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Abstract

The central theme of this thesis is the longitudinal analysis of health and healthcare data.

Chapter 2 uses the first wave of, and latest longitudinal follow-up to, the Health and Lifestyle

Survey (HALS) to investigate the social gradient in cancer, considering both lifetime incidence

and duration models of time-to-cancer – healthy time lived before developing cancer. Contrary to

previous claims regarding the relationship between circumstances and the development of cancer,

such as Deaton (2002) and Wilkinson and Pickett (2010), a social gradient in time-to-cancer is

observed, with those in the lowest two social classes developing cancer approximately 15% sooner

(significant at the 5% level) than individuals in the highest social class. This relationship holds

after excluding smokers from the sample. No significant gradient is observed when only lifetime

incidence of cancer is considered.

Chapter 3 investigates the relationship between smoking and ill-health, with a focus on cancer

outcomes. A discrete latent factor model for smoking and health outcomes, allowing for these to

be commonly affected by unobserved factors, is jointly estimated, using the British Health and

Lifestyle Survey (HALS) dataset. Post-estimation predictions suggest the reduction in time-to-

cancer to be 5.7 years for those with a smoking exposure of 30 pack-years, compared to never-

smokers. Estimation of posterior probabilities for class membership show that individuals in certain

classes exhibit similar observables but highly divergent health outcomes, suggesting that unob-

served factors in this model substantially determine these outcomes. The use of a joint model

changes the results substantially. The results show that failure to account for unobserved het-

erogeneity leads to differences in survival times between those in different social classes and with

different smoking exposures to be overestimated by more than 50% (males, with 30 pack-years of

exposure).

Chapter 4 uses Hospital Episode Statistics, English administrative data from the Department of

Health, to further investigate the red herring thesis, as advanced by

Zweifel et al. (1999). We use a sample of over 100,000 individuals who used healthcare in the

financial year 2005/06 and had died by the end of the financial year 2012/13. We use a panel

structure to follow individuals over seven years of this administrative data, containing estimates

of inpatient healthcare expenditures (HCE), information regarding individuals’ age, time-to-death

(TTD), and morbidities at the time of their admission. We find that, while TTD might better

explain HCE than does age, TTD itself merely proxies for individuals’ morbidities, and no longer

explains differences in HCE once we condition on morbidities. Our results point to an important

role for including estimates of future changes in morbidity when estimating future HCE.
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Introduction

This collection of papers centres on the longitudinal analysis of health and healthcare

data, considering topical issues in both policy and research: inequalities in the develop-

ment of cancers, determinants of cancer, and healthcare expenditures in the terminal years

of individuals’ lives. Each chapter is underpinned by the theoretical approach outlined

in Grossman (1972): this model is amended and augmented according to the research

question employed. This collection of papers makes methodological contributions: featur-

ing, as far as literature searches have revealed, the first papers to jointly model smoking

behaviours, death and cancer outcomes from a pre-diagnosis starting point, while allowing

individuals in heterogeneous groups to select into smoking based on expectations regarding

health outcomes. These papers have important implications for policy, in areas from the

prediction and allocation of healthcare costs to the relevance of socioeconomic inequality

in explaining differences in health-related, particularly cancer-related, outcomes.

Some elaboration on the Grossman model (Grossman, 1972) seems appropriate at this

stage. This has become the canonical theoretical model for research in topics relating to

individuals’ decision making, where their demand for health is relevant. In its original

and full form, it presents an individual’s multi-period optimisation (utility-maximising)

decision when allocating time and income between healthcare inputs and consumption

good inputs, in order to produce desiderata of health and consumption goods, where these

individuals act as producer-consumers of each. Individuals face these economic (income

and time) constraints, as well as biological constraints that cause the individual’s ‘health

stock’ to fall over time in the absence of investment, and to at some point fall to such a low

level that precipitates the individual’s death. While the model directly considers health

as a desired good, predictions regarding consumption health inputs (primarily, healthcare

with its associated expenditures) which produce this can also be drawn.

Chapter 2 directly examines the relationship between social class and individuals’
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prospects for developing cancer. Existing research tends to find no significant social gradi-

ent, or social inequality in cancers. Deaton (2002) claims that data collected on UK civil

servants (Marmot et al., 1978, 1991) show no social gradient in any cancer, once differen-

tial smoking behaviours are accounted for. While the authors of 2010’s The Spirit Level

(Wilkinson and Pickett, 2010) argue that sufficient evidence exists to prove socioeconomic

inequality in health generally, and many diseases specifically, they find no social gradient

in breast cancer and ‘only small class differences’ in prostate cancer.

This chapter augments the standard Grossman model with an additional health out-

come: that of time to cancer. While Grossman (1972) features an individual with a finite

lifespan that ends at some future time period t = n (the time period in which he dies),

I introduce a second health outcome: that an individual has a finite cancer-free lifespan

that ends at some future time period t = m (the time period in which he is registered as

having developed cancer). This implies that the individual will be observed to develop

cancer if and only if m ≤ n: that is, if death does not intervene before the individual

develops cancer.1 If individuals in lower social classes disproportionately die before they

develop cancer (that is, if they disproportionately belong to the set of individuals for whom

m > n), a comparison of lifetime incidence by social class will provide an incomplete pic-

ture of the burden of disease faced by individuals in lower social classes. This potential

problem is overcome by modelling cancer-free lifespan, rather than lifetime incidence: this

produces a dependent variable that treats cancer registration at an earlier age as different

from cancer registration in old age.

The chapter uses data gathered on all individuals aged 45 and over in the Health and

Lifestyle Survey (HALS) dataset, consisting of socioeconomic and health-related informa-

tion gathered on a cross-section of the population of Great Britain, as well as subsequently-

collected information about the health status of those sampled, in order to consider this

question. The chapter replicates existing findings that, when lifetime incidence of cancer

alone is considered, evidence of a social gradient in cancer is weak. It is also shown that

naive estimates, which fail to condition on smoking, would tend to result in higher esti-

mates of social inequality in cancer. However, it is demonstrated that, while individuals

in lower social classes develop cancer at roughly the same lifetime rate as those in higher

social classes, they do so sooner in life – even after the sample is restricted to consider

non-smokers only, suggesting a greater burden of disease for those in lower social classes.

1This weak inequality arises as the paper includes individuals whose cancer is detected only post-
mortem. This information is derived from analysis of death certificate data, included in HALS.
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Individuals in the lowest two social classes are found to develop cancer approximately

15% sooner than those in the highest social class. This implies an underestimate of the

inequality in the burden of disease (in this case, cancer) faced by individuals in lower social

classes, even after the effect of differential smoking behaviours is removed.

Chapter 3 examines the relationship between smoking, lifestyles and cancer, using data

gathered on all individuals aged 45 and over in the Health and Lifestyle Survey. Building on

work in Chapter 2, smokers are included in this sample, and smoking decisions (taking up

smoking, time-to-taking up smoking and time-to-quitting smoking) and health outcomes

(time-to-death, and time-to-registration as a cancer sufferer) are jointly modelled, using

a discrete latent factor approach to allow these to be commonly affected by unobservable

factors in the system of equations (Heckman and Singer, 1984; Mroz, 1999).

While randomised trials in this area are infeasible, often no attempt is made in existing

literature to account for individuals’ unobservable characteristics which may jointly affect

smoking behaviours and health outcomes. One of the most important studies in initially

establishing the link between smoking and ill-health – the British Doctors Study (Doll and

Hill (1954) and subsequent papers) – focuses on one small stratum of society, and includes

more limited information on smoking behaviour than that we are able to exploit. Further,

we are able to rely upon almost 25 years of follow-up data, automatically collected through

administrative records, of the individual’s death and cancer registration.

This chapter is again based on the model of health demand proposed by Grossman

(1972). As in the previous chapter, a second health outcome of cancer is introduced, and

the individual is said to develop cancer at some time period m. The individual is assumed

to maximise a utility function which is explicitly conceived of in terms of optimal choices

around health-related goods, and two types of consumption goods: those not affecting

health, and those affecting health. We assume that individuals’ choices around consump-

tion goods that affect health are affected by the individual’s exogenously-determined, but

unobserved to the researcher, health constraints: his initial (genetic, or early-life) stock

of health, and the individual’s discount rate at any future time period. This means that

both health outcomes (cancer and lifespan) and decisions regarding consumption goods

that affect health (in our model, decisions regarding smoking) are jointly affected by these

unobserved factors. This motivates the use of a joint model which allows the impact of

such unobservable factors to be estimated and recovered.

We find that jointly modelling these decisions and outcomes in this way alters results

12



substantially: unobservable factors are found to be responsible in large part for differentials

between smokers and non-smokers. We find the reduction in time to cancer to be 5.7 (5.8)

years for men (women) who were smokers at the time of HALS, with a total observed

exposure of 30 pack-years, compared to never-smokers at the time of HALS, approximately

50% lower than when cancer outcomes are modelled in single-equation form. This implies

that previous work which has examined the effect of smoking on cancer may overestimate

causal effects: that individuals who select into cancer are different in relevant unobserved

characteristics which jointly affect smoking behaviours and cancer outcomes.

Chapter 4 seeks to establish the causal relationship between ageing and healthcare

expenditures (HCE). Observed changes in life expectancy and morbidity in the mid-to-

late 20th century culminated in fears of an ‘expansion of morbidity’, or ‘failures of success’

(Gruenberg, 2005). An ageing population would, according to this thesis, lead to – on

average – a greater burden of morbidity among elderly groups: that is, that benefits of

better and more widespread healthcare provision would, by preventing or curing previously

quickly-fatal diseases, lead to a greater proportion of the population suffering from costly

chronic conditions. Research papers released by bodies such as the International Monetary

Fund (Heller et al., 1986) pointed to a positive relationship between age and HCE. These

views found an echo, over 25 years later in remarks made by Andrew Lansley, the UK’s

then-Secretary of State for Health, who identified ‘the number of people aged over 85 in

this country will double in the next 20 years’ as one of two factors in ‘costs... rising at an

unaffordable rate’ (Lansley, 2012).

In contrast to this, the emergence of a ‘compression of morbidity’ strand of literature,

beginning with Fries (1980), gave reason to suspect that the developed world had entered

an era in which individuals age more heathily than previously suspected and that, conse-

quently, the implications for future HCE are moot. Although individuals born in recent

decades see a longer expected lifespan, they will, contra the ‘failures of success’ thesis, not

have an increased number of years living with chronic conditions. More recently, this has

been empirically evidenced by, inter alia, Freedman et al. (2002), Romeu Gordo (2011)

and Cutler et al. (2013). Due to improvements in living standards and medical treatment

in the late 20th century and beyond, individuals may be able to entirely avoid the onset of

costly chronic conditions. Complementing this, a ‘red herring’ strand of research, starting

with Zweifel et al. (1999), identified the true driver of HCE as being closeness to death

(usually termed time-to-death, or TTD, in existing literature) rather than ageing: that
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once empirical analysis conditioned on TTD as well as age, the impact of age was muted.

A Grossman framework for this chapter conceives of TTD in existing research as a proxy

for health stock, and a proxy that is better replaced by observations of individuals’ actual

morbidity status.

The chapter investigates this further, using a sample of over 100,000 inpatient users

of healthcare in England in 2005/6, who subsequently died within the following seven

years, taken from in an administrative data from the UK’s Department of Health. A

reduced form Grossman model is used to underlie the analysis carried out. Morbidity

markers are assumed to proxy for health and to causally affect HCE in a given time

period. Because HCE is assumed to affect morbidity in future time periods (and thus

affect TTD), a retrospectively-defined TTD variable becomes endogenous in a given time

period, according to the Grossman framework employed. Small area measures of mortality

(years of potential life lost in the UK government’s defined lower super output areas) are

used to instrument for a contemporaneous TTD variable.

The results of research in this chapter suggest that TTD is itself a red herring: that

once we condition on individuals’ observed morbidity, there is no economically-significant

role for age and TTD in explaining HCE. This has both implications for projections of

future HCE, as well as the allocation of healthcare budgets in a more short-term setting.

While TTD may be a useful proxy for morbidity – which more directly explains HCE – the

nature of TTD in explaining HCE will not necessarily be constant in future. Combined

with the compression of morbidity thesis – suggesting that individuals age, and approach

death, in greater health – these results give reason to treat the use of TTD rather than

expected morbidity, in these settings, with some caution.
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Abstract

While much current work on socioeconomic inequality in cancer looks at lifetime incidence
of cancer, it is more informative to consider survival times: healthy time lived without
cancer. This paper uses the first wave of, and latest longitudinal follow-up to, the Health
and Lifestyle Survey (HALS) to investigate the social gradient in cancer, considering both
lifetime incidence and duration models of time-to-cancer. Contrary to previous claims
regarding the relationship between circumstances and the development of cancer, such
as Deaton (2002) and Wilkinson and Pickett (2010), a social gradient in time-to-cancer
is observed, with those in the lowest two social classes developing cancer approximately
15% sooner (significant at the 5% level) than individuals in the highest social class. This
relationship holds after excluding smokers from the sample. No significant gradient is
observed when only lifetime incidence of cancer is considered.

JEL classification: C41; I14

Keywords: health; duration analysis; smoking; mortality; inequality of opportunity;
determinants of health; lifestyles.
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2.1 Introduction

While strong evidence exists regarding a social gradient in lifespan overall and illnesses such

as cardiovascular disease, the existence of a social gradient in cancer is more controversial.

Deaton (2002) argues that the Whitehall Studies (Marmot et al., 1978, 1991) show no

social gradient in any cancer apart from lung cancer, the gradient in which is entirely

explained by differences in smoking between the occupational grades. Studies, defining

socioeconomic status variously (by occupation, income, levels of education), find evidence

of socioeconomic inequality in cancer incidence, failing to adjust for differential smoking

behaviours in the case of Mackillop et al. (2000), and adjusting for differential smoking

behaviours in the case of (Mao et al., 2001). In a meta-analysis of 64 studies of the link

between lung cancer and socioeconomic outcomes, Sidorchuk et al. (2009) find evidence

of socioeconomic inequality (according to occupation and educational level) in cancer

incidence which exists when no control is made for smoking behaviours, and persists even

when smoking behaviours are adjusted for.

Using Canadian data drawn from individuals with lung cancer and a constructed con-

trol group, Nkosi et al. (2012) argue, however, that such studies may take only an in-

complete account of smoking outcomes and report no relationship between socioeconomic

status (variously defined) and incidence of the disease once appropriate and full account is

taken of differential smoking behaviours across socioeconomic groups, adjusting for differ-

ent functional forms of the relationship between smoking behaviours and health outcomes.

Despite finding social gradients in health overall and in many diseases, Wilkinson and

Pickett (2010) find no social gradient in breast cancer, and ‘only small class differences’

in prostate cancer. Some studies (Lyratzopoulos et al., 2012) into the stage at diagnosis

find socioeconomic inequalities in this regard and, notably, inequality in stage at diagnosis

– as far as studies find evidence of this in the direction of those in lower socioeconomic

groups – would tend to mitigate against finding evidence of social inequality in the age

of registration, which cannot precede diagnosis. Attention in this area has focused on

incidence of cancer rather than survival time to cancer (such as, additionally, Singh et al.

(2003); Banks et al. (2006); Dalstra et al. (2005)): the differences in implications of this,

and the subsequent results obtained by the use of such approaches are highlighted in this
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paper.

No study has, as yet, exploited the Health and Lifestyle Survey (HALS) dataset and the

subsequent cancer follow-ups for the purposes of carrying out such an investigation. Hiatt

and Breen (2008) identify the question of why social determinants are correlated with

the development of cancer – because they are correlated with already-understood risk

factors for cancer or biological factors, or because they are inherently causative of cancer

– as ‘a key question in cancer research’. Further, the authors call for the investigation of

such factors to encourage ‘a more complete understanding of the causes of cancer’. While

the possibility of causal analysis is limited by the available dataset, this paper provides

evidence of a link between social class and cancer, independent of differences in smoking

behaviours, and goes some way towards addressing these concerns.

The importance of smoking in this analysis is clear: a link between smoking and

ill-health in general, and cancer specifically, is uncontroversial. The risks of smoking

have been well-explored since the link between smoking and lung cancer was made by

Doll and Hill (1954). Smoking has been associated with a greater propensity to develop

various cancers and other diseases (for instance, deaths from lung cancer are estimated

to occur with between 10.8 and 24.9 times the frequency in smokers as in non-smokers

(Doll, 1998)) and is estimated to be responsible for approximately 30% of all cancer deaths

in developed countries, as well as causing deaths from respiratory, circulatory and other

problems (Department of Health and Human Services, 1989; Jones et al., 2007; Peto

et al., 2006; Vineis et al., 2004). Using Health Survey for England data from 1998 to 2006,

Vallejo-Torres and Morris (2010) estimate that 2.3% of all socioeconomic (income-related)

inequality in health observed was due to smoking. Successive reports by the US Surgeon

General (Department of Health and Human Services, 1989, 2004, 2010) have examined the

evidence linking smoking with mortality and diseases including cancer, increasingly making

stronger links over time, with 30 diseases listed in the 2004 report for which evidence was

‘sufficient to infer a causal relationship’. Doll (1998) provides a useful summary of the

history of mounting evidence regarding the links between smoking and ill-health. Given

this, along with the disproportionate levels of smoking among those in lower social classes

and the possibility of this acting as a confounding factor when estimating relationships

between social class and ill-health, three different models are estimated, each treating
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smoking variables differently. A first model includes smokers in the sample, but excludes

variables for smoking behaviours in the regression; a second model includes smokers in the

sample and includes variables for smoking behaviours in the regression; a third and final

model excludes smokers completely, in order to strip out (as far as possible) any error in

the specification of the functional form relating smoking behaviours and cancer outcomes.

Further, only individuals aged 45 or over at the time of HALS1 are included in this model,

to reduce the confounding of cancer registrations with genetic factors unrelated to the

covariates used in the health outcome models. An association, significant at the 5% level,

between social class and accelerated time to cancer is observed.

2.2 Data

This paper uses the Health and Lifestyle Survey (HALS), conducted between 1984 and

1985, together with the most recent longitudinal follow-up (that of July 2009). HALS

contains data on lifestyle, behaviours (such as smoking and alcohol consumption) and cir-

cumstances of a large cross-section of a representative sample of individuals in Great

Britain (Cox et al., 1993)1. Data collection consisted of a one-hour face-to-face in-

terview to collect information on individuals’ health, lifestyles, and socio-demographic

data. It involved a visit from a nurse to collect information on physiological and cog-

nitive function, and a self-completed questionnaire to gather information regarding psy-

chiatric health and personality (Cox et al., 1993; Jones et al., 2007). Details of indi-

viduals’ diagnoses with cancer and information relating to individuals’ deaths (such as

date and cause of death) were subsequently provided to the HALS team. Such data,

including details from death certificates and cancer diagnoses, are used, correct to the

beginning of July 2009 – the seventh deaths revision and fourth cancer revision

(University of Cambridge Clinical School, 2009). 9,003 individuals were initially entered

into the study of whom, as of this revision, the status of 97.8% had been flagged on the

NHS’s Central Register at the Office for National Statistics: 2,883 individuals have been

flagged as dead and 1,468 coded for cancer.

The original HALS dataset contains 9,003 observations: after cleaning, this is reduced

1That is the United Kingdom, not including Northern Ireland.
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to 8,213. This cleaning procedure was particularly assiduous for smoking-related vari-

ables, and required the removing of individuals who did not report their smoking status,

individuals who were reported to be current smokers but did not report age at starting,

individuals who were reported to have started smoking at a date later than their date of

interview, ex-smokers who did not declare when they quit or the age at which they began

to smoke, current and ex-smokers who did not provide an average number of cigarettes

smoked. Data was also cleaned, and records for individuals deleted, where they were re-

ported to have died on or before their date of interview, registered for cancer on or before

their date of interview, or where any other variable included in the regression was missing

for the individual. The exclusion of individuals aged under 45 at the time of HALS further

reduces the sample size to 3,800, and the exclusion of smokers (in the final model) reduces

the sample to 1,397 individuals.

Descriptive statistics for the full survey, and the full survey after cleaning, are presented

in Table 2.12.

Given that this survey took a cross-section of individuals living in Great Britain at

one point in time, there is the possibility for, and such cases exist where, individuals

had been diagnosed with cancer prior to their being interviewed for HALS. While the

exclusion of those living with cancer in 1985/6 does mean that the sample is necessarily

less representative of the population, this avoids the problem of the inclusion of such

individuals with apparently negative survival times, which cannot be modelled using the

distributions employed here.

2.2.1 Clarifications and discussion of variables

It must be borne in mind there are delays involved in the registration of deaths and

developing cancer, and that delays are not uniform in all cases. The latest HALS follow-up

manual (University of Cambridge Clinical School, 2009) suggests that cancer registrations

tend to be slower to reach the NHS Central Register than death notifications (although

such registrations are ‘probably’ complete up to the end of 2007), and that missing cases

will exist due to ‘patchy’ returns from regional registries. Spikes are recorded in 2008

2It should be noted that some of these descriptive statistics – particularly those smoking-related – are
potentially unreliable pre-cleaning.
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Mean
Description Label n=9003 n=8213 n=3800 n=1397

HALS smoker start 0.346 0.340 0.304 -
Pack-years (HALS1 smoker) packyrss 7.082 7.414 9.845 -
Pack-years squared (HALS1 smoker) packyrs2s 0.026 0.027 0.043 -
HALS ex-smoker quit 0.248 0.254 0.329 -
Pack-years (HALS1 ex-smoker) packyrsq 4.881 5.098 8.861 -
Pack-years squared (HALS1 ex-smoker) packyrs2q 0.024 0.026 0.051 -
Non-prudent drinker of alcohol NPAD 0.121 0.124 0.087 0.039
Eats meat 3+ times per week redmeat3 0.452 0.451 0.527 0.510
Highest educational qualification: degree lhqdeg 0.046 0.047 0.027 0.037
Highest educational qualification: other lhqoth 0.006 0.006 0.006 0.006
Highest educational qualification: A-level or equivalent lhqA 0.044 0.041 0.031 0.029
Highest educational qualification: O-level or equivalent lhqO 0.143 0.148 0.072 0.080
Long-term unemployed (one year or more) ltunemp 0.03 0.029 0.020 0.007
Not working due to sickness sick 0.021 0.020 0.038 0.020
Retired retd 0.210 0.209 0.451 0.481
Single single 0.17 0.166 0.066 0.077
Separated or divorced sepdiv 0.06 0.061 0.050 0.048
Widowed widowed 0.087 0.080 0.166 0.204
Male male 0.434 0.443 0.451 0.282
Social class 2 or 3 sc23 0.655 0.681 0.652 0.674
Social class 4 or 5 sc45 0.277 0.289 0.319 0.293
1920s birth bc20 0.156 0.155 0.335 0.268
1930s birth bc30 0.153 0.157 0.307 0.324
1940s birth bc40 0.193 0.201 0.000 0.001
1930s or 1940s birth bc3040 0.347 0.358 0.307 0.325
1950s birth bc50 0.189 0.195 - -
1960s birth bc60 0.13 0.126 - -

Table 2.1: Descriptive statistics, full survey and cleaned full survey
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and 2009 for individuals who died with cancer present without ever being registered as

developing such a disease (Table 2.2), suggesting that some late returns may exist for this

revision3. Comparison of the previous HALS follow-up (to April 2005) with data held in

this latest follow-up shows, however, that no cancer registrations were late – i.e. were

included in the July 2009 follow-up with a date of April 2005 or earlier4. Furthermore,

the age at the time of an individual’s first cancer registration is not the same as the age

of the individual first developing cancer. Diagnosis of cancer does not immediately take

place upon the individual developing the disease, nor does it occur at the same stage of

development of the cancer across individuals, or over time. In particular, the stage at

diagnosis has varied over time, with US National Cancer Institute (2006) showing declines

in the rates of late-stage diagnoses of cases of cancers of the cervix, colon, prostate and

rectum between 1980 and 2006.

Year of death No. of deaths Percentage

1985 5 3.42
1986 17 11.64
1987 14 9.59
1988 18 12.33
1989 27 18.49
1990 23 15.75
1991 5 3.42
1992 1 0.68
1993 4 2.74
1994 4 2.74
1995 1 0.68
1996 1 0.68
1997 2 1.37
2000 2 1.37
2001 1 0.68
2002 2 1.37
2006 2 1.37
2007 1 0.68
2008 10 6.85
2009 4 2.74

Total 146

Table 2.2: Deaths where cancer is listed on an individual’s death certificate, with the
individual never registered as developing cancer (full survey)

3This data is obtained using the Stata icd9 command to search for individuals whose death certificate
shows any cancer (codes in the range 140 to 239.99).

4Seven death registrations were, however, late by this measure.
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Following Balia and Jones (2011), the measure of social class is this paper is the reg-

istrar general’s measure of social class (RGSC) for the individual’s occupation or most

recent occupation. Social class 1 is made up of individuals classified as being in ‘pro-

fessional occupations’, social class 2 ‘managerial and technical occupations’, social class

3 ‘skilled non-manual and manual occupations, social class 4 ‘partly-skilled occupations’

and social class 5 ‘unskilled occupations’. While this measure is an imperfect proxy for an

individual’s status within a pattern of inequality, its use is dictated by partly practical and

partly theoretical reasons. While income (both measured at the personal and household

level) is included in the HALS dataset and may be argued to be a preferable measure

of the individual’s relative social position, it is characterised by substantial amounts of

missing data, with 23% and 71% of the sample with a missing value for this variable on

income measured at the household and individual level respectively. This compares with

an over 99% reporting rate for RGSC.

If a social gradient exists in smoking behaviours, it may well be the case that exclud-

ing those who claimed to have ever smoked in 1985/6 does not fully remove the effect

of any potential correlation between smoking and cancer: if individuals in lower social

classes are more likely to smoke, they are also more likely to take up smoking after HALS

was conducted, and consequently some of the apparent correlation with social class may

be explained by differential smoking behaviours post-HALS. However, the probability of

smoking take-up drops off precipitously after adolescence, and is almost zero by the time

an individual reaches the age of 30 (Douglas and Hariharan, 1994). Further, dropping

individuals who had ever smoked before 1985/6 may cause a masking of the initial selec-

tion effect into smoking: if individuals in lower social classes have some prior information

that they are likely to die or develop cancer sooner and make decisions regarding smoking

behaviours on this basis, some of the apparent effect of social class may be due to selection

effects.

All right-hand-side variables other than social class are included merely as controls.

Only social class is considered as a treatment variable: a variable on which (given the

acceptance of assumptions discussed below) a causal effect is even postulated. There is

clearly a complex web of interactions between education, social class and employment sta-

tus and untangling these in a model such as this is no simple task, particularly when the
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data available is a single cross-section (with subsequent follow-up only for cancer registra-

tion and death) such as this. At all times, models are estimated and conclusions are drawn

under assumptions most likely to mitigate against a type I error on the treatment variables

for social class. If the model was estimated, for instance, omitting measures of education,

part of any relationship established between social class and health outcomes may be said

to be due to social class merely proxying for education early in life. By including edu-

cation in the model, any relationship between social class and cancer outcomes is made

conditional on educational outcomes, and thus the relationship between social class and

cancer outcomes must be considered necessarily a lower limit on the true relationship5.

In addition to education (with a large reference case of individuals with no previous

qualifications), controls are included for work status, age (through birth cohorts), gender,

red meat consumption (based on individuals’ self-report), and alcohol consumption (based

on individuals’ self-report for the last week’s consumption). All of these RHS variables

must be considered to be exogenous. Variables in the model measured at HALS are ef-

fectively assumed to be time-invariant: there is no way to establish how these variables

subsequently (and, in most cases, previously) changed. In the case of social class, individ-

uals’ experience of being in a particular class, and the effect on their health of being in

that class, is not constant over time, even if they remain in that same class, due to changes

in, for instance, relative and absolute incomes over time. Being in social class V in 1985,

for instance, does not necessarily have the same impact on health as being in social class

V in 2010.

A variable for long-term unemployment (those unemployed for a period of one year

or more) is included in the model to control only for the effect on individuals who may

have been experiencing a substantial period of worklessness. While correlation between

long-term unemployment and ill-health is well-established, evidence differs regarding the

direction of causality. Gordo (2006) claims, accounting for endogeneity, that long-term

unemployment has a significant and negative effect on the health of individuals (using

German data), while Böckerman and Ilmakunnas (2009) (using Finnish data) conversely

5This paper takes no a priori conception of ‘fairness’, but it is perhaps worth noting that adopting
such a method makes results robust to any claim that individuals should be held responsible for decisions
regarding education taken early in life, and that social class is a ‘fair’ source of inequality.
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suggest that individuals with poor health prospects are sorted into unemployment6.

2.3 Theoretical framework

The model employed for this paper augments Grossman’s original framework, removing

the time constraint (with no loss of generality) and replacing the concept of individuals

as consumer-producers of goods with the concept of them as mere consumers of two

types of goods: those affecting health, and those not affecting health. While Grossman

(1972) features an individual with a finite lifespan that ends (i.e, that the individual is

registered as having developed cancer) at some future time period t = n (the time period

in which he dies), I introduce a second health outcome: that an individual has a finite

cancer-free lifespan that ends at some future time period t = m (the time period in which

he is registered as having developed cancer). This implies that the individual will be

observed to develop cancer if and only if m ≤ n: that is, if death does not intervene before

the individual develops cancer.7 If individuals in lower social classes disproportionately

die before they develop cancer (that is, if they disproportionately belong to the set of

individuals for whom m > n), a comparison of lifetime incidence by social class will

provide an incomplete picture of the burden of disease faced by individuals in lower social

classes. This potential problem is overcome by modelling cancer-free lifespan, rather than

lifetime incidence: this produces a dependent variable that treats cancer registration at

an earlier age as different from cancer registration in old age.

The individual’s utility optimisation problem is characterised as

maxU =
∑n

1 Ut (ht, Zt, Lt) t = 1...n

where ht is the individual’s flow of health (‘healthy days’, in Grossman’s original paper)

in time period t, Zt is a vector of consumption that does not affect health, and Lt is a

vector of consumption that affects health.

The individual maximises this utility function subject to a number of constraints, as

detailed below.

Individuals are assumed to invest in health (It) – take decisions that, positively or

6See Mathers and Schofield (1998) and Böckerman and Ilmakunnas (2009) for a review of the evidence
on the relationship and possible direction of causation between unemployment and health.

7This weak inequality arises as the paper includes individuals whose cancer is detected only post-
mortem. This information is derived from analysis of death certificate data, included in HALS.
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negatively, affect their health – where this investment is a function of medical care (Mt),

a vector of consumption goods affecting health (Lt), and a vector of characteristics which

are assumed exogenous, such as the individual’s level of education, his social class, and

employment status (Et).

It = It (Mt, Lt;Et)

An individual’s health in future time periods is a function of this investment, and

health from the current time period (Ht), with some depreciation of this due to natural

processes, where the depreciation rate is δt.

Ht+1 = It + (1− δt)Ht

In some final time period, (t = n), the individual’s health stock will fall below some

level, Hmin, a minimum level of health stock required to survive.

Hn < Hmin

Further, these decisions are made subject to a constraint that discounted lifetime

expenditure cannot exceed discounted lifetime income (where income in time period t is

Yt), plus some level of wealth held at time t = 0, termed A0.∑n
t=1

ptMt+qtZt+stLt
(1+r)t

=
∑n

t=1
Yt

(1+r)t
+A0

where pt is the price of medical treatment, qt is a vector of prices of consumption

goods that do not affect health, st is a vector of prices of consumption goods that do

affect health, yt is the individual’s income and A0 is an initial level of wealth held by the

individual.

We also assume a positive correlation between n and m: that an earlier time of death

is also associated with an earlier cancer registration. The result of this is that if social

class is associated with lower levels of Ht, a pure measure of inequality in cancer could

only be observed either among infinitely lived individuals, or those for whom m ≤ n. If

individuals in lower social classes see a reduction in both m and n, the effect on cancer

lifetime incidence is ambiguous. At an extreme, assume that all individuals in lower

social classes had a reduced time-to-cancer (should they live long enough) compared to

individuals in higher social classes, but m > n for individuals in lower social classes and

m ≤ n for those in higher social classes. This would yield an incidence of 1 for cancer

among individuals in higher social classes and an incidence of 0 among individuals in

lower social classes, despite the reduced time-to-cancer had individuals in lower social
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classes lived long enough to develop the disease. This motivates the use of a final model,

detailed below, that treats a cancer registration at a young age as different from a cancer

registration in old age.

2.4 Methods

2.4.1 Statistical models

This paper assesses the correlation between social class, and other lifestyle and socioeco-

nomic variables, and life years from birth without cancer8.

Figure 2.1 illustrates the basic possibilities for different types of individuals in the

data. The horizontal axis represents time, with events to the left occurring before events

to the right, and examples of subject types appearing on the vertical axis. Date of birth

and dates of starting and quitting smoking were collected in the initial HALS survey,

and date of death in subsequent follow-ups. Using this information, a solid line denotes

years alive (survival time in the lifespan models), with a solid circle denoting birth and

a solid cross denoting death (failure in the lifespan models). A non-filled square denotes

cancer registration9. The dashed line beyond July 2009 represents the fact that these

observations are right-censored at this point as such individuals’ status as alive or dead

(or registered cancer sufferers or not) is not known beyond this. Further discussion of this

diagram follows, with a key provided within Figure 2.1.

8Analysis is carried out using Stata version 11.0.
9Note also, however, that some individuals are registered as cancer sufferers at the time of their death,

and consequently some solid crosses also denote cancer registrations.
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Cancer registration

Non-smokers only are included in this model (a, b, g, h in Figure 2.1), and are entered

into the model conditional on survival at the time of HALS. While individuals can be,

and indeed are, observed to have developed cancer before the survey began, individuals

who had developed cancer before HALS are much more likely to have died before the

survey took place. Those individuals with pre-existing cancer registrations are dropped

from the sample10. Individuals who are registered as dead at the time of the most recent

follow-up are checked for any appearance of a cancer on their death certificate. Such

individuals are treated as failures in this model, with a failure time of their age at death.

The dependent variable here is healthy time observed (cancerage): i.e. time before an

individual is observed to have developed cancer. Individuals who have been registered

as developing cancer at the time of the July 2009 HALS follow-up (g and h, of those

here included) have a complete spell observed for this model while individuals who have

never been registered as developing cancer at this time (a and b) are censored. Maximum

likelihood estimation is used to estimate the link between various factors and the associated

acceleration of time to failure.

This cancer registration model is clearly problematic in terms of interpretation. While

cancer registration, if it occurs, must clearly precede death, death cannot precede cancer

registration11. Consequently, individuals can be censored in this model for two reasons:

that they are not registered as having developed cancer at the time of the follow-up (a),

or that they have died without being registered as cancer or having cancer on their death

certificate (b). These two types of censorings clearly differ. While survival (i.e., being

alive and not registered as a cancer sufferer) at HALS is plausibly non-informative, death

(particularly from certain causes) is potentially informative: for instance, cardiovascular

disease and some cancers (such as lung cancer) share risk factors. Death from such diseases

is therefore likely to be correlated with cancer registration: those dying from, for instance,

CVD are more likely to, absent such a death, have developed cancer. The example of

CVD is particularly pertinent given that smoking causes CVD with a relatively short lag

10Further, the inclusion of such individuals would lead to some individuals effectively having negative
survival times in the left-truncated survival model used here.

11However, individuals can have a cancer registration age equal to their age at death, where cancer
appears on the death certificate without the disease ever being previously diagnosed.
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and lung cancer with a much longer lag (Cutler et al., 2006). As such, deaths are not

accurately characterised as non-informative censorings but, where the cause of death is

etiologically similar to cancers or the individual has innate susceptibilities to both the

cause of death and cancers (Estève et al., 1994), death is likely to be correlated with the

potential for cancer registration absent death. While a formal specification of the joint

distributions of survival times for cancers and deaths is required to entirely eliminate any

biases, such information is inherently unavailable (Estève et al., 1994; Honoré and Lleras-

Muney, 2006). However, if individuals who die sooner are also disproportionately likely to

develop cancer absent their death, and if being in a low socioeconomic group is correlated

with both accelerated time to cancer and accelerated time to death, the coefficients for

social class in this model provide (in absolute terms) lower bounds for the true coefficients.

2.5 Results

Distributions for the hazard of cancer registration (with all smokers excluded) are com-

pared on Akaike Information Criteria and Bayesian Information Criteria scores, which take

the loglikelihood generated through maximum likelihood estimation and impose a penalty

for the introduction of additional parameters which more flexible distributions include12.

Details for the final model are given in Table 2.3. A lognormal distribution is selected for

this model – on both BIC and AIC score, it outperforms all other competing distributions

13. Cox-Snell residuals are plotted in 2.2, and suggest that all these distributions fit the

data well for most of the sample.

12For instance, the most flexible distribution compared here, the generalised gamma, includes three extra
parameters than the least flexible, the exponential distribution. See, for instance, Cox et al. (2007) for
more details on these nested distributions.

13Results are robust to the use of the more flexible generalised gamma distribution. Use of a semipara-
metric competing risks model (implemented through stcrreg in Stata), which seeks to explicitly model
death as a competing risk in cancer registration, produces results that are qualitatively similar.
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Model Loglikelihood degrees of freedom AIC BIC

Generalised gamma -273.931 20 587.8621 692.7037
Lognormal -274.4143 19 586.8285 686.4281
Loglogistic -275.1758 19 588.3515 687.9511
Gompertz -279.2357 19 596.4715 696.0711
Weibull -276.6025 19 591.205 690.8046
Exponential -299.1227 18 634.2455 728.603

Table 2.3: Comparison of AIC and BIC scores
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32



Two preliminary models include smokers in the sample, for which results are shown in

Tables 2.4 and 2.5. A social gradient – specifically, a significant difference in time to failure

between class 1 and all other classes – in observed in cancer registrations when no account

is taken of smoking behaviours (Table 2.4), but no such significant gradient is observed

when these variables (dummy variables for smoking status, and variables for pack-years

and pack-years squared) are included in the estimation, reflecting the disproportionate

smoking exhibited among those in lower social classes14. This would seem to support

the hypothesis that the social gradient in cancer is explained by differences in smoking

behaviours. However, to exclude the possibilities (subject to the earlier clarification and

assumption regarding smoking behaviours post-HALS) of differential smoking behaviours

driving these results, or of selection into smoking based on an individual’s own private

information regarding his health expectations (as in, for instance, Balia and Jones (2011)),

a final model – dropping all smokers – is estimated, and results presented in Table 2.6.

Lognormal Probit

Coef. Std. err. Coef. Std. err.

NPAD -0.071*** 0.027 0.182** 0.079
redmeat3 0.01 0.015 -0.034 0.044
lhqdeg 0.097** 0.048 -0.270* 0.15
lhqoth 0.06 0.099 -0.271 0.288
lhqA 0.06 0.044 -0.11 0.131
lhqO 0.016 0.028 0.034 0.085
ltunemp -0.134** 0.052 0.300** 0.153
sick -0.047 0.041 -0.07 0.118
retd 0.028 0.024 -0.057 0.07
single 0.004 0.032 -0.085 0.09
sepdiv 0.003 0.034 -0.039 0.104
widowed 0.03 0.025 -0.140** 0.066
male -0.052*** 0.017 0.081* 0.048
sc23 -0.085* 0.047 0.162 0.141
sc45 -0.115** 0.049 0.182 0.145
bc20 0.034 0.026 0.006 0.067
bc3040 0.052 0.035 -0.282*** 0.086
Constant 4.555*** 0.055 -0.659*** 0.164
ln(sigma) -1.267*** 0.053

N. of cases 3800 3800

* p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Table 2.4: Lognormal and probit regressions, smoking variables excluded

14For instance, 48% of those in the original HALS sample in unskilled occupations were regular smokers,
compared to 22% in the highest social class.
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Lognormal Probit

Coef. Std. err. Coef. Std. err.

start 0.019 0.038 -0.025 0.120
packyrss -0.006*** 0.002 0.011** 0.005
packyrs2s 0.412** 0.206 -0.867 0.586
quit -0.025 0.025 0.056 0.075
packyrsq -0.001 0.001 0.000 0.003
packyrs2q -0.023 0.083 0.134 0.215
NPAD -0.046* 0.026 0.144* 0.080
redmeat3 0.015 0.015 -0.043 0.044
lhqdeg 0.076* 0.046 -0.235 0.15
lhqoth 0.057 0.095 -0.280 0.290
lhqA 0.057 0.042 -0.108 0.132
lhqO 0.010 0.027 0.045 0.086
ltunemp -0.107** 0.050 0.251 0.154
sick -0.028 0.040 -0.104 0.119
retd 0.025 0.023 -0.056 0.07
single -0.004 0.030 -0.072 0.09
sepdiv 0.011 0.032 -0.056 0.104
widowed 0.029 0.024 -0.141** 0.066
male -0.033** 0.017 0.049 0.051
sc23 -0.064 0.045 0.13 0.142
sc45 -0.083* 0.047 0.133 0.146
bc20 0.036 0.025 -0.016 0.068
bc3040 0.040 0.033 -0.293*** 0.087
Constant 4.570*** 0.053 -0.682*** 0.165
ln(sigma) -1.303*** 0.052

N. of cases 3800 3800

* p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Table 2.5: Lognormal and probit regressions, smoking variables included

As we assume that smoking decisions may be affected by social class, all smokers are

dropped from the sample in this final model and, in such a way, ignoring the effect of

smoking altogether, a persistent gradient in social class is observed, as shown in Table 2.6,

below.15,16

Socioeconomic inequalities appear to exist in time to cancer registration, even after the

exclusion of all smokers from the sample. This gradient appears to be less obvious when the

15Note that, while the sign attached to many variables here is reversed between probit and lognormal
distributions, this is to be expected. A positive coefficient in the probit model indicates an increased
probability of the individual being registered as a cancer suffered over his or her lifespan, while a positive
coefficient in the lognormal model indicates an increase in the expected time before the individual develops
cancer.

16Only one individual was born in the 1940s in this model, and consequently bc40 is excluded from the
probit model.
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Lognormal Probit

Coef. Std. err. Coef. Std. err.

NPAD -0.078 0.060 0.328* 0.191
redmeat3 0.039 0.024 -0.113 0.076
lhqdeg 0.010 0.064 -0.091 0.213
lhqoth 0.011 0.148 -0.096 0.468
lhqA 0.009 0.069 0.024 0.221
lhqO -0.003 0.043 -0.001 0.141
ltunemp -0.035 0.133 -0.151 0.468
sick -0.012 0.089 -0.137 0.28
retd -0.026 0.04 0.081 0.125
single -0.043 0.047 0.090 0.139
sepdiv 0.009 0.055 -0.092 0.181
widowed 0.030 0.037 -0.137 0.105
male -0.044 0.028 0.113 0.088
sc23 -0.155** 0.074 0.428* 0.24
sc45 -0.157** 0.077 0.358 0.25
bc20 0.011 0.040 0.000 0.116
bc3040 -0.029 0.051 -0.170 0.148
Constant 4.709*** 0.086 -1.066*** 0.277
ln(sigma) -1.301*** 0.086

N. of cases 1397 1397

* p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01

Table 2.6: Lifetime incidence (lognormal) and healthy time before cancer (probit) models
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model is estimated on the basis of lifetime incidence only, with differences appearing only

significant at the 10% level when estimated in probit form, and no significant difference

being shown to exist between social classes 4 or 5 and 1. Being in social class 2, 3, 4 or

5 is significant at the 5% level in reducing time to cancer by approximately 15%, with a

slightly greater effect for social classes 4 and 5 than 2 and 3.

2.6 Conclusions

Many existing studies of cancer incidence find weak evidence of socieconomic gradients in

cancer, considering lifetime incidence, once differential smoking behaviours between social

classes are accounted for. Here, such incidence is compared with time to cancer, an inno-

vation made possible by the format of HALS, incorporating a single cross-section in 1985

followed by future follow-up waves to provide data on cancer registrations. Individuals

in lower social classes are found to develop cancer around 15% earlier than those in the

highest social class, an inequality which is ill-evidenced when only lifetime incidence is

considered. This points to the importance of considering age at diagnosis, in order to

get a full picture of the differences in lifetime burden of disease posed by cancer across

different social classes, a difference that is obscured by concentrating solely on lifetime

incidence. Interpretation of coefficients in the cancer registration model is complicated by

the way in which those who do not develop cancer are censored: (at least some) deaths are

not non-informative censorings, but are symptomatic of the tendency of the individual to

develop cancer in the absence of death. Under the assumptions discussed earlier, however,

these coefficients can be treated as (in absolute terms) lower bounds on their true values

in this regard.

Further, if the analysis of Link and Phelan (1995) is correct, the total effect of circum-

stantial factors such as social class, where correlated with particular lifestyles, is likely to

be underestimated. According to this thesis, were people in lower social classes not to dis-

proportionately adopt certain unhealthy lifestyles, for instance smoking, they may adopt

others, and so the inherent link between the experience of being in a certain class and poor

health outcomes may not be broken. Such dynamic effects are inevitably excluded from

this model, and could only be identified using a dynamic analysis which looked at changing

36



behaviours over time, and potential substitutions out of, for instance, smoking into other

risky behaviours. Furthermore, caution should be attached to interpreting these relation-

ships as causal. While these results point to the importance of modelling pre-diagnosis

cancer-free lifespan rather than simply lifetime incidence, limitations of the dataset – a

single cross-section from almost 25 years prior to the most recent cancer follow-up – em-

ployed mean that caution should be attached to directly interpreting the magnitude of the

estimated coefficients. A panel dataset with a long follow-up for cancer registration, which

contained information regarding social class (or a more complete coverage of individuals’

income) as well as information about early life circumstances would enable results to be

drawn with more confidence in both their accuracy and causal nature.
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Estève, J., Benhamou, E. and Raymond, L. (1994), ‘Statistical methods in cancer
research: descriptive epidemiology.’, IARC scientific publications IV(128), 1.

Gordo, L. R. (2006), ‘Effects of short- and long-term unemployment on health
satisfaction: evidence from German data’, Applied Economics 38(20), 2335.

Grossman, M. (1972), ‘On the concept of health capital and the demand for health’, The
Journal of Political Economy 80(2), 223–255.

Hiatt, R. A. and Breen, N. (2008), ‘The social determinants of cancer: A challenge for
transdisciplinary science’, American Journal of Preventive Medicine 35(2, Supplement
1), S141–S150.
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Abstract

This paper investigates the relationship between smoking and ill-health, with a focus on
cancer outcomes. A discrete latent factor model for smoking and health outcomes, allow-
ing for these to be commonly affected by unobserved factors, is jointly estimated, using
the British Health and Lifestyle Survey (HALS) dataset. Post-estimation predictions sug-
gest the reduction in time-to-cancer to be 5.7 years for those with a smoking exposure of
30 pack-years, compared to never-smokers. Estimation of posterior probabilities for class
membership show that individuals in certain classes exhibit similar observables but highly
divergent health outcomes, suggesting that unobserved factors in this model substantially
determine these outcomes. The use of a joint model changes the results substantially.
The results show that failure to account for unobserved heterogeneity leads to differences
in survival times between those with different smoking exposures to be overestimated by
more than 50% (males, with 30 pack-years of exposure).
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3.1 Introduction

This paper develops a joint model of smoking, mortality and cancer, with a particular focus

on the timing of the onset of cancer. The model is estimated with data from the British

Health and Lifestyle Survey (HALS) from 1984-85, linked to the most recent follow-ups

on mortality and cancer registration from July 2009. It features joint estimation of the

decisions of individuals to start smoking, their age of starting, the pack-years of smoking

exposure, time-to-cancer registration and age of death to analyse the relationship between

individual lifestyles, socioeconomic circumstances and cancer. The model accounts for the

possibility of common observable and unobservable factors that influence both smoking

and the health outcomes.

The model brings together two approaches to modelling health and lifestyles, using

the HALS dataset. In the first approach, Contoyannis and Jones (2004) specified an

economic model of health production and lifestyle choices from which they derived an

empirical specification that is estimated as a recursive model for a set of binary measures of

health outcomes and health-related behaviours, including smoking. Common unobservable

factors are assumed to have a multivariate normal distribution and the model is estimated

as a multivariate probit. There is evidence from this model of a statistically significant

correlation between unobservables that influence smoking and that influence the health

outcomes, indicating selection bias. Estimates from the multivariate model show that

being a non-smoker in 1984, along with sleeping well and taking exercise, are associated

with a higher probability of reporting excellent or good self-assessed health in 1991, with

non-smoking increasing the probability by 0.15. Contoyannis and Jones (2004) also find

that a large proportion of the impact of lifestyles on socioeconomic inequality in health is

masked if the unobserved heterogeneity is ignored. Balia and Jones (2008) extended the

multivariate model by adding a binary indicator for deaths that had occurred by the time

of the May 2003 longitudinal follow-up of the HALS deaths data. They find that being

a non-smoker in 1984 is associated with a 0.22 lower probability of dying by 2003. Their

decomposition analysis of a Gini coefficient for mortality suggests that lifestyle factors

contribute strongly to inequality in mortality, reducing the direct role of socioeconomic

status. They also reinforce the finding that ignoring unobserved heterogeneity leads to an
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under-estimate of the contribution of lifestyle to socioeconomic inequality, showing that

this applies to mortality as well as self-assessed health.

A second strand of models, initiated in Forster and Jones (2001), focuses on richer mea-

sures of the timing of decisions about smoking and estimates hazard functions for starting

and quitting smoking. Balia and Jones (2011) developed this approach by estimating a

recursive system of equations for starting smoking, the age of starting, the number of years

smoked and age of death, with data from the April 2005 deaths follow-up. The equations

in their model are tied together and estimated as a system by allowing for common unob-

servables that are modelled as discrete latent factors, following the approaches of Heckman

and Singer (1984) and Mroz (1999). In line with the epidemiological literature such as

Doll et al. (2004), they find a difference of about 12 years in median survival between

current and never smokers and about 3.6 years between current and former smokers.

This paper takes the analysis of HALS a step further. By adding new cancer registra-

tion data and deaths data, from July 2009, we extend the model to add a duration model

for the onset of cancer. In addition, intensity of smoking is captured by a measure of pack-

years that augments data on the number of years smoked with a measure of the quantity of

cigarettes consumed. Results derived using the joint modelling approach employed in this

paper exhibit differences in the implied predicted survival function for cancer, suggesting

a role for unobserved heterogeneity in explaining cancer outcomes. This is further illus-

trated by the estimation of posterior probabilities for each individual’s class membership:

large differences in health outcomes are exhibited between individuals in different latent

classes, despite similar observable characteristics. Post-estimation prediction of median

survival times shows the reduction in time to cancer to be 5.7 (5.8) years for men (women)

who were smokers at the time of HALS, with a total observed exposure of 30 pack-years,

compared to never-smokers at the time of HALS.

3.2 Background

The link between smoking and ill-health in general, and many specific diseases, is well-

established. It is estimated that men born in the first 30 years of the 20th Century

who took up smoking cigarettes, and did not stop, suffered a reduction of 10 years in
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their lifespan, with smoking cessation at the age of 40 associated with an increased life

expectancy of 9 years over those who continued to smoke (Doll et al., 2004). The risks

of smoking have been well-explored since the link between smoking and lung cancer was

made by Doll and Hill (1954). Smoking has been associated with a greater propensity

to develop various cancers and other diseases (for example, deaths from lung cancer are

estimated to occur with between 10.8 and 24.9 times the frequency in smokers as in

non-smokers (Doll, 1998)) and is estimated to be responsible for approximately 30% of all

cancer deaths in developed countries, as well as causing deaths from respiratory, circulatory

and other problems (Department of Health and Human Services, 1989; Jones et al., 2007;

Peto et al., 2006; Vineis et al., 2004). Vallejo-Torres and Morris (2010) estimate that

2.3% of all socioeconomic inequality in health between 1998 and 2006 was due to smoking.

Successive reports by the US Surgeon General (Department of Health and Human Services,

1989, 2004, 2010) have examined the evidence linking smoking with mortality and diseases

including cancer, making stronger causal links over time, with 30 diseases listed in the 2004

report for which evidence was ‘sufficient to infer a causal relationship’. Doll (1998) provides

a useful summary of the history of evidence regarding the (causal) links between smoking

and ill-health.

One of the most influential studies into the effects of smoking on health is the British

Doctors Study (see Doll and Hill (1954) and subsequent papers), a prospective cohort study

with longitudinal follow-ups. Although vital in establishing the link between smoking and

ill-health, studies based on this dataset necessarily focused solely on one small stratum of

society – 34,494 male doctors working in Britain – and, as such, cannot inform research

into the existence or otherwise of social gradients in health. Questions regarding smoking

status sought to establish whether the doctor had ever smoked (one cigarette per day, for

one year or more), whether he was a current smoker, the age at which he began to smoke

and the amount that he was currently smoking1. While this is not an area where evidence

from randomised trials is available, other, much smaller-scale, studies have since been

carried out using innovative methods to confirm the causal relationship, such as following

pairs of smoking and non-smoking twins to track health outcomes in order to control for

1In contrast to, for instance, the HALS dataset, which asked for an average number of cigarettes smoked
over the period during which the individual (had) smoked.
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possible genetic factors that predispose individuals to both smoking and disease (Kaprio

and Koskenvuo, 1989).

3.3 Data

This paper uses baseline data from the British Health and Lifestyle Survey 1 (HALS1),

conducted between 1984 and 1985, which sought to examine the relationships of lifestyle,

behaviours (such as smoking and alcohol consumption) and circumstances of a large cross-

section of a representative sample of individuals in Great Britain (Cox et al., 1993). Data

collection consisted of a one-hour face-to-face interview to collect information on individ-

uals’ lifestyles, a visit from a nurse to collect information on physiological and cognitive

function, and a self-completed questionnaire to gather information regarding psychiatric

health and personality (Cox et al., 1993; Jones et al., 2007). Details of individuals’ diag-

noses with cancer and information relating to individuals’ deaths (such as date and cause

of death) were subsequently provided to the HALS team. Such data, including details

from death certificates and cancer diagnoses are available to the beginning of July 2009 –

the Seventh Deaths Revision and Fourth Cancer Revision (University of Cambridge Clin-

ical School, 2009). 9,003 individuals were initially entered into the study of whom, as of

this revision, the statuses of 97.8% have been flagged on the NHS’s Central Register at

the Office for National Statistics. As of this revision, 2,883 individuals have been flagged

as dead and 1,468 coded for cancer.

Data was cleaned up to remove inconsistencies, and missing values for those variables

included in the model. Further, individuals were excluded where they had been diag-

nosed with cancer prior to the initial HALS1 survey. While the exclusion of those living

with cancer in 1985 does mean that the sample is necessarily less representative of the

population, this avoids the problem of the inclusion of such individuals with a negative

time-to-cancer.

It must be borne in mind that there were delays involved in this registration of deaths

and developing cancer, and that these delays were not uniform in all cases. The latest

HALS follow-up manual suggests that cancer registrations tend to be slower to reach the

Central Register than death notifications (although such registrations are probably com-
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plete up to the end of 2007), and that missing cases will exist due to patchy returns from

regional registries (University of Cambridge Clinical School, 2009). A spike is recorded

in more recent years (with 14 such cases in 2008 and 2009, more than in the previous 13

years combined) for individuals who died with cancer present without ever being registered

as developing such a disease (Table A3.2 (Appendix)), suggesting that some late returns

may exist for this revision2. Comparison of the previous HALS follow-up (to April 2005)

with data held in this latest follow-up shows, however, that no cancer registrations were

late – i.e. were included in the July 2009 follow-up with a date of April 2005 or earlier

– but that 7 death registrations were late by this measure. Furthermore, the age at the

time of an individual’s first cancer registration is not the same as the age of the individual

first developing cancer. Diagnosis of cancer does not immediately take place upon the

individual developing the disease, nor does it occur at the same stage of development of

the cancer across different individuals, or over time. In particular, the stage at diagnosis

has varied over time, with US National Cancer Institute (2006) showing declines in the

rates of late-stage diagnoses of cases of cancers of the cervix, colon, prostate and rectum

between 1980 and 2006.

There is censoring of smoking variables at the time of the survey, with no follow-up

made on smoking habits. Consequently, for instance, an individual who is recorded as

having quit at the time of HALS1 may take up smoking again, or an individual recorded

as a current smoker at the time of HALS1 may quit soon after. The value for years

spent smoking only considers the known years of smoking at the time of HALS1. Fur-

ther, and similarly, circumstantial variables in the model such as social class and marital

status, and lifestyle variables such as alcohol consumption and time spent exercising are

effectively assumed to be time-invariant: there is no way to observe how these variables

changed over time. The reliability of the HALS1 data further is enhanced by accurate

recall and reporting of individuals’ smoking habits: evidence on this suggests that, while

smoking status is generally recalled accurately, the number of cigarettes smoked per day

over time is frequently recalled with some error, with relatively poorer recall for ex-smokers

(Krall et al., 1989), potentially introducing bias at the point of data collection.

2This data is obtained using the Stata icd9 command to search for individuals whose death certificate
shows any cancer (codes in the range 140 to 239.99).
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A further challenge posed by the possibility of unobservable hetereogeneity is the po-

tential for the introduction of bias in that individuals can only appear in the HALS dataset

if they were alive at the time of HALS1. While observables may suggest a balanced sample,

this dataset may reflect the omission of certain groups who differ in important unobserv-

able characteristics. In particular, individuals who would have been of age to be included

in HALS1 and who had smoked are more likely to have died before HALS1 took place.

While this sample may, for instance, show a representative sample of smokers in the UK

at the time of HALS1, if individuals select into smoking based on their life expectancy,

HALS1 may exclude frailer or less frail individuals (depending on the joint distribution of

underlying frailty and the effect of smoking on the health of such individuals). While the

number of smokers may be representative, therefore, the makeup of these smokers in terms

of their unobserved frailty, may not. As in Chapter 2, only individuals aged 45 or over

at the time of HALS1 are included in this model, to reduce the confounding of mortality

and cancer registrations with genetic factors unrelated to the covariates used in the health

outcome models, and to ensure that as full a spell of smoking as possible is observed for

individuals in the sample. The existence of this unobserved heterogeneity motivates the

use of the joint model, detailed below.

3.4 Theoretical model

As in the previous chapter, a second health outcome of cancer is introduced, and the

individual is said to develop cancer at some time period m. The individual is assumed

to maximise a utility function which is explicitly conceived of in terms of optimal choices

around health-related goods, and two types of consumption goods: those not affecting

health, and those affecting health. We assume that individuals’ choices around consump-

tion goods that affect health are affected by the individual’s exogenously-determined, but

unobserved to the researcher, health constraints: his initial (genetic, or early-life) stock

of health, and the individual’s discount rate at any future time period. This means that

both health outcomes (cancer and lifespan) and decisions regarding consumption goods

that affect health (in our model, decisions regarding smoking) are jointly affected by these

unobserved factors. This motivates the use of a joint model which allows the impact of
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such unobservable factors to be estimated and recovered.

The individual’s utility optimisation problem is characterised as

maxU =
∑n

1 Ut (ht, Zt, Lt) t = 1...n

where ht is the individual’s flow of health (‘healthy days’, in Grossman’s original paper)

in time period t, Zt is a vector of consumption that does not affect health, and Lt is a

vector of consumption that affects health.

The individual maximises this utility function subject to a number of constraints, as

detailed below.

Individual are assumed to invest in health (It) – take decisions that, positively or neg-

atively, affect their health – where this investment is a function of medical care (Mt), a

vector of consumption goods affecting health (Lt), and a vector of exogenous characteris-

tics, such as the individual’s level of education (Et).

It = It (Mt, Lt;Et)

An individual’s health in future time periods is a function of this investment, and

health from the current time period (Ht), with some depreciation of this due to natural

processes, where the depreciation rate is δt.

Ht+1 = It + (1− δt)Ht

In some final time period, (t = n), the individual’s health stock will fall below some

level, Hmin, a minimum level of health stock required to survive.

Hn < Hmin

Further, these decisions are made subject to a constraint that discounted lifetime

expenditure cannot exceed discounted lifetime income (where income in time period t is

Yt), plus some level of wealth held at time t = 0, termed A0.∑n
t=1

ptMt+qtZt+stLt
(1+r)t

=
∑n

t=1
Yt

(1+r)t
+A0

where pt is the price of medical treatment, qt is a vector of prices of consumption

goods that do not affect health, st is a vector of prices of consumption goods that do

affect health, yt is the individual’s income and A0 is an initial level of wealth held by the

individual. For the purposes of this model, a solution in terms of the individual’s optimal

smoking behaviour alone is of relevance.

We also assume a positive correlation between n and m: that an earlier time of death

is also associated with an earlier cancer registration.
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If the individual’s depreciation rate δt is greater, the model predicts a lower optimal

level of health stock, Ht in each time period (t 6= 0) and also accelerates the point at

which Hn ≤ Hmin: the point at which the individual dies. Furthermore, a lower level of

inherited health, H0 will cause a lower level of optimal health in future time periods, and

also accelerates the point at which Hn < Hmin.

Individuals’ preferences for consumption affecting health are affected by the inherited

stock of health (H0) and current and future depreciation rates, as well as a vector of factors

assumed exogenous, such as social class, education, and public health actions affecting

individuals’ consumption of goods affecting health (SCt).

Lt = Lt (H0, δt(t = 0...n);SCt)

Similarly, in an innovation employed here, different expected future depreciation rates

and different levels of inherited health stock are permitted to affect the individual’s optimal

demand not only for health but also for Lt, lifestyles affecting health. Owing to potential

problems of endogeneity, we directly model individual’s lifestyles with respect to smok-

ing decisions, and allow decisions regarding smoking and lifestyle to be correlated with

each other in a flexible framework which allows different levels of (for instance) expected

depreciation rates and inherited health stock to be positively or negatively associated,

through their effect on health outcomes (for the purposes of this paper, expected lifespan

and expected time-to-cancer), with decisions regarding smoking.

3.5 Methods

3.5.1 The model

A system of five equations, including a binary outcome of whether an individual ever

smoked, as well as duration models for starting smoking, quitting smoking, mortality, and

cancer registration, is estimated. This extends the approach of Balia and Jones (2011),

who estimate similar models, but without cancer registration, for an earlier HALS follow-

up. The model adopts a discrete latent factor approach for dealing with the effect of

unobserved heterogeneity in systems of equations Heckman and Singer (1984) and Mroz

(1999). Deaths data are included to allow for the competing risk of mortality in the model

for cancer, and also to make use of all information regarding future health outcomes that
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may be considered by individuals as they make decisions regarding their smoking.

This section outlines each of the components of the overall loglikelihood function for the

model, which includes contributions for the probability of ever-smoking and the hazards

for age of starting smoking, pack-years exposure to smoking, age of onset of cancer and

age at death. These contributions are bound together by the latent factor specification of

unobserved heterogeneity in the joint likelihood function.
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Figure 3.1: Types of observed outcomes
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Figure 3.1 illustrates the basic possibilities for observed durations for different types

of individual. The horizontal axis represents time, with events to the left occurring before

events to the right, and examples of subject types appear on the vertical axis. Date of

birth and dates of starting and quitting smoking were collected in the initial HALS1 survey,

and date of death in subsequent follow-ups. Using this information, a solid line denotes

known years alive (survival time in the lifespan model), with a solid circle denoting birth,

a hollow square denoting cancer registration (failure in the cancer registration model),

and a cross denoting death (failure in the lifespan model). The dashed line beyond July

2009 represents the fact that these observations are right-censored at this point as such

individuals’ status as alive or dead (or registered cancer sufferers or not) is not known

beyond this. Individuals of type m are not included in the sample due to being aged

under 45 at the time of HALS1. Individuals of type n also do not appear in HALS (and

are not used in this analysis), due to their having died prior to HALS1.

Starting smoking

Individuals become ‘at risk’ in this model at the time of their birth, as indicated by the

solid circle. Given that, in this sample, individuals are (due to exclusions) aged at least

45, with a mean age of 60, they are likely to have started to smoke if they were ever to

smoke. The dependent variable in the duration model is years observed without starting

smoking. A solid triangle on the diagram indicates that an individual is recorded to have

started to smoke before HALS1 (failure in this model). Such individuals (c to f and i to

l in Figure 3.1) score 1 on the ever smoker variable. This is modeled by a probit model

with loglikelihood contribution3:

l1 = ln (Φ (ω1))

where:

ω1 = β′1x1 + ϕ1

and ϕ1 is an individual-specific intercept term, reflecting unobserved individual character-

istics that influence the probability of ever smoking.

3This split population approach to modelling the initiation of smoking follows Douglas and Hariharan
(1994); Forster and Jones (2001) and Balia and Jones (2011).
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Those who started smoking are also used in the starting duration model (in which all

are failures) and all contribute to the loglikelihood with their logged loglogistic density

function4:

l2 = − ln
(

1 + (ω2t1)
1/γ1

)
+

(
1

γ1
− 1

)
lnω2 +

(
1

γ1
− 1

)
ln t1 − ln γ1 − ln

(
1 + ω2t

1/γ1
1

)

where:

ω2 = exp
(
−
[
β′2x2 + ϕ2

])
and ϕ2 is again individual-specific intercept term, reflecting unobserved individual

characteristics that influence the age at starting to smoke.

t1 is time to censoring or failure, and γ1 is the loglogistic duration dependence param-

eter. Individuals who are not observed to start smoking before HALS1 (a, b, g and h

in Figure 3.1) score 0 on the ever smoker variable, enter the probit model and provide

loglikelihood contribution:

l1 = ln (Φ (−ω1))

These individuals are not used in the duration model for starting smoking.

Exposure to smoking

Only those who scored 1 on the ever smoker variable (those who had ever smoked, i.e.

types c to f and i to l in Figure 3.1) contribute to the likelihood function for this part

of the model. The dependent variable here is not time spent smoking (smoke years), but

total exposure to smoking before quitting (for individuals with a complete spell) or before

HALS1 (for individuals whose observations are censored). In Figure 3.1, smoke years is

denoted by the length of the solid line between the solid triangle, denoting starting smok-

ing, and either the hollow triangle, denoting quitting, or the point at which HALS1 was

conducted. The dependent variable, pack years, is smoke years multiplied by individuals’

self-reported average number of packs of (20) cigarettes smoked per day (n cigs/20), giv-

ing a more complete picture of total exposure to smoking. Individuals who are observed

4Hazard functions for each duration model are selected according to statistical criteria to find the
best-fitting parametric distribution. See the Appendix.
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to quit before HALS1 (c, d, i and j in Figure 3.1) have a “complete spell” for this function

and individuals who are observed as current smokers (e, f , k and l in Figure 3.1) at HALS1

are censored observations. The overall contribution of each individual to the loglikelihood

is the logged Gompertz likelihood function,

l3 = q · (ln (ω3) + γ2t2)−
ω3

γ2
(exp (γ2t2)− 1)

where q denotes an individual has quit smoking, t2 is time to failure or censoring,

ω3 = exp
(
−
[
β′3x3 + ϕ3

])
and γ2 is the Gompertz shape parameter.

Age of death

All individuals are included in this model, and are entered into the model conditional on

survival at the time of HALS15: individuals are only ‘at risk’ from this time onwards as

they cannot be observed to have died before the point at which the survey is completed.

The dependent variable here is time observed alive (lifespan). In Figure 3.1, lifespan

is denoted by the distance between the solid circle, denoting birth, and either a cross,

denoting death, or the point at which the July 2009 follow-up was conducted. Individuals

whose death has been reported at the time of the HALS follow-up in July 2009 (b, d, f ,

h, j and l) have a complete spell for this outcome and individuals whose death has not

been reported (a, c, e, g, i and k) are censored at this time. The overall contribution to

the loglikelihood is the logged left-truncated Weibull likelihood function:

l4 = d · (ln (ω4) + ln (α) + (α− 1) ln (t3))− ω4 (tα3 + tα0 )

where t0 is the age of the individual at HALS1, d denotes whether an individual has died:

ω4 = exp
(
β′4x4 + ϕ4

)
5Additional data that are not included in the original HALS1 dataset provided by the Economic and

Social Data Service, regarding the date of the initial interview was provided by Brian Cox and merged
into the HALS1 dataset, matching by serial number. This allows greater accuracy in the measurement of
smoke years.
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and α is the Weibull shape parameter.

Cancer registration

All individuals are included in this model, and are entered into the model conditional on

survival at the time of HALS1. While the intuition behind this is not as straightforward as

that in the mortality model (individuals can be, and indeed are, observed to have developed

cancer before the survey began), individuals who had developed cancer before HALS1 are

much more likely to have died before the survey took place. Those 147 individuals with pre-

existing cancer registrations are dropped from the sample: the inclusion of such individuals

would lead to some negative survival times in the left-truncated survival model. Individuals

who are registered as dead at the time of the most recent follow-up are checked for any

mention of a cancer on their death certificate. Such individuals are treated as failures

in this model, with a failure time of their age at death. The dependent variable here is

healthy time observed (cancer age): i.e. time before an individual is observed to have

developed cancer. Individuals who have been registered as developing cancer at the time

of the July 2009 HALS follow-up (g to l in Figure 3.1), or who have a cancer included

on their death certificate, have a complete spell observed for this model (the distance

from birth to cancer registration, denoted by a hollow square) while individuals who have

never been registered as developing cancer at this time (a to f) are censored. The overall

contribution to the loglikelihood is the logged left-truncated loglogistic likelihood function:

l5 = ln
(

1 + (ω5t0)
1/γ4

)
−

ln

(
1 + (ω5t4)

1/γ4 + c

[
1

γ4
lnω5 +

(
1

γ4
− 1

)
ln t4 − ln γ4 − ln

(
1 + ω5t

1
γ4
4

)]) (3.1)

where

ω5 = exp
(
−
[
β′5x5 + ϕ5

])
t0 is again the age of the individual at HALS1, t5 is time to censoring or failure, and γ4 is

the loglogistic duration dependence parameter.

The cancer registration model is clearly more problematic than the mortality model in

terms of interpretation. While cancer registration, if it occurs, must clearly precede death,
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death cannot precede cancer registration6. Consequently, individuals can be censored in

this model for two reasons: that they are not registered as having developed cancer at the

time of the follow-up (a, c and e), or that they have died without developing cancer (b,

d and f). These two types of censorings clearly differ. While survival (i.e., being alive

and not registered as a cancer sufferer) at HALS1 is plausibly non-informative, death

(particularly from certain causes) is not: for instance, cardiovascular disease and some

cancers (such as lung cancer) share risk factors. Death from such diseases is therefore

likely to be correlated with cancer registration; those dying from, for instance, CVD are

likely to, absent such a death, have developed cancer. The example of CVD is particularly

pertinent given that smoking causes CVD with a relatively short lag and lung cancer with

a much longer lag (Cutler et al., 2006). As such, deaths are not accurately characterised as

non-informative censorings but, where the cause of death is etiologically similar to cancers

or the individual has innate susceptibilities to both the cause of death and cancers (Estève

et al., 1994), death is likely to be correlated with the potential for cancer registration absent

death. Although the model employed does allow for four latent classes of individuals to

exist, each of which could potentially have the same or opposing directional effects on

lifespan and time-to-cancer, a formal specification of the joint distributions of survival

times for cancers and deaths is required to entirely eliminate any biases. Such information

is, however, inherently unavailable (Estève et al., 1994; Honoré and Lleras-Muney, 2006).

3.5.2 Joint likelihood

While some of the potential effect of unobservable heterogeneity is muted by including

only those aged over 45 at the time of HALS1 (the most frail individuals being those

likely to die earliest (Gutierrez, 2002)), as discussed in Contoyannis and Jones (2004),

Balia and Jones (2008, 2011) and Adda and Lechene (2013) unobservable heterogeneity

poses potential problems for any analysis. If unobservable heterogeneity exists and is

ignored, estimated coefficients may be biased. With particular regard to the effect of

smoking, this includes factors which affect life expectancy – such as underlying congenital

and hereditary conditions leaving individuals prone to early death – and also affect, for

6Although, as discussed, individuals can have a cancer registration age equal to their age at death,
where cancer appears on the death certificate without the disease ever being previously diagnosed.
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instance, the decision to smoke.

Individuals with lower prior life expectancies may select disproportionately into smok-

ing due to the relatively low opportunity cost of smoking in terms of life years foregone,

an effect which is potentially greater if the individual also considers morbidity as a future

health outcome (Contoyannis and Jones, 2004; Balia and Jones, 2011)7. Alternatively,

frailer individuals may disproportionately fail to select into smoking as the marginal value

of additional good health is greater for such people. Adda and Lechene (2013) present evi-

dence suggesting that the former, even when factors such as social class are controlled for,

more accurately characterises smoking behaviour: individuals with lower life expectancies

disproportionately take up smoking, smoke more cigarettes and are less likely to quit than

those with longer life expectancies. Contoyannis and Jones (2004), however, present evi-

dence suggesting that frailer individuals select out of smoking and are more likely to quit

sooner. In either case, the consequence is that smoking behaviours are potentially endoge-

nous in health outcomes. Further, the probability of starting smoking may be endogenous

in both the time at which an individual starts and the total pack-years exposure of the

individual, and the age at starting smoking may be endogenous in the total exposure to

smoking.

The joint model is estimated by using a latent factor specification for the joint distri-

bution of the random intercepts in each equation, ϕ1 . . . ϕ5, where ϕj = τju + ρjv (j =

1, . . . , 5), u and v are discrete factors, and τ and ρ are the factor loadings.

Mixing probabilities, πk, representing the proportions of the sample composing each

latent class, are recovered via estimation of the joint probabilities of observing combina-

tions of the Bernoulli random variables u and v, taking a value 1 with probability θ1 and

θ2 respectively. These probabilities are given a logistic form:

θp =
eζp

1 + eζp
(p = 1, 2)

and are recovered by estimation of the parameters, ζp. The structure of the latent factor

7While this model does allow individuals to make decisions based on any information regarding their
future probability of developing cancer, individuals are likely to have less private information regarding
this than regarding future mortality. Hereditary or congenital factors affecting an individual’s chance of
developing cancer are less common: only a small proportion (5-10%) of cancers are attributable to genetic
defects, with the remainder attributable to environment and lifestyle (Anand et al., 2008).
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model is summarised in Table 3.1.

Mass point, k u v ϕj
1 0 0 0
2 1 0 τj
3 0 1 ρj
4 1 1 νj

Table 3.1: Mass points: 4 points of support

When combined, the final total likelihood function is:

L =

4∑
k=1

πk (exp l1,k) (exp l2,k) (exp l3,k) (exp l4,k) (exp l5,k)

Further assumptions are required to identify the distribution of latent factors. Mass

points at 0 and 1 (i.e. where u = v = 1 and τ + ρ = ν) are fixed by Balia and Jones

(2011), and the same approach is employed here. While, as argued by Balia and Jones

(2011), the model should in principle be identified by the non-linear form of each equation

with no need for exclusion restrictions, in order to aid identification, the full model is esti-

mated using three procedures. Each equation in the model is first singly estimated, using

the preferred baseline hazard function according to AIC and BIC scores8. The derived

parameter estimates from this stage are used as starting values (along with postulated

approximate latent class parameters) in a second model, which estimates the full model

with various parameter restrictions9. All of these estimates, including the estimated la-

tent factor parameters, are used as starting values to estimate the final model, without

parameter restrictions. Various different parameter restrictions in the initial stages are

employed, and the final results are found to be robust to changes to these.

Where possible the generalised gamma, Gompertz, Weibull, lognormal and loglogistic

distributions are compared for each duration equation. Gompertz and Weibull distribu-

tions are commonly used in duration analysis of human mortality (see, for example, Wil-

son (1994) who finds, using 1988 US Census data, that Weibull, Gompertz and loglogistic

8See the Appendix.
9The effect of each latent class parameter is, for example, initially postulated to be the in the same

direction for cancer and lifespan. Where βvariable,j denotes the coefficient estimate for the given variable
in equation j, the restrictions invoked are: βsc12,5 = βsc12,4; ρ4 = −4ρ5; τ4 = −4τ5; τ1 = −1.1ρ1. Different
combinations of these restrictions are invoked, with no effect on the final parameters derived.
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distributions provided good fits in simple models of human mortality). The generalised

gamma distribution is compared, where possible, with the other forms of the baseline

hazard, but given its heavy computational demands, particularly within the context of a

jointly-modelled system of five equations such as this, estimation is not always possible10.

In addition to these commonly-used distributions, the expopower distribution (Saha and

Hilton, 1997), a flexible parametric distribution, nesting the exponential, Weibull and log-

normal distributions is also compared. While a bathtub-shaped hazard is less plausible

given the exclusion of all individuals aged under 45 at the time of HALS1, some cancers

(such as testicular cancer) are more likely to occur earlier in life and, as such, it is useful to

include such a distribution which allows for this while also remaining less computationally-

intensive than, for example, the generalised gamma distribution. A comparison of BIC

and AIC scores for all of these distributions is presented in the Appendix.

3.5.3 Key covariates and interpretation of parameters

Summary statistics for the variables used in the analysis are presented in Table 3.2:

Table 3.2: Summary statistics (all 3784 observations)

label description mean std dev min max

mothm Mother smoked, male child 0.02 0.14 0.00 1.00
mothf Mother smoked, female child 0.02 0.15 0.00 1.00
fathm Father smoked, male child 0.28 0.45 0.00 1.00
fathf Father smoked, female child 0.32 0.47 0.00 1.00
bothm Both parents smoked, male child 0.09 0.28 0.00 1.00

bothf
Both parents smoked, female
child

0.11 0.31 0.00 1.00

othersmok Other smokers in house 0.33 0.47 0.00 1.00
rural Lives in the countryside 0.21 0.41 0.00 1.00
suburb Lives in a surburban area 0.46 0.50 0.00 1.00

strtpostdoll
Started smoking after 1954 (first
Doll et al BMJ article) but
before 1971

0.04 0.20 0.00 1.00

strtpostpubhealth
Started smoking after 1971 (first
smoking public health
campaign)

0.00 0.05 0.00 1.00

starting Number of years non-smoking 34.08 22.48 4.00 96.00
smoke years Years of smoking exposure 21.77 19.98 0.00 72.00

n cigs
Average number of cigarettes
smoked per day

10.41 12.46 0.00 97.00

Continued on next page
10In fact, the generalized gamma is not preferred by AIC or BIC scores for any of the single-equation

models for which it provides parameter estimates. While it nests many of the other distributions, the
expopower distribution (which also nests the Weibull and log distribution) often outperforms it even on
its loglikelihood score.
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cancer dc
Registered as cancer sufferer or
cancer on death certificate

0.27 0.44 0.00 1.00

cancer age
Age of cancer registration or age
of censoring (July 2009)

77.22 9.01 47.20 115.23

death Dead 0.58 0.49 0.00 1.00

lifespan
Observed lifespan: censoring at
July 2009

78.33 8.61 48.50 115.23

smoker Ever-smoker 0.63 0.48 0.00 1.00
start Smoker 0.31 0.46 0.00 1.00
quit Ex-smoker 0.33 0.47 0.00 1.00
pack years Pack-years of exposure 18.50 24.11 0.00 236.00
pack years quit Pack-years (HALS1 quitter) 8.68 20.50 0.00 236.00

pack years quit2
Pack-years squared / 10000
(HALS1 quitter)

0.05 0.23 0.00 5.57

pack yearss
Pack-years (HALS1 current
smoker)

9.82 18.21 0.00 138.00

pack years start2
Pack-years squared / 10000
(HALS1 current smoker)

0.04 0.12 0.00 1.90

NPAD Heavy alcohol drinker 0.09 0.29 0.00 1.00

redmeat3
Eats red meat 3+ times per
week

0.52 0.50 0.00 1.00

recex
At least 5 hours of exercise in
last two weeks

0.09 0.28 0.00 1.00

lhqdeg Highest qualification is degree 0.03 0.17 0.00 1.00
lhqoth Other highest qualification 0.01 0.08 0.00 1.00
lhqA Highest qualification is A-Level 0.03 0.17 0.00 1.00

lhqO
Highest qualification is
O-level/CSE

0.07 0.26 0.00 1.00

lhqhnd
Highest qualification is
HND/HNC

0.02 0.13 0.00 1.00

ltunemp Long term unemployed 0.02 0.14 0.00 1.00

sick
Not working due to permanent
sickness/disability

0.04 0.19 0.00 1.00

retd Retired 0.43 0.49 0.00 1.00
male Male 0.45 0.50 0.00 1.00
sc23 Social class 2 or 3 0.66 0.48 0.00 1.00
sc45 Social class 4 or 5 0.32 0.46 0.00 1.00
single Single 0.07 0.25 0.00 1.00
sepdiv Separated/Divorced 0.05 0.22 0.00 1.00
widowed Widowed 0.16 0.37 0.00 1.00

In the health outcomes equations, pack years (and its squared term) is interacted with

being a current smoker, and separately with being an ex-smoker. These variables are

separated to mark those individuals for whom smoke years is complete rather than right-

censored at the time of HALS1: smoking status is unknown beyond the point at which

such data was collected11. The separation of current smokers and quitters is useful due to

11Examination of the HALS2 dataset, a follow-up on the original sample seven years later in which
similar data was again collected, reveals that – of those in the sample here whose smoking status could
be ascertained – 27% of those who were current regular smokers at HALS1 had quit smoking by the time
of this survey in 1991-1992. It must be noted that, however, over 45% of regular smokers at HALS1 were
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the fact that risk of death for certain cancers, such as lung cancer, has been found to be

elevated for ever-smokers over never-smokers for a period of up to 20 years, but declines

with time after quitting smoking (Reid et al., 2006).

While the identification of the parameter estimates of coefficients of the various pack-

years variables seems clear, interpretation of these coefficients is not as straightforward.

Due to the censoring of the smoking duration variables at the time of HALS1, this does

not represent the elevated hazard (or acceleration of time to failure) of exposure to one

additional pack-year of smoking. This coefficient represents the association of an increase

of one pack-year of observed smoking on the increased hazard of failure, conditional on

smoking status in 1985. While this model could be estimated using smoking status at

HALS1 (i.e. whether an individual is a current smoker, quitter, or has never smoked) as

the only smoking-related regressors, this would seem to discard useful information: that

some individuals smoke for longer and with greater intensity than others.

Balia and Jones (2011) model the influence of parental smoking but do not allow for

different relationships for male and female offspring. Here, parental smoking is interacted

with gender to investigate any differential result of effects of different parents smoking

on different genders of children. Brown and van der Pol (2010) suggest that, at least for

mothers and daughters, the intergenerational transfer of risk and time preference explains

a significant part of the correlation between smoking outcomes.

In addition to variables regarding smoking status12, another key lifestyle variable, a

dummy variable for heavy consumption of alcohol, is included in the model. This is defined

as those drinking over 20 units per week13 – the NHS describe alcohol consumption over

this level as ‘high’ 14. While moderate consumption of alcohol may be protective against

some diseases (Doll et al., 1994, 2005), evidence suggests up to 40% higher all-cause

mortality for heavy consumers (Doll et al., 1994)15.

missing for this variable at HALS2.
12With smoking take-up defined as ever having smoked on average at least one cigarette per day, for a

period of at least six months (Cox et al., 1987).
13The mean consumption of alcohol by those in the sample recorded as drinking over 20 units per week

is 38 units.
14See, for instance, http://www.nhs.uk/Conditions/Alcohol-misuse/Pages/Treatment.aspx Results

are robust to a definition of heavy alcohol consumption that defines this as 14 units for women and 21
units for men.

15Doll et al. (1994) group the heaviest consumers of alcohol as those drinking 43 or more units per week.
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As well as alcohol consumption, a variable for individuals’ exercising habits is included

in the lifespan model. This exercise dummy is derived from a composite measure of hours of

exercise spent in the last two weeks, tothrsex, created from HALS data for total time spent

involved in: keep fit exercises, cycling, golf, jogging, swimming, table tennis, basketball,

football, rugby, badminton, tennis, squash, fives, rackets, cricket, windsurfing, sailing, self-

defence, boxing, wrestling, backpacking, hiking and dancing16. Individuals who exercised

for more than 5 hours in the previous two weeks are classed as having exercised for the

recommended period of time in this model17. Further, consumption of red meat (redmeat3,

defined as consuming red meat at least three times per week), linked to colorectal cancer,

the second most common form of the disease (Cutler, 2008), is included in the cancer

registration model.

Variables for socioeconomic class, based on the then-prevalent Registrar-General’s clas-

sification by occupation, are also included in the model. The existence of socio-economic

gradients in health is well-established (Marmot, 2007; Thomas et al., 2010; Wilkinson,

1996; Wilkinson and Pickett, 2010), with the socio-economic gradient in smoking ex-

plaining part of this (Schaap and Kunst, 2009). Such inequality in health outcomes is

potentially of greatest concern where equality of opportunity in society is considered to

be the appropriate goal. One useful model of this allows for some variation in health to

be due to effort and some to be due to circumstances (Roemer, 1998; Rosa Dias, 2009).

While strong evidence exists regarding a social gradient in lifespan overall and illnesses

such as cardiovascular disease, the existence of a social gradient in cancer is more con-

troversial. Deaton (2002) argues that the Whitehall Studies (Marmot et al., 1978, 1991)

show no social gradient in any cancer apart from lung cancer, the gradient in which is

entirely explained by differential smoking behaviours between the occupational grades.

Despite finding social gradients in health overall and in many diseases, Wilkinson and

Pickett (2010) find no social gradient in breast cancer, and ‘only small class differences’ in

prostate cancer. Further, much attention has focused on incidence of cancer rather than

time-to-cancer (for instance, Singh et al. (2003); Banks et al. (2006); Dalstra et al. (2005)).

16While this is likely to only partially capture a measure of exercise conducted by individuals, it is serves
as a limited, but useful, proxy.

17The NHS recommend that adults exercise for 30 minutes, five times a week. More details are available
at http://www.nhs.uk/Livewell/fitness/Pages/Howmuchactivity.aspx
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A variable for long-term unemployment (those unemployed for a period of one year or

more) is included in the model to exclude individuals who may have been suffering from

only a short spell of worklessness. While correlation between long-term unemployment and

ill-health is well-established, evidence differs regarding the direction of causality. Gordo

(2006) claims that, accounting for endogeneity, long-term unemployment has a significant

and negative effect on the health of individuals (using German data), while Böckerman

and Ilmakunnas (2009) (using Finnish data) conversely suggest that individuals with poor

health prospects are sorted into unemployment18.

3.6 Results

Five equations are jointly estimated: a probit model for smoking initiation, and duration

models for time before smoking initiation (for smokers only), pack-years of exposure to

smoking (for smokers only), time until death (conditional on being alive and cancer free

at HALS1) and time until developing cancer (conditional on being alive and cancer free

at HALS1).

The Appendix presents AIC and BIC scores for the single equations estimates of the

full range of survival distributions that could be estimated for each outcome: age of

starting, exposure before quitting, age of cancer registration, and age of death. Those

models with the best AIC and BIC scores are italicised. Accordingly, a loglogistic baseline

hazard function is chosen for starting smoking, Gompertz for smoking exposure, Weibull

for mortality, and loglogistic for cancer registration.

Full results for the parameter estimates from the five equation DLFM are provided in

Tables 3.3 and 3.4. Table 3.3 shows the coefficients associated with the covariates and

Table 3.4 shows the factor loading and probabilities of class membership for the latent

factor model. Single-equation estimates for the cancer registration model are provided,

for comparison, in Table 3.5.

The interpretation of a coefficient – and the sign (positive or negative) of a coefficient

– depends upon the type of model being interpreted. A key is provided to this effect,

in a row labelled as ‘Model type’. A positive (negative) coefficient for the probit model

18See Mathers and Schofield (1998) and Böckerman and Ilmakunnas (2009) for a review of the evidence
on the relationship and possible direction of causation between unemployment and health.
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for starting smoking has the usual interpretation: an increased probability of a positive

(negative) result, i.e. of starting smoking. The remaining four models are duration models,

which fall into two categories: accelerated failure time (AFT) or proportional hazard

(PH). A positive (negative) coefficient in an accelerated failure time type of model implies

an increase (decrease) in time before ‘failure’, the point at which the event of interest

occurs. A positive (negative) coefficient in a proportional hazard type of model implies

an elevation (reduction) in the hazard of ‘failure’, the occurrence of the event of interest.

More specifically, the exponent of a coefficient in a PH model gives the multiplicative effect

on the hazard of failure (the ‘hazard ratio’), while the exponent of a coefficient in an AFT

model gives the multiplicative effect on the expected lifespan (the ‘time ratio’).

This means that the intuitive interpretations of positive and negative coefficients are

reversed, depending upon the type of model being employed. For instance, a positive

coefficient in the lifespan model implies a higher instantaneous probability of death, con-

ditional upon survival to the current time period (consistent with a decrease in median

survival time, relative to the reference case), and a positive coefficient in the cancer model

implies an increased length of expected cancer-free time (consistent with an increase in

median survival time, relative to the reference case).
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Variable smoker starting pack-years lifespan cancer
Model type Probit AFT PH PH AFT
Mother smoked, male child 0.562*** -0.008
Mother smoked, female child 0.557*** -0.047
Father smoked, male child 0.472*** -0.041*
Father smoked, female child 0.280*** -0.057**
Both parents smoked, male child 0.523*** -0.048*
Both parents smoked, female
child

0.682*** -0.105***

Social class 2 or 3 0.305** -0.087*** -0.263 0.128 -0.030
Social class 4 or 5 0.538*** -0.126*** -0.413** 0.394** -0.046*
Highest qualification is degree -0.438*** 0.067** 0.139 -0.530** 0.054*
Other highest qualification -0.244 0.059 -0.290 0.006 0.061
Highest qualification is A-Level 0.100 0.045* 0.177 -0.342 0.026
Highest qualification is O-
level/CSE

-0.169** 0.046** -0.019 0.011 -0.000

Highest qualification is
HND/HNC

-0.264 0.117*** 0.017 -0.269 0.010

Male 0.649*** -0.201*** -0.079 0.442*** -0.026***
Born in 1920s 0.302*** -0.050*** -0.019 -0.008 -0.023*
Born in 1930s -0.001 -0.085*** 0.175 -0.046 -0.045***
Born in 1940s -0.070 -0.265*** 0.052 0.267 -0.016
Started smoking after 1954 but
before 1971

0.347***

Started smoking after 1971 0.921***
Number of years non-smoking 0.049***
Other smokers in house -0.752*** 0.109 -0.015
Long term unemployed -0.479** 0.548** -0.061**
Not working due to permanent
sickness/disability

-0.364** 0.785*** -0.025

Retired 0.113 -0.136 0.023*
Single -0.187 0.257** 0.015
Separated/Divorced -0.729*** -0.027 -0.005
Widowed -0.394*** 0.078 0.017
Lives in the countryside 0.256*** -0.091 -0.004
Lives in a surburban area 0.130* -0.041 -0.003
Pack-years (HALS1 quitter) 0.014*** -0.001**
Pack-years squared /10000
(HALS1 quitter)

-0.557** 0.027

Pack-years (HALS1 current
smoker)

0.037*** -0.003***

Pack-years squared / 10000
(HALS1 current smoker)

-3.032*** 0.243***

Heavy alcohol drinker 0.184* -0.022
At least 5 hours of exercise in last
two weeks

-0.402***

Eats red meat 3+ times per week -0.123** 0.011
Constant -0.706*** 3.126*** -4.786*** -56.533*** 4.718***
γ 0.141*** 0.008*** 0.065***
α 12.327***
N. of cases 3784

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 3.3: DLFM results – main coefficients

65



Latent class, k

1 2 3 4
ϕ1 0 0.287** -0.144 0.143
ϕ2 0 -0.075*** 0.010 -0.065***
ϕ3 0 -0.463*** 0.577** -0.114
ϕ4 0 2.356*** 1.341*** 3.697***
ϕ5 0 -0.276*** -0.211*** -0.487***

πk 0.353*** 0.443*** 0.090*** 0.113***

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 3.4: DLFM results (2) – latent factor coefficients and class membership
probabilities

Variable Coefficient

Pack-years (HALS1 quitter) -0.002**
Pack-years squared / 10000 (HALS1 quitter) 0.025
Pack-years (HALS1 current smoker) -0.005***
Pack-years squared / 10000 (HALS1 current smoker) 0.320**
Other smokers in house -0.013
Heavy alcohol drinker -0.028
Eats red meat 3+ times per week 0.015
Highest qualification is degree 0.073
Other highest qualification 0.050
Highest qualification is A-Level 0.050
Highest qualification is O-level/CSE 0.004
Highest qualification is HND/HNC 0.016
Long term unemployed -0.096**
Not working due to permanent sickness/disability -0.025
Retired 0.023
Male -0.036**
Social class 2 or 3 -0.054
Social class 4 or 5 -0.073
Single -0.003
Separated/Divorced 0.004
Widowed 0.027
Lives in the countryside -0.019
Lives in a surburban area -0.001
Born in 1920s 0.031
Born in 1930s 0.043
Born in 1940s 0.187
Constant 4.559***

γ 0.164***
N. of cases 3784

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 3.5: Single equation - cancer registration
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Relative to the benchmark of latent class 1 (35% of the sample), latent classes 2 (44%

of the sample) and 4 (11% of the sample) consist of individuals who are more likely to

start smoking, start earlier in life, smoke more cigarettes after starting, die sooner, and

get cancer earlier in life. Latent class 3 (9% of the sample) consists of individuals who are

less likely to start smoking, start later in life, smoke fewer cigarettes if they do start, but

die sooner and get cancer earlier in life.

Different relationships between parental smoking and individuals’ smoking behaviours

are observed according to the gender of the parent and the gender of the offspring. The

relationship with the probability of starting smoking of one of either a mother or father

smoking on the offspring is found to be greater on men than women. The correlation

with the probability of smoking of the offspring is found to be greater for a mother who

smokes than for a father. The relationship with time to starting is greater for women than

men. While these results are broadly in line with those of Balia and Jones (2011), a major

difference lies in the large divergence observed between the relationships according to the

genders of parents and children. Further, while Balia and Jones (2011) find a cohort effect

for those born subsequent to the publication of the first evidence showing a link between

smoking and ill-health in 1954, a much larger deceleration in time to starting smoking is

observed (over the cohort born between 1954 and the first public health campaign) for the

cohort born after the first anti-smoking public health campaign in 1972.

Parental smoking has little direct relationship with total exposure to smoking (the

dependent variable in equation three) conditional on starting smoking. Those in social

class 4 or 5, and those with other smokers in the house, are observed to have a significantly

lower hazard of quitting.

As would be expected, additional exposure to smoking increases the hazard of death,

with a stronger relationship observed for current smokers than for quitters, and a declining

relationship with total exposure on the increase in hazard (as shown by the opposing

coefficient on the squared terms). The interpretation of these coefficients is complicated

by the censoring of durations of current smokers at HALS1 (as well as the lack of data

regarding whether quitters ever started smoking again, and, if so, for how long). Social

class continues to be correlated, independent of lifestyle choices, with an elevation in the

hazard of death for those in social class 4 or 5 roughly equivalent to that of an exposure
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of approximately 12 observed pack-years (for HALS1’s current smokers) at the time of

HALS1, compared to those in social class 119.

Results on cancer registration differ somewhat. Being male, and being long-term un-

employed at HALS1 are significantly related with reducing time to failure in this model.

Evidence of a social gradient in cancer is found – with those in social class 4 or 5 having

a significantly shorter (by approximately 5%) predicted healthy time before developing

cancer than those in the highest social class – even after accounting for the effect of dis-

proportionate smoking among those in a lower social class, and before accounting for the

effect of reduced lifespans in preventing the observation of cancer registrations among those

who would, had they not died, have been more prone to suffer from such a disease. This

is equivalent to an exposure to smoking of approximately 19 pack-years20. One crucial

problem with the HALS follow-up dataset, which could lead to the underestimation of the

social gradient in cancer, is the number of individuals (107) who die with cancer present

(according to death certificate data) but without ever being registered as suffering from

the disease, suggesting a disproportionate failure to diagnose (and, presumably, therefore,

to treat) those in lower social classes.

3.6.1 Posterior probabilities

Individuals are here sorted into the most likely latent class to which they belong, based

on their observed outcomes. This means, for each class k and individual i:

Pki =
πk · Lki∑4
l=1 πl · Lli

.

Sorting individuals into their most likely class based on these posterior probabilities –

that is, assigning each individual i to class k for which Pki is highest – results in Figure 3.6

are obtained:

Those individuals most likely to be part of class 1 are highly unlikely to ever develop

cancer: only 2% of individuals most likely to be in class 1 are observed to have developed

1912βpack years start − 122 (βpack years start2/10000) ≈ βsc45.
20This is calculated using the same method as in footnote 16. However, caution should be attached to

this, given that smoking and social class are likely to affect both time-to-cancer and lifespan.
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Class 1 2 3 4

n 1247 1968 101 468
HALS1 age 60.22 61.52 59.77 58.38
Social class 1 0.02 0.02 0.02 0.02
Social class 2/3 0.65 0.66 0.65 0.67
Social class 4/5 0.32 0.31 0.32 0.30
Ever-smoker 0.69 0.55 1.00 0.71
Smoker at HALS1 0.40 0.20 0.85 0.37
Quitter at HALS1 0.29 0.36 0.15 0.34
Pack-years of exposure (ever-smokers only) 31.74 24.31 59.60 30.26
Developed cancer 0.02 0.31 0.59 0.71
Age of cancer (developed cancer) 87.14 76.94 70.95 65.30
Lifespan (dead only) 88.19 79.76 71.82 66.83

Table 3.6: Descriptive statistics, by most probable latent class based on posterior
probabilities.

cancer, despite this class being made up of individuals with approximately similar smoking

characteristics and social class, and of similar ages, to those most likely to be members

of class 4, of which 71% of individuals are observed to have developed cancer by July

2009. Furthermore, differences in observed lifespan are striking, with a difference of over

20 years between individuals in class 1 and class 4. This points to unobservable factors

which explain large elevations in an individual’s hazard of suffering cancer and early death,

even when such individuals are in the same social class and adopt similar lifestyles.

3.7 Counterfactual simulations

This section presents counterfactual predictions of survival times – healthy years with-

out cancer. This is done by amending the observed values for all individuals’ smoking

behaviours and holding other individual characteristics (and the estimated coefficients

associated with these characteristics) constant, in a post-estimation analysis.

Survival probabilities are estimated for each of the k(k = 1, . . . , 4) latent classes, using

the loglogistic survival function:

Sk(t) =
(

1 + [t · exp (−β′Xcf + ϕk)]
(1/γ)

)−1
where Xcf refers to the counterfactual values for variables. These probabilities are multi-

plied by the associated prior probability of class membership. These products are summed
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to calculate a survival function for the full distribution:

S(t) =

4∑
k=1

πk · Sk(t)

Results for median survival times to onset of cancer, with men and women considered

separately, are presented in Table 3.7, with estimated median survival curves presented in

Figures 3.2 to 3.4.

Male Female
Estimated
survival

time

Difference
from full
sample

Estimated
survival

time

Difference
from full
sample

Full sample 85.0 – 88.7 –
Counterfactuals
Non-smoker 87.8 +2.8 90.4 +1.7
20 pack-years 83.5 -1.5 86.1 -2.6
30 pack-years 82.1 -2.9 84.6 -4.1

Table 3.7: Counterfactual estimates – median survival time to onset of cancer (years)
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Figure 3.2: Estimated survival curves for cancer onset by smoking behaviour (males)
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While the ϕk parameter is, for each latent class, estimated as a constant, these esti-

mated survival curves do not represent parallel shifts of each other, due to the non-linear

relationship between ϕk and S(t). Individuals in latent class 1, in particular, exhibit large

increases in survival probabilities at all ages over others in the sample.

Any use of terms such as “time-to-cancer” or “age”, with regard to this model, re-

quires some clarification. What is being modelled in the cancer model is time to cancer

in the absence of death. Individuals who die before developing cancer are treated as

non-informative censored observations within the model, and contribute to the modelled

likelihood as such. This means that, for instance, a predicted probability of survival at age

75 is calculated under the assumption that people could be observed to be at risk of cancer

forever, and would not die and thus be censored in this way (that is, that individuals are

infinitely-lived or that m ≤ n for all individuals, in the terminology used in the theoretical

model). Any use of the term “age” must be seen in this light.

The difference between survival probabilities at older ages is particularly striking. As

illustrated in Figure 3.3, at the age of 75, 98% of males in latent class 1 are predicted

to have survived; in latent class 4, the corresponding probability is just 6%. For women,

survival at 75 is predicted to be over 99% in latent class 1, and 11% in latent class 4. At

the age of 95, these probabilities are 68% for men (79% for women) in latent class 1 and

below 0.2% (below 0.4%) in latent class 4.

As illustrated in Figure 3.2, at an age of 75, 68% of males who are observed to have

an exposure of 30 pack-years at the time of HALS1 are predicted to remain cancer-free,

compared to 79% of those who had not smoked. For women, these respective probabilities

are 74% and 83%. At the age of 95, these probabilities are 23% for men (28% for women)

with an exposure of 30 pack-years and 35% (40%) for non-smokers.

The difference between results obtained using single equation estimates and those from

the full DLFM (Figures 3.4 and 3.5) for men is also notable. The different duration depen-

dence (γ) parameters estimated by the two models cause the implied survival functions

from the two models to have a completely different shape: the single equation model im-

plying more early failures but also more very late failures. Furthermore, the reduction

in survival time, at the median, from having different observed smoking exposures is pre-

dicted to be smaller when using the joint model rather than single equation estimates.
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The reduction in estimated median survival time (for males) between the counterfactual

estimates for non-smokers and those with 30 pack-years of exposure is 9.3 years in the

single equation model, and 5.7 in the joint model. Figure 3.5 further illustrates this us-

ing non-counterfactual methods, displaying the implied reduction in cancer-free time for

different levels of smoking exposure. These results suggest a role for unobserved hetero-

geneity in explaining differences in survival times. Failure to account for this unobserved

heterogeneity leads to differences in survival times between both individuals in different

social classes, and individuals with different smoking exposures, to be overestimated.

3.8 Discussion

In addition to introducing cancer outcomes to existing research employing HALS (Balia

and Jones, 2011), we here build on this existing work by modelling smoking exposure by

pack-years rather than simply duration, and allowing health outcomes to vary with dif-

ferent exposures to smoking, rather than by whether the individual was a current smoker,

former smoker, or never-smoker at the time of HALS1. Further, different relationships are

found between parental smoking and the probability of a child smoking and the time to

the child starting, depending on the gender both of parents and of their offspring.

The use of a joint model for smoking behaviours and health outcomes changes results

substantially. The duration dependence parameter in the single equation model for cancer

is more than twice as great as that in the joint model, leading to a much flatter esti-

mated cancer survival function, and more early and late estimated failures. Further, the

differences in estimated survival times associated with smoking exposure are higher when

using single equation estimation rather than a joint model. Single-equation estimation

yields estimates (for men) of this difference that are 2.4 years greater for the gap between

the highest and lowest social classes, and 2.6 years greater for those with 20 observed

pack-years of exposure than those with no observed years of exposure.

Assuming that individuals are rank-identical in the elevation of their respective hazards

for cancer and death, the coefficients obtained in the main cancer model should be seen

as lower bounds on the actual effect on healthy survival time without cancer, given that

some individuals – who were likely to be registered as a cancer sufferer sooner than others
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who remained at-risk – died before such a registration was possible. Interpretation of

coefficients in the cancer registration model is complicated by the way in which those who

do not develop cancer are censored: (at least some) deaths are informative censorings,

and are symptomatic of the tendency of the individual to develop cancer, in the absence

of death.

The reduction in time to cancer is estimated to be 5.7 years for male current smokers

(5.8 years for women) at the time of HALS1 with 30 observed pack-years of exposure,

compared to those who had never smoked at this time. At an age of 75, 93% of men with

no observed smoking exposure are predicted to be cancer free, compared to only 82% of

those with an observed exposure of 30 pack-years.

The latent class model appears to separate out some groups of individuals who are

highly likely to develop some form of cancer due to unobserved factors, and others of

those highly unlikely to do so. For instance, latent class 1 is composed of individuals of

whom, under counterfactual simulations, almost 99% of men (over 99% of women) do not

develop cancer by age 75, while the corresponding probability for individuals in latent

class 4 is below 5% for men (below 10% for women). When posterior probabilities of

class membership are estimated, and individuals sorted into their most likely class based

on these probabilities, these differences are made even more stark: despite very similar

lifestyle and circumstances for such individuals, only 2% of individuals most likely to

be members of latent class 1 are observed to have developed cancer in the most recent

follow-up, compared to 71% of those in latent class 4. The difference in lifespan for those

individuals in each group who are observed to be deceased is approximately 20 years. These

results point strongly to unobservable factors explaining a large part of the differences in

health outcomes. This strongly highlights the importance of taking account of individual

unobserved heterogeneity by modelling smoking behaviours jointly with health outcomes

– not only in terms of lifespan (as in Balia and Jones (2011)) – but also in disease-specific

(in this paper, cancer) outcomes.

Our results suggest a fruitful avenue of future research that would arise from collecting

richer, long-panel data regarding smoking behaviours, and health outcomes. While these

results point to the importance of modelling pre-diagnosis cancer-free lifespan rather than

simply lifetime incidence, limitations of the dataset – a single cross-section from almost 25
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years prior to the most recent cancer follow-up – employed again mean that care should be

attached to directly interpreting the magnitude of the estimated coefficients, particularly

those attached specifically to smoking behaviours. Further, larger datasets would allow

more information to be collected on specific types of cancer, rather than merely grouping

these into a single category. Such a dataset would allow the methods employed in this

paper to be used to examine cancer-specific outcomes.

76



3.A Appendix

AIC and BIC scores for single-equation models are presented below:

Model Observations Loglikelihood d.f. AIC BIC

Starting
Expopower 2388 -7306.624 21 14655.25 14776.59
Exponential 2388 -9282.463 20 18604.93 18720.49
Loglogistic 2388 -6964.628 21 13971.26 14092.6
Weibull 2388 -7300.492 21 14642.98 14764.33
Gompertz 2388 -7967.207 21 15976.41 16097.76

Smoking exposure
Generalised gamma 2388 -6063.621 24 12175.24 12313.92
Expopower 2388 -6058.478 24 12164.96 12303.63
Exponential 2388 -6069.637 22 12183.27 12310.39
Loglogistic 2388 -6119.277 23 12284.55 12417.45
Weibull 2388 -6069.346 23 12184.69 12317.59
Gompertz 2388 -6059.03 23 12164.06 12296.96

Cancer registration
Generalised gamma 3784 -4469.158 29 8996.316 9177.233
Expopower 3784 -4472.943 29 9003.887 9184.804
Exponential 3784 -4544.547 27 9143.093 9311.534
Loglogistic 3784 -5045.162 28 10146.32 10321
Weibull 3784 -4471.475 28 8998.949 9173.628
Gompertz 3784 -4477.419 28 9010.838 9185.517

Mortality
Generalised gamma 3784 -8598.828 30 17257.66 17444.81
Exponential 3784 -9021.817 28 18099.63 18274.31
Loglogistic 3784 -8943.939 28 17943.88 18118.56
Weibull 3784 -8599.991 29 17257.98 17438.9
Gompertz 3784 -8603.764 29 17265.53 17446.45

Table A3.1: Comparison of baseline hazards
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Year of death No. of deaths Percentage

1984 0 0.00
1985 5 3.45
1986 17 11.72
1987 14 9.66
1988 18 12.41
1989 27 18.62
1990 22 15.17
1991 5 3.45
1992 1 0.69
1993 4 2.76
1994 4 2.76
1995 1 0.69
1996 1 0.69
1997 2 1.38
1998 0 0.00
2000 2 1.38
2001 1 0.69
2002 2 1.38
2006 2 1.38
2007 1 0.69
2008 10 6.90
2009 4 2.76

Total 145

Table A3.2: Deaths where cancer is listed on an individual’s death certificate, with the
individual never registered as developing cancer
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Estève, J., Benhamou, E. and Raymond, L. (1994), ‘Statistical methods in cancer
research: descriptive epidemiology.’, IARC scientific publications IV(128), 1.

Forster, M. and Jones, A. M. (2001), ‘The role of tobacco taxes in starting and quitting
smoking: Duration analysis of british data’, Journal of the Royal Statistical Society:
Series A (Statistics in Society) 164(3), 517–547.

Gordo, L. R. (2006), ‘Effects of short- and long-term unemployment on health
satisfaction: evidence from German data’, Applied Economics 38(20), 2335.

Gutierrez, R. G. (2002), ‘Parametric frailty and shared frailty survival models’, Stata
Journal 2(1), 22–44.

Heckman, J. and Singer, B. (1984), ‘A method for minimizing the impact of
distributional assumptions in econometric models for duration data’, Econometrica
52(2), 271–320.

80
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Abstract

This paper uses Hospital Episode Statistics, English administrative data from the Depart-
ment of Health, to further investigate the red herring thesis, as advanced by Zweifel et al.
(1999). We use a sample of over 100,000 individuals who used healthcare in the financial
year 2005/06 and had died by the end of the financial year 2012/13. We use a panel
structure to follow individuals over seven years of this administrative data, containing
estimates of inpatient healthcare expenditures (HCE), information regarding individuals’
age, time-to-death (TTD), and morbidities at the time of their admission. We find that,
while TTD might better explain HCE than does age, TTD itself merely proxies for in-
dividuals’ morbidities, and no longer explains differences in HCE once we condition on
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growth associated with an ageing population, rather than relying on a ceteris paribus role
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4.1 Introduction

There is concern that the demographic pressures of population ageing will lead to an un-

precedented rise in public expenditures to levels unsustainable under current financing

arrangements. In the UK in 2013 approximately 17% of the population (11 million indi-

viduals) were aged 65 years or over. This represents a rise of 17.3% in this age group on

a decade earlier. Projections suggest that by 2050 this group will have increased dispro-

portionately to younger age groups accounting for approximately 25% of the population

(Cracknell, 2010)). The growth in the proportion of older individuals is partly due to in-

creased longevity and partly due to the age structure of the population, particularly ageing

of the generation of baby boomers of the post war period to the early 1970s. Health care

expenditures have also risen substantially over time both in real terms and proportional

to economic growth. Close to the inception of the National Health Service (NHS) net

expenditure (net of patient charges and receipts) on the UK NHS in 2050/51 was £11.7b

(in 2010/11 prices); representing 3.5% of Gross Domestic product (GDP). This rose to

£121.3b in 2010/11; approximately 8.2% of GDP. Over the twenty-five year period from

1999/00 to 2014/15 (forecast) expenditure in England has almost doubled to £103.7b

(2010/11 prices) with an average expenditure per head of population of £1,900 (Harker,

2012). Abstracting from issues such as technological innovation, the concern is that as

the share of the population at older ages rises, the economic consequences will become

increasingly unsupportable.

Interest in the link between ageing populations and health care expenditures can be

traced back 25 years when the International Monetary Fund (IMF) asserted that ‘demo-

graphic pressures [in the UK] of an aging population will be associated with increased

demand for medical services’, and presented descriptive statistics from various countries,

showing that older patients, on average, had greater health care costs than younger pa-

tients (Heller et al., 1986). A report by the Organisation for Economic Co-operation and

Development (OECD) predicted that across Europe population ageing will create a rise in

age-related social expenditures from around 19% of GDP in 2000 to around 26% by 2050.

Old-age pension payments and expenditure on health and long term care was deemed

responsible for approximately half this increase (Dang et al., 2001). Approaches to pre-
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dicting expenditure growth vary, but in a simplistic form consists of computing observed

expenditures per head for different age-sex groups and multiplying by projections of the

number of people expected to fall into each group. This approach, however, fails to con-

sider the underlying drivers of heath care expenditures and the relative role of age, or, as

has been suggested, proximity to death, or underlying levels of disability and ill-health, in

determining expenditures and its likely growth (see Gray (2005)).

Additional to projections of population ageing is the potential change in the health

profile of the population over time. An ‘expansion of morbidity’ hypothesis has proposed

that the ‘net contribution of our successes has actually been to worsen the people’s health’,

as improvements in health care tend to lengthen the lives of those living with illness dis-

proportionately to its effect on those living without (Gruenberg, 2005). Should population

ageing occur alongside a deterioration of health at older ages, then this will exacerbate

impacts on public expenditures. While subsequent academic research into these claims –

notably, research in the ‘compression of morbidity’ and ‘red herring’ strands of literature –

have given reason to suggest that such concerns may have been misplaced or exaggerated,

concern over the impact of an ageing population on HCE has persisted. Indeed, even in

2012, the UK’s then-Secretary of State for Health claimed that the fact that ‘the number

of people aged over 85 in this country will double in the next 20 years’ was one of two

factors in ‘costs... rising at an unaffordable rate’ (Lansley, 2012). He further argued that

‘age is the principal determinant of health need’1, and that local NHS budgets should be

recalibrated to be based on this, as a result (Williams, 2012).

This paper uses UK administrative data from Hospital Episode Statistics (HES) to

consider research relating to the ‘red herring’ thesis advanced by Zweifel et al. (1999).

This seeks to explore the determinants of health care expenditures, with particular at-

tention to the role played by age, time-to-death (TTD), and morbidity. We do this in a

unique way by following a sample of the population of users of inpatient hospital services

in England in 2005/06 over seven years and constructing a panel on individual health care

expenditures and morbidity over this period. We merge information on date of death,

where relevant, obtained from ONS statistics from which TTD for decedents is computed.

We show that TTD dominates age as a key driver of health care expenditures and mor-

1Emphasis ours.
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bidity characteristics dominate TTD. This finding extends the ‘red herring’ literature by

showing that TTD is itself a ‘red-herring’ and acts as a proxy for morbidity.

4.1.1 Compression of morbidity

The ‘compression of morbidity’ strand of literature beginning with Fries (1980) suggests

that individuals are likely to see increased morbidity in a fewer number of years at the end

of their life and, as a consequence of this, the implications for HCE of an ageing population

become less clear. While individuals born into later cohorts may enjoy a longer lifespan,

they will not have an increased number of years living with chronic conditions, due to

being able to postpone their onset compared to those in earlier cohorts, and possibly even

avoid them entirely. Fries (2005) identifies three separate ‘eras’ of illness and well-being

experienced during the 20th Century and beyond: an era of infectious disease, followed

by an era of chronic disease, followed by an era described by the author as ‘directly

related to the process of senescence, where the aging process itself, independent of specific

disease, will constitute a major burden of disease’. Senescence – the process of ageing

– is characterised by the ‘decline of maximal function of [all] vital organs’, beginning

before any chronic disease takes hold: deaths where this function declines below a level

necessary to sustain life, in the absence of any disease occasioning this, may be termed

‘natural deaths’ (Fries, 2005). Freedman et al. (2002), in a systematic review covering

research that had been conducted between 1990 and 2002 found that many measures of

disability and limitations in old age had seen declines in recent years: in particular, a

change of -1.55% to -0.92% per year in those reporting any disability during the late

1980s and 1990s. Romeu Gordo (2011) observe a cohort-on-cohort fall in the number of

individuals with high levels of disability-related functional problems in their everyday life

for those born between 1924 and 1947 in the US. Cutler et al. (2013), using Medicare

records from the US, present evidence of an increase in disability-free life between 1991

and 2009. Cross-country international evidence on the changing patterns of disability

rates across nine OECD countries is provided by Jacobzone et al. (2000). Consistent with

the above literature, they report evidence of significant falls in severe disability rates. The

importance of this issue for forecasting HCE depends upon how changes in mortality and

changes in morbidity occur and interact with each other. If the onset of chronic conditions
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– those imposing large costs on health systems – can be postponed out of an individual’s

lifetime, then health care costs may fall as later cohorts enjoy a longer lifespan, with a

reduced level of necessary treatment for chronic conditions.

The morbidity profile of individuals, according to this research, at any given age has

improved over time, leading to health problems being experienced later in life and more

closely to death. In the illustrated case (Figures 4.1 and 4.22), individuals live up to a

longer observed maximum age (indicated by the shift out of the survival curve from S1 to

S2 in Figure 4.1), and have a higher observed level of health at all ages (indicated by the

shift out of the health status curve from H1 to H2 in Figure 4.2). Both survival curves

and health status curves have become increasingly rectangular. The effect on health care

expenditure (HCE) is ambiguous, given that generally more healthy ageing – a decrease

in morbidity at any given age – puts downward pressure on HCE, while an increase in

life expectancy, ceteris paribus, puts upward pressure on HCE. The actual relationship

between health care costs and changes in morbidity and mortality profiles at every given

age depends upon the changing shape of these two curves. The use of age per se in

predicting future health care costs should be approached with caution, as a result.
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Figure 4.1: Stylised change in survival curves

2Adapted from Fries (1980) and http://www.aei.org/files/2008/06/27/20080626_WashingtonAEI.

pdf.
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Figure 4.2: Stylised change in health profiles

4.1.2 Age and time-to-death

The ‘red herring’ strand of literature further gives empirical reason to suggest that claims

of steeply-rising future HCE due to population ageing.3 may have been exaggerated, po-

tentially owing to morbidity being concentrated in later years of life. Zweifel et al. (1999),

using Swiss sickness fund data, finds that no effect of age on health care expenditures ex-

isted after controlling for ‘time-to-death’ (TTD), i.e. the difference in time between when

treatment occurs and the individual’s death. Owing to the number of individuals with zero

HCE, a two-step model (with a probit first stage and OLS second stage) was employed,

with only deceased patients included in the model. Such work was criticised on the grounds

of potential endogeneity, with time-to-death affected by both present, previous (and, due

to the nature of how TTD must be measured, future) HCE. In a subsequent paper, Zweifel

et al. (2004) seek to test for such problems, finding that while TTD is endogenous, their

results were ‘fairly robust’ to the error this induces. Werblow et al. (2007) find that age

is a small (but statistically significant) determinant of HCE after controlling for TTD for

patients using long-term care (LTC), such as those in care homes, and is not associated

3HCE may rise due to technological change brought about by new expensive innovations in health care
treatments, or due to shifting patterns of morbidity.
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with HCE for non-LTC patients. More complicated methods, such as those employing

generalised linear models, have since been used, for example by Werblow et al. (2007), in

order to deal with the non-normal properties (such as positive skewness) exhibited in the

distribution of HCE. These papers have corroborated results obtained using probit and

OLS two-step models. Felder et al. (2010), in a recent paper in this series, first predict

individuals’ survival based on observed HCE and socioeconomic characteristics (in early

waves), before using predicted values based on this as an instrument for TTD in explaining

HCE in later waves. The authors find that, while TTD cannot be deemed exogenous, any

effect of age on HCE becomes insignificant when TTD (or instrumented TTD) is included

in the model.

While use has been made of morbidity markers in models of long-term care expendi-

tures (LTCE) (see de Meijer et al. (2011)), such use has not been made in models explicitly

investigating the link between HCE and population ageing. One possibility is that TTD

is itself a red herring, in that it is simply a proxy for morbidity, unobserved in existing

HCE models. This seems intuitively plausible: in the years before death, it is likely that

morbidity will increase, leading to more treatment, and that comorbidities complicating

the treatment of the disease bringing about the hospital episode will also increase. Shwartz

et al. (1996), in work predating the original red herring hypothesis, note that the inclusion

of variables for comorbidities increase substantially the explanatory power of models. It

seems likely that variables incorporating ‘time-to-death’ in more recent models of HCE

are picking up, in large part, these comorbidities, which are unobserved in existing HCE

models: indeed, de Meijer et al. (2011) conclude that time-to-death ‘largely approximates

disability’ in models of LTCE. Dixon et al. (2011), in proposing individual-level formulae

for resource allocation in the UK’s National Health Service (often termed ‘Person-Based

Resource Allocation’, or PBRA) include individual level morbidity markers, finding that

these have a ‘powerful effect... in predicting individual level expenditure’.

The process generating HCE is clearly not a simple function of those explanatory vari-

ables used in existing ’red herring’ research: the actual data-generating process behind

these health care expenditures is unlikely to be characterised accurately by a simple use

of age, historical time and time-to-death. In addition to the aforementioned problems

surrounding TTD and age as a proxy for morbidity, as Breyer et al. (2014) note, many ex-
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isting models are likely to be characterised with substantial endogeneity problems, which

lead to potential bias in the estimation of the change in HCE as an individual ages or

approaches death. The authors control for potential endogeneity introduced by differen-

tial treatment based on a physician’s view of the patient’s expected health benefits from

treatment, proxied by actuarial tables of life expectancy conditional on age. If physi-

cians expect individuals to respond differently to treatment, this may cause those who are

more likely to respond to treatment to be treated more intensely than those who are not,

thus increasing expected HCE for individuals who are younger, further-from-death or with

fewer comorbidities because of physician selection. Conversely, HCE for older individuals

– or, more likely, individuals in the final years of life – may rise as intensity of treatment

becomes stronger with heroic efforts to save an individual’s life, possibly motivated by

ethical ‘rule of rescue’ concerns when faced with an identifiable, gravely sick individual

(Jonsen, 1986). Breyer et al. (2014) jointly estimate this possible physician selection based

on life expectancy alongside a model for health care expenditures, incorporating both age

and time-to-death as explanatory variables. They find that increasing survival rates for

the elderly in Germany have positive impacts on HCE, arguing that this is explained by

physician selection: treating patients more intensively if they expect positive results from

treatment over a longer time span.

Datasets used within the ‘red herring’ literature are, in general, sickness fund datasets,

with only Seshamani and Gray (2004) using population-level (for users of NHS treatment)

data, the Oxford Record Linkage Study, a longitudinal dataset of all individuals within an

area of Oxfordshire. We believe our paper to be the first in this strand of literature to use

a sample of individuals from a comprehensive national-level dataset of health care users.

The extent to which ‘red herring’ and related issues are of interest depends upon

the intended use of such research. Much existing literature focuses on projections of

future health care costs given an ageing population, with the headline results of some

papers (such as Stearns and Norton (2004) and Seshamani and Gray (2004)) being the

overestimation of expected costs for a given future year when TTD is an omitted variable.

This is due to the collinearity between TTD and age for a given individual: an individual

who gets one year closer to death also gets one year older, and so the impact of TTD is

picked up by age in such models. The inclusion of morbidity markers in addition to, or
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replacing, TTD would allow greater precision of future estimates where reliable estimates

of morbidity prevalence, and the cost of treatments, conditional on age and TTD were

known. Certainly, if the compression of morbidity hypothesis holds, and individuals are

able to postpone the onset of chronic diseases – with associated higher HCE – to a time

period closer to their death, or even indefinitely, explicitly considering morbidity rather

than proxying this by age and/or TTD becomes ever more important.

We build upon the compression of morbidity and red herring strands of existing lit-

erature, seeking to further examine the relationship between ageing, time-to-death and

health care expenditures. The original red herring hypothesis is that, once time-to-death

is included in models of HCE, age per se does not explain changes in HCE. While models

intended for resource allocation (Dixon et al., 2011) have already included morbidity as

an explanatory variable in HCE for the general population, other applications of models

of HCE have not – in particular, those focusing explicitly ageing populations, or costs in

the years approaching death. This paper seeks to bridge the gap between the red her-

ring strand of literature and models of resource allocation, treating morbidity measures

as omitted variables in models of current health care expenditure, and examining what

the relationship between age, TTD and HCE is once morbidity is included in these mod-

els. This has important implications for the prediction of future health care expenditures,

especially in the presence of a compression of morbidity over time. While, due to the

shortness of our panel, we cannot directly investigate the existence of a compression of

morbidity, successive papers have suggested its existence (Fries, 1980; Freedman et al.,

2002; Romeu Gordo, 2011) and, consequently, it is necessary to examine the relationship

between morbidity and HCE to inform predictions of future HCE. Assuming that future

changes in age-related morbidity-specific ill-health can be anticipated, the inclusion in

these models of age, morbidity, as well as any residual association with TTD, will allow

for better prediction of future HCE.
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4.2 Data

4.2.1 Data sources

Information on patient-level hospital use and associated Reference Costs for treatment are

derived from the Hospital Episodes Statistics (HES) dataset, published by the Health and

Social Care Information Centre (HSCIC). This is complemented with small-area data on

years of potential life lost (YPLL) published by the ONS, and individual level mortality

information, jointly published by the HSCIC and the ONS.

We use successive years (financial years 2005/06 to 2011/12) of the HES dataset, along

with the associated years of the NHS’s Reference Costs (RC) data. HES has been published

for each financial year since 1989/90 and is available for admitted patient care, outpatient,

accident and emergency and maternity cases. The admitted patient care (‘inpatient’) HES

dataset that we use provides information on individual-level patient characteristics and

diagnoses and procedures undergone for all patients admitted to hospitals in England.

HES contains diagnostic data, categorised (since 1995/96) according to the tenth revi-

sion of the World Health Organization’s International Classification of Diseases (ICD-10).

Details of procedures and interventions are recorded according to the fourth revision of the

Office of Population, Censuses and Surveys’ Classification of Intervention and Procedures

(OPCS-4) (Health & Social Care Information Centre, 2013).

HES is broken down by completed “episode” – each record consists of a continuous

period of care at a single provider of treatment under the same consultant. A new record

is generated when a patient is either transferred to the care of either a new consultant,

transferred to a new provider, or is discharged from hospital. Although individuals are not

identifiable, the hesid variable allows individuals to be tracked across episodes, to create

spells – multiple episodes unseparated by a temporal break outside of hospital. Dawson

et al. (2005) note that this data can be used to generate different units of analysis:

• The aforementioned episodes (or consultant episodes, CEs) themselves, including

episodes that are incomplete within the financial year in question.

• Finished consultant episodes (FCEs) – those which are finished within the financial

year in question, but may have begun earlier.
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• Provider spells (PSs) – all episodes in the same spell and within the same hospital,

but potentially under the care of different consultants.

• Continuous inpatient spells (CIPSs) – all episodes in the same spell, but potentially

under the care of different consultants and/or at a different provider.

Although PSs or CIPSs are often preferred when looking at the event of a patient’s hos-

pitalisation, the costing of a patient’s time in hospital and the recording of their diagnoses

and procedures undergone are made at the episode level.

The hesid variable further enables the tracking of patients over different years of the

HES dataset, and consequently the creation of a panel structure for the data. Information

within the HES dataset – most commonly, information regarding diagnosis, treatment

and age of the patient – is used to apply the most appropriate HRG categorisation to the

dataset. We use the Health and Social Care Information Centre’s Consultation ‘Grouper’

software to carry out this first step.

We use the most recent version of this Grouper – for the 2011/12 financial year – for all

seven of the years we use, to categorise patients into Healthcare Resource Groups (HRGs).

HRGs are used to categorise patient spells not only by broad procedure or diagnosis, but

by the type and complexity of the patient’s spell, into one of over 1,400 groupings. This

allows us to apply the current best-practice methods for grouping patients into HRGs

based on the information available.

In a final stage, we apply available estimates of hospital costs for each inpatient spell,

using reference costs data for the relevant tax year. These costs are based on each NHS

provider’s estimates of their own costs for each patient spell, categorised by HRG. These

reference costs are derived from accounting costs for each HRG, submitted by each or-

ganisation providing secondary care in England (Department of Health, 2012). The NHS

Costing Manual provides guidance to all providers to support the calculation of reference

costs and to enforce more uniform standards for costing methodologies. We use the esti-

mate provided by the hospital providing treatment as our estimated cost for the patient’s

episode.

The DH’s Reference Cost data is submitted on a full absorption basis – that is, taking

account of all direct and indirect costs relating to the activities in question, as well as
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a proportion of an estimate of all overhead costs relating to the overall running of the

provider. Further, to account for the fact that costs will vary even within HRGs, hospitals

are required to provide per diem costs for longer admissions that exceed a given ‘trim

point’, which differs by each HRG. This trim point is defined as the upper quartile of

length of stay, plus 1.5 times the inter-quartile range for length of stay for that HRG

(Department of Health, 2012). Even within the same HRG, costs are not identical but

differ according to the patient’s length of stay. An estimate of costs for each inpatient spell

is obtained by matching data on costs for that provider in the Reference Costs database

to HRG for each episode in the relevant year’s HES data.

We add information regarding an individual’s death from linked HES-ONS mortality

data. Again, the merging process is carried out using the individual’s hesid. The latest

version of this data provides information on deaths to the end of the 2012 calendar year,

and therefore provides information on some individuals whose deaths are known to have

occurred after the end of the final wave in our dataset. Where individuals are known to

have died, they are included up to and including the final quarter of their life, and not

included in the panel in following years. TTD can only be measured – for decedents –

retrospectively, using information available at the time of the individual’s death. Within a

panel data structure, TTD in any given wave is unknown at the time at which data within

that wave is collected. Existing literature on the relationship between HCE and TTD uses

observed TTD (or an instrument for TTD) as an explanatory covariate in models along

with age and other characteristics.

We make use of the Office for National Statistics’ Indices of Multiple Deprivation

(IMD), by Lower Super Output Area (LSOA) in order to construct an instrument for

TTD. LSOAs are defined at the time of the UK’s decennial Census and are made up of

similarly-sized small areas of the country. HES data, for the years used in our dataset,

provides information on the individual’s LSOA of residence at the time of the 2001 Census.

At this time, LSOAs in England consisted of 32,482 areas of populations between 1,000

and 3,000, with between 400 and 1,200 households (Office for National Statistics, 2011).

Indices of Multiple Deprivation, at this LSOA level, are measures of the levels of de-

privation in these small areas. Although made up of seven domains (income, employment,

health and disability, education, housing, living environment and crime (Department for
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Communities and Local Government, 2011)), we primarily make use of one of the in-

dicators that forms part of the health and disability IMD score: years of potential life

lost (YPLL). This consists of a standardised measure of premature mortality calculated

using information for all individuals to have died before the age of 75, as described in

Blane and Drever (1998)45. Although the LSOAs themselves are defined every ten years

at the time of the UK’s census, statistics for each domain are collected and published for

these areas more regularly: we make use of those published in 2007 (produced using data

from 2001-2005 inclusive), and 2010 (produced using data from 2004-2008 inclusive) (De-

partment for Communities and Local Government, 2008, 2011). For each of these years, we

use LSOAs as defined in the 2001 UK Census. While these figures are comparable within

years, the data collector (the UK’s Department for Communities and Local Government)

caution against using this data for trend analysis. We therefore include each wave of this

measure separately as instruments.

Our random sample consists of 111,136 individuals (55,039 men and 56,097 women)

aged 50 years and older, and is taken from all inpatient episodes in England in the fi-

nancial year 2005-2006. The size of sample taken and age cut-off are somewhat ar-

bitrary. Sample size was selected to enable computations not to become burdensome,

and the age cut-off was selected to ensure sufficient deaths were observed in the data to

make meaningful influence. We follow all sampled individuals until their death. We col-

lapse all inpatient episodes for a given quarter into a single observation in our data.

This observation contains a sum of all hospital costs incurred in all episodes finish-

ing in that quarter, as well as diagnostic information contained in the ICD-10 codes

for those episodes. In principle, the ICD-10 classification allows for up to 14,400 dif-

ferent diagnoses. To make these more manageable for analysis, however, we further

collapse this information using the US Agency for Healthcare Research and Quality’s

Clinical Classifications Software (CCS) method to convert ICD-10 codes to CCS codes

(US Agency for Healthcare Research and Quality, 2009). This reduces the number of

different groupings to a more manageable 260 mutually-exclusive, and clinically mean-

4The Office for National Statistics, however, use 75 rather than 65 years, in their implementation of
this method, as the age at which mortality is considered to be premature (Department for Communities
and Local Government, 2011).

5Details of the method employed by the ONS were obtained in personal communication with the study’s
author, Chris Dibben.
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ingful, categories6. Where individuals do not have any episodes in a quarter, they are

recorded as having zero hospital costs, and as having zero observed morbidities arising

from diagnostic information. The recording of zero morbidities might be unrealistic for

patients observed to have hospitalisations in recent periods and for whom there is likely

to exist an underlying, albeit less grave, health problem. In the absence of additional

information on the gravity of any residual health problem, we assume that such health

issues are insignificant relative to those leading to a hospitalisation. While we include a

sum of all hospital costs for episodes ending in the quarter in question, we include only a

maximum of three diagnoses for each individual, for a maximum of five episodes ending

in that quarter. Using the merged mortality data, we are able to add a variable for the

individual’s time-to-death, measured in number of quarters to death.

Descriptive statistics for the sample of inpatient healthcare users in the first wave are

presented in Tables 4.1 & 4.2.

Table 4.1: Summary statistics (Quarter 1, men. n=55039.

Variable Mean Std. Dev. Min Max
HCE 613.91 1801.81 0 92886.46
log(HCE) 2.03 3.28 0 11.44
TTD (quarters) 9.71 7.84 0 27
log(TTD) 2.04 0.88 0 3.33
Age 75.09 10.13 50 105.66
YPLL (IMD 2007) 65.83 15.70 33.30 191.50

Table 4.2: Summary statistics (Quarter 1, women. n=56097.)

Variable Mean Std. Dev. Min Max
HCE 666.85 1879.67 0 71405.11
log(HCE) 2.05 3.32 0 11.18
TTD (quarters) 9.89 7.91 0 27
log(TTD) 2.05 0.89 0 3.33
Age 78.28 10.78 50 111.16
YPLL (IMD 2007) 66.06 15.60 33.30 191.50

As is usual, the distribution of HCE is positively skewed, with this skewness reduced

6A full list of these CCS groupings is provided in Appendix 4.A
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somewhat when we take a logarithmic transformation. As would be expected due to

their longer lifespan, on average, the average age of women in the sample is somewhat

higher than that for men (approximately 78 years, compared to 75). Similarly, women are

observed for, on average, slightly more waves (mean TTD for women is 10.89 compared

to 10.71 for men).

Diagrams, presented in Figures 4.3 and 4.4, based on descriptive statistics, provide

some illustration of the existing red herring thesis. When we take a 5% sample of all

users of inpatient services (118,263 men and 125,931 women), including both decedents

and survivors, HCE appear to increase with age (top-left panel). This is the usual age-

expenditure curve that is used to infer rising costs with population ageing: the assumption

being that as the population ages, ignoring the drop in expenditures at very high ages as

this is likely due to low sample sizes, the curve continues to rise as an extrapolation of the

observed trend. The observation that expenditures rise with age, however, is an artifact

of a compositional effect. The näıve age-expenditure curve is composed of individuals who

are known to have died during the period of observation (the sample used in estimation, of

55,039 men and 56,097 women) – who have, on average, high expenditures for this period

(top-right panel) – and individuals who are known to have survived (63,224 men and 69,834

women) who have, on average, lower expenditures for this period (bottom-left panel). The

average expenditures for individuals observed to have died during the sample preiod are

far greater than for individuals who survive. This suggests an important role for time-

to-death in explaining HCE. As the proportion of the full population who are decedents

increases with age, the näive observed relationship between age and expenditure displays

an increasing trend. Note, however, that average expenditures for both decedents and

survivors display a flatter profile than that depicted for the full population suggesting a

less important role for age.

When we focus on decendents, and consider average HCE by proximity to death, we

observe a large increase in costs in terminal quarters – particularly in the year immediately

before death. Figure 4.5 shows a similar relationship between expenditures and TTD for

men at selected ages. In general, expenditure in quarters preceding the final three average

around £500 (although there is variation). In the final three quarters, and particularly the

final quarter, we observed a large increase in expenditure. With the exception of 50 year
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olds, there is a clear gradient of health expenditures rising most dramatically in the final

quarter of life with average increases over the penultimate quarter ranging from £329 for

55 year olds to £1,249 for 90 year olds.
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Figure 4.3: Healthcare expenditures by age and proximity to death, males
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Figure 4.4: Healthcare expenditures by age and proximity to death, females
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The relationship between HCE and TTD in levels is nonlinear. Figure 4.6 shows that

the relationship is approximately linear on the logarithmic scale and in the modelling that

follows logarithms of both HCE and TTD are used throughout.
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Figure 4.6: Average healthcare expenditures according to quarters to death (log scale for
x- and y- axes)

4.3 Theoretical model

This chapter uses a reduced form of the Grossman model in order to more directly consider

the meaning of TTD. Consider the Grossman model’s conceptualisation of health stock in

any given time period (for our purposes, any given quarter), and its conceptualisation of

the individual’s death. Individuals are assumed to invest in health (Iit) – take decisions

that, positively or negatively, affect their health – where this investment is a function of

medical care (Mit) and a vector of exogenous characteristics, such as the individual’s level

of education (Eit).

Iit = Iit (Mit;Eit)

An individual’s health in future time periods is a function of this investment, and

health from the current time period (Hit), with some depreciation of this due to natural

processes, where the depreciation rate is δit. This depreciation rate is assumed to rise with

103



age.

Hit+1 = Iit + (1− δit)Hit

In some final time period, (t = n), the individual’s health stock will fall below some

level, Hmin, a minimum level of health stock required to survive.

Hn < Hmin

We further add the condition that

Mit = f (Hit...) ,
δMit
δHit

< 0

that is, that (in our model, NHS-provided) medical care (and thus HCE) in any given

quarter is decreasing in health status.

Death occurs at time period n, and this is affected by Iit, ∀t, through its effect on

Hit+1, ∀t: at time period n, health stock, Hit, falls below Hmin, the minimum health

required to survive.

We observe some (partial) snapshot of a proxy for Hit in any given quarter through

the morbidity markers recorded in HES, where the presence of morbidity markers proxies

for lower levels of health. Mit can be seen as our measure of HCE in the current time

period. HCE, therefore, affects Hit+1: that is, health stock in the next quarter only, and

Hit, current health stock (as partially proxied by morbidity markers), is therefore not

endogenous according to this model.

However, TTDit itself remains endogenous. TTDit (in the original Grossman frame-

work, and previous chapters, n) is increasing in Hit, ∀t. While Mit does not affect Hit, it

does affect Hit+1 through Iit, and thus TTD. The endogeneity of TTD thus arises from the

fact that current HCE influences future health stock, and thus reduces TTD through its

positive effect on future health stock. This motivates the use of an instrumental variable

approach that instruments TTD with the LSOA measure of YPLL.

4.4 Econometric model

TTDit can only be measured – for decedents – using information available at some time

period d, d > t, where d is the time period in which individual i is first recorded as dead.

In line with existing research into the relationship between HCE and TTD, we use a value

for TTD each wave, using information on mortality status known at the end of our final

104



wave, the financial year 2011-2012. This means, for instance, that an individual who dies

in wave 14 would score 14 on TTD in wave 1, 13 in wave 2, and so on, until scoring 1

in wave 14. Owing to the observed relationship between TTD and HCE outlined in the

previous chapter, our model for TTD uses a logarithmic transformation of this value.

Existing research in the red herring strand of literature posits a hypothetical model of

HCE where

HCEit = α+ βageageit + µi + εit, i = 1, ..., N, t = 1, ..., Ti (1)

where µi is an individual-specific unobserved effect and εit is an idiosyncratic error term.

Although this model is not estimated in existing papers in the red herring strand of liter-

ature, it is claimed that such a model would not adequately explain HCE. TTD is claimed

to be an omitted variable in these models, giving rise to models such as:

HCEit = α+ βageageit + βTTDTTDit + µi + εit, i = 1, ..., N, t = 1, ..., Ti (2)

We argue that individual morbidity is an omitted variable in this type of model. Ac-

cordingly, we augment the model as follows:

HCEit = α+βageageit+βTTDTTDit+
260∑
j=1

βCCSjCCSjit+µi+εit, i = 1, ..., N, t = 1, ..., Ti

(3)

where CCSn represents a recorded morbidity of CCS type n (n = 1...260). We exploit the

available data in HES to include detailed information about a patient’s morbidities at the

time of their hospital stay. We estimate each of these models with random effects.

Modelling HCE as a function of TTD suffers from potential problems of endogeneity.

Existing literature suggests that conditional on other covariates, being further from death

– i.e. having a high TTD – in time period t are likely to lead to lower levels of HCE

in t. This assumes that TTD proxies morbidity which is not observed in the model in

question: that those who are healthier are likely to require lower HCE. Higher levels of

HCEit, however, are likely to lead to high levels of TTDit: if the hospital activity that
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generates healthcare expenditures is effective in improving health then the individual is

likely to enjoy a longer remaining lifespan as a result. We therefore posit that actual TTD

at time period t has been determined in part by HCE in that time period as well as other

time periods.

Other models in the red herring strand of literature model HCE, using TTD and age

as explanatory variables, but highlighting this endogeneity problem. Various attempts are

made to purge TTD of its endogeneity in HCE (Zweifel et al., 2004; Werblow et al., 2007;

Felder et al., 2010). We propose the use of a component of the Health and Disability Index

of Multiple Deprivation by Lower Super Output Area – years of potential life lost (YPLL)

– as an instrument for TTD. This is highly correlated with TTD and, by virtue of being

calculated at an aggregate level, exogenous in a model of HCE. That is, while the level of

YPLL at an LSOA level is a strong predictor of an individual’s TTD, this YPLL level is

not influenced by the HCE for a given individual.

When we estimate an IV model with age, TTD and morbidities, the data suggests a

mildly positive relationship between TTD and HCE, though the estimated coefficients are

insignificant at even the 5% level.7

7First-stage regressions in this model for men suggest a positive (but highly non-significant) relationship
between TTD and 2007 YPLL figures. We consequently drop 2007 figures from our model and, as a result,
are unable to test overidentification restrictions for this model alone.
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Table 4.3: Results

Model RE AGE RE AGE TTD RE AGE TTD MORBS IVRE AGE TTD IVRE AGE TTD MORBS

Men

First stage regression & diagnostic test results

2007 IMD YPLL -.0004** n/a

2010 IMD YPLL -.0029*** -.0046***

F-test of instrument relevance 311.67 716.11

Hansen J-statistic (p-value) 0.3354 n/a

Age 0.005 0.0723*** -0.0197*** 0.257*** -0.047*

Age2 0.000 -0.001*** 0.000*** -0.002*** 0.000

log(TTD) -0.952*** -0.0427*** -1.826*** 0.154

Morbidities Included Included

Constant 2.525*** 2.145*** 1.509*** -1.930*** 2.102***

N*T=589378, N=55048

Women

First stage regression & diagnostic test results

2007 IMD YPLL -.0013*** -.0012***

2010 IMD YPLL -.0007*** -.0008***

F-test of instrument relevance 73.67 63.15

Hansen J-statistic (p-value) 0.6317 0.1256

Age 0.009 0.0774*** -0.0108*** 0.549*** -0.010

Age2 -0.000*** -0.000698*** 0.0000307 -0.000*** -0.000

log(TTD) -0.907*** -0.0252*** -1.767*** 0.096

Morbidities Included Included

Constant 2.827*** 2.225*** 1.141*** -11.839*** 1.050

N*T=610685, N=56104

* p<0.05 ** p<0.01 *** p<0.001
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Table 4.4: Diagnoses with highest estimated associated increase in costs, men

CCS grouping Coefficient estimate, log HCE

Model RE AGE TTD MORBS IVRE AGE TTD MORBS
Leukemia 3.551 3.601
Cancer of brain and nervous system 3.468 3.601
Non-Hodgkin‘s lymphoma 3.399 3.445
Cataract 3.370 3.372
Other non-epithelial cancer of skin 3.339 3.372
Melanomas of skin 3.103 3.123
Osteoarthritis 3.041 3.067
Acute cerebrovascular disease 2.998 3.083
Cancer of pancreas 2.997 3.146
Cancer of bladder 2.929 2.950

Table 4.5: Diagnoses with highest estimated associated costs, women

CCS grouping Coefficient estimate, log HCE

Model RE AGE TTD MORBS IVRE AGE TTD MORBS
Other non-epithelial cancer of skin 3.707 3.747
Cataract 3.626 3.626
Prolapse of female genital organs 3.592 3.608
Non-Hodgkin‘s lymphoma 3.572 3.598
Leukemia 3.556 3.406
Cancer of brain and nervous system 3.542 3.541
Melanomas of skin 3.408 3.463
Melanomas of skin 3.338 3.445
Cancer of breast 3.163 3.212
Acute cerebrovascular disease 3.141 3.189

4.5 Results

These results (Table 4.3) represent, as far as we are aware, the first reported results in

the red herring strand of literature of whether hospital costs increase with age in the

aggregate, even before control is made for other factors such as TTD and morbidities

(RE AGE). Existing research broadly states that this is the case, but refer merely to

descriptive statistics rather than any kind of econometric analysis. We find a weak and

non-significant relationship between age and inpatient costs in a random effects model.

Our results are broadly in line with those in the red herring strand of existing research.

In a random effects model (RE AGE TTD) including TTD and age, we observe a highly

significant relationship with TTD. As the individual gets 1% closer to death, HCE increases
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by approximately 0.95% for men (0.91% for women)8. Confirming the red herring thesis,

we find that the relationship between TTD and HCE is much stronger than that between

age and HCE: the entire range in which predicted log(HCE) varies with age between the

ages of 50 and 100 is equivalent to approximately half the increase in predicted log(HCE)

in the final year of life alone.

Conditioning on morbidity markers, we find a reduced role for TTD in explaining

HCE. Our estimate on the increase in the TTD elasticity of HCE falls from -0.952 for men

(-0.907 for women) (RE AGE TTD), to -0.043 (-0.025 for women) when we condition on

the individual’s observed morbidity in the current time period (RE AGE TTD MORBS).

Tables 4.5 and 4.4 list the ten conditions associated with the highest elevation in esti-

mated log HCE, and the estimated associated coefficients for dummy variables for these

conditions. In all models – random effects, and random effects with instrumental variables

employed – in excess of 90% of the estimated coefficients for the morbidity indicators are

significant at the 1% level, and a Wald test of joint significance of coefficients in models

for both men and women yields a chi-square value of in excess of 1,000,000, and a p-value

reported by Stata 12 as zero. We interpret this as indicating that TTD does indeed serve

as a proxy for unobserved morbidity. Further, the estimated coefficients for age see similar

falls. This is illustrated in Figure 4.7: the combined relationship of time-to-death and age

is severely muted when we condition on current morbidity markers.

8Because we aggregate costs by quarter and consequently use discrete values of TTD for each individual
in each wave, this elasticity can only be considered as an approximation.
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Figure 4.7: Change in HCE according to time-to-death and age, hypothetical individual
dying at 75 (top – men, bottom – women)
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We anticipate hospital costs to rise as individuals approach death, and as such expect

a negative relationship between TTD and HCE. We instrument for TTD in order to deal

with the potential endogeneity of TTD in HCE, which would mean that a näıve estimate of

the ‘effect’ of TTD on HCE was likely to be biased towards zero (i.e. that näıve estimates

would be expected to be less negative). In a further pair of models, we instrument TTD

with YPLL, our small-area measure of premature morbidity.

Previous work (Zweifel et al., 2004; Werblow et al., 2007; Felder et al., 2010) in the

red herring strand of literature has highlighted the potential endogeneity of TTD in HCE.

While TTD may be negatively associated with HCE through its proxying for morbidity or

other events associated with hospital costs in proximity to death, the treatments associated

with HCE – if effective – will also increase TTD by increasing the health of the individual

receiving treatment. Consequently, if endogeneity does pose problems in this analysis, the

coefficient estimate on TTD is likely to be below the true ‘effect’ of TTD.

When we instrument using both waves of LSOA-level YPLL – IVRE AGE TTD –

the estimated coefficient of log(TTD) rises (in absolute terms) from -0.952 for men (-

0.907 for women) to -1.826 (-1.767 for women). While we confirm the findings of Zweifel

et al. (2004) that ‘the proximity of death rather than age [being] a main determinant of

HCE is fairly robust to endogeneity error,’ our results also suggest that failing to account

for the endogeneity of TTD in these models leads to a large underestimate of the true

‘effect’ of TTD in models that do not include morbidity markers. This is also illustrated

in Figure 4.7, which shows the large divergence in estimated costs for these two models

for an individual who dies at the age of 75. First-stage regressions show, as expected,

a negative and significant relationship between YPLL and TTD and an F-test of these

instruments in IVRE AGE TTD strongly suggests their relevance as a predictor of TTD

(an F-statistic of 311.67 for men, and 73.67 for women). Further, a Hansen J-test of

overidentification restrictions in this two-instrument model yields a p-value of 0.3354 for

men (0.6317 for women), strongly suggesting that these instruments are valid in our model

of HCE.
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4.6 Conclusions

Ageing populations pose a substantial problem for public service provision, particularly

for health and social care. Estimates of how an ageing population will impact HCEs

vary considerably. Developing credible predictions is a core component of health systems

planning as is allocating resources efficiently and equitably to meet the health care needs of

the population. Whilst it is undeniable that health care costs will rise as the baby-boomers

age, the impact might not be quite as large as models based on a simple extrapolation of

a crude age-expenditure curve suggests. As individuals live longer, all other things equal,

they may generate larger cumulative life-time costs. The extent to which this becomes a

burden on the health care sector will depend on how morbidity profiles of cohorts change

over time. Should a compression of morbidity thesis hold, Fries (1980), Freedman et al.

(2002) & Romeu Gordo (2011), on average individuals can expect to live longer and delay

the onset of morbidity into later years. This will have the effect of moving the age-

expenditure curve to the right as populations age. An expansion of morbidity would have

more severe consequences for HCEs with individuals living longer, but also experiencing

a greater number of years in ill-health.

Our findings support the red-herring strand of literature that it is not age per se, but

time-to-death (TTD), particularly the final year of life, that is a strong driver of HCEs.

We extend this literature by showing that TTD in large part proxies for morbidity. Our

results – showing a weak relationship between HCE and age when TTD is included –

fall in line with existing research into the determinants of HCE for ageing populations.

However, while TTD clearly plays an important role in explaining HCEs, it is unhelpful

in forecasting future expenditure needs. At an individual level TTD is unknown an hence

to forecast future expenditure growth assumptions about the proportions of decedents

and survivors together with projections of populations within age groups is required. By

extending the modelling of HCE to include morbidity characteristics, we show that the

impact of TTD is diminished indicating that it acts as a proxy for underlying health

status. This is important to allow the planning of future resource requirements and in

developing appropriate models for budgets to be allocated equitably across providers of

care in response to population health care need. Our results are robust to problems of
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endogeneity that exist between HCE and TTD.

Our results strengthen the need to include measures of morbidity in models of HCE.

Merely including TTD is insufficient in predicting future HCE. To accurately forecast

future expenditure needs, information on changes to profiles of morbidity are required.

The existence of a compression of morbidity, along with a tendency for increased life

expectancy, suggests competing and opposing pressures on HCE. While increases in life

expectancy suggests that a greater number of individuals will be alive at any given age,

with associated upward pressure on HCE, a compression of morbidity will tend to, on

average, provide downward pressure on HCE for any given individual at any given age.

This work has focused on determinants of the demand for inpatient health care services

at an individual level via age, time-to-death and morbidity characteristics. Clearly there

is also a substantial role for supply-side impacts on expenditure growth notably through

technological advances in health care interventions and the way in which health care

services are organized and delivered. We do not address these issues here, but are areas

that warrant further investigation at an aggregate level. Inpatient hospital care is one

of a number of services provided by the National Health Service in England and other

expenditure should also be taken into account when assessing the overall impact of an

ageing population, as should costs placed on the Government by long-term care services

predominantly accessed by older age groups. The increasing ability to link administrative

sources of data provides a potentially valuable resource for future research in this area.
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4.A Appendix

Table A4.1: Clinical Classifications Software (CCS) groupings

CCS code Description

1 Tuberculosis
2 Septicemia (except in labor)
3 Bacterial infection; unspecified site
4 Mycoses
5 HIV infection
6 Hepatitis
7 Viral infection
8 Other infections; including parasitic
9 Sexually transmitted infections (not HIV or hepatitis)
10 Immunizations and screening for infectious disease
11 Cancer of head and neck
12 Cancer of esophagus
13 Cancer of stomach
14 Cancer of colon
15 Cancer of rectum and anus
16 Cancer of liver and intrahepatic bile duct
17 Cancer of pancreas
18 Cancer of other GI organs; peritoneum
19 Cancer of bronchus; lung
20 Cancer; other respiratory and intrathoracic
21 Cancer of bone and connective tissue
22 Melanomas of skin
23 Other non-epithelial cancer of skin
24 Cancer of breast
25 Cancer of uterus
26 Cancer of cervix
27 Cancer of ovary
28 Cancer of other female genital organs
29 Cancer of prostate
30 Cancer of testis
31 Cancer of other male genital organs
32 Cancer of bladder
33 Cancer of kidney and renal pelvis
34 Cancer of other urinary organs
35 Cancer of brain and nervous system
36 Cancer of thyroid
37 Hodgkin‘s disease
38 Non-Hodgkin‘s lymphoma
39 Leukemias
40 Multiple myeloma
41 Cancer; other and unspecified primary
42 Secondary malignancies
43 Malignant neoplasm without specification of site
44 Neoplasms of unspecified nature or uncertain behavior
45 Maintenance chemotherapy; radiotherapy
46 Benign neoplasm of uterus
47 Other and unspecified benign neoplasm
48 Thyroid disorders

Continued on next page
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49 Diabetes mellitus without complication
50 Diabetes mellitus with complications
51 Other endocrine disorders
52 Nutritional deficiencies
53 Disorders of lipid metabolism
54 Gout and other crystal arthropathies
55 Fluid and electrolyte disorders
56 Cystic fibrosis
57 Immunity disorders
58 Other nutritional; endocrine; and metabolic disorders
59 Deficiency and other anemia
60 Acute posthemorrhagic anemia
61 Sickle cell anemia
62 Coagulation and hemorrhagic disorders
63 Diseases of white blood cells
64 Other hematologic conditions
65 Mental retardation
66 Alcohol-related mental disorders
67 Substance-related mental disorders
68 Senility and organic mental disorders
69 Affective disorders
70 Schizophrenia and related disorders
71 Other psychoses
72 Anxiety; somatoform; dissociative; and personality disorders
73 Preadult disorders
74 Other mental conditions

75
Personal history of mental disorder; mental and behavioral prob-
lems; observation and screening for mental condition

76
Meningitis (except that caused by tuberculosis or sexually trans-
mitted disease)

77
Encephalitis (except that caused by tuberculosis or sexually trans-
mitted disease)

78 Other CNS infection and poliomyelitis
79 Parkinson‘s disease
80 Multiple sclerosis
81 Other hereditary and degenerative nervous system conditions
82 Paralysis
83 Epilepsy; convulsions
84 Headache; including migraine
85 Coma; stupor; and brain damage
86 Cataract
87 Retinal detachments; defects; vascular occlusion; and retinopathy
88 Glaucoma
89 Blindness and vision defects

90
Inflammation; infection of eye (except that caused by tuberculosis
or sexually transmitteddisease)

91 Other eye disorders
92 Otitis media and related conditions
93 Conditions associated with dizziness or vertigo
94 Other ear and sense organ disorders
95 Other nervous system disorders
96 Heart valve disorders

97
Peri-; endo-; and myocarditis; cardiomyopathy (except that
caused by tuberculosis or sexually transmitted disease)

Continued on next page
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98 Essential hypertension
99 Hypertension with complications and secondary hypertension
100 Acute myocardial infarction
101 Coronary atherosclerosis and other heart disease
102 Nonspecific chest pain
103 Pulmonary heart disease
104 Other and ill-defined heart disease
105 Conduction disorders
106 Cardiac dysrhythmias
107 Cardiac arrest and ventricular fibrillation
108 Congestive heart failure; nonhypertensive
109 Acute cerebrovascular disease
110 Occlusion or stenosis of precerebral arteries
111 Other and ill-defined cerebrovascular disease
112 Transient cerebral ischemia
113 Late effects of cerebrovascular disease
114 Peripheral and visceral atherosclerosis
115 Aortic; peripheral; and visceral artery aneurysms
116 Aortic and peripheral arterial embolism or thrombosis
117 Other circulatory disease
118 Phlebitis; thrombophlebitis and thromboembolism
119 Varicose veins of lower extremity
120 Hemorrhoids
121 ther diseases of veins and lymphatics

122
Pneumonia (except that caused by tuberculosis or sexually trans-
mitted disease)

123 Influenza
124 Acute and chronic tonsillitis
125 Acute bronchitis
126 Other upper respiratory infections
127 Chronic obstructive pulmonary disease and bronchiectasis
128 Asthma
129 Aspiration pneumonitis; food/vomitus
130 Pleurisy; pneumothorax; pulmonary collapse
131 Respiratory failure; insufficiency; arrest (adult)
132 Lung disease due to external agents
133 Other lower respiratory disease
134 Other upper respiratory disease
135 Intestinal infection
136 Disorders of teeth and jaw
137 Diseases of mouth; excluding dental
138 Esophageal disorders
139 Gastroduodenal ulcer (except hemorrhage)
140 Gastritis and duodenitis
141 Other disorders of stomach and duodenum
142 Appendicitis and other appendiceal conditions
143 Abdominal hernia
144 Regional enteritis and ulcerative colitis
145 Intestinal obstruction without hernia
146 Diverticulosis and diverticulitis
147 Anal and rectal conditions
148 Peritonitis and intestinal abscess
149 Biliary tract disease
150 Liver disease; alcohol-related

Continued on next page
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151 Other liver diseases
152 Pancreatic disorders (not diabetes)
153 Gastrointestinal hemorrhage
154 Noninfectious gastroenteritis
155 Other gastrointestinal disorders
156 Nephritis; nephrosis; renal sclerosis
157 Acute and unspecified renal failure
158 Chronic renal failure
159 Urinary tract infections
160 Calculus of urinary tract
161 Other diseases of kidney and ureters
162 Other diseases of bladder and urethra
163 Genitourinary symptoms and ill-defined conditions
164 Hyperplasia of prostate
165 Inflammatory conditions of male genital organs
166 Other male genital disorders
167 Nonmalignant breast conditions
168 Inflammatory diseases of female pelvic organs
169 Endometriosis
170 Prolapse of female genital organs
171 Menstrual disorders
172 Ovarian cyst
173 Menopausal disorders
174 Female infertility
175 Other female genital disorders
176 Contraceptive and procreative management
177 Spontaneous abortion
178 Induced abortion
179 Postabortion complications
180 Ectopic pregnancy
181 Other complications of pregnancy
182 Hemorrhage during pregnancy; abruptio placenta; placenta previa

183
Hypertension complicating pregnancy; childbirth and the puer-
perium

184 Early or threatened labor
185 Prolonged pregnancy

186
Diabetes or abnormal glucose tolerance complicating pregnancy;
childbirth; or the puerperium

187 Malposition; malpresentation
188 Fetopelvic disproportion; obstruction
189 Previous C-section
190 Fetal distress and abnormal forces of labor
191 Polyhydramnios and other problems of amniotic cavity
192 Umbilical cord complication
193 OB-related trauma to perineum and vulva
194 Forceps delivery

195
Other complications of birth; puerperium affecting management
of mother

196 Normal pregnancy and/or delivery
197 Skin and subcutaneous tissue infections
198 Other inflammatory condition of skin
199 Chronic ulcer of skin
200 Other skin disorders

Continued on next page
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201
Infective arthritis and osteomyelitis (except that caused by tuber-
culosis or sexually transmitted disease)

202 Rheumatoid arthritis and related disease
203 Osteoarthritis
204 Other non-traumatic joint disorders
205 Spondylosis; intervertebral disc disorders; other back problems
206 Osteoporosis
207 Pathological fracture
208 Acquired foot deformities
209 Other acquired deformities
210 Systemic lupus erythematosus and connective tissue disorders
211 Other connective tissue disease
212 Other bone disease and musculoskeletal deformities
213 Cardiac and circulatory congenital anomalies
214 Digestive congenital anomalies
215 Genitourinary congenital anomalies
216 Nervous system congenital anomalies
217 Other congenital anomalies
218 Liveborn
219 Short gestation; low birth weight; and fetal growth retardation
220 Intrauterine hypoxia and birth asphyxia
221 Respiratory distress syndrome
222 Hemolytic jaundice and perinatal jaundice
223 Birth trauma
224 Other perinatal conditions
225 Joint disorders and dislocations; trauma-related
226 Fracture of neck of femur (hip)
227 Spinal cord injury
228 Skull and face fractures
229 Fracture of upper limb
230 Fracture of lower limb
231 Other fractures
232 Sprains and strains
233 Intracranial injury
234 Crushing injury or internal injury
235 Open wounds of head; neck; and trunk
236 Open wounds of extremities
237 Complication of device; implant or graft
238 Complications of surgical procedures or medical care
239 Superficial injury; contusion
240 Burns
241 Poisoning by psychotropic agents
242 Poisoning by other medications and drugs
243 Poisoning by nonmedicinal substances
244 Other injuries and conditions due to external causes
245 Syncope
246 Fever of unknown origin
247 Lymphadenitis
248 Gangrene
249 Shock
250 Nausea and vomiting
251 Abdominal pain
252 Malaise and fatigue
253 Allergic reactions

Continued on next page
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254
Rehabilitation care; fitting of prostheses; and adjustment of de-
vices

255 Administrative/social admission
256 Medical examination/evaluation
257 Other aftercare

258
Other screening for suspected conditions (not mental disorders or
infectious disease)

259 Residual codes; unclassified
260 E Codes: All (external causes of injury and poisoning)
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Conclusions

This thesis focuses on the longitudinal analysis of health and healthcare data, applied

to three different questions, making methodological innovations and producing results that

should inform both policy and future empirical work. The thesis as a whole examines three

topics, the analysis of each being underpinned by a Grossman framework: social class in-

equalities in cancer registration, the effect of unobserved heterogeneity on the relationship

between smoking behaviours and cancer outcomes, and the implications for healthcare ex-

penditures from demographic changes in the presence of compression of morbidity, when

time-to-death is considered directly as a potential proxy for individual morbidity. When

these three questions are considered using the novel methods employed in this thesis, sub-

stantially different results and implications arise. While imperfections in the data sources

employed necessarily mean that further work will be required to pin down causal effects

with fewer required assumptions, all three chapters point to the use of these novel method-

ological approaches in order to more correctly answer existing questions. The remainder

of this section provides the specific conclusions to the research questions considered in

each chapter, discusses the necessary limitations of the conclusions drawn, and provides a

view towards areas for future research.

While previous research finds weaker evidence of socioeconomic inequality in cancer

outcomes after controlling for smoking behaviours, Chapter 2 suggests that this can be

attributed to the incorrect modelling of cancer outcomes. Different methods and differ-

ent assumptions regarding the relationship between social class and cancer outcomes are

considered, using cross-sectional data, as well as subsequent information regarding indi-

viduals’ health status. Finally, even after stripping out the effect of smoking, we find that,

while evidence regarding differential rates of lifetime incidence of cancer remains weak, in-

dividuals in the lowest social classes develop cancer approximately 15% sooner than those
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in the highest social class.

The chapter develops a case for a future research agenda in the field of socioeconomic

inequality in diseases more generally, and cancers specifically. While smokers are dropped

from the analysis in this chapter, the issue of the joint-modelling of smoking behaviours and

health outcomes is revisited in Chapter 3. While the use of duration analysis is common

in, for instance, cancer outcomes post-diagnosis, this chapter highlights the need to also

consider duration analysis, rather than merely probability models, of cancer outcomes

in an observation period that begins prior to diagnosis. Further, the imperfections of

the Health and Lifestyle Survey dataset employed in this chapter – a single cross-section

taken approximately 25 years prior to the latest follow-up – mean that prospects for future

research, and confirmation of these results – could lie in the use of better, ideally panel,

data to confirm these results. In addition to qualitative confirmation of results, the use of

a better dataset would derive quantitative estimates that relied upon fewer assumptions,

and could be estimated using a perhaps more appropriate measure of social inequality

(class-based, or income-based) than the registrar general classification chosen here for

pragmatic reasons.

Chapter 3 builds on the work of Chapter 2, continuing the focus on cancer outcomes.

We simultaneously model smoking behaviours and health outcomes – death and cancer

– allowing these to be jointly affected by unobservable factors. We find that the joint

modelling of smoking behaviours and health outcomes, compared to the single-equation

modelling of cancer outcomes, substantially alters the results obtained, suggesting a large

role for unobservable factors. This is confirmed by a post-estimation prediction of the

probability of class membership for each individual, in which we find that individuals with

similar observable characteristics and smoking behaviours exhibit substantially different

health outcomes.

The chapter emphasises the need for the joint modelling of individual behaviours and

health outcomes where, as in this case, those behaviours are likely to substantially affect

outcomes. The potential for unobservable factors to jointly affect individual behaviours

and health outcomes should not be ignored, and adopting a modelling method that does

not permit outcomes to vary by these unobservable factors is apt to incorrectly estimate

causal relationships between smoking and cancer outcomes. Again, the dataset employed
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(a single cross-section of individuals in 1985) complicates the exact interpretation of pa-

rameter estimates: our count of pack-years is censored in 1985 and thus does not capture

a full spell of the individual’s smoking behaviours. Clearer interpretations of coefficient

estimates of pack-years could be gained if a full spell of the individual’s smoking history,

rather than one truncated almost 25 years previous to the latest follow-up, was observed.

Chapter 4 focuses on the relationship between age, proximity to death (often time-

to-death, or TTD), and morbidity. While existing research examines the link between

age, time-to-death and healthcare expenditures (HCE), finding that TTD rather than age

determines HCE, we also condition on individual morbidities. By doing so, we find that

TTD itself is a ‘red herring’ in explaining HCE: that what determines HCE is not TTD,

but individuals’ morbidities.

This chapter has important implications for future research. If the ultimate data-

generating process that links TTD and HCE changes – if individuals approach death in

a different health state, as the ‘compression of morbidity’ hypothesis suggests – then as-

sumptions about future HCE may turn out to be incorrect. The inclusion of TTD in

models of HCE, as in previous research in the ‘red herring’ strand of literature, is found to

be insufficient in forming predictions about future HCE. The importance of including pre-

dictions about – and uncertainty around – future trends in morbidity in estimating future

HCE is emphasised: predictions about future health expenditures must incorporate esti-

mates of future changes in morbidity profiles. This has clear policy relevance with regard

to the sustainability of financing healthcare for an ageing population, and methodologi-

cal implications for the modelling of future HCE. While these results are not specifically

intended to inform resource allocation methods and would require further assumptions

and/or adjustments to be applied to such a use, our results would tentatively confirm

previous findings that linking healthcare funding to the age of the local population, as

proposed by a recent Secretary of State for Health, would not adequately capture need.

Future research in this area would benefit from the use of a longer panel, which would

allow the compression of morbidity hypothesis to be directly tested: the (maximum of) 28

quarters observed in our dataset is unlikely to be sufficient in order to do so. Furthermore,

this chapter concentrates solely on hospital inpatient care, which forms only part of NHS

expenditure. Future research could use the framework (of modelling according to age, time-
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to-death, and morbidity characteristics) adopted in this chapter to consider determinants

of other areas of NHS expenditure, as well as other possible effects on long-term social

care.
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