cements in the more 

complex CaO-Na2O-SiO2-H2O system than in the CaO-SiO2-H2O system. 

Simulations for the CaO-Na2O-SiO2-H2O system (Figures 6.3-6.6) were performed at 

bulk NaOH concentrations of 0.25, 0.5, 1 and 3 mol/L, and compared to published 

results in the respective ranges of [NaOH] = 0.1 – 0.3 M, 0.3 – 0.8 M, 0.8 – 1 M, 1 – 

5 M. This grouping was chosen to constrain the range of NaOH concentrations in the 

experimental studies relatively tightly to the bulk alkali concentrations used in the 

simulations, while maintaining enough data points in each group to enable reliable 

validation of the thermodynamic model.  
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The maximum Ca content of equilibrated (sodium) calcium silicate hydrate (C-(N-

)S-H) products and the bulk system alkalinity are inversely related (Lognot et al., 

1998); C-(N-)S-H with solid Ca concentrations above this maximum value are more 

soluble than portlandite at equilibrium (a maximum value of Ca/Si ≈ 1 has been 

reported for C-(N-)S-H equilibrated (Lognot et al., 1998) at bulk NaOH 

concentrations ≈ 1 mol/kg). The thermodynamic modelling simulations performed 

here show this same trend (Figures 6.3-6.6), which indicate that the C-(N-)S-H gels 

modelled at a bulk NaOH concentration of 3 M are in equilibrium with portlandite at 

all Ca/Si ratios ≥ 1, rather than the much higher Ca/Si ratios at which this is observed 

in the CaO-SiO2-H2O system (Ca/Si ≥ 1.4, Figure 6.2).  
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Figure 6.3. Comparison of the simulation results (25°C, 1 bar, 0.25 M NaOH/solids 

mass ratio = 50) using the thermodynamic model developed here (CNASH_ss, bold 

red traces) to published solubility data in the CaO-Na2O-SiO2-H2O system at alkali 

concentrations 0.1 M ≤ [NaOH] ≤ 0.3 M (Hong and Glasser, 1999; Kalousek, 1944; 

Macphee et al., 1989). mM = mmol/L. 
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Figure 6.4. Comparison of the simulation results (25°C, 1 bar, 0.5 M NaOH/solids 

mass ratio = 50) using the thermodynamic model developed here (CNASH_ss, bold 

red traces) to published solubility data in the CaO-Na2O-SiO2-H2O system at alkali 

concentrations 0.3 M ≤ [NaOH] ≤ 0.8 M (Hong and Glasser, 1999; Kalousek, 1944; 

Macphee et al., 1989; Way and Shayan, 1992). The simulated C-S-H gels are in 

equilibrium with portlandite at molar ratios of Ca/Si in the solid ≥ 1.3. mM = 

mmol/L. 
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Figure 6.5. Comparison of the simulation results (25°C, 1 bar, 1 M NaOH/solids 

mass ratio = 50) using the thermodynamic model developed here (CNASH_ss, bold 

red traces) to solubility and solid phase chemistry data in the CaO-Na2O-SiO2-H2O 

system at alkali concentrations 0.8 M ≤ [NaOH] ≤ 1 M (Kalousek, 1944; Lognot et 

al., 1998; Way and Shayan, 1992). The corresponding end member mole fraction 

results are also shown. mM = mmol/L. 
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Figure 6.6. Comparison of the simulation results (25°C, 1 bar, 3 M NaOH/solids 

mass ratio = 50) using the thermodynamic model developed here (CNASH_ss, bold 

red traces) to solubility and solid phase chemistry data in the CaO-Na2O-SiO2-H2O 

system at alkali concentrations 1 M ≤ [NaOH] ≤ 5 M (Kalousek, 1944; Way and 

Shayan, 1992). The corresponding end member mole fraction results are also shown. 

mM = mmol/L. 

 

The good agreement between the measured solubility data for NaOH concentrations 

of 0.3 M-0.8 M and the simulations at [NaOH] = 0.25 and 0.5 M are evident in 
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Figures 6.3-6.4. The composition of the simulated C-(N-)S-H gel also captures the 

relatively higher Na content measured in this phase at lower Ca/Si ratios (Way and 

Shayan, 1992). The comparisons between the simulated and reported solubility data 

in the other alkali concentration ranges studied are generally also good, with the 

exception of some of the data reported at NaOH concentrations > 1 M by Kalousek 

(1944). This may be explained by the presence of additional sodium calcium silicate 

hydrate gels in those highly alkaline systems that are not described in the 

thermodynamic databases used here (e.g. phases with similarities to the kanemite 

group of minerals (Kirkpatrick et al., 2005), which are thought to be similar to alkali-

aggregate reaction products). This would mean that the aqueous composition data for 

[NaOH] concentrations > 1 M reported by Kalousek (1944) may not be solely 

determined by the solubility of C-(N-)S-H phases.  

 

6.4.4 Model Validation in the CaO-Al2O3-SiO2-H2O System 

 

Analysis of C-A-S-H solubility from published solubility data for this phase (Faucon 

et al., 1999b; Pardal et al., 2012) is complicated by the coexistence of secondary 

phases such as strätlingite and/or superficial carbonation products (e.g. calcium 

hemicarboaluminate hydrate, C4Ac0.5H12) in the solids analysed. Here, the 

thermodynamic model is validated against the solubility dataset published by Pardal 

et al. (2012) (Figure 6.7) over the bulk composition range most relevant for AAS 

cements, 0.66 ≤ Ca/(Al+Si) ≤ 1 and 0 ≤ Al/Si ≤ 0.33. The simulation results and the 

measured solubility data are comparable, to within an order of magnitude. These data 

show a similar inverse relationship between [Si] and [Ca] to that described by the 

solubility data for these elements in the CaO-SiO2-H2O system (Figure 6.2).  
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Figure 6.7. A) Comparison of the simulation results (25°C, 1 bar, water/solids mass 

ratio = 50) using the thermodynamic model developed here (CNASH_ss, small blue 

diamonds, red squares and green triangles) to published solubility data for C-A-S-H 

gels in the CaO-Al2O3-SiO2-H2O system (large grey circles (Pardal et al., 2012)). 

The corresponding range of bulk compositions simulated, projected onto the CaO-

SiO2-Al2O3 ternary system, is shown in B). mM = mmol/L. 

 

Chemical composition data for C-A-S-H are also used for model validation (Faucon 

et al., 1999a; Renaudin et al., 2009a; Renaudin et al., 2009b; Sun et al., 2006); most 

of these data exist at three bulk Al/Si compositions: Al/Si ≈ 0.1, 0.2 and 0.33. 

Comparison of the modelling results against these data (Figures 6.8A-6.8C), for the 

relevant composition range in AAS cements (0.65 ≤ bulk Ca/(Al+Si) ≤ 1), shows that 

the simulations accurately describe all of the reported chemical composition data for 

this phase.   
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Figure 6.8. Comparison of the simulation results (25°C, 1 bar, water/solids mass 

ratio = 50) using the thermodynamic model developed here (CNASH_ss, small 

symbols and red lines) to the published chemical composition data for C-A-S-H gels 

(large symbols represent data from the literature: white (Sun et al., 2006); light grey 

(Renaudin et al., 2009b); dark grey (Faucon et al., 1999a); black (Renaudin et al., 

2009a)). Al/Si* = bulk Al/Si.  
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End-member mole fractions for the simulations plotted in Figure 6.8 are shown in 

Figure 6.9. 

 

 
Figure 6.9. End member mole fractions corresponding to the simulation results 

shown in Figure 6.8 (25°C, 1 bar, water/solids mass ratio = 50). Al/Si* = bulk Al/Si.  

 

6.4.5 Model Validation in Alkali-Activated Slag Cement Systems 

 

Simulations for calculating the solubility of AAS cements were performed in an N2 

atmosphere (1 g of N2 (g), to avoid oxidation of the system) at 25°C, 1 bar and at 

water/binder ratios specified as reported in the literature, shown here in Table 6.5. 
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Table 6.5. Slag reaction extents, curing times and activating conditions used to simulate the pore solution chemistry of AAS cements. 

System 

(corresponding to the  

legend labels in Figure 6.6) 

Curing 

time 

(days) 

Activator Water/binder 

Slag reaction extent 

used in simulations 

(%) 

Reference 

Gruskovnjak et al., 2006 1 Na2SiO3.5H2O 0.3 
a
 32 (Gruskovnjak et al., 2006) 

Gruskovnjak et al., 2006 
7 Na2SiO3.5H2O 

0.3 
a
 36 

(Gruskovnjak et al., 2006; Lothenbach and 

Gruskovnjak, 2007) 

Gruskovnjak et al., 2006 
28 Na2SiO3.5H2O 

0.3 
a
 38 

(Gruskovnjak et al., 2006; Lothenbach and 

Gruskovnjak, 2007) 

Gruskovnjak et al., 2006 
180 Na2SiO3.5H2O 

0.3 
a
 42 

(Gruskovnjak et al., 2006; Lothenbach and 

Gruskovnjak, 2007) 

Puertas et al., 2004 7 Na2O·1.5SiO2·xH2O 0.5 
b
 36 (Puertas et al., 2004) 

Puertas et al., 2004 7 NaOH 0.5 
b
 36 (Puertas et al., 2004) 

Lloyd et al., 2010 90 Na2O·mSiO2·xH2O 0.35 40 (Lloyd et al., 2010) 

Song and Jennings, 1999 28 1 M NaOH 0.45 
c
 36 (Song and Jennings, 1999) 

Song and Jennings, 1999  28 0.5 M NaOH 0.45 
c
 31 (Song and Jennings, 1999) 

Song and Jennings, 1999 28 0.1 M NaOH 0.45 
c
 26 (Song and Jennings, 1999) 

Song and Jennings, 1999  41 H2O 0.45 
c
 21 (Song and Jennings, 1999) 

Song and Jennings, 1999 44 1 M NaOH 0.45 
c
 39 (Song and Jennings, 1999) 

Song and Jennings, 1999 44 0.5 M NaOH 0.45 
c
 34 (Song and Jennings, 1999) 

Song and Jennings, 1999 44 0.1 M NaOH 0.45 
c
 29 (Song and Jennings, 1999) 

a
 water/cement.  

b
 (water + activator)/slag.  

c
 liquid/slag. 
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Congruent slag dissolution was assumed, with the slag reaction extents and bulk 

chemical compositions simulated by proportional additions of SiO2, CaO, MgO, 

Al2O3, Na2O, K2O, and H2SO4 or dissociated H2S (aq) (matching the SO4
2-

 and S
2-

 

content in the slag where reported, otherwise all sulfur is assumed to be present as S
2-

), to match the bulk slag chemical compositions and reaction extents reported in the 

literature (e.g. (Bernal et al., 2014b; Le Saoût et al., 2011; Lothenbach and 

Gruskovnjak, 2007)). All other components of the slag were excluded, as the 

concentrations of other elements in the slags studied are minor and the reactivity of 

Fe entrained in slag appears to be very low (Bernal et al., 2014a). For the cases where 

the degree of reaction of the slag is needed but not available, the extent of reaction of 

the slag was set so that the bulk chemistry of the simulations matched the bulk 

chemistry of the binder assumed in the original work (Thomas et al., 2012), or 

estimated where no further information was available (using the reaction extents 

provided in (Lothenbach and Gruskovnjak, 2007) as reference values, then 

modifying based on the bulk alkalinity and curing time).  

 

The simulated solubility results (Figure 6.10) match the experimentally-measured 

solubility data to approximately ±1 order of magnitude, with the poorest agreement 

found for the aqueous Si species in Na2O·mSiO2·xH2O-activated cements, which are 

under-predicted by the thermodynamic model. However, the uncertainty associated 

with each experimental data point is expected to be large, possibly also up to one 

order of magnitude, because slag reaction extents are not quantified in the 

experimental studies referenced here (with the exception of the estimations in 

(Lothenbach and Gruskovnjak, 2007) for the data in (Gruskovnjak et al., 2006)) and 

the data correspond to systems that are quite far from equilibrium in some cases (e.g. 

samples were cured for 7 days in (Puertas et al., 2004)). Similar slag reaction degrees 

to those estimated here (~40% at 100 days of curing) have been observed in sodium 

silicate and NaOH-activated slag pastes (35%-45% at 100 days of curing (Ben Haha 

et al., 2011a)), which does indicate that the estimates used here are reasonable, but 

does not fully resolve the uncertainty attributed to this factor. With this in mind, the 

accuracy of the fit between the simulation and experimental results is similar to the 
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level of uncertainty that can be expected for modelling dissolved elemental 

concentrations in AAS cements. 

 

 
Figure 6.10. Simulated elemental concentrations in the aqueous phase compared to 

experimental pore solution composition data for AAS cements (Gruskovnjak et al., 

2006; Lloyd et al., 2010; Puertas et al., 2004; Song and Jennings, 1999). The dotted 

lines show ±1 order of magnitude deviation from the solid y = x line. The slag 

reaction extents used in these simulations are shown in Table 6.5. mM = mmol/L. 

 

Comparisons between thermodynamic modelling results and experimental 

measurements of C-(N-)A-S-H gel chemical compositions in AAS cements are not 

straightforward because secondary products are often intimately intermixed with C-

(N-)A-S-H gel in these materials (Richardson and Groves, 1992a) and because the 

nanostructure and chemical composition of this phase can vary considerably at 

extended ages (Myers et al., 2013). In this sense, thermodynamic modelling can play 

an important role in understanding how the solid phase assemblage and chemical 
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composition of C-(N-)A-S-H gel may change over time, with simulation results 

representing the predicted nature of the solid binder at equilibrium.  

  

It is also important to assess how accurately the thermodynamic model represents the 

bulk volumetric properties of C-(N-)A-S-H gels, because this is a central aspect of 

the application of thermodynamic modelling to cement-based materials (Lothenbach 

et al., 2008a). The C-(N-)A-S-H gels formed in AAS cements are significantly 

denser than the C-S-H gels formed in neat PC materials (Thomas et al., 2012), which 

is a result that should be embodied in thermodynamic models for this phase. Hence 

simulations using the thermodynamic model developed here are compared to the 

available volumetric data for C-(N-)A-S-H gels in AAS cements (Table 6.6). 

 

Table 6.6. Simulated C-(N-)A-S-H gel properties in AAS cements (Bernal et al., 

2014b; Le Saoût et al., 2011; Thomas et al., 2012) compared to the results reported 

in (Thomas et al., 2012), using the bulk chemistry described in that study.  

Activator 

Curing 

time 

(days) 

Density 

(g/cm
3
) 

Molar volume  

(cm
3
/mol Si in 

C-(N-)A-S-H) 

Reference 

Experimental values 

Na2O·1.82SiO2·xH2O 90 2.73 50.8 (Thomas et al., 2012) 

Simulated values 

Na2O·1.82SiO2·xH2O 90 2.6 58 (Thomas et al., 2012) 

Na2SiO3 180 2.7 53 
COL-GBFS,  

(Bernal et al., 2014b) 

Na2SiO3 180 2.7 54 
AUS-GBFS,  

(Bernal et al., 2014b) 

Na2SiO3 180 2.7 53 
SP-GBFS,  

(Bernal et al., 2014b) 

NaOH 100 2.6 57 (Le Saoût et al., 2011) 

Na2SiO3·5H2O 100 2.5 56 (Le Saoût et al., 2011) 

 

The C-(N-)A-S-H bulk densities and molar volumes simulated by thermodynamic 

modelling are similar to the reported volumetric properties of this phase (Table 6.6) 

(Thomas et al., 2012). This result is consistent with a much more tightly packed 

atomic structure for the C-(N-)A-S-H gels formed in AAS cements than for the C-S-

H gels formed in neat PC materials ((CaO)1.7(SiO2)1(H2O)1.8, molar volume = 72.1 

cm
3
/mol (Allen and Thomas, 2007)). This is also consistent with the discussion 

presented in (Thomas et al., 2012), where it was argued that the reported density and 
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molar volume of the C-(N-)A-S-H gels formed in AAS cements are only weakly 

related to the bulk composition of these materials. Therefore, it can be expected that 

the thermodynamic model developed here is able to closely represent the bulk 

volumetric properties of C-(N-)A-S-H gels in AAS cements.  

 

6.4.6 Perspectives 

 

This paper represents the first step towards developing a structurally-consistent 

thermodynamic model for C-(N-)A-S-H gel that contains explicit descriptions of Al 

and alkali components, which provides a relatively simple basis for further 

development and utilisation. Therefore, there are a number of aspects that would 

improve the thermodynamic model, and some are listed here to guide future 

development: 

 The thermodynamic model has been designed for C-(N-)A-S-H with 

significant Al and alkali incorporation, particularly those formed in AAS 

cement. This model may also be relevant to high volume blended PC/SCM 

materials reacted with either water or an alkali source (e.g. CEM III blast 

furnace cements as specified in EN 197-1), as the bulk chemical 

compositions of these materials and AAS cements can be similar (Ca/(Al+Si) 

≈ 1) (Taylor et al., 2010). Its suitability for use in simulating the chemistry of 

these materials needs to be assessed further.  

 Improvement can be found by removing the assumptions used to simplify the 

mixing relationships for the sublattice solid solution model, which 

approximated the Gibbs free energies of the reciprocal reactions and the 

excess Gibbs free energies to zero. This will become possible as more 

information is obtained about the energetic differences arising between 

hypothetical end-members (i.e. energetic information regarding Si-for-Al 

substitution in chain sites, and (Ca
2+

,2Na
+
,2H

+
) substitution in interlayer 

sites) and the solubility of C-(N-)A-S-H.  

 The utility of the pore solution composition data used to parameterise the 

thermodynamic model in AAS cements would be significantly improved if 
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such data were published alongside quantification of the reaction extent of 

the slag. This information, along with more solubility data for AAS cements 

and synthetic CaO-Na2O-Al2O3-SiO2-H2O systems, will be needed to enable 

further development of thermodynamic models for C-(N-)A-S-H. 

 

6.5 Conclusions 

 

This paper has presented a thermodynamic model for the C-(N-)A-S-H gel in AAS 

cements, which for the first time accounts explicitly for the structurally-incorporated 

Al and Na species in this phase. This model represents C-(N-)A-S-H as an ideal solid 

solution of tobermorite-like end-members with independent substitution of 

tetrahedral Al and Na species allowed in its formulation, meaning that it may also be 

applicable to cement-based materials that are less alkali- and/or Al-rich than AAS 

cements. The model was implemented in GEM-Selektor using thermodynamic 

properties for the C-(N-)A-S-H end-members that were parameterised to match a 

comprehensive set of solubility data in the CaO-(Na2O,Al2O3)-SiO2-H2O and AAS 

cement systems, and published chemical compositions of C-A-S-H.  

 

A good fit was found between the full set of data used in the parameterisation 

procedure and the simulation results, which were within ±1 order of magnitude in 

simulations of aqueous phase chemical compositions in AAS cements, indicating 

that the model is suitable for thermodynamic modelling of these materials. The molar 

volume and density of the C-(N-)A-S-H gels simulated by the model were also in 

close agreement with the available data for this phase in AAS cements, meaning that 

the model can describe chemical shrinkage in these systems. Therefore, the 

thermodynamic model developed here greatly improves the scope of thermodynamic 

modelling applications to Ca-rich alkali-activated cements and hybrid alkali-

activated/PC materials, which is important for understanding the durability of these 

materials under sealed, ambient and aggressive environmental conditions. 
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7 

Thermodynamic Modelling of Alkali-

Activated Slag-Based Cements 

 

 

This chapter is based on the manuscript ‘Thermodynamic modelling of alkali-

activated slag-based cements’, by Myers, R. J., Lothenbach B., Bernal, S. A. and 

Provis, J. L., currently in preparation.  

 

 

7.1 Introduction 

 

Development of alternative, high performance and low CO2 cements is an important 

advancement that is urgently needed to reduce the CO2-footprint of the construction 

industry. Alkali-activated cements are formed through the reaction of an activator (an 

alkaline source), water and aluminosilicate precursors, which are often sourced as 

industrial by-products (Provis, 2014), and these cements can provide substantial CO2 

savings relative to Portland cement (PC) materials (McLellan et al., 2011). 

Understanding the durability of alkali-activated materials, which is intimately linked 

to the chemistry of these materials (van Deventer et al., 2012) and differs from 

conventional PC for important physicochemical reasons (Provis and Bernal, 2014), is 

a key scientific challenge for their utilisation (Juenger et al., 2011). Alkali-activated 

slag (AAS) cements are an important type of high-Ca alkali-activated materials 

(Provis and Bernal, 2014) that are produced using metallurgical slags (Shi and Qian, 

2000), typically ground granulated blast furnace slag (GBFS), as precursors.  

 

Evidence for the formation of a highly-connected and poorly-ordered aluminosilicate 

activation product in sodium silicate-activated slag was presented earlier in this 
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thesis (Myers et al., 2015a; Myers et al., 2013); this phase is considered to be similar 

to the alkali aluminosilicate (hydrate) (N-A-S(-H)) ‘geopolymer’ gels formed 

through alkali-activation of low-Ca precursor materials (Provis et al., 2005b). These 

gels are known to show good resistance to elevated temperatures and in the presence 

of aggressive chemicals, such as in carbonate-rich environments (Bernal et al., 

2013c). Accelerated carbonation depths of Na2SiO3-activated slag cements have been 

shown to be inversely proportional to the MgO content of the slag precursor used 

(Bernal et al., 2014b), indicating the important role of Mg in determining the 

carbonation performance of these materials. (Shi et al., 2006). These results highlight 

the important role of alkali-activated cement chemistry on the durability of these 

materials. 

  

The CNASH_ss thermodynamic model (Myers et al., 2014) derived in Chapter 6 was 

developed to formally account for tetrahedral Al and Na species incorporated in C-

(N-)A-S-H with Ca/Si ratios < 1.3. Here, this thermodynamic model is used to 

simulate the chemistry of AAS cements activated by NaOH, Na2O·nSiO2 (n = 1 and 

2) and Na2CO3. The thermodynamic model is assessed here in terms of predicting 

solid phase assemblages and the Al content of C-(N-)A-S-H over the bulk slag 

chemical composition range relevant to AAS cements. These simulations are 

performed using an expanded thermodynamic database for cementitious materials, 

based on the CEMDATA07 database with the addition of an updated definition of 

Mg-Al layered double hydroxide (LDH) phase intercalated with OH
-
 (MgAl-OH-

LDH), and thermodynamic data for some zeolites and alkali carbonates. The results 

are also discussed in terms of implications for the design of high performance alkali-

activated slag-based materials. 
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7.2 Methods 

 

7.2.1 Thermodynamic Model for C-(N-)A-S-H 

 

The CNASH_ss thermodynamic model (Myers et al., 2014) developed in Chapter 6 

is formulated as an ideal sublattice solid solution comprising three C-S-H end-

members, one calcium (alkali) silicate hydrate (C-(N-)S-H) end-member, two C-A-S-

H end-members and two C-(N-)A-S-H end-members (Table 7.1). End-member 

chemical compositions are defined in this model by extension of the ‘Substituted 

General Model’ (SGM) (Richardson and Groves, 1993b) for consistency with 

tobermorite-like nanostructures containing no ‘solid solution Ca(OH)2’ (Richardson, 

2004), which limits the applicability of the model to bulk Ca/Si compositions <1.3.  

 

Table 7.1. The eight end-members of the ideal sublattice solid solution defined in the 

CNASH_ss thermodynamic model (Myers et al., 2014). Thermodynamic data for 

these end-members are shown in Table 6.4. 

End-member Chemical formula 

5CA (CaO)1.25(SiO2)1(Al2O3)0.125(H2O)1.625 

INFCA (CaO)1(SiO2)1.1875(Al2O3)0.15625(H2O)1.65625 

5CNA (CaO)1.25(SiO2)1(Al2O3)0.125(Na2O)0.25(H2O)1.375 

INFCNA (CaO)1(SiO2)1.1875(Al2O3)0.15625(Na2O)0.34375(H2O)1.3125 

INFCN (CaO)1(SiO2)1.5(Na2O)0.3125(H2O)1.1875 

T2C* 
a
 (CaO)1.5(SiO2)1(H2O)2.5 

T5C* 
a
 (CaO)1.25(SiO2)1.25(H2O)2.5 

TobH* 
a
 (CaO)1(SiO2)1.5(H2O)2.5 

a 
The asterisks for the T2C*, T5C* and TobH* end-members indicate that these 

components have slightly modified thermodynamic properties but the same chemical 

compositions relative to the T2C, T5C and TobH end-members of the downscaled 

CSH3T model (Kulik, 2011). 

 

C-(N-)A-S-H is formally described in terms of non-cross-linked chain structures in 

the CNASH_ss thermodynamic model, but without precluding representation of 

cross-linked tobermorite-like chain structures, because these structural types cannot 

be differentiated by bulk chemical composition alone. Thermodynamic calculations 

using CNASH_ss are therefore also consistent with cross-linked C-(N-)A-S-H 

structural models such as those described by the ‘Cross-linked Substituted 
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Tobermorite Model’ (CSTM) (Myers et al., 2013). Full details of the development 

and implementation of the CNASH_ss model are given in Chapter 6 (Myers et al., 

2014). 

 

7.2.2 Speciation of Iron and Sulfur 

 

Thermodynamic modelling of AAS cements requires consideration of additional 

constituent elements outside the CaO-Na2O-Al2O3-SiO2-H2O system, most notably 

Mg, Fe and sulfur, as well as carbonates. While the speciation of Mg in AAS is 

generally well explained by its incorporation into Mg-Al LDH phases (Ben Haha et 

al., 2011b; Richardson et al., 1994; Wang and Scrivener, 1995), there is less 

consensus regarding the speciation of Fe and sulfur.  

 

It has been reported that Fe is largely present in GBFS as entrained unreactive 

submicron metallic (Fe
0
) particles rather than being distributed through the glassy 

phase of the slag (Bernal et al., 2014a), as the composition of blast furnace slag is 

specifically designed to reduce Fe solubility in the melt phase, but droplets of 

metallic iron can become entrained in the slag through splashing in the blast furnace. 

While minor amounts of Fe
2+

 can also exist in these particles (Taylor, 1997), no 

distinct Fe-rich secondary products have yet been identified in AAS cements. It is 

possible that any available Fe
2+

 or Fe
3+

 may be incorporated into solid phases such as 

C-(N-)A-S-H or AFm/LDH-type products in these materials (Richardson et al., 

1994), as is the case in PC-based systems where it is supplied in reactive form by the 

C4AF clinker phase. However, the very low content of available Fe in GBFS (i.e. Fe 

present in the glassy phases rather than as discrete metallic particles) means that the 

influence of this element on phase formation in AAS is expected to be small. Fe was 

therefore excluded from the thermodynamic simulations here, to represent the 

passivated state of this element in GBFS.  

 

Sulfide or polysulfide-containing reaction products have been identified to form in 

AAS cements (Roy, 2009); the initial hardened product is green in colour 
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(Lothenbach and Gruskovnjak, 2007) prior to atmospheric oxidation of the sulfur, 

which is mostly present as sulfide in GBFS (Taylor, 1997). Sulfur is mostly present 

as sulfide in the pore solution (Gruskovnjak et al., 2006), although the specific 

chemistry of the sulfide-bearing solid phases is not yet well understood. 

‘Aluminoferrite-tri’ (AFt) products are typically not observed in AAS cements 

derived from GBFS unless significant additional sulfates are provided by the 

activator (Rashad et al., 2013), which is consistent with the low sulfur/Al ratio (<< 1) 

that prevails in these materials (Matschei et al., 2007a). Sulfur was therefore 

represented in the calculation basis here as S
2-

 supplied by the simulated slag 

precursors; its oxidation was limited by using a N2 (g) atmosphere in the 

thermodynamic modelling calculations. 

 

7.2.3 MgAl-OH-LDH 

 

Thermodynamic data for MgAl-OH-LDH were reformulated into an ideal solid 

solution model containing three end-members with Mg/Al ratios of 2, 3 and 4, to 

match the known chemical composition range of this solid solution (Mg(1-

x)Alx(OH)(2+x)∙mH2O, 0.2 ≤ x ≤ 0.33 (Richardson, 2013b)).  

 

Recalculation of recently published solubility data for Mg/Al = 2 MgAl-OH-LDH 

(M4AH10) (Gao and Li, 2012) and existing solubility data for this phase (Bennett et 

al., 1992) was performed in GEM-Selektor v.3 (http://gems.web.psi.ch/) (Kulik et 

al., 2013; Wagner et al., 2012) using the dissolution reaction eq.(7.1):  

 

 2

4 2 14 2 2 2( ) 3 4 2 6( ) 7
soK

Mg Al OH H O Mg AlO OH H O        (7.1) 

 

where Kso is the solubility product. Solubility data for this phase were also calculated 

using the additivity method (Anderson and Crerar, 1993) with brucite (Mg(OH)2 (s)), 

magnesite (MgCO3 (s)) and hydrotalcite (Mg0.74Al0.26(OH)2(CO3)0.13·0.39H2O (s)) 

(Allada et al., 2005a) constituents (Table 7.2).  
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Table 7.2. Constituents used in the additivity method for MgAl-OH-LDH (298.15 K, 1 bar). 

Solids 
V° 

(cm
3
/mol) 

ΔfH° 

(kJ/mol) 

ΔfG° 

(kJ/mol) 

S° 

(J/(mol.K)) 

Cp° 

(J/(mol.K)) 
Reference 

Brucite, Mg(OH)2 24.6 -923.3 -832.2 63.1 77.3 
(Hummel et al., 2002; 

Thoenen et al., 2013) 

Magnesite, MgCO3 28.0 -1113 -1029 65.7 75.8 

(Helgeson et al., 1978; 

Hummel et al., 2002; 

Thoenen et al., 2013) 

Hydrotalcite, 

Mg0.74Al0.26(OH)2(CO3)0.13·0.39H2O 
- 

a
 -1166 -1043 85.6 101 (Allada et al., 2005a) 

a
 Not provided 
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The recalculation results indicate that the solubility product used previously to 

describe this phase (log10(Kso) = -56.02 at 25°C and 1 bar (Lothenbach and 

Winnefeld, 2006), for the calculated low-solubility data from (Bennett et al., 1992)) 

is not consistent with the full set of available solubility data for this phase (Figure 

7.1). Here, a solubility product of log10(Kso) = -49.70 at 25°C and 1 bar is selected for 

improved consistency with these data. The standard heat capacity and entropy of this 

phase are adapted from the thermodynamic data reported in (Allada et al., 2005a) for 

Mg0.74Al0.26(OH)2(CO3)0.13.0.39H2O using the additivity method with Mg(OH)2 (s) 

and MgCO3 (s) constituents (Table 7.2), i.e. the standard heat capacity for M4AH10 is 

calculated by eq.(7.2): 

 

 
    

4 10

3 20.74 0.26 3 22 0.13

1
( )0.26 0.39

2 0.5 0.346

o

M AH

o o o

MgCO Mg OHMg Al OH CO H O

Cp

Cp Cp Cp




 
  (7.2) 

 

 
Figure 7.1: Comparison between the recalculated solubility data (Bennett et al., 

1992; Gao and Li, 2012), results using the additivity method, and calculated 

solubility of the M4AH10 end-member of the MgAl-OH-LDH solid solution used in 

this work, MgAl-OH-LDH_ss (P = 1 bar). The green triangles at log10(Kso) = -56.02 

(25°C and 1 bar), represents the solubility product used previously to describe this 

phase in discussions of cement chemistry. Error bars represent the typical maximum 

uncertainty in solubility products for cement phases (±1 log10 unit).  
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Standard entropies and heat capacities for Mg/Al = 3 MgAl-OH-LDH (M6AH12) and 

Mg/Al = 4 MgAl-OH-LDH (M8AH14) were determined in the same manner (using 

solid constituents and a reaction analogous to eq.(7.2)), using the thermodynamic 

data reported in (Allada et al., 2005a). A difference of -22.32 log10 units was 

specified between the solubility products of M4AH10 (log10(Kso) = -49.70) and 

M6AH12 (log10(Kso) = -72.02), and between M6AH12 and M8AH14 (log10(Kso) = -

94.34) at 25°C and 1 bar, which is the difference between the solubility products of 

these phases when determined using the additivity method described here. A similar 

difference is found between reported thermodynamic data for MgAl-CO3-LDH 

(Mg4Al2(OH)12(CO3).4H2O, log10(Kso) = -44.19 (Rozov et al., 2011) and 

Mg6Al2(OH)16(CO3).5H2O, log10(Kso) = -66.58 (Rozov, 2010)), which suggests that 

the additivity approach is appropriate for the structurally-similar Mg-Al-LDH phases. 

These three MgAl-OH-LDH phases (M4AH10, M6AH12 and M8AH14) were specified 

as end-members of the simple ideal solid solution ‘MgAl-OH-LDH_ss’. This is 

justified because it has been shown that the assumption of simple ideal mixing is 

appropriate for modelling the total solubility of the structurally-similar hydrotalcite-

pyroaurite solid solution series (Rozov et al., 2011). This MgAl-OH-LDH solid 

solution is used in the thermodynamic modelling performed in this work. 

 

7.2.4 Other Solid Phases 

 

Thermodynamic data for cement-related solid phases other than C-(N-)A-S-H and 

MgAl-OH-LDH  were taken from the PSI/Nagra 12/07 thermodynamic database 

(Thoenen et al., 2013), which is updated from (Hummel et al., 2002) via the 

inclusion of two additional dissolved (alumino)silicate species, and the 

CEMDATA07 thermodynamic database (Kulik and Kersten, 2001; 2002; 

Lothenbach et al., 2008b; Lothenbach and Winnefeld, 2006; Matschei et al., 2007b; 

Möschner et al., 2008; Möschner et al., 2009; Schmidt et al., 2008) updated to 

include recently published data for Al(OH)3 and hydrogarnet phases (Dilnesa et al., 

2014; Lothenbach et al., 2012b) (Table 7.3).  
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Table 7.3. Thermodynamic properties of the secondary and minor solid phases simulated. The reference state is 298.15 K and 1 bar. 

Phases 
d
 

V° 

(cm
3
/mol) 

ΔfH° 

(kJ/mol) 

ΔfG° 

(kJ/mol) 

S° 

(J/(mol.K)) 

Cp° 

(J/(mol.K)) 
Reference 

Al(OH)3 (microcrystalline) 32.0 -1265 -1148 140 93.1 (Lothenbach et al., 2012b) 

Portlandite, CH 33.1 -985 -897 83.4 87.5 (Robie and Hemingway, 1995) 

SiO2 (amorphous) 29.0 -903 -849 41.3 44.5 
(Helgeson et al., 1978; Kulik and Kersten, 

2001) 

C2AH8 90.1 -5278 -4696 450 521 (Lothenbach et al., 2012b) 

Katoite, (C3AH6) 150 -5537 -5008 422 446 (Lothenbach et al., 2012b) 

C4AH19 382 -1002 -8750 1120 1382 (Lothenbach et al., 2012b) 

CAH10 194 -5288 -4623 610 668 (Lothenbach et al., 2012b) 

Strätlingite, C2ASH8 216 -6360 -5705 546 603 (Matschei et al., 2007b) 

Calcium monocarboaluminate, 

C4AcH11 
262 -8250 -7337 657 881 (Matschei et al., 2007b) 

Calcium hemicarboaluminate, 

C4Ac0.5H12 
285 -8270 -7336 713 906 (Matschei et al., 2007b) 

Calcium tricarboaluminate, 

C6Ac3H32 
650 -16792 -14566 1858 2121 (Matschei et al., 2007b) 

Ettringite, C6AS̄3H32 707 -17535 -15206 1900 2174 (Lothenbach et al., 2008b) 

Gypsum, CS̄H2 74.7 -2023 -1798 194 186 (Hummel et al., 2002; Thoenen et al., 2013) 

Anhydrite, CS̄ 45.9 -1435 -1322 107 99.6 (Hummel et al., 2002; Thoenen et al., 2013) 

CaO 16.8 -635 -604 39.7 42.8 (Helgeson et al., 1978) 

Brucite, MH 24.6 -923 -832 63.1 77.3 
(Helgeson et al., 1978; Hummel et al., 

2002; Thoenen et al., 2013) 

MgAl-CO3-LDH, M4AcH9 220 -7374 -6580 551 647 (Lothenbach et al., 2008b) 
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Table 7.3. Continued. 

Calcium monosulfoaluminate-hydroxoaluminate non-ideal solid solution (Matschei et al., 2007b) 

Calcium monosulfoaluminate,  

C4AS̄H12 
309 -8750 -7779 821 942 (Matschei et al., 2007b) 

C4AH13 274 -8300 -7324 700 930 (Lothenbach et al., 2012b) 

Carbonates 

Aragonite, CaCO3 34.2 -1207 -1128 90.2 81.3 (Hummel et al., 2002; Thoenen et al., 2013) 

Calcite, CaCO3 36.9 -1207 -1129 92.7 81.9 (Hummel et al., 2002; Thoenen et al., 2013) 

Dolomite (disordered), CMc2 64.4 -2317 -2157 167 158 (Hummel et al., 2002; Thoenen et al., 2013) 

Natron, NcH10 197 -4079 -3428 563 550 (Königsberger et al., 1999; Taga, 1969) 

Gaylussite, NCc2H5 149 -3834 -3372 387 - 
a
 

(Dickens and Brown, 1969; Königsberger et al., 

1999) 

Pirssonite, NCc2H2 104 -2956 -2658 239 329 
(Dickens and Brown, 1969; Königsberger et al., 

1999) 

Magnesite, Mc 28.0 -1113 -1029 65.7 75.8 (Hummel et al., 2002; Thoenen et al., 2013) 

Huntite, CM3c4 123 -4533 -4206 300 310 
(Graf and Bradley, 1962; Hemingway and Robie, 

1972; Königsberger et al., 1999) 

Artinite, M2cH4 96.2 -2921 -2568 233 248 
(de Wolff, 1952; Hemingway and Robie, 1972; 

Königsberger et al., 1999) 

Lansfordite, McH5 103 -2574 -2198 250 386 (Hill et al., 1982; Königsberger et al., 1999) 

MgAl-OH-LDH ideal solid solution end-members, ‘MgAl-OH-LDH_ss’ 

M4AH10 219 -7160 -6358 549 648 (Allada et al., 2005a; Richardson, 2013b) 

M6AH12 305 -9007 -8023 675 803 This study
 b

 

M8AH14 392 -10853 -9687 801 958 This study
 b
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Table 7.3. Continued. 

Zeolites 

Na-analcime, 

|Na0.32|.[Al0.32Si0.68O2].0.333H2O 
32.5

 c
 -1099 -1026 75.6 70.5 (Johnson et al., 1982) 

Natrolite, |Na0.4|.[Al0.4Si0.6O2].0.4H2O 33.8
 c
 -1144 -1063 71.9 60.4 (Johnson et al., 1983) 

Ca-heulandite, 

|Ca0.111|.[Al0.222Si0.778O2].0.667H2O 
35.2

 c
 -1179 -1090 87.1 82.9 (Kiseleva et al., 2001) 

(Ca,Na)-heulandite, 

|Ca0.111Na0.028|.[Al0.25Si0.75O2].0.667H2O 
35.2

 c
 -1185 -1094 84.0 82.9 (Kiseleva et al., 2001) 

Basic sodalite, 

|Na0.65(OH)0.15|.[Al0.5Si0.5O2].0.27H2O 
35.0

 c
 -1190 -1106 67.8 

e
 66.7 

e
 (Moloy et al., 2006) 

a
 Not available 

b
 Thermodynamic properties based on the thermochemical data in (Allada et al., 2005a) and solubility data in (Bennett et al., 1992; Gao and Li, 

2012), with molar volumes calculated from (Richardson, 2013b).  
c
 Molar volumes calculated from framework densities, lattice types and lattice cell parameters for each zeolite framework type (Baerlocher et al., 

2007). 
d
 Cement chemistry notation is used: C = CaO; S = SiO2; A = Al2O3; H = H2O; N = Na2O; M = MgO; c = CO2; S̅ = SO3. 

e
 Standard entropy and heat capacity estimated using the additivity method (Anderson and Crerar, 1993) based on H2O (l) (Table 3.3, section 

3.4.1), gibbsite (Helgeson et al., 1978; Hummel et al., 2002), NaOH (s) (Robie and Hemingway, 1995) and amorphous SiO2 (Table 7.3). 
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Thermodynamic data for some zeolites and alkali carbonate minerals were used to 

provide a preliminary assessment of the stability of these phases in AAS cements. 

The thermodynamic data used to describe these phases here (Table 7.3) should be 

treated as provisional only, because the thermodynamic data were not recompiled for 

full internal consistency with the Nagra-PSI and CEMDATA07 thermodynamic 

databases. Reliable thermodynamic data for other potentially important Na-

carbonates which can form in AAS cements (i.e. natrite (Na2CO3), thermonatrite 

(Na2CO3·H2O), nahcolite (NaHCO3) and trona (Na2CO3·NaHCO3·2H2O)) are not 

available (Königsberger et al., 1999; Monnin and Schott, 1984); therefore they were 

excluded from the simulations.  

 

The formation of siliceous hydrogarnet was suppressed in the simulations because 

this phase is kinetically hindered at ambient temperature and pressure (Lothenbach et 

al., 2008b). No additional restrictions related to the formation of any other solid 

reaction products were specified. 

 

7.2.5 Approach 

 

Thermodynamic modelling was performed using the Gibbs energy minimisation 

software GEM-Selektor v.3 (http://gems.web.psi.ch/) (Kulik et al., 2013; Wagner et 

al., 2012), with thermodynamic data for the solid phases discussed in sections 7.2.1-

7.2.4, and thermodynamic data for aqueous species and gases shown in Tables 3.2-

3.3 in section 3.4.1. The Truesdell-Jones form of the extended Debye-Hückel 

equation (eq.(3.7)) (Helgeson et al., 1981) and the ideal gas equation of state were 

used for the aqueous and gaseous phase models respectively; the activity coefficient 

models used in this thesis are described in section 3.4.1.  

 

Chemical equilibrium between the solid, aqueous and gaseous phases was assumed, 

and the slag was specified to dissolve congruently. The assumption of congruent 

dissolution is valid for calcium aluminosilicate glasses of similar bulk chemical 

compositions to GBFS in highly under-saturated conditions at pH = 13 (Snellings, 
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2013). This condition is likely to be approximated in AAS cements when the 

solution pH is sufficiently high (Bernal et al., 2015), although it is clear that this 

assumption will need to be revisited in some systems, particularly for AAS cements 

cured for long times or synthesised with less basic activators such as Na2CO3 (Bernal 

et al., 2015).  

 

A basis of 100 g slag (including the unreacted and reacted slag components), 

additions of H2O, NaOH or Na2O, SiO2 and Na2CO3 to achieve fixed water to binder 

(w/b) ratios of 0.4 and activator concentrations of 4 g Na2O equivalent/100 g slag 

(the activators used are NaOH, Na2SiO3, Na2Si2O5 and Na2CO3), a nitrogen 

atmosphere (10 mol N2 (g) per 100 g slag), and temperature/pressure conditions of 

298.15 K and 1 bar were specified. A specific gravity of 2.8 g/cm
3
 was selected for 

the unreacted slag component (Bernal et al., 2015). This simulation setup directly 

represents the AAS cements studied in (Bernal et al., 2015; Bernal et al., 2014b; 

Myers et al., 2015a; Myers et al., 2013), and is also similar to the AAS cement 

formulations reported in (Ben Haha et al., 2011b; 2012; Le Saoût et al., 2011) (which 

had ~3 wt.% Na2O equivalent and w/b = 0.4). With the exception of the phase 

diagram simulations (section 7.3.4), the simulated slag compositions are based on the 

GBFS composition shown in Table 3.1 (section 3.2.1).  

 

In section 7.3.1, the utility of the thermodynamic database (Table 7.3 for secondary 

phases, Table 6.4 for C-(N-)A-S-H, and Tables 3.2-3.3 in section 3.4.1 for aqueous 

species and gases) is assessed by assigning a reactive slag component comprised of 

SiO2, CaO, MgO, Al2O3, Na2O, K2O, and H2S (corresponding to the “SO3
”
 content 

of the slag in Table 3.1) and an unreactive slag component; the masses of both 

reactive and unreactive slag components sum to 100 g at 100% slag reaction extent. 

The mass of each reactive oxide component added to the simulation is specified 

using the slag composition given in Table 3.1 (i.e. 33.8 g SiO2 is specified for 100 g 

slag), except for the variable reactive oxide component (Al2O3, MgO or CaO), which 

was specified according to the simulation conducted: the Al2O3, MgO or CaO 

content in the slag was varied from 6-20 wt.%, 0-18 wt.% or 30-50 wt.% 
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respectively. The reactive slag component was rescaled to 60 g for each simulation 

step, to simulate a slag reaction extent of 60%, which represents a typical degree of 

reaction quantified for GBFS in sodium silicate-activated slag cements (~48% at 180 

days in (Ben Haha et al., 2011a), 54 ±3% at 100 days in (Le Saoût et al., 2011), 58-

61% at 180 days in (Bernal et al., 2014b) and >70% after 1 month in (Myers et al., 

2015a)). 

 

Specific details pertaining to the different descriptions of the slag-based precursors 

used here, for each other aspect of the study, are shown near the beginning of each of 

sections 7.3.2-7.3.4. 

 

7.3 Results and Discussion 

 

7.3.1 Utility of CNASH_ss and MgAl-OH-LDH_ss  

 

Figure 7.2A shows that the calculated phase assemblage in Na2SiO3-activated slag 

cement changes greatly as a function of Al2O3 content in the slag. The secondary 

products (forming in addition to C-(N-)A-S-H) are dominated by MgAl-OH-LDH 

between 6 and 9 wt.% Al2O3, and strätlingite, which forms alongside this phase 

between 9 and 20 wt.% Al2O3. Small amounts of katoite are predicted for slags with 

7-11 wt.% Al2O3, and natrolite between 17 and 20 wt.% Al2O3. The prediction of 

katoite here is relatively consistent with the observation of small amounts of this 

phase in sodium silicate-activated slag cements produced from slags with ~13 wt.% 

Al2O3 (Bernal et al., 2014b; Schneider et al., 2001). MgAl-OH-LDH phases are 

widely identified in sodium silicate-activated slag cements derived from slags with 

≥5 wt.% MgO (Bernal et al., 2014b), in good agreement with these results; LDH 

formation is reassessed in detail below. Very small quantities of brucite are predicted 

for slags with 6 wt.% Al2O3. The simulated volume of the MgAl-OH-LDH phase 

does not change greatly here because its formation is limited by the amount of Mg 

supplied by the slag, which is constant at a fixed slag reaction extent.  
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Figure 7.2. Simulated A) solid phase assemblages, B) Al/Si ratios in C-(N-)A-S-H 

gel, and C) Mg/Al ratios in MgAl-OH-LDH in Na2SiO3-activated slag cements with 

bulk slag chemical compositions rescaled from Table 3.1 except for the Al2O3 

content, which is varied here. Changes in B) Na/Si, C) H2O/Si, Ca/Si and Ca/(Al+Si) 

ratios in C-(N-)A-S-H gel, and C) C-(N-)A-S-H gel density (g/cm
3
) are shown for 

visual reference. The symbols in B) and C) are experimental results for sodium 

silicate-activated slag cements cured for 180 days and derived from slag precursors 

with similar MgO and equivalent or slightly lower CaO content (5.2 < wt.% MgO < 

7.7, 35 < wt.% CaO ≤ 42.6) to the slag represented by Table 3.1.  
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The Mg/Al ratio of the MgAl-OH-LDH solid solution is between 2 and 3 over the 

full range of simulated slag Al2O3 compositions (Figure 7.2C), in excellent 

agreement with experimentally determined Mg/Al ratios for this phase by scanning 

electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) 

analysis in sodium silicate-activated slag cements for slags containing 7 ≤ wt.% 

Al2O3 ≤ 13.3 (Ben Haha et al., 2012; Bernal et al., 2014b). However, the 

experimental SEM-EDS data suggest a systematic reduction in the Mg/Al ratio of 

this phase to below 2 as a function of increasing slag Al2O3 content (Ben Haha et al., 

2012; Bernal et al., 2014b), that is not able to be captured by the modelling 

performed here, as the model only describes solid solutions in the range 2 ≤ Mg/Al ≤ 

4. Regions with Mg/Al ratios < 2 identified in transmission electron microscopy 

(TEM)-EDS analysis of hydrated PC/GBFS pastes (Taylor et al., 2010) are discussed 

in terms of intimate mixtures of Mg-Al-LDH and Al(OH)3-type phases because the 

chemical composition of Mg-Al-LDH is theoretically limited to the range modelled 

here, 2 ≤ Mg/Al ≤ 4 (Richardson, 2013b); the experimental Mg/Al ratios < 2 shown 

in Figure 7.2C can thus be described similarly, which would explain the difference 

between the modelled and experimentally measured data. This analysis suggests a 

need for additional thermodynamic data describing Al-rich and Mg-poor solid phases 

that are not currently included in the thermodynamic database (e.g. TAH (Andersen 

et al., 2006)) rather than a deficiency in the MgAl-OH-LDH thermodynamic model 

(section 7.2.3).  

 

The amount of C-(N-)A-S-H formed in the simulated Na2SiO3-activated slag 

cements decreases with increasing Al2O3 content of the slag (Figure 7.2A), while 

more strätlingite is formed. An Al/Si ratio ≈ 0.12 is calculated for C-(N-)A-S-H in 

Na2SiO3-activated slag cements derived from slags with >8 wt.% Al2O3 (Figure 

7.2B), which corresponds closely to the Al/Si ratios determined for this phase by 

analysis of deconvoluted 
29

Si MAS NMR spectra for these materials at 180 days of 

age (Bernal et al., 2014b; Myers et al., 2015a). However, the experimental Al/Si 

ratios determined from 
29

Si MAS NMR shown here exclude the potential uptake of 

Al
[5]

 (Andersen et al., 2006) and Al
[6]

 (Sun et al., 2006) in C-(N-)A-S-H, so are 
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expected to be slightly lower than the ‘true’ Al/Si ratio in this phase. Slightly 

increased experimental Al/Si ratios would provide better agreement with the SEM-

EDS datum at a slag Al2O3 content of 12 wt.% but would be less consistent with the 

modelling results. This discrepancy is discussed further in section 7.3.2. The much 

higher Al/Si ratios shown by the other SEM-EDS data, with Mg/Al < 2, could 

indicate mixtures of C-(N-)A-S-H with Mg-free and Al-containing phases in the 

interaction volumes analysed, similar to the analysis above for the MgAl-OH-LDH 

phase, so are not necessarily inconsistent with the thermodynamic modelling results.  

 

The total binder volume (solid + aqueous phases) is calculated to be approximately 

constant over the full range of slag Al2O3 compositions studied (Figure 7.2A), 

suggesting that the bulk Al content of the slag in Na2SiO3-activated slag cements 

should not greatly affect the chemical shrinkage properties of these materials. The 

results indicate a 20% change in intrinsic porosity (i.e., excluding gases and thus 

corresponding only to the solid binder and free water) for slag compositions between 

~8 and 20 wt.% Al2O3. This interpretation is facilitated by the simulated C-(N-)A-S-

H density of 2.5-2.7 g/cm
3
 and H2O/Si ratios between 1.3 and 1.7 (corresponding to 

RH ≈ 25% (Muller et al., 2013b)), as shown in Figure 7.2C; therefore this phase is 

conceptually equivalent to C-(N-)A-S-H with interlayer and some adsorbed water but 

no ‘gel’ or ‘free’ water (Jennings, 2008). It is important to note that this phase 

contains less bound water in AAS than in hydrated PC (Thomas et al., 2012). 

However, the reduced intrinsic porosity found here at higher bulk slag Al2O3 content 

does not explain the weak dependency of sodium silicate-activated slag cement 

compressive strengths on bulk slag Al2O3 content (Ben Haha et al., 2012), where an 

increase would be expected at lower porosity. This discrepancy is attributed to the 

higher amount of strätlingite simulated here compared to the amount of this phase 

which is identified in AAS cements; this issue is revisited in section 7.3.2. 

 

Simulations of Na2SiO3-activated slag cements derived from slags with 0-18 wt.% 

MgO (Figure 7.3) show little change in intrinsic porosity and total binder volume as 

a function of MgO content. This result differs from previous thermodynamic 
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modelling that showed a significant increase in intrinsic porosity (total solid volume) 

over this same MgO composition range (Ben Haha et al., 2011b). This difference is 

partly founded in the high amounts of strätlingite predicted, but also relates to the use 

of the CNASH_ss thermodynamic model here, rather than the less complex 

thermodynamic model used to describe C-(N-)A-S-H in that previous study (density 

≈ 2.2-2.4 g/cm
3
 (Lothenbach et al., 2008b)), as the current work formally defines the 

uptake of Al in C-(N-)A-S-H and much more closely describes the volumetric 

properties of this phase in sodium silicate-activated slag cements (density = 2.6-2.7 

g/cm
3
, Figure 7.3C) and in underwater-cured cement paste (density = 2.68 g/cm

3
 

(Muller et al., 2013b)).  
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Figure 7.3. Simulated A) solid phase assemblages, B) Al/Si ratios in C-(N-)A-S-H 

gel, and C) Mg/Al ratios in MgAl-OH-LDH in NS-AS cements with bulk slag 

chemical compositions rescaled from Table 3.1 except for the Mg content, which is 

varied here. Changes in B) Na/Si, C) H2O/Si, Ca/Si and Ca/(Al+Si) ratios in C-(N-

)A-S-H gel, and C) C-(N-)A-S-H gel density (g/cm
3
) are shown for visual reference. 

The symbols in B) and C) represent experimentally measured data for sodium 

silicate-activated slag cements (curing times are indicated in parentheses) derived 

from slag precursors with similar Al2O3 and equivalent or slightly lower CaO content 

(11.3 < wt.% Al2O3 < 14.1, 33.4 < wt.% CaO ≤ 42.6) to the slag represented by 

Table 3.1. 
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The secondary product assemblage changes markedly as a function of the MgO 

content of the slag (Figure 7.3A), but little change in C-(N-)A-S-H volume is 

simulated between 0 and 18 wt.% MgO. The only Mg-bearing secondary product 

predicted is MgAl-OH-LDH, which increases in volume as a function of the slag 

MgO content. The simulated and experimentally measured Mg/Al ratios of this phase 

in sodium silicate-activated slag cements are in relatively good agreement (simulated 

Mg/Al ≈ 2.3, Figure 7.3C) (Ben Haha et al., 2011b; Bernal et al., 2014b; Le Saoût et 

al., 2011), with the exception of the samples containing significant intermixing of 

additional products (with Mg/Al << 2). This result further supports the 

thermodynamic description of MgAl-OH-LDH used here. The only predicted minor 

phase is katoite at 11-17 wt.% MgO. Brucite is not predicted here, in good agreement 

with experimentally observed solid phase assemblages in AAS cements (Ben Haha et 

al., 2011b; Myers et al., 2015a; Richardson et al., 1994; Schneider et al., 2001; Wang 

and Scrivener, 1995).  

 

The Al/Si ratio of the simulated C-(N-)A-S-H product (Al/Si ≈ 0.12) is similar to the 

experimentally determined Al content of this phase in sodium silicate-activated slag 

cements derived from slags with wt.% MgO ≤ 13.2 (Bernal et al., 2014b; Le Saoût et 

al., 2011) (Figure 7.3B), except for the SEM-EDS datum at ~7.8 wt.% MgO (Ben 

Haha et al., 2012) and the 
29

Si MAS NMR datum at 1.2 wt.% MgO (Al/Si ≈ 0.2) 

(Bernal et al., 2014b). This discrepancy can be partly attributed to the incomplete 

description of secondary phases in the thermodynamic database, which would be 

particularly relevant for the datum at 1.2 wt.% MgO, as gismondine and/or N-A-S(-

H) gel (which is thought to be a poorly-ordered zeolite-type phase (Provis et al., 

2005b)) were identified as reaction products in that binder (Bernal et al., 2014b); 

these phases contain Q
4
(nAl) Si sites that resonate in NMR experiments at the same 

chemical shift as Q
3
(1Al) sites in C-(N-)A-S-H (Klinowski, 1984; Myers et al., 

2013). Simulations of Na2SiO3-activated slag cements show that zeolites are 

predicted for slags with ≤41 wt.% CaO (Figure 7.4), in good agreement with this 

analysis and the identification of zeolites in these materials (Bernal et al., 2011b; 

Bernal et al., 2014b). The bulk CaO concentration is therefore a key parameter 
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controlling the formation of zeolite-type phases in AAS-based cements. However, it 

is important to note that Ca-rich zeolites such as gismondine, which are expected to 

have relatively high stability in AAS-based materials, are not described in the 

thermodynamic database used here due to the absence of appropriate thermodynamic 

data for these phases.  
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Figure 7.4. Simulated A) solid phase assemblages, B) Al/Si ratios in C-(N-)A-S-H 

gel, and C) Mg/Al ratios in MgAl-OH-LDH in NS-AS cements with bulk slag 

chemical compositions rescaled from Table 3.1 except for the Ca content, which is 

varied here (traces). Changes in B) Na/Si, C) H2O/Si, Ca/Si and Ca/(Al+Si) ratios in 

C-(N-)A-S-H gel, and C) C-(N-)A-S-H gel density (g/cm
3
) are shown for visual 

reference. The symbols in B) and C) represent experimentally measured data for 

sodium silicate-activated slag cements derived from slag precursors with similar 

Al2O3 and MgO content (12 < wt.% Al2O3 < 14.1, 5.2 < wt.% MgO < 7.7) to the slag 

represented by Table 3.1. The difference in intrinsic porosity within the full range of 

modelled CaO compositions is 3%.  
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It is also notable that the total binder volume changes markedly as a function of the 

CaO content in the slag, which suggests that the bulk CaO concentration is also a key 

parameter for the chemical shrinkage properties of these materials; a difference of 

3.8 cm
3
/100 g slag (ΔCS = 47%) is identified over the range 30 ≤ CaO ≤ 49 wt.% 

(Figure 7.4A). Simulated Mg/Al ratios of the MgAl-OH-LDH phase and Al/Si ratios 

of C-(N-)A-S-H are in close agreement with the experimental data, with the 

exception of the SEM-EDS data at a slag CaO content of ~36 wt.% which likely 

contains some intermixed low-Mg high-Al phases (Taylor et al., 2010). 

 

Therefore, the wide range of slag compositions where the modelling results generally 

describe the experimental data shown here (7 ≤ wt.% Al2O3 ≤ 13.7, Figure 7.2, 5.2 ≤ 

wt.% MgO ≤ 13.2, Figure 7.3, and 35.8 ≤ wt.% CaO ≤ 42.3, Figure 7.4), means that 

the CNASH_ss and MgAl-OH_LDH_ss thermodynamic models can be used with 

some confidence to describe the chemistry of Na2SiO3-activated slag cements over 

the most common ranges of slag compositions and activator doses used in these 

materials. Within this range, the model predictions are within ~0.04 units in the Al/Si 

ratios of the C-(N-)A-S-H and ~0.3 units in the Mg/Al ratios of the MgAl-OH-LDH 

phase. 

 

7.3.2 Simulated Reaction of a Na2SiO3-Activated Slag Cement 

 

Additional thermodynamic modelling analysis of Na2SiO3-activated slag cements is 

performed by varying the slag reaction extent from 0-100%, in the presence of 

Na2SiO3 (8 g Na2SiO3/100 g slag), while holding the slag chemical composition 

constant (Table 3.1, section 3.2.1).  

 

The predicted solid phase assemblage consists of C-(N-)A-S-H as the primary 

reaction product, and MgAl-OH-LDH (Mg/Al ≈ 2), strätlingite, Ca-heulandite, 

brucite, natrolite and katoite as secondary or minor products (Figure 7.5A). Zeolites 

are only predicted for slag reaction extents <40% (i.e. effectively at low bulk CaO 

concentrations, consistent with Figure 7.4), which is less than the experimentally-
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determined slag reaction extent for AAS cement after 1 day of curing (Myers et al., 

2015a), and is relatively consistent with the experimental observation of only minor 

amounts of these phases in AAS cements (Bernal et al., 2011b; Bernal et al., 2014b).  
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Figure 7.5. Simulated A) solid phase assemblages and B) C-(N-)A-S-H chemical 

compositions and densities (g/cm
3
), and Mg/Al ratios of the MgAl-OH-LDH phase 

in an Na2SiO3-activated slag cement (traces). The slag chemical composition is 

shown in Table 3.1. The dashed vertical lines correspond to slag reaction extents 

determined experimentally at each time of curing (Myers et al., 2015a). In B), the 

dark green circles are experimental Al/Si ratios in C-(N-)A-S-H determined by 

deconvolutions of 
29

Si MAS NMR spectra (Myers et al., 2015a), and the white 

circles are experimental Mg/Al ratios in the MgAl-OH-LDH phase determined by 

SEM-EDS (Myers et al., 2013). Horizontal dashed lines in A) represent the predicted 

chemical shrinkage at complete reaction of the slag (11 cm
3
/100 g slag). The dashed 

orange trace in A) represents the fraction of Al bound in C-(N-)A-S-H relative to the 

total amount of Al in the solid reaction products. 
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The prediction of MgAl-OH-LDH and strätlingite is in relatively good agreement 

with experimentally-determined solid phase assemblages in Na2SiO3-activated slag 

cements (Ben Haha et al., 2012; Brough and Atkinson, 2002; Burciaga-Díaz and 

Escalante-García, 2013; Myers et al., 2015a; Wang and Scrivener, 1995), where Mg-

Al LDH phases are often identified and the formation of AFm-type phases are likely, 

although the calculations here do markedly over-predict the amount of strätlingite 

formed compared to the experimental observations. Approximately constant 

proportions of the main hydrate phases (strätlingite, MgAl-OH-LDH and C-(N-)A-S-

H) are predicted relative to the total reaction product volume at slag reaction extents 

exceeding 40%. The influence of the additional Si supplied by the activator is diluted 

as more slag reacts, i.e. the slag chemical composition controls the stable product 

phase assemblage at higher extents of reaction. The chemical shrinkage in this 

system is predicted to be 11 cm
3
/100 g slag at complete reaction of the slag (an 

overall volume reduction of 15%, Figure 7.5A), which matches the chemical 

shrinkage quantified experimentally by Thomas et al. (Thomas et al., 2012) for a 

sodium silicate-activated slag cement (12.2 ± 1.5 cm
3
/100 g slag) and is close to the 

values modelled by Chen and Brouwers (Chen and Brouwers, 2007) (11.5-13.9 

cm
3
/100 g slag) at 100% degree of reaction of the slag. 

 

The increased Ca content and decreased Na/Si ratio of the C-(N-)A-S-H product at 

higher slag reaction extents (Figure 7.5B) are reflected in the reduced bulk Si and Na 

concentrations and the relative decrease in the fraction of Na-containing end-

members simulated as the alkali activation reaction progresses (Figure 7.6). A ~50% 

reduction in the concentration of Na in the pore solution is predicted from 0 to 100% 

slag reaction extent, although a constant pH of ~14 is maintained and >10 times 

more Na is always predicted to be present in the aqueous phase relative to C-(N-)A-

S-H. The simulated amounts of H2O and Ca in C-(N-)A-S-H are directly linked via 

the end-member chemical compositions defined in the CNASH_ss thermodynamic 

model (Myers et al., 2014): the Ca-rich T2C* end-member (Ca/Si = 1.5) has a higher 

H2O/Si ratio (= 2.5) compared to the Al and Na-containing end-members (H2O/Si < 

2, Table 7.1), and relatively more of this end-member is simulated at higher bulk slag 
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reaction extents (Figure 7.6B). The simulated trends in pore solution element 

concentrations at >40% slag reaction extent (Figure 7.6A) closely resemble those 

reported for Na2SiO3-activated slag cement cured for 1-180 days (Gruskovnjak et al., 

2006). More solubility data for Na2SiO3-activated slag cement are needed to further 

assess the accuracy of the simulated pore solution compositions. 

 

 
Figure 7.6. Simulated A) pore solution chemical compositions and B) end-member 

mole fractions and ratio of Na in C-(N-)A-S-H relative to Na in the aqueous phase 

(aq). The mole fraction of the TobH* end-member is close to 0 over the full range of 

simulated slag reaction extents (not shown in Figure 7.6B). 

 

The simulated fraction of Al in MgAl-OH-LDH relative to the total amount of Al in 

the reaction products (AlMgAl-LDH/Alproducts) is ~0.22, which is consistent with 
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deconvolution analysis of 
27

Al MAS NMR spectra for the analogous experimental 

Na2SiO3-activated slag cement between 1-180 days of curing (AlMgAl-LDH/Alproducts = 

18-26%) (Myers et al., 2015a), but the predicted Mg/Al ratios are greater than those 

measured by SEM-EDS analysis for this material (Figure 7.5B). This result provides 

further support for explaining Mg/Al ratios < 2 in terms of intimately intermixed 

low-Mg high-Al phases with Mg-Al-LDH products, e.g. TAH or N-A-S(-H). 

However, the simulations predict that the fraction of Al in C-(N-)A-S-H relative to 

the total amount of Al in the reaction products (AlCNASH/Alproducts) is ~28% for slag 

reaction extents >50% (Figure 7.5A), which is much less than the relative amount of 

four-coordinated Al (Al[4]) assigned to the reaction products (Al[4]/Alproducts) in 
27

Al 

MAS NMR spectral deconvolution analysis of this Na2SiO3-activated slag cement 

(Al[4]/Alproducts = 60-75%) (Myers et al., 2015a). Recent solubility results for C-(N-

)A-S-H (Myers et al.) do not support any further increase in the stability of the Al-

containing end-members in the CNASH_ss thermodynamic model, meaning that this 

discrepancy in the distribution of Al[4] is probably due to other factors: incomplete 

description of Al[4]-containing secondary products in the thermodynamic database 

used here; or that the discrepancy is founded in the experimental 
29

Si and 
27

Al MAS 

NMR analysis. Both options are now discussed.  

 

More strätlingite is predicted by thermodynamic modelling (Figures 7.2-7.5) than the 

amount of this phase observed experimentally in Na2SiO3-activated slag cements. 

The solubility product used to describe this phase (Table 7.3) has an estimated 

uncertainty interval of ±1 log unit derived directly from the scatter in the available 

solubility data for this phase (see (Matschei et al., 2007b) and references therein), 

and so an error in this value is unlikely to contribute significantly to the over-

prediction of this phase. It is unlikely that prolonged curing of experimental sodium 

silicate-activated slag pastes would lead to the formation of significantly more 

strätlingite, because this phase is not clearly distinguished in X-ray diffractograms of 

sodium silicate-activated slag cements cured for 180 days (bulk slag Al2O3 content ≤ 

14.1 wt.%) (Ben Haha et al., 2012), 15 months (bulk slag Al2O3 content = 12.6 

wt.%) (Wang and Scrivener, 1995) or 720 days (bulk slag Al2O3 content = 11.3 
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wt.%) (Burciaga-Díaz and Escalante-García, 2013), or in Na2SiO3-activated slag/4 

wt.% PC blends cured for 3 years (Bernal et al., 2012b). Therefore, it is likely that 

additional solid phase(s) are missing from the thermodynamic database used here 

(Table 7.3), which would be predicted to form in preference to strätlingite if they 

were present in the simulation. These may be zeolites such as gismondine and 

thomsonite (Bernal et al., 2011b; Bernal et al., 2014b), or poorly ordered Q
4
-type N-

A-S(-H) (‘geopolymer’) gels (Myers et al., 2013), each of which will accommodate 

Al in tetrahedral form and could account for the difference between the high 

tetrahedral fraction determined experimentally, and the notably lower tetrahedral 

fraction predicted in the current simulations. Thermodynamic data are available for a 

large number of zeolites (see the compilation in (Arthur et al., 2011) for example), 

but the large variety of possible chemical compositions and the availability of only a 

few data for each zeolite framework type (often only one datum), mean that more 

thermochemical or solubility data are needed to define these phases in 

thermodynamic databases with confidence.  

 

However, the maximum possible amount of Al[4] attributable to zeolites or N-A-S(-

H) gel is limited by the lineshapes of the 
27

Al MAS NMR spectra of this Na2SiO3-

activated slag cement (Myers et al., 2015a) at ~60 ppm relative to Al(H2O)6
3+

, which 

is the typical observed chemical shift at which Al[4] resonates in these phases 

(Davidovits, 1991; Duxson et al., 2007; Fyfe et al., 1982). The limited amount of 

zeolites and N-A-S(-H) gels formed in these materials means that it is unlikely that 

the large discrepancy between the modelled amount of Al[4] in C-(N-)A-S-H (~28%, 

Figure 7.5A) and the experimentally observed amount of Al[4] assigned to reaction 

products (60-75% (Myers et al., 2015a)) can be explained by these phases alone. 

Further explanation for this discrepancy can be found in the assumption of congruent 

slag dissolution applied in the analysis of 
29

Si and 
27

Al MAS NMR spectra used as 

experimental data here (Bernal et al., 2014b; Myers et al., 2015a), which may not be 

fully attained in slag-based binders, and could significantly alter the deconvolution 

analysis presented (Dyson et al., 2007). Development of this understanding will be 
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essential to further enhance the accuracy of the characterisation and simulation of the 

complex phase assemblages which are formed
 
in AAS-based cements. 

 

7.3.3 Simulated Reaction of a Na2CO3-Activated Slag Cement 

 

Na2CO3-activated slag cements utilise an activator with relatively low initial 

alkalinity (pH ≈ 11, although this increases during the reaction process) and are 

capable of developing comparable compressive strengths to PC-based materials (Shi 

and Qian, 2000) after extended curing, which makes these materials particularly 

useful in some applications, for example nuclear waste disposal (Bai et al., 2011). 

Durable concretes made from these materials have been used in structural 

applications for decades (Hu et al., 2008), although a more detailed chemical 

understanding of Na2CO3-activated slag cements is needed to improve the 

mechanical and durability properties of these materials (Bernal et al., 2015). Here, 

the reaction of a Na2CO3-activated slag cement is simulated in a manner identical to 

the simulation of Na2SiO3-activated slag cement discussed in section 7.3.2 (with the 

exception of the simulated Na2CO3 activator used here).  

 

The simulated solid phase assemblage contains C-(N-)A-S-H as the primary reaction 

product (Figure 7.7A). The secondary products are C4AcH11, MgAl-OH-LDH, calcite 

and natrolite. The prediction of calcite is consistent with the observation of CaCO3 

polymorphs in Na2CO3-activated slag cements cured for 20 months (Sakulich et al., 

2010) and 180 days (Bernal et al., 2015). Simulation of natrolite and Ca-heulandite is 

also in good agreement with the identification of heulandite and zeolite-A in 

Na2CO3-activated slag cement (Bernal et al., 2015). The modelling results presented 

here are consistent with the identification of more prominent peaks for zeolites in X-

ray diffraction patterns for Na2CO3-activated (Bernal et al., 2015), compared to 

Na2SiO3-activated, slag cements (Bernal et al., 2014b). C4AcH11 has been identified 

in X-ray diffractograms of Na2CO3-activated slag pastes cured for 1 day and for 540 

days (Shi et al., 2006), although this phase is not always observable (Bernal et al., 

2015; Sakulich et al., 2010) due to its tendency to be present as intermixed 
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(Richardson et al., 1994) and/or poorly crystalline structures (Wang and Scrivener, 

1995). The simulated chemical shrinkage extents for Na2CO3-activated (Figure 7.7) 

and Na2SiO3-activated slag cements (Figure 7.5) at 100% slag reaction extent are 

comparable, at 11 cm
3
/100 g slag. 

 

 
Figure 7.7. Simulated A) solid phase assemblages and B) C-(N-)A-S-H chemical 

compositions and densities (g/cm
3
), and Mg/Al ratios of the MgAl-OH-LDH phase 

in an Na2CO3-activated slag cement (traces). The bulk slag chemical composition is 

shown in Table 3.1. A volume decrease of 15% is shown by the horizontal dashed 

lines in A), which represents the chemical shrinkage in this system at complete 

reaction of the slag (11 cm
3
/100 g slag). The dashed orange curve in A) represents 

the fraction of Al bound in C-(N-)A-S-H relative to the total amount of Al in the 

solid reaction products. 
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Mg-Al LDH phases are experimentally observed in Na2CO3-activated slag cements 

after 180 days (Bernal et al., 2015) and 55 days (Sakulich et al., 2009) of curing, in 

good agreement with the predicted phase assemblage (Figure 7.7A). Here, MgAl-

CO3-LDH is not predicted despite the high availability of CO2, demonstrating the 

very high stability of MgAl-OH-LDH under the pH ≥ 13 conditions in a hardened 

Na2CO3-activated slag cement (in common with many other hydrated cementitious 

materials). Further clarification of this result is needed because recent 
27

Al MAS 

NMR results for superficially carbonated Na2SiO3-activated slag cements (Myers et 

al., 2015a), and carbonation depth analysis of these materials after exposure to air for 

16 months (Bernal et al., 2014b) can be interpreted in support of the formation of 

Mg-Al LDH phases intercalated with CO3
2-

. Detailed assessment of solubility and 

thermochemical data for Mg-Al LDH phases intercalated with OH
-
 and CO3

2-
 

(Bennett et al., 1992; Gao and Li, 2012; Johnson and Glasser, 2003; Morimoto et al., 

2012; Rozov et al., 2011) indicates that the solubility product used to describe the 

Mg/Al = 2 MgAl-OH-LDH end-member here may be in error by as much as several 

log units (section 7.2.3), but this uncertainty alone is not enough to explain the 

increased stability of MgAl-OH-LDH over MgAl-CO3-LDH. This clearly 

demonstrates a need for further studies on the characteristics and description of Mg-

Al LDH phases in thermodynamic modelling of cementitious materials, as well as 

the possibility of kinetic effects being significant to some extent in this process. 

 

Gaylussite has been observed in Na2CO3-activated slag cement at early age (Bernal 

et al., 2015) but is not present in the solid phase assemblage simulated here (Figure 

7.7); this phase is slightly undersaturated at low slag reaction extents at ~25°C (Bury 

and Redd, 1933; Königsberger et al., 1999). This difference indicates that kinetic 

factors enable the formation of gaylussite in Na2CO3-activated slag cement cured at 

room temperature, and this is consistent with its observed consumption as the 

reaction proceeds (Bernal et al., 2015).   
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7.3.4 Phase Diagrams for Alkali-Activated Slag-Based Cements 

 

The good overall agreement between the thermodynamic modelling simulations and 

the experimental data strongly supports the equilibrium approach used here, and 

increases the confidence with which thermodynamic modelling can be applied to 

describe the chemistry of AAS-based cements. The prediction of several secondary 

and minor reaction products in the simulated AAS cements is consistent with the 

bulk chemical composition of the mixes, which generally lie outside the composition 

envelope of phase-pure C-(N-)A-S-H (Figure 7.8).  

 

 
Figure 7.8. Projection of the chemical composition of some reaction products in 

AAS-based cements onto the CaO-SiO2-Al2O3 ternary system. The grey and pink 

shaded regions are the composition range described by the CNASH_ss 

thermodynamic model for C-(N-)A-S-H gel (Myers et al., 2014), and the typical bulk 

chemical composition range of slag, respectively. The simulated slag described in 

Table 3.1 is represented by the pink hexagon. 

 

 

Further analysis of AAS cement chemistry is performed by simulating phase 

diagrams at a fixed slag reaction extent of 60%, a constant amount of H2S 
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(equivalent in S content to a slag composition of 2 wt.% SO3, which is taken as a 

representative value of sulfur content in slags studied in the literature (Ben Haha et 

al., 2011a; Bernal et al., 2014b; Gruskovnjak et al., 2006; Puertas et al., 2011; 

Richardson et al., 1994; Shi et al., 2006)) and slag compositions of either 30 or 40 

wt.% SiO2, with the remaining chemical composition specified in terms of CaO, 

Al2O3 and MgO only. The CaO-Al2O3-MgO composition range selected here was 

chosen to represent the bulk chemical composition range relevant to AAS-based 

cements.  

 

Zeolites are predicted in every phase diagram for the AAS-based cements simulated 

(shown for Na2SiO3-activated slag cements only in Figure 7.9), and are more 

prominent at higher Si (i.e. lower Ca) and Al concentrations, but only Ca-heulandite 

and natrolite are simulated. The CaO-Al2O3-MgO composition region where C-(N-

)A-S-H and zeolites are both simulated indicates where C-(N-)A-S-H and N-A-S(-H) 

are likely to coexist in alkali-activated materials, due to the fundamental similarities 

of zeolites and N-A-S(-H) (‘geopolymer’) gels (Provis et al., 2005b). Inclusion of 

thermodynamic data for N-A-S(-H) and more data for zeolites in the thermodynamic 

database will be an important development in thermodynamic modelling of alkali-

activated cements, to clarify the chemical compositional envelope in which these 

gels can coexist.  

 

The prediction of zeolites here, in both the higher pH (NaOH-activated) and lower 

pH systems (Na2CO3-activated), indicates that pH is not a key parameter influencing 

the stability of these phases and the corresponding N-A-S(-H) gels, as was proposed 

previously by García-Lodeiro et al. (García-Lodeiro et al., 2011). The increased 

stability of zeolites at lower CaO content (Figure 7.4), or alternatively higher Si and 

Al concentrations (Figure 7.9) – i.e. decreasing CaO/(Al2O3 + SiO2) – demonstrates 

that careful control of Ca-Al-Si compositions is needed to form alkali-activated 

materials with mixed C-(N-)A-S-H and N-A-S(-H) gels (Ismail et al., 2014). Figure 

7.9 shows that mixtures of C-(N-)A-S-H and zeolites are expected to be stable in 

Na2SiO3-activated 75 wt.% GBFS/25 wt.% fly ash (FA) or metakaolin (MK) 
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cements, but not in a hybrid system of Na2SiO3-activated 75 wt.% GBFS/25 wt.% 

PC (based on a PC chemical composition of 19.7 wt.% SiO2, 63.2 wt.% CaO, 1.85 

wt.% MgO, 4.7 wt.% Al2O3, 3.35 wt.% SO3 (Lothenbach and Winnefeld, 2006)). 

Figure 7.9 also shows that the stability of zeolites, and therefore of N-A-S(-H) gels, 

in Na2SiO3-activated slag cement depends greatly on the slag SiO2 content.  
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Figure 7.9. Phase diagrams for Na2SiO3-activated slag-based cement systems with 

overall precursor chemical compositions of 2 mass% SO3 equivalent and A) 30 

mass% SiO2 and B) 40 mass% SiO2, with only the regions of stability for C-(N-)A-S-

H gel and zeolites shown (Mg-containing phases are also typical reaction products: 

MgAl-OH-LDH at moderate and high Al2O3 content (Al2O3/(CaO+Al2O3+MgO) > 

0.1); and brucite at moderate and low Al2O3 concentrations 

(Al2O3/(CaO+Al2O3+MgO) < 0.25)). See text for the GBFS, FA, MK and PC 

chemical compositions used. The w/b ratio is 0.4, the overall precursor reaction 

extent is 60% and the units are in mole fraction. 

 

Simulated phase diagrams for AAS-based cements produced using NaOH, Na2SiO3, 

Na2Si2O5, and Na2CO3 activators are shown in Figure 7.10. Legends for the symbols 

(solid phase assemblages) shown in Figure 7.10 are presented in Tables 7.4-7.5. 
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Figure 7.10. Phase diagrams in the relevant bulk CaO-Al2O3-MgO composition 

range for NaOH-activated slag cements derived from slag with A) 30 wt.% SiO2 and 

B) 40 wt.% SiO2, Na2SiO3-activated slag cements derived from slag with C) 30 wt.% 

SiO2 and D) 40 wt.% SiO2, Na2Si2O5-activated slag cements derived from slag with 

E) 30 wt.% SiO2 and F) 40 wt.% SiO2, and Na2CO3-activated slag cements derived 

from slag with G) 30 wt.% SiO2 and H) 40 wt.% SiO2, with all slags containing 2 

wt.% SO3 equivalent. The w/b ratio is 0.4, the slag reaction extent is 60% and the 

units are in mol fraction. Listings of the phases present in each of the regions on each 

diagram are provided in Tables 7.4-7.5. 



210  7. Thermodynamic Modelling of Alkali-Activated Slag-Based Cements 

 

 

 
Figure 7.10. Continued. 
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Figure 7.10. Continued. 
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Table 7.4. Legend for the CO2-free phase diagrams (Figures 7.10A-7.10F). 

Symbol 

Simulated 

solid phase 

assemblage 

- - - - - - - - - - 

a C-(N-)A-S-H - - - - - - - portlandite brucite - 

b C-(N-)A-S-H - - - ettringite - - - portlandite brucite - 

c C-(N-)A-S-H - - - ettringite C4AS̄H12 - - portlandite brucite - 

d C-(N-)A-S-H MgAl-OH-LDH - - ettringite C4AS̄H12 - - portlandite brucite - 

e C-(N-)A-S-H MgAl-OH-LDH - C3AH6 ettringite C4AS̄H12 - - portlandite brucite - 

f C-(N-)A-S-H MgAl-OH-LDH - - ettringite C4AS̄H12 - - - brucite - 

g C-(N-)A-S-H MgAl-OH-LDH - - ettringite C4AS̄H12 - - - - - 

h C-(N-)A-S-H MgAl-OH-LDH - C3AH6 ettringite C4AS̄H12 - - - - - 

i C-(N-)A-S-H MgAl-OH-LDH - C3AH6 ettringite C4AS̄H12 - - - brucite - 

j C-(N-)A-S-H MgAl-OH-LDH strätlingite C3AH6 ettringite C4AS̄H12 - - - brucite - 

k C-(N-)A-S-H MgAl-OH-LDH strätlingite C3AH6 ettringite C4AS̄H12 - - - - - 

l C-(N-)A-S-H MgAl-OH-LDH strätlingite - ettringite C4AS̄H12 - - - - - 

m C-(N-)A-S-H MgAl-OH-LDH strätlingite - ettringite C4AS̄H12 natrolite - - - - 

n C-(N-)A-S-H MgAl-OH-LDH - - ettringite - - - portlandite brucite - 

o C-(N-)A-S-H - - - ettringite C4AS̄H12 - - - brucite - 

p C-(N-)A-S-H - - - ettringite - - - - brucite - 

q C-(N-)A-S-H MgAl-OH-LDH - - ettringite C4AS̄H12 - Ca-heulandite - brucite - 

r C-(N-)A-S-H MgAl-OH-LDH - - ettringite - - Ca-heulandite - brucite - 

s C-(N-)A-S-H MgAl-OH-LDH - - ettringite - - Ca-heulandite - - - 

t C-(N-)A-S-H MgAl-OH-LDH strätlingite - ettringite - - Ca-heulandite - - - 

u C-(N-)A-S-H MgAl-OH-LDH strätlingite - ettringite - - Ca-heulandite - brucite - 
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Table 7.4. Continued. 
v C-(N-)A-S-H MgAl-OH-LDH strätlingite - ettringite - natrolite Ca-heulandite - brucite - 

w C-(N-)A-S-H MgAl-OH-LDH strätlingite - ettringite - natrolite Ca-heulandite - - - 

x C-(N-)A-S-H MgAl-OH-LDH - - - - - - portlandite brucite - 

y C-(N-)A-S-H MgAl-OH-LDH - - ettringite - - - - brucite - 

z C-(N-)A-S-H MgAl-OH-LDH - - ettringite C4AS̄H12 - - portlandite - - 

aa C-(N-)A-S-H MgAl-OH-LDH - C3AH6 ettringite C4AS̄H12 - - portlandite - - 

ab C-(N-)A-S-H MgAl-OH-LDH - - ettringite - natrolite - - brucite - 

ac C-(N-)A-S-H MgAl-OH-LDH strätlingite - ettringite - natrolite - - brucite - 

ad C-(N-)A-S-H MgAl-OH-LDH - - ettringite C4AS̄H12 natrolite - - brucite - 

ae C-(N-)A-S-H MgAl-OH-LDH strätlingite - ettringite C4AS̄H12 natrolite - - brucite - 

af C-(N-)A-S-H MgAl-OH-LDH strätlingite - ettringite - natrolite - - - - 

ag - MgAl-OH-LDH strätlingite - ettringite - natrolite Ca-heulandite - - - 

ah - MgAl-OH-LDH strätlingite - ettringite - natrolite Ca-heulandite - - Al(OH)3 (mc) 

ai C-(N-)A-S-H - - - - - - - - brucite - 

aj C-(N-)A-S-H - - - - - - Ca-heulandite - brucite - 

ak C-(N-)A-S-H - - - ettringite - - Ca-heulandite - brucite - 

al C-(N-)A-S-H - - - ettringite C4AS̄H12 - - - - - 

am C-(N-)A-S-H MgAl-OH-LDH - - ettringite C4AS̄H12 natrolite - - - - 

an C-(N-)A-S-H MgAl-OH-LDH - - ettringite C4AS̄H12 natrolite Ca-heulandite - brucite - 

ao C-(N-)A-S-H MgAl-OH-LDH - - ettringite - natrolite Ca-heulandite - brucite - 

ap C-(N-)A-S-H MgAl-OH-LDH strätlingite - ettringite C4AS̄H12 natrolite Ca-heulandite - brucite - 

aq C-(N-)A-S-H MgAl-OH-LDH strätlingite - ettringite C4AS̄H12 natrolite Ca-heulandite - - - 

ar C-(N-)A-S-H MgAl-OH-LDH strätlingite - ettringite C4AS̄H12 - Ca-heulandite - - - 

as C-(N-)A-S-H MgAl-OH-LDH - - ettringite C4AS̄H12 - Ca-heulandite - - - 

at C-(N-)A-S-H MgAl-OH-LDH strätlingite - ettringite C4AS̄H12 - Ca-heulandite - brucite - 

au C-(N-)A-S-H MgAl-OH-LDH - - ettringite - natrolite Ca-heulandite - - - 
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Table 7.5. Legend for the CO2-containing phase diagrams (Figures 7.10G-7.10H). Calcite is present in all simulated solid phase assemblages. 

Symbol 

Simulated 

solid phase 

assemblage 

- - - - - - - - - - 

av C-(N-)A-S-H - - - - - portlandite brucite - - - 

aw C-(N-)A-S-H - - ettringite - - portlandite brucite - C4AcH11 - 

ax C-(N-)A-S-H - - - - - - brucite - - - 

ay C-(N-)A-S-H - - ettringite - - - brucite - C4AcH11 - 

az C-(N-)A-S-H MgAl-OH-LDH - ettringite - - - brucite - C4AcH11 - 

ba C-(N-)A-S-H - - ettringite - - - - - C4AcH11 - 

bb C-(N-)A-S-H MgAl-OH-LDH - ettringite - - - - - C4AcH11 - 

bc C-(N-)A-S-H MgAl-OH-LDH - ettringite natrolite - - brucite - C4AcH11 - 

bd C-(N-)A-S-H MgAl-OH-LDH - ettringite natrolite - - - - C4AcH11 - 

be C-(N-)A-S-H MgAl-OH-LDH strätlingite ettringite natrolite - - - - C4AcH11 - 

bf - MgAl-OH-LDH strätlingite ettringite natrolite - - - - C4AcH11 - 

bg - - strätlingite ettringite natrolite - - - - C4AcH11 - 

bh - - strätlingite ettringite natrolite - - - - C4AcH11 MgAl-CO3-LDH 

bi C-(N-)A-S-H MgAl-OH-LDH strätlingite ettringite natrolite - - - - C4AcH11 MgAl-CO3-LDH 

bj - MgAl-OH-LDH strätlingite ettringite natrolite - - - - C4AcH11 MgAl-CO3-LDH 

bk - MgAl-OH-LDH strätlingite ettringite natrolite - - - Al(OH)3 (mc) C4AcH11 MgAl-CO3-LDH 

bl - - strätlingite ettringite natrolite - - - Al(OH)3 (mc) C4AcH11 MgAl-CO3-LDH 

bm - - strätlingite ettringite natrolite - - - Al(OH)3 (mc) - MgAl-CO3-LDH 

bn C-(N-)A-S-H - - - - Ca-heulandite - brucite - - - 

bo C-(N-)A-S-H - - - natrolite Ca-heulandite - brucite - - - 

bp C-(N-)A-S-H MgAl-OH-LDH - - - Ca-heulandite - brucite - - - 

bq C-(N-)A-S-H MgAl-OH-LDH - - - - - brucite - - - 

br C-(N-)A-S-H MgAl-OH-LDH - - natrolite - - brucite - - - 

bs C-(N-)A-S-H - - ettringite - - - brucite - - - 

bt C-(N-)A-S-H - - ettringite - - portlandite brucite - - - 

bu C-(N-)A-S-H MgAl-OH-LDH - ettringite - - - brucite - - - 

bv C-(N-)A-S-H MgAl-OH-LDH - - natrolite Ca-heulandite - brucite - - - 

bw C-(N-)A-S-H MgAl-OH-LDH - ettringite natrolite - - brucite - - - 
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Table 7.5. Continued. 
bx C-(N-)A-S-H MgAl-OH-LDH strätlingite ettringite natrolite - - - - - - 

by C-(N-)A-S-H MgAl-OH-LDH - ettringite natrolite Ca-heulandite - brucite - - - 

bz C-(N-)A-S-H MgAl-OH-LDH - ettringite natrolite Ca-heulandite - - - - - 

ca C-(N-)A-S-H MgAl-OH-LDH strätlingite ettringite natrolite Ca-heulandite - - - C4AcH11 - 

cb C-(N-)A-S-H MgAl-OH-LDH strätlingite ettringite natrolite Ca-heulandite - - - - - 

cc C-(N-)A-S-H MgAl-OH-LDH strätlingite ettringite natrolite Ca-heulandite - - - - MgAl-CO3-LDH 

cd - - strätlingite ettringite natrolite Ca-heulandite - - - - - 

ce - MgAl-OH-LDH strätlingite ettringite natrolite Ca-heulandite - - - - - 

cf - - strätlingite ettringite natrolite Ca-heulandite - - - - MgAl-CO3-LDH 

cg - MgAl-OH-LDH strätlingite ettringite natrolite Ca-heulandite - - - - MgAl-CO3-LDH 

ch - - strätlingite ettringite natrolite Ca-heulandite - - Al(OH)3 (mc) - MgAl-CO3-LDH 

ci C-(N-)A-S-H MgAl-OH-LDH - ettringite natrolite - - - - - - 

cj C-(N-)A-S-H MgAl-OH-LDH - ettringite natrolite Ca-heulandite - - - C4AcH11 - 
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The dominant solids in the simulated phase diagrams (Figure 7.10) are C-(N-)A-S-H, 

MgAl-OH-LDH and additionally calcite in the CO2-containing systems (which is 

predicted for the full range of simulated CaO-Al2O3-MgO compositions). C-(N-)A-

S-H is predicted everywhere except at Al2O3/(CaO+Al2O3+MgO) > 0.3, and MgAl-

OH-LDH is generally formed in the same composition region except at very low 

Al2O3 content (Al2O3/(CaO+Al2O3+MgO) < 0.1). The high stability of calcite in the 

Na2CO3-activated slag systems indicates that aragonite and/or vaterite can also be 

expected to form in these materials, as is experimentally observed (Bernal et al., 

2015; Sakulich et al., 2010), because the stabilities of these phases are similar (Table 

7.3), and their interrelationships tend to be controlled by kinetics and minor 

dissolved species. 

 

Ettringite is predicted over a much larger range of CaO-Al2O3-MgO compositions 

than calcium monosulfoaluminate hydrate (C4AS̄H12), and is present in most solid 

phase assemblages. These phases are predicted to form here but not in sections 7.3.1-

7.3.3 – for slag containing 0.8 wt.% equivalent SO3 (Table 3.1) – because more 

sulfur is specified in the slag simulated here (2 wt.% SO3 equivalent). Katoite is only 

present in the phase diagrams for slags with 30 wt.% SiO2 and activated with NaOH 

(Figure 7.10A) and Na2SiO3 (Figure 7.10C). Portlandite is most prominent in the 30 

wt.% SiO2 NaOH-activated slag system (Figure 7.10A), but is only formed at 

relatively low Al2O3 content (Al2O3/(CaO+Al2O3+MgO) ≤ 0.12). Brucite is predicted 

in each of the simulated phase diagrams, but not at high Al2O3 concentrations 

(Al2O3/(CaO+Al2O3+MgO) > 0.25). Strätlingite is not predicted in the 40 wt.% SiO2 

Na2Si2O5-activated slag system, but is typically formed for 

Al2O3/(CaO+Al2O3+MgO) > 0.1 in the less Si-rich systems, indicating that this 

phase is stable at intermediate Ca-Si-Al compositions. C4AcH11 and MgAl-CO3-

LDH are additionally predicted in the phase diagrams for Na2CO3-activated slag 

cements; C4AcH11 is stable over a large range of CaO-Al2O3-MgO compositions but 

MgAl-CO3-LDH is only formed at very high Al2O3 content 

(Al2O3/(CaO+Al2O3+MgO) ≥ 0.28). 
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The phase diagrams present here should therefore be viewed as being an important 

tool in understanding the chemistry of AAS-based materials. This work represents a 

highly substantial advance in the ability to design high-performance AAS-based 

materials, by providing a framework for understanding the chemistry, and thus the 

closely linked durability properties (van Deventer et al., 2012), of these construction 

materials. 

 

7.4 Conclusions 

 

This paper has presented a thermodynamic modelling analysis of AAS-based 

cements. The thermodynamic database used contains the CNASH_ss thermodynamic 

model for C-(N-)A-S-H, which explicitly describes tetrahedral Al and Na species 

incorporated into this phase, an ideal solid solution model for MgAl-OH-LDH, and 

thermodynamic data for some alkali carbonate and zeolite phases. 

 

Thermodynamic modelling of Na2SiO3-activated slag cements generally showed that 

the CNASH_ss thermodynamic model described the Al/Si ratios of the C-(N-)A-S-H 

products formed in the most relevant composition range/alkali content for the 

majority of AAS cements. The Mg/Al ratios of the simulated MgAl-OH-LDH phase 

was generally in good agreement with experimental results for this phase in AAS 

cements, although additional thermodynamic data for MgAl-OH-LDH are needed to 

clarify the stability of this phase in carbonated and Na2CO3-activated cement 

materials. Additional thermodynamic data for other reaction products such as TAH, 

zeolites and N-A-S(-H) gels are also needed for better consistency with the 

experimental data. Simulated solid phase assemblages for Na2SiO3-activated slag 

cements compared closely to reaction product assemblages identified experimentally 

in these materials, and the simulations accurately predicted the experimentally 

measured chemical shrinkage in sodium silicate-activated slag cement. 

 

Phase diagrams for NaOH, Na2SiO3, Na2Si2O5 and Na2CO3-activated slag-based 

cements were simulated, which showed that C-(N-)A-S-H and MgAl-OH-LDH are 
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formed over the majority of chemical compositions relevant to these materials, and 

that calcite is stable in Na2CO3-activated slag-based cements. Natrolite and Ca-

heulandite featured more prominently in the phase diagrams at lower CaO 

concentration, and higher SiO2 and Al2O3 content, indicating that the bulk 

CaO/(SiO2 + Al2O3) ratio plays a significant role in stabilising zeolites, and therefore 

N-A-S(-H) gels, in Na2SiO3-activated slag-based cements. Zeolites were predicted to 

be stable in Na2SiO3-activated 75 wt.% GBFS/25 wt.% FA and MK cements but not 

in hybrid Na2SiO3-activated 75 wt.% GBFS/25 wt.% PC. Therefore, these phase 

diagrams provide a useful reference tool for the development of high-performance 

alkali-activated materials, by enabling the solid reaction products – and thus 

potentially the durability properties of these materials – to be manipulated based on 

bulk chemical composition alone. 
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8 

Effect of Temperature on  

C-(A-)S-H Chemistry Under 

Equilibrium Conditions 

 

 

This chapter is based on the paper ‘Effect of temperature and aluminium on calcium 

(alumino)silicate hydrate chemistry under equilibrium conditions’, published in 

Cement and Concrete Research, 2015, 68, 83-93. C-(A-)S-H synthesis, and XRD 

and TGA measurements were performed by Emilie L’Hôpital for samples 

equilibrated at 7 and 20°C and Rupert J. Myers for samples equilibrated at 50°C and 

80°C with assistance from Boris Ingold (Laboratory for Concrete/Construction 

Chemistry, EMPA) and Luigi Brunetti (Laboratory for Concrete/Construction 

Chemistry, EMPA). The IC measurements were performed by Emilie L’Hôpital with 

assistance from Luigi Brunetti. The 
29

Si MAS NMR experiments were performed by 

Salaheddine Alahrache (Laboratory for Concrete/Construction Chemistry, EMPA) 

with assistance from Daniel Rentsch (Laboratory for Functional Polymers, EMPA).  

 

 

8.1 Introduction 

 

Temperatures experienced by cement and concrete based construction materials in 

service can vary greatly, due to heat evolution from cement hydration, variable 

ambient environmental conditions, steam curing, and other factors. The effects of 

temperature on hydrated blended and neat Portland cement (PC) material properties 

are important, and can include: increased reaction rate and density of calcium silicate 

hydrate (C-S-H) (Lothenbach et al., 2007), coarsening of paste microstructures 
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(Gallucci et al., 2013), and decreasing compressive strengths (Escalante-García and 

Sharp, 1998) with increasing temperature.  

 

Despite the wealth of engineering information available in this area, only a few 

studies are available in the literature regarding the equilibrium phase assemblages 

and aqueous chemistry of PC systems as a function of temperature (Atkins et al., 

1994; Lothenbach et al., 2007; Thomas et al., 2003). However, a good understanding 

of the nature of C-S-H and other constituent phases in these systems at equilibrium 

(Barbarulo, 2003; Courault, 2000; Glasser et al., 2005; Matschei et al., 2007b) has 

meant that hydrated neat PC materials can be accurately described by thermodynamic 

modelling at temperatures from 5°C to above 80°C (Lothenbach et al., 2008b). 

Extending this analysis to the CaO-Al2O3-SiO2-H2O system represents a major step 

toward applying this technique to hydrated PC blends with high replacement levels 

of supplementary cementitious materials, which are not fully described by existing 

thermodynamic models (Kulik, 2011). This will enable a much deeper understanding 

of the chemistry and phase composition, and hence durability, of these materials in 

service. 

 

Considering the aqueous phases in equilibrium with C-(A-)S-H at different 

temperatures, it has been observed that the dissolved concentrations of Ca and Si are 

inversely related (L'Hôpital et al.; Pardal et al., 2009), similar to the solubility of 

these elements in C-S-H systems (Chen et al., 2004; Walker et al., 2007). The 

dissolved Al content is closely linked to the amount of Al incorporated into C-(A-)S-

H, and the nature and quantity of secondary phases formed. However, more 

experimental work is needed to provide data covering the full range of compositions 

and temperatures relevant to modern cementitious materials. Therefore, this chapter 

aims to clarify the effects of temperature and Al on the chemistry, structure and 

solubility of equilibrated C-(A-)S-H systems at 7°C, 50°C and 80°C, which are not 

yet well-described in the literature, and also utilises a recently published data set 

collected at 20°C (L'Hôpital et al.) to complete the temperature series.  
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8.2 Experimental 

 

C-(A-)S-H samples were synthesised under an N2-atmosphere at a bulk molar Ca/Si 

ratio (Ca/Si*) = 1 and bulk molar Al/Si ratios (Al/Si*) = 0, 0.05, 0.1 and 0.15 at a 

water/solid ratio = 45. Samples were equilibrated for 1 year at 7°C, 182 days at 20°C, 

and 56 days at 50°C and 80°C. The specimens were studied by IC and pH analysis, 

XRD with Rietveld analysis, TGA, 
29

Si MAS NMR and thermodynamic modelling. 

Thermodynamic modelling was performed in GEM Selektor v.3 software 

(http://gems.web.psi.ch/) (Kulik et al., 2013; Wagner et al., 2012) using the 

thermodynamic properties of the gases and aqueous species shown in Chapter 3 

(Tables 3.2-3.3); thermodynamic properties of the solid phases used in this 

investigation are shown in Tables 8.1-8.2. Solubility products (Kso) for C-(A-)S-H, 

and effective saturation indices (SI*) for relevant solid phases, were calculated from 

experimental data obtained here. A complete description of the experimental details 

for this investigation is given in Chapter 3. 
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Table 8.1. Standard partial molar thermodynamic properties of the solid phases used in the thermodynamic modelling calculations. The reference 

state is 298.15 K and 1 bar. 

Phase 
V ° 

(cm
3
/mol) 

ΔfH° 

(kJ/mol) 

ΔfG° 

(kJ/mol) 

S° 

(J/(mol.K)) 

Cp° 

(J/(mol.K)) 
Reference 

Al(OH)3 (microcrystalline) 32.0 -1265.3 -1148.4 140.0 93.1 (Lothenbach et al., 2012b) 

Gibbsite 32.0 -1288.7 -1151.0 70.1 93.1 (Helgeson et al., 1978) 

Portlandite 33.1 -984.7 -897.0 83.4 87.5 (Robie and Hemingway, 1995) 

SiO2 (amorphous) 29.0 -903.3 -848.9 41.3 44.5 (Kulik, 2011) 

Katoite, C3AH6 149.7 -5537.3 -5008.2 421.7 445.6 (Lothenbach et al., 2012b) 

Si-hydrogarnet, C3AS0.84H4.32 142.5 -5847.5 -5365.2 375.2 412.6 (Dilnesa et al., 2014) 

Strätlingite, C2ASH8 216.1 -6360.0 -5705.1 546.2 602.7 (Matschei et al., 2007b) 

C-S-H solid solution, the ‘downscaled CSH3T’ model 

TobH - (CaO)1(SiO2)1.5(H2O)2.5 85.0 -2833.0 -2562.0 152.8 231.2 (Kulik, 2011) 

T5C - (CaO)1.25(SiO2)1.25(H2O)2.5 79.3 -2782.0 -2519.0 159.9 234.1 (Kulik, 2011) 

T2C - (CaO)1.5(SiO2)1(H2O)2.5 80.6 -2722.0 -2467.0 167.0 237.0 (Kulik, 2011) 
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Table 8.2. Dissociation constant reactions for the solid phases used in the thermodynamic modelling calculations. 

Phase Reaction log10(Kso) Reference 

Al(OH)3 (microcrystalline) Al(OH)3 + OH
-
   AlO2

-
 + 2H2O -0.67 (Lothenbach et al., 2012b) 

Gibbsite Al(OH)3 + OH
-
   AlO2

-
 + 2H2O -1.12 

(Hummel et al., 2002; 

Thoenen et al., 2013) 

Portlandite Ca(OH)2   Ca
2+

 + 2OH
-
 -5.20 

(Hummel et al., 2002; 

Thoenen et al., 2013) 

SiO2 (amorphous) SiO2 (am)   SiO(OH)3
-
 - OH

-
 - H2O 1.476 

(Lothenbach and Winnefeld, 

2006) 

Katoite, C3AH6 
(CaO)3(Al2O3)(H2O)6   3Ca

2+
 + 2AlO2

-
 + 4H2O + 

4OH
-
 

-20.50 (Lothenbach et al., 2012b) 

Si-hydrogarnet, C3AS0.84H4.32 
(CaO)3(Al2O3)(SiO2)0.84(H2O)4.32   3Ca

2+
 + 2AlO2

-
 

+ 2.32H2O + 3.16OH
-
 + 0.84HSiO3

-
 

-26.70 (Dilnesa et al., 2014) 

Strätlingite, C2ASH8 
(CaO)2(Al2O3)(SiO2)(H2O)8   2Ca

2+
 + 2AlO2

-
 + 

HSiO3
-
 + 7H2O + OH

-
 

-19.70 (Matschei et al., 2007b) 

C-S-H, 

(CaO)1.25(SiO2)1.25(H2O)2.5 

(CaO)1.25(SiO2)1.25(H2O)2.5   1.25SiO(OH)3
-
 + 

1.25Ca
2+

 + 1.25OH
-
  

-11.625 (Kulik, 2011) 
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8.3 Results and Discussion 

 

8.3.1 XRD and Rietveld Analysis 

 

The XRD results show that C-(A-)S-H phases are the dominant reaction products in 

each sample (Figure 8.1). Katoite (C3AH6, PDF# 00-024-0217) and strätlingite 

(C2ASH8, PDF# 00-029-0285) are also observed in some systems. Siliceous 

hydrogarnet (C3ASyH6-2y, 0 < y ≤ 3) is not identified in any of the samples. Katoite 

and strätlingite are more commonly found as secondary products in the systems with 

higher bulk Al/Si ratios and lower equilibration temperatures: strätlingite and katoite 

are observed in every Al-containing system at 7°C, but these phases are only 

observed in the Al/Si* ≥ 0.1 samples at 20°C, and only katoite is identified in the 

Al/Si* ≥ 0.1 samples at 50°C. Small amounts of katoite are also found in the Al/Si* 

= 0.15, 80°C sample. Calcite (CaCO3, PDF# 00-005-0586) is identified in some 

samples, which is attributed to minor carbonation during sample preparation, storage 

and/or analysis. 

 

  
Figure 8.1. Cu Kα diffractograms of the A) C-S-H, and B) Al/Si* = 0.05, C) Al/Si* = 

0.1 and D) Al/Si* = 0.15 C-A-S-H systems. Data at 20°C are reproduced from 

(L'Hôpital et al.). The peaks marked by C1 and C2 represent C-(A-)S-H products with 

average basal spacings similar to 14 Å tobermorite and 11 Å tobermorite 

respectively, and C represents C-(A-)S-H products with similarities to both 

tobermorite types. There is an additional unassigned minor peak at ~43° 2θ in the 

trace for the Al/Si = 0.1, 7°C sample (not shown). Al/Si* = bulk Al/Si. 
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Figure 8.1. Continued. 
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The long-range order of the C-(A-)S-H products formed, as identified particularly by 

the intensity and sharpness of the reflections below 8° 2θ and at ~16° 2θ (Figure 8.1), 

increases as a monotonic function of temperature and Al content, to a maximum at 

Al/Si* = 0.1 or 0.15, and a temperature of 80°C. The peaks for the C-(A-)S-H 

products correspond to poorly-ordered structural analogues of 14 Å tobermorite 

(5CaO·6SiO2·9H2O, PDF# 00-029-0331), and 11 Å tobermorite 

(4.5CaO·6SiO2·5.5H2O, PDF# 01-074-2784) (Merlino et al., 2001). These phases 

can be differentiated in the diffractograms by their different basal spacings; peaks 

marked C1 and C2 in Figure 8.1 correspond to C-(A-)S-H products with basal 

spacings that match closely to the (002) reflections for the 14 Å and 11 Å reference 

tobermorite patterns used here, respectively. The peaks simply marked C indicate 

reflections of C-(A-)S-H phases with structural similarities to both 14 Å and 11 Å 

reference tobermorite types. These assignments are consistent with the analysis in 

(Grangeon et al., 2013), where mixtures of 11 Å and 14 Å tobermorite-like structures 

could best explain the observed shifts of the (002) reflections in the diffractograms of 

C-S-H systems over the composition range 0.6 < Ca/Si < 1.8. The average (002) 

spacings that correspond to the positions of the reflections in the XRD results here 

do not vary systematically with equilibration temperature or Al/Si ratio, and are 

between 11 Å and 14 Å for each system studied (Table 8.3).  

 

Rietveld analysis of the diffractograms indicates that at most only small amounts of 

secondary products were formed in the systems studied (all samples contained ≥ 93 

wt.% C-(A-)S-H, Table 8.3). Phase purity increased with increasing temperature and 

decreasing Al content; phase-pure C-S-H was formed in the Al-free systems, and ≥ 

99.7 wt.% C-A-S-H was found in the Al-containing samples that were equilibrated at 

80°C.  
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Table 8.3. Average (d(002)) basal spacings and solid phase assemblages of the  

C-(A-)S-H systems, determined from Rietveld analysis. Data at 20°C are reproduced 

from (L'Hôpital et al.). The estimated absolute error is ±2 wt.% for the secondary 

products. Al/Si* = bulk Al/Si. 

Temperature 

(°C) 

Average basal 

spacing, d(002) 

(Å) 

C-(A-)S-H 

(wt. %) 

Katoite 

(wt. %) 

Strätlingite 

(wt. %) 

Calcite 

(wt. %) 

Al/Si * = 0 

7 12.1 100 0 0 0 

20 11.9 100 0 0 0 

50 12.9 100 0 0 0 

80 12.1, 14.0 
a
 100 0 0 0 

Al/Si* = 0.05 

7 12.6 99 0.4 0.6 0 

20 12.8 100 0 0 0 

50 12.3 100 0 0 0 

80 11.6 100 0 0 0 

Al/Si* = 0.1 

7 13.1 98.8 0.8 0.4 0 

20 12.4 97.2 2.8 0 0 

50 13.6 97.6 1.9 0 0.5 

80 11.6 100 0 0 0 

Al/Si* = 0.15 

7 - 96.1 2.1 1.4 0.4 

20 - 93.4 2.2 4.5 0 

50 - 98.5 1.3 0 0.2 

80 11.8 99.7 0.3 0 0 
a
 Two distinct d(002) reflections were distinguished in the diffractogram of this 

sample. 

 

8.3.2 Thermogravimetric Analysis 

 

The solid phase assemblages identified in the TGA results (Figure 8.2) are similar to 

those identified by XRD (section 8.3.1); the peaks centred at 80-150°C in the TGA 

results indicate that >77% of the total mass lost in each sample is from interlayer and 

structurally bound water in C-(A-)S-H (noting that samples were freeze-dried and 

equilibrated to ~30% RH to remove the capillary and gel water (Muller et al., 

2013b)). The central positions of these mass loss peaks, and the total mass losses in 
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each temperature range, do not vary systematically across the sample synthesis 

temperature range of 7-80°C, which suggests that the equilibration temperature is not 

the primary factor controlling the interlayer and structural water content of the C-(A-

)S-H products formed here. The relationship between temperature and bound water 

content in tobermorite (Gmira et al., 2002) and hydrated PC pastes (Gallucci et al., 

2013) is different; these materials dehydrate progressively with increasing 

temperature over this temperature range.  

 

 

 
Figure 8.2. TGA results for the A) C-S-H, and B) Al/Si* = 0.05, C) Al/Si* = 0.1 and 

D) Al/Si* = 0.15 C-A-S-H systems. Data at 20°C are reproduced from (L'Hôpital et 

al.). The data are represented by short-dashed traces at 7°C, long-dashed traces at 

20°C, solid traces at 50°C and dotted traces at 80°C. The peaks labelled † and ‡ are 

assigned to C-(A-)S-H and the decomposition of C-(A-)S-H to wollastonite 

(CaSiO3), respectively (Appendix A). Al/Si* = bulk Al/Si. 
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Figure 8.2. Continued. 

 

A distinct shoulder at ~200°C is observed in the differential mass loss trace for the 

Al/Si* = 0.15 sample equilibrated at 20°C (Figure 8.2D), which is assigned to 

strätlingite (Kuzel, 1976). Small peaks at ~300°C are observed in the differential 

mass loss traces for the Al/Si* = 0.1 and Al/Si* = 0.15 samples at 7°C and 50°C 

(Figures 8.2C-8.2D), and at ~275°C in the trace for the Al/Si* = 0.1 and Al/Si* = 

0.15, 20°C systems. These peaks are assigned to Al(OH)3 at ~275°C and katoite at 

~300°C (Lothenbach et al., 2012b). Minor carbonation during sample preparation, 

storage and/or analysis is also identified in some samples, by peaks centred at 

~650°C.  
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The derivative mass loss traces for the Al/Si* = 0.05, 50°C sample and the Al/Si* ≥ 

0.05, 80°C samples contain wide and shallow peaks at ~380°C and ~500°C (marked 

by † in Figures 8.2B-8.2D). These features are principally affected by equilibration 

temperature because they are only apparent in the 50°C and 80°C samples, but also 

appear to be related to Al content because the band at ~500°C is largest in the Al/Si* 

= 0.1, 80°C sample compared to the other samples equilibrated at this temperature. 

These peaks are assigned to thermal decomposition of C-(A-)S-H because none of 

the additional phases identified by TGA or XRD (section 8.3.1) can explain the mass 

losses associated with these bands. The peaks at ~810°C are present in all of the 

samples studied here (marked by ‡ in Figure 8.2) and are assigned to the 

decomposition of C-(A-)S-H to wollastonite (CaSiO3) (Trojer, 1968); wollastonite is 

known to crystallise from C-S-H (Kalousek, 1952) and tobermorite (Mitsuda and 

Taylor, 1978) at this temperature. Decomposition of C-A-S-H in the temperature 

range 600-950°C also forms mayenite (C12A7), although distinct differential mass 

loss peaks for this process are not apparent in Figure 8.2. Additional XRD data 

supporting these assignments are shown in Appendix A. 

 

8.3.3 Aqueous Phase Chemistry and C-S-H Chemical Composition 

 

Figure 8.3A shows that the concentrations of Si and OH
-
 in the supernatant solutions 

generally increase slightly with increasing temperature in the C-S-H systems. 

However, there is not a clear dependence of the measured Ca concentrations on 

temperature. This result is consistent with published solubility data for C-S-H 

systems (Atkins et al., 1994; Barbarulo, 2003; Chen et al., 2004; Courault, 2000; 

Fujii and Kondo, 1981; Greenberg and Chang, 1965; Grutzeck et al., 1989; Roller 

and Ervin, 1940; Taylor, 1950; Walker et al., 2007). In both the C-S-H (Figure 8.3A) 

and C-A-S-H (Figure 8.3B) samples, the concentrations of Ca, Si and OH
-
 species in 

the filtrates change by less than an order of magnitude between 7°C and 80°C. 
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Figure 8.3. Concentrations of Si, Ca, Al and OH

-
 species in the filtrates of A) C-S-H 

and B) C-A-S-H (Al/Si* = 0.1) systems. Data at 20°C are reproduced from 

(L'Hôpital et al.). Previously published C-S-H solubility data for systems with solid-

phase Ca/Si ratios = 1 ±0.1 (Atkins et al., 1994; Barbarulo, 2003; Chen et al., 2004; 

Courault, 2000; Fujii and Kondo, 1981; Greenberg and Chang, 1965; Grutzeck et al., 

1989; Roller and Ervin, 1940; Taylor, 1950; Walker et al., 2007) are shown as small 

white and grey symbols in A), with shapes corresponding to the coloured points for 

the new data. The data measured here (relative error = ±10%) are tabulated in 

Appendix B. Minor amounts of additional solid products were identified by XRD 

and TGA in some systems, as marked by horizontal black and grey bars in B). mM = 

mmol/L. 
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The C-A-S-H systems, Figure 8.3B and Appendix B, show weak increasing trends in 

the concentrations of dissolved Si and OH
-
 species as a function of temperature and 

little variation of aqueous Ca content, which is a similar result to that found for the 

C-S-H systems (Figure 8.3A). In general, the concentration of dissolved Al is lower 

at higher temperatures. An increase in bulk Al/Si ratio generally leads to a higher 

concentration of dissolved Si and Al, and less Ca and OH
-
 (Figure 8.3 and Appendix 

B). The variation in chemical composition of the C-(A-)S-H products is the main 

factor contributing to the trends in dissolved Ca, Si, Al and OH
-
 concentrations, and 

will be addressed in detail below. This result is consistent with the published 

solubility data for C-S-H, which show the same trends in Ca, Si and OH
-
 

concentrations as functions of Ca/Si in the solid phase (Chen et al., 2004; Walker et 

al., 2007). Small amounts of secondary products precipitated in the Al-containing 

systems (sections 8.3.1-8.3.2), and also contribute slightly to the measured 

solubilities of Ca, Si, Al and OH
-
 species.  

 

Analysis of C-(A-)S-H solubility from these results is complex because the aqueous 

Si, Ca, Al and OH
-
 concentrations do not follow monotonically increasing or 

decreasing trends, and because the samples with Al/Si ≥ 0.1, and the Al/Si = 0.05, 

7°C system, contain additional strätlingite, katoite and/or Al(OH)3 products (see 

sections 8.3.1-8.3.2), meaning that the results do not represent the solubility of C-(A-

)S-H alone. Therefore, the measured aqueous phase compositions were used to 

calculate effective saturation index (SI*) values for each precipitated phase and for 

some common solid products in the CaO-SiO2-Al2O3-H2O system using eq.(3.7) 

(section 3.4.1) to clarify the relative solubilities of the solids formed here (Table 8.4). 

  

The total stoichiometric amount of ions in the dissociation reactions for the solid 

phases (Table 8.2), are 3.75 for C-S-H (C1.25S1.25H2.5), 3 for CH, 2 for SiO2 (am), 2 for 

Al(OH)3, 9 for katoite, 9 for Si-hydrogarnet, and 6 for strätlingite.  
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Table 8.4. Effective saturation indices for the relevant reaction products in the C-(A-)S-H systems, calculated from the solution compositions in 

Figure 8.3 and Appendix B. Effective saturation indices marked in bold represent solid phases that are observed in the TGA and/or XRD results 

of the respective experimental systems. A ‘near saturated’ condition of -0.4 ≤ SIi* < 0 is assumed, as discussed in the text. 

Temperature (°C) C-S-H 
a
 CH SiO2 (am) 

b
 Al(OH)3 

c
 Katoite Si-hydrogarnet Strätlingite 

Al/Si* = 0 

7 -0.4 -1.4 -1.6 n/a 
d
 n/a 

d
 n/a 

d
 n/a 

d
 

20 -0.1 -0.9 -1.7 n/a 
d
 n/a 

d
 n/a 

d
 n/a 

d
 

50 -0.1 -0.6 -1.7 n/a 
d
 n/a 

d
 n/a 

d
 n/a 

d
 

80 -0.2 -0.6 -1.4 n/a 
d
 n/a 

d
 n/a 

d
 n/a 

d
 

Al/Si* = 0.05 

7 -0.3 -1.4 -1.5 -0.5 -1.1 -0.6 -0.4 

20 0.0 -0.9 -1.6 -0.8 -0.8 -0.3 -0.3 

50 -0.1 -0.7 -1.6 -1.3 -0.9 -0.4 -0.7 

80 -0.2 -0.6 -1.5 b.d.l. 
e 

b.d.l. 
e
 b.d.l. 

e
 b.d.l. 

e
 

Al/Si* = 0.1 

7 -0.3 -1.5 -1.4 -0.3 -1.1 -0.5 -0.4 

20 -0.1 -0.9 -1.7 -0.7 -0.8 -0.3 -0.3 

50 -0.1 -0.8 -1.4 -0.7 -0.8 -0.3 -0.4 

80 -0.3 -0.6 -1.5 -1.2 -0.9 -0.4 -0.8 

Al/Si* = 0.15 

7 -0.4 -1.6 -1.3 -0.2 -1.2 -0.6 -0.4 

20 0.0 -1.1 -1.3 -0.7 -1.0 -0.4 -0.3 

50 -0.1 -1.0 -1.1 -0.5 -0.9 -0.3 -0.3 

80 -0.3 -0.8 -1.4 -0.6 -0.8 -0.3 -0.5 
a 

C-S-H is represented here by the MCL = 5 end-member of the ‘downscaled CSH3T model’ (Ca/Si = 1, Al/Si = 0) (Kulik, 2011);
 b

 Amorphous 

SiO2;
 c
 Microcrystalline Al(OH)3 at 7°C, 20°C and 50°C, and gibbsite at 80°C (Lothenbach et al., 2012b);

 d
 n/a = not applicable (systems contain 

no Al); and 
e
 Dissolved Al concentration is below the detection limit (b.d.l.).
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The effective saturation indices (Table 8.4) show that the supernatant solutions are 

near saturated (-0.4 ≤ SIi* < 0) with respect to C-S-H, and undersaturated with 

respect to Ca(OH)2 and SiO2, which is consistent with the solid phase assemblages 

observed experimentally in these systems (sections 8.3.1-8.3.2). The ‘near-

saturation’ range of SIi* values chosen here represents the uncertainty associated 

with both concentration determinations and solubility calculations.  

 

The effective saturation indices (Table 8.4) indicate that C-S-H is the solid phase 

most likely to precipitate in each of the Al-free systems. The filtrates in the Al-

containing systems are near saturated with respect to C-S-H in each of the systems 

studied, with respect to Al(OH)3 at 7°C and higher Al concentrations, with respect to 

strätlingite (C2ASH8) at temperatures ≤ 50°C and bulk Al/Si ratios ≥ 0.05, and with 

respect to Si-hydrogarnet (C3AS0.84H4.32) at temperatures ≥ 20°C and bulk Al/Si ≥ 

0.05, which suggests that the systems are close to equilibrium. Katoite (C3AH6) was 

calculated to be undersaturated in each simulated system, although small amounts of 

this phase were identified in some of the Al-containing systems (sections 8.3.1-

8.3.2), which indicates that katoite forms initially from CaO·Al2O3, CaO and H2O 

and that the dissolution of this phase is kinetically hindered. Similar observations 

have been reported for laboratory-synthesised C-(A-)S-H samples aged for more than 

1 year at 20°C (L'Hôpital et al.). These results suggest that the solid phase 

assemblages in the CaO-Al2O3-SiO2-H2O systems studied here are likely to contain 

several Al-containing solid products at equilibrium. However, the solid phase 

assemblages found in the experimental samples are dominated by C-(A-)S-H 

(sections 8.3.1-8.3.2), which suggests that this phase outcompetes the other near-

saturated phases to form in these systems. 

 

A mass balance was performed using these results, the XRD and Rietveld refinement 

results and the TGA data, to determine chemical compositions for the C-(A-)S-H 

products formed in each sample (Table 8.5). This analysis excluded contributions 

from Al(OH)3 because no diffraction lines for this phase are present in the XRD 

results: small mass losses (≤1 wt.%) were associated with Al(OH)3 in the differential 
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mass loss traces for the Al/Si* = 0.1 and Al/Si* = 0.15, 20°C samples only (section 

8.3.2), meaning that any error introduced in the reported C-(A-)S-H compositions by 

neglecting Al incorporated into this phase, is minor.  

 

Table 8.5. Chemical compositions of the C-(A-)S-H products, determined from the 

aqueous phase concentrations, TGA results and Rietveld analysis. Data at 20°C are 

reproduced from (L'Hôpital et al.). The estimated absolute errors are ±0.04 units in 

the Ca/Si ratios, ±0.2 units in the H2O/Si ratios, and ±0.04 units at 7°C, ±0.03 units 

at 20°C, ±0.02 units at 50 and 80°C in the Al/Si ratios of the C-(A-)S-H products. 

Al/Si* = bulk Al/Si. 

Temperature (°C) C-S-H chemical composition 

Al/Si * = 0 

7 (CaO)0.99(SiO2)1(H2O)1.2 

20 (CaO)0.98(SiO2)1(H2O)1.5 

50 (CaO)0.99(SiO2)1(H2O)1.4 

80 (CaO)0.99(SiO2)1(H2O)1.4 

Al/Si* = 0.05 

7 (CaO)0.98(Al2O3)0.022(SiO2)1(H2O)1.3 

20 (CaO)0.99(Al2O3)0.025(SiO2)1(H2O)1.4 

50 (CaO)0.99(Al2O3)0.025(SiO2)1(H2O)1.4 

80 (CaO)0.99(Al2O3)0.025(SiO2)1(H2O)1.2 

Al/Si* = 0.1 

7 (CaO)0.98(Al2O3)0.045(SiO2)1(H2O)1.3 

20 (CaO)0.95(Al2O3)0.039(SiO2)1(H2O)1.4 

50 (CaO)0.96(Al2O3)0.043(SiO2)1(H2O)1.6 

80 (CaO)0.99(Al2O3)0.050(SiO2)1(H2O)1.1 

Al/Si* = 0.15 

7 (CaO)0.95(Al2O3)0.061(SiO2)1(H2O)1.7 

20 (CaO)0.94(Al2O3)0.051(SiO2)1(H2O)1.5 

50 (CaO)0.97(Al2O3)0.070(SiO2)1(H2O)1.7 

80 (CaO)0.98(Al2O3)0.074(SiO2)1(H2O)1.3 

 

The calculated Ca/Si and Al/Si ratios of the C-(A-)S-H products are generally more 

similar to the bulk conditions used (Ca/Si = 1 and 0 ≤ Al/Si ≤ 0.15) in the systems 

with lower Al content and higher temperatures, because these samples typically 

contain lower amounts of secondary phases. The Al content of the C-(A-)S-H 

products and the concentrations of Al dissolved in the supernatant solutions are 
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directly related (Figure 8.4), and both typically increase with increasing bulk Al/Si 

ratio. In general, the concentration of dissolved Al decreases and the Al/Si ratio of 

the C-(A-)S-H phase increases as a function of the equilibration temperature.  

 

 
Figure 8.4. Al/Si ratios of the C-(A-)S-H products as a function of the concentration 

of Al in the supernatant. Data at 20°C are reproduced from (L'Hôpital et al.). The 

uncertainties of the Al/Si ratios calculated for the C-(A-)S-H phases are ±0.04 units 

at 7°C, ±0.03 units at 20°C, and ±0.02 units at 50 and 80°C. A relative measurement 

error of ±10% is specified for the aqueous concentrations. Lines are for eye-guides 

only. mM = mmol/L. 

 

The low water contents determined for the C-(A-)S-H products formed here (1.1 ≤ 

H2O/Si ≤ 1.7) compare closely to the proposed values for C-S-H with no adsorbed 

water (1.3 ≤ H2O/Si ≤ 1.8 (Jennings, 2008; Muller et al., 2013a)), which suggests 

that only interlayer and structural water remains after the drying procedure used here 

(dried to RH ≈ 30% (Muller et al., 2013b)). The use of a more severe drying 

procedure here than in a recent study of temperature effects on PC pastes (Gallucci et 

al., 2013) explains why the H2O/Si ratios of the low-Al C-(A-)S-H in that study were 

found to vary as a function of temperature and were significantly higher (2.28 ≤ 

H2O/Si ≤ 3.31) than those determined here.  
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8.3.4 
29

Si MAS NMR 

 

The 
29

Si MAS NMR spectra are dominated by intense bands at -79.4 ppm, -83.5 ppm 

and -85.3 ppm (Figure 8.5), which are characteristic of silicate species in chain-end 

(Q
1
), bridging (Q

2
b) and paired (Q

2
p) sites respectively (Figure 2.5) (Skibsted and 

Andersen, 2013). An additional peak is apparent between the Q
1
 and Q

2
p sites in the 

Al/Si* = 0.1 spectra compared to the Al-free samples, which indicates that Q
2
(1Al) 

sites are present in the C-A-S-H systems. These species lead to bands centred at -

81.9 ppm in the deconvoluted spectra (Richardson et al., 1993). Cross-linked 

Q
3
(1Al) and Q

3
 sites are also evident at -91.9 ppm and -96.6 ppm respectively in the 

spectrum of the Al/Si* = 0.1, 80°C sample, which is the only spectrum that contains 

clearly visible resonance signals for these sites. Q
3
-type sites have also been 

identified in 
29

Si MAS NMR spectra of hydrated 60% PC/40% silica fume cements 

(Ca/Si ≈ 0.83 and Al/Si ≈ 0.035), which were found to increase greatly in intensity at 

80°C relative to 20°C and 50°C (Bach et al., 2012), although these sites are not 

observed in more Ca-rich materials in this temperature range (e.g. hydrated PC and 

C3S (Masse et al., 1993)). Strätlingite is not explicitly taken into account in 

deconvolutions of the 
29

Si MAS NMR spectra; this phase is thought to contain 

aluminosilicate species with 
29

Si isotropic chemical shifts of -80 to -90 ppm (Kwan 

et al., 1995), but is not expected to greatly affect the deconvolution analysis because 

it was seen to be a minor component via Rietveld analysis for the Al/Si* = 0.1 

samples (≤ 0.4 wt.%, Table 8.3).  

 

The deconvoluted spectra and quantified site environments for each of the C-S-H and 

C(A-)S-H samples are shown in Figures 8.6 and 8.7 respectively, with the results 

tabulated in Table 8.6.  
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Figure 8.5. Solid-state 

29
Si MAS NMR spectra of the A) C-S-H and B) Al/Si* = 0.1 

C-A-S-H systems. The fits and deconvoluted peaks for the spectra of the 80°C 

samples are shown as bright red and blue lines respectively. The chemical shift range 

corresponding to aluminosilicate sites in strätlingite is approximately -80 to -90 ppm 

(Kwan et al., 1995). Data at 20°C are reproduced from (L'Hôpital et al.). Al/Si* = 

bulk Al/Si. 
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Figure 8.6. Solid-state 

29
Si MAS NMR spectra of the C-S-H systems (Al/Si* = 0) 

equilibrated at A) 7°C, B) 20°C, C) 50°C, D) 80°C. 

 

 
Figure 8.7. Solid-state 

29
Si MAS NMR spectra of the C-A-S-H systems (Al/Si* = 

0.1) equilibrated at A) 7°C, B) 20°C, C) 50°C, D) 80°C. 
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Table 8.6. Deconvolution results for the 
29

Si MAS NMR spectra. The estimated error in absolute site percentages is ±0.03. Al/Si* = bulk Al/Si. 

Al/Si* 
Temperature 

(°C) 

Q
1
  

-79.4 ±0.3 ppm 

Q
2
(1Al)  

-81.9 ±0.2 ppm 

Q
2

b  

-83.5 ±0.3 ppm 

Q
2

p  

-85.3 ±0.3 ppm 

Q
3
(1Al)  

-91.9 ppm 

Q
3
  

-96.6 ppm 
Al/Si MCL 

0 7 0.31 0 0.23 0.46 0 0 0 6.5 

0 20 0.36 0 0.21 0.43 0 0 0 5.6 

0 50 0.32 0 0.23 0.46 0 0 0 6.4 

0 80 0.23 0 0.26 0.51 0 0 0 8.8 

0.1 7 0.19 0.16 0.22 0.43 0 0 0.081 11.4 

0.1 20 0.21 0.17 0.21 0.42 0 0 0.084 10.4 

0.1 50 0.20 0.16 0.21 0.43 0 0 0.082 11.0 

0.1 80 0.17 0.21 0.07 0.42 0.1 0.04 0.10 19.8 
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The lineshapes of the spectra for the samples equilibrated at ≤ 50°C and the same 

bulk Al/Si ratio are similar, which indicates that the C-(A-)S-H products formed in 

these samples have similar degrees of polymerisation, as shown in Figure 8.8, 

calculated using eq.(2.4) for non-cross-linked C-(A-)S-H (subscript NC) (Richardson 

and Groves, 1993b). Al/Si ratios for non-cross-linked C-(A-)S-H are calculated by 

eq.(2.5) (Richardson and Groves, 1993b). The MCL and Al/Si values for mixed 

cross-linked (subscript C)/non-cross-linked C-(A-)S-H structures (i.e. a C-(A-)S-H 

product containing Q
3
 and/or Q

3
(1Al) sites) are calculated using the CSTM (Myers et 

al., 2013), which is described in full in Chapter 4 of this thesis. 

 

 
Figure 8.8. C-(A-)S-H structural parameters calculated from deconvolution analysis 

of the 
29

Si MAS NMR spectra, determined using the SGM (Richardson and Groves, 

1993b) for the non-cross-linked phases and the CSTM (Myers et al., 2013) for the 

mixed cross-linked/non-cross-linked phases. The sizes of the symbols represent the 

expected error bounds of the deconvolution results, except for the Al/Si* = 0.1, 80°C 

sample, where the uncertainty of the MCL calculation is represented by error bars. 

The cross-linked phase fraction for the C-A-S-H product in this sample has an error 

bound of +0.05 and -0.1, as marked by the dotted black lines. Al/Si* = bulk Al/Si. 

 

The C-(A-)S-H products formed in the samples equilibrated at 80°C are significantly 

more polymerised than those produced at lower temperatures; the same trend has 

been reported for C-(A-)S-H products formed in hydrated 60% PC/40% silica fume 
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cements (Bach et al., 2012). MCL values of 8.8 and 19.8 ± 6 were calculated for the 

C-(A-)S-H products in the Al/Si* = 0 and Al/Si* = 0.1 systems at 80°C, respectively. 

This increase in chain length is associated with a significant increase in the long-

range order of the C-(A-)S-H products at 80°C relative to the C-(A-)S-H phases 

formed at lower temperatures (section 8.3.1), which is particularly pronounced for 

the Al-containing samples. The increase in chain polymerisation from 50°C to 80°C 

is much smaller in the Al-free system relative to the Al/Si* = 0.1 system, and this is 

consistent with the observation of cross-linked chain structures only in the Al/Si* = 

0.1 sample. Therefore, these results indicate that the formation of highly polymerised 

and cross-linked C-(A-)S-H products is promoted substantially by the presence of Al.  

 

Figure 8.9 shows that the Al/Si ratios determined from analysis of the 
29

Si MAS 

NMR spectral deconvolution results (Figures 8.5-8.7) match closely with the 

chemical compositions of the C-(A-)S-H products determined independently by the 

TGA results, measured filtrate compositions and Rietveld analysis (Table 8.5). The 

formation of a highly cross-linked C-A-S-H product in the Al/Si* = 0.1, 80°C sample 

is also consistent with the low average basal spacing for the C-A-S-H phase in this 

system (11.6 Å, Table 8.3), which is similar to the layer spacing of double chain 11 

Å tobermorite (11.3 Å). 
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Figure 8.9. Comparison between the chemical compositions of the C-A-S-H products 

in the Al/Si* = 0.1 samples, as determined by mass balance (TGA, XRD, aqueous 

phase compositions – Table 8.5) and deconvolutions of 
29

Si MAS NMR spectra 

(Table 8.6). The sizes of the symbols represent the expected uncertainty in the 

spectral deconvolution results. The solid y = x line is intended as an eye-guide only. 
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8.3.5 C-(A-)S-H Solubility 

 

Solubility products (Kso) were calculated for hypothetical C-(A-)S-H end-members 

with chemical compositions corresponding to the bulk chemistry of the systems 

studied (Al/Si = 0, 0.05, 0.1, 0.15) but normalised to Ca/(Al+Si) = 1 and H2O/Si = 

1.2, using eqs.(3.8-3.9). These calculations are described in full in section 3.4.1. 

 

The results of these calculations, for the hypothetical C-(A-)S-H end-members, are 

shown in Figure 8.10. Solubility products were calculated in the same way for the 

experimental C-(A-)S-H products with chemical compositions determined from the 

measured supernatant concentrations, TGA data and XRD results (Table 8.5), which 

are shown in Appendix B.  

 

 
Figure 8.10. Calculated log10(Kso) values for hypothetical C-(A-)S-H end-members 

with chemical compositions of Ca/(Al+Si) = 1, Al/Si = 0, 0.05, 0.1 and 0.15, and 

H2O/Si = 1.2, and normalised to 1 mol SiO2. The approximate uncertainty in the 

log10(Kso) values are ±1 log10 unit. The solubility product for the C-A-S-H product 

formed in the Al/Si* = 0.05 sample equilibrated at 80°C was calculated with [Al] = 

0.001 mmol/L because the measured Al concentration was below the detection limit. 

Al/Si* = bulk Al/Si. 
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The solubility products of the hypothetical C-(A-)S-H end-members change slightly 

between 7°C and 80°C, and very slightly as a function of Al/Si ratio, but remain 

within the error bound of ±1 log unit (Figure 8.10). These solubility products (-9 < 

log10(Kso) < -10) are comparable to those recalculated from reported Ca, Si and OH
-
 

solubilities in laboratory-synthesised Ca/Si = 0.83 tobermorite specimens using 

eq.(8.6) (-8.1 ±0.3 at 25°C, -9.3 ±0.6 at 55°C and -9.6 ±0.2 at 85°C (Dickson et al., 

2004)), as expected for these structurally and compositionally-similar phases. 

Despite the large uncertainty relative to the variation in the calculated solubility 

products, the 80°C data do show a small systematic reduction in C-(A-)S-H 

solubility as the Al/Si ratio of this phase increases, which could indicate that these 

phases are slightly stabilised by the incorporation of Al at high temperature, but 

further experimental solubility data are necessary to clarify this point. The 

precipitation of small amounts of katoite, strätlingite and calcite (Table 8.3) is not 

expected to significantly affect the trends in C-(A-)S-H solubility reported here, 

although the results depend slightly on this factor. 

 

Nonetheless, the weak dependency of C-(A-)S-H solubility on temperature, clearly 

shown by these data, is an important result which will influence the development of 

thermodynamic models for cementitious materials across the temperature range of 

interest for the majority of service conditions worldwide. 

 

8.4 Conclusions 

 

This paper has analysed the structure and solubility of calcium (alumino)silicate 

hydrates, with and without the inclusion of Al, as a function of temperature. The 

long-range order and degree of polymerisation of the C-(A-)S-H products, and the 

type and quantity of secondary phases formed in the equilibrated CaO-Al2O3-SiO2-

H2O systems studied here, were significantly influenced by the synthesis 

temperature. The supernatants in these systems were close to saturation with respect 

to strätlingite and Al(OH)3 products at lower temperatures and higher Al/Si ratios, 

and equilibrium was attained more rapidly at high temperatures, meaning that the Al-
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free and 80°C systems contained the most phase-pure C-(A-)S-H products. The C-

(A-)S-H phases formed at 80°C were much more polymerised and long-range 

ordered than those produced at 7, 20 and 50°C, and the C-A-S-H product in the 

80°C, Al/Si = 0.1 system was also highly cross-linked. However, no Q
3
-type sites 

were evident in the 
29

Si MAS NMR spectra for the C-S-H formed in the Al-free 

system at this temperature, indicating that cross-linking in C-(A-)S-H products is 

promoted by the presence of Al. Solubility products for the C-(A-)S-H phases 

formed here did not vary beyond the experimental error bounds as a function of 

temperature or Al/Si ratio, but a small systematic reduction in C-(A-)S-H solubility 

at 80°C as the bulk Al/Si ratio was increased could indicate that these phases are 

slightly stabilised by Al at this temperature. Therefore, this study is an important step 

towards the development of thermodynamic models for C-A-S-H and advances the 

application of thermodynamic modelling to C-(A-)S-H based cements across the 

temperature range 7-80°C, which will provide new insight into the performance of 

these materials in service. 
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9 

Composition-Solubility-Structure 

Relationships in C-(N-)A-S-H 

 

 

This chapter is based on the manuscript ‘Composition-solubility-structure 

relationships in calcium (alkali) aluminosilicate hydrate (C-(N-)A-S-H)’, by Myers, 

R. J., L’Hôpital, E., Provis, J. L. and Lothenbach B., currently in preparation. C-(N-

)A-S-H samples were synthesised by Rupert J. Myers with assistance from Emilie 

L’Hôpital. The XRD and TGA measurements were performed by Rupert J. Myers 

and Boris Ingold (Laboratory for Concrete/Construction Chemistry, EMPA) with 

assistance from Ellina Bernard and Nikolajs Toropovs. The IC measurements were 

performed by Emilie L’Hôpital with assistance from Luigi Brunetti. The 
29

Si MAS 

NMR experiments were performed by Salaheddine Alahrache (Laboratory for 

Concrete/Construction Chemistry, EMPA) with assistance from Daniel Rentsch 

(Laboratory for Functional Polymers, EMPA). 

 

 

9.1 Introduction 

 

The alkalinity of cement-based materials varies greatly as a function of the cement 

formulation and type: Portland cement (PC) typically contains up to 1 wt.% alkali 

(mainly K) oxide equivalent (Taylor, 1997); fly ash, a common supplementary 

cementitious material (SCM), generally contains >1 wt.% alkali (Na + K) oxide 

equivalent (Fernández-Jiménez and Palomo, 2003); and alkali-activated materials are 

typically derived from highly concentrated Na-based solutions (up to or exceeding 5 

M) (Provis and Bernal, 2014). The elevated pH environment that prevails in most 

hydrated cement-based materials (pH > 13) provides the crucial function of steel 
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passivation in reinforced concrete applications. Alkalinity is an important design 

parameter in other applications, such as for safe geological storage of radioactive 

waste, where ‘low-pH’ cements (pH ≈ 11) are desired (Bai et al., 2011; Lothenbach 

et al., 2012a). The alkalinity of cement-based materials also plays an important role 

in the dissolution of cementitious precursors (Bernal et al., 2015; Snellings, 2013), 

deterioration of concrete due to alkali silica reaction (Chappex and Scrivener, 2012; 

Leemann et al., 2011), and the chemical composition, structure and solubility of 

reaction products formed during hydration (activation in the case of alkali-activated 

cements) (Bach et al., 2013; Duchesne and Reardon, 1995; L'Hôpital et al.; Lognot et 

al., 1998).  

 

The solubility of C-(N-)A-S-H is poorly understood relative to C-(N-)S-H, although 

recent results (L'Hôpital et al.) indicate that the solubility of these phases are 

significantly different. The availability of a comprehensive set of solubility data for 

C-(N-)A-S-H is necessary for the development of more accurate thermodynamic 

models for this phase (Myers et al., 2014), which would advance the utility of 

thermodynamic modelling to cement-based materials. The lack of consensus for the 

exact mechanism and selectivity of alkali uptake in C-(N-)A-S-H (Bach et al., 2013; 

Chappex and Scrivener, 2012; Hong and Glasser, 1999; 2002; Skibsted and 

Andersen, 2013; Stade, 1989) clearly demonstrates a need for additional studies to 

clarify the relationships between the uptake of Na, K and Al in C-(N-)A-S-H. 

Therefore, this paper aims to clarify the effect of Na, K and Al on the chemical 

composition, structure, and solubility of C-(N-)A-S-H products at bulk Ca/Si ratios 

of 0.6, 1 and 1.4 under equilibrium conditions at 50°C, which are not currently well-

described in the literature. 

 

9.2 Experimental 

 

C-(N-)A-S-H samples were synthesised at bulk molar Al/Si ratios (Al/Si*) of 0-0.1 

and bulk molar Ca/Si ratios (Ca/Si*) of 0.6-1.6 using Milli-Q water (Merck 

Millipore) and 0-1 M solutions of NaOH and/or KOH (Merck Millipore), at a 
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solution/solid ratio of 45 in a N2-filled glovebox by the method described in section 

3.2.2 (L'Hôpital et al.; Myers et al., 2015b). Samples were equilibrated at 50°C for 56 

days. The specimens were studied by IC and pH analysis, XRD with Rietveld 

analysis, TGA, 
29

Si MAS NMR and thermodynamic modelling. Thermodynamic 

modelling was performed in GEM Selektor v.3 software (http://gems.web.psi.ch/) 

(Kulik et al., 2013; Wagner et al., 2012) using the thermodynamic properties of the 

gases and aqueous species shown in Chapter 3 (Tables 3.2-3.3); thermodynamic 

properties of the solid phases used are shown in Tables 9.1-9.2. A complete 

description of the experimental details for this investigation is given in Chapter 3. 
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Table 9.1. Standard partial molar thermodynamic properties of the solid phases used in the thermodynamic modelling calculations. The reference 

state is 298.15 K and 1 bar. 

Phase 
V° 

(cm
3
/mol) 

ΔfH° 

(kJ/mol) 

ΔfG° 

(kJ/mol) 

S° 

(J/(mol.K)) 

Cp° 

(J/(mol.K)) 
Reference 

Al(OH)3 (microcrystalline), ½AH3 32.0 -1265.3 -1148.4 140.0 93.1 (Lothenbach et al., 2012b) 

Gibbsite, ½AH3 32.0 -1288.7 -1151.0 70.1 93.1 (Helgeson et al., 1978) 

Portlandite, CH 33.1 -984.7 -897.0 83.4 87.5 
(Robie and Hemingway, 

1995) 

SiO2 (amorphous) 29.0 -903.3 -848.9 41.3 44.5 (Kulik, 2011) 

Katoite, C3AH6 149.7 -5537.3 -5008.2 421.7 445.6 (Lothenbach et al., 2012b) 

Si-hydrogarnet, C3AS0.84H4.32 142.5 -5847.5 -5365.2 375.2 412.6 (Dilnesa et al., 2014) 

Strätlingite, C2ASH8 216.1 -6360.0 -5705.1 546.2 602.7 (Matschei et al., 2007b) 

C-(N-)A-S-H solid solution, CNASH_ss  

5CA, C1.25A0.125SH1.625 57.3 −2491 −2293 163 177 (Myers et al., 2014) 

INFCA, CA0.15625S1.1875H1.65625 59.3 −2551 −2343 154 181 (Myers et al., 2014) 

5CNA, C1.25N0.25A0.125SH1.375 64.5 −2569 −2382 195 176 (Myers et al., 2014) 

INFCNA, 

CN0.34375A0.15625S1.1875H1.3125 
69.3 −2667 −2474 198 180 (Myers et al., 2014) 

INFCN, CN0.3125S1.5H1.1875 71.1 −2642 −2452 186 184 (Myers et al., 2014) 

T2C*, C1.5SH2.5 80.6 −2721 −2465 167 237 (Myers et al., 2014) 

T5C*, C1.25S1.25H2.5 79.3 −2780 −2517 160 234 (Myers et al., 2014) 

TobH*, CS1.5H2.5 85.0 −2831 −2560 153 231 (Myers et al., 2014) 

 

  



 

9. Composition-Solubility-Structure Relationships in C-(N-)A-S-H 

251 

 

Table 9.2. Dissolution reactions for the solid phases used in the thermodynamic modelling calculations (298.15 K, 1 bar). 

Phase Reaction log10(Ks) Reference 

Al(OH)3 (microcrystalline), 

½AH3 
Al(OH)3 + OH

-
  AlO2

-
 + 2H2O -0.67 (Lothenbach et al., 2012b) 

Gibbsite, ½AH3 Al(OH)3 + OH
-
  AlO2

-
 + 2H2O -1.12 

(Hummel et al., 2002; 

Thoenen et al., 2013) 

Portlandite, CH Ca(OH)2  Ca
2+

 + 2OH
-
 -5.20 

(Hummel et al., 2002; 

Thoenen et al., 2013) 

SiO2 (amorphous) SiO2 (am) SiO(OH)3
-
 - OH

-
 - H2O 1.476 

(Lothenbach and 

Winnefeld, 2006) 

Katoite, C3AH6 (CaO)3(Al2O3)(H2O)6  3Ca
2+

 + 2AlO2
-
 + 4H2O + 4OH

-
 -20.50 (Lothenbach et al., 2012b) 

Si-hydrogarnet, 

C3AS0.84H4.32 

(CaO)3(Al2O3)(SiO2)0.84(H2O)4.32  3Ca
2+

 + 2AlO2
-
 + 

2.32H2O + 3.16OH
-
 + 0.84HSiO3

-
 

-26.70 (Dilnesa et al., 2014) 

Strätlingite, C2ASH8 
(CaO)2(Al2O3)(SiO2)(H2O)8  2Ca

2+
 + 2AlO2

-
 + HSiO3

-
 

+ 7H2O + OH
-
 

-19.70 (Matschei et al., 2007b) 
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Table 9.2. Continued. 

Phase Reaction log10(Ks) Reference 

5CA, C1.25A0.125SH1.625 
(CaO)1.25(Al2O3)0.125(SiO2)1(H2O)1.625  SiO3

2-
 + 

1.25Ca
2+

 + 0.25AlO2
-
 + 0.25OH

-
 + 1.5H2O 

-10.75 (Myers et al., 2014) 

INFCA, 

CA0.15625S1.1875H1.65625 

(CaO)1(Al2O3)0.15625(SiO2)1.1875(H2O)1.65625 + 0.6875OH
-
 

 1.1875SiO3
2-

 + Ca
2+

 + 0.3125AlO2
-
 + 2H2O 

-8.90 (Myers et al., 2014) 

5CNA, 

C1.25N0.25A0.125SH1.375 

(CaO)1.25(Na2O)0.25(Al2O3)0.125(SiO2)1(H2O)1.375  SiO3
2-

 

+ 1.25Ca
2+

 + 0.25AlO2
-
 + 0.5Na

+
 + 0.75OH

-
 + H2O 

-10.4 (Myers et al., 2014) 

INFCNA, 

CN0.34375A0.15625S1.1875H1.3125 

(CaO)1(Na2O)0.34375(Al2O3)0.15625(SiO2)1.1875(H2O)1.3125  

1.1875SiO3
2-

 + Ca
2+

 + 0.3125AlO2
-
 + 0.6875Na

+
 + 1.3125H2O 

-10.0 (Myers et al., 2014) 

INFCN, CN0.3125S1.5H1.1875 
(CaO)1(Na2O)0.3125(SiO2)1.5(H2O)1.1875 + 0.375OH

-
  

1.5SiO3
2-

 + Ca
2+

 + 0.625Na
+
 + 1.375H2O 

-10.7 (Myers et al., 2014) 

T2C*, C1.5SH2.5 
(CaO)1.5(SiO2)1(H2O)2.5  SiO3

2-
 + 1.5Ca

2+
 + OH

-
 + 

2H2O 
-11.57 (Myers et al., 2014) 

T5C*, C1.25S1.25H2.5 
(CaO)1.25(SiO2)1.25(H2O)2.5  1.25SiO3

2-
 + 1.25Ca

2+
 + 

2.5H2O 
-10.48 (Myers et al., 2014) 

TobH*, CS1.5H2.5 
(CaO)1(SiO2)1.5(H2O)2.5 + OH

-
  1.5SiO3

2-
 + Ca

2+
 + 

3H2O 
-7.91 (Myers et al., 2014) 
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9.3 Results and Discussion 

 

9.3.1 XRD and Rietveld Analysis 

 

The XRD results (Figure 9.1) show that the main solid phase formed in each of the 

Al-free samples is C-(N-)S-H. This is the only reaction product identified in the 

samples synthesised with Ca/Si* ratios of 0.6 and 1 by XRD; reflections assigned to 

portlandite (Ca(OH)2, Powder Diffraction File (PDF)# 00-044-1481) are only present 

in the Al-free sample synthesised with 0.5 M NaOH/0.5 M KOH at a Ca/Si* ratio of 

1.4, although this phase is also identified in some other Al-free samples synthesised 

with alkali hydroxide solutions and Ca/Si* ratios = 1.4. Portlandite has been 

observed in C-(N-)S-H samples cured for 3 weeks or longer at 25°C with Ca/Si* 

ratios > 1 and [NaOH] ≥ 1 M (Kalousek, 1944; Lognot et al., 1998), in good 

agreement with these results. Calcite (CaCO3, PDF# 00-005-0586), aragonite 

(CaCO3, PDF# 00-041-1475), natrite (Na2CO3, PDF# 01-075-6816), thermonatrite 

(Na2CO3·H2O, PDF# 00-005-0586) and trona (Na3H(CO3)2·2H2O, PDF# 01-078-

1064) are present in some of the samples, formed by superficial carbonation during 

preparation and/or analysis. 

 

The solid reaction products identified in the C-(N-)A-S-H samples with Al/Si* = 

0.05 are similar to those identified in their Al-free counterparts: the main reaction 

product in each specimen is C-(N-)A-S-H, and portlandite is only identified in 

samples synthesised with 0.1 M and 1 M alkali hydroxide solutions at a Ca/Si* ratio 

of 1.4 by XRD (Figure 9.1). Katoite ((CaO)3(Al2O3)(H2O)6, PDF# 00-024-0217) is 

additionally present in some samples, although only in minor amounts (≤2 wt.% of 

the total sample mass). The superficial carbonation products calcite, aragonite, 

vaterite (CaCO3, PDF# 04-015-9018), natrite and thermonatrite are identified in 

some of the Al-containing samples. These phase assemblages are close to those 

identified by XRD in C-(N-)A-S-H samples synthesised using the same method and 

bulk chemical compositions but at 20°C (L'Hôpital et al.). The small peaks at 12.6° 

2θ and 11.3° 2θ in the diffractograms of the Ca/Si* = 0.6 and Ca/Si* = 1 samples 
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synthesised with 0.5 M NaOH/0.5 M KOH are tentatively assigned to K-natrolite 

(PDF# 01-080-0519) (Lee et al., 2010) and carbonated calcium hemicarboaluminate 

(Runčevski et al., 2012), respectively.  
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Figure 9.1. Cu Kα diffractograms of C-(N-)A-S-H samples equilibrated at 50°C: A) 

Ca/Si* = 0.6 and Al/Si* = 0; B) Ca/Si* = 0.6 and Al/Si* = 0.05; C) Ca/Si* = 1 and 

Al/Si* = 0; D) Ca/Si* = 1 and Al/Si* = 0.05; E) Ca/Si* = 1.4 and Al/Si* = 0; and F) 

Ca/Si* = 1.4 and Al/Si* = 0.05. The peaks marked by † and ‡ are tentatively 

assigned to K-natrolite and carbonated calcium hemicarboaluminate. Ca/Si* = bulk 

Ca/Si. Al/Si* = bulk Al/Si. 
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The C-(N-)A-S-H products in the alkali-containing samples are much more 

crystalline than the specimen prepared from water only, as identified by the much 

clearer and sharper (002) reflections between 5 and 10° 2θ in the presence of Na 

and/or K (Figure 9.1). The positions of these reflections correspond to average basal 

spacings of 10.8-16 Å for the C-(N-)S-H products, as shown in Figure 9.2A for 

Al/Si* = 0, and average basal spacings of 11.7-16.1 Å for the C-(N-)A-S-H products 

(Al/Si* = 0.05, Figure 9.2B). This variation is explained by the assignment of the C-

(N-)A-S-H products formed as corresponding to poorly-ordered structural analogues 

of orthorhombic 14 Å tobermorite (PDF# 00-029-0331), 11 Å tobermorite (PDF# 

04-017-1028), 9 Å tobermorite (PDF# 04-012-1761), a mixture of these minerals 

(Grangeon et al., 2013), or monoclinic clinotobermorite (PDF# 01-088-1328) 

(Richardson, 2014), with further expansion of the basal spacing beyond 14 Å 

assigned to additional differences in the interlayer chemistry, as discussed below.  
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Figure 9.2. Average (d(002)) basal spacings (estimated uncertainty = ±0.5 Å) of the C-

(N-)A-S-H products synthesised with A) Al/Si* = 0 and B) Al/Si* = 0.05 (large 

symbols). Small symbols are data from samples equilibrated at 20°C in (L'Hôpital et 

al.). Al/Si* = bulk Al/Si. 

 

The C-(N-)S-H (Al/Si* = 0) basal spacings generally decrease with increasing Ca/Si* 

ratio at fixed alkali concentration (Figure 9.2A), in agreement with the published 

data for alkali-free calcium silicate hydrate (Grangeon et al., 2013), and increase as a 

direct function of the bulk alkali content in the Na and/or K-containing samples. 

However, larger basal spacings are apparent in the water-synthesised specimen than 

in some of the alkali-containing specimens; Bach et al. (Bach et al., 2013) reported 

the same trend for C-(N-)S-H synthesised at bulk [NaOH] < 0.03 M. Here, the XRD 

results suggest that Na and K species are incorporated in C-(N-)S-H interlayers at 

alkali concentrations ≥ 0.1 M: increased basal spacings can be attributed to the 
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incorporation of more aqueous alkali species into interlayer spaces at higher alkali 

content. The reduced basal spacings generally found for the samples synthesised with 

0.1 M alkali hydroxide solutions relative to the water synthesised specimens can 

partly be attributed to some exchange of interlayer Ca
2+

 with K
+
 and/or Na

+
 

(hydrated ionic radii of Ca
2+

 = 4.12 Å, K
+
 = 3.31 Å and Na

+
 = 3.58 Å (Conway, 

1981)), although the comparatively large differences in average basal spacings 

between these samples indicate that other factors – such as variations in the adsorbed 

interlayer water content, layer stacking configuration and chain lengths of the C-(N-

)A-S-H phases formed (Richardson, 2014) – are likely to be important. 

 

The measured C-(N-)A-S-H basal spacings at Al/Si* = 0 and Al/Si* = 0.05 are 

similar; no clear relationship between d(002) and Al content is observed in Figure 9.2. 

In common with the Al-free samples, a reduction in d(002) values is identified for the 

alkali-containing samples between Ca/Si* = 0.6 and Ca/Si* = 1, which indicates that 

the Ca/Si ratio in C-(N-)A-S-H is a key factor influencing the basal spacing of this 

phase over this Ca composition range. A much lower basal spacing was also 

measured for the alkali-free Ca/Si = 0.9 calcium aluminosilicate hydrate (C-A-S-H) 

(14.5 Å) compared to the C-A-S-H with Ca/Si = 0.8 (~16.8 Å) formed in (Renaudin 

et al., 2009b), in support of this analysis. A clear trend in d(002) as a function of the 

bulk alkali concentration is only identifiable at Ca/Si* = 0.6 for the Al-containing 

samples; the largest C-(N-)A-S-H basal spacing is identified for the sample 

synthesised with 0.5 M NaOH/0.5 M KOH (d(002) = 16.1 Å). This increase is basal 

spacing is again explained by higher concentrations of alkali species in C-(N-)A-S-H 

interlayers at higher alkali content. 

 

9.3.2 Thermogravimetric Analysis 

 

The results of analysis of the solid samples by TGA (Figures 9.3-9.8) are consistent 

with the XRD data in Figure 9.1. C-(N-)A-S-H is the dominant solid phase in each 

sample, as identified by the main mass loss peaks centred between 80°C and 200°C 

in the DTG traces. Portlandite is identifiable by mass loss peaks at ~450°C; these 
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peaks are generally much larger in the samples synthesised with 0.5 M NaOH/0.5 M 

KOH and at higher Ca/Si* ratios. Superficial carbonation products are identified 

between 600°C and 700°C in some samples but are most prominent at Ca/Si* = 0.6 

and 1.2, which is also consistent with the XRD results. The peaks located between 

800°C and 900°C are assigned to decomposition of C-(N-)A-S-H to wollastonite 

(Beaudoin et al., 1990; Kalousek, 1952; Myers et al., 2015b). Additional peaks 

marked by #, † and ‡, and centred at 150-250°C, ~350°C and ~400°C in some of the 

differential mass loss traces in Figures 9.3-9.8, are tentatively assigned to thermal 

decomposition of C-(N-)A-S-H (Myers et al., 2015b).  

 

Katoite is identified in the TGA results for the Al-containing C-(N-)A-S-H samples 

synthesised with Ca/Si* = 0.6, 1 and 1.2, and 0.5 M NaOH/0.5 M KOH (Figures 9.3-

9.8). This phase is identified via the mass loss peaks at ~300°C (Lothenbach et al., 

2012b); this assignment does not preclude the additional presence of small amounts 

of poorly-crystalline Al(OH)3, which has a characteristic mass loss peak at ~275°C 

(Lothenbach et al., 2012b).  
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Figure 9.3. TGA results for C-(N-)A-S-H samples synthesised with Ca/Si* = 0.6 and 

A) Al/Si* = 0 or B) Al/Si* = 0.05. The peaks marked by † are tentatively assigned to 

dehydration of C-(N-)A-S-H. Ca/Si* = bulk Ca/Si. Al/Si* = bulk Al/Si. 
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Figure 9.4. TGA results for C-(N-)A-S-H samples synthesised with Ca/Si* = 0.8 and 

A) Al/Si* = 0 or B) Al/Si* = 0.05. The peak marked by # is tentatively assigned to 

dehydration of C-(N-)A-S-H. Ca/Si* = bulk Ca/Si. Al/Si* = bulk Al/Si. 
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Figure 9.5. TGA results for C-(N-)A-S-H samples synthesised with Ca/Si* = 1 and 

A) Al/Si* = 0 or B) Al/Si* = 0.05. The peaks marked by #, † and ‡ are tentatively 

assigned to decomposition of C-(N-)A-S-H. Ca/Si* = bulk Ca/Si. Al/Si* = bulk 

Al/Si. 
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Figure 9.6. TGA results for C-(N-)A-S-H samples synthesised with Ca/Si* = 1.2 and 

A) Al/Si* = 0 or B) Al/Si* = 0.05. The peaks marked by † are tentatively assigned to 

decomposition of C-(N-)A-S-H. Ca/Si* = bulk Ca/Si. Al/Si* = bulk Al/Si. 
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Figure 9.7. TGA results for the C-(N-)A-S-H samples synthesised with Ca/Si* = 1.4 

and A) Al/Si* = 0 or B) Al/Si* = 0.05. The peaks marked by † are tentatively 

assigned to decomposition of C-(N-)A-S-H. Ca/Si* = bulk Ca/Si. Al/Si* = bulk 

Al/Si. 
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Figure 9.8. TGA results for the C-(N-)A-S-H samples synthesised with Ca/Si* = 1.6 

and A) Al/Si* = 0 or B) Al/Si* = 0.05. Ca/Si* = bulk Ca/Si. Al/Si* = bulk Al/Si. 

 

The TGA data show that between 15.1% and 24.7% of the total mass in each sample 

is lost due to dehydration and dehydroxylation of reaction products. The central 

positions of the differential mass loss peaks assigned to C-(N-)A-S-H, and the total 

mass lost from room temperature to 980°C, do not vary systematically as a function 

of the Ca/Si* ratio or alkali concentration, because the water content of the samples 

are much more strongly influenced by the drying method used. The same observation 

has been made for C-(N-)A-S-H samples prepared at 20°C (L'Hôpital, 2014). Here, 
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the measured mass losses reflect the removal of bulk water (freeze-dried for 7 days 

and equilibrated at ~30% RH), partial dehydration of adsorbed water, and little or no 

removal of structurally-bound water from the C-(N-)A-S-H products (Muller et al., 

2013b; Myers et al., 2015b) by the drying protocol used prior to analysis.  

 

The results of phase quantification by XRD, Rietveld analysis and TGA are shown in 

Tables 9.3-9.4. 
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Table 9.3. Solid phase assemblages of the C-(N-)S-H samples (Al/Si* = 0) synthesised at 50°C, as determined by TGA (italic font), and XRD 

and Rietveld analysis (normal font). The estimated absolute error is ±2 wt.% in the values determined by Rietveld analysis for the secondary 

products and ±4 wt.% in the values determined for portlandite by TGA. 

Synthesis solution 
C-(N-)S-H 

(wt.%) 

CH 

(wt.%) 

C3AH6 

(wt.%) 

Calcite 

(wt.%) 

Aragonite 

(wt.%) 

Vaterite 

(wt.%) 

Natrite 

(wt.%) 

Thermonatrite 

(wt.%) 

Trona 

(wt.%) 

Ca/Si* = 0.6 

Water 100 0 n/a 
a,b

 0 0 0 n/a 
a,c

 n/a 
a,c

 n/a 
a,c

 

0.1 M NaOH 97.5 0 n/a 
a,b

 0 2.5 0 0 0 0 

0.1 M KOH 97.7 0 n/a 
a,b

 0 2.3 0 n/a 
a,c

 n/a 
a,c

 n/a 
a,c

 

0.5 M NaOH/ 

0.5 M KOH 
96.3 0 n/a 

a,b
 0 0 0 0 3.7 0 

Ca/Si* = 0.8 

Water 100 0 n/a 
a,b

 0 0 0 n/a 
a,c

 n/a 
a,c

 n/a 
a,c

 

0.1 M NaOH ≥96 ≤ 2 
d
 n/a 

a,b
 ≤ 2 

e
 ≤ 2 

e
 ≤ 2 

e
 0 0 0 

0.1 M KOH 100 0 n/a 
a,b

 0 0 0 n/a 
a,c

 n/a 
a,c

 n/a 
a,c

 

0.5 M NaOH/ 

0.5 M KOH 
- 

f
 - 

f
 - 

f
 - 

f
 - 

f
 - 

f
 - 

f
 - 

f
 - 

f
 

Ca/Si* = 1 

Water 100 0 n/a 
a,b

 0 0 0 n/a 
a,c

 n/a 
a,c

 n/a 
a,c

 

0.1 M NaOH 100 0 n/a 
a,b

 0 0 0 0 0 0 

0.1 M KOH 99.2 0 n/a 
a,b

 0 0.8 0 n/a 
a,c

 n/a 
a,c

 n/a 
a,c

 

0.5 M NaOH/ 

0.5 M KOH 
96.4 0 n/a 

a,b
 0 0 0 3.2 0 0.3 
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Table 9.3. Continued. 

Synthesis solution 
C-(N-)S-H 

(wt.%) 

CH 

(wt.%) 

C3AH6 

(wt.%) 

Calcite 

(wt.%) 

Aragonite 

(wt.%) 

Vaterite 

(wt.%) 

Natrite 

(wt.%) 

Thermonatrite 

(wt.%) 

Trona 

(wt.%) 

Ca/Si* = 1.2 

Water 100 0 n/a 
a,b

 0 0 0 n/a 
a,c

 n/a 
a,c

 n/a 
a,c

 

0.1 M NaOH 100 0 n/a 
a,b

 0 0 0 0 0 0 

0.1 M KOH 100 0 n/a 
a,b

 0 0 0 n/a 
a,c

 n/a 
a,c

 n/a 
a,c

 

0.5 M NaOH/ 

0.5 M KOH 
≥91 7 n/a 

a,b
 ≤ 2 

e
 ≤ 2 

e
 ≤ 2 

e
 0 0 0 

Ca/Si* = 1.4 

Water 100 0 n/a 
a,b

 0 0 0 n/a 
a,c

 n/a 
a,c

 n/a 
a,c

 

0.1 M NaOH 100 0 n/a 
a,b

 0 0 0 0 0 0 

0.1 M KOH 100 0 n/a 
a,b

 0 0 0 n/a 
a,c

 n/a 
a,c

 n/a 
a,c

 

0.5 M NaOH/ 

0.5 M KOH 
85.3 12.6 n/a 

a,b
 2.2 0 0 0 0 0 

Ca/Si* = 1.6 

Water 100 0 n/a 
a,b

 0 0 0 n/a 
a,c

 n/a 
a,c

 n/a 
a,c

 

0.1 M NaOH ≥90 8 n/a 
a,b

 ≤ 2 
e ≤ 2 

e ≤ 2 
e 0 0 0 

0.1 M KOH ≥89 9 n/a 
a,b

 ≤ 2 
e ≤ 2 

e ≤ 2 
e n/a 

a,c
 n/a 

a,c
 n/a 

a,c
 

0.5 M NaOH/ 

0.5 M KOH 
82 18 n/a 

a,b
 0 0 0 0 0 0 

a
 n/a = not applicable; no 

b
 Al or 

c
 Na was added during synthesis (<0.6 mmol/L Na is present as an impurity in the 0.1 M KOH synthesis 

solution). 
d
 a small amount of Ca(OH)2 was detected in this sample by TGA (phase mass estimated to be ≤ 2 wt.% of the sample). 

e
 a small amount of CaCO3 was detected in this sample by TGA (total CaCO3 mass estimated to be ≤ 2 wt.% of the sample). 

f
 Solid phase assemblage not measured 
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Table 9.4. Solid phase assemblages of the C-(N-)A-S-H samples (Al/Si* = 0.05) synthesised at 50°C, as determined by TGA (italic font), and 

XRD and Rietveld analysis (normal font). The estimated absolute error is ±2 wt.% in the values determined by Rietveld analysis for the 

secondary products and ±4 wt.% in the values determined for portlandite by TGA. 

Synthesis solution 
C-(N-)A-S-H 

(wt.%) 

CH 

(wt.%) 

C3AH6 

(wt.%) 

Calcite 

(wt.%) 

Aragonite 

(wt.%) 

Vaterite 

(wt.%) 

Natrite 

(wt.%) 

Thermonatrite 

(wt.%) 

Trona 

(wt.%) 

Ca/Si* = 0.6 

Water 99.8 0 0 0 0 0.2 n/a 
a
 n/a 

a
 n/a 

a
 

0.1 M NaOH 100 0 0 0 0 0 0 0 0 

0.1 M KOH 98.5 0 0 0 1.5 0 n/a 
a
 n/a 

a
 n/a 

a
 

0.5 M NaOH/ 

0.5 M KOH
 b

 
98.0 0 0.3 0 0 0 1.7 0 0 

Ca/Si* = 0.8 

Water 100 0 0 0 0 0 n/a 
a
 n/a 

a
 n/a 

a
 

0.1 M NaOH ≥98 0 0 ≤ 2 
d ≤ 2 

d ≤ 2 
d 0 0 0 

0.1 M KOH 100 0 0 0 0 0 n/a 
a
 n/a 

a
 n/a 

a
 

0.5 M NaOH/ 

0.5 M KOH 
100 0 0 0 0 0 0 0 0 

Ca/Si* = 1 

Water 100 0 0 0 0 0 n/a 
a
 n/a 

a
 n/a 

a
 

0.1 M NaOH 98.1 0 0.6 0 1.2 0 0 0 0 

0.1 M KOH 100 0 0 0 0 0 n/a 
a
 n/a 

a
 n/a 

a
 

0.5 M NaOH/ 

0.5 M KOH
 c

 
89.8 0 0.6 0 0 0 0 9.6 0 
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Table 9.4. Continued. 

Synthesis solution 
C-(N-)A-S-H 

(wt.%) 

CH 

(wt.%) 

C3AH6 

(wt.%) 

Calcite 

(wt.%) 

Aragonite 

(wt.%) 

Vaterite 

(wt.%) 

Natrite 

(wt.%) 

Thermonatrite 

(wt.%) 

Trona 

(wt.%) 

Ca/Si* = 1.2 

Water 100 0 0 0 0 0 n/a 
a
 n/a 

a
 n/a 

a
 

0.1 M NaOH 100 0 0 0 0 0 0 0 0 

0.1 M KOH 100 0 0 0 0 0 n/a 
a
 n/a 

a
 n/a 

a
 

0.5 M NaOH/ 

0.5 M KOH 
≥92 6 ≤ 2 

e
 0 0 0 0 0 0 

Ca/Si* = 1.4 

Water 99.5 0 0 0.5 0 0 n/a 
a
 n/a 

a
 n/a 

a
 

0.1 M NaOH 99.3 0.7 0 0 0 0 0 0 0 

0.1 M KOH 97.8 1.1 0 1.1 0 0 n/a 
a
 n/a 

a
 n/a 

a
 

0.5 M NaOH/ 

0.5 M KOH 
91.6 7.3 0 0 0 0 0 1.1 0 

Ca/Si* = 1.6 

Water 100 0 0 0 0 0 n/a 
a
 n/a 

a
 n/a 

a
 

0.1 M NaOH ≥89 9 0 ≤ 2 
d ≤ 2 

d ≤ 2 
d 0 0 0 

0.1 M KOH 88 12 0 0 0 0 n/a 
a
 n/a 

a
 n/a 

a
 

0.5 M NaOH/ 

0.5 M KOH 
87 13 0 0 0 0 0 0 0 

a
 n/a = not applicable; no Na was added during synthesis (<0.6 mmol/L Na is present as an impurity in the 0.1 M KOH synthesis solution). 

b
 peaks tentatively assigned to K-natrolite in the diffractogram of this sample were excluded from Rietveld analysis. 

c
 peaks tentatively assigned to carbonated calcium hemicarboaluminate in the diffractogram of this sample were excluded from Rietveld analysis. 

d
 a small amount of CaCO3 was detected in this sample by TGA (total CaCO3 mass estimated to be ≤ 2 wt.% of the sample). 

e
 a small amount of C3AH6/Al(OH)3 was detected in this sample by TGA (phase mass estimated to be ≤ 2 wt.% of the sample), which is assigned 

here to C3AH6. 
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9.3.3 Aqueous Phase Analysis 

 

The measured concentrations of Si, Ca and OH
-
 in the supernatants of the C-(N-)A-

S-H samples do not change greatly as a function of the bulk Al concentration (Figure 

9.9). In general, the measured aqueous Si and OH
-
 concentrations are higher and the 

dissolved Ca concentrations are lower in samples synthesised with solutions 

containing more alkalis. The aqueous Si concentrations typically decrease and the 

dissolved Ca concentrations generally increase as functions of the Ca/Si* ratio. The 

OH
-
 concentrations are generally greater and less dependent on chemical 

composition at higher bulk Ca content. These results are consistent with existing 

solubility measurements in the CaO-(Na2O,K2O-)Al2O3-SiO2-H2O systems at ~25°C 

(Faucon et al., 1999b; Hong and Glasser, 1999; Kalousek, 1944; L'Hôpital et al.; 

Macphee et al., 1989; Pardal et al., 2009; Way and Shayan, 1992), which show the 

same trends in dissolved Si, Ca and OH
-
 concentrations with respect to the bulk 

alkali content and Ca/Si ratio. Here, dissolved Al concentrations were generally 

found to be lower at higher Ca/Si* ratios, and higher in samples more highly 

concentrated in alkalis. 
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Figure 9.9. Concentrations of dissolved Si, Ca, OH

-
 and Al in the supernatants of the 

C-(N-)A-S-H samples: A) [Si], Al/Si* = 0; B) [Si], Al/Si* = 0.05; C) [Ca], Al/Si* = 

0; D) [Ca], Al/Si* = 0.05; E) [OH
-
], Al/Si* = 0; F) [OH

-
], Al/Si* = 0.05; G) [Al], 

Al/Si* = 0.05. OH
-
 concentrations are calculated from pH measurements at ~24°C. 

The estimated relative uncertainty of the IC measurements is ±10%. Ca/Si* = bulk 

Ca/Si. Al/Si* = bulk Al/Si. Lines are for eye-guides only. mM = mmol/L. 
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Dissolved Si, Ca and OH
-
 concentrations in the sample sets synthesised with 0.1 M 

KOH and with 0.1 M NaOH are equal for Ca/Si* ≥ 1.2, and are also similar for most 

samples with lower Ca content (Figure 9.9). This result suggests that C-(N-)A-S-H 

solubility does not vary greatly as a function of the nature of the alkali cation (Na or 

K) present. However, the large changes in dissolved Si, Ca, OH
-
 and Al 

concentrations as functions of the bulk alkali concentration and the Ca/Si ratio 

indicate that C-(N-)A-S-H solubility may change significantly with respect to these 

parameters, as will be discussed further in section 9.3.5. 

 

Effective saturation indices (SI*) were calculated from the measured dissolved Si, 

Ca, OH
-
 and Al concentrations, using eq.(3.10), to assess the proximity of the 

samples to equilibrium (Tables 9.5-9.6). 
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Table 9.5. Effective saturation indices (SI*) for relevant solid phases in the C-(N-)S-H samples (Al/Si* = 0), calculated from the filtrate chemical 

compositions in Figure 9.9 and Appendix C. Bold text indicates solid phases that are observed in the TGA and/or XRD results of the respective 

samples (C-(N-)A-S-H is represented by end-members of the CNASH_ss thermodynamic model (Myers et al., 2014)). A ‘near-saturation’ 

condition of -0.5 ≤ SI* < 0 is assumed, as discussed in the text. 

Synthesis solution CN0.3125S1.5H1.1875
 a

 C1.5SH2.5
 a

 CS1.5H2.5
 a

 CH SiO2 
b
 

Ca/Si* = 0.6 

Water n/a 
d
 -0.7 0 -1.6 -0.1 

0.1 M NaOH -0.1 -0.9 -0.4 -1.6 -0.5 

0.1 M KOH n/a 
d
 -0.9 -0.4 -1.7 -0.5 

0.5 M NaOH/0.5 M KOH ≤-0.1 
c
 ≤-0.6 

c
 ≤-0.8 

c
 ≤-0.8 

c
 -1.8 

Ca/Si* = 0.8 

Water n/a 
d
 -0.6 -0.1 -1.5 -0.3 

0.1 M NaOH -0.3 -0.8 -0.8 -1.2 -1.4 

0.1 M KOH n/a 
d
 ≤-1.0 

c
 ≤-0.9 

c
 ≤-1.3 

c
 -1.4 

0.5 M NaOH/0.5 M KOH -0.1
 e
 -0.6

 e
 -0.8

 e
 -0.8

 e
 -1.8

 e
 

Ca/Si* = 1 

Water n/a 
d
 -0.3 -0.5 -0.7 -1.6 

0.1 M NaOH -0.2 -0.3 -0.7 -0.5 -1.9 

0.1 M KOH n/a 
d
 -0.2 -0.8 -0.3 -2.3 

0.5 M NaOH/0.5 M KOH -0.4 -0.5 -1.1 -0.4 -2.6 

Ca/Si* = 1.2 

Water n/a 
d
 -0.2 -0.7 -0.3 -2.1 

0.1 M NaOH -0.3 -0.2 -0.7 -0.3 -2.2 

0.1 M KOH n/a 
d
 -0.2 -0.8 -0.3 -2.3 

0.5 M NaOH/0.5 M KOH -0.4 -0.4 -1.1 -0.3 -2.7 
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Table 9.5. Continued. 

Synthesis solution CN0.3125S1.5H1.1875
 a

 C1.5SH2.5
 a

 CS1.5H2.5
 a

 CH SiO2 
b
 

Ca/Si* = 1.4 

Water n/a 
d
 -0.2 -0.9 -0.2 -2.6 

0.1 M NaOH -0.4 -0.2 -0.9 -0.1 -2.6 

0.1 M KOH n/a 
d
 -0.2 -0.9 -0.1 -2.6 

0.5 M NaOH/0.5 M KOH -0.4 -0.3 -1.1 -0.2 -2.8 

Ca/Si* = 1.6 

Water n/a 
d
 -0.3 -1.1 -0.1 -2.8 

0.1 M NaOH -0.5 -0.1 -0.9 0 -2.8 

0.1 M KOH n/a 
d
 -0.2 -1.0 0 -2.8 

0.5 M NaOH/0.5 M KOH -0.4 -0.3 -1.2 -0.1 -2.9 
a
 CN0.3125S1.5H1.1875, C1.5SH2.5 and CS1.5H2.5 are the INFCN, T2C* and TobH* end-members of the CNASH_ss thermodynamic model (Myers et 

al., 2014),  respectively 
b
 Amorphous SiO2 

c
 The values shown are calculated at the detection limit for Ca (~0.004 mmol/L) because dissolved Ca concentrations were below the detection 

limit 
d
 n/a = not applicable: no Na was added to the system (<0.6 mmol/L Na is present as an impurity in the 0.1 M KOH synthesis solution) 

e
 Solid phase assemblage not measured 
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Table 9.6. Effective saturation indices (SI*) for relevant solid phases in the C-(N-)A-S-H samples (Al/Si* = 0.05), calculated from the filtrate 

chemical compositions in Figure 9.9 and Appendix C. Bold text indicates solid phases that are observed in the TGA and/or XRD results of the 

respective samples (C-(N-)A-S-H is represented by end-members of the CNASH_ss thermodynamic model (Myers et al., 2014)). A ‘near-

saturation’ condition of -0.5 ≤ SI* < 0 is assumed, as discussed in the text. 

Synthesis solution C1.25A0.125SH1.625
 a
 CA0.15625S1.1875H1.65625

 a
 CN0.3125S1.5H1.1875

 a
 C1.5SH2.5

 a
 CS1.5H2.5

 a
 ½AH3 

b
 C3AH6 CH SiO2 

c
 

Ca/Si* = 0.6 

Water ≤-0.5 
e
 ≤-0.1 

e
 n/a 

f
 -0.8 -0.1 ≤-0.8 

e
 ≤-1.7 

e
 -1.7 -0.1 

0.1 M NaOH -0.6 -0.4 -0.1 -0.8 -0.4 -0.8 -1.6 -1.5 -0.7 

0.1 M KOH -0.8 -0.5 n/a 
f
 -0.9 -0.5 -1.1 -1.7 -1.6 -0.8 

0.5 M NaOH/ 

0.5 M KOH 
≤-0.6 

d
 ≤-0.7 

d
 ≤-0.1

 d
 ≤-0.6 

d
 ≤-0.8 

d
 -1.2 ≤-1.1 

d
 ≤-0.9 

d
 -1.8 

Ca/Si* = 0.8 

Water ≤-0.4 
e
 ≤-0.3 

e
 n/a 

f
 -0.5 -0.1 ≤-1.7 

e
 ≤-1.8 

e
 -1.4 -0.4 

0.1 M NaOH ≤-0.7 
d
 ≤-0.6 

d
 ≤-0.4 

d
 ≤-0.8 

d
 ≤-0.7 

d
 -0.8 ≤-1.3 

d
 ≤-1.2 

d
 -1.3 

0.1 M KOH ≤-0.8 
d
 ≤-0.7 

d
 n/a 

f
 ≤-0.8 

d
 ≤-0.8 

d
 -1.0 ≤-1.3 

d
 ≤-1.2 

d
 -1.5 

0.5 M NaOH/ 

0.5 M KOH 
≤-0.7 

d
 ≤-0.8 

d
 ≤-0.3 

d
 ≤-0.7 

d
 ≤-1.0 

d
 -1.2 ≤-0.9 

d
 ≤-0.7 

d
 -2.1 

Ca/Si* = 1 

Water -0.2 -0.3 n/a 
f
 -0.4 -0.4 -1.0 -0.9 -0.8 -1.4 

0.1 M NaOH -0.4 -0.5 -0.2 -0.4 -0.7 -1.4 -0.9 -0.6 -1.9 

0.1 M KOH -0.3 -0.6 n/a 
f
 -0.3 -0.7 -1.4 -0.7 -0.4 -2.1 

0.5 M NaOH/ 

0.5 M KOH 
≤-1.0 

d
 ≤-1.1 

d
 ≤-0.5

 d
 ≤-0.8 

d
 ≤-1.3 

d
 -1.7 ≤-1.1 

d
 ≤-0.7 

d
 -2.5 
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Table 9.6. Continued. 

Synthesis solution C1.25A0.125SH1.625
 a
 CA0.15625S1.1875H1.65625

 a
 CN0.3125S1.5H1.1875

 a
 C1.5SH2.5

 a
 CS1.5H2.5

 a
 ½AH3 

b
 C3AH6 CH SiO2 

c
 

Ca/Si* = 1.2 

Water ≤-0.2 
e
 ≤-0.4 

e
 n/a 

f
 -0.2 -0.6 ≤-1.4 

e
 ≤-0.8 

e
 -0.5 -1.9 

0.1 M NaOH -0.3 -0.5 -0.2 -0.2 -0.7 -1.7 -0.8 -0.3 -2.2 

0.1 M KOH -0.3 -0.6 n/a 
f
 -0.2 -0.7 -1.8 -0.8 -0.3 -2.2 

0.5 M NaOH/ 

0.5 M KOH 
-0.5 -0.8 -0.3 -0.3 -1.0 -1.7 -0.6 -0.2 -2.7 

Ca/Si* = 1.4 

Water ≤-0.4 
e
 ≤-0.6 

e
 n/a 

f
 -0.4 -0.8 ≤-1.4 

e
 ≤-0.8 

e
 -0.5 -2.1 

0.1 M NaOH ≤-0.3 
e
 ≤-0.7 

e
 -0.5 -0.1 -0.9 ≤-1.9 

e
 ≤-0.6 

e
 -0.1 -2.7 

0.1 M KOH ≤-0.3 
e
 ≤-0.8 

e
 n/a 

f
 -0.1 -0.9 ≤-1.9 

e
 ≤-0.6 

e
 0 -2.8 

0.5 M NaOH/ 

0.5 M KOH 
-0.5 -0.8 -0.3 -0.3 -1.0 -1.7 -0.6 -0.1 -2.8 

Ca/Si* = 1.6 

Water ≤-0.5 
e
 ≤-0.8 

e
 n/a 

f
 -0.4 -1.1 ≤-1.5 

e
 ≤-0.6 

e
 -0.2 -2.7 

0.1 M NaOH ≤-0.4 
e
 ≤-0.8 

e
 -0.5 -0.2 -1.0 ≤-1.9 

e
 ≤-0.6 

e
 0 -2.8 

0.1 M KOH ≤-0.4 
e
 ≤-0.8 

e
 n/a 

f
 -0.2 -1.0 ≤-1.9 

e
 ≤-0.5 

e
 0 -2.8 

0.5 M NaOH/ 

0.5 M KOH 
-0.4 -0.8 -0.3 -0.3 -1.0 -1.7 -0.6 -0.1 -2.8 

a
 C1.25A0.125SH1.625, CA0.15625S1.1875H1.65625, CN0.3125S1.5H1.1875, C1.5SH2.5 and CA1.5H2.5 are the 5CA, INFCA, INFCN, T2C* and TobH* end-

members of the CNASH_ss thermodynamic model (Myers et al., 2014),  respectively 
b
 Microcrystalline Al(OH)3 

c
 Amorphous SiO2 

d
 The values shown are calculated at the detection limit for Ca (~0.004 mmol/L) because dissolved Ca concentration was below the detection 

limit 
e
 The values shown are calculated at the detection limit for Al (~0.003 mmol/L) because dissolved Al concentration was below the detection 

limit 
f
 n/a = not applicable: no Na was added to the system (<0.6 mmol/L Na is present as an impurity in the 0.1 M KOH synthesis solution) 
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A near-saturation condition of -0.5 ≤ SI* < 0 is assumed, which accounts for the 

uncertainty in the modelling calculations and experimental measurements, 

indicating that solid phases with SI* values within this range can potentially 

precipitate at equilibrium, even though the calculated saturation index is slightly 

negative. This interpretation means that C-(N-)A-S-H is expected to form in 

every sample, while portlandite could precipitate in the alkali-containing samples 

at Ca/Si* = 1 without Al, in the Al-containing sample synthesised with 0.1 M 

KOH at a Ca/Si* = 1, and in all Ca/Si* ≥ 1.2 samples (Tables 9.5-9.6). 

Portlandite is generally only identified in samples with Ca/Si* ratios ≥ 1 (Figures 

9.1 and 9.3-9.8), and C-(N-)A-S-H is formed in all of the specimens, in good 

agreement with the expected equilibrium phase assemblages and this 

interpretation of near-saturated SI* values. Amorphous SiO2 is only predicted to 

be near saturated in the Ca/Si* ≤ 0.8 C-(N-)A-S-H samples synthesised with 

water. A small amount of partially dissolved amorphous SiO2 has been observed 

in samples synthesised at 20°C and Ca/Si* = 0.6 using the same protocols that 

were applied here (L'Hôpital, 2014), which indicates that precipitation of C-(N-

)A-S-H is strongly preferred at Ca/Si* ≤ 0.8. 

 

Small amounts of katoite are identified in some of the Al-containing samples by 

XRD and TGA (Figures 9.1 and 9.3-9.8), but this phase is predicted to be 

undersaturated at equilibrium in every sample that this phase was observed (Table 

9.6), which indicates that not all samples have yet reached equilibrium. The 

calculated SI* values predict that strätlingite is undersaturated in all samples, in 

good agreement with the XRD and TGA results, where this phase is not 

identified. Si-hydrogarnet is predicted to be near-saturated in the Al-containing 

samples at Ca/Si* ratios ≥ 1 except the sample synthesised with 0.5 M NaOH/0.5 

M KOH at Ca/Si* = 1, but this phase is not identified in the XRD or TGA results, 

which suggests that it is kinetically hindered from forming under the synthesis 

conditions used here. This result is consistent with the higher temperatures 

(110°C) needed experimentally to form Si-hydrogarnet in the CaO-Al2O3-SiO2-

H2O system within a laboratory timeframe (Dilnesa et al., 2014). 
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9.3.4 C-(N-)A-S-H Chemical Composition 

 

Chemical compositions of the C-(N-)A-S-H products are shown in Tables 9.7 and 

9.8. Most C-(N-)A-S-H products at 0.6 ≤ Ca/Si* ≤ 1.4 have Ca/Si and Al/Si ratios 

similar to the bulk synthesis conditions used in the samples synthesised with 

water and 0.1 M alkali solutions, due to the relatively low levels of secondary or 

superficial carbonation products formed in these specimen (yield from 

experiments is ≥91 wt.% C-(N-)A-S-H in these samples, Tables 9.3-9.4). Samples 

synthesised with Ca/Si* ratios = 1.6 and alkali hydroxide solutions contain more 

portlandite due to the decreased solubility of this phase at higher Ca and alkali 

content. Portlandite is the only secondary product that was used in mass balance 

calculations to determine C-(N-)A-S-H chemical compositions for the Ca/Si* = 

0.8, 1.2 and 1.6 samples (with solid phase assemblages determined by TGA), as 

all the other secondary phases are present in small quantities in these specimen 

(≤2 wt.%), see Tables 9.3-9.4.  
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Table 9.7. Chemical compositions of the C-(N-)S-H products (Al/Si* = 0), determined from Rietveld analysis and IC, TGA, XRD and pH 

measurements (normal font), and from IC, TGA and pH measurements considering C-(N-)S-H and portlandite only (italic font). The estimated 

absolute errors are ±0.05 units in the Ca/(Al+Si) ratios, ±0.2 units in the H2O/(Al+Si) ratios, and ±0.08 units for the 0.1 M alkali samples and 

±0.7 for the 1 M alkali samples in the (Na+K)/(Al+Si) ratios of the C-(N-)S-H products. Ca/Si* = bulk Ca/Si. 

Synthesis solution C-(N-)S-H chemical formula Ca/Si Na/Si K/Si H2O/Si 

Ca/Si*  = 0.6 

Water (CaO)0.61(SiO2)1(H2O)1.1 0.61 n/a 
a
 n/a 

b
 1.1 

0.1 M NaOH (CaO)0.70(Na2O)0.11(SiO2)1(H2O)1.6 0.70 0.23 n/a 
b
 1.6 

0.1 M KOH (CaO)0.69(K2O)0.13(SiO2)1(H2O)1.6 0.69 n/a 
a
 0.27 1.6 

0.5 M NaOH/0.5 M KOH (CaO)0.73(Na2O)0.04(K2O)0.08(SiO2)1(H2O)1.7 0.73 0.08 0.16 1.7 

Ca/Si*  = 0.8 

Water (CaO)0.80(SiO2)1(H2O)1.9 0.80 n/a 
a
 n/a 

b
 1.9 

0.1 M NaOH (CaO)0.81(Na2O)0.09(SiO2)1(H2O)1.5 0.81 0.18 n/a 
b
 1.5 

0.1 M KOH (CaO)0.81(K2O)0.10(SiO2)1(H2O)1.3 0.81 n/a 
a
 0.21 1.3 

0.5 M NaOH/0.5 M KOH - 
c
 - 

c
 - 

c
 - 

c
 - 

c
 

Ca/Si* = 1 

Water (CaO)1.0(SiO2)1(H2O)1.4 1.0 n/a 
a
 n/a 

b
 1.4 

0.1 M NaOH (CaO)1.0(Na2O)0.06(SiO2)1(H2O)1.3 1.0 0.12 n/a 
b
 1.3 

0.1 M KOH (CaO)1.0(K2O)0.07(SiO2)1(H2O)1.6 1.0 n/a 
a
 0.13 1.6 

0.5 M NaOH/0.5 M KOH (CaO)1.0(Na2O)0.07(K2O)0.08(SiO2)1(H2O)1.7 1.0 0.15 0.17 1.7 

Ca/Si*  = 1.2 

Water (CaO)1.2(SiO2)1(H2O)1.5 1.2 n/a 
a
 n/a 

b
 1.5 

0.1 M NaOH (CaO)1.2(Na2O)0.02(SiO2)1(H2O)1.4 1.2 0.05 n/a 
b
 1.4 

0.1 M KOH (CaO)1.2(K2O)0.03(SiO2)1(H2O)1.6 1.2 n/a 
a
 0.06 1.6 

0.5 M NaOH/0.5 M KOH (CaO)1.0(Na2O)0.09(K2O)0.08(SiO2)1(H2O)2.0 1.0 0.19 0.16 2.0 
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Table 9.7. Continued. 

Synthesis solution C-(N-)S-H chemical formula Ca/Si Na/Si K/Si H2O/Si 

Ca/Si* = 1.4 

Water (CaO)1.3(SiO2)1(H2O)1.9 1.3 n/a 
a
 n/a 

b
 1.9 

0.1 M NaOH (CaO)1.4(SiO2)1(H2O)1.7 1.4 0 n/a 
b
 1.7 

0.1 M KOH (CaO)1.4(K2O)0.02(SiO2)1(H2O)1.9 1.4 n/a 
a
 0.03 1.9 

0.5 M NaOH/0.5 M KOH (CaO)1.4(Na2O)0.09(K2O)0.08(SiO2)1(H2O)2.1 1.4 0.18 0.16 2.1 

Ca/Si*  = 1.6 

Water (CaO)1.5(SiO2)1(H2O)2.0 1.5 n/a 
a
 n/a 

b
 2.0 

0.1 M NaOH (CaO)1.4(SiO2)1(H2O)1.8 1.4 0 n/a 
b
 1.8 

0.1 M KOH (CaO)1.4(K2O)0.01(SiO2)1(H2O)1.7 1.4 n/a 
a
 0.02 1.7 

0.5 M NaOH/0.5 M KOH (CaO)1.3(SiO2)1(H2O)1.1 1.3 0 0 1.1 
a 
n/a = not applicable: no Na was added during synthesis (<0.6 mmol/L Na is present as an impurity in the 0.1 M KOH synthesis solution). 

b 
n/a = not applicable: no K was added during synthesis. 

c
 Solid phase assemblage not measured 
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Table 9.8. Chemical compositions of the C-(N-)A-S-H products (Al/Si* = 0.05), determined from Rietveld analysis and IC, TGA, XRD and pH 

measurements (normal font), and from IC, TGA and pH measurements considering C-(N-)S-H and portlandite only (italic font). The estimated 

absolute errors are ±0.05 units in the Ca/(Al+Si) ratios, ±0.2 units in the H2O/(Al+Si) ratios, ±0.02 units in the Al/Si ratios, and ±0.08 units for 

the 0.1 M alkali samples and ±0.7 for the 1 M alkali samples in the (Na+K)/(Al+Si) ratios of the C-(N-)A-S-H products. Ca/Si* = bulk Ca/Si. 

Synthesis solution C-(N-)A-S-H chemical formula Ca/(Al+Si) Al/Si Na/(Al+Si) K/(Al+Si) H2O/(Al+Si) 

Ca/Si*  = 0.6 

Water (CaO)0.60(Al2O3)0.026(SiO2)1(H2O)1.4 0.57 0.051 n/a 
a
 n/a 

b
 1.3 

0.1 M NaOH (CaO)0.66(Al2O3)0.28(Na2O)0.13(SiO2)1(H2O)1.7 0.63 0.055 0.25 n/a 
b
 1.6 

0.1 M KOH (CaO)0.65(Al2O3)0.027(K2O)0.13(SiO2)1(H2O)1.2 0.62 0.054 n/a 
a
 0.24 1.1 

0.5 M NaOH/ 

0.5 M KOH 
(CaO)0.76(Al2O3)0.028(Na2O)0.13(K2O)0.13(SiO2)1(H2O)1.9 0.72 0.056 0.24 0.24 1.8 

Ca/Si* = 0.8 

Water (CaO)0.80(Al2O3)0.025(SiO2)1(H2O)1.7 0.76 0.051 n/a 
a
 n/a 

b
 1.6 

0.1 M NaOH (CaO)0.81(Al2O3)0.25(Na2O)0.11(SiO2)1(H2O)1.4 0.77 0.050 0.21 n/a 
b
 1.3 

0.1 M KOH (CaO)0.81(Al2O3)0.025(K2O)0.10(SiO2)1(H2O)1.2 0.77 0.050 n/a 
a
 0.19 1.1 

0.5 M NaOH/ 

0.5 M KOH 
(CaO)0.84(Al2O3)0.024(Na2O)0.18(K2O)0.17(SiO2)1(H2O)2.8 0.80 0.049 0.35 0.33 2.7 

Ca/Si* = 1 

Water (CaO)0.99(Al2O3)0.025(SiO2)1(H2O)1.5 0.94 0.050 n/a 
a
 n/a 

b
 1.4 

0.1 M NaOH (CaO)1.0(Al2O3)0.023(Na2O)0.06(SiO2)1(H2O)1.3 1.00 0.045 0.12 n/a 
b
 1.3 

0.1 M KOH (CaO)1.0(Al2O3)0.025(K2O)0.06(SiO2)1(H2O)1.3 0.95 0.050 n/a 
a
 0.11 1.3 

0.5 M NaOH/ 

0.5 M KOH 
(CaO)1.0(Al2O3)0.025(Na2O)0.13(K2O)0.10(SiO2)1(H2O)1.8 0.96 0.050 0.25 0.20 1.7 
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Table 9.8. Continued. 

Synthesis solution C-(N-)A-S-H chemical formula Ca/(Al+Si) Al/Si Na/(Al+Si) K/(Al+Si) H2O/(Al+Si) 

Ca/Si* = 1.2 

Water (CaO)1.2(Al2O3)0.025(SiO2)1(H2O)1.8 1.12 0.050 n/a 
a
 n/a 

b
 1.7 

0.1 M NaOH (CaO)1.2(Al2O3)0.025(Na2O)0.04(SiO2)1(H2O)1.5 1.14 0.050 0.08 n/a 
b
 1.4 

0.1 M KOH (CaO)1.2(Al2O3)0.025(K2O)0.02(SiO2)1(H2O)1.4 1.14 0.050 n/a 
a
 0.04 1.4 

0.5 M NaOH/ 

0.5 M KOH 
(CaO)1.0(Al2O3)0.025(Na2O)0.14(K2O)0.10(SiO2)1(H2O)1.8 0.99 0.050 0.26 0.20 1.7 

Ca/Si* = 1.4 

Water (CaO)1.4(Al2O3)0.025(SiO2)1(H2O)1.9 1.3 0.050 n/a 
a
 n/a 

b
 1.8 

0.1 M NaOH (CaO)1.4(Al2O3)0.025(Na2O)0.02(SiO2)1(H2O)1.8 1.3 0.050 0.05 n/a 
b
 1.8 

0.1 M KOH (CaO)1.4(Al2O3)0.025(SiO2)1(H2O)1.5 1.3 0.050 n/a 
a
 0 1.4 

0.5 M NaOH/ 

0.5 M KOH 
(CaO)1.2(Al2O3)0.025(Na2O)0.12(K2O)0.10(SiO2)1(H2O)1.7 1.2 0.050 0.23 0.19 1.6 

Ca/Si* = 1.6 

Water (CaO)1.5(Al2O3)0.025(SiO2)1(H2O)2.1 1.5 0.050 n/a 
a
 n/a 

b
 2.0 

0.1 M NaOH (CaO)1.3(Al2O3)0.025(Na2O)0.02(SiO2)1(H2O)1.7 1.3 0.050 0.03 n/a 
b
 1.7 

0.1 M KOH (CaO)1.3(Al2O3)0.025(SiO2)1(H2O)1.5 1.2 0.050 n/a 
a
 0 1.4 

0.5 M NaOH/ 

0.5 M KOH 
(CaO)1.2(Al2O3)0.025(Na2O)0.15(K2O)0.12(SiO2)1(H2O)1.8 1.2 0.050 0.29 0.23 1.7 

a 
n/a = not applicable: no Na was added during synthesis (<0.6 mmol/L Na is present as an impurity in the 0.1 M KOH synthesis solution). 

b 
n/a = not applicable: no K was added during synthesis. 

 



284 9. Composition-Solubility-Structure Relationships in C-(N-)A-S-H 

  

The C-(N-)A-S-H products typically contain H2O/(Al+Si) ratios between 1 and 2 

(Figure 9.10): the H2O content in C-(N-)A-S-H was determined by assigning the 

mass losses between 30°C and 550°C to the decomposition of C-(N-)A-S-H, 

portlandite, katoite and Al(OH)3 during heating by TGA. Portlandite was the only 

secondary product quantified by TGA and used in C-(N-)A-S-H chemical 

composition calculations in the absence of XRD data; the formation of only very 

small quantities of other secondary products here (≤ 2 wt.% of the total mass of each 

sample) means that any errors introduced into the reported C-(N-)A-S-H chemical 

compositions due to use of this method, are minor.  

 

 
Figure 9.10. H2O/(Al+Si) ratios of the C-(N-)S-H (dark symbols) and Al/Si* = 0.05 

C-(N-)A-S-H (light symbols) as functions of the Ca/(Al+Si) ratio, for samples 

synthesised with ≤0.1 M alkali hydroxide solutions and equilibrated at 50°C. The 

estimated absolute errors are ±0.05 units in the Ca/(Al+Si) ratios and ±0.2 in the 

H2O/(Al+Si) ratios of the C-(N-)A-S-H products. 

 

The reported H2O/(Al+Si) ratios (Figure 9.10) are in relatively good agreement with 

the expected result for C-(N-)A-S-H equilibrated at ~30% RH, where no ‘free’ water 

is present and some adsorbed water is removed (Jennings, 2008; Muller et al., 

2013b), and with the H2O content of C-(N-)A-S-H synthesised at 20°C (L'Hôpital et 

al.). In general, the H2O/(Al+Si) ratios increase slightly as a direct function of the 
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Ca/(Al+Si) ratios of the C-(N-)A-S-H products formed, but no significant 

correlations are found between the H2O/(Al+Si) ratio and the alkali or Al content in 

this phase. A strong direct relationship between the H2O/(Al+Si) and Ca/(Al+Si) 

ratios is reported for laboratory-synthesised C-S-H (Richardson, 2014), but is not as 

evident here from the data presented in Figure 9.10. Chemical compositions of the C-

(N-)A-S-H products synthesised using 0.5 M NaOH/0.5 KOH solutions are omitted 

from Figure 9.10 due to the relatively higher quantities of secondary products formed 

in these samples. 

 

The amount of alkali incorporated in the C-(N-)A-S-H products decreases with the 

Ca/(Al+Si) ratio of this phase (Figure 9.11), from (Na+K)/(Al+Si) = 0.25 at 

Ca/(Al+Si) = 0.6 to zero alkali incorporated at Ca/(Al+Si) = 1.6. This trend, and the 

quantified (Na+K)/(Al+Si) ratios, are consistent with those reported in earlier studies 

of alkali uptake in laboratory-synthesised C-(N-)A-S-H at room temperature (Hong 

and Glasser, 1999; 2002; L'Hôpital, 2014; Stade, 1989). The (Na+K)/(Al+Si) ratios 

of the C-(N-)A-S-H products are independent of the alkali element (Na or K). The 

high level of uncertainty in the quantification of bound alkali in the C-(N-)A-S-H 

samples synthesised with 1 M alkali hydroxide solutions prevents their inclusion in 

Figure 9.11 (reflecting the error associated with the IC measurements). 
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Figure 9.11. Na and/or K uptake in the C-(N-)S-H (Al/Si* = 0, dark symbols) and 

Al/Si* = 0.05 C-(N-)A-S-H (light symbols) as functions of the Ca/(Al+Si) ratio, for 

samples synthesised with 0.1 M alkali hydroxide solutions at 50°C. The estimated 

absolute errors are ±0.05 units in the Ca/(Al+Si) ratios and ±0.08 units in the 

(Na+K)/(Al+Si) ratios of the C-(N-)A-S-H products. 

 

The alkali and Al content of the C-(N-)A-S-H products formed (Figure 9.11) are 

independent at the relatively low amounts of Al added to each sample (Al/Si* = 0 or 

0.05). At Al/Si* ratios ≤ 0.05, all of the Al added is generally incorporated into C-

(N-)A-S-H products synthesised with water (Table 9.8) (Myers et al., 2015b). 

However, the amount of Al which can be incorporated into C-(N-)A-S-H is limited 

by the dissolved concentration of this element at higher bulk Al content: increasing 

the bulk alkali metal (Na or K here) concentration increases the amount of dissolved 

Al (Figure 9.9) and consequently the amount of Al which can be incorporated into C-

(N-)A-S-H (L'Hôpital et al.). This description is consistent with 
29

Si MAS NMR 

analysis of hydrated white Portland cement with different alkali contents (Skibsted 

and Andersen, 2013), which showed the formation of C-(N-)A-S-H products with 

increased Al/Si ratios at higher bulk alkali concentration. This description is also in 

agreement with the lack of a direct relationship found in (Bach et al., 2013) between 

alkali and Al content in laboratory-synthesised C-(N-)S-H, and in C-(N-)A-S-H with 

Al/Si = 0.04 in hydrated blends of PC and silica fume. 
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9.3.5 C-(N-)A-S-H Solubility 

 

Solubility products are calculated using eqs.(3.8,3.9) for C-(N-)A-S-H with 

hypothetical chemical compositions of Ca/(Al+Si) = 0.6, 0.8, 1, 1.2, 1.4 and 1.6, 

Al/Si = 0 and 0.05, Na/(Al+Si) = 0.2 for samples containing Na, K/(Al+Si) = 0.2 for 

samples containing K, H2O/Si = 1.2, and 1 mol (Al+Si). These Na/(Al+Si) and 

K/(Al+Si) ratios were chosen to approximately match the alkali contents of the 

experimental C-(N-)A-S-H products (Tables 9.7 and 9.8). The solubility products for 

these hypothetical C-(N-)A-S-H phases are shown in Figure 9.12. Solubility products 

for C-(N-)A-S-H with chemical compositions determined by mass balances from the 

XRD (Figure 9.1), IC and pH measurements (Figure 9.9), and TGA and Rietveld 

analysis (Tables 9.3-9.4), are shown in Appendix C.  
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Figure 9.12. Solubility products (Ks) for hypothetical C-(N-)A-S-H phases with 

chemical compositions of A) Al/Si = 0 or B) Al/Si = 0.05, Na/(Al+Si) = 0.2 for the 

Na-containing systems, K/(Al+Si) = 0.2 for the K-containing systems, H2O/Si = 1.2, 

and normalised to 1 mol Al + Si at 50°C. The estimated uncertainty depicted as error 

bars is ±1 unit in the log10(Ks) values, except for the points with downward-pointing 

arrows, which additionally represent maximum solubility product values as described 

in the text. The small crosses are solubility products for end-members of the 

CNASH_ss thermodynamic model (Myers et al., 2014) at 50°C. Al/Si* = bulk Al/Si. 

Lines are for eye-guides only. 
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Figure 9.12 shows similar values and trends in the solubility products for both the 

Al-free and Al-containing C-(N-)A-S-H end-members, i.e., the results of this study 

indicate that this phase is not greatly stabilised by the incorporation of Al. This is 

consistent with recently published results for C-(A-)S-H synthesised with Ca/Si* = 1 

and cured at 7-80°C (Myers et al., 2015b), where the measured solubility of this 

phase did not change greatly between Al/Si* ratios of 0 and 0.15. The downward-

pointing arrows in Figure 9.12 for the Ca/Si* = 0.6 and 1 C-(N-)A-S-H samples 

synthesised with 0.5 M NaOH/0.5 M KOH, and the Ca/Si* = 0.8 samples 

synthesised with alkali hydroxide solutions, indicate that the calculated solubility 

products are considered to be upper bounds; supernatant Ca concentrations were 

below the detection limit for these samples, so an upper limit of [Ca] = 0.004 

mmol/L was chosen. Dissolved Al concentrations were also below the detection limit 

for some samples (e.g. the Ca/Si* = 1.2, Al/Si* = 0.05 sample synthesised with 

water, Figure 9.9), so [Al] = 0.003 mmol/L was chosen for these samples. The low 

Al content of the C-(N-)A-S-H products (Al/Si ~ 0.05) means that the associated 

level of uncertainty in the calculated solubility products for samples with [Al] below 

the detection limit is lower than for the samples with [Ca] below the detection limit; 

downward pointing arrows are only shown for the latter case in Figure 9.12. 

 

The lower solubility products calculated for C-(N-)A-S-H with higher Ca/(Al+Si) 

ratios in Figure 9.12 shows that this phase is stabilised at higher Ca content within 

the composition range analysed here, but also partly reflect the increased amounts of 

Ca included in the stoichiometric formulae for C-(N-)A-S-H in these calculations at 

higher Ca/(Al+Si) ratios (Figure 9.12 shows solubility products for C-(N-)A-S-H 

with chemical compositions normalised to one mole Al + Si). The solubility products 

of the C-(N-)A-S-H synthesised using 0.1 M solutions are similar irrespective of the 

alkali element used, indicating that both Na- and K-bearing C-(N-)A-S-H can be 

expected to form in hydrated cements with non-zero concentrations of these alkali 

elements. Figure 9.12 also shows that C-(N-)A-S-H solubility generally decreases 

slightly as the bulk alkali hydroxide concentration is increased, but this finding is 

only significant for some C-(N-)A-S-H phases with Ca/Si ≤ 1. Similar trends of 
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decreasing solubility with increasing alkali content are also identified in solubility 

product calculations for hypothetical C-(N-)A-S-H phases with (Na+K)/(Al+Si) = 0 

and Ca/Si ≤ 1, which suggests that the structure of this phase is stabilised slightly as 

the bulk alkali concentration is increased. This will be discussed further in section 

9.3.7. 

 

The end-members of the CNASH_ss thermodynamic model (Figure 9.12) (Myers et 

al., 2014) show the same trends in C-(N-)A-S-H solubility as identified 

experimentally here. The reduced solubilities of the Na-bearing end-members in the 

CNASH_ss model compared to the experimental results are also consistent with their 

much higher Na content (0.4 ≤ Na/(Al+Si) ≤ 0.46). The solubility product of the 

T2C* model end-member is consistent with the experimental results, although the 

lower solubilities of the model T5C*, TobH* and INFCA end-members relative to 

the experimental data indicates that their thermodynamic properties should be 

adjusted slightly for simulations at 50°C to improve the temperature-dependent 

behaviour of CNASH_ss. 

 

9.3.6 
29

Si MAS NMR 

 

The 
29

Si MAS NMR spectra of the C-(N-)S-H samples (Al/Si* = 0) contain three 

resonances that are assigned to chain-end sites (Q
1
), bridging sites (Q

2
b) and paired 

sites (Q
2

p) (Figure 9.13A). In the spectra of the water-synthesised samples, these 

resonances are described by peaks located at isotropic chemical shifts (δiso) of -79.3 

ppm, -83.1 ppm and -85.1 ppm respectively. Similar δiso values have been reported 

for alkali- and Al-free C-S-H aged at 40°C (Brunet et al., 2004; Cong and 

Kirkpatrick, 1996a). The spectrum for the Al-free sample synthesised with 0.5 M 

NaOH contains the same peaks but shifted by +1 to +2 ppm, which indicates that 

silanol groups in the 0.5 M NaOH sample are on average charge-balanced by less 

positively-charged species (i.e. Na
+
 and/or H

+
 rather than Ca

2+
) relative to the alkali-

free specimen (Rejmak et al., 2012). Comparable δiso differences have also been 
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reported for Q
1
, Q

2
b and Q

2
p sites in C-(N-)A-S-H synthesised at different alkali 

concentrations (L'Hôpital et al.; Lognot et al., 1998).  

 

The deconvoluted spectra and quantified site environments for each of the Al-free C-

(N-)S-H samples and C-(N-)A-S-H samples (Al/Si* = 0.1) are shown in Figures 9.14 

and 9.15 respectively, with the results tabulated in Table 9.9. 

 

 

 
Figure 9.13. Solid-state 

29
Si MAS NMR spectra of A) C-(N-)S-H (Al/Si* = 0) and B) 

C-(N-)A-S-H (Al/Si* = 0.1) samples, synthesised with Ca/Si* = 1 and equilibrated at 

50°C. The fits and deconvoluted peaks for the spectra of the water-synthesised 

samples are shown as red and blue lines respectively. Deconvolutions for each 

spectrum are shown in Figures 9.14-9.15. The relatively high level of noise in the 

spectrum of the Al/Si* = 0 sample synthesised with 0.5 M NaOH/0.5 M KOH is 

caused by the very rapid relaxation of this sample. Al/Si* = bulk Al/Si. 
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Figure 9.14: Solid-state 

29
Si MAS NMR spectra of C-(N-)S-H samples synthesised 

with Al/Si* = 0, Ca/Si* = 1 and A) water, B) 0.5 M NaOH, and C) 0.5 M NaOH/0.5 

M KOH, and equilibrated at 50°C. 
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Figure 9.15. Solid-state 

29
Si MAS NMR spectra of C-(N-)S-H samples synthesised 

with Al/Si* = 0.1, Ca/Si* = 1 and A) water, B) 0.5 M NaOH, and C) 0.5 M 

NaOH/0.5 M KOH, and equilibrated at 50°C. 
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Table 9.9. Deconvolution results for the 
29

Si MAS NMR spectra of C-(N-)A-S-H samples synthesised with Ca/Si* = 1 and equilibrated at 50°C. 

The estimated error in absolute site percentages is ±0.02. Al/Si* = bulk Al/Si. 

Al/Si* 
Alkali solution 

type 

Q
1
  

-79.0 ±0.7 ppm 

Q
2
(1Al)  

-81.7 ±0.4 ppm 

Q
2

b  

-82.4 ±1.3 ppm 

Q
2

p  

-84.4 ±0.8 ppm 

Q
3
(1Al)  

-87.6 ±1.1 ppm 

Q
3
  

-96.8 ppm 

0 Water 0.32 0 0.23 0.46 0 0 

0 0.5 M NaOH 0.74 0 0.09 0.18 0 0 

0 
0.5M NaOH/ 

0.5 M KOH 
0.70 0 0.10 0.20 0 0 

0.1 Water 0.20 0.16 0.21 0.43 0 0 

0.1 0.5 M NaOH 0.34 0.18 0.10 0.32 0.031 0.024 

0.1 
0.5M NaOH/ 

0.5 M KOH 
0.54 0.16 0.05 0.20 0.052 0 
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29
Si resonances assigned to Q

1
, Q

2
b and Q

2
p sites are also identified in the spectra of 

the C-(N-)A-S-H (Al/Si* = 0.1) samples (Figure 9.13B). These spectra also contain 

an additional resonance assigned to structurally-incorporated Al in non-cross-linked 

bridging sites (Q
2
(1Al)), located at δiso = -82 ppm in the spectrum for the alkali-free 

sample. Q
2
(1Al) sites identified in laboratory-synthesised C-A-S-H samples 

equilibrated at 23°C are located at similar δiso values (Pardal et al., 2012).  

 

Peaks assigned to Q
1
, Q

2
b, Q

2
p and Q

2
(1Al) are shifted by +0.4 to +1 ppm in the 

spectrum for the Al-containing sample synthesised with 0.5 M NaOH relative to the 

alkali-free C-A-S-H sample (Figure 9.13B), which is consistent with 
29

Si MAS NMR 

spectra of laboratory-synthesised C-(N-)A-S-H produced at 20-25°C (L'Hôpital et al.; 

Lognot et al., 1998). Additional Q
3
(1Al) and Q

3
 resonances at -88.6 and -96.8 ppm 

are observed in the spectrum of the 0.5 M NaOH sample, indicating the formation of 

a cross-linked C-(N-)A-S-H product. The δiso value of the Q
3
 site is equivalent to the 

chemical shift of this site in laboratory-synthesised C-A-S-H equilibrated at 80°C 

(Myers et al., 2015b) and in Al-tobermorite formed in 2000-year old Roman seawater 

concrete (Jackson et al., 2013), and is similar to the chemical shift of this site in (Al-

)tobermorites synthesised at 150°C (Houston et al., 2009) and 175°C (Cong and 

Kirkpatrick, 1996b; Tsuji et al., 1991). However, the δiso value of the Q
3
(1Al) site is 

shifted by approximately +3 ppm relative to the chemical shift of this site in the 

aforementioned literature; this is again attributed to the association of a greater 

proportion of less positively-charged dissolved species (e.g. Na
+
 rather than Ca

2+
) 

with Si atoms in Q
3
(1Al) sites, resulting from the much higher alkali concentrations 

used here.  

 

Each component peak is shifted to a slightly more positive δiso value by further 

increasing the alkali hydroxide concentrations of the synthesis solutions to 1 M 

(Figure 9.13B, sample 0.5 M NaOH/0.5 M KOH), suggesting additional uptake of 

Na
+
/K

+
/H

+
 in C-(N-)A-S-H interlayers, while the Q

3
 site is no longer identified. The 

disappearance of the Q
3
 site at a bulk alkali concentration of 1 M, and the presence 

of Q
3
(1Al) resonances at -87 to -89 ppm in the Al and alkali-containing samples, are 
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consistent with the features of 
29

Si MAS NMR spectra of Na2CO3 and Na2SiO3-

activated slag cement pastes cured under ambient conditions (Bernal et al., 2015; 

Myers et al., 2015a), where Q
3
(1Al)-containing cross-linked C-(N-)A-S-H products 

are sometimes present in this chemical shift range. The identification of Q
3
-type sites 

in the C-(N-)A-S-H samples equilibrated at 50°C here, rather than the higher 

temperatures needed to form these structures in C-A-S-H specimens synthesised with 

Al but without alkali (Myers et al., 2015b), shows that the formation of =Al-O-Si= 

cross-links in C-(N-)A-S-H products is greatly promoted at higher alkali content. 

 

9.3.7 Structural Models and Implications 

 

Mean chain lengths (MCLs), Al/Si ratios and cross-linked phase fractions for the C-

(N-)A-S-H products (Figure 9.16) are calculated using the 
29

Si MAS NMR spectral 

deconvolution results (Table 9.9) and the ‘Cross-linked Substituted Tobermorite 

Model’ (CSTM) (Myers et al., 2013), by representing this phase as a mixture of 

cross-linked and non-cross-linked tobermorite-like components. 

 

  



9. Composition-Solubility-Structure Relationships in C-(N-)A-S-H  297 

 

 

 
Figure 9.16. C-(N-)S-H and C-(N-)A-S-H structural parameters calculated from 

deconvolution analysis of the 
29

Si MAS NMR spectra (Figures 9.13-9.15), 

determined using the CSTM (Myers et al., 2013) for mixed cross-linked/non-cross-

linked tobermorite-like phases. The expected error bounds of the deconvolution 

results are represented by symbol size for the Al/Si ratios, by dotted black lines for 

the cross-linked phase fractions and by error bars for the MCL values. Al[C] = 

percentage of Al in cross-linked C-(N-)A-S-H (eq.(5.1)). Al/Si* = bulk Al/Si. 

 

The results obtained by applying the CSTM (Myers et al., 2013) to the 
29

Si MAS 

NMR spectral deconvolutions show that the MCLs of the C-(N-)A-S-H products 

decrease with  increasing alkali concentration, and with decreasing bulk Al content. 

The calculated Al/Si ratios are similar to the Al/Si* ratios used in synthesis (Al/Si* = 

0.1); the small differences are explained by the formation of small amounts of 

C3AH6/Al(OH)3 in the alkali-free and 0.5 M NaOH/0.5 M KOH samples, and 

C4AcH11/C3AH6/Al(OH)3 in the 0.5 M NaOH sample (Myers et al., 2015b) 

(Appendix D). The alkali and Al-containing C-(N-)A-S-H products show similar 

levels of cross-linking, although the percentage of Al in the cross-linked components 

(Al[C]) of this phase is higher in the sample synthesised using 0.5 M NaOH/0.5 M 

KOH (66%) relative to the sample synthesised with 0.5 M NaOH (34%). This 

parameter is calculated using the CSTM representation of C-(N-)A-S-H chemistry 

(Myers et al., 2013), eq.(5.1) and the 
29

Si MAS NMR spectral deconvolution results 

(Table 9.9). 
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The calculated Al[C] values (Figure 9.16) show that the uptake of Al into cross-linked 

C-(N-)A-S-H components is enhanced as the bulk alkali hydroxide concentration is 

increased, but also that there is not an extremely strong preference for partitioning of 

Al into either one of the two structural types. This view is supported by recent work 

on the role of Al in cross-linking of C-(N-)A-S-H in Na2SiO3-activated slag cements 

cured for 1-180 days at room temperature, which reported Al[C] values of 40-60% 

(Myers et al., 2015a).  

 

A comparison of the key alkali-dependent structural changes identified here (at 

Ca/Si* = 1) with the slightly reduced C-(N-)A-S-H solubilities determined at higher 

alkali concentration and Ca/(Al+Si) ratios ≤ 1 (section 9.3.5) suggests that the 

solubility and MCL of this phase may be directly related in this range of Ca/(Al+Si) 

ratios. The influence of Ca composition on C-(N-)A-S-H solubility dominates at 

higher Ca/(Al+Si) ratios, i.e. at low MCL values, demonstrated by large reductions in 

the solubility of this phase as a function of increasing Ca/(Al+Si) ratio at the limit 

MCL  2 (region A in Figure 9.17).  
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Figure 9.17. Solubility products for C-(N-)A-S-H plotted as a function of MCL, 

calculated using the dissolution reaction shown in eq.(3.8) with regions: A) 

describing C-(N-)A-S-H with highly variable Ca/(Al+Si) ratios and slightly variable 

MCLs; and B) describing C-(N-)A-S-H with variable Ca/(Al+Si) and MCL. The 

references for the symbols used are: blue diamonds, this study; green circles, C-(A-

)S-H equilibrated at 7-80°C in (Myers et al., 2015b); red triangles, C-(N,K-)A-S-H 

equilibrated at 20°C in (L'Hôpital, 2014; L'Hôpital et al.); and grey squares, C-S-H 

equilibrated at 22°C in (Chen et al., 2004). Solubility products are calculated using 

H2O/Si = 1.2 and Ca/Si ratios taken directly from the literature for the data in (Chen 

et al., 2004), or specified to have a total of 1 mole Si + Al with Ca/Si and Al/Si ratios 

equivalent to the bulk Ca-Al-Si compositions used, Na/Si ratios = 0.1 for the Na-

containing phases, K/Si ratios = 0.1 for the K-containing phases and H2O/Si ratios = 

1.2 for the data in (L'Hôpital, 2014; L'Hôpital et al.; Myers et al., 2015b) and in this 

study. The expected experimental uncertainty is represented by error bars, or by the 

size of the symbols used in the absence of horizontal error bars for MCL values. 

 

The effects of MCL and Ca composition on C-(N-)A-S-H solubility cannot be 

distinguished from one another in region B of Figure 9.17 because C-(N-)A-S-H can 

contain many different Ca/(Al+Si) ratios at a fixed MCL value, for MCL > 5 

(Richardson, 2014). Therefore, selected solubility data for C-(N-)A-S-H with 

Ca/(Al+Si) = 1 were plotted as a function of MCL in Figure 9.18.  
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Figure 9.18. Solubility products for C-(N,K-)A-S-H plotted as a function of the 

MCL, calculated using the dissolution reaction shown in eq.(3.8) at a Ca/(Al+Si) 

ratio = 1. The references for the symbols used are: diamonds, this study (Ca/Si* = 1); 

circles, C-(A-)S-H synthesised with Ca/Si* = 1 and equilibrated at 20-50°C in 

(Myers et al., 2015b); triangles, C-(N,K-)A-S-H synthesised with Ca/Si* = 1 and 

equilibrated at 20°C in (L'Hôpital, 2014; L'Hôpital et al.); and square, C-S-H 

equilibrated at 22°C with Ca/Si = 1.03 in (Chen et al., 2004). Large symbols are data 

at Al/Si* = 0.1 and small symbols are data at Al/Si* = 0. C-(N,K-)A-S-H solubility 

products are calculated using H2O/Si = 1.2 and Ca/Si ratios taken directly from the 

literature for the datum in (Chen et al., 2004), or specified to have a total of 1 mole 

Si + Al with Ca/Si and Al/Si ratios equivalent to the bulk Ca-Al-Si compositions 

used, Na/Si ratios = 0.2 for the Na-containing phases, K/Si ratios = 0.2 for the K-

containing phases and H2O/Si ratios = 1.2 for the data in (L'Hôpital, 2014; L'Hôpital 

et al.; Myers et al., 2015b) and in this study. Error bars represent the expected 

experimental uncertainty except for the point with a downward-pointing arrow, 

which additionally represents a maximum solubility product value, as described in 

the text for Figure 9.12. 

 

Figure 9.18 shows an inverse correlation between MCL and the bulk alkali hydroxide 

concentration, in good agreement with the 
29

Si MAS NMR results presented in 

Figure 9.16, and also slightly reduced C-(N-)A-S-H solubility products in samples 

synthesised with more highly concentrated alkali solutions, consistent with the trends 

in C-(N-)A-S-H solubility shown in Figure 9.12 at Ca/(Al+Si) = 1. However, Figure 
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9.18 does not show a significant difference in C-(N-)A-S-H solubility as a function 

of Al content, despite the longer chain lengths of the Al-containing C-(N-)A-S-H 

phases compared to their Al-free counterparts; therefore, these results indicate that 

the MCL structural parameter does not play a key role in influencing the solubility of 

C-(N-)A-S-H at a Ca/(Al+Si) ratio = 1. This analysis is consistent with recently 

reported results for C-(A-)S-H that showed comparable solubility products for this 

phase independent of the Al content (Myers et al., 2015b).  

 

Alternative factors that could account for the slightly stabilised C-(N-)A-S-H 

structures identified here at increased bulk alkali hydroxide concentrations and 

Ca/(Al+Si) ratios ≤ 1 (Figure 9.12) would then need to be proposed: increased cross-

linking (Figure 9.16) or changes to the bulk layered structure of this phase (Figure 

9.2 and as described by Richardson (2014)) could be potential candidates. However, 

the large uncertainty (±1 log10 unit) of the solubility products calculated here (Figure 

9.12) and the limited availability of solubility data for C-(N-)A-S-H at Ca/(Al+Si) 

ratios < 1 means that the structure-solubility relationships proposed here cannot be 

considered fully conclusive. Further work clarifying the role of structure on the 

solubility of C-(N-)A-S-H would be greatly beneficial in further enabling the design 

of chemically-stable and durable cementitious binders based on engineering controls 

such as the mix design and curing temperature. 

 

9.4 Conclusions 

 

The effect of alkali, Al and Ca on the structure and solubility of C-(N-)A-S-H 

equilibrated at 50°C was investigated in this paper. The long-range order of the 

alkali-containing C-(N-)A-S-H products was much greater than in those synthesised 

in the absence of alkalis. C-(N-)A-S-H basal spacings were generally greater at lower 

Ca content and at higher alkali concentrations in the samples synthesised using 

alkaline hydroxide solutions; this latter factor was attributed to the uptake of 

additional Na
+
/K

+
 species in C-(N-)A-S-H interlayers. No clear trend in C-(N-)A-S-

H basal spacing as a function of Al content was identified. 
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The concentrations of Ca decreased and the concentrations of Si and Al increased in 

the supernatants as functions of increasing alkali hydroxide concentration. More 

alkali was incorporated in C-(N-)A-S-H synthesised with lower Ca and higher alkali 

hydroxide concentrations, although alkali uptake in this phase was found to be 

independent, within the experimental uncertainty, of the alkali type (Na or K) and 

Al/Si ratio at the relatively low amounts of Al added to each sample (Al/Si* ≤ 0.05).  

 

Shorter mean chain lengths, increased cross-linking, and incorporation of more Al 

into cross-linked C-(N-)A-S-H components were identified upon increasing the bulk 

alkali and Al content; mixed cross-linked/non-cross-linked C-(N-)A-S-H was only 

formed in the presence of both alkali and Al. More stable C-(N-)A-S-H was formed 

at higher bulk Ca and alkali concentrations, with significant changes in C-(N-)A-S-H 

solubility due to the latter factor only identified at Ca/Si ratios ≤ 1, but the stability of 

this phase did not vary greatly as a function of the Al/Si ratio. The reduced C-(N-)A-

S-H solubility calculated at higher alkali and Ca content was discussed to be partly 

related to structural changes, and it was tentatively proposed that the MCL of this 

phase does not play a key role in these structural modifications. Therefore, these 

results provide insight into the composition-structure-solubility relationships in C-

(N-)A-S-H, which will improve how hydrated alkali and Al-containing cements, i.e. 

the majority of cement-based materials used worldwide, are understood to perform in 

service.  
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Conclusions 

 

 

This thesis presented an analysis of C-(N-)A-S-H and AAS-based cement chemistry 

using structural and thermodynamic models developed here. This analysis is also 

relevant for some hybrid alkali-activated cements and hydrated PC/SCM blends. 

These models advance the detail in which C-(N-)A-S-H chemistry can be described, 

and the utility of thermodynamic modelling in predicting the chemistry of C-(N-)A-

S-H-based cement materials. Therefore, this thesis presents key advancements 

needed to develop a broadly-applicable framework for understanding the chemistry, 

and therefore durability, of C-(N-)A-S-H-based cements. 

 

The literature review presented in Chapter 2 showed that the lack of a flexible C-(N-

)A-S-H structural model containing descriptions of mixed cross-linked/non-cross-

linked tobermorite-like structures, and the lack of a C-(N-)A-S-H thermodynamic 

model with explicit description of Al and alkali uptake in this phase, were key 

limitations in the cement chemistry literature.  

 

The structural model formulated in Chapter 4, the CSTM, contains the first flexible 

description of C-(N-)A-S-H as a mixture of cross-linked/non-cross-linked 

tobermorite-like structures explicitly in terms of Q
n
(mAl) sites. This greatly advances 

the accuracy in which the chemistry of C-(N-)A-S-H-based cements can be 

described, by correctly accounting for cross-linked type C-(N-)A-S-H in structural 

analysis of these materials. The application of the CSTM to deconvoluted 
29

Si MAS 

NMR spectra of a Na2SiO3-activated slag cement showed the key advancement that a 

Q
4
-containing reaction product must have formed to satisfy the structural constraints 

of mixed cross-linked/non-cross-linked tobermorite-like C-(N-)A-S-H. 

Complementary SEM-EDS analysis suggested that this Q
4
-containing phase has an 
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Al/Si ratio ≈ 1 and is long-range disordered. It was hypothesised that this phase may 

be a disordered nanoparticulate zeolite-like product with similarities to the N-A-S(-

H) (‘geopolymer’) gels formed in alkali-activated cements derived from MK and FA.  

 

Additional structural analysis of C-(N-)A-S-H in Na2SiO3-activated slag cement was 

presented in Chapter 5, which showed that the MCL, cross-linked phase fraction and 

Al/Si ratio of this phase decreased slightly as a function of increasing curing time. A 

clear trend between the proportion of Al in the cross-linked C-(N-)A-S-H component 

and curing time was not found. A long-range disordered Q
4
-containing activation 

product was found at 180 days of curing in addition to the identification of this phase 

at 56 days in Chapter 4. These results indicate that the chemical compositions of the 

fundamental structural units in mixed cross-linked/non-cross-linked C-(N-)A-S-H 

vary in a way that is not immediately apparent from the bulk chemistry of this phase. 

 

The first thermodynamic model for C-(N-)A-S-H that explicitly describes Al and 

alkali uptake in this phase, CNASH_ss, was developed in Chapter 6. The CNASH_ss 

thermodynamic model was formulated in terms of tobermorite-like phases such as 

those described by the CSTM. This thermodynamic model was validated against a 

large set of solubility data in the CaO-(Na2O,Al2O3)-SiO2-H2O and AAS cement 

systems, and chemical composition data for C-A-S-H, showing that it can reproduce 

experimental solubility results in AAS cements to ≤±1 order of magnitude and is 

applicable for C-(N-)A-S-H with Ca/Si ratios < 1.3. The CNASH_ss thermodynamic 

model described the volumetric properties of C-(N-)A-S-H in AAS cements, 

meaning that it can be used to simulate chemical shrinkage in these materials. This 

model greatly advances the utility of thermodynamic modelling to alkali-activated 

cements, and potentially hybrid alkali-activated cements and hydrated PC/SCM 

blends. 

 

In Chapter 7, the CNASH_ss thermodynamic model and an ideal solid solution 

model for MgAl-OH-LDH, developed in this chapter, were applied to describe the 

chemistry of AAS-based cements. A good description of Na2SiO3 and Na2CO3-
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activated slag cement chemistry was found. Phase diagrams for AAS-based cements 

were simulated, which showed the high stability of zeolites in these materials, and 

particularly calcite in Na2CO3-activated slag-based cement. The composition 

envelope where zeolites and C-(N-)A-S-H are both stable was found to be dependent 

on the bulk CaO/(Al2O3 + SiO2) ratio. Therefore, the results from this study can be 

used to guide the design of high-performance AAS-based materials, using the bulk 

chemical composition of the cement formulation.  

 

The solubility, chemical composition and nanostructural analysis of C-(A-)S-H 

discussed in Chapter 8 shows that this phase increases in long-range order and 

polymerisation degree at higher temperatures, and that cross-linking is promoted 

significantly by Al at 80°C. The solubility products determined for C-(A-)S-H vary 

within the experimental uncertainty as a function of Al/Si ratio and temperature. 

These results are important for further development of C-(A-)S-H thermodynamic 

models and for understanding the stability of C-(A-)S-H under the majority of 

temperatures experienced by construction materials in service worldwide.  

 

Chapter 9 expanded on the solubility analysis presented in Chapter 8 by additionally 

considering the influence of alkali; this analysis showed that C-(N-)A-S-H solubility 

and the uptake of alkali in this phase decreases significantly as a function of 

increasing Ca content. It was also found that this phase contains more alkali, lower 

MCL and is generally stabilised slightly in the presence of higher alkali 

concentrations at Ca/Si ratios ≤ 1. Cross-linking was found to be greatly promoted by 

Al and alkali in the samples studied. More crystalline C-(N-)A-S-H was formed in 

the presence of alkali, and basal spacings in this phase were typically higher at lower 

Ca/Si ratios. These results are important to advance the accuracy with which the 

chemistry of C-(N-)A-S-H-based materials can be predicted by thermodynamic 

modelling, i.e. the majority of cementitious materials used worldwide. 

 



306 10. Conclusions 

 

  

Therefore, Chapter 10 has summarised the progress made in this thesis towards 

understanding the chemistry of C-(N-)A-S-H and C-(N-)A-S-H-based cementitious 

materials. 
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Recommendations for Future Work 

 

 

Improvement to the C-(N-)A-S-H structural model presented in this thesis (the 

CSTM) can be found in the description of adsorbed interlayer and surface species 

used. These species were located in two sublattice sites – one for species associated 

with bridging tetrahedra and one for species associated with the rest of the structure – 

but selective mixing in the sublattice sites was not specified. However, the different 

adsorbed species in C-(N-)A-S-H structures (e.g. H
+
, Ca

2+
, Na

+
) may be non-

randomly substituted into these sites in real systems. Development of more 

structurally-consistent C-(N-)A-S-H structural models using this information would 

enable the chemistry of C-(N-)A-S-H gels to be more accurately modelled from 

experimental results such as 
29

Si MAS NMR (e.g. by reducing the uncertainty in 

Ca/Si ratios output by the structural model).  

 

The 
29

Si and 
27

Al MAS NMR analysis presented in this thesis is limited by the 

assumption of congruent slag dissolution that was applied to the spectral 

deconvolutions, which may not be fully attained. Further work clarifying the 

dissolution behavior of slags in cementitious systems, in particular the less basic 

Na2CO3-activated systems studied in Chapter 7, is necessary to improve the accuracy 

to which deconvoluted 
29

Si and 27Al MAS NMR spectra of slag-based cements can 

be analysed.  

 

An improved understanding of the chemistry of the additional Q
4
-containing 

aluminosilicate product identified in Chapters 4-5, discussed here in terms of a N-A-

S(-H)-type gel, is necessary to obtain a more complete understanding of the 

chemistry of Na2SiO3-activated slag cements. Future research on this topic should 
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clarify whether this phase is a product from the reaction between the slag and alkali 

activator or whether it is a degradation product of carbonated C-(N-)A-S-H gel. 

 

Each of the three recommendations presented above could be used to improve the 

utility of thermodynamic modelling of C-(N-)A-S-H-based cements, by: i) enabling 

the development of more structurally-consistent thermodynamic models for C-(N-)A-

S-H gel; ii) more accurately defining slag reaction extents used in thermodynamic 

modelling simulations; and iii) informing the development of thermodynamic models 

for N-A-S(-H) gels, which are currently missing in thermodynamic databases for 

cement. The development and utilisation of reliable thermodynamic data for zeolites 

that tend to form in cementitious systems (e.g. gismondine) is also needed to 

improve the utility of thermodynamic modelling of C-(N-)A-S-H-based cements. 

Future work that clarifies and/or accounts for the influence of adsorbed species in the 

aqueous elemental concentrations output from thermodynamic modelling analysis of 

cements, which is not currently distinguished, seems to be an essential ‘next step’ in 

predicting the chemistry of these materials using this technique. Thermodynamic 

modelling of C-(N-)A-S-H-based cements under aggressive environmental 

conditions (e.g. in the presence of atmospheric CO2) is also needed to assess the 

durability of these materials in service. 

 

Finally, a complete understanding of the interplay between the stability, chemical 

composition and structure of C-(N-)A-S-H gel, and the influence of these factors on 

mechanical properties, is currently missing. Future work on this topic, with a view 

towards linking these factors to properties such as the mix design and temperature of 

curing, could lead to the design of C-(N-)A-S-H-based cements with improved 

performance.  
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Appendix A 

 

 

Additional XRD data were measured to support the differential mass loss peak 

assignments described in Chapters 8 and 9. These data were obtained by heating C-

(A-)S-H samples (synthesised under the procedure described in Chapter 3) in a 

Carbolite HTF 1700 furnace at a rate of 300°C/hour to upper and lower temperatures 

with respect to the differential mass loss peaks analysed here (Table A.1). The 

samples were held at the specified temperatures for 1 hour, then cooled at a rate of 

~30°C/minute to room temperature under laboratory atmosphere, and subsequently 

stored in a desiccator (for up to 6 hours in the presence of SiO2 gel) until analysis. 

 

Table A.1. Lower and upper temperatures to which C-(A-)S-H samples were heated 

for analysis of differential mass loss peaks. Ca/Si* = bulk Ca/Si. Al/Si* = bulk Al/Si. 

Ca/Si* Al/Si* 

Equilibration 

temperature 

(°C) 

Differential mass 

loss peak 

temperature (°C) 

Lower 

temperature 

(°C) 

Upper 

temperature 

(°C) 

1 0.1 80 ~500 320 600 

1 0.05 50 ~380 250 520 

1 0 50 ~810 550-650 950 

1 0.1 50 ~810 550-650 950 

 

Figure A.1 shows that heating the C-A-S-H samples equilibrated at 80°C with bulk 

Al/Si = 0.1 to 600°C, and heating the 50°C C-A-S-H samples with Al/Si* = 0.05 to 

520°C, results in the decomposition of C-A-S-H only. Heating these samples to 

250°C (Figure A.1B) or 320°C (Figure A.1A) transforms C-A-S-H to a phase with 

similar long-range order to 9 Å tobermorite (represented by C3 in Figure A.1, 

Ca5Si6O16(OH)2, PDF# 04-012-1761) (Merlino et al., 2000). The C-A-S-H phase 

loses some structural similarity to 9 Å tobermorite on further heating to 520°C 

(Figure A.1B) or 600°C (Figure A.1A), which can be identified by the shift of the 

major 9 Å tobermorite reflections (~29.5° 2θ) to higher angles. 
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Figure A.1. Cu Kα diffractograms of C-A-S-H samples with A) Al/Si* = 0.1 and 

equilibrated at 80°C, and B) Al/Si* = 0.05 and equilibrated at 50°C, heated to the 

temperatures shown in the plots. Al/Si* = bulk Al/Si. 

 

Figure A.2 shows Cu Kα diffractograms for C-(A-)S-H samples equilibrated at 50°C 

and heated to 550-650°C and 950°C (Al/Si* = 0 and 0.1). Decomposition of C-(A-

)S-H occurs up to 550-650°C, which is shown by the loss of the d(002) basal spacing 

peaks and shifting of the major reflections at ~29° 2θ to higher angles. Formation of 

a small amount of mayenite (C12A7, PDF# 00-009-0413) is observed in the bulk 

Al/Si = 0.1 sample during heating to/at 550-650°C (Figure A.2B). Wollastonite 

(CaSiO3, PDF# 01-076-0925) is formed and decomposition of C-(A-)S-H occurs 

during heating between 550-650°C and 950°C; complete decomposition of C-(A-)S-

H is attained after heating at 950°C for 1 hour. Mayenite is also formed in the C-A-

S-H sample during heating at 950°C (Figure A.2B). 
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Figure A.2. Cu Kα diffractograms of C-(A-)S-H samples equilibrated at 50°C with 

A) Al/Si* = 0 and B) Al/Si* = 0.05, heated to the elevated temperatures shown in the 

plots. 

 

These results confirm the assignment of the differential mass loss peaks at ~380°C 

and ~500°C in Chapters 8 and 9 to thermal decomposition of C-(A-)S-H, and 

assignment of the differential mass loss peaks at ~810°C in Chapters 8 and 9 to the 

decomposition of C-(A-)S-H to wollastonite. These data also show that the thermal 

behaviour of the C-(A-)S-H products synthesised here is relatively similar to that of 

14Å tobermorite (Biagioni et al., 2013), which highlights the high level of structural 

and chemical similarity between these solid phases.  
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Appendix B 

 

 

Aqueous phase compositions and pH results for the C-(A-)S-H samples investigated 

in Chapter 8 are shown in Table B.1, and log10(Kso) values calculated for the C-(A-

)S-H products (using the chemical compositions determined by mass balance and 

reported in Table 8.5) are shown in Table B.2.  

 

Table B.1. Aqueous phase compositions and pH results for the C-S-H and C-A-S-H 

systems. Al/Si* = bulk Al/Si. 

Temperature 

(°C) 

[Si] 

(mmol/L) 

[Ca] 

(mmol/L) 

[Al] 

(mmol/L) 

[OH
-
] 

(mmol/L) 
pH † 

Al/Si* = 0 

7 0.025 2.0 0 2.6 11.4 

20 0.083 3.2 0 3.9 11.7 

50 0.091 2.8 0 5.9 11.7 

80 0.11 1.7 0 4.4 11.6 

Al/Si* = 0.05 

7 0.046 2.0 0.020 2.9 11.5 

20 0.15 2.1 0.020 5.2 11.8 

50 0.10 2.4 0.003 5.3 11.6 

80 0.073 1.9 b.d.l. ‡ 4.2 11.6 

Al/Si* = 0.1 

7 0.053 1.7 0.036 2.5 11.4 

20 0.11 2.9 0.031 4.2 11.7 

50 0.17 1.5 0.028 3.5 11.5 

80 0.074 1.7 0.005 4.2 11.6 

Al/Si* = 0.15 

7 0.069 1.3 0.043 1.9 11.3 

20 0.34 1.3 0.023 3.0 11.5 

50 0.32 1.2 0.043 2.1 11.3 

80 0.094 1.1 0.039 3.0 11.4 

† pH measured at 23°C 

‡ b.d.l. = below detection limit for Al (~0.003 mmol/L) 
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Table B.2. Solubility products for the C-(A-)S-H products with chemical 

compositions given in Table 8.5, which refer to the dissolution reaction given by 

eq.(3.8) and Ca
2+

 (aq), SiO3
2-

 (aq), AlO2
-
 (aq), OH

-
 (aq) and H2O (l). Al/Si* = bulk Al/Si. 

Temperature (°C) log10(Kso) 

Al/Si* = 0 

7 -9.98 

20 -8.91 

50 -8.66 

80 -8.80 

Al/Si* = 0.05 

7 -9.65 

20 -8.83 

50 -8.82 

80 -9.08 † 

Al/Si* = 0.1 

7 -9.69 

20 -8.68 

50 -8.64 

80 -9.21 

Al/Si* = 0.15 

7 -9.47 

20 -8.52 

50 -8.73 

80 -9.35 

† Solubility product calculated with [Al] = 0.001 mmol/L because the measured Al 

concentration was below the detection limit. 
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Aqueous phase compositions and pH results for the C-(N-)S-H (Al/Si* = 0) and C-

(N-)A-S-H (Al/Si* = 0.05) samples investigated in Chapter 9 are shown in Tables 

C.1 and C.2 respectively. Solubility products (Ks) for the C-(N-)A-S-H products, 

calculated using the chemical compositions determined by mass balance and reported 

in Tables 9.7-9.8 (Chapter 9), are shown in Table C.3.  
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Table C.1. Aqueous phase compositions and pH results for the C-(N-)S-H samples (Al/Si* = 0, Ca/Si* = 1) equilibrated at 50°C. 

Synthesis solution 
[Si] 

(mmol/L) 

[Ca] 

(mmol/L) 

[Al] 

(mmol/L) 

[K] 

(mmol/L) 

[Na] 

(mmol/L) 

[OH
-
] 

(mmol/L) 
pH 

a
 

Ca/Si* = 0.6 

Water 4.72 1.50 0 0 0 0.0471 9.70 

0.1 M NaOH 35.3 0.008 0 0 54.8 14.1 12.1 

0.1 M KOH 30.8 0.006 0 45.4 0.291 
c
 18.4 12.2 

0.5 M NaOH/0.5 M KOH 43.6 b.d.l. 
b
 0 462 470 576 13.7 

Ca/Si* = 0.8 

Water 2.75 1.22 0 0 0 0.113 10.1 

0.1 M NaOH 2.65 0.004 0 0 61.8 50.3 12.6 

0.1 M KOH 2.13 b.d.l. 
b
 0 57.0 0.430 

c
 57.0 12.7 

0.5 M NaOH/0.5 M KOH 0.386 0.074 0 485 486 639 13.7 

Ca/Si* = 1 

Water 0.091 2.77 0 0 0 5.93 11.7 

0.1 M NaOH 0.336 0.147 0 0 77.2 72.5 12.8 

0.1 M KOH 0.079 0.540 0 75.3 0.489 
c
 79.1 12.8 

0.5 M NaOH 0.560 0.039 0 0 444 390 13.5 

0.5 M KOH 0.288 0.132 0 432 0 431 13.5 

0.5 M NaOH/0.5 M KOH 1.23 0.031 0 460 453 639 13.7 

Ca/Si* = 1.2 

Water 0.038 6.29 0 0 0 11.3 12.0 

0.1 M NaOH 0.124 0.533 0 0 91.7 87.0 12.9 

0.1 M KOH 0.090 0.517 0 90.4 0.493 
c
 97.0 12.9 

0.5 M NaOH/0.5 M KOH 0.69 0.058 0 465 460 639 13.7 
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Table C.1. Continued. 

Synthesis solution 
[Si] 

(mmol/L) 

[Ca] 

(mmol/L) 

[Al] 

(mmol/L) 

[K] 

(mmol/L) 

[Na] 

(mmol/L) 

[OH
-
] 

(mmol/L) 
pH 

a
 

Ca/Si* = 1.4 

Water 0.013 9.91 0 0 0 17.5 12.2 

0.1 M NaOH 0.040 1.37 0 0 100 99.9 12.9 

0.1 M KOH 0.032 1.34 0 95.5 0.515 
c
 105 12.9 

0.5 M NaOH/0.5 M 

KOH 
0.491 0.103 0 467 464 639 13.7 

Ca/Si* = 1.6 

Water 0.006 13.1 0 0 0 24.1 12.4 

0.1 M NaOH 0.023 2.69 0 0 102 105 12.9 

0.1 M KOH 0.016 2.40 0 97.3 0.544 
c
 110 12.9 

0.5 M NaOH/0.5 M 

KOH 
0.433 0.125 0 592 577 639 13.7 

a
 pH measured at ~24°C 

b
 b.d.l. = below detection limit (~0.004 mmol/L for Ca) 

c
 A small amount of Na is present as an impurity in the 0.1 M KOH synthesis solution  
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Table C.2. Aqueous phase compositions and pH results for the C-(N-)A-S-H samples (Al/Si* = 0.05, Ca/Si* = 1) equilibrated at 50°C. 

Synthesis solution 
[Si] 

(mmol/L) 

[Ca] 

(mmol/L) 

[Al] 

(mmol/L) 

[K] 

(mmol/L) 

[Na] 

(mmol/L) 

[OH
-
] 

(mmol/L) 
pH 

a
 

Ca/Si* = 0.6 

Water 4.25 1.27 b.d.l. 
b
 0 0 0.060 9.80 

0.1 M NaOH 23.2 0.008 0.086 0 45.8 22.7 12.4 

0.1 M KOH 18.6 0.004 0.036 46.0 0.303
 d

 23.4 12.3 

0.5 M NaOH/0.5 M 

KOH 
48.9 b.d.l. 

b
 1.38 447 447 613 13.7 

Ca/Si* = 0.8 

Water 2.13 1.19 b.d.l. 
b
 0 0 0.158 10.2 

0.1 M NaOH 2.89 b.d.l. 
b
 0.235 0 55.0 61.5 12.8 

0.1 M KOH 2.04 b.d.l. 
b
 0.104 60.2 0.392

 d
 51.9 12.7 

0.5 M NaOH/0.5 M 

KOH 
10.0 b.d.l. 

b
 0.708 425 422 635 13.7 

Ca/Si* = 1 

Water 0.104 2.36 0.003 0 0 5.29 11.6 

0.1 M NaOH 0.417 0.092 0.026 0 77.4 88.5 12.9 

0.1 M KOH 0.162 0.227 0.031 78.7 0.51
 d

 71.6 12.8 

0.5 M NaOH 0.780 0.036 0.194 0 448 408 13.5 

0.5 M KOH 0.537 0.074 0.082 441 3.28
 d

 448 13.5 

0.5 M NaOH/0.5 M 

KOH 
c
 

1.48 b.d.l. 
b
 0.121 453 446 645 13.7 
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Table C.2. Continued. 

Synthesis solution 
[Si] 

(mmol/L) 

[Ca] 

(mmol/L) 

[Al] 

(mmol/L) 

[K] 

(mmol/L) 

[Na] 

(mmol/L) 

[OH
-
] 

(mmol/L) 
pH 

a
 

Ca/Si* = 1.2 

Water 0.057 4.16 b.d.l. 
b
 0 0 8.11 11.9 

0.1 M NaOH 0.159 0.414 0.008 0 86.9 97.0 12.9 

0.1 M KOH 0.125 0.488 0.005 93.7 0.518
 c

 84.1 12.9 

0.5 M NaOH/0.5 M 

KOH 
0.744 0.087 0.085 457 445 658 13.8 

Ca/Si* = 1.4 

Water 0.016 3.84 b.d.l. 
b
 0 0 17.0 12.2 

0.1 M NaOH 0.025 2.53 b.d.l. 
b
 0 93.0 116 13.0 

0.1 M KOH 0.022 2.38 b.d.l. 
b
 103 0.558

 c
 94.9 12.9 

0.5 M NaOH/0.5 M 

KOH 
0.563 0.128 0.062 461 452 682 13.8 

Ca/Si* = 1.6 

Water 0.005 8.89 b.d.l. 
b
 0 0 29.5 12.4 

0.1 M NaOH 0.018 2.90 b.d.l. 
b
 0 95.4 122 13.0 

0.1 M KOH 0.018 2.85 b.d.l. 
b
 103 0.553

 c
 98.8 12.9 

0.5 M NaOH/0.5 M 

KOH 
0.520 0.152 0.059 458 448 682 13.8 

a
 pH measured at ~24°C 

b
 b.d.l. = below detection limit (~0.004 mmol/L for Ca and ~0.003 mmol/L for Al) 

c
 A small amount of Na is present as an impurity in the 0.1 M KOH synthesis solution  
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Table C.3. Solubility products (Ks) for the C-(N-)A-S-H products synthesised at 

50°C, with chemical compositions (Tables 9.7-9.8) determined by TGA, IC and pH 

measurements (italic font), and TGA, XRD, Rietveld analysis, IC and pH 

measurements (normal font), which refer to the reaction given by eq.(3.8) and Ca
2+

, 

SiO3
2-

, AlO2
-
, Na

+
, K

+
, OH

-
 and H2O.  

Synthesis solution log10(Ks) 

Ca/Si* = 0.6 

 
Al/Si* = 0 Al/Si* = 0.05 

Water -4.6 ≤-5.1
 a,b

 

0.1 M NaOH -8.9 -9.7 

0.1 M KOH -9.6 -9.8 

0.5 M NaOH/0.5 M KOH ≤-8.3
 a,c

 ≤-10.0
 a,c

 

Ca/Si* = 0.8 

 
Al/Si* = 0 Al/Si* = 0.05 

Water -6.7 ≤-7.5
 a,b

 

0.1 M NaOH -10.1 ≤-11.1
 a,c

 

0.1 M KOH ≤-10.8
 a,c

 ≤-10.9
 a,c

 

0.5 M NaOH/0.5 M KOH - 
d
 ≤-11.8

 a,c
 

Ca/Si* = 1 

 
Al/Si* = 0 Al/Si* = 0.05 

Water -8.6 -9.2 

0.1 M NaOH -10.2 -10.8 

0.1 M KOH -10.3 -10.9 

0.5 M NaOH/0.5 M KOH -10.9 ≤-12.4
 a,c

 

Ca/Si* = 1.2 

 
Al/Si* = 0 Al/Si* = 0.05 

Water -9.9 ≤-10.7
 a,b

 

0.1 M NaOH -10.6 -11.7 

0.1 M KOH -10.9 -11.4 

0.5 M NaOH/0.5 M KOH -11.1 -12.2 

Ca/Si* = 1.4 

 
Al/Si* = 0 Al/Si* = 0.05 

Water -11.3 ≤-12.6
 a,b

 

0.1 M NaOH -11.4 ≤-12.6
 a,b

 

0.1 M KOH -11.8 ≤-12.0
 a,b

 

0.5 M NaOH/0.5 M KOH -11.0 -13.0 

Ca/Si* = 1.6 

 
Al/Si* = 0 Al/Si* = 0.05 

Water -12.5 ≤-13.7
 a,b

 

0.1 M NaOH -11.3 ≤-12.4
 a,b

 

0.1 M KOH -11.6 ≤-11.8
 a,b

 

0.5 M NaOH/0.5 M KOH -11.5 -13.4 
a
 Maximum values. Activities of Ca

2+
, SiO3

2-
, AlO2

-
, Na

+
, K

+
, OH

-
 and H2O were 

calculated using 
b
 [Al] = 0.003 mmol/L or 

c
 [Ca] = 0.004 mmol/L, as the measured 

concentrations of these elements in the supernatants were below the detection limit. 
d
 Solid phase assemblage not measured. 
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The TGA results shown in Figure D.1 support the slight discrepancies between the 

Al/Si ratios determined through the deconvolution analysis presented in Chapter 9 

and the Al/Si* ratios used during synthesis, via the identification of C3AH6, Al(OH)3 

,and C4AcH11 secondary products. 

 

 
Figure D.1. TGA results for C-(N-)A-S-H samples equilibrated at 50°C with Ca/Si* 

= 1 and Al/Si* = 0.1. The peak marked by @ is tentatively assigned to 

decomposition of C-(N-)A-S-H and C4AcH11. Ca/Si* = bulk Ca/Si. Al/Si* = bulk 

Al/Si. 
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Appendix E 

 

 

Additional solubility data for the alkali and Al-containing C-(N-)A-S-H products 

studied by 
29

Si MAS NMR (Figures 9.13-9.15), investigated in Chapter 9, are shown 

in Table E.1. 
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Table E.1. Aqueous phase compositions and pH results for C-(N-)A-S-H samples (Al/Si* = 0.1, Ca/Si* = 1) equilibrated at 50°C studied in the 

structural component of this work. 

Synthesis solution 
[Si] 

(mmol/L) 

[Ca] 

(mmol/L) 

[Al] 

(mmol/L) 

[K] 

(mmol/L) 

[Na] 

(mmol/L) 

[OH
-
] 

(mmol/L) 
pH 

a
 

0.5 M NaOH 0.792 0.031 0.122 0 436 408 13.5 

0.5 M NaOH/0.5 M KOH 1.38 b.d.l. 
b
 0.250 449 445 668 13.7 

a
 pH measured at ~24°C 

b
 b.d.l. = below detection limit (~0.004 mmol/L for Ca) 

 

 

 

 

 


