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Abstract 

Bruising of potato tubers leads to losses of 20% of the UK annual crop. The 

relationship between bruising, tuber physical and mechanical properties, and 

composition of phenolic acids, tyrosine and cell wall monosaccharides was 

explored in this thesis. Three field trials were undertaken and the varieties 

Lady Rosetta (LR), Maris Piper (MP) and Russet Burbank (RB) were grown 

in replicate field plots. Field trial 1 was designed to investigate the effect of 

harvest time and defoliation; field trial 2 was designed to investigate the 

effect of harvest and storage time and a third field trial was undertaken to 

investigate the effect of nitrogen application to soil (in variety LR only). 

Bruising was induced using a falling bolt for severe bruising and bruising 

index assessment. Weight, specific gravity and oxidative potential were also 

measured. Cortex and skin mechanical properties were measured using a 

TA.XT2i Texture Analyser. Phenolic acids, tyrosine and cell wall 

monosaccharides were analysed chemically using HPLC.  

The results from the field trials showed that tubers harvested ~ 150 days 

after planting varied in susceptibility to bruising for MP (11-60%), LR (14-

52%) and RB (50-92%). Earlier harvest (98-139 days) showed lower 

incidence of bruising for MP (0-16.7%) and LR (17-23%) but not always for 

RB (0-66.7%). Late harvest (180 days) presented high incidence of bruising 

for all varieties varying from 81-88%. 

Short storage periods (until January) did not increase bruising significantly. 

Long storage periods (March) increased incidence of bruising for all 
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varieties, and is associated with higher specific gravity, higher tissue 

deformability and higher phenolic acid and tyrosine levels.  

Potato plants defoliated 49 days before harvest showed lower bruising 

incidence than undefoliated samples, but had significantly (p<0.05) lower 

weight. Application of nitrogen increased weight of tubers and was 

associated with higher bruising incidence of LR when tubers were harvested 

later than 92 days after planting.  

Tyrosine levels or specific gravity were not always associated with highest 

bruising incidence. Hot dry conditions during tuber development (observed in 

field trial 2) was associated with early plant senescence and high tuber 

bruising incidence. 

In conclusion, bruising is affected by agricultural and post-harvest practices, 

and is determined by a number of physical and biochemical factors that vary 

between variety. The factors determining bruising seem to be dependent 

upon variety and the maturity of the tubers at harvest. Understanding these 

factors will help growers manage their crop to optimize quality and minimize 

waste. 
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Glc………..…………… D-glucose  

GlcA………..……D-glucuronic acid 

h..........................................hour(s)  

ha.......................................hectare 

HC..............hydroxycinnamic acids 

HPLC………....high pressure liquid 

chromatography 

Man……………..…...…D-Manose 

min.....................................minutes  

mg…................................milligram  

ml........................................millilitre  

Rha…………………...L-Rhamnose 

R.E.............................relative error  

R.S.D....relative standard deviation  

Rt .............................retention time  

s .........................................second  

SD ....................standard deviation 

SE………………...…standard error 

t...........................................tonnes 

Xyl…………….…...………D-xylose 

U...............................enzyme units 

μl .....................................microlitre  

μg..................................microgram 

>..................................greater than  

<.......................................less than 
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1 Introduction 

1.1 Origin and physiology 

The potato (Solanum tuberosum) was originally cultivated in Peru and was 

brought to Spain and Portugal in the late 1500s, from where it dispersed to 

other parts of Europe (Pringle et al., 2009). The potato is the fourth most 

important food crop in the world behind maize, wheat and rice, with over 300 

million tonnes produced annually (CIP, 2007). 

Potatoes are swollen stolons attached to the stems of potato plants, which 

act as storage organs. The stolon tips begin to swell as tuber initiation 

begins. New cells are created through cell division and starch is deposited 

after conversion from translocate sugars. The tuber periderm cells of skin 

are formed combining the process of laying down of stacked periderm cells 

with the deposition of suberin within and under these cells to form a 

protective barrier against disease and water loss (Pringle et al., 2009). 

1.2 Importance of potato in world economy  

The world potato sector is undergoing major changes. Europe, North 

America and countries of the former Soviet Union were the bigger producers 

and consumers until the early 1990s. Since then, the expansion of potato 

production and consumption in Asia, Africa and Latin America, where output 

rose from less than 30 million tonnes in the early 1960s to more than 165 

million tonnes in 2007 (FAO, 2010). There has been a rise of  3.8% per 

annum in developing countries and 1.8% decrease in production within 
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industrialized countries, making the world potato production static. In the 

industrialised countries, 12% of production is exported while in developing 

countries the quantity is less than 2% of the world production (Pringle et al., 

2009). Presently, China is the biggest potato producer, followed by India and 

Russian Federation (FAOSTAT, 2013). However, yields in North America 

and some European countries are over 40 tons/hectare (ha); even 70 to 80 

tons/ha can be produced in experimental plots. The yield in developing 

countries is less than 20 tons/ha, even less than 10 tons/ha in some 

countries (Wang, 2008). 

Almost half of the world potato supply is consumed in Asia, but its big 

population means that consumption per person was a modest 24 kg in 2005. 

The potato eaters are Europeans, 88 kg per capita. Africa and Latin America 

have the lowest per capita consumption, 14 and 21 kg per capita 

respectively, but the consumption in these continents is increasing (FAO, 

2010). Several factors can be attributed for the expansion of production and 

consumption of potatoes, as the inherent plasticity of the crop, international 

training, technical programs, technology transfer, the ecological facility and 

overarching political-economic transformations in income and trade, 

especially via the fast-food industry (Kiple and Ornelas, 2000). 

The continuous supply to market all year around is provided by strategies 

that include short storage non-environmentally controlled cellars (1-2 

months) to protect crops from insects and animals; storage for 6 to 9 months 

under ambient-air cooling to prevent sprout growth and to minimize disease 

development (Pringle et al., 2009) and the use of sprout suppressants as hot 
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fogging with chloropropham (CIPC), maleic hydrazide or ethylene (Briddon, 

2006).  

In the UK, planting date depends on final marketing, seasonal weather, 

latitude and longitude. The earliest planting occurs in the south-west region, 

usually in January/February and the latest in Ireland and Scotland, usually in 

May/June. Harvest of early potatoes will start in April/May, while main crop 

and seed crop will span September to November. Late harvest crops tend to 

have more disease than early harvested crops. However, early harvested 

crops produce more heat during storage than late crops and require 

ventilation to prevent subsurface condensation (Pringle et al., 2009).  

Storage may be a marketing decision based on the rise in potato price over 

the storage period and to satisfy processors and pack house requirements 

for a continuous supply of material all year. A typical pattern is found during 

the season; however it is dependent on the level of supply. From July to 

end-October, Weekly Average Price (WAPS) show that prices usually 

decline as supply increases, shown in figure 1.1. If harvesting progresses 

slowly, sometimes summer prices are steady to early September. A gradual 

increase on crop price is expected once lifting is complete. Post-Christmas is 

a period of weaker demand but with increases in prices from March 

onwards. As the new crop becomes available from May, old crop prices may 

drop sharply, but if the new crop is late, they may remain strong into the new 

season (BPC, 2013).  
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1.3 Quality of potato 

The definition of ”quality” can depend on the processing condition and type 

of end products to be produced, from harvesting to handling, purchase from 

grower to purchase by final consumer (Pardede, 2005).  

In industry, initial sampling of potatoes establishes whether a particular 

batch of potatoes is suitable for the proposed end market. Tests may assess 

size distribution, damage index, blackspot bruise, growth deformities, 

presence of sprouts, pest damage, disease, bloom and potential to rot. 

Additional tests for the processing market are dry matter and sugar content. 

For the purposes of this thesis I shall refer to 'blackspot bruise' as simply 

'bruising' which is the more widely used term at this time. 

Bruising of potato tubers represents a major problem for the potato supply 

chain, being the biggest single cause of consumer complaints (BPC, 2011). 

 
 
Figure 1.1 Free market weekly average price index 2000-2012 (BPC, 2013). 
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A 20% loss in production has been reported, costing the industry £26 million 

in 2004 of the UK annual crop (BPC, 2011). Its avoidance increases 

production costs (McGarry et al., 1996).  

1.4 Bruising  

Bruising can be caused by one or more types of contact, such as: 1) impact: 

which happens when tubers are hit by a stone, other tubers or dropped on to 

a hard surface; 2) compression: when exposed to pressure damage from 

weight of crop above and 3) vibration: which usually occurs during 

transportation and is difficult to avoid (Ophara and Pathare, 2014).  

The impact may be dissipated in different ways due to structural or 

mechanical properties of the tuber tissue (Peterson and Hall, 1975), and is 

dependent upon velocity and energy of impact (Skrobacki et al., 1989).  

The mechanical impact damages the cortex and the medullar cells just 

beneath the skin, without actually breaking them (Burton, 1989). It is invisible 

to the inspection staff unless the tuber is sliced open. Bruised tubers are 

therefore very difficult to remove on a pack house inspection line; so whole 

crops are often rejected even if only a few bruised tubers are presented.  

Previously, Reeve (1968) observed using light microscopy that the 

cytoplasm became dark and granular in bruised tissue. No obvious structural 

damage was noted and melanin was identified as forming on the intracellular 

surfaces of protoplasts and inner cell walls. 
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Edgell et al. (1998) demonstrated that impact results in a loss of intracellular 

compartmentation followed by an increase in the ribosomal and 

mitochondrial abundance within the cytoplasm, an increase in density of 

cytoplasm adjacent to the cell wall and surrounding amyloplasts, and the 

development of melanin in bruised cells. Indeed, a subcellular redistribution 

of polyphenol oxidase (tyrosinase, ECl.14.18.1) 12 hours after impact has 

been demonstrated by Partington et al. (1999), which coincides with a loss 

of membrane integrity and is associated with melanin deposits as the bruise 

developed. 

It is therefore generally accepted that a physical impact disrupts cellular 

membranes sufficiently so that the enzyme polyphenol oxidase (PPO) 

localised within plastids (chloroplasts and amyloplasts) comes into contact 

with phenolic compounds present in the vacuole and start the reactions 

(Corsini et al., 1992, Blessington et al., 2010 and Strehmel et al., 2010a). 

PPO is a copper-containing enzyme that catalyzes two different reactions 

involving molecular oxygen with various phenolic substrates: the o-

hydroxylation of monophenols (e.g. tyrosine) to o-diphenols by 

monooxigenase or cresolase activity and the subsequent oxidation of o-

diphenols to o-quinones by diphenolase or catecholase activity. The 

formation of a heterogeneous group of melanins, the black pigment 

compounds, is the result of the polymerization of the quinones (Falguera et 

al., 2010).  

Polymeric polyphenolic compounds seem to be more toxic to potential 

phytopathogens than phenolic monomers from which they are derived. The 



38 
 

polyphenol oxidase (PPO) catalysed polymerization helps to seal the injured 

plant surface and begin the healing process, analogous to the formation of 

fibrin blood clots in injured humans (Friedman, 1997). 

1.4.1 Bruising assessment 

In order to compare the occurrence of internal damage, bruise quantification 

can be carried out using destructive manual measurements and subsequent 

analysis, or using a range of non-destructive techniques. 

An impact test method is used to simulate bruising that occurs normally in 

harvesting and handling operations. Drop tests of bulk samples or individual 

tubers, where samples are dropped from a known height onto a hard 

surface, are dependent on the mass, size and shape of the tubers (Baritelle 

et al., 2000). Impact tests consist of holding tubers steady and damaging 

them with a moving mass such as a guided falling bolt (Corsini et al., 1999, 

Stalham and Allen, 2006) or a pendulum (Noble, 1985). Another impact-

based method is shaking tubers in a rotating barrel (Mohsenin, 1986). This is 

commonly used in the potato industry. 

One of the challenges of drop and impact tests is the difficulty of estimating 

the rebound height, which is needed to calculate the actual impact energy 

absorbed to cause damage. To address this problem in bruise testing, 

Opara et al. (2007) designed and developed a device using a standard video 

camera for automatic recording of the rebound height determination during a 

pendulum test.  
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Recently, Jiménez-Jiménez et al. (2013) designed an impact device to 

cause controlled and reproducible impact by dropping the olive fruit onto a 

metal plate and the impact parameters were recorded with a piezoelectric 

load cell attached to the metal surface. The authors observed that 

mechanical damage from impact (bruising) in three table olive cultivars was 

directly related to the impact energy level and the time after impact. Geyer et 

al. (2009) described a similar apparatus equipped with an impact force 

sensor to record impact force versus time (samples rate of 10,000 Hz) to 

determine bruising mechanical impact in tubers. 

Bruising develops over a period of 1–3 days following mechanical impact 

(Strehmel et al., 2010a), depending on temperature. To accelerate the 

identification of potential bruising from mechanical damage, samples can be 

put in to a hot box and kept at high relative humidity (RH) by circulating air 

over a water bath. The hot box is maintained at a temperature of 34-36°C 

and RH 95-98% and the bruise will develop within 12-14 hours (h). This 

procedure is applied at Sutton Bridge Crop Storage Research.  

Another way to accelerate the speed of bruise formation is to use a more 

complex method that consists of storing potatoes under oxygen at high 

pressure (1.4 kg/cm2). The time required for maximum pigmentation is 

regularly in the order of 2 h (Duncan, 1973). However, due to the relative 

simplicity of the hot box, growers and pack house staff routinely use the hot 

box for rapid bruise detection. 

The most sensitive part of the tuber is the vascular region of the potato tuber 

and the stolon end of the tuber (Adams and Brown, 2007). A classification 
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system for impact-related defects in potato tubes puts the tuber into one of 

seven categories: no bruise, bruising, crush, white spot/white knot, internal 

shatter, external shatter, external cracking. The damage index is the amount 

of tuber that will be lost to remove the on the damaged area (Baritelle et al., 

2000). This research focused in bruising and external cracking (skin 

damage). 

The manual primary measurement of bruised tissue depth and volume. To 

assess the depth of bruise damage, the tubers should be peeled to reveal 

bruising. The symptoms are usually limited to a zone 5-10 mm of diameter 

located about 2 mm beneath the surface of the tuber (Burton, 1989). The 

categories are nil bruising, slight bruising (less than two peelers) and severe 

bruising (needs more than two peelers to remove) (procedure developed at 

the Sutton Bridge Crop Storage Research, 2008). 

Several mathematical formula can be used estimating bruise volume, such 

as bruise thickness method, full-depth method, ellipsoid method, enclosed 

volume, unbruised volume removed method, sphere bruise shape, and 

semi-oblate spheroid bruise shape (Opaha and Pathare, 2014). The area of 

bruised tissue can also be estimated by the use of a software, such Optimas 

6.0 (BioScan Inc, Bothell Washington, USA) (Sthehmel et al., 2010). 

The manual method assuming cylindrical shaped bruise volume of bruised 

tissue is calculated measuring bruise depth, width and visual assessment of 

the bruise pigment intensity (BPC_LINK 240, 2007). The visual rating of 

bruise pigment for bruising assessment is commonly based on a visual 

rating scale which is not consistent among researchers. 
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Methods such as abrasive peeling (Dean et al., 1993, Corsini et al., 1999) 

and optical density (oxidative potential) (Sabba and Dean, 1996, Dean et al., 

1993) do not measure susceptibility to internal damage caused by an 

impact, but are useful for comparing the speed and extent of browning 

responses and are useful indications of susceptibility to impact, when the 

limiting mechanisms are primarily biochemical oxidation of tuber 

homogenates (Dean et al., 1993). Dean et al. (1993) suggested that 

significant but not large correlations have been found between 

measurements of bruise resistance by the homogenization technique and 

impact type bruise techniques (R = 0.35 to 0.37). 

Novel and emerging non-invasive technologies for bruise measurement of 

fresh horticultural produce include visible and near infrared (Vis–NIR) 

spectroscopy (Jiménez-Jiménez et al., 2012), nuclear magnetic resonance 

imaging (Thybo et al., 2004), hyperspectral imaging and thermal imaging 

(Opara and Pathare, 2014). 

Simulation of the vibration force created during transportation is also been 

studied. A comparison of the package-cushioning materials to protect 

bruising damage to apples was investigated using an exciter vibration table 

with a force transducer (Eissa and Hafiz, 2012).  

The instrumented spheres such as electronic potatoes permit real time 

monitoring and evaluation of packing lines to characterize the bruise 

potential postharvest handling systems (Van Canneyt et al., 2004). This kind 

of device helps to monitor potato trajectories through the chain and identify 

the critical control points to reduce the incidence and magnitude of 
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mechanical damage of fresh horticultural produce. Electronic potatoes are 

useful to estimate the pressure of bruising on tubers located at lower depths 

in bins of stored potatoes. 

Different methods can give a variation in bruising susceptibility due to many 

terminologies and ranges of subjective bruise scores used to characterise 

visual bruising (McGarry et al., 1996, Baritelle et al., 2000). In the present 

study, different methods to assess the extent of bruising have been 

explored.  

1.5 Factors influencing bruising in potatoes 

1.5.1 Genotypic characteristics 

Whilst no single factor determines bruising susceptibility, genotypic 

differences among cultivar varieties have a strong influence on the 

frequency and extent of bruising (Corsini et al., 1992, McGarry et al., 1996). 

Varietal characteristics influence the shape and size of the tubers 

(Partington et al., 1999) which are important factors to consider in relation to 

bruising susceptibility.  

In this present study, the varieties Maris Piper (MP), Lady Rosetta (LR) and 

Russet Burbank (RB) were investigated. These UK varieties of potatoes are 

known to differ in their tendency toward bruising. MP and LR present a 

bruising susceptibility score of 6, and RB a bruising score of 4 in ratings 

ranging from 0 (most susceptible) to 9 (least susceptible) (Carnegie et al., 

2005, BPVD, 2012). These ratings are derived by linear transformation using 
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varieties with known consistent susceptibilities and resistant reactions to 

bruising as fixed reference points after assessment made with a standard 

force applied to the heel end and the depth of damage at the point of impact 

measured (Carnegie et al., 2005). 

MP is a white to yellow skin colour, it is one of the best known and popular 

potato varieties on sale and it is grown in high numbers across the UK 

(BPVD, 2012). LR is a red skinned, round shaped potato and it is specially 

used as a crisping variety (BPVD, 2012). RB is a large brown-skinned, 

white-fleshed potato cultivar majorly used for making chips or baking 

(Carnegie et al., 2005, BPVD, 2012).  

1.5.2 Phenolic acids 

A phenolic is a compound with an –OH group attached directly to a benzene 

ring (Fry, 2000), shown in table 1.1. Phenolic acids contain two 

distinguishing constitutive carbon framework: the hydroxycinnamic acid (Xa) 

and hydroxybenzoic acid (Xb) structures. Hydroxycinnamic acids are the 

most widely distributed in potatoes, constituted of series of trans-phenyl-3-

propenoic acids, differing in their ring substitution (Robbins, 2003). 

Both benzoic and cinnamic acid derivatives have their biosynthetic origin 

from the aromatic amino acid L-phenylalanine, itself synthesized from 

chorismate, the final product in the shikimate pathway shown in figure 1.2 

(Jensen, 1986; Robbins, 2003). The subsequent conversion of L-

phenylalanine to the various hydroxycinnamic acids involves a three-step 
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sequence referred to as the “general phenylpropanoid metabolism” 

(Robbins, 2003).  

Table 1.1 Structure of the naturally occurring phenolic acids in potatoes 

where Xa is a hydroxycinnamic acid and Xb is a hydroxybenzoic acid. 

 

R1 R2 X Common name 

H -OH a p-coumaric acid 

-OCH3 -OH a ferulic acid 

-OH -OH a caffeic acid 

-OCH3 -OH b vanillic acid 

 

 

 
Phenylalanine 

PAL Cinnamic 
acid 

      

   C4H       

Chorismate 

       Tyrosine 

 

 

TAL 

 

p-Coumaric 

 

 

C3H 

 

Caffeic 
acid 

 

 

COMT 

 

Ferulic 
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Oxidation 
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Figure 1.2 The phenolics biosynthetic pathway. The enzymes are: PAL 
phenylalanine ammonia-lyase; TAL tyrosine ammonia-lyase; C4H cinnamate 4-
hydroxylase; C3H 4-hydroxycinnamate 3-hydroxylase; COMT caffeic acid 3-O-
methyltransferase; 4CL 4-coumarate: (Adapted from Jensen, 1986, Spangenberg et 
al., 2001 and Converti et al., 2010). 
 

chorismate mutase 
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The major phenolic acid compound in potato tubers is chlorogenic acid (5-O-

caffeoylquinic acid or 5-CQA). Chlorogenic acid contributes up to 90% of the 

total phenol content of potatoes tubers and most of the discussion has 

centred on this compound (Friedman, 1997). Other common compounds 

found in potatoes are 3-CQA and 4-CQA which are 5-CQA isomers differing 

in their position of caffeic acid attachment on quinic acid as shown in figure 

1.3. The structure of ferulic acid (3-methoxy-4-hydroxy), caffeic acid (3, 5 

dihydrocinnamic acid), p-coumaric acid (4-hydroxy) and vanillic acid are 

shown in table 1.1 (Ramamurthy et al., 1992, Dao and Friedman, 1992, 

Desotillo et al., 1994, Hale, 2003, Shakya and Navarre, 2006 and 

Blessington et al., 2010) .  

 

 Figure 1.3 Structures of caffeoylquinic acid (5-CQA). CQA isomers differing 

in their position of caffeic acid attachment on quinic acid as indicated.

Phenolic compounds are distributed mostly between the cortex and skin 

(peel) tissues of the potato (Reeve et al., 1969). Chlorogenic acids are much 
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more concentrated in outer than in inner tissue zones and is also highly 

concentrated in the phloem and phloem parenchyma tissues of both cortex 

and perimedullar zone (Reeve et al., 1969).  

The phenolic compounds are widely distributed in most tissues as 

conjugates in plant material but seldom as their free acids (Karakaya, 2004). 

The conjugates are bound to polysaccharides or other high molecular weight 

molecules. Ferulic acid and related compounds also occur in vacuoles in the 

form of β-glucosyl esters, which are much more water-soluble than the free 

acids (Fry, 2000). Some sugars in growing cell wall polysaccharides are also 

found with traces of ester bonds with phenolic acids, such as ferulic acid, 

coumaric acids and p-hydrobenzoic acid (Albersheim et al., 2011). These 

link the –COOH group of phenolic acid to specific –OH groups on particular 

sugars of certain polysaccharides. The traces of phenolics that are present 

may nevertheless act as important cross linking sites between 

polysaccharides (Fry, 2000). 

Ferulic or p-coumaric acid can also have ether bond with wall polymers 

especially lignin. There are also reports of ferulic acid being amide-linked via 

its –COOH group to NH2- of the protein. Cells with suberin also contain 

phenolic material, but their cross-links are very poorly understood (Fry, 

2000).  

Phenolic compounds, at low concentration, may act as antioxidants and 

protect foods from oxidative deterioration, providing resistance of plants 

(Friedman, 1997; Shakya and Navarre, 2006). The metabolism of phenolics 

in plants has been associated with injuries, thermal stress, exposure to UV 
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rays, ozone and biotic stress (Ngadze et al., 2014). At high concentrations, 

phenolic acids or their oxidation products may interact with proteins, 

carbohydrates and minerals (Karakaya, 2004; Karakaya and El, 2006).  

Phenolic content is likely to be an important factor in determining bruise 

development. Ramamurthy et al. (1992) observed that during wound healing 

tubers greatly increased the content of chlorogenic acid, caffeic acid, p-

coumaric and ferulic acid. In addition, the 3-CQA and 4-CQA isomers of 5-

CQA accumulated in the tissue.  

Mondy et al. (1987) found that bruised tissue contained significantly more 

phenolics than unbruised tissue following damage and storage at either 5°C 

or 20°C for 1, 3, 6, and 12 weeks. However, Dale et al. (1998) observed that 

the rate of accumulation of chlorogenic acid in response to damage-induced 

stress is genotype dependent. The cultivars Brodick and Torridon presented 

a small significant increase in chlorogenic acid levels after damage while the 

other cultivars, Ailsa, Eden and P Dell exhibited no appreciable differences. 

Among phenolic acids found in potatoes, the compounds chlorogenic acid 

and caffeic acid are known to be relevant in the bruising of potatoes (Lærke 

et al., 2002). However, contrasting findings suggest that the contribution of 

other phenolic compounds to bruising formation remains unclear (Corsini et 

al., 1992, Mondy and Munshi, 1993, Friedman, 1997).  

Bruising pigments isolated from two commercial cultivars have shown that 

the pigment is made of a protein matrix with covalently bound constituents 

which give the polymers an absorbance through the visible spectrum. The 
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results indicated that the pigments of one of the cultivars incorporated the 

endogenous o-diphenol chlorogenic acid (Stevens et al., 1998). Besides, the 

formation of iron-chlorogenic acid-protein chelates have been suggested to 

contribute to the internal discolouration of potato tuber tissue (Strehmel et 

al., 2010a).  

Gosselin and Mondy (1986) observed that the varieties which produce more 

colour on the bruised tissue were higher in phenol content. However, the 

literature has contradictory findings about PPO and substrates. Early in the 

literature, Mondy et al. (1959) observed that the variety most susceptible to 

discolouration showed a greater increase in phenolic content during storage 

and suggested that the accumulation of phenolics was resultied from 

decreased activity of PPO. 

Lærke et al. (2000) observed that MP tubers were 10 times more bruising-

susceptible than the variety Colmo (CM) but the activity of PPO found in CM 

was more than three times higher compared to MP, which is unexpected.  

McNabnay et al. (1999) suggested that PPO is absolutely necessary for the 

formation of the dark coloured compounds but the level of the enzyme is 

usually not limiting in commercial cultivars. In contrast, McGarry et al. (1996) 

observed that the discolouration reaction strongly depends on PPO activity 

on its substrates. According to Croy et al. (2000), PPO is a major limiting 

factor for bruising pigment formation. In tuber extracts, the addition of free 

tyrosine had little or no effect on pigment development, whereas addition of 

minute quantities of the enzyme caused a large increase in pigment 

formation within 60 minutes. 
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It has been shown that the role of PPO activity is predominant however other 

enzymes like cytochrome oxidase activity (Mondy et al., 1959) and 

peroxidases are possibly involved in the browning phenomenon (Partington 

et al., 1999, Urbany et al., 2011). In addition to PPO and its substrates, 

reducing agents such as ascorbate influence tuber bruising (El-Shimi, 1993). 

1.5.3 Tyrosine 

Another phenolic compound related to bruising is free tyrosine, which has 

been recognized as the main substrate for polyphenol oxidase-catalysed 

conversion (Dean et al., 1993; Mondy and Munshi, 1993 and Stevens et al., 

1998). Tyrosine is synthetized via the shikimate pathway, of which 

chorismate mutase is a key regulatory enzyme as shown in figure 1.2 

(Jensen, 1986).  

Previously, Belknap et al. (1990) reported that wound-induced synthesis of 

proteins, such as ubiquitin and phenylalanine ammonia lyase was 

associated with bruising and cell damage. Rhamamurthy et al. (1992) also 

reported an increase in phenylalanine ammonia-lyase activity accompanied 

by a parallel rise in formation of phenolics after damage.  

However, Dean et al. (1992) suggested that phenylalanine plays little or no 

role in determining the extent of bruising. Sabba and Dean (1994) observed 

that post mechanical impact, higher levels of free tyrosine were present due 

primarily to the increased activity of endopeptidases and it was not due to 

increased traffic through the biosynthetic pathway for tyrosine. 
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Strehmel et al. (2010a) explored the metabolic changes induced after 

mechanical stress and observed that the tyrosine and phenylalanine pools 

does not increase significantly after mechanical impact prior to bruising 

formation nor decrease concomitantly, what exclude bruising susceptibility 

being mediated by precursor accumulation or limitation. Also Strehmel et al. 

(2010a) observed that the absolute level of tyrosine before impact was 

higher in the non-sensitive cultivar studied.  

The presence of tyrosine is higher in the stolon end of the potato (Mondy 

and Munshi, 1993), a fact that leads to increase in sensitivity to bruising in 

this area (Adams and Brown, 2007). Immature tubers present low levels of 

free tyrosine, being 0.081 and 0.038 mg/100g fresh weight for the varieties 

Pontiac and Ontario harvested 9 weeks after planting and then increasing 

progressively, incrementing by 0.5 mg/100g fresh weight when harvested 

after 11 weeks of planting. Evidence shows that the concentration of tyrosine 

in stored tubers is highly dependent on tuber maturity at harvest (Mondy and 

Munshi, 1993).  A threshold concentration of tyrosine of 4 μmole per gram 

fresh weight has been proposed below which no bruise pigments are formed 

in response to mechanical impact (Corsini et al., 1992).  

Several studies have explored the correlations between tyrosine levels and 

bruising but they are contradictory (Corsini et al., 1992; Dean et al., 1992 ; 

Dean et al., 1993  and Stevens and Davelaar, 1997).  

A higher content of free tyrosine was associated to the significant increase of 

the total potential to form dark colour measured at the optical density 475 nm 

of homogenized tissue in potassium deficient treatments (McNabnay et al., 
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1999). In vitro assay with desalted polyphenol oxidase (PPO) showed that 

tyrosine contributed more to oxidation of tissues than chlorogenic acid (Kim 

and Dean, 1998). Sabba and Dean (1994) reported that bruising 

susceptibility had strong positive correlation (R=0.88) to tyrosine levels in 

certain varieties. Experiments from Stevens and Davelaar (1997) showed a 

good linear correlation with tyrosine and bruising pigments (in vitro) but not 

with bruising susceptibility following impact with a pendulum. The results 

show that tyrosine content was largely dependent and could be decreased 

by the combined supplementation of nitrogen.  

The researchers Mondy and Munshi (1993) also found a positive correlation 

between bruising and free tyrosine within a cultivar, but suggested that 

tyrosine levels were not the predominant factor in determining bruising 

susceptibility in potatoes as a whole due to the fact that their cultivar with 

high bruise susceptibility had overall considerably lower levels of tyrosine 

than their cultivar with high bruise resistance. 

Similarly, in diploid hybrids resistant to bruise, the content of L-tyrosine was 

not significantly correlated with bruising (Hara-Skrzypiec and Jakuczun, 

2013). Corsini et al. (1992) noted there was an inverse relationship between 

the amount of protein-bound tyrosine with free tyrosine, suggesting that 

protein biosynthesis affected bruising susceptibility by reducing the pool of 

free tyrosine available for use by PPO. Partitioning of tyrosine between tuber 

protein and the free amino acid pool varies with genotype and appears to be 

a major determinate of bruising resistance (Corsini et al., 1992; Mondy and 

Munshi, 1993; Friedman, 1997). Tyrosine becomes elevated either through 
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de novo synthesis or by liberation from protein via proteases (McNabnay et 

al., 1999). 

Contrasting findings suggest that the impact on discolouration with tyrosine 

and the partitioning of tyrosine between tuber protein and the free amino 

acid pool remains unclear. 

1.5.4 Cell walls 

The gross cell wall composition of potato tubers is typical of parenchymous 

tissue. Parenchyma in plants tissue is composed of living cells that are thin-

walled, unspecialized in structure, and therefore adaptable, with possible 

differentiation to various functions (Ross et al., 2011a, b).  

Cell walls of potatoes have an important role in maintaining freshness of 

potato tubers during storage and also influence the textural quality of many 

processed products (Jarvis et al., 2003). The cell wall is a rigid structure 

encasing plant cells which resists turgor pressure and mediates cell-cell 

adhesion (Fry, 2000).  

The primary walls consist of cellulose microfiblis embedded in a matrix of 

polysaccharides and often, not always, glycoproteins, hemicellulose, 

phenolics and aqueous phase (70%) (Albersheim, 2011). Pectin and 

hemicelluloses are the noncellulosic polysaccharides of the primary cell wall 

(Fry, 2000). Figure 1.4 shows the most important monosaccharides of potato 

cell wall which account for monomer subunits of the matrix polyssacharides. 
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1.5.4.1 Pectin 

Pectins are the main polysaccharides in potato cell wall and contributes 

between 52-55% of total polysaccharides (Ross et al., 2011a, b). The 

synthesis of pectic polysaccharides is estimated to involve at least 67 

different enzyme activities, including glycosyl-, methyl-, and 

acetyltransferases (Mohnen, 2008; Harholt et al., 2010). Degradation of 

pectin is catalysed by pectinases through depolymerisation (hydrolases and 

lyses) and deesterification (esterases) reactions (Pedrolli et al., 2009). 

Synthesis and modification of cell wall pectins occurs in the cis-Golgi 

apparatus, where activated nucleotide sugars, such as uridine diphosphate 

glucose (UDP-Glucose), are required for pectin biosynthesis (Caffall and 

Mohnen, 2009). There may be branching and esterification of pectin in the 

Figure 1.4 Sugars of plant cell walls (Smith, 1977). The sugar monomers of plant 
cell walls include β-D-Glucose, β–D-Galactose, β–D-Mannose, β-D-Glucuronic 
acid, β-D-Galacturonic acids, β-L-Rhamnose, β-D-Xylose, β-L-Fucose and β-L-
Arabinose. 
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trans-Golgi. However, relatively unesterified pectin can also be inserted into 

the cell wall (Ridley et al., 2001). 

Pectin is present in much larger quantities and surround growing and 

dividing cells in primary walls compared to secondary walls (Caffall and 

Mohnen, 2009), suggesting that pectin has a function in plant growth 

(Mohnen, 2008). They are highly hydrophilic polysaccharides, and the water 

that they introduce into the matrix may loosen the wall, enabling the skeletal 

cellulose microfibrils to separate – necessary for cell wall expansion (Fry, 

2000). On the other hand pectin can form cross-links via calcium bridges 

that may serve the opposite function of resisting the expansion of the cell 

wall (Fry, 2000). Pectin is also present in the soft parts of the plant, cell 

corners and largely in the middle lamella, where they presumably serve the 

function of cell–cell adhesion (Fry, 1986; Jarvis, 1998). Other evidence 

indicate a role for pectin in defence (White and Broadley, 2003), binding of 

ions (Vincken et al, 2003), wall porosity, morphogenesis, signalling 

enzymes, seed hydration, leaf abscission, fruit development (Mohnen, 

2008), and structural providing a plastic behaviour (Zdunek et al., 2004). 

Pectins are a family of covalently linked galacturonic acid-rich plant cell wall 

polysaccharides. Galacturonic acid comprises approximately 70% of pectin, 

and all the pectic polysaccharides contain galacturonic acid linked at the O-1 

and the O-4 position. Pectins are highly complex polysaccharides and are 

composed of subclasses: homogalacturonan (HG), rhamnogalacturonan I 

(RG-I) and RG-II (Mohnen, 2008), shown in figure 1.5. The content of 

subclasses is variable. Typically HG is the most abundant polysaccharide 
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constituting up to 65% of the pectin, and RGI constitutes 20% to 35% 

(Mohnen, 2008).  

 

Figure 1.5 Selected schematic structure of pectin showing the regions of 
representative pectic polysaccharide: (a) Homogalacturonan, HG, (b) 
Rhamnogalacturonan II, RG-II, (c) Rhamnogalacturonan I, RG-I, (d) Selected RG-I 
backbone side chains. The bottom structure is a so-called type II arabinogalactan 
since similar structures are also found in abinogalactan proteins (Mohnen, 2008). 
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Homogalacturonan 

The HG is abundant in potato primary cell walls and, is particularly dense in 

the middle lamellae (Caffall and Mohnen, 2009). HG consists of α-1,4-linked 

galacturonic acid residues that can be methyl esterified at C-6 carboxyl 

group (COOH) , and/or acetylated at O-2 or O-3 (Vincken et al., 2003). 

Due to changes in the physical and chemical properties of pectin to a large 

extent, the methyl-esterification has gained a lot of attention over the years. 

Pagel and Heitefuss (1989) observed a high correlation was found between 

the content of non-esterified homogalacturonan and resistance to bruising in 

potatoes. Additionally, the reduction of bruising severity is linked with 

increase in calcium concentrations in potatoes tissue (Ozgen et al., 2006).  

The reasons for low calcium levels correlated with internal browning in raw 

fruits and vegetables are not fully understood at present (Adams and Brown, 

2007). It is known that cytosolic (cyt) calcium concentrations has crucial 

importance as it stabilizes cell membranes, and is a key regulator of plant 

defences to mechanical perturbation, cooling, heat shock, acute salt stress, 

hyper-osmotic stress, anoxia, and exposure to oxidative stress elicitors. An 

immediate transient increase in cyt calcium in plant cells is followed by a 

more prolonged elevation of cyt calcium lasting many minutes or hours 

(White and Broadley, 2003). Thus, under low calcium conditions, cellular 

defence regulation may be disrupted and this leads to accumulation of 
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reactive oxygen species that cause oxidation of phenolic compounds and 

the resulting discolouration (Adams and Brown, 2007). 

The formation of calcium crosslinks between HG chains is impaired by 

acetylation of galacturonic acid (Renard and Jarvis, 1999). The degree of 

acetylation (DA) on potato cell wall material has been estimated to be 

around 40-45% (van Marle et al., 1997) with heterogeneous distribution of 

acetyl along the pectic backbone (Orfila et al., 2012). Acetyl substitution also 

affect the enzymatic activity on HG by some endopolygalacturonases 

(endoPGs) (Bonnin et al., 2003).   

Rhamnogalacturonan I 

RG I is a branched polymer with a backbone of disaccharide (α-1,4-D-GalA-

α-1,2-L-Rha) (Harholt et al., 2010). Up to 80% of the rhamnosyl residues are 

substituted at O-4 with arabinan, galactan, and/or arabinogalactan I (AG I) 

side chains, depending on the plant source and method of isolation (Caffall 

and Mohnen, 2009). Other substituents in small amounts are L-fucosyl and 

D-glucosyluronic acid residues (Albersheim, 2011).  

The arabinans consist of a α-1,5-L-Arabinose backbone, which can be 

substituted with α-1,2-Ara-α-1,3-; and/or α-1,3-Ara-α-1,3-Ara side chains 

(Vincken et al., 2003). Galactans account to 67% of RGI. AG-I is composed 

of a β-1,4-galactosil backbone where arabinose residues can be attached to 

the O-3 of the galactosyl. Other substituents at O-3 in AG-I can be ferulic 

and coumaric acid (Orfila et al., 2012). Side chains can also crosslink to 

other wall components such as xylans, xyloglucans, proteins, and lignins 
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(Caffall and Mohnen, 2009). The degree of substitution, branching and 

integration in the cell wall may differ and have great impact in tissue 

properties (Harholt et al., 2010). 

Side chains of RG-I of pectin may also play some role in cell wall firmness. 

Ulvskov and co-workers (Oomen et al., 2002, Skjøt et al., 2002, Ulvskov et 

al., 2005, Orfila et al., 2012) proposed  that the components of RGI (galactan 

and arabinan) transmit stresses in the wall and hence play a direct role in 

wall rheological properties. The force to fracture cylinders of tuber tissue 

decrease when levels of galactan and arabinan are reduced due to 

expression of fungal pectin-digesting enzymes. The elastic properties of the 

tubers were also altered, with a stiffening of the cell wall (Orfila et al., 2012). 

Loss of arabinan and galactan was also associated the loss of firm texture in 

apples (Pena and Carpita, 2004). Alterations in arabinan content have been 

associated with cell adhesion defects in tomatoes (Orfila et al., 2001). 

Mitsuhashi‐Gonzalez et al. (2010) observed in apples that the greater the 

amount of intercellular space present in the tissue, the more tissue damage 

from bruising occurred. 

Salato et al. (2013) observed that soft cherries had lower wall contents 

together with higher neutral sugar rich-pectin side chains compared to firm 

cherry, factors that the authors suggested may be involved in the differences 

in firmness. 

A study of the motilities of polysaccharides in a cell-wall suggested that 

arabinans and galactans are among the most freely mobile polymers in 

hydrated, RGI-rich primary walls (Tang et al., 1999). Side chains of RG-I 
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galactan and arabinan can interact with cellulose microfibrils in primary cell 

walls (Zykwinska et al., 2007), and can be covalently linked to xyloglucan as 

noted in Arabidopsis cell cultures (Popper and Fry, 2008). The galactosyl 

1containing side chains of xyloglucan contribute to the tensile strength of cell 

walls (Caffall and Mohnen, 2009).  

Substituted galacturonan: rhamnogalacturonan II (RG-II) 

HGs can contain clusters of four different (heterooligomeric) side chains 

attached onto the O-2 or O-3 position in the galacturonan backbone with 

very peculiar sugar residues (such as D-Apiose, aceric acid, 2-keto-3-deoxy-

D-lyxo heptulosaric acid (Dha) and 2-keto-3-deoxy-D-manno octulosonic 

acid (Kdo)) to form RGII (Harholt et al., 2010). These side chains are 

composed of 12 types of glycosyl2 residues linked together (Mohnen, 2008, 

Harholt et al., 2010) by at least 22 different glycosidic bonds (Harholt et al., 

2010). RG-II domains can form crosslinks to other RG-II molecules via 

borate diester linkages, to form RG-II dimers that contribute to wall strength  

(Peña and Carpita, 2004) and affect pore size and flexibility of the pectic 

network (Caffall and Mohnen, 2009). Greater than 95% of RG-II molecules 

participate in dimer complexes of RG-II (Caffall and Mohnen, 2009). RG-II , 

                                            

1 When monosaccharides become incorporated into a polysaccharide, one water 
molecule is lost for each glycosyl link that is formed, the corresponding sugar 
residue that is incorporated is identified by the suffix –osyl (Fry, 2000). 
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as HG, is a key feature controlling cell-cell adhesion (Jarvis et al., 2003). 

Another linkage not yet established is whether XGA can harbor RG-II 

elements (Vincken, 2003). 

Although pectin plays a role in cell wall firmness, the role of the pectin in 

relation to bruising has not yet been established. Wulkow (2009) has 

previously investigated if the pectin concentration of potato tubers influences 

bruising. Wulkow (2009) reported that there was no correlation between dry 

cell wall material, the total pectin nor the nonpectin (celluloses, 

hemicelluloses) concentration and blackspot susceptibility (p>0.05) in tubers 

of various specific gravities. Also, there was no correlation found between 

the degree of esterification of the pectin to the blackspot susceptibility index 

of tubers. 

1.5.5 Mechanical properties 

The mechanical parameters are known to be associated with potato bruising 

damage such as the amount of physical deformation, the transmission of 

impact energy and the predisposition to fracture (McGarry et al., 1996). 

The mechanical properties of plant organs depend upon anatomical features 

such as cell size, cell wall thickness, skin thickness, cell-cell adhesion, turgor 

pressure and the strength of the plant cell wall (McGarry et al., 1996; Zdunek 

et al., 2004; Singh et al., 2005; Jarvis, 2011).  

The turgor seems to play an important role on the texture. Changes in water 

status was responsible for appreciable changes in the fracture properties of 

the varieties King Edward and Record when the turgor cell wall was 
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manipulated to three different states (turgid, fresh and flaccid) (Hiller et al., 

1996). 

Tuber turgidity and cell wall strength have also been reported to influence 

impact bruise susceptibility in potatoes. Higher turgor pressure ruptures the 

cell walls, which is responsible for damage to cells, leading to bruising 

formation (Singh, 2014). Also, Praeger et al. (2010) reported that decline in 

turgor pressure of stored potato tubers was accompanied by a decrease in 

bruising susceptibility.  

Softening, which has been referred to as a long term storage effect of fruits 

and vegetables, is usually represent by a decrease in the firmness of the 

tissue (Pardede, 2005). These changes in texture are related to a decrease 

in turgor and concomitant changes in the composition and structure of matrix 

components due to cell wall-degrading enzymes acting on cell 

carbohydrates leading to disassembly of cell wall adhesion. Softening in 

fruits and vegetables is accompanied by pectin solubilisation, by action of 

cell wall hydrolases as polygalacturonases, pectinmethylesterase, β-

galacturonase and glycase. Activity of hemicellulose and cellulose related 

enzymes are also involved, as the increase of xyloglucan 

endotransglycosylase (XET) (Pardede, 2005). Puncture and penetration 

methods are widely used for the measurement of textural parameters of 

fruits and vegetables. 

Anzaldúa-Morales et al. (1992) observed that the cortex tissue in raw potato 

was about 50% firmer than the pith measured by means of puncture force 

between potato tissues using puncture test with a cylindrical probe 2.5 mm 



62 
 

diameter at a speed of 50 cm/ min. The method also detected differences in 

firmness in potatoes of three cultivars. 

Grotte et al. (2001) observed decreases in firmness and in deformation by 

10 and 50% respectively in apple flesh and during the cool storage at 2°C, 

and 96% relative humidity using the puncture test.  

A reduction in firmness  (78.2–68.9 N) was also observed in the potato 

cultivars Spunta and Agria after 90 days of storage at 5°C and 90% relative 

humidity using a hand-operated penetrometer with 0.5 cm probe 

(Arvanitoyannis et al., 2008). 

Garcia and Altisent (1993) found the deformation by skin puncture was the 

physical parameter most related to fruit turgidity and this parameter was 

related to bruise susceptibility in apples and pears. The maximum force at 

skin puncture decreased after storage in pears, but remained fairly constant 

in apples. However, maximum deformation by skin puncture increased after 

storage in both apples and pears using puncture test with a cylinder probe 

0.5 mm diameter at 20 mm/min.  

Recent research from Mahto and Das (2014) found that increasing gamma 

irradiation up to 0.12 kGy progressively reduced the textural deterioration in 

the tubers during storage. The samples treated retained their puncture force 

required to puncture the tubers using a cylindrical probe of 6 mm diameter at 

a speed of 0.25 mm/s throughout the storage period. 

However, few reported studies provide convincing evidence of the 

mechanical properties relating to bruising sensitivity. Bajema et al. (1998) 
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demonstrated that failure properties after dynamic compression of potato 

tuber tissue can be used to characterize differences with regard to bruising 

sensitivity between potato cultivars. 

Hironaka et al. (2007) observed that bruise-resistant potatoes required more 

force, deformation and energy to break the skin using a penetration test with 

a 2 mm cylindrical probe at 50 cm/min. The deformation and energy results 

of the five japonese varieties investigated correlated significantly with 

blackspot index following 100 g round plug damage.  

Mechanical properties were also explored in a research undertaken through 

a BPC_LINK 240 (2007) project. It was observed that the bruise susceptible 

cultivar (Russet Burbank) is more brittle than resistant tissue (Cara) which is 

able to diffuse the stress across a larger number of cells. 

Considering the necessity for understanding the mechanical properties of 

the varieties and bruising, the mechanical properties of the skin and cortex 

were explored. 

1.5.6 Specific gravity 

The specific gravity of tubers is a method used to estimate the dry matter 

content using by a first regression equation (Haase, 2003/4). The method 

consists in measuring a known weight of potato attached to a float displaced 

a volume of water relative to dry matter (Fong, 1973). Other forms to 

measure the dry matter content is by comparing the weight of an oven-dried 

sample with its original weight, flotation in salt (Wright et al., 2005) and near 

infrared (NIR) measurements (Haase, 2003/4).  
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The term dry matter refers to all substances of the potato tuber, except 

water. Dry matter can vary from variety, plant to plant within a crop and also 

from tuber to tuber on a single plant (Lisinka and Leszczynski, 1989). Even 

within an individual tuber, dry matter is higher near scar stolon. The variation 

can be also due the amount of intercepted radiation during crop growth 

(sunshine hours), water availability and fertilizer rates (Stalham, 2008).  

Dry matter increases over time and reaches a peak 4-6 weeks before 

defoliation. Thereafter, dry matter may remain constant or change in either 

direction. Starch contributes approximately 80% of dry matter content of 

potato which represents 10-25% of the storage compound of potato tubers 

(Ross et al., 2011a).  

The presence, number, size and angularity of starch grains may be 

important simply on the basis of their potential for physical damage to 

membranes when cells are deformed by impact and thereby affect cellular 

stability and tuber bruising (Wulkow, 2009; Urbany et al., 2011). 

It may be assumed that a fully turgid vacuole presses protoplasm and starch 

granules against the cell walls more than in flaccid cells. Compared to flaccid 

cells this may increase the shock wave speed after impact. The cell walls 

could compensate the acceleration of shock wave due to the chemical 

interactions between the various cell wall components or transferred the 

impact energy into the parenchyma (Bajema et al.1998). 

The susceptibility to bruising might increase in tubers with high dry matter 

because of a reduced cell wall tension and/or a higher concentration of 
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starch granules (Bajema et al., 1998). Therefore in flaccid cells the specific 

gravity influences impact susceptibility (Wulkow, 2009). 

The way in which impact energy is dissipated through a tuber is also 

affected by the tissue porosity, cell size, orientation and packing (Stalham, 

2008). 

SG has been shown to influence the mechanical properties. Puncture force 

increased with increases in SG of potato cultivars Atlantic and Chieftain 

(Anzaldúa-Morales et al., 1992). SG showed a close relationship with dry 

matter content in this experiment. 

Kaaber et al. (2001) observed that the dry matter content decreased 

significantly during storage at 4 °C, but increased at 8 °C due to evaporation. 

Moreover, Baritelle and Hyde (2003) found in the variety Russet Burbank 

that a higher volume of bruised tissue was associated with higher SG, with 

increments of about 1 cm3 comparing potatoes with SG <1.080 with potatoes 

with SG on the range 1.090-1.100. Wulkow (2009) also observed increase in 

blackspot index (BSI) as specific gravity increased within eight cultivars of 

potatoes. 

However, the authors Wright et al. (2005) reported no simple consistent 

relationship between specific gravity and bruise score across cultivars using 

falling bolt test. Similarly, research conducted by Stalham (2008) have not 

shown significant correlation between bruise score and tuber dry matter 

within varieties studied, either at individual harvests or over the course of the 

season.  
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Results from Fellows (2004) suggested that varieties with a higher total 

oxidative potential are likely to have a lower dry matter percentage and a 

higher susceptibility to bruising. However, within any one variety there were 

no significant correlations between the percentage of tubers bruised and 

total oxidative potential suggesting that total oxidative potential is unlikely to 

be a useful indicator of bruising susceptibility. 

Praeger (2010) reported higher bruising susceptibility for the variety Milva 

with low content of starch compared to Afra. 

1.5.7 Enviromental influences 

Besides the physical aspects and potato genotype, observations suggest 

that environmental conditions also affect bruising. (McGarry et al., 1996). 

Bruising susceptibility tends to be higher in long, hot, and dry growing 

seasons apparently due to physiologically older tubers have higher levels of 

tyrosine (Corsini et al., 1999), the main substrate for the enzyme polyphenol 

oxidase (PPO). 

Water stress can affect the potato crop in a number of ways. It is particularly 

important from a quality perspective at tuber initiation and in the days and 

weeks that follow initiation. During this stage of growth the tuber periderm is 

not fully developed and common scab can affect tubers (Pringle et al., 

2009). The temperature is also an important factor correlated to bruising. 

Bruising has strongly increased when tubers were handled under chilled 

conditions (Corsini et al., 1999). 
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1.5.8 Agricultural practice 

1.5.8.1 Maturity at the harvest time  

The maturity status before harvest is a relevant factor in bruising. Maturity is 

related to the time when the plant will desiccate and tuber skin is set (Pringle 

et al., 2009). It is known that the content of phenolic substrates (e.g free 

tyrosine) for PPO tend to be less abundant in early (immature tubers) than in 

late-season (Lisinska and Leszczynski, 1989; Mondy and Munshi, 1993).  

Maturity at harvest and evaporation during the storage appears to influence 

periderm cells collapsing, prone to microscopic cracking and cause poor 

bloom (Wiltshire et al., 2005). 

In addition, the maturity at harvest time is the predominant factor influencing 

processing quality of potatoes throughout storage (Groves et al., 2005). 

1.5.8.2 Storage 

Storage length and temperature influences tuber physiological age (Burton, 

1989). Temperature and humidity control are important during storage to 

control the rate of respiration and evaporation (Mohsenin, 1986). 

The biochemical process of respiration requires oxygen and is proceeding 

by a conversion of starches to sugar. In the mitochondria, the tuber cells 

combustion chambers, glucose is oxidized into nutrient that is required by 

the tuber to stay alive and produce water carbon dioxide and heat energy as 

by-product. The heat produced reduces the relative humidity (RH) of the air 

within the voids, increasing its water-holding capacity, and contributes to 
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moisture loss through evaporation of water from the tuber skin (Pringle et al., 

2009).  

Respiration varies between varieties, increases rapidly immediately after 

harvest, particularly in immature tubers, followed by a fall. In 3–6 weeks rate 

of respiration declined until a minimum was reached followed by an increase 

which was particularly marked through to sprouting/dormancy break 

(Schippers, 1977). Respiration also increases after tubers have been 

handled, washed, transported over rough tracks or with damage as bruise 

and cuts (Schippers, 1977).  

Respiration therefore influences tissue properties. The cell walls within the 

tuber become weak and membranes leak as tubers age (Mohsenin, 1986), 

releasing substrates to PPO. Tubers also suffer moisture loss resulting in 

low tuber turgidity and this increases bruising susceptibility, as demonstrated 

in Russet Burbank after 4 months storage at 7 °C (Corsini et al., 1999). 

Mondi and Munshi (1993) observed greatest increases in tyrosine levels in 

tubers harvested at 7 (Ontario) and 9 weeks (Pontiac) following 24 weeks of 

storage.  

Ninety-eight per cent of the moisture that leaves a tuber during storage is 

lost through its skin by evaporation, only 2.4% leaves the tuber via the 

lenticels along with the carbon dioxide produced by respiration (Burton, 

1989).  

A experiment using film wrap Cryovac D-955 shrink reduced potato weight 

loss (water loss) and also bruising when stored at 24°C but it did not alter 
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the rate of respiration or the endogenous oxygen or carbon dioxide levels 

and it is not involved with inhibition of polyphenol oxidase. It was suggested 

that decrease moisture loss thereby maintain membrane integrity and may 

dissipate some of the forces of impact, spread the impacting force over a 

wider area and so diminish the intensity of bruising (Shetty et al., 1991). 

The relationship between the periderm lipid coverage and the water 

transpiration properties is not fully understood. The molecular arrangement 

and precisely localised deposition of suberin within the cell wall must 

contribute to the efficiency of suberin as a barrier to water transport 

(Schreiber et al., 2005). Shrinkage and flaccidity occur in tubers if the 

protection afforded by the periderm against water loss is compromised (Lulai 

et al., 2006). The periderm is one aspect of potato tubers that has been 

widely studied tubers because of the latter’s great agronomic significance 

(Sawyer and Collin, 1960; Strehmel et al., 2010b; Lulai et al., 2006; 

Schreiber et al., 2005). 

1.5.8.3 Defoliation 

One of the factors analysed in this study was defoliation. Defoliation is a 

commonly used agricultural practice to prepare the field for the harvest of 

potatoes. Methods to defoliate the plants include mechanical or use of 

chemical defoliant, such as acid, reglone, glyphosate and triazolinone. The 

artificial defoliation is a common technique used to investigate the 

correlation between damage caused by either hail or inseccts and yield 

(Croy et al., 2000). 
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Defoliation at flowering and tuber formation considerably affect yield of 

tubers, however, barely affect the yield of tubers completed grown (Irigoyen, 

2011). Sight et al. (2001) observed reduction of 34.3 to 51.8% in tuber yield 

and 40.3-50.1% in dry matter.  

A previous Potato Council project (Fellows, 2004) reported that the varieties 

Marfona and in Maris Piper presented association between the time of 

defoliation and lifting related to susceptibility to bruising but there was no 

trend evident with the other variety studied (Cara). 

Stalham (2008) found that more bruising occurred in crops harvested three 

to five weeks after defoliation (21 and 35 days respectively).  

1.5.8.4 Nitrogen 

The use of the fertilizer nitrogen (N) plays a key role in vegetative growth 

and in tuber production, having a significant effect on a number of 

physiological processes in potatoes, as influence on crop senescence, skin 

set and dry matter (Mondy and Koch, 1978; Kunkel and Dow, 1961; 

McGarry, 1996; Sun et al., 2012). 

Symptoms of N deficiency include early senescence and lower yields. 

Excess nitrogen can delay maturity, reduce potato yield and delay the crop 

in achieving the dry matter content (Sun et al., 2012), adversely affecting 

processing quality. 

Hole (1997) suggested that because the maturity of harvest can affect the 

incidence of bruising, tubers treated with nitrogen become less susceptible 
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to bruising. However, there is no agreement in the literature about the effect 

of N and bruising incidence. Upon application of N, references found an 

increase in bruising (De Bruyn, (1929) summarized by Mondy and Koch 

(1978), Koblet, et al. (1948) in McGarry, (1996)). Kunkel and Dow, 1961 

found a decrease in bruising while Rogers-Lewis (1980) and Silva et al., 

(1991) observed no effect on bruising. 

1.6 Aim 

Considering that bruising is a significant problem in potatoes, the main aim 

of this project was to investigate the relationship between bruising and the 

physicochemical properties of potato tubers in three varieties of potatoes 

known to differ in their tendency toward bruising: Lady Rosetta (LR), Maris 

Piper (MP) and Russet Burbank (RB). Three field trials were undertaken to 

investigate the effect of agricultural and storage practices on bruising 

incidence and tuber properties. Field trial 1 was designed to investigate the 

effect of harvest time and defoliation; field trial 2 was designed to investigate 

the effect of harvest and storage time and the field trial 3 was undertaken to 

investigate the effect of nitrogen application to soil (in variety LR only). The 

knowledge from this project would enable growers to better manage crops to 

achieve the necessary standards for optimum quality of fresh and stored 

potatoes.  

Additionally the research seeks to establish whether physiological and 

biochemical characteristics, such as weight, specific gravity, mechanical 

properties, phenolic acids, tyrosine and cell wall composition of skin and 
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cortex tissue are factors that may be used as predictive indicators of bruising 

at harvest time and for stored potatoes. 

1.7 Objectives 

The research objectives are: 

1 To test different methods for bruising assessment. 

2 To investigate the bruising potential in three UK varieties (LR, MP and 

RB). 

3 To develop methodology for analysing the mechanical properties  of 

cortex and skin tissue.  

4 To investigate the potential for using physical and biochemical 

measurements as indicators of bruising at harvest and storage. 

5 To improve the understanding of the influence of defoliation, harvest 

and storage time  on the incidence of bruising. 

6 To determine if application of nitrogen fertilizer increases bruise 

susceptibility. 

1.8 Hypotheses 

The hypotheses tested were:  

1 The variety RB will bruise more than MP and LR. 

2 Potatoes harvested later in the season will show more bruising. 

3 Potatoes supplied with nitrogen fertilizer will show more bruising along 

harvest. 
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4 Potatoes from defoliated plants will show more bruising in crops 

harvested three to five weeks after defoliation (21 and 35 days 

respectively). 

5 Stored potatoes harvested in September will show less bruising than 

stored tubers harvested in October. 

6 The content of phenolics will increase along harvest and storage time, 

and will be associated with increased bruising incidence. 

7 Phenolic substrates will be higher in defoliated and in nitrogen treated 

tubers. 

8 Specific gravity will increase along harvest and storage, and will be  

associated with increased bruising incidence. 

9 Specific gravity is higher in tubers supplied with N and is associated 

with increased bruising incidence. 

10  The mechanical properties of the tuber will  influence bruising and 

these properties are influenced by the cell wall composition of cortex 

cells at harvest and storage. 

11  Cell wall of tubers presenting more arabinose and galactose will 

require more force to break the tissue. 

12  Cell wall of tubers presenting less methylation on the 

homogalacturonan pectin will require more force to break the tissue. 
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2 Materials and Methods  

2.1 Sampling 

2.1.1 Field trial 1 

Potato plants from three different cultivars Maris Piper (MP), Russet Burbank 

(RB), and Lady Rosetta (LR) were grown at Cambridge University Farm 

(CUF), planted on 23 April 2010 and tubers harvested at four time points. 

Before the harvest, defoliation was carried out at two time points (early 

defoliation and late defoliation), as indicated in table 2.1. Trials were 

randomised with two factors (variety, defoliation) with three replicate plots. 

Ten tubers per plot were collected and shipped to Leeds on harvest day.   

 

 
 

Trial 1  Harvest and Defoliation period  

Harvest 1
st
 Harvest (H1)  2

nd
 Harvest (H2)  3

rd
 Harvest (H3)  4

th
 Harvest (H4) 

Date 2
nd

 August  16
th
 August   9

th
 September  20

th
 September 

Days after 
planted 

 

101    115    139    150  

Defoliation D1 D2 UND  D1 D2 UND  D1 D2 UND  D1 D2 UND 

Days after 

defoliation 
0 / /  14 0 /  38 24 /  49 35 / 

Table 2.1. Field trial 1 - Year 2010 

 
 
 
 



75 
 

2.1.2 Field trial 2 

Potato plants from three different cultivars Maris Piper (MP), Russet Burbank 

(RB), and Lady Rosetta (LR) were grown at Cambridge University Farm 

(CUF), planted on 15 April 2011, and harvested at two time points and 

stored for three time points. Harvest and storage dates and periods are 

indicated in table 2.2. Trials were randomised with three factors (variety, 

harvest and storage) with three replicate plots. Twenty tubers per plot were 

collected and either shipped to Leeds or Sutton Bridge Crop Storage 

Research (Sutton Bridge, Suffolk) on harvest day. The tubers were stored in 

trays within temperature and moisture controlled storage chambers, at 

temperature below of 10º C and 95+% Relative Humidity (RH). At the end of 

the storage period, tubers were shipped to Leeds. 

Trial 2  Harvest and Storage period 

Harvest  1st harvest (H1)  2nd harvest (H2) 

Date of 
harvest 

 19
th
 September  12

th
 October 

Days after 
planted 

 157  180 

Storage  
Storage 1 

(S1) 
 

Storage 2 
(S2) 

 
Storage 3 

(S3) 
 

Storage 1 
(S1) 

 
Storage 2 

(S2) 
 

Storage 3 
(S3) 

Date of 
sampling  

 
14

th
 

January 
 

26
th
 

March 
 11

th
 May  

14
th
 

January 
 

26
th
 

March 
 11

th
 May 

Days after 
planted 

 H1-117  H1-189  H1-235  H2-94  H2-166  H2-212 

 

 

Table 2.2 Field trial 2 - Year 2011/2012 
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2.1.3 Field trial 3 

Potato plants from cultivar Lady Rosetta (LR) were grown at Cambridge 

University Farm (CUF), planted on 15 April 2013, and harvested at four time 

points. Harvest dates are indicated in table 2.3. Controls and application of 

200kg/hectare of nitrogen on the soil were studied. Trials were randomised 

with two factors (harvest and nitrogen application) with six replicate plots. 

Ten tubers per plot were collected and sent to Leeds on harvest day.  

 

 

 

 

Trial 3 Harvest period 

Event 
1

st
 harvest 

 (H1) 

2
nd

 harvest  

(H2) 

3
rd
 harvest  

(H3) 

4
th
 harvest 4 

(H4) 

Days of harvest 22
th 

July 5
th
 August 22

th
 August 5

th
 September 

Days after 

planted 
98 112 129 143 

2.1.4 Tuber preparation for analysis 

Tubers were cleaned upon arrival in Leeds to remove soil. Measurements of 

physical and mechanical properties and bruising assessment (except 

oxidative potential) were conducted with fresh tubers. Fresh tissue to be 

used for microscopy was processed by exposure to fixative as described in 

section 2.6.1. 

Potatoes used to analyse biochemical properties (including oxidative 

potential) were prepared as follows: potatoes were cut transversely into 

slices of 1 cm thickness and the stolon and bud ends were discarded. The 

skin was peeled and the cortex was separated from the internal section 

Table 2.3 Field trial 3 – Year 2013 
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(medullar layer) using a blade, Typical anatomy of the tubers is shown in 

figure 2.1. The medulla was cut in cubes (0.5 cm3). The three different 

tissues were fast frozen in liquid nitrogen, kept frozen at -20ºC and freeze 

dried for 48 h (SB4 Freeze drier, temperature -30°C, pressure 1,5 Torr). 

Each sample used in further analysis (oxidative potential, tyrosine, phenolic 

acids and cell wall composition) was obtained by mixing equal proportions 

from 3 potato tubers from each plot. The freeze dried tissue was ground to a 

fine powder using a food processor for 5 min and stored at -20°C until use.  

 

 

Figure 2.1 Transverse and longitudinal sections of the potato tuber: (a) skin, (b) 
cortical layer, (c) outer medullary layer and (d) inner medullary area (Grubb and 

Guilford,  1912).  
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2.2 Bruising assessment 

2.2.1  Assessment of severe bruising using the falling bolt 

method – field trial 1 

Incidence of bruising was assessed following the falling bolt damage test 

(Stalham, 2008). Tubers were cooled down to 6 °C in the fridge. The impact 

was made using a steel coach bolt of 182.6 g in weight with a regular 

hexagon end with diameter of 13 mm, and overall bolt height of 11.5 mm. 

The bolt was dropped from a height of 335 mm inside an aluminium guide 

tube of 40 mm internal diameter onto the flat surface of the tuber leading to a 

force applied of 0.6 J. The guide tube was held by a pair of retort stand 

clamps, one acting as a guide, the other clamping the tube at the correct 

height above the tuber. The impacting surface was a MDF work surface as 

shown in figure 2.2.  

 
 
 
 
 
                                                
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2 Aluminium guide tube for assessment of severe bruising using the falling 
bolt method  
 

 



79 
 

‘Hot boxing’ was performed by placing the potatoes following impact for 48 

hours in an incubator at 33 °C, >95% RH. The potatoes were brought to 

room temperature two hours before being examined by peeling. A single 

peel (depth 1.2-1.5 mm) was removed at the site of impact using an Oxo 

Good Grips Swivel Peeler and then a further three peeler strokes were made 

to detect deeper damage. Calibrations were performed on the peel thickness 

by measuring 50 random peel slices with a Mercer England Thickness Gage 

(reading 0.1mm). Bruising was classified following peeling based on a 

procedure developed at the Sutton Bridge Crop Storage Research (2008). 

- No bruise: no visible bruise following initial exploratory peel with a 

domestic peeler. 

- Slight bruise: no visible bruise after two additional strokes of a 

domestic peeler following initial exploratory peel. 

- Severe bruise: bruise visible after two additional strokes of a domestic 

peeler following initial exploratory peel. 

2.2.2  Assessment of severe bruising using the falling bolt 

method – field trial 2 and 3 

Adaptations of the method from year 1 were made due to a high incidence of 

bruising on field trial 2. Impact tests were carried out at 20-22 °C with the 

steel coach bolt used in field trial 1, impacting on the stolon end of potatoes. 

Different energy level (0.3 J) and incubation time (25 °C for 20 h, humidity > 

95% RH) was used. Following bruising development, potatoes were 

analysed as previously described on 2.2.1. Determination of Bruising Index 
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(BI) was also carried out (BPC_LINK 240, 2007). The impact zone of each 

tuber was analysed and a measure of the width and the depth of pigmented 

tissue was taken with a visual assessment of the bruise pigment intensity 

compared with the surrounding tissue, using the following scale: 

0 – No visible pigmented tissue at site of mechanical impact 

1 – Low level of pigmented tissue (typically pink, red, red-brown, grey) 

2 - Intermediate level of pigmented tissue (typically brown or brown-black) 

3 - High level of pigmented tissue (typically blue-black or black) 

 

Colour intensity was classified using Munsell Atlas Hue 9R to standardize 

the assessment of colours as shown in figure 2.3. 

 

 

Figure 2.3 Scale used to classify colour intensity of pigmented tissue after falling 
bolt impact and incubation. 
 
 

 1 Pink, red, red-brown, grey 

2 Brown, brown-black 

3 Black, blue-black  
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The mean for bruise depth, width and pigment assessment were calculated 

and used for comparing bruise susceptibility between different varieties, 

harvests, storage (trial 2), nitrogen application (trial 3) and also on tubers 

from the same variety. Bruising index was calculated using equation 1:  

Equation 1          π x ½ (bruise width)2 x bruise depth x bruise pigment intensity 
                                 235.6 

 

This assumes a cylindrical shaped bruise zone and by dividing by 235.6 this 

compares the bruise indices on a scale of 0 – 10 to a bruise with diameter 

10 mm, depth 10 mm and bruise intensity 3 – the highest value observed in 

practice.  

2.2.3 Assessment of external damaged skin using the falling bolt 

method 

After falling bolt impact and hot box incubation of samples for assessment of 

bruising, samples were examined individually and classified as damaged 

when skin was broken with or without flesh damage. The percentage of 

samples damaged was calculated from the total of samples assessed.  

2.2.4 Falling bolt impact captured by high speed camera  

Images of falling bolt impact were recorded with a Phantom v.90 high speed 

camera V9 (Dantec), at a setting of 1000 frames-per-second (FPS) at the 

School of Mechanical Engineering, University of Leeds. Samples from 

harvest 2 (H2) stored for 212 days (S3) were used, using 3 replicates for 

each variety. The assessment of bruising of these tubers followed the 

protocol described in 2.2.2. 
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2.2.5 Spectrophometric assessment of oxidative potential 

The method was adapted from McNabnay et al. (1999). The oxidative 

potential of tuber tissue to bruising development was determined by 

measuring the extent of colour development of homogenised tissue under 

controlled conditions. Assessments were performed using lyophilized cortex 

tissue samples with three replicates performed per sample. 0.2 g of 

lyophilized cortex was suspended in 3 mL of 0.05 M phosphate buffer (pH 

6.5) and mixed vigorously using a vortex mixer for 1 minute. The 

homogenate was allowed to oxidise at room temperature for 20 hours. 

Samples were filtered through a Whatman 4 filter paper and oxidative 

potential was measured at 475 nm with a spectrophotometer (Cecil CE 

7200, Cecil Instruments Limited, Cambridge, UK). 

2.3 Physical properties 

2.3.1 Weight and specific gravity 

The weight of individual potatoes was measured using a semi-analytical 

scale (field trial 1 n=9 and field trial 2 and 3 n=30, 10 each per plot).  

Specific gravity was determined on individual potatoes from field trial 2 and 3 

(n=30 per variety, 10 each per plot)  using weight in air and weight in water 

method (Fong, 1973). Specific gravity was calculated by using equation 2. 

Equation 2    Specific gravity =     Weight in air (g) 
                                                         Weight of the water displaced by the tuber (g) 
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2.4 Mechanical properties 

2.4.1 Energy required to break the potato skin and cortex tissue  

Mechanical properties were investigated using a penetration test with a 

TA.XT plus Texture Analyser (Stable Micro Systems Ltd, Surrey, UK). For 

sample preparation, a tuber was taken from ambient temperature, cut 

transversely in slices of 1 cm in thickness and the slice from the middle of 

the tuber was separated for the penetration test. The probe used to perform 

the test was a cylinder with 2 mm diameter, test speed was 20 mm/sec with 

tagged mode distance 5 mm, with trigger type auto (force) and trigger force 

0.5 N. For each potato one test was carried out on the cortex and one test 

on the skin as shown in figure 2.4. To perform the test on the skin, 1 cm of 

the side of the potato was cut and placed vertically on the texture analyser 

plate. Three samples were measured for each plot on potatoes from field 

trial 1, ten replicates per plot on potatoes from field trial 2 and five replicates 

from each plot from field trial 3. Force and distance were obtained from the 

curve plotted from the software of the TA.XT plus Texture Analyser at the 

yield point (point where rupture of tissue occurs). Energy (mJ) was 

calculated by multiplying force (N) and distance (mm). 
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2.5 Phenolic composition 

Chemicals ethylenediaminetetraacetic acid (EDTA) and formic acid were 

purchased from Fisher Bioreagents and methaphosporic acid from Alpha 

Aesar. Acetonitrile HPLC grade was purchased from VWR. Milli-Q purified 

water was used for dilutions and solvent preparation. Phenolic acid 

standards were purchased from Sigma. A representative range of phenolic 

acids known to be present in potato was selected for this study namely 

chlorogenic acids (3-, 4-, and 5-caffeoylquinic acid (CQA)), ferulic acid (FA), 

vanillic acid (VA), caffeic acid (CA) and p-coumaric acid (pCou).  Sinapic 

acid was used as internal standard. Stock solutions of phenolic acids were 

prepared in duplicate at a concentration of 10 mg/mL in 50% ethanol and the 

dilutions made with Milli-Q purified water. The stock solution of dl-tyrosine 

was prepared in duplicate at concentration of 10 mg/ml in 0.1 N HCl and 

dilutions made with Milli-Q purified water. The stock solutions were stored in 

darkness at 4 °C. The external standard method of calibration was used, 

 
 
Figure 2.4 Transverse section with the points analysed with penetration test, (a) 
cortex and (b) skin cortical layer. 
 
 
 

cortex 

skin 

   a 

 b 
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with each curve prepared from 7 different concentrations of standard 

solutions. The range of standards concentration used was as follows: 5-CQA 

(3.13 -200 μg/mL), 3 and 4-CQA (0.78 – 50 μg/mL) and CA, VA, pCou and 

FA (0.16-10 μg/mL). The external standard (sinapic acid) concentration used 

was 200 μg/ml . 

2.5.1 Extraction of phenolic compounds  

The method of extraction was adapted from Shakya and Navarre (2006). 

Phenolic compounds were extracted in triplicate from the freeze dried cortex 

of three tubers with 1.5 mL of extraction buffer (50% MeOH, 2.5% 

metaphosphoric acid, 1 mM EDTA) and 500 mg of glass beads 1.0 mm in 

diameter. Tubes were shaken using a vortex for 10 min and sonicated at 10 

°C for 10 min. After sonication, tubes were shaken again with the vortex for 

10 min. Tubes were centrifuged at 4000 rpm at 4 °C for 10 minutes and the 

supernatant was collected. Extractions were repeated three times and 

supernatants combined. The supernatants were dried under vacuum using a 

centrifugal evaporator at room temperature and low boiling point (BP) 

condition (Genevac SP Scientific, Ipswich, Suffolk, UK), resuspended in 0.5 

mL of Milli-Q purified water and filtered using a 0.45 μm PTFE filter prior to 

HPLC analysis. Samples were kept chilled at all times and not exposed to 

bright light. 
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2.5.2 Analysis of phenolic acids using high performance liquid 

chromatography  

Analysis of phenolic compounds was performed according to the method of 

Farrel et al. (2011) using a reversed phase HPLC Agilent 1200 Series HPLC 

consisting of a solvent degassing unit, binary pump, autosampler, 

thermostatic column oven and diode array detector. The column used was 

an Agilent Zorbax Eclipse plus C18, 4.6 mm x 100 mm, 1.80 micron internal 

diameter and 600 bar maximum pressure. Column temperature was 35 °C, 

flow rate of 0.26 mL/min and injection volume of 5 µL. The 61-min elution 

program consisted of a isocratic elution from 0-17.5 min with 100% solvent A 

(0.1% formic acid, 5% acetonitrile and 94.9% water), followed by linear 

gradient from 17.5-51 min to 25% solvent B (0.1% formic acid, 5% water and 

94.9% acetonitrile), linear gradient from 51-51.1 min up to 100% solvent B, 

isocratic elution from 51.1-56 min with 100% solvent B, linear gradient from 

56-56.1 to 0% solvent B and isocratic elution from 56.1-61 min with 0% 

solvent B. The photo-diode array detection spectra was recorded at 

wavelengths of 220, 260, 280, 300, 310 and 325 nm.  

2.5.3 Analysis of tyrosine using high performance liquid 

chromatography  

Reversed phase HPLC Shimadzu (Prominence) consisting of a solvent 

delivery unit, column oven, autosampler, UV-Vis detector, photo-diode array 

detector, and on-line degassing unit was used to analyse tyrosine. The 

column used was Phenomenex Onyx, 4.6mm x 150 mm, 5 micron internal 

diameter. Column temperature was 30 °C, flow rate of 1.5 mL/ min and 
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injection volume of 10 μL. The 22-min elution program consisted of isocratic 

elution from 0-9 min with 100% solvent A (10 mM formic acid, pH 3.5, with 

ammonium hydroxide), followed by a linear gradient from 9-10.5 min 35% 

buffer B (100% methanol with 5 mM ammonium formate), linear gradient 

from 10.5 -14 min with 65% solvent B; linear gradient from 14-16.5 min up to 

100% solvent B, linear gradient from 16.5 -18 min to 0% B and isocratic 

gradient from 18-22 min with 0% solvent B. UV-VIS detection spectra was 

recorded at a wavelength of 280 nm. The external standard method of 

calibration was used, with each curve prepared from 7 different 

concentrations of standard solutions. The range of standard concentration 

used was (0.58-300 μg/mL). The external standard (sinapic acid) 

concentration used was 200 ug/ml . 

2.6 Cell wall ultrastructure and composition 

2.6.1 Immunofluorescence localization of cell wall polymers  

Fresh tuber specimens (0.5 mm3) were fixed in 4% formaldehyde in PEM 

buffer (50 mM Pipes, 5 mM MgSO4 and 10 mM EGTA, pH 6.9). Fixative was 

removed with PEM and the samples was washed with phosphate buffered 

saline (PBS), dehydrated in ethanol 30-70% series and embedded in 

Steadman wax (9:1 polyethylene glycol 400 distearate and 1-hexadecanol).  

Wax embedded periderm samples were sectioned using a microtome with 

blade at 11 degrees and 50 μm thickness. Sections were placed onto 

polysine-coated glass slides, followed by dewaxing with ethanol 97-50% 

series. Prior to the labelling procedure, sections were incubated with 150 μL 

of 3% (w/v) milk protein in PBS for 1 hour to reduce nonspecific binding.  
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Monoclonal antibodies JIM5 and JIM7 were kindly provided from Professor 

Paul Knox (Centre for Plant Sciences, University of Leeds, UK). The 

sections were incubated overnight at 4°C in the primary antibodies, diluted 

1:5 in PBS with milk. Control sections were incubated in PBS alone. 

Samples were washed twice with 0.1% v/v Tween 20 in PBS for 10 min. All 

sections were incubated at room temperature for 1 hour in secondary 

antibody anti-rat FITC (Sigma), diluted 1:100 in PBS. Samples were washed 

10 min with 0.1% v/v Tween 20 in PBS plus 10 min in PBS. Samples were 

then stained with 0.1% Toluidine Blue for 10 min, washed for 10 min in PBS, 

mounted with anti-fading glycerol phosphate buffered solution (Citifluor AF1, 

Agar Scientific, UK) and covered with a glass cover slip. Observations were 

made with a BH2 Olympus microscope equipped with blue epifluorescence 

and Confocal Zeiss Axioplan Imaging LSM 510 Meta. 

2.6.2 Optical localization of biological wall membranes 

Fresh samples were hand cut and embedded samples (as described in 

2.6.1) were used. Samples were cut using a microtome to thickness varying 

between 12-35 μm. Fresh and dewaxed samples were stained with 0.1% 

Toluidine Blue for 10 min, washed for 10 min in PBS, mounted on glass 

slides and covered with a glass cover slip. Observations were made using 

light illumination with optical BH2 Olympus microscope. 
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2.7 Analysis of Cell Wall Material (CWM) 

2.7.1 Extraction 

Isolation of the cell wall material was achieved using adapted methods by 

Jardine et al. (2002); Øbro et al. (2004); Ross et al. (2011a) and commercial 

enzymatic protocols (Megazyme methods) to analyse total starch 

(amyloglucosidase/ α-amylase method) and total dietary fibre. The enzymes 

used to hydrolyse starch and protein are summarised in table 2.4. 

Lyophilised cortex (1 g) was homogenised using a homogeniser (Ultra 

Turrax , IKA, Staufen, Germany) at 13.500 rpm with 5 mL of mixed-cation 

buffer (MCB) (10 mM NaOAC, 3 mM KCl, 2 mM MgCl2 and 1 mM CaCl2, pH 

6.5) containing Triton X-100 (2 mg/ml). The adequate disruption was 

achieved with up to 5 minutes of homogenisation and checked under the 

light microscopy using Toluidine Blue for staining the cells’ membranes. All 

procedures were carried out at 4 ˚C. The detergent suspension was 

removed by washing through a 45 µm metal sieve with 10 mL of chilled MCB 

without Triton X-100. The residue was washed with 10 mL of 50% chilled 

acetone. To deproteinate samples, two procedures were tested. On the first, 

the washed residue was stirred with 80% (v/w) saturated phenol for 30 

minutes following by filtration and washes with MCB. After this step, 

gelatinisation was carried out in 10 mL MCB at 80 °C for 45 minutes 

following by incubation with α-amylase as described below. On the second 

method tested the washed residue was gelatinised with 10 mL MCB at 80°C 

for 45 minutes and incubate at 40 °C for 45 min with 400 μl of pancreatin  

solution (10 mg/mL) (P7545 Sigma) before starch digestion with 11.700 U 
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heat stable α-amylase (A3306 Sigma). The temperature was cooled down to 

20 °C following incubation for 2 h at 20 °C. 

After the α-amylase incubation step, the suspension was adjusted to pH 5.0 

with 1M acetic acid and a combination of pullulanase (12 U) (P5420- Sigma) 

and amyloglucosidase (12 U) (A9913 Fluka) were added to enzymatically 

degrade branched starch. After incubation for 14 hours at 25 ˚C, the 

presence of starch was monitored by removing small aliquots of the 

insoluble material and staining with 0.2% iodine to visualise the starch using 

light microscope. The cell suspension was washed using a metal sieve 45 

µm with 2 L of water and 10 mL of 50% acetone. 

 

 

Source Substrate 
Specific 
Activity Unit/ 
Portion 

Optimum 
pH 

Stable 
pH 

Optimum 
temperature 

 

Stability 

temperature 

 

 

α – Amylase – One unit will liberate 1 mg of maltose per min 

Bacillus 
licheniformis 

p-nitrophenyle 
maltoheptaoside 

39,000 U/mL 6.9 5.1-8.2 20 °C < 75 °C 

 

Amyloglucosidase – one unit liberate 1.0 mg of glucose per min 

Aspergillus niger starch 2,725 U/mL 5.0  25 °C  

 

Pullulanase – one unit liberate 1 umole of maltotriose per min 

Klebiela 
pneumonia 

pullulan 32,877 U/mL 5.0  25 °C  

 

 

Pancreatin 8 × USP specifications - amylase, trypsin, lipase, ribonuclease and protease. 

Porcine 
pancreas 

proteins, starch and 
fats 

>250/mg solid 
 

7.5  40 °C  

Table 2.4 The enzymes involved in the hydrolysis of starch and protein 
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After washing, the purified cell wall material (CWM) was dried overnight in 

an oven at 35 °C. CWM hydrolysis was performed in duplicate in two steps. 

2 mg of CWM were first hydrolysed with 1 mL of 0.1 M trifluoroacetic acid 

(TFA) for 1 h at 100 °C. Samples were centrifuged at 4000 rpm at 4 °C for 

10 minutes and the supernatant was collected. The CWM solid residue from 

step one was then hydrolysed with 2 M TFA for 1h at 100°C. Tubes were 

centrifuged at 4000 rpm at 4°C for 10 minutes and the supernatant was 

collected. 500 μl from each supernatant (0.1 and 2 M TFA) were combined 

and the TFA was removed using a centrifugal evaporator (Genevak, Surrey, 

UK). Dried samples were resuspended with 1 mL of milli-Q purified water 

and filtered using a 0.45 μm nylon filter prior to Dionex analysis. Samples 

were kept chilled at all times and not exposed to bright light. 

2.7.2 Analysis of monosaccharide composition using high 

performance anion exchange chromatography 

amperometric detection (HPAEC - PAD) - Dionex 

The method used  was adapted from Øbro et al. (2000). The 

monosaccharide composition was determined with high-performance anion-

exchange chromatography with pulsed amperometric detection (HPAEC-

PAD). The column used was PA20 (Dionex, Thermo Scientific). Column 

temperature was 30 °C, flow rate of 0.30 mL/min and injection volume of 10 

μL. The 65-min elution program consisted of linear gradient from 10 uM to 

5μM NaOH from 0 – 1.5 min, followed by isocratic elution with 5 μM NaOH 

from 1.5 – 30 min, linear gradient up to 1 M NaOH from 30-40 min,  column 
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washing with 1 M from 40-45 min,  linear gradient to 10mM from 45-55 min 

following equilibration of the column with 10 mM NaOH from 55 to 65 min.  

Monosaccharides were detected using a pulsed amperometric detector with 

gold working electrode and silver reference electrode. Monosaccharide 

standards were L-Fucose, L-Rhamnose, L-Arabinose, D-Galactose, D-

Glucose, D-Xylose, D-Manose, D-Galacturonic acid and D-Glucuronic acid. 

Fructose was used as an internal standard. A standard mixture run was 

performed before sample analysis to determine response factor. The 

external standard method of calibration was used, with each curve prepared 

from 7 different concentrations of standard solutions. The range of standards 

concentration used was from 0.39-100 μg/mL. The internal standard 

(fructose) concentration used was 200 μg/ml . 

2.7.3 Linearity, precision and accuracy 

Method validation for analysis of sugars was performed according to ICH 

recommendations and the European Commission Directive for the 

performance of analytical methods including linearity, precision and 

accuracy, which are principal components of quantification. Linearity was 

investigated by analysis of peak area response versus concentration over a 

range of 11 ng/mL to 150 μg/mL. For calibration curves, the peak areas of 

the Dionex chromatogram were plotted against on-column amount and 

analysis was performed on 2 separate occasions with triplicate injections of 

each concentration. Precision and accuracy were evaluated for galactose at 

3 quality control (QC) concentration (25, 50 and 100 μg/mL). The lower QC 

is representative of the lower concentration of hydrolysed sugars from CW 

samples, and the high QC level is near the upper boundary of the standard 
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curve. Intra-day precision and accuracy was calculated from triplicate 

injection of the 3 concentrations on the same day. Inter-day precision and 

accuracy was determined by analysis of triplicate injections of the 3 

concentrations on the 3 separate days. Values for precision are expressed 

as relative standard deviation (R.S.D) and relative error (R.E.) for accuracy. 

2.7.4 Stability of monosacharides at 10° C storage 

To assess stability at 10 °C, which is the temperature of the Dionex 

autosampler, monosaccharides arabinose, galactose and glucose were 

diluted from concentrated stock to final concentration of 25 μg/ml. Standards 

were combined and refrigerated (10 °C) for 3 days (n=3). The initial 

concentration was determinate to be > 95% of the expected value and the 

percentage of initial concentration remaining was determined at 3 d storage 

(10 °C). 

2.7.5 Recovery efficiency for hydrolysis studies 

Extraction efficiency experiments were performed with combined 

monosaccharides and diluted from concentrated stock to 25 μg/mL.  Aliquots 

of 1 mL were dried (n=3)  and hydrolysed in 0.1 M and 2 M TFA at 100°C for 

1h. After hydrolysis, samples were dried using a centrifugal evaporator 

(Genevac SP Scientific, Ipswich, Suffolk, UK) ressuspended in Milli-Q 

purified water and the recovery was analysed by comparison with initial 

concentration (n=3 injections).  
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2.7.6 Percentage of sugar released from CW in each step of 

hydrolysis 

The percentage of monosaccharides released from CW was investigated 

after partial hydrolysis with 0.1 and 2 M TFA and total hydrolysis with 1M 

H2SO4. The total amount and percentage of sugars released from potato 

cortex cell wall under the sequential hydrolysis was calculated and the 

percentage of each step of hydrolysis was estimated. 

2.8 Statistical analysis 

Mixed effects analysis of variance ANOVA was explored for harvest time 

(field trial 1, 2 and 3) and storage time (only field trial 2) being random 

factors and the variety (field trial 1 and 2), defoliation (field trial 1) and 

supplement of nitrogen (field trial 3) considered as fixed factor. Multiple 

comparisons have been performed with Student-Newman-Keuls (SNK) and 

confirmed with REGWQ - Ryan/Einot and Gabriel/Welsch test procedure. 

Effects on individual variety were explored using a factorial 2-way ANOVA 

and Tukey multiple comparison test to analyse the effect of factors harvest 

and defoliation (field trial 1), storage (field trial 2) or supplement of nitrogen 

(field trial 3). The relationships between results were summarised using 

Principal Component Analysis (PCA).  Statistical analysis is performed using 

R for Windows (R Core Team, 2014).  

The Student's t test (Excel, Microsoft 2010) was performed to compare two 

samples on method development. Error bars shown on the graphs are 

standard errors of the mean.  
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3 Method development 

3.1 Introduction  

Many different approaches need to be adopted to analyse the structure and 

composition of potatoes. It was therefore necessary to test methods 

according to the material and equipment available in the laboratory, requiring 

optimisation and adaptation of published protocols. 

This chapter describes the development of methodologies for the analysis of 

potato samples, showing adaptations and improvements achieved.  

3.1.1 Aim 

Adaptation and development of reliable and reproducible methods to 

analyse structure and composition of potatoes that could be linked to 

bruising incidence.  

3.1.2 Objectives 

The chapter objectives are: 

- To test different methods used for bruising assessment. 

- To establish a standard classification of colours developed in bruised 

tissues. 

- To understand differences in mechanical properties when penetration 

test was applied through cortex and skin tissue. 

- To determine the complete extraction of phenolic acids . 
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- To adapt a method for tyrosine analysis HPLC-UV. 

- To optimize a method for extraction of cell wall material. 

- To adapt a method for cell wall sugar analysis using HPAEC - PAD . 

3.2 Methods optimized 

3.2.1 Bruising assessment 

A high speed camera was used to study how the bolt impacts the potatoes 

when using falling bolt method to damage tubers. It was found that the bolt 

impacts the tubers twice when it is dropped on the stolon of potato as 

indicated in figure 3.1, transmitting to the tuber more energy than predicted 

(0.3-0.6J) by potential energy (E=m.g.h). This questions the suitability of the 

current bruising methods. 

 

 

 

 

 

 

Figure 3.1 Impact on the stolon end of the potato using falling bolt.  Images from 
high-speed camera every 0.02 sec. Arrows indicate contact between bolt and tuber. 
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To understand if the second impact was dependent on the mechanical 

properties, the coefficient of restitution  was calculated from the square root 

of the ratio of the bounce height after first impact to the drop height 

(Robertson et al., 2013) and correlated with bruising index as shown in 

figure 3.2. 

Based in figure 3.2, mechanical properties played a role on the impact of the 

bolt on the stolon as the height of the bolt reached after first impact was 

different for the varieties studied. Due to limited number of samples tested, it 

was not possible to establish a factor for correction on bruising data based 

on mechanical properties but it will be further explored with results from the 

field trials.  

From pictures of the high speed camera it was also possible to understand 

how the bolt was impacting the lateral and the stolon end of potatoes. It was 

found that the bolt impacts the tubers at a variety of angles resulting in 

variable distribution of energy of impact. Samples impacted on the side of 

potatoes (figure 3.3) were more evenly impacted (7 out of 9) than samples 

                                   
 
 
Figure 3.2 Coefficient of restitution calculated from images recorded using high 
speed camera and bruising index of potatoes damaged with falling bolt  0.3 J 
energy and incubated at 25 °C for 20 h (n=3).  
 
 
 
 

                             LR 
              
 
 
 
                MP 
          RB 
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impacted at the stolon (3 out of 9) as seem in figure 3.4.  The angle of the 

bolt was also dependent of the curvature of the potato as shown in figures 

3.3 and 3.4.  

 

 
                      Figure 3.3 Images of the impact on the lateral of tubers 
 

LR 

MP 
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Although samples impacted on the side of potatoes were more evenly 

impacted, no bruising was found in potatoes damaged at room temperature 

with 0.3 J impact and incubated at 25 °C for 20 h. These results could give a 

better understanding about of the results from the first year trial (chapter 4), 

where no bruising was found up to the third harvest. Bruising results from 

the first year trial were achieved by applying the falling bolt to the lateral side 

using 0.6 J impact energy on potatoes previously refrigerated at temperature 

below 10 °C following by incubation at 33 ° C for 48 h. From the results 

presented here it is possible to conclude that the cortex at the lateral side 

has the biochemical apparatus for bruising but is less biologically active than 

the stolon.  

Moreover, when samples impacted on the stolon had a flat contact with the 

surface of the potato, the width of bruised tissue was higher than in samples 

 

 
                      Figure 3.4 Images of the impact on the stolon of tubers. 
 
 

LR 

MP 
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with angle contact as indicated in table 3.1 (results in bold). These results do 

not always correspond to deeper of bruised tissue or higher formation of 

colour. For this reason, it was important to keep two types of assessment of 

bruising: (1) assessment of severity of bruising as Potato Council protocol, 

where only depth of bruised tissue was analysed and (2) assessment of 

bruising index, where volume of area affected were integrated with colour 

formation. 

 

On bruising index assessment, a relevant point is to develop a reliable 

method to classify the colour developed on bruised tissue after damage and 

incubation. This classification could vary with local illumination and also due 

personal interpretation. For this reason, a standard method was developed 

and bruised samples were classified using the Munsell Atlas Hue 9R (figure 

2.3). As colour on the computer screen and printed paper can change with 

 
Table 3.1 Analyze of depth, width and colour intensity of samples impacted on the 
stolon (n=3) as indicated on figure 3.4. Samples shown in bold had flatter contact 
with the bolt. 
 

Samples Depth (mm) Width (mm) Colour intensity 

LR 1 3.5 9.6 2 

LR 2 4.4 7.5 3 

LR 3 6.9 13.1 3 

Average 4.9 10.1 2.7 

 
  

 MP1 2.6 5.7 3 

MP2 0.7 4.2 1 

MP3 3.2 9.0 3 

Average 2.2 6.3 2.3 

 
  

 RB1 1.5 4.6 1 

RB2 2.5 5.2 2 

RB3 3.7 4.9 1 

Average 2.5 4.9 1.3 
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screen/print inject used, the same printed version was kept to classify 

bruising intensity on field trial 2 and 3. Figure 3.5 shows examples of bruised 

samples and the category classified. 

 

 

 

3.2.2 Mechanical properties 

3.2.2.1 Energy required to break the skin and cortex tissue  

To assess the texture of tubers along harvest and storage times and with 

application of nitrogen, a penetration test was carried on the cortex and skin 

tissue of tubers. Force and distance to break the potato tissue (called yield 

point) were obtained from the curve plotted from the software of the TA.XT 

plus Texture Analyser as shown in figure 3.6. Energy (mJ) was calculated by 

multiplying force (N) and distance (mm) at yield or break point. 

Figure 3.5 Bruising colour classification according to Munsell Atlas Hue 9R shown 
in figure 2.3, variety RB. Numbers indicate the classified intensity of colour. 
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It was possible to estimate the number of cells in contact with the probe at 

yield point by dividing the circle area of probe (π.r= 3.14 mm) by the ellipse 

area of cells from cortex (π.a (65 μm) .b (35 μm).  Diameters of potato cell 

were estimated from micrographs shown in figure 3.7.  It was found that 

about 1758 cells from cortex were broken at the yield point. 

 

 

 

 

 

 

 

 

                                      
 
 
Figure 3.6 Typical graph from Texture Analyzer. Arrow indicates the yield point and 
force (N) and distance (mm) were collected from the TA software. 
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Varietal differences were found at the microscopic level of the skin of 

potatoes. Maris Piper presented cells which were not regularly stacked on 

top of each other in the skin and higher energy (~1.5X) was required to 

break the tissue, while Russet Burbank, had the most regular structural 

organisation (cells stacked in regular rows) required lower energy to break 

the skin (data not shown). This observation indicates that greater force was 

required to penetrate tissue across cells (therefore breaking through cell 

walls) than between cells. It can be concluded that the method chosen was 

sensible to analyse varietal differences on the skin. 

3.2.3 Phenolic compounds 

3.2.3.1 Extraction of phenolic compounds  

A variety of diverse solvents are used to extract plant phenolics.  Some 

examples of extraction solvents used are methanol (Hale et al., 2003, 

Figure 3.7 Optical microscopy of potato skin (top micrographs) and cortex (bottom 
micrographs) tissue stained with toluidine blue.  Magnification 20x. Error bar 50 μm. 
 
 
 

 

 

 

LR                          MP                          RB                 
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Blessington et al., 2010, Sotilho et al, 1994 and Rhamamurthy et al., 1992), 

methanol with acid (Lewis et al., 1988, Shakia and Navarre, 2006), ethanol 

(Malmberg and Theander, 1985) and hexane (Dao and Friedman, 1992). 

Shakya and Navarre (2006) have found better recoveries of chlorogenic acid 

and tyrosine in samples extracted with acidified 50% methanol, when 

comparing with extractions made with 90% ethanol, 80% acetone and 80% 

methanol.  They also obtained equivalent of superior extraction with freeze-

dried tissue using two sequential 15 min extractions with mini-beadbeater96 

when comparing with shaking samples 1-24 h in the dark either at room 

temperature or 4 °C or extractions in which tissue was boiled.  

Due these facts and no availability of mini-beadbeater96 in the school, 

adaptations of the method were tested. First, extractions were carried out 

using either one of two different instruments: the Ultraturrax homogenizer 

and vortex mixer using 50% methanol (MeOH) acidified with 2.5% 

metaphosphoric acid as extractant of phenolic compounds.  Secondly, 

extractions were carried out with either 50 or 70% of MeOH acidified with 

2.5% metaphosphoric acid using vortex alone. For both methods tested the 

sequence of procedures was as follows: 10 minutes of either disruption in 

ultraturrax or shaking in vortex, followed by sonication for 10 minutes and 

return to the instrument for more 10 minutes extraction. This sequence was 

repeated twice.  

The method using acidified 50% methanol as a solvent and using vortex 

presented superior extraction, as shown in Table 3.2.  
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Sinapic acid was chosen as internal standard because it is a common 

compound in broccoli, kale, other leafy brassicas and citrus juice, but not in 

potatoes. It was found that after repetition of randomised samples, 

qualitative and quantitative analyses of extracts were reproducible, allowing 

the phenolic acids to be meaningfully compared among extracts from 

different varieties and treatments.  

To certify that extraction of phenolic acids were complete, four extractions of 

the same samples were made. The percentage obtained in each extraction 

is shown of table 3.3.  According to the results from four extractions, there 

were some chlorogenic acid after three extractions remaining in the sample, 

however the forth extract contained maximum 3.85% of total extracted yield. 

For this reason it was decided to carry on with only three extractions to 

analyse phenolic compounds of samples. 

Table 3.2 Method for extraction of phenolic acid tested. Extraction with 50% MeOH 
using ultraturrax and 50 and 70% MeOH using vortex. Values represent average ± 
SD (n=4). 
 
 

 
Method 

 
Ultraturrax with 

acidified 50% MeOH 
Vortex with acidified  

50% MeOH 
Vortex with acidified 

70% MeOH 

Compound mg/100g dry weight mg/100g dry weight mg/100g dry weight 

3-CQA 0.99 ± 0.01 1.08 ± 0.18 0.80 ± 0.04 

5-CQA 29.84 ± 0.56 39.12 ± 3.79 21.87 ± 0.34 

4-CQA 2.48 ± 0.06 2.77 ± 0.43 1.55 ± 0.06 
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3.2.3.2 Analysis of phenolic acids using high performance liquid 

chromatography 

Good separation of phenolic acids investigated was found when a method 

previously optimized for characterization of hydroxicinnamic acids 

conjugates from Farrell et al. (2011) was applied. Typical HPLC-DAD 

chromatograms are presented in figure 3.8.  

 

 

 

 

Table 3.3 Percentage of phenolic acid released in each step of extraction with 
acidified 50% MeOH and using vortex method. 
 

Extraction/ 

Compound 
1

st
 Extraction 2

nd
 extraction 3

rd
 extraction 4

th
 extraction 

3-CQA 69.59 ± 4.28 18.47 ± 0.11 8.10 ± 1.06 3.85 ± 0.31 

5-CQA 71.05 ± 0.10 19.15 ± 0.08 7.97 ± 0.08 1.83 ± 0.02 

4-CQA 71.14 ± 1.82 19.81 ± 2.64 7.01 ± 0.02 2.05 ± 0.02 



107 
 

 

The response factors of phenolic acids investigated by HPLC–DAD are 

summarised in Table 3.4. The limit of quantification (LOQ) of chlorogenic 

acids, the predominant phenolic acids found in potatoes, was in a range 

between 0.71-2.82 μg/mL.  Minor compounds presented LOQ of 0.14 ug/ml. 

Maximum wavelengths of each compound was determined. The majority of 

compounds presented higher absorption spectra at 325 nm and only vanillic 

acid absorbed at 220 nm.  

                  
 
Figure 3.8 HPLC separation of standards and sample profile detected at 
wavelength 325 nm. Peaks:  (1) 3-CQA, (2) VA, (3) 5-CQA, (4) CA, (5) 4-CQA, (6) 
p-Cou and (7) FA. 
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3.2.3.3 Analysis of tyrosine using high performance liquid 

chromatography  

Two columns were tested during process of selecting method for high-

throughput analysis of tyrosine following Shakya and Navarre (2006) 

method. Initially a rapid resolution column  Zorbax XDB RR HT, size 4.6 x 

50mm, pore size 1.8 at flow rate ranged from  0.4 – 1 ml/min  was tested. 

With Zorbax column ascorbic acid and tyrosine were coeluting  and even 

reducing flow rate, attempting to spread the elution of both compounds, it 

was not giving good resolutions of compounds as retention time of both 

compounds was varying from 0.5 and 1 min. The second column tested was 

Phenomenex Onyx, 4.6mm x 150 mm, 5 micron internal diameter, flow rate 

0.4 to 2 ml/min. Phenomenex column separated tyrosine and ascorbic acid. 

Good sensitivity and peak sharpness of tyrosine was achieved with flow rate 

of 1.5 mL/ min as shown in figure 3.9  

Table 3.4 HPLC-DAD characterization of phenolic acids, limit of quantification 
(LOQ), calibration (R) and spectra of maxima absorbance. (a) Mean of retention 
times (Rt) ± standard deviations of 10 replicates and (b)  Relative standard 
deviations (RSD) of retentions times (%). 
 
 

 

Peak 

no. 

 

Compound 

Rt (min) 

Mean ± SD 
a
 

RSD (%)
b
 LOQ (ug/ml)     R2 

Spectral λ 
max 

1 3-CQA 6.51 ± 0.01 0.12 0.74 0.9994 325 

2 Vanillic acid 13.30 ± 0.01 0.04 0.14 0.9996 220 

3 5-CQA 14.98 ± 0.03 0.22 2.82 0.9991 325 

4 Caffeic acid 15.56 ± 0.02 0.10 0.14 0.9975 325 

5 4-CQA 20.43 ± 0.01 0.06 0.71  0.9991 325 

6 p-Coumaric acid 27.36 ± 0.03 0.12 0.14 0.9982 325 

7 Ferrulic acid 32.69 ± 0.02 0.08 0.14 0.9986 325 

8 Sinapic acid 34.53 ± 0.02 0.06 - - 325 
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Tyrosine presented mean of retention time 4.12 min ± 0.05 (SD),  relative 

standard deviations of retentions times 0.01%, limit of quantification 1 μg/ml, 

linearity of curve 0.9994 and UV spectra maximum at 280 nm. It was found 

that standards with concentration below 1 μg/mL were causing reduction of 

 
 
Figure 3.9 HPLC-UV analysis of standard detected at 280 nm. (A and B) Upper and 
lower boundaries of standard curve, (C) water profile and (D) sample profile.  
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linearity of the standard curve. It may be due the increase of methanolic 

buffer was affecting the baseline (water profile in figure 3.9) and thereafter 

the area of the compound. 

3.2.4 Cell Wall composition 

3.2.4.1 Microscopy and immunolocalisation 

Structural studies can be done using specific localising reagents (for 

example, stains, lectins, or antibodies) together with bright-field, 

fluorescence, or electron microscopy to localise specific epitopes within the 

cell wall structure (Albersheim et al., 2011). 

Microscopy techniques (e.g. optical or light, electron and atomic microscopy) 

vary in methods of image production, resolution, and type of signal detected, 

and give a particular type of structural information that is unique to the 

technique used. Bright field, polarizing, and fluorescence microscopy 

techniques are used most frequently. In conventional bright-field microscopy, 

illumination is transmitted sequentially through a condenser. If the specimen 

is not highly coloured, contrast must be introduced to make it visible. This is 

commonly achieved by the use of dyes or stains of known specificity for 

different components of the specimen (Kaláb et al., 1995). 

Advances in instrumentation have been made in light microscopy, most 

notably in the development of confocal laser scanning microscopy (CLSM). 

This method not only provides an image with better resolution than 

conventional light microscopy or fluorescence microscopy, but also provides 
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an opportunity to observe a 3-dimensional image without creating the need 

to physically section and observe the same sample in the z-direction. In 

CLSM, a laser source is focused by the objective lens to illuminate a single, 

precisely defined point in the specimen (the focal point). A scanning device 

deflects the beam in the X/Y, X/Z, or Y/Z dimension, thereby scanning the 

focused spot on the specimen to create an image of the X/Y, X/Z, or Y/Z 

focal plane. Reflected and fluorescent light returns via the illumination path, 

and is then focused by the optics of the microscope at the confocal point at 

the center of a pinhole. Since the spot on the pinhole and the spot on the 

specimen are both located in the focal plane of the imaging lens, they are 

said to be confocal. The CLSM is most advantageous in its ability to provide 

extraordinarily thin, in focus, high-resolution optical sections through a thick 

specimen (Aguilera and Stanley, 1999). CLSM has been used to examine 

the pectin deposition in relation to pit fields at the plasma-membrane-face of 

tomato pericarp cell walls with the use of monoclonal antibody JIM5 (Casero 

and Knox, 1995). 

3.2.4.2  Monoclonal antibodies 

Several monoclonal antibodies to plant cell wall polymers have been 

generated (Knox, 2014) to investigate the anatomical characteristics of the 

cortical tissue by immunofluorescence microscopy. Specific to pectin, the 

antibody JIM5 binds to completely de-esterified homogalacturonan domain 

of pectic polysaccharides (Willats et al., 2000; Knox et al., 1990). Another 

antibody used to investigate pectin is JIM7, which binds to the 

homogalacturonan domain of pectic polysaccharides, with a range of 

esterified pectin from about 15 to 80% (Willats et al., 2000) but does not bind 
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to un-esterified homogalacturonan (Knox et al., 1990), shown in figure 3.10. 

These antibodies can recognise pectic polysaccharides in several species. 

For both antibodies there is no known cross-reactivity with other polymers 

(Knox et al., 1990). 

 

 

Knox et al. (1990) used monoclonal antibodies for un-esterified pectin 

(JIM5), with the degree of esterification (DE) above 35% and 

methylesterified (JIM7) with the range of 35 to 90% DE, to detect pectin in 

the root apex of carrot. In a study by Parker et al. (2001) JIM5 and JIM7 

were also used to investigate the distribution of pectic polysaccharides in the 

separated cells at the potato surface. 

To investigate pectin localization on cortex tissue, samples were embedded 

in wax following protocol used with other agricultural products. Sections of 

embedded tissue were probed with monoclonal antibodies to analyse 

methylation of pectin.  

First results showed that embedding time in wax  (2 x 1h)  was not enough 

for the wax to penetrate into tissue. Samples were crumbling when 

sectioned using microtome with blade at 11 degrees and 12 μm thickness.  

Figure 3.10 JIM5 and JIM7 recognise a range of partially methyl-esterified HG 
structures with representative’s epitopes shown above (Knox, 2014) 
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A second test was made where thicker sections of 32 um were tested. Little 

improvement was achieved but until not enough to analyse samples. 

A third method was tested were samples were embedded in wax for longer 

period (2 x 2h), sectioned 50 μm thick, labelled and then membranes were 

stained with 0.1% Toluidine Blue to reduce autofluorescence from phenolic 

acids attached to the cell wall. Thicker sections required the use of confocal 

microscopy due high-resolution through a thick specimen. 

Results from the methods tested are summarised in figure 3.11. 

 

 

 

 

 

 

 

 

 
Figure 3.11  Fluorescent microscopy of potato tissue labelled with JIM5 or JIM7. 
Control indicates no primary antibody. Sections of method 1, 2 and 3 were 12, 32 
and 50 μm  thickness. Magnification 20X. Scale bar: 50 μm. 
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3.2.4.3 Optical localization of membranes 

Handcut sections of fresh tissue were made. Samples were stained with 

0.1% Toluidine Blue, 0.05% Iodine and Calcofluor and analysed with optical 

microscope. Pictures obtained were not clear and hand sectioning of fresh 

tissue method was no longer used. Results are presented in figure 3.12.  

3.2.4.4 Analysis of Cell Wall Material (CWM) 

3.2.4.5 Extraction 

Analyses of cell wall monosaccharides have been restricted by difficulties 

encountered with methods for extraction that usually require several steps. 

Although potatoes have less than 2% protein, deproteination is an important 

step for the purification of potato cell wall. According to the literature, some 

proteins from glycoproteins and some enzymes can be removed in cold 

water, other enzyme and lectins and newly-deposited extensins are ionically-

bond to the acidic polysaccharides and can be extracted with salt (e.g. 

NaCl).  The non-covalently bound membrane proteins require the use of 

detergents and more powerful solvents to be removed such Triton X-100, 

 
 
Figure 3.12 Handcut stained with (a) toluidine blue, (b) iodine and (c) calcofluor UV, 
magnitude 20X. 

a                                  b                               c 
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SDS or CHAPS, but usually hash solvents are used to purify extract proteins 

from the potato cell wall e.g. saturated phenol (Fry, 2000) or phenol/acetic 

acid/H2O (2:1:1) (PAW) (Jardine et al., 2002). In this study an enzymatic 

digestion of proteins using pancreatic protease was tested compare with 

80% (v/w) saturated phenol. The results are shown in table 3.5.  

 

 

 

 

 
  Protease Phenol 
Monossacaride % mol %mol 

Fucose 0.4 0.2 

Rhamnose 1.8 1.9 

Arabinose 12.3 11.9 

Galactose 72.3 71.0 

Xyllose 6.8 9.5 

Galacturonic acid 6.5 5.5 

Results from enzymatic approach indicate minimal differences comparing 

extraction using protease and phenol 80% (v/w) after hydrolysis with 1M 

H2SO4, except for Xyl. The most abundant type of pectin in potatoes is 

rhamnogalacturan I rich in arabinose and galactose. Recovery of these 

sugars was similar for both methods. Other relevant factors were the 

extensive number of samples to be extracted and the possibility to avoid the 

use of hash toxic chemicals (phenol) in the laboratory. For these reasons, 

enzymatic removal of protein was chosen. 

Table 3.5 Monossacharide concentration of CWM  extracted with protease or 80% 
(v/w) saturated phenol and hydrolysed with 1M H2SO4. Concentrations are 
expressed per %mol (n=2).  
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3.2.4.6  Analysis of monosaccharide composition using high 

performance anion exchange chromatography amperometric 

detection (HPAEC - PAD) - Dionex 

Initially, the method described by Øbro et al. (2000) was tested but not good 

separation was achieved due the use of different equipment. Due mainly to 

coeluition of compounds, decrease on flow rate (from 0.5 to 0.3 mL/min) was 

tested. Also, the isocratic gradient from 1.5 min with 5mM was extended to 

guarantee elution of 9 compounds (from 20 to 30 minutes). It was found that 

column were not totally cleaned with 800mM NaOH so the concentration of 

NaOH was increased to 1M and the duration was extended to 5 minutes at 

this higher concentration.   

With these adaptations, the 9 sugars from cell wall plus one internal 

standard were separated. Typical ion exchange chromatograms are 

presented in figure 3.12 showing all 10 compounds eluted within 65 min 

using water and NaOH gradient. 
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High-Performance Anion-Exchange Chromatography (HAPEC) operating 

conditions were optimized also to achieve excellent sensitivity. Limit of 

detections ranged from 47 ng/mL for 6 out of 9 standards and 93 ng/mL for 

the remaining. Intra-day and inter-day precision and accuracy was 

calculated at < 6.3% and <-9.1% respectively, as shown in table 3.6. 

                                
 
Figure 3.12 Ion exchange peaks of (A) standards 25ug/mL (1) Fucose, (2) 
Rhamnose, (3) Arabinose, (4) Galactose), (5) Glucose, (6) Xylose, (7) Mannose, (8) 
Galacturonic acid and (9) Glucuronic acid. (B) Sample and (C) sample spiked with 
mannose. 
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n=2, 3 repetitions each 

Peak Compound 
Rt (min) 

Mean ± SD 
a
 

 

RSD (%)
b
 

LOQ (ng/mL) R
2
 

1 Fucose 6.15 ± 0.18 2.88 47 0.9999 

2 Rhamnose 12.09 ± 0.46 3.79 47 0.9996 

3 Arabinose 13.10 ±0.45 3.46 47 0.9999 

4 Galactose 16.81 ± 0.63 3.77 47 0.9997 

5 Glucose 19.09 ± 0.72 3.79 93 0.9993 

6 Xylose 22.26 ±0.81 3.65 93 0.9998 

7 Mannose 23.08 ± 0.83 3.62 47 0.9999 

8 Fructose 26.62 ± 1.06 4.00 47 
 

9 Galacturonic acid 41.80 ±0.05 0.13 93 0.9823 

10 Glucuronic acid 43.10 ± 0.03 0.69 93 0.9999 

3.2.4.7 Linearity, precision and accuracy 

For all compounds detected in Table 3.6, peak area varied linearly with on-

column amount over the ranges (R > 0.98). Intra-day and inter-day precision 

was calculated for galactose as R.S.D. <4.6%, <1.7% and <6.4% for 

25ug/ml, 50μg/ml and 100 μg/ml concentrations respectively. Good intra-day 

and inter-day accuracy was demonstrated across the concentration range 

with relative error <-7%. The precision and accuracy meet performance 

criteria for analytical methods, which indicate precision (R.S.D.) and 

accuracy (R.E.) must be within ±15%, or for the lower limit of quantification, 

values within ±20% are acceptable. 

             Table 3.6 Ion exchange optimization and characterization of sugars 
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3.2.4.8 Stability of monosacharides at 10° C storage and recovery 

efficiency for hydrolysis studies 

Extraction efficiency of investigated sugars in 0.1 and 2 M TFA was 

assessed after hydrolysis for 1h at 100 ºC. All compounds showed 

degradation in 0.1M TFA and further degradation upon higher molality of 

TFA (2 M), shown in table 3.7. The stability of standards samples prepared 

for ion exchange analysis was investigated and data indicate some 

degradation following storage of standards with concentration of 25 μg/mL in 

the chilled auto-sampler conditions for 3 days. 
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Monos. Extraction efficiency 

 
% of initial concentration 

  0.1M TFA 2M TFA 

Fuc 71.1 ± 0.2 66.3 ± 0.7 

Rha 67.8 ± 0.6 62.1 ± 0.9 

Ara 61.6 ± 0.4 57.9 ± 0.6 

Gal 59.1 ± 0.4 55.5 ± 0.5 

Glu 59.2 ± 0.7 56.1 ± 0.5 

Xyl 75.2 ± 0.9 70.6 ± 0.4 

Man 38.3 ± 0.4 36.3 ± 0.6 

GalA 56.7 ± 0.8 55.8 ± 0.9 

GluA 51.0 ± 1.0 50.0 ± 0.8 

     

 
Stability at 4 ⁰C 

 
  

% of initial 
concentration  

  Ara 95.6 - 100.5 

Gal 95.4 - 100.5 

Glu 94.5 - 100.6  
 

 

3.2.4.9 Percentage of sugar released from CW in each step of 

hydrolysis 

After partial hydrolysis with 0.1 and 2 M TFA, a further hydrolysis with 1 M 

H2SO4 hydrolysis was carried out to determine if there were any remaining 

pectic monosaccharides. The percentage of sugars released from CW in 

each step of hydrolysis is presented in table 3.8. 

 

 

 

Table 3.7 Extraction efficiency of sugars with 0.1 M TFA and 2 M TFA at 100 °C 
(1h) and stability of rhamnose, galactose and glucose (25 μg/ml) in water after 3 
days storage at 4 °C. Values represent average ± SD (n=3). 
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As higher percentages of most of the monosaccharides from pectin were 

extracted using 0.1 and 2 M TFA and further characterization of cell walls 

followed the 2 steps hydrolysis methods. 

 

Table 3.8 Percentage of cell wall sugars released from potato cortex under the 
sequential hydrolysis. Bold results shows which stage the monosaccharide was 
released more (n=3). 
 

 
% released 
 

Monos. 
0.1 
TFA 

2M 
TFA 

1M 
H2SO4 

Fuc 26-32 45-74 0-23 

Rha 55-77 23-45 0 

Ara 91-97 3-7 0-2 

Gal 59-73 26-40 1-2 

Glu 8-38 40-46 22-46 

Xyl 13-15 62-75 10-25 

Man 0 0 100 

GalA 38-64 11-27 24-35 

GlcA 72-86 5 9-23 
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4 Effect of defoliation on bruising along harvests –           

field trial 1 

4.1 Introduction 

Previous studies suggest that both potato genotype and environmental 

conditions affect bruising (McGarry et al., 1996). Potato cultivars Maris Piper 

(MP), Lady Rosetta (LR) and Russet Burbank (RB) have been shown to vary 

in their susceptibility to bruising in potatoes grown under controlled 

conditions (Carnegie et al., 2005; BPVD, 2012). In terms of environmental 

conditions, the maturity status before the harvest is a factor in bruising. 

Maturity is related to the time when haulm will desiccate and tuber skin is set 

(Pringle et al., 2009).  It is know that the content of phenyl substrates such 

as tyrosine and other phenolic acid compounds such as chlorogenic acid, as 

well as levels of polyphenol oxidase (PPO), tend to be less abundant in early 

(immature tubers) compared to late-season tubers (Lisinska and 

Leszczynski, 1989). 

A previous Potato Council project (Stalham, 2008) found that more bruising 

occurred in crops harvested three to five weeks after defoliation (21 and 35 

days respectively) compared to undefoliated. However, the determinants of 

bruising were until not fully understood. According to previous studies 

presented in the introduction (chapter 1), these factors include the 

concentration of phenolic substrates, the mechanical properties of tuber and 

the composition of the plant cell wall. 
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4.1.1 Aim 

The main aim of this chapter was to investigate the effect of harvest and 

defoliation on bruising in three varieties of potatoes. This knowledge would 

enable growers to better manage crops to achieve the necessary standards 

for the quality of potatoes. Additionally the research seeks to establish 

whether physiological and biochemical characteristics, such as mechanical 

properties, phenolic acids, tyrosine and cell wall composition are factors that 

influence bruising and may be used as predictive indicators of bruising. 

In this present study, three varieties Maris Piper (MP), Lady Rosetta (LR) 

and Russet Burbank (RB) were investigated. These UK varieties of potatoes 

are known to differ in their tendency toward bruising. According to the Potato 

Council independent variety trials, MP and LR have been assigned with 

bruising susceptibility score of 6, whereas RB was assigned  a bruising 

score of 4 in ratings ranging from 0 (most susceptible) to 9 (least 

susceptible) (Carnegie et al., 2005, BPVD, 2012), as mentioned before 

(Chapter 1, section 1.5.1). The cultivars studied were grown at Cambridge 

University Farm (CUF), planted on 23 April 2010 and harvested at four time 

points. Before the harvest, defoliation was performed at two time points 

(early defoliation and late defoliation), as indicated in table 2.1. Trials were 

randomised with two factors (variety and defoliation) with three replicate 

plots. Ten tubers per plot were analysed. 
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4.1.2 Hypotheses 

The hypotheses tested were:  

1) Potatoes from defoliated plants show more bruising in crops harvested 

three to five weeks after defoliation (21 and 35 days respectively).  

2) Potatoes harvested later in the season show more bruising, and this may 

be due to accumulation of phenolic substrates. 

3) The mechanical properties of the tuber influence bruising and these 

properties will be influenced by the cell wall composition of cortex cells. 

4.1.3 Objectives 

1) To improve the understanding of the influence on defoliation of crop and 

harvest date on the incidence of bruising. 

2) To investigate the potential for using physical and biochemical 

measurements as indicators of bruising. 

4.2 Results 

4.2.1 Field phase 

4.2.1.1 Meteorological data 

The 2010 season was characterized by short periods of bright days 

throughout June and July, interspersed with longer spells of more average 

radiation resulting in significantly higher evaporative demand for these two 
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months than average. Reference ET0 (Evapotranspiration (ET) - is the sum 

of soil water evaporation (E) and plant transpiration (T)) was greater in June 

and July, with a mean daily ET0 of 3.52 and 3.90 mm/day respectively and 

only 2.57 mm/day in August.   

The temperature for normal tuber growth was beyond boundaries 

recommended by FAO (2013) with mean daily temperatures of 18 to 20°C 

and soil between 15 to 18°C. In general a night temperature of below 15°C is 

required for tuber initiation (FAO, 2013).   

Around the time of tuber initiation there was rainfall but only 20 mm of rain 

from 10 June to 31 July. August was dull with a low evaporative demand and 

there was heavy rain in the month, thought to be important to reduce  

bruising (Stalham, 2008).   

 

Figure 4.1 Rainfall (mm) and mean temperature of the air and soil  
(secondary axis) in field trial 1, 2010. 
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4.2.1.2 Green canopy cover (%) 

Temperatures were colder than average in June and ground cover was 

slower to develop than normal. By the commencement of the measurement 

period (1st June), ground covers were 5- 8.4% in LR, 2-3% in MP and 2.7-4.3 

in RB. All the varieties achieved 100% canopy by 13th July.  

Measurements of decline of canopy were taken as key indicators of the 

effect of defoliation on the physiological characteristics of the crop. In 

particular, the stage of senescence reached by the date of defoliation was 

studied (table 4.1). 

 

Variety LR D1 LR D2 LR UN 

H1 100.0 100.0 99.7 

H2 0 99.3 99.0 

H3 0 0 88.7 

H4 0 0 55.0 

    

 MP D1 MP D2 MP UN 

H1 100.0 100.0 99.7 

H2 0 99.7 99.7 

H3 0 0 98.0 

H4 0 0 92.0 

    

 RB D1 RB D2 RB UN 

H1 100 99.7 100.0 

H2 0 99.7 100.0 

H3 0 0 95.7 
H4 0 0 59.0 

 

The data show varietal difference on green canopy cover at defoliation. 

Delay in senescence was found in Maris Piper. All varieties had >99 % 

Table 4.1 Green canopy cover (%) at defoliation time of the varieties LR, MP and 
RB of tubers harvested in August (H1 and H2) and September (H3 and H4), 2010. 
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ground cover at defoliation on H1 and H2. LR and RB had senesced almost 

half by mid-September (H4), with 55% and 59%  ground cover respectively 

while MP until had 92% ground cover by this time.  

4.2.2 Bruising assessment 

4.2.2.1 Assessment of severe bruising using the falling bolt method 

For potatoes harvested early in the season (H1 and H2), no bruising was 

observed amongst any varieties or defoliation regime studied (figure 4.2). 

This may be because tubers may not be biochemically susceptible to 

bruising at this time, explored in section 4.2.5. In addition, these early 

potatoes were not subjected to ‘hot boxing’. Hot boxing was applied to 

potatoes of the 3rd (H3) and 4th harvest (H4). The results from the 3rd and 4th 

harvest are presented in figure 4.2 and expressed in percentage of severe 

bruising according to the Potato Council protocol after falling bolt damage 

(equivalent to energy of 0.6 J) and for 48 hours incubation at 33°C and 

humidity >95%.  

At the 3rd harvest, RB showed higher percentage of severe bruising (50-

67%), followed by MP (17-33%) and LR (0-17%). Assessment of the effect 

of defoliation on bruising status of the tubers indicated that defoliated plants 

from all varieties presented similar or higher incidence of severe bruising 

than undefoliated, with exception of RB D2. At the 3rd harvest, samples were 

harvested 24 (D2) and 38 (D1) days after defoliation. These results are in 

accordance with the hypothesis, where more bruising would occur in the 

defoliated crops harvested 21 to 35 days after defoliation (3 to 5 weeks).  
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At the 4th harvest time, LR presented an increase in the percentage of 

bruised tubers (18-56%), while both RB (6-53%) and MP (6-17%) showed 

decreased levels compared to the 3rd harvest. These observations were also 

made in defoliated samples. Samples defoliated either early (D1) or later 

August (D2) were associated with less severe bruising for RB and LR and 

for MP defoliated early August (D1). By this time, tubers were harvested 35 

(D2) and 49 (D1) days after defoliation. 

 
 
Figure 4.2 Effect of variety, harvest time and defoliation regime on percentage of 
severe bruising (%) following damage using a falling bolt method in potatoes from 
crops harvested in early August (H1), late August (H2), early September (H3) and 
late September (H4), defoliated early August (D1), late August (D2) and 
undefoliated (UN), field trial 1. No bruising was found at H1 and H2, measured 
without hot boxing. Values show percentage of severe bruising (%) (H1-H3 n=9 and 
H4 n=18). 
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In order to have more detail about the damage to potatoes, slight bruising 

was measured as well as severe bruising. Slight bruising is defined as 

requiring less than two peelers to remove the bruised tissue following initial 

exploratory peel based on a procedure developed at the Sutton Bridge Crop 

Storage Research (2008), shown in figure 4.3.  

 

 

 

 

 

 

 

 

 

Figure 4.3 Effect of variety, harvest time and defoliation regime on percentage of 
slight (pattern bars) and severe bruising (plain colour bars) following damage with 
falling bolt in potatoes from crops harvested in early August (H1), late August (H2), 
early September (H3) and late September (H4), defoliated early August (D1), late 
August (D2) and undefoliated (UN), field trial 1. No bruising was found at H1 and 
H2, measured without hot boxing. Values show percentage of severe bruising (%) 
(H1-H3 n=9 and H4 n=18). 
 

D1                                        D2                                   
UN 

Slight – pattern bars (top) 

Severe – plain bars (botton) 
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Trends were similar when accounting slight and severe bruising of the 

varieties at the 3rd and 4th harvest as shown in figure 4.3. However 

defoliation presented a higher incidence of bruising for MP in both defoliated 

treatments, early August (D1) and later August (D2) harvested early and 

later September compared with undefoliated. The other varieties, LR and 

RB, harvested after 35 days of defoliation (H4) bruised less than 

undefoliated samples.   

4.2.2.2 Damage 

Samples that presented cracking on the external tissue following the falling 

bolt method and incubation were classified as having “breaking damage” 

which was excluded from the bruising assessment. Results showed varietal 

differences on the sensitivity of external tissue towards the bolt damage 

(figure 4.4). At 3rd harvest, the variety RB showed higher incidence of 

external damage, followed by LR and MP.  

However, at the 4th harvest, RB had a lower incidence of potatoes with 

breaking damage when compared with 3rd harvest. The percentage of 

damaged samples at the 3rd harvest for RB D1, D2 and UN were 50, 16 and 

33%, respectively, while at the 4th harvest a decrease to 11, 11 and 5%, 

occurred respectively. Incidence of skin damage of LR was in the range of 0-

17% and for MP 0-6% for both harvests and defoliation regime. Variations in 

skin damaged of LR and MP were in the range of 0-6% comparing H3 and 

H4, independently of defoliation regime.  
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It was expected to find less damage in defoliated tubers as skin should set 

earlier. Very little skin damage was observed in LR and MP, with slightly less 

occurrence of damage in tubers from undefoliated plants.  In RB, more 

damage was observed in tubers from plants defoliated early (D1) and less in 

tubers from plants defoliated later (D2) compared to control. This pattern is 

similar to bruising observations, indicating that RB is more susceptible to 

mechanical damage resulting in either bruising or skin damage. 

 

 
 
Figure 4.4 Effect of variety, harvest time and defoliation regime on percentage of 
damaged skin following damage using a falling bolt method in potatoes from crops 
harvested in early August (H1), late August (H2), early September (H3) and late 
September (H4), defoliated early August (D1), late August (D2) and undefoliated 
(UN), field trial 1. No damaged skin was found at H1 and H2, measured without hot 
boxing (H1- H3 n=9 and H4 n=18). 
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4.2.2.3 Spectrophometric assessment of oxidative potential  

Oxidative potential provides a measure of the amount of pigment developed 

which could potentially develop in bruised tissue. One of the objectives of 

this experiment was to correlate the pigment formation following oxidation 

with bruising. This is not a specific enzyme assay to identify a single enzyme 

activity but considered a more 'global' biochemical test which might take into 

account all metabolic processes within a given variety. Following this 

approach, the progress of pigment formation was followed 

spectrophotometrically directly in simple buffer extracts from tubers. The 

logic behind these experiments is that all the components needed for 

pigment formation including substrate, enzymes and oxygen will be present 

in these extracts - a tuber extract slowly turns brown on incubation due to 

the presence of polyphenol oxidase (PPO). Assuming that all the reactants 

are present in such an extract the concentration of brown polyphenol 

pigment synthesised should be representative of what takes place in the 

tuber following impact damage and thus may be correlated with the bruising 

potential of the tuber material. 

The experiments were determined at different stages of tuber physiological 

maturity along the four harvest times and the results are shown in figure 4.5. 
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Among the varieties, RB tubers presented significantly (p<0.05) higher 

oxidative potential along the harvest times, varying from 0.25-0.40 

absorbance at 475 nm, compared to MP (0.18-0.28) and LR (0.15-0.28). 

There was not a significant change in oxidative potential along harvest times 

for any variety (p>0.05). Defoliation also did not affect bruising potential 

during the time investigated (p>0.05). 

 
 
 
Figure 4.5 Effect of variety, harvest time and defoliation regime on oxidative 
potential following 20 hours oxidation (bars) and percentage of severe bruising (%) 
(scatter) from crops harvested in early August (H1), late August (H2), early 
September (H3) and late September (H4), defoliated early August (D1), late August 
(D2) and undefoliated (UN), field trial 1. Bars show means (n=3), errors bars are SE 
and scatter shows percentage of severe bruising (%) (H1-H3 n=9, H4 n=18). 
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From these results, a clear pattern was not found in levels of oxidative 

potential when compared with the percentage of severe bruising along 

harvest times. Negative strong correlation was found for LR (R=- 0.49) and 

negligible relationship for the other varieties (R<0.11). Similar results were 

found for Stevens and Davelaar (1997) where the susceptibility of potato 

tubers to bruising was not correlated with the biochemical potential for 

pigment synthesis. The extent of the oxidative potential suggests that other 

factors are relevant for bruising susceptibility.  

4.2.3 Physical properties  

4.2.3.1 Weight 

Results showed that the weight of all varieties studied were significantly 

affected by early defoliation comparing to undefoliated samples (p<0.05), 

figure 4.6. The differences in weight of samples defoliated early (D1) and 

undefoliated at the 4th harvest were 33, 31 and 14 % respective to MP, LR 

and RB. Smaller differences were found when plants were defoliated later 

(D2), being 26, 14 and 2% for MP, LR and RB respectively. MP showed the 

largest differences among the varieties studied.  

Significant differences in weight along the harvest times were found. LR and 

RB showed significant increase in weight during the interval of H2 and H3 

(p<0.05). There was an increase in weight of tubers for MP over the harvest 

times but no significant differences were found when comparing time 

intervals along the harvest period. Correlation between size and bruising 
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was found was found for RB (R=0.50), but weak correlation for LR (R=0.38) 

and MP (R=0.21). So, larger tubers did not necessarily bruise more. 

 
 
Figure 4.6 Effect of variety, harvest time and defoliation regime on weight of 
samples in grams (bars) and percentage of severe bruising (%) (scatter) from crops 
harvested in early August (H1), late August (H2), early September (H3) and late 
September (H4), defoliated early August (D1), late August (D2) and undefoliated 
(UN), field trial 1. Values bars show mean (n=9), errors bars are SE and scatter 
shows percentage of severe bruising (%) (H1-H3 n=9, H4 n=18).  
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4.2.4 Mechanical properties 

4.2.4.1 Energy required to break the skin tissue 

In field trial 1 measurements were taken of defoliated and undefoliated 

samples to assess differences in energy to break the tissue attempting to 

correlate with differences in bruising.  

Amongst the varieties the skin of the RB, variety that bruised the most, 

required on average lower energy to break the skin tissue, followed by LR 

and MP along harvest times, as shown in figure 4.7. Significant differences 

in energy measures were found at different harvests when comparing 

varieties as shown in table 4.2. LR was significantly different to RB along all 

harvests, even when presenting similar incidence of severe bruising as at 

H4. LR was also significant different from MP at H1 and H4. MP and RB 

showed significantly different results at H2 and H3 but on the first and last 

harvest (H1 and H4) no difference was found.  

 
 Variety LR-MP LR-RB MP-RB 

Harvest       

H1 <0.01 <0.001 NS 

H2 NS <0.001 <0.05 

H3 NS 0.01 <0.01 

H4 <0.05 <0.05 NS 

 

 

Table 4.2 P-values of multiple comparisons of the results from the energy required 
to break the skin tissue performed with Student-Newman-Keuls (SNK). NS means 
no significant difference. 
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In general, the energy required to break the skin decreased along harvests. 

LR presented a trend in all treatments investigated, decreasing the energy to 

break the skin until H3, followed by slight increase at H4. This is explained 

by weaker skin required for tuber growth until H3, followed by skin setting. In 

RB, the weaker skin at H3 was associated with more skin damage and more 

bruising. Similar observations have been described previously for other 

potato varieties. Strehmel et al. (2010a) observed that when tissue cracks 

upon collision, the impact energy is less strongly distributed throughout a 

larger area of the tissue. 

Comparing all varieties, there was no significant effect of defoliation on the 

energy required to break the skin along the harvest times. Defoliation was 

expected to speed up skin setting, but this was not observed using this 

method of measurement.  

The skin strength was measured by the force (N) at the point when the 

tissue breaks and the deformability was measured by the distance (mm) to 

rupture the tissue as shown in figures 4.8 and 4.9 respectively. It was 

observed that the trend in energy to break the skin tissue was not dependent 

only on one factor but on a combination of force and distance to break the 

tissue.  

A strong negative correlation was found for MP (R=-0.52) when analysing 

correlations between the energy to break the skin tissue and the incidence of 

bruising but not found for LR (R=0.06) and RB (R=-0.28). Weak correlations 

were found between force to break the cortex with bruising incidence for all 

varieties (R <0.18). Strong negative correlation was found between distance 
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to break MP cortex tissue (R=-0.43) with percentage of severe bruising but 

not for LR  (R=-0.26) and for RB (R=-0.01). 

 

 

 
Figure 4.7 Effect of variety, harvest time and defoliation regime on the energy to 
break the skin tissue in mJ (bars) and percentage of severe bruising (%) (scatter) 
from crops harvested in early August (H1), late August (H2), early September (H3) 
and late September (H4), defoliated early August (D1), late August (D2) and 
undefoliated (UN), field trial 1. Values bars show mean (n=9), errors bars are SE 
and scatter shows percentage of severe bruising (%) (H1-H3 n=9, H4 n=18). 
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Figure 4.8 Effect of variety, harvest time and defoliation regime on the force to 
break the skin tissue in N (bars) and percentage of severe bruising (%) (scatter) 
from crops harvested in early August (H1), late August (H2), early September (H3) 
and late September (H4), defoliated early August (D1), late August (D2) and 
undefoliated (UN), field trial 1. Values bars show mean (n=9), errors bars are SE 
and scatter shows percentage of severe bruising (%) (H1-H3 n=9, H4 n=18). 
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4.2.4.2  Energy required to break the cortex tissue 

Measurement of mechanical properties of the cortex showed a decrease in 

the energy required to break the tissue along harvests, with lowest energy 

required for tubers from H4. Different levels of energy was required to break 

the cortex between the varieties studied (p<0.05), being lowest for RB, 

followed by MP and LR. Significant differences were found in the different 

time points of the harvest when comparing varieties as shown in table 4.3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.9 Effect of variety, harvest time and defoliation regime on the distance to 
break the skin tissue in mm (bars) and percentage of severe bruising (%) (scatter) 
from crops harvested in early August (H1), late August (H2), early September (H3) 
and late September (H4), defoliated early August (D1), late August (D2) and 
undefoliated (UN), field trial 1. Values bars show mean (n=9), errors bars are SE 
and scatter shows percentage of severe bruising (%) (H1-H3 n=9, H4 n=18). 
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Variety LR-MP LR-RB MP-RB 

Harvest       

H1 ns <0.001 <0.001 

H2 ns <0.001 <0.001 

H3 <0.05 <0.001 <0.01 

H4 <0.05 <0.01 NS 

 

According to table 4.3, LR was significantly different to RB along all harvests 

and different from MP at H3 and H4. MP and RB showed significantly 

different results from H1 to H3. However, comparing all varieties, there was 

not a significant difference (p>0.05) between undefoliated and defoliated 

samples along the harvest times. 

The changes in energy to break cortex tissue along harvest were strongly 

dependent of the force (figure 4.11) and distance (figure 4.12) until break of 

the cortex, with pronounced decreases in distance along harvest for RB and 

LR, showing less deformable tissue. 

A strong negative correlation between the energy required to break the 

cortex tissue and severe bruising incidence was found for the varieties MP 

(R=-0.51) and LR (R=-0.48) but not found for RB (R=0.13). Weak 

correlations were found between force to break the cortex with bruising 

incidence (R <-0.29). Strong negative correlation were found between 

distance to break MP cortex tissue (R=-0.43) and LR cortex tissue (R=-0.50) 

but not for RB (R=-0.16) with percentage of severe bruising.  

 

Table 4.3 P-values of multiple comparisons of results from energy required to break 
the cortex tissue performed with Student-Newman-Keuls (SNK). NS means no 
significant difference. 
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Figure 4.10 Effect of variety, harvest time and defoliation regime on energy to break 
the cortex tissue in mJ (bars) and percentage of severe bruising (%) (scatter) from 
crops harvested in early August (H1), late August (H2), early September (H3) and 
late September (H4), defoliated early August (D1), late August (D2) and 
undefoliated (UN) , field trial 1. Values bars show mean (n=9), errors bars are SE 
and scatter shows percentage of severe bruising (%) (H1-H3 n=9, H4 n=18). 

E
n
e
rg

y
 r

e
q
u

ir
e
d
 t

o
 b

re
a
k
 t
h

e
 c

o
rt

e
x
 t
is

s
u
e
 (

m
J
) 

 

P
e
rc

e
n
ta

g
e
 o

f s
e
v
e
re

 b
ru

is
in

g
 (%

) 

 



143 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.11 Effect of variety, harvest time and defoliation regime on the force to 
break the cortex tissue in N (bars) and percentage of severe bruising (%) (scatter) 
from crops harvested in early August (H1), late August (H2), early September (H3) 
and late September (H4), defoliated early August (D1), late August (D2) and 
undefoliated (UN), field trial 1. Values bars show mean (n=9), errors bars are SE 
and scatter shows percentage of severe bruising (%) (H1-H3 n=9, H4 n=18). 
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4.2.5 Phenolic composition 

4.2.5.1 Phenolic acids 

The most abundant compound found for all varieties was 5-O-caffeoylquinic 

acid (5-CQA), referred to as chlorogenic acid (CQA) (Clifford, 2000), and has 

previously been reported (Shakya and Navarre, 2006). CQA constitutes 

between 62 to 84% of the total phenolic acids analysed and most of the 

discussion centres on this compound.  

 
 
Figure 4.12 Effect of variety, harvest time and defoliation regime on the distance to 
break the cortex tissue in mm (bars) and percentage of severe bruising (%) 
(scatter) from crops harvested in early August (H1), late August (H2), early 
September (H3) and late September (H4), defoliated early August (D1), late August 
(D2) and undefoliated (UN) , field trial 1. Values bars show mean (n=9), errors bars 
are SE and scatter shows  percentage of severe bruising (%) (H1-H3 n=9, H4 
n=18). 
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A high level of variation between the phenolic acids among varieties was 

observed and the total amount of phenolic acids extracted showed large 

differences, but most of them showed the same trend. Particularly, 5-CQA 

concentration increased up to the 3rd harvest time and diminished from the 

3rd to the 4th harvest for all varieties and defoliations. It was expected that 

CQA levels be minimal in early-season compared with those in that late-

season and the lower concentration of 5-CQA at H1 and H2 could be a 

factor contributing to the lack of bruising in this period. The decrease in 

chlorogenic acid content at the 4th harvest for all varieties and defoliation 

regimes studied was not expected, shown in figure 4.13. This could be due 

to the metabolic utilisation of CQA by the ageing tuber as an antioxidant. 

Of the varieties examined, the highest amount of 5-CQA was found in LR, 

followed by RB and MP. Significant differences were found for each variety 

when comparing the harvest times, with the exception of LR D1 along all 

harvest times, LR D2 from H2 to H4 and RB D1 from H1 to H2, as shown in 

table 4.4. 
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Figure 4.13 Effect of variety, harvest time and defoliation regime on chlorogenic 
acids (3-, 4- and 5-CQA) of lyophilized cortex (mg/100 g dw) and percentage of 
severe bruising (%) from crops harvested in early August (H1), late August (H2), 
early September (H3) and late September (H4), defoliated early August (D1), late 
August (D2),  and undefoliated (UN), field trial 1. Values bars show mean (n=3), 
errors bars are SE and scatter shows percentage of severe bruising (%) (H1-H3 
n=9, H4 n=18). 
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Varieties/ 
 
defoliation 

  Compounds   

5-CQA  4-CQA  3-CQA 

Harvests 
H1-
H2 

H2-
H3 

H3-
H4  

H1-
H2 

H2-
H3 

H3-
H4  

H1-
H2 

H2-
H3 

H3-
H4 

LR D1            

LR D2            

LR UN 
           

            

MP D1            

MP D2 
           

MP UN            

            

RB D1            

RB D2 
           

RB UN            

            

 Varieties – comparisons with undefoliated samples at H3 and H4 

Defoliation LR MP RB 
 

LR MP RB 
 

LR MP RB 

Harvests 
H
3 

H
4 

H
3 

H
4 

H
3 

H
4  

H
3 

H
4 

H
3 

H
4 

H
3 

H
4  

H
3 

H
4 

H
3 

H
4 

H
3 

H
4 

D1 +  - + - -  - - -  - +   +  - + + 

D2   - 
-
/+ 

- -  - - -   +  + + -  - + 
 

 

 Defoliation significantly affected the content of 5-CQA for the variety MP 

compared to undefoliated samples (p<0.01) at all harvest times with lower 

amounts found in H3 and higher at D1 at the H4 compared to undefoliated. 

Defoliation significantly affected 5-CQA content for variety RB, particularly 

for later harvests (H3 and H4), with defoliated samples showing significantly 

lower levels of this compound in defoliated versus undefoliated samples. For 

variety LR, 5-CQA varied significantly along harvest time in defoliated 

samples, but was not significantly different than undefoliated samples (apart 

from LR D2 at H3). 

Table 4.4 Map of significant variances along harvests and comparison of defoliated 
samples to undefoliated at the 3rd and 4th harvest time. Cell shaded grey were 
significant different (p<0.05). Signals “+” and “-“means there was higher (+) or lower 
(-) levels in defoliated when compared with the respective undefoliated samples. 
Both signals “-/+” was applied when some results were lower and others higher 
than undefoliated samples.  
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Of the other CQA’s quantified, the isomer cryptochlorogenic acid (4-CQA) 

was more abundant than neochlorogenic acid (3-CQA) in all varieties and 

ranged from 6-17% of the total CQA content, whereas 3-CQA comprised of 

1.5 to 6% of the total. Different profiles were found for the isomers as 4-CQA 

presented a higher concentration at the 3rd harvest time whereas 3-CQA 

presented higher concentration at the 4th harvest for all varieties and 

defoliation regimes.  

Defoliation showed significant differences in the composition of the isomers 

of CQA compared to undefoliated samples at the 3rd and the 4th harvest 

times as shown in table 4.4. In general defoliated samples presented an 

increased the content of 4-CQA and decreased the content of 3-CQA.  

Some correlation between the incidence of severe bruising and 

concentration of CQAs in the cortex was found for the varieties RB (R=0.64) 

and MP (R=0.52), but not for LR (R=0.09). 

Besides CQAs, caffeic acid (CA) is also known to be relevant in the bruising 

of potatoes (Lærke et al., 2002). CA was detected in all varieties with up to a 

12 fold difference among varieties at H3. The concentration of CA ranged 

from 0.35-2.26 mg/100g dw in MP, 0.08-0.98 mg/100 g dw in LR and 0.12-

0.48 mg/100g dw in RB along the harvest times (figure 4.14).  

Additional compounds were measured in tubers including vanillic acid (VA), 

ferulic acid (FA) and p-Coumaric (pCou). All compounds were detected in all 

varieties (figure 4.14). LR and RB presented higher concentration of FA than 

MP. FA presented similar or higher amounts in more mature tubers (H4) 
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whereas VA and pCou were higher in the more immature tubers (H2). As 

these compounds were considerably less abundant than 5-CQA and so 

would not offset the overall decrease seen during harvest times. 

 

 

 
Figure 4.14 Effect of variety, harvest time and defoliation regime on minor phenolic 
acids (FA, pCOU, CA, VA)) of lyophilized cortex (mg/100 g dw) and percentage of 
severe bruising (%) from crops harvested in early August (H1), late August (H2), 
early September (H3) and late September (H4), defoliated early August (D1), late 
August (D2),  and undefoliated (UN), field trial 1. Values bars show mean (n=3), 
errors bars are SE and scatter shows percentage of severe bruising (%) (H1-H3 
n=9, H4 n=18). 
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4.2.5.2 Tyrosine 

HPLC was used to determine the free tyrosine content in the methanolic 

extracts. Figure 4.15 shows the concentration of tyrosine in cortex tissue 

(mg/100g dw).   

Significant variations in free tyrosine content was observed among all 

varieties (p<0.001). The higher amount of free tyrosine was found in RB, 

varying from 19.8-59.6 mg/100 g dw, followed by MP with 7.3-55.4 mg/100 g 

dw and LR from 4.1-30.1 mg/100g dw. These results were slightly lower than 

cited by other the literature, with variation from 9 to 319 mg/ 100g of dw 

(Lisinka and Leszczynski, 1989), however, tyrosine content in early-season 

cultivars tended to be lower than that in late-mature potatoes, as previously 

reported (Lisinka and Leszczynski, 1989). Although significant differences in 

the content among varieties were found, all of them showed the same trend 

with small variation when comparing H1 and H2 and increase in the content 

from H2 to H4.  

Statistical analysis of variance showed significant differences, either in 

samples defoliated in early August (D1) and late August (D2) when 

compared to undefoliated samples (p<0.01) for all varieties studied. A higher 

content of tyrosine was found in potatoes defoliated early and later (D1 and 

D2 respectively) than undefoliated samples.  

A weak correlation between incidence of severe bruising and tyrosine 

content was found for LR (R=0.41), but not for the varieties (R=0.10 for MP 

and RB). 
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.   

 
 
Figure 4.15 Effect of variety, harvest time and defoliation regime on free tyrosine 
levels of lyophilized cortex in mg/100 g dw (bars) and percentage of severe bruising 
(%) (scatter) from crops harvested in early August (H1), late August (H2), early 
September (H3) and late September (H4), defoliated early August (D1), late August 
(D2) and undefoliated (UN), field trial 1. Values bars show mean (n=3), errors bars 
are SE and scatter shows percentage of severe bruising (%) (H1-H3 n=9, H4 
n=18). 
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4.2.6 Cell wall ultrastructure and composition 

4.2.6.1 Optical localization of cell membranes 

General anatomical features of potato tissue were investigated by light 

microscopy in order to identify the differences between varieties and 

characteristics of different tissues (e.g. skin and cortex). Wax embedded 

sections were stained with toluidine blue to show cell membranes as 

presented in figure 4.16. 

 
 

On the skin, RB presented suberized cells stacked with adjacent cells 

compressed together whereas LR and MP presented a ‘ragged’ appearance. 

The “ragged” organisation may act to prevent transmission and dissipation of 

forces throughout the potato, leading to more energy to be absorbed at the 

point of impact rather than transmitting and distributing it to the rest of the 

tuber. Comparing the structural characteristics with the results from the 

energy to break the skin tissue, LR and MP required respectively 25.5 and 

33.3% more energy than RB to break the skin respectively (H4).  

            
 
 
Figure 4.16 Toluidine blue staining of membranes in wax-embedded sections of 
skin. Magnitude 20X. Scale bar =50 μM 

LR                 MP                          RB 



153 
 

4.2.6.2 Cell wall composition of potatoes from 4th harvest 

The monosaccharide content from potatoes from the 4th harvest was 

characterised after sequential hydrolysis of cell wall material (CWM) using 

0.1M and 2M Trifluoroacetic acid (TFA). The objective of this study was to 

analyse differences in composition and distribution of pectic polysaccharides 

among the varieties defoliated 49 days (D1), 35 days (D2) and undefoliated 

samples harvested in later September (H4). Results are summarized in table 

4.5 and concentrations are expressed in %mol. The yield of extraction 

comprised between 0.27 and 3.71% of the dry matter. The huge range found 

was due to differences in starch content among varieties.  

Also, despite several washings and sieving steps (mesh 45 μm), large 

granules of starch were left in the CWM together with starch granules in 

some small cells, which were not broken during gridding or ultraturrax 

homogenization. Due to starch remaining in the same samples, glucose 

amounts were not considered in the composition of the cell wall and the 

results were not presented to prevent misunderstanding about the source of 

glucose. Fucose and mannose were not detected in the chromatograms 

from the potato cell wall hydrolysates. 

From the results, the percentage mol (%mol) of sugars of the CWM from the 

LR variety were significantly different to MP and RB (p<0.001), with 

exception of the xylose content (p>0.05). The %mol of the CWM from the 

varieties MP and RB were not significantly different (p>0.05). Although LR 

was significant different, the molar composition of the CWM was comparable 

among the varieties. 
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Galactose and arabinose have previously been shown to be the most 

abundant sugars in potato cell walls (Jarvis et al., 1981). The results of this 

study found higher content of arabinose than galactose. This may be due 

preliminary step of the hydrolysis using 0.1 M TFA which preserves 

arabinose. This was previously reported by Fry (2000) who showed  that the 

hydrolysis of non-cellulosic polysaccharides with 0.1 M at 100 °C TFA for 1 h 

typically released arabinose, fucose and rhamnose and 1 M TFA release 

glucose, galactose, mannose, xylose, arabinose, glucuronic acid, 

galacturonic acid. In wall polymers, most arabinose residues are found in 

side chains to other polymers (in RG I side-chains, arabinoxylan and 

arabinogalactan) (Fry, 2000). Results have shown that among the varieties, 

arabinose concentration was lower in the LR potatoes, averaging from 33.9-

37.1% mol while for MP and RB variations ranged from 42.2-43.0% mol and 

38.2-41.8% mol respectively. The rhamnose content showed the same 

pattern as arabinose, with less concentration in LR samples (0.4-0.8% mol) 

and higher in MP and RB (0.9-1.1% mol). Rhamnose is a neutral sugar 

found in the backbone of RG I. For both sugars, arabinose and rhamnose, a 

slightly higher concentration was found in D1 samples, but significant 

differences were found only in LR D1 compared to undefoliated samples 

(p<0.01). 

Another monosaccharide present as a side chain is galactose. Among the 

varieties, the concentration of galactose was lower in LR potatoes, 

averaging from 19.9 to 21.7% mol while for MP and RB galactose content 

ranged the levels from 21.3-24.4% mol. Early defoliation (D1) appeared to 

have significant effect only for RB when compared to undefoliated samples 
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(p<0.01), showing lower content. Higher concentrations of galacturonic acid 

and glucuronic acid concentrations were observed in the LR potatoes. 

Defoliation had a significant effect for both monosaccharides only for the RB 

samples comparing D1 and UN (p<0.01), where galacturonic acid presented 

slight increase on the content and glucuronic acid slight decrease.  

 

Table 4.5 Monosaccharide concentrations (rhamnose (Rha), arabinose (Ara), 
galactose (Gal), Xyose (Xyl), galacturonic acid (GalA) and glucuronic acid (GluA) 
from CWM of the cortex tissue of the cultivars LR, MP and RB from tubers 
harvested in later September 2010 (H4), defoliated early August (D1), late August 
(D2) and undefoliated  (UN) after sequential hydrolysis with 0.1 M and 2 M TFA. 
Concentrations are expressed per %mol.  Values represent average ± SEM (n=4).  
 
 

 

  Variety and defoliation (% mol) 

Monosaccharides LR D1 LR D2 LR UN 

Rha 

 

0.8 ± 0.0 0.6 ± 0.0 0.4 ± 0.0 

Ara 
 

37.1 ± 0.6 34.1 ± 0.5 33.9 ± 0.3 

Gal 
 

21.7 ± 0.8 19.9 ± 0.8 20.3 ± 0.4 

Xyl 
 

11.5 ± 0.2 10.7 ± 0.5 9.8 ± 0.2 

GalA 
 

22.3 ± 0.8 26.8 ± 1.6 24.2 ± 0.3 

GluA 
 

3.9 ± 2.0 3.1 ± 0.0 3.4 ± 0.2 

    

Monosaccharides MP D1 MP D2 MP UN 

Rha 

 

1.1 ± 0.0 0.8 ± 0.1 0.9 ± 0.1 

Ara 
 

42.5 ± 0.5 43.0 ± 0.8 42.2 ± 0.9 

Gal 
 

21.8 ± 1.1 24.2 ± 0.2 24.4 ± 0.7 

Xyl 
 

11.5 ± 0.9 10.0 ± 1.5 11.0 ± 1.3 

GalA 
 

22.3 ± 0.7 21.1 ± 0.9 20.7 ± 0.9 

GluA 
 

0.8 ± 0.1 1.0 ± 0.1 0.7 ± 0.1 

     Monosaccharides RB D1 RB D2 RB UN 

Rha 

 

1.1 ± 0.0 0.7 ± 0.1 1.0 ± 0.0 

Ara 
 

41.8 ± 0.8 38.2 ± 0.7 41.2 ± 1.1 

Gal 
 

21.3 ± 1.0 21.3 ± 0.6 24.4 ± 0.6 
Xyl 

 
10.5 ± 1.0 13.1 ± 0.6 11.0 ± 1.6 

GalA 
 

22.8 ± 0.6 22.8 ± 0.8 19.2 ± 1.1 
GluA 

 

1.1 ± 0.1 1.2 ± 0.0 1.4 ± 0.1 
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The molar ratio of  the neutral sugars (arabinose + galactose) to uronic acids 

(glacturonic acid + glucuroic acid) can give information about the branching 

of the pectic polysaccharides, assuming that all neutral sugars are present 

as side chains (van Marle et al., 1997). The molar ratio of arabinose + 

galactose to uronic acids was calculated for the cultivars and presented in 

table 4.6. 

 

 Varieties and defoliation 

  LR D1 LR D2 LR UN 

Neutral sugars (Rham+Ara+Gal) 59.5 54.6 54.7 

Molar ratio (Ara+Gal/UA) 2.2:1.00 1.8:1.00 2.0:1.00 

UA/Rhamnose 31.3:1.00 49.1:1.00 62.1:1.00 

     

 
MP D1 MP D2 MP UN 

Neutral sugars (Rham+Ara+Gal) 65.4 68.0 67.5 

Molar ratio (Ara+Gal)/UA 2.8:1.00 3.0:1.00 3.1:1.00 

UA/Rhamnose 21.6:1.00 27.7:1.00 23.3:1.00 

     

 
RB D1 RB D2 RB UN 

Neutral sugars (Rham+Ara+Gal) 64.2 60.3 66.6 

Molar ratio (Ara+Gal)/UA 2.6:1.00 2.0:1.00 3.2:1.00 
UA/Rhamnose 21.9:1.00 33.7:1.00 19.8:1.00 

 

A higher molar ratio of arabinose + galactose to uronic acids indicates the 

presence of more and/or longer neutral sugar side chains. The extended 

side chain cannot discriminate between either a small number of relatively 

long polymerization degree (DP>) side chains or a large number of relatively 

small (DP<) side chains. Comparing varieties, MP and RB presented more 

Table 4.6 Neutral sugars (rhamose+arabinose+galactose (Rham+Ara+Gal)), 
branching (molar ratio of arabinose + galactose to uronic acids (Ara+Gal/UA)) and 
number of side chains (uronic acids (UA)/rhamnose) in CWM of the cultivars LR, 
MP and RB harvested in later September 2010 (H4), defoliated early August (D1), 
late August (D2) and undefoliated (UN) after sequential with 0.1 M and 2 M TFA.  
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or longer side chains than LR samples. Among all varieties, the molar ratio 

of arabinose+galactose to uronic acids ranged from 1.8 to 3.2. The results 

found were comparable with the potato varieties Nicola and Irene with molar 

ratios of 2.3 and 2.6 respectively when CWM were hydrolysed with 2M TFA 

(van Marle et al., 1997).  

The molar ratio of uronic acids to rhamnose (shown in table 4.6) can be 

used as an indication of the number of side chains and represent the 

measure of linearity of the cell wall pectin (van Dijk et al., 2002). It should be 

kept in mind, however, that this ratio may not be reliable, since only part of 

the rhamnose residues are substituted (Carpita and Gibeaut, 1993) and 

furthermore the rhamnose content of the cell wall is relatively low.  

Among the varieties, LR presented higher linearity of pectin than MP and 

RB. Early defoliation affected significantly (p<0.001) the amount of arabinose 

in LR and the amounts of galactose and uronic acids in RB but no pattern 

was found when analysing defoliation. From these results we can conclude 

that the pectin structure of LR was more linear with the presence of less or 

smaller side chains attached to the structure α-1,4-linked galacturonic acid 

chain of pectin. 

When comparing severe bruising with arabinose content, galactose content, 

degree of branching and molar ratio of all varieties, no relationship were 

found (R<0.16). 
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4.2.7 Relationship between analyses 

Pearson’s correlation using the coefficient of determination R and 

significance value P are summarized in table 4.7. These correlations were 

conducted to study the relationship between physiological and biochemical 

characteristics of the crop during harvest times and under defoliation regime 

with severe bruising. The purpose of this exercise was to establish whether 

physical/composition aspects of the crop might act as predictive indicators of 

severe bruising.  

 

Variety and correlation sample size  LR (n=8)  MP (n=8)  RB (n=8) 

Assessment ,  sample size/R and P value  R P value  R P value  R P value 

Oxidative potential (OP)   -0.49 0.11  0.11 0.74  0.01 0.97 

Weight (n=9)  0.39 0.21  0.21 0.51  0.50 0.09 

Energy to break skin tissue (n=9)  -0.06 0.85  -0.52 0.83  -0.28 0.38 

Energy to break cortex tissue (n=9)  -0.48 0.11  -0.51 0.09  -0.13 0.69 

Chlorogenic acids content (n=3)  0.09 0.78  0.52 0.08  0.64 0.02 

Tyrosine content (n=3)  0.41 0.19  0.10 0.76  0.10 0.76 

Although Person’s coefficient (R) indicates some correlations, most of them 

were not statistically significant (p>0.05), what reflect a very small correlation 

sample size (n=8). So, Pearson coefficient was used as an indicator of the 

general trend.  The summary of the correlations indicated that there was 

strong correlation between severe bruising of LR with tyrosine, with oxidative 

potential (negative) and cortex tissue. MP presented different correlations to 

physical aspects as energy to break the tissues and some correlation with 

chlorogenic acids content. RB presented some correlation between 

Table 4.7 The relationships (R) and significance P value of severe bruising with 
physical, mechanical and compositional aspects of the varieties LR, MP and RB 
under defoliation regime along harvest times, field trial 1. 
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incidence of severe bruising and concentration of chlorogenic acids in the 

cortex. From these results it is possible to observe that no a single factor 

could be used to predict bruising as each variety presented different factor of 

correlation. In addition, although there were some scatter correlations found 

among the varieties, no a strong relationship was found. 

Further correlation analyses were conducted to investigate the relationships. 

The results for the three varieties studied under four harvests and two 

regimes of defoliation are summarized in the PCA bi-plot (figure 4.17). The 

labels are indicated in table 4.8. These analyses generated substantial 

number of correlations and the model of PCA explained about 59% of the 

data variance. The components allowed discrimination of the varieties. 

Investigation into the relative contribution (loadings) of individual variables in 

the PC1 dimension highlighted components with a significant impact on 

bruising. Severity of bruising (SB) and the mechanical properties of the skin 

tissue dimensions energy (ES), force (FS) and distance (DS) were strongly 

negative correlated  on this study, providing evidence of a useful link 

between bruising and mechanical properties. Oxidative potential was well 

correlated with tyrosine levels. In fact, the order of oxidative potential and 

concentration of tyrosine among varieties was RB>MP>LR. 
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Letter Assessment No. Label No. Label No. Label 

A Severe Bruising 1 LR D1 H1 13 MP D1 H1 25 RB D1 H1 

B Optical density 2 LR D1 H2 14 MP D1 H2 26 RB D1 H2 

C Energy to break the skin tissue 3 LR D1 H3 15 MP D1 H3 27 RB D1 H3 

D Force to break the skin tissue 4 LR D1 H4 16 MP D1 H4 28 RB D1 H4 

E Distance to break the skin tissue 
      

F Energy to break the cortex tissue 5 LR D2 H1 17 MP D2 H1 29 RB D2 H1 

G Force to break the cortex tissue 6 LR D2 H2 18 MP D2 H2 30 RB D2 H2 

H Distance to break the cortex tissue 7 LR D2 H3 19 MP D2 H3 31 RB D2 H3 

I Vanillic acid 8 LR D2 H4 20 MP H2 H4 32 RB D2 H4 

J Caffeic acid 
      

K p Coumaric acid 9 LR UN H1 21 MP UN H1 33 RB UN H1 

L Ferulic acid 10 LR UN H2 22 MP UN H2 34 RB UN H2 

M 3-CQA 11 LR UN H3 23 MP UN H3 35 RB UN H3 

N 4-CQA 12 LR UN H4 24 MP UN H4 36 RB UN H4 

O 5-CQA       

P Tyrosine       
 

 

 

Table 4.8 Labels in the PCA graphs from LR, MP and RB crops harvested in early 
August (H1), late August (H2), early September (H3) and late September (H4), 
defoliated early August (D1), late August (D2) and undefoliated (UN), field trial 1. 
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4.3 Discussion  

The main aim of this study was to investigate the effect of harvest and 

defoliation on bruising incidence in three varieties of potatoes. Additionally 

the research correlated results to establish whether physiological and 

biochemical characteristics, such as mechanical properties, phenolic acids, 

tyrosine and cell wall composition are factors that influence bruising and may 

be used as predictive indicators of bruising. This knowledge would enable 

growers to better manage crops to achieve the necessary standards for the 

quality of potatoes. 
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Figure 4.17 PCA bi-plot of data from potatoes harvested in early August (H1), late 
August (H2), early September (H3) and late September (H4), defoliated early 
August (D1), late August (D2) and undefoliated (UN), field trial 1. PC1 explains 35 
% of variance and PC2 24%. 
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Potatoes harvested in August (H1 and H2) have not presented bruising. The 

incidence of bruising in potatoes was lower in early-season than that in late-

season and at these two occasions the potatoes were damaged and left 

over a period of 48h to develop bruising at room temperature. This 

observation agrees with the work of Strehmel and her co-workers (2010a) 

that showed that  bruising development will depend on temperature and that 

room temperature was not hot enough to develop bruising in samples.  

Potatoes were therefore cooled down to 6°C as it is known that potatoes 

bruise more when damaged at temperatures below 10°C. To accelerate the 

identification of bruising from mechanical damage, samples can be put into a 

hot box, were the temperature was maintained of 33°C and RH 95-98%. 

Bruise normally occurs within 12-14 h but in this experiment 48 h was 

applied as 12-14h was not enough to develop bruising. The use of hot box 

would be recommended for all subsequent bruising measurements (field trial 

2 and 3).  

Among the varieties, the highest incidence of bruising was expected for RB. 

This was observed at the third harvest, with a decrease at the fourth harvest. 

However, the highest incidence of severe bruising was found for LR at the 

fourth harvest. In comparison to LR, MP showed lower levels of bruising 

during that growing season. This indicates that within the same field, 

different varieties have different bruising behaviours which may depend on 

their rate of maturity and their ability to respond differently to environmental 

conditions. 

The green canopy cover can be used as an indication of crop maturity in the 

field (Stalham, 2008). The physiological age of LR and RB was different from 
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that of MP, where about 50% senescence was observed in the middle of 

September for LR and RB and only 8% senescence was observed for MP by 

this time. Although LR and RB were already senescent, RB showed more 

bruising at H3 followed by a decrease to H4 and LR showed more bruising 

from H3 to H4. 

The huge decrease in bruising for RB comparing H3 to H4 was unexpected, 

but can be explained by a larger sample size used on the 4th harvest and 

subsequent decrease in the percentage of the potatoes with ‘breaking 

damage’ which were excluded from the bruising analysis. Physiological 

characteristics observed using microscopy can be a factor that explains 

more damage on skin of RB, where cell are arranged into uniform stacks, 

breaking easily between cells rather than through cells. 

The general trend found about defoliation was higher incidence of bruising in 

defoliated samples at H3 (24 (D2) and 38 (D1) days after defoliation). This is 

in accordance with a previous study by Stalham (2008) which showed higher 

incidence of bruising when potatoes where harvested 3 to 5 weeks after 

defoliation. However, tubers from defoliated plants presented lower 

incidence of bruising when compared with undefoliated at H4 harvest (35 

and 49 days after defoliation).  

In terms of inspection in the industry, severe bruising is usually an indication 

to reject bruised crops, however, record of slight bruising was also taken. 

The analysis of slight bruising attempted to find out if a different trend in 

bruising would occur between varieties along the harvest periods. This was 

observed in the case of defolaliated MP samples, which showed higher 
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bruising in defoliated samples when compared with undefoliated for both 

harvests (H3 and H4). Comparing with the results of green coverage, it is 

observed that at H4 LR and RB were already senescent and tubers of 

undefoliated plants showed higher incidence of bruising. It can lead to think 

that there is an optimum “maturity” for best harvest time ahead defoliation. 

Tubers from undefoliated plants of MP could bruise more than defoliated if 

the harvest time was extended.  

The lower incidence of bruising found in defoliated samples after 5 weeks of 

defoliation can be explained by the skin set when tubers were left into the 

ground without the plant (Wiltshire et al., 2005). The lower incidence of 

bruising was not associated with skin strength. However, this may not be of 

practical application for growers as other diseases can affect the potato 

when left into the ground for long period. 

Results from the oxidative potential studies show that the assay does work 

sufficiently to show differences between the most and the least susceptible 

cultivars as higher amounts of pigment were formed for the variety RB, 

followed by MP and LR. However it was not possible to detect variations 

along harvest or defoliation time. This may be due to the fact that the 

available substrate is present in excess whereas the enzyme is only present 

in specific quantities and possibly other factors are limiting the extracts and 

may prevent a full estimate of the bruising activity. 

Of the factors studied, varietal difference is one of the most important factors 

that has an effect on bruising. The variety RB was less deformable requiring 

less force and energy to break the skin and the cortex tissues. These results 
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are in accordance to a research undertaken through a BPC_LINK (240) 

project which investigated the amount of energy absorbed by tuber cortical 

tissue in response to uniaxial compression. The results from the LINK study 

indicated that tissue from a bruise susceptible cultivar (Russet Burbank) is 

more brittle than resistant tissue (Cara) which is able to diffuse the stress 

across a larger number of cells. Mechanical properties were also explored in 

the present study. Comparisons of increased harvest times did not lead to a 

clear relationship between severe bruising and energy required to break the 

tissues, apart for MP which presented strong negative correlation with 

energy to break the skin and moderate negative correlation with the cortex 

tissue. So the stronger the skin, the less bruising was observed in this 

variety. This suggests that for this variety, strong mechanical properties of 

the tissue maybe protecting against bruising. 

For RB and LR, energy required to break the skin decreased along harvest 

time, and this was associated with more bruising. However, only energy 

required to break LR tissue was statistically significant associated. 

Defoliation was expected to lead to earlier skin setting, but these changes in 

skin properties were not detected using the adopted methodology. 

Nevertheless, overall, the PCA plot indicates that mechanical properties of 

the break the skin were negatively correlated with  bruising, where stronger 

skin is associated with increased frequency of bruising. From these results, it 

is possible to conclude that small changes in the mechanical properties of 

tissue can have a large influence on bruising. 
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Cell wall composition can affect the mechanical properties of tissues, and 

also change in time due to changes in cell wall synthesis or degradation 

(Pena and Carpita, 2004;  Orfila et al., 2001) 

Arabinose was the most abundant neutral sugar found in the potatoes cell 

walls used in this study. Previously it was reported that galactose is the most 

abundant neutral sugar (Jarvis et al., 2000). This shows that the 

extractability of potato pectic sugars is strongly dependent on the method of 

hydrolysis. In this study sequential hydrolysis was applied, extracting more 

arabinose on the first step and galactose on the second step of hydrolysis 

(showed previously in method development). 

Differences were found in the sugars composition between varieties. These 

differences were mainly due the presence of more rhamnose, arabinose, 

galactose and less uronic acids (UA) in MP and RB compared to LR. The 

higher ratio of Arabinose + Galactose to UA in MP and RB and the higher 

ratio of UA to rhamnose for LR indicate the presence of more and or longer 

side chains in MP and RB than LR. The relative lower amounts of sugars on 

side chains (Rham+Ara+Gal) in LR gives additional indication that primary 

cell walls of LR has a less branched structure than the other varieties but it 

was not directly correlated to bruising (R=0.25). Decrease in branching 

should allow more opportunities for cross-linking of unmethylated acidic 

(unbranched) homogalacturonan (HG). The degree of methylation of HG 

was meant to be investigated during field trial 1 using immunofluorescence 

microscopy, however this was not possible due to technical difficulties with 

embedding potato tissue in wax. These difficulties were addressed and 

immunofluorescence was carried out on samples from field trials 2. 
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Side chains of pectin type rhamnogalacturonan I (RG-I) galactan and 

arabinan and can interact with cellulose microfibrils in primary cell walls 

(Zykwinska et al. 2007) and can be covalently link to xyloglucan as noted in 

Arabidopsis cell cultures (Popper and Fry, 2008). The galactosyl containing 

side chains of xyloglucan contribute to the tensile strength of cell walls 

(Ryden et al., 2003; Caffall and Mohnen, 2009). 

This contribution to the tensile strength was supported by Ulvskov and co-

workers (Oomen et al., 2002, Skjøt et al., 2002, Ulvskov et al., 2005, Orfila 

et al., 2012). They proposed that the components of RGI (galactan and 

arabinan) transmit stresses in the wall and hence play a direct role in wall 

rheology properties. The force to fracture cylinders of tuber tissue decreased 

when in galactan and arabinan deficient tubers were studied. These 

potatoes were obtained by expressing fungal pectin-digesting enzymes. The 

elastic properties of the tubers were also altered, with a stiffening of the cell 

wall. These suggest that less RGI-I side chains are associated with more 

brittle tissue (stiff but easier to fracture). These studies were done on young 

(grown for 16 weeks) tubers where the degree of methylation of HG  is likely 

to be high, and therefore RGI may have a bigger impact on mechanical 

properties than HG. It is known that the degree of methylation decreases 

along tuber development, allowing for more calcium cross-links between HG. 

HG may have a larger contribution to cell wall properties later in 

development.  

From these results, it was expected that LR, which presented lower content 

of side chains, would require the more force but less distance to break the 

tissue (more brittle). In fact, LR required on average more force and the 
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probe reached higher distance to rupture the cortex tissue than MP and RB 

at H4. However, at this stage, the tubers are more mature compared to 

previous studies, and the degree of methylation of HG is likely to be lower, 

allowing calcium cross-links to occur leading to a stronger tissue. Although 

the differences found between pectic structures were not enough to explain 

mechanical changes at one time point of harvest, more pronounced changes 

were found upon storage and are shown in chapter 5.  

Different structural characteristics were observed across varieties that would 

influence the incidence of external damage of the skin, texture and 

transmission of energy across the cells but it was difficult to single out any 

factors  that might mostly influence bruising.  

Moving from physical to biochemical aspects involving bruising, it was 

observed that the content of phenyl substrates such as tyrosine and other 

phenolic acid compounds such as chlorogenic acid tend to be less abundant 

in early than in late-season, what is in accordance to Lisinka and 

Leszczynski (1989). Studies from  Lærke et al. (2002) showed that phenolic 

acid compounds such as chlorogenic acid or caffeic acid are known to be 

relevant in the bruising of potatoes. Stevens and Davelaar (1996) indicated 

that chlorogenic acid may take part in bruising formation, but is not essential 

for the discolouration. 

It was found that the varieties MP and RB showed correlations between 

severe bruising and chlorogenic acids (R=0.52 and 0.64 respectively), 

supporting the hypothesis that chlorogenic acid may have a role in bruising 

formation in these varieties. Further chlorogenic acids analysis using the 
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bruised tissue would be interesting to confirm and understand how the 

chlorogenic acid participate in bruising formation.  

Traces of phenolic acids, such as ferulic, and  p-coumaric acids were 

detected. These traces of phenolics that are present may nevertheless act 

as important cross linking sites between polysaccharides (Fry, 2000), where 

–COOH group of phenolic acid can be linked via ester bonds to some sugar 

–OH groups in cell wall polysaccharides (Albersheim et al., 2011). FA can 

also participate in the building network such as those of diferulic acid esters 

and galacturonyl esters or with proteins that lead to decrease in cell wall 

porosity by covalent linkages (Rondeau-Mouro et al., 2008). 

In this study no strong correlation was found when comparing tyrosine levels 

with the incidence of severe bruising (R < 0.41). In fact, a low concentration 

of tyrosine was found in field trial 1 (<56 mg /100g dw), which was below the 

average of 72 mg/100g dw suggested by Corsine et al. (1992).  

A large proportion of the measurements showed significant changes in the 

defoliation with respect to the undefoliated plants. This observation suggests 

that the treatment is responsible, at least in part, for the bruising variation 

observed. Nevertheless, individual variability must be taken into account, 

because high compositional heterogeneity has been found.  

In conclusion, for each crop, there is an optimum “maturity” for best harvest 

time ahead defoliation. In this field trial, RB matured quickly (by H3), 

followed by LR (mature at H4) and then MP (not reached by H4). Along the 

harvest time, substantial changes in the phenolic substrates for polyphenol 
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oxidase can influence bruising, especially the main chlorogenic acids. The 

composition of cell wall may explain some of the tissue mechanical 

properties. On the basis of this information it is possible to conclude that not 

a single factor is predominant in determining the bruising for all varieties. RB 

seems to be more dependent on biochemical properties (maybe due to 

faster maturation), while MP is more dependent on tuber mechanical 

properties. The study did support previous observations about harvest time 

after defoliation. The study has significantly increased the understanding of 

the processes involved in bruise development.  
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5 Effect of harvest time on bruising upon storage - Field 

Trial 2 

5.1  Introduction 

In the previous chapter, variations in susceptibility to bruising of potato 

cultivars (Maris Piper (MP), Lady Rosetta (LR) and Russet Burbank (RB)) 

under defoliation regime along harvests time were examined. In terms of 

environmental conditions, tuber maturity (as measured by canopy 

senescence) has been shown to have an effect on bruising at harvests. 

Maturity at harvest time is also the predominant factor influencing processing 

quality of potatoes throughout storage (Groves et al., 2005). The theory is 

that the onset of bruising is largely related to senescence – the earlier and 

more rapidly this happens, the more severe bruising tends to be (Stalham, 

2008). 

The length of storage and temperature influences the tuber physiological 

age (Burton, 1989) and the level of respiration and evaporation of tubers 

(Mohsenin, 1986).  Respiration rate of potatoes are less stable at storage 

temperatures higher than 20°C, but when storage temperatures are kept at 

10°C or below in practice respiration over the storage periods is relatively 

constant (Pringle et al., 2009). Ninety-eight per cent of the moisture that 

leaves a tuber during storage is lost through its skin by evaporation, only 

2.4% leaves the tuber via the lenticels along with the carbon dioxide 

produced by respiration (Burton, 1989). So long as the pressure within the 

cells of the tuber skins and the vapour pressure of the air in the voids 



172 
 

surrounding the tubers are the same, no evaporation will take place. For this 

balance to occur, the relative humidity of the air in the voids between the 

tubers has to be 97.8%. Ventilation of the crop with air cooler than the crop, 

no matter how humid, will always result in moisture loss through evaporation 

(Pringle et al., 2009). 

Respiration and evaporation therefore influence tissue properties (Mohsenin, 

1986). The cell walls within the tuber become weak and membranes leak as 

tubers age, releasing substrates to polyphenol oxidase. As presented in 

chapter 4, the content of phenolic substrates (tyrosine and phenolic acids) in 

potatoes tends to be less in early than in late-season. The content of 

phenolic compounds during storage is expected to increase, but not 

necessarily resulting in bruising, depending on storage temperature, as 

polyphenol oxidase activity is low at low temperatures (Friedman, 1997).  

The starting point for this field trial was to investigate the changes which take 

place in physical and biochemical properties during growth and during post-

harvest storage as it has not been clearly defined. 

5.1.1 Aim 

The aim was to test the relative importance of tuber maturity at harvest times 

in relation to bruising in stored potatoes. The same three varieties were 

investigated: MP, LR and RB. This knowledge would enable growers to 

better manage crops to achieve the necessary standards for the storage of 

potatoes. The research also aimed to understand whether physiological and 

biochemical characteristics, such as mechanical properties, weight, specific 
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gravity, phenolic acids, tyrosine and cell wall composition are factors that 

influence bruising and may be used as predictive indicators of bruising at 

harvest time for stored potatoes. As mentioned before (Chapter 1, section 

1.5.1), these varieties of potatoes are known to differ in their tendency 

toward bruising where MP and LR present a bruising susceptibility score of 

6, and RB a bruising score of 4 in ratings ranging from 0 (most susceptible) 

to 9 (least susceptible) (Carnegie et al., 2005; BPVD, 2012).  

The cultivars studied were grown at Cambridge University Farm (CUF), 

planted on 15th April 2011 and harvested at two time points and stored for 

three time points. Harvest and storage dates and periods are indicated in 

table 2.2. Trials were randomised with three factors (variety, harvest and 

storage) with three replicate plots. Twenty tubers per plot (larger sample size 

than field trial 1) were collected and either shipped to Leeds or Sutton Bridge 

Crop Storage Research (Sutton Bridge, Suffolk) on harvest day. The tubers 

were stored in trays at temperature below 10º C and 95+% Relative 

Humidity (RH) at Sutton Bridge Crop Storage Research, and shipped to 

Leeds after specific storage times.  

5.1.2 Hypotheses 

The hypotheses tested are:  

1) Potatoes harvested in September show less bruising than crops 

harvested in October, 24 days later. 

2) Stored potatoes harvested in September show less bruising, and this may 

be due to lower content of phenolic substrates at harvest and storage.  
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3) Cell wall composition of cortex cells will influence the mechanical 

properties and therefore will influence bruising at harvest and storage. 

5.1.3 Objectives 

1) To investigate the potential for using physiological measurements at 

harvest as indicators of storage on the incidence of bruising. 

2) To improve the potential for using physical and biochemical 

measurements as indicators of bruising. 

5.2 Results 

5.2.1 Field phase 

5.2.1.1 Meteorological data 

The temperature of the air and soil between when the potatoes were planted 

and end of May were slightly higher than average years (Section 4.2.1.1 and 

6.2.1.1) and are shown in figure 5.1. The temperature in this season was 

higher than other years studied but within average temperature for normal 

tuber growth. The optimum mean daily temperatures are 18 to 20°C and 

yields of crops are affected by temperature. Optimum soil temperature for 

normal tuber growth is between 15 to 18 °C. Tuber growth is sharply 

inhibited when below 10 °C and above 30°C. In general a night temperature 

of below 15 °C is required for tuber initiation (FAO, 2013).   
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Water stress can affect the crop in a number of ways. It is particularly 

important from a quality perspective at tuber initiation and in the days and 

weeks that follow initiation to prevent common scab that can infect tubers 

(Pringle et al., 2009). Rainfall was appreciably low (<0.8 mm) between when 

the potatoes were planted and the end of May as shown in figure 5.1. For 

high yields, the crop water requirements (ETm) for a 120 to 150 day crop are 

500 to 700 mm, depending on climate (FAO, 2013). Water deficits in the 

middle to late part of the growing period thus tend to reduce yield more than 

in the initiation of tubers (FAO, 2013). Soil moisture deficits for growth could 

also lead to an increase in bruising (Stalham, 2008). In 2011 the late season 

watering sites have generally been wet enough not restrict crop growth.  

Reference ET0 (Evapotranspiration (ET) - the sum of soil water evaporation 

(E) and plant transpiration (T)) was greater in June and July than long-term 

averages, with a mean daily ET0 of 5.30 mm/day and only 4.17 mm/day in 

August.  
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5.2.1.2 Green canopy cover  

A measurement of decline of canopy was taken as key indicators at harvest 

time of the physiological characteristics of the crop. In particular, the stage of 

senescence reached by the date of defoliation was studied previously and 

suggested a link between measure of maturity and crop quality (field trial 1).  

As the weather was unusual in 2011, early senescence was observed in this 

year compared to field trials 1 and 3 (Sections 4.2.1.2 and 6.2.1.2), shown in 

table 5.1. LR and RB harvested in September (H1) presented senescence in 

mid-August. The senescence in MP for both harvests and LR and RB in 

potatoes harvested in October (H2) was observed at the end of August.  

 

 

          
 
Figure 5.1 Rainfall (mm) and mean temperature of the air and soil (secondary axis) 
in field trial 2, 2011. 
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The data shows that all varieties were mature at harvest when measured by 

canopy senescence. This information is important, as it suggests no likely 

relative effect on tuber maturity at the point of harvest and store. However, 

the effect of defoliation may play a role towards bruising at the harvest time 

and in stored tubers. The varietal  observed in defoliation were: LR was 

harvested 34 (H1) and 50 (H2) days after full senescence;  MP was 

harvested 20 (H1) and 43 (H2) days after full senescence and RB was 

harvested 34 (H1) and 43 (H2) days after full senescence.   

5.2.2 Bruising assessment 

5.2.2.1 Assessment of severe bruising using the falling bolt method 

The harvest time provided the most consistent and marked effects on 

storage quality across all varieties. Tubers from field trial 2 were subjected to 

the same method applied on field trial 1, impacted at the stolon end of the 

potatoes. However, a higher percentage of severe bruising and skin damage 

were found when samples were cooled down before the assessment using 

the falling bolt, being damaged with an energy of impact of 0.6 J and 

incubation lasting for 48 h at 33 °C (data not shown). Adaptations to the 

Table 5.1 Date of the total senescence measured by the green canopy cover (%) of 
the varieties LR, MP and RB of tubers harvested in September (H1) and October 
(H2) 2011. 
 
 
 

Variety LR MP RB 

H1 16th August 30th August 16th August 

H2 23rd August 30th August 30th August 
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bruising protocol were needed which were using lower energy impact (0.3 J) 

and shorter incubation for 20 h at 25 °C and 95%+ RH. Even after 

adaptations to the protocol, a high incidence of bruising was found 

compared with field trial 1 as shown in figure 5.2.  

At the first harvest time, a higher incidence of severe bruising has been 

found in RB (93%), followed by MP (61%) and LR (52%). At the second 

harvest, similar results were found for the three varieties. The higher 

incidence was found in RB (88%), showed a decrease in the incidence of 

severe bruising by 5%, followed by MP (85%) with an increase of 24% and 

LR (82%) with an increase of 29% respective to H1 as shown in figure 5.2 

and Table 5.2 (periods of comparison H). 
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Figure 5.2 Effect of variety, harvest and storage time on the percentage of severe 
bruising (%) following damage with the falling bolt in potatoes from crops harvested 
in September (H1) and October (H2) and stored until January (S1), March (S2) and 
May (S3), field trial 2. Values show percentage of severe bruising (%) (n>21).  
 

Table 5.2 Comparisons of the percentage of severe bruising in potatoes from crops 
harvested (H) in October (H2) compared to September (H1) and both stored until 
January (S1-H2S1 to H1S1), March (S2-H2S2 to H1S1) and May (S3-H2S3 to 
H1S3), field trial 2. 
 
 
 

 

  Period of comparison  (H2 to H1) 

Variety  H S1 S2 S3 

LR  +29 +7 +12 +28 

MP  +24 -13 +18 -27 
RB  -5 -1 -11 +7 
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The results from stored potatoes showed that the magnitude and direction of 

changes in bruising severity could not be predicted for all varieties as shown 

in table 5.2 and 5.3. 

Different trends were found in the stored varieties harvested in September.  

LR increased the incidence of severe bruising by 30% at S1 following slight 

decreases along medium (S2) and long storage (S3).  Over the short (S1) 

and medium (S2) period of storage, MP and RB presented a lower incidence 

in severe bruising compared to harvest time following an increased 

incidence at S3 to +33% in MP and no changes for RB. 

Potatoes harvested in October (H2) showed different trends than potatoes 

harvested in September (H1) upon storage. LR presented a slight increase 

along storage (up to 15% at S3). MP presented unexpectedly lower 

incidence of bruising upon storage, with a reduction of 40% with short 

storage (S1) and 17 and 18% at medium (S2) and long (S3) term storage 

respectively compared to freshly harvested tubers. A lower incidence of 

bruising was also observed for RB at S1 and S2 but the incidence increased 

by 12% at S3 compared with incidence at harvest time (October).  

Table 5.3 Percentage change in the incidence of severe bruising when compared 
the storage periods (S1 January, S2 March and S3 May) to the respective harvests 
(September and October)  
 

Harvest  September (H1) 
 

October (H2) 

Variety/Storage  S1 S2 S3 
 

S1 S2 S3 

LR  +30 +25 +17 

 

+7 +7 +15 

MP  -3 -11 +33 
 

-40 -17 -18 
RB  -19 -2 0 

 

-15 -8 +12 
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When comparing the storage periods between samples harvested early (H1) 

and late (H2), more bruising for the variety LR was associated with late 

harvest (table 5.3). Late harvest (H2) occasionally affected the incidence of 

bruising in MP where short storage (S1) and long storage (S3) presented 

lower incidence of bruising in potatoes. RB presented a lower incidence of 

bruising in potatoes harvested late and stored for short (S1) and medium 

(S2) periods, what may be of commercial relevance for up to medium term 

storage. 

When assessing the slight and severe bruising of the varieties along 

harvests and storage, similar trends were found, although the total incidence 

of bruising was greater than 85% as shown in figure 5.3.  It was thought that 

the use of this type of bruising assessment for incidence of slight and severe 

bruising did not allow for an accurate comparison between samples. For this 

reason, the bruising index was used for comparison (Section 5.2.2.3). 
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5.2.2.2 Damage 

The harvest and storage affected the incidence of breaking damage on the 

external tissue following the assessment of bruising using the falling bolt 

method and incubation. Varietal differences on the sensitivity of external 

tissue towards bolt damage are shown in figure 5.4. Higher incidences were 

found in the variety LR at H1 (30%), followed by RB and MP at H2 (18 and 

15% respectively). The incidence of damage to the skin diminished along 

storage for all varieties and harvests studied.  

Figure 5.3 Effect of variety, harvest and storage time on percentage of slight 
(pattern bars) and severe bruising (plain bars) (%) following damage with the falling 
bolt in potatoes from crops harvested in September and October, stored until 
January (S1), March (S2) and May (S3), field trial 2. Values show percentage of 
severe bruising (%) (n>21). 
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Figure 5.4 Effect of variety, harvest and storage time on percentage of damaged 
skin following damage with the falling bolt in potatoes from crops harvested in 
September and October, stored until January (S1), March (S2) and May (S3), field 
trial 2, (n=30). 

 

5.2.2.3 Bruising Index 

After the impact energy of 0.3 J and incubation for 20 h at 25 ºC, potatoes 

were classified according to bruising index (BI). Differences in trends for the 

three varieties studied were found and results are shown in figure 5.5.  
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Figure 5.5 Effect of variety, harvest and storage time on bruising index (scale 
1-10) following damage with the falling bolt in potatoes from crops harvested 
in September (H1) and October (H2), stored until January (S1), March (S2) 
and May (S3), field trial 2. Value bars show means (n>21) and scatter shows 
percentage of severe bruising (%) (n>21). 
 
 
 

At harvest time, similar trends in the incidence of severe bruising were 

found. A higher BI was found in RB (4.07), followed by MP (2.29) and LR 

(1.32). At the second harvest, a higher incidence was found in RB (3.07), 

which showed a decrease in BI of 1.01, followed by MP (2.73), with  

increase of 0.44, and LR (2.03), with increase of 0.72 respective to H1 as 

shown in table 5.4 (periods of comparison H).  
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Similar trends were found when comparing BI with the incidence of severe 

bruising in stored potatoes. The exception was RB at long-term storage (S3), 

which presented no changes in the incidence of severe bruising when 

compared to harvested time in September and showed lower BI at this 

period. 

Comparisons of stored tubers with the respective fresh harvested in 

September and October are shown in table 5.4. LR presented an increase in 

the incidence of severe bruising for both harvests along the storage time 

showing a higher incidence in potatoes harvested late, except at medium 

storage time (S2, -0.5). MP presented less bruising when harvested late in 

all stored periods studied and RB presented less bruising when harvested 

later up to medium term storage (S2), with increase in BI at long-term 

storage harvested in October (H2 S3).  

 

 

Table 5.4 Changes in bruising index of storage periods when comparing tubers 
harvested (H) in October (H2) to September (H1) and both stored until January (S1-
H2S1 to H1S1), March (S2-H2S2 to H1S1) and May (S3-H2S3 to H1S3), field trial 2. 
 
 

 

 
 Periods of comparison (H2-H1) 

Variety  H S1 S2 S3 

LR  +0.7 +1.8 -0.5 +3.7 
MP  +0.4 -0.2 -0.5 -1.0 
RB  -1.0 -1.4 -1.4 +1.4 
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Harvest  September (H1) 
 

October (H2) 

Variety/Storage  S1 S2 S3 
 

S1 S2 S3 

LR  +0.2 +1.5 +1.2   +0.9 +0.3 +4.2 

MP  -1.5 -0.7 +0.9   -2.2 -1.6 -0.5 
RB  -1.8 -0.9 -1.1   -2.2 -1.3 +1.3 

The differences in assessment of severe bruising and BI lead to different 

trends upon storage (tables 5.4 and 5.5). Negative value in BI index was 

found comparing LR H2S2 to LR H1S2 (-0.5) whereas percentage of severe 

bruising was positive (+7) at the same period. Exploring the factors involved 

in calculating BI showed that this difference was dependent on the three 

factors used to calculate BI: lower depth (H1S2 4.80 and H2S2 4.38), width 

(H1S2 1.08 and H2S2 1.03) and lower colour formation (H1S2 1.54 and 

H2S2 1.52) in bruised tissues. 

Regardless of MP showing a negative value for BI of H2 when comparing to 

H1 upon medium period storage (S2) (-0.5) and positive when comparing 

the same period of incidence of severe bruising (+18%), the difference in 

results were related to lower depth (H1S2 3.9 and H2S2 3.82), width (H1S2 

0.93 and H2S2 0.88) but not colour (H1S2 1.43 and H2S2 1.76) of bruised 

tissue used to calculate BI. 

However, strong positive correlation with results from incidence of severe 

bruising and BI was found for RB (R=0.82) and for MP (R=0.68) and 

moderate correlation for LR (R=0.37). 

Table 5.5 Percentage change in the incidence of severe bruising when compared 
the storage periods (S1 January, S2 March and S3 May) to the respective harvests 
(September and October). 



187 
 

5.2.2.4 Spectrophometric assessment of oxidative potential 

There was a significant difference (p<0.05) among the three varieties studied 

in the oxidative potential (OP). On average, higher values of absorbance 

was found for RB, followed by LR and MP as shown in figure 5.6. 

 
 
 
 
Figure 5.6 Effect of variety, harvest and storage time on oxidative potential following 
20 hours oxidation (bars) and percentage of severe bruising (%) (scatter) from 
crops harvested in September and October, stored until January (S1), March (S2) 
and May (S3), field trial 2. Value bars show means (n=3), error bars are SE and 
scatter shows percentage of severe bruising (%) (n>21).  

 
 

Significant difference between tubers harvested in September and October 

was found between harvest only for the variety RB (p<0.01) as shown in 

table 5.6 (interaction between harvests). 
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 Interaction  Interaction 

Varieties/ interaction Along storage with harvest  Between storages 

 
 S1 S2 S3  S1-S2 S2-S3 

LR 
H1 *** *** ***  *** ns 

 H2 *** ns ns  *** *** 
Between harvests/storages ns ns ns ***    

        
MP H1 * ns ns  ns ns 

 H2 *** ns ns  *** ns 
Between harvests/storages ns *** ns ns    

        
RB H1 ns * ns  ns *** 

 H2 *** *** ns  ns *** 
Between harvests/storages ** *** ns ns    

 

Short storage increased significantly (p<0.05) the OP for all varieties 

comparing with respective harvest time, with the exception for RB H1 S1. On 

average the oxidative potential tended to decrease with the longer storages 

periods.  

Comparing periods of tubers harvested in September and October (table 5.6 

– between harvests/storages), higher and significant different (p<0.001) OP 

was found in potatoes harvested in October upon short storage period (S1) 

for MP and RB. LR presented higher (p<0.001) OP for long period storage of 

tubers (S3), being the highest in potatoes harvested in September. A similar 

increase in the incidence of severe bruising was not observed at these 

specific points.  

Table 5.6 Analysis of variance using a factorial 2-way ANOVA to compare the 
oxidative potential (absorbance 475 nm)  from each individual variety of tubers 
harvested in September (H1) and October (H2) and stored  until January (S1), 
March (S2) and May (S3).  Significance codes: <0.001 '***' <0.01 '**' <0.05 '*' >0.05 
'ns'. 
 
 



189 
 

A strong negative correlation was found for MP when contrasting results for 

incidence of severe bruising and OP (R= -0.60), weak negative correlation 

for RB (R=-0.27) and no correlation LR (R=0.01).  When compared BI and 

OP, very strong negative correlation was found for MP (R=-0.71), but 

moderate negative for RB (R=-0.31) and weak for LR (R=-0.21).  

5.2.3 Physical properties 

5.2.3.1 Weight 

The purpose of analysing weight of tubers was to find the difference in yield 

between potatoes harvested in September (H1) and October (H2), the 

association of weight and bruising susceptibility and to access differences in 

sampling.  

Among varieties, analysis of variances showed significant difference in 

weight between RB and MP (p<0.001). Analysing harvests, significant 

increase in weight was found for LR (p<0.01) when harvested in October 

while MP and RB showed decrease in weight at the same period, being 

significant only for MP (p<0.001) as shown in figure 5.7 and table 5.7. This 

decrease in weight was unexpected as potatoes were grown randomly to 

minimise effects of field treatments such as soil and temperature.   
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On average, differences were found in stored samples compared to harvest 

time, significant only at medium term storage (S2) for MP harvested in 

October (p<0.05) and long term storage (S3) for LR, MP and RB harvested 

in October (p<0.01) (table 5.7).  

Weak correlations were found between weight and incidence of severe 

bruising (R<0.27) and no correlation for bruising index (R<0.11).  

 

 
 
Figure 5.7 Effect of variety, harvest and storage time on weight of samples in grams 
(bars) and percentage of severe bruising (%) (scatter) from crops harvested in 
September and October, stored until January (S1), March (S2) and May (S3), field 
trial 2. Value bars show means (n=30), error bars are SE and scatter shows 
percentage of severe bruising (%) (n>21).  
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 Interaction  Interaction 

Varieties/ interaction Along storage with harvest  Between storages 

 
 S1 S2 S3  S1-S2 S2-S3 

LR 
H1 ns ns ns  ** ns 

 H2 ns ns *  ns ns 
Between harvests/storages ** ** ns ns    

        
MP H1 ns ns ns  ns ns 

 H2 ns * **  ns ns 
Between harvests/storages *** ns ns ns    

        
RB H1 ns ns ns  ** ns 

 H2 ns ns *  ns ns 
Between harvests/storages ns ** ns ns    

 

 

5.2.3.2 Specific gravity 

The purpose of analysing specific gravity (SG) was to investigate the 

association of SG and bruising susceptibility. Significant differences among 

all varieties studied was found (p<0.05). The results from H1 and H2 showed 

higher specific gravity in LR followed MP and RB (figure 5.8). No significant 

difference (p>0.05) was found when comparing H1 to H2 for the varieties 

studied as shown in table 5.8 (Interaction between harvests (H)). 

Although increments in SG at S1 were observed for all varieties compared to 

the respective harvest time (except MP H1S1), no significant difference was 

found at this time point (p>0.05) (table 5.8).  

 

Table 5.7 Analysis of variance using a factorial 2-way ANOVA to compare the 
weight (grams) from each individual variety of tubers harvested in September (H1) 
and October (H2) and stored until January (S1), March (S2) and May (S3).  
Significance codes: <0.001 '***' <0.01 '**' <0.05 '*' >0.05 'ns'. 
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The moisture loss thought skin evaporation was more prominent at mid-point 

storage (S2), for RB and LR when harvested late (October) showing a  

significant increase (p<0.001) in SG compared to the respective harvest 

period.  

Following a long storage period (S3), there was a decrease in SG observed 

in potatoes from late harvest. The reduction in SG at H2S3 was related to a 

higher bruising percentage in LR and RB compared to H1S3 but not for MP.  

 
 

 
 
 
 
 
Figure 5.8 Effect of variety, harvest and storage time on the specific gravity of 
samples (bars) and percentage of severe bruising (%) (scatter) from crops 
harvested in September and October, stored until January (S1), March (S2) and 
May (S3), field trial 2. Value bars show means (n=30), error bars are SE and scatter 
shows percentage of severe bruising (%) (n>21). 
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Weak and negligible correlations were found for all the varieties when the 

SG was compared to the incidence of severe bruising (R <0.25) and BI (R 

<0.19). These results are in accordance to previous research by Baritelle 

and Hyde (2003) on fresh tubers and Workman and Holm (1984) on stored 

tubers. These observations indicated that other factors may become more 

important than the SG in determining bruising.  

 

5.2.4 Mechanical properties 

5.2.4.1 Energy required to break the potato skin tissue 

In general, the energy required to break the skin decreased with harvest 

time and increased with storage for all varieties as shown in figure 5.9. 

Significant differences were found amongst the varieties studied (p<0.01). 

Table 5.8 Analysis of variance using a factorial 2-way ANOVA to compare the 
specific gravity  from each individual variety of tubers harvested in September (H1) 
and October (H2) and stored  until January (S1), March (S2) and May (S3).   
Significance codes: <0.001 '***' <0.01 '**' <0.05 '*' >0.05 'ns'. 
 

 Interaction  Interaction 

Varieties/ interaction Along storage with harvest  Between storage  

 
H S1 S2 S3  S1-S2 S2-S3 

LR H1 ns ns *  ns ns 

 H2 ns *** ns  ns *** 
Between harvests/storages ns ns * ***    

        
MP H1 ns ns ns  ns ns 

 H2 ns ns ns  ns ns 
Between harvests/storages ns * ns **    

        
RB H1 ns ns ns  ns ns 

 H2 ns *** ns  * *** 
Between harvests/storages ns ns * ***    
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RB, the variety that bruised more, required on average lower energy to 

break the skin tissue, followed by MP and LR. Significant differences were 

found comparing harvest to storage period (p<0.01) for all varieties, with 

exception of MP H1S2 compared to MP H1 as shown in table 5.9. 

Comparing the storage period, the only significant difference was found 

between S1 and S2 for MP harvested in September (p<0.001) (table 5.9). 

 

  

 
 
Figure 5.9 Effect of variety, harvest and storage time on the energy to break the 
potato skin tissue (mJ) (bars) and percentage of severe bruising (%) (scatter) from 
crops harvested in September (H1) and October (H2), stored until January (S1), 
March (S2) and May (S3), field trial 2. Value bars show means (n=30), error bars 
are SE and scatter shows percentage of severe bruising (%) (n>21). 
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The skin strength was measured by the force (N) at the point when the 

tissue breaks and the deformability were measured by the distance (mm) to 

rupture the tissue. The force to break the skin diminished for all varieties 

along harvest. In stored tubers harvested in September (H1) the force to 

break the skin diminished until S2 and increased at S3. In stored LR and MP 

tubers harvested in October (H2), the force to break skin increased at S1 

followed by decrease at S2. Small changes in force to break the skin along 

storage of RB tubers were observed as shown in figure 5.10.  

From the results, the distance to rupture the skin tissue, LR presented a 

higher degree of deformability, followed by MP and RB as shown in figure 

5.11. An increase in distance to rupture the skin was observed for LR along 

the harvest period whereas no changes were observed for the varieties MP 

Table 5.9 Analysis of variance using a factorial 2-way ANOVA to compare the 
energy to break the tissue from each individual variety of tubers harvested in 
September (H1) and October (H2) and stored until January (S1), March (S2) and 
May (S3). Significance codes: <0.001 '***' <0.01 '**' <0.05 '*' >0.05 'ns'. 

 Interaction  Interaction 

Varieties/ interaction Along storage with harvest  Between storages 

  S1 S2 S3  S1-S2 S2-S3 

LR H1 ** ** ***  ns ns 
 H2 *** *** ***  ns ns 

Between harvests/storages ns ns ns ns    

        
MP H1 *** ns **  ** ns 
 H2 *** ** ***  ns ns 
Between harvests/storages ns ns ns ns    

        
RB H1 ** * ***  ns ns 
 H2 *** *** **  ns ns 
Between harvests/storages ns ns ns ns    
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and RB. Substantial increase was observed when comparing the fresh to 

stored tubers but no great differences were observed when comparing the 

storage periods. 

 

It is usually desired that at harvest time the tubers have high degree of 

mechanical strength to protect the tissue from damage, such as bruising, 

during transport and handling. The results from this research indicated that 

skin tissue loses a degree of mechanical strength along harvest and it was 

observed that LR becomes more deformable when harvested in October 

 
 
Figure 5.10 Effect of variety, harvest and storage time on the force to break the 
potato skin tissue (N) (bars) and percentage of severe bruising (%) (scatter) from 
crops harvested in September (H1) and October (H2), stored until January (S1), 
March (S2) and May (S3), field trial 2. Value bars show means (n=30), error bars 
are SE and scatter shows percentage of severe bruising (%) (n>21). 
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than in September but it was not observed in MP and RB. However, all 

varieties lost strength and the skin became upon storage. During storage 

period all varieties lost strength and the skin tissue became softer. 

 

A moderate correlation was found between incidence of severe bruising and 

energy to break the skin tissue for LR (R=0.36) and no correlation was found 

for MP (R= -0.11) and RB (R= -0.09). When comparing the energy to break 

the skin tissue to bruising index (BI), weak correlations were found for all 

varieties: LR (R= 0.23), MP (R= - 0.25) and RB (R= -0.24). 

 
 
Figure 5.11 Effect of variety, harvest and storage time on the distance to break the 
potato skin tissue (mm) (bars) and percentage of severe bruising (%) (scatter) from 
crops harvested in September (H1) and October (H2), stored until January (S1), 
March (S2) and May (S3), field trial 2. Value bars show means (n=30), error bars 
are SE and scatter shows percentage of severe bruising (%) (n>21). 
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The combined results show that the softer the skin become, the more 

susceptible they were to bruise for LR but the opposite for MP and RB as 

negative correlation was found. This means that RB and MP may be more 

dependent on biochemical apparatus to bruise.  

5.2.4.2 Energy required to break the potato cortex tissue 

The energy required to break the cortex tissue was significantly different 

between the varieties studied (p<0.05), being lower for RB, followed by MP 

and LR. On average a slight decrease in the energy required to break the 

cortex was observed between harvests for the varieties MP and RB, and an 

increase for LR as shown in figure 5.12. Over the period of storage, 

increases in the energy to break the cortex tissue were measured for all 

varieties. MP showed significantly different variances along all storage points 

comparing storage to the respective harvests (H1 or H2) but LR and RB 

were significant different only comparing H1 to H1S3 and H2 to H2S2 as 

shown in table 5.10.  
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The underlying flesh tissue of the tuber was substantially weaker and softer 

compared to the skin measurements. The changes in energy to break cortex 

tissue during storage were strongly dependent of the distance and force, to 

penetrate into tissue showed increase along storage period as presented in 

figures 5.13 and 5.14.  

 

Figure 5.12. Effect of variety, harvest and storage time on the energy required to 
break the potato cortex tissue (mJ) (bars) and percentage of severe bruising (%) 
(scatter) from crops harvested in September and October, stored until January (S1), 
March (S2) and May (S3), field trial 2. Value bars show means (n=30), error bars 
are SE and scatter shows percentage of severe bruising (%) (n>21). 
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 Interaction  Interaction 

Varieties/ interaction storage with harvest  Between storages 

 
H S1 S2 S3  S1-S2 S2-S3 

LR 
H1 ns ns *  ns ns 

 H2 ns * ns  ns ns 

Between harvests/storages ns ns ns ns    

        
MP H1 * *** ****  ns ns 

 H2 *** ** ***  *** ns 

Between harvests/storages ns *** ns ns    

        
RB H1 ns ns *  ns ns 

 H2 ns * ns  ns ns 

Between harvests/storages ns ns ns ns    

 

 

Table 5.10 Analysis of variance using a factorial 2-way ANOVA to compare the 
energy to break the tissue from each individual variety of tubers harvested in 
September (H1) and October (H2) and stored  until January (S1), March (S2) and 
May (S3).  Significance codes: <0.001 '***' <0.01 '**' <0.05 '*' >0.05 'ns'. 
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Figure 5.13 Effect of variety, harvest and storage time on the force to break the 
potato cortex tissue (N) (bars) and percentage of severe bruising (%) (scatter) from 
crops harvested in September and October, stored until January (S1), March (S2) 
and May (S3), field trial 2. Value bars show means (n=30), error bars are SE and 
scatter shows percentage of severe bruising (%) (n>21). 
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The results suggest that the energy required to break the cortex tissue and 

incidence of severe bruising showed a weak correlation for LR (R=0.20) and 

no correlation for RB (R = -0.03) and MP (R= -0.13). The correlations with BI 

values showed weak correlation for LR (R= 0.26) and MP (R= -0.17) and no 

correlation for RB (R= - 0.05). 

 

 
 
Figure 5.14 Effect of variety, harvest and storage time on the distance to break the 
potato cortex tissue (mm) (bars) and percentage of severe bruising (%) (scatter) 
from crops harvested in September and October, stored until January (S1), March 
(S2) and May (S3), field trial 2. Value bars show means (n=30), error bars are SE 
and scatter shows percentage of severe bruising (%) (n>21). 
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5.2.5 Phenolic composition 

5.2.5.1  Phenolic acids 

The concentration of free phenolic acids present in the methanolic extracts 

assayed are shown in figures 5.15 and 5.16. Different profiles of the 

compounds were found among the varieties studied, with LR presenting the 

higher amount of free phenolics, followed by RB and MP. 

Of the hydrocinnamic acids, 5-O-caffeoylquinic acid (5-CQA) was most 

abundant for all varieties, constituting between 64 to 86% of the total 

phenolics analysed. The amount of 5-CQA was significant different among 

the varieties studies (p<0.001).  

The varieties presented different metabolism profiles of 5-CQA. The content 

of 5-CQA in MP did not change significantly comparing harvests, storage 

periods to harvests and periods between storage, with the only exception for 

the short storage H1S1 compared to H1 and H1S2 (p<0.001) (table 5.11).  

LR presented significant decreases (p<0.001) in the content of 5-CQA when 

harvested late (October H2) compared to early (September H1). When 

comparing storage periods to the respective harvest, significantly different 

(p<0.01) results were found, except H2S3 compared to H2. Comparing the 

storage periods from both harvests, significantly different amounts of 5-CQA 

were found only in tubers stored until March S2 (p<0.001) as shown in table 

5.11. 
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RB showed a significant increase (p>0.001) in 5-CQA content during the 

harvest period. Significantly increase (p<0.001) in the content of 5-CQA was 

found in tubers harvested early upon storage and significant decreases 

(p<0.001) in tubers harvested late, with exception of RB H2S2. Significantly 

different amounts of 5-CQA was found in tubers stored until January (H1) 

and March (S2) (p<0.001) when compared storage periods of both harvests 

(table 5.11). 

The observations made for CQA in stored tubers harvested in September 

and October (MP S1, LR S2 and RB S1 and S2) were not associated with 

changes in the incidence of bruising. From this observation, no consistent 

effect of harvest time in the amount of 5-CQA was found to predict bruising 

in stored tubers.  

The chlorogenic acid isomer cryptochlorogenic acid (4-CQA) was more 

abundant than neochlorogenic acid (3-CQA) in all varieties and ranged from 

0.9-10.1% of the total chlorogenic acids, whereas 3-CQA comprised of 0.3-

5.9% of the total. Both 3-CQA and 4-CQA presented higher levels at stored 

tubers compared to the respective harvests in September or October.  

A moderate positive correlation (R=0.52) was observed between the 

variations of 5-CGA with the accumulation 3- and 4-CGA isomers. The 

positive correlation could improve the knowledge of isomers as occurring 

naturally and not being artefacts formed during extraction and isolation. This 

issue was noted by Molgaard and Ravn (1988). 
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Figure 5.15 Effect of variety, harvest and storage time on chlorogenic acids (3-, 4- 
and 5- CQA) of lyophilized cortex (mg/100 g dw) (bars) and percentage of severe 
bruising (%) (scatter) from crops harvested in September (H1) and October (H2), 
stored until January (S1), March (S2) and May (S3), field trial 2. Value bars show 
means (n=3), error bars are SE and scatter shows percentage of severe bruising 
(%) (n>21). 
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 Interaction  Interaction 
Varieties/ interaction storage with harvest  Between storages 

 H S1 S2 S3  S1-S2 S2-S3 

LR 3-CQA 
H1 *** *** ***  *** *** 

 H2 *** *** ***  *** *** 

Between harvests/storages *** *** ns ***    

        
LR 4-CQA H1 ns *** ns  *** *** 

 H2 *** *** ***  ns ns 

Between harvests/storages *** * *** ***    

        
LR 5-CQA H1 *** *** ***  *** *** 

 H2 * *** ns  *** *** 

Between harvests/storages *** ns *** ns    

 

 

 Interaction  Interaction 
Varieties/ interaction Storage with harvest  Between storages 

 H S1 S2 S3  S1-S2 S2-S3 

MP 3-CQA 
H1 *** *** ***  ns ns 

 H2 *** *** ***  *** ns 

Between harvests/storages ns ns *** ***    

        
MP 4-CQA H1 *** *** ***  ns ns 

 H2 *** *** ***  * ns 

Between harvests/storages ** ns ** ***    

        
MP 5-CQA H1 *** ns ns  *** ns 

 H2 ns ns ns  ns ns 

Between harvests/storages ns *** ns ns    
 

 Interaction  Interaction 
Varieties/ interaction storage with harvest  Between storages 

 H S1 S2 S3  S1-S2 S2-S3 

RB 3-CQA 
H1 *** *** ***  *** * 

 H2 * *** ***  *** *** 

Between harvests/storages *** ns *** *    

        
RB 4-CQA H1 *** *** ***  * *** 

 H2 *** *** ***  *** *** 

Between harvests/storages *** *** *** ns    

      .  
RB 5-CQA H1 *** *** ***  *** *** 

 H2 *** *** ***  *** *** 

Between harvests/storages *** *** *** ns    

 

Table 5.11 Analysis of variance using a factorial 2-way ANOVA to compare the 3-, 
4-, and 5- CQA contents  from each individual variety of tubers harvested in 
September (H1) and October (H2) and stored  until January (S1), March (S2) and 
May (S3).  Significance codes: <0.001 '***' <0.01 '**' <0.05 '*' >0.05 'ns'. 
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The minor compounds, namelly caffeic acid (CA), vanillic acid (VA), ferulic 

acid (FA) and p-coumaric (pCou) were found in all varieties during the 

periods analysed and ranged from 0.9 to 3% of the total compounds 

analysed. Among the minor compound, CA presented the higher 

concentration for all varieties as shown in figure 5.16. Lower concentration of 

the minor compounds was observed in tubers stored for long period (S3), 

with exception of RBH1S3. 

Different profiles among the varieties were found. On average, LR and RB 

presented higher concentration of FA than MP. Amounts of FA were higher 

when potatoes were harvested in October. Similar concentrations of VA 

were found for all varieties, where higher amount were observed at H2 and 

S2 for the varieties LR and MP and H1 and H2S1 for RB. Higher 

concentrations of CA at H2 were found for MP and RB and H1 for LR. The 

compound pCou was the only one with higher concentrations at H1 for all 

varieties but changes along storage time were observed.  
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The results from three caffeoylquinic acids quantitated (CQA’s) showed a 

strong negative correlation with incidence of severe bruising for LR (R=-

0.75), moderate positive for RB (R= 0.69) and no correlation for MP (R= 

0.03).  Correlations of CQA’s with bruising index were moderate for RB 

(R=0.40) and not correlated for LR and MP (R= <0.04).  

Among the minor compounds, CA showed a very strong (R=-0.71), a strong 

(R=-0.52) and a weak (R= -0.29) negative correlations with severe bruising 

 
 
 
Figure 5.16 Effect of variety, harvest and storage time on minor phenolic acids (FA, 
pCOU, CA, VA) of lyophilized cortex (mg/100 g dw) (bars) and percentage of severe 
bruising (%) (scatter) from crops harvested in September (H1) and October (H2), 
stored until January (S1), March (S2) and May (S3), field trial 2. Value bars show 
means (n=3), error bars are SE and scatter shows percentage of severe bruising (%) 
(n>21). 
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for LR, RB, MP respectively. Very strong negative correlation was found 

between CA and BI for MP, but no correlation was found for the other 

varieties. 

Some authors have attempted to correlate the amount of chlorogenic acids 

with oxidative potential. Dean et al. (1993) found a decrease in chlorogenic 

and caffeic acids during storage when overall oxidation potential increased 

and suggested the amount of the organic acids may not be critical regards to 

bruising susceptibility. Stevens and Davelaar (1996) suggested attention to 

chlorogenic acid as substrate for PPO because most cultivars have very low 

chlorogenic acid content leading to low correlation with OP. However, 

Delgado et al. (2001) found conflicting data suggesting that  chlorogenic acid 

content increased during storage and gave a significant correlation with 

bruising discolouration. In this work weak correlation between CQAs and 

oxidative potential was found for LR (R= -0.29) and no correlation for RB (R= 

-0.13) and MP (R= -0.02).  

5.2.5.2 Tyrosine 

Significant variations of the amount of free tyrosine was observed among all 

varieties (p<0.001). The concentration of free tyrosine in the tuber cortices 

were on average higher for RB, the most susceptible cultivar to bruise, 

followed by MP and LR as shown on figure 5.17.  

Significant increases in tyrosine levels (p<0.001) during growth was 

observed for all varieties (table 5.12)  LR and RB showed increases of 21% 



210 
 

on the tyrosine content at H2 compared to H1 whereas MP showed increase 

of 46%. 

A linear increase along storage periods was found for all varieties with the 

only exception for MP H2 which presented a linear decrease along the 

storage period. In tubers harvested early, a marked significant increase 

(p<0.001) was found between S1 and S2 for all varieties. Slightly higher 

amounts of tyrosine was observed in stored potatoes harvested late (H2) 

and a significant increase was found  only for LR between all storage 

periods. 

Comparisons of stored periods from tubers harvested early and late were 

significant different (p<0.001) as shown in table 5.12, with exception of MP 

at S2 and S3. This exception was due the decrease of the content of 

tyrosine observed along storage of MP tubers harvested late (H2).  
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Figure 5.17 Effect of variety, harvest and storage time on free tyrosine of lyophilized 
cortex (mg/100 g dw) (bars) and percentage of severe bruising (%) (scatter) from 
crops harvested in September and October, stored until January (S1), March (S2) 
and May (S3), field trial 2. Value bars show means (n=3), error bars are SE and 
scatter shows percentage of severe bruising (%) (n=>21). 
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Weak correlation coefficients (R) between the incidence of severe bruising 

and free tyrosine was found for LR and MP (R=0.2) and no correlation found 

for RB (R=0.1). Bruising index and oxidative potential correlated with free 

tyrosine for LR (R=0.50 and -0.35 respectively) and a weak positive correlate 

with severe bruising for MP (R=0.22). No correlations were found for RB (R 

<0.04). 

The results clearly indicate that the biochemical potential to synthesise 

bruising pigments was not an indicator of the bruising incidence of potato 

tubers, supporting the previously published experiments of McGarry et al. 

(1996) and Stevens and Davelaar (1997).  

Table 5.12 Analysis of variance using a factorial 2-way ANOVA to compare the free 
tyrosine content  from each individual variety of tubers harvested in September (H1) 
and October (H2) and stored  until January (S1), March (S2) and May (S3).   
Significance codes: <0.001 '***' <0.01 '**' <0.05 '*' >0.05 'ns'. 
 

 Interaction  Interaction 

Varieties/ interaction storage with harvest  Between storages 

 
 S1 S2 S3  S1-S2 S2-S3 

LR 
H1 *** *** ***  *** *** 

 H2 *** *** ***  *** *** 

Between harvests/storages *** *** *** ***    

        
MP H1 ns *** ***  * ns 

 H2 *** *** ***  ns ns 

Between harvests/storages *** *** ns ns    

        
RB H1 ns ***` ***  *** ns 

 H2 ns *** ***  ns ns 

Between harvests/storages *** *** *** ***    
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5.2.6 Cell wall composition 

5.2.6.1 Immunofluorescence localization of cell wall polymers  

Cortical tissue were investigated by immunofluorescence microscopy using 

specific antibodies JIM 5 and JIM 7 that recognise methyl-unesterified and 

methyl-esterified homogalacturonan domain of pectic polysaccharides 

respectively. 

Immunofluorescence micrographs from LR, MP and RB from crops at two 

different harvest times (September and October) are shown in figure 5.18.  

Tubers from LR showed loss of methyl esterified homogalacturan in cortex 

tissue when harvested in October (H2) compared to September (H1). 

However, there was an increase observed in methyl unesterified 

homogalacturan in cortex tissue harvested in October (H2) compared to the 

September harvest (H1). This can be associated with lower levels of pectin 

methyl esterification in cortex cell walls, leading to increased ionic 

interactions with calcium in later harvest (H2). Similar observation was made 

for RB, where there were highly methylated homogalacturan in H1 compared 

to H2 which showed loss in methylation.   

MP presented loss of partially methylesteriefied pectin epitopes (JIM 7) 

comparing potatoes harvested H1 to H2 but it was not associated with an 

increase of unmethylated pectin epitopes (JIM5). 

No difference was observed between harvests when the force used to break 

the cortex tissue was measured. 
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Figure 5.18 Fluorescent microscopy of potato cortex sections labelled with JIM5 or 
JIM7. Control indicates no primary antibody. Magnification 20X, scale bar=50 μm 
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5.2.6.2 Cell wall composition of potatoes  harvested in September and 

October and stored until May 

Changes in the chemical composition of the cell walls of raw material over 

the harvest period and with long term storage were studied. The 

monosaccharide concentration was characterised after sequential hydrolysis 

(0.1 and 2 M TFA) of cell wall material (CWM). This compositional analysis 

was performed in order to gain information about how the cell wall 

composition of cortex cells influences the mechanical properties of the tuber 

and therefore the bruising. 

At first glance, the chemical composition did not show a large variation 

among varieties (see table 5.13). However, the levels of the sugars 

galacturonic acid and glucuronic acid were statistically significant (p<0.01) 

for all varieties. The content of rhamnose, arabinose and xylose were 

significantly different comparing LR to MP and RB (p<0.001), but no 

significantly difference was observed between MP and RB. Galactose 

content of RB was significant different (p<0.001) between LR and MP, but no 

significant difference (p<0.05) between MP and LR. The yield comprises 

between 0.26 and 1.02% of the dry matter. Because glucose is not a pectic 

sugar it was omitted from table 5.13. The question addressed was if a 

systematic trend could be discovered among harvests and storage.  

An increase in uronic acid (galacturonic acid + glucuroic acid) was observed 

for MP and RB along harvests and with storage for both harvests. LR 
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presented the opposite trend, with a decrease in the content along harvests 

and the respective storage. 

Potatoes harvested late (H2) presented significant decreases in arabinose 

(p<0.001) and significant increases in galactose (p<0.001) for all varieties.  

Upon storage, the content of arabinose showed a significant decrease and 

the content of galactose showed a significant increase for all varieties 

studied for both harvests (H1 and H2), with exception for RB H2 compared 

to RB H2S3, where it was observed an overall decrease in the content of 

galactose but results were not significant different (p>0.05).  

The rhamnose content showed a significant increase for all varieties 

(p<0.001) along harvests. Different patterns were observed upon storage in 

the content of rhamnose. LR showed a significant increase for both harvests 

(p<0.001). MP presented a significant increase in potatoes harvested early 

and an overall decrease but not significant (p>0.05) with storage. RB 

showed significant decreases for both harvests in stored samples (p<0.001).  

The xylose showed a different pattern among the varieties studied. A 

significant increase (p<0.001) along harvest was observed for LR and RB 

and decrease (p<0.001) for MP. It was observed that storage of both 

harvests increased the content of xylose in LR significantly (p<0.001) and 

decreased the content in tubers harvested in September for MP and October 

for RB significantly (p<0.001).  
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The backbone of pectin consists in a linear polygalacturonic chain 

interspersed with (1→2)-linked α-L –rhamnopyranosyl residues, causing 

kinks in the chain. An increasing amount of rhamnose residues in the 

polygalacturonic chain goes at the expense of its linearity. Therefore, the 

ratio of the molar amount of uronic acids (galacturonic acids + glucuronic 

acid) over the molar amount of Rha (UA/rhamnose) is considered to 

Table 5.13 Monosaccharide concentration (rhamnose (Rha), arabinose (Ara), 
galactose (Gal), Xyose (Xyl), galacturonic acid (GalA) and glucuronic acid (GluA) 
from CWM of cortex tissue of the cultivars LR, MP and RB from tubers harvested in 
September (H1) and October (H2)  2011, and stored until May 2012 (S3) after 
sequential hydrolysis with 0.1M and 2M TFA. Concentrations are expressed per 
%mol.  Values represent average ± SEM (n=4). 
 

                    

Monosaccharides (%mol) LR H1 LR H1S3 LR H2 LR H2S3 

          Rha 
 

0.7 ± 0.0 1.2 ± 0.1 1.0 ± 0.0 1.7 ± 0.1 

Ara 
 

36.4 ± 0.1 22.3 ± 0.6 31.5 ± 0.5 17.6 ± 0.0 

Gal 
 

20.5 ± 0.0 30.8 ± 0.2 26.5 ± 0.3 33.3 ± 0.4 

Xyl 
 

14.1 ± 0.2 25.1 ± 0.7 17.5 ± 0.3 36.5 ± 0.1 

GalA 
 

21.4 ± 0.3 17.6 ± 0.2 16.7 ± 0.2 8.2 ± 0.0 

GluA 
 

6.9 ± 0.2 3.1 ± 0.1 6.9 ± 0.0 4.5 ± 0.1 

          Monosaccharides (%mol) MP H1 MP H1S3 MP H2 MP H2S3 

          Rha 
 

0.5 ± 0.1 1.0 ± 0.1 1.1 ± 0.1 0.9 ± 0.1 

Ara 
 

31.1 ± 0.7 19.8 ± 0.6 24.1 ± 2.7 17.5 ± 0.1 

Gal 
 

19.4 ± 0.6 31.1 ± 1.3 29.4 ± 1.7 34.0 ± 0.2 

Xyl 
 

25.8 ± 0.8 11.7 ± 0.5 11.7 ± 2.4 13.2 ± 0.4 

GalA 
 

17.5 ± 0.1 30.0 ± 1.7 26.6 ± 3.6 28.8 ± 0.4 

GluA 
 

5.8 ± 0.4 6.5 ± 0.1 7.1  ± 0.1 5.6 ± 0.2 

          Monosaccharides (%mol) RB H1 RB H1S3 RB H2 RBH2S3 

          Rha 
 

0.9 ± 0.1 0.6 ± 0.0 1.3 ± 0.0 0.8 ± 0.0 

Ara 
 

35.4 ± 1.0 21.4 ± 0.2 26.1 ± 0.5 20.0 ± 1.0 

Gal 
 

27.4 ± 1.1 36.0 ± 0.5 32.7 ± 0.8 30.1 ± 3.0 

Xyl 
 

14.8 ± 0.8 12.5 ± 1.2 17.6 ± 2.4 12.2± 2.9 

GalA 
 

17.7 ± 0.8 25.3 ± 0.6 17.9 ± 1.9 31.2 ± 1.2 

GluA 
 

3.8 ± 0.1 4.3 ± 0.2 4.4 ± 0.3 5.7 ± 0.3 
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represent the measure for the linearity of the cell wall (van Dijk et al., 2002). 

Covalently attached to this rhamnopyranosyl backbone, primarily thought the 

rhamnopyranosyl residues are side chains mainly consisting of neutral oligo- 

and polysaccharides. The ratio of the amount of the main pectic sugars 

arabinose and galactose over the uronic acids (galacturonic acid + 

glucuronic acid) represents a measure for the side-chain extent. Because 

linearity and side-chain extent are important characteristics of pectin, these 

values are included in table 5.14. 

 

Table 5.14 Neutral sugars (rhamose+arabinose+galactose (Rham+Ara+Gal)), branching 
(molar ratio of arabinose + galactose to uronic acids (Ara+Gal/UA)) and number of side 
chains (uronic acids (UA)/rhamnose) in CWM of the cultivars LR, MP and RB harvested 
in September (H1) and October (H2) 2011 and stored until May 2012 (S3) after 
sequential hydrolysis with 0.1 M and 2 M TFA.  

 

Varieties and time 

 
LR H1 

 

LR H1S3 

 

LR H2 

 

LR H2S3 

        Neutral sugars (Ara+Gal+Rha) 57.6 
 

54.2 
 

59.0 
 

52.6 

Molar ratio (Ara+Gal/UA) 2.0:1.0 
 

2.6:1.0 
 

2.5:1.0 
 

4.0:1.0 

UA/Rhamnose 82.0:1.0 
 

44.4 
 

58.4:1.0 
 

30.8:1.0 

        

        

 
MP H1 

 
MP H1S3 

 
MP H2 

 
MP H2S3 

        Neutral sugars (Ara+Gal+Rha) 51.0 
 

51.9 
 

54.6 
 

52.4 

Molar ratio (Ara+Gal/UA) 2.2:1.0 
 

1.4:1.0 
 

1.6:1.0 
 

1.5:1.0 

UA/Rhamnose 112.2:1.0 
 

53.4:1.0 
 

50.1:1.0 
 

59.2:1.0 

        

 
RB H1 

 
RB H1S3 

 
RB H2 

 
RBH2S3 

        Neutral sugars (Ara+Gal+Rha) 63.8 
 

58.0 
 

60.1 
 

50.9 

Molar ratio (Ara+Gal/UA) 2.9:1.0 
 

1.9:1.0 
 

2.6:1.0 
 

1.4:1.0 
UA/Rhamnose 66.7:1.0 

 

95.7:1.0 

 

44.4:1.0 

 

66.0:1.0 
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On the basis of the data presented in table 5.14 it is suggested that the 

pectin moiety within CWM changes along harvest periods and upon storage. 

The LR pectin becomes less linear (the ratio of UA/Rha decreases) and 

more branched (the ratio of arabinose + galactose /UA increases) along 

harvest period and upon storage. MP and RB pectins become less linear 

along harvest and along storage (the ratio of UA/rhamnose decreases), with 

exception of tubers harvested in October (H2) when stored, and less 

branched along harvest and upon storage (the ratio of arabinose + 

galactose/UA decreases).  

Moderate negative correlation (R=0.34) and strong positive correlation 

(R=0.40) were found for arabinose and galactose content with severe 

bruising of all varieties respectively. However, negligible relationship was 

found (R<0.16) when correlating the degree of branching and molar ratio 

with severe bruising incidence of all varieties.  

5.2.7 Relationship between analyses 

Correlations of severe bruising, bruising index and oxidative potential with 

physical/compositional aspects of the crop during harvests and upon storage 

were analyzed and summarized in table 5.15, indicated as R values.  
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Table 5.15  The relationships (R) and significance P value of severe bruising (SB), 
bruising index (BI) and oxidative potential (OP) with physical, mechanical and 
compositional aspects of the varieties LR, MP and RB, field trial 2. 

 

  Severe bruising  

Variety and correlation sample size  LR (n=8) MP (n=8) RB (n=8) 

Assessment, sample size / R and P value  R P value R P value R P value 

BI (n=3)  0.37 0.37 0.68 0.07 0.82 0.01 
OP (n=3)  0.01 0.98 -0.60 0.11 -0.27 0.52 
Weight (n=30)  0.13 0.76 -0.27 0.52 -0.01 0.98 
SG (n=30)  0.25 0.63 0.04 0.92 0.15 0.72 
Energy to break the skin tissue (n=30)  0.36 0.38 -0.09 0.83 -0.11 0.79 
Force to break the skin tissue (n=30)  -0.21 0.62 -0.09 0.83 0.04 0.93 
Distance to break the skin tissue (n=30  0.24 0.57 -0.17 0.68 -0.14 0.74 
Energy to break the cortex tissue (n=30)  0.20 0.63 -0.13 0.76 -0.03 0.94 
Force to break the cortex tissue (n=30)  0.09 0.83 0.01 0.98 0.02 0.96 
Distance to break the cortex tissue (n=300  0.24 0.57 -0.17 0.68 -0.14 0.74 
Tyrosine (n=3)  0.18 0.67 0.22 0.60 0.09 0.83 
Chlorogenic acids (n=3)  -0.75 0.03 -0.03 0.94 0.69 0.06 
Phenolic acids (n=3)  -0.78 0.02 -0.04 0.92 0.54 0.17 
5-CQA (n=3)  -0.78 0.02 0.07 0.87 0.34 0.41 
CA (n=3)  -0.71 0.05 -0.29 0.49 -0.52 0.17 

    
  Bruising Index (BI) 

OP (n=3)  0.21 0.61 -0.71 0.05 -0.31 0.45 
Weight (n=30)  -0.01 0.98 -0.06 0.89 -0.11 0.80 
SG (n=30)  0.19 0.65 0.00 1.00 0.18 0.67 
Energy to break the skin tissue (n=30)  0.23 0.58 -0.25 0.55 -0.24 0.57 
Force to break the skin tissue (n=30)  -0.05 0.91 -0.01 0.98 0.10 0.81 
Distance to break the skin tissue (n=30  0.23 0.58 -0.24 0.57 -0.23 0.58 
Energy to break the cortex tissue (n=30)  0.26 0.53 -0.17 0.69 -0.05 0.91 
Force to break the cortex tissue (n=30)  0.28 0.50 0.05 0.91 0.01 0.98 
Distance to break the cortex tissue (n=300  0.23 0.58 -0.25 0.55 -0.23 0.58 
Tyrosine (n=3)  0.50 0.21 0.05 0.91 -0.00 1.00 
Chlorogenic acids (n=3)  -0.09 0.83 0.04 0.92 0.40 0.33 
Phenolic acids (n=3)  -0.09 0.83 0.03 0.94 0.27 0.52 
5-CQA (n=3)  -0.15 0.72 0.02 0.96 0.15 0.72 
CA (n=3)  -0.12 0.78 -0.72 0.04 -0.00 1.00 

        
  Oxidative potential (OP) 

Energy to break the skin tissue (n=30)  0.11 0.80 0.33 0.42 0.03 0.94 
Force to break skin tissue (n=30)  0.13 0.76 0.09 0.83 -0.11 0.80 
Distance to break the skin tissue (n=30  0.11 0.80 0.18 0.67 0.07 0.87 
Energy to break the cortex tissue (n=30)  0.00 1.00 0.32 0.44 0.08 0.85 
Force to break the cortex tissue (n=30)  0.00 1.00 -0.04 0.93 -0.07 0.87 
Distance to break the cortex tissue (n=300  0.00 1.00 0.44 0.28 0.34 0.41 
Tyrosine (n=3)  -0.35 0.47 -0.05 0.91 0.00 1.00 
Chlorogenic acids (n=3)  -0.29 0.48 -0.02 0.96 -0.13 0.76 
Phenolic acids (n=3)  -0.29 0.48 -0.02 0.96 -0.07 0.87 
5-CQA (n=3)  -0.30 0.47 -0.01 0.98 -0.09 0.83 
CA (n=3)  -0.36 0.38 0.40 0.33 0.10 0.81 
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Although Person’s coefficient (R) indicates some correlations, most of them 

were not statistically significant (p>0.05), what reflect a very small correlation 

sample size (n=8). So, the purpose of this exercise was to establish general 

trends between physical/composition aspects and the indicators of severe 

bruising. 

Severe bruising incidence and bruising index (BI) showed a moderate to 

very strongly correlation for all varieties studied which indicates that severe 

bruising assessment, which considers only the depth of bruised tissue, is a 

good assessment method to measure the incidence of bruising in crops.  

In LR, the positive strong correlation between tyrosine content with BI 

(R=0.50) could indicated that these components may have contributed to the 

pigment formation as previously reported (Sabba and Dean, 1994; 

McNabay, 1999; Strehmel et al., 2010a). However, the negative relationship 

between tyrosine and chlorogenic acids with OP (R=-0.35 and R=-0.29 

respectively) suggests that for LR there is no association of the content of 

substrates for in the pigment formation, but in fact other factors are involved 

in the in vitro assay i.e. the activity of the enzyme and presence of ascorbic 

acid, which could prevent formation of pigment. Also, the strong negative 

correlation between incidence of severe bruising and phenolic acids (R=-

0.78) was not expected once higher content of phenolics was found during 

2012 season compared to field trial 1 as 2012 was a hot and dry season. 

Weak positive correlation was observed between the distance to break the 

skin and cortex (measure of deformability) with severe bruising and BI 
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(R=0.24 and 0.23 respectively). Although the correlations of bruising with 

mechanical parameters were weak, small changes on the mechanical 

properties may represent increase in susceptibility of LR as this variety 

presented higher specific gravity which indicates higher DM content, leading 

to more absorbance of the impact energy. Interesting is the fact that a 

positive correlation with deformability of skin and cortex was found for LR 

and negative for MP and RB. 

MP has different correlations than LR, there was no a single measurement 

strongly correlated to bruising. A weak correlation was found between 

severe bruising and tyrosine content (R=0.22). In fact, MP presented a lower 

concentration of phenolic acids than LR and RB and may be below the 

threshold for bruising as cited in chapter 4. A negative weak correlation 

between of the distance to break the skin and cortex to BI was observed 

(R=-0.24 and R=-0.25 respectively).  

RB showed a strong correlation between incidence of severe bruising and 

concentration of phenolic acids (R=0.54), indicating that for RB, the variety 

that bruises more, the phenolic acids may act in participating on bruising. 

The negative correlation observed between softening of skin and cortex with 

severe bruising and BI (R=-0.23 and R=-0.25 respectively) indicate that  the 

biochemical apparatus is the parameter more detrimental for bruising in this 

variety. 

Further correlation analyses were conducted to investigate the overall 

relationships. The results for the three varieties studied under two harvests 
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and three periods of storage are summarized in PCA bi-plot (figure 5.19). 

The labels are indicated in table 5.16.  

 

 Variety LR MP RB 

Letter Assessment No. Label   No. Label   No. Label   

           

A Severe Bruising 1 September H1 9 September H1 17 September H1 

B Optical density 2  S1 10  S1 18  S1 

C Energy to break the 
skin tissue 

3  S2 11  S2 19  S2 

D Force to break the 
skin tissue 

4  S3 12  S3 20  S3 

E Distance to break the 
skin tissue 

         

F Energy to break the 
cortex tissue 

5 October H2 13 October H2 21 October H2 

G Force to break the 
cortex tissue 

6  S1 14  S1 22  S1 

H Distance to break the 
cortex tissue 

7  S2 15  S2 23  S2 

I Vanillic acid 8  S3 16  S3 24  S3 

J Caffeic acid 

         K p Coumaric acid          

L Ferulic acid          

M 3-CQA          

N 4-CQA          

O 5-CQA          

P Tyrosine          

Q Bruising index          

Table 5.16 Labels in the PCA graphs from LR, MP an RB crops harvested in 
September and October, stored until January (S1), March (S2) and May (S3), field 
trial 2. 
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Figure 5.19 PCA bi-plot of data from potatoes harvested in September and October, 
stored until January (S1), March (S2) and May (S3), field trial 2. PC1 explains 41% 
of variance and PC2 15%. 
 
 
 
 

The relationships show in the PCA considers levels of components and 

changes among varieties. This analysis generates a substantial number of 

correlations and the model of PCA explained 56% of the data variance. The 

two components allowed discrimination of varieties. Investigation into the 

relative contribution (loadings) of individual variables in the PC1 dimension 

highlighted components with a significant impact on bruising. All of these 

variables correspond to 3 and 4-CQA, work and force to break the cortex 

and the distance to break skin and cortex. The measurements of bruising 

(SB, BI and OP) were strongly correlated and all of them correlated well with 
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tyrosine content. The force to break skin and caffeic acid content were 

perpendicular related to severe bruising, bruising index and OP, suggesting 

strongly negative correlation between these factors. A positive correlation 

was found between the distance to break tissues (cortex and skin) and 

bruising.  

5.3 Discussion 

Relationships between bruising and tuber properties are reconsidered and 

the strength of evidence for their roles evaluated. The relevance of tuber 

maturity status at harvest is given particular attention because there is a 

strong evidence that it is of major importance in the quality of stored tubers. 

A more quantitative approach to its characterisation was required for the 

information to be of practical value. Its relationship with other tuber 

properties such as weight, specific gravity, mechanical properties, cell wall 

composition, phenolic acids and tyrosine content was examined together 

with the potential for these as mechanisms underlying external factors. 

All varieties were mature at the harvest time based on the field indicator of 

the decline of canopy. Due to the early senescence in this field trial, a high 

incidence of bruising was found. In this field trial, a slight reduction in 

bruising was found only for RB (5%) when compared the tubers harvested in 

October (43 days after full senescence) to tubers harvested in September 

(34 days after full senescence). The incidence of severe bruising was 

considered a good predicative of bruising susceptibility as correlated well 

with BI. 
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The cultivars LR and MP are considered to represent less susceptible 

cultivars compared to RB with regard to bruising. However in this research 

when tubers were harvested late (October) the incidence of severe bruising 

was similar for all varieties (82-88%). During tuber growth an increase in 

bruising incidence for LR and MP and a slight decrease for RB were 

observed. However, bruising in stored samples was influenced by harvest 

time. It was observed there was more bruising in the variety LR when 

harvested late. The opposite was found for the varieties MP and RB. In 

general, a lower incidence of bruising was observed for MP and RB tubers 

when harvested late. The variations in the incidence of severe bruising did 

not reflect with concomitant increase/decrease in tyrosine content or 

phenolic acids. So, the composition of these phenolics at harvest can not be 

used as predictive of the quality for stored samples. 

An increase in specific gravity along harvests and storage periods was 

observed. The increase in SG was more prominent at medium period 

storage (S2), where RB and LR were harvested late (October) showed a 

significant increase in SG compared to the respective harvest period. At this 

storage period (S2) this is likely to be due to moisture loss through 

evaporation. Tubers harvested late presented a decrease in SG at long term 

storage (S3), possibly due to a higher rate of respiration and starch break 

down in these tubers.  

Corsini et al. (1999) found that RB stored for 4 months at 7°C presented 

moisture losses resulting in low tuber turgidity and this increased bruising 

susceptibility. In this research a weak correlation (R=0.25) was found only 

for LR comparing SG and severe bruising and no correlation for the other 
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varieties. Although varietal differences were found in physical aspects such 

as weight and SG, these factors were not strongly correlated with the type of 

assessment used in this research but may be relevant in assessment of 

bruising that simulate handling tubers, i.e. barrel or dropping tubers from a 

specific height, as it considers the potential energy that will be dissipated 

through the skin and subjacent tissue. 

Respiration and evaporation during storage also influenced the tissue 

properties. Tissues become more deformable along the storage period 

which may have prevented damage of the skin with the falling bolt method 

during bruising assessment. The cell walls of potatoes have an important 

role in maintaining the freshness of potato tubers during storage (Jarvis et 

al., 2003). The combined results showed that the more deformable the LR 

tissues became, the more susceptible to bruise but the opposite was found 

for MP and RB. However, MP and RB tubers required less force to break the 

tissue. This means that bruising in LR tubers was directly linked to 

deformability of the tissue but RB and MP were dependent of other factors.  

One of these factors can be the tyrosine content of MP and RB which was~ 

2X higher than LR. However, the content of tyrosine, the main substrate of 

the discolouration reaction, was not strongly correlated with bruising for 

these varieties separately, but a negative correlation was found analysing all 

results together with PCA. These results are in disagreement with previous 

in vitro assays reported by Sabba and Dean (1994) and Corsine et al. (1992) 

which suggested that tyrosine could be responsible for an increase in 

susceptibility of the tuber to bruise during cold storage at 4°C and 6°C 

respectively. Cold storage may lead to more membrane damage. 
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The changes in the pectic composition of the cell wall were dependent on 

variety. Major changes in pectin composition were observed in the content of 

pectic side chain of RGI. LR had showed more side chains with more/longer 

neutral sugars on the pectin backbone than MP and RB, which became less 

branched along harvest and storage. This varietal difference observed in LR 

may not have contributed to the tensile strength of cell walls as previously 

supported by Skjøt et al. (2002); Oomen et al. (2002); Ulvskov et al.(2005); 

Ryden et al.(2003); Caffall and Mohnen (2009) and Orfila et al. (2012). 

However, the differences on the amounts of neutral sugars (arabinose + 

galactose + rhamnose) among varieties were small (LR: 53-59%; MP 51-

55% and RB 51-64% Mol of CWM). On the other hand, it was expected 

increase in the strength of the tissue in tubers harvested in October due the 

loss of methyl esterification in pectin cortex observed for all varieties, which 

may ionically interact with calcium. In fact, the force to break cortex tissue 

slight diminished along harvest but was not statistically significant (p<0.05). 

As discussed above, it was shown that: 

(i)  The variety LR presented a higher deformability concomitant with 

lower tyrosine and higher phenolic acids content compared to the 

other varieties but substrates to PPO do not appear to the main 

fact for pigment formation.  

(ii)  RB presented the lower deformability and higher tyrosine content to 

the other varieties, and this was associated with high incidence of 

bruising in RB for both harvests.   
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(iii) Bruising in MP depends of both, this variety has strong mechanical 

properties which may protected tubers from impact mechanical 

and has intermediate levels of substrates for PPO (phenolics and 

tyrosine).  

On the basis of this information it is possible to conclude that the sum of 

factors determinate the bruising incidence. However, the following 

considerations have to be kept in mind: 

(i)      Tyrosine and chlorogenic acid were not predicative of bruising at 

harvest for stored potatoes, only if considered together. 

(ii)      Tyrosine content accumulates with harvest and storage. 

(iii)     Tissue deformability increases along harvest and storage. 

(iv) SG and weight of tubers have no association with bruising.  

In conclusion, during harvest and storage periods substantial changes in 

the bruising, texture, cell wall and biochemical composition were 

observed. 

These changes in stored samples are the consequence of varietal 

differences and harvest time. It was observed that more bruising 

occurred in stored tubers from LR harvested in October whereas MP and 

RB tend to bruise less in stored tubers harvested in October. This 

showed that tuber maturity at harvest was the predominant factor 

influencing bruising, both at harvest and thoughout storage. 
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6 Effect of Nitrogen on bruising along harvest time – field 

trial 3 

6.1 Introduction 

The aim of this chapter is to investigate the effect of nitrogen (N) application 

on the incidence of bruising in the variety Lady Rosetta (LR). This variety 

was selected for this field trial because it presents higher content of dry 

matter compared to other varieties which is ideal for crisps production. 

The use of fertilizer N is a common agricultural practice, generally needed 

because of its mobility in soils and the large amounts needed by plants. 

Knowledge of the residual soil N, rate and amount of N mineralized from soil 

organic sources, and individual crop needs are all required to optimize N 

fertilizer recommendations. Recommendations based on these factors have 

the potential for improving N fertilizer efficiencies, as well as increasing 

production with indeterminate potato varieties (Westerman and Klienkopf, 

1985). The current N recommendations in the UK are based on guidelines 

set out in DEFRAs Fertiliser Manual, where a soil N supply (SNS) index is 

calculated on soil type, winter rainfall and previous crop (DEFRAs RB209). 

Supplementing crops with N can have a significant effect on a number of 

physiological processes in potatoes, as influence on crop senescence, skin 

set and dry matter (Pringle et al., 2009). The leaf area of the potato plant is 

considerably dependent upon N supply, both the number and size being 

increased by increased N. Number because of the stimulation of growth of 
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both apical and lateral meristems, the lateral meristems leading to more 

branches and size by the stimulation of cell division, leading to a greater 

number of cells in the leaf (Burton, 1989).  

According to personal communication with producers, the higher the dry 

matter content, the higher is the incidence of bruising. When dry matter of 

the tubers reaches about 19-20%, farmers plan the harvest because they 

have observed that within a few days the dry matter rises quickly and 

potatoes bruise more. Crops where N is over-applied, either initially or later 

through top dressing, will take longer to reach maturity, will have reduction of 

potato yield and delay the achievement of the dry matter content. The haulm 

can be more difficult to desiccate and it can also take longer to set tuber 

skins (Sun et al., 2012), adversely affecting processing quality.  

Early literature (De Bruyn, 1929) summarized by Mondy and Koch (1978) 

suggested that the incidence of bruising increased with application of N 

fertilizer. This effect has been recorded as an increase from 12 to 24% for an 

increase in N application from 30 to 100 kg/ha. (Koblet, et al. 1948 in 

McGarry, 1996). In contrast, the authors Kunkel and Dow (1961) observed 

that increasing N fertilizer from 100 kg/ha to 290 kg/ha was associated with 

a decrease in susceptibility to bruising using a falling bolt test. Rogers-Lewis 

(1980) observed no effect of additional N fertilizer on bruising incidence 

using a pendulum to damage the tubers, but recorded a decrease in 

incidence with additional N in one of three years experiments, when 

harvesting operations were used to inflict damage. Silva et al. (1991) also 

reported no effect of N on the incidence of bruising resulting from harvesting 

operations or from subsequent impacts in a rotating drum.  



232 
 

It was found by Hole (1997) that timing of harvest can affect the incidence of 

bruising. With advances in crop development, tubers treated with N become 

less susceptible to bruising, whereby the symptoms change from visible 

tissue fracture (damage) and brown discolouration to less obvious fracture 

and grey/black discolouration. This association may be due to additional N 

slowing the rate of crop development and maturity. 

The influence of N fertilizing practices on impact sensitivity, especially 

resistance to bruise was suggested also by Baritelle et al. (2000). 

Additionally, soil type can interact with the effects of the N fertilizing pattern. 

The split 56 kg:ha preplant and 56 kg:ha postplant N treatment in Russet 

Burbank gave significantly higher bruise threshold in the higher permeability 

soil and highest bruise resistance in both soils (higher is better). 

Considering that bruising is a significant problem for crisps production, in the 

recent years research has been carried out focusing on the study of bruising 

potato cultivars and genetic modification to develop resistant varieties, 

however, little attention has been paid to the application of N despite the fact 

that the application of N is a common agricultural practices that may have a 

relevant impact on the bruising susceptibility. There is also little 

understanding of the physicochemical factors that may determine bruise 

development. Therefore the objective of the present research was to 

investigate the influence of application of N on bruising incidence, and to 

investigate the relationship between observed bruising and physicochemical 

factors such as specific gravity, phenolic acids tyrosine content, mechanical 

properties and cell wall composition of the LR. 
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6.1.1 Aim 

The aim of this project was to determine whether N fertilizer application 

influences bruising susceptibility and how it affects the biochemical and 

physical parameters normally associated with bruising in LR. This will 

enhance understanding of the crop response to N application leading to 

industry standards for the production of crisps.  

On the 3rd field trial, tubers from the variety LR treated with N 200 kg/ha and 

control (not-treated) were studied. According to the Potato Council 

independent variety trials, LR showed a bruising susceptibility score of 6, in 

ratings ranging from 0 (most susceptible) to 9 (least susceptible) (Carnegie 

et al., 2005;  BPVD, 2012). Details about how independent trial was 

calculated are shown on Chapter 1, section 1.5.1. 

LR plants were grown at Cambridge University Farm (CUF), planted on 23 

April 2013 and harvested at four time points, as indicated in table 2.3. Trials 

were randomised with two factors (harvest and N) with six replicate plots. 

Ten tubers per plot were collected and sent to Leeds on harvest day. 

6.1.2 Hypotheses 

The hypotheses tested are:  

1) Specific gravity is higher in tubers supplied with N. 

2) Potatoes supplied with N fertilizer show more bruising along harvest. 



234 
 

3) Phenolic substrates increase in content along harvest and are higher in N 

treated tubers. 

4) Tubers treated with N present changes in the mechanical properties of the 

tuber and the cell wall composition of cortex cells. 

6.1.3 Objectives 

1) To determine if application of N fertilizer produces tubers with more 

potential to bruise by comparing the bruising susceptibility of treated and 

non-treated tubers using the falling bolt method. 

2) To identify if N application affect the mechanical properties of tubers and if 

this could be associated with resistance/susceptibility to bruising. 

3) To improve the potential for using physical measurements as dry matter 

as indicators of bruising on the variety LR. 

4) To improve the understanding of the biochemical apparatus for bruising 

along harvest date and the correlation with the incidence of bruising. 

6.2 Results 

6.2.1 Field phase 

6.2.1.1 Meteorological data 

Rainfall and mean temperature of the air and soil are presented in figure 6.1. 

2013 season was characterized by being mild in temperature, but had a 7 
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days period starting in mid-July 2013 when temperatures reached a 

maximum of over 26°C each day with radiation receipts in July and August 

being 10 -15% above field trial 1 and 2 average. Reference Et0 

(Evapotranspiration (ET) - is the sum of soil water evaporation (E) and plant 

transpiration (T)) was consequently greater in July, with mean daily ET0 3.94 

mm/day and only 3.30 in June and in August. ET0 attained a peak of 5.9 

mm/day in mid-July but generally ET0 was lower than typical for the 

temperatures since windruns were small and relative humidity’s high which 

restricted ET0. August was slight wetter than average.  

 

6.2.1.2 Green canopy cover (%) 

Measurements of decline of canopy was taken as key indicators of the effect 

of crop treated with 200 kg/ha of N and no treated on the physiological 

characteristics. The data clearly indicate that soil treatment with N 

significantly affected crop maturity at harvest, shown in table 6.1.  

Figure 6.1 Rainfall (mm) and mean temperature of the air and soil (secondary axis) 
in field trial 3, 2013. 
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Harvest No treatment N200 

H1 93 99 

H2 66 91 

H3 22 67 

H4 2 19 

 

Delay in senescence was observed in LR tubers supplied with N along 

harvest times.  

6.2.2 Bruising assessment 

6.2.2.1 Assessment of severe bruising using falling bolt 

Application of N reduced bruising incidence of the variety LR when tubers 

were harvested earlier than 112 days after planting (H1 and H2), shown in 

figure 6.2. After this period, tubers grown in fertilized soil showed higher 

incidence by 5 and 10 % when harvested in late August (H3) and early 

September (H4), respectively compared to unfertilized. 

Table 6.1 Senescence measured by the green canopy cover (%) of LR tubers no 
treated and treated with N 200 kg/ha, harvested in July (H1), August (H2 and H3) 
and September (H4). 

                  
 
Figure 6.2 Effect of harvest and N treatment (200 kg/ha) on the incidence of severe 
bruising following damage with the falling bolt in LR tubers harvested in July (H1), 
August (H2 and H3) and September (H4), field trial 3. Values show incidence of 
severe bruising (n>21). 
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When analysing slight and severe bruising (presented in figure 6.3), tubers 

grown on treated soil presented higher incidence of bruising from the second 

harvest (112 days after planted) and similar incidence of slight plus severe 

bruising when harvested in September (H4).  

6.2.2.2 Damage 

The incidence of damaged skin was higher in tubers from N treated soil 

along all harvest times. As N application delays crop maturity, skin set was 

probably delayed and consequently tubers were probably less resistant to 

the impact, contrary to observed by Hole (1997) and Baritelle et al. (2000). 

Results are presented in figure 6.4.  

      
 
Figure 6.3 Effect of harvest and N treatment (200 kg/ha) on the incidence of slight 
and severe bruising following damage with the falling bolt in LR tubers harvested in 
July (H1), August (H2 and H3) and September (H4), field trial 3. Values show 
incidence of severe bruising (n>21). 
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6.2.2.3 Bruising Index 

When including the area of impact and colour formation as part of the 

measurement of bruising, on the assessment of bruising index, results were 

slightly different than assessment of severe bruising, as shown in figure 6.5. 

Tubes from treated soil presented lower BI than control until late August (H3) 

and higher incidence when harvested in September (H4) compared to 

control.  

Comparing the results from H4, the bruised tissue from control tubers 

presented lower depth and width but slight higher colour formation.  

                  

Figure 6.4 Effect of harvest and N treatment (200 kg/ha) on the incidence of skin 
damage following damage with the falling bolt (bars) and percentage of severe 
bruising (scatter) in tubers from the variety LR harvested in July (H1), August (H2 
and H3) and September (H4), field trial 3. Value bars show incidence of damaged 
tissue (n=30), and scatter shows incidence of severe bruising (n>21). 
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Figure 6.5 Effect of harvest and N treatment (200 kg/ha) on the bruising index 
(bars) and percentage of severe bruising (scatter) in tubers from the variety LR 
harvested in July (H1), August (H2 and H3) and September (H4), field trial 3. 
Values show means (bars) and incidence of severe bruising (scatter), (n>21). 

 

6.2.2.4 Spectrophometric assessment of oxidative potential  

Absorbance of extracts from samples treated and untreated left to oxidize for 

20 hours are shown in figure 6.6. Although average changes were observed 

along harvest times, no significantly different results were found on oxidative 

potential when comparing treatments at each time point studied and when 

compared harvests (p>0.05). 

 

Figure 6.6 Effect of harvest and N treatment (200 kg/ha) on the oxidative potential 
(scale 0-1) following 20 h oxidation (bars) and percentage of severe bruising 
(scatter) in tubers from the variety LR harvested in July (H1), August (H2 and H3) 
and September (H4), field trial 3. Value bars show means (n=3), error bars are SE 
and scatter shows incidence of severe bruising (n>21). 
 

O
x
id

a
ti
v
e

 p
o
te

n
ti
a

l 
 

(A
b
s
o
rb

a
n
c
e
 4

7
5
) 

 
B

ru
is

in
g
 i
n
d

e
x
  

 

P
e
rc

e
n
ta

g
e
 o

f 

s
e
v
e
re

 b
ru

is
in

g
 

P
e
rc

e
n
ta

g
e
 o

f 

s
e
v
e
re

 b
ru

is
in

g
 



240 
 

6.2.3 Physical properties 

6.2.3.1 Weight 

Significant differences were found in the yield of tubers treated and 

untreated at the 3th and the 4th harvest (p<0.01), where tubers treated with N 

presented ~% 35 more weight than untreated as shown in figure 6.7. These 

results are in accordance to previous studies of Westerman and Klienkopf 

(1985), which stated that mean tuber yields were greatly increased by N 

fertilizer treatments. 

Among harvests, a significant increase was found in treated tubers between 

H2 and H3 (p<0.01). Increases were observed in the weight of control tubers 

but no significant differences were found when comparing the weight of 

tubers along harvest time.  

When contrasting the incidence of severe bruising and weight of tubers, no 

correlation was found for control (R= 0.01) and very strong positive 

correlation for treated tubers (R=0.84). When contrasting the weight of 

tubers with BI, no correlation was found for control (R=-0.09) and weak 

positive correlation was found for treated tubers (R=0.26). 
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Figure 6.7 Effect of harvest and N treatment (200 kg/ha) on the weight (grams) 
(bars) and percentage of severe bruising (scatter) in tubers from the variety LR 
harvested in July (H1), August (H2 and H3) and September (H4), field trial 3. Value 
bars show means (n=30), error bars are SE and scatter shows incidence of severe 
bruising (n>21). 

 

6.2.3.2 Specific gravity 

The purpose of analysing specific gravity (SG) of tubers was to find the 

association of SG and bruising susceptibility, as SG correlates directly with 

dry matter. 

Significant differences were found in the SG between tubers treated and 

untreated at the 3th harvest (p<0.01), where tubers treated with N presented 

higher SG than untreated, shown in figure 6.8. Among harvest, significant 

increase was found only in treated tubers between H1-H2, H2- H3 and 

significant decrease between H3 and H4 (p<0.05) for both samples 

(treated/untreated).The decrease in dry matter may be due increase in 

turgor at the last harvest due high rainfall by end of August. 

When contrasting the incidence of severe bruising and the SG of tubers, 

very strong positive correlations were found for control (R= 0.76) and for 

treated tubers (R=0.70). Contrasting the SG of tubers with BI, strong positive 
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correlation was found for control (R=0.49) and no correlation for treated 

tubers (R=0.16). 

 
 
Figure 6.8 Effect of harvest and N treatment (200 kg/ha) on the specific gravity 
(bars) and percentage of severe bruising (scatter) in tubers from the variety LR 
harvested in July (H1), August (H2 and H3) and September (H4), field trial 3. Value 
bars show means (n=30), error bars are SE and scatter shows incidence of severe 
bruising (n>21). 

 
 

6.2.4 Mechanical properties 

6.2.4.1 Energy required to break the potato skin tissue 

In general, the energy required to break the skin decreased with harvest in 

treated and untreated tubers as shown in figure 6.9. Significant differences 

(p<0.05) were found among the samples studied at H2 and H3.  

Untreated samples presented significant decrease (p<0.05) from H1 to H2 

and H2 to H3 but not from H3 to H4 (p>0.05). Treated samples presented 

significant decrease (p<0.01) comparing H2 to H3 only. 
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When contrasting the incidence of severe bruising and the energy to break 

skin tissue, no correlation was found for control (R= -0.01) and very strong 

negative correlations was found for treated tubers (R=-0.77). Contrasting the 

energy to break the skin tissue with BI, negligible (R=0.12) and weak 

negative correlation ( R=-0.21) were found for control and treated tubers 

respectively. 

It was observed that on average skin tissue strength (measured by force) 

decreased till the 3th harvest (except untreated H2) and increased at the 4th 

harvest but deformability (distance) to rupture skin slightly decreased along 

time for both samples as shown in figure 6.10 and 6.11. 

                  
 
Figure 6.9 Effect of harvest and N treatment (200 kg/ha) on the energy (mJ) 
required to break the skin tissue (bars) and percentage of severe bruising (scatter) 
in tubers from the variety LR harvested in July (H1), August (H2 and H3) and 
September (H4), field trial 3. Value bars show means (n=30), error bars are SE and 
scatter shows incidence of severe bruising (n>21). 
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. 

 
 
 
Figure 6.11 Effect of harvest and N treatment (200 kg/ha) on the distance (mm) 
required to break the skin tissue (bars) and percentage of severe bruising (scatter) 
in tubers from the variety LR harvested in July (H1), August (H2 and H3) and 
September (H4), field trial 3. Value bars show means (n=30), error bars are SE and 
scatter shows incidence of severe bruising (n>21). 
 
 

6.2.4.2 Energy required to break the potato cortex tissue 

Results of the energy required to break the cortex tissue were no 

significantly different between the tubers treated and untreated and among 

harvests, shown in figure 6.12. 

                  

 
Figure 6.10 Effect of harvest and N treatment (200 kg/ha) on the force (N) required 
to break the skin tissue (bars) and percentage of severe bruising (scatter) in tubers 
from the variety LR harvested in July (H1), August (H2 and H3) and September 
(H4), field trial 3. Value bars show means (n=30), error bars are SE and scatter 
shows incidence of severe bruising (n>21). 
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Figure 6.12 Effect of harvest and N treatment (200 kg/ha) on the energy (mJ) 
required to break the cortex tissue (bars) and percentage of severe bruising 
(scatter) in tubers from the variety LR harvested in July (H1), August (H2 and H3) 
and September (H4), field trial 3. Value bars show means (n=30), error bars are SE 
and scatter shows incidence of severe bruising (n>21). 

 
 

An increase in force to break the cortex tissue at the 4th harvest for both 

treatments was observed (figure 6.13). The increase in force was associated 

with slight lower deformability of the cortex, observed in figure 6.14 by the 

distance reached with the probe at rupture point.  

Results from energy to break the cortex tissue and the incidence of severe 

bruising showed no correlation for control (R=0.01) and very strong positive 

correlation for N treated tubers (R = 0.88). When correlating the energy to 

break the cortex tissue with BI, weak and moderate positive correlations 

were found for control (R= 0.12) and treated tubers (R= 0.35). 

According to the results from previous trials, it was expected that force to 

break the cortex tissue diminish along harvests and distance diminish when 

tubers were harvested until the end of September. The variation found in 

force at the 4th harvest may be linked with more turgor as the tubers were 

harvested after a wetter month (August 2013) than other trials.  

E
n
e
rg

y
 t

o
 b

re
a
k
 t
h
e

 

c
o
rt

e
x
 (

m
J
) 

P
e
rc

e
n
ta

g
e
 o

f 

s
e
v
e
re

 b
ru

is
in

g
 



246 
 

  

 
Figure 6.13 Effect of harvest and N treatment (200 kg/ha) on the force (N) required 
to break the cortex tissue (bars) and percentage of severe bruising (scatter) in 
tubers from the variety LR harvested in July (H1), August (H2 and H3) and 
September (H4), field trial 3. Value bars show means (n=30), error bars are SE and 
scatter shows incidence of severe bruising (n>21). 

 

 
 
Figure 6.14 Effect of harvest and N treatment (200 kg/ha) on the distance (mm) 
required to break the cortex tissue (bars) and percentage of severe bruising 
(scatter) in tubers from the variety LR harvested in July (H1), August (H2 and H3) 
and September (H4), field trial 3. Value bars show means (n=30), error bars are SE 
and scatter shows incidence of severe bruising (n>21). 

6.2.5 Phenolic composition 

6.2.5.1 Phenolic acids 

Chlorogenic acid (5-CQA), the most abundant compound found, increased in 

content up to the 3rd harvest time and diminished from the 3rd to the 4th 

harvest for both samples. The levels and changes along harvest were similar 
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with results from the field trial 1. This reinforces the evidences that phenolic 

acids may act as protective in bruising when levels are low. Significant 

increases in phenolic content (p<0.05) were found from H2 to H3 and 

decrease from H3 to H4 in tubers untreated, but no significantly difference 

were found in the treated samples (p>0.05) in 5-CQA content, shown in 

figure 6.15. Tubers treated with N showed slight higher content of 5-CQA but 

significantly higher amounts (p<0.001) were only found at the 4th harvest.  

The chlorogenic acid isomer cryptochlorogenic acid (4-CQA) and 

neochlorogenic acid (3-CQA) contents were significantly different (p<0.05) at 

the 2nd and the 3rd harvest, presenting slight higher contents in tubers from 

untreated plants.  

Strong correlations were found when contrasting incidence of severe 

bruising and chlorogenic acids for control (R=0.78) and treated tubers 

(R=0.60). When correlating chlorogenic acids with BI, weak and moderate 

positive correlations were found for control (R= 0.12) and treated tubers 

(R=0.35) respectively. 
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Among the minor phenolic acids detected, caffeic acid (CA) was detected in 

both samples and the content ranged from 0.43-0.70 mg/100 g dw (figure 

6.16). There was not a clear trend along harvests when considering CA 

content in treated or untreated tubers. 

A trend was found for the compounds vanillic acid (VA), ferulic acid (FA) and 

p-coumaric (pCou), with general increase up to the 3rd harvest followed by 

decrease at the 4th harvest. 

 

 

 

 

 

                          
 
Figure 6.15 Effect of harvest and N treatment (200 kg/ha) on the chlorogenic acids 
(3-, 4- and 5- CQA) of lyophilized cortex (mg/100 g dw) (bars) and percentage of 
severe bruising (scatter) in tubers from the variety LR harvested in July (H1), 
August (H2 and H3) and September (H4), field trial 3. Value bars show means 
(n=3), error bars are SE and scatter shows incidence of severe bruising (n>21). 
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6.2.5.2 Tyrosine 

Significant variations of free tyrosine content (p<0.001) among treated 

samples with N and untreated were found at the 2nd, 3rd and 4th harvest, 

being higher for untreated samples at the second and third harvests as 

shown on figure 6.17.  

Significantly different contents (p<0.001) were observed among harvests for 

both samples, treated and untreated, with lower significance level (p<0.05) 

between H1 to H2 in treated samples. 

Moderate and strong positive correlations were found when contrasting the 

incidence of severe bruising and free tyrosine levels for control (R=0.38) and 

treated tubers (R=0.65). When tyrosine levels and BI were correlated, weak 

and moderate positive correlations were found for control (R= 0.23) for 

treated tubers (R=0.31) respectively. 

                        
 
Figure 6.16 Effect of harvest and N treatment (200 kg/ha) on the minor phenolic 
acids (FA, pCOU, CA, VA) (mg/100 g dw) of lyophilized cortex (bars) and 
percentage of severe bruising (scatter) in tubers from the variety LR harvested in 
July (H1), August (H2 and H3) and September (H4), field trial 3. Value bars show 
means (n=3), error bars are SE and scatter shows incidence of severe bruising 
(n>21). 
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Figure 6.17 Effect of harvest and N treatment (200 kg/ha) on the free tyrosine 
content (mg/100 g dw) of lyophilized cortex (bars) and percentage of severe 
bruising (scatter) in tubers from the variety LR harvested in July (H1), August (H2 
and H3) and September (H4), field trial 3. Value bars show means (n=3), error bars 
are SE and scatter shows incidence of severe bruising (n>21). 

 

6.2.6 Cell wall composition 

6.2.6.1 Analysis of Cell Wall Material (CWM) 

The monosaccharide content of potatoes from the 3rd and the 4th harvest are 

summarised in table 6.2. Concentrations are expressed in %mol. The yield 

of extractions comprised between 0.17 and 0.46% of the dry mater.  

Fucose and mannose were not detected in the chromatograms from the 

potato cell wall hydrolysates. Results for glucose were omitted as it was not 

from a pectic source.  

Among the monosaccharides studied, the higher proportion comprised of 

arabinose and galacturonic acid, indicating that pectin of LR from field trial 3 

had less galactose (12.7-16.5% mol) than field trial 1 and 2, averaging from 

28.5-30.5% mol and 27.1-32.1% mol respectively.  
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Comparing untreated and treated results, untreated samples presented 

significantly lower content (p<0.001) of rhamnose and galactose and 

significant higher content (p<0.001) of xylose than treated samples at the 3rd 

harvest. At the 4th harvest, no significant differences (p>0.05) were found on 

the content of sugars analysed when compared to control, although average 

higher content of rhamnose was found in treated samples with significant 

decrease (p<0.05) in samples harvested late (H4) (treated samples).  

A trend was found in the content of uronic acids, where the concentration of 

galacturonic acid diminished comparing H3 to H4 for both samples (control 

and treated) and glucuronic acid concentrations increased for both samples, 

but it was only significant for GluA untreated samples and GalA treated 

samples (p<0.01).  
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The molar ratio of arabinose + galactose to uronic acids was calculated for 

the cultivars and presented in table 6.3. A similar molar ratio of arabinose + 

galactose to uronic acids was observed in untreated and treated samples 

(1.1-1.2), which indicated that there are no differences in the number or 

length of neutral sugar side chains. 

The molar ratio of uronic acids to rhamnose (the measure of linearity of the 

cell wall pectin) was lower in tubers supplied with N, being less linear than 

untreated tubers. Comparing results from H3 and H4, untreated tubers 

showed decrease in pectin linearity and treated tubers increased linearity. 

Table 6.2 Monosaccharide composition of cell walls from tubers (rhamnose (Rha), 
arabinose (Ara), galactose (Gal), xylose (Xyl), galacturonic acid (GalA) and 
glucuronic acid (GluA) from CWM of the cortex tissue from LR tubers not treated 
(control) and treated with N (200 kg/ha) harvested in late August (H3) and early 
September (H4), field trial 3. Concentrations are expressed per %mol. Values 
represent average ± SEM (n=3). 
 
 

   
HARVEST 3 

   

 
Monosaccharides 

 
No treatment 

 
200 kg/ha 

 

       

 
Rha 

 
0.6 ± 0.2 

 
4.8  ± 0.5 

 

 
Ara 

 
30.5  ± 0.3 

 
28.5  ± 0.8 

 

 
Gal 

 
12.7  ± 0.5 

 
16.5  ± 0.1 

 

 
Xyl 

 
18.9  ± 1.6 

 
10.9  ± 0.6 

 

 
GalA 

 
31.7  ± 1.0 

 
32.1  ± 1.5 

 

 
GluA 

 
5.5  ± 1.1 

 
7.2  ± 0.3 

 

       

   
HARVEST4 

   

 
Monosaccharides 

 
No treatment 

 
200 kg/ha 

 

       

 
Rha 

 
0.9  ±  0.2 

 
1.8  ±  0.4 

 

 
Ara 

 
30.3  ±  1.3 

 
28.7  ±  0.3 

 

 
Gal 

 
13.8  ±  0.2 

 
14.3  ± 0.2 

 

 
Xyl 

 
15.9  ±  0.7 

 
17.9  ± 0.3 

 

 
GalA 

 
28.7  ±  1.0 

 
27.1  ± 0.2 

 

 
GluA 

 
10.5  ±  0.9 

 
10.3  ± 1.4 
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These differences are possibly due the delay in maturity of tubes supplied 

with N.  

 

6.2.7 Relationship between analyses 

Correlations from the analyses and incidence of severe bruising, bruising 

index and oxidative potential are summarized in table 6.4, indicated as R 

values. 

 

 

 

Table 6.3 Neutral sugars (rhamose+arabinose+galactose), branching (molar ratio of 
arabinose + galactose to uronic acids) and number of side chains (UA/Rhamnose) 
in CWM of the cultivar LR untreated and treated with N (200 kg/ha), harvested in 
late August (H3) and September (H4), field trial,3 after sequential with 0.1 M and    
2 M TFA. 
 
 

 HARVEST 3   

Ratios No treatment   200 kg/ha 

    Neutral sugars (Rha+Ara+Gal) 43.8 
 

49.8 

Molar ratio (Ara+Gal/UA) 1.2 
 

1.1 

UA/Rhamnose  68.8 
 

9.3 

    
HARVEST 4 

 
No treatment 

 
200 kg/ha 

Neutral sugars (Rha+Ara+Gal) 45.0 

 

44.7 

Molar ratio (Ara+Gal/UA) 1.1 
 

1.2 
UA/Rhamnose  50.9 

 

23.7 
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Although Person’s coefficient (R) indicates some correlations, most of them 

were not statistically significant (p>0.05), what reflect a very small correlation 

sample size (n=4). Analysis of both treated and no treated tubers together 

not increased the strength of the correlations and the significance, although 

had larger correlation sample size (n=8). So, the purpose of the analyze of 

Table 6.4 The relationships (R) and significance P value of severe bruising (SB), 
bruising index (BI) and oxidative potential (OP) with physical, mechanical and 
compositional aspects of the varieties LR treated with N 200 kg/ha (N200), not 
treated and the combined results from treated and not treated,  field trial 3. 

 
 

  Severe bruising (SB) 

Treatment and correlation sample size  No treatment (n=4) N200 (n=4) 
No treatment + 

N200 (n=8) 

Assessment , sample size/ R and P value  R P value R P value R P value 

BI (n=3)  0.92 0.08 0.64 0.36 0.42 0.30 
OP (n=3)  -0.15 0.85 0.43 0.57 0.00 1.00 
Energy to break the skin tissue (n=30)  -0.01 0.99 -0.77 0.23 -0.29 0.49 
Force to break the skin tissue (n=30)  -0.26 0.74 0.13 0.87 -0.25 0.55 
Distance to break the skin tissue (n=30)  0.10 0.90 -0.45 0.55 -0.14 0.74 
Energy to break the cortex tissue (n=30)  0.01 0.99 0.88 0.12 0.19 0.65 
Force to break the cortex tissue (n=30)  -0.26 0.86 0.13 0.87 0.03 0.94 
Distance to break the cortex tissue (n=30)  0.14 0.86 -0.11 0.89 -0.02 0.96 
Weight (n=30)  0.01 0.99 0.84 0.16 0.35 0.39 
SG (n=30)  0.76 0.24 0.70 0.30 0.64 0.09 
Tyrosine  0.38 0.62 0.65 0.35 0.29 0.48 
Phenolic acids  (n=3)  0.78 0.22 0.57 0.43 0.35 0.39 
Chlorogenic acids (n=3)  0.78 0.22 0.60 0.40 0.36 0.38 
5-CQA (n=3)  0.91 0.09 0.44 0.56 0.34 0.41 
CA (n=3)  -0.26 0.74 -0.16 0.84 -0.14 0.74 

  Bruising Index (BI) 

OP (n=3)  -0.05 0.95 0.14 0.86 0.10 0.81 
Energy to break the skin tissue (n=30)  0.12 0.88 -0.21 0.79 -0.08 0.85 
Force to break the skin tissue (n=30)  -0.06 0.94 0.05 0.95 -0.09 0.83 
Distance to break the skin tissue (n=30)  0.26 0.74 -0.13 0.87 0.01 0.98 
Energy to break the cortex tissue (n=30)  0.12 0.88 0.35 0.65 0.08 0.85 
Force to break the cortex tissue (n=30)  -0.06 0.94 0.05 0.95 0.00 1.00 
Distance to break the cortex tissue (n=30)  0.38 0.62 0.00 1.00 0.01 0.98 
Weight (n=30)  -0.09 0.91 0.26 0.74 -0.03 0.94 
SG (n=30)  0.49 0.51 0.16 0.84 0.10 0.81 
Tyrosine (n=3)  0.23 0.77 0.31 0.69 0.29 0.49 
Phenolic acids  (n=3)  0.12 0.88 0.35 0.65 0.12 0.12 
Chlorogenic acids (n=3)  0.53 0.47 0.08 0.92 0.13 0.78 
5-CQA (n=3)  0.71 0.29 0.02 0.98 0.09 0.83 
CA (n=3)  -0.10 0.90 -0.49 0.51 -0.21 0.62 
  

Oxidative Potential (OP) 

Weight (n=30)  -0.73 0.27 0.62 0.38 0.07 0.87 
SG (n=30)  -0.29 0.71 0.22 0.78 0.00 1.00 
Tyrosine (n=3)  0.93 0.07 -0.95 0.05 -0.42 0.30 
Phenolic acids  (n=3)  -0.54 0.46 0.19 0.81 -0.05 0.91 
Chlorogenic acids (n=3)  -0.53 0.47 0.21 0.79 0.00 1.00 
5-CQA (n=3)  -0.36 0.64 0.14 0.86 0.00 1.00 
CA (n=3)  -0.26 0.74 -0.16 0.84 0.00 1.00 
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correlations  was to establish general trends between the 

physical/composition aspects and the incidence of bruising. 

Severe bruising incidence and bruising index (BI) were strongly correlated 

for treated tubers (R=0.64) and very strong for control tubers (R= 0.92). 

Some correlations were found between mechanical properties and bruising 

incidence, where very strong negative correlation was observed between the 

energy to break the skin tissue and severe bruising (R=-0.77), and very 

strong positive between energy to break cortex tissue and severe bruising in 

treated samples. Control samples had no correlations between the same 

factors. 

Very strong correlation for both samples were found between SG and SB 

(R>0.70), but it decreased in strength when comparing SG with BI, being 

strong positive for untreated tubers (R=0.49) and negligible (R=0.16) for 

treated tubers.  

Moderate positive and strong positive correlation was found between 

tyrosine content and SB (for untreated R=0.38 and treated R=0.65 samples 

respectively). Very strong correlation was found between tyrosine content 

and OP, being positive for untreated (R=0.93) and negative for treated 

samples (R=-0.95). 

Chlorogenic acid had strong and very strong positive correlation with severe 

bruising (for treated R=0.60 and untreated R=0.93 samples respectively). 

Strong positive association was found with chlorogenic acids and OP (R= 

0.53) for untreated samples but not for treated samples. 
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A further analysis of the relationship between all variables was conduced by 

principal component analysis (PCA). The results for LR outgrown in soil 

treated or untreated with N (field trial 3) are summarized in the PCA bi-plot 

(figure 6.18). The labels are indicated in table 6.5. These analyses 

generated substantial number of correlations and the model of PCA 

explained about 63% of the data variance. No discrimination of varieties was 

found in the principal components. High loadings on PC1 suggest that 

variables can be represented by PC1. The relative contribution (loadings) of 

individual variables in the PC1 dimension highlighted the components 3- and 

4-CQA, tyrosine (TYR), ferulic acid (FA), severe bruising (SB) and bruising 

index (BI) and not much contribution from  mechanical properties of skin 

(Energy to break the skin (ES) and the cortex (EC), force to break the skin 

(FS) and the cortex (FC) and distance to break the skin (DS) and the cortex 

(DC)).  

The oxidative potential (OP) was negatively correlated with tyrosine content, 

which may suggests that in LR no dependence of substrate content tyrosine 

for bruising formation. 

Severe bruising, 5-CQA and p-Coumaric (pCou) dimensions suggests strong 

correlation on this study and the phenolic acid caffeic acid was strongly 

negative correlated to severe bruising incidence, providing evidence of a 

useful link between bruising and these phenolic acids in LR. 

The force required to break the skin (FS) and cortex (FC) correlated with 

measurements of bruising (severe bruising, BI ) negatively, meaning that 

more force to break the skin tissue resulted in less bruising. On the other 
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hand, the distance to break the tissue (DS and DC) was positively correlated 

with bruising measures (SB and BI) on PC1, where more deformable tuber 

presented more bruising.  

    No treatment 
 

N200 kg/ha 

Letter Assessment Letter Assessment No. Harvest 
 

No. Harvest 

A Severe Bruising J Caffeic acid 1 H1 
 

5 H1 

B Optical density K p Coumaric acid 2 H2 
 

6 H2 

C Energy to break the skin tissue L Ferulic acid 3 H3 
 

7 H3 

D Force to break the skin tissue M 3-CQA 4 H4 
 

8 H4 

E Distance to break the skin tissue N 4-CQA   
 

  

F Energy to break the cortex tissue O 5-CQA   
 

  

G Force to break the cortex tissue P Tyrosine   
 

  

H Distance to break the cortex tissue Q Bruising index   
 

  

I Vanillic acid     
 

  
 

Table 6.5 Labels in the PCA graphs from LR treated with N 200 kg/ha and no 
treated harvested in July (H1), August (H2 and H3) and September (H4), field trial 
3. 
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6.3 Discussion 

Application of N to the soil led to increased levels of bruising, but only in later 

harvests. It was observed also that higher percentage of slight bruising and 

higher level of damaged skin in tubers with applied N to the soil compared to 

the control. 

N application increased weight and specific gravity, due maintenance of 

plant canopy in tubers for longer period, having a continued tuber growth 

through season. Weight and SG do not affect bruising if potatoes are 

harvested early September. The increase in SG upon application of N to soil 
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Figure 6.18 PCA bi-plot of data from LR treated with N 200 kg/ha and no treated 
harvested in July (H1), August (H2 and H3) and September (H4), field trial 3. PC1 
explains 43% of variance and PC2 20%. 
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was associated with higher bruising at later harvests. This association may 

be due to the high content of dry matter affecting cellular stability potential 

for physical damage to membranes when cells are deformed by impact  as 

observed by Wulkow (2009) and  Urbany et al. (2011). In fact, the incidence 

of severe bruising diminished at the H4 compared to H3 harvest which 

coincide with lower specific gravity for both samples (treated and untreated). 

According to Ross et al. (2011a) the dry matter increases over time and 

reaches a peak 4-6 weeks before defoliation. For control, defoliation (the 

measure of maturity) was practically reached at the H4, presenting 2% of 

green canopy coverage but plants from tubers treated were still with 19% 

coverage and yet presented decrease in specific gravity. 

The higher incidence of bruising when harvested in later in the season was 

also associated with high deformability, most particularly skin, and a strong 

correlation between mechanical properties and bruising was found. N 

application affected linearity of pectin, being more branched (less linear) 

than control. Slightly higher force and distance to break the cortex tissue in 

treated tubers was observed at the harvest periods studied (H3 and H4).  

Increases in chlorogenic acids were observed until later August following by 

decrease in early September. The trend observed and the levels of 

chlorogenic acids were similar to the first trial. Levels of chlorogenic acids 

were strongly associated with the incidence of severe bruising in this trial, 

what was interesting as the content of phenolic acids was relatively lower 

than 2012 season where negative correlation was found. Treatment affected 

levels of phenolics but not affect tyrosine levels considerably.  
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Tyrosine levels were variable along the harvest for both nitrogen treated and 

control tubers. Although treatment has not affected the levels of tyrosine 

compared to the control, strong correlation with bruising was found only in 

treated tubers. 

In conclusion, N application increases weight and specific gravity, and does 

not affect bruising if potatoes are harvested early (September), however, 

higher incidence of bruising is observed in tubers from treated soils in later 

harvests. 
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7 General discussion 

With increasing quality standards demanded by the markets and increased 

demand for food due to an increasing population, particularly in developing 

countries, efforts must be maintained to minimize tuber bruising. Great 

hopes are attached to the constant improvement of agricultural practices to 

avoid losses and genetic engineering in terms of the breeding of cultivars 

less susceptible to damage. 

The main aim of this study was: 1) to investigate the effect of defoliation, 

harvest time, storage and application of nitrogen on bruising incidence in 

three UK varieties of potatoes; 2) to investigate the physical and biochemical 

factors that may be associated with bruising.  

7.1 Method development- HPLC has been widely used to identify phenolics 

in food studies and parameters for the optimal quantification of individual 

components were tested. 

Extraction of phenolics was efficient after 3 sequential extractions with 50% 

MeOH acidified with 2.5% metaphosphoric acid using vortex. The HPLC 

analysis of phenolic acids and tyrosine demonstrated good resolution, good 

sensitivity and peak sharpness for the components in both procedures. 

For the extraction of monosaccharides from the potato cell wall, the goal of 

sequential hydrolysis was the liberation of different pectin components, 

preventing degradation under the hydrolysis condition. A possible sequence 

using stronger acid (e.g. sulphuric acid (H2SO4) or hydrochloric acid (HCl)) 



262 
 

would be useful to analyse any remaining pectin, hemicelluloses and 

cellulose components. To the author’s knowledge, this is the first time that 

potato cell wall monosaccharides have been hydrolysed with sequential 

chemical hydrolysis using TFA. 

Analytical validation of the HPAEC - PAD method for analysis of 

monosaccharides demonstrated good precision (R.S.D. < 6.4%) and 

accuracy (R.E.± <-7%), which had excellent sensitivity in the low μg/mL 

ranges (47-93 μg/mL). Notably in the results greater amounts of arabinose 

than galactose were observed in potato pectin isolated from cortex tissue, 

contrary to other reports (van Marle et al., 1997, Obro et al., 2000, Orfila et 

al., 2012). This arabinose-rich fraction may have been destroyed during 

standard hydrolysis. The present study showed for the first time that 

potatoes contain a fraction of pectin (RG-I) that is very rich in arabinose. 

Arabinan rich polysaccharides have been attributed to many cell wall 

functions, including cell adhesion (Orfila et al., 2000)  and cell wall porosity 

(Mohnen, 2008). 

In the embedding procedure for immunolocation, a longer incubation time for 

infiltration was effective for potato cell wall embedding. Elimination of 

autofluorescence in the phenolics in the cell wall with toluidine blue is 

recommended. There are very few reports of the ultrastructure of potato 

tuber tissue (Bush and McCain, 1999; Sørensen et al., 2000; Oomen et al., 

2002) and this may be due to the difficulties associated with obtaining good 

quality sections.  
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Bruising assessment - Due to many terminologies and ranges of subjective 

bruise scores being used to characterise bruising, it is difficult to compare 

results when researchers have used different terminologies to describe it. In 

the experiment by using a high speed camera to assess rebound height, it 

was observed that the bolt impacted the tuber from different angles and 

often more than once, showing that the transfer of energy was not 

homogeneous. Although the use of plates to calculate the energy absorbed 

(Jiménez-Jiménez et al., 2013) is a more accurate method to measure the 

impact energy, this method does not consider the impact surface. To 

improve this method, adaptation using a pendulum would be recommended 

for better control of the impact zone. This research followed previous studies 

from Stalham (2008) using a known mass dropped from an equivalent height 

using a simple tube in an attempt to compare results with previous studies. 

However, unexpectedly, great seasonal changes were observed during the 

three different trials,  which culminated in the method being modified as 

shown for LR along the three field trials in table 7.1. 

 

Field trial Year Method Days after planting Percentage of severe bruising 

1 2010 1 150 50.00 

2 2011 2 157 52.38 

3 2013 2 143 13.79 

 

Table 7.1 Effect of season on percentage of severe bruising (%) following damage 
using a falling bolt method 1 (bolt damaged the side of potatoes at temperature  
<10 °C following incubation for 48 h at 33 °C) and method 2 (bolt damaged the 
stolon of potatoes at room temperature following incubation for 20 h at 25 °C) in LR 
tubers harvested around 150 days after planted in field trial 1 (2010), field trial 2 
(2011) and field trial 3 (2013). 
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Bruising was observed in LR in all seasons but in field trial 2 LR bruised 

worse as the tubers were not cooled down before bruising damage as in 

field trial 1, resulting in more bruising.  

This study aimed to establish the relationship between susceptibility to 

bruising measured by oxidative potential and severe bruising following tuber 

damage. In general, oxidative potential was well correlated with tyrosine 

levels and the results were in accordance with the authors Sabba and Dean 

(1994); Kim and Dean (1998); Stevens and Davelaar (1997) and McNabnay 

et al.(1999). However,  the oxidative potential did not always reflect the 

changes in severe bruising. Correlation was found only when analysing the 

varieties together with PCA in field trial 2.  

7.2 Varietal differences- During field trials 1 and 2, three varieties were 

investigated simultaneously and it was apparent that the varieties responded 

differently to the test conditions of the field trial. RB presented the highest 

incidence of severe bruising in field trials 1 and 2 during early to late 

harvests. This suggests that RB probably reached its maturation stage 

earlier than the other two varieties. Interestingly, in very late harvests (e.g. 

H4 in field trial 1), RB appeared to bruise less, with LR being the most 

susceptible cultivar. This suggests that there is a peak time for bruising, 

which was reached by RB around September, and by LR around October. 

LR presented the highest incidence of bruising during storage, particularly 

for potatoes harvested later (October), and this was associated with 

increased deformability of tubers. MP presented a lower incidence of severe 

bruising compared to RB and LR in field trials 1 and 2. This suggests that 
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MP may mature at a later stage than the other two varieties. All varieties 

bruised significantly when stored for a long time. 

It is interesting that RB required the lowest amount of energy to break the 

skin and cortex tissues, and also presented the highest susceptibility to 

bruising. The cellular arrangement of the cells of RB may be a contributing 

factor. However, these mechanical properties showed no statistical 

correlation to bruising incidence when varieties were analysed separately, 

indicating that other factors are also important for this variety. In this variety, 

tyrosine levels were the highest and the levels correlated with bruising, 

indicating a biochemical readiness to bruise. LR, however, required higher 

energy to break the tissue and showed  low levels of tyrosine but presented 

major changes in deformability at late harvest and along storage, which may 

lead to ideal physical conditions to initiate bruising. Also, LR has a higher 

specific gravity which in flaccid/soft cells may influences impact susceptibility 

as reported by Wulkow (2009). MP presented intermediate mechanical 

properties and phenolic substrate levels. Overall, these observations 

suggest that at early stages of tuber maturation, mechanical properties may 

be important at protecting tubers, but this is overridden at later stages by 

high phenolic/tyrosine content in mature tubers which promote tuber bruising 

regardless of mechanical properties. 

7.3 Specific gravity- Specific gravities were distinct between varieties. The 

variety MP was quite different to LR and RB, having lower SG than the other 

varieties and low severe bruising incidence. Within all varieties, the tuber-

specific gravity increased with harvest and storage but the incidence of 

severe bruising was highly variable during harvest and during the first 
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months of storage. Therefore, there was no overall relationship between 

bruising and SG in any experiment in the project that be regarded as causal, 

even though there was a significant positive correlation between bruising 

and SG in the 3rd field trial upon application of nitrogen to soil, and that was 

associated with higher bruising at later harvests.  

7.4 Phenolics – The phenolic compounds were measured in order to 

investigate if harvest, storage, defoliation and nitrogen had an effect on the 

composition of these compounds in the potato tubers and their relationship 

with bruising. The results showed a positive correlation between percentage 

of severe bruising in field trial 1 and 2 for RB, but only in field trial 1 for MP. 

LR showed different results, where the amounts of phenolic acids were 

higher in the hotter season (field trial 2) and it was negatively correlated with 

bruising. However, in field trial 3, a positive correlation was found. This 

findings indicates that there may not be a threshold in the amounts of 

phenolics required for bruising, as it was observed for tyrosine by Corsini et 

al. (1992). 

There was no a marked accumulation of phenolic acids observed along 

storage compared to the amounts at the harvest time. It is known that 

several types of stress such as temperature, mechanical injuries and 

sprouting might affect the chemical composition of tubers (Lisinka and 

Leszcynski, 1989) and in particular, the phenolic compounds are 

accumulated upon wounding and biotic stress (Ramamurthy et al., 1992). 

One possible explanation of this finding is that the content of phenolic acids 

was high at harvest time due to a hotter season. The varieties did not show 

a clear tendency of phenolic metabolism during storage. 
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 Another interesting finding was that defoliation induced either an increase or 

decrease in the amounts of phenolic acids and increased the tyrosine 

content which can be caused by the mechanical and chemical stress during 

this agricultural practice. However, in this case the damage is systemic since 

the damage is not caused directly to the tubers. One possible explanation is 

the activity of the phenylalanine ammonia-lyase (PAL) because it was 

postulated by Jones (1984) that this enzyme can be induced by wounding 

and it stimulated the synthesis of phenolic compounds as a systemic 

defence. Also, as a response to wounding the increase in chorismate 

mutase levels which stimulate the synthesis of tyrosine was observed by 

Kuroki and Conn (1988). 

Although accumulation of tyrosine and alteration of  the metabolism of  

phenolic acids were observed, the variations in the incidence of severe 

bruising did not always reflect the levels of tyrosine or phenolic acids. RB 

was the only variety where tyrosine levels were associated with bruising.  

The results were in accordance to Strehmel et al. (2010a) which stated that 

bruising susceptibility were not  mediated by precursor accumulation or 

limitation. So, composition of these phenolics substrates at harvest could not 

be used as a predictor of bruising susceptibility for stored samples.  

7.5 Mechanical properties- The harvest time resulted in an important drop 

in energy, force and distance required to break the skin and the cortex tissue 

of the varieties studied. This suggests an important role for skin and cortex 

in the bruising of the potato. Having very little starch, the mechanical 

properties of the skin and cortex are very much influenced by the turgor and 

cell wall properties. However, defoliation of plants which could lead to an 



268 
 

decrease in turgor of cells did not affect the energy to break the skin which 

was unexpected. The association between mechanical properties and 

bruising was most apparent in MP and LR during harvest and LR during 

storage. The variety RB was less deformable requiring less force and energy 

to break the skin and the cortex tissues. Tuber mechanical properties were 

mostly affected by storage whereby the tubers required more energy to 

break the tissue, became more deformable and more prone to bruising.  

RB epidermal cells appear very neatly stacked between varieties. This 

stacking created lines of weakness between cells, and if significant pressure 

is applied cells can shear or grow apart (Wiltshire et al., 2005). LR and MP 

were less prone to microscopic cracking with the “brick wall type” cell 

arrangements that contain fewer lines of weakness. Therefore, the data from  

the trials suggest that there is a major mechanical contribution to tissue 

resilience since bruises became universally deeper in the variety RB. The 

general increase in deformability over storage may be related to starch 

utilisation by the tuber, the moisture loss observed with increases in SG 

along storage and it could also be attributed to the irrevocable loss in the 

integrity of cellular membranes along the storage period. 

Texture measurements indicate that the mechanical properties of the skin 

could predict bruise susceptibility among varieties. The potential biochemical 

apparatus to bruise and resistance to breakage of the tissue could act 

synergistically as the further the needle goes though the tissue, the more 

breakage of the membranes of surrounding cells occurs, releasing 

biochemical components within the cells.  
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7.6 Cell wall properties- When pectin presented longer or more side 

chains, higher energy and deformability of  the cortex tissue was observed 

within  the varieties and harvests. Losses in the linearity of pectin of the LR 

along storage were observed, implying an decrease in the cell–cell 

adhesion, particularly in the pectin-rich middle lamella between cells due the 

decrease of calcium-bridges. However, no direct relationship between 

mechanical properties and pectin linearity or branching was found with 

harvest, storage and defoliation. There was a decrease in methylation of 

pectin along harvest time, which is expected during cell wall maturation. 

However, the changes were not significant enough to explain differences in 

bruising incidence between varieties.  

Other analyses would be recommended for better understanding of the 

pectin properties such as acetylation of galacturonic acid which impairs 

calcium crosslinks between HG chains (Renard and Jarvis, 1999). The 

fractions of  cell wall polymers such as hemicelluloses, which has a 

contribution to strengthening the cell wall by interaction with cellulose 

(Scheller and Ulvskov, 2010) and cellulose which has side chains of RG-I 

galactan and arabinan (Zykwinska et al. 2007) would also bring some more 

details of the structure. A micro-penetration technique described by Hiller et 

al. (1996) for mechanical testing of cell walls would be recommended to pick 

up subtle changes.  

7.7 Environmental influences- The 2012 season (trial 2) was characterised 

by appreciably low rainfall (<0.8 mm) during tuber growth (before end of 

May) and the temperature of the air and soil was slightly higher than average 

years. The hot and dry conditions during tuber development were associated 
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with early plant senescence and bruising incidence was considerably worse 

in 2012. These conditions lead to an increase in bruising. Earlier harvest 

during hot seasons is recommended. 

7.8 Storage- Incidence of severe bruising of the varieties studied was highly 

variable during the first months of storage for both harvests period. Short 

storage (until January) was not associated with increased bruising incidence 

in any of the varieties and does not appear to be detrimental to bruising. This 

observation is useful for the industry although as mentioned in the 

introduction, post-Christmas is a period of weaker demand. 

Longer storage (until March) did significantly increase the bruising incidence 

for all varieties, particularly LR harvested late. Storage increased the 

deformability of the cortex in all varieties, most particularly LR which bruised 

the most during storage. Both phenolic acids and tyrosine levels increased 

during storage, although the highest levels were not found in LR, but in RB. 

This indicates that tyrosine is not always the predicting factor for bruising.  

The practical recommendation for storage of tubes is to harvest LR in 

September and MP and RB in October to grant lower incidence of bruising 

along storage.  

7.9 Defoliation- A higher incidence of bruising was found in defoliated 

samples harvested 24 and 38 days after defoliation. This supports 

observations from earlier studies by Stalham (2008) which showed higher 

incidence of bruising when potatoes where harvested 3 to 5 weeks after 

defoliation. However, tubers from defoliated plants presented a lower 

incidence of bruising than undefoliated at H4 harvest (49 days after 
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defoliation). These results were surprising since one would expect an 

increase in bruising associated with the stress of defoliation, notably by the 

increase of endogenous level of free tyrosine in LR and RB tubers from 

defoliated plants. 

It suggests that defoliation promotes skin setting which may be protective. 

However, no significant effects of defoliation on mechanical properties or 

tissue ultrastructure were observed in this study. The reduced bruising at 

later harvest times may be associated with a halting of tuber maturation due 

to forced defoliation. Defoliation did decrease tuber weight significantly. 

7.10 Nitrogen- Nitrogen application to the soil delayed the maturity of the 

tubers and led to increased levels of bruising, but only in later harvests. The 

treatment affected mechanical properties of the tubers, most particularly 

skin, and tubers from treated soils showed a strong correlation between 

mechanical properties and bruising. Nitrogen application to the soil did not 

affect tyrosine levels considerably. Nitrogen application increases weight 

and specific gravity. 
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8 Conclusion and recommendations 

The study demonstrated that the bruising susceptibility is due to multiple 

factors that are dependent on the variety.  

RB presented the highest incidence of bruising at early harvests 

(September), and that was associated with low mechanical strength and 

deformability, and higher tyrosine content. RB benefited from early harvest 

and short storage. LR presented higher incidence of bruising when 

harvested in later season (October) and was significantly affected by 

storage. This was associated with higher deformability and levels of 

phenolics (but not necessarily tyrosine). However, MP appeared to show 

moderate bruising until later harvests (October). It appeared to have tissue 

with strong mechanical properties that protected tubers from impact and 

intermediate levels of phenolics and tyrosine. 

An increase in bruising in stored samples is associated with higher specific 

gravity, higher tissue deformability and higher phenolic acid and tyrosine 

levels. However, the tyrosine levels or specific gravity were not always 

associated with a highest bruising incidence. It is noteworthy, that the 

mechanical properties of the tissue of potatoes are very important factors 

with regard to bruising. 

As a practical recommendation, the best period to harvest to prevent 

bruising of fresh and stored for LR is in September and for MP in October. 

Harvest in September is recommended for fresh market of RB and in 

October for storage. Tubers from defoliated plants presented less bruising 
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when tubers were left in the ground for longer periods (>49 days), but it 

requires evaluation of the pros and cons as defoliation affects tuber yield 

significantly. Application of nitrogen for LR harvest in late July/ early August 

is effective in producing potatoes with high weight and lower bruising 

susceptibility. 

In conclusion, while general trends were observed, the factors determining 

bruising seem to be dependent upon variety and the maturity of the tubers at 

harvest. Further research to identify factors associated with senescence and 

tuber maturation is recommended. 
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