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Abstract

Reinforcement learning has proven to be a successful artificial intelligence technique when an
agent needs to act and improve in a given environment. The agent receives feedback about its
behaviour in terms of rewards through constant interaction with the environment and in time
manages to identify which actions are more beneficial for each situation.

Typically reinforcement learning assumes the agent has no prior knowledge about the envir-
onment it is acting on. Nevertheless, in many cases (potentially abstract and heuristic) domain
knowledge of the reinforcement learning tasks is available by domain experts, and can be used
to improve the learning performance. One way of imparting knowledge to an agent is through
reward shaping which guides an agent by providing additional rewards.

One common assumption when imparting knowledge to an agent, is that the domain know-
ledge is always correct. Given that the provided knowledge is of a heuristic nature, there are
cases when this assumption is not met and it has been shown that in cases where the provided
knowledge is wrong, the agent takes longer to learn the optimal policy. As reinforcement learning
methods are shifting more towards informed agents, the assumption that expert domain know-
ledge is always correct needs to be relaxed in order to scale these methods to more complex,
real-life scenarios. To accomplish that, the agents need to have a mechanism to deal with those
cases where the provided expert knowledge is not perfect.

This thesis investigates and documents the adverse effects erroneous knowledge can have to
the learning process of an agent if care is not taken. Moreover, it provides a novel approach
to deal with erroneous knowledge through the use of knowledge revision principles, in order to
allow agents to use their experiences to revise knowledge and thus benefit from more accurate
shaping. Empirical evaluation shows that agents that are able to revise erroneous parts of the
provided knowledge, can reach better policies faster when compared to agents that do not have

knowledge revision capabilities.
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CHAPTER 1

Introduction and Motivation

The research topic of this thesis falls within the general field of Artificial Intelligence (AI). The
goal of Al is to build processes, or agents as they are widely referred to that act in an intelligent
manner.

Al is a vast research area but the specific field of interest in this case is Reinforcement Learn-
ing (RL). In RL agents are deployed in an environment in which they must learn how to adapt
and complete certain tasks. To do so, agents can perform actions which might change the state of
the environment which in turn provides a numerical reward signal that can be positive or negative
depending on the action chosen. Through continuous interaction the agents can learn to identify
those actions that best fit certain situations so as to maximise their future rewards (Sutton and
Bartol|1998)).

Typically RL assumes no prior domain knowledge and the agents must build their knowledge
through trial and error. This seems counter intuitive as in most cases the designer of the system
will have some form of high level knowledge of what the agents need to achieve. This domain
knowledge can be imparted to an agent so as to improve its learning process. As a result RL
research is moving towards techniques of exploiting existing domain knowledge and the general
term referred to is knowledge-based RL. One popular approach of providing domain knowledge
to an agent is potential-based reward shaping (Randlgv and Alstrom| 1998} Ng et al.|[1999). The
results of this approach show that agents are guaranteed to find the same policy as with a non-
shaped agent, but the convergence time of the latter is significantly greater.

While potential-based reward shaping has been shown to speed up the learning process sig-

nificantly, one limiting assumption that remains is that the provided domain knowledge is always
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18 Introduction and Motivation Chapter 1

correct. This naive assumption can hurt an agent’s performance given that expert domain know-
ledge is often of a heuristic nature and can be erroneous. For example, it has been shown in
(Grzes and Kudenko|2008) that if the provided knowledge is flawed then the agent’s learning
performance drops and in some cases is worse than not using domain knowledge at all.

A solution to this assumption can be to add the capability of revising knowledge to RL agents.
This thesis will explore this idea and will empirically demonstrate the impact that erroneous
knowledge can have to agents utilising reward shaping and methods to overcome the negative

effects that it can cause.

1.1 Hypothesis

The overall aim of this thesis is to demonstrate:

Adding knowledge revision capabilities to reinforcement learning agents utilising
reward shaping can alleviate the adverse effects of erroneous domain knowledge by
improving its quality and thus agents can reach a better overall performance in terms
of convergence speed and learnt policy compared to agents without knowledge revi-
sion and agents that receive no shaping. Agents without knowledge revision receiv-
ing erroneous knowledge may still reach a better performance than agents without

shaping.

1.2 Scope

This thesis explores knowledge revision within the context of two potential based reward shap-
ing methods; plan-based and abstract Markov Decision Process (MDP) reward shaping. These
methods were chosen in order to utilise knowledge revision principles as they provide a very in-
tuitive mechanism to handle erroneous knowledge. Plan-based reward shaping can utilise basic
belief revision operations based on the Alchourrén, Giardenfors and Makinson (AGM) postulates
and abstract MDPs can be handled by updating probabilities. More information is provided in
Chapter

While many other approaches of reward shaping can be chosen to design knowledge revision
methods for reinforcement learning agents there have not been any published studies within the
context of potential-based shaping prior to the start of this thesis. Therefore, the question of the
effects of erroneous domain knowledge remained unanswered as the majority of reward shaping

methods assumed that the provided knowledge is always correct.

1.3 Thesis Overview

The next chapter provides an overview of the field, focusing on the necessary aspects of the
literature this work builds upon, in order to make the latter parts of the thesis accessible to all

readers.
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Chapter [3|presents an empirical study on plan-based reward shaping with knowledge revision
by providing algorithms in order to handle different aspects of erroneous knowledge; incorrect,
incomplete and a combination of both. In order to assess the performance of the agents two
deterministic environments were used, an extended navigation domain and a real-time strategy
game. These studies demonstrate that using knowledge revision with plan-based reward shap-
ing by building upon the AGM postulates, can help agents improve the quality of the provided
domain knowledge and thus reach a better overall performance compared to agents that do not
revise knowledge and agents that do not use any reward shaping methods.

Chapter [] explores knowledge revision methods for agents that use abstract MDP reward
shaping. It documents algorithms for knowledge revision that update probabilities of a high level
MDP that represents the environment. This study expands knowledge revision capabilities to
also cover non-deterministic environments as the methods are also evaluated in a Micro UAV
problem which was provided by our industrial collaborators at QinetiQ.

Finally, Chapter [5|focuses on using abstract MDP reward shaping for conflict resolution in a
multi-agent setting. Previous research demonstrated that agents receiving decentralised shaping
encounter problems while learning due to conflicting goals. Centralised agents on the other
hand are able to co-ordinate efficiently. I am interested in cases where information sharing is
not allowed and this study shows that abstract MDP reward shaping, even when provided as
decentralised shaping, can help agents resolve conflicting goals and co-ordinate efficiently when
compared to plan-based reward shaping agents and agents that receive no shaping.

Lastly, the thesis concludes in Chapter [6| with a summary of all contributions documented in
this thesis, a few comments on the limitations of this research and ways to improve it in future

work.
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CHAPTER 2

Background and Field Review

This chapter focuses on the fundamentals and current research state in RL necessary to under-
stand the topic of this thesis. Section provides an introduction to the area of RL covering
all the basic concepts. Section expands into knowledge-based methods for RL and Section
[2.3| provides an introduction to knowledge revision and how it can benefit knowledge-based RL

methods.

2.1 Reinforcement Learning (RL)

RL falls within the area of machine learning. In machine learning computer programs learn how
to improve their performance at a specific task through experience (Mitchell||1997).

RL is a goal directed paradigm where learning occurs through reinforcements (Sutton and
Barto|[1998)). The learning entity, the agent, is situated in a particular environment. The envir-
onment is the “world” that the agent acts upon and poses the problems that the agent is to find
solutions to (Russell and Norvig|[2002). The agent makes decisions based on its own motiva-
tions using the experience gained within the environment. Unlike supervised methods where the
agent receives guidance on how to behave given certain situations, in RL the agent builds up its
experiences through trial and error.

Figure [2.1|illustrates how the agent gains these experiences. The interaction begins with the
environment presenting the current state of the world, s, to the agent. The agent then chooses,
from a set of available actions, how to behave. The chosen action, a, may affect the state of
the world the agent is in. The environment then presents a new state and a numerical feedback

based on the state-action-state tuple. This feedback can be either positive or negative and is the

21
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™| Agent
state rreward action
St t
bl
1 H <
:5(+1 Environment

Figure 2.1: The agent-environment interaction in RL. (Sutton and Barto|1998))

reinforcement the agent uses to build up its experience on what is the correct way to behave. The
same interaction then repeats with the agent choosing a new action depending on the new state
of the world. (Sutton and Barto|[1998))

The agent learns how to behave by using the reinforcements provided by the environment
to form a policy. A policy 7 : S — A, is a mapping from states, s € S, to possible actions,
a € A(s), when in state s, such that it maximizes the cumulative reward R;. The cumulative

reward R; is the reward that the agent receives over time and which for episodic tasks is
Ry =11 +ripo+1rigs + . 1, (2.1

with 7" being the final time-step. If the task is continuing, 7" = oo and as a result the reward itself

might be infinite then a discounted cumulative reward is used
oo
2
Ry =rep1 +rea +Vres + - = YV ree, 2.2)
k=0

where «y is a parameter, 0 < v < 1, called the discount factor. The discount factor is used in
order to “weight” the future rewards. Greater values of  result in stronger future rewards and the
agent becomes far-sighted while lower values result in an agent that tries to maximize only the
immediate reward, 1, and becomes myopic. Equation[2.2]can also be used in finite tasks and
is not restricted to tasks where 7 is infinite. [Sutton and Barto (1998) however state that trying
to maximize only the immediate reward, could eventually also maximize equation[2.2] but might

result in ignoring future rewards that could possibly lead to a greater cumulative reward R;.

Learning the policy 7, can be based on estimating value functions. A value function is a
mapping from states and actions, to an estimation of the future reward the agent will receive if
it performs action a in state s and then follow the same policy 7 for the rest of the interactions
(Sutton and Bartol[1998)).
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Formally, the expected value of a state s under policy 7, when starting in s and following m

thereafter is defined as:
V7(s) = Ex{R|sy = s} = E,T{ Z’ykrt+k+1|st = s} (2.3)
k=0

V™ is the state-value function for policy 7. The action-value function for policy 7 can be defined

as:
Q" (s,a) = Ex{R|s; = s,a; = a}

= E,r{ Z'ykrt+k+1|st =s,a; = a} 2.4)

k=0

The value functions used throughout RL satisfy the Bellman equation. The Bellman equation

is defined as:
V7™ (s) = Ex{Rs|sy = s}

= E‘n’{ Z'ykrt+k+1|st = 8}
k=0
= w(s,0) Y Pals,s)[Ra(s,s") +1Va(s)], (2.5)

The Bellman equation expresses the relationship of the value of a state and the values of its
successor states i.e. the value of the start state equals the discounted value of the next state, plus

the expected future rewards.

There are three ways a value function can be initialised each with its own merits and draw-
backs; optimistic, pessimistic and random initialisation. Optimistic initialisation sets the values
of state-action pairs to the maximum possible value returned by the environment. Optimistic ini-
tialisation results in the agent trying all the state-action pairs before converging to a fixed policy.
This can have a detrimental effect in very large domains but ensures that the optimal policy will
be discovered. In contrast, pessimistic initialisation sets all the state-action values to the lowest
value returned by the environment. This results in the agent following promising policies much
quicker, but relies on exploration to find the optimal policy. Random initialisation can be used to

balance the two approaches.

It is apparent that the actions the agent chooses are very important in discovering the optimal
policy. The action selection mechanism must be set up in such a way so that the agent finds
those state-action pairs that lead to higher rewards. This is known in RL as the exploration vs
exploitation problem. Specifically, in each state the agent must choose whether it will exploit its

knowledge i.e. select an action that the agent knows to be worthwhile, or explore new options
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which might lead to better rewards. It is clear that while the agent is exploring, it cannot behave
optimally but such a behaviour is needed in order to find the optimal policy.

The action selection mechanisms which are common in RL are greedy, e—greedy and soft-
max. A greedy agent will always pick the best possible action given its knowledge. An e—greedy
agent will pick the best action according to the probability € and an exploratory action with prob-
ability 1 — €. The e—greedy method is often implemented with e gradually being reduced to 0 so
as to favour exploitative actions as time progresses. In softmax action selection, instead of hav-
ing the agent randomly exploring actions, a probability distribution is used to select exploratory
actions that look promising to the agent. Very common probability distributions that are used in

this approach are the Gibbs and Boltzmann distributions. (Sutton and Barto|1998))

2.1.1 Markov-Decision Processes (MDP)

The MDP is a general model for interaction that is extensively used in RL. It defines a mathem-
atical framework to model problem domains that have the Markov property and is defined as a
4-tuple < S, A, T, R > where:

* S is the state-space.

It defines the set of possible states;

* A is the action-space.

It defines the set of possible actions;

* T is the transition model: T'(s, a, s’) = Pr(s'|s,a).

It defines the probability of reaching state s’ when in s, after performing action a;

* R is the reward function: R(s,a,s’) € R.
The numerical feedback provided by the environment when the agent transitions to state s’

after performing action a in state s.

The Markov property defines a model where the current state summarizes all the past percepts
in a compact way, however retaining all the necessary information for decision making i.e. the
optimal action can be chosen just by knowing the current state while all past states and actions

have no effect on the decision. (Putermani|1994)

2.1.2 Solving the RL problem

Solving the reinforcement learning problems requires the use of algorithms. Common algorithms

used in RL are Monte Carlo methods, temporal difference learning and dynamic programming.
Monte Carlo Methods

In order to find the optimal policy Monte Carlo (MC) methods consider the entire history of an

agent’s interactions during an episode. A backup for each state is performed based on the entire
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sequence of observed rewards from that state until the end of the episode. A backup diagram is
shown in Figure[2.2]with the root being a state node followed by the entire sequence of transitions

until the terminal state.

Figure 2.2: Monte Carlo Back Up Diagram (Sutton and Barto|[1998)).

The cumulative reward R; is used in order to update the values of the states. This means
that the update can only occur after the episode has finished and therefore all the visited states
must be stored. For example, in first-visit MC, V™ (s) is estimated by averaging all the returns
following the first visit to state s and is updated as shown in Formula 2.6l On the other hand
every-visit MC estimates V7 (s) as the average of the returns following all occurrences of state
s within an episodes. Storing all the states however can cause problems since the sequence of

states can grow significantly in size especially in large and complex domains.

V(s) ¢ average(Returns(s)) (2.6)

The benefit of using Monte Carlo methods can be seen however in domains where the Markov
property does not hold i.e. domains where the sequence of states and rewards are important in
choosing an action. Since Monte Carlo methods store all the interactions of the agent with the

environment they are better suited to such domains. (Sutton and Barto|[1998])
Temporal Difference Learning

Unlike Monte Carlo methods, temporal difference learning updates the state-action values not
at the end of an episode, but at each time step thus eliminating the need to store sequences of
interactions. At each time step, the agent uses update rules to gradually move towards the optimal
policy.

The most common algorithms of this class are: Q-Learning (Watkins and Dayan|[1992) and
SARSA (Rummery and Niranjan|[1994). Q-Learning is an off-policy method i.e. the agent up-

dates the value function but follows an independent policy while doing so. Specifically the agent
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uses the following update rule:

Q(st,at)  Q(s¢,a) + afrepr + ymazaQ(sep1,a) — Q(S¢, ar)], 2.7)

where s; is the current state, a; is the action taken, « is the learning rate, ~ the discount factor
and s;1; the new state the agent transitioned to. The o parameter is set to change the way in
which updates are performed. It affects the magnitude of the changes in the estimated Q-values.
The « parameter is used to weigh the importance of future and immediate rewards. Both these
parameters are set differently for each experiment according to the designer’s goals.

SARSA is an on-policy method and in contrast to Q-Learning does not follow an independent
policy. Instead it uses the current value function in its update rule. SARSA agents use the

following update rule:

Q(st,at)  Q(st,a¢) + afrepr + YQ(St41, ar1) — Q(s¢, ar)], (2.8)

where s; is the current state, a; is the action taken, « is the learning rate, - the discount factor
and s;4; the new state the agent transitioned to.
Both these methods have been proven to converge to the optimal policy given the following

conditions (Sutton and Barto||1998)):
1. All state-action pairs are visited an infinite amount of times,
2. Exploration gradually reduces to 0,
3. The learning rate « reduces to 0,
4. The Markov property holds.

Dynamic Programming

In the cases where the MDP dynamics, such as transition probabilities 7" and reward function R,
are known in advance there is no need to simulate the agent interactions with the environment
and instead dynamic programming can be used. Dynamic programming refers to a number of al-
gorithms that discover optimal solutions to problems presented as an MDP, given perfect informa-
tion. Policy iteration and value iteration are two common dynamic programming algorithms. For

an in depth analysis of dynamic programming the reader is directed towards (Bertsekas|2007).

2.1.3 Function Approximation

In theory, RL methods need to visit each state-action pair an infinite amount of times in order to
converge. In small domains this is feasible and a tabular representation can be used to store each
state-action pair’s expected reward. This approach provides a very accurate representation of the

environment but is almost impossible to use in large environments. Not only does it require a
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great amount of memory in order to store all the pairs, but also makes the learning task intractable.
Regardless of the action selection mechanism, in very large state spaces there might still be
states that cannot be visited sufficiently often, unless the training period increases significantly.

Therefore more clever methods need to be used to satisfy this theoretical requirement.

This issue of handling large state or state-action spaces is known in RL as the curse of di-
mensionality. Function approximation tries to tackle the curse of dimensionality and state space
explosion. Instead of storing the state-action values in lookup tables, it tries to form a function
that estimates the environment. Although this approach can lose the accuracy of the tabular rep-
resentation, it tries to form a good enough estimate that would make learning an optimal policy

possible in large environments.

There are many different function approximation techniques, each with a different approach
of generalising sensations. One of the most widely used approaches is tile coding. In order to
create an estimate, tile coding represents the state space by the use of important features of the

environment denoted as ¢;. Multiple states, or state-action pairs are represented as tiles. Each

tiling #1 ———=

tiling #2 —"

20 state Shape of tiles = Generalization

Space T [

#Tilings = Resolution of final approximation

Figure 2.3: Tile Coding (Sutton and Barto|1998).

tile has stored information about the expected value of those multiple states or state-action pairs
which results in a significant reduction of the state space. In order to increase sensitivity, multiple

tilings can be overlaid as shown in Figure[2.3

Each tile is a binary feature and is activated if the given state falls within the region denoted
by that tile. The value function represented by the tile coding is determined by a set of weights,

one for each tile, and is given by

V(s) =3 bi(s)w 2.9)
=1

where n is the number of tiles, b;(s) is the value of the ith tile which can be 0 or 1 and wj is the
weight of that tile. In practice it is not necessary to iterate through all tiles but only those that are
activated at any given time. Since only one tile can be activated at any tiling, given m tilings, the

indices of the m active tiles can be computed and their associated weight summed.
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Given an MDP, the value estimate of a state can be computed by:
AV (s) = max[R(s,a) + vV (s')] — V(s) (2.10)
and each weight can be updated by:
e
w; — w; + —bi($)AV(s) (2.11)
m

Like before it is not necessary to update all weights but only the m weights of those tiles
which are activated by state s.

As an example, an agent that learns how to drive a car, would not save the entire percept of
the environment, but would be interested in important features such as the speed of the vehicle,
the distance with the other cars, the traffic lights and road signs etc. Those selected features are
weighted by w and it is left to the agent to learn those values that lead to the optimal policy.

The selection of features is a very important part in the design of the state space. There must
be a selection of significantly enough features to accurately represent the environment, but not so
many so as to inhibit learning.

Further information on function approximation can be found in (Sutton and Barto|1998).

2.1.4 Eligibility Traces

As discussed previously, an agent receives a reward after performing an action and then trans-
itions to a different state. The value of that state is then updated taking into account the received
reward of that particular transition. However, one problem with this approach is that all previous
transitions that led to that reward are ignored and do not receive any credit. In most cases it is
not the last transition the led to a high reward, but a series of transitions that allowed the agent
to reach a high reward state. If those transitions are completely ignored the learning process can
be slow. Especially in delayed reward environments where the reward is not received immedi-
ately, but a sequence of actions and state transitions must first occur, this problem is even more
prominent. This problem is known as the credit assignment problem.

A method that tackles this problem and speeds up the learning process is Eligibility traces.
The aim of eligibility traces is to assign a value to all visited state-value and action-value pairs
following every transition. This is achieved by weighting those pairs when they are visited, and
then gradually decrease their importance over time. As an example, in the case of temporal
difference the eligibility trace for a state s at time ¢ is defined as e;(s) € RT (Sutton and Barto
1998). At each time step, the eligibility trace for all states is decayed by v\ and the eligibility

trace for the current visited state is incremented by 1:

_ if
er(s) = yAer—1(s) if s # s 2.12)

yAer—1(s) + 1 if s = s,
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where 7 is the reward discount factor and A is the decaying parameter used to weight the import-
ance of the eligibility trace.

At each time-step, the agent performs the update using the equation
Vi(st) = Vi(se) + adier(st), (2.13)
with
0t = i1 +YVi(s641) — Vi(st),

where « is again the learning rate and ~ the reward discount factor.
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Figure 2.4: Back propagation using eligibility traces. (Sutton and Barto|[1998)

Using these formulas to update the state-value or action-value pairs ensures that credit is
given to all the states that led to a reward according to their recency. This is very important
is order to speed up the learning process and especially when trying to scale to more complex

environments. Figure depicts very efficiently the role of the eligibility traces.

2.2 Knowledge-Based Reinforcement Learning (KBRL)

Typically RL algorithms assume that an agent initially starts with no knowledge of which ac-
tions to perform and which states are desirable in any given environment. Its value function is
initialised either randomly, optimistically or pessimistically. A part that has not been given much
attention when implementing RL, is that the designer of the system typically has some domain
knowledge about the agent’s goals that could guide the agent.

Knowledge-based RL is concerned with incorporating knowledge into an RL agent to guide
its exploration. By providing informative domain knowledge, the number of sub-optimal de-
cisions an agent makes while learning can be significantly reduced and thus the effects of the
exponential state explosion can be mitigated. The intuition of incorporating domain knowledge
in RL is borrowed from planning, where it has been shown that the use of admissible heuristics

greatly improves search. Therefore a similar technique should also be beneficial in RL.
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2.2.1 Reward Shaping

One common method of imparting knowledge to a RL agent is reward shaping. Reward shaping
provides an additional reward to the agent, independent of the reward provided by the environ-
ment.

The additional reward is representative of domain knowledge and is given to the agent to
reduce the number of suboptimal actions made and so reduce the time needed to learn (Ng et al.
1999; Randlgv and Alstrom|1998). This concept can be represented by the following formula for
the SARSA algorithm:

Q(s,a) « Q(s,a) +afr + F(s,s') +vQ(s',a") — Q(s,a)] (2.14)

where F'(s, s’) is the general form of any state-based shaping reward.

Although reward shaping has been powerful in many experiments it quickly became apparent
that, when used improperly, it can change the optimal policy. A well known example is that of
an agent trying to ride a bicycle from point A to point B (Randlgv and Alstrom|1998)). The agent
was given additional reward when it managed to stay balanced in order to speed up the learning
process. However, instead of moving towards point B, the agent found it more beneficial to
ride in circles and receive the local reward. With such a poor shaping function the agent never

managed to find the optimal policy.
Potential-Based Reward Shaping (PBRS)

To deal with such problems, [Ng et al.| (1999) proposed the use of PBRS. PBRS defines the
additional rewards as the difference of some potential function ® defined over a source s and a

destination state s’. More formally:
F(s,8") =~v®(s") — ®(s) (2.15)

where v must be the same discount factor as used in the agent’s update rule. The potential
function is a representation of the designer’s, or domain expert’s preference regarding specific
states. If the provided knowledge is correct, then PBRS will encourage the agent to move towards
the goal.

PBRS, defined according to Equation[2.15] has been proven to not alter the optimal policy of
a single agent in both infinite- and finite- state MDPs (Ng et al.|1999).

Wiewiora et al.| (2003)) proved that PBRS is equivalent to Q-table initialisation i.e. an agent
using PBRS and an agent with no shaping, but initialised with the same potential function of
the PBRS agent, will exhibit the same behaviour. Figure [2.5] shows the typical behaviour of
an agent receiving PBRS, presuming a good heuristic. The graph shows the performance of
agents in the mountain car domain both with and without shaping. The mountain car domain is

a classic testbed for reinforcement learning algorithms. The goal of the agent is to drive a car up
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a mountain top. The car however does not have enough power to climb it. Instead of trying to

simple drive up the mountain relying on power, the agent must learn to back up in order to gain
enough momentum to propel the car over the mountain top.
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Figure 2.5: Typical behaviour of a PBRS agent in the mountain car domain. (Wiewiora et al.
2003)

Very early in the experiment the PBRS agent manages to significantly outperform the agent
with no shaping. This illustrates the equivalence to Q-table initialisation as the PBRS agent
instantly starts with a much better policy than the agent with no shaping.. At the end of the
experiment both agents have learnt the optimal policy but in between there is a period where the
agent with PBRS significantly outperforms the agent without. What PBRS offers is an increased
convergence rate.

More recent work on potential-based reward shaping, has removed the assumptions of a static
potential function from the original proof with the existing guarantees maintained even with a
dynamic potential function (Devlin and Kudenko|[2012a)).

Plan-Based Reward Shaping

Reward shaping is typically implemented bespoke for each new environment using domain-
specific heuristic knowledge (Devlin et al.|2011; Randlgv and Alstroml{1998) but some attempts
have been made to automate (Grzes and Kudenko|2008; Marthi[2007) and semi-automate (Grzes
and Kudenko|2008) the encoding of knowledge into a reward signal. Automating the process re-
quires no previous knowledge and can be applied generally to any problem domain. The results
are typically better than without shaping but less than agents shaped by prior knowledge. Semi-

automated methods require prior knowledge to be put in but then automate the transformation of
this knowledge into a potential function.
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Plan-based reward shaping (Grzes and Kudenko|2008)), an established semi-automated method,

generates a potential function from prior knowledge represented as a high-level STRIPS plan.

The STRIPS plan is translatecﬂ into a state-based representation so that, whilst acting, an

agent’s current state can be mapped to a step in the plan as shown in Figure 2.6
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Figure 2.6: Plan-Based Reward Shaping. (Grzes and Kudenko|2008])

The potential of the agent’s current state then becomes:
®(s) = CurrentStepInPlan x w (2.16)

where C'urrentStepInPlan is the corresponding state in the state-based representation of the

agent’s plan and w is a scaling factor.

To not discourage exploration off the plan, if the current state is not in the state-based repres-
entation of the agent’s plan then the potential used is that of the last state experienced that was in
the plan. This feature of the potential function makes plan-based reward shaping an instance of

dynamic potential-based reward shaping (Devlin and Kudenko|2012al).

These potentials are then used as in Equation [2.15]to calculate the additional reward given to

the agent and so encourage it to follow the plan without altering the agent’s original goal.

!'This translation is automated by propagating and extracting the pre- and post- conditions of the high level actions
through the plan.
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Abstract MDP Reward Shaping

Marthi|(2007) proposed a general automatic framework to learn the potential function by solving
an abstract MDP. The shaping algorithm obtains the potential function by firstly sampling the
environment in order to learn dynamics for options (i.e. actions at the abstract level) and secondly
solving an abstract MDP. Options can be defined as policies of low level actions. Once the agent
spends a number of episodes sampling the environment, it uses the resulting value function as a

source for reward shaping.

In addition, by providing an abstraction of the low-level states of the environment to high-
level abstract statesﬂ the abstract MDP can be solved using dynamic programming before the
main learning process begins and the obtained value function is used directly as the potential
function:

D(s) =V(z) *w, (2.17)

where V() is the value function over the abstract state space Z and it represents a solution to the
corresponding MDP-based planning problem, and w is an optional scaling factor. The abstract

MDP task can be solved using the following formula which is a special case of value iteration:
Vit1(2) = max Proo[R..o + Vi ("], (2.18)

with Pr,./ being the probability of transitioning to the abstract state 2’ from the abstract state
z, R, the reward received when transitioning to z’ from z,  the discount factor and Vj(z) the

value of state z at time k.

These potentials are then used as in Equation 2.15]to calculate the additional reward to be
given to the agent. Learning low-level actions in order to satisfy a high-level abstract MDP is
significantly easier than learning low-level actions to maximise rewards in an unknown environ-

ment and as a result agents tend to learn a policy quicker.

2.2.2 Alternate Methods for Informed Agents

Reward shaping is not the only method to provide expert domain knowledge to an agent. Many
other approaches exist and many more will be discovered as researchers tackle this very prom-
ising area. While this thesis will focus only on knowledge revision in agents using reward shap-
ing, it is worth mentioning a few alternative common methods to impart domain knowledge as

they could also potentially benefit from the idea of revising beliefs.

ZPlease note that a high-level abstract state will map to many low level states. Therefore, even when provided with
the correct knowledge, the agent still needs to learn the optimal path to finish the episode.
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Value Function Initialisation

One of the earlier approaches in adding domain knowledge, was that of value function initializ-
ation. Different initializations of the value function, pessimistic, optimistic or random, can have
different results both in time and in the policy that is learnt.

As noted earlier this approach has been proven to be equivalent to PBRS (Wiewiora et al.
2003). However in large state or state-action space domains the task of initializing the value

function is very complex and time consuming.

Feature Selection

A simple method of KBRL is to partition the state-space by only including those features that the
designer believes are relevant to the goal. Although this results in agents learning much quicker,
as the environment is much smaller, if the selected features are not selected carefully, it might

lead the agent away from the optimal policy as there are no theoretical guarantees.
Hierarchical RL

Hierarchical RL (HRL) introduces abstractions in order to discard information that is irrelevant
about the task at hand. It uses macro-operators i.e. a series of operators which can be invoked as
a single primitive action. This results in a decomposition of the overall task to subtasks which are
what the agent tries to learn. The selection of macros along with their policies can be provided
to the agent a priori in terms of domain knowledge and thus improve the learning rate. For more
information on some of the representative approaches of HRL, the reader is referred to (Barto
and Mahadevan|2003)).

Relational RL

Relational RL (RRL) is concerned with objects and their relationships. RRL uses a first-order
representation to encode states, actions and rewards in a given environment with the goal of the
agent now being to learn the abstract policy. This form of first-order representation allows domain
knowledge to be incorporated into an agent whenever there is a clear higher level knowledge of
object relations at a given task. More information on this approach can be found in (Dzeroski
et al.|2001}; [Lau et al.|[2013)).

2.3 Knowledge Revision (KR)

Knowledge based methods have been shown to improve the learning process as discussed in Sec-
tion[2.2] However, all of the KBRL approaches assume that the provided knowledge is always
correct. This is not a realistic assumption and as RL shifts from tabula-rasa approaches to meth-
ods where some heuristic knowledge can be given to an agent, a more clever design needs to be

applied to tackle the impact of erroneous knowledge to an agent’s learning process.
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Specifically, an agent needs to be able to identify parts of the domain knowledge that are
erroneous and through the use of knowledge revision methods, rectify its knowledge base to
benefit from more accurate shaping.

The most efficient way to introduce belief revision is by the use of an example. A well known
example is that of the swan colour problem (Gérdenfors|1992)). Consider the following database;

or knowledge base:

: All European swans are white.

@
B : The bird caught in the trap is a swan.

~ : The bird caught in the trap is from Sweden.
)

: Sweden is a part of Europe.
A logical inference program can easily derive the following fact from the given knowledge base:
€ : The bird caught in the trap is white.

What happens if it turns out that the bird caught in the trap is not white but black? The rule —e
should now be inserted in the knowledge base but a problem arises; the knowledge base becomes
inconsistent. In order to keep the knowledge base consistent, it needs to be revised i.e. certain
rules need to be removed to accommodate the new information.

Given the logical representation in the example, revising the knowledge base is not a straight-
forward procedure. Logical considerations themselves do not provide the means by which the
knowledge base should change e.g. if rule « is retracted, then its logical consequences have to
be considered as well; a’: All European swans except the one caught in the trap are white, a’':
All European swans except some of the Swedish are white. What should be kept in the revised
knowledge base?

The above example presents the need for belief revision and can be summarised as the fol-

lowing:
* What representations can be used for a knowledge base?
* What is the relation between derived and explicit facts of a knowledge base?

* What governs the choice of what is to be retracted when performing belief revision?

2.3.1 Actions for Belief Change

A belief revision process starts whenever a belief system receives new information that is incon-
sistent with the current set of beliefs. The goal is to include this new information to the system in
such a way that the revised belief base remains consistent. In the simplest case where the belief
base is represented by a set of rules there are three different actions to deal with new information
and current beliefs in a system K; expansion, revision, contraction. A brief informal definition

of those three actions is listed below:
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1. Expansion: A newly arrived information ¢ is added to the current belief base K disreg-

arding consistency. The result is denoted as K + ¢.

2. Revision: A newly arrived information ¢, inconsistent with the current belief system K,
is added to the system. In order to maintain consistency, some of the current beliefs need

to be retracted. The resulting belief base is denoted as K +a.

3. Contraction: A rule ¢, along with its consequences is retracted from the set of beliefs K.
To retain logical closure, other rules might need to be retracted. The contracted belief base
is denoted as K —¢.

Formally defining the expansion action is trivial. It can simply be defined as the logical closure
of the belief system K with ¢:

K+6={v: KU{s}Fv)

In this case logical closure is retained and the belief case K will be consistent, if and only if ¢ is
consistent with K.

The types of actions for belief change that this thesis will focus on are the expansion and
contraction actions. The knowledge bases that are provided to the agents in this study are all
belief bases consisting of independent beliefs. By independent beliefs we refer to those cases
where literals in a knowledge base are atomic, i.e. their value does not depend on the values
of other beliefs, and the knowledge base does not contain statements that logically follow from
other beliefs.

Given that the provided knowledge is based on independent beliefs, it is clear that maintaining
consistency in the knowledge base is trivial since it is guaranteed. As a result, performing the
expansion action will simply require adding a new belief in the database while performing the

contraction action will simply be deleting a belief from the database.

2.3.2 Representing a belief system

The most common approach of representing a belief system is using sentences or propositions to
model beliefs. The chosen method in this thesis is modelling belief sets. Belief sets the simplest
way of modelling beliefs. A belief state in this case is a set of sentences K, from a logical
language L in which:

If K logically entails 1, then ¢ € K.

K is alogically closed set and contains the sentences that are accepted in the modelled state i.e.
if ¢ € K then ¢ is accepted in K; if ~¢ € K, then ¢ is rejected in K.

There are other ways of modelling beliefs such as belief bases or the possible worlds model
but are irrelevant to this study. Choosing the right representation is often a design decision that is

largely dictated by the domain at hand. Using belief sets is a good solution when dealing with the
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domains that will be used for evaluation in this thesis but extending to other classes of domains

might require reconsideration of the belief representation system.

2.3.3 The AGM Postulates

Rationality postulates are rules that the revision process should adhere to when deciding how
revision will be executed. One of the first, and most popular, formulation of rationality postulates
are the AGM postulates (Alchourrén et al.|[1985). The AGM postulates follow the concept of
information economy i.e. when performing revision or contraction, the beliefs that are to be
retracted should be kept to a minimum. Rationality postulates do not themselves provide the
means of choosing the minimum amount of information to discard, but work in conjunction with
the chosen constructive models some of which are presented later in subsection[2.3.4] Obviously
more than one set of rationality postulates exist but it is worth mentioning the important aspects
of the AGM postulates in order to illustrate the basic principles of a belief revision process.

It is assumed that the belief representation is that of belief sets. K represents a belief set, and

L is a logical language which is closed under logical consequences.
1. For any sentence ¢ and any belief set K,K +¢ is a belief set.
2. ¢ € K-+¢ follows from ¢ being accepted in K.

3. A revision process makes sense when the new information ¢ contradicts the current set
of beliefs. If ¢ ¢ K then a revision is a simple expansion process. The following two
postulates are concerned with revision.

K+¢ C K+ ¢.
If -¢ ¢ K, then K + ¢ C K+¢.

4. K+¢ = K| iff - —¢.
A revision process should produce a new consistent belief set unless ¢ is logically im-

possible.

5. If - ¢ < 9, then K+¢ = K+1).
Belief revision should work on the knowledge level, ergo logically equivalent sentences

should lead to the same revisions.

The postulates for contraction are similar to those of revision but will not be listed since the
intent is to only show the basics of revising a knowledge base. It is however important to mention
that a revision process can be expressed as a contraction, and vice versa. The Levi identity shows

that a revision process is in fact a contraction, followed by an expansion,

K+¢ = (K-=¢)+ ¢.
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The Harper identity shows that a sentence ¢ is accepted in a contraction if and only if it is
accepted in K and in K+-¢,

The two identities are very interesting especially from a computational point of view since, re-
vision and contraction being interchangeable, a method for revision can automatically handle
contractions as well.

As mentioned previously, the belief bases in this thesis consist of independent belief. There-
fore the rationality postulates presented in this section regarding revision are not relevant in their
entirety. However, they are very important when the agent is not provided with independent
beliefs but a knowledge base that consists of multiple contradictions in the face of new inform-
ation. The revision process in that case should take into account the AGM postulates in order to

maintain a consistent belief base.

2.3.4 Models of Belief Revision

The models of belief revision present the mechanism that chooses what information is to be kept,
or retracted during a contraction or revision operation. The models can vary depending on the
designer’s goals. There is no single construction that can be used in all cases, but the mechan-
ism to be used is dictated by the environment where an agent is modelled e.g. a probabilistic

environment would require a mechanism that can efficiently handle uncertainty.
Epistemic entrenchment

Epistemic entrenchment is the method that will be later used for evaluation and is presented here
is detail. Consider a consistent belief base K. Since K is consistent, every belief in the set is
either accepted or is a fact. When performing certain tasks e.g. planning, not all beliefs have the
same value; some beliefs might be more important than other for decision making. The main
idea of this model is to retract the beliefs which hold the lowest value or epistemic entrenchment,
when performing revision or contraction. As an example consider the sentences ¢ and i of a
logical language L. An ordering of 1) < ¢ would mean that in the current belief set, ¢ holds a
higher or equal value of epistemic entrenchment compared to . The ordering over beliefs can
vary depending on the goals the designer is trying to achieve e.g. it can be based on possibility
theory, or an ordering might be chosen according to the recency of information.

For example consider the database that was presented at the beginning of this section:
: All European swans are white.
: The bird caught in the trap is a swan.

: The bird caught in the trap is from Sweden.

STNEIE SO

: Sweden is a part of Europe.

As mentioned previously in this example a logical inference program can derive the following
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fact from the given knowledge base:

€ : The bird caught in the trap is white.

If however the bird caught in the trap is not white but black, what should be retracted? Let’s
assume that this system uses the epistemic entrenchment model to perform revision or contraction
and the ordering over beliefs is based on recency. In this example let @ < § < v < § be the
ordering of beliefs. When the system receives information that the bird caught in the trap is black
it must choose what to retract in its database. The ordering over beliefs maintains that belief «
hold the lowest epistemic entrenchment and will thus be removed, contracted, from the database
to accommodate the new information e which states that the bird caught in the trap is black. This
ensures that the new information is added in the database while maintaining consistency.

There are various other methods when deciding on a model for belief change such as autonom-
ous belief revision (Galliers||1992)), conditionals (Kern-Isberner;2001)) and more and like the be-
lief representation, choosing the right method is a design decision that is based on the nature of
the domain. For the domains presented in this thesis epistemic entrenchment is a method that

covers our needs.

2.3.5 Current research

Many different branches have evolved in knowledge revision and some of the most active fields
are those of iterated belief revision and agents that act in environments where the changes in the
world are a result of the agent’s action (Hunter and Delgrande|2011); this setting resembles the
RL scenario that was discussed in[2.1] Conditionals and non-monotonic reasoning in scenarios of
computer vision (Leopold et al.|2008} [Kern-Isberner|2001), and merging, especially in semantic
web. Belief revision is an exciting field however for the purpose of this thesis, it is going to be

treated as a tool rather than a research topic.

2.4 Summary

All KBRL approaches presented in this chapter can be utilised to increase an agent’s learning
rate. Incorporating expert domain knowledge is therefore vital in order to scale to larger and
more complex domains.

However, all approaches assume perfect information is order to improve performance i.e. the
domain expert knowledge provided to the agent is always assumed to be correct. This is not a
realistic assumption as in many cases the knowledge provided can be incorrect or incomplete, or
both. In order to acquire the full benefits of KBRL methods there needs to be a clever mechanism
to handle those cases.

The remainder of this thesis presents my study on utilising knowledge revision methods in

conjunction with KBRL, and more specifically reward shaping. It documents the problems of
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agents being guided by erroneous knowledge and how they can be overcome by the use of know-

ledge revision algorithms.



CHAPTER 3

Plan-Based Reward Shaping with Knowledge Revision

This chapter presents the adverse effects of erroneous domain knowledge on agents utilising plan-
based reward shaping and how the use of knowledge revision principles can help the agents learn
a better policy quicker. Alternative approaches have been developed that can revise knowledge
but not within the context of potential-based reward shaping in RL (Leopold et al.|2008; Maclin
et al.|2007; |Kunapuli et al.|2011). This chapter presents for the first time an approach in which
agents use their experience to revise erroneous domain knowledge whilst learning, and continue

to use the, now correct, knowledge to guide the RL process.

The developed knowledge revision algorithms are empirically evaluated in two different do-
mains: a grid-world flag collection domain that was first presented in the original work on plan-
based reward shaping (Grzes and Kudenko|2008), and a very popular real-time strategy game
(RTS) developed by Blizzard, StarCraft: Broodwar (SC:BW). It is demonstrated that adding
knowledge revision capabilities to a RL agent receiving plan-based shaping can improve its per-
formance, compared to an agent without knowledge revision, when both agents are provided with

wrong domain knowledge.

3.1 Plan-Based Reward Shaping Revisited

As discussed in Section[2.2]plan-based reward shaping is a semi-automated method for imparting
knowledge to a RL agent through the use of a STRIPS plan. STRIPS is a highly popular and
widely used and studied formalism used to express automated planning instances. It is easy to set

up and therefore serves as a useful method for setting up reward functions for new environments

41
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when using plan-based reward shaping. The STRIPS formalism is briefly explained here and the
reader is referred to (Fikes and Nilsson||[1972)) for further details.

The description of the planning problem in STRIPS includes the operators, actions, which
specify the behaviour of the system, and start and goal states (Fikes and Nilsson||1972). Actions
have a set of preconditions which have to be satisfied for the action to be executable, and a set
of effects which are made true or false by executing the action. The start state contains a set of
conditions which are initially true, and the goal state consists of conditions which have to be true
or false for the state to be classified as a goal state.

The output of the planner is the sequence of actions, that will satisfy the conditions set at the
goal state. The STRIPS plan is translated from an action-based, to a state-based representation
so that, whilst acting, an agent’s current state can be mapped to a step in the plan. Note that one
step in the plan will map to many low level states. Therefore, the agent must learn how to execute
this plan at the low level.

The potential of the agent’s current state then becomes:
®(s) = CurrentStepInPlan * w 3.1

where CurrentStepInPlan is the corresponding state in the state-based representation of the
agent’s plan and w is a scaling factor. Specifically, CurrentStepInPlan is a number represent-
ing the position of a particular state in the agent’s state-based plan. The scaling factor w affects
how likely the agents are to follow the heuristic knowledge. When comparing to other agents with
different plan lengths, w helps contain a constant maximum and thus ensure fair comparison.

To better illustrate the inner workings of plan-based reward shaping, the flag collection do-
main is presented here which will be used for evaluation later and provide some examples of how

a potential function can be designed for such a domain.

Flag Collection Domain

The flag collection domain is an extended version of the navigation maze problem which is a
popular evaluation domain in RL. An agent is modelled at a starting position from where it
must move to the goal position. In between, the agent needs to collect flags which are spread
throughout the maze. During an episode, at each time step, the agent is given its current location
and the flags it has already collected. From this it must decide to move up, down, left or right and
will deterministically complete its move provided it does not collide with a wall. Regardless of
the number of flags it has collected, the scenario ends when the agent reaches the goal position.
At this time the agent receives a reward equal to one hundred times the number of flags which

were collected.

At a less abstract level, the maze can be thought of as a house with doors between rooms.

Each room might, or might not contain a flag and it is up to the agent to find where the flags
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RoomA Al RoomB RoomE
B
F
HallA HallB

RoomD

RoomC

|m

Figure 3.1: Flag Collection Domain.

MOVE(hallA, hallB)
MOVE( hallB , roomC)
TAKE(flagC , roomC)
MOVE(roomC, roomE)
TAKE( flagE , roomE)
TAKE( flagF , roomE)
MOVE(roomE, roomC)
MOVE(roomC, hallB)
MOVE( hallB , roomB)
TAKE(flagB , roomB)
MOVE(roomB, hallB)
MOVE(hallB , hallA)
MOVE( hallA , roomA)
TAKE(flagA , roomA)
MOVE(roomA, hallA)
MOVE( hallA , roomD)
TAKE(flagD , roomD)

Figure 3.2: STRIPS Plan in the Flag Collection Domain

are located. Figure [3.1] shows the layout of the domain in which rooms are labelled RoomA-E
and HallA-B, flags are labelled A-F, S is the starting position of the agent and G is the goal
position. Given this domain, the expected STRIPS plan is given in Figure[3.2]

As mentioned previously the plan needs to be transformed into a state-based representation
for it to be usable by the RL agent. This process can be automated by extracting the pre- and post-

conditions of the actions in the plan in order to form the state-based representation. The corres-
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Figure 3.3: State-Based Plan in the Flag Collection Domain
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taken_flagB
taken_flagB
taken_flagB
taken_flagB
taken_flagB

taken_flagB
taken_flagB

taken_flagB

ponding state-based plan used for shaping is given in Figure[3.3| with the CurrentStepInPlan

used by Equation [3.1]noted in the left hand column.

3.2 Knowledge Revision Algorithms

As with most reward shaping algorithms for RL, in plan-based reward shaping (Grzes and Kudenko

2008) there was no mechanism in place to deal with erroneous knowledge. If an erroneous plan is

used the agent is misguided throughout the course of an experiment and this can lead to undesired

behaviour; long convergence time and poor quality in terms of total reward.

This section presents the revision algorithms that were developed in order to overcome the

problems of erroneous domain knowledge in plan-based reward shaping. The types of erroneous

knowledge can take the form of 1) incorrect knowledge e.g. the provided plan contains steps

which the agent cannot achieve, and 2) incomplete knowledge e.g. the provided plan is missing

important steps which the agent should achieve. Examples instantiated to the flag collection

domain are provided in order to explain the concepts of the presented algorithms. In addition

a few assumptions are presented that must be made for knowledge revision to be feasible in

plan-based reward shaping.
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Assumptions

To implement plan-based reward shaping with knowledge revision the following assumptions

will be made:

* An abstract high level knowledge represented in STRIPS and a direct translation of the
low level states in the grid to the abstract high level STRIPS states (as illustrated in Fig-
ure [2.6). For example, in this domain the high level knowledge includes rooms, connec-
tions between rooms within the maze and the rooms which flags should be present in.
Whilst the translation of low level to high level states allows an agent to lookup which

room or hall it is in from the exact location given in its state representation.

* The domain is considered to be static i.e. there are no external events not controlled by the
agent which can at any point change the environment. In addition, we assume deterministic

transitions.

¢ The transition and reward functions are not known beforehand and the environment is not

fully observable.

Domains limited by only these assumptions include many domains typically used throughout
RL literature. The chosen domain allows the agent’s behaviour to be efficiently extracted and
analysed, thus providing useful insight especially when dealing with novel approaches. Plan-
based reward shaping with knowledge revision is not, however, limited to this environment and
could be applied to any problem domain that matches these assumptions. These assumption will
later be relaxed in Chapter [4] which focuses on abstract MDP reward shaping with knowledge

revision.

3.2.1 Overcoming incorrect knowledge

Identifying incorrect knowledge

At each time step ¢ the agent performs a low level action a and traverses to a different state s’
while receiving guidance by a STRIPS plan. Since the agent is performing low level actions it
can gather information about the environment which then can be compared against the provided
knowledge and as a result discover potential errors. Algorithm [1| shows the generic method of
identifying incorrect knowledge.

The input to the algorithm is a set of preconditions of all the plan states which we will call
K and each precondition in this set which we will call p. A plan state is defined as a step in the
provided plan, e.g. 3 robot_in_roomC taken_flagC as shown in Figure[3.3] and since it
is based on STRIPS planning, the preconditions of each plan step can be easily extracted from
the planner to form the set K. Note that the preconditions that will be included in this set can be a

designer’s decision e.g. one might choose to include all the preconditions associated with a plan
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Algorithm 1 Incorrect Knowledge Identification Algorithm.
form a set K of preconditions p of each state in the provided plan
initialise confidence values Cn(p) of each precondition in K to a random number
Input: set of preconditions K
for episode = 0 to max_number_of _episodes do
for current_step = 0 to max_number_of _steps do
if p marked for verification then
switch to verification mode
else
plan-based reward shaping RL
/* next step */
for all p in K do
/* update the confidence values */
update Cn(p)
/* check preconditions which need to be marked for verification */
if Cn(p) < € then
mark p for verification
/* next precondition */
/* next episode */
Output: set of preconditions marked for verification

state, while in another situation choose only those preconditions that are associated with a high
probability of being erroneous. Each of the preconditions p in the set is assigned a numerical
confidence value denoted as C'n(p) which can be initialised randomly. This process takes place

at the start of each experiment and before the agent-environment interaction has begun.

Once this process is over the agent starts its learning process and interacts with the environ-
ment. Given that there is a translation of the low level states to the high level states in the plan,
as mentioned in the assumptions, the agent can realise whether a plan state has been encountered
or not during the learning process. At the end of the episode, the preconditions p in the set of
preconditions K are updated to reflect if their associated plan state was encountered or not. How

the values are updated can be decided depending on the domain.

Having updated all of the plan states preconditions each one is then compared against a veri-
fication threshold e. Those preconditions that were found to be less than the specified verification
threshold are then marked for verification. This method of ranking beliefs is similar to epistemic
entrenchment in belief revision that was presented in section The value of e can be set
high or low depending on how often the designer of the system wants verification to take place.
Note however that there must be a correlation between the value of € and the confidence values
of the preconditions C'n(p) e.g. if Cn(p) is based on percentages, so should e. In addition, when
initialising the values of the preconditions care must be taken not to be lower than the verification

threshold as this will cause all the preconditions to be marked for verification.
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The output of this algorithm is a set of preconditions that have been marked for verification.
When the agent finds itself in a situation where a precondition has been marked for verification,

it switches its mode of operation to verification.

We illustrate this algorithm with an instantiation to the flag collection domain. This study
evaluates the algorithm using erroneous knowledge which involves the presence of flags. The
same techniques however can be used when dealing with erroneous knowledge in terms of rooms

and connections between them.

Let P be the set of all preconditions p of those actions which achieve a given plan state. Let
the set X' C P contain those preconditions which refer to the presence of flags in the plan e.g.
flagA_in_rooma, and C'n(p) the confidence value associated with each precondition p € K

and ¢ the verification threshold.

At the start of each experiment the agent receives a set, K, of all the preconditions p which
refer to the presence of flags. These preconditions are then assigned a confidence value, C'n. The
confidence value of each precondition p is set to the ratio successes/ failures and is computed
at the end of each episode with successes being the number of times the agent managed to
find the flag associated with p up to the current episode, and failures the times it failed to do
so. Given that the confidence value is computed at the end of each episode it can be initialised
randomly but must be strictly greater than the chosen verification threshold. If the confidence
value of a precondition drops below the verification threshold, ¢, that precondition is marked for

verification.

Knowledge verification

When a precondition p is marked for verification the agent’s mode of operation changes to per-
form actions in order to try and verify the existence of the flag associated with p. Algorithm
[2] shows the generic method of verifying incorrect knowledge. In this thesis depth first search
(DFS) can be used for knowledge verification, however the method by which the verification of a
precondition can be achieved can vary depending on the environment. For instance, if the agent
was a robotic guard moving within a building, a search based on the sensors of the robot would

be more suitable.

The input to this algorithm is a set of preconditions that have been marked for verification.
When the agent is in a situation where a precondition has been marked it switches to verification
mode, which in this case is a DFS of the low level environment. The bounds of the DFS can be
set according to the high level knowledge that is being provided e.g. in a maze it can be specified

as the north-west physical boundary.

When the agent starts the DFS its current position, node, is saved in the graph G along with
the available actions from the position representing the edges. The agent then chooses to expand

a random unexpanded edge and moves to a new node. This node is then added to the graph and
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Algorithm 2 Knowledge Verification Algorithm.
Input: set of preconditions marked for verification
initialise empty graph G
get state s
add sto G
get precondition p
if all nodes in the graph are marked as fully expanded then
mark p for revision
stop search
break
if s is not present in the graph then
add s and available actions a as node and edges in the graph
if all edges of current node have been expanded then
mark node as fully expanded
move to a node with unexpanded edges
break
expand random unexpanded edge
mark edge as expanded
if p has been verified then
reset Cn(p)
stop search
Output: set of preconditions marked for revision

the edge is marked as expanded. When a node has had all of its edges expanded it is marked as
visited and the process continues to unexpanded edges and unvisited nodes.

If all of the nodes have been visited i.e. all of the edges have been expanded, and the precon-
dition in question has not been verified, then it is marked for revision. If at any point during the
DFS the precondition is verified, then it’s confidence value is reset.

The output of the algorithm is a set or preconditions that have been marked for revision.
In order to make this process clearer this algorithm is also explained instantiated to the flag-
collection domain.

To verify the existence of the flag associated with p the agent performs a DFS of the low-level
state space within the bounds of the high-level abstract state of the plan the flag appears in. A
node in the graph is a low-level state s and the edges that leave that node are the available actions
a the agent can perform at that state.

After making an action the agent’s coordinates in the grid are stored along with the possible
actions it can perform. The graph is expanded with new nodes and edges each time the agent
performs an action which results in a transition to coordinates which have not been experienced
before.

The bounds used in DFS are easy to extract given that there is a direct translation from the
high level to the low level environment the agent is acting in. For example, assume that f1agA

is under examination which is present in roomA. The bounds of roomA are the corresponding
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coordinates in the low level grid states. If we assume that roomA is a 6 x 6 grid then in the worst
case scenario, if the flag is not found, the DFS will be performed on a graph G ¢ that contains
36 nodes and 60 edges.

In order to be fair when comparing with other approaches, each edge expanded while the
agent performs DFS takes a time step to complete i.e. it counts the same as one action taken.

The search finishes once the agent has either found the flag or all of the nodes that were
added to the graph have been marked as fully expanded. 1f found, the confidence value of the
precondition p which refers to that flag is reset and the agent returns to normal operation. If not,
the agent returns to normal operation but the precondition is marked for revision.

Whilst verifying knowledge, no RL updates are made. The reason is for the agent not to get
penalised or rewarded by following random paths while searching which would otherwise have

a direct impact on the learnt policy.
Revising the knowledge

Belief revision is concerned with revising a knowledge base when new information becomes
apparent by maintaining consistency among beliefs (Gérdenfors|[1992). In the simplest case
where the belief base is represented by a set of rules there are three different actions to deal with
new information and current beliefs in a knowledge base: expansion, revision and contraction.

Depending on the details of the domain, one of these three actions will be performed when
the agent has reached the point of having to revise its knowledge. In this thesis we explore those
cases where the errant knowledge the agent has to deal with can be either verified or not verified
in simulation. As a result, the agent will only have to perform a contraction when dealing with
incorrect knowledge. Furthermore, we explore the cases where the knowledge base contains
independent beliefs i.e. beliefs that are considered to be true, are not depending on other belief to
also be true or false and vice-versa. This further simplifies the problem of contraction to a simple
deletion of a literal from the knowledge base.

As an example consider the flag-collection domain. In this specific case, where the errant
knowledge the agent has to deal with is based on extra flags which appear in the knowledge base
but not in the simulation, revising the knowledge base requires a contraction. Since the beliefs
in the knowledge base are independent of each other, as the existence or absence of a flag does
not depend on the existence or absence of other flags, contraction equals deletion. As a result
revising the knowledge base in this case requires the removal of a literal e.g. f1lagA_in_rooma,
from the initial conditions of the plan. The revised knowledge base is then used to compute a
more accurate plan.

It is worth noting that since the knowledge the agent is provided with is refined, by the use
of belief revision, the potentials are not static but dynamic. As mentioned previously, even when
using a dynamic potential function, the theoretical guarantees of potential-based reward shaping

are maintained provided the potential of a state is evaluated at the time the state is entered and
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robot_in (hallA)

robot_in (hallA) taken (flagH)

robot_in (roomD) taken (flagH)

robot_in (roomD) taken(flagH) taken (flagD)

Figure 3.4: Example Incorrect Plan in the Flag Collection Domain
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robot_in (hallA)
robot_in (roomD)
robot_in (roomD) taken (flagD)

Figure 3.5: Example Correct Plan in the Flag Collection Domain

N = O

used in both the potential calculation on entering and exiting the state. More information on
dynamic potential-based reward shaping can be found in (Devlin and Kudenko|2012a)).

To illustrate the use of this method consider a domain similar to that shown in Figure [3.1]
which contains one flag, £1agD in roomD. The agent is provided with the plan shown in Figure
[3.4] This plan contains an extra flag which is not present in the simulator, f1agH in hallA.
According to the plan the agent starts at hal1A and has to collect f1agH and £1agD and reach
the goal state in roomD.

Let’s assume that the verification threshold for each flag is set at 0.3. At the end of the first
episode the confidence value of each flag is computed. Since flagH does not appear in the
simulator its confidence value will be equal to 0 and the flag will be marked for verification.

During the next episode the agent will switch into verification mode for £ 1agH. At this point
the agent will perform a DFS within the bounds of hallA to try and satisfy £1agH. The search
will reveal that taken (flagH) cannot be satisfied and as a result £1agH will be marked for
revision. When the episode ends the knowledge base will be contracted to remove f1agH and a

new plan will be computed. The new plan is shown in Figure [3.5]
3.2.2 Overcoming incomplete knowledge

Identifying incomplete knowledge

As mentioned previously an agent can identify potential errors in the provided plan through
continuous interaction with the environment. This section presents the case where the provided
plan is incomplete. Algorithm [3|shows the generic method of identifying incomplete knowledge.
We illustrate this algorithm with an instantiation to the flag collection domain.

The input to the algorithm is a set of preconditions of all the plan states which we will call
K and each precondition in this set which we will call p. A plan state is defined as a step in the
provided plan, e.g. 3 robot_in_roomC taken_flagC as shown in Figure[3.3] and since it
is based on STRIPS planning, the preconditions of each plan step can be easily extracted from the

planner to form the set K as it was mentioned in the case of incorrect knowledge. Like before, the
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Algorithm 3 Incomplete Knowledge Identification Algorithm.
form a set K of preconditions p of each state in the provided plan
Input: set of preconditions K
for episode = 0 to max_number_of _episodes do
for current_step = 0 to max_number_of _steps do
plan-based reward shaping RL
/* next step */
/* check preconditions */
for all p, in S do
if p; ¢ K then
mark precondition p, for revision
/* next precondition */
/* next episode */
Output: set of preconditions not present in K and marked for revision

preconditions included in this list is a design decision and it can either be all of the preconditions
that are associated with a plan state or a selection of those. This process takes place before the

learning process has begun.

Once this process is completed the agent can start interacting with the environment and try to
satisfy its goals while receiving guidance from a STRIPS plan. Since there is a direct translation
of the low level states the agent is acting on to the high level states, the agent can realise whether

certain states are in its knowledge base or not.

The agent can extract a set of the preconditions p, that are associated with all of the states
it visited during an episode called S. At the end of each episode, this set is compared against
the initial set of preconditions K. If any of the preconditions in S are not present in K they are

marked for revision.

The output of the algorithm is a set of preconditions which are not present in the current

knowledge base of the agent and which have been marked for revision.

To further illustrate this process consider an instantiation to the flag-collection domain. Let
L be the set of all preconditions p of those actions which achieve a given plan state. We define
the set X' C L to contain those preconditions which refer to the presence of flags in the plan and

the set S to contain all the preconditions ps; which refer to the presence of flags in the simulator.

Specifically, at the start of each experiment the provided plan is used in order to extract a set,
K, of all the preconditions which refer to the presence of flags. When an episode ends the flags
the agent collected, set S, are compared against the flags which appear in the plan. If the agent
is found to have collected extra flags which do not appear in the plan, and by extension in the
knowledge base, those flags are marked for revision. Note that there is no verification in the case

of incomplete knowledge.
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robot_in (hallA)
robot_in (roomD)
robot_in (roomD) taken (flagD)

N = O

Figure 3.6: Example Incorrect Plan in the Flag Collection Domain

robot_in (hallA)

robot_in (hallA) taken(flagA)

robot_in (roomD) taken (flagA)

robot_in (roomD) taken (flagA) taken(flagD)

Figure 3.7: Example Correct Plan in the Flag Collection Domain
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Revising the knowledge

As mentioned previously there are three actions for belief change: expansion, revision and con-
traction. Once the agent reaches the point of having to revise it must perform one of those
actions. In the case of incomplete knowledge the agent will only need to perform an expansion
of its knowledge base to include all those preconditions that were marked for revision. Given that
the agent is dealing with independent beliefs then all the precondition that were encountered and
were not already in the agent’s knowledge base, are simply added since maintaining consistency

is guaranteed.

Instantiated to the flag collection domain an easier explanation, new information comes in
the form of flags which are present in the simulator, but not in the provided plan. Revising the
knowledge to include new information in this case requires an expansion. As a result, the initial
conditions of the plan are expanded to include new literals e.g.f1agA_in_roomA. Since the
agent is dealing with independent beliefs it does not need to worry about conflicts and there fore
expansion equals addition. The revised knowledge base is then used to compute a more accurate

plan.

To illustrate the use of this method consider a domain similar to that shown in Figure (3.1
which contains two flags, flagA in hallAa and f£lagD in roomD. The agent is provided with
the plan shown in Figure[3.6] This plan contains only one of the flags which are present in the
simulator, £1agD in roomD. According to the plan the agent starts at hal 1A and has to collect

f1lagD and reach the goal state in roomD.

Let’s assume that the agent, through exploration, manages to pick up £1agA during an epis-
ode. When the episode ends the agent’s collected flags will be compared against the flags which

appear in the plan. Since £1aga does not appear in the plan, it will be marked for revision.

The knowledge base will then be expanded to include £1agA and a new plan will be com-

puted using the revised knowledge base. The new plan is shown in Figure (3.7
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3.2.3 Evaluation in the Flag Collection domain

The algorithms are evaluated by using agents that are provided with erroneous knowledge. Spe-
cifically the agents are given different instances of wrong knowledge: 1) incorrect knowledge, 2)
incomplete knowledge and 3) a combination of both incorrect and incomplete knowledge.

All agents implemented SARSA with e—greedy action selection and eligibility traces (Sutton
and Barto||1998). For all experiments, the agents’ parameters were set such that o = 0.1, v =
0.99, € = 0.1 and eligibility traces A = 0.4.

These methods, however, do not require the use of SARSA, e—greedy action selection or
eligibility traces. Potential-based reward shaping has previously been proven to be successful
and hold the same theoretical guarantees with Q-learning, RMax and any action selection method
that chooses actions based on relative difference and not absolute magnitude as well as without
eligibility traces (Asmuth et al.[2008];[Ng et al.|1999; Devlin et al.[2011). SARSA with eligibility
traces was our algorithm of choice since there was legacy code that was already set-up and
optimised for this domain within our lab, but any other method could be used without sacrificing
performance.

In all experiments, the scaling factor of Equation [2.T6| was set to:
w = MaxReward/NumStepsInPlan (3.2)

As the scaling factor affects how likely the agents are to follow the heuristic knowledge, main-
taining a constant maximum across all heuristics compared ensures a fair comparison. For en-
vironments with an unknown maximum reward the scaling factor w can be set experimentally or
based on the designer’s confidence in the heuristic.

Each experiment lasted for 50000 episodes and was repeated 30 times for each instance of
the erroneous knowledge. The agent with knowledge revision is compared to an agent without
knowledge revision when both agent are provided with the same erroneous knowledge. The
agents are compared against the total discounted reward they achieve. Please note the agents’
illustrated performance does not reach 600 as the value presented is discounted by the time it
takes the agents to complete the episode. A comparison on the number of steps each agent
performs per episode is also presented in order to illustrate the impact of wrong knowledge
in the number of steps the agents needs to perform to complete an episode. For clarity all the
graphs only display results up to 2500 episodes, after this time no significant change in behaviour

occurred in any of the experiments. The graphs also include error bars showing the standard error.
Incorrect knowledge

In this setting the agents are provided with a plan which contains extra flags which do not appear
in the simulation. Figures [3.8]and [3.10|present the averaged results when providing a plan with

two and three extra flags. In addition the steps taken to complete an episode are included in
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Figures [3.9) and [3.11] to better show the convergence speed. An mentioned previously all steps
taken during knowledge verification have been accounted for since any action during DFS costs
one time step.

The plan-based RL agent without knowledge revision is not able to overcome the incorrect
knowledge and performs sub-optimally throughout the duration of the experiments. The agent
without reward shaping does not benefit from domain knowledge and as a result has the worst
performance.

The agent with knowledge revision manages to identify the flaws in the plan and quickly
rectify its knowledge. During the experiments, at any point the agent needed to re-plan the
output was saved so that it is easy to check what revisions are taking place and when. Close
examination showed that the agent started revising its knowledge around the 50, episode and
had managed to build a correct knowledge by the 400, episode. As a result after only a few
hundred episodes of performing sub-optimally it manages to reach the same performance as the
agent which is provided with correct knowledge.

It is worth noting that when the agent decides to revise its knowledge, it is not possible to
revise beliefs that are correct i.e. information that is present in the simulation. The reason is
the deterministic nature of the environments that are examined in this chapter. Consider for
example that the agent cannot pick up £lagA which is present in the simulation in roomA
because exploration has not yet led it to that flag. After a few episodes this flag will be marked
for verification and when the agent enters roomA it will perform a DFS. The DFS will reveal
that the flag exists at that place and its confidence value will be reset. In contrast, if f1agA was
not present in the simulation, DFS would not reveal its existence and it would be deleted from
the knowledge base. In both situations, the information in question is completely deterministic
and as a result it is not possible for the agent to revise information that is correct.

It should be pointed out that if the agents were let to run an infinite amount of time, they
would eventually converge to the same optimal policy, as the methods used preserve the RL
theoretical convergence guarantees.

In addition, experiments were conducted with varying number of incorrect flags ranging from
3 up to 8. Varying the number of extra flags did not exhibit any difference in behaviour and the
same results where witnessed with the agent using knowledge revision outperforming the agent
without. All the agent parameters were set to a = 0.1, v = 0.99, e = 0.1 and eligibility traces
A = 0.4, as the agents reported here, and each experiment lasted for 50000 episodes and was

repeated 30 times.



Section 3.2

Discounted Goal Reward

Number of Steps Performed

Knowledge Revision Algorithms

N Lop T T N o 9
M %@\y? I
o/
i
150 ¥
il
|
100*'.':
5011 —#— no Revision
— &~ - with Revision
---+--- Correct Plan

-—&— no Shaping

0 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Episodes

Figure 3.8: Incorrect knowledge. Extra flags: 2

—¥— no Revision
— & - with Revision
---+-- Correct Plan
-—— no Shaping

ey e @ ::_'55_:":_::—::—::_;;‘::
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Episodes

Figure 3.9: Incorrect knowledge. Steps taken, Extra Flags: 2

55



56

Discounted Goal Reward

Number of Steps Performed

Plan-Based Reward Shaping with Knowledge Revision Chapter 3

2 F3eebedEs
200 -~
P
: /
i
150 %
d
|
1oo~§/
: g --e-®-8.8-8-8 88888
S0 ; . —#*— no Revision
— &~ - with Revision
---4--- Correct Plan
-—&— no Shaping
0 1 1 1 1 1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Episodes
Figure 3.10: Incorrect knowledge. Extra flags: 3
x 10*
i —— no Revision
— ©&— - with Revision
q ---4--- Correct Plan
6 ‘\‘ -—8— no Shaping

i - W - Sn— . S— . G—— - S—
0 200 400 600 800 1000 1200 1400
Episodes

1600 1800 2000

Figure 3.11: Incorrect knowledge. Steps taken, Extra flags: 3



Section 3.2 Knowledge Revision Algorithms 57

Incomplete knowledge

In the setting of incomplete knowledge the agents are provided with a plan which is missing
flags that are present in the simulation. Figures and [3.14] present the averaged results when
providing a plan with two and three missing flags as well as the steps taken shown in Figures
B.13land

It is clear that the plan-based RL agent without knowledge revision struggles to overcome
the incomplete plan and performs sub-optimally throughout the course of the experiment. Once
again the agent without reward shaping has the worst performance. The agent using knowledge
revision manages very early on in the experiment to identify the flags which are missing from
the plan and update its knowledge base. As a result it reaches a performance similar to the agent
receiving the correct plan within a few hundred episodes.

Closely examining the planner output during the re-planning periods of the agent showed that
the agent started revising its knowledge to include new information at the 100, episode and had
build up a correct knowledge base by the 600;;, episode. There were cases reported in which the
agent did not manage to discover all the parts that were missing from its knowledge base, and
therefore did not receive guidance from a correct plan, but those cases were only 450 in a total of

50000 experiments.
Combination of incorrect and incomplete knowledge

In this setting the agents are provided with a plan which contains extra flags which are not present
in the simulation, as well as missing flags which the agent should be able to pick up. The averaged
results are presented in Figures[3.16|and[3.17showing the discounted goal reward and the number
of steps that the agents performed in order to complete an episode.

As expected, the results show that the plan-based RL agent without knowledge revision can-
not overcome the difficulties posed by the combination of incorrect and incomplete knowledge
and performs sub-optimally throughout the experiments. The performance of the agent without
knowledge revision however does not seem to be heavily impacted when comparing to the incor-
rect and incomplete cases and still performs better than the agent without shaping.

Furthermore, when comparing the number of steps each agent performs in order to complete
an episode, the graphs show that the agent with knowledge revision achieves a behaviour similar
to the agent using the correct plan very quickly. Whereas, the agent without knowledge revision
spends a lot of time performing sub-optimal actions early in the experiment. The agent without
shaping fails to pick up all the flags and moves fast to the goal state, hence the low number of
steps which is also witnessed in the incomplete knowledge experiment.

These empirical results demonstrate that, when a RL agent using SARSA is provided with
incorrect, incomplete and a combination of incorrect and incomplete knowledge, knowledge re-
vision allows the agent to incorporate its experiences into the provided knowledge base and thus

benefit from more accurate plans. In all experiments the agent using knowledge revision man-
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aged to outperform the agent without knowledge revision and the agent without reward shaping

and achieve a similar performance to the agent which was provided with the correct plan.

3.3 Starcraft: Broodwar

The flag collection domain provides a nice environment in order to analyse and dissect the be-
haviour of novel algorithms such as these presented in this thesis. Having established that plan-
based reward shaping with knowledge revision has the desired effects in the flag collection do-
main it’s effectiveness is evaluated by scaling to a larger more complex environment, Starcraft:

Broodwar.

StarCraft is a very popular commercial RTS game which has been used in Al research ex-
tensively with numerous competitions running in parallel to major game conferences. This was
made possible with the development of the Brood War API (BWAPI) framework which allows
integration with the SC:BW game engine.

As with every RTS game, the gameplay revolves around resource management, and building
construction. Resource management is very important in every RTS game since it is what allows
the players to build advanced units. In SC:BW the two major resources are vespene gas and

minerals. Worker units are tasked with collecting those resources.

Once enough resources have been gathered, the player can decide how to expand. Different
build orders allow the production of different units and result in different strategies in order to
beat the opponent which can either be another player, or the built in game AI. Many different
strategies have been developed throughout the years by players, some focusing on exploration

and large armies, while others on speed and efficiency.

3.3.1 StarCraft Scenario

RL has been succesfully used in many games like Backgammon (Tesauro|1994), Tetris (Szita and
Lorincz)2006), Unreal Tournament (Smith et al.|2007) and more. However its performance has
not been studied extensively in StarCraft. Of particular interest in the context of this research is
the application of RL in a small-scale combat scenario in the SC:BW (Wender and Watson|2012).
In (Wender and Watson|2012) the scenario involved an overpowered unit (the RL agent), fighting
against a group of enemy units spread around the agent. The agent benefited from superior fire-
power, speed and range when compared to a single enemy unit. The results showed that the agent
quickly learnt how to utilize the “hit and run” strategy, and managed to destroy all enemy units
in most of the experiments. These results show the use of RL in SC:BW and the authors aim at
creating a hybrid agent that would manage the complexity of the entire game.

Despite the promising results, the state-space of the chosen environment is very small and is
not representative of the complexity of the game in its entirety. When trying to scale to larger

problem domains, a more efficient design is needed, in order to tackle the state-space explosion,
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than that of straightforward RL. One method that can achieve this is plan-based reward shaping
(Grzes and Kudenko|[2008)).

In order to demonstrate the use of plan-based reward shaping and plan-based reward shaping
with knowledge revision, we have chosen to evaluate the agent by scaling to a more complex and
qualitatively different scenario. The chosen scenario involves the creation of a RL build-order
manager that aims at learning part of a player strategy often used in SC:BW, the Terran Battle-
cruiser Rush strategy. The source of the high level strategy can be expert knowledge provided by
players, or could come from a high level planning system. The Battlecruiser rush strategy dic-
tates the clever use of resources in order to build the Battlecruiser unit as fast as possible while
using worker units as support. The goal of this strategy is to march toward the enemy as soon
as the Battlecruiser has been constructed so as to surprise the opponent who will most likely be
poorly defended. Although this scenario is focused at the Terran race, the method can be adapted
to any of the races in the game. A model of the agent’s learning goal, state, and action space is
presented in Section[3.3.2]

There have been other approaches on using RL in RTS games such as CLASSg_ 1, (Jaidee
and Munoz-Avila|2012), in which learning occurs for each class of units in the game in order to
speed up the learning process, transfer learning (Sharma et al.|2007), which uses a hybrid case-
based reasoning/RL approach in order to learn and reuse policies across multiple environments,
and more. This study presents how the learning process can be sped up by the use of reward
shaping and it is my belief that this method could be used on top of other RL methods like (Jaidee

and Munoz-Avilal2012)) and (Sharma et al.|2007) to learn policies faster in large state-spaces.

3.3.2 Design

Start state

The agent is situated at a starting position controlling 1 Space Construction Vehicle (SCV), 1
Refinery (used by the Terran race to collect vespene gas), 1 Command Center (Terran base), 1
Resource Depot (used to increase the amount of minerals and vespene gas the agent can collect
as well as the amount of units it is allowed to create) and 6 Mineral Fields spread around the
starting area. This configuration creates eighteen slots which can be filled by either worker or

combat units i.e. up to 18 units can be trained.
Learning objective

The task that the agent has to learn is that of a strategy often employed by players in SC:BW, the
Battlecruiser rush strategy. More specifically, this strategy suggests creating one Battlecruiser
unit as fast as possible along with several worker units that will act as support for the Battle-
cruiser, mostly by just being set to repair the damage caused by the opponent. The agent has to
learn the optimal building order construction to achieve the creation of the Battlecruiser, while at

the same time learn the optimal number of worker units needed in order to have a high enough
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rate of incoming supplies, to minimise the time to build the Battlecruiser unit. The correct build
order, taking into account the constraints of required buildings is Barracks— Factory—Science
Facility— Physics Lab— Starport— Control Tower. Having constructed these building allows the

creation of the Battlecruiser unit.
State-space

Designing the state-space is one of the most important parts in the development of any RL agent.
While one can use the raw information contained in the SC:BW environment, it is not practical
as the amount of information that the agent will have to deal with is so massive, that it would
eventually inhibit learning altogether. Therefore the raw information needs to be transformed into
a useful abstraction relevant to the task the agent has to tackle. We have chosen the following

abstraction:

* vespene Gas: the amount of vespene gas the agent has in its possession partitioned in
buckets of 50 i.e. 0-50, 50-100. .. >400. We have chosen this design because most units
and buildings in SC:BW have a cost which increases by 50 or 100 depending on their level.
We have chosen to treat the region > 400 as constant since there are very few units that
have a cost of 400 supplies to build. Table [3.1] shows the cost of the units that the agent

will need to construct and the slots that each unit fills.

* Minerals: the amount of minerals the agent has in its possession partitioned in the same

manner as vespene gas which was presented previously.

* Units Built: the types of units, including buildings, that the agent has under control. These
types include the Factory, Barracks, Starport, Control Tower, Science Facility, Physics Lab
and Battlecruiser units. These types are imperative to the creation of the Battlecruiser unit
which is the agent’s learning task. As a result it is very important information that needs

to be included to state-space abstraction.

» Workers: the number of worker units the agent has under control. Including this informa-
tion allows the agent to reason about the optimal number of worker units needed in order

to have a supply flow high enough, to allow for the fastest creation of the Battlecruiser.

Action-space

The agent can perform a total of ten actions which can be divided into two categories, resource
collection and unit construction. Before moving on to the description of those actions, it is worth
noting that any chosen action may take a varying amount of time to complete in the game e.g.
collecting supplies might take less time than building a specific unit. As a result we define a RL

time-step to be the time it takes for an action to be completed.

* Collect: the agent can choose to collect either minerals, or vespene gas. Choosing any of

those actions will result in all the worker units the agent controls to move to the closest
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Table 3.1: Unit cost relevant to agent’s learning objective.

Unit Type Minerals | vespene Gas | Slots Taken
Factory 200 100 -
Barracks 150 - -
Starport 150 100 -
Control Tower 50 50 -
Science Facility 100 150 -
Physics Lab 50 50 -
SCV 50 - 1
Battlecruiser 400 300 6

resource and start collecting supplies. Given that actions to collect gas or minerals are
designed to not have a clear end in the game engine i.e. a collect action will continue until
a new action is chosen, we set the action as completed after 500 frames. This amounts in a

total of two actions for resource collection.

* Construct: the agent can choose to build a specific unit. This can be either a building,
or a combat/worker unit. The possible units that the agent can choose to construct are
Factory, Barracks, Starport, Control Tower, Science Facility, Physics Lab, SCV worker

and Battlecruiser. This amounts in a total of eight actions for construction.

While there are many more actions that an agent can perform when playing the entire game,
they are irrelevant to the task at hand and therefore do not need to be included as an option for
the agent. Moreover, a different approach could be designed to include parallelism of actions by

using their cross-product, however it is a trade off between action-space size and action efficiency.
Reward function

The agent is given a numeric reward of 1000 every time it manages to create the Battlecruiser
unit and 0 otherwise. Once the Battlecruiser unit has been built, the episode ends and the agent

returns at the starting state.

3.3.3 Plan-based reward shaping design

As discussed previously, there are numerous occasions when abstract knowledge regarding a task
can be provided to an agent in terms of a STRIPS plan to help guide exploration. In the case of
this scenario, the knowledge can be that of the build order that the agent has to learn. While it
is impossible to be exact regarding the number of worker units that need to be built, in order to
optimise resource income and speed up the process of building the Battlecruiser, expert players
know the correct build order that needs to be followed. This knowledge of the build order can be

used as a STRIPS plan to efficiently guide the agent to the optimal policy.
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BUILD(Barracks)
BUILD ( Factory)
BUILD(Science Facility)
BUILD(Physics Lab)
BUILD( Starport)

BUILD( Control Tower)
BUILD( Battlecruiser)

Figure 3.18: Starcraft STRIPS Plan.

—_—

have (Barracks)

2 have (Factory , Barracks)

3 have(Science Facility , Factory,
Barracks)

4 have(Science Facility , Physics Lab,
Factory , Barracks)

5 have (Starport ,Science Facility ,

Physics Lab, Factory,
Barracks)

6 have(Starport, Control Tower,
Science Facility , Physics Lab,
Factory , Barracks)

7 have (Battlecruiser , Starport,
Control Tower, Science Facility ,
Physics Lab, Factory,
Barracks)

Figure 3.19: Starcraft State-Based Plan.

Given this domain, the expected action-based STRIPS plan is given in Figure and the full
transformed state-based plan used for shaping is given in Figure with the CurrentStepInPlan
used by Equation [2.16]noted in the left hand column.

3.3.4 Evaluation

This section presents the performance of an agent receiving erroneous plan-based knowledge in
the SC:BW domain. However, as reward shaping methods have not been previously deployed
in SC:BW, it is initially shown that those methods can be beneficial to agents, given that they
are provided with a correct heuristic and then move on to show how the knowledge revision
algorithms presented in Section [3.2]can help overcome the cases of erroneous knowledge.

All agents implemented SARSA with e—greedy action selection. For all experiments, the
agents’ parameters were set such that a = 0.1, v = 0.99, and € = 0.3 linearly decreasing
during an experiment. Decreasing e results in the agents being very explorative at the start of the
experiment, and slowly shifting to a more greedy action selection near the end. Each experiment

lasted for 500 episodes i.e. games, and was repeated a total of 30 times.
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In all experiments, the scaling factor of Equation [2.16| was set to:
w = MaxReward/NumStepsInPlan 3.3)

For environments with an unknown maximum reward the scaling factor w can be set experiment-
ally or based on the designer’s confidence in the heuristic.

Although the maximum discounted reward the agent can achieve cannot be directly com-
puted, an estimate can be given to serve as a measure of performance. If we assume that no extra
worker units are being built, then the total amount of minerals and gas the agent will need to
collect are 1100 and 750 respectively as shown in Table[3.1} When the agent performs a resource
collection action, it gathers on average ~ 30 resources. This amounts in a total of, including the
construction actions, 69 actions to reach the goal. As a result, given that v = 0.99 and the goal

reward = 1000, then the expected discounted goal reward is ~ 500.
Correct Knowledge

Before evaluating the effects of erroneous knowledge and knowledge revision in the SC:BW
scenario it needs to be established that plan-based reward shaping does benefit an agent acting in
this complex setting. Therefore the performance of an agent using plan-based reward shaping is
presented, compared to a baseline RL agent that receives no guidance. The agents are compared
against the total discounted, by ~, reward they achieve. Note that the agents do not reach a reward
of 1000, which is the reward for reaching the goal, as the reward they achieve is discounted by
v to account for the number of steps they performed, in order to reach the goal and finish the
episode. The graphs include error bars which show the standard error.

Figures [3.20] and [3.21] show the performance of the agents comparing the discounted goal
reward they achieve and the steps taken to complete an episode. The results are averaged over
the 30 repetitions of the experiments. It is apparent that the agent using plan-based reward shap-
ing manages to very early on in the experiment outperform the baseline agent without reward
shaping, and learn the optimal policy in the number of episodes that the experiment lasts.

The agent without reward shaping receives no guidance regarding states that seem promising
and as a result spends most of its actions exploring in random locations of the state-space, until
a good enough estimate is calculated. It is worth noting that if the agents were left to run an
infinite amount of time, they would eventually reach the same policy as the RL theory suggests.
However learning must be achieved within a practical time limit. Considering this scenario, run-
ning more than 500 episodes per experiments, so as to have the baseline agent learn the optimal
policy, would result in the experiments taking months to complete since as stated previously, an
experiment of 500 episodes was completed within 14 ~ 16 hours even though the game settings
were being set at the highest speed. This is not at all practical especially if RL needs to be incor-
porated into commercial games when we consider the tight deadlines the game industry works
with.
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The agent using plan-based reward shaping is not at all affected by the complex, large en-
vironment. Since it receives guidance regarding promising states, it takes less time to calculate
which states are “good” and which are not. Even though the experiments last for only 500 epis-
odes, it still manages to find the optimal policy. The agent reaches a performance in the range
of 550 ~ 600 which is higher than the expected discounted reward specified earlier. The reason
is that the expected discounted reward was calculated under the assumption that no extra worker
units are being built to facilitate the resource collection process. This is of course not optimal
but only an estimate as a higher flow of incoming resources, means that the agent needs to spend
less actions for resource collection. However, the optimal number of workers needed to built
the Battlecruiser, and by extension the maximum discounted goal reward the agent should reach,
cannot be known in advance and it is up to the agent to learn and optimise the resource collection
process.

To better understand why the agent using plan-based reward shaping performs significantly
better than the agent without shaping we have included a graph showing the average number
of steps each agent performed, in order to find the goal and complete an episode, shown in
Figure

It is clear that the agent without reward shaping spends a lot of its actions exploring. Many
actions that are irrelevant or unnecessary are performed resulting in the agent exploring states
that do not provide any benefit to the learning process and are not a part of the optimal policy.

The agent using plan-based reward shaping manages to reduce the number of unnecessary
steps very early on in the experiment. Guided towards promising states by the provided abstract
knowledge, it only performs ~ 50 steps within 200 episodes while the agent without reward
shaping spends ~ 200 steps at the end of the experiments.

Having established that potential based reward shaping can be successfully applied in a
SC:BW it is now possible to evaluate the effects or erroneous knowledge and the benefit of

using the knowledge revision algorithms presented in Section[3.2]
Incorrect Knowledge

Similar to the flag collection domain, in this setting the agent is provided with an incorrect plan
that includes additional information not present in the environment e.g. the agent is given a plan
which states that it also needs to build Medic Units and Marine Units which do not feature in
the environment. As a result the agent will not be able to satisfy those steps that contain the
erroneous knowledge. A sample incorrect plan is given in Figure [3.22] and its corresponding
state-based transformation in Figure[3.23

Figures [3.24] and [3.25] show the performance of the agents when given incorrect knowledge
using various levels of wrong knowledge i.e. the incorrect plan can contain from 2 up to 5 ad-
ditional units or buildings that the agent should build. An agent being provided with the correct

knowledge is also included to serve as an upper bound as well as an agent receiving no shaping.
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BUILD(Barracks)
BUILD ( Factory )

BUILD (Medic)
BUILD(Science Facility)
BUILD (Marine)
BUILD(Physics Lab)
BUILD( Starport)

BUILD( Control Tower)
BUILD( Battlecruiser)

Figure 3.22: Sample Starcraft Incorrect STRIPS Plan.

have (Barracks)

have (Factory , Barracks)

have (Medic, Factory, Barracks)
have(Science Facility , Medic, Factory,
Barracks)

have (Marine, Science Facility , Medic, Factory,
Barracks)

have(Science Facility , Marine, Physics Lab,
Medic, Factory, Barracks)

have(Starport ,Science Facility , Marine
Physics Lab, Factory, Medic

Barracks)

have (Starport, Control Tower, Marine
Science Facility , Physics Lab, Medic
Factory , Barracks)

have (Battlecruiser , Starport, Marine
Control Tower, Science Facility , Medic
Physics Lab, Factory,

Barracks)

Figure 3.23: Sample Starcraft Incorrect State-Based Plan.
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BUILD ( Factory)
BUILD(Science Facility)
BUILD(Physics Lab)
BUILD( Control Tower)
BUILD( Battlecruiser)

Figure 3.26: Sample Starcraft Incomplete STRIPS Plan.

1 have (Factory)

2 have(Science Facility , Factory)

3 have (Physics Lab, Science Facility , Factory)

4 have (Control Tower, Science Facility , Physics Lab,
Factory)

5 have(Battlecruiser , Control Tower, Science Facility ,

Physics Lab, Factory)
Figure 3.27: Sample Starcraft Incomplete State-Based Plan.

As shown in Figures[3.24]and[3.25]the same conclusions can be drawn as in the flag collection
domain. The agent without knowledge revision is not able to overcome the problems of wrong
knowledge and is being guided by an incorrect plan throughout the duration of the experiment.
Since certain steps cannot be satisfied within the plan, the agent is essentially acting without any
guidance.

In contrast, the agent utilising knowledge revision manages to rectify its knowledge and
achieve a performance similar to the agent that is provided with the correct plan. Figure [3.2
shows the averaged number of steps the agents took to complete an episode. As in the flag-
collection domain, the planner output was save in order to be able to have a clear understanding
of the revisions that are taking place. In the case of incorrect knowledge, examining the planner
output showed that the agent started revising its knowledge around the 50;;, episode and had build
up a correct knowledge base by the 350, episode. The agent without knowledge revision spends
most of its action in irrelevant parts of the state-space since it is guided by wrong knowledge
while the agent with knowledge revision, after having revised its knowledge, prefers those parts

of the state-space that lead to the goal quicker.

Incomplete Knowledge

In this setting the agent is provided with incomplete knowledge in the form of a plan that is
missing important knowledge that would be beneficial e.g. the agent is given a plan that does not
state that the Barracks and the Starport need to be built.

A sample incomplete plan and its state-based transformation is shown in Figures [3.26] and
[3.27] Figures [3.28] and [3.29] show the performance of the agents in terms of discounted goal

reward and average number of steps they took to complete an episode.
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BUILD ( Factory)

BUILD (Medic)
BUILD(Science Facility)
BUILD (Marine)
BUILD(Physics Lab)
BUILD( Control Tower)
BUILD( Battlecruiser)

Figure 3.30: Sample Starcraft Combination of Wrong Knowledge STRIPS Plan.

1 have (Factory)
2 have (Medic, Factory)
3 have(Science Facility , Medic, Factory)
4 have (Marine, Science Facility , Medic, Factory)
5 have (Science Facility , Marine, Physics Lab,
Medic, Factory)
6 have (Control Tower, Marine
Science Facility , Physics Lab, Medic
Factory)
7 have(Battlecruiser , Marine

Control Tower, Science Facility , Medic
Physics Lab, Factory)

Figure 3.31: Sample Starcraft Combination of Wrong Knowledge State-Based Plan.

As in the case of incorrect knowledge, the agent using knowledge revision manages to
identify those parts that are missing from the provided knowledge, revise them, and thus be-
nefit from more accurate shaping as shown in Figure Examination of the planner output
during the re-planning periods of the agent showed that the agent started revising its knowledge
to include new information at the 30, episode and had build up a correct knowledge base by
the 2004, episode. The agent without knowledge revision receives partial guidance and cannot
achieve a good enough performance within the time frame of the experiments and spends most

of its steps exploring randomly as shown in Figure

Combination

The agents are now provided with both incorrect as well as incomplete knowledge. The agents
not only have to deal with additional information that is not present in the environment but also
with missing knowledge. The amount of errors in the knowledge is variable i.e. the plan can be
missing up to 4 units that the agent will need to build (incomplete knolwedge) and it can contain

up to 8 additional units or building to build (incorrect knowledge).

A sample plan that uses the examples given previously on incorrect and incomplete know-
ledge is given in Figure [3.30[ and its state-based translation in Figure In this example the
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agent is given a plan that does not state that the Barracks and the Starport need to be built and that
the agent needs to build Medic Units and Marine Units which do not feature in the environment.

Figures[3.32]and [3.33]show the performance of the agents in terms of discounted goal reward
and average number of steps taken to complete an episode.

Even in this very challenging setting of erroneous knowledge the agent utilising knowledge
revision can achieve a performance similar to that of the agent provided with a correct plan. The
revision algorithms provide the agent with the necessary tools to rectify its knowledge and benefit
from more accurate plans.

Figure [3.33]shows that the agent without knowledge revision is misguided to irrelevant parts
of the environment and is left exploring randomly while the agent with knowledge revision over-
comes the problems caused by the erroneous knowledge and explore more beneficial parts of the

state-space.

3.4 Conclusion

In conclusion, this chapter demonstrated how knowledge revision algorithms can be designed to
be used in conjunction with plan-based reward shaping. Assuming that domain knowledge is
always perfect is often not a realistic assumption and this chapter documented the adverse effects
it can have when it is not dealt with efficiently.

It was demonstrated empirically that using knowledge revision can help an agent revise the
erroneous parts of the provided domain knowledge and benefit from more accurate shaping in two
different environments; a flag collection domain and Starcraft: Broodwar. In both environments,
agents using knowledge revision algorithms managed to perform similarly to agent provided with
the correct knowledge while the agents without knowledge revision were exploring random parts
of the state-space which resulted in poor behaviour.

Despite the contributions this research is not without limitations. Firstly, it can be quite
challenging to design an efficient knowledge verification algorithm. While DFS can be efficient
in small domains it quickly becomes impractical when scaling to larger domains and perhaps it
might be better to remove knowledge verification completely in those cases. Secondly, while the
algorithms can capture erroneous knowledge in terms of missing or extra steps, they cannot deal
with the cases where the plan might be correct, but the ordering of the steps is wrong. Lastly,
as mentioned in the assumptions this research focused on deterministic environments. Applying
this method in non-deterministic environments is not as straightforward and other approaches
need to be designed.

The next chapter will focus on using knowledge revision methods with abstract MDP reward
shaping to tackle non-determinism and also relax some of the assumptions presented in this

chapter.
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CHAPTER 4

Abstract MDP Reward Shaping with Knowledge Revision

The previous chapter on plan-based reward shaping with knowledge revision showed the adverse
effects of erroneous domain knowledge and a new method utilising knowledge revision principles
to help alleviate that problem. The results were very promising with the agent quickly revising
the wrong parts of the knowledge base and thus benefiting from more accurate shaping. How-
ever, that method included exhaustively searching in the environment to verify the parts of the
knowledge base that were deemed erroneous which can impact performance in larger domains.
Moreover, in order for the agent to be able to search the environment it was allowed to ‘teleport’
between states. This required the agent to run only in simulation as backtracking or jumping
among states cannot take place in a real world problem. In addition there is no mechanism in
place in plan-based reward shaping with knowledge revision that handles non-deterministic en-
vironments and is therefore limited to only deterministic domains.

This chapter presents an alternative method to revise knowledge by the use of abstract MDPs
coupled with a revision algorithm which relaxes some of the assumptions presented in the revi-
sion method for plan-based reward shaping. [Marthi| (2007)) proposed the use of abstract MDPs
as a source of reward shaping in which an abstract high-level MDP of the environment is defined
and solved using dynamic programming, e.g. value iteration. The resulting value function can
then be used in order to shape the agent.

The method of using abstract MDPs is evaluated in two environments. A comparison of
the revision capabilities of abstract MDP reward shaping in the flag collection domain presented
earlier is initially presented and it is demonstrated empirically that the agent can reach a similar

performance to the agents using plan-based reward shaping with knowledge revision when the
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agents are provided with wrong knowledge. Lastly the abstract MDP agent is evaluated in a
non-deterministic environment, a Micro Unmanned Air Vehicle (UAV) domain, and it is shown
that the agent can overcome the problems posed by erroneous knowledge via revision despite the

stochastic nature of the domain.

4.1 Abstract MDP Reward Shaping Revisited

As discussed in Section [2.2) reward shaping through abstract MDPs is an automatic method for
imparting domain knowledge to a RL agent. The shaping algorithm obtains the potential function
by firstly sampling the environment in order to learn dynamics for options (i.e. actions at the
abstract level) and secondly solving an abstract MDP. Options can be defined as policies of low
level actions (Sutton et al.[|1999). Once the agent spends a number of episodes sampling the

environment, it uses the resulting value function as a source for reward shaping.

We are interested in cases where domain knowledge comes from domain experts and there-
fore we have modified the abstract MDP reward shaping method to incorporate prior knowledge.
We assume options to be primitive deterministic actions at an abstract level and therefore com-

putation of their dynamics can be omitted.

In addition, by providing an abstraction of the low-level states of the environment to high-
level abstract states the abstract MDP can be solved using dynamic programming before the main

learning process begins and the obtained value function is used directly as the potential function:
D(s) =V(z) *w, 4.1)

where V' (z) is the value function over the abstract state space Z and it represents a solution to
the corresponding MDP-based planning problem, and w is an optional scaling factor. Modifying
the method in this way, results in the agent not having to spend time randomly exploring the

environment to estimate its dynamics and receives guidance the moment it starts acting.

The abstract MDP task can be solved using the following formula which is a special case of
value iteration:
Vir1(2) = max Pro [R.. + Vi (2')], (4.2)

with Pr,., being the probability of transitioning to the abstract state 2’ from the abstract state
z, R, the reward received when transitioning to z’ from z, - the discount factor and Vj(z) the
value of state z at time k. Algorithm ] shows the process of generating the abstract states to be

used for solving the abstract MDP of any given environment.

The input to this algorithm is a state and an action abstraction which for brevity we will call
SA and AA respectively. For all the the states and actions provided, each expected outcome is
then computed to form a set of abstract states called Z. Using this set Z, for each abstract state z

all of the reachable states are computed, and and MDP is solved using Formula 4.2
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Algorithm 4 Solving the Abstract MDP.
Input: state abstraction S A
action abstraction AA
for all states in SA and actions in AA do
generate abstract states Z

/* Solve MDP */
Initialise V'(z)
while MDP not solved do
get state z, set maz = 0
for all reachable states 2z’ from z do
value = Pr,[R,. + vV (Z')]
if value > max then
max = value
V(z) = max
Output: solved MDP

The output of this algorithm is a solved MDP which contains all of the abstract states z and
their value V'(z).

Instantiating to the flag collection domain to further illustrate this process, the states ab-
straction that can be used in this domain includes the rooms and halls that the agent can navig-
ate toi.e. hallA, hallB, roomA, roomB and so on as well as the location of flags e.g.
flagA_in_roomA. The actions abstraction can be the moves that the agent can perform from
each position and specifically, which rooms or halls it can access from its current location e.g.
roomA_to_hallA or roomC_to_roomE. The agent can also perform the action of picking a
flag e.g. taken_flagA. By generating all the possible states and their respective probabilities
an abstract MDP of the flag collection domain can be solved to be used as guidance by the agent.
An example output of the solution used for shaping is shown in Figure with with V(2) used
in Equation 4. 1{shown in the right hand column.

robot_in (hallA) 96
robot_in (roomA) 98
robot_in (roomA) taken (flagA) 100

Figure 4.1: Example Partial Value Function

4.2 The Revision Process

This section presents the revision process for abstract MDP reward shaping. If an agent is
provided with erroneous domain knowledge it is misguided through the course of an experi-
ment and it can have a detrimental effect in its learning process. As mentioned previously using

abstract MDPs with knowledge revision completely eliminates some of the assumptions present
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Algorithm 5 Revision Algorithm.
Input: Abstract MDP
Solve provided MDP to form V'(z) which will be used for shaping
for episode = 0 to max_number_of _episodes do
initialise transitions table T’
for step = 0 to max_number_of_steps do
main learning process
add transition to T’
if goal position then
end episode
/* add new transitions */
for all transition in T do
if transition not in abstract MDP then
add transition to abstract MDP
Pr(transition) = 1
/* update the probabilities */
for all {ransition in abstract MDP do
if transition in T then
Pr(transition)+ = a[l — Pr(transition)]
else
Pr(transition)+ = «[0 — Pr(transition)]
Solve abstract MDP
/* continue to next episode */
Output: updated Abstract MDP

in revision with plan-based reward shaping. Specifically, the only assumption that remains is the

following:

* To implement abstract MDP reward shaping with knowledge revision we must assume an
abstract high level knowledge and a direct translation of the low level states to the abstract
high level MDP states i.e. the agent will always know, correctly, where it is located within
the abstract MDP.

At each time step ¢ the agent performs a low level action a and traverses to a different state
s’ this time shaped by a high level abstract MDP. Since the agent is performing low level actions
it can gather information about the environment and as a result discover potential errors in the
provided knowledge. Through the experiences of the agent in the low level environment the
probabilities of the abstract MDP can be constantly updated in order to capture the dynamics of
the environment and thus revise potential errors in order to benefit from more accurate shaping.
It is worth noting that since now the agent is only dealing with transitions it does not care what
form the erroneous knowledge can take; incorrect knowledge is just a transition that will be given
a low probability and incomplete knowledge just a transition that is added in the current MDP.
This method does not require the agent to verify knowledge as the revision takes place alongside

the agent’s exploration of the low level states whilst learning.
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In order to identify erroneous knowledge, the agent constantly updates the abstract MDP
probabilities according to its experiences in the low level environment using the following for-
mula:

Pr, — Pr,..+a(l — Pr,,) if z, 2’ experienced @3

Pr,..+«a(0 — Pr,,/) otherwise

If the agent experiences a state transition which is not present in the abstract MDP, it is added with
Pr,., = 1. The MDP is then solved and the new value function is used for shaping. This results
in states which are not experienced, either because of wrong domain knowledge or because of
the environment dynamics, to hold a low probability value. Consequently the states with low
probability will have a very low potential and thus will not have an impact in the agent’s action
decision-making process. Algorithm [5] outlines the process of knowledge revision for agents
using abstract MDP reward shaping.

As the potential function will change whilst the agent is learning, this is an instance of dy-
namic potential-based reward shaping (Devlin and Kudenko|2012a) and the theoretical guaran-
tees of policy invariance hold.

In order to demonstrate further how abstract MDPs with knowledge revision tackle erroneous
knowledge consider the following examples which are instantiated to the flag collection domain

and deal with incorrect and incomplete knowledge.
Incorrect Knowledge Example

Consider an agent acting in the flag collection domain that is given incorrect knowledge. As
mentioned earlier, incorrect knowledge is when agents are provided with domain knowledge that
contains additional information not present in the environment e.g. an extra flag or room. In this
example an agent is given an abstract MDP that contains an additional flag; f1agG_in_roomA.

A partial example of the value function used for shaping in this case is shown in Figure .2

robot_in (hallA) 96

robot_in (roomA) 98

robot_in (roomA) taken(flagA) 100

robot_in (roomA) taken(flagA) taken(flagG) 111
robot_in (hallA) taken(flagA) taken(flagG) 123
robot_in (hallA) taken(flagA) 105

robot_in (roomD) taken(flagA) taken (flagG) 140
robot_in (roomD) taken(flagA) 129

Figure 4.2: Example Partial Incorrect Value Function

While the agent is acting in the environment the probabilities of the abstract MDP can be up-

dated according to its low-level experiences. As mentioned earlier, each state within the provided
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abstraction is associated with a probability which can be updated to capture the dynamics of the
environment using the formula shown in Equation 4.3

At the start of the experiment all the state probabilities have the same value and are set to
1. Setting the probabilities to 1 means that the agent fully trusts the domain knowledge that has
been provided and expects to be able to successfully transition to all the states in its knowledge.
In this example, all those states that contain £1agG however, will never be experienced and
as a result their probability will be constantly decreasing while the rest of the probabilities will
remain unchanged, provided they are always experienced. If Figure is considered a snapshot
of the value function used for shaping at the first episode, then by constantly decreasing the
probabilities after 1000 episodes the value function will be similar to that shown in Figure .3

This example shows how abstract MDPs are able to decrease the probability of those states
that correspond to erroneous knowledge and as a result lower their value which in turn results in

the agent being guided by more accurate shaping.

robot_in (hallA) 96

robot_in (roomA) 98

robot_in (roomA) taken(flagA) 100

robot_in (roomA) taken(flagA) taken(flagG) 20
robot_in (hallA) taken(flagA) taken(flagG) 31
robot_in (hallA) taken(flagA) 105

robot_in (roomD) taken(flagA) taken (flagG) 34
robot_in (roomD) taken (flagA) 129

Figure 4.3: Example Partial Incorrect Value Function after 1000 Episodes

Incomplete Knowledge Example

In this example, consider an agent acting in the flag collection domain and receives incomplete
knowledge. Incomplete knowledge is when an agent is provided with knowledge that is missing
important information that the agent would find beneficial e.g. missing flags or rooms. In this ex-
ample the agent provided with an abstract MDP that does not contain any information regarding

flagA. A partial example of the value function used for shaping is shown in Figure[d.4]

robot_in (hallA) 96
robot_in (roomA) 85
robot_in (roomD) taken(flagD) 104

Figure 4.4: Example Partial Incomplete Value Function

While the agent is acting in the low-level environment it can identify states which are not
present in its provided knowledge. These new states can be added to the abstract MDP as new
transitions. If Figure [4.4]is a snapshot of the value function used for shaping at the start of the

experiment, then by adding new transitions the value function will look similar to Figure
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robot_in (hallA) 96

robot_in (roomA) 104

robot_in (roomA) taken(flagA) 110

robot_in (hallA) taken(flagA) 119

robot_in (roomD) taken (flagA) 125

robot_in (roomD) taken(flagA) taken(flagD) 133

Figure 4.5: Example Partial Incomplete Value Function after Revision

This example describes how agents using abstract MDP reward shaping with knowledge re-
vision, can tackle incomplete knowledge by adding new transitions to the abstract MDP and thus

benefit from better shaping.

4.3 Parameter Evaluation

During the initial experimentation with abstract MDP reward shaping it was apparent that this
method requires parameter tuning. The original paper on this method (Marthi/2007)) did not
mention any parameters used to solve the abstract MDP and therefore some of the findings are
presented in this section.

The parameter in question is the « parameter which is used to offset future versus immediate
rewards. Initially setting this parameter at random showed that it can make or break an agent’s
shaping. Setting the reward function also showed to have an effect in the agent’s learning process
but that effect was minimal. The « parameter did not have a big impact in the agent behaviour
and is not worth reporting.

Figure [4.6] shows the parameter evaluation in the flag collection domain. The comparison
shows the results of agents using a v value of 0.99, 0.9, 0.8 and 0.1 to cover the extremes. The
graph shows that the agent using a ~ value of 0.9 significantly outperforms all other setting.
These findings show that there is a clear correlation between the reward of the environment
and the potential difference of abstract states. Since abstract MDP shaping can have a value
associated with every low level state the agent is in, contrary to plan-based reward shaping where
only a single path to the goal is provided, if the potential difference across high level states is
minimal then as the experiments show, the effect of reward shaping is also minimal to the point
of receiving no meaningful shaping at all as it happens with the agent with + set to 0.1. On
the other hand if the potential differences are very large then the agent struggles to separate the
environment reward from the additional rewards at the start of the experiment as is the case with
the agent with v set to 0.99.

These findings are very important in RL and reward shaping as a whole. This thesis is how-
ever concerned with knowledge revision in RL with reward shaping and therefore further exam-
ination is not within the scope of this topic. For now, these findings are used to correctly set the

parameters of abstract MDP reward shaping and leave further examination as future work.
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Figure 4.6: v comparison in the flag collection domain.

4.4 Evaluation in the Flag Collection Domain

This section evaluates abstract MDP reward shaping with knowledge revision in the flag col-
lection domain. This is the same domain used in plan-based reward shaping and the purpose
of this examination is to show that abstract MDP shaping can reach a similar performance with
plan-based reward shaping when both methods are provided with erroneous knowledge. The er-
roneous knowledge can take the form of incorrect and incomplete knowledge. In addition this
section presents the results of the abstract MDP agent when it is provided with an extreme version
of erroneous knowledge(incorrect, incomplete, wrong connections, misplaced flags etc.) which

is something the plan-based agent cannot deal with.

As discussed previously the flag collection domain is an extended version of the navigation
problem. The agent needs to navigate through the maze, collect flags and drop them off at a
designated location. At each time step it can decide to move up, down, left or right and will
deterministically complete its move provided it does not collide with a wall. Regardless of the
collected flags the episode ends once the agent reaches the goal position and the given reward is

relative to the number of collected flags.

The abstract MDP agent is compared against an agent with knowledge revision using plan-
based reward shaping. The comparison is based on the performance in terms of discounted goal

reward.
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All agents implemented SARSA with e—greedy action selection and eligibility traces (Sutton
and Barto||1998). For all experiments, the agents’ parameters were set such that o = 0.1, v =
0.99, € = 0.3 and A = 0.4. The experiments were run for 30 iterations each lasting 50, 000

episodes.
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Figure 4.7: Incorrect knowledge comparison.

In the case of incorrect knowledge, the agents are provided with knowledge which contains
extra information which is not present in the environment. This means that the knowledge con-
tains those facts that are correct in the environment as well as more irrelevant information e.g. the
knowledge contains two extra flags which are not present in the simulation but also includes those
that are in the correct position. The instances of incorrect knowledge are varying per experiment
i.e. different additional flags are placed at different locations. As an example, experiment 1 might
contain the additional flag f1agG_in_roomA while experiment 2 might contain the additional

flag flagH_in_roomkE.

In the case of incomplete knowledge, the agents are provided with knowledge which is miss-
ing important goals e.g. three flags are missing from the provided knowledge and thus the shaping
does not provide an incentive to collect them. As in the incorrect case, the instances of incom-
plete knowledge vary per experiment .i.e. different knowledge is absent from the abstract MDP

on each experiment.
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Figure 4.8: Incomplete knowledge comparison.

In the extreme case, the provided knowledge not only contains incorrect and incomplete
knowledge in terms of flags as described previously, but also wrong connections between rooms
and misplaced flags. Therefore there exist cases where the provided knowledge can be com-
pletely wrong. These results are only presented for the abstract MDP shaping with revision as
the plan-based method does not handle these types of wrong knowledge efficiently and its per-
formance does not serve for comparison. The results for the incorrect case are shown in Figure
the incomplete in Figure .8 and the extreme case in Figure [4.9]

The results are very interesting when it comes to the incorrect case of wrong knowledge in
abstract MDPs. While the plan-based agent has an impact in behaviour and a need for revision is
apparent, this is not the case for the abstract MDP agent. It appears that the agent’s performance
is not impacted at all. Due to this behaviour, the abstract MDP agent with knowledge revision is
not included in Figure since it achieves a similar performance to the agent without revision.
Taking a closer look at how the abstract MDP provides extra rewards, it becomes clear why this
happens. Since a value function is used as a reward shaping source, every state the agent finds
itself in will have a potential that will lead to the goal. These multiple paths to the goal mean
that the agent will never be left without guidance. Paths which are not encountered by the agent
because they do not exist do not feature at all when receiving rewards. Therefore there is no need

to revise incorrect knowledge when using abstract MDP shaping.
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Figure 4.9: Abstract MDP agent with extreme version of wrong knowledge.

robot_in (hallA)

robot_in (roomA)

robot_in (roomA) taken (flagA)

robot_in (roomA) taken(flagA) taken(flagG)

robot_in (hallA) taken(flagA) taken(flagG)

robot_in (roomD) taken(flagA) taken (flagG)

robot_in (roomD) taken (flagA) taken(flagG) taken (flagD)

Figure 4.10: State-Based Plan in the Flag Collection Domain

AN B WN = O

The plan-based agent on the other hand receives only a single path to the goal. Therefore if
the agent cannot achieve a step in the provided plan because the path does not exist, it does not

receive any further guidance after that point and is effectively left to act without reward shaping.

It is better to illustrate the case of incorrect knowledge with an example comparing the two
methods, abstract MDPs and plan-based reward shaping, in the flag collection domain. Con-
sider that the agents are provided with knowledge that includes additional information regarding
flagG-in_roomA and that the domain only contains flags £1agA and £1agD. Then a full plan
is shown in Figure d.10]and a partial value function in Figure d.11]

The agent using plan-based reward shaping receives a single path to the goal. This effectively

means that since the agent cannot ever be in the state of having taken £1agG, since it is not in
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robot_in (hallA) 30

robot_in (hallA) taken(flagA) 43

robot_in (hallA) taken(flagA) taken(flagG) 52

robot_in (hallA) taken(flagA) taken(flagG) taken(flagD) 60
robot_in (roomA) 34

robot_in (roomA) taken (flagA) 38

robot_in (roomA) taken(flagA) taken(flagG) 48

robot_in (roomA) taken(flagA) taken(flagG) taken(flagD) 44
robot_in (roomD) 32

robot_in (roomD) taken (flagA) 46

robot_in (roomD) taken(flagA) taken (flagG) 55

robot_in (roomD) taken(flagA) taken (flagD) 55

robot_in (roomD) taken(flagA) taken(flagG) taken(flagD) 60

Figure 4.11: Partial Value Function in the Flag Collection Domain

the environment, the agent will never receive any additional rewards after step 2 in the plan. As
a result it is left to find the optimal solution without receiving reward shaping after that point.

On the other hand, the agent using abstract MDP reward shaping receives multiple paths to
the goal. Despite not being able to receive the additional reward of picking up £1agG the agent
is still encouraged to continue and gather the rest of the flags. Specifically, after the agent picks
up flagh, it receives additional reward for going back to hallA and then to roomD to pick
up £lagD. Since the agent never experiences any of the states involving £1agG it receives the
additional rewards for picking up the rest of the flags and as a result is not impacted at all by the
incorrect knowledge in the abstract MDP.

In the incomplete case, the agent can encounter states which are not in its provided know-
ledge. The agent manages to quickly identify the parts which are missing from the provided
MDP. By adding these new transitions it encounters in the low-level to the abstract MDP, it man-
ages to solve a more accurate MDP and thus benefit from better shaping and reach a similar
performance to the agent using plan-based reward shaping.

In the extreme case, the provided knowledge not only contains incorrect and incomplete
knowledge in terms of flags as described previously, but also wrong connections between rooms
and misplaced flags. Therefore there exist cases where the provided knowledge is completely
wrong. These results are only presented for the abstract MDP shaping with revision as the plan-
based method does not handle these types of wrong knowledge.

As mentioned previously, imparting knowledge to an agent can still prove beneficial com-
pared to no shaping, even in the cases where the domain knowledge is partially wrong. This
section showed that the abstract MDP agent with knowledge revision can achieve the same per-
formance as the agent using plan-based reward shaping with knowledge revision when both agent
are provided with erroneous knowledge in a deterministic environment. The next section evalu-

ates the abstract MDP agent in a non-deterministic environment.
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4.5 Evaluation in the Micro Unmanned Air Vehicle Problem

While both these methods work perfectly well in a deterministic domain and both reach a similar
performance, in order for them to be widely applicable they need to be able to tackle the com-
plexity of non-determinism. This section evaluates the abstract MDP reward shaping method
with knowledge revision in a non-deterministic domain, the Micro UAV problem which was de-
veloped by our industrial collaborators at QinetiQ and represents a real world scenario they are
interested in. Plan-based reward shaping with knowledge revision cannot tackle such a domain as
there is no mechanism in place to account for non-deterministic environments and is not included

it in this examination.

(c) Tomb of the Forgotten King (d) Pharos Ascend

Figure 4.12: Micro UAV Problem.

The Micro UAV problem is one where a micro UAV is intended to go through a building and
locate a villain. This is realised as a grid world where the agent is provided with a high level map
of the building it needs to search and serves as the domain knowledge that the agent is provided
with. The building is comprised of rooms and corridors each associated with a probability that
the agent gets caught by the enemy. The domain knowledge that is provided is similar to that
in the flag collection domain with rooms and halls but this time the knowledge also includes
the probabilities that the agent might get caught at certain parts in the maze. Specifically, the
state abstraction includes rooms 1-17 and the probability of the agent being detected in those
areas, halls A—V along with the probability of detecting the agent and the location of the villain

within the building. A partial value function for this domain is shown in Figure #.13] where the
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robot_in (hallA) 30
robot_in (rooml) 35
robot_in (hallC) 39
robot_in (room3) 10
robot_in (hallE) 8

robot_in (room5) 40
robot_in (hallB) 34
robot_in (hallD) 4

Figure 4.13: Partial Value Function in the Micro UAV Domain

low values of certain states correspond to areas of high detection in the building and should be
avoided.

Within the grid the agent can choose to move up, down, left or right to one of its neighbouring
squares. If the agent is caught while searching the building then the episode ends and the agent
receives a small negative reward. If the agent manages to successfully locate the villain, it is

given a high reward and the episode is reset.

(c) Tomb of the Forgotten King (d) Pharos Ascend

Figure 4.14: Micro UAV Problem. Safe routes.

It is worth noting that a clear path to the villain always exists and remains constant throughout
the duration of an experiment. The rooms that are not part of this safe route have a 0.4 — 0.6
probability of detecting the agent while the corridors a 0.7 — 0.9 probability. This ensures that

an enemy can always be found, depending on the probabilities the agent might have to follow
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a much longer route if the shortest path has a high probability of getting caught, therefore the
agent will not get stuck trying to search for an enemy endlessly. Figure .12] shows the map
configuration used for evaluating this method in the Micro UAV problem. The room the agent is
located is shown in green and the villain’s position within the building is shown in red. Figure

[M.14]shows the safe route for each of the building noted in magenta.
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Figure 4.15: Hilda Garde.

The same parameters are used as those in the flag collection domain to conduct these ex-
periments. For clarity the graphs only show up to 3000 episodes since there was no change in
performance after that point. The graphs also include error bars showing the standard error from
the mean.

The erroneous knowledge the agents are given is both incorrect and incomplete with vary-
ing degrees of ‘errorness’ per experiment i.e. the agent receives a combination of erroneous
knowledge which can vary for each experiment in the number of incorrect or incomplete parts.
For example, in the Hilda Garde building shown in Figure the agent can receive domain
knowledge which can be missing room3, have additional information of a corridor, hallT,
connecting room5 to 6 and also have the probability that the agent gets detected in the corridors
set to 0 for all corridors.

A sample value function for this example is shown in Figure f.19] The agent will need to
utilise its knowledge revision capabilities and overcome the problems posed by this erroneous
knowledge. Figures[d.13] .16} [#.17|and [4.18] show the agents’ performance.
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Figure 4.16: Pulse.
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Figure 4.18: Pharos Ascend.

robot_in (rooml) 0
robot_in (hallA) O
robot_in (room2) 0
robot_in (hallB) 46
robot_in (room4) 55
robot_in (hallC) 68
robot_in (room5) 75
robot_in (hallD) 85
robot_in (hallT) 85
robot_in (room6) 100
robot_in (hallE) 81

Figure 4.19: Sample Erroneous Value Function in the Hilda Garde Domain

Similar to the flag collection domain the abstract MDP agent can efficiently revise erroneous
knowledge even when dealing with a non-deterministic environment. On all configurations the
agent manages to quickly overcome the problems posed by erroneous knowledge and reach a
performance similar to the agent receiving correct knowledge. The agent without knowledge
revision takes longer to find the optimal policy, around 1000 episodes on most cases apart from
Pharos Ascend where it takes more than 4000 episodes to start improving, while the agent receiv-
ing no shaping is not able to overcome the problem of non-determinism and cannot reach a good

enough policy within the time frame shown in the graphs. As the theory suggests all agents are
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able to reach the same performance after episode 15000 but the benefits of using reward shaping
and knowledge revision are visible especially at the start of the experiments.

While it is very difficult to report the revisions that are taking place when using abstract
MDP reward shaping, mainly because there is constant updating of beliefs until the end of an
experiment, it was still possible to extract the final MDP after each experiment and compare it
against the correct MDP for each scenario. In both the flag-collection domain and the Micro
UAV problem the agent managed to revise the values in the MDP and end up with similar values
as those in the correct MDP. However, there were cases where certain values differed but not so
much so as to cause the performance to drop. It is also worth noting that in contrast to plan-
based reward shaping, where it is not possible for the agent to revise correct information, in the
abstract MDP case the agent revises everything according to its experiences which are based on
exploration. This means that the agent could potentially revise out beliefs that are correct and
could prove beneficial to its performance. Nevertheless, this was not witnessed in any of the
experiments that were performed in this thesis and the agent still managed to revise the values of

the MDP close to correct values.

4.6 Non-Grid World Domains

This chapter demonstrated the use of knowledge revision when using abstract MDP reward shap-
ing. This was demonstrated in the flag-collection domain and a Micro UAV problem. Both these
domains however are grid world domains and while they do pose quite a few challenges it would
be useful to evaluate this algorithm to a domain which is not a grid world. This is left as future
work but this section will present how we could move to different environments.

It is our belief that knowledge revision with abstract MDP reward shaping can be successfully
applied to a wide variety of domains. In particular, any domain that can be expressed as an
MDP should be a suitable application for this method as long as the algorithm’s assumption is
maintained i.e. to implement abstract MDP reward shaping with knowledge revision we must
assume an abstract high level knowledge and a direct translation of the low level states to the
abstract high level MDP states.

The steps to implement abstract MDP reward shaping in non-grid world domains follow the
same order that is presented in this thesis. Once a suitable state and action abstraction has been
devised, they can be used to solve an abstract MDP with the value function used to shape the
agent’s decisions.

As an example consider the Starcraft scenario that is presented in Section which is a
qualitatively different domain compared to the flag-collection and Micro UAV domains. The
same state and action abstraction can be used in order to form a MDP which later is solved
and its resulting value function used for shaping. Given the Starcraft domain, a sample shaping
function that we would expect to see is shown in Figure f.20| with the value of each state shown

in the right.



Section 4.7 Conclusion 95

have (Barracks) 30

have (Factory , Barracks) 44
have(Starport ,Science Facility) 23
have(Science Facility , Physics Lab) 15

Figure 4.20: Sample Starcraft Abstract MDP

Following these steps should enable the application of abstract MDP reward shaping to other
classes of domains which are not grid worlds. Hopefully the Starcraft example provided in this
section has helped the reader understand and implement abstract MDP reward shaping to any

domain that can be expressed as an MDP while maintaining the assumptions set in this chapter.

4.7 Conclusion

In conclusion, it was demonstrated that knowledge revision algorithms can be designed to be
used in conjunction with abstract MDP reward shaping. Assuming that domain knowledge is
always perfect is often unrealistic and this chapter documented the adverse effects it can have
when it is not dealt with efficiently even in non-deterministic environments.

It was demonstrated empirically that using knowledge revision can help an agent revise the
erroneous parts of the provided domain knowledge and benefit from more accurate shaping in
two different environments; the flag collection domain and a Micro UAV problem. It was shown
that the agent using abstract MDP reward shaping reached the same performance as the agent
using plan-based reward shaping with knowledge revision when both agents are provided with
erroneous knowledge.

In addition it was demonstrated that the abstract MDP agent can efficiently deal with non-
deterministic environment and is able to overcome the problem of erroneous domain knowledge
via revision and thus benefit from more accurate shaping.

Moreover many of the assumptions that make plan-based reward shaping with knowledge
revision feasible have been eliminated in knowledge revision with abstract MDPs.

Despite the contributions this research is not without limitations. The main disadvantage of
using abstract MDPs is the parameter configuration. There is no research yet that dictates how
abstract MDPs should be set and is thus left to find the correct settings through experimentation.
This is something which is not present in plan-based reward shaping as it is much easier to design
a reward function using that method; all it takes is a start state, actions and effects, and a goal
state.

In addition, the size of the MDP can grow very large in size as the environments get lar-
ger. Some of the MDPs contained more than 100000 states and took more than 5 minutes to be
solved, with the upper bound being 17 minutes in the experiments reported in this thesis, and this
can potentially make it difficult to use when scaling to more complex domains. Automatically

generating all the possible states can reach a complexity of n® or more depending on the imple-
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mentation and the environment but this limitation is perhaps more interesting from an algorithmic
complexity point of view.
Despite these drawbacks abstract MDPs provide the means to use reward shaping with know-

ledge revision efficiently in stochastic environments.



CHAPTER B

Abstract MDP Reward Shaping in Multi-Agent RL

Chapters [3] and ] presented how reward shaping and knowledge revision can be used in a single
agent environment when provided with erroneous knowledge. This chapter presents some initial
results in a multi-agent scenario and how reward shaping can be used for conflict resolution.

Previous research demonstrated the use of plan-based reward shaping for multi-agent rein-
forcement learning (Devlin and Kudenko|2012b). This method uses STRIPS planning to generate
a potential function in order to shape the agents. The generation of multi-agent plans can occur
within one centralised agent or spread amongst a number of agents (Rosenschein||1982} Ziparo
2005). The centralised approach benefits from full observation making it able to, where possible,
satisfy all agents’ goals without conflict. However, this approach requires sharing of information,
such as goals and abilities, that agents in a multi-agent system often will not want to share.

The alternative approach, allowing each agent to make their own plans, will tend to generate
conflicting plans. This can have an impact in behaviour with the agents not being able to co-
ordinate efficiently (Devlin and Kudenko|2012b) and fail to reach a good enough policy similar
to that of receiving joint plans. Many methods of co-ordination have been attempted including,
amongst others, social laws (Shoham and Tennenholtz||1995), negotiation (Ziparo|2005) and
contingency planning (Peot and Smith|{1992) but still this remains an ongoing area of active
research.

I am interested in those settings where information sharing is not allowed and the agents are
agnostic to other learning entities acting in the environment.

This chapter proposes the use of a modified version of abstract MDPs for reward shaping
in Multi-Agent RL (MARL). It demonstrates empirically that the agents using abstract MDP

97
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reward shaping despite receiving decentralised shaping which contains conflicting goals, manage
to efficiently overcome them and coordinate to learn a much better policy compared to the agents
using plan-based reward shaping, which fail to do so. It is shown that abstract MDPs as a reward
shaping function can be used in decentralised planning for decentralised agents as a means of

coordination.

5.1 Multi-Agent RL

Multi-Agent RL, as the name suggests, is the deployment of multiple RL agents in the same
environment. As with single agent RL the agents can learn to improve their performance through
repeated interactions with the environment (Sutton and Barto||{1998). In addition multi-agent RL
agents can potentially share experiences amongst them which can benefit weaker agents that can
mimic an expert (Tan|1993).

One of the problems in single-agent RL is also one of the more prominent problems in multi-
agent RL; the state-space explosion. With the addition of multiple agents this problem becomes
worse in multi-agent RL as each agent adds its own variables to the joint state-action space. Each
time an agent is added there is an exponential increase in the observable features.

One implication of MA learning is that the environment is no longer static as is mostly the
case in single-agent RL. In addition, as the transition probability function is now dependent on
the joint action, if an agent can observe only its own action then the Markov property does not
hold.

Given these difficulties it would be better for agents to co-ordinate, but achieve co-ordination
while following their independent goals can be challenging.

In RL multi-agent systems are often modelled as a generalisation of MDPs, stochastic games(SG).
A SG of n agents is a 2n + 2 — tuple < S, A1, ..., A, T, Ry, ..., R, > where (Busoniu et al.
2008):

* S is the state-space.

It defines the set of possible states;

* A, is the action-space of agent .

It defines the set of possible actions;

* T is the transition model: T'(s, a, s’) = Pr(s'|s,a).

It defines the probability of reaching state s’ when in s, after performing joint-action a;

* R, is the reward function of agent i: R(s,a,s’) = R.
The numerical feedback provided by the environment when the agent transitions to state s’

after performing joint-action a in state s.

The nature of a SG can be co-operative, competitive or a mixture of both. In co-operative

games the reward function for all agents is the same. In games which are competitive, the sum
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of rewards received for each pair of states and joint actions is zero. SGs with a mixture of both

elements are known as general sum games.

Unlike MDPs where there is a clear, single optimal policy, SGs do not follow the same
principle. There can be multiple policies as some trade offs between the agents’ goals need
to occur. The typical solution preferred by the community is to converge to a Nash equilibrium

and specifically the Pareto optimal Nash equilibrium.

A Nash equilibrium is a joint-strategy in which no agent has an incentive to change their own
strategy assuming all other agents will stick to their current action selection mechanism (Nash
1951). It can be pure i.e. each agent will always play the same action, or it can be mixed where

each action is chosen with a certain probability.

Formally a joint policy 7V ¥ is a Nash equilibrium if:
Viel...n,m € ;| Ri(xNP unNE) > Ry(m; unlE) (5.1

where n is the number of agents, 1I; is the set of all possible policies of agent ¢, R; is the
NE
(2

agents except agent i. If this inequality holds for all agents, the joint policy 7% of each agent

reward function of agent 4, 7V is a specific policy of agent i and V¥ is the joint policy of all

following its own policy 7N ¥ is a Nash equilibrium.

5.2 Multi-Agent Potential-Based Reward Shaping (MA-PBRS)

Reward shaping, as mentioned earlier, is a method for imparting domain knowledge to RL agents
so as to improve learning. So far this thesis has discussed PBRS within the context of single-agent
RL giving focus to the theoretical guarantees. To re-iterate, to avoid the problems of changing
the optimal policy by providing additional rewards Ng et al.| (1999) proposed the use of PBRS.
PBRS defines the additional rewards that an agent receives as the difference of some potential

function ® defined over a source s and a destination state s’. More formally:
F(s,8') =~®(s") — ®(s) (5.2)

where v must be the same discount factor as used in the agent’s update rule. The potential
function is a representation of the designer’s, or domain expert’s preference regarding specific
states. If the provided knowledge is correct, then PBRS will encourage the agent to move towards

the goal.

PBRS, defined according to Equation [5.2] has been proven to not alter the optimal policy of
a single agent in both infinite- and finite- state MDPs (Ng et al.|1999).

Wiewiora et al.| (2003)) proved that PBRS is equivalent to Q-table initialisation i.e. an agent

using PBRS and an agent with no shaping, but initialised with the same potential function of the
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PBRS agent, will exhibit the same behaviour. Figure [2.5]shows the typical behaviour of an agent

receiving PBRS, presuming a good heuristic.

Devlin and Kudenko| (201 1) proved that the theoretical guarantees of single-agent PBRS also
hold in the multi-agent case. Specifically, MA-PBRS is equivalent to Q-table initialisation and

also guarantees to maintain constant Nash equilibria.

As most of the work discussed in this thesis modifies the reward shaping function overtime, it
is worth noting that recent work on potential-based reward shaping, has removed the assumptions
of a static potential function from the original proof with the existing guarantees maintained even
with a dynamic potential function regarding the constant Nash Equilibria (Devlin and Kudenko
2012a). MA-PBRS however is no longer equivalent to Q-table initialisation when using a dy-
namic potential function since if the Q-table is initialised with the potential of states before the

experiment starts, future changes in potentials are not accounted for.

5.3 Experimental Design

Evaluation Domain

Evaluation of the reward shaping algorithms takes place on an extended version of the navigation
maze problem, the flag collection domain which has been presented previously. In this multi-
agent case however there is not only a single agent acting in the environment. Figure [5.1] shows
the configuration of the maze with one agent starting at S1 and agent two starting at S2. From
this they must decide to move up, down, left or right and will deterministically complete their
move provided they do not collide with a wall. Regardless of the number of flags collected, the
scenario ends when both agents reach the goal position. At this time both the agents receive the

same rewards which is equal to one hundred times the number of flags which were collected.

Figure shows the layout of a simple version of the domain in which rooms are labelled
RoomA-E and HallA-B, flags are labelled A-F, S1 and S2 are the starting positions of the

agents and G is the goal position.

5.3.1 Results

A series of experiments were conducted in order to assess the performance of the abstract MDP
reward shaping method for MARL. The agent is compared against an agent using plan-based

reward shaping. The comparison is based on the performance in terms of discounted goal reward.

In order to be fair when comparing the two approaches, the same state abstraction function

and options/actions are used both in the plan-based and abstract MDP methods.

In all experiments, the scaling factor of the abstract MDP method was set to:

w = MaxReward/NumStatesInM DP (5.3)



Section 5.3 Experimental Design 101

RoomA Al RoomB RoomE

HallA HallB
S1 S2
RoomD
D
RoomC
C
o

Figure 5.1: Multi-Agent Flag Collection Domain.

and the scaling factor of the plan-based method to:
w = MaxReward/NumStepsInPlan 5.4

As the scaling factor affects how likely the agent is to follow the heuristic knowledge, maintaining
a constant maximum across all heuristics compared ensures a fair comparison. For environments
with an unknown maximum reward the scaling factor w can be set experimentally or based on
the designer’s confidence in the heuristic.

All agents implemented SARSA with e—greedy action selection and eligibility traces (Sutton
and Barto||1998)). For all experiments, the agents’ parameters were set such that o = 0.1, v =
0.99, ¢ = 0.3 and A = 0.4. The experiments were run for 30 iterations each lasting 50,000
episodes.

For clarity all the graphs only display results up to 20000 episodes, after this time no signific-
ant change in behaviour occurred in any of the experiments. The graphs also include error bars
showing the standard error of the mean.

The agents are tested in the flag collection domain described earlier and shown in Figure
In addition two scaled up versions of this maze are used; a maze with 12 flags and 7 rooms and
amaze with 12 flags and 12 rooms. As mentioned earlier, I am interested in those settings where
information sharing is not allowed and the agents are agnostic to other learning entities in the
environment. To set an upper bound on performance however, a setting in which agents receive

plan-based reward shaping from a joint-plan generated by a centralised agent is included.
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Figure 5.2: Joint-Plan for Agent 1

MOVE( hallA ,roomA)
TAKE( flagA ,roomA)
MOVE(roomA , hallA)
MOVE(hallA , hallB)
MOVE( hallB ,roomB)
TAKE( flagB ,roomB)
MOVE(roomB , hallB)
MOVE( hallB , hallA)

Figure 5.3: Joint-Plan for Agent 2

TAKE( flagF ,roomE)
TAKE( flagE ,roomE)
MOVE(roomE , roomC)
TAKE( flagC ,roomC)
MOVE(roomC , hallB)
MOVE(hallB , hallA)
MOVE( hallA ,roomD)
TAKE(flagD ,roomD)

Chapter 5

MOVE( hallA ,roomD)

Given this domain, the joint-plan of both agents that serves as an upper bound is shown in
Figure [5.2]and [5.3] and its state-based transformation in Figure[5.4|and[5.5] The individual plans
and value functions generated for the agents receiving decentralised shaping have been presented
before in Chapters [3|and[d] Figures[5.6] [5.7)and [5.8] show the performance of the agents.

robot_in_corridorA
robot_in_.roomA

robot_in_.roomA taken_flagA
robot_in_corridorA taken_flagA

robot_in_corridorB taken_flagA

0
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5 robot_.in_-roomB taken_flagA

6 robot_in_-roomB taken_flagA taken_flagB

7 robot_in_corridorB taken_flagA taken_flagB
8 robot_in_corridorA taken_flagA taken_flagB
9

robot_in_roomD taken_flagA taken_flagB
Figure 5.4: Joint State Plan for Agent 1
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robot_in_.roomC taken_flagF taken_flagE taken_flagC
robot_in_corridorB taken_flagF taken_flagE taken_flagC
robot_in_corridorA taken_flagF taken_flagE taken_flagC
robot_in_.roomD taken_flagF taken_flagE taken_flagC

00 N N Lt AW = O

robot_in_.roomD taken_flagF taken_flagE taken_flagC taken_flagD
Figure 5.5: Joint State Plan for Agent 2
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Figure 5.6: Multi-agent flag collection domain with 6 flags and 7 rooms.
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Figure 5.7: Multi-agent flag collection domain with 12 flags and 7 rooms.
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Figure 5.8: Multi-agent flag collection domain with 12 flags and 12 rooms.

The results show that the plan-based agent receiving individual shaping fails to reach a satis-
fying performance. Careful examination shows that the agents fail to coordinate and one of them
opts out and heads to the goal location, while the other agent collects all the flags. This is due to
the way plan-based shaping provides extra rewards. Certain goals in the plan cannot be satisfied
and as a result only one agent is able to collect all the extra rewards and learn a better policy. A

typical behaviour exhibited through the experiments is shown in Figure[5.9]

More specifically, when both agents receive individual plans, they are guided to collect all the
flags that are present in the maze. The knowledge provided as a STRIPS plan contains a single
path to the goal, i.e. a succession of high level states the agent will have to go through. As a
result, if one of the steps cannot be satisfied by the agent, no other extra rewards can be given
after that point. Consider the case where the second agent has picked up £1agC. Any steps in
the first agent’s plan which contain £1agC now cannot be satisfied and the agent is left without

any reward shaping after that point.

The agents receiving abstract MDP shaping manage to achieve a performance similar to
the agents receiving centralised shaping which contains joint-plans instead of individual and
is provided by a centralised planner. Since the agent is agnostic to other learning entities in the
environment, it follows that certain paths in the shaping function will not be encountered in sim-
ulation. For instance, consider that the second agent picks up flagE and flagF in the maze

shown in Figure this will have as a consequence the first agent never encountering those
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Figure 5.9: Typical behaviour of individual plan-based reward shaping.
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Figure 5.10: Typical behaviour of joint plan-based reward shaping and abstract MDP shaping.

states where it has collected those flags. This does not have any impact in the agent’s perform-
ance since there still exist other paths in the shaping function which lead to the goal position. This
is due to the fact that, contrary to the plan-based agent, the abstract MDP agent does not receive

only a single path to the goal since the value function contains all the possible states the agent can
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be in along with their values. Therefore, both agents are able to learn a much better policy than
the individual learners using plan-based shaping and the agents can cooperate efficiently without
the need to use centralised shaping.

This behaviour of the abstract MDP agent is similar to that presented in the case of a single
agent receiving incorrect knowledge where there was no impact in performance. A multi-agent
scenario for individual shaping can be considered a special case of single agent learning where
an agent is receiving incorrect domain knowledge. The difference here is not that certain ele-
ments are not present in the environment, but that a second agent is simultaneously acting in the
environment thus changing its dynamics. A typical behaviour of both joint plan-based shaping

and abstract MDP shaping can be seen in Figure[5.10]

5.4 Conclusion

This chapter presented the use of abstract MDP reward shaping in multi-agent RL and showed
how it can be used for conflict resolution and co-ordination. The agent was compared to an agent
receiving individual plan-based reward shaping and an agent receiving joint plan-based reward
shaping.

It was demonstrated empirically that the abstract MDP agents can learn to co-operate effi-
ciently and eliminate conflicting goals while the plan-based method cannot reach similar per-
formance. This difference in performance is attributed to the type of knowledge provided by
the two methods. While both are considered decentralised methods for reward shaping, abstract
MDPs provide multiple paths to the goal when the plan-based method provides only a single path
and has a direct impact in performance due to the conflicting goals.

In addition the agent was scaled to a maze with 12 flags and 7 rooms and a maze with 12 flags
and 12 rooms and it was shown that the abstract MDP agent can still reach similar performance
to the agent receiving centralised shaping even in larger environments.

Therefore, abstract MDP reward shaping can be used not only as a method to impart domain
knowledge in MARL, but also as a means of conflict resolution and cooperation in decentralised
reward shaping.

There is however a major drawback in this method and that is the MDP size. As mentioned
previously, the size of the abstract MDP can grow very large in size while scaling to more com-

plex domains and it can prove very difficult to use as it might take a long time to solve an MDP.



CHAPTER O

Conclusion and Future Work

To conclude I recall the hypothesis of this research presented earlier:

Adding knowledge revision capabilities to reinforcement learning agents utilising
reward shaping can alleviate the adverse effects of erroneous domain knowledge by
improving its quality and thus agents can reach a better overall performance in terms
of convergence speed and learnt policy compared to agents without knowledge revi-
sion and agents that receive no shaping. Agents without knowledge revision receiv-
ing erroneous knowledge may still reach a better performance than agents without

shaping.

In all the experiments presented in this thesis, it was demonstrated empirically that adding
knowledge revision to agents utilising reward shaping can lead to better performance when com-
pared to agents without knowledge revision. In order to show the adverse effects of erroneous
knowledge and how they can be overcome the following domains were used for experimental
evaluation: an extended version of a navigation domain, the flag-collection domain, a real-time
strategy game, Starcraft: BroodWar, and a Micro UAV domain, developed by our industrial col-
laborators at QinetiQ which represents a real world scenario.

The research was extended by expanding to non-deterministic environments through the use
of abstract MDP reward shaping with knowledge revision. It was demonstrated that even when

an agent is acting in a non-deterministic environment, knowledge revision can still be efficiently
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used in order to overcome erroneous knowledge and thus the agent is guided by more accurate
knowledge.

In a multi-agent scenario it was shown that abstract MDP reward shaping can be used not
only to guide agents, but also for conflict resolution in the cases where agents are provided with

decentralised shaping.

6.1 Summary of Contributions
The most significant contributions of this thesis can be summarised as follows:
Knowledge Revision in Plan-Based Reward Shaping

A series of experiments conducted in the flag-collection domain and in Starcraft:BroodWar
showed that using algorithms to handle revision in plan-based reward shaping can result in agents
being guided by more accurate reward shaping. As a result, agents with knowledge revision man-
aged to reach better policies faster when compared to agents that do not revise knowledge. These

results are documented in Chapter 3]
Knowledge Revision in Abstract MDP Reward Shaping

In Chapter 4 knowledge revision capabilities are incorporated to agents using abstract MDP re-
ward shaping. In a series of experiments conducted in the flag-collection domain, it is shown
that agents that constantly update the probabilities in the provided high level MDP can quickly
rectify the erroneous parts of the provided knowledge and thus benefit from better shaping. The
results show that the agents manage to reach a similar performance as agents using plan-based
reward shaping. More interestingly, abstract MDP shaping does not require revision in the cases
of incorrect knowledge. The multiple paths that reward the agent for moving closer to the goal

make the agent immune to this type of erroneous knowledge.
Extending to Non-Deterministic Environments

In addition to the flag-collection domain, the abstract MDP agent is also evaluated in a non-
deterministic environment to test its capabilities of dealing with a dynamic domain. In the Micro
UAV problem, the set of experiments that were conducted showed that the agent can efficiently
revise its knowledge even when challenged by the stochastic nature of the domain it is acting
in. Extending to non-deterministic environments is a very important step in making this research

applicable in a wide variety of domains. These results are documented in Chapter 4]
Conflict Resolution in Multi-Agent Reinforcement Learning

In Chapter [5| the agents using plan-based reward shaping and abstract MDP reward shaping are
compared in a multi-agent environment. When both agents are provided with decentralised shap-
ing, the plan-based method is hindered by conflicting goals and cannot reach a good enough joint

policy. On the other hand, due to the multiple paths that lead the agents to the goal, the abstract
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MDP method allows the agents to co-ordinate thus reaching a better joint policy, similar to agents

that receive centralised shaping.

6.2 Limitations

Despite the contributions mentioned in the previous section, this research does have limitations,
with some potential solutions discussed in Section the most important of which I will list

here:
Knowledge Verification in Plan-Based Reward Shaping

While knowledge verification can be very handy in order to determine whether a set of beliefs
needs to be revised, it quickly becomes impractical in large domains. DFS works well in small
domains but scaling to more complex ones will prove to be a daunting task. Even in environments
where search can be based on sensors, an agent should be able to handle noise. Therefore in
certain cases it might be better to skip knowledge verification altogether but risk revising correct
knowledge and as a result take longer to learn the optimal policy. As in many cases documented
in this thesis however erroneous knowledge can be better than no knowledge at all and the trade-

offs are up to the designer of the system to decide.
Dealing with Erroneous Plans in Terms of Order

Plan-based reward shaping agents with knowledge revision can very efficiently handle incorrect
and incomplete knowledge. However, when a plan is complete in terms of the sub-goals an agent
needs to achieve, but the order of the plan is wrong, the current design of this method will not be
able to detect it. The agent will start to learn how to complete the sub-goals set by the shaping
function, but might take longer to complete an episode by following a sub-optimal path. This
is not present in abstract MDP reward shaping as there is not a single path to the goal but all

possible states are considered and assigned a value by solving the MDP.
Plan-Based Reward Shaping with Revision in Non-Deterministic Environments

While abstract MDPs are more straightforward to use in non-deterministic environments, it
would be beneficial to design a method that would make plan-based reward shaping usable in

those domains for comparison purposes.
Parameter Configuration in Abstract MDP Reward Shaping

In the original work on using abstract MDPs for reward shaping there was no mention on how
to efficiently set the parameters of the high level MDP. In the experiments that were conducted it
was shown that this method requires parameter tuning as how one sets the parameters can make
or break an agent’s learning. In all experiments it was found that setting v to 0.9 resulted in better
shaping. This is due to the fact that the domains used in this thesis share a similar reward function.
Other domains might need further experimentation to find the sweet spot of the parameters and

that is not always feasible, especially in complex domains.
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Size of Abstract MDPs

Although abstract MDPs do provide the benefit of multiple paths, which as discussed result in
agent not needing to revise in the case or incorrect knowledge and also being able to co-ordinate
in a multi-agent setting, it is at the same time a curse. As the domains grow larger in size, so does
the abstract MDP and it might take a significant amount of time to solve it which might make the

method unusable in domains where time is critical.
More Agents in Conflict Resolution with Abstract MDPs

In the multi-agent setting the agents using abstract MDP reward shaping managed to co-ordinate
and reach a similar behaviour to agents receiving centralised shaping. However the evaluation
was conducted using only two agents. It would be beneficial to also evaluate the effects of

multiple agents acting in the same environment.

6.3 Future Work

Finally I will discuss what I believe would be beneficial to experiment and further investigate in
the work presented in this thesis.

Firstly, tackling non-deterministic environments using plan-based reward shaping would be
very beneficial to investigate due to the simplicity of constructing a knowledge-base using STRIPS.
STRIPS is a well understood and studied formalism and extending our approach to include prob-
abilities over beliefs in the provided knowledge base and cleverly updating them according to the
agent’s experiences in the low level environment, could potentially provide the same benefit as in
the abstract MDP reward shaping method while keeping the process of setting up relatively easy.

Secondly, it would be of great interest to explore how the abstract MDP method performs in
a non-grid world domain. The next step towards that direction would be to evaluate this method
in the SC:BW domain which is a qualitatively different domain compared to the flag-collection
or the Micro UAV domains which are both grid worlds. Successful evaluation would further
strengthen our view that the methods in this thesis are widely applicable.

Lastly, this research focused on two reward shaping methods to design knowledge revision
capabilities. As shown revision methods can be added to reward shaping functions but they need
to take into account the way that shaping operates e.g. literals in plan-based, transitions in abstract
MDPs. Extending the design principles mentioned in this thesis to alternative reward shaping

methods, not necessarily potential-based, is key for making it more accessible to researchers.

6.4 Closing Remarks

Imparting knowledge to RL agents can speed-up the learning process significantly. As research
is moving away from tabula-rasa approaches to more informed agents the problem of erroneous
domain knowledge needs to be addressed. Using knowledge revision principles to design agents

that can rectify erroneous domain knowledge and thus improve its quality, can lead to better



Section 6.4 Closing Remarks 111

overall performance both in terms of convergence speed as well as learnt policy. I hope by now
that the methods presented in this thesis are both easily understood and implemented by any
reader and that the design principles discussed can serve as a starting point to further extend it to

multiple reward shaping methods.
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AGM Alchourrén, Giardenfors and Makinson
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BWAPI Brood War API

RL Reinforcement Learning

MDP Markov Decision Process

KBRL Knowledge Based Reinforcement Learning
PBRS Potential Based Reward Shaping

HRL Hierarchical Reinforcement Learning

RRL Relational Reinforcement Learning

KR Knowledge Revision

SC:BW StarCraft: Broodwar

SCV Space Construction Unit

UAV Unmanned Air Vehicle

MA Multi-Agent

MARL Multi-Agent Reinforcement Learn
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MA-PBRS Multi-Agent Potential Based Reward Shaping
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