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Abstract 
 

 The phyllomanganate birnessite is the dominant Mn-bearing phase in oxic 

marine sediments and through coupled sorption and redox reactions exerts a strong 

control on the oceanic concentrations of micronutrient trace metals. However, during 

oxic diagenesis and under mild hydrothermal conditions, birnessite undergoes 

transformation to the tectomanganate todorokite. The mechanistic details of the 

transformation are important for the speciation and mobility of metals sequestered by 

birnessite, and are necessary in order to quantify the role of marine sediments in 

global trace element cycles.   

 This study provides new insight into the crystallization pathway and 

mechanism of todorokite formation from birnessite under conditions analogous to 

those found in marine diagenetic and hydrothermal settings. Using a combined 

approach employing X-ray diffraction, electron microscopy, infrared spectroscopy, X-

ray absorption spectroscopy and wet chemical methods, I propose a new four-stage 

process for the transformation of birnessite to todorokite, beginning with todorokite 

nucleation, then crystal growth from solution to form todorokite primary particles, 

followed by their self-assembly and oriented growth via oriented attachment to form 

crystalline todorokite laths, culminating in traditional crystal ripening.  Furthermore, the 

results of this study indicate that contrary to current understanding, the bioessential 

trace metal Ni impedes the transformation of birnessite to todorokite, and is eventually 

released into sediment porewaters. This mineralogical transformation may therefore 

provide a benthic flux of Ni and possibly other micronutrient trace metals to seawater. 

 Finally, I find that the uptake of Ni to the phyllomanganate birnessite under 

varying physiochemical conditions is accompanied by Ni stable isotope fractionation. 

During fractionation, the light Ni isotope is preferentially sorbed to birnessite, leaving 

the remaining solution heavy with respect to its Ni isotopic composition. These 

findings raise important questions about the mechanisms and processes responsible 

for the heavy δ60Ni isotopic compositions recently measured in marine 

ferromanganese-rich sediments. 
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Chapter 1 

Introduction 

 

 

1.1 Background information 

 

 The phyllomanganate birnessite is ubiquitous in marine ferromanganese-rich 

sediments (Post, 1999). This highly reactive nanophase is one of the strongest 

naturally occurring sorbents and oxidants in the environment (e.g. Tebo et al., 2005; 

Bargar et al., 2005), where it participates in a variety of coupled sorption and redox 

processes, to mediate the mobility, speciation and the bioavailability of trace elements 

in seawater and the associated sedimentary system (Goldberg 1954; Sparks et al., 

1999; Post, 1999; Spiro et al., 2010). Specifically in marine ferromanganese 

precipitates nickel (Ni) is found almost entirely incorporated into the birnessite 

structure (e.g. Peacock and Sherman, 2007a) where it is concentrated by around 106 

over its average concentration in seawater (Arrhenius, 1969). As birnessite 

scavenges key micronutrient trace elements including Ni from seawater over time, it 

not only plays an important role in regulating the trace metal chemistry of the oceans, 

but marine ferromanganese-rich sediments also provide a ready geochemical 

reservoir for trace metal chemical information over the entire history of their formation.  

 

 As a mineral phase, however, birnessite is highly transient and its reductive 

dissolution during of burial below the sediment-water interface, results in the release 

and remobilization of both highly soluble Mn(II) and scavenged trace metals to marine 

sediment pore waters. (e.g. Burdige, 1993; Calvert and Pedersen, 1996; Morford et 

al., 2005). In addition, during oxic sediment diagenesis and under low temperature 

hydrothermal conditions birnessite transforms into the tectomanganate todorokite 

(Bodei et al., 2007). The exact mechanistic details of this transformation process have 

remained largely unclear, but will ultimately determine the fate and mobility of trace 

metals sorbed to the authigenic birnessite phase. With regards to Ni, work so far has 

suggested that Ni may become structurally incorporated into the neo-formed 

todorokite phase either during or after birnessite transformation (e.g. Post and Bish, 



 2 

1988; Bodei et al., 2007), providing a permanent sink for Ni, and potentially other 

trace metals, in oxic marine sediments. Provided we understand the crystal nucleation 

and growth mechanisms involved in the formation of todorokite from birnessite, and 

the molecular-level mechanisms sequestering trace metals to both the birnessite and 

todorokite phases, then trace metal signatures recorded in ferromanganese-rich 

marine sediments could be used to reconstruct aspects of the chemical composition 

of seawater throughout the Earth’s history. 

  

 Accordingly, in recent years, transition metal stable isotope compositions 

recorded in marine sediments have become increasingly popular as a means of 

investigating marine biogeochemical processes and trace metal cycling, in both 

modern and ancient seawater (e.g. Anbar and Rouxel, 2007). However, one isotope 

system that has been significantly slower to develop is that of Ni stable isotopes 

(Cameron and Vance, 2014). Ni is now recognized as a key bioessential trace metal, 

which is required as a key nutrient for primary productivity in photosynthetic algae 

(Frausto de Silva and Williams, 2001; Dupont et al., 2010), and as a unique enzyme 

cofactor in the metabolism of methanogenic archea (Thauer et al., 1998; Cameron et 

al., 2009). As such, measurements of the concentration and isotopic compositions of 

Ni recorded in marine sediment archives offer significant potential as a tracer for 

investigating both modern and ancient biogeochemical processes (e.g. Cameron et 

al., 2009; Konhauser et al., 2009).   

 

 Although these transition metal isotope systems, including the Ni system, 

show promise as biogeochemical tracers, often little is known about the fundamental 

controls that give rise to the isotopic fractionations measured in marine sediments. 

For example, recent measurements of the δ60Ni isotopic composition of marine 

ferromanganese-rich crusts have revealed that these sediments are significantly 

heavier in their δ60Ni isotopic composition (0.7‰ - 2.5‰ per mil) than any other 

geological samples measured to date for their Ni isotopic composition (0.00‰ - 0.5‰) 

(Gall et al., 2013). Currently there is a lack of understanding of the processes that 

give rise to the heavy Ni isotopic compositions measured in ferromanganese crusts. 

Theoretically, the large positive fractionations measured in these sediments could be 

accounted for by the sorption and subsequent incorporation of Ni into the birnessite 

structure. However, Ni isotope fractionation associated with the sorption of Ni to 

birnessite has never been measured experimentally and quantified in the laboratory. 

Knowledge of the full controls on isotopic fractionations that occur during the 

adsorption of trace species to minerals in the environment is vital in order to 
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accurately predict isotope effects in new isotope systems, and interpret variations in 

isotopic signatures in natural samples. 

 

1.2 Research aims and objectives 

 

 In light of the above overview, the overarching aim of the current study is to 

further develop our understanding of manganese (Mn) oxide behaviour and the role of 

ferromanganese-rich marine sediments in the short- and long-term biogeochemical 

cycling of the bio-limiting trace metal Ni. 

As such, the specific research objectives of this thesis can be divided into 4 main 

areas: 

(1) Determine the mechanism of formation and growth of todorokite from 

birnessite under conditions analogous to those found in natural marine 

settings. 

(2) Determine the effect of Ni on the mechanism of formation and growth of 

todorokite from Ni-enriched birnessite under conditions analogous to those 

found in natural marine settings. 

(3) Determine the fate and mobility of Ni during the transformation of todorokite 

into birnessite under conditions analogous to those found in natural marine 

settings. 

(4) Determine the extent of Ni isotope fractionation during the experimental 

sorption of aqueous Ni to Mn oxides under varying physiochemical conditions. 
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1.3 Thesis outline 
 

 This thesis consists of seven chapters. This introductory chapter (chapter 1) is 

followed by chapter 2, which provides a detailed overview of the literature relevant to 

the current project. Chapter 3 contains a detailed description of the experimental and 

analytical methods used throughout this work. Chapter 3 is followed by 3 individual 

results chapters. Firstly, chapter 4 provides new insight into the mechanism of 

todorokite formation from birnessite, and the potential implications of the 

transformation mechanism for trace-metal cycling in ferromanganese-rich marine 

sediments. Chapter 5 determines the affects of Ni, sorbed to the precursor birnessite 

phase, on the transformation of birnessite to todorokite, and determines the fate and 

mobility of Ni during the birnessite to todorokite transformation in oxic marine 

sediments. Chapter 6 provides new information on Ni stable isotope fractionation 

during the experimental sorption of Ni to synthetic hexagonal birnessite, the precursor 

phase to todorokite in the marine environment. Finally, the results from chapters 4-6 

are summarized and discussed in chapter 7. This final chapter also discusses 

possible future work resulting from this PhD thesis. 
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Chapter 2 

 Literature review 
 

 

The following chapter summarizes the background literature relevant to this work. The 

chapter is divided into 6 major sections as follows: 

(1) The role of manganese minerals in trace-metal cycling 

(2) Manganese oxides in the marine environment 

(3) Manganese oxide precipitates in the marine environment 

(4) Birnessite and todorokite mineralogy 

(5) Sorption processes at the mineral-water interface 

(6) Oceanic biogeochemistry of Ni 

 

2.1 The role of manganese minerals in trace-metal cycling  
 

 Manganese oxides are widely abundant in both oxic marine and freshwater 

sediments, and in terrestrial soils (Burns 1976; Burns and Burns 1979; McKenzie 

1989; Post 1999). These highly reactive nanoparticulate phases are amongst the 

strongest naturally occurring oxidants, capable of oxidizing a whole host of redox 

sensitive elements and organic matter, including the oxidation of As (III) to As (IV) and 

As (V), and Cr (III) to Cr (VI) (e.g. Fendorf and Zasoski, 1992; Manceau and Charlet 

1992; Murray and Tebo, 2007). In addition to their strong oxidizing capacity, these 

phases have a strong affinity for the sorption of a wide variety of aqueous trace metal 

species including Ni (II), Cu (II), Co (II) Pb (II) and Zn (II) (e.g. Manceau et al., 1992; 

OʼReilly and Hochella 2003; Toner et al., 2006; Manceau et al., 2003; Peacock and 

Sherman; 2007a,b; Peacock, 2009; Sherman and Peacock 2010; Zhu et al., 2010). It 

is through this combination of coupled sorption and redox processes, that Mn oxides 

exert a primary control on the speciation, fate and mobility of trace-metal species and 

primary contaminants in both aqueous and terrestrial environments (e.g. Goldberg, 

1954; Cronan, 1976; Burns and Burns, 1979; Post, 1999; Toner et al., 2006; Peacock 

and Sherman, 2007a; Sherman and Peacock, 2010; Spiro et al., 2010). 
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2.2 Manganese oxides in the marine environment 

 

 Currently there are over 30 known natural and synthetic Mn oxide minerals, 

which display a diverse array of structural variations (Post et al., 1999). At present, 

the most extensive deposition of natural manganese oxide minerals occurs in oxic 

marine sediments (Crerar and Barnes 1974; Post 1999). The fundamental building 

block of these phases is the MnO6 octahedron, which in most cases assembles to 

form crystal structures of two principle types: (1) layer-type Mn oxides or 

‘phyllomanganates’ and (2) tunnel-type Mn oxides or ‘tectomanganates’ (Post et al., 

1992; Post 1999). Typically, Mn oxides are present in marine ferromanganese-rich 

sediments as extremely complex mixtures, in which they are intergrown and 

intermixed with a wide variety of other poorly crystalline oxy (hydr)oxide minerals 

(Post et al., 1992). As such, the identification and characterization of the manganese 

oxide phases has often proved challenging. The two most abundant Mn oxides in 

marine sediments, and therefore the primary concern in the context of the current 

study, are the phyllomanganate birnessite and the tectomanganate todorokite. 

 

2.3 Manganese oxide precipitates in the marine environment  

 

 Marine ferromanganese precipitates precipitate form oxic seawater and 

marine porewaters, and they are also found as dispersed phases throughout oxic 

sediments. In addition, marine ferromanganese precipitates form three discrete types 

of deposits throughout the world’s oceans, where they are generally classified as 

hydrogenetic, early diagenetic and hydrothermal deposits in order to reflect their 

formation environment and respective modes of accretion (e.g. Cronan, 1976; Hein et 

al., 1997; Usui and Glasby, 1998). Moreover, they exhibit distinct differences both in 

terms of mineralogy and trace element composition. A summary of the mineralogy, 

formation environment and Mn/Fe ratios of these three distinct types of 

ferromanganese precipitates is presented in Table 2.1.  

 

2.3.1 Hydrogenetic ferromanganese crusts 

  
 Hydrogenetic ferromanganese crusts are amongst the slowest growing 

geological precipitates on Earth with growth rates estimated to be in the region of 1 

mm/106 yr (Koschinsky and Hein, 2003). Crusts of hydrogenetic origin primarily form 
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in areas where sedimentation rates are extremely low, such as exposed rocks, 

plateaus, seamounts and other topographic highs. Their formation is attributed to the 

direct precipitation and aggregation of colloidal material from ambient seawater 

(Dymond et al., 1984; Joshima and Usui, 1998; Usui and Terashima, 1997). As 

hydrogenetic deposits accumulate on exposed surfaces, there is little or no direct 

input of trace metals from seafloor sediments hence, the chemistry of these 

precipitates closely reflects interactions with the surrounding water column (Peacock 

and Sherman, 2007b). Low Mn/Fe ratios, lower than average Ni and Cu 

concentrations, and particularly high Co and Pt concentrations are characteristic of 

crusts and nodules formed via hydrogenetic processes (Usui and Terashima, 1997). 

In terms of mineralogy, these deposits are rich in the poorly ordered phyllomanganate 

δMnO2 (Calvert and Price, 1970; Jauhari, 1987).  

 

2.3.2 Diagenetic ferromanganese nodules  

 

 Ferromanganese nodules of a diagenetic origin are typically formed at the 

sediment-water interface of pelagic sediments (Calvert and Price, 1977; Dymond et 

al., 1984). Bioturbation and continuous movement along the seabed gives rise to their 

spherical morphology (Somayajulu, 2000; Wang and Muller, 2009). In contrast to 

hydrogenetic deposits, the mineralogy of diagenetic nodules tends to consist of a mix 

of δMnO2, 10 Ǻ phyllomanganate phase (occasionally referred to as buserite in the 

literature) and the tectomanganate todorokite (Hein et al., 1997). In addition, chemical 

analysis usually shows particularly high Mn/Fe ratios (Bonatti et al., 1972; Dymond et 

al., 1984).  As the name suggests, the growth and trace-metal composition of 

diagenetic-type precipitates is largely controlled by early diagenetic processes within 

the sediments (Calvert and Price, 1977; Dymond et al., 1984). For example, the burial 

and subsequent decay of organic matter within the seafloor sediments gives rise to a 

predominantly reducing environment in the underlying sediment column. This redox 

gradient drives the release and movement of trace-metals through the sediment 

porewaters towards the higher redox potential zone at the sediment-water interface. 

Therefore, under suitable Eh-pH conditions, trace metals mobilized during sediment 

diagenesis may eventually become incorporated into the growing nodules. Like 

hydrogenetic type deposits, ferromanganese nodules formed through diagenetic 

processes have extremely slow growth rates, on the order of 10-50 mm/106yr 

(Dymond et al., 1984).  
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2.3.3 Hydrothermal ferromanganese-rich deposits  

 

 Hydrothermal precipitates are the most distinct type of ferromanganese 

deposit, as they are found strictly in volcanically active areas, such as submarine 

volcanoes, divergent plate margins and fracture zones (Usui and Glasby, 1998). They 

are typically characterised by high Mn/Fe ratios and typically lower than average 

transition element concentrations (Koschinsky and Hein, 2003). The mineralogy of 

hydrothermal FeMn-rich precipitates is usually dominated by the tectomanganate 

todorokite (Usui and Glasby, 1998; Hein et al., 1997). In addition, the growth rate of 

hydrothermal FeMn-rich manganese deposits is believed to be up to three orders of 

magnitude greater than deposits of hydrogenetic origin (Usui et al., 1989).  

 Table 2.1 Summary of the 3 major types of marine ferromanganese precipitates. 

 

2.4 Birnessite and todorokite mineralogy 
 

 Birnessite was first discovered and reported by Jones and Milne (1956) and 

has since been found to occur in a wide range of geological settings. In addition to 

being the major Mn bearing phase in oxic marine sediments and discrete 

hydrogenetic nodules and crusts (Calvert and Price, 1970; Chukrov, 1985; Jahuri, 

1987), birnessite is also ubiquitous in terrestrial soils (Manceau et al., 2002b). The 

basic birnessite crystal structure consists of stacks of infinitely wide phyllomanganate 

sheets, formed by edge sharing MnO6 octahedra (Post et al., 1992). Each sheet 

contains varying amounts of Mn(III)/Mn(IV) (Post, 1992; Drits et al., 1997). These 

phyllomanganate layers are separated by a hydrated interlayer region (~7 Ǻ) which 

typically hosts a variety of hydrated cation species including, Na, K and Mg (Post 

1999; Drits et al., 1997). Birnessites often show slight structural variations and are 

generally distinguished in terms of their crystallinity and long-range periodicity (Table 

2.2). For example, crystalline birnessites (Hx-birnessite -hexagonal crystalline 

Classification Formation environment Mineralogy Mn/Fe ratio 

Hydrogenetic Topographic highs δMnO2 Low 

Diagenetic Deep-sea abyssal plain δMnO2 & Todorokite Medium-High 

Hydrothermal Hydrothermal settings Todorokite High 
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birnessite), yield characteristic X-ray diffraction (XRD) peaks at ~7 Å [001], 3.6 Å 

[002], 2.4 Å and 1.4 Å (Drits et al, 1997). Whereas birnessites of poorer crystallinity, 

including ‘c-disordered’ birnessite and δMnO2 (also termed vernadite within the 

literature), exhibit fewer stacks of phyllomanganate sheets and therefore lack any long 

range ordering (Spiro et al., 2010; Peacock and Sherman, 2007a; Jones and Milne, 

1956). As a result, in these phases, the 7 Å and 3.6 Å peaks ([001] and [002] basal 

reflections, respectively) are often weak or absent altogether. In general, the long 

range ordering and crystallinity of synthetic birnessite varieties increases in the 

following order, δMnO2  ‘c-disordered’ birnessite  Hx-birnessite (Villalobos et al., 

2003). Studies have shown that naturally occurring birnessites are analogous to 

δMnO2 (Calvert and Price, 1970; Jauhari, 1987). However, as discussed above, the 

low crystallinity of δMnO2 and lack of long-range order gives rise to poor diffraction 

patterns. As such, varieties of higher crystalline birnessite such as Hx-birnessite are 

often favored for use in fundamental experimental studies. The determination of the 

exact crystal chemical formula of these different structural birnessite varieties has 

often proved difficult, primarily due to the fact that mixed valence Mn cations are 

typically present in the birnessite structure in varying proportions (Drits et al., 1997). 

However, a generic formula for birnessite was proposed by Drits et al., 1997 as [(Na 

Ca Mn2+) (Mn3+Mn4+) O14 2H2O]. 

 Synthetic birnessites prepared in the laboratory may have either hexagonal or 

triclinic layer symmetry. Hexagonal birnessites (e.g. Figure 2.1), including crystalline 

Hx-birnessite, ‘c-disordered’ birnessite and naturally occurring δMnO2, possess 

octahedral vacancies in the phyllomanganate sheets, which generate significant 

negative structural charge. Permenant structural charge may also be generated due 

to the substation of Mn4+ for lower valence cations (e.g. Mn3+, Ni2+,Cu2+ or Co3+) (e.g. 

Manceau et al., 1997; Silvester et al., 1997; Webb et al., 2005; Villalobos et al., 2006; 

Peacock and Sherman, 2007; Sherman and Peacock, 2010.  This charge deficit is 

compensated by the intercalation of hydrated and exchangeble metal cations (e.g. Na 

and Ca) into the birnessite interlayer region (e.g. Drits et al., 1997; Lanson et al., 

2008). Studies have suggested that highly crystalline Hx-birnessite may contain 

approximately 0.833 Mn cations plus 0.167 vacancies per layer octahedron (e.g. 

Silvester et al., 1997; Lanson et al., 2000). Furthermore, these layer vacancies are 

also thought to display long range ordering, appearing roughly in every third row of 

Mn cations across the birnessite [100] surface (Drits et al., 1997). More specifically 

according to Pauling bond strength predicted charges, an oxygen atom surrounding a 

birnessite vacancy site is typically coordinated directly to 2 Mn4+ atoms which gives a 
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bond valance of 2 x 4 / 6 = 1 1/3, and an excess charge of 2/3 (Pauling 1960; Appelo 

and Postma, 1999). In total, the 3 oxygen atoms that surround each vacancy site 

therefore carry an excess charge of 3 x 2 / 3 = 2. In the case where structural charge 

arises as a result of the presence of Mn3+ in the birnessite layer, oxygen atoms 

surrounding the Mn3+ atom will be coordinated directly to 2 Mn3+ atoms and a single 

Mn4+ atom. As such, the 3 oxygen atoms carry an excess charge of 3 x 1/3 = 1. 

Ultimately it is the presence of these layer vacancies that leads to the hexagonal layer 

symmetry displayed by Hx-birnessite, ‘c-disordered’ birnessite and δMnO2. 

Birnessites that express hexagonal layer symmetry and thus contain ordered cation 

vacancies display characteristic lattice parameters, where the ratio of the [100]/[110] 

reflections (i.e. the a/b ratio) is approximately equal to √3 (Drits et al., 1997; Lanson et 

al., 2000; Villalobos et al., 2003). The overall structure of hexagonal birnessite is 

dominated by the basal plane of the phyllomanganate sheets ([001] surface), on 

which there are three doubly coordinated O atoms in association with each Mn2O 

vacancy site. In turn, the edges of the phyllomanganate sheets ([100] surface) are 

dominated by singly coordinated O atoms of the MnOH functional group (Peacock 

and Sherman, 2007b).  

 In triclinic birnessites (often termed Tc-birnessite), triclinic symmetry arises 

due to the fact that all octahedral layer positions are filled with either Mn4+  or Mn3+ 

cations, which gives rise to steric strain within the phyllomanganate layer (Drits et al., 

1997). As such, triclinic birnessites are free of layer vacancies and structural layer 

charge is generated by the substitution of Mn4+ for Mn3+ cations (Drits et al., 1997; 

Appelo and Postma, 1999). Reactive surface sites on Tc-birnessite are limited to the 

MnOH sites that are located along the edges of the phyllomanganate sheets. 

Birnessites that possess triclinic symmetry are rarely found in the natural 

environment, and in particular, birnessites found in marine sediments and deep-sea 

ferromanganese precipitates are almost always of the hexagonal variety. Birnessites 

with a 10 Å interlayer spacing are also common in marine ferromanganese-rich 

sediments and are frequently referred to as buserite within the literature (Giovanoli, 

1971). In these samples the 10 Å layer spacing arises due to an additional layer of 

water within the interlayer. 
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____________________________________________________________________

Figure 2.1 Structural representations of (a) Hexagonal birnessite and (b) Triclinic 

birnessite. 

 Tunnel-type manganese oxides include the mineral todorokite (occasionally 

referred to as 10 Å manganite within the literature) (Figure 2.2). The mineral was first 

discovered at the todoroki mine in Japan (Yoshimura, 1934; Giovanoli, 1985) and has 

since been identified as one of the primary Mn bearing phases in marine 

ferromanganese-rich precipitates of both diagenetic and hydrothermal origin (e.g. 

Usui and Terashima, 1997). The overall todorokite structure is comprised of triple 

chains of edge-sharing MnO6 octahedra. These are linked by shared corners into a 

3D framework, which in ideal todorokite samples is permeated by 3x3 octahedra-wide 

rectangular tunnels of infinite length in the b* direction (i.e. along the direction of 

tunnel growth) (Post 1999). The tunnel structure of todorokite was initially proposed 

by Turner and Buseck (1981) and eventually confirmed by Post and Bish (1988) after 

a detailed structural refinement study. Its important to note that the proposed (3x3) 

tunnel dimensions are highly idealized and various high resolution transmission 

electron microscopy studies (HRTEM) on natural and synthetic todorokite samples 

have shown that tunnels are often defective in the a* direction and frequently display 

tunnel width disorders (Burns et al., 1985; Post and Bish, 1988; Bodeï et al., 2007; Xu 

et al., 2010). Tunnel dimensions more commonly range from (3x2) up to (3x8) 

octahedra. It is therefore more appropriate to express the tunnel dimensions of 

todorokite as (3xn). Various hydrated species are believed to occupy the tunnel 

apertures of natural todorokite. However, the exact nature of the species varies 

depending on the formation environment. For example, marine todorokites are 

typically Mg-rich, where as freshwater todorokites are Ca-rich and terrestrial 

todorokite samples tend to be Ba and Ca-rich (Appelo and Postma, 1996; Rezaei et 

al., 2005).  



 12 

____________________________________________________________________ 

Figure 2.2 Polyhedral representation of the tectomanganate todorokite. 

 Todorokite exhibits characteristic X-ray diffraction peaks at ~10 Å and ~4.8 Å 

which correspond to the [100] and [002] reflections respectively (Bodei et al., 2007; 

Peacock and Sherman, 2007a; Spiro et al., 2010). Similarities in the diffraction 

features of todorokite and 10 Å birnessite has often resulted in ambiguities in the 

interpretation of XRD data (Mellin and Lei, 1993). As such, other complementary 

techniques are usually required to distinguish between 10 Å birnessite and todorokite. 

For example, todorokite displays a distinctive fibrous morphology that is easily 

identifiable under the TEM or scanning electron microscope (SEM). Reactive sites on 

the surface of the todorokite structure consist of singly coordinated oxygen atoms of 

the MnOH sites, which are located at the edges of the MnO6 triple chains.  

 

Mineral Occurrence Layer Vacancies Crystal system 

δMnO2/Vernadite Natural & Synthetic Yes Hexagonal 

c-disordered birnessite Synthetic Yes Hexagonal 

Hexagonal birnessite Synthetic Yes Hexagonal 

Sodium birnessite Synthetic No Triclinic 

10 Å birnessite/buserite Natural & synthetic Yes Unknown 

Table 2.2. Table summarizing the natural and synthetic varieties of birnessite. 
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2.4.1 Birnessite formation  

 

 Naturally occurring birnessites are precipitated as a direct result of the 

microbially-mediated oxidation of aqueous Mn (II) (e.g. Francis and Tebo, 1999; 

Brouwers, 2000; Francis et al., 2001; Bargar et al., 2005; Tebo et al., 2005; Webb et 

al., 2005a; Webb et al., 2005b; Saratovsky et al., 2006; Spiro et al., 2010). Morgan 

(1964) has studied the oxidation of manganese (II) extensively, and although the 

process is both thermodynamically favourable and autocatalytic, the reaction is 

kinetically slow at circumneutral pH. Manganese (II) oxidising microorganisms, 

primarily bacteria and fungi, are believed to enhance the rate of Mn (II) oxidation by 

up to 5 orders of magnitude relative to abiotic oxidation (Hastings and Emerson, 1986; 

Tebo et al., 2005). To date, various strains of Mn(II) oxidizing bacteria and fungi have 

been isolated from a wide variety of geological settings (Krumbein and Jens, 1981; 

Adams and Ghiorse, 1987; Tebo et al., 2005; Templeton et al., 2005; Dick et al., 

2006; Hansel and Francis, 2006; Miyata et al., 2006; Cahyani et al., 2009). In 

particular, these species appear to be prevalent in areas where Mn cycling is rapid 

and there is an abundance of reduced Mn (II) such as, deep-sea hydrothermal vent 

systems and oxic/anoxic transition zones in pelagic sediments (Villalobos et al., 2003; 

Tebo et al., 2005; Spiro et al., 2010). In addition, Mn (II) oxidising bacteria are also 

phyllogentically diverse and recent studies have shown that the marine bacterium 

Bacillus sp. strain SG-1, Roseobacter sp. AzwK-3b, and the freshwater bacteria 

Pseudomonas putida strain MnB1 and Leptothrix discophora SP-6 all readily oxidise 

Mn (II) (Bargar et al., 2000; Villalobos et al., 2003; Webb et al., 2005; Saratovsky et 

al., 2006; Learman et al., 2011). One of the most extensively studied and well-

characterised bacteria are the spore forming marine Bacillus sp. strain SG-1 (Tebo 

and He, 1999). First isolated from near-shore marine sediments off the coast of 

California (Nealson and Ford, 1980), it has since been demonstrated that the SG-1 

strain is capable of oxidising Mn (II) under a wide range of physiochemical conditions 

including temperatures ranging from 3-70°C, ionic strengths analogous to seawater 

and in the presence of nanomolar concentrations of metals (Francis and Tebo, 2002). 

Experimental studies have demonstrated that birnessites produced by Mn oxidising 

bacteria, including the marine Bacillus sp. SG-1, are initially extremely poorly ordered 

and highly defective, consisting of single randomly orientated phyllomanganate sheets 

with octahedral vacancies and limited stacking. As such, they are structurally very 

similar to δMnO2 (Bargar et al., 2005; Webb et al., 2005). This initial phase is then 

believed to further crystallize abioticaly to form a more stable and ordered structure 

(Bargar et al., 2005; Webb et al., 2005). 
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2.4.2 Todorokite formation 
 

 At present, there is little direct experimental evidence indicating that todorokite 

is formed in the natural marine environment as a direct product of biotic Mn (II) 

oxidation. Instead, it is widely believed that todorokite forms in situ, via the topotactic 

transformation of a layer-type Mn oxide precursor such as δMnO2 during the early 

stages of sediment diagenesis (Burns and Burns, 1978a; Halbach et al., 1981; Bodeï 

et al., 2007). This assertion is thought to explain the intimate association of todorokite 

and birnessite in ferromanganese-rich marine sediments and has been widely 

supported by numerous lab-based studies (e.g. Bodeï et al., 2007). Furthermore, the 

only known route to synthesizing todorokite involves the use of a birnessite precursor 

(e.g. Golden et al., 1987; Shen et al., 1992; Ching et al., 1999; Luo et al., 1999; Feng 

et al., 2004; Cui et al., 2006; Feng et al., 2010). In marine diagenetic and 

hydrothermal settings, todorokite is typically found intimately intermixed with the 10 Ǻ 

variety of birnessite (buserite) (Bodeï et al., 2007). Thus suggesting that 10 Ǻ 

birnessite may be an important intermediate in the transformation of birnessite to 

todorokite. Indeed, laboratory based studies continue to support this idea. As 

discussed in section 2.4, both natural and synthetic todorokites are often defective in 

the a* direction. However, along the c* axis, tunnel widths remain consistent (3 

octahedra wide) as they are restricted by the layer dimensions of the 10 Ǻ birnessite 

intermediate phase. This feature provides additional evidence for the formation of 

todorokite via a 10 Ǻ birnessite intermediate phase.  

 Traditionally, synthesis of todorokite in the lab proceeds via the suspension of 

7 Å triclinic Na-birnessite in a concentrated MgCl2 solution (~1 M) (e.g. Feng et al., 

2004). This ion exchange process expands the birnessite interlayer from ~7 Ǻ to ~10 

Å. In this case hydrated Mg acts as an ideal templating ion. With a diameter of ~8.6 Ǻ, 

it closely matches the required dimensions of the todorokite tunnels (i.e. 10 Ǻ in the 

diagonal direction) (Bodeï et al., 2007). Further to this, the apparent structure-

directing role of Mg and its relatively high concentration in seawater are thought to 

partly explain why todorokite is abundant in marine ferromanganese-rich sediments, 

but rarely present in terrestrial soils (Chukhrov and Gorshkov, 1981; Dixon and 

Skinner, 1992) or in freshwater sediments (Manceau et al., 2007a,b). Birnessite 

samples collected from terrestrial and freshwater environments typically contain 

relatively high concentrations of Ca as opposed to Mg (Taylor et al., 1964; Glover, 

1977; Chukhrov et al., 1980a, 1985; McKenzie, 1989; Bilinski et al., 2002; Manceau et 

al., 2007b) thus reflecting their respective concentrations in these settings (Appelo 
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and Postma, 1996; Andersen et al., 2005; Rezaei et al., 2005; Bodeï et al., 2007). 

Indeed, attempts to transform a Ca-rich birnessite phase to todorokite have failed 

(Golden et al., 1987). In the laboratory the 10 Å birnessite intermediate phase is 

subsequently heated to high temperatures and pressures to form todorokite (Golden 

et al., 1986; Shen et al., 1993; Tian et al., 1997; Vileno et al., 1998; Feng et al., 1998; 

Malinger et al., 2004). However, a major flaw with this traditional synthesis route is 

that triclinic Na-birnessite and the high temperature conditions traditionally applied 

during the synthesis procedure, have limited relevance to the marine environment. To 

date, there have been relatively few studies to address these crucial facts (Feng et al., 

2010).  

 

 

2.4.2.1 Physiochemical conditions influencing todorokite formation  

 

 The importance of Mn (III) present in the birnessite precursor for todorokite 

formation has become particularly apparent from recent laboratory based studies. For 

example, Cui et al. (2008) and Cui et al. (2009) attempted to synthesize todorokite 

from triclinic Na-birnessite with varying degrees of structural Mn (III). The Mn (III) 

content in the reaction was carefully controlled via the addition of the strong Mn (III) 

chelating agent sodium pyrophosphate to suspensions of Na-birnessite. Under pH 

conditions relevant to the marine environment (7-8), it was found that birnessites with 

an average Mn oxidation state of >3.8 could not be transformed to todorokite. This 

dependence on the presence of layer Mn (III) has also been alluded to in several 

other studies (Cui et al., 2006; Bodeï et al., 2007; Feng et al., 2010). These findings 

raise interesting questions surrounding the transformation of birnessite to todorokite in 

marine diagenetic and hydrothermal settings, as most natural birnessites have an 

average Mn oxidation state ~4.0 (e.g. Burns and Burns, 1977; Peacock and Sherman, 

2007; Peacock and Moon, 2012).  

 The significance of the Mn (III) content in the birnessite precursor is primarily 

linked to the Jahn-Teller distortion displayed by Mn (III) octahedra. As the electronic 

configuration of Mn (III) is orbitally degenerate (i.e. electrons are unequally distributed 

amongst orbitals of the same energy) the complex distorts in order to achieve a lower 

energy state (Figure 2.3). Consequently, the two Mn3+-O bonds along the z-axis are 

elongated and thus weaker than the other four Mn3+-O bonds. This weak bond along 

the z-axis is believed by several authors to aid the kinking of the phyllomanganate 

layers and the subsequent pillaring of the Mn triple chains that form the todorokite 
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tunnel-walls (Cui et al., 2006; Bodeï et al., 2007; Cui et al., 2008; Cui et al., 2009; 

Feng et al., 2010). Recently, Feng et al. (2004) successfully synthesised todorokite in 

24 hours at atmospheric pressure from a triclinic Na-birnessite precursor via a mild 

reflux procedure (100oC). In the marine environment, todorokite is most commonly 

associated with diagenetic and hydrothermal manganese deposits (Mellin & and Lei, 

1993; Usui and Someya, 1997). As such, this relatively new method is considered to 

better mimic the conditions under which natural marine todorokite forms.  

        

Figure 2.3 Crystal field splitting diagram for Mn(III). The unequal distribution of 

electrons amongst orbitals of similar energy gives rise to Jahn-Teller distortion of the 

Mn(III) octahedra. 

 More recently, Feng et al. (2010) synthesized todorokite from a layered 

biogenic manganese oxide, precipitated by the freshwater bacteria Pseudomonas 

putida strain MnB1. This hexagonal layered precursor was reportedly similar to poorly 

crystalline δMnO2. To date, this single study perhaps best represents natural marine 

todorokite formation. However, although extensive mineral characterization was 

undertaken on the birnessite precursor, the 10 Ǻ birnessite intermediate and all of the 

refluxed products, the study has several weaknesses and appears to be largely 

inconclusive. Firstly, the published XRD patterns lack clarity due to the highly 

disordered nature of the birnessite precursor. It is therefore difficult to interpret and 

evaluate any structural changes taking place over the course of the reflux process. 

For example, the XRD patterns of the reflux products do not show the characteristic 

10 Ǻ peak of todorokite. Secondly, the study does not use Fourier transform infrared 



 17 

(FT-IR) analysis to distinguish the birnessite precursor and intermediate phases from 

the subsequent reflux products. Tunnel-type Mn oxides display a characteristic broad 

peak at 761 cm-1 and are clearly distinguishable from layer-type birnessites (Kang et 

al., 2007). Considering the poor resolution of the XRD patterns presented in the work, 

FT-IR data would have been invaluable to the study and conclusively shown whether 

the refluxed products had indeed undergone transformation to todorokite. Lastly, HR-

TEM images of the final refluxed product suggest that the transformation of biogenic 

birnessite to todorokite is incomplete. On comparison of the TEM images, with those 

presented in other studies, the morphology of the final refluxed product appears to 

more closely resemble a layer-type birnessite as opposed to tunnel-type todorokite. 

The TEM images presented in the study also show that the refluxed product has a 

layer separation approximately equal to 5 Ǻ. Birnessites often displays a layer spacing 

of 5 Ǻ when viewed under the TEM, as the high vacuum conditions under the 

microscope can cause the phyllomanganate layer to collapse (Post and Veblen, 

1990). In contrast, the tunnel-structure of todorokite has a higher degree of structural 

stability in comparison to its phyllomanganate precursor. As such, the 10 Ǻ basal 

spacing is usually preserved and is not as susceptible to collapse. It is therefore 

plausible that the refluxed product presented in the study of Feng et al. (2010) is in 

fact predominantly birnessite. In light of the above study, it is crucial to obtain more 

resolved data to better constrain this environmentally important transformation 

mechanism.  

 

2.5 Sorption processes at the mineral-water interface 
 

 Sorption reactions at the mineral-water interface are fundamental in governing 

the speciation and mobility of trace-metals and contaminants in both aquatic and 

terrestrial environments (Sparks et al., 1999). Due to their ubiquity in soils and 

sediments, the interactions between oxide and oxyhydroxide mineral surfaces and 

dissolved aqueous species are perhaps the most environmentally significant. When in 

contact with aqueous solution the surface of metal oxy (hydr)oxides develop a net 

electrical charge due to the ionization of surface functional groups, with the exact sign 

and magnitude of the charge dependent on solution pH (Parks, 1990). The pH at 

which an oxide mineral surface possesses equal concentrations of positively and 

negatively charged surface sites (i.e. no surface net charge) is termed the point of 

zero charge (pHpzc). Above the PZC the oxide surface will typically posses a net 

negative charge and thus the sorption of cation species via electrostatic attraction is 
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favourable. Conversely, below the PZC the mineral surface will typically posses a net 

positive charge and thus the sorption of anion species via electrostatic attraction is 

favourable. The pHpzc is thus a fundamental parameter and can be determined 

experimentally via potentiometric titration. In the case of birnessite, measured values 

for the pHPZC range between pH 2.3 and pH 3.0 (Westall and Hohl, 1980; McKenzie, 

1981; Peacock, 2009). Unfortunately, the pHPZC for todorokite is less well constrained, 

but figures reported in the literature include pH 2.8 (Misaelides et al., 2002), pH 3.5 

(Feng et al., 2007) and pH 3.98 (Wen-Feng et al., 2008).  

 Sorption however, is a relatively general term used to describe a variety of 

different mechanisms by which a chemical species (the sorbate) may partition from 

aqueous solution to the solid phase (the sorbent) (Brown et al., 1995; Sparks et al., 

1999). In general, sorption complexes are classified as either outer-sphere complexes 

or inner-sphere complexes. The sorption of trace-metal species to a mineral surface 

may also lead to the eventual incorporation of the trace-species into the mineral 

structure. A schematic polyhedral representation of these surface complexes is 

presented in Figure 2.4. 

                   

____________________________________________________________________ 

Figure 2.4 Potential molecular-level sorption mechanisms at the oxy (hydr)oxide-

water interface. a) Outer-sphere sorption, b) Inner-sphere surface complexation and 

c) Structural incorporation. 
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2.5.1 Outer-sphere complexation 

 The formation of an outer-sphere complex occurs due to long-range coulombic 

forces between the hydrated ion and the mineral surface. In this case the sorbate ion 

is not bonded directly to the mineral surface and retains its full hydration sphere. 

Proximity to the mineral surface is maintained through purely electrostatic 

interactions. In general, sorption of the sorbate ion to the mineral surface is rapid but 

often transient. In addition, sorption is usually affected by the ionic strength of the 

background electrolyte solution. 

 

2.5.2 Inner-sphere complexation 

 

 The formation of an inner-sphere complex occurs through short-range 

electrostatic forces, during which the sorbate ion undergoes the loss of one or more of 

its waters of hydration to form a direct bond to the mineral surface. In this case 

bonding may occur in multiple configurations, for example, if the sorbate ion forms a 

single bond to the mineral surface it is said to form a monodentate complex, two 

bonds is described as bidentate and three bonds is a tridentate surface complex 

(Sparks et al., 1999). Ultimately inner-sphere complexes are much more stable than 

outer-sphere complexes and usually a change in either temperature or pH is required 

for the process to be reversed.  

 

2.5.3 Structural incorporation  

 

 Structural incorporation occurs when a chemical species becomes 

incorporated into the host crystal lattice of the sorbent phase without altering the bulk 

mineral structure. Generally, the sorbate ion is similar in size and exhibits the same 

valency as a structural ion. Incorporation of the sorbate species into the crystal 

structure may occur via the formation of a solid-solution either by co-precipitation or 

via solid-state diffusion (Brown et al., 1995). 

                    

 

 



 20 

2.5.4 Sorption of trace metals to birnessite and todorokite 

 

 As discussed previously, the uptake of trace-metals to birnessite and 

todorokite is a key mechanism in controlling the concentration of these species in 

seawater and the marine sedimentary system (Goldberg, 1954). The extent of trace-

metal scavenging by these phases is substantial enough that the mining of marine 

ferromanganese-rich precipitates for both transition metals and rare earth elements is 

now considered economically viable (Glasby, 2006; Wang and Muller, 2009).  

 Traditionally, macroscopic methods (e.g. batch sorption experiments and 

sorption isotherms) have been used to investigate and measure the uptake of trace-

metals and metalloids to Mn oxide surfaces, as a function of both solution pH and 

ionic strength (e.g. McKenzie, 1980; Green-Pederson et al., 1997; Peacock and 

Sherman 2007a; Meng et al., 2009). In general, the association of cation species with 

an oxide surface is negligible at low pH regimes, but increases with an increase in 

solution pH. A reversal of this behaviour is usually observed for anion species. 

Unfortunately, these macroscopic methods do not allow a precise description of the 

surface complexes that may be forming at the mineral surface (i.e. those presented in 

Figure 2.4). However, in recent years there has been a substantial amount of 

research directed towards understanding the molecular-level mechanisms of trace-

metal uptake to Mn oxides, and in particular to the phyllomanganate birnessite  (e.g. 

Burns 1976; Manceau et al., 1992; Manceau et al., 2002; O’Reilly and Hochella 2003; 

Toner et al., 2006; Peacock and Sherman, 2007 a,b; Peacock, 2009; Peña et al., 

2010; Zhu et al., 2010; Peña et al., 2011; Peacock and Moon, 2012; Yin et al., 2012). 

These studies have been significantly aided by advances in synchrotron based X-ray 

absorption spectroscopy (XAS). The technique has been applied extensively to study 

the speciation and probe the local coordination environment of trace-metals (e.g. Ni2+, 

Cu2+, Pb2+, Zn2+ and Tl) sorbed to natural birnessite in ferromanganese-rich sediments 

(e.g. Manceau et al., 2007b; Peacock and Sherman, 2007b; Peacock and Moon, 

2012), synthetic abiotic birnessite varieties (e.g. Peacock and Sherman 2007a; 

Peacock et al., 2009; Sherman and Peacock, 2010; Yin et al., 2012) and biogenic 

birnessite (e.g. Toner et al., 2006; Peña et al., 2010; Zhu et al., 2010; Peña et al., 

2011), under different physiochemical conditions. The unusually high affinity for trace-

metal sorption displayed by birnessite is largely attributed to the presence of 

manganese octahedral vacancies present on the birnessite [001] surface which act as 

extremely strong sites for cation sorption (Appelo and Postma, 1999; Manceau et al., 
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2002). This, coupled with a very high reactive surface area (typically > 100m2/g), 

means that birnessite is an extremely efficient sorbent of trace-metal species.  

 As the literature on this subject area is vast, the following discussion will give a 

brief overview of the literature on trace-metal uptake to Mn oxides, with a primary 

focus on the uptake of Ni to birnessite and todorokite. A schematic polyhedral 

diagram showing all of the potential sorption environments for Ni on birnessite and 

todorokite is presented in Figure 2.5. 

 Detailed molecular-level studies investigating the association of Ni2+, Cu2+ and 

Zn2+ with birnessite have shown that sorption to the birnessite surface occurs via the 

formation of strong inner-sphere triple corner-sharing (TCS) surface complexes, 

above and below manganese octahedral vacancy sites on the birnessite [001] surface 

(e.g. Manceau et al., 2002, 2007b; Toner et al., 2006; Kwon et al., 2009; Peña et al., 

2010; Sherman and Peacock, 2010). In addition to surface adsorption, Ni2+ and Cu2+ 

species may also become incorporated into the phyllomanganate layer to form edge-

sharing complexes (e.g. Peacock and Sherman 2007a; Peacock, 2009; Peña et al., 

2010; Sherman and Peacock, 2010). Analogously, studies on the uptake of Pb2+ to 

birnessite have also shown that Pb2+ forms strong inner-sphere complexes above and 

below octahedral vacancy sites, where it is sorbed predominantly as a TCS complex, 

particularly at low surface loadings. However, at higher surface loadings, it has been 

shown that Pb2+ may also sorb above/below vacancy sites as a triple edge-sharing 

(TES) complex. In distinct contrast to what has been reported for other trace-metal 

species, Pb2+ may also form a strong inner-sphere complex via sorption to birnessite 

particle edge sites, as either a double edge-sharing (DES) or a double corner-sharing 

(DCS) complex (Villalobos et al., 2005; Takahashi et al., 2007; Kwon et al., 2010). 

The sorption of Pb2+ to both octahedral vacancy sites and to lateral edge sites is 

believed to occur simultaneously, although sorption to the birnessite particle edges is 

thought to be the more prevalent sorption mechanism (Villalobos et al., 2005). 

 Specifically in the case of Ni, recent EXAFS based studies performed on 

synthetic birnessite varieties, including δMnO2, highly crystalline birnessite (Hx-

birnessite) and triclinic birnessite have shown that the uptake of Ni to birnessite is a 

complex function of both structural (i.e. presence of vacancy sites and reactive 

surface area) and physiochemical (i.e. pH) factors (Manceau et al., 2007b; Peacock 

and Sherman 2007a; Peacock, 2009; Zhu et al., 2010; Yin et al., 2012). For example, 

in triclinic birnessite all of the phyllomanganate layer positions are filled with either Mn 

(III) or Mn (IV) cation species (Drits et al., 1997). As such, Ni is found to sorb 
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predominantly to synthetic Tc-birnessite as a TCS complex at the birnessite particle 

edge sites. Where as, in hexagonal birnessite varieties (i.e. Hx-birnessite and 

δMnO2), Ni is sorbed predominantly above/below the octahedral vacancy sites as a 

strongly bound TCS complex (Peacock and Sherman 2007; Peña et al., 2009). 

Surface sorbed Ni2+ may also become progressively incorporated into the octahedral 

vacancy sites with increasing contact time, particularly under circumneutral pH 

conditions (Peacock et al., 2007; Peacock et al., 2009). For example, Peacock (2009) 

showed that the equilibration of birnessite with a Ni solution for 24 hrs resulted in 

approximately 90 % of the total Ni being complexed above/below vacancy sites, with 

the remaining 10 % structurally incorporated into the birnessite lattice. While 

equilibration for a further 16 days results in an increase in the amount of Ni 

incorporated into the birnessite structure, up to 30 %. These findings help explain 

recent EXAFS data obtained from natural ferromanganese crusts samples, which 

show that Ni is almost entirely incorporated into the birnessite structure in these 

precipitates (Manceau et al., 2007b; Peacock and Sherman, 2007b). The exact 

mechanism of Ni incorporation into birnessite is thought to be primarily a function of 

the rearrangement of surface adsorbed Ni (i.e. the formation of a solid-solution), as 

opposed to the direct incorporation of Ni into the birnessite crystal structure (Manceau 

et al., 2007b; Peacock and Sherman, 2007a; Peacock, 2009).  In addition to the 

progressive incorporation of Ni into the birnessite structure, lowering the pH from 

circumneutral to pH ~4.0, also results in a substantial decrease in the amount of Ni 

incorporated into the birnessite vacancy sites (Peacock et al., 2009). This reversible 

structural incorporation of Ni into birnessite raises questions over traditional theories 

that treat the structural incorporation of trace-metals into oxy (hydr)oxide minerals as 

a relatively permanent and stable sequestration within the Eh-pH field of the host 

mineral phase. These findings have potential environmental implications and 

consequences in terms of palaeoclimatic studies (Peacock, 2009). For example, 

studies are increasingly using trace-metal compositions in marine ferromanganese 

precipitates to reconstruct aspects of past seawater chemistry. These palaeo-proxies 

rely on the idea that trace-metals sorbed to precipitates and their resulting crystal 

chemistries remain stable after sorption. Clearly a detailed molecular-level 

understanding of physiochemical affects on trace-metal sequestration is needed if 

such proxies are to be used with confidence. 

 Currently there is substantially less information available within the literature 

regarding trace-metal uptake to todorokite, both in terms of macroscopic and 

molecular-level information. Although, it is known that tectomanganates offer 
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significantly fewer possibilities for trace-metal uptake than phyllomanganates. 

Phyllomanganates have a much higher concentration of both chemical and structural 

defects such as layer vacancies and stacking faults, thus phyllomanganate phases 

can sorb more trace-metals per unit weight than tectomanganate phases (Bodeï et al., 

2007). An early study by Post and Bish (1988), examining the todorokite structure 

suggested that large low valence cations such as Ni2+ could potentially be substituted 

for Mn within the octahedral sites at the edges of the todorokite triple chains. This 

hypothesis was postulated due to the fact that the Mn-O bond distances of the MnO6 

octahedra at the edge of the MnO6 triple chains are suspected to be longer than those 

in the middle of the structure. However, there has since been no direct evidence to 

support this assertion. Furthermore, detailed bulk analyses of diagenetic-type 

ferromanganese precipitates, containing intermixed birnessite and todorokite, typically 

show that the todorokite phase contains significantly less Ni than the intermixed 

birnessite from which it supposedly crystallized. For example, TEM-EDX analysis of a 

diagenetic-type ferromanganese precipitate by Siegel and Turner (1983) reports a 10 

Å birnessite phase containing ~3.8 % NiO, yet the associated neo-formed todorokite 

contains only ~0.2% NiO. Similarly, TEM-EDS analysis of a ferromanganese 

concretion collected from the South Pacific Ocean identified a 7 Å birnessite (δMnO2) 

phase, which contained approximately ~1 wt % Ni, while in comparison the 10 Å 

birnessite phase contained ~ 2.8 wt % Ni and the neo-formed todorokite only ~0.16 

wt% Ni (Bodei et al., 2007). Since birnessite is considered to transform to todorokite 

via a solid-phase topotactic transformation pathway, it is unclear why the 10 Å 

birnessite intermediate phase appears to concentrate significantly more Ni than the 

neo-formed todorokite. Furthermore, there is currently a lack of information on the 

exact molecular-level association of Ni, and indeed other trace-metal species, with 

both these phases during the transformation to todorokite.  
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Figure 2.5 Potential sorption mechanisms for Ni2+ on birnessite and todorokite. (a) 

Electrostatic outer-sphere sorption in the birnessite interlayer region and todorokite 

tunnel apertures. (b) Tridentate inner-sphere complexation above manganese 

vacancy sites on hexagonal birnessite. (c) Bidentate inner-sphere complexation to 

MnOH edge sites on hexagonal birnessite, triclinic birnessite and todorokite. (d) 

Structural incorporation. 

 

2.6 Oceanic biogeochemistry of Ni 

 

 In recent years trace-metal concentrations and isotopic compositions in 

seawater and in ferromanganese-rich ocean sediments have become increasingly 

used as tracers for biogeochemical processes in both the modern and ancient ocean 

(e.g. Anbar and Rouxel, 2007). Many of the first row transition metals are classed as 

biologically active elements, due to their unique biological roles as essential metal 

cofactors in metalloenzymes or as structural elements in proteins (Morel et al., 2003). 

Specifically with regards to Ni, the Ni-containing enzyme urease is utilized by marine 

phytoplankton in the hydrolysis of urea (CO(NH2)2) to produce NH4
+ and CO2 (Dupont 

et al., 2010). In short, marine phytoplankton are highly dependent on urease and thus 

in turn on Ni in order to successfully fix nitrogen (Frausto de Silva and Williams, 2001; 

Dupont et al., 2010). For example, culture studies have shown that when urease-

utilizing phytoplankton are grown using urea as a nitrogen source are deprived of Ni, 

the growth of theses organisms slow and eventually ceases (Price and Morel, 1991; 

Dupont et al., 2008; Dupont et al., 2010). In addition, Ni is also required as a key 

enzyme cofactor in the metabolism of methanogenic Archea, (Thauer et al., 1998; 
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Cameron et al., 2009; Fujii et al., 2011) with 3 out of the 7 known Ni containing 

enzymes found in methanogens (Watt and Ludden 1999). Although with regards to 

the modern day ocean, methanogenic processes are largely confined to anoxic basins 

and sediments, it has been recently suggested that changes in Ni concentrations in 

the ancient oceans may have played a pivotal role in the oxygenation of the early 

Earth (Konhauser et al., 2009). Through the study of banded iron formations 

Konhauser and co-workers observed a significant decline in molar Ni/Fe ratios ~2.7 

Gyr ago. During this time period, average oceanic Ni concentrations are thought to 

have fallen from around 400 nm during the Archaean to concentrations similar to 

those found in the world’s oceans today (~8-9 nm). It is believed that cooling of the 

upper-mantle during the late Archean led to a substantial decrease in seafloor 

volcanism, and thus ultimately a reduced flux of Ni into the Archean oceans 

(Konhauser et al., 2009). Such a catastrophic collapse in oceanic Ni concentrations is 

believed to have significantly disrupted methanogenic activity and thus in turn the 

production of methane, ultimately paving the way for a progressive rise in atmospheric 

oxygen levels (Konhauser et al., 2009). This study highlights the potential of Ni 

signatures recorded in marine sediments to offer insight into the co-evolution of ocean 

chemistry and life, and thus record key biogeochemical events.  

 In the modern ocean, Ni displays similar biogeochemical behaviour to many 

other trace-metal species (Bruland and Lohan, 2003; Cameron and Vance, 2014). 

Measurements of Ni distributions throughout the world’s oceans have shown that Ni 

displays a typical “nutrient-type” profile, with depleted concentrations in the surface 

waters (~3 nm/kg) reflecting its biological uptake (Dupont et al., 2010; Cameron and 

Vance 2014). In a similar manner to the major nutrients silica and phosphorus, Ni 

concentrations show a general increase with depth, up to ~ 5-12 nm/kg (Sclater et al., 

1977; Bruland 1980; Bruland and Lohan 2003). In terms of speciation, Ni is 

predominantly distributed between several inorganic species including, Ni2+, NiCl+, 

NiCl2, NiCO3, NiHCO3
+ and NiSO4, but it is likely that complexation to organic ligands 

also has a role in controlling the distribution of Ni in seawater (Turner et al., 1981; 

Byrne et al., 1988; Saito 2004; Turner and Martino, 2006; Vraspir and Butler, 2009). It 

has been calculated that, in the absence of organic ligands, dissolved Ni in seawater 

is present in approximately the following proportions, Ni2+ (47 %), NiCl+ and NiCl2 (34 

%), NiCO3 and NiHCO3
+ (14 %) (Turner et al., 1981).  

 Major inputs of Ni to the world’s oceans originate from two major sources. 

Firstly, Ni is associated with the products of continental weathering that subsequently 

enter the ocean via transport in groundwater and via the dissolved riverine load (e.g. 
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see Figure 2.6). Atmospheric inputs such as mineral dust and volcanic ash also 

provide a significant influx of Ni to seawater (Li and Schoonmaker, 2003). In fact it is 

thought that continental weathering and atmospheric inputs combined contribute to 

around 80 % of the annual Ni budget (Gailardet et al., 2003). In comparison, 

hydrothermal vent fluids are considered to provide a relatively minor source of Ni to 

the modern ocean, contributing to around 20 % of the annual Ni budget (Gailardet et 

al., 2003). 

             

__________________________________________________________________ 

Figure 2.6 Schematic representation of the sources and sinks of dissolved Ni 

including Ni fluxes calculated by Gall et al., 2013 (from Gall et al, 2013).  

  

 As discussed previously, a major sink for Ni in the world’s oceans is uptake to 

ferromanganese-rich crusts, specifically via sorption to the poorly crystalline Mn oxide 

birnessite (Koschinsky and Hein, 2003; Peacock and Sherman, 2007a).  A recent 

investigation by Gall et al. (2013) into the global variability of Ni isotopic compositions 

in these precipitates shows that marine ferromanganese crusts display a significantly 

heavier δ60Ni isotopic composition than any other geological samples reported in the 

literature to date. As illustrated in Figure 2.7, the measured crust samples display 

δ60Ni isotopic compositions that vary between +0.7 ‰ and +2.5 ‰, where as the δ60Ni 

isotopic compositions of other sediment samples measured thus far range between 

0.00 ‰ and +0.5 ‰. It therefore seems that the uptake of Ni to marine 

ferromanganese crusts, and thus sorption to birnessite, is accompanied by isotopic 

fractionation. Based on the fact that sorption of Ni to ferromanganese crusts is a 
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major sink for Ni in seawater, and appears to impart a significant isotopic 

fractionation, these results suggest that this sorption process might have a significant 

influence on the Ni isotopic composition of seawater. To date however, Ni isotopic 

fractionation associated with the uptake of Ni to birnessite has never been measured 

experimentally and quantified in the laboratory. 

     

             

___________________________________________________________________ 

Figure 2.7 Summary of the δ60Ni Isotopic composition of marine ferromanganese 

crust samples compared to the Ni isotopic composition of of geologiccal samples 

(from Gall et al., 2013). 

 

 Considering the fact that in ferromanganese-rich marine sediments Ni is found 

almost exclusively incorporated into the birnessite structure, then the heavy 60Ni 

isotopic composition measured in marine ferromanganese crusts seem to agree with 

stable isotope theory for equilibrium isotope fractionation (e.g. Schauble, 2004). 

Specifically, theory predicts that the heavy metal isotope should be enriched in the 

shortest and thus strongest bonding environment, which in this case should be 

provided via incorporation into the phyllomanganate structure. Positive isotope 

fractionations may also indicate a change in coordination environment during sorption. 

For example, in the case of Zn, which is 6-fold coordinated in seawater and 4-fold 

coordinated when sorbed to the birnessite surface, marine ferromanganese crust 

samples have been shown to display a heavy Zn isotopic composition of around 1.0 

‰ compared to deep seawater which displays a Zn isotopic composition of 0.5 ‰ 

(Little et al., 2014). Studies to date do not indicate a change in Ni coordination 

environment associated with sorption to the birnessite surface however (Peacock and 

Sherman, 2007a,b). Typically, Ni displays 6-fold coordination in solution, 6-fold 
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coordination when sorbed to the birnessite surface and 6-fold coordination when 

incorporated to the birnessite structure (Peacock and Sherman, 2007b). As such the 

large positive Ni isotope compositions of ferromanganese crusts are unlikely to be 

attributable to a change in Ni coordination during sorption. 

 The situation is complicated further as a result of a recent study by Cameron 

and Vance (2014), who present the first Ni isotope data for seawater and for the 

dissolved riverine load. Firstly, the study shows unequivocally that the Ni isotopic 

composition of the world’s oceans is strikingly homogeneous, both in terms of depth 

and in terms of spatial variability. For example, the reported isotopic composition of 

seawater collected from the Atlantic, Pacific and the Southern Oceans is equal to 

+1.44 ‰ with standard deviations of only +/- 0.15 ‰. With these values in hand, we 

now see that these measured isotope compositions are very similar to the Ni isotopic 

compositions measured for marine ferromanganese crusts (Gall et al., 2013), and 

subsequently appear to suggest that the uptake of Ni to ferromanganese crusts may 

not after all be accompanied by a significant isotopic fractionation.  

 In contrast to seawater, the Ni isotopic compositions measured for the 

dissolved load of 8 major rivers (including the Amazon, Brahmaputra and the Nile) 

show large variations in their Ni isotopic compositions that range between +0.29 ‰ 

and 1.39 ‰.  Despite the large variability of these results, the crucial point from this 

dataset is that all of the isotopic values measured for the dissolved riverine load are 

lighter than the isotopic composition of seawater (Cameron and Vance, 2014) and 

marine ferromanganese-rich crusts (Gall et al., 2013). The results of the study 

therefore highlight a significant mass balance issue with respect to the oceanic Ni 

budget. As the dissolved riverine load provides a major source of isotopically light Ni 

to ocean, the only way to account for the heavy Ni isotope composition of seawater 

and ferromanganese crusts would be to identify one or even several other sources 

that supply isotopically heavy Ni to the worlds oceans. An alternative explanation 

would be the existence of a missing Ni sink that is isotopically light with respect to its 

isotopic composition (Cameron and Vance, 2014). At present neither have been 

identified. 
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Chapter 3 

Methods 
 

 In the following chapter the experimental and analytical methods used during 

this project are described in detail. In some cases the descriptions presented here 

may overlap with the methods described in results chapters 4, 5 and 6. This has been 

done so that each individual chapter remains self-explanatory. The methods 

described in this chapter are: 

 3.1 Laboratory based methods 

  3.1.1 Synthesis of c-disordered birnessite 

  3.1.2 Transformation of c-disordered birnessite to todorokite 

  3.1.3 Co-precipitation of c-disordered birnessite in the presence of Ni 

  3.1.4 Transformation of Ni-sorbed c-disordered birnessite to  
            todorokite 

  3.1.5 Synthesis of reference manganese oxide phases 

  3.1.6 Determination of average Mn oxidation state via potentiometric 
            titration  

  3.1.7 Ni isotope fractionation during sorption to hexagonal birnessite  

 3.2 Analytical and spectroscopic techniques 

  3.2.1 X-ray diffraction 

  3.2.2 Transmission electron microscopy 

  3.2.3 Scanning electron microscopy   

  3.2.4 Fourier transform infra red spectroscopy 

  3.2.5 Inductively coupled plasma-optical emission spectroscopy 

  3.2.6 Brunauer-Emmett-Teller surface area analysis 

 3.3 Synchrotron based methods 

  3.3.1 X-ray absorption spectroscopy 

  3.3.1 Extended X-ray absorption fine structure spectroscopy  

  3.3.2 µ- Extended X-ray absorption fine structure spectroscopy and µ-
           X-ray fluorescence spectroscopy 
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3.1 Laboratory based methods. 

 

3.1.1 Synthesis of c-disordered birnessite  

 

C-disordered hexagonal birnessite with a 7 Ǻ inter-layer spacing was 

synthesized following the redox method of Villalobos et al. (2003). The reaction 

follows equation 3.1.  

 

2KMnO4 + 3MnCl2 + 4NaOH   5MnO2 + 4NaCl + 6H2O  

  

(Eq. 3.1) 

 

 Briefly, 320 mL of a 0.196 M KMnO4 solution was added slowly to 360 mL of a 

0.51 M NaOH solution. Then 320 mL of a 0.366 M MnCl2 solution was added slowly to 

the above mixture whilst stirring vigorously. The resulting suspension was left to settle 

for approximately 4 hr. The supernatant was then removed and discarded.  The 

remaining slurry was subsequently centrifuged at 3200 g for 30 min.  All resulting 

supernatants were discarded.  After centrifugation, the wet slurry was mixed with 800 

mL of 1 M NaCl and shaken for 45 min.  The suspension was centrifuged and the 

supernatant discarded. This process was repeated 4 times. For the last 1 M NaCl 

wash the pH was adjusted to pH 8 via the drop-wise addition of 1 M NaOH and the 

suspension shaken overnight.  After centrifuging, the resulting paste was combined 

with Milli-Q grade (MQ) water, shaken for 1 hr and centrifuged at 3200 g for 10 min.  

This wash cycle was repeated 10 times, 1x for 1 hr, 8x for 0.5 hr and 1x overnight.  

Following the final wash, the suspension was dialyzed for 3 days in 43 x 27 mm 

cellulose dialysis tubing, which was placed in a 5 L beaker containing approximately 4 

L of MQ water. 

 

3.1.2 Transformation of c-disordered birnessite to todorokite 

 

 C-disordered birnessite was transformed to todorokite following a method 

adapted from Feng et al. (2004) and Feng et al. (2010).  Approximately 45-50 g of the 

previously prepared c-disordered birnessite slurry (section 3.1.1) was suspended in 3 

L of 1 M MgCl2 and stirred moderately for 18 hr at room temperature. The resulting 

suspension was then centrifuged to a wet paste. This produced a 10 Å Mg-exchanged 

birnessite intermediate. This was re-suspended in approximately 700 mL of 1 M 
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MgCl2 in a 1 L round bottom flask fitted with a glass condenser. The suspension was 

stirred continuously and heated to and kept at reflux (100 C) using a combined 

heating mantle with magnetic stirrer. Suspension aliquots (approximately 75 mL) were 

taken at time intervals of 3, 6, 9, 12, 24 and 48 hr.  Each suspension aliquot was 

cooled in a water bath to room temperature before centrifuging at 3200 g for 10 min.  

All samples were washed extensively in 18.2 MΩ MQ water.  After 72 hr the reflux 

was stopped, the suspension was cooled to room temperature and the above washing 

procedure was repeated to give the final time series sample of 72 hr. All samples 

were oven dried at 30 oC prior to analysis.  

 

____________________________________________________________________ 

Figure 3.1 Experimental setup used during the transformation of the 10 Ǻ Mg-

exchanged birnessite intermediate to todorokite, and during the transformation of a 

Ni-sorbed 10 Ǻ phyllomanganate to todorokite. 
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3.1.3 Co-precipitation of c-disordered birnessite in the presence of Ni. 
 

 A Ni-sorbed c-disordered hexagonal birnessite (approx 1 wt% Ni) was 

synthesized following the modified method of Villalobos et al. (2003) as discussed 

above in section 3.1.1.  

 

  Briefly, 320 mL of a 0.196 M KMnO4 solution was added slowly to 360 mL of 

0.51 M NaOH solution. Subsequently, 3.41 g of Ni(NO3)2 was added to 320mL of a 

0.366 M MnCl2 solution and added slowly to the above mixture whilst stirring 

vigorously at room temperature.  After 30 minutes 5x 1 mL suspension aliquots were 

extracted in order to determine the amount of c-disordered birnessite precipitated. 

Approximately 35 g of mineral was precipitated in total. The mineral suspension was 

then left to settle for ~4 hr, after which the remaining supernatant was subsequently 

discarded and the wet mineral slurry centrifuged at 3200 g for 30 min. After 

centrifugation, the wet slurry was washed by mixing with 1 M NaCl, shaken for 45 min 

and re-centrifuged at 3200 g for 10 min. This process was repeated 4 times, and on 

the last wash the pH was adjusted to pH 8 and the suspension was shaken overnight. 

After the NaCl washes, the slurry was combined with Milli-Q water (MQ), shaken for 1 

hr and centrifuged at 3200 g for 10 min. This wash cycle was repeated 10 times, 1x 

for 1 hr, 8x for 0.5 hr and 1x overnight. After centrifuging, the paste was combined 

with MQ water, shaken for 1 hr and centrifuged at 3200 g for 10 min. The wash cycle 

was repeated 10 times, 1x for 1 hr, 8x for 0.5 hrs and 1x overnight. One bottle was 

sacrificed (i.e. roughly ¼ of total mineral precipitated), retaining the solid for analysis 

(approximately 8 g). 

 

3.1.4 Transformation of Ni incorporated c-disordered birnessite to todorokite 
 

Ni incorporated c-disordered birnessite was transformed to todorokite using 

the method adapted from Feng et al. (2004) and Feng et al. (2010) as described 

above in section 3.1.2. During the current experimental procedure the suspension 

was left to age at 100 C for an extended period of 4 weeks, during which suspension 

aliquots (approximately 75 mL) were extracted from the reaction vessel at time 

periods of 3, 6, 12, 24, 48 and 72 hr, 1, 2 and 4 weeks. Samples were left to age for 

an extended period of time as preliminary investigations indicated that the 

transformation was substantially slower when compared to the Ni free system. All 

solid samples were washed extensively in 18.2 MΩ MQ water before oven drying at 

30 oC. 
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3.1.5 Synthesis of reference Manganese Oxide phases 
 

 Additionally, a suite of synthetic Mn oxide phases including, Na-birnessite (Tc 

Na-birnessite), crystalline hexagonal birnessite (Hx-birnessite), δMnO2 and crystalline 

todorokite were synthesized and used as reference standards during X-ray absorption 

spectroscopy (XAS) analysis. All solid samples were crushed to a fine powder prior to 

analysis. 

 

3.1.5.1 Triclinic Na-birnessite 

 

 Poorly crystalline, Tc Na-rich birnessite was prepared as a precursor to 

synthetic Hx-Birnessite. The preparation of the Na-birnessite precursor was 

undertaken using the oxidation method of Liu et al (2002). A mixed solution was 

prepared by dissolving 14.4 g of NaOH in 600 mL of 3 % H2O2. This solution was then 

added to 300 mL of a 0.3 M solution of Mn(NO3)2.6H2O. The mixture was stirred 

vigorously at room temperature (~25 ºC) for approximately 10 min and the resulting 

precipitate was left undisturbed in the reaction vessel for 72 hr. The supernatant liquor 

was then siphoned off and the precipitate washed thoroughly in the centrifuge with 

MQ water until the pH of the supernatant stabilized at around pH 3-4. 

 

3.1.5.2 Crystalline hexagonal birnessite 

 

 Synthetic hexagonal birnessite (Hx-Birnessite) was obtained by suspending 

the washed Na-birnessite precipitate in 0.1 M NaNO3 and adjusting the pH of the 

suspension to around pH 2 via the dropwise addition of 1 M HNO3 (similar to the 

method of Silvester et al., 1997). The mineral suspension was stirred continuously for 

4 hr at room temperature and the resulting Hx-birnessite precipitate was washed 

thoroughly in the centrifuge until the supernatant remained clear. The product was 

subsequently separated from the supernatant and air-dried at room temperature. 
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3.1.5.3 δMnO2 

  
 Poorly crystalline δMnO2 was synthesized following the redox method of 

Villalobos et al. (2003). The synthesis procedure for δMnO2 differs from that of c-

disordered birnessite (section 3.1.1) only in the fact that a higher stoichiometric ratio 

of Mn (VII)/Mn(II) is used during the precipitation of δMnO2 (Villalobos et al., 2003). 

Briefly, 1280 mL of a 0.19 M KMnO4 solution was prepared and subsequently added 

slowly to 1440 mL of a 0.48 M of NaOH solution, during which the solution was stirred 

vigorously. Then 1280 mL of a 0.29 M MnCl2.4H2O solution was prepared and added 

slowly (over approximately 30 min) to the previously prepared mixed solution of 

KMnO4 and NaOH whilst stirring vigorously. The suspension was left to settle for 

approximately 4 hr, before the supernatant was siphoned off. The pH of the 

supernatant measured approximately pH 7. The remaining mineral suspension was 

evenly distributed between 4 PPCO centrifuge bottles and centrifuged at 3200 g for 

30 min. All resulting supernatants were discarded. At this stage the washing 

procedure conducted during the synthesis of c-disordered birnessite was repeated. In 

this case, the pH after the final wash was adjusted to pH 8 via the dropwise addition 

of 1 M NaOH.  

 

3.1.5.4 Highly crystalline todorokite 

 

 Highly crystalline todorokite was synthesized following the method of Feng et 

al. (1995). In the first step, a Na-rich triclinic birnessite phase was prepared following 

the method described in section 3.1.5.1. After leaving the fresh Na-rich birnessite 

precipitate to settle for approximately 1 hr, the supernatant was discarded and the 

solid phase washed extensively in 18.2 MΩ MQ water. A Mg-exchanged birnessite 

phase was obtained by dispersing approximately 10 g of the wet Na-birnessite slurry 

in 1 L of 1 M MgCl2. The suspension was stirred moderately for 24 hr at room 

temperature. The solid phase was subsequently filtered and washed in MQ water. 

The above ion exchange and washing procedure was repeated 3 times in total. Highly 

crystalline todorokite was obtained by placing the wet Mg-birnessite slurry into a 

Teflon-lined, stainless steel reaction vessel, with 10 mL of MQ water before 

autoclaving at 140 °C and autogeneous pressure for approximately 48 hr. After 48 hr 

the reaction vessel was left to cool to room temperature, the todorokite suspension 

was filtered and the solid washed in MQ water and left to air dry. 
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3.1.6 Determination of average Mn oxidation state via potentiometric titration 

 

 The average Mn oxidation states (AOS) of the c-disordered birnessite, 10 Ǻ 

phyllomanganate intermediate phase and all reflux products synthesized in chapter 4 

was determined by the multi-step chemical titration method of Ligane and Karplus 

(1946) and Gaillot (2002) as follows:  

 Prior to analysis, a 0.02 M KMnO4 solution was prepared by dissolving 3.06 g 

of KMnO4 in 1L of 18.2 MΩ MQ water, which had previously been boiled and 

degassed using zero grade N2. This solution was stored in the dark for approximately 

three weeks, before being filtered through a 0.2 µm filter paper to remove any 

impurities and particulate Mn. The filtered KMnO4 solution was subsequently stored in 

a brown reagent bottle to prevent the photo reduction of Mn (VII) to Mn (III/IV). In 

order to determine the precise concentration of the prepared KMnO4 solution, the 

solution was standardized against a standard solution of oxalic acid. Briefly, 20 mL of 

a 0.05 M oxalic acid solution was pipetted into a 250 mL conical flask, along with 2 mL 

of 2 M sulphuric acid. The flask was subsequently warmed on a hot plate to 60 – 80 

°C before titration against the KMnO4 solution. 

 In the first step, a 0.02 M Mohr salt solution ((NH4)2Fe(SO4)2·6H2O)) was 

prepared and titrated against the KMnO4 solution prepared in the initial step descrbed 

above, in order to determine the concentration of Fe(II) in the Mohr salt solution. 

Briefly, 50 mL of the Mohr salt solution was pipetted into a conical flask and acidified 

with approximately 5 mL of concentrated sulphuric acid before titration against the 

KMnO4 solution. In this step the average volume of titrant added at the endpoint = (V1). 

The end point of the titration was indicated by a change in the colour of the titrand 

from clear to light pink. 

Redox couples are: 

KMnO4/Mn2+ and Fe3+/Fe2+ 

Corresponding reactions are: 

MnO4
- + 8 H+ + 5 e- ↔ Mn2+ + 4 H2O 

5 Fe2+ ↔ 5 Fe3+ + 5 e-____________________ 

MnO4
-
 + 8 H+ + 5 Fe2+ ↔ Mn2+ + 4H2O + 5 Fe3+ 

From the above reaction: 

n(Fetot) = 5n(MnO4
-) as such, n(Fetot) = 5CV1     (Eq. 3.2) 
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Where n(Fetot) and n(MnO4
-) are the moles of Iron and permanganate in the 

solution respectively, and  C and V1 correspond to the concentration of permanganate 

and the volume of permanganate added at the endpoint respectively. 

 

 In the second step, approximately 35 mg of finely ground Mn oxide mineral 

powder was reduced in exactly 50 mL of the standardized 0.02 M Mohr Salt solution. 

It is critical that the volume of Mohr salt used in this step is the same as that used in 

the first step. The mineral suspension was placed in an ultrasonic bath for up to 30 

min in order to aid the reductive dissolution of the Mn oxide solid by the Fe2+ in the 

Mohr salt. Following the complete dissolution of the solid Mn oxide, the excess Fe2+ in 

the Fe/Mn oxide solution was titrated against the 0.02 M KMnO4 solution. In this step, 

the titration was carried out at approximately pH 2 in order to avoid the precipitation of 

Fe3+, which would substantially impede the accurate assessment of the titration 

endpoint. The exact volume of KMnO4 required for the titration of the excess Fe2+ = 

(V2). Again the end point was determined by a change in colour from clear to pink. 

Redox couples are: 

MnOx/MnO2+ and Fe3+/Fe2+ 

Corresponding reactions are: 

MnOy + 2y H+ + 2(y-1) e- ↔ Mn2+ + y H2O 

2(y-1) Fe2+ ↔ 2(y-1) Fe3+ + 2(y-1) e-__________________ 

MnOy + 2(y-1) Fe2+ + 2y H+ ↔ Mn2+ + 2(y-1) Fe3+ + yH2O 

From the above reaction: 

2(y-1) n(Mn) = 2(y-1) n(MnOy) = n(Fereact) = n(Fetot) - n(Feexcess)       (Eq. 3.3) 

Where n = the moles of different species. 

The redox couples for the titration of the excess Fe2+ are the same as those in the first 

step. As such, V2 is the volume of permanganate solution added at the endpoint: 

n(Feexcess) = 5n(MnO4
-)titre + n(Feexcess) = 5CV2                     (Eq. 3.4) 

and 

2(y-1) n(MnOx) = 5CV1 – 5CV2 = 5C(V1 – V2)                    (Eq. 3.5)
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The third step in the titration procedure involves the determination of the 

amount of Mn2+ formed in step 2 by performing a back-titration of the excess Fe2+ 

generated in the previous step. Approximately 8 g of sodium pyrophosphate 

(Na4P2O7.10H2O) was dissolved in 100 mL of MQ water in a separate beaker. This 

pyrophosphate solution was subsequently added to the reduced Mn oxide solution 

obtained at the end of the second step. The pH of the mixture was adjusted to pH 6.5 

by the careful dropwise addition of concentrated sulphuric acid, before titration against 

the 0.02 M KMnO4 solution. Due to the bright pink/red color of the pyrophosphate 

complex, the equivalence point in this final step was determined by potentiometric 

titration. All potentiometric titrations were undertaken using a Metrohm automated 

titration suite equipped with a combined platinum ring conductivity electrode.  The 

exact volume of KMnO4 added at the equivalence point = (V3).  

Redox couples are: 

MnO4
-/Mn2+ and Mn2+ + 3H2P2O7

2-/Mn(H2P2O7)3
3- 

Corresponding reactions are: 

MnO4
- + 8 H+ + 5e- ↔ Mn2+ + 4H2O 

5Mn2+ + 15 H2P2O7
2 -↔ 5Mn (H2P2O7)3

3- + 5e- 

_________________________________________________ 

Mn2+ + MnO4
- + 8 H+ + 15 H2P2O7

2- ↔ 5Mn(H2P2O7)3
3- + 4H2O 

From the above reaction: 

n(Mn2+) = 4n(MnO4
-) = 4CV3                (Eq. 3.6) 

Again n is equal to the moles of the different species and V3 is the volume of KMnO4 

added at the equivalence point. 

In addition, 

n(Mn2+) = n(MnOy) + n(MnO4
-)titre            (Eq. 3.7) 

By combining equations (3.4), (3.6) and (3.7): 

n(MnOY) = 4CV3 – CV2             (Eq. 3.8) 

By then combining equations (3.5) and (3.8): 

5C(V1 – V2) / 2(y – 1) = C(4V3 –V2)             (Eq. 3.9) 
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Then finally: 

2y = 2+5 (V1 – V2) / (4V3 – V2)          (Eq. 3.10) 

Where 2y is equal to the average Mn oxidation state. 

 

3.1.7 Ni Isotope fractionation during sorption to hexagonal birnessite  

 

 The following sorption experiments were designed in order to determine 

whether the uptake of Ni to hexagonal birnessite is accompanied by isotopic 

fractionation. The results and implications of this work are presented and discussed in 

chapter 6. 

 Ni isotope fractionation during the sorption of aqueous Ni (II) to synthetic 

hexagonal birnessite (c-disordered birnessite) was investigated using a series of 18 

unique sorption experiments. Experiments were performed in duplicate, at 4 different 

Ni loadings (12, 120, 820 and 1640 g Ni), 2 different pH values (pH 5 and pH 8) and 

for 3 different time durations (48 hr, 1 week and 4 week).  A detailed summary of the 

experimental parameters used in each individual experiment is presented in chapter 

6. The target Ni concentrations used in the experiments were estimated based on 

previous Ni sorption experiments (Peacock and Sherman, 2007; Peacock, 2009). 

 For the sorption samples a Ni (II) stock solution was prepared at 1000 mg/L 

[Ni]total from Ni(NO3)2.6H2O and a 0.1 M NaCl solution was prepared for use as a 

background electrolyte. Individual sorption experiments were prepared in 250 mL 

polycarbonate bottles at either 12, 120, 820 or 1640 µg [Ni]total by adding 0.01, 0.1, 0.8 

or 1.6 mL of Ni stock solution to 0.01 g of mineral in 199.99, 199.90, 199.20 and 

198.40 mL of NaCl respectively. The total volume of solution in each experiment was 

equal to 200 mL, giving a solid/solution ratio in each individual experiment of 0.05 g/L.  

 The resulting mineral suspensions were shaken and the initial pH recorded 

after stabilization to two decimal places. All pH measurements were calibrated to 

±0.05 pH units using Whatman NBS grade buffers. The pH was then adjusted to the 

desired pH (either pH 5 or pH 8) via the drop wise addition of HNO3/NaOH (various 

concentrations). All samples were subsequently sealed and shaken at room 

temperature (25 °C) for the required time period (48 hr, 1 week or 4 week). After 

shaking, the final suspension pH was recorded and the solid mineral was carefully 

separated from the solution using a vacuum filtration kit.  
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 Samples were subsequently sent to the University of Oxford for sample 

purification and Ni isotope analysis. All of the sample purification procedures and 

subsequent Ni isotope analyses were conducted by Louise Gall at the Department of 

Earth Sciences, University of Oxford. A full outline of the procedure is presented in 

Gall et al. (2012), although a brief overview is provided below.  

 Prior to Ni isotope analysis all solid samples were first digested in a 6 M HCl 

solution and placed on a hot plate overnight, while all solution samples were first 

evaporated to dryness and re-dissolved in 6 M HCl. Sample aliquots were 

subsequently taken and analyzed for their respective Ni concentrations using an ICP-

MS equipped with a quadrupole mass filter. 

  Following sample digestion all samples were treated with what is known as the 

double-spike method. The double-spike technique is a well established method 

proposed by Dodson (1963), that allows for the correction of mass fractionations that 

may occur during the chemical purification of the analyte and during sample analysis  

(e.g. Siebert et al., 2001; Albarede and Beard, 2004; Rudge et al., 2009). Essentially, 

the technique involves measuring the relative amounts of four isotopes in a sample, 

two of which have been enriched via the addition of isotopic spikes (Rudge et al., 

2009). Typically the isotopic double-spike is a mixture of two of the minor isotopes 

(Bullen et al., 2011). As Ni has five stable isotopes, 58Ni, 60Ni, 61Ni, 62Ni, and 64Ni, with 

respective natural abundances of 68.0769%, 26.2231%, 1.1399%, 3.6345%, and 

0.9256% (Gramlish et al., 1989), the isotopes chosen for the double-spike method 

were 61Ni and 62Ni. These two isotopes were chosen over 64Ni due to the fact that 

there is potential for interference from 64Zn on 64Ni. The purified Ni spikes used for the 

current analyses were supplied by Oak Ridge National Laboratory. 

 Following the double-spiking procedure the samples were again evaporated to 

dryness before being re-dissolved in a mixture of HCl, di-ammonium citrate 

(NH4)2C6H6O7) and NH4OH.  

 Subsequently, a 3-stage ion-exchange chromatography procedure was 

employed in order to isolate Ni from any elements within the sample matrix that may 

cause interference during analysis. Briefly, the first separation step involves 

separating Ni from any s-block elements (e.g. K, Ca and Mg) within the sample matrix 

via complexation. In this step ammonia forms a strong complex with the Ni in solution 

and binds strongly to the column resin (AG50W-X4 cation exchange resin), 

conversely the s-block elements are complexed by the citrate and subsequently 
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eluted first from the column. The Ni-ammonium complex was removed from the resin 

and eluted from the column using a 3 M HCl solution.  

 In the second step, the sample was re-dissolved in a mixed solution of HCl, 

oxalic acid and H2O2. The resulting solution was loaded onto a second ion-exchange 

column before two separate solutions of oxalic acid-HCl and HCl-acetone were added 

to the column. The addition of the oxalic acid-HCl mixture eluted any trivalent cation 

species from the column, whereas addition of the HCl-acetone mixture eluted any 

remaining divalent species from the column, with the exception of Ni. Ni was finally 

eluted from the column via complexation with a dimethylglyoxamine 

(CH3C(NOH)C(NOH)CH3) (DMG) solution.  

 The third and final step served to ensure the complete separation of Ni from 

any Fe species that may have been added to the sample matrix. The samples were 

dissolved in a mixture of HCl and H2O2 before being loaded onto third exchange 

column (AG1-X8). In this step any Fe remaining in the sample matrix was retained on 

the column while Ni was immediately eluted.  

 The Ni isotopic compositions of all the purified solutions were subsequently 

analyzed using a Nu instruments Nu Plasma-HR multi-collector inductively coupled 

plasma mass spectrometer (MC-ICPMS). All of Ni isotope ratios presented in chapter 

6 are reported in δ notation as the ratio 60Ni/58Ni relative to the Ni isotope standard 

SRM 986 (NIST) according to equation 3.11.  

 

 

 

                            

     (Eq. 3.11) 
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3.2 Spectroscopic and analytical tools. 
 

 This section gives a brief overview of the spectroscopic and analytical tools 

used in this thesis. 

 

3.2.1 Powder X-ray diffraction (XRD) 

 

 X-ray diffraction (XRD) is a non-destructive technique, routinely used for the 

structural characterization of polycrystalline samples. When a focused beam of X-rays 

of known wavelength are generated and passed through a crystalline sample they will 

be diffracted at specific angles (θ) determined by the distance between adjacent 

lattice planes (e.g., Greaves, 1995). The exact angles at which the x-rays are 

diffracted are mathematically related to structural arrangement by the Bragg equation: 

 

                                     

____________________________________________________________________

Figure 3.2 Where n is an integer representing the order of reflection,  is the 

wavelength of the x-ray beam; d is the distance between adjacent planes of atoms 

and θ is the angle of the incident x-rays.  

 

 The d-spacings, which are unique to a specific sample, can thus be calculated 

from the Bragg equation and the diffraction patterns compared to a set of standard 

reference patterns, such as those published on the ICDD (International Centre for 

Diffraction Data) database (e.g., Wenk and Bulakh, 2004). In addition to phase 

identification, it is possible to gain information on structural properties of a sample, 

including residual lattice strain and the degree of structural order, as well as semi-

quantitative information on the relative proportions of different minerals in multiphase 

systems. XRD data can also be used to calculate the average crystallite size through 

the application of the Scherer formula: 
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d= K / (B cos q) 

(Eq. 3.12) 

 Where d is crystallite size, K is the Scherer constant (shape factor),  is the 

wavelength of the x-rays, B is the peak width at the FWHM of the selected peak 

(measured in radians) and q is the Bragg angle (in radians).  

 Typically, if the crystallites are free from strain or do not contain a high 

proportion of defects then peak broadening should only be an artefact of crystallite 

size, with potential contributions from the diffractometer. The contribution of 

instrumental broadening can be deciphered by analysing a standard powder sample 

of a crystalline material. For example, in the current work the Si (111) reflection was 

used to determine the effect of instrumental broadening. Calculation of crystallite size 

is not without its limitations and is generally restricted to crystallites <100 nm in size. 

Care must also be taken to avoid potential orientation effects (i.e. in this case 

crystallites will not satisfy the Bragg conditions). The effects of preferred orientation 

can be easily avoided by rotating the sample during analysis (e.g., Wenk and Bulakh, 

2004).  

 The XRD instrumentation used for the analysis of all samples in this work was 

a Bruker D8 X-ray diffractometer equipped with CuK radiation ( = 1.5418) and a 

LynxEye detector. Tube voltage and current was approximately 40 kV and 40 mA 

respectively. XRD was used for analysis of finely ground powder samples, which were 

obtained during experiments presented in chapter 4 and chapter 5. In an attempt to 

minimize the effects of background fluorescence during data collection, the window 

width of the detector was reduced from 0.14 mm to 0.08 mm during the analysis of all 

samples. 

3.2.2 Transmission electron microscopy (TEM) 

 

Transmission electron microscopy (TEM) is a high resolution bulk diffraction 

and imaging technique that essentially generates a two-dimensional black and white 

image of a sample, with achievable resolutions down to ~0.2 nm. At these ultra-high 

resolutions it is possible to characterize a sample in terms of its structure, texture and 

crystallinity, crystallite size, particle morphology and particle distribution (e.g., Wenk 

and Bulakh, 2004).  
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TEM images are generated under high vacuum conditions by transmitting a 

focused beam of high-energy electrons, which have been accelerated to several 

hundred keV towards a sample surface. Essentially, electrons that are not scattered 

are transmitted through the sample where they hit a fluorescent screen underneath 

the microscope, on which a shadow image of the sample is generated. Contrast in an 

image is generated as a result of the interaction of the accelerated electrons with the 

sample. Areas of the image that appear darker are too dense for the electron beam to 

pass through the sample. Conversely, lighter areas of the image are areas in which 

the electrons have been transmitted through the sample without being scattered.  

For all work presented in chapters 4 and 5 TEM imaging was performed on 

finely ground powder samples. Samples were loaded onto individual holey carbon 

TEM grids. All TEM imaging was performed at 200 kV on a Philips CM200 FEGTEM. 

Images were processed using the Image J software program. All distance 

measurements were determined in Image J. Prior to measurements images were 

spatially calibrated in order to measure actual distance in nm as opposed to distance 

in pixels in Image J using the scale bar presented on each individual TEM image.  

 

3.2.3 Scanning electron microscopy (SEM) 

 

 A scanning electron microscope (SEM) uses electrons as opposed to light to 

generate a magnified three-dimensional image of a specimen. To acquire an SEM 

image a high-energy beam of electrons are focused and accelerated at ~ 30-200 keV 

towards a sample and scanned across its surface (e.g., Hochella et al., 1995). As the 

electrons penetrate the surface layers of a specimen they may interact with the 

sample in a number of ways. For example, electrons may undergo elastic scattering, 

generating high energy backscattered electrons during which, little to no energy is 

transferred from the incident electron to the sample, hence the electron retains much 

of its original intensity.Conversley, electrons may also be in-elastically scattered, 

during which, the energy of the incident electron is transferred to the sample. In this 

case the energy of the emitted electron is significantly reduced, giving rise to low 

energy secondary electrons.The resulting secondary electrons and backscattered 

electron signals are collected by a detector where they are amplified and 

subsequently displayed as an image on a monitor screen. SEM allows the collection 

of a wide variety of information on the physical and chemical characteristics of a 
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specimen, including surface topography, morphology, composition and electrical 

conductivity (e.g., Hochella et al., 1995).  

  All SEM images presented in this work were collected using an EI Quanta 650 

FEG-SEM, with imaging performed at 20 keV. Prior to analysis, finely crushed 

powdered samples were loaded onto individual aluminium stubs and left to air dry 

before the application of a platinum coating. 

 

3.2.4 Inductively coupled plasma-optical emission spectroscopy (ICP-OES) 

 

 Inductively couples plasma-optical emission spectroscopy (ICP-OES) is a 

popular analytical technique used to measure the concentration of trace-species in 

aqueous solution. Typically, aqueous samples are aspirated by a nebuliser into an 

argon gas plasma reaching temperatures up to ~10,000K (e.g. Hou and Jones, 2000). 

The intense heat of the plasma causes analyte particles to undergo atomisation, 

ionisation and excitation. Once in an excited state the atoms relax and emit photons 

at specific wavelengths that are unique to the specific element of interest. Because 

the emitted radiation is polychromatic it is then passed through a monochromator 

where the wavelengths are separated, before being converted to an electrical signal 

that is amplified and subsequently measured by the detector (e.g. Hou and Jones, 

2000). The response of an unknown sample is compared to the response of a range 

of standard solutions of known concentration. ICP-OES is particularly useful for the 

analysis of geochemical samples as the intense temperature of the argon plasma 

enables elemental detection limits down to the ppb level.  

 All ICP-OES measurements presented in chapter 5 were conducted by Robert 

Knight at the Trace Element Laboratory in the Department of Chemistry at the 

University of Hull, using an Optima 5300 DV Inductively Coupled Plasma-Optical 

Emission Spectrometer. For initial storage all samples were diluted 1:1 with 1 % 

HNO3. For analysis samples were further diluted (10x) and analyzed in triplicate. For 

calibration standards, Ni and Mn solutions were prepared at 10, 20 and 30 ppm. In an 

attempt to improve the accuracy of the measurements and account for spectral 

interferences as a result of the concentrated background electrolyte (1 M MgCl2,), all 

standards and calibration blanks were matrix matched. 
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3.2.5 Fourier transform infra-red spectroscopy (FTIR) 

 

 Fourier transform infrared spectroscopy (FTIR) is a widely used, non-

destructive analytical technique, which involves passing a beam of infrared radiation 

through a sample. In short, an IR spectrum records the energy that molecular species 

absorb IR radiation, which is measured in wavenumbers. The absorption of IR 

radiation is associated with a vibrational mode of a particular molecule or bond (Wenk 

and Bulakh, 2004). The infrared region of the electromagnetic spectrum spans a 

range of 12800-30 cm-1 which is generally divided into three distinct regions: the far 

400-30 cm-1, mid 4000-400 cm-1 and near 12800-4000 cm-1. In the context of the 

current work the mid IR region is of primary interest, as the vibrational frequencies of 

the MnO6 octahedral units in layer-type and tunnel-type Mn oxides differ most in this 

region (Julien et al., 2003; Kang et al., 2007). 

  In the current study, FTIR spectroscopy was performed on finely crushed 

powdered samples using a Thermo Scientific iS10 FTIR spectrometer equipped with 

an attenuated total reflection (ATR) diamond crystal. Each spectrum presented in 

chapter 4 was an average of 32 scans with a spectral resolution of 1 cm-1. 

 

3.2.6 Brunauer-Emmett-Teller surface area analysis (BET) 
  

 BET is a relatively cheap and reliable method of estimating the reactive 

surface area of a solid sample, by essentially measuring the amount of gas (X) 

required to cover both the external mineral surface and internal pore space at a given 

relative pressure (P/P0) according to the BET equation (3.13).  

                            

     (Eq. 3.13) 

 Where C is the BET constant and Xm is the capacity of a monolayer, which 

corresponds to the exact volume of gas adsorbed at standard pressure and 

temperature conditions (i.e. 1 atm and 273 K). Typically, N2 is used as the adsorbate 

gas, however, in some cases other gases such as Ar or CO2 may also be used. The 
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relative pressure at which adsorption is measured is typically less than atmospheric 

pressure and is achieved by creating partial vacuum conditions  

The specific surface area of a range of synthetic Mn oxide samples described 

in chapters 4 and 5 were measured using the BET-N2 method. Measurements were 

conducted in duplicate using an automated Gemini V2365 system (Micromeritics 

Instrument Corp.). Prior to analysis finely ground powdered samples were dried and 

degassed in previously weighed sample tubes for 24 hr at room temperature using a 

Micromeritics smartprep 065 degassing unit. Sample degassing ensures the removal 

of any water, or contaminant gases associated with the mineral surface. This 

procedure is vital in order to ensure the measurement of accurate and precise surface 

area values. When thorough degassing is not achieved the specific surface area may 

appear reduced due to the fact that the mineral surface is already covered with 

previously adsorbed gas molecules. During the degassing procedure 2 clean and 

empty balance tubes are connected to the Gemini V2365 apparatus in order to allow 

the determination of the saturation pressure (P0). Once the saturation pressure has 

been determined, one of the empty balance tubes is removed and replaced with a 

sample tube containing the degassed sample which is subsequently evacuated down 

to a specified pressure. A Dewar vessel containing nitrogen gas is then raised 

towards the sample tubes. N2 gas is then admitted to the sample tube to acertain the 

lowest relative pressure and the volume of adsorbed gas (X) is measured. 

Measurements are repeated by incrementally admitting known amounts of N2 gas to 

the sample tube at increasingly higher P/Po values. The exact amount of gas 

adsorbed to the sample surface is calculated from difference measurements taken 

between the sample tube and the balance tube. 

 
 

3.3 Synchrotron based Methods 

 

3.3.1 X-ray Absorption Spectroscopy (XAS)  

 

 X-ray absorption spectroscopy (XAS) is a bulk technique that can provide 

unique structural and compositional information on a sample, including oxidation 

state, structural order and the exact mechanistic details of the nature of surface 

complexes (Manceau et al., 1992; Brown et al., 1995). Due to its element-selectivity 

and sensitivity to low element concentrations (<1 wt.%), XAS is an ideal technique for 
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studying the sorption of trace-metal species at the mineral-water interface. 

Furthermore, the short range nature of the XAS signal means that the technique is not 

limited to use on highly crystalline materials, but may be used on poorly ordered 

samples, such as δMnO2 and compositionally complex natural samples, including 

marine ferromanganese-rich precipitates.  

 

 In simple terms XAS is primarily concerned with how X-rays are absorbed by 

an atom at energy levels near to or greater than the core-level binding energy of a 

particular atom of interest (e.g. De Groot, 2001; Zubavichus and Slovokhotov 2001; 

Newville, 2004). Measuring the X-ray absorption coefficient () as a function of X-ray 

energy (e) gives information on the probability of X-ray absorption according to Beers 

Law: 

I = I0 e
-t 

(Eq. 3.14) 

 Where I is the intensity of X-rays transmitted through a sample, I0 is the 

intensity of the incident X-rays and t is equal to the thickness of the sample, as shown 

in figure 3.3. 

                                          

Figure 3.3 During XAS measurements a monochromatic beam of X-rays of intensity I0 

are passed through a sample of thickness t. The transmitted beam has an intensity I. 

 X-rays generated by synchrotron radiation are extremely intense and tuneable 

over a broad spectral range by simply adjusting the wavelength of the X-ray source. 

When incident X-rays are tuned to an energy equal to that of the binding energy of a 

core-level electron in a particular sample, there will be a substantial rise in X-ray 

absorption, along with a simultaneous drop in the intensity of the transmitted X-rays. 

This feature is termed the absorption edge and corresponds directly to the energy 

required to excite and eject a deep core-level electron from the atom of interest, 

leaving a core-hole. The ejected photoelectron subsequently radiates away from the 
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central absorber as a wave, where it interacts and backscatters from surrounding 

atoms (Greaves, 1995). The backscatter generated creates interference between the 

outgoing and reflected photoelectron wave, and in turn this interference influences the 

probability of adsorption of X-ray photons and the emission of decay fluorescent 

photons. As such, X-ray photon absorption will vary depending on the immediate 

coordination environment of the atom of interest (e.g. De Groot, 2001; Zubavichus 

and Slovokhotov 2001; Newville et al., 2004). 

 An example of a typical X-ray absorption spectrum is presented in Figure 3.3 

in which the X-ray absorption coefficient is plotted as a function of increasing energy. 

The spectrum is generally separated into two distinct regions, the near-edge structure 

(X-ray absorption near edge structure, XANES) and the extended fine structure 

(extended x-ray absorption fine structure, EXAFS). As highlighted in Figure 3.4, the 

XANES region typically occurs within 50 eV of the absorption edge whereas the 

EXAFS region extends above the absorption edge.  

                   

Figure 3.4 A typical X-ray absorption spectrum, highlighting the XANES region 

typically within 50 eV of the absorption edge and the EXAFS region which extends 

from several hundred eV to > 1000 eV above the absorption edge. 

 

 XAS experiments may be performed in two different modes, either 

transmission or fluorescence. Each mode essentially differs in the type of particle that 

is detected. The collection of data in transmission mode is preferred for concentrated 

samples (i.e. those containing >10 wt. % of the element of interest). The absorption 

coefficient is measured by measuring the intensity of the x-ray beam that is 

transmitted through the sample according to equation 3.15: 
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μ(E)t = -ln(I0/I) 

(Eq. 3.15) 

 Care must be taken when collecting XAS measurements in transmission mode 

to ensure that the sample surface is uniform and that the sample is not too thick. In 

the latter case there will not be enough transmission through the sample and thus no 

signal will be detected for I.  

 Conversely, samples that contain low concentrations of the element of interest 

(i.e. ppm levels or below) are generally collected in fluorescence mode (Newville et 

al., 2004). This is often the preferred method for the study of sorption processes at the 

mineral-water interface. In fluorescence mode, the absorption coefficient is measured 

by monitoring the intensity of the X-ray fluorescence that is emitted by higher-shell 

electrons as they relax into the core-hole left by the ejected photoelectron according 

to equation 3.16: 

(E)If/I0 

(Eq. 3.16) 

 

3.3.1.1 Extended X-ray Absorption Fine Structure Spectroscopy (EXAFS) 

 

 As discussed previously, the variation in X-ray photon absorption creates a 

decaying oscillatory wave known as the EXAFS that is generally observed from 50-

1000 eV above the absorption edge. EXAFS spectroscopy serves as a powerful 

structural probe that can provide a variety of information on the immediate 

coordination environment of the central absorber (typically up to ~6 Å in oxides) 

(Brown et al., 1995; Zubavichus and Slovokhotov, 2001). Following background 

subtraction and normalization of the collected EXAFS, data is typically presented in 

two forms. Firstly, EXAFS data may be plotted in so-called k-space as the normalized 

EXAFS ((k)) to produce an oscillating spectrum. In this case the data is often 

weighted by kx, where x may equal 1, 2 or 3. Weighting the EXAFS data gives rise to 

enhanced oscillations at high k values. The frequency of the oscillations give valuable 

information on inter-atomic distances, as the frequency is inversely proportional to the 

distance between the absorbing atom and any neighbouring backscattering atoms. 

Whereas the amplitude and scattering profiles of the oscillations provide information 
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on the type and number of backscatterers surrounding the central absorber (Brown et 

al., 1995; Vlaic and Olivi, 2004). In addition, data is also presented as a Fourier 

transform (FT) of the EXAFS signal. Taking a FT of the EXAFS, transforms the data 

from k-space into R-space, producing a pseudo-radial distribution function (RDF) that 

yields information on the local structure surrounding the target atom. EXAFS 

presented in this form are often more useful for visualizing the information than the 

oscillating k-weighted EXAFS spectrum. Typically, the FT possesses several peaks, 

which correspond to either one or several atomic shells surrounding the central 

absorbing atom, the exact position of the peaks in the FT are usually shifted by 

approximately 0.5 Å due to a phase shift (Manceau et al., 1992). An example of a 

typical EXAFS spectrum along with the corresponding FT of the EXAFS signal is 

presented in Figure 3.5. 

 

 

Figure 3.5 Typical normalized k-weighted EXAFS spectrum along with the 

corresponding Fourier transform of the EXAFS, where R + a indicates the phase shift 

(from Penner-Hahn, 1999). 

 

3.3.1.2 EXAFS data collection 

 

All bulk EXAFS spectroscopy data presented in chapters 4 and 5 was 

collected on beamline B18 at Diamond Light Source (DLS) Ltd. During data collection, 

storage ring energy was 3.0 GeV and the beam current was approximately 200 mA. 
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 EXAFS data described in chapter 4 was collected in transmission mode at the 

Mn K-edge (6.539 keV) using a Ge 9-element detector. For EXAFS measurements, 

dry Mn oxide powders were diluted with cellulose nitrate and pressed into pellets. In 

order to minimize beam damage during data collection 2 EXAFS spectra were 

recorded at a single x,y point before moving to a new point to record a further 2 

spectra. Up to 6 spectra were collected for each sample. 

EXAFS data presented in chapter 5 was acquired in fluorescence mode at the 

Ni K-edge (8.333 keV). For measurement, samples were presented to the X-ray beam 

as dry powders pressed into pellets. In order to minimize beam damage during data 

collection 4 spectra were recorded at a single x,y point before moving to a new point 

to record a further 4 spectra. A total of 36 spectra were collected for each sample. 

 

3.3.2 Micro-XAS and micro XRF 

  

 The collection of micro-XAS (-XAS) data follows essentially the same 

principles as bulk XAS except that, in the case of -XAS, measurements are made on 

a micron-size scale. By using a set of focusing optics to focus a beam of synchrotron 

radiation down to just a few microns in diameter, it is possible to collect XAS data at 

very precise locations within a heterogeneous sample. This is particularly useful when 

analysing natural sediment samples including marine ferromanganese-rich 

precipitates. These sediments display a high degree of heterogeneity in terms of their 

mineralogy that often varies spatially on the micron scale. Conversely, by measuring 

the intensity of characteristic X-ray fluorescence at various locations in a sample it is 

possible to produce detailed elemental maps that highlight the distribution and/or the 

correlation of certain elements within a sample. Both -XAS and -XRF are highly 

complementary and are often used in conjunction with each other.  For example, it is 

possible to select discrete points of interest for -XAS analysis based on the data 

collected from the -XRF. 

 

3.3.2.1 Micro-XAS and micro XRF data collection 

 

Micro-focus X-ray fluorescence (μ-XRF) elemental maps (for Mn, Fe and Ni) 

and μ-EXAFS (at the Ni and Mn-K edges) presented in chapter 5 were collected at 

Diamond Light Source (DLS) Ltd on beamline I18.  During data collection, storage 
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ring energy was 3.0 GeV and the beam current was approximately 200 mA. Samples 

were presented to the X-ray beam as ~30 μm thick self-supported thin sections, held 

between Kapton tape. Data was acquired in fluorescence mode (at the Ni K-edge) or 

transmission mode (at the Mn K-edge). Test scans indicated that there was no photo-

redox or visible beam damage on the samples after 6 EXAFS scans up to k = 14 Å-1. 

Nevertheless, in order to minimize beam damage 4 spectra were collected at a single 

x,y point before moving to a new point to record a further 4 spectra, collecting a total 

of up to 9 spectra (9 for Ni K-edge and 4 for Mn K-edge). 

 μ-XRF maps were collected at 8.4 keV with a pixel size of 10x10 μm and a 

count time of 1 sec per pixel. Maps were deadtime corrected and registered using 

custom beamline software. Maps were use to identify points of interest (POI) for 

collection of Ni and Mn μ-EXAFS. For μ-EXAFS the beam spot was ~2x3 μm. 
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Chapter 4 

Nucleation and growth of todorokite: 
Implications for trace-metal cycling in marine 

sediments 
 

The following chapter is adapted from a manuscript published in the journal 

Geochimica et Chosmochimica Acta. 

 

4.1 Introduction 

 

Manganese oxides are ubiquitous in oxic marine sediments and play a 

fundamental role in the biogeochemical cycling of trace elements in the ocean (e.g., 

Goldberg, 1954; Cronan, 1976; Burns and Burns, 1979; Post, 1999; Peacock and 

Sherman, 2007a; Sherman and Peacock, 2010; Spiro et al., 2010). Specifically, in 

addition to their ubiquity, they have large surface areas and are highly reactive, and 

so through coupled sorption and redox reactions are able to exert a strong control on 

the speciation, mobility and bioavailability of trace metals and micronutrients (e.g., 

Post, 1999). 

 In oxic marine sediments the main Mn-bearing phases are birnessite, buserite 

and todorokite (e.g., Burns and Burns, 1977).  These minerals are all mixed Mn(III/IV) 

oxides, but birnessite and buserite are phyllomanganates (layer-type), consisting of 

sheets (layers) of edge-sharing MnO6 octahedra, whereas todorokite is a 

tectomanganate (tunnel-type), consisting of triple chains of edge-sharing MnO6 

octahedra that share corners to form 3D tunnels.  In birnessite and buserite, individual 

phyllomanganate sheets are stacked and separated by a hydrated interlayer region, 

which is partially filled with water molecules and a variety of cations to balance 

negative charge generated within the octahedral layers.  Birnessite interlayers contain 

a single layer of water molecules resulting in an interlayer spacing of ~7 Å and, for 

example, Na+ interlayer cations, while buserite interlayers contain a double layer of 

water molecules resulting in an interlayer spacing of ~10 Å and, for example, Mg2+ 

interlayer cations. In ideal todorokite, the tunnels have a square cross-section that 

measures three octahedra wide each side (Burns et al., 1985; Post and Bish, 1988; 

Post et al., 2003). In this case the tunnels equate to ~10x10 Å. In the marine 
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environment, todorokite tunnels are typically occupied by hydrated Mg2+ ions (e.g., 

Bodeï et al., 2007), whereas in more rarely occurring terrestrial todorokites, other 

large cations such as Ba2+ are thought to concentrate in the tunnel positions (e.g., Xu 

et al., 2010). The 7 and 10 Å phyllomanganates often display a number of structural 

and physiochemical variations, most notably possessing either triclinic or hexagonal 

symmetry, where hexagonal symmetry results from ordered vacancies in the 

manganese octahedral sites (Drits et al., 1997). In addition, these minerals can also 

exhibit varying degrees of disorder in the stacking of the phyllomanganate sheets 

along the c-axis, creating a continuum between turbostratic vernadite that consists of 

randomly orientated sheets (where the synthetic analogue is MnO2), to c-disordered 

phases that display some degree of sheet stacking, to highly crystalline phases in 

which sheets are ordered over several hundreds of angstroms (e.g., Villalobos et al., 

2003).  Natural marine birnessite is most commonly identified as a hexagonal, poorly 

crystalline phase, with either incoherent (vernadite) or semi-coherent (c-disordered 

birnessite) sheet stacking (e.g., Calvert and Price, 1970; Jauhari, 1987; McKenzie, 

1989; Peacock and Sherman, 2007b; Grangeon et al., 2008).  Furthermore, this suite 

of phyllomanganates also show variations in the proportion of Mn(III)/Mn(IV) within the 

layers.  In vernadite Mn is predominantly present in the +4 oxidation state (e.g., 

Villalobos et al., 2003), while c-disordered and more crystalline phases contain a 

higher proportion of structural Mn(III) (e.g., Villalobos et al., 2003; Livi et al., 2011). 

In the natural environment Mn(III/IV) oxides are thought to form via the 

microbial oxidation of Mn(II) (e.g., Brouwers, 2000; Francis et al., 2001; Bargar et al., 

2000, 2005; Villalobos et al., 2003; Tebo et al., 2005; Webb et al., 2005a, b; 

Saratovsky et al., 2006; Spiro et al., 2010).  However, although todorokite is often 

found intimitely associated with vernadite and both 7 and 10 Å semi-coherently 

stacked phyllomanganates (here collectively termed poorly crystalline 

phyllomanganates) in marine ferromanganese precipitates (e.g., Burns and Burns, 

1978a, b; Siegel and Turner, 1983; Usui and Terashima, 1997; Banerjee et al., 1999; 

Bodeï et al., 2007; Peacock and Moon, 2012) it is thought to only form during the 

transformation of a 10 Å phyllomanganate under diagenetic and low temperature 

hydrothermal conditions (e.g., Burns and Burns, 1978b). Accordingly, marine 

ferromanganese precipitates that have precipitated directly from the water column 

(hydrogenetic) are typically rich in poorly crystalline phyllomanganates, those that 

have precipitated at the sediment-seawater interface (diagenetic) contain both poorly 

crystalline phyllomanganates and todorokite in variable proportions reflecting the 

influence of sediment pore-waters on individual precipitates, while those that have 
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precipitated below the sediment-seawater interface in close proximity to hydrothermal 

fluids are generally todorokite rich (e.g., Burns and Burns, 1977).  

Despite the close association of poorly crystalline phyllomanganates and 

todorokite in natural marine precipitates, the exact crystallization pathway and 

formation mechanism of todorokite from these minerals in natural environments is still 

unclear.  This is due at least in part to the fact that the X-ray diffraction patterns of 10 

Å phyllomanganate and todorokite overlap at key peaks, and in natural precipitates 

todorokite is also often poorly crystalline and typically found intermixed with a variety 

of other poorly crystalline oxyhydroxides (e.g., Usui et al., 1997; Banerjee et al., 1999; 

Bodeï et al., 2007; Peacock and Moon, 2012).  As such it can be very difficult to 

elucidate the detailed spectral, structural and morphological information necessary to 

determine precisely how poorly crystalline phyllomanganates transform into 

todorokite.  The precise crystallization pathway and transformation mechanism are 

important however because the speciation, mobility and bioavailability of trace metals 

and micronutrients scavenged by the primary, authigenic phases will ultimately 

depend on whether these species are retained in the neo-formed todorokite or 

released back to sediment pore-waters and potentially then to seawater during the 

transformation.  Notably, Bodeï et al. (2007) perform a range of high-resolution 

analyses, including X-ray diffraction, X-ray absorption spectroscopy and transmission 

electron microscopy, on a marine manganese concretion from hemipelagic 

sediments, and propose that todorokite forms in these settings via the dissolution-

recrystallization of a single- to bi-layered hexagonal vernadite precursor (with an 

interlayer spacing equal to 7 Å) to a multi-layered and semi-coherently stacked Mg-

rich vernadite intermediate (with 10 Å d-spacing), which then undergoes a topotactic 

transformation to todorokite.   

In keeping with current knowledge of todorokite formation in the natural 

environment, the only known route to preparing synthetic todorokite involves the 

transformation of a phyllomanganate precursor, via either high temperature and 

pressure hydrothermal treatment (e.g., Giovanoli et al., 1975; Golden et al., 1986; 

Shen et al., 1993; Feng et al., 1995, 1998; Tian et al., 1997; Vileno et al., 1998; Luo et 

al., 1999; Malinger et al., 2004; Liu et al., 2005) or a refluxing process at atmospheric 

pressure, designed to better simulate todorokite formation in natural environments 

(Feng et al., 2004; Cui et al., 2006, 2008, 2009a).  In all of the studies above, 

successful transformation required either an initial phyllomanganate precursor, or a 

phyllomanganate intermediate, possessing some degree of c-axis sheet stacking and 

an expanded (10 Å) interlayer region.  More recently, Feng et al. (2010) synthesized a 



 56 

todorokite-like phase from a biogenic poorly crystalline hexagonal birnessite (most 

similar to MnO2), via a mild reflux procedure (atmospheric pressure, 100 oC), 

developed to better represent marine diagenetic and mild hydrothermal conditions 

while still achieving transformation on an observable time scale (investigated over 48 

hr).  In general agreement with Bodeï et al. (2007), Feng et al. (2010) propose that 

their biogenic precursor transforms to a triclinic phyllomanganate intermediate (with a 

10 Å d-spacing), which then undergoes topotactic transformation to a todorokite-like 

product.  Due to the poorly crystalline nature of the biogenic precursor, both the 

intermediate and the todorokite-like product are similarly poorly crystalline, which 

prevented a more detailed evaluation of the crystallization pathway and 

transformation mechanism. 

Here I synthesize todorokite from a c-disordered hexagonal birnessite via a 

mild reflux procedure.  The birnessite precursor is analogous to marine birnessite and 

displays sufficient sheet stacking along the c-axis for identification of key spectral, 

structural and morphological features in the precursor, intermediate and 

transformation products.  Similarly to Feng et al. (2010), the mild reflux procedure 

provides a reasonable representation of marine diagenetic and mild hydrothermal 

conditions, while still achieving transformation on an observable time scale.  The initial 

c-disordered birnessite, intermediate phyllomanganate and subsequent 

transformation products are extensively characterized using X-ray diffraction (XRD), 

Fourier transform infrared spectroscopy (FTIR), BET surface area analysis, scanning 

electron microscopy (SEM), high-resolution transmission electron microscopy (HR-

TEM) and extended X-ray absorption fine structure spectroscopy (EXAFS).  Through 

careful and combined analyses of these results I provide new insight into the 

crystallization pathway of todorokite formation from birnessite, and propose the first 

detailed mechanism for todorokite formation in the marine environment.  In addition, I 

discuss the implications of the formation mechanism for the fate and mobility of trace 

metals and micronutrients sequestered by marine Mn oxides. 

 

 

 

 



 57 

4.2 Methods 

 

4.2.1 Preparation of hexagonal birnessite precursor 

 

A c-disordered hexagonal birnessite phase with an interlayer spacing of ~7 Å 

was synthesized following the method of Villalobos et al. (2003). The method is 

described in detail in chapter 3.  

 

4.2.2 Transformation of Hexagonal Birnessite to Todorokite 

 

 C-disordered hexagonal birnessite was transformed to todorokite following a 

method adapted from Feng et al. (2004, 2010). The method is outlined in the methods 

chapter (Chapter 3). 

 

4.2.3 Characterization of Precursor, Intermediate and Reflux Products 

 

Powder X-ray diffraction (XRD) patterns were collected using a Bruker D8 

diffractometer, operating at 40kV/40mA and equipped with CuK radiation ( = 

1.5418) and a LynxEye detector. Samples were analyzed over a range of 2-80 o2θ 

with a 0.010 step size and step time of 155 sec.  Fourier transform infrared (FTIR) 

spectroscopy was performed on powdered samples using a Thermo Scientific iS10 

FTIR spectrometer equipped with an attenuated total reflection (ATR) diamond 

crystal. Each spectrum was an average of 32 scans with a resolution of 1 cm-1.  

Scanning electron microscopy (SEM) and transmission electron spectroscopy 

(TEM) images were collected at the Leeds Electron Microscopy and Spectroscopy 

center in the Institute for Materials Research at the University of Leeds.  For imaging, 

finely crushed powder samples were suspended in methanol and dispersed via 

sonication. For SEM imaging, all samples were loaded onto individual aluminium 

stubs and left to air dry.  A platinum coating was applied to all samples prior to 

imaging which was performed at 20 kV using an EI Quanta 650 FEGESEM.  For TEM 

imaging, samples were loaded onto individual holey carbon TEM grids.  Imaging was 

performed at 200 kV on a Philips CM200 FEGTEM.  

The average Mn oxidation state (AOS) of all synthesized Mn oxides was 

determined by potentiometric titration (Ligane and Karplus, 1946; Gaillot, 2002). This 
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method is described in detail in chapter 3, but briefly, 35 mg of finely ground mineral 

powder was reduced in 50 mL of a previously standardized 0.02 M (NH4)2Fe(SO4)2 

(Mohr Salt) solution.  The suspension was placed in an ultrasonic bath for up to 30 

min to aid reduction. The resulting solution was then titrated against a standardized 

0.02 M KMnO4 solution at pH 2 to avoid the precipitation of Fe3+.  After this, 8 g of 

sodium pyrophosphate was dissolved in 100 mL of MQ water and added to the 

previous Mn oxide solution. The amount of reduced Mn2+ formed in the reduction step 

was determined by a second titration against the standardized 0.02 M KMnO4 

solution, this time the mixture was adjusted to pH 6.5-6.6 via the drop-wise addition of 

concentrated sulfuric acid.  Due to the strong color of the pyrophosphate complex, the 

equivalence point in this second titration was determined by potentiometric titration. 

Potentiometric titrations were undertaken using an automated titrator equipped with a 

combined platinum ring conductivity electrode.  Reported AOS values are the average 

of three separate titrations for each sample, with standard deviations calculated based 

on the triplicate measurements.  

The specific surface area of all samples was measured in duplicate using the 

BET-N2 method using a Gemini V2365 system (Micromeritics Instrument Corp.).  

Samples were dried and degassed for 24 hr at room temperature. Reported BET 

values are ±5 %. 

In addition to the above analyses, extended X-ray absorption fine structure 

(EXAFS) spectra for the c-disordered birnessite precursor, Mg-exchanged 

phyllomanganate intermediate and subsequent reflux products at the Mn K-edge 

(6.539 keV) were collected. Spectra were collected on station B18 at Diamond Light 

Source (DLS) Ltd.  During data collection, storage ring energy was 3.0 GeV and the 

beam current was approximately 200 mA. EXAFS data were collected from up to 6 

transmission mode scans using a Ge 9-element detector. Test scans indicated no 

photo-reduction after 6 scans to k = 14 Å-1. Nevertheless, in order to minimize beam 

damage 2 EXAFS spectra were recoded at a single x,y point before moving to a new 

point to record a further 2 spectra.   

For EXAFS measurements, dry powders were diluted with cellulose nitrate 

and pressed into pellets. Energy calibration was achieved by assigning the first 

inflection point of Au (L3) foil to 11.919 keV. EXAFS data reduction was performed 

using ATHENA (Ravel and Newville, 2005) and PySpline (Tenderholt et al., 2007).  

ATHENA was used to calibrate from monochromator position (millidegrees) to energy 

(eV) and to average multiple spectra from individual samples. PySpline was used to 
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perform background subtraction where the pre-edge was fit to a linear function and 

the post-edge background to two 2nd-order polynomial segments. 

 

4.2.4 Preparation of Reference Mn Oxides 

 

A Triclinic Na-birnessite (Tc-Na-birnessite), crystalline hexagonal birnessite 

(Hx-birnessite), c-disordered hexagonal birnessite (as above), all with an interlayer 

spacing of ~7 Å, MnO2 and crystalline todorokite were prepared and used as 

references during the above analyses. Tc-Na-birnessite was prepared following the 

oxidation method of Liu et al., (2002), Hx-birnessite was prepared by acidification of 

the Tc-Na-birnessite suspension (Drits et al., 1997; Silvester et al., 1997; Lanson et 

al., 2000; Liu et al., 2002) and MnO2 was synthesized following the protocols of 

Villalobos et al. (2003). A todorokite with high crystallinity was prepared by 

hydrothermal treatment of a Mg-substituted Tc-Na-birnessite suspension, following 

the method of Feng et al. (1995). Synthesis procedures for the Tc-Na-birnessite, Hx-

birnessite, poorly crystalline MnO2 and todorokite are detailed in chapter 3. Mineral 

identity and purity of the references were confirmed by XRD analysis of randomly 

orientated powder samples. 
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4.3 Results 

 

4.3.1 X-ray Diffraction 

 

 C-disordered birnessite displays basal reflections at ~7 Å [001] and ~3.5 Å 

[002] (for reference pattern see turbostratic birnessite, Drits et al., 1997), while for Mg-

exchanged phyllomanganate these appear at ~10 Å [001] and ~5 Å [002] (for 

reference pattern see that of buserite JCPDS-32-1128).  Exchange of Mg2+ ions into 

the interlayer of ~7 Å birnessite expands this region to ~10 Å.  Both phases also have 

two hk0 reflections (or hk bands) at ~2.4 Å [100] and ~1.4 Å [110]. These are due to 

diffraction within the phyllomanganate sheets. In common with 10 Å phyllomanganate, 

the tectomanganate todorokite has peaks at ~10 Å [001] and ~5 Å [002], and peaks at 

~2.4-2.5 Å [21-1] and [210], and ~1.4 Å [020].  As such, it can be difficult to distinguish 

todorokite from 10 Å phyllomanganate using XRD (e.g., Burns et al., 1983, 1985; 

Giovanoli, 1985; Bodeï et al., 2007; Saratovsky et al., 2009; Feng et al., 2010). 

However, in contrast to 10 Å phyllomanganates, todorokite has characteristic peaks at 

2.22 Å [21-2], 1.90 Å [31-2], 1.74 Å [21-4] and 1.54 Å [21-5] (JCPDS-38-475). In 

addition, the peak at ~2.4 Å [21-1] is prominent and the peak at ~2.5 Å is evident as a 

characteristic splitting of the ~2.4 Å phyllomanganate peak region when 10 Å 

phyllomanganate and todorokite are mixed.  Compared to 10 Å phyllomanganate, 

todorokite also has a characteristic splitting of the ~5 Å peak to reveal a peak at ~4.3 

Å, and displays a characteristic loss of symmetry and splitting of the ~1.4 Å peak. 

 XRD patterns for the c-disordered birnessite, Mg-phyllomanganate 

intermediate and all subsequent reflux products synthesized in the current study are 

presented in Figure 4.1. Firstly, c-disordered birnessite shows 4 broad peaks at ~7.2 

Å, ~3.6 Å, ~2.4 Å and ~1.4 Å originating from the [001], [002], [100] and the [110] 

reflections, respectively. After suspension of the c-disordered birnessite in 1 M MgCl2 

the basal spacing is expanded from ~7 Å to ~10 Å as indicated by the presence of 

both the ~9.6 Å [001] and ~4.8 Å [002] peaks in the Mg-phyllomanganate intermediate 

(Fig. 4.1). These peaks are more intense than those of the c-disordered birnessite 

precursor suggesting that the ion-exchange process enhances the crystallinity and 

long range ordering of the sheets.  

  The d100/d110 peak intensity ratios for the c-disordered birnessite and Mg-

phyllomanganate intermediate are 2.44/1.41 and 2.43/1.41 respectively, which equate 

to ~ √3 which is in good agreement with diffraction data from Villalobos et al. (2003) 

for c-disordered birnessite and indicates that the Mn layers have hexagonal symmetry 
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with a = b = 2.83 Å (Drits et al., 1997).  The ~1.4 Å peak is symmetrical in both the 

precursor and intermediate phases further indicating that these possess hexagonal 

symmetry (Drits et al., 2007). In both the precursor and intermediate phases the ~2.4 

Å peak exhibits a degree of asymmetry on the high-angle side. This feature is typical 

of phyllomanganates that lack significant long-range ordering of the sheets (Villalobos 

et al., 2006). By contrast, triclinic birnessite (JCPDS-23-1046) shows a characteristic 

splitting of the peaks at ~2.4 Å and ~1.4 Å, lending the ~1.4 Å peak region in 

particular a distinctive asymmetry (e.g., Drits et al., 1997). 

 

 

Figure 4.1 X-ray diffraction patterns: a) c-disordered birnessite precursor and Mg-

exchanged phyllomanganate intermediate and b) Mg-exchanged phyllomanganate 

intermediate (repeated from Fig. 4.1a) and all subsequent reflux products.  

Characteristic X-ray diffraction peaks are labelled for c-disordered birnessite (B), Mg-

exchanged phyllomanganate intermediate (MgI) and todorokite product (T) (based on 

Drits et al., 1997 for turbostratic birnessite, JCPDS-32-1128 for buserite and JCPDS-

38-475 for todorokite).   
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 Over the course of the reflux four distinct changes are visible in the XRD 

patterns (Fig. 4.1).  Firstly, the appearance of four broad peaks at ~2.2 Å, ~1.9 Å, ~1.7 

Å and ~1.5 Å indicates that transformation of the 10 Å phyllomanganate to todorokite 

has begun by 3 hr reflux.  As the reflux progresses, these peaks become sharper and 

more intense indicating the progressive formation of todorokite. Secondly, the peak at 

~2.4 Å has split by 3 hr reflux to reveal two peaks in this region at ~2.45 and 2.41 Å, 

where the peak at ~2.45 Å becomes more prominent with time. Thirdly by 3 hr reflux, 

the peak at ~5 Å begins to broaden on the high-angle side, developing into a broad 

shoulder at ~4.3 Å, with two separate peaks distinguishable after 48 hr reflux.  Finally, 

the ~1.4 Å peak shows a significant loss of symmetry as the reflux proceeds.  These 

three later changes are those expected during the transformation of 10 Å 

phyllomanganate to todorokite (Feng et al., 2004) and are consistent with 

transformation having begun by 3 hr reflux. 

 

4.3.2 Fourier Transform Infra-Red Spectroscopy 

 
 FTIR spectra for c-disordered birnessite, Mg-phyllomanganate intermediate 

and a selection of the subsequent refluxed products are presented in Figure 4.2.  For 

FTIR of Mn oxides, a broad peak at ~760 cm-1 is typically assigned to an 

asymmetrical Mn-O stretching vibration, corresponding to corner-sharing MnO6 

octahedra (Julien et al., 2004). This absorption band is absent in phyllomanganate 

(layer-type) Mn oxides and is therefore unique to those that possess a 

tectomanganate (tunnel-type) structure (Julien et al., 2004). FTIR spectroscopy can 

therefore conclusively distinguish between the layer-type intermediate phase and the 

tunnel-type todorokite product. Figure 4.2 shows that the characteristic peak is 

apparent in the refluxed product after 3 hr of reflux (as highlighted by the dashed line 

in Fig. 4.2), which is consistent with the XRD data that also indicates the presence of 

todorokite by this time point (Fig. 4.1). The presence of the 760 cm-1 peak in the FTIR 

spectrum is consistent with a transition from edge- to corner-sharing MnO6 octahedra, 

expected during the transformation of birnessite to todorokite (Julien et al., 2004; 

Kang et al., 2007). The increasing intensity of this peak with time indicates that more 

todorokite is present within the matrix as the transformation proceeds. 
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______________________________________________________________

Figure 4.2 Fourier transform infrared powder absorption spectra of c-disordered 

birnessite precursor, Mg-exchanged phyllomanganate intermediate, and reflux 

products at 6 hr, 12 hr, 24 hr and 72 hr reflux.  

 

4.3.3 Electron Microscopy 

 
 SEM images of the c-disordered birnessite show that the precursor material 

has a plate-like morphology typical of phyllomanganate Mn oxides (Fig. 4.3a).  

Individual birnessite crystallites appear to be randomly oriented and aggregated into 

larger particles measuring approximately 200-300 nm in diameter (not shown).  After 

6 hr reflux the overall morphology has evolved and small fibrous needles (<0.2 m) of 

todorokite can be seen intergrown within the platy birnessite matrix (Fig. 4.3b).  After 

72 hr of reflux treatment, the mineralogy is dominated by elongated fibres (> 2.0 m) 

of crystalline todorokite (Fig. 4.3c).  In addition, these fibres appear to be aggregated 

into a dense network of fibres resulting in an overall plate-like morphology (Fig. 4.3d).  
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______________________________________________________________

Figure 4.3 Scanning electron micrographs: a) c-disordered birnessite precursor, and 

reflux products at b) 6 hr reflux, c-d) 72 hr reflux. 

HR-TEM images are presented in Figure 4.4. The prominent feature of both 

the c-disordered birnessite precursor (Fig. 4.4a, b) and the Mg-phyllomanganate 

intermediate (Fig. 4.4c, d) is the repetition of the [001] lattice planes (space group 

p63/mmc), from which it can be inferred that the individual phyllomanganate layers 

are reasonably well stacked over at least 50 Å.  The measured interlayer of the c-

disordered birnessite is equal to ~5.6 Å, while the Mg-phyllomanganate is equal to 

~8.6 Å (Fig. 4.4b, d), neither of which are consistent with the 7.2 Å and 9.6 Å d-

spacing’s determined via XRD (Fig. 4.1). However, it has been reported that 

phyllomanganate layers are susceptible to collapse under the high vacuum conditions 

required for TEM work.  For example, Post and Veblen (1990) report layer collapse in 

7 Å K+ birnessite to ~6.0 Å.  It is evident from Figure 4.4e that after approximately 1.5 

hr reflux the layers of the Mg-phyllomanganate have become substantially rumpled 

and distorted in areas equivalent to several square nanometres.  In corroboration with 

SEM observations (Fig. 4.3), TEM images taken after 6 hr reflux (Fig. 4.4f) show a 

significant change in particle morphology. Primary particles of todorokite that measure 
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~ 8-10 nm wide and that are elongated longitudinally along the [010] direction (space 

group p2/m; i.e., along the direction of tunnel growth) some 200 nm in length (Fig. 

4.4f) are observed.  On close inspection at 6 hr reflux, these primary particles appear 

to be aggregating together laterally across the [100] direction, resulting in the 

formation of substantially wider todorokite laths that measure approximately 20-30 nm 

in diameter, which is equivalent to the aggregation of 2-3 primary todorokite particles 

(Fig. 4.4f). The extent of lateral particle aggregation over the duration of the 

experiment is highlighted in Figure 4.4, where significant lateral aggregation is 

observed from 6 hr reflux (image 4.4f; laths on average ~ 20-30 nm wide), to 48 hr 

reflux (image 4.4g; laths on average ~ 50-100 nm wide) to 72 hr reflux (image 4.4h; 

laths on average ~100-150 nm wide).  In addition to lateral aggregation, the particles 

also continue to elongate along the [010] direction as the reflux proceeds (from 6 to 

24 to 72 hr, images Fig. 4.4f, i and h, respectively).  It is difficult to determine from 

these images whether particle-particle aggregation along the [010] makes any 

contribution to todorokite growth as, unlike across the [100] direction, the observation 

of particle-particle boundaries is less clear.  However, after 24 hr reflux, crystalline 

laths up to 600 nm in length ([010] direction) are observed extending from central 

regions of overlapping todorokite laths (Fig. 4.4i). The central regions of overlapping 

laths are aligned with each other at 120°. This dense network of fibres gives rise to 

the formation of large aggregates of todorokite that exhibit a plate-like morphology.  

The size of these plate-like aggregates appears to increase with increased reflux time 

and, after 72 hr, plates of todorokite measuring approximately 500 x 550 nm are 

observed (Fig. 4.4j).  This plate-like growth morphology is typical of todorokite found 

in both marine and terrestrial settings (Turner et al., 1982; Siegel and Turner 1983; 

Bodeï et al., 2007; Xu et al., 2010). 
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_____________________________________________________________ 

Figure 4.4 Transmission electron micrographs of: (a - b) c-disordered birnessite 

precursor and (c – d) Mg-exchanged phyllomanganate intermediate with b) and d) 

highlighting the repetition of the [001] lattice planes, (e) reflux product at 1.5 hr 

showing rumpling and distortion of the phyllomanganate layers, (f) reflux product at 6 

hr showing primary particles of todorokite (white outlines) elongated longitudinally 

along [010] and aggregating laterally across [100] to form todorokite laths. 
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Figure 4.4 (continued) (g) reflux product at 48 hr showing todorokite laths ~ 50-100 

nm wide (black lines highlight primary particle aggregation), (h) reflux product at 72 hr 

showing todorokite laths ~ 100-150 nm wide (black lines highlight primary particle 

aggregation), (i) reflux product at 24 hr showing crystalline laths of todorokite 

elongated along [010] with laths overlapping and aligned at 120°, (j) reflux product at 

72 hr showing todorokite with a plate-like morphology with plates comprised of aligned 

overlapping laths, also showing in the enlarged area a number of linear dislocations 

along the direction of tunnel growth (highlighted with white lines), (k) reflux product at 

72 hr showing heterogeneous todorokite tunnel dimensions. 
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HR-TEM images (Fig. 4.4k, j) also reveal that the todorokite product contains a 

number of structural defects.  Specifically, the todorokite tunnels highlighted in Figure 

4.4k display widths across the [100] direction of ~ 6 Å, 9 Å and 16 Å, approximately 

corresponding to tunnels that are (3x2), (3x3) and (3x4) MnO6 octahedra wide. 

Tunnel-width inconsistencies are commonly observed in todorokite (Turner et al., 

1982; Feng et al., 2004; Bodeï et al., 2007; Xu et al., 2010).  In addition to 

heterogeneous tunnel dimensions, the images also reveal the presence of a 

substantial number of linear dislocations along the direction of tunnel growth (Fig. 

4.4j). 
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4.3.4 Physiochemical Characterization 

 
 BET surface area and pH measurements for c-disordered birnessite, the Mg-

phyllomanganate intermediate and all subsequent reflux solids and solutions, 

respectively, are presented in Table 4.1 and displayed graphically in Figure 4.5. The 

measured N2 BET surface areas of the c-disordered birnessite and Mg-

phyllomanganate intermediate are 103.7 m2/g and 104.9 m2/g, respectively.  After 3 hr 

of reflux treatment the surface area has decreased to 78.82 m2/g and shows little 

variation during the first 12 hr, with all measured values falling within the 5 % error 

range of the technique. The measured surface area then peaks at 95 m2/g at 24 hr, 

after which there is a subsequent drop to 69.95 m2/g at 48 hr, ending with 65.82 m2/g 

at 72 hr. The pH values of the reflux solutions at 3 hr until 24 hr show little variation, 

averaging at 4.85 pH units.  At 48 hr there is an increase in pH to 5.10, which further 

increases to 5.51 pH units at 72 hr reflux. An increase in solution pH towards the end 

of the reflux procedure is consistent with the observations of Feng et al. (2010). 

 

Sample  Surface Area (m2/g)a Reflux Soln. pHb 

C-disordered birnessite 103.7 N/A 

Mg-phyllomanganate 104.9 N/A 

3hr-Reflux 78.82 4.80 

6hr-Reflux 82.47 4.85 

9hr-Reflux 76.24 4.85 

12hr-Reflux 75.36 4.86 

24hr-Reflux 94.81 4.89 

48hr-Reflux 69.95 5.10 

72hr-Reflux 65.82 5.51 

Table 4.1 Specific surface area of the solid products and pH of the reflux solution for 

the c-disordered birnessite precursor, Mg-phyllomanganate intermediate and all 

subsequent reflux products. aAll surface area measurements are ±5%. bAll pH 

measurements are ± 0.05 pH units. 
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The Mn AOS in c-disordered birnessite is 3.78±0.04. This value is in good 

agreement with Villalobos et al. (2003) for c-disordered birnessite and indicates that 

the precursor contains a significant proportion of Mn(III). After exchange in 1 M MgCl2 

the AOS is 3.75±0.04, while after 72 hr reflux the final todorokite product has an AOS 

of 3.79±0.004. The results of the oxidation state titrations indicate that within error 

there is no significant change in the net Mn AOS as the transformation proceeds. 

 

     

Figure 4.5 Specific surface area of the solid products and pH of the reflux solution for 

the reflux time series. The first surface area measurement shown on the plot is the 

Mg-exchanged phyllomanganate intermediate at 0 hr aging time; pH measurements 

start at 3 hr reflux. ■ Symbols indicate surface area values and ● symbols indicate 

measured pH values. For exact values see Table 4.1. 
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4.3.5 X-ray Absorption Spectroscopy 

 

 
Mn K-edge EXAFS of the reference Mn oxides, c-disordered birnessite, Mg-

phyllomanganate intermediate and early stage reflux products are shown in Figure 

4.6.  Mn EXAFS spectroscopy is sensitive to Mn-O and Mn-Mn interatomic distances, 

and MnO6 polyhedral linkages (e.g., Manceau and Combes, 1988).  Information on 

sample mineralogy and crystallinity can therefore be obtained by comparing sample 

spectra to a suite of standard Mn oxide reference spectra (e.g., Manceau et al., 2002). 

In agreement with previous studies, the Mn oxide reference spectra show clear 

differences in k-space in the (6.5 – 9.5 Å-1) indicator region (e.g., Webb et al., 2005a).  

This region is sensitive to the amount and ordering of Mn(IV) and Mn(III) in the sheets 

of phyllomanganates (MnO2, c-disordered birnessite, Hx-birnessite and Tc-Na-

birnessite) and to the tunnel dimension in tectomanganates (todorokite) (e.g., 

Manceau and Combes, 1988; McKeown and Post, 2001).  In particular, the k-space 

peaks at ~6.7, 8 and 9.2 Å-1 appear sharper and more intense for layered vs. tunnel 

structures (e.g., Webb et al., 2005a). This is evident when comparing the 

phyllomanganate (MnO2 and Hx-birnessite) to the tectomanganate (high crystalline 

todorokite) reference spectra.  For layered structures, these indicator features also 

appear sharper and more intense with an increase in coherent stacking of the layers 

along the c-axis, i.e., from MnO2, to c-disordered birnessite, to Hx-birnessite (e.g., 

Webb et al., 2005a).  As expected, the collected EXAFS spectra show that the c-

disordered birnessite precursor and Mg-phyllomanganate intermediate, have c-axis 

ordering that is intermediate between turbostratic MnO2 and highly crystalline Hx-

birnessite (Fig. 4.6). In addition, in agreement with XRD data, the Mg- 

phyllomanganate intermediate displays slightly sharper and more intense indicator 

peaks than the c-disordered birnessite precursor, confirming that the ion-exchange 

process enhances the c-axis ordering of the Mn octahedral layers.  In addition, Mn K-

edge EXAFS can also be used to conclusively distinguish between phyllomanganates 

with triclinic and hexagonal symmetry, where triclinic phases exhibit a splitting of the 

indicator peak at ~8 Å-1 while hexagonal phases do not (Webb et al., 2005).  In this 

respect the EXAFS spectra confirm that the c-disordered birnessite precursor has 

hexagonal symmetry, in agreement with XRD data (Fig. 4.1) and as expected for c-

disordered birnessite synthesized following the method of Villalobos et al. (2003). The 

spectra also show that the Mg-phyllomanganate intermediate and early-stage reflux 

products, shown until 3 hr reflux (by which time, rumpling of the phyllomanganate 
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layers at 1.5 hr has been observed (Fig. 4.4e)), similarly possess hexagonal 

symmetry. 

 
         

_____________________________________________________________________________________________

Figure 4.6 Mn K-edge EXAFS for Mn oxide reference compounds and the c-

disordered birnessite precursor phase, Mg-exchanged phyllomanganate intermediate 

and reflux products at 20 min, 1.5 hr and 3hr reflux. Vertical dashed lines mark the 

positions of the k-space indicator regions at ~6.7, 8 and 9.2 Å-1. 
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4.4 Discussion 

 

 4.4.1 Mechanism of Todorokite Formation in the Marine Environment 
 

It is widely agreed that the formation of todorokite in the marine environment is 

a complex multistage process (Burns and Burns, 1978a,b; Siegel and Turner, 1983; 

Golden et al., 1986; Shen et al., 1993; Feng et al., 2004; Bodeï et al., 2007; Feng et 

al., 2010). The exact formation mechanism of todorokite in marine diagenetic and 

hydrothermal settings has remained unclear due to this complexity, and because it is 

often found intermixed with other poorly crystalline oxyhydroxide minerals (Usui et al., 

1997; Banerjee et al., 1999; Bodeï et al., 2007). Todorokite was initially synthesized 

by Golden et al. (1986), however subsequent confirmation of this synthesis has often 

proved challenging (Siegel and Turner, 1983; Golden et al., 1986; Shen et al., 1993; 

Ching et al., 1999; Feng et al., 2004; Cui et al., 2006; Cui et al., 2008; Cui et al., 2009; 

Feng et al., 2010). 

The current experimental study presents the first detailed description of the 

crystallization pathway and mechanism of todorokite formation from birnessite. I show 

that this reaction pathway involves a four-stage process beginning with todorokite 

nucleation, then crystal growth to form todorokite primary particles, followed by their 

self-assembly and oriented growth, culminating in a traditional crystal ripening 

processes. Each of these stages in the crystallization process is described in detail 

below. 

 

4.4.1.1 Todorokite nucleation 
 

Previous studies have recognized that the ordering of the birnessite layers 

over at least several tens of angstroms is fundamental for the eventual formation and 

pillaring of the todorokite tunnel walls (e.g., Bodeï et al., 2007).  In the current work 

HR-TEM images of the birnessite precursor and 10 Å phyllomanganate intermediate 

indicate that the individual phyllomanganate layers are reasonably well stacked over 

at least 50 Å (Fig. 4.4b, d).  It has also been suggested that the presence of structural 

Mn(III) within the birnessite layers is an important prerequisite for todorokite formation 

(Bodeï et al., 2007; Cui et al., 2008).  Specifically, distortion of the Mn(III) octahedra 

due to the Jahn-Teller effect results in the elongation and thus weakening of the Mn3+-

O bonds along the z-axis.  It is at this structural weak point, between the Mn3+-O-Mn4+ 

bonds that run parallel to the [010], that the phyllomanganate layers are thought to be 
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most susceptible to rumpling (Bodeï et al., 2007; Cui et al., 2008).  It is believed that 

this kinking of the layers leads to the formation of the todorokite tunnel walls within the 

volume of the phyllomanganate interlayer (Bodeï et al., 2007; Cui et al., 2008).  

Potentiometric titration of the birnessite precursor and 10 Å phyllomanganate 

intermediate confirm that these two phases contain a significant proportion of Mn(III), 

with AOS of 3.78 and 3.75, respectively. The proposed rumpling of the 

phyllomanganate layers is directly observed at 1.5 hr reflux.  Specifically, HR-TEM 

images indicate that the layers of the 10 Å intermediate have become distorted in 

localized areas some tens of square nanometers in size (Fig. 4.4e).  This suggests 

that the rearrangement of the phyllomanganate sheets, and thus the nucleation of 

todorokite, proceeds within local domains relatively rapidly after the start of reflux 

treatment.  Furthermore, Cui et al. (2006) investigate the transformation of birnessite 

to todorokite over a wide temperature range from 40 to 140 oC, and show that the 

transformation is significantly enhanced at and above 100 oC.  In parallel, Bodeï et al. 

(2007) suggest that elevated temperatures increase the kinetics of the 10 Å 

intermediate transformation.  With this new data I suggest specifically that the kinking 

of the 10 Å phyllomanganate layers, and thus the key step in the nucleation of 

todorokite, is thermally induced. The temperature dependence of todorokite 

nucleation then at least partly explains the prevalence of todorokite over 

phyllomanganates in hydrothermal marine ferromanganese precipitates (as 

documented by, for example, Burns and Burns (1977)). 

Based on the literature to date and the new data presented here, it is clear that 

there are two major prerequisites for the formation of crystalline todorokite directly 

from 10 Å phyllomanganate. Firstly, the 10 Å phase must contain enough structural 

Mn(III) to allow the kinking of the phyllomanganate layers.  Secondly, the 10 Å phase 

must also display at least semi-coherent c-axis ordering, so that as the 

phyllomanganate layers kink, there are sufficient adjacent layers for the cross-linking 

todorokite tunnel walls to form. The absence of one or both of these prerequisites 

results in the synthesis of a variety of layer-type and tunnel-type Mn oxide products.  

For example, Feng et al. (2010) use a biogenic phyllomanganate precursor with AOS 

3.8±0.3 but incoherent (turbostratic) c-axis ordering, and are able to produce only a 

very poorly crystalline nanoscale todorokite-like product; these authors also report a 

failed attempt to synthesize todorokite from an acid birnessite with semi-coherent c-

axis ordering but an AOS of 3.96±0.02. Similarly, Bodeï et al. (2007), using a 

turbostratic 10 Å phyllomanganate, produce a mixture of primary 7 Å birnessite and 

jianshuite/Mg-chalcophanite and secondary poorly crystalline todorokite. It has also 
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been suggested that triclinic symmetry in the 10 Å phyllomanganate intermediate 

might be another prerequisite for todorokite formation (Feng et al., 2010), i.e., that 

during the formation of todorokite from hexagonal 7 Å birnessite, there is a transition 

from hexagonal symmetry in the precursor to triclinic symmetry in the intermediate 

phase. However, I have shown from both XRD (Fig. 4.1) and Mn K-edge EXAFS 

spectroscopy data (Fig. 4.6), that both the precursor and intermediate phases 

possess hexagonal symmetry. Furthermore, there is no evidence for the appearance 

of a triclinic phyllomanganate during the early stages of todorokite nucleation.  It 

therefore appears that todorokite can form via a hexagonal pathway and triclinic 

symmetry is not a prerequisite for todorokite formation.  

 

4.4.1.2 Formation of todorokite primary particles 

 
Following the formation of the proposed todorokite nucleation sites by 1.5 hr 

reflux, FTIR data (Fig. 4.2) confirms that by 3 hr reflux there is some degree of 

structural transition from edge-sharing to corner-sharing MnO6 octahedra as indicated 

by the appearance of the broad shoulder at ~760 cm-1 in the FTIR spectrum (Julien et 

al., 2004; Kang et al., 2007).  In turn this is consistent with XRD data (Fig. 4.1) at 3 hr 

reflux, which shows the presence of characteristic todorokite peaks between 2.4 Å 

and 1.5 Å. Notably, there is a distinct increase in asymmetry of the initially 

symmetrical 10 Å intermediate [110] reflection as it evolves into the todorokite [020] 

reflection, with this trend towards asymmetry beginning by 3 hr reflux. The growth and 

narrowing of the todorokite [020] reflection reflects todorokite growth along the [010] 

direction, i.e., along the direction of tunnel growth.  

I capture the first visual evidence of todorokite crystallization at 6 hr reflux with 

the clear presence of small and poorly crystalline primary particles of todorokite in the 

TEM images (Fig. 4.4f).  Interestingly, these primary particles are elongated along the 

[010] direction, measuring up to 200 nm in length (Fig. 4.4f).  By comparison, the 

width of these particles along the [100] direction is significantly smaller, measuring 

between 8 and 10 nm.  The widths of the todorokite particles are comparable to the 

crystallite size (calculated from Scherer analysis) of the 10 Å phyllomanganate 

intermediate particles i.e. ~8 nm along the [100] direction.  I suggest that following the 

nucleation of todorokite within the phyllomanganate layers, the todorokite particles 

grow preferentially along the [010] direction with the width of the particles controlled 

by the crystallite size of the phyllomanganate intermediate i.e. ~8 nm.  Due to the 
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difference in both size and morphology between the 10 Å phyllomanganate and 

todorokite, I suggest that the todorokite primary particles grow along the [010] via 

dissolution of the 10 Å phyllomanganate followed by precipitation of crystalline 

todorokite.  This is consistent with the drop in surface area measured between the 10 

Å phyllomanganate intermediate and the reflux product at 3 hr. 

 

4.4.1.3 Self-assembly and oriented growth 

 
It is evident on close inspection (Fig. 4.4f) that at 6 hr reflux some of the 

initially formed primary particles of todorokite are orientated and aggregated together 

laterally across the [100] direction resulting in the formation of substantially wider 

todorokite laths (20-30 nm wide).  It is possible to make out several particle-particle 

boundaries between laterally aggregating primary particles (Fig. 4.4f). However, 

similarly early on in the transformation it is difficult to identify any particle-particle 

boundaries along the length of tunnel growth. This suggests that primary particle 

aggregation is occurring exclusively in the lateral direction. The data therefore 

indicates that following the formation of acicular todorokite, the primary crystallites 

aggregate via attachment of the [100] faces i.e., via an oriented attachment-type 

mechanism. This is again consistent with the drop in surface area from the 10 Å 

phyllomanganate intermediate to the 3 hr reflux product.  Analysis of the HR-TEM 

data shows that there is little variation in the widths of individual todorokite primary 

particles from the early stages of particle nucleation (widths on average ~ 8 nm) to the 

end of the reflux treatment (widths on average ~ 5-15 nm). This indicates that lateral 

oriented attachment of todorokite particles is a key particle growth mechanism 

throughout the duration of the reflux treatment. The progressive attachment of 

todorokite primary particles is consistent with the overall drop in surface area from the 

3 hr to 72 hr reflux products (Fig. 4.5).  The maximum surface area value measured at 

24 hr reflux may therefore be an anomaly. The self-assembly and lateral aggregation 

of primary particles in an Mn oxide system has also been observed by Portehault et 

al. (2007) during the formation of cryptomelane.  They find that cryptomelane-type 

MnO2 nanowires synthesized under mild hydrothermal conditions form via the lateral 

“side to side” aggregation of primary nanorods.   

Oriented attachment (OA) refers to the self-assembly and oriented growth of 

primary particles to form larger secondary particles. First described by Penn and 

Banfield (1998a), OA is a spontaneous crystal growth mechanism, whereby primary 
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crystallites align and eventually aggregate together at specific surfaces that share 

similar crystallographic dimensions. The resulting secondary particles are larger and 

thus ultimately more thermodynamically stable due to the overall reduction in surface 

free energy (Penn and Banfield, 1998a, b). In recent years the importance of this non-

classical growth mechanism has become increasingly apparent and a growing 

number of studies have shown that under varying experimental conditions a diverse 

range of geochemically important mineral phases such as Fe oxides, TiO2, ZnS and 

CaSO4 form via OA-based growth mechanisms (Penn and Banfield, 1998a; Penn and 

Banfield, 1999; Banfield et al., 2000; Gilbert et al., 2003; Huang et al., 2003; 

Waychunas et al., 2005; Burrows et al., 2012; Van Driessche et al., 2012).  In 

addition, the growth of materials by OA has also been shown to provide a route for the 

formation of a variety of structural defects (Penn and Banfield et al., 1998a, b; Penn et 

al., 2001).  For example, it is understood that prior to attachment, particles may often 

misalign, ultimately leading to the offset of lattice planes between adjoining particles.  

This misalignment leads to the incorporation of both linear- and edge-type 

dislocations at particle-particle boundaries (Penn and Banfield, 1998a; Banfield et al., 

2000; Penn et al., 2001) such as those observed in the microstructure of the neo-

formed todorokite samples (Fig. 4.4j).   

Notably, in addition to the formation of todorokite laths, I also observe that 

individual laths are oriented specifically in three distinct directions at 60°/120° to each 

other (Fig. 4.4j) to form large aggregates of todorokite with a plate-like morphology. 

This trilling pattern is a characteristic growth morphology of todorokite that has been 

widely described in both natural and synthetic samples (Seigel and Turner, 1983; 

Golden et al., 1987; Feng et al., 2004; Bodeï et al., 2007; Xu et al., 2010).  I suggest 

that this morphology arises due to the assembly and subsequent attachment of 

adjacent layers of elongated todorokite laths, on the [001] faces. Because of the 

pseudo-hexagonal structure within the Mn-O layers of the todorokite, adjacent layers 

can attach with a 60°/120° angle between the layers and still provide structural 

continuity, with each stacked layer having elongated crystallites aligned in one 

direction.  

In summary, I suggest that the formation of todorokite from birnessite 

proceeds via the initial formation of local nano-domains of todorokite within the 10 Å 

phyllomanganate interlayer, leading to the formation of primary todorokite particles 

that grow from solution exclusively along the [010] direction. These primary particles 

then self-assemble laterally across the [100] direction via OA to form significantly 

larger and more crystalline secondary todorokite laths. Todorokite laths may undergo 
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further assembly, to form stacked layers, in which laths of todorokite may attach at 

angles of 60º, 120º or 240º in order to retain structural continuity. This process is 

presented visually in Figure 4.7.  To my knowledge this is the first study to observe 

primary todorokite particles and capture their self-assembly and oriented growth 

during todorokite formation. 

  

 

______________________________________________________________

Figure 4.7 Simplified 2D model for the growth of todorokite: a) primary todorokite 

particles, b) oriented attachment of primary todorokite particles to form larger and 

more stable secondary todorokite laths, and c) further aggregation of todorokite laths 

to form todorokite with a plate-like morphology.  

 

In order to robustly relate this formation and growth mechanism to the 

formation of todorokite in the marine environment, it is necessary to consider the role 

of artificial reflux treatment on the overall transformation process. For example, it has 

been shown that the growth of materials via hydrothermal routes typically favours OA-

type growth (Penn and Banfield 1999; Gilbert et al., 2003).  Importantly however, the 

morphological growth features observed in these synthetic samples throughout the 

reflux process are highly comparable to those seen in natural marine todorokite. As 

such, while the refluxing process necessarily accelerates the transformation rate, the 

overall formation and growth mechanism does not appear to have been fundamentally 

altered. 
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4.4.1.4 Crystal Ripening 
 

In many instances experimental observations have shown that growth by OA 

usually dominates during the early stages of crystallization, and subsequently gives 

way to traditional ripening-based growth during the final stages of crystallization 

(Waychunas et al., 2005; Zhang et al., 2009). I therefore suggest that the neo-formed 

todorokite phase will likely undergo further growth from solution as a result of 

Ostwald-ripening processes during the later stages of the reflux, once any remaining 

birnessite has been transformed. However, owing the overlap of key peaks in the 

diffraction patterns of the 10 Å intermediate phase and the final todorokite product it is 

difficult to elucidate when the transformation is complete, and thus when all birnessite 

is consumed and ripening occurs. That said the significant decrease in surface area at 

48 hr and 72 hr reflux is consistent with crystal ripening. 

 

4.4.1.5 Potential implications for Trace Metal Cycling in Marine Sediments 
 

It is well understood that the sequestration of dissolved trace metals to Mn 

oxide phases, and in particular to the phyllomanganate birnessite, exerts a strong 

control on the concentration of metals in seawater (e.g., Goldberg, 1954; Cronan, 

1976; Burns and Burns, 1979; Post, 1999; Peacock and Sherman, 2007a; Sherman 

and Peacock, 2010; Spiro et al., 2010).  In particular, recent work shows that sorption 

equilibrium between marine birnessite and the micronutrients Ni and Cu helps explain 

measured concentrations of these metals in the modern global oceans (Peacock and 

Sherman, 2007a; Sherman and Peacock, 2010).  Mechanistically, Ni and Cu are 

sequestered from seawater and strongly bound to birnessite (e.g., Manceau et al., 

2007a; Peacock and Sherman, 2007a; Peacock, 2009; Sherman and Peacock 2010), 

where at the pH of seawater and marine sediment porewaters, these metals then 

become variably progressively incorporated into the birnessite structure with time 

(Peacock, 2009; Peña et al., 2010; Sherman and Peacock, 2010).  In natural marine 

birnessite, Ni is found entirely structurally incorporated (Peacock and Sherman, 

2007b) while Cu only partially incorporates, likely because Cu(II) is Jahn-Teller 

distorted while Ni(II) is not (Sherman and Peacock, 2010). Jahn-Teller distortion 

sterically hinders Cu(II) incorporation into Mn(IV)-rich birnessite. 

 In the context of the current study, it is traditionally thought that Ni and Cu 

incorporated into birnessite might aid its transformation to todorokite (Burns and 

Burns, 1978; Burns and Burns, 1979; Usui, 1979; Takematsu et al, 1984).  

Subsequent work suggests specifically that the incorporation of heterovalent cations, 
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including Mn(III), Ni(II) and Cu(II), is necessary to kink the 10 Å phyllomanganate 

layers (Bodeï et al., 2007). For Mn(III) at least, the current work supports this 

assertion and shows that the kinking of the 10 Å phyllomanganate layers leads to the 

nucleation of todorokite primary particles.  However, despite the role of Mn(III) in the 

crystallization of todorokite, it has been noted that natural todorokite typically contains 

significantly less Ni and Cu than the 10 Å phyllomanganate from which it crystallized 

(Siegel and Turner, 1983; Bodeï et al., 2007).  For example, Siegel and Turner (1983) 

report 10 Å phyllomanganate with 3.8% NiO and 2.8% CuO while the neo-formed 

todorokite contains only 0.2% NiO and 1.5% CuO.  While these studies do not explain 

the overall lower amounts of metal impurities in neo-formed todorokites, Siegel and 

Turner (1983) do suggest that higher Cu concentrations in todorokite reflect the Jahn-

Teller distortion of Cu(II), and thus incorporated Cu(II) (and specifically the strained 

Cu2+-O-Mn3/4+ bond) is more favourable for kinking of the phyllomanganate layers and 

thus formation of Cu-bearing todorokite. 

Having determined a four-stage nucleation and growth mechanism for the 

formation of todorokite, I can potentially shed new light on the role of trace metal 

impurities in the precursor birnessite phase, and their ultimate fate, during 

transformation to todorokite. I suggest that, in fact, only incorporated heterovalent 

cations with Jahn-Teller distortion will likely facilitate the initial kinking of the 10 Å 

phyllomanganate layers and thus promote the nucleation of todorokite and the 

subsequent formation of todorokite primary particles. It follows that for Ni-rich 10 Å 

phyllomanganates (where Ni(II) is not Jahn-Teller distorted), and in particular those 

with low structural Mn(III) and/or Cu(II) content, Ni(II) might retard the transformation 

of birnessite to todorokite, and/or be lost to solution in order that transformation can 

proceed, both of which potentially explain the prevalence of Ni-poor todorokites in the 

natural environment.  Studies investigating the role of trace metal impurities during 

growth by OA are extremely limited, especially for cases where growth by OA is 

accompanied by phase transformation or vice versa. Kim et al. (2008) indicate that 

metal(loids) adsorbed to goethite nanoparticle surfaces substantially disrupt growth 

via OA, by essentially blocking attachment and aggregation interfaces.  These authors 

conclude that if nanoparticle growth by OA is to proceed, impurities at aggregation 

interfaces must either be incorporated into the mineral structure away from 

attachment surfaces or desorbed into solution. As the Mn octahedral layers in both 

birnessite and 10 Å phyllomanganate are only a single octahedron thick, impurities 

incorporated into the mineral structure are effectively still present at aggregation 

interfaces. If non Jahn-Teller distorted impurities are lost to solution then the 
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diagenesis of birnessite potentially provides a source of these metals to marine 

sedimentary pore-waters and subsequently a benthic flux of micronutrients to 

seawater.   

 

4.5 Summary and Conclusions 
 

The current study provides the first detailed mechanism for the formation and 

growth of todorokite from birnessite in the marine environment. Specifically, I present 

evidence for a four-stage process that can be summarized as:  

 

1. Nucleation of todorokite: Todorokite tunnel walls form within the phyllomanganate 

interlayers via kinking of the layers, these nano-domains then provide a nucleation 

site for todorokite primary particle formation. 

 

2. Primary particle formation: Primary todorokite particles grow from solution via 

dissolution-recrystallization, specifically along the direction of tunnel growth ([010] 

direction). 

 

3. Oriented attachment of primary particles: Simultaneous with their growth from 

solution, the primary particles align and attach perpendicular to the direction of 

tunnel growth ([100] direction) via oriented attachment, to form todorokite laths. 

 

4. Ripening: Once the birnessite is consumed, further growth from solution occurs 

via traditional Ostwald-ripening type processes.  

 

I propose there are two prerequisites for the formation of todorokite from 10 

Å phyllomanganate. Firstly, the 10 Å phyllomanganate must contain a significant 

proportion of structural Mn(III) which, due to its Jahn-Teller distortion, facilitates 

kinking of the layers. Secondly, the 10 Å phyllomanganate must also display semi-

coherent c-axis ordering, so that as the layers kink, there are sufficient adjacent layers 

for the formation of the todorokite tunnel walls. Both of these factors are necessary for 

the nucleation of todorokite and subsequent formation of todorokite primary particles.  
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Based on these prerequisites it follows that, contrary to traditional thinking, 

only structural cation impurities with Jahn-Teller distortion should aid the formation 

and growth of todorokite. As such, I predict that structural cation impurities without 

Jahn-Teller distortion (e.g., Ni) might retard the transformation of birnessite to 

todorokite and/or be lost to solution during this diagenetic process.   
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Chapter 5 
 

Fate and mobility of Ni during the transformation 
of birnessite to todorokite 

 

The following chapter is adapted from a manuscript currently in the final stages of 

preparation for submission to Geochimica et Cosmochimica Acta. 

 

 

5.1 Introduction 
 

The phyllomanganates birnessite and buserite, together with the 

tectomanganate todorokite, are the dominant Mn-bearing minerals in oxic marine 

sediments, where they are typically found as poorly crystalline and intermixed 

nanoparticulate phases (e.g., Goldberg, 1954; Burns and Burns, 1977; Banerjee et 

al., 1999; Post 1999). Birnessite and buserite in particular are highly reactive and 

through coupled sorption and redox reactions exert a strong control on the 

concentration, speciation and bioavailability of trace metals and micronutrients in 

seawater (e.g., Post et al., 1999).  The poorly crystalline phyllomanganates present in 

marine ferromanganese precipitates are typically enriched in trace metals such as Ni, 

Cu and Zn by ~ 106 over their respective concentrations in seawater (e.g., Arrhenius, 

1963; Koschinsky and Hein, 2003). Specifically with regard to Ni, hydrogenetic 

ferromanganese crusts and diagenetic ferromanganese nodules typically contain 

between ~0.2 and 1 bulk wt% Ni, respectively (e.g., Koschinsky and Halbach, 1995), 

resulting from a sorption equilibrium between birnessite and Ni which helps control the 

concentrations of this micronutrient in the modern global oceans (Peacock and 

Sherman, 2007a).   

In oxic marine sediments however, the poorly crystalline phyllomanganates 

transform into todorokite during oxic diagenesis and under mild hydrothermal 

conditions. In the case of Ni, previous work shows that Ni is readily sequestered from 

seawater to birnessite via surface complexation both above and below Mn octahedral 

vacancy sites present on the birnessite [001] surface (space group P63/mmc) (e.g., 

Manceau et al., 2007a, b; Peacock and Sherman, 2007a.b; Peacock, 2009; Peña et 
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al., 2010). Subsequent to this initial sequestration, with aging and under pH conditions 

relevant to the marine environment, surface complexed Ni progressively migrates into 

the birnessite crystal lattice to become structurally incorporated (Peacock, 2009), and 

in natural marine ferromanganese precipitates, Ni is found entirely incorporated into 

birnessite and buserite (e.g., Peacock and Sherman, 2007b). Despite our 

understanding of Ni sequestration by birnessite and buserite, the fate and mobility of 

Ni and other micronutrients during the transformation of these phases into todorokite 

remains unclear.  Work presented in chapter 4 of this thesis on the mechanism of 

todorokite nucleation and growth suggests that, contrary to current understanding, 

trace metals like Ni might retard the transformation of birnessite to todorokite and be 

released to marine sedimentary pore-waters during this diagenetic process, thus 

potentially providing a benthic flux of these micronutrients to seawater.  A complete 

knowledge of the controls on Ni concentrations and isotopic compositions in seawater 

is important, not only for our understanding of the modern marine biogeochemical Ni 

cycle (e.g., Cameron and Vance, 2014), but also for the interpretation of palaeo Ni 

signatures recorded in marine sedimentary archives (e.g., Konhauser et al., 2009).  

 As outlined previously, in the natural environment Mn(III/IV) oxides are thought 

to form via the microbial oxidation of Mn(II) (e.g., Brouwers, 2000; Francis et al., 2001; 

Bargar et al., 2000, 2005; Villalobos et al., 2003; Tebo et al., 2005; Webb et al., 

2005a, b; Saratovsky et al., 2006; Spiro et al., 2010).  However, although todorokite is 

often found intimitely associated with turbostratic phyllomanganate (termed vernadite) 

and both 7 Å (birnessite) and 10 Å (buserite) semi-coherently stacked 

phyllomanganates (here all collectively termed poorly crystalline phyllomanganates) in 

marine ferromanganese precipitates (e.g., Burns and Burns, 1978a, b; Siegel and 

Turner, 1983; Usui and Terashima, 1997; Banerjee et al., 1999; Bodeï et al., 2007; 

Peacock and Moon, 2012) it is thought to only form during the transformation of a 

phyllomanganate during oxic sediment diagenesis and under low temperature 

hydrothermal conditions (e.g., Burns and Burns, 1978b).  Indeed, observations from 

both natural ferromanganese samples and experiments largely support this assertion.  

For example, marine ferromanganese precipitates are generally classified into 3 

genetic types, in order to reflect their respective modes of accretion and dominant Mn 

oxide mineralogy. Ferromanganese precipitates classified as hydrogenetic precipitate 

slowly from ambient seawater and are typically rich in poorly crystalline 

phyllomanganate phases. Conversely, those formed at the sediment-seawater 

interface are classified as diagenetic and typically contain varying mixtures of both 

poorly crystalline phyllomanganates and todorokite, reflecting the influence of 
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diagenetic sediment pore-waters on individual precipitates. Todorokite is typically 

prevalent in marine ferromanganese precipitates formed in close proximity to 

hydrothermal fluids (e.g., Burns and Burns, 1977). Moreover, all todorokite synthesis 

procedures to date involve the transformation of a phyllomanganate via either high 

temperature and pressure hydrothermal treatment (e.g., Giovanoli et al., 1975; 

Golden et al., 1986; Shen et al., 1993; Feng et al., 1995, 1998; Tian et al., 1997; 

Vileno et al., 1998; Luo et al., 1999; Malinger et al., 2004; Liu et al., 2005) or a more 

mild refluxing process at atmospheric pressure, designed to better simulate todorokite 

formation in natural environments (e.g., Feng et al., 2004, 2010; Cui et al., 2006, 

2008, 2009a).   

Classically, the transformation of birnessite to todorokite is described as a 

topotactic process, during which some of the morphological features and structural 

elements of the precursor phyllomanganate phase are preserved in the neo-formed 

todorokite product (e.g., Bodeï et al., 2007; Feng et al., 2010).  Structural 

incorporation of heterovalent cations, including Cu(II) and Ni(II), is thought to aid 

transformation (Burns and Burns, 1978; Burns and Burns, 1979), as is the presence 

of structural Mn(III) where, because of its Jahn-Teller distortion, Mn3+-O-Mn4+ bonds 

that run parallel to the [010] (space group P2/m) should be relatively weak and most 

susceptible to topotactic rearrangement (Bodeï et al., 2007; Cui et al., 2008).  

However, the specific mechanistic details of the transformation were largely unclear.   

In the previous chapter of this thesis I report a new four-stage nucleation and 

growth model for the formation of todorokite in the marine environment, during which 

large crystalline laths of todorokite are formed via an aggregation-dominated pathway. 

Initially, it was found that todorokite tunnel walls form within the phyllomanganate 

interlayers via a thermally-induced kinking of the layers, and these nano-domains act 

as nucleation sites for the formation of todorokite primary particles, some 8-10 nm 

wide and up to 100 nm in length.  In agreement with previous work (e.g., Bodeï et al., 

2007), I suggested that for successful todorokite formation, the phyllomanganante 

layers must be spaced ~10 Å apart, closely matching the eventual tunnel dimensions 

of the neo-forming todorokite (where ideal todorokite consists of triple chains of edge-

sharing MnO6 octahedra that share corners to form 3D tunnels equating to ~10x10 Å 

(Burns et al., 1985; Post and Bish, 1988; Post et al., 2003)).  Additionally, I suggested 

that a significant proportion of structural Mn(III) which, due to its Jahn-Teller distortion 

facilitates kinking of the phyllomanganate layers, and semi-coherent c-axis ordering, 

so that as the layers kink there are sufficient adjacent layers for the formation of the 

todorokite tunnel walls, are also prerequisite for todorokite formation. The primary 
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particles grow from solution via dissolution-recrystallization, exclusively along the 

direction of tunnel growth ([010] crystallographic direction).  These initially formed 

primary crystallites then assemble spontaneously via oriented attachment (OA), 

attaching at crystal faces perpendicular to the direction of tunnel growth ([100] 

crystallographic direction), to form large acicular laths of todorokite measuring up to 

150 nm wide and 500 nm in length. Lateral attachment of the primary todorokite 

particles is accompanied by continuous growth from solution along the [010] direction. 

Further coalescence of the todorokite laths, via the attachment of the [001] surfaces, 

give rise to large stacked plates of todorokite, in which individual laths are oriented 

specifically at 120O to each other in order to preserve structural continuity between 

each stacked layer.  

While this new growth model explains many of the unique morphological and 

structural features observed in natural todorokites, it also raises important questions 

about the long-term sequestration of trace metals during phyllomanganate 

transformation and todorokite crystal growth via this non-classical OA-based growth 

pathway. In addition to todorokite, there is now a diverse and rapidly growing 

catalogue of mineral phases known to grow via OA, including TiO2, Cu and Fe 

(hydr)oxides, ZnS, cryptomelane-type Mn oxide and CaSO4 (Penn and Banfield, 

1998a; Penn and Banfield, 1999; Banfield et al., 2000; Gilbert et al., 2003; Huang et 

al., 2003; Waychunas et al., 2005; Portehault et al., 2007; Burrows et al., 2012; Van 

Driessche et al., 2012; Frandsen et al., 2014). Many of these mineral phases are 

ubiquitous in natural soils and sediments and play important roles in the 

biogeochemical cycling of aqueous trace metals, yet to date there have been few 

detailed studies investigating the effects of OA type-growth on the retention of surface 

sorbed or structurally incorporated trace metal impurities. This is particularly true for 

cases where crystal growth by OA is accompanied by a phase transformation. Indeed 

there is now increasing evidence to suggest that there is an intimate link between the 

two processes. For example, Frandsen et al. (2014) found that the formation and 

growth of large (15x150 nm) hematite (-Fe2O3) spindles under hydrothermal 

conditions, was induced by the alignment and orientated attachment of small (<5 nm 

in diameter) akaganeite (-FeOOH) nanorods. Change in phase stability, due to the 

increase in particle size as a result of akaganeite particle aggregation was found to 

favor transformation to hematite. Specifically the authors suggest that the interface 

between aggregating akaganeite particles may serve as ideal sites for the nucleation 

of hematite. Further conversion of the remaining akaganeite particles to hematite was 



 87 

found to occur upon contact of the akaganeite particles with the newly formed 

hematite spindle surfaces. 

Previously, I proposed that contrary to traditional understanding, only 

structurally incorporated heterovalent Jahn-Teller active cations will promote the 

nucleation of todorokite and the subsequent formation of todorokite primary particles, 

as only cations with distorted metal-O bonds along the z-axis will produce relatively 

weak metal-O-Mn4+ linkages running parallel to the [010] which facilitate layer kinking 

and initial formation of the todorokite tunnel walls. I suggest that for Ni-rich 

phyllomanganates (where Ni(II) is not Jahn-Teller distorted), and in particular those 

with low structural Mn(III) and/or Cu(II) content (where Mn(III) and Cu(II) are Jahn-

Teller distorted), Ni(II) might retard the transformation of birnessite to todorokite, and 

be released to solution, in order that transformation can proceed.  Indeed, it has been 

noted that natural todorokite typically contains less Cu and, in particular, substantially 

less Ni than the 10 Å phyllomanganate from which it crystallized (Siegel and Turner, 

1983; Bodeï et al., 2007).   

Considering the few studies to investigate the fate of sorbed trace metals 

during OA-type crystal growth, Kim et al. (2008) find that the progressive adsorption of 

As(V), Cu(II), Zn(II) and Hg(II) onto nanoparticulate goethite disrupts growth via OA, 

by essentially blocking attachment and aggregation interfaces. These authors 

conclude that if nanoparticle growth by OA is to proceed, impurities at aggregation 

interfaces must either be structurally incorporated into the mineral structure away from 

attachment surfaces or desorbed into solution. However, because the Mn octahedral 

layers in poorly crystalline phyllomanganates are only a single octahedron thick, 

impurities incorporated into the mineral structure are effectively still present at 

aggregation interfaces. Similarly, a more recent investigation finds that the growth rate 

of goethite nanorods via OA is inhibited due to the association of NO3
2- with the 

aggregating crystal faces (Burrows et al., 2012).  As such there is recent evidence to 

suggest that trace metal impurities might retard transformation and/or be desorbed 

into solution in mineral systems that grow via an OA-type pathway. 

 In order to determine the effect of Ni on todorokite nucleation and growth, and 

investigate the fate and mobility of Ni sequestered by birnessite during its 

transformation into todorokite, todorokite has been synthesized from a Ni-sorbed c-

disordered hexagonal birnessite, via a mild reflux procedure. The Ni-sorbed birnessite 

precursor is analogous to marine birnessite and crucially displays sufficient ordering 

of the phyllomanganates sheets along the c-axis to enable the identification of key 
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spectral, structural and morphological features in the precursor c-disordered 

birnessite, 10 Å phyllomanganate intermediate and transformation products.  

 The initial c-disordered birnessite, intermediate phyllomanganate and 

subsequent transformation products have been extensively characterized using X-ray 

diffraction (XRD), transmission electron microscopy (TEM) and BET surface area 

analysis, while the fate and mobility of Ni during the conversion of birnessite to 

todorokite is determined via Ni K-edge extended X-ray absorption fine structure 

spectroscopy (EXAFS), transmission electron microscopy-energy dispersive 

spectroscopy (TEM-EDS) and inductively coupled plasma optical emission 

spectrometry (ICP-OES). In addition, -X-ray fluorescence (-XRF) and -EXAFS 

have been employed in order to determine the dominant Mn oxide mineralogy and Ni 

mineralogical phase associations in three genetically distinct natural marine 

ferromanganese precipitates, namely a hydrogenetic ferromanganese crust sample, a 

diagenetic marine ferromanganese nodule and a hydrothermal–type ferromanganese 

precipitate. With careful and combined analysis of this work I asses the effect of 

sorbed Ni on the transformation of birnessite to todorokite, and use these findings to 

shed new light on the fate and mobility of Ni in oxic marine sediments. 
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5.2 Methods 
 

5.2.1 Preparation of Ni-sorbed hexagonal birnessite precursor  
 

 Ni sorbed c-disordered hexagonal birnessite with an interlayer spacing of ~7 Å 

and ~1.0 wt% Ni was synthesized following a modified method of Villalobos et al. 

(2003). Briefly, 320 mL of a 0.196 M KMnO4 solution was added slowly to 360 mL of 

0.51 M NaOH solution. Subsequently, 3.41 g of Ni(NO3)2 was added to 320 mL of a 

0.366 M MnCl2 solution and added slowly to the above mixture whilst stirring 

vigorously at room temperature. After 30 min 5x 1 mL suspension aliquots were taken 

in order to quantify the amount of mineral precipitated. The mineral suspension was 

then left to settle for ~4 hr. Meanwhile, 3x aliquots of the supernatant solution were 

extracted, filtered through 0.2 µm syringe filters and retained for Ni and Mn analysis 

via inductively coupled plasma optical emission spectroscopy  (ICP-OES). ICP-OES 

analysis was conducted at the Trace Element Laboratory in the Department of 

Chemistry at the University of Hull; using an Optima 5300 DV ICP-OES. Sample 

standard deviation is calculated based on measurement of the 3 separate supernatant 

aliquots.  

 The remaining supernatant was subsequently discarded and the wet mineral 

slurry centrifuged at 3200 g for 30 min. After centrifugation, the wet slurry was washed 

by mixing with 1 M NaCl, shaken for 45 min and re-centrifuged at 3200 g for 10 min. 

This process was repeated 4 times, and on the last wash the pH was adjusted to pH 8 

and the suspension was shaken overnight. After the NaCl washes, the slurry was 

combined with Milli-Q water (MQ), shaken for 1 hr and centrifuged at 3200 g for 10 

min. This wash cycle was repeated 10 times, 1x for 1 hr, 8x for 0.5 hr and 1x 

overnight. Approximately ¼ of the total resulting wet paste was sacrificed for X-ray 

diffraction (XRD), transmission electron microscopy (TEM), BET and extended X-ray 

absorption fine structure (EXAFS) analyses. After drying the wet paste overnight in 

the oven at 30 oC, the sample was ground to a fine powder, before dissolving 0.01g of 

the mineral in 3 M HCl heated on a hot plate for approximately 2 hr in order to 

determine the total concentration of Ni sequestered to the solid product by ICP-OES 

as above.  Accordingly, the Ni-doped c-disordered birnessite was found to contain 

~1.0 wt % Ni. 
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5.2.2 Transformation of Ni sorbed hexagonal birnessite to todorokite 
 

 The Ni-sorbed c-disordered hexagonal birnessite was subsequently 

transformed to todorokite following the method outlined in the methods chapter 

(chapter 3). Briefly, the remaining wet paste Ni-sorbed c-disordered birnessite was 

suspended in an ~ 4L of 1 M MgCl2 and stirred moderately for 18 hr at room 

temperature. The resulting suspension was then centrifuged to a wet paste. This 

produced a Ni-sorbed phyllomanganate intermediate with an interlayer spacing of ~10 

Å. The Ni-sorbed phyllomanganate intermediate was then re-suspended in 

approximately 800 mL of 1 M MgCl2 in a 1 L round bottom flask fitted with a glass 

condenser. The suspension was stirred continuously and heated to and kept at 100 

°C using a combined heating mantle with magnetic stirrer. The suspension was left to 

age for a period of 4 weeks, during which time, suspension aliquots (~75 mL) were 

extracted from the reaction vessel at time intervals of 3, 6, 12, 24, 48 and 72 hr, 5 

days, and 1, 2 and 4 weeks. Each suspension aliquot was cooled in a water bath to 

room temperature before centrifuging at 3200 g for 10 min. Supernatant solutions 

were collected and the pH measured (calibrated to ±0.05 pH units with Whatman NBS 

grade buffers).  Triplicate aliquots of each supernatant solution were also filtered 

through 0.2 µm syringe filters and retained for Ni and Mn ICP-OES as described 

above. All solid samples were washed extensively in 18.2 MΩ.cm MQ water and oven 

dried at 30 oC prior to analysis. After 4 weeks the reflux was stopped, the suspension 

was cooled to room temperature and the above procedure was repeated to obtain the 

final solution and solid samples. 

 

5.2.3 Natural Ferromanganese-rich Samples 

 
 A hydrogenetic marine ferromanganese crust sample (237KD; Pacific Ocean; 

location: 09o18’N, 146o03’W; water depth: 4830 m), a diagenetic marine 

ferromanganese nodule sample (Nod-P-1; Pacific Ocean; location: 14o50’N, 

124o28’W; water depth: 4300 m) and a hydrothermal marine precipitate sample (D17-

1-IV; Lau Basin; location: 22o17.78’S, 176o38.89’W; water depth: 2063-1965 m) were 

supplied by J.R. Hein (United States Geological Survey). From each sample, a small 

section (roughly 20 mm in length and perpendicular to the growth layers, 15 mm wide 

and 5 mm deep) was cut from the upper 0-60 mm of the bulk sample, using a 

wafering saw. From the cut sections a small amount of material was extracted using a 

micro drill, ground to a fine powder and dissolved in 6 M HCl, and then analysed for 
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bulk Ni content by ICP-OES (as above). Bulk Ni contents for the hydrogenetic, 

diagenetic and hydrothermal samples are ~0.4, 0.5 and 0.07 wt.% Ni, respectively.  

The sections were subsequently encased in high purity resin and self-supported ~30 

μm thick polished sections were prepared for μX-ray fluorescence (μXRF) and 

μEXAFS. Micro thin sections were prepared by Bob Jones and John Ford at the 

National Oceanography Centre, Southampton. Previously reported chemical analyses 

of the hydrogenetic, diagenetic and hydrothermal samples give bulk Mn:Fe ratios of 

1.9, 5 and 114, respectively, which are within the ranges expected for 

ferromanganese precipitates assigned to these different genetic types (Rehkämper et 

al., 2002).   

 

5.2.4 Characterization of Precursor, Intermediate and Reflux Products 

  
Powder XRD patterns were collected using a Bruker D8 diffractometer, 

operating at 40kV/40mA and equipped with CuK radiation ( = 1.5418) and a 

LynxEye detector. Samples were analyzed over a range of 2-90 o2θ with a 0.009o 

step size and step count time of 7 sec.  Data evaluation was undertaken using the 

DIFFRAC plus EVA software package. For XRD analysis of natural ferromanganese 

samples, distinctly Mn-rich regions of the samples (i.e. dark brown/black areas) were 

chosen for analysis to avoid obviously Fe-rich areas. 

 TEM images were collected at the Leeds Electron Microscopy and 

Spectroscopy center in the Institute for Materials Research at the University of Leeds. 

For imaging, finely crushed powder samples were suspended in methanol and 

dispersed via sonication. Samples were then loaded onto individual holey carbon 

TEM grids and allowed to dry at room temperature. Imaging was performed at 200 kV 

on a Philips CM200 FEGTEM. EDS data was collected at several points of interest 

using the TEM. The wt% of Ni identified at each specific point of interest was 

measured using a standardless procedure. 

 

2.2.5 X-ray Absorption and Fluorescence Spectroscopy 
  

 In addition to the above analyses, Ni K-edge (8.333 keV) EXAFS spectra were 

collected for the c-disordered birnessite precursor, Mg-exchanged phyllomanganate 

intermediate and subsequent reflux products. Micro-focus μXRF elemental maps (for 
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Mn, Fe and Ni) and μEXAFS (at the Ni and Mn-K edges (6.539 keV)) were also 

collected for the natural ferromanganese samples. Spectra were collected at Diamond 

Light Source (DLS) Ltd on station B18 (synthetic samples) and I18 (natural samples).   

 During data collection, storage ring energy was 3.0 GeV and the beam current 

was approximately 200 mA. Samples were presented to the X-ray beam as dry 

powders pressed into pellets (synthetic samples), or as ~30 μm thick self-supported 

thin sections (natural samples), held between Kapton tape. Data was acquired in 

fluorescence mode (Ni K-edge) or transmission mode (Mn K-edge). Test scans 

indicated that there was no photo-redox or visible beam damage on the samples after 

6 EXAFS scans to k = 14 Å-1. However, in order to minimize beam damage 4 spectra 

were recorded at a single x,y point before moving to a new point to record a further 4 

spectra, collecting a total of 36 spectra (for Ni K-edge of the synthetic samples) or up 

to 9 spectra (9 for Ni K-edge and 4 for Mn K-edge of the natural samples). μXRF 

maps were collected at 8.4 keV with a pixel size of 10x10 μm and a count time of 1 

sec per pixel. Maps were deadtime corrected and registered using custom beamline 

software. XRF maps were use to identify points of interest (POI) for collection of Ni 

and Mn μEXAFS. For μEXAFS the beam spot was ~2x3 μm.  Energy calibration was 

achieved by assigning the first inflection point of Au (L3) foil to 11.919 keV.   

 EXAFS data reduction was performed using ATHENA (Ravel and Newville, 

2005) and the Ni spectra were fit using DL_EXCURV (Tomic et al., 2005). Spectra 

were fit in k-space over 3 – 12 Å-1, with no Fourier filtering during data analysis, and 

the fitting included full multiple scattering as coded in EXCURV98 (Binsted, 1998). 

Multiple scattering calculations require specification of the full three dimensional 

structure of the Ni coordination environment (i.e., bond angles in addition to bond 

lengths). This was done using hypothetical model clusters with either C1 or C3 

symmetry, for various different Ni local coordination geometries, including Ni sorbed 

at Mn octahedral vacancy sites present in the phyllomanganate layers (Peacock and 

Sherman, 2007a), Ni structurally incorporated into the phyllomanganate layers 

(Peacock and Sherman, 2007a,b) and Ni sorbed to todorokite (Fig. 5.5).  Several 

reference compounds were used to help fit the EXAFS spectra, namely a synthetic Ni-

sorbed c-disordered birnessite where Ni is surface adsorbed at the vacancy sites, a 

natural Ni-incorporated poorly crystalline phyllomanganate where Ni is structurally 

incorporated, and two Ni-sorbed todorokite samples prepared at 24 hr and 1 wk 

contact times respectively (for further details of the reference compounds see section 

2.2.6). Reference spectra were fit by the refinement of a single model cluster. Where 

appropriate, the sample spectra were fit by linear combination of different model 
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clusters as coded in EXCURV98 (Binsted, 1998). Linear combination was performed 

over the k-range 3 – 12 Å-1 with a linear combination of the k3-weighted Chi(k) for 

each cluster. In the linear combinations only the Fermi Energy (EF) and relative site 

occupancies were optimized. For all fits, the number of independent data points (Nind) 

was determined using Stern’s rule (Stern, 1993) as 2ΔkΔR/π + 2 (Booth and Hu, 

2009) where Δk and ΔR are the range in k and R-space actually fitted.  The number of 

fitted parameters (Npar) was determined as the total number of parameters optimized 

during the various model refinements and was always less than Nind.  

 The quality of the fits provided by the different model clusters was assessed 

using the EXAFS R-factor and the reduced Chi2 function, which provides an absolute 

index of the goodness of the fit (and so can be used for comparing fit quality between 

fits where Npars is not equivalent; all as coded in EXCURV98 (Binsted, 1996, 1998)).  

Typical errors associated with EXAFS modelling over the k-range used here are 15 % 

and 25 % for first and second shell coordination numbers, respectively, ±0.02 and 

0.05 Å for first and second shell distances, respectively, and 15 % and 25 % for first 

and second shell Debye–Waller factors, respectively (Binsted, 1998). The errors 

associated with the optimized site occupancies for the linear combination fits were 

evaluated for each fit by assuming that manual changes to the optimized site 

occupancies were not significant until they generated >10 % increase in the reduced 

Chi2 function (Peacock, 2009; Moon and Peacock, 2012). The error on an optimized 

site occupancy is therefore quoted as the difference between the optimized site 

occupancy and the site occupancy value incrementally determined to generate a 10 

% increase in reduced Chi2.  

In addition to principal linear combination in DL_EXCURV, all linear 

combination fits of the Ni spectra were checked in ATHENA. Linear combination fitting 

was also performed for some of the Mn spectra recorded for the natural 

ferromanganese samples in ATHENA. In these cases fitting was done with a linear 

combination of Chi(k) over the k-range 3 – 12 Å-1, using the MnO2 and todorokite 

reference spectra. The errors reported are those generated in ATHENA, i.e., 1-sigma 

error bars assuming the only source of noise is statistical noise (Ravel, 2009). As 

EXAFS experiments are very rarely dominated by statistical noise, these errors are 

conservative. For two-component mixtures such as those used here, the error on the 

fits is typically estimated at ±10 % of the fitted value (e.g., Kim et al., 2000).  Given the 

fact that the reference spectra for MnO2 and todorokite are similar over the indicator 



 94 

region, and that the natural samples show somewhat reduced data quality compared 

to these, ±10 % is still likely a conservative error estimate. 

 

2.2.6 Reference compounds 

 

In addition, a range of Ni free synthetic Mn oxides were prepared using the 

methods described in the methods section (Chapter 3) and used as references during 

the above analyses The references used in the current work include triclinic Na-

birnessite (Tc-Na-birnessite), crystalline hexagonal birnessite (Hx-birnessite), c-

disordered hexagonal birnessite, all with an interlayer spacing of ~7 Å, MnO2 and 

crystalline todorokite.  Mineral identity and purity was confirmed by XRD analysis of 

randomly orientated powder samples.  

The Ni-sorbed Mn oxides used as references during the EXAFS analysis 

included a Ni-sorbed c-disordered birnessite, a Ni-incorporated natural poorly 

crystalline phyllomanganate, and Ni-sorbed todorokite. For the Ni-sorbed c-disordered 

birnessite (where the mineral was prepared as above following the method of 

Villalobos et al., 2003) and Ni-sorbed todorokite (with todorokite prepared as 

described in chapter 4 of this thesis via the method of Feng et al., 2004) a Ni2+ stock 

solution was prepared at 100 ppm from Ni(NO3)2.6H2O and a NaCl background 

electrolyte at 0.1 M. Individual sorption experiments were prepared at 15 ppm [Ni]total 

by adding 4 mL of Ni stock to 0.1 g of mineral in 21 mL of background electrolyte, 

giving a solid/solution ratio of 4 g/L. Suspension pH was adjusted to pH ~5 and ~8 for 

the c-disordered birnessite and todorokite experiments, respectively, via the dropwise 

addition of HNO3/NaOH and recorded after stabilization to two decimal places. The c-

disordered birnessite experiment was left for 24 hr, while two todorokite experiments 

were prepared and left for 24 hr and 1 week, during which time the pH of each sample 

was periodically checked and adjusted as necessary using HNO3/NaOH. The samples 

were subsequently centrifuged at 3000 g for 5 minutes to produce wet pastes for 

EXAFS analysis.   

The Ni-incorporated natural poorly crystalline phyllomanganate is catalogued 

as hydrogenetic ferromanganese crust sample 5DSR8 (Pacific Ocean; location: 

04o09’S, 174o54’W; water depth: 1585 m) from Chu (2004), and was sourced from the 

National Oceanography Centre, Southampton as a dry powder. No further preparation 

was performed.  
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5.3 Results 
 

5.3.1 Transformation of Ni-sorbed Hexagonal birnessite to todorokite 
 

5.3.1.1 X-ray diffraction 
 

XRD patterns for the Ni-sorbed c-disordered birnessite precursor, Ni-sorbed 

10 Å phyllomanganate intermediate and all subsequent reflux products are presented 

in Figure 5.1. The c-disordered birnessite precursor shows 4 broad peaks at ~7.2 Å, 

~3.6 Å, ~2.4 Å and ~1.4 Å, corresponding to the [001], [002], [100] and the [110] 

reflections, respectively (Villalobos et al., 2003). Following suspension of this phase in 

1 M MgCl2, the inter-layer spacing is expanded from ~7 Å to ~10 Å as indicated by the 

appearance of peaks at ~9.6 Å, ~ 4.8 Å and ~ 3.2 Å  ([001] [002] and [003] basal 

reflections, respectively) in the 10 Å phyllomanganate  (Fig. 5.1). In agreement with 

the work presented previously in chapter 4, these peaks are more intense than those 

of the c-disordered birnessite precursor suggesting that the ion-exchange process 

enhances the crystallinity and long range ordering of the sheets.  The d100/d110 peak 

intensity ratios of the c-disordered birnessite and 10 Å phyllomanganate are close to 

3 (at 2.42/1.41 and 2.40/1.41, respectively), which is again in good agreement with 

the study of Villalobos et al. (2003) for c-disordered birnessite and indicates that both 

phases have hexagonal layer symmetry with a = b = 2.83 Å (Drits et al., 1997). In 

addition, for both phases, the symmetrical shape of the ~1.4 Å peak further indicates 

hexagonal layer symmetry (Drits et al., 1997), and the slight degree of asymmetry on 

the high angle side of the ~2.4 Å peak, is common to phyllomanganates that lack 

significant periodic ordering of the sheets (Villalobos et al., 2006). By contrast, triclinic 

birnessite (JCPDS-23-1046) shows a characteristic splitting of the peaks at ~2.4 Å 

and ~1.4 Å, lending the ~1.4 Å peak region in particular a distinctive asymmetry (e.g., 

Drits et al., 1997). 

 Over the course of the reflux there is little evidence for the formation of 

todorokite during the first 24 hrs (Fig. 5.1). This is in sharp contrast to the 

transformation of Ni-free c-disordered birnessite, during which characteristic 

todorokite peaks at ~2.2 Å, ~1.9 Å, ~1.7 Å and  ~1.5 Å are observed by 3 hrs reflux. In 

the current study, the only observable changes over the 3 hr time period are a 

decrease in the intensity of the ~9.6 Å, ~ 4.8 Å and ~ 3.2 Å peaks. This likely reflects 

a reduction in the crystallinity of the 10 Å phyllomanganate due to some degree of 

dissolution-recrystallization occurring during the initial reflux stages. These peaks are 
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markedly more intense after 6 hr reflux likely reflecting a relative increase in 

crystallinity by this time point.  

 

__________________________________________________________________ 

Figure 5.1 X-ray diffraction patterns for the Ni-sorbed c-disordered birnessite 

precursor, Ni-sorbed 10 Å phyllomanganate intermediate and subsequent reflux 

products. Characteristic X-ray diffraction peaks are labelled for c-disordered birnessite 

(B), 10 Å phyllomanganate intermediate (10Å P) and todorokite product (T) (based on 

Drits et al., 1997 for turbostratic birnessite, JCPDS-32-1128 for buserite and JCPDS-

38-475 for todorokite). The * symbol indicates residual MgCl2. 

  

 The four distinct changes in the XRD patterns, expected during the 

transformation of birnessite to todorokite, only start to become visible by 48 hr reflux 

(Fig. 5.1).  Firstly, by 48 hr reflux additional broad peaks are observed at ~2.2 Å, ~1.9 

Å and ~1.7 Å, and a broad hump at ~1.5 Å, indicating that transformation of the 10 Å 

phyllomanganate to todorokite has begun by this time point (Feng et al., 2004). As the 

reflux proceeds these peaks become sharper and more intense indicating the 
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progressive formation of todorokite. Secondly, by 48 hr reflux the peak at ~2.4 Å has 

begun to split to reveal a shoulder at ~2.45 Å, which becomes more prominent with 

time.  Thirdly, the peak at ~5.0 Å has begun to broaden, developing into a broad 

shoulder on the high-angle side at ~4.3 Å. Fourthly, by 48 hr reflux the peak at ~1.4 Å 

has started to become progressively asymmetrical. These later three changes are 

those expected during the transformation of 10 Å phyllomanganate into todorokite 

(Feng et al., 2014) and indicate that transformation has begun by 48 hr reflux. 
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5.3.1.2 Transmission electron microscopy  

 
 TEM images are presented in Figure 5.2, and highlight the gradual 

transformation the 10 Å phyllomanganate into todorokite over the first 2 wks of reflux. 

Firstly, the 10 Å phyllomanganate has a rumpled plate-like morphology, where the 

edges of the phyllomanganate sheets measure ~50 – 70 Å wide (Fig. 5.2a, inset).  

 Repetition of the [001] lattice planes (space group p63/mmc) indicates that the 

individual phyllomanganate layers are reasonably well stacked over at least 30 Å. In 

agreement with previous work, the measured interlayer of the 10 Å phyllomanganate 

is equal to ~8.2 Å (Fig. 5.2b), which although inconsistent with that measured via XRD 

(9.6 Å; Fig. 5.1) is consistent with the partial collapse of the phyllomanganate layer 

under the high vacuum conditions of the TEM (e.g. Post and Veblen, 1990).  

 At 6 hr reflux the morphology of the imaged samples is still dominated by the 

platy 10 Å phyllomanganate phase. However, small primary particles of todorokite 

measuring ~ 6 – 10 nm wide across the direction of tunnel growth ([100] direction) and 

elongated longitudinally along the direction of tunnel growth ([010] direction) are also 

visible within the sample matrix (Fig. 5.2c, d). The lattice fringes of these particles are 

poorly defined, indicating that they are poorly crystalline. In the previous chapter, 

characteristic todorokite XRD peaks were present by 3 hr reflux and I was able to 

visually identify the presence of todorokite primary particles by 6 hr. The poor 

crystallinity of the todorokite primary particles in this Ni-doped system likely accounts 

for the lack of characteristic todorokite peaks in the XRD at the same approximate 

time point.   

 At 24 hr reflux, the mineralogy is still dominated by the 10 Å phyllomanganate 

phase, however, it is evident that the todorokite primary particles have begun to form 

platy todorokite aggregates measuring ~200 x 200 nm (Fig. 5.2e), in particular, large 

acicular laths of todorokite measuring on average ~250 nm in length (along the 

direction of tunnel growth, [010] direction) and ~70 nm wide (across the direction of 

tunnel growth, [100] direction) (Fig. 5.2f). These todorokite laths are assembled from a 

number of smaller primary particle building blocks that vary in length but measure 

consistently between ~ 8 – 10 nm wide. With increasing reflux time, these secondary 

todorokite laths increase in size, particularly in the longitudinal direction, and after 1 

wk large todorokite laths, measuring on average ~ 460 nm long and ~ 70 nm wide 

(Fig. 5.2g) dominate the sample morphology.                                                                                  



 99 

   

____________________________________________________________________

Figure 5.2 Transmission electron micrographs of: (a-b) Ni-sorbed 10 Å 

phyllomanganate precursor with image (a) highlighting the plate-like birnessite 

morphology and thick phyllomanganate sheet edges, and (b) highlighting the 10 Å 

phyllomanganate intermediate interlayer spacing. Images (c-d) show the product after 

6 hrs of reflux treatment, where (c) highlights the birnessite dominated mineralogy of 

the sample matrix and (d) highlights the formation of poorly crystalline todorokite 

primary particles, which are elongated along the [010] direction and relatively uniform 

in size (6-10 nm) across the [100] direction,  (e-f) shows the product after 24 hrs of 

reflux treatment with (e) highlighting the mixed birnessite/todorokite mineralogy and (f) 

highlighting the formation of poorly crystalline plate-like todorokite, and the formation 

of large secondary todorokite laths, formed via the lateral aggregation of  todorokite 

primary particle building blocks. 
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____________________________________________________________________

Figure 5.2 (continued) TEM Images (g-h) show the product after 1 week of aging 

and indicates that the mineralogy is largely dominated by todorokite and (h) the (i-j) 

product after 2 weeks of aging (i) Red lines highlight the lateral aggregation of primary 

todorokite particles and (j) highlights the relatively uniform widths of the individual 

todorokite primary particles after 2 weeks of reflux treatment. Yellow circles in images 

(c), (e), (g) and (i) indicate the position of EDS analysis, where the circle is equal to 

the approximate size of the analyzed area. For approximate wt % of Ni detected at the 

selected EDS points, please refer to Table 5.1. 

 

         The lattice fringes of the todorokite laths are notably more defined by 1 wk 

reflux, indicating an increase in the crystallinity of the neo-formed todorokite phase 

with time.  At this same time point, it is also apparent that individual todorokite laths 

are aligned with each other at 120° to form large aggregates of todorokite that exhibit 

a plate-like morphology (Fig. 5.2h).  These large todorokite plates (>1000 nm x 500 

nm), are orientated in three distinct directions, are arranged into stacked layers along 

the [001] direction (Fig. 5.2h). At 2 wk reflux, there is no observable 10 Å 
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phyllomanganate or phyllomanganate-like phase within the sample matrix, indicating 

that by this time point the 10 Å phyllomanganate has undergone essentially complete 

transformation into todorokite (Fig. 5.2i). In addition, by 2 wk the average size of the 

secondary todorokite laths has increased further to ~700 nm long and ~150 nm wide 

(Fig. 5.2i). 

Comparison of the TEM images over 2 weeks of reflux shows that the 

individual todorokite primary particles vary in length ([010] direction), while in contrast, 

particle widths ([100] direction) remain consistent at on average ~6 – 10 nm wide (Fig. 

5.2d, f, i).  The progressive formation of todorokite laths some ~700 nm long ([010] 

direction) and ~150 nm wide ([100] direction) is consistent with the growth mechanism 

identified in the previous chapter for todorokite formed in a Ni-free system, where 

longitudinal growth of primary particles and secondary laths is dominated by growth 

from solution, via dissolution-recrystallisation, while lateral growth of the todorokite 

laths is dominated by the oriented-attachment (OA) of primary particles along the 

[100] crystal faces.  

EDS data collected at 6 and 24 hr, and 1 and 2 wk reflux, for selected points 

(marked on Fig. 5.2, where point 1 is always on the platy 10 Å phyllomanganate 

matrix and point 2 on the todorokite matrix) is presented in Table 5.1.  From 6 hr to 1 

wk reflux, despite the progressive formation of todorokite, EDS shows that, in the 

measured sample points, sequestered Ni is associated with the platy 10 Å 

phyllomanganate fraction of the sample matrix and there is no detectable Ni 

associated with the poorly crystalline todorokite primary particles or secondary 

todorokite laths (Table 5.1). After 2 wk reflux, when there is no observable 10 Å 

phyllomanganate or phyllomanganate-like phase within the sample matrix, EDS 

shows that there is still no detectable Ni associated with todorokite, despite measuring 

several points on a number of different todorokite laths and plate-like aggregates (all 

typified by the 2 wk EDS point, Fig. 5.2i, Table 5.1). It is important to note that while 

this data can be used for relative comparison of Ni concentrations between measured 

points, it is not used for the quantitative measure of absolute Ni concentrations in the 

current study.  
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Sample  
Cu 

(wt%) 

C 

(wt%) 

Mn 

(wt%) 

O 

(wt%) 

Mg 

(wt%) 

Ni 

(wt%) 

sum 

(wt%) 

6 hr EDS (1) 
50.7 
(0.7) 

21.1 
(0.8) 

16.3 
(0.4) 

10.9 
(0.6) 

0.7 
(0.1) 

0.4 
(0.1) 

100.1 

6 hr EDS (2) 
51.9 
(0.8) 

25.9 
(0.8) 

12.5 
(0.4) 

8.9 

(0.5) 

0.7 
(0.1) 

0 99.9 

24 hr EDS (1) 
26.8 
(0.4) 

0 
41.4 
(0.5) 

28.9 
(0.6) 

2.0 
(0.1) 

1.0 
(0.1) 

100.1 

24 hr EDS (2) 
22.3 
(0.3) 

0 
35.5 
(0.4) 

39.5 
(0.5) 

2.6 
(0.1) 

0 99.9 

1 wk EDS (1) 
32.4 
(0.5) 

0 
34.4 
(0.5) 

30.1 
(0.7) 

2.2 
(0.2) 

0.9 
(0.1) 

100 

1 wk EDS (2) 
37.0 
(0.6) 

4.6 

(0.5) 

31.5 
(0.6) 

25.3 
(0.7) 

1.7 
(0.2) 

0 100.1 

2 wk EDS 
31.8 
(0.4) 

14.0 
(0.5) 

28.4 
(0.4) 

24.2 
(0.5) 

1.7 
(0.1) 

0 100.1 

Table 5.1 HR-TEM EDS data for EDS spot measurements made on a selection of the 

reflux products. Positions of spot analyses are shown on Figure 3. Numbers in the 

parentheses below the measured values are the errors on each measurement. 

 

5.3.1.3 Physiochemical characterization 

 

 The absolute measurements of Ni wt% in the c-disordered birnessite, 10 Å 

phyllomanganate intermediate and all subsequent reflux products are presented in 

Table 5.2. Surface area measurement for the 10 Å phyllomanganate intermediate and 

all subsequent reflux products, and the corresponding concentrations of Ni and Mn in 

the reaction solution are presented in Table 5.3 and Figure 5.4. pH measurements of 

the reaction solutions are also presented in Table 5.3.  The absolute concentration of 

Ni associated with the solid phase shows little variation from the c-disordered 

birnessite precursor to the 10 Å phyllomanganate intermediate, and subsequently 

over the first 72 hr of reflux, with the c-disordered birnessite containing 0.92±0.002 

wt% Ni and the 72 hr reflux sample containing 0.98±0.010 wt% Ni (Table 5.2). By 1 

wk reflux the concentration of Ni associated with the solid phase drops to 0.80±0.011 

wt% Ni and by 2 wk reflux there is a pronounced drop to 0.45±0.001 wt% Ni (Table 

5.2). By 4 wk reflux the final todorokite product contains 0.54±0.003 wt% Ni. Overall 



 103 

there is a ~50 % reduction in the concentration of Ni sequestered to the solid product 

over the duration of 4 wk reflux (Table 5.2). 

 The N2 BET surface area of the 10 Å phyllomanganate is 102.3 m2/g, which is 

highly comparable to previous work for the measured surface area of Ni-free 10 Å 

phyllomanganate (e.g. Villalobos et al., 2003). At 3 hr reflux there is a reduction in 

surface area to 84 m2/g, which then shows little variation during the first 12 hr, with all 

measured values falling within the 5 % error range of the technique. At 24 hr reflux 

surface area is 97 m2/g, peaking at 48 hr reflux at 99 m2/g.  A second and more 

substantial drop in surface area to ~37 m2/g occurs by 1 wk reflux. The surface area 

then continues to decrease to 28 m2/g by 2 wk reflux and 20 m2/g by the full 4 wk 

reflux.  Overall an ~80 % reduction in surface area is observed over the duration of 

the 4 wk reflux (Fig. 5.3). The observed overall decrease in surface area is highly 

comparable to the trends observed during the transformation of a Ni-free 10 Å 

phyllomanganate, and is consistent with an increase in particle size due to the 

formation and growth of large todorokite laths and plates, via the orientated 

attachment of considerably smaller todorokite primary particles. 

 

Sample wt% Nia 

c-disordered birnessite  0.92±0.002 

10Å phyllomanganate 1.03±0.005 

3hr reflux 0.96±0.007 

6hr reflux 1.07±0.010 

12hr reflux 1.00±0.004 

24hr reflux 1.04±0.003 

48hr reflux 0.99±0.009 

72hr reflux 0.98±0.010 

1wk reflux 0.80±0.011 

2wk reflux 0.45±0.001 

4wk reflux 0.54±0.003 

Table 5.2 Total wt% Ni in solid samples. a error is standard deviation of 3 

measurements made on separate sample aliquots  
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Figure 5.3. Surface area of the solid reflux products and the [Ni] and [Mn] in the reflux 

solution as a function of reflux time. The first surface area measurement shown on the 

plot is the Ni-sorbed 10 Å phyllomanganate intermediate at 0 hr reflux; measurements 

of Ni and Mn in the reaction solution start at 3 hr reflux. For exact values see Table 

5.3. 

 

 The dissolved concentrations of Mn and Ni in the reaction solution at 3 hr 

reflux are 0.003 mM and 0.004 mM, respectively (Table 5.3, Fig. 5.3). At 6 hr reflux 

there is a relatively sharp increase in [Mn]soln to 0.017 mM, which then remains fairly 

consistent between 6 hr and 24 hr, after which there is a decrease in [Mn]soln. to 0.010 

mM at 48 hr reflux, which again then remains approximately consistent between 48 hr 

and 1 wk reflux. Up to and including 1 wk reflux, [Ni]soln shows a substantial but 

relatively steady increase from 0.006 mM at 6 hr reflux to 0.054 mM at 1 wk reflux.  By 

2 wk reflux there is a notable release of Mn (3.5 mM) and Ni (0.4 mM) into the 

reaction solution (Table 5.3, Fig. 5.3). After 2 wk reflux there is a large decrease in 

[Mn]soln, with [Mn]soln at 4 wk reflux comparable to that at 3 hr reflux (0.002 mM), while 

for [Ni]soln there is a less pronounced decrease to 0.093 mM at 4 wk reflux.  
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pH measurements of the cooled reaction solution show a slight increase in 

solution pH from ~5.29 to 5.93 over the first 72 hr of reflux. The pH of the reaction 

solution subsequently remains relatively stable until a more substantial drop in pH 

occurs from pH ~5.81 to ~4.84 at 1 wk reflux and then from pH ~4.84 to ~4.26 at 4 wk 

reflux (Table 5.3). 

 

Sample 

Surface Areaa 

(m2/g) 

 

Ni (mM)b Mn (mM)b pHc 

0 102 N/A N/A N/A 

3 hr 84 0.004 ± 8.1x10-5 0.003 ± 3.8x10-5 5.29 

6 hr 88 0.006 ± 5.2x10-4 0.017 ± 4.2x10-4 5.47 

12 hr 87 0.007 ± 8.1x10-4 0.019 ± 6.5x10-4 5.49 

24 hr 97 0.010 ± 2.2x10-4 0.018 ± 3.3x10-4 5.56 

48 hr 99 0.021 ± 3.9x10-4 0.010 ± 3.2x10-4 5.93 

72 hr 95 0.030 ± 5.7x10-4 0.008 ± 2.1x10-4 5.95 

5 day 84 0.042 ± 9.6x10-4 0.009 ± 3.3x10-4 5.82 

1 wk 37 0.054 ± 1.1x10-3  0.008 ± 1.9x10-4 5.81 

2 wk 28 0.414 ± 6.8x10-3 3.508 ± 1.2x10-2 4.84 

4 wk 20 0.093 ± 3.8x10-4 0.002 ± 5.6x10-3 4.26 

Table 5.3. Specific surface area of the solid products, and Ni and Mn concentrations 

and pH of the reflux solutions for the 10 Å phyllomanganate intermediate (time 0) and 

all subsequent reflux products. aAll surface area measurements are ±5%. bAll reported 

errors are the standard deviation as determined from triplicate measurements. cAll pH 

measurements are ± 0.05 pH units. 
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 5.3.1.4 Ni K-edge X-ray absorption spectra of the reference compounds 

 

 Ni K-edge EXAFS and Fourier transforms of the EXAFS for the reference 

compounds are shown in Figure 5.4 and EXAFS fits are summarized in Table 5.4. 

Visual inspection of the Ni-sorbed c-disordered birnessite and Ni-incorporated natural 

poorly crystalline birnessite reference spectra indicate that the Ni local coordination 

environment is very similar to that found previously for Ni sorbed to hexagonal 

birnessite, where Ni is located above Mn octahedral vacancy sites present in the 

phyllomanganate layers (Peacock and Sherman, 2007a,b; Peacock, 2009; Pena; 

Manceau), and Ni-rich marine ferromanganese precipitates were Ni is found entirely 

structurally incorporated into the phyllomanganate layers, by filling vacancy sites 

and/or isomorphically substituting for Mn present in the mineral lattice (Peacock and 

Sherman, 2007a,b; Peacock, 2009).  In agreement with this previous work, the best 

fits to the Ni-sorbed and Ni-incorporated reference spectra are provided by 

optimization of the model clusters representing Ni-sorbed above vacancy sites and Ni-

incorporated into the phyllomanganate layers, respectively (Fig. 5.5, Table 5.4).   

 In contrast to Ni sorbed on and incorporated into birnessite, there has been 

very little work to determine the crystal-chemical mechanism of Ni uptake by 

todorokite. Theoretically, trace metals could sorb to todorokite via outer-sphere 

surface complexation, where Ni might be located in the todorokite tunnels (e.g., 

Pakarinen et al., 2010), or via inner-sphere surface complexation, where Ni could 

adsorb to Mn(OH) sites present at the edges of the triple chains that form the 

todorokite framework, akin to Ni adsorption on triclinic birnessite in which there are no 

Mn octahedral vacancy sites (Peacock and Sherman, 2007a) and at high Ni loading 

on hexagonal birnessite when the vacancy sites are saturated (Manceau et al., 

2007a). Sorbed as an outer-sphere complex, the Ni-sorbed todorokite EXAFS 

spectrum would resemble that of Ni2+(aq) where Ni is surrounded by 6 O at 

~2.04±0.02 Å. Adsorbed at the Mn(OH) sites, the Ni-sorbed todorokite spectrum 

would likely reflect Ni adsorbed as a tridentate corner-sharing complex, as per Ni 

adsorbed on triclinic birnessite with 2 Mn at ~3.05±0.05 Å (Peacock and Sherman, 

2007a). 
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Figure 5.4. Ni K-edge EXAFS and the corresponding Fourier transforms of the 

EXAFS for the reference compounds.  Ni-birnessiteS is a Ni-incorporated natural 

poorly crystalline birnessite; Ni-birnessiteV is a synthetic c-disordered birnessite with 

Ni sorbed above the Mn octahedral vacancy sites, Ni-todorokite_24hr and Ni-

todorokite_1wk are synthetic todorokite samples equilibrated at pH 8 with 15 ppm 

[Ni]total in 0.1 M NaCl for 24 hrs and 1 week respectively. Solid lines are data, dotted 

lines are fits. 

 

 To my knowledge, there are currently no EXAFS spectra for Ni structurally 

incorporated into todorokite, but Ni is expected to exclusively occupy the Mn sites at 

the edges of the triple chains (Post and Bish, 1988; Post et al., 2003; Bodeï et al., 

2007), which would yield an Ni coordination environment consisting of 6 O at ~2.04 Å, 
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4 edge-sharing Mn at ~2.87 – 2.91 Å and 4 corner-sharing Mn at ~3.48 – 3.50 Å 

(Bodeï et al., 2007). Visual inspection of the todorokite sorption spectra at 24 hr and 1 

wk contact time show the Ni local coordination environment is very similar in both 

spectra and most similar to Ni adsorbed on triclinic birnessite where Ni forms 

tridentate corner-sharing surface complexes (Peacock and Sherman, 2007a). 

Accordingly the best fits to these spectra are provided by the cluster representing Ni 

tridentate corner-sharing to Mn(OH) sites present at the edges of the todorokite triple 

chains, with 6 O at ~2.00 – 2.11 Å and 2 Mn at ~2.98 – 3.10 Å. It should be noted that 

the fits were improved (from reduced Chi2 ~18 to ~15, Table 5.4) by allowing a slight 

distortion of the Ni octahedron, evident as a very minor deviation of the spherical 

coordinates of the surface binding O atoms from exact octahedral coordination (O1, 

O4 and O6, Table 5.4). The fits could not be improved by including any other Ni 

coordination environments. 

____________________________________________________________________

Figure 5.5. Molecular clusters used to model EXAFS spectra of (a) Ni surface 

adsorbed above Mn octahedral vacancy sites present in the layers of a hexagonal 

phyllomanganate, (b) Ni structurally incorporated into the layers of a 

phyllomanganate, and (c) Ni surface sorbed to todorokite as a tridentate corner-

sharing complex. 
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Table 5.4. EXAFS fits for Ni sorbed and incorporated reference compounds, fit by 

refinement of a single model cluster. Where N is the number of atoms in a shell. R, θ 

and φ are the Interatomic distance and spherical coordinates of the prototype atom in 

each shell with either C1 or C3 symmetry. 2σ2 is the Debye–Waller factor. EF is the 

correction to the Fermi energy value assigned in ATHENA. Values in italics were held 

constant during refinement. 
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5.3.1.5 Ni K-edge X-ray absorption spectra of the experimental samples 
 

 Ni K-edge EXAFS and Fourier transforms of the EXAFS for the experimental 

samples are shown in Figure 5.6 and EXAFS fits are summarized in Tables 5.5. and 

5.6. Spectra for the birnessite precursor and 10 Å phyllomanganate intermediate are 

visually very similar to those in previous work where Ni is sorbed in two distinct 

coordination environments, namely, adsorbed as a surface complex above Mn 

octahedral vacancy sites and also structurally incorporated into the phyllomanganate 

layers (Peacock and Sherman, 2007a; Peacock, 2009). When Ni is present as a 

structurally incorporated species in addition to a vacancy site adsorbed complex, the 

spectral shape of the characteristic k-space features for Ni adsorbed at vacancy sites, 

at ~6 and 8 Å-1 (see the Ni-sorbed c-disordered reference spectrum (Fig. 5.4)), are 

modified towards the shape of these features for Ni incorporated into the 

phyllomanganate layers (see the Ni-incorporated natural phyllomanganate reference 

spectrum (Fig. 5.4)). Specifically, the feature at ~6 Å-1 deepens to produce a clear 

splitting of the ~5.5 – 7 Å-1 oscillation, while the feature at ~8 Å-1 shoals resulting in a 

single peak for the ~7.5 – 9 Å-1 oscillation, both as a function of the amount of 

structurally incorporated Ni (Peacock, 2009).   

 The presence of Ni as both vacancy site surface complexes and structurally 

incorporated species is manifest in the Fourier transform as two next-nearest Mn 

neighbour distances represented by peaks at ~3.5 and 2.9 Å, respectively, whose 

relative amplitudes reflect the proportion of the total Ni occupying vacancy sites vs. 

structurally incorporated positions (Peacock, 2009). Accordingly, the best fits to the 

birnessite precursor and 10 Å phyllomanganate intermediate spectra are provided by 

a linear combination of the Ni-sorbed c-disordered birnessite and Ni-incorporated 

natural phyllomanganate reference spectra (Fig. 5.4, Table 5.5). Specifically, the 

birnessite precursor is found to contain ~54±4 % Ni adsorbed above vacancy sites 

and ~46±4 % Ni structurally incorporated, while the 10 Å phyllomanganate 

intermediate contains ~38±4 % Ni at vacancy sites and ~62±4 % Ni incorporated. The 

increase in the proportion of structurally incorporated Ni from the birnessite precursor 

to the 10 Å phyllomanganate intermediate is consistent with the observed increase in 

long range order between our precursor an intermediate phases (Fig. 5.1).  Partial 

dissolution-recrystallization during the Mg ion exchange process is likely to favor 

some structural incorporation of surface adsorbed species. 
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Figure 5.6. Ni K-edge EXAFS and Fourier transforms of the EXAFS for the 

experimental samples including Ni-sorbed c-disordered birnessite precursor, Ni-

sorbed 10 Å phyllomanganate intermediate and subsequent reflux products at 3 hr, 6 

hr, 24 hr, 48 hr, 1 week, 2 week and 4 week. Solid lines are data and dotted lines are 

fits. 
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 The reflux spectra are visually very similar to the birnessite precursor and 10 Å 

phyllomanganate intermediate, and remarkably similar to each other up to and 

including 1 wk reflux (Fig. 5.6).  In the first instance, these observations indicate that 

the Ni local coordination environment in the reflux samples is likely similar to that in 

the precursor and intermediate samples, and that this environment does not 

significantly change throughout the reflux to 1 wk.  In particular, these reflux spectra 

do not resemble the reference spectra for Ni-sorbed todorokite (Fig. 5.4).  Neither is 

there any indication that a significant proportion of the Ni has become structurally 

incorporated into the neo-forming todorokite.  In this latter scenario, one would expect 

a change in the amplitude of the characteristic spectral features resulting from edge- 

and corner-sharing Mn. Specifically, if a significant proportion of the Ni originally 

associated with the 10 Å phyllomanganate was incorporated into the neo-forming 

todorokite then the amplitude of the spectral features at ~6 and 8 Å-1 in k-space, 

which manifest as Ni-Mn distances at ~2.9 and 3.5 Å in R-space, should change 

somewhat to reflect the fact that the local coordination environment of the Ni now 

includes 6 Mn at ~2.9 Å and 2 Mn at ~3.5 Å, as expected for Ni coprecipitated with a 

phyllomanganate, and also 4 Mn at ~2.9 Å and 4 Mn at ~3.5 Å, as expected for Ni 

incorporated into todorokite (Bodeï et al., 2007).  While this change in the Ni local 

coordination environment would not produce significant changes in the expected Ni-

Mn interatomic distances, and the absolute changes in the number of Mn next-nearest 

neighbours would be difficult to resolve, the fact that the amplitude of these key 

spectral features, and in fact the entire spectral signature, remains so remarkably 

consistent from 3 hr to 1 wk reflux is a strong indication that Ni remains sequestered 

by the 10 Å phyllomanganate intermediate as the reflux proceeds, despite the fact 

that XRD (Fig. 5.1) and TEM (Fig. 5.2) data show that a significant amount of neo-

formed todorokite is present in the sample matrix by 48 hr reflux.   

 In agreement with these observations, the best fits to the spectra for 3 hr to 1 

wk reflux are provided by a linear combination of the Ni-sorbed c-disordered 

birnessite and Ni-incorporated natural phyllomanganate reference spectra, as per the 

birnessite precursor and 10 Å phyllomanganate intermediate samples (Fig. 5.4, Table 

5.4).  Specifically, the total Ni sorbed, ~40 % is adsorbed above the vacancy sites with 

~60 % structurally incorporated, with no significant change in these proportions when 

comparing the reflux samples to the 10 Å phyllomanganate intermediate, or each 

other. 
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 The 2 wk and 4 wk reflux spectra are visually very different to the birnessite 

precursor, 10 Å phyllomanganate intermediate and the reflux spectra up to and 

including 1 wk (Fig. 5.6).  

 In contrast to the previous reflux samples, these spectra are visually similar to 

the reference spectra for Ni-sorbed todorokite (Fig. 5.4), where Ni is found in 

tridentate corner-sharing configuration, with 6 O at ~2.00 – 2.11 Å and 2 Mn at ~2.98 

– 3.10 Å. There is no obvious visual evidence for Ni-Mn edge- or corner-sharing 

distances at ~2.9 Å or ~3.5 Å indicative of Ni structurally incorporated into a 

phyllomanganate (~2.9 Å), adsorbed above vacancy sites on a phyllomanganate 

(~3.5 Å), or structurally incorporated into todorokite (~2.9 and 3.5 Å).  Accordingly the 

best fits to these spectra are provided by the molecular cluster representing Ni 

tridentate corner-sharing surface complexes with 6 O at ~1.98 – 2.10 Å and 2 Mn at 

~2.94 – 3.11 Å. The fits could not be improved by including any other Ni coordination 

environments.  Because the Mn(OH) sites present at the edges of the todorokite triple 

chains and those at the edges of a phyllomanganate layer essentially provide the 

same local coordination environment for sorbed trace metals, the presence of Ni 

tridentate corner-sharing configuration could indicate that Ni is newly associated with 

the neo-formed todorokite or in fact still associated with the 10 Å phyllomanganate 

intermediate, albeit via a different sorption mechanism compared to the previous 

reflux samples. However, the fact that no 10 Å phyllomanganate intermediate is 

detected in the 2 wk reflux samples (TEM, Fig. 5.2i, j) indicates that the solid-

associated Ni at 2 wk and 4 wk reflux is most likely sorbed to neo-formed todorokite. 
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Sample EF N Ni
S
 N Ni

V
 R (%) 

Reduced 
Chi

2
 

Birnessite precursor 3.46 0.46±0.04 0.54±0.04 23.3 2.9 

10Å phyllomanganate intermediate 0.51 0.62±0.04 0.38±0.04 21.3 2.2 

3 hr reflux 2.43 0.58±0.04 0.42±0.04 22.5 2.6 

6 hr reflux 1.81 0.59±0.04 0.41±0.04 21.5 2.2 

12 hr reflux 0.62 0.62±0.04 0.39±0.04 21.6 2.1 

24 hr reflux 2.13 0.70±0.05 0.30±0.05 24.4 2.7 

48 hr reflux 2.21 0.65±0.04 0.35±0.04 23.5 2.7 

72 hr reflux 1.80 0.61±0.04 0.39±0.04 23.4 2.5 

5 day reflux 0.83 0.59±0.04 0.41±0.04 22.1 2.2 

1 wk reflux 1.44 0.62±0.04 0.38±0.04 23.3 2.5 

Table 5.5. EXAFS fits for the birnessite precursor, 10 Å phyllomanganate intermediate and 

all reflux products up to 1 wk, fit by linear combination of reference spectra. EF is the 

correction to the Fermi energy value assigned in ATHENA. N NiS is the number of Ni 

atoms (Ni site occupancy) for reference spectrum Ni-structurally incorporated natural 

birnessite (Ni-birnessiteS). N NiV is the number of Ni atoms (Ni site occupancy) for 

reference spectrum Ni-sorbed c-disordered birnessite (Ni-birnessiteV). In the linear 

combination analysis, N NiS + N NiV was constrained to equal 1. 

Shell N R (Å) 2σ
2
 (Å

2
) θ φ EF R (%) 

Reduced 
Chi

2
 

2 wk reflux 

Ni0 1.0 0.00 0.000 0  0 0.10 20.1 13.5 

O1 1.0 1.98 0.005 94 358    

O2 1.0 2.06 0.011 90 180    

O3 1.0 2.10 0.012 90 90    

O4 1.0 2.09 0.011 90 272    

O5 1.0 2.04 0.011 0 0    

O6 1.0 2.05 0.007 176 0    

Mn7 1.0 2.95 0.011 90 315    

Mn8 1.0 3.11 0.009 135 0    

4 wk reflux 

Ni0 1.0 0.00 0.000 0  0 2.15 13.7 8.1 

O1 1.0 1.98 0.005 94 358    

O2 1.0 2.06 0.012 90 180    

O3 1.0 2.05 0.013 90 90    

O4 1.0 2.10 0.012 90 272    

O5 1.0 2.06 0.012 0 0    

O6 1.0 2.05 0.007 176 0    

Mn7 1.0 2.94 0.013 90 315    

Mn8 1.0 3.11 0.008 135 0    

Table 5.6. EXAFS fits for the samples after 2 wk and 4 wk reflux. Samples fit by 

refinement of a single model cluster. N is the number of atoms in a shell. R, θ and φ 

are the interatomic distance and spherical coordinates of the prototype atom in each 

shell with either C1 or C3 symmetry. 2σ2 is the Debye–Waller factor. EF is the 

correction to the Fermi energy value assigned in ATHENA. Values in italics were held 

constant during refinement. 
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5.3.2 Natural Ferromanganese Samples 

 

5.3.2.1 Bulk XRD  
 

Bulk XRD patterns for the hydrogenetic ferromanganese crust, diagenetic 

ferromanganese nodule and hydrothermal ferromanganese precipitate are presented 

below in Figure 5.7.  

The Mn mineralogy of the hydrogenetic crust (Fig 5.7,a) and diagenetic nodule 

(Fig 5.7,b) is dominated by very poorly crystalline phyllomanganates, usually termed 

vernadite in natural samples (JCPDS-15-604) and MnO2 in synthetic analogues. In 

this phase the phyllomanganate sheets are turbostratic and thus the XRD peaks at 

~10 Å [001] and ~5 Å [002] for 10 Å phyllomanganate (buserite), and ~7 Å and ~3.5 Å 

for 7 Å phyllomanganate (birnessite), are very weak or absent, and only broad hk0 

reflections (or hk bands) at ~2.4 Å [100] and ~1.4 Å [110] are clearly evident. In both 

samples extremely weak and broad peaks at ~9.8 Å and ~4.8 Å are indexed as the 

[001] and [002] reflections of 10 Å phyllomanganate (buserite JCPDS-32-1128). The 

presence of very poorly crystalline phyllomanganate in the hydrogenetic and 

diagenetic ferromanganese samples agrees with previous reports for these 

ferromanganese precipitate genetic types (e.g., Peacock and Sherman, 2007b).  In 

particular, the presence of poorly crystalline 10 Å phyllomanganate in diagenetic 

ferromanganese precipitates is often reported in natural samples, where it is thought 

to have formed during mild dissolution-recrystallization of poorly crystalline 7 Å 

phyllomanganate (e.g., Bodeï et al., 2007).   

In both the hydrogenetic and diagenetic samples the ~2.5 Å peak exhibits a 

slight degree of asymmetry on the high-angle side. As discussed previously, this 

feature is common to phyllomanganate phases that lack significant periodic ordering 

of the phyllomanganate sheets (e.g. Villalobos et al., 2006; Manceau et al., 2007b).  

In addition, the d100/d110 peak intensity ratios for both the hydrogenetic and 

diagenetic samples approximately equal √3 indicating that the phyllomanganate 

layers have hexagonal symmetry with a = b = 2.83 Å (Drits et al., 1997).  Other much 

sharper diffraction peaks in the hydrogenetic sample are identified as hydroxyapatite 

(Ca5(PO4)3(OH)) (based on JCPDS-9-0432) (Fig. 5.7a), while sharp peaks at ~4.25, 

~3.35, ~2.28, ~1.81 and ~1.67 Å in the diagenetic sample are identified as a 

crystalline quartz phase (based on JCPDS-46-1045) (Fig. 5.7b).  
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____________________________________________________________________ 

Figure 5.7 Bulk powder X-ray diffraction patterns for (a) the hydrogenetic 

ferromanganese crust collected from the Pacific ocean (b) the diagenetic 

ferromanganese nodule from the Pacific Ocean and (c) the hydrothermal marine 

precipitate, collected from the Lau Basin. X- ray diffraction peaks are labelled for 

phyllomanganate (P) and todorokite (T) (based on JCPDS-15-604 for vernadite, Drits 

et al., 1997 for turbostratic birnessite, JCPDS-32-1128 for buserite and JCPDS-38-

475 for todorokite). The  symbol denotes hydroxyapatite (Ca5(PO4)3(OH)), while the 

 symbol denotes quartz (identification of the peaks are based on JCPDS cards 9-

0432 and 46-1045, respectively). 
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The hydrothermal sample consists of mixed 7 and 10 Å phyllomanganate and 

todorokite phases.  Specifically, XRD peaks are evident at ~7.2 Å [001] and 3.5 Å 

[002], belonging to 7 Å phyllomanganate (for reference pattern see turbostratic 

birnessite, Drits et al., 1997), and ~9.8 Å [001] and ~4.8 Å [002], belonging to 10 Å 

phyllomanganate (buserite JCPDS-32-1128), but in addition, characteristic todorokite 

peaks at ~2.2 Å [21-2] and ~1.7 Å [21-4] are also present. It should be noted that the 

peak region at ~2.4 Å is split resulting in a peak at ~2.5 Å, as expected when 10 Å 

phyllomanganate and todorokite are mixed (i.e. as reported in chapter 4 of this 

thesis).  The presence of characteristic todorokite peaks and the splitting of the ~2.4 Å 

peak region allow the identification of todorokite despite the presence of 10 Å 

phyllomanganate (where the highest intensity peaks due to the [001] and [002] 

reflections overlap in these two phases).  The relatively high intensity of the ~7.2 Å 

[001] and ~3.5 Å [002] peaks for 7 Å phyllomanganate (and to some extent the ~10 Å 

[001] and ~5 Å [002] peaks for 10 Å phyllomanganate, noting that these peaks also 

result from todorokite) indicates that the phyllomanganate sheets are significantly 

more ordered than in the hydrogenetic and diagenetic samples.  

 

5.3.2.3 -XRF elemental mapping 
 

 Two-colour and tri-colour µXRF maps of the distribution of Fe (green), Mn 

(blue) and Ni (red) in the natural ferromanganese samples are presented in Figure 

5.8, with scatter plots of the normalized fluorescence counts between Fe-Mn, Mn-Ni 

and Fe-Ni in Figure 5.9.  The relatively pure green and blue colours of the Fe- and 

Mn-rich areas of the Fe-Mn maps indicate that Fe and Mn are strongly spatially 

segregated and anti-correlated in the scanned areas of all 3 samples (Fig. 5.8a, c, e). 

This spatial distribution of Fe and Mn is observed at every probed spatial scale in 

natural ferromanganese precipitates (e.g., Manceau et al., 2004).  Pearson 

correlations for the Fe-Mn normalized fluorescence count plots are r = -1.5, -0.34 and 

0.13 for the hydrogenetic, diagenetic and hydrothermal samples (Fig. 5.9a, d, g), 

respectively, supporting the observed lack of correlation.  
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Figure 5.8. -XRF elemental maps showing the distribution of Mn (blue), Fe (green) 

and Ni (red) in (a-b) the hydrogenetic ferromanganese crust sample collected from the 

Pacific Ocean, (c-d) the diagenetic ferromanganese nodule from the Pacific Ocean 

and (e-f) the hydrothermal ferromanganese precipitate from the Lau Basin. Pixel size 

is 10x10 μm, and total map area for the hydrogenetic sample is 1700x1700 μm, and 

for the diagenetic and hydrothermal samples is 400x400 μm. Points of interest (POI) 

subject to -EXAFS analysis are also shown.  

 

 On adding Ni (red) to both the hydrogenetic and diagenetic samples, the Mn-

rich areas of the samples turn to varying shades of magenta (blue + red), while those 

that are Fe-rich remain bright green (green + red = yellow) (Fig. 5.8b, d). This colour 

mixing indicates that the majority of the Ni is spatially associated and positively 

correlated with the Mn-rich fraction in the scanned areas.  Pearson correlations for the 

Mn-Ni and Fe-Ni plots are r = 0.94 and -0.69 for the hydrogenetic sample (Fig. 5.9b, 

c) and r = 0.83 and -0.36 for the diagenetic sample (Fig. 5.9e, f), respectively, 

supporting the observed correlations. By contrast, on adding Ni (red) to the 

hydrothermal sample, there is little change in the colours of the Mn- (blue) or Fe- 

(green) rich areas (Fig. 5.8f). Instead, small, intense red areas appear in the center 

left region of the map that show little spatial correlation with either the Mn- or Fe-rich 

fractions. This is further reflected in the lack of correlation evident in the Mn-Ni and 
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Fe-Ni plots (Pearson correlations are r = -0.28 and 0.17, respectively; Fig. 5.9h,i).  

Therefore, in the hydrothermal ferromanganese sample, the majority of the Ni 

appears to be predominantly concentrated in an unidentified mineral phase.  

     

______________________________________________________________________________________________

Figure 5.9. Scatter plots displaying normalized fluorescence counts between Mn-Fe, 

Ni-Mn, and Ni-Fe, for (a-c) the hydrogenetic ferromanganese crust sample collected 

from the Pacific Ocean, (d-f) the diagenetic ferromanganese nodule from the Pacific 

Ocean, and (g-i) the hydrothermal ferromanganese precipitate from the Lau Basin. 

 

 The µXRF maps presented in Figure 5.8 were also used to select 4 physically 

discrete and chemically defined points of interest (POI) that were subject to µEXAFS. 

For this investigation, the primary areas of interest were those enriched in Mn and Ni. 

The chosen POI are highlighted in Figure 5.8. 
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5.3.2.4 -EXAFS 
 

Mn K-edge EXAFS of the Mn oxide reference compounds and µEXAFS of the 

natural ferromanganese samples are shown in Figure 5.10.  Mn EXAFS spectroscopy 

is sensitive to Mn-O and Mn-Mn interatomic distances, and MnO6 polyhedral linkages 

(e.g., Manceau and Combes, 1988). Information on sample mineralogy and 

crystallinity can therefore be obtained by comparing sample spectra to a suite of 

standard Mn oxide reference spectra (e.g., Manceau et al., 2002).  

  

In agreement with previous studies, the Mn oxide reference spectra used in 

the current study show clear differences in k-space in the (6.5 – 9.5 Å-1) indicator 

region (e.g., Webb et al., 2005a).  This region is sensitive to the amount and ordering 

of Mn(IV) and Mn(III) in the sheets of phyllomanganates (MnO2, Hx-birnessite and 

Tc-Na-birnessite) and to the tunnel dimension in tectomanganates (todorokite) (e.g., 

Manceau and Combes, 1988; McKeown and Post, 2001).  For layered structures, the 

k-space peaks at ~6.7, 8 and 9.2 Å-1 appear sharper and more intense with an 

increase in coherent stacking of the layers along the c-axis, i.e., from the MnO2 to 

Hx-birnessite (e.g., Webb et al., 2005a).  For tunnel structures, these indicator 

features are less sharp and intense, and significantly broader, with a notable increase 

in the background of the region between ~7.4 – 8.7 Å-1, and the shoulder at ~5.5 Å-1 

also appears less pronounced, compared to layered structures (e.g., Webb et al., 

2005a). These differences are evident when comparing the phyllomanganates 

(MnO2 and Hx-birnessite) to the tectomanganate (high crystalline todorokite) 

reference spectra.  In agreement with XRD data presented in Figure 5.7, the spectra 

for the hydrogenetic and diagenetic samples are most similar to the reference 

spectrum for poorly crystalline phyllomanganate MnO2.  Also in agreement with the 

XRD data, the spectra recorded at two separate POI for the hydrothermal sample, 

have features attributable to todorokite. Specifically, compared to the hydrogenetic 

and diagenetic samples, the features at ~6.7, 8 and 9.2 Å-1 are less sharp and 

intense, and also broader.   

 

 Given that the bulk XRD data shows that the phyllomanganate present in the 

hydrothermal sample is in fact more ordered than that found in the hydrogenetic and 

diagenetic samples, then the reduced intensity and sharpness, along with the 

broadening, of these indicator peaks is most likely due to the presence of todorokite 

rather than a very poorly crystalline phyllomanganate phase. Furthermore, the 
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background of the region between ~7.4 – 8.7 Å-1 is significantly elevated, and the 

shoulder at ~5.5 Å-1 is also somewhat less pronounced, compared to the hydrogenetic 

and diagenetic samples.  

  

  

____________________________________________________________________

Figure 5.10 Mn K-edge EXAFS for the selected POI in the natural samples. The 

hydrogenetic, diagenetic and hydrothermal samples are labelled here as HG_FeMn, 

DG_FeMn and HT_FeMn, respectively. Dashed vertical lines indicate key k-space 

indicator regions at ~6.7, 8 and 9.2 Å-1. 
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 Ni K-edge µEXAFS of the natural ferromanganese samples are shown in 

Figure 5.11 and the fits are summarised in Table 5.7.  For the hydrothermal sample at 

POI2 the Ni concentration was too low to generate a useable EXAFS spectrum. 

Spectra for the hydrogenetic and diagenetic samples, containing predominantly poorly 

crystalline phyllomanganate, and the hydrothermal sample at POI1, containing both 

phyllomanganate and todorokite, are visually most similar to the reference spectrum 

for Ni structurally incorporated into a natural phyllomanganate (Fig. 5.5).  

 

______________________________________________________________

Figure 5.11 Ni K-edge EXAFS and the corresponding Fourier Transforms of the 

EXAFS for the natural hydrogenetic, diagenetic and hydrothermal samples, labeled 

here as HG_FeMn, DG_FeMn and HT_FeMn respectively. Solid lines are data, dotted 

lines are fits. 

In particular, pronounced splitting of the spectral feature at ~6 Å-1 and a single 

peak at ~8 Å-1 is observed as expected for Ni incorporated into the phyllomanganate 

layers (Manceau et al., 2007b; Peacock and Sherman, 2007a,b; Peacock, 2009).  In 

all spectra, the splitting of the feature at ~6 Å-1, and the amplitude of the 
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corresponding peak in the Fourier transform at ~2.9 Å, is not as pronounced or as 

intense, respectively, as that observed in the Ni-incorporated natural phyllomanganate 

reference spectrum. In this sense the natural ferromanganese k-space spectra also 

resemble the experimental samples up to and including 1 wk reflux (Fig. 5.6), where 

Ni is both structurally incorporated in, and surface adsorbed to, a phyllomanganate 

(section 5.3.1.5).  However, in the natural ferromanganese spectra, no significant 

peak in the Fourier transform at ~3.5 Å corresponding to Ni surface adsorbed at the 

vacancy sites is observed.  

 

As for the Ni-incorporated natural phyllomanganate reference spectrum, the 

very minor peak at ~3.5 Å is fit by multiple scattering occurring in the near-

coordination environment about the Ni atom (Mn-O and Mn-Mn at ~2.9 Å). 

Accordingly, the best fits to the natural ferromanganese samples are provided by the 

cluster representing Ni incorporated into the layers of a phyllomanganate (Fig. 5.11, 

Table 5.5).  Inclusion of Ni in any other local coordination environments (e.g., surface 

adsorbed to a phyllomanganate (using the Ni-sorbed c-disordered reference 

spectrum), sorbed to todorokite (using one of the Ni-sorbed todorokite reference 

spectra)) did not improve the fits.  Complete structural incorporation of Ni into the 

layers of natural marine phyllomanganates agrees with previous work for other Ni-rich 

hydrogenetic and diagenetic ferromanganese precipitates (Peacock and Sherman, 

2007b).  

 

Importantly, in the hydrothermal sample containing both phyllomanganate and 

todorokite, despite the fact our µXRF indicates that the majority of the sequestered Ni 

is associated with an unidentified phase, there is still a spectral signature for a 

minority of Ni structurally incorporated into a phyllomanganate at POI1, and there is 

no evidence to indicate that Ni is adsorbed or incorporated by the co-located 

todorokite. This suggests that, in agreement with the experimental results up to an 

including 1 wk reflux, in sediments where both phyllomanganate and todorokite are 

present, the majority of the solid-phase Ni is preferentially sequestered to the 

phyllomanganate phase.  
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Table 5.7 EXAFS fits for natural ferromanganese samples, fit by refinement of a 

single model cluster. N is the number of atoms in a shell. R, θ and φ are the 

interatomic distance and spherical coordinates of the prototype atom in each shell 

with either C1 or C3 symmetry. 2σ2 is the Debye–Waller factor. EF is the correction to 

the Fermi energy value assigned in ATHENA. Values in italics were held constant 

during refinement. 
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5.4 Discussion  

 

5.4.1 The Effect of Sorbed Ni on the Transformation of Birnessite to Todorokite 
 

In the previous chapter of this thesis I report a four-stage nucleation and 

growth model, beginning with todorokite nucleation, then crystal growth from solution 

to form todorokite primary particles, followed by their self-assembly and oriented 

growth via oriented attachment (OA) to form crystalline todorokite laths, culminating in 

traditional crystal ripening. In this Ni-free system, characteristic XRD peaks for 

todorokite are seen by 3 hr reflux, todorokite primary particles are observed with HR-

TEM by 6 hr reflux, and the oriented attachment of these particles to form crystalline 

todorokite laths is similarly evident by 6 hr reflux, with highly crystalline laths several 

tens of nanometers in length evident by 24 hr reflux.  

In the system investigated here, I transform a Ni-sorbed 10 

Å phyllomanganate where, of the total Ni sorbed (~1 wt% Ni), ~60 % is structurally 

incorporated into the phyllomanganate crystal lattice with the remaining ~40 % 

surface adsorbed at Mn octahedral vacancy sites present in the phyllomanganate 

layers (Table 5.5). However, despite the presence of sorbed Ni, I find no evidence to 

suggest that this trace metal impurity has a significant effect on the growth 

mechanism of todorokite.  HR-TEM images clearly show that the large acicular laths 

of todorokite present by 24 hr reflux are composed of considerably smaller todorokite 

primary particle building blocks. Specifically, individual todorokite primary particles are 

elongated along the direction of tunnel growth ([010] direction) by varying degrees, 

but measure consistently between 6-10 nm wide across the direction of tunnel growth 

([100] direction) over the entire duration of the reflux (from 6-10 nm wide after 6 hr 

(Fig. 5.2f) to ~8-10 nm wide after 2 wk reflux (Fig. 5.2j)). Moreover, these nano-sized 

primary particles are crystallographically aligned and aggregated together across the 

direction of tunnel growth via the attachment of the [100] crystal faces. Both the width 

and the length of these secondary todorokite laths continues to increase with 

increasing reflux time, from ~70 x 250 nm at 24 hr, to ~100 x 450 nm at 1 wk and 

~100 x 750 nm after 2 wk (Figs. 5.2e,g,i, respectively). These observations indicate 

that the formation of secondary acicular todorokite laths can be directly attributed to 

the simultaneous aggregation of primary todorokite crystallites across the [100] 

direction and their growth from solution along the [010] direction. The homogeneous 

widths of the todorokite primary particles over the course of the reflux indicates that 

these particles grow exclusively from solution along the [010] direction. All of the 
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above observations are comparable and consistent with observations from chapter 4, 

and show that the mechanism and pathway of todorokite formation from a Ni-doped 

phyllomanganate does not significantly differ from a Ni-free phyllomanganate, 

proceeding via crystal growth from solution to form todorokite primary particles, 

followed by their self-assembly and oriented growth via OA. 

Despite the fact that sorbed Ni has no significant effect on the growth 

mechanism of todorokite, I find evidence to show that this metal impurity has a 

notable effect on the growth rate of this neo-formed phase.  In contrast to the Ni-free 

system, where characteristic XRD peaks for todorokite are seen by 3 hr reflux, these 

same peaks are not seen until the 48 hr time point in the Ni-doped experiment (Fig. 

5.1; where peaks may be present at any time point between the 24 and 48 hr scans). 

Characteristic todorokite morphology is evident in the HR-TEM by 6 hr reflux, but 

these primary particles are only a minor component of the overall sample matrix, 

which is still dominated by platy phyllomanganate. Furthermore, the todorokite 

primary particles have very poorly defined lattice fringes, indicating poor crystallinity 

(Fig. 5.2). The fact these primary particles are only a minor component of the sample 

matrix and are poorly crystalline may account for the absence of characteristic 

todorokite XRD peaks at this time point (Fig. 5.1). The crystallinity of the todorokite 

formed after 2 wk reflux, and with further reflux up to 4 wk, is also reduced (Fig. 5.2), 

compared to that formed by 72 hr in the Ni-free system. As such, compared to the Ni-

free system investigated in the previous chapter, the results presented here show that 

Ni, sorbed to birnessite at concentrations equivalent to those found in natural marine 

ferromanganese precipitates, significantly retards the rate of todorokite formation, and 

in addition reduces the crystallinity of the neo-formed todorokite phase. 

To date there has been little work on the effect of sorbed trace metal impurities 

on the growth of minerals by OA, especially for cases where growth via OA is 

accompanied by a phase transformation or vice versa. Surface adsorbed metal(loids), 

including Cu(II), Zn(II), As(V) and Hg(II) (Fuller et al., 1993; Waychunas et al., 1993; 

Myneni et al., 1997; Kim et al., 2008), have been shown, or at least predicted, to 

substantially disrupt nanoparticle aggregation and growth. Specifically, it is suggested 

that surface adsorption of metal(loids) can result in a passivation of the nanoparticle 

surface, through either modification of surface charge or alteration of surface structure 

and/or composition, which inhibits aggregation-type growth processes (Fuller et al., 

1993; Waychunas et al., 1993; Myneni et al., 1997; Kim et al., 2008).  Kim et al. 

(2008) suggest that for growth via OA to proceed, surface adsorbed metal(loid) 
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impurities must either be structurally incorporated into the mineral matrix, away from 

particle attachment and aggregation interfaces, or desorbed into solution. 

In the case of phyllomanganates, the Mn octahedral layers are only a single 

Mn octahedron thick, and, as such, structurally incorporated impurities are essentially 

still present at attachment interfaces. Based on these previous studies, and given the 

fact that todorokite growth proceeds via OA in both the Ni-free (i.e. chapter 4 of this 

thesis) and Ni-doped systems, then the observed retardation in the rate of todorokite 

formation in the Ni-doped experiment is likely attributable, at least in part, to the 

presence of both a structurally incorporated and surface adsorbed metal impurity.  In 

addition, and with specific reference to Ni, the Ni octahedron is not Jahn-Teller 

distorted.  Elongation of the metal-O bonds along the z-axis in Mn(III) creates a strain 

on the Mn3+-O-Mn4+ bonds that run parallel to the [010], which aids the kinking of the 

phyllomanganate layers and thus the nucleation of todorokite within the 

phyllomanganate matrix (Bodeï et al., 2007; Cui et al., 2008).  Indeed, the presence of 

sufficient structural Mn(III), which facilitates phyllomanganate layer kinking, together 

with semi-coherent c-axis ordering, so that as the layers kink there are sufficient 

adjacent layers to form the todorokite tunnel walls, are prerequisites for todorokite 

formation.  In the previous chapter of this thesis it was predicted that structurally 

incorporated cation impurities without Jahn-Teller distortion, such as Ni, might retard 

the transformation of birnessite to todorokite, by essentially retarding 

phyllomanganate layer kinking and thus the formation of todorokite primary particles. 

Overall, the observed reduction in the rate of todorokite formation in the Ni-doped 

system can be attributed to a retardation in the rate of todorokite primary particle 

formation, specific to a metal impurity without Jahn-Teller distortion, and a more 

general disruption to growth via OA, as a result of a metal impurity at attachment 

interfaces.   

In summary, I have shown for the first time that, contrary to traditional 

understanding, the presence of sorbed Ni does not aid the transformation of birnessite 

to todorokite and in fact retards todorokite formation, and substantially reduces the 

crystallinity of the neo-formed todorokite phase. 
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5.4.2 The Fate and Mobility of Ni During the Transformation of Birnessite to 
Todorokite 

 

In addition to predicting that structurally incorporated metal impurities without 

Jahn-Teller distortion, such as Ni, should retard the transformation of birnessite to 

todorokite, I also postulated in the previous chapter that such impurities, both 

structurally incorporated and surface adsorbed at aggregation interfaces, may be lost 

to solution in order to facilitate todorokite growth via OA. It is now clear that during the 

transformation of Ni-doped birnessite to todorokite, over the course of the 4 wk reflux, 

there is a ~50 % reduction in solid-associated Ni (Table 5.2).  

Taking all of the analyses together, I am able to provide a coherent picture for 

the fate and mobility of Ni during the transformation of Ni-doped birnessite to 

todorokite. Up to and including 1 wk reflux, Ni EXAFS and HR-TEM EDS data shows 

that all detectable, solid-associated Ni is sorbed to the phyllomanganate phase 

(Fig.5.6 and Table 5.1, respectively), despite the progressive formation of todorokite 

within the sample matrix (Fig. 5.2).  However, by 1 wk reflux, absolute concentrations 

for solid-associated Ni indicate that ~20 % of the total sorbed Ni is released to solution 

(Table 5.2). This initial release might be understood in light of our four-stage growth 

mechanism, together with the surface area measurements and the relative trends in 

the Mn and Ni solution data, which show more variability during this time frame.  Akin 

to the Ni-free system, there is also an initial drop in surface area evident at 3 hr reflux, 

which then remains relatively constant until at least 12 hr reflux (Table 5.3). This is 

accompanied by a sharp release of Mn, and a more gradual release of Ni (Fig. 5.3).  

 In agreement with the work presented for the Ni-free system, the drop in 

surface area during the early stages of the transformation is consistent with the 

formation and growth of todorokite primary particles along the direction of tunnel 

growth, via dissolution of the 10 Å phyllomanganate followed by precipitation of 

todorokite, where the difference in both size and morphology between the two phases 

drives the dissolution-recrystallisation process. The concurrent release of Mn and Ni 

is then consistent with this dissolution-recrystallization. Up to 1 wk reflux, the overall 

decrease in surface area, the relative stabilization of solution Mn yet the continued 

increase in solution Ni, are then consistent with the growth of the todorokite primary 

particles via an OA-type growth mechanism. A shift from a dissolution-recrystallization 

dominated growth mechanism to growth dominated by aggregation is typical of 

nanoparticle systems that undergo growth by OA (e.g., Waychunas et al., 2005). 

However, although one specific growth mechanism may dominate at any given point, 
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the two growth processes are likely to be occurring simultaneously throughout the 

transformation (e.g.Waychunas et al., 2005; Kim et al., 2008). In this case, 

aggregation of the primary particles, with minor dissolution-recrystallisation, is 

consistent with the overall decrease in surface area yet relatively minor change in 

solution Mn.  Conversely the continued increase in solution Ni is consistent with its 

release during ongoing minor dissolution, and its desorption from attachment 

interfaces in order for aggregation to proceed (Kim et al., 2008), during which time 

there is a progressive transformation of the high-affinity phyllomanganate phase into 

one in which we see no detectable Ni (Fig. 5.6 and Table 5.1).  By 2 wk reflux the 

absence of observable phyllomanganate in the HR-TEM, the relatively minor 

decrease in surface area towards the final value at 4 wk reflux, yet the relatively 

significant increase in solution Mn and Ni, are consistent with the dissolution of the 

remaining birnessite by this time point.  In the absence of the phyllomanganate phase, 

EXAFS now show that all detectable, solid-associated Ni is sorbed to the neo-formed 

todorokite as a tridentate surface complex (Fig. 5.6), however, absolute 

concentrations for solid-associated Ni show that only ~50 % of the initially 

sequestered Ni is associated with this solid phase (Table 5.2).  By 4 wk reflux, the 

substantial decrease in solution Mn is consistent with ripening-type growth of the neo-

formed todorokite, commencing after all the phyllomanganate is consumed, while the 

relatively minor decrease in solution Ni likely reflects some further adsorption of Ni to 

the todorokite phase. 

Principally the experimental results presented here indicate that in a system 

dominated by todorokite as the end product of diagenesis, a significant fraction of the 

Ni originally sequestered to birnessite is released to marine sedimentary porewaters 

during the birnessite to todorokite transformation, while the remaining solid-associated 

Ni is sorbed to todorokite via surface complexation, as opposed to structural 

incorporation, and is therefore also subject to remobilization. Overall the marine 

diagenesis of birnessite is a source of Ni to sedimentary porewaters and thus 

potentially provides a benthic flux of Ni to seawater. 

 

5.4.3 Ni Speciation in Natural Ferromanganese-rich Marine Sediments 

 

Analysis of the natural marine ferromanganese precipitates is consistent with 

the new model mechanism for the transformation of birnessite to todorokite, and the 

resulting fate of Ni during this OA-type process.  Specifically, in the hydrothermal 
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sample containing both phyllomanganate and todorokite, akin to the experimental 

samples up to and including 1 wk reflux, the Ni associated with Mn-rich phases is 

preferentially sequestered to the phyllomanganate phase, with no evidence that Ni is 

surface adsorbed or structurally incorporated by the co-located todorokite (Fig. 5.8, 

5.11). These observations agree with those made previously for natural intermixed 

ferromanganese precipitates, where neo-formed todorokite typically contains 

substantially less Ni than the 10 Å phyllomanganate from which it crystallized (Siegel 

and Turner, 1983; Bodeï et al., 2007).   

 

5.6 Summary and Conclusions 
 

 The current study provides the first detailed understanding of the effect of 

sorbed Ni on the transformation of birnessite to todorokite in the marine environment, 

and the fate and mobility of this micronutrient during this diagenetic process.  

Specifically, 

 

1. Sorbed Ni significantly retards the transformation of birnessite to todorokite 

and reduces the crystallinity of the neo-formed todorokite phase, but does not 

alter the mechanism and pathway of todorokite formation, compared to a Ni-

free system.  The inhibitory effect of sorbed Ni on todorokite formation can be 

attributed to i) a retardation in the rate of todorokite primary particle formation, 

where the presence of non Jahn-Teller distorted Ni within the 

phyllomanganate matrix is unfavourable for phyllomanganate layer kinking and 

thus inhibits todorokite nucleation and subsequent formation of primary 

particles, and ii) a disruption to growth via oriented attachment, where sorbed 

Ni blocks primary particle attachment and aggregation interfaces. The fact that 

sorbed Ni retards the transformation process is contrary to current knowledge, 

where it is understood that Ni should aid the transformation of birnessite to 

todorokite. 

 

2. Sorbed Ni is released to solution during the transformation of birnessite to 

todorokite. Desorption of Ni can be attributed to its release to solution during i) 

dissolution of the phyllomanganate phase and its recrystallization into 

todorokite, leading to the growth of the todorokite primary particles along the 

direction of tunnel growth ([010] direction), and ii) desorption from attachment 
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and aggregation interfaces in order that growth via oriented attachment can 

proceed, leading to the growth of stable secondary todorokite laths.  

 

3. In systems tending towards todorokite as the final product of diagenesis, up to 

half of the Ni originally sequestered by the phyllomanganate phase is released 

to solution, while the remaining solid-associated Ni is sorbed to todorokite via 

surface complexation and is therefore subject to remobilization. Overall the 

marine diagenesis of birnessite is a source of Ni to sedimentary porewaters 

and thus potentially provides a benthic flux of Ni to seawater. 
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Chapter 6 

Ni stable isotope fractionation during 
experimental sorption to hexagonal birnessite. 

 

 

6.1 Introduction 

 

 The majority of transition metal elements are now recognized as biologically 

active elements, with unique biological roles as essential metal cofactors in 

metalloenzymes or as structural elements in proteins (Morel et al., 2003). As a result, 

many transition metal stable isotope systems are becoming increasingly developed as 

a means of investigating the biogeochemical cycling of key micronutrient trace-metals 

in both modern and ancient seawater, and to understand biogeochemical processes 

on the early Earth (e.g. Anbar and Rouxel, 2007; Konhauser et al., 2009). However, in 

contrast to some of the other stable isotope systems, such as Mo (e.g. Barling et al., 

2004; Wasylenki et al., 2011), Zn (e.g. Pokrovsky et al., 2005; Little at al., 2014) and 

Tl (e.g. Rehkämper et al., 2002; Nielson et al., 2004; Peacock and Moon, 2012; 

Nielsen et al., 2013), the Ni isotope system has been substantially slower to develop. 

However, Ni has recently generated significant interest as a biogeochemical tracer as 

it is now recognized as an important bioessential trace-metal, required as a key 

nutrient for primary productivity in photosynthetic algae (Frausto de Silva and 

Williams, 2001; Dupont et al., 2010), and in addition, as a unique enzyme cofactor in 

the metabolism of methanogenic archea (Thauer et al., 1998; Cameron et al., 2009). 

Thus Ni concentrations and Ni isotopic compositions recorded in marine sediments 

offer significant potential as a tracer for both modern and ancient biogeochemical 

processes (e.g. Cameron et al., 2009; Konhauser et al., 2009).  For example, a recent 

study by Konhauser et al. (2009) highlights a significant decrease in Ni concentrations 

measured in banded iron formations that were deposited over the Achaean, which is 

interpreted as an equally significant decline in concomitant oceanic Ni. Considering 

the unique biological role of Ni, it is believed that a catastrophic decline in oceanic Ni 

concentrations could have stifled methanogenic activity on the early Earth, which in 

turn is thought to have aided the progressive oxygenation of the atmosphere 

(Konhauser et al., 2009). 
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 As detailed in previous chapters, one of the primary controls on the modern 

day oceanic Ni budget is uptake to marine ferromanganese-rich precipitates, and to 

date, chemical and spectral analyses conducted on these sediments, including 

sequential leaching experiments and XAS have revealed that Ni is strongly correlated 

with the Mn oxide fraction (e.g., Goldberg, 1954; Lei and Boström, 1995; Koschinsky 

and Halbach 1995; Koschinsky and Hein 2003; Peacock and Sherman, 2007b). 

Specifically, Ni is found exclusively associated with the poorly crystalline Mn oxide 

birnessite (MnO2), where it is found almost entirely incorporated into the birnessite 

structure (Manceau et al., 2007b; Peacock and Sherman, 2007a). The incorporation 

of Ni into the birnessite crystal lattice is thought to be primarily a function of the 

rearrangement of Ni sorbed above and below manganese octahedral vacancy sites 

on the birnessite [001] surface, with time (Peacock and Sherman, 2007a; Peacock, 

2009). In particular, marine ferromanganese precipitates classified as hydrogenetic 

provide an excellent repository for trace-metal chemical and isotopic information 

primarily because they precipitate extremely slowly from ambient seawater (~1 

mm/Myr), and are largely free from any diagenetic input, and thus the inherent 

complexities associated with early diagenetic processes.  

 A recent study investigating the global variability of Ni isotopic signatures 

recorded in a variety of hydrogenetic marine ferromanganese crusts, found that these 

sediments were significantly heavier with respect to their 60Ni isotopic composition 

than any other geological samples reported in the literature to date (Gall et al., 2013). 

The Ni isotopic compositions of the ferromanganese crust samples ranged between 

+0.7 ‰ and +2.5 ‰, with no apparent trend between different ocean basins. In 

contrast, the 60Ni isotopic compositions of all other reported samples ranged between 

-0.1 ‰ and +0.3 ‰ (Cameron et al., 2009; Gall et al., 2012). However, in order to 

develop these Ni isotopic records as either palaeo proxies or marine biogeochemical 

tracers, a detailed mechanistic understanding of the processes that control these 

isotope fractionations is required. At present, the magnitude and the variability of the 

Ni isotopic compositions recorded in marine ferromanganese crusts have not been 

explained.  

Theoretically, the sorption of Ni to the birnessite surface and its subsequent 

incorporation into the birnessite structure could invoke some degree of isotopic 

fractionation, leading to the somewhat heavier isotopic composition of marine 

ferromanganese crusts (+0.7 ‰ - +2.5 ‰ (Gall et al., 2013)) relative to modern 

seawater, which is homogeneous with respect to its Ni isotopic composition at around 
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+1.44  0.15 ‰ (Cameron and Vance, 2014). According to stable isotope theory, 

equilibrium isotope fractionations are generally sensitive to three major factors, 

namely temperature, the difference in mass between isotopes, and differences in 

bond stiffness, and as a general rule, the heavy isotope typically accumulates in the 

strongest bonding environment (e.g. Schauble, 2004). In the current example, the 

uptake of the free Ni2+ ion to the birnessite surface and its incorporation into the 

birnessite crystal structure over time should theoretically provide the strongest 

bonding environment. In addition, it is also predicted that species, which undergo the 

greater change in coordination environment during sorption, should exhibit larger 

isotopic fractionations. To the author’s knowledge, the potential isotopic fractionation 

of Ni during its sorption to Mn oxides has not been investigated. 

 Isotopic fractionation specifically associated with sorption to the birnessite 

surface has been recognized for a variety of other systems, including Zn (Pokrovsky 

et al., 2005), Mo (Barling and Anbar, 2004; Wasylenki et al., 2011), and Tl (Peacock 

and Moon, 2012; Nielsen et al., 2013). From these studies, both Mo and Tl have been 

shown to undergo a change in oxidation state during sorption to the birnessite 

surface. While Zn does not take part in redox reactions during sorption to birnessite, 

the uptake of Zn to birnessite is accompanied by pH-dependent isotope fractionation. 

It should be noted that although in many instances the sorption of trace-metal species 

to birnessite, and indeed other oxy (hydr)oxide minerals, is accompanied by isotope 

fractionation, fractionation is highly element specific and is not necessarily a given 

(Bullen, 2011). For example, experimental studies have shown that isotopic fraction 

during the sorption of Cd to Mn oxide phases is negligible, particularly under high 

ionic strength conditions (e.g. Wasylenki et al., 2009; Horner et al., 2010).  

  In order to investigate the potential isotopic fractionation of Ni during its 

sorption to birnessite, several laboratory sorption experiments were performed on 

synthetic c-disordered hexagonal birnessite (analogous to natural marine birnessite) 

under varying physiochemical conditions. If indeed the sorption of Ni2+ to birnessite is 

accompanied by an isotopic fractionation, both the direction and the magnitude of the 

fractionation are of primary interest.  
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6.3 Experimental methods 

 

6.3.1 Mineral preparation and characterization 

 

 Synthetic c-disordered hexagonal birnessite analogous to natural marine 

birnessite was synthesized following the redox method of Villalobos et al. (2003). This 

method is outlined in detail in chapter 3. Briefly, 320 mL of a 0.196 M KMnO4 solution 

was added slowly to 360 mL of a 0.51 M NaOH solution.  Then 320 mL of a 0.366 M 

MnCl2 solution was added slowly to the above mixture whilst stirring vigorously. The 

resulting suspension was left to settle for approximately 4 hr. The supernatant was 

then removed and discarded.  The remaining slurry was subsequently centrifuged at 

3200 g for 30 min.  The supernatant was again removed and discarded.  After 

centrifugation, the wet slurry was mixed with 800 mL of 1 M NaCl and shaken for 45 

min.  The suspension was centrifuged and the supernatant discarded.  This process 

was repeated 4 times. For the last 1 M NaCl wash the pH was adjusted to pH 8 via 

the drop-wise addition of 1 M NaOH and the suspension shaken overnight.  After 

centrifuging, the resulting paste was combined with Milli-Q grade (MQ) water, shaken 

for 1 hr and centrifuged at 3200 g for 10 min.  This wash cycle was repeated 10 times, 

1x for 1 hr, 8x for 0.5 hr and 1x overnight.  Following the final wash, the suspension 

was dialyzed for 3 days in 43 x 27 mm cellulose dialysis tubing, which was placed in a 

5 L beaker containing approximately 4 L of MQ water.  

 

 Mineral identity and purity was subsequently confirmed by powder X-ray 

diffraction (XRD) (Fig. 6.1), using a Bruker D8 diffractometer equipped with CuKα 

radiation (λ = 1.5418) and a LynxEye detector. Samples were analyzed over a range 

of 5-70o 2θ with a 0.010 step size and step time of 155 sec. 
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__________________________________________________________________ 

Figure 6.1 Powder XRD pattern for the synthetic c-disordered hexagonal birnessite 

used during the current study, showing the [001], [002], [100] and [110] reflections, 

which correspond to the d-spacings of ~7 Å, ~3.6 Å, ~2.4 Å and ~1.4 Å respectively 

of a hexagonal birnessite phase. 

 

6.3.2 Preparation of Ni adsorption samples 

 
 Nickel isotope fractionation during the sorption of aqueous Ni2+ to synthetic c-

disordered hexagonal birnessite was investigated using a series of 18 unique sorption 

experiments. Experiments were performed in duplicate, at 4 different initial Ni 

concentrations (12, 120, 820 or 1640 µg [Ni]total), 2 different pH intervals (pH 5 and pH 

8), and for 3 different time durations (48 hr, 1 week and 4 week).  A detailed summary 

of the experimental parameters used in each individual sorption experiment is 

provided in Table 6.1. The target Ni concentrations used in the experiments were 

estimated based on previous Ni sorption experiments (Peacock and Sherman, 

2007a). It should be noted that no sorption experiments were conducted at pH 8 for 

low Ni loadings (i.e. 12 and 120 µg [Ni]total). Previously conducted sorption edge 

experiments at these Ni concentrations (Fig. 6.2) show that at high pH regimes all of 

the Ni in solution is sorbed to the birnessite surface after 48 hr equilibration. As such, 

under these experimental conditions it is anticipated that there will not be sufficient Ni 

remaining in solution for Ni isotope analysis, and thus no measurable isotope 

fractionation. 
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Figure 6.2 pH sorption edge experiments for Ni2+ on synthetic c-disordered birnessite 

(0.05 g/L) as a function of pH, at 25 °C, after equilibration for 48 hr with (a) 12 µg 

[Ni]total and (b) 120 µg [Ni]total. Experiments were conducted using 0.1 M NaCl as a 

background electrolyte solution. Black dots are data points, while red dots mark the 

approximate positions of the isotope experiments. 



 138 

Table 6.1 Experimental parameters used for each individual sorption experiment. The 

letter (A or B) next to the sample number represents the pH of the experiment, where 

A corresponds to the experiments conducted at pH 5 and B corresponds to 

experiments conducted at pH 8. The subscript (1 or 2) denotes the sample repeat. All 

sorption experiments were performed in duplicate however, during sample separation 

a small number of samples were lost.  

 

 For the sorption experiments a Ni2+ stock solution was prepared at 1000 mg/L 

from Ni(NO3)2.6H2O and a 0.1 M NaCl solution was prepared for use as a  

background electrolyte. Individual sorption experiments were prepared in 250 mL 

polycarbonate bottles at either 12, 120, 820 or 1640 µg [Ni]total by adding 0.01, 0.1, 0.8 

or 1.6 mL of Ni stock solution to 0.01 g of c-disordered birnessite in 199.99, 199.90, 

199.20 and 198.40 mL of NaCl respectively. The total volume of solution in each 

experiment was equal to 200 mL, giving a solid/solution ratio in each individual 

experiment of 0.05 g/L. The resulting mineral suspensions were shaken and the initial 

pH recorded after stabilization to two decimal places. All pH measurements were 

calibrated to ±0.05 pH units using Whatman NBS grade buffers. The pH was then 

adjusted to the desired pH (pH 5 or pH 8) via the drop wise addition of HCl/NaOH. 

The samples were subsequently sealed and shaken at room temperature (25 °C) for 
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the required time period (48 hr, 1 week or 4 week). After shaking, the final suspension 

pH was recorded and the solid mineral was separated from the solution using a 

vacuum filtration kit. 

 For each individual experiment, both the solid mineral and the corresponding 

reaction solution were analyzed for their respective concentrations of Ni using a 

quadrupole ICP-MS, while the 60Ni isotopic composition of the solid phases and the 

corresponding solutions were analyzed using a muliticollector-ICP-MS (MC-ICP-MS).  

 All ICP-MS analyses presented in this work have been conducted by Louise 

Gall, at the University Oxford, UK. The details of sample preparation, sample 

purification, and subsequent isotope analysis are outlined in the methods section 

(chapter 3). Ni isotope ratios presented in the current work are reported as the ratio 

60Ni/58Ni relative to the Ni isotope standard SRM 986 (NIST): 

 

 

 

 

6.4 Results 

 

 The results presented here provide the first insight into Ni isotope fractionation 

associated with the sorption of Ni to synthetic c-disordered birnessite. A full summary 

of the results are tabulated in Table 6.2 and presented graphically below in Figure 6.3, 

where the isotopic offset between the δ60Nisoln-solid has been plotted against the fraction 

(%) of Ni sorbed to the solid birnessite samples, as a function of time, initial Ni loading 

and pH.   

 It should be noted that where possible the isotopic composition of both the 

solid c-disordered birnessite and the corresponding reaction solution were analyzed. 

However, during the chemical separation procedure, prior to Ni isotope analysis, 

some of the solution samples (mainly from the low Ni concentration experiments) 

were lost. The high Na content of the sample matrix (i.e. from the 0.1 M NaCl-
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background electrolyte solution) produced a Na-OH precipitate during the first ion-

exchange step (see methods chapter), which blocked the columns.  

Table 6.2 Summary of results of the Ni isotope analysis of the solid c-disordered 

birnessite and the corresponding reaction solutions. The letter (A or B) next to the 

sample number represents the pH of the experiment, where A corresponds to the 

experiments conducted at pH 5 and B corresponds to experiments conducted at pH 8. 

The subscript (1 or 2) denotes the sample repeat. The symbol [Ni] % is the amount of 

Ni associated with the solid/solution fractions as a percentage of the total Ni added to 

each individual experiment. 



 141 

             

____________________________________________________________________ 

Figure 6.3 Plot showing the δ60Ni isotopic composition of the solid-solution pairs 

versus the fraction of Ni sorbed to synthetic c-disordered birnessite ([Ni] %), as a 

function of pH, equilibration time and initial Ni loading ([Ni]total g). 



 142 

 As highlighted previously, both the solid birnessite and the corresponding 

reaction solutions were analyzed via ICP-MS for their respective Ni concentrations 

prior to Ni isotope analysis. It can be seen from comparison of the experimental 

parameters in Table 6.1 and the results presented in Table 6.2, that for the most part, 

the concentrations of Ni sorbed to the solid c-disordered birnessite phase are 

consistent with those estimated based on previous sorption edge experiments for Ni 

on synthetic hexagonal birnessite (Peacock and Sherman, 2007a). 

 The first point to note from visual analysis of Figure 6.3 is that regardless of 

the experimental conditions, the sorption of Ni to synthetic c-disordered birnessite is 

accompanied by isotopic fractionation, during which, the solid birnessite phase is 

preferentially enriched in the light Ni isotope, leaving the remaining solution 

isotopically heavy. In addition, the measured data for all of the solid-solution pairs plot 

on single parallel lines. This linear relationship is highly indicative of a closed system 

equilibrium isotopic exchange (e.g. Barling and Anbar, 2004) between aqueous Ni 

and Ni sorbed to the birnessite surface, as opposed to a uni-directional kinetic isotope 

effect. The linear relationship between δ60Ni values of the solution samples and the 

δ60Ni values of the corresponding solid samples also indicates that mass balance has 

been maintained in the system. 

 

6.4.1 Effect of Absolute Amount of Ni Sorbed  

 

 It is evident from visual analysis of Fig 6.3 that regardless of sample 

equilibration time the isotopically heaviest solid-solution pair is also the experiment 

with the highest fraction of Ni sorbed, ([Ni] %) and, as such, all three individual plots 

display a positive correlation between the measured δ60Ni values and the fraction of 

Ni sorbed to birnessite. It is important to note however, that the fraction of Ni sorbed 

to the birnessite solid ([Ni] %) is actually inversely correlated to the absolute amount 

of Ni sorbed ([Ni] g), at fixed pH (either pH 5 or pH 8; see Table 6.2). Accordingly, as 

the fraction of Ni sorbed to the birnessite surface increases ([Ni] %), the absolute 

amount of Ni sorbed to the solid birnessite phase decreases ([Ni] g), and this in turn 

appears to give rise to a heavier δ60Ni isotopic composition in the solid phase. This 

trend is evident in both pH regimes, and at all sample equilibration times (Figure 6.3). 

For clarity, the trend between the absolute amount of Ni sorbed to the birnessite and 

the δ60Ni isotopic composition of the solid phase is illustrated below in Figures 6.4 - 

6.6. Data is presented as the average amount of Ni sorbed Vs the average δ60Ni 
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isotopic composition of the solid phase, where the averages are calculated as the 

average of the two sample repeats. 

____________________________________________________________________ 

Figure 6.4 The average δ60Ni isotopic composition of the solid c-disordered birnessite 

phase as a function of average absolute Ni sorbed after 48 hr equilibration at pH 5 

and pH 8. 

____________________________________________________________________

Figure 6.5 The average δ60Ni isotopic composition of the solid c-disordered birnessite 

phase as a function of average absolute Ni sorbed after 1 week equilibration at pH 5 

and pH 8.  
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____________________________________________________________________

Figure 6.6 The average δ60Ni isotopic composition of the solid c-disordered birnessite 

phase as a function of average absolute Ni sorbed after 4 week equilibration at pH 5 

and pH 8. 

  

 Figure 6.4 highlights the relationship between the average absolute amount of 
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sorbed is ~7.4 g, and the corresponding average δ60Ni isotopic composition is ~ -

0.45 ‰; while at the highest absolute Ni sorbed, an average of ~330 g Ni is sorbed, 

which accordingly displays a substantially lighter average δ60Ni isotopic composition 

at ~ -1.35 ‰.  Again, the lowest average amount of Ni sorbed to the solid phase after 

equilibration at pH 8 for 4 weeks is ~444 g, and the corresponding δ60Ni isotopic 

composition of the solid phase is ~ -0.52 ‰, while at the highest absolute Ni sorbed of 

~625 g the average δ60Ni isotopic composition of the solid is again lighter at 

approximately ~ -0.89 ‰. 

 In summary, the results presented above suggest that lower amounts of Ni 

sorbed to the solid birnessite surface are more favourable for a c-disordered 

birnessite phase with a heavier δ60Ni isotopic composition.    

 

6.4.2 Effect of solution pH 

 

 In general, the results presented in Table 6.2 and Figure 6.3 show that the 

fraction of Ni sorbed to the birnessite surface ([Ni] %) is higher at pH 8 compared to 

pH 5 at comparable initial Ni loadings ([Ni]total g). For example, for samples 

equilibrated for 48 hr with initial Ni loadings of 822 g [Ni]total, ~20 % of the total Ni is 

sorbed at pH 5 (samples 3A1 and 3A2), while in comparison, ~55 % of the total Ni is 

sorbed at pH 8 (samples 3B1 and 3B2). These results are comparable and consistent 

with trends observed for Ni uptake to synthetic hexagonal birnessite (e.g. Peacock 

and Sherman, 2007a).   

 Considering only the absolute amount of Ni sorbed from previous section 

(6.4.1), then the general overarching trend suggests that lower [Ni] sorbed to the 

birnessite give rise to a more positive δ60Ni isotopic composition of the solid c-

disordered birnessite phase. Importantly however, when looking at these trends as a 

function of pH (i.e. red vs blue data points) the trend line of the data from the pH 8 

experiments presented in Figures 6.4 - 6.6 and in Figure 6.7 is almost always above 

that of the experiments conducted at pH 5. As such, the solid birnessite samples from 

the experiments conducted at pH 8 display a heavier δ60Ni isotopic composition, 

despite the fact that in individual experiments conducted at fixed initial Ni loadings 

there is inevitably more Ni sorbed at pH 8. Essentially, it appears that in order to drive 

the δ60Ni isotopic composition of the solid c-disordered birnessite phase towards 

heavier values, and thus in turn towards a δ60Ni isotopic composition more 
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representative of marine ferromanganese crusts, low concentrations of Ni should be 

sorbed to the birnessite surface. Importantly however, it appears from these 

experiments that this must be achieved by having a low initial Ni loading in each 

individual experiment as opposed to low pH conditions.  

 

____________________________________________________________________

Figure 6.7 The δ60Ni isotopic composition of the solid c-disordered birnessite phase 

as a function of pH. 
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In addition, it is also apparent from the data presented in Table 6.2 and Figure 

6.3 that the samples equilibrated for 48 hr show a notable difference between the 

experiments performed in each pH regime. For example, experiments conducted at 

pH 5 show an isotopic fractionation between the solution and solid (i.e. δ60Nisoln-solid) of 

2.3 ‰, while the experiments conducted at pH 8 show a significantly smaller 

fractionation between the solution and solid of only 1.5 ‰. A δ60Nisoln-solid of 1.5 ‰ is 

also displayed by the experiments performed for 1 week and 4 weeks, where by this 

point, differences in the magnitude of the fractionation as a function of pH are no 

longer evident with both the pH 5 and pH 8 samples plotting on the same correlation 

lines (Figure 6.3). 

The results tabulated in Table 6.2 also indicate that the solid samples at pH 8 

show a slight drift towards heavier average δ60Ni isotopic compositions with an 

increase in equilibration time. This relationship is apparent regardless of initial Ni 

loading and is highlighted below in Figure 6.7. 

 

___________________________________________________________________ 

Figure 6.8 The average δ60Ni isotopic composition of the solid c-disordered birnessite 

phase as a function of equilibration time at pH 8.  g [Ni]total is the amount of Ni initially 

added to each experiment. 
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 The average δ60Ni isotopic composition of the birnessite at initial loadings of 

822 g [Ni]total is ~ -0.63 ‰, and within error, the isotopic composition of the solid 

remains the same until at least 1 week. By 4 weeks the average δ60Ni isotopic 

composition has become heavier at ~ -0.51 ‰. Similarly, at loadings of 1644 g 

[Ni]total the isotopic composition of the solid after 48 hr is ~ -0.98 ‰, and is not 

significantly different within error after 1 week, but by 4 weeks the solid is isotopically 

heavier at ~ -0.89 ‰. 

 In contrast, experiments performed at pH 5, display a slightly different 

behaviour as a function of equilibration time. Firstly, it is apparent from Table. 6.2 and 

Figure 6.8 below that the experiments prepared with the lowest initial Ni loadings of 

12 g and 118 g [Ni]total display average δ60Ni isotopic compositions for the birnessite 

of ~ -0.39‰ and ~ -1.1‰ respectively, after 48 hr. By 1 week, solid samples from both 

these initial Ni loadings are slightly heavier at ~ -0.17 ‰ and ~ -0.67 ‰, respectively. 

By 4 weeks solid samples from both initial Ni loadings are marginally lighter than the 

solid phase after 1 week, but heavier than the average isotopic composition after just 

48 hr at -0.44 ‰ and -0.76 ‰ respectively.  

 

     

____________________________________________________________________

Figure 6.9 The average δ60Ni isotopic compositions of the solid c-disordered 

birnessite phase as a function of equilibration time and initial Ni loadings at pH 5. g 

[Ni]total relates to the amount of Ni initially added to each experiment. 
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 Samples prepared at higher initial Ni loadings of 822 g and 1644 g [Ni]total 

follow a similar trend, in that the solid samples equilibrated for 4 weeks are heavier 

with respect to their δ60Ni isotopic compositions than those equilibrated for just 48 hr 

at the same initial Ni loadings.  

In summary, all of the experiments conducted in the current study show that 

the sorption of Ni to synthetic c-disordered hexagonal birnessite is accompanied by 

an isotopic fractionation, during which sorption of the light Ni isotope is unequivocally 

favored, thus leaving the remaining in solution isotopically heavy. In addition, the 

magnitude of the isotope effect between the solid-solution pairs is particularly large at 

1.5 ‰. 

 

 The experiments also reveal that the δ60Ni isotopic composition of the solid c-

disordered birnessite phase and the corresponding solutions are sensitive to all 

experimental parameters, namely, initial Ni loading / absolute amount of Ni sorbed to 

the solid, pH and sample equilibration time. It appears based on these results that 

relatively low absolute amount of Ni sorbed on the solid (conversely relatively high 

fraction of Ni sorbed from a dilute, as opposed to more concentrated, solution), higher 

solution pH and increased equilibration time are favorable for a c-disordered 

birnessite phase with a heavier δ60Ni isotopic composition.   

 

6.5 Discussion 

 

 Experimental data for mass-dependent stable isotope fractionations is rare for 

many transition metal isotope systems, and the current study provides the first data 

set for Ni isotope fractionation during the sorption of aqueous Ni to synthetic c-

disordered hexagonal birnessite. 

 Isotopic analysis of the both the solid birnessite and the corresponding 

reaction solutions shows that regardless of experimental conditions, the sorption of Ni 

to c-disordered birnessite is accompanied by isotopic fractionation, during which the 

synthetic birnessite phase is preferentially enriched in the light Ni isotope, thus leaving 

the remaining solution isotopically heavy. While some degree of isotopic fractionation 

during sorption was expected, the direction of the isotopic fractionation is somewhat 

surprising, because, if sorption does indeed impart an isotopic signature, then stable 

isotope fractionation theory predicts that the heavy Ni isotope should be preferentially 
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concentrated in the stronger bonding environment, which in turn is usually provided by 

the solid phase. In addition, the magnitude of the fractionation measured between the 

solid-solution pairs in this study (δ60Nisolid-soln of 1.5 ‰) is unexpectedly large.  Finally, 

the results presented in this work are somewhat inconsistent with the heavy Ni 

isotopic compositions (+0.7 ‰ - +2.5 ‰) recorded in natural ferromanganese crusts 

(Gall et al., 2013). Considering the fact that modern global seawater exhibits a Ni 

isotopic composition of +1.44  0.15 ‰  (Cameron and Vance, 2014), and assuming 

that this has not changed significantly over the Cenozoic during crust deposition, then 

a significant proportion of the global crusts that have been measured appear to be 

heavy with respect to seawater (those with isotopic compositions more than +1.44  

0.15 ‰), with isotopic fractionations (60Nisolid-soln) up to ~ 1 ‰.   

 Equilibrium stable isotope fractionation describes the partial separation of 

isotopes between two or more substances that are in, or are approaching, chemical 

equilibrium.  As mentioned previously, according to stable isotope theory there are a 

set of general qualitative chemical rules governing equilibrium stable isotope 

fractionations, which can be used to make predictions about the magnitude and 

direction of isotope fractionation between two separate substances (Schauble, 2004). 

In the first instance, equilibrium isotope fractionations usually decrease as 

temperature increases, and, all else being equal, fractionations are typically largest for 

light elements and for isotopes with very different masses (e.g., Schauble, 2004).  In 

addition to these rules, a further consideration of equilibrium thermodynamics 

provides a means to predict which substances will be enriched in heavy isotopes in a 

given geochemical system.  In equilibrium thermodynamics, all systems essentially 

strive to achieve their lowest energy state.  Because chemical bonds involving heavier 

isotopes have a lower ground state energy than otherwise identical bonds involving 

lighter isotopes of the same element, then during equilibrium isotope fractionation the 

heavy isotope will tend to concentrate in the substance that confers the lowest ground 

state energy for that particular bond, i.e., in the substance that confers the strongest 

bonding environment.  This process is well demonstrated for the isotope exchange of 

18O and 16O between liquid water and water vapour: 

   H2
16O (l) + H2

18O (g)  H2
18O (l) + H2

16O (g) 

                (Eq. 6.1) 

where at, or approaching, chemical equilibrium, 18O concentrates in the stronger O-H 

bonds of liquid water phase relative to the weaker O-H bonds of the vapour phase.   
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 The formation of strong bonding environments, i.e., strong chemical bonds, 

essentially correlates with several physico-chemical properties, including high 

oxidation state in the element of interest and low coordination number (Schauble, 

2004).  Thus with a choice of bonding environment between substance A with 

element E in low oxidation state, and substance B with element E in high oxidation 

state, the heavier isotopes will tend to concentrate in substance B, all else being 

equal. Similarly, with a choice of bonding environment between substance A with 

element E in high coordination, and substance B with element E in low coordination, 

the heavier isotopes will again typically concentrate in substance B.  In general these 

rules for equilibrium isotope fractionation predict that large equilibrium fractionations 

are most likely to occur at low temperature between substances with significantly 

different oxidation states, coordination numbers, bonding partners and/or electronic 

configurations (Schauble, 2004).   

 The isotopic fractionation of Zn as a result of sorption to marine 

ferromanganese crusts is a perhaps a more relevant example of an isotope system 

that follows the rules of stable isotope theory as outlined above. For example, the free 

Zn2+ ion in seawater is present as the VI-fold [Zn(H2O)6]
2+ complex (e.g. Turner et al., 

1981; Little et al., 2014). However, the sorption of Zn2+ to the birnessite surface is 

accompanied by a reduction in coordination environment to a IV-fold coordinated 

complex. Accordingly, marine ferromanganese crusts are heavy with respect to their 

Zn isotopic composition at around +0.9 - +1.5 ‰, compared to the isotopic 

composition of Zn in seawater at +0.5 ‰ (Marechél et al., 2000; Little et al., 2014). In 

comparison, the Ni2+ ion is also largely present in seawater as the VI-fold coordinated 

[Ni(H20)6]
2+ complex (Byrne, 2002), however, experimental EXAFS data have shown, 

that unlike Zn, Ni remains in VI-fold coordination during complexation above and 

below Mn octahedral vacancy sites on the birnessite [001] surface, and also during its 

subsequent incorporation into the birnessite structure (Peacock and Sherman, 2007a; 

Peacock, 2009). In addition, the sorption of Ni to the birnessite surface is not 

accompanied by a change in oxidation state, nor is there a change in bonding partner, 

as the free Ni2+ ion is directly bound to oxygen in both seawater and at the birnessite 

surface. In light of the above discussion on stable isotope theory, and considering the 

crystal chemistry of Ni during sorption to birnessite, it is perhaps incorrect to assume 

that the heavy Ni isotope should concentrate in the solid birnessite phase.  What is 

more clearly demonstrated by stable isotope theory is the fact that any fractionation 

associated with the sorption of Ni to birnessite should theoretically be relatively small, 

compared to the Zn stable isotope system for example, where significant changes in 
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Zn bonding environment occur on Zn sorption.  As such, the large 1.5 ‰ separation 

between δ60Ni for the solid-solution pairs reported in this study is difficult to explain in 

the context of stable isotope theory and experimental evidence on the mechanism of 

Ni sorption to birnessite.  

 With respect to the direction of the isotope fractionations measured in the 

current experimental study, it should be considered that an alternative process other 

than sorption to birnessite could be responsible for the heavy Ni isotopic compositions 

measured in natural ferromanganese precipitates (Gall et al., 2013). In light of recent 

research investigating the isotopic composition of Cu in marine ferromanganese 

crusts (Little et al., 2014), it is evident that significant attention should be paid to the 

role of organic Ni-binding ligands in controlling the speciation and isotopic 

composition of Ni in seawater. Recent isotopic measurements conducted on an array 

of ferromanganese crust samples have shown that these precipitates are isotopically 

light with respect to their Cu isotopic compositions at -0.3 ‰ to -0.5 ‰ relative to the 

Cu isotopic composition of seawater +0.9 ‰ (Little et al., 2014), despite the fact that 

theory predicts enrichment in the heavy isotope. In seawater, the free Cu2+ ion is 

present as the V-fold coordinated [Cu(H2O)5]
2+ complex, however, during sorption to 

birnessite in marine ferromanganese crusts Cu2+ may be present as either a III-fold or 

IV-fold coordinated complex (Sherman and Peacock, 2010; Little et al., 2014). In a 

similar manor to the Zn isotope system, the reduction in coordination environment 

during sorption to marine ferromanganese crusts should lead to a heavy Cu isotopic 

composition in the solid phase. It has been suggested by Little et al. (2014) that 

because approximately 99 % of all dissolved Cu2+ in seawater is complexed by a 

group of strong class 1 organic ligands (e.g. Moffet and Dupont, 2007; Buck et al., 

2012) that the Cu isotopic signatures recorded in marine ferromanganese crusts only 

reflect part of the isotopic separation between the sorbed and dissolved pools of Cu2+ 

in seawater. As such, it is suggested that the extent of any isotopic fractionation 

between the free Cu2+ ion and ligand-bound Cu in seawater must be quantified. In 

practice however, measuring the isotopic compositions of individual organic ligands in 

seawater is fraught with difficulty and theoretical predictions are often used as an 

alternative. Accordingly, recent ab initio calculations for both Cu-malonate and Cu 

acetohydroxaomate complexes, which are believed to be good synthetic analogues 

for humic acid and marine siderophore-type complexes, predict that these ligands 

should be enriched in the heavy Cu isotope by around +0.55 ‰ and +1.1 ‰, 

respectively (Sherman, 2013). Given these recent estimates, it appears that ligand 

bound Cu in seawater may be isotopically heavy, thus in turn leaving isotopically light 
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Cu2+ free to sorb to marine ferromanganese crusts (Little et al., 2014). 

 

 It is known, that the speciation of Ni in estuarine environments is strongly 

influenced by complexation to both fulvic and humic substances (Turner and Martino, 

2006), however, the association of Ni with organic ligands in the deep ocean is less 

well understood. If for example, Ni-complexing ligands prove to exert a significant 

control on the isotopic composition of Ni in seawater, it could be the case that the light 

Ni isotope is preferentially bound to organic ligands, leaving the heavy isotope to sorb 

to ferromanganese crusts. Initial studies into the fractionation of Ni isotopes during 

complexation by organic molecules is promising, and computational calculations 

indicate that the uptake of Ni by organics in seawater may indeed preferentiality 

sequester the light Ni isotope (Fujii et al., 2011). In a scenario where strong Ni-binding 

ligands are absent from solution, such as the experimental setup employed in the 

current study, the uptake of the light Ni isotope to the mineral surface may be 

overwhelmingly favored. 

 

 Perhaps another important factor that should be given some consideration 

when assessing the results of this experimental study is the extent to which Ni is 

incorporated into the birnessite structure. As highlighted previously, in marine 

ferromanganese precipitates Ni is found exclusively incorporated into the birnessite 

structure (e.g. Bodeï et al., 2007; Manceau et al., 2007a,b; Peacock and Sherman, 

2007a). Recent lab-based EXAFS studies show however, that the process of Ni 

incorporation occurs relatively slowly over time at circumneutral pH, via the 

rearrangement of surface sorbed Ni (Peacock, 2009). For example, it has been 

demonstrated experimentally that at pH 4 Ni is sorbed above and below octahedral 

vacancy sites on the birnessite surface after equilibration for 24 hr, whereas 

equilibration at pH 7 for the same time duration sees a shift from an entirely surface 

sorbed Ni complex to a birnessite with approximately 90 % of the total Ni sorbed to 

the surface and approximately 10 % structurally incorporated into the birnessite 

crystal lattice. Accordingly, the proportion of Ni incorporated into the birnessite 

structure continues to increase with prolonged equilibration at pH 7, and after 2.5 

weeks approximately 70 % of the Ni was found to be surface sorbed, while the 

remaining 30 % was structurally incorporated (Peacock, 2009). Based on the results 

of this previous work, it is therefore not expected that Ni incorporation will occur under 

the conditions of the pH 5 experiments, regardless of equilibration time. As such, the 

isotopic signatures recorded in the low pH experiments (pH 5) should entirely reflect 

surface sorption. This is also likely to be the case at pH 8 after 48 hr equilibration 
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time, and even potentially for the 1 week experiments. A significant proportion of Ni 

incorporation would only be expected in the samples equilibrated for 4 weeks at pH 8 

and therefore, theoretically at least, the Ni isotopic signal recorded in these samples 

should reflect a mix of surface sorption and structural incorporation, although the 

exact proportion is unknown.  

 

 Given the fact that Ni is found to be entirely incorporated into the birnessite 

structure in marine ferromanganese crusts (e.g. Manceau et al., 2007b; Peacock and 

Sherman 2007b), it may be the case that the heavy Ni isotopic signal recorded in 

these marine sedimentary archives, only manifests once all of the surface sorbed Ni is 

completely incorporated into the birnessite crystal lattice, or alternatively, when a 

critical ratio of surface sorbed vs incorporated Ni is reached. Indeed the current data 

set (Fig. 6.6, and Table 6.2) shows a trend towards lighter 60Ni isotopic compositions 

in the solid birnessite phase under low pH conditions (pH 5) where all surface 

complexation is expected to occur above and below octahedral vacancy sites. In 

contrast, at pH 8 and with increasing equilibration time, the 
60Ni isotopic 

compositions of the solid phase, although still isotopically light relative to the reaction 

solution, are heavier compared to the isotopic compositions of the solid phase at pH 5 

(e.g. Figs. 6.6, 6.7 and 6.8). The shift towards an isotopically heavier solid 

composition with both an increase in equilibration time and an increase in solution pH 

may potentially be the result of a progressive rise in the proportion of Ni incorporated 

into the birnessite crystal structure.  

  

 In order to test this assertion experimentally and thus potentially elucidate 

what balance of surface sorbed vs incorporated Ni might invoke a heavy isotopic 

signal, there is clearly a need for additional Ni sorption experiments over considerably 

longer time scales. 
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6.6 Summary and conclusions 

 

 

 The current study provides the first insight into Ni isotope fraction as a result of 

sorption to the Mn oxide birnessite. Results show that Ni isotopes are fractionated as 

a result of sorption to synthetic c-disordered hexagonal birnessite, during which, the 

solid birnessite phase is preferentially enriched in the light Ni isotope, leaving the 

remaining solution isotopically heavy. The results of the current experimental study 

highlight two major issues: 

 

1. The direction of the measured isotope fractionations are somewhat 

inconsistent with measurements of the Ni isotopic compositions of natural 

marine ferromanganese precipitates, where a significant proportion of the 

precipitates measured are isotopically heavy at around with respect to the 

modern Ni isotopic composition of seawater. 

 

2. The magnitude of the isotope effect i.e. δ60Nisoln. - δ60Nisoln = 1.5 ‰ is large 

considering the fact that Ni does not undergo a change in coordination 

environment, bonding partner or oxidation state during sorption to the 

birnessite surface, or during incorporation into the birnessite crystal structure. 

   

 Both the direction of the fractionation and the magnitude of the isotope effect 

are difficult to explain in the context of stable isotope theory. Although it appears 

based on the results of the current experimental study that relatively low absolute 

amount of Ni sorbed on the solid (conversely relatively high fraction of Ni sorbed from 

a dilute, as opposed to more concentrated, solution), high solution pH and increased 

equilibration time drive the solid phase towards heavier δ60Ni isotopic composition, 

more like the isotopic composition of many marine ferromanganese precipitates with 

respect to contemporaneous seawater. 

  It also seems likely, based on recent studies on other transition metal isotope 

systems (e.g. Fujii et al., 2011; Sherman, 2013; Little et al., 2014), that the 

complexation of Ni by organic ligands in seawater could impart a significant influence 

on the Ni isotopic composition of seawater and thus in turn marine ferromanganese 
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crusts. As such, it would be instructive to perform similar experiments as those here 

but with the addition of a variety of strong organic complexes to the reaction solution. 

According to recent research (Fujii et al., 2011), certain organic Ni binding ligands 

present in seawater may favour the uptake of the light Ni isotope, thus leaving the 

heavy Ni isotope free to sorb to marine ferromanganese crusts. 
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Chapter 7 

Summary and Future Work 

 
 

7.1 Characterization of the transformation of birnessite to todorokite 

  
 Work presented in chapter 4 of this thesis provides the first detailed insight 

into the crystallization pathway and mechanism of todorokite formation from birnessite 

under conditions analogous to those found in marine diagenetic and hydrothermal 

settings. Knowledge of this transformation pathway is crucial for our understanding of 

the eventual fate and mobility of trace metals sequestered to the authigenic birnessite 

phase and, thus, for ultimately quantifying the role of marine ferromanganese 

precipitates in global trace element cycles. 

 In the current study, synthetic c-disordered hexagonal birnessite was 

transformed to todorokite via a mild hydrothermal treatment procedure, the 

transformation pathway was investigated and characterized as a time-series using a 

combination of XRD, FTIR, BET surface area analysis, SEM, HR-TEM and Mn K-

edge EXAFS spectroscopy. As a result of the findings of this work I propose a new 

four-stage process for the transformation of birnessite to todorokite. Specifically I 

present evidence for: (i) the initial formation of local nano-domains of todorokite within 

the 10 Å phyllomanganate interlayer; (ii) the formation and growth of 8-10 nm wide 

primary todorokite particles, that grow from solution specifically along the [010] 

crystallographic direction (b* direction) by up to 200 nm; (iii) the lateral self-assembly 

of the initially formed primary todorokite crystallites across the [100] direction (a* 

direction) exclusively via the attachment of the [100] crystal faces, to form 

substantially larger and more crystalline secondary todorokite laths, which grow up to 

150 nm wide and 600 nm in length; (iv) the further assembly and oriented aggregation 

of secondary todorokite laths to form stacked layers, in which individual laths of 

todorokite attach at angles 120º to each other, most likely in order to preserve 

structural continuity between each successive layer. The results and observations 

presented in chapter 4 are consistent with todorokite crystal growth via an oriented 

attachment-type growth mechanism, as opposed to growth solely from solution via 

traditional crystal ripening.  
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 To my knowledge this is the first study to observe isolated primary todorokite 

particles and capture their apparent self-assembly and oriented growth during 

todorokite formation. Although the formation and subsequent growth of todorokite via 

an oriented attachment-type mechanism helps to explain many of the unique 

morphological and structural features observed in natural marine todorokite, this new 

mechanism of growth ultimately raises important questions about the retention of 

trace species during todorokite formation and growth. 

 Furthermore, in light of this work, and by considering previous studies 

investigating the transformation of birnessite to todorokite, I also suggest that there 

are two major prerequisites for the formation of crystalline todorokite directly from 10 

Å phyllomanganate phase; (i) the 10 Å phyllomanganate must contain a sufficient 

amount of structural Mn(III) to allow the kinking/rearrangement of MnO6 octahedra 

within the phyllomanganate layers and thus the formation of todorokite nucleation 

sites; (ii) the phyllomanganate sheets of the 10 Å phyllomanganate must also display 

some degree of semi-coherent ordering along the c-axis, so that as the 

phyllomanganate layers kink/rearrange, there are sufficient adjacent layers to allow 

for the formation of the todorokite tunnel walls. The absence of one or both of these 

prerequisites has been shown in previous studies to result in the formation of a variety 

of other layer-type and tunnel-type Mn oxides. 

 In order to hone the work presented here, there are several areas where 

further experiments would be beneficial. Firstly, in order to determine whether, and if 

so when, traditional crystal ripening occurs, one needs to determine at which point in 

the transformation all of the 10 Å phyllomanganate phase has transformed to 

todorokite. As discussed in chapter 4, this is very difficult to assess via analysis of the 

XRD patterns alone, as the 10 Å phyllomanganate intermediate and the neo-formed 

todorokite product share the same major diffraction features. In addition, the 

application of other complementary techniques such as SEM or TEM analysis is 

similarly inconclusive. It has however, been highlighted in the study of Feng et al. 

(2004) that todorokite is thermally stable up to temperatures reaching 400°C, while in 

contrast the 10 Å phyllomanganate intermediate (buserite), collapses back to a 7 Å 

phyllomanganate phase at temperatures above 140°C. As such, thermal 

decomposition experiments, coupled with XRD analysis, could be undertaken for the 

10 Å phyllomanganate phase and the subsequent reflux products in order to 

determine at what point in the reaction all of the phyllomanganate has been 

consumed. This is crucial in order to eventually determine an overall rate law for the 

transformation process. To my knowledge, there is currently no kinetic data for the 
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transformation of birnessite to todorokite. The primary parameters needed to 

constrain the rate of transformation for any given reaction includes the %, fraction (α) 

or concentration of the product phase with time, at a fixed temperature and pressure. 

For the birnessite todorokite system investigated in the current study this could be 

determined experimentally using thermal decomposition experiments for example. 

With this data in hand it would then be possible to generate a series of plots 

displaying the % transformation vs time or fraction of transformation (α) vs time. This 

is useful if several parallel experiments were conducted at a range of different 

temperatures to gauge qualitatively how changes in the experimental conditions affect 

the overall reaction rate. In the case of the birnessite to todorokite transformation 

there are currently no data for either the rate (k) or the activation energy (Ea) of the 

transformation. The best approach to try and determine these parameters would firstly 

involve the application of the Avrami equation (Eq 7.1). 

α = 1 – exp(-kt)n 

(Eq. 7.1) 

 

Where α is the fraction transformed, k is the rate, t is time and n is a constant 

which depends on the mechanism. Linearizing the avrami equation yields equation 

7.2 from which it is possible to obtain values for the rate of the reaction (k) (e.g.Putnis, 

1992). 

-ln ln(1-α) = n lnk + n lnt 

(Eq. 7.2) 

A reaction/phase transformation whose kinetics conform to the avrami 

equation should give a rise to a straight line when –ln ln(α-1) is plotted against lnt. 

From the plot the slope of the line is equal to n, and the value at which the line 

intersects the y intercept is equal to n lnk.  

 Having obtained a value for the rate of the reaction it is subsequently possible 

to calculate the activation energy (Ea) for the overall transformation process of 

birnessite to todorokite from the Arrhenius equation (Eq. 7.3). 

lnk = ln A –(Ea/RT) 

(Eq. 7.3) 

Where A is the pre-exponential factor (1/s), Ea is the activation energy 

(kJ/mol), R is the universal gas constant (8.314 J/mol K) and T is temperature in 
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degrees Kelvin. By subsequently constructing an Arrhenius plot of lnk vs 1/T the 

activation energy can be extracted from the slope of the plot, which corresponds 

directly to –Ea / R. While the point at which the extrapolated line of the slope crosses 

the y intercept is equal to ln A. 

It would also be potentially beneficial to undertake future TEM analysis on the 

birnessite/todorokite system using a cryogenic TEM (cryo-TEM) setup, as this would 

circumvent any potential issues that may arise as a result of sample drying, such as 

the preservation of drying artefacts. 

 Finally, with a view to further understanding the formation and growth of 

todorokite in the marine environment, and fully testing the applicability of these 

experiments to the formation of todorokite in such a setting, it would be insightful to 

investigate the effect of ionic strength on the growth of todorokite via oriented 

attachment. Typically, in other systems that undergo growth via an oriented 

attachment-type pathway, the interaction of particles prior to a so called “attachment 

event” is often described by the DVLO (Derjaguin-Landau-Verwey-Overbeek) theory 

of inter-particle interaction. In short, the theory accounts for both electrostatic 

repulsion and weak van der Waals forces between approaching particles as a function 

of particle distance (e.g. Stumm, 1992; Mullaugh and Luther, 2011). It is well 

understood that increasing ionic strength suppresses the thickness of the electrical 

double-layer surrounding the mineral surface, thus in terms of OA-type crystal growth, 

increasing the ionic strength of the background electrolyte should theoretically lower 

the energy between two “approaching” particles (e.g. Zhang et al., 2008; Mullaugh 

and Luther, 2011; Burrows et al., 2012). Accordingly, DVLO theory predicts that 

increasing the ionic strength of the background electrolyte will not only increase the 

likelihood of particle-particle contact, but also accelerate the overall rate of growth via 

OA. As the todorokite synthesis procedure described in this thesis was conducted 

under particularly high ionic strength conditions, (1 M MgCl2) it should at least be 

considered that the experimental conditions could have favored the growth of large 

todorokite laths via an OA-dominated pathway. Such effects have been demonstrated 

experimentally for other mineral systems, including the growth and aggregation of 

goethite nanorods and CdS nanoparticles (Mullaugh and Luther, 2011; Burrows et al., 

2012). In the case of goethite, it was found that increasing the concentration of the 

background electrolyte from 0.1 mM to 80 mM NaNO3 lead to a statistically significant 

increase in the growth rate constant (Burrows et al., 2012). While in the case of CdS 

nanoparticles, it was similarly found that increasing the ionic strength of the 

background electrolyte from 0.002 M to 0.032 M NaCl resulted in an increase in the 
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growth rate via OA (Mullaugh and Luther, 2011). In both cases however, the authors 

did note that increasing the ionic strength further to 0.5 M did not further enhance the 

rate of particle growth via OA.  

 

7.2 The effect of Ni on the mechanism of formation and growth of 
todorokite  
 

 In light of the new four-stage mechanism for the transformation of birnessite 

and growth of todorokite identified in chapter 4, the work presented in chapter 5 of this 

thesis investigates the effect of Ni on the transformation of birnessite to todorokite. As 

natural marine birnessite is typically enriched in trace metals it is important to consider 

the effects of trace metal impurities on the transformation process. Accordingly, a Ni-

rich c-disordered birnessite phase, containing approximately 1 wt % Ni was 

synthesized via a co-precipitation method, and subsequently transformed to 

todorokite over a 4 week period using the mild hydrothermal treatment procedure. The 

transformation pathway was fully characterized using XRD, TEM, ICP-OES and BET 

surface area analysis, while the distribution and phase association of Ni during the 

transformation was investigated using Ni k-edge EXAFS spectroscopy and TEM 

coupled with EDS.  

 The results presented in chapter 5 revealed that the incorporation of Ni into 

the precursor phyllomanganate phase and thus the 10 Å phyllomanganate 

intermediate inhibits transformation to todorokite. For example, XRD, BET surface 

area data and TEM images all show that that the formation and growth of todorokite is 

delayed, while the crystallinity of the neo-formed todorokite is reduced, in comparison 

to the Ni-free system. As predicted in chapter 4 and discussed further in chapter 5, it 

is likely that the nucleation of todorokite (i.e. the formation of the todorokite tunnel 

walls) within the 10 Å phyllomanganate interlayer is disrupted because Ni is a non 

Jahn-Teller active species. Therefore the Ni-rich 10 Å phyllomanganate layers are, to 

a certain extent, stabilized against topotactic rearrangement, which in turn disrupts 

and delays the formation of todorokite primary particles and their growth via the 

addition of ions from solution. 

 Crucially however, while the presence of both surface sorbed and structurally 

incorporated Ni in the 10 Å phyllomanganate structure appears to inhibit the overall 

rate of todorokite formation and the crystallinity of the neo-formed todorokite product, 
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there is no evidence to suggest that this sorbed Ni has a significant effect on the 

growth mechanism of todorokite via an oriented attachment-type pathway. It is evident 

from analysis of the TEM images presented in chapter 5 that following todorokite 

nucleation, primary todorokite particles exhibit direction specific growth from solution 

exclusively along the [010] direction, while large todorokite laths measuring up to 700 

x 150 nm grow via the simultaneous attachment of the [100] primary particle crystal 

faces, and continued growth from solution along the [010] direction. 

In order to further investigate the role of Jahn-Teller vs. non Jahn-Teller 

cations on the nucleation and growth of todorokite, similar experiments to those in this 

work are required, but using, for example, Cu-doped birnessite precursors, where Cu 

is Jahn-Teller distorted. Comparison of these experiments to the work reported in this 

thesis would help to further elucidate the effect of metal impurities on the rate and 

mechanism of transformation, and in turn determine the fate of the impurities as the 

transformation proceeds.  

 It would also be potentially useful to undertake the transformation of the 10 Å 

phyllomanganate to todorokite in smaller batch experiments, spiking each individual 

reaction solution with varying concentrations of Ni, in order to investigate the effect of 

entirely surface sorbed Ni on the aggregation of primary todorokite particles, and thus 

in turn the growth of large secondary todorokite laths. Based on the results presented 

in chapter 5, it would be expected that the sorption of Ni to the Mn(OH) sites along the 

edges of the neo-formed todorokite primary particles would be largely unfavourable 

for the growth of large todorokite laths via the orientated attachment of todorokite 

primary particles across the [100] direction.  

 

7.3 The fate and mobility of Ni during the transformation of birnessite to 
todorokite 
 

 In chapter 5 of this thesis Ni K-edge EXAFS, TEM-EDS and Ni solution data 

were used to trace the distribution of Ni during the transformation of birnessite to 

todorokite. In the first instance, Ni K-edge EXAFS data show that the co-precipitation 

method used in the current study generates a Ni-rich c-disordered birnessite 

precursor phase, with ~60 % of the Ni incorporated into the birnessite structure and 

~40% sorbed as an inner-sphere surface complex above and below octahedral 

vacancy sites on the birnessite [001] surface.  Time-series EXAFS then shows that, 

as the reflux proceeds, Ni remains sequestered by the 10 Å phyllomanganate 
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intermediate as an incorporated and surface sorbed complex, despite the progressive 

formation and growth of todorokite within the sample matrix. However, at 2 wk reflux, 

there is a notable amount of both Ni and Mn present in the reflux solution. This 

dissolution likely occurs because there is a change in phase stability around this time 

in the reaction, as the relatively large neo-formed todorokite particles become 

dominant over the relatively small birnessite platelets. Some of the released Ni is 

subsequently sequestered to the neo-formed todorokite phase, where it is specifically 

sorbed to Mn(OH) sites at the edge of the todorokite triple chains as a tridentate 

corner-sharing complex. In this coordination environment, Ni is substantially more 

susceptible to remobilization than it would be if it were incorporated into the todorokite 

structure. 

 In total, approximately 50% of the total Ni associated with the 10 Å 

phyllomanganate phase was released into solution over the course of the 

transformation processes. Therefore, contrary to previous assumptions, the 

transformation of birnessite to todorokite does not appear to provide a direct route for 

the incorporation of (non Jahn-Teller) trace metals into the neo-formed todorokite 

structure. These results go some way to explaining why natural marine todorokites 

typically concentrate less Ni than the 10 Å phyllomanganate phase from which they 

apparently crystallized (Siegel and Turner, 1983; Bodeï et al., 2007). 

 Moreover, these results suggest that the oxic diagenesis of birnessite in 

marine sediments provides a source of Ni, and perhaps other trace metals, to marine 

sedimentary porewaters, thus potentially providing a benthic flux of trace metal 

micronutrients to seawater. 

 

7.4 Extent of Ni isotope fractionation during sorption to birnessite 
 

 Hydrogenetic marine ferromanganese crusts have been shown to exhibit 

heavy Ni isotopic compositions up to ~ +2.5 ‰ (Gall et al., 2013), compared to the Ni 

isotopic composition of global seawater (Vance et al., 2014). At present, little is known 

about the fundamental processes that give rise to the heavy Ni isotopic composition 

measured in marine ferromanganese crusts, however, it has been demonstrated for a 

range of other transition metal systems that the sorption of these species to mineral 

surfaces can be a major driver of isotope fractionation (e.g. Barling et al., 2004; 

Wasylenki et al., 2011; Little et al., 2014). Thus it is plausible that the uptake of 

aqueous Ni from ambient seawater could account for the heavy Ni isotopic 
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composition of hydrogenetic marine ferromanganese precipitates. A mechanistic 

understanding of the fundamental processes that drive this fractionation is paramount 

for the development of the Ni isotope system as a biogeochemical tracer, and 

specifically, Ni isotopes may shed light on the birnessite to todorokite transformation 

process, Ni release into solution, and subsequent processes that govern whether Ni is 

ultimately released to seawater or retained in the sediments. 

 In order to determine whether the uptake of Ni to the phyllomanganate 

birnessite could account for the heavy Ni isotopic composition of marine hydrogenetic 

precipitates, a series of individual sorption experiments were conducted using a 

synthetic c-disordered hexagonal birnessite phase, at pH 5 and pH 8, for time 

durations of 48 hrs, 1 week and 4 weeks, and at 4 different initial Ni loadings.  

 The work conducted in chapter 6 of this thesis provides the first experimental 

data set for the fractionation of Ni isotopes during sorption to hexagonal birnessite, 

and show that the sorption of Ni to birnessite is accompanied by an equilibrium-based 

isotope fractionation, during which, the light Ni isotope is preferentially sorbed by the 

birnessite. Consequently, the corresponding reaction solution remained isotopically 

heavy. Enrichment of the synthetic birnessite phase in the light Ni isotope was evident 

regardless of Ni loading, sample equilibration time, or solution pH.  

 Clearly, the direction of the isotopic fractionations measured in this 

experimental system contradicts recent Ni isotope data collected from natural 

ferromanganese crusts, which show that these precipitates are distinctly enriched in 

the heavy Ni isotope. In addition to the direction of fractionation, the relatively large 

magnitude of the isotope effect (1.5 ‰) between the solid birnessite and the reaction 

solution is also particularly surprising. As detailed in chapter 6, isotope effects are 

often more pronounced when the sorbent species undergoes a change in 

coordination environment during sorption (e.g. in the case of Tl, Mo, Zn on hexagonal 

birnessite (Barling and Anbar, 2004; Wasylenki et al., 2011; Peacock and Moon, 

2012; Nielsen et al., 2013)). However, aqueous Ni does not undergo a significant 

change in coordination during uptake from solution to the birnessite surface or during 

incorporation into birnessite vacancy sites, where it is found in 6-fold coordination 

(e.g. Peacock and Sherman, 2007a; Peacock, 2009). 

 Unfortunately I was unable to offer a conclusive explanation for either the light 

Ni isotopic composition of the birnessite phase or indeed the magnitude of the 

fractionation between the solid birnessite and the reaction solution. Notably however, 

the Ni isotopic composition of the birnessite solid and thus in turn the corresponding 
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solutions were sensitive to all three experimental parameters. Specifically, high pH, 

low amounts of Ni sorbed to the birnessite and increased equilibration time appeared 

to drive the Ni isotopic composition of the solid phase towards heavier isotopic values.  

 It is evident in light of these results, that a significant amount of further 

experimental work is required in order to determine the mechanistic processes 

responsible for the heavy Ni isotopic composition of marine ferromanganese 

precipitates. Specifically, I would recommend performing additional sorption 

experiments with pH, Ni loading and equilibration time, approaching those found in 

the marine system – i.e., at pH ~8, with Ni << 0.7 wt%, and for extended equilibration 

time. These experiments may also potentially elucidate whether the heavy Ni isotope 

signal recorded in ferromanganese crusts is a function of the proportion of Ni 

structurally incorporated into the birnessite structure. Certainly based on the results of 

recent sorption studies for Ni on hexagonal birnessite (e.g. Peacock, 2009) it is likely 

that at pH 5 the isotopic signal measured in these experiments reflects entirely Ni 

surface complexation over the octahedral Mn vacancy sites. Accordingly, an isotopic 

signal reflecting both a mixture of surface sorbed and incorporated Ni is only likely in 

the experiments equilibrated at pH 8 for 1 week and 4 weeks, and even in these 

experiments a larger proportion of the Ni is likely still sorbed to the birnessite surface, 

as opposed to Ni incorporated into the birnessite crystal lattice. Despite the fact there 

is no obvious change in the local co-ordination environment between surface sorbed 

and structurally incorporated Ni, the process of structural incorporation might impart 

an isotope fractionation that results in a heavier isotope signal for sorbed Ni. 

 Another promising avenue to explore with this work is the role of organic Ni-

binding ligands in controlling the Ni isotopic composition of seawater, and thus in turn 

the isotopic composition of marine ferromanganese crusts. A recent combined 

experimental and theoretical study by Fujii et al. (2011), showed that during the 

equilibration of aqueous Ni with several organic complexes, including oxalic acid and 

a crown ether complex, the light Ni isotope was preferentially complexed by the 

organic ligands. In light of this previous study and the work conducted in chapter 6 of 

this thesis, it would be very insightful to conduct further bench top sorption 

experiments for Ni on hexagonal birnessite with the addition of several different 

organic Ni complexing agents, in order to investigate the Ni isotopic composition of 

the solid birnessite phase in the presence of organic Ni-binding ligands.  Theoretically, 

if the complexation of the light Ni isotope is favoured by the organic ligands in 

solution, then the heavy Ni isotope should be free to sorb to the birnessite surface, 
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perhaps explaining the heavy isotope composition of natural marine ferromanganese 

precipitates that form in a system with abundant organic ligands. 
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