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Abstract 

The selection of CHO cell lines for manufacturing therapeutic proteins involves 

multiple screening steps of transfected cells that would meet industrial standards such 

as productivity and stability. This study is a starting point for the idea that cell line 

development could be improved if a reversed approach involving the selection of un-

transfected cell with desirable growth characteristics is first implemented, followed by 

an accelerated genetic drift in a long-term sub-cultivation. To address this, the inherent 

cellular heterogeneity within an un-transfected parental CHO-S population was 

exploited by isolating 22 clonal CHO-S populations through two rounds of the limiting 

dilution cloning, followed by an accelerated genetic drift and directed evolution resulted 

from a continuous sub-cultivation (up to 220 generations), along with the 

cryopreservation of subpopulations approximately every 40 generations. The initial 

growth compassion exhibited positive correlations between the specific growth rate and 

generation number and between the peak of viable cell density and generation number. 

The fed-batch studies also showed that the integral of viable cell density (IVCD) 

performance can be enhanced along the long-term cultivation, but this was not 

necessarily improved with increasing generation number because clones were evolved 

to enhance the rate of biomass production and not to withstand severe environmental 

conditions typically found at mid- and late- stages of fed-batch cultivation. 

Metabolic analyses showed that glucose and glutamine were rapidly metabolised to 

provide energy and intermediates for cell division, also showing that glutamine 

availability defines the duration of the exponential growth phase and that its depletion 

promotes a switch to a more efficient glucose usage tightly coupled to oxidative 

phosphorylation (OXPHOS) this in turn reduced glucose uptake and lactate production, 

and even switched to net lactate consumption. The lactate: glucose ratio in proliferating 

populations showed that glutamine was also metabolised to provide enough levels of 

NADPH for fatty acid biosynthesis and redox homeostasis, thus producing lactate given 

the down-regulation of pyruvic acid flux towards the tricarboxylic acid (TCA) cycle. The 

mitochondrial and glycolytic analysis along the long-term cultivation showed that clones 

reduced both metabolisms, whereas the analysis at exponential growth phase showed 

that populations with high proliferation rates present an elevated OXPHOS activity -

supported by glutamine metabolism- and strong aerobic glycolysis -supported by 

glucose uptake-. Contrary, populations at stationary growth phase with high global 

IVCD performance presented a low respiratory metabolism, but efficiently couple to 

ATP production, to reduce a potential mitochondrial damage resulted from increments 

in the proton leakage across the inner mitochondrial membrane. 
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In conclusion, the work presented in this thesis exhibited the dynamic nature of 

CHO cell and revealed metabolic characteristics which enabled a cell to reach growth 

improvements. In the same context, the reversed strategy presented here generated a 

panel of 132 CHO cell variants with enhanced functional characteristic that meet 

industrial standards and therefore open a huge potential to increase our understanding 

of the nature of relevant cell lines with desirable metabolic and growth phenotypes. 
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Chapter 1 

Literature review  

This chapter presents an overview of the biotechnological industry and the 

production of recombinant proteins using mammalian cell systems, introducing the 

importance of recombinant proteins for the pharmaceutical industry and the 

manufacturing processes using Chinese hamster ovary (CHO) cells, including cell 

expression system characteristics and their metabolic requirements. Finally, I describe 

the strategies implemented to enhance the overall CHO cell performance.  

 

1.1 Biologics and the biopharmaceutical industry 

Biologics or biopharmaceuticals are molecules with therapeutic importance 

produced by or obtained from biological sources, usually these molecules are produced 

using recombinant technologies in genetically modified organisms (Aggarwal 2008; 

Demain and Vaishnav 2009; Durocher and Butler 2009; Ferrer-Miralles et al. 2009; 

Walsh 2010b). Monoclonal antibodies, recombinant proteins, fusion proteins, cytokines, 

anti-coagulants, blood factors, growth factors, hormones, interferons, nucleic acids, 

recombinant vaccines and therapeutic enzymes are among the biologics that have 

been used to treat a large range of diseases. Biologics have seen a remarkable 

increase and acceptance in the pharmaceutical market because they have proven 

efficiency and safety for the treatment of cancer, cardiovascular diseases, respiratory 

disorders, transplantation, allergic diseases and autoimmune diseases. The notable 

advances in the “omics” disciplines (i.e., genomics, proteomics, metabolomics and 

transcriptomics) and the establishment of robust mammalian cell culture techniques 

have allowed the development of rapid and more precise diagnostics (Carlson 2011; 

Matasci et al. 2008) and opened a tremendous and attractive potential for developing a 

broad range of new therapeutic molecules with industrial relevance (Figure 1-1) 

(Kantardjieff et al. 2010). 

Nowadays, a large range of novel biological molecules have been developed, 

prescribed and accepted in the therapeutic market (Table 1-1). Consequently, the 

pharmaceutical industry has witnessed significant changes in the drug development 

pipeline in effort to produce biologic products instead of chemical compounds for 

therapeutic purposes, shifting the industrial core from its original chemical synthesis to 

these novel biotechnological processes. 
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Since the last decade, recombinant proteins have dominated the therapeutic 

market with lucrative biological molecules exceeding $1 billion annual sales (Aggarwal 

2008; Redwan 2007; Walsh 2010a) (Table 1-1). The enormous acceptance of biologics 

for therapeutic applications has notably increased their demand in the global market 

with more than 246 biological molecules approved in the in the United States and 

European Union, and with more than $140 billion in the annual revenue in 2014 (Walsh 

2014). In 2010, was predicted that global market for biological molecules will increase 

between 7% and 18% annually over the subsequent 10 years (Hiller 2009; Walsh 

2010a) and it was estimated that over 500 new biological drugs were in preclinical and 

clinical development (Durocher and Butler 2009; Walsh 2004). Several researches 

have also anticipated that a large number of new biological drugs will be developed as 

a result of the application of “omics” technologies combined with the vast information 

obtained from the ongoing sequencing of human genomes (McKown 2002; Walsh 

2010b) and the CHO-K1 genome sequencing (Lewis et al. 2013; Xu et al. 2011). For 

example, the human genome has more than 25000 protein-coding genes, but these 

gene products undergo complex and variable post-translational modifications (PTMs), 

thereby resulting in an enormous amount of potentially functional proteins (Leader et al. 

2008; Pray 2008). Consequently, the biotechnology industry’s future looks promising 

due to the extraordinary opportunities to develop novel molecules with great 

biopharmaceutical potential (Aggarwal 2008; Goodman 2009). 

 

Figure 1-1 Biologic therapeutics market: proportion of biologics according to their 

approved therapeutic application in 2009. Data modified from Ferrer-Miralles et al. 

(2009). 
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Table 1-1 Best-selling biopharmaceutical products in 2014. 

 

Product trade name 

(INN) 

Expression 

system 

Biological 

type 

Sales 

value 

($ billions) 

Company 

Humira 

(adalimumab) 
CHO 

Monoclonal 

antibody 
10.7 AbbVie 

Rituxan/MabThera 

(rituximab) 
CHO 

Monoclonal 

antibody 
9.0 Biogen-Idec, Roche 

Remicade 

(infliximab) 

Murine 

myeloma 

Monoclonal 

antibody 
8.9 

Janssen Biologics, Merck, 

Mitsubishi Pharma 

Enbrel 

(etanercept) 
CHO 

Fusion 

protein 
8.7 

Amgen, Pfizer 

Takeda Pharmaceuticals 

Lantus 

(insulin glargine) 
E. coli Protein 7.8 Sanofi 

Avastin 

(bevacizumab) 
CHO 

Monoclonal 

antibody 
7.1 Roche 

Herceptin 

(trastuzumab) 
CHO 

Monoclonal 

antibody 
6.9 Roche 

Neulasta 

(pegfilgrastim) 
E. coli Protein 4.4 Amgen 

Erbitux 

(cetuximab) 
SP2/0 

Monoclonal 

antibody 
2.9 

Merck, Eli Lilly 

Bristol-Myers Squibb 

Epogen/Procrit/ 

Eprex/ESPO 

(epoetin alfa) 

CHO Protein 3.3 
Amgen, Ortho, Janssen, 

Kyowa Hakko Kirin 

Aranesp/Nespo 

(darbepoetin alfa) 
CHO Protein 1.9 

Amgen, Kyowa Hakko 

Kirin 

Neupogen 

(filgrastim) 
E. coli Protein 1.4 Amgen 

Data adapted from “Biosimilars: 11 Drugs to Watch” (GEN 2014). 

INN is international non-proprietary name. 
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1.2 Biological molecule expression systems: considerations and 

challenges 

Since 1982 when the first biological recombinant molecule was approved for 

therapeutic proposes (“Humilin”, rh-Insulin, Genentech-Eli Lilly), the biopharmaceutical 

industry has successfully developed and introduced a large number of biological 

molecules into the therapeutic market. Therefore is not surprising that the 

pharmaceutical industry is investing significant efforts to develop efficient expression 

systems, prokaryotic and eukaryotic, as well as cell-free expression systems for 

biologic manufacturing (Figure 1-2 and Table 1-2). 

 

 

Figure 1-2. Proportion of biologics according to the expression host system used for 

production. Data modified from Walsh et al. (2014). 

 

Escherichia coli and other prokaryotes are used as expression host systems for 

recombinant proteins, but their implementation for humanised protein manufacturing is 

still restricted mainly because their prokaryotic nature limits the processing of complex 

PTMs (i.e., glycosylation, acylation and phosphorylation) essential for humanised 

protein functions (Walsh and Jefferis 2006). Contrarily, eukaryotic organisms (i.e., 

yeast, plants, mammals and insects) are capable of performing complex protein 
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synthesis with correct folding and complete PTMs, particularly glycosylation (Barnes et 

al. 2000; Barnes et al. 2001; Walsh and Jefferis 2006; Wurm 2004). Consequently, 

eukaryotic cells have been chosen as the first option for manufacturing complex and 

functional human recombinant proteins (Figure 1-2). 

PTMs are essential in many proteins because these modifications are associated 

with gene expression, gene regulation and transduction signalling, as well as protein 

localisation, stability, pharmacokinetic and activity (Walsh and Jefferis 2006; Webster 

and Thomas 2012). Among PTMs, glycosylation is the most common in human 

proteins with an estimated 50% of all human proteins glycosylated. Glycosylation is 

also considered the most complex PTMS due to their considerable heterogeneity (i.e., 

glycoforms) and large number of enzymatic reactions involved in the sequential 

modifications of the nascent glycoprotein through the endoplasmic reticulum and Golgi 

apparatus (Lauc et al. 2010; Walsh and Jefferis 2006; Wong 2005). These glycolytic 

modifications are associated with important metabolic processes (i.e., cell signalling, 

immune function, protein folding, localisation, degradation, secretion and transcription 

signalling) that maintain normal physiological processes. For example, incorrect 

glycolytic profiles are associated with cancer, diabetes and immunological and 

infectious disorders because an altered protein structure leads to changes in activity, 

cytotoxicity and immunogenicity that compromise their safety and function. 

Consequently, the regulation of specific-glycolytic profiles is vital for the organisms and 

for the therapeutic industry (Lauc et al. 2010; Walsh and Jefferis 2006) particularly 

because over 40% of the approved therapeutic proteins are glycosylated and many 

more proteins in development would be glycosylated (Walsh 2010a). 

Although many PTMs are evolutionarily conserved and most of the eukaryotic 

cells are able to perform complex PTMs, the number and complexity of modifications 

differs from organism to organism (Walsh 2010a; Webster and Thomas 2012). These 

PTMs variations relate to the organism complexity, organisation and corresponding 

kingdom. As a result, taxonomy-associated PTMs may trigger undesirable effects in 

foreign organisms and would lead to heterogonous glycoproteins activities even if they 

share the same amino acid sequence. Therefore, although the same protein-coding 

gene can be expressed in different eukaryotic hosts (i.e., mammals, yeast, insects or 

plants) their protein product will be structurally and functionally different (Gomord et al. 

2005; Webster and Thomas 2012). Taking this into account, the selection of an 

appropriate expression host systems is a critical decision that must be considered 

when expressing recombinant human proteins. 
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Table 1-2 Prokaryotic and eukaryotic expression host systems used for biological 

therapeutics production  

Expression host systems 

Bacteria: Escherichia coli, Bacillus subtilis 
+ Easy cultivation 
+ Easy genetic manipulation 
+ High proliferation rates 
+ Extensive characterisation 
+ High productivity 
+ Low nutrient requirements 

+ Human-like glycosylation possible by genetic engineering 
- Endotoxins (in E.coli) 
- Lack of PTMs 
- Protein aggregation 
- Different codon usage (premature protein termination) 
- Inclusion bodies for proteins > 60kDa 

Chinese hamster: CHO, BHK 
+ Human-like glycosylation 
+ Easy cultivation and adaptability 
+ Easy genetic manipulation 
+ Extensive characterisation 
+ Non-fucosylated proteins 
+ Growth in serum-free culture media 

+ Efficient protein expression and secretion 
+ Proliferation in suspension cultures 
+ Long regulatory and safety approval records 
- Low productivities 
- Complex media formulation 
- Potential to propagate infectious agents 

Human cells: HEK293, HT-1080, PerC6, HKB11, Namalwa 
+ Human glycosylation 
+ Low immunogenic potential  

- High cost 
- Complex media formulation  
- Potential to propagate infectious agents 

Hybridomas 
+ Human-like glycosylation possible by genetic 
engineering 

- Immunogenic glycans 
- Potential to propagate infectious agents 

Insect cells: Spodoptera frugiperda, Trichoplusia ni, MIMIC, SfSWT-3  
+ Low cost 
+ Rapid production 
-Short half-life of recombinant proteins 

+ Human-like glycosylation possible by genetic engineering 
- Low therapeutic protein bioactivity in vivo  
- Potentially immunogenic glycans 

Murine myelomas: NS0, SP2/0 
- Immunogenic glycans - Potential to propagate infectious agents 

Plants: Lemna minor, carrot cells, tobacco plants 
+ Inexpensive cultivation 
+ Easy cultivation 
+ Lack of human pathogens 
+ Possible human-like glycosylation by genetic 
engineering strategies 

- Large outdoor field scale production 
- Low productivities 
- Non-human-type glycosylation 
- Potentially immunogenic glycans (a1,3-fucose) 
- Regulatory concerns for GMO cultivation 

Transgenic animals: rabbit, goat 
- Immunogenic glycans - Potential to propagate infectious agents 

Yeasts: Pichia pastoris, Hansenula polymorpha, Saccharomyces cerevisiae 
+ Easy cultivation 
+ Easy genetic manipulation 
+ High productivity 
+ Inexpensive cultivation 
+ Robust cell systems 

+ Adequate for non-glycosylated proteins 
+ Growth in chemically defined media 
+ Human-like glycosylation possible by genetic engineering 
- Potentially immunogenic glycans (N-linked and O-linked) 

Cell-free expression systems 
+ Expression of toxic proteins 
+ Protein folding 
+ Inexpensive and rapid production 

- Low yield 
- Incomplete and few PTMs 
- Protein aggregation 

Expression systems along with recognised advantages (+) and disadvantages (-). Data modified from 

Demain and Vaishnav (2009), Durocher and Butler (2009), Ferrer-Miralles et al.(2009) and Endo and 

Sawasaki (2006). 
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The production of recombinant proteins is commonly performed on empirical 

basis (Hacker et al. 2009; Matasci et al. 2011) with typical challenges that continue to 

be weaknesses for the biopharmaceutical industry since its origins (i.e., low 

recombinant protein production rates, low cell growth rates, high environment 

sensibility, medium complexity and genetic and phenotypic cell line heterogeneity) 

(Barnes et al. 2000). Currently, the biological processes used for manufacturing 

recombinant proteins are much more efficient and regulated than the first biological 

productions performed in 1980’s. However, the industry seeks to develop a universal 

manufacturing platform that overcomes problems and would be compatible with any 

kind of recombinant protein (Walsh 2010a). 

Today we are far from reaching this desirable system due to the structural 

complexity of recombinant proteins and the metabolic, phenotypic and genetic diversity 

of the expression systems. These inherent features restrain the use of a unique 

expression system and encourage the use and development of specific host systems 

to meet the structural requirements that the novel recombinant proteins demand. 

Therefore, cell line engineering, next-generation sequencing, glycoengineering, 

microarrays, real time PCR, transfection technologies and vector design are some of 

the “omics” technologies that together with an optimised cell culture media (i.e., 

controlled nutrient feeding and synthetic media formulation) and controlled culture 

environment (i.e., pH, temperature, osmolarity and oxygen supply) have been 

extensively implemented to obtain larger protein expression quantities (1 to 2 g L-1 yield 

commonly achieved) and high cellular densities (20 x106 cells mL-1 commonly reached) 

at reduced production costs in order to meet the increasing biological molecule 

demand (Jayapal et al. 2007). 

 

1.3 Mammalian cell lines and CHO cells 

Mammalian cells are the most widely used expression system for the production 

of biological molecules, among these the African green monkey kidney (COS), baby 

hamster kidney (BHK), Chinese hamster ovary (CHO), human embryo kidney (HEK-

293), human retinal derived (PER-C6), human fibrosarcoma (HT1080), human 

lymphoma (Namalwa), mouse myeloma (NS0, SP2/0) and hybridomas are commonly 

used for recombinant protein production. However, about 60-70% of the licenced 

therapeutics and the majority of proteins under development are expressed in CHO 

cells (Durocher and Butler 2009; Jayapal et al. 2007; Li et al. 2010; Matasci et al. 2008; 

Walsh 2014), essentially because CHO cells offer advantages such as manufacturing 
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more complex biological molecules such as bi-specific antibodies, humanised 

monoclonal antibodies and Fc-fusion proteins with human-type glycosylation, 

phosphorylation and carboxylation PTMs and also exhibiting a proper secretory signal 

pathway for efficient gene-product secretion (Barnes et al. 2000; Meleady 2007; Page 

1988; Wurm 2013). Additionally, their extensive characterisation, easy cultivation, 

adaptability to synthetic environments, susceptibility to foreign DNA integration and 

their long regulatory and safety approval records have positioned CHO cell lines as the 

leading mammalian host cell line for safe biological therapeutic production (Durocher 

and Butler 2009; Jayapal et al. 2007). 

As mentioned previously, we are far away from developing a universal host 

platform or an ideal CHO cell line for efficient recombinant protein production. 

Therefore, the industry is still using multiple mammalian cell lines, each with 

advantages and limitations, to overcome expression and process drawbacks. 

Fortunately, there are many strategies can be implemented to generate more 

applicable knowledge with respect to cellular metabolism for understanding how cell 

growth and gene expression are synchronized and regulated within the host systems, 

and for understanding the environment effects (i.e., nutrient availability, culture 

operation conditions, dissolved oxygen, pH, osmolarity and temperature) over the cell 

performance, which are necessary for developing fully controlled, predictable and 

robust biotechnological processes. 

 

1.4 Phenotypic heterogeneity in CHO cells  

The original CHO cell line was developed in 1957 as an immortal cell line from a 

Chinese hamster (Cricetulus griseus) primary cell culture (Tjio and Puck 1958). Since 

then, numerous functional CHO cell lines have been generated by exploiting the 

intrinsic nature of CHO cells as immortalised cells and by applying a large number of 

genetic engineering strategies (Hacker et al. 2009). Through time, all these strategies 

have considerably altered the CHO genome, leading to large differences in its 

karyotype in comparison with the original Chinese hamster karyotype (Deaven and 

Petersen 1973; Derouazi et al. 2006). These cumulative genomic aberrations have 

allowed the development of thousands of CHO cell lines with notably different 

metabolic and physiologic characteristics such as CHO-K1, CHO-K1SV (GS-KO), 

CHO-DG44 (DHFR-/-), CHO-S (suspension cell lines), DUKX-B11 (DHFR-) (Wurm 

2013). 
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The phenotypic plasticity in CHO cells is attributed to their inherent and useful 

genetic instability (Barnes et al. 2006; Derouazi et al. 2006; O'Callaghan et al. 2010), 

which constantly causes rearrangements in the genome to evolve functional 

phenotypes to survive, proliferate and adapt in the constantly changing synthetic 

environments (Sinacore et al. 2000). These genomic rearrangements also provide an 

important source of cell variability that can be harnessed to isolate more efficient and 

robust derived CHO cell lines, for example cell lines able to assemble complex 

recombinant proteins (Dinnis et al. 2006; O'Callaghan et al. 2010), extend the cellular 

viability over fed-batch regimes (Prentice et al. 2007), reach high cellular densities 

(O'Callaghan et al. 2010; Prentice et al. 2007) and grow in synthetic and hostile 

environments (Schumpp and Schlaeger 1992; Sinacore et al. 2000; Sunley et al. 

2008). 

Understanding the biological mechanisms underlying the phenotypic 

diversification is essential to identify the changes in genetic and phenotypic 

characteristics that drive the acquisition of varied functional features. Consequently, 

multiples approaches such as karyotyping (Deaven and Petersen 1973; Derouazi et al. 

2006), genome sequence (Lewis et al. 2013; Xu et al. 2011) and chromosomal 

structure analysis (Derouazi et al. 2006; Yoshikawa et al. 2000) have been studied to 

elucidate the phenotypic heterogeneity in CHO cells. 

It is clear that the phenotypic heterogeneity in CHO cells provides innumerable 

opportunities to select improved CHO cell lines with industrial capabilities, but also 

generates an unpredictable and uncontrollable cellular behaviour that arises from the 

loss of gene function (Bergoglio et al. 2002), chromosomal aberrations (Derouazi et al. 

2006), metabolic and enzymatic dysfunction (Jackson and Loeb 2001) and epigenetic 

alterations (Sandoval and Esteller 2012). These undesirable effects are commonly 

observed during the manufacturing of recombinant proteins, resulting in the loss of 

recombinant genes (Barnes et al. 2001; Beckmann et al. 2012; Hammill et al. 2000; 

Jun et al. 2006; Kim et al. 1998), the decline in transgene mRNA levels (Chusainow et 

al. 2009; O'Callaghan et al. 2010), the emergence of non-productive cells during 

culture (Bae et al. 1995) and by-product accumulation (Altamirano et al. 2004; Chen et 

al. 2001; Gorfien et al. 2003). 

Studies have identified important variations between and within populations’ 

growth parameters, demonstrating that CHO cells exhibit high genetic instability rates 

which result in a constant appearance of subpopulations with varied phenotypic traits 

(Barnes et al. 2006; Davies et al. 2012; Kim et al. 1998). In the same context, clonal 

variation between and within populations measured in terms of metabolic profiles 
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(Bailey et al. 2012; Beckmann et al. 2012; van Berkel et al. 2009) and cell performance 

(Heinrich et al. 2011; Prentice et al. 2007; Yoon et al. 2004) have also been observed 

as the result of changes in culture strategies such as feeding regimen and cultivation 

mode (i.e., batch, fed-batch and perfusion). In general, these studies have emphasised 

the unpredictable and random genetic heterogeneity within CHO populations that 

causes the appearance of multiple phenotypes within populations, even in short time 

periods after being derived from a single cell (e.g., 20-25 cell generations) (Barnes et 

al. 2006; Kim et al. 1998; Kromenaker and Srienc 1994; Pilbrough et al. 2009). 

Several studies have used measurements of growth rate, productivity, transgene 

copy number and transgene stability in presence and absence of selective pressure to 

evaluate the cellular genetic heterogeneity (Bailey et al. 2012; Barnes et al. 2006; 

Davies et al. 2012; Pilbrough et al. 2009; Yoshikawa et al. 2000). For example, 

Yoshikawa et al. (2000) revealed a correlation between the chromosomal localisation 

of the transgene and the cell line stability in terms of recombinant gene expression, 

showing that in stable cell lines the recombinant gene is inserted near the telomeric 

region whilst in unstable cell lines the gene is inserted in non-telomeric regions. These 

results also showed that the constant and random genomic heterogeneity leads to the 

appearance of non-, low-, mid- and high-producing cells throughout the manufacturing 

processes. Similarly, Davies et al. (2012) and Pilbrough (2009) demonstrated that CHO 

cells extensively vary in terms of productivity, proliferation rate, cell performance and 

cell size with increasing generation number. Additionally, Davies et al. (2012) found a 

significant functional variability within the CHOK1SV population in the ability of a clone 

to create new cell biomass from supplied precursors (up 1.5-fold) 

In general, CHO cells are well known for their inevitable genetic heterogeneity 

(O'Callaghan and James 2008; Pilbrough et al. 2009). Nonetheless, it is important to 

recognise, especially in the context of functional characteristics, that the genetic 

heterogeneity provides a tremendous source of cell-to-cell variability that must be 

harnessed to increase the range of functional phenotypes able to endure industrial 

processes such as resisting stress conditions to survive in synthetic environments and 

reaching high cellular densities and productivities (O'Callaghan and James 2008). 

Therefore, combining the genetic heterogeneity with genetic and non-genetic strategies 

(i.e., cell selection, cell adaptation and cell evolution, genetic and metabolic 

engineering) may increase significantly the chances for generating a vast number of 

sub-clones with desirable phenotypes, but to achieve this goal a large range of 

knowledge that enables us to surpass obstacles and bottlenecks in cell line 

development is still necessary. 
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Several cancer models can increase our understanding of the causes of 

heterogeneity and help us to identify more effective approaches to exploit CHO cell-to-

cell variability. For example, the clonal evolution theory (Figure 1-3) holds that genetic 

variability within a population confers selective growth advantages, allowing individual 

clones to out-compete others by developing a superior functional phenotype and thus 

allowing its expansion (Greaves and Maley 2012; Nowell 1976). In the same context, 

the cancer stem cell model must be evaluated to identify whether the heterogeneity 

arises from genetic or epigenetic factors (Shackleton et al. 2009). Taking into account 

these models, I suggest that the cellular heterogeneity observed in CHO cells 

constantly arises from genetic mechanism such as mutations (i.e., beneficial or 

deleterious) and from extrinsic and intrinsic factors that co-exist in culture (i.e., age and 

stage of culture, cell growth stage, metabolic fluxes, osmolality, temperature) causing 

environmental fluctuations, and the latter triggering epigenetic modification that 

contribute to the acquisition of phenotypic changes (Merlo et al. 2006; Pilbrough et al. 

2009). Therefore, in this research is suggested that minimising culture fluctuations by 

growing the cells under environment with a low environmental stress (e.g., not nutrient 

limitation, low toxic by-product accumulation and low-osmolarity) the (i) clonal variation 

within a population would be reduced and (ii) non-limiting environments would promote 

the selection of cell lines with desirable growth and protein manufacturing 

characteristics. 

 

Figure 1-3 Simplified clonal evolution model. The different coloured circles represent 

cell subpopulations with phenotypic differences accumulated through successive 

mutations. At early stages of cell culture several subpopulations coexist, but throughout 

extended sub-cultivation some subpopulations become extinct, some coexist and others 

become dominant. The expanding subpopulations represent superior phenotypes. 
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1.5 Nutritional requirements in CHO cells  

CHO cells need a complex medium that contains glucose, glutamine, vitamins, 

amino acids, growth factors, hormones, trace metals and salts for their optimal cell 

performance. Consequently, multiple attempts to increase productivity, cell density and 

culture longevity have been achieved through media optimisation and the development 

of synthetic media and supplements which support elevated metabolic requirements, 

enhance the biological processes and satisfy with the increasing nutritional demands of 

bioprocess’ scale-up (van der Valk et al. 2010). Nowadays, there are a large variety of 

media formulations for CHO cells, e.g., CD-CHO™, CD OptiCHO™, CD FortiCHO™, 

Ex-Cell™ CD CHO, ProCHO™, PowerCHO™, BalanCD™ CHO Growth A, Cellvento™ 

CHO-100, HyClone™ SFM4CHO™ and HyClone CDM4CHO™, that have improved 

the overall cellular performance of CHO cell lines (Reinhart et al. 2013). However, to 

attain further improvements in cell culture, these media formulations are usually 

accompanied with additional nutrient supplementations (e.g., ActiCHO™ Feed A and 

B, CHO CD EfficientFeed™ A and B, CHO Feed Bioreactor, BalanCD™ CHO, 

FunctionMAX™ and Zap-CHO™) throughout the culture to prevent depletion of 

important nutritional compounds, especially in the mid- and late-stages of the fed-batch 

cultivation (Prentice et al. 2007; Xing et al. 2009). 

An unbalanced feeding strategy may generate undesirable side effects such as 

increased osmolarity, by-product generation and metabolic deregulations. Therefore, to 

attain improved cell performance the feeding strategies must be optimised with respect 

to cell specific productivity and/or viable cell density (Xing et al. 2009). Although 

significant progresses for developing more efficient feeding strategies have been 

developed, these approaches are still performed on empirical basis, which limits the 

understanding of CHO metabolism and misrepresents their nutritional requirements 

therefore causing suboptimal performances and batch-to-batch inconsistencies 

(Altamirano et al. 2004; Gorfien et al. 2003). 

During recombinant protein production, the cell viability, product quality and 

protein titter are usually affected by the accumulation of cellular by-products such as 

lactate and ammonia. To reduce their toxic effects, several implemented strategies are 

dedicated to maintain a low by-product accumulation by growing cells in controlled 

environments, especially in low glucose and glutamine concentrations (Altamirano et 

al. 2000; Altamirano et al. 2004; Chen et al. 2001; Cruz et al. 1999; Kurano et al. 1990; 

Lao and Toth 1997). These strategies are usually performed in fed-batch and perfusion 

systems, which permit better control of essential nutrient concentrations and reductions 

in by-product accumulation resulting in increments in cell viability, growth performance 
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and product titter (Altamirano et al. 2004; Chen et al. 2001; Gorfien et al. 2003). From 

these culture modes, the fed-batch system has been extensively used in biological 

processes due to its simplicity and flexibility. However, it is important to note that these 

culture strategies only minimise by-product side effects by maintaining low 

concentrations throughout the culture, without eliminating their generation. 

Fed-batch operations consist in adding, either continuously or semi-continuously, 

controlled concentrations of essential nutrients such as glucose and glutamine to avoid 

nutrient depletion, reduce inhibitory growth effects of by-products, maintain an active 

metabolism and meet the nutritional cellular demands for survival, proliferation and 

biomolecule production (Altamirano et al. 2004; Chen et al. 2001; Gorfien et al. 2003; 

Mulukutla et al. 2012) (Figure 1-4). This supplementation is usually performed on basis 

of growth rate, glucose or glutamate consumption, by-product accumulation and 

productivity data, providing essential metabolites which makes possible to control 

growth parameters including specific growth rate and culture growth phases, as well as 

to increase the longevity of the culture and reach high cellular densities, viabilities and 

productivities (Chu and Robinson 2001). 

 

Figure 1-4 Typical growth curves illustrating fed-batch improvements between batch 

and fed-batch culture. The blue and green lines represent the growth parameters for 

batch and fed-batch cultivation through culture, respectively. The solid lines represent VCD, 

dotted lines cellular the cellular viability and the green arrows represent the feeding 

addition. (B) Improvements in the cell growth phases between batch and fed-batch culture. 
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Given the metabolic differences among CHO cell lines and the genetic 

constructs, a fed-batch optimisation must be carried out to obtain optimal growth and 

productivity performance. An inefficient nutrient feeding strategy generates an 

unbalance in the metabolism which may lead to apoptosis or unpredictable cellular 

performance which jeopardises the quality, stability and structure of recombinant 

glycoproteins. In addition, an inefficient feeding strategy results in suboptimal growth 

characteristics (e.g., μ. VCD peak and viability) affecting the Integral of Viable Cell 

Density (IVCD), a routinely indicator of cell line performance used to compare the cell 

performance among different cell lines, and therefore impacting the volumetric 

productivity (Kumar et al. 2009). For that reason, it is not surprising that low 

productivities and detrimental growth performance along fed-batch cultures are usually 

associated to an ineffective feeding strategy (Fan et al. 2014; Ozturk et al. 1992; Yang 

and Butler 2000). 

Most improvements in fed-batch cultures have been obtained by monitoring 

glucose and glutamine consumption and lactate production, mainly because these 

molecules are the principal carbon and nitrogen sources and by-product metabolite 

along a culture, respectively (Altamirano et al. 2000; Altamirano et al. 2004; Gorfien et 

al. 2003; Legmann et al. 2011). Other fed-batch strategies replacing the carbon source 

with slowly-metabolised molecules (e.g., fructose, galactose and glutamate) have been 

implemented. For example, Altamirano et al. (2000) showed that the substitution of 

glucose with galactose and glutamine with glutamate improved the culture longevity, 

reduced lactate and ammonia formation, and reduced the cell culture osmolarity. This 

approach resulted in IVCD improvements between 116 and 150% and suggested that 

the low by-product accumulation and osmolarity were the result of a slow metabolism 

and transport of glutamate and galactose, respectively. This glucose substitution was 

also associated with the negative effect in proliferation rates as galactose is 

metabolised slowly. Finally, these negative effects were compensated with positive 

effects in cell viability, productivity and culture longevity (Altamirano et al. 2000; 

Altamirano et al. 2004). Other approaches showed that the glycolytic metabolism and 

by-product formation can also be controlled by alternating carbon sources such as 

galactose and fructose during the productive phase (Legmann et al. 2011). Through 

combination of these findings, volumetric productivities of up to 10 g L-1, cellular 

densities of 20 x106 cells mL-1 and longer fed-batch culture between 10 and 12 days 

have been reported (Jayapal et al. 2007; Kim et al. 2013), therefore these accumulative 

data strongly suggests that even greater improvements in cell performance can still be 

achieved by improving the feeding strategies and media composition. 
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1.6 CHO cells metabolism and cellular engineering 

Cellular metabolism comprehends a set of biochemical reactions within the cells 

required for the maintenance of life. These biochemical reactions are classified as 

catabolic (molecule breakdown) and anabolic (molecule construction) which together 

produce all the energy and precursors needed for the cells to grow, proliferate, respond 

to stimuli and maintain their structural integrity (Nelson and Cox 2013).These 

biochemical reactions involve highly regulated metabolic pathways such as glycolysis, 

glutaminolysis, tricarboxylic acid (TCA) cycle, electron transport chain (ETC), oxidative 

phosphorylation (OXPHOS), gluconeogenesis, fatty acid β-oxidation, urea cycle and 

pentose phosphate pathway (PPP), which respond according to the energetic demands 

and the physiological status of cells i.e., cell growth, cell division and senescence. 

Put simply, cellular metabolism is the process through which living organisms 

obtain energy in the form of adenosine triphosphate (ATP) through glucose oxidation. 

However, cells are open systems that continually interact with their environment and 

therefore changing their metabolism in response to internal and external stimulus and 

making the cellular metabolism a complex phenomenon (Kim et al. 2006; Papandreou 

et al. 2006). A clear example is observed during recombinant protein manufacturing 

processes, where cells are constantly down- and up-regulating metabolic pathways in 

function of nutrient availability (e.g., carbohydrates, amino acids and lipids), 

environmental stimuli (e.g., temperature, pH, dissolved oxygen, osmolarity, inhibitors, 

pro- and anti-apoptotic proteins) and growth stage (e.g., exponential, stationary and 

death growth phases), or even switching between metabolite production and 

consumption (e.g., lactate metabolism). These coordinated changes throughout 

cultivation involve mechanisms that regulate gene expression that may lead to 

phenotypic variations in terms of cell size, cell protein content and metabolite 

transporter expression (Nelson and Cox 2013). 

The phenotypic and metabolic variation described above needs to be avoided in 

the biotechnology industry to develop robust production methods. The current 

production processes have minimised cellular variation by optimising and standardising 

the culture stages, which should promote a quick proliferation rate at the early stage of 

the cultivation in order to attain a satisfying viable cell density for recombinant protein 

production, then followed by a production phase characterised by slow proliferation 

rates over extended periods of time to maintain and elevated cellular viability and 

biomass accumulation which together increase the product yield (Altamirano et al. 

2000). The conjunction of both metabolic states is not only essential to meet the 

energetic demands and minimise cellular variation, but also crucial to minimise the by-



 Chapter 1 
 

 17 

product production and promote its consumption (Ahn and Antoniewicz 2012; 

Altamirano et al. 2000; Chen et al. 2001; Kurano et al. 1990; Lao and Toth 1997). 

Despite multiple efforts to standardise production processes CHO cells still 

present many metabolic challenges that lead to an unbalanced metabolism, 

characterised by large glucose and glutamine consumption with large by-product 

production (i.e., lactate and ammonia) (Ahn and Antoniewicz 2012; Chen et al. 2001; 

Kurano et al. 1990; Lao and Toth 1997; Ozturk et al. 1992). The undesirable by-product 

accumulation are usually minimised by maintaining low glucose concentrations (Cruz et 

al. 1999; Kurano et al. 1990; Wong et al. 2005; Zhang et al. 2004), utilising alternative 

carbon sources (Altamirano et al. 2000; Altamirano et al. 2004; Gorfien et al. 2003; Kim 

et al. 2013; Legmann et al. 2011; Wilkens and Gerdtzen 2011), optimising the culture 

environment (Kantardjieff et al. 2010; Luo et al. 2012; Rodriguez et al. 2005; Yoon et 

al. 2004) and regulating gene expression (Dorai et al. 2009; Kim et al. 2006; Kim and 

Lee 2007b; Paredes et al. 1999; Zhou et al. 2011). 

Genetic engineering strategies have also been implemented to improve cell 

culture performance particularly by reducing by-product accumulation. Dorai et al. 

(2009) showed that cellular viability, peak of viable cell density and global IVCD were 

improved by over-expressing either individual or multiple anti-apoptotic genes such as 

Bcl-2∆, Bcl-XL, E1B-19K and XIAP∆. This strategy allowed significant improvements in 

product titter (up to 180%) and reductions in lactate production (up to 80%), and also 

demonstrated that over-expressing anti-apoptotic genes switched the lactate 

metabolism from production to consumption. Similarly, Kim and Lee (2007b) found that 

down-regulating the lactate dehydrogenase A (LDH-A) via siRNA reduced lactate 

production (up to 79%) and increased glucose uptake (up to 87%), however this 

strategy did not improve the specific productivity. To improve the productivity, Zhou et 

al. (2011) down-regulated LDH-A and pyruvate dehydrogenase kinase (PDKs) in CHO 

cells by siRNA resulting in notable increments in productivity and antibody titter (up to 

75% and 68%, respectively) without negative effects in cell growth or product quality. 

The PDK down-regulation reduced its inhibitory effects on pyruvate dehydrogenase 

(PDH) therefore increasing the intracellular ATP content and reducing lactate 

accumulation (up to 90%). A similar strategy was implemented in CHO cells by 

Paredes et al. (1999), reducing the ammonia accumulation by over-expressing the 

glutamine synthetase (GS) gene and reducing the lactate accumulation by down-

regulating the glucose transporter (GLUT1) and α-enolase via antisense RNA 

technique. This strategy also resulted in improved cell culture longevity, slow glucose 

consumption and low glutaminolytic and glycolytic metabolism. 
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1.6.1 Glucose metabolism 

Glucose is the primary source of energy and a key molecule for living organisms. 

To meet the energy requirements, glucose is transported across the cell membrane by 

glucose transporters (GLUTs), followed by its oxidation into pyruvate through glycolysis 

and then either oxidised into CO2 through the TCA cycle or reduced to lactic acid by the 

lactate dehydrogenase enzyme (LDH). These metabolic pathways generate ATP and 

energetic intermediates such as NADH (reduced nicotinamide adenine dinucleotide) 

and FADH2 (reduced flavin adenine dinucleotide) that fuel the metabolism. Additionally, 

glucose can be metabolised through the PPP for nucleotide and aromatic amino acid 

biosynthesis and to obtain other indispensable energetic intermediates for fatty acid 

biosynthesis such as NADPH (reduced nicotinamide adenine dinucleotide phosphate) 

(Koopman et al. 2013), (Figure 1-5). 

Glycolysis is considered as the main metabolic pathway for cells because it is the 

entry point for the breakdown of glucose and other carbohydrates, which leads to ATP 

and other intermediates for macromolecule biosynthesis. Glycolysis is highly regulated 

at different levels, starting with the glucose uptake across the cellular membrane and 

until its interconnection with other metabolic pathways (Amoedo et al. 2013). The 

glycolytic flux yields two ATP molecules that are used for biosynthesis, two molecules 

of NADH that can be oxidised in the mitochondria or during lactate formation, and two 

pyruvic acid molecules that can be oxidised to CO2 via the TCA cycle or reduced to 

lactate (Adekola et al. 2012; Koopman et al. 2013) (Figure 1-5). 

In aerobic conditions, pyruvic acid is subsequently transported to the 

mitochondrial matrix and converted to acetyl coenzyme A (acetyl-CoA) by the PDH, 

yielding one molecule of CO2, NADH and acetyl-CoA, which then feed the TCA cycle to 

complete the carbon oxidation. During the TCA cycle, acetyl-CoA is oxidised into two 

molecules of CO2, three molecules of NADH, one molecule of FADH2 and one 

molecule of GTP. Then, the NADH and FADH2 generated are fed into the ETC to 

create an electrochemical proton gradient across the mitochondrial membrane that 

drives ATP synthesis through the conversion of ADP to ATP by the ATP synthase. The 

complete glucose oxidation under aerobic conditions yields up to 36 ATP molecules 

per glucose molecule (Gatenby and Gillies 2004; Koopman et al. 2013). 
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Figure 1-5 Typical mammalian cell metabolism for energy production. Firstly, glucose 

enters the cells through glucose transporters (GLUTs) and is oxidised through the glycolytic 

pathway (blue filled box) into two pyruvate (PYR), two ATP and two NADH molecules. PYR 

is then shuttled into the mitochondria and immediately converted to acetyl-CoA with the 

release of NADH and CO2. The acetyl-CoA is oxidised through the TCA cycle (green filled 

box) to form 2 CO2, 1 FADH2, 3 NADH and 1 GTP molecules. Later, the electron carrier 

molecules (NADH and FADH2) generated in glycolysis and the TCA cycle transfer electrons 

to the final electron acceptor (O2) via the ETC. Finally, the proton gradient generated 

across the mitochondrial membrane leads to the conversion of ADP to ATP via OXPHOS. 

Alternately, PYR can be converted to lactate and other carbon sources (e.g., such as 

fructose, galactose, glutamine, fatty acids and other amino acids) that feed either glycolysis 

or the TCA cycle. The diagram also shows alternative entry points for different 

carbohydrates and amino acids along the metabolic pathways. Enzymes: pyruvate kinase; 

PYK, alanine transferase; AlaTA, lactate dehydrogenase; LDH, phosphoenolpyruvate 

carboxylase; PEPC, phosphoenolpyruvate carboxykinase; PEPCK, malic enzyme; ME, 

malate dehydrogenase; MDH1, pyruvate carboxylase; PYC, pyruvate dehydrogenase; 

PDH, glutamine synthetase; GS, glutaminase ; GLS. 



 Chapter 1 
 

 20 

In hypoxic conditions, the pyruvic acid can be reduced to lactic acid by the LDH 

to restore the levels of NAD+/NADH and maintain the ATP production. Therefore, 

under these conditions glycolysis becomes the main source of ATP, giving a fast 

source of energy, but an inefficient metabolism with only two ATP molecules per 

glucose molecule (Gatenby and Gillies 2004; Kim et al. 2006; Papandreou et al. 2006; 

Vander Heiden et al. 2009). 

The incomplete glucose oxidation described above is a common defect observed 

in cancer cells in which they prefer to use the glycolytic pathway as the main source of 

energy that fuels the cell metabolism even under aerobic conditions (Gatenby and 

Gillies 2004; Warburg 1956), suggesting that cells have undergone important metabolic 

and physiologic changes that cause down-regulation of pyruvic acid flux from glycolysis 

to the TCA cycle (Diers et al. 2012) and potentially denoting mitochondrial damage. 

The bond between pyruvic acid and mitochondrial metabolism involves a critical 

enzymatic step catalysed by the multi-enzyme pyruvate dehydrogenase complex 

(PDC), which consists of three enzymes: pyruvate dehydrogenase (PDH, E1 domain), 

dihydrolipoyl transacetylase (E2 domain) and dihydrolipoyl dehydrogenase (E3 

domain). The enzymatic complex converts pyruvate to acetyl-CoA, which enters the 

TCA cycle. PDC has been shown to be highly regulated by PDK activity through the 

phosphorylation of E1 domains of the PDC, resulting in PDC inhibition and subsequent 

reduction in the transport of pyruvate to the TCA cycle (Kim et al. 2006; Young 2013; 

Zhou et al. 2011). 

Several studies in cancer and CHO cells have demonstrated that deficiency or 

inhibition of PDH results in an abnormal glucose metabolism, which is characterised by 

high glycolytic fluxes and high lactate accumulation (Kim et al. 2006; Papandreou et al. 

2006; Zhou et al. 2011). Consequently, several strategies have been implemented to 

overcome this features. For example, Zhou et al. (2011) improved the shuttle of 

pyruvate into the TCA cycle by down-regulating the PDK activity via siRNA, observing 

that PDK-deficient cell lines significantly reduced the lactate accumulation (up to 90%) 

and efficiently coupled glycolysis and the TCA cycle. 

Studies have demonstrated that hypoxic conditions also inhibit the PDH activity 

by activating the hypoxia-inducible factor 1 (HIF-1). Kim et al. (2006) found that HIF-1 

increases the glycolytic flux and promotes lactate production by over-expressing 

glycolytic genes and up-regulating PDK to suppresses the TCA cycle. Additionally, they 

revealed that HIF-1α rescued cells from hypoxia-induced apoptosis by promoting the 

pyruvate transport from the mitochondria to the cytosol to be subsequently reduced to 

lactate in an effort to regenerate NAD+/NADH levels and attenuate reactive oxygen 
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species (ROS) production. Similarly, Papandreou et al. (2006) showed that PDK can 

be regulated by inhibiting HIF-1, observing that HIF-1-deficient cancer cells exhibited 

higher rates of mitochondrial respiration and lower PDK activity than HIF-1 cancer 

cells, thereby they suggest that PDK can be down-regulated even under hypoxic 

conditions by inhibiting HIF-1. Together, Kim et al. (2006) and Papandreou et al. (2006) 

concluded that under hypoxic conditions HIF-1 (i) stimulates the expression of glucose 

transporters and glycolytic enzymes in an effort to meet the energetic requirements via 

glycolysis, (ii) inhibits PDH activity by up-regulating PDK, which blocks the pyruvate 

flux to the TCA cycle to avoid the generation of ROS and (iii) promotes the conversion 

of pyruvate to lactate by overexpressing LDH to restore the levels of NAD+/NADH and 

continue with the energy production via glycolysis.  

In addition, cancer studies have proven that an elevated glucose contributes to 

tumour progression. This research found that this behaviour is promoted by the over-

expression of glucose transporters (i.e., GLUT1, GLUT4 and GLUT9) and glycolytic 

enzymes (Adekola et al. 2012; Macheda et al. 2005). Consequently, some strategies 

have tried to reduce this metabolism with enough success, for example successfully 

reduction in sugar uptake has been achieved by down-regulating the GLUT1 (Paredes 

et al. 1999) or GLUT5 (Wlaschin and Hu 2007) transporter. 

 

1.6.2  Lactate metabolism 

Lactate is derived from pyruvate reduction by LDH, a homo- or hetero-tetramer 

enzyme consisting of A and B subunits encoded by the LDHa and LDHb genes, 

respectively. In CHO cells LDH exists as LDH-A and LDH-B tetramer, being LDH-A the 

most important isoenzyme because it catalyses the reaction under anaerobic 

conditions (Jeong et al. 2001) and maintains the NAD+ levels for glycolytic ATP 

production during aerobic glycolysis and under hypoxic conditions (Kim and Lee 2007b; 

Zhou et al. 2011). 

Lactate is considered an undesirable by-product during cell culture resulted from 

the truncated metabolism of glucose and other carbohydrates (Altamirano et al. 2004; 

Chen et al. 2001; Legmann et al. 2011; Ozturk et al. 1992; Paredes et al. 1999; Zhang 

et al. 2004). However, lactate production is also used as an important cellular 

metabolic strategy to restore the levels of NAD+/NADH to maintain the ATP production 

which is essential to survive and proliferate under hypoxic conditions by maintain an 

active glycolytic metabolism (Kim et al. 2006; Papandreou et al. 2006; Zhou et al. 

2011). Therefore, lactate build-up is a critical consideration that must be controlled 
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during recombinant protein manufacturing because its accumulation causes cell culture 

acidification which alters protein structures and threatens the cell metabolism resulting 

in significant reductions of the overall cell culture performance and recombinant protein 

production (Ahn and Antoniewicz 2012; Lao and Toth 1997). For example, Ozturk et al. 

(1992) reported that lactate levels above 20 mM inhibit the cell growth and antibody 

production CHO cells. The culture acidification at medium and large production scales 

is neutralised by alkali addition, resulting in an increased osmolarity that declines 

productivity and cell growth performance (Li et al. 2010; Luo et al. 2012; Xing et al. 

2009; Zhou et al. 2011). Thereby, slow rates of lactate production levels and a switch 

from lactate production to consumption are desirable characteristics in CHO cell lines 

(Luo et al. 2012). 

Different strategies have been proposed to decline lactate formation in order to 

improve cell growth and productivity, for example down-regulating the LDH (Chen et al. 

2001; Jeong et al. 2001; Kim and Lee 2007b), down-regulating PDK (Kim et al. 2006; 

Zhou et al. 2011), manipulating sugar transporters (Paredes et al. 1999; Wilkens and 

Gerdtzen 2011; Wlaschin and Hu 2007), optimising the culture nutrient feeding strategy 

(Altamirano et al. 2004; Cruz et al. 1999; Rodriguez et al. 2005; Wilkens and Gerdtzen 

2011; Zhang and Robinson 2005) and optimising the culture environment (Kim and Lee 

2007a; Yoon et al. 2004) have proved efficacy. 

To reduce the negative effects of high LDH activity, Kim and Lee (2007b) down-

regulated LDH-A, resulting in notable decreases in its activity and in the glucose uptake 

(up to 89% and 87%, respectively). However, this strategy did not improve the specific 

productivity, growth rate and the interconnection between glycolysis and the TCA cycle. 

This low cell performance was related to the lower LDH-A activities, which limited the 

NAD+ regeneration for ATP production via glycolysis and consequently limited the 

energetic capacity of the cells. Similar studies were performed by Zhou et al. (2011), 

but to improve the conversion of pyruvate to acetyl-CoA they also down-regulated the 

PDK activity to allow the pyruvate progression to the TCA cycle. The down-regulation 

of PDK and LDH activities resulted in a notable decrease in glucose uptake and lactate 

production with important improvements in productivity. These studies also showed 

that reductions in PDK expression levels improve the shuttle of pyruvate into the TCA 

cycle by maintaining an active PDC activity throughout the culture and stimulating the 

metabolic switch from lactate production to consumption. 

Diverse genetic engineering strategies have also been implemented in CHO cells 

with optimistic results. Wilkens and Gerdtzen (2011) transfected CHO cells with both 

the fructose transporter gene (Slc2a5) and the pyruvate carboxylase gene (PYC), and 
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cultivated the cells in presence of both glucose and fructose in an effort to reduce the 

lactate production and increase the carbon supply to the TCA cycle. Their findings 

showed that over-expressing the fructose transporter (GLUT5) and PYC enzyme 

notably improved the specific growth rate (between 1.6 and 2.25 fold change) and 

enhanced cell culture longevity. These findings were accompanied by important 

reductions in lactate production when cells were grown under low glucose 

concentration and fructose supplementation. Additionally, transfected cells also 

exhibited an improved glucose metabolism that was characterised by slow glucose 

uptake and high pyruvic acid fluxes into the TCA cycle. Similarly, Paredes et al. (1999) 

improved the glycolytic metabolism by down-regulating the glucose transporter 

(GLUT1) and the α-enolase enzyme, finding that targeting GLUT1 and α-enolase 

significantly reduced the glucose uptake, decreased lactate accumulation and 

extended the culture longevity. 

Although genetic strategies have seen remarkable improvements in lactate 

metabolism control, it is known that genetic modifications may increase even more the 

genetic instability within cells, affecting the cell culture performance and product quality 

during long-term production and making even more complex the production processes 

for manufacturing recombinant proteins at the industrial scale. Consequently, several 

non-genetic strategies designed on empirical basis and previous findings have been 

implemented to reduce these problems. For example, maintaining low concentrations 

of glucose throughout cultivation has shown enormous improvements in cell growth 

performance and product quality and quantity with notable reductions in lactate 

accumulation (Ahn and Antoniewicz 2012; Altamirano et al. 2000; Altamirano et al. 

2004; Lao and Toth 1997; Zhang et al. 2004). In the same context, the utilisation of 

alternative carbon sources such as galactose and fructose have also seen satisfactory 

results in the overall cell culture performance (Altamirano et al. 2000; Altamirano et al. 

2004; Gorfien et al. 2003; Legmann et al. 2011; Wilkens and Gerdtzen 2011). 

 

1.6.3 Glutamine metabolism 

Glutamine has a central importance in the cell metabolism, being extensively 

used as a precursor for protein, amino sugar, cofactor, purine, pyrimidine and ATP 

synthesis (Amoedo et al. 2013; Barnes et al. 2000; Pochini et al. 2014). Additionally, 

glutamine is a key metabolite that maintains the cell functionality, including important 

biological processes such as gene expression regulation, gluconeogenesis, redox 

potential maintenance (via GSH/GSSG ratio), pH homeostasis, anaplerotic carbon 
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supply for the TCA cycle, NH3 release and NADPH generation for the maintenance of 

the mitochondrial membrane potential and integrity (Barnes et al. 2000; Pochini et al. 

2014; Wise and Thompson 2010). 

 In mammalian cells, glutamine is a non-essential amino acid synthesised 

endogenously from glutamate and ammonia by the GS, then transported into the 

mitochondria and coupled to the energy flux. However, in cancer cells, including CHO 

cells, the biosynthetic glutamine machinery results insufficient to meet the proliferation 

demands, making necessary the integration of exogenous glutamine to survive. To 

address this dependence, cancer cells must efficiently assimilate exogenous glutamine 

using several membrane transporter families, which include system AlaSerCys 

Transporter 2 (ASCT2), L-type amino acid transporters (LAT1, LAT2), system N/A 

amino acid transporters (SNAT1, SNAT2, SNAT3, SNAT5, SNAT7, B0AT1) and the 

mitochondrial glutamine transporter (GMT) (Bode 2001; Pochini et al. 2014). From 

these, the over-expression of ASCT2 and LAT1 has been associated with tumour 

growth and progression (Kyriakopoulos et al. 2013; McGivan and Bungard 2007). 

Different studies have identified the glutamine addiction of cancer cells as 

necessary for maintaining the functionality of bidirectional mitochondrial transporters 

such as SLC7A5 and SLC3A2, which exchange glutamine for other amino acids to 

increase the intracellular amino acid concentration. Amino acid accumulation, but in 

special of leucine, induces the TOR kinase (mTORC1) activity, an essential pathway 

that regulates cell growth, cell proliferation, cell size, gene transcription and protein 

synthesis and degradation (Fumarola et al. 2005; Pochini et al. 2014; Wise and 

Thompson 2010). In addition, glutamine breakdown provides important anaplerotic 

carbon sources for the TCA cycle to maintain ATP production and also is used to 

synthesise amino acids, lipids, nucleic acids and cofactors (Amoedo et al. 2013). In 

order to maintain an elevated glutaminolytic metabolism with high proliferations, cancer 

cells up-regulate the glutaminase (GLS) enzyme, activate RAS and Myc oncogenes 

and inactivate the P53 function (Amoedo et al. 2013; Vander Heiden et al. 2009). 

Although an elevated glutamine catabolism is necessary for cancer cells, studies 

in CHO cells have demonstrated that glutamine addiction results in undesirable 

ammonia accumulation in the culture environment during recombinant protein 

manufacturing processes, which notably decreases cell growth, cell metabolism and 

glycoprotein quality (Altamirano et al. 2000; Altamirano et al. 2004; Gawlitzek et al. 

1998; Kim et al. 2013; Lao and Toth 1997; Ozturk et al. 1992; Wong et al. 2005). 

Glutaminolysis involves two enzymatic reactions, the first catalysed by GLS which 

converts glutamine to ammonia and glutamate, and the second catalysed by glutamate 
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dehydrogenase (GDH) which converts glutamate to ammonia and α-ketoglutarate, the 

latter is immediately incorporated into the TCA cycle to produce energy for cell growth. 

The intensive glutaminolytic metabolism observed in cancer cells is usually resulted 

from GLS overexpression, as a consequence several anti-cancer strategies have been 

focused in inhibiting the GLS activity to control cancer metabolism (Zhao et al. 2013). 

Ammonia accumulation is critical and must be controlled in biological production 

because it indirectly triggers cell acidification, which alters the internal cellular 

structures and disrupts the electrochemical gradient (Cruz et al. 2000), having 

detrimental effect on cell growth. Ozturk et al. (1992) reported a 50% decline in viable 

cell density at levels between 2 to 10 mM in CHO cells studies. However, other studies 

reported that a cell line specific sensibility to ammonia sensibility, for example Lao et al. 

(1997) did not observe a decline on cell growth or productivity when up to 10 mM 

ammonia was added to CHO cultures. The unwanted detrimental effects caused by 

ammonia have been reduced by implementing a large number of strategies. For 

example, notable reductions in ammonia build-up have been achieved by controlling 

glutamine availability (Altamirano et al. 2004; Cruz et al. 1999; Kim et al. 2013; Kurano 

et al. 1990; Lee et al. 2003; Wong et al. 2005) and by substituting glutamine for 

asparagine (Christie and Butler 1999; Henry and Durocher 2011), pyruvate (Genzel et 

al. 2005; Kim et al. 2013), wheat gluten hydrolysate (Kim et al. 2013), glutamate 

(Altamirano et al. 2004; Hong et al. 2010; Janke et al. 2011), glutamine containing 

dipeptides (Kim et al. 2013), threonine, proline and glycine (Chen and Harcum 2005). 

In the same context, several genetic engineering strategies have been implemented to 

develop more robust CHO cell lines with reduced ammonia levels. For example, down-

regulating the LDH-A activity (Chen et al. 2001; Kim and Lee 2007b; Zhou et al. 2011), 

expressing urea cycle enzymes (Chung et al. 2003; Park et al. 2000), over-expressing 

pyruvate carboxylase (Bollati Fogolin et al. 2004; Fann et al. 2000; Henry and Durocher 

2011; Kim and Lee 2007c) and using the GS-gene expression system (Barnes et al. 

2000; Barnes et al. 2001; Cockett et al. 1990). 

Metabolic analyses have also been widely performed to characterise cultures 

with elevated glutaminolytic metabolism. Kyriakopoulos et al. (2013) analysed the 

global amino acid metabolism of CHO cells, especially by monitoring the regulation of 

40 amino acid transporters during the exponential, stationary and dead cell growth 

phases in a batch culture of non-producing and producing CHO cells. These studies 

revealed notable differences in the induction of amino acid transporters along the 

culture, with significant increases during the stationary phase when amino acid 

concentrations decline. Similarly, the protein-producing cell lines up-regulated the 
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majority of amino acid transporters throughout the culture, probably to increase the 

amino acid reserve for recombinant protein assembly. Interestingly, leucine and 

branched-chain amino acid transporters (SLC43A2) and glutamate and aspartate 

transporter (SLC1A2) were significantly up-regulated, indicating that these transporters 

may be linked to recombinant protein production. These studies also revealed that the 

five amino acid transporters associated with glutathione (i.e., slc1a4, slc6a9, slc1a2, 

slc7a11 and slc3a2-slc7a11) were up-regulated during the stationary phase to increase 

the intracellular amino acid uptake. By comparing the protein-producing and non-

producing cell lines, significant metabolic differences were observed, for example, the 

protein-producing cell lines were more metabolically efficient, exhibiting higher 

proliferation rates and lower lactate and glycine production rates than the null cell lines. 

On the other hand, the consumption rate of methionine, isoleucine, leucine, 

phenylalanine, tryptophan and lysine varied significantly between cell lines, being much 

higher in the null cell line. With respect to glutamine production, the protein-producing 

cell lines exhibited higher production. 

Finally, one of the most important approaches to reduce ammonia accumulation 

during recombinant protein production has been attained by implementing the GS-gene 

expression system developed by Lonza-Celltech. This platform involves the expression 

of exogenous GS enzyme to allow cell growth in glutamine-free media with reduced 

ammonia build-up in culture. This system also allows the selection of multi-copy 

transfected clones and the recombinant-gene amplification through L-methionine 

sulphoximine (MSX) supplementation, an inhibitor of GS activity (Barnes et al. 2000). 

Although the GS-systems have been successfully implemented in CHO cell lines with 

notable improvements in cell culture performance (e.g., IVCD, μ, VCD), their efficiency 

is markedly reduced due to the endogenous GS activity in CHO cells. For overcoming 

this limitation a GS-knockout CHO cell line was developed (CHO-K1SV, Lonza) 

(Barnes et al. 2000). 

 

1.6.4 Warburg effect 

In normal conditions glucose is metabolised through glycolysis and the TCA cycle 

for energy generation through the ETC and OXPHOS. However, cancer cells exhibit a 

different glucose metabolism to fuel cellular processes that is not completely coupled to 

the TCA cycle and OXPHOS, being more dependent on aerobic glycolysis and 

glutaminolysis (Vander Heiden et al. 2009; Zhao et al. 2013). The Warburg effect or 

“aerobic glycolysis” is a metabolic change characterised by the preference of glucose 



 Chapter 1 
 

 27 

fermentation over its oxidation through OXPHOS even when oxygen is abundant 

(Amoedo et al. 2013). This feature is not exclusive of cancer cells and was first 

described in the 1920’s by Otto Warburg. His studies compared the rate of lactate 

production and oxygen consumption in normal and cancerous tissue, finding that both 

produced similar amounts of ATP, however, cancer cells produced higher amounts of 

lactic acid whilst normal cells showed higher respiration rates. These observations 

demonstrated that cancer cells prefer the lactate pathway over OXPHOS as the main 

energy source (Warburg 1956). 

Studies have suggested that cancer cells embrace aerobic glycolysis as the main 

energy source to rapidly meet the increasing energetic and metabolite requirements to 

proliferate. An intensive cell biomass production requires a fast metabolism able to 

increase the cellular protein content, replicate the genome and synthesise 

biomolecules in short time periods (Garber 2006; Gatenby and Gillies 2004; Kim et al. 

2006; Papandreou et al. 2006; Zhao et al. 2013). Cancer cells also require over-

express key enzymes (i.e., hexokinase (HK), phospho-fructo-kinase (PFK), PYK-

isoform M and LDHA), activate signalling pathways (i.e., phosphoinositide 3-kinase 

(PI3K), myc and AKT) and up-regulation glucose transporters (GLUT 1, GLUT 3 and 

GLUT 4) (Vander Heiden et al. 2009; Zhao et al. 2013). Evidences also suggest that 

aerobic glycolysis provides growth advantages under hypoxic environments (Gatenby 

and Gillies 2004). Likewise, an environmental acidification, resulted from lactic acid 

accumulation, offers additional growth advantages because cancer cells exhibit 

mechanisms that protect them from acidified environments (Gatenby and Gillies 2004; 

Kim et al. 2009; Webb et al. 2011), and lastly acidified environments enhance cancer 

progression by encouraging protease release, which decreases cell adhesion and thus 

favours metastasis (Stock and Schwab 2009; Webb et al. 2011). 

Despite the low energetic efficiency of aerobic glycolysis, CHO cells can meet 

their intensive energetic request because the ATP production via glycolysis is 100x 

times faster than via OXPHOS (Bartrons and Caro 2007), and because aerobic 

glycolysis supplies enough metabolites for nucleic acid and lipid synthesis (Vander 

Heiden et al. 2009; Zhao et al. 2013). However, the large lactate quantities generated 

from this metabolism are detrimental for CHO cell performance. By today, few 

approaches to modulate the Warburg effect have been implemented in CHO cells, but 

cancer studies strongly indicate that a regulation of the Warburg effect may lead to 

efficient cell culture processes (Bartrons and Caro 2007; Kim and Lee 2007b; Nijsten 

and van Dam 2009; Papandreou et al. 2006), therefore the Warburg effect is an 

inherent characteristic of CHO cells that must be considered in cell line development. 
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1.7 Mitochondria: (dys) functional mitochondrial respiration 

The mitochondrion is a specialised organelle that performs indispensable 

metabolic and energetic processes for maintaining an optimal cellular performance. 

Considered as the cellular horsepower, the mitochondria produce the majority of 

energy and metabolic intermediates, and regulate key cellular phases such as 

apoptosis, cell division, cell growth, homeostasis, gene expression and ROS 

production (Bereiter-Hahn et al. 2008; Cadenas and Davies 2000). In addition, 

mitochondria possess their own genome (mDNA) and perform specific and 

independent biological processes such as mitochondrial fusion and fission, mDNA 

replication and transcription, and mitochondrial protein synthesis (Bereiter-Hahn et al. 

2008; Detmer and Chan 2007). As a result, these complex organelles require a strict 

regulation and coordination to support and interconnect all biochemical processes 

(Nicholls and Ferguson 2013).  

 

Figure 1-6 Mitochondrial structure. 

 

 

Mitochondria are dynamic structures consisting of outer and inner double 

phospholipid membranes, intermembrane space (IMS) and matrix, which together 

maintain their functionality, integrity and communication with the cytosol (Detmer and 

Chan 2007; Gabriel et al. 2007; Vogtle et al. 2012) (Figure 1-6). The outer 

mitochondrial membrane (OMM) controls the metabolite and ion flux between the 

cytosol and the IMS, defines the boundaries and interactions with the cytosol, 

maintains the mitochondrial homeostasis and controls the permeability of small and 

large molecules (up to 5000 daltons) (Vander Heiden et al. 2000). The OMM also 
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releases pro-apoptotic proteins such as cytochrome C, smac/diablo, HTRA2/omi, 

apoptosis-inducing factor and endonuclease G through Bcl regulators when its integrity 

is compromised (Susin et al. 1999; Vander Heiden et al. 2000). The inner mitochondrial 

membrane (IMM) is more impermeable to the transport of large molecules and ions to 

maintain a proton gradient across membrane, which later is used for ATP synthesis via 

ATP synthase. The IMM contains all the essential enzymes involved in mitochondrial 

respiration and ATP production, as well as the proteins for large-biomolecule exchange 

between the matrix and the IMS (Bereiter-Hahn et al. 2008)(Bereiter-Hahn et al. 

2008)(Bereiter-Hahn et al. 2008)(Bereiter-Hahn et al. 2008). The mitochondrial matrix 

contains mDNA, ribosomes and enzymes involved in the TCA cycle. The IMS is 

involved in the modification and transport of metabolites and proteins from the cytosol 

for the TCA cycle, ETC and OXPHOS (Gabriel et al. 2007; Vogtle et al. 2012), as well 

as involved in the transit of pro-apoptotic molecules and maintenance of protein redox 

homeostasis by preventing their oxidation (Vogtle et al. 2012). 

For the above mentioned reasons, mitochondria are crucial and their failure can 

result in apoptosis or pathologies such as cancer and ageing (Koopman et al. 2013; 

Valko et al. 2007). Consequently, mitochondria evolved a complex, but efficient 

regulatory metabolism which strictly coordinates a large number of metabolic and 

signalling pathways and restricts molecule exchange across the membrane to avoid 

catastrophic consequences.  

 

1.7.1 Mitochondrial respiration and mitochondrial membrane potential 

Mitochondrial respiration represents the more efficient cellular metabolism in 

terms of ATP production, coupling the TCA cycle, the ETC and the OXPHOS 

pathways. This aerobic process comprises a set of biochemical reactions performed in 

the IMM that transfer electrons from NADH and FADH2 to O2, the final acceptor, 

through a series of enzymatic complexes (complex I, II, III, and IV of the ETC) and 

electron carriers (ubiquinone/coenzyme Q and cytochrome c) yielding one water 

molecule and pumping protons to the IMS (Nicholls and Ferguson 2013). This 

electrochemical proton gradient across the IMM, also known as mitochondrial 

membrane potential (MMP), is used by OXPHOS to generate ATP through the F0F1 

ATP synthase complex. In addition, the MMP generated by the ETC is essential for 

metabolite and ion exchange across the IMM and for maintaining the mitochondrial 

integrity and functionality (Koopman et al. 2013). 
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1.7.2 Reactive oxygen species and oxidative stress 

Reactive oxygen species are molecules containing oxygen with elevated reactive 

chemical properties. Among these species, the superoxide anion radical (O2
−), 

hydrogen peroxide (H2O2) and hydroxyl free radical (·OH) have a notable biological 

importance (Klaunig et al. 2010; Pelicano et al. 2004). ROS production is a normal 

cellular process during mitochondrial respiration, it is estimated that between 4-5% of 

the oxygen consumed is converted to ROS, being the O2
− the principal molecule (Kim 

et al. 2009; Klaunig and Kamendulis 2004). The O2
− specie is the result of an 

inadequate mitochondrial respiration, mainly from the electron leakage that occurs in 

the ETC complex I and III that directly reduces O2 to O2
− (Cadenas and Davies 2000; 

Jastroch et al. 2010; Maynard et al. 2009). This ROS molecule is then converted to 

H2O2 by superoxide dismutase (SOD) and it can further react to be converted into ·HO 

(Cadenas and Davies 2000; Klaunig and Kamendulis 2004). 

ROS can also be generated endogenously by peroxisomes (Klaunig and 

Kamendulis 2004) and by the α-ketoglutarate dehydrogenase (αKGDH) (Koopman et 

al. 2013), or exogenously by ionising radiation (IR), toxins and chemicals (Maynard et 

al. 2009; Pelicano et al. 2004). Therefore, resulting in a constant threats that must be 

eliminated from the cells in form of H2O through antioxidant enzymes such as catalase, 

glutathione reductase (GR), glutathione peroxidase (GPX) and thioredoxin reductase 

(TRXR) (Koopman et al. 2013) and by non-enzymatic molecules such as catechins, 

glutathione (GSH), vitamin E and vitamin C (Cadenas and Davies 2000; Klaunig and 

Kamendulis 2004; Pelicano et al. 2004) to maintain a normal cellular metabolism. 

 

1.8 Oxidative stress 

Oxidative stress is the unbalance between the ROS production and its 

elimination, being a common pathology widely observed in cancer cells (Klaunig and 

Kamendulis 2004). This pathology arises from deficiencies and inactivation of 

antioxidant enzymes, as well as from oncogenic signals, mitochondrial damage and an 

elevated cellular metabolism (Benhar et al. 2001; Pelicano et al. 2004). These 

dysfunctions results in significant increments in ROS levels which cause cellular 

damage and promote more ROS levels within the cells which consequently will 

damage the genomic DNA, therefore ROS usually results in constant alterations in the 

DNA sequence and structure (Ames 1983; Bereiter-Hahn et al. 2008; Jackson and 

Loeb 2001; Klaunig and Kamendulis 2004) that lead to mutations with consequences 

such as apoptosis, cellular heterogeneity, drug sensitivity, gene deregulation, genetic 
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instability, metabolic dysfunction, necrosis, protein malfunction, uncontrolled cellular 

proliferation and carcinogenesis (Bereiter-Hahn et al. 2008; Cadenas and Davies 2000; 

Jackson and Loeb 2001; Klaunig and Kamendulis 2004; Klaunig et al. 2010; Pelicano 

et al. 2004). 

Increased ROS levels possess other detrimental effects as they can affect the 

protein integrity by catalysing amino acid chain oxidation and peptide cleavage 

(Cadenas and Davies 2000; Pelicano et al. 2004) which jeopardise the membrane 

integrity by increasing lipid peroxidation (Klaunig and Kamendulis 2004; Pelicano et al. 

2004) and mitochondrial fragmentation (Bereiter-Hahn et al. 2008) and (Bereiter-Hahn 

et al. 2008)(Bereiter-Hahn et al. 2008)(Bereiter-Hahn et al. 2008)endangering the 

energy supply through the inactivation of mitochondrial enzymes involved in the TCA 

cycle, OXPHOS and the ETC (Bereiter-Hahn et al. 2008; Cadenas and Davies 2000; 

Klaunig and Kamendulis 2004) and compromising the mitochondrion function by 

generating defects in mDNA which lead to mutations and malfunctions in the translated 

mitochondrial proteins (Beckman and Ames 1999; Bereiter-Hahn et al. 2008). 

 

1.8.1 Oxidative DNA damage 

The genome is continuously subject to alterations in its chemistry and sequence 

as a result of a large variety of signals and stressors (Ames 1983; Bandyopadhyay et 

al. 2010; Friedberg 2003; Loeb 1989; Schmitt et al. 2010). These cellular stressors can 

be generated either endogenously or exogenously. In the first group, ROS and the 

alkylation, depurination and deamination of cytidine are important source of oxidative 

DNA damage (Ames 1983; De Bont and van Larebeke 2004) whereas in the second 

group DNA-damaging agents such as chemicals, viruses and ionisation radiations 

(Loeb 1989; Maynard et al. 2009; Miller 1978; Paques and Haber 1999), as well as 

environmental factors such as high temperature and pH (Friedberg et al. 2006) are 

included. In addition, this DNA modifications can also result from errors during 

homologous recombination, DNA replication and DNA repair (Friedberg 2006). 

DNA damage is unavoidable and it is estimated that more than 20000 DNA 

damaging events occur daily in each cell, being the endogenous agents responsible for 

the majority (Beckman and Ames 1997; De Bont and van Larebeke 2004; Schmitt et al. 

2010). This threat leads to multiple DNA lesions, such as single-strand breaks (SSTs), 

double-strand breaks (DSBs), mismatches, base or sugar damage and DNA-DNA and 

DNA-protein crosslinks (Friedberg 2006; Helleday et al. 2007; Maynard et al. 2009). To 

protect themselves from these damages, cells evolved DNA repair mechanisms such 



 Chapter 1 
 

 32 

as base excision repair (BER), nucleotide excision repair (NER), mismatch repair 

(MMR), homologous recombination (HR) and non-homologous end joining (NHEJ) for 

recognising and repairing specific DNA damage (Lange et al. 2011; Maynard et al. 

2009; Zhou and Elledge 2000). Otherwise, accumulated DNA damage may results in 

apoptosis or irreversible mutations leading to carcinogenesis and genetic instability 

(Helleday et al. 2007; Jackson and Loeb 2001; Maynard et al. 2009; Miller 1978; Singer 

and Kusmierek 1982). The fidelity of DNA repair mechanisms is extremely high, 

ensuring low mutation rates on the order of 10-10 mutations per nucleotide per cell per 

generation (Baer et al. 2007; Jackson and Loeb 2001). In addition to the DNA repair 

fidelity, cells possess DNA-damage tolerance mechanisms that allow them to survive in 

the presence of DNA-polymerase blocking lesions (Chang and Cimprich 2009; 

Maynard et al. 2009). 

The most catastrophic oxidative damage events is when ·OH reacts with the 

sugar moiety of DNA causing single and double strand breaks, or reacts with the 

double bond of pyrimidines (C5-C6) modifying bases. From these, DSBs are considered 

the most common, toxic and deleterious type of DNA lesions in organisms, however, 

DSBs are also important to control some biological processes that maintain the 

heterogeneity among organisms (Helleday et al. 2007). For example, during meiosis 

the recombination between homologous chromosomes is mediated by an intentional 

and temporal DSB (Helleday et al. 2007). 

The absence or improper DSB repair allows chromosomal aberration 

accumulation over time leading to loss of heterozygosity and increasing genomic 

instability, carcinogenesis and cellular death (Bonner et al. 2008; Helleday et al. 2007; 

Paques and Haber 1999; Pastwa et al. 2003). To alleviate DNA breaks, cells can 

directly ligate the two DNA ends through the NHEJ process (Helleday et al. 2007; 

Pastwa et al. 2003) or through HR by using homologous DNA sequences from the 

undamaged sister chromatid as template to re-synthesise damaged DNA or the 

missing sequence at the break site (Paques and Haber 1999; Schofield and Hsieh 

2003; Takata et al. 1998). 

 

1.9 Long-term evolution: genetic instability and genetic drift plasticity  

Genetic instability is the set of events that facilitate the acquisition of unscheduled 

alterations across the genome, and it results from deficiencies in DNA repair pathways 

(Lengauer et al. 1998; Loeb 2001; Pavelka et al. 2010) and chromosomal segregation 

(Cahill et al. 1999; Thompson et al. 2010). Genetic instability is widely observed in 
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cancer cells (Michor 2005; Negrini et al. 2010) as well as in CHO cells (Davies et al. 

2012; Derouazi et al. 2006; O'Callaghan and James 2008; Wurm 2013) causing the 

fixation of beneficial and deleterious mutations through time, affecting the global 

phenotype and defining the population fitness (Stich et al. 2010). 

Data suggests that CHO populations’ inherent genetic instability may confer 

selective growth advantages (Barnes et al. 2006; Davies et al. 2012; Jones and Baylin 

2007; Nowell 1976; Silander et al. 2007; Stich et al. 2010). For example, beneficial 

mutation may result in higher cellular densities and increments in the culture longevity 

as a result of the acquisition of tolerance to environmental stressors usually encounter 

at late stages in a fed-batch culture (e.g., osmolarity and toxic by-product levels). This 

latent growth advantages may be translated in higher IVCD performances, and 

therefore in greater protein quantities at larger-scale. For example, assuming two 

cultures with equal specific productivity and a difference of 1 x106 cells ml-1 in cell 

density between both cultures at stationary growth phase, the one with the greater cell 

density would yield ~6.5% more products. For that reason, harnessing genetic 

instability to identify subpopulations with selective growth advantages, such as higher 

cell densities in culture and elevated IVCD, is essential to isolate improved clones able 

to significantly increase volumetric productivity, particularly at large-scale processes. 

Combining the effects of genetic instability with natural selection, directed 

evolution and genetic drift processes in synthetic environments may accelerate 

evolution and adaptation of populations (Beckmann et al. 2012; Hallatschek et al. 2007; 

Stich et al. 2010). Linking together, these evolutionary steps may confer specific fitness 

advantages in the long-term by enhancing existing functions or inducing new functions 

(Jones and Baylin 2007; Nowell 1976; Stich et al. 2010), therefore phenotypes with 

high tolerance to by-product accumulation, osmolarity and synthetic environments can 

be obtained (Schumpp and Schlaeger 1992; Sinacore et al. 2000; Sunley et al. 2008). 

Genetic drift allows individual cells to out-compete other subpopulations and dominate 

the population over time as a result of small random sampling events along subculture 

which generate randomness and fluctuations in allele frequencies and also increase 

the level of homozygosis of populations because along repetitive cycles of cell 

sampling/ expansion a low allele/gene frequency becomes more common. Genetic drift 

is a constant feature of mammalian cell culture with a potential to define the 

population’s fitness during routine and extensive subculture when only a small 

proportion of population is expanded (Torsvik et al. 2014). Studies have demonstrated 

that this phenomenon lead to significant improvements in growth phenotype 

(Beckmann et al. 2012; Davies et al. 2012; Torsvik et al. 2014). For example, 
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Beckmann et al. (2012) observed significant increments in peak of viable cell density 

(up to 82%) and specific exponential growth (up to 23%) by subjecting cells into a long-

term cultivation (>400 generations). Similarly, Davies (2012) measured the genetic drift 

effects of a panel of CHO-K1SV clones along 55 generations, observing median 

increments in μ of 0.0031 h-1 per generation. Unfortunately, these studies not reported 

their IVCD performance along increasing generations, but the results seem to indicate 

that IVCD performance was also improved at some extent. Numerous reports within 

the literature have demonstrated that genetic drift also has the potential to completely 

reshape a population by spontaneously fixing subpopulation with altered metabolism 

(Hallatschek et al. 2007; Loeb 2001), which eventually may develop a new population 

that not represents its original phenotypic patterns. 

As mentioned above, CHO cells have accumulated a large number of mutations 

and chromosomal aberrations across time (see section 1.4), developing an innate 

genetic instability which has diversified their original phenotypic and genetic 

characteristics (Wurm 2013). Consequently, we suggest that the inherent genetic 

instability within CHO cells and genetic drift can be used as a motor to drive evolution 

and provide cell lines with fitness advantages for the production of recombinant 

proteins (Chandhok and Pellman 2009; Gresham et al. 2008; Pavelka et al. 2010; 

Polakova et al. 2009; Selmecki et al. 2008). 

 

1.10 Project overview 

Given the evidences generated from previous research that demonstrated that 

the dynamic genetic heterogeneity within of CHO cell may improve functional 

characteristic in CHO populations and from those researches that have suggested the 

benefits of implementing directed evolution in cell line development for manufacturing 

relevant cell lines with desirable metabolic and growth characteristics that meet 

industrial standards, we design this research project as a starting point to improve the 

cell development processes by implementing a reversed approach involving the 

selection of un-transfected cell lines with desirable growth characteristics. 

This research allow us to harness the inherent cellular heterogeneity within an 

un-transfected parental CHO-S population by isolating 22 clonally-derived CHO-S 

populations through two rounds of the limiting dilution cloning, followed by an 

accelerated evolution through genetic drift and directed evolution in a chemically 

defined media (Chapter 3). This project was followed by an initial compassion of 

phenotypic heterogeneity within a panel of 22 clone CHO-S cell lines along an 
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extended sub-cultivation (up to 220 generations; Chapter 3), then by extensive cell 

growth performance (Chapter 4) and metabolic (Chapter 5) assessments under fed-

batch mode to evaluated whether the metabolic and phenotypic characteristics were 

conserved or improved throughout the long-term cultivation. Finally, given the 

significant differences in cell growth and metabolic activity at exponential and stationary 

growth phases, we studied the mitochondrial and glycolytic activity at both growth 

phases to evaluated (i) whether the phenotypic differences among clones are the 

cause or the consequence of the mitochondrial metabolism and (ii) whether a 

functional mitochondria result in cell lines with desirable and enhanced phenotypes 

(Chapter 6). 
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Chapter 2 

Materials and methods  

2.1 Mammalian cell culture  

2.1.1 Routine mammalian cell maintenance  

In this study, a set of 22 clonally-derived CHO-S cell lines were isolated from a 

donor parental CHO-S cell line (Life Technologies, Paisley, U.K.) and cultivated in CD 

CHO medium (Life Technologies, Paisley, U.K.) supplemented with 8 mM L-glutamine 

(Life Technologies, Paisley, U.K.) unless otherwise mentioned. CHO-S cells were 

routinely cultured in 125 mL vent-capped Erlenmeyer shake flasks (Corning, Surrey, 

U.K.) using 20 mL of glutamine supplemented CD CHO medium. Cells were sub-

cultured every 3-4 days during the mid-exponential growth phase and inoculated at 

densities of 2-3 x 105 cells mL-1. Cells were incubated at 37°C, 140 rpm, under 5% (v/v) 

CO2 atmosphere in an orbital-shaking incubator (Inforst AG, Bottmingen/Basel, 

Switzerland). Measurements of cell density and cell viability were performed by trypan 

blue exclusion method using an automated cell counter. For this method, a sample of 

550 µL of cell culture was loaded onto the Vi-CELL XR cell viability analyser 

(Beckmann Coulter, High Wycombe, UK). 

 

2.1.2 Cryopreservation  

Prior to cell cryopreservation CHO-S cells were sub-cultured in a 250 mL vent-capped 

Erlenmeyer shake flask (Corning, Surrey, U.K.) using 50 mL of glutamine 

supplemented CD CHO medium. Cells with high viability (≥95%) were seeded at 

densities of 2.5-3.5 x 105 cells mL-1, incubated at 37°C, 140 rpm, under 5% (v/v) CO2 

atmosphere in an orbital-shaking incubator for 3 days. After the incubation, cell density 

and viability were measured using the trypan blue exclusion method using a Vi-CELL 

XR cell viability analyser according to the manufacturer instructions. The cells were 

then harvested and centrifuged at 200 g for 5 minutes, and then re-suspended in cold 

glutamine supplemented CD CHO medium containing 10% (v/v) DMSO (Sigma-

Aldrich, Haverhill, U.K.) at densities of 6-7 x 106 cells mL-1. 1.5 mL aliquots were 

dispensed into 1.8 mL Nunc Cryogenic vials (Thermo Scientific Nunc, Loughborough, 

U.K.). The vials were placed in a -20°C freezer for 4 hours, then transferred into a -

70°C freezer overnight and finally transferred into liquid nitrogen for long term storage 

in a cryostat (Statebourne, Washington Tyne & Wear, U.K.). 
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2.1.3 Cell revival 

Cryogenic vials were removed from liquid nitrogen storage and thawed for 1-2 

minutes in a 37°C water bath. Once thawed, cells were transferred into 15 mL conical 

tubes containing 5 mL of cold fresh CD CHO medium and centrifuged at 200 g for 5 

minutes. The cell pellet was then transferred and re-suspended in a 125 mL vent-

capped Erlenmeyer shake flask using 20 mL of warm glutamine supplemented CD 

CHO medium. Cells were incubated at 37°C, 140 rpm, under 5% (v/v) CO2 atmosphere 

in an orbital-shaking incubator. Cell density and viability were assessed by Trypan blue 

exclusion method using a Vi-CELL XR cell viability analyser. Before performing an 

experiment, cells were sub-cultured at least three times to restore optimal cell 

performance. 

 

2.2 Clonal CHO-S cell line generation and characterisation 

2.2.1 Cell cloning by limiting dilution cloning 

To evaluate the inherent genetic heterogeneity found in the parental CHO-S 

population, 22 clonally-derived CHO-S cell lines were isolated from the parental CHO-S 

cell line through two rounds of limiting dilution cloning (LDC). Prior to single-cell 

isolation, the donor cell line (parental cell line) was subcultured three times in glutamine 

supplemented CD CHO medium at the initial cell density of 0.2 x 106 cells mL-1. Cell 

density and viability were measured at the mid-exponential growth phase by trypan 

blue exclusion as described above. Then, 1x106 cells were harvested and serially 

diluted in warm glutamine supplemented CD CHO medium to a final cell density of 3.33 

cells mL-1. Finally, 150 μL of cell suspension were dispensed into each well of a 96-well 

culture plate (Thermo Scientific Nunc, Loughborough, U.K.). The plates were incubated 

at 37°C, in a 5% (v/v) CO2 atmosphere for 21 days in a static incubator (Thermo 

Scientific Heracell, Loughborough, U.K.). After 24 hours of incubation, the plates were 

visually inspected in an inverse microscope to identify wells with single cells. Once 

identified, plates were returned into the static incubator. After 48 hours of incubation, 

the presence of single colonies was confirmed by visual observations using an 

inversed microscope. At day 15, half the volume of conditioned medium was replaced 

with fresh glutamine supplemented CD CHO medium in those wells containing a single 

colony. 

To increase the probability of monoclonality, a second round of LDC was 

performed using single colonies form the first LDC round. For this, the number of cells 
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in single colonies were counted using an inversed microscope and diluted in glutamine 

supplemented CD CHO medium to a final cell density of 3.33 cells mL-1. Then, the LDC 

procedures were performed as mentioned above. The probability of monoclonality after 

two LDC rounds was 0.97, calculated as described in section 2.5.2. 

After two LDC rounds, single colonies were scaled-up in 24-well plates (Thermo 

Scientific Nunc, Loughborough, U.K.), followed by their expansion in 6-well plates 

(Thermo Scientific Nunc, Loughborough, U.K.) and 75 cm2 cell culture flasks (T75 flask; 

Corning, Surrey, U.K.). Finally, clones were expanded in 125 mL Erlenmeyer shake 

flasks until sufficient cells were produced for cell banking and experimentation. Master 

cell banks were generated when high viability (≥95%) was reached. For this project, at 

this point, the generation number and passage number were reset to zero and one, 

respectively. 

 

2.2.2 Long-term cell culture maintenance 

To promote the acquisition of improved cellular capabilities, clones were 

subjected to a long-term cultivation (up to 220 generations) in 50 mL vent-capped 

cultiflask disposable bioreactors (Sartorius AG, Göttingen, Germany) using 5 mL of 

glutamine supplemented CD CHO medium. Cells were sub-cultured at initial densities 

of 2.5-3.5 x 105 cells mL-1 every 4 days and incubated at 37°C, 170 rpm, under 5% (v/v) 

CO2 atmosphere in an orbital-shaking incubator. Cell samples (subpopulations) were 

cryopreserved at approximately 0, 40, 80, 120, 160 and 200 generations. 

 

2.2.3 Fed-batch experiments 

Prior to fed-batch experiments, cells were sub-cultured four times as mentioned 

in the Routine mammalian cell maintenance section (section 2.1.1). Then, fed-batch 

cultures were inoculated with densities of 2-3 x 105 cells mL-1 in 125 mL vent-capped 

Erlenmeyer shake flasks using 25 mL of glutamine supplemented CD CHO medium. 

Cells were incubated at 37°C, 140 rpm, under 5% (v/v) CO2 atmosphere in an orbital-

shaking incubator. Daily, cell density, cell viability and average cell diameter were 

assessed using 550 μL samples. Also, 180 μL samples were centrifuged at 200 g for 5 

minutes to obtain the supernatant, which was stored at -20°C for glucose, lactate, 

glutamine, and glutamate quantification. CHO CD EfficientFeed™ B (Life 

Technologies, Paisley, U.K.) was used as nutrient supplement to meet the nutritional 

demands and maintain optimal cell growth performance during the fed-batch culture. A 
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multi-day supplementation of 10% (v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 

7 and 9. Fed-batch was terminated when cell viability dropped below 60%. Specific 

growth rate and integral of viable cell density was calculated according to Chusainow et 

al. (2009) (see section 2.5.3). 

 

2.3 Mitochondrial bioenergetics 

2.3.1 Measurement of oxygen consumption and extracellular acidification rates 

Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) 

were measured using the cell metabolic analyser Seahorse XF24 (Seahorse 

Biosciences, North Billerica, MA, USA). Prior to experimentation, cells were sub-

cultured four times in 125 mL vent-capped Erlenmeyer shake flasks (Corning, Surrey, 

U.K.) using 20 mL of glutamine supplemented CD CHO medium. Cells at mid-

exponential growth phase were sampled on day 2 post-subculture to assess cell 

density and viability. Then, 2 x 106 cells were centrifuged at 200 g for 5 minutes and the 

cell pellet was re-suspended in fresh glutamine supplemented CD CHO medium at final 

density of 1.2 x 106 cells mL-1. 100 μL aliquots were dispensed into 3 wells of a XF24 

Tissue Culture Plate (Seahorse Biosciences, North Billerica, MA, USA) previously 

treated with 50 μL of 22.4 μg mL-1 BD Cell-Tak cell and tissue adhesive (BD 

Biosciences, Oxford, U.K.). The plate was incubated at 37°C, under 5% (v/v) CO2 

atmosphere in a static incubator for 30 minutes to allow cell attachment. Two plates 

were required, one for glycolysis and one for mitochondrial evaluation. After incubation, 

cells were inspected using an inversed microscope to confirm cell attachment. 

Conditioned CD CHO media was then removed and replaced with either 600 μL of un-

buffered XF media supplemented with 2 mM L-glutamine at pH 7.4 for glycolysis 

evaluation or 600 μL of un-buffered XF media supplemented with 2 mM L-glutamine 

and 16.74 mM glucose at pH 7.4 for mitochondrial respiration evaluation. The plates 

were then incubated for 30-45 minutes at 37°C in a CO2 free incubator to allow 

temperature and pH equilibration before transferring to the XF24 analyser. The 

seahorse XF24 extracellular analyser was run using an 8 minute cyclic protocol (mix for 

3 minutes, wait for 2 minutes and measure for 3 minutes) in triplicate. After either 

measuring the basal OCR or the basal ECAR, the cells were sequentially treated with 

83.33 mM glucose, 11.25 µM oligomycin and 1 M 2-deoxy-D-glucose (2-DG) to give a 

final concentration of 10 mM glucose, 1.125 µM oligomycin, 100 mM 2-DG during the 

glycolysis analysis or sequentially treated with 10 μM oligomycin, 11.25 μM carbonyl 

cyanide p-[trifluoro-methoxy]-phenyl-hydrazone (FCCP) and 12.5 μM 
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rotenone/antimycin A to give a final concentration of 1 μM oligomycin, 1.25 μM FCCP 

and 1 μM rotenone/antimycin A during the mitochondrial analysis. 

For the glycolysis analysis the Seahorse injection ports were loaded as follows:  

 Port A: 81.8 μL of 83.33 mM glucose pH 7.4 (glycolysis inducer) 

 Port B: 75.4 μL of 11.25 μM oligomycin (ATP synthase inhibitor) 

 Port C: 84.2 μL of 1 M 2-DG pH 7.4 (glucose analogue, glycolysis inhibitor) 

For the mitochondrial analysis the Seahorse injection ports were loaded as 

follows:  

 Port A: 66.7 μL of 10 μM oligomycin (ATP synthase inhibitor) 

 Port B: 74.1 μL of 11.25 μM FCCP (ETC accelerator)  

 Port C: 82.3 μL of 12.5 μM Antimycin A / Rotenone (ETC inhibitors) 

 

2.4 Analytical methods 

2.4.1 Metabolite analysis  

Glucose, lactate, glutamine and glutamate concentration were quantified at 

different time points of the fed-batch culture (i.e., 2, 3, 5, 7, 9 and 11 days) using a 

Cedex bio analyser (Roche Diagnostics Ltd., West Sussex, U.K.). The Cedex bio 

analyser uses hexokinase method for glucose determination, lactate oxidase method 

for lactate, glutaminase for glutamine and glutamate oxidase for glutamate 

determination. Prior to measurements, the Cedex analyser’s probe was cleaned with 1 

ml of ISE deproteiniser (Roche Diagnostics Ltd., West Sussex, U.K.) and conditioned 

with 0.75 ml of Activator (Roche Diagnostics Ltd., West Sussex, U.K.). Then, two-point 

calibration were performed for glucose, lactate, glutamine and glutamate assays, 

followed by a quality control check to ensure the integrity of the whole measuring 

system by measuring and comparing the known concentration of the controls (Roche 

Diagnostics Ltd., West Sussex, U.K). Finally, 150 uL of cell-free supernatant samples, 

previously collected at days 2, 3, 5, 7, 9 and 11 of the fed-batch culture, were thawed 

for 15 minutes at 4°C and measured in duplicate on a Cedex bio analyser according to 

the manufacturer instructions. 
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2.4.2 Protein content assay 

Protein content was determined using Pierce BCA Protein Assay Kit (Thermo 

Scientific, Surrey, U.K.) according to the manufacturer instructions. For each sample, 

2.5 x 106 cells were pelleted and then washed with 0.8 mL PBS, centrifuging at 200 g 

for 5 minutes at 4°C. Cells were lysed using 1 mL of RIPA buffer (Thermo Scientific, 

Surrey, U.K.) supplemented with Halt Protease Inhibitor Cocktail 1% [v/v] (Life 

Technologies, Paisley, U.K.), centrifuging at 14000 g for 15 minutes and the 

supernatant was collected and stored at -20°C until protein analysis. The protein 

concentration was measured at 570 nm using a PowerWaveTM spectrophotometer plate 

reader (BioTeK, Bedfordshire, U.K.). The blank background fluorescence was 

subtracted from each reading to give relative protein content. The protein concentration 

was determined using a standard curve provided in the Pierce BCA Protein Assay Kit. 

 

2.5 Equations  

2.5.1 Colony forming efficiency 

The colony forming efficiency (C.E.) was calculated using the following equation: 

.ܥ .ܧ ሺ%ሻ ൌ
	ݏ݈݁݅݊ܿ	݈݁݃݊݅ݏ	݂	ݎܾ݁݉ݑ݊	

	ݏ݈݈݁ݓ	݀݁ݐ݈ܽݑܿ݊݅	݂	ݎܾ݁݉ݑ݊	݈ܽݐܶ
 100ݔ

 

2.5.2 Probability of monoclonality 

The probability of monoclonality using LDC was calculated according to Coller 

and Coller (1983) using the following equations:  

Probability of monoclonality for a single LDC round 

Pሺclonalityሻ ൌ
Pሺ1ሻ

ሺ	1 െ Pሺ0ሻ	ሻ
ൌ
ܵ
R

 

Probability of monoclonality for two repetitive LDC rounds 
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Where: 



 Chapter 2 
 

 43 
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ൌ

5
ܴ

 

ܽ	 ൌ 	
	ݏ݈݈݁ܿ	2	݃݊݅݊݅ܽݐ݊ܿ	݈ܾ݃݊݅݊ܿݑݏ	ݐݏ1	݊݅	ݏ݈݈݁ݓ	݂	݊݅ݐܿܽݎ݂

	݄ݐݓݎ݃	ݕ݊ܽ	݃݊݅ݓ݄ݏ	݈ܾ݃݊݅݊ܿݑݏ	ݐݏ1	݊݅	ݏ݈݈݁ݓ	݂	݊݅ݐܿܽݎ݂
ൌ 	

ܲሺ2ሻ

ሺ	1 െ ܲሺ0ሻ	ሻ
ൌ

2
ܴ

 

ܾ	 ൌ 	
	ݏ݈݈݁ܿ	3	݃݊݅݊݅ܽݐ݊ܿ	݈ܾ݃݊݅݊ܿݑݏ	ݐݏ1	݊݅	ݏ݈݈݁ݓ	݂	݊݅ݐܿܽݎ݂

	݄ݐݓݎ݃	ݕ݊ܽ	݃݊݅ݓ݄ݏ	݈ܾ݃݊݅݊ܿݑݏ	ݐݏ1	݊݅	ݏ݈݈݁ݓ	݂	݊݅ݐܿܽݎ݂
ൌ 	

ܲሺ3ሻ

ሺ	1 െ ܲሺ0ሻ	ሻ
ൌ

3
ܴ

 

ܿ	 ൌ 	
	ݏ݈݈݁ܿ	4	݃݊݅݊݅ܽݐ݊ܿ	݈ܾ݃݊݅݊ܿݑݏ	ݐݏ1	݊݅	ݏ݈݈݁ݓ	݂	݊݅ݐܿܽݎ݂

	݄ݐݓݎ݃	ݕ݊ܽ	݃݊݅ݓ݄ݏ	݈ܾ݃݊݅݊ܿݑݏ	ݐݏ1	݊݅	ݏ݈݈݁ݓ	݂	݊݅ݐܿܽݎ݂
ൌ 	

ܲሺ4ሻ

ሺ	1 െ ܲሺ0ሻ	ሻ
ൌ

4
ܴ

 

݀	 ൌ 	
	ݏ݈݈݁ܿ	5	݃݊݅݊݅ܽݐ݊ܿ	݈ܾ݃݊݅݊ܿݑݏ	ݐݏ1	݊݅	ݏ݈݈݁ݓ	݂	݊݅ݐܿܽݎ݂

	݄ݐݓݎ݃	ݕ݊ܽ	݃݊݅ݓ݄ݏ	݈ܾ݃݊݅݊ܿݑݏ	ݐݏ1	݊݅	ݏ݈݈݁ݓ	݂	݊݅ݐܿܽݎ݂
ൌ 	

ܲሺ5ሻ

ሺ	1 െ ܲሺ0ሻ	ሻ
ൌ

5
ܴௗ

 

 

These equations used Poisson distribution methods for describing the cell 

distribution in micro-titre plates in single or repetitive rounds of sub-cloning 

 

2.5.3 Cell growth  

Cell growth, specific growth rate, doubling time and generation number were 

calculated using the following equations. 

Specific growth rate (µ): μ ൌ
Ln ቀ ଵܺ

ܺ
ቁ

ଵݐ െ ݐ
 

Doubling time (dt): dt ൌ
Lnሺ2ሻ
μ
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Generation number (GN): GN ൌ
Ln ቀ ଵܺ

ܺ
ቁ

Lnሺ2ሻ
ൌ
μሺݐଵ െ ሻݐ
Lnሺ2ሻ

 

Integral of viable cell density  

(IVCD): 
IVCD ൌ

ሺ ଵܺ െ ܺሻሺݐଵ െ ሻݐ

Ln ቀ ଵܺ
ܺ
ቁ

ൌ
ሺ ଵܺ െ ܺሻ

μ
 

Specific metabolic rate 

(qMet): 
qMet ൌ

ሺݐ݁ܯଵ െ ሻሺሺݐ݁ܯ ଵܺ െ ܺሻሺݐଵ െ ሻݐ

Ln ቀ ଵܺ
ܺ
ቁ

ൌ
ଵݐ݁ܯ െ ݐ݁ܯ
ଵܦܥܸܫ െ ܦܥܸܫ

 

Integral of cellular protein 

accumulation (ICPA): 
ICPA ൌ

ሺܲܥݎଵ െ ሻሺሺܥݎܲ ଵܺ െ ܺሻሺݐଵ െ ሻݐ

Ln ቀ ଵܺ
ܺ
ቁ

ൌ
ଵܥݎܲ െ ܥݎܲ
ଵܦܥܸܫ െ ܦܥܸܫ

 

Cell volume Cell	volume ൌ
4
3
ߨ
cell diameter

2
 

 

Where: 

t0 and t1 is the time at time points 0 and 1, respectively 

X0 and X1 is the viable cell density at time points 0 and 1, respectively 

PrC0 and PrC1 is the cellular protein content at time points 0 and 1, respectively 

Met0 and Met1 is the metabolite concentration at time points 0 and 1, 

respectively 

 

2.5.4 Standard error of the mean 

The standard error of the mean (SEM) was used to express the mean of data in 

the form of the mean ± SEM. 

SEM ൌ
ሺݔ െ݉ሻଶ

݊ሺ݊ െ 1ሻ
 

Where: 

x is the observed value 

m is the arithmetic mean of n observations 

n is the number of independent observations  

n-1 is the number of degrees freedom  
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Chapter 3 

Exploiting the phenotypic heterogeneity in Chinese Hamster 

Ovary cell populations and evolving growth characteristics 

during long-term culture 

This chapter introduces the procedures employed to harness the genetic 

heterogeneity within CHO-S cell populations, followed by a cell expansion and a 

routinely long-term sub-cultivation to improve the cells’ fitness (e.g. high specific growth 

rate and VCD) and gain insight into the dynamic mechanism of genetic instability and 

genetic drift in CHO cells. 

 

3.1 Background 

The production of biopharmaceuticals using mammalian cell systems has been 

widely expanded in the last decades, being CHO cells the preferred mammalian 

expression system at industrial scale (Wurm 2004), mainly because they can easily be 

genetically manipulated to produce complex recombinant glycoproteins with correct 

folding and safe therapeutic applications, and because of their robust growth 

performance and adaptability to synthetic environments. Since their origins, CHO cells 

have been exposed to multiple physical and genetic manipulations that have increased 

their genomic instability, leading to cumulative mutations (Derouazi et al. 2006; Torsvik 

et al. 2014) and developing a large number of derived CHO cell lines with varied 

phenotypes such as CHO DG44, CHO-K1, CHO-K1SV, CHO-S, and DUKX-B11. 

Throughout this time, CHO cells evolved beneficial characteristics that allowed them to 

adapt, proliferate, resist and survive in synthetic environments (Gillies et al. 2012), but 

also developed detrimental features that increased their genetic instability leading to 

unpredictability in terms of cell growth (Barnes et al. 2006), recombinant protein 

productivity (Barnes et al. 2001; Beckmann et al. 2012; Chusainow et al. 2009) and 

protein quality (van Berkel et al. 2009). 

The undesirable characteristics have been extensively studied. For example, 

cytogenetic studies revealed that CHO cells have accumulated a large number of 

chromosome aberrations such as amplification, deletion, translocation, aneuploidy and 

polyploidy since their origins. These aberrations moulded a wide range of genomic 

mutations and drove significant changes in morphology and metabolism among 

derived-CHO cell lines (Deaven and Petersen 1973; Derouazi et al. 2006). This 
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genomic instability has been widely used to develop numerous industrial CHO cell lines 

with optimal growth performances and desirable gene-production characteristics 

(Barnes et al. 2006; Prentice et al. 2007; van Berkel et al. 2009). However, cell line 

development processes still present limitations, mainly because CHO cells have 

unstable and unpredictable cellular behaviours which make costly, labour-intensive and 

time-consuming the identification and selection of improved phenotypes (O'Callaghan 

and James 2008; Pilbrough et al. 2009). Therefore, the likelihood of isolating an ideal 

CHO cell line with desirable industrial characteristics is extremely low due to poor 

understanding of genetic drift and the heterogeneous evolution along increasing 

generations. Several studies have analysed the global cellular metabolism of improved 

cell lines (Chusainow et al. 2009; Kyriakopoulos et al. 2013; Legmann et al. 2011; Luo 

et al. 2012) and the phenotypic variation throughout cultivation (Barnes et al. 2006; 

Beckmann et al. 2012; Davies et al. 2012; Heinrich et al. 2011) to identify metabolic 

and phenotypic characteristics that allow the selection of cell lines with desirable 

characteristics. These studies have demonstrated that a low glucose and glutamine 

consumption (Altamirano et al. 2004; Cruz et al. 1999; Kim et al. 2013; Kurano et al. 

1990; Lee et al. 2003; Wong et al. 2005), lactate-metabolism shift (Dorai et al. 2009; 

Mulukutla et al. 2012; Zagari et al. 2013) and an elevated TCA cycle activity 

(Papandreou et al. 2006; Wilkens and Gerdtzen 2011; Zhou et al. 2011) are the most 

important metabolic characteristics associated with cell growth and productivity 

improvements in fed-batch cultures. 

The mammalian cell culture is continually subjected to genetic drift effects as a 

result of extensive sub-cultivation (Torsvik et al. 2014). Studies have demonstrated that 

routine sub-cultivation drives significant improvements in cell growth performance 

(Beckmann et al. 2012; Davies et al. 2012; Torsvik et al. 2014), but reduce productivity 

(Beckmann et al. 2012; Chusainow et al. 2009). Beckmann et al. (2012) observed that 

elevated cell passage number significantly improved growth characteristics as a result 

of increments in glucose utilisation, over-expression of glycolytic enzymes (i.e., PYK, 

phosphoglycerate mutase 1; PGAM-1, and phosphoglycerate kinase 1; PGK-1) and up-

regulation of non-ER anti-stress proteins. These studies also revealed that an extended 

cultivation promotes recombinant-gene loss even under selective pressure, leading to 

notable reductions in heavy and light chain transcripts. These data showed that over 

long-term cultivation cells acquired a more robust phenotype and become more 

glycolytic, providing higher tolerance to environmental stress and producing ATP 

rapidly, this robustness supports higher cell densities and proliferation rates.  
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The accumulated data suggests that the inherent genetic instability within CHO 

populations confer adaptive advantages (Jones and Baylin 2007; Nowell 1976; 

Silander et al. 2007; Stich et al. 2010) and together with the random genetic drift may 

shape the genetic pool and allow individual cells to out-compete other subpopulations 

and gradually dominate the whole population. Indeed, by combining the genetic 

instability and genetic drift in synthetic environments, populations may undergo 

beneficial mutations (Stich et al. 2010) as higher selection pressures may confer 

specific fitness characteristics in the long-term such as high tolerance to lactate and 

ammonia (Schumpp and Schlaeger 1992), osmolarity (Liu et al. 2010; Sunley et al. 

2008), hypothermia (Sunley et al. 2008), synthetic environments (Sinacore et al. 2000), 

and attain high cell densities (Prentice et al. 2007). However, it cannot be ignored that 

these evolutionary mechanisms may also lead to completely altered phenotypic 

characteristics (Hallatschek et al. 2007; Loeb 2001), resulted from deleterious 

mutations (Stich et al. 2010; Torsvik et al. 2014) that may increase even further the 

genetic instability (Jones and Baylin 2007). 

As mentioned before, CHO cells exhibits an enormous phenotypic heterogeneity 

mainly because they have been exposed to genetic instability, epigenetic changes, 

natural selection and genetic drift over many years, accumulated a vast number of 

mutations which have generated an enormous potential isolate superior phenotypes 

capable to withstand biopharmaceutical processes, proliferate at high cell densities and 

produce large quantities of recombinant proteins (O'Callaghan and James 2008).they 
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3.2 Chapter aims 

In this chapter, I investigated two hypotheses, (i) that the inherent genetic 

instability within a donor CHO-S population can be exploited to generate cell lines with 

improved growth characteristics and (ii) that genetic drift and directed evolution will 

promote better growth phenotypes. Thereby, I suggest that: 

(i) The inherent cellular heterogeneity present in a parental CHO-S population 

can be exploited through basic cloning techniques, allowing the isolation of 

multiple clonally-derived cell lines with desired and relevant manufacturing 

characteristics such as maximal specific growth rate and improved integral of 

viable cell density.  

(ii) The extent of phenotypic heterogeneity among clonal CHO-S cell lines can be 

reduced by accelerating the random genetic drift through a continuous and 

extended sub-cultivation.  

(iii) Genetic drift will favour the dominance of fast-growing subpopulations, 

significantly improving the overall cell performance throughout the long-term 

subculture. 

 

The aim of this chapter is to present an approach to harness the inherent 

phenotypic heterogeneity within a donor CHO-S cell line to produce functional sub-

clones with relevant industrial capabilities by using the traditional limiting dilution 

cloning (LDC) technique and by accelerating the genetic drift selection through a 

routine and prolonged sub-cultivation. Additionally, I aimed to (i) characterise 

differences in morphology, in terms of cell size, and growth behaviour of 22 clonally-

derived cell lines and compare them to the parental CHO-S population, (ii) study the 

genetic drift effects in growth patterns and cellular heterogeneity through long-term 

cultivation and (iii) compare the adaptation rates of isolated clonal populations, 

especially to the agitated conditions of the culture. Finally, I aimed to identify 

characteristics that could improve screening methodologies for selecting 

subpopulations with enhanced and relevant phenotypes. 
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3.3 Chapter objectives 

To address the chapter aims, the objectives were to:  

i) Isolate a panel of clonally-derived CHO-S cell lines from a donor parental 

CHO-S population. 

ii) Characterise the clone’s growth behaviour along the extended cultivation. 

iii) Generate a set of subpopulations at different time points of the long-term 

cell cultivation. 

iv) Assess and compare the genetic drift effects in growth performance among 

clonal CHO-S cell lines during the long-term cultivation. 

v) Examine and compare cell growth profiles among and within clonal cell lines 

along the extended culture. 

vi) Quantify the level of phenotypic heterogeneity within and between clones 

along the extended culture. 

vii) Identify clones with enhanced phenotypic characteristics such as maximal 

specific growth rate (μ), higher peak of viable cell density and fast rate of 

adaptability. 
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3.4 Results 

3.4.1 Harnessing the phenotypic heterogeneity of a donor parental CHO-S 

population 

The cellular heterogeneity within a donor parental CHO-S population was 

assessed using a strategy linking two approaches: harnessing and exploiting the 

phenotypic heterogeneity within the donor CHO-S population and evolving cell 

phenotypes through accelerated genetic drift and directed evolution through long-term 

cell culture in a chemically defined media (Figure 3-1). (i) To exploit the phenotypic 

abundance within the parental CHO-S population, clonally-derived cell lines were 

isolated through two LDC rounds, and (ii) to evolve improved phenotypic 

characteristics, clonally derived CHO cell lines underwent an accelerated genetic drift 

and directed evolution as a result of a continuous sub-cultivation (up to 220 

generations) in a chemically defined media. Finally, to assess phenotypic variations 

among and within clonal CHO-S cell lines during the long-term sub-cultivation, cell 

samples were cryopreserved approximately every 40 generations (identified as 

"subpopulations”) for subsequent experimentation. In addition, for enabling further 

comparisons and minimise environmental stress variations, all clones were sub-

cultivated using the same batch media, supplements and culture conditions. 

After the first LDC round, only 22 wells were identified as single colonies from a 

total of 1920 wells seeded, giving a cloning efficiency of 1.15% with a probability of 

monoclonality of 0.771, indicating that almost three out of four colonies were 

monoclonal. This data agrees with other studies that found that a single round of cell 

cloning does not guaranty the monoclonality of the colonies (Barnes et al. 2006). For 

that reason, a second round of LDC was performed (Figure 3-2B), at this point the 

probability of monoclonality for repetitive rounds of cell cloning was 0.97, ensuring 

monoclonality. 

For the purpose of these studies, the generation and passage number of the 

generated clones’ master cell banks were reset to “zero” and “one”, respectively, to 

enable future comparisons between clones and trace phenotype evolution throughout 

the long-term sub-cultivation. 
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Figure 3-1 Strategy to (i) harness and exploit the phenotypic heterogeneity within a 

donor CHO-S population and (ii) evolve cell phenotypes through accelerated genetic 

drift and directed evolution through long-term cell culture in a chemically defined 

cell culture media. The diagram indicates the strategy for cell cloning, scaling-up and 

long-term cultivation. Parental CHO-S cells were subjected to two rounds of LDC, scale-up 

and transfer from static to agitated incubation and finally sub-cultured in a long-term regime 

for up to 220 generations. For each clone, cell growth performance along the culture was 

analysed and subpopulations were cryopreserved approximately every 40 generations. A 

total of 6 subpopulations per clone were cryopreserved at generations 0, 40, 80, 120, 160 

and 200. 
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Figure 3-2 Schematic representation of the cell cloning strategy. 22 clonally-derived 

CHO-S cell lines were isolated from a donor parental CHO-S population through two 

rounds of limiting dilution cloning in CD CHO medium supplemented with 8 mM L-glutamine 

at densities of 0.5 cells per well (A-B). Wells that exhibited single cell colonies were 

gradually scaled-up into larger cell culture vessels, from 96-well plates to T-75 flasks in a 

static incubator (B-E). Then, the clones were scaled-up to 125 mL Erlenmeyer flasks and 

incubated in a shaking incubator until high cell viability was achieved (F). Finally, master 

cell banks were created for every clonally-derived CHO cell line and cryopreserved in liquid 

nitrogen (G). Also, each clone was sub-cultivated at 190 rpm and 37°C under 5% (v/v) CO2 

atmosphere for up to 220 generations in 125 mL Erlenmeyer flasks containing CD CHO 

medium supplemented with 8 mM L-glutamine (H). Every 40 generations, subpopulations 

were cryopreserved (I).  
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The second part of the proposed strategy was designed to evaluate whether cell 

lines can develop superior phenotypes by subjecting them to long-term cultivation and 

to characterise the growth behaviour resulted from the genetic instability and genetic 

drift along cultivation. This strategy consisted in routinely propagating the 22 CHO-S 

clones under agitated conditions for up to 220 generations with a four-day subculture 

regime to ensure constant exponential cell growth during the whole cultivation (Figure 

3-1 and Figure 3-2H). To enable further intra and inter clonal comparisons, cell 

samples or subpopulations were harvested and cryopreserved every 40 generations 

(Figure 3-2I), giving six subpopulations per clone (i.e., at ~ 0, 40, 80, 120, 160 and 200 

generations) and a total of 132 subpopulations with varied growth and metabolic 

characteristics. 

At first glance, it was observed that the growth behaviour throughout the 

extended cell cultivation was clearly separated in two phases, being the first an 

adaptation phase between zero and 50 generations, characterised by low growth rates 

(median µ < 0.031 h-1) and random fluctuations in µ resulted from transferring the cells 

from static to agitated environment (Figure 3-3A). The second phase defined as 

evolution phase characterised by gradual increments in proliferation rates and 

significant reductions in cellular heterogeneity with increasing generation number 

(Figure 3-3A). The high phenotypic heterogeneity observed in the clonal CHO-S cell 

lines clearly indicates substantial differences among populations, which arises from 

genetic, epigenetic and selection factors and supports the hypothesis that cell lines 

with varied cell growth characteristics can be isolated from a donor population (Figure 

3-3). This observed data also agrees with previous studies which found an intrinsic 

cellular heterogeneity among clonally-derived CHOK1SV (Davies et al. 2005) and NS0 

(Barnes et al. 2006) populations. 

The extent of cellular heterogeneity within each clone and between them was 

evaluated using specific growth rate as indicator of phenotypic heterogeneity (Figure 

3-3B and Figure 3-3C). Comparing the distribution ranges in µ along the whole 

cultivation (Figure 3-3B), clones 1, 10, 11, 13, 16, 19 and 22 were the most stable cell 

lines over the long-term cultivation, whilst clones 6, 7, 8, 15, 18 and 20 were by far the 

most heterogeneous cell lines. The slightly right-skewed box plot data in Figure 3-3B 

also suggests that CHO-S clones tended to improve the growth characteristics with 

increasing generation number. 
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Figure 3-3 Specific growth rate patterns for 22 clonally-derived CHO-S cell lines 

along long-term culture. Clones were grown in Erlenmeyer flasks for up to 220 

generations to characterise their growth phenotype. Specific growth rates were calculated 

using the viable cell density at the beginning and end of each passage (A). Then, the extent 

of growth heterogeneity along long-term cultivation was analysed for each individual clone 

(B) and for all 22 clones classified into subpopulations (C). The overall rate of change in µ 

along subpopulations was calculated as the linear regression of the median of the observed 

cell growth rate values for each subpopulation. “Subpopulation 0” groups generations 0 to 

39, “subpopulation 40” groups generations 40 to 79, “subpopulation 80” groups generations 

80 to 119, “subpopulation 120” groups generations 120 to 159, “subpopulation 160” groups 

generations 160 to 199 and “subpopulation 200” groups generations 200 to up to 220.
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For enabling further comparisons, the µ data was divided into 6 subpopulations 

with the intention that each subpopulation would represent the time point at which cells 

were cryopreserved along the long-term culture regime. Therefore, µ data was 

separated in “subpopulation 0” grouping data from generations 0-39, “subpopulation 

40” grouping generations 40-79, “subpopulation 80” grouping generations 80-119, 

“subpopulation 120” grouping generations 120-159, “subpopulation 160” grouping 

generations 160-199 and “subpopulation 200” grouping generations 200-up to 220.  

Grouping the data of all clones by subpopulations confirmed that clones 

continuously improved their growth phenotype and reduced their heterogeneity (Figure 

3-3C) and demonstrated that the age of the clones (i.e., 0, 40, 80 160 or 200 

generations) had an effect on µ (two-way ANOVA, p<0.0001, F=166.17). Also, Tukey’s 

test corroborated the significant µ differences between all the subpopulations, but 

except between subpopulations 160 and 200 (Tukey’s test, p>0.05). Moreover, the 

large distribution range at subpopulation 0 indicates that clones tended to increase 

their heterogeneity in order to develop fitness to the agitated environment whilst the 

reduced distribution on the subsequent subpopulations showed a tendency to reduce 

heterogeneity over time. In addition, the left-skewed data in subpopulation 0 indicates 

that slow-growing phenotypes were the dominant populations at early generations. 

 The linear regression in Figure 3-3C shows a positive and strong correlation 

between growth rate and subpopulations with accumulative generations (R-

squared=0.873, n=6, p-value=0.0064), supporting that growth phenotypes were 

improved over increasing generations with an overall average rate of change in µ of 

0.00176 h-1 per subpopulations or 4.5x10-5 h-1 per generation. Moreover, the plateau 

observed between subpopulations 160 and 200 indicates that clones may have a 

maximum possible µ supported for the glutamine supplemented CD CHO media under 

the selected conditions (e.g., 170 rpm in 5 mL cultiflask disposable bioreactor) and 

probably clones started to reach their maximum and stable µ after 160 cell generations. 

A slightly negative correlation between the extent of µ heterogeneity and 

subpopulations with accumulative generations can be observed in Figure 3-3C, being 

this reduction more evident from subpopulations 0 to 40 with a 66% of reduction in the 

overall heterogeneity, thus confirming the existence of an adaptation phase at 

subpopulation 0. This data was followed by a modest but significant reduction in 

cellular heterogeneity (between 2 and 27.8%) from subpopulations 40 to 160, 

suggesting that these reductions resulted from genetic drift. Finally, the maintenance of 

the µ median (~0.039 h-1) from subpopulation 160 to 200 suggest that clones may have 

converged to a maximum μ under these cultivation environment, but the significant 
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increase in µ heterogeneity (69%) from subpopulation 160 to 200 suggest that cell 

populations still attempted to acquired better growth rates, but probably these 

populations with potential for higher μ were not become dominant as they demanded 

different nutritional demands (e.g., amino acid) which were not constantly provided by 

the supplemented CD CHO media (Huang 2009). 

3.4.2 Long-term cultivation improved the growth characteristics in clonal CHO-S 

cell lines  

To test the hypothesis that clones exhibited notable differences in their growth 

patterns over increasing generations, the extent of cellular heterogeneity within each 

clone was evaluated using the accumulated data from their respective six 

subpopulations (Figure 3-4). At first glance, it seems that all cell lines increased their 

specific growth rate and significantly reduced their growth rate heterogeneity with 

increasing generation number. Being clones 10, 11, 21 and 22 those populations that 

exhibited a substantially lower initial heterogeneity and maintained their low 

heterogeneity throughout cultivation, whereas clone 6 was the most heterogeneous 

population during the whole extended cultivation. The box and whisker plots also 

confirmed the existence of elevated phenotypic variability among clones, particularly at 

subpopulations 0 with growth rates ranging from 0.017 h-1 to 0.045 h-1 for clones 3 and 

4, respectively. The subsequent subpopulations narrowed the heterogeneity, reaching 

the smallest difference in µ at subpopulations 200, being clone 12 (0.035 h-1) and clone 

11 (0.045 h-1) the slowest and fastest growing cell lines, respectively. 

The observed reductions in phenotypic heterogeneity from subpopulations 0 to 

200 were highly variable, observing global decreases from 42.9% for clone 9 to 95.0% 

for clone 3 (Figure 3-4). The majority of the clones (15 out of 22 clones; clones 1, 2, 3, 

4, 5, 7, 8, 12, 13, 14, 16, 17, 18, 19 and 20) showed considerable reductions in growth 

rate heterogeneity (>80%), whilst six clones (clones 6, 9, 11, 15, 21 and 22) presented 

reductions between 42.9 and 71%. From the 22 clones, only clone 10 increased its 

heterogeneity along the long-term cultivation, displaying two separate growth 

performances throughout cultivation. The first was a steady phase from subpopulations 

0 to 80, characterised by low growth heterogeneity and high proliferation rates and the 

second stage was a heterogeneous phase from subpopulations 120 to 200, 

characterised by notable increments in growth heterogeneity, but without decreases in 

the mean growth rate. This observed behaviour in clone 10 probably resulted from two 

causes, the first cause resulted from the intrinsic genetic instability which fixed a 

spontaneous non-beneficial mutation altering the growth homeostasis of the population 
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and the second cause as the result of genetic drift which modified the stablished 

growth rate equilibrium through the random sampling of a non-dominant subpopulation, 

this random genetic competition has been documented in bacteria and yeast 

populations (Hallatschek et al. 2007). The observed unbalance derived in increased 

phenotypic heterogeneity in succeeding generations until the “new-fixed” subpopulation 

would become extinct, coexist or become dominant (Greaves and Maley 2012; 

Hallatschek et al. 2007; Nowell 1976). Both possibilities mentioned above are 

conceivable because populations carry accumulated mutations with potential to change 

the phenotype at any moment (Torsvik et al. 2014) and because the random sampling 

can change the equilibrium of a population by fixing subpopulations with varied 

physiological characteristics. 

Another important finding can be observed during the evolution phase, in which 

most of the clones eventually exhibited a plateau. The plateau is more notable in 

clones with initial high growth rates (Figure 3-4, clones 3, 4, 10, 14, 15, 16 and 21) 

corroborating that clonal cell lines have a maximum µ possible in the glutamine 

supplemented CD CHO media cultivation implemented for this study. 

For each clone, the average rate of change in µ was calculated as the slope of 

the linear regression of the growth rate values between 0 and up to 220 generations. 

Using the slope values, clones 7, 8, 9, 18 and 20 exhibited the largest rates, between 

6.5x10-5 and 8.0x10-5 h-1 per generation, with a global improvement in µ between 0.013 

and 0.016 h-1 along 200 generations. On the other hand, clones 4, 10, 16, 21 and 22 

exhibited the smallest rates of change, observing increments in µ between 2.6x10-5 and 

3.4x10-5 h-1 per generation and giving global improvements between 0.0052 and 

0.0068 h-1 after 200 generations (Figure 3-4). As expected, the initially slow-growing 

clonal populations reached the highest rates of change in µ, whereas clones with the 

lowest rates change in µ presented smaller improvements. This data suggest that 

populations with slow changes rates in µ exhibited agitation-adapted phenotypes from 

their isolation, thus showing less heterogeneous populations, except for clone 7. 
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Figure 3-4 Growth rates for 22 LDC clonally-derived CHO-S populations at different 

time points along long-term culture. Cell growth rate was measured every 4 days and 

grouped into 6 subpopulations: subpopulation 0 (generations 0-39), subpopulation 40 

(generations 40-79), subpopulation 80 (generations 80-119), subpopulation 120 

(generations 120-159), subpopulation 160 (generations 160-199) and subpopulation 200 

(generations 200-up to 220). The bottom and top of the box represent the 25th and 75th 

percentiles, the line within the box the median, error bars indicate the 0th and 100th 

percentiles and dots are outliers. Slope values are the rate of change in µ [h-1 per 

generation]. 
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Comparing clones 4 and 7, the ones with the lowest and highest rate of change in µ, 

respectively, a ~3.0 fold difference was observed. Interestingly, both clones exhibited 

large growth heterogeneity at subpopulation 0, however, the right-skewed distribution 

and the high µ median (0.034 h-1) at subpopulation 0 for clone 4 (Figure 3-4) suggested 

notable improvements in its growth rate within few generations, whilst the low µ median 

(0.026 h-1) at subpopulation 0 for clone 7 indicated gradual µ improvements. 

Consequently, this data suggests significant differences in the rate of acquisition of 

improved cellular performance among individual clones. 

 

3.4.3 Analysis of adaptation phase of clonal CHO-S cell lines during long-term 

subculture 

In order to test the hypothesis that clones exhibited differences in the period of 

adaptation to agitated conditions, the residual values of the linear regression showed in 

Figure 3-4 were plotted against generation numbers to identify the extent of deviation 

from the estimated µ values (Figure 3-5). This data clearly separates the adaptation 

and evolution phases and shows that the clones were highly variable, ranging from 

non-adaptation period (clones 10, 11, 20 and 21) to up to 56-generations (clone 2). 

Additionally, this analysis showed that majority of the clones became adapted between 

28 and 44 generations (13 out of 22 clones; clones 1, 3, 4, 5, 6, 7, 8, 13, 14, 15, 16, 17, 

and 18). 

To compare adaptability among clones, the average residual value for the first 56 

generations, corresponding to the longest adaptation period observed (clone 2), was 

used. The average µ variability distribution (Figure 3-6) confirms that clones 10, 11, 21 

and 22 were by far the most adapted populations (with low µ variability rate ≤0.0002 h-1 

gen-1), whilst the most least adapted were clones 3, 4, 6, 16 and 17 which increased 

their mutation rate in order to develop growth advantages to resist shearing stress and 

pressure forces produced by agitated environments, therefore exhibiting elevated µ 

variability rates, ranging between 0.0013 and 0.0017 h-1 gen-1.  

To evaluate whether the large heterogeneity described in clone 6 at mid and late 

long-term generations resulted from incomplete adaptation (section 3.4.2; Figure 3-4), 

a residual analysis of the proliferation rate was performed (Figure 3-5-clone 6). The 

results show that clone 6 had an adaptation period of 36 generations and suggesting 

that the increments in heterogeneity at mid- and late-subpopulations was the result of a 

fixed mutation within population around generation 80 that caused an unbalance in the 

subsequent generations. 
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Figure 3-5 Growth deviation from the estimated µ values for 22 LDC clonally-derived 

CHO-S populations during long-term cultivation. The vertical dot lines represent the 

time point at which cells became adapted to agitated environments and the horizontal lines 

represent the stability threshold. 
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Figure 3-6 Average variability in µ [hr-1 gen-1] for 22 clonally derived CHO-S cell lines 

during the adaptation phase of a long-term subculture regime (initial 56 generations). 

The left and right of the box represent the 25th and 75th percentiles, the line within the box 

the median, the whisker the 0th and 100th percentiles and dots the outliers. 

 

In this analysis was suggested that the average variability in µ can be used as a 

measure of stability among clones because unstable populations exhibited higher 

variability in µ rates (Figure 3-6). These results are clearly associated with the constant 

fluctuations in proliferation rates along increasing generations until the appearance and 

dominance of adapted subpopulations that out-compete other unfitted subpopulation. 

Therefore, this data shows that unstable clones continuously generated growth 

characteristics to increase the likelihood of proliferating and surviving in the new 

environments, indicating that unstable clones increased up to 8.5 fold their phenotypic 

heterogeneity to cope with the agitated environment and that 13 out of 22 clones 

exhibited elevated variability (>0.0010 h-1 gen-1) indicating that the majority of the 

clones were not completely adapted to growth under agitated environments, and thus 

unstable populations are required to increase their mutation rate frequency to adapt 

and proliferate. 

 

3.4.4 Analysis of evolution phase of clonal CHO-S cell lines during long-term 

subculture 

The evaluation of cell growth improvement during the evolution phase of the long-

term subculture was performed by analysing the rate of change in µ after the 

adaptation period. In this phase, observed improvements in µ commonly result from 

genetic drift, as seen for other long-term subculture regimes (Davies et al. 2012). For 

each clone, the average rate of change in µ was calculated as the slope of the linear 

regression of the growth rate values observed during the evolution phase (generations 
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57 to up to 220). Using the slope values (Figure 3-7), clones 7, 8, 11, 18, 20 and 21 

exhibited greater enhancement in µ, between 4.7 x 10-5 h-1 gen-1 (clone 21) and 7.3 x 

10-5 h-1 gen-1 (clone 7), also indicating that the genetic drift affected these populations 

higher. On the other hand, genetic drift improvements were lower for clones 1, 4, 12, 

14, 16 and 17 with values ranging between 9.31 x 10-7 h-1 gen-1 (clone 17) and 2.1 x 10-

5 h-1 gen-1 (clone 4). 

Comparing the rate data obtained for the adaptation and evolution phases (Table 

3-1), clones 10, 11, 19, 21 and 22 exhibited short adaptation periods (<28 generations), 

elevated rates of change in µ during the evolution phase (3.75-5.04 x 10-5 h-1 gen-1) and 

rapidly reached 200 generations (between 155 and 159 days of continuous sub-

cultivation). This data clearly indicates that since their isolation these clones were the 

most robust, more resistant to agitated environments and least heterogeneous 

populations. Contrary, clones 3, 4, 6, 13, 16 and 17 required longer time periods to 

develop fitness to the agitated environment (between 36 and 44 generations) and to 

reach 200 generations (up to 177 days). In addition, these unstable cell lines exhibited 

low rates of change in µ during the evolution phase. 

The heterogeneous and prolonged adaptation processes observed in unstable 

populations also increased the complexity and unpredictability of cultures because the 

populations were continuously changing their growth phenotype in response to the 

dynamic appearance and decline of phenotypes. It is thought that this active and 

dynamic heterogeneity in unstable populations is associated with the absence of 

functional genetic traits that would favour the resistance to stress conditions (Davies et 

al. 2005). As a consequence, these populations were forced to evolve resistant 

phenotypes to survive and proliferate in the presence of shear stresses and pressure 

forces produced by agitated cultures. On the other hand, stable populations probably 

inherited functional phenotypic characteristics that allowed them to resist shearing 

stress and easily get accustomed to the agitated environment. Considering these 

findings, the data here presented supports the hypothesis that clones are genetically 

and phenotypically different despite being obtained from the same parental CHO-S 

population and also confirms that by harnessing the cellular heterogeneity is possible 

to isolate stable cell lines able to resist specific culture environments such as media 

and culture conditions, and probably have improved manufacturing capabilities. 
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Table 3-1 Summary of the adaptation and evolution phases of 22 clonally-derived 

CHO-S cell lines during a long-term subculture regime 

Clone 
Rate of µ variability 

in adaptation phase 

Rate of change in µ 

in evolution phase 

Duration of 

adaptation phase 

Period to reach 200 

generations 

 
h-1 gen-1 (Rank) x10-6 h-1 gen-1 (Rank) Generations (Rank) Days (Rank) 

Clone 21 0.0002 (1) 4.70 (6) 0 (1) 155 (2) 

Clone 11 0.0002 (2) 5.04 (4) 0 (1) 157 (3) 

Clone 22 0.0002 (3) 3.49 (11) 0 (1) 157 (4) 

Clone 10 0.0002 (4) 3.75 (9) 0 (1) 155 (1) 

Clone 19 0.0004 (5) 3.88 (8) 20 (6) 159 (6) 

Clone 8 0.0005 (6) 4.77 (5) 28 (7) 159 (5) 

Clone 9 0.0006 (7) 4.15 (7) 52 (20) 174 (20) 

Clone 20 0.0006 (8) 6.69 (2) 12 (5) 169 (15) 

Clone 15 0.0008 (9) 2.89 (14) 32 (8) 168 (14) 

Clone 2 0.0010 (10) 3.36 (12) 56 (22) 172 (16) 

Clone 12 0.0010 (11) 1.96 (19) 52 (20) 172 (18) 

Clone 14 0.0010 (12) 2.05 (18) 40 (13) 168 (13) 

Clone 18 0.0011 (13) 6.40 (3) 36 (9) 173 (19) 

Clone 7 0.0011 (14) 7.26 (1) 36 (9) 177 (22) 

Clone 5 0.0011 (15) 2.75 (16) 40 (13) 167 (9) 

Clone 1 0.0012 (16) 1.93 (20) 40 (13) 168 (11) 

Clone 13 0.0012 (17) 3.74 (10) 40 (13) 174 (21) 

Clone 6 0.0013 (18) 2.91 (13) 36 (9) 162 (8) 

Clone 4 0.0014 (19) 2.16 (17) 40 (13) 168 (12) 

Clone 16 0.0014 (21) 1.47 (21) 40 (13) 167 (10) 

Clone 17 0.0014 (20) 0.93 (22) 36 (9) 161 (7) 

Clone 3 0.0017 (22) 2.86 (15) 44 (19) 172 (17) 

Median 0.00105 3.43 36 168 

The rate of µ variability was calculated during the adaptation phase (generations 0 to 57) and 

the rate of change in µ was calculated as the slope of the linear regression of the growth rate 

values observed during the evolution phase (generations 57 to up to 220). The value in 

parenthesis indicates the rank of each parameter; the blue and red values are the top 7 and 

bottom 7, respectively.  
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Figure 3-7 Average rate of change in µ [hr-1 gen-1] for 22 clonally derived CHO-S cell 

lines during the evolution phase of a long-term subculture regime (generations 57 to 

up to 220). The left and right of the box represent the 25th and 75th percentiles, the line 

within the box the median, the whisker the 0th and 100th percentiles and dots the outliers. 

 

3.4.5 Growth patterns among clonal CHO-S populations over long-term culture 

To test the hypothesis that phenotypic heterogeneity observed in the 22 clonal 

cell lines also affected other growth characteristics, measurements of cell size (Figure 

3-8A), viable cell density (Figure 3-8B) and cell viability (Figure 3-8C) were performed 

during each passage. The collected data was plotted to identify the extent of variation 

among clones, corroborating that the 22 clones were highly variable among them and 

within them along the long-term cultivation (Figure 3-8). Grouping each growth 

parameter by subpopulations (i.e., 0, 40, 80 160, or 200 generations) it was possible to 

observe that the age of the clones had an effect on cell size (two-way ANOVA, p<0.01, 

F=3.79), VCD (two-way ANOVA, p<0.0001, F=75.33), and cell viability (two-way 

ANOVA, p<0.0001, F=29.47).  

The large cell viability and cell size heterogeneity during adaptation phase clearly 

validate that the majority of the clones did not exhibited a fully adapted phenotype to 

agitated conditions and consequently cells enhanced their genetic instability to 

accumulate more phenotypic cellular diversity with growth advantages that allowed 

them to survive and proliferate under agitated conditions (Greaves and Maley 2012). 

On the other hand, the high cellular viabilities and cell size stabilisation (between 15 

and 16 μm) during evolution phase confirms that clones developed phenotypes able to 

survive to the agitated environment and corroborates that populations underwent 

genetic drift, resulting in adapted phenotypes with low inter-heterogeneity.  

Altogether, this data shows the feasibility for harnessing the genetic 

heterogeneity within CHO cells to isolate cell lines with varied cell growth 
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characteristics and the possibility to improve cellular robustness through an 

accelerated genetic drift. Likewise, these observations agree with previous studies that 

exhibited the intrinsic variability in cell growth performance among clonal cell lines in 

CHOK1SV (Davies et al. 2005) and NS0 (Barnes et al. 2006) cells. 

 

 

Figure 3-8 Cell growth characteristics for 22 LDC clonally-derived CHO-S cell lines 

during long-term culture. Clones were grown in agitated conditions for up to 220 

generations to characterise their growth phenotype. Average cell diameter (A), viable cell 

density (B) and cell viability (C) were monitored every four days using a Vi-CELL XR cell 

viability analyser. The patterns consist of an initial adaptation phase (generations 0-56), 

followed by an evolution phase (generations 57-220). 
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3.4.6 Clonal CHO-S cell lines at mid- and late-generations of long-term cultivation 

improved their growth phenotype 

The degree of divergence in growth rates between the parental population and 

clonal CHO-S cell lines along long-term cultivation was assessed (Figure 3-9). In 

general was observed that all clones at subpopulations 0 and 40 showed lower µ rates 

than the parental population (between 0.67 to 1 fold change), whilst some clones at 

subpopulations 80 and 120 started to exhibit higher growth rates than the parental 

population (up to 1.11 fold changes), and by subpopulations 160 and 200 all clones 

exhibited growth advantages (up to 1.2 fold changes). It is important to emphasise that 

the growth performance of the parental population was monitored only during three 

passages and not along an extended culture to avoid significant alteration on its 

phenotype because the goal of this project was to assess whether the growth 

performance of the isolated clones improved with respect to the parental population. 

Using 0.031 to 0.038 h-1 (LifeTechnologies 2007) as values of reference for 

comparing the average proliferation rates among the clonal CHO-S populations, it can 

be observed that at the beginning of the long-term cultivation 17 out of 22 clones 

exhibited detrimental μ performances (<0.031 h-1; “subpopulation 0”; Figure 3-9), being 

clones 2, 10, 11, 21 and 22 those with μ values within the mentioned limits. The 

analysis described in Figure 3-9 also shows that clones fell within the μ limits when 

they became adapted to the agitated environment (between 40 and 80 generations; 

“subpopulation 40”). Once adapted, clones started to exhibit proliferation rates above 

the reference μ limits (>0.038 h-1; clones 6, 8 and 17 at “subpopulation 120”) and 

eventually the majority of them (16 out of 22 clones at “subpopulation 160” and 19 out 

of 22 clones at “subpopulation 200”) attained superior growth rates. 

Comparing the overall cell growth performance, viable cell density and average 

cell diameter during the evolution phase (Table 3-2), clones 6, 8, 11, 17, 19, 21 and 22 

were the cell lines that exhibited the fastest growth rates over the whole evolution 

phase, whereas clones 2, 3, 9, 12, 18 and 13 exhibited the slowest growth 

performance. When the average VCD was compared the clones 4, 7 8, 11, 17, 19 and 

20 were the cell lines that exhibited higher VCD during the whole evolution phase, 

whilst the lowest VCD were observed in clones 2, 3, 5, 9, 12 and 13. Using the same 

analogy for the average cell diameter, clones 10, 13, 16, 21 and 22 were the clones 

with elevated cell diameter during the whole evolution phase, whilst the lowest 

diameter were observed in clones 2, 8, 6, 17 and 19. 
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Table 3-2 Average specific growth rate (µ), viable cell density (VCD) and cell diameter 

for 22 clonally-derived CHO-S cell lines and parental CHO-S population (PAR) during 

the evolution phase of a long-term subculture.  

Clone 

Specific growth rate 

[h-1] 

Mean ± sd (Rank) 

VCD 

[106 cells mL-1] 

Mean ± sd (Rank) 

Size 

[Microns] 

Mean ± sd (Rank) 
Clone 8 0.0402 ± 5e-04 (1) 11.6 ± 0.6 (1) 15.1 ± 0.1 (1) 

Clone 19 0.0392 ± 5e-04 (2) 10.4 ± 0.6 (3) 15.3 ± 0.1 (5) 

Clone 17 0.0392 ± 4e-04 (3) 10.6 ± 0.6 (2) 15.3 ± 0.1 (4) 

Clone 11 0.0386 ± 5e-04 (4) 9.7 ± 0.5 (4) 15.6 ± 0.1 (17) 

Clone 6 0.0384 ± 5e-04 (5) 9.1 ± 0.6 (9) 15.3 ± 0.1 (3) 

Clone 21 0.0384 ± 5e-04 (6) 8.8 ± 0.5 (14) 15.7 ± 0.1 (18) 

Clone 22 0.0384 ± 4e-04 (7) 9.1 ± 0.5 (10) 16.0 ± 0.1 (22) 

Clone 10 0.0383 ± 5e-04 (8) 9 ± 0.5 (11) 15.8 ± 0.1 (21) 

Clone 20 0.0377 ± 7e-04 (9) 9.4 ± 0.6 (5) 15.6 ± 0.1 (16) 

Clone 16 0.0376 ± 4e-04 (10) 8.8 ± 0.5 (15) 15.8 ± 0.1 (20) 

Clone 14 0.0373 ± 4e-04 (11) 8.9 ± 0.4 (12) 15.6 ± 0.1 (15) 

PAR 0.0371 ± 6e-04 (12) 7.5 ± 0.2 (21) 16.2 ± 0.01 (23) 

Clone 15 0.0371 ± 5e-04 (13) 9.3 ± 0.6 (8) 15.5 ± 0.1 (11) 

Clone 4 0.0371 ± 3e-04 (14) 9.4 ± 0.5 (7) 15.5 ± 0.1 (10) 

Clone 5 0.0370 ± 4e-04 (15) 8.1 ± 0.5 (19) 15.6 ± 0.1 (14) 

Clone 1 0.0370 ± 3e-04 (16) 8.9 ± 0.4 (13) 15.5 ± 0.1 (9) 

Clone 7 0.0369 ± 7e-04 (17) 9.4 ± 0.6 (6) 15.5 ± 0.1 (8) 

Clone 18 0.0368 ± 7e-04 (18) 8.7 ± 0.5 (16) 15.5 ± 0.1 (7) 

Clone 3 0.0368 ± 4e-04 (19) 8.6 ± 0.4 (17) 15.6 ± 0.1 (13) 

Clone 12 0.0365 ± 3e-04 (20) 8.3 ± 0.5 (18) 15.6 ± 0.1 (12) 

Clone 9 0.0363 ± 5e-04 (21) 8 ± 0.4 (20) 15.5 ± 0.1 (6) 

Clone 2 0.0357 ± 4e-04 (22) 7.4 ± 0.4 (22) 15.3 ± 0.1 (2) 

Clone 13 0.0348 ± 4e-04 (23) 6.7 ± 0.4 (23) 15.8 ± 0.1 (19) 

Average 0.0375 ± 1e-03 8.9 ± 1.1 15.6 ± 0.2 

The mean value and standard deviation were calculated using the experimental data collected 

between generations 57 and 200 for the clones (1-22) and during three passages for the 

parental cell line (PAR). The value in parenthesis indicates the rank of each parameter; the blue 

and red values are the top 7 and bottom 7, respectively. 
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Table 3-2 also exhibited that the cell growth characteristic measured during the 

whole evolutionary phase were highly variable. For example, the viable cell density 

ranged between 6.7 x 106 and 11.6 x 106 cells mL-1 with a mean slightly superior than 

the parental cell populations (8.9 and 7.5 x 106 cells mL-1, respectively). Similar results 

were observed in the proliferation rates and cell diameter fluctuating between 0.035 

and 0.040 h-1 with a mean of 0.0375 ± 0.001 h-1 and between 15.1 and 16.2 microns 

giving an average of 15.6 ± 0.2 microns. In addition, when the 22 clonal CHO-S cell 

lines were compared with the parental population (Table 3-2), it was observed that 10 

clones improved their average proliferation rates (up to 0.040 h-1), 9 exhibited similar 

growth rates (~0.037 h-1) and 3 reduced their growth performance (up to 0.035 h-1). In 

the same context, from the 22 clones, 20 (90% of the clones) exhibited higher average 

VCD, one showed similar average VCD and one displayed lower average VCD (7.4 x 

106 cells mL-1). From clones with improved VCD, it was seen that the majority of them 

exhibited a measurement of VCD between 8.6 and 9.4 x106 cells mL-1. On the other 

hand, the cell diameter measurements showed that the parental population are by far 

the biggest cells (16.2 microns cell diameter). These drops in cell diameter among the 

clones may suggest that these derived cell lines developed a more efficient metabolism 

and probably they required to produces of less biomolecules to proliferate. 

 

3.4.7 Clonal CHO-S populations reduced their cell volume during evolution phase 

To identify any association between cell diameter and proliferation rate, the 

values were ranked and compared in Table 3-2. The data show that the majority of 

faster-growing clones (e.g., clones 6, 8, 17 and 19) exhibited a smaller cell size, 

suggesting the existence of a negative correlation. Previous experiments reported that 

cell size, either measured as cell diameter, volume, mass or protein content, correlates 

with cell growth and productivity (Davies et al. 2012; Kim et al. 2001). For example, 

Davies (2012) found that CHOK1-SV cell size and protein content inversely correlated 

with proliferation rate (Davies et al. 2012). A contrary, results were observed by 

Dreesen and Fussenegger (2011) finding a positive correlation between cell size and 

cell growth and productivity through mTOR over-expression. 

To corroborate whether exist any correlation between cell size and proliferation 

rates, a Pearson’s correlation was performed, showing a negative, but weak correlation 

between cell diameter and specific growth rate (PPMCC r2= -0.2874, n=22; Figure 

3-10A). It can be suggested that this weak association resulted from the mere fact that 

clones became more robust over increasing generation as a result of adaptation and 
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evolution processes. In order to validate these findings, the average cell size data 

collected for all the 22 clones during the long-term sub-cultivation was analysed as 

subpopulations (subpopulations 0, 40, 80, 120, 160 and 200; Figure 3-10B. however, 

the global analysis did not exhibited significant changes over the extended cultivation, 

probably indicating that CHO-S cells may have mechanisms that regulate cell size 

The analysis of cell variability among subpopulation agreed with the previous 

analysis (see section 3.4.3), showing that subpopulation 0 exhibited the greatest 

variation, which was caused from a continuous appearance of fitted and non-fitted 

phenotypes within population to cope with agitated environments. Also, indicating a 

significant reduction of 30% in cell size variability during the transition from adaptation 

to evolution phase and not significant changes along the whole evolution phase (Figure 

3-10B). The extent of phenotypic heterogeneity observed among clones confirmed that 

the donor population contains a mixture of phenotypes. This analysis also agrees with 

previous research that found a substantial clone specific variation in cell size, 

measured as cell volume and cell protein biomass, among clonal CHOK1SV 

populations (Davies et al. 2012). 

 

 

Figure 3-10 Cell size for 22 clonally-derived CHO-S populations along long-term 

culture. For each clone, during the long-term cultivation, growth parameters were 

measured every 4 days for up to 220 generations. The relationship between average 

values for cell diameter and specific growth rate for the whole long-term cultivation (A) and 

cell diameter values grouped into subpopulations 0 (generations 0-39), 40 (generations 40-

79), 80 (generations 80-119), 120 (generations 120-159), 160 (generations 160-199) and 

200 (generations 200-220) (B) are shown. The bottom and top of the box represent the 

25th and 75th percentiles, the line within the box the median, error bars indicate the 0th and 

100th percentiles and dots are outliers.  
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The comparison between the average cell growth and proliferation rates along 

the adaptation phase seem to indicate that clones 6, 8, 17 and 19 have the best cell 

growth phenotypes as these faster-growing cell lines required less cellular protein 

content to survive and proliferate whereas clone 13 the lower phenotype is observed in 

clone 13 as present poor growth performance and large cell size. However, it is 

important to note that these findings only gave preliminary and general trend of the 

clones’ diversity; to make a convincing conclusion further data analysis were carried 

out and described in chapter 4, 5 and 6. 

 

3.5 General discussion 

The phenotypic heterogeneity among clonally-derived CHO-S cell lines observed 

in this chapter supports the hypothesis that CHO populations contain a substantial 

degree of phenotypic heterogeneity which can be harnessed to obtain cell lines with 

desirable characteristics by implementing robust techniques such as cell cloning. The 

data also confirms that CHO cell populations always increase their phenotypic 

heterogeneity at initial stages of subculture despite being generated from a single cell 

and constantly interact with their surroundings in order to adapt and proliferate. Similar 

behaviour have previously been reported by Barnes et al. (2006) and (Davies et al. 

2012) suggesting that the high genetic instability within populations result in a constant 

appearance of subpopulations with varied phenotypic characteristic along the culture. 

The data presented in this chapter confirm that clonal populations are dynamic systems 

and thus clonal populations are non-identical, leading to unpredictable cellular 

responses during cell line development processes. 

The strategy implemented in this chapter was designed to explore the phenotypic 

variation within parental populations by using the limiting dilution cloning methodology 

to generate cell lines and to evaluate the stability of these populations along long-term 

culture by routinely sub-culturing the isolated clones for up to 220 generations. In this 

strategy the LDC was chosen as the primary method for creating clonal derivatives of 

CHO-S cells owing to its simple operation, low cost and low technical requirements that 

have positioned it as the most common method for screening production cell lines. This 

cell cloning method involves a large cellular dilution that can mislead the estimation of 

monoclonality due to single cells being undetected during the verification of single cell 

colonies (Underwood and Bean 1988). Therefore, to increase the chances of obtaining 

monoclonal colonies two LDC rounds are usually performed. It is important to note that 

the proposed strategy showed in this chapter is not limited to the implementation of 
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LDC as the unique technique for exploiting the vast phenotypic variation within CHO 

populations. Contrary, I suggest that coupling this strategy with automated or semi-

automated clone screening technologies such as fluorescence-activated cell sorting 

(FACS) systems, ClonePix FL (Life Technologies) or Cell MetricTM CLD (Solentim) can 

significantly increase the feasibility of this strategy, and thus accelerate the selection 

processes to exploit even more the great cellular diversity in CHO populations. For 

example, FACS systems can be used to isolate and enrich populations with determined 

physiological or functional criteria (e.g., protein content, glycoform patterns and cellular 

content) by labelling specific proteins, then measuring fluorescence from each cell and 

lastly sorting them into specific collection tubes or well-plates(Lai et al. 2013). 

The considerable variation between the isolated clones exhibited in this chapter, 

strongly agrees with previous studies which elucidated the phenotypic variation in 

derivative CHO cell lines such as in CHO DG44 (Chusainow et al. 2009; Kim et al. 

1998), CHO DP-12 (Beckmann et al. 2012), GS-CHOK1SV (Davies et al. 2012), GS-

CHO (Bailey et al. 2012) and NS0 (Barnes et al. 2006) populations. These studies 

showed that mammalian cell populations consist of a mixture of subpopulations with 

different cell performances which mould the overall cell performance. Additionally, they 

also suggested that CHO populations are constantly evolving beneficial characteristics 

(e.g. high specific growth rates, elevated cell densities, efficient protein synthesis and 

resistant phenotypes) that allow them to acquire competitive phenotypes. Although 

CHO cells present high heterogeneity and this inherent genetic trait cannot be 

eliminated, this study and previous studies in CHO and NS0 cells have provided 

evidence that the heterogeneity level can notoriously be reduced by accelerating 

genetic drift (Barnes et al. 2006; Davies et al. 2012). Moreover, the findings presented 

in this work showed that the genetic drift cannot ensure the low heterogeneity along 

culture because CHO cells have a greater ability to unpredictably change their overall 

performance as the result of multiple changes in their genome or regulation in 

response to extrinsic factors which are translated as beneficial and non-beneficial 

phenotypic variation which alters the populations’ balance. 

Although it is clear that the phenotypic variation may result from mutation(s) 

across the genome, the implementation of genomic analysis such a karyotyping 

(Derouazi et al. 2006; Worton et al. 1977) and genomic sequencing (Lewis et al. 2013; 

Xu et al. 2011) for characterising the genetic and phenotypic heterogeneity has not 

been widely used due to the inherent genetic instability within CHO cells imposing 

genomic restrictions and increasing the complexity of data analysis between and within 

populations. This inherent complexity occurred as a result of the genetic instability arise 
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from cell lines and even clonal cell lines having undergone a large number of mutations 

across time, making them unique (Lewis et al. 2013). Therefore, none of these 

genomic analytical approaches have given a complete picture of variations at the whole 

genome level. Cytogenetic examination carried out by Derouazi et al. (2006) and 

Worton et al. (1977) exhibited that derivative CHO cell lines underwent extensive 

chromosomal aberrations since their origins (i.e., aneuploidy, translocations and 

deletions) confirming that CHO cell’s karyotypes not only differed from the normal 

Chinese hamster karyotype, but also differed from one population to another. These 

accumulated genomic aberrations observed in CHO cell lines clearly constrained the 

identification of any correlation between the degree of chromosomal instability and 

populations’ stability. 

The large genetic differences among individual cells makes genomic 

characterisation of a whole population harder; therefore many researchers have 

preferably used global phenotypic characteristics of the whole population such as cell 

growth, productivity and glycosylation patterns as markers for the identification and 

semi-quantification of genetic heterogeneity (Barnes et al. 2006; Chusainow et al. 

2009; Davies et al. 2012; Kim et al. 1998). In this study I used the growth rate 

heterogeneity as indicator of genetic heterogeneity, finding that the large heterogeneity 

observed at early generations probably resulted from the initial loss of phenotypic 

characteristics during clonal cell line generation, which previously had allowed them to 

resist mechanical stressors such agitation and cell shearing. These findings clearly 

suggest that the environmental conditions used during cell cloning and cell expansion 

were not optimal for the long-term incubation conditions the cells would encounter, 

probably because single colonies modified their original phenotypic status to become 

adapted to static environment and thus becoming less resistant to mechanical stress. 

The subsequent transfer of the clonal cell lines to the agitated environment triggered 

and enhanced the inherent genomic instability which resulted in an enormous 

phenotypic heterogeneity within populations. The fact that some clones did not exhibit 

adaptation periods suggest that they preserved heritable genetic characteristic that 

promoted their easy adaptation to agitated environments. Contrary, it can be suggested 

that heterogeneous populations may have silenced or lost some heritable mechanical-

resistant genetic characteristics, which previously allowed them to survive in shaking 

environments, triggering and enhancing their “mutator phenotype” in an effort to cope 

with the mechanical environmental stressor and proliferate under agitated environment.  

It can be suggested that the observed heterogeneity at early stages of the long-

term cultivation was not only derived from the inherent genetic instability (genetic 
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mutations). In fact, previous observations have suggested that epigenetic factors as 

well as many physical, chemical and biological factors that co-exist in culture (i.e., age 

and stage of culture, cell growth stage, environmental conditions, metabolic flux, 

osmolality, temperature, characteristic of the cells) contribute to the acquisition of 

phenotypic changes (Merlo et al. 2006; Pilbrough et al. 2009). Other studies have 

suggested that cell background status (i.e., size, cell density, growth rate, growth 

phase and resistance to stressors) is determinant in the acquisition of phenotypic 

heterogeneity (Ryall et al. 2012). Together, these epigenetic, genetic and background 

factors make up and define the phenotype of populations. 

The early long-term stage data analysis strongly agrees with other studies which 

analysed the cell growth performance of derived cell lines as marker of heterogeneity, 

in special after three consecutive rounds of LDC (Barnes et al. 2006), demonstrating 

that NS0 populations consist of mixture of multiple phenotypes in culture which vary 

from population to population and confirming that inherent genetic instability cannot be 

supressed, therefore clonally-derived cell lines must be considered as heterogeneous 

populations even if multiple rounds of cell cloning are performed. In addition, the mid- 

and late-long-term data also agrees with Davies et al. (2012) who demonstrated that 

populations acquire fitness advantages through accelerated genetic drift. The collected 

data along the long-term cultivation also evidenced that CHO cells exhibit regulatory 

mechanisms that maintain the heterogeneity within boundaries to avoid extreme 

phenotypic characteristics such as elevated proliferation rates that may risk the cell 

integrity by not meeting the nutritional demands. Therefore, the supplemented CD CHO 

media may set the boundaries for specific cell growth values, also establishing a 

maximum proliferation rate for each of the 22 clonally derived CHO-S cell lines. 

The highest growth heterogeneity observed for the majority of the clonal cell lines 

during the adaptation phase clearly indicated that changes in the culture environment 

triggered adaptive pathways to develop phenotypic traits that contribute to cellular 

fitness. However, the mechanisms that define the population’s adaptation rate in new 

culture environments are mostly unknown. Ryall et al. (2012) suggested that the initial 

cellular heterogeneity and culture background are determinants to develop cellular 

fitness during the transition into new environments. Ha et al. (2011) suggested that 

epigenetic factors also provide mechanisms that increase the variability among and 

within populations by modifying the gene expression and cell growth. In the same 

context, other researchers have demonstrated that high genetic instability results in 

beneficial and deleterious mutations through time, affecting the cellular metabolism 
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which leads to phenotypic variability throughout the culture (Barnes et al. 2006; Davies 

et al. 2012; Kim et al. 1998). 

The data here presented shows that the 22 clonal derivatives CHO-S cell lines 

exhibited diverse adaptation periods ranged from 0 to 56 generations, and only four 

clones (clones 10, 11, 21 and 22) exhibited optimal growth characteristics at generation 

0 and also displayed lower heterogeneity during the extended cultivation. On the other 

hand, the rest of the clones exhibited sub-optimal growth performance at generation 0 

and thus required to evolve beneficial growth characteristic to cope with the 

environmental stressor, ranging their adaptation periods from 12 to 56 generations. 

These findings support that change in culture environments trigger cellular 

heterogeneity, but also suggest that the cellular ability to acquire beneficial growth 

features depended on inherited genetic and epigenetic traits and from the cellular 

background stablished before the environmental transition. 

Analysis of the adaptation rates exhibited that the CHO-S clones with sub-optimal 

growth performance were the most genetically unstable populations and therefore they 

required to accumulate a large number of beneficial mutations which later were 

observed as large adaptation periods and elevated phenotypic heterogeneity, whereas 

the genetically stable populations exhibited optimal and stable growth characteristics 

with shorter or even absent adaptation periods. Building on these results, this work 

suggested that phenotypically stable clonal CHO-S cell lines are present within 

parental populations and probably inherited growth advantages to resist the 

mechanical stress, while unstable populations probably silenced or lost those features, 

leading to cellular stress that limited their rapid adaptability to agitated environments. 

Considering that the phenotypic heterogeneity results from accumulated mutations, the 

µ variability observed for stable and unstable populations indicated that unstable 

populations increased their mutator phenotype up to 8.5 fold in an effort to survive, 

compared with genetically stable populations. 

The examination of cell specific growth rates during the evolution phase 

(subpopulations 40, 80, 120, 160 and 200) clearly agrees with previous works which 

observed that clonal populations enhanced their growth performance when subjected 

to a continuous and extended cultivation (Beckmann et al. 2012; Davies et al. 2012). It 

is plausible to suggest that improvements in proliferation rates during the evolution 

phase could be attributed to genetic drift during each subculture, which intentionally 

favoured a constant and random selection of the fast-growing phenotypes that would 

dominate the population. The constant dominance of faster growing populations during 

the mid-exponential growth phase supports this hypothesis, indicating that the best 
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fitted subpopulations have higher probabilities to be picked up and expanded in the 

subsequent sub-cultivation. On the other hand, clonal evolution theory may also 

explain why clonal cell lines continuously improved their growth phenotype. This theory 

suggests that cell genetic variability within a population confers selective growth 

advantages that allow individual clones to out-compete (Greaves and Maley 2012; 

Nowell 1976). Therefore, is probable that during the extended cultivation the fast-

growing subpopulations gradually increased their population size and progressively 

minimised or inhibited the population size of slow-growing subpopulations. 

Although it was observed that genetic drift notably reduced the cellular 

heterogeneity, its effects on each population depended on intrinsic factors such as 

cellular diversity, doubling times, metabolic efficiency and level of genetic instability, 

and from extrinsic factors such as population’s size, sampling volume and sampling 

frequency (Merlo et al. 2006). Together, these factors have the potential to completely 

reshape and reduce the diversity of one population by modifying the rates of fixation 

and loss of phenotypes in culture. Consequently all clones exhibited differences in the 

levels of growth heterogeneity throughout the long-term cultivation. The data presented 

in this chapter also corroborated that the phenotypic heterogeneity cannot be 

eliminated and that phenotypic heterogeneity can arise unexpectedly at any time of the 

cultivation by a random selection event that fixes a non-beneficial mutation. 

Analysis of cell growth during the late long-term cultivation stage (subpopulations 

160 and 200) revealed that clonal cell lines reached a near-maximum growth rate 

between the generations 160 and 220. Similar observations using anti IL-8-antibody-

producing CHO DP-12 (clone#1934, ATCC CCL-12445) resulted from the work 

performed by Beckmann et al. (2012), observing that subpopulations SP165 and 

SP420 (denoting 165 and 423 days of cultivation, respectively) attained a near-

maximal growth rate when cell samples from the long-term cultivation were cultivated in 

bioreactor systems. However, when the same samples were cultivated in shaking 

flasks, SP420 cells still improved their proliferation rates and even reached higher cell 

densities in culture. These findings suggest that the bioreactor strategy limited the 

overall performance of the long-term cell samples, probably because the bioreactor 

cultivation was performed using a non-optimised culture strategy. Thus, their findings 

corroborate that cell culture environment is a key player that moulds the growth 

behaviour and imposes proliferation rate boundaries to cell populations, and also 

exhibit that through culture environment optimisation (i.e., feeding strategy, nutrient 

availability, by-product accumulation, temperature and osmolarity) the µ boundaries 

can be increased. 
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Chapter 4 

Heterogeneous cell growth performance in clonal derivatives of 

CHO-S cells during fed-batch culture 

This chapter introduces the procedures employed to culture 22 clonally-derived 

CHO-S cell lines at early-, mid- and late-generations under fed-batch regimen, 

corresponding to generations 0, 80 and 200, respectively, followed by assessments of 

their growth characteristics during the fed-batch cultivation. Altogether, this 

methodology allows us to gain insight into growth dynamics within CHO cell 

populations and identify optimal growth performance among the clonally-derived CHO-

S populations. 

 

4.1 Background 

The fed-batch cultivation is the preferred culture mode for recombinant protein 

production, allowing the control of indispensable nutrients such as glucose and 

glutamine to avoid nutrient depletion, and reducing the inhibitory growth effects of by-

products by minimising their formation and accumulation (Altamirano et al. 2004; Chen 

et al. 2001; Gorfien et al. 2003; Mulukutla et al. 2012). In addition, fed-batch cultures 

make possible to control growth parameters such as the specific growth rate and 

culture growth phases, as well as to increase the longevity of the culture and achieve 

high cell densities, viabilities and productivities (Chu and Robinson 2001). In fed-batch 

cultivation the nutrients are added either continuously or semi-continuously in an 

attempt to maintain an active metabolism and meet the nutritional cellular demands for 

survival, proliferation and biomolecule production. Given the metabolic differences 

among CHO cell lines and incorporated genetic constructs, fed-batch optimisation must 

be carried out to obtain optimal growth and productivity performance. Inefficient nutrient 

feeding strategies generate unbalance in the metabolism which may lead to apoptosis 

or unpredictable cellular performance which jeopardises the quality, stability and 

structure of recombinant glycoproteins; it is not surprising that low culture 

performances observed in fed-batch cultures are usually associated to an ineffective 

feeding strategy (Fan et al. 2014; Ozturk et al. 1992; Yang and Butler 2000). 

During fed-batch cultures, the populations exhibit five growth phases: lag, 

exponential, deceleration, stationary and dead phases. The lag phase is a stage of 

adaptation to the new culture environment in which cells rearrange their metabolism to 

proliferate. This phase is usually short in recombinant production processes due to 



 Chapter 4  
 

 80 

cells being previously acclimatised to the cultivation conditions using the same media 

composition and culture environment, inoculating with cells at the mid-exponential 

growth phase also accelerates the transition into the following phase. The second 

stage corresponds to exponential growth, occurring when cells have been accustomed 

to the culture environment and the nutrient availability is not limited thus rapid 

proliferation is promoted. The deceleration phase follows when some of the essential 

nutrients are depleted (e.g., glutamine and glucose) or some by-products reach toxic 

levels, then cells rearrange their metabolism in order to meet their energetic 

requirements to survive, resulting in a gradual decrease of their proliferation rates. 

The stationary phase is the most important phase during the production of 

recombinant proteins because cells switch their metabolism to produce secondary 

metabolites such as antibodies. The ability of a culture to remain viable over extended 

time periods is a determinant factor that needs to be considered during recombinant 

protein production processes as longer periods imply higher volumetric productivities. 

In this growth phase, cells are metabolically active, but they minimise or even arrest 

their proliferation rates as a result of environmental changes such as essential nutrient 

depletion, elevated by-product build-up and osmolarity (Al-Rubeai and Singh 1998; 

Cotter and Alrubeai 1995). It has been suggested that phenotypic traits within 

populations play an important role during the stationary growth phase, for example 

beneficial growth traits permit cells to resist and/or tolerate elevated environmental 

stressors and remain viable over extended periods whereas cells with low tolerance 

levels compromise the cellular integrity in short time periods and trigger cell death.  

Cell death may occur by three mechanisms: necrosis, autophagy and apoptosis. 

Necrosis occurs when elevated stress in the environment generates a physical cellular 

damage on the cell membranes which results in membrane rupture and release of 

cytoplasmic content (Arden and Betenbaugh 2004; Laken and Leonard 2001). On the 

other hand, autophagy is a programed cellular death resulting from the exhaustion of 

essential nutrients triggering the reutilisation of internal biomolecules to meet the 

cellular metabolic demand (Levine 2005; Lum et al. 2005). Finally, apoptosis or 

programmed cell death is a controlled physiological mechanism responding to changes 

in the culture environment such as nutrient deprivation, by-product accumulation, 

oxygen limitation and hyperosmotic conditions (Laken and Leonard 2001; Vives et al. 

2003) and to endogenous events such as the cytochrome C release from the 

mitochondria and/or incomplete protein synthesis, folding and glycosylation in the 

endoplasmic reticulum (Arden and Betenbaugh 2004; Laken and Leonard 2001). 

Together, the death stimulus activate signalling cascade events that lead to notorious 
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changes in morphology (e.g., DNA condensation and fragmentation, cellular shrinkage, 

membrane bulging and apoptotic-bodies formation) and finally cell death (Arden and 

Betenbaugh 2004; Cotter and Alrubeai 1995). 

As mentioned above CHO cells are highly sensitive to changes in the culture 

environment and the fed-batch cultivation offers a rapid solution for minimising 

variations during production processes through monitoring the culture environment and 

controlling the cell growth characteristics (Laken and Leonard 2001). Taking into 

account the phenotypic heterogeneity among CHO populations, it is suggested that the 

assessment of growth performance during fed-batch cultures will permit to identify 

clonal populations with superior growth characteristics such as high tolerance to 

environmental stress, ability to reach elevated cellular densities, rapid proliferation 

rates and survival over extended culture periods. Additionally, fed-batch studies enable 

the evaluation of detrimental growth characteristics acquired during the long-term 

culture strategy used to generate the studied clones (see chapter 3). 

 

4.2 Chapter aims 

In this chapter, I investigated two hypotheses: (i) that the inherent genetic 

instability within a donor CHO-S population generated a panel of 22 clonal CHO-S cell 

lines with varied range of growth patterns such as elevated IVCD and tolerance to 

environmental stressors, and (ii) that during the adaptation and evolution phase clones 

diverged significantly from their initial growth status by acquiring beneficial and/or 

detrimental growth characteristics along the culture. Thereby, I suggest that: 

(i) The inherent cellular heterogeneity present within the parental CHO-S 

population permitted the isolation of clonally-derived cell lines with desired 

and relevant manufacturing characteristics such as elevated specific growth 

rate and IVCD. 

(ii) The panel of 22 clonally derived CHO-S cell lines would exhibit remarkable 

differences in the growth performance (i.e., variable IVCD, peak VCD, µ and 

cell size) at their different subpopulations along the long-term regimen (i.e., 

early, mid-, and late-subpopulations, corresponding to generations 0, 80 and 

200, respectively). 

(iii) The panel of 22 clonally derived CHO-S cell lines at early-subpopulations 

would exhibit a poor growth performance such as low viable cell densities, 

short fed-batch periods and slow proliferation rates, followed by notable 
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improvements in these growth parameters as the result of the adaptation and 

evolution phases that underwent each clonal CHO-S cell line during the long- 

term culture regime. 

The aim of this chapter is to reveal the phenotypic variability among the panel of 

22 clonally-derived cell lines with regards to their phenotypic stability along long-term 

culture regime (i.e., early, mid-, and late-subpopulations for each clone, corresponding 

to generations 0, 80 and 200, respectively), overall growth performance (i.e., IVCD, 

peak VCD, µ and cell size) and their proposed potential (i.e., for recombinant protein 

production or cell line development). Additionally, I aimed to identify, characterise and 

classify the cellular performance for 66 differently aged clonal CHO-S subpopulations, 

corresponding to three subpopulations for each clone at generations 0, 80 and 200, 

respectively, under fed-batch regimen to generate a panel of clonal CHO-S cell lines 

with relevant industrial capabilities or potential such as protein production processes 

and further cell line development processes. Finally, I aimed to identify the growth 

parameters that make cell lines with industrial relevance in order to improve screening 

methodologies to facilitate the selection of relevant phenotypes and recognise growth 

traits that permit to optimise biopharmaceutical processes. 

 

4.3 Chapter objectives 

To address the chapter aims, the objectives of the work presented here were to:  

i) Identify the optimal feeding strategy that permits an elevated integral of 

viable cell density among the clonally-derived CHO-S cell lines. 

ii) Evaluate the cell growth performance under optimised fed-batch culture for 

a set of 22 clonally-derived CHO-S cell lines at their early-, mid-, and late-

subpopulations. 

iii) Asses and compare the effect of long-term subculture regimen in the 

cellular growth performance among the clonally-derived CHO-S cell lines. 

iv) Identify clones with enhanced growth characteristics such as maximal 

specific growth rate (μ) and superior IVCD and peak VCD. 

v) Identity clones with phenotypic stability in terms of low variability in IVCD, 

peak VCD, µ and cell size throughout the early-, mid- and late-

subpopulations. 

vi) Identify the changes in the growth parameters that led to inferior or 

enhanced IVCD. 
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4.4 Results  

For achieving optimal cell growth performance during fed-batch studies, a multi-

day supplementation strategy was optimised using CHO CD EfficientFeed™ B as 

nutrient supplement. The feeding strategy that supported the highest VCD peak and 

IVCD growth performances was selected as the optimal strategy. The optimised fed-

batch culture consisted in growing CHO-S cells at initial density of 2-3 x 105 cells mL-1 

in 25 mL CD CHO media supplemented with 8 mM L-glutamine with a multi-day 

supplementation of 10% (v/v) CHO CD EfficientFeed™ B on days 3, 5, 7 and 9. The 

cultures were incubated in an orbital-shaker incubator at 37°C, 170 rpm, under 5% (v/v) 

CO2 atmosphere and ended when cell viability dropped below 60%. In addition, to 

ensure consistency between cultures, clones were grown using same media and 

nutrient supplement batch. 

Apart of the CD CHO media Fed-batch optimisation, an alternative fed-batch 

strategy was attempted, involving cultivation in CD FortiCHO™ Medium (Life 

Technologies, Paisley, U.K.) instead of CD CHO medium. However, when CD 

FortiCHO was used as basal media, IVCD values were lower than those observed with 

CD CHO medium. Studies have described that CD FortiCHO promotes better growth 

performance (Barrett et al. 2012), but the fed-batch optimisation performed here 

suggested that for achieving a top performance clones must be fully adapted to CD 

FortiCHO culture environment before carrying out the optimisation processes or even 

they should have been isolated using CD FortiCHO media. The fed-batch optimisation 

involving CD FortiCHO were performed after 5 cellular passages in CD FortiCHO, 

being the first three passages in a combination of CD CHO: CD FortiCHO media 

(50:50, 30:70 and 10:90, respectively) to allow a gradual and faster adaption. The 

passages 4 and 5 were carried out in 100% CD FortiCHO to allow full adaptation, 

however the optimisation data suggested that clones 4 and 10 did not develop fully-

adapted populations and thus longer periods of adaptation were likely required (data 

not shown). Therefore, the implementation of CD FortiCHO medium as an option for 

the fed-batch strategy basal media was discarded because longer adaptation periods 

would also lead to dramatic changes in the original phenotypic profile of the clones. 

For this set of experiments it was hypothesised that by growing cells under an 

optimised fed-batch regimen, clones with superior growth phenotype and adaptability 

would resist better the environmental conditions encountered during the cultivation, 

particularly in the late fed-batch culture stages. As a result, clones with superior growth 

performance and phenotypic characteristics would reach elevated cell densities and 

cell viability over the entire culture period. Additionally, because previous experiments 
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performed on the clones indicated that genetic drift improved their growth characteristic 

over increasing generations (chapter 3), the fed-batch cultivation was used to 

investigate if such improvements were maintained when cells were exposed to the 

environmental stress generated during this cultivation mode (i.e., fed-batch cultivation) 

after cell revival. 

For each of 22 clones, a set of three subpopulations (early-, mid- and late-

subpopulations, corresponding to generations 0, 80 and 200, respectively) generated 

from a long-term subculture regime were selected and grown in fed-batch culture in 

glutamine supplemented CD CHO media. It is theorised that each subpopulation 

represents a specific evolutionary time point along the long-term cultivation (see 

chapter 3). In that sense, the early-subpopulations (generation 0) represent cells during 

the adaptation phase, mid-subpopulations (generation 80) represent cells at the 

beginning of the evolution phase and late-subpopulations (generation 200) represent 

the evolved phenotypes. 

For the fed-batch cultures presented here, the viable cell density, cell diameter 

and cell viability was monitored daily, followed by the calculation of the specific growth 

rate and cumulative IVCD. The growth performance during fed-batch cultivation was 

characterised and compared with the parental population to corroborate that improved 

cell phenotypes can be generated by harnessing the genetic instability in a parental 

population, and that such derived populations maintain the improved phenotype after 

cryopreservation and cell revival. Finally, in order to facilitate the identification of the 

clones along the long-term culture, the name of each subpopulation was derived from 

the clone number and the time point at the moment in which the subpopulation sample 

was cryopreserved. For example, “clone 1-early” is the original subpopulation of the 

clone 1 generated before starting the long-term sub-culture (generation 0), “clone 1-

mid” is a subpopulation of the clone 1 cryopreserved after ~80 generations and “clone 

1-late” is a subpopulation cryopreserved after ~200 generations. 

 

4.4.1 Evaluating the maximal viable cell density among clonally-derived CHO-S 

cell lines during fed-batch culture 

The previous experiments described in chapter 3 exhibited that clonal 

populations derived from the same parental population were highly variable among and 

within them. To test the hypothesis that clones exhibited notable differences in their 

growth patterns over increasing generations, fed-batch studies using subpopulations at 

early (generation 0), mid (generation 80) and late (generation 200) stages of the long-
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term subculture were performed for each clone. The ANOVA analysis (Figure 4-2A) 

revealed that the age of the clones (i.e., 0, 80 or 200 generations) had an effect on 

VCD (two-way ANOVA, p<0.005, F=6.61) and the Tukey’s test showed significant VCD 

differences between early- and mid-subpopulation (Tukey’s test, p<0.0001) and early- 

and late- subpopulation (Tukey’s test, p<0.0001). 

Comparing the peak of viable cell density obtained during the fed-batch 

cultivation (Figure 4-1) it can be observed that values were highly variable among and 

within clones, ranging between 10.76 x 106 cells mL-1 for clone 22-Late and 26.71 x 106 

cells mL-1 for clone 11-Mid. In addition, it was observed that the majority of 

subpopulations tested (58 out of 66) acquired significant differences with respect to the 

parental cell line (17.73 x 106 cells mL-1). Analysing in detail these changes, the data 

shows that 16 out of the 22 clones at early subpopulations enhanced their VCD peak. 

However, only for clones 7, 9 and 19 the improvements observed were statistically 

significant (Student’s T-test, p<0.05). Similarly, 21 out of the 22 clones at the mid- and 

late-subpopulations exhibited increments, but only the changes for 12 mid- and 14 late-

subpopulations were statistically significant (Student’s T-test, p<0.05). From the 22 

clones, clones 12, 13, 16, 17, 18, 20 and 21 gradually improved the peak viable cell 

density with increasing generation number obtained from the long-term cultivation 

during the fed-batch culture. Contrary to this behaviour, clone 9 gradually declined the 

ability to reach higher cellular densities with increasing generation number, however its 

values were still higher than the observed for the parental population (1.23, 1.04 and 

1.05 fold change at early-, mid- and late-subpopulations, respectively). On the other 

hand, clones 3 and 10 exhibited improvements from early to mid-subpopulations 

without significant changes in the late-subpopulations, whereas clones 1, 4, 5, 6, 11 

and 22 improved their mid-subpopulations, but decreased at late-subpopulations, 

probably indicating changes within population structure generated from the genetic 

drift. Finally, clones 7, 14, 15 and 19 only increased their late-subpopulation peak VCD 

with respect to the values observed for each clone at early-subpopulations. 

To analyse the overall peak VCD trend among subpopulations the data was 

grouped according to subpopulations irrespective of individual clones, this analysis 

showed that clones tended to significantly improve their VCD peak with increasing 

generation number (two-way ANOVA, p<0.003, F=6.6), exhibiting overall 

improvements of 7 and 15% at mid- and late-subpopulations, respectively. Moreover, 

the Tukey’s test showed that the differences between early- and mid- subpopulations 

and also between early- and late-subpopulations were statistically significant (Tukey’s 

p<0.02 and p<0.005, respectively), in contrast, no significant differences were 
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observed between mid- and late-subpopulations (Tukey’s p>0.9). The data also 

displayed that, overall, the mean VCD peak values for early-, mid- and late-

subpopulations were greater than the value obtained for the parental population by 7, 

21 and 23%, respectively (Figure 4-2A).  

 

 

 

Figure 4-1 Peak of viable cell density for 22 clonally-derived CHO-S cell lines during 

fed-batch culture. For each clone, early-, mid- and late-subpopulations generated from a 

long-term subculture regime, corresponding to generations 0, 80 and 200, respectively, 

were grown in fed-batch culture in CD CHO media supplemented with 8 mM L-glutamine 

and maintained at 37°C, 170 rpm, under 5% (v/v) Catmosphere until culture viabilities 

dropped below 60%. During the culture, 10% (v/v) CHO CD EfficientFeed™ was fed at 

days 3, 5, 7 and 9. The viable cell density was evaluated during the fed-batch culture and 

the highest value is the peak of viable cell density. The mean and standard deviation were 

calculated from duplicate fed-batch cultures. The * denotes a significant difference between 

subpopulation and parental cell line values (Student’s T-test, p<0.05). The dotted line 

indicates the peak of viable cell density reached by the parental population. 
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Figure 4-2 Peak viable cell density patterns for 22 clonally-derived CHO-S cell lines 

during fed-batch culture. Cells were grown in fed-batch culture in CD CHO media 

supplemented with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) 

CO2 atmosphere until culture viabilities dropped below 60%, during the culture 10% (v/v) 

CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. Viable cell density was assessed 

daily and the maximum value for each clone is reported as the peak of viable cell density. 

For each clone, early-, mid- and late-subpopulations generated from a long-term subculture 

regime, corresponding to generations 0, 80 and 200, respectively, were evaluated and 

grouped according to long-term culture stage (A). Also, the obtained values for early-, mid- 

and late-subpopulations for each of the 22 clones are presented (B). The blue dotted line 

indicates the peak of viable cell density of the parental population and the diagonal black 

line represents the regression line which is accompanied by the slope value. 
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Clones at early subpopulation showed VCD peak values in the range of 14.78 to 

22.39 x106 cells mL-1 with a mean of 19.03 x106 cells mL-1. Clone 7 was the population 

that displayed the highest peak of viable cell density at this early-subpopulation, 

maintaining similar maximal density value at mid-subpopulation and enhancing its 

capacity in the late-subpopulation (1.07 fold changes). Contrary, clone 17 showed the 

lowest VCD peak among clones at the early subpopulation, but exhibited greater 

improvements at mid- and late-subpopulations (1.36 and 1.61 fold changes, 

respectively). Among the clones with low peak of VCD at early-subpopulations, clone 

13 showed the lowest improvements in subsequent subpopulations (5 and 22% 

increments at mid- and late-subpopulations, respectively) and was the unique clone 

with two out of three subpopulations having lower VCD peak values than the parental 

population (Figure 4-1). 

Using the variation range of VCD peak values for each clone’s subpopulations as 

indicator of phenotypic stability (Figure 4-2B), it was observed that clones 2, 4, 7, 8 and 

12 were the most stable clones, whereas clones 1, 5, 16, 17 and 22 showed large 

variability for the long-term cultivation derived cell populations. The data also showed 

that the stable clones exhibited better VCD performance than the parental line since 

early subpopulations, indicating that probably this clones inherited beneficial traits 

which prevented increments in genetic heterogeneity, and probably this slight 

enhancement in VCD peak, observed at mid- and late-subpopulations, resulted from 

genetic drift. On the other hand, the phenotypically unstable populations (clones 1, 5, 

16 and 17) exhibited low VCD peak performance at early subpopulations and notable 

improvements at mid- and late-subpopulations, it can be suggested that this cellular 

behaviour observed at early subpopulations was the result of their high phenotypic 

heterogeneity with an elevated proportion of cells that inherited deleterious phenotypic 

traits which limited their growth in agitated culture environments triggering to 

suboptimal performances (see chapter 3), the enhancements observed at mid- and 

late-subpopulations resulted from beneficial growth characteristics acquired during the 

adaptation phase and evolution phase leaded for genetic drift (see chapter 3). 

 It is important to note that clones with stable populations along increasing 

generations (clones 2, 4, 7, 8 and 12) not exhibited significant changes in maximum 

viable cell density among early-, mid- and late-subpopulations (Student’s T-test, 

p>0.05; data not shown), however, it is expected that these clones differ significantly in 

other growth parameters (e.g., μ and IVCD) and in their metabolic activity (e.g., glucose 

consumption and lactate production). To gain more insight into the clonal variability 

among and within clones, these growth parameters are analysed in the next sections. 
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4.4.2 Fed-batch cultivation revealed that clonally-derived CHO-S cell lines 

improved their specific growth rate throughout the long-term cultivate regimen. 

To evaluate if the differences in µ described along the long-term cultivation (see 

chapter 3) were conserved after cell revival and during the fed-batch cultivation, and to 

compare if the findings observed with the peak of VCD evaluation (section 4.4.1) were 

replicated by analysing a different growth parameter, the specific growth rate at mid-

exponential growth phase was used as indicator of phenotypic change. It is important 

to note that the specific growth rate at mid-exponential growth phase was measured 

before starting with EfficientFeed™ B feeding, which allows for comparison with long-

term cultivation derived data (chapter 3). 

 

Figure 4-3 Specific growth rate at mid-exponential growth phase for 22 clonally-

derived CHO-S cell lines during fed-batch culture (before starting the feeding 

scheme). For each clone, early-, mid- and late-subpopulations generated from a long-term 

subculture regime, corresponding to generations 0, 80 and 200, respectively, were grown in 

fed-batch culture in CD CHO media supplemented with 8 mM L-glutamine and maintained 

at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere until culture viabilities dropped below 

60%. During the culture 10% (v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. 

The mean value and standard deviation were calculated from duplicate fed-batch cultures 

at the mid-exponential growth phase prior to initiation of feeding scheme. The * denotes a 

significant differences between subpopulation and parental cell line values (Student’s T-

test, p<0.05). The dotted line indicates the specific growth rate reached by the parental 

population. 
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Figure 4-4 Specific growth rate patterns at mid-exponential growth phase for 22 

clonally-derived CHO-S cell lines during fed-batch culture (before starting the 

feeding scheme). Cells were grown in fed-batch culture in CD CHO media supplemented 

with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere 

until culture viabilities dropped below 60%, during the culture 10% (v/v) CHO CD 

EfficientFeed™ was fed at days 3, 5, 7 and 9. For each clone, early-, mid- and late-

subpopulations generated from a long-term subculture regime, corresponding to 

generations 0, 80 and 200, respectively, were evaluated and grouped according to long-

term culture stage (A). Also, the obtained values for early-, mid- and late-subpopulations for 

each of the 22 clones are presented (B). The blue dotted line indicates the µ value of the 

CHO-S parental line and the diagonal black line represents the linear regression line which 

is accompanied by the slope value. 
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The ANOVA analysis revealed that the age of the clones (i.e., early-, mid- or late-

subpopulations) had an effect on µ (two-way ANOVA, p<0.0001, F=51.57) and the 

Tukey’s test confirmed that the three subpopulations showed significant differences 

between them (Tukey’s test, p<0.0001). The comparison of the mid-exponential 

specific growth rate observed among the 22 clones during the fed-batch cultivation 

(Figure 4-3) also showed that clones were highly variable in terms of specific 

proliferation rates observing values between 0.031 h-1 for clone 20-early and 0.055 h-1 

for clone 12-late. Comparing the growth rate with respect to the parental population 

was observed that around 60% of subpopulations improved their growth performance, 

being more notorious at late subpopulations where 21 out of 22 clones exhibited 

improvements (up to 1.34 fold change), followed by the mid-subpopulations were 19 

out of 22 clones showed higher proliferation rates (up to 1.18 fold change). Contrasting 

results were observed at early subpopulations, at which the majority of the clones (21 

out of 22) showed lower proliferation rates than the parental population (decreases of 

up to 23%). These results agree with the findings observed during the long-term 

cultivation (chapter 3), confirming that early subpopulations exhibited suboptimal 

performance as the result of their lower capacity to grow in agitated environments. A 

Student’s T-test analysis showed that only 43% of all the observed µ improvements 

were statistically significant (Student’s T-test, p<0.05). 

Further analysing the µ improvements between and within clones, 13 out of 22 

clones (clones 1, 2, 3, 5, 7, 8, 10, 11, 12, 15, 18, 20 and 22) gradually improved their 

proliferation rates from early to late subpopulations, three clones (clones 4, 6 and 9) 

improved µ only in the late-subpopulations and the remaining six clones (clones 13, 14, 

16, 17, 19 and 21) also improved µ at mid- and late-subpopulations, but showed the 

highest µ value at mid-subpopulations (Figure 4-3). From clones that exhibited gradual 

improvements along subpopulations, clone 20 showed the highest improvements, 

being 37% and 64% at mid- and late- subpopulations, respectively. Contrarily, clone 2 

exhibited the lowest improvements with 6 and 13% at mid- and late-subpopulations, 

respectively. On the other hand, the late subpopulation of clone 12 exhibited the 

greatest proliferation rate (0.0548 hr-1) and also showed regular increments along 

subpopulations (24 and 48% at mid- and late- subpopulations, respectively). 

The degree of divergence in the growth rate at mid-exponential growth phase 

within subpopulations derived from a long-term cultivation was assessed during fed-

batch culture (Figure 4-4A), observing notable difference within subpopulations. The 

general observations were that clones evolved better growth characteristics over time, 

being the differences between all subpopulations statistically significant (two-way 
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ANOVA, p<0.00001, F=51.6; Tukey’s test, p<0.001 between subpopulations). The 

results were µ improvements of 14% and 24% at mid- and late-subpopulations, 

respectively, when compared to the corresponding early subpopulation. In addition, 

these findings corroborate the long-term cultivation results (see chapter 3), in which 

clones improved their growth performance with increasing generation number.  

Furthermore, the comparison between the subpopulations µ median values and 

the µ of the parental population showed that early subpopulations were less fitted than 

the parental cell line with an average decline of 7% in their proliferation rates. In 

contrast, mid- and late-subpopulations enhanced their µ performance around 6 and 

15% with respect to the parental line, respectively. The assessment of variability within 

clones’ µ was used to measure the stability along increasing generations (Figure 4-4B). 

The majority of the clones exhibited large intra-variations (21 out of 22 clones). Among 

cell lines, clone 4 was by far the most stable population with growth rates from 0.043 to 

0.045 hr-1. In contrast, clones 8, 11, 12, 17, 18 and 20 were the most unstable 

populations with ranges from 0.031 to 0.055 hr-1. The proliferation rates observed for 

clone 4 were notably higher than the parental population µ value (6, 7, and 9% at early-

, mid- and late- subpopulations, respectively) and also notably higher than the rest of 

the clones at early-subpopulations, suggesting that the low variability in clone 4 was 

the result of the inherited beneficial growth traits which allowed it to proliferate without 

generating drastic changes in its phenotype. On the other hand, the high variability 

observed in the unstable populations suggest that during the long-term culture and 

particularly during the adaptation phase (see chapter 3) the clones must have evolved 

better growth characteristics to resists agitated conditions and they still were improving 

their proliferation rates during the evolution phase until reaching a maximal µ. 

 

4.4.3 Evaluating the global integral of viable cell density among clonally-derived 

CHO-S cell lines during fed-batch cultivation 

For this study, the IVCD was chosen as main indicator of cell line performance, 

because the integral of viable cell density is recurrently used to compare the average 

growth performance among different cell lines because is a key factor that determines 

the overall yield performance during recombinant protein production (Kumar et al. 

2009). The IVCD is calculated as the area under the curve when the VCD is plotted 

against the culture and it represents the “cumulative cell time” which can be easily 

compared among cultures to identify cell lines that exhibit better cellular responses to 

environmental stressors and environmental factors that are commonly encountered 
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during the recombinant protein production. Therefore, IVCD is commonly used as 

indicator of growth performance and defined as essential measurement in all 

biotechnological processes that involve biologic production due to greater IVCD results 

in higher volumetric recombinant proteins titters, for example assuming two cultures 

with equal specific productivity, the one with the greater IVCD would yield more product 

(Pörtner 2007). In addition, IVCD is employed to calculate fundamental parameters 

such as the specific productivity and the rates of metabolite consumption and 

production along the culture. Therefore, although the 22 isolated clonally derived CHO-

S cell lines presented here do not express any recombinant gene, the IVCD 

measurements can be employed to identify cell lines with great potential for producing 

recombinant proteins and for other studies involving cellular mechanisms in biogenesis 

and chemical sensibility. 

As seen for other parameters (sections 4.4.1 and 4.4.2), the accumulated IVCD 

at the end of fed-batch culture exhibited considerable variations within and between 

clones (Figure 4-5), between 1417 x 106 cells h mL-1 (clone 13-mid) and 4207 x 106 

cells h mL-1 (clone 11-mid). By comparing the subpopulations’ IVCD performance with 

respect to the parental performance, it was observed that the majority of the clones (18 

out of 22 clones) exhibited statistically significant changes on at least two of the three 

evaluated subpopulations (Student’s T-test, p<0.05). Interestingly, clone 13 was the 

unique clonal CHO-S cell line that exhibited inferior cellular performance than the 

parental population along the three subpopulations, showing 6, 33 and 18% lower 

IVCD at early-, mid- and late-subpopulations, respectively. 

Assessing the global IVCD behaviour along subpopulation, the ANOVA analysis 

revealed that the age of the clones (i.e., 0, 80 or 200 generations) had no effect on 

IVCD (two-way ANOVA, p>0.05, F=1.68), however to characterised their IVCD 

performance clones were fit one of five categories, clones that (i) significantly improved 

both mid and late subpopulations, (ii) enhanced only at mid-subpopulations, (iii) 

enhanced only at late subpopulations, (iv) did not change across subpopulations and 

(v) showed inferior performance at mid- and late-subpopulations. The data analysis 

showed that clones 4, 12, 17, and 19 fell in the first group with increments between 6 

and 141%. Among these, clones 17 and 19 exhibited gradual improvements in IVCD 

along increasing generations and clones 4 and 12 exhibited the greater improvement at 

mid-subpopulations (1.15 and 1.38 fold changes, respectively). In addition, the data 

showed that clones 17 and 19 were the most unstable populations over time with 

improvements in IVCD between 7 and 141% along subpopulations. In contrast, clones 
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4 and 12 exhibited a more stable population over time with IVCD enhancements 

between 6 and 38%. 

 

 

Figure 4-5 Global integral of viable cell density at the end of a fed-batch culture 

(IVCD60) for 22 clonally-derived CHO-S cell lines. For each clone, early-, mid- and late-

subpopulations generated from a long-term subculture regime, corresponding to 

generations 0, 80 and 200, respectively, were grown in fed-batch culture in CD CHO media 

supplemented with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) 

CO2 atmosphere until culture viabilities dropped below 60%. During the culture 10% (v/v) 

CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. The mean value and standard 

deviation were calculated from duplicate fed-batch cultures. The * denotes a significant 

difference between subpopulation and parental cell line values (Student’s T-test, p<0.05). 

The dotted line indicates the global integral of viable cell density reached by the parental 

population at the end of the culture. 
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largest group, showing the enhancement up to 56% at mid-subpopulations and 

decrements of up to 33% at late subpopulations. From this group, clones 3, 5, 15, 18 
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far an unstable growth performance. The third group, presenting their maximal 

improvement at late-subpopulation, was integrated by clones 2 and 20. However, clone 

20 exhibited a similar behaviour at early and mid-subpopulations and a slightly 

improved IVCD at the late-subpopulation (20%), whilst clone 2 showed a dramatic 

decrease at its mid-subpopulation (0.6 fold change) that recovered at late-

subpopulation (1.28 fold change). The fourth group was integrated by clones 9 and 16, 

which exhibited the most stable IVCD behaviour across generations with no significant 

changes across subpopulations for both clones. Finally, the last group, integrated by 

clones 7 and 13, showed significant reductions at mid- and late-subpopulations 

(between 13 and 29%). 

Grouping the IVCD performance for all the clones and classifying it into early-, 

mid- and late-subpopulations (Figure 4-6A) showed that IVCD was highly variable 

within subpopulations however no statistical difference between subpopulations was 

observed (two-way ANOVA, p>0.05, F=1.7). In addition, it can be observed that the 

clones, except for Clone 13, exhibited superior IVCD performances than the parental 

population (Figure 4-6B). Analysing the mid-subpopulations it can be observed that the 

IVCD were highly variable, ranging from 1417 to 4207 x 106 cells hr mL-1, and that in 

general these subpopulations reached higher IVCD performance. On the other hand, 

late-subpopulations showed the lowest IVCD variability, observed as a small IVCD 

interquartile range, suggesting that over increasing generations most of the clones did 

not enhance their IVCD performance and indicating that late-subpopulations tended to 

converge into narrower IVCD boundaries. The inability of the clones to improve IVCD 

on their late-subpopulations seems to be a result of the evolution strategy, as late-

subpopulations were evolved to increase their biomass production and not for 

tolerating the severe environmental conditions encountered at mid- and late- stages of 

fed-batch culture such as by-product accumulation, nutrient limitation and high cellular 

densities during the long-term cultivation that originated the differently-aged clones. 

Consequently, late-subpopulations were not able to resist and responded satisfactory 

to environmental stressor found at the stationary growth phase of the fed-batch culture  

The variability observed within clones at different generations was also highly 

irregular (Figure 4-6B), being clones 1, 2, 6, 8, 11 and 17 those with unstable 

phenotype in terms of IVCD, and clones 16 and 9 the most stable populations among 

all the clones, with changes in IVCD values below 5% along the early-, mid- and late-

subpopulations.  
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Figure 4-6 Global integral of viable cell density patterns at the end of a fed-batch 

culture for 22 clonally-derived CHO-S cell lines. Cells were grown in fed-batch culture in 

CD CHO media supplemented with 8 mM L-glutamine and maintained at 37°C, 170 rpm, 

under 5% (v/v) CO2 atmosphere until culture viabilities dropped below 60%, during the 

culture 10% (v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. For each clone, 

early-, mid- and late-subpopulations generated from a long-term subculture regime, 

corresponding to generations 0, 80 and 200, respectively, were evaluated and grouped 

according to long-term culture stage (A). Also, the obtained values for early-, mid- and late-

subpopulations for all 22 clones are presented (B). The blue dotted line indicates the IVCD 

value for the CHO-S parental line. 
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4.4.4 Comparison of the cell diameter and growth characteristics among clonally-

derived CHO-S cell lines during fed-batch cultivation 

Previous experiments have reported that cell size, either measured as cell 

diameter, volume, mass or protein content, plays an important role in cell growth and 

productivity during recombinant protein production processes (Davies et al. 2012; Kim 

et al. 2001). Dreesen and Fussenegger (2011) showed that the increases in cell size 

and cell protein content (through mTOR over-expression) positively correlates with cell 

growth and productivity. Similarly, Kim et al (2001) found a positive correlation between 

cell size and productivity. Therefore, to evaluate if the observed variability in other 

growth parameters evaluated for the clones generated for this study (sections 4.4.1, 

4.4.2 and 4.4.3) was correlated to changes in cell size, the average cell diameter of 

populations was measured by image analysis using a Vi-CELL XR cell viability 

analyser during the routine cell counting, but for this analysis mid-exponential growth 

phase measurements were selected as the most representative due to at this growth 

stage the culture media have low osmolarity and the cells exhibit their near maximal 

metabolic and growth capacity. 

To test the hypothesis that clones reduced their cell volume along the long-term 

culture regime (see chapter 3), the ANOVA analysis was performed using the cell 

diameter measurement at mid-exponential growth phase (day thee) to allow 

comparison with the finding showed in chapter 3. The ANOVA revealed that the age of 

the clones (i.e., 0, 80 or 200 generations) had an effect on cell size (two-way ANOVA, 

p<0.03, F=4.14; Figure 4-7B), being significant the transition from early- to mid-

subpopulations (Tukey’s test, p<0.05; Figure 4-7B). This data allows us to hypothesise 

that evolved phenotypes, and thus faster-growing cells, required less cellular protein 

content to survive and proliferate in the agitated environment. 

Moreover, as expected the cell diameter between and within clones was highly 

variable, ranging from 15.04 microns for clone 8-late to 17.53 microns for clone 22-late 

(Figure 4-7A). This data also agrees with that of previous researchers that found 

substantial clone specific variation in cell size, measured as cell volume and cell 

protein biomass, among clonal CHOK1SV populations (Davies et al. 2012). However, 

the comparison of the average cell diameter for clones at each subpopulation with 

respect to the parental cell line showed no statistically significant changes. In contrast, 

comparisons in cell size along increasing generations showed that the differences of 

clones 13, 16, 19 and 22 between early and late subpopulations and for clone 20 

between mid and late subpopulations were statistically significant (Student’s T-test, 

p<0.05). 
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Figure 4-7 Average cell diameter at mid-exponential growth phase for 22 clonally-

derived CHO-S cell lines during fed-batch culture. Cells were grown in fed-batch culture 

in CD CHO media supplemented with 8 mM L-glutamine and maintained at 37°C, 170 rpm, 

under 5% (v/v) CO2 atmosphere until culture viabilities dropped below 60%, during the 

culture 10% (v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. (A) The mean 

and standard deviation were calculated from duplicate fed-batch cultures at the mid-

exponential growth phase prior to initiation of feeding scheme. The * denotes a significant 

differences between subpopulation and parental cell line values (Student’s T-test, p<0.05). 

For each clone, early-, mid- and late-subpopulations generated from a long-term subculture 

regime, corresponding to generations 0, 80 and 200, respectively, were evaluated and 

grouped according to long-term culture stage (B). Also, the obtained values for early-, mid- 

and late-subpopulations for all 22 clones are presented (C). The blue dotted line indicates 

the average cell diameter value for the CHO-S parental population. 
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The analysis of the general cell diameter trend among subpopulations (i.e. early, 

mid- and late subpopulations, irrespective of clones; Figure 4-7B) indicated that clones 

significantly reduced their cell size from early to mid-subpopulation (Tukey’s test, 

p<0.05) with no significant changes in cell size value from mid- to late-subpopulations 

(Tukey’s test, p>0.96). Interestingly, the cell size variability observed among clones 

notably increased at late-subpopulations and resembles the µ heterogeneity observed 

at late subpopulations (section 4.4.2, Figure 4-4), suggesting that the differences in 

growth rates and cell sizes have some degree of correlation. Additionally, the intra-

clonal comparison showed that cell size values for clones 4, 5 and 15 remained 

constant along subpopulations whereas the observed values for clones 8, 12, 13, 16, 

19 and 22 notably changed with increasing generation number ( Figure 4-7C). 

To identify if the cell diameter exhibited some extent of correlation between the 

growth parameters observed during fed-batch cultivation, the relationship between cell 

size and VCD peak, specific growth rate and integral of viable cell density were also 

examined (Figure 4-8). The correlation revealed that variations in cell size were 

negatively correlated with specific growth rate (PPMCC r = -0.304, p-value < 0.02, n = 

67; Figure 4-8A), integral of viable cell density (PPMCC r = -0.357, p-value < 0.01, n = 

67; Figure 4-8B) and peak of viable cell density (PPMCC r = -0.304, p-value < 0.001, n 

= 67; Figure 4-8C). Although these correlations were moderate, it is evident that the 

smallest cell lines, in terms of average cell diameter, exhibited better (i.e., higher) 

growth characteristics (i.e., VCD peak, µ and IVCD) and probably would lead to higher 

volumetric product yield if transfected for productive processes. This moderated 

correlations also agrees with previous observations that found that CHOK1-SV cell size 

and protein content inversely correlated with proliferation rate (Davies et al. 2012). 

Taking into account that the cell size is an indirect measure of protein content 

(Davies et al. 2012), the data allows us to hypothesise that faster-growing cell lines 

require less cellular protein content to survive and proliferate. Therefore it can be 

suggested that smaller cells are more efficient than bigger cells due to their lower 

synthesis requirements for cell biomass reduce their energetic and metabolite 

requirements. Further analyses, in particularly for evaluating the production of 

recombinant protein must be performed in order to hold that cell size measurements 

can be used as an indicator of metabolism efficiency and/or cellular productivity for 

recombinant proteins and to complement the findings of improved proliferation rates 

with smaller cell size. 
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Figure 4-8 Relationship between the average cell diameter and growth 

characteristics during fed-batch culture for 22 clonally-derived CHO-S cell lines. 

Cells were grown in CD CHO media supplemented with 8 mM L-glutamine and maintained 

at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere until culture viabilities dropped below 

60%. During the culture 10% (v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. 

Pearson correlation between (A) the cell diameter mid-exponential growth phase and 

specific growth rate at mid-exponential growth phase (PPMCC r = -0.304, p-value < 0.02, n 

= 67), (B) the cell diameter at mid-exponential growth phase and integral of viable cell 

density (PPMCC r = -0.357, p -value < 0.01, n = 67) and (C) the cell diameter at mid-

exponential growth phase and peak of viable cell density (PPMCC r = -0.304, p -value < 

0.001, n = 67). The black, grey and white circles represent clones at the early, mid- and late 

stages of the long-term subculture (i.e. generations 0, 80 and 200), respectively. The 

parental cell line is represented by a red “x” in the plot. 

0.030 0.040 0.050

Specif ic growth rate [h
-1

]

15
16

17
18

C
el

l d
ia

m
et

er
 [

m
ic

ro
ns

]
Slope = -25 (P-value < 0.05); R.square = 0.09

PPMCC r = -0.304, p-value = 0.0122775

1500 2500 3500 4500

IVCD [10
6
cell h mL

-1
]

15
16

17
18

C
el

l d
ia

m
et

e
r 

[m
ic

ro
ns

]

Slope = -0.00023 (P-value < 0.05); R.square = 0.13
PPMCC r = -0.357, p-value = 0.0030409

A) B)

10 15 20 25

VCD [10
6
cell mL

-1
]

15
16

17
18

C
el

l 
di

a
m

et
e

r 
[m

ic
ro

ns
]

Slope = -0.057 (P-value < 0.001); R.square = 0.2
PPMCC r = -0.448, p-value = 0.0001429

C)

Early subpopulation                    Mid- subpopulation                  Late  subpopulation 
(~generation 0)                          (~generation 80)                      (~generation 200)



 Chapter 4  
 

 101 

4.4.5 Cell volume normalisation did not show significant improvements in the 

growth parameter  

Previous studies in using CHO cells have observed markedly differences in the 

cellular performance between populations with varied cell size. For example, Dreesen 

and Fussenegger (2011) showed that increases cell size and protein content of cells 

correlated positively with cell growth and productivity. Similarly, Kim et al (2001) also 

found stable populations exhibited higher cell size and productivities. Therefore, it can 

be suggested that the observed differences in cell size (i.e., cell diameter, volume, 

mass, or protein content) may mislead the growth parameters particularly when 

comparisons between cell lines are performed. Therefore in this section I suggest that 

the normalisation of growth parameters with respect to the cell size would improve the 

comparison between clones by reducing the cell size variability effects among clones. 

For this analysis, the normalised growth parameters for each clone were calculated as 

follow: GPN =GP/ (Ø population / Ø parental), where the GPN is the normalised growth 

value, GP is the growth value, Ø population and Ø parental are the populations and 

parental cell lines’ diameter, respectively. 

To evaluate if this cell size normalisation improved any correlation between the 

growth parameters, the relationships between the global IVCD and µ, the global IVCD 

and VCD peak, and the VCD peak and µ before normalisation (Figure 4-9A, Figure 

4-9B and Figure 4-9C, respectively) and after normalisation (Figure 4-9D, Figure 4-9E 

and Figure 4-9F, respectively) were analysed. This comparison that normalised data 

slightly improved the correlations. For example, the Pearson’ between the IVCD and 

VCD peak increased from 0.567 (PPMCC p-value < 0.00001, n = 67) to 0.603 (PPMCC 

p-value < 0.00001, n = 67) after the normalisation, between the VCD peak increased. 

However, the ANOVA analysis revealed that the differences between the normalized 

and non-normalized data were not significant (two-way ANOVA; IVCD peak p>0.05, 

F=0.013; VCD peak, p>0.05, F=0.026; and µ p>0.05, F=0.03). 

Moreover, this data showed that the IVCD performance cannot be estimated by 

using the exponential data (e.g., specific growth rate; Figure 4-9A; PPMCC p-value > 

0.09, n = 67) as this measurement represent a difference metabolic status of the cells. 

In contrast, using a growth parameter from stationary data (e.g., VCD peak; Figure 

4-9B; PPMCC p-value > 0.567, n = 67) notable increased the likely to predict the IVCD 

performance of the clones as both parameter were obtained under similar culture 

environments such as nutrient depletion and hyper-osmolarity. 
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Finally, Figure 4-9A exhibits the µ values of the early-, mid- and late-

subpopulations are clearly separate (Figure 4-9A). 

  

 

Figure 4-9 Relationship between growth parameters before and after normalisation 

for 22 clonally-derived CHO-S cell lines. Cells were grown in CD CHO media 

supplemented with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) 

CO2 atmosphere until culture viabilities dropped below 60%. During the culture 10% (v/v) 

CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. Pearson correlation between 

integral of viable cell density and specific growth rate before (A) and after (D) cell size 

normalisation, between integral of viable cell density and peak of viable cell density before 

(B) and after (E) cell size normalisation, and between and peak of viable cell density and 

specific growth rate before (C) and after (F) cell size normalisation, The black, grey and 

white circles represent clones at the early, mid- and late stages of the long-term subculture 

(i.e. generations 0, 80 and 200), respectively. The parental cell line is represented by a red 

“x” in the plot. 
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4.5 General discussion 

The optimised fed-batch process performed for this study allowed optimal growth 

performance among the clones by supplementing a defined concentration of CHO CD 

EfficientFeed™ B that permitted elevated IVCD at the end of the cultivation. In this 

strategy, nutrient supply was provided as a predetermined volume/concentration based 

on estimated energetic requirements for all clones, rather than supplied to meet 

individual metabolic demands based on the specific assessments of particular media 

components for each individual clone. This approach is widely implemented during cell 

line development processes because it allows us to enhance cell growth, minimise 

fluctuations in the culture environment and standardise the fed-batch processes among 

cell variants. In addition, the fed-batch strategy utilised here minimised the cell 

sampling volume required, not doing so would reduce the culture volume, would 

increase the risk of contamination, and would likely destabilise the populations in 

particular at early stages of the fed-batch culture when populations are more vulnerable 

to genetic drift effects (Campos and Wahl 2009). 

Estimating the metabolic requirements in fed-batch cultures has important 

benefits at laboratory scale (e.g., shake flask cultures) because it decreases the cell 

sampling along the culture, thus reducing the genetic drift effects and also preventing 

reductions in the size of low allele/gene frequencies which would lead to population 

bottlenecks that eventually would reduce genetic diversity and the rate of 

mutation/phenotypic fixation within these populations (Campos and Wahl 2009; Gordo 

and Dionisio 2005). Since the optimisation process described in this chapter was 

performed using clones 4 and 10 at “subpopulation 120” (µ values of 0.037 and 0.040 

h-1, respectively), which exhibited growth rates within and above the reference µ limits. 

The implementation of these clones during the optimisation ensure that the feeding 

strategy would be enough to satisfy the metabolic demand for the whole range of µ 

values observed among the clonal CHO-S cell lines  

The elevated growth variability exhibited by CHO-S cells, derived from the long-

term subculture (see chapter 3), during fed-batch cultivation remained elevated for all 

growth parameters (i.e., specific growth rate, VCD peak and IVCD), indicating that 

genetic and epigenetic changes constantly occurred within cells leading to detrimental 

characteristics that moulded their phenotypic status (Bergoglio et al. 2002; Derouazi et 

al. 2006; Sandoval and Esteller 2012). The results presented here confirm that CHO 

populations tended to improve their growth characteristics with increasing generation 

number. However, the variation observed in IVCD, VCD peak and cell size did not 

show a consistent pattern throughout the subpopulations (i.e., early (0), mid (80) and 
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late (200) generations), mainly because these parameters are the result of a 

combination of different environmental conditions (e.g., nutrient availability, hyper-

osmolarity and by-product built-up) that occur over the fed-batch culture (Al-Rubeai and 

Singh 1998; Jardon et al. 2012). For example, in general µ exhibited a gradual 

improvement over increasing generations whereas IVCD did not exhibit a defined 

pattern (two-way ANOVA, p>0.05, F=1.68). 

The variation among growth parameters patterns clearly indicated that the culture 

stages, but mainly stationary and cell-death phases were determinant to define the 

observed VCD peak and IVCD trends, as clones were evolved to increase growth rates 

under non-limiting growth conditions (e.g., nutrient abundance and low by-product built-

up) and not evolved to resist the elevated environmental stressors commonly observed 

at such stages (e.g., nutrient depletion and toxic by-product levels). The non-limiting 

growth conditions silenced a large number of genes involved in cellular protection 

against environmental variations that are required at mid- and late stages of fed-batch 

culture (e.g., Bcl-2), as consequence, this loss of gene expression triggered diverse 

cellular responses to overcome environmental stressors, such as lactate and ammonia 

concentration, thus leading to phenotypic diversity within CHO populations. 

 As expected, µ patterns during the fed-batch culture remained similar to those 

observed in the long-term cultivation (see chapter 3), mainly because in both cases the 

µ was calculated at mid-exponential growth phase when there are no nutrient 

limitations and environmental stressors are lower. In contrast, the VCD peak and IVCD 

patterns were highly variable because clones were not evolved to resist environmental 

stressors such as nutrient depletion, by-product toxicity and hyper-osmolarity 

commonly found during the stationary and death phases of a fed-batch culture (Wuest 

et al. 2012). Therefore, although late-subpopulations (i.e., clones at 200 generations) 

exhibited higher proliferation rates, they did not necessarily reach the highest cellular 

densities when faced to unusual environmental challenges. 

Here can be suggested that the phenotypic variation among subpopulations was 

promoted by their inherent “mutator phenotype” of CHO cells, usually characterised by 

an inefficient DNA repair mechanism that generate random point mutations (Loeb 

2001; O'Callaghan and James 2008; Venkatesan et al. 2006), and from epigenetic 

factors that triggered constant fluctuations in gene expression along time (Flatscher et 

al. 2012; Lao and Toth 1997; O'Callaghan and James 2008; Yang and Butler 2000). 

The cell culture media and incubation settings clearly defined environmental conditions, 

leading epigenetic changes, such as histone deacetylation and DNA methylation, 

affecting chromatin accessibility at transcriptions sites, and therefore inducing gene 
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silencing (Flatscher et al. 2012; O'Callaghan and James 2008; Wurm 2004). It is 

suggested that the inherence of epigenetic mechanisms of gene regulation were 

determinant to define which genes would be expressed in subsequent generations 

(Barnes and Dickson 2006; Flatscher et al. 2012; Sandoval and Esteller 2012). Both 

hypotheses, genetic and epigenetic factors, provide a feasible explanation to the 

phenotypic heterogeneity observed because the long-term cultivation was designed to 

promote a continued proliferation in a synthetic environment in order to promote 

mutations or gene silencing over time. In addition, an alternative hypothesis for this 

heterogeneity among growth patterns can be associated with genetic drift as this was 

an important source of evolution throughout the long term cultivation by randomly 

selecting rapid growth phenotypes, regardless of their metabolic and genetic status 

During the evolution phase, clones accumulated beneficial growth characteristics 

such as elevated µ, however none of the subpopulations were exposed to nutrient 

limitation, toxic by-product accumulation and hyper-osmolarity which are commonly 

found during production processes and in the current experiment during late stages of 

the fed-batch culture. Therefore, when populations were cultured under fed-batch 

mode the clones exhibited different responses during the stationary and death phases, 

which in general led to the observed variability among clones. A major exposure to 

environmental perturbations during the long-term cultivation would be an interesting 

characteristic that may have led to better growth patterns at late generations. 

Therefore, this study suggests that evolving phenotypes under constant environmental 

stress would improve the stress response in the cells leading to significantly better 

growth performance (e.g., high IVCD and elevated osmolarity tolerance). This 

alternative approach has been performed previously, Prentice et al. (2007) evolved 

DG44 cell lines cells capable of surviving in severe environmental conditions and 

reaching elevated cell densities and IVCD performances without jeopardising the 

productivity in the cells. Their approach allowed constant perturbations in the 

environment that resulted in better cellular response with significant improvements in 

the growth performance of the CHO cell lines. 

It is important to emphasise that clones employed in the studies here reported did 

not express any recombinant protein because the aims of this project were to evaluate 

improvements in growth performance over increasing generations without the burden 

of an additional genetic construct and to develop a panel of CHO-S cell lines with 

improved and varied growth characteristics. As mentioned before, IVCD is a key factor 

that determines the overall yield performance during recombinant protein production, 

thus by producing a set of derived CHO-S cell lines with optimal IVCD performance 
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indirectly the titters of recombinant proteins will be improved (Pörtner 2007). Previous 

long-term sub-cultivation studies have used recombinant antibody expressing CHO cell 

lines, but their aims have been to evaluate the transgene stability over extended culture 

to characterise and identify changes in the genome and transcriptome that lead to the 

loss of recombinant protein expression (Bailey et al. 2012; Barnes et al. 2001; 

Chusainow et al. 2009; Kaneko et al. 2010). 

The previous experimentation (see chapter 3) revealed that the early 

subpopulations (generations 0-57 of the long-term cultivation) exhibited an adaptation 

phase which was characterised by a large heterogeneity among clones. Interestingly, 

when these cells were revived and cultured under fed-batch regimen, they exhibited 

lower variability among them. This drastic change in the cellular behaviour after cell 

revival suggests significant changes in the growth phenotype for the clones at early-

subpopulations. This indicates that cryopreservation and subsequent cell revival acted 

as strong selective forces, removing those phenotypes with low resistance to 

cryopreservation and slow-growth proliferation rates and favouring those phenotypes 

that exhibited faster recovery rates. 

The comparison of specific growth rates obtained during the long-term and fed-

batch cultures for each clone at generations 0, 80 and 200, also revealed that after cell 

revival all clones improved significantly their proliferation rates (33, 19 and 16% for 

clones at early-, mid- and late-subpopulations, respectively). As expected the 

improvements were observed at early-subpopulations, confirming that the 

cryopreservation/cell revival cycle selected the most fitted populations and removed 

those with low adapted phenotype. Moreover, it can be suggested that the 10% (v/v) of 

the cryoprotectant, dimethyl sulfoxide (DMSO), may be toxic for some populations thus 

increasing the selection effects within the population. However, this hypothesis seems 

unlikely because DMSO concentrations between 5 and 10% (v/v) have no 

demonstrated detrimental effects (Barnes et al. 2003). To investigate if the DMSO in 

fact acts as selector, analyses of the cell cycle and apoptosis after cycles of exposure 

to DMSO could be performed. 

Moreover, analysing the global effects in µ after cell revival, the data shows that 

the global improvements observed at early-generations were equivalent to those µ 

enhancements observed after 120 generations in the long-term cultivation. Therefore 

this accumulated data seems to corroborate that cycles of cryopreservation-cell revival 

accelerate genetic drift within CHO-S populations and also presents it as an alternative 

strategy to improve growth characteristics in CHO-S cell lines. 
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Further, comparisons between fed-batch culture and the long-term cultivation 

indicated that after cell revival (in fed-batch experiments) late-subpopulations (i.e., cell 

lines after 200 generations) enhanced their growth rates. Interestingly, these were 

significantly higher than the rates obtained during the long-term cultivation. This finding 

reveals that the maximal µ values reached by clones between 160 and 200 generations 

during the long-term cultivation were not defined and/or restricted only by the culture 

media as mentioned in chapter 3, in fact the data suggest that cell cryopreservation/cell 

revival plays as selective pressure by removing unstable phenotypes with poor growth 

rates and fixing stable subpopulation with optimal phenotypes able to proliferate after 

cell revival. These growth improvements after cell revival (fed-batch experiments) 

reinforce that cycles of cryopreservation and cell revival act as selection factors that 

favour the fast-growing populations and alter the original cellular performance of 

populations by fixing fast-growing cells as dominant populations. 

Although the proliferation rates of CHO-S cell lines were improved with increasing 

generation number, this study confirms that the µ improvements were not always 

reflected in improvements in the peak of viable cell density or integral of viable cell 

density due to these growth parameters depend on the cellular responses to 

environmental insults such as hyper-osmolarity, toxic by-products and nutrient 

limitation during the stationary phase (Al-Rubeai and Singh 1998; Cotter and Alrubeai 

1995). The inconsistent improvement behaviour with increasing generation number 

was more evident for the IVCD, where most of the clones at mid-generations (80 

generations) exhibited the highest IVCD values, probably the notable improvement in 

IVCD at mid-generation was the result of overcoming the agitated conditions, which 

challenged the cells during the adaptation phase and led to the development of 

phenotypes with higher tolerance to the environmental stress, but particularly to the 

agitated cultivation. On the other hand, the observed decay in IVCD at late-generations 

(200 generations) may have resulted because the mechanism to tolerate or resist 

hostile conditions may have been altered or even lost in the late stages of the long-

term culture since the clones did not undergo environmental stress in the whole 

evolution phase. Therefore, it can be suggested that the highly controlled environments 

experimented during the evolution phase (see chapter 3) may have resulted in 

decreases in the level of tolerance to environmental insults, in particular of those late-

subpopulations. 

Finally, analysing the intra-clonal variation it was possible to identify which clones 

exhibited the most stable phenotypes, being clones 2, 3, 4, 5, 9 and 14 the most stable 

populations and clones 1, 11, 12, 17, 20 and 22 those clones that exhibited higher 
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rates of variability over increasing generations, thus the most phenotypically unstable 

clones. On the other hand, the analysis indicated that clones 4, 7, 8, 10, 11 and 15 

were those cell lines that in general exhibited better growth characteristic, such as 

elevated µ, VCD peak and higher IVCD on their early-, mid- and late-generations, 

whereas clones 9, 13, 16, 20, 21 and 22 in overall exhibited lower performances. By 

combining both parameters, stability and improved growth characteristics, clones 3, 4, 

5, 10 and 14 were by far the clones that exhibited superior growth characteristics 

whereas clones 11, 13, 16, 17 and 22 showed poorer growth characteristics. The 

characterisation here shown was performed on the basis of the clones’ growth 

performance (i.e., high proliferation rates, elevated VCD peaks, cumulative IVCD and 

small cell diameter) and growth stability measured as the variability along early-, mid- 

and late-subpopulations for all four growth parameters. 
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Chapter 5 

Poly-functional metabolism among CHO-S cell populations 

during fed-batch culture 

This chapter introduces the procedures employed to analyse the global 

metabolism for 11 clonally-derived CHO-S cell lines at early-, mid- and late-generations 

under fed-batch regimen, corresponding to generations 0, 80 and 200, respectively, 

followed by assessments of the accumulated metabolism of glucose, lactate, glutamine 

and glutamate at exponential and stationary growth phases and the assessments of 

their specific consumption or production rates at three key time points of the fed-batch 

culture. Altogether, this methodology allows us to gain insight into metabolic dynamics 

within CHO cell populations during exponential and stationary growth phases to identify 

desirable metabolic performance in CHO-S populations. 

 

5.1 Background 

The understanding of cellular metabolic processes in CHO cells is crucial for 

developing optimal cell culture platforms for biologic production. The metabolism in 

CHO cells has been widely studied in the biotechnological industry to characterise the 

optimum metabolic flux that lead to optimised growth performance with elevated 

recombinant protein productivities (Altamirano et al. 2006; Young 2013). Unfortunately, 

the majority of this information remains as industrial secret and relatively little 

information about CHO metabolism is available, which has generated a poor 

understanding of how the metabolism in CHO cells is reflected in better biological 

processes. Studies of CHO metabolism have been challenging and labour-intensive 

due to the dynamic and complex interactions between intrinsic and extrinsic factors 

such as cellular complexity and environmental and phenotypic fluctuations in culture, 

resulting in constant bottlenecks for developing more efficient cell lines, better culture 

media and feeding strategies. In addition, coupling the mentioned drawbacks with the 

high cost and low analysis capacity of current technologies for cultivation and 

production process off-line monitoring, substantially have restricted the use of 

metabolic analysis in routine culture processes, in special at academic level. 

It has been widely described that glucose and glutamine are the main carbon 

sources in mammalian cell lines for the production of energy and biomass (Burgess 

2011). Being glucose the central nutrient for the glycolysis pathway and glutamine the 
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principal generator of anaplerotic intermediates to feed the TCA cycle (DeBerardinis et 

al. 2007; Young 2013). CHO metabolism is characterised by a high glucose and 

glutamine demand combined with elevated rates of by-products production (e.g., 

lactate and ammonium) (Altamirano et al. 2004; Lao and Toth 1997; Park et al. 2000; 

Zagari et al. 2013). This glucose and glutamine addiction is important in cancer cells 

because allows them to rapidly generate energy and biomolecules to maintain an 

active proliferation. However, when this behaviour is observed in biotechnological 

processes the effects are detrimental for the cells due to by-product accumulation 

along culture altering the cellular growth patterns and the productivity (Altamirano et al. 

2004; Lao and Toth 1997; Park et al. 2000).  

Lactate is the principal by-product obtained from the cultivation of CHO cells and 

other mammalian cell lines. It has been widely reported that CHO cells exhibit an 

unbalanced metabolism and incomplete oxidation of the carbon source (Ahn and 

Antoniewicz 2011; Altamirano et al. 2006; Kim and Lee 2007b; Martinez et al. 2013; 

Young 2013). This unbalance causes that a large proportion of the consumed glucose 

would be converted into lactate by lactate dehydrogenase (LDH), an enzyme that 

catalyses the production of lactate from pyruvate, thus increasing the lactate levels in 

culture which are detrimental for cell growth and protein production (Lao and Toth 

1997; Ozturk et al. 1992; Zhao et al. 2013). For example, increasing the concentration 

of lactate by 55 mM was found to reduce cell growth by 50 % while levels above 20 

mM also affect cell growth in CHO cells (Ozturk et al. 1992). These negative effects in 

cell performance are associated with increments in osmolarity (> 316 mOsm/kg) which 

results from alkali addition to control media pH) (Li et al. 2010; Luo et al. 2012; Xing et 

al. 2009; Zhu et al. 2005) and with the low energetic efficiency of cells which have 

preferred the lactate production over OXPHOS (Warburg 1956; Young 2013). Attempts 

for minimising this by-product accumulation to avoid their negative effects in cell culture 

have been widely performed thought genetic manipulation (e.g., down-regulating LDH 

and PDK) and non-genetic strategies (e.g., the use of alternative carbon sources), 

leading to significant reduction in ammonia and lactate accumulation (Dorai et al. 2009; 

Jeong et al. 2001; Paredes et al. 1999; Wlaschin and Hu 2007; Zhou et al. 2011), 

significant improvement in the growth performance such as VCD (Altamirano et al. 

2004; Cockett et al. 1990; Park et al. 2000) and in specific increasing productivity and 

volumetric titters (Bollati Fogolin et al. 2004; Chen et al. 2001; Zhou et al. 2011). 

Several studies have analysed the CHO metabolism using metabolic flux analysis 

(MFA) which allows us to determine the intracellular metabolic fluxes and metabolic 

changes within populations by using isotopic tracers such as 13C-glucose and 13C-
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glutamine and analysing their distribution in intermediates or final metabolites of 

several metabolic pathways (Ahn and Antoniewicz 2013; Crown and Antoniewicz 2013; 

Goudar et al. 2010; Zamorano et al. 2010). For example, Altamirano et al. (2006) 

investigated the lactate metabolism in a producing-CHO cell line cultured using glucose 

and galactose as carbon sources, revealing that when both carbon sources were 

added cells supported better growth characteristics and switched their lactate 

metabolism from production to consumption. Similarly, multiple studies using MFA 

have characterised and described the cell behaviour along culture, identifying the 

principal metabolic flux within cells and then modelling this behaviour during culture 

processes (Altamirano et al. 2006; Goudar et al. 2010; Mulukutla et al. 2012). 

However, the use of MFA is unpractical during cell line development because the 

number of relevant metabolites that would virtually need to be quantified is enormous, 

increasing the complexity of the data analysis and making it labour-intensive. 

Therefore, the metabolic balance analysis (MBA) is more widely used during routine 

cell culture and manufacturing processes. For this method, inputs (e.g., glucose, 

glutamine) and outputs (e.g., lactate, ammonia) are used to estimate metabolite 

concentrations and metabolic fluxes. In this chapter the metabolic analyses were based 

on the evaluation of three metabolites which are involved in energy and biomass 

production (i.e., glucose, glutamine and glutamate) and one metabolite resulted as by-

product (i.e., lactate). 

 

5.2 Chapter aims 

In this chapter, I investigated three hypotheses (i) that the analysis of the 

glucose, lactate, glutamine and glutamate metabolism at exponential and stationary 

growth phases of a fed-batch culture would permit the identification and classification of 

cell lines with specific metabolic characteristic (ii) that the cell lines with elevated IVCD 

performance would share common metabolic patterns such as switching from lactate 

production to consumption and (iii) that clonal CHO-S cell lines with stable growth 

patterns over long-term culture (e.g., early- mid- and late-subpopulation) would 

conserve some metabolic traits. Thereby, I suggest that: 

(i) The inherent cellular heterogeneity present within the parental CHO-S 

population will permit the generation of clonally-derived cell lines with desired 

and relevant metabolic characteristics such as low lactate build-up. 
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(ii) Over increasing generations, the clonally-derived CHO-S cell lines improved 

their glucose utilisation permitting them to reach higher proliferation rates. 

(iii) The clonally-derived CHO-S cell lines conserved some metabolic trails during 

exponential growth phase and then diverged significantly during the stationary 

growth phase. 

The aim of this chapter is to reveal the optimal metabolic state among a panel of 

11 clonally-derived cell lines with relevant industrial capabilities and understand the 

central carbon metabolism of the CHO cells during fed-batch experiments. Moreover, I 

aimed to study how the global IVCD performance observed during fed-batch cultivation 

is linked to optimal carbon source utilisation and how the metabolic state vary with 

increasing generation number (i.e., early, mid-, and late-subpopulations generated for 

each clone during a long-term culture regime, corresponding to generations 0, 80 and 

200, respectively). Finally, I aimed to identify the optimal metabolic parameters which 

could permit the selection of subpopulations with enhanced and relevant phenotype 

and the optimisation of biopharmaceutical processes. 

 

5.3 Chapter objectives 

To address the chapter aims, the objectives of the work presented in this chapter 

were to:  

i) Examine the glucose, lactate, glutamine and glutamate metabolism for a set 

of 11 clonally-derived CHO-S cell lines at their early-, mid-, and late-

subpopulations. 

ii) Asses and compare the cellular metabolic status at exponential and 

stationary growth phases. 

iii) Identify the key metabolites and metabolic events at exponential and 

stationary growth phases. 

iv) Identify the effects of essential nutrient deprivation and the inhibitory effects 

of lactate accumulation on cell culture. 

v) Identify the potential correlation between metabolite consumption or 

production and growth phases. 
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5.4 Results  

The introductory fed-batch experiments described in Chapter 4 demonstrated an 

important variability in growth characteristics (i.e., IVCD, peak VCD, µ and cell size) 

among CHO-S clones derived from the same parental line. To test the hypothesis that 

growth performance was related to the metabolic state of the clones and to evaluate if 

the metabolic behaviour was maintained in each individual clone with increasing 

generation number, a panel of 11 clonal CHO-S cell lines (clones 1, 2, 4, 6, 10, 11, 12, 

15, 17, 19 and 22) that exhibited disparate specific growth characteristics was selected 

for further characterisation and as a start point classified on basis of phenotypic 

stability over the long-term cultivation (i.e., early, mid-, and late-subpopulations), overall 

growth performance (i.e., high IVCD, peak VCD and µ and small cell size) and their 

proposed potential (i.e., for recombinant protein production or cell line development) 

(Table 5-1). 

The evaluation of the clone’s metabolic performance was performed under fed-

batch cultivation to investigate whether the observed variations in overall growth 

performance were related to metabolic differences along culture. For this 

experimentation, cell-free supernatant samples at days 2, 3, 5, 7, 9 and 11 were 

analysed for glucose, lactate, glutamine and glutamate concentrations using a Cedex 

bio-analyser. These analyses allowed the calculation of the specific metabolite 

production or consumption rates at different time points (i.e., growth phases) of the fed-

batch culture (Figure 5-1). Specifically, measurements between days two and three 

(“day 3”) denote the metabolic state at mid-exponential growth phase, measurements 

between days three and five (“day 5”) represent the end-exponential growth phase, 

measurements between days five and seven (“day 7”) belong to the early-stationary 

phase, measurements between days seven and nine (“day 9”) represent the late-

stationary phase and measurements between days nine and eleven (“day 11”) belong 

to the death phase. 

The analysis of these time points permitted to monitor the metabolic performance 

at key culture stages identified through VCD evaluations (Figure 5-1A). Being mid-

exponential growth phase (day 3) when cells are more metabolically active as they 

synthesise biomolecules for their continuous and elevated proliferation rates and 

reflecting that the environments have no nutrient limitation. The end-exponential growth 

phase or deceleration growth phase (day 5) denotes the moment in which essential 

nutrients become limited (e.g., glutamine) or some by-products start to reach toxic 

levels (e.g., lactate) and thus cells start to reduce their proliferation rates. The early-

stationary growth phase (day 7) indicates when cell reach their maximum viable cell 
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density and cease duplication or at least diminish it enough to balance cell death and 

proliferation, at this stage environmental stressors include depleted essential amino 

acids and elevated by-product and osmolarity levels, but cells remain metabolically 

active to maintain functionality. The late-stationary growth phase (day 9) represents the 

moment in which cells are subjected to higher environmental stressors such as hyper-

osmolarity which causes important phenotypic changes and cell membrane damage. 

Finally, the death growth phase (day 11) starts when environmental stressors reach 

detrimental concentration able to trigger apoptosis or necrosis. 

 

Table 5-1 Classification of selected cell lines for metabolic analysis according to 

stability and growth performance. 

Clones 
Phenotypic  

stability  

Fitness of 
growth 

characteristics
Cell line potential  

Parental - - - 

Clone 1 Low Mid Cell line development process 

Clone 2 High Mid Protein production 

Clone 4 High High Protein production 

Clone 6 Mid Mid Cell line development process 

Clone 10 High High Protein production 

Clone 11 Low High Cell line development process 

Clone 12 Low Mid Cell line development process 

Clone 15 Mid High Protein production 

Clone 17 Low Low Cell line development process 

Clone 19 Mid Mid Cell line development process 

Clone 22 Low Low Cell line development process 

Clones were classified on basis of their observed fed-batch culture performance at three 

subpopulations (early-, mid- and late-subpopulations) generated from a long-term subculture 

regime, corresponding to generations 0, 80 and 200, respectively. Clones were grown in fed-

batch culture in CD CHO media supplemented with 8 mM L-glutamine and maintained at 37°C, 

170 rpm, under 5% (v/v) CO2 atmosphere until culture viabilities dropped below 60%. During the 

culture 10% (v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. For “phenotypic 

stability” classification the main consideration was the intra-clonal variation among 

subpopulations (chapter 3), whereas the “fitness of growth characteristics” classification was 

based on observed values for IVCD, peak VCD, specific growth rate and cell size (chapter 4).
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Figure 5-1 Viable cell density and integral of viable cell density patterns for 11 

clonally-derived CHO-S cell lines during fed-batch culture. Cells were grown in fed-

batch culture in CD CHO media supplemented with 8 mM L-glutamine and maintained at 

37°C, 170 rpm, under 5% (v/v) CO2 atmosphere until culture viabilities dropped below 60%, 

during the culture 10% (v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. For 

each clone, early-, mid- and late-subpopulations generated from a long-term subculture 

regime, corresponding to generations 0, 80 and 200, respectively, were evaluated from 

duplicate cultures and grouped according to fed-batch culture time point. Viable cell density 

(A) and integral of viable cell density are presented (B). The bottom and top of the box 

represent the 25th and 75th percentiles, the line within the box the median, error bars 

indicate the 0th and 100th percentiles and circles are outliers. 
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The global growth performance analysis among clones in fed-batch cultures 

showed statistically significant differences between the selected time points of the Fed-

batch culture and VCD (two-way ANOVA: p<0.0001, F=23.4; Figure 5-1A), and IVCD 

(two-way ANOVA: p<0.0001, F=1497; Figure 5-1B). Moreover, this analysis exhibited a 

low VCD and IVCD variability during the mid-exponential growth phase (day 3) and 

substantial increases in growth variability from day 5, suggesting that clones presented 

varied cellular responses when were exposed to elevated environmental stress. 

To assess if the five time points (i.e., days 3, 5, 7, 8, 9 and 11) were sufficient to 

compare the metabolic performance of clones, the overall analysis of the specific rate 

for either consumption or production of the key metabolites was performed (Figure 

5-2A-D), showing a significant differences along the culture for glucose (Figure 5-2A; 

two-way ANOVA, p<0.0001, F=84.3), glutamine (Figure 5-2B; two-way ANOVA, 

p<0.0001, F=536.4), lactate (Figure 5-2C; two-way ANOVA, p<0.0001, F=509.7) and 

glutamate (Figure 5-2D; two-way ANOVA, p<0.0001, F=46.0). The comparison 

between the culture’s time points (i.e., days 3, 5, 7, 8, 9 and 11) showed significant 

differences in the specific metabolism between mid-exponential (Day 3) and the rest of 

the time points (Tukey’s test: glucose, p<0.0001; glutamine, p<0.0001; lactate, 

p<0.0001; glutamate, p<0.0001), and differences between late-exponential growth 

phase (day 5) and the rest of the time points for glutamine metabolism (Tukey’s test: 

p<0.0001). Contrary, comparisons between stationary growth (days 7 and 9) and death 

growth (day 11) no showed significant differences. Finally, the ANOVA analysis also 

revealed that the age of the clones (i.e., 0, 80 or 200 generations) had no effect on the 

specific metabolite production or consumption rates at the different stages of the fed-

batch culture. 

This global analysis showed here was performed on per-cell basis to provide 

further information and compare each population and their respectively changes in 

metabolism over the culture. This allows us to identify that by using only three key fed-

batch points i.e., mid-exponential, end-exponential and early-stationary growth phases, 

corresponding to day 3, 5 and 7, respectively, are enough to evaluate the specific 

metabolic rates across clones, therefore in the subsequent analyses these three 

growth phase points were analysed and compared.  



 Chapter 5 
 

 118 

 

Figure 5-2 Analysis of the specific metabolic rate of glucose and glutamine 

consumption and lactate and glutamate production for 11 clonally-derived CHO-S 

cell lines during fed-batch culture. Cells were grown in fed-batch culture in CD CHO 

media supplemented with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 5% 

(v/v) CO2 atmosphere until culture viabilities dropped below 60%, during the culture 10% 

(v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. For each clone, early-, mid- 

and late-subpopulations generated from a long-term subculture regime, corresponding to 

generations 0, 80 and 200, respectively, were evaluated from duplicate cultures and 

grouped according to fed-batch culture time point. The specific metabolic rate of (A) 

glucose consumption, (B) glutamine consumption, (C) lactate production and (D) glutamate 

production were evaluated at mid-exponential, end-exponential, early-stationary, late-

stationary and death growth phases (days 3, 5, 7, 9 and 11, respectively). The bottom and 

top of the box represent the 25th and 75th percentiles, the line within the box the median, 

error bars indicate the 0th and 100th percentiles and dots are outliers. Below red dotted line 

indicate a metabolic shift. 
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5.4.1 Effects of exponential and stationary growth phases during fed-batch 

culture on glucose consumption 

To evaluate in detail the metabolic differences for glucose consumption between 

the exponential and stationary growth phases of the fed-batch culture, the accumulated 

uptake values were calculated and plotted (Figure 5-3A), showing significant 

differences in the cumulative glucose demand between both growth (two-way ANOVA, 

p<0.0001, F=157.5; Figure 5-3B), being between 1.9 and 6.1 fold changes higher the 

stationary demand. The comparison of each clone’s individual glucose metabolism with 

respect to the parental population showed that clones increased their glucose demand 

during the stationary phase, probably because the clones exhibited higher peaks of 

VDC. Moreover, from the panel of 33 subpopulations, subpopulations C2-mid, C17-

early and C17-mid exhibited similar levels of glucose uptake at both growth phases, 

suggesting a poor cell performance along the stationary phase. This hypothesis was 

verified by observing the IVCD data (data not shown) which indicated that these 

subpopulations exhibited a low IVCD. This data also shows that the subpopulations 

C17-early and C17-mid presented the highest glucose demand at exponential phase 

(Figure 5-3A), probably indicating that this subpopulations were more glycolysis-

dependent during proliferation, however, this hypothesis must be analysed in 

conjunction with more metabolic parameters (see sections 5.4.2, 5.4.3 and 5.4.4). 

To test any relationship between the cumulative glucose demand at both growth 

phases, a correlation analysis was performed (Figure 5-3C), showing a weak 

correlation between both growth phases (PPMCC r = -0.285, p-value > 0.05, n = 33). A 

similar analysis was performed using the suggested cell line potential use classification 

(i.e., cell line development or protein production processes; Table 5-1) showing no 

significant differences between both groups either at exponential (two-way ANOVA, 

p>0.05, F=0.43) or stationary (two-way ANOVA, p>0.05, F=0.02) growth phases. 

Therefore, this analysis clearly indicated that the analysis of glucose metabolism alone 

is not enough for identifying cell lines with improved characteristics. 

The specific glucose consumption rates for all 11 clones at early, mid- and late 

subpopulations generated from a long-term culture regime (i.e., generations 0, 80 and 

200, respectively) were analysed at three time points during the fed-batch culture, 

being these mid- exponential, end-exponential and stationary phases (Figure 5-4A). As 

expected, the specific glucose consumption rates, among and within clones, were 

highly variable (Figure 5-4A), showing significant differences between the growth 

phases (Figure 5-4B; two-way ANOVA, p<0.001, F=107.5). 
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Figure 5-3 Comparison of glucose uptake metabolism during exponential and 

stationary growth phases of a fed-batch culture for 11 clonally-derived CHO-S cell 

lines. Cells were grown in fed-batch culture in CD CHO media supplemented with 8 mM L-

glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere until culture 

viabilities dropped below 60%, during the culture 10% (v/v) CHO CD EfficientFeed™ was 

fed at days 3, 5, 7 and 9. For each clone, early-, mid- and late-subpopulations generated 

from a long-term subculture regime, corresponding to generations 0, 80 and 200, 

respectively, were evaluated. (A) The cumulative glucose consumption at the exponential 

and stationary growth phases for the differently aged clonal subpopulations, (B) the global 

glucose consumption at the exponential and stationary growth phases for the differently 

aged clonal subpopulations and (C) the Pearson’s correlation between the glucose 

consumption during stationary and exponential growth phases for the differently aged 

clonal subpopulations (PPMCC r = -0.285, p-value > 0.05, n = 33) are presented. 
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Figure 5-4 Analysis of the specific glucose consumption rate for 11 clonally-derived 

CHO-S cell lines during fed-batch culture. Cells were grown in fed-batch culture in CD 
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CHO media supplemented with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 

5% (v/v) CO2 atmosphere until culture viabilities dropped below 60%, during the culture 

10% (v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. For each clone, early-, 

mid- and late-subpopulations generated from a long-term subculture regime, corresponding 

to generations 0, 80 and 200, respectively, were evaluated. (A) Specific glucose 

consumption rates at the mid-exponential, end-exponential and stationary growth phases 

for the differently aged clonal subpopulations, (B) the global glucose consumption rates at 

the mid-exponential, end-exponential and stationary growth phases for the differently aged 

clonal subpopulations and the Pearson’s correlation between (C) end-exponential and mid-

exponential glucose consumption rates for the differently aged clonal subpopulations 

(PPMCC r = 0.138, p-value > 0.05, n = 33), (D) stationary and mid-exponential glucose 

consumption rates for the differently aged clonal subpopulations (PPMCC r = -0.441, p-

value < 0.05, n = 33) and (E) stationary and end-exponential glucose consumption rates for 

the differently aged clonal subpopulations (PPMCC r = -0.001, p-value > 0.05, n = 33). 

 

The data analysis presented in Figure 5-4B also indicated that during the mid-

exponential growth phase clones were more metabolically active due to their energetic 

demands for cell biomass production. In contrast, clones at end-exponential growth 

phase notably reduced their glucose utilisation as they reduced their proliferation and 

clone at stationary growth phase reduced their glucose utilisation as they only need 

metabolic energy for their cellular maintenance. This significant reductions in glucose 

utilisation observed at end-exponential growth phase was the result of ceasing their 

proliferation and not related to glucose depletion as cultures always exhibited 

concentrations above 3 g L-1 at this time point (data not shown). 

To identify if glucose consumption rates can be used to classify cell lines with 

desirable growth characteristics according with their potential for cell line development 

or protein production processes, clones were grouped and analysed on basis of the 

proposed cell line indication (Table 5-1), finding no differences between both groups at 

mid-exponential (two-way ANOVA, p>0.05, F=1.6), deceleration (two-way ANOVA, 

p>0.05, F=3.9) or stationary (two-way ANOVA: p>0.05, F=0.59) growth phases. This 

data confirms that individual cell lines with improved growth characteristics cannot be 

distinguished on basis of their glucose metabolism. Moreover, to identify any possible 

associations between the glucose rates at exponential and stationary phases, the 

Pearson’s correlation analysis was performed (Figure 5-4C-E) showing only a 

significant negative correlation between mid-exponential and stationary growth phases 

(Figure 5-4D, PPMCC r = -0.441, p-value < 0.05, n = 33). Finally, the ANOVA analysis 
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revealed that the age of the clones (i.e., 0, 80 or 200 generations) only had an effect on 

the specific glucose consumption rates during the stationary growth phase (two-way 

ANOVA, p<0.05, F=2.95). 

 

5.4.2 Lactate metabolism switched to net lactate consumption during stationary 

growth phase 

The cumulative lactate production of the eleven clonally-derived CHO-S cell lines 

was evaluated and compared for the exponential and stationary fed-batch culture 

phases using differently aged subpopulations for each clone. A major finding was a 

shift in lactate metabolism, from production to consumption, during the stationary 

phase in at least one of the clones’ subpopulations (i.e., generations 0, 80 or 200) 

(Figure 5-5A). Additionally, this analysis indicated significant differences in lactate 

metabolism between both the exponential and stationary phases (Figure 5-5B; two-way 

ANOVA: p<0.0001, F=214.6). However, this data did not reveal any relationship 

between the lactate metabolism at exponential and stationary phases (Figure 5-5C). 

Interestingly, the comparison between clones and the parental population showed that 

the majority of clones exhibited higher lactate accumulation during the exponential 

phase and that most of the clones had a notorious lactate shift from production to 

consumption. The analysis of the clone’s cumulative lactate production according to the 

cell line classification presented in Table 5-1 (i.e., suitability for cell line development or 

protein production processes) did not show significant differences between both 

groups, indicating that the lactate metabolism cannot be implemented as a single 

culture parameter for differentiating cell lines that would be more suited for either cell 

line establishment or recombinant protein production. 

The analysis of the specific lactate consumption/production rates showed 

significant differences along the growth phases of the fed-batch culture (Figure 5-6B; 

two-way ANOVA, p<0.001, F=610.5) with a prominent variability at mid-exponential 

growth, ranging between 0.13 and 0.41pmol cell-1 hr-1. Additionally, this data showed 

two lactate metabolisms, the first at mid-exponential growth phase characterised by 

elevated levels of lactate production and the second at end-exponential and stationary 

growth phases characterised by a notable reduction in the lactate production and in 

some cases changing to lactate consumption. 
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Figure 5-5 Comparison of lactate production metabolism during exponential and 

stationary growth phases of a fed-batch culture for 11 clonally-derived CHO-S cell 

lines. Cells were grown in fed-batch culture in CD CHO media supplemented with 8 mM L-

glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere until culture 

viabilities dropped below 60%, during the culture 10% (v/v) CHO CD EfficientFeed™ was 

fed at days 3, 5, 7 and 9. For each clone, early-, mid- and late-subpopulations generated 

from a long-term subculture regime, corresponding to generations 0, 80 and 200, 

respectively, were evaluated. (A) The cumulative lactate production/consumption at the 

exponential and stationary growth phases for the differently aged clonal subpopulations, (B) 

the global lactate metabolism at the exponential and stationary growth phases for the 

differently aged clonal subpopulations and (C) the Pearson’s correlation between the 

lactate metabolism during stationary and exponential growth phases for the differently aged 

clonal subpopulations (PPMCC r = -0.077, p-value > 0.05, n = 33) are presented. 
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Figure 5-6 Analysis of the specific lactate consumption/production rate for 11 

clonally-derived CHO-S cell lines during fed-batch culture. Cells were grown in fed-

batch culture in CD CHO media supplemented with 8 mM L-glutamine and maintained at 

37°C, 170 rpm, under 5% (v/v) CO2 atmosphere until culture viabilities dropped below 60%, 

during the culture 10% (v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. For 

each clone, early-, mid- and late-subpopulations generated from a long-term subculture 

regime, corresponding to generations 0, 80 and 200, respectively, were evaluated. (A) 

Specific lactate metabolic rates at the mid-exponential, end-exponential and stationary 

growth phases for the differently aged clonal subpopulations, (B) the global lactate 

metabolic rates at the mid-exponential, end-exponential and stationary growth phases for 

the differently aged clonal subpopulations and the Pearson’s correlation between (C) end-

exponential and mid-exponential lactate metabolic rates for the differently aged clonal 

subpopulations (PPMCC r = -0.368, p-value < 0.05, n = 33), (D) stationary and mid-

exponential lactate metabolic rates for the differently aged clonal subpopulations (PPMCC r 

= 0.121, p-value > 0.05, n = 33) and (E) stationary and end-exponential lactate metabolic 

rates for the differently aged clonal subpopulations (PPMCC r = 0.07, p-value > 0.05, n = 

33). 

 

Moreover, the data presented in Figure 5-6A, seems to indicate that the clones 

reduced their lactate production rates during the mid-exponential growth phase of the 

fed-batch culture with increasing generation number (i.e., early, mid- and late 

subpopulations for each clone). In contrast, it was not possible to find special patterns 

for lactate metabolic rates at end-exponential and stationary growth phases of the fed-

batch culture except for a significant decrease in production rates (Figure 5-6B; two-

way ANOVA, p<0.001, F=41.59.5). This data may suggest an improvement in the link 

between glycolysis and TCA cycle. However, to support this hypothesis additional 

experiments such as glycolysis analysis are required (see chapter 6). Finally, no 

significant differences between lactate production rates for clones grouped according 

with desirable growth characteristics for protein production and cell line development 

(Table 5-1) were observed. Similarly, Pearson’s correlations between the fed-batch 

culture stages did not show significant correlations between stationary and exponential 

growth phases, but a significant, negative correlation between mid- and end-

exponential phases of the fed-batch culture was obtained for lactate production rate 

(PPMCC r = -0.368, p-value < 0.05, n = 33) (Figure 5-6C to E). In addition, the ANOVA 

analysis with respect to the age of the clones (i.e., 0, 80 or 200 generations) only 

reveals significant differences on the specific lactate consumption rates during the mid-

exponential growth phase (two-way ANOVA, p<0.02, F=4.233). 
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5.4.3 Glutamine metabolism among clonally-derived CHO-S cell lines 

In general, the cumulative glutamine consumption analysis for all 11 clones at 

early, mid- and late generations obtained from a long-term culture regime (i.e., 

generations 0, 80 and 200, respectively) exhibited significant differences between 

exponential and stationary growth phases of the fed-batch culture (Figure 5-7A and 

Figure 5-7B; two-way ANOVA: glutamine, p<0.0001, F=1848) with no significant 

correlation between both growth phases (Figure 5-7C, PPMCC r = -0.316, p-value > 

0.05, n = 33). Moreover, no significant differences between cell lines with identified 

protein production and cell line development prospective capabilities (Table 5-1) were 

observed. The glutamine demand was characterised by an elevated glutamine 

utilisation at exponential growth phase, followed by a significant reduction at stationary 

phase (Figure 5-7A). This data also revealed that some subpopulations (4-early, 4-mid, 

4-late, 6-mid, 6-late, 15-mid, 17-mid, 17-late, 19-late, 22-early and 22-late) seemed to 

slightly synthesise glutamine during the stationary phase, being more notorious in 

clone 4 for which all subpopulations exhibited the same glutamine behaviour. It is 

suggested that this apparent glutamine synthesis may result from their (i) low 

endogenous GS-activity which coupled with low glutaminolityc metabolism at the 

stationary phase led to increments in its concentration or (ii) resulted from media 

evaporation. 

The analysis of the specific rates of glutamine consumption showed a gradual 

and significant reduction in the consumption rates at end-exponential growth phase 

along increasing generations for individual clones obtained from the long-term culture 

(i.e., early, mid and late subpopulations) (Figure 5-8A; two-way ANOVA: p<0.01, 

F=4.67) and also for the growth phases identified during the fed-batch culture (i.e., mid-

exponential, end-exponential and stationary phases) (Figure 5-8B; two-way ANOVA: 

p<0.0001, F=398.7). The glutamine uptake reduction behaviour during fed-batch 

cultivation seems to be closely linked to biomass synthesis, indicating that glutamine 

was preferably used during cellular proliferation. Moreover, the drastic uptake decrease 

may be also associated to the glutamine availability in the culture media which was 

dramatically consumed during the mid-exponential growth phase and became limited, 

but not exhausted, at the end of the exponential phase (between 0.2 to 1.83 mmol L-1, 

data not shown) and during the stationary phase (between 0.2 to 1.06 mmol L-1, data 

not shown). In addition, this data analysis does not reveal any metabolic shift from 

consumption to production supporting the hypothesis that the apparent glutamine 

synthesis observed in Figure 5-7A resulted from media evaporation during the fed-

batch culture. 
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Figure 5-7 Comparison of glutamine uptake metabolism during exponential and 

stationary growth phases of a fed-batch culture for 11 clonally-derived CHO-S cell 

lines. Cells were grown in fed-batch culture in CD CHO media supplemented with 8 mM L-

glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere until culture 

viabilities dropped below 60%, during the culture 10% (v/v) CHO CD EfficientFeed™ was 

fed at days 3, 5, 7 and 9. For each clone, early-, mid- and late-subpopulations generated 

from a long-term subculture regime, corresponding to generations 0, 80 and 200, 

respectively, were evaluated. (A) The cumulative glutamine consumption at the exponential 

and stationary growth phases for the differently aged clonal subpopulations, (B) the global 

glutamine consumption at the exponential and stationary growth phases for the differently 

aged clonal subpopulations and (C) the Pearson’s correlation between the glutamine 

consumption during stationary and exponential growth phases for the differently aged 

clonal subpopulations (PPMCC r = -0.316, p-value > 0.05, n = 33) are presented.  
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Figure 5-8 Analysis of the specific glutamine consumption rate for 11 clonally-

derived CHO-S cell lines during fed-batch culture. Cells were grown in fed-batch culture 

in CD CHO media supplemented with 8 mM L-glutamine and maintained at 37°C, 170 rpm, 

under 5% (v/v) CO2 atmosphere until culture viabilities dropped below 60%, during the 

culture 10% (v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. For each clone, 

early-, mid- and late-subpopulations generated from a long-term subculture regime, 

corresponding to generations 0, 80 and 200, respectively, were evaluated. (A) Specific 

glutamine consumption rates at the mid-exponential, end-exponential and stationary growth 

phases for the differently aged clonal subpopulations, (B) the global glutamine consumption 

rates at the mid-exponential, end-exponential and stationary growth phases for the 

differently aged clonal subpopulations and the Pearson’s correlation between (C) end-

exponential and mid-exponential glutamine consumption rates for the differently aged 

clonal subpopulations (PPMCC r = 0.02, p-value > 0.05, n = 33), (D) stationary and mid-

exponential glutamine consumption rates for the differently aged clonal subpopulations 

(PPMCC r = -0.382, p-value < 0.05, n = 33) and (E) stationary and end-exponential 

glutamine consumption rates for the differently aged clonal subpopulations (PPMCC r = 

0.09, p-value > 0.05, n = 33). 

 

Finally, the Pearson’s correlation analysis (Figure 5-8C-E) exhibited a moderate 

negative correlation between the consumption rates at mid-exponential and stationary 

growth phases (Figure 5-8D; PPMCC r = -0.382, p-value < 0.05, n = 33), indicating that 

subpopulations with elevated glutamine dependence at mid-exponential phase rapidly 

exhaust the glutamine levels, making difficult its accessibility for stationary populations 

and thus triggering a low glutamine uptake at stationary phase. 

 

5.4.4 Glutamate metabolism among clonally-derived CHO-S cell lines 

Contrary to observations for the other metabolites, the glutamate metabolism did 

not exhibit significant differences between the exponential and stationary growth 

phases of the fed-batch culture when evaluating the panel of 11 clonally-derived CHO-

S cell lines and their differently aged subpopulations (i.e., early, mid- and late 

subpopulations, corresponding to generations 0, 80 and 200, respectively) generated 

through long-term cultivation regime (Figure 5-9B; two-way ANOVA, p>0.05, F=2.698). 

However, the Pearson’s correlation analysis exhibited a moderate positive correlation 

between glutamate accumulation at exponential and stationary growth phases (Figure 

5-9C; PPMCC r = 0.385, p-value < 0.05, n = 33) and also exhibited significant 
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differences between exponential and stationary growth phases of the fed-batch culture 

(Figure 5 8A and Figure 5 8B; two-way ANOVA: glutamine, p<0.0001, F=1848). 

The intra-clonal analysis of the accumulated glutamate showed that, in general, 

the accumulation trend was characterised by a constant increase in concentration at 

the exponential and stationary growth phases (Figure 5-9A). Interestingly, 

subpopulations C4-early, C4-mid, C4-late, C15-mid, C17-early and C17-late exhibited 

different metabolic characteristics for glutamate, being characterised by fast and 

efficient glutamate utilisation either in the exponential and/or in the stationary growth 

phases of the fed-batch culture. These results may indicate that the glutamine 

behaviour in these subpopulations probably resulted from an efficient intracellular 

assimilation and incorporation of this metabolite in to the TCA cycle (Nolan and Lee 

2011). 

Analysis of the specific metabolic rates for glutamate metabolism confirmed that 

C4-early, C4-mid and C4-late utilised the glutamate and avoided its accumulation at 

the end of the exponential growth phase and exhibited that C17-late used this 

metabolite during the mid-exponential and during the stationary phase. However, C17-

early did not show signs of glutamate assimilation probably because the sampling 

points did not captured the right time due to a shifted uptake pattern, but it likely 

happened in a similar fashion as for C17-late (Figure 5-10A). Interestingly, the parental 

CHO-S cell line exhibited elevated rates of glutamate assimilation at mid-exponential 

growth phase, which avoided extracellular glutamate accumulation. This metabolic 

behaviour was noticeably different to the majority of the clones indicating that the 

isolated populations minimised or even lost this glutamate metabolism. 

By comparing the glutamate production rates of all clones, notable differences 

between the fed-batch culture growth phases were observed (Figure 5-10B; two-way 

ANOVA, p<0.0001, F=59.97). Being the observed rates between mid-exponential and 

end-exponential phases significantly different, but not substantially different between 

end-exponential and stationary growth phases (Figure 5-10B). Contrary, the Pearson’s 

correlation analysis between glutamate consumption rates at these three time points 

did not show any relationship between (Figure 5-10C to E). The ANOVA analysis with 

respect to the age of the clones (i.e., 0, 80 or 200 generations) only reveals significant 

differences during the mid-exponential growth phase (two-way ANOVA, p<0.02, 

F=4.233). 
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Figure 5-9 Comparison of glutamate metabolism during exponential and stationary 

growth phases of a fed-batch culture for 11 clonally-derived CHO-S cell lines. Cells 

were grown in fed-batch culture in CD CHO media supplemented with 8 mM L-glutamine 

and maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere until culture viabilities 

dropped below 60%, during the culture 10% (v/v) CHO CD EfficientFeed™ was fed at days 

3, 5, 7 and 9. For each clone, early-, mid- and late-subpopulations generated from a long-

term subculture regime, corresponding to generations 0, 80 and 200, respectively, were 

evaluated. (A) The cumulative glutamate metabolism at the exponential and stationary 

growth phases for the differently aged clonal subpopulations, (B) the global glutamate 

metabolism at the exponential and stationary growth phases for the differently aged clonal 

subpopulations and (C) the Pearson’s correlation between the glutamate metabolism 

during stationary and exponential growth phases for the differently aged clonal 

subpopulations (PPMCC r = 0.385, p-value <0.05, n = 33). 
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Figure 5-10 Analysis of the specific glutamate production rate for 11 clonally-derived 

CHO-S cell lines during fed-batch culture. Cells were grown in fed-batch culture in CD 

CHO media supplemented with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 

5% (v/v) CO2 atmosphere until culture viabilities dropped below 60%, during the culture 

10% (v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. For each clone, early-, 

mid- and late-subpopulations generated from a long-term subculture regime, corresponding 

to generations 0, 80 and 200, respectively, were evaluated. (A) Specific glutamate 

metabolic rates at the mid-exponential, end-exponential and stationary growth phases for 

the differently aged clonal subpopulations, (B) the global glutamate metabolic rates at the 

mid-exponential, end-exponential and stationary growth phases for the differently aged 

clonal subpopulations and the Pearson’s correlation between (C) end-exponential and mid-

exponential glutamate metabolic rates for the differently aged clonal subpopulations 

(PPMCC r = 0.185, p-value > 0.05, n = 33), (D) stationary and mid-exponential glutamate 

metabolic rates for the differently aged clonal subpopulations (PPMCC r = 0.108, p-value > 

0.05, n = 33) and (E) stationary and end-exponential glutamate metabolic rates for the 

differently aged clonal subpopulations (PPMCC r = 0.082, p-value > 0.05, n = 33). 

 

 

5.4.5 Growth and metabolic kinetics  

To understand chances in the cell performance (i.e., IVCD), we plot the 

cumulative consumption or production of each metabolite over the fed-batch culture 

against the IVCD. These data revealed a strong correlation between IVCD and 

cumulative glucose consumption (r2= 0.88, n=167, p < 0.0001, Figure 5-11A), 

cumulative metabolism of glucose and lactate combined (r2= 0.84, n=167, p < 0.0001, 

Figure 5-11E), and lactate: glucose ratio (r2= 0.66, n=167, p < 0.0001, Figure 5-11F). 

The Figure 5-11A indicates that cell growth and cell maintenance are closely linked to 

glucose consumption, whereas the glutamine, lactate and glutamate metabolism varies 

with culture progression (Figure 5-11B-D). The Figure 5-11H also exhibited a high 

lactate:glucose ratio (>2) during the early stage of the culture, leading us to 

hypothesised that glutamine provided elevated levels of NADPH for fatty acid 

biosynthesis, which also resulted in increased lactate production as the NADPH results 

from the malate conversion into pyruvate, and the latter is subsequently converted into 

lactate. Additionally, lactate:glucose ratios clearly indicates that proliferating cells (mid 

and end-exponential growth phase) present an elevated aerobic glycolysis, whereas 

stationary cells present a more efficient glucose oxidation probably linked to 

mitochondrial metabolism. 
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Figure 5-11 Analysis of the global specific metabolic rates for glucose, lactate, 

glutamate and glutamine for 11 clonally-derived CHO-S cell lines in fed-batch culture 

and their relation to IVCD. The cumulative consumption or production of indicated 

metabolites was plotted against integral of viable cell density. The slope values indicate the 

overall specific rates of consumption or production for 11 clones at early, mid- and late 

subpopulations. Correlations between (A) glucose consumption, (B) glutamine 

consumption, (C) lactate production and (D) glutamate production with IVCD are presented. 

Also, correlations between (E) the combined glucose and lactate metabolism and (E) 

lactate:glucose ratios with IVCD are shown. The grey and white squares represent the 

values generated at mid- and end-exponential growth phase for the clones through a fed-

batch regime, respectively (i.e., day 3 and 5 of fed-batch, respectively). The black, grey and 

white circles represent the values generated at early- mid- and end-stationary growth 

phase generated for the clones through a fed-batch regime, respectively (i.e., day 7, 8 and 

11 of fed-batch, respectively). 
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Figure 5-12 Relationship between the specific metabolic rates of glucose, lactate, 

glutamate and glutamine for 11 clonally-derived CHO-S cell lines during the mid-

exponential and end-exponential growth phases of a fed-batch culture. The metabolic 

rate values inside the red and blue figures correspond to the values collected during the 

mid-exponential and end-exponential growth phases of the fed-batch, respectively. The 

black, grey and white circles represent the early, mid- and late-subpopulations generated 

for the clones through a long-term subculture regime, respectively (i.e., generations 0, 80 

and 200, respectively). The red “x” represents the parental population. 
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The existence of correlations between specific metabolite consumptions during 

proliferation phase was evaluated by calculating the Pearson’s correlation coefficient 

(Figure 5-12). The results exhibited moderate correlations between glucose and 

glutamine consumption (PPMCC r = 0.41, n = 33) and between glutamate and lactate 

metabolism (PPMCC r = 0.39, n = 33). The positive correlation between lactate 

accumulation and glutamate accumulation led us to hypothesise a negative 

deregulation of glutamate pyruvate transaminase, enzyme that catalyses the 

conversion of glutamate and pyruvate to alanine and α-KG (Mulukutla et al. 2012), 

which also suggest a low glutamate flux to feed the TCA cycle as a result of the 

elevated aerobic glycolysis observed at this growth phase. The positive correlation 

between glucose and glutamine consumption clearly indicated that both metabolites 

are closely related in proliferating populations. To validate this results, the Pearson’s 

correlation coefficient at end-exponential growth were calculated (Figure 5-12), 

observing similar association between glucose and glutamine consumption (PPMCC r 

= 0.72, n = 33) and between glutamate and lactate production (PPMCC r = 0.56, n = 

33), and thus confirming our hypotheses. Finally, no significant correlations were 

observed at stationary phase (Data not shown) indicating that cell metabolism varies in 

stationary cells. 

 

5.5 General discussion 

The cellular metabolism is crucial to understand the cell behaviour in each 

individual population, therefore several attempts have intended to characterise 

metabolic processes of CHO cell lines with varied growth and the expression 

characteristics to developing more efficient feeding strategies to increase the batch-to-

batch consistencies and develop efficient mammalian cell cultures (Tsao et al. 2005; 

Zamorano et al. 2010). Most studies have been performed with the analysis of two or 

three populations with different cell features (i.e., elevated productivity, improved 

growth performance) due to the combination of the inherent variability between 

populations and processes, the poor knowledge on CHO cell metabolism, the intricate 

regulation of metabolic pathways and the cell-environment interactions, increase the 

complexity of the overall cellular characterisation. 

The metabolic analysis performed in the present study was designed to 

characterise the metabolism of individual cell lines throughout increasing generations 

(i.e., early-, mid- and late-subpopulations corresponding to 0, 80 and 200 generations, 

respectively) and recognise the metabolic changes within cell lines at different stages 
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of the fed-batch culture. It can be suggested that cell lines with desirable phenotypic 

traits such as elevated growth performance and phenotypic stability during long-term 

sub-cultivation periods (see Table 5-1) may share some metabolic traits that would 

facilitate their identification and selection. However, the data presented here did not 

indicate any correlation or unique feature capable of identifying or distinguishing 

between the clonal CHO-S cell lines which previously were classified as optimal for 

protein production and cell line development. In fact, the data showed that clones were 

highly variable and suggested that each subpopulation (at early, mid- and late 

generations) must be considered as an individual CHO-S cell line with its own 

metabolic and phenotypic characteristic, even if they were generated from a common 

ancestor. Similar outcomes have reported that mammalian cell lines would diverge 

significantly throughout time as a result of their inherent phenotypic heterogeneity 

(Barnes et al. 2006; Chusainow et al. 2009; Kim et al. 1998). 

The overall metabolic analysis among clones identified notable differences 

between stationary and exponential phases, being mainly associated with elevated 

carbon source utilisation (i.e., glucose and glutamine) at the exponential growth phase 

to generate energy and biomolecules for cellular proliferation. As expected, this data 

exhibited a strong “aerobic glycolysis” during the exponential growth phase, which is 

identified and characterised by extracellular lactate build-up as the result of incomplete 

glucose oxidation (Vander Heiden et al. 2009; Zhao et al. 2013). This inefficient, but 

fast glycolytic metabolism probably resulted from the up-regulation of key glycolytic 

enzymes (i.e., HK, PFK, PYK and LDHA) and glucose transporters (GLUT 1, GLUT 3 

and GLUT 4) to promote the fast assimilation of glucose and its rapid conversion to 

lactate and the associated energy yield (Vander Heiden et al. 2009; Zhao et al. 2013). 

Similar data have been previously reported and associated to reductions in the 

pyruvate transport to the TCA cycle as the result of a down-regulation of the PDC 

complex (Kim et al. 2006; Young 2013; Zhou et al. 2011). 

The reduction in specific glucose consumption along increasing generation 

number directly reduced lactate and glutamate metabolism, this data seems to indicate 

that populations tend to reduce their metabolic demand for biomass synthesis. 

Interestingly, the decline in glucose metabolism also favoured positively to the 

proliferation rates and therefore resulting in continuous improvements in the carbon 

source utilisation, and therefore reducing glucose uptake and lactate production 

(Warburg 1956; Young 2013). The metabolic analysis performed during the stationary 

growth phase exhibited notable decrements in glucose consumption compared with the 

exponential growth data. This metabolism was anticipated as cells ceased their 
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proliferation and reduced their energetic demand. This reduction in glucose demand 

was accompanied by a switch from lactate production to consumption for the majority 

of the clones or al leas by decreases in its synthesis. This metabolic switch has been 

widely documented as a desirable metabolic feature in cultures, because it reduces the 

lactate accumulation, eliminating its negative effects on cell growth (Lao and Toth 

1997; Mulukutla et al. 2012; Ozturk et al. 1992; Zhao et al. 2013). Interestingly, the 

switch in lactate metabolism occurred when glutamine became limiting in medium, this 

seems to suggest that cells probably use this metabolite as an alternative source of 

carbon in absence of glutamine. Continuing with the comparison, the glutamine 

metabolism at exponential phase indicates that its assimilation exceeds the rate of 

glutamate assimilation into the TCA cycle, whereas the low levels of glutamate 

metabolism at stationary phase resulted from the glutamine depletion. 

The particular analysis of clone 4, which was selected as a cell line that meets 

the desired characteristics for recombinant protein production given its stable 

phenotype over increasing generations, showed important metabolic characteristics at 

its three subpopulations (i.e., C4-early, C4-mid and C4-late, corresponding to 

generations 0, 80 and 200, respectively). The main differences between clone 4 and 

the rest of the clones were observed in the glutamate and lactate metabolism. Contrary 

to the majority of the clonal cell lines, the glutamate consumption observed in clone 4 

was higher than its production. Taking into account that glutamate is produced from 

glutamine deamination, this data may suggest that the glutamine metabolism at end-

exponential phase was actively couple with glutamate utilisation. This lead us to 

hypothesise that clone 4 exhibited higher fluxes in the TCA cycle or a high demand of 

NADPH for fatty acid biosynthesis. Moreover, this data also seems to indicate that 

glutamine was rapidly depleted and exhausted by the end of the exponential phase as 

the result of their high metabolism. To corroborate this hypothesis the raw data at day 5 

of the fed-batch culture was analysed, which confirmed that the glutamine 

concentration at that time point was much lower than for the majority of the clones (< 

0.46 mM). Interestingly, the lactate metabolism at stationary phase showed that clone 4 

was the unique clonal CHO-S cell line that switched from production to consumption at 

its three subpopulations (i.e., C4-early, C4-mid and C4-late). 

As described previously, clones were classified as “suitable for protein 

production” and “suitable for cell development process”. Thus, in order to test if some 

metabolic traits were conserved among the clones who comprehend each group 

comparisons within them were performed. Unfortunately, our data reveals that clones 

included in each classification do not share any key metabolic characteristic, showing a 
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substantial level of metabolic heterogeneity among the populations and indicating that 

an a universal metabolic profile that would identify an specific growth performance 

cannot be developed, at least with only the global analysis of these four parameters 

(e.g., glucose, lactate, glutamine and glutamate). Using the same analogy, the 

metabolism along the long-term cultivation (i.e., early-, mid- and late subpopulations) 

indicated that in general clones at mid- and late-exponential growth phases tend to 

reduce their specific glucose consumption and specific lactate production over 

increasing generations, suggesting that populations reduce their metabolic demands 

for biomass synthesis, improve their carbon metabolism and minimise the media 

acidification, therefore improved metabolism resulted in higher proliferation rates. 

After the fed-batch study execution, It was possible to identify that the age of the 

clones (i.e., generations 0, 80 and 200) play a fundamental role for the cell’s 

metabolism by improving the carbon source usage over increasing generations, 

resulting in higher proliferation rates and lower rates of lactate acidification. In addition, 

it was identified significant differences in glucose, lactate, glutamine and glutamate 

metabolism between exponential and stationary growth phase, revealing that clones 

reduced their glycolytic phenotype (Warburg effect) and switched to a more efficient 

metabolism over the course of the culture. This hypothesis is supported by the 

evidences in lactate metabolism which showed notable reductions in the lactate: 

glucose ratio, therefore these data are a clear sign of the re-establishment of the TCA 

cycle and OXPHOS metabolism during stationary phase. Finally, this data showed that 

an elevated glutamine metabolism is required to maintain an active cell growth and that 

its near depletion promotes a switch from the lactate production to consumption and it 

defines the end of the exponential growth phase. 

In this chapter, the fed-batch experiments were used with the main purpose of 

supplying optimal nutrients levels to the cell in order to investigate their metabolism. 

However, the strategy implemented always fed large quantities of glucose, causing a 

glucose excess during the whole fed-batch culture (data not shown). Opposite effects 

were observed with glutamine, being depleted at the end of the exponential phase as 

this metabolite was not supplied in the feeding strategy. As a result, the feeding 

strategy was non-ideal because did no supply optimal concentrations of both carbon 

sources, eliminating the possibility of controlling the cellular metabolism along fed-

batch culture. Despite it, the results presented here an acceptable outcome considering 

the technical limitations such as the inability to real-time and online monitoring of the 

nutrient concentrations and the unknown formulation of the CHO CD EfficientFeed™ B. 

Other authors have studied cell lines in a similar fashion and their results have agreed 
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and disagreed with the ones presented here. This supports the idea that cell lines are 

open systems which constantly interact with their environment, that do not have 

consistent metabolic patterns and are not easy to predict. In the future, fed-batch 

cultures can be complemented with a supplementation of a defined formulation on 

basis of their growth and metabolic performance to control the glucose, glutamine and 

lactate concentration along the fed-batch culture. This future work can also be 

complemented with the analysis of other metabolites such as pyruvate and ammonia 

which could give an even more complete picture of the cell’s metabolism.
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Chapter 6 

Glycolytic and mitochondrial metabolism among CHO-S clonal 

derivatives 

This chapter introduces the procedures employed to analyse the glycolytic and 

mitochondrial metabolism for a panel of clonally-derived CHO-S cell lines at early-, 

mid- and late-generations corresponding to generations 0, 80 and 200, respectively, 

during the exponential and stationary phase of a fed-batch regimen, followed by 

assessments of the four key glycolytic parameters and the six key mitochondrial 

parameters. Altogether, this methodology allows us to gain insight into metabolic 

dynamics within CHO cell populations during exponential and stationary growth 

phases. 

 

6.1 Background 

In the previous chapters it was demonstrated that the inherent phenotypic 

heterogeneity within CHO populations was responsible for generating a panel of 22 

clonal CHO-S cell lines with significant differences in terms of cell growth performance 

(e.g., specific growth rate, IVCD, maximal VCD and cell size) and metabolism (e.g., 

glucose and glutamine consumption). Additionally, the glucose, lactate, glutamine and 

glutamate analyses described in chapter 5, exhibited that proliferating cell lines were 

more glycolytic during the exponential phase and also reveal that subpopulations 

switched to a more mitochondrial metabolism during the stationary growth phase. 

These findings permit to hypothesise that evaluating the glycolytic and mitochondrial 

performance during the stationary and exponential growth phase will increase our 

understanding of the metabolic behaviour observed in chapter 5. 

As mentioned previously, glucose is the primary source of energy and a key 

molecule for living organisms. This molecule is transported across the cell membrane 

by glucose transporters (GLUTs), followed by its oxidation through glycolysis to 

generate two pyruvic acid molecules. At this stage, pyruvate can follow two pathways: 

(i) being reduced to lactic acid by the lactate dehydrogenase enzyme (LDH) under 

hypoxic conditions with a global production of two ATP molecules per glucose molecule 

or (ii) being oxidised into CO2 through the TCA cycle to give NADH and FADH2 which 

are subsequently coupled to OXPHOS to produce ATP (Adekola et al. 2012; Koopman 

et al. 2013). This complete glucose oxidation represents the optimal energetic 
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metabolism giving a global yield of up to 36 ATP molecules per glucose molecule 

(Gatenby and Gillies 2004; Koopman et al. 2013). 

The conversion of pyruvate into lactate is a common metabolism called “aerobic 

glycolysis” observed in CHO cells, in which they prefer to use the glycolytic pathway as 

the main source of energy to fuel the cell metabolism even under aerobic conditions 

(Kim et al. 2006; Papandreou et al. 2006; Zhou et al. 2011). This metabolism plays an 

important role because the lactate production restores the levels of NAD+/NADH and 

this maintains the ATP production (Gatenby and Gillies 2004; Kim et al. 2006; 

Papandreou et al. 2006; Vander Heiden et al. 2009). However, during biological 

production processes (e.g., monoclonal antibodies manufacturing) the elevated lactate 

levels are detrimental for cells, reducing notably their cell growth performance and the 

protein production (Lao and Toth 1997; Ozturk et al. 1992; Zhao et al. 2013). Several 

studies have identified that this metabolism is the result of important metabolic and 

physiologic changes within cells, being the PDC inhibition by PDK activity one of the 

most important changes because its activity determines the route for pyruvate 

metabolism, either in the mitochondria or in the cytosol to form lactate, therefore PDC 

inhibition by PDK results in a subsequent reduction in the pyruvic acid flux from 

glycolysis to the TCA cycle (Diers et al. 2012; Kim et al. 2006; Young 2013; Zhou et al. 

2011). 

As mentioned above, the mitochondria respiration represents the more efficient 

cellular metabolism in terms of ATP production, comprising a set of biochemical 

reactions that transfer electrons from NADH and FADH2 to O2, through a series of 

enzymatic complexes (complex I, II, and III of the ETC) and electron carriers 

(ubiquinone/coenzyme Q and cytochrome c) yielding one water molecule and pumping 

protons to the IMS, which later are used to generate ATP through the action of the ATP 

synthase complex (complex IV) (Nicholls and Ferguson 2013). Despite being an 

efficient route, the mitochondria presents a natural proton leak, these protons then 

react with oxygen without producing ATP (Jastroch et al. 2010). This proton leak has 

been defined as a normal process within cells, representing around 20 to 30% of the 

mitochondrial respiration (Jastroch et al. 2010). However, elevated proton leak activity 

would denote potential mitochondrial membrane damage (Kokoszka et al. 2001). 

For the above mentioned, the mitochondrion is an indispensable organelle for 

maintaining the cellular performance and needs to be evaluated during cell line 

development processes in other to generate cell lines with robust mitochondrial 

integrity. The mitochondrion consists of outer and inner double phospholipid 

membranes, intermembrane space and matrix, which together hold and coordinate the 
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indispensable metabolic pathways such as the TCA cycle, ETC and OXPHOS (Nelson 

and Cox 2013), regulate important physiological process such as apoptosis, cell 

division and cell growth (Bereiter-Hahn et al. 2008; Cadenas and Davies 2000), and 

maintain their functionality, integrity and communication with the cytosol (Detmer and 

Chan 2007; Gabriel et al. 2007; Vogtle et al. 2012). For the importance of the organelle 

for cellular regulation, it is not surprising that abnormal mitochondrial metabolism would 

result in apoptosis or in detrimental growth performances (Koopman et al. 2013; Valko 

et al. 2007). Consequently, in this study I analysed the glycolytic and the mitochondrial 

status in clonal CHO-S cell lines to identify glycolytic and respiratory parameters that 

will eventually lead us to design more efficient screening technologies for the selection 

of cell lines with improved growth characteristics (e.g., IVCD). 

 

6.2 Chapter aims 

In this chapter, I investigated four hypotheses (i) that cell lines with active 

proliferation rates prefer to use the glycolytic metabolism as the principal ATP source, 

(ii) that during the mid- and late-stage of the fed-batch culture cells restore the TCA 

cycle flux and increase their mitochondrial metabolism, (iii) that the mitochondrial 

integrity during the mid- and late–fed-batch culture is a key cellular parameter which 

dictates the overall longevity of the cells and (iv) that the analysis of the glycolytic and 

mitochondrial metabolism during the exponential and stationary growth phases would 

permit the identification of key metabolic features of cell lines with specific metabolic 

characteristic for cell line development or protein production processes. Thereby, I 

suggest that: 

(i) The clonally-derived CHO-S cell lines would exhibit significant metabolic 

differences in terms of glycolytic activity and mitochondria respiration. 

(ii) The clonally-derived CHO-S cell lines would exhibit elevated glycolytic activity 

during the early-stage of the fed-batch culture. 

(iii) The re-establishment of the mitochondrial activity among the clonally-derived 

CHO-S cell lines was responsible of reducing glucose demand and lactate 

accumulation during the late-stage of the fed-batch culture. 

(iv) The detrimental environmental conditions observed at mid- and late-stages of 

the fed-batch culture threaten the mitochondrial integrity, resulting in 

increases of proton leak across the IMM. 
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The aim of this chapter was to reveal the optimal metabolic state among clonally 

derived populations and understand the central carbon metabolism of the CHO cells 

during fed-batch experiments. Moreover, I aimed to study how the mitochondrial and 

glycolytic metabolisms during fed-batch cultivation are closely regulated. Finally, I 

aimed to identify the optimal glycolytic and mitochondrial parameters that could permit 

the selection of subpopulation with relevant phenotype. 

 

6.3 Chapter objectives 

To address the chapter aims, the objectives of the work presented in this chapter 

were to:  

i) Characterise the glycolytic metabolism of a panel of 24 clonally-derived 

CHO-S subpopulations and a parental line during the exponential and 

stationary growth phases of fed-batch culture. 

ii) Examine the four key glycolytic parameters (i.e., non-glycolytic acidification, 

glycolysis, glycolytic capacity and spare glycolytic capacity) during the 

exponential and stationary growth phases of fed-batch culture. 

iii) Characterise the profiles of respiratory capacity of a panel of 35 clonally-

derived CHO-S subpopulations and a parental line during the exponential 

and stationary growth phases of fed-batch culture. 

iv) Examine the six key mitochondrial parameters (i.e., non-mitochondrial 

respiration, basal mitochondrial respiration, maximal respiration, spare 

respiratory capacity, ATP linked respiration and proton leak) at exponential 

and stationary growth phases. 

v) Identify the potential correlation between the glycolytic parameters at 

exponential and stationary growth phases. 

vi) Identify the potential correlation between the respiratory parameters at 

exponential and stationary growth phases. 
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6.4 Results  

6.4.1 Analysis of the glycolytic activity function among clonal CHO-S cell lines 

during exponential and stationary growth phase 

 In the previous chapter (see chapter 5) the metabolism of 11 clonally-derived 

CHO-S cell lines at different ages was studied in fed-batch culture. The global 

metabolism among the clonally-derived CHO-S cell lines was characterised by 

elevated glucose and glutamine demand and important lactate build-up in proliferating 

cells during the exponential phase, this behaviour was subsequently replaced by a 

drastic reduction in the cell’s glucose dependence and lactate accumulation during the 

stationary phase, and for some clones even a switch to lactate consumption was 

detected. The elevated glucose addiction and lactate accumulation observed during the 

early-stage of the fed-batch culture clearly evidenced a prominent glycolytic phenotype 

with an incomplete glucose oxidation, indicating that proliferating CHO cells preferred 

the aerobic glycolysis over OXPHOS to meet the energetic and biosynthetic demands 

for proliferation. On the other hand, a substantial reduction in glucose consumption and 

lactate accumulation at stationary growth phase evidenced significant changes in the 

glycolytic metabolism, suggesting that cells reactivated the glycolysis-TCA cycle link, 

which was minimised in proliferating cells, and therefore exhibited efficient glucose 

utilisation (i.e., lactate was not accumulated) coupled to OXPHOS to meet their 

metabolic demands. 

To characterise the glycolytic metabolism among the differently aged clonally-

derived CHO-S subpopulations, glycolysis was evaluated in triplicate at mid-

exponential and stationary growth phases using the cell metabolic analyser Seahorse 

XF24 which measured the extracellular acidification rate. ECAR is as indicator of 

glycolysis as glycolytic cells present elevated rates of acidification resulted from the 

lactate production. During the test, cells were maintained in un-buffered DMEM media 

without glucose to exhaust the intracellular glucose, followed by a sequential treatment 

with (i) glucose (final concentration 10 mM) to induce glycolysis, (ii) oligomycin (final 

concentration 1.125 μM), an ATP synthase inhibitor which blocks OXPHOS and forces 

cells to rely on glycolysis to meet the energetic demands and thus discloses the 

maximal glycolytic capacity and (iii) 2-DG (final concentration 100 mM), a glycolysis 

inhibitor which stops the glycolytic metabolism and reveals the non-glycolytic 

acidification (Figure 6-1).  
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Figure 6-1 Global extracellular acidification rate (ECAR) profiles during the 

exponential and stationary growth phases for 24 clonally-derived CHO-S 

subpopulations and the parental line. For each clone, cell samples at (A) exponential 

growth phase (day 3) and (B) stationary growth phase (day 7) were harvested and 

analysed using the cell metabolic analyser Seahorse XF24. During the test cells were 

maintained in un-buffered DMEM and triplicate measurements of the basal ECAR were 

obtained, followed by triplicate measurements of ECAR after injection of each of the 

following compounds: glucose, oligomycin and 2-deoxy-glucose, used for glycolysis 

evaluation, maximal glycolytic capacity induction and non-glycolytic acidification evaluation, 

respectively. The circles represent the average for 24 differently aged clonal 

subpopulations and the superior and inferior dotted lines represent the SD. 
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For improving the glycolytic analysis, the concentration of oligomycin was 

optimised to ensure a complete inhibition of OXPHOS and also to reduce its toxic 

effects (e.g., cell death) during the test. The identification of the optimal oligomycin 

concentration was performed by testing seven different concentrations (i.e., 0, 0.25, 

0.50, 0.75, 1.00, 1.125 and 1.25 μM) and measuring the basal OCR and ECAR before 

and after the oligomycin injection. The lower oligomycin concentration that supported 

the highest effects on OCR and ECAR was selected as the optimal concentration for 

glycolytic analysis. 

 In this section, the global glycolytic metabolism (i.e., glycolysis, glycolytic 

capacity, glycolytic reserve and non-glycolytic acidification) described in Figure 6-1 was 

analysed at exponential and stationary growth phases to give an insight into the varied 

glycolytic capabilities among clonal CHO-S cell lines. However, in subsequent sections 

a more detailed analysis is carried out (see sections 6.4.2 to 6.4.5). This global 

analysis was performed using 24 individual subpopulations, parental cell line included, 

with different accumulated generations originated from a long-term culture regime (i.e., 

generations 0, 80 or 200, corresponding to the early-, mid- or late- subpopulations of 

each clone), these clones were analysed and compared during the exponential and 

stationary phases. At first glance, it can be observed a significant difference between 

the glycolytic metabolism at stationary and exponential growth phases (Figure 6-1A-B), 

exhibiting that proliferating cells commonly utilised their glycolytic metabolism at their 

maximal capacity, whereas stationary growth phase cells used the glycolytic pathway 

below their maximal capacity (~ 63% of their maximal glycolytic capacity). This data 

clearly confirms that proliferating cells present an strong Warburg effect, this preferring 

the aerobic glycolysis over OXPHOS to meet their energetic and biosynthetic 

demands. Moreover, this data suggest that during the stationary phase cells switched 

to a more efficient energetic metabolism and relied more on OXPHOS. This hypothesis 

is supported by previous observations in the cellular metabolism among the clonal 

CHO-S cells (see chapter 5), which demonstrated that cells at stationary phase 

significantly reduced their glucose consumption and even switched from lactate 

production to consumption. Moreover, to corroborate this hypothesis the mitochondrial 

analysis is presented in sections 6.4.7 to 6.4.13. 

The comparison between stationary phase and exponential phase revealed that 

subpopulations at stationary growth phase exhibited an increment in the non-glycolytic 

acidification (~ 125%, Figure 6-1A-B). This metabolic performance probably resulted 

from increments in the CO2 production via the TCA cycle as cells switched from aerobic 

glycolysis to OXPHOS metabolism during the stationary growth phase. A similar 
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glycolytic behaviour was observed for the glycolytic capacity and glycolytic reserve 

which were enhanced up to 1.15 and 22.05 fold change compared with the exponential 

growth phase, respectively. Finally, the analysis of the basal glycolytic activity exhibited 

a contrary behaviour, characterised by reduction in the glycolytic flux during stationary 

phase (~ 25%). Together, this data strongly suggest that during stationary growth 

phase cells relied more on mitochondrial metabolism. 

 

6.4.2 Non-glycolytic acidification 

In cells, the glucose metabolism produces two types of acids: lactic acid which 

results from an incomplete glucose oxidation and carbonic acid which is generated 

from the complete glucose oxidation to CO2 through the TCA cycle and then hydrated 

to carbonic acid (Newell et al. 1993). Therefore, the total extracellular acidification 

results from the glycolytic and the TCA cycle metabolism, as well as from the proton 

extrusion. To identify and compare the glycolytic metabolism among subpopulations, 

the inherent non-glycolytic acidification was identified and disregarded. This ECAR 

value was obtained through the complete inhibition of the glycolytic pathway by 2-DG 

(Figure 6-1). The residual ECAR observed after 2-DG injection was defined as non-

glycolytic acidification and compared between subpopulations (Figure 6-2A). At first 

glance, significant differences between growth phases were observed (Figure 6-2B; 

two-way ANOVA, p<0.0001, F=105.6) with a moderate, but significant, correlation 

between the non-glycolytic acidification at the stationary and exponential growth 

phases (Figure 6-2C; PPMCC r = 0.407, p-value < 0.05, n = 25). Finally, the age of 

subpopulations (e.g., early, mid and late) did not exhibited an effect in the non-

glycolytic acidification, either at exponential and stationary growth phase. 

The comparison between growth phases showed that all the subpopulations 

significantly increased their non-glycolytic acidification at the stationary growth phase, 

ranging between 42% for C12-late and 880% for the parental population. On the basis 

of the metabolic analysis (see chapter 5) it can be suggested that the increase in the 

non-glycolytic acidification resulted from the activation of the OXPHOS metabolism at 

the stationary growth phase. An interesting finding was observed with the parental 

population, exhibiting the lowest non-glycolytic acidification at exponential phase, 

probably resulted from a strong Warburg effect with an elevated inhibition of the pyruvic 

acid flux into the TCA cycle. As a consequence, when the parental population 

stimulated its mitochondrial metabolism this was observed as a significant increment in 
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the non-glycolytic acidification, but in fact its stationary value was not superior to those 

observed in the other clones. 

 

Figure 6-2 Analysis of the non-glycolytic acidification for 24 clonally-derived CHO-S 

subpopulations and the parental population during exponential and stationary 

growth phases. Cells were grown in fed-batch culture in CD CHO media supplemented 

with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere 

until culture viabilities dropped below 60%, during the culture 10% (v/v) CHO CD 

EfficientFeed™ was fed at days 3, 5, 7 and 9. Early-, mid- and late-subpopulations 

generated from a long-term subculture regime, corresponding to generations 0, 80 and 

200, respectively, were harvested and analysed using the cell metabolic analyser Seahorse 

XF24 at exponential (day 3) and stationary (day 7) growth phases. (A) Non-glycolytic 

acidification at exponential and stationary growth phases for the differently aged clonal 

subpopulations, (B) the global non-glycolytic acidification rates at the exponential and 

stationary growth phases and (C) the Pearson’s correlation between the non-glycolytic 

ECAR at stationary and exponential growth phases for the differently aged clonal 

subpopulations (PPMCC r = 0.407, p-value < 0.05, n = 25). 
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6.4.3 Basal Glycolysis 

The basal glycolysis represents the normal glucose metabolism under aerobic 

conditions without glucose limitation. To calculate this value, the glycolytic flux was first 

measured through glucose stimulation, which stimulates the glycolytic metabolism, and 

then the non-glycolytic acidification ECAR value was subtracted from the glucose 

treatment ECAR value. The comparison of the basal glycolysis at both exponential and 

stationary growth phases exhibited significant differences (Figure 6-3B; two-way 

ANOVA, p<0.05, F=4.3), being significant higher at stationary growth phase without 

any significant correlation between both growth phases (Figure 6-3C; PPMCC r = 

0.176, p-value > 0.05, n = 25). This data also reveals that subpopulations tend to 

reduce their basal glycolysis over increasing generation at both growth phases with a 

significant variability between subpopulations with differences of up to 2.0 and 4.3 fold 

changes between lowest and highest ECAR activities for the exponential and stationary 

growth phases, respectively. 

Analysing in detail the subpopulations, it can be observed that the majority of the 

clones reduced their glycolytic activity at the stationary phase, between 10 and 30%, 

whereas subpopulations C10-late, C13-early and C17-late did not present significant 

variations and C4-mid, C4-late, C10-early and C17-early increased their activity up to 

28%. The observed reduction in basal glycolytic metabolism at stationary phase seems 

to be associated with the decreased or even interruption of cell growth. Contrary, the 

maintenance or increments of glycolic levels suggested that the predominance of a 

strong glycolytic metabolism for meeting the energetic demands for cell maintenance. 

A peculiar metabolism can be observed for C2-late which significantly increased its 

glycolytic metabolism by 133%, suggesting that the stationary cells still maintained a 

strong Warburg effect, but the lactate: glucose ratio (0.13 lactate moles produced per 

each glucose mole consumed) strongly reject this hypothesis. 



 Chapter 6 
 

 153 

 

Figure 6-3 Analysis of glycolysis for 24 clonally-derived CHO-S subpopulations and 

the parental population during exponential and stationary growth phases. Cells were 

grown in fed-batch culture in CD CHO media supplemented with 8 mM L-glutamine and 

maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere until culture viabilities 

dropped below 60%, during the culture 10% (v/v) CHO CD EfficientFeed™ was fed at days 

3, 5, 7 and 9. Early-, mid- and late-subpopulations generated from a long-term subculture 

regime, corresponding to generations 0, 80 and 200, respectively, were harvested and 

analysed using the cell metabolic analyser Seahorse XF24 at exponential (day 3) and 

stationary (day 7) growth phases. (A) Glycolytic metabolism at exponential and stationary 

growth phases for the differently aged clonal subpopulations, (B) the global glycolysis rates 

at the exponential and stationary growth phases and (C) the Pearson’s correlation between 

the glycolytic ECAR at stationary and exponential growth phases for the differently aged 

clonal subpopulations (PPMCC r = 0.176, p-value > 0.05, n = 25). 
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6.4.4  Maximal glycolytic capacity 

The inhibition of OXPHOS by oligomycin forces cells to generate all the ATP 

demanded to survive via aerobic glycolysis, revealing the glycolytic capacity. This 

maximum glycolytic capacity value was calculated by subtracting the non-glycolytic 

acidification ECAR value from the oligomycin treatment ECAR value. Gathering the 

maximum glycolytic metabolism for all clones and classifying it into exponential and 

stationary phases (Figure 6-4B) showed that the differences between both growth 

phases were statistically significant (two-way ANOVA, p<0.05, F=5.18) with moderate, 

but no significant positive correlation between the observed glycolytic capacity at both 

growth phases (Figure 6-4C; PPMCC r = 0.317, p-value > 0.05, n = 25). As expected, 

the comparison of glycolytic capacity among clones also exhibited a large variability, 

with up to 2.7 and 3.8 fold differences between the lowest and highest ECAR activities 

at exponential and stationary growth phases, respectively. Moreover, the observed 

increments in the maximal glycolytic fluxes at stationary phase may be the resulted of 

the glycolytic machinery accumulated along exponential phase, which was slightly 

reduce during the stationary phase, thus the latent glycolytic capacity allow to efficiently 

and quickly switch between mitochondrial and glycolytic metabolism  

The glycolytic analysis over increasing generation showed a notable reduction in 

the maximal glycolytic capacity after 200 generation, confirming that the evolved sub-

clones tend to reduce their glycolytic capacity over increasing generation. Moreover, 

the comparison among subpopulations revealed that the majority of the clones 

increased between 10 and 88% their glycolytic capacity from exponential to stationary 

phase, whereas six subpopulations (C6-early, C8-early, C8-late, C8-mid, C13-mid and 

C19-early) did not exhibit significant variations and only four subpopulations reduced 

their glycolytic capacity between 18 and 33% (C6-mid, C6-late, C12-late and C13-late). 

From the clones, subpopulations C2-late and C10-early exhibited a peculiar 

performance characterised by significant increments from exponential to stationary 

phase, 120 and 219%, respectively. Interestingly, subpopulation C2-late also showed a 

notable difference in the basal glycolytic metabolism between both growth stages, 

suggesting that C2-late up-regulated its glycolytic capacity at stationary phase to meet 

the energetic demands for cell maintenance. The further analysis of C2-late and C10-

early also indicated that both cell lines (i) exhibited elevated rates of glucose 

consumption during exponential phase with an incomplete glucose oxidation allowing 

high levels of lactate and (ii) that both cell subpopulations not presented the a switch 

from lactate production to consumption (see chapter 5). 
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Figure 6-4 Analysis of the maximal glycolytic capacity for 24 clonally-derived CHO-S 

subpopulations and the parental population during exponential and stationary 

growth phases. Cells were grown in fed-batch culture in CD CHO media supplemented 

with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere 

until culture viabilities dropped below 60%, during the culture 10% (v/v) CHO CD 

EfficientFeed™ was fed at days 3, 5, 7 and 9. Early-, mid- and late-subpopulations 

generated from a long-term subculture regime, corresponding to generations 0, 80 and 

200, respectively, were harvested and analysed using the cell metabolic analyser Seahorse 

XF24 at exponential (day 3) and stationary (day 7) growth phases. (A) Maximal glycolytic 

capacity at exponential and stationary growth phases for the differently aged clonal 

subpopulations, (B) the global maximum glycolytic capacity rates at the exponential and 

stationary growth phases and (C) the Pearson’s correlation between the maximal glycolytic 

capacity at stationary and exponential growth phases for the differently aged clonal 

subpopulations (PPMCC r = 0.317, p-value > 0.05, n = 25). 

C
2-

ea
rly

 

C
2-

la
te  

C
4-

ea
rly

 

C
4-

m
id  

C
4-

la
te  

C
6-

ea
rly

 

C
6-

m
id  

C
6-

la
te  

C
8-

ea
rly

 

C
8-

m
id  

C
8-

la
te  

C
10

-e
ar

ly  

C
10

-la
te  

C
12

-e
ar

ly  

C
12

-m
id  

C
12

-la
te  

C
13

-e
ar

ly  

C
13

-m
id  

C
13

-la
te  

C
17

-e
ar

ly  

C
17

-la
te  

C
19

-e
ar

ly  

C
19

-m
id  

C
19

-la
te  

P
A

R  

0
10

0
20

0
30

0
40

0

E
C

A
R

 [m
pH

 m
in-1

M
ce

ll-1
]

Exponential growth phase
Stationary growth phase

Exponential Stationary
Grow th phase

10
0

15
0

20
0

25
0

30
0

35
0

40
0

E
C

A
R

 [m
pH

 m
in-1

M
ce

ll-1
]

150 200 250
Exponential paste("ECAR [mpH min"^"-1", "Mcell"^"-1", "]")

10
0

15
0

20
0

25
0

30
0

35
0

40
0

S
ta

ta
tio

nt
y 

pa
st

e(
"E

C
A
R

 [m
pH

 m
in

"̂
"-

1"
, "

M
ce

ll"̂
"-

1"
, "

]"
)

PPMCC r = 0.317, p-value = 0.1232127

ECAR [mpH min-1 Mcell-1]
during exponential growth phase

Growth phases

E
C

A
R

 [m
pH

m
in

-1
M

ce
ll-

1 ]

E
C

A
R

 [m
pH

m
in

-1
M

ce
ll-

1 ]
du

rin
g 

st
at

io
na

ry
gr

ow
th

 p
ha

se

A)

B) C)

Exponential growth phase
Stationary growth phase



 Chapter 6 
 

 156 

6.4.5 Glycolytic reserve capacity  

The glycolytic reserve is the difference between glycolytic capacity and basal 

glycolysis rate, and it represents the metabolic cellular capacity to increase the ATP 

production through glycolysis under sudden circumstances in which OXPHOS, the TCA 

cycle and/or the ETC are inhibited or down-regulated. This disruptive mitochondrial 

performance is commonly found in cancer cells as the result of the environmental 

stressors (e.g., hypoxia and elevated extracellular lactate) and/or by metabolic changes 

within cells (e.g., Warburg effect), therefore this reserve capacity is needed to avoid 

detrimental effects such as cell death (Das 2013). At first glance, significant differences 

between growth phases were observed (Figure 6-5B; two-way ANOVA, p<0.0001, 

F=46.42), with a moderate, but not significant, correlation between the glycolytic 

reserved capacity at both growth phases (Figure 6-5C; PPMCC r = 0.476, p-value < 

0.05, n = 25). The comparison of the age of subpopulations (e.g., early, mid and late) 

revealed a significant decrease the reserve capacity in the late subpopulations, these 

findings strongly correlate with the decreases in basal glycolysis and maximal glycolytic 

capacity, suggesting that late subpopulations were not able to maintain the its ATP 

demand by switching to glycolysis and thus cells arrested their cellular metabolism in 

order to reduce their energetics demands and avoid detrimental effects such as cell 

death. 

The glycolytic reserve analysis also demonstrated a large variability between 

subpopulations, with important differences between subpopulations with the lowest and 

highest reserved activities, being up to 1.55 and 15 fold changes at exponential and 

stationary growth phases, respectively. This comparison also revealed that the majority 

of proliferating cells did not present a glycolytic reserve or this was too low as 

exponential cells normally utilised the glycolysis, at their maximal capacity, as the main 

source of energy (Figure 6-5A). A completely different pattern was observed on 

stationary growth phase, in which all the subpopulations (except 12-late) presented an 

elevated glycolytic reserve. This switch from non-glycolytic reserve to glycolytic reserve 

presence, from the exponential to the stationary phase, corroborated our hypotheses 

from chapter 5, stating that proliferating populations preferred the inefficient, but faster 

aerobic glycolysis over the OXPHOS as the main source of energy and those non-

proliferating populations reduce their metabolic demand and switched from strong 

aerobic glycolytic to a more efficient OXPHOS metabolism. 
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Figure 6-5 Analysis of the glycolytic reserve for 24 clonally-derived CHO-S 

subpopulations and the parental population during exponential and stationary 

growth phases. Cells were grown in fed-batch culture in CD CHO media supplemented 

with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere 

until culture viabilities dropped below 60%, during the culture 10% (v/v) CHO CD 

EfficientFeed™ was fed at days 3, 5, 7 and 9. Early-, mid- and late-subpopulations 

generated from a long-term subculture regime, corresponding to generations 0, 80 and 

200, respectively, were harvested and analysed using the cell metabolic analyser Seahorse 

XF24 at exponential (day 3) and stationary (day 7) growth phases. (A) Glycolytic reserve at 

exponential and stationary growth phases for the differently aged clonal subpopulations, (B) 

the global glycolytic reserve ECAR rates at the exponential and stationary growth phases 

and (C) the Pearson’s correlation between glycolytic reserve ECAR at stationary and 

exponential growth phases for the differently aged clonal subpopulations (PPMCC r = 

0.476, p-value < 0.05, n = 25). 
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6.4.6 Correlation in the glycolytic performance at exponential and stationary 

growth phases 

In order to identify any relationship between the key glycolytic parameters 

presented above (sections 6.4.2 to 6.4.5), Pearson’s correlation analyses were 

performed at both growth exponential and stationary phases (Figure 6-6). First, strong 

correlations between the glycolytic capacity and the basal glycolysis and between the 

glycolytic capacity and the glycolytic reserve were observed for the exponential growth 

phase data. However, no correlations between any of the parameters belonging to the 

glycolytic metabolism and the non-glycolytic metabolism were observed at this phase, 

suggesting that the elevated glycolytic phenotype in proliferating cells, also known as 

Warburg effect, strongly inhibited the PDH enzyme (Zhou et al. 2011) resulting in an 

inefficient shuttle of pyruvate into the TCA cycle, thus restricting carbonic acid 

production, which would normally acidify the media through non-glycolytic processes. I 

suggest that the Warburg effect in proliferating populations was responsible for the 

annulation of the potentially existing correlation between the glycolytic parameters and 

the non-glycolytic acidification. This hypothesis is supported by the fact that glucose 

metabolism normally produces acid molecules such as lactic acid through glycolysis 

and carbonic acid through the TCA cycle, in the last case causing the non-glycolytic 

acidification which should correlate with the glucose consumption (Newell et al. 1993). 

To further support this hypothesis, the analysis of the stationary growth phase 

was performed in order to validate that cells with a restored pyruvic acid flux shuttle 

from glycolysis to the TCA cycle would exhibit an extent correlation between the 

glycolytic and non-glycolytic acidification. This analysis clearly demonstrates that both 

the parameters belonging to glycolysis and the non-glycolytic acidifications were 

correlated, supporting the hypothesis that the glycolytic and non-glycolytic acidification 

should exhibit some extent of correlation as the acid molecules results from the 

glucose metabolism. Moreover, It is important to emphasise that during the stationary 

phase cells re-established or at least increased their mitochondrial metabolism (see 

chapter 5) by increasing the pyruvate shuttle into the TCA cycle. 

Finally, although the data here presented exhibits important correlations between 

glycolytic parameters when compared with the exponential and stationary phases, the 

comparisons made between both growth phases on sections 6.4.2 to 6.4.5 only 

showed modest correlations in non-glycolytic acidification and glycolytic reserve. This 

analysis strongly suggests that the glycolytic analysis performed at exponential growth 

phase cannot be employed to estimate their energetic metabolism on stationary phase, 

and vice versa, indicating a varied energetic demands that both growth phases. 



 Chapter 6 
 

 159 

 

Figure 6-6 Pearson’s correlation of the Global extracellular acidification rate (ECAR) 

profiles during the exponential and stationary growth phases for 24 clonally-derived 

CHO-S subpopulations and the parental line. The four key glycolytic parameters (i.e., 

non-glycolytic acidification, glycolysis, glycolytic capacity and spare glycolytic capacity) 

inside the red and blue figures correspond to the values collected during the exponential 

and stationary growth phases of the fed-batch, respectively. The black, grey and white 

circles represent the early, mid- and late-subpopulations generated for the clones through a 

long-term culture regime, respectively (i.e., generations 0, 80 and 200, respectively). The 

red “x” represents the parental population. 
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6.4.7 Analysis of the mitochondrial respiration among clonal CHO-S cell lines 

during exponential and stationary growth phase 

In order to gain a major insight in the metabolic performance among the clonal 

populations, the mitochondrial oxidative capacity among clones, defined as respiration 

levels, were analysed in triplicate at mid-exponential and stationary growth phases 

using the cell metabolic analyser Seahorse XF24 which permits to quantify 

mitochondrial respiration by measurements of OCR. During the test, cells were 

maintained in un-buffered DMEM media to measure their basal oxygen consumption 

rates, followed by a sequential treatment with three mitochondrial inhibitors: (i) 

oligomycin (final concentration 1.0 μM) an ATP synthase inhibitor which blocks the ATP 

production and discloses the respiration non-associated to ATP, (ii) FCCP (final 

concentration 1.25 μM) a proton ionophore and ETC accelerator which depolarises the 

mitochondrial membrane potential and increases the cellular oxygen consumption 

revealing the maximal respiratory capacity and (iii) rotenone & antimycin A (final 

concentration 1.0 μM) inhibitors of ETC at complex I and III, respectively, which stop 

the mitochondrial respiration an exposes the non-mitochondrial OCR (Figure 6-7). For 

improving the mitochondrial metabolic analysis, the concentration of oligomycin, FCCP 

and rotenone & antimycin A were optimised to ensure a complete inhibition of its target 

and reduce their toxic effects during the test (e.g., cell death). For each inhibitor, the 

selection of the optimal concentration consisted in testing six different concentrations 

(i.e., 0, 0.25, 0.50, 0.75, 1.00 and 1.25 μM) and measuring the basal OCR and ECAR 

before and after the treatment. The lower concentration of each inhibitor that supported 

the highest effects on OCR and ECAR was selected as the optimal concentration for 

the mitochondrial analysis. 

The previous metabolic studies performed among the clones (see chapter 5) 

demonstrated large differences in glucose metabolism among clones indicating an 

incomplete glucose oxidation. To evaluate if this metabolism was related to the 

mitochondrial dysfunction, comparisons among clones at exponential (Figure 6-7A) and 

stationary (Figure 6-7B) growth phases were performed, observing a large variability in 

the mitochondrial activity among clones along the test. This first part of the analysis 

consisted in evaluating the global mitochondrial performance for the clones, observing 

that in general they presented higher mitochondrial activity at stationary phase (up to 

1.52 fold change using the global performance among the clones). This metabolic 

behaviour seems to be closely linked to biomass synthesis, suggesting that 

proliferating cells prefer to utilise glycolysis as the main source of energy (see 6.4.1). 
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Figure 6-7 Global oxygen consumption rate (OCR) profiles during the exponential 

and stationary growth phases for 35 clonally-derived CHO-S subpopulations and the 

parental line. For each clone, cell samples at (A) exponential growth phase (day 3) and (B) 

stationary growth phase (day 7) were harvested and analysed using the cell metabolic 

analyser Seahorse XF24. During the test cells were maintained in un-buffered DMEM and 

triplicate measurements of the basal OCR were obtained, followed by triplicate 

measurements of OCR after injection of each of the following mitochondrial inhibitors: 

oligomycin, FCCP and rotenone & antimycin A, used for measuring the OCR resulted form 

the proton leak, the maximal respiratory capacity and the non-mitochondrial OCR, 

respectively. The circles represent the average of 35 differently aged clonal subpopulations 

and the superior and inferior dotted lines represent the SD. 
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Analysing the global data in detail, it is observed that stationary cells responded 

differently to the inhibitor treatments (Figure 6-7A-B), showing that in general cell at 

stationary phase increased their basal respiration and their oxygen consumption after 

the Oligomycin, FCCP and Rotenone & Antimycin A treatments when compared to 

OCR responses at exponential growth phase. 

To analyse in more detail the mitochondria activity, the functional mitochondrial 

parameters (i.e., non-mitochondrial, basal, ATP linked, proton leak and maximal 

respiration, and the spare respiratory capacity) described in Figure 6-7 were calculated 

for both stationary and exponential growth stages and analysed in detail in the next 

sections (see section 6.4.8 to 6.4.13), but here the global behaviour among clones was 

analysed to identify the principal mitochondrial differences. Interestingly, clones 

increased all their respiratory parameters at stationary stage, from those non-related to 

mitochondrial activity (e.g., non-mitochondrial respiration) to those parameters 

associated with the mitochondria integrity (e.g., basal and maximal respiration, 

respiration coupled to ATP production and linked to proton leakage, and the spare 

respiratory capacity). In general, clones at stationary phase increased 34% their basal 

respiration, 55% the maximal respiration and 91% their spare respiratory capacity, as 

well as showed a 29% higher respiration associated to ATP production which 

suggested that clones depended less on aerobic glycolysis to survive (Figure 6-7B). 

It can be observed that the significant increments in the spare respiratory 

capacity at stationary growth phase were the result of the notable improvement at the 

maximal respiration, which interestingly was 55% higher than for exponential cells. 

These differences between both growth phases may suggest that (i) proliferating cells 

present a down-regulated ETC pathway as they did not exhibit similar levels of OCR to 

those of the stationary cells when the respiration was uncoupled using FCCP or (ii) that 

cells increased the mitochondria content within the stationary phase in order to meet 

their energetic demands. Another important characteristic in mitochondrial metabolism 

was observed as a 50% increment in the OCR linked to proton leak from exponential to 

stationary growth phase. Proton leak is a respiratory measure that is not coupled to 

ATP production and an elevated leakage indicated that cells were more permeable to 

protons across the IMM, probably resulted from oxidative damage in the IMM 

(Kokoszka et al. 2001). 

Together, this data exhibited that the mitochondrial metabolism at stationary 

growth phase was more active, suggesting that cells rely on aerobic glycolysis for 

meeting their ATP demands during proliferation and then switch to OXPHOS when 

they have reached the stationary growth phase. This hypothesis is corroborated as 



 Chapter 6 
 

 163 

they notably increased their respiratory activity associated with ATP production (Figure 

6-7B). Additionally, the observed increments in proton leakage indicated a potential 

damage in mitochondrial membranes (i.e., mitochondrial inner membrane) during the 

stationary phase probably resulted from the high oxidative stress and by-product 

accumulation in the culture environment (Kokoszka et al. 2001). 

6.4.8 Non-mitochondrial respiration 

The total oxygen consumption within cells is the result of mitochondrial and non-

mitochondrial activity. To identify and compare the mitochondrial functionality among 

cells it is important to identify and remove this inherent non-mitochondrial OCR activity. 

The non-mitochondrial respiration was assessed through the total inhibition of 

OXPHOS and the ETC by combining the effects of oligomycin, FCCP and rotenone & 

antimycin A (Figure 6-7). The residual OCR observed after the treatment was defined 

as non-mitochondrial respiration and compared between subpopulations (Figure 6-8A). 

At first glance, it was observed significant differences between growth phases (Figure 

6-8B; two-way ANOVA, p<0.0001, F=40.36) with no significant correlation between the 

stationary and exponential growth phases (Figure 6-8C; PPMCC r = 0.025, p-value > 

0.05, n = 36). This data also revealed significant differences between subpopulations 

with the lowest and highest OCR activities, being up to 24.5 and 10.5 fold changes at 

exponential and stationary growth phases, respectively. 

Analysing in detail the subpopulations, it can be observed that the subpopulations 

tend to decrease their non-mitochondrial respiration in their late-stage of the long term- 

cultivation, whereas non-significant differences along the long-term were observed at 

stationary growth phase. This slightly reduction in non-mitochondrial activity observed 

on late-generations seems to be associated with a reduction in the cytosolic oxidase 

activity such as NADH oxidase, which under aerobic glycolysis is employed to restore 

the levels of NAD+/NADH and maintain the ATP production via glycolysis. 

In Figure 6-8A is exhibited that 31 out of 35 subpopulations increased their non-

mitochondrial respiratory activity from the exponential to stationary growth phase, with 

increments between 1.12 and 5.68 fold changes. From the remaining 5 subpopulations, 

C6-early and C12-mid had no significant differences between growth phases, whereas 

C8-early, C8-mid and C11-mid displayed significant decrements at stationary phase 

(up to 76%). An interesting behaviour was observed in clone 11 at mid-subpopulations, 

exhibiting the lowest levels at both stages. Although, at first glance this low activity may 

seem the result from an experimental error, the use of appropriate controls and the 

analysis repetition at separated days corroborated the findings. 
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Figure 6-8 Analysis of the non-mitochondrial activity for 35 clonally-derived CHO-S 

subpopulations and the parental population during exponential and stationary 

growth phases. Cells were grown in fed-batch culture in CD CHO media supplemented 

with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere 

until culture viabilities dropped below 60%, during the culture 10% (v/v) CHO CD 

EfficientFeed™ was fed at days 3, 5, 7 and 9. Early-, mid- and late-subpopulations 

generated from a long-term subculture regime, corresponding to generations 0, 80 and 

200, respectively, were harvested and analysed using the cell metabolic analyser Seahorse 

XF24 at exponential (day 3) and stationary (day 7) growth phases. (A) The non-

mitochondrial OCR at the exponential and stationary growth phases for the differently aged 

clonal subpopulations, (B) the global non-mitochondrial OCR at the exponential and 

stationary growth phases and (C) the Pearson’s correlation between non-mitochondrial 

OCR at stationary and exponential growth phases for the differently aged clonal 

subpopulations (PPMCC r = 0.025, p-value > 0.05, n = 36). 

Exponential Stationary
Grow th phase

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

O
C

R
 [p

M
ol

es
 m

in-1
M

ce
ll-1

]

0 100 200 300 400
Exponential paste("OCR [pMoles min"^"-1", "Mcell"^"-1", "]")

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00

S
ta

ta
tio

nt
y 

pa
st

e(
"O

C
R

 [p
M

ol
es

 m
in

"̂
"-

1"
, "

M
ce

ll"̂
"-

1"
, "

]"
)

PPMCC r = 0.025, p-value = 0.8853643

OCR [pMoles min-1 Mcell-1]
during exponential growth phase

Growth phases

O
C

R
 [p

M
ol

es
m

in
-1

M
ce

ll-
1
]

O
C

R
 [p

M
ol

es
m

in
-1

M
ce

ll-
1 ]

du
rin

g 
st

at
io

na
ry

gr
ow

th
 p

ha
se

A)

B) C)

C
1-

ea
rly

 
C

1-
m

id  
C

1-
la

te  
C

2-
ea

rly
 

C
2-

la
te  

C
4-

ea
rly

 
C

4-
m

id  
C

4-
la

te  
C

6-
ea

rly
 

C
6-

m
id  

C
8-

ea
rly

 
C

8-
m

id  
C

8-
la

te  
C

10
-e

ar
ly  

C
10

-m
id  

C
10

-la
te  

C
11

-e
ar

ly  
C

11
-m

id  
C

11
-la

te  
C

12
-e

ar
ly  

C
12

-m
id  

C
12

-la
te  

C
13

-e
ar

ly  
C

13
-m

id  
C

13
-la

te  
C

15
-e

ar
ly  

C
15

-m
id  

C
15

-la
te  

C
18

-e
ar

ly  
C

18
-la

te  
C

19
-e

ar
ly  

C
19

-m
id  

C
22

-e
ar

ly  
C

22
-m

id  
C

22
-la

te  
P

A
R  

0
50

0
10

00
15

00

O
C

R
 [p

M
ol

es
 m

in-1
M

ce
ll-1

]

Exponential growth phase)
Stationary growth phase



 Chapter 6 
 

 165 

The notable OCR variability among clones suggests significant differences in 

cytosolic oxidase activity. In fact, elevated activities of these oxidase families (e.g., 2-

oxoglutarate dependent oxygenase and NADPH oxidases families) have been 

associated to cancer mechanisms as they catalyse oxidative reactions at proteomic 

and genomic level (Rose et al. 2011; Tarhonskaya et al. 2014), and also have been 

linked to elevated oxidative stress (Qutub and Popel 2008). Therefore, it can be 

suggested that the observed increment in non-mitochondrial activity at stationary phase 

was the result of the elevated cytosolic oxidase activity triggered from the 

environmental stress encountered at stationary phase. 

 

6.4.9 Basal mitochondrial respiration  

The basal mitochondrial respiration represents the normal mitochondrial status of 

cells as the result of the ATP production and the proton leak across the IMM. The 

analysis exhibited significant differences between exponential and stationary growth 

phases (Figure 6-9B; two-way ANOVA: p<0.0002, F=15.57) without any significant 

correlation between both growth phases (Figure 6-9C; PPMCC r = -0.072, p-value > 

0.05, n = 36). The analysis of the age of subpopulations (e.g., early, mid and late) 

showed that over increased generations the cells tend to reduce their basal 

mitochondrial respiration. This findings seems to be closely related to the observed 

reductions in cellular content along increased generations, measured as cell diameter 

cell diameter (see chapter 4), resulting in lower the ATP requirements for cell biomass 

production and maintenance. 

The mitochondrial activity data presented here can also be classified in three 

groups. The first including those subpopulations that decreased their basal respiration 

from the exponential to stationary growth phase (7 out of 36 subpopulations; C6-early, 

C8-early, C8-mid, C15-early, C15-mid, C15-late and C18-early), the second group 

characterised by subpopulations with no-significant changes (6 out of 36 

subpopulations; C8-late, C12-early, C13-late, C18-late, C19-early and C19-mid) and 

the third group that account for the majority of the clones with significant improvements 

in basal respiration at the stationary phase ranging between 31% to up to 197% (Figure 

6-9A). From this classification, groups one and two, but specially clones 8, 15 and 18 

and 19 represent those subpopulations that probably rely on aerobic glycolysis along 

the culture, whereas clones from the group three suggest that they switched from 

aerobic glycolysis to mitochondrial metabolism at stationary phase. 
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Figure 6-9 Analysis of the basal respiration activity for 35 clonally-derived CHO-S 

subpopulations and the parental population during exponential and stationary 

growth phases. Cells were grown in fed-batch culture in CD CHO media supplemented 

with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere 

until culture viabilities dropped below 60%, during the culture 10% (v/v) CHO CD 

EfficientFeed™ was fed at days 3, 5, 7 and 9. Early-, mid- and late-subpopulations 

generated from a long-term subculture regime, corresponding to generations 0, 80 and 

200, respectively, were harvested and analysed using the cell metabolic analyser Seahorse 

XF24 at exponential (day 3) and stationary (day 7) growth phases. (A) The basal 

respiration at the exponential and stationary growth phases for the differently aged clonal 

subpopulations, (B) the global basal respiration at the exponential and stationary growth 

phases and (C) the Pearson’s correlation between the basal respiration OCR at stationary 

and exponential growth phases for the differently aged clonal subpopulations (PPMCC r = -

0.072, p-value > 0.05, n = 36).  
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6.4.10 Proton Leak 

The proton leak is a normal process in the mitochondria, studies estimate that 

proton leak represents around 20 to 30% of the mitochondrial respiration (Jastroch et 

al. 2010). However, elevated proton leak activity has been associated to damage in 

IMM resulted from ROS species (Kokoszka et al. 2001). To test for changes in the 

mitochondrial integrity of the clones from exponential to stationary growth phase, the 

OCR associated to proton leakage was calculated by subtracting the non-mitochondrial 

respiration from the OCR value resulted from the oligomycin treatment (Figure 6-10). 

This analysis showed significant differences along the growth phases (Figure 6-10B; 

two-way ANOVA, p<0.0001, F=20.5), exhibiting an increment in the proton leakage at 

stationary phase without any significant correlation between both growth phases 

(Figure 6-10C; PPMCC r = 0.185, p-value > 0.05, n = 36). The data also allowed us to 

measure the large variability at stationary phase, with up to 7.9 fold differences, 

between those subpopulations with the lowest and the highest OCR activities, 

corresponded to subpopulations C4-mid and C1-early, respectively. 

Analysing in more detail the subpopulations, it can be observed that the 

subpopulations tend to reduce their proton leakage along the long term-cultivation 

whereas non-significant differences can be observed at stationary growth phase. The 

behaviour observed at exponential phase seem to indicate that populations tend to 

evolve a better mitochondrial function as low proton leakage means lower 

mitochondrial membrane damage and better strategies to alleviate the oxidative stress. 

Unfortunately, no changes in proton leakage was observed at stationary phase over 

increasing generation mainly because during the evolution process clones were not 

grown to reach this growth phase, thus they never encounter this common 

environmental stressor (e.g., nutrient depletion and high osmolarity) which could be 

resulted in elevated mitochondrial integrity at stationary growth phase. 

The proton leak analysis also revealed that the majority of the cells tended to 

increase their proton leak activity at stationary phase, suggesting inferior mitochondrial 

membrane integrity probably resulted from the elevated environmental stress at 

stationary phase (e.g., lactate and ammonia build-up and high osmolarity). To test 

whether the proton leak activity was the result of an abnormal mitochondrial 

metabolism, OCR resulted from proton leakage was compared with the basal 

respiration. These comparisons indicated that during the exponential growth phase the 

OCR values for proton leakage represented between 15 and 30% of the basal 

mitochondrial respiration, being normal levels proton leak activity. 
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Figure 6-10 Analysis of the oxygen consumption activity resulted from proton 

leakages across the IMM for 35 clonally-derived CHO-S subpopulations and the 

parental population during exponential and stationary growth phases. Cells were 

grown in fed-batch culture in CD CHO media supplemented with 8 mM L-glutamine and 

maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere until culture viabilities 

dropped below 60%, during the culture 10% (v/v) CHO CD EfficientFeed™ was fed at days 

3, 5, 7 and 9. Early-, mid- and late-subpopulations generated from a long-term subculture 

regime, corresponding to generations 0, 80 and 200, respectively, were harvested and 

analysed using the cell metabolic analyser Seahorse XF24 at exponential (day 3) and 

stationary (day 7) growth phases. (A) The proton leakage OCR activity at the exponential 

and stationary growth phases for the differently aged clonal subpopulations, (B) the global 

oxygen consumption associated to proton leakage at the exponential and stationary growth 

phases and (C) the Pearson’s correlation between OCR values for proton leak at stationary 

and exponential growth phases for the differently aged clonal subpopulations (PPMCC r = 

0.185, p-value > 0.05, n = 36). 
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A similar analysis was performed using the stationary growth data observing 

slightly increments in the contribution of the proton leak to the basal mitochondrial 

respiration. This finding seem to suggests a marginally reduction in the mitochondria 

integrity in the non-growing populations as the result of the elevated environmental 

stress found at this stages of the culture. 

From the panel of 35 subpopulations, seven subpopulations (C1-Early, C1-Mid, 

C10-Early, C15-Early, C15-Late, C19-Early and C19-Mid) showed an abnormally 

proton leak activity at stationary phase which probably resulted from a severe 

mitochondrial damage. A contrary effect was observed in eight subpopulations (i.e., 

C4-mid, C6-early, C8-early, C12-early, C15-early, C15-mid, C18-early and C18-late) in 

which decreases their proton leakage activity at stationary phase, but from these 

subpopulations the C6-early, C8-early, C15-early, C15-mid and C18-early slightly 

increased their proton leak contribution to the basal respiration without reach abnormal 

levels. 

 

6.4.11 ATP turnover  

The ATP is the principal energetic molecule for biological reactions within 

organisms. It is generated by electrochemical proton gradient across the mitochondrial 

membrane, which is coupled to oxygen reduction in complex IV of the ETC, via 

OXPHOS (Koopman et al. 2013). The ATP turnover represents the OCR associated to 

ATP production, indicating the ATP activity within the cells at that specific moment. To 

evaluate the ATP capacity among cells, the OCR ATP turnover value was calculated 

by subtracting the proton leak OCR value from the basal respiration (Figure 6-11). The 

data showed significant differences between the exponential and stationary growth 

phases (Figure 6-11B; two-way ANOVA, p<0.003, F=10.03) without any significant 

correlation between both growth phases (Figure 6-11C; PPMCC r = -0.052, p-value > 

0.05, n = 36). Moreover, this data allowed us to measure the large variability at 

exponential and stationary phase being up to 2.8 and 4.9 fold changes, respectively, 

between those subpopulations with the lowest and the highest OCR activities (Figure 

6-11A). 

Further analysis, indicated that proliferating cells tend to reduce their OCR 

related to ATP activity along increasing generation clones, whilst no changes at 

stationary phase were observed. The findings at exponential phase may be the result 

of a decrease in ATP demands as along increasing generations cells reduced their cell 

volume. 
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Figure 6-11 Analysis of the respiration activity associated to ATP production for 35 

clonally-derived CHO-S subpopulations and the parental population during 

exponential and stationary growth phases. Cells were grown in fed-batch culture in CD 

CHO media supplemented with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 

5% (v/v) CO2 atmosphere until culture viabilities dropped below 60%, during the culture 

10% (v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 7 and 9. Early-, mid- and late-

subpopulations generated from a long-term subculture regime, corresponding to 

generations 0, 80 and 200, respectively, were harvested and analysed using the cell 

metabolic analyser Seahorse XF24 at exponential (day 3) and stationary (day 7) growth 

phases. (A) The respiration associated to ATP activity at the exponential and stationary 

growth phases for the differently aged clonal subpopulations, (B) the global respiration 

associated to ATP production at the exponential and stationary growth phases and (C) the 

Pearson’s correlation between the OCR’s ATP production at stationary and exponential 

growth phases for the differently aged clonal subpopulations (PPMCC r = -0.052, p-value > 

0.05, n = 36). 
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The significant increment in the OCR activity related to ATP production at 

stationary growth phase confirmed that the majority of the clones increased their ATP 

production via OXPHOS at stationary phase, between 19 and 190% compared with 

their exponential phase values, supporting the hypothesis that non-proliferating cells 

exhibited a switch from an inefficient aerobic glycolysis to an efficient mitochondrial 

metabolism. This analyses also showed that C8-late, C13-late, C18-late did not exhibit 

notable changes, whereas C6-early, C8-early, C8-mid, C15-early, C15-late, C15-mid, 

C18-early, C19-early and C19-mid reduced from 24 to 58% their OCR ATP turn over. 

These latter subpopulations were also associated with decreased basal respiration and 

with increments of proton leak contribution to the basal respiration, confirming that 

these cells may have mitochondrial damage. 

 

6.4.12 Maximal respiration  

The analysis of the maximal respiration represents the greatest mitochondrial 

capacity at that specific moment, it results from the depolarisation of the mitochondrial 

membrane potential by FCCP which induced an increase in cellular oxygen 

consumption maintaining the mitochondrial membrane potential (Desquiret et al. 2006; 

Park et al. 2002). To identify the maximal respiratory capacity among clones this value 

was calculated by subtracting the rotenone and antimycin A OCR value from the FCCP 

treatment OCR value (Figure 6-12). As expected this analysis exhibited significant 

differences between exponential and stationary growth phases (Figure 6-12B; two-way 

ANOVA, p<0.0001, F=26.97) with no significant correlation between them (Figure 

6-12C; PPMCC r = -0.092, p-value > 0.05, n = 36). These comparisons also exhibited a 

large variability among clones, with up to 3.6 and 4.9 fold differences between the 

lowest and the highest OCR activity at exponential and stationary growth phases, 

respectively. 

As observed in basal respiration, proton leak and ATP turnover, a negative trend 

was observed with increasing generation number, the reduction in the maximal 

respiratory capacity seems to be the result of a down-regulation of the mitochondrial 

activity, probably resulted from the activation of different isoforms of ETC proteins with 

an reduced activity (e.g., complex IV). Different authors have describe that long-term 

regulators of the OXPHOS modulate the maximal capacity by promoting the expression 

of different isoforms of mitochondrial proteins with varied activity (Desler et al. 2012), 

indicating that this mechanisms are essential for the setting of the maximal respiratory 

capacity. 
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Figure 6-12 Analysis of the maximal respiration activity for 35 clonally-derived CHO-

S subpopulations and the parental population during exponential and stationary 

growth phases. Cells were grown in fed-batch culture in CD CHO media supplemented 

with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere 

until culture viabilities dropped below 60%, during the culture 10% (v/v) CHO CD 

EfficientFeed™ was fed at days 3, 5, 7 and 9. Early-, mid- and late-subpopulations 

generated from a long-term subculture regime, corresponding to generations 0, 80 and 

200, respectively, were harvested and analysed using the cell metabolic analyser Seahorse 

XF24 at exponential (day 3) and stationary (day 7) growth phases. (A) The maximal 

respiration activity at the exponential and stationary growth phases for the differently aged 

clonal subpopulations, (B) the global maximal respiration at the exponential and stationary 

growth phases and (C) the Pearson’s correlation between the maximal respiration activity 

at stationary and exponential growth phases for the differently aged clonal subpopulations 

(PPMCC r = -0.092, p-value > 0.05, n = 36). 
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The analysis of this variable was peculiar due to the large differences between 

exponential and stationary growth phases, before performing the mitochondrial assay, 

it was expected to obtain similar values at both stages due the short time-periods 

between this growth phases, but the measurements showed that clones notably 

increased their maximal mitochondrial machinery at the stationary phase. The 

significant differences at both growth phases may be linked to short and that long-term 

regulators of the OXPHOS which module the mitochondrial capacity by promoting the 

expression of different isoforms of mitochondrial proteins with varied activity (Desler et 

al. 2012). This analyses also showed that from the subset of subpopulations only C15-

late not exhibited significant differences between both phases whereas C6-early, C8-

early, C13-late, C15-early and C15-mid and C18-early revealed a notable decrease at 

stationary phase, between 19 and 51%. As observed with the previous parameters, 

these 6 subpopulations also had inferior mitochondrial performances at stationary 

phase, thus probably denoting mitochondrial membrane damage. 

 

6.4.13 Spare respiratory capacity 

Under diverse circumstances cells are continuously exposed to unpredictable 

metabolic and environmental stressors that demand an unexpected increase in their 

energetic levels to avoid detrimental effects such as cell death. The ability to respond 

satisfactorily to stressors has been associated with elevated reserve respiratory 

capacity, which is described as the additional ATP that can be generated by OXPHOS 

in case of metabolic stress (Desler et al. 2012). The calculation of the spare respiratory 

capacity or reserve respiratory capacity consisted in subtracting the basal respiration 

from the maximal respiration. This analysis revealed significant differences between 

subpopulations with up to 23.6 and 9.8 fold differences between the lowest and the 

highest OCR activity at exponential and stationary growth phases, respectively (Figure 

6-13A). The data also showed significant differences between growth phases (Figure 

6-13B; two-way ANOVA, p<0.0001, F=25.07) with no significant correlation between 

the behaviour at both growth phases (Figure 6-13C; PPMCC r = -0.029, p-value > 0.05, 

n = 36). The comparison of the age of subpopulations (e.g., early, mid and late) 

revealed a decrease the reserve respiratory capacity over increasing generations, 

which correlate with the decreases observed in maximal and basal respiration. This 

suggests that over course of the long-term cultivation cells reduced their capacity to 

sudden increase their energetic levels, thus decreasing the chances to avoid 

detrimental pathologies associates with aging and cell death. 
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Figure 6-13 Analysis of the spare respiratory capacity for 35 clonally-derived CHO-S 

subpopulations and the parental population during exponential and stationary 

growth phases. Cells were grown in fed-batch culture in CD CHO media supplemented 

with 8 mM L-glutamine and maintained at 37°C, 170 rpm, under 5% (v/v) CO2 atmosphere 

until culture viabilities dropped below 60%, during the culture 10% (v/v) CHO CD 

EfficientFeed™ was fed at days 3, 5, 7 and 9. Early-, mid- and late-subpopulations 

generated from a long-term subculture regime, corresponding to generations 0, 80 and 

200, respectively, were harvested and analysed using the cell metabolic analyser Seahorse 

XF24 at exponential (day 3) and stationary (day 7) growth phases. (A) The spare 

respiratory capacity at the exponential and stationary growth phases for the differently aged 

clonal subpopulations, (B) the global spare respiratory capacity at the exponential and 

stationary growth phases and (C) the Pearson’s correlation between the spare respiratory 

capacity at stationary and exponential growth phases for the differently aged clonal 

subpopulations (PPMCC r = -0.029, p-value > 0.05, n = 36). 
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The observed reduction in spare respiratory capacity thorough the life span has 

been analysed by other authors, indicating the existence of long-term regulators on 

OXPHOS which contribute to functional alterations in the mitochondrion, in particular in 

complex IV, which results in elevated ROS activity and in decrements in the reserve 

respiratory capacity (Desler et al. 2012). 

An interestingly findings observed between both growth phases was an 

increment in the reserve respiratory capacity. These increments resulted from the over 

expression of different isoforms of mitochondrial proteins with elevated activity (e.g., 

complex IV) during this growth phase allowing to increase their maximal respiratory 

capacity and thus in their spare respiratory capacity (Desler et al. 2012). From the 

panel of subpopulations, only C6-early, C8-early, C11-late, C13-late, C13-mid, C15-

early and C15-mid subpopulations reduced their spare respiratory capacity. 

Interestingly, these subpopulations were previously associated with deficiency in the 

mitochondrial integrity and thus associated with mitochondrial dysfunctions. 

Together, this data confirms that cells reactivate and improved their mitochondrial 

metabolism at the stationary growth phase, resulting in more efficient glucose utilization 

and in increments in the OXPHOS activity (see section 6.4.11). As mentioned 

previously, this behaviour resulted from increments of the TCA cycle flux caused by the 

switch from the initial aerobic glycolysis to mitochondrial metabolism (see chapter 5) 

and from the over expression of mitochondrial proteins with elevated activity. Moreover, 

this data seems to indicate that during the stationary growth phase cells presented a 

less efficient mitochondrial respiration characterised by higher rates of proton leakage 

activity (see section 6.4.10) due to elevated environmental stressor (e.g., osmolarity) 

which threaten the membrane integrity of mitochondria. 

 

6.4.14 Correlation in the mitochondrial metabolism at exponential and stationary 

growth phases 

To evaluate the existence of any correlations between the key mitochondrial 

parameters described above (sections 6.4.8 to 6.4.13), Pearson’s correlation analyses 

were performed at exponential and stationary growth phases (Figure 6-14), exhibiting 

from moderate to strong correlations among the basal and maximal respiration and the 

proton leakage and ATP turnover activity at both growth phases. These correlations 

were expected as some calculations depend on each other or were calculated from a 

common factor, for example the basal glycolysis results from the sum of the proton 

leakage and ATP turnover activity. 
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Figure 6-14 Pearson’s correlation of the global oxygen consumption rate (OCR) 

profiles during the exponential and stationary growth phases for 35 clonally-derived 

CHO-S subpopulations and the parental line. The six key mitochondrial parameters (i.e., 

non-mitochondrial respiration, basal mitochondrial respiration, maximal respiration, spare 

respiratory capacity, ATP linked respiration and proton leak) inside the red and blue figures 

correspond to the values collected during the exponential and stationary growth phases of 

the fed-batch, respectively. The black, grey and white circles represent the early, mid- and 

late-subpopulations generated for the clones through a long-term culture regime, 

respectively (i.e., generations 0, 80 and 200, respectively). The red “x” represents the 

parental population. 
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The Pearson’s correlation analyses exhibited strong associations of the basal 

glycolysis with the proton leakage (PPMCC r= 0.80, n=36 and r= 0.69, n=36 at 

exponential and stationary growth phase, respectively; Figure 6-14), ATP turnover 

(PPMCC r= 0.98, n=36 and r= 0.96, n=36 at exponential and stationary growth phase, 

respectively; Figure 6-14) and Maximal respiration (PPMCC r= 0.78, n=36 and r= 0.86, 

n=36 at exponential and stationary growth phase, respectively; Figure 6-14) suggesting 

that subpopulations tend maintain some degree of proportion between the basal 

respiration and these parameters Moreover, the moderate and strong correlations at 

exponential growth phase between the spare respiratory capacity and the rest of the 

mitochondrial parameters was resulted from the enhancement in the OXPHOS activity 

at this growth phase. Finally, as we expected not significant correlation between the 

non-mitochondrial and mitochondrial parameters were observed. 

Although important correlations within growth phases can be observed, the 

individual comparisons made between the values at exponential and stationary growth 

phases (see sections 6.4.8 to 6.4.13) not showed significant correlations, confirming 

that both growth phases exhibited a large differences in metabolism. This analysis 

strongly suggests that the mitochondria analysis performed at exponential growth 

phase cannot be employed to estimate their energetic metabolism on stationary phase, 

and vice versa, indicating significant differences in the energetic demands along 

cultivation. 

 

6.4.15 Interaction of the main glycolytic and mitochondrial parameters 

associated with improved IVCD performance 

To evaluate the IVCD performance with respect the mitochondrial and glycolytic 

activity, the Pearson’s correlation analyses were performed using the exponential and 

stationary growth phase’s values. For the glycolytic parameters, only the glycolytic 

reserve exhibited a negative correlation with IVCD performance at exponential growth 

phase (Figure 6-15C; PPMCC r= -0.431, n=25, p < 0.05), whereas no correlations at 

stationary growth phase were observed. On the other hand, the mitochondrial activity 

exhibited a weak, but significant positive correlation between the ATP turnover and 

IVCD performance during the exponential growth phase (Figure 6-15A; PPMCC r= 

0.339, n=35, p < 0.05) and a negative correlation between basal respiration and IVCD 

performance during the stationary growth phase (Figure 6-15B; PPMCC r= -0.417, 

n=35, p < 0.05). 
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Figure 6-15 Interaction of the main glycolytic and mitochondrial parameters 

associated with improved IVCD performance for a panel of clonally-derived CHO-S 

cell lines. Cells were grown in CD CHO media supplemented with 8 mM L-glutamine and 

maintained at 37°C, 170 rpm and 5% (v/v) CO2 atmosphere until culture viabilities dropped 

below 60%. During the culture 10% (v/v) CHO CD EfficientFeed™ was fed at days 3, 5, 7 

and 9. Pearson correlations of the integral of viable cell density with (A) the ATP turnover, 

(B) basal mitochondrial respiration and (C) glycolytic reserve are shown. The black, grey 

and white circles represent clones at the early, mid- and late stages of the long-term 

subculture (i.e. generations 0, 80 and 200), respectively. 
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requirements and provide a large number of biomolecules for biomass production, on 

the contrary, a low respiratory, but efficient activity is important during stationary phase 

due to low mitochondrial activities mean low proton leakage and ROS production and 

thus a healthier mitochondrial membrane integrity (Kokoszka et al. 2001). 

 

6.5 General discussion 

The glycolytic analysis performed in this study permitted to identify the general 

glycolytic metabolism within CHO cell populations during the two principal growth 

stages of fed-batch culture (i.e., exponential and stationary growth phases). Revealing 

that during the exponential phase CHO-S cell lines relied on glycolysis to meet their 

energetic and metabolite requirements for biomass production, exhibiting a strong 

glycolytic phenotype characterised by elevated basal glycolytic activity near to the 

maximal capacity (representing approximately 98.1% of their maximal capacity) and no 

glycolytic reserve. These findings were validated by the metabolic analysis presented 

in chapter 5, in which cells exhibited an elevated glucose and glutamine consumption 

as well as high lactate: glucose ratio during the exponential stage. Together, this data 

clearly corroborated that during exponential growth phase populations had a strong 

aerobic glycolysis or “Warburg effect” metabolism, which is commonly defined as an 

abnormal metabolism due to the low energetic efficiency under aerobic environments 

(Gatenby and Gillies 2004; Warburg 1956). However, this inefficient glucose 

metabolism provides of a rapid source of energy and biomolecules for proliferation 

(Bartrons and Caro 2007; Vander Heiden et al. 2009; Zhao et al. 2013) which also has 

been commonly described in CHO populations (Ahn and Antoniewicz 2012; Young 

2013) and other cancer cell lines (Amoedo et al. 2013; Vander Heiden et al. 2009). 

Given the nature of the fed-batch strategy implemented in this study, the glucose 

levels along the culture were always elevated, therefore it can be suggested that the 

constant glucose availability was one of the key factor that promoted this glycolytic 

phenotype, as cells always encountered an unlimited amount of carbon source that 

could be easily assimilated. This hypothesis is supported by studies showing that most 

of the cancer cells exhibit elevated expression levels of key glucose transporters (e.g., 

GLUT 1, GLUT 3 and GLUT 4) which facilitate the constant incorporation of glucose 

into the cells and accelerate glycolysis (Adekola et al. 2012; Macheda et al. 2005). 

Given the similitudes of CHO cells with cancer cells, it is suggested that the abundance 

of glucose and the over-expression of the glucose transporters (e.g., GLUT1 and 

GLUT5) promoted this elevated glycolytic metabolism and the over-expression of 
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glycolytic enzymes (e.g., HK, PFK and PYK) and the LDH enzyme to rapidly restore 

the required NAD+/NADH levels (Kim et al. 2006; Papandreou et al. 2006; Vander 

Heiden et al. 2009; Zhou et al. 2011). On this basis, it can be suggested that this 

abnormal glycolytic metabolism can be reduced by maintaining low glucose levels 

during the whole cultivation. The cultivation strategy involving restricted glucose levels 

has been widely implemented in cell culture proving efficacy in terms of low glucose 

consumption and low lactate production (Altamirano et al. 2004; Cruz et al. 1999; 

Rodriguez et al. 2005; Wilkens and Gerdtzen 2011; Zhang and Robinson 2005). 

The analysis of the glycolytic performance during the stationary growth phase 

clearly denotes notable increases in the glycolytic capacity, reductions in the basal 

glycolytic activity and increments in the non-glycolytic acidification (Figure 6-1). It is 

important to note the differences between these parameters, for example the glycolytic 

capacity represents the highest rate of glucose oxidation that cells can process under 

extreme circumstances, the basal glycolytic activity denotes the glucose utilisation at a 

specific time point, and the non-glycolytic acidification indicates the environmental 

acidification that is not associated with lactate acidification (i.e., aerobic glycolysis). 

The reduction in the basal glycolysis at stationary phase resulted from a 

deceleration of the cell growth and the switch to OXPHOS, reducing their glucose 

demand as its oxidation is couple to the TCA cycle and release as CO2. This metabolic 

switch allows them to reduce the carbon uptake to maintain energetic demand. As the 

glucose oxidation become more efficient, it is tough that important glycolytic enzymes 

(e.g., HX, LDH and PFK) and glucose transporters (e.g., GLUT1) were strictly 

regulated to maintain normal ATP levels. When stationary cells were treated with 

rotenone, the OXPHOS activity was shut-down and cells were forced to increase the 

ATP production through glycolysis, revealing their previous glycolytic capacity. 

Interestingly, the disruption in the mitochondrial performance result in a higher 

glycolytic capacity, when compared with stationary growth phase, probably because 

cells re-activated the latent glycolytic machinery accumulated throughout the whole 

exponential growth phase which was also characterised for elevated enzymatic 

activities (Km). The reduction of basal glycolysis linked with increment in glycolytic 

capacity generated that non-proliferating cells exhibited a glycolytic reserve, indicating 

that non-proliferating populations are able increase significantly the ATP production via 

glycolysis under unexpected changes in the mitochondrial metabolism.  

Reduction of glycolytic metabolism at stationary phase was accompanied with 

increases in the non-glycolytic acidification, which mainly resulted from the glucose 

oxidation to CO2 via the TCA cycle, which was then converted into carbonic acid. 
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Therefore, this data indicated that cells did not reduce their ATP requirement and in 

fact confirmed the switch from an inefficient “aerobic glycolysis” to the efficient 

mitochondrial metabolism in terms of ATP production. Finally, despite the levels of ATP 

were not monitored, our previous metabolite analyses (e.g., low lactate: glucose ratio 

and high glutamate assimilation; see chapter 5) confirm that cells switched to a more 

efficient mitochondrial metabolism. A different metabolism was observed during the 

exponential growth phase, in which populations employ the aerobic glycolysis as the 

main source of ATP and intermediates for biomass synthesis, resulting in a lack of 

glycolytic reserved (~1.8% of the total glycolytic capacity) as they needs to consumed 

glucose at their maximal glycolytic capacity. In contrast, the switch to mitochondrial 

metabolism at stationary phase allowed them to reduce their basal glycolytic flux and 

this increase their glycolytic reserved capacity (~36% of the total glycolytic capacity). 

In general, the glycolytic analysis revealed that cells exhibited a strong aerobic 

glycolysis during proliferation, as they required a rapid synthesis of a large number of 

biomolecules including DNA, lipids and proteins for cell division, and as they were 

grown in an abundance of glucose which provided an unlimited and readily available 

carbon source. The combination of these factors trigger a dynamic system which 

moulded their metabolism on response to the environment, therefore cells were able to 

up-regulate key proteins associated with the transport and metabolism of glucose (e.g., 

GLUT1, LDH and HK) and down-regulate other critical enzymes for the mitochondrial 

metabolism (e.g., PDC) to take advantage of the environment and maintain elevated 

levels of biomolecules (e.g., amino acids, nucleotides) (Dang 2012; Papandreou et al. 

2006; Vander Heiden et al. 2009). On the other hand, during stationary growth phase 

the cell division is reduce and cells are subjected to environmental stress such as 

nutrient limitation (e.g., glutamine), elevated osmolarity and toxic levels of by-products 

(e.g., lactate and ammonia), therefore cells re-arranged their metabolism and 

reactivated the pyruvic acid mitochondrial flux towards the TCA cycle for producing 

energy and intermediates needed for cell maintenance, secondary metabolites 

production and for avoiding deleterious consequences. 

The bioenergetics of mitochondrial metabolism was measured as basal 

mitochondrial respiration, maximal respiration, spare respiratory capacity, ATP related 

respiration and proton leak respiration, at the two principal growth stages of fed-batch 

culture (i.e., exponential and stationary growth phases), revealing that cells notably 

improved their mitochondrial metabolism at the stationary phase, but also disclosing a 

slightly reduction in the respiratory efficiency, which was observed as an increment in 

the proton leak across the IMM. These findings are strongly supported by the glycolytic 
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metabolism, in which exhibited that populations reduced their glycolytic activity and 

increased the non-glycolytic acidification during stationary growth phase (see sections 

6.4.3 and 6.4.2, respectively). In addition, the metabolic analysis presented in chapter 5 

confirmed that non-proliferating cells increased their TCA flux by increasing their 

glutamate metabolism and switching to the lactate consumption. Together this data 

supports the hypothesis that cells switched form aerobic glycolysis to OXPHOS during 

the stationary growth phase. Previous reports using CHO cells found increments in the 

mitochondrial activity during the transition from exponential to stationary growth phase 

(Sengupta et al. 2011; Tsao et al. 2005; Young 2013). For example, Sengupta et al. 

(2011) found that non-proliferating cells increased their pyruvate flux towards the TCA 

cycle during the stationary phase to meet their metabolic demands. In contrast, our 

findings also disagree with the studies reported by Ahn and Antoniewicz (2011) in 

which they showed that the TCA cycle activity remains similar during both growth 

phases, but in their study they employed an adherent CHO-K1 cell line, different media 

and fetal bovine serum and culture conditions; probably these cell culture and cell line 

differences defined the cellular metabolism in CHO-K1 populations. 

Reductions in the respiratory efficiency were confirmed by the increments in the 

proton leak activity during the stationary phase. Although, it is important to note that the 

proton leakage OCR activity did not reveal abnormal levels for the majority of the 

clones (accounting for less than 30% of the basal respiration), this data clearly 

suggested that these increases were a result of the elevated oxidative stress and 

hyper-osmolarity which constantly threatened the mitochondria integrity. Previous 

studies have reported a close relation between ROS activity and proton leakage, for 

example, Kokoszka et al (2001) found that oxidative stress and ROS production 

increase the proton leakage activity across IMM in cell lines with low anti-oxidant 

responses, destroying the mitochondria membrane potential and triggering apoptosis. 

Therefore, this data suggests that the mitochondrial metabolism during the stationary 

phase became less efficient as they encountered hostile environmental conditions 

which gradually damaged the IMM. Taking this into consideration, this measurement 

can also be employed to select cell lines that may “potentially” tolerate elevated 

oxidative stress. Moreover, I suggest that the proton leak activity must be 

complemented with the measurement of the mitochondria membrane potential to 

monitor its integrity, and glutathione and ROS production to indicate the level of 

oxidative stress. 

The mitochondrial analyses comparing both growth phases also exhibited that 

CHO-S populations tend to increase their maximal mitochondrial respiration during the 
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stationary growth phase. Our results suggest that the respiratory differences between 

proliferating and non-proliferating cells were mainly derived from short-term regulators 

of the OXPHOS which module the mitochondrial capacity by promoting the expression 

of different isoforms of mitochondrial proteins with enhanced activity (Desler et al. 

2012), Alternatively, the metaboloepigenetics effects of key energy metabolites such as 

ATP, NAD+, SAM and acetyl-CoA may be responsible of rapid metabolic shift through 

the silencing processes as this molecules serve as essential co-factors for epigenetic 

mechanism and its relative abundance may modulate the energetic state of the cells 

(Donohoe and Bultman 2012). In addition, it can be suggested that the increments in 

maximal mitochondrial respiration could be resulted from an increase in the amount of 

mitochondrial content (e.g., mitochondria size and number) and not only resulted from 

the reactivation of the OXPHOS pathways with an elevates activity, although in this 

study the mitochondria content was not quantified, we can infer that the FCCP 

treatment can give an insight with respect to the mitochondria content within cells as 

this treatment discloses the maximal oxygen consumption per cell. However, FCCP 

treatment measure is not associated with the mitochondrial content, thus making these 

experiments insufficient to explain mitochondrial morphology. Therefore, I suggest that 

future works need to be complemented with direct or indirect measurements of 

mitochondrial mass (e.g., mitochondrial DNA content, complex I-V ETC protein 

quantity, citrate synthase activity). 

In addition, the mitochondrial analysis during exponential phase revealed that an 

elevated aerobic glycolysis was not sufficient to meet the energetic demands needed 

for proliferation and consequently cells still relied on OXPHOS, but this respiratory 

activity was not supported solely by glucose as cells down-regulated the pyruvate 

shuttle into the TCA cycle. This OXPHOS activity resulted from the active glutamine 

metabolism which contributed with ATP via OXPHOS and with carbon molecules (e.g, 

citrate and amino acids) and energy molecules (NADH, FADH2 AND NADPH) needed 

for biomass synthesis (e.g., amino acids, fatty acids and nucleotides). This hypothesis 

is supported with studied carried out by DeBerardinis et al. (2007) which revealed that 

the glutamine metabolism in glioblastoma cells contributed with significant NADPH 

levels via malic enzyme in the cytosol, which is the electron donor for fatty acid 

synthesis, and that NADPH production also increased the lactate level as this 

enzymatic reaction produces pyruvate that subsequently is converted into lactate by 

LDH enzyme. Our metabolic analysis agreed with this study by observing elevated 

glutamine consumption and elevated lactate: glucose ratios during the exponential 

phase (of up to 2.5 ratio for clone C19-late, meaning 2.5 lactate moles produced per 
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each glucose mole consumed, which exceeds the maximum possible coefficient for 

glucose metabolism from glycolysis), indicating that a large proportion of glutamine 

metabolism contributed to NADPH and lactate production. Finally, the proton leak 

activity resulted from exponential phase seems to indicate that proliferating populations 

present a better mitochondrial integrity as they were not exposed to nutritional and 

environmental stress (e.g., osmolarity and by-product accumulation). 

Analysing the global effects, this data clearly corroborated that along the course 

of fed-batch culture subpopulations exhibited a dynamic metabolism characterised by 

an accelerated glycolytic metabolism, near to the maximal capacity, with large lactate 

accumulation, probably resulted from the PDC inhibition which ceased the glycolytic 

and the TCA cycle connection and promoted the pyruvic acid reduction to lactic acid, 

during the exponential phase (Kim et al. 2006; Papandreou et al. 2006; Vander Heiden 

et al. 2009; Zhou et al. 2011). To compensate the deficiency of pyruvic acid flux 

towards the TCA cycle, cells demanded elevated levels of glutamine assimilation to 

feed this pathway, but also to produce the electron donor NADPH and acetyl-CoA for 

fatty acid synthesis. The transition from exponential to stationary phase was 

characterised by metabolic rearrangements which involved the reestablishment of 

pyruvic acid flux towards the TCA cycle and thus improving the glucose metabolism 

and switching to a more efficient OXPHOS systems for ATP production. Along the 

stationary phase a decrement in the respiratory efficiency was observed, resulted from 

the severe environmental conditions (e.g., elevated osmolarity, nutrient depletion, ROS 

activity) which gradually threatened the mitochondrial integrity and reduced their 

respiratory efficiency. 

In addition to the differences between growth phases our findings have 

demonstrated important changes in the glycolytic and mitochondrial metabolism over 

increasing generation, this is the first study using CHO cells models that have 

evaluated the energetic metabolism along time, our findings clearly indicate a reduction 

in the glycolytic and mitochondrial usage along increasing generation which is thought 

to result mainly from the optimisation in the ATP usage for cellular maintenance and 

cell decision. This behaviour seems to be associated with the reduction in cells size 

observed along the evolution phase which has implications on the demands of cellular 

biomass, or protein content, required proliferate. Therefore a low protein content 

phenotype resulting from a constant reduction in the cell size was enough to improve 

the ATP usage, enhance higher proliferation rates and reduce the glycolytic and 

mitochondrial metabolism. A similar behaviour can be observed on population at 

stationary growth phase in which cells showed significant changes in the glycolytic 
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metabolism but not in the mitochondrial metabolism over increasing generation. This 

metabolic phenotype on non-proliferation populations seems to support that 

populations optimised and reduced their energetic demands by reducing their glucose 

dependence and reutilising lactate, and thus improving the TCA cycle. Together, our 

traits seem to indicate that over increasing generation non-proliferation populations rely 

more on the mitochondrial metabolism to survive. 

To conclude this chapter, the mitochondrial and glycolytic analysis with respect to 

IVCD performance at both growth phases revealed the desirable mitochondrial and 

glycolytic characteristic for reaching highest “cumulative cell time”. Being the 

maintenance of an elevated OXPHOS activity (ATP turnover) coupled with an 

upregulated basal glycolytic rate (at their maximal glycolytic capacity) essential during 

exponential growth phase to support the enough energy and intermediates for 

proliferate, whereas a slow basal respiration during stationary growth phase is 

important to prevent oxidative stress and the uncoupled respiration to protect the 

mitochondria integrity and reduce a potential mitochondrial membrane damage, which 

already occurs from the hostile environmental conditions, reducing detrimental effects 

such as cell death. The evidences showed in chapter 5 hold that an elevated glutamine 

metabolism is needed in growing populations to feed the TCA cycle and maintain an 

active OXPHOS as the strong Warburg phenotype uncoupled the flux of pyruvic acid to 

the mitochondrial TCA cycle. Whether these metabolic phenotypes are essential 

feature of high growing cell lines prior producing recombinant proteins, it will be 

interesting complement this work by measuring the ATP, NAD+/NADH, oxidative stress 

and molecules such as pyruvate, citrate and acetyl-CoA throughout increasing 

generations. 
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Chapter 7 

Conclusions and future directions 

Selection of cell lines for manufacturing recombinant proteins usually involves 

multiple screening steps of transfected clones that would meet the industrial standards 

such as productivity and gene stability over extended culture periods, followed by their 

adaptation into industrial biotechnological processes. However, the early-stages of cell 

line development processes underestimate the importance of the cell growth 

performance and their contributions towards volumetric productivity. Therefore, the 

initial screening omits assessment of metabolic performances among isolated clones, 

reducing the potential of selecting clonal cell lines with optimal metabolic and growth 

behaviour for biotechnological processes. This research was done to present an 

alternative strategy to develop cell lines with industrial relevance (e.g., optimal growth 

and metabolic performance) by implementing a reverse cell line development strategy, 

consisting of harnessing the phenotypic heterogeneity within a non-transfected parental 

CHO-S population to isolate a panel of 22 clonally-derived CHO-S cell lines, followed 

by accelerating genetic drift to evolve the phenotypic traits of the isolates. This strategy 

permitted to generate a panel of 132 un-transfected CHO-S subpopulations with 

enhanced and varied metabolic and growth characteristics that can be selected on 

basis of their growth characteristics and/or metabolic performance to be employed for 

producing recombinant proteins under specific culture environments. 

An important contribution of this study was the confirmation that the phenotypic 

heterogeneity within a donor Parental CHO population is an important source of 

phenotypic diversity that must be exploited to develop cell lines with improved 

metabolic and growth characteristics. This research project also confirmed that non-

genetic engineering strategies can be used as alternative approaches to improve 

phenotypes and in fact these cell lines may exhibit higher phenotypic and metabolic 

stability than those genetically manipulated cell lines as they were not exposed to the 

random genomic insertion of constructs needed for enhancing the cell behaviour using 

blind genetic engineering strategies. However, this project was only the first stage of 

the proposed strategy which needs to be complemented with analysis of the cell lines’ 

ability to incorporate exogenous genes, synthesise difficult-to-express recombinant 

proteins and evaluate their metabolism during protein production. Additionally, the 

importance of this panel of CHO-S cell lines is its usefulness in the evaluation of 

conserved genetic and epigenetic features that may permit to identify and trace cell 

lines and phenotypes over time, as well as to identify differential expression levels of 
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proteins that are reflected in superior and stable phenotypes (e.g., transcription factors, 

DNA repair enzymes and anti-apoptotic proteins). 

In this study, the broad analysis of the phenotypic heterogeneity among clonally-

derived CHO-S cell lines revealed significant metabolic differences among the isolated 

populations and the parental population which open the possibility of isolating cell lines 

with varied metabolite processing rates (e.g., glutamine, glucose, lactate and glutamate 

consumption/production rates), metabolic responses (e.g., shift to lactate consumption, 

reduced/increased glycolytic and OXPHOS activities) and cell growth performances 

(e.g., IVCD, µ, VCD peak). Therefore, it could be interesting to use enzymatic inhibitors 

to induce metabolic inhibition before and after cell cloning to examine the abundance of 

particular metabolic traits which are associated with high growing/producing 

phenotypes, for example lactate switch, short-term glycolysis and OXPHOS regulation. 

Similarly, the implementation of chemical inhibitors during the routine and prolonged 

cultivation would be desirable to promote the acquisition of beneficial and deleterious 

phenotypic characteristics that would fit with the culture environment. Furthermore, the 

employment of chemical inhibitors may be valuable to control the phenotypic plasticity 

limits along the different stages of the long-term culture (e.g., adaptation, early-

evolution, mid- and late–evolution phase). 

The overall long-term cultivation data has shown the effects of genetic drift as 

evolutionary process which firstly was characterised by a significant control in the level 

of phenotypic heterogeneity within the populations and then marked by a strongly 

selection of highly proliferative subpopulations. During the first stage, genetic drift 

notably reduced the elevated phenotypic variation within populations by removing 

subpopulations with low culture fitness and by minimising fluctuations in the culture 

environment that occurs as a consequence of the combination of heterogeneous 

metabolisms. Along the second stage, genetic drift favoured the dominance of fast-

growing subpopulations after each successive cell passage by an indirect and random 

selection of subpopulations with elevated proliferation rates. It is important to mention 

that genetic drift had a positive effect by selecting fast-growing subpopulation, but also 

it is important to note that improvements in proliferation rates were not necessarily 

reflected as enhancements in IVCD and viable cell densities mainly because clones 

were not exposed to detrimental culture environments, such as nutrient exhaustion and 

by-product accumulation, which are commonly found during the measurement of this 

parameters. Therefore, it might be interesting to modify the subculture regimen during 

evolution strategy in order to enable the accumulation of harsh culture environments 
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which would permit the acquisition of cellular resistance to the environmental stressors 

commonly found at late-stages of fed-batch cultivation. 

Cell revival revealed to possess strong genetic drift effects, in particular in 

subpopulations with low adaptability to the culture environment (e.g., subpopulations at 

generation 0) by selecting only those cells that resist the cryopreservation process and 

retain fitness to the culture environment, and by propagating them after each 

successive cell passage. The long-term cultivation implemented in this research did not 

consider the cryopreservation/cell revival cycles as evolutionary strategy, mainly 

because a repetitive cryopreservation/cell revival cycles would modify the growth 

profiles dramatically as each cycle generates substantial environmental stress that may 

increase the genetic instability within populations. Therefore, the evolutionary strategy 

chosen in this study was suitable to assess the acquisition of beneficial/detrimental 

genetic and phenotypic traits on proliferating populations under non-stress 

environments in order to prevent environmental changes that may increase the levels 

of genomic instability within populations. However, it would be interesting to evaluate a 

combination of a routine cryopreservation/cell revival cycles along the long-term 

cultivation in order to accelerate the evolutionary process, for example, by using 

different cryopreservation strategies and cryopreservation/cell revival schemes along a 

long-term cultivation in parental populations may be useful to identify and develop 

better evolutionary strategies. 

The environmental conditions have an important role in the fixation of beneficial 

mutations, defining which phenotypic and metabolic characteristic must be conserved 

or improved. The long-term cultivation strategy presented here involved a routine sub-

culture regimen using populations at mid-exponential growth phase, which was ideal 

for maintaining an active and continuous biomass production which resulted in constant 

improvements in proliferation rates over increasing generations. This subculture 

scheme indirectly contributed to the improvement of other growth characteristics such 

as VCD peak and IVCD, but these were not necessarily constantly improved along 

increasing generations as these parameters are defined by other culture environment 

characteristics that were not present in the long-term culture regime (e.g., hyper-

osmolarity, ROS species and toxic by-products levels). Therefore, it could be 

interesting to evaluate the long-term cultivation in the presence of culture stressors 

(e.g., hyper-osmolarity, low nutrient availability, elevated toxic by-products 

concentrations, different culture formulation) (Prentice et al. 2007), alternative carbon 

sources (e.g., glutamate, galactose) (Altamirano et al. 2000) and low doses of 
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glycolytic and mitochondrial inhibitors (e.g., 2-DG, oligomycin) to investigate their 

potential effect in stationary growth phase parameters such as VCD peak and IVCD. 

The constant phenotypic plasticity within CHO cells along the long-term 

cultivation corroborated that the inherent genetic instability within CHO cells cannot be 

eliminated. In fact, this work demonstrates that genetic instability is a latent threat that 

cannot be ignored as this behaviour can unexpectedly change the metabolic profile of a 

whole population in order to overcome and reach a maximum possible fitness in a 

given environment. Although CHO cells are well known for exhibiting a “mutator 

phenotype” (Barnes et al. 2006; Derouazi et al. 2006; O'Callaghan et al. 2010), the 

constant phenotypic changes cannot be attributed only to the inherent genetic 

instability as other mechanisms such as epigenetic events enable cells to continually 

adjust the gene expression according to the environment without modifying the DNA 

sequence (Chusainow et al. 2009; Flatscher et al. 2012; Sandoval and Esteller 2012). 

It could be interesting to evaluate the extent of genetic instability by analysing changes 

in the karyotype (Derouazi et al. 2006) or monitoring rate of mutations by using DNA 

microsatellite instability measurements. Alternatively, the epigenetic effects could be 

assessed by analysing changes in DNA methylation and histone modification through 

the inhibition of silencing processes via 5-aza-2--deoxycytidine, Valerio Acid, procaine 

and butyrate treatments (Kwaks and Otte 2006; Lyko and Brown 2005) and by 

analysing the methylation of cytosine nucleotides in the context of a CpG dinucleotide 

(Wippermann et al. 2014). To investigate this further the epigenetic activity within cells, 

it could be interesting to analyse key energy metabolites such as ATP, NAD+, SAM 

and acetyl-CoA as this molecules serve as essential co-factors for epigenetic 

mechanism and its relative abundance may modulate the energetic state of the cells 

(Donohoe and Bultman 2012) 

The feeding strategy in fed-batch cultivation was optimised to promote an 

elevated global IVCD performance and increase cellular viability and culture longevity 

through a multi-day supplementation using a defined volume of CHO CD 

EfficientFeed™ B. The metabolic analyses suggest the importance of monitoring the 

principal carbon sources (e.g., glucose and glutamine) and by-product build-up (e.g., 

lactate and ammonia) during optimisation processes to avoid the exhaustion or 

accumulation of these metabolites and to meet individual metabolic demands based on 

the specific assessments of particular media components for each individual clone 

(Altamirano et al. 2000; Khattak et al. 2010; Wurm 2004). It would therefore be 

interesting to further improve the fed-batch strategy by controlling and maintaining the 

glucose and glutamine at low levels along fed-batch process (Altamirano et al. 2004; 
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Cruz et al. 1999; Rodriguez et al. 2005; Wilkens and Gerdtzen 2011; Zhang and 

Robinson 2005). 

The metabolic assessments between exponential and stationary growth phases 

permitted to identify that proliferating cells required increased carbon source uptake 

(e.g., glutamine and glucose) for biomass biosynthesis (e.g., lipids, nucleotides and 

proteins), indicating that glucose is metabolised under aerobic glycolysis for supplying 

rapid ATP synthesis and maintaining the NAD+/NADH levels which is essential to 

continue with the elevated glycolytic activity. Additionally, glucose is fed to the pentose 

phosphate pathway to synthesised NADPH, a cofactor indispensable for lipid 

biosynthesis, and produce intermediates for the biosynthesis of nucleotides and 

aromatic amino acids (Gatenby and Gillies 2004; Kim et al. 2006; Papandreou et al. 

2006; Vander Heiden et al. 2009). On the other hand, glutamine was employed to feed 

the TCA cycle produce energetic intermediates such as NADH and FADH2 and citrate 

for ATP synthesis and fatty acid biosynthesis, respectively, as well as provide elevated 

levels of NADPH via cytosolic malic enzyme to ensure that a sufficient NADPH levels 

to performant biosynthetic pathways and protect against oxidative stress (DeBerardinis 

et al. 2007). It could be interesting to measure the PDH and a cytosolic malic enzyme 

activity to validate that glutamine was the principal carbon source for the mitochondrial 

metabolism and the important source of NADPH for biosynthesis, respectively. It would 

also remarkable to investigate whether the ability of the cells to produce NADPH is a 

key limiting step in proliferating populations. 

Assessing the respiratory capacity of populations is fundamental to 

understanding cell metabolism and growth performance within populations. The 

mitochondrial and glycolytic analysis is of particular importance to measure the 

abnormal metabolism such as aerobic glycolysis, also known as Warburg effect along 

manufacturing process. This data revealed that the combination of an elevated 

OXPHOS activity and a strong aerobic glycolysis is essential to reach high μ and IVCD 

performance in proliferating populations. This metabolism seem to be contradictory as 

a strong aerobic glycolysis shut-downs the pyruvic acid flux towards the mitochondrial 

TCA cycle by inhibits the PDC enzyme and upregulating the LDH enzyme (Kim et al. 

2006; Papandreou et al. 2006; Vander Heiden et al. 2009; Zhou et al. 2011), however 

this abnormal metabolism was the result of utilising both glucose and glutamine carbon 

sources, being the first used for feeding the aerobic glycolysis and the second for 

feeding the mitochondrial TCA cycle. To further elucidate these effects, it would be 

interesting to evaluate key glycolytic (i.e., HK, PFK and LDHA) and the TCA cycle (i.e., 
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citrate) enzymes as well as the proteins involved in the electron transport chain (i.e., 

complex I, II and IV) (Koopman et al. 2013). 

The assessment of mitochondrial activity at stationary growth phase is of 

particular importance to identify metabolic traits that may promote enhancements in the 

global IVCD performance, cellular viability and culture longevity. The extensive analysis 

of the glycolytic and mitochondrial metabolism showed that a low respiratory 

metabolism, but efficiently couple to ATP production is a desirable characteristic for 

attaining elevated IVCD on the late stage of fed-batch cultivation. These characteristic 

results from the importance of reducing the uncoupled mitochondrial respiration and its 

negative side effects such as oxidative stress that eventually would threaten the 

mitochondrial integrity and increase the proton and electron permeability across the 

IMM (Kokoszka et al. 2001). Consequently, a slow but efficient mitochondrial 

respiration is essential to minimise mitochondrial damage and ROS activity. It would be 

interesting to detect the oxidative stress within cells and evaluate the mitochondrial 

membrane potential to confirm these findings. 

Testing proton leakage activity across the IMM enabled to identify that the 

mitochondrial respiration became less efficient at stationary growth phase, reducing the 

proportion of oxygen consumption associated to ATP production and increasing the 

proton leakage across the IMM. The latter is responsible for causing the collapse of the 

mitochondria membrane potential (MMP) that lead detrimental growth performances 

and apoptosis (Kokoszka et al. 2001). An inefficient respiratory activity also denotes 

potential mitochondrial damage probably resulted from increments in the rate of 

formation of mitochondrial superoxide and other forms of cellular oxidative stress. 

Therefore populations at stationary growth phase need to reduce their mitochondrial 

respiration to diminish detrimental consequences. To further support this finding, it 

would be interesting to analyse the MMP, ATP production, redox status of the cell and 

cellular oxidative stress along the course of fed-batch cultivation. 

In this research there were a number of changes in cellular metabolism 

associated with the cell growth status, for example whether a cell line changes from 

exponential to stationary growth phase there are significant adjustments in the 

glycolytic and mitochondrial activity as well as in the glucose consumption within a cell. 

It is therefore possible to speculate that the rapid metabolic switch from an ineffective 

to efficient glucose metabolism is associated to potential epigenetic changes as there 

is a synergy between energy metabolism and of control gene expression. For example, 

analysing the relative abundance of key energy metabolites such as ATP, NAD+, SAM 

and acetyl-CoA could serve to identify potential gene silencing because their 
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abundance allows a cell to regulate its energetic because this molecules serve as 

essential co-factors for epigenetic mechanism that regulate DNA methylation, histone 

modifications and nucleosome position (Donohoe and Bultman 2012). 

The results presented here strongly supports that the 132 subpopulations 

generated along the LDC and long-term subculture, corresponding to 22 clonally-

derived CHO-S cell lines at subpopulations 0, 40, 80, 120, 160 and 200, are markedly 

different in terms of cellular growth and metabolism. The high phenotypic variability 

among subpopulations supports the notion that each subpopulation must be 

considered as an individual cell line as they evolved significant phenotypic and 

metabolic differences. These findings also remark the importance of a strict control in 

the passage number because underestimating it may mislead comparisons of cellular 

behaviour as aged cell lines may exhibited a very different metabolism to that found in 

the original cell bank . 

The methodology outlined in this thesis generated a panel of 132 clonal CHO-S 

cell line that open the opportunity to gain major insight of the inherent phenotypic 

heterogeneity within of CHO populations. By using this panel, complex therapeutic 

proteins could be produced with efficacy by selecting, analysing and manipulating this 

broad spectrum of phenotypes. Moreover, this panel increase the chances of 

developing accurate prediction models of productivity, stability and cell growth 

performance which together would increase our understanding of the nature of relevant 

cell lines with desirable metabolic and growth phenotypes. 
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