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Abstract 

 

This thesis consists of three chapters. They are on three different topics, but they 

are related in the sense that they are concerned with decision-making under risk 

or uncertainty.  

 

In Chapter 1, we use an analogy of walking through fog to explain the problem 

under study. Fog has the property that vision becomes less and less clear the 

further ahead that you try to look, and after a certain distance you simply cannot 

see anything. In the experiment, the subject’s aim is to travel across the foggy and 

hilly terrain with minimum energy expenditure. This problem, although set in a 

non-economic context, obviously has relevance to many economic problems. 

 

Chapter 2 is about elicitation methods for discovering subjects’ risk preferences. 

The concern of the experiment is to compare four different methods used for 

eliciting the level of risk aversion. We carried out an experiment in four parts, 

corresponding to the four different methods and our methodology involves fitting 

four different preference functionals. Our results show that the inferred level of 

risk aversion is more sensitive to the elicitation method than to the assumed-true 

preference functional. Experimenters should worry most about context. 

 

Chapter 3 is about the interrelationship of decisions which come in a series. The 

validity of Random Lottery Incentive mechanism has been investigated in two 

main ways: first, just two decision problems, and second, many problems. This 

chapter combines and extends these two ways by investigating a cognitively 

less-demanding hypothesis than that all previous decisions are taken into account, 

but allows for an indirect effect of previous decisions on current ones. 

Reassuringly we find little effect and hence our results complement the previous 

evidence indicating that the Random Lottery Incentive mechanism is robust and 

can safely be used.  
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Chapter 1. Walking through the Fog
1

 

1.1 Introduction 

Consider a typical dynamic problem - that of planning the optimal lifetime 

path of consumption conditional on income. If future incomes are certain 

the optimising process is conceptually straightforward (though it may be 

technically complex). If the future incomes are uncertain, there are two 

paths that can be followed. If future incomes are risky, and probability 

distributions are specified for incomes at each date, then the 

Decision-Maker (DM) can optimise by maximising the expected utility2 of 

consumption over the cycle; the DM could solve the problem by backward 

induction. If future incomes are ambiguous, but can be characterised in 

some way (by sets of possible probabilities for example) then it could be 

assumed that one of the relatively new preference functionals for 

decision-making under ambiguity would be employed; once again 

backward induction could be used.  

 

Note that all these methods assume that the DM either knows the 

distributions of future incomes or is prepared to make some assumptions 

about them. Now consider a situation where the DM is told nothing about 

incomes after a certain point in the future. In principle it could be modelled 

by assuming that the DM translates this information into some 

                                                 
1 This chapter is a joint work with John Hey, and financially supported by Daniela Di Cagno 

(LUISS, Rome, Italy). 

2 Or some other objective if the preferences are not Expected Utility. 
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distributions. But it depends on how ‘being told nothing’ is interpreted. 

One way of interpreting this is as saying that the distribution of such 

incomes is unbounded. But taking expectations in such a case may lead to 

an expected utility, under all actions, of minus or plus infinity. In such a 

case, attempts to optimise over the complete future would be impossible. 

An alternative story would be that the DM could be modelled as looking 

only a short way forward – perhaps just as far as he or she can ‘see’ – and 

rolling this short horizon forwards as time passes. Clearly this does not use 

backward induction from the true horizon and cannot be considered the 

optimal strategy – either objectively or subjectively so. 

 

In such a situation, an individual whom we would call rational in some 

sense will still aim to work out a strategy to maximise his or her utility. 

Here in this chapter we are interested in what they do – in a problem 

where there is ‘no’ information sufficiently ‘far away’.  

 

In this chapter, we investigate, in a situation where full information is not 

available, human decision-making. We cannot observe human behaviour 

directly in field, mainly because we cannot control the environment while 

trying to do so might raise ethical issues, as well as implying time problems. 

Thus, we have designed a laboratory experiment which retains the nature 

of this problem, and which can be finished within a reasonable time-slot 

without any ethical issues. 
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Our experiment also incorporates a further important extension, one in 

which backward induction may not only be computationally difficult or not 

lead to a solution, but one in which ‘backwards’ is not defined. The 

economic problem mentioned above is set in a one-dimensional (with the 

one dimension being time) world, in which ‘backwards’ is clearly defined, 

with the decision-maker starting in some time period t1 and stopping in 

time period t2. Consider however a two-dimensional problem. Label the 

two dimensions x and y. Suppose the decision-maker starts at some point 

in this 2-dimensional world (x1,y1) and the problem is to get to some other 

point (x2,y2) with some objective in mind. Passing through points on the 

way costs money (which is defined by the nature of the problem) and the 

objective is to get to the destination with the minimum expenditure. Now 

clearly if (x1,y1) and (x2,y2) do not share the same x values or the same y 

values (and even if they do) there is no obvious way ‘backwards’ from (x2,y2) 

to (x1,y1). Hence finding the optimal way from the start to the destination is 

not a backward induction problem – we shall explain in more detail later.  

 

An example of such a problem is one where the decision-maker is a firm 

and wants to move from some initial factor combination to a new one, but 

can only do this in steps of a given size at any one time. Production has to 

occur in the meantime, and certain factor combinations are less efficient 

than others. There are costs to changing the factor inputs. This problem 

cannot be solved by backward induction, simply because there is no 

obvious meaning to the word ‘backward’. It may be better to pass through 
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an intermediate stage of production where one or both of the factor inputs 

are outside the range from the initial factor combination to the final one, 

than go ‘directly to the final one. 

 

The experiment we have designed is called “Walking through the Fog”. In 

the experiment, the subject is asked to take a series of decisions. These 

decisions are not independent. A previous decision determines the option 

set for the next decision. His or her payoff will be shown at the end of the 

experiment, and is dependent on all the decisions that he or her has made. 

More specifically, in the experiment the subject has to travel across a map 

and reach a destination. She or he consumes energy while travelling. And 

the expenditure of energy is dependent on how hilly is the route that she 

or he has chosen. His or her aim is to reach the destination with the least 

energy expenditure. Or in other words, his or her aim is to find a flattest 

route from current position to the destination. She or he can find such a 

route if she or he can see the whole map clearly. However, to make the 

experiment interesting and relevant to the problem that we outlined, the 

terrain is foggy. The subject can vaguely see the terrain around him or her. 

But if the distance is too far, due to the fog, she or he can see nothing. 

Although this experiment is based in a non-economic context, it can be 

easily applied to many economic problems. We can gather the data which 

share the same nature with the economic problem we are interested in. 

 

There is a good example in industrial organisation. Suppose a supermarket 
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provides discount on a specific day each week to attract customers. Thus, 

on that day the profit brought by big demand covers the loss from discount. 

However, if the supermarket provides discount on more than one day in a 

week, the loss cannot be covered by the profit. And if it does not provide 

discount at all, it will suffer a loss since the customers might be attracted 

by competitors. Given the background, the supermarket faces a 

decision-making problem every working day – to discount, or not to 

discount?  

 

In order to make a decision which maximises profit, the supermarket has to 

consider about the dimension of time. Discount today or postpone it? How 

its competitors will react to this decision in the future? Will such reactions 

enhance or weaken its profit in the future? The supermarket also has to 

consider about the dimension of space. What other events happen in the 

same time while it is making decision? For example, is its competitors 

providing discount now? Is there any important event just in the market?  

 

The supermarket has to make a decision every working day with 

considering both of the two dimensions. Since it cannot predict the future, 

it may have some vague ideas about the near coming days, but know very 

little if the future is too far. For example, suppose now is Monday, the 

supermarket might have some expectation about Tuesday, and some 

vague information about Wednesday. However, it might have little 

prediction about Sunday. 
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In section 2, the design of the experiment is introduced. There we also talk 

about the implementation of the experiment. In section 3, we discuss the 

algorithm to find the optimal route without fog. Data from the experiment 

is analysed in section 4. We build several strategies and to see which one 

fits the subjects best. In section 5, we conclude, and discuss our plan of 

future research.  

 

1.2 The Experiment 

1.2.1 Introduction 

With full information, it is possible for a person to work out an optimal 

strategy to maximise his or her utility in a dynamic decision-making 

problem. Here “full information” means accurate information about the 

future, or an appropriate distribution of the possible outcomes in the 

future. However, in the real world, not only the accurate information, but 

also the distribution of the possible outcomes is unavailable in many 

situations. Or even if the distribution is obtained, with huge variance, it is 

uninformative. For example, a possible value is equally likely to be between 

zero and infinity. We cannot have any useful inference from such 

information, since the expected value of that outcome is infinite.  

 

Nevertheless, rational people still try to maximise their utility or payoff by 

some strategy. Indeed we found from our experiment that some of them 

have achieved an outcome which is not too far from the optimal strategy 



7 

 

with full information. 

 

We are interested in the question as to whether, in the situation without 

full information, what people do to try and maximise their utility or payoff. 

We are curious about what kind of strategies they employ, and what kind 

of outcomes these strategies lead to. The seemingly direct way of getting 

data for this topic is observing people making decisions in the field. But it is 

unrealistic. First, in field, some series of dynamic decision-making can run 

through the whole life span. It is impossible to observe a person’s whole 

life closely and record every decision made by him or her for examination. 

Secondly, even if some kind of series of decisions can be observed in a 

relatively short time span, a person may not want to reveal all the 

decisions made, due to ethical issues or other reasons. Thirdly, even if a 

person would like to reveal all his or her decisions in a specific time span, 

some important decisions which affect the outcome heavily may still be 

excluded unwittingly. For example, a small thing ten years ago might be a 

vital reason for today’s outcome; but it may have been ignored not only 

because of the passage of time but also because how small it is. 

 

We turn to a laboratory experiment since it is impossible to gather the data 

in the field for our research question. A laboratory experiment has several 

advantages. First, the experiment can be run in about one hour. A group of 

subjects can do the experiment simultaneously. Thus we can gather a 

considerable amount of data in a relatively short time span. This is much 
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more efficient than gathering data in field. Second, the experiment can be 

designed in a specific context without any ethical issues or problems of 

personal privacy. Third, the experiment can be designed to rule out all 

outside interference, so that the outcome of the experiment is only 

affected by the decisions made in the experiment.    

 

In order to build a one-to-one mapping from the field topic to a laboratory 

experiment, we construct a story which is a metaphor of the topic. In the 

story, a person is travelling across hilly countryside. She or he consumes 

energy while moving uphill or downhill. Although the absolute difference is 

the same, uphill and downhill consume different amount of energy. She or 

he has an incentive to reach the destination with the minimum energy 

expenditure. In other words, she or he wants to follow a cheapest/optimal 

route to reach the destination. If she or he can see the whole terrain clearly, 

it is possible for him or her to work out an optimal route. Unfortunately, 

the terrain is foggy. She or he can only have some vague information of the 

terrain around. And if the distance is too far, she or he can see nothing at 

all. We would like to observe, under such a situation, people’s behaviour of 

trying to identify the optimal route. 

 

The experiment was implemented in Visual Studio. We use maps from the 

real world for our experiment. There are four journeys each with a 

different map in a session. The payoff for each journey is the endowment 

minus the total energy expenditure of that journey. Thus, in order to 
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maximise his or her payoff, a rational subject’s aim is to find the optimal 

route with the least energy expenditure. To mimic the fog, the subject 

cannot see the terrain of the map freely. The maps are divided into squares. 

Each square contains a number which denotes the height of that area. The 

subject can see the height of the square which shares a boundary (one 

square away) with his or her current square. However, if the square is two 

square-away from the current square, she or he can only see a range. For 

the squares which are three squares away from the current square, the 

range is even wider. For the further squares, the subject can see nothing.  

 

There are four treatments in the experiment. Each subject only experiences 

one treatment. Each treatment contains four journeys with four different 

maps. But the four maps are the same four across treatments. The 

difference between treatments is the distance the subject can see and the 

width of the ranges. Table 1.1 provides a summary. If the range is denoted 

as ∞ it means that in that treatment the subject can see nothing at that 

distance. 

Table 1.1: Ranges across Treatments 

 

In the experiment, once the destination of a journey is reached, the subject 

can start the next journey. The experiment ends when all the four journeys 

Ranges Across Treatments 

Treatment One square away Two squares away Three squares away 

1 0 20 50 

2 0 20 ∞ 

3 0 40 100 

4 0 40 ∞ 
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are finished. Then one of the four payoffs is randomly selected for 

determining the payoff to the subject. The payoff can never be negative. If 

the energy expenditure exceeds the endowment, the payoff is zero. The 

rest of this section contains details of the experiment. 

 

1.2.2 The Background Story 

In the story, the subject is supposed to be walking through countryside. His 

or her aim is to reach a specific destination with energy expenditure as low 

as possible. Unfortunately, the terrain is hilly. Thus, the subject may have 

to move uphill or downhill. Such activities cause energy expenditure. To 

make matters worse, the terrain is foggy. So the subject cannot directly see 

and plan a flattest route with the least energy expenditure from his or her 

current position to the destination. 

 

Due to the thick fog, the subject does not have even a rough idea about 

how the terrain between his or her current position and what the 

destination looks like. She or he can only vaguely see the terrain around 

him or her. If the distance is too far, she or he cannot see anything, 

because the fog is so thick. 

 

Given the conditions above, regardless of energy expenditure, reaching the 

destination itself looks like an impossible mission. But luckily, the subject 

has several items of equipment for helping. First, she or he has a map 

without contours. So she or he knows on the map where his or her starting 
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point is and where the destination is. Secondly, she or he has a compass. 

So she or he knows to which direction the destination is. Combining these 

two tools, she or he can always check where his or her current position is, 

and how far away the destination is from the current position, without 

knowing the terrain between the two points. 

 

Before the journey, the subject knows that, as a human-being, she or he 

has to spend energy while moving. To simplify, only moving uphill or 

downhill consumes energy. Moving through a flat route does not consume 

any energy.  And as is the case, she or he spends more energy moving 

uphill than moving downhill. Given that she or he cannot see the terrain 

around clearly, and even cannot see anything if the distance is too far, she 

or he has to find an optimal route with the least energy expenditure 

possible to reach the destination. As we have described before, in this way, 

the subject can attempt to maximise his or her utility/payoff. 

 

The subject has to fulfil an aim, which involves a lot of decision making. In 

our story, walking from the start position to the destination with the least 

energy expenditure is the aim. "With the least energy" implies "maximise 

utility", since using energy means negative experience. 

 

The thick fog simulates the condition that, in real world, people cannot 

predict the future. She or he only has some vague information of the near 

future. In the experiment, the subject cannot see the terrain between his 
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or her current position and the destination. Thus she or he cannot directly 

pick the flattest route with the least energy expenditure. However, in real 

world, people have to make series of decisions under this condition. And in 

the experiment, the subject has to make series of decisions of where to 

move to at every step.  

 

As a result, the story is an abstraction of economic problem. By observing 

and analysing subjects’ behaviour in the story, we can infer something 

about their behaviour in real world. Our experiment is based on such a 

story. 

 

1.2.3 Experiment Design 

1.2.3.1 Programming 

1.2.3.1.1 Moving Rules 

The experimental interface is programmed in Visual Studio. In the 

experiment, there are four different maps for travelling. These maps are 

modified from different parts of the real world, though the subjects do not 

know which parts they are. The map has been divided into 200 by 200 

squares. Every square contains a non-negative integer which denotes the 

height of that square. 

 

When the subject moves from one square to another, she or he spends 

energy. As we explained in the story, moving up uses more energy than 

moving down. More precisely, moving up is using energy equal to twice the 



13 

 

difference between the heights of the two squares, while moving down is 

using energy equal to the difference between the heights of the two 

squares.  

 

For example, if the height of the subject's current square is 50, and the 

height of the square to which the subject has decided to move is 55, then 

the subject is moving up, since 50 is smaller than 55. His or her energy 

expenditure is 10, which is twice the difference between the heights of the 

two squares. 

 

If the height of the subject's current square is 55, and the height of the 

square to which the subject has decided to move is 50, then the subject is 

moving down, since 55 is larger than 50. His or her energy expenditure is 5, 

which is the difference between the heights of the two squares. 

 

1.2.3.1.2 Decision Making 

In the experiment, the subject's aim is to move from the start position to 

the destination with the least energy expenditure. Thus, for each journey, 

the subject has to decide which square to move to at every step. The four 

journeys are completely independent. Energy expenditure of one journey 

does not affect the others. 

 

The subject starts from the centre square which is in the 101st row and 

101st column. The square is shown in the centre of the screen. And she or 
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he has to move between squares till they reach the destination. While 

travelling across the map, the subject can only move to the squares which 

share a boundary with his or her current square. In other words, she or he 

can only move to the adjacent square up, down, left or right relative to the 

current square. 

 

Figure 1.1 is an illustration of the moving rule. At the beginning of each 

journey, the subject has to click the square with "Start" on it. Then she or 

he has four options, up, down, left, and right. That is, at this step, she or he 

can only move to the four squares with "*" on them. She or he has to 

decide which one to move to. 

 

Figure 1.1: An Example for the Rule of Moving 

 

From Figure 1.1, there is no useful information for helping to make decision. 

However, in the experiment, once the subject clicks the "Start" button, she 

or he will have some information about the true heights of nearby squares. 

Figure 1.2 is an example. 
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In Figure 1.2, the subject's current position is in the centre of the picture. It 

is denoted by a dark-grey square. And the subject can see that its height is 

370. And the subject can see three-squares away from his or her current 

position. 

 

The four green squares in Figure 1.2 are squares to which the subject can 

move. They are disabled until ten seconds have elapsed. The subject is 

forced to wait at least ten seconds before they can go to the next step. 

Such a design is to restrict the subject from just fast clicking without 

thinking. While green, the squares are selectable. And the subject can 

make a decision for this step. She or he can find the exact height of the 

four squares. 

 

She or he might want to consider a bit further. Unfortunately, she or he 

cannot get the exact height of those squares which are not adjacent to his 

or her current position. But she or he still has some vague information 

about the range of the true value. 

 

From Figure 1.2, if a square is two squares away from current position, the 

subject can see a range which contains the true height of that square. The 

interval of the range is 20. More precisely, in this example the range 

contains 20 integers. For example, if the range is 1-20, it contains 20 

integers (all heights are given to the nearest integer). The true height of the 
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square is one of the 20 integers all with the same probability. Subjects are 

told this. 

 

Figure 1.2: A Screenshot for the Experiment Interface in Treatment 1 

 

If a square is three squares away from current position, the interval of the 

range in this example is 50, since the fog is increasing as the distance is 

increasing. Further, in this current example, if a square is more than three 

squares away from the current position, the subject is told nothing about 

its height; the distance is too far. 

 

We should note that in the experiment, information is not always like this; 

it depends upon the treatment. There were four of them. Figure 1.2 is from 

treatment one. In treatment one, subject can see three squares away, with 

intervals of width zero, 20, and 50. In treatment two, subject can see only 

two squares away, with intervals of width zero and 20. In treatment three, 

subject can see three squares away, with intervals of width zero, 40, and 

100. And in treatment four, subject can see only two squares away, with 
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intervals of width zero and 40. 

 

Thus, the four treatments differ with information quality and quantity. 

Table 1.2 illustrates. Treatment one has information with both higher 

quality and higher quantity. And treatment four has information with both 

lower quality and lower quantity. Or in other words, treatment four is 

much foggier than treatment one. 

  

 

 

 

 

Table 1.2: Information Quantity and Quality across Treatments 

 

1.2.3.1.3 Interface 

Figure 1.3 is the screen display at the beginning of a journey. The main 

body is the map. Due to space limitations, subjects are only shown a part of 

the map. Here it is an 11 by 11 matrix. As the subject moves across the 

map, the boundaries roll. The subject always stays in the centre of the 

matrix. In other words, if the subject is moving towards the destination, 

actually it is the destination moving towards to him or her. 

  
Quality 

High Low 

Quantity 
High T1 T3 

Low T2 T4 
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Figure 1.3: A Screenshot of the Interface before Starting 

 

On the top left of the screen, it shows the number of the current journey. 

There are four journeys with different maps in a session of the experiment. 

The four maps are the same four across treatments. 

 

At the upper-right corner, there is a timer. After one click, the subject has 

to wait 10 seconds to make the next click. If she or he clicks before the 

timer has reached zero, nothing happens.  

 

Below the countdown, there is a box showing how much energy 

expenditure has been spent on this journey. Energy expenditure is 

independent from journey to journey. Once a new journey starts, the box 

shows energy expenditure from zero. 

 

Under the expenditure box, there is the endowment-remaining box. In 

each session, endowments vary from journey to journey (because the 
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journeys vary in difficulty). Across the four treatments, the four 

endowments are the same. From journey one to journey four the 

endowments are £21.00, £25.50, £25.50, and £36.00. The ‘endowment 

remaining’ is the endowment minus the energy expenditure, with an 

exchange rate of one point of energy expenditure equalling 1.5 pence3; the 

endowment remaining cannot be negative - if the energy expenditure 

converted to pounds exceeds the endowment, the endowment remaining 

will stay zero. 

 

At the end of each journey, the endowment remaining is the payoff of this 

journey. 

 

Figure 1.4: A Screenshot of the Interface after Starting 

 

Figure 1.4 is an example of an ongoing journey in treatment one. On the 

map, the subject can see three squares away with intervals zero, 20, and 50. 

                                                 
3 We did the experiment twice. For the one in May 2013, the exchange rate of one point of energy 

expenditure equalling 1 penny. For the one in Nov 2013, the exchange rate of one point of energy 

expenditure equalling 1.5 pence.  
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Once she or he knows the height of a specific square, the height stays on 

that square and will not be replaced by vague information. 

 

The current position is always in the centre of the screen. The adjacent 

squares are red because the countdown has not reached zero. Thus the 

subject cannot make a decision. There are still five seconds to elapse. Once 

the countdown reaches zero, the four squares turn to green and clickable. 

 

The expenditure box shows that, up to now, the subject has spent 56 

points of energy, which equals 84 pence, or £0.84. 

 

Since the initial endowment for journey one is £21. The endowment left is 

£21 minus £0.84, which is £20.16. It is shown in the endowment-remaining 

box. 

 

The destination is not shown on the map of Figure 1.4, since it is too far 

away from the current position and out of the 11 by 11 matrix. However, 

the subject can always check how far away and in which direction the 

destination is. This information is given below the expenditure-remaining 

box; it shows that the destination is 12 squares up from and 15 squares to 

the right of the current position.  

 

In Figure 1.5, the destination square has appeared on the map, since now 

the current position is close enough to the destination. The current 
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position is still in the centre of the map. So actually, it is the destination 

moving towards the subject, who is always staying in the centre of the 

map. 

 

Once the destination square is reached, the journey is finished. A message 

box shows with the payoff of this journey. Then the subject can click a 

"Start" button to enter the next journey. 

 

Once journey four is finished, the whole experiment is finished. The screen 

turns out to one like Figure 1.6. The payoff of each of the four journeys are 

shown. One of them is randomly selected to be constitute the payoff for 

the experiment as a whole. 

 

 

Figure 1.5: A Screenshot for a Nearly Ending Journey 
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Figure 1.6: A Screenshot for the Payoff Summary after the Experiment 
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1.2.3.2 Data for the maps 

The maps of the four journeys come from different parts of the real world. 

Real data is used instead of randomly-generated data.  

 

The experiment is a metaphor of a series of decision making. In the real 

world, events in a sequence have some kind of relationship between each 

other. They are not completely independent. Thus, if we use data which is 

randomly generated by computer and the elements of which are 

completely independent of each other, it would become a bad metaphor. 

For example, there might be a peak next to an abyss. But this case seldom 

occurs in the real world.  

 

We considered adding some correlations on randomly-generated data. 

However, it is impossible, because this process will cause bias. We tried to 

put some parameters which relate to adjacent elements while generating a 

new element. However, a computer cannot generate the whole map 

simultaneously. If there is an order of data generating, there is a bias. Since 

new elements always depend on the existing adjacent elements. And it is a 

one-direction relationship between elements.  

 

Thus we decided to use real data to build the map. There is innate 

correlation of geographic elements. And such correlation is bidirectional 

rather than depending on a specific direction. 
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We get the data from CGIAR CSI (Consultative Group for International 

Agricultural Research - Consortium for Spatial Information). The name and 

version of the database is SRTM (the NASA Shuttle Radar Topographic 

Mission) 90m Digital Elevation Database v4.1. And the pictures of the four 

maps are shown in Figure 1.7. From left to right and from top to bottom, 

they are journeys one, two, three, and four. 

 
 

 
 

  
 

Figure 1.7: The Four Maps used in the Experiment 

 

We deliberately choose maps which are quite hilly. The size of a map is five 

degrees of latitude by five degrees of longitude. Each map is divided into 

6000 by 6000 squares. The width and length of each square is 

approximately 90 metres. 

 



25 

 

However, the 6000 by 6000 matrix is too large to our experiment. First, 

limited by time, subject can only go through a very small part of the map. 

Thus the large matrix is a waste and it is unnecessary. Secondly, to run a 

6000 by 6000 matrix is a computational burden for computers.  

 

In order to modify the data for our experiment, we did some aggregation. 

We treat the 6000 by 6000 matrix as a 200 by 200 matrix with each 

element is a 30 by 30 matrix. Then we calculate the average value of the 30 

by 30 matrix. In this way, we reduce the large matrix to a 200 by 200 matrix 

with each element of an integer. This method simplifies the map. And the 

interrelationship of each element is retained. 

 

In the experiment, we did not tell the subject which parts of the world the 

maps are. Thus we avoid providing them any hints of the journey.  

 

1.2.4 Experiment Implementation 

In the experiment there were four sessions each with four different 

treatments. There were 12 subjects in each session; each session lasted 

about one hour, though subjects were allowed to go at their own speed. 

 

Since the experiment is an individual experiment, subjects were not 

allowed to communicate with others. The results were anonymous and 

kept as private information. 
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Before subjects entered the laboratory, they were asked to randomly draw 

a piece of paper which contained a number. This number was their seat 

number. In this way, subjects were randomly seated. Every seat was 

equipped with a computer, a set of Instructions (see the Appendix), and a 

pen. 

 

After all subjects had been seated, the experimenter read the instruments 

from the front of the lab. Then the subjects were given five minutes to read 

the instructions and finish a set of control questions. During this period, if 

they had any question they could ask the experimenter; the experimenter 

would come and answer it privately. The experimenter also checked the 

answers of the control questions, in order to make sure that every subject 

had understood instructions.  

 

Once all the subjects finished the control questions and had been checked 

by the experimenter, the experiment started. During the experiment, 

subjects were not allowed to communicate with each other. If they had any 

questions, they were free to ask the experimenter privately. 

 

When the subject finished the experiment, she or he let the experimenter 

know. The experimenter approached him or her and brought an opaque 

bag. There were four balls in the bag numbered from 1 to 4. The subject 

randomly drew a ball from the bag, and she or he was paid according to 

the number on the ball. For example, if she or he drew a ball with number 
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three, she or he was paid according to his or her payoff on journey three. In 

addition, each subject received a show-up fee of £2.5. 

 

1.3 Optimal Route (without Fog)  

1.3.1 Introduction 

Without fog full information about the map can be obtained. However, the 

optimal route in this particular problem cannot be calculated by backward 

induction; first, because there is no obvious ‘backwards’ in this 

two-dimensional problem, and second because it is not necessarily the 

case that the optimal move at any stage is in a direction directly towards 

the destination. It might be better to go round some high peak rather than 

go through it.  

 

In principle, the optimal route from the starting square to the destination 

can be found. It can be separated into two parts. First, the minimum 

energy expenditure from the starting square to the destination can be 

identified. Second, based on the minimum expenditure, the optimal route 

can be identified. The most difficult task is the first step. Since the matrix is 

big and there are huge numbers of possible routes, we cannot calculate the 

minimum expenditure manually. Unfortunately, in the context of our 

experiment, there is no existing algorithm to identify the minimum energy 

expenditure. However, we can borrow the idea from some of the 

algorithms of computer science. Then an algorithm can be built based on 

them to identify our optimal route. 
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In computer science, there is a general algorithm for “finding the shortest 

path”. This was constructed by Dijkstra (1959). At a first glance, “finding 

the shortest path” has no relation with our problem, since we are “finding 

the optimal route with the least energy expenditure”. However, these two 

problems are essentially similar. 

 

In our context, we are looking for a route for which the energy expenditure 

is the least. The total energy expenditure is calculated by aggregating the 

energy expenditure between each two neighbouring squares on the route. 

Abstractly, we can treat each square as a node, and the energy expenditure 

is a value v related to the two neighbouring nodes. For finding an optimal 

route, it is for identifying a route with the minimum sum of v among all 

possible routes from the initial node to the destination node. It can be 

expressed as follows. 

Energy Expenditure of Optimal Route = Min(∑ vi

n−1

i=1

) (1.1) 

On a route from the starting square to the destination, there are n squares4 

in total. The energy expenditure is calculated from the starting square 

towards the destination. Once the energy expenditure of moving from one 

square to the other has been calculated, both the two squares are marked 

as visited. 𝑣𝑖  is the energy expenditure of moving from one square to its 

unvisited neighbour square. Especially, 𝑣1 is the energy expenditure of 

                                                 
4
 Here the number n includes the starting square and the destination. 
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moving from the starting square to one of its neighbour square, and 𝑣𝑛−1 

is the energy expenditure of moving to the destination from one of its 

neighbour square.  

 

In computer science, for finding the shortest path, it is actually identifying a 

route following which the distance between the initial node and the end 

node is minimised. The distance is the sum of the distance between each 

the two neighbour nodes on the route. It can be exhibited as follows. 

Distance of Shortest Path = Min(∑ 𝑣𝑖

𝑛−1

𝑖=1

) (1.2) 

On a route from the initial node to the end node, denote by n the total 

number of nodes passed through. The distance is calculated from the initial 

node towards the end node. Once the distance between two nodes has 

been calculated, both the two nodes are marked as visited. Denote by 𝑣𝑖  

the distance between one node and its unvisited neighbour node. In 

particular, 𝑣1 is the distance between the initial node and one of its 

neighbour nodes, and 𝑣𝑛−1 is the distance between one of the neighbour 

nodes of the end node and the end node itself. 

 

Although the problem of finding the shortest path looks different from the 

problem of identifying the optimal route, they are essentially similar. From 

equation (1.1) and equation (1.2), it is easy to see that the difference 

between the two problems is the definition of 𝑣𝑖. Thus, we can borrow 

some ideas from the algorithm of finding the shortest path for solving our 
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problem. 

 

1.3.2 Review of Algorithms for Finding the Shortest Path 

1.3.2.1 Dijkstra’s Algorithm 

Dijkstra (1959) has constructed an algorithm for finding the shortest route 

in computer science. It can be decomposed into several steps. First, all the 

nodes except the initial node are marked as unvisited. The tentative 

distances from the initial node to each of them are signed as infinite. 

Second, the initial node is marked as the current node, with the tentative 

distance from itself as 0. Third, if a node is marked as the current node, the 

new tentative distance for each of its unvisited neighbour nodes is 

calculated by the tentative distance of the current node adding the 

distance between the current node and that node.  The old tentative 

distance assigned on that node is replaced by the new one if and only if the 

new tentative distance is smaller. Fourth, as soon as all the neighbour 

nodes of the current node are considered, the current node is marked as 

visited. A visited node is never visited again. Fifth, if the destination is 

marked as the current node or the smallest tentative distance among all 

unvisited node is equal to infinity, the algorithm is finished. In the second 

case, there is no connection between the current node and any of its 

unvisited neighbour nodes. Sixth, the unvisited node with the smallest 

tentative distance is marked as the current node. The third step is repeated 

till the destination is marked as visited. 
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Here is an example to illustrate Dijkstra’s Algorithm. In Figure 1.8, each 

circle denotes a node, and each line denotes the path between two nodes. 

The number along with each line denotes the distance between the two 

connected nodes. 𝑛1 is the initial node and 𝑛6 is the destination. 

 

Figure 1.9 shows the map after the second step of Dijkstra’s Algorithm. All 

the numbers or signs inside the brackets denote the tentative distance 

from the initial node to that node. The initial node, 𝑛1, is marked as the 

current step, with the distance to itself as 0. All the other nodes are 

marked as unvisited, with the tentative distance as infinite. 

 

Figure 1.10 shows the map after the third step of Dijkstra’s Algorithm for 

the first round. Since 𝑛1 is the current node, its neighbour nodes are 𝑛2, 

𝑛3, and 𝑛4. The new tentative distance from the initial node to 𝑛2 equals 

the tentative distance assigned to 𝑛1 adding the distance between 𝑛1 

and 𝑛2. The result is 15, which is smaller than the tentative distance 

assigned on 𝑛2. Thus for 𝑛2 the old tentative distance ∞ is replaced by 

the new tentative distance 15. In the same way, the tentative distances 

assigned on 𝑛3 and 𝑛4 can be replaced by 10 and 6 respectively. Since all 

the neighbour nodes of 𝑛1 have been considered, 𝑛1 is marked as visited. 

And since neither of the two conditions in the fifth step is satisfied, the 

algorithm goes on. According to the sixth step, the node 𝑛4 with the 

smallest tentative distance among all the unvisited nodes is marked as the 

current node. The algorithm is not finished, thus we go back to the third 
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step. 

 

Figure 1.8: An Example of Dijkstra’s Algorithm (Initial) 

 

 

Figure 1.9: An Example of Dijkstra’s Algorithm (After the Second Step) 
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Figure 1.11 shows the map after the third step of Dijkstra’s Algorithm for 

the second round. 𝑛4 is marked as the current node, and its unvisited 

neighbour nodes are 𝑛3 and 𝑛6. The new tentative distance for 𝑛3 is the 

sum of the tentative distance assigned to 𝑛4 and the distance between 

𝑛4 and 𝑛3. It is 19, and it is greater than the old tentative distance 

assigned to 𝑛3. Thus, the old tentative distance is not replaced by the new 

one. But for 𝑛6, the old tentative distance ∞ is replaced by the new one, 

which is 23. And then, since there is no more unconsidered neighbour 

nodes of the current node, 𝑛4 is marked as visited. Neither of the two 

conditions in the fifth step is satisfied, and the algorithm goes on. 

According to the sixth step, 𝑛3 is marked as the new current node. 

 

Figure 1.10: An Example of Dijkstra’s Algorithm (After the Third Step - 1) 
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Figure 1.11: An Example of Dijkstra’s Algorithm (After the Third Step - 2) 

 

Figure 1.12 shows the map after the third step of Dijkstra’s Algorithm for 

the third round. 𝑛3 is the current node with assigned tentative distance 

10. Its unvisited neighbour nodes are 𝑛2  and 𝑛5 . The new tentative 

distance for 𝑛2  is the tentative distance of 𝑛3  adding the distance 

between 𝑛3 and 𝑛5, which is 11. It is smaller than the old tentative 

distance of 𝑛2. Thus, the tentative distance of 𝑛2 is replaced by 11. And 

in the same way, the tentative distance of 𝑛5 is replaced by 13. Since both 

of the unvisited neighbour nodes of 𝑛3  are visited, 𝑛3  is marked as 

visited. Neither of the two conditions in the fifth step is satisfied, and the 

algorithm goes on. According to the sixth step, 𝑛2 is marked as the new 

current node. 
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Figure 1.12: An Example of Dijkstra’s Algorithm (After the Third Step - 3) 

 

Figure 1.13 shows the map after the third step of Dijkstra’s Algorithm for 

the fourth round. 𝑛2  is marked as the current node with tentative 

distance 11. The only unvisited neighbour node of it is 𝑛5, with tentative 

distance 13. The new tentative distance of 𝑛5 is the sum of the tentative 

distance of 𝑛2 and the distance between 𝑛2 and 𝑛5. The result is 19 and 

it is greater than 13. Thus, the tentative distance of 𝑛5 is not replaced by 

the new one. Since there are no unconsidered neighbour nodes, 𝑛2 is 

marked as visited. Neither of the two conditions in the fifth step are 

satisfied, and the algorithm goes on. According to the sixth step, 𝑛5 is 

marked as the new current node. 

 

Figure 1.14 shows the map after the third step of Dijkstra’s Algorithm for 

the fifth round. 𝑛5 is the current node, of which the tentative distance is 
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13. The only unvisited neighbour node of it is 𝑛6, with tentative distance 

23. Since the distance between 𝑛5  and 𝑛6  is 5, the new tentative 

distance for 𝑛6 is 18. It is smaller than 18. Thus the old tentative distance 

of 𝑛6 is replaced. Since there are no unvisited neighbour nodes other than 

𝑛6, 𝑛5 is marked as visited. And 𝑛6 is the current node.  

 

Since 𝑛6 is the destination and is also the current node, the first condition 

in the fifth step is satisfied. The algorithm is finished. We can easily check 

the steps and find the shortest path from the initial node to the destination. 

It is shown in figure 1.15. And the path is 𝑛1-𝑛3-𝑛5-𝑛6. 

 

Figure 1.13: An Example of Dijkstra’s Algorithm (After the Third Step - 4) 
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Figure 1.14: An Example of Dijkstra’s Algorithm (After the Third Step - 5) 

 

 

Figure 1.15: An Example of Dijkstra’s Algorithm (Finished) 
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essential properties with Dijkstra’s Algorithm. But they are different in 

details and thus suitable for special cases. Here we have a review on them 

one after one. 

 

1.3.2.3 Bellman-Ford Algorithm 

Bellman-Ford Algorithm (Ford, 1956 and Bellman, 1958) is one of such 

algorithms. If we treat the distance between two nodes is a kind of path 

cost, in Dijkstra’s Algorithm, all the path costs are non-negative. If there is 

negative path cost on the map, Dijkstra’s Algorithm cannot identify it. 

Compared with Dijkstra’s Algorithm, Bellman-Ford Algorithm can identify 

negative path costs. But it requires more calculation time since there is a 

final scan at the end of the algorithm.  

 

If there is a cycle with negative cost on the map, no cheapest path from the 

initial node to the destination exists. Since any path can be cheaper after 

one more walk around the negative-cost cycle. But the negative path 

cannot be identified by following Dijkstra’s Algorithm since this algorithm 

visit each node at most once.  

 

Although the Bellman-Ford Algorithm follows Dijkstra’s Algorithm to obtain 

the potential cheapest path, once the path has been identified, a final scan 

of the whole map is applied to check if there is any negative cycle. In the 

scan, for each node i in the map, if the sum of the tentative cost of i and 

the cost between i and its neighbour node j is less than the tentative cost 
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of i, a negative path cost is identified. It can be shown as follows. 

𝑖𝑓 𝑐𝑖 + 𝑣𝑖𝑗 < 𝑐𝑖 

The path between node i and j has negative path cost. 

Here 𝑐𝑖 denotes a node i on the map, and 𝑣𝑖𝑗 denotes the path cost 

between i and one of its neighbour nodes j.  

 

Figure 1.16 shows an example to show how Bellman-Ford Algorithm 

identifies negative path cost. This map is modified from the map we used 

for illustrating Dijkstra’s Algorithm. The only modification is that the path 

cost between 𝑛3 and 𝑛5 is -3 instead of 3. 

 

It is obvious to see that, by Dijkstra’s Algorithm, a route with “the minimum 

path cost” can be identified. The route and minimum path cost is 

illustrated in Figure 1.16. With this algorithm, a visited node will never be 

visited again. However, in the figure, we can see that, the minimum path 

cost for this map is actually infinite. Since every time visiting one of 𝑛3 

and 𝑛5 from the other, the minimum path cost can be reduced by three. 

It is an infinite loop. Thus Dijkstra’s Algorithm identifies an incorrect route 

with an incorrect minimum path cost. 

 

By the Bellman-Ford Algorithm, there is a final scan after finding the 

possible route with “the minimum path cost”. In the final scan, if the 

tentative cost assigned on one node plus the cost to one of its neighbour 

node is less than the tentative cost itself, there is a path with negative cost 
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between the two nodes. In the figure, we can see that, the tentative cost 

for  𝑛3 is ten, and the cost between 𝑛3 and its neighbour node 𝑛5 is 

minus three. The sum of these two numbers is seven, which is less than ten. 

And for 𝑛5, the tentative cost is seven, and the cost between 𝑛5 and its 

neighbour node 𝑛3 is minus three. The sum of these two numbers is four, 

which is less than seven. Thus, a path with negative cost between 𝑛3 and 

𝑛5 is identified. 

 

Figure 1.16: A Map with Negative Path Cost 

 

1.3.2.4 A* Algorithm 

A* Algorithm (Hart et al 1968) is also a computer science algorithm for 

finding the minimum-cost path, or in the distance scenario, finding the 

shortest path. It cannot identify a path with negative cost, but it has higher 

efficiency than Dijkstra’s Algorithm.  
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The higher efficiency comes from a heuristic estimate of the cost from 

node i to the destination. Unlike Dijkstra’s algorithm and Bellman-Ford 

algorithm, A* algorithm takes into account not only the forward path, but 

also the cost of travelled path. Thus, the tentative cost in this algorithm 

denotes the tentative cost from the initial node to the destination rather 

than to node i. It is composed of two elements, and can be presented as 

follows. 

𝑡𝑖 = 𝑑𝑖 + ℎ𝑖  

Suppose node i is under consideration, then 𝑡𝑖 denotes the tentative cost 

for the whole route calculated at node i. 𝑑𝑖 denotes the actual cost from 

the initial node to the node i. ℎ𝑖  denotes the heuristic-estimate cost from 

node i to the destination. Here ℎ𝑖  has to be an admissible heuristic. It 

means that, ℎ𝑖  should not overestimate the cost from node i to the 

destination. For instance, in the distance scenario, ℎ𝑖  should no more 

than the minimum actual cost from node i to the destination. Usually, it 

equals to the linear distance from node i to the destination. 

 

The A* algorithm can be decomposed into several steps. First, an empty set 

is constructed. It can be called a consideration set. Second, all the 

neighbour nodes of the initial node are put into the consideration set. 

Third, there is a calculation of the tentative cost for each node in the 

consideration set. Here the tentative cost for node i is the actual cost from 

the initial node to the node plus the heuristic-estimate cost from that node 

to the destination. Fourth, the node with the smallest tentative node is 
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removed from the consideration set. And all its neighbour nodes are added 

into this set and their tentative costs are calculated.  Fifth, if the 

destination is removed from the set or the smallest tentative cost in the set 

is infinite, the algorithm is finished. In the second case, there is no 

connection between any node in the set and the destination. Sixth, the 

third step is repeated till either case in the fifth step appears. 

 

The example we used for illustrating Dijkstra’s Algorithm can also be used 

for illustrating the A* algorithm. In Figure 1.17, all the neighbour nodes of 

the initial node 𝑛1 is added in to the consideration set. They are 𝑛2, 𝑛3, 

and 𝑛4. Their tentative cost can be calculated as follows. 

𝑡2 = 𝑑2 + ℎ2 = 15 + 1.5 = 16.5 

𝑡3 = 𝑑3 + ℎ3 = 10 + 1 = 11 

𝑡4 = 𝑑4 + ℎ4 = 6 + 17 = 23 

Here for 𝑡4, the heuristic-estimate cost is also the actual cost from 𝑛4 to 

the destination 𝑛6. 

 

Then according to the third step, the node with the smallest tentative cost 

should be removed from the consideration set. Here 𝑛3 is removed. Then 

all its neighbour nodes are added into the set. Here 𝑛3 has only one 

neighbour node outside the set, which is 𝑛5. The tentative cost of 𝑛5 can 

be calculated as follows. 

𝑡5 = 𝑑5 + ℎ5 = 13 + 5 = 18 

Here for 𝑡5, the heuristic-estimate cost is also the actual cost from 𝑛5 to 
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the destination n6. 

 

Figure 1.17: An Example of the A* Algorithm (After the Second Step) 

 

 

Figure 1.18: An Example of the A* Algorithm (After the third Step-1) 
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Figure 1.18 illustrates the scenario after the third step for the first iteration. 

Now there are three nodes, 𝑛2, 𝑛4, 𝑛5, in the consideration set. Neither 

of the two cases in the fifth step is satisfied, thus it goes to the sixth step 

and then repeat the third step once more. 

 

This time the node with the smallest tentative cost is 𝑛2. It is removed 

from the set. And it has no neighbour node outside the set. It is obvious to 

see that, the route through 𝑛2 to 𝑛5 costs more than the route through 

𝑛3 to 𝑛5. 𝑛2 can be abandoned since it is not on the optimal route. 

 

Now follow the third step again, the node with the smallest tentative cost 

is 𝑛5. It is removed from the set. 𝑛5 has only one neighbour node, which 

is 𝑛6, the destination. 𝑛6 is added to the set. Neither of the two cases in 

the fifth step is satisfied, thus it goes to the sixth step and then repeat the 

third step once more. 

 

Figure 1.19 illustrates the scenario after the second iteration of the third 

step. It is obvious to see that the destination has the smallest tentative cost. 

Then the destination is removed from the consideration set. The first case 

in the fifth step is satisfied, and the algorithm is finished. 

 

Figure 1.20 illustrates the finished version of this example. The optimal 

route and the smallest cost is exactly the same as Figure 1.15. The A* 

algorithm gets the same results as Dijkstra’s algorithm, but is more efficient. 
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In A* algorithm, the problem is solved after the third iteration. In Dijkstra’s 

algorithm, the problem is solved after the sixth iteration. 

 

Figure 1.19: An Example of the A* Algorithm (After the third Step-2) 

 

 

Figure 1.20: An Example of the A* Algorithm (Finished) 
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1.3.2.5 Other Algorithms for the Shortest Path Problem 

Besides Dijkstra’s algorithm, the Bellman-Ford algorithm, and the A* 

algorithm, there are some other algorithms developed to solve the 

shortest path problem. For instance, there are Floyd–Warshall algorithm 

(Floyd, 1962 and Warshall, 1962), Johnson's algorithm (Johnson, 1977), 

Viterbi algorithm (Viterbi, 1967), and so on. 

 

These algorithms are developed from the three algorithms we have 

mentioned above. They are designed for solving specific computer science 

problems. We have explained the three algorithms in details, and have 

illustrated the essential of solving the shortest path problem sufficiently 

before go into our optimal problem. Discussing more about other 

algorithms will not add more help for solving our problem, which is a 

crucially different one. 

 

1.3.3 Our Algorithm 

1.3.3.1 Impossibility of Identifying All the Possible Routes 

In our problem, there is seemingly a straightforward way to find the 

optimal route with the smallest energy expenditure. We only need to 

identify all the possible routes from the starting square to the destination. 

Then we calculate the energy expenditure for each route, and select the 

one with the smallest energy expenditure.  

 

However, this mission is impossible in our case. For a 200 by 200 map, the 
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number of all the possible routes is huge, even if for each route, each 

square can be passed at most once. Here is an example to illustrate the 

amount of the possible routes as the dimension of the map increases. In 

order to simplify the example, we put two restrictions here. First, on each 

route, a square can never be passed more than once. Second, if square A 

shares a boundary with square B, moving from A to B is always a direct 

move. Specifically, moving from A to B is always A to B, rather than A to 

other squares, and then to B.  

 

These two restrictions can reduce the number of routes to be analysed 

without distorting the result of finding the optimal route. Since all the 

moving costs are non-negative in our problem, revisiting a square will 

cause unnecessary energy expenditure. It is weakly dominated by visiting a 

square at most once. Similarly, moving to a neighbour square in a 

roundabout way also may cause unnecessary energy expenditure.  

 

Figure 1.21 is a 2 by 2 map. The number in each square only denotes the 

label of that square. Square 1 is the starting square and square 4 is the 

destination. Taken the two restrictions above into consideration, all the 

possible routes can be identified. There are only two possible routes. One 

is 1-2-4 and the other is 1-3-4. 

3 4 

1 2 
Figure 1.21: A 2 by 2 Map 
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Figure 1.22 is a 3 by 3 map. Square 1 is the starting square, and square 9 is 

the destination.  There are six possible routes in total. They are 1-2-3-6-9, 

1-2-5-6-9, 1-2-5-8-9, 1-4-5-6-9, 1-4-5-8-9, and 1-4-7-8-9. 

7 8 9 

4 5 6 

1 2 3 
Figure 1.22: A 3 by 3 Map 

 

Now we increase the size of the map to be 4 by 4. It is illustrated in Figure 

1.23.  

 

Square 1 is the starting square and square 16 is the destination. It is still 

possible to enumerate all the possible routes under the two restrictions. 

There are twenty possible routes in total.  They are listed in Table 1.3.  

13 14 15 16 

9 10 11 12 

5 6 7 8 

1 2 3 4 
Figure 1.23: A 4 by 4 Map 

 

It is obvious to see that the number of the possible routes is exponentially 

growing as the size of the matrix increasing. For a 5 by 5 matrix, there are 

70 possible routes. It is already difficult to enumerate each route. And for a 

6 by 6 matrix, it is even difficult to calculate the number of the possible 

routes manually.  

 

Our map is a 200 by 200 matrix. Obviously the number of all the possible 

routes is huge. It is theoretically possible but practically difficult to identify 
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each route, calculate their energy expenditure, and choose the optimal one. 

This task is even overwhelming for a personal computer to calculate.  

 

This is the reason for why we cannot identify all the possible routes and 

select the optimal one directly. We have to seek for some efficient 

algorithm to solve our optimal problem. Here the efficiency means that, by 

such an algorithm, an optimal route can be identified by personal 

computer in a tolerable time span.  

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 

1 2 3 4 8 12 16 

1 2 3 7 8 12 16 

1 2 3 7 11 12 16 

1 2 3 7 11 15 16 

1 2 6 7 8 12 16 

1 2 3 7 11 12 16 

1 2 3 7 11 15 16 

1 2 3 10 11 12 16 

1 2 3 10 11 15 16 

1 2 3 10 14 15 16 

1 5 6 7 8 12 16 

1 5 6 7 11 12 16 

1 5 6 7 11 15 16 

1 5 6 10 11 12 16 

1 5 6 10 11 15 16 

1 5 6 10 14 15 16 

1 5 6 10 11 12 16 

1 5 6 10 11 15 16 

1 5 6 10 14 15 16 

1 5 6 13 14 15 16 
Table 1.3: Possible Routes for a 4 by 4 Matrix 

 

Nevertheless, there is no ready algorithm in economics for solving our 

problem. We have to borrow some ideas from computer science. They 

have some algorithms to solve the shortest path problem, which share 
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some similarities with our problem. 

 

1.3.3.2 Relationship between the Shortest Path Problem and Our 

Problem 

As we have mentioned before, although the contexts of the shortest path 

problem and our problem are not the same, they can be regarded as 

one-to-one mapping. 

 

In the first place, the aims of the two problems are similar. For solving the 

shortest path problem, a route from the initial node to the destination with 

the smallest distance has to be identified. For solving our optimal route 

problem, a route from the starting square to the destination with the 

smallest energy expenditure has to be identified.   

 

What is more, in both the problems, moving is restricted and not free. In 

the shortest path problem, moving can only happen between two 

neighbour nodes. Here neighbour means there is a path between that 

node and the current node. And distance can be regarded as a kind of cost 

of moving from one node to the other. In our optimal route problem, 

moving can only happens between two neighbour squares. Here neighbour 

means that square sharing a bound with the current square. And energy is 

expended while moving.  

 

In addition, for the two problems, the ways of calculating the expenditure 
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are the same. For the shortest path problem, the distance for the whole 

journey is the sum of the distance between each two neighbour nodes on 

the route. And for our optimal route problem, the total expenditure of 

energy is the sum of the energy expenditure of each step moving on the 

route. 

 

1.3.3.3 Differences between the Shortest Path Problem and Our Problem 

However, we cannot directly use the shortest path problem to solve our 

problem. First, none of the algorithms reviewed above can go backward. 

Algorithms for shortest path problem only consider the path in the area 

between the initial node and the destination. They start from the initial 

node and goes towards the destination directly. But on our map, part of 

the optimal route is possibly outside the area between the starting square 

and the destination. For instance, the subject might have to go backwards 

from the starting square and move several squares in the opposite 

direction to that towards the destination, since going directly toward the 

destination might be extremely costly. 

 

Figure 1.24 illustrates an example. A is the starting square and B is the 

destination. Following the algorithm of shortest path problem, all the 

possible routes are constrained in the 3 by 3 matrix with the bold boundary. 

Thus, the optimal route should also be constrained in this area. However, 

in our problem, the optimal route might be out of the area. Our scenario is 

travelling across hilly country. Suppose H and I are two high mountains, but 
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the path A-C-D-E-F-G-B is a flat path with zero energy expenditure.  Thus a 

rational person should go one-square backward and follow the flat path, 

rather than go directly toward the destination through H or I. And in this 

case, A-C-D-E-F-G-B is the optimal route which cannot be identified by the 

algorithms of shortest path problem. 

          

          

      B   

  H   G   

  A I F   

  C D E   

          
Figure 1.24: Difference between Shortest Path Algorithm and Our Algorithm 

 

Second, the way of calculating the expenditure of moving from one square 

to the other is different. In the shortest path problem, the moving cost is 

regardless of the direction. The expenditure of moving from node A to 

node B is the same as the expenditure of moving from node B to node A. 

However, in our problem, the direction matters. The moving cost depends 

on the relative amount of the value on the current square and the value on 

the moving-to square. The expenditure of moving from A to B is usually 

different from the expenditure of moving from B to A. As we have 

mentioned, our story is travelling across the country. The terrain is hilly and 

as is common sense, going uphill consumes more energy than going 

downhill.  

 

For instance, square A is assigned with a value x, square B is assigned with 
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a value y, and x is greater than y. In our problem, moving from A to B is 

downhill, and the energy expenditure is the absolute difference between x 

and y. But moving from B to A is uphill, and the energy expenditure is twice 

the absolute difference between x and y. 

 

Third, even with the most efficient algorithm, A*, the calculation load of a 

200 by 200 matrix is overwhelming for a personal computer using MATLAB. 

It can take several days if the variance of the values on a map is large 

enough, and could end with a crash as the computer overloads and runs 

out of storage space. Thus, we need to produce a more efficient method 

which can be run on a personal computer within a tolerable time span. 

 

1.3.3.4 The Idea of Our Algorithm 

As we have mentioned above, the shortest path problem is a kind of 

one-to-one mapping of our problem, but we cannot use the algorithm 

directly. We have to borrow some ideas from those algorithms and 

produce our own algorithm for finding the optimal route. 

 

The key ideas of our algorithm are “expanding” and “updating”. These can 

solve not only the “backward steps” but also the workload of calculation. 

We also modify the way of calculating the moving cost between two 

squares. In our context, the relative amount of the value on the current 

square and the value on the moving-to square does affect the expenditure. 
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In our algorithm, the map is an n by n matrix. Each value in the matrix 

denotes the height of that area. The subject can only move to the squares 

sharing bounds with the current square. If the value on the current square 

is less than the value of the moving-to square, the subject goes uphill with 

the energy expenditure twice the absolute difference of the two squares. If 

the value on the current square is greater than the value of the moving-to 

square, the subject goes downhill with the energy expenditure just the 

absolute difference of the two squares. 

 

Our algorithm can be decomposed into several steps. First, it starts with a 3 

by 3 matrix. The destination is in the middle of the matrix. More specifically, 

the destination is in the second row and the second column of this matrix.  

 

Second, the optimal costs of moving from any of the four squares sharing 

boundaries with the destination can be calculated. They are just the cost of 

moving from that square to the destination. The four squares are marked 

as considered. 

 

Third, based on the current information, for all the unconsidered squares, 

the optimal cost from each square to the destination is calculated. In the 3 

by 3 matrix, the unconsidered squares are the four squares in the four 

corners. Each of them share boundaries with two considered squares. The 

minimum energy expenditure from an unconsidered square i to the 

destination can be illustrated as follows. 
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𝐸1 = 𝐸(𝑖, 𝑥) + 𝐸(𝑥, 𝑑) 

𝐸2 = 𝐸(𝑖, 𝑦) + 𝐸(𝑦, 𝑑) 

𝐸(𝑖, 𝑑) = 𝑚𝑖𝑛 (𝐸1, 𝐸2) 

Here x and y denote the two squares sharing boundaries with the square i, 

and d denotes the destination. E(i,x) is the expenditure of moving from i to 

x; E(x,d) is the expenditure of moving from x to the destination. Obviously, 

there are two possible routes for moving from i to the destination. The 

expenditure for moving from each of the routes is calculated and are 

denoted by 𝐸1 and 𝐸2 respectively. Then the minimum expenditure from 

i to the destination is the smaller of 𝐸1 and 𝐸2. 

 

Fourth, after calculating the minimum expenditure from each square in the 

3 by 3 matrix to the destination, we expand the matrix two rows and two 

columns wider. We expand the matrix symmetrically. That is, a new row 

and a new column is added to be the first row and the first column. And a 

new row and a new column is added to be the last row and the last column. 

Now all the minimum expenditures calculated for the old matrix are 

regarded as only tentative optimal expenditures. Since new information is 

now to be incorporated, the true optimal expenditure for those squares 

might be changed. 

 

We have discussed that the workload of going through the whole matrix to 

identify every possible route, and then selecting the one with the minimum 

energy expenditure is overwhelming for a personal computer, especially 
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when the matrix is big. Using tentative optimal values can save a lot of 

workload of calculation. However, the new rows and columns have no 

tentative optimal values assigned. Thus, fifth, we have to assign tentative 

optimal values on them before we do the optimal calculation. In this step, 

we treat different types of squares differently. 

 

The first type is the second square in the first row, first column, last row, 

and last column respectively. They are chosen as an entry point of 

assigning tentative optimal values on the new squares. And they have to be 

adjusted later. In this step, the moving paths of the four squares are 

considered compulsory at this stage of the algorithm (they will be updated 

if necessary later). This procedure is illustrated in Figure 1.25. 

 𝑥1    

𝑥2 𝑦1  𝑦2 𝑥3 

  d   

 𝑦3    

 𝑥4    
Figure 1.25: The First Type Squares in Fifth Step 

 

𝑥1, 𝑥2, 𝑥3, 𝑥4 are all the first type squares. In order to calculate the 

tentative optimal values, the algorithm makes it compulsory to move from 

𝑥1 or 𝑥2 to 𝑦1, from 𝑥3 to 𝑦2, and from 𝑥4 to 𝑦3. Thus the tentative 

optimal expenditure from i to d can be calculated by the following 

expression: 

𝐸(𝑥, 𝑑) = 𝐸(𝑥, 𝑦) + 𝐸(𝑦, 𝑑) 

Here E(x,y) is the actual expenditure from x to y, and E(y,d) is the tentative 

optimal expenditure from y to d, which has been calculated in the third 
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step. 

 

The second type squares can be separated into two parts. One part starts 

from the third column and ends at the penultimate column of the first row 

and the last row respectively. The other part starts from the third row and 

ends at the penultimate row of the first column and the last column 

respectively. They are illustrated in Figure 1.26. 

 𝑧 𝑥∗ 𝑥  

𝑧  𝑦 𝑦 𝑧 

𝑥∗ 𝑦 d 𝑦 𝑥∗ 

𝑥 𝑦 𝑦 𝑦 𝑥 
 𝑧 𝑥∗ 𝑥  

Figure 1.26: The Second Type Squares in Fifth Step 

 

In Figure 1.26, 𝑥∗ and x are both what we call type two squares. The only 

difference between 𝑥∗ and x is that, 𝑥∗ can be reached from z. Or more 

specifically, there are two choices of moving from 𝑥∗, moving to y or to z. 

And there are also two ways of moving from x, moving to 𝑥∗ or moving to 

y. The tentative optimal expenditure of 𝑥∗ can be expressed as follows. 

𝐸1 = 𝐸(𝑥∗, 𝑦) + 𝐸(𝑦, 𝑑) 

𝐸2 = 𝐸(𝑥∗, 𝑧) + 𝐸(𝑧, 𝑑) 

𝐸(𝑥∗, 𝑑) = 𝑚𝑖𝑛 (𝐸1, 𝐸2) 

Here 𝐸(𝑥∗, 𝑦) and 𝐸(𝑥∗, 𝑧) are the actual expenditures of moving from 

𝑥∗ to y or z respectively. 𝐸(𝑦, 𝑑) and 𝐸(𝑧, 𝑑) are the tentative optimal 

expenditures from y or z to the destination respectively. And in the same 

way, we can calculate the tentative optimal expenditure from x. We just 

have to replace z with 𝑥∗. 
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The third type of squares is the four squares in the corners. They are 

illustrated in Figure 1.27. 

X y  y x 

𝑧    𝑧 

  d   

Z    z 

X y  y x 
Figure 1.27: The Third Type Squares in Fifth Step 

 

All of the x are the third type squares. Moving from any x, there are two 

possible moves, to y or to z. Thus the tentative optimal expenditure from x 

can be expressed as follows: 

𝐸1 = 𝐸(𝑥, 𝑦) + 𝐸(𝑦, 𝑑) 

𝐸2 = 𝐸(𝑥, 𝑧) + 𝐸(𝑧, 𝑑) 

𝐸(𝑥, 𝑑) = 𝑚𝑖𝑛 (𝐸1, 𝐸2) 

Here 𝐸(𝑥, 𝑦) and 𝐸(𝑥, 𝑧) are the actual expenditures of moving from x 

to y or z respectively. And 𝐸(𝑦, 𝑑) and 𝐸(𝑧, 𝑑) are the tentative optimal 

expenditures of moving from y or z to d respectively.  

 

After all the three types of squares have been considered, all the new 

squares have been assigned a tentative optimal value. Now, in the sixth 

step, we have to adjust the tentative values for the whole matrix. There are 

also three types of squares here. The first type squares are the squares 

from the old matrix. Since new information comes, the map is changed. 

The tentative optimal expenditures of these squares might be also changed. 

It is illustrated in Figure 1.28. 
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 v    

u x y   

 z d   

     

     
Figure 1.28: The First Type Squares for Adjusting 

 

The values adjusted in this step are the tentative optimal expenditures of 

the squares with bold boundaries. In the example, we can see that, now 

from square x, there are four directions, u, v, y ,z to move to. Thus the 

tentative optimal expenditure can be adjusted as follows. 

𝐸1 = 𝐸(𝑥, 𝑢) + 𝐸(𝑢, 𝑑) 

𝐸2 = 𝐸(𝑥, 𝑣) + 𝐸(𝑣, 𝑑) 

𝐸3 = 𝐸(𝑥, 𝑦) + 𝐸(𝑦, 𝑑) 

𝐸4 = 𝐸(𝑥, 𝑧) + 𝐸(𝑧, 𝑑) 

𝐸5 = 𝐸(𝑥, 𝑑) 

𝐸∗(𝑥, 𝑑) = 𝑚𝑖𝑛 (𝐸1, 𝐸2, 𝐸3, 𝐸4, 𝐸5) 

Here E(x,u), E(x,v), E(x,y), and E(x,z) are the actual expenditure of moving 

from x to u, v, y, z respectively. E(u,d), E(v,d), E(y,d), E(z,d) and E(x,d) are 

the tentative optimal expenditures of moving from u, v, y, z, x to the 

destination respectively. And 𝐸∗(𝑥, 𝑑)  denotes the adjusted value of 

E(x,d). 

 

The second type squares for adjusting are the squares on the boundaries of 

the new matrix, except the squares in the four corners. They are illustrated 

in Figure 1.29. 
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Figure 1.29: The Second Type Squares for Adjusting 

 

The values adjusted in this step are the tentative optimal expenditures of 

the squares with bold boundaries in Figure 1.30. In the illustrated example, 

from square x, there are three possible squares, w, y, z, to move to. Thus 

the tentative optimal expenditure can be adjusted as follows. 

𝐸1 = 𝐸(𝑥, 𝑤) + 𝐸(𝑢, 𝑤) 

𝐸2 = 𝐸(𝑥, 𝑦) + 𝐸(𝑦, 𝑑) 

𝐸3 = 𝐸(𝑥, 𝑧) + 𝐸(𝑧, 𝑑) 

𝐸4 = 𝐸(𝑥, 𝑑) 

𝐸∗(𝑥, 𝑑) = 𝑚𝑖𝑛 (𝐸1, 𝐸2, 𝐸3, 𝐸4) 

Here E(x,w),  E(x,y), and E(x,z) are the actual expenditure of moving from 

x to w, y, z respectively. E(w,d), E(y,d), E(z,d) and E(x,d) are the tentative 

optimal expenditure of moving from w, y, z, x to the destination 

respectively. And 𝐸∗(𝑥, 𝑑) denotes the adjusted value of E(x,d). 

 

The third type squares for adjusting are the squares in the four corners. 

They can be illustrated in Figure 1.30. 

 

The values adjusted in this step are the tentative optimal expenditures of 

the squares with bold boundaries in Figure 1.30.  
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Figure 1.30: The Third Type Squares for Adjusting 

 

In the illustrated example, from square x there are two possible squares, y, 

and z, to move to.  

Thus the tentative optimal expenditures can be adjusted as follows. 

𝐸1 = 𝐸(𝑥, 𝑦) + 𝐸(𝑦, 𝑑) 

𝐸2 = 𝐸(𝑥, 𝑧) + 𝐸(𝑧, 𝑑) 

𝐸3 = 𝐸(𝑥, 𝑑) 

𝐸∗(𝑥, 𝑑) = 𝑚𝑖𝑛 (𝐸1, 𝐸2, 𝐸3) 

Here E(x,y) and E(x,z) are the actual expenditures of moving from x to y and 

z respectively. E(y,d), E(z,d) and E(x,d) are the tentative optimal 

expenditures of moving from y, z and x to the destination respectively. And 

𝐸∗(𝑥, 𝑑) denotes the adjusted value of E(x,d). 

 

After all the tentative optimal expenditures in the matrix have been 

adjusted, we can go onto the seventh step. This step is the most important 

one. Each square on the map is assigned an optimisation equation. By 

solving the simultaneous equations of optimisation, the actual optimal 

energy expenditure for each square of the current matrix can be calculated. 

In the equations set, there are three different types of equations, 

corresponding to three different types of square positions in the matrix. 

They are just the three types of squares we have examined in the sixth step. 
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They are squares in the middle of the matrix, squares on the boundaries, 

and squares in the corners. Thus, we can use Figure 1.28, Figure 1.29, and 

Figure 1.30 to describe the three types of equations. 

 

The first type of equations is for the squares with bold boundaries in Figure 

1.28. The equation F(x) for these can be illustrated as follows. 

𝐸1 = 𝐸(𝑥, 𝑢) + 𝐸(𝑢, 𝑑) 

𝐸2 = 𝐸(𝑥, 𝑣) + 𝐸(𝑣, 𝑑) 

𝐸3 = 𝐸(𝑥, 𝑦) + 𝐸(𝑦, 𝑑) 

𝐸4 = 𝐸(𝑥, 𝑧) + 𝐸(𝑧, 𝑑) 

𝐹(𝑥) = 𝐸(𝑥, 𝑑) − 𝑚𝑖𝑛 (𝐸1, 𝐸2, 𝐸3, 𝐸4) 

The second type of equations is for the squares with bold boundaries in 

Figure 1.29. The equation F(x) can be illustrated as follows. 

𝐸1 = 𝐸(𝑥, 𝑤) + 𝐸(𝑢, 𝑤) 

𝐸2 = 𝐸(𝑥, 𝑦) + 𝐸(𝑦, 𝑑) 

𝐸3 = 𝐸(𝑥, 𝑧) + 𝐸(𝑧, 𝑑) 

𝐹(𝑥) = 𝐸(𝑥, 𝑑) − 𝑚𝑖𝑛 (𝐸1, 𝐸2, 𝐸3) 

And the third type of equations is for the squares with bold boundaries in 

Figure 1.30. The equation F(x) for these can be illustrated as follows. 

𝐸1 = 𝐸(𝑥, 𝑦) + 𝐸(𝑦, 𝑑) 

𝐸2 = 𝐸(𝑥, 𝑧) + 𝐸(𝑧, 𝑑) 

𝐹(𝑥) = 𝐸(𝑥, 𝑑) − 𝑚𝑖𝑛 (𝐸1, 𝐸2) 

Once all the F(x) in the equations are set equal zero, the simultaneous 

functions are solved. And then the E(x,d) is the actual optimal energy 
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expenditure from square x to the destination for the current map. 

 

In order to solving the simultaneous equations, there is a starting value for 

each E(x,d). Then the computer adjust the starting value and searches for 

the set of E(x,d) to make all the F(x) equal to zero simultaneously. If the 

map is large enough, and if the variance of the heights on the map is big, 

the workload of calculation is overwhelming for a personal computer. If the 

start value of E(x,d) is not chosen carefully, the calculation project may end 

up without convergence. That means the simultaneously equations cannot 

be solved by the computer. Thus, the starting value is very important. An 

appropriate set of starting value eases the calculation burden. Actually, all 

we were doing before the seventh step is trying to find an appropriate set 

for the starting value. At the end of the sixth step, the adjusted tentative 

optimal values are close to, if they are not the same as, the actual optimal 

values. Using them as the starting values, the simultaneous equations can 

be solved very quickly. More specifically, a 41 by 41 matrix can be solved 

within five minutes. 

 

At the end of the seventh step, the actual optimal energy expenditure from 

each square to the destination of the current map is identified. In the 

eighth step, if the current map is not the whole map to be examined, the 

algorithm repeats from the fourth step to the seventh step. Once the 

current map is the whole map to be examined, the algorithm is finished.  
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We have mentioned that, in our context, sometimes the optimal route 

goes away from the destination. So we cannot only examine a map with 

the starting square at one corner and the destination at the centre. We 

have to examine a map on which the starting square and the destination 

are not on the boundary. There has to be sufficient space for possible 

roundabout steps.  

 

Here is an example to illustrate this scenario. Figure 1.31 is a map with 

heights assigned. The square in the fourth row and the second column is 

the starting square, and the square in the middle of the matrix is the 

destination. 

 

If we only estimate the 3 by 3 matrix with the bold boundaries, the optimal 

energy expenditure from the starting square to the destination is 3. 

However, if we estimate the whole map, there is a flat route from the 

starting square to the destination with zero energy expenditure. But it 

requires going away from the destination at the first step.  

 

This kind of route cannot be identified if the map we examined is not large 

enough. Thus, in our algorithm, the starting square is never on the 

boundary of the map. Since the destination is always the centre of the map, 

we do not have to worry about it.  
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2 7 1 4 3 

5 3 1 1 1 

3 2 1 2 1 

6 1 9 3 1 

8 1 1 1 1 
Figure 1.31: Map with Heights for Example 

 

 

1.3.4 Finding the Optimal Route 

1.3.4.1 Programming of the Algorithm 

We have described above our algorithm for finding the optimal route with 

the minimum energy expenditure. It is obvious that the task cannot be 

done by hand. Thus we have to ask the computer to do it for us. We use 

MATLAB to do the programming. All the algorithms and equations are 

translated to code and then run on a personal computer. 

 

Each of our four maps is a 200 by 200 matrix. However, due to time 

limitation, it is impossible for a subject to travel across the whole map. We 

deliberately set 10 seconds as a compulsory thinking time for each step to 

avoiding random clicking. Thus, if a subject travels across the whole map 

for each of the four journeys, it will at least cost more than four hours. It is 

too long for a laboratory experiment. Thus, we only use part of the map. 

For every journey, the destination is 15-squares up and 15-squares right of 

the starting square. By this way, the experiment can be limited in a 

tolerable time span. 
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If we put the destination in the centre and the starting square in the 

bottom-let corner of a matrix, it is a 31 by 31 matrix. But we have discussed 

above that if we only examine a matrix with the starting square on the 

boundary, the true optimal route of the map may not be identified. Since 

the optimal route may go out of the matrix.  

 

Thus, we have to make sure that outside the row and column which 

contains the starting square, there is enough space to be examined to 

allow the optimal route going away from the destination at some point. 

Here we expand five rows down and five columns left to the starting 

square. As in our algorithm, the matrix is expanding symmetrically. So we 

have to also expand five rows up and five rows right to the matrix. Now the 

matrix becomes a 41 by 41 matrix. This is the map we examined in the 

MATLAB program. 

 

The program outputs a 41 by 41 matrix. The number in each cell of the 

matrix measures the minimum energy expenditure from that cell to the 

destination. For obtaining the energy expenditure of the optimal route, we 

only need to find the position of the starting square and see the value 

assigned on it.  

 

With the minimum energy expenditure, we can identify the optimal route. 

This process is also programmed by MATLAB. And it can be described as 
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follows. First, the starting square is marked as the current square. Second, 

the four squares sharing boundaries with the current square is examined 

one after one by the following function. 

𝐸(𝑐, 𝑑) = 𝐸(𝑐, 𝑖) + 𝐸(𝑖, 𝑑) 

𝐸(𝑐, 𝑑) is the minimum energy expenditure from the current square to the 

destination. 𝐸(𝑐, 𝑖) is the energy expenditure from the current square to 

square i which shares a boundary with it. And 𝐸(𝑖, 𝑑) is the minimum 

energy expenditure from square i to the destination. 

 

If a square i satisfies this function, the square is a step on the optimal route. 

The starting square is marked as visited. And square i is marked as the 

current square. The process is repeated till the destination is marked as 

visited. Then the optimal route is identified. 

 

It is possible that two squares sharing boundary with the current square 

can both be a step on the optimal route. This makes the situation 

complicated. The optimal route may not be unique on a map. But as we 

have obtained the minimum energy expenditure, we can control the 

optimal payoff of each journey. We do not have to examine a subject’s 

moving track to see if she or he deviates from a specific optimal route. We 

only have to see if his or her payoff of that journey deviates from the 

optimal payoff. This is more efficient for the analysis of the results. 
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1.3.4.2 Optimal Routes 

As mentioned in the experimental design, there are four different maps in 

any one session of the experiment. Figures 1.32 to Figure 1.35 show the 

optimal routes for the four maps separately. If the subject follows the 

green squares one after one, she or he can reach the destination with the 

least energy expenditure. These routes were identified by our algorithm 

which we have introduced above, given that the full information is 

provided to MATLAB. 

 

At a first glance the four optimal routes have one thing in common – they 

zigzag. None of the optimal routes is straight to the destination (which is 

always to the up and right of the initial square in our experiment). Each of 

the routes sometimes goes in the opposite direction to that towards the 

destination. As we have mentioned before, the optimal route may not be 

unique. But we have checked the maps one after one and deliberately 

modified some of the heights slightly to make sure that there is no “flat” 

optimal route. Here the word “flat” means that go directly to the 

destination without changes of directions. 

 

For Figure 1.32, the optimal route is within the 15 by 15 matrix in which the 

initial square is in the down-left corner and the destination is the upper-left 

corner. However, even in this case, the optimal route is not straight. It 

requires subjects to go down at some point, which is opposite to the 

position of the destination, if they want to obtain least energy expenditure. 
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In Figure 1.33, the optimal route is more zigzagged than that in Figure 1.32. 

Moreover, some part of the route is outside the bounds of the 15 by 15 

matrix. Subjects have to go in the opposite direction at the very beginning 

if they follow the optimal route. And when they approach the destination, 

they also have to go a little bit beyond the destination and turn down to it 

at some point. 

 

In Figure 1.34, the optimal route is also outside the 15 by 15 matrix for 

some part. It is clear to see that, subjects have to keep being outside of the 

matrix for about half way, and then turn to the same direction with the 

destination, approaching it in a zigzag manner. 

 

Since in Figure 1.35, the variance of the heights on the map is much larger 

than in the other three maps, the optimal route is not so zigzag. But 

subjects still have to go a little bit out of the 15 by 15 matrix and then go 

back to the destination in the end of their journey, if they are following the 

optimal route. 
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Figure 1.32: Optimal Route for Journey 1 

 

 

                 Figure 1.33: Optimal Route for Journey 2 
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Figure 1.34: Optimal Route for Journey 3 

 

 

Figure 1.35: Optimal Route for Journey 4 
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1.4 Empirical results and discussion (With Fog) 

The calculated optimal route is without fog. However, we have discussed 

before, in the real world, full information is not always available. The 

experiment is aimed to investigate how people in a world with fog behave 

and how far their behaviour is from the optimal route without fog. 

 

In section 1.4, we introduced our algorithm to identify the optimal route 

without fog. Those optimal routes, as shown in Figure 1.32 to Figure 1.35, 

are quite zigzagged. Sometimes, the optimal steps on the route are away 

from the destination. Obviously, without fog, it is possible to work out the 

optimal route. However, with fog, it is impossible to obtain an optimal 

strategy. An optimal route cannot be identified, since information is not 

sufficient.  

 

Given the task of reaching the destination with the least expenditure of 

energy, subjects cannot work out an optimal strategy to follow. But they do 

have some way to try to approach the optimal strategy as closely as 

possible, which are revealed in their behaviour. What we have done is to 

observe their behaviour, or more precisely, their decisions on each step, 

and to try and describe their underlying strategies.  

 

In a word, optimal routes in the four maps cannot be identified when there 

is fog. Subjects cannot go straight to the destination if they would like to 

maximise their utility/payoff. Thus, intuitively, the payment they received 
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would be quite different from the optimal payment. However, we found 

that, some of the subjects get payments which are very close to or even 

equal to the optimal payoff. In the experiment May 2013, the optimal 

payment was £10 for each map, and in the experiment November 2013, it 

was £15. 

 

In the following section, the data from the experiment is analysed. Section 

1.4.1 describes a brief summary of the average payoff across journeys and 

treatments. In section 1.4.2, four possible strategies are tested to see how 

much of the subjects’ behaviour can be explained. 

 

1.4.1 At First Glance 

We implemented the experiment twice, one in May 2013 and the other in 

November 2013. The only difference between the two experiments was 

the payoff. In the second experiment, we scaled up the payoff. So the 

optimal payoff was £15 instead of £10. Because the scales of payoff are 

different, we summarise the payoff of the two experiments separately. 

 

Table 1.4 is a brief summary of the average payoff of the experiment 

carried out in May 2013. The optimal payoff for each journey was £10. It 

can be seen from the table that there is an obvious difference between the 

average payoff with fog (£6.992) and the optimal payoff without fog (£10). 

The average payoff for all of the four treatments is a little under 70% of the 

optimal payoff. 
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There is an interesting phenomenon which can be observed from Table 1.4. 

In treatment 1, for which both information quality and quantity are high, 

the average payoff is £6.535 ‒ the lowest of the four treatments. However, 

in treatment 4, for which both information quality and information 

quantity are low, the average payoff is £7.177 ‒ the highest of the four 

treatments. This is counter-intuitive. 

 

Table 1.5 is a brief summary of the average payoffs in the experiment 

carried out in November 2013. In this experiment, we used the exactly 

same map, but scaled up the payoffs.  The optimal payoff here is £15 for 

each journey. 

 

We can see that, in Table 1.5, the result is consistent with Table 1.4. In 

treatment 1, both the information quantity and quality are high, but the 

average payoff is the lowest out of the four treatments. However, in 

treatment 4, with both low information quality and quantity, the average 

payoff is the highest out of the four.  

 

If we go a little bit more into detail, we can see that, in treatment 2, with 

high information quality but low information quantity, the average payoff 

is lower than treatment 3, with low information quality but high 

information quantity. 
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One of the possible interpretations of this counter-intuitive phenomenon 

might be that too much information makes subjects confused. The 

mathematical-computational ability of human brain is limited. For example, 

treatment 1 provides information with both high quantity and quality. If a 

subject wants to take all the available information into account the 

workload of calculation is huge. It exceeds the computation ability of an 

ordinary person. The subject may directly give up calculating, or end up 

with a wrong result due to the difficulty of processing so much information. 

Thus, his or her behaviour may deviate from the optimal choice. In 

treatment 4, information is provided with both low quantity and quality. 

The workload for computation is not as heavy as in treatment 1. The 

subject can use such vague information to work out a decision which may 

deviated from the optimal decision, but which leads to an acceptable 

outcome. Such a decision made in treatment 4 is possibly better than the 

decision made in treatment 1. Since quality of calculation in treatment 4 is 

better than in treatment 1. 

 

Payoff Summary (£) 

Experiment May 2013 

 
J1 J2 J3 J4 Average 

T1 6.743 6.323 7.448 5.628 6.535 

T2 8.533 6.277 7.858 5.703 7.092 

T3 7.905 7.198 8.083 5.468 7.163 

T4 8.337 7.243 7.623 5.503 7.177 

Average 7.879 6.760 7.753 5.575 6.992 

Table 1.4: Payoff Summary for Experiment May 2013 
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Payoff Summary (£) 

Experiment November 2013 

 
J1 J2 J3 J4 Average 

T1 11.704 10.279 10.004 8.115 10.025 

T2 13.05 9.8963 11.783 7.3575 10.522 

T3 11.914 10.455 12.105 7.9838 10.614 

T4 12.314 9.825 11.686 8.7341 10.640 

Average 12.245 10.114 11.394 8.048 10.450 

Table 1.5: Payoff Summary for Experiment November 2013 

 

1.4.2 Strategy Tests 

From the experiment, we observed subjects’ behaviour, and have recorded 

each step of their decisions.  

 

If the subject follows the optimal route, in each journey she or he is 

expected to be paid £10 in the first experiment and £15 in the second 

experiment. But from Tables 1.4 and 1.5, we can see that the average 

payoff for any of the four journeys is different from that of the optimal 

payoff. Thus at least the majority of the subjects are not following the 

optimal route. It is not surprising that they do not, since due to the fog, 

they do not have full information about the terrain. 

 

But they must have their own strategies to make decisions when they were 

travelling across the map. We have observed their decisions and have tried 

to identify the strategies that they might have been following. What we 

have done is to construct some possible strategies (which seem to be 
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suggested by their behaviour), and then to explore which one fits the 

subjects’ behaviour best. 

 

1.4.2.1 The Myopic Strategy 

The first strategy we test is called the “Myopic Strategy” (MS). In this 

strategy, the subject is assumed to be very myopic. She or he understands 

the algorithm of the energy expenditure of moving. But she or he ignores 

all the information more than one square away from his or her current 

position. Thus she or he moves to and only moves to the square with the 

minimum energy expenditure. All the four possible directions are taken 

into consideration. Once a square is visited, it will never be visited again, 

because the expenditure of moving is non-negative; non-necessary energy 

expenditure may occur if a square is revisited. For example, the total 

expenditure of moving from A to B, then back to A, and then to C, is at 

least as much as the expenditure of moving from A to C directly.  

 

We have examined the subjects’ decisions step by step. If in a specific step, 

the subject’s moving decision follows the MS, the step is regarded as 

“fitting” this strategy. In some steps, there may be more than one square 

that meets the minimum moving cost. That step is regarded as fitting this 

strategy if and only if the subject moves to one of those qualified squares. 

And the last step of a journey is unconditionally marked as fitting. Since if 

the subject’s current position is next to the destination, his or her best 

choice is just move to the destination, no matter how much the 
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expenditure of moving is to the other squares around. 

 

Table 1.6 shows the result of the MS Test across journeys and treatments. 

The figures in this table record the percentage of moves that are consistent 

with the Myopic Strategy. On average, the subjects’ behaviour in journey 2 

fits the MS best out of the four journeys, which is 57.19%; and the data in 

journey 3 fits this strategy worst, with just 51.44% of the decisions 

consistent with the Myopic Strategy. Similarly, the subjects’ behaviour in 

treatment 4 fits the MS best out of the four treatments; and their 

behaviour in treatment 2 fits this strategy worst (just 53.73% consistent 

with it). More specifically, on average, journey 2 in treatment 4 fits the MS 

best, at 60.19%, while journey 3 in treatment 2 fits this strategy worst, at 

50.19%. 

The Myopic Strategy 

  J1 J2 J3 J4 Average 

T1 55.28% 55.62% 52.15% 57.75% 55.20% 

T2 56.60% 56.46% 50.19% 51.67% 53.73% 

T3 53.28% 57.00% 52.34% 58.16% 55.19% 

T4 59.34% 60.19% 50.99% 56.17% 56.67% 

Average 55.98% 57.19% 51.44% 55.93% 55.14% 

Table 1.6: The Average Fit for Myopic Strategy 

 

1.4.2.2 The Two Direction Myopic Strategy 

The second strategy we seem to have observed in behaviour and which we 

test is called the “Two Direction Myopic Strategy” (TDMS). This strategy is 

very similar to the Myopic Strategy. The only difference between them is 
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that, in TDMS, only two instead of four directions are taken into account. 

The subject is assumed to never move down or left which is opposite to the 

destination. 

 

As we have done in MS, we have examined the subjects’ decisions step by 

step. A specific step is regarded as “fitting” TDMS if and only if the subject’s 

decision can be explained by this strategy. It is possible that in some steps, 

moving to either of the two directions consumes the same amount of 

energy. In this case, the step is regarded as fitting TDMS for the subject 

moves to either of the two directions. And the last step of each journey is 

unconditionally marked as fitting. 

 

Table 1.7 shows the result of the TDMS Test across journeys and 

treatments. On average, the subjects’ behaviour in journey 2 out of the 

four journeys fits this strategy best, at 82.56%. The data in journey 4 fits 

this strategy worst, at 70.50%. Similarly, it is obvious that the subjects’ 

behaviour in treatment 4 out of the four treatments fits the TDMS best, at 

79.13%. The subjects’ behaviour in treatment 2 fits this strategy worst, at 

75.20%. More specifically, on average, journey 2 in treatment 3 fits the 

TDMS best, at 84.76%, while journey 4 in treatment 4 fits the strategy 

worst, at 70.25%. 
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The Two-Direction-Myopic Strategy 

  J1 J2 J3 J4 Average 

T1 77.01% 79.46% 78.26% 70.59% 76.33% 

T2 77.44% 81.76% 73.78% 67.82% 75.20% 

T3 75.41% 84.76% 81.28% 73.30% 78.69% 

T4 79.41% 84.59% 82.28% 70.25% 79.13% 

Average 77.23% 82.56% 78.75% 70.50% 77.26% 

Table 1.7: The Average Fit for Two-Direction-Myopic Strategy 

 

1.4.2.3 The Minimum Difference Strategy 

The third strategy we seem to have observed in behaviour and which we 

test is called the “Minimum Difference Strategy” (MDS). In this strategy, 

the subject is assumed to be even more naive than in the Myopic Strategy. 

She or he does not use the algorithm to calculate the energy expenditure 

of moving. She or he only cares about the difference between the heights 

of his or her current position and the squares that she or he can move to. 

And in this strategy, she or he ignores all the information more than one 

square away from the current position. Thus, she or he moves to and only 

moves to the square with the minimum height difference of his or her 

current position. All the four possible directions are taken into account. 

And once a square is visited, it will never be visited again. 

 

As we did for MS and TDMS, we have examined the subjects’ decisions step 

by step. If in a specific step, the subject’s decision follows the MDS, the 

step is regarded as “fitting” this strategy. In some steps, from the current 

position, there may be more than one possible squares that fit the strategy. 



81 

 

That step is regarded as “fitting” if and only if the subject moves to one of 

those qualified squares. And the last step of each journey is unconditionally 

regarded as fitting. Since if the subject’s current position is next to the 

destination, the only best choice is to move to the destination directly.  

 

Table 1.8 shows the average fit of the MDS Test across journeys and 

treatments. On average, the subjects’ behaviour in journey 1 fits the MDS 

best out of the four journeys, at 58.27%. In journey 3 it fits the strategy 

worst, at 48.96%. Similarly, the subjects’ behaviour in treatment 4 fits the 

MDS best out of the four treatments, at 55.68%, while behaviour in 

treatment 2 fits this strategy worst, at 52.16%. More specifically, on 

average, journey 1 in treatment 4 fits the MDS best, at 61.54%, while 

journey 3 in treatment 2 fits this strategy worst, at 45.51%. 

The Minimum-Difference Strategy 

  J1 J2 J3 J4 Average 

T1 56.59% 54.00% 50.91% 51.10% 53.15% 

T2 60.76% 52.75% 45.51% 49.60% 52.16% 

T3 54.75% 55.03% 49.73% 54.06% 53.39% 

T4 61.54% 57.32% 49.82% 54.02% 55.68% 

Average 58.27% 54.67% 48.96% 52.11% 53.50% 

Table 1.8: The Average Fit for Minimum-Difference Strategy 

 

1.4.2.4 The Two Direction Minimum Difference Strategy 

The fourth strategy we test is called the “Two Direction Minimum 

Difference Strategy” (TDMDS). This strategy is very similar to the Minimum 

Difference Strategy. The only difference between them is that, in TDMDS, 
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only two instead of four directions are taken into account. The subject is 

assumed to never move down or left, which is in the opposite direction to 

the destination. 

 

As we have done in MDS, we have examined the subjects’ decisions step by 

step. A specific step is regarded as “fitting” TDMDS if and only if the 

subject’s decision can be explained by this strategy. It is possible that in 

some steps, the heights of the two possible directions are the same. That is 

the differences between the current position and either of the two possible 

moving-to squares are the same. In this case, the step is regarded as fitting 

TDMDS if the subject moves to either of the two directions. And the last 

step of each journey is unconditionally regarded as fitting. 

 

Table 1.9 shows the result of the TDMDS Test across journeys and 

treatments. On average, the subjects’ behaviour in journey 2 out of the 

four journeys fits this strategy best, at 78.39%; and the data in journey 4 

fits this strategy worst, at 72.20%. Similarly, the subjects’ behaviour in 

treatment 4 out of the four treatments fits the TDMDS best, at 77.87%, 

while in treatment 2 fits this strategy worst, at 72.75%. More specifically, 

on average, journey 2 in treatment 3 fits the TDMDS best, at 81.02%, while 

journey 3 in treatment 2 fits this strategy worst, at 68.85%. 
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The Two-Direction-Minimum-Difference Strategy 

  J1 J2 J3 J4 Average 

T1 74.39% 75.65% 75.79% 71.68% 74.38% 

T2 75.71% 76.40% 68.85% 70.06% 72.75% 

T3 73.79% 81.02% 77.40% 73.96% 76.54% 

T4 77.45% 80.93% 79.80% 73.30% 77.87% 

Average 75.24% 78.39% 75.27% 72.20% 75.28% 

Table 1.9: The Average Fit for Two-Direction-Minimum-Difference Strategy 

 

1.4.3 Discussion 

We have observed the subjects’ decisions and tested their behaviour 

against four different possible strategies. On average, none of them can 

explain the subjects’ behaviour more than 90%. In a specific journey of a 

specific treatment, one strategy can at most explain about 85% of the 

subjects’ decisions. However, in some journeys of some treatments, the 

strategies only ‘explain’ about 45% of the subjects’ behaviour. It means 

that each of the four strategies have limited ability to explain the subjects’ 

behaviour. One possible reason is that the strategies assume that subjects 

are extremely myopic: they simply ignore all information which is beyond 

the squares one squares away from their current position. In the 

experiment, they might actually have taken more information into account 

and applied some more sophisticated strategies at least in some specific 

steps.  

 

Table 1.10 shows that, the two-direction strategies, TDMS, and TDMDS, fit 

subjects’ behaviour better than the four-direction strategies, MS and MDS. 



84 

 

And compared with TDMDS, TDMS fits subjects’ behaviour much better. In 

the table, TDMS is the best fitting strategy for journey 1, 2, and 3 across all 

the four treatments. TDMDS is the best fitting strategy just for journey 4, 

but also across all the four treatments. 

 

One possible explanation of this phenomenon can be stated below. 

Subjects actually calculated the expenditure for each step in the 

experiment, but they were too tired to do careful computation in the last 

journey. In TDMS, subjects are assumed to understand the algorithm of the 

energy expenditure of moving. They know that moving uphill is more 

expensive than moving downhill. However, in TDMDS, subjects are 

assumed to only take into account the absolute difference between the 

heights of the current position and the squares that can be moved to. They 

do not use the algorithm to calculate the energy expenditure of moving 

carefully. In the experiment, journeys come one after one, in the order of 1 

to 4. In the first three journeys, TDMS fits better than TDMDS. It implies 

that subjects were calculating the energy expenditure of moving carefully. 

But in journey 4, TDMDS fits better than TDMS. It might because subjects 

had done too much calculation and got bored or tired. They adjusted the 

strategy to roughly estimate the expenditure rather than work out the 

accurate result. In different treatments, subjects were different. But for all 

the treatments, TDMS is consistently fitting better than TDMDS for journey 

1, 2, and 3, while TDMDS is consistently fitting better than TDMS for 

journey 4. It increases the credibility of the above explanation. 
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Table 1.11 shows that the four-direction strategies, MS, and MDS, fit 

subjects’ behaviour worse than the two-direction strategies, TDMS and 

TDMDS. Compared with MS, MDS fits subjects’ behaviour even worse. In 

the table, MS is the worst fitting strategy for journey 1 across all the four 

treatments. And TDMDS is the worst fitting strategy for journey 2, 3, and 4, 

also across all the four treatments. 

 

Overall, MDS fits subjects’ behaviour worse than MS. One possible 

explanation is a possible filtration of behaviour. Those subjects considering 

four directions rather than two are more likely to be less lazy (or more 

sophisticated) than others. Thus they are more likely to calculate energy 

expenditure of moving carefully rather than just roughly estimating it. 

However, in journey 1, MS fits worse than MDS. It might because the 

subjects were not getting used to the workload of computation at the 

beginning of the experiment, and hence they only do rough estimation for 

the four directions. As practiced in journey 1, they adjusted their strategy 

to do the accurate calculation in the rest journeys. 

 

Compared with the Two Direction Myopic Strategy, on average the Myopic 

Strategy fits each journey in each treatment worse. It is not surprising, 

since MS takes all the four directions into account. But in the experiment, if 

a subject has decided to ignore all the information one squares away from 

his or her current square, it implies that she or he is myopic. And she or he 
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is very likely to also ignore the directions which do not directly lead to the 

destination. In the same way, the Two Direction Minimum Difference 

Strategy fits all the four journeys in all the four treatments better than MS. 

 

Compared with the Minimum Difference Strategy, on average, MS fits all 

the four journeys in treatment 1 worse. But it fits all the four journeys in 

the other three treatments better than MDS. This is very reasonable. As we 

have said before, the subject might adjust his or her strategies map after 

map. She or he might try some simpler strategies in the early journeys, and 

then try more sophisticated ones later. MDS is simpler than MS, because it 

only care about the absolute difference between two squares. In journey 1, 

the first journey, the subject is very likely to try the simplest calculation 

strategy. As the experiment goes on, she or he might discover that the 

simple algorithm does not lead to good pay off, since the algorithm for the 

energy expenditure is not so simple. And then she or he adjust his or her 

strategy to care more about the actually energy expenditure for each 

possible step rather than the absolute difference between two squares. 

 

Compared with MDS, TDMS fits all the four journeys in all the four 

treatments better. As we said in the comparison between MS and TDMS, if 

a subject employs a myopic strategy, she or he is very likely to ignore the 

directions which are in the opposite of the destination. Thus it is not 

surprising that TDMS fits better than MDS. 
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Compared with TDMDS, TDMS fits all the journeys in treatment 4 worse, 

but fits all the journeys in the other three treatments better. The only 

difference between TDMS and TDMDS is that, TDMDS only cares about the 

absolute difference between two squares. But TDMS takes energy 

expenditure into account. As we have mentioned above, the subject is 

probably adjusting his or her strategy journey after journey. TDMS fits 

worse than TDMDS in journey 4 maybe because the subject is already tired 

of calculating after the three long journeys. And she or he goes back to the 

simple calculation strategy. 

 

And compared with TDMDS, MDS fits worse in all the journeys of all the 

treatments. The possible reason is very similar to the comparison of MS 

and TDMS: a myopic subject probably just ignores the directions which do 

not directly lead to the destination. 

 

All the four strategies are myopic, and only take the very immediate 

information into account. But from the analysis results, it is obvious that 

the myopic strategies cannot explain the entire subjects’ behaviour. The 

subject must have employed a more sophisticated strategy on at least 

some specific steps. 
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  J1 J2 J3 J4 

T1 TDMS TDMS TDMS TDMDS 

T2 TDMS TDMS TDMS TDMDS 

T3 TDMS TDMS TDMS TDMDS 

T4 TDMS TDMS TDMS TDMDS 

Table 1.10: Best Fitting Strategies across Journeys and Treatments 

 

  J1 J2 J3 J4 

T1 MS MDS MDS MDS 

T2 MS MDS MDS MDS 

T3 MS MDS MDS MDS 

T4 MS MDS MDS MDS 

Table 1.11: Worst Fitting Strategies across Journeys and Treatments 

 

1.5 Conclusion and Further Research 

1.5.1 Conclusion 

Our purpose is to investigate, without full information human behaviour in 

making a series of dynamic decisions. As is almost tautological, we can say 

that a rational person always tries to maximise his or her utility. An optimal 

strategy maximising utility can be worked out with full information. 

However, in the real world, information is not always sufficient. For 

example, theoretically, people can maximise their utility, given that they 

know the appropriate distribution of their income of every period in the 

future. In fact, people might have some rough ideas about their income of 

the very near future, but they cannot predict their income if the future is 

far away enough. Thus, in this situation, backward induction does not work. 

Nevertheless, given this constraint, rational people still want to maximise 
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their utility. Then they must have other strategies to try to solve this 

problem.  

 

We are interested in what people actually do. It is almost impossible to 

gather data from daily life. It is costly and inefficient to gather a series of 

decisions made by a specific person from the field. Even though it is 

possible, we cannot guarantee that we have gathered all the decisions the 

person made in this series, and all the information available when the 

decision was taken. Sometimes a decision might be implicit, and 

sometimes people might not be willing to report his or her every decision 

due to privacy or ethical issues. 

 

Thus we can only gather data from laboratory experiments. We have 

designed an experiment called “fog”, which retains all the characters of the 

situation we are interested in. In the experiment, the subject is required to 

travel across four maps one after one. These maps are divided into squares. 

She or he starts from a square, and can only move to those squares which 

shares bounds with his or her current square. A journey ends once she or 

he arrives at the “destination” square. The four journeys are independent 

of each other. At the start of each journey, the subject is endowed with 

some money. While travelling, she or he has to consume some energy for 

each step. The expenditure of energy is dependent on the height of his or 

her current position and the height of the square she or he is moving to. 

When she or he arrives at the destination, she or he receives the payoff, 
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which is the endowment minus the total energy consumed. In the 

experiment the subject could not receive a negative payoff; if the energy 

expenditure exceeded his or her endowment, the payoff is zero.  

 

If the subject knows all the heights of the squares on the map, an optimal 

route can be calculated by our algorithm. However, in order to mimic the 

fact that people cannot predict the future precisely, the subject does not 

know the exact height of all the squares on the map. In order to reflect that 

people might have some vague information in the very near future, a range 

is presented on those squares which are not far away from the subject. The 

true value of the height is uniformly distributed in the range. And if the 

square is far away from the current position enough, the subject can see 

nothing. 

 

We have four treatments in total. In all four treatments, the subject can 

see the exact height of the squares which share bounds with his or her 

current position. In treatment 1, the subject can see the height of the 

squares which are two squares away with range 20, and the height of the 

squares which are three squares away with range 50. In treatment 2, the 

subject can see the height of the squares which are two squares away with 

range 20, and cannot see anything if the square is further than that. In 

treatment 3, the subject can see the height of the squares which are two 

squares away with range 40, and the height of the squares which are three 

squares away with range 100. And in treatment 4, the subject can see the 
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height of the squares which are two squares away with range 40, and can 

see nothing if the square is further than that. 

 

We implemented this experiment twice. We recorded the subjects’ 

decision of moving to which square in each step. And based on these 

results, we have done some analyses. 

 

Four different strategies have been built to see which one can explain the 

subjects’ behaviour better. The first one is called the Myopic Strategy, in 

which the subject considers all four possible directions to move, but only 

one step away. She or he moves to the square with the least energy 

expenditure. The second one is called Two Direction Myopic Strategy, in 

which the subject considers only the directions which are towards the 

destination and only one step away as well. She or he moves to the square 

with the least energy expenditure and which is towards to the destination. 

The third is called Minimum Difference Strategy. It is similar to MS, but 

considers the absolute difference between two squares instead of the 

energy expenditure. And the fourth one is called Two Direction Minimum 

Difference Strategy. It is similar to TDMS, but considers the absolute 

difference instead of the energy expenditure as well. 

 

None of the four strategies can explain the subjects’ behaviour 100%. More 

precisely, on average, they can only explain about 65% of the subjects’ 

behaviour. And the percentage of the explanation varies across treatments 
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and journeys. The best fitting one is Two-Direction-Myopic Strategy for 

journey 2 in treatment 3, which explains 84.76% of the subjects’ behaviour. 

The worst fitting one is Minimum-Difference Strategy for journey 3 in 

treatment 2, which explains 45.51% of the subjects’ behaviour. It is 

obviously that subject do use some forward strategies to maximise his or 

her utility. And she or he is very likely to adjust their strategies map after 

map. 

1.5.2 Further Research 

All four strategies discussed in this chapter are under the hypothesis that 

the subject is myopic. She or he only takes the information on the squares 

which shares bounds with his or her current square into account. This kind 

of information is immediately available, and is accurate, since the height on 

these squares is not distorted by fog. We can say that this kind of 

information is cheap but with high quality. Putting heavy weight on such 

information can be regarded as a sort of wise choice based on rational 

considerations. 

 

However, the possible strategies are not restricted to these four. In the 

following we list some possible strategies that we are going to examine in 

the future. 

 

The first strategy is the Two Squared Sophisticated Strategy (TSS). In this 

strategy, the subject is assumed to be sophisticated. She or he takes not 

only the squares sharing bounds with the current square but also the 

squares two squares away from the current square into account. The 

expected height for the square with fog is the middle number of the range, 

since the true height of that square is equally distributed within the range. 

 

The second strategy is the All Information Sophisticated Strategy (AIS). In 
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this strategy, the subject takes all information into account. If the subject is 

in the treatments which they can only see two-squares away, the strategy 

is exactly same as the TSS. If the subject is in the treatments which they can 

see three squares away, they take the squares sharing boundary with the 

current square, the squares two squares away, and the squares three 

squares away into account.  

 

The third strategy is the Risk-Averse Strategy (RAS). In this strategy, the 

subject is assumed to be extremely risk-averse. She or he put heavy weight 

on the possible worst outcome, and thus chooses a path which will not 

lead to the undesirable outcome. 
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Chapter 2. Context Matters
1

 

2.1 Introduction 

Risk attitude is a crucial factor influencing economic behaviour. As a 

consequence, experimenters are interested in eliciting the risk-attitude of 

their subjects. This can be done in two ways: either directly, using the 

context of a particular experiment to estimate the risk-aversion that best 

explains behaviour; or indirectly, eliciting risk aversion in a separate part of 

the experiment, and using the elicited value to explain behaviour in the 

main experiment. This chapter is focused on the latter approach. 

 

Economic theory posits that decisions under risk depend on how people 

evaluate, and hence decide between, risky lotteries. By these we mean 

lotteries where the outcomes are risky, and where the probabilities are 

known. Clearly how people evaluate lotteries depends not only on the 

lotteries, but also on the preference functionals of the decision-maker 

(DM). In the literature there are a number of proposed preference 

functionals, the best-known of which is the Expected Utility functional. All 

of these embody the idea of an underlying utility function u(.); it is the 

degree of concavity of this when it is defined over money that indicates the 

degree of risk-aversion. It is this that we are trying to elicit. 

 

There are a number of methods that are used in the literature to elicit risk 

aversion. Possibly the most popular is that known as the Holt-Laury Price 

                                                 
1 This chapter is a joint work with John Hey, financially supported by Daniela Di Cagno. 
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List, introduced by Holt and Laury (2002), and which we will refer to as HL. 

While the detail may vary from application to application, the basic idea is 

simple: subjects are presented with an ordered list of pairwise choices and 

have to choose one of each pair. The list is ordered in that one of the two 

choices is steadily getting better or steadily getting worse as one goes 

through the list. There are many variants on the basic theme: sometimes 

one of the two choices is a certainty, and that is getting better or worse 

through the list; sometimes either just one or both of the choices are risky 

choices and one of them is getting better or worse through the list. 

Because of the ordered nature of the list, subjects should choose the 

option on one side up to a certain point thereafter choosing the option on 

the other side. Some experimenters force subjects to have a unique switch 

point; others leave it up to subjects. A rational subject never switches more 

than once, since one side of the list getting better or worse steadily. 

However, they may switch more than once due to an implementation 

error. Thus in our experiment, we force the subject to switch at most once. 

 

A second method is to give a set of Pairwise Choices, but separately (not in 

a list) and not ordered. We will refer to this as PC. Typically the pairwise 

choices are presented in a random order. This has been used by Hey and 

Orme (1996), amongst many others. Some argue that this method, whilst 

being similar to that of Price Lists, avoids some potential biases associated 

with ordered lists. Frequently the pairwise choices are chosen such that 

they are distributed randomly over one or more Marschak-Machina 
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triangles. Such a triangle is used to represent lotteries over a set of three 

outcomes. Two of the probabilities in the lotteries are plotted on the 

vertical and horizontal axes, while the third is the residual from one. The 

points at the vertices are certainties while points properly inside the 

triangle are lotteries. 

 

A method which is elegant from a theoretical point of the view is the 

Becker-DeGroot-Marschak mechanism proposed by Becker et al (1964). 

This we will later denote by LC (Lottery Choice) because of the way that we 

implement it. The method centres on eliciting the value to a subject of a 

lottery – if we know the value that a subject places on a lottery with 

monetary outcomes, we can deduce the individual’s attitude to risk over 

money. There are two variants of this mechanism that are used in the 

literature: one where the DM is told that they own the lottery, and hence 

have the right to play it out or to sell it; and one where the DM is offered 

the chance to buy the lottery, and, if so, to then play out the lottery. The 

subject’s valuation of the lottery as a potential seller is the minimum price 

for which they would be willing to sell it, while the subject’s valuation of 

the lottery as potential buyer is the maximum price for which they would 

be willing to buy it. Here we describe the mechanism as it relates to a 

potential buyer – the mechanism is the same, mutatis mutandis, if it relates 

to a potential buyer. The subject is asked to state a number; then a random 

device is activated, which produces a random number between the lowest 

amount in the lottery and the highest amount. If the random number is 



97 

 

less than the stated number, then the subject buys the lottery at a price 

equal to the random number (and then plays out the lottery); if the 

random number is greater, then nothing happens and the subject stays as 

he or she was. If2 the subject’s preference functional is the expected utility 

functional then it can be shown that this mechanism is incentive 

compatible and reveals the subject’s true evaluation of the lottery. The 

problem is that subjects do seem to have difficulty in understanding this 

mechanism, and a frequent criticism is that subjects understate their 

evaluation when acting as potential buyers and overstate it when acting as 

potential sellers. 

 

The Allocation method, which we shall denote by AL, was originally 

pioneered by Loomes (1991). It was then revived by Andreoni and Miller 

(2002) in a social choice context, and later by Choi et al. (2007) in a risky 

choice context. This method involves giving the subject some experimental 

money to allocate between various states of the world, with specified 

probabilities for the various states, and, in some implementations, with 

given exchange rates between experimental money and real money for 

each of the states. This method seems easier for subjects to understand 

than BDM. 

 

One clear difference between the methods is the information that the 

answers give. Pairwise Choices (on which Price Lists are built) merely tell us 

                                                 
2 Though this is not necessarily true with other preference functionals. 

http://link.springer.com/article/10.1007/s11166-014-9198-8/fulltext.html#CR5
http://link.springer.com/article/10.1007/s11166-014-9198-8/fulltext.html#CR9
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which of two lotteries is preferred, but not by how much. In contrast both 

the LC and AL give us a continuous measure, which is (should be) the 

outcome of an optimising decision. This suggests that the latter two might 

be more informative. A discussion of the various methods can be found in 

Charness et al (2013). Other methods are also discussed there, including 

the Balloon Analogue Risk Task (Lejuez et al 2002), the Gneezy and Potters 

method (Gneezy and Potter 1997) – which is close to our allocation method 

– and the Eckel and Grossman method (Eckel and Grossman 2002) – which 

is a generalisation of the Pairwise Choice method to a decision over several 

lotteries. This can be further extended by asking subjects to rank the 

various lotteries in the list. This has also been used by Carbone and Hey 

(1994), Bateman et al (2015) and Loomes and Pogrebna (2014). We call this 

the Ranking method. It can be considered a special – discretised – case of 

the allocation method. 

 

This chapter is a follow-up, and complement to, the paper by Loomes and 

Pogrebna (2014), in which the authors compare three of the elicitation 

methods described above – specifically Holt-Laury price lists, Ranking and 

Allocations. This chapter complements theirs, not only in the elicitation 

methods we consider, but also in that our experimental design (and 

crucially the numbers of problems asked for each method), as well as the 

data analysis, are completely different. We also consider a slightly different 

set of elicitation methods. 
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The purpose of this chapter is to report on the results of an experiment in 

which subjects were asked to perform each of the four methods described 

above. The chapter is organised as follows. In the next section we describe 

how our experiment was organised and how the various methods were 

implemented in it, giving more detail about each of the methods. As we 

adopt an econometric methodology of fitting preference functionals to the 

data, we specify in section 3 the preference functionals that we fit to the 

data and describe the functional forms that we assume, and the 

parameters in them that we estimate. In section 4, we describe how we 

analysed the data, detailing the stochastic assumptions that we make. 

Section 5 contains the results and section 6 concludes. 

 

2.2 The Experimental Design and Implementation 

2.2.1 Introduction 

Our experiment was in four parts and different subjects took the parts in 

different orders. In total there are 24 different possible orders. Thus we 

had 24 subjects in each session to make sure that each order could be 

assigned to a subject. This design avoids the possibility of the experimental 

results being affected by a fixed presented order. Here we describe the 

four parts of the experiment. All parts of the experiment concerned 

lotteries. The complete set of tasks is attached in the appendices.  

 

Throughout the experiment, the lotteries are visually on the subjects’ 

computer screens in two dimensions, with the amount of money on the 
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vertical axis and the chances on the horizontal axis. This is a different 

presentation than that used by Loomes and Pogrebna (2014). Theirs is 

more appropriate in their setting; ours is more appropriate in ours as we 

wanted finer divisions (in steps of 0.01 rather than 0.1). 

 

If a particular lottery was chosen to pay out at the end of the experiment, 

the subject would draw a disk from a bag of 100 disks numbered from 1 to 

100. The subject was paid the amount of money corresponding to the 

number on the disk. Let us give an example. Take the lottery shown in 

Figure 2.1; this represents a lottery where there is a 1 in 50 chance of 

gaining £5 and a 1 in 50 chance of gaining £15. If this was played out at the 

end of the experiment, if the numbered disk was between 1 and 50 

inclusive, the subject was paid £5; if it was between 51 and 100 inclusive 

the subject was paid £15. One of the suggested advantages of this way of 

portraying lotteries is that the area of each bar on the graph indicates the 

expected value of the lottery. 

 

In the experiment, for each problem, the confirm button is not enabled 

until five seconds has elapsed. Forcing subjects to wait at least five seconds 

before they can make a decision somewhat reduces the possiblity that they 

are just clicking without thinking. 

 

At the end of the experiment, for each subject, one of the four parts is 

randomly selected to be real. And one problem is randomly selected from 
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that part to be played out. Different subjects are paid according to 

different problems in different parts. 

 

Figure 2.1: An Example of a Lottery in the Experiment 

 

 

2.2.2 Holt-Laury Price List (HL) 

The first part of the experiment presented a set of 48 Holt-Laury price lists, 

each containing 10 pairwise choices. In contrast, Loomes and Pogrebna 

(2014) had just 5 such lists. We used more because pre-experimental 

simulations indicated that to achieve accuracy in estimation we needed 

more. And we had a different objective to that of Loomes and Pogrebna 

(2014).  

 

For each list, the subject has to choose one lottery in each pair which she 

or he wishes to be played out. When all the ten pairwise choices in the list 

have been assigned a decision, a confirm button appears on the screen. 

Then the subject can submit the decision and proceed to the next problem. 

 

For each pair of lotteries, the left-hand side is always a risky lottery, and 

the right-hand side is always a certainty. Within a list, one side of the pairs 
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is fixed. The other side is changed gradually through the list in a specific 

pattern. For example, if the risky lottery is fixed in the list, the certainty is 

steadily getting better from the first pair to the last. And if the certainty is 

fixed, the risky lottery is steadily getting worse through the list. 

 

It is obvious to see that, in the list, the risky lottery higher up the list is 

always no worse than the risky lottery lower down; and the certainty lower 

down the list is always no worse than the certainty higher up. Thus, a 

rational subject switches at most once in a list. And the direction is always 

from a lottery to a certainty, if she or he switches at some point in the list. 

 

Making decisions in a list can be abstracted as choosing a switch point. Or 

we can say that a subject’s decisions reveal his or her certainty equivalence 

for a specific lottery. If she or he switches somewhere in a list, the certainty 

equivalence of the lottery is somewhere between the two pairwise choices 

that come just before and after the switch point. If the subject chooses all 

the lotteries in a list, it means that even the best certainty is not as good as 

the lottery, or even the worst lottery is not worse than the certainty. If the 

subject chooses all the certainties in a list, it means that even the worst 

certainty is better than the lottery, or even the best lottery is not better 

than the certainty. 

 

According to the nature of HL, we have no reason not to force a subject to 

switch at most once in a list. In the experiment, if a subject selects the 
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certainty in one pair of lotteries, the certainties in all the pairs after that 

pair are automatically selected. And similarly, if the lottery is selected in 

one pair, the lotteries in all the pairs after that pair are automatically 

selected. His kind of design can reduce the subject’s manual mistakes. And 

it can also free the subject from clicking the pairs one by one. 

 

An example is shown in Figures 2.2a and 2.2b; Figure 2.2a showing how it 

was first seen by the subject and Figure 2.2b showing it after its possible 

completion by a subject. These are screen shots from the experimental 

software; they appeared full-screen in the experimental interface. 

 

Figure 2.2a: Example of HL-1 

 

FIGURE 2.2b: Example of HL-2 
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Figure 2.2a gives an example of a Price List: in this example the thing that is 

staying constant is the lottery on the left (which is a 70% chance of £15 and 

a 30% chance of £0); the thing that is changing is that on the right – in this 

case a certainty – which increases from a certainty of £1.50 to a certainty 

of £15. Subjects were asked, for each pair in the list, to click on the 

preferred item; when doing so, the item on the other side turned grey. 

Figure 2.2b shows a possible set of responses – with the lottery being 

preferred until the certainty became £6. To avoid problems with subjects 

switching at several points within the list, the software forced subjects to 

choose a unique switching point. In contrast, Loomes and Pogrebna (2014) 

allowed subjects to switch at several points. But they write “the proportion 

of inconsistent participants in our data set ranged between 1.1% and 

5.6%”. It is not clear what to do with such subjects. 

 

The 48 Price Lists spanned a variety of cases; details are attached in the 

appendices. We denote this method HL.  

 

2.2.3 Pairwise Choices (PC) 

The second part asked subjects to respond to 80 pairwise choice problems. 

Again the problems were chosen after pre-experimental simulations. The 

objective was to get a set of problems which would enable us to identify 

accurately the preference functional and its parameters.  
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In each problem, subjects face a pair of lotteries. Sometimes they are both 

risky lotteries, and sometimes one of them is risky and the other is a 

certainty. Subjects have to decide which one they prefer to be played out. 

 

The decision-making implementation is straightforward. Subjects only need 

to click the “Left” or “Right” button. In order to avoid the situation where a 

subject’s decision is affected by the position of the lotteries presented, we 

randomized the two lotteries in a pair to be left or right. For example, in 

one problem, lottery A is on the left and lottery B is on the right for subject 

one. In the same problem for subject two, lottery A can be on the right and 

lottery B on the left. 

 

Figure 2.3: Example of PC 

 

An example is shown in Figure 2.3. In this pairwise choice, subjects had to 

choose between a lottery which give an 80% chance of £10 and a 20% 

chance of £5 and a lottery which gives a 40% chance of £15 and a 60% 

chance of £5. The set of 80 pairwise choice problems spanned lotteries 

with outcomes of £0, £5, £10 and £15 with probabilities of 0, 0.2, 0.4, 0.6, 
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0.8 and 1.0; details are attached in the appendices. We denote this method 

PC. 

 

2.2.4 Lottery Choices (LC) 

The third part asked subjects to respond to 54 Becker-DeGroot-Marschak 

problems. Again, the problems were chosen after pre-experimental 

simulations. Typically, subjects are shown a lottery and asked to state their 

maximum willingness-to-pay or minimum willingness-to-accept for the 

lottery. Many experimenters have reported confusion among subjects in 

understanding this mechanism, so we adopted a new way of implementing 

it.  

 

Suppose that we want to find the subject’s certainty equivalent of a lottery 

which pays £x with probability p and £y with probability 1-p, where x>y. 

The subject is asked to choose a number £z. We want z to be the certainty 

equivalent. To obtain this in an incentive-compatible way3, we could tell 

the subjects that a random number Z will be generated from a uniform 

distribution over the interval (y,x) and that they will be paid Z if Z>z and will 

get to play out the lottery if Z≤z. The optimal choice of z is the subject’s 

certainty equivalent for the lottery. Consider the implications in terms of 

what they are choosing: their choice of z implies the choice of a lottery, 

which is a compound of the original lottery and the uniform distribution.  

 

                                                 
3 This works, as before, with Expected Utility preferences and may work with other preferences. 
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To illustrate this, consider the lottery in Figure 2.4a, where the payoffs are 

£5 and £15. If they state z=5 they get to play out the lottery; if they state 

z=15, they are opting for the lottery in Figure 2.4b – that is a uniform 

distribution over (5,15); if they state some number in between, they are 

opting for the lottery in Figure 2.4c. As z is varied from 5 to 15, the lottery 

in Figure 2.4c varies from that in Figure 2.4a to that in Figure 2.4b. We 

simply asked them to choose their preferred lottery; they did this by 

moving the slider below the graph and then clicking on ‘Confirm’. The 

implied value of z given by a choice of the lottery in Figure 2.4c is 11; this is 

the observed certainty equivalent.  

   
Figure 2.4a: Example for 
LC-1 

FIGURE 2.4b: Example for 
LC-2 

FIGURE 2.4c: Example for 
LC-3 

 

We feel that this is a clearer way of implementing the 

Becker-DeGroot-Marschak mechanism. We denote it by LC – Lottery 

Choice – as they are choosing their preferred lottery. The 54 LC problems 

spanned lotteries with outcomes of £0, £5, £10 and £15 with probabilities 

ranging from 0.0 to 1.0 in steps of 0.1; details are attached in the 

appendices. 
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2.2.5 Allocation (AL) 

The fourth part asked subjects to respond to 81 allocation problems. 

Loomes and Pogrebna (2014) had just 13 problems, but theirs were over 

three states and the exchange rates were always 1 to 1. We adopted a 

two-way allocation with non-unitary exchange rates, partly because it is 

easier for subjects to understand, but more crucially because the 

econometric analysis of the data is simpler. The number of problems was 

again chosen after pre-experimental simulations. 

 

The subject is endowed with 100 tokens at the beginning of each problem. 

She or he has to split the endowment to two risky states, red and yellow, 

with given chances. For each state, there is an exchange rate between 

tokens and money. The exchange rate for red varies across problems. But 

the exchange rate for yellow is always equal to one. The chances assigned 

to red and yellow also vary across problems, but they always sum to 100. 

That is, if a problem is played out, the real state will be either red or 

yellow.  

 

An example is shown in Figure 2.5. 

 

Figure 2.5: Example of AL 
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In this example, the two states (red and yellow) have probabilities 0.7 and 

0.3 respectively. Subjects have 100 tokens to allocate, and the exchange 

rates between tokens and money are 1 token = 17.5p for red, and 1 token 

= 10p for yellow. They made their allocation with the slider, with the figure 

showing the implied amounts of money (and their probabilities). There are 

three buttons below the bar to free the subject from moving the cursor. By 

clicking the buttons, the subject can allocate all the endowments to red or 

yellow, or split them equally. “Equal” here means the endowment is 

divided 50-50 between red and yellow. It does not mean that the monetary 

values of red and yellow are equal. The 81 allocation problems spanned 

probabilities ranging from 0 to 1 in steps of 0.1 with varying exchange 

rates; details are attached in the appendices. We denote this method AL. 

 

2.2.6 Experimental Implementation 

We implemented this experiment in four sessions during October and 

November 2014. The four sessions were all the same. There were 24 

subjects in each session. Each subject was assigned a specific order for the 

four elicitation methods, which was different from the order experienced 

by the other 23 subjects.  

 

Before the experiment, the subject was randomly allocated a specific 

integer between 1 and 24 by drawing a disk from an opaque bag. Then the 

subject was led to a desk with a number that matched the number on the 

disk she or he had drawn. On the desk, there was a computer and a piece 
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of colour-printed instructions. There was also a pen and blank sheets of 

paper for the subject to write or draw drafts during the experiment.  

 

Once all the subjects were seated, the experimenter briefly introduced the 

experiment. Then the subjects were given 15 minutes to read the 

instructions and to answer the control questions. During this time, the 

experimenter walked among the subjects and answered their questions 

privately. But the subjects were forbidden to talk to each other.  

 

The experimenter checked the answers to the control questions for every 

subject to make sure she or he understood the experiment. Once all the 

subjects had correct answers to the control questions and they had no 

further questions, the experiment was started. There was a “Start” button 

showing on each subject’s computer screen after the experimenter had 

changed a value on the central computer. The subjects clicked the button 

and started the experiment. 

 

During the experiment, the subjects could not communicate with anyone 

else. If they had any questions, they put up their hands or went to the 

control room. The experimenter would answer their questions privately. 

 

Once a subject had finished the experiment, she or he had to notify the 

experimenter. Then the subject was taken to a separate room and was paid 

there. Since there were four elicitation methods, the subject had to 
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randomly draw a disk from four in an opaque bag. The number on the disk 

denoted which elicitation method would be played out. For the numbers 

on the four disks, one to four denotes AL, LC, PC, and HL respectively. 

 

There were four separate bags prepared for the four different methods. 

The number of disks in the bags matched the number of problems in each 

method. Once the played-out method had been determined, the subject 

randomly drew a disk from the corresponding bag to decide which problem 

was going to be played out.  

 

This information and the subject’s number was input into a “replay” 

project, and then the subject’s decision on that specific problem was 

shown on the screen. Then the subject was asked to randomly draw a disk 

from an opaque bag. There was an integer from 1 to 100 on the disk 

denoting the real state which is played out for the problem. The subject’s 

payoff depended on his or her decision and the real state played out. She 

or he also received a show-up fee, which was £2.50. 

 

2.3 Functional forms assumed 

While we are primarily interested in the differences between the different 

elicitation methods, in order to understand these differences we need to 

model behaviour and hence estimate the attitude to risk. To model the 

behaviour, we4 need to choose preference functionals. We do not know 

                                                 
4 By this we mean when using our methodology; that of Loomes and Pogrebna differs. We shall 
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the preference functionals of our subjects, so we have to choose a set of 

such functionals and use our data to find the best-fitting one(s). We chose 

the most popular in the literature, namely Expected Utility (EU) and Rank 

Dependent expected utility (RD).  

 

Under the EU hypothesis, the utility of a lottery is simply the sum of the 

products of the probabilities and the utility of the possible outcomes 

respectively. A person simply perceives the probabilities as they are stated 

in the lottery. Or, in other words, a person assigns the same weight to all 

the probabilities. That weight is one. 

 

Under the RD hypothesis, people are assumed to attach non-unitary 

weights to (de-)cumulative probabilities. A low probability is likely to be 

over-weighted, while a high probability is likely to be under-weighted. The 

weight assigned to a specific probability also depends on the amount of the 

related outcome and all the other possible outcomes in the lottery. RD can 

be regarded as a generalized form of EU. EU is the special case of RD in 

which all the weights are equal to one. Below is a mathematical illustration 

of EU and RD. 

 

Let us denote by V the value to a subject of a 3-outcome lottery which pays 

xi with probability pi (for i=1,2,3), and let us order the payoffs so that x1 ≥ x2 

≥ x3, then we have  

                                                                                                                            
discuss these methodological differences later. 
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for EU: u(V) = p1u(x1) + p2u(x2) + p3u(x3) 

for RD: u(V) = w(p1)u(x1) + [w(p1+p2)-w(p1)]u(x2) + [1-w(p1+p2)]p3u(x3) 

In these expressions, u(.) is the underlying utility function of the subject 

and w(.) is the rank-dependent weighting function. 

 

We need to specify the utility function u(.) which appears in both these 

functionals. We adopt both the constant Relative Risk aversion (RR) form 

and the constant Absolute Risk aversion (AR) form. These are given by: 

 for RR: u(x) = x1-r/(1-r),  r≠1; ln(x), r=1 

 for AR: u(x) = -exp(-rx), r≠0; x, r=0. 

Here risk aversion measures the degree of reluctance of a person to accept 

a risky lottery rather than a certainty. If a person is more risk-averse, she or 

he is more likely to accept a certainty rather than a risky lottery, even when 

the expected value of the lottery is greater than the certainty. Or, in other 

words, to a risk-averse person, a risky lottery brings utility less than a 

certainty which is equal to the expected payoff. 

 

We note that in both cases r=0 corresponds to risk-neutrality and increases 

in r imply greater risk aversion, but there is no mapping between the r for 

RR and that for AR. This is because the r in RR is a measure of relative risk 

aversion, while the r in AR is a measure of absolute risk aversion. 

 

In fitting the RD specifications, we also need to specify a weighting function 

for the probabilities. This we take to be of the Quiggin form 
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 w(p) = pg/[pg+(1-p)g]1/g 

In the results that follow, for all four elicitation methods, we fit the four 

possible combinations of the two preference functionals and the two utility 

functions, using the obvious notation RREU, RRRD, AREU and ARRD. 

Essentially we want to see which of these best explains the data and we 

also want to see whether the estimated parameters differ across the 

elicitation methods; we do this on a subject-by-subject basis, as it is clear 

that subjects are different. 

 

2.4 Our stochastic assumptions and econometric methodology 

We should comment on our econometric methodology, and contrast it to 

that used by others. We treat subjects as different, so we analyse 

subject-by-subject5.  We also use simultaneously all the responses of the 

subjects on all problems of a particular elicitation method (and use them 

for estimation), rather than compare responses on particular problems. 

The latter is what Loomes and Pogrebna (2014) and many others have 

done. So, for example, in their Table 1 on their page 578, they look at the 

distribution of responses6 for particular decision tasks and compare these 

distributions across tasks. They note that the distributions are different 

across tasks, sometimes significantly so. This could be the case because of 

noise in subjects’ responses but they present no way of modelling this 

                                                 
5 We could fit a mixture model to the data, thus estimating distributions of the relevant parameters 

over all subjects. 

6 Which imply particular levels of risk-aversion. 
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noise, though the use of a statistical test (in this case a Mann-Whitney test) 

does necessarily involve some implicit assumption about stochastics. 

 

Why we prefer our approach is because of inference and statistical 

considerations. We can illustrate this very simply: suppose we wish to test 

an hypothesis that μ1 = μ2 = μ3 where these are means of some variable(s) 

across some population(s) and we base our test on sample means m1, m2 

and m3. Testing separately whether m1 is significantly different from m2, 

that m2 is significantly different from m3 and that m3 is significantly 

different from m1 is not the same as testing whether m1, m2 and m3 are 

significantly different from each other. For given levels of significance, the 

power is different. Another difference between our methodology as 

compared to others’ is in the number of problems we present to our 

subjects: pre-experimental simulations show that one needs large numbers 

of observations to get precise estimates; there is a lot of noise in subjects’ 

behaviour. 

 

Our econometric methodology is to fit, for each of RREU, RRRD, AREU and 

ARRD, the models to the decisions of the subjects, for each of the four 

elicitation methods, and hence obtain estimates of the risk aversion index 

(and also the other parameters). We do this by maximum likelihood, using 

MATLAB. To do this we need to make assumptions about the stochastic 

nature of the data. This arises from errors made by the subjects. We largely 

follow convention.  
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 HL: we assume that the subject calculates the utility difference 

between the two lotteries for each pair in the list, but makes an 

error in the calculation. Further, embodying the fact that the list is 

presented as a list, we assume that the subject makes the same 

error for each pair; we further assume that this error has a normal 

distribution with mean 0 and precision (the inverse of the standard 

deviation) s. Then the switch-point decision is taken on the basis of 

where this utility difference plus error changes from positive to 

negative or vice versa. 

 PC: we assume that on each problem the subject calculates the 

utility difference between the two lotteries, but makes an error in 

this calculation; we further assume that this error is independent 

across problems and has a normal distribution with mean 0 and 

precision (the inverse of the standard deviation) s. So that the 

decision is taken on the basis of the sign of the correct utility 

difference plus error. 

 LC: we assume that the subject calculates the certainty equivalent 

of the lottery, but makes an error in this calculation; we further 

assume that this error has a normal distribution with mean 0 and 

precision (the inverse of the standard deviation) s. So that the 

observed certainty equivalent is the correct subject’s true 

equivalent plus error. 

 AL: we assume that the subject calculates the optimal allocation 

that he or should make, but makes an error in this calculation; we 
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further assume that this error has a normal distribution with mean 

0 and precision (the inverse of the standard deviation) s. So that the 

observed allocation is the optimal allocation plus error. 

 

We note that the s in the PL and PC stories are on a different scale than the 

s in the PC and AL stories – the former being on utilities and the latter on 

money. 

 

2.5 Results 

We had 96 subjects, who each completed all four parts of the experiment. 

For each subject and for each elicitation method, we attempted to fit the 

four models RREU, RRRD, AREU and ARRD to their decisions; so for each 

subject 16 models were estimated more details for estimation. This implies 

a total of 1,536 estimations. In certain cases the estimation did not 

converge. This was for a variety of reasons which we discuss below. In the 

table below we enumerate these cases by elicitation method. It will be 

seen from this table that the ‘worst offender’ is PC.  There were a total of 

20 subjects where convergence was not obtained on at least one method. 

As the point of the chapter is to compare different elicitation methods, we 

exclude all these 20 subjects from the analysis that follows (though an 

online appendix repeats parts of the analyses with all 96 subjects).  
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Method(s) Number of times not converged 

Just LC 3 

Just PC 9 

Just HL 5 

Both AL and LC 1 

Both AL and PC 1 

Both LC and PC 1 

 

These cases of non-convergence took several forms: (1) where the subject 

was clearly either risk-neutral or risk-loving – in which cases the implied 

parameters are not unique; (2) where the estimation hit the bounds 

imposed by us on the parameters; (3) where the subject appeared not to 

understand the tasks, or where the subject appeared to be responding 

randomly. 

 

Regarding the bounds, the problematic parameter was often the g in the 

probability weighting function for RD. We imposed a lower limit of 0.3. 

Below that the weighting function is not monotonically increasing, and an 

upper limit which varied from subject to subject.   

 

We present our results in two main parts. First we present some summary 

statistics; these are in Table 2.1. Then we compare the elicited/estimated 

parameters across preference functionals for given elicitation methods; 

finally we compare the elicited/estimated parameters across elicitation 

methods for given preference functionals.   
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Table 2.1 presents some summary statistics. It is very clear from this that 

the estimated parameters vary widely across the different elicitation 

methods. For example, using AL the risk-aversion index elicited in the RR 

specifications is, on average, much higher that found with the other 

methods, and also has a much higher spread. It may well be that the 

elicitation method is affecting the way that subjects process the problems. 

For example the allocation method may be focussing subjects’ minds on 

what outcome they might obtain for different states of the world. And here 

we have to emphasize that, the r value for the RR specifications cannot be 

compared with the r value for the AR specifications. 
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Table 2.1: Summary statistics 

Stats Method 
RREU RRRD AREU ARRD 

r s r g s r s r g s 

Mean 

PC 0.502 1.666 0.375 1.105 2.135 0.175 0.127 0.134 1.112 0.164 

AL 3.144 0.161 2.059 1.120 0.168 0.078 0.148 0.052 1.021 0.151 

LC 0.192 0.594 0.028 0.959 0.635 0.094 0.564 0.043 1.027 0.598 

HL 0.182 0.955 -0.022 0.824 0.963 0.068 0.110 0.026 0.741 0.136 

Median 

PC 0.535 1.358 0.399 0.850 1.515 0.157 0.111 0.109 0.870 0.137 

AL 1.054 0.078 0.947 1.005 0.087 0.027 0.068 0.024 0.924 0.070 

LC 0.329 0.539 0.237 0.907 0.580 0.073 0.530 0.041 0.904 0.549 

HL 0.174 0.777 0.004 0.648 0.748 0.044 0.097 0.018 0.646 0.121 

Standard Deviation 

PC 0.275 1.440 0.320 0.714 2.998 0.131 0.077 0.154 0.701 0.131 

AL 10.367 0.646 8.450 0.428 0.655 0.231 0.661 0.186 0.403 0.667 

LC 0.956 0.193 1.092 0.401 0.192 0.189 0.164 0.183 0.535 0.166 

HL 0.285 1.136 0.308 0.622 1.240 0.089 0.144 0.087 0.314 0.149 
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The parameters of the various specifications are the risk-aversion index r 

(for both the EU and the RD functionals), the weighting function parameter 

g (for the RD functional) and the precision parameter s for all functionals. 

Some of these parameters are comparable, and in Table 2.2.1 we show the 

relationships between them for those that are comparable. We can 

compare g across RRRD and ARRD, and similarly we can compare s across 

the various preference functionals. Also we can compare the r between 

RREU and RRRD, and between AREU and ARRD, though clearly if the true 

preference functional is Rank Dependent then assuming Expected Utility 

preferences may lead to bias. Table 2.2.1 reports the correlation (ρ) 

between the estimated parameters for different elicitation methods and 

the intercept (α) and slope (β) of a linear regression of one against the 

other; if they were consistently producing the same estimates then α 

should be zero and β should be one. The table shows that the estimated 

values of s, across preference functionals, are generally not too far apart. 

For example, the estimated values of s (the precision parameter) using the 

AL method are very close whether we fit RREU or RRRD. This is less true for 

the estimated values of g (the weighting function parameter), though they 

are very similar using the LC method whether we fit RRRD or ARRD. 

However this is not always the case: for example, there are big differences 

between the estimated values of g using the PC method depending on 

whether we fit RRRD or ARRD. The estimated r values differ more markedly 

across the elicitation methods, though once again there are cases (using LC 

and comparing RREU and RRRD) where the fit is good. Even though it is 
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difficult to summarise a whole table in one sentence, one could say that 

the correlations are all positive and reasonably large, and certainly larger 

than in Table 2.3 (comparisons across elicitation methods), which we shall 

come to shortly.  

Parameter Method x y α β ρ 

r PC RREU RRRD -0.121*** 0.988 0.849 

r PC AREU ARRD -0.048*** 1.035 0.875 

s PC RREU RRRD 0.538*** 0.789*** 0.795 

s PC AREU ARRD 0.046*** 0.844*** 0.879 

g PC RRRD ARRD 0.624*** 0.442*** 0.451 

r AL RREU RRRD 0.185** 0.639*** 0.801 

r AL AREU ARRD 0.009*** 0.528*** 0.700 

s AL RREU RRRD 0.001 1.058*** 0.987 

s AL AREU ARRD -0.001 1.037*** 0.997 

g AL RRRD ARRD 0.373*** 0.579*** 0.617 

r LC RREU RRRD -0.179*** 1.082 0.923 

r LC AREU ARRD -0.040*** 0.884** 0.913 

s LC RREU RRRD 0.078*** 0.938 0.941 

s LC AREU ARRD 0.055** 0.963 0.950 

g LC RRRD ARRD 0.095 0.975 0.731 

r HL RREU RRRD -0.174*** 0.835** 0.773 

r HL AREU ARRD -0.030*** 0.829*** 0.848 

s HL RREU RRRD -0.111* 1.139** 0.890 

s HL AREU ARRD 0.008 1.210** 0.847 

g HL RRRD ARRD 0.421*** 0.388*** 0.769 

The hypotheses being tested are α=0 and β=1. 
* denotes significantly different at 10%; ** at 5% and *** at 1%. 

Table 2.2.1: A comparison of the estimated coefficients across Preference Functionals 

(part 1) 

 

Some of the parameters are not comparable. Crucially the r parameter 

differs in both what it measures and its scale between the Constant 

Absolute Risk Aversion specification and the Constant Relative Risk 

Aversion specification; moreover there is no precise mapping between 

them. However increases in either imply a higher risk-aversion so that they 
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should be positively related. Table 2.2.2 shows the results. Again the 

correlations are reasonably high. 

 

We can also show the results graphically. We show here just a subset ‒ the 

full set can be found in the appendices. Figure 2.6 shows the scatter of the 

estimated r values using the AL method across preference functionals. This 

figure suggests that getting the functional form wrong does not upset our 

estimation of the risk-aversion of the subjects. (Deck et al (2008) also 

present such scatters and make the same point, though their risk-aversion 

indices are not estimated.) However, Figure 2.7 suggests that if we get the 

utility function wrong then the estimate of the probability weighting 

parameter g may be quite seriously wrong.  

 

Figure 2.8 shows the scatter of the estimated s values using the AL method 

across the preference functionals. The relationships are almost always the 

45 degree line (as Table 2.2.1 shows). This means that if whether we 

assume RR or AR preferences we get almost the same estimate of the noise 

in subjects’ responses. 
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Parameter Method x y α β ρ 

r PC RREU AREU -0.036** 0.422*** 0.889 

r PC RREU ARRD -0.073*** 0.410*** 0.731 

r PC RRRD AREU 0.056*** 0.318*** 0.779 

r PC RRRD ARRD -0.009 0.380*** 0.788 

s PC RREU AREU 0.044*** 0.051*** 0.816 

s PC RREU ARRD 0.084*** 0.043*** 0.637 

s PC RRRD AREU 0.053*** 0.040*** 0.622 

s PC RRRD ARRD 0.074*** 0.043*** 0.678 

r AL RREU AREU 0.007*** 0.020*** 0.979 

r AL RREU ARRD 0.012*** 0.012*** 0.746 

r AL RRRD AREU 0.014*** 0.019*** 0.724 

r AL RRRD ARRD 0.008*** 0.019*** 0.968 

s AL RREU AREU 0.002 0.809*** 0.901 

s AL RREU ARRD 0.002 0.834 *** 0.893 

s AL RRRD AREU 0.004 0.732 *** 0.873 

s AL RRRD ARRD 0.004 0.759 *** 0.872 

r LC RREU AREU 0.026** 0.260*** 0.880 

r LC RREU ARRD -0.022* 0.247*** 0.857 

r LC RRRD AREU 0.090*** 0.137*** 0.790 

r LC RRRD ARRD 0.039*** 0.143*** 0.851 

s LC RREU AREU 0.208*** 0.600*** 0.705 

s LC RREU ARRD 0.286*** 0.525*** 0.609 

s LC RRRD AREU 0.202*** 0.571*** 0.668 

s LC RRRD ARRD 0.229*** 0.581*** 0.671 

r HL RREU AREU 0.019*** 0.267*** 0.857 

r HL RREU ARRD -0.016** 0.231*** 0.757 

r HL RRRD AREU 0.072*** 0.204*** 0.706 

r HL RRRD ARRD 0.031*** 0.228*** 0.806 

s HL RREU AREU 0.033*** 0.070*** 0.723 

s HL RREU ARRD 0.048*** 0.085*** 0.618 

s HL RRRD AREU 0.050*** 0.048*** 0.638 

s HL RRRD ARRD 0.060*** 0.070*** 0.648 

The hypotheses being tested are α=0 and β=0. 
* denotes significantly different at 10%; ** at 5% and *** at 1%. 

Table 2.2.2: A comparison of the estimated coefficients across Preference Functionals 
(part 2) 
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Figure 2.6: estimates of r using AL across preference functionals 
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Figure 2.7: estimates of g across preference functional
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Figure 2.8: estimates of s using AL across preference functionals 
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We continue to analyse the different elicitation methods across preference 

functionals, and now consider those where the estimated parameters are 

not comparable. Table 2.2.2 gives details. Here we include the estimated 

intercept and slope of the regression of an estimated parameter using a 

particular elicitation method for each preference functional against each of 

the others. Because of the lack of a relationship between the two 

parameters, other than monotonic increasingness, the obvious test to carry 

out is that the slope is positive; significance is good and this is reported in 

the β column. We also include a test of whether the intercept is 

significantly different from 0 – as it should be. Here significance is weak. 

 

Finally, and crucially, we compare the estimated parameters across 

elicitation methods. Table 2.3 gives a summary, while Figures 2.9 to 2.12 

present a subset of graphical comparisons; the full set of 10 sets of 

comparisons can be found in the appendices. Let us start with Figure 2.9 

which shows the 6 scatters for the estimated r value for the RRRD 

functional; each scatter being the estimated values using one elicitation 

method plotted against the estimated values for another elicitation 

method, for all the non-excluded subjects. For example, the scatter at the 

top left compares AL with LC. In a perfect world these points would lie on 

the 45o line. As the scales on the two axes differ, it helps to fit a regression 

line to the scatter. Table 2.3 gives the intercept (-0.013) and slope (0.224) 

of this line. While the intercept is not significantly different from zero, the 
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slope is significantly different from one, as the asterisks indicate. As can be 

seen, the risk-aversion index elicited by AL is generally greater than that 

elicited by LC. This could result from what might be called a built-in bias 

with the allocation method – subjects tend to make allocations to avoid 

large differences in their payoff depending on which state occurs, while the 

‘BDM’ mechanism does not make so explicit the possible consequences of 

their actions. Indeed generally the risk-aversion elicited under allocation is 

generally higher than for the other three methods. 

Parameter PF x y α β ρ 

r RREU AL LC -0.013 0.224*** 0.417 

r RREU AL PC 0.484*** 0.022*** 0.073 

r RREU AL HL 0.003 0.132*** 0.417 

r RREU LC PC 0.471*** 0.098*** 0.197 

r RREU LC HL 0.113*** 0.253*** 0.507 

r RREU PC HL 0.163** 0.038*** 0.037 

s RREU AL LC 0.566*** 0.240 0.056 

s RREU AL PC 1.589*** -2.760* -0.157 

s RREU AL HL 0.554*** 2.583 0.281 

s RREU LC PC 1.674*** -0.549*** -0.126 

s RREU LC HL 0.473*** 0.517** 0.252 

s RREU PC HL 0.900*** -0.074*** -0.147 

r RRRD AL LC -0.230** 0.340*** 0.426 

r RRRD AL PC 0.334*** 0.046*** 0.101 

r RRRD AL HL -0.194*** 0.161*** 0.377 

r RRRD LC PC 0.366*** 0.060*** 0.122 

r RRRD LC HL -0.045 0.193*** 0.412 

r RRRD PC HL -0.071 0.129*** 0.134 

s RRRD AL LC 0.620*** 0.089* 0.022 

s RRRD AL PC 2.067*** -3.640* -0.157 

s RRRD AL HL 0.445*** 3.518** 0.322 

s RRRD LC PC 1.036** 1.080 
 

0.196 

s RRRD LC HL 0.424** 0.557 
 

0.212 

s RRRD PC HL 0.822*** -0.014*** -0.030 

g RRRD AL LC 0.916*** 0.045*** 0.048 

g RRRD AL PC 0.706*** 0.365*** 0.220 

g RRRD AL HL 0.602*** 0.200*** 0.138 

g RRRD LC PC 1.075*** 0.030*** 0.017 
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g RRRD LC HL 0.764*** 0.062*** 0.040 

g RRRD PC HL 0.767*** 0.052*** 0.059 

r AREU AL LC -0.040 3.693*** 0.391 

r AREU AL PC 0.171*** 0.276 0.039 

r AREU AL HL -0.007 2.232** 0.468 

r AREU LC PC 0.159*** 0.174*** 0.252 

r AREU LC HL 0.042*** 0.279*** 0.592 

r AREU PC HL 0.064*** 0.020*** 0.029 

s AREU AL LC 0.493*** 0.982 0.228 

s AREU AL PC 0.124*** 0.032*** 0.016 

s AREU AL HL 0.097*** -0.124*** -0.124 

s AREU LC PC 0.161*** -0.061*** -0.130 

s AREU LC HL 0.027* 0.107*** 0.460 

s AREU PC HL 0.104*** -0.122*** -0.249 

r ARRD AL LC -0.098*** 4.694*** 0.415 

r ARRD AL PC 0.121*** 0.656 0.060 

r ARRD AL HL -0.038* 2.369** 0.377 

r ARRD LC PC 0.129*** 0.108*** 0.128 

r ARRD LC HL 0.017* 0.200*** 0.420 

r ARRD PC HL 0.026* -0.001*** -0.002 

s ARRD AL LC 0.531*** 0.911 0.217 

s ARRD AL PC 0.149*** 0.020*** 0.011 

s ARRD AL HL 0.114*** -0.001*** -0.001 

s ARRD LC PC 0.173*** -0.037*** -0.085 

s ARRD LC HL 0.034 0.134*** 0.409 

s ARRD PC HL 0.137*** -0.153*** -0.201 

g ARRD AL LC 0.928*** 0.104*** 0.078 

g ARRD AL PC 1.078*** 0.042*** 0.024 

g ARRD AL HL 0.665*** 0.065*** 0.084 

g ARRD LC PC 1.132*** -0.019*** -0.015 

g ARRD LC HL 0.612*** 0.115*** 0.196 

g ARRD PC HL 0.720*** 0.010*** 0.021 

The hypotheses being tested are α=0 and β=1. 
* denotes significantly different at 10%; ** at 5% and *** at 1%. 

Table 2.3: A comparison of the estimated coefficients across Elicitation Method 
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Figure 2.9: estimates of r in RRRD across elicitation methods 
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Figure 2.10: estimates of r in AREU across elicitation methods 
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Figure 2.11: estimates of s in RRRD across elicitation method 
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Figure 2.12: estimates of g in RRRD across elicitation methods 
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Relative to the other comparisons, the one discussed above is one of the 

best. Examine Figure 2.10 which shows the 6 scatters for the estimated r 

value for the AREU functional. Here, as Table 2.3 shows, most of the 

intercept values are significantly different from zero and most of the slope 

values from 1, so the different elicitation methods are getting usually 

significantly different estimates. Once again the allocation method seems 

to be inducing more risk-averse behaviour. Figure 2.11, comparing 

different estimates of the precision parameter s for RRRD across the 

different methods, shows that sometimes the relationship is negative. Here 

the precision seems to be lower with the allocation method, and possibly 

highest on the Pairwise Choice method, though a direct comparison does 

not make much sense as the error on PC is on the utility difference 

(between the two lotteries) while the error on AL is on the difference in the 

amounts of implied money. 

 

Figure 2.12 is arguably the worst, usually showing very little relationship 

(and sometimes a negative one) between the elicited g values. Here the g 

value for the LC method seems to have the largest variation in the 

estimated values and that for PC having the smallest. 

 

Finally, even though the different elicitation methods seem to disagree on 

the estimates of the parameters, we should ask whether at least they 

agree on the best-fitting preference functional. Table 2.4 gives the results, 
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with the criterion for the ‘best-fitting’ functional being either the raw 

log-likelihood, or either the Akaike or Bayes information criterion (both of 

which correct the log-likelihood for the number of parameters involved in 

the fitting). Table 2.4 shows that correcting for degrees of freedom does 

make a big difference. But here again, the different elicitation methods 

disagree: it is clear that AL puts the AR specifications first, while the other 

methods suggest that RR fits better. Moreover there is no general 

agreement as to which of EU and RD is the best. 

Method PF LL BIC AIC 

PC 

RREU 1 25 33 

RRRD 38 20 12 

AREU 1 10 14 

ARRD 37 21 17 

AL 

RREU 1 0 1 

RRRD 74 2 2 

AREU 0 24 37 

ARRD 2 50 36 

LC 

RREU 2 14 18 

RRRD 49 14 12 

AREU 0 17 22 

ARRD 27 31 24 

HL 

RREU 1 40 40 

RRRD 49 6 6 

AREU 0 19 22 

ARRD 27 11 8 
Table 2.4: Best-fitting preference functional 

 

 

2.6 Conclusions 

One clear conclusion that emerges from our results is that the elicitation 

method ‒ the context ‒ does matter to the estimated risk-aversion index; 

there are big differences in the estimated risk attitudes across the 
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elicitation methods. The choice of the preference functional seems to be 

less important, though if the best functional is RD then assuming it to be 

EU can lead to mis-elicitation. The choice of the utility function seems to be 

even less important. 

 

This seems to send a clear message: risk-aversion should be elicited in the 

context in which it is to be interpreted. This suggests that one should 

estimate the risk-aversion index along with the other parameters of the 

model being fitted to the data; eliciting them in another context could lead 

to mis-interpretations of the data. As Loomes and Pogrebna (2014) write 

“In the short run, one recommendation is that researchers who wish to 

take some account of and/or make some adjustment for risk attitude in 

their studies should take care to pick an elicitation procedure as similar as 

possible to the type of decision they are studying…”. We would even go as 

far by suggesting modifying “as similar as possible” to “in the same decision 

problem”. They follow up with a comment about the number of tasks that 

are posed to subjects; often, given the noise in subjects’ responses, there 

are far too few. We would not go as one experiment which asked 2400 

pairwise choice problems (over two sessions) but 1 or 2 is surely too few 

even if we want to elicit just 1 or 2 parameters. 

 

In summary, our results suggest something particularly worrying: namely, 

that subjects do not have a stable preference functional for making 

decisions under risk. This conclusion would undermine much of economics. 
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To check whether that is true we could investigate more carefully the 

stochastic component of decision-making. Or we could take up Loomes and 

Pogrebna’s call to understand better “how contextual or procedural factors 

interact with that process [of decision-making].” Context does seem to 

matter, though it is not clear whether this is because of cognitive factors or 

because of error.
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Chapter 3. Do Past Decisions Influence 

Future Decisions?1 

3.1 Introduction  

In many, if not most, experiments on individual choice, the Random Lottery 

Incentive (RLI) mechanism is used. This involves each subject being asked a 

number of questions, one of which is chosen at random at the end of the 

experiment, with the payoff to the subject being determined by the 

subject’s response on that question. A rather superficial reason for the use 

of this mechanism is that it can appear to save the experimenter money 

while making the payoffs appear salient to the subjects, but the real reason 

is that it avoids income effects and cross-task contamination. 

 

However, as pointed out by Holt (1986) and others, this requires the 

separation by the subject of the various questions. If the subject has 

Expected Utility (EU) preferences, this is guaranteed through the 

Independence Axiom, but if the preferences are not EU, there is a potential 

inconsistency in the use of the RLI mechanism. This can be illustrated very 

simply, though rather artificially, with the following example. Suppose a 

subject is asked to choose between (L) £4 with certainty and (R) a 50-50 

gamble between £10 and £0. Suppose that the subject is sufficiently 

risk-averse that L is preferred. However, now suppose that the subject is 

offered the same choice twice and is told that his or her answer on a 

                                                 
1 This chapter is a joint work with John Hey and has been published in Applied Economics Letters, 

21:3, 152-157, 2013. 
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randomly-chosen one of the two choices will be played out for real. Having 

chosen L on the first occasion, the subject may argue as follows: “if I 

choose L again on the second choice, I will get £4 for certain, but if I choose 

R, I will get £4 with probability ½, £10 with probability ¼ and £0 with 

probability ¼”. Obviously if the subject has EU preferences the subject will 

choose L again, but if the preferences are not EU the subject could prefer R. 

So the subject may choose L the first time, and R the second: hence, when 

making inferences from the data, the experimenter needs to take into 

account whether the subject separates or not. 

 

While independence is sufficient for separation, it is not necessary: 

subjects could have non-EU preferences and still separate – making the RLI 

mechanism still valid. It is therefore an empirical issue. Not surprisingly, it 

has already been investigated. The main studies are Starmer and Sugden 

(1991), Cubitt et al (1998), Hey and Lee (2005a) and Hey and Lee (2005b).2 

The first two of these take a very simple experimental setting in which 

subjects were presented with at most two questions, and the focus was on 

whether there was cross-question contamination. The conclusion was that 

there was not, and hence that the RLI was valid. However, in many 

experiments subjects are presented with many more than two questions 

(on the grounds that, because of the presence of noise in subjects’ 

behaviour, many observations are needed to elicit preferences accurately). 

This was the setting for the two Hey and Lee papers, and the hypotheses 

                                                 
2 Lee (2008) is also relevant. 
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being tested there were: (1) that the subjects, in answering each question, 

considered the experiment as a whole; (2) that in answering any question, 

subjects took into account their answers to all the preceding questions. 

Once again, the conclusions were that they did not, and hence that the RLI 

was valid. 

 

However that is not the end of the story. Wakker 3  writes: “The 

random-lottery incentive system has since become the almost exclusively 

used incentive system for individual choice. Unfortunately, more than half 

of the referees of economic journals will embark on yet another discussion 

from scratch of this issue.” He also points to the evidence discussed above.  

The problem is that not all of the various possible forms of contamination 

have been investigated. In particular, in experiments with many questions, 

the two hypotheses considered by Hey and Lee are cognitively very 

demanding and hence possibly unrealistic. Something simpler might be 

cognitively more plausible. This is what we test here: we test the 

hypothesis that in answering any question the subject takes into account 

their decision on the immediately preceding question. We call this the 

Contamination Hypothesis, to distinguish it from the usual Separation 

Hypothesis. Under our hypothesis any decision is affected by all previous 

decisions, not directly as in Hey and Lee, but indirectly through the 

immediately preceding one. 

                                                 
3 http://people.few.eur.nl/wakker/miscella/debates/randomlinc.htm 
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3.2 The hypothesis and the data 

We suppose that every subject faces N decisions in one experiment 

(n=1,2,…,N). The N decisions are presented sequentially. In each decision, 

the subject has to choose between two lotteries, Left (L) and Right (R). The 

nth decision is denoted by dn. Our Contamination Hypothesis clearly does 

not apply to the first decision since there is no previous decision. However 

on decision n (n>1) the subject may be affected by dn-1. We measure such 

an effect with a parameter α and we hypothesise that he or she weighs the 

present decision with α (0≤α≤1), and the previous decision with (1-α).  

Hence our hypothesis assumes that the subject is thinking that he or she is 

facing a choice between [dn-1,(1-α);Ln,α] and  [dn-1,(1-α);Rn,α] instead of a 

choice between Ln and Rn (where [a,pa;b,pb] denotes a lottery which yields 

a with probability pa and b with probability pb). We interpret α as a 

behavioural parameter, indicating the weight that the subject attaches to 

the previous decision when taking the present decision. Note that if α takes 

the value 1 then the subject separates completely.  

 

We should emphasise that under this hypothesis, there is contamination of 

any decision by all previous decisions – but the contamination is indirect 

(through the previous decision, which, in turn is contaminated by the one 

before that, and so on) and not direct, as in Hey and Lee. 

 

We use the data from Hey (2001). In that experiment there were 53 

subjects; they were asked to complete 5 experimental sessions; each 
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session contained 100 pairwise-lottery questions; there were four possible 

outcomes (-£25, £25, £75 and £125), though each lottery contained at 

most three of these four outcomes; subjects were given a show-up fee of 

£25. The pairwise-lotteries were randomly ordered across sessions and 

across subjects. Subjects had to indicate their preferred lottery in each 

pair.  

 

They were told that one of the 500 pairwise-lotteries would be randomly 

selected at the end of the experiment; their preferred lottery on that 

question would be played out; and they would be paid accordingly. We 

have 25,600 observations.  

 

3.3 The econometric method 

We confine the technical detail and the mathematics to an Unpublished 

Appendix available online at the EXEC site. Given the nature of our data 

and our hypotheses, we have to fit preference functionals. Clearly the 

functional has to be non-EU4; the natural choice is Rank Dependent 

Expected Utility (RDEU)5 which now seems to be the most widely accepted 

of all non-EU functions. RDEU involves a weighting function (weighting the 

probabilities); we choose that of Wu and Gonzalez (1996), which seems to 

be generally accepted as being empirically valid. Further, in view of the fact 

that subjects make errors when taking decisions, and in order to fit 

                                                 
4 For otherwise there could be no contamination. 

5 See Wakker (2010), though we should note that he prefers to call it Rank Dependent Utility (or 

even Prospect Theory). 

http://www.york.ac.uk/economics/research/centres/experimental-economics/research/experimentaldetails/#tab-3
http://www.york.ac.uk/economics/research/research-clusters/experimental-economics/


144 

 

preference functionals, we have to assume some stochastic process; here 

we follow Hey (2001) and others in assuming that a normally distributed 

random variable with zero mean is added to the true difference in the 

valuations of the two lotteries in each decision-problem to determine the 

perceived best lottery. We use the constrained maximum-likelihood 

routine in GAUSS to fit the data under the two hypotheses, by estimating 

the parameters for both hypotheses and α for the Contamination 

Hypothesis. In so doing we obtain the maximised log-likelihoods under the 

two hypotheses: LLS and LLC. We can then test whether the Contamination 

Hypothesis fits the data significantly better than the Separation 

Hypothesis. 

 

3.4 Results 

The results can be summarised very quickly in Figure 3.1, which is a 

histogram of the differences between the LLS  and LLC. Using a standard 

likelihood-ratio test, the Contamination Hypothesis fits significantly better 

if (LLC – LLS) is larger than 1.96 (at the 5% level) and 3.32 (at the 1% level). 

The figure shows clearly that there are just 3 subjects in the former 

category and 2 in the latter. Indeed one might even argue that, at these 

levels of significance, such numbers being significant can be expected (5% 

of 53 is 2.65 and 1% of 53 is 0.5), even if the Separation Hypothesis is true. 

The RLI survives this test of its validity. 
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Figure 3.1: the results 

 

3.5 Conclusions 

This chapter tests for the existence of a possible form of contamination in 

experiments which use the Random Lottery Incentive mechanism. This 

mechanism is one in which subjects are posed a (large) set of decision 

problems, and where their payment is determined by their decision on a 

randomly chosen one of these problems. Critics have argued that one 

cannot necessarily infer the same things from the resulting data set as one 

could from a data set in which subjects were asked just one question: 

subjects’ responses might be contaminated by their responses on other 

questions. We test here a particularly appealing and cognitively simple 

possible form of contamination: where the subjects’ decision on one 

problem might be directly affected by their decision on the immediately 
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preceding question, and hence indirectly on all preceding questions. 

 

We test this Contamination Hypothesis against the usual Separation 

Hypothesis, and find that for just 3 (2) of the 53 subjects in the experiment, 

the former fits significantly better than the latter at the 5% (1%) level. It 

seems that the subjects do not suffer from this form of contamination. This 

provides further support for the continued use of the Random Lottery 

Incentive mechanism. 
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Appendix A.  

Experimental Instruction for Chapter 1 

These are the instructions given to the subjects in the experiment in 

November 2013. 

 

We have done the experiment twice. One in May 2013 and the other in 

November 2013. The instructions for the two sessions were very similar.  

The only difference between them is the exchange rate of energy 

expenditure and money. In May 2013, one unit of energy expenditure is 

equal to one penny. In November 2013, one unit of energy expenditure is 

equal to 1.5 pence. 

 

We have four treatments in the experiment. Here the instructions are only 

for treatment 1, since the instructions for the four treatments are very 

similar. The differences across treatments are the information quantity and 

quality. 

 

In treatment 1, subjects can see three squares away with ranges 0, 20, 50. 

In treatment 2, subjects can see two squares away with ranges 0, 20. 

In treatment 3, subjects can see three squares away with ranges 0, 40, 100. 

In treatment 4, subjects can see two squares away with ranges 0, 40. 
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Instructions 

(Treatment 1) 

 

You are about to take part in an economics experiment which is designed 

to observe individuals’ decision making processes when they have vague 

information about the future. If you read the following instructions 

carefully, you can – depending on your decisions – earn money in addition 

to your £2.50 show-up fee, which you cannot lose. You will get paid in cash 

at the end of the experiment. You will fill a demographic survey. This 

survey does NOT affect your payoff.   

 

This is an individual experiment. Please do not communicate with other 

subjects during the experiment. If you have any questions, please let the 

experimenter know and the experimenter will answer them privately.  We 

fear that if you violate this rule we will have to exclude you from the 

experiment.   

 

The Background 

The experiment is based on a story in which you are walking through hilly 

country and it is foggy. You are trying to get to a destination. You know 

where and how far away the destination is. But due to the thick fog, you 

cannot see the terrain around you clearly and hence you cannot 

immediately see the best way to get to your destination. You only have 
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some vague information about the near terrain. Crucially both walking up 

and down hill uses energy – though going down less than going up. Your 

aim is to arrive at the destination with the least expenditure of energy. 

 

The Experiment 

This experiment involves four journeys with four different maps, each of 

which is divided into squares. These maps are modified from different parts 

of the real world. But you do not know which parts they are. In the 

experiment, each map contains 200 by 200 squares. You have to move 

between squares till you reach the destination. The moving rule is that you 

can only move to squares which are share a boundary with your current 

square. In other words, you can only move to the adjacent square up, 

down, left or right relative to your current square. 

 

 
 

As the picture above showed, supposing your current square is the square 

with “Start” on it, you can and only can move to one of the squares with * 

on them. 

 

When you start a journey, you will see a square with “Start” written on it. 
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This is your starting square. You may not see the “Destination” square on 

your screen because sometimes it is too far away and off the screen. But it 

will appear when you get near to it. You can always check the position of 

the destination square relative to your current square from information 

which will be given at the left-top of your screen. When you are moving 

across the terrain, you are always the centre, and the destination is getting 

closer to you (if you are getting closer to it). 

 

On each journey, you click the “Start” button and hence start the journey. 

Then you will see a number on the “Start” square. It is the height of that 

square. As you will notice, for simplicity all heights are expressed as an 

integer. Because the area is hilly, different squares have different heights. 

That means that you may have to move up or down. You have to spend 

energy when moving. At each square you have to decide which square you 

want to move to next. Remember that you can only move to the adjacent 

square up, down, left or right. The software does not allow you to actually 

move to your chosen square until at least 10 seconds have elapsed; this is 

to ensure that you spend some time thinking about your decision. 

 

Because of the fog, you cannot see the heights of other squares clearly. But 

you will be given some information which depends on how far away are 

other squares. If a square is adjacent to (that is, one square away from) the 

square that you are currently on, you will be told its height precisely; if a 

square is two squares away from the square that you are currently on, an 



151 

 

interval of width 20 will be specified, and you will be told that the height is 

somewhere in that interval (with all integer heights in the interval equally 

likely); if a square is three squares away from the square that you are 

currently on, an interval of width 50 will be specified, and you will be told 

that the height is somewhere in that interval (with all integer heights in the 

interval equally likely); if a square is more than three squares away from 

the square that you are currently on, you will be told nothing about its 

height. The fog is that thick! 

 

When you move from one square to another, you spend energy. Moving up 

uses more energy than moving down. More precisely, moving up uses 

energy equal to twice the difference between the heights of the two 

squares, while moving down uses energy equal to the difference between 

the heights of the two squares. The software keeps a record of the energy 

you spend in the “expenditure” box on the right-top screen. 

 

You will have an endowment of cash at the beginning of each journey. This 

endowment varies from journey to journey since the maps differ. The 

payoff of any one journey is the endowment on that journey minus the 

energy you spend, where each unit of energy costs 1.5 penny. If your 

expenditure of energy on any journey exceeds your endowment, your 

payoff for that journey will be zero. 

 

We will record the payoff of all four journeys. Your payment for the 
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experiment as a whole will be the payoff on a randomly chosen one of the 

four journeys, plus the showup fee of £2.50. 

 

Examples 

 Your expenditure when you are moving up or down 

You have to spend energy when you are moving up or down. 

Moving-up expenditure is twice the difference between the heights 

of the two squares. Moving-down expenditure is equal to the 

difference between the heights of the two squares. 

 

1. If the height of your current square is 300, and the height of the 

square to which you moving is 400, you are moving up. Your 

energy expenditure is 2(400 – 300) = 200. 

It costs 200 * 1.5= 300 (pence). 

2. If the height of your current square is 400, and the height of the 

square to which you moving is 300, you are moving down. Your 

energy expenditure is (400 - 300) = 100. 

It costs 100 * 1.5=150 (pence). 

        

Control Questions: 

These questions are designed to help you test your understanding of the 

experiment. 
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1. If the height of your current square is 500, and then you move to 

another square with a height of 600, are you moving up or down? And 

how much is your expenditure for this move? 

2. If the height of your current square is 600, and then you move to 

another square with a height of 500, are you moving up or down? And 

how much is your expenditure for this move? 

3. If your payoffs on journeys one to four are £10.25, £12.89, £9.01, £5.33 

and the random process selects journey two as the payoff journey, 

what is your payment from this experiment? (Do remember to include 

the £2.50 show-up fee.) 

Answers: 

 

1. Moving up, because 500 (the height of the current square) is less than 

600 (the height of the next square), the expenditure is 2(600 – 500) 

which is 200. And it costs 200*1.5=300 (pence). 

2. Moving down, because 600 (the height of the current square) is greater 

than 500 (the height of the next square), the expenditure is (600 – 500) 

which is 100. And it costs 100*1.5=150 (pence). 

3. £15.39. 
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Appendix B.  

Experimental Instruction for Chapter 2 
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Instructions 

Preamble 

Welcome to this experiment. These instructions are to help you to 

understand what you are being asked to do during the experiment and 

how you will be paid. The experiment is simple and gives you the chance to 

earn a considerable amount of money, which will be paid to you in cash 

after you have completed the experiment. The payment described below is 

in addition to a participation fee of £2.50 that you will be paid 

independently of your answers. 

 

The Experiment 

The experiment is interested in your preferences under risk. There are no 

right or wrong answers. It is in four parts. Each of the four parts consists of 

a series of problems. At the end of all four parts, one of the four parts will 

be randomly selected, then one of the problems on that part will be 

randomly selected, and then you will play out that problem.  This will 

always imply playing out a lottery. The outcome of playing out this lottery 

will lead to a payoff to you, and we shall pay this to you in cash, plus the 
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participation fee of £2.50, immediately after you have completed the 

experiment. How all this will be done will be explained below.We start by 

describing a generic lottery. Then we describe the four parts; you will not 

necessarily get them in the order that they are described here. 

 

A Generic Lottery 

We describe now what we mean by a ‘Generic Lottery’. Here we represent 

each lottery visually. The visual representation will be one of the following 

two forms. 

 

 

 

 

It is simplest to explain these in terms of the implications for your payment 

if one of these is randomly selected to be played out at the end of the 

experiment. What we will do in all cases is to ask you to draw ‒ without 

looking ‒ a disk out of a bag containing 100 disks numbered from 1 to 100. 

You can check that the bag contains all these disks before you do the 

drawing. The number on the disk that you draw will determine a point on 
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the horizontal axis; your payment would be the amount on the vertical axis 

implied by that point through the figure. So, for example, in the left-hand 

lottery, if the number on the disk that you draw is between 1 and 70 

inclusive you would get £8.75; if it is between 71 and 100 inclusive you 

would get £5.This implies that the chance of you getting paid £8.75 is 0.7 

and the chance of you getting paid £5 is 0.3. This will also be written in 

words. If the right-hand lottery is to be played out, if the number on the 

disk that you draw is between 1 and 30 you would get £5; if it is between 

31 and 70 inclusive you would get between £11 and £15 ‒ the precise 

amount depending upon the number on the disk drawn; if it is between 71 

and 100 inclusive you would get £15. 

 

Let us give specific examples.In the left-hand lottery, suppose the number 

on the disk that you drawis 80, then you would receive £5. In the 

right-hand lottery, suppose the number on the disk that you draw is 50, 

you would receive £13. 
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We now describe the four parts of the experiment. Remember that you 

might not get them in the order presented here. 

 

Part 1: Pairwise Choices 

Here each problem is a simple pairwise choice, an example of which is 

pictured below. In each problem you have to decide which of two lotteries 

you prefer. If this problem on this part is chosen for payment at the end of 

the experiment, then the lottery that you chose will be the one that is 

played out. 

 

In the example below, the left-hand lottery is certain, and the right-hand 

lottery is risky; in some problems both lotteries are risky; in some lotteries 

one of the amounts will be £0 and thus not appear in the figure.  In the 

figure we show the amounts of money you might win on the vertical axis 

and the disk number on the horizontal axis. The implications are written in 

words underneath the figure. So the left-hand lottery would lead to a 

payoff of £10 with certainty; the right-hand lottery would lead to a payoff 

of £15 with chance 0.4 or to a payoff of £0 with chance 0.6; you will be 

asked to click on the lottery that you would prefer to have played out.  

 

In this part you will be asked to express your preference over a total of 80 

such problems. In the upper-right corner of the screen you will be told how 

many problems remain. In each problem, you cannot take a decision until 

at least five seconds have elapsed, but you can take as long as you like.  
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Part 2: Lists 

In some ways this part is similar to Part 1, though here the pairwise choices 

are structured. Each problem is in the form of a list. One such list is shown 

in the figure below. In each list there is a set of pairwise choice problems, 

presented in exactly the same way as in Part 1. But, as you will, see there is 

a pattern: one of the two lotteries in any pair is the same throughout the 

list – here the left-hand lottery is always £15 with chance 0.7 and £0 with 

chance 0.3. The other lottery is changing through the list ‒ in the sense that 

the chance of getting the higher amount of money is increasing, or the 

amount of money is increasing. 
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In this particular list the left-hand lottery is always the same (£15 with 

chance 0.7 and £0 with chance 0.3), while the right-hand lottery is a 

certainty with the amount of money going up from £1.50 to £15 through 

the list. As in Part 1, in each pair you are asked to specify which lottery you 

prefer. You do this by clicking on the preferred lottery; you will see that 

when you do this, the other lottery becomes greyed-out. However, 

because one of the lotteries is getting better through the list, we impose 

some structure on your answers. If you say that you prefer the certainty at 

one point, we force you to say that you also prefer the certainty further 

down the list. You will understand this as you click through the list. When, 

in each pair, one of the lotteries has been indicated as preferred by you 

(and the other in the pair greyed-out) the ‘Confirm’ button will become 

active, allowing you to record your preferences for that list and move onto 
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to the next list.  

 

There are a total of 48 lists in this part of the experiment. In the upper-right 

corner of the screen you will be told how many problems remain. In each 

problem, you cannot take a decision until at least five seconds have 

elapsed, but you can take as long as you like.  

Part 3: Allocations 

In each problem in this part, you will be given a quantity of tokens to 

allocate between two risky colours with stated chances. For each colour 

you will be told the exchange rate between tokens and money. An example 

of such a problem is shown below. 

 

 

 

Here there are100 tokens to allocate; the chance of red happening is 0.7 

and that of yellow 0.3. You have to decide how to allocate the 100 tokens 

between red and yellow; shown is an example of allocation but you may 

prefer a different one. Your chosen allocation implies a lottery – as 

pictured above. If this problem were to be played out at the end of the 
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experiment, this lottery would be played out.  

 

There will be a total of 81 problems in this part. In the upper-right corner of 

the screen you will be told how many problems remain. In each problem, 

you cannot take a decision until at least five seconds have elapsed, but you 

can take as long as you like. 

 

Part 4: Lottery Choices 

In this part, in each problem you will be asked to choose a lottery. The 

choice set is the continuum between two ‘extreme’ lotteries illustrated in 

the figure below: the left-hand lotterycan give any payment between£5 

and £15, with all payments being equally likely; the right-hand lottery 

consists of a simple lottery with two possible outcomes, here £5 with 

chance 0.5 and £15 with chance 0.5. Your chosen lottery can be any 

mixture of these two ‘extreme’ lotteries. As you move the slider bar from 

the extreme left to the extreme right you will see the mixture lottery 

moves from one of the two extremes to the other. The implied payments 

are between £5 and £15, with the chances indicated in the figure. One such 

problem is shown below. 

 

In the example below, if you accept a mixture lottery like this, you would 

be paid £5 with chance of 0.3, £15 with chance of 0.3, and between £11 

and £15 depending on the number on the disk that you randomly draw at 

the end of the experiment.   
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There will be a total of 54 problems in this part. In the upper-right corner of 

the screen you will be told how many problems remain. In each problem, 

you cannot take a decision until at least five seconds have elapsed, but you 

can take as long as you like. 

 

The Payment Procedure 

When you have completed the experiment, one of the experimenters will 

come to you. The experimenter will have a record of your decisions in each 

part of the experiment. You will then be asked to go into an adjoining room 

for payment. There will be another experimenter, who has on their 

computer all the decisions that you took. Then the following procedure will 

be followed. 

 

1. First you will draw ‒ without looking ‒ a disk out of a bag containing 

disks numbered from 1 to 4. The number on the disk will determine 

on which part of the experiment your payment will be determined. 
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2. If the number on the disk is 1, then one of your answers in part 1 

will determine your payment. You will draw ‒ without looking ‒ a 

disk from a bag containing disks numbered from 1 to 80 (the 

number of problems in part 1). This will determine the problem to 

be played out. The experimenter will then retrieve from the 

computer your decision on that problem. This will be a lottery. This 

will then be played out as described above (with you drawing ‒ 

without looking ‒ a disk out of a bag containing numbered disks 

from 1 to 100). 

3. If the number on the disk is 2, then one of your answers in part 2 

will determine your payment. You will draw ‒ without looking ‒ a 

disk from a bag containing disks numbered from 1 to 48 (the 

number of problems in part 2). This will determine the problem to 

be played out. This will be a list. In each list there are 10 pairwise 

choices. You will then draw ‒ without looking ‒ a disk from a bag 

containing disks numbered from 1 to 10. This will determine a 

particular pairwise choice in that list. The experimenter will then 

retrieve from the computer your decision on that pairwise choice. 

This may be a certainty or a lottery. If it is a certainty, you will 

receive that amount of money. It is a lottery it will then be played 

out as described above (with you drawing ‒ without looking ‒ a disk 

out of a bag containing numbered disks from 1 to 100). 

4. If the number on the disk is 3, then one of your answers in part 3 

will determine your payment. You will draw ‒ without looking ‒ a 
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disk from a bag containing disks numbered from 1 to 81 (the 

number of problems in part 3). This will determine the problem to 

be played out. The experimenter will then retrieve from the 

computer your decision on that problem. This will be a lottery. This 

will then be played out as described above (with you drawing ‒ 

without looking ‒ a disk out of a bag containing numbered disks 

from 1 to 100). 

5. If the number on the disk is 4, then one of your answers in part 4 

will determine your payment. You will draw ‒ without looking ‒ a 

disk from a bag containing disks numbered from 1 to 54 (the 

number of problems in part 4). This will determine the problem to 

be played out. The experimenter will then retrieve from the 

computer your decision on that problem. This will be a lottery. This 

will then be played out as described above (with you drawing ‒ 

without looking ‒ a disk out of a bag containing numbered disks 

from 1 to 100). 

 

The show-up fee of £2.50 will be added to the payment as described 

above. You will be paid in cash, be asked to sign a receipt and then you 

are free to go.  

 

If you have any questions, please ask one of the experimenters. 

 

Thank you for your participation. 
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Appendix C.  

  Problem Lists for Chapter 2 
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1. Allocation 
 

ProblemNo Endow ProbX ProbY ExX ExY 

1 100 0.1 0.9 0.5 1 

2 100 0.1 0.9 0.57 1 

3 100 0.1 0.9 0.67 1 

4 100 0.1 0.9 0.8 1 

5 100 0.1 0.9 1 1 

6 100 0.1 0.9 1.25 1 

7 100 0.1 0.9 1.5 1 

8 100 0.1 0.9 1.75 1 

9 100 0.1 0.9 2 1 

10 100 0.2 0.8 0.5 1 

11 100 0.2 0.8 0.57 1 

12 100 0.2 0.8 0.67 1 

13 100 0.2 0.8 0.8 1 

14 100 0.2 0.8 1 1 

15 100 0.2 0.8 1.25 1 

16 100 0.2 0.8 1.5 1 

17 100 0.2 0.8 1.75 1 

18 100 0.2 0.8 2 1 

19 100 0.3 0.7 0.5 1 

20 100 0.3 0.7 0.57 1 

21 100 0.3 0.7 0.67 1 

22 100 0.3 0.7 0.8 1 

23 100 0.3 0.7 1 1 

24 100 0.3 0.7 1.25 1 

25 100 0.3 0.7 1.5 1 

26 100 0.3 0.7 1.75 1 

27 100 0.3 0.7 2 1 

28 100 0.4 0.6 0.5 1 

29 100 0.4 0.6 0.57 1 

30 100 0.4 0.6 0.67 1 

31 100 0.4 0.6 0.8 1 

32 100 0.4 0.6 1 1 

33 100 0.4 0.6 1.25 1 

34 100 0.4 0.6 1.5 1 

35 100 0.4 0.6 1.75 1 

36 100 0.4 0.6 2 1 

37 100 0.5 0.5 0.5 1 

38 100 0.5 0.5 0.57 1 

39 100 0.5 0.5 0.67 1 

40 100 0.5 0.5 0.8 1 

41 100 0.5 0.5 1 1 
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42 100 0.5 0.5 1.25 1 

43 100 0.5 0.5 1.5 1 

44 100 0.5 0.5 1.75 1 

45 100 0.5 0.5 2 1 

46 100 0.6 0.4 0.5 1 

47 100 0.6 0.4 0.57 1 

48 100 0.6 0.4 0.67 1 

49 100 0.6 0.4 0.8 1 

50 100 0.6 0.4 1 1 

51 100 0.6 0.4 1.25 1 

52 100 0.6 0.4 1.5 1 

53 100 0.6 0.4 1.75 1 

54 100 0.6 0.4 2 1 

55 100 0.7 0.3 0.5 1 

56 100 0.7 0.3 0.57 1 

57 100 0.7 0.3 0.67 1 

58 100 0.7 0.3 0.8 1 

59 100 0.7 0.3 1 1 

60 100 0.7 0.3 1.25 1 

61 100 0.7 0.3 1.5 1 

62 100 0.7 0.3 1.75 1 

63 100 0.7 0.3 2 1 

64 100 0.8 0.2 0.5 1 

65 100 0.8 0.2 0.57 1 

66 100 0.8 0.2 0.67 1 

67 100 0.8 0.2 0.8 1 

68 100 0.8 0.2 1 1 

69 100 0.8 0.2 1.25 1 

70 100 0.8 0.2 1.5 1 

71 100 0.8 0.2 1.75 1 

72 100 0.8 0.2 2 1 

73 100 0.9 0.1 0.5 1 

74 100 0.9 0.1 0.57 1 

75 100 0.9 0.1 0.67 1 

76 100 0.9 0.1 0.8 1 

77 100 0.9 0.1 1 1 

78 100 0.9 0.1 1.25 1 

79 100 0.9 0.1 1.5 1 

80 100 0.9 0.1 1.75 1 

81 100 0.9 0.1 2 1 
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Key: 

ProblemNo: Problem Number 

Endow: the endowment (by tokens) 

ProbX: the probability of red 

ProbY:  the probability of yellow 

ExX:  the exchange rate of red 

ExY:  the exchange rate of yellow 
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2. Lottery Choices 

ProblemNo AmountX ProbX AmountY 

1 0 0.1 5 

2 0 0.2 5 

3 0 0.3 5 

4 0 0.4 5 

5 0 0.5 5 

6 0 0.6 5 

7 0 0.7 5 

8 0 0.8 5 

9 0 0.9 5 

10 0 0.1 10 

11 0 0.2 10 

12 0 0.3 10 

13 0 0.4 10 

14 0 0.5 10 

15 0 0.6 10 

16 0 0.7 10 

17 0 0.8 10 

18 0 0.9 10 

19 0 0.1 15 

20 0 0.2 15 

21 0 0.3 15 

22 0 0.4 15 

23 0 0.5 15 

24 0 0.6 15 

25 0 0.7 15 

26 0 0.8 15 

27 0 0.9 15 

28 5 0.1 10 

29 5 0.2 10 

30 5 0.3 10 

31 5 0.4 10 

32 5 0.5 10 

33 5 0.6 10 

34 5 0.7 10 

35 5 0.8 10 

36 5 0.9 10 

37 5 0.1 15 

38 5 0.2 15 

39 5 0.3 15 

40 5 0.4 15 

41 5 0.5 15 
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42 5 0.6 15 

43 5 0.7 15 

44 5 0.8 15 

45 5 0.9 15 

46 10 0.1 15 

47 10 0.2 15 

48 10 0.3 15 

49 10 0.4 15 

50 10 0.5 15 

51 10 0.6 15 

52 10 0.7 15 

53 10 0.8 15 

54 10 0.9 15 

 

Key: 

ProblemNo: Problem Number 

AmoutX: the first outcome of the lottery 

ProbX:  the probability of the first outcome of the lottery 

AmountY:  the second outcome of the lottery 
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3. Pairwise Choices 

ProblemN
o 

AmountX
L 

ProbX
L 

AmountY
L 

AmoutX
R 

ProbX
R 

AmountY
R 

1 10 0.6 5 10 0.8 0 

2 10 0.4 5 10 0.8 0 

3 10 0.4 5 10 0.6 0 

4 10 0.2 5 10 0.8 0 

5 10 0.2 5 10 0.6 0 

6 10 0.2 5 10 0.4 0 

7 10 0 5 10 0.8 0 

8 10 0 5 10 0.6 0 

9 10 0 5 10 0.4 0 

10 10 0 5 10 0.2 0 

11 5 1 0 10 0.8 0 

12 5 1 0 10 0.6 0 

13 5 1 0 10 0.4 0 

14 5 1 0 10 0.2 0 

15 5 0.8 0 10 0.6 0 

16 5 0.8 0 10 0.4 0 

17 5 0.8 0 10 0.2 0 

18 5 0.6 0 10 0.4 0 

19 5 0.6 0 10 0.2 0 

20 5 0.4 0 10 0.2 0 

21 15 0.6 5 15 0.8 0 

22 15 0.4 5 15 0.8 0 

23 15 0.4 5 15 0.6 0 

24 15 0.2 5 15 0.8 0 

25 15 0.2 5 15 0.6 0 

26 15 0.2 5 15 0.4 0 

27 15 0 5 15 0.8 0 

28 15 0 5 15 0.6 0 

29 15 0 5 15 0.4 0 

30 15 0 5 15 0.2 0 

31 5 1 0 15 0.8 0 

32 5 1 0 15 0.6 0 

33 5 1 0 15 0.4 0 

34 5 1 0 15 0.2 0 

35 5 0.8 0 15 0.6 0 

36 5 0.8 0 15 0.4 0 

37 5 0.8 0 15 0.2 0 

38 5 0.6 0 15 0.4 0 

39 5 0.6 0 15 0.2 0 

40 5 0.4 0 15 0.2 0 
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41 15 0.6 10 15 0.8 0 

42 15 0.4 10 15 0.8 0 

43 15 0.4 10 15 0.6 0 

44 15 0.2 10 15 0.8 0 

45 15 0.2 10 15 0.6 0 

46 15 0.2 10 15 0.4 0 

47 15 0 10 15 0.8 0 

48 15 0 10 15 0.6 0 

49 15 0 10 15 0.4 0 

50 15 0 10 15 0.2 0 

51 10 1 0 15 0.8 0 

52 10 1 0 15 0.6 0 

53 10 1 0 15 0.4 0 

54 10 1 0 15 0.2 0 

55 10 0.8 0 15 0.6 0 

56 10 0.8 0 15 0.4 0 

57 10 0.8 0 15 0.2 0 

58 10 0.6 0 15 0.4 0 

59 10 0.6 0 15 0.2 0 

60 10 0.4 0 15 0.2 0 

61 15 0.6 10 15 0.8 5 

62 15 0.4 10 15 0.8 5 

63 15 0.4 10 15 0.6 5 

64 15 0.2 10 15 0.8 5 

65 15 0.2 10 15 0.6 5 

66 15 0.2 10 15 0.4 5 

67 15 0 10 15 0.8 5 

68 15 0 10 15 0.6 5 

69 15 0 10 15 0.4 5 

70 15 0 10 15 0.2 5 

71 10 1 5 15 0.8 5 

72 10 1 5 15 0.6 5 

73 10 1 5 15 0.4 5 

74 10 1 5 15 0.2 5 

75 10 0.8 5 15 0.6 5 

76 10 0.8 5 15 0.4 5 

77 10 0.8 5 15 0.2 5 

78 10 0.6 5 15 0.4 5 

79 10 0.6 5 15 0.2 5 

80 10 0.4 5 15 0.2 5 
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Key: 

ProblemNo: Problem Number 

AmountXL: the first outcome of the left lottery 

ProbXL: the probability of the first outcome of the left lottery 

AmountYL: the second outcome of the left lottery 

AmountXR: the first outcome of the right lottery 

ProbXR: the probability of the first outcome of the right lottery 

AmountYR: the second outcome of the right lottery  
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4. Holt-Laury Price Lists 

ListNo 
AmountX
L ProbXL 

AmountY
L 

AmountX
R 

ProbX
R 

AmountY
R 

1 5 1 0 2.5 1 0 

1 5 0.9 0 2.5 1 0 

1 5 0.8 0 2.5 1 0 

1 5 0.7 0 2.5 1 0 

1 5 0.6 0 2.5 1 0 

1 5 0.5 0 2.5 1 0 

1 5 0.4 0 2.5 1 0 

1 5 0.3 0 2.5 1 0 

1 5 0.2 0 2.5 1 0 

1 5 0.1 0 2.5 1 0 

              

2 10 1 0 5 1 0 

2 10 0.9 0 5 1 0 

2 10 0.8 0 5 1 0 

2 10 0.7 0 5 1 0 

2 10 0.6 0 5 1 0 

2 10 0.5 0 5 1 0 

2 10 0.4 0 5 1 0 

2 10 0.3 0 5 1 0 

2 10 0.2 0 5 1 0 

2 10 0.1 0 5 1 0 

              

3 15 1 0 7.5 1 0 

3 15 0.9 0 7.5 1 0 

3 15 0.8 0 7.5 1 0 

3 15 0.7 0 7.5 1 0 

3 15 0.6 0 7.5 1 0 

3 15 0.5 0 7.5 1 0 

3 15 0.4 0 7.5 1 0 

3 15 0.3 0 7.5 1 0 

3 15 0.2 0 7.5 1 0 

3 15 0.1 0 7.5 1 0 

              

4 10 1 5 7.5 1 0 

4 10 0.9 5 7.5 1 0 

4 10 0.8 5 7.5 1 0 

4 10 0.7 5 7.5 1 0 

4 10 0.6 5 7.5 1 0 

4 10 0.5 5 7.5 1 0 

4 10 0.4 5 7.5 1 0 
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4 10 0.3 5 7.5 1 0 

4 10 0.2 5 7.5 1 0 

4 10 0.1 5 7.5 1 0 

              

5 15 1 5 10 1 0 

5 15 0.9 5 10 1 0 

5 15 0.8 5 10 1 0 

5 15 0.7 5 10 1 0 

5 15 0.6 5 10 1 0 

5 15 0.5 5 10 1 0 

5 15 0.4 5 10 1 0 

5 15 0.3 5 10 1 0 

5 15 0.2 5 10 1 0 

5 15 0.1 5 10 1 0 

              

6 15 1 10 12.5 1 0 

6 15 0.9 10 12.5 1 0 

6 15 0.8 10 12.5 1 0 

6 15 0.7 10 12.5 1 0 

6 15 0.6 10 12.5 1 0 

6 15 0.5 10 12.5 1 0 

6 15 0.4 10 12.5 1 0 

6 15 0.3 10 12.5 1 0 

6 15 0.2 10 12.5 1 0 

6 15 0.1 10 12.5 1 0 

              

7 5 0.5 0 0.5 1 0 

7 5 0.5 0 1 1 0 

7 5 0.5 0 1.5 1 0 

7 5 0.5 0 2 1 0 

7 5 0.5 0 2.5 1 0 

7 5 0.5 0 3 1 0 

7 5 0.5 0 3.5 1 0 

7 5 0.5 0 4 1 0 

7 5 0.5 0 4.5 1 0 

7 5 0.5 0 5 1 0 

              

8 10 0.5 0 1 1 0 

8 10 0.5 0 2 1 0 

8 10 0.5 0 3 1 0 

8 10 0.5 0 4 1 0 

8 10 0.5 0 5 1 0 

8 10 0.5 0 6 1 0 

8 10 0.5 0 7 1 0 

8 10 0.5 0 8 1 0 
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8 10 0.5 0 9 1 0 

8 10 0.5 0 10 1 0 

              

9 15 0.5 0 1.5 1 0 

9 15 0.5 0 3 1 0 

9 15 0.5 0 4.5 1 0 

9 15 0.5 0 6 1 0 

9 15 0.5 0 7.5 1 0 

9 15 0.5 0 9 1 0 

9 15 0.5 0 10.5 1 0 

9 15 0.5 0 12 1 0 

9 15 0.5 0 13.5 1 0 

9 15 0.5 0 15 1 0 

              

10 10 0.5 5 5.5 1 0 

10 10 0.5 5 6 1 0 

10 10 0.5 5 6.5 1 0 

10 10 0.5 5 7 1 0 

10 10 0.5 5 7.5 1 0 

10 10 0.5 5 8 1 0 

10 10 0.5 5 8.5 1 0 

10 10 0.5 5 9 1 0 

10 10 0.5 5 9.5 1 0 

10 10 0.5 5 10 1 0 

              

11 15 0.5 5 6 1 0 

11 15 0.5 5 7 1 0 

11 15 0.5 5 8 1 0 

11 15 0.5 5 9 1 0 

11 15 0.5 5 10 1 0 

11 15 0.5 5 11 1 0 

11 15 0.5 5 12 1 0 

11 15 0.5 5 13 1 0 

11 15 0.5 5 14 1 0 

11 15 0.5 5 15 1 0 

              

12 15 0.5 10 10.5 1 0 

12 15 0.5 10 11 1 0 

12 15 0.5 10 11.5 1 0 

12 15 0.5 10 12 1 0 

12 15 0.5 10 12.5 1 0 

12 15 0.5 10 13 1 0 

12 15 0.5 10 13.5 1 0 

12 15 0.5 10 14 1 0 

12 15 0.5 10 14.5 1 0 
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12 15 0.5 10 15 1 0 

              

13 5 0.2 0 0.5 1 0 

13 5 0.2 0 1 1 0 

13 5 0.2 0 1.5 1 0 

13 5 0.2 0 2 1 0 

13 5 0.2 0 2.5 1 0 

13 5 0.2 0 3 1 0 

13 5 0.2 0 3.5 1 0 

13 5 0.2 0 4 1 0 

13 5 0.2 0 4.5 1 0 

13 5 0.2 0 5 1 0 

              

14 5 0.3 0 0.5 1 0 

14 5 0.3 0 1 1 0 

14 5 0.3 0 1.5 1 0 

14 5 0.3 0 2 1 0 

14 5 0.3 0 2.5 1 0 

14 5 0.3 0 3 1 0 

14 5 0.3 0 3.5 1 0 

14 5 0.3 0 4 1 0 

14 5 0.3 0 4.5 1 0 

14 5 0.3 0 5 1 0 

              

15 5 0.4 0 0.5 1 0 

15 5 0.4 0 1 1 0 

15 5 0.4 0 1.5 1 0 

15 5 0.4 0 2 1 0 

15 5 0.4 0 2.5 1 0 

15 5 0.4 0 3 1 0 

15 5 0.4 0 3.5 1 0 

15 5 0.4 0 4 1 0 

15 5 0.4 0 4.5 1 0 

15 5 0.4 0 5 1 0 

              

16 5 0.6 0 0.5 1 0 

16 5 0.6 0 1 1 0 

16 5 0.6 0 1.5 1 0 

16 5 0.6 0 2 1 0 

16 5 0.6 0 2.5 1 0 

16 5 0.6 0 3 1 0 

16 5 0.6 0 3.5 1 0 

16 5 0.6 0 4 1 0 

16 5 0.6 0 4.5 1 0 

16 5 0.6 0 5 1 0 
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17 5 0.7 0 0.5 1 0 

17 5 0.7 0 1 1 0 

17 5 0.7 0 1.5 1 0 

17 5 0.7 0 2 1 0 

17 5 0.7 0 2.5 1 0 

17 5 0.7 0 3 1 0 

17 5 0.7 0 3.5 1 0 

17 5 0.7 0 4 1 0 

17 5 0.7 0 4.5 1 0 

17 5 0.7 0 5 1 0 

              

18 5 0.8 0 0.5 1 0 

18 5 0.8 0 1 1 0 

18 5 0.8 0 1.5 1 0 

18 5 0.8 0 2 1 0 

18 5 0.8 0 2.5 1 0 

18 5 0.8 0 3 1 0 

18 5 0.8 0 3.5 1 0 

18 5 0.8 0 4 1 0 

18 5 0.8 0 4.5 1 0 

18 5 0.8 0 5 1 0 

              

19 10 0.2 0 1 1 0 

19 10 0.2 0 2 1 0 

19 10 0.2 0 3 1 0 

19 10 0.2 0 4 1 0 

19 10 0.2 0 5 1 0 

19 10 0.2 0 6 1 0 

19 10 0.2 0 7 1 0 

19 10 0.2 0 8 1 0 

19 10 0.2 0 9 1 0 

19 10 0.2 0 10 1 0 

              

20 10 0.3 0 1 1 0 

20 10 0.3 0 2 1 0 

20 10 0.3 0 3 1 0 

20 10 0.3 0 4 1 0 

20 10 0.3 0 5 1 0 

20 10 0.3 0 6 1 0 

20 10 0.3 0 7 1 0 

20 10 0.3 0 8 1 0 

20 10 0.3 0 9 1 0 

20 10 0.3 0 10 1 0 
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21 10 0.4 0 1 1 0 

21 10 0.4 0 2 1 0 

21 10 0.4 0 3 1 0 

21 10 0.4 0 4 1 0 

21 10 0.4 0 5 1 0 

21 10 0.4 0 6 1 0 

21 10 0.4 0 7 1 0 

21 10 0.4 0 8 1 0 

21 10 0.4 0 9 1 0 

21 10 0.4 0 10 1 0 

              

22 10 0.6 0 1 1 0 

22 10 0.6 0 2 1 0 

22 10 0.6 0 3 1 0 

22 10 0.6 0 4 1 0 

22 10 0.6 0 5 1 0 

22 10 0.6 0 6 1 0 

22 10 0.6 0 7 1 0 

22 10 0.6 0 8 1 0 

22 10 0.6 0 9 1 0 

22 10 0.6 0 10 1 0 

              

23 10 0.7 0 1 1 0 

23 10 0.7 0 2 1 0 

23 10 0.7 0 3 1 0 

23 10 0.7 0 4 1 0 

23 10 0.7 0 5 1 0 

23 10 0.7 0 6 1 0 

23 10 0.7 0 7 1 0 

23 10 0.7 0 8 1 0 

23 10 0.7 0 9 1 0 

23 10 0.7 0 10 1 0 

              

24 10 0.8 0 1 1 0 

24 10 0.8 0 2 1 0 

24 10 0.8 0 3 1 0 

24 10 0.8 0 4 1 0 

24 10 0.8 0 5 1 0 

24 10 0.8 0 6 1 0 

24 10 0.8 0 7 1 0 

24 10 0.8 0 8 1 0 

24 10 0.8 0 9 1 0 

24 10 0.8 0 10 1 0 

              

25 15 0.2 0 1.5 1 0 
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25 15 0.2 0 3 1 0 

25 15 0.2 0 4.5 1 0 

25 15 0.2 0 6 1 0 

25 15 0.2 0 7.5 1 0 

25 15 0.2 0 9 1 0 

25 15 0.2 0 10.5 1 0 

25 15 0.2 0 12 1 0 

25 15 0.2 0 13.5 1 0 

25 15 0.2 0 15 1 0 

              

26 15 0.3 0 1.5 1 0 

26 15 0.3 0 3 1 0 

26 15 0.3 0 4.5 1 0 

26 15 0.3 0 6 1 0 

26 15 0.3 0 7.5 1 0 

26 15 0.3 0 9 1 0 

26 15 0.3 0 10.5 1 0 

26 15 0.3 0 12 1 0 

26 15 0.3 0 13.5 1 0 

26 15 0.3 0 15 1 0 

              

27 15 0.4 0 1.5 1 0 

27 15 0.4 0 3 1 0 

27 15 0.4 0 4.5 1 0 

27 15 0.4 0 6 1 0 

27 15 0.4 0 7.5 1 0 

27 15 0.4 0 9 1 0 

27 15 0.4 0 10.5 1 0 

27 15 0.4 0 12 1 0 

27 15 0.4 0 13.5 1 0 

27 15 0.4 0 15 1 0 

              

28 15 0.6 0 1.5 1 0 

28 15 0.6 0 3 1 0 

28 15 0.6 0 4.5 1 0 

28 15 0.6 0 6 1 0 

28 15 0.6 0 7.5 1 0 

28 15 0.6 0 9 1 0 

28 15 0.6 0 10.5 1 0 

28 15 0.6 0 12 1 0 

28 15 0.6 0 13.5 1 0 

28 15 0.6 0 15 1 0 

              

29 15 0.7 0 1.5 1 0 

29 15 0.7 0 3 1 0 
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29 15 0.7 0 4.5 1 0 

29 15 0.7 0 6 1 0 

29 15 0.7 0 7.5 1 0 

29 15 0.7 0 9 1 0 

29 15 0.7 0 10.5 1 0 

29 15 0.7 0 12 1 0 

29 15 0.7 0 13.5 1 0 

29 15 0.7 0 15 1 0 

              

30 15 0.8 0 1.5 1 0 

30 15 0.8 0 3 1 0 

30 15 0.8 0 4.5 1 0 

30 15 0.8 0 6 1 0 

30 15 0.8 0 7.5 1 0 

30 15 0.8 0 9 1 0 

30 15 0.8 0 10.5 1 0 

30 15 0.8 0 12 1 0 

30 15 0.8 0 13.5 1 0 

30 15 0.8 0 15 1 0 

              

31 10 0.2 5 5.5 1 0 

31 10 0.2 5 6 1 0 

31 10 0.2 5 6.5 1 0 

31 10 0.2 5 7 1 0 

31 10 0.2 5 7.5 1 0 

31 10 0.2 5 8 1 0 

31 10 0.2 5 8.5 1 0 

31 10 0.2 5 9 1 0 

31 10 0.2 5 9.5 1 0 

31 10 0.2 5 10 1 0 

              

32 10 0.3 5 5.5 1 0 

32 10 0.3 5 6 1 0 

32 10 0.3 5 6.5 1 0 

32 10 0.3 5 7 1 0 

32 10 0.3 5 7.5 1 0 

32 10 0.3 5 8 1 0 

32 10 0.3 5 8.5 1 0 

32 10 0.3 5 9 1 0 

32 10 0.3 5 9.5 1 0 

32 10 0.3 5 10 1 0 

              

33 10 0.4 5 5.5 1 0 

33 10 0.4 5 6 1 0 

33 10 0.4 5 6.5 1 0 
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33 10 0.4 5 7 1 0 

33 10 0.4 5 7.5 1 0 

33 10 0.4 5 8 1 0 

33 10 0.4 5 8.5 1 0 

33 10 0.4 5 9 1 0 

33 10 0.4 5 9.5 1 0 

33 10 0.4 5 10 1 0 

              

34 10 0.6 5 5.5 1 0 

34 10 0.6 5 6 1 0 

34 10 0.6 5 6.5 1 0 

34 10 0.6 5 7 1 0 

34 10 0.6 5 7.5 1 0 

34 10 0.6 5 8 1 0 

34 10 0.6 5 8.5 1 0 

34 10 0.6 5 9 1 0 

34 10 0.6 5 9.5 1 0 

34 10 0.6 5 10 1 0 

              

35 10 0.7 5 5.5 1 0 

35 10 0.7 5 6 1 0 

35 10 0.7 5 6.5 1 0 

35 10 0.7 5 7 1 0 

35 10 0.7 5 7.5 1 0 

35 10 0.7 5 8 1 0 

35 10 0.7 5 8.5 1 0 

35 10 0.7 5 9 1 0 

35 10 0.7 5 9.5 1 0 

35 10 0.7 5 10 1 0 

              

36 10 0.8 5 5.5 1 0 

36 10 0.8 5 6 1 0 

36 10 0.8 5 6.5 1 0 

36 10 0.8 5 7 1 0 

36 10 0.8 5 7.5 1 0 

36 10 0.8 5 8 1 0 

36 10 0.8 5 8.5 1 0 

36 10 0.8 5 9 1 0 

36 10 0.8 5 9.5 1 0 

36 10 0.8 5 10 1 0 

              

37 15 0.2 5 6 1 0 

37 15 0.2 5 7 1 0 

37 15 0.2 5 8 1 0 

37 15 0.2 5 9 1 0 
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37 15 0.2 5 10 1 0 

37 15 0.2 5 11 1 0 

37 15 0.2 5 12 1 0 

37 15 0.2 5 13 1 0 

37 15 0.2 5 14 1 0 

37 15 0.2 5 15 1 0 

              

38 15 0.3 5 6 1 0 

38 15 0.3 5 7 1 0 

38 15 0.3 5 8 1 0 

38 15 0.3 5 9 1 0 

38 15 0.3 5 10 1 0 

38 15 0.3 5 11 1 0 

38 15 0.3 5 12 1 0 

38 15 0.3 5 13 1 0 

38 15 0.3 5 14 1 0 

38 15 0.3 5 15 1 0 

              

39 15 0.4 5 6 1 0 

39 15 0.4 5 7 1 0 

39 15 0.4 5 8 1 0 

39 15 0.4 5 9 1 0 

39 15 0.4 5 10 1 0 

39 15 0.4 5 11 1 0 

39 15 0.4 5 12 1 0 

39 15 0.4 5 13 1 0 

39 15 0.4 5 14 1 0 

39 15 0.4 5 15 1 0 

              

40 15 0.6 5 6 1 0 

40 15 0.6 5 7 1 0 

40 15 0.6 5 8 1 0 

40 15 0.6 5 9 1 0 

40 15 0.6 5 10 1 0 

40 15 0.6 5 11 1 0 

40 15 0.6 5 12 1 0 

40 15 0.6 5 13 1 0 

40 15 0.6 5 14 1 0 

40 15 0.6 5 15 1 0 

              

41 15 0.7 5 6 1 0 

41 15 0.7 5 7 1 0 

41 15 0.7 5 8 1 0 

41 15 0.7 5 9 1 0 

41 15 0.7 5 10 1 0 
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41 15 0.7 5 11 1 0 

41 15 0.7 5 12 1 0 

41 15 0.7 5 13 1 0 

41 15 0.7 5 14 1 0 

41 15 0.7 5 15 1 0 

              

42 15 0.8 5 6 1 0 

42 15 0.8 5 7 1 0 

42 15 0.8 5 8 1 0 

42 15 0.8 5 9 1 0 

42 15 0.8 5 10 1 0 

42 15 0.8 5 11 1 0 

42 15 0.8 5 12 1 0 

42 15 0.8 5 13 1 0 

42 15 0.8 5 14 1 0 

42 15 0.8 5 15 1 0 

              

43 15 0.2 10 10.5 1 0 

43 15 0.2 10 11 1 0 

43 15 0.2 10 11.5 1 0 

43 15 0.2 10 12 1 0 

43 15 0.2 10 12.5 1 0 

43 15 0.2 10 13 1 0 

43 15 0.2 10 13.5 1 0 

43 15 0.2 10 14 1 0 

43 15 0.2 10 14.5 1 0 

43 15 0.2 10 15 1 0 

              

44 15 0.3 10 10.5 1 0 

44 15 0.3 10 11 1 0 

44 15 0.3 10 11.5 1 0 

44 15 0.3 10 12 1 0 

44 15 0.3 10 12.5 1 0 

44 15 0.3 10 13 1 0 

44 15 0.3 10 13.5 1 0 

44 15 0.3 10 14 1 0 

44 15 0.3 10 14.5 1 0 

44 15 0.3 10 15 1 0 

              

45 15 0.4 10 10.5 1 0 

45 15 0.4 10 11 1 0 

45 15 0.4 10 11.5 1 0 

45 15 0.4 10 12 1 0 

45 15 0.4 10 12.5 1 0 

45 15 0.4 10 13 1 0 
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45 15 0.4 10 13.5 1 0 

45 15 0.4 10 14 1 0 

45 15 0.4 10 14.5 1 0 

45 15 0.4 10 15 1 0 

              

46 15 0.6 10 10.5 1 0 

46 15 0.6 10 11 1 0 

46 15 0.6 10 11.5 1 0 

46 15 0.6 10 12 1 0 

46 15 0.6 10 12.5 1 0 

46 15 0.6 10 13 1 0 

46 15 0.6 10 13.5 1 0 

46 15 0.6 10 14 1 0 

46 15 0.6 10 14.5 1 0 

46 15 0.6 10 15 1 0 

              

47 15 0.7 10 10.5 1 0 

47 15 0.7 10 11 1 0 

47 15 0.7 10 11.5 1 0 

47 15 0.7 10 12 1 0 

47 15 0.7 10 12.5 1 0 

47 15 0.7 10 13 1 0 

47 15 0.7 10 13.5 1 0 

47 15 0.7 10 14 1 0 

47 15 0.7 10 14.5 1 0 

47 15 0.7 10 15 1 0 

              

48 15 0.8 10 10.5 1 0 

48 15 0.8 10 11 1 0 

48 15 0.8 10 11.5 1 0 

48 15 0.8 10 12 1 0 

48 15 0.8 10 12.5 1 0 

48 15 0.8 10 13 1 0 

48 15 0.8 10 13.5 1 0 

48 15 0.8 10 14 1 0 

48 15 0.8 10 14.5 1 0 

48 15 0.8 10 15 1 0 
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Key: 

ListNo: List Number 

AmountXL: the first outcome of the left lottery 

ProbXL: the probability of the first outcome of the left lottery 

AmountYL: the second outcome of the left lottery 

AmountXR: the first outcome of the right lottery 

ProbXR: the probability of the first outcome of the right lottery 

AmountYR: the second outcome of the right lottery 
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Appendix D.  

Estimates of Parameters in Chapter 2  

(Full Set, without Outliers) 
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Figure D.1: Estimates of r Using AL across Preference Functionals 

 

 

  



190 

 

Figure D.2: Estimates of r Using LC across Preference Functionals 
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Figure D.3: Estimates of r Using PC across Preference Functionals 
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Figure D.4: Estimates of r Using HL across Preference Functionals 
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Figure D.5: Estimates of s Using AL across Preference Functionals 
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Figure D.6: Estimates of s Using LC across Preference Functionals 

 

  



195 

 

Figure D.7: Estimates of s Using PC across Preference Functionals 
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Figure D.8: Estimates of s Using HL across Preference Functionals 
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Figure D.9: Estimates of g across Preference Functionals 
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Figure D.10: Estimates of r in RREU across Elicitation Methods 
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Figure D.11: Estimates of r in RRRD across Elicitation Methods 
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Figure D.12: Estimates of r in AREU across Elicitation Methods 
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Figure D.13: Estimates of r in ARRD across Elicitation Methods 
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Figure D.14: Estimates of s in RREU across Elicitation Methods 
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Figure D.15: Estimates of s in RRRD across Elicitation Methods 

 

  



204 

 

Figure D.16: Estimates of s in AREU across Elicitation Methods 
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Figure D.17: Estimates of s in ARRD across Elicitation Methods 
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Figure D.18: Estimates of g in RRRD across Elicitation Methods 
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Figure D.19: Estimates of g in ARRD across Elicitation Methods 
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Appendix E.  

  Estimates of Parameters in Chapter 2  

              (Full Set, with Outliers) 
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Figure E.1: Estimates of r Using AL across Preference Functionals (with Outliers) 
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Figure E.2: Estimates of r Using LC across Preference Functionals (with Outliers) 
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Figure E.3: Estimates of r Using PC across Preference Functionals (with Outliers) 
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Figure E.4: Estimates of r Using HL across Preference Functionals (with Outliers) 
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Figure E.5: Estimates of s Using AL across Preference Functionals (with Outliers) 
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Figure E.6: Estimates of s Using LC across Preference Functionals (with Outliers) 

 

  



 

 

215 

 

Figure E.7: Estimates of s Using PC across Preference Functionals (with Outliers) 
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Figure E.8: Estimates of s Using HL across Preference Functionals (with Outliers) 
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Figure E.9: Estimates of g across Preference Functionals (with Outliers) 
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Figure E.10: Estimates of r in RREU across Elicitation Methods 
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Figure E.11: Estimates of r in RRRD across Elicitation Methods 
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Figure E.12: Estimates of r in AREU across Elicitation Methods 
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Figure E.13: Estimates of r in ARRD across Elicitation Methods 
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Figure E.14: Estimates of s in RREU across Elicitation Methods 

 

  



 

 

223 

 

Figure E.15: Estimates of s in RRRD across Elicitation Methods 
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Figure E.16: Estimates of s in AREU across Elicitation Methods 
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Figure E.17: Estimates of s in ARRD across Elicitation Methods 
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Figure E.18: Estimates of g in RRRD across Elicitation Methods 
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Figure E.19: Estimates of g in ARRD across Elicitation Methods 
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