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Abstract

Recently, researchers in the field of Network Science have begun to study how the structural

properties of road traffic networks affect their performance characteristics. An understanding

of how different structures of network infrastructure and travel demand combine to yield

different performance characteristics would be useful because it could help identify how

existing road traffic networks could be used more effectively or how structural features, which

yield desirable performance characteristics, could be built into the construction of new road

traffic networks.

Thus far, however, these studies have been restricted to numerical experiments with synthetic

networks that do not provide plausible representations of real road traffic networks.

Furthermore, these studies have used a disparate range of parameter settings for supply and

demand structure, making it difficult to generalise their findings, and have provided no

explanations for their conclusions.

To address these deficiencies, this thesis proposes an investigative framework for studying the

effects of structure on the performance characteristics of road traffic networks. This

framework comprises an experimental part, which describes how to design and conduct

numerical experiments so as to provide useful insights into how performance varies with

respect to specific aspects of network structure; and an analytical part, which focuses on

developing explanations for patterns uncovered numerically.

This thesis then demonstrates the application of this framework to an investigation of how

two performance indicators; the average link Volume-to-Capacity ratio and the Price of

Anarchy, vary with respect to four aspects of road traffic network structure. As part of this

investigation, a simple model of road network generation is presented that produces

spectrums of plausible, synthetic road traffic network ensembles, which vary with respect to

specific aspects of structure. Focussing on the variation of the Price of Anarchy with travel

demand, this thesis then establishes theory that explains several features of the variation

shown numerically.
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1 Introduction

1.1 Research Outline

Over the last twenty years, advances in instrumentation and computing have significantly

increased the amount of data that exists on a wide range of natural and manmade systems.

Examples of such systems include biological systems, such as food webs and human metabolic

networks; technological systems, such as the Internet and World Wide Web; infrastructure

systems, such as freight distribution networks and national power grids; and social systems,

such as friendship groups (Newman, 2003). The increasing availability of data on such a vast

array of different systems has stimulated the emergence of a new field of research, called

Network Science, in which researchers, from a variety of disciplines, have begun to study the

characteristics of such systems. The aims of network science include: 1) to characterise the

structural properties of networks that underlie real-world systems, 2) to develop models that

explain the formation of such structures, and 3) to investigate how the structural properties of

networks affect the emergent characteristics of the systems they support (Newman, 2010).

Within this trend, road traffic networks have been one of the many subjects of study. There

have been empirical studies, which have sought to describe the structural characteristics of

network infrastructure and patterns of travel demand in urban areas from across the world

(Barthelemy, 2011). Theoretical studies have proposed generative models of network growth,

which describe the formation and evolution of road traffic networks over time (Barthelemy

and Flammini, 2009, Courtat et al., 2011). There have also been numerical studies that have

drawn comparisons between the performance characteristics of different types of networks

from the network science literature, using ensembles of synthetically generated networks and

traffic equilibrium modelling techniques (Sun et al., 2012, Wu et al., 2008b, Wu et al., 2008a,

Wu et al., 2006, Youn et al., 2008, Zhao and Gao, 2007, Zhu et al., 2014).

The network science approach to the study of networks has been recognised as a new

perspective from which urban areas, in particular, can be studied and understood. In

particular, it has been argued that network science “has the potential to enrich current

approaches to city planning” (Batty, 2008). However, as an emerging research field, network

science is not without criticism, and there are still opportunities for researchers from other

fields to make significant contributions towards its development (Alderson, 2008, Havlin et al.,

2012). This is certainly the case for road traffic networks (Lin and Ban, 2013). Indeed, one of

the main criticisms made of empirical studies of network structure and theoretical models of

network growth proposed thus far is that they have focussed almost exclusively on network
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connectivity, and have therefore neglected other domain relevant features, such as link

capacities and junction types, which also play a defining role in the systemic characteristics of

road traffic networks. In addition, numerical studies of the influence of structure on the

performance characteristics of road traffic networks have focussed on network types that are

not plausible for real road traffic networks and also lack a systematic investigative approach,

which makes it difficult to generalise their findings to other network types. There is therefore

significant scope for additional contributions to this field within each of the identified research

themes.

The goal of this thesis is to explore how contributions and methodological approaches from

network science can be more appropriately and systematically applied within the specific

context of the third theme of network science research, which addresses the research

question of how the performance characteristics of road traffic networks vary with respect to

the structural properties of supply and demand. This thesis therefore aims to directly address

the criticisms that have been made of existing approaches, which were identified towards the

end of the preceding paragraph.

1.2 Justification for the Research

1.2.1 Why investigate the influence of structure in supply and demand on the

performance characteristics of road traffic networks?

Transport has a significant impact on economic prosperity (Eddington, 2006), and also plays a

critical role in the functioning of modern society. Road traffic networks, at both the urban and

interurban level, play an integral role in this impact, and account for 90% of all passenger

traffic kilometres travelled and approximately 68% of all freight tonnes moved in the United

Kingdom (UK)1, and approximately 86% of all commuting trips in the United States of America

(USA)2. Road traffic networks are also critically important in low-income countries as they act

as a catalyst for economic development (Rodrigue et al., 2006). Road traffic networks provide

people with a means to commute between homes and workplaces, to visit commercial and

leisure facilities, and to access public services such as hospitals and schools.

1 Tables TSGB0101 and TSGB0401 of Transport Statistics Great Britain (TSGB) 2014
(Department for Transport). Available at www.gov.uk/government/statistics/transport-
statistics-great-britain-2014

2 Table 1-41 of National Transportation Statistics from the Bureau of Transportation Statistics
and available at: www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/national
transportation_statistics/html/table_01_41.html
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Given their importance, it is perhaps unsurprising that national and regional governments

invest substantial amounts of money in road traffic networks. For example, in 2012/13, public

authorities in the UK spent approximately £6.3 billion on road infrastructure3. Furthermore, in

December 2014, the UK government announced a road investment strategy4 in which it

proposed to invest £15.7 billion over six years, between 2015 and 2021, in one-hundred and

twenty-seven road schemes across the UK, with projects including new roads, road widening

and junction improvement schemes, and the use of new technologies in the provision of smart

motorways. These examples illustrate how road traffic networks attract a significant amount of

investment.

Decisions on how to spend such funding in the UK are made under an appraisal framework,

which guides responsible bodies in how to identify appropriate schemes for investment. This is

a sequential process, which begins with the identification of problems in the transport system

that need to be addressed. Such problems are typically identified through reference to

transport objectives, for example, with respect to the efficiency of networks, and also to

standards, which provide a quantifiable yardstick against which problems can be identified. A

common problem that is often identified in road traffic networks (particularly in urban areas) is

congestion, which Ortúzar and Willumsen (2001) define as arising when “demand levels

approach the capacity of a facility and the time required to (travel through it) increases well

above the average under low demand conditions.” Congestion has been estimated to cost the

UK economy at least £20 billion per year (Goodwin, 2004).

Once a problem has been identified in a specific location, solutions are then developed in

order to mitigate its impact. Such solutions can include supply-side policy interventions, such

as improvements to traffic signals at junctions, road widening or the construction of a bypass;

or demand-side policy interventions, such as demand management measures in the form of

parking controls or congestion charging schemes. The impacts of selected interventions are

then typically tested within a transport model in order to evaluate their effectiveness, and

solutions that are deemed to offer value for money and be suitably desirable with respect to

other social, economic and environmental objectives are then implemented. This process is

then repeated as other problems are identified.

Whilst this approach has been adopted as a standard method and has been in use for many

years, several authors have argued that it also has flaws. Chief amongst these flaws is that this

3 Table RDE0101 of TSGB 2014

4 Available at www.gov.uk/government/publications/road-investment-strategy-overview
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approach to planning focuses narrowly on transport problems at a specific location, at specific

point in time, and that it therefore lacks a systematic consideration of the characteristics of

road traffic networks at a global scale or of how the effects of many individual decisions

compound over time. Ortúzar and Willumsen (2001) argue that “by narrowing a transport

problem we may gain the illusion of being able to solve it” but that “transport problems have

the habit of ‘biting back’, of reappearing in different places and under different guises.” Xie and

Levinson (2009), citing Curry (1964), also highlight that, whilst each individual decision to

intervene in a specific problem may be rational in isolation, when all interventions are viewed

as a whole, the process can appear to be completely random. Without a systematic

consideration of the influence of patterns in supply and demand structure at a global scale, it is

also unclear whether policy interventions can be successfully transferred between networks

with different structures and whether they will be as effective.

An understanding of how different configurations of supply and demand structure combine to

yield different performance characteristics would be useful for both researchers and policy

makers, as it would allow them to design more appropriate and/or effective transport

solutions for existing road traffic networks based on their individual structural characteristics.

Such understanding also has potential implications for the construction of new road traffic

networks as it could lead to an understanding of desirable combinations of supply and demand

structure that could be built-in and so hard-coded into the make-up of new networks.

1.2.2 Why use methodological approaches from network science as the starting point?

Accepting the premise, argued above, that the study of how the structural properties of supply

and demand affect the performance characteristics of road traffic networks is worthwhile, the

most obvious follow-up question to the stated goal of this thesis is ‘why use network science

as the starting point?’. Indeed, looking to the transportation literature, it is evident that

research communities in geography, urban studies and transportation have all made

prominent contributions within each of the three identified research themes of network

science. For example, geographers have developed theories that describe the development of

urban form as a complex combination of social, environmental and economic factors (Pacione,

2005), and have also proposed classification systems for street patterns within road traffic

networks (Marshall, 2005). In addition, several studies in transportation research have

focussed on the effects of road network structure on network performance; for example, see

Tsekeris and Geroliminis (2013) and Ortigosa and Menendez (2014). Given these contributions,

it is reasonable to question what network science has to offer that is different in comparison

with these other approaches.
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It is argued here that there are several key differences between these research disciplines and

network science. Firstly, geographical approaches tend to be based upon qualitative

descriptions of network patterns, which make them difficult to apply within numerical

experiments. This contrasts with the network science approach, which is based upon

numerical datasets and can therefore be more naturally applied within numerical experiments.

Secondly, transportation research studies are typically location specific and focus on individual

case studies; for example, Tsekeris and Geroliminis (2013) focussed on an idealised concentric

city network pattern and Ortigosa and Menendez (2014) focussed on a grid network. The

narrow focus of transportation studies makes it difficult to evaluate the generalizability of their

findings with respect to the wide array of structures that are known to exist in real road traffic

networks. This contrasts with approaches in network science, which look for broad-scale

commonalities in network phenomena across a wide range of network structures.

For these reasons, it is argued that network science is a sensible and interesting starting point

for the research described in section 1.1.

1.3 Research Objectives

Within the context of the goal of exploring how the performance characteristics of road traffic

networks vary with respect to the structural properties of supply and demand, the research

described within this thesis had two objectives:

1. To develop a systematic methodological approach, incorporating methods from network

science, for investigations of how network performance varies with respect to the

structural properties of supply and demand in road traffic networks. This approach should

be generally applicable to a wide range of performance phenomena and should also

provide an intelligible foundation for further research.

2. To apply this methodology to identify and characterise relationships between one or more

aspects of supply and demand structure in road traffic networks, and one or more

measures of network performance.

1.4 Research Scope

By road traffic networks, this thesis refers specifically to transport systems in which travellers

move about in private, motorised vehicles through an arrangements of roads and junctions

across a geographical area such as a city, a region or a country. This thesis does not consider

other modes of transport such as urban rail systems, nor does it consider bus systems, bicycle

or pedestrian flows, which also make use of road networks. The definitions of other important

terms are defined as follows:
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 Supply refers to the physical infrastructure composed of roads and junctions, and their

capacity to provide for the movements of travellers.

 Demand refers to the magnitude and distribution of the movements of travellers between

different locations when aggregated across the geographical area served by a network.

 Performance characteristics refers to the many measures and methods that have been

developed to quantify how well a road traffic network achieves its function of providing for

the movements of travellers.

In the context of this final bullet point, it is acknowledged that there are many performance

measures and methods that are commonly used and which each highlight different aspects of

road traffic network performance. In working towards the objectives described in section 1.3,

this thesis focuses on two specific aspects of performance (to be defined shortly). The

application of this methodology with other performance measures is left as a goal for future

research.

As a consequence of the stated goal of exploring how contributions and methodological

approaches from network science can be applied to investigate how network structure affects

performance in road traffic networks, this thesis devotes considerable space to a

comprehensive review of contributions from this field. As a consequence, it is highlighted that

whilst other fields, most notably geography, spatial science and urban studies, have made

significant contributions to the study of urban form and the structural characteristics of

transportation networks, a comprehensive review of all past work in these areas was beyond

the scope of this research and is not included. The interested reader is instead referred to

Marshall (2005), Pacione (2005) and Ducruet and Beauguitte (2014) and references therein for

further reading on contributions from these areas. This thesis does, however, attempt to

explicitly acknowledge the important contributions from these fields and to provide a

selection, if not an exhaustive compendium, of references to literature in relevant locations.

1.5 Description of Original Contributions

This thesis makes four original contributions to existing literature.

The first contribution of this thesis is an investigative framework that can be used by

researchers to study the effects of structure in supply and demand on the performance

characteristics of road traffic networks. This framework comprises an experimental component

and an analytical component. The experimental part of the framework proposes a way of

designing, conducting and recording the results of numerical experiments. This approach

includes use of the network science method of drawing comparisons between the

performance of ensembles of synthetically generated networks but then adds to it by: 1)
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applying empirical data on the structural characteristics of real road traffic networks to make

the networks under study more plausible than those used in existing literature, and 2)

focussing experiments on comparing performance across a spectrum of network ensembles,

which vary with respect to specific aspects of network structure rather than between isolated

ensembles as have been used in existing network science studies. The analytical component of

the framework then focuses on developing explanations to explain patterns uncovered by the

numerical experiments. This investigative framework sets out a systematic approach to

tackling what is shown to be high dimensional problem. It is shown how it addresses the

deficiencies of existing approaches in existing literature and also how it can be applied to a

wide range of research questions.

As a second contribution, this thesis then demonstrates the application of the experimental

part of the above framework to an investigation of how two performance indicators; average

link Volume-to-Capacity ratio and the Price of Anarchy (which measures the inefficiency of

selfish routing in road traffic networks) vary with respect to four aspects of supply and demand

structure in the specific context of urban road traffic networks. The four aspects of network

structure that are the focus of these experiments are travel demand density, and the size,

density and connectivity of network supply structure; selected because empirical studies in

network science have shown there to be considerable variation in these features across

different urban areas. As part of this investigation, a simple model of road network generation

is presented that is able to produce spectrums of synthetic network ensembles, which provide

plausible representations of urban road traffic networks and which also vary with respect to

each of the aforementioned structural dimensions. Several challenges and opportunities for

further research are identified as a result of this investigation; in particular, with respect to the

computational burden of numerical experiments and the lack of empirical data on several key

aspects of the structure of supply and demand in urban road traffic networks.

Focussing on the variation of the Price of Anarchy with respect to travel demand, the third

original contribution made by this thesis is the establishment of theory that characterises four

mechanisms that govern the variation observed in the numerical experiments described

above. This contribution thereby demonstrates the application of the analytical part of the

proposed investigative framework. Through a series of theorems, propositions and

conjectures, this section of the thesis characterises the different effects of the mechanisms

that govern the variation of the Price of Anarchy and also provides a series of numerical

examples to illustrate these results. This theory is shown to be applicable in the general setting

of road traffic networks with multiple Origin to Destination (OD) movements and continuous,

differentiable, separable and strictly increasing link cost functions under the User Equilibrium
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(UE) and System Optimal (SO) modelling paradigms. This section also includes several

additional results for a commonly studied special case of the UE and SO models in which

network links have BPR-like cost functions5. In particular, it is shown that there is a systematic

relationship between link flows under UE and SO, and also that the Price of Anarchy has power

law decay for high demand.

Following observations made regarding the small size of the Price of Anarchy in the numerical

experiments, the fourth (and final) contribution of this thesis is an explanation for these

observations and the proposal of an alternative measure of the inefficiency of selfish routing

that complements the existing measure. It is shown that this new measure; called Price of

Anarchy Delays, is subject to the same upper bounds as the Price of Anarchy but that it also

achieves larger values that are closer to this upper bound. The usefulness of this new measure

in practical applications is also discussed.

1.6 Thesis Structure

The remainder of this thesis is divided into seven chapters. The content of these chapters is

described in the paragraphs that follow. Figure 1.1 then illustrates how the six chapters that

make up the main body of the thesis are interlinked.

Chapter 2 summarises and provides a critical review of relevant literature. This review focuses

on the key contributions and methodological approaches of network science, the structural

properties that have been shown to exist in supply and demand in real road traffic networks,

and the effects of such structural properties on the performance characteristics of road traffic

networks. This review also identifies gaps and deficiencies in approaches used in existing

literature to which this these seeks to contribute new results and understanding.

Chapter 3 proposes an investigative framework for studying the effects of network structure

on performance in road traffic networks. This chapter begins with a discussion of the main

challenge that is faced by numerical experiments; namely, of how to select networks from the

huge, multi-dimensional space of all possible configurations of supply and demand structure.

This chapter then describes the drawbacks of how approaches in existing literature have

addressed this challenge thus far, which then feeds into the proposal of the investigative

framework.

Chapters 4 and 5 demonstrate the application of the numerical part of the investigative

framework and focus on how two performance indicators; the average link Volume-to-

5 Cost function composed of a constant term plus a monomial of a single variable with a
positive power



- 9 -

Capacity ratio and the Price of Anarchy, vary with respect to the four dimensions of network

structure; the density of travel demand and the size, density and connectivity of network

supply structure. Chapter 4 describes the model of network generation that was used in these

experiments and demonstrates how it is capable of producing spectrums of plausible,

synthetic road traffic network ensembles. Chapter 5 then describes the numerical experiments

and parameter settings used with the aforementioned model, presents the results of the

numerical experiments and then provides a discussion of what the results show.

Motivated by the results of these numerical experiments, chapter 6 explores how the Price of

Anarchy varies with respect to travel demand; thereby demonstrating the application of the

analytical part of the investigative framework proposed in chapter 3. This chapter begins by

characterising the existence of four mechanisms that govern the variation of the Price of

Anarchy with travel demand and then characterises the effect of these mechanisms on the

Price of Anarchy itself through a series of theoretical results. The final part of this chapter is

then devoted to a series of numerical examples, which illustrate these theoretical results.

Chapter 7 focuses on why values of the Price of Anarchy observed in chapter 5 are small and

goes on to propose a new measure; called Price of Anarchy Delays, as an alternative measure

of the inefficiency of selfish routing. This chapter includes a discussion of the complementary

perspective that this new measure provides and also proves that it is subject to the same

upper bounds as the Price of Anarchy.

Chapter 8 evaluates the extent to which the aims and objectives of this thesis have been met

and acknowledges limitations of the research presented. This chapter also highlights

opportunities for further research.

Figure 1.1 - A representation of how the chapters within this thesis are interlinked
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2 Literature Review

2.1 Introduction

This chapter summarises and provides critical review of literature relevant to the research

described in chapter 1 and so demonstrates the current state of knowledge. Importantly, this

chapter identifies gaps in the literature to which this research seeks to contribute new

methods, results and understanding.

With the research objectives described in section 1.3 in mind, the following Literature Review

Questions were posed in order to define the scope of this literature review.

1. What are the key contributions and methodological approaches used in network science?

2. What structural properties have been shown to exist in supply and demand in road traffic

networks?

3. How have the effects of supply and demand structure on the performance characteristics

of road traffic networks been studied thus far and what have such studies found?

These questions are addressed in the three sections that follow. Section 2.2 focuses on

introducing the main contributions that network science has made to the study of networked

systems; specifically with respect to characterising their structural properties and to studying

how structure affects their performance characteristics. Sections 2.3 and 2.4 then focus

specifically on road traffic networks. Section 2.3 describes literature on the structural

properties of supply and demand in road traffic networks. Section 2.4 then describes literature

on how the performance characteristics of road traffic networks are affected by network

structure. Whilst focussing primarily on contributions from network science, the material

presented in these sections also makes reference to important contributions and literature

from geography and transportation research. This chapter then concludes, in section 2.5, with

a summary of main findings, which are categorised according to the above questions.

2.2 Network Science: Origins and Contributions to the Study of Networked Systems

The US National Research Council describes research under the umbrella of network science as

“the study of network representations of physical, biological, and social phenomena leading to

predictive models of these phenomena.” As stated in the introduction, the broad aims of

network science include: 1) the characterisation of the structural properties of real-world

networked systems; 2) the proposal of models to explain the formation of such structures; and

3) the investigation of the effects of the structural properties of networks on the emergent
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characteristics of the systems they support (Newman, 2010). This section describes the most

significant empirical and theoretical contributions from network science to the study of

networked systems under each of these aims and begins with a brief historical overview.

2.2.1 A Brief Historical Overview

The origins of network science are commonly credited to Leonhard Euler and his 1735 solution

to the seven bridges of Konigsberg problem (Boccaletti et al., 2006, Costa et al., 2011,

Newman, 2003). This problem sought a proof for whether it was possible for a person to cross

all seven bridges in the city, shown on the left-hand side of Figure 2.1, in one uninterrupted

walk without crossing any bridge twice. By transforming the problem into the simplified

representation shown on the right-hand side of Figure 2.1, Euler realised that for a walk to

exist, all of the intermediate islands (the blue circles) visited on such a walk must have an even

number of connections with other islands. Otherwise, no matter which path was chosen, the

traveller would become stuck on an island with an odd number of connections. Euler showed

that such a walk is impossible in the setup shown in Figure 2.1 because every island has an odd

number of bridges.

Figure 2.1 - Seven Bridges of Konigsberg Problem (left) and Graph Representation (right)6

The important advance that Euler made in solving this problem was the realisation that it was

the connectivity properties of each island that mattered rather than the spatial aspects of the

problem; e.g. the lengths of the bridges or the size of the islands. The simplified representation

shown on the right-hand side of Figure 2.1 is one of the first examples of what came to be

known as a graph, with the blue circles referred to as vertices and the black lines referred to as

edges. Over time, graph theory, as it became known, has developed into a substantial body of

material, which has produced a range of definitions and methods for characterising the

6 Images downloaded from http://en.wikipedia.org/wiki/Seven_Bridges_of_Konigsberg
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structural characteristics of graphs, which eventually led on to the formation of network

science. Some of these key definitions and methods are described in section 2.2.2.

In the age of modern science, the earliest commonly referenced examples of the application of

tools from graph theory to the study of real-world networked systems came in the field of

social networks analysis in the first half of the twentieth century (Newman, 2003). Due to

limitations on the availability of data and computing power at this time, these early works

were predominantly limited to small networks that could be drawn by hand and to the study

of the properties of individual vertices. An example of such research is that undertaken by

Jacob Moreno, who studied the number of friendships of individuals within friendship groups

in order to identify those people who were well connected and those who were isolated

(Moreno, 1934). Moreno studied this idea by developing a graphical representation of

friendship groups, called a sociogram, much like Euler did for the Konigsberg bridge problem.

The idea that different network components have different levels of importance was later

formalised in the concept of centrality introduced by Bavelas (1948) and in the centrality

measures of Nieminen (1974), Sabidussi (1966) and Freeman (1977) (Freeman, 1979).

There was also an early interest in networks for their ability to transmit material between

different nodes; for example, in the experiments by Milgram (1967) on path lengths in social

networks. In these experiments, random individuals in Nebraska and Kansas, in the Midwest of

the USA, were asked to try to get a letter to a specific individual in Boston, on the east coast.

Participants who did not know this person were instructed to send the letter to someone they

knew who they thought was more likely to know the target individual. Although the

experiments suffered from high refusal rates, the letters that did arrive did so in six steps on

average. This is the origin of the small-world phenomenon; the idea of a large network that

can be traversed in a surprisingly small number of steps.

Given the data limitations that existed for these early studies, an important theoretical

development in the study of networks was the development of generative models that could

produce synthetic representations of networked systems. The first prominent example of such

a model was the random graph model of Erdös and Rényi (1959) (Albert and Barabasi, 2002,

Boccaletti et al., 2006, Newman, 2003), which was studied in a series of papers in the 1960s.

This model, and other versions that followed, provided alternative sources of data for the

study of networked systems and, at the time of their publication (and given a lack of evidence

to the contrary) were thought to provide realistic representations of such systems (Newman,

2003).

As the availability of datasets and computing power increased in the latter half of the

twentieth century, it became clear, however, that the random graph model did not reproduce
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properties of networks that were increasingly being observed empirically (Newman, 2003). For

example, in many systems it was found that the distribution of the numbers of edges ݇

attached to each vertex obeyed a power law of the form )݌ )݇ ∝ ݇ିఊ, for some <ߛ 0, in

contrast to the poisson distribution that was known to exist in random graphs. This eventually

culminated, at the turn of the century, with the publication of two seminal papers that

proposed two new models of real-world networked systems: the small-world model of Watts

and Strogatz (1998), which modelled the small-world phenomenon previously highlighted by

Milgram (1967); and the preferential attachment model of Barabasi and Albert (1999), which

provided an explanation for the power law phenomena described above and defined a new

class of so-called scale-free networks. These models are described in more detail in section

2.2.3.

Following publication of these new models, there was an explosion of new empirical research,

which primarily focussed on uncovering whether the signatures of small-worlds and power

laws could be detected in real-world systems. Over time, such studies found that a wide range

of networked systems of a variety of different types - social, technological, informational and

biological - did indeed have such signatures and therefore similar structural characteristics.

Examples of such results are described in more detail in section 2.2.4. Many of these studies

also proposed new structural measures that have been used to characterise various different

features of network structure.

In more recent years, several studies have also gone on to study the effects of structure on

traffic flow phenomena and the performance characteristics of networked systems; for

example, with respect to jamming phenomena in network routers on the Internet. These

studies are described in more detail in section 2.2.5.

This overview illustrates how network science and its antecedents in graph theory have made

a number of key contributions to networks research; in particular, in the form of methods to

characterise network structure, theoretical models to produce representations of networks,

empirical studies of the structural properties of real networked systems, and studies of the

effects of structure on the emergent characteristics of networked systems. Further detail on

each of these areas is provided in sections 2.2.2 to 2.2.5.

2.2.2 Characterising Networked Systems and their Structural Properties

As described at the beginning of section 2.2.1, the characterisation of networked systems and

their structural properties began in graph theory. This section therefore begins, in section

2.2.2.1, with a summary of definitions and methods from this field. Section 2.2.2.2 then

presents a short survey of measures and methods that have since been proposed for
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characterising the structural properties of networks, which have been used by empirical

studies in network science.

2.2.2.1 Graph Theory: Definitions and Notation

Stated formally, a graph ܩ is an ordered pair (ܧ,ܸ) consisting of a set of vertices ܸ that are

connected to each other by a set of edges ,ܧ together with an incidence function ߮ீ, which

associates an unordered pair of vertices from ܸ with each edge of ܩ (Bondy and Murty, 2008).

Networks can also be described using the same terminology, although vertices and edges are

often instead referred to as nodes and links. This thesis will adopt this practice.

Two examples of graphs are shown in Figure 2.2. In this figure, nodes are represented by the

circles and the links are represented by the lines. If two nodes are connected to each other

then they are called adjacent, and the number of links that are incident with an individual

node is called the degree of that node, which is denoted by .݇ Visual representations of graphs

can also be described as having faces; the white spaces enclosed by the nodes and links.

Figure 2.2 - Examples of Graphs, Vertices/Nodes (the circles) and Edges/Links (the lines)

All of the links in the graphs shown in Figure 2.2 are unweighted and undirected. However,

graphs can also have links that are weighted or directed. In the former case, links are weighted

by a numerical value, which is typically used to represent length or connection cost. Links that

are directed can be traversed in only one direction. Graphs that contain only directed links are

called directed graphs or digraphs. A link that has the same start and end node is called a loop,

and two or more links that share the same start and end node are referred to as parallel. A

graph that has no loops or parallel links is called simple and a complete graph is a simple graph

in which every pair of nodes are adjacent.

In addition to visual representations, such as those displayed in Figure 2.2, graphs can also be

represented by an adjacency matrix, which is particularly useful for storing graphs within a

computer. An adjacency matrix is a square matrix whose dimension is equal to the number of
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nodes and whose entries ௜ܽ௝ represent the number of links between node ݅and node ,݆ for all

node pairs ݆݅. A simple graph has an adjacency matrix whose entries ௜ܽ௝ = 0 or 1 ∀ ,݅ ,݆ and a

complete graph has an adjacency matrix that has entries ௜ܽ௝ = 1 ∀ ,݆݅ for which ݅≠ ݆and

௜ܽ௝ = 0 ∀ ,݅ f݆or which ݅= ,݆ i.e. on the principal diagonal.

With respect to travel within graphs, Graph Theory defines a walk or path as an ordered

sequence ଴ݒ ଵ݁ݒଵ…ݒ௟ି ଵ ௟݁ݒ௟, whose terms alternate between nodes and links (Bondy and

Murty, 2008). Two links are said to be connected if a path exists between them and a

connected graph is a graph in which a path exists between every pair of nodes. A cycle is a path

that starts and ends at the same node. The shortest path between two nodes is the path using

the minimum number of links (or of shortest length if the links are weighted), and the

diameter of a graph is the length of the longest shortest path over all node pairs.

A special type of graph that will be particularly relevant in this thesis are planar graphs, which

refer to those graphs that can be drawn in the plane in such a way that their links meet only at

nodes and nowhere else (Bondy and Murty, 2008). As examples, the left-hand graph in Figure

2.2 is planar but the right-hand graph is not planar. The most well-known property of planar

graphs is Euler’s formula, which relates the number of nodes ,݊ the number of links ݉ and the

number of faces ݂ to each other as follows: ݊− ݉ + ݂= 2. Using this formula, an upper

bound for the average node degree, commonly denoted 〈 〉݇, of a planar graph can be derived;

this being 〈 〉݇ ≤ 6, which leads to an upper bound on the maximum number of links in a planar

graph of ݉ = 3݊− 6 (Barthelemy, 2011). Planar graphs with this many edges are known as

maximal planar graphs. At the opposite extreme to maximal planar graphs are trees, which are

connected graphs that have no cycles and for which the number of links is ݉ = ݊− 1.

2.2.2.2 Commonly Used Measures of Network Structure

Over time, a large number of measures have been proposed to quantify and so characterise

the structural properties of networked systems. This section describes a selection of measures

that have been commonly used by empirical studies in network science and which are also

referred to in later sections of this thesis. It should be noted that the list of measures

presented here is by no means exhaustive and that many more measures have been proposed

and used; the interested reader is referred to the reviews of Newman (2003), Boccaletti et al.

(2006) and Barthelemy (2011) for further examples.

Before describing such measures, however, it is worth noting that many of these measures can

be applied to both graphs and networks. The same is also true for the terms defined in section

2.2.2.1. For this reason, the terms graph and network are often used interchangeably in the

literature. This is also true of the text presented in this thesis thus far. Strictly speaking
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however, these terms do refer to different things; in broad terms, a graph is a “mathematical

concept” whilst a network refers to “an interconnected system of things”7. However, in

practical terms, in networks research, this distinction (or abuse of terminology as some may

call it) is often not important.

As stated in section 2.2.1, amongst the earliest proposed measures of network structure were

the centrality measures of Nieminen (1974), Sabidussi (1966) and Freeman (1977). These were,

respectively, degree centrality, which measures the importance of a node based on its degree;

closeness centrality, an extension of degree centrality that measures importance based on how

near, in terms of the number of links in the shortest path, a node is, on average, to all other

nodes; and betweenness centrality, which measures the importance of a node based on how

many shortest paths between other nodes travel through it. Using the notation introduced in

section 2.2.2.1, the degree, closeness and betweenness centralities are defined respectively

for a node a݅s follows:

݃݁ܦ ݎ݁ ݊݁ܥ݁� ݎܽݐ =�ݕݐ݈݅ ௜݇= ෍ ௜ܽ௝

௝∈௏

ܥ ݏ݈݁݋ ݊ ݊݁ܥ�ݏݏ݁ ݎܽݐ )�ݕݐ݈݅ )݅ =
1

∑ ௜݀௝௝∈௏

ܤ ݁݁ݓݐ݁ ݊݊ ݊݁ܥ�ݏݏ݁ ݎܽݐ )�ݕݐ݈݅ )݅ = ௜ܾ= ෍
௝݊௞( )݅

௝݊௞
௝,௞∈௏;௝ஷ௞;௞ஷ௜

where ௜ܽ௝ are adjacency matrix entries, ௜݀௝ is the number of links in the shortest path between

݅and ,݆ ௝݊௞ is the number of shortest paths between node ݆and ,݇ and ௝݊௞( )݅ is the number of

shortest paths between node ݆ and ݇ that pass through node .݅ The fraction in the

betweenness centrality measure accounts for the fact that there may be more than one

shortest path between two nodes. The statistical distribution of the degree centrality measure

over all nodes in a network is one of the most commonly used methods that is used by

empirical studies in network science to characterise network structure, particularly with

respect to the identification of power laws and scale-free networks, which were mentioned in

section 2.2.1. These networks are defined more formally in section 2.2.3.3.

The identification of a small-world signature in the structure of a network uses two different

network measures: average shortest path length and clustering coefficient (Watts and

Strogatz, 1998). Average shortest path length, denoted 〈 〉݈, for a network can be calculated as

follows:

7 http://efoundations.typepad.com/efoundations/2008/01/graphs-networks.html
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〈 〉݈ =
1

(݊݊− 1)
෍ ௜݀௝

௜ஷ௝

where ௜݀௝ can either be the number of links in the shortest path between ݅and ݆or based on

the total cumulative length of those links. It is known that for a -݀dimensional regular lattice

network, 〈 〉݈~݊ଵ ௗ⁄ (Barthelemy, 2011), where ݊ equals the number of nodes.

Whilst average shortest path length focuses on paths, the clustering coefficient focuses on the

connectivity properties of individual nodes and measures the extent to which the neighbours

of a node ݅are also adjacent to each other. The clustering coefficient ௜ܥ for a node ݅can be

calculated as follows (Watts and Strogatz, 1998):

=௜ܥ
2ℎ௜

௜݇( ௜݇− 1)

where ℎ௜ is the number of links between the nodes that are adjacent to node .݅ In recent

years, a somewhat related aspect of structure that has attracted increasing attention is the

existence of community structures within networks, which refer to groups of nodes that are

highly interconnected with each other but have very few connections with other nodes outside

the group. Measures that are currently used to characterise communities are very complex

and there is currently no commonly agreed method (Barthelemy, 2011); for example, see

Fortunato (2010) for an extended discussion of this point.

The final measure that is mentioned is with respect to the concepts of assortativity and

disassortativity in networks. This refers to, respectively, the prevalence for whether individual

nodes in networks tend to be adjacent to nodes that have similar degree or whether individual

nodes tend to be adjacent to nodes that have different degrees. This is an interesting feature

because it begins to highlight the existence (or lack of) hierarchical features within the

connectivity structure of networks. Assortativity can be measured via the assortativity

coefficient (Newman, 2002), which can be calculated as follows:

Γ =
ܿ∑ ௜݆݇ ௜− ൣܿ ∑ ଵ

ଶ௜
( ௜݆+ ௜݇)൧

ଶ
௜

ܿ∑ ଵ
ଶ ൫݆௜

ଶ + ௜݇
ଶ൯− ൣܿ ∑ ଵ

ଶ௜
( ௜݆+ ௜݇)൧

ଶ
௜

where ௜݆ and ௜݇ are the degrees of the nodes at the ends of the t݅h link, ݉ equal to the

number of links and ܿ= 1/݉ . Γ > 0 indicates an assortative network whereas Γ < 0 indicates

a disassortative network. Γ = 0 indicates that there is no correlation between link connections

and node degree.

The above measures are commonly used by empirical studies in network science to

characterise the structural properties of networked systems. As should be evident from their

definitions, many of these measures apply to individual network components, such as
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individual nodes, links or faces. The typical approach taken by empirical studies that have

applied these measures has therefore been to examine the average value or statistical

distribution of each measure across all such components within a network.

Despite the success of empirical studies, as will be shown in section 2.2.4, in highlighting a

range of interesting features and similarities between networks from a range of different

disciplines, the approach to the selection of measures and their application has been subject to

the criticism that studies often lack a clear purpose. In other words, that, in some cases,

measures are created and applied to data simply because they can be rather than with an

intended purpose in mind. Newman (2003) best articulates this criticism as:

“…while we are beginning to understand some of the patterns and statistical regularities in the

structure of real-world networks, our techniques for analysing networks are at present no more

than a grab-bag of miscellaneous and largely unrelated tools. We do not yet, as we do in some

other fields, have a systematic program for characterizing network structure…”

This is a theme that is also apparent in empirical studies of supply structure in road traffic

networks, which are the focus of section 2.3.1.

2.2.3 Key Theoretical Models of Network Structure

Theoretical models for networked systems are useful because they can be used to identify the

key mechanisms that underpin the formation and evolution of networks observed in the real

world. The random graph, small-world and preferential attachment network models are the

most cited in the network science literature and have each inspired a range of associated

models. This section defines these models and describes some of their properties.

2.2.3.1 Random Graph Model

In the random graph model of Erdös and Rényi (1959), a given number of nodes ݊ is used to

create a graph where each possible (undirected) link between each pair of nodes is present

with a given and uniform probability .݌ Examples of random graphs generated on twenty-five

nodes for three values of are݌ shown in Figure 2.3.
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Figure 2.3 - Three examples of random graphs generated by the model of Erdös and Rényi
(1959) for ࢖ = ૙.૙૜, ࢖ = ૙.૛ and ࢖ = ૙.૞ respectively

At =݌ 0, no links are added to the network, whilst at =݌ 1, every possible link is present and

the model produces a complete graph. In the spectrum between these extremes, graphs have

a variable number of edges and one of the key findings of Erdös and Rényi (1959) was a critical

probability ௖݌ above which a giant connected component exists, which connects the majority

of nodes in the graph.

2.2.3.2 Small-World Model

Starting from a two-dimensional regular lattice with ݊ nodes, the small-world model of Watts

and Strogatz (1998) randomly rewires links with a given and uniform probability .݌ Examples of

graphs generated using this model for three different values of ݌ are shown in Figure 2.4.

=݌ 0 produces a regular lattice network whereas =݌ 1 generates a random graph of the

type described in section 2.2.3.1.
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Figure 2.4 - Examples of graphs generated by the small-world model (Figure 1, Watts and
Strogatz (1998))

It is known that two dimensional lattice networks have an average shortest path length (here

measured as the number of links) 〈 〉݈~√ ,݊ and that such networks are also highly clustered, as

is shown on the left-hand side of Figure 2.4. Through the process of random rewiring, Watts

and Strogatz (1998) recognised that it was possible to generate graphs that retained this high

level of clustering and that also had much smaller average shortest path lengths of the order

〈 〉݈~ log(݊), which were more akin to random graphs. It was shown that a very small value of ݌

could generate networks that remained highly clustered like lattice networks but also had

small average shortest path lengths like random graphs. This effect is illustrated in Figure 2.5,

taken from Watts and Strogatz (1998), which plots the values of clustering coefficient ܥ and

average shortest path length (denoted by ܮ in their paper as opposed to 〈 〉݈) as functions of ݌

between =݌ 0 and =݌ 1. The values of (݌)ܥ and (݌)ܮ in this graph have been normalised by

their respective values at =݌ 0 in order to emphasise the differing ways in which these two

measures change as ݌ increases. Also note that the ݌ values are plotted on a log scale; this

illustrates that the critical value of ݌ at which the small world effect appears is very small. This

figure demonstrates how the addition of relatively few links creates shortcuts between nodes

that were previously connected by much longer paths; thereby leading to a lower average

shortest path length.
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Figure 2.5 - Variation of average shortest path length andࡸ clustering coefficient with࡯
respect to ࢖ in the small-world model. (Figure 2, Watts and Strogatz (1998))

2.2.3.3 The Preferential Attachment Model

The final model introduced in this section is the preferential attachment model of Barabasi and

Albert (1999), which is sometimes referred to as the BA model. The generative process within

this model is different to the random graph and small-world network models because instead

of starting with a predetermined set of nodes, which are then connected to each other

according to some rules, this model gradually adds new nodes to a domain, which are then

connected to existing nodes through the addition of links. The BA model has two defining

components: (a) the continuous expansion of the network through the addition of nodes, such

that each new node is immediately connected to the network guaranteeing a connected

network, and (b) that new nodes attach preferentially to nodes that are already well

connected in the network, i.e. to those nodes that are already of high degree.

In notation, the network starts with a given small number of nodes ݉ ଴ at time =ݐ 0. The first

component of the model is then incorporated by adding one new node at each time step,

which is then connected to ݉ ≤ ݉ ଴ other nodes already present in the network. The second

component is then incorporated by setting the probability that a new node connects to a node

݅as Π( ௜݇) = ௜݇/∑ ௝݇௝ . After being run for a sufficient length of time, this process results in a

network with a power law degree distribution of the form )݌ )݇~݇ିఊ with exponent

=ߛ 2.9 ± 0.1.

These networks are characterised by the existence of hub nodes; that is nodes with degree

significantly higher than most other nodes. This feature sets these networks apart from
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networks generated using the small-world and random graph models, which have exponential

scaling in the tails of their node degree distributions. Exponential scaling decays much faster

than power law scaling and so high degree nodes are much more rare in small-world and

random graphs than they are in networks generated by the preferential attachment model.

The difference between random and scale-free networks is illustrated in Figure 2.6, which

highlights hub nodes in grey.

Figure 2.6 - Examples of Random (left) and Scale-Free (right) networks8

Networks generated by the preferential attachment model are referred to as scale-free

networks precisely because there is no characteristic range that can be used to describe the

values sampled from a power law distribution, as is possible with a Poisson distribution.

2.2.4 Empirical Studies of the Structural Properties of Networked Systems

As described in sections 2.2.1, empirical studies in network science have studied the structural

properties of real-world networked systems using measures such as those identified in section

2.2.2. In many of these studies, the main focus has been on whether a network displays small-

world or scale-free properties against the null hypothesis that the network is random. These

studies are the subject of section 2.2.4.1. It is also possible to identify a class of empirical

studies that focus specifically on spatially constrained networks. Findings for these studies are

the subject of section 2.2.4.2.

2.2.4.1 Detection of Small-World and Scale-Free Signatures

The method used to identify a small-world signature in a network compares calculated values

of average shortest path length (calculated as the number of links) 〈 〉݈ and average clustering

coefficient ,ܥ with values for the same measures, denoted 〈 〉݈௥௔௡ௗ and ,௥௔௡ௗܥ calculated on a

random counterpart graph; that is, a random network that has the same number of nodes and

links (Watts and Strogatz, 1998). A small-world signature is said to have been detected if

8 Image from http://commons.wikimedia.org/wiki/File:Scale-free_network_sample.png
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〈 〉݈ ≈ 〈 〉݈௥௔௡ௗ and ܥ ب ,௥௔௡ௗܥ i.e. if the average shortest path length of the network is

approximately similar to a random graph but it exhibits much greater clustering between

nodes. After defining the small-world model, Watts and Strogatz (1998) went on to

demonstrate evidence for the existence of small-world signatures in the neural network of a

nematode worm, the power grid in the USA and a network of collaborations between actors in

films. This evidence is shown in Figure 2.7 ൌܮ) 〈 〉݈ in this figure).

Figure 2.7 - Evidence for small-worlds in the film actors network, US power grid and neural
network of a nematode worm (C. elegans). (Table 1, Watts and Strogatz (1998))

The typical method used to identify whether a network has a scale-free signature is the

production of a plot of node degrees ݇ against probability )݌ )݇ on a doubly logarithmic scale

and to observe whether a straight line pattern emerges in the data points. This approach has

been used, for example, by Faloutsos et al. (1999) and Albert et al. (1999) for the Internet and

by Redner (1998) for two networks of citations between scientific papers. The plots produced

by Redner (1998) are shown in Figure 2.8 as examples.

Figure 2.8 - Evidence of power law scaling in the degree distribution of two networks of
citations between scientific papers. (Figure 1a, Redner (1998))

The above cited examples provide a small illustration of how empirical studies in network

science have uncovered that many real-world network systems share similar structural

characteristics. The survey papers of Albert and Barabasi (2002) and Costa et al. (2011)
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summarise many more examples of the application of this approach and include results on the

structural properties of a diverse range of systems including the Internet and World Wide

Web, Biological networks, Social networks and Infrastructure networks. However, in recent

years, there has also been criticism of these findings from other research disciplines. For

example, statisticians have criticised the method of producing a log-log plot to detect a power

law as overly simplistic at best or misleading and erroneous at worst, with some research

finding that power laws do not exist where they were previously claimed to exist by others

(Clauset et al., 2009). The most prominent example of this criticism is a claim that the Internet

does not actually have a power law node degree distribution; for example, by Doyle et al.

(2005). There has also been criticism that, in focusing primarily on the structural properties of

the graphs that underlie networked systems, studies in network science neglect other

important domain relevant information, which significantly limits the usefulness of their

findings (Alderson, 2008, Havlin et al., 2012). For example, all of the studies cited in this

section thus far focussed solely on the connectivity properties of networks, and omitted other

characteristics of nodes and links. Whilst more recent empirical studies, which are described in

the next section, have begun to include some of these other characteristics, primarily in the

form of link lengths, there is still some way to go on this issue. As will be shown in sections 2.3

and 2.4, this criticism can also be made of studies of road traffic networks.

2.2.4.2 The Structural Properties of Spatially-Constrained Networks

In some of the networks discussed in the previous section; such as the citation network and

network of actor collaborations, the difference in cost between connections of differing

lengths is relatively small. In contrast, in networks such as the Internet and transportation

networks, this is not the case because their geographical embedding imposes constraints on

their formation and operational characteristics. This typically manifests in increased costs of

long distance connections, which therefore require a strong economic reason for their

construction (Barthelemy, 2011). These differing constraints make such networks an

interesting class to study within the broader family of networks.

Barthelemy (2011) provides a review of empirical studies of these networks, which include

studies of transportation networks such as:

Airline networks – This includes work by Barrat et al. (2004) on the worldwide air-

transportation network and Barrat et al. (2005) on the link between airport size and the

magnitude of travel. These studies found that the “airport connection graph is … a clear

example of a spatial (non-planar) small-world network displaying a heavy-tailed degree

distribution and heterogeneous topological properties”
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Bus and Subway (Underground) networks – This includes work by Sienkiewicz and Holyst

(2005) and von Ferber et al. (2009) on the public transport networks of 22 polish and 15

worldwide cities respectively. In comparison with airline networks, these networks appear to

have smaller average node degrees and longer average shortest path lengths. Barthelemy

(2011) hypothesised that this is a consequence of the more restrictive spatial constraints that

exist in these networks.

Cargo ship networks – This includes work by Hu and Zhu (2009) and Kaluza et al. (2010) on the

worldwide cargo ship network. In contrast to bus networks, Barthelemy (2011) hypothesised

that these works appear to show that such networks are less constrained by their spatial

embedding and that long distance links are actually less costly than short distance links in such

networks.

In his conclusions, Barthelemy (2011) highlighted that spatial networks can be broadly split

into categories: planar networks, such as bus and subway networks; and spatial, non-planar

networks, such as airline and cargo ship networks, where nodes have a geographical

embedding but where links can intersect. Networks in the latter category appear to have more

similarities in structure to the networks studied in the empircal studies described in section

2.2.4.1. As will be shown in section 2.3, road traffic networks fall into the former category.

Barthelemy (2011) also identified several important influences of spatial constraints on the

structural properties of networks. Firstly, that they restrict the occurence of high degree nodes

and usually produce a degree distribution that is peaked around the average degree rather

than a power law like many other real-world networked systems; secondly, that spatial

constraints limit the length of links and, for planar networks, the link length distribution is

usually peaked; and thirdly, that restrictions on node degree in planar networks constrain the

formation of hub nodes in favour of short links, which tends to lead to highly clustered

networks.

Like the studies of the previous section, the studies highlighted here have been criticised for

stripping out domain relevant information. For example, Derrible and Kennedy (2011)

criticised the studies of bus networks because they did not include the fact that bus networks

are composed of transit lines and that the ability to transfer between transit lines is not

explicitly recognised.

2.2.5 Studies of the Effects of Structure on the Performance Characteristics of Networks

In addition to contributions highlighted in the preceding sections, the network science

literature also contains many studies that have investigated the effects of network structure

on traffic flow dynamics and performance phenomena in networked systems. As described in
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chapter 1, the goal of this thesis is to study how methods from network science can be used to

investigate this question in the context of road traffic networks, so this literature is particularly

important.

Studies in network science have been principally inspired by the existence of jamming

phenomena in the Internet. Jamming occurs when routers malfunction or suffer a drop in

performance, which results in a redistribution of flow and therefore congestion to other

routers in the network (Boccaletti et al., 2006). The primary aim of such research has typically

been to find the critical level of demand, denoted ,௖ߣ at which the system moves from a free-

flowing to a congested (or jammed) state and to test the effect of different network structures

and different routing strategies on this critical level of demand.

The methodological approach used within such studies is based on models and has typically

used either real network data from the Internet or canonical models from the network science

literature, such as those described in section 2.2.3, to generate large ensembles of network

topologies to be tested. The performance characteristics of these different ensembles of

networks are then compared to each other under an assignment of demand using a packet

transmission model with various different routing strategies. This comparison is based on the

average performance across all networks within each ensemble. Examples of the application of

this approach are described in Table 2.1.

A packet transmission model is designed to provide a basic representation of how the Internet

routes data packets between different nodes in a network. In this model, nodes are either

routers, which accept data packets as input and then forward them on through the network,

or hosts, which are the origins and eventual destinations of data packets. The links,

meanwhile, represent cables connecting routers and hosts to each other so forming a

representation of the network of the Internet. The router nodes in these models determine

the pattern of traffic flow because they dictate the rate, denoted ,௜ߚ at which packets can be

sent on through the network. If the number of packets arriving at a router is greater than this

rate then the excess is stored in a queue to be transmitted at a later point in time and all

subsequently received packets are stored at the back of this queue. Once a packet reaches its

destination it is removed from the network. As the above description suggests, this is a micro-

simulation model within which the current positions of all individual packets are tracked and

recorded over increasing time steps .ݐ

Examples of eight studies that have used this approach are summarised in Table 2.1. The main

aspects that vary between papers are, on the supply side, the size and connectivity structures

of the underlying network topologies, and the rates ௜ߚ at which routers can forward packets

per unit .ݐ The main things that vary on the demand side are the rates ߣ at which packets are
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introduced into the network and the extent to which congestion is accounted for within the

routing strategies tested. Various measures are used to measure network performance. One

common measure is the critical demand generating rate ௖ߣ at which the model moves from a

free-flow to congested state, which is determined by the order parameter (Arenas et al.,

2001):

=ߟ lim
௧→ஶ

〈∆Θ〉

ݐ∆ߣ

where ∆Θ = Θ(ݐ+ (ݐ∆ − Θ(ݐ), Θ(ݐ) is the total number of packets in the network at time ,ݐ

and 〈∙〉 is the average over time windows of .ݐ∆ This measure records the difference between

the rate at which packets are introduced to the network, ,ߣ and the rate at which packets

reach their destinations. If the former is greater than the latter then the number of packets in

the model is increasing over time and the system is said to have transited into a congested

state.
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Reference Supply Structure Demand Structure Main

Performance

Indicator

Network

Topologies

Network Size Network

Realisations

Router Capacities Demand Structure Route Choice

Ohira and

Sawatari

(1998)

Lattice ࢔ = ૛૞,૞૙,

૚૙૙,૚૞૙,૛૞૙

Not reported One packet per

unit ,࢚ FIFO

queuing

Random with a

generation rate: ࣅ

packets per unit ࢚

Based on Shortest Path (SP) Average

Travel Time

Echenique et

al. (2004)

Subset of the

Internet

࢔ = ૚૙૝ 200 One packet per

unit ,࢚ FIFO

queuing

Random ࢖ packets

generated. at

࢚= ૙

Shortest Path and Congestion

aware routing

Maximum

Packet Travel

Time

Arrowsmith et

al. (2005)

- Random

- Scale-Free

with exponent

ࢽ = ૜

- Scale-Free

with exponent

ࢽ = ૛

࢔ = ૞૙૙,

〈࢑〉 = ૜

Not reported One packet per

unit ,࢚ FIFO

queuing

Random with a

generation rate: ૃ

packets per unit ࢚

Shortest Path Routing Number of

delivered

packets,

Average

Travel Time

Zhao et al.

(2005)

- Cayley Tree ࢔ = ૚૙ૢ૜,

〈࢑〉 = ૛

50 Each node has࢏ a

transmission rate

units࢏ࢼ per unit .࢚

Two scenarios:

- ∝࢏ࢼ ࢏࢑
- ∝࢏ࢼ ࢏࢈

Random with a

generation rate: ࣅ

packets per unit ࢚

Shortest Path Routing Order

Parameter ࣁ

- Lattice

- Random

- Scale-Free

࢔ = ૚૙૙૙,

〈࢑〉 = ૝
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Echenique,

Gomez-

Gardenes and

Moreno

(2005)

Subset of the

Internet

࢔ = ૚૚૚ૠ૝ Not reported One packet per

unit ,࢚ FIFO

queuing

Random with a

generation rate: ࣅ

packets per unit ࢚

Shortest Path and Congestion

aware routing

Number of

packets in the

system, Order

Parameter ࣁ

Tadic et al.

(2007)

- Random

- Scale-Free

࢔ = ૚૙૙૙ Not reported One packet per

unit ,࢚ LIFO

queuing

Random: a

constant number ࢖

packets generated

in network at each

unit ࢚

Random routing of packets

until within two steps of

destination where routing

becomes deterministic

Travel Time

Distribution

Tang and Zhou

(2011)

- Scale-Free

- Subset of the

Internet

࢔ = ૛૙૙૙ 100 Each node can࢏

send at most ࢏࢑
packets per unit .࢚

Two scenarios:

- FIFO observed

- FIFO ignored

Random with a

generation rate: ࣅ

packets per unit ࢚

- Shortest Path based on

topological distance

- Shortest path with links

weighted by betweenness

Order

Parameter ࣁ

Gavalda et al.

(2012)

- Scale-Free

- Random

࢔ = ૞૙૙૙,

〈࢑〉 = ૡ

50 One packet per

unit ,࢚ FIFO

queuing

Random with a

generation rate: ࣅ

packets per unit ࢚

Shortest Path and Congestion

aware routing

Order

Parameter ࣁ

Table 2.1 - Studies of Network Performance Phenomena in the Network Science Literature
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The eight papers summarised in Table 2.1 used a range of supply and demand structures:

 On the supply side, there are two types of topology that have been used; synthetic and

real, with synthetic topologies being much more common. In part, this is probably due to

the ease with which they can be generated; for example, by using the generative models

described in section 2.2.3. A wide range of network sizes are also evident. With the

exception of Zhao et al. (2005), router capacity is typically one packet transmission per unit

.ݐ

 On the demand side, packets are randomly generated at a rate betweenߣ a random origin

and random destination in every paper. The appropriateness of such a distribution of

demand is not commented upon in any of the papers but it is worth considering whether

such a demand profile is realistic and also how other demand profiles would affect the

results. These are all open questions. As stated earlier, routing strategies vary from

shortest path routing to those that include some awareness of congestion.

In the context of the wide range of supply and demand structures identified by Table 2.1, all of

these papers vary some aspect of structure in order to observe the effects on performance.

For example, there are comparisons between different network topological structures; e.g.

random versus scale-free, and also between different routing principles. There are also

comparisons between different generating rates ߣ and network sizes .݊ These comparisons

can be categoried into two types: ‘named comparisons’; like those between different

topological structures, and ‘parameterised comparisons’; like those between different demand

generating rates. A named comparison is essentially a comparison of two discrete entities. In

contrast, a parameterised comparison allows comparison between many points over a

spectrum of values. It is argued that comparisons of the latter type are more desirable because

they provide a better indication of how performance varies between two extremes. The

former comparison type is less useful because it is unclear how similar or different the

networks being compared are to each other. It is important to note that parameterised

comparisons exist only in those experiments for which the demand level is varied.

With respect to the performance measures, in addition to the order parameter, metrics based

around travel time are also common throughout the referenced papers. The key point to note

about the results is that they are averages over a number of realisations of each network type.

This is necessary because the synthetic networks are generated using models that have a

stochastic component, which, when rerun, therefore generate different networks, albeit with

the same general properties. There is also randomness in the demand profile so even when

using subsets of the real Internet network, the results presented are averages over many



- 31 -

simulations. All of the results presented in these papers are average comparisons between the

various different network structures used; for example between the average performance of

networks with random and scale-free topological structures. Such a comparison ignores the

possibility that there may be variation within each group of networks, between networks that

have similar supply and demand structures.

The papers summarised in Table 2.1 provide the following two main findings:

1. Routing Strategies that include some amount of congestion-awareness lead to higher (i.e.

better) critical generation rates ௖ߣ than routing strategies based purely on shortest paths.

In these papers the standard reference point for the performance of a routing strategy is

routing by shortest paths. The above finding means that strategies that include some

knowledge of the amount of traffic in other parts of the network; either locally or globally,

improve route selection and mean that a network can accommodate more demand before

becoming congested.

2. The critical generation rate ௖ߣ is lower (i.e. worse) for tree and lattice network topologies

than it is for scale-free network topologies but all of these have a lower critical generation

rate than random networks.

In other words, random network topologies can accommodate more traffic than scale-free

networks which, in turn, can accommodate more traffic than tree and lattice networks for a

similar level of congestion. This finding indicates an interest in how the underlying network

topology affects system performance. Arrowsmith et al. (2005) argued that the reason for this

is that the underlying structure of scale-free networks means that many shortest paths travel

through a small subset of hub nodes, which can forward only one packet per unit time and so

become congested very quickly. This is in contrast to random networks where shortest paths

are much more evenly distributed, a fact which is highlighted by the distribution of the

betweenness centrality.

2.3 The Structural Properties of Supply and Demand in Road Traffic Networks

This section describes empirical studies of the structural properties of supply and demand in

road traffic networks. Section 2.3.1 focuses on the structural properties of network supply (the

physical infrastructure of junctions and roads) and section 2.3.2 focuses on describing

generative models that have been proposed for road traffic networks. Section 2.3.3 then

focuses on the structural properties of travel demand (characteristics of the movements of

individual travellers between locations in a network).
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Most of the content that is presented in these sections is derived from the network science

literature and uses similar approaches to those used in empirical studies described in section

2.2. Perspectives are also provided from other research disciplines that have made

contributions in these areas; specifically geography and the transportation literature.

2.3.1 The Structure of Supply in Road Traffic Networks

In the network science literature, empirical studies of the structural properties of supply in

road traffic networks have, thus far, focussed exclusively on networks in urban areas. Such

studies typically focus on a sample of urban areas and are based upon network data from

geographic databases. Examples of data sources include: the NXI GESTATIO laboratory

database, which was used by Buhl et al. (2006) for forty-one urban areas in Africa, Asia, Europe

and South America; the Tele Atlas MultiNetTM geographic database, which was used by

Lammer et al. (2006) and Chan et al. (2011) for twenty urban areas in Germany; the TIGER

database, which was used by Jiang (2007) and Zhang et al. (2011) for forty-one urban areas in

the USA; and the Ordnance Survey and Integrated Transport Network (ITN) datasets, which

were used by Masucci et al. (2009) and Gudmundsson and Mohajeri (2013) for forty-one urban

areas in the United Kingdom.

Once extracted, the network data for each urban area are subjected to a processing stage in

which the level of detail is simplified and any network that is outside the area of interest is

removed. The remaining network for each urban area are then converted into an undirected,

simple graph of nodes and links. Two approaches to this conversion process are evident in the

literature: the primal approach and the dual approach. The primal approach to the study of

network structure uses an intuitive graphical representation of a network in which nodes

represent junctions and edges represent road segments between junctions. The dual

approach, in contrast, uses an alternative representation in which nodes represent ‘streets’

and links represent intersections between streets. These approaches are described in more

detail in later sections. As with studies of general networked systems, the structural properties

of the primal/dual graphs for each urban area are then characterised by measures that

quantify the characteristics of individual network components; the nodes, links and faces of

the graph. The statistical distributions of such measures over all components within each

network are also examined.

Examples of measures that have been used in empirical studies of the structural properties of

road traffic networks are described in section 2.3.1.1. Sections 2.3.1.2 and 2.3.1.3 describe the

main findings of empirical studies under the primal and dual approaches. A critical review of

network science is then provided in section 2.3.1.4, which includes perspectives from

geography.
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2.3.1.1 Measures of the Structural Properties of Road Traffic Networks

In addition to the measures described in section 2.2.2, which are generally applicable to all

network types, a separate class of measures have also been specifically developed in the

context of road traffic networks. Derrible and Kennedy (2011) credited Garrison and Marble

(1964, 1962, 1965) and Kansky (1963) for the development of some of the first measures of

this type, which actually emanated from transport geography.

The three measures proposed by Garrison and Marble (1964, 1962, 1965) were called the

alpha, beta and gamma indices. The index-ߙ is a measure of network density with the

following formula:

ߙ =
݉ − ݊+ 1

2݊+ 5

This measure is known to range between ߙ = 0 for a tree (as in this case ݉ = ݊− 1) and

ߙ = 1 for a maximal planar graph. This measure was later referred to as meshedness by Buhl

et al. (2006) and denoted by ܯ . The index-ߚ relates the total number of links to the total

number of nodes in the following formula:

ߚ =
݉

݊

Although the beta index is exactly the same as degree centrality averaged over all nodes,

Derrible and Kennedy (2011) described it as an “indicator of network complexity”; the

argument presumably being that the higher the average degree, the more complicated the

network. Finally, the index-ߛ is also a measure of network density, which relates the total

number of links in a network to the maximal possible number of links. For planar networks,

Eulers Formula (see section 2.2.2.1) shows that the maximum number of edges in a planar

graph is 3݊− 6 and so the formula for the index-ߛ is:

=ߛ
݉

3݊− 6

This measure also ranges between values close to =ߛ 0 for trees and up to =ߛ 1 for a

maximal planar graph.

Kansky (1963) also proposed three measures of network structure, which were average link

length, average traffic flow per vertex and an indicator of system spread, which divided total

network length by the diameter of the network.

An alternative measure for network efficiency that has been proposed is the route factor,

denoted ܳ( ,݅ )݆, which relates the shortest path distance through a network between two

nodes to the Euclidean distance between two nodes (Barthelemy, 2011). This measure has the

following formula:
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ܳ( ,݅ )݆ =
ோ݀( ,݅ )݆

ா݀( ,݅ )݆

where ோ݀( ,݅ )݆ is the distance through the network and ா݀( ,݅ )݆ is the Euclidean or ‘crow flies’

distance. Route factor is also referred to as circuity by Levinson and El-Geneidy (2009).

Lammer et al. (2006) also presented a series of measures to quantify the shape and structure

of the faces of planar networks; i.e. the internal blank spaces enclosed by nodes and links.

Lammer et al. (2006) referred to faces as cells and proposed measures including the cells

neighbourhood degree ௖݇, which was defined as the number of adjacent cells to a cell ;ܿ the

area of cells ;௖ܣ and the form factor, which has the following form:

߶௖ =
4

௖ܦ/௖ܣ)ߨ
ଶ)

where ௖ܦ denotes the maximum distance between two points in the cell. Values of the form

factor range between ߶௖ = 0 for an infinitely narrow cell and ߶௖ = 1 for a perfect circle

(Barthelemy, 2011).

2.3.1.2 Findings under the Primal Approach

An example of the primal representation of an urban road traffic network is shown in Figure

2.9 below. As can be seen, the physical junctions in the network on the left-hand side are

represented by nodes in the graphical representation on the right-hand side of Figure 2.9.

Nodes are then connected to each other by straight lines representing the road segments. The

city blocks (in grey) on the left-hand side are represented by the faces of the graph on the

right-hand side of Figure 2.9. As previously stated, faces are typically referred to as cells in the

network science literature.

Figure 2.9 - Primal Representation of a Road Traffic Network (Figure 2, Porta et al. (2006b))



- 35 -

The findings of empirical studies under the primal approach can be categorised as focussing on

the microscopic properties of nodes, links and cells and the overall macroscopic properties of

networks. These aspects are addressed in sections 2.3.1.2.1 and 2.3.1.2.2.

2.3.1.2.1 Microscopic Properties of Urban Road Traffic Networks

Empirical studies have found that, at the microscopic level of nodes, links and cells, supply

networks in a large number of urban areas share several common structural features.

Perhaps unsurprisingly, urban road traffic networks are predominantly planar (Buhl et al.,

2006). As stated in section 2.2.4.2, it is known that planarity can significantly restrict other

structural features in road traffic networks; such as the average node degree, 〈 〉݇, to values

〈 〉݇ ≤ 6 (Barthelemy, 2011). Indeed, in a study of the twenty largest cities in Germany, Chan et

al. (2011) reported the very narrow range of 〈 〉݇ ∈ [3.17,3.31]. Masucci et al. (2009) reported

that London has 〈 〉݇ ≈ 2.44, which is close to a tree. This can be attributed to a massive

presence of dead-ends in their graphical representation of the London network; approximately

30% of all nodes had degree 1. For the networks analysed by Buhl et al. (2006), 〈 〉݇ ∈

[2.02,2.87]. However, Chan et al. (2011) attribute the difference in their findings to be

because of their deletion of nodes of degree ݇≤ 2.

The probability distribution ܲ( )݇ of node degree is heavily constrained by the planarity

constraint with nodes of degree ݇≥ 5 found to be very rare across several studies (Buhl et al.,

2006, Chan et al., 2011, Masucci et al., 2009). In a study of this distribution on the networks of

Germany, Chan et al. (2011) found that the tail (݇≥ 5) of the distribution decayed as an

exponential. However, they also identified that nodes of degree ݇= 4 occurred much more

often than would be expected where the distribution to be exponential for all values of .݇

Masucci et al. (2009) described it as misleading to claim a distribution type but also found a

sharp drop off in high degree nodes. Based on this, Barthelemy (2011) concluded that urban

road traffic networks have a topological structure that is significantly different to other

networks analysed in network science, which, it has been suggested, have power law scaling in

their node degree distributions.

Turning to link based measures, Masucci et al. (2009) found that the probability distribution

ܲ( )݈ of link lengths in London was well fitted by a power law with an exponential cut-off of the

form ܲ( )݈ ∝ expቂ−
ଵସହ

௟
−

௟

ଶ଴଴଴
ቃ݈ ିଷ.ଷ଺. Chan et al. (2011) did not identify a distribution type for

their networks but did highlight a plateau in the distribution up to 100m, which then tailed off

as longer links became less frequent. The plot of ܲ( )݈ in Masucci et al. (2009) displays the

same feature. Barthelemy (2011) proposed that the decay in the probability of long distance
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links is another consequence of the planarity constraint under which long distance links are

conjectured to be particularly expensive to build and therefore rare.

Chan et al. (2011) also studied the angles between adjacent and opposite arms at junctions

and found that the frequency distributions of these angles in a sample of German cities

displayed two pronounced peaks at ߠ = 90° and ߠ = 180°. Angles of ߠ = 90° were more

abundant and showed a larger dispersion than those about ߠ = 180°. For nodes of degree

݇= 4 the distributions were found to be peaked at =ߠ 90°, whereas for nodes of degree

݇= 3 the distribution had peaks at =ߠ 90° and ߠ = 180°, with 90° angles roughly twice as

common as 180° angles. Similar findings were also reported by Strano et al. (2013). Chan et al.

(2011) provided three explanations for these findings: 1) the shortest Euclidean connection

between a node and a nearby link is provided by a perpendicular connection, 2) rectangular

cells are preferable for buildings and 3) angles significantly different to ߠ = 90° make for

complex turning movements for traffic. Using double angle distributions (the angle of

deviation between straight-ahead movements) to measure the “straightness” of crossing

roads, Chan et al. (2011) found a peak at ߠ = 180° for nodes of degree ݇= 4 and peaks at

ߠ = 180° and ߠ = 270°for nodes of degree ݇= 3. These results suggest that in urban road

traffic networks, links meet at nodes as would be expected in a grid-like structure.

Turning to the structural properties of cells; i.e. the city blocks, Lammer et al. (2006) found

that the distribution of cell areas (௖ܣ)݌ in the city of Dresden followed a power law of the

form (௖ܣ)݌ ∝ ௖ܣ
ିଵ.ଽ. Masucci et al. (2009) reported a similar finding for the city of London,

which Barthelemy and Flammini (2008) have argued is in sharp contrast to a grid structure

where cell areas are typically of a similar size. Focussing on the shape of cells, Chan et al.

(2011), in light of their findings on link angles, proposed two measures of the “rectangularity”

of cells to assess the deviation of the structure of an urban road traffic network from a perfect

rectangular grid. For one of these measures; the squared cosine 〈cosଶ2ߠ௟〉, where ௟ߠ range

over all angles between adjacent links in a network, all networks were found to lie within a

small range around approximately 0.7. Chan et al. (2011) found that the form factor measure,

defined in section 2.2.2.2, fell between 0.3 and 0.6 for most of the cells in all of the cities they

studied, with very few examples of values above 0.6. This was linked to the abundance of

nodes of degree ݇= 3 and ݇= 4.

With respect to the radial distribution of nodes, links and cell areas, Masucci et al. (2009) and

Chan et al. (2011) both showed that London and cities in Germany have a high density of

nodes, short links and small cell areas in their city centres, but that their networks become

more dispersed as distance from the centre increases.
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Overall, these results suggest that there are several common rules that govern the structure of

supply in road traffic networks across a broad range of urban areas.

2.3.1.2.2 Macroscopic Properties of Urban Road Traffic Networks

In contrast to results at the microscopic level, at the macroscopic level the network science

literature points to a high degree of structural variation between road traffic networks in

different urban areas, particularly with respect to the size, density and connectivity of network

infrastructure. For example, Chan et al. (2011) showed that urban areas in Germany vary

considerably with respect to the geographical extent and the number of nodes in their road

traffic networks, with areas ranging between 141 km2 and 891 km2; see Table 2.2. With respect

to the density of network infrastructure, Chan et al. (2011) also illustrated that the number of

nodes per square kilometre, denoted ߷௡, varied considerably, from 9.8 nodes per km2 in

Bielefeld to 35.6 nodes per km2 in Munich. Finally, with respect to network connectivity,

Courtat et al. (2011) found a range of values for the meshedness measure (defined in section

2.2.2.2) across ten French cities, with values ܯ ∈ [0.2,0.47]; see Table 2.3. Cardillo et al.

(2006) and Buhl et al. (2006) also found considerable variability in meshedness.

City Population
Area

(km2)

Nodes

(࢔)

Population Density

(population/km2)

Node Density

(࢔ࣙ)

Berlin 3,392,425 891 19,931 3,807 22.4

Hamburg 1,728,806 753 9,044 2,296 12

Munich 1,234,692 311 11,058 3,970 35.6

Cologne 968,639 405 5,395 2,392 13.3

Frankfurt 643,726 249 3,911 2,585 15.7

Dortmund 590,831 281 3,281 2,103 11.7

Stuttgart 588,477 208 3,612 2,829 17.4

Essen 585,481 210 4,093 2,788 19.5

Dusseldorf 571,886 218 3,124 2,623 14.3

Bremen 542,987 318 3,827 1,708 12

Duisburg 508,664 233 2,837 2,183 12.2

Leipzig 494,795 293 3,753 1,689 12.8

Nuremberg 493,397 187 3,543 2,638 18.9

Dresden 480,228 328 3,346 1,464 10.2

Bochum 388,869 146 2,233 2,663 15.3

Wuppertal 363,522 168 1,750 2,164 10.4

Bielefeld 324,815 259 2,546 1,254 9.8

Bonn 308,921 141 2,094 2,191 14.9

Mannheim 308,759 145 2,674 2,129 18.4

Karlsruhe 281,334 173 2,204 1,626 12.7

Minimum 281,334 141 1,750 1,254 9.8

Average 740,063 296 4,713 2,355 15.5

Maximum 3,392,425 891 19,931 3,970 35.6
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Table 2.2 - Size and Density of Supply Networks in twenty German Cities (Chan et al., 2011)

City Connectivity ࡹ) ) City Connectivity ࡹ) )

Angoulme 0.28 Grenoble 0.32

Avignon 0.23 Lyon 0.47

Caen 0.29 Rennes 0.26

Carcassonne 0.2 Rouen 0.38

Dijon 0.33 Troyes 0.28

Table 2.3 - Connectivity of Supply Networks in ten French Cities (Courtat et al., 2011)

2.3.1.3 Findings under the Dual Approach

One of the main criticisms of the primal approach from a network science structural analysis

point of view is the restriction that its geographical embedding imposes on values of structural

measures, for example on node degree. The dual approach removes these constraints. To

explain the rationale for this alternative approach, Wagner (2008) used the example of giving

someone directions to demonstrate that, in the mind of a traveller, a road traffic network is

not viewed as a collection of distinct road segments but rather as a collection of contiguous

streets and that when giving directions it is common to identify only those junctions where a

turn is required and not every intermediate junction that is crossed. The starting point for this

visualisation was the seminal work on the social logic of space by Hillier and Hanson (1984) and

it is otherwise known as Space Syntax, as described for example by Batty (2004).

The dual representation of a network is generated by first identifying the contiguous streets

according to some rule(s). The identified streets are then converted into nodes in the dual

graph and edges are drawn between them if those streets intersect. There are several

different rules by which contiguous streets have been identified in the literature. Three of

these approaches are shown in Figure 2.10.
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Figure 2.10 - Dual Representations of Road Traffic Networks (Figure 2, Porta et al. (2006a))

The approach used by Hillier and Hanson (1984) was to use axial lines; this approach is shown

in the second image of row A in Figure 2.10. The lines represent contiguous sections of road

that offer direct lines of sight. The second approach, shown in row B, used by Jiang and

Claramunt (2004) identifies contiguous streets using street names. The third approach, shown

in row C, proposed by Thomson (2004) is termed an Intersection Continuity Negotiation (ICN)

model and is based on examining each node in turn and joining the two edges at each node

that form the largest convex angle into one contiguous road segment and so on until all edges

at each node have been examined and joined together. In this way it uses a ‘principle of good

continuity’ where pairs of road segments at each node forming the most straight movement

are joined to each other. This relaxes the strict line of sight rule that is part of the formation of

axial maps, which reduces the number of nodes of degree two and therefore maintains

continuity for curved roads.

A fourth approach, not shown in the above figure, used by Jiang and Liu (2009) for example,

interpolates between the axial mapping and ICN model approaches and is called the natural

streets approach. In this approach the same principle of continuity, as described for the ICN
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model, is used but only up to a certain upper threshold ߶ of deviation from a straight line. A

setting of ߶ = 0° allows no deviation from the straight line and returns something similar to

the axial map, whilst a large ߶ will allow a larger deviation between contiguous segments and

the ICN model map.

The final images in each row of Figure 2.10 illustrate that, depending on the chosen method of

conversion, it is possible to generate many different dual graphs from the same road network.

This is one of the main criticisms of the dual approach.

The main advantage of the dual approach is that it releases networks from their geographical

constraints and so, for example, the degree distribution of nodes of the dual graph can vary

much more widely than in the primal graph. In analyses of the pattern of this degree

distribution, Porta et al. (2006a) found that in real road traffic networks of a sufficient size, the

distribution obeys a power law, making these networks similar to those analysed in other

disciplines within network science. In analysing clustering coefficient and path lengths of dual

graphs, Porta et al. (2006a) also found evidence for a small-world structure, although these

findings were somewhat limited because they came from one square mile samples of only six

cities. Further evidence for this phenomenon was found in a much larger study carried out by

Jiang (2007). In this work, the node degree distributions of the dual representations of the full

road traffic networks of forty US cities, generated via the natural streets approach with a

threshold degree of ߶ = 70∘, were found to obey power laws with exponents ≈ߛ 2. Jiang

(2007) also concluded that “about 80% of streets within a street network have degrees or

lengths less than the average of the network, while 20% of streets have length or degrees

greater than the average. Out of the 20%, there are less than 1% of streets which can form a

backbone of the street network”. Using the named streets approach Kalapala et al. (2006)

analysed the degree distributions of the national highway networks of Denmark, England and

the United States, and concluded that they too obeyed power laws with exponents ∋ߛ

[2.2,2.4].

In releasing road traffic networks from their geographical constraints the above examples

show how the dual representation has been able to uncover recurrent patterns, which point

towards the existence of highly connected and central streets. However, the many methods

that exist to generate dual representations raise questions of how sensitive the above results

are to the conversion model chosen; something that Porta et al. (2006a) highlighted as being a

question of whether results truly reflect properties of the underlying network or are a facet of

the generation process chosen. The primal representation of network structure has been the

model of choice for traffic modelling because it retains the link to geographical space and the

influence this has travel patterns. This is lost when the dual approach is used because a street
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is compressed to a single point. Some authors have developed and applied models of traffic

flow on the dual graph, for example Hu et al. (2008) and Zeng et al. (2009), but it is still unclear

what the benefits are for doing this.

2.3.1.4 Summary and Critical Review

The results of empirical studies presented in sections 2.3.1.2 and 2.3.1.3 highlight that there

are both similarities and differences in the structural properties of road traffic networks across

different urban areas. However, these results should be viewed with the following caveats.

Firstly, there is significant variation between studies with respect to how raw network data is

processed. For example, with respect to identifying the boundary for each urban area, a wide

range of methods have been used in existing studies. For example, Cardillo et al. (2006) and

Buhl et al. (2006) used an artificial square boundary; whereas, Masucci et al. (2009) defined

the boundary using a circle centred on the ‘centre’ of the city. In contrast to these geometric

approaches, Jiang (2007) used boundaries for administrative regions, which are likely to be

more related to political geography than any particular physical aspect of the network. Further

differences are evident with respect to the simplification of network data and, in particular,

the deletion (or non-deletion) of nodes of degrees one and two. For example, Chan et al.

(2011) chose to remove all nodes of degree one (and their associated links) that represented

dead-ends, whereas Masucci et al. (2009) chose to retain them. These inconsistencies make it

difficult to compare results between different studies as such decisions can have a significant

impact on the values of structural measures. This can be seen in the results presented in

section 2.3.1.2.1.

Secondly, all empirical studies, published to date, have neglected to study other aspects of

supply structure; for example, the distribution of capacities, road widths, numbers of lanes and

speed limits across network links, structural patterns in the road hierarchy for an urban area

and the distribution of junction types. These structural features influence traffic flow but their

structural characteristics remain unknown.

Thirdly, and finally, each study used a different selection of network measures to characterise

structure in a unique sample of cities. This means that there are very few cases where the

same network measure was applied to different datasets. With such limited crossover

between studies, it cannot be concluded that all urban road traffic networks share all of the

properties described in sections 2.3.1.2 and 2.3.1.3. Thus far, empirical studies of network

structure appear to represent the application of lots of different measures to lots of different

datasets without a clear goal. This was a criticism of other empirical studies in network science

that was highlighted in section 2.2.2.2.
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There is therefore a need for further empirical studies of the structural properties of urban

road traffic networks, which should aim to address the above methodological inconsistencies,

using an approach that focuses on the analysis of structure with traffic flow applications in

mind, and which uses a broad selection of network measures to study a large sample of urban

areas. This is an important goal for future work.

2.3.1.4.1 Perspectives from Transport Geography

Sections 2.3.1.2 and 2.3.1.3 have shown that network science has taken a quantitative

approach to the characterisation of structure in urban road traffic networks. However, this is

not the only approach. Researchers in geography, spatial science and urban planning have also

made contributions to the categorisation of road pattern types. Typically these approaches

place much greater emphasis on the development of urban form as being a result of a complex

combination of social, environmental, technological and economic factors of which transport

influences are only one part of the story. However, transport is still recognised as an important

influence; indeed, Pacione (2005) highlighted the relationship between transport and urban

structure, showing how the earliest cities had high densities because walking and horses

provided the main modes of transport, that this was followed by the streetcar/tram era in

which urban growth occurred along transit corridors, and that this was then followed by the

car era with lower density development and urban sprawl.

It would appear that approaches to the categorisation of road network structures in geography

are based more upon qualitative descriptions of patterns rather than numerical measures. For

example, Marshall (2005) lists thirty-two different categorisation systems that have been

proposed by geographers in the last century to classify road pattern types in urban areas. One

of the most prominent messages that was conveyed by Marshall (2005) is of how difficult it is

to classify structure within urban road traffic networks and that networks are often a

mishmash of many different patterns that have developed over a long timeframe. Indeed,

Marshall (2005) stated that several geographers consider the endeavour to be “futile” or

“impossible”, and quoted Hanson (1989) as stating that:

“Time and time again, authors suggest that all towns are made up of a limited vocabulary of

urban forms, yet when called upon to specify the elements of that vocabulary, the temptation

to multiply categories seems to be irresistible.”

Marshall (2005) highlighted that the establishment of a typology “depends crucially on the

purpose of that typology”, i.e. that the reason for wanting to characterise the structural

properties of networks should help to define the methods used in doing so. Recalling the
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quote of Newman (2003) presented at the end of section 2.2.2.2, this is something that is

conspicuously lacking from existing studies in network science.

In the context of the research question and objectives presented in the introductory chapter,

this thesis argues that one such purpose could be to focus on the characterisation of structure

within the context of studying the performance characteristics of traffic flows on road

networks. Such a purpose has implications for the approach used. It could mean that empirical

studies focus on the most heavily trafficked roads in their datasets instead of including every

single road in an urban area. This approach acknowledges that roads in networks are of

differing to traffic. For example, roads in residential areas could be omitted from such studies

because they are lowly trafficked with the focus instead being placed on the structural

characteristics of major roads and distributer roads. Demand data could also be used to

determine the boundary of the network considered for each urban area. It could be that some

urban areas draw traffic from a wider geographical area than other urban areas. Such

approaches would require the simultaneous consideration of traffic flow data alongside supply

data. An additional suggestion is that empirical studies could look to separate urban road

traffic networks into different layers and study their properties independently. For example,

there could be layers representing primary roads, such as A roads in the UK or freeways in the

USA, and other local roads.

2.3.2 Generative Models of the Supply Structure of Road Traffic Networks

As with research for general networked systems, empirical analyses of the structural

properties of road traffic networks have been followed by the development of models to

represent their formation and growth; with the aim being to uncover the key mechanisms that

have led to the creation of networks observed in the real world. In this section two recent

examples of models from network science that have been proposed for the formation of road

traffic networks are presented and briefly critiqued.

The two models that are highlighted here are similar in construction to the scale-free model of

Barabasi and Albert (1999) in that nodes are added in a sequential process and are then

connected to the network over a series of time steps rather than starting out with a

predefined distribution of nodes in space. These models accord with the way in which the

development of transport networks is viewed in geography as the result of an evolutionary

process over a long time frame (Levinson, 2005, Xie and Levinson, 2009).

In the first model, proposed by Barthelemy and Flammini (2009), network growth is modelled

using a local optimality principle where the addition of new centres at each time step

stimulates the growth of new roads from the closest available points that are visible to the
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new node. This latter condition ensures that the planarity of the network is retained. To

encourage the formation of cycles these new centres are allowed to stimulate the growth of

more than one new road at a time. Two variants of the model are presented.

In the first variant of this model, new nodes appear in way that creates a uniform distribution

across a plane. The model is able to reproduce empirically observed structural properties of

real road traffic networks such as constrained average node degrees. An example of the

sequential generation of a road traffic network using this model is shown in Figure 2.11.

Figure 2.11 - Evolution of the first variant of the model of Barthelemy and Flammini (2009)
over four time steps (Figure 3, Barthelemy and Flammini (2009))

Changing how nodes appear in the plane such that the concentration decreases as distance

from the centre increases induces networks to be created with cell size distributions that are

similar to results that have been observed empirically by Lammer et al. (2006). They also

model the effect of a river on where nodes are positioned, finding that the resulting network

creates bridges equally spaced along the river. Examples of networks produced using these

different node placement rules are shown in Figure 2.12. The visual similarity of these

networks to what one would expect in a real city is clearly evident.
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Figure 2.12 - Networks produced by the first variant of the model of Barthelemy and
Flammini (2009) for the case of a non-uniform node distribution (left) and the
existence of a river (right) (Figures 5 and 6, Barthelemy and Flammini (2009))

In the second variant of the model, Barthelemy and Flammini (2009) refined the node

placement mechanism so that new nodes are placed as a function of population density and

transport accessibility. To achieve this, they divide the plane into several square sectors and

then calculate the probability of the addition of a new centre in each one of these square

sectors based on accessibility and rent price. Rent price is modelled as a strictly increasing

function of the number of nodes already placed in each sector; the higher the number of

nodes, the higher the rent. Accessibility is measured using the average betweenness centrality

of the nodes within each sector; the higher the betweenness centrality, the lower

transportation costs are in that sector. The probability for a new node to appear within a given

sector is then calculated using a logit model with utilities based on the total sum of rental and

transport costs. A parameter ߣ is used to adjust the weights of rental and transport costs in the

calculation of utilities; such that when ߣ is small, rental costs are of greater influence than

transport costs, whereas when ߣ is large, the opposite occurs.

The effects of this on the networks that are produced by this model are shown in Figure 2.13.

When ߣ is small, a uniform distribution of nodes is recovered, which produces results like the

first variant of the model. When ߣ is large however, the network becomes concentrated

around few centres.
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Figure 2.13 - Networks produced by the second variant of the model of Barthelemy and
Flammini (2009) (Figure 11, Barthelemy and Flammini (2009))

The second model that is referenced in this section is that of Courtat et al. (2011). This model

uses similar principles to the model of Barthelemy and Flammini (2009) but is significantly

more complex and encompasses significantly more variables. Like the model above, network

generation is modelled as an evoluationary process over time with the addition of new nodes

to a domain, which are then connected to existing nodes in the network through the

construction of links. The difference between the two models lies in the additional complexity

of the rules by which these two steps occur with both including several parameters that can be

adjusted to affect the shape and pattern of the resulting network.

The appearance of a new node is governed by a “potential field”, which, given the existing

network, controls the probablity of where the new node will appear. The settings of the

potential field can be adjusted to control how close new nodes are positioned relative to the

existing network. Once a new node has been generated and positioned, the set of “visible”

existing nodes is identified; that is, the set of nodes for which a straight line segment

connecting to the new node could be added without violating the planarity of the network.

Controlled by yet more parameters, the new node is then connected to between one (the

closest) and all of the nodes in this set. The parameters provide a great amount of flexibility in

the model and lead to many different visual structures of network. The varying effects of two

of these parameters are shown in Figure 2.14 below.
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Figure 2.14 - Example networks produced by the model of Courtat et al. (2011) (Figure 9,
Courtat et al. (2011))

The ௘ܲ term on the axis-ݔ controls how strictly new nodes appear according to the potential

field. High values indicate a high level of organisation and therefore uniform spread of new

centres whilst low values lead to the random positioning of new centres. The ߱ term on the -ݕ

axis controls how many connections are made between new centres and the existing network.

As can be seen low values of ߱ result in treelike structures whilst high values produce

networks with many loops. An example of the evolution of a road network generated by this

model over five steps ((a) to (e)) is shown in Figure 2.15.
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Figure 2.15 - Example evolution of transport networks produced by the model of Courtat et
al. (2011) (Figure 11, Courtat et al. (2011))

The networks produced by both of the above models, as shown across Figure 2.11 to Figure

2.15, are certainly impressive and do appear to produce networks that resemble real urban

road networks. However, there are several areas for development:

Firstly, whilst these models are clearly able to produce networks that are visually similar to real

urban road networks, there has been only a limited amount of empirical analysis to determine

whether the networks produced are really representative of such networks and whether they

share characteristics such as those identified in section 2.3.1.

Secondly, with respect to the evolutionary behaviour of the networks shown across the

snapshots in Figure 2.12 and Figure 2.15, the rate of network growth appears to be constant

over time. It is known in transport geography that urban road networks do not have constant

growth rates and that real networks go through three stages: “birth”, where the growth rate is

low as only a few important links are built; a “growth” stage, in which the construction of the

network accelerates, and a “maturity” stage, in which the network reaches saturation and

slows down (Levinson, 2005). Neither of the above models includes such a mechanism for

varying the growth rate; and, in particular, the idea of a point of saturation where the model

reaches a natural conclusion.

On a related issue, there is also no evidence for either model to show whether the order in

which links are constructed as the network grows reflects the pattern of growth that has

occurred in the development of real networks. This is hard to verify because datasets of

network evolution over long timescales are hard to find but the recent work of Strano et al.

(2012) on the evolution of the road network of the Groane area, to the north of Milan, over
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the last two centuries is illuminating. Using seven snapshots of the road network between

1833 and 2007, they found that network growth was governed by two elementary processes:

“exploration”; in which new roads branch out into new areas, and “densification”; in which

roads between these branches are filled in and there is an increase in the density of roads. The

models highlighted above appear to include the first but not the second of these behaviours.

The models also develop road networks independently of the world around them, i.e. they

generally exclude potential influences of topography, although Barthelemy and Flammini

(2009) do simulate the effect of a river with visually representative results, but also the effects

of other cities and towns in the wider geographical area, which will affect the appearance of

main routes through a city. Courtat et al. (2011) touch on this in a final example but it would

be interesting to see further work on the impact of such influences and whether these models

continue to produce realistic structures compared to the real-world. Widening the scope of

this point, there are also other external influences on road networks. Xie and Levinson (2009)

highlight that “transport development represents a complex and dynamic process that involves

a magnitude of dimensions, which may be topological, morphological, technical, economic,

managerial, social or political.” Although many of these may be difficult to represent within a

modelling framework.

A final criticism of these models is that they include only the growth and formation of the

topological structure of the road network, and do not include other aspects of supply

structure, such as a road hierarchy, or a representation of how population and travel demand

has evolved with the network over time. With respect to the development of a road hierarchy,

the work of Levinson and Yerra (2006) is particularly interesting as they were able to show,

albeit only for a grid network, that a hierarchy of major and minor roads can appear as the

result of a “decentralised process” without the direction of human design. With respect to the

inclusion of a representation of population and travel demand, many geographical approaches

focus on the dynamics of population within urban settlements; for example by Makse et al.

(1995). An interesting future research area would be to see whether these approaches can be

modelled together.

2.3.3 The Structure of Demand in Road Traffic Networks

The notion that travel demand in a road traffic network has structural properties refers to the

existence of patterns in how travellers use road infrastructure. The form and characteristics of

travel patterns are of interest to many different fields; for example, geographers and transport

planners are interested in the spatial distribution of activities, epidemiologists are interested in

modelling the spread of infectious diseases (e.g. Yashima and Sasaki (2014)) and, in a
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commercial context, businesses are interested in where people travel so that they can most

effectively place their advertisements (Barthelemy, 2011).

In comparison with studies of the structure of network supply, empirical studies of the

structural characteristics of travel demand are more limited in their level of detail. This is

primarily a reflection of the greater difficulty that exists in collecting data on travel demand.

There are several contributory factors to this difficulty. Unlike road infrastructure, travel

demand is constantly changing from hour-to-hour, day-to-day and over weeks, months and

years. Demand also has many different dimensions; its properties can be studied for individual

travel modes (e.g. private car, public transport or active modes), different traveller

types/purposes (e.g. commuter, business or leisure) and, as will be shown, at different spatial

scales. The challenges of collecting data for each of these dimensions vary in scope and

difficulty.

Traditionally, data on the characteristics of travel demand have been collected using a

combination of roadside interview surveys and household based travel diaries in which a

sample of travellers are asked to provide details of their journeys. Such approaches are widely

known to be prone to bias, human error and typically achieve only low sample rates. These

disadvantages are compounded by the significant costs of such surveys. However, despite their

known deficiencies, these methods are still commonly used by public bodies and transport

consultancies today.

These traditional approaches contrast with new data collection methods that have been

proposed and used in parts of the academic literature, which typically make much greater use

of technology and so reduce the burden on members of the public to accurately report their

travel habits. Examples include use of link traffic counts and routing information derived from

GPS (Parry and Hazelton, 2012) or number plate surveys (Castillo et al., 2008) to derive travel

demand patterns across a geographical area. In more recent years, there has also been

significant growth in the number of papers that study the characteristics of travel demand

using mobile phone datasets, for example, the variation in aggregate call volume data in mast

coverage areas across a city (Sevtsuk and Ratti, 2010) or the records of calls made by individual

phones across a day (Caceres et al., 2013, Iqbal et al., 2014, Kang et al., 2012). The latter

datasets have been used to develop methods to derive data on movement patterns across

urban areas.

The purpose of the subsections that follow is to summarise and critically review the key

findings of existing studies of the structural properties of travel demand. These studies are

categorised into three groups, which each focus on the characteristics of travel demand at

different spatial scales. Section 2.3.3.1 describes studies of the broad characteristics of travel
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demand at the aggregate level of overall populations. Section 2.3.3.2 then summarises

research on the structure of travel movements within more limited geographical areas, such as

between distracts or in a city, at the scale of origin-destination matrices (defined at the

beginning of that section). Finally, section 2.3.3.3 focuses on studies of the distribution of

travel demand across network links within an urban area and attempts that have been made

to use structural measures, such as those identified in section 2.2.2, to characterise travel

demand. Section 2.3.3.4 then provides a summary of main findings and critical review.

2.3.3.1 Broad Characteristics of Travel Demand

In the UK, data on the broad characteristics of travel demand across the country are collected

via the National Travel Survey9, which uses a series of face-to-face interviews and paper based

travel diaries in which participants are asked to log their movements over a one week period.

These data are used to present an overall statistical summary of travel habits with information

presented, for example, to characterise the total volume of demand, distance travelled and

trip durations segmented by mode and travel purpose. One-off studies at the scale of urban

areas have also been undertaken along similar lines; for example, see Mokhtarian and Chen

(2004) for a list of over fifty such surveys.

Analysis of such datasets led Zahavi (1977) to hypothesise that individual travellers within

urban areas have a personal travel time budget; the idea being that an individual would

typically travel only for so long for different trip purposes. Zahavi (1977) also proposed that

this budget does not vary significantly over time or across different geographical regions

(Barthelemy, 2011). In support of this hypothesis, Kolbl and Helbing (2003) found that

between the years 1972 and 1998, the average daily travel time in the UK for a range of

transport modes has been approximately constant. Levinson and Wu (2005) also found

empirical evidence to suggest that travel budgets within cities are constant over time but also

found variation in budgets between cities. In their analysis of over fifty surveys, Mokhtarian

and Chen (2004) concluded that whilst such patterns do exist at the most aggregate scales,

there is considerable variability in travel time budgets when travellers are disaggregated by

socio-economic factors. Barthelemy (2011) concluded that these studies “point to the possible

existence of universal features of human movement” but that further empirical and theoretical

studies are required before a “’unified theory’ of human travel behaviour” can be determined.

9 https://www.gov.uk/government/collections/national-travel-survey-statistics
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2.3.3.2 Urban and Interurban Mobility Patterns

Studies of the structural properties of travel movements within urban areas, such as towns and

cities, or between different urban areas, such as between districts within a country, are

typically undertaken through study of a mathematical construct called an Origin-Destination

(OD) matrix. Within this representation of demand, the geographical region under study is

subdivided into several disparate areas, called zones, and the volume of travel between all

pairs of zones is then recorded. Zones typically represent areas that share some congruent

internal properties such as a residential area or business park within an urban area or different

administrative regions within a country. One relatively recent development is the recognition

that an OD matrix can also be converted into a network representation in which nodes

represent origin and destination zones, links represent the existence of traffic flow between

two zones and link weights represent traffic flow volumes.

Empirical studies of the structural characteristics of OD matrices - many of which are from the

network science literature - have been undertaken for both urban and interurban travel, for

different modes of transport and across a wide range of different countries.

For example, with respect to the properties of interurban travel, De Montis et al. (2007)

studied the structure of the demand network created by commuting movements between the

375 municipalities on the island of Sardinia and concluded that there is a “rich-club

phenomenon” in which there are a small number of regions with high total traffic flows, which

have busy connections between them, and a significant number of smaller regions that act as

“satellites” of larger cities. Their conclusion was that these structural features created an

“overall network structure [that is] widely punctuated with star-like subsystems pivoting

around important urban poles.” In their analysis of commuting patterns between districts in

Germany, both Patuelli et al. (2007) and Reggiani et al. (2011) also uncovered heterogeneities

in demand structure, with the latter highlighting the existence of twelve hubs that dominate in

terms of traffic volume.

Focussing on urban travel patterns, Chowell et al. (2003) used an agent-based simulation

model to simulate the movements of 1.6 million people in the city of Portland in the USA. The

model was calibrated using census data, vehicle ownership records, public transport

timetables and information about travel movements from a travel survey undertaken in the

city. Using the network created by these movements, the authors undertook a structural

analysis using node degree and the clustering coefficient measures and were able to uncover

power laws in the distributions of traffic. The uncovering of these laws again highlights strong

heterogeneities in the movements of travellers within OD matrices. Similar heterogeneity in

the distribution of travel movements across a city were also uncovered by Gao et al. (2013),
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who used a dataset of seventy-four million mobile phone call records for the city of Harbin in

northeast China.

Turning to a study undertaken within the transportation research community, Gutierrez and

Garcia-Palomares (2007) analysed differences in travel patterns in Madrid between 1988 and

1996, using data from mobility surveys carried out in those years, and found that there had

been a significant shift in the structure of Madrid from a monocentric organisation, where

most trips are to a dominant city centre, to a polycentric organisation, with increased suburb

to suburb travel. Their assertion was that this is a result of a process of decentralisation in

employment. Using oyster card data, Roth et al. (2011) uncovered a similar polycentric

structure of demand in London and identified multiple centres that both attract and generate

large amounts of flow at different times of day, on different days and across different weeks.

All of these studies highlight a trend towards an increasingly complex, heterogeneous

distribution of demand in OD matrices at the level of both urban and interurban travel. Given

the existence of such patterns, it is unsurprising that several models have been proposed for

characterising the distribution of travel demand. The most well-known model is that based on

the gravity law and which posits that the volume of travel between two zones is proportional

to the travel populations within those two zones and inversely proportional to the cost of

travel or distance between them. Several forms of gravity based models are used in practice,

which each use different functional forms to represent the deterrence of travel costs. Both

Patuelli et al. (2007) and Reggiani et al. (2011) attempted to fit gravity models to explain the

patterns uncovered in their empirical analyses but were unable to successfully fit either an

exponential or power form deterrence function. A more successful attempt at fitting a gravity

law model was presented by Jung et al. (2008), who analysed the network created by the

movements of traffic on the interurban highway network of South Korea. Using a dataset

comprising total movements between the top thirty cities (by population) as recorded by the

toll plazas sited at all entry and exit points to the network, they successfully fitted a gravity law

with a power law form deterrence function.

It is worth noting that several other models for travel demand have also been proposed; for

example, the intervening opportunities model, which proposes that “the number of persons

going a given distance is directly proportional to the number of opportunities at that distance

and inversely proportional to the number of intervening opportunities” (Stouffer, 1940); and,

more recently, the radiation model, which focuses on commuting flows by way of modelling

how individuals accept job offers with respect to benefits and distance (Simini et al., 2012).

The latter model, which has the advantage of being parameter free, has been shown to

produce better estimates of travel demand patterns than the gravity model (Simini et al.,
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2012), although not for large cities like London (Masucci et al., 2013). Masucci et al. (2013)

argue that “commuting at the city scale still lacks a valid model and that further research is

required to understand the mechanism behind urban mobility”.

2.3.3.3 The Distribution of Travel Demand on Network Links

At the finest spatial scale, several studies have focussed on the structural characteristics of

demand volumes and how they are distributed across individual links within an urban area.

For example, Jiang (2009) investigated the assertion, quoted in section 2.3.1.3, by Jiang (2007)

that “a minority of streets account for a majority of traffic flow” by studying traffic flows in the

city of Gavle, Sweden. This investigation used GPS data from the movements of taxi cabs

during one week in October 2007 as a proxy for the distribution of travel demand on network

links, and then used the dual representation, described in section 2.3.1.3, to create a

representation of streets in the city. By calculating the lengths of these streets, the authors

found that the top 20% of streets by length carry 80% of the traffic flow. Whilst there are

question marks over the methodological approach taken in this study - for example, of

whether taxi drivers are a good representation of the broad pattern of travel demand given

the greater network knowledge they are likely to have and their different travel habits, and of

use of the dual representation - it seems plausible that, in general, there would be a large

amount of variation between the volumes of traffic using different roads within an urban area.

(This adds further weight to the argument, put forward in section 2.3.1.4.1, that studies of

supply structure should consider that different roads are of different importance in the context

of traffic flows).

Related to such findings, several papers within the network science literature have attempted

to draw correlations between structural measures and traffic flows on network links, with

several pointing towards the betweenness centrality measure, defined in section 2.2.2.2, as a

natural candidate for such tests. Indeed, Lammer et al. (2006) studied the distribution of

betweenness centrality on the road network of Dresden, Germany, and found that it follows a

power law. This led to a conclusion that “high values of [betweenness] can be interpreted as a

high concentration of traffic on the most important intersections.” Barthelemy (2011) went

further by stating that “the betweenness centrality is in itself interesting since it points out the

important zones which potentially are congested.”

There have been several attempts to find empirical evidence to support the use of structural

measures, such as betweenness centrality, as representations of travel demand. For example,

Kurant and Thiran (2006a) and Kurant and Thiran (2006b) studied the explanatory power of

several topological indicators for demand flows across three network examples: the public
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transport network of Warsaw, Poland; the railway network of Switzerland and the railway

network formed by major trains and stations in Europe. In each representation, the number of

services per day at each network node were used as a proxy for demand flows. The first

measures for which correlations were sought were node degree and betweenness centrality

but both provided very low statistical correlations. Two adjusted versions of the betweenness

measure were then used in attempts to increase the correlation by adding additional network

data: a “restricted betweenness” measure, in which the summation in the betweenness

measure was restricted to movements between nodes that act as the termination point of

services; and a measure called “simple load”, in which the summation was further restricted to

movements between node pairs for which there existed a service between them. It was only

this final measure that was able to provide a “rough approximation” for traffic flows. Moving

to evidence from road traffic networks, Bono et al. (2010) used traffic flow data extracted from

the TeleAtlas MultiNet dataset and the UK Department for Transport (DfT) website, plus freely

available data on the internet, to analyse correlations between two structural measures and

traffic flows on the road networks of London, Manchester and Birmingham in the UK, and

Forsyth County in the USA. In testing three versions of each measure, it was found that

structural measures provided a good representation of demand flows only when additional

network information, such as travel times, was included as a weight.

It is unsurprising that pure topological measures, such as the betweenness centrality, provide

poor representations of traffic flows. By definition, the measure relies upon finding shortest

paths between all pairs of nodes in a network and so implicitly assumes a uniform distribution

with one unit of demand between all node pairs, which contrasts with the heterogeneous

structure of demand identified by the studies in section 2.3.3.2. These measures, and the

studies that use them, also ignore that travellers often use multiple routes between OD pairs

because of congestion effects, and that the distribution of travel demand varies over time.

These features make the distribution of traffic flow in a road network significantly different to,

for example, the distribution of water flow in a river system.

2.3.3.4 Summary and Critical Review

The literature cited in sections 2.3.3.1 to 2.3.3.3 demonstrates that whilst there is some

evidence for general patterns and aggregate features of human mobility, there is also a

considerable amount of complexity in demand patterns. The empirical evidence highlighted in

section 2.3.3.2 in particular demonstrates that the distribution of travel demand is highly

heterogeneous between different urban areas, within urban areas and with respect to traffic

volumes on network links. However, it is notable that no attention has been given to the

pattern of travel demand for road traffic networks in urban areas. The focus of studies has
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instead been on broader spatial scales or on the distribution of demand for other travel

modes; perhaps for which data are more easily accessible. Whilst there is no evidence to

suggest that the distribution of demand within urban road traffic networks should be

dramatically different to the heterogeneous distribution that has been uncovered, further

empirical studies are required to test this assertion.

It is worth noting here that transportation planning theory recognises that travel demand is

endogenous and that it does depend on the distribution of land uses within an urban area and

on the availability of network supply. The structural characteristics of demand evolve over

time, with network supply, as a result of decisions taken by individuals, companies and

network operators (Ortúzar and Willumsen, 2001). Travellers can respond in the short-term by

varying their departure time, route choice or trip frequency, and in the long-term in car

purchase decisions, or by changing their residential location or place of work. Network

operators responses include decisions, for example, to build new roads or introduce traffic

management initiatives. The structure of travel demand is therefore intricately interwoven

with the structure of network supply. However, to the knowledge of the author, there is

currently no empirical research of whether there is a systematic relationship between the

distribution of travel demand and network structure, or the nature of that relationship.

2.4 The Effects of Structure on the Performance Characteristics of Road Traffic

Networks

This section describes studies of the effects of structural properties of supply and demand -

such as those described in the previous section - on the performance characteristics of road

traffic networks. Section 2.4.1 describes how the performance characteristics of road traffic

networks can be measured and section 2.4.2 describes how traffic flows are typically

modelled. Sections 2.4.3 and 2.4.4 then describe contributions from the transportation and

network science communities, which have used such measures to study network performance

and how it is affected by network structure.

2.4.1 Measures of the Performance Characteristics of Road Traffic Networks

As stated in the introductory chapter, in the context of road traffic networks, performance

refers to how well a network fulfils its function of providing for the movements of travellers.

The notion that networks can have performance characteristics highlights how the concept of

performance has many facets - of which efficiency, reliability and vulnerability are some

examples - which can each be quantified by a wide range of measures and methods. This

section introduces a selection of these measures, focussing on those that are referred to in

later sections, and also highlights how they are commonly used.
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The majority of the simplest and most commonly used performance measures are essentially

variations in the use of data on traffic flows on network links and at nodes, travel costs/times

between nodes and distances travelled. This data can be collected for individual nodes and

links, or can be aggregated to various levels of detail, for example, to denote travel times

between OD pairs on individual routes, average link speeds across all network links, or the

total distance travelled by all travellers in a network. These measures are similar to those used

by the references cited in section 2.2.5, which study the performance of packet transmission

models. In order to refer to the above data items, this thesis will use the following notation.

The volumes of traffic flow on a link ݅and on a path ݇ between the thݎ OD pair in a network

will be denoted by ௜andݔ ௞݂
௥ respectively. The costs of travel on a link ݅and path ݇ between

the thݎ OD pair will then be denoted by ௜ܿand ௞ܥ
௥ respectively.

In the specific context of road traffic networks, performance measures can also be further

aggregated by time period (across one or more hours, a day, a week or a year) or

disaggregated by user class (e.g. split up by cars, heavy goods vehicles, etc.) or trip purpose

(e.g. commuters, business travellers, etc.). Measures can also be mixed with supply

characteristics; for example, a commonly used indicator of congestion is the link volume-to-

capacity ratio, denoted ܥ/ܸ ratio, which measures the amount of flow on a link as a

proportion of the capacity of a link.

Many of these measures are regularly reported for groups of roads or individual urban areas

by public authorities in many countries. For example, the Department for Transport in the UK

regularly reports on the average speeds on ‘A’ roads in weekday morning peak periods10 and

on the delays in travel time experienced by travellers on the strategic road network11. In the

USA, the Texas Transportation Institute publishes an annual urban mobility report that reports

on total yearly delays experienced by travellers in one-hundred and one urban areas across the

country (Schrank et al., 2012).

As will be described in the next section, many of the above measures are regularly used by

public authorities and by commercial organisations.

Building on the simple measures outlined above, the academic research community has

published many papers that have proposed more complex measures and methods to quantify

10 https://www.gov.uk/government/statistics/congestion-on-local-a-roads-england-jan-to-
mar-2014

11 https://www.gov.uk/government/publications/reliability-of-journeys-on-the-highways-
agency-s-motorway-and-a-road-network



- 58 -

the performance characteristics of road traffic networks. For example, focussing specifically on

network efficiency, Nagurney and Qiang (2007) proposed the following measure:

=ߝ
∑

௥ݍ
௥ܥ

௥

௥݊

in which ௥ݍ represents the total demand and ௥ܥ denotes the cost of travel for the thݎ OD pair

and ௥݊ denotes the number of OD movements in the network. This quantity represents the

average throughput of the network per unit of cost. Another measure of network efficiency,

which instead focuses on the efficiency of route selections by individual travellers, is the Price

of Anarchy. This measure was proposed by Koutsoupias and Papadimitriou (1999) and

Papadimitriou (2001) and is calculated as the ratio of the Total Travel Cost, denoted ,ܥܶܶ

when individual travellers selfishly choose routes to minimise their individual travel costs, to

the ܥܶܶ when individual travellers instead choose routes such that the ܥܶܶ across all

travellers is minimised. These route choice concepts are more commonly referred to as the

User Equilibrium (UE) and System Optimal (SO) routing principles respectively. A formula for

the Price of Anarchy is shown in equation (1).
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(1)

The application of network measures, such as those described above, requires data on traffic

flows and travel costs. This data can either be obtained through observations of real road

traffic networks or extracted from computer models of road traffic networks. One of the most

commonly used approaches to modelling road traffic - especially in commercial contexts - are

traffic equilibrium modelling techniques. As this modelling approach is used in papers

described in later sections of this literature review, a brief outline of these techniques and how

they are applied is provided in section 2.4.2, which is based on Sheffi (1985) and Ortúzar and

Willumsen (2001). A more thorough description of notation and the mathematical conditions

underpinning these techniques is provided in section 4.4.

2.4.2 Modelling Road Traffic Networks

Most transport models provide a snapshot of a limited number of aspects of a traffic network;

for example the transportation characteristics of a transport system in a specific city, on an

average weekday AM peak period in 2014, for road passenger traffic. In modelling transport, it

is normal to focus on those dimensions that are most important; for example, peak hour

models are often used because the main interest is in the performance of the transport system

when it is under the most pressure.
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The classic transport planning model has four stages: trip generation, which quantifies

productions and attractions for zones within the model area based on, for example, population

and economic activity; trip distribution, in which departures from each zone are connected to

arrivals in other zones using a gravity model, for example; mode choice, in which each trip is

allocated to a particular mode and traffic assignment; in which trips in an OD matrix are loaded

onto network links.

The assignment of travel demand to network links is most often based on the principle of

equilibrium. This principle of equilibrium states that if this balance is disturbed then market

forces will naturally force them back into equilibrium. So, for example, if the demand for a

product is higher than the supply then producers will increase prices and/or production to take

advantage of this fact, whereas if the demand for a product is lower than the supply then

producers will drop prices or reduce production.

In road traffic networks, supply and demand are characterised by the layout and the level of

service of the roads and junctions in a network and the magnitude of travel demand between

different points in that network. As in the general case above, these factors interact with each

other. For example if, when aggregated, a significant number of travellers use a particular

stretch of road then the level of service on that road will drop, which may consequently

encourage some travellers to seek alternative routes. The interaction between these

congestion effects and traveller decisions forms continuous feedback loops. A point of

equilibrium occurs where a balance, by some definition, has been achieved between these

congestion effects and traveller decisions.

Wardrop (1952) defines two principles of route choice that have a mathematical formulation

that yields such a point of equilibrium:

1. Individual travellers choose routes such that they each, selfishly, minimise their individual

travel time (or cost). This is called the User Equilibrium (UE) principle.

2. Individual travellers each, unselfishly, choose routes such that the total travel time (cost) in

a network when aggregated across all travellers is minimised. This is called the System

Optimal (SO) principle.

When applying these techniques, travel demand is aggregated in an OD matrix and the level of

service provided by each link is represented by a link performance function. For a link ݅these

link performance functions describe how travel time ௜ݐ (in general, travel cost ௜ܿ) varies in

relation to the volume of flow ௜ݔ on the link, and sometimes also traffic flows on adjacent

links. A typical visualisation of such a function is provided in Figure 2.16.
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Figure 2.16 - Example of a link cost function used in transport models

As illustrated by Figure 2.16, in order to maintain physical realism these link performance

functions are assumed to be continuous, positive and strictly increasing functions of the flow

on the individual link that they represent, i.e. ௔ݐ = .(௔ݔ)௔ݐ The dependence of travel time on

link flow allows the effects of congestion to be included. The most commonly used link

performance functions typically take the form of polynomials with positive coefficients; for

example, the BPR cost function (Bureau of Public Roads, 1964). However, other functions are

possible. The BPR function has been criticised because it tends to “underestimate delays at

junctions” and also “when demand is close or above the capacity of the link” (Ortúzar and

Willumsen, 2001). This makes such cost functions less appropriate in urban areas where

junctions are the major determinant of travel times.

The equilibrium modelling approach also has other features that make it unrealistic. For

example, it assumes that when traffic is assigned, it simultaneously appears on every link on its

route through the network. This is known as the steady state assumption. In reality however,

traffic is dynamic and changes over time. There are other traffic modelling approaches, such as

dynamic traffic assignment and microscopic simulation models, which include more realistic

features of traffic flow but also typically include many more parameters and therefore require

much more input from data. However, having highlighted these criticisms, equilibrium models

continue to be well used outside academia and are generally considered to be effective and

reasonable representations of traffic flows.

2.4.3 Studies of the Effects of Network Structure on Performance in Transportation

This section describes the contributions of the transportation community to studying the

effects of network structure on performance in road traffic networks. Section 2.4.3.1 focuses

on empirical studies of network performance whereas section 2.4.3.2 describes theoretical

studies.

x

t
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2.4.3.1 Empirical Studies of the Performance Characteristics of Road Traffic Networks

In general, most empirical studies of the performance characteristics of road traffic networks

are more commonly undertaken by transport consultancies than by the transportation

research community. These studies are usually individual case studies that focus on the effects

of proposed supply side or demand side interventions, such as the construction of a bypass or

imposition of a congestion charging scheme. By focussing on isolated individual case studies,

these studies reveal very little about how global structural properties of supply or demand in

road traffic networks affect network performance.

Although fewer in number, there are also examples of individual case studies in the

transportation research literature. For example, Tsekeris and Geroliminis (2013) studied a

concentric city model - which provides an idealised representation of an urban area - and

found that an increase in compactness, as travel demand increases, maximised efficiency with

respect to congestion. A further example is provided by Ortigosa and Menendez (2014) who

studied the effects of the removal of links from a grid network and found that a strategy of link

removals from the geometric centre of a network is the most detrimental to performance.

Again, these studies reveal little about how network structure affects network performance in

general.

Two notable exceptions to this general picture of individual case studies are provided by

Levinson (2012) and Parthasarathi et al. (2012). These papers used network and travel data for

fifty cities in the USA to study correlations, via regression models, between several measures

of network structure, including the ,ߙ ߚ and ߛ indices and the route factor measure defined in

section 2.2.2.2, and urban mobility indicators. Both papers derived measures of network

structure using network data from the TIGER database, referred to in section 2.3.1. Levinson

(2012) also used performance indicators from the Texas Transportation Institutes annual urban

mobility report, referenced in section 2.4.1. Levinson (2012) found that “larger cities have

more delay, longer commutes and less travel per person” and also have “more connected road

networks, … are more accessible, and are less hierarchical.” Parthasarathi et al. (2012) found

that aspects of network structure that lead to increased network travel distances, such as the

route factor, lead to reduced actual travel distances by travellers. They also found that street

density is negatively correlated with actual trip lengths but also that the proportion of

highways in a road traffic network is positively correlated with actual trip lengths. Whilst both

of these papers present interesting links between network structure and performance

characteristics, it should be noted that the R-squared values in their regression models are

particularly small; this is especially true for the results of Parthasarathi et al. (2012).
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2.4.3.2 Theoretical Studies of the Performance Characteristics of Road Traffic Networks

Whilst the transportation research community has made very few empirical contributions to

the study of how performance characteristics vary with network structure, several

transportation researchers have made theoretical contributions with respect to producing

upper bounds for one particular measure of network performance; the Price of Anarchy.

This focus on worst-case values of the Price of Anarchy appears to be particularly interesting to

transportation researchers. For example, it has been used to establish upper bounds for the

maximum efficiency gains of road pricing (Han and Yang, 2008, Yang et al., 2010) and car

number plate based traffic rationing schemes (Han et al., 2010). The Price of Anarchy has also

been used to establish upper bounds on the maximum efficiency loss in competitions between

providers of private road infrastructure (Liu et al., 2011, Xiao et al., 2007), in traffic networks

where only a minority of travellers have access to advanced traveller information (Liu et al.,

2007), and in traffic networks where some travellers choose to follow shortest paths, oblivious

to the effects of congestion (Karakostas et al., 2011).

The first upper bound for the Price of Anarchy was produced by Roughgarden and Tardos

(2002), who demonstrated that the Price of Anarchy has a maximum value of 4 3⁄ in traffic

networks with affine link cost functions. Generalisations and extensions of this result have

since followed to families of traffic networks with separable, polynomial link costs

(Roughgarden, 2003, Dumrauf and Gairing, 2006); non-separable, symmetric costs (Chau and

Sim, 2003); and non-separable, asymmetric costs (Perakis, 2007). Upper bounds have also

been produced in the context of elastic demand assignment for traffic networks with non-

separable, symmetric cost maps (Chau and Sim, 2003); and non-separable, asymmetric and

non-linear costs (Han et al., 2008).

In each of the above instances, the upper bounds that have been presented depend only on

characteristics of the cost functions, such as the value of the highest power across all network

links or the degree of link cost asymmetry. For example, for traffic networks with separable,

polynomial link costs, Roughgarden (2003) showed that the Price of Anarchy is bounded above

by equation (2), where ݌ is the value of the highest power across all network links.

1ൣ − +݌)݌ 1)ି(௣ାଵ) ௣⁄ ൧
ିଵ

(2)

Upper bounds for the Price of Anarchy that have been produced more recently include

characteristics of demand. For example, for traffic networks with separable, polynomial link

costs, Correa et al. (2008) showed that tighter upper bounds than those presented by

Roughgarden (2003) could be derived provided the free-flow travel cost on each network link

is at least a non-zero, fixed proportion of its travel cost under a UE assignment of travel
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demand. Englert et al. (2010) also showed that the maximum increase in the Price of Anarchy,

due to an increase in demand, could be bounded for traffic networks with separable,

polynomial link costs and a single OD pair.

These studies show that the Price of Anarchy has a maximum value across broad families of

networks. However, in focussing on the worst-case value of the Price of Anarchy across broad

families of road traffic networks, the above studies neglect the variation that occurs within

families of traffic networks, between road traffic networks that may have very different

demand and supply structures. Evidence of this variation is revealed by numerical studies in

network science, which are the subject of the section that follows.

2.4.4 Studies of the Effects of Network Structure on Performance in Network Science

Studies in network science of the effects of network structure on performance in road traffic

networks have, thus far, focussed exclusively on the urban context, and appear to be inspired

by and have used a similar methodology to studies of the performance characteristics of the

Internet, which were described in section 2.2.5.

The approach taken by most of these studies has been to use canonical models from the

network science literature to generate large ensembles of synthetic networks, each of which

have different structural characteristics. Frequently used models include the random graph

model of Erdös and Rényi (1959), the scale-free network model of Barabasi and Albert (1999)

and the small-world network model of Watts and Strogatz (1998); for which example networks

were shown in section 2.2.3. The performance characteristics of these different ensembles of

networks are then compared, under an assignment of travel demand using the modelling

approach described in 2.4.2, in order to determine which ensemble has the best performance

on average, when taken across all networks from within each ensemble.

Table 2.4 describes seven numerical studies that used this approach, alongside traffic

equilibrium modelling techniques, to study the variation of several different performance

indicators as total demand was increased in a variety of different network ensembles.
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Study Network Topologies Network Size
࢔) nodes, ࢓ links, 〈࢑〉:
Average Node Degree)

Number of
Network
Realisations

Link Travel Time/Cost Functions ࢚࢏

( ૙࢚࢏: free-flow travel time, :࢞࢏ link flow, :࢏࢖ࢇࢉ link
capacity)

Demand
Structure

Main
Performance
Indicator

Wu et al.
(2006)

Random;
Scale-Free;
Small World

࢔ = ૝૙૙;
࢓ = ૚૝૙૙;
〈࢑〉 = ૠ

25
=࢚࢏ ૙࢚࢏൤૚+ ૙.૚૞ቀ

࢏࢞

࢏࢖ࢇࢉ
ቁ
૝
൨

- ૙࢚࢏∈ (૙,૙.૚] randomly selected for each link
- ∋࢏࢖ࢇࢉ [૛૙,૟૙] randomly selected for each link

Random Proportion of
links over
Capacity

Zhao and
Gao (2007)

Regular Ring;
Random;
Scale-Free;
Small World

࢔ = ૞૙૙;
࢓ = ૚૙૙૙;
〈࢑〉 = ૝

50
=࢚࢏ ૙࢚࢏൤૚+ ૙.૚૞ቀ

࢏࢞

࢏࢖ࢇࢉ
ቁ
૝
൨

- ૙࢚࢏∈ (૙,૚] randomly selected for each link
- =࢏࢖ࢇࢉ ૚૙૙૙૙ for each link

Uniform Total Travel
Time

Youn et al.
(2008)

Sub-networks of:
- Boston
- London
- New York

- ࢔ = ૡૡ, ࢓ = ૛૝૟
- ࢔ = ૡ૛, ࢓ = ૛૚ૠ
- ࢔ = ૚૛૞, ࢓ = ૜૚ૢ

One of each
=࢚࢏ ૙࢚࢏൤૚+ ૙.૛ቀ

࢏࢞

૛૙૙૙࢏࢑
ቁ
૚૙
൨

- ૙࢚࢏= ࢏ࢊ ૜૞⁄ where is࢏ࢊ the length of each link ࢏
- =࢏࢑ number of lanes on each link ࢏

Single OD
pair

Price of
Anarchy

1D Regular Lattice;
Random;
Scale-Free;
Small World

࢔ = ૚૙૙;
࢓ = ૜૙૙;
〈࢑〉 = ૟

50 =࢚࢏ +࢏ࢇ ࢞࢏࢈ ࢏

- ∋࢏ࢇ {૚,૛,૜} randomly allocated to each link
- ∋࢏࢈ {૚,૛, … ,૚૙૙} randomly allocated to each link

Single OD
pair

Price of
Anarchy

Wu et al.
(2008a)

Random;
Scale-Free

࢔ = ૚૙૙;
࢓ = ૚૜૞૙;
〈࢑〉 = ૛.ૠ

100
=࢚࢏ ૙࢚࢏൤૚+ ૙.૚૞ቀ

࢏࢞

࢏࢖ࢇࢉ
ቁ
૝
൨

- ૙࢚࢏∈ (૙,૙.૚] randomly selected for each link
- =࢏࢖ࢇࢉ ࡯ but࢏∀ the value of ࡯ is not defined

Not
reported

Proportion of
links over
capacity

Wu et al.
(2008b)

Regular Lattice;
Random;
Scale-Free;
Small World

࢔ = ૚૙૙, … ,૚૙૙૙;
࢓ = ૚૙૙, … ,૚૙૙૙;
〈࢑〉 = ૛

50
=࢚࢏ ૙࢚࢏൤૚+ ૙.૚૞ቀ

࢏࢞

࢏࢖ࢇࢉ
ቁ
૝
൨

- ૙࢚࢏∈ (૙,૚] randomly selected for each link
- is࢏࢖ࢇࢉ not defined

Random Price of
Anarchy
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Sun et al.
(2012)

Scale-Free with
variable community
structure

࢔ = ૚૙૙,૚૟૙,૛૛૙;
࢓ = ૝૙૙,૟૝૙,ૡૡ૙;
4 communities

20
=࢚࢏ ૙࢚࢏൤૚+ ૙.૚૞ቀ

࢏࢞

࢏࢖ࢇࢉ
ቁ
૝
൨

- ૙࢚࢏randomly selected for each link
- =࢏࢖ࢇࢉ ૟૙∀࢏

Random Proportion of
links over
capacity

Zhu et al.
(2014)

Scale-Free;
Small World

࢔ = ૚૙૙૙;
࢓ = ૜૙૙૙;
〈࢑〉 = ૟

Not reported
=࢚࢏ ૙࢚࢏൤૚+ ૙.૚૞ቀ

࢏࢞

࢏ࢋ࡯
ቁ
૝
൨

- ૙࢚࢏= ૚ for every link between࢏ nodes ૚࢏ and ૛࢏
- =࢏ࢋ࡯ ܕ ૚࢏࢔࡯)ܖܑ ⁄૚࢏࢑ ૛࢏࢔࡯, ⁄૛࢏࢑ ), for which i) ࢐࢔࡯
is fixed and ii) =࢐࢔࡯ ൫࢑࢐൯ࢌ

Uniform;
Gravity
Model

Volume to
Capacity ratio
(V/C)

Table 2.4 - Summary of Network Science Studies of the effects of Network Structure on Performance
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The columns in Table 2.4 illustrate that these studies used a broad range of supply and

demand structures. On the supply-side, significant variation is evident with respect to the

numbers of nodes and links used, and also the parameter settings for link cost coefficients,

which, in most cases, were chosen either randomly, from within a given range, or were fixed at

one value, which was then applied to each link in each network. Significant variation is also

evident on the demand-side. For example, Wu et al. (2006), Wu et al. (2008b) and Sun et al.

(2012) used a random structure of demand wherein, as travel demand increased, each

increment of total demand was wholly allocated to a randomly selected origin-destination

node pair. Whereas, in contrast, Zhao and Gao (2007) and Zhu et al. (2014) used a uniform

structure of demand in which each increment of total demand was spread evenly across all

origin-destination node pairs.

The studies described in Table 2.4 all found that network performance does indeed vary with

respect to supply and demand structure. For example, Figure 2.17 depicts results from two

papers in Table 2.4 that show how congestion increases in three different network topologies

as travel demand is increased.

Figure 2.17 - Proportion of links over capacity against Demand (Q) for random, small-world
and scale-free networks (Left: Figure 1, Wu et al. (2006). Right: Figure 1, Wu et al.

(2008b))

However, there are also inconsistencies in their findings. For example, for the Price of Anarchy,

whilst Youn et al. (2008) found that scale-free networks performed the best, followed by

random and lattice networks, and that small-world networks performed the worst, Wu et al.

(2008b) found a different ordering in which scale-free networks performed the best, followed

by small-world and random networks, and that lattice networks performed the worst. These

differences are clearly the result of differences between the two studies in the selected

configurations of supply and demand structure, but it is difficult to understand the exact

reasons for these differences because such a large number of aspects of structure are different

between the two studies.
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From a broader perspective, the studies presented in Table 2.4 do not provide a clear

connection with the empirical studies described in section 2.3. Indeed, all of the studies based

on synthetic networks used structures of supply that are not plausible for urban road traffic

networks because they do not replicate the structural features that have been observed in real

networks. With respect to topological structure, random, small-world and scale-free graph

models typically produce non-planar networks. Moreover, the values chosen for free-flow

travel costs ଴௜ݐ in each study also indicate that the networks used did not have a geographical

embedding.

Furthermore, from a methodological perspective, it is not clear that a comparison of the

average performance of each ensemble of networks is appropriate because none of these

studies provide justification for whether this is a suitable summary statistic. Such justification

would require discussion of the distribution of performance across network realisations within

each ensemble. However, this analysis is undertaken only by Youn et al. (2008), for which

results are shown in Figure 2.18, and even then it is only through provision of error bars that

represent one standard deviation. This assumes that performance is symmetrically distributed

across networks within each ensemble but no evidence is provided to support this.

Figure 2.18 – Price of Anarchy against Demand for four synthetic network topologies (Figure
3b, Youn et al. (2008))

It is also highlighted that three of the seven studies in Table 2.4 did not provide complete

descriptions of all of the parameter settings used; specifically the studies of Wu et al. (2008a),

Wu et al. (2008b) and Zhu et al. (2014). These studies cannot, therefore, be reproduced and

independently verified by other researchers.

The one study in Table 2.4 that used real network data is the first experiment of Youn et al.

(2008), which studied how the Price of Anarchy varies as travel demand is increased in three,
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single OD sub-networks of the Boston, London and New York road networks. This variation is

shown in Figure 2.19.

Figure 2.19 – Price of Anarchy against Demand for three real networks (Figure 3a, Youn et al.
(2008))

The graphs shown in this figure highlight how the performance characteristics of different road

traffic networks, when scrutinised individually, can vary substantially from each other in some

respects but also share some broad commonalties. For example, the graphs of the Price of

Anarchy for each city are clearly different, but there are also similarities in that they all appear

to rise and then fall as demand increases. These graphs provide an illustration of how the

theoretical studies described in section 2.4.3.2 - and even the numerical results shown in

Figure 2.17 and Figure 2.18 - can obscure detailed features of how performance characteristics

vary with respect to network structure.

2.5 Summary

This section summarises the main findings of this chapter under each of the three literature

review questions that were posed in section 2.1.

1. What are the key contributions and methodological approaches used in network

science?

Network science - and its antecedents in graph theory - has contributed many quantitative

measures and methods that can be used to characterise the structural properties of

networked systems, and has gone on to illustrate, through empirical studies, how many real

world networked systems share similar structural characteristics. Network science has also

proposed generative models for networks - such as the preferential attachment model, which

produces scale-free networks - that suggest mechanisms that govern the formation of

structure within networks. Finally, network science has also contributed a methodological

approach that can be used to study how structure affects performance. Under this approach,

several ensembles of synthetic networks are generated using canonical models from the
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network science literature and the average performance characteristics, taken across the

networks within each ensemble, are then compared.

Several limitations of the network science literature have also been identified. It has been

noted that most empirical studies omit domain relevant information and have, thus far,

focussed exclusively on the connectivity properties of networks. In addition, although

numerical studies have shown - in the context of internet routing models - that the traffic flow

and performance characteristics of networked systems do vary with network structure, it has

also been noted that it is often unclear how different or indeed similar the network ensembles

being compared are to each other. The results presented are also broad averages for network

types generated by canonical models from the literature and do not show how performance

characteristics vary between networks within each ensemble.

2. What structural properties have been shown to exist in supply and demand in road

traffic networks?

Focussing first on network supply, most studies focus on urban areas. Empirical studies in

network science have used two approaches to characterise the structural characteristics of

road traffic networks: the so-called primal and dual approaches. Using the primal approach, in

which nodes represent junctions and links represent road segments, empirical studies have

shown that, at the microscopic level of nodes, links and cells, road traffic networks from urban

areas from across the world share many similar structural characteristics. For example, with

respect to their planarity, the angles formed between road segments at junctions and the

radial distribution of nodes, link lengths and cell areas. In contrast, at the macroscopic level,

empirical studies have also shown that there is significant variation between networks with

respect to their size, density and connectivity. Under the dual approach, where nodes

represent streets, network science has illustrated how urban road traffic networks can be

shown to have both small-world and scale-free features, although it has been noted that the

value of these findings for road traffic are unclear. Empirical studies under both approaches

have been criticised for three additional reasons; firstly, that there is significant variation in the

rules used to process raw network data, which introduces a degree of arbitrariness to their

findings; secondly, that they all focus on connectivity properties and omit other important

aspects of road supply such as link capacities and junction types12; and, thirdly, that it is not

clear that such studies have captured the structural properties of the full range of network

infrastructure that exists in urban areas from across the world.

12 Note that this criticism can also be made of other empirical studies in network science that
focussed on other networked systems.
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Generative models for road traffic network infrastructure have also been proposed and have

been shown to produce networks that are visually similar to networks in real urban areas and

that also share some of the broad characteristics identified above. However, perhaps as a

consequence of the focus of empirical studies on connectivity properties, none of these

models include a representation of how other aspects of supply structure have developed.

There is also little evidence to suggest that such models are able to mimic the evolutionary

development of real road networks, which has been the subject of considerable study in

transport geography.

In comparison with studies of network supply, empirical studies of the structural

characteristics of travel demand are more limited in detail. This is largely due to difficulties in

data collection, although availability should improve as data collection techniques based on

new technologies become more widely available. Broadly, travel demand at various spatial

scales and for different modes of transport, has been shown to have a structure that is highly

heterogeneous and that is also polycentric in urban areas. However, it is noted that not one of

these studies focuses exclusively on the pattern of travel in urban road traffic networks.

3. How have the effects of supply and demand structure on the performance characteristics

of road traffic networks been studied thus far and what have such studies found?

The transportation and network science literature have used several different methods to

study the performance characteristics of road traffic networks.

In the transportation literature, most empirical studies are location specific and focus on

individual case studies, which therefore reveal little about how performance varies with

respect to supply and demand structure. The transportation literature also contains literature

of a theoretical nature in which upper bounds have been produced for the worst case value of

one particular performance measure; the Price of Anarchy, across broad families of networks.

However, such bounds do not reveal how performance may vary between networks within

such families, i.e. between networks that may have very different structures of supply and

demand. One notable exception to this pattern is the work of Levinson (2012) and

Parthasarathi et al. (2012) who used observed data from a large number of different urban

areas to search for correlations between network structure and network performance

indicators, finding that cities with larger populations are typically more congested and have

longer journey to work travel times.

A greater body of material for how performance varies with respect to supply and demand

structure has been presented by numerical studies in the network science literature. These

studies have used the same methodological approach as used by other studies in network
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science to study jamming phenomena in the internet with the addition of traffic equilibrium

modelling techniques to represent road traffic behaviour. Under this approach, such studies

have generated large ensembles of synthetic networks using canonical models from the

network science literature and have then compared the average performance of networks

within each ensemble. Whilst this approach has illustrated that performance in road networks

does indeed vary with respect to supply and demand structure, there are several

methodological issues. Most prominently, these studies use structures of supply that are non-

planar and therefore are not plausible for urban road traffic networks. They also do not

provide any connections to the findings described under the second literature review question

above. Similarly to the criticism made of network science studies of traffic flows in the

internet, such studies also draw comparisons between networks for which the extent of

structural similarity or dissimilarity is unclear. This makes it difficult to generalise their findings

or to apply them to other families of networks.

The above points demonstrate that, although network science has established an approach for

studying how network structure affects performance in networks, there is a need for further

work to determine how this approach can be better applied in the specific context of road

traffic networks. The purpose of Chapter 3 is to address this issue through the proposal of an

investigative framework.
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3 An Investigative Framework for Studying the Effects of Structure on

Performance in Road Traffic Networks

3.1 Introduction

This chapter proposes an investigative framework for studying the effects of network structure

on performance in road traffic networks, which addresses the deficiencies of existing

approaches highlighted in chapter 2. This framework comprises an experimental part, in which

numerical experiments are undertaken to study how one or more performance indicators vary

with respect to specific aspects of network structure, and an analytical part, in which

explanations are sought and developed to explain the patterns uncovered by the numerical

experiments with the aim of establishing theory.

This chapter begins, in section 3.2, with a discussion of the main challenge that is faced by

numerical experiments of the effects of structure on performance and of the approaches that

have been used in existing literature to address this challenge. This discussion then feeds into

and is used to justify the proposed investigative framework, which is presented in section 3.3.

3.2 The Main Challenge: Selecting Networks from the Search Space

The review in section 2.3 illustrated that investigations of the effects of structure on

performance in road traffic networks have to contend with a huge, multi-dimensional search

space of networks, which spans all possible configurations of supply and demand structure.

This is particularly well illustrated by the columns in Table 2.4. On the supply-side, there is a

huge, multi-dimensional space of possible infrastructure configurations; with respect to the

numbers of nodes and links, their connection pattern and the functional form and associated

parameters of how link travel costs are represented. Similarly, there is also a broad array of

possible demand patterns; with respect to both the total amount and the distribution of

demand between nodes in the supply network.

Given this high dimensionality, the main challenge faced by numerical investigations is of how

to select network configurations for comparison from within this search space in such a way so

as to provide useful insights into how network structure affects performance in road traffic

networks. The selection of network configurations is important because it has a direct impact

on the strength, generality and transferability of research findings.

There are two approaches to network selection that been used in existing literature: the

synthetic networks approach of the network science papers, and the real-world data approach
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of Parthasarathi and Levinson (2010) and Levinson (2012), which was described in section

2.4.3.1. The subsections that follow address each of these approaches in turn and then

describe the approach that is proposed in this thesis.

3.2.1 Existing Approach 1: The Synthetic Networks Approach

As described in the reviews in sections 2.2.5 and 2.4.4, the network science approach to

numerical experiments is to use a small number of canonical models from the network science

literature, such as the small-world and scale-free network models described in section 2.2.3, to

generate large ensembles of synthetic networks, and to then compare the performance

characteristics of these different ensembles. One of the main issues with this approach, which

has already been identified, is that it has been applied using models that typically generate

non-planar supply networks and are, therefore, not plausible as representations of real road

traffic networks. This method of selecting networks from the search space also has an

additional flaw in that it provides only point-to-point comparisons between ensembles of

particular network types, whose similarity or dissimilarity in structure is unclear.

To illustrate these points, Figure 3.1 provides a visual analogy of how networks are selected

from the search space under this approach. In this figure, the square outline is used as a visual

representation of the search space13, and the dashed line demarks the boundary between

planar and non-planar supply networks (which are known to form disjoint sets). Three

ensembles of networks, each surrounded by dotted lines, can be seen in the non-planar region

of the search space. These ensembles could represent, for example, scale-free, small-world

and random networks.

13 Figures in this chapter are used only to illustrate the differences between the different
approaches to network selection. They are not intended to be and should not be
interpreted as accurate representations of the search space.
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Figure 3.1 - Illustration of network selection for the network science approach

Under this analogy, typical road traffic networks would sit in the planar region of the search

space, which contrasts with the location of the network ensembles used in existing network

science studies. In addition, the ambiguity with respect to the unknown similarity or

dissimilarity of network ensembles is represented by the arrows and question marks; i.e. the

figure shows that it is unclear where these three ensembles sit in the search space in relation

to each other. As an example from the literature, Wu et al. (2006) compares the performance

of ensembles of scale-free, small-world and random networks but these comparisons give little

insight into networks that do not neatly fit within these categories. As a result, this approach

does not explain which aspects of supply or demand structure cause the differences in

performance that have been observed. It is capable only of providing results of the form:

networks of type ‘A’ perform better, on average, than networks of type ‘B’.

3.2.2 Existing Approach 2: The Real-World Data Approach

An alternative network selection technique is demonstrated by Parthasarathi and Levinson

(2010) and Levinson (2012). In this second approach, real data for a large sample of real urban

road traffic networks are used, alongside regression techniques, to search for correlations

between measures of supply and demand structure and indicators of network performance.

A visual analogy for this second approach is shown in Figure 3.2. In the context of selecting

networks from the search space, this approach focuses on networks from the planar region

and uses a larger sample of different network types than is typically used in the first approach,

thereby providing greater coverage of the search space as is indicated. In selecting networks in

this way, this approach also provides a large number of individual readings for a range of

structural measures, which can each be paired with the value of a performance indicator,
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thereby enabling correlations between these variables to be studied. For example, Levinson

(2012) studied the correlation between fifty values of the typical journey to work travel time in

fifty US cities and the population size of those fifty cities.

Figure 3.2 - Illustration of network selection for the Levinson (2012) approach

However, like the first approach, this approach also has drawbacks. Firstly, it is data intensive

as it requires data on network supply, travel demand and network performance for each

selected city, which may not be readily available or be of sufficient quality. For example,

section 2.3 demonstrated that whilst data is broadly available for network supply (although it

requires a significant amount of pre-processing), detailed data is not widely available for travel

demand. For network performance data, Parthasarathi and Levinson (2010) and Levinson

(2012) used publically available data from the Texas Transportation Institutes Urban Mobility

Report (Schrank et al., 2012). However, such sources are limited to the indicators of interest to

the organisation that collected the data and are also subject to noise as a result of the way in

which the data has been collated and processed. Noise also occurs naturally in data collected

from real-world systems, which can obscure relationships between variables.

Related to this first drawback, this approach is also restricted to networks for which the

required data are available, which, in the context of the huge number of possible supply and

demand configurations in the search space, are unlikely to span the entire range of possible

structures of road traffic networks. This is represented by the question mark region in Figure

3.2. The networks in each sample are also likely to be very different to each other in several

aspects of supply and demand structure. Overall, these drawbacks restrict the capability of

regression analyses to identify which aspects of structure drive observed variations in

performance. This could be a reason for the small R-squared values reported by both
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Parthasarathi and Levinson (2010) and Levinson (2012) for the explanatory power of their

statistical models.

3.2.3 The Proposed Approach: Fusion of Synthetic Networks and Real-World Data

The approach to network selection proposed in this thesis combines the benefits of flexibility

and control in network generation, which is offered by the synthetic networks approach of

network science, with the idea of studying an array of networks that span a range of real road

traffic network structures, which is the basis of the regression analyses in the approach of

Parthasarathi and Levinson (2010) and Levinson (2012). The proposed approach is to generate

a spectrum of ensembles of synthetic networks, which provide a cross-section of the search

space and in which only one aspect of network structure is varied, and to use a road traffic

model to explore how performance indicators vary within each ensemble and with respect to

the selected aspect of network structure. This approach to network selection is illustrated in

Figure 3.3.

Figure 3.3 – Illustration of network selection for the approach proposed in this thesis

Under this approach, the aspects of structure that do not vary are fixed at values or in a

configuration that is plausible for real road traffic networks, whilst the aspect of structure that

varies does so to encompass a range of values for that structural feature that have been

observed in real road traffic networks. A simple example of this approach would be a spectrum

of network ensembles in which total demand is increased by a global demand multiplier, whilst

network supply and the distribution of travel demand are fixed in plausible configurations.

In comparison with the previous approaches, illustrated in Figure 3.1 and Figure 3.2 above, this

approach avoids point-to-point comparisons between separate categories of networks, which

was a key flaw of the first approach, because one aspect of network structure varies
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‘continuously’ across the spectrum of networks. This approach also avoids the problem of

there being too many aspects of network structure that change at the same time, which, in the

second approach, made it difficult to establish relationships between measures of structure

and performance indicators. Like the second approach, this approach is still reliant on data for

supply and demand structure in order to calibrate the generation of synthetic networks.

However, unlike the second approach, this approach is not limited to a small number of

networks nor does it require any additional data on network performance; the latter being

produced by the road traffic model.

3.3 Statement of the Proposed Investigative Framework

Building on the discussion of the previous section, the investigative framework is now

proposed. As stated previously, this framework includes both experimental and analytical

aspects, which can be broken down into six steps:

Step 1. Identify a measurable aspect of network supply or demand structure and a network

performance indicator to be studied.

Step 2. Design a model of road network generation that is capable of producing a spectrum of

network ensembles, which span a range of values for the aspect of network structure

to be studied and which are also plausible as representations of real road traffic

networks.

Step 3. Calculate values of the performance indicator for the generated networks using an

appropriate road traffic model.

Step 4. Create a graph of the calculated values of the performance indicator against a

measure of the selected aspect of network supply or demand structure.

Step 5. Develop theory to explain the patterns shown in numerical results and, if possible,

derive theoretical results to establish their generality and driving mechanisms.

Step 6. Document the preceding steps to include a complete description of the parameter

settings used for supply and demand, making the results reproducible by other

researchers.

The following remarks are made with respect to the steps in this framework:

- Empirical studies of the structure of road traffic networks, such as those described in section

2.3, are particularly useful for the first and second steps in this framework because they

motivate interesting aspects of structure for investigations, and also help to define structural

characteristics that generative models of road traffic networks should aim to replicate. The

plausibility of networks produced by such models should be judged by the extent to which

they replicate features observed in real road traffic networks.
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- With reference to the third step, the framework is flexible and can accommodate any road

traffic model of any level of complexity. The only conditions on its specification are that the

model should be plausible for road traffic and appropriate for the specific context under study

(e.g. urban or interurban travel), and that it should also be adequately described (i.e. step six).

- The graph produced in step four provides insight into how the selected aspect of network

structure affects the selected performance indicator. This graph will also reveal the dispersion

of network performance values when the mechanism for network generation has a stochastic

component.

- The fifth step in the framework is important because it broadens the applicability of research

findings. In this context, the preceding four steps in the framework could be seen as

generating hypotheses, which are then investigated in more detail in the fifth step.

- The final step of the framework ensures that experiments and investigations can be

reproduced by other researchers, avoiding unnecessary duplication of tests and also providing

an intelligble foundation for future work. This documentation should include a description of

the road traffic model and, where appropriate, provide data to support the stability and

validity of model outputs. Inclusion of such data provides confidence that any presented

differences in performance are real and not distorted by model noise. This is especially

important when comparisons are to be made between a large number of different networks.

3.4 An Example Application of the Proposed Framework

The next three chapters of this thesis demonstrate an application of the proposed investigative

framework. In accordance with the first step of the framework, and inspired by the empirical

studies that were described in section 2.3, this application focusses on road traffic networks in

an urban setting, for which empirical data is available, and investigates how performance

varies with respect to four aspects of network structure: namely, the density of travel demand

and the size, density and connectivity of network supply structure. Section 2.3.1.2.2 showed

that there is considerable variation across urban areas in each of these structural

characteristics, which distinguishes them as interesting features to be investigated.

With respect to performance, the investigations described in the chapters that follow study

the effects of the four selected structural characteristics on two performance indicators: the

average link Volume-to-Capacity ratio, which is a commonly used measure of congestion; and

the Price of Anarchy, which was defined in section 2.4.1 and measures the inefficiency of the

selfish behaviour of road users in comparison with socially optimal behaviour (Koutsoupias and

Papadimitriou, 1999, Papadimitriou, 2001). Both of these measures have been used in

previous studies from network science; see Table 2.4, and are also of interest to transportation
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researchers. In particular, the Price of Anarchy is of interest because it can be used to measure

the efficiency gains of first best road tolling schemes (Yang and Huang, 2005). An

understanding of how this measure varies with respect to specific features of network

structure would therefore be useful because it could help identify circumstances in which

policy interventions (e.g. road pricing) designed to induce more efficient routing behaviour

would be worth their costs of implementation (Mak and Rapoport, 2013).

The experimental part of the framework (steps two to four) is implemented for all eight

combinations of performance indicators and aspects of network structure. The analytical part

of the framework (step five) is implemented for only one of these combinations; the variation

of the Price of Anarchy with respect to travel demand, although explanations for the other

seven combinations are provided at the end of Chapter 5.

Chapter 4 describes the model of road network generation that was used and Chapter 5

describes the design and results of the numerical experiments that were then undertaken.

These chapters therefore address the second, third and fourth steps of the investigative

framework. Chapter 6 presents the analytical study of how the Price of Anarchy varies with

respect to travel demand; thereby addressing the fifth step of the investigative framework.
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4 A Model for Generating Spectrums of Synthetic Ensembles of Road

Traffic Networks

4.1 Introduction

Having selected two performance indicators and four aspects of network structure to be

investigated, the second step of the investigative framework requires a model of road network

generation that is capable of producing a spectrum of ensembles of synthetic networks, which

span a range of values of the selected aspects of network structure and which also produce

plausible representations of real road traffic networks.

The generative model described in this section has three stages: the creation of a topological

and geometric structure for each road traffic network in each ensemble, the generation of a

travel demand structure, and the specification of a road traffic model. These stages are

described in sections 4.2, 4.3 and 4.4 respectively. Section 4.5 then presents an example

spectrum of synthetic networks generated by the model.

4.2 Network Model

Section 2.3.2 described two generative models for urban road traffic networks that have been

proposed in the network science literature; the models of Barthelemy and Flammini (2009)

and Courtat et al. (2011). Both models attempt to mimic an evolutionary process in which a

network, starting from an initial seed network, is grown incrementally over time through the

addition of new nodes, which each stimulate the growth of network links to connect them to

the existing network.

Both Barthelemy and Flammini (2009) and Courtat et al. (2011) demonstrated that their

models were able to reproduce many of the structural features observed in real urban road

traffic networks, such as those described in section 2.3.1. Both models have a range of input

parameters and settings that could be used or adjusted to produce a broad range of network

types with different structural features, and both also include a stochastic component meaning

that ensembles of networks that share similar structural features could be produced. As such,

both of these approaches could be used within the second step of the investigative framework

to generate ensembles of road traffic networks of different types.

However, as these models are not freely available to use and are not easy to replicate, a

simpler model of network generation was used instead. This model is more similar in starting

assumptions to the model of Erdös and Rényi (1959) than to the two models above because it
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uses a predefined distribution of nodes in a domain to produce a candidate link set rather than

adding nodes to a domain over time. This network model has three steps:

 Step 1: Scatter ࢔ nodes randomly in a square domain, which is km2࡭ in size - As

uniformly randomly distributed nodes tend to occur in clusters, which would result in links

of extremely short length, a rule is imposed that all nodes must be at least ௠݀ ௜௡km apart;

i.e. a minimum link length.

 Step 2: Construct the Minimum Weight Spanning Tree (MST) and Delaunay Triangulation

on the node set generated in Step 1 - The Delaunay Triangulation for a set of nodes ܸ is a

triangulation of the node set that maximises the minimum angle of all triangles and

contains the maximum possible number of links without violating planarity. Euler’s formula

shows that the maximum number of links in this graph is 3݊− 6 (Barthelemy, 2011). The

MST is the graph of minimum total length that provides a path between every pair of

nodes for a given node set. It is a subgraph of the Delaunay Triangulation and contains

݊− 1 links. The Delaunay Triangulation and MST define the candidate link set for the new

network.

 Step 3: Select ࢓ ≥ −࢔ ૚ links from the Delaunay Triangulation to create a new network

ࡳ defined on this node set, of which the first −࢔ ૚ links are from the MST - The inclusion

of the MST in ܩ guarantees that there is at least one path between every pair of nodes, i.e.

that the network is fully connected. The remaining ݉ − (݊− 1) links are randomly

selected from the remaining links in the Delaunay Triangulation.

The number of nodes ,݊ the domain size ,ܣ the minimum link length ௠݀ ௜௡ and the number of

links ݉ are input parameters to the model, which, when varied, generate networks with a

broad variety of structures; see Figure 4.1 for examples. However, as the scattering of nodes in

step 1 and the selection of links in step 3 are stochastic processes, this model produces a

different network each time it is run. Several individual model runs can therefore be used to

create ensembles of networks for a fixed set of input parameters, whose members therefore

share similar structural features.
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Figure 4.1 – Two example network realisations with input parameters ࢔ = ૚૙૙, ࡭ = ૟.૛૞
and ࢓ࢊ ࢔࢏ = ૙.૙૞, with ࢓ = ૚૞ૢ (left) and ࢓ = ૛૛ૢ (right)

It is noted that the networks generated by this model do not replicate all of the structural

properties of supply in urban road traffic networks that were identified in section 2.3.1. For

example, Figure 4.1 illustrates that typical networks produced by this model have a wide range

of angles between links at nodes, which contrasts with the pattern that is known to exist in

real road traffic networks. The node distribution mechanism also produces a broadly uniform

scattering of nodes across the domain, which contrasts with real urban road traffic networks

for which the density of nodes has been shown to be high in the centre of an urban area but

then decrease as distance from the centre increases.

However, the networks generated by this method are planar, which accords with the findings

of empirical studies for real road traffic networks. The planarity of the networks produced by

this model also makes them more plausible as representations of real urban road traffic

networks than the networks used in the network science studies described in Table 2.4, which

were typically non-planar.

4.3 Travel Demand Model

Section 2.3.2 highlighted that there is a lack of empirical data on the structure of travel

demand in urban road traffic networks but that some studies, especially at the interurban

level, have shown that demand is heterogeneously structured.

In light of this lack of data, the road network model described in this chapter adopts a simple

assumption that travel demand is uniformly distributed across all node pairs in each network.

Under this assumption, each node pair ݎ is therefore assumed to have the same amount of

demand ௥ݍ travelling between them. This approach was used by several network science

studies described in Table 2.4. In order to ensure that a constant density of demand per km2

߷ௗ௘௠ is maintained across network domains of different sizes, the total amount of demand in

each network is defined as a function of the domain size .ܣ The volume of demand per OD

pair ݎ is shown in equation (3).
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௥ݍ =
ௗ௘௠߷ܣ
(݊݊− 1) (3)

Demand density ߷ௗ௘௠ is an input parameter to the model. It is clear from equation (3) that this

approach also includes implicit assumptions that demand density does not vary within the

domain itself or as the size of the domain changes.

The generation of demand in this way is one simple way of ensuring that performance

comparisons are fair between networks that serve domains of different sizes. For example, an

even simpler assumption that could have been used is that each network domain produces a

constant level of demand. However, it is questionable whether it would be fair to judge that a

network in a large domain is ‘better’ (‘worse’) than a network in a small domain because it is

more (less) congested under the same total amount of assigned demand.

4.4 Road Traffic Model

The final aspect of the model is a mechanism for the assignment of travel demand from

section 4.3 to networks created by the model in section 4.2. Section 2.4.2 described several

approaches that could be used to model flows on network links in road traffic networks. The

model described in this section uses the User-Equilibrium (UE) and System Optimum (SO) road

traffic models. Section 2.4.2 noted that although such techniques have deficiencies with

respect to representing the dynamic nature of traffic flows (for example), such techniques are

still widely used in transportation studies. A detailed technical description of this modelling

approach is provided in Figure 4.2. It should be noted that, for simplicity and to reduce the

number of variables, the effects of junction interactions are not included.

In addition to the specification of a network ܩ and a travel demand matrix ܳ, the traffic

models described in Figure 4.2 also required the specification of link cost functions ௜ܿ, which

describe the cost (often travel time) to traverse a given link as a function of the volume of flow

and its operational characteristics. The network model described in this chapter uses the BPR

cost function (Bureau of Public Roads, 1964), which satisfies the conditions for existence and

uniqueness set out in Figure 4.2 and which has the form shown in equation (4).

=௜ݐ ௜଴ቈ1ݐ + 0.15൬
௜ݔ
ܿܽ ௜݌

൰
ସ

቉ (4)

In equation (4), ௜଴ݐ represents the travel time in free-flow conditions, ௜ݔ represents link flow

and ܿܽ ௜݌ represents link capacity. Whilst this function has been criticised for providing a poor

representation of traffic flows in urban areas, it also has the advantage of being simple and of

requiring values for only a small number of parameters. It is also commonly used in
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transportation literature; for example, most of the networks available for download from Bar-

Gera (2001) use this cost function.

In general, the values of ௜଴ݐ and ܿܽ ௜݌ depend on factors that include link length, the speed

limit, the level of street frontage activity and the number of lanes. Guidance published for

modelling practitioners by the Department for Transport in the UK recommends an

assumption that links in central urban areas - where there is a speed limit of 30mph (48kph) -

should have a maximum modelled capacity of ܳ௜= 800 vehicles per hour, per 3.65m lane

(WebTAG, 2014). Adopting this form, for each link ,݅ the network model described here

assumes that ܿܽ =௜݌ ܳ௜× ௜݇, where ௜݇ represents the number of lanes, and ௜଴ݐ = ௜݀ 48⁄ ,

where ௜݀represents link length in kilometres. The units of ௜଴ݐ are therefore hours. The number

of lanes on each link ௜݇and the lane capacity value ܳ௜are input parameters to the modelling

process. The length ௜݀ for each link is generated by the network model described in section

4.2.

Technical Description of the User Equilibrium (UE) and System Optimum (SO) Traffic

Assignment Models

In this description, the topology of a traffic network is represented by a directed graph

,(ܣ,ܸ)ܩ comprising a set of nodes ܸ and a set of directed links .ܣ The costs of travel on each

link ݅∈ ܣ are represented by cost functions ௜ܿ. Travel demand is represented by an Origin-

Destination (OD) vector ܳ with entries ௥ݍ denoting the volume of travel on OD movements

=ݎ 1, … ,ܴ between pairs of nodes from ܸ. Each OD movement ݎ is served by a finite number

݇= 1, … ௥ߢ, of acyclic routes .௥ܭ Using this notation, the UE principle described in section

2.4.2 can be characterised in mathematical notation as equation (5) (Patriksson, 1994).

௞݂
௥ > 0 ⇒ ௞ܥ

௥ = ௥ߨ

௞݂
௥ = 0 ⇒ ௞ܥ

௥ ≥ ௥ߨ

∀݇ ∈ =ݎ∀,௥ܭ 1, … ,ܴ

(5)

Here, ௞݂
௥ denotes the flow and ௞ܥ

௥ = )ܥ ௞݂
௥) denotes the cost of travel on a route ݇ ∈ .௥ܭ The

cost of travel on each route ݇ ∈ ௥ܭ is assumed to be the sum of link costs: ௞ܥ
௥ = ∑ ௜ܿ(ݔ௜)௜ ௜,௞ߜ

௥ ,

where ௜,௞ߜ
௥ = 1, if link i݅s part of route ݇ ∈ ,௥ܭ and zero otherwise. The ௜,௞ߜ

௥ terms form a link-

path incidence matrix, which is denoted by Δ.

Subject to the above conditions and the assumption that link costs ௜ܿare continuous, positive,

separable and strictly increasing functions of link flows ,௜ݔ it can be shown that there exist

unique link flows ௜ݔ
௎ா satisfying the UE conditions (5) and which solve (Sheffi, 1985):
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min
௫
(ݔ)ݖ� = ෍ න ௜ܿ(߱)݀߱

௫೔

଴௜∈஺

subject to the constraints:

෍ ௞݂
௥ = ݎ∀௥ݍ

௞

=௜ݔ ෍ ෍ ௞݂
௥ߜ௜,௞

௥

௞∈௄ೝ௥

∀݅

௞݂
௥ ≥ 0 ∀݇ ∈ =ݎ∀,௥ܭ 1, … ,ܴ

(6)

Under the same conditions, unique link flows ௜ݔ
ௌை satisfying the SO principle also exist, and

solve a minimisation program with the same constraints (6) but with objective function

(ݔ)ǁݖ = ∑ ௜ܿݔ ௜௜∈஺ . Under the assumption that link costs ௜ܿ are also differentiable, the SO

objective function is equivalent to the UE objective function under a transformation of link

costs ǁܿ௜= ௜ܿ+ ×௜ݔ ݀ ௜ܿ ⁄௜ݔ݀ . In comparison with ௜ܿ, the cost functions ǁܿ௜ include the

additional cost burden that each unit of flow imparts on all other units of flow on each link

(Sheffi, 1985). Sheffi (1985, p71-74) refers to ǁܿ௜ as “marginal travel costs” and defines the

“marginal total travel cost” on a route ݇ ∈ ௥ܭ as ሚ௞ܥ
௥ = ∑ ǁܿ௜(ݔ௜)௜ ௜,௞ߜ

௥ .

Figure 4.2 - Technical Description of the User Equilibrium (UE) and System Optimum (SO)
Traffic Assignment Models

4.5 An Example Spectrum of Synthetic Network Ensembles

Figure 4.3 shows an example spectrum of ensembles of road traffic networks generated by the

model described in section 4. This spectrum was generated with ݊ = 100 nodes, a domain size

ܣ = 6.25km2, a minimum link length ௠݀ ௜௡ = 0.05km and numbers of links ݉ = 99, 114, 129,

144, 159, 174, 189, 204, 219, 234, 249 and 264 respectively across the twelve network plots

shown. Each individual network plot represents one run of the network model.

It can be seen that the connectivity of the networks increases incrementally across the

spectrum shown in Figure 4.3. Indeed, these networks span a range of values of the

meshedness measure between ܯ = 0 for the first network and ܯ = 1 for the final network in

the spectrum. This figure therefore illustrates the benefits of drawing performance

comparisons across the different network ensembles making up this spectrum because they

can be linked directly to a quantitative measure of network structure. The networks it

produces are also at least plausible for real road traffic networks, if not exhaustively accurate
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as has been noted. This generative model therefore satisfies the requirements of the second

step of the investigative framework described in the previous chapter.

The next chapter of this thesis presents the results of four numerical experiments, which use

the model described in this section to investigate how two performance indicators vary with

respect to four aspects of network supply and demand structure.
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Figure 4.3 - An Example Spectrum of Synthetic Network Ensembles



- 88 -

5 Numerical Experiments of how Network Structure affects the

Performance Characteristics of Road Traffic Networks

5.1 Introduction

This chapter describes and presents the results of the four numerical experiments specified at

the end of chapter 3; thereby demonstrating the application of the third and fourth steps of

the proposed investigative framework. These numerical experiments use the network model

described in chapter 4 and focus on how two performance indicators; the average link ܥ/ܸ

ratio and the Price of Anarchy, vary with respect to the density of travel demand and the size,

density and connectivity of network supply structure.

The first section of this chapter sets out the parameter settings used to generate four

spectrums of network ensembles across the four identified aspects of network structure and

also provides a commentary on the size and complexity of the numerical experiments that

were undertaken. The results of the numerical experiments are then presented in four

subsections in section 5.3. A discussion of the results then follows in section 5.4.

5.2 Description of Experiments

5.2.1 Parameter Settings

The model of road network generation, described in chapter 4, has seven input parameters in

total. Table 5.1 describes the values used for four of these parameters ,ܣ) ,݊ ݉ and ߷ௗ௘௠ ) to

create spectrums of network ensembles across the four structural dimensions of interest.

Table 5.1 also displays corresponding values for node density ߷௡ and meshedness ܯ , which

measure the density and connectivity of network supply structure.

In the first experiment, given the absence of empirical data on travel demand, demand density

was varied across a broad range of values between ߷ௗ௘௠ = 1250 and ߷ௗ௘௠ = 7950. Whilst

demand density was varied, the parameters that control the density and connectivity of

network supply were fixed at average observed values for real urban road traffic networks,

taken from Table 2.2 and Table 2.3 respectively. The domain size ܣ and number of nodes ݊

were also fixed in this experiment, although at much smaller values than the average observed

values of ܣ = 296km2 and ݊ = 4713 shown in Table 2.2. This was principally because a road

traffic model run in a network of such size would have represented a significant computational

burden in the computing environment used in this research; indeed, a single run of the road

traffic model described in section 4.4, for a network with input parameters ܣ = 296,

݊ = 4713, ݉ = 7538, ߷ௗ௘௠ = 2355, ௠݀ ௜௡ = 0.05, ௜݇= 1 and ܳ௜= 800 ∀ ,݅ took
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approximately 36 hours to find a UE link flow solution of sufficient precision. Repetition of this

run time over a large number of network realisations would therefore have been impractical.

The second, third and fourth experiments, which explored the effects of network size, network

density and network connectivity respectively, were setup in a similar fashion, with one aspect

of network structure being varied whilst the remaining aspects remained unchanged. The

parameters used in these experiments are described in Table 5.1. The range of network sizes in

the second experiment was capped at ݊ = 500 nodes in order to limit the computational

burden of the experiments. The ranges of network density and network connectivity used in

the third and fourth experiments encompassed the full range of observed values for real urban

road traffic networks from Table 2.2 and Table 2.3 respectively. In each of the last three

experiments, demand density was fixed at ߷ௗ௘௠ = 4350 because, as will be shown, this value

produced a reasonably congested (but not overly-congested) network and also the highest

values of the Price of Anarchy measure.

Experiment
Title

Domain Size

(km2࡭)

Num. of
Nodes

(࢔)

Node
Density

(࢔ࣙ)

Num. of
Links
࢓) )

Meshedness

ࡹ) )

Demand
Density
࢓ࢋࢊࣙ) )

1. Demand
Density

6.25 100 16 158 0.3
1250, 1300,
…, 7900,
7950

2. Network
Size

1.25, 1.875,
…, 30.625,
31.25

20, 30,
…, 490,
500

16
30, 46, …,
782, 798

0.3 4350

3. Network
Density

6.25
20, 25,
…, 295,
300

3.2, 4,
…, 47.2,
48

30, 38, …,
470, 478

0.3 4350

4. Network
Connectivity

6.25 100 16
99, 104,
…, 284,
289

0, 0.03, …,
0.95, 0.97

4350

Table 5.1 - Parameter Settings for Numerical Experiments

Values for the three remaining parameters ( ௠݀ ௜௡, ௜݇ and ܳ௜) were fixed in all four

experiments. The minimum link length was set at ௠݀ ௜௡ = 0.05km, which coincides with the

shortest length of city blocks in the urban areas studied by Chan et al. (2011). The number of

lanes was fixed at ௜݇= 1 for each network link, which was based on anecdotal evidence from

the UK that one lane per link is the most common situation on urban roads. Finally, link

capacity was fixed at ܳ௜= 800 for each network link, which is equal to the maximum value

recommended by WebTAG (2014). Coupled with the assumption that every link has one lane,

the implication of this assumption is that every network has only one road type in its road

hierarchy.
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5.2.2 Commentary

Due to the mathematical complexity of finding link flow solutions for the UE and SO traffic

assignment models, solutions are usually derived using numerical methods. All of the

numerical results presented in this chapter were derived using the Origin-Based Assignment

(OBA) algorithm (Bar-Gera, 2002), using the OBA executable downloaded from Bar-Gera

(2001). Each traffic assignment was solved to an Average Excess Cost no greater than 10ିସ,

which accords with the guidance on convergence provided by Boyce et al. (2004) and provides

confidence that comparisons shown are true and not the result of model noise.

The results presented in the next section are based upon one hundred network realisations for

each ensemble of parameter settings shown in Table 5.1. This corresponds to one hundred

individual runs of the network model described in chapter 4 to create each network ensemble.

The four spectrums described in Table 5.1 encompass 135, 49, 57 and 39 network ensembles

respectively. When combined, the four experiments therefore included results from 28,000

network realisations and 56,000 traffic assignments under the UE and SO models.

All of the traffic assignments were undertaken on a remote desktop server, running the

Windows Operating System with 64GB of RAM. The traffic assignment runs for each

experiment took 107.75 hours, 421 hours, 67.5 hours and 9.5 hours respectively to complete.

This amounts to an overall total run time of 605.5 hours, which is equivalent to approximately

twenty-five days14.

5.3 Results

The results for the two performance indicators are presented, in each experiment, as a

sequence of boxplots for each network ensemble. This enables the dispersion of results across

the networks within each ensemble to be presented. The tops and bottoms of each box

represent the upper and lower quartiles respectively, and the band across the middle of each

box represents the median value of the performance indicator. The whiskers extending out

from the top and bottom of each box extend to the highest and lowest value data points that

are within one times the interquartile range. Data points marked by circles represent network

realisations in which the indicator value was greater than the upper quartile, or less than the

lower quartile, by between 1.5 and 3 times the interquartile range. Data points marked by

stars represent network realisations in which the indicator value was greater than the upper

14 This figure is subject to the caveat that the remote desktop server that was used was shared
with other researchers at the university, which may have increased run times.
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quartile, or less than the lower quartile, by at least 3 times the interquartile range. Data points

marked by circles and stars are commonly interpreted as outliers in statistical analyses.

5.3.1 Experiment 1: Demand Density

Figure 5.2 and Figure 5.3 present the variation of the average link V/C ratio and the Price of

Anarchy as demand density is increased across the range ߷ௗ௘௠ ∈ [1250,7950]. In these

experiments, supply structure was fixed in each network ensemble, with domain size ܣ =

6.25km2, ݊= 100 nodes, a node density of ߷௡ = 16 and a meshedness value of ܯ = 0.3.

Two examples of such networks are shown in Figure 5.1.

Figure 5.1 – Two Example Network Realisations from Experiment 1

With respect to the level of congestion, Figure 5.2 shows, perhaps unsurprisingly, that the

average link V/C ratio increases monotonically as demand density increases. This increase also

appears to be linear. It is hypothesised that this linearity is related to the averaging process

within this performance measure.

It is also highlighted that the level of dispersion of performance values, across networks within

each ensemble, increases as demand density increases, and that the distribution within most

ensembles is positively skewed.
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Figure 5.2 - Average link V/C ratio against Demand Density ࢓ࢋࢊࣙ ࡭) ൌ ૟Ǥ૛૞, ࢔ ൌ ૚૙૙,
࢔ࣙ ൌ ૚૟, ࢓ ൌ ૚૞ૡ and ࡹ ൌ ૙Ǥ૜)

Figure 5.3 shows that the Price of Anarchy follows a unimodal pattern as demand density

increases; with values initially increasing, before reaching a peak and then falling. The same

broad pattern in values of the Price of Anarchy was uncovered by Youn et al. (2008) for

increasing demand in random, scale-free, small-world and lattice networks. The dispersion of

values of the Price of Anarchy within each ensemble appears to be much wider than is

apparent in Figure 5.2, which suggests that the Price of Anarchy is more sensitive to stochastic

variations in network structure. Figure 5.3 also shows that the level of dispersion within each

ensemble initially increases as demand density increases, peaks and then decreases as values

of the Price of Anarchy begin to fall.
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Figure 5.3 - Price of Anarchy against Demand Density ࢓ࢋࢊࣙ ࡭) = ૟.૛૞, ࢔ = ૚૙૙, ࢔ࣙ = ૚૟,
࢓ = ૚૞ૡ and ࡹ = ૙.૜)

5.3.2 Experiment 2: Network Size

Figure 5.5 and Figure 5.6 present the variation of the average link V/C ratio and the Price of

Anarchy as network size is increased, between an ensemble of networks with ݊= 20 nodes in

a domain size of ܣ = 1.25km2 and an ensemble of networks with ݊= 500 nodes in a domain

size of ܣ = 31.25km2. Typical examples of networks at these two extremes and in the middle

of the spectrum are shown in Figure 5.4. In each ensemble, node density was fixed at ߷௡ = 16,

meshedness was fixed at ܯ = 0.3 and demand density per km2 was fixed at ߷ௗ௘௠ = 4350.

Note that although the density of travel demand was fixed, total travel demand still increases

as the size of the network increases across this spectrum of networks; this is a consequence of

the assumptions described in section 4.3. It therefore follows that the ratio of total travel

demand ∑ ௥௥ݍ to total network supply ∑ ݉ × ௜݇× ܳ௜௜ is the same across each network

ensemble in this network spectrum.
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Figure 5.4 - Example Network Realisations from Network Ensembles at the lower end (left),
in the middle (centre) and at the upper end (right) of the Network Spectrum in

Experiment 2

With respect to congestion, Figure 5.5 shows that the average link V/C ratio increases

monotonically as network size increases. It is also highlighted that the level of dispersion

across networks within each ensemble increases as network size increases, and that the

distribution within most ensembles is positively skewed.

Figure 5.5 - Average link V/C ratio against Network Size ࢔ࣙ) ൌ ૚૟, ࡹ ൌ ૙Ǥ૜ and ࢓ࢋࢊࣙ =
૝૜૞૙)
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Similarly to the results of the first experiment, Figure 5.6 shows that Price of Anarchy has a

unimodal pattern of variation as network size increases. Again the dispersion of values of the

Price of Anarchy within each ensemble is wider than is apparent for the average link V/C ratio.

The level of dispersion also increases as network size increases and then gradually dissipates,

mirroring the broad pattern in the median values of the Price of Anarchy.

Figure 5.6 – Price of Anarchy against Network Size ࢔ࣙ) ൌ ૚૟, ࡹ ൌ ૙Ǥ૜ and ࢓ࢋࢊࣙ ൌ ૝૜૞૙)

5.3.3 Experiment 3: Network Density

Figure 5.8 and Figure 5.9 present the variation of the average link V/C ratio and the Price of

Anarchy as network density is increased, between an ensemble of networks with ߷௡ = 3.2

nodes per km2 and an ensemble of networks with ߷௡ = 48 nodes per km2. Typical network

examples at the extremes and in the middle of this spectrum are shown in Figure 5.7. In each

ensemble, the domain size was fixed at ܣ ൌ ͸Ǥʹͷkm2, meshedness was fixed at ܯ ൌ ͲǤ͵ and

demand density was fixed at ߷ௗ௘௠ = 4350. In this experiment, in contrast to the second

experiment, the total level of demand remains unchanged across the spectrum because the

domain size is fixed. However, the amount of demand per OD pair falls because the number of

OD pairs increases as the number of nodes increases.
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Figure 5.7 - Example Network Realisations from Network Ensembles at the lower end (left),
in the middle (centre) and at the upper end (right) of the Network Spectrum in

Experiment 3

With respect to the average level of congestion, Figure 5.8 shows that the average link V/C

ratio falls as demand density increases. It is also noted that the levels of dispersion across the

networks within each ensemble decrease as network density increases.

Figure 5.8 - Average link V/C ratio against Node Density ࢔ࣙ ࡭) ൌ ૟Ǥ૛૞, ࡹ ൌ ૙Ǥ૜ and
࢓ࢋࢊࣙ ൌ ૝૜૞૙)

Similarly to the first two experiments, Figure 5.9 again shows a unimodal pattern in the Price

of Anarchy as demand density increases. However, it is noted that the rate of decay in the

Price of Anarchy is much shallower than is shown in either Figure 5.3 or Figure 5.6. The levels

of dispersion of values of the Price of Anarchy within each ensemble initially increase, as node
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density increases and then gradually dissipate, again mirroring the overall trend in the Price of

Anarchy.

Figure 5.9 - Price of Anarchy against Node Density ࢔ࣙ ࡭) ൌ ૟Ǥ૛૞, ࡹ ൌ ૙Ǥ૜ and ࢓ࢋࢊࣙ =
૝૜૞૙)

5.3.4 Experiment 4: Network Connectivity

Figure 5.11 and Figure 5.12 present the variation of the average link V/C ratio and the Price of

Anarchy as network connectivity is increased between an ensemble of networks with

meshedness ܯ ൌ Ͳ and an ensemble of networks with meshedness ܯ ൌ ͲǤͻ͹. Typical

network examples of these extremes and a network in the middle of the spectrum are shown

in Figure 5.10. In each ensemble, the domain size was fixed at ܣ ൌ ͸Ǥʹͷkm2, the number of

nodes was fixed at ݊ ൌ ͳͲͲand demand density was fixed at ߷ௗ௘௠ = 4350. In contrast to the

second and third experiments, the total level of demand and the demand per OD pair both

remain unchanged across the network spectrum in this experiment.
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Figure 5.10 - Example Network Realisations from Network Ensembles at the lower end (left),
in the middle (centre) and at the upper end (right) of the Network Spectrum in

Experiment 3

With respect to the level of congestion, Figure 5.11 shows that the average link V/C ratio falls

as network connectivity increases. Figure 5.11 also shows that the dispersion of congestion

levels across network realisations is significantly different at different levels of connectivity;

broadly, dispersion decreases as the level of network connectivity increases.

Figure 5.11 - Average link V/C ratio against Meshedness ࡹ ࡭) ൌ ૟Ǥ૛૞, ࢔ ൌ ૚૙૙, ࢔ࣙ ൌ ૚૟
and ࢓ࢋࢊࣙ ൌ ૝૜૞૙)

Similarly to the three previous experiments, the variation of the Price of Anarchy with network

connectivity has a unimodal pattern, which reaches a peak median value at ܯ ൌ ͲǤ͵͸. As has

also been shown previously, the level of dispersion of the Price of Anarchy across networks



- 99 -

within each ensemble is positively correlated with higher values of the Price of Anarchy across

the spectrum.

Figure 5.12 - Price of Anarchy against Meshedness ࡹ ࡭) ൌ ૟Ǥ૛૞, ࢔ ൌ ૚૙૙, ࢔ࣙ ൌ ૚૟ and
࢓ࢋࢊࣙ ൌ ૝૜૞૙)

5.4 Discussion

The results presented in section 5.3 illustrate that numerical investigations that follow the

proposed experimental component of the investigative framework provide greater insight into

how network structure affects performance than previous approaches. In particular, the

results suggest the existence of clear relationships between specific aspects of network

structure and performance indicators, which motivate further research questions around

understanding the mechanisms that underpin the variations shown. Chapter 6 provides an

example of such an analysis. The figures presented in section 5.3 contrast with the figures

produced by previous studies in network science, such as those shown in Figure 2.17 and

Figure 2.18, which, for the most part, did not present the variation of performance between

networks within network ensembles and also did not provide any indication of how

performance varies with respect to specific aspects of supply structure.

Turning to what the figures of the preceding section actually show, it can be seen that there

are several similarities in the broad patterns exhibited by the two performance indicators
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across the four experiments. For example, the first and second experiments both show that

the average link V/C ratio increases monotonically with respect to increases in demand density

and network size; whereas the third and fourth experiments show that this measure decreases

monotonically with respect to increases in network density and network connectivity. All four

experiments also show a unimodal pattern for the variation of the Price of Anarchy.

These similarities exist because all four experiments actually explore different ways of

adjusting the balance between the total amount of travel demand and the total amount of

network supply. In the first experiment, network supply remains unchanged as total demand

increases. In the second experiment, total network supply and total travel demand increase

together. Whereas in the third and fourth experiments, total demand is fixed whilst network

supply is increased.

With respect to the average link V/C ratio, it therefore follows that the first, third and fourth

experiments actually pick up on the same simple causal mechanism that governs the variation

in this measure; this being that an increase in the ratio of total demand to total network supply

leads to an increase in congestion, regardless of whether it is achieved by increasing demand

or decreasing the amount of network supply, whilst a decrease in the ratio of total demand to

total capacity leads to a decrease in congestion, regardless of whether it is achieved by

decreasing demand or increasing capacity. This mechanism does not apply to the second

experiment because total demand and total network supply increase at the same rate. The

reason that the average link V/C ratio increases across this spectrum is that, as network size

increases, the total volume of flow using routes that pass through the geometric centre of the

domain also increases, and links in the geometric centre of the domain therefore become

increasingly congested because their capacities remain fixed. Evidence for this effect is shown

in Figure 5.13 and Figure 5.14, which display the spatial distribution of average link V/C ratios

for the ensemble of networks generated from input parameters ݊ = 100, ܣ = 6.25, ݉ = 158

and ߷ௗ௘௠ = 4350. Note that this ensemble is a member of the network spectrums generated

for each experiment presented in section 5.3. These plots were created by subdividing the

domain into a grid of squares sized 0.1x0.1km, then calculating the average of all V/C ratios of

those links in each network whose downstream nodes fall within each square.
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Figure 5.13 - Spatial Distribution of Average Link V/C Ratio - 3d view

Figure 5.14 - Spatial Distribution of Average Link V/C Ratio - 2d view

Explanations for what happens to the average link V/C ratio in the right-hand limits of the four

experiments, as the structural measure is increased beyond the limits explored numerically,

are hampered by the computational restrictions of the computing environment in which the

experiments were ran. However, it is possible to put forward some hypotheses.
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To begin, consider the formula for the average link V/C ratio measure. A simple derivation, see

equation (7), shows that this measure is dependent upon the sum of all link flows on network

links divided by the number of links. This derivation works because capacity was assumed to

be uniformly distributed across each network.

Average Link V/C Ratio =
∑ ቀ

௜ݔ
ܿܽ ௜݌

ቁ௜

݉
=
∑ ቀ

௜ݔ
800

ቁ௜

݉
=

1

800
×
∑ ௜௜ݔ

݉
(7)

Within this formulation, it can also be seen that the sum of all link flows on network links is

dependent upon total travel demand multiplied by the average number of used links per unit

of demand. This statement holds because travel demand was assumed to be uniformly

distributed in each network. These statements can be used to hypothesise what happens in

the right-hand limits for each experiment.

In experiment 1, the domain size, number of nodes and number of links were fixed with

respect to demand density. It follows from this that the denominator of equation (7) has a

fixed value across the network spectrum. Turning to the numerator of equation (7), equation

(3) shows that total travel demand increases linearly with respect to demand density in this

experiment. The right-hand limiting behaviour is therefore dependent on how the average

number of used links per unit of demand changes across the spectrum; a proxy for this

behaviour is shown in Figure 5.15, which shows the average distance travelled per unit of

demand. This figure shows that the distance travelled per unit of demand also increased across

the spectrum, albeit slowly. This increase occurs because demand on shorter routes at lower

demand levels is progressively pushed onto longer routes by congestion as demand increases.

This trend of increasing distance travelled per unit of demand cannot continue because the

network is finite in size. Therefore, in the limit of high demand, the distance travelled per unit

of demand must plateau. At this point the numerator of equation (7) would continue to

increase in a linear relationship with respect to demand density. It is therefore hypothesised

that the linear trend shown in Figure 5.2 should continue as demand density increases.
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Figure 5.15 - Average distance travelled per unit of demand in experiment 1

In experiment 2, the domain size, number of links, demand density and, as consequence, total

demand all increased linearly with respect to the number of nodes. It therefore follows that

both the numerator and denominator of equation (7) have constituent parts that increase

linearly with respect to the size of the network, albeit at different rates. The behaviour of the

average link V/C ratio is therefore dependent upon how the average distance travelled per unit

of demand varies with respect to network size; this behaviour is shown in Figure 5.16,which

reveals an increasing relationship. However, it is obvious that this quantity would to continue

to increase with respect to network size, precisely because the size of the network is

increasing. A more interesting quantity to look at is the average distance travelled per unit of

demand normalised by average shortest path length across the spectrum, which strips out

network size effects from the measure. This quantity, shown in Figure 5.17, has a shallower

gradient than average distance travelled per unit of demand and looks to be flattening out.

Should this quantity indeed flatten out in the right-hand limit of large networks, this would

mean that average distance travelled per unit of demand will increase only as a consequence

of increases in network size. It would therefore follow from equation (7) that the average link

V/C ratio will continue to increase in a linear fashion.
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Figure 5.16 - Average distance travelled per unit of demand in experiment 2

Figure 5.17 - Average distance travelled per unit of demand normalised by average shortest
path length in experiment 2
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In experiment 3, the domain size, demand density and, as a consequence, total demand were

all fixed with respect to node density; whereas the number of nodes and the number of links

increase linearly with respect to node density. Of the three constituent components of average

link V/C ratio shown in equation (7), it therefore follows that the denominator increases

linearly with respect to node density whilst total demand in the numerator is a fixed constant.

Figure 5.18 shows that the average distance travelled per unit of demand falls slowly across

this spectrum. As more nodes are added to the domain, it is clear that, in the right-hand limit,

this quantity must level out because the shortest possible distance travel distance for any OD

pair is that defined by the length of a straight line between those two nodes. It therefore

follows that the numerator of equation (7) tends towards a constant in the limit of high node

density, which means that the average link V/C ratio will therefore tend towards zero.

Figure 5.18 - Average distance travelled per unit of demand in experiment 3

In experiment 4, the planarity constraint of the network model means that the right-hand limit

occurs at a meshedness value of ܯ = 1, where the number of links ݉ = 3݊− 6. The full

extent of the relationship between average link V/C ratio and connectivity is therefore shown

in Figure 5.11.

Turning to the results for the Price of Anarchy, explanations for the unimodal patterns that are

common to all four experiments are less obvious. However, these patterns do appear to be
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strongly connected to how the level of congestion changes across each spectrum as the ratio

of total demand to total network supply changes. In particular, comparisons of the graphs for

the two performance indicators in each of the four experiments reveal that the peak regions of

the Price of Anarchy coincide with values of the average link V/C ratio between approximately

0.5 and 0.8. It is also notable that the dispersion of values of the Price of Anarchy across

networks within each ensemble is at its highest in those ensembles that produce the peak in

the aforementioned unimodal pattern. This feature is also identifiable in the results of the

numerical experiments of Youn et al. (2008), which were highlighted at the end of section 2.4.4

and which focus on the variation of the Price of Anarchy in three single OD sub-networks of

the road networks in Boston, London and New York. The results for these experiments are

shown in Figure 5.19.

Figure 5.19 – Price of Anarchy against Demand for three real networks (Figure 3a, Youn et al.
(2008))

In each city, it can be seen that there are broadly three identifiably distinct regions of

behaviour: an initial region in which the Price of Anarchy is one; an intermediate region of

fluctuations; and a final region of decay, which has a similar characteristic shape across all

three networks. Yet, focussing on the detail of the individual graphs, the patterns for each city

are obviously different. For example, the graphs for Boston and New York have single

dominant peaks, which are both higher than the peak reached in London. Whereas, the graph

for London remains closer to its maximum value for a longer interval of demand than in either

Boston or New York. It is also evident that the Price of Anarchy is not a smooth function of

demand; the peak in Boston is a prominent example of this feature. The similarities in the

general behaviour of the Price Anarchy across the three cities as travel demand increases

suggests that there may be common mechanisms that drive this variation. The differences

between the three cities also suggests a reason for why features of the form shown in Figure

5.3 can appear when several Price of Anarchy graphs are grouped together.

The numerical experiments of Youn et al. (2008) and those presented in section 5.3 illustrate

how the Price of Anarchy can take different values, at different levels of demand, in different

road traffic networks. However Youn et al. (2008) does not provide an explanation for the
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variation shown. The findings of theoretical studies highlighted in section 2.4.3.2, such as those

of Roughgarden (2003) and Correa et al. (2008), are also of little explanatory use here because

they reveal only the maximum value that the Price of Anarchy could reach across broad

families of road traffic networks. An explanation for how the Price of Anarchy varies with

travel demand is provided in chapter 6.

An additional feature of the results for the Price of Anarchy that is notable across all four

experiments is of how its maximum value is quite low. Indeed, for the BPR cost functions used

in these experiments, which have a maximum power ߚ = 4, the upper bound for the Price of

Anarchy of Roughgarden (2003), shown in equation (2), is approximately 2.15. This is

significantly larger than the highest value of the Price of Anarchy of 1.05 across all of the

results shown in section 5.3. This feature of the Price of Anarchy has also been identified in the

literature; for example, Correa et al. (2008) cited two numerical studies by Jahn et al. (2005)

and Qiu et al. (2006) in which values of the Price of Anarchy were also significantly lower than

the upper bounds of Roughgarden (2003). The same is also true for the example from Youn et

al. (2008) shown in Figure 5.19, where the largest value of the Price of Anarchy of

approximately 1.3 is significantly smaller than the upper bound; derived using the results of

Roughgarden (2003), of approximately 3.5 for such networks. An explanation for this feature

of the Price of Anarchy is explored in chapter 7.

Before moving on to the next chapter, a final remark is made with respect to the realism of the

results presented in this chapter. All of the figures presented for the average link V/C ratio

measures show that many network ensembles have ratios greater than one. However, a V/C

ratio greater than one does not make sense physically because it would imply significant

queuing and potentially blocking back effects on other links. This highlights a limitation of the

modelling approach that was used. An additional effect of congestion that is not represented

in the modelling approach used here is that very high travel times also have feedback effects

on the volume and configuration of travel demand; for example, because travellers choose to

divert to other destinations, use a different mode or choose not to travel at all. The inclusion

of such effects would change the patterns shown in the figures in the preceding sections.

Indeed, it is hypothesised that, with the inclusion of such effects, the V/C ratio may reach a

peak and then stabilise as travellers make other travel choices. This remark highlights that a

more accurate model of road generation should include the generation of supply and demand

structures and their feedback effects on each other. Such models do not currently exist in

network science but they have been explored in the context of Land-Use and Transport

Interaction models in transportation science; for example, see Wegener (2004).
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6 Mechanisms that Govern the Variation of the Price of Anarchy with

Travel Demand

6.1 Introduction

Motivated by the results of the numerical experiments presented in the previous chapter, this

chapter explores how the Price of Anarchy varies with respect to travel demand; thereby

addressing the fifth step of the investigative framework proposed in chapter 3.

More specifically, focussing on the general setting of traffic networks with multiple OD pairs

and continuous, differentiable, separable and strictly increasing link cost functions, this

chapter reveals the source of the variations shown in Figure 5.3 and Figure 5.19: namely, that

as demand increases there are expansions and contractions in the set of routes (for each OD

pair) that are of minimum cost under the UE model and of minimum marginal cost under the

SO model. The different effects of these expansions and contractions on the Price of Anarchy

are characterised through a series of theorems and conjectures. This chapter also shows, in a

special case of road traffic networks that have BPR-like cost functions15 of the form ௜ܿ= ௜ܽ+

௜ܾݔ௜
ఉ

, that there is a systematic relationship between link flows under UE and SO, and that,

consequently, there is also a systematic relationship between levels of demand at which

expansions and contractions in UE and SO route sets occur. Finally, this chapter conjectures

that in this special case, the Price of Anarchy has power law decay for large demand, which

explains the similarities in the shape of the decays shown across the three networks in Figure

5.19.

The novelty of the material presented in this chapter is that it provides a thorough and

rigorous explanation for the nature of how the Price of Anarchy varies with respect to travel

demand, which has, thus far, been missing from numerical studies in network science, such as

those described in section 2.4.4.

The first section of this chapter sets out additional mathematical preliminaries and notation

that are necessary for the analysis that follows. These complement the mathematical

descriptions of the UE and SO models set out in section 4.4. Section 6.3 then characterises the

existence of expansions and contractions in minimum (marginal total) cost route sets under UE

and SO and also proves that these are equivalent to expansions and contractions in the sets of

15 Note that the cost functions used in chapters 4 and 5 are of this form.
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links for each OD pair that have non-zero flow under the condition of proportionality16. This

section also describes the systematic relationship between link flows under UE and SO for the

special case described above. Section 6.4 presents theoretical results and conjectures, which

characterise the effects of expansions and contractions in route sets on Total Network Travel

Cost under SO, Total Network Travel Cost under UE and the Price of Anarchy. Section 6.5 then

presents four numerical examples, which illustrate the theory of the preceding sections and

also provide numerical evidence to support those theoretical results that are presented

without proof.

6.2 Additional Mathematical Preliminaries and Notation

Recall that, in this thesis, a road traffic network is represented by a directed graph ,(ܣ,ܸ)ܩ

comprising a set of nodes ܸ and a set of directed links ܣ for which the costs of travel on each

link ݅∈ ܣ are represented by cost functions ௜ܿ. Recall also that travel demand is represented

by a vector ܳ with entries ௥ݍ denoting the volume of travel on OD movements =ݎ 1, … ,ܴ,

and that each OD movement is served by a finite number ݇= 1, … ௥ߢ, of acyclic routes ,௥ܭ

each with flows ௞݂
௥.

In this chapter, the cost of travel under UE on each route ݇ ∈ ௥ܭ is denoted ௞ܥ
௥ =

∑ ௜ܿ(ݔ௜)௜ ௜,௞ߜ
௥ , where the ௜,௞ߜ

௥ terms form a link-path incidence matrix, which is denoted Δ.

Similarly, the marginal total travel cost under SO on a route ݇ ∈ ௥ܭ is denoted ሚ௞ܥ
௥ =

∑ ǁܿ௜(ݔ௜)௜ ௜,௞ߜ
௥ , where ǁܿ௜= ௜ܿ+ ×௜ݔ ݀ ௜ܿ ⁄௜ݔ݀ . The minimum OD travel cost under UE, for the thݎ

OD movement is denoted ௥ߨ = min௞∈௄ೝܥ௞
௥. Similarly the minimum marginal total travel cost

under SO for the thݎ OD movement is denoted ෤௥ߨ = min௞∈௄ೝܥሚ௞
௥. Finally, note that the set of

links that comprise a route ݇ ∈ ௥ܭ is denoted ௞ܫ
௥ = ൛݅ ∈ ௜,௞ߜหܣ

௥ = 1ൟ⊂ .ܣ

In order to guarantee the existence and uniqueness of link flows under UE and SO, the

following assumption is presumed to hold throughout this chapter:

Assumption A1: For each link ݅∈ ܣ in a traffic network ,ܩ the cost function ௜ܿ is a continuous,

twice differentiable, positive, separable and strictly increasing function of link flow .௜ݔ It is also

assumed that ݀ଶ ௜ܿ ݔ݀
ଶ⁄ ≥ 0, ∀݅∈ ܣ to guarantee the existence of a unique SO solution.

In addition to link flows, the mathematical programs described in Figure 4.2 also guarantee the

uniqueness of route costs under the UE and SO principles. However, route flows ௞݂
௥ are, in

general, not unique. In fact, there are typically an infinite number of possible route flow

solutions ܨ = { ௞݂
௥} that satisfy the above constraints. A uniquely identifiable route flow

16 The usefulness of this equivalence is explained in section 6.3.3
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solution ,∗ܨ which is important for some of the analysis that follows, is that defined by the

condition of proportionality, which was first proposed by Bar-Gera and Boyce (1999) and is

defined as follows.

Definition 6.1: “The condition of proportionality states that the same proportions apply to all

travellers facing a choice between a pair of alternative segments (PASs), regardless of their

origins and destinations, where a segment is defined as a sequence of one or more links” (Bar-

Gera et al., 2012).

This route flow solution has the useful property that “any route that can be used under the UE

conditions will be used” (Bar-Gera et al., 2012). Lu and Nie (2010) have shown that route flows

under the condition of proportionality vary continuously with respect to travel demand ܳ. As

the SO problem can be transformed into an equivalent UE problem, it follows that there also

exists a unique SO route flow solution, which is denoted by ,∗෨ܨ that satisfies the condition of

proportionality. In networks with only a single origin, the route flow solutions ∗ܨ and ∗෨ܨ can be

derived from the approach proportions produced by the Origin-Based Assignment (OBA)

algorithm (Bar-Gera, 2002, Bar-Gera et al., 2012). In networks with multiple origins, these

route flow solutions cannot be derived using OBA; the Traffic Assignment by Paired Alternative

Segments (TAPAS) algorithm can be used instead (Bar-Gera, 2010, Bar-Gera et al., 2012).

6.3 The Existence of Expansions and Contractions in Minimum Cost Route Sets

This section characterises how the set of routes for an OD movement, which are of minimum

cost under UE, or minimum marginal total cost under SO, can expand or contract in response

to a perturbation in travel demand. This section begins with two network examples to

illustrate this behaviour, and then provides definitions and notation to characterise the

different types of expansions and contractions that can occur in general traffic networks. It is

then shown that, under the condition of proportionality, an expansion (contraction) in the

minimum cost route set (under UE or SO), for an OD movement, is equivalent to an expansion

(contraction) in the set of links that have non-zero flow for that OD movement.

In the special case of traffic networks with cost functions ௜ܿ= ௜ܽ+ ௜ܾݔ௜
ఉ

for which all links

share a common power ,ߚ it is shown that there is a systematic relationship between link

flows under UE and SO, and that, consequently, there is also a systematic relationship between

the levels of demand at which expansions and contractions occur in minimum cost route sets

under UE and SO.
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6.3.1 Illustrative Examples

6.3.1.1 Example 1: Expansions in the Minimum Cost Route Sets under UE and SO

Consider a traffic network of ܰ parallel links, serving a single OD pair with increasing demand

<ݍ 0, and with affine link cost functions of the form ௜ܿ= ௜ܽ+ ௜ܾݔ௜, where ௜ܽ, ௜ܾ> 0 and

௜ܽ< ௜ܽାଵ ∀݅= 1, … ,ܰ . In such a network, under UE and at sufficiently low levels of demand

,ݍ all flow uses only the cheapest route, which is provided by link 1. This holds for all values of

<ݍ 0 for which:

ଵܿ(ݔଵ
௎ா = (ݍ ≤ ଶܿ(ݔଶ

௎ா = 0) ⟺ �ܽ ଵ + ଵܾݍ≤ ଶܽ ⟺ ≥ݍ
( ଶܽ− ଵܽ)

ଵܾ

For values of <ݍ ( ଶܽ− ଵܽ) ଵܾ⁄ , link 2 activates and ଵܿ(ݔଵ
௎ா) = ଶܿ(ݔଶ

௎ா). Both links therefore

carry flow at UE and the set of minimum cost routes comprises links 1 and 2. As ݍ increases

from this threshold the set of minimum cost routes remains unchanged provided:

ଵܿ(ݔଵ
௎ா) = ଶܿ(ݔଶ

௎ா) ≤ ଷܿ(ݔଷ
௎ா = 0) ⟺ ଵܽ + ଵܾݔଵ

௎ா ≤ ଷܽ⟺⋯

⟺ ଵܽ + ଵܾቆ
( ଶܽ− ଵܽ) + ଶܾݍ

ଵܾ + ଶܾ
ቇ≤ ଷܽ⟺ ≥ݍ

ଷܽ− ଶܽ

ଶܾ
+

ଷܽ− ଵܽ

ଵܾ

(8)

For values of ݍ above the threshold shown in equation (8), link 3 activates and ଵܿ(ݔଵ
௎ா) =

ଶܿ(ݔଶ
௎ா) = ଷܿ(ݔଷ

௎ா); i.e. the set of minimum cost routes comprises links 1, 2 and 3.

As demand continues to increase, the minimum OD cost of travel continues to increase and

further links become members of the minimum cost route set. This process continues until, at

a sufficiently large level of demand, all links in the network belong to this set. It can be shown

that under UE, for a given ܯ < ܰ , the set of minimum cost routes comprises ܯ links for all

values of ݍ satisfying equation (9).

෍
ெܽ − ௜ܽ

௜ܾ

ெ ିଵ

௜ୀଵ

< ≥ݍ ෍
ெܽ ାଵ− ௝ܽ

௝ܾ

ெ

௝ୀଵ

(9)

A similar pattern emerges under SO: increasing demand causes a sequence of links to be

added to the set of minimum cost routes. Although, as travellers consider the marginal link

travel costs ǁܿ௜, rather than ௜ܿ, when choosing routes; it is the set of routes of minimum

marginal total cost that changes. For the above parallel link network the cost transformation ǁܿ௜

yields equation (10).

ܿ̃௜= ௜ܿ+
݀ ௜ܿ

௜ݔ݀
=௜ݔ ( ௜ܽ+ ௜ܾݔ௜) + ( ௜ܾ)ݔ௜= ௜ܽ+ 2 ௜ܾݔ௜ (10)

The pattern of changes in the minimum marginal total cost route set under SO can therefore

be obtained by redefining ௜ܾ: = 2 ௜ܾ in the above UE derivation. It follows that under SO, for a
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given ܯ ൏ ܰ , the set of routes that are of minimum marginal total cost comprises ܯ routes

for all values of ݍ satisfying equation (11).

෍
ெܽ − ௟ܽ

2 ௟ܾ

ெ ିଵ

௟ୀଵ

< ≥ݍ ෍
ெܽ ାଵ− ௠ܽ

2 ௠ܾ

ெ

௠ ୀଵ

(11)

It follows from the above that as demand increases, the order in which routes become

minimum cost under UE is exactly the same as the order in which routes become minimum

marginal total cost under SO. This follows for general multiple OD networks from the cost

function transformation ǁܿ௜.

This example illustrates how the set of minimum cost routes under UE, and the set of

minimum marginal total cost routes under SO, can expand in response to an increase in

demand. This example could also be used to demonstrate that the sets of minimum cost

routes under UE and SO can also contract. This could be achieved by starting with high

demand ,ݍ such that all ܰ links belong to the minimum cost route set, and by gradually

decreasing ݍ towards zero. The example that follows in section 6.3.1.2 demonstrates, perhaps

counter-intuitively, that the set of minimum cost routes, under UE and SO, can also contract in

response to an increase in demand.

6.3.1.2 Example 2: Contractions in the Minimum Cost Route Sets under UE and SO

Consider the five link traffic network shown in Figure 6.1, which serves two OD pairs ܱ ՜ ͳܦ

and ܱ ՜ ʹܦ as shown. Further suppose that the five links have the following affine link cost

functions: ଵܿ ൌ ʹ൅ ,ଵݔ ଶܿ ൌ ͵൅ ,ଶݔ ଷܿ ൌ ͻ ൅ ,ଷݔ ସܿ ൌ ͳ൅ ସݔ and ହܿ ൌ ͳ൅ ;ହݔ and that

demand on the ܱ ՜ movementʹܦ is fixed at ை՜஽ଶݍ = 1. There are two routes for each OD

pair: for ܱ ՜ ,ͳܦ the routes are link {1} and links {2,4}; for ܱ ՜ ܦ ,ʹ the routes are links {2,5}

and link {3}.

Figure 6.1 - Five Link Network with Two OD Pairs

Consider demand ை՜஽ଵݍ increasing from zero under SO. The variation of marginal total route

costs under SO, for each of the four routes, with respect to ,ை՜஽ଵݍ is shown in Figure 6.2. In

addition to providing further examples of expansions in the minimum cost route set; it can also

be seen that, for ை՜஽ଵݍ < 11.5, route {2,5} is part of the minimum marginal total cost route

set for OD movement ܱ ՜ ܦ ,ʹ but that, for demand ை՜஽ଵݍ > 11.5, this route ceases to be a
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member of this set. This example therefore demonstrates that the set of minimum marginal

total cost routes under SO can contract due to an increase in travel demand. Furthermore, this

example also demonstrates that the set of minimum marginal total cost routes for one OD

pair; in this case ܱ → ,2ܦ can change due to an increase in demand on a different OD

movement; in this case ܱ → .1ܦ This latter observation demonstrates the potential complexity

of possible dependencies that may exist between expansions and contractions on different OD

movements.

Figure 6.2 - Route Costs under SO against increasing demand on O->D1 for the network in
Figure 6.1

It can be shown that exactly the same pattern of expansions and contractions also occurs

under UE for this network example; although at different levels of demand .ை→஽ଵݍ

6.3.2 Definitions, Notation and Limiting Conditions

The examples presented in sections 6.3.1.1 and 6.3.1.2 illustrate that the set of minimum cost

routes under UE, and the set of minimum marginal total cost routes under SO, for an OD

movement, can expand or contract due to a perturbation in travel demand. The examples also

demonstrate that an increase (or decrease) in demand on one OD movement has the potential

to cause an expansion or a contraction in the route set of another OD movement. In section

6.4 it is shown that expansions and contractions in these sets, under UE and SO, have a

significant influence on how the Price of Anarchy varies with travel demand. As such, the

following definitions and notation are proposed in order to characterise these phenomena.
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Definition 6.2: The set of minimum cost routes under UE, for an OD movement ,ݎ at a demand

ܳ is defined as ௠ܭ ௜௡
௥ = {݇ ∈ ௞ܥ|௥ܭ

௥ = .{(ܳ)௥ߨ To track changes in ௠ܭ ௜௡
௥ with respect to

perturbations in demand, a vector function Υ௥
௎ா(ܳ) is defined for each OD movement ,ݎ which

has entries ௞ݑ for which ௞ݑ = 1, if ௞ܥ
௥ = ,(ܳ)௥ߨ and ௞ݑ = 0, if ௞ܥ

௥ > .(ܳ)௥ߨ

Definition 6.3: A demand vector ܳ is defined as a route transition point under UE if there exist

vectors ݃, ℎ ∈ ℝோ\{0} for which, for at least one OD movement :ݎ

lim
ఒభ→଴

Υ௥
୙୉(ܳ − (ଵ݃ߣ ≠ lim

ఒమ→଴
Υ௥
୙୉(ܳ + (ଶℎߣ

(12)

where ଶߣ,ଵߣ > 0. Individual route transition points are denoted by ,௎ாߟ and the set of all such

demand vectors for a given network ܩ is denoted Η௎ா.

Route transition points are alternatively referred to as degenerate points of the UE problem in

the Sensitivity Analysis literature (Josefsson and Patriksson, 2007, Patriksson, 2004)17. As

shorthand, in the remainder of the paper, the limit on the left-hand side of equation (12) is

referred to as ܳ → ௎ாߟ
ି and the limit on the right-hand side of equation (12) is referred to as

ܳ → ௎ாߟ
ା . Equivalent versions of definitions 6.2 and 6.3 are also defined for SO, with

appropriate changes to superscripts and notation. For example, the set of minimum marginal

total cost routes under SO, for an OD movement ,ݎ is defined as ෩௠ܭ ௜௡
௥ =

൛݇ ∈ ሚ௞ܥ௥หܭ
௥ = .෤௥(ܳ)ൟߨ Both ௠ܭ ௜௡

௥ and ෩௠ܭ ௜௡
௥ are uniquely defined under Assumption A1.

In the case of a network with only one OD movement, the notion of increasing/decreasing

demand and the limits in definition 6.3 are very straightforward. However, in the multiple OD

case, there are many possible directions of change “through” any particular demand vector in

the ܴ-dimensional space of OD demands, which yield a range of possible circumstances. For

example, for each route transition point ,ߟ there could be several vectors ݃ and ℎ that satisfy

the conditions of definition 6.3, and each ݃, ℎ combination could represent either an increase,

decrease or no change in travel demand on each OD movement .ݎ It is also possible that the

left-hand or right-hand limits in equation (12) could pass through another nearby route

transition point. An example of such a situation is shown in Figure 9 of Josefsson and

Patriksson (2007), in which there is curve of degenerate points in the UE problem. Finally,

exactly at the route transition point itself, the vector function Υ௥ could signify that there are

expansions in the minimum cost route sets for one OD movement (or several OD movements),

contractions in the minimum cost route set for a different OD movement (or several), and no

change in the minimum cost route sets for a third OD movement (or several).

17 This literature is covered in more detail in section 6.4.3.2.
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A general theory of how route transition points affect the Price of Anarchy would include all of

these possible circumstances, but this is a challenging goal. The theory presented in this

chapter is therefore restricted to changes that occur at route transition points whenߟ travel

demand ܳ increases (for which a formal definition is provide in definition 6.4) and which also

satisfy conditions C1-C3 below.

Definition 6.4: Consider two demand vectors ܳଵ,ܳଶ ∈ ℝோ with ܳ௜= ଵݍ]
௜, … ோݍ,

௜]. Demand is

said to have increased from ܳଵ to ܳଶ if and only if ௝ݍ
ଵ ≤ ௝ݍ

ଶ ∀݆= 1, … ,ܴ, and ∃ ′݆ for which

௝ᇱݍ
ଵ < ௝ᇱݍ

ଶ .

Route Transition Point Conditions:

C1. Demand vectors ݃ and ℎ satisfy ௥݃ ≥ 0 and ℎ௥ ≥ 0, =ݎ∀ 1, … ,ܴ

C2. For the vectors ,݃ ℎ in C1, ଶߣ,ଵߣ∃ > 0 such that ଵߠ∀ ∈ ,[ଵߣ,0] ܳ − ଵ݃ߠ ∉ Η and

ଶߠ∀ ∈ [ଶߣ,0] ܳ + ଶℎߠ ∉ Η

C3. At each route transition point ,ߟ either:

(i) =ݎ∀ 1, … ,ܴ; for each ݇ ∈ ,௥ܭ limொ→ఎೆಶ
ష ௞ݑ ≤ limொ→ఎೆಶ

శ ௞ݑ for entries ௞ݑ in Υ௥

(ii) =ݎ∀ 1, … ,ܴ; for each ݇ ∈ ,௥ܭ limொ→ఎೆಶ
ష ௞ݑ ≥ limொ→ఎೆಶ

శ ௞ݑ for entries ௞ݑ in Υ௥

Condition C1 is the most restrictive of the three conditions, as it excludes all cases in which a

route transition occurs as demand decreases on one or more OD movements. Condition C2

excludes cases in which two route transition points are adjacent to each other. Condition C3

excludes cases at which there is an expansion in the minimum cost route set for at least one

OD movement that occurs simultaneously with a contraction in the minimum cost route set for

at least one different OD movement.

Before moving on to present theory of how route transition points affect the Price of Anarchy,

the next sections describe an alternative characterisation of expansions and contractions,

which is useful for numerical investigations, and also a systematic relationship between route

transition points under UE and SO that exists for the special family of traffic networks

highlighted in the introduction to this chapter.

6.3.3 An Alternative Characterisation of Minimum Cost Route Sets under UE and SO

The results that follow prove that, for each OD movement ,ݎ an expansion (contraction) in the

set ௠ܭ ௜௡
௥ or ෩௠ܭ ௜௡

௥ , is equivalent, under the condition of proportionality, to an expansion

(contraction) in the set of links, under UE or SO, that have non-zero flow for that OD

movement. These sets are referred to as the Origin Specific Active Network for an OD

movement andݎ are formally defined in definition 6.5 as follows.
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Definition 6.5: The OD Specific Active Network under UE, for an OD movement ,ݎ at a demand

ܳ is the set ܺ௥
௎ா = ൛݅ ∈ ݇∃│ܣ ∈ ∋݅.ݐ.ݏ,௥ܭ ௞ܫ

௥ &�݂௞
௥ > 0ൟ⊆ ,ܣ where ௞݂

௥ ∈ ,∗ܨ the route flow

solution that satisfies the condition of proportionality. To track changes in ܺ௥
௎ா with respect to

perturbations in demand, a vector function Φ௥
௎ா(ܳ) is defined for each OD movement ,ݎ

which has entries ௜ݒ for which =௜ݒ 1, if ∃݇ ∈ ௥ܭ for which ݅∈ ௞ܫ
௥ and ௞݂

௥ > 0, and =௜ݒ 0, if

∀݇ ∈ ௥ܭ for which ݅∈ ௞ܫ
௥, ௞݂

௥ = 0.

An equivalent version of definition 6.5 is also defined for SO, with appropriate changes to

superscripts and notation. The sets ܺ௥
௎ா and ܺ௥

ௌை are both uniquely defined under the

condition of proportionality. Levels of demand at which these sets change are referred to as

link transition points, which are formally defined in definition 6.6.

Definition 6.6: A demand vector ܳ is defined as a link transition point under UE if there exist

vectors ݃, ℎ ∈ ℝோ\{0} for which, for at least one OD movement :ݎ

lim
ఓభ→଴

Φ௥
୙୉(ܳ − (ଵ݃ߤ ≠ lim

ఓమ→଴
Φ௥
୙୉(ܳ + (ଶℎߤ

(13)

where ଶߤ,ଵߤ > 0. Individual link transition points are denoted by ߱௎ா, and the set of all such

demand vectors for a given network ܩ is denoted Ω௎ா. Again, an equivalent version of

definition 6.6 is also defined for SO.

This alternative characterisation of the changing nature with which demand is assigned to a

traffic network is useful because it is often significantly easier to identify the set of active links

under proportionality, for each OD movement, than it is to identify the set of minimum cost

routes. This is because there are often many more routes than there are links, especially in

large traffic networks, and the enumeration of routes is a computationally expensive

procedure. Accordingly, these results are used in the examples in section 6.5 to track

expansions and contractions in ௠ܭ ௜௡
௥ and ෩௠ܭ ௜௡

௥ .

Proposition 6.1 and corollary 6.2 characterise the relationship between the sets ௠ܭ ௜௡
௥ and ܺ௥

௎ா,

and the sets ෩௠ܭ ௜௡
௥ and ܺ௥

ௌை for an OD movement .ݎ

Proposition 6.1: Consider a traffic network ܩ for which Assumption A1 holds, and let

∗ܨ = { ௞݂
௥} represent the route flow solution under UE that satisfies the condition of

proportionality. Suppose that ܳ represents a demand vector that is not a route transition

point, i.e. ܳ ∉ Η௎ா. For a given OD movement ,ݎ further suppose that ܳ does not correspond

to a level of demand at which ܺ௥
௎ா changes. Then, for that OD movement :ݎ

(i) A link ݅∈ ܺ௥
௎ா if and only if ∃ ′݇ ∈ ௠ܭ ௜௡

௥ for which ݅∈ ௞ᇱܫ
௥ .

(ii) A route ′݇ ∈ ௠ܭ ௜௡
௥ if and only ifܫ�௞ᇱ

௥ ⊂ ܺ௥
௎ா.
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Part (i) describes how, for an OD movement ,ݎ the OD Specific Active Network under UE can be

constructed from the set of minimum cost routes for the OD movement .ݎ Part (ii) describes

how, for an OD movement ,ݎ the set of minimum cost routes under UE can be constructed

from the OD Specific Active Network for the OD movement .ݎ

Proof: For parts (i) and (ii), the only if and if statements are addressed in turn.

(i) Only if statement: For a given link ݅∈ ܣ suppose that ݅∈ ܺ௥
௎ா for an OD movement .ݎ Then

by equation (6) ∃ ′݇ ∈ ௥ܭ for which ௞݂ᇱ
௥ > 0. For this ′݇, the UE conditions (5) imply that

௞ᇱܥ
௥ = ௥ߨ and that therefore ′݇ ∈ ௠ܭ ௜௡

௥ .

(i) If statement: For a given link ݅∈ ,ܣ suppose that ∃ ′݇ ∈ ௠ܭ ௜௡
௥ for which ݅∈ ௞ᇱܫ

௥ . By definition

6.2, for this route ′݇, it follows that ௞ᇱܥ
௥ = .௥ߨ Under the condition of proportionality, a route

flow solution ∗ܨ can be constructed for which ௞݂
௥ > 0 ∀݇ for which ௞ܥ

௥ = .௥ߨ By equation (6)

this route flow solution provides that link ݅has positive flow for the OD movement .ݎ It

therefore follows that ݅∈ ܺ௥
௎ா.

(ii) Only if statement: For a given route ′݇ ∈ ௥ܭ suppose that ′݇ ∈ ௠ܭ ௜௡
௥ . Then, by definition

6.2, ௞ᇱܥ
௥ = .௥ߨ Under the condition of proportionality, a route flow solution ܨ can be

constructed for which ௞݂ᇱ
௥ > 0. As ௞݂ᇱ

௥ > 0 and, by equation (6), all links ݅∈ ௞ᇲܫ
௥ contain the flow

௞݂ᇱ
௥ as part of their summation, it follows that each such link ݅has positive flow for the OD

movement .ݎ In other words, ݅∈ ܺ௥
௎ா, ∀݅∈ ௞ᇱܫ

௥ and therefore ௞ᇱܫ
௥ ⊂ ܺ௥

௎ா.

(ii) If statement: For a given route ′݇ ∈ ,௥ܭ suppose that ௞ᇱܫ
௥ ⊂ �ܺ ௥

௎ா . Suppose, for a

contradiction, that ݇ᇱ∉ ௠ܭ ௜௡
௥ . Then by equation (5), ௞ᇱܥ

௥ > .௥ߨ By starting assumption, all links

݅∈ ௞ᇱܫ
௥ carry flow for this OD, i.e. ݅∈ ܺ௥

௎ா. Hence each such link must lie on at least one route

݇∗ ∈ }\௥ܭ ′݇} for which ௞݂∗
௥ > 0 and hence, from equation (5), ∗௞ܥ

௥ = .௥ߨ Therefore, each

݇∗ ∈ ௠ܭ ௜௡
௥ and it follows, from the only if statement of part(ii), which has just been proven,

that ∗௞ܫ
௥ ⊂ �ܺ ௥

௎ா.

Therefore both ௞ᇱܫ
௥ ⊂ ܺ௥

௎ா and ∗௞ܫ
௥ ⊂ ܺ௥

௎ா. Consider the pair(s) of alternative segments defined

by the set of links ௞ᇱܫ)
௥ ∪ ∗௞ܫ

௥ ௞ᇱܫ)\(
௥ ∩ ∗௞ܫ

௥ ) ⊂ ܺ௥
௎ா i.e. both alternative segments (in each pair)

are used. Under the condition of proportionality, it follows from Bar-Gera (2006) that “for

every used pair of alternative segments and every used route that contains one of the

segments, there will be a similar used route containing the alternative segment” (Bar-Gera et

al., 2012). In this statement, the “similar used route” refers to a route that only differs from the

“used route” in the pair of alternative segments; i.e. the “used route” and the “similar used

route” overlap each other in the rest of their composition. This proportionality implies that

௞݂ᇲ
௥ > 0, which implies that ௞ᇱܥ

௥ = .௥ߨ This contradicts the assumption that ݇ᇱ∉ ௠ܭ ௜௡
௥ . ∎

The equivalent statement of proposition 6.1 for SO is stated as follows.
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Corollary 6.2: Consider a traffic network ܩ for which Assumption A1 holds, and let ∗෨ܨ = { ௞݂
௥}

represent the route flow solution under SO that satisfies the condition of proportionality.

Suppose that ܳ represents a demand vector that is not a route transition point, i.e. ܳ ∉ Ηௌை .

For a given OD movement ,ݎ further suppose that ܳ does not correspond to a level of demand

at which ܺ௥
ௌை changes. Then, for that OD movement :ݎ

(i) A link ݅∈ ܺ௥
ௌை if and only if ∃ ′݇ ∈ ෩௠ܭ ௜௡

௥ for which ݅∈ ௞ᇱܫ
௥ .

(ii) A route ′݇ ∈ ෩௠ܭ ௜௡
௥ if and only if ௞ᇱܫ

௥ ⊂ ܺ௥
ௌை .

Proof: Traces that of proposition 6.1 with appropriate changes in notation from UE to SO. ∎

The following results prove that the sets ௠ܭ ௜௡
௥ ෩௠ܭ) ௜௡

௥ ) and ܺ௥
௎ா (ܺ௥

ௌை) expand and contract at

identical levels of demand.

Proposition 6.3: Consider a traffic network ܩ for which Assumption A1 holds, and let

∗ܨ = { ௞݂
௥} represent the route flow solution under UE that satisfies the condition of

proportionality. There is a one-to-one correspondence between route transition points ௎ாߟ

and link transition points ߱௎ா.

Proof: This statement is proved by contradiction.

There are four cases to consider: i) ௎ாߟ∃ corresponding to an expansion in ௠ܭ ௜௡
௥ for which

∄߱௎ா corresponding to an expansion in ܺ௥
௎ா, ii) ∃߱௎ா corresponding to an expansion in ܺ௥

௎ா

for which ௎ாߟ∄ corresponding to an expansion in ௠ܭ ௜௡
௥ , iii) ௎ாߟ∃ corresponding to a

contraction in ௠ܭ ௜௡
௥ for which ∄߱௎ா corresponding to a contraction in ܺ௥

௎ா, iv) ∃߱௎ா

corresponding to a contraction in ܺ௥
௎ா for which ௎ாߟ∄ corresponding to an contraction in

௠ܭ ௜௡
௥ . Proofs are provided for cases i) and ii); the proofs of iii) and iv) are similar.

Case i) Suppose, for a contradiction, that there exists an instance of demand ,௎ாߟ at which

௠ܭ ௜௡
௥ expands for some OD movement ,ݎ but for which there does not exist a corresponding

point ߱௎ா, at which ܺ௥
௎ா expands for the same OD movement. Therefore, there is a

perturbation of demand for which ∃݇ ∈ ,௥ܭ such that as ܳ → ௎ாߟ
ି , ݇ ∉ ௠ܭ ௜௡

௥ , but that as

ܳ → ௎ாߟ
ା , ݇ ∈ ௠ܭ ௜௡

௥ . It follows, from proposition 6.1(ii), that as ݇ ∉ ௠ܭ ௜௡
௥ as ܳ → ௎ாߟ

ି , ∃݅∈ ௞ܫ
௥

for which ݅∉ ܺ௥
௎ா. It also follows, from proposition 6.1(ii), that as ݇ ∈ ௠ܭ ௜௡

௥ as ܳ → ௎ாߟ
ା ,

݅∈ ܺ௥
௎ா, ∀݅∈ ௞ܫ

௥. Hence ∃݅∈ ܣ that is added to ܺ௥
௎ா at .௎ாߟ This contradicts the starting

assumption.

Case ii) Now suppose, for a contradiction, that there exists an instance of demand ߱௎ா, at

which ܺ௥
௎ா expands for some OD movement ,ݎ for which there does not exist a corresponding

point ,௎ாߟ at which ௠ܭ ௜௡
௥ expands for the same OD movement. Therefore, there is a

perturbation of demand for which ∃݅∈ ,ܣ such that as ܳ → ߱௎ா
ି , ݅∉ ܺ௥

௎ா, but that as
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ܳ → ߱௎ா
ା , ݅∈ ܺ௥

௎ா. It follows, from proposition 6.1(i), that as ݅∉ ܺ௥
௎ா as ܳ → ߱௎ா

ି , ݇∉ ௠ܭ ௜௡
௥ ,

∀݇ ∈ ௥ܭ for which ݅∈ ௞ܫ
௥. It also follows, from proposition 6.1(i), that as ݅∈ ܺ௥

௎ா as ܳ → ߱௎ா
ା ,

∃݇ ∈ ௠ܭ ௜௡
௥ for which ݅∈ ௞ܫ

௥. Hence ∃݇ ∈ ௥ܭ that is added to ௠ܭ ௜௡
௥ at ߱௎ா. This contradicts the

starting assumption. ∎

Corollary 6.4: Consider a traffic network ܩ for which Assumption A1 holds, and let ∗෨ܨ = { ௞݂
௥}

represent the route flow solution under SO that satisfies the condition of proportionality.

There is a one-to-one correspondence between route transition points ௌைߟ and link transition

points ߱ௌை .

Proof: Traces that of proposition 6.3 with appropriate changes in notation from UE to SO. ∎

6.3.4 A Systematic Relationship between UE and SO Link Flows and Route Transition

Points

This section establishes two results for the special case18 of traffic networks with link cost

functions of the form ௜ܿ= ௜ܽ+ ௜ܾݔ௜
ఉ

for which the coefficients ௜ܽ, ௜ܾ> 0 ∀݅and ߚ > 0 is

common to all links. This set of cost functions includes, but is not limited to, the well-known

BPR cost function, which was used in the network model and numerical experiments described

in chapters 4 and 5.

In this narrower context, it is proven, in theorem 6.5, that there is a systematic relationship

between link flows under UE and SO. As a consequence of this, it is proven, in corollary 6.6,

that there is also a systematic relationship between the levels of demand under UE and SO at

which expansions and contractions occur in the minimum cost route sets ௠ܭ ௜௡
௥ and ෩௠ܭ ௜௡

௥ . This

systematic relationship can be observed in the parallel link example of section 6.3.1.1, for

which the cost functions ௜ܿbelong to the cost function set considered here. A comparison of

equations (9) and (11) reveals that the level of demand at which each route ݇ ∈ ௥ܭ is added to

௠ܭ ௜௡
௥ is exactly half the level of demand at which the same route ݇ is added to ෩௠ܭ ௜௡

௥ . Corollary

6.6 proves that this is indicative of a result that applies more generally to networks with

multiple OD pairs.

Theorem 6.5: Consider a traffic network ܩ that serves a demand matrix ܳ with entries ௥ݍ > 0,

and that has cost functions of the form ௜ܿ= ௜ܽ+ ௜ܾݔ௜
ఉ

( ௜ܽ, ௜ܾ,ߚ > 0), which satisfy

Assumption A1. Let ௜ݔ
௎ா(ܳ) and ௜ݔ

ௌை(ܳ) denote UE and SO link flows respectively, which are

defined as functions of the demand vector ܳ. Then, under these conditions, ∀݅∈ :ܣ

18 Elsewhere in the chapter link cost functions are assumed separable and monotonic.
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௜ݔ
ௌை ൭

ܳ

ඥߚ + 1
ഁ

൱ =
1

ඥߚ+ 1
ഁ

௜ݔ
௎ா(ܳ) (14)

Proof: Consider a traffic network ,ܩ with demand matrix ܳ and link cost functions ௜ܿ= ௜ܽ+

௜ܾݔ௜
ఉ

has a UE link flow solution ௜ݔ
௎ா(ܳ). The proof begins by noting that a different traffic

assignment problem can be defined on ,ܩ with demand matrix ෠ܳ= ߣܳ and link cost functions

Ƹܿ௜= ௜ܽ+ ௜ܾ(ݔ௜/ߣ)ఉ, which has a UE link flow solution ො௜ݔ
௎ா൫ܳ෠൯= ௜ݔߣ

௎ா(ܳ). In other words,

the traffic assignment problem has been rescaled by .ߣ

Now consider the problem of finding an SO link flow solution ௜ݔ
ௌை ቀܳ ඥߚ+ 1

ഁ
⁄ ቁ for a given

road network ܩ serving a demand matrix ܳ ඥߚ+ 1
ഁ
⁄ with link costs ௜ܿ= ௜ܽ+ ௜ܾݔ௜

ఉ
as defined

in the left hand side of equation (14).

As noted in section 6.2, this problem is equivalent to finding a UE link flow solution

௜ݔ
௎ா ቀܳ ඥߚ+ 1

ഁ
⁄ ቁ on ܩ for a demand matrix ܳ ඥߚ+ 1

ഁ
⁄ with transformed cost functions

(Sheffi, 1985, p73):

����ܿǁ௜= ௜ܿ+
݀ ௜ܿ

௜ݔ݀
=௜ݔ ቀܽ ௜+ ௜ܾݔ௜

ఉ
ቁ+ ቀܾ ௜ݔߚ௜

ఉିଵ
ቁݔ௜= ௜ܽ+ ௜ܾ(ߚ+ ௜ݔ(1

ఉ

= ௜ܽ+ ௜ܾቀඥߚ+ 1
ഁ

௜ቁݔ
ఉ

Setting =ߣ 1 ඥߚ+ 1
ഁ
⁄ to simplify notation, this problem can be restated as one of finding a

UE link flow solution ௜ݔ
௎ா(ܳߣ ) on ܩ for a demand matrix ߣܳ with cost functions ௜ܿ= ௜ܽ+

௜ܾ(ݔ௜/ߣ)ఉ .

Applying the earlier scaling note, the UE link flow solution ௜ݔ
௎ா(ܳߣ ) in this restated problem is

equivalent to a rescaled UE problem on ,ܩ which has link flow solution ො௜ݔߣ
௎ா(ܳ) with demand

matrix ܳ and link cost functions ௜ܿ= ௜ܽ+ ௜ܾݔ௜
ఉ

. However, this scaled problem is exactly the

problem on the right hand side of equation (14), and it therefore follows that:

௜ݔ
ௌை ቀܳ ඥߚ+ 1

ഁ
⁄ ቁ=

1

ඥߚ + 1
ഁ

௜ݔ
௎ா(ܳ) ∎

The following corollary describes the relationship between route transition points under UE

and SO.

Corollary 6.6: Consider a traffic network ܩ that serves a demand matrix ܳ with entries ௥ݍ > 0,

and that has cost functions of the form ௜ܿ= ௜ܽ+ ௜ܾݔ௜
ఉ

( ௜ܽ, ௜ܾ,ߚ > 0), which satisfy

Assumption A1. Suppose that the condition of proportionality holds and that ௞݂
௥,௎ா ∈ ∗ܨ and

௞݂
௥,ௌை ∈ ∗෨ܨ represent the uniquely defined route flow for each route ݇ ∈ ,௥ܭ under UE and SO
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respectively. Let ௎ாߟ and ௌைߟ represent instances of demand ܳ at which, for some OD

movements ,ݎ the same routes ݇ ∈ ௥ܭ are added to or removed from the sets ௠ܭ ௜௡
௥ and ෩௠ܭ ௜௡

௥ ,

respectively19. Then:

ௌைߟ =
1

ඥߚ + 1
ഁ

௎ாߟ (15)

Proof: Consider a given level of demand ௎ாߟ at which the set ௠ܭ ௜௡
௥ expands for some OD

movement .ݎ Therefore, ∃݇ ∈ ,௥ܭ for some OD movement ,ݎ for which ݇ ∉ ௠ܭ ௜௡
௥ as ܳ → ௎ாߟ

ି ,

but for which ݇ ∈ ௠ܭ ௜௡
௥ as ܳ → ௎ாߟ

ା . As route flows, under the condition of proportionality, are

uniquely defined and vary continuously with respect to ܳ, it follows, from theorem 6.5, that

௞݂
௥,௎ா(ܳ) = ඥߚ + 1

ഁ
∗ ௞݂

௥,ௌை ቀܳ ඥߚ+ 1
ഁ
⁄ ቁ.

Now, if ݇ ∉ ௠ܭ ௜௡
௥ as ܳ → ௎ாߟ

ି , such that ௞݂
௥,௎ா = 0 under the condition of proportionality, then

it follows that ௞݂
௥,ௌை = 0 and that ݇ ∉ ෩௠ܭ ௜௡

௥ as ܳ →�ቀ1 ඥߚ+ 1
ഁ
⁄ ቁߟ௎ா

ି . In addition, if ∈ ௠ܭ ௜௡
௥

as ܳ → ௎ாߟ
ା , such that ௞݂

௥,௎ா > 0 under the condition of proportionality, then it follows that

௞݂
௥,ௌை > 0 and that ݇ ∈ ෩௠ܭ ௜௡

௥ as ܳ → ቀ1 ඥߚ+ 1
ഁ
⁄ ቁߟ௎ா

ା . This implies that ෩௠ܭ ௜௡
௥ expands under

SO at ܳ = ቀ1 ඥߚ+ 1
ഁ
⁄ ቁߟ௎ா, i.e. that ௌைߟ∃ = ቀ1 ඥߚ+ 1

ഁ
⁄ ቁߟ௎ா.

A similar argument works for when ௎ாߟ corresponds to a contraction of ௠ܭ ௜௡
௥ , for some OD

movement .ݎ ∎

It is important to note that corollary 6.6 does not predict the levels of demand at which the

sets ௠ܭ ௜௡
௥ or ෩௠ܭ ௜௡

௥ will change; rather, it provides a method to identify the levels of demand at

which, for example, ௠ܭ ௜௡
௥ changes, given the levels of demand at which ෩௠ܭ ௜௡

௥ changes.

6.4 The Variation of the Price of Anarchy with Travel Demand

This section presents theory that describes how the Price of Anarchy varies with travel

demand. In order to provide motivation and context for this theory, this section begins, in

section 6.4.1, by illustrating how the Price of Anarchy varies with travel demand in the network

examples presented in section 6.3.1. Sections 6.4.2, 6.4.3 and 6.4.4 then present theory to

describe the mechanisms that govern how the Price of Anarchy varies in general networks for

low, intermediate and high levels of travel demand respectively.

19 For such traffic networks, the existence of instances of demand, under UE and SO, at which

the same routes ݇ ∈ ௥ܭ are added to or removed from ௠ܭ ௜௡
௥ and ෩௠ܭ ௜௡

௥ follows from the

relationship described in theorem 6.5. In general traffic networks, this statement can be shown

to follow from the SO cost transformation ǁܿ௜.
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For intermediate levels of demand, it was established in section 6.3 that, as travel demand ܳ

changes, the sets ௠ܭ ௜௡
௥ (ܺ௥

௎ா) and ෩௠ܭ ௜௡
௥ (ܺ௥

ௌை) can expand and contract, for one or more OD

movements .ݎ The points at which these expansions and contractions occur were defined as

route transition points and several types were identified. The theory presented in this section

applies to route transition points that occur under increasing demand and which satisfy

conditions C1-C3. These conditions were described in section 6.3.2.

The behaviour of the Price of Anarchy is dependent, by construction, on Total Network Travel

Cost under SO (ௌைܥܶܶ) and Total Network Travel Cost under UE .(௎ாܥܶܶ) This is important for

the analysis that follows.

6.4.1 Illustrative Examples

6.4.1.1 Example 1: Parallel Link Network - Single Origin-Destination Pair Example

Recalling the example of section 6.3.1.1; consider increasing demand ݍ in nine versions of a

parallel link network with total links ܰ = 2,3, … ,10 and coefficients ௜ܽ= ,݅ ௜ܾ= 1 for

݅= 1, … ,10. Figure 6.3 displays the variation of the Price of Anarchy ேߩ for each of these nine

networks, and also identifies the levels of demand under UE (green vertical lines) and SO (red

vertical lines) at which expansions occur in the sets ௠ܭ ௜௡ and ෩௠ܭ ௜௡ respectively. These levels of

demand correspond to those identified in equations (9) and (11) respectively.

For levels of demand upݍ to the first route transition point under SO, the Price of Anarchy is 1.

Beyond this level of demand, Figure 6.3 illustrates, for each ܰ , that levels of demand at which

௠ܭ ௜௡ expands coincide with all levels of demand at which the Price of Anarchy is non-

differentiable. Furthermore, there is also a decrease in the gradient of the Price of Anarchy at

each of these points. In contrast the Price of Anarchy appears to be differentiable at all levels

of demand at which there is an expansion in ෩௠ܭ ௜௡. However, it is also evident, for each

ܯ = 2, … ,10, that the graphs of ெߩ ିଵ and ெߩ depart from each other at each of these points.

This demonstrates that the new routes that are available in the ܯ parallel link case have a

material effect on the trajectory of the Price of Anarchy. Overall, Figure 6.3 suggests that

expansions under UE lead to decreases in the Price of Anarchy whereas expansions under SO

lead to increases in the Price of Anarchy.
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Figure 6.3 - The Variation of the Price of Anarchy against Demand in ࡺ = ૛, … ,૚૙ Parallel
Link Network

As demand increases the Price of Anarchy eventually begins to decay back towards 1. The start

of this decay coincides with the last route transition point under UE. An explicit formula for the

Price of Anarchy in this region, for each network ܰ , is shown in equation (16). This formula was

derived analytically. The parametersߙ� and ߛ are constants that depend on the coefficients ௜ܽ

and ௜ܾ. This equation reveals that the leading order term of this decay is ܱ(1 ⁄ଶݍ ), which

suggests that the similar characteristic shapes of decay, observed for the networks in Figure

5.19, are a systematic and more general feature of the behaviour of the Price of Anarchy for

high demand.

=ߩ 1 +
1

ଶݍߙ + −ݍߛ 1 (16)

6.4.1.2 Example 2: Five Link Network - Two Origin-Destination Pair Example

Now recall the five link network example of section 6.3.1.2, and consider increasing demand

on OD movement .ை→஽ଵݍ The variation of the Price of Anarchy with demand ை→஽ଵݍ is shown in

Figure 6.4. The vertical lines signify levels of demand under UE (green) and SO (red) at which

௠ܭ ௜௡ and ෩௠ܭ ௜௡ expand (solid lines) and contract (dashed lines).

As was observed in Figure 6.3, this figures shows that the Price of Anarchy is one for all levels

of demand ை→஽ଵݍ up to the first route transition point under SO. Figure 6.4 also illustrates that

at expansions in ௠ܭ ௜௡
௥ , the Price of Anarchy is non-differentiable and that there is a decrease in
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gradient; this is the same as the behaviour in Figure 6.3. Figure 6.4 also illustrates that the

Price of Anarchy is non-differentiable at the single demand level corresponding to a

contraction in ௠ܭ ௜௡
௥ , and that this coincides with an increase in gradient. Under SO, the Price of

Anarchy is differentiable at both points of expansion and also the point of contraction in ෩௠ܭ ௜௡
௥ ;

the former leads to an increase in the gradient of the Price of Anarchy whereas the latter leads

to a decrease in the gradient of the Price of Anarchy. This example suggests therefore, that the

effects of contractions in ௠ܭ ௜௡
௥ and ෩௠ܭ ௜௡

௥ , on the Price of Anarchy, are the opposite of the

effects of expansions in ௠ܭ ௜௡
௥ and ෩௠ܭ ௜௡

௥ .

Finally, for demand beyond the final route transition point under UE, the Price of Anarchy

again decays back towards 1. Although not included here, this rate of decay also satisfies

ܱ(1 ⁄ଶݍ ) behaviour.

Figure 6.4 - The Variation of the Price of Anarchy against Demand in the Five Link Network of
Figure 6.1

6.4.2 The Variation of the Price of Anarchy for Low Travel Demand

In traffic networks in which demand →௥ݍ 0 on all OD movements ,ݎ the cost of travel on each

route ݇ ∈ ,௥ܭ ,ݎ∀ is dictated by the free-flow travel cost component. In such cases, for such

small levels of demand, the routes that are of minimum cost for each OD movement

correspond to the shortest path or paths for each OD movement. This is true under both UE

and SO; to see this, consider the cost function transformation ǁܿ௜= ௜ܿ+ ∗௜ݔ ݀ ௜ܿ ⁄௜ݔ݀ for the

SO problem. When →௜ݔ 0, the additional marginal cost term disappears and the cost of travel

on each link is identical under UE and SO. In such cases, it follows that ௜ݔ
௎ா = ௜ݔ

ௌை ∀݅∈ ,ܣ that
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௎ாܥܶܶ = ௌைܥܶܶ and that the Price of Anarchy =ߩ 1. As demand ௥ݍ increases from zero, the

shortest path(s) for each OD movement ݎ still provide the minimum (marginal total) cost

routes under UE and SO, provided that the second shortest routes have greater free-flow

travel cost for each OD movement. The Price of Anarchy remains =ߩ 1 until, for some OD

movement ,ݎ the second shortest route in ௥ܭ becomes minimum cost, at which point there is

a route transition point under SO. This discussion provides an explanation for the initial

intervals of demand shown in Figure 5.19, Figure 6.3 and Figure 6.4.

6.4.3 The Variation of the Price of Anarchy for Intermediate Regions of Travel Demand

It is known that ௎ாܥܶܶ and ௌைܥܶܶ are continuous and increasing functions of travel demand

(Dafermos and Nagurney, 1984). As ௜ݔ
௎ா = ௜ݔ

ௌை ∀݅∈ ,ܣ for very low demand regions, it follows

that ௎ாܥܶܶ and ௌைܥܶܶ both increase at the same rates, at least until a route transition point

occurs. This section describes the effects of route transition points, of the types described in

conditions C1-C3, on the rates of change of ௌைܥܶܶ (section 6.4.3.1), ௎ாܥܶܶ (section 6.4.3.2)

and the Price of Anarchy (section 6.4.3.3).

6.4.3.1 The Sensitivity of Total Network Travel Cost under SO to Route Transition Points

The first result in this section proves that ௌைܥܶܶ is also differentiable with respect to all

demand ܳ, which, in particular, includes all demands ܳ ∈ Ηௌை that correspond to route

transition points.

Proposition 6.7: Consider a traffic network ܩ for which Assumption A1 holds. ௌைܥܶܶ is

differentiable with respect to all demand movements forݎ which ௥ݍ > 0.

Proof: Proof follows from the Envelope Theorem, which is stated as follows. For the

constrained extremum problem:

(ݖ)ܸ = max
௫భ,௫మ,…,௫೙

,ଶݔ,ଵݔ݂) … (ݖ,௡ݔ,

s.t. ௝݃(ݔଵ,ݔଶ, … (ݖ,௡ݔ, ≥ 0 for�݆= 1,2, … ,݉

the Envelope Theorem states that, if the constraints satisfy the Slater condition and if (ݖ)௜ݔ

solve the first-order and complementary slackness conditions for the above problem, ∀ ,݅ then:

߲ܸ

ݖ߲
=
߲݂ ,ଶݔ,ଵݔ) … (ݖ,௡ݔ,

ݖ߲
+ ෍ ௝ߣ

௠

௝ୀଵ

߲ ௝݃

ݖ߲

where ௝ߣ are Kuhn-Tucker multipliers. The Slater condition requires that there exists a point

,ଶݔ,ଵݔ) … (௡ݔ, for which ௝݃(ݔଵ,ݔଶ, … (௡ݔ, > 0 ∀ .݆
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The SO minimisation problem has objective function ,ଶݔ,ଵݔ)ǁݖ … (௡ݔ, = ௌைܥܶܶ and is subject

to constraints set out in equation (6). For this problem to satisfy the Slater condition, requires

that there exists a link flow vector ,ଶݔ,ଵݔ) … (௡ݔ, satisfying the equality constraints in (6) and

which produces route flows ௞݂
௥ > 0, ∀݇ ∈ ,௥ܭ for all OD movements .ݎ In other words a vector

of link flows is required that satisfies the equality constraints and which produces positive

route flows on all routes between all OD pairs. This can easily be achieved by setting

௞݂
௥ = ௞ߛ

௥ݍ௥ where 0 < ௞ߛ
௥ < 1 and such that ∑ ௞ߛ

௥
௞ = 1 ,ݎ∀ i.e. a link flow vector produced by

assigning demand flows ௥ݍ to all routes ݇ ∈ ௥ܭ such that all routes receive a non-zero

proportion of flow.

The SO minimisation problem therefore satisfies all of the conditions of the Envelope

Theorem, which guarantees that the objective function ,ଶݔ,ଵݔ)ݖ … (௥ݍ,௡ݔ, is differentiable

with respect to demand .௥ݍ As ,ଶݔ,ଵݔ)ǁݖ … (௥ݍ,௡ݔ, = ௌைܥܶܶ , this guarantees that ௌைܥܶܶ is a

differentiable function of ௥ݍ > 0. ∎

The next result considers the effect on ௌைܥܶܶ of an increase in demand through a route

transition point ௌைߟ of the type described in condition C3(i); at which, for each OD movement

,ݎ either:

a) ෩௠ܭ ௜௡
௥ remains unchanged as demand passes through ௌைߟ ; or

b) ෩௠ܭ ௜௡
௥ expands to include one or more additional routes .݇

Proposition 6.8: Consider a traffic network ܩ with link path incidence matrix Δ and for which

Assumption A1 holds. Let ௌைߟ represent a route transition point satisfying conditions C1, C2

and C3(i); as described in a) and b) above. Denote the OD movements ݎ that satisfy b) by .′ݎ

Label routes ݇ ∈ ௥ᇱܭ such that: for routes ݇= 1, … , ௥݊ᇱ ݇ ∈ ෩௠ܭ ௜௡
௥ᇱ for all demand values

ܳ → ௌைߟ
ି and ܳ → ௌைߟ

ା ; and for routes ݇= ௥݊ᇱ+ 1, … ,௥ᇱߢ, ݇ ∉ ෩௠ܭ ௜௡
௥ᇱ for demand ܳ → ௌைߟ

ି , but

݇ ∈ ෩௠ܭ ௜௡
௥ᇱ for demand ܳ → ௌைߟ

ା .

Suppose that ෠denotesܩ an adjusted version of the network ,ܩ which has an identical link path

incidence matrix Δ෡, except that for the OD movements ,′ݎ all routes ݇= ௥݊ᇱ+ 1, … ௥ᇱߢ, are

omitted from Δ෡. Then for demand ܳ → ௌைߟ
ା :

෠ܥீܶܶ
ௌை(ܳ) > (ܳ)ௌைܥீܶܶ

Proof: Let Ψீ
∗(ܳ) = ൛ܥሚ௞

௥(ܳ)ห݇ ∈ ෩௠ܭ ௜௡
௥ , ൟݎ∀ represent the unique set of route costs with

minimum marginal total cost under SO, at demand ܳ. The route costs Ψீ
∗(ܳ) are therefore

associated with the vector of link flows ∗ݔீ (ܳ), which produce the minimum value of the

objective function ǁீݖ (ܳ) in the SO minimisation program defined in Figure 4.2. Note that

ǁீݖ (ܳ) = .(ܳ)ௌைܥீܶܶ
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By the starting assumptions; for demand levels ܳ → ௌைߟ
ି , Ψீ

∗(ܳ) uniquely minimises ǁீݖ (ܳ),

such that all routes ݇= ௥݊ᇱ+ 1, … ௥ᇱߢ, for the OD movements ,′ݎ satisfy ݇ ∉ ෩௠ܭ ௜௡
௥ᇱ . Whereas,

for demand levels ܳ → ௌைߟ
ା , Ψீ

∗(ܳ) uniquely minimises ǁீݖ (ܳ), such that all routes ݇= ௥݊ᇱ+

1, … ௥ᇱߢ, for the OD movements ,′ݎ satisfy ݇ ∈ ෩௠ܭ ௜௡
௥ᇱ . All other feasible route cost sets Ψீ(ܳ),

satisfy <ǁ൫Ψீ(ܳ)൯ݖ ǁ൫Ψீݖ
∗(ܳ)൯. In particular, all route cost sets Ψீ(ܳ), for demand levels

ܳ → ௌைߟ
ା , in which routes ݇= ௥݊ᇱ+ 1, … ௥ᇱߢ, for the OD movements ,′ݎ are restricted from

෩௠ܭ ௜௡
௥ᇱ ,, satisfy this condition.

Now consider the network .෠ܩ For demand levels ܳ → ௌைߟ
ି , Ψீ

∗(ܳ) = Ψ ෠ீ
∗(ܳ) and therefore

(ܳ)ௌைܥீܶܶ = ෠ܥீܶܶ
ௌை(ܳ). However, for demand levels ܳ → ௌைߟ

ା , Ψீ
∗(ܳ) ≠ Ψ ෠ீ

∗(ܳ). This is

because, in Ψீ
∗(ܳ), the routes ݇= ௥݊ᇱ+ 1, … ௥ᇱforߢ, the OD movements ,′ݎ satisfy ݇ ∈ ෩௠ܭ ௜௡

௥ᇱ .

Whereas, in Ψ ෠ீ
∗(ܳ), the same routes are not in ෩௠ܭ ௜௡

௥ᇱ because they were omitted from the link

path incidence matrix Δ෡ for ෠byܩ starting assumption. However, Ψ ෠ீ
∗(ܳ) is still feasible for the

network .ܩ It therefore follows that ǁቀΨݖ ෠ீ
∗(ܳ)ቁ> ǁ൫Ψீݖ

∗(ܳ)൯for demand levels ܳ → ௌைߟ
ା . This

equation is equivalent to ෠ܥீܶܶ
ௌை(ܳ) > .(ܳ)ௌைܥீܶܶ ∎

A visualisation of this result is provided in Figure 6.5. In this figure, it is assumed that at ௌைߟ ,

the sets ෩௠ܭ ௜௡
௥ , for one or more OD movements ݎ in a network ,ܩ expand such that the total

number of minimum marginal total cost routes over all OD movements increases from ܰ to

> ܰ . Under the terms of the assumptions of proposition 6.8, the traffic network ෠doesܩ not

contain any of these additional routes. It can be seen, in Figure 6.5, that as ܳ → ௌைߟ
ି ,

(ܳ)ௌைܥீܶܶ = ෠ܥீܶܶ
ௌை(ܳ). However, at ܳ = ௌைߟ , these functions diverge. ෠ܥீܶܶ

ௌை represents

what would have happened to ௌைܥீܶܶ if the routes that were added to the minimum cost

route sets for the OD movements ,ݎ did not exist in .ܩ As demand ܳ → ௌைߟ
ା , ௌைܥܶܶ does not

continue to follow the trajectory that it was on for ܳ → ௌைߟ
ି , for which there were ܰ minimum

cost routes in total; but instead shifts onto a lower trajectory for which there are > ܰ

minimum cost routes in total, thereby slowing the rate of increase in ௌைܥܶܶ .
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Figure 6.5 - The effect on ofࡻࡿ࡯ࢀࢀ one or more expansions in ࢓෩ࡷ ࢔࢏
࢘ , for some OD

movements ࢘

The final result of this subsection describes the effect on ௌைܥܶܶ of an increase in demand

through a route transition point ௌைߟ of the type described in condition C3(ii); at which, for

each OD movement ,ݎ either:

c) ෩௠ܭ ௜௡
௥ remains unchanged as demand passes through ௌைߟ ; or

d) ෩௠ܭ ௜௡
௥ contracts as one or more routes ݇ are no longer of minimum marginal total cost.

Proposition 6.9: Consider a traffic network ܩ with link path incidence matrix Δ and for which

Assumption A1 holds. Let ௌைߟ represent a route transition point satisfying the conditions C1,

C2 and C3(ii); as described in c) and d) above. Denote the OD movements ݎ that satisfy

condition d) by .′ݎ Label routes ݇ ∈ ௥ᇱܭ such that: for routes ݇= 1, … , ௥݊ᇱ݇ ∈ ෩௠ܭ ௜௡
௥ᇱ for all

demand values ܳ → ௌைߟ
ି and ܳ → ௌைߟ

ା ; and for routes ݇= ௥݊ᇱ+ 1, … ,௥ᇱߢ, ݇ ∈ ෩௠ܭ ௜௡
௥ᇱ for

demand ܳ → ௌைߟ
ି , but ݇∉ ෩௠ܭ ௜௡

௥ᇱ for demand ܳ → ௌைߟ
ା .

Suppose that ෠denotesܩ an adjusted version of the network ,ܩ which has an identical link path

incidence matrix Δ෡, except that for the OD movements ,′ݎ all routes ݇= ௥݊ᇱ+ 1, … ௥ᇱߢ, are

omitted from Δ෡. Then for demand levels ܳ → ௌைߟ
ି :

෨ܥீܶܶ
ௌை(ܳ) > (ܳ)ௌைܥீܶܶ

Proof: This proof uses similar arguments to those used to prove Proposition 6.8. ∎

A visualisation of this result is provided in Figure 6.6. In this figure, it is assumed that at ௌைߟ ,

the sets ෩௠ܭ ௜௡
௥ , for one or more OD movements ݎ in a network ,ܩ contract such that the total

number of minimum marginal total cost routes over all OD movements decreases from > ܰ to

ܰ . Under the terms of the assumptions of proposition 6.9, the traffic network ෠ܩ does not

contain any of the routes that leave the minimum marginal total cost route set at ௌைߟ . To
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understand the implication of this graph, it is easiest to visualise what happens as demand

decreases from the right hand side. It can be seen that for demand values ܳ → ௌைߟ
ା ,

(ܳ)ௌைܥீܶܶ = ෠ܥீܶܶ
ௌை(ܳ). At ܳ = ௌைߟ , these functions diverge. For demand values ܳ → ௌைߟ

ି ,

ௌைܥܶܶ does not continue to follow the trajectory that it was on for ܳ → ௌைߟ
ା , because, in the

direction of decreasing demand, the set of routes of minimum marginal total cost expands

from ܰ to > ܰ routes in total, which leads to a lower value of ௌைܥܶܶ . The effect of this

behaviour, when considering increasing demand, is that as demand moves through a route

transition point of type C3(ii), ௌைܥܶܶ transfers onto a higher trajectory. There is, therefore, an

acceleration in the rate of increase of ௌைܥܶܶ .

Figure 6.6 - The effect on ofࡻࡿ࡯ࢀࢀ one or more contractions in ࢓෩ࡷ ࢔࢏
࢘ , for some OD

movements ࢘

6.4.3.2 The Sensitivity of Total Network Travel Cost under UE to Route Transition Points

Similarly to section 6.4.3.1, this section begins by characterising the existence of derivatives of

௎ாܥܶܶ with respect to demand. These derivatives depend, by construction, upon the

sensitivity of link flows ௜ݔ
௎ா with respect to increases in demand.

In the context of the UE traffic assignment problem, Patriksson (2004) provides a

characterisation of the existence of directional derivatives and full derivatives of links flows.

This is achieved through the derivation of a sensitivity problem, which yields directional

derivatives of links flows provided that it has a unique solution. Josefsson and Patriksson

(2007) built on Patriksson (2004) to show that, in traffic networks with separable link cost

functions, a sufficient condition for the existence of a directional derivative of a link flow ௜ݔ
௎ா,

is that the corresponding cost function ௜ܿhas a strictly positive derivative. For demands ܳ at

which directional derivatives of link flows do exist, it follows from theorem 10 of Patriksson

(2004) that full derivatives of those link flows also exist; provided it can be shown that
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߲ ௞݂
௥ ⁄ݍ߲ = 0, ∀݇ ∈ ௥ܭ for which ௞݂

௥ = 0 in every possible route flow solution ,ܨ and for any

perturbation of demand. Within this statement, the derivatives ߲ ௞݂ ⁄ݍ߲ must be consistent

with the set of derivatives ௜ݔ߲ ⁄ݍ߲ , which uniquely solves the sensitivity problem.

The following result proves that ௎ாܥܶܶ is differentiable for ∀ܳ ≠ .௎ாߟ In this proof ௠~ܭ ௜௡
௥

denotes the set of routes ݇ ∈ ௥ܭ for which ௞ܥ
௥ > .௥ߨ

Proposition 6.10: Consider a traffic network ܩ for which Assumption A1 holds. (ܳ)௎ாܥܶܶ is

differentiable ∀ܳ ∉ Η௎ா.

Proof: Suppose, for a traffic network ,ܩ that a demand ܳ ∉ Η௎ா is given. By definition 6.3 it

follows that limொ→ఎೆಶ
ష (ܳ)ߓ = limொ→ఎೆಶ

శ ,(ܳ)ߓ for all trajectories of demand about .௎ாߟ It

therefore follows that there exists a neighbourhood of demand about ܳ for which, ∀݇ ∈ ௥ܭ

for each OD movement ,ݎ either (a) ݇ ∈ ௠ܭ ௜௡
௥ for all ܳ in this neighbourhood, or (b) ݇ ∈ ௠~ܭ ௜௡

௥

for all ܳ in this neighbourhood. In other words, the set ௠ܭ ௜௡
௥ of routes that are of minimum

cost, for each OD movement ,ݎ and the set ௠~ܭ ௜௡ of routes that have costs strictly greater

than minimum cost, for each OD movement ,ݎ do not change due to a small perturbation of

demand.

By the UE conditions (5), it follows that ∀݇ ∈ ௠~ܭ ௜௡
௥ that ௞݂

௥ = 0, for each OD movement .ݎ It

also follows from the above argument that, for any small perturbation of demand, ௞݂
௥ = 0 will

remain true. It consequently follows, from theorem 10 of Patriksson (2004), that link flows ௜ݔ
௎ா

are differentiable for each link ݅for which ௜ݔ
௎ா > 0. As all link flows ௜ݔ

௎ா are differentiable

functions of ܳ for all links ݅ for which ௜ݔ
௎ா > 0, and all other links, for which there is no

information about differentiability, have ௜ݔ
௎ா = 0, it follows that ௎ாܥܶܶ is differentiable at ܳ.

This is by construction of ,௎ாܥܶܶ because it is a sum of products of differentiable functions. ∎

The contrapositive result of proposition 6.10 is that all instances of demand ܳ, at which

௎ாܥܶܶ is not differentiable, must correspond to route transition points .௎ாߟ

Conjectures 6.11 and 6.12 present claims for the behaviour of ௎ாܥܶܶ at route transition

points of the types described in conditions C3(i) and C3(ii) respectively.

Conjecture 6.11: Consider a traffic network ܩ for which Assumption A1 holds, and let ௎ாߟ

represent a route transition point of type C3(i). Then:

lim
ொ→ఎೆಶ

ష
൬
߲

ݍ߲
<௎ா൰ܥܶܶ lim

ொ→ఎೆಶ
శ
൬
߲

ݍ߲
௎ா൰ܥܶܶ

Conjecture 6.12: Consider a traffic network ܩ for which Assumption A1 holds, and let ௎ாߟ

represent a route transition point of type C3(ii). Then:
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lim
ொ→ఎೆಶ

ష
൬
߲

ݍ߲
>௎ா൰ܥܶܶ lim

ொ→ఎೆಶ
శ
൬
߲

ݍ߲
௎ா൰ܥܶܶ

The above conjectures are stated without proof. Numerical evidence supporting the truth of

these conjectures can be found in the examples included in section 6.5. It is also noted that the

directions of change in gradient are the same as the directions of change that have been

proven for the SO case in propositions 6.8 and 6.9. It would therefore be counterintuitive if

these results were not true in general. This is especially so in the case of traffic networks with

cost functions of the form ௜ܿ= ௜ܽ+ ௜ܾݔ௜
ఉ

, for which theorem 6.5 proves that there is a

systematic relationship between link flows under UE and SO.

It is remarked that proof of these conjectures is challenging because it is not possible to

guarantee that the directional derivatives, stated in Conjectures 6.11 and 6.12, always exist

(Josefsson and Patriksson, 2007). As an example, Josefsson and Patriksson (2007) remarked

that directional derivatives cannot be guaranteed for the BPR cost functional form because it

has zero cost derivative at zero flow. Given this difficulty, it is particularly noteworthy that

ௌைܥܶܶ is fully differentiable at all points of demand ܳ, including all route transition points ௌைߟ ,

given the similarities that exist between the UE and SO models.

6.4.3.3 The Sensitivity of the Price of Anarchy to Route Transition Points

This section describes the implications of the results of sections 6.4.3.1 and 6.4.3.2 for the

Price of Anarchy; starting with differentiability.

Corollary 6.13: Consider a traffic network ܩ for which Assumption A1 holds. The Price of

Anarchy is a differentiable function for all demand movements ௥ݍ > 0, for which ܳ ∉ Η௎ா.

Proof: Follows from propositions 4.1 and 4.4. ∎

The results that follow describes the differing effects on the Price of Anarchy of route

transition points of the types described in conditions C3(i) and C3(ii), under UE and SO. The

results for the UE case are stated only as conjectures.

Theorem 6.14: Consider a traffic network ܩ for which Assumption A1 holds.

(i) For a demand ௌைߟ , which corresponds to a route transition point that satisfies condition

C3(i):

(ܳ)෤ߩ < ,(ܳ)ߩ ∀ܳ → ௌைߟ
ା

where ෤representsߩ a continuation of the trajectory of ߩ for ܳ → ௌைߟ
ି , into ܳ → ௌைߟ

ା .

(ii) For a demand ௌைߟ , which corresponds to a route transition point that satisfies condition

C3(ii):

(ܳ)෤ߩ > ,(ܳ)ߩ ∀ܳ → ௌைߟ
ା
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where ෤representsߩ a continuation of the trajectory of ߩ for ܳ → ௌைߟ
ି , into ܳ → ௌைߟ

ା .

Proof: Proof of (i) follows from proposition 6.8 and the fact that ௌைܥܶܶ is on the denominator

of .ߩ Proof of (ii) follows from proposition 6.9, the associated discussion that followed and the

fact that ௌைܥܶܶ is on the denominator of .ߩ ∎

Conjecture 6.15: Consider a traffic network ܩ for which Assumption A1 holds.

(i) At a demand ,௎ாߟ which corresponds to a route transition point that satisfies condition

C3(i):

lim
ொ→ఎೆಶ

ష
൬
ߩ߲

ݍ߲
൰> lim

ொ→ఎೆಶ
శ
൬
ߩ߲

ݍ߲
൰

(ii) At a demand ,௎ாߟ which corresponds to a route transition point that satisfies condition

C3(ii):

lim
ொ→ఎೆಶ

ష
൬
ߩ߲

ݍ߲
൰< lim

ொ→ఎೆಶ
శ
൬
ߩ߲

ݍ߲
൰

Proofs of parts (i) and (ii) of conjecture 6.15 will follow if conjectures 6.11 and 6.12 are true.

6.4.4 The Variation of the Price of Anarchy for High Travel Demand

As travel demand values ௥ݍ become larger, the network becomes saturated as the delay

components of travel cost begin to dominate the free-flow component. In the network

example in section 6.3.1.1, it was shown that expansions in the sets ௠ܭ ௜௡
௥ and ෩௠ܭ ௜௡

௥ eventually

stop once demand reaches a sufficiently high threshold. This matches observations from

numerical examples.

For the special case of traffic networks with cost functions of the form ௜ܿ= ௜ܽ+ ௜ܾݔ௜
ఉ

( ௜ܽ, ௜ܾ,ߚ > 0), it is conjectured that, as demand ܳ continues to increase, the Price of Anarchy

enters a region of decay that can be characterised by a power law. This characterisation is

stated, without proof, in conjecture 6.16, and is illustrated in the numerical examples that

follow in section 6.5.

Conjecture 6.16: Consider a traffic network ܩ that serves a demand matrix ܳ with entries

௥ݍ > 0, and that has cost functions of the form ௜ܿ= ௜ܽ+ ௜ܾݔ௜
ఉ

( ௜ܽ, ௜ܾ,ߚ > 0), which satisfy

Assumption A1. Let ߞ represent a global demand multiplier applied to the demand matrix ܳ.

Then, as →ߞ ∞, the leading order behaviour of the Price of Anarchy is ܱ൫1 ⁄ଶఉߞ ൯.

6.5 Numerical Examples

This section presents four numerical examples, which provide illustrations of the theoretical

results presented in sections 6.3 and 6.4; and also provide numerical evidence to support
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conjectures 6.11, 6.12, 6.15 and 6.16, which were stated without formal proof. The first

example in section 6.5.1 addresses the simplest scenario of the variation of the Price of

Anarchy with increasing demand on a single OD pair. The second example in section 6.5.2 then

presents a more complicated scenario; in which travel demand is increased, at different rates,

on several OD pairs between a single origin and several destinations. The final two examples in

section 6.5.3 then present two scenarios in which demand is uniformly increased on several

OD pairs, between multiple origins and multiple destinations.

Figure 6.7 - Sioux Falls Network

The numerical examples in this section are based on the canonical test network of Sioux

Falls20, which is shown in Figure 6.7. This network comprises 24 nodes and 76 links, and the

cost of travel ௜ܿon each link i݅s represented by a BPR cost function with power ߚ ൌ Ͷ, which is

common to all links. Note that this network satisfies the conditions stated in Assumption A1,

theorem 6.5 and corollary 6.6.

The results for each example are compiled from UE and SO traffic assignments undertaken at

several discrete levels of travel demand. At each demand level ,݆ travel demand ,௥ݍ on each

OD movement ,ݎ is increased by a demand multiplier ௝ߞ
௥; where ௝ߞ

௥ ൏ ௝ାଵߞ
௥ ǡ݆ݎ׊� . This

guarantees that demand is always increasing on each OD movement and therefore satisfies

condition C1. As each traffic assignment is undertaken for discrete values of the demand

multipliers ௝ߞ
௥, it is not possible to identify the exact levels of demand at which each route

transition point occurs. These levels of demand are therefore approximated in the analysis that

follows by the first demand level ݆beyond the route transition point; this being the first level

of demand at which it is possible to observe that either the minimum (marginal total) cost

route set for an OD movement orݎ the OD specific active network for an OD movement hasݎ

20 Network and demand matrix files for Sioux Falls were obtained from Bar-Gera (2001).
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changed. Each traffic assignment is calculated using the OBA algorithm, solved to an average

excess cost of, at most, 10ିଽ.

6.5.1 Example 1: Increasing Demand in a Single Origin-Destination Pair Network

In this single OD pair scenario, the variation of the Price of Anarchy is studied as travel demand

=ݍ 10 is increased, using demand multipliers ௝ߞ = 1,2, … ,10000, on the OD movement

between node 20 and node 3 in the Sioux Falls network. Figure 6.8 displays the variation of the

Price of Anarchy against travel demand .ݍ The vertical lines in this figure signify levels of

demand corresponding to route transition points ௎ாߟ and ௌைߟ , at which the OD specific active

networks ଵܺ
௎ா (green lines) and ଵܺ

ௌை (red lines), expand (solid lines) and contract (dashed

lines). Recall that OD specific active networks provide an alternative characterisation for the

minimum (marginal total) cost route set under UE and SO. This figure also displays graphs of

the Price of Anarchy for 17 sub-networks (denoted ,1_ߩ ,2_ߩ etc), which correspond to the 17

different states of the active network, between route transition points, as demand increases.

Focussing on the graph for the full network, Figure 6.8 displays the same three identifiably

distinct regions of behaviour of the Price of Anarchy that are evident in Figure 5.19: an initial

region in which the Price of Anarchy is one, a period of fluctuations, followed by a decay back

towards one. It can be seen that the Price of Anarchy varies smoothly ∋ݍ∀ Η௎ா, which is

consistent with corollary 6.13, and three of the four effects of expansions and contractions

described in theorem 6.14 and conjecture 6.15 are clearly visible. For UE, at all points ௎ாߟ

corresponding to an expansion of ܺ௎ா, the Price of Anarchy is non-differentiable and there is a

decrease in the gradient of the Price of Anarchy, which provides numerical evidence to support

conjecture 6.15(i). At the single point ௎ாߟ ≈ 38,000, which corresponds to a contraction of

ܺ௎ா, the Price of Anarchy is also non-differentiable and there is an increase in the gradient of

the Price of Anarchy, which provides numerical evidence to support conjecture 6.15(ii). For SO,

at all points ௌைߟ , which correspond to an expansion of ܺௌை , the Price of Anarchy is smooth but

transfers onto a higher trajectory than the Price of Anarchy for the sub-network that detaches,

which illustrates theorem 6.14(i). The effect of a contraction in ܺௌை at a route transition point

ௌைߟ described in theorem 6.14(ii); for which there is a single point in this example at

ௌைߟ ≈ 25,000, is less apparent.



- 135 -

Figure 6.8 – The Variation of the Price of Anarchy against the Demand Multiplier ࢐inࣀ

Example 1

Turning to the systematic relationship between route transition points ௎ாߟ and ௌைߟ , Table 6.1

lists the approximate levels of demand for each state of the active network as demand

increases. The table also presents the value of ௌைߟ ⁄௎ாߟ at each route transition point and

shows the number of links that are active in each state of ଵܺ
௎ா and ଵܺ

ௌை . Given that, for ߚ = 4,

1 ඥߚ+ 1
ഁ
⁄ ≈ 0.67, the results in this table are consistent with the conclusions of corollary 6.6.

No.
Route Transition Points ࡻࡿࣁ

ࡱࢁࣁ

Number of Active

Links in ૚ࢄ
ࡱࢁ & ૚ࢄ

ࡻࡿࣁࡻࡿ = ࢐ࣀ ࡱࢁࣁ = ࢐ࣀ

1 1 1 - 6

2 285 426 0.6690 12

3 697 1,042 0.6689 14

4 800 1,196 0.6689 17

5 978 1,463 0.6685 19

6 1,368 2,046 0.6686 23

7 1,657 2,478 0.6687 28

8 1,936 2,895 0.6687 29

9 1,941 2,902 0.6688 30

10 2,016 3,015 0.6687 31

11 2,300 3,439 0.6688 32

12 2,313 3,458 0.6689 33
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13 2,,520 3,769 0.6686 32

14 2,803 4,191 0.6688 34

15 3,246 4,853 0.6689 35

16 3,499 5,232 0.6688 36

17 4,309 6,443 0.6688 37

18 4,734 7,079 0.6687 38

Table 6.1 - Route Transition Points in Example 1

Finally, Figure 6.9 displays the decay rate of the Price of Anarchy for demand <ݍ 7,044, which

represents the level of demand of the final route transition point .௎ாߟ This figure also plots a

trend-line; calculated by Ordinary Least Squares regression, which shows that the decay in the

Price of Anarchy is consistent with ܱ ቀ1 ௝ߞ
ଶఉ

ൗ ቁ. Figure 6.9 also displays decay rates of the Price

of Anarchy in adjusted versions of the Sioux Falls network for values of ߚ = 1,2,3. The decay in

each of these additional scenarios, from the point of the final route transition point ,௎ாߟ is also

ܱ ቀ1 ௝ߞ
ଶఉ

ൗ ቁ. These findings are consistent with conjecture 6.16.

Figure 6.9 – Decay in the Price of Anarchy for High Demand in Example 1 for ࢼ = ૚, ࢼ = ૛,
ࢼ = ૜, ࢼ = ૝

6.5.2 Example 2: Increasing Demand in a Multiple (One to Many) Origin-Destination Pair

Network

In this multiple OD pair scenario, the variation of the Price of Anarchy is studied as travel

demand is increased on 22 OD pairs; between a single origin at node 20 and destination nodes
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௥ݏ = 1, 2, 3, … , 19, 21, 22, 23 in the Sioux Falls network. The initial amount of demand ௥ݍ and

the demand multipliers ௝ߞ
௥ are different for each of the 22 OD movements. This therefore

represents a more complicated scenario than the single OD example that was explored in

section 6.5.1. The initial amount of demand on each OD movement ݎ is set at ௥ݍ = 24 − .௥ݏ

The demand multipliers ௝ߞ
௥ for each OD movement ݎ are then set at ௝ߞ

௥ = ݆× (1 + ,(௥ݏ0.01

with values of ݆= 1,2, … ,2000.

Figure 6.10 displays the variation of the Price of Anarchy against index values ݆= 1,2, … ,400

for the demand multipliers ௝ߞ
௥. Similarly to Figure 6.8, the vertical lines in this figure signify

levels of demand corresponding to route transition points ௎ாߟ and ௌைߟ , at which one or more

OD specific active networks ܺ௥
௎ா and ܺ௥

ௌை expand or contract. Even with the greater

complexity of this example, Figure 6.10 provides further numerical evidence to support

conjecture 6.15 and further illustrations of theorem 6.14. In particular, the increase in gradient

of the Price of Anarchy at ௎ாߟ = 180 is much clearer than in Figure 6.8.

Figure 6.10 – The Variation of the Price of Anarchy against the Index ࢐for Demand
Multipliers ࢐ࣀ

࢘ in Example 2

Turning to the systematic relationship between route transition points ௎ாߟ and ௌைߟ , Table 6.2

lists the approximate levels of demand for each route transition point under UE and SO. In

contrast to Table 6.1, the final column of this table displays the number of links with positive

flow of the total of 38 links in Sioux Falls. These results are again consistent with the

conclusions of corollary 6.6.
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No.

Route Transition Points
ࡻࡿࣁ
ࡱࢁࣁ

Number of Active

Links in ⋃ ࢘ࢄ
ࡱࢁ

࢘

& ⋃ ࢘ࢄ
ࡻࡿ

࢘

ࡻࡿࣁ = ࢐ ࡱࢁࣁ = ࢐

1 1 1 - 24

2 47 71 0.662 25

3 58 87 0.6667 26

4 60 90 0.6667 27

5 70 105 0.6667 26

6 72 107 0.6729 27

7 75 112 0.6696 28

8 82 123 0.6667 29

9 88 132 0.6667 30

10 103 154 0.6688 31

11 105 157 0.6688 32

12 111 165 0.6727 31

13 114 171 0.6667 32

14 115 171 0.6725 33

15 121 180 0.6722 32

16 123 184 0.6685 33

17 127 190 0.6684 34

18 144 216 0.6667 35

19 156 233 0.6695 36

20 166 248 0.6694 35

21 183 273 0.6703 36

22 204 305 0.6689 36

23 239 357 0.6695 37

24 259 388 0.6675 38

25 310 464 0.6681 37

26 418 625 0.6688 38

Table 6.2 - Route Transition Points in Example 2

Finally, Figure 6.11 displays the decay rate of the Price of Anarchy for demand indices ݆> 625,

which represents the level of demand of the final route transition point .௎ாߟ This decay is

consistent with ܱ൫1 ݆ଶఉ⁄ ൯as is proposed in conjecture 6.16.
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Figure 6.11 - Decay in the Price of Anarchy for High Demand in Example 2

6.5.3 Examples 3 and 4: Increasing Demand in a Multiple (Many to Many) Origin-

Destination Pair Network

In addition to illustrating the theoretical results and conjectures of sections 6.3 and 6.4, the

two examples in this section also illustrate challenges that exist in identifying route transition

points in more complicated multiple OD networks.

6.5.3.1 Sioux Falls Network: Five Origin-Destination Pair Example

In this first multiple OD pair scenario, the variation of the Price of Anarchy is studied as travel

demand is increased on five OD pairs =ݎ 1, … ,5 in the Sioux Falls network: between node 20

and node 1; node 23 and node 2; node 20 and node 3; node 7 and node 13; and between node

1 and node 19. The initial amounts of demand on each OD movement were set at ଵݍ = 23,

ଶݍ = 14, ଷݍ = 17, ସݍ = 18 and ହݍ = 28. The demand multipliers for each OD movement were

identical, with values ௝ߞ
ଵ = ⋯ = ௝ߞ

ହ = ௝ߞ = 1,2, … ,8000.

Figure 6.12 displays the variation of the Price of Anarchy against demand multipliers up to

௝ߞ = 1000. Similarly to previous figures the vertical lines signify levels of demand

corresponding to route transition points ௎ாߟ and ௌைߟ . As OBA is unable to identify OD specific

active networks in network examples with multiple origin nodes, the vertical lines represent

only those route transition points at which an expansion (contraction) in an OD specific active

network coincides with an expansion (contraction) in the overall active network, which is

equivalent to ⋃ ܺ௥
௎ா

௥ and ⋃ ܺ௥
ௌை

௥ . The overall active network is uniquely defined by link flows.
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This demonstrates a limitation of using the OBA algorithm to identify changes in OD specific

active networks for cases in which there are multiple origins. The consequence of this is that

there may be route transition points that exist, which this method does not identify. Indeed, at

≈௝ߞ 500, there is a ‘downward kink’ in the graph of the Price of Anarchy, which suggests that

there is a route transition point ௎ாߟ corresponding to the expansion of ௠ܭ ௜௡
௥ for some OD

movement .ݎ The identification of route transition points, through observation of OD specific

active networks, in this general case would require the TAPAS algorithm. The example in

section 6.5.3.2 demonstrates an alternative approach to identifying route transition points,

which uses route enumeration.

Despite this limitation of OBA, the behaviour of the Price of Anarchy at all other route

transition points accords with the claims made in conjecture 6.15 and provides further

illustrations of the statements in theorem 6.14.

Figure 6.12 – The Variation of the Price of Anarchy against the Demand Multiplier ࢐inࣀ

Example 3

For each of the vertical lines in Figure 6.12, Table 6.3 lists the approximate levels of demand at

which the overall active network changes as travel demand increases. Similarly to previous

examples, these results are consistent with the conclusions of corollary 6.6.

No.

Route Transition Points
ࡻࡿࣁ
ࡱࢁࣁ

Number of Active

Links in ⋃ ࢘ࢄ
ࡱࢁ

࢘

& ⋃ ࢘ࢄ
ࡻࡿ

࢘

ࡻࡿࣁ = ࢐ࣀ ࡱࢁࣁ = ࢐ࣀ

1 1 1 21
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2 71 106 0.6698 24

3 136 203 0.67 37

4 142 211 0.673 42

5 149 223 0.6682 46

6 170 253 0.6719 41

7 210 314 0.6688 46

8 215 322 0.6677 48

9 222 332 0.6687 46

10 227 339 0.6696 49

11 277 414 0.6691 50

12 311 464 0.6703 52

13 362 541 0.6691 56

14 430 643 0.6687 55

15 458 685 0.6686 56

16 485 726 0.668 57

17 492 736 0.6685 56

18 516 771 0.6693 57

19 521 778 0.6697 58

20 521 779 0.6688 59

21 628 939 0.6688 60

22 647 967 0.6691 61

23 780 1,166 0.669 60

24 806 1,205 0.6689 62

25 1,037 1,551 0.6686 63

26 1,428 2,136 0.6685 62

Table 6.3 - Route Transition Points in Example 3

Finally, Figure 6.13 displays the decay rate of the Price of Anarchy for values of the demand

multiplier ௝ߞ > 2136, which represents the level of demand of the final route transition point

.௎ாߟ This decay is consistent with ܱ ቀ1 ௝ߞ
ଶఉ

ൗ ቁas is proposed in conjecture 6.16.
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Figure 6.13 - Decay in the Price of Anarchy for High Demand in Example 3

6.5.3.2 Sioux Falls Network: 528 Origin-Destination Pair Example

In this second multiple OD pair scenario, the variation of the Price of Anarchy is studied as

travel demand is increased in the Sioux Falls network, using the demand matrix file that is

available at Bar-Gera (2001). This demand matrix contains 528 OD pairs. The initial amounts of

demand on each OD movement are set at ௥ݍ = ௥ݍ0.001
ᇱ, where ௥ݍ

ᇱ represents the value in the

original matrix. Demand multipliers for each OD movement are then identical, with values

௝ߞ
ଵ = ⋯ = ௝ߞ

ହଶ଼ = ௝ߞ = 1,2, … ,9000.

Figure 6.14 displays the variation of the Price of Anarchy against demand multipliers up to

௝ߞ = 2000. Similarly to Figure 6.12, this figure also uses vertical lines to signify levels of

demand that correspond to route transition points ௎ாߟ and ௌைߟ at which there is a change in

the overall active networks ⋃ ܺ௥
௎ா

௥ and ⋃ ܺ௥
ௌை

௥ . For this example, there are only two such

route transition points, which Table 6.4 shows both satisfy the conclusions of corollary 6.6.

In order to better identify the full sets of route transition points Η௎ா and Ηௌை , an alternative

methodology was employed in which, at each demand level, the number of routes were

counted, for each OD movement ,ݎ that were within a tolerance 10ିଵ଴ of the minimum

(marginal total) cost route under UE and SO. This was inspired by the approach described in

Bar-Gera (2006). This method identifies a total of 364 demand levels ௝ߞ ∈ [0,2000], which

correspond to route transition points ௎ாߟ and ௌைߟ for this network. As the inclusion of a

vertical line for each of these points would make Figure 6.14 unintelligible, the difference
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between the total numbers of minimum (marginal total) cost routes under UE and SO is

plotted instead. Referred to as the difference measure, this measure is calculated, for each

demand level ,݆ as ∑ หܭ෩௠ ௜௡
௥ ൫ߞ௝൯ห௥ − ∑ หܭ௠ ௜௡

௥ ൫ߞ௝൯ห௥ . Although this is a particularly coarse

measure, it can be seen that it has a similar overall pattern to the Price of Anarchy (though

with different magnitude). This measure, therefore, provides further numerical evidence to

support the claims of conjecture 6.15 and the conclusions of theorem 6.14.

Figure 6.14 – The Variation of the Price of Anarchy against the Demand Multiplier ࢐inࣀ

Example 4

No.

Route Transition Points
ࡻࡿࣁ
ࡱࢁࣁ

Number of Active

Links in ⋃ ࢘ࢄ
ࡱࢁ

࢘

& ⋃ ࢘ࢄ
ࡻࡿ

࢘

ࡻࡿࣁ = ࢐ࣀ ࡱࢁࣁ = ࢐ࣀ

1 1 1 74

2 71 106 0.6698 75

3 136 203 0.67 76

Table 6.4 - Route Transition Points in Example 4

For values of ௝ߞ > 2000, the difference measure becomes increasingly unstable as demand

increases. This is an indicator that the level of convergence of 10ିଽ eventually (and inevitably)

becomes unable to clearly identify expansions and contractions because of the magnitudes of

travel costs. For this example, it is therefore not possible to identify the exact level of demand

at which the final region of decay in the Price of Anarchy begins. For this reason, Figure 6.15

displays the decay rate of the Price of Anarchy for values of the demand multiplier ௝ߞ > 934,
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which signifies the first point in Figure 6.14 at which the Price of Anarchy begins to steadily fall.

It can be seen from this figure that the decay rate of the Price of Anarchy eventually becomes

consistent with ܱ ቀ1 ௝ߞ
ଶఉ

ൗ ቁ, as is proposed in conjecture 6.16, for values of ௝ߞ > 4036.

Figure 6.15 - Decay in the Price of Anarchy for High Demand in Example 4
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7 Why values of the Price of Anarchy are small and an Alternative

Measure for the Inefficiency of Selfish Routing

7.1 Introduction

It was noted in the discussion section at the end of chapter 5 that values of the Price of

Anarchy across the network ensembles tested were consistently small, of the order of 1.05 or

lower. This observation is also true of the numerical examples of section 6.5, for which the

highest value achieved is of the order 1.12.

At face value, this would suggest that selfish routing under UE is relatively efficient in

comparison with SO routing, and that, therefore, policy interventions, such as road pricing

schemes, that are designed to induce more efficient routing behaviour would not be

worthwhile because their benefits would be small in comparison with their costs of

implementation. As an additional observation, it was also noted that values of the Price of

Anarchy in the numerical experiments of chapter 5 and in numerical examples from the

literature were significantly lower than the upper bounds that have been presented by

Roughgarden (2003), for example. This raises questions of the usefulness of such upper

bounds if they are so far removed from values of the Price of Anarchy observed in numerical

studies.

This chapter explores the reasons behind these observations and goes on to propose an

alternative measure of the inefficiency of selfish routing, which achieves higher values and also

gets closer to the upper bounds of Roughgarden (2003). Section 7.2 shows that values are

typically small in real traffic network examples because the Price of Anarchy measure has a

sensitivity to the free-flow travel cost component. Section 7.3 then proposes a new measure of

the inefficiency of selfish routing; called Price of Anarchy Delays, which does not suffer from

this sensitivity. Section 7.4 proves that this measure is subject to the bounds of Roughgarden

(2003) and section 7.5 then provides a numerical example of how this new measure varies

with respect to travel demand in the numerical example of section 6.5.1.

7.2 Why are values of the Price of Anarchy small?

An examination of the formulation of Total Network Travel Cost within the definition of the

Price of Anarchy reveals why values of the Price of Anarchy are small and why the

Roughgarden (2003) bounds are not typically achieved for real road traffic networks.

To begin, first note that a route-based definition for the Price of Anarchy can be written as

shown in equation (17).
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=ߩ
௎ாܥܶܶ

ௌைܥܶܶ
=
∑ ∑ ௞݂,௎ா

௥ ௞൫݂ܥ ௞,௎ா
௥ ൯௞௥

∑ ∑ ௞݂,ௌை
௥ ௞൫݂ܥ ௞,ௌை

௥ ൯௞௥
(17)

To simplify notation, now consider a single OD network with ܭ routes serving a demand ݍ

under the UE routing principle and suppose that, without loss of generality, routes 1, 2, … ௥ߢ,

are ordered such that route costs ଵ(0)ܥ ≤ ଶ(0)ܥ ≤ ⋯ ≤ .఑ೝ(0)ܥ It follows from the

numerator of the route-based formulation shown in equation (17) that:

ܥܶܶ = ෍ ௞݂ܥ௞( ௞݂)

఑ೝ

௞ୀଵ

= ෍ ௞݂[ܥ௞(0) + )௞ܥ ௞݂)−ܥ௞(0)]

఑ೝ

௞ୀଵ

= ෍ ௞݂ܥ௞(0)

఑ೝ

௞ୀଵ

+ ෍ ௞݂[ܥ௞( ௞݂)−ܥ௞(0)]

఑ೝ

௞ୀଵ

(18)

Now as ଵ(0)ܥ ≤ ଶ(0)ܥ ≤ ⋯ ≤ ,఑ೝ(0)ܥ define ௞ߛ = −௞(0)ܥ ଵ(0)ܥ for ݇= 1, 2, 3, … ܭ, to

represent the additional free-flow costs of the longer routes ݇= 2, 3, … ܭ, for this OD pair,

such that ଵ(0)ܥ ≤ ଵ(0)ܥ + ଶߛ ≤ ⋯ ≤ ଵ(0)ܥ + .௞ߛ Substituting the ௞ߛ into the first term of

ܥܶܶ in equation (18) yields:

ܥܶܶ = ෍ ௞݂[ܥଵ(0) + [௞ߛ

఑ೝ

௞ୀଵ

+ ෍ ௞݂[ܥ௞( ௞݂)−ܥ௞(0)]

఑ೝ

௞ୀଵ

= ෍ ௞݂ܥଵ(0)

఑ೝ

௞ୀଵ

+ ෍ ௞݂ߛ௞

఑ೝ

௞ୀଶ

+ ෍ ௞݂[ܥ௞( ௞݂)−ܥ௞(0)]

఑ೝ

௞ୀଵ

= +ݍଵ(0)ܥ ෍ ௞݂ߛ௞

఑ೝ

௞ୀଶ

+ ෍ ௞݂[ܥ௞( ௞݂)−ܥ௞(0)]

఑ೝ

௞ୀଵ

(19)

Equation (19) shows that ܥܶܶ can be decomposed into a sum of: 1) the free-flow travel cost of

routing all demand by the shortest path, 2) the additional free-flow travel costs incurred by

those flows forced to use longer routes and 3) the travel delays due to congestion on all

routes. Note also that all three of these cost components appear in both the numerator and

denominator of the Price of Anarchy but that the first component in equation (19) is

independent of the routing strategy; i.e. it takes the same value under both UE and SO. It is

this free-flow cost component of ܥܶܶ that makes the Price of Anarchy sensitive to free-flow

travel costs in road traffic networks.

To illustrate this more clearly, consider the single OD ‘lollipop’ network example, shown in

Figure 7.1, in which two routes serve a demand ݍ from O to D for which the free-flow travel

cost of the shortest path is equal to cost of travel on link 1. The terms ଵܽ, ଷܽ, ଶܾ and ଷܾ are

positive coefficients.
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Figure 7.1 - Single OD ‘Lollipop’ Network

Combining equations (17) and (19), and setting link flows ଵݔ ൌ ,ݍ ଶݔ ൌ ݔ and ଷݔ ൌ െݍ ݔ for

some אݔ [Ͳǡݍ], the Price of Anarchy for this network can be written as follows:

=ߩ
௎ாܥܶܶ

ௌைܥܶܶ
=

ଵܽݍ+ [ ଷܽ(ݍ− [(௎ாݔ + [ ଶܾݔ௎ா
ଶ + ଷܾ(ݍ− [௎ா)ଶݔ

ଵܽݍ+ [ ଷܽ(ݍ− [(ௌைݔ + [ ଶܾݔௌை
ଶ + ଷܾ(ݍ− [ௌை)ଶݔ (20)

For the first part of the journey from O to D all demand ݍ uses link 1 because there are no

alternatives. In the second part of the journey there is a choice of routes between links 2 and

3. The split of link flows ݔ and െݍ betweenݔ these two options is independent of the value of

ଵܽ under both UE and SO. It is also clear from the formulation shown in equation (20) that the

absolute difference in ܥܶܶ between UE and SO (i.e. the numerator minus the denominator),

and therefore the absolute benefit of rerouting, is independent of ଵܽ because the ଵܽݍ terms

cancel out. However, as equation (20) shows, the Price of Anarchy is dependent on ଵܽ and, in

particular, as ଵܽ→ ∞, ߩ ՜ ͳ.

This dependence is illustrated by three numerical examples of the lollipop network shown in

Figure 7.1, which have coefficients ଷܽ = 2, ଶܾ = 1 and ଷܾ = 0.1, with values of ଵܽ equal to 1, 3

and 5. The variation of the Price of Anarchy with travel demand ݍ for these three examples is

shown in Figure 7.2. This figure demonstrates how values of the Price of Anarchy fall as the

free-flow cost component increases.

DO
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Figure 7.2 - The Variation of the Price of Anarchy with Travel Demand in Several Instances of
the Lollipop Network shown in Figure 7.1

This example demonstrates that as the minimum travel cost that an individual traveller must

pay to transit from their origin to their destination, which is the cost of the shortest path in

free-flow conditions, becomes a larger proportion of the overall travel costs for the journey,

the smaller the Price of Anarchy becomes. Therefore, whilst it is true that the Price of Anarchy

captures the benefits of rerouting relative to the total cost of travel, it is argued that the Price

of Anarchy masks the still potentially significant absolute benefits of rerouting. This is

particularly significant in real road traffic networks because the free-flow component of cost

typically represents a significant proportion of total travel cost (Correa et al., 2008). It also has

implications for real models of road traffic networks in which constant cost centroid

connectors are used to represent the cost of travel for travel flows entering a network from

locations far outside the boundary of the network under study.

7.3 Price of Anarchy Delays: An Alternative Measure of the Inefficiency of Selfish

Routing

In order to capture the absolute benefits of rerouting, this section proposes an alternative

measure of the inefficiency of selfish routing called ‘Price of Anarchy Delays’. This measure,

which is defined below, isolates and compares the relative difference under UE and SO of only

those cost components that are directly affected by the routing of flows, i.e. the second and

third cost components in equation (19). In excluding free-flow costs; the first cost component
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in equation (19), this new measure excludes the section of cost that is unavoidable to

travellers and which cannot be altered by the routing strategy. Price of Anarchy Delays is

defined as follows.

Definition 7.1: For a given road traffic network ܰ)ܩ ,(ܣ, with cost functions ܿ and demand

matrix ܳ, Price of Anarchy Delays; denoted ,ௗߩ is defined as:

ௗߩ =
௎ாܥܶܶ − ∑ ଵܥ

௥(0)ݍ௥௥

ௌைܥܶܶ − ∑ ଵܥ
௥(0)ݍ௥௥

=
∑ ൫∑ ௞݂,௎ா

௥ ௞ߛ
఑ೝ
௞ୀଶ + ∑ ௞݂,௎ா

௥ ௞,௎ாܥൣ
௥ ൫݂ ௞,௎ா

௥ ൯− ௞,௎ாܥ
௥ (0)൧

఑ೝ
௞ୀଵ ൯௥௦

∑ ൫∑ ௞݂,ௌை
௥ ௞ߛ

఑ೝ
௞ୀଶ + ∑ ௞݂,ௌை

௥ ௞,ௌைܥൣ
௥ ൫݂ ௞,ௌை

௥ ൯− ௞,ௌைܥ
௥ (0)൧

఑ೝ
௞ୀଵ ൯௥௦

Figure 7.3 shows how Price of Anarchy Delays varies as travel demand is increased in the same

numerical examples displayed in Figure 7.2, in which the free-flow cost component varies from

ଵܽ = 1 to ଵܽ = 5. Only one graph is visible because all three graphs actually overlap. This

illustrates how Price of Anarchy Delays is independent of the free-flow travel cost component.

A comparison of Figure 7.2 and Figure 7.3 also reveals that the values of Price of Anarchy

Delays are significantly higher than values of the Price of Anarchy and are also much closer, at

their maximum, to the upper bound of Roughgarden (2003), which is also shown by the dotted

line in Figure 7.3.

Figure 7.3 - The Variation of the Price of Anarchy with Travel Demand in the same instances
of the Lollipop Network shown in Figure 7.2

This thesis does not propose that Price of Anarchy Delays is a better measure of the

inefficiency of selfish routing than the Price of Anarchy, but rather that it provides an

alternative point of viewpoint that complements the existing measure.
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To visualise the additional insight that is provided by Price of Anarchy Delays consider the

following real-world example; consider an individual commuter travelling from home to work

for whom, on a normal weekday, under the assumption that all travellers act selfishly under

the UE principle, such a journey takes 30 minutes of travel time. Now suppose that if travellers

were to cooperate with each other, i.e. they were to choose routes under the SO principle,

that the journey would take 20 minutes of travel time21. The Price of Anarchy for this

commuter is therefore 1.5, i.e. the commuter experiences a 50% longer journey time because

of selfish behaviour. However, now suppose that if the roads where empty, it would still have

taken 10 minutes for the commuter to travel from home to work. This is time that the

commuter could not have avoided and so cannot be altered by a change in routing behaviour,

i.e. from UE to SO. Under UE the commuter therefore incurred 10 minutes of fixed travel time

and 20 minutes of delays due to congestion. Under SO the commuter would still have incurred

10 minutes of fixed travel time but only 10 minutes of delays to due to congestion. Price of

Anarchy Delays for this commuter is therefore 2. The differing insights provided by the Price of

Anarchy and Price of Anarchy Delays for this example are, respectively, that the commuter

experiences 50% more journey time due to selfish routing behaviour but 100% more delay.

The focus of Price of Anarchy Delays on the delays component of travel cost is particularly

useful because, without resorting to significant infrastructure investments; e.g. by constructing

new roads, the delay component is the principle part of travel time that a network manager

can influence through policy interventions. Travel delays are used as a standard measure of

network performance by public authorities. For example, in their 2012 Urban Mobility Report

the Texas Transportation Institute used travel delay, aggregated across all road users and over

a year, as a key performance indicator (Schrank et al., 2012). These arguments show how Price

of Anarchy Delays could be of practical use to network managers.

7.4 An Upper Bound for Price of Anarchy Delays

Having established a new measure of the inefficiency of selfish routing, this section proves that

the Roughgarden (2003) upper bounds for the Price of Anarchy also apply to Price of Anarchy

Delays. However, before presenting this proof, an intermediate result is required that proves

that Price of Anarchy Delays is invariant to the addition of a constant cost ௥ܤ to each route

݇ ∈ ,௥ܭ for each OD movement ݎ in a given road traffic network. This is the subject of

proposition 7.1.

21 This assumes that this individual traveller benefits from cooperative behaviour. Across all
travellers some will benefit and some will lose out in comparison with the travel time they
would have had under UE.
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Proposition 7.1: Consider a traffic network ܩ for which Assumption A1 of section 6.2 holds,

with cost functions ௜ܿand serving a given demand ܳ with entries ௥ݍ > 0. Suppose that route

costs ௞ܥ
௥௦( ௞݂) are subject to the following transformation, for some constant costs :௥ܤ

ሙ௞ܥ
௥( ௞݂

௥) = ௞ܥ
௥( ௞݂

௥) + ௥ܤ (21)

Price of Anarchy Delays is invariant under the transformation of route costs shown in equation

(21).

Proof: Proof of the proposition comes in two parts. It is first shown that link flows ௜ݔ are

invariant to such a transformation of route costs. The transformation is then substituted into

the definition of Price of Anarchy Delays to show the invariance.

To see that link flows ௜ݔ are invariant to such a transformation of route costs, suppose that

centroid connectors are appended to each node in a given traffic network ܩ such that each

origin node in ܳ has a separate inbound connector for each destination node in ܳ. This creates

exactly one centroid connector for each OD pair ,ݎ that each route ݇ ∈ ௥ܭ includes as part of

its sequence of links but that which is also exclusive to that OD movement, i.e. no routes

between any other OD movements use that centroid connector. The transformation of route

costs can therefore be achieved by adding the additional constant costs ௥ܤ for each OD

movement ontoݎ the corresponding inbound centroid connector whilst leaving the remaining

traffic network unchanged. As for the ‘lollipop network’ example shown in Figure 7.1, it is clear

that link flows, under both UE and SO, are invariant to these additional constant costs.

Now consider the effect of the transformation ሙ௞ܥ
௥( ௞݂

௥) = ௞ܥ
௥( ௞݂

௥) + ௥ܤ on ܥܶܶ for each OD

movement .ݎ Denote this cost as .௥ܥܶܶ From equation (19), for each OD movement underݎ

the route cost transformation, it follows that:

ේܥܶܶ ௥ = ሙଵܥ
௥(0)ݍ௥ + ෍ ௞݂

௥ ሙ௞ܥൣ
௥(0) − ሙଵܥ

௥(0)൧

఑ೝ

௞ୀଶ

+ ෍ ௞݂
௥ ሙ௞ܥൣ

௥( ௞݂
௥) − ሙ௞ܥ

௥(0)൧

఑ೝ

௞ୀଵ

= ௥ݍ௥ܤ + ଵܥ
௥(0)ݍ௥ + ෍ ௞݂

௥[(ܥ௞
௥(0) + (௥ܤ − ଵܥ)

௥(0) + [(௥ܤ

఑ೝ

௞ୀଶ

+ ෍ ௞݂
௥[(ܥ௞

௥( ௞݂
௥) + ௞ܥ)−(௥ܤ

௥(0) + [(௥ܤ

఑ೝ

௞ୀଵ

= ௥ݍ௥ܤ + ଵܥ
௥(0)ݍ௥ + ෍ ௞݂

௥ߛ௞
௥

఑ೝ

௞ୀଶ

+ ෍ ௞݂
௥[ܥ௞

௥( ௞݂
௥)−ܥ௞

௥(0)]

఑ೝ

௞ୀଵ

= ௥ݍ௥ܤ + ௥ܥܶܶ

(22)
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This derivation is valid for both UE and SO routing. Therefore, combining equation (22) with

definition 7.1 yields:

ௗූߩ =
ේܥܶܶ ௎ா − ∑ ൫ܤ௥ + ଵܥ

௥(0)൯ݍ௥௥

ේܥܶܶ ௌை −∑ ൫ܤ௥ + ଵܥ
௥(0)൯ݍ௥௥

=
∑ ௥ݍ௥ܤൣ + ௥ܥܶܶ

௎ா − ൫ܤ௥ + ଵܥ
௥(0)൯ݍ௥൧௥

∑ ௥ݍ௥ܤൣ + ௥ܥܶܶ
ௌை − ൫ܤ௥ + ଵܥ

௥(0)൯ݍ௥൧௥

=
௎ாܥܶܶ −∑ ଵܥ

௥(0)ݍ௥௥

ௌைܥܶܶ − ∑ ଵܥ
௥(0)ݍ௥௥

= ௗߩ

(23)

Price of Anarchy Delays is therefore invariant to a transformation of route costs of the type

defined by equation (21). ∎

It is important to note that the proof does not place any condition on the values ௥ܤ must take;

in particular, note that the result still remains true if ௥ܤ < 0 for one or more OD movements .ݎ

This is crucial for the proof of Theorem 7.2. The following result proves that Price of Anarchy

Delays is subject to the same upper bounds as those proved by Roughgarden (2003) for the

Price of Anarchy for road traffic networks with separable, polynomial form cost functions.

Theorem 7.2: Consider a traffic network ܩ for which Assumption A1 of section 6.2 holds, with

cost functions ௜ܿ= ௜ܽ+ ௜ܾݔ௜
ఉ೔ ( ௜ܽ, ௜ܾ,ߚ௜> 0) and serving a given demand ܳ with entries

௥ݍ > 0. Suppose that =݌ max௜∈஺ ,௜ߚ then the following statement is true:

ௗߩ ≤ 1ൣ − +݌)݌ 1)ି(௣ାଵ)/௣൧
ିଵ

i.e. Price of Anarchy Delays is subject to the upper bounds proved by Roughgarden (2003) for

the Price of Anarchy.

Proof: To see this, first note from equation (17) and definition 7.1 that in the special case

where ଵܥ
௥(0) = 0 for all OD movements ,ݎ ௗߩ = .ߩ Price of Anarchy Delays is therefore subject

to the same bounds as proved for the Price of Anarchy by Roughgarden (2003) in this case.

Secondly, note that proposition 7.1 proves that for a general multiple OD traffic network with

OD pairs ,ݎ Price of Anarchy Delays is invariant to a transformation of route costs ሙ௞ܥ
௥( ௞݂

௥) =

௞ܥ
௥( ௞݂

௥) + ௥ܤ for any constants .௥ܤ Proof of the theorem follows by implementing the cost

transformation ௥ܤ = ଵܥ−
௥(0) .ݎ∀ ∎

7.5 A Numerical Example in a Large Network

This section presents how Price of Anarchy Delays varies as travel demand is increased in the

single OD network example described in section 6.5.1. Recall that in this example, travel
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demand ݍ increases on the OD movement between node 20 and node 3 in the Sioux Falls

network. The variation of Price of Anarchy Delays with travel demand in this example is shown

in Figure 7.4 alongside values for the Price of Anarchy taken from Figure 6.8.

Figure 7.4 - The Variation of the Price of Anarchy ࣋ and Price of Anarchy Delays ࢊ࣋ against
the Demand Multiplier ࢐inࣀ Example 1 from section 6.5.1

As with the figures presented in section 6.5, the vertical lines in this figure represent levels of

demand corresponding to expansions (solid lines) and contractions (dashed lines) in the

minimum cost route sets under UE (green lines) and SO (red lines). Given the similarity of their

definitions, it is unsurprising that Price of Anarchy Delays is subject to exactly the same

mechanisms that govern the variation of the Price of Anarchy with travel demand that were

characterised in chapter 6. However, it can also be seen that values of Price of Anarchy Delays

are significantly higher than values of the Price of Anarchy, and also approach the upper bound

of Roughgarden (2003), which is identified by the black dashed line.
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8 Conclusions and Further Work

8.1 Introduction

This chapter summarises the main findings of the research presented in this thesis and

evaluates the extent to which the aims and objectives presented in the introductory chapter

have been achieved. Section 8.2 provides a summary of the main findings and original

contributions made by this thesis. Section 8.3 then describes the limitations of the research

presented and suggests how these could be addressed. Section 8.4 sets out a range of ideas

for further research.

8.2 Summary of Main Findings and Original Contributions

The main goal of this thesis was to explore how contributions and methodological approaches

from network science could be more appropriately and systematically applied to study how

the performance characteristics of road traffic networks vary with respect to the structural

properties of supply and demand. In the introductory chapter, it was argued that an

understanding of how different structures of network infrastructure and travel demand

combine to yield different performance characteristics would be useful for both transport

policy and network design because such understanding could help identify how existing road

traffic networks can be used more effectively (Mak and Rapoport, 2013), or how structural

features, which yield desirable performance characteristics, could be built into the

construction of new road traffic networks.

With this goal in mind, the research described within this thesis had two objectives:

1. To develop a systematic methodological approach, incorporating methods from network

science, for investigations of how network performance varies with respect to the

structural properties of supply and demand in road traffic networks, which is both

generally applicable to a wide range of performance phenomena and also provides an

intelligible foundation for further research.

2. To apply this methodology to identify and characterise relationships between one or more

aspects of supply and demand structure in road traffic networks and one or more

measures of network performance.

With reference to the first of these objectives, it was found, in chapter 2 of this thesis, that

network science led numerical studies of the effects of network structure on performance

have, thus far, used structures of network supply that are not plausible for road traffic
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networks and also that the existing experimental approach used by these studies does not

provide a coherent picture of how network structure affects performance. It was also

highlighted that these studies have not provided explanations for their findings, and that this

makes it difficult to generalise their conclusions to other families of networks.

In response to these deficiencies, this thesis has proposed an investigative framework, which

comprises experimental and analytical components. The experimental part of the framework

proposes a way of designing, conducting and recording the results of numerical experiments

that focus on studying spectrums of ensembles of synthetic road traffic networks, which

provide plausible representations of real road traffic networks and which also vary with

respect to specific aspects of network structure. The analytical component of this framework

then uses the results of the numerical component to develop explanations for observed

variations.

This thesis has then gone to demonstrate the application of this framework to study how two

performance indicators; the average link V/C ratio and the Price of Anarchy, vary with respect

to the density of travel demand, and the size, density and connectivity of network supply

structure. In so doing, a simple model of road network generation was proposed that is able to

generate networks with a wide range of structural properties, including ranges of values that

have been observed by empirical studies of real road traffic networks. Focussing specifically on

how the Price of Anarchy varies as travel demand is increased in traffic networks, this thesis

has then identified and characterised the effects of four mechanisms that govern this

variation. These are, specifically, expansions and contractions in the sets of routes, for each OD

movement, of minimum (marginal total) cost under UE and SO. In the special case of traffic

networks with cost functions of the form ௜ܿ= ௜ܽ+ ௜ܾݔ௜
ఉ

, for which ௜ܽ, ௜ܾ,ߚ > 0, this thesis has

also proven that there is a systematic relationship between levels of demand under UE and SO

at which expansions and contractions occur, and has conjectured that the Price of Anarchy has

power law decay for large demand.

By demonstrating the application of this investigative framework, this thesis has demonstrated

how this new approach is more comprehensive and systematic than previous studies in

network science. Unlike previous numerical studies in network science, this approach takes

advantage of the findings of empirical studies of network structure to motivate specific

research questions. It also enables the generalizability of findings to be evaluated because

performance phenomena are connected to specific aspects of network structure rather than to

the names of the models used to generate networks. The methodological approach that has

been developed therefore provides an intelligible foundation for further research, which was a

key requirement of the first objective. By establishing a series of theoretical results on the
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mechanisms that govern the variation of the Price of Anarchy with travel demand in chapter 6

and by providing an explanation for why values of the Price of Anarchy are typically small in

numerical experiments in chapter 7, it is also evident that significant progress has been made

under the second objective. This thesis has also proposed a new measure of the inefficiency of

selfish routing; Price of Anarchy Delays, which complements the insight provided by the Price

of Anarchy. Although outside the scope of the original objectives, this is nonetheless a

substantive and original contribution.

8.3 Limitations and Suggested Refinements

The research presented in this thesis is subject to the following limitations.

Firstly, whilst the investigative framework presented in chapter 3 represents an advance on

the approach utilised by existing studies in network science, it is also noted that the

application of its numerical component is limited to the consideration of variation within only

one aspect of supply or demand structure and therefore along only one structural dimension.

As has been described, the structural characteristics of road traffic networks vary within a

huge, multi-dimensional search space. Although the principles described within the

investigative framework are sound, it is hypothesised that the approach could be enhanced by

being seated within a broader statistical approach to the analysis of networks, similar to that

demonstrated by Levinson (2012) and Parthasarathi et al. (2012).

Limitations are also identified with respect to the application of the investigative framework

that has been demonstrated within chapters 4, 5 and 6 of this thesis.

It is noted that the model of road network generation included several simplifying assumptions

that restricted its ability to reproduce several structural features that have been observed in

real road traffic networks. For example, with respect to the distribution mechanism of nodes,

the assumption of a single road type, the assumption of a uniform distribution of travel

demand and the use of a road traffic model that did not include the effects of junction

interactions, which are known to be particularly influential on travel times in urban areas.

Simplifying assumptions were also made within the numerical experiments, particularly with

respect to the fact that the networks used were considerably smaller than real road traffic

networks. Some of these simplifying assumptions were necessary due to a lack of empirical

data on several key aspects of supply and demand structure (for example, link capacities,

junction types and the distribution of travel demand), and also in order to control the

computational burden and, therefore, practicality of the numerical experiments.

It is suggested that the research presented within this thesis would benefit from a model of

road network generation that incorporates the simultaneous development of supply and
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demand through an evolutionary process, which incorporates feedback effects and also allows

for a greater variety of traveller responses than simply route choice. On the supply side, the

models of Barthelemy and Flammini (2009) and Courtat et al. (2011) provide attractive starting

points that could be used to generate network connectivity structures that replicate more of

the features observed in real road traffic networks. A more complex traffic model could also be

used, which includes junction interactions and models the dynamic effects of traffic flow.

It should be noted however, that any increase in the complexity of the modelling used within

the experimental part of the framework would almost certainly increase the computational

burden of numerical experiments. This thesis has demonstrated that, even with experiments

that include the simplifications highlighted as limitations above, this burden is not insignificant;

recall that the numerical experiments presented in this thesis took approximately twenty-five

days of continuous running to be completed. Addressing this computational burden is

therefore a key objective for future research and it is suggested that research of the type

described in this thesis could benefit from being undertaken in an alternative computing

environment that is more suited to large scale calculation work, especially if more complicated

models are to be used. Such a development would also enable bigger networks, perhaps on

the scale of real road traffic networks, to be tested. In the context of these suggestions, a key

point to note is that the investigative framework is sufficiently general that it could

accommodate all of these proposed changes.

With reference to the application of the analytical component of the investigative framework

in chapter 6, it should be noted that several of the theoretical results of chapter 6 were

presented without proof. This statement applies to the results that described the effects on

the Price of Anarchy of expansions and contractions in minimum cost route sets under UE, and

also the power law decay in the Price of Anarchy for large demand. Although numerical

evidence presented towards the end of chapter 6 supports the claims of these conjectures, it is

noted that strict proofs are still required. The theory presented in this chapter was also

restricted to particular types of demand movements and route transition points. These results

could be further generalised by easing these restrictions; specifically, by allowing demand

movements to move freely both up and down, allowing adjacent route transition points and

also allowing simultaneous expansions and contractions in minimum cost route sets. This is

likely to require further numerical work to explore what can be established in these more

general settings.
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8.4 Opportunities for Further Research

In addition to the suggested refinements made alongside the limitations highlighted in the

preceding section, there are also several fertile areas and opportunities for further research,

which can build upon the contributions made within this thesis.

Overall, it is the aspiration of the author that the investigative framework proposed by this

thesis is an approach that can be used by other researchers in the transportation community

to study how structure affects performance in road traffic networks. This thesis focussed on

four aspects of network supply and demand structure but there are many other aspects that

this thesis did not explore; for example the effects of different road hierarchical structures. It is

also noted that the effects of the distribution of travel demand on network performance were

not investigated by this thesis and remain largely unstudied across network science studies

more generally. Researchers could also choose to focus on different aspects of performance

and different performance indicators than those presented within this thesis. One particularly

interesting idea to the author is that of exploring how network structure affects the

propagation of congestion caused by high traffic volumes or traffic incidents within traffic

networks, and also how quickly a traffic network can subsequently recover to a more normal

level of service. This would require a road traffic model that includes junction interactions,

blocking back effects and time dynamics (Snelder et al., 2012). It is also noted that other

important aspects of performance phenomena could be investigated such as environmental

indicators.

In order to apply the investigative framework to investigate how different aspects of supply

and demand structure affect performance, further empirical studies of a much wider array of

structural characteristics of road traffic networks are required. The literature review in chapter

2 identified that existing empirical studies of supply structure in network science have

focussed almost exclusively on the topological and geometric properties of road traffic

networks in urban areas. They have therefore not yet explored the structural characteristics of

other features such as link capacities and junction types. Future empirical studies would also

need to address the criticisms made, in section 2.3.1.4, of existing studies from network

science with respect to how raw network data is processed and also of incorporating a much

larger number of different areas for comparison. Open Street Map data offers a promising

source of data for further work in this area; see, for example, Corcoran and Mooney (2013).

Further empirical studies are also required on the demand-side, although it is noted that these

may currently be somewhat inhibited by the difficulties of data collection.

From a broader perspective, it was noted in the scope of the research set out in chapter 1 that

this thesis would not provide a comprehensive review of all past work in geography, spatial
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science and urban studies. There is therefore a future research opportunity to explore how

ideas and methodological approaches from these research areas relate to the methodological

approach presented in this thesis. Finally, it is also highlighted that, with appropriate changes

to the modelling approach, the proposed framework could also be applied to study the effects

of network structure on performance for other transport modes such as urban rail and

passenger transit systems.
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10 List of Abbreviations

DfT Department for Transport

ICN Intersection Continuity Negotiation model

MST Minimum Spanning Tree

OBA Origin-Based Assignment

OD Origin-Destination

PAS Paired Alternative Segment

SO System Optimum

TAPAS Traffic Assignment by Paired Alternative Segments

TTC Total Travel Cost

UE User Equilibrium


