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Abstract

In the formal modelling of systems, demonic and angelic nondeterminism play fun-
damental roles as abstraction mechanisms. The angelic nature of a choice pertains to
the property of avoiding failure whenever possible. As a concept, angelic choice first
appeared in automata theory and Turing machines, where it can be implemented via
backtracking. It has traditionally been studied in the refinement calculus, and has
proved to be useful in a variety of applications and refinement techniques. Recently
it has been studied within relational, multirelational and higher-order models. It has
been employed for modelling user interactions, game-like scenarios, theorem proving
tactics, constraint satisfaction problems and control systems.

When the formal modelling of state-rich reactive systems is considered, it only
seems natural that both types of nondeterministic choice should be considered. How-
ever, despite several treatments of angelic nondeterminism in the context of process
algebras, namely Communicating Sequential Processes, the counterpart to the an-
gelic choice of the refinement calculus has been elusive.

In this thesis, we develop a semantics in the relational setting of Hoare and
He’s Unifying Theories of Programming that enables the characterisation of angelic
nondeterminism in CSP. Since CSP processes are given semantics in the UTP via
designs, that is, pre and postcondition pairs, we first introduce a theory of angelic
designs, and an isomorphic multirelational model, that is suitable for characterising
processes. We then develop a theory of reactive angelic designs by enforcing the
healthiness conditions of CSP. Finally, by introducing a notion of divergence that can
undo the history of events, we obtain a model where angelic choice avoids divergence.
This lays the foundation for a process algebra with both nondeterministic constructs,
where existing and novel abstract modelling approaches can be considered. The UTP
basis of our work makes it applicable in the wider context of reactive systems.
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Lee, Ruofan Jin, Miguel Prôa and Luis Carlos Rodrigues.



Author’s Declaration

I hereby declare that the work presented in this thesis is based on my original
contributions, unless otherwise stated. The following material has been previously
published.

[1] P. Ribeiro and A. Cavalcanti, “Designs with Angelic Nondeterminism,” in Theor-
etical Aspects of Software Engineering (TASE), 2013 International Symposium on.
IEEE, 2013, pp. 71–78.

[2] ——, “Angelicism in the Theory of Reactive Processes,” in Unifying Theories of
Programming, ser. Lecture Notes in Computer Science, D. Naumann, Ed. Springer
International Publishing, 2015, vol. 8963, pp. 42–61.

[3] ——, “UTP Designs for Binary Multirelations,” in Theoretical Aspects of Com-
puting ICTAC 2014, ser. Lecture Notes in Computer Science, G. Ciobanu and
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Chapter 1

Introduction

In this chapter we discuss the motivation and objectives underlying our work on a
semantic model for CSP processes with angelic nondeterminism. Furthermore, we
provide an overview of all semantic models of interest in the context of this thesis
and their relationships. Finally, an outline of this document’s structure is presented.

1.1 Motivation

In an increasingly connected world, where software-driven systems are ubiquitous,
it is imperative that their behaviour is rigorously studied. Since the software crisis
of the seventies [4], significant attention has been devoted to this problem with
the development of several theories, techniques and tools. The earliest contribu-
tions can be found in the works of Floyd, Hoare and Dijkstra. In 1967, Floyd [5]
proposed techniques for rigorously characterizing and analysing programs specified
as flowcharts, by considering propositions associated with the entrance and exit of
commands in the flowchart, akin to pre and postconditions. Hoare [6] would later
propose a formal system, known as Hoare logic, capable of proving partial correct-
ness of program statements for a sequential programming language. Inspired by
Hoare’s work, Dijkstra [7] introduced weakest precondition semantics with his lan-
guage of guarded commands, an imperative language that allows for the existence
of repetitive and nondeterministic constructs.

As systems present several aspects of interest, ranging from the intended func-
tional behaviour to the actual operating environment, modelling approaches focus
on specific properties of interest, at suitable levels of abstraction. For instance,
there are several formal notations catering for the specification of functional beha-
viour, such as Z [8, 9], Object-Z [10], Vienna Development Method (VDM) [11],
Abstract State Machine (ASM) [12, 13] and B [14, 15]. Concurrent and reactive
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systems have also been extensively studied with formalisms such as Communicat-
ing Sequential Processes (CSP) [16–18], Calculus of Concurrent Systems (CCS) [19]
and Algebra of Communicating Processes (ACP) [20]. Several works have also fo-
cused on combining both state-based and concurrent formalisms as found in the
literature [10, 21–27].

The successful characterisation of a particular system relies on appropriate ab-
straction mechanisms being available, such that a system can be decomposed into
manageable parts with the appropriate level of detail. Formal specifications are, in
this sense, at the very top of the hierarchy, and provide the highest-level and most
abstract model of a system. Since the foundational works of Back [28], Morris [29]
and Morgan [30], however, it has been possible to consider both specifications and
programs within the same formal model.

An essential abstraction mechanism that is pervasive across modelling approaches
is that of nondeterministic choice. It can be used to specify purely nondetermin-
istic behaviour, such that no particular choice is guaranteed, but also to describe
concisely a set of choices, such that, if there are options that lead to success, they
are guaranteed to be chosen. The former is traditionally referred to as being de-
monic, while the latter is referred to as angelic. Operationally, both nondeterministic
choices embody some notion of failure, and success.

Demonic choice has traditionally been used for the underspecification of beha-
viour, and plays an essential role in the contractual approach between users and
developers. In the context of refinement, the behaviour of a specification can be
made more deterministic while adhering to the externally observable behaviour. In
other words, given a particular set of choices, the user is unable to force any particu-
lar choice and must accept any subset, including failure, if this is a possibility. This
corresponds to the semantics of nondeterminism in Dijkstra’s [7] guarded commands,
and internal choice in CSP [17], for example.

On the other hand, angelic choice is driven by success. Given a set of choices, as
long as there is at least one choice that leads to success, then the angel can achieve a
satisfying outcome. Thus, operationally, angelic nondeterminism can be interpreted
as a backtracking mechanism. Indeed this is similar to the underlying concept
involved in searching for solutions in a given space. Another typical application of
this concept can be found in the context of nondeterministic finite state automatons,
where acceptance is successful if, and only if, the system reaches an accepting state.

The concept of angelic nondeterminism has traditionally been studied in the
refinement calculus [29, 31, 32], where angelic choice is defined as the least upper
bound of the lattice of monotonic predicate transformers. Its dual is demonic choice,
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which is defined as the greatest lower bound of the lattice. In [33, 34] the least
upper bound is used to define logical variables, which enable the postcondition of
a specification statement to refer to the initial value of a program variable. This is
central to the refinement technique of Gardiner and Morgan [33], and, in particular,
to their calculational data-refinement approach.

In [35] Rewitzky introduces binary multirelations for modelling both forms of
nondeterminism. Unlike relational models, which relate initial states to final states,
multirelations relate initial states to sets of final states. A number of models are ex-
plored in [36], of which the model of upward-closed binary multirelations is the most
important as it has a lattice-theoretic structure. A generalised algebraic structure
has also been proposed by Guttmann [37], where the monotonic predicate trans-
formers and multirelations are characterised as instances.

Cavalcanti et al. [38] have proposed a predicative encoding of binary multirela-
tions in the context of Hoare and He’s [39] Unifying Theories of Programming (UTP),
a relational framework suitable for characterising several programming paradigms.
This is achieved by encoding program variables as record components. First an iso-
morphism is established between the new UTP model and a set-based relational
model. Afterwards an isomorphism is established between the set-based model
and the monotonic predicate transformers. Finally an isomorphism is established
between the predicate transformers model and upward-closed binary multirelations.
This is then used to establish the correspondence between the semantics of state-
ments in the predicate transformers model and in the proposed UTP model.

Angelic choice has also been considered at the expression, or term, level by
Morris [40, 41]. In [41], an axiomatic basis is presented for defining operators for
both angelic and demonic nondeterminism within a term language. Each type is
represented as a partially ordered set, and an ordering is given. This is then lifted
into a Free Completely Distributive (FCD) lattice where the refinement relation
corresponds to the ordering relation imposed on the type, demonic choice is the
meet, and angelic choice is the join. In [40] this model is shown to be isomorphic
to higher-order models of predicate transformers, binary multirelations and state
transformers. While it is possible to cast typical sequential programming constructs
into this theory, its focus is on functional languages. Hesselink [42] further studies
this model and provides a different construction of the FCD.

In [43], Tyrrell et al., inspired on the previous work on the FCD by Morris [41],
provide an axiomatization for an algebra, similar to CSP, where external choice
is referred to as “angelic choice”. The definitions are then lifted from a partially
ordered set into the FCD lattice. Just as the authors point out, this model is
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quite different from the traditional CSP model whose complete semantics is based
on failures-divergences [17, 18]. In the model proposed, Stop is the bottom of the
refinement ordering, rather than divergence. Thus, it is impossible to distinguish
divergence from deadlock.

Roscoe [18] has proposed an angelic choice operator P�Q through an operational
combinator semantics for CSP. It is an alternative to the external choice operator
of CSP that behaves as follows: as long as the environment chooses events offered
by both P and Q, then the choice between P and Q is unresolved. The possibility
of divergence or otherwise has no effect on the choice.

Despite the various models where angelic nondeterminism is employed in the
context of process algebras, and the different semantics considered in the literat-
ure [18, 43], the counterpart to the angelic choice of the refinement calculus has
been elusive. The notion of failure of interest here is that of divergence as required
for a characterisation of angelic nondeterminism in the context of state-rich reactive
systems for both data and behavioural refinement.

The UTP of Hoare and He [39] provides an ideal framework to study the concept
of angelic nondeterminism in a theory of CSP [39, 44]. The UTP is a predicative
framework of alphabetized relations suitable for characterising different program-
ming aspects, such as functionality, concurrency, logic programming, higher-order
programming, object-orientation [45, 46], pointers [47], time [48–50] and others. It
supports the engineering of theories by enabling results to be related through linking
functions, while allowing different concerns to be studied in isolation. The theory of
designs [39, 51], which characterises total correctness, is one of the most important.
In general, a UTP theory is a complete lattice where we can use joins and meets to
model dual choices.

While sequential computations can be characterised by a relation between their
initial and final states, the formal characterisation of reactive systems requires a
richer model that accounts for the continuous interactions with their environment.
In the UTP this is achieved through the theory of reactive processes [39, 44]. To-
gether with the theory of designs, these two theories enable the specification of CSP
processes in an assertional style, that is, in terms of designs that characterise the
pre and postcondition of processes.

The theory of angelic nondeterminism presented in [38] is a starting point for
the development of a model of CSP with both nondeterministic constructs. How-
ever, this model is focused on correctness of sequential programs and is not directly
applicable to reactive processes. It is an encoding that caters for termination, so
that designs are not considered as a separate theory.
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In summary, a suitable treatment of angelic nondeterminism is yet to be con-
sidered in the context of process algebras for state-rich reactive systems. The UTP
presents itself as a natural domain for the development of such a model, as existing
theories, and their results, can be easily exploited. Our hypothesis is as follows.

Research Hypothesis

A model can be defined to give a semantics to CSP that
caters for both angelic and demonic nondeterminism, that
is applicable in the wider context of any algebra of state-
rich reactive systems for refinement, and that preserves
the existing semantics of CSP processes, particularly
within the subset of nondivergent processes.

This concludes the discussion of the motivation underlying our work. In what follows
we discuss the objectives in more detail.

1.2 Objectives

As already mentioned, the overall objective of our work is to define a semantic
model suitable for state-rich process algebras, and CSP in particular, where both
nondeterministic choices can be expressed. In contrast with some of the existing ap-
proaches [43], we do not intend to propose an entirely new semantic model for CSP,
rather we aim to extend the current model while conserving the existing semantics.
Therefore, our construction must be appropriately justified in the context of the
existing model [38, 39].

With this in mind, the UTP framework and its CSP model provide a solid
basis for studying the concept of angelic nondeterminism in the context of process
algebras. We also observe that a UTP theory is a complete lattice where both angelic
and demonic choice can be modelled as the meet and join, respectively.

The UTP supports work in the wider context of semantic models that consider
behaviour and other aspects, such as data, security, mobility, and so on. Examples
of such heterogeneous semantic models built using the UTP include Circus [22],
which combines CSP with the Z specification language. Our aim to is to enable
such semantic models to benefit from our treatment of angelic nondeterminism.

We also aim to enable existing modelling approaches and refinement techniques
to be reused. This is central to the relevance and applicability of our semantic model.
An important factor in UTP theories, for example, is that the refinement order is
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Figure 1.1: Theories and their relationship through linking functions

common across all theories. Our emphasis on maintaining a compatible semantics
is essential in order to enable the scenario of reusing existing refinement techniques.

Our goal ultimately consists in developing a conservative extension of the CSP
theory [39, 44] through a predicative encoding of multirelations that is suitable
for characterising CSP processes. Of particular importance is the treatment of
divergence where angelic choice can avoid potentially divergent processes. We seek
a theory of CSP with both angelic and demonic nondeterminism, which is applicable
to any algebra of state-rich reactive processes. In the following section we discuss
our theories, by showing their relationship with other semantic models of interest,
namely CSP.

1.3 Overview of Semantic Models

In this section we provide an overview of all the semantic models of interest in the
context of our work. This includes both existing models as well as those we propose.

In the UTP [39] theories are characterised by three components: an alphabet,
which is a set of variables available for recording the observations of programs in
a particular paradigm, including program variables; a set of healthiness conditions,
which are idempotent and monotonic functions, usually with a name written in
boldface, whose fixed points are the the valid predicates of a theory; and a set of
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operators. For a relation P, the alphabet is split into two disjoint subsets, inα(P)

which contains undashed variables corresponding to the initial observations, and
outα(P) containing dashed counterparts for after or final observations.

Each theory of interest is depicted in Figure 1.1, and also individually in the
subsequent Figures 1.2 to 1.6, by an ellipse, and labelled according to the name
of its characterising healthiness condition. Subset theories correspond to enclosed
ellipses. While the formal definition of each healthiness condition is deferred to
later chapters, in Tables 1.1 to 1.6 we informally describe the healthiness conditions
of each theory. In Figure 1.1 arrows denote linking functions established between
theories. Pairs of solid arrows denote isomorphic models, while pairs with a dashed
arrow indicate an adjoint (that is part of a Galois connection).

In the next Section 1.3.1 we describe the theory of designs. Section 1.3.2 focuses
on the theory of CSP as reactive designs. In Section 1.3.3 we discuss the relationship
between the theory of binary multirelations, the predicative encoding of [38], and
the relationship with our theory of extended binary multirelations. In Section 1.3.4
we discuss our theory of angelic designs, which is the basis for extending the concept
of angelic nondeterminism to CSP through the theory of reactive angelic designs,
summarized in Section 1.3.5. Finally, Section 1.3.6 discusses our theory of angelic
processes.

1.3.1 Designs

Since CSP processes are expressed in the UTP through reactive designs, the first
theory of interest is that of designs, which models total correctness. Designs are
relations whose alphabet contains not only program variables, but also auxiliary
Boolean variables to capture termination. Its characterising healthiness conditions
are H1 and H2, whose composition is called H, as summarized in Table 1.1. In

Description

H1 Meaningful observations can only be made once a design has been started.
H2 A design may not require non-termination.
H3 A design must have arbitrary behaviour when it does not terminate.

Table 1.1: Healthiness Conditions of Designs

general, this is a theory that encompasses programs whose preconditions can refer to
the after or final observations of a computation. As a consequence these observations
can be ascertained irrespective of termination. Such designs do not satisfy the
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Figure 1.2: Theories of designs and reactive designs

healthiness condition H3. This is precisely the case when characterising a CSP
process through reactive designs, such as a → Chaos, whose precondition requires
that no after observation of the trace of events is prefixed by the event a otherwise,
it diverges.

The subset of designs whose preconditions may not refer to the after or final
observations of a computation is characterised by H3. These designs correspond to
standard pre and postcondition pairs as found in notations like Z [8] and VDM [11].

In the context of our work, we consider a theory of designs whose relations are not
homogeneous, that is, their input and output alphabet differ. This is because of the
multirelational nature of our encoding of angelic nondeterminism. In Figure 1.2 we
highlight the theories of homogeneous and non-homogeneous designs in the context
of other theories previously depicted in Figure 1.1.

1.3.2 CSP Processes as Reactive Designs

The second theory of interest is that of reactive processes, whose combination with
the theory of designs provides the characterisation of CSP processes in the UTP. In
the theory of reactive processes the alphabet is extended with observational variables
to record the interactions with the environment: a trace of events, a set of events
refused, and a Boolean variable that records whether the process is waiting for an
interaction. Its healthiness conditions, which we informally describe in Table 1.2,
are R1, R2 and R3, whose functional composition is R.
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Description

R1 A process can only extend the trace of events.
R2 A process must be insensitive to the initial trace of events.
R3 A process must only start executing once any previous interactions with

the environment have finished.
R Functional composition of R1, R2 and R3 that characterises reactive

processes.

Table 1.2: Healthiness Conditions of Reactive Processes

In order to characterise CSP processes, another two healthiness conditions are
necessary. They are CSP1 and CSP2, whose informal description is included
in Table 1.3. Together, these healthiness conditions allow the characterisation

Description

CSP1 A process that is in a divergent state can only extend the trace of events.
CSP2 A recast of H2 within the model of reactive processes.

Table 1.3: Healthiness Conditions of CSP Processes

of CSP processes as the image of designs through the function R [39, 44], that
is, in terms of pre and postcondition pairs.

Since it is our goal to keep the semantics unchanged for the subset of nondivergent
processes, in each theory of processes that we study, we identify such a subset. This
is characterised by the healthiness condition ND, which is tailored to the theory
of interest by adding a subscript corresponding to the characterising healthiness
condition of the theory it applies to.

1.3.3 Binary Multirelations and their UTP Encoding

To achieve our goal we have developed a predicative encoding of multirelations
suitable for characterising processes. Our starting point was the predicative encoding
of Cavalcanti et al. [38], whose theory is characterised by the healthiness condition
PBMH. This is essentially a predicative version of BMH, that characterises a
set-based model of upward-closed binary multirelations [35].

In [38] the authors establish that both models are isomorphic through a stepwise
construction of models, as previously discussed in Section 1.1. This is achieved
through the composition of the linking functions, sb2p ◦ bm2sb and sb2bm ◦ p2sb,
which we include in Figures 1.1 and 1.3 for completeness. The first contribution of
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this thesis is a theory of extended binary multirelations that caters for potentially
non-terminating computations. This theory is isomorphic to the theory of angelic
designs, which we describe in the next section. It is characterised by the healthiness
condition BMH⊥, which corresponds to the conjunction of BMH0, BMH1 and
BMH2 as described in Table 1.4. Finally, we establish that the subset of BMH3

Description

BMH0 The set of final states must be upward-closed.
BMH1 Similarly to H2 forbids the specification of non-termination.
BMH2 Appropriately characterises two complementary notions of abortion.
BMH3 Characterises the subset of BMH⊥ that is isomorphic to the original

theory of binary multirelations.
BMH⊥ Conjunction of BMH0, BMH1 and BMH2.

Table 1.4: Healthiness Conditions of Extended Binary Multirelations

multirelations is isomorphic to the original theory of binary multirelations, via the
pair of linking functions bmb2bm and bm2bmb. In general, a Galois connection can
also be established between BMH⊥ and BMH. Figure 1.3, which highlights the
theories in the context of Figure 1.1, illustrates these connections.



1.3. OVERVIEW OF SEMANTIC MODELS 33

1.3.4 Angelic Designs

Our approach for developing a model of CSP with angelic nondeterminism closely
follows that of the UTP model of CSP. Based on the the encoding proposed in [38],
we have developed a theory of angelic designs where we reintroduce the auxiliary
Boolean variables of the original theory of designs. Furthermore, we also generalise
that model to cope with non-H3 designs, as required for specifying CSP processes.
This theory is characterised by the healthiness conditions A0 and A1, whose func-
tional composition is A (as described in Table 1.5), and H1 and H2 of the original
theory of designs.

Description

A0 Whenever the precondition of a design is satisfied, then the set of angelic
choices must not be empty.

A1 The set of angelic choices must be upward-closed.
A2 Characterises the subset of relations that effectively do not have any

angelic choices.
A Functional composition of A0 and A1

Table 1.5: Healthiness Conditions of Angelic Designs

The additional healthiness condition A2 characterises the subset of A-designs
that do not exhibit angelic nondeterminism. This is useful to establish that the
subset of A2 angelic designs is isomorphic to the original theory of homogeneous
designs, via the linking functions d2ac and p2ac. In general, these adjoints also
enable a Galois connection to be established with the set of A-designs. As part
of validating our approach, we also establish that the subset of angelic designs
that is H3-healthy is isomorphic to the theory of PBMH [38]. This is achieved
by introducing two linking functions, d2pbmh and pbmh2d, that map predicates
in that theory to angelic designs, and vice versa. In Figure 1.4 we highlight the
theory of angelic designs in the context of Figure 1.1 and show its relationship with
the PBMH theory, the extended theory of binary multirelations, and the original
theory of homogeneous designs.

In addition, and as already discussed, we have developed an extended set-based
model of binary multirelations that is isomorphic to A-healthy designs. This com-
plementary model is useful to understand the implications of non-homogeneous re-
lations and also to validate certain aspects of the model of angelic designs, such as
the notion of sequential composition, which is not entirely trivial in the context of
a predicative encoding of multirelations. We establish that these two models are
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isomorphic through the pair of linking functions bmb2d and d2bmb.

1.3.5 Reactive Angelic Designs

Having established a theory of angelic designs, we introduce a conservative extension
of CSP with angelic nondeterminism. This is achieved by considering an encoding
of the observational variables of reactive processes, based on that used for angelic
designs, and expressing every healthiness condition of CSP with this encoding. For
each healthiness condition R1, R2, R3, CSP1 and CSP2, we introduce a coun-
terpart in this model, as summarized in Table 1.6. The theory is characterised by
RAD, which is defined by the composition of all healthiness conditions of interest,
including PBMH that guarantees upward-closure for the sets of final states. As
part of our validation approach, we establish that the subset of RAD with no an-
gelic nondeterminism, characterised by A2, is isomorphic to the theory of CSP.
This is achieved by introducing the linking functions ac2p and p2ac. In general,
if we consider the superset RAD, a Galois connection exists between the theories.
This relationship is illustrated in Figure 1.5.

The theory of reactive angelic designs corresponds to a natural extension of
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Description

RA1 There must be some set of angelic choices available to the angel, and
in any such set, the trace of events can only be extended.

RA2 A process must be insensitive to the initial value of the trace of events.
RA3 A process must not start executing before its predecessor has stopped

interacting with its environment.
RA Functional composition of RA1, RA2 and RA3.

CSPA1 When in an unstable state, RA1 must be enforced.
CSPA2 A recast of H2 within this model.
RAD Functional composition of all of the above healthiness conditions and

PBMH.
NDRAD Characterises the subset of non-divergent reactive angelic designs.

Table 1.6: Healthiness Conditions of Reactive Angelic Designs

the CSP theory with both angelic and demonic nondeterminism. In this theory it is
possible to establish that angelic choice avoids divergence. For example, the angelic
choice a → Chaos t b → Skip becomes a → Skip, provided that a and b are equal.
However, since RA1 requires under all circumstances that no trace of events may
be undone, if a and b are different events, then the possibility to observe the event
a cannot be entirely excluded, and so divergence is still a possibility. In order to lift
this restriction we have relaxed RA1 in case of divergence, which is the motivation
for the theory of angelic processes that we discuss in the next section.
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Figure 1.5: Theory of reactive angelic designs and links with CSP
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1.3.6 Angelic Processes

In order to allow angelic choice to exclude potentially divergent processes, we relax
the theory of reactive angelic designs by allowing the history of events to be undone
whenever there is the potential to diverge. This is achieved by not enforcing RA1
in all cases. Therefore, we redefine RA3 to cope with this fact as RA3AP, and
define the healthiness condition of this theory as AP, as summarized in Table 1.7.

Description

RA3AP A recast of RA3 in the theory of angelic processes.
AP Functional composition of RA3AP, RA2, A and, H1 and H2 of the

theory of designs (with the corresponding alphabet of this theory).
NDAP Characterises the subset of non-divergent angelic processes.

Table 1.7: Healthiness Conditions of Angelic Processes

The consequence of the functional composition underlying AP is that this model
is effectively a theory of angelic designs, where RA1 is only required in the post-
condition. This is a direct consequence of the definition of A, as it requires that the
set of angelic choices in the postcondition of an A-design is not empty.
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Figure 1.6: Theory of angelic processes and link with reactive angelic designs

The resulting theory is more generic than that of reactive angelic designs, since
it does require RA1. As part of our validation approach, we establish a Galois
connection with the theory of reactive angelic designs, and also prove that an iso-
morphism exists with respect to the subsets of non-divergent processes, characterised
by NDRAD and NDAP, respectively. This is achieved by turning reactive angelic
designs into designs, through H1, while in the opposite direction we just enforce
RA1. These links are depicted in Figure 1.6 where we highlight both theories in
the context of Figure 1.1.
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A detailed account of all the new theories is presented in the sequel as described
below.

1.4 Outline

In Chapter 2, we provide an overview of the concept of angelic nondeterminism as
found in the literature. In addition, we discuss the most important semantic models
in the context of our work by introducing: weakest precondition semantics, binary
multirelations, the UTP, and the existing models of CSP.

Chapter 3 presents the extended model of binary multirelations that handles
non-terminating computations. We introduce the healthiness condition BMH⊥ as
well as the most important operators of this theory. Finally, we establish its rela-
tionship with the existing model of binary multirelations via linking functions (see
Figure 1.3).

Chapter 4 introduces the theory of angelic designs, the first new UTP theory
developed in this thesis. We introduce the alphabet of the theory, followed by the
healthiness conditions A0 to A2. The relationship with the extended model of
binary multirelations is studied before introducing the most important operators.
We conclude this chapter by studying the relationship of the subset of angelic designs
that are H3-healthy and the PBMH theory of [38].

In Chapter 5 the theory of reactive angelic designs is presented. This is a nat-
ural extension of the UTP model of CSP in the context of a theory with angelic
nondeterminism, where the healthiness conditions of CSP are expressed using this
new encoding. The resulting healthiness condition is RAD. Finally, we discuss the
operators and study the link with the existing theory of reactive designs.

Our final contribution is found in Chapter 6, where we present the theory of
angelic processes, whose healthiness condition is AP. This chapter concludes by
exploring the relationship with the theory of reactive angelic designs and the main
algebraic properties.

Finally, in Chapter 7 we summarize the main contributions of this thesis and
further contextualize our work. We conclude with pointers for future work.
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Chapter 2

Angelic Nondeterminism

In this chapter we provide an account of angelic nondeterminism as found in the lit-
erature, and introduce the foundations upon which our theories are built. Section 2.1
discusses the concept of angelic nondeterminism and its applications. In Section 2.2
we introduce Dijkstra’s weakest preconditions and the predicate transformers of the
refinement calculus. Section 2.3 introduces Rewitzky’s theory of binary multire-
lations. In Section 2.4 we provide an introduction to the UTP of Hoare and He.
Finally, Section 2.5 contains a short introduction to CSP and a discussion on the
different semantic approaches to characterising angelic nondeterminism in CSP.

2.1 Definition and Applications

The earliest use of angelic nondeterminism can be found in the theories of com-
putation, more specifically in automata theory [52] and Turing machines [53]. For
example, in pushdown stack automata, the addition of nondeterminism enables the
automaton to accept arbitrary context-free languages [54], while for Turing ma-
chines it helps characterise the class of NP-problems [53] whose solutions can be
found efficiently given an angelically nondeterministic machine.

Angelic nondeterminism has been used as a specification and programming con-
struct in several applications, including parsing [55], modelling of game-like scen-
arios [32] and user interactions, theorem proving tactics [56, 57], constraint program-
ming [58], logic programming [59] and others. These are problems where finding
solutions often involves a combination of search and backtracking. For instance, in
Angel [56, 57], theorem proof tactics can be combined through angelic choice, such
that failure leads to backtracking.

While this is a perfectly reasonable interpretation of angelic choice, backtracking
is not the only possibility, nor is it always desired. Irrespective of the actual opera-

39
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tion of an angelic choice, its distinguishing feature across the different applications is
its capability to provide a high degree of abstraction while still guaranteeing success.

Already in 1967, Floyd [60] envisioned angelic choice as a mechanism for the ab-
stract specification of algorithms, with actual executable programs being produced
mechanically, perhaps by a compiler. In the context of his formal characterisation
of programs as flowcharts, Floyd introduced explicit nondeterministic choice points,
and appropriate notions of success and failure, in order to avoid implementation de-
tails of particular execution strategies. Although angelic nondeterminism is usually
interpreted operationally as a backtracking mechanism, it can also be implemented
through some form of parallelism [61].

Almost at the same time, important contributions were being made to the the-
oretical understanding of programs. In 1969, Hoare proposed his formal system for
proving partial correctness in the context of sequential programming languages [6].
While in 1975 Dijkstra [7, 62] introduced his language of guarded commands, an im-
perative language with repetitive and nondeterministic constructs. Unlike Floyd’s
choice points, Dijkstra’s nondeterministic choice was no longer angelic.

Dijkstra [7, 62] fundamentally changed the approach to establishing total correct-
ness by calculation through his weakest precondition semantics. His model restricted
itself to feasible programs by excluding the existence of miracles (with the so called
“Law of the Excluded Miracle”). Miracle is the theoretical counterpart to abort and
corresponds to the infeasible program that can never be executed, while abort rep-
resents the worst possible program whose behaviour, in the context of a theory of
total correctness, is completely arbitrary.

When Back [28, 63], Morris [29] and Morgan [31] introduced the refinement
calculus, miracles were introduced back into their models. This enabled their models
to become more generic, and paved the way for the development of models that are
complete lattices under the refinement order. The most important was, perhaps, the
lattice of monotonic predicate transformers where angelic and demonic choice are
modelled as the least upper bound and greatest lower bound of the lattice. Back and
von Wright [32] extensively studied sublattices, where choice can be either angelic
or demonic. They have also considered angelic nondeterminism in the context of
game-like scenarios and modelling of user interactions.

Angelic choice also plays a significant role amongst data refinement techniques,
such as that of Gardiner and Morgan [33], where the least upper bound is used to
define logical variables. These enable the postcondition of a specification statement
to refer to the initial value of a program variable.

Ward and Hayes, in their work [61] on applications of angelic nondeterminism,
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clearly emphasize that unlike Floyd’s choice points, the angelic choice of the re-
finement calculus can “look ahead” and guide choices to avoid divergence, if at all
possible. This is not restricted to explicit choice points, but rather applies to any
angelic construct, such as the angelic assignment of values to program variables,
which they explore in the refinement of programs from high-level specifications.

In the context of theories of total correctness, computations can also be specified
through relations between initial states and final states. This is the notion adopted in
formal notations like Z [8] and VDM [11], where there is an explicit relation between
the initial and final value of a computation. However, as Back [32] and Cavalcanti
et al. [64] have noted, relations can only capture one type of nondeterminism, either
angelic or demonic, but not both.

When Cavalcanti et al. [64] proposed the introduction of angelic nondeterminism
into the relational setting of Hoare and He’s UTP [39], a multirelational encoding
had to be considered. They first established that, in general, UTP relations are
isomorphic to conjunctive predicate transformers. Their solution to the problem
consisted in defining a predicative encoding of Rewitzky’s [35] upward-closed binary
multirelations, which is the basis for the work that we describe in this thesis.

As already mentioned, Rewitzky’s [35] multirelations are relations between ini-
tial states and sets of final states. In [36] several models of binary multirelations
are considered, of which the model of upward-closed multirelations is the most im-
portant due to its lattice-theoretic structure. In this model, the refinement order
is reverse subset inclusion, and angelic and demonic choice correspond to set union
and intersection, respectively. We discuss this model in more detail in Section 2.3.

More recently, Guttmann [37] has proposed a generalised algebraic structure
that has both the monotonic predicate transformers and multirelations as instances.
Guttmann has also extensively studied the relational properties of multirelations,
and proposed an extension catering for non-terminating computations [65] in the
setting of general correctness. This involves extending the set of final states to
record whether a computation does not terminate: a similar idea is used in our
extended model of binary multirelations [3] where we record whether a computation
may not terminate and still establish some final value. This model is part of the
first contribution of this thesis and is discussed in detail in Chapter 3.

In Section 2.5 we come back to the topic of angelic nondeterminism by reviewing
the existing approaches to characterising angelic nondeterminism in CSP. Next we
introduce Dijkstra’s weakest precondition semantics.
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2.2 Weakest Preconditions

As already discussed, one of the earliest treatments of total correctness is due to Dijk-
stra [7, 62], through his language of guarded commands and weakest precondition
semantics. The underlying idea is that for each program statement S and post-
condition q, it is possible to establish the weakest precondition wp(S , q), such that,
starting S in a state satisfying wp(S , q) achieves postcondition q. A weakest precon-
dition characterises all possible initial states that lead to successful termination with
the postcondition holding. In Dijkstra’s model [7, 62], predicates are characterised
by functions on all points of a state space, which in his original presentation [62] are
defined through Cartesian products.

If we consider the program Skip, which does not change the state and always
terminates successfully, its weakest precondition semantics is defined as follows.

Definition 1 wp(Skip, q) = q

That is, the weakest precondition corresponds exactly to the intended outcome q.
A simple assignment statement, where a program variable x is assigned the value of
an expression e, is given semantics for a postcondition q as follows.

Definition 2 wp(x := e, q) =̂ q[e/x ]

In other words, the weakest precondition of the assignment is given as the substitu-
tion of expression e for variable x in the corresponding postcondition q.

In general, not all possible weakest preconditions are valid, in the sense that the
semantic model must obey certain fundamental properties of interest, such as mono-
tonicity. In what follows, we review the original properties of Dijkstra’s model [62].

2.2.1 Healthiness Conditions

Dijkstra’s semantics [62] insist on four healthiness conditions, which we discuss in
this section. The first property, reproduced below, corresponds to the “Law of the
Excluded Miracle”, which forbids miraculous behaviour from being specified.

Definition 3 (Non-miraculous) wp(S ,F) = F

If program statement S could achieve F , the predicate which is false everywhere,
then there must be no such initial state where wp(S ,F) that can be satisfied. This
is precisely one of the properties that Back [32], Morris [29] and Morgan [31] relaxed
in order to introduce the lattice of monotonic predicate transformers.
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The fundamental property of interest in models for refinement is monotonicity.
The definition [62] is reproduced below.

Definition 4 (Monotonicity) (q ⇒ r)⇒ (wp(S , q)⇒ wp(S , r))

For every state and program statement S , whenever q is a stronger predicate than
r , then the weakest precondition wp(S , q) is also stronger than wp(S , r). In other
words, if q is a postcondition stronger than r , then, the set of initial states guaranteed
to establish q is a subset of those that establish r .

The next healthiness condition that Dijkstra presents is conjunctivity, whose
formal definition is reproduced below [62].

Definition 5 (Conjunctivity) wp(S , q) ∧ wp(S , r)⇔ wp(S , q ∧ r)

The right-hand side implication follows directly from monotonicity and properties
of the predicate calculus. However, the left-hand side implication is not necessarily
satisfied in general. In fact, this property is precisely what prevents angelic non-
determinism from being specified in Dijkstra’s model, as noted by Back [63]. This
result follows from the definition of the angelic statement whose semantics, as given,
for example, in [61, 66], is defined using an existential quantification.

The counterpart to conjunctivity is disjunctivity, whose definition is as follows.

Definition 6 (Disjunctivity) wp(S , q) ∨ wp(S , r)⇔ wp(S , q ∨ r)

Since weakest preconditions observing this property cannot model demonic non-
determinism, Dijkstra [62] uses a weaker version where only the left-hand side im-
plication is enforced. Similarly to the angelic statement, the demonic specification
statement is defined, for example, in [61, 66] using a universal quantification.

In [63] Back and von Wright extensively study different models of weakest pre-
conditions with different properties, including models with and without miracles,
conjunctivity and disjunctivity. They conclude that by considering a model that is
neither conjunctive nor disjunctive, both forms of nondeterminism can be modelled
together. Furthermore, by considering a model with miracles, a complete lattice
exists where angelic and demonic choice correspond to the meet and join, respect-
ively. This is a result explored in all versions of the refinement calculus [29, 31, 32].
Our remaining discussion on weakest preconditions is mostly based on Back and von
Wright’s work [32].
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2.2.2 Predicate Transformers

The wp function of Dijkstra is a predicate transformer as it maps predicates to
predicates. Back and von Wright [62], in their presentation of the refinement calculus
introduce the notion of contracts which can be either specifications or programs. The
satisfaction of a contract S by establishing postcondition q when started from an
initial state σ is denoted by σ {| S |} q. They characterise wp : PΣ → PΣ, where
the state space is Σ, for a contract S as follows.

Definition 7 (Weakest Precondition) wp(S , q) =̂ {σ | σ {| S |} q}

That is, the set of all initial states σ, from which S is guaranteed to establish q.
Weakest precondition semantics can then be given to their language of contracts [32],
which we reproduce in the following definition.

Definition 8 (Basic Weakest Preconditions)

wp(〈f 〉, q) = f −1(q)

wp({g}, q) = g ∩ q

wp([g], q) = ¬ g ∪ q

wp(S1 ; S2, q) = wp(S1,wp(S2, q))

wp(S1 t S2, q) = wp(S1, q) ∪ wp(S2, q)

wp(S1 u S2, q) = wp(S1, q) ∩ wp(S2, q)

The first construct 〈f 〉 is a functional update that changes the state according to
function f . An example is the identity id, which does not change the state.

The following construct {g} is an assertion, which has no effect on the state if g
holds. Otherwise the program aborts. The assertion σ {| {g} |} q holds if, and only
if, the state σ is in the intersection of g and the postcondition q.

Its dual is the assumption [g]; it has no effect if g holds and otherwise the
contract is satisfied trivially. Hence, the weakest precondition is given by σ ∈ q and
otherwise, if g fails to hold then σ ∈ ¬ g.

The sequential composition of S1 and S2 is given as the weakest precondition of
S1, with respect to the postcondition characterised by the weakest precondition of
S2. That is, wp(S2, q) is an intermediate condition that needs to be satisfied in order
to achieve q.

Finally, angelic and demonic choice are defined as t and u, respectively. In an
angelic choice, it is sufficient that either the precondition of S1 or S2 is satisfied in
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order to achieve q, whereas in a demonic choice both need to be satisfied.

2.2.3 Predicate Transformers Lattice

In Back and von Wright’s model [32], the notion of refinement is given for two
contracts S1 and S2 as follows.

Definition 9 S1 v S2 ⇔ ∀σ, q • σ {| S1 |} q ⇒ σ {| S2 |} q

A contract S1 is refined by S2 if, and only if, for all initial states σ and postcon-
ditions q, if σ is an initial state of contract S1 leading to postcondition q, then it
is also an initial state of S2 leading to q. As this order is reflexive, transitive and
antisymmetric [32, 67], it is a partial order. The bottom element is the assertion
{false}, which can never be satisfied in any initial state, while the top element is
the assumption [false], so that it is trivially satisfied in any initial state for any final
condition q.

When Back and von Wright [32] introduce their model of predicate transformers,
they actually consider the target state space as being potentially different from the
initial state space, as required, for instance, to model states with scoped variables.
Thus, the set of predicate transformers from an initial state space Σ, to a final state
space Γ is defined by PΓ→ PΣ.

The refinement order for predicate transformers is defined by considering the
pointwise extension of the subset ordering; for predicate transformers T1 and T2,
we have the following definition.

Definition 10 T1 v T2 =̂ ∀ q ∈ PΓ • T1(q) ⊆ T2(q)

That is, T1 is refined by T2, if, and only if, the set of initial states that characterise
the weakest precondition for q to be established according to T1 is a subset of that
characterised by T2. This order forms a complete Boolean lattice [32]. Thus the
lattice operators on predicate transformers are pointwise extensions of the corres-
ponding operators on predicates [32].

Finally, in [32] Back and von Wright consider the complete sublattice of mono-
tonic predicate transformers. What is particularly important about their result is
that every basic statement is monotonic and so are the sequential composition, meet,
and join of predicate transformers [32].

This concludes our discussion of the lattice of monotonic predicate transformers
as the standard model where angelic and demonic nondeterminism have traditionally
been studied. In the following Section 2.3 we discuss the theory of upward-closed
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binary multirelations, which is effectively a relational characterisation of the predic-
ate transformers model [35].

2.3 Binary Multirelations

As already discussed, it is not possible to model both angelic and demonic non-
determinism in a purely relational model. However, multirelational models can be
used to characterise both forms of nondeterminism in a relational setting.

In [35] Rewitzky introduces the theory of binary multirelations, which are rela-
tions between initial states and sets of final states. In our presentation we define
these relations through the following type BM , where State is a type of records with
a component for each program variable.

Definition 11 BM =̂ State ↔ P State

An example of a program in this model is the assignment of the value 1 to the only
program variable x when started from any initial state.

Example 1 x :=BM 1 = {s : State, ss : P State | (x 7→ 1) ∈ ss}

This assignment, which we subscript with BM to distinguish it from assignment
statements in other models that we discuss later, is defined by relating every initial
state s to a set of final states ss where the component x is set to the value 1. For
conciseness, in the examples and definitions that follow, the types of s and ss may
be omitted where it is clear that the composite type is BM .

The target set of a binary multirelation can be interpreted as either encoding
angelic or demonic choices [35, 64]. Here we present a model where the set of final
states encodes angelic choices. This decision is justified in [38] as maintaining the
refinement order of the isomorphic UTP model of Cavalcanti et al. [38], which we
discuss in Section 2.4.4.

Demonic choices are encoded by the different ways in which the set of final
states can be chosen. For example, consider the following program which angelically
assigns the value 1 or 2 to the only program variable x ; it uses tBM the angelic choice
operator for binary multirelations.

Example 2 x :=BM 1 tBM x :=BM 2 = {s, ss | (x 7→ 1) ∈ ss ∧ (x 7→ 2) ∈ ss}

In this multirelation, every initial state s is associated with all sets ss in which we
can find the choice of a final state where x is assigned the value 1 or 2. Irrespective
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of the set of final states chosen by the demon, the angel is always able to enforce
this choice. As illustrated, for a particular initial state, the choices available to the
angel correspond to those in the distributed intersection over all possible sets of final
states.

2.3.1 Healthiness Conditions

Example 2 above illustrates a fundamental property of binary multirelations: upward-
closure [35]. This property is captured by the following healthiness condition for a
multirelation B.

Definition 12 BMH =̂ ∀ s, ss0, ss1 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss1)⇒ (s, ss1) ∈ B

If an initial state s is related to a set of final states ss0, then it is also related to any
superset ss1. This reflects the fact that if it is possible to terminate in some final
state in ss0, then the addition of any other final states to that set does not change
the actual states available for angelic choice.

Upward-closure ensures that there is a complete lattice under the subset or-
der, with angelic and demonic choice corresponding to the least upper bound and
greatest lower bound, respectively. Moreover, in [35] Rewitzky establishes that there
is a bijection between upward-closed binary multirelations and monotonic unary op-
erators. Since, as explained in Section 2.2 predicate transformer semantics can be
given in terms of monotonic unary operators, this establishes that the multirela-
tional model is in fact a relational characterisation for commands with both forms
of nondeterminism.

2.3.2 Refinement

In the model of upward-closed binary multirelations, refinement is defined for healthy
multirelations B0 and B1 by reverse subset inclusion as follows [35].

Definition 13 B0 vBM B1 =̂ B0 ⊇ B1

A multirelation B0 is refined by B1 if, and only if, B1 is a subset of B0.
This partial order forms a complete lattice. The bottom element ⊥BM , corres-

ponding to the notion of abort, is defined by the universal relation, which associates
every initial state to every possible set of final states.

Definition 14 ⊥BM =̂ State × P State
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The top element >BM is defined by the empty relation and corresponds to the notion
of miracle, the infeasible program.

Definition 15 >BM =̂ ∅

Via refinement, the degree of angelic nondeterminism of a program can be increased,
while the degree of demonic nondeterminism can be decreased, that is, a program can
be refined into a demonically more deterministic one. In particular, the infeasible
program >BM refines every other program, while every program refines ⊥BM .

2.3.3 Operators

In this section we present the main operators of the theory of binary multirelations
and discuss their most important properties.

Assignment

The first operator of interest, which we have briefly discussed in Example 2, is
assignment. Its complete definition is as follows.

Definition 16 x :=BM e =̂ {s, ss | s ⊕ (x 7→ e) ∈ ss}

Every initial state s is related to every set of final states ss that includes a state
where s is overridden to define that x has the value of expression e.

Angelic Choice

The angelic choice operator is defined as set intersection.

Definition 17 B0 tBM B1 = B0 ∩ B1

This operator corresponds to the least upper bound of the lattice. Intuitively, the
final states available for angelic choice are those in the intersection of all choices
available for demonic choice. The operator satisfies the following property.

Lemma L.2.3.1 B0 vBM B0 tBM B1

That is, the degree of angelic nondeterminism can be increased.

Demonic Choice

Its dual, demonic choice, is the greatest lower bound and is defined as set union.
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Definition 18 B0 uBM B1 = B0 ∪ B1

For a given initial state, the sets of final states available for demonic choice corres-
pond to those in either B0 or B1. Demonic choice observes the following property.

Lemma L.2.3.2 B0 uBM B1 vBM B0

That is, the degree of demonic nondeterminism can be decreased. Finally, angelic
and demonic choice distribute over one another.

Lemma L.2.3.3 B0 uBM (B1 t B2) = (B0 uBM B1) tBM (B0 uBM B2)

This property follows from the distributive properties of set union and set inter-
section. It is equally valid in the theory of predicate transformers and the iso-
morphic UTP model of [38].

Sequential Composition

Although this is a relational model, since states are related to sets of states, the defin-
ition of sequential composition is not relational composition. Instead it is defined
as follows.

Definition 19

B0 ;BM B1 =̂ {s0, ss1 | ∃ ss0 • (s0, ss0) ∈ B0 ∧ ss0 ⊆ {s1 | (s1, ss1) ∈ B1}}

It considers every initial state s0 in B0 and set of final states ss1, such that there is
some intermediate set of states ss0 that is related from s0 in B0, and ss0 is a subset of
those initial states of B1 that achieve ss1. As noted in [38] for healthy multirelations
this definition can be simplified further as shown in the following lemma.

Lemma L.2.3.4 Provided B0 satisfies BMH,

B0 ;BM B1 =̂ {s0, ss1 | (s0, {s1 | (s1, ss1) ∈ B1}) ∈ B0}

Proof. Equation 5 in [38].

This definition is the basis for the definition of sequential composition in the iso-
morphic UTP model of [38], and for the definition of sequential composition in the
extended model of binary multirelations that we discuss in Chapter 3.
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2.4 The Unifying Theories of Programming

As previously discussed, the UTP of Hoare and He [39] is a framework of al-
phabetized relations suitable for characterising different programming paradigms.
The UTP promotes unification of results while enabling different aspects of pro-
grams to be considered in isolation. In [39] a collection of theories is presented that
targets multiple aspects of different programming paradigms, such as functional-
ity, concurrency, logic programming and higher-order programming. Several other
theories have since been developed which cater for other aspects, such as angelic
nondeterminism [38], object-orientation [45, 46], pointers [47] and time [48–50].

The UTP is based on the principle of observation, and so the discourse for record-
ing observations is defined by an alphabet whose variables determine the observable
parameters of a system. These can be either program variables, or alternatively,
auxiliary variables that capture information like termination and execution time.
A UTP theory is characterised by three components: an alphabet, a set of healthi-
ness conditions and a set of operators.

For a given relation P, its alphabet is given by α(P). Similar to the conventions
of Z, in the UTP an alphabet is split into two disjoint subsets: inα(P), which
contains undashed variables for characterising the initial observations, and outα(P),
which contains the dashed counterparts of each variable that characterise the final
or subsequent observations of a system. For example, a program whose purpose is
to increment the initial value of the only program variable x can be specified by
the relation: x ′ = x + 1. This relation concisely describes all pairs of values (x , x ′)
that satisfy this predicate. Thus relations characterise the possible observations of
a program.

When the input and output alphabets of a relation are exactly the same, except
for the fact that variables are undashed and dashed in either set, respectively, a
relation is said to be homogeneous.

Definition 20 (Homogeneous Relation) A relation P is homogeneous if, and
only if, (inα(P))′ = outα(P).

This is captured by Definition 20, where (inα(P))′ is the set of variables obtained
by dashing every variable in the set inα(P).

The remainder of this section is organised as follows. In Section 2.4.1 we dis-
cuss the other two components of UTP theories, namely healthiness conditions and
operators. In Section 2.4.2 we introduce the theory of designs which captures total
correctness. In Section 2.4.3 we discuss the approach to linking theories in the UTP.
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Finally, Section 2.4.4 discusses the theory of angelic nondeterminism of [38].

2.4.1 Theories

The second component of a UTP theory is a set of healthiness conditions that
characterise the predicates of a theory. These are normally specified by idempotent
and monotonic functions whose fixed points are the valid predicates of the theory.

Healthiness Conditions

For instance, in the context of theories concerning time, it is often possible to make
observations of a system in discrete-time units recorded using a variable t. It is
expected that any plausible theory describing such a system must guarantee that
time is increasingly monotonic. This property can be described by the following
healthiness condition HC .

Example 3 HC(P) =̂ P ∧ t ≤ t ′

It requires that under all circumstances, it must be the case that the initial value of t
is less than or equal to the final or after value t ′. This healthiness condition is defined
in terms of conjunction, so it is called a conjunctive healthiness condition [47]. A
general result on conjunctive healthiness conditions [47] enables us to establish that
HC is idempotent and monotonic with respect to refinement. An observation in this
theory is valid if, and only if, it is a fixed point of HC.

Refinement

The theory of relations forms a complete lattice [39], with the order given by (reverse)
universal implication. The top of the lattice is false and the bottom is true. This
order corresponds to the notion of refinement. Its definition is presented below,
where the square brackets stand for universal quantification over all the variables in
the alphabet [39].

Definition 21 (Refinement) P v Q =̂ [Q ⇒ P]

Refinement can be understood as capturing the notion of correctness in the sense
that, if a predicate Q refines P, then all possible behaviours exhibited by Q are
permitted by P. This notion is paramount for the UTP framework and it is the
same across all theories. The relation true imposes no restriction and permits the
observation of any value for all variables in the alphabet, while false permits none.
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Operators

A UTP theory comprises a number of operators that characterise how the theory
may be used algebraically to specify more complex behaviours. In the theory of
relations there are a number of core operators that correspond to typical constructs
found in programming languages, such as assignment (:=), conditional (AC c BB),
and sequential composition ( ; ). In what follows we present some of the most
important operators of the theory of relations.

Sequential Composition

In UTP theories whose relations are homogeneous, sequential composition is defined
as relational composition. The definition is shown below through substitution.

Definition 22 (Sequential Composition) P ; Q =̂ ∃ v0 • P[v0/v ′] ∧ Q[v0/v]

The intuition here is that the sequential composition of two relations P and Q
involves some intermediate, unobservable state, whose vector of variables is rep-
resented by v0. This vector is substituted in place for the final values of P, as
represented by v ′, as well as substituted for the initial values of Q, as represented
by v. It is finally hidden by the existential quantifier.

Skip

An important construct in the relational theory is the program IIR, otherwise also
known as Skip, whose definition is presented below.

Definition 23 (Skip) IIR =̂ (v ′ = v)

This is a program that keeps the value of all variables unchanged. The most inter-
esting property of IIR is that it is the left-unit for sequential composition [39].

Demonic Choice

Due to the lattice-theoretic approach of the UTP, demonic choice (u) corresponds
to the greatest lower bound. This means that its definition is simply disjunction.

Definition 24 (Demonic choice) P uQ =̂ P ∨ Q

Unfortunately the least upper bound, which is conjunction, does not correspond to
the notion of angelic choice. As mentioned previously, it is not possible to represent
both choices directly within the relational model [38].
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Recursion

Recursion is defined in the UTP as the weakest fixed point. Since we have a complete
lattice, it is possible to find a complete lattice of fixed points as established by a
result due to Tarski [39, 67]. In the following definition, F is a monotonic function
and

d
is the greatest lower bound.

Definition 25 (Recursion) µX • F(X) =̂
d
{X | [F(X) v X ]}

A non-terminating recursion, such as (µY • Y ), is equated with the bottom of
the lattice, true [39]. Intuitively this means that it does not terminate, but if we
sequentially compose this recursion with another program, then it becomes possible
to recover from the non-terminating recursion as shown in the following example [51].

Example 4

(µY • Y ) ; x ′ = 0 {Definition of recursion}

=
l
{X | [(µY • Y )(X) v X ]} ; x ′ = 0 {Function application}

=
l
{X | [X v X ]} ; x ′ = 0 {Reflexivity of v}

=
l
{X | true} ; x ′ = 0 {Property of u}

= true ; x ′ = 0 {Definition of sequential composition}

= ∃ v0 • true ∧ x ′ = 0 {Propositional calculus}

= x ′ = 0

This issue motivated Hoare and He [39] to propose the theory of designs that we
present in the following Section 2.4.2.

2.4.2 Designs

As already mentioned, when considering theories of total correctness for reasoning
about programs, the theory of relations is not appropriate due to the fact that it
allows unrealistic observations of recovery from non-terminating programs [39, 51].
In other words, the bottom of the lattice, true, is not necessarily a left-zero of
sequential composition as would be needed. As a result, Hoare and He [39] have
introduced the theory of designs, which addresses this issue.
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Alphabet

The theory of designs is defined by considering the addition of two auxiliary Boolean
variables to the alphabet: ok and ok ′. Their purpose is to track whether a program
has been started, in which case ok is true, and whether a program has successfully
terminated, in which case ok ′ is true.

In what follows we present the healthiness conditions that define the theory of
designs. Finally we discuss the notion of refinement in the context of designs.

Healthiness Conditions

Any valid predicate of this theory has to obey two basic principles: that no guar-
antees can be made by a program before it has started, and, that no program may
require non-termination. These two principles are formally characterised by the
healthiness conditions H1, and H2, respectively [39]. We reproduce their defini-
tions below.

Definition 26 H1(P) =̂ ok ⇒ P

The definition of H1 states that any guarantees made by P can only be established
once it has started. Otherwise, any observation is permitted and it behaves like the
bottom of the lattice, which is the same as the one for relations: true.

Definition 27 H2(P) =̂ [P[false/ok ′]⇒ P[true/ok ′]]

The definition of H2 states that if it is possible for a program P not to terminate,
that is for ok ′ to be false, then it must also be possible for it to terminate, that is for
ok ′ to be true true. This healthiness condition can alternatively be expressed using
the J -split of [44] as H2(P) = P ; J , where J =̂ (ok ⇒ ok ′) ∧ v ′ = v. That is, the
value of ok can increase monotonically, while every other variable v is unchanged.

A predicate that is both H1 and H2 satisfies the following property.

Lemma L.2.4.1 (Design)

H1 ◦ H2(P) = (ok ∧ ¬ P[false/ok ′])⇒ (P[true/ok ′] ∧ ok ′)

Proof. Theorem 3.2.3 in [39].

Here the design is split into two parts: a precondition and a postcondition. It is
defined using the notation of Hoare and He [39] as shown in the following definition.
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Definition 28 (Design) (P ` Q) =̂ (ok ∧ P)⇒ (ok ′ ∧ Q)

A design can also be written using the following notation, where we use the short-
hand notation Pa = P[a/ok ′], with t = true and f = false, as introduced by
Woodcock and Cavalcanti [51], which emphasises that we can assume without loss
of generality, that ok ′ is not free in pre and postconditions. Furthermore, it is usually
assumed that ok is also not free in either P or Q.

Lemma L.2.4.2 (Design) A predicate P is a design if, and only if, it can be
written in the following form: (¬ P f ` P t).

Proof. Theorem 3.2.3 in [39] and definition of design.

We observe that the functions H1 and H2 (and indeed all of the healthiness con-
ditions of designs) are idempotent and monotonic with respect to refinement [39].
Furthermore, none of the proofs establishing these results rely on the property of
homogeneity. Therefore it is possible to define a non-homogeneous theory of designs.

Hoare and He [39] identified another two healthiness conditions of interest which
we discuss further below. The third healthiness condition H3 requires IID, the Skip
of designs, to be a right-unit for sequential composition [39].

Definition 29 (Skip) IID =̂ (true ` v ′ = v)

Skip is the program that always terminates successfully and does not change the
program variables. It is essentially the counterpart to IIR in the theory of designs.

Definition 30 H3(P) =̂ P ; IID

From this definition it may not be immediately obvious how designs are further
restricted by H3. In fact, it requires the precondition not to have any dashed
variables (as confirmed by Theorem T.2.4.1). In order to understand the intuition
behind it we consider an example of a design that is not H3-healthy.

Example 5

(x ′ 6= 2 ` true) {Definition of designs}

= (ok ∧ x ′ 6= 2)⇒ ok ′ {Propositional calculus}

= ok ⇒ (x ′ = 2 ∨ ok ′)

In this case we have a program that upon having started can either terminate and
any final values are permitted, or can assign the value 2 to the variable x and
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termination is then not required. In the context of a theory of total correctness
for sequential programs this is a behaviour that would not normally be expected.
However it is worth noting that in the context of CSP non H3-designs are important,
since they enable the specification of CSP processes such as a → Chaos.

The healthiness condition H3 can also be interpreted as guaranteeing that if a
program may not terminate, then it has arbitrary behaviour. Thus a predicate that
is H3-healthy is also necessarily H2-healthy [38].

If we expand the definition of H3 by applying the definition of sequential defin-
ition for designs we obtain the following result [39, 51].

Theorem T.2.4.1 ((¬ P f ` P t) = (¬ P f ` P t) ; IID)⇔ (¬ P f = ∃ v ′ • ¬ P f )

Proof. Theorem 3.2.4 in [39] and proof in Section 6.3 of [51].

This theorem shows that the value of any dashed variables in ¬ P f must be irrel-
evant. Therefore any design that is H3-healthy can only have a condition as its
precondition, that is, a predicate that only mentions undashed variables, and thus
can only impose restrictions on previous programs.

Finally, the last healthiness condition of interest is H4, which restricts designs to
feasible programs. It is defined by the following algebraic equation [39] that requires
that true is a right-zero for sequential composition.

Definition 31 (H4) P ; true = true

The intuition here is that this prevents the top of the lattice, >D, itself a trivial
refinement of any program, from being healthy. In order to explain the intuition for
this, we consider the definition of >D.

Definition 32 (Miracle)

>D =̂ (true ` false) {Property of designs}

= ok ⇒ false {Propositional calculus}

= ¬ ok

The top >D denotes a program that could never be started (¬ ok). Furthermore,
if it could, and indeed its precondition makes no restriction, it would establish the
impossible: false. Any conceivable implementable program must not behave in this
way. However, miracle is an important construct in refinement calculi [38, 51].

For completeness we also provide the definition of the bottom of the lattice of
designs, which is usually named Abort.
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Definition 33 (Abort) ⊥D =̂ (false ` true)

The bottom ⊥D provides no guarantees at all: it may fail to terminate, and if it
does terminate there are no guarantees on the final values. Indeed it is not required
to guarantee anything at all since its precondition is false.

Operators

In the following theorems we introduce the meet and join of the lattice of designs
as presented in [51]. Like in the lattice of relations, the greatest lower bound cor-
responds to demonic choice.

Theorem T.2.4.2 (Greatest lower bound)
d

i(Pi ` Qi) = (
∧

i Pi) ` (
∨

i Qi)

Proof. Theorem 1 in [51].

Theorem T.2.4.3 (Least upper bound)
⊔

i(Pi ` Qi) = (
∨

i Pi) ` (
∨

i Pi ⇒ Qi)

Proof. Theorem 1 in [51].

Sequential Composition The definition of sequential composition for designs
can be deduced from Definition 22. Here we present the result as proved in [39, 51].

Theorem T.2.4.4 (Sequential composition of designs) Provided ok and ok ′

are not free in P0, P1, Q0 and Q1,

(P0 ` P1) ; (Q0 ` Q1) = (¬ (¬ P0 ; true) ∧ ¬ (P1 ; ¬ Q0) ` P1 ; Q1)

Proof. Law T3 in [51].

This definition can be interpreted as establishing P1 followed by Q1 provided that
P0 holds and P1 satisfies Q0. As pointed out in [51], if P0 is a condition then the
definition can be further simplified.

Theorem T.2.4.5 (Sequential composition of designs) Provided ok and ok ′

are not free in P0, P1, Q0 and Q1, and P0 is a condition,

(P0 ` P1) ; (Q0 ` Q1) = (P0 ∧ ¬ (P1 ; ¬ Q0) ` P1 ; Q1)

Proof. Law T3′ in [51].
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Refinement

As in all UTP theories, the refinement order in the theory of designs is: universal
(reverse) implication. Thus the following result can be established [51].

Theorem T.2.4.6 (Refinement)

(P0 ` P1) v (Q0 ` Q1) = [P0 ∧ Q1 ⇒ P1] ∧ [P0 ⇒ Q0]

Proof. Law 5 in [51].

Theorem T.2.4.6 confirms the intuition about refinement as found in other calculi:
preconditions can be weakened while postconditions can be strengthened.

This section concludes our overview of the theory of designs. In the following
section we focus on how theories can be related and combined.

2.4.3 Linking Theories

The UTP provides a very powerful framework that allows relationships to be estab-
lished between different theories. This means that results in different theories can
be reused. We elaborate on some of principles behind the linking of theories in the
following paragraphs. A full account is available in [39].

Following the convention of Hoare and He [39], we assume the existence of a pair
of functions L and R that map one theory into another: L maps the (potentially)
more expressive theory into the (potentially) weaker theory, and R, vice-versa.

Subset Theories

The simplest form of relationship that can be established is that between subset
theories [39]. We consider the case where a theory T is a subset of S , it is then
possible to find a function R : T → S : it is simply the identity [39]. Defining
L : S → T for the reverse direction may be slightly more complicated as the subset
theory is normally less expressive.

Hoare and He [39] pinpoint the most important properties of such a function
L : S → T : weakening or strengthening, idempotence and, ideally, monotonicity. As
highlighted in [39], monotonicity is not always necessarily observed. We reproduce
the respective definitions below.

Definition 34 (Weakening) ∀X ∈ S • L(X) v X

Definition 35 (Strengthening) ∀X ∈ S • X v L(X)
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We follow Hoare and He’s convention and refer to a function that is both weakening
and idempotent as a link and, if it is also monotonic we refer to it as a retract.

Bijective Links

When two theories have equal expressive power, the pair of linking functions between
them can be proved to form a bijection. In other words, each function undoes
exactly the effect of the application of the other and, thus, as expected, the following
identities hold.

Definition 36 (Bijection) A function L is a bijection if, and only if, the inverse
function R = L−1 exists, and the following hold for all P,

L ◦ R(P) = P ∧ R ◦ L(P) = P

A bijection constitutes the strongest form of relationship between theories. It can
apply even when the alphabets are different or when the theories are presented in dif-
ferent styles [39]. Indeed this is often what is sought: proving that two theories have
exactly the same expressive power, yet their shape may suit different applications
better.

Galois Connections

Often, though, and as explained previously in the discussion of subset theories, we
want to relate theories with different expressivity. Therefore the linking function
is not a bijection, as there has to be some weakening or strengthening in either
direction. A pair of functions describing this relationship constitutes what is known
as a Galois connection. Here we reproduce the definition of [39] and provide a
pictorial illustration in Figure 2.1.

Definition 37 (Galois Connection) For lattices S and T, a pair (L,R) of
functions L : S → T and R : T → S is defined to be a Galois connection if, and
only if, for all X ∈ S and Y ∈ T:

R(Y ) v X ⇔ Y v L(X)

As pointed out earlier, a bijection presents a stronger relationship than a Galois con-
nection. However, it is not the case that every bijection is a Galois connection [39].
Hoare and He [39] give the example of negation whose inverse is precisely itself, how-
ever negation is not monotonic. It is a known property of Galois connections that
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Figure 2.1: Galois connection between two lattices, S and T

the functions are monotonic. In addition, the composition of Galois connections is
also a Galois connection (Theorem 4.2.5 in [39]).

2.4.4 Angelic Nondeterminism

In order to model both angelic and demonic nondeterminism in the relational setting
of the UTP, Cavalcanti et al. [38] have proposed an encoding of upward-closed binary
multirelations through non-homogeneous relations. The alphabet of that theory
consists of the undashed program variables, whose set is given by inα, and of the
sole dashed variable ac′, which is a set of final states whose components range over
outα, the output variables of a program. The final states in ac′ are those available
for angelic choice, while the demonic choices are those over the value of ac′. Similarly
to our presentation of binary multirelations in Section 2.3, a state is a record whose
components are program variables.

Despite being a theory which does not include the variables ok and ok ′, it directly
captures termination. The intuition here is that a program may fail to terminate
if there are no choices available to the angel. In other words, if ac′ may be empty,
then non-termination is a possibility. Conversely, if the program terminates, then
there must be at least one final state available for angelic choice.

Healthiness Conditions

Since the theory is essentially a relational encoding of binary multirelations, in
order for it to observe the essential properties of binary multirelations, the set of
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final choices ac′ needs to be upward-closed. So the only healthiness condition of the
theory is defined as follows [38].

Definition 38 PBMH(P) =̂ P ; ac ⊆ ac′

This is a predicative version of BMH, which is defined using the sequential com-
position operator. If it were possible for P to establish some set of final states ac′,
then any superset could have also been obtained.

One immediate consequence of PBMH illustrated is that no well-behaved pro-
gram can require the set of final states ac′ to be empty as illustrated in the follow-
ing Lemma L.2.4.3, which establishes that ac′ 6= ∅ is not a fixed point of PBMH.

Lemma L.2.4.3 PBMH(ac′ = ∅) = true

Proof.

PBMH(ac′ = ∅) {Definition of PBMH}

= ac′ = ∅ ; ac ⊆ ac′ {Definition of sequential composition}

= ∃ ac0 • (ac′ = ∅)[ac0/ac′] ∧ (ac ⊆ ac′)[ac0/ac] {Substitution}

= ∃ ac0 • ac0 = ∅ ∧ ac0 ⊆ ac′ {Property of sets}

= true

In other words, this corresponds to the same condition enforced by H2 of the theory
of designs. Moreover, because non-termination involves ac′ being empty, and since
there is a requirement on ac′ being upward-closed, this theory also satisfies the
condition enforced by H3 of the theory of designs: arbitrary behaviour when there
is non-termination. In the following, where we discuss the operators of the theory,
we establish this result by proving that the Skip of this theory is a right-unit for
sequential composition, essentially a recast of H3.

Operators

The operators of the UTP theory presented in [38] are calculated from their corres-
ponding predicate transformer’s definition through a composition of linking func-
tions that establish isomorphisms between predicate transformers, binary multirela-
tions and the proposed UTP model. In the following paragraphs we reproduce the
most important operators, whose definitions are subscripted with A.
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Since this theory is a complete lattice, the angelic choice operator is the least
upper bound, conjunction, while demonic choice corresponds to the greatest lower
bound, disjunction. Furthermore, the bottom of the lattice is true and corresponds
to abort, while false is the top and corresponds to miracle.

Skip The program that terminates successfully without changing the state is
defined as follows.

Definition 39 IIA =̂ (θinα)′ ∈ ac′

The definition requires that the dashed version of the initial state θinα is available
for angelic choice in ac′. The notation θinα is used to denote a state where each
name x in inα is a component associated with the corresponding program variable
x , while the notation (θinα)′ denotes the state obtained from θinα by dashing the
name of each state component.

This operator was originally not considered in [38], but is useful, for example, to
show that this theory observes the same property as H3 of the theory of designs.
This is presented following the introduction of the sequential composition operator.

Assignment The next operator of interest is assignment. An assignment of the
value of an expression e to a program variable x is defined as follows.

Definition 40 (Assignment) x :=A e =̂ (θinα)′ ⊕ (x ′ 7→ e) ∈ ac′

The definition requires that there is a final state available for angelic choice in ac′,
where the dashed version of the initial state (θinα) is overridden with a component
of name x ′ with value e.

Sequential Composition The operator that is perhaps most challenging is se-
quential composition. Since the theory is non-homogeneous, sequential composition
is no longer relational composition as in other UTP theories. Instead, the authors
in [38] have calculated the following definition, which uses substitution.

Definition 41 P ;A Q =̂ P[{s′ | Q[s/inα]}/ac′]

The set of angelic choices resulting from composing P and Q corresponds to the
angelic choices of Q, such that they can be reached from an initial state s of Q that
is available for P as a set ac′ of angelic choices. The states in Q are obtained by
considering the substitution in Q over all variables x in inα with their corresponding
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state component s.x . Since states in ac′ have dashed components, the set construc-
tion considers the dashed s′ version of s. This definition can be interpreted as back
propagating the necessary information regarding the final states.

We consider the following example, where there is a choice between angelically
assigning the value 1 or 2 to the only program variable x , followed by a sequential
composition with an assumption, where the program terminates successfully only
when the initial value of x is 1 and otherwise aborts. For simplicity, we consider x
to be the only program variable.

Example 6

(x :=A 1 t x :=A 2) ;A (x = 1⇒ IIA) {Definition of t and assignment}

= ((x ′ 7→ 1) ∈ ac′ ∧ (x ′ 7→ 2) ∈ ac′) ;A (x = 1⇒ IIA)

{Definition of ;A and IIA}

=

 (x ′ 7→ 1) ∈ ac′

∧
(x ′ 7→ 2) ∈ ac′

 [{s′ | (x = 1⇒ (x ′ 7→ x) ∈ ac′)[s/inα]}/ac′]

{Substitution}

= ((x ′ 7→ 1) ∈ ac′ ∧ (x ′ 7→ 2) ∈ ac′)[{s′ | s.x = 1⇒ (x ′ 7→ s.x) ∈ ac′}/ac′]
{Property of substitution}

=

 ((x ′ 7→ 1) ∈ ac′)[{s′ | s.x = 1⇒ (x ′ 7→ s.x) ∈ ac′}/ac′]
∧
((x ′ 7→ 2) ∈ ac′)[{s′ | s.x = 1⇒ (x ′ 7→ s.x) ∈ ac′}/ac′]

 {Substitution}

=

 ((x ′ 7→ 1) ∈ {s′ | s.x = 1⇒ (x ′ 7→ s.x) ∈ ac′})
∧
((x ′ 7→ 2) ∈ {s′ | s.x = 1⇒ (x ′ 7→ s.x) ∈ ac′})

 {Property of sets}

=

 (x 7→ 1).x = 1⇒ (x ′ 7→ (x 7→ 1).x) ∈ ac′

∧
(x 7→ 2).x = 1⇒ (x ′ 7→ (x 7→ 2).x) ∈ ac′

 {Record component x}

= (1 = 1⇒ (x ′ 7→ 1) ∈ ac′) ∧ (2 = 1⇒ (x ′ 7→ 2) ∈ ac′) {Predicate calculus}

= (x ′ 7→ 1) ∈ ac′ {Definition of assignment}

= x :=A 1

The result is that the angel avoids assigning 2 to x , since that would lead to abortion.
So effectively, the information regarding the sets available for angelic choice is back
propagated from the assumption through the sequential composition.
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Finally, we show that this theory observes the property of H3 of the theory of
designs by expressing H3 in this model.

Definition 42 H3A(P) =̂ P ;A IIA

This requires the identity of the theory IIA to be a right-unit, which we prove in
the following lemma for healthy predicates.

Lemma L.2.4.4 P = P ;A IIA

Proof.

P ;A IIA {Definition of IIA and ;A}

= P[{s′ | ((θinα)′ ∈ ac′)[s/inα]}/ac′] {Expand θinα for each xi in inα}

= P[{s′ | ((x0 7→ x0, . . . , xi 7→ xi)
′ ∈ ac′)[s/inα]}/ac′] {Dash state components}

= P[{s′ | ((x ′0 7→ x0, . . . , x ′i 7→ xi) ∈ ac′)[s/inα]}/ac′] {Substitution}

= P[{s′ | (x ′0 7→ s.x0, . . . , x ′i 7→ s.xi) ∈ ac′}/ac′] {Dash state components}

= P[{s | (x ′0 7→ s.x ′0, . . . , x ′i 7→ s.x ′i) ∈ ac′}/ac′] {State components}

= P[{s | s ∈ ac′}/ac′] {Property of sets}

= P[ac′/ac′] {Property of substitution}

= P

This concludes the discussion of the healthiness conditions of the theory. In what
follows we discuss the relationship between this theory, binary multirelations and
the predicate transformers.

Relationship with Binary Multirelations

As previously discussed, the theory of [38] is isomorphic to the theory of upward-
closed binary multirelations. We depict this relationship in Figures 1.1 and 1.3 where
both theories, characterised by their respective healthiness conditions PBMH and
BMH are related through a pair of composed linking functions [38]. For complete-
ness, we reproduce the result of these linking results in what follows, while the
definition of each individual linking function is available in [38].

The first composition maps from this theory into the model of binary multirela-
tions; this result is reproduced below [38].



2.4. THE UNIFYING THEORIES OF PROGRAMMING 65

Theorem T.2.4.7 sb2bm ◦ p2sb(P) =̂ {s : State, ss : P State | P[s, ss/inα, ac′]}

Proof. Part of Theorem 4.8 in [38], following the definitions of p2sb and sb2bm.

It considers every initial state s and set of final states ss, such that P holds when
every initial variable x in inα is substituted with its corresponding state component
s.x , and the set of final states ss is substituted for ac′.

The inverse link is established by the composition of the respective inverse linking
functions sb2p and bm2sb, whose functional composition is shown below [38].

Theorem T.2.4.8 sb2p ◦ bm2sb(B) =̂ (θinα, ac′) ∈ B

Proof. Part of Theorem 4.7 in [38], following the definitions of bm2sb and sb2p.

For a binary multirelation B, the corresponding UTP predicate requires that every
pair of initial states θinα and set of final states ac′ is in B.

Relationship with Predicate Transformers

The last relationship that we discuss in this section pertains to the links between
the UTP model of [38] and the monotonic predicate transformers. This is achieved
in [38] through a pair of linking functions, pt2p, which maps from the predicate
transformers model into this one, and a functional composition in the opposite
direction, whose combined result we call p2pt. The definition of pt2p is the result
of Theorem 4.5 in [38], which we reproduce below.

Theorem T.2.4.9 pt2p(PT ) = θinα ∈ ¬ PT .(¬ ac′)

Proof. Theorem 4.5 in [38].

For a predicate transformer PT , pt2p defines the predicate that requires that the
initial state θinα is associated with all postconditions ac′ that PT is not guar-
anteed not to establish from the initial state [38]. In this treatment of predicate
transformers, predicates are modelled by their characteristic sets, such that PT is a
monotonic function from sets of final states to sets of initial states [38].

The function mapping in the opposite direction is not presented in [38], however
it can be calculated from the definitions of p2sb, sb2bm and bm2pt, which leads to
the following definition.

Definition 43 p2pt(P)(ψ) = {s | ¬ P[s,¬ ψ/inα, ac′]}

This definition is justified by the following lemma.
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Lemma L.2.4.5 bm2pt(sb2bm ◦ p2sb(P), ψ) = {s | ¬ P[s,¬ ψ/inα, ac′]}

Proof.

bm2pt(sb2bm ◦ p2sb(P), ψ) {Theorem T.2.4.7}

= bm2pt({s1, ss | P[s1, ss/inα, ac′]}, ψ) {Definition of bm2pt [38]}

= {s | (s,¬ ψ) /∈ {s1, ss | P[s1, ss/inα, ac′]}} {Property of sets}

= {s | ¬ P[s1, ss/inα, ac′][s,¬ ψ/s1, ss]} {Substitution}

= {s | ¬ P[s,¬ ψ/inα, ac′]}

This result concludes our discussion regarding the theory of angelic nondeterminism
in the UTP and its relationship with the standard model of predicate transformers,
where angelic and demonic nondeterminism have traditionally been characterised.

2.5 Processes: CSP and Angelic Nondeterminism

Motivated by the advances of concurrency in both hardware and software, and
the lack of a clear understanding of the mechanisms involved, in 1978 Hoare [68]
proposed the original version of Communicating Sequential Processes (CSP). The
idea was to characterise concurrent systems as the result of sequential processes that
execute in parallel, and communicate and synchronize through primitive operations
of input and output. However, it was not until further contributions by Hoare [16,
69], Brookes [70] and Roscoe [17, 18] that the algebra of CSP appeared, together with
a complete semantics, presented in all three main flavours: algebraic, denotational
and operational. This was followed by the introduction of support for model checking
through Failures-Divergence Refinement (FDR) [71, 72].

In Section 2.5.1 we provide an introduction to CSP through a presentation of
its most important operators and algebraic laws. In Section 2.5.2 we discuss the
standard semantics of CSP as found in [18]. The material presented here is meant
as background for understanding both CSP and the existing proposals for handling
angelic nondeterminism, which we discuss in Section 2.5.3. A full account of CSP can
be found in [17, 18]. Finally, Section 2.5.4 explores the UTP model of CSP [39, 44].
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2.5.1 Notation

As the name processes in CSP suggests, the central notion of CSP is that of pro-
cesses. These include basic processes, such as Skip, the process that terminates
successfully without influence from the environment, Stop, which behaves as dead-
lock and hence refuses to do anything, and Chaos, which behaves unpredictably.

The other core notion of CSP is that of communication. This is achieved by
defining events, which the system can perform only with the cooperation of its
environment. That is, once the environment is given the possibility to perform an
event, and it agrees to do so, then the event happens instantaneously and atomically.
The easiest way to express this behaviour in CSP is through prefixing of events.

Definition 44 (Prefixing) a → P

This process offers the environment the possibility to perform the event a, after
which it behaves like P, some other CSP process. We consider the process P0.

Example 7 P0 = up → down → Stop

In this case a sequence of up and down events is followed by deadlock. A direct
consequence of the definition of processes in this way is that recursion can occur
naturally as part of the functional style of CSP as shown in the following example.

Example 8 (Mutual Recursion)

P1 = up → P2

P2 = down → P1

These processes are defined by mutual recursion. The set of possible traces of events
of P1 is a superset of Example 7. It never terminates nor deadlocks.

CSP presents a rich set of operators that allow more complex interactions to be
modelled. The first that we consider in the sequel is called external choice.

Definition 45 (External Choice) P 2 Q

In this case the environment is offered the choice between behaving as either P or
Q. This operator satisfies a number of laws as reproduced below [17].

Lemma L.2.5.1 (Laws of External Choice)

Idempotent :P 2 P = P
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Associative :P 2 (Q 2 R) = (P 2 Q) 2 R

Symmetry :P 2 Q = Q 2 P

Unit :P 2 Stop = P

Perhaps the most interesting result here is that Stop is the unit of external choice.
When the environment is given the choice between deadlocking or behaving as P,
it can only choose to behave as P.

External choice can be used to generalize the prefixing operator of Definition 44.
Instead of permitting a single event, prefixing can be of a set of events E ⊆ Σ over
some alphabet Σ as follows.

Definition 46 x : E → P = 2 x : E • x → P

This is basically a distributed external choice over all possible events in E . Moreover,
CSP permits the definition of channels, which can carry values of a certain type E .
For a channel name c of type E , the set of possible events that represent com-
munications over c is defined by considering events with composed names prefixed
by c as follows: {c.x | x ∈ E}. Usually in the CSP syntax, channel communica-
tions are prefixed with ? to denote input communications while ! denotes output
communications, as shown in Example 9.

Example 9 (Buffer) P3 = in?x → out!x → P3

These annotations are syntactic sugar for the corresponding events in.x and out.x .
In this example we have an input communication over channel in, which is then
relayed onto the output channel out, effectively behaving as a one place buffer.

In addition to external choice, there is an operator in CSP known as internal
choice.

Definition 47 (Internal Choice) P uQ

This choice is also known as demonic choice, since the environment cannot possibly
force the system into behaving as either P or Q. Indeed the system can choose either
at its discretion. For instance, if Stop is offered as a choice, then the system may
deadlock. This operator satisfies a number of important laws, of which a summary
is included below [17].

Lemma L.2.5.2 (Laws of Internal Choice)

Idempotent :P u P = P
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Associative :P u (Q u R) = (P uQ) u R

Symmetry :P uQ = Q u P

Distributive :P u (Q 2 R) = (P uQ) 2 (P u R)

Of these, distributivity is perhaps the most important. In fact, most CSP operators
distribute through internal choice, except, for example, recursion [17].

The next operator of interest is that of sequential composition; it allows the
composition of processes sequentially, other than by using prefixing.

Definition 48 (Sequential Composition) P ; Q

A consequence of CSP’s functional language is that it is not possible to pass local
process information through sequential composition. So for instance, the following
process P4 does not behave as would intuitively be expected in CSP.

Example 10 P4 = in?x → Skip ; out!x → Stop

This is because the scope of x is local to both of these processes, and not global.
However, this problem can be obviated by the introduction of parallelism in CSP.

CSP provides a number of different parallel composition operators [17]. Here we
consider the most generic operator, which is the alphabetised parallel composition.

Definition 49 (Alphabetised Parallel Composition) P |[αP | αQ ]|Q

Alphabetised here means that processes P and Q only need to agree on events in
the intersection of the alphabet of events of each process as defined in the operator:
αP and αQ, respectively. Events not in the intersection do not need the agreement
of both processes. For instance, to specify the behaviour that may be expected of
the process P4 from Example 10, we can consider a third process in parallel that
communicates the desired value between the two processes.

Example 11 (Parallel Composition)

P5 =

 ((in?x → t!x → Skip) ; (t?y → out!y → Stop))

|[{| in, out, t |} | {| t |}]|
(t?z → t!z → Skip)


In this example, we add the extra channel t that serves as an internal communication
channel. However, in pursuing this style of specification we have added an externally
observable set of events t, which may not always be desired. CSP provides a solution
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for this kind of modelling problem as well.
Events can effectively be hidden from other processes when they are not needed.

This abstraction is achieved in CSP by using the hiding operator.

Definition 50 (Hiding) P \ E

Here the process P has the events in the set E hidden from other processes, such that
events in E become internal events that can happen irrespective of the cooperation
from the environment [17]. In the following example, we give the effect of hiding
the communications over t of P5.

Example 12 (Hiding) P6 = P5 \ {| t |} = in?x → out!x → Stop

This new process P6 is equivalent to the process that takes a communication over
channel in, relays over channel out and then deadlocks.

This concludes our discussion on the notation of CSP and the most important
concepts underlying its operators and algebraic properties. In the following section
we focus our attention on the denotational semantics of CSP.

2.5.2 Semantics

Many interesting properties in CSP are proved using its algebraic laws. For instance,
step-laws [17] provide a mechanism for a stepwise calculation of the behaviour of
operators. In addition, CSP also has a denotational semantics, which we discuss in
this section.

Traces

The simplest semantic model proposed for CSP considers the observable sequences
of events that a process may produce. For a CSP process, where Σ is the set of all
possible events, the set of traces is given by the function traces : CSP → P(seq Σ).
For instance, the set of traces for process P0 from Example 7 is obtained as follows.

traces(P0) = {〈〉, 〈up〉, 〈up, down〉}

This includes the empty sequence followed by all possible sequences of events.
Refinement in this model allows reasoning about safety, since a process P is

refined by Q if, and only if, the set of trances of Q is a subset of those of P

Definition 51 (Traces Refinement) P vT Q ⇔ traces(Q) ⊆ traces(P)
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In other words, every behaviour of Q is a possible behaviour of P. In particular,
Stop, refines every process in the traces model, since it is a possible behaviour of
every process. This motivates the definition of the following semantic model.

Failures

The following semantic model of CSP considers the set of events that may be refused
by a process after a certain trace of events. This allows reasoning about liveness, in
that a process like Stop no longer refines every other process. For a CSP process,
the set of failures, is given by the function failures : CSP → P(seq Σ × PΣ). For
example, in the case of process P0, and assuming that the alphabet Σ is {up, down}
the failures are obtained as follows.

failures(P0) =


(〈〉, {down}), (〈〉, ∅), (〈up〉, {up}), (〈up〉, ∅),
(〈up, down〉, {up, down}), (〈up, down〉, {up}),
(〈up, down〉, {down}), (〈up, down〉, ∅)


In other words, once the process deadlocks it refuses every possible event. Failures
allow the semantics of external and internal choice to be distinguished [17].

Refinement is defined by considering the refusal pairs in addition to the traces.

Definition 52 (Failures Refinement)

P vF Q ⇔ traces(Q) ⊆ traces(P) ∧ failures(Q) ⊆ failures(P)

A process P is refined by Q, if, and only if, in addition to the traces of Q being a
subset of those for P, the failures of Q are also a subset of P.

This is almost the complete semantics for CSP except, for the treatment of
divergence, which requires one final addition to the model [17].

Failures-Divergences

Divergence can arise in CSP in different ways. For example, the most obvious is
through the process Chaos, whose arbitrary behaviour includes divergence, while a
process such as P = P, with an infinite recursion and no visible events, is also a
divergence. The Chaos process in [17] is the most non-deterministic process that
does not include divergence. Here we consider the behaviour of Chaos to be com-
pletely arbitrary, which corresponds to div in the standard CSP failures-divergences
semantics. The approach followed in CSP is that any two processes that can diverge
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immediately are equivalent and useless, and that, once a process diverges, it can
perform any trace of events and refuse any event [17].

The function divergences : CSP → P(seq Σ) gives the set of divergences for a
CSP process. We consider the following example, where the process P7 offers the
event a followed by divergent behaviour.

Example 13 (Divergence) P7 = a → Chaos

Its divergences are the set of all traces that lead to divergent behaviour. In the
example above this is {s : seq Σ | 〈a〉 ≤ s}, that is, every trace that has a as the first
event. In addition, because divergences(P) includes every trace on which process
P can diverge, the notion of failures needs to be redefined. This is because once
a process has diverged it can refuse anything. These failures are obtained by the
following function failures⊥.

Definition 53 failures⊥(P) = failures(P)∪{s : seq Σ, ss : Σ | s ∈ divergences(P)}

A process P can then be characterised through a pair (failures⊥(P), divergences(P)).

Finally, the refinement order for processes P and Q in the failures-divergences
model is given as follows.

Definition 54 (Failures-Divergences Refinement)

P vFD Q ⇔ failures⊥(Q) ⊆ failures⊥(P) ∧ divergences(Q) ⊆ divergences(P)

Process P is refined by Q if, and only if, the set of failures⊥ and divergences for Q
are a subset of those of P. Consequently, Chaos is refined by every other process.

This concludes our discussion on the standard CSP semantic model of failures-
divergences [17]. A full account of the CSP semantics, including the operational
semantics, which is the basis for the FDR model checker, is available in [17]. In Sec-
tion 2.5.4 we present the UTP model of CSP.

2.5.3 Angelic Nondeterminism in CSP

As we have previously discussed, the concept of angelic nondeterminism has also
been considered in the context of CSP. Here we consider in more detail the different
approaches proposed and discuss their properties.
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Lattice-Theoretic Model

In [43] Tyrrell et al. present an axiomatized model for an algebra resembling CSP.
At the core of their proposal is the notion that external choice, referred to as angelic
choice, is a dual of internal choice in a lattice-theoretic model. This is achieved by a
stepwise construction that begins with proper processes, that is, processes without
choice, parallelism or recursion, which are modelled as finite sequences of events
that terminate with either an empty sequence 〈〉 or with Ω. This is sufficient to
give semantics to the following processes [43], where [ ] : Proc(Σ) → seq Σ is the
semantic denotation for a process, Proc(Σ) is the set of all processes constructed
from Skip, Stop and prefixing of events in Σ, and a is sequence concatenation.

Definition 55 (Proper Processes)

[Skip] =̂ 〈〉

[Stop] =̂ Ω

[a → P] =̂ a a [P]

A partial order ≤P is then defined for [Proc(Σ)], such that Ω is the least element,
and for any two processes P and Q, their order is given recursively in terms of the
suffix of the respective sequences of events.

Definition 56 (Refinement of Proper Processes)

∀ s ∈ [Proc(Σ)] • Ω ≤P s

∀ e ∈ Σ, s, t ∈ [Proc(Σ)] • e a s ≤P e a t ⇔ s ≤P t

This corresponds to the refinement order for proper processes, where Stop is the
least element of the order. The definition for other operators, such as restriction
and sequential composition, is further specified in [43].

Having defined the refinement order for proper processes, an order-embedding
is defined from the set of sequences into the FCD lattice. A lattice L is a free
completely distributive lattice over a partially ordered set C , written FCD(C ), if,
and only if, “there is a completion φ : C → L such that for every FCD lattice M and
function f : C → M , there is a unique function φ∗M : L → M which is a complete
homomorphism and satisfies φ∗M ◦ φ = f ” [41, 43]. We illustrate this functional
relationship in Figure 2.2. The FCD provides a number of interesting properties,
namely, that each element can be described as the meet of joins of subsets of φC ,
or the join of meets of subsets of φC [43]. This is essential in the characterisation of
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Figure 2.2: Free Completely Distributive Lattice completion

recursive processes, which is achieved through the weakest fixed point of the lattice
that excludes the least element [43]. Liftings are then defined for unary and binary
operators into the FCD lattice, such that internal and angelic choice correspond to
the meet and join, respectively. Definitions are also given in [43] for the alphabetised
parallel operator and recursive processes.

The construction of [43] provides for an elegant algebra, whose axiomatic descrip-
tion follows from the construction of the FCD lattice. However, with Stop as the
least element of the refinement order, it is not possible to distinguish deadlock from
divergence in this model. Thus, the semantics is quite different from the standard
model of failures-divergences [17].

Operational CSP Combinators

In [18] Roscoe proposes an angelic choice operator through combinator style oper-
ational semantics of CSP. Traditionally [17, 18], the operational semantics of CSP
has been defined through a Labelled Transition System (LTS). An LTS is a directed
graph, where each edge is labelled with an action that denotes what happens when
the system transitions between states. In CSP the set of possible labels includes the
events in Σ and another two special events: X which signals successful termination
and does not require the cooperation of the environment (such as in the case of
Skip), and τ which is an internal event invisible to the environment. Hence, X is
always the last event possible and leads to a special end state Ω.

Operational semantics for CSP operators can be given in the style of Plotkin’s
Structured Operational Semantics (SOS) [73]. For example, the process Stop has no
actions, while Skip can be given the following rule [18].

Skip X−→ Ω

Since the transition relation always associates Skip to Ω with action X, the bar is
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empty above, while the transition below means that Skip can transition into the
final special state Ω by doing action X. External choice, on the other hand, requires
more rules since an internal event τ does not decide the choice [18].

P τ−→ P ′

P 2 Q τ−→ P ′ 2 Q
,

Q τ−→ Q′

P 2 Q τ−→ P 2 Q′

In these two cases, an internal action can be performed by either P or Q, in which
case, the τ event is promoted, while the choice is not resolved. Any other event a,
including X, decides the choice between processes P and Q.

P a−→ P ′

P 2 Q a−→ P ′
(a 6= τ),

Q a−→ Q′

P 2 Q a−→ Q′
(a 6= τ)

Given the number of different rules needed to specify an operator, and the fact
that it is actually possible to define operators that are not conformant with the
failures-divergences semantics of CSP [18], Roscoe proposes an alternative known as
combinator style operational rules. The idea is that it is possible to distinguish pro-
cess arguments whose actions are immediately relevant from those that are not [18].
The latter are off, while the former are on. Thus the semantics of external choice
can be given as

((a, .), a,1), ((., a), a,2) for each a ∈ Σ

where each triple is defined by: a tuple that denotes the actions that each on
process performs (with . indicating none), ordered according to the indices of the
arguments, the overall action performed, and the format of the resulting state given
in CSP syntax. In the case of external choice, for each event a in Σ, either the first
process, whose tuple is (a, .), or the second process, whose tuple is (., a) can decide
the choice. The resulting event performed by the system is a, and the resulting state
is either 1, which corresponds to the first process or 2, which corresponds to the
second process.

An assumption of this style of specification is that τ events are always promoted
for arguments that are on, so there is no need to include rules for this [18]. Finally,
the specification of the external choice operator also requires rules for termination:

((X, .),X,Ω), ((.,X),X,Ω)

In this case, the termination of either process leads to termination, in which case
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the system transitions to the special state Ω, with the visible action being X.
The interesting result about this style of operational specification, is that every

such operator conforms to the failures-divergences semantics of CSP, and Roscoe [18]
envisions this as a mechanism for adding new operators to FDR. Moreover, in [18]
Roscoe also gives a CSP process, which is able to simulate processes specified using
combinator style semantics.

Having defined his combinator-style operational rules, Roscoe [18] proposes an
angelic choice operator P � Q (Example 9.2 in [18]), which gives the environment
a choice over both actions P and Q as long as the environment picks one that they
both offer. In fact, to achieve this definition Roscoe defines a family of operators
P s �Q and P �s Q, where s is a non-empty trace that keeps track of the difference
in events performed “ahead” by the other operand. The operational semantics of
this angelic choice operator is reproduced below [18].

• For �: ∀ a ∈ Σ: ((a, .), a,1�〈a〉 2), ((., a), a,1〈a〉 � 2)

((X, .),X,Ω) and ((.,X),X,Ω)

• For 〈b〉as�: ∀ a ∈ Σ: ((b, .), τ,1s � 2), ((., a), a,1〈a,b〉as � 2)

((X, .), τ,2) and ((.,X),X,Ω)

• For �〈b〉as: ∀ a ∈ Σ: ((., b), τ,1�s 2), ((a, .), a,1�〈a,b〉as 2)

((X, .),X,Ω) and ((.,X), τ,1)

The first set of rules for P � Q considers the case where either P or Q perform
the event a, in which case the event a is visible. If P performs event a, then the
resulting process P �〈a〉Q has the sequence 〈a〉 corresponding to the events Q could
catch up to. Similarly, there is a rule for the case when Q performs the event a. If
either process terminates, then X is observed and the system transitions to Ω.

The second set of rules for P〈b〉as � Q considers the case where process Q is
ahead. If P performs the event b, then an internal event is observed, and the
resulting process Ps � Q considers the tail s of the sequence. Process Q could
perform another a event and step further ahead, in which case a is appended to the
initial sequence 〈b〉 a s. If P terminates, then an internal event τ is observed and
the choice is resolved in favour of Q. Otherwise if Q terminates, then X is observed
and the system transitions into Ω. The last set of rules describes the case where P
is ahead of Q instead.

In summary, a process whose trace is behind the other is allowed to catch up,
while if it terminates then the choice resolves in favour of the other process. We
consider the following example, with Σ = {a, b}.

Example 14 a → Chaos � a → Skip
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Suppose the left-hand side process a → Chaos performs event a first, then we arrive
at the configuration Chaos �〈a〉 a → Skip. Now either a → Skip catches up, in
which case the process can then potentially terminate, or we observe events from
Chaos with the potential for non-termination. Similar reasoning applies to the case
where the right-hand side performs event a first. In other words, an equivalent CSP
process describing this behaviour would be a → (Chaos u Skip), where following
the event a, it may terminate or diverge. Essentially, this angelic choice operator
is a variant of the external choice operator that is able to delay the choice between
either branch, as long as the environment can control that choice.

It is clear from Example 14 that the angelic choice operator of Roscoe [18] is not
able to avoid divergence. Ideally, a counterpart to the angelic choice of the refinement
calculus should avoid divergence and favour successfully terminating processes, just
like in most theories of angelic nondeterminism.

2.5.4 UTP Model

As we have previously discussed, CSP can be characterised in the UTP through the
theory of reactive processes [39, 44]. In addition to the variables ok and ok ′ of the
theory of designs, this theory includes the variables wait, tr , ref and their dashed
counterparts, that record information about interactions with the environment.

The variable wait records whether the previous process is waiting for an in-
teraction from the environment or, alternatively, has terminated. Similarly, wait ′

ascertains this for the current process. The variable ok indicates whether the pre-
vious process is in a stable state, while ok ′ records this information for the current
process. If a process is not in a stable state, then it is said to have diverged. A
process only starts executing in a state where ok and ¬ wait are true. Successful
termination is characterised by ok ′ and ¬ wait ′ being true.

Like in standard CSP, the interactions with the environment are represented
using sequences of events, recorded by tr and tr ′. The variable tr records the
sequence of events that took place before the current process started, while tr ′

records all the events that have been observed so far. Finally, ref and ref ′ record
the set of events that may be refused by the process at the start, and currently, as
required for the appropriate modelling of deadlock [17].

Healthiness Conditions

The theory of reactive processes R is characterised by the functional composition
of the following three healthiness conditions, which we reproduce below [39, 44].
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Definition 57 (Reactive Process)

R1(P) =̂ P ∧ tr ≤ tr ′

R2(P) =̂ P[〈〉, tr ′ − tr/tr , tr ′]

R3(P) =̂ IIrea C wait B P

R(P) =̂ R3 ◦ R1 ◦ R2(P)

R1 requires that in all circumstances the only change that can be observed in
the final trace of events tr ′ is an extension of the initial sequence tr , while R2
requires that a process must not impose any restriction on the initial value of tr .
Finally, R3 requires that if the previous process is waiting for an interaction with
the environment, that is wait is true, then the process behaves as the identity of the
theory II rea [39, 44], otherwise it behaves as P. The healthiness condition of the
theory of reactive processes is R, the functional composition of R1, R2 and R3.

CSP Processes as Reactive Designs

The theory of CSP can be described by reactive processes that in addition also
satisfy two other healthiness conditions, CSP1 and CSP2, whose definitions are
reproduced below [39, 44].

Definition 58 (CSP)

CSP1(P) =̂ P ∨ R1(¬ ok)

CSP2(P) =̂ P ; ((ok ⇒ ok ′) ∧ tr ′ = tr ∧ ref ′ = ref ∧ wait ′ = wait)

The first healthiness condition CSP1 requires that if the previous process has di-
verged, that is, ok is false, then extension of the trace is the only guarantee. CSP2
is H2, using the J -split of Cavalcanti and Woodcock [44], restated with the extended
alphabet of reactive processes.

A process that is R, CSP1 and CSP2-healthy can be described in terms of
a design as proved in [39, 44]. We reproduce this result below, where we use the
notation Po

w = P[o,w/ok ′,wait].

Theorem T.2.5.1 (Reactive Design) For every CSP process P,

R(¬ P f
f ` P t

f ) = P

Proof. Theorem 12 in [44], or Theorem 8.2.2 in [39].
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This result is important as it allows CSP processes to be specified in terms of pre
and postconditions, such as is the case for sequential programs, while the healthiness
condition R enforces the required reactive behaviour.

Operators

The operators of CSP can then be defined using reactive designs. In what follows
we present the most important CSP operators and discuss their specification, where
use the subscript R to distinguish these definitions from those in other theories.

The first process of interest is SkipR, which terminates successfully.

Definition 59 (Skip) SkipR =̂ R(true ` tr ′ = tr ∧ ¬ wait ′)

Its precondition is true since it never diverges and its postcondition requires that
the trace of events tr is unchanged while it terminates ¬ wait ′.

On the other hand, the process that never terminates is defined by StopR.

Definition 60 (Stop) StopR =̂ R(true ` tr ′ = tr ∧ wait ′)

Its precondition is true while the postcondition requires that not only is the trace
of events tr never changed, but the process is always waiting for the environment:
wait ′ is true.

Immediate divergence is captured by the process ChaosR.

Definition 61 (Chaos) ChaosR =̂ R(false ` true)

In this case, the precondition is false, since it always diverges, then there is no way
to satisfy the precondition of this process, and its postcondition is true. In fact, this
design becomes just true, and the function R ensures that the only observation that
can be made is the extension of the sequence of traces tr .

Prefixing can be described in terms of reactive designs as follows.

Definition 62 (Prefixing)

a →R SkipR =̂ R(true ` (tr ′ = tr ∧ a /∈ ref ′) C wait ′ B (tr ′ = tr a 〈a〉))

The precondition is true, while in the postcondition there is a conditional, which
defines two possible observations of its behaviour. When the process is still waiting
for an interaction from the environment, and wait ′ is true, then the trace of events
remains unchanged while the event a is not in the set of refusals ref ′. When the
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process is no longer waiting, and wait ′ is false, then the event a is appended to the
initial trace of events tr .

In the case of internal choice the environment has no control over the choice.

Definition 63 (Internal Choice) P uR Q =̂ R(¬ P f
f ∧ ¬ Qf

f ` P t
f ∨ Qt

f )

In this case the precondition requires that the precondition of both processes P and
Q, ¬ P f

f and ¬ Qf
f , holds. Moreover, the postcondition is the disjunction of the

postconditions of P and Q, P t
f and Qt

f , respectively, as either postcondition may be
established.

External choice, on the other hand, presents a more complex definition as a
reactive design.

Definition 64 (External Choice)

P 2R Q =̂ R(¬ P f
f ∧ ¬ Qf

f ` (P t
f ∧ Qt

f ) C tr ′ = tr ∧ wait ′ B (P t
f ∨ Qt

f ))

Like in the definition for internal choice, both preconditions of P and Q need to be
satisfied. The postcondition defines two cases: when the process is waiting and the
trace of events has not changed, and the only possible observations of the external
choice are those that are admitted by the postconditions of both processes, and,
once a choice is made, the observations are either those of P or Q, according to the
postconditions.

The final, and perhaps most complex, yet fundamental operator that we consider
in this discussion is sequential composition.

Definition 65 (Sequential Composition)

P ; RQ =̂ R



 ¬ (R1(P f
f ) ; R1(true))

∧
¬ (R1(P t

f ) ; (¬ wait ∧ R1 ◦ R2(Qf
f )))


`
R1(P t

f ) ; (II C wait B R1 ◦ R2(Qt
f ))


The precondition is the conjunction of two terms, the first of which requires that
the precondition of P is satisfied. This is similar to the sequential composition of
designs (Theorem T.2.4.4), apart from the fact that R1 is required to hold. The
second term requires that the postcondition of P satisfies the precondition of Q when
wait is no longer true, that is, when it actually starts executing. This is again similar
to the result for designs, apart from the fact there is the variable wait and that R1
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must hold, and so must R2 for the negation of the precondition of Q. Finally, the
postcondition is given by the sequential composition of the postcondition of P with
a conditional, where: if P is still waiting for the environment, then it behaves as the
identity II , otherwise it behaves as the postcondition of Q, where both R1 and R2
are required to hold.

This concludes our discussion of the UTP model of CSP. We have covered the
definition of the most important operators as reactive designs. In the following
section we summarise the main points of this chapter.

2.6 Final Considerations

The concept of angelic nondeterminism has been employed in many different applic-
ations as we have discussed. Its original treatment made the abstract specification
of algorithms in problems involving backtracking and search possible. In the context
of theories of correctness, it has traditionally been studied in the refinement calculus
of Back [32], Morris [29] and Morgan [31] through the universal monotonic predicate
transformers, where it can be characterised as the least upper bound of the lattice.

In the context of relational theories, however, capturing both angelic and demonic
nondeterminism is not entirely trivial. Rewitzky [35] provided the fundamental
theory of binary multirelations in which angelic nondeterminism can be characterised
in terms of relations between states and sets of states. This has been used by
Cavalcanti et al. [38] to encode both angelic and demonic nondeterminism in the
relational setting of Hoare and He’s UTP [39], a framework suitable for studying
different programming paradigms, including process algebras like CSP.

CSP has received some attention regarding the concept of angelic nondetermin-
ism as well. In particular, Tyrrel et al. [43] have suggested a lattice-theoretic
model for an algebra resembling CSP where angelic choice is the dual of internal
choice. However, the semantics is quite different from the standard model of failures-
divergences of CSP [17, 18]. Roscoe has also proposed an angelic choice operator,
which however, does not avoid divergent behaviour. Ideally, an angelic choice coun-
terpart to the refinement calculus should avoid divergent behaviour. This notion,
however, has been elusive. We address this problem in the remainder of this thesis.
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Chapter 3

Extended Binary Multirelations

In this chapter we introduce an extended model of binary multirelations that caters
for sets of final states that are not necessarily terminating. This is achieved by ex-
tending Rewitzky’s [35] model of upward-closed binary multirelations with a special
state that denotes the possibility for non-termination.

The following Section 3.1 introduces the model. In Section 3.2 the healthiness
conditions are defined; their characterisation as fixed points is discussed in Sec-
tion 3.3. In Section 3.4 the refinement order is defined, while the operators are
defined in Section 3.5. Section 3.6 formalizes the relationship between this model
and that of [35]. Finally, we summarize our results in Section 3.7.

3.1 Introduction

Similarly to the original model of binary multirelations, a relation in this model
associates to each initial program state a set of final states. The notion of a final
state, however, is different, as formalised by the following type BM⊥.

Definition 66 (Extended Binary Multirelation)

State⊥ == State ∪ {⊥}

BM⊥ == State ↔ P State⊥

Each initial state is related to a set of final states of type State⊥, a set that may
contain the special state ⊥, which denotes non-termination. If a set of final states
does not contain ⊥, then termination in one of its states is guaranteed.

Similar to the original theory of binary multirelations, the set of final states
encodes the choices available to the angel. The demonic choices are encoded by the

83



84 CHAPTER 3. EXTENDED BINARY MULTIRELATIONS

different ways in which the set of final states can be chosen.
We consider the following example, where the value 1 is assigned to the program

variable x , but termination is not guaranteed. This is specified by the following
relation, where :=BM⊥ is the assignment operator that does not require termination.

Example 15 x :=BM⊥ 1 = {s : State, ss : P State⊥ | s ⊕ (x 7→ 1) ∈ ss}

Every initial state s is related to a set of final states ss where the state obtained
from s by overriding the value of the component x with 1 is included. Since ss is
of type State⊥, the sets of final states ss include those with and without ⊥. The
angelic choice, therefore, cannot guarantee termination. In the following examples
and definitions we may omit the type of s and ss for conciseness; they always have
the same types as in Example 15.

It is also possible to specify a program that must terminate for certain sets of
final states but not necessarily for others as shown in the following example, where
uBM⊥ is the demonic choice operator of the theory.

Example 16

(x :=BM 1) uBM⊥ (x :=BM⊥ 2)

=

{s, ss | (s ⊕ (x 7→ 1) ∈ ss ∧ ⊥ /∈ ss) ∨ (s ⊕ (x 7→ 2) ∈ ss)}

Since BM is in fact a subset of BM⊥, it is possible to use some of the existing
operators, such as the terminating assignment operator :=BM . In this case, there is
a demonic choice between the terminating assignment of 1 to x , and the assignment
of 2 to x that does not require termination.

3.2 Healthiness Conditions

Having defined the type of the extended binary multirelations BM⊥, in the follow-
ing Sections 3.2.1 to 3.2.4 we introduce the healthiness conditions that characterise
the relations in the theory.

3.2.1 BMH0

The first healthiness condition of interest is BMH0. It enforces the upward closure
of the original theory of binary multirelations [35] for sets of final states that are
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necessarily terminating, and in addition enforces a similar property for sets of final
states that are not required to terminate.

Definition 67 (BMH0)

∀ s, ss0, ss1 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1))⇒ (s, ss1) ∈ B

It states that for every initial state s, and for every set of final states ss0 in a relation
B, any superset ss1 of that final set of states is also associated with s such that ⊥
is in ss0 if, and only if, it is in ss1. That is, BMH0 requires the upward closure for
sets of final states that terminate, and for those that may or may not terminate,
but separately.

The definition of BMH0 can be split into two conjunctions as established by the
following Lemma L.3.2.1. BMH is the healthiness condition of the original theory
whose definition was reproduced in Section 2.3. Proof of these and other results to
follow can be found in Appendix B of the extended version of this thesis [74].

Lemma L.3.2.1

BMH0

⇔
(
∀ s, ss0, ss1 •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1)⇒ (s, ss1) ∈ B

)
∧
BMH


This result confirms that for sets of final states that terminate this healthiness con-
dition enforces BMH exactly as in the original theory of binary multirelations [35].

3.2.2 BMH1

The second healthiness condition BMH1 requires that if it is possible to choose a set
of final states where termination is not guaranteed, then it must also be possible to
choose an equivalent set of states where termination is guaranteed. This healthiness
condition is similar in nature to H2 of the theory of designs.

Definition 68 (BMH1) ∀ s : State, ss : P State⊥ • (s, ss∪{⊥}) ∈ B ⇒ (s, ss) ∈ B

If it is possible to reach a set of final states (ss ∪ {⊥}) from some initial state s,
then the set of final states ss, without ⊥, so that termination is required, is also
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associated with s.
This healthiness condition excludes relations that only offer sets of final states

that may not terminate. We consider the following Example 17.

Example 17 {s : State, ss : P State⊥ | s ⊕ (x 7→ 1) ∈ ss ∧ ⊥ ∈ ss}

This relation describes the assignment of 1 to the program variable x where termin-
ation is not guaranteed. It discards the inclusive situation where termination may
indeed occur, and so is not BMH1-healthy. The inclusion of a corresponding final
set of states that requires termination does not change the choices available to the
angel as it is still impossible to guarantee termination.

3.2.3 BMH2

In this model, both the empty set of final states and {⊥} characterise abortion. This
redundancy, which facilitates the linking between theories, in particular with the
original theory of Rewitzky [35], is captured by the following healthiness condition.

Definition 69 (BMH2) ∀ s : State • (s, ∅) ∈ B ⇔ (s, {⊥}) ∈ B

It requires that every initial state s is related to the empty set of final states if, and
only if, it is also related to the set of final states {⊥}. By allowing (s, ∅) to be part
of the model, we can easily characterise the original theory of binary multirelations
as a subset of ours.

If we consider BMH1 in isolation, it covers the reverse implication of BMH2
because if (s, {⊥}) is in the relation, so is (s, ∅). However, BMH2 is stronger than
BMH1 by requiring (s, {⊥}) to be in the relation if (s, ∅) is also in the relation.

This new model of binary multirelations is characterised by the conjunction of the
healthiness conditions BMH0, BMH1 and BMH2 to which we refer as BMH⊥.
In Section 3.3 we provide alternative definitions of the healthiness conditions in
terms of fixed points. This characterisation enables us, for instance, to establish
that the healthiness conditions are idempotent and monotonic.

3.2.4 BMH3

The fourth healthiness condition characterises a subset of the model that corresponds
to the original theory of binary multirelations of Rewitzky [35].
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Definition 70 (BMH3)

∀ s : State • (s, ∅) /∈ B ⇒ (∀ ss : P State⊥ • (s, ss) ∈ B ⇒ ⊥ /∈ ss)

If an initial state s is not related to the empty set, then it must be the case that for
all sets of final states ss related to s, ⊥ is not included in the set ss.

The healthiness condition BMH3 excludes relations that do not guarantee ter-
mination for particular initial states, yet establish some set of final states. An
example of such a relation is Example 15. This is also the case for the original
theory of binary multirelations. If it is possible for a program not to terminate
when started from some initial state, then execution from that state must lead to
arbitrary behaviour. This is the same intuition for H3 of the theory of designs [39].

3.3 Healthiness Conditions as Fixed Points

Having defined the healthiness conditions of the theory, in this section we consider
their definitions via idempotent functions, whose fixed points are the relations in
the theory. This is similar to the approach followed in UTP theories. This dual
characterisation is used in Section 3.6 to establish an isomorphism between a subset
of this model and the original theory of binary multirelations.

For each healthiness condition of interest, we use the notation bmhx to denote
the function whose fixed points correspond exactly to the relations characterised by
the healthiness condition BMHx, that is bmhx(B) = B ⇔ BMHx. Furthermore,
the notation bmhx,y denotes the functional composition of the functions bmhx and
bmhy, so that bmhx,y(B) = bmhx ◦ bmhy(B).

In the next Section 3.3.1, each healthiness condition is characterised by a corres-
ponding function. A full account of the properties of the functional composition of
each function is found in Appendix B.2. Moreover, in Sections 3.3.2 and 3.3.3 the
two functions that characterise the model as a whole, and its subset of interest, are
presented.

3.3.1 bmh0, bmh1, bmh2 and bmh3

The first function of interest is bmh0, whose fixed points are the BMH0-healthy
binary multirelations. It is defined as follows.
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Definition 71

bmh0(B) =̂ {s, ss | ∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)}

For every initial state s in B, whenever it is related to a set of final states ss0 it is
also related to its superset ss, such that ⊥ is in ss0 if, and only if, ⊥ is also in ss.
In other words, bmh0 enforces the upward closure of a relation B just like BMH0.

The healthiness condition BMH1 is characterised by the fixed points of bmh1.

Definition 72 bmh1(B) =̂ {s, ss | (s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B}

Its definition considers all pairs (s, ss) in B, such that if a set of final states includes
⊥ then there is also a set of final states without ⊥.

BMH2-healthy relations are fixed points of the function bmh2, whose definition
is presented below.

Definition 73 bmh2(B) =̂ {s, ss | (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)}

The definition considers every pair (s, ss) in B and requires that (s, {⊥}) is in B if,
and only if, (s, ∅) is also in B. If the equivalence is not satisfied then bmh2 yields
the empty set.

Finally, the BMH3-healthy relations are characterised by the fixed points of
bmh3.

Definition 74 bmh3(B) =̂ {s, ss | ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B}

The definition considers every pair (s, ss) in B and requires that either ss is a set
of final states with guaranteed termination, and so without ⊥, or (s, ∅) is in B, and
thus the initial state s leads to arbitrary behaviour.

The following Lemmas L.3.3.1 to L.3.3.4 establish that the fixed points of each
bmhx function are exactly those relations that satisfy the corresponding healthiness
condition BMHx.

Lemma L.3.3.1 BMH0⇔ bmh0(B) = B

Lemma L.3.3.2 BMH1⇔ bmh1(B) = B

Lemma L.3.3.3 BMH2⇔ bmh2(B) = B

Lemma L.3.3.4 BMH3⇔ bmh3(B) = B
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Furthermore, the following Lemmas L.3.3.5 to L.3.3.8 establish that each bmhx

function is idempotent.

Lemma L.3.3.5 bmh0 ◦ bmh0(B) = bmh0(B)

Lemma L.3.3.6 bmh1 ◦ bmh1(B) = bmh1(B)

Lemma L.3.3.7 bmh2 ◦ bmh2(B) = bmh2(B)

Lemma L.3.3.8 bmh3 ◦ bmh3(B) = bmh3(B)

This section concludes our discussion regarding the definition of the bmhx functions.
Properties of their functional composition are studied in detail in Appendix B.2. In
the following Sections 3.3.2 and 3.3.3 we focus our attention only on the functional
compositions that characterise the theory of BMH0-BMH2 multirelations and the
subset, that in addition, satisfies BMH3.

3.3.2 bmh0,1,2

The relations in the model of extended binary multirelations are characterised by
the conjunction of the healthiness conditions BMH0, BMH1 and BMH2, oth-
erwise also named as BMH⊥ as depicted in Figure 1.1. These relations can also
be expressed as fixed points of the functional composition of the functions bmh0,
bmh1 and bmh2, as shown by the following Lemma L.3.3.9.

Lemma L.3.3.9

bmh0,1,2(B) =

 s, ss

∣∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)

∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


The notation bmh0,1,2 denotes the functional composition bmh0 ◦ bmh1 ◦ bmh2.
The order of this functional composition is justified by Theorem T.3.3.1, and results
established in Appendices B.2.5 and B.2.6.

Theorem T.3.3.1 BMH0 ∧ BMH1 ∧ BMH2⇔ bmh0,1,2(B) = B

Proof. Follows from Lemmas L.3.3.10 to L.3.3.13 below.

That is, a multirelation B is a fixed point of bmh0,1,2, if, and only if, it satisfies
the healthiness conditions BMH0, BMH1 and BMH2. The proof of this theorem
relies on the results which we discuss in the following paragraphs.
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First we establish in Lemmas L.3.3.10 to L.3.3.12 that a fixed point of bmh0,1,2

satisfies each of the healthiness conditions BMH0, BMH1 and BMH2.

Lemma L.3.3.10 (bmh0,1,2(B) = B)⇒ BMH0

Lemma L.3.3.11 (bmh0,1,2(B) = B)⇒ BMH1

Lemma L.3.3.12 (bmh0,1,2(B) = B)⇒ BMH2

Moreover, we establish in Lemma L.3.3.13 that a relation that is BMH0, BMH1
and BMH2-healthy is also a fixed point of bmh0,1,2.

Lemma L.3.3.13 Provided B is BMH0−BMH2-healthy, bmh0,1,2(B) = B.

These lemmas conclude our discussion of the healthiness conditions of the new theory
of binary multirelations. In summary, these relations can be characterised either by
the predicates BMH0-BMH2 or as fixed points of bmh0,1,2. In the following
section we focus our attention on the subset of the theory that contains only the
multirelations that are in addition BMH3-healthy.

3.3.3 bmh0,1,3,2

Relations that are BMH0, BMH1, BMH2 and BMH3-healthy can be charac-
terised as fixed points of the functional composition bmh0,1,3,2. The result of this
composition is given by the following Lemma L.3.3.14.

Lemma L.3.3.14

bmh0 ◦ bmh1 ◦ bmh3 ◦ bmh2(B)

=
s, ss

∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)

∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
(∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)




The set construction considers a disjunction, where, either s is an aborting state, and
hence it is related to the empty set and {⊥}, and otherwise, if it is not aborting, it
satisfies the same property of upward-closure as required by bmh0. The particular
order of this functional composition is justified by the following Theorem T.3.3.2.
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Theorem T.3.3.2 BMH0 ∧ BMH1 ∧ BMH2 ∧ BMH3⇔ bmh0,1,3,2(B) = B

The proof of Theorem T.3.3.2 is split into two implications. First, we establish
through Lemma L.3.3.15 that the conjunction of the predicative healthiness condi-
tions BMH0 to BMH3 implies that B is a fixed point of bmh0,1,3,2.

Lemma L.3.3.15 BMH0 ∧ BMH1 ∧ BMH2 ∧ BMH3⇒ bmh0,1,3,2(B) = B

To prove the reserve implication, we first establish through Lemma L.3.3.16 that a
fixed point of bmh0,1,3,2 is also a fixed point of bmh0,1,2, so that Lemmas L.3.3.10
to L.3.3.12 are directly applicable.

Lemma L.3.3.16 bmh0,1,2 ◦ bmh0,1,3,2(B) = bmh0,1,3,2(B)

Finally, Lemma L.3.3.17 establishes that every fixed point of bmh0,1,3,2 satisfies the
predicative healthiness condition BMH3.

Lemma L.3.3.17 (bmh0,1,3,2(B) = B)⇒ BMH3

This concludes the proof that the subset of the theory that is in addition BMH3-
healthy also has a counterpart characterisation via fixed points of bmh0,1,3,2. This
function characterises the subset that corresponds to the original theory of binary
multirelations. The relationship with the original theory of binary multirelations is
explored in Section 3.6.

3.4 Refinement

The refinement order for the new binary multirelation model is defined exactly as
in the original theory of binary multirelations [35].

Definition 75 (Refinement) B1 vBM⊥ B0 =̂ B1 ⊇ B0

It is reverse subset inclusion, such that a program characterised by a multirelation
B0 refines another characterised by a multirelation B1 if, and only if, B0 is a subset
of B1.

The extreme points of the theory as expected of a theory of designs, are the
everywhere miraculous program and abort. Their definitions are presented below.

Definition 76 (Miracle) >BM⊥ =̂ ∅

As in the original theory, miracle is denoted by the absence of any relationship
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between any input state and any set of final states, that is, the program cannot
possibly be executed.

Definition 77 (Abort) ⊥BM⊥ =̂ State × P State⊥

On the other hand, abort is characterised by the universal relation, such that every
initial state is related to every possible set of final states.

3.5 Operators

In this section the most important operators of the theory are introduced. Namely,
we define the operators of assignment, angelic and demonic choice, and sequential
composition. These enable the discussion of interesting properties observed in this
model of extended binary multirelations.

As discussed in Chapter 1, the model that we propose here is isomorphic to
the theory of angelic designs that we discuss in Chapter 4. In that chapter we
establish that the operators discussed here are in correspondence with those in the
theory of angelic designs, which we prove to be closed. Together with the respective
isomorphism that we discuss in Section 4.3, these results are sufficient to establish
closure of the operators with respect to the healthiness condition BMH⊥.

3.5.1 Assignment

The first operator of interest is assignment. As already illustrated, in this new
model, there is the possibility to define two distinct assignment operators. The first
one behaves exactly as in the original theory of binary multirelations x :=BM e.
This operator does not need to be redefined, since BM ⊆ BM⊥. The new operator
that we define below, however, behaves rather differently, in that it may or may not
terminate.

Definition 78 x :=BM⊥ e =̂ {s : State, ss : P State⊥ | s ⊕ (x 7→ e) ∈ ss}

This assignment guarantees that for every initial state s, there is some set of final
states available for angelic choice where x has the value of expression e. However,
termination is not guaranteed. While the angel can choose the final value of x it
cannot possibly guarantee termination in this case.
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3.5.2 Angelic Choice

The definition of angelic choice is exactly the same as in the original theory of binary
multirelations.

Definition 79 B0 tBM⊥ B1 =̂ B0 ∩ B1

For every set of final states available for demonic choice in B0 and B1, only those
that can be chosen both in B0 and B1 are available.

An interesting property of angelic choice that is observed in this model is illus-
trated by the following Lemma L.3.5.1. It considers the angelic choice between two
assignments of the same expression, yet only one is guaranteed to terminate.

Lemma L.3.5.1 (x :=BM⊥ e) tBM⊥ (x :=BM e) = (x :=BM e)

This result can be interpreted as follows: given an assignment that is guaranteed to
terminate, adding a corresponding angelic choice that is potentially non-terminating
does not in fact introduce any new choices.

In general, and as expected from the original model of binary multirelations, the
angelic choice operator observes the following properties. As the refinement ordering
in the new model is exactly the same as in the theory of binary multirelations, the
angelic choice operator, being the least upper bound in both theories, has the same
properties with respect to the extreme points of the lattice.

Lemma L.3.5.2 >BM⊥ tBM⊥ B = >BM⊥

The angelic choice between an everywhere miraculous program and any other pro-
gram is still miraculous.

Lemma L.3.5.3 ⊥BM⊥ tBM⊥ B = B

On the other hand, the angelic choice between abort and any other program B is the
same as B. That is, the angel will avoid choosing an aborting program if possible.

3.5.3 Demonic Choice

The next operator of interest is demonic choice. It is also defined exactly like in the
original theory of binary multirelations.

Definition 80 B0 uBM⊥ B1 =̂ B0 ∪ B1

For every initial state, a corresponding set of final states available for demonic choice
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in either, or both, of B0 and B1, is included in the result.
Similarly to the angelic choice operator, there is a general result regarding the

demonic choice over the two assignment operators, terminating and not necessarily
terminating. This is established by the following Lemma L.3.5.4.

Lemma L.3.5.4 (x :=BM e) uBM⊥ (x :=BM⊥ e) = (x :=BM⊥ e)

If there is an assignment for which termination is not guaranteed, then the demonic
choice over this assignment and a corresponding one that is guaranteed to terminate
is the same as the assignment that does not require termination. In other words, if
it is possible for the demon to choose between two similar sets of final states, one
that is possibly non-terminating and one that terminates, then the one for which
termination is not guaranteed dominates the choice.

The following two laws show how the demonic choice operator behaves with
respect to the extreme points of the lattice.

Lemma L.3.5.5 ⊥BM⊥ uBM⊥ B = ⊥BM⊥

Lemma L.3.5.6 >BM⊥ uBM⊥ B = B

As expected, the demonic choice between abort and some other program is abort.
In the case of a miracle, the demon will avoid choosing it if possible.

Since the angelic and demonic choice operators are defined as set intersection
and union, respectively, they also distribute through each other. This is exactly the
same property as in the original theory of binary multirelations.

3.5.4 Sequential Composition

The definition of sequential composition in this new model is not immediately ob-
vious. We note, however, that one of the reasons for developing this theory is the
fact that it allows a more intuitive account of the definition of sequential composi-
tion and, as such, an easier route to discover the definition in the theory of angelic
designs. To illustrate the issue, we consider the following example from the theory
of designs, where a non-H3-design is sequentially composed with IID.

Example 18

(x ′ = 1 ` true) ; IID {Definition of IID}

= (x ′ = 1 ` true) ; (true ` x ′ = x) {Sequential composition for designs}
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= (¬ (x ′ 6= 1 ; true) ∧ ¬ (true ; false) ` true ; x ′ = x) {Sequential composition}

= (¬ (∃ x0 • x0 6= 1 ∧ true) ∧ ¬ (∃ x0 • true ∧ false) ` ∃ x0 • true ∧ x ′ = x0)
{Predicate calculus and one-point rule}

= (¬ true ∧ ¬ false ` true) {Predicate calculus and property of designs}

= true

The result is true, the bottom of designs [39], whose behaviour is arbitrary. This
arises because, since the first design can always establish a final value for x , namely 1,
where termination is then not guaranteed, the Skip design IID that follows can never
guarantee termination. This result can be generalised for a sequential composition
involving any non-H3-design.

This provides the motivation for the definition of sequential composition in the
new binary multirelational model.

Definition 81

B0 ;BM⊥ B1 =̂

{
s0, ss0

∣∣∣∣∣ ∃ ss • (s0, ss) ∈ B0 ∧
(⊥ ∈ ss ∨ ss ⊆ {s1 : State | (s1, ss0) ∈ B1})

}

For sets of final states where termination is guaranteed, that is, ⊥ is not in the set
of intermediate states ss, this definition matches that of the original theory. If ⊥
is in ss, and hence termination is not guaranteed, then the result of the sequential
composition is arbitrary as it can include any set of final states. If we assume that
B0 is BMH0-healthy, then the definition of sequential composition can be split into
the set union of two sets as shown in Theorem T.3.5.1.

Theorem T.3.5.1 Provided B0 is BMH0-healthy,

B0 ;BM⊥ B1 =

 {s0, ss0 | (s0, State⊥) ∈ B0}
∪
{s0, ss0 | (s0, {s1 | (s1, ss0) ∈ B1}) ∈ B0}


The first set considers the case when B0 leads to sets of final states where termination
is not required and, therefore, to the whole of State⊥, due to upward closure. The
second set considers the case where termination is required and matches the result
of Lemma L.2.3.4.

For a similar example to Example 18 expressed in the new theory, we consider
the following example, where a non-terminating assignment is followed by the as-
signment that requires termination, but does not change the value of x .
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Example 19

(x :=BM⊥ e) ;BM⊥ (x :=BM x) {Definition of ;BM⊥ (Theorem T.3.5.1)}

=


{s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ (x :=BM⊥ e)}
∪{

s0 : State, ss0 : P State⊥
| (s0, {s1 : State | (s1, ss0) ∈ (x :=BM x)}) ∈ (x :=BM⊥ e)

}


{Definition of :=BM and :=BM⊥}

=



{
s0 : State, ss0 : P State⊥
| (s0, State⊥) ∈ {s : State, ss : P State⊥ | s ⊕ (x 7→ e) ∈ ss}

}
∪

s0 : State, ss0 : P State⊥∣∣∣∣∣∣∣
(s0, {s1 : State | (s1, ss0) ∈ (x :=BM x)})
∈
{s : State, ss : P State | s ⊕ (x 7→ e) ∈ ss}




{Property of sets}

=


{s0 : State, ss0 : P State⊥ | s0 ⊕ (x 7→ e) ∈ State⊥}
∪{

s0 : State, ss0 : P State⊥∣∣∣ s0 ⊕ (x 7→ e) ∈ {s1 : State | (s1, ss0) ∈ (x :=BM x)}

}

{Property of sets}

=


{s0 : State, ss0 : P State⊥ | true}
∪{

s0 : State, ss0 : P State⊥∣∣∣ s0 ⊕ (x 7→ e) ∈ {s1 : State | (s1, ss0) ∈ (x :=BM x)}

}


{Property of sets and definition of ⊥BM⊥}

= ⊥BM⊥

The result of this sequential composition is an aborting program. Like in the theory
of designs, if it is possible for the first program not to terminate, then the sequential
composition cannot provide any guarantees either. The properties observed by the
sequential composition operator are explored in what follows.

Properties

The first property of interest considers the sequential composition of >BM⊥ followed
by some program B. The result is also a miraculous program as shown in the
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following Lemma L.3.5.7.

Lemma L.3.5.7 >BM⊥ ;BM⊥ B = >BM⊥

The following law expresses that the sequential composition of abort with another
program is also abort.

Lemma L.3.5.8 ⊥BM⊥ ;BM⊥ B = ⊥BM⊥

In the following paragraphs we explore some examples with respect to the extreme
points of the lattice.

The following example describes the general behaviour of some program B that
is BMH0-healthy sequentially composed with a miraculous program.

Example 20

B ;BM⊥ >BM⊥ {Definition of >BM⊥ and ;BM⊥ (Theorem T.3.5.1)}

=

 {s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ B}
∪
{s0 : State, ss0 : P State⊥ | (s0, {s1 : State | (s1, ss0) ∈ ∅}) ∈ B}


{Property of sets}

=

 {s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ B}
∪
{s0 : State, ss0 : P State⊥ | (s0, ∅) ∈ B}


If B may not terminate for some set of initial states, and it is BMH0-healthy, then
the result of the sequential composition is also abort, for those initial states. If B
aborts for some particular initial state s0, then that state is related to the empty
set in B and the result of the sequential composition is also abort. Otherwise, the
result is miraculous as the initial state is not in the domain of either relation in the
union above.

The following example describes the behaviour of a program B sequentially com-
posed with abort.

Example 21

B ;BM⊥ ⊥BM⊥ {Definition of ⊥BM⊥ and ;BM⊥ (Theorem T.3.5.1)}
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=


{s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ B}
∪{

s0 : State, ss0 : P State⊥
| (s0, {s1 : State | (s1, ss0) ∈ (State × P State⊥)}) ∈ B

}

{Property of sets}

=

 {s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ B}
∪
{s0 : State, ss0 : P State⊥ | (s0, {s1 : State | true}) ∈ B}

 {Property of sets}

= {s0 : State, ss0 : P State⊥ | (s0, State⊥) ∈ B ∨ (s0, State) ∈ B}

Because B is upward closed, if it definitely terminates then State is a superset of all
sets of final states and is in B. If B may or may not terminate for some particular
set of final states, then State⊥ is also in B due to the upward closure guaranteed
by BMH0. In either case, the sequential composition behaves as abort. If B is
miraculous, then so is the sequential composition.

3.6 Relationship with Binary Multirelations

Having presented the most important operators of the theory, in this section we
focus our attention on the relationship between the new model and the original
theory of binary multirelations. The first step consists in the definition of a pair
of linking functions, bmb2bm, which maps relations from the new model into the
original theory of binary multirelations, and bm2bm, a mapping in the opposite
direction.

As previously discussed in Chapter 1, the relationship is illustrated in Figures 1.1
and 1.3 where each theory is labelled according to its healthiness conditions. In this
case, we have a bijection between the subset of BMH⊥ characterised by the relations
that are BMH3-healthy and the original theory of binary multirelations character-
ised by BMH. In this section our discussion is focused on this isomorphism, while
in Chapter 4 we discuss the isomorphism with the theory of angelic designs.

3.6.1 From BM⊥ to BM (bmb2bm)

The first function of interest is bmb2bm that maps from binary multirelations in the
new model, of type BM⊥, to those in the original model of type BM .
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Definition 82

bmb2bm : BM⊥ → BM

bmb2bm(B) =̂ {s : State, ss : P State⊥ | (s, ss) ∈ B ∧ ⊥ /∈ ss}

Its definition considers every pair (s, ss) in B such that ⊥ is not in ss. We consider
the following example, where bmb2bm is applied to the potentially non-terminating
assignment of e to the program variable x .

Example 22 bmb2bm(x :=BM⊥ e) = (x :=BM e)

The result corresponds to assignment in the original theory.
In order to establish that bmb2bm yields a multirelation that is BMH-healthy

we use an alternative way to characterise the set of healthy binary multirelations as
fixed points of the function bmhup.

Definition 83 bmhup(B) =̂ {s, ss | ∃ ss0 : P State • (s, ss0) ∈ B ∧ ss0 ⊆ ss}

This definition is justified by Lemma L.3.6.1.

Lemma L.3.6.1 BMH⇔ bmhup(B) = B

Finally, Theorem T.3.6.1 establishes that the application of bmb2bm to a multirela-
tion that is BMH0-BMH3-healthy yields a BMH-healthy relation.

Theorem T.3.6.1

bmhup ◦ bmb2bm(bmh0,1,3,2(B)) = bmb2bm(bmh0,1,3,2(B))

In summary, bmb2bm yields relations that are in the original theory.

3.6.2 From BM to BM⊥ (bm2bmb)

The mapping in the opposite direction, from BM to BM⊥ is achieved by the function
bmb2bm, whose definition is presented below.

Definition 84

bm2bmb : BM → BM⊥

bm2bmb(B) =̂ {s : State, ss : P State⊥ | ((s, ss) ∈ B ∧ ⊥ /∈ ss) ∨ (s, ∅) ∈ B}
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It considers every pair (s, ss) in a relation B, where ⊥ is not in the set of final states
ss, or if B is aborting for a particular state s, that is, s is related to the empty
set, then it is related to every possible final state, including ⊥, so that we have
nontermination for s.

Similarly to the treatment of bm2bmb, Theorem T.3.6.2 establishes that the
application of bmb2bm to an upward-closed relation, that is BMH-healthy, yields a
relation that is BMH0-BMH3-healthy.

Theorem T.3.6.2

bmh0,1,3,2 ◦ bm2bmb(bmhup(B)) = bm2bmb(bmhup(B))

This result completes the proof for healthiness of both linking functions. In the
following section we discuss the isomorphism.

3.6.3 Isomorphism (bm2bmb and bmb2bm)

Based on the results of the previous Sections 3.6.1 and 3.6.2 we can establish that
bm2bmb and bmb2bm form a bijection for healthy relations as ascertained by the
following Theorems T.3.6.3 and T.3.6.4.

Theorem T.3.6.3 Provided B is BMH0,1,2,3-healthy, bm2bmb ◦ bmb2bm(B) = B,

Theorem T.3.6.4 Provided B is BMH-healthy, bmb2bm ◦ bm2bmb(B) = B,

These results show that the subset of the theory that is BMH0-BMH3-healthy is
isomorphic to the original theory of binary multirelations [35]. This confirms that
while our model is more expressive, it is still possible to express every program that
could be specified using the original model.

3.7 Final Considerations

In this chapter we have introduced a new model of binary multirelations that allows
the specification of sets of final states for which termination is not required. This
model extends the theory of Rewiztky [35] by considering a special state ⊥ that
denotes the possibility for non-termination. The healthiness conditions have been
introduced as predicates and subsequently characterised as fixed points of idem-
potent functions. This dual characterisation is useful for reasoning about the link
between this model and the theory of [35].
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The operators of the theory have been introduced and their properties studied.
Notable differences with respect to the original theory include the potentially non-
terminating assignment and sequential composition. The definition of the latter
is perhaps the most unexpected, as the intuition comes from the UTP theory of
designs. The full justification for some of the operators and the refinement order
is revisited again in Chapter 4 where we introduce the isomorphic model of angelic
designs.

Finally, we have studied the relationship between this new model of binary mul-
tirelations and the theory of [35]. We have found that the subset of multirelations
that are, in addition, BMH3-healthy, is isomorphic to the original theory. While
this model is more expressive, we can still reason about the existing model of binary
multirelations.
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Chapter 4

Angelic Designs

In this chapter we introduce a new UTP theory of designs with both angelic and
demonic nondeterminism. As already indicated the starting points for this predicat-
ive model are the theory of Cavalcanti et al. [38] and the extended model of binary
multirelations presented earlier in Chapter 3. For this reason, Section 4.1 begins
by discussing the choice of alphabet and the relationship with the alphabet of [38].
In Section 4.2 the healthiness conditions of the theory are presented. Section 4.3
discusses the isomorphism with the model of extended binary multirelations. In Sec-
tion 4.4 we explore the notion of refinement and prove that it corresponds exactly
to that in the model of Chapter 3. In Section 4.5 the main operators of the theory
are presented, including angelic and demonic choice. In Section 4.6 we explore the
relationship with the original theory of designs. In Section 4.7 we show that the
subset of H3-healthy designs is isomorphic to the theory of [38]. Finally, Section 4.8
concludes the chapter with a summary of the main results.

4.1 Alphabet

Our aim is to build a theory of designs. Therefore, the alphabet of our theory
includes the observational variables ok and ok ′, like every theory of designs and
two additional variables s and ac′, as shown in the following definition, where the
notation for a type of State is enriched to carry a parameterised set of variables
Sα that specifies the names of all the record components considered. The approach
followed in our discussion is that a record can be represented as a set of ordered pairs
where the first component is the variable name, from a set of all possible variables,
and the second component corresponds to the associated value or expression.

103
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Definition 85 (Alphabet)

s : State(Sα)

ac′ : P State(Sα)

ok, ok ′ : {true, false}

State(Sα) = {x , e | x ∈ Sα}

The variable s encapsulates the initial values of program variables as record com-
ponents of s, just like in the extended model of binary multirelations discussed
in Chapter 3. The set of final states ac′ is similar to that of [38] with the notable
difference that we do not dash the variable names in the record components, instead
we only consider these as undashed. This deliberate choice bears no consequences,
other than simplifying reasoning and proofs. The set of program variables Sα re-
corded in both s and final states of ac′ is the same.

The set of angelic choices ac′ of this new model and that of [38] can be related
by dashing or undashing the variables of the components of all states in either set.
This relationship is formalized by the following pair of functions.

Definition 86

undashset(ss) =̂ {z : State(Sα) | z ∈ ss • undash(z)}

dashset(ss) =̂ {z : State(Sα) | z ∈ ss • dash(z)}

The function undashset maps a set ss of states whose record components are dashed
variables into a set where every state has its components undashed. This is achieved
by considering every state z in the set ss and applying undash, a function which
undashes the names of every record component of a state. Similarly, dashset maps
in the opposite direction by dashing every state in ss. A state z whose components
range over the set of variables Sα can be dashed and undashed via the functions,
dash and undash.

The function dash(z) considers every record component z .x of z , and dashes the
name of x into x ′. Similarly, the function undash performs the inverse renaming,
by undashing every x ′ to x . The functions dash and undash are bijective. They
are the exact inverse of each other. Useful properties include, for instance, that
undash(z).x = z .x ′ and dash(z).x ′ = z .x . These and other properties of dash and
undash are included for completeness in Appendix D.2.

These functions are important in the development of links between the theor-
ies, in particular with the theory of [38], which we explore in Section 4.7. In the
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following Section 4.2 we introduce the healthiness conditions.

4.2 Healthiness Conditions

Since the theory we propose is a theory of designs, at the very least predicates need
to satisfy H1 and H2. More important for our discussion is the fact that none of
the proofs in [39] regarding H1 and H2 require homogeneity, so it is possible to
consider a non-homogeneous theory of designs.

In addition, since we have a theory with ok and ok ′, the record of termination
embedded in the use of ac′ must be related to that in ok and ok ′. This is the concern
of the first healthiness condition A0, which we discuss in Section 4.2.1. Similarly
to the theory of [38], there is a requirement for ac′ to be upward-closed. This is the
concern of the second healthiness condition A1, which we discuss in Section 4.2.2.
Finally, the composition of both healthiness conditions, named as A, is explored
in Section 4.2.3.

4.2.1 A0

The notion of termination considered in this theory is related to that of [38]. In that
model, termination is always guaranteed as long as ac′ is not empty. In the theory
of designs termination is signalled by ok ′. In order to reconcile these two notions we
introduce the following healthiness condition A0.

Definition 87 A0(P) =̂ P ∧ ((ok ∧ ¬ P f )⇒ (ok ′ ⇒ ac′ 6= ∅))

It states that when a design is started and its precondition ¬ P f is satisfied, if it
terminates, with ok ′ being true, then it must be the case that ac′ is not empty.
In other words, there must be at least one state in ac′ available for angelic choice.
If the precondition ¬ P f is not satisfied, then the design aborts and there are no
guarantees on the outcome, and so ac′ may or may not be empty.

The function A0 is idempotent and monotonic as established by the follow-
ing Theorems T.4.2.1 and T.4.2.2. Proof of these and other results to follow can be
found in Appendix C of the extended version of this thesis [74].

Theorem T.4.2.1 A0 ◦ A0(P) = A0(P)

Theorem T.4.2.2 (P v Q)⇒ (A0(P) v A0(Q))

More importantly, the function A0 is closed with respect to designs.
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Theorem T.4.2.3 If P is a design so is A0(P).

A0(P) = (¬ P f ` P t ∧ ac′ 6= ∅)

Therefore a design in this theory can be stated in the usual manner, with a pre and
a postcondition which in this case requires ac′ not to be empty. In other words, once
the precondition of an angelic design is satisfied, it terminates successfully with at
least one final state available for angelic choice.

Finally, A0 is closed with respect to conjunction and disjunction as stated in
the following Theorems T.4.2.4 and T.4.2.5.

Theorem T.4.2.4 Provided P and Q are A0-healthy,

A0(P ∧ Q) = P ∧ Q

Theorem T.4.2.5 Provided P and Q are A0-healthy designs,

A0(P ∨ Q) = P ∨ Q

The function A0 distributes through conjunction, and provided that the predicate
is a design, that is H1 and H2-healthy, it also distributes through disjunction. This
extra proviso is not a problem since this is a theory of designs. These properties
conclude our discussion regarding A0.

4.2.2 A1

In addition to requiring a consistent treatment of termination, our theory of designs
also requires that both the pre and postcondition observe the upward closure of the
set of final states ac′. In order to enforce this property in the new theory we extend
the original healthiness condition PBMH of [38] to accommodate the additional
variables ok and ok ′ as follows.

Definition 88 PBMH(P) =̂ P ; ac ⊆ ac′ ∧ ok ′ = ok

In addition to requiring that the value of ac′ must be upward-closed, the value of ok ′

is left unchanged. This is the definition of PBMH adopted throughout our work.
Its expanded version given by Lemma L.4.2.1 is more often used directly in proofs.

Lemma L.4.2.1 PBMH(P) = ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′

When considering a design, with precondition P and postcondition Q, the applic-
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ation of PBMH yields a design where it is itself applied to the postcondition and
the negation of the precondition, as shown in the following Lemma L.4.2.2.

Lemma L.4.2.2 PBMH(P ` Q) = (¬ PBMH(¬ P) ` PBMH(Q))

The requirement on the postcondition is exactly like in the original theory of [38].
While the requirement on the negation of the precondition follows directly from
the definition of designs, where for non-H3 designs it is actually the negation of
the precondition that determines what is enforced in the case of non-termination.
In Section 2.4 we show in Example 5 such a scenario.

The application of PBMH to a design is precisely the motivation behind the
definition of the following healthiness condition A1.

Definition 89 A1(P ` Q) =̂ (¬ PBMH(¬ P) ` PBMH(Q))

Therefore A1 and PBMH are synonyms and can be used interchangeably.
The function A1 is idempotent and monotonic as established by the follow-

ing Theorems T.4.2.6 and T.4.2.7.

Theorem T.4.2.6 A1 ◦ A1(P0 ` P1) = A1(P0 ` P1)

Theorem T.4.2.7 (P v Q)⇒ A1(P) v A1(Q)

Furthermore it is closed with respect to both conjunction and disjunction, and dis-
tributes through disjunction. In the following section we discuss the functional
composition of A0 and A1.

4.2.3 A

The theory of designs we propose is characterised by the functional composition of
A0, A1, and H1 and H2 of the original theory of designs. The order in which these
functions are composed is important since they to not always necessarily commute.
In order to explain the reason behind this we consider the following counter-example.

Counter-example 1

A0 ◦ A1(true ` ac′ = ∅) {Definition of A1}

= A0

 ¬ (false ; ac ⊆ ac′)
`
ac′ = ∅ ; ac ⊆ ac′

 {Definition of sequential composition}
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= A0

 ¬ (false ∧ ∃ ac0 • ac0 ⊆ ac′)
`
∃ ac0 • ac0 = ∅ ∧ ac0 ⊆ ac′

 {One-point rule and predicate calculus}

= A0(true ` true) {Definition of A0 (Theorem T.4.2.3)}

= A0(true ` ac′ 6= ∅)

A1 ◦ A0(true ` ac′ = ∅) {Definition of A0 (Theorem T.4.2.3)}

= A1(true ` ac′ = ∅ ∧ ac′ 6= ∅) {Predicate calculus}

= A1(true ` false) {Definition of A1}

= (¬ (false ; ac ⊆ ac′) ` false ; ac ⊆ ac′) {Definition of sequential composition}

= (true ` false)

In this example we apply the healthiness conditions in different orders to an un-
healthy design (true ` ac′ = ∅) whose postcondition requires non-termination:
ac′ = ∅. In the first case A1 changes the postcondition into true, followed by the
application of A0. While in the second case, A0 is applied in the first place, making
the postcondition false, a predicate that satisfies PBMH. The resulting predicate
conforms to the definition of >D. Thus the functions do not always commute.

If instead we consider healthy predicates, then we can ensure that A0 and A1
commute. The following Theorem T.4.2.8 establishes this result for predicates that
are A1-healthy. In fact the only requirement is for the postcondition, P t to satisfy
PBMH.

Theorem T.4.2.8 Provided P t satisfies PBMH, A0 ◦ A1(P) = A1 ◦ A0(P)

This indicates that it is appropriate to introduce the definition of A as the functional
composition of A1 followed by A0, since A0 preserves A1-healthiness.

Definition 90 A(P) =̂ A0 ◦ A1(P)

Theorem T.4.2.8 establishes that once the postcondition of P satisfies PBMH then
the functions commute. Therefore by applying first A1 first we guarantee that this
is always the case.

Since the function A is defined by the functional composition of A1 and A0,
and these functions are monotonic, so is A. It is also idempotent as established by
the following Theorem T.4.2.9.
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Theorem T.4.2.9 A ◦ A(P) = A(P)

More importantly, it commutes with H1 and H2 of the theory of designs as estab-
lished by the following Theorem T.4.2.10.

Theorem T.4.2.10 H1 ◦ H2 ◦ A(P) = A ◦ H1 ◦ H2(P)

The healthiness condition of our theory is H1 ◦ H2 ◦ A. Since these commute,
and they are all idempotents so is their functional composition [39]. Furthermore,
monotonicity also follows from the monotonicity of each function.

This concludes the main discussion on the healthiness conditions of the theory
of angelic designs. Before exploring the relationship between this theory and the
model of extended binary multirelations in Section 4.3, we first discuss how to define
the subset of non-angelic designs of this theory in the following Section 4.2.4.

4.2.4 A2

In general, in our theory, a relation that does not exhibit angelic nondeterminism
always provides at most one angelic choice. In other words, for every initial state,
there must be at most one final state available in the distributed intersection over
all possible values of ac′. That is, without directly considering the upward-closure
of ac′, there must be at most one state in ac′. This leads to the following healthiness
condition A2.

Definition 91 A2(P) =̂ PBMH(P ;A {s} = ac′)

This definition is given in terms of the operator ;A, which we previously discussed
in Section 2.4.4 and whose formal definition in the context of the theory of angelic
designs is discussed in Section 4.5. The intuition behind this definition is that A2
requires the set of final states in P to be either empty or a singleton, otherwise it
becomes false. Since this purposedly breaks the upward-closure, PBMH must be
applied as a result. If we consider the definition of PBMH and ;A, the definition
of A2 can be expanded as established by the following Theorem T.4.2.11.

Theorem T.4.2.11 A2(P) = P[∅/ac′] ∨ (∃ y • P[{y}/ac′] ∧ y ∈ ac′)

It confirms our intuition that ac′ must be either empty or a singleton.
As expected of a healthiness condition, A2 is idempotent and monotonic as

confirmed by Theorems T.4.2.12 and T.4.2.13.

Theorem T.4.2.12 A2 ◦ A2(P) = A2(P)
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Theorem T.4.2.13 P v Q ⇒ A2(P) v A2(Q)

The function A2 distributes through disjunction as established by Theorem T.4.2.14.

Theorem T.4.2.14 A2(P ∨ Q) = A2(P) ∨ A2(Q)

Consequently it is also closed under disjunction. However, and as expected, A2 is
not necessarily closed under conjunction. As we discuss later in Section 4.5.4 angelic
choice is defined through conjunction, so it is no surprise that the conjunction of two
A2-healthy predicates can introduce angelic nondeterminism. Finally, when applied
to a design, we obtain the following result of Lemma L.4.2.3.

Lemma L.4.2.3 A2(P ` Q) = (¬ A2(¬ P) ` A2(Q))

That is, A2 can be directly applied to both the negation of the precondition and
the postcondition of a design.

This concludes the discussion of the healthiness conditions of the theory, and its
subset of non-angelic designs. As highlighted in Figure 1.1, the function A2 plays a
fundamental role in identifying the subset of theories with no angelic nondetermin-
ism, particularly when links are established with other theories.

4.3 Relationship with Extended
Binary Multirelations

As previously discussed, the model of extended binary multirelations developed
in Chapter 3 is a complementary model to that of angelic designs. In this section
we show how these two models can be related and prove that they are isomorphic.

In order to do so, we define a pair of linking functions, d2bmb that maps from an-
gelic designs to binary multirelations, and bmb2d mapping in the opposite direction.
The latter is defined in Section 4.3.2 while the former is defined in Section 4.3.1. Fi-
nally, in Section 4.3.3 the isomorphism is established by proving that these functions
form a bijection.

4.3.1 From Designs to Binary Multirelations (d2bmb)

The first function of interest is d2bmb. It maps from A-healthy designs into relations
of type BM⊥ and is defined as follows, where, as before, s is of type State and ss of
type State⊥.
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Definition 92 (d2bmb)

d2bmb : A→ BM⊥

d2bmb(P) =̂

 s, ss

∣∣∣∣∣∣∣
(¬ P f ⇒ P t)[true/ok][ss/ac′] ∧ ⊥ /∈ ss)

∨
(P f [true/ok][(ss \ {⊥})/ac′] ∧ ⊥ ∈ ss)


For a given design P, whose precondition is ¬ P f , and postcondition is P t , the set
construction of d2bmb(P) is split into two disjuncts.

The first disjunct considers the case where P is guaranteed to terminate, with
ok and ok ′ both substituted with true in the design P to obtain the implication
¬ P f ⇒ P t . The resulting set of final states ss, for which termination is required
(⊥ /∈ ss) is obtained by substituting ss for ac′ in P.

In the second disjunct we consider the case where ok is also true, but ok ′ is false.
This corresponds to the situation where P does not terminate. In this case, the set
of final states is obtained by substituting ss \ {⊥} for ac′ and requiring ⊥ to be in
the set of final states ss.

As a consequence of P satisfying H2, we ensure that if there is some set of final
states characterised by the second disjunct, and therefore, containing ⊥, then there
is also an equivalent set of final states without ⊥ that is characterised by the first
disjunct.

In the following Theorem T.4.3.1 we establish that the application of d2bmb to
A-healthy designs yields relations that are BMH0-BMH2-healthy.

Theorem T.4.3.1 Provided P is a design,

bmh0,1,2 ◦ d2bmb(A(P)) = d2bmb(A(P))

That is, the application of d2bmb to an A-healthy design is a fixed point of bmh0,1,2.

We consider the following Example 23 where d2bmb is applied to the program
that either assigns the value 1 to the sole program variable x and terminates, or
assigns the value 2 to x , in which the case termination is not required.

Example 23

d2bmb((x 7→ 2) /∈ ac′ ` (x 7→ 1) ∈ ac′) {Definition of d2bmb (Lemma L.C.2.8)}
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=

 s, ss

∣∣∣∣∣∣∣
((x 7→ 2) /∈ ac′ ⇒ (x 7→ 1) ∈ ac′)[ss/ac′] ∧ ⊥ /∈ ss)

∨
(((x 7→ 2) ∈ ac′)[ss \ {⊥}/ac′] ∧ ⊥ ∈ ss)


{Predicate calculus and substitution}

=


s, ss

∣∣∣∣∣∣∣∣∣∣∣∣

((x 7→ 2) ∈ ss ∧ ⊥ /∈ ss)

∨
((x 7→ 1) ∈ ss ∧ ⊥ /∈ ss)

∨
((x 7→ 2) ∈ (ss \ {⊥}) ∧ ⊥ ∈ ss)


{Property of sets}

=


s, ss

∣∣∣∣∣∣∣∣∣∣∣∣

((x 7→ 2) ∈ ss ∧ ⊥ /∈ ss)

∨
((x 7→ 1) ∈ ss ∧ ⊥ /∈ ss)

∨
((x 7→ 2) ∈ ss ∧ (x 7→ 2) /∈ {⊥} ∧ ⊥ ∈ ss)


{Property of sets}

=


s, ss

∣∣∣∣∣∣∣∣∣∣∣∣

((x 7→ 2) ∈ ss ∧ ⊥ /∈ ss)

∨
((x 7→ 1) ∈ ss ∧ ⊥ /∈ ss)

∨
((x 7→ 2) ∈ ss ∧ ⊥ ∈ ss)


{Predicate calculus}

= {s, ss | (x 7→ 2) ∈ ss ∨ ((x 7→ 1) ∈ ss ∧ ⊥ /∈ ss)}
{Definition of uBM⊥ and :=BM⊥ and :=BM}

= (x :=BM⊥ 2) uBM⊥ (x :=BM 1)

As expected, the function d2bmb yields a program with the same behaviour spe-
cified using the binary multirelational model. It is the demonic choice over two
assignments, one requires termination while the other does not.

4.3.2 From Binary Multirelations to Designs (bmb2d)

The second linking function of interest is bmb2d, which maps from relations of type
BM⊥ to A-healthy predicates. Its definition is presented below.

Definition 93

bmb2d : BM⊥ → A

bmb2d(B) =̂ ((s, ac′ ∪ {⊥}) /∈ B ` (s, ac′) ∈ B)



4.3. RELATIONSHIP WITH EXTENDED BINARY MULTIRELATIONS 113

It is defined as a design, such that for a particular initial state s, the precondition
requires (s, ac′ ∪ {⊥}) not to be in B, while the postcondition establishes that
(s, ac′) is in B. This definition can be expanded into a more intuitive representation
according to the following Lemma L.4.3.1.

Lemma L.4.3.1 bmb2d(B) = ok ⇒

 ((s, ac′) ∈ B ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
(s, ac′ ∪ {⊥}) ∈ B


The behaviour of bmb2d is split into two disjuncts. The first one considers the case
where B requires termination, and hence ⊥ is not part of the set of final states of
the pair in B. While the second disjunct considers sets of final states that do not
require termination, in which case ok ′ can be either true or false.

Theorem T.4.3.2 establishes that bmb2d(B) yields A-healthy designs provided
that B is BMH0-BMH2-healthy.

Theorem T.4.3.2 Provided B satisfies bmh0,1,2, A ◦ bmb2d(B) = bmb2d(B).

This result confirms that bmb2d is closed with respect to A when applied to relations
that are BMH0-BMH2-healthy. This concludes our discussion of bmb2d. In the
following Section 4.3.3 we focus our attention on the isomorphism.

4.3.3 Isomorphism: d2bmb and bmb2d

In this section we show that d2bmb and bmb2d form a bijection. The following The-
orem T.4.3.3 establishes that d2bmb is the inverse function of bmb2d for relations
that are BMH0-BMH2-healthy.

Theorem T.4.3.3 Provided B is BMH0-BMH2-healthy,

d2bmb ◦ bmb2d(B) = B

Theorem T.4.3.4, on the other hand, establishes that bmb2d is the inverse function
of d2bmb for designs that are A-healthy.

Theorem T.4.3.4 Provided P is an A-healthy design,

bmb2d ◦ d2bmb(P) = P

Together these results establish that the models are isomorphic. This result is of
fundamental importance since it allows the same programs to be characterised using
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two different approaches. The binary multirelational model provides a set-theoretic
approach, while the predicative theory proposed can be easily linked with other UTP
theories of interest, namely the theory of reactive processes.

Furthermore, this dual approach enables us to justify the definition of certain
aspects of our theory. This includes the healthiness conditions and the definition of
certain operators such as sequential composition. The most intuitive and appropri-
ate model can be used in each case. The results obtained in either model can then
be related using the linking functions.

4.4 Refinement

The healthiness condition A can be viewed as a function from the theory of designs
into our theory. The theory of designs is a complete lattice [39]. Since A is monotonic
and idempotent, its range is also a complete lattice [39]. Therefore we can assert
that the theory we propose is also a complete lattice under the universal reverse
implication order.

In the following Section 4.4.1 we revisit the least and greatest elements of the of
designs lattice and explore their properties within our theory. Next in Section 4.4.2
we show that the refinement order of our theory corresponds exactly to subset in-
clusion in the extended theory of binary multirelations of Chapter 3.

4.4.1 Extreme Points

Since we have a theory of designs, the extreme points of the lattice are exactly
the same as those of any theory of designs. The bottom is defined by true (⊥D),
whose behaviour is unpredictable and may include non-termination. While the top
is the everywhere miraculous program given by ¬ ok (>D). (In the theory of angelic
nondeterminism of [38] the top is defined by false and the bottom by true.)

The bottom of the lattice true is an angelic design as established by the follow-
ing Theorem T.4.4.1.

Theorem T.4.4.1 A(⊥D) = ⊥D

The consequence of true being the bottom of the lattice is that ac′ may be empty.
This is as expected, since a program for which there is no choice available to the
angel corresponds to the possibility of non-termination.

The definition for the top of the lattice is a direct consequence of having the
additional variables ok and ok ′. It is also an angelic design as established by the
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following Theorem T.4.4.2.

Theorem T.4.4.2 A(>D) = >D

Thus, such a program may never be started and its characterisation as a pre and
postcondition pair is just like in the original theory of designs.

This concludes our introduction to the extreme points of the theory. In the
following Section 4.4.2 we establish the relationship between the refinement order of
this theory and that of the binary multirelational model.

4.4.2 Relationship with Extended Binary Multirelations

The model in Chapter 3 is meant to be as similar as possible to the original model of
binary multirelations. In Section 3.4 the refinement order vBM⊥ is defined as subset
inclusion, like in the original theory. The following Theorem T.4.4.3 establishes that
in fact the refinement order vBM⊥ corresponds to the refinement order of designs
vD.

Theorem T.4.4.3 Provided B0 and B1 are BMH0-BMH2-healthy,

bmb2d(B0) vD bmb2d(B1)⇔ B0 vBM⊥ B1

It is reassuring to find that the refinement order in our theory of angelic designs cor-
responds to subset ordering in the binary multirelational model. This is particularly
important as it confirms the intuitive definition of the theory of extended binary
multirelations.

4.5 Operators

In this section we define the main operators of the theory of angelic designs. This
includes the definition of assignment in the following Section 4.5.1, sequential com-
position in Section 4.5.2, demonic choice in Section 4.5.4, and finally angelic choice
in Section 4.5.3. For these operators we show how they relate to their counterpart
in the model of extended binary multirelations. In addition we also prove that they
are all closed under A.
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4.5.1 Assignment

The first operator we consider is assignment. The definition, presented below, is
similar to that of [38].

Definition 94 (Assignment) (x :=Dac e) =̂ (true ` s ⊕ (x 7→ e) ∈ ac′)

It is defined by a design whose precondition is true, and whose postcondition estab-
lishes that every set of final states ac′ has a state where the component x is assigned
the value of the expression e. Every such state is the result of overriding the value
of x in the initial state s, while leaving every other program variable unchanged.

4.5.2 Sequential Composition

A challenging aspect of the theory of angelic designs is that it uses non-homogeneous
relations. Consequently sequential composition cannot be simply defined as rela-
tional composition like in other UTP theories. The definition we propose here is
layered upon the sequential composition operator ;A originally introduced in [38].

The definition of sequential composition for angelic designs is given by consider-
ing the auxiliary variables ok and ok ′ separately, as follows.

Definition 95 (;Dac-sequence) P ;Dac Q =̂ ∃ ok0 • P[ok0/ok ′] ;A Q[ok0/ok]

This definition resembles relational composition with the notable difference that
instead of conjunction we use the operator ;A that handles the non-homogeneous
alphabet of the relations. In Section 2.4.4 we previously discussed its definition as
found in [38]. Since in our theory we have a different alphabet, we redefine the
operator ;A in terms of the input state s as follows.

Definition 96 (;A-sequence) P ;A Q =̂ P[{s : State | Q}/ac′]

This is the definition adopted throughout this thesis. Just like before, this sequential
composition can be understood as follows: a final state of P ;A Q is a final state of
Q that can be reached from a set of input states s of Q that is available to P as a
set ac′ of angelic choices.

In Appendix F we explore and prove properties observed by the ;A operator.
Based on those results, and the fact that ok and ok ′ are not free in neither the pre
nor postcondition, it is possible to characterise the sequential composition of two
angelic designs as follows.

Theorem T.4.5.1 Provided ok and ok ′ are not free in P, Q, R and S, and that
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¬ P and Q are PBMH-healthy,

(P ` Q) ;Dac (R ` S) = (¬ (¬ P ;A true) ∧ ¬ (Q ;A ¬ R) ` Q ;A (R⇒ S))

The result obtained is very similar to that of sequential composition for the original
theory of designs [39, 51], except for the postcondition and the fact that we use the
operator ;A instead of the sequential composition operator for relations [39]. While
the precondition guarantees that it is not the case that Q establishes ¬ R, the
implication in the postcondition acts as a filter that removes final states available
for angelic choice in Q that fail to satisfy R. We consider the following Example 24.

Example 24

(true ` {x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ;Dac (s.x 6= 1 ` s ∈ ac′)

{Theorem T.4.5.1}

=

 ¬ (¬ true ;A true) ∧ ¬ (({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ;A s.x = 1)

`
({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ;A (s.x 6= 1⇒ s ∈ ac′)


{Predicate calculus}

=

 ¬ (false ;A true) ∧ ¬ (({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ;A s.x = 1)

`
({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ;A (s.x 6= 1⇒ s ∈ ac′)


{Property of ;A}

=

 ¬ false ∧ ¬ (({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ;A s.x = 1)

`
({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ;A (s.x 6= 1⇒ s ∈ ac′)


{Predicate calculus}

=

 ¬ (({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ;A s.x = 1)

`
({x 7→ 1} ∈ ac′ ∧ {x 7→ 2} ∈ ac′) ;A (s.x 6= 1⇒ s ∈ ac′)


{Definition of ;A and substitution}

=

 ¬ ({x 7→ 1} ∈ {s | s.x = 1} ∧ {x 7→ 2} ∈ {s | s.x = 1})
`
({x 7→ 1} ∈ {s | s.x 6= 1⇒ s ∈ ac′} ∧ {x 7→ 2} ∈ {s | s.x 6= 1⇒ s ∈ ac′})


{Property of sets}
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=

 ¬ ({x 7→ 1}.x = 1 ∧ {x 7→ 2}.x = 1)

`
({x 7→ 1}.x 6= 1⇒ {x 7→ 1} ∈ ac′) ∧ ({x 7→ 2}.x 6= 1⇒ {x 7→ 2} ∈ ac′)


{Value of component x}

=

 ¬ (1 = 1 ∧ 2 = 1)

`
(1 6= 1⇒ {x 7→ 1} ∈ ac′) ∧ (2 6= 1⇒ {x 7→ 2} ∈ ac′)


{Predicate calculus}

=

 true
`
(false ⇒ {x 7→ 1} ∈ ac′) ∧ (true ⇒ {x 7→ 2} ∈ ac′)

 {Predicate calculus}

= (true ` {x 7→ 2} ∈ ac′)

In this case, there is an angelic choice between the assignment of the value 1 and 2

to the program variable x , sequentially composed with the program that aborts if x
is 1 and that otherwise behaves as Skip. The resulting design is just the assignment
of 2 to x that avoids aborting. In this case, the implication in the postcondition
of Theorem T.4.5.1 is discarding the angelic choice where x is 1.

If we consider designs that observe H3, we can simplify the result further as there
are no dashed variables in the precondition as established by Theorem T.4.5.2.

Theorem T.4.5.2 Provided ok and ok ′ are not free in P, Q, R and S, and that
¬ P and Q are PBMH-healthy, and that ac′ is not free in P,

(P ` Q) ;Dac (R ` S) = (P ∧ ¬ (Q ;A ¬ R) ` Q ;A (R⇒ S))

This is similar to the definition of sequential composition for designs where the
precondition is a condition [51], except for the use of the operator ;A.

Closure

It is important that we establish closure of sequential composition (;Dac) with re-
spect to A. The proof of the following closure theorem relies on results established
in Appendices E and F.

Theorem T.4.5.3 Provided P and Q are A-healthy and ok, ok ′ are not free in P
and Q,

A(P ;Dac Q) = P ;Dac Q
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This result establishes that ;Dac is closed with respect to A provided both operands
are also A-healthy.

Sequential Composition in Extended Binary Multirelations

The following Theorem T.4.5.4 establishes that for designs that are A-healthy, the
definition of sequential composition corresponds to that in the isomorphic model of
extended binary multirelations.

Theorem T.4.5.4 Provided P and Q are A-healthy designs,

bmb2d(d2bmb(P) ;BM⊥ d2bmb(Q)) = P ;Dac Q

Together with the closure of ;Dac, this result enables us to ascertain the closure of
;BM⊥ .

In what follows, we concentrate our attention on important properties observed
by the sequential composition operator.

Skip

Similarly to the original theory of designs, we identify the Skip of the theory. We
denote it by IIDac and define it as follows.

Definition 97 (Skip) IIDac =̂ (true ` s ∈ ac′)

This is a design whose precondition is true, thus it is always applicable, and upon
terminating it establishes that the input state s is in all sets of angelic choices ac′.
The only results that can be guaranteed by the angel are those that are available in
all demonic choices of the value of ac′ that can be made. In this case, s is the only
guarantee that we have, so the behaviour of IIDac is to maintain the current state.
The following Theorems T.4.5.5 and T.4.5.6 establish that IIDac is A-healthy and
that it is the left-unit for sequential composition (;Dac).

Theorem T.4.5.5 A(IIDac) = IIDac

Theorem T.4.5.6 Provided P is a design, IIDac ;Dac P = P

These results confirm that IIDac is indeed a suitable definition for the identity. We
observe that IIDac is only a right-identity for angelic designs that are H3-healthy.
This is the motivation for the following discussion.
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In what follows we establish that an H3-design in our theory requires the pre-
condition not to mention dashed variables, as expected [39]. We first show the result
of sequentially composing an A-healthy design P with IIDac in Theorem T.4.5.7.

Theorem T.4.5.7 Provided P is an A-healthy design,

P ;Dac IIDac = ((¬ ∃ ac′ • P f ) ` P t)

Finally Theorem T.4.5.8 establishes that P ;Dac IIDac = P restricts the precondition
to a condition.

Theorem T.4.5.8 Provided P is an A-healthy design, it is H3-healthy if, and
only if, its precondition does not mention ac′,

(P ;Dac IIDac) = P ⇔ ((∃ ac′ • ¬ P f ) = ¬ P f )

Sequential Composition and the Extreme Points

We now explore the consequences of sequentially composing a program with the
extreme points of the lattice. As expected, we establish the same left-zero laws that
hold in the original theory of designs [39].

The following Theorem T.4.5.9 shows that it is impossible to recover from an
aborting program. Theorem T.4.5.10 establishes that if a design is miraculous then
sequentially composing it with another design does not change its behaviour.

Theorem T.4.5.9 ⊥D ;Dac P = ⊥D

Theorem T.4.5.10 >D ;Dac P = >D

Both of these results are expected of a theory of designs [39].
This concludes our discussion of sequential composition. In the following Sec-

tions 4.5.3 and 4.5.4 we concentrate our attention on nondeterminism.

4.5.3 Demonic Choice

The intuition for the demonic choice in our theory is related to the possible ways of
choosing a value for ac′. In general, this can be described using disjunction like in
the original theory of designs [39].

Definition 98 P uDac Q =̂ P ∨ Q
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This corresponds to the greatest lower bound of the lattice. We consider the follow-
ing example, where ⊕ is the overriding operator [9].

Example 25

(x := 1) uDac (x := 2) {Definition of assignment}

= (true ` s ⊕ (x 7→ 1) ∈ ac′) uDac (true ` s ⊕ (x 7→ 2) ∈ ac′)
{Definition of uDac and disjunction of designs}

= (true ` s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ 2) ∈ ac′)

In this example we have at least two choices for the final value of ac′: one has a state
where x is 1 and the other has a state where x is 2. The demon can choose any set
ac′ satisfying either predicate. In this case, the angel is not guaranteed to be able
to choose a particular final value for x , since there are no choices in the intersection
of all possible choices of ac′.

Closure Properties

The demonic choice operator is closed with respect to A, provided that both op-
erands are also A-healthy. This result follows from the distributive property of A
with respect to disjunction, as established by the following Theorem T.4.5.11.

Theorem T.4.5.11 Provided P and Q are designs,

A(P ∨ Q) = A(P) ∨ A(Q)

Theorem T.4.5.12 Provided P and Q are A-healthy designs,

A(P uDac Q) = P uDac Q

Relationship with Extended Binary Multirelations

The demonic choice operator (uDac) corresponds exactly to the demonic choice op-
erator (uBM⊥) of the binary multirelational model. This result is established by the
following Theorem T.4.5.13.

Theorem T.4.5.13 bmb2p(B0 uBM⊥ B1) = bmb2p(B0) uDac bmb2p(B1)

This result confirms the correspondence of demonic choice in both models. In what
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follows we focus our attention on its properties.

Properties

In general, and since demonic choice is the greatest lower bound, if presented with
the possibility to abort (⊥D), we expect the demon to choose the worst possible
outcome as shown by the following Theorem T.4.5.14.

Theorem T.4.5.14 P uDac ⊥D = ⊥D

As observed in the original theory of designs [39], the sequential composition op-
erator distributes through demonic choice, but only from the right as established
by Theorem T.4.5.15.

Theorem T.4.5.15 (P uDac Q) ;Dac R = (P ;Dac R) uDac (Q ;Dac R)

These results conclude our discussion regarding the demonic choice operator and
its properties. In the following section we focus our attention on the angelic choice
operator and its respective properties.

4.5.4 Angelic Choice

Similarly to other models, angelic choice is defined as the least upper bound, which
in this case is conjunction.

Definition 99 P tDac Q =̂ P ∧ Q

This definition is justified by the correspondence with the angelic choice operator of
the binary multirelational model of Chapter 3.

To provide the intuition for this definition we consider the following Example 26.

Example 26

((x 7→ 1) /∈ ac′ ` (x 7→ 1) ∈ ac′) tDac (true ` (x 7→ 2) ∈ ac′) {Definition of tDac}

=


(x 7→ 1) /∈ ac′ ∨ true

̀ (x 7→ 1) /∈ ac′ ⇒ (x 7→ 1) ∈ ac′

∧
true ⇒ (x 7→ 2) ∈ ac′



 {Predicate calculus}

= (true ` (x 7→ 1) ∈ ac′ ∧ (x 7→ 2) ∈ ac′)
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It considers the angelic choice between a design that assigns 1 to the only program
variable x , but does not necessarily terminate, and a design that assigns 2 to x , but
terminates. The result is a program that always terminates and, for every set of
final states, there is the possibility to choose angelically the assignment of the value
1 or 2 to x .

Closure Properties

Having defined angelic choice as the least upper bound operator, in the following
Theorem T.4.5.16 we prove that it is closed under A, provided that both operands
are A-healthy.

Theorem T.4.5.16 Provided P and Q are A-healthy,

A(P tDac Q) = P tDac Q

The proof for this theorem relies on the closure of PBMH for conjunction.

Relationship with Extended Binary Multirelations

Theorem T.4.5.17 establishes that the angelic choice operator of the designs and the
binary multirelations models are in correspondence. This requires the operands to
be BMH1-healthy. This is satisfied by every binary multirelation that is BMH0-
BMH2.

Theorem T.4.5.17 Provided B0 and B1 are BMH1-healthy,

bmb2p(B0 tBM⊥ B1) = bmb2p(B0) tDac bmb2p(B1)

Having established the correspondence of the angelic choice operator in both models,
in the following section we focus on its properties.

Properties

In general, and since angelic choice is the least upper bound, the angelic choice of a
design P and the top of the lattice (>D) is also >D.

Theorem T.4.5.18 Provided P is a design, P tDac >D = >D.

In this model, sequential composition does not necessarily distribute from the right
nor from the left. In order to explain the intuition behind this we present the
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following Counter-example 2 for distribution from the left.

Counter-example 2 Assuming ;Dac distributes over uDac from the left, (true ` s ⊕ (x 7→ 1) ∈ ac′)
uDac

(true ` s ⊕ (x 7→ −1) ∈ ac′)

 ;Dac

 (s.x = 1 ` false)

t
(s.x = −1 ` false)

 {Assumption}

=



 (true ` s ⊕ (x 7→ 1) ∈ ac′)
uDac

(true ` s ⊕ (x 7→ −1) ∈ ac′)

 ;Dac (s.x = 1 ` false)

tDac (true ` s ⊕ (x 7→ 1) ∈ ac′)
uDac

(true ` s ⊕ (x 7→ −1) ∈ ac′)

 ;Dac (s.x = −1 ` false)


{Definition of u}

=

 ((true ` s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;Dac (s.x = 1 ` false))

tDac

((true ` s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;Dac (s.x = −1 ` false))


{Theorem T.4.5.1}

=




(true ;A true) ∧
¬ ((s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;A s.x 6= 1)

`
(s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;A (s.x = 1⇒ false)


tDac

(true ;A true) ∧
¬ ((s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;A s.x 6= −1)

`
(s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;A (s.x = −1⇒ false)




{Predicate calculus}
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=




(true ;A true) ∧
¬ ((s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;A s.x 6= 1)

`
(s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;A s.x 6= 1


tDac

(true ;A true) ∧
¬ ((s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;A s.x 6= −1)

`
(s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;A s.x 6= −1




{Property of ;A and propositional calculus}

=



 ¬ ((s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;A s.x 6= 1)

`
(s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;A s.x 6= 1


tDac ¬ ((s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;A s.x 6= −1)

`
(s ⊕ (x 7→ 1) ∈ ac′ ∨ s ⊕ (x 7→ −1) ∈ ac′) ;A s.x 6= −1




{Definition of ;A and subsitution}

=



 ¬ (s ⊕ (x 7→ 1) ∈ {z | z .x 6= 1} ∨ s ⊕ (x 7→ −1) ∈ {z | z .x 6= 1})
`
(s ⊕ (x 7→ 1) ∈ {s | s.x 6= 1} ∨ s ⊕ (x 7→ −1) ∈ {s | s.x 6= 1})


tDac ¬ (s ⊕ (x 7→ 1) ∈ {z | z .x 6= −1} ∨ s ⊕ (x 7→ −1) ∈ {z | z .x 6= −1})
`
(s ⊕ (x 7→ 1) ∈ {s | s.x 6= −1} ∨ s ⊕ (x 7→ −1) ∈ {s | s.x 6= −1})




{Property of sets and predicate calculus}

=



 ¬ (¬ (s ⊕ (x 7→ 1).x 6= 1) ∨ ¬ (s ⊕ (x 7→ −1).x 6= 1))

`
true


tDac ¬ (¬ (s ⊕ (x 7→ 1).x 6= −1) ∨ ¬ (s ⊕ (x 7→ −1).x 6= −1))

`
true




{Property of ⊕}
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=

 (¬ (¬ false ∨ ¬ true) ` true)

tDac

(¬ (¬ true ∨ ¬ false) ` true)

 {Propositional calculus}

= (false ` true) tDac (false ` true) {Property of tDac}

= (false ` true) {Definition of design and propositional calculus}

= true {Definitionf of ⊥D}

= ⊥D

This is a sequential composition. In the first program the precondition always holds
and the program presents a choice to the demon. In this case, the demon can
choose the set of final states, ac′, by guaranteeing that either x is set to 1 or −1 in
the final set of states ac′. The second program presents an angelic choice, but the
precondition makes a restriction on the value of x in the initial state s: in either
case, if the precondition is satisfied the program is >D, otherwise if no precondition
can be satisfied, the program behaves as ⊥D.

It is expected that the angel will avoid ⊥D if possible. In this case, it is expected,
since the angel can avoid aborting irrespective of the choice the demon makes before
the angel. However, if we assume that the sequential composition operator ;Dac

left-distributes over angelic choice we get a different result as shown above.

In addition, sequential composition does not distribute from the right. We il-
lustrate this in Counter-example 3. It is the sequential composition of two designs.
The first design is the angelic choice between the program that assigns 2 to x , but
may not terminate, and the program that always terminates but whose final set of
states ac′ is unrestricted, except that it cannot be the empty set. The second design
is miraculous for s.x = 2 and for every other value of s.x it aborts.

Counter-example 3 ((x 7→ 2) /∈ ac′ ` (x 7→ 2) ∈ ac′)
tDac

(true ` ac′ 6= ∅)

 ;Dac

 s.x = 2

`
s.x 6= 2 ∧ ac′ 6= ∅



{Definition of tDac}
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=


(x 7→ 2) /∈ ac′ ∨ true

̀ (x 7→ 2) /∈ ac′ ⇒ (x 7→ 2) ∈ ac′

∧
true ⇒ ac′ 6= ∅



 ;Dac

 s.x = 2

`
s.x 6= 2 ∧ ac′ 6= ∅


{Predicate calculus}

= (true ` (x 7→ 2) ∈ ac′ ∧ ac′ 6= ∅) ;Dac (s.x = 2 ` s.x 6= 2 ∧ ac′ 6= ∅)
{Property of sets and predicate calculus}

= (true ` (x 7→ 2) ∈ ac′) ;Dac (s.x = 2 ` s.x 6= 2 ∧ ac′ 6= ∅) {Theorem T.4.5.1}

=

 ¬ (false ;A true) ∧ ¬ ((x 7→ 2) ∈ ac′ ;A s.x 6= 2)

`
(x 7→ 2) ∈ ac′ ;A (s.x = 2⇒ (s.x 6= 2 ∧ ac′ 6= ∅))

 {Predicate calculus}

=

 ¬ (false ;A true) ∧ ¬ ((x 7→ 2) ∈ ac′ ;A s.x 6= 2)

`
(x 7→ 2) ∈ ac′ ;A s.x 6= 2)


{Definition of ;A and substitution}

=

 ¬ false ∧ ¬ ((x 7→ 2) ∈ {z | z .x 6= 2})
`
(x 7→ 2) ∈ {z | z .x 6= 2}

 {Property of sets}

=

 ¬ false ∧ ¬ ((x 7→ 2).x 6= 2)

`
(x 7→ 2).x 6= 2

 {Predicate calculus}

= (¬ (2 6= 2) ` 2 6= 2) {Predicate calculus}

= (true ` false) {Predicate calculus and definition of >D}

= >D
6= ((x 7→ 2) /∈ ac′ ` (x 7→ 2) ∈ ac′) ;Dac (s.x = 2 ` s.x 6= 2 ∧ ac′ 6= ∅)
tDac

(true ` ac′ 6= ∅) ;Dac (s.x = 2 ` s.x 6= 2 ∧ ac′ 6= ∅)


{Theorem T.4.5.1}
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=



 ¬ ((x 7→ 2) ∈ ac′ ;A true) ∧ ¬ ((x 7→ 2) ∈ ac′ ;A s.x 6= 2)

`
(x 7→ 2) ∈ ac′ ;A (s.x = 2⇒ (s.x 6= 2 ∧ ac′ 6= ∅))


tDac ¬ (false ;A true) ∧ ¬ (ac′ 6= ∅ ;A s.x 6= 2)

`
ac′ 6= ∅ ;A (s.x = 2⇒ (s.x 6= 2 ∧ ac′ 6= ∅))




{Predicate calculus}

=



 ¬ ((x 7→ 2) ∈ ac′ ;A true) ∧ ¬ ((x 7→ 2) ∈ ac′ ;A s.x 6= 2)

`
(x 7→ 2) ∈ ac′ ;A s.x 6= 2


tDac ¬ (false ;A true) ∧ ¬ (ac′ 6= ∅ ;A s.x 6= 2)

`
ac′ 6= ∅ ;A s.x 6= 2




{Definition of ;A and substitution}

=



 ¬ ((x 7→ 2) ∈ {z | true}) ∧ ¬ ((x 7→ 2) ∈ {z | z .x 6= 2})
`
(x 7→ 2) ∈ {z | z .x 6= 2}


tDac ¬ false ∧ ¬ ({z | z .x 6= 2} 6= ∅)
`
{z | z .x 6= 2} 6= ∅




{Predicate calculus and property of sets}

=



 ¬ true ∧ ¬ (x 7→ 2).x 6= 2

`
(x 7→ 2).x 6= 2


tDac ¬ false ∧ ¬ true
`
true




{Predicate calculus}

= (false ` false) tDac (false ` true) {Predicate calculus and definition of ⊥D}

= ⊥D tDac ⊥D {Definition of tDac, ⊥D and predicate calculus}

= ⊥D

When the angelic choice is resolved first the result is the program that always ter-
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minates and whose set of final states ac′ has a state where x is assigned the value
2. Sequentially composing this with the second design results in a miracle (>D) as
the only state available for angelic choice is where x has the value 2. And this is
precisely the case in which the design behaves miraculously.

If we distribute the sequential composition through the angelic choice, in the
resulting angelic choice there are two sequential compositions. In the first one, the
result is ⊥D as the first design may not terminate. In the second, termination is
guaranteed but any final set of states (ac′ 6= ∅) may fail to satisfy the precondition
s.x = 2, in which case the design aborts. In conclusion, angelic choice does not
distribute through sequential composition at all.

4.6 Relationship with Designs

In this section we study the relationship between the model of A-designs and the
original theory of homogeneous designs of Hoare and He [39]. As we depict in
Figures 1.1 and 1.4, this is achieved by defining a pair of linking functions: d2ac,
which maps from designs into angelic designs, and ac2p, which maps in the opposite
direction.

In the following Section 4.6.1 we introduce the definition of d2ac. In Section 4.6.2
we define ac2p and discuss how the angelic nondeterminism of a theory can be
removed. Finally in Section 4.6.3 we establish that there is a Galois connection
between the theory of A-designs and the original theory of designs, and that there
is an isomorphism when we consider the subset of A2-healthy angelic designs.

4.6.1 From Designs to Angelic Designs (d2ac and p2ac)

The main concern when mapping a design into an angelic design pertains to encoding
both the pre and postcondition in terms of a single initial state s and a set of final
states ac′. Since the model of A-designs is also a theory of designs, ok and ok ′ retain
the same meaning. The function d2ac is defined as follows.

Definition 100 d2ac(P) =̂ (¬ p2ac(P f ) ∧ (¬ P f [s/inα−ok ] ; true) ` p2ac(P t))

The negation of the precondition P f and the postcondition are mapped using the
auxiliary function p2ac, while the second conjunct in the precondition of the angelic
design requires that whenever ¬ P f holds, then there is some final observation of
the values of the variables in outα. The predicate ¬ P f [s/inα−ok ] ; true can be
restated as ∃ outα • ¬ P f [s/inα−ok ]. Essentially this allows the value of ac′ to be
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UTP Theory with 
Angelic Nondeterminism

s : State

x, y, z

ac' :   State

z : State

x, y, z

UTP Theory
Variables

x , y , z 

x, y, zinα-ok 

ok, ok 

ok, ok 

outα-ok  

Figure 4.1: Encoding variables in a theory of angelic designs using p2ac

unspecified when the precondition ¬ P f is not satisfied. This is defined using the
substitution operator [s/Sα], where the boldface indicates that s is a record, and
so the substitution is not simply s for Sα. Instead, for an arbitrary set of variables
Sα, the substitution operator needed is defined as follows.

Definition 101 P[z/Sα] =̂ P[z .s0, . . . , z .sn/s0, . . . , sn]

Each variable si in Sα is replaced with z .si . As an example, we consider the sub-
stitution (x ′ = 2 ∧ ok ′)[s, z/inα−ok , outα−ok′ ], whose result is z .x ′ = 2 ∧ ok ′. The
substitution [z/Sα] is well-formed whenever Sα is a subset of the record components
of z . In Appendix D we establish properties satisfied by this operator.

The main purpose of p2ac is to encode predicates in terms of s and ac′. For
a given predicate P whose input and output alphabets are inα and outα, respect-
ively, its encoding in a theory with angelic nondeterminism is given by the following
function p2ac, which we illustrate in Figure 4.1.

Definition 102 p2ac(P) =̂ ∃ z • P[s, z/inα−ok , outα−ok′ ] ∧ undash(z) ∈ ac′

First, each variable in the set of input and output variables, other than ok and ok ′,
is replaced with the corresponding component of the initial state s and a final state
z from the set of final states available for angelic choice. Since in our encoding states
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have undashed components, we require undash(z) to be in ac′.
The result of p2ac is upward-closed, that is, the predicates in the range of p2ac

are fixed points of PBMH as established by the following Lemma L.4.6.1.

Lemma L.4.6.1 PBMH ◦ p2ac(P) = p2ac(P)

As previously discussed, this property is essential for a theory of angelic non-
determinism. The function p2ac distributes through disjunction as established by
the following Theorem T.4.6.1

Theorem T.4.6.1 p2ac(P ∨ Q) = p2ac(P) ∨ p2ac(Q)

In the case of conjunction there is an implication as established by Theorem T.4.6.2,
rather than an equality, as p2ac is defined using an existential quantifier.

Theorem T.4.6.2 p2ac(P ∧ Q)⇒ p2ac(P) ∧ p2ac(Q)

More importantly, the result of p2ac is A2-healthy as established by Theorem T.4.6.3.

Theorem T.4.6.3 A2 ◦ p2ac(P) = p2ac(P)

This is expected since the original predicates mapped by p2ac do not have angelic
nondeterminism.

A consequence of the definition of p2ac is that it requires ac′ not to be empty,
unless P is itself false. In the following Theorem T.4.6.4, we consider the application
of p2ac to a design P when ac′ is not empty.

Theorem T.4.6.4

ac′ 6= ∅ ∧ p2ac(¬ P f ` P t) = ac′ 6= ∅ ∧ (¬ p2ac(P f ) ` p2ac(P t))

In this case p2ac can be applied directly to the negation of the precondition P f

and the postcondition P t of a design P. This result sheds light on the relationship
between p2ac and d2ac as established by Theorem T.4.6.5.

Theorem T.4.6.5 Provided P is a design,

ac′ 6= ∅ ∧ p2ac(P) = ac′ 6= ∅ ∧ d2ac(P)

When we consider the case of a design whose set of final states ac′ is not empty,
then d2ac is simply p2ac.
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Finally, we establish that d2ac yields an A-healthy design, that is, the designs
in the range of d2ac are fixed points of the healthiness condition A.

Theorem T.4.6.6 A ◦ d2ac(P) = d2ac(P)

This concludes our discussion regarding the definition of d2ac and its most important
properties.

4.6.2 Removing Angelic Nondeterminism (ac2p)

The mapping from angelic to non-angelic predicates is defined by ac2p, whose goal
is to collapse the set of final states ac′ into a single state, and, introduce the input
and output variables as used in other theories. Its definition is presented below.

Definition 103

ac2p(P) =̂ PBMH(P)[StateII(inα−ok)/s] ;A
∧

x : outα−ok′ • dash(s).x = x

First, for a predicate P, ac2p takes the result of applying PBMH to P to achieve
upward closure of ac′. This is followed by the replacement of s to introduce the
corresponding input variables of the set inα−ok , which excludes ok. As already
mentioned, the observational variables ok and ok ′ retain the same meaning in the
theories considered. Finally, the resulting predicate is sequentially composed, us-
ing ;A, with a predicate that introduces the corresponding output variables of the
resulting final state, except for ok ′. For a set of variables Sα, StateII (Sα) is an
identity record, whose components si are mapped to the respective variables si .

Definition 104 StateII(Sα) =̂ {s0 7→ s0, . . . , sn 7→ sn}

As an example, we consider the substitution (s.x = 1 ∧ ok)[StateII−ok
(inα)/s],

whose result is x = 1 ∧ ok. If we consider the definition of PBMH and ;A, then
ac2p can be rewritten as established by the following Lemma L.4.6.2.

Lemma L.4.6.2

ac2p(P) = ∃ ac′ •

 P[StateII(inα)/s]

∧
∀ z • z ∈ ac′ ⇒ (

∧
x : outα • dash(z).x = x)


That is, the variable ac′ is quantified away, and for each state z in the set ac′, the
output variables in outα, except for ok ′, are introduced and set to the respective
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values of the components of z . Since in our encoding the components of a state are
always undashed, we apply the function dash(z) to z . If there is more than one state
in ac′, then ac2p yields false as no x variable can take on more than one value.

4.6.3 Isomorphism and Galois Connection

Having defined a pair of linking functions between the theory of angelic designs
and designs, in this section we show that, in general, there is a Galois connection
between the two theories. In addition, when we consider the subset of A2-healthy
designs these two theories can be shown to be isomorphic.

From Designs

The mapping of a design P through d2ac and then ac2p yields the same design P
as established by the following Theorem T.4.6.7.

Theorem T.4.6.7 Provided that P is a design, ac2p ◦ d2ac(P) = P.

That is, in the theory of angelic designs we can model the original designs of Hoare
and He [39] without angelic nondeterminism. This is a reassuring result which
confirms the suitability of our model.

From Angelic Designs

When the linking functions are applied in the reverse order, however, we do not
obtain the same design P. This result is established by Theorem T.4.6.8.

Theorem T.4.6.8 Provided P is an A-healthy design, d2ac ◦ ac2p(P) w P.

In general, the result of the application of ac2p followed by d2ac to an A-healthy
design P is stronger than P. This is because the angelic nondeterminism is removed.
For instance, the mapping of an angelic choice over two assignments x := 1 and
x := 2 yields the top of the lattice >D.

Example 27

d2ac ◦ ac2p(x := 1 t x := 2) {Definition of assignment and t}

= d2ac ◦ ac2p(true ` s ⊕ {x 7→ 1} ∈ ac′ ∧ s ⊕ {x 7→ 2} ∈ ac′)
{Lemma L.C.5.47}
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=

 ¬ p2ac(ac2p(false)) ∧ (∃ outα • ¬ ac2p(false)[s/inα])

`
p2ac(ac2p(s ⊕ {x 7→ 1} ∈ ac′ ∧ s ⊕ {x 7→ 2} ∈ ac′))


{Lemma L.C.5.27}

=

 ¬ p2ac(false) ∧ (∃ outα • ¬ false[s/inα])

`
p2ac(ac2p(s ⊕ {x 7→ 1} ∈ ac′ ∧ s ⊕ {x 7→ 2} ∈ ac′))


{Predicate calculus and Lemma L.C.5.3}

=

 true
`
p2ac(ac2p(s ⊕ {x 7→ 1} ∈ ac′ ∧ s ⊕ {x 7→ 2} ∈ ac′))

 {Lemma L.5.3.1}

=


true
`

∃ ac0, y •

 s ⊕ {x 7→ 1} ∈ ac′

∧
s ⊕ {x 7→ 2} ∈ ac′

 [ac0/ac′] ∧ ac0 ⊆ {y} ∧ y ∈ ac′


{Substitution and property of sets}

= (true ` false) {Definition of >D}

= >D

The results of Theorems T.4.6.8 and T.4.6.7 establish that we have a Galois con-
nection between the two theories.

From A2-healthy Angelic Designs

If we consider the subset of A-healthy designs that is in addition A2-healthy, then
we can prove the reverse implication of Theorem T.4.6.8 as established by the fol-
lowing Theorem T.4.6.9.

Theorem T.4.6.9 Provided P is an A0-A2-healthy design, d2ac ◦ ac2p(P) v P.

Together these results allow us to prove that there is a bijection for the subset of
A2-healthy designs.

Theorem T.4.6.10 Provided P is a design that is A0-A2-healthy,

d2ac ◦ ac2p(P) = P
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Proof. Follows from Theorems T.4.6.8 and T.4.6.9.

This result confirms that these models are isomorphic as depicted in Figure 1.1.
This concludes our discussion on the relationship between the original theory of

designs and the model of angelic designs. In the following Section 4.7 we focus our
attention on the relationship with the PBMH theory [38].

4.7 Relationship with the PBMH Theory

The final link that we study in this chapter pertains to the relationship between
the model of A-designs and the theory of angelic nondeterminism of Cavalcanti et
al. [38]. As previously discussed in Section 2.4.4, in that theory the alphabet consists
of the input program variables, and a single output variable ac′, which is a record
whose components range over the dashed output program variables. In addition,
termination is captured without considering ok and ok ′.

When establishing a link between the theories of interest, the first concern is
their alphabets. As we discussed in Section 4.1, the ac′ of both theories can be
related through the functions undashset and dashset, which undash and dash the
components of every state in a set, respectively.

In order to relate both theories, we introduce a pair of linking functions, d2pbmh,
which maps A-healthy designs to PBMH predicates, and pbmh2d, which maps
predicates in the opposite direction. We introduce their definitions in the follow-
ing Sections 4.7.1 and 4.7.2. Finally in Section 4.7.3 we show that there is a Galois
connection between the theories, and that in general, the subset of angelic designs
that is H3-healthy is isomorphic to the theory of [38].

4.7.1 From Angelic Designs to PBMH (d2pbmh)

In order to map angelic designs into the theory of PBMH, it is necessary to hide
the variables ok and ok ′, introduce the input variables in inα, and appropriately
dash the set of final states ac′. This is captured by the function d2pbmh as follows.

Definition 105

d2pbmh : A→ PBMH

d2pbmh(P) =̂ (¬ P f ⇒ P t)[true/ok][undashset(ac′)/ac′][StateII(inα−ok)/s]

First we consider the implication between the precondition ¬ P f and postcondition
P t of a design P. We require that ok is true and perform the following substitutions.
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Since the new variable ac′ considers dashed components, the old variable ac′ is
replaced with an undashed version of ac′. Finally, the input variables in inα−ok ,
which excludes ok, are introduced via the substitution of StateII (inα−ok) for s.

We consider Example 28, where d2pbmh is applied to the assignment x := 1.

Example 28

d2pbmh(x := 1) {Definition of assignment}

= d2pbmh(true ` s ⊕ {x 7→ 1} ∈ ac′) {Definition of d2pbmh}

= (true ⇒ s ⊕ {x 7→ 1} ∈ ac′)[true/ok][undashset(ac′)/ac′][StateII(inα−ok)/s]

{Substitution}

= true ⇒ StateII(inα−ok)⊕ {x 7→ 1} ∈ undashset(ac′) {Predicate calculus}

= StateII(inα−ok)⊕ {x 7→ 1} ∈ undashset(ac′) {Definition of StateII }

= {x0 7→ x0, . . . , xn 7→ xn} ⊕ {x 7→ 1} ∈ undashset(ac′) {Definition of θinα}

= θinα⊕ {x 7→ 1} ∈ undashset(ac′) {Property of sets, dash and dashsset}

= (θinα)′ ⊕ {x ′ 7→ 1} ∈ ac′

The result is the corresponding assignment in the PBMH theory [38], where the
state obtained by dashing every component of the initial state θinα is overridden
so that the component x ′ takes the value of 1. The following Theorem T.4.7.1
establishes that d2pbmh yields predicates that are PBMH-healthy.

Theorem T.4.7.1 Provided P is PBMH-healthy,

PBMH ◦ d2pbmh(P) = d2pbmh(P)

That is, when d2pbmh is applied to an angelic design that is A-healthy, then it is
also PBMH-healthy. Therefore the application of d2pbmh yields a PBMH-healthy
predicate as required.

4.7.2 From PBMH to Angelic Designs (pbmh2d)

In order to define a mapping in the opposite direction, we need to consider how to
express a precondition in the theory of [38]. In that model, successful termination is
guaranteed whenever ac′ is not empty. The definition of the mapping from PBMH
into angelic designs, pbmh2d, is defined below.
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Definition 106

pbmh2d : PBMH→ A

pbmh2d(P) =̂ (¬ P[∅/ac′] ` P[dashset(ac′)/ac′])[s/inα−ok ]

The precondition of the corresponding A-design requires that ac′ is not empty. In the
postcondition we substitute the existing set of final states ac′ with a dashed version
dashset(ac′). Finally, we require that the initial variables of P are components of
the initial state s. In the following Theorem T.4.7.2 we prove that pbmh2d yields
designs that are A and H3-healthy.

Theorem T.4.7.2 Provided P is PBMH-healthy,

A ◦ H3 ◦ pbmh2d(P) = pbmh2d(P)

Similarly to the definition of d2pbmh, the proviso of Theorem T.4.7.2 ensures that
the function is only applied to predicates that are PBMH-healthy.

4.7.3 Galois Connection and Isomorphism

In general, the model of angelic designs can express every existing program of the
theory of [38]. That is, those programs can be specified as angelic designs, where the
precondition may not refer to the final set of states ac′. This is formally established
by the following Theorem T.4.7.3.

Theorem T.4.7.3 Provided P is PBMH-healthy, d2pbmh ◦ pbmh2d(P) = P.

Its only requirement is that the predicate must be PBMH-healthy.
However, when we consider the reverse functional composition of d2pbmh and

pbmh2d, we obtain a different result as established by Theorem T.4.7.4.

Theorem T.4.7.4 Provided P is an A-healthy design,

pbmh2d ◦ d2pbmh(P) v P

This is because the theory of [38] cannot model sets of final states where termination
is not guaranteed, as is the case for angelic designs which are not H3-healthy. Hence,
these two results establish that the two adjoints form a Galois connection.

If we consider the subset of angelic designs that are, in addition, H3-healthy,
then we obtain a bijection via the functions d2pbmh and pbmh2d, as established by
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the following Theorem T.4.7.5.

Theorem T.4.7.5 Provided P is design that is A and H3-healthy,

pbmh2d ◦ d2pbmh(P) = P

While this is an expected result, it is reassuring that the subset of our theory that
is H3-healthy is in exact correspondence with the UTP theory of [38].

We observe that the subset of the binary multirelational model of Chapter 3
that is BMH3-healthy is isomorphic to the original theory of binary multirelations.
Since binary multirelations are also isomorphic to the UTP theory of [38], the result
presented in this section is also in agreement.

4.8 Final Considerations

In this chapter we have presented a new theory of designs where both angelic and
demonic nondeterminism can be modelled. This consists of an extension of the
binary multirelational encoding of [38] to include the auxiliary variables ok and ok ′

of the theory of designs [39]. Our angelic designs are not necessarily H3-healthy as
required for a treatment of processes.

The healthiness conditions of the theory have been presented and their main
properties proved. Through the development of the extended theory of binary mul-
tirelations of Chapter 3, and the subsequent isomorphism, we have been able to
justify and explore the definition of the operators and the refinement order. It
is reassuring to know that the usual refinement order defined by universal reverse
implication corresponds to subset inclusion in the binary multirelational model.

Perhaps the most challenging aspect of the theory is that it relies on non-
homogeneous relations. As a consequence, sequential composition cannot be defined
as relational composition. While the definition may not be immediately obvious, it
is more intuitive when considered in the equivalent binary multirelational model
of Chapter 3. We have taken advantage of this correspondence to define an operator
with the expected properties.

In addition, we have established that every design can be expressed in the theory
of angelic designs. Moreover, the subset of A2-healthy designs is isomorphic to the
original theory of homogeneous designs of Hoare and He [39].

Finally, we have also studied the relationship between angelic designs and the
UTP theory of [38]. This is a complementary result to the link between the model
of BM⊥ relations and that of the original theory of binary multirelations. This gives
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us further assurance as to the capability to express the existing theories as a subset
of our own correctly.
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Chapter 5

Reactive Angelic Designs

Based on the theory of angelic designs and the principles underlying the theory
of reactive processes, in this chapter we propose a natural extension to the UTP
theory of CSP where both angelic and demonic nondeterminism can be modelled.
In Section 5.1 we introduce the principles underlying our approach and justify the
encoding proposed for CSP. In Section 5.2 the healthiness conditions of the theory
are presented. Section 5.3 discusses the relationship between the new theory and the
existing model of CSP. The operators of the theory are discussed in Section 5.4 and,
for each operator, we discuss the relationship with their respective counterpart in
the original CSP theory. In Section 5.5 we characterise the important subset of non-
divergent reactive angelic designs. Finally, we summarize our results in Section 5.6.

5.1 Introduction

As discussed earlier in Section 2.5.4 the observational variables of the UTP theory
of CSP are ok and ok ′ to record stability, and the additional variables wait, tr
and ref , and their respective dashed counterparts. Based on the concept of states
originally introduced in Section 2.3, we consider a model where the observational
variables of the theory of reactive processes are encoded as components of a State.
We define the alphabet as follows.

Definition 107 (Alphabet)

ok, ok ′ : {true, false}, s : State({tr , ref ,wait}), ac′ : P State({tr , ref ,wait})

In addition to a single initial state s, a set of final states ac′, and the observational
variables ok and ok ′ that record stability, we require that every State has record
components of name tr , wait and ref . This enables the angelic choice over the final

141
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or intermediate observations of tr , ref and wait.
We next show how we can express every healthiness condition of the original

theory of reactive processes, and ultimately CSP, in this new encoding. We then
propose linking functions between the theories so that we can reason about the
correspondence of the healthiness conditions and operators of both models. These
are important aspects for establishing the validity of the model.

5.2 Healthiness Conditions

Since this is a theory with angelic nondeterminism, the set of final states ac′ must
be upward-closed, so relations in this theory need to satisfy PBMH. As previ-
ously discussed in Section 2.5.4, in the UTP, CSP processes are characterised as
the image of designs through the function R. In order to preserve the existing se-
mantics, we propose a corresponding construction; in the following Sections 5.2.1
to 5.2.5 we restate all the properties enforced by R in this new model. Namely, we
define healthiness conditions RA1, RA2 and RA3, whose functional composition
is named RA, and, CSPA1 and CSPA2. All the healthiness conditions discussed
in this chapter are monotonic and idempotent. In Section 5.2.6 we show how this
construction allows CSP processes with angelic nondeterminism to be expressed as
the image of angelic designs through RA, the counterpart to R.

5.2.1 RA1

The first property of interest that underpins the theory of reactive processes is
the notion that the history of events observed cannot be undone. In general, for
any initial state x , the set of all final states that satisfy this property is given by
Statestr≤tr ′(x) as defined below.

Definition 108 Statestr≤tr ′(x) =̂ {z : State({tr , ref ,wait}) | x .tr ≤ z .tr}

This definition is used for introducing the first healthiness condition, RA1, that not
only enforces this notion for final states in ac′, but also requires that there is some
final state satisfying this property available for angelic choice.

Definition 109 RA1(P) =̂ (P ∧ ac′ 6= ∅)[Statestr≤tr ′(s) ∩ ac′/ac′]

A consequence of the definition of RA1 is that it also enforces A0.

Theorem T.5.2.1 RA1 ◦ A0(P) = RA1(P)
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Although A0 only requires ac′ not to be empty in the postcondition of an angelic
design, RA1 requires this under all circumstances. Proof of this and other results
not explicitly included in the body of this document can be found in Appendix G
of the extended version of this thesis [74].

The function RA1 distributes through both conjunction and disjunction as es-
tablished by the following Theorems T.5.2.2 and T.5.2.3.

Theorem T.5.2.2 RA1(P ∧ Q) = RA1(P) ∧ RA1(Q)

Theorem T.5.2.3 RA1(P ∨ Q) = RA1(P) ∨ RA1(Q)

Since RA1 is also idempotent, consequently both conjunction and disjunction are
also closed under RA1.

Similarly to the theory of angelic designs, in this model, the definition of se-
quential composition is also based on ;A. In Theorem T.5.2.4 we establish that this
operator is closed under RA1.

Theorem T.5.2.4 Provided P and Q are RA1-healthy and Q is PBMH-healthy,

RA1(P ;A Q) = P ;A Q

For every healthiness condition of the theory, the upward-closure enforced by PBMH
must be maintained. Theorem T.5.2.5 establishes this for RA1.

Theorem T.5.2.5 PBMH ◦ RA1 ◦ PBMH(P) = RA1 ◦ PBMH(P)

However, PBMH and RA1 do not commute in general. We consider the follow-
ing Counter-example 4 where the healthiness conditions are applied to the relation
ac′ = ∅, which is not PBMH-healthy.

Counter-example 4

RA1 ◦ PBMH(ac′ = ∅) {Definition of PBMH (Lemma L.4.2.1)}

= RA1(∃ ac0 • ac0 = ∅ ∧ ac0 ⊆ ac′) {One-point rule and property of sets}

= RA1(true) {Lemma L.G.1.11}

= Statestr≤tr ′(s) ∩ ac′ 6= ∅

PBMH ◦ RA1(ac′ = ∅) {Definition of RA1}

= PBMH((ac′ = ∅ ∧ ac′ 6= ∅)[Statestr≤tr ′(s) ∩ ac′/ac′]) {Predicate calculus}
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= PBMH(false) {Definition of PBMH (Lemma L.4.2.1)}

= false

In the first case, the application of PBMH yields true. The result of the functional
composition is then RA1(true). On the other hand, in the second case, there is a
contradiction arising from the application of RA1, which leaves us with the result
false.

5.2.2 RA2

The next healthiness condition of interest is RA2, which requires a process to be
insensitive to the initial trace of events s.tr . It is the counterpart to R2 of the
original theory of reactive processes, and is also defined using substitution.

Definition 110

RA2(P) =̂ P
[

s ⊕ {tr 7→ 〈〉},
{

z

∣∣∣∣∣ z ∈ ac′ ∧ s.tr ≤ z .tr
• z ⊕ {tr 7→ z .tr − s.tr}

}/
s, ac′

]

It defines the component tr in the initial state s to be the empty sequence, and
consequently the set of final states ac′ is restricted by considering those states z
whose traces are a suffix of s.tr , and furthermore, defining their trace to be the
difference with respect to the initial trace s.tr .

Since substitution distributes through conjunction and disjunction, so does the
function RA2 as established by the following Theorems T.5.2.6 and T.5.2.7.

Theorem T.5.2.6 RA2(P ∧ Q) = RA2(P) ∧ RA2(Q)

Theorem T.5.2.7 RA2(P ∨ Q) = RA2(P) ∨ RA2(Q)

As RA2 is idempotent, both conjunction and disjunction are closed under RA2.
Similarly to the case for RA1, the operator ;A is also closed under RA2.

Theorem T.5.2.8 Provided P and Q are RA2-healthy,

RA2(P ;A Q) = P ;A Q

A consequence of the definition of RA2 is that applying it to the predicate that
requires ac′ not to be empty is equivalent to applying RA2 to the relation true.

Theorem T.5.2.9 RA2(ac′ 6= ∅) = RA1(true)
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Proof.

RA2(ac′ 6= ∅) {Definition of RA2}

= (ac′ 6= ∅)[s ⊕ {tr 7→ 〈〉, {z | z ∈ ac′ ∧ s.tr ≤ z .tr • z ⊕ {tr 7→ z .tr − s.tr}}/s, ac′]
{Substitution}

= {z | z ∈ ac′ ∧ s.tr ≤ z .tr • z ⊕ {tr 7→ z .tr − s.tr}} 6= ∅ {Property of sets}

= ∃ y • y ∈ {z | z ∈ ac′ ∧ s.tr ≤ z .tr • z ⊕ {tr 7→ z .tr − s.tr}} {Property of sets}

= ∃ y, z • z ∈ ac′ ∧ s.tr ≤ z .tr ∧ y = z ⊕ {tr 7→ z .tr − s.tr} {One-point rule}

= ∃ z • z ∈ ac′ ∧ s.tr ≤ z .tr {Lemma L.G.1.10}

= RA1(true)

This result sheds light on the relationship between RA2 and RA1, as in fact, these
functions are commutative as established by Theorem T.5.2.10.

Theorem T.5.2.10 RA2 ◦ RA1(P) = RA1 ◦ RA2(P)

Finally, RA2 preserves the upward closure of PBMH.

Theorem T.5.2.11 PBMH ◦ RA2 ◦ PBMH(P) = RA2 ◦ PBMH(P)

These results conclude our discussion of RA2 and its most important properties.

5.2.3 RA3

Similarly to the theory of reactive processes, we must ensure that a process cannot
be started before the previous process has finished interacting with the environment.
The counterpart to R3 in this new theory is RA3. Before exploring its definition,
we introduce the identity IIRAD of our theory.

Definition 111 IIRAD =̂ (RA1(¬ ok) ∨ (ok ′ ∧ s ∈ ac′))

Similarly to the reactive identity II rea, the behaviour for an unstable state ¬ ok is
given by RA1, that is, there must be at least one final state in ac′ whose trace is a
suffix of the initial trace s.tr . Otherwise, the process is stable, ok ′ is true, and the
initial state s is in the set of final states ac′.

Having defined the identity, we introduce the definition of RA3 below.

Definition 112 RA3(P) =̂ IIRAD C s.wait B P
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This definition is similar to that of the original theory, except that we use IIRAD as
the identity and use s.wait instead of wait as a condition since in our theory wait
is a component of the initial state s. Using Leibniz’s substitution, it is possible to
establish the following Lemma L.5.2.1, where Pw = P[s ⊕ {wait 7→ w}/s].

Lemma L.5.2.1 RA3(P) = RA3(Pf )

This result is in correspondence with a similar property of R3 in the original theory
of CSP that is essential in the characterisation of CSP processes via reactive designs.

Similarly to the previous healthiness conditions, RA3 also distributes through
both conjunction and disjunction as established by Theorems T.5.2.12 and T.5.2.13.

Theorem T.5.2.12 RA3(P ∧ Q) = RA3(P) ∧ RA3(Q)

Theorem T.5.2.13 RA3(P ∨ Q) = RA3(P) ∨ RA3(Q)

Consequently, these operators are closed under RA3.
The operator ;A is also closed under RA3 provided that the second operand is

also RA1-healthy as established by Theorem T.5.2.14.

Theorem T.5.2.14 Provided P and Q are RA3-healthy and Q is RA1-healthy,

RA3(P ;A Q) = P ;A Q

The proviso is similar to that observed for the closure of ; under R3 in the original
theory of reactive processes [44]. The extra restriction on Q, which needs to be
RA1-healthy, is not a problem since the theory of interest is characterised by the
functional composition of all healthiness conditions.

Furthermore, as required, the function RA3 also preserves the upward-closure.

Theorem T.5.2.15 PBMH ◦ RA3 ◦ PBMH(P) = RA3 ◦ PBMH(P)

The identity IIRAD is a fixed point of every healthiness condition, including RA1,
RA2, RA3 and PBMH as established by Theorems T.G.3.1 to T.G.3.4. Finally,
RA3 commutes with both RA1 and RA2 as established by Theorems T.5.2.16
and T.5.2.17.

Theorem T.5.2.16 RA3 ◦ RA1(P) = RA3 ◦ RA1(P)

Theorem T.5.2.17 RA2 ◦ RA3(P) = RA3 ◦ RA2(P)



5.2. HEALTHINESS CONDITIONS 147

This concludes our discussion of the most important properties of RA3.

5.2.4 RA

The healthiness conditions that we have considered so far in this chapter are coun-
terparts to those of the original model of reactive processes. Hence this is a theory
that is similarly characterised by the functional composition of the healthiness con-
ditions RA1, RA2, RA3, besides PBMH. In order to provide a parallel with the
original theory of reactive processes, we define part of this composition as RA.

Definition 113 RA(P) =̂ RA1 ◦ RA2 ◦ RA3(P)

The order of the functional composition is not important since these functions com-
mute, except for PBMH that does not necessarily commute with every function.
So when considering the counterpart theory to reactive processes, but with angelic
nondeterminism, PBMH needs to be applied before RA.

As previously stated, every healthiness condition considered in this chapter is
idempotent and monotonic. Theorems T.G.1.1, T.G.2.1 and T.G.3.5 in Appendix G
establish that RA1, RA2 and RA3 are idempotent. Similarly monotonicity is
established for these functions by Theorems T.G.1.2, T.G.2.2 and T.G.3.6. As a
consequence the functional composition RA is also idempotent and monotonic.

In addition, since all of the RA functions distribute through conjunction and
disjunction so does the functional composition RA. Finally, RA maintains the
upward-closure enforced by PBMH since all of the RA healthiness conditions do
so as well. This concludes our discussion of the most important properties of RA.

5.2.5 CSP Processes with Angelic Nondeterminism

In the original theory of CSP, another two healthiness conditions, CSP1 and CSP2,
are required, in addition to R, to characterise CSP processes. In order to consider a
theory of CSP with angelic nondeterminism we follow a similar approach by defining
a counterpart to these functions in what follows.

CSPA1

The first healthiness condition of interest is CSPA1, which is the counterpart to
CSP1 in the new theory. Its definition is presented below.

Definition 114 CSPA1(P) =̂ P ∨ RA1(¬ ok)



148 CHAPTER 5. REACTIVE ANGELIC DESIGNS

A CSP process with angelic nondeterminism P is required to observe RA1 when
in an unstable state. For a RA-healthy process, this property is already enforced
by RA1 under all circumstances. Similarly to the original theory of CSP [44] the
following Theorem T.5.2.18 establishes that this behaviour can also be described as
the functional composition of RA1 after H1.

Theorem T.5.2.18 CSPA1 ◦ RA1(P) = RA1 ◦ H1(P)

Proof.

CSPA1 ◦ RA1(P) {Definition of CSPA1}

= RA1(P) ∨ RA1(¬ ok) {Theorem T.5.2.3}

= RA1(P ∨ ¬ ok) {Predicate calculus}

= RA1(ok ⇒ P) {Definition of H1}

= RA1 ◦ H1(P)

The function CSPA1 is idempotent and monotonic. Furthermore, it preserves the
upward-closure as required by PBMH.

Theorem T.5.2.19 Provided P is PBMH-healthy,

PBMH ◦ CSPA1(P) = CSPA1(P)

This concludes the discussion of the properties of CSPA1.

CSPA2

The last healthiness condition of interest is the counterpart to CSP2. It is defined
as H2 with the extended alphabet that includes s and ac′.

Definition 115 CSPA2(P) =̂ H2(P)

This healthiness condition satisfies the same properties as H2, including, for ex-
ample, those established by Theorems T.4.2.10 and T.E.6.1. It can alternatively be
defined using the J -split of Woodcock and Cavalcanti [51].
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5.2.6 Reactive Angelic Designs (RAD)

The theory of CSP processes in the new model is defined by RAD, which is the
functional composition of all the healthiness conditions of interest.

Definition 116 RAD(P) =̂ RA ◦ CSPA1 ◦ CSPA2 ◦ PBMH(P)

Since PBMH and RA1 do not commute, PBMH is applied first. The fixed points
of RAD are the reactive angelic designs. Every such process P can be expressed
as RA ◦ A(¬ P f

f ` P t
f ) as established by the following Theorem T.5.2.20, where

Po
w = P[o, s ⊕ {wait 7→ w}/ok ′, s]

Theorem T.5.2.20 RAD(P) = RA ◦ A(¬ P f
f ` P t

f )

Proof.

RAD(P) {Definition of RAD}

= RA3 ◦ RA2 ◦ RA1 ◦ CSPA1 ◦ CSPA2 ◦ PBMH(P) {Theorem T.G.5.3}

= RA3 ◦ RA2 ◦ RA1 ◦ H1 ◦ CSPA2 ◦ PBMH(P) {CSPA2 is H2}

= RA3 ◦ RA2 ◦ RA1 ◦ H1 ◦ H2 ◦ PBMH(P) {Theorem T.5.2.1}

= RA3 ◦ RA2 ◦ RA1 ◦ A0 ◦ H1 ◦ H2 ◦ PBMH(P)

{Theorems T.E.6.1 and T.E.6.2}

= RA3 ◦ RA2 ◦ RA1 ◦ A0 ◦ PBMH ◦ H1 ◦ H2(P) {Definition of design}

= RA3 ◦ RA2 ◦ RA1 ◦ A0 ◦ PBMH(¬ P f ` P t) {Definition of A}

= RA3 ◦ RA2 ◦ RA1 ◦ A(¬ P f ` P t)

{Theorems T.5.2.10, T.5.2.17 and T.5.2.16}

= RA1 ◦ RA2 ◦ RA3 ◦ A(¬ P f ` P t) {Lemmas L.C.1.5 and L.5.2.1}

= RA1 ◦ RA2 ◦ RA3 ◦ A((¬ P f ` P t)f ) {Substitution}

= RA1 ◦ RA2 ◦ RA3 ◦ A(¬ P f
f ` P t

f ) {Definition of RA}

= RA ◦ A(¬ P f
f ` P t

f )

That is, such processes can be specified as the image of an A-healthy design through
the function RA. This is a result similar to that obtained for CSP processes as the
image of designs through R [39, 44]. Since both RA and A are monotonic and
idempotent, and the theory of designs is a complete lattice [39], so is the theory of
reactive angelic designs.
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Figure 5.1: Relationship between theories

Since PBMH is just A1, and RA1 enforces A0, a fixed point P of RAD can
alternatively be expressed as shown in the following Lemma L.5.2.2.

Lemma L.5.2.2 RAD(P) = RA(¬ PBMH(P)f
f ` PBMH(P)t

f )

That is, an angelic design, with PBMH applied to the negation of the precondition
and postcondition. Furthermore, it is possible to infer that if P is a reactive angelic
design, then it is also PBMH-healthy.

Theorem T.5.2.21 Provided P is RAD-healthy, PBMH(P) = P.

This concludes our discussion of the healthiness condition of the theory of reactive
angelic designs, RAD, and its respective properties.

5.3 Relationship with CSP

The theory of reactive angelic designs can be related to the original UTP theory
of CSP through the pair of linking functions ac2p and p2ac previously introduced
in Section 4.6 and reproduced below.

ac2p(P) =̂ PBMH(P)[StateII (inα−ok)/s] ;A
∧

x : outα−ok′ • dash(s).x = x

p2ac(P) =̂ ∃ z • P[s, z/inα−ok , outα−ok′ ] ∧ undash(z) ∈ ac′

We employ ac2p by considering the set of variables inα to be {tr , ref ,wait}, and a
corresponding set of variables outα with dashed counterparts; State, therefore, has
components ranging over inα. Similarly, for the mapping in the opposite direction,
from reactive angelic designs to CSP processes we employ p2ac with the same sets
of variables inα and outα.
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The relationship between the models has previously been illustrated in the con-
text of all theories in Figure 1.1. Here we focus our attention on the relationship
with CSP. In Figure 5.1(a) each theory is labelled according to its healthiness con-
ditions. The subset of reactive angelic designs that corresponds exactly to CSP
processes is characterised by A2, the healthiness condition which we previously dis-
cussed in Section 4.2.4 that characterises predicates with no angelic nondeterminism.

In Figure 5.1(b) the relationship between the predicates of each theory is il-
lustrated. For a predicate P of the theory of reactive angelic designs, the func-
tional composition p2ac ◦ ac2p(P) yields a stronger predicate since any angelic
nondeterminism in P is virtually collapsed into a single final state, while for a pre-
dicate Q of the CSP theory, the composition ac2p ◦ p2ac(Q) yields exactly the same
predicate Q. Thus a Galois connection exists between the theories.

5.3.1 From Reactive Angelic Designs to CSP (ac2p)

As already stated, the mapping from reactive angelic designs to CSP processes
achieved through ac2p defines a Galois connection. Application of this function
to a predicate P that is both RA-healthy and PBMH-healthy yields a healthy
counterpart in the original theory as established by the following Theorem T.5.3.1.

Theorem T.5.3.1 Provided P is PBMH-healthy, ac2p ◦ RA(P) = R ◦ ac2p(P)

If we consider P to be a reactive angelic design, then we can show that the application
of ac2p yields a reactive design as established by Theorem T.5.3.2

Theorem T.5.3.2 ac2p ◦ RA ◦ A(¬ P f
f ` P t

f ) = R(¬ ac2p(P f
f ) ` ac2p(P t

f ))

Proof.

ac2p ◦ RA ◦ A(¬ P f
f ` P t

f ) {Theorem T.G.1.6}

= ac2p ◦ RA ◦ PBMH(¬ P f
f ` P t

f ) {Theorem T.5.3.1}

= R ◦ ac2p ◦ PBMH(¬ P f
f ` P t

f ) {Lemma L.C.5.36}

= R ◦ ac2p(¬ P f
f ` P t

f ) {Lemma L.C.5.28}

= R(¬ ac2p(P f
f ) ` ac2p(P t

f ))

This is a pleasing result that supports the reuse of results across the theories. We
consider the following Example 29, where ac2p is applied to the angelic choice
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between a prefixing on the event a followed by deadlock, and on the event b followed
by deadlock. The operators of the theory of reactive angelic designs have subscript
RAD in order to distinguish them from those of the original theory of CSP which
have subscript R.

Example 29

ac2p(a →RAD StopRAD tRAD b →RAD StopRAD)

=

a →R StopR tR b →R StopR

Proof. Lemma L.G.8.2

The result is the least upper bound of the corresponding CSP process, where tR

is also defined using conjunction. This is a process that cannot be expressed using
the standard operators of CSP. The conjunction of non-divergent CSP processes re-
quires the conjunction of their respective postconditions, and thus an agreement. In
this case, both processes can only agree on the trace of events remaining unchanged,
and not refusing events a and b, while waiting.

5.3.2 From CSP to Reactive Angelic Designs (p2ac)

The mapping in the opposite direction, from CSP processes to reactive angelic
designs, is achieved through the function p2ac. As discussed in Section 4.6 the
result of applying p2ac is upward-closed as established by Lemma L.4.6.1. The
application of p2ac to a process P that is R-healthy, can be described by the func-
tional composition of RA after p2ac to the original process P, as established by the
following Theorem T.5.3.3.

Theorem T.5.3.3 p2ac ◦ R(P) = RA ◦ p2ac(P)

The result of applying p2ac to a reactive design is established in Theorem T.5.3.4:
p2ac can be directly applied to the pre and postconditions separately, followed by
A and RA.

Theorem T.5.3.4 p2ac ◦ R(¬ P f
f ` P t

f ) = RA ◦ A(¬ p2ac(P f
f ) ` p2ac(P t

f ))

Proof.

p2ac ◦ R(¬ P f
f ` P t

f ) {Theorem T.5.3.3 and definition of RA}
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= RA3 ◦ RA2 ◦ RA1 ◦ p2ac(¬ P f
f ` P t

f ) {Definition of RA1}

= RA3 ◦ RA2 ◦ RA1(p2ac(¬ P f
f ` P t

f ) ∧ ac′ 6= ∅) {Theorem T.4.6.4}

= RA3 ◦ RA2 ◦ RA1((¬ p2ac(P f
f ) ` p2ac(P t

f )) ∧ ac′ 6= ∅) {RA1 and RA}

= RA(¬ p2ac(P f
f ) ` p2ac(P t

f )) {Lemma L.4.6.1}

= RA(¬ PBMH ◦ p2ac(P f
f ) ` PBMH ◦ p2ac(P t

f )) {Definition of A1}

= RA ◦ A1(¬ p2ac(P f
f ) ` p2ac(P t)) {Definition of RA and Theorem T.5.2.1}

= RA ◦ A0 ◦ A1(¬ p2ac(P f
f ) ` p2ac(P t)) {Definition of A}

= RA ◦ A(¬ p2ac(P f
f ) ` p2ac(P t))

This result enables CSP processes to be easily mapped into the theory of reactive
angelic designs by considering the mapping of the pre and postconditions of CSP
processes directly.

We consider the following example, where the terminating process SkipR is
mapped through p2ac into the theory of reactive angelic designs.

Example 30

p2ac(SkipR) = RA ◦ A(true ` ∃ y • ¬ y.wait ∧ y.tr = s.tr ∧ y ∈ ac′)

Proof. Theorem T.5.4.19

The reactive angelic design also has true as its precondition, while the postcondition
asserts that there is a final state y in the set of angelic choices ac′ where the trace
of events s.tr is kept unchanged and the value of the component wait is false, that
is, the process has finished interacting with the environment.

5.3.3 Galois Connection and Isomorphism

As already mentioned, the pair of linking functions we have considered establish a
Galois connection between the theory of CSP and that of reactive angelic designs.
When considering the mapping from the original theory of reactive processes, fol-
lowed by the mapping in the opposite direction, we obtain an exact correspondence
as shown in the following Theorem T.5.3.5.

Theorem T.5.3.5 ac2p ◦ p2ac(P) = P
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Proof.

ac2p ◦ p2ac(P) {Definition of ac2p}

= (PBMH ◦ p2ac(P))[StateII (inα−ok)/s] ;A
∧

x : outα−ok′ • dash(s).x = x
{Lemma L.4.6.1}

= p2ac(P)[StateII (inα−ok)/s] ;A
∧

x : outα−ok′ • dash(s).x = x
{Definition of p2ac}

=

 (∃ z • P[s, z/inα−ok , outα−ok′ ] ∧ undash(z) ∈ ac′)[StateII (inα−ok)/s]

;A∧
x : outα−ok′ • dash(s).x = x


{Substitution}

=

 (∃ z • P[s, z/inα−ok , outα−ok′ ][StateII (inα−ok)/s] ∧ undash(z) ∈ ac′)
;A∧

x : outα−ok′ • dash(s).x = x


{Lemma L.D.1.10}

= (∃ z • P[z/outα−ok′ ] ∧ undash(z) ∈ ac′) ;A
∧

x : outα−ok′ • dash(s).x = x
{Definition of ;A and substitution}

= ∃ z • P[z/outα−ok′ ] ∧ undash(z) ∈ {s |
∧

x : outα−ok′ • dash(s).x = x}
{Property of sets}

= ∃ z • P[z/outα−ok′ ] ∧
∧

x : outα−ok′ • dash(undash(z)).x = x
{Property of dash and undash}

= ∃ z • P[z/outα−ok′ ] ∧
∧

x : outα−ok′ • z .x = x {Lemma L.D.1.9}

= P[z/outα−ok′ ][StateII (outα−ok′)/z ] {Lemma L.D.1.10}

= P

This results establishes that our theory can accommodate the existing CSP processes
appropriately, that is, those without angelic nondeterminism.

When considering the mapping in the opposite direction we obtain the following
result in Lemma L.5.3.1.

Lemma L.5.3.1 p2ac ◦ ac2p(P) = ∃ ac0, y • P[ac0/ac′] ∧ ac0 ⊆ {y} ∧ y ∈ ac′

If the set of final states ac0 in P has more than one state, then the result of
p2ac ◦ ac2p(P) is false, otherwise, ac0 is either a singleton, in which case ac′ is
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any set containing its element, or empty, in which case ac′ is arbitrary. Most im-
portantly, the functional composition only preserves predicates whose set of angelic
choices is either empty or a singleton, otherwise the result is false.

We consider the following Example 31, where Lemma L.5.3.1 is applied to the
angelic choice between events a or b followed by deadlock.

Example 31

p2ac ◦ ac2p(a →RAD StopRAD t b →RAD StopRAD)

=

RA ◦ A (true ` ∃ y • y ∈ ac′ ∧ y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref ∧ b /∈ y.ref )

Proof. Lemmas L.G.8.2 and L.G.8.3

This process corresponds to the application of p2ac to the result obtained in the
previous Example 29. In this case, the process is always waiting for the environment
and keeps the trace of events unchanged, however it requires that neither event a
nor b are refused. This is a process whose behaviour cannot be described using the
standard operators of CSP.

If we consider the result of Lemma L.5.3.1 in the context of the predicates of
our theory, that is, those which are PBMH-healthy, then we obtain an inequality
as shown in the following Theorem T.5.3.6.

Theorem T.5.3.6 Provided P is PBMH-healthy, p2ac ◦ ac2p(P) w P.

Proof.

p2ac ◦ ac2p(P) {Lemma L.5.3.1}

= ∃ ac0, y • P[ac0/ac′] ∧ ac0 ⊆ {y} ∧ y ∈ ac′ {Property of sets}

= ∃ ac0, y • P[ac0/ac′] ∧ ac0 ⊆ {y} ∧ {y} ⊆ ac′ {Predicate calculus}

⇒ ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′ {Definition of PBMH (Lemma L.4.2.1)}

= PBMH(P) {Assumption: P is PBMH-healthy}

= P

This theorem, together with Theorem T.5.3.5, establishes the existence of a Galois
connection between the theories. In particular, these results also hold between
reactive processes, characterised by R, and the reactive angelic designs, character-
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ised by RAD, that is, in general, the Galois connection is not restricted to CSP
processes. This is because the proviso of Theorem T.5.3.5 only requires P to be
PBMH-healthy.

The result of Theorem T.5.3.6 can be strengthened into an equality by consid-
ering the subset of reactive angelic designs that are A2-healthy. These are reactive
processes that do not exhibit angelic nondeterminism. If we consider the application
of A2 to the process a →RAD StopRAD tRAD b →RAD StopRAD, we obtain exactly
the same result as in Example 31. In other words, for reactive angelic designs, A2
characterises the same fixed points as p2ac ◦ ac2p(P). We observe, however, that in
general, A2 permits an empty set of final states, whereas in the theory of reactive
angelic designs, both RA1 and the mapping p2ac require the set of final states not
to be empty. For example, in the theory of angelic designs the bottom ⊥D of the
lattice, which is true, is a fixed point of A2 (Lemma L.C.1.13).

Finally, Theorem T.5.3.7 establishes that the result p2ac ◦ ac2p(P) for a reactive
angelic design P that is A2-healthy yields exactly the same reactive angelic design
P.

Theorem T.5.3.7 Provided P f
f and P t

f are A2-healthy,

p2ac ◦ ac2p ◦ RA ◦ A(¬ P f
f ` P t

f ) = RA ◦ A(¬ P f
f ` P t

f )

In summary, when we consider the theory of reactive angelic designs that are A2-
healthy, then we find that there is a bijection with the original theory of reactive
designs. Thus this subset is isomorphic to the theory of CSP.

5.4 Operators

Having discussed the healthiness conditions of our theory, and the relationship with
the original model of CSP, in this section we present the definition of some important
operators of CSP in the new model. For each of the operators we show how they
relate to their original CSP counterparts.

5.4.1 Angelic Choice

The first operator of interest is angelic choice. Similarly to the theory of angelic
designs, it is also defined as the least upper bound of the lattice, which is conjunction.

Definition 117 P tRAD Q =̂ P ∧ Q
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For reactive angelic designs P and Q, this result can be restated as shown in the
following Theorem T.5.4.1.

Theorem T.5.4.1 Provided P and Q are reactive angelic designs,

P tQ = RA ◦ A(¬ P f
f ∨ ¬ Qf

f ` (¬ P f
f ⇒ P t

f ) ∧ (¬ Qf
f ⇒ Qt

f ))

The precondition of the resulting process is the disjunction of the preconditions of P
and Q, while the postcondition is the conjunction of two implications. In both cases,
if either the precondition of P or Q holds, then the corresponding postcondition is
established. This is a result that is similar to that observed for the least upper
bound of designs [39, 51].

The least upper bound of this theory can be related with that of CSP as follows.
If we consider two CSP processes P and Q, apply p2ac followed by the least upper
bound tRAD and then ac2p, then we obtain the same result defined by the original
least upper bound operator tR of CSP as shown in Theorem T.5.4.2.

Theorem T.5.4.2 ac2p(p2ac(P) tRAD p2ac(Q)) = P tR Q

Proof.

ac2p(p2ac(P) tRAD p2ac(Q)) {Definition of tRAD}

= ac2p(p2ac(P) ∧ p2ac(Q)) {Theorem T.C.5.2}

= ac2p ◦ p2ac(P) ∧ ac2p ◦ p2ac(Q) {Theorem T.5.3.5}

= P ∧ Q {Definition of tR}

= P tR Q

This is expected since we can express every existing CSP process in the new theory.
The result in the opposite direction, however, is an inequality as shown in the
following Theorem T.5.4.3.

Theorem T.5.4.3 Provided that P and Q are reactive angelic designs,

p2ac(ac2p(P) tR ac2p(Q)) w P tRAD Q

Proof.

p2ac(ac2p(P) tR ac2p(Q)) {Definition of tR}
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= p2ac(ac2p(P) ∧ ac2p(Q)) {Theorem T.4.6.2}

w p2ac ◦ ac2p(P) ∧ p2ac ◦ ac2p(Q) {Theorem T.G.7.13}

w PBMH(P) ∧ PBMH(Q) {P and Q are RAD-healthy and Theorem T.5.2.21}

= P ∧ Q {Definition of tRAD}

= P tRAD Q

That is, there is a strengthening of the resulting predicate. This is expected, as
in general the application of ac2p collapses the angelic nondeterminism, and p2ac
cannot undo such effect completely.

This concludes our discussion of the basic properties of angelic choice. In the
following sections, and as we present the definition of the CSP operators, we revisit
angelic choice and explore its role when applied together with other operators.

5.4.2 Demonic Choice

Similarly to the definition of internal choice in CSP, in our theory, this operator is
also defined using the greatest lower bound of the lattice, disjunction.

Definition 118 P uRAD Q =̂ P ∨ Q

For any two reactive angelic designs P and Q, their demonic choice can be described
as a reactive angelic design as stated as in Theorem T.5.4.4.

Theorem T.5.4.4 Provided P and Q are reactive angelic processes,

P uRAD Q = RA ◦ A(¬ P f
f ∧ ¬ Qf

f ` P t
f ∨ Qt

f )

That is, the resulting precondition is the conjunction of the respective preconditions
of P and Q, while the postcondition is the disjunction of the respective postcondi-
tions of P and Q. Intuitively, in a demonic choice both preconditions need to be
satisfied, while either the postcondition of P or Q may be observed.

The greatest lower bound of both theories can be related through the pair of
linking functions p2ac and ac2p. Since p2ac distributes through disjunction we can
establish the following general result in Theorem T.5.4.5.
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Theorem T.5.4.5

p2ac(ac2p(P) uR ac2p(Q)) = p2ac ◦ ac2p(P) uRAD p2ac ◦ ac2p(Q)

Proof.

p2ac(ac2p(P) uR ac2p(Q)) {Definition of u}

= p2ac(ac2p(P) ∨ ac2p(Q)) {Theorem T.4.6.1}

= p2ac ◦ ac2p(P) ∨ p2ac ◦ ac2p(Q) {Definition of u}

= p2ac ◦ ac2p(P) uRAD p2ac ◦ ac2p(Q)

If we consider two reactive angelic designs P and Q and apply ac2p, followed by the
greatest lower bound uR and then p2ac, then this result can be directly obtained
by applying p2ac ◦ ac2p followed by the greatest lower bound uRAD. When P and
Q are A2-healthy (Theorem T.5.3.7) we obtain the result shown in Lemma L.5.4.1.

Lemma L.5.4.1 Provided P and Q are reactive angelic designs and A2-healthy,

p2ac(ac2p(P) uR ac2p(Q)) = P uRAD Q

That is, for reactive angelic designs with no angelic nondeterminism, the demonic
choice of both theories is in correspondence. Similarly, since ac2p also distributes
through disjunction, we can establish the following result in the opposite direction,
as shown in Theorem T.5.4.6.

Theorem T.5.4.6 ac2p(p2ac(P) uRAD p2ac(Q)) = P uR Q

That is, the greatest lower bound of both theories is in correspondence. Finally, since
the least upper bound is conjunction, and the greatest lower bound is disjunction,
angelic and demonic choice distribute over each other.

5.4.3 Chaos

The following operator of interest is ChaosRAD, which is the bottom of the lattice
of reactive angelic designs.

Definition 119 ChaosRAD =̂ RA ◦ A(false ` ac′ 6= ∅)



160 CHAPTER 5. REACTIVE ANGELIC DESIGNS

Its precondition is false while the postcondition requires that ac′ is not empty. The
postcondition can alternatively be specified as true since both A and RA1 ensure
that the design is A0-healthy. This process is a zero for demonic choice as established
by Theorem T.5.4.7.

Theorem T.5.4.7 Provided P is a reactive angelic design,

ChaosRAD uRAD P = ChaosRAD

Similarly to the original theory, if a process may diverge immediately in a demonic
choice, then this is the only possibility. The dual of this property is the unit law for
angelic choice as shown in the following Theorem T.5.4.8.

Theorem T.5.4.8 Provided P is a reactive angelic design,

ChaosRAD tRAD P = P

Proof.

ChaosRAD tRAD P {Assumption: P is RAD-healthy}

Chaos tRA ◦ A(¬ P f
f ` P t

f ) {Definition of Chaos}

= RA ◦ A(false ` ac′ 6= ∅) tRA ◦ A(¬ P f
f ` P t

f ) {Theorem T.5.4.1}

= RA ◦ A(false ∨ ¬ P f
f ` (false ⇒ ac′ 6= ∅) ∧ (¬ P f

f ⇒ P t
f )) {Predicate calculus}

= RA ◦ A(¬ P f
f ` (¬ P f

f ⇒ P t
f )) {Definition of design and predicate calculus}

= RA ◦ A(¬ P f
f ` P t

f ) {Assumption: P is RAD-healthy}

= P

When the angel is given the choice between diverging immediately or behaving as P,
then the choice is resolved in favour of P. This is one of the fundamental properties
underlying an angelic choice, in that, if possible, the angel can avoid divergence.

The bottom of the lattice is also in direct correspondence with that of the original
theory of CSP as Theorems T.5.4.9 and T.5.4.10 establish.

Theorem T.5.4.9 ac2p(ChaosRAD) = ChaosR

Theorem T.5.4.10 p2ac(ChaosR) = ChaosRAD
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This is a reassuring result in that the bottom of the lattice of CSP also maps into
the bottom of the lattice of reactive angelic designs and vice versa.

5.4.4 Choice

The next operator we introduce in this section corresponds to Chaos in Roscoe’s
original presentation [17] of CSP, where it is the most nondeterministic process that
does not diverge. In our model, this behaviour is given by ChoiceRAD.

Definition 120 ChoiceRAD =̂ RA ◦ A(true ` ac′ 6= ∅)

The precondition is true while the postcondition allows any non-empty set of final
states ac′. Similarly to the definition of ChaosRAD, and every other reactive angelic
design, we observe that the complete behaviour of a process is constrained by RA
and thus the final states in ac′ must observe the properties enforced by RA, notably
that the traces are suffixes of the initial trace s.tr .

If we consider the design Choice = (true ` true), then we can obtain a similar
process in the theory of CSP by applying R as ChoiceR = R(true ` true). The
application of p2ac to this process yields ChoiceRAD as shown in Theorem T.5.4.11.

Theorem T.5.4.11 p2ac(ChoiceR) = ChoiceRAD

Likewise, Theorem T.5.4.12 shows that applying ac2p to ChoiceRAD yields exactly
the process ChoiceR of the CSP model.

Theorem T.5.4.12 ac2p(ChoiceRAD) = ChoiceR

As is discussed later in Section 5.5 the process ChoiceRAD plays an important role
in the characterisation of the subset of non-divergent processes. The intuition is
that for non-divergent processes, the addition of more choices does not change those
that are actually available for angelic choice, which are those in the distributed
intersection over all permitted values of ac′. Consider the general result of the least
upper bound and ChoiceRAD in Theorem T.5.4.13.

Theorem T.5.4.13 Provided P is RAD-healthy,

ChoiceRAD tRAD P = RA ◦ A(true ` P t
f )

The precondition is true, while the postcondition P t
f is that of P. In other words, if

P could diverge, this is no longer possible in an angelic choice with ChoiceRAD.
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Finally, when considering the greatest lower bound uRAD and ChoiceRAD we
obtain the following result.

Theorem T.5.4.14 Provided P is RAD-healthy,

ChoiceRAD uRAD P = RA ◦ A(¬ P f
f ` ac′ 6= ∅)

Proof.

ChoiceRAD uRAD P {Definition of ChoiceRAD}

= RA ◦ A(true ` ac′ 6= ∅) uRAD P {Assumption: P is RAD-healthy}

= RA ◦ A(true ` ac′ 6= ∅) uRAD RA ◦ A(¬ P f
f ` P t

f ) {Theorem T.5.4.4}

= RA ◦ A(true ∧ ¬ P f
f ` ac′ 6= ∅ ∨ P t

f ) {Predicate calculus}

= RA ◦ A(¬ P f
f ` ac′ 6= ∅ ∨ P t

f ) {Definition of A, A0 and predicate calculus}

= RA ◦ A(¬ P f
f ` ac′ 6= ∅)

The precondition of P is maintained, while the postcondition requires a non-empty
set of final states ac′. In other words, if there was a possibility to diverge in P,
this is still the case. However, if the precondition ¬ P f

f is satisfied then the process
behaves nondeterministically like ChoiceRAD.

5.4.5 Stop

Similarly to CSP, the notion of deadlock is captured by StopRAD.

Definition 121 StopRAD =̂ RA ◦ A(true ` ∈ y
ac′(y.tr = s.tr ∧ y.wait))

The precondition is true while the postcondition requires the process to always
be waiting for the environment and keep the trace of events unchanged. In this
definition and others to follow, we introduce the following auxiliary predicate.

Definition 122 ∈ y
ac′(P) =̂ ∃ y • y ∈ ac′ ∧ P[{y}/ac′]

This definition requires that P admits a state y as a single option for angelic choice.
In general, this predicate allows the definition of CSP operators to be lifted into
the theory of reactive angelic designs. It can be further extrapolated to other CSP
operators, such as external choice.
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An angelic choice between a process P and StopRAD is, in general, not resolved
in favour of either process as shown in Theorem T.5.4.15.

Theorem T.5.4.15 Provided P is RAD-healthy,

StopRAD tRAD P

=

RA ◦ A(true ` (¬ P f
f ⇒ P t

f ) ∧ ∈ y
ac′(y.tr = s.tr ∧ y.wait))

Proof.

StopRAD tRAD P {Definition of StopRAD}

= RA ◦ A(true ` ∈ y
ac′(y.tr = s.tr ∧ y.wait)) tRAD P

{Assumption: P is RAD-healthy}

=

 RA ◦ A(true ` ∈ y
ac′(y.tr = s.tr ∧ y.wait))

tRAD

RA ◦ A(¬ P f
f ` P t

f )

 {Theorem T.5.4.1}

= RA ◦ A(true ∨ ¬ P f
f ` (¬ P f

f ⇒ P t
f ) ∧ ∈ y

ac′(y.tr = s.tr ∧ y.wait))
{Predicate calculus}

= RA ◦ A(true ` (¬ P f
f ⇒ P t

f ) ∧ ∈ y
ac′(y.tr = s.tr ∧ y.wait))

However, the possibility for divergence is avoided, since the precondition becomes
true. If P diverges, then the process behaves as StopRAD, otherwise there is an
angelic choice between P or StopRAD which corresponds to the conjunction of their
respective postconditions.

Finally, we can establish that the definition of StopRAD is in correspondence
with StopR of CSP as established by Theorems T.5.4.16 and T.5.4.17.

Theorem T.5.4.16 p2ac(StopR) = StopRAD

Theorem T.5.4.17 ac2p(StopRAD) = StopR

This is a reassuring result that follows our intuition on using the auxiliary predicate
∈ y

ac′ to capture the definition of CSP operators in our new model.
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5.4.6 Skip

The process that always terminates successfully is defined as SkipRAD.

Definition 123 SkipRAD =̂ RA ◦ A(true ` ∈ y
ac′(¬ y.wait ∧ y.tr = s.tr))

Its precondition is true while the postcondition requires that there is a final state
in ac′ such that the trace of events s.tr is unchanged and that it terminates by
requiring the component wait to be false.

Similarly to the case with StopRAD, the angelic choice between a process P and
SkipRAD does not resolve in favour of either as Theorem T.5.4.18 shows.

Theorem T.5.4.18 Provided P is RAD-healthy,

SkipRAD tRAD P

=

RA ◦ A(true ` ∈ y
ac′(¬ y.wait ∧ y.tr = s.tr)) ∧ (¬ P f

f ⇒ P t
t ))

However, the possibility for any divergence in P is avoided. If P diverges, then
the angelic choice behaves as SkipRAD, otherwise the behaviour is given by the
conjunction of the postconditions of P and SkipRAD. We consider in Example 32
an angelic choice between terminating and deadlocking.

Example 32

StopRAD tRAD SkipRAD {Definition of StopRAD and SkipRAD}

=

 RA ◦ A(true ` ∈ y
ac′(y.tr = s.tr ∧ y.wait))

tRAD

RA ◦ A(true ` ∈ y
ac′(¬ y.wait ∧ y.tr = s.tr))

 {Theorem T.5.4.1}

= RA ◦ A


true ∨ true

̀ (true ⇒ ∈ y
ac′(y.tr = s.tr ∧ y.wait))

∧
(true ⇒ ∈ y

ac′(¬ y.wait ∧ y.tr = s.tr))




{Predicate calculus}

= RA ◦ A(true ` ∈ y
ac′(y.tr = s.tr ∧ y.wait) ∧ ∈ y

ac′(¬ y.wait ∧ y.tr = s.tr))

In this case, the choice is not resolved by either process. If we map this example
into the original theory of CSP, then we obtain the top >R of that lattice, defined



5.4. OPERATORS 165

by >R = R(true ` false), as Lemma L.5.4.2 establishes.

Lemma L.5.4.2 ac2p(StopRAD tRAD SkipRAD) = >R

This is because the result of mapping StopRAD tRAD SkipRAD through ac2p insists
on both waiting for an interaction and terminating. Likewise, if we map >R through
p2ac, the top of the lattice of reactive angelic designs is obtained. Thus, this is an
instance of the general strengthening indicated by Theorem T.5.4.3. Although the
miraculous process >R is not part of the standard CSP semantics [17, 18] it plays
an important role, for example, in the characterisation of deadline operators in the
context of timed versions of process calculi [75–78].

Finally, the definition of SkipRAD can be be related with the original SkipR

process of CSP by applying p2ac and p2ac as established by Theorems T.5.4.19
and T.5.4.20.

Theorem T.5.4.19 p2ac(SkipR) = SkipRAD

Theorem T.5.4.20 ac2p(SkipRAD) = SkipR

In other words, as expected the two processes are in correspondence.

5.4.7 Sequential Composition

The definition of sequential composition is exactly ;Dac from the theory of angelic
designs, which is itself layered upon ;A. When considering reactive angelic designs,
we obtain the following closure result.

Theorem T.5.4.21 Provided P and Q are reactive angelic designs,

P ;Dac Q

=

RA ◦ A



 ¬ (RA1(P f
f ) ;A RA1(true))

∧
¬ (RA1(P t

f ) ;A (¬ s.wait ∧ RA2 ◦ RA1(Qf
f )))


`
RA1(P t

f ) ;A (s ∈ ac′ C s.wait B (RA2 ◦ RA1(¬ Qf
f ⇒ Qt

f )))


This is a result that resembles that for CSP, apart from the postcondition of the
design. When s.wait is false, and hence P t

f has finished its interaction with the
environment, the behaviour is given by RA2 ◦ RA1(¬ Qf

f ⇒ Qt
f ). In contrast
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with the result in CSP (Section 2.5.4), this is an implication between the pre and
postcondition of Q, instead of its postcondition.

As previously discussed in Section 4.5.2, in the theory of angelic designs, the
sequential composition operator also has a similar implication in the postcondition
that acts as a filter by eliminating final states of P that fail to satisfy the precondition
of Q. For example, we consider the result established in Lemma L.5.4.3.

Lemma L.5.4.3 (StopRAD tRAD SkipRAD) ;Dac ChaosRAD = StopRAD

In this case there is an angelic choice between deadlocking and terminating, followed
by divergence. The angel avoids the divergence by choosing to deadlock. The
precondition of ChaosRAD is unsatisfiable since it is false. Once the preceding
process of the sequential composition terminates, that is the component wait is
false, then the composition diverges. However, because the angel can choose the
non-terminating process StopRAD, the divergence can be avoided.

In general, when considering the result of applying the sequential composition
of CSP to two processes P and Q mapped through ac2p, followed by p2ac, a
strengthening is obtained as established by the following Theorem T.5.4.22.

Theorem T.5.4.22 Provided P and Q are reactive angelic designs,

p2ac(ac2p(P) ; ac2p(Q)) w P ;Dac Q

Proof.

p2ac(ac2p(P) ; ac2p(Q)) {Theorem T.G.7.11}

= p2ac ◦ ac2p(P) ;Dac p2ac ◦ ac2p(Q)

{Theorem T.G.7.13 and Lemmas L.C.4.2 and L.C.4.3}

w PBMH(P) ;Dac PBMH(Q)

{Assumption: P and Q are RAD-healthy and Theorem T.5.2.21}

= P ;Dac Q

We consider, for example, the case of the processes of Lemma L.5.4.3. As previ-
ously discussed in Section 5.4.6, the result of ac2p(SkipRAD tRAD StopRAD) is the
top >R of the lattice of reactive designs (Lemma L.5.4.2). The result of applying
ac2p(ChaosRAD) is the bottom ChaosR as established by Theorem T.5.4.9. The
sequential composition of >R followed by ChaosR is also >R. Applying p2ac(>R)



5.4. OPERATORS 167

yields the top of the lattice of reactive angelic designs>RAD =̂ RA ◦ A(true ` false).
This is a trivial refinement of any process, including StopRAD.

If we strengthen the assumption of Theorem T.5.4.22 by considering the case
where both P and Q are, in addition, A2-healthy, then an equality is obtained
instead as established by Theorem T.5.4.23.

Theorem T.5.4.23 Provided P and Q are RAD-healthy and A2-healthy,

p2ac(ac2p(P) ; ac2p(Q)) = P ;Dac Q

This is because A2-healthy processes do not have angelic nondeterminism, and so
the result obtained in both models is exactly the same.

When considering two CSP processes P and Q, we also obtain an equality as
shown in the following Theorem T.5.4.24.

Theorem T.5.4.24 ac2p(p2ac(P) ;Dac p2ac(Q)) = P ; Q

This result confirms the correspondence of sequential composition in both models.
In particular, the result of sequentially composing two CSP processes with no angelic
nondeterminism can be directly calculated in the new model.

Finally, the sequential composition operator is closed under A2 for reactive an-
gelic designs as shown in the following Theorem T.5.4.25.

Theorem T.5.4.25 Provided P and Q are reactive angelic designs and A2-
healthy, A2(P ;Dac Q) = P ;Dac Q

Therefore, given any two reactive angelic designs P and Q with no angelic non-
determinism, their sequential composition does not introduce any angelic choices.
This concludes our discussion of the sequential composition operator.

5.4.8 Prefixing

Having discussed the definition of sequential composition, in this section we intro-
duce the definition of event prefixing, which is similar to that of CSP.

Definition 124

a →RAD SkipRAD =̂ RA ◦ A

true ` ∈ y
ac′

 (y.tr = s.tr ∧ a /∈ y.ref )

Cy.waitB
(y.tr = s.tr a 〈a〉)
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The precondition is true, while the postcondition is split into two cases. When the
process is waiting for an interaction from the environment, that is, y.wait is true,
then a is not in the set of refusals and the trace s.tr is kept unchanged. While in
the second case, the process has interacted with the environment, and so the only
guarantee is that the event a is part of the final trace y.tr .

Like for StopRAD and SkipRAD, an angelic choice between a process P and
a →RAD SkipRAD avoids divergence as established by Theorem T.5.4.26.

Theorem T.5.4.26 Provided P is a reactive angelic design,

a →RAD SkipRAD tRAD P

=

RA ◦ A

true ` ∈ y
ac′

 (y.tr = s.tr ∧ a /∈ y.ref )

Cy.waitB
(y.tr = s.tr a 〈a〉)

 ∧ (¬ P f
f ⇒ P t

f )


The complete behaviour of this process depends on that of P as well. If P diverges,
then the process behaves as a →RAD SkipRAD, otherwise there is an angelic choice
between the behaviour of a →RAD SkipRAD and P.

Event prefixing in both theories is in exact correspondence as established by the
following Theorems T.5.4.27 and T.5.4.28.

Theorem T.5.4.27 ac2p(a →RAD SkipRAD) = a →R SkipR

Theorem T.5.4.28 p2ac(a →R SkipR) = a →RAD SkipRAD

This is expected since event prefixing, even in the presence of angelic nondetermin-
ism, does not behave differently to prefixing in the original theory of CSP.

In order to illustrate the behaviour of angelic choice we consider the following
examples. In Example 33 we have a choice between terminating and deadlocking
following event a, sequentially composed with ChaosRAD. In general, the process
a →RAD P denotes the compound process a →RAD SkipRAD ;Dac P, whose result
as a reactive angelic design is established by Theorem T.5.4.29.

Theorem T.5.4.29 Provided P is RAD-healthy,

a →RAD P

=
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RA ◦ A


¬ ∃ y • y.tr = s.tr a 〈a〉 ∧ ¬ y.wait ∧ (RA2 ◦ RA1(P f

f ))[y/s]

`

∃ y •

 (y ∈ ac′ ∧ y.tr = s.tr ∧ a /∈ y.ref )

Cy.waitB
(y.tr = s.tr a 〈a〉 ∧ (RA2 ◦ RA1(P t

f ))[y/s])





The precondition states that it is not the case that once event a occurs the precon-
dition of P fails to be satisfied. While the postcondition considers two cases: when
the process is waiting for the environment the trace of events is kept unchanged and
event a is not refused; when he process does event a, then the result is that of the
postcondition of P with initial state y, where the trace y.tr includes event a.

Example 33

((a →RAD StopRAD) tRAD SkipRAD) ;Dac ChaosRAD

=

a →RAD StopRAD

Proof. Lemma L.G.8.13

In the case of Example 33, the angel avoids divergence by choosing non termination
by allowing the environment to perform the event a and then deadlocking. In
Example 34 there is a choice between terminating or diverging upon performing the
event a.

Example 34

(a →RAD SkipRAD) tRAD (a →RAD ChaosRAD)

{Definition of prefixing and Theorem T.G.8.8}
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=



RA ◦ A

true `

 ∈ y
ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref )

∨
∈ y

ac′(¬ y.wait ∧ y.tr = s.tr a 〈a〉)




t

RA ◦ A

 ¬ ∈
y
ac′(s.tr a 〈a〉 ≤ y.tr)

`
∈ y

ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref )




{Theorem T.5.4.1 and predicate calculus}

= RA ◦ A


true `



 ∈ y
ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref )

∨
∈ y

ac′(¬ y.wait ∧ y.tr = s.tr a 〈a〉)


∧ ∈ y

ac′(s.tr a 〈a〉 ≤ y.tr)

∨
∈ y

ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref )






{Predicate calculus}

= RA ◦ A

true `

 ∈ y
ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref )

∨
∈ y

ac′(¬ y.wait ∧ y.tr = s.tr a 〈a〉)




{Definition of prefixing}

= a →RAD SkipRAD

The result is a process that following event a can only terminate, and thus avoids
divergence. This property illustrates that our angelic choice operator is a counterpart
to that of the refinement calculus. It resolves choices to avoid divergence but here
we have choices over interactions.

However, if we consider the processes of Example 34 to be prefixes on different
events, the result of the angelic choice is rather different as shown in Example 35.

Example 35

(a →RAD SkipRAD) tRAD (b →RAD ChaosRAD)

=

(a →RAD SkipRAD) tRAD (b →RAD ChoiceRAD)

Proof. Lemma L.G.8.9
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In this case, the possibility of diverging after the event a is avoided by turning
ChaosRAD into ChoiceRAD. The possibility for engaging in the event a cannot be
avoided by the angel, since RA1 requires that under all circumstances no trace
of events may be undone. Ideally for a counterpart to the angelic choice of the
refinement calculus, it should be possible to discard any trace of events that lead
to divergence. This is the motivation for the theory of angelic processes that we
introduce in the following Chapter 6.

5.4.9 External Choice

External choice, which offers the environment the choice over the events initially
offered by processes P and Q, is similarly (Section 2.5.4) defined in our theory as
follows.

Definition 125

P 2RAD Q

=̂

RA ◦ A

 (¬ P f
f ∧ ¬ Qf

f )

`
∈ y

ac′((P t
f ∧ Qt

f ) C y.tr = s.tr ∧ y.wait B (P t
f ∨ Qt

f ))


The precondition is the conjunction of the preconditions of the processes P and Q,
while the postcondition is split into two cases. When the process is waiting and the
trace of events s.tr is unchanged, then the behaviour is given by the conjunction
of both postconditions, otherwise it is given by their disjunction. In other words,
before the process performs any event, P and Q must be in agreement. In particular,
if there is angelic nondeterminism in either P or Q, there must be an agreement on
a single common state in ac′.

Once the process has finished interacting with the environment or performed an
event, there is a choice between P and Q. Even if there is angelic nondeterminism
in either P or Q, then there is also a requirement for there to be an agreement on a
final state, as enforced by the lifting ∈ y

ac′ . We consider, for example, the following
result on the external choice between a reactive angelic design and StopRAD.

Theorem T.5.4.30 Provided P is a reactive angelic design,

P 2RAD StopRAD = RA ◦ A(¬ P f
f ` ∃ y • (P t

f )[{y}/ac′] ∧ y ∈ ac′)
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That is, the angelic nondeterminism of P is collapsed. Unlike in the original theory
of CSP, StopRAD is not necessarily a unit for external choice. However, when
considering the subset of reactive angelic designs corresponding to CSP processes,
which are the A2-healthy, then StopRAD is a unit as expected.

Theorem T.5.4.31 Provided P is a reactive angelic design and A2-healthy,

P 2RAD StopRAD = P

Theorem T.5.4.31 follows from the correspondence of the operator in both models,
which we discuss below, and the proviso which ensures that there is no angelic
nondeterminism in P.

As established by the following Theorem T.5.4.32 the result of mapping two CSP
processes P and Q through p2ac and composing them with the external choice
operator 2RAD of reactive angelic designs, followed by the mapping ac2p in the
opposite direction is exactly the same as applying 2R to the original processes.

Theorem T.5.4.32 Provided that P and Q are CSP processes,

ac2p(p2ac(P) 2RAD p2ac(Q)) = P 2R Q

However, if we consider the application in the opposite direction in the following The-
orem T.5.4.33, the result obtained is not an equality.

Theorem T.5.4.33 Provided P and Q are reactive angelic designs,

p2ac(ac2p(P) 2R ac2p(Q)) w P 2RAD Q

This establishes that by considering two reactive angelic designs, applying ac2p to
both, composing the result with the external choice operator of CSP, and then
mapping back through p2ac, the result obtained is stronger than the respective
composition using 2RAD. This follows from the fact that, since P and Q can be
nondeterministic, and external choice is monotonic with respect to refinement, the
application of ac2p may yield stronger processes.

We consider the following Example 36 in the context of Theorem T.5.4.33. Here
we have an angelic choice between engaging in an event a or an event b followed by
divergence, with StopRAD in an external choice.



5.4. OPERATORS 173

Example 36

(a →RAD ChaosRAD tRAD b →RAD ChaosRAD) 2RAD StopRAD

=

RA ◦ A

 ¬ ( ∈ y
ac′(s.tr a 〈a〉 ≤ y.tr) ∧ ∈ y

ac′(s.tr a 〈b〉 ≤ y.tr))

`
∈ y

ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref ∧ b /∈ y.ref )


Proof. Lemma L.G.8.7

The precondition requires that there is not a final state where the trace includes the
event a or the event b. The postcondition states that the process is always waiting
for the environment, while keeping the trace of events unchanged and not refusing
either a or b. The mapping through ac2p of the left-hand side of Example 36 yields
a CSP process whose precondition is true as shown in the following Example 37.

Example 37

ac2p(a →RAD ChaosRAD tRAD b →RAD ChaosRAD)

=

R(true ` tr ′ = tr ∧ wait ′ ∧ a /∈ ref ′ ∧ b /∈ ref ′)

Proof. Lemma L.G.8.1

The postcondition, expressed in the theory of reactive designs, is similar to that
of Example 36. The mapping of Example 37 through p2ac yields a refinement of
the reactive angelic design of Example 36. This is an expected result, which follows
from the general result of Theorem T.5.4.33.

If we consider reactive angelic designs that are in addition A2-healthy, an equal-
ity is obtained as established by Theorem T.5.4.34.

Theorem T.5.4.34 Provided P and Q are RAD-healthy and A2-healthy,

p2ac(ac2p(P) 2R ac2p(Q)) = P 2RAD Q

Furthermore, the external choice operator is also closed under A2 as established
by Theorem T.5.4.35.

Theorem T.5.4.35 Provided P and Q are reactive angelic designs and A2-
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healthy,

A2(P 2RAD Q) = P 2RAD Q

In other words, the definition of external choice is in correspondence between both
models for processes with no angelic nondeterminism.

5.5 Non-divergent Reactive Angelic Designs

As previously discussed in Chapter 1, and as part of our approach to studying the
relationship between theories, it is useful to identify the subset of non-divergent
reactive angelic designs. These are processes that satisfy the following healthiness
condition NDRAD.

Definition 126 NDRAD(P) = P tRAD ChoiceRAD

This function is defined using the least upper bound of the lattice tRAD and the
most nondeterministic process ChoiceRAD that does not diverge. The intuition
underlying NDRAD is that, for a given process P, increasing the number of final
states available for angelic choice, does not actually add any new choices, unless
the process P could itself diverge. We consider the following Example 38 where the
function NDRAD is applied to the bottom of the lattice ChaosRAD.

Example 38 NDRAD(ChaosRAD) = ChoiceRAD

Proof. Lemma L.G.6.1

The divergence is avoided and the result is the process ChoiceRAD. If instead we
consider a process that is not divergent, such as SkipRAD, the result is as follows.

Example 39 NDRAD(a →RAD SkipRAD) = a →RAD SkipRAD

Proof. Lemma L.G.6.2

The process is a fixed point of NDRAD.
The function NDRAD is idempotent as shown in the following Theorem T.5.5.1.

Theorem T.5.5.1 NDRAD ◦ NDRAD(P) = NDRAD(P)

Proof.

NDRAP ◦ NDRAP(P) {Definition of NDRAP}
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= NDRAP(P) t ChoiceRAP {Definition of NDRAP}

= P t ChoiceRAP t ChoiceRAP {Predicate calculus}

= P t ChoiceRAP {Definition of NDRAP}

= NDRAP(P)

More importantly, when considering a reactive angelic design P, Theorem T.5.5.2
establishes that the application of NDRAD to a reactive angelic design P requires
the precondition of the design to be true.

Theorem T.5.5.2 Provided P is RAD-healthy,

NDRAD(P) = RA ◦ A(true ` P t
f )

Furthermore, if we consider the fixed points of NDRAD then we obtain the following
result in Theorem T.5.5.3.

Theorem T.5.5.3 Provided P is RAD-healthy,

NDRAD(P) = P ⇔ ∀ s, ac′ • ¬ P f
f

That is, it must be the case that the precondition ¬ P f
f of the reactive angelic

design P is satisfied for every possible initial state s and set of final states ac′.
These complementary results confirm our intuition about the definition of NDRAD.

5.6 Final Considerations

Based on the underlying principles of the theory of CSP [39, 44] and the model of
angelic designs presented in Chapter 4, in this chapter we have presented a model
for CSP where both angelic and demonic nondeterminism can be expressed. The
approach we have followed consists of a natural extension to the existing CSP model.
First we have encoded the observational variables of the theory of reactive processes
and enforced all of the healthiness conditions of the original model in this new theory.
Similarly to the original theory of CSP we have shown how CSP processes can be
specified through reactive angelic designs. We have then established links with the
original theory and studied this relationship.

We have established that there is a Galois connection between the theory of react-
ive angelic designs and CSP. In addition, when considering the subset of processes
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that are A2-healthy, this relationship can be strengthened into a bijection. We have
studied the most important operators of the theory and shown that they are in
correspondence with their CSP counterparts. Furthermore, we have also proposed a
natural way for specifying existing CSP operators in this new theory, including, for
example, the external choice operator. While the definition of the external choice
operator preserves the semantics of CSP, it is not the only one possible. Indeed,
we hypothesize that there are other plausible semantic-preserving definitions for
external choice with different algebraic properties. For example, when considering
an external choice which includes angelic choices it may be desirable to allow the
environment to choose any of those choices.

Finally, a number of examples have been presented to illustrate the role of angelic
choice in a theory of CSP. In particular, we have shown that whenever possible,
angelic choice avoids divergence. This behaviour is closer in spirit to that of the
original choice operator of the refinement calculus than that of any other notion of
angelic choice for CSP which we are aware. However, this avoidance still preserves
any potential sequence of observable events. Ideally, the counterpart to the angelic
choice of the refinement calculus should avoid any divergent behaviour altogether.
For example, in the case of Example 35 the angelic choice should be resolved in favour
of a →RAD SkipRAD. This is the motivation for the theory of angelic processes which
we discuss in the next Chapter 6.



Chapter 6

Angelic Processes

Following from the impossibility for the angel to completely avoid divergent processes
in the theory of reactive angelic designs, and based on its underlying principles, in
this chapter we present a different approach to characterising CSP processes with
angelic nondeterminism. The result is a theory which better accommodates the
angelic choice over divergent processes, in that the resulting algebraic properties
are closer in spirit to the angelic choice of the refinement calculus. In Section 6.1
we revisit the motivation for this theory and discuss our approach. Section 6.2
introduces the healthiness conditions of the theory and discusses their relationship
with the theory of reactive angelic designs. In Section 6.3 we study the relationship
between the two models and establish that the subsets of non-divergent processes
are isomorphic. In Section 6.4 we present operators of this model and discuss some
of their properties as well as their relationship with counterparts in the theory of
reactive angelic designs. Finally, the chapter ends with a summary of the results
in Section 6.5.

6.1 Introduction

As previously discussed in Chapter 5, in the theory of reactive angelic designs,
healthy processes, as required by RA1, must never undo the history of events. For
example, the definition of ChaosRAD, which diverges immediately, guarantees that
there is always a final state in ac′ where the trace of events is a suffix of the initial
trace s.tr . This behaviour is as expected for a theory of processes.

Since angelic choice is defined as the least upper bound, and ChaosRAD is the
bottom of the lattice of reactive angelic designs, it follows that immediate divergence
is avoided, if possible, by the angel. However, once there is the possibility for
interacting with the environment, such as in the case of Example 33, the possibility

177
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for performing an event followed by divergence cannot be eliminated completely,
as doing so would violate RA1. This is unlike the angelic choice of the refinement
calculus and the theory of angelic designs, where angelic choices leading to divergence
are pruned altogether.

In this chapter we propose a theory like RAD, but which does not necessarily
enforce RA1 when a process diverges. This is a departure from the norm for a
theory of CSP. The main consequence of this approach is that divergent processes
have a different semantics to standard CSP. However, the subset of non-divergent
processes preserves the existing semantics defined by RAD, and by extension, the
semantics of non-divergent CSP processes.

6.2 Healthiness Conditions

The alphabet of angelic processes is exactly the same as that of reactive angelic
designs. Namely, we have variables ok, ok ′, s and ac′, where a State is defined with
components tr , ref and wait.

As with every UTP theory, we define the healthiness conditions. Since we aim
to define a theory like RAD, but without necessarily enforcing RA1, we focus our
attention on the definition of RAD, which we reproduce below.

RAD(P) =̂ RA1 ◦ RA2 ◦ RA3 ◦ CSPA1 ◦ CSPA2 ◦ PBMH(P)

If we simply remove RA1 from the functional composition, then A0 is not neces-
sarily enforced any more, and thus successful termination does not guarantee that
ac′ is not empty. Furthermore, CSPA1 is also stronger than required, since when in
an unstable state, that is ¬ ok, RA1 should not be enforced. Equally, the identity
IIRAD and, therefore, RA3 also need to be changed, so that divergence no longer
requires RA1. This leads us to the following healthiness condition AP.

Definition 127 AP(P) =̂ RA3AP ◦ RA2 ◦ A ◦ H1 ◦ CSPA2(P)

The healthiness condition RA3 is replaced with RA3AP, which does not require
RA1. The function A is included in the functional composition since it enforces
both A0 and A1 (itself PBMH as previously discussed in Section 4.2.2) as required.
The function CSPA1 is replaced with H1, since in an unstable state, that is when
¬ ok is true, RA1 is no longer enforced. Finally CSPA2 is enforced like in RAD.

The definition of RA3AP is introduced in the following Section 6.2.1. In Sec-
tion 6.2.2 the definition of AP is explored in more detail. Finally in Section 6.2.3
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the subset of non-divergent angelic processes is characterised by another healthiness
condition NDAP.

6.2.1 Redefining RA3 as RA3AP

Similarly to the theory of reactive angelic designs, we define a new identity IIAP as
follows.

Definition 128 IIAP =̂ H1(ok ′ ∧ s ∈ ac′)

In contrast with the definition for IIRAD, there is no longer a requirement for RA1
to be enforced when the process is unstable and ok is false. Instead, the only
guarantee in this case is that if the process is stable, and ok is true, then stability
is maintained and the state is kept unchanged, by requiring the initial state s to be
in the set of final states ac′.

The definition of RA3AP is similar to RA3 except that we use the identity
IIAP, which does not enforce RA1, instead of IIRAD.

Definition 129 RA3AP(P) =̂ IIAP C s.wait B P

The function RA3AP is idempotent and monotonic as established by the follow-
ing Theorems T.6.2.1 and T.6.2.2. Proof of these and other theorems to follow,
which are not included explicitly in the body of this thesis, can be found in Ap-
pendix H of the extended version [74].

Theorem T.6.2.1 RA3AP ◦ RA3AP(P) = RA3AP(P)

Theorem T.6.2.2 P v Q ⇒ RA3AP(P) v RA3AP(Q)

Furthermore, it distributes through both conjunction and disjunction.

Theorem T.6.2.3 RA3AP(P ∧ Q) = RA3AP(P) ∧ RA3AP(Q)

Theorem T.6.2.4 RA3AP(P ∨ Q) = RA3AP(P) ∨ RA3AP(Q)

Since RA3AP is idempotent and distributes through both conjunction and disjunc-
tion, conjunction and disjunction are closed under RA3AP. More importantly, the
operator ;A is closed under RA3AP.

Theorem T.6.2.5 Provided P and Q are RA3AP-healthy,

RA3AP(P ;A Q) = P ;A Q
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Finally, RA3AP commutes with PBMH, and RA2 as established by the follow-
ing Theorems T.6.2.6 and T.6.2.7

Theorem T.6.2.6 RA3AP ◦ PBMH(P) = PBMH ◦ RA3AP(P)

Proof.

RA3AP ◦ PBMH(P) {Definition of RA3AP}

= H1(ok ′ ∧ s ∈ ac′) C s.wait B PBMH(P) {Lemma L.E.4.3}

= H1(ok ′ ∧ PBMH(s ∈ ac′)) C s.wait B PBMH(P) {Lemma L.E.4.8}

= H1 ◦ PBMH(ok ′ ∧ s ∈ ac′) C s.wait B PBMH(P) {Theorem T.E.6.2}

= PBMH ◦ H1(ok ′ ∧ s ∈ ac′) C s.wait B PBMH(P) {Lemma L.E.4.9}

= PBMH(H1(ok ′ ∧ s ∈ ac′) C s.wait B P) {Definition of RA3AP}

= PBMH ◦ RA3AP(P)

Theorem T.6.2.7 RA2 ◦ RA3AP(P) = RA3AP ◦ RA2(P)

Theorem T.6.2.6 is important in establishing that RA3AP preserves the upward-
closure of PBMH. This is established by Lemma L.6.2.1.

Lemma L.6.2.1 PBMH ◦ RA3AP ◦ PBMH(P) = RA3AP ◦ PBMH(P)

This concludes our discussion of the most important properties of RA3AP.

6.2.2 Angelic Processes (AP)

As already mentioned, the theory of angelic processes is characterised by the func-
tional composition of RA3AP, RA2, A, H1 and CSPA2. A parallel result to that
of the theory of reactive angelic designs (Theorem T.5.2.20) can be obtained as es-
tablished by the following Theorem T.6.2.8: AP processes can also be expressed in
terms of a design.

Theorem T.6.2.8 AP(P) = RA3AP ◦ RA2 ◦ A(¬ P f
f ` P t

f )

Proof.

AP(P) {Definition of AP}

= RA3AP ◦ RA2 ◦ A ◦ H1 ◦ CSPA2(P) {Definition of CSPA2}
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= RA3AP ◦ RA2 ◦ A ◦ H1 ◦ H2(P) {Property of designs}

= RA3AP ◦ RA2 ◦ A(¬ P f ` P t) {Theorem T.6.2.7}

= RA2 ◦ RA3AP ◦ A(¬ P f ` P t) {Lemma L.5.2.1}

= RA2 ◦ RA3AP ◦ A(¬ P f ` P t)f {Lemma L.C.1.5}

= RA2 ◦ RA3AP ◦ A((¬ P f ` P t)f ) {Substitution}

= RA2 ◦ RA3AP ◦ A(¬ P f
f ` P t

f ) {Theorem T.6.2.7}

= RA3AP ◦ RA2 ◦ A(¬ P f
f ` P t

f )

This result establishes that an angelic process can also be specified in terms of pre
and postconditions, as the image of a design through the functions RA3AP, RA2
and A. Since these functions are all idempotent and monotonic, and the theory of
designs is a complete lattice [39], so is the theory of angelic processes.

The original theory of CSP is not a theory of designs, since when ok is false, R1
must hold, unlike in the theory of designs, where H1 requires that no meaningful
observations can be made about a design unless it is started, that is, unless ok is
true. Here, since we have dropped RA1, in fact the theory we propose is a theory
of angelic designs as established by the following Theorem T.6.2.9.

Theorem T.6.2.9

AP(P) =

 true C s.wait B ¬ RA2 ◦ PBMH(P f
f )

`
s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(P t

f )



Proof.

AP(P) {Theorem T.6.2.8}

= RA3AP ◦ RA2 ◦ A(¬ P f
f ` P t

f ) {Definition of A}

= RA3AP ◦ RA2(¬ PBMH(P f
f ) ` PBMH(P t

f ) ∧ ac′ 6= ∅) {Lemma L.G.2.15}

= RA3AP(¬ RA2 ◦ PBMH(P f
f ) ` RA2(PBMH(P t

f ) ∧ ac′ 6= ∅))
{Lemma L.G.2.9}

= RA3AP(¬ RA2 ◦ PBMH(P f
f ) ` RA2 ◦ RA1 ◦ PBMH(P t

f ))

{Lemma L.H.1.4}
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=

 true C s.wait B ¬ RA2 ◦ PBMH(P f
f )

`
s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(P t

f )



The precondition of the design has a conditional on s.wait. If the previous process
has not terminated interacting with the environment, then this is simply true. Oth-
erwise, the original precondition of P must be satisfied, and its negation must be
PBMH and RA2-healthy. We recall that in a non-H3 design it is actually the
negation of the precondition that is established irrespective of termination.

The postcondition of an angelic process also has a conditional on s.wait. When
the previous process has not terminated its interactions with the environment, then
the state is kept unchanged by making sure that the initial state s is in the set
of final states ac′. Otherwise, the original postcondition of P holds and must be
PBMH, RA2 and RA1-healthy.

Although we have dropped RA1 because the postcondition requires that the set
of final states ac′ is not empty, and since we enforce RA2, this means that RA1
is enforced in the postcondition (Theorem T.5.2.9). Similarly, if the negation of the
precondition imposes any particular set of final states ac′, because it must also be
RA2-healthy, it will also enforce RA1.

6.2.3 Non-divergent Angelic Processes (NDAP)

Like in the theory of reactive angelic designs, it is possible to identify the subset
of non-divergent angelic processes. These are angelic processes that satisfy the
following healthiness condition NDAP. As depicted in Figures 1.1 and 1.6 we show
that the subsets of non-divergent processes of the theory of angelic processes and
reactive angelic designs are isomorphic. This is a key result that supports our
hypothesis on the preservation of the semantics of a subset of CSP.

Definition 130 NDAP(P) =̂ ChoiceAP tAP P

The definition of NDAP is similar to that of NDRAD, except that here we use
the corresponding least upper bound tAP and ChoiceAP operators of the theory of
angelic processes. An angelic process that is non-divergent can be characterised as
established by the following Theorem T.6.2.10.
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Theorem T.6.2.10 Provided P is AP-healthy.

ChoiceAP t P = (true ` s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(P t
f ))

The precondition is true, while the postcondition corresponds to that of P. If P could
diverge, then by applying NDAP this is no longer the case. Since in H3-healthy
designs the precondition cannot have any free dashed variables, every non-divergent
angelic process is also H3-healthy. However, not every H3-healthy angelic process
is necessarily non-divergent. For example, the angelic process (s.wait ` s ∈ ac′) is
H3-healthy, however, it diverges when s.wait is false.

6.3 Relationship with Reactive Angelic Designs

As part of our approach for validating the theories we propose, in this section we
study the relationship between the theory of angelic processes and reactive angelic
designs. Through the links previously discussed in Section 5.3 between the theory
of reactive angelic designs and CSP these results also link this new theory to that
of CSP.

In Section 6.3.1 we discuss how reactive angelic designs can be mapped into the
theory of angelic processes. In Section 6.3.2 we present the reverse mapping between
angelic processes and reactive angelic designs. Finally in Section 6.3.3 we show that
the subsets of non-divergent processes of both theories are isomorphic.

6.3.1 From Reactive Angelic Designs to Angelic Processes

As already mentioned, in defining AP we have dropped RA1 and thus the theory
of angelic processes is a theory of designs that satisfies both H1 and H2. Therefore,
a reactive angelic design, can be turned into an angelic process by applying H1.
Since CSPA2 is equally enforced in both models, H2 is also satisfied.

The following result characterises the designs obtained when we apply H1 to a
reactive angelic design RAD.

Theorem T.6.3.1

H1 ◦ RAD(P) =

 true C s.wait B ¬ RA1 ◦ RA2 ◦ PBMH(P f
f )

`
s ∈ ac′ C s.wait B RA1 ◦ RA2 ◦ PBMH(P t

f )


In words, and considering the general result for angelic processes established by
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Theorem T.6.2.9, the postcondition is exactly the same as that of any other angelic
process, while the precondition requires, in addition, that P f

f is RA1-healthy. This
is a property carried over from the theory of reactive angelic designs, where the
negation of the precondition must also be RA1-healthy (Lemma L.G.1.23).

We consider the following Example 40 where H1 is applied to ChaosRAD.

Example 40 H1(ChaosRAD) = (s.wait ∨ ¬ RA1(true) ` s.wait ∧ s ∈ ac′)

Proof. Theorem T.6.4.10

In this case, if the previous process is still waiting for the environment, and s.wait
is true, then the state is kept unchanged by requiring s to be in the set of final
states ac′. Otherwise, once the process starts, and s.wait is false, the design can be
restated as ok ⇒ RA1(true).

Non-divergent Processes

The application of H1 to a reactive angelic design that is non-divergent, that is
NDRAD-healthy, is established by Lemma L.6.3.1.

Lemma L.6.3.1

H1 ◦ RA ◦ A(true ` P t
f )

=

(true ` s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(P t
f ))

The precondition is true, similarly to the original reactive angelic design, while the
postcondition is that corresponding to the mapping through H1, which follows the
general result of Theorem T.6.3.1. We consider, for example, the mapping of the
process SkipRAD through H1.

Example 41

H1(SkipRAD)

=

(true ` s ∈ ac′ C s.wait B ∈ y
ac′(¬ y.wait ∧ y.tr = s.tr))

Proof. Theorem T.6.4.16 and Lemma L.H.1.9

The original postcondition of SkipRAD is kept intact on the right-handside of the
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conditional on s.wait.

6.3.2 From Angelic Processes to Reactive Angelic Designs

When considering the mapping in the opposite direction, from angelic processes to
reactive angelic designs, we must ensure that RA1 is observed under all circum-
stances. Therefore, the mapping we need is RA1 itself. The result of applying
RA1 to an angelic process is established by Theorem T.6.3.2.

Theorem T.6.3.2 RA1 ◦ AP(P) = RA ◦ A(¬ P f
f ` P t

f )

Proof.

RA1 ◦ AP(P) {Theorem T.6.2.9}

= RA1

 true C s.wait B ¬ RA2 ◦ PBMH(P f
f )

`
s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(P t

f )

 {Lemma L.G.4.1}

= RA1 ◦ RA3

 ¬ RA2 ◦ PBMH(P f
f )

`
RA2 ◦ RA1 ◦ PBMH(P t

f )

 {Lemma L.G.2.15}

= RA1 ◦ RA3 ◦ RA2

 ¬ PBMH(P f
f )

`
RA1 ◦ PBMH(P t

f )


{Theorems T.5.2.10 and T.5.2.16}

= RA3 ◦ RA2 ◦ RA1

 ¬ PBMH(P f
f )

`
RA1 ◦ PBMH(P t

f )

 {Lemma L.G.1.20}

= RA3 ◦ RA2 ◦ RA1(¬ PBMH(P f
f ) ` PBMH(P t

f )) {Lemma L.4.2.2}

= RA3 ◦ RA2 ◦ RA1 ◦ PBMH(¬ P f
f ` P t

f ) {Definition of RA}

= RA ◦ PBMH(¬ P f
f ` P t

f ) {Theorem T.G.1.6}

= RA ◦ A(¬ P f
f ` P t

f )

The reactive angelic design ensures that RA1 applies to the whole angelic design,
which by extension also includes the negation of the precondition (Lemma L.G.1.23).
We consider the following Example 42, where we apply RA1 to the design of Ex-
ample 40.
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Example 42 RA1(s.wait ∨ ¬ RA1(true) ` s.wait ∧ s ∈ ac′) = ChaosRAD

Proof. Theorems T.6.4.10 and T.6.4.11.

This result shows that it is possible to recover the original ChaosRAD of reactive
angelic designs. In fact, as we discuss in the next Section 6.3.3 this is the case for
every reactive angelic design.

6.3.3 Galois Connection and Isomorphism

The results of the previous section suggest that every reactive angelic design can be
expressed as an angelic process. If we consider the application of H1 to a reactive
angelic design followed by the application of RA1, then we obtain the same reactive
angelic design as established by the following Theorem T.6.3.3.

Theorem T.6.3.3 RA1 ◦ H1 ◦ RAD(P) = RAD(P)

Proof.

RA1 ◦ H1 ◦ RAD(P) {Lemma L.H.2.4}

= RA1 ◦ AP(¬ RA1 ◦ PBMH(P f
f ) ` P t

f )

{Theorem T.6.3.2 and Lemmas L.A.2.5 and L.A.2.6}

= RA ◦ A(¬ RA1 ◦ PBMH(P f
f ) ` P t

f ) {Theorem T.G.1.6}

= RA ◦ PBMH(¬ RA1 ◦ PBMH(P f
f ) ` P t

f ) {Lemma L.4.2.2}

= RA(¬ PBMH ◦ RA1 ◦ PBMH(P f
f ) ` PBMH(P t

f )) {Theorem T.5.2.5}

= RA(¬ RA1 ◦ PBMH(P f
f ) ` PBMH(P t

f )) {Definition of RA}

= RA3 ◦ RA2 ◦ RA1(¬ RA1 ◦ PBMH(P f
f ) ` PBMH(P t

f )) {Lemma L.G.1.23}

= RA3 ◦ RA2 ◦ RA1(¬ PBMH(P f
f ) ` PBMH(P t

f )) {Definition of RA}

= RA(¬ PBMH(P f
f ) ` PBMH(P t

f )) {Lemma L.4.2.2}

= RA ◦ PBMH(¬ P f
f ` P t

f ) {Theorem T.G.1.6}

= RA ◦ A(¬ P f
f ` P t

f ) {Theorem T.5.2.20}

= RAD(P)

This is a fundamental result, which together with the links between the theory of
reactive angelic designs and CSP, establishes that every CSP process can also be
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modelled in this theory, following results on the composition of Galois connections
(Theorem 4.2.5 in [39]).

When we consider the mapping in the opposite direction, however, an inequality
is obtained, as established by Theorem T.6.3.4.

Theorem T.6.3.4 H1 ◦ RA1 ◦ AP(P) w AP(P)

Proof.

H1 ◦ RA1 ◦ AP(P) {Theorem T.6.3.2}

= H1 ◦ RA ◦ A(¬ P f
f ` P t

f ) {Theorem T.5.2.20 and Lemma L.H.2.4}

= AP(¬ RA1 ◦ PBMH(P f
f ) ` P t

f )

{Lemma L.G.1.21 and strengthen precondition}

w AP(¬ PBMH(P f
f ) ` P t

f ) {Lemma L.H.1.11}

= RA3AP ◦ RA2 ◦ A(¬ PBMH(P f
f ) ` P t

f )

{Definition of A and Lemma L.4.2.2 and Theorem T.E.2.1}

= RA3AP ◦ RA2 ◦ A(¬ P f
f ` P t

f ) {Lemma L.H.1.11}

= AP(P)

This is expected, since reactive angelic designs require RA1 to be enforced under
all circumstances, whereas angelic processes do not necessarily enforce RA1. Thus
there is a Galois connection between the theory of reactive angelic designs and
angelic processes. We consider the following example, where RA1 and H1 are
applied to the bottom of the lattice ⊥AP = (s.wait ` s ∈ ac′) of angelic processes.

Example 43

H1 ◦ RA1(s.wait ` s ∈ ac′)

=

(s.wait ∨ ¬ RA1(true) ` s.wait ∧ s ∈ ac′)

Proof. Theorems T.6.4.11 and T.6.4.10.

The result is exactly the same as the result of applying H1 to ChaosRAD. This
angelic process has a weaker precondition than that of the bottom ⊥AP and is
therefore a refinement of ⊥AP.
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If we restrict our attention to the subset of angelic processes that are non-
divergent, then Theorem T.6.3.4 can be strengthened into an equality as the es-
tablished by the following Theorem T.6.3.5.

Theorem T.6.3.5 H1 ◦ RA1 ◦ NDAP ◦ AP(P) = NDAP ◦ AP(P)

Therefore, the subsets of non-divergent processes of the theories of angelic processes
and of reactive angelic designs are isomorphic. In addition, if we consider the links
between CSP and the theory of reactive angelic designs, and in particular, the subset
characterised by A2 and NDRAD, then we can also ascertain that there is a subset
corresponding exactly to non-divergent CSP processes in our model.

6.4 Operators

In this section we present the definition of some important operators of the theory of
angelic processes. Similarly to the approach in Section 5.4 we study the relationship
between these operators and their counterparts as reactive angelic designs.

6.4.1 Angelic Choice

The angelic choice operator of this theory is also defined through the least upper
bound of the lattice of angelic processes, which is conjunction.

Definition 131 P tAP Q =̂ P ∧ Q

This operator is closed under AP as established by Theorem T.6.4.1.

Theorem T.6.4.1 Provided P and Q are AP-healthy,

AP(P tAP Q) = P tAP Q

It is also closed under the subset of non-divergent angelic processes, characterised
by NDAP, as established by Theorem T.6.4.2.

Theorem T.6.4.2 Provided P and Q are NDAP-healthy,

NDAP(P tAP Q) = P tAP Q

The angelic choice of two reactive angelic designs can be equally obtained through
the least upper bound of the lattice of angelic processes as established by the fol-
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lowing Theorem T.6.4.3.

Theorem T.6.4.3 Provided P and Q are RAD-healthy,

RA1(H1(P) tAP H1(Q)) = P tRAD Q

Proof.

RA1(H1(P) tH1(Q)) {Definition of t}

= RA1(H1(P) ∧ H1(Q)) {Theorem T.5.2.2}

= RA1 ◦ H1(P) ∧ RA1 ◦ H1(Q) {Assumption: P and Q are RAD-healthy}

= RA1 ◦ H1 ◦ RAD(P) ∧ RA1 ◦ H1 ◦ RAD(Q) {Theorem T.6.3.3}

= RAD(P) ∧ RAD(Q) {Assumption: P and Q are RAD-healthy}

= P ∧ Q {Definition of t}

= P tQ

In words, if we consider two reactive angelic designs P and Q, and after mapping
them through the function H1 we take the least upper bound tAP, followed by
RA1, then we obtain the same result as the least upper bound tRAD of P and Q.
Together with the result of Theorem T.6.4.2 this establishes that the angelic choice
operator for the subset of non-divergent processes is in correspondence with that of
the theory of reactive angelic designs.

However, when we consider the result in the opposite direction, that is, by con-
sidering two angelic processes P and Q mapped through RA1, followed by the
application of H1, then the result is not an equality.

Theorem T.6.4.4 Provided P and Q are AP-healthy,

H1(RA1(P) tRAD RA1(Q)) w P tAP Q

This is expected since the theory of angelic processes is less strict with regards to
enforcing RA1.

6.4.2 Demonic Choice

Like in the theory of reactive angelic designs, demonic choice is also defined using
the greatest lower bound, which is disjunction.
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Definition 132 P uAP Q =̂ P ∨ Q

This operator is closed under AP as established by Theorem T.6.4.5, and is also
closed under the subset of non-divergent processes as established by Theorem T.6.4.6.

Theorem T.6.4.5 Provided P and Q are AP-healthy, AP(P uQ) = P uQ.

Theorem T.6.4.6 Provided P and Q are NDAP-healthy,

NDAP(P uAP Q) = P uAP Q

The demonic choice of two reactive angelic designs P and Q can be equally ob-
tained through the greatest lower bound of the lattice of angelic processes as the
following Theorem T.6.4.7 establishes.

Theorem T.6.4.7 Provided P and Q RAD-healthy,

RA1(H1(P) uAP H1(Q)) = P uRAD Q

Proof.

RA1(H1(P) uAP H1(Q)) {Definition of uAP}

= RA1(H1(P) ∨ H1(Q)) {Theorem T.5.2.3}

= RA1 ◦ H1(P) ∨ RA1 ◦ H1(Q) {Assumption: P and Q are RAD-healthy}

= RA1 ◦ H1 ◦ RAD(P) ∨ RA1 ◦ H1 ◦ RAD(Q) {Theorem T.6.3.3}

= RAD(P) ∨ RAD(Q) {Assumption: P and Q are RAD-healthy}

= P ∨ Q {Definition of uRAD}

= P uRAD Q

If we map P and Q through H1, take the greatest lower bound uAP, and then apply
RA1, then the same result can be obtained by taking the greatest lower bound of
reactive angelic designs uRAD. With this result, together with the closure of uAP

under NDAP (Theorem T.6.4.6) it is possible to ascertain that the demonic choice
for non-divergent processes is in correspondence in both models.

In general, the greatest lower bound of the theory of angelic processes cannot
be replicated in the theory of reactive angelic designs, as established by the follow-
ing Theorem T.6.4.8.
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Theorem T.6.4.8 Provided P and Q are AP-healthy,

H1(RA1(P) uRAD RA1(Q)) w P uAP Q

This inequality is expected, since the model of angelic processes does not necessarily
enforce RA1 under all circumstances, while in the theory of reactive angelic designs
this is always the case.

6.4.3 Divergence: Chaos and Chaos of CSP

In our theory of angelic processes, the bottom of the lattice is defined by ChaosAP,
whose definition can be given in terms of the bottom of designs as follows.

Definition 133 ChaosAP =̂ AP(false ` true)

This result can be expanded into a design as established by Lemma L.6.4.1.

Lemma L.6.4.1 ChaosAP = (s.wait ` s ∈ ac′)

The precondition requires the component wait of the initial state s to be true, while
the postcondition keeps the state unchanged by requiring s to be in the set of final
states ac′. In other words, as long as the environment is waiting for an interaction,
the state is kept unchanged. However, once the environment is no longer waiting,
then ChaosAP diverges and the behaviour is described by true. ChaosAP is a unit
for angelic choice as established by Theorem T.6.4.9.

Theorem T.6.4.9 Provided P is AP-healthy, P tAP ChaosAP = P

In other words, if possible, the angel can avoid divergence.
In this theory, the process that corresponds to ChaosRAD is ChaosCSPAP, which

is defined through a design as follows.

Definition 134 ChaosCSPAP =̂ AP(¬ RA1(true) ` true)

Instead of false, the precondition requires ¬ RA1(true). As already discussed, it
is the negation of the precondition of a design that gives the behaviour in case
of possible non-termination. This design can be expanded as established by the
following Lemma L.6.4.2.

Lemma L.6.4.2 ChaosCSPAP = (s.wait ∨ ¬ RA1(true) ` s.wait ∧ s ∈ ac′)

In words, when the environment is waiting for an interaction, the state is kept
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unchanged. Otherwise, the design diverges, but still requires that RA1 holds, unlike
ChaosAP. This corresponds exactly to the mapping of ChaosRAD through the linking
function H1 as established by Theorem T.6.4.10.

Theorem T.6.4.10 H1(ChaosRAD) = ChaosCSPAP

Similarly, if we map ChaosCSPAP through RA1 we obtain the bottom of the lattice
of reactive angelic designs ChaosRAD.

Theorem T.6.4.11 RA1(ChaosCSPAP) = ChaosRAD

This follows from the general result of Theorem T.6.3.3.

6.4.4 Choice

The most nondeterministic process that does not diverge is defined as ChoiceAP and
can be defined through a design as follows.

Definition 135 ChoiceAP =̂ AP(true ` ac′ 6= ∅)

The precondition is true, while any set of final states ac′ is acceptable. The resulting
behaviour, constrained by AP, is established through the following Lemma L.6.4.3.

Lemma L.6.4.3 AP(true ` ac′ 6= ∅) = (true ` s ∈ ac′ C s.wait B RA1(true))

The precondition is also true, while the postcondition has a conditional on s.wait. As
is the case for every angelic process, when the process is waiting for the environment,
and s.wait is true, the state is kept unchanged. Otherwise, the only guarantee is
that there is a final state in ac′ satisfying RA1.

As previously discussed, the operator ChoiceAP is used to characterise algebra-
ically the subset of angelic processes that are non-divergent. Therefore, it is closed
under NDAP, and by definition, equally closed under AP. It is the counterpart to
ChoiceRAD of the theory of reactive angelic designs as established by the following
Theorems T.6.4.12 and T.6.4.13.

Theorem T.6.4.12 H1(ChoiceRAD) = ChoiceAP

Theorem T.6.4.13 RA1(ChoiceAP) = ChoiceRAD

The result of Theorem T.6.4.13 follows directly from Theorem T.6.4.12 and the
general result of Theorem T.6.3.3.
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6.4.5 Stop

In this theory, deadlock is modelled by StopAP, whose definition is similar to that
of the reactive angelic design StopRAD.

Definition 136 StopAP =̂ AP(true ` ∈ y
ac′(y.tr = s.tr ∧ y.wait))

The precondition is true, while the postcondition states that there is a final state
y in the set of final states ac′ where the trace is kept unchanged and the process
is always waiting for the environment. This definition can be directly obtained by
applying H1 to StopRAD as established by Theorem T.6.4.14.

Theorem T.6.4.14 H1(StopRAD) = StopAP

Similarly, StopRAD can be obtained by applying RA1 to StopAP as established by
the following Theorem T.6.4.15.

Theorem T.6.4.15 RA1(StopAP) = StopRAD

This is expected since StopAP is a non-divergent angelic process, and so it is in direct
correspondence with a reactive angelic design.

6.4.6 Skip

The process that always terminates successfully is characterised by SkipAP. Its
definition as a design is presented below.

Definition 137 SkipAP =̂ AP(true ` ∈ y
ac′(y.tr = s.tr ∧ ¬ y.wait))

The precondition is true, while the postcondition states that there is a final state y
in ac′ where the trace of events is kept unchanged and the component wait is false.
SkipAP is in correspondence with SkipRAD of the theory of reactive angelic designs
as established by the following Theorems T.6.4.16 and T.6.4.17.

Theorem T.6.4.16 H1(SkipRAD) = SkipAP

Theorem T.6.4.17 RA1(SkipAP) = SkipRAD

These results are expected since SkipAP and SkipRAD are both non-divergent pro-
cesses.
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6.4.7 Sequential Composition

In our theory of angelic processes, the definition of sequential composition is also
;Dac from the theory of angelic designs. When we consider two angelic processes P
and Q, the following closure result is obtained.

Theorem T.6.4.18 Provided P and Q are AP-healthy,

P ;Dac Q

=

AP

 ¬ (P f
f ;A true) ∧ ¬ (RA1(P t

f ) ;A (¬ s.wait ∧ RA2(Qf
f )))

`
RA1(P t

f ) ;A (s ∈ ac′ C s.wait B RA2(¬ Qf
f ⇒ RA1(Qt

f )))


This result is similar to that obtained in the theory of reactive angelic designs
(Theorem T.5.4.21). The differences are in that RA1 is no longer applied to P f

f

and Qf
f , the negation of the preconditions of P and Q, respectively. If P may

diverge, then the result is the bottom of the lattice ChaosAP. Similarly, since the
precondition of Q does not need to observe RA1, if Q diverges, then the sequential
composition also behaves like ChaosAP once P has finished interacting with the
environment.

Thus, in our theory of angelic processes, ;Dac is a sequential composition operator
that behaves differently to that of CSP, in that it can back propagate the divergence
of Q through P, irrespective of other interactions that happen in P, as long as,
eventually the environment may terminate its interactions with P and behave as Q.
We consider the following example Example 44.

Example 44 (StopAP tAP SkipAP) ;Dac ChaosAP = StopAP

Proof. Lemma L.H.3.6.

In this case, the angel avoids the divergence of ChaosAP by resolving the choice in
favour of deadlock. This is similar to the behaviour in the theory of reactive angelic
designs, since StopAP can prevent ChaosAP from ever being reached.

In general, the result of applying RA1 to the sequential composition of two re-
active angelic designs P and Q mapped through H1 is not equivalent to sequentially
composing these two processes in the theory of reactive angelic designs as established
by Theorem T.6.4.19.
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Theorem T.6.4.19 Provided P and Q are reactive angelic designs,

RA1(H1(P) ;Dac H1(Q)) v P ;Dac Q

This is because the possibility to diverge in P, in the theory of angelic processes,
can lead to immediate divergence, as already discussed. Thus, when the sequen-
tial composition of H1(P) and H1(Q) is mapped back through RA1, there is a
weakening.

Similarly, the reverse mapping through H1 of the sequential composition of two
angelic processes P and Q mapped through RA1 is also an inequality as established
by Theorem T.6.4.20.

Theorem T.6.4.20 Provided P and Q are AP-healthy,

H1(RA1(P) ;Dac RA1(Q)) w P ;Dac Q

This is due to the fact that the notion of divergence is different. In a sequential
composition of P and the bottom of the lattice ChaosAP, the result is also ChaosAP.
If we map ChaosAP through RA1 the result is ChaosRAD (Theorem T.6.4.11), which
when sequentially composed after the process RA1(P), still preserves the history
of events in P, whereas the corresponding process in the theory of angelic processes
does not. Hence, there is a strengthening.

However, if we consider the subset of non-divergent reactive angelic designs, char-
acterised by NDRAD, then Theorem T.6.4.19 can be strengthened into an equality
as established by Theorem T.6.4.21.

Theorem T.6.4.21 Provided P and Q are reactive angelic designs and NDRAD-
healthy,

RA1(H1(P) ;Dac H1(Q)) = P ;Dac Q

In addition, the operator ;Dac is closed under NDAP as established by the follow-
ing Theorem T.6.4.22.

Theorem T.6.4.22 Provided P and Q are angelic processes and NDAP-healthy,

NDAP(P ;Dac Q) = P ;Dac Q

Thus, as long as P and Q are non-divergent, ;Dac behaves exactly in the same way
as in the theory of reactive angelic designs. By extension, this also applies to the



196 CHAPTER 6. ANGELIC PROCESSES

subset of A2 processes, which do not exhibit angelic nondeterminism. Therefore, it
also applies to the subset of non-divergent CSP processes.

6.4.8 Prefixing

Similarly to the previous non-divergent processes, event prefixing has a definition
similar to that of a →RAD SkipRAD in the theory of reactive angelic designs.

Definition 138

a →AP SkipAP =̂ AP

true ` ∈ y
ac′

 (y.tr = s.tr ∧ a /∈ y.ref )

Cy.waitB
(y.tr = s.tr a 〈a〉)




The precondition is true, while the postcondition is exactly like that of the corres-
ponding reactive angelic design a →RAD SkipRAD (Section 5.4.8).

The event prefixing of both theories is in correspondence as established by the
following Lemmas L.6.4.4 and L.6.4.5.

Lemma L.6.4.4 H1(a →RAD SkipRAD) = a →AP SkipAP

Lemma L.6.4.5 RA1(a →AP SkipAP) = a →RAD SkipRAD

Similarly to the theory of reactive angelic designs, in general, the process a →AP P
denotes the compound process a →AP SkipAP ;Dac P, whose result as an angelic
process is established by Theorem T.6.4.23.

Theorem T.6.4.23 Provided P is AP-healthy,

a → P

=

AP


¬ (∃ y • ¬ y.wait ∧ y.tr = s.tr a 〈a〉 ∧ (RA2 ◦ PBMH(P f

f ))[y/s])

`

∃ y •

 (y.tr = s.tr ∧ a /∈ y.ref ∧ y ∈ ac′)
Cy.waitB
(y.tr = s.tr a 〈a〉 ∧ RA2 ◦ RA1 ◦ PBMH(P t

f )[y/s])




This result is a counterpart to that of Theorem T.5.4.29. The difference lies in the
precondition of the design: the negation of the precondition of P is not necessarily
required to observe RA1. In addition, the application of PBMH can be simplified



6.5. FINAL CONSIDERATIONS 197

by taking into account that every AP-healthy process is also PBMH-healthy.
In order to illustrate the behaviour of prefixing in the presence of divergence, we

consider the following Example 45.

Example 45 a →AP ChaosAP = ChaosAP

Proof. Lemma L.H.3.8.

In this case, the potential for divergence after performing event a leads to imme-
diate divergence. If instead we sequentially compose prefixing on the event a with
ChaosCSPAP, the behaviour is different as established by Lemma L.6.4.6.

Lemma L.6.4.6

a →AP ChaosCSPAP

=

AP(¬ ∈ y
ac′(s.tr a 〈a〉 ≤ y.tr) ` ∈ y

ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref ))

This result mirrors the behaviour of a →RAD ChaosRAD of the theory of reactive
angelic designs (Theorem T.G.8.8).

We revisit Example 35, by restating it in the theory of angelic processes as Ex-
ample 46.

Example 46 a →AP ChaosAP tAP b →AP SkipAP = b →AP SkipAP

Proof. Lemma L.H.3.8 and Theorem T.6.4.9.

Now, in the context of the theory of angelic processes, the possibility for divergence
is avoided altogether, and the result is the prefixing on the event b. As required, the
angel can avoid processes that may lead to divergence altogether, a property that is
not observed in the theory of reactive angelic designs.

6.5 Final Considerations

The motivation for the theory of angelic processes stems from the limitations of
the angelic choice of reactive angelic designs, which is unable to avoid divergence
completely, as in the case of Example 35. The possibility to avoid divergence is a
desirable property that is much closer in spirit to the refinement calculus. In order
to tackle this aspect, we have pursued a theory that drops RA1, and thus, is able
to undo the history of events if necessary. The result is a theory of angelic designs,
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whose pre and postconditions observe a subset of the healthiness conditions of the
theory of reactive angelic designs, such as RA2 and PBMH.

We have studied the relationship between the theories and established that there
is a Galois connection between them. As illustrated in Figures 1.1 and 1.6, react-
ive angelic designs can be mapped into this theory by turning them into designs,
through H1, while angelic processes can be mapped in the opposite direction by
applying RA1. We have found that the subset of non-divergent angelic processes,
characterised by NDAP, is isomorphic to the subset of non-divergent reactive angelic
designs characterised by NDRAD. Together with the linking results from Chapter 5
between RAD and CSP, this implies that the subset of non-divergent CSP processes
has exactly the same semantics in this model.

Since every reactive angelic design can be mapped into the model of angelic pro-
cesses and back, we can ascertain that there is a subset in AP that characterises
all reactive angelic designs. This is essentially a subset whose negated precondi-
tions satisfy RA1. If we consider the subset of RAD that is isomorphic to CSP
(characterised by A2), it is possible to postulate that there is also a subset in AP
characterising every CSP process.

However, since we allow the history of events to be undone when ok is false,
not all operators are necessarily in correspondence, as is the case, for example, with
sequential composition. A parallel can be drawn in the theory of CSP, where this
problem corresponds to the possibility of characterising CSP processes as designs,
rather than reactive designs. The difference between these two can clearly be seen
from the fact that H1 and R1 are not commutative. While such a theory of designs
could possibly characterise CSP processes, this would mean that the definition of
the operators would need to change in order to accommodate such a model, thus
negating the benefits of unification in the UTP.



Chapter 7

Conclusions

In this chapter we conclude this thesis by summarizing our contributions. In addi-
tion, we discuss lines for future work.

7.1 Contributions

As previously discussed, angelic nondeterminism has been used in a variety of dif-
ferent contexts, such as in problems whose solutions may involve a combination of
search and backtracking. This is the case, for example, when modelling game-like
scenarios, theorem-proving tactics, or constraint satisfaction problems. In general,
angelic nondeterminism enables a great degree of abstraction in the context of formal
models and specifications. Its characterisation in the context of process algebras,
such as CSP, however, has to the best of our knowledge, been elusive. The existing
approaches have either considered notions of angelic nondeterminism [18] different
from that of refinement calculi, or different CSP semantics [43].

Angelic nondeterminism has traditionally been studied in the context of theories
of correctness for sequential computations, such as in the refinement calculus [29,
31, 32], where it is characterised as the least upper bound of the lattice of monotonic
predicate transformers. Isomorphic models include Rewitzky’s theory of binary
multirelations [35], which is the foundation of our approach.

Our first contribution in Chapter 3 is an extended model of binary multirelations
that caters for possibly non-terminating computations. This model provides a com-
plementary view of our theory of angelic designs, which allows for preconditions that
refer to the later or final values of a computation, as required for characterising CSP
processes. Unlike purely sequential computations, in a reactive system, there is a
rich sequence of interactions, whose history cannot be undone even in the case of
divergence, such as in the case of the process a → Chaos.

199
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Our work is based on the UTP of Hoare and He [39], a relational framework
suitable for characterising different programming paradigms. As such, our results
are applicable not only to CSP, but also to any other algebra of (state-rich) reactive
systems whose semantics is or can be described in the UTP. Our theories are
complete lattices and angelic and demonic choice are modelled as the meet and
join, respectively. Each and every one of them is appropriately justified by studying
its relationship with the established theories, which is central to the unification of
theories in the UTP.

Our theory of angelic designs generalises the theory of Cavalcanti et al. [38] to
include the variables ok and ok ′ for capturing termination. It caters for non-H3
designs, as required for specifying CSP processes like Chaos, whose precondition,
as a reactive design, refers to the after value of the trace of events. Its relationship
with the theories of [38] and of extended binary multirelations sheds light on the
definition of less trivial operators. Sequential composition, for instance, due to the
use of non-homogeneous relations, is not relational composition like in other UTP
theories. Apart from the relational characterisation of ok and ok ′, this suggests itself
as a form of a Kleisli composition through the results established between the theory
of angelic designs and binary multirelations, and its respective characterisation as
the category of multirelations or multifunctions [79]. The result obtained for the
sequential composition of angelic designs is pleasing, in that, using the operators
;Dac and ;A, we have a definition similar to that in the original theory of designs.

The theory of reactive angelic designs considers the encoding of the observational
variables ref , tr and wait of CSP as state components. This enables angelic choice
over the value of these components in final or after states. Rather pleasingly, like
the processes in the theory of CSP [39, 44], every RAD process can be specified
in terms of designs, that is, pre and postcondition pairs, but now we use angelic
designs. Unlike other attempts [18, 43], our approach consists of a natural extension
of the concept of angelic nondeterminism from a theory of sequential correctness to a
model of processes. This approach is strongly justified by the relationship between
the theories, their isomorphic subsets, and by the correspondence of operators in
both theories. We have a theory of CSP that preserves its existing semantics and
that can be used to describe both angelic and demonic nondeterminism.

An important result obtained in the theory of reactive angelic designs pertains
to the capability of the angel to avoid divergence. However, unlike in a theory of
correctness for sequential computations, the history of interactions, as recorded by
traces, cannot simply be undone, even in the presence of divergence. The healthiness
condition RA1, the counterpart to R1 of CSP in the model of reactive angelic
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designs, ensures that this is the case under all circumstances.
Our final theory does not adopt RA1 as a healthiness condition and as such

allows the angel to discard traces of events leading to divergence. It is a theory of
angelic designs: a complete lattice whose bottom ChaosAP is not the Chaos of CSP.
It is a process that once executed behaves arbitrarily, and may even undo the history
of interactions. More importantly, in an angelic choice involving other interactions,
it becomes possible for the angel to undo the history of events, if necessary, and
avoid divergence. This is a property much closer in spirit to the angelic choice of
the refinement calculus.

As a consequence not every operator preserves the original semantics of CSP.
That is the case of the sequential composition operator, for instance. However, the
subset of non-divergent angelic processes is isomorphic to the subset of non-divergent
reactive angelic designs. Moreover, each of the operators studied is closed within
this subset.

In summary, we have two closely related theories for characterising angelic non-
determinism in CSP whose algebraic properties are clearly distinct. The theory
of reactive angelic designs is a natural extension of CSP, where the angelic choice
cannot undo the history of events, but which preserves the semantics of CSP. On
the other hand, the theory of angelic processes possesses algebraic properties closer
to those of the refinement calculus, but does not necessarily preserve the semantics
of all CSP processes. Nevertheless, the semantics of the subset of non-divergent
processes is maintained, and so our initial hypothesis is satisfied.

7.2 Future Work

The work presented in this thesis lays the foundation for the complete development
of process algebras with angelic nondeterminism in the wider context of state-rich re-
active systems. Our approach has focused mainly on CSP, however due to the UTP
basis of our work, our results are equally applicable to other process calculi, in-
cluding, for example, Circus, which is a combination of CSP and Z, and whose
semantics [22] is also given using the UTP. Depending on the desired properties
of the algebra, a future approach to incorporating our results in Circus needs to
consider the implications of the treatment of divergence, which in the case of our
model of angelic processes, is rather different from the CSP theory.

A practical application of angelic nondeterminism in Circus can be found, for
instance, in the modelling strategy of [80], which uses Circus Time, a timed version
of Circus. Therefore, an interesting avenue for future work includes studying the
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role of angelic nondeterminism in timed versions of process calculi, such as Timed
CSP [81] and Circus Time [50, 76–78]. A concern that is likely to surface is whether
the angel should be allowed to change time in order to avoid divergence, an issue
similar to the problem posed by RA1. Such a construction would enable angelic
nondeterminism to be employed as a specification abstraction in a theory that also
includes time.

While we have studied a number of CSP operators, a complete theory of angelic
nondeterminism for CSP requires other important operators to be considered, such
as hiding and parallel composition. Recursion can be treated in a similar way to
other UTP theories as the weakest fixed point. For many of these, the use of our
lifting operator ∈ y

ac′ is likely to be useful and give rise to definitions similar to those
in the original theory of CSP, however, some operators, such as parallel composition,
require further work. For instance, in the CSP theory, parallel composition is defined
using the parallel by merge technique [39] which, in the context of our theory,
requires further support for renaming and changing the fields of records.

Furthermore, the algebraic properties of many of the operators have yet to be
fully explored. For example, in the case of the external choice operator, there are
other alternative and plausible definitions that preserve the CSP semantics, whose
algebraic properties, in the context of processes with angelic nondeterminism, are
different. In the case of hiding, and similarly to the case of sequential composition,
we hypothesize that angelic choice is likely not to be distributive, however future
work is necessary in order to propose and establish further laws. A related, and
interesting, path for future work is the study of the encoding of additional healthiness
conditions [39, 44] of CSP and whether the addition of angelic choice may be needed
to enable or simplify the algebraic specification of these.

Even in the context of the theory of angelic designs there is a wide scope for
further work. While we have established links between that theory, the extended
model of binary multirelations and the PBMH theory, it would also be beneficial
to have a direct link with the weakest precondition model. The model of extended
binary multirelations is also ameanable to further study. For instance, recently
Guttmann [65] has proposed a model of binary multirelations in the context of
general correctness. A link could be established with this theory, and perhaps, with
other models of binary multirelations [36]. The links with the BMH⊥ theory open
the door for our theories to be studied in the context of multirelations.

From a practitioner’s point of view a theory becomes significantly more useful
once there is a toolkit. There may be different approaches for tackling this aspect.
For instance, one approach could involve the mechanisation of our theories using a
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theorem prover, which would not only help practitioners, but also help further val-
idate our theories, proofs and examples. Approaches for mechanising UTP theories
include those of Foster et al. [82] and Feliachi et al. [83] using Isabelle/HOL, Zeyda
et al. [84] and Oliveira et al. [22] using ProofPower/Z, and others [85, 86]. Particular
issues that would need to be considered include reasoning about families of theories
and encoding record types, with the capability to change and rename fields as well
as type check them, as required to appropriately model sets of final states.

Finally, since the concept of angelic nondeterminism has been used in a vari-
ety of different contexts, it would be useful to conduct case studies. For example,
in [80] angelic nondeterminism is employed to facilitate the faithful characterisation
of idealised time models of control systems using Circus Time. In that context, the
specification models are constructed from Simulink counterparts which, embody a
notion of infinitely fast computations, while the respective implementation mod-
els capture the constraints of actual real-time computers. The link between these
two is established through an assertion that requires the values output by the im-
plementation to be in agreement with the values of the simulation model. Angelic
nondeterminism is employed as an abstract specification mechanism, which, through
back propagation enforces the correct choices in the model. A necessary prerequis-
ite for such a case study is the treatment of parallel composition which features
prominently.

We envision that many problems that have traditionally been tackled using an-
gelic nondeterminism could be just as easily modelled using our theories, with the
added benefit that they can be modelled in the context of process algebras. It re-
mains to be seen how the inclusion of angelic nondeterminism can be fully exploited
in the development of refinement strategies for the formal specification and verific-
ation of complex state-rich reactive systems. An example to be considered is the
refinement of a specification with angelic nondeterminism to an algorithm which
uses explicit backtracking. Related to this construction is the relationship between
our theories and that of concurrent logic programming [39], which has yet to be
explored.

In summary, we have now presented the first extension of CSP that includes a
notion of angelic nondeterminism compatible with that of refinement calculi. It is
a solid foundation for the extension of state-rich process algebra for refinement. As
such, it provides a basis for further work on theory, so as to explore the algebra,
techniques, and applications.
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Appendix A

UTP: Relations, Designs and CSP

A.1 Theory of Relations

A.1.1 Conditional

Lemma L.A.1.1 P C c B (Q ⇒ R) = (true C c B Q)⇒ (P C c B R)

Lemma L.A.1.2 Provided ac′ is not free in c,

(P C c B Q) ;A R = (P ;A R) C c B (Q ;A R)

Lemma L.A.1.3 ¬ (P C c B Q) = (¬ P C c B ¬ Q)

Lemma L.A.1.4 P C c B (Q ∨ R) = (P C c B Q) ∨ (P C c B R)

Lemma L.A.1.5 ¬ (false C c B Q) = true C c B ¬ Q

Lemma L.A.1.6 ¬ (true C c B Q) = false C c B ¬ Q

A.1.2 Predicate Calculus

Lemma L.A.1.7 (P ∧ Q)⇔ P = P ⇒ Q

Lemma L.A.1.8 (P ∨ Q)⇔ (P ∨ R) = P ∨ (Q ⇔ R)
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A.2 Theory of Designs

A.2.1 Healthiness Conditions

H1

Lemma L.A.2.1 H1(P C c B Q) = H1(P) C c B H1(Q)

Lemma L.A.2.2 H1(P ∧ Q) = H1(P) ∧ H1(Q)

Lemma L.A.2.3 H1(P ∨ Q) = H1(P) ∨ H1(Q)

H2

Definition 139 H2A(P) =̂ ¬ P f ⇒ (P t ∧ ok ′)

Lemma L.A.2.4 (H2A ⇔ H2) The definition of H2A implies that the fixed
points are the same as those of H2,

A.2.2 Lemmas

Lemma L.A.2.5 Provided ok ∧ P and ok ′ is not free in P, (P ` Q)t = Q.

Lemma L.A.2.6 Provided ok ′ is not free in P, ok ∧ ¬ (P ` Q)f = ok ∧ P.

Lemma L.A.2.7 ∃ ok ′ • (P ` Q) = (ok ∧ P)⇒ Q

Lemma L.A.2.8

(¬ P f ` P t) t (¬ Qf ` Qt)

=

(¬ P f ∨ ¬ Qf ` (¬ P f ⇒ P t) ∧ (¬ Qf ⇒ Qt))

Lemma L.A.2.9 Provided P and Q are designs,

∃ ok ′ • (P ∧ Q) = (∃ ok ′ • P) ∧ (∃ ok ′ • Q)

Lemma L.A.2.10

(¬ P f ` P t) t (¬ Qf ` Qt)

=

(¬ P f ∨ ¬ Qf ` (P f ∧ Qt) ∨ (P t ∧ Qf ) ∨ (P t ∧ Qt))
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Lemma L.A.2.11 (P ` Q)f = ok ⇒ ¬ P f

Lemma L.A.2.12 (P ` Q)t = (ok ∧ P t)⇒ Qt

Lemma L.A.2.13 ok ∧ ¬ ∃ ac′ • (P ` Q)f = ok ∧ ¬ ∃ ac′ • ¬ P f

Lemma L.A.2.14 Provided ok is not free in P and Q,

((P ` Q)f ` (P ` Q)t) = (P ` Q)

Lemma L.A.2.15 Provided ok ′ is not free in P and Q,

(¬ ∃ ac′ • (P ` Q)f ` (P ` Q)t) = (¬ ∃ ac′ • ¬ P ` Q)

Lemma L.A.2.16 Provided ok ′ is not free in P and Q,

(¬ (P ` Q)f
f ` (P ` Q)t

f ) = (Pf ` Qf )

A.3 Theory of CSP

A.3.1 Operators

Lemma L.A.3.1 >R 2R SkipR = SkipR

Lemma L.A.3.2 Provided P is a CSP process,

P 2R StopR = P

Lemma L.A.3.3

a →R StopR = R(true ` wait ′ ∧ ((a /∈ ref ′ ∧ tr ′ = tr) ∨ (tr ′ = tr a 〈a〉)))

Lemma L.A.3.4

a →R ChoiceR = R

 true
`
(tr ′ = tr ∧ a /∈ ref ′ ∧ wait ′) ∨ (tr a 〈a〉 ≤ tr ′)


Lemma L.A.3.5

a →R ChaosR = R(¬ (tr a 〈a〉 ≤ tr ′) ` wait ′ ∧ tr ′ = tr ∧ a /∈ ref ′)
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Appendix B

Extended Binary Multirelations

B.1 Healthiness Conditions

B.1.1 BMH0

Definition 12 BMH =̂ ∀ s, ss0, ss1 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss1)⇒ (s, ss1) ∈ B

Lemma L.3.2.1

BMH0

⇔
(
∀ s, ss0, ss1 •
((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1)⇒ (s, ss1) ∈ B

)
∧
BMH


Lemma L.B.1.1 Provided B is BMH0-healthy,(

∃ s0 : State, ss0, ss1 : P State⊥
• ((s0, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ ⊥ ∈ ss0 ∧ ⊥ ∈ ss1)

)
=

(∃ s0 : State, ss1 : P State⊥ • (s0, ss1) ∈ B ∧ ⊥ ∈ ss1)

B.1.2 BMH1

Lemma L.B.1.2

BMH1
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⇔

∀ s : State, ss : P State⊥ • (s, ss ∪ {⊥}) ∈ B ∧ ⊥ /∈ ss ⇒ (s, ss) ∈ B

B.2 Healthiness Conditions as Fixed Points

B.2.1 bmh0

Lemma L.3.3.1 BMH0⇔ bmh0(B) = B

Lemma L.3.3.5 bmh0 ◦ bmh0(B) = bmh0(B)

B.2.2 bmh1

Lemma L.3.3.2 BMH1⇔ bmh1(B) = B

Lemma L.3.3.6 bmh1 ◦ bmh1(B) = bmh1(B)

B.2.3 bmh2

Lemma L.3.3.3 BMH2⇔ bmh2(B) = B

Lemma L.3.3.7 bmh2 ◦ bmh2(B) = bmh2(B)

B.2.4 bmh3

Lemma L.3.3.4 BMH3⇔ bmh3(B) = B

Lemma L.3.3.8 bmh3 ◦ bmh3(B) = bmh3(B)

B.2.5 bmh0 and bmh1

Lemma L.B.2.1

bmh0 ◦ bmh1(B)

=
s : State, ss : P State⊥∣∣∣∣∣ ∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)

∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss))
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Properties

Lemma L.B.2.2 bmh0 ◦ bmh1(B) = bmh1 ◦ bmh0(B)

B.2.6 bmh1 and bmh2

Lemma L.B.2.3

bmh1 ◦ bmh2(B)

=

{
s : State, ss : P State⊥∣∣∣ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B) ∧ ((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B)

}

Lemma L.B.2.4

bmh2 ◦ bmh1(B)

=

{
s : State, ss : P State⊥∣∣∣ ((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B) ∧ ((s, ∅) ∈ B)⇒ (s, {⊥}) ∈ B)

}

It can be conclued from Lemma L.B.2.4 and Lemma L.B.2.3 that the functional
application of bmh1 ◦ bmh2 is stronger than that of bmh2 ◦ bmh1. The order in
which these two healthiness conditions are functionally composed is important, since
they are not necessarily commutative. The following counter-example illustrates the
issue for a relation that is not BMH2-healthy.

Counter-example 5

bmh2 ◦ bmh1({s : State, ss : P State⊥ | ss = {⊥}}) {Lemma L.B.2.4}

= {s : State, ss : P State⊥ | ss = {⊥} ∨ ss = ∅}

bmh1 ◦ bmh2({s : State, ss : P State⊥ | ss = {⊥}}) {Lemma L.B.2.3}

= ∅

B.2.7 bmh2 and bmh3

Lemma L.B.2.5

bmh2 ◦ bmh3(B)

=
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s : State, ss : P State⊥∣∣∣ ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B ∧ ((s, ∅) ∈ B ⇒ (s, {⊥}) ∈ B)

}

Lemma L.B.2.6

bmh3 ◦ bmh2(B)

={
s : State, ss : P State⊥∣∣∣ ((s, ∅) ∈ B ∨ ⊥ /∈ ss) ∧ (s, ss) ∈ B ∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

}

The functions bmh2 and bmh3 are not in general commutative. The following
counter-example illustrates the issue for a relation that is not BMH2-healthy.

Counter-example 6

bmh2 ◦ bmh3({s : State, ss : P State⊥ | ss = {⊥} ∨ ss = {s}}) {Lemma L.B.2.5}

= {s : State, ss : P State⊥ | ss = {s}}

bmh3 ◦ bmh2({s : State, ss : P State⊥ | ss = {⊥} ∨ ss = {s}}) {Lemma L.B.2.6}

= ∅

B.2.8 bmh1 and bmh3

Lemma L.B.2.7

bmh3 ◦ bmh1(B)

=
s : State, ss : P State⊥∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ∨ (s, ∅) ∈ B ∨ ⊥ /∈ ss)

∧
((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B)


Lemma L.B.2.8

bmh1 ◦ bmh3(B)

=



B.2. HEALTHINESS CONDITIONS AS FIXED POINTS 213
s : State, ss : P State⊥∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ ((s, ss ∪ {⊥}) ∈ B ∨ (s, ss) ∈ B))

∨
(⊥ /∈ ss ∧ (s, ss) ∈ B)


The functions bmh3 and bmh1 do not necessarily commute. The following

counter-example shows this for a relation that is not BMH3-healthy. In fact, the
functional application bmh3 ◦ bmh1 is not suitable as the counter-example shows
that we have a fixed point.

Counter-example 7

bmh3 ◦ bmh1({s : State, ss : P State⊥ | ss = {⊥, s} ∨ ss = {⊥}}){Lemma L.B.2.7}

= {s : State, ss : P State⊥ | ss = {⊥, s} ∨ ss = {⊥}}

bmh1 ◦ bmh3({s : State, ss : P State⊥ | ss = {⊥, s} ∨ ss = {⊥}}){Lemma L.B.2.8}

= ∅

B.2.9 bmh0,1,2

Lemma L.3.3.9

bmh0,1,2(B) =

 s, ss

∣∣∣∣∣∣∣
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)

∧ ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


Theorem T.3.3.1 BMH0 ∧ BMH1 ∧ BMH2⇔ bmh0,1,2(B) = B

Lemma L.3.3.10 (bmh0,1,2(B) = B)⇒ BMH0

Lemma L.3.3.11 (bmh0,1,2(B) = B)⇒ BMH1

Lemma L.3.3.12 (bmh0,1,2(B) = B)⇒ BMH2

Lemma L.3.3.13 Provided B is BMH0−BMH2-healthy, bmh0,1,2(B) = B.

Lemma L.B.2.9 bmh0,1,2 ◦ bmh0,1,2(B) = bmh0,1,2(B)

Lemma L.B.2.10

bmh0,1,2(B)
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=

s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)

∨
((s, {⊥}) /∈ B ∧ (s, ∅) /∈ B)

∧ (((s, ac′) ∈ B ; ac ⊆ ss) ∧ ⊥ /∈ ss)

∨
((s, ac′ ∪ {⊥}) ; ac ⊆ ss)






Lemma L.B.2.11

(s, ss) ∈ bmh0,1,2(B)

=
((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

∧

∃ ss0 •
(

((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)

∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

)


Lemma L.B.2.12

∃ ss1 • (s, ss1) ∈ bmh0,1,2(B) ∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)

= ((s, {⊥}) ∈ B ⇔ (s, ∅) ∈ B)

∧
∃ ss0 • ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B) ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


Lemma L.B.2.13 (s, ∅) ∈ bmh0,1,2(B) = (s, ∅) ∈ B ∧ (s, {⊥}) ∈ B

Lemma L.B.2.14 (s, {⊥}) ∈ bmh0,1,2(B) = (s, ∅) ∈ B ∧ (s, {⊥}) ∈ B

Lemma L.B.2.15

B1 ⊆ B0

⇔

∀ s : State, ss : P State •

 (s, ss) ∈ B1 ⇒ (s, ss) ∈ B0

∧
(s, ss ∪ {⊥}) ∈ B1 ⇒ (s, ss ∪ {⊥}) ∈ B0
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B.2.10 bmh0,1,3

Lemma L.B.2.16

bmh0 ◦ bmh1 ◦ bmh3(B)

=

s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣
∃ ss0 •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)

∧
(s, ∅) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


∨
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)


Lemma L.B.2.17

∃ ss0 •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)

∧
ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


=

∃ ss0 •

 ((s, ss0) ∈ B ∨ (s, ss0 ∪ {⊥}) ∈ B)

∧
ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

 ∨ (s, {⊥}) ∈ B

B.2.11 bmh0,1,3,2

Lemma L.3.3.14

bmh0 ◦ bmh1 ◦ bmh3 ◦ bmh2(B)

=
s, ss

∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)

∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
(∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)




Theorem T.3.3.2 BMH0 ∧ BMH1 ∧ BMH2 ∧ BMH3⇔ bmh0,1,3,2(B) = B

Lemma L.3.3.15 BMH0 ∧ BMH1 ∧ BMH2 ∧ BMH3⇒ bmh0,1,3,2(B) = B

Lemma L.3.3.16 bmh0,1,2 ◦ bmh0,1,3,2(B) = bmh0,1,3,2(B)
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Lemma L.3.3.17 (bmh0,1,3,2(B) = B)⇒ BMH3

Lemma L.B.2.18 bmh0,1,3,2 ◦ bmh0,1,3,2(B) = bmh0,1,3,2(B)

Lemma L.B.2.19

(s, ss) ∈ bmh0,1,3,2(B)

=
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)

∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss)




Lemma L.B.2.20

∃ ss1 : P State⊥ • (s, ss1 ∪ {⊥}) ∈ bmh0,1,3,2(B) ∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)

⇔

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)

Lemma L.B.2.21

∃ ss1 : P State⊥ • (s, ss1) ∈ bmh0,1,3,2(B) ∧ ss1 ⊆ ss ∧ (⊥ ∈ ss1 ⇔ ⊥ ∈ ss)

⇔
((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B)

∨ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 : P State⊥ • (s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss




Lemma L.B.2.22 (s, ∅) ∈ bmh0,1,3,2(B) = (s, ∅) ∈ B ∧ (s, {⊥}) ∈ B

Lemma L.B.2.23 (s, {⊥}) ∈ bmh0,1,3,2(B) = (s, ∅) ∈ B ∧ (s, {⊥}) ∈ B

Lemma L.B.2.24 Provided B is BMH0 and BMH2-healthy,

B = (B −B {ss : P State⊥ | ⊥ ∈ ss}) ∪ {s0 : State, ss : P State⊥ | (s0, ∅) ∈ B}

⇔

BMH3
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B.3 Operators

B.3.1 Angelic Choice

Lemma L.3.5.1 (x :=BM⊥ e) tBM⊥ (x :=BM e) = (x :=BM e)

Lemma L.3.5.2 >BM⊥ tBM⊥ B = >BM⊥

Lemma L.3.5.3 ⊥BM⊥ tBM⊥ B = B

B.3.2 Demonic Choice

Lemma L.3.5.4 (x :=BM e) uBM⊥ (x :=BM⊥ e) = (x :=BM⊥ e)

Lemma L.3.5.5 ⊥BM⊥ uBM⊥ B = ⊥BM⊥

Lemma L.3.5.6 >BM⊥ uBM⊥ B = B

B.3.3 Sequential Composition

Theorem T.3.5.1 Provided B0 is BMH0-healthy,

B0 ;BM⊥ B1 =

 {s0, ss0 | (s0, State⊥) ∈ B0}
∪
{s0, ss0 | (s0, {s1 | (s1, ss0) ∈ B1}) ∈ B0}


Lemma L.3.5.7 >BM⊥ ;BM⊥ B = >BM⊥

Lemma L.3.5.8 ⊥BM⊥ ;BM⊥ B = ⊥BM⊥

B.4 Relationship with Binary Multirelations

B.4.1 bmb2bm

Theorem T.3.6.1 (bmb2bm-is-bmhup)

bmhup ◦ bmb2bm(bmh0,1,3,2(B)) = bmb2bm(bmh0,1,3,2(B))

Lemma L.3.6.1 BMH⇔ bmhup(B) = B
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Lemma L.B.4.1

bmb2bm(bmh0,1,3,2(B))

=

s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss
∨

(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



Lemma L.B.4.2 (s, ∅) ∈ bmb2bm(bmhup) = (s, ∅) ∈ B

Lemma L.B.4.3 (s, {⊥}) ∈ bmb2bm(bmhup) = (s, ∅) ∈ B

Theorem T.B.4.1 Provided B is BMH0,1,2,3-healthy,

bmhup ◦ bmb2bm(B) = bmb2bm(B)

Lemma L.B.4.4

bmb2bm(bmh0,1,3,2(B))

=

s : State, ss : P State⊥∣∣∣∣∣∣∣∣∣∣∣∣∣

((s, ∅) ∈ B ∧ (s, {⊥}) ∈ B) ∧ ⊥ /∈ ss
∨

(s, {⊥}) /∈ B ∧ (s, ∅) /∈ B
∧
∃ ss0 •

(
(s, ss0) ∈ B ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss0 ∧ ⊥ /∈ ss

)



B.4.2 bm2bmb

Theorem T.3.6.2

bmh0,1,3,2 ◦ bm2bmb(bmhup(B)) = bm2bmb(bmhup(B))

Theorem T.3.6.3 Provided B is BMH0,1,2,3-healthy, bm2bmb ◦ bmb2bm(B) = B,

Theorem T.3.6.4 Provided B is BMH-healthy, bmb2bm ◦ bm2bmb(B) = B,
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Lemma L.B.4.5

bm2bmb(bmhup(B))

=
s : State, ss : P State⊥∣∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
(s, ∅) ∈ B


Lemma L.B.4.6

bm2bmb(bmhup(B))

=
s : State, ss : P State⊥∣∣∣∣∣∣∣
∃ ss0 • (s, ss0) ∈ B ∧ ⊥ /∈ ss0 ∧ ss0 ⊆ ss ∧ ⊥ /∈ ss
∨
(s, ∅) ∈ B


B.5 Set Theory

Lemma L.B.5.1

∃ ss0 • (s, ss0 ∪ {⊥}) ∈ B ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

⇔

∃ ss0 • (s, ss0) ∈ B ∧ ss0 ⊆ (ss ∪ {⊥}) ∧ ⊥ ∈ ss0

Lemma L.B.5.2 (A = B ∪ {x} ∧ x /∈ B)⇔ (A \ {x} = B ∧ x ∈ A)

Lemma L.B.5.3 {x} ⊆ A⇔ x ∈ A

Lemma L.B.5.4 x /∈ A⇔ (∀ y • y ∈ A⇒ y /∈ {x})

Lemma L.B.5.5 (A = (B ∪ {x}) ∧ x ∈ B)⇔ (A = B ∧ x ∈ B)

Lemma L.B.5.6

((A ∪ {x}) ⊆ (B ∪ {x}) ∧ x /∈ A ∧ x /∈ B)⇔ (A ⊆ B ∧ x /∈ A ∧ x /∈ B)
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Appendix C

Angelic Designs (A)

C.1 Healthiness Conditions

C.1.1 A0

Definition 87 A0(P) =̂ P ∧ ((ok ∧ ¬ P f )⇒ (ok ′ ⇒ ac′ 6= ∅))

Theorem T.4.2.1 A0 ◦ A0(P) = A0(P)

Theorem T.4.2.2 (P v Q)⇒ (A0(P) v A0(Q))

Theorem T.4.2.3 If P is a design so is A0(P).

A0(P) = (¬ P f ` P t ∧ ac′ 6= ∅)

Theorem T.4.2.4 Provided P and Q are A0-healthy,

A0(P ∧ Q) = P ∧ Q

Theorem T.4.2.5 Provided P and Q are A0-healthy designs,

A0(P ∨ Q) = P ∨ Q

Theorem T.C.1.1 A0(P ∧ Q) = A0(P) ∧ A0(Q)

Theorem T.C.1.2 A0 ◦ H1 ◦ H2(P) = (¬ P f ` P t ∧ ac′ 6= ∅)

Theorem T.C.1.3 H1 ◦ H2 ◦ A0(P) = A0 ◦ H1 ◦ H2(P)

221
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Lemma L.C.1.1 Provided ok ′ not free in e, A0(P)[e/s] = A0(P[e/s]).

Lemma L.C.1.2 A0(P)o = Po ∧ ((ok ∧ ¬ P f )⇒ (o ⇒ ac′ 6= ∅))

Lemma L.C.1.3 A0(P)f = P f

Lemma L.C.1.4 A0(P)t = P t ∧ ((ok ∧ ¬ P f )⇒ ac′ 6= ∅)

C.1.2 A1

Theorem T.4.2.6 A1 ◦ A1(P0 ` P1) = A1(P0 ` P1)

Theorem T.4.2.7 (P v Q)⇒ A1(P) v A1(Q)

C.1.3 A

Theorem T.4.2.8 Provided P t satisfies PBMH, A0 ◦ A1(P) = A1 ◦ A0(P)

Theorem T.4.2.9 A ◦ A(P) = A(P)

Theorem T.4.2.10 H1 ◦ H2 ◦ A(P) = A ◦ H1 ◦ H2(P)

Theorem T.C.1.4 P v Q ⇒ A(P) v A(Q)

Lemma L.C.1.5 Provided ok ′ is not free in e, A(P)[e/s] = A(P[e/s])

Lemma L.C.1.6 s.x = v ∧ P ⇔ s.x = v ∧ P[s ⊕ {x 7→ v}/s]

Lemma L.C.1.7 Provided P is an A-healthy design, P f = ok ⇒ P f .

Lemma L.C.1.8 Provided P is an A-healthy design,

P t = ((ok ∧ ¬ P f )⇒ (P t ∧ ac′ 6= ∅))

Lemma L.C.1.9 Provided P is an A-healthy design,

(¬ ∃ ac′ • PBMH(P f ) ` PBMH(P t) ∧ ac′ 6= ∅)

=

(¬ ∃ ac′ • P f ` P t)
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Theorem T.C.1.5 Provided P is an A-healthy design,

H3Dac(P) = (¬ ∃ ac′ • P f ` P t)

C.1.4 A2

Theorem T.4.2.11 A2(P) = P[∅/ac′] ∨ (∃ y • P[{y}/ac′] ∧ y ∈ ac′)

Theorem T.4.2.12 A2 ◦ A2(P) = A2(P)

Theorem T.4.2.13 P v Q ⇒ A2(P) v A2(Q)

Theorem T.4.2.14 A2(P ∨ Q) = A2(P) ∨ A2(Q)

Theorem T.C.1.6 (A2-idempotent) Provided P is PBMH-healthy,

A2 ◦ A2(P) = A2(P)

Lemmas

Lemma L.4.2.3 A2(P ` Q) = (¬ A2(¬ P) ` A2(Q))

Lemma L.C.1.10 A2(P) = ∃ ac0 • P[{s | {s} = ac0}/ac′] ∧ ac0 ⊆ ac′

Lemma L.C.1.11

A2 ◦ A(¬ P f ` P t)

=

(¬ A2 ◦ PBMH(P f ) ` A2(PBMH(P t) ∧ ac′ 6= ∅))

Lemma L.C.1.12 A2(false) = false

Lemma L.C.1.13 A2(true) = true

Lemma L.C.1.14 Provided ac′ is not free in P,

A2(∃ y • y ∈ ac′ ∧ P) = ∃ y • y ∈ ac′ ∧ P

Properties

Lemma L.C.1.15 Provided ac′ is not free in P, A2(P ∧ Q) = P ∧ A2(Q).
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Lemma L.C.1.16 Provided ac′ not free in P, A2(P) = P.

Lemma L.C.1.17 A2(P ∧ ac′ 6= ∅) = ∃ z • P[{z}/ac′] ∧ z ∈ ac′

Lemma L.C.1.18 A2(P ∧ ac′ = ∅) = P[∅/ac′]

Lemma L.C.1.19 A2(P)[∅/ac′] = P[∅/ac′]

Lemma L.C.1.20 Provided ac′ is not free in c,

A2(P C c B Q) = A2(P) C c B A2(Q)

Lemma L.C.1.21 A2(x ∈ ac′) = x ∈ ac′

Lemma L.C.1.22 A2(P)o
w = A2(Po

w)

Lemma L.C.1.23 Provided ac′ is not free in o, A2(P)[o/ok] = A2(P[o/ok]).

Lemma L.C.1.24 Provided that x is not ac′, A2(∃ x • P) = ∃ x • A2(P)

Properties with respect to PBMH

Theorem T.C.1.7 A2 ◦ PBMH(P) = A2(P)

Lemma L.C.1.25 Provided P is PBMH-healthy,

PBMH(P ;A {s | {s} = ac′}) ;A {s | {s} = ac′}

=

P ;A {s | {s} = ac′}

Lemma L.C.1.26 PBMH ◦ A2(P) = A2(P)

Properties with respect to ;A

Theorem T.C.1.8 Provided P and Q are A2-healthy, A2(P ;A Q) = P ;A Q

Lemma L.C.1.27

A2(P) ;A A2(Q)

=
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∨
(∃ y • P[{y}/ac′] ∧ (∃ y • Q[{y}/ac′][y/s] ∧ y ∈ ac′))


Lemma L.C.1.28 A2(A2(P) ;A A2(Q)) = A2(P) ;A A2(Q)

Properties with respect to links (p2ac and ac2p)

Lemma L.C.1.29 p2ac ◦ ac2p ◦ A2(P) = A2(P) ∧ ac′ 6= ∅

Lemma L.C.1.30 p2ac ◦ ac2p ◦ PBMH(P) = p2ac ◦ ac2p(P)

Lemma L.C.1.31 p2ac ◦ ac2p ◦ A2(P) = p2ac ◦ ac2p(P ;A {s} = ac′)

Lemma L.C.1.32

p2ac ◦ ac2p ◦ A2(P)

=

(P[∅/ac′] ∧ ac′ 6= ∅) ∨ (∃ y • P[{y}/ac′] ∧ y ∈ ac′)

C.2 Relationship with Extended
Binary Multirelations

C.2.1 d2bmb

Theorem T.4.3.1 Provided P is a design,

bmh0,1,2 ◦ d2bmb(A(P)) = d2bmb(A(P))

Lemma L.C.2.1 (d2bmb-A-healthy) Provided P is a design,

d2bmb(A(P))

=
s : State, ss : P State⊥∣∣∣∣∣
(
∃ ac0 : P State •
(P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ⊥ /∈ ss ∧ ss 6= ∅)) ∧ ac0 ⊆ ss

) 
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Lemma L.C.2.2 Provided P is a design,

∃ ss0 : P State⊥ •

 (s, ss0 ∪ {⊥}) ∈ d2bmb(A(P))

∧
ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)


=

∃ ac0 : P State • P f [ac0/ac′] ∧ ac0 ⊆ ss

Lemma L.C.2.3 Provided P is a design,

∃ ss0 : P State⊥ • (s, ss0) ∈ d2bmb(A(P)) ∧ ss0 ⊆ ss ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss)

=

∃ ac0 : P State • (P f [ac0/ac′] ∨ (P t [ac0/ac′] ∧ ss 6= ∅ ∧ ⊥ /∈ ss)) ∧ ac0 ⊆ ss

Lemma L.C.2.4 Provided P is a design,

(s, {⊥}) ∈ d2bmb(A(P))⇔ (s, ∅) ∈ d2bmb(A(P))

Lemma L.C.2.5 Provided P is a design,

(s, {⊥}) ∈ d2bmb(A(P)) = P f [∅/ac′]

Lemma L.C.2.6 Provided P is a design,

(s, ∅) ∈ d2bmb(A(P)) = P f [∅/ac′]

Lemma L.C.2.7 Provided P is a design,

(s, ∅) ∈ d2bmb(A(P))⇔ (s, {⊥}) ∈ d2bmb(A(P)) = true

Lemma L.C.2.8 Provided ok and ok ′ are not free in P and Q,

d2bmb(P ` Q) =

 s, ss

∣∣∣∣∣∣∣
((P ⇒ Q)[ss/ac′] ∧ ⊥ /∈ ss)

∨
((¬ P)[(ss \ {⊥})/ac′] ∧ ⊥ ∈ ss)
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C.2.2 bmb2d

Lemma L.4.3.1 bmb2d(B) = ok ⇒

 ((s, ac′) ∈ B ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
(s, ac′ ∪ {⊥}) ∈ B



Theorem T.4.3.2 Provided B satisfies bmh0,1,2, A ◦ bmb2d(B) = bmb2d(B).

Lemma L.C.2.9

((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, ∅) /∈ B

⇔

((s, ac′) ∈ B ; ac ⊆ ac′) ∧ ac′ 6= ∅ ∧ (s, ∅) /∈ B

Lemma L.C.2.10 Provided B satisfies bmh0,1,2,

bmb2d(B) =

 ¬ ((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′)
`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, ∅) /∈ B


Lemma L.C.2.11

bmb2d(bmh0,1,2(B))

=

 ¬ ((s, {⊥}) ∈ B ∧ (s, ∅) ∈ B)

∧
¬ (((s, ac′ ∪ {⊥}) ∈ B ; ac ⊆ ac′) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B)


`
((s, ac′) ∈ B ; ac ⊆ ac′) ∧ (s, {⊥}) /∈ B ∧ (s, ∅) /∈ B


Lemma L.C.2.12 Provided P is a design,

(s, {s1 : State⊥ | true}) ∈ d2bmb(P) = P f [{s1 : State | true}/ac′]

Lemma L.C.2.13 Provided ⊥ /∈ ac′ and P is a design,

{s : State | (s, ac′ ∪ {⊥}) ∈ d2bmb(P)} = {s : State | P f }
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Lemma L.C.2.14 Provided ⊥ /∈ ac′ and P is a design,

{s : State | (s, ac′) ∈ d2bmb(P)} = {s : State | (¬ P f ⇒ P t)}

Lemma L.C.2.15 Provided P and Q are designs,

(s, {s : State | (s, ac′ ∪ {⊥}) ∈ d2bmb(P)}) ∈ d2bmb(Q)

=

(¬ Qf ⇒ Qt)[{s : State | P f }/ac′]

Lemma L.C.2.16 Provided P and Q are designs,

(s, {s : State | (s, ac′) ∈ d2bmb(P)}) ∈ d2bmb(Q)

=

(¬ Qf ⇒ Qt)[{s : State | (¬ P f ⇒ P t)}/ac′]

Lemma L.C.2.17

bmb2d(B0 ; B1)

=

ok ⇒


((s, {s1 : State | (s1, ac′) ∈ B1}) ∈ B0 ∧ ⊥ /∈ ac′ ∧ ok ′)
∨
((s, {s1 : State⊥ | true}) ∈ B0 ∧ ⊥ /∈ ac′)
∨
((s, {s1 : State | (s1, ac′ ∪ {⊥}) ∈ B1}) ∈ B0 ∧ ⊥ /∈ ac′)


C.2.3 Isomorphism: d2bmb and bmb2d

Theorem T.4.3.3 Provided B is BMH0-BMH2-healthy,

d2bmb ◦ bmb2d(B) = B

Theorem T.4.3.4 Provided P is an A-healthy design,

bmb2d ◦ d2bmb(P) = P

C.3 Refinement and Extreme Points

Theorem T.4.4.1 A(⊥D) = ⊥D
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Theorem T.4.4.2 A(>D) = >D

Theorem T.4.4.3 Provided B0 and B1 are BMH0-BMH2-healthy,

bmb2d(B0) vD bmb2d(B1)⇔ B0 vBM⊥ B1

Theorem T.C.3.1 Provided that P is an angelic design, ⊥Dac vD P vD >Dac

Lemma L.C.3.1 [(∃ ac′ • P f ) = P f ]⇔ [(∃ ac′ • ¬ P f ) = ¬ P f ]

Lemma L.C.3.2 Provided B0 and B1 are of type BM⊥, (s, ac′) ∈ B1 ⇒ (s, ac′) ∈ B0

∧
(s, ac′ ∪ {⊥}) ∈ B1 ⇒ (s, ac′ ∪ {⊥}) ∈ B0

⇔ B1 ⊆ B0

C.4 Operators

C.4.1 Sequential Composition

Theorem T.4.5.1 Provided ok and ok ′ are not free in P, Q, R and S, and that
¬ P and Q are PBMH-healthy,

(P ` Q) ;Dac (R ` S) = (¬ (¬ P ;A true) ∧ ¬ (Q ;A ¬ R) ` Q ;A (R⇒ S))

Theorem T.4.5.2 Provided ok and ok ′ are not free in P, Q, R and S, and that
¬ P and Q are PBMH-healthy, and that ac′ is not free in P,

(P ` Q) ;Dac (R ` S) = (P ∧ ¬ (Q ;A ¬ R) ` Q ;A (R⇒ S))

Theorem T.4.5.3 (;Dac-A-closure) Provided P and Q are A-healthy and ok, ok ′

are not free in P and Q,

A(P ;Dac Q) = P ;Dac Q

Relationship with Extended Binary Multirelations

Theorem T.4.5.4 Provided P and Q are A-healthy designs,

bmb2d(d2bmb(P) ;BM⊥ d2bmb(Q)) = P ;Dac Q
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Skip

Theorem T.4.5.5 A(IIDac) = IIDac

Theorem T.4.5.6 Provided P is a design, IIDac ;Dac P = P

Theorem T.4.5.7 Provided P is an A-healthy design,

P ;Dac IIDac = ((¬ ∃ ac′ • P f ) ` P t)

Theorem T.4.5.8 Provided P is an A-healthy design, it is H3-healthy if, and
only if, its precondition does not mention ac′,

(P ;Dac IIDac) = P ⇔ ((∃ ac′ • ¬ P f ) = ¬ P f )

Properties with respect to the Extreme Points

Theorem T.4.5.9 ⊥D ;Dac P = ⊥D

Theorem T.4.5.10 >D ;Dac P = >D

Properties with respect to A2

Theorem T.C.4.1 Provided P and Q are A2-healthy, A2(P ;Dac Q) = P ;Dac Q

Other Properties

Lemma L.C.4.1 Provided P is PBMH-healthy and ok ′ is not free in P.

P ;Dac Q ⇒ P ;A (∃ ok • Q)

C.4.2 Demonic Choice

Properties

Theorem T.4.5.11 Provided P and Q are designs,

A(P ∨ Q) = A(P) ∨ A(Q)

Theorem T.4.5.12 Provided P and Q are A-healthy designs,

A(P uDac Q) = P uDac Q
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Relationship with Extended Binary Multirelations

Theorem T.4.5.13 bmb2p(B0 uBM⊥ B1) = bmb2p(B0) uDac bmb2p(B1)

Other Properties

Theorem T.4.5.14 P uDac ⊥D = ⊥D

Theorem T.4.5.15 (P uDac Q) ;Dac R = (P ;Dac R) uDac (Q ;Dac R)

Other Properties

Lemma L.C.4.2 Provided P ⇒ R, P ;Dac Q ⇒ R ;Dac Q.

Lemma L.C.4.3 Provided Q ⇒ R, P ;Dac Q ⇒ P ;Dac R.

Lemma L.C.4.4 Provided ok ′ is not free in P and ok is not free in Q,

P ;Dac Q = P ;A Q

C.4.3 Angelic Choice

Closure

Theorem T.4.5.16 Provided P and Q are A-healthy,

A(P tDac Q) = P tDac Q

Relationship with Extended Binary Multirelations

Theorem T.4.5.17 Provided B0 and B1 are BMH1-healthy,

bmb2p(B0 tBM⊥ B1) = bmb2p(B0) tDac bmb2p(B1)

Properties with respect to the Extreme Points

Theorem T.4.5.18 Provided P is a design, P tDac >D = >D.

C.5 Relationship with Angelic Designs

C.5.1 d2ac

Theorem T.4.6.6 A ◦ d2ac(P) = d2ac(P)
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C.5.2 p2ac

Properties

Lemma L.4.6.1 PBMH ◦ p2ac(P) = p2ac(P)

Theorem T.4.6.1 p2ac(P ∨ Q) = p2ac(P) ∨ p2ac(Q)

Theorem T.4.6.2 p2ac(P ∧ Q)⇒ p2ac(P) ∧ p2ac(Q)

Theorem T.4.6.3 A2 ◦ p2ac(P) = p2ac(P)

Theorem T.4.6.4

ac′ 6= ∅ ∧ p2ac(¬ P f ` P t) = ac′ 6= ∅ ∧ (¬ p2ac(P f ) ` p2ac(P t))

Theorem T.4.6.5 Provided P is a design,

ac′ 6= ∅ ∧ p2ac(P) = ac′ 6= ∅ ∧ d2ac(P)

Lemmas

Lemma L.C.5.1 Provided c is a condition.

p2ac(P C c B Q) = p2ac(P) C s.c B p2ac(Q)

Lemma L.C.5.2 p2ac(true) = ac′ 6= ∅

Lemma L.C.5.3 p2ac(false) = false

Lemma L.C.5.4 ∃ outα−ok′ • P = ∃ z • P[z/outα−ok′ ]

Lemma L.C.5.5 Provided that no variable in inα−ok ∪ outα−ok′ is free in P,

p2ac(P ∧ Q) = P ∧ p2ac(Q)

Lemma L.C.5.6 Provided that no variable in inα−ok ∪ outα−ok′ is free in P,

p2ac(P) = P ∧ ac′ 6= ∅

Lemma L.C.5.7 Provided that no dashed variable in outα−ok is free in P,

p2ac(P) = P[s/inα] ∧ ac′ 6= ∅
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Lemma L.5.3.1 p2ac ◦ ac2p(P) = ∃ ac0, y • P[ac0/ac′] ∧ ac0 ⊆ {y} ∧ y ∈ ac′

Lemma L.C.5.8 p2ac(P)o
w = p2ac(Po

w)

Lemma L.C.5.9 p2ac(P)⇒ ac′ 6= ∅

Lemma L.C.5.10 Provided ac′ is not free in P nor Q,

p2ac(P ∧ Q)[{y} ∩ ac′/ac′] = (p2ac(P) ∧ p2ac(Q))[{y} ∩ ac′/ac′]

Lemma L.C.5.11

p2ac(P)[{undash(StateII(outα−ok′))} ∩ ac′/ac′]

=

P[s/inα−ok ] ∧ undash(StateII(outα−ok′)) ∈ ac′

Lemma L.C.5.12 Provided ac′ is not free in P,

p2ac(P)[{y | e} ∩ ac′/ac′] = p2ac(P ∧ e[z/y])

Lemma L.C.5.13 Provided ac′ is not free in P nor in Q,

p2ac(P ∧ Q) = ∃ x • p2ac(P)[{x}/ac′] ∧ p2ac(Q)[{x}/ac′] ∧ x ∈ ac′

Lemma L.C.5.14 Provided that ac′ is not free in P,

p2ac(P ∧ Q) = ∃ z •

 P[s, z/inα−ok , outα−ok′ ]

∧
p2ac(Q)[{undash(z)}/ac′] ∧ undash(z) ∈ ac′


Lemma L.C.5.15 Provided z is not ac′, ∃ x • p2ac(P) = p2ac(∃ x • p2ac(P)).

Lemma L.C.5.16 p2ac(P)[o/ok] = p2ac([o/ok])

Lemma L.C.5.17

p2ac(P ; Q) = ∃ z • (P[s/inα−ok ] ; Q[z/outα−ok′ ]) ∧ undash(z) ∈ ac′

Lemma L.C.5.18 Provided ac′ is not free in P,

p2ac(P ; Q) = P[s/inα−ok ] ; (∃ z • Q[z/outα−ok′ ] ∧ undash(z) ∈ ac′)
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C.5.3 ac2p

Properties

Theorem T.C.5.1 ac2p(P ∨ Q) = ac2p(P) ∨ ac2p(Q)

Theorem T.C.5.2 Provided P and Q are PBMH-healthy,

ac2p(P ∧ Q) = ac2p(P) ∧ ac2p(Q)

Lemmas

Lemma L.4.6.2 (ac2p-alternative-1)

ac2p(P) = ∃ ac′ •

 P[StateII(inα)/s]

∧
∀ z • z ∈ ac′ ⇒ (

∧
x : outα • dash(z).x = x)


Lemma L.C.5.19 (ac2p-alternative-2)

ac2p(P) =̂

 ∃ ac′, s • P ∧ (∀ z • z ∈ ac′ ⇒
∧

x : outα−ok′ • dash(z).x = x)

∧
(
∧

x : inα−ok • s.x = x)


Lemma L.C.5.20 (ac2p-alternative-3)

ac2p(P)

=

∃ ac′ • P[StateII(inα−ok)/s] ∧ ac′ ⊆ {s |
∧

x : outα−ok′ • dash(s).x = x}

Lemma L.C.5.21 Provided ac′ is not free in e,

ac2p(∃ y • y ∈ ac′ ∧ e) = e[StateII(inα−ok), undash(StateII(outα−ok′))/s, y]

Lemma L.C.5.22 Provided P is A2-healthy,

ac2p(P) =

 ∃ ac0 • P[{s | {s} = ac0}/ac′][StateII(inα−ok)/s]

∧
ac0 ⊆ {s |

∧
x : outα−ok′ • dash(s).x = x}
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Lemma L.C.5.23

∃ outα • ¬ ac2p(P)[s/inα]⇒ ¬ P[∅/ac′]

The following lemma can be restated in a few different ways. Namely it can also
imply:

∃ outα • (¬ P[StateII (inα)/s] ;A
∧

x : outα • dash(s).x = x)

Lemma L.C.5.24 Provided P is PBMH-healthy,

∃ outα • ¬ ac2p(P)⇒ ∃ outα • ac2p(¬ P)

Lemma L.C.5.25 Provided none of the variables in outα are free in P,

∃ outα • ac2p(P)⇒ ∃ ac′ • P[StateII(inα)/s]

Lemma L.C.5.26 Provided that s and ac′ are not free in P,

ac2p(P ∧ Q) = P ∧ ac2p(Q)

Lemma L.C.5.27 Provided that s and ac′ are not free in P,

ac2p(P) = P

Lemma L.C.5.28 Provided P is a design,

ac2p(P) = (¬ ac2p(P f ) ` ac2p(P t))

Lemma L.C.5.29 ac2p(P)⇒ ∃ ac′ • P[StateII(inα)/s]

Lemma L.C.5.30 Provided ac′ is not free in P,

ac2p(P) = P[StateII (inα)/s]

Lemma L.C.5.31 ac2p(P)o
w = ac2p(Po

w)

Lemma L.C.5.32 Provided ac′ is not free in c,

ac2p(P C c B Q) = ac2p(P) C c[StateII(inα−ok)/s] B ac2p(Q)
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Lemma L.C.5.33 Provided ac′ is not free in P,

ac2p(P ∧ Q) = P[StateII(inα−ok)/s] ∧ ac2p(Q)

Lemma L.C.5.34 Provided inα−ok = {x0, . . . , xi} and inα′−ok = outα−ok′,

ac2p(s ∈ ac′) = x0 = x ′0 ∧ . . . ∧ xi = x ′i

Lemma L.C.5.35 Provided P is PBMH-healthy,

ac2p(P ∧ ac′ 6= ∅) = ac2p(P)

Lemma L.C.5.36 ac2p ◦ PBMH(P) = ac2p(P)

Lemma L.C.5.37 Provided that x is not s nor ac′, ac2p(∃ x • P) = ∃ x • ac2p(P)

Lemma L.C.5.38 ac2p(y ∈ ac′) =
∧

x : outα−ok′ • dash(y[StateII(inα−ok)/s]).x = x

Lemma L.C.5.39 Provided y is not s, ac2p(y ∈ ac′) =
∧

x : outα−ok′ • dash(y).x = x

Lemma L.C.5.40 Provided P is PBMH-healthy and y is not s,

∃ y • ac2p(P ∧ y ∈ ac′) = ac2p(P)[undash(StateII(outα−ok′)/y]

Lemma L.C.5.41 Provided P is PBMH-healthy,

ac2p( ∈ y
ac′(P)) = ac2p(P[{y} ∩ ac′/ac′])[undash(StateII(outα−ok′)/y]

Lemma L.C.5.42 Provided P is PBMH-healthy,

ac2p( ∈ y
ac′(P))

=

ac2p(P[undash(StateII(outα−ok′))/y][{undash(StateII(outα−ok′))} ∩ ac′/ac′])

Lemma L.C.5.43 Provided P and Q are PBMH-healthy, y is not free in P and
ac′ is not free in Q,

ac2p( ∈ y
ac′(P ∧ Q))

=
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∧
Q[undash(StateII(outα−ok′))/y][StateII(inα−ok)/s]


Lemma L.C.5.44 Provided that ac′ is not free in P, and s and ac′ are not free
in e, and that y is not ac′ nor s,

ac2p(P)[e/y] = ac2p(P[e/y])

Lemma L.C.5.45 Provided ac′ is not free in P,

ac2p(P[s/inα−ok ] ∧ undash(StateII(outα−ok′)) ∈ ac′) = P

Lemma L.C.5.46 ac2p(undash(StateII(outα−ok′)) ∈ ac′) = true

Properties with respect to Angelic Designs

Theorem T.C.5.3 Provided that P is a design,

ac2p ◦ A(P) = (¬ ac2p(P f ) ` ac2p(P t))

C.5.4 Isomorphism and Galois Connection (d2ac and ac2p)

Theorem T.4.6.7 Provided that P is a design, ac2p ◦ d2ac(P) = P.

Theorem T.4.6.8 Provided P is an A-healthy design, d2ac ◦ ac2p(P) w P.

Theorem T.4.6.9 Provided P is an A0-A2-healthy design, d2ac ◦ ac2p(P) v P.

Theorem T.4.6.10 Provided P is a design that is A0-A2-healthy,

d2ac ◦ ac2p(P) = P

Lemma L.C.5.47

d2ac ◦ ac2p(P)

=

(¬ p2ac(ac2p(P f )) ∧ (∃ outα • ¬ ac2p(P f )[s/inα]) ` p2ac(ac2p(P t)))
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C.6 Relationship with the PBMH Theory

C.6.1 d2pbmh

Theorem T.4.7.1 Provided P is PBMH-healthy,

PBMH ◦ d2pbmh(P) = d2pbmh(P)

Lemma L.C.6.1

d2pbmh ◦ PBMH(P)

=

∃ ac0 •

 (¬ P f ⇒ P t)[true/ok][StateII(inα−ok)/s][ac0/ac′]
∧
ac0 ⊆ undashset(ac′)


C.6.2 pbmh2d

Theorem T.4.7.2 Provided P is PBMH-healthy,

A ◦ H3 ◦ pbmh2d(P) = pbmh2d(P)

C.6.3 Galois Connection and Isomorphism
(d2pbmh and pbmh2d)

Theorem T.4.7.3 Provided P is PBMH-healthy, d2pbmh ◦ pbmh2d(P) = P.

Theorem T.4.7.4 Provided P is an A-healthy design,

pbmh2d ◦ d2pbmh(P) v P

Theorem T.4.7.5 Provided P is design that is A and H3-healthy,

pbmh2d ◦ d2pbmh(P) = P

Lemma L.C.6.2 Provided f is bijective,

PBMH(P)[f (ac′)/ac′] = PBMH(P[f (ac′)/ac′])

Lemma L.C.6.3 P ∧ ac′ = ∅ = P[∅/ac′] ∧ ac′ = ∅
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Lemma L.C.6.4

pbmh2d ◦ d2pbmh(P) = (¬ P f [∅/ac′] ∧ ¬ P t [∅/ac′] ` (¬ P f ⇒ P t))
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Appendix D

State Substitution Rules

D.1 State Substitution

The substitution operator [s/Sα], where the boldface indicates that s is a record, is
defined for an arbitrary set of variables Sα as follows.

Definition 101 P[z/Sα] =̂ P[z .s0, . . . , z .sn/s0, . . . , sn]

Each variable si in Sα is replaced with z .si . As an example, we consider the sub-
stitution (x ′ = 2 ∧ ok ′)[s, z/inα−ok , outα−ok′ ], whose result is z .x ′ = 2 ∧ ok ′. The
substitution [z/Sα] is well-formed whenever Sα is a subset of the record components
of z .

Lemma L.D.1.1 Provided that Aα ∩ Bα = ∅, Aα ⊆ Sα and Bα ⊆ Sα,

P[z/Sα] = P[z/Aα][z/Bα]

Lemma L.D.1.2 Provided that Aα ∩ Bα = ∅, Aα ⊆ Sα and Bα ⊆ Sα,

P[z/Sα] =

 ∃ zA, zB • P[zA/Aα][zB/Bα]

∧
(
∧

x : Aα • zA.x = z .x) ∧ (
∧

x : Bα • zB.x = z .x)


Lemma L.D.1.3 Provided z , y : State(Sα),

P[z/Sα][y ⊕ {si 7→ e}/z ] = P[y/(Sα \ {si})][e/si ]
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Lemma L.D.1.4 Provided z , y : State(Sα) and si not free in e,

P[z/Sα][y ⊕ {si 7→ e}/z ] = P[e/si ][y/(Sα)]

Lemma L.D.1.5 Provided si ∈ Sα,

P[e/si ][z/Sα] = P[z/Sα \ {si}][e[z/Sα]/si ]

Lemma L.D.1.6 P[z/(Sα ∪ Tα)] = P[z/Sα][z/Tα]

Lemma L.D.1.7

P[e0, . . . , en/x0, . . . , xn][z/Sα]

=

P[z/(Sα \ Tα)][e0[z/Tα], . . . , en[z/Tα]/x0, . . . , xn]

Provided that:

1. Tα ⊆ Sα

2. Tα = {x0, . . . , xn}

3. ∀ y • y ∈ (Sα \ Tα)⇒ y /∈ fv(e0, . . . , en)

Definition 140 For Sα = {x0, . . . , xn},

StateII(Sα) =̂ {x0 7→ x0, . . . , xn 7→ xn}

Lemma L.D.1.8 StateII(Sα)′ = {x ′0 7→ x0, . . . , x ′n 7→ xn}

Lemma L.D.1.9

∃ z : State(Sα) • P ∧ (
∧

x : Sα • z .x = x) = P[StateII(Sα)/z ]

Lemma L.D.1.10 Provided z is not free in P,

P[z/Sα][StateII(Sα)/z ] = P

Lemma L.D.1.11 Provided none of the varibles in Sα are free in P,

P[StateII(Sα)/z ][z/Sα] = P
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Lemma L.D.1.12 Provided xi ∈ Sα and xi is not free in P nor in e,

P[StateII(Sα)/z ][e/xi ] = P[z ⊕ xi 7→ e}/z ][StateII(Sα)/z ]

D.2 dash and undash
Definition 141

dash(z) =̂ {x : Sα, e | (x 7→ e) ∈ z • x ′ 7→ e}

undash(z) =̂ {x : Sα, e | (x ′ 7→ e) ∈ z • x 7→ e}

The function dash considers every pair (x , e) in z , where x is a variable name and e
the corresponding expression or value associated with x , and dashes the name of x
into x ′. Function undash is similar except for the undash of x ′ to x .

Lemma L.D.2.1 dash(z).x ′ = z .x

Lemma L.D.2.2 undash(z).x = z .x ′

Lemma L.D.2.3 undash ◦ dash(z) = z

Lemma L.D.2.4 dash ◦ undash(z) = z

Lemma L.D.2.5 Provided y is fresh,

∃ z • P ∧ undash(z) ∈ ac′ = ∃ y • P[dash(y)/z ] ∧ y ∈ ac′
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Appendix E

PBMH

E.1 Definition

Definition 88 PBMH(P) =̂ P ; ac ⊆ ac′ ∧ ok ′ = ok

E.2 Properties

Lemma L.E.2.1 P ⇒ PBMH(P)

Theorem T.E.2.1 PBMH ◦ PBMH(P) = PBMH(P)

Theorem T.E.2.2 PBMH(P ∨ Q) = PBMH(P) ∨ PBMH(Q)

Lemma L.E.2.2 Provided P satisfies PBMH, P[∅/ac′] ∨ P = P

E.3 Closure Properties

Lemma L.E.3.1 Provided P and Q satisfy PBMH,

PBMH(P ∧ Q) = PBMH(P) ∧ PBMH(Q)

Lemma L.E.3.2 PBMH(P ∧ Q)⇒ PBMH(P) ∧ PBMH(Q)

Theorem T.E.3.1 Provided P and Q are PBMH-healthy,

PBMH(P ∧ Q) = P ∧ Q
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Theorem T.E.3.2 Provided P and Q satisfy PBMH,

PBMH(P ∨ Q) = P ∨ Q

E.4 Lemmas

Lemma L.4.2.1 PBMH(P) = ∃ ac0 • P[ac0/ac′] ∧ ac0 ⊆ ac′

Lemma L.E.4.1 PBMH(true) = true

Lemma L.E.4.2 PBMH(false) = false

Lemma L.E.4.3 PBMH(s ∈ ac′) = s ∈ ac′

Lemma L.E.4.4 PBMH(ac′ 6= ∅) = ac′ 6= ∅

Lemma L.E.4.5 Provided ac′ is not free in P, PBMH(P) = P.

Lemma L.E.4.6 Provided c is a condition, PBMH(c) = c.

Lemma L.E.4.7 PBMH(x ∈ ac′) = x ∈ ac′

Lemma L.E.4.8 Provided ac′ is not free in c, PBMH(c ∧ P) = c ∧ PBMH(P)

Lemma L.E.4.9 Provided ac′ is not free in c,

PBMH(P C c B Q) = PBMH(P) C c B PBMH(Q)

Lemma L.E.4.10 Provided ac′ is not free in e,

PBMH(∃ y • y ∈ ac′ ∧ e) = ∃ y • y ∈ ac′ ∧ e

Lemma L.E.4.11

(P ∧ ac′ 6= ∅) ;A (Q ∧ ac′ 6= ∅)

=

(P ∧ ac′ 6= ∅) ;A (Q ∧ ac′ 6= ∅)) ∧ ac′ 6= ∅

Lemma L.E.4.12 PBMH(P ; ac = ∅) = P ; ac = ∅
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Lemma L.E.4.13 Provided ac1 is not free in F(x),

∃ ac1 • (∀ x • x ∈ ac0 ⇒ F(x) ∈ ac1) ∧ ac1 ⊆ ac′

⇔

∀ x • x ∈ ac0 ⇒ F(x) ∈ ac′

Lemma L.E.4.14 P v Q ⇔ [{ac′ | Q} ⊆ {ac′ | P}]

Lemma L.E.4.15 PBMH(P)⇒ ∃ ac′ • P

Lemma L.E.4.16 PBMH(P) ;A true = ∃ ac′ • P

E.5 Substitution Lemmas

Lemma L.E.5.1 PBMH(P)o
w = PBMH(Po

w)

Lemma L.E.5.2 Provided ac′ is not free in e,

PBMH(P)[e/s] = PBMH(P[e/s])

Lemma L.E.5.3 Provided x is not ac′, PBMH(∃ x • P) = ∃ x • PBMH(x)

Lemma L.E.5.4 Provided P is PBMH-healthy,

PBMH(P[{y} ∩ ac′/ac′]) = PBMH(P)[{y} ∩ ac′/ac′]

Lemma L.E.5.5

PBMH(P)[o/ok] = PBMH(P[o/ok])

E.6 Properties with respect to Designs

Lemma L.4.2.2 PBMH(P ` Q) = (¬ PBMH(¬ P) ` PBMH(Q))

Lemma L.E.6.1 J ; (ac ⊆ ac′ ∧ ok ′ = ok) = (ac ⊆ ac′ ∧ ok ′ = ok) ; J

Lemma L.E.6.2 PBMH(¬ PBMH(¬ P) ` Q) = PBMH(P ` Q)

Theorem T.E.6.1 H2 ◦ PBMH(P) = PBMH ◦ H2(P)

Theorem T.E.6.2 H1 ◦ PBMH(P) = PBMH ◦ H1(P)
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E.7 Properties with respect to A2

Lemma L.E.7.1 Provided P is PBMH-healthy.

PBMH(P ;A {s | {s} = ac′})

=

∃ ac1, ac0 • P[ac0/ac′] ∧ ac0 ⊆ {s | {s} = ac1} ∧ ac1 ⊆ ac′

Theorem T.E.7.1 Provided P is PBMH-healthy and v is not free in P,

∃ v • (P ;A Q)⇒ P ;A (∃ v • Q)



Appendix F

Sequential Composition (A)

F.1 Properties

Lemma L.F.1.1 Provided ac′ is not free in P, P ;A Q = P.

Lemma L.F.1.2 ¬ (P ;A Q) = (¬ P ;A Q)

Lemma L.F.1.3 Provided P and Q satisfy PBMH,

P ;A (Q ;A R) = (P ;A Q) ;A R

Lemma L.F.1.4 (P ∨ Q) ;A R = (P ;A R) ∨ (Q ;A R)

Lemma L.F.1.5 (P ∧ Q) ;A R = (P ;A R) ∧ (Q ;A R)

Lemma L.F.1.6 Provided P is PBMH-healthy,

P ;A (Q ∧ R)⇒ (P ;A Q) ∧ (P ;A R)

F.2 Lemmas

Lemma L.F.2.1 Provided P is PBMH-healthy,

(P ;A Q) ∨ (P ;A R)⇒ (P ;A (Q ∨ R))

Lemma L.F.2.2 Provided P is PBMH-healthy,

(P ;A Q) ∨ (P ;A true) = P ;A true

249



250 APPENDIX F. SEQUENTIAL COMPOSITION (A)

Lemma L.F.2.3 Provided P is PBMH-healthy,

(P ;A Q) ∨ (P ;A false) = P ;A Q

Lemma L.F.2.4 Provided P is PBMH-healthy,

P ;A (Q ⇒ (R ∧ ok ′)) = (P ;A ¬ Q) ∨ ((P ;A (Q ⇒ R)) ∧ ok ′)

Lemma L.F.2.5 Provided x is not free in e,

∀ x • P ⇒ (Q ⇒ (R ∧ e))

=

(∀ x • P ⇒ ¬ Q) ∨ ((∀ x • P ⇒ (Q ⇒ R)) ∧ e)

Lemma L.F.2.6 Provided P is PBMH-healthy,

P ;A (Q ∧ ok ′) = (P ;A false) ∨ ((P ;A Q) ∧ ok ′)

Lemma L.F.2.7 Provided s is not free in R and P is PBMH-healthy,

(P ;A (Q ∧ R)) ∧ R = (P ;A Q) ∧ R

Lemma L.F.2.8 Provided ac′ is not free in P,

(P ∧ Q) ;A R = P ∧ (Q ;A R)

Lemma L.F.2.9 Provided P is PBMH-healthy and s is not free in e,

P ;A (Q ⇒ (R ∧ e)) = (P ;A ¬ Q) ∨ ((P ;A (Q ⇒ R)) ∧ e)

F.3 Closure Properties

Theorem T.F.3.1 Provided P and Q are PBMH-healthy,

PBMH(P ;A Q) = P ;A Q
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F.4 Extreme Points

Lemma L.F.4.1 Provided P is PBMH-healthy,

P ;A false = P[∅/ac′]

Lemma L.F.4.2 Provided P is PBMH-healthy,

P ;A true = ∃ ac′ • P

F.5 Algebraic Properties
and Sequential Composition

Lemma L.F.5.1 Provided ok and ac are not free in R,

(P ; Q) ;A R = P ; (Q ;A R)

F.6 Skip

Definition 142 IIA =̂ s ∈ ac′

Lemma L.F.6.1 IIA is a fixed point of PBMH, PBMH(IIA) = IIA.

Lemma L.F.6.2 IIA ;A P = P

Lemma L.F.6.3 Provided P is PBMH-healthy, P ;A IIA.
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Appendix G

Reactive Angelic Designs (RAD)

G.1 RA1

G.1.1 Definition

Definition 109 RA1(P) =̂ (P ∧ ac′ 6= ∅)[Statestr≤tr ′(s) ∩ ac′/ac′]

G.1.2 Properties

Theorem T.5.2.1 RA1 ◦ A0(P) = RA1(P)

Theorem T.5.2.2 RA1(P ∧ Q) = RA1(P) ∧ RA1(Q)

Theorem T.5.2.3 RA1(P ∨ Q) = RA1(P) ∨ RA1(Q)

Theorem T.5.2.4 Provided P and Q are RA1-healthy and Q is PBMH-healthy,

RA1(P ;A Q) = P ;A Q

Theorem T.5.2.5 PBMH ◦ RA1 ◦ PBMH(P) = RA1 ◦ PBMH(P)

Theorem T.G.1.1 RA1 ◦ RA1(P) = RA1(P)

Theorem T.G.1.2 P v Q ⇒ RA1(P) v RA1(Q)

G.1.3 Lemmas

Lemma L.G.1.1

RA1(P)
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=

P[{z | z ∈ ac′ ∧ s.tr ≤ z .tr}/ac′] ∧ ∃ z • s.tr ≤ z .tr ∧ z ∈ ac′

Lemma L.G.1.2

RA1(P) = (P ∧ ac′ 6= ∅)[{z | z ∈ ac′ ∧ z ∈ {z | s.tr ≤ z .tr}}/ac′]

Lemma L.G.1.3 RA1(P)[∅/ac′] = false

Lemma L.G.1.4 RA1(true)[{y}/ac′] = s.tr ≤ y.tr

Lemma L.G.1.5 Provided y is not s and not ac′,

RA1(∃ y • P[{y}/ac′] ∧ y ∈ ac′)

=

∃ y • P[{y}/ac′] ∧ s.tr ≤ y.tr ∧ y ∈ ac′

Lemma L.G.1.6 RA1(P)⇒ ac′ 6= ∅

Lemma L.G.1.7 s ∈ ac′ ⇒ ∃ z • s.tr ≤ z .tr ∧ z ∈ ac′

Lemma L.G.1.8

∃ z • z ∈ ac′ ∧ tr0 ≤ z .tr ∧ x = z ⊕ {tr 7→ z .tr − tr0}

⇔

x ⊕ {tr 7→ tr0 a x .tr} ∈ ac′

Lemma L.G.1.9 RA1(false) = false

Lemma L.G.1.10

RA1(true) = ∃ z • s.tr ≤ z .tr ∧ z ∈ ac′

Lemma L.G.1.11

RA1(true) = Statestr≤tr ′(s) ∩ ac′ 6= ∅

Lemma L.G.1.12 Provided x is not in the set {s, ac′},

RA1(∃ x • P) = ∃ x • RA1(P)
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Lemma L.G.1.13 RA1(x ∈ ac′) = s.tr ≤ x .tr ∧ x ∈ ac′

Lemma L.G.1.14

RA1(s ∈ ac′) = s ∈ ac′

Lemma L.G.1.15 Provided c is a condition,

RA1(P C c B Q) = RA1(P) C c B RA1(Q)

Lemma L.G.1.16 Provided ac′ is not free in P,

RA1(P ∧ Q) = P ∧ RA1(Q)

Lemma L.G.1.17 RA1(¬ ok) = ¬ ok ∧ RA1(true)

Lemma L.G.1.18

RA1(¬ P f
f ` P t

f ) = RA1(¬ (P f
f ∧ ac′ 6= ∅) ` P t

f ∧ ac′ 6= ∅)

Lemma L.G.1.19 Provided ac′ is not free in P,

RA1(P) = P ∧ RA1(true)

Lemma L.G.1.20 RA1(P ` Q) = RA1(P ` RA1(Q))

Lemma L.G.1.21 Provided P is PBMH-healthy,

RA1(P)⇒ P

Lemma L.G.1.22 RA1(ac′ 6= ∅) = RA1(true)

Lemma L.G.1.23 RA1(P ` Q) = RA1(¬ RA1(¬ P) ` Q)

G.1.4 Substitution Properties

Lemma L.G.1.24 RA1(P)o
w = RA1(Po

w)
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G.1.5 Properties with respect to ;A
Theorem T.G.1.3

RA1(true) ;A (P ∨ Q) = (RA1(true) ;A P) ∨ (RA1(true) ;A Q)

Theorem T.G.1.4 Provided ac′ is not free in P,

RA1(P) ;A (Q ∨ R) = (RA1(P) ;A Q) ∨ (RA1(P) ;A R)

Theorem T.G.1.5 Provided P is PBMH-healthy,

(P ;A RA1(true)) ∨ (P ;A RA1(Q))

=

(P ;A RA1(true))

Lemma L.G.1.25 RA1(true) ;A true

Lemma L.G.1.26

RA1(true) ;A (s.wait ∧ ¬ ok ∧ RA1(true)) = ¬ ok ∧ RA1(true)

Lemma L.G.1.27 Provided P is RA3 and RA1-healthy,

RA1(¬ ok) ;A P = RA1(¬ ok)

Lemma L.G.1.28 RA1(true) ;A RA1(true) = RA1(true)

Lemma L.G.1.29 Provided ac′ is not free in P,

RA1(P) ;A RA1(true) = RA1(P)

Lemma L.G.1.30 Provided P is PBMH-healthy,

RA1(P) ;A RA1(true)⇒ RA1(P) ;A true

Lemma L.G.1.31 Provided P is PBMH-healthy,

P ;A Q ⇒ P ;A true

Lemma L.G.1.32 RA1(true) ;A RA1(P)⇒ RA1(true)
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G.1.6 Properties with respect to RA2

Lemma L.G.1.33

RA1 ◦ RA2(P)

=

RA2(P) ∧ ∃ z • s.tr ≤ z .tr ∧ z ∈ ac′

Lemma L.G.1.34

RA2(P)[{z | z ∈ ac′ ∧ s.tr ≤ z .tr}/ac′] = RA2(P)

Lemma L.G.1.35 RA1(P)⇒ RA1(true)

Lemma L.G.1.36 RA1 ◦ RA2(P)⇒ RA1(true)

G.1.7 Properties with respect to PBMH

Theorem T.G.1.6 RA ◦ A(P) = RA ◦ PBMH(P)

Lemma L.G.1.37 Provided P is PBMH-healthy,

RA1(P) = PBMH(P ∧ ac′ 6= ∅ ∧ ac′ ⊆ Statestr≤tr ′(s))

Lemma L.G.1.38

PBMH(P ∧ ac′ 6= ∅ ∧ ac′ ⊆ Statestr≤tr ′(s))⇒ ac′ ∩ Statestr≤tr ′(s) 6= ∅

Lemma L.G.1.39

ac′ ∩ Statestr≤tr ′(s) 6= ∅ ;A PBMH(P ∧ ac′ 6= ∅ ∧ ac′ ⊆ Statestr≤tr ′(s))

⇒

ac′ ∩ Statestr≤tr ′(s) 6= ∅

G.1.8 Properties with respect to A2

Lemma L.G.1.40

RA1 ◦ A2(P)

=
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RA1(true) ∧

 (P[∅/ac′])
∨
(∃ y • P[{y}/ac′] ∧ s.tr ≤ y.tr ∧ y ∈ ac′)


Theorem T.G.1.7 A2 ◦ RA1 ◦ A2(P) = RA1 ◦ A2(P)

G.2 RA2

G.2.1 Definition

Definition 110

RA2(P) =̂ P
[

s ⊕ {tr 7→ 〈〉},
{

z

∣∣∣∣∣ z ∈ ac′ ∧ s.tr ≤ z .tr
• z ⊕ {tr 7→ z .tr − s.tr}

}/
s, ac′

]

G.2.2 Properties

Theorem T.5.2.6 RA2(P ∧ Q) = RA2(P) ∧ RA2(Q)

Theorem T.5.2.7 RA2(P ∨ Q) = RA2(P) ∨ RA2(Q)

Theorem T.5.2.8 Provided P and Q are RA2-healthy,

RA2(P ;A Q) = P ;A Q

Theorem T.5.2.9 RA2(ac′ 6= ∅) = RA1(true)

Theorem T.5.2.10 RA2 ◦ RA1(P) = RA1 ◦ RA2(P)

Theorem T.5.2.11 PBMH ◦ RA2 ◦ PBMH(P) = RA2 ◦ PBMH(P)

Theorem T.G.2.1 RA2 ◦ RA2(P) = RA2(P)

Theorem T.G.2.2 P v Q ⇒ RA2(P) v RA2(Q)

G.2.3 Lemmas

Lemma L.G.2.1

RA2(P) = P[s ⊕ {tr 7→ 〈〉}, {y | y ⊕ {tr 7→ s.tr a y.tr} ∈ ac′}/s, ac′]

Lemma L.G.2.2 RA2(true) = true
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Lemma L.G.2.3 RA2(s ∈ ac′) = s ∈ ac′

Lemma L.G.2.4 Provided s and ac′ are not free in P, RA2(P) = P.

Lemma L.G.2.5

RA2(P C c B Q) = RA2(P) C RA2(c) B RA2(Q)

Lemma L.G.2.6 Provided c is RA2-healthy,

RA2(P C c B Q) = RA2(P) C c B RA2(Q)

Lemma L.G.2.7 RA2(¬ P) = ¬ RA2(P)

Lemma L.G.2.8 Where c is not tr, RA2(s.c) = s.c

Lemma L.G.2.9 RA2(P ∧ ac′ 6= ∅) = RA2 ◦ RA1(P)

Lemma L.G.2.10

RA2(P)[{y}/ac′] ∧ s.tr ≤ y.tr

=

P[s ⊕ {tr 7→ 〈〉}, {y ⊕ {tr 7→ y.tr − s.tr}}/s, ac′] ∧ s.tr ≤ y.tr

Lemma L.G.2.11 Provided ac′ is not free in Q and P is PBMH-healthy,

∈ y
ac′(RA1 ◦ RA2(P) ∧ Q)

=

∃ y •
(

P[s ⊕ {tr 7→ 〈〉}, {y ⊕ {tr 7→ y.tr − s.tr}}/s, ac′]
∧ s.tr ≤ y.tr ∧ Q ∧ y ∈ ac′

)

Lemma L.G.2.12

RA2(x ∈ ac′)

=

∃ z • z ∈ ac′ ∧ s.tr ≤ z .tr ∧ x = z ⊕ {tr 7→ z .tr − s.tr}

Lemma L.G.2.13 Provided ac′ is not free in Q and P is PBMH-healthy,

RA2( ∈ y
ac′(P ∧ Q))
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=

∃ y •


P[s ⊕ {tr 7→ 〈〉}/s][{y ⊕ {tr 7→ y.tr − s.tr}}/ac′]
∧
Q[s ⊕ {tr 7→ 〈〉}/s][y ⊕ {tr 7→ y.tr − s.tr}/y]

∧
y ∈ ac′ ∧ s.tr ≤ y.tr


Theorem T.G.2.3 Provided ac′ is not free in Q, P is PBMH-healthy, and
Q = [s ⊕ {tr 7→ 〈〉}/s][y ⊕ {tr 7→ y.tr − s.tr}/y],

RA2( ∈ y
ac′(P ∧ Q))

=

∈ y
ac′(RA1 ◦ RA2(P) ∧ Q)

G.2.4 Substitution Properties

Lemma L.G.2.14 RA2(P)o
w = RA2(Po

w)

G.2.5 Properties with respect to Designs

Lemma L.G.2.15 RA2(P ` Q) = (¬ RA2(¬ P) ` RA2(Q))

Lemma L.G.2.16 RA2(P ` Q) = RA2(P ` RA2(Q))

G.2.6 Properties with respect to ;A

Theorem T.G.2.4 RA2(P ;A RA2(Q)) = RA2(P) ;A RA2(Q)

Lemma L.G.2.17

RA2(P) ;A RA2(Q)

=P


[s ⊕ {tr 7→ 〈〉}/s][{

t

∣∣∣∣∣
(

Q
)

[(t ⊕ {tr 7→ 〈〉}/s]

[{y | y ⊕ {tr 7→ s.tr a t.tr a y.tr} ∈ ac′}/ac′]

}/
ac′
]

Lemma L.G.2.18 RA2(P) ;A true = P[s ⊕ {tr 7→ 〈〉}/s] ;A true



G.3. RA3 261

G.2.7 Properties with respect to A2

Theorem T.G.2.5 A2 ◦ RA2 ◦ A2(P) = RA2 ◦ A2(P)

Lemma L.G.2.19

RA2 ◦ A2(P)

= P[∅/ac′][s ⊕ {tr 7→ 〈〉}/s]

∨
(∃ y • P[{y}/ac′][s ⊕ {tr 7→ 〈〉}/s] ∧ y ⊕ {tr 7→ s.tr a y.tr} ∈ ac′)


G.3 RA3

G.3.1 Definition

Definition 112 RA3(P) =̂ IIRAD C s.wait B P

G.3.2 Properties

Theorem T.5.2.12 RA3(P ∧ Q) = RA3(P) ∧ RA3(Q)

Theorem T.5.2.13 RA3(P ∨ Q) = RA3(P) ∨ RA3(Q)

Theorem T.5.2.14 Provided P and Q are RA3-healthy and Q is RA1-healthy,

RA3(P ;A Q) = P ;A Q

Theorem T.5.2.15 PBMH ◦ RA3 ◦ PBMH(P) = RA3 ◦ PBMH(P)

Theorem T.5.2.16 RA3 ◦ RA1(P) = RA3 ◦ RA1(P)

Theorem T.5.2.17 RA2 ◦ RA3(P) = RA3 ◦ RA2(P)

Theorem T.G.3.1 RA1(IIRAD) = IIRAD

Theorem T.G.3.2 RA2(IIRAD) = IIRAD

Theorem T.G.3.3 RA3(IIRAD) = IIRAD

Theorem T.G.3.4 PBMH(IIRAD) = IIRAD

Theorem T.G.3.5 RA3 ◦ RA3(P) = RA3(P)
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Theorem T.G.3.6 P v Q ⇒ RA3(P) v RA3(Q)

Properties with respect to PBMH

Theorem T.G.3.7 PBMH ◦ RA3(P) = RA3 ◦ PBMH(P)

Properties with respect to A2

Theorem T.G.3.8 A2 ◦ RA3(P) = RA3 ◦ A2(P)

Theorem T.G.3.9 A2 ◦ RA3 ◦ A2(P) = RA3 ◦ A2(P)

Lemma L.G.3.1 A2(IIRAD) = IIRAD

G.3.3 Substitution Lemmas

Lemma L.5.2.1 RA3(P) = RA3(Pf )

Lemma L.G.3.2 RA3(P)o
f = Po

f

Lemma L.G.3.3 RA3(P)o
w = (IIRAD)o

w C w B Po
w

G.4 RA

G.4.1 Definition

Definition 113 RA(P) =̂ RA1 ◦ RA2 ◦ RA3(P)

Theorem T.5.2.20 RAD(P) = RA ◦ A(¬ P f
f ` P t

f )

Theorem T.5.2.21 Provided P is RAD-healthy, PBMH(P) = P.

Lemma L.5.2.2 RAD(P) = RA(¬ PBMH(P)f
f ` PBMH(P)t

f )

Theorem T.G.4.1 RA(P ∧ Q) = RA(P) ∧ RA(Q)

Theorem T.G.4.2 RA(P ∨ Q) = RA(P) ∨ RA(Q)

Theorem T.G.4.3 RA ◦ RA(P) = RA(P)

Theorem T.G.4.4 Provided P is PBMH-healthy,

PBMH ◦ RA(P) = RA(P)
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Theorem T.G.4.5

RA ◦ A(¬ (RA ◦ A(¬ P f
f ` P t

f ))f
f ` (RA ◦ A(¬ P f

f ` P t
f ))t

f )

=

RA ◦ A(¬ P f
f ` P t

f )

Lemma L.G.4.1

RA1 ◦ RA3(P ` Q)

=

RA1((true C s.wait B P) ` (s ∈ ac′ C s.wait B Q))

Lemma L.G.4.2

RA1 ◦ RA3(¬ ok) = RA1(¬ ok) ∨ (s.wait ∧ IIRAD)

Lemma L.G.4.3 IIRAD = RA1(¬ ok) ∨ (ok ′ ∧ s ∈ ac′)

Lemma L.G.4.4

RA1 ◦ RA3(P) = (s.wait ∧ IIRAD) ∨ RA1 ◦ RA3(P)

Lemma L.G.4.5 RA1 ◦ RA3(P) = IIRAD C s.wait B RA1(P)

Lemma L.G.4.6 RA(P)o
f = RA2 ◦ RA1(Po

f )

Lemma L.G.4.7

(RA ◦ A(¬ P f
f ` P t

f ))o
w

=

RA2 ◦ RA1 ◦ PBMH(¬ ok ∨ P f
f ∨ (P t

f ∧ o))

Lemma L.G.4.8

(RA ◦ A(¬ P f
f ` P t

f ))f
f

=

RA2 ◦ RA1 ◦ PBMH(¬ ok ∨ P f
f )
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Lemma L.G.4.9

(RA ◦ A(¬ P f
f ` P t

f ))t
f

=

RA2 ◦ RA1 ◦ PBMH(¬ ok ∨ P f
f ∨ P t

f )

Lemma L.G.4.10

∃ ac′ • RA1 ◦ RA2 ◦ PBMH(P) = ∃ ac′ • RA2 ◦ PBMH(P)

Lemma L.G.4.11

RA ◦ A(¬ RA2 ◦ PBMH(P) ` RA2 ◦ PBMH(Q))

=

RA ◦ A(¬ P ` Q)

Lemma L.G.4.12

RA ◦ A(¬ RA2 ◦ PBMH(P) ` Q)

=

RA ◦ A(¬ P ` Q)

Lemma L.G.4.13

RA ◦ A(P ` RA2 ◦ PBMH(Q))

=

RA ◦ A(P ` Q)

Lemma L.G.4.14

RA ◦ A(P ` RA1 ◦ PBMH(Q))

=

RA ◦ A(P ` Q)

Lemma L.G.4.15

RA ◦ A(¬ RA1 ◦ PBMH(P) ` Q)

=



G.5. CSPA1 265

RA ◦ A(¬ P ` Q)

G.4.2 Properties with respect to A2

Theorem T.G.4.6 RA ◦ A ◦ A2(P) = A2 ◦ RA ◦ A ◦ A2(P)

Theorem T.G.4.7 Provided P is A2-healthy,

RA ◦ A(¬ P f
f ` P t

f ) = A2 ◦ RA ◦ A(¬ P f
f ` P t

f )

Lemma L.G.4.16

RA ◦ A(¬ A2(P) ` A2(Q))

=

A2 ◦ RA ◦ A(¬ A2(P) ` A2(Q))

G.5 CSPA1

Lemma L.G.5.1 CSPA1(P) = P ∨ (¬ ok ∧ ∃ z • s.tr ≤ z .tr ∧ z ∈ ac′)

G.5.1 Properties

Theorem T.5.2.18 CSPA1 ◦ RA1(P) = RA1 ◦ H1(P)

Theorem T.5.2.19 Provided P is PBMH-healthy,

PBMH ◦ CSPA1(P) = CSPA1(P)

Theorem T.G.5.1 CSPA1 ◦ CSPA1(P) = CSPA1(P)

Theorem T.G.5.2 P v Q ⇒ CSPA1(P) v CSPA1(Q)

Properties with respect to RA1 and H1

Theorem T.G.5.3 RA1 ◦ CSPA1(P) = RA1 ◦ H1(P)

Theorem T.G.5.4 RA1 ◦ CSPA(P) = CSPA1 ◦ RA1(P)
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G.6 NDRAD

Theorem T.5.5.2 Provided P is RAD-healthy,

NDRAD(P) = RA ◦ A(true ` P t
f )

Theorem T.5.5.3 Provided P is RAD-healthy,

NDRAD(P) = P ⇔ ∀ s, ac′ • ¬ P f
f

Theorem T.5.5.1 NDRAD ◦ NDRAD(P) = NDRAD(P)

Theorem T.G.6.1 Provided P and Q are reactive angelic designs and NDRAD-
healthy,

P ;Dac Q

=

RA ◦ A

 true
`
RA1(P t

f ) ;A (s ∈ ac′ C s.wait B RA2 ◦ RA1(Qt
f ))


Lemma L.G.6.1 NDRAD(ChaosRAD) = ChoiceRAD

Lemma L.G.6.2 NDRAD(a →RAD SkipRAD) = a →RAD SkipRAD

G.7 Relationship with CSP

G.7.1 Results with respect to R

Theorem T.5.3.1 Provided P is PBMH-healthy, ac2p ◦ RA(P) = R ◦ ac2p(P)

Theorem T.5.3.2 ac2p ◦ RA ◦ A(¬ P f
f ` P t

f ) = R(¬ ac2p(P f
f ) ` ac2p(P t

f ))

Theorem T.G.7.1 Provided P is PBMH-healthy,

ac2p ◦ RA1(P) = R1 ◦ ac2p(P)

Theorem T.G.7.2 Provided P is PBMH-healthy,

ac2p ◦ RA1 ◦ RA2(P) = R1 ◦ R2 ◦ ac2p(P)
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Theorem T.G.7.3 ac2p ◦ RA3(P) = R3 ◦ ac2p(P)

Theorem T.G.7.4 Provided outα = {tr ′, ref ′,wait ′},

ac2p(IIRAD) = IIrea

Theorem T.5.3.3 p2ac ◦ R(P) = RA ◦ p2ac(P)

Theorem T.5.3.4 p2ac ◦ R(¬ P f
f ` P t

f ) = RA ◦ A(¬ p2ac(P f
f ) ` p2ac(P t

f ))

Theorem T.G.7.5 p2ac ◦ R(¬ P f ` P t) = RA(¬ p2ac(P f ) ` p2ac(P t))

Theorem T.G.7.6

p2ac ◦ R(¬ P f ` P t)

=

RA ◦ A(¬ p2ac(P f ) ∧ (¬ P f [s/inα] ; true) ` p2ac(P t))

Theorem T.G.7.7

p2ac ◦ R(¬ P f ` P t)

=

RA(¬ p2ac(P f ) ∧ (¬ P f [s/inα] ; true) ` p2ac(P t))

Theorem T.G.7.8 RA1 ◦ p2ac(P) = p2ac ◦ R1(P)

Theorem T.G.7.9 p2ac ◦ R1 ◦ R2(P) = RA2 ◦ p2ac(P)

Theorem T.G.7.10 p2ac ◦ R3(P) = RA3 ◦ p2ac(P)

Lemma L.G.7.1

IIRAD = (¬ ok ∧ ∃ z • s.tr ≤ z .tr ∧ z ∈ ac′) ∨ (ok ′ ∧ s ∈ ac′)

Lemma L.G.7.2 p2ac(IIrea) = IIRAD

G.7.2 ac2p

Lemma L.G.7.3 Provided ac′ is not free in P,

ac2p( ∈ y
ac′(P)) = P[StateII (inα)/s][undash(StateII(outα−ok′))/y]
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Lemma L.G.7.4

ac2p(P) ; ac2p(Q)

=

∃ ok0, y •

 (∃ ac′ • P[StateII(inα−ok)/s][ok0/ok ′] ∧ ac′ ⊆ {y})
∧
(∃ ac′ • Q[y/s][ok0/ok] ∧ ac′ ⊆ {z |

∧
x : outα−ok′ • dash(z).x = x})



Lemma L.G.7.5

ac2p(P) ; ac2p(Q)

=

∃ ok0, y •

 (P[∅/ac′] ∨ P[{y}/ac′])[StateII(inα−ok)/s][ok0/ok ′]
∧
(∃ ac′ • Q[y/s][ok0/ok] ∧ ac′ ⊆ {z |

∧
x : outα−ok′ • dash(z).x = x})



Lemma L.G.7.6

ac2p(P) ; ac2p(Q)

= (∃ ac′ • P[StateII(inα−ok)/s] ∧ ac′ ⊆ {s′})
;

(∃ ac′ • Q ∧ ac′ ⊆ {z |
∧

x : outα−ok′ • dash(z).x = x})



Lemma L.G.7.7

ac2p(P) ; ac2p(Q)

=

∃ ok0 •

 P[∅/ac′][StateII(inα−ok)/s][ok0/ok ′]
∧
(∃ ac′, s • Q[ok0/ok] ∧ ac′ ⊆ {z |

∧
x : outα−ok′ • dash(z).x = x})


∨ P[{s′}/ac′][StateII(inα−ok)/s]

;
(∃ ac′ • Q ∧ ac′ ⊆ {z |

∧
x : outα−ok′ • dash(z).x = x})
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G.7.3 p2ac

Theorem T.G.7.11 p2ac(P ; Q) = p2ac(P) ;Dac p2ac(Q)

Theorem T.G.7.12 Provided ok ′ is not free in P and ok is not free in Q,

p2ac(P) ;A p2ac(Q) = p2ac(P ; Q)

Lemma L.G.7.8 p2ac(P)[{z}/ac′] ∧ z ∈ ac′ = p2ac(P)[{z} ∩ ac′/ac′] ∧ z ∈ ac′

G.7.4 p2ac and ac2p

Theorem T.5.3.5 ac2p ◦ p2ac(P) = P

Theorem T.5.3.6 Provided P is PBMH-healthy, p2ac ◦ ac2p(P) w P.

Theorem T.G.7.13 p2ac ◦ ac2p(P) w PBMH(P)

Theorem T.G.7.14

p2ac(ac2p(P) ; ac2p(Q)) = (∃ ac′ • P ∧ ac′ ⊆ {s′}) ; p2ac ◦ ac2p(Q)

Theorem T.G.7.15 Provided Q is PBMH-healthy and s′ is not free in P,

p2ac(ac2p(P) ; ac2p(Q))⇒ PBMH(P) ;Dac Q

Lemma L.G.7.9 Provided P and Q are PBMH-healthy, s′ is not free in P, ok ′

is not free in P and ok is not free in Q,

p2ac(ac2p(P) ; ac2p(Q))⇒ P ;A Q

Lemma L.G.7.10 Provided P and Q are PBMH-healthy, s′ is not free in P, ok ′

is not free in P.

p2ac(ac2p(P) ; ac2p(Q))⇒ P ;A (∃ ok • Q)

Results with respect to A2

Theorem T.5.3.7 Provided P f
f and P t

f are A2-healthy,

p2ac ◦ ac2p ◦ RA ◦ A(¬ P f
f ` P t

f ) = RA ◦ A(¬ P f
f ` P t

f )
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Lemma L.G.7.11 Provided P is A2-healthy, p2ac ◦ ac2p(P) = P ∧ ac′ 6= ∅

Lemma L.G.7.12 Provided P is A2-healthy,

p2ac ◦ ac2p(P)[{x}/ac′] = P[{x}/ac′]

G.7.5 Lifting

Definition 122 ∈ y
ac′(P) =̂ ∃ y • y ∈ ac′ ∧ P[{y}/ac′]

Lemma L.G.7.13 Provided ac′ is not free in P,

PBMH( ∈ y
ac′(P)) = ∈ y

ac′(P)

Lemma L.G.7.14

RA1( ∈ y
ac′(P)) = ∈ y

ac′(RA1(P[{y} ∩ ac′/ac′]) ∧ s.tr ≤ y.tr)

Lemma L.G.7.15 Provided ac′ is not free in P,

RA1( ∈ y
ac′(P)) = ∈ y

ac′(P ∧ s.tr ≤ y.tr)

Lemma L.G.7.16 Provided ac′ is not free in P,

RA2( ∈ y
ac′(P))

=

∃ y • RA2(P) ∧ ∈ z
ac′(s.tr ≤ z .tr ∧ y = z ⊕ {tr 7→ z .tr − s.tr})

Lemma L.G.7.17 Provided x is not s,

RA2(x ∈ ac′) = ∈ z
ac′(s.tr ≤ z .tr ∧ x = z ⊕ {tr 7→ z .tr − s.tr})

Lemma L.G.7.18 RA2(x ∈ ac′) = x ⊕ {tr 7→ s.tr a x .tr} ∈ ac′

Lemma L.G.7.19 Provided x is not in the set {s, ac′},

RA2(∃ x • P) = ∃ x • RA2(P)

Lemma L.G.7.20 Provided ac′ is not free in P,

RA1 ◦ RA2 ◦ PBMH( ∈ y
ac′(P))
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=

∈ z
ac′(P[s ⊕ {tr 7→ 〈〉}/s][z ⊕ {tr 7→ z .tr − s.tr}/y] ∧ s.tr ≤ z .tr)

Lemma L.G.7.21 Provided ac′ is not free in P,

RA2(P) = P[s ⊕ {tr 7→ 〈〉}/s]

Lemma L.G.7.22

RA1 ◦ RA2 ◦ PBMH( ∈ y
ac′(y.tr = s.tr ∧ a /∈ y.ref ∧ y.wait))

=

∈ y
ac′(y.tr = s.tr ∧ a /∈ y.ref ∧ y.wait)

Lemma L.G.7.23

RA1 ◦ RA2 ◦ PBMH( ∈ y
ac′(y.tr = s.tr a 〈a〉 ∧ ¬ y.wait))

=

∈ y
ac′(y.tr = s.tr a 〈a〉 ∧ ¬ y.wait)

Lemma L.G.7.24

RA1 ◦ RA2 ◦ PBMH( ∈ y
ac′(s.tr a 〈a〉 ≤ y.tr))

=

∈ y
ac′(s.tr a 〈a〉 ≤ y.tr)

Lemma L.G.7.25 ∈ y
ac′(P ∨ Q) = ∈ y

ac′(P) ∨ ∈ y
ac′(Q)

Lemma L.G.7.26

RA1 ◦ RA2 ◦ PBMH

 ∈ y
ac′

 (y.tr = s.tr ∧ a /∈ y.ref )

Cy.waitB
(y.tr = s.tr a 〈a〉)




= ∈ y
ac′

 (y.tr = s.tr ∧ a /∈ y.ref )

Cy.waitB
(y.tr = s.tr a 〈a〉)
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Lemma L.G.7.27 Provided ac′ is not free in P,

∈ y
ac′(P) ;A Q = ∃ y • P ∧ Q[y/s]

Lemma L.G.7.28 Provided P is PBMH-healthy,

∈ y
ac′(P) = ∃ y • P[{y}/ac′] ∧ y ∈ ac′

Lemma L.G.7.29 Provided ac′ is not free in P, ∈ y
ac′(P) = ∃ y • P ∧ y ∈ ac′

Lemma L.G.7.30 ∈ y
ac′(P ∨ Q) = ∈ y

ac′(P) ∨ ∈ y
ac′(Q)

Lemma L.G.7.31

∈ y
ac′(P C c0 ∧ . . . ∧ cn B Q)

=

∈ y
ac′(c0 ∧ . . . ∧ cn ∧ P) ∨ ∈ y

ac′(¬ c0 ∧ Q) ∨ . . . ∨ ∈ y
ac′(¬ cn ∧ Q)

Lemma L.G.7.32 Provided s.tr ≤ z .tr,

(s.tr = y.tr ∧ y.wait)[s ⊕ {tr 7→ 〈〉}/s][y ⊕ {tr 7→ y.tr − s.tr}/y]

=

(s.tr = y.tr ∧ y.wait)

Lemma L.G.7.33 Provided s.tr ≤ y.tr,

(s.tr 6= y.tr)[s ⊕ {tr 7→ 〈〉}/s][y ⊕ {tr 7→ y.tr − s.tr}/y]

=

(s.tr 6= y.tr)

Lemma L.G.7.34 Provided x is not tr,

(y.x)[s ⊕ {tr 7→ 〈〉}/s][y ⊕ {tr 7→ y.tr − s.tr}/y]

=

(y.x)

Lemma L.G.7.35 Provided:

• P and Q are PBMH-healthy
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• For 0 ≤ i ≤ n: ac′ is not free in ci

• (c0 ∧ . . . ∧ cn)[s ⊕ {tr 7→ 〈〉}/s][y ⊕ {tr 7→ y.tr − s.tr}/y] = (c0 ∧ . . . ∧ cn),
assuming s.tr ≤ y.tr

• For 0 ≤ i ≤ n: (¬ ci)[s ⊕ {tr 7→ 〈〉}/s][y ⊕ {tr 7→ y.tr − s.tr}/y] = ¬ ci,
assuming s.tr ≤ y.tr

∈ y
ac′(RA2 ◦ RA1(P) C c0 ∧ . . . ∧ cn B RA2 ◦ RA1(Q))

=

RA2( ∈ y
ac′(P C (c0 ∧ . . . ∧ cn) B Q))

Lemma L.G.7.36 Provided that P and Q are PBMH-healthy,

∈ y
ac′(RA2 ◦ RA1(P) C ytr = s.tr ∧ y.wait B RA2 ◦ RA1(Q))

=

RA2( ∈ y
ac′(P C ytr = s.tr ∧ y.wait B Q))

Lemma L.G.7.37 ∈ y
ac′(P ∧ ∈ z

ac′(Q)) = ∈ y
ac′(P ∧ Q[y/z ])

Lemma L.G.7.38 ∈ z
ac′(Q)[{y} ∩ ac′/ac′] = Q[y/z ][{y} ∩ ac′/ac′] ∧ y ∈ ac′

Properties with respect to PBMH

Lemma L.G.7.39 ∈ y
ac′(PBMH(P) ∧ Q)⇒ PBMH(P)

Lemma L.G.7.40

¬ PBMH(P) ∧ ∈ y
ac′(((PBMH(P) ∧ Q) ∨ R) C c B T )

=

¬ PBMH(P) ∧ ∈ y
ac′(R C c B T )

Lemma L.G.7.41

¬ PBMH(P) ∧ ∈ y
ac′(Q C c B (PBMH(P) ∨ R))

=

¬ PBMH(P) ∧ ∈ y
ac′(Q C c B R)
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Properties with respect to ac2p

Theorem T.G.7.16 Provided ac′ is not free in P, Q and R, and y is not free in
P nor Q,

ac2p( ∈ y
ac′(p2ac(P) ∧ p2ac(Q) ∧ R))

=

P ∧ Q ∧ R[undash(StateII(outα−ok′))/y][StateII(inα−ok)/s]

Lemma L.G.7.42 Provided ac′ is not free in P, Q and R, and y is not free in P
nor Q,

ac2p( ∈ y
ac′(p2ac(P) ∧ R))

=

P ∧ R[undash(StateII(outα−ok′))/y][StateII(inα−ok)/s]

Lemma L.G.7.43 Provided P is PBMH-healthy, PBMH( ∈ y
ac′(P)) = ∈ y

ac′(P)

Lemma L.G.7.44

RA2( ∈ y
ac′(y.wait ∧ y.tr = s.tr))

=

∈ y
ac′(y.wait ∧ y.tr = s.tr)

Properties with respect to A2

Lemma L.G.7.45 A2( ∈ y
ac′(P)) = ∃ y • P[{y}/ac′] ∧ y ∈ ac′

Theorem T.G.7.17 Provided P is PBMH-healthy, A2( ∈ y
ac′(P)) = ∈ y

ac′(P).

G.8 Operators

G.8.1 Angelic Choice

Theorem T.5.4.1 Provided P and Q are reactive angelic designs,

P tQ = RA ◦ A(¬ P f
f ∨ ¬ Qf

f ` (¬ P f
f ⇒ P t

f ) ∧ (¬ Qf
f ⇒ Qt

f ))

Theorem T.5.4.2 ac2p(p2ac(P) tRAD p2ac(Q)) = P tR Q
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Theorem T.5.4.3 Provided that P and Q are reactive angelic designs,

p2ac(ac2p(P) tR ac2p(Q)) w P tRAD Q

Theorem T.G.8.1

RA ◦ A(P ` Q) tRA ◦ A(R ` S)

=

RA ◦ A


(¬ PBMH(¬ P) ∨ ¬ PBMH(¬ R))

̀ (¬ PBMH(¬ P)⇒ PBMH(Q))

∧
(¬ PBMH(¬ R)⇒ PBMH(S)




Theorem T.G.8.2 Provided ¬ P, ¬ Q, R and S are PBMH-healthy.

RA ◦ A(P ` Q) tRA ◦ A(R ` S)

=

RA ◦ A(P ∨ R ` (P ⇒ Q) ∧ (R⇒ S))

Theorem T.G.8.3 Provided P is a reactive angelic design, ChaosRAD tRAD

RA ◦ A(¬ P f
f ` P t

f ) = RA ◦ A(¬ P f
f ` P t

f )

G.8.2 Demonic Choice

Theorem T.5.4.4 Provided P and Q are reactive angelic processes,

P uRAD Q = RA ◦ A(¬ P f
f ∧ ¬ Qf

f ` P t
f ∨ Qt

f )

Theorem T.5.4.5

p2ac(ac2p(P) uR ac2p(Q)) = p2ac ◦ ac2p(P) uRAD p2ac ◦ ac2p(Q)

Theorem T.5.4.6 ac2p(p2ac(P) uRAD p2ac(Q)) = P uR Q

Theorem T.5.4.7 Provided P is a reactive angelic design,

ChaosRAD uRAD P = ChaosRAD
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Theorem T.G.8.4

RA ◦ A(P ` Q) uRA ◦ A(R ` S) = RA ◦ A(P ∧ R ` Q ∨ S)

Lemma L.5.4.1 Provided P and Q are reactive angelic designs and A2-healthy,

p2ac(ac2p(P) uR ac2p(Q)) = P uRAD Q

G.8.3 Chaos

Theorem T.5.4.8 Provided P is a reactive angelic design,

ChaosRAD tRAD P = P

Theorem T.5.4.9 ac2p(ChaosRAD) = ChaosR

Theorem T.5.4.10 p2ac(ChaosR) = ChaosRAD

G.8.4 Choice

Theorem T.5.4.11 p2ac(ChoiceR) = ChoiceRAD

Theorem T.5.4.12 ac2p(ChoiceRAD) = ChoiceR

Theorem T.5.4.13 Provided P is RAD-healthy,

ChoiceRAD tRAD P = RA ◦ A(true ` P t
f )

Theorem T.5.4.14 Provided P is RAD-healthy,

ChoiceRAD uRAD P = RA ◦ A(¬ P f
f ` ac′ 6= ∅)

G.8.5 Stop

Theorem T.5.4.15 Provided P is RAD-healthy,

StopRAD tRAD P

=

RA ◦ A(true ` (¬ P f
f ⇒ P t

f ) ∧ ∈ y
ac′(y.tr = s.tr ∧ y.wait))

Theorem T.5.4.16 p2ac(StopR) = StopRAD
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Theorem T.5.4.17 ac2p(StopRAD) = StopR

G.8.6 Skip

Theorem T.5.4.18 Provided P is RAD-healthy,

SkipRAD tRAD P

=

RA ◦ A(true ` ∈ y
ac′(¬ y.wait ∧ y.tr = s.tr)) ∧ (¬ P f

f ⇒ P t
t ))

Theorem T.5.4.19 p2ac(SkipR) = SkipRAD

Theorem T.5.4.20 ac2p(SkipRAD) = SkipR

Lemma L.5.4.2 ac2p(StopRAD tRAD SkipRAD) = >R

G.8.7 Sequential Composition

Theorem T.5.4.21 Provided P and Q are reactive angelic designs,

P ;Dac Q

=

RA ◦ A



 ¬ (RA1(P f
f ) ;A RA1(true))

∧
¬ (RA1(P t

f ) ;A (¬ s.wait ∧ RA2 ◦ RA1(Qf
f )))


`
RA1(P t

f ) ;A (s ∈ ac′ C s.wait B (RA2 ◦ RA1(¬ Qf
f ⇒ Qt

f )))


Theorem T.5.4.22 Provided P and Q are reactive angelic designs,

p2ac(ac2p(P) ; ac2p(Q)) w P ;Dac Q

Theorem T.5.4.23 Provided P and Q are RAD-healthy and A2-healthy,

p2ac(ac2p(P) ; ac2p(Q)) = P ;Dac Q

Theorem T.5.4.24 ac2p(p2ac(P) ;Dac p2ac(Q)) = P ; Q

Theorem T.5.4.25 Provided P and Q are reactive angelic designs and A2-
healthy, A2(P ;Dac Q) = P ;Dac Q
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Theorem T.G.8.5 Provided ¬ P, ¬ R, Q and S are PBMH-healthy and ok, ok ′

are not free in P, Q, R and S,

RA(P ` Q) ;Dac RA(R ` S)

=

RA



 ¬ (RA1(¬ P) ;A RA1(true))

∧
¬ (RA1(Q) ;A (¬ s.wait ∧ RA2 ◦ RA1(¬ R)))


`
RA1(Q) ;A (s ∈ ac′ C s.wait B RA2 ◦ RA1(R⇒ S))


Theorem T.G.8.6 Provided ¬ P,Q,¬ R and S are PBMH-healthy, and ok and
ok ′ are not free in P,Q,R and S,

RA1(P ` Q) ;Dac RA1(R ` S)

=

RA1

 ¬ (RA1(¬ P) ;A RA1(true)) ∧ ¬ (RA1(Q) ;A RA1(¬ R))

`
RA1(Q) ;A RA1(R⇒ S)


Lemma L.5.4.3 (StopRAD tRAD SkipRAD) ;Dac ChaosRAD = StopRAD

G.8.8 Event Prefixing

Theorem T.5.4.26 Provided P is a reactive angelic design,

a →RAD SkipRAD tRAD P

=

RA ◦ A

true ` ∈ y
ac′

 (y.tr = s.tr ∧ a /∈ y.ref )

Cy.waitB
(y.tr = s.tr a 〈a〉)

 ∧ (¬ P f
f ⇒ P t

f )



Relationship with CSP

Theorem T.5.4.27 ac2p(a →RAD SkipRAD) = a →R SkipR

Theorem T.5.4.28 p2ac(a →R SkipR) = a →RAD SkipRAD
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Theorem T.5.4.29 Provided P is RAD-healthy,

a →RAD P

=

RA ◦ A


¬ ∃ y • y.tr = s.tr a 〈a〉 ∧ ¬ y.wait ∧ (RA2 ◦ RA1(P f

f ))[y/s]

`

∃ y •

 (y ∈ ac′ ∧ y.tr = s.tr ∧ a /∈ y.ref )

Cy.waitB
(y.tr = s.tr a 〈a〉 ∧ (RA2 ◦ RA1(P t

f ))[y/s])




Lemma L.G.8.1

ac2p(a →RAD ChaosRAD tRAD b →RAD ChaosRAD)

=

R(true ` tr ′ = tr ∧ wait ′ ∧ a /∈ ref ′ ∧ b /∈ ref ′)

Lemma L.G.8.2

ac2p(a →RAD StopRAD tRAD b →RAD StopRAD)

=

a →R StopR tR b →R StopR

Lemma L.G.8.3

p2ac(a →R StopR tR b →R StopR)

= RA ◦ A

 true
`
∃ y • y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref ∧ b /∈ y.ref ∧ y ∈ ac′


Lemma L.G.8.4 ac2p(a →RAD StopRAD) = a →R StopR

Properties and Examples

Theorem T.G.8.7 Provided P is RAD-healthy,

P ; Rac ChaosRAD

=
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RA ◦ A



 ¬ (RA1(P f
f ) ;A RA1(true))

∧
¬ (RA1(P t

f ) ;A (¬ s.wait ∧ RA2 ◦ RA1(true)))


`
RA1(P t

f ) ;A (s ∈ ac′ C s.wait B RA2 ◦ RA1(true))


Theorem T.G.8.8

a →RAD ChaosRAD = RA ◦ A

 ¬ ∈
z
ac′(s.tr a 〈a〉 ≤ z .tr)

`
∈ y

ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref )


Lemma L.G.8.5

a →RAD ChaosRAD

=

RA ◦ A

 ¬ ∈
y
ac′(s.tr a 〈a〉 ≤ y.tr)

`
∈ y

ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref )


Lemma L.G.8.6

a →RAD ChaosRAD tRAD b →RAD ChaosRAD

=

RA ◦ A


¬ ( ∈ y

ac′(s.tr a 〈a〉 ≤ y.tr) ∧ ∈ y
ac′(s.tr a 〈b〉 ≤ y.tr))

̀ ∈ y
ac′((y.wait ∧ a /∈ y.ref ) C y.tr = s.tr B (s.tr a 〈a〉 ≤ y.tr))

∧
∈ y

ac′((y.wait ∧ b /∈ y.ref ) C y.tr = s.tr B (s.tr a 〈b〉 ≤ y.tr))




Lemma L.G.8.7

(a →RAD ChaosRAD tRAD b →RAD ChaosRAD) 2RAD StopRAD

=

RA ◦ A

 ¬ ( ∈ y
ac′(s.tr a 〈a〉 ≤ y.tr) ∧ ∈ y

ac′(s.tr a 〈b〉 ≤ y.tr))

`
∈ y

ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref ∧ b /∈ y.ref )





G.8. OPERATORS 281

Lemma L.G.8.8

a →RAD StopRAD tRAD b →RAD StopRAD

=

RA ◦ A


true

̀ ∈ y
ac′(y.wait ∧ ((y.tr = s.tr ∧ a /∈ y.ref ) ∨ y.tr = s.tr a 〈a〉))

∧
∈ y

ac′(y.wait ∧ ((y.tr = s.tr ∧ b /∈ y.ref ) ∨ y.tr = s.tr a 〈b〉))




Lemma L.G.8.9

(a →RAD SkipRAD) tRAD (b →RAD ChaosRAD)

=

(a →RAD SkipRAD) tRAD (b →RAD ChoiceRAD)

Lemma L.G.8.10 Provided P is RAD-healthy,

a →RAD P

=

RA ◦ A




∈ z

ac′(s.tr a 〈a〉 ≤ z .tr)

⇒

¬

∃ ref • (RA2(P f
f ))




tr 7→ s.tr a 〈a〉,
wait 7→ false,
ref 7→ ref

 /s





̀

∈ y
ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref )

∨

∃ ref • RA2(P t
f )




tr 7→ s.tr a 〈a〉,
wait 7→ false,
ref 7→ ref

 /s




∧
∈ z

ac′(s.tr a 〈a〉 ≤ z .tr)






Lemma L.G.8.11

a →RAD StopRAD

=
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RA ◦ A

 true
`
∈ y

ac′(y.wait ∧ ((y.tr = s.tr ∧ a /∈ y.ref ) ∨ y.tr = s.tr a 〈a〉))


Lemma L.G.8.12

(a →RAD StopRAD) tRAD SkipRAD

=

RA ◦ A


true

̀ ∈ y
ac′(y.wait ∧ ((y.tr = s.tr ∧ a /∈ y.ref ) ∨ y.tr = s.tr a 〈a〉))

∧
∈ y

ac′(¬ y.wait ∧ y.tr = s.tr)




Lemma L.G.8.13

((a →RAD StopRAD) tRAD SkipRAD) ;Dac ChaosRAD

=

a →RAD StopRAD

Lemma L.G.8.14

a →RAD ChoiceRAD

=

RA ◦ A

 true
`
∈ y

ac′((y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref ) ∨ (s.tr a 〈a〉 ≤ y.tr))



G.8.9 External Choice

Theorem T.5.4.30 Provided P is a reactive angelic design,

P 2RAD StopRAD = RA ◦ A(¬ P f
f ` ∃ y • (P t

f )[{y}/ac′] ∧ y ∈ ac′)

Theorem T.5.4.31 Provided P is a reactive angelic design and A2-healthy,

P 2RAD StopRAD = P
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Theorem T.G.8.9

RA ◦ A(¬ P f
f ` P t

f ) 2RAD RA ◦ A(¬ Qf
f ` Qt

f )

=

RA ◦ A


¬ P f

f ∧ ¬ Qf
f

`

∈ y
ac′

 (PBMH(P t
f ) ∧ PBMH(Qt

f ))

Cy.wait ∧ y.tr = s.trB
(PBMH(P t

f ) ∨ PBMH(Qt
f ))




Theorem T.G.8.10 Provided P and Q are reactive angelic designs,

P 2RAD Q

=

RA ◦ A


¬ P f

f ∧ ¬ Qf
f

`

∈ y
ac′

 (P t
f ∧ Qt

f )

Cy.wait ∧ y.tr = s.trB
(P t

f ∨ Qt
f )





Relationship with CSP

Theorem T.5.4.32 Provided that P and Q are CSP processes,

ac2p(p2ac(P) 2RAD p2ac(Q)) = P 2R Q

Theorem T.5.4.33 Provided P and Q are reactive angelic designs,

p2ac(ac2p(P) 2R ac2p(Q)) w P 2RAD Q

Theorem T.5.4.34 Provided P and Q are RAD-healthy and A2-healthy,

p2ac(ac2p(P) 2R ac2p(Q)) = P 2RAD Q
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Closure

Theorem T.5.4.35 Provided P and Q are reactive angelic designs and A2-
healthy,

A2(P 2RAD Q) = P 2RAD Q

Properties and Examples

Lemma L.G.8.15 (SkipRAD tRAD StopRAD) 2RAD StopRAD = >RAD

Lemma L.G.8.16 (SkipRAD tRAD StopRAD) 2RAD SkipRAD = SkipRAD



Appendix H

Angelic Processes

H.1 Healthiness Conditions

H.1.1 IIAP

Lemma L.H.1.1 RA2(IIAP) = IIAP

Lemma L.H.1.2 RA1(IIAP) = IIRAD

H.1.2 RA3AP

Theorem T.6.2.1 RA3AP ◦ RA3AP(P) = RA3AP(P)

Theorem T.6.2.2 P v Q ⇒ RA3AP(P) v RA3AP(Q)

Theorem T.6.2.3 RA3AP(P ∧ Q) = RA3AP(P) ∧ RA3AP(Q)

Theorem T.6.2.4 RA3AP(P ∨ Q) = RA3AP(P) ∨ RA3AP(Q)

Theorem T.6.2.5 Provided P and Q are RA3AP-healthy,

RA3AP(P ;A Q) = P ;A Q

Theorem T.6.2.6 RA3AP ◦ PBMH(P) = PBMH ◦ RA3AP(P)

Theorem T.6.2.7 RA2 ◦ RA3AP(P) = RA3AP ◦ RA2(P)

Lemma L.6.2.1 PBMH ◦ RA3AP ◦ PBMH(P) = RA3AP ◦ PBMH(P)

Theorem T.H.1.1 RA1 ◦ RA3AP(P) = RA3 ◦ RA1(P)

285
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Properties

Lemma L.H.1.3

RA3AP ◦ H1(P) = H1((ok ′ ∧ s ∈ ac′) C s.wait B P)

Lemma L.H.1.4

RA3AP(P ` Q) = (true C s.wait B P ` s ∈ ac′ C s.wait B Q)

H.1.3 AP

Main Results

Theorem T.6.2.8 AP(P) = RA3AP ◦ RA2 ◦ A(¬ P f
f ` P t

f )

Theorem T.6.2.9

AP(P) =

 true C s.wait B ¬ RA2 ◦ PBMH(P f
f )

`
s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(P t

f )


Theorem T.H.1.2 AP ◦ AP(P) = P

Theorem T.H.1.3 PBMH ◦ AP(P) = AP(P)

Theorem T.H.1.4

RA3AP ◦ RA2 ◦ A(P ` Q)

= true C s.wait B ¬ RA2 ◦ PBMH(¬ P)

`
s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(Q)


Lemma L.H.1.5

AP(P)o
f =

 (ok ∧ ¬ RA2 ◦ PBMH(P f
f ))

⇒
(RA2 ◦ RA1 ◦ PBMH(P t

f ) ∧ o)


Lemma L.H.1.6 AP(P)f

f = ok ⇒ RA2 ◦ PBMH(P f
f )
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Lemma L.H.1.7

AP(P)t
f

=

(ok ∧ ¬ RA2 ◦ PBMH(P f
f ))⇒ RA2 ◦ RA1 ◦ PBMH(P t

f )

Lemma L.H.1.8

RA2 ◦ PBMH(AP(P)t
f ) = AP(P)t

f

Lemma L.H.1.9

AP(true ` P t
f ) = (true ` s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(P t

f ))

Lemma L.H.1.10

AP(¬ P f
f ` P t

f )

= true C s.wait B ¬ RA2 ◦ PBMH(P f
f )

`
s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(P t

f )


Lemma L.H.1.11 AP(¬ P f

f ` P t
f ) = RA3AP ◦ RA2 ◦ A(¬ P f

f ` P t
f )

H.1.4 NDAPN

Theorem T.6.2.10 Provided P is AP-healthy.

ChoiceAP t P = (true ` s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(P t
f ))

H.2 Relationship with Reactive Angelic Designs

H.2.1 From RAD to AP

Theorem T.6.3.1

H1 ◦ RAD(P) =

 true C s.wait B ¬ RA1 ◦ RA2 ◦ PBMH(P f
f )

`
s ∈ ac′ C s.wait B RA1 ◦ RA2 ◦ PBMH(P t

f )
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Theorem T.H.2.1 A ◦ H1 ◦ RAD(P) = H1 ◦ RAD(P)

Lemma L.6.3.1

H1 ◦ RA ◦ A(true ` P t
f )

=

(true ` s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(P t
f ))

Lemma L.H.2.1

H3 ◦ H1 ◦ RAD(P)

= true C s.wait B ¬ ∃ ac′ • RA1 ◦ RA2 ◦ PBMH(P f
f )

`
s ∈ ac′ C s.wait B RA1 ◦ RA2 ◦ PBMH(P t

f )


Lemma L.H.2.2 H1 ◦ RA ◦ A(true ` P t

f ) = AP(true ` P t
f )

Lemma L.H.2.3

H3 ◦ H1 ◦ RA ◦ A(true ` P t
f )

=

(true ` s ∈ ac′ C s.wait B RA1 ◦ RA2 ◦ PBMH(P t
f ))

Lemma L.H.2.4 H1 ◦ RAD(P) = AP(¬ RA1 ◦ PBMH(P f
f ) ` P t

f )

Lemma L.H.2.5 Provided P is a reactive angelic process,

H1(P) = AP(¬ RA1(P f
f ) ` P t

f )

H.2.2 From AP to RAD

Theorem T.6.3.2 RA1 ◦ AP(P) = RA ◦ A(¬ P f
f ` P t

f )

H.2.3 Galois Connection and Isomorphism

Theorem T.6.3.3 RA1 ◦ H1 ◦ RAD(P) = RAD(P)

Theorem T.6.3.4 H1 ◦ RA1 ◦ AP(P) w AP(P)
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Theorem T.6.3.5 H1 ◦ RA1 ◦ NDAP ◦ AP(P) = NDAP ◦ AP(P)

Theorem T.H.2.2 RA1 ◦ H3 ◦ H1 ◦ RAD(P) v RAD(P)

Theorem T.H.2.3 H3 ◦ H1 ◦ RA1 ◦ AP(P) v AP(P)

Theorem T.H.2.4

RA1 ◦ H3 ◦ H1 ◦ RA ◦ A(true ` P t
f ) = RA ◦ A(true ` P t

f )

Theorem T.H.2.5 Provided P is AP-healthy,

H3 ◦ H1 ◦ RA1 ◦ NDAP(P) = NDAP(P)

Lemma L.H.2.6 H1 ◦ RA1(P ` Q) = (¬ RA1(¬ P) ` RA1(Q))

Lemma L.H.2.7

RA ◦ A(true ` s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(Q))

=

RA ◦ A(true ` Q)

H.3 Operators

H.3.1 Angelic Choice

Closure

Theorem T.6.4.1 Provided P and Q are AP-healthy,

AP(P tAP Q) = P tAP Q

Theorem T.6.4.2 Provided P and Q are NDAP-healthy,

NDAP(P tAP Q) = P tAP Q

Lemma L.H.3.1

AP(P) tAP(Q)

=
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 true
Cs.waitB
¬ RA2 ◦ PBMH(RA2 ◦ PBMH(P f

f ) ∧ RA2 ◦ PBMH(Qf
f ))


̀

s ∈ ac′

Cs.waitB

RA2 ◦ RA1 ◦ PBMH



 RA2 ◦ PBMH(P f
f )

∧
RA2 ◦ RA1 ◦ PBMH(Qt

f )


∨ RA2 ◦ RA1 ◦ PBMH(P t

f )

∧
RA2 ◦ PBMH(Qf

f )


∨ RA2 ◦ RA1 ◦ PBMH(P t

f )

∧
RA2 ◦ RA1 ◦ PBMH(Qt

f )








Linking

Theorem T.6.4.3 Provided P and Q are RAD-healthy,

RA1(H1(P) tAP H1(Q)) = P tRAD Q

Theorem T.6.4.4 Provided P and Q are AP-healthy,

H1(RA1(P) tRAD RA1(Q)) w P tAP Q

H.3.2 Demonic Choice

Closure

Theorem T.6.4.5 Provided P and Q are AP-healthy, AP(P uQ) = P uQ.

Theorem T.6.4.6 Provided P and Q are NDAP-healthy,

NDAP(P uAP Q) = P uAP Q

Lemma L.H.3.2

AP(P) uAP(Q) = AP(¬ P f
f ∧ ¬ Qf

f ` P t
f ∨ Qt

f )
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Linking

Theorem T.6.4.7 Provided P and Q RAD-healthy,

RA1(H1(P) uAP H1(Q)) = P uRAD Q

Theorem T.6.4.8 Provided P and Q are AP-healthy,

H1(RA1(P) uRAD RA1(Q)) w P uAP Q

H.3.3 Divergence: Chaos and Chaos of CSP

Theorem T.6.4.9 Provided P is AP-healthy, P tAP ChaosAP = P

Theorem T.6.4.10 H1(ChaosRAD) = ChaosCSPAP

Theorem T.6.4.11 RA1(ChaosCSPAP) = ChaosRAD

Theorem T.H.3.1 H3 ◦ H1(ChaosRAD) = ChaosAP

Lemma L.6.4.1 ChaosAP = (s.wait ` s ∈ ac′)

Lemma L.6.4.2 ChaosCSPAP = (s.wait ∨ ¬ RA1(true) ` s.wait ∧ s ∈ ac′)

H.3.4 Choice

Properties

Lemma L.6.4.3 AP(true ` ac′ 6= ∅) = (true ` s ∈ ac′ C s.wait B RA1(true))

Lemma L.H.3.3

AP(true ` ac′ 6= ∅)

= true C s.wait B ¬ RA2 ◦ PBMH(false)

`
s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(true)


Linking

Theorem T.6.4.12 H1(ChoiceRAD) = ChoiceAP

Theorem T.6.4.13 RA1(ChoiceAP) = ChoiceRAD
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H.3.5 Stop

Theorem T.6.4.14 H1(StopRAD) = StopAP

Theorem T.6.4.15 RA1(StopAP) = StopRAD

H.3.6 Skip

Theorem T.6.4.16 H1(SkipRAD) = SkipAP

Theorem T.6.4.17 RA1(SkipAP) = SkipRAD

H.3.7 Sequential Composition

Theorem T.6.4.18 Provided P and Q are AP-healthy,

P ;Dac Q

=

AP

 ¬ (P f
f ;A true) ∧ ¬ (RA1(P t

f ) ;A (¬ s.wait ∧ RA2(Qf
f )))

`
RA1(P t

f ) ;A (s ∈ ac′ C s.wait B RA2(¬ Qf
f ⇒ RA1(Qt

f )))


Theorem T.H.3.2 (true C s.wait B P ` s ∈ ac′ C s.wait B Q)

;Dac

(true C s.wait B R ` s ∈ ac′ C s.wait B S)


= true C s.wait B ¬ ((¬ P ;A true) ∨ (Q ;A (¬ s.wait ∧ ¬ R)))

`
s ∈ ac′ C s.wait B (Q ;A (s ∈ ac′ C s.wait B (R⇒ S)))


Theorem T.H.3.3

AP(P) ;Dac AP(Q)

=
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AP



 ¬ (PBMH(P f
f ) ;A true)

∧
¬ (RA1 ◦ PBMH(P t

f ) ;A (¬ s.wait ∧ RA2 ◦ PBMH(Qf
f )))


̀

RA1 ◦ PBMH(P t
f )

;A

s ∈ ac′ C s.wait B RA2

 ¬ PBMH(Qf
f )

⇒
(RA1 ◦ PBMH(Qt

f ))






Lemma L.H.3.4

P ;Dac ChaosAP

=

AP

 ¬ (P f
f ;A true) ∧ ¬ (RA1(P t

f ) ;A ¬ s.wait)
`
RA1(P t

f ) ;A (s ∈ ac′ ∨ ¬ s.wait)


Lemma L.H.3.5

SkipAP tAP StopAP

=
true

̀ s ∈ ac′ C s.wait B

 ∈ y
ac′(y.tr = s.tr ∧ ¬ y.wait)

∧
∈ y

ac′(y.tr = s.tr ∧ y.wait)





Lemma L.H.3.6 (SkipAP tAP StopAP) ;Dac ChaosAP = StopAP

Linking

Theorem T.6.4.19 Provided P and Q are reactive angelic designs,

RA1(H1(P) ;Dac H1(Q)) v P ;Dac Q

Theorem T.6.4.20 Provided P and Q are AP-healthy,

H1(RA1(P) ;Dac RA1(Q)) w P ;Dac Q
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Theorem T.6.4.21 Provided P and Q are reactive angelic designs and NDRAD-
healthy,

RA1(H1(P) ;Dac H1(Q)) = P ;Dac Q

Closure

Theorem T.6.4.22 Provided P and Q are angelic processes and NDAP-healthy,

NDAP(P ;Dac Q) = P ;Dac Q

Theorem T.H.3.4 Provided P and Q are angelic processes,

NDAP(P) ;Dac NDAP(Q)

=
true
`

s ∈ ac′ C s.wait B

 RA2 ◦ RA1 ◦ PBMH(P t
f )

;A
(s ∈ ac′ C s.wait B RA2 ◦ RA1 ◦ PBMH(Qt

f ))




Lemma L.H.3.7 RA1 ◦ RA2 ◦ PBMH(P)

;A
(s ∈ ac C c B RA1 ◦ RA2 ◦ PBMH(Q))

⇒ RA1(true)

H.3.8 Prefixing

Theorem T.6.4.23 Provided P is AP-healthy,

a → P

=

AP


¬ (∃ y • ¬ y.wait ∧ y.tr = s.tr a 〈a〉 ∧ (RA2 ◦ PBMH(P f

f ))[y/s])

`

∃ y •

 (y.tr = s.tr ∧ a /∈ y.ref ∧ y ∈ ac′)
Cy.waitB
(y.tr = s.tr a 〈a〉 ∧ RA2 ◦ RA1 ◦ PBMH(P t

f )[y/s])




Lemma L.6.4.4 H1(a →RAD SkipRAD) = a →AP SkipAP
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Lemma L.6.4.5 RA1(a →AP SkipAP) = a →RAD SkipRAD

Lemma L.6.4.6

a →AP ChaosCSPAP

=

AP(¬ ∈ y
ac′(s.tr a 〈a〉 ≤ y.tr) ` ∈ y

ac′(y.wait ∧ y.tr = s.tr ∧ a /∈ y.ref ))

Lemma L.H.3.8 a →AP ChaosAP = ChaosAP

Lemma L.H.3.9 PBMH ◦ RA1(true) = RA1(true)

Linking

Theorem T.H.3.5

H1(a →RAD SkipRAD)

=

AP

true ` ∈ y
ac′

 (y.tr = s.tr ∧ a /∈ y.ref )

Cy.waitB
(y.tr = s.tr a 〈a〉)




Theorem T.H.3.6

H3 ◦ H1(a →RAD SkipRAD)

=true ` s ∈ ac′ C s.wait B ∈ y
ac′

 (y.tr = s.tr ∧ a /∈ y.ref )

Cy.waitB
(y.tr = s.tr a 〈a〉)
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Appendix I

Set Theory

Lemmas

Lemma L.I.0.10

ac0 ⊆ {s | {s} = ac1} = ac0 ⊆ ac1 ∧ ac0 ⊆ {s | ac1 ⊆ {s}}

Proof.

ac0 ⊆ {s | {s} = ac1} {Definition of subset inclusion}

= ∀ x • x ∈ ac0 ⇒ x ∈ {s | {s} = ac1} {Property of sets}

= ∀ x • x ∈ ac0 ⇒ {x} = ac1 {Property of sets}

= ∀ x • x ∈ ac0 ⇒ ({x} ⊆ ac1 ∧ ac1 ⊆ {x}) {Property of sets}

= ∀ x • x ∈ ac0 ⇒ (x ∈ ac1 ∧ ac1 ⊆ {x}) {Predicate calculus}

= (∀ x • x ∈ ac0 ⇒ x ∈ ac1) ∧ (∀ x • x ∈ ac0 ⇒ ac1 ⊆ {x}) {Property of sets}

= (∀ x • x ∈ ac0 ⇒ x ∈ ac1) ∧ (∀ x • x ∈ ac0 ⇒ x ∈ {s | ac1 ⊆ {s}}
{Definition of subset inclusion}

= ac0 ⊆ ac1 ∧ ac0 ⊆ {s | ac1 ⊆ {s}}

Lemma L.I.0.11

ac0 ⊆ {s | ac1 ⊆ {s}} = ac1 ⊆ {s | ac0 ⊆ {s}}
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Proof.

ac0 ⊆ {s | ac1 ⊆ {s}} {Definition of subset inclusion}

= ∀ x • x ∈ ac0 ⇒ x ∈ {s | ac1 ⊆ {s}} {Property of sets}

= ∀ x • x ∈ ac0 ⇒ ac1 ⊆ {x} {Definition of subset inclusion}

= ∀ x • x ∈ ac0 ⇒ (∀ y • y ∈ ac1 ⇒ y ∈ {x}) {Property of sets}

= ∀ x • x ∈ ac0 ⇒ (∀ y • y ∈ ac1 ⇒ y = x) {Predicate calculus}

= ∀ x , y • x ∈ ac0 ⇒ (y ∈ ac1 ⇒ y ∈ y = x) {Predicate calculus}

= ∀ x , y • x ∈ ac0 ∧ y ∈ ac1 ⇒ y = x {Predicate calculus}

= ∀ x , y • y ∈ ac1 ⇒ (x ∈ ac0 ⇒ y = x) {Predicate calculus}

= ∀ y • y ∈ ac1 ⇒ (∀ x • x ∈ ac0 ⇒ y = x) {Property of sets}

= ∀ y • y ∈ ac1 ⇒ (∀ x • x ∈ ac0 ⇒ x ∈ {y}) {Definition of subset inclusion}

= ∀ y • y ∈ ac1 ⇒ ac0 ⊆ {y} {Property of sets}

= ∀ y • y ∈ ac1 ⇒ y ∈ {s | ac0 ⊆ {s}} {Definition of subset inclusion}

= ac1 ⊆ {s | ac0 ⊆ {s}}

Lemma L.I.0.12

ac0 ⊆ {s | ac0 ⊆ ac′} = ac0 = ∅ ∨ ac0 ⊆ ac′

Proof.

ac0 ⊆ {s | ac0 ⊆ ac′} {Definition of subset inclusion}

= ∀ x • x ∈ ac0 ⇒ x ∈ {s | ac0 ⊆ ac′} {Property of sets}

= ∀ x • x ∈ ac0 ⇒ ac0 ⊆ ac′ {Predicate calculus}

= ∀ x • (x /∈ ac0 ∨ ac0 ⊆ ac′) {Predicate calculus}

= (∀ x • x /∈ ac0) ∨ ac0 ⊆ ac′ {Property of sets}

= ac0 = ∅ ∨ ac0 ⊆ ac′

Lemma L.I.0.13 Provided v is not s,

∃ v • t ⊆ {s | Q} ⇒ t ⊆ {s | ∃ v • Q}
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Proof.

∃ v • t ⊆ {s | Q} {Property of sets, x is fresh}

= ∃ v • (∀ x • x ∈ t ⇒ (∃ s • Q ∧ x = s)) {Predicate calculus}

⇒ ∀ x • (∃ v • x ∈ t ⇒ (∃ s • Q ∧ x = s)) {Predicate calculus}

= ∀ x • x ∈ t ⇒ (∃ v • (∃ s • Q ∧ x = s)) {Predicate calculus: v is not s}

= ∀ x • x ∈ t ⇒ (∃ s • (∃ v • Q) ∧ x = s)) {Property of sets}

= ∀ x • x ∈ t ⇒ x ∈ {s | ∃ v • Q} {Property of sets}

= t ⊆ {s | ∃ v • Q}

Lemma L.I.0.14 Provided � is transitive,

x � y ∧ A ⊆ {z | y � z ∧ x � z ∧ e} = x � y ∧ A ⊆ {z | y � z ∧ e}

Proof.

x � y ∧ A ⊆ {z | x � z ∧ e} {Property of sets}

= x � y ∧ ∀ z • z ∈ A⇒ (y � z ∧ x � z ∧ e) {Predicate calculus}

= ∀ z • x � y ∧ (z ∈ A⇒ (y � z ∧ x � z ∧ e))

{Predicate calculus: � is transitivite}

= ∀ z • x � y ∧ (z ∈ A⇒ (y � z ∧ e)) {Predicate calculus}

= x � y ∧ ∀ z • z ∈ A⇒ (y � z ∧ e) {Property of sets}

= x � y ∧ A ⊆ {z | y � z ∧ e}

Lemma L.I.0.15

∃B • B 6= ∅ ∧ B ⊆ C ⇔ C 6= ∅

Proof. (Implication) By contradiction: Suppose the consequent is false yet the ante-
cedent is true. Then C = ∅.

∃B • B 6= ∅ ∧ B ⊆ C {Assumption: C = ∅}

= ∃B • B 6= ∅ ∧ B ⊆ ∅ {Property of subset inclusion}
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= ∃B • B 6= ∅ ∧ B = ∅ {Propositional calculus}

= false

Proof. (Reverse implication)

C 6= ∅ ⇒ ∃B • B 6= ∅ ∧ B ⊆ C {Choose B = C}

= C 6= ∅ ⇒ C 6= ∅ ∧ C ⊂ C {Reflexivity of subset inclusion}

= C 6= ∅ ⇒ C 6= ∅ {Propositional calculus}

= true

Lemma L.I.0.16

∃ ac0 • s ∈ ac0 ∧ ac0 ⊆ ac′ ⇔ s ∈ ac′

Proof. (Implication)

∃ ac0 • s ∈ ac0 ∧ ac0 ⊆ ac′ {Definition of subset inclusion}

= ∃ ac0 • s ∈ ac0 ∧ (∀ z • z ∈ ac0 ⇒ z ∈ ac′)
{Assume s ∈ ac0 then there is a case when z = s}

= ∃ ac0 • s ∈ ac0 ∧ (∀ z • z ∈ ac0 ⇒ z ∈ ac′) ∧ (s ∈ ac0 ⇒ s ∈ ac′)
{Assume s ∈ ac0 and propositional calculus}

⇒ s ∈ ac′

Proof. (Reverse implication)

s ∈ ac′ ⇒ (∃ ac0 • s ∈ ac0 ∧ ac0 ⊆ ac′) {Choose ac0 = ac′}

= (s ∈ ac′)⇒ (s ∈ ac′ ∧ ac′ ⊆ ac′)
{Reflexivity of subset inclusion and propositional calculus}

= true
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Lemma L.I.0.17 Provided that P[y/z ] holds,

{z | P ∧ z = y • Q} = {Q[y/z ]}



302 APPENDIX I. SET THEORY



Appendix J

Definitions: Alphabets and
Healthiness Conditions

J.1 Binary Multirelations

Definition 11 BM =̂ State ↔ P State

J.1.1 Healthiness Conditions

Definition 12 BMH =̂ ∀ s, ss0, ss1 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss1)⇒ (s, ss1) ∈ B

J.2 Designs

J.2.1 Alphabet

ok, ok ′ : {true, false}

J.2.2 Healthiness Conditions

Definition 26 (H1) H1(P) =̂ ok ⇒ P

Definition 27 (H2) H2(P) =̂ [P[false/ok ′]⇒ P[true/ok ′]]

Definition 30 (H3) H3(P) =̂ P ; IID

Definition 31 (H4) P ; true = true
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J.3 Reactive Processes and CSP

J.3.1 Alphabet

ok, ok ′,wait,wait ′ : {true, false}

tr , tr ′ : seq Event

ref , ref ′ : PEvent

J.3.2 Healthiness Conditions

Definition 57

R1(P) =̂ P ∧ tr ≤ tr ′

R2(P) =̂ P[〈〉, tr ′ − tr/tr , tr ′]

R3(P) =̂ IIrea C wait B P

R(P) =̂ R3 ◦ R1 ◦ R2(P)

Definition 58

CSP1(P) =̂ P ∨ R1(¬ ok)

CSP2(P) =̂ P ; ((ok ⇒ ok ′) ∧ tr ′ = tr ∧ ref ′ = ref ∧ wait ′ = wait)

J.4 Extended Binary Multirelations

Definition 66

State⊥ == State ∪ {⊥}

BM⊥ == State ↔ P State⊥

J.4.1 Healthiness Conditions

Definition 67 (BMH0)

∀ s, ss0, ss1 • ((s, ss0) ∈ B ∧ ss0 ⊆ ss1 ∧ (⊥ ∈ ss0 ⇔ ⊥ ∈ ss1))⇒ (s, ss1) ∈ B

Definition 68 (BMH1) ∀ s : State, ss : P State⊥ • (s, ss∪{⊥}) ∈ B ⇒ (s, ss) ∈ B

Definition 69 (BMH2) ∀ s : State • (s, ∅) ∈ B ⇔ (s, {⊥}) ∈ B
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Definition 70 (BMH3)

∀ s : State • (s, ∅) /∈ B ⇒ (∀ ss : P State⊥ • (s, ss) ∈ B ⇒ ⊥ /∈ ss)

J.5 Angelic Designs

J.5.1 Alphabet

Definition 85

s : State(Sα)

ac′ : P State(Sα)

ok, ok ′ : {true, false}

State(Sα) = {x , e | x ∈ Sα}

J.5.2 Healthiness Conditions

Definition 87 A0(P) =̂ P ∧ ((ok ∧ ¬ P f )⇒ (ok ′ ⇒ ac′ 6= ∅))

Definition 88 PBMH(P) =̂ P ; ac ⊆ ac′ ∧ ok ′ = ok

Definition 89 A1(P ` Q) =̂ (¬ PBMH(¬ P) ` PBMH(Q))

Definition 90 A(P) =̂ A0 ◦ A1(P)

Definition 91 A2(P) =̂ PBMH(P ;A {s} = ac′)

J.6 Reactive Angelic Designs

J.6.1 Alphabet

Definition 107

ok, ok ′ : {true, false}, s : State({tr , ref ,wait}), ac′ : P State({tr , ref ,wait})

J.6.2 Healthiness Conditions

Definition 109 RA1(P) =̂ (P ∧ ac′ 6= ∅)[Statestr≤tr ′(s) ∩ ac′/ac′]
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Definition 110

RA2(P) =̂ P
[

s ⊕ {tr 7→ 〈〉},
{

z

∣∣∣∣∣ z ∈ ac′ ∧ s.tr ≤ z .tr
• z ⊕ {tr 7→ z .tr − s.tr}

}/
s, ac′

]

Definition 112 RA3(P) =̂ IIRAD C s.wait B P

Definition 113 RA(P) =̂ RA1 ◦ RA2 ◦ RA3(P)

Definition 114 CSPA1(P) =̂ P ∨ RA1(¬ ok)

Definition 115 CSPA2(P) =̂ H2(P)

Definition 116 RAD(P) =̂ RA ◦ CSPA1 ◦ CSPA2 ◦ PBMH(P)

Definition 126 NDRAD(P) = P tRAD ChoiceRAD

J.7 Angelic Processes

J.7.1 Healthiness Conditions

Definition 127 AP(P) =̂ RA3AP ◦ RA2 ◦ A ◦ H1 ◦ CSPA2(P)

Definition 129 RA3AP(P) =̂ IIAP C s.wait B P

Definition 130 NDAP(P) =̂ ChoiceAP tAP P



Glossary

ACP Algebra of Communicating Processes

ASM Abstract State Machine

BNF Backus-Naur Normal Form

CCS Calculus of Concurrent Systems

CSP Communicating Sequential Processes

FCD Free Completely Distributive

FDR Failures-Divergence Refinement

FSM Finite State Machines

JCSP Java Communicating Sequential Processes

LTS Labelled Transition System

SOS Structured Operational Semantics

UTP Unifying Theories of Programming

VDM Vienna Development Method

ZRC Z Refinement Calculus
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