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Abstract 

The preimplantation embryo must satisfy dynamic changes in energy demand during 

development to the blastocyst stage. Energy is provided through regulated metabolic 

pathways including glycolysis, β-oxidation and oxidative phosphorylation. Oxygen 

consumption rate (OCR), representing overall oxidative metabolism, has been reported in 

several species but few studies have examined the bioenergetics of embryo development. 

Several methods were optimised to measure components of OCR by individual embryos. 

On average, 66% of blastocyst OCR was coupled to ATP synthesis, the majority being 

complex I-dependent. A further 13% was of non-mitochondrial origin, while maximal OCR 

was 189% of basal, providing a spare respiratory capacity of +89%. This profile allows re-

interpretation of existing data to estimate ATP production by the bovine embryo. 

The endogenous triglyceride store of the oocyte is increasingly considered a vital energy 

source in preimplantation development. In the present study, β-oxidation was 

manipulated during embryo culture. Inhibition of β-oxidation led to i) increased OCR ii) 

increased lipid content, iii) increased pyruvate uptake and iv) decreased lactate release at 

the blastocyst stage. Enhancing β-oxidation caused i) OCR at blastocyst stage to fall, ii) 

decreased lipid content during early cleavage, iii) decreased pyruvate consumption and 

iv) increased lactate release. Neither treatment affected blastocyst development rate or 

differential cell count, while both led to mitochondrial depolarisation. 

These metabolic observations were hypothesised to have legacy effects on gene 

expression. Groups of 10 blastocysts with similar metabolic profiles were analysed using 

transcription and DNA methylation microarray platforms. Following manipulation of β-

oxidation, gene transcripts involved in mitochondrial function, metabolism, key signalling 

cascades, recognition of pregnancy, stress response, protein modification and 

transcription were differentially expressed. Genes involved in transcription, protein 

modification, key signalling cascades and disease were differentially methylated, 

potentially linking dysregulated β-oxidation to deleterious conditions in later 

development. 

These data highlight the plasticity of metabolic regulation in the embryo, allowing 

successful preimplantation development despite an apparently deleterious phenotype, 

yet indicate that metabolic activity has subtle effects on development. 
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1 Introduction 
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1.1 Bovine oocyte and embryo development 

 In vivo oocyte development 1.1.1

The ovary is comprised of interstitial glands set in stroma tissue. This interstitial tissue 

surrounds the ovarian follicles, each containing a single primary oocyte. Before birth, the 

primary oocyte remains in the follicle and is surrounded by flattened mesenchymal cells, 

termed pre-granulosa cells. These are surrounded by 2 layers of thecal cells, the theca 

interna and theca externa (Figure 1). In many mammalian species, oogonal germ cells 

cease mitosis during foetal development, and enter meiosis. Meiosis halts at the 

diplotene stage, at which time homologous chromosomes have paired (Mandelbaum 

2000; Johnson 2012). The oocytes may remain in developmental arrest for many years; 

up to 50 in women. The primary oocyte contains an enlarged, vesicular nucleus known as 

the Germinal Vesicle (GV).  

It was traditionally believed that the number of oocytes present in the mammalian ovary 

is fixed at birth, or shortly after (Moor et al. 1990). In humans 1–2 ×106 oocytes are 

present at birth (Lobo 2003). However, recent studies in mice claimed that some 

oogenesis continues in early post-natal development via Oogonal Stem Cells (OSC). OSCs 

express the germ cell specific RNA helicase Ddx4 before differentiation to oocytes 

(Johnson et al. 2004; White et al. 2012). The authors also reported that a greater number 

of oocytes were found than expected from the rate of ovarian follicle loss and, while 

current understanding suggests that the number of follicles is fixed, it is possible that this 

is regulated by new oocyte formation from OSCs. Analogous Ddx4+ OSCs have been found 

in human ovarian tissue, so it is possible that oogenesis could continue later into life, or 

perhaps that OSCs could be stimulated to generate new oocytes as part of new fertility 

treatments (White et al. 2012).  

At the onset of puberty, the reproductive cycle begins, prompting the ovaries to initiate 

their cyclical endocrine characteristics to support development of the primary oocyte and 

primordial follicle. 
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Figure 1: Overview of the mammalian ovary and ovarian follicle. In the developing 
primary or preantral follicle, the zona pellucida forms and oocyte genome is transcribed. 
The oocyte secretes signals stimulating further follicle development. Within the 
secondary or antral follicle, the mature oocyte has arrested at diplotene stage of meiosis 
and is surrounded by an expanding layer of cumulus oophorous cells. The follicle is lined 
with granulosa cells and contains a fluid-filled antrum, which continues to expand until 
the time of ovulation. The follicle is surrounded by the connective theca interna and 
vascular theca externa. 

 The ovarian cycle 1.1.2

The ovary undergoes the hormonally regulated ovarian cycle as part of the cyclical 

pattern of female episodic fertility. As the ovary cycles, several preantral follicles (7-11 in 

cattle and human) are recruited for growth to the preovulatory stage, in parallel to oocyte 

nuclear and cytoplasmic maturation (Zeleznik 2004). In the bovine, several waves of 

follicle recruitment, growth and regression precede growth and ovulation of the 

dominant follicle during the final wave (Fortune 1994). A single oocyte is ovulated and 

undergoes translocation to the site of fertilisation in the oviduct as well as preparing for 

the transition into a fertilised zygote. Each cycle, one oocyte is lost through ovulation; 

however, early stage oocytes are continually lost or reabsorbed through atresia; which 

may be defined as the loss of oocytes or follicles through any process other than 

ovulation. Follicle atresia is a hormonally regulated process controlled by apoptosis of 
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granulosa cells (Kaipia and Hsueh 1997). In parallel to the ovarian changes, the uterine 

lining is remodelled in preparation for a possible pregnancy. 

The first 14 days following menstruation in the human and the first 2-3 days following 

oestrus in the cow (Austin 2001) constitute the follicular phase, in which levels of 

oestrogen, Follicle Stimulating Hormone (FSH) and Luteinising Hormone (LH) rise. This 

stimulates follicle growth and the phase ends with release of an oocyte through 

ovulation. The ruptured follicle folds in on itself, forming the corpus luteum in a process 

similar to wound healing (Smiths et al. 1994). The remaining 14 days in the woman and 18 

days in the cow comprise the luteal phase, in which progesterone, derived from the 

corpus luteum, acts on the endometrium to allow implantation of a blastocyst and 

support early pregnancy.  

The ovarian cycle affects the whole body and causes the sexually active and fertile period 

of oestrous, described as ‘standing heat’ in most mammals and giving rise to the term 

‘oestrous cycle’. If the ovulated oocyte is not fertilised, the endometrial lining of the 

uterus is reabsorbed during the luteal phase of the oestrous cycle. In higher primates, the 

ovarian cycle is instead termed the menstrual cycle due to the shedding of uterine 

endothelial tissue during the luteal phase of the cycle and the lack of physiological 

evidence of oestrous seen in other animals. The menstrual cycle is continuous and each 

cycle leads to the next. However, other mammals may have a limited number of cycles 

and fertile breeding seasons each year, such as monooestrous or dioestrous animals, with 

one or two oestrous cycles respectively. Polyoestrous animals have many cycles per year, 

which can be seasonal, for example the ovine breeds during winter and the equine during 

summer. The bovine, however, is non-seasonal polyoestrous, with many cycles per year, 

bearing more similarity to the human than other model species. However, cattle have a 

period of sexual inactivity, also termed dioestrous, between cycles. 
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Figure 2: Overview of the bovine oestrous cycle. From the time of oestrous on day 0/20, 
progesterone is secreted by the corpus luteum and levels rise gradually until around day 
15, then decrease rapidly. The dominant follicle secretes oestradiol, which inhibits Follicle 
Stimulating Hormone (FSH) secretion. When this follicle becomes non-functional, FSH 
secretion increases. FSH precedes recruitment of new follicles in 3 waves throughout the 
cycle. Levels of Luteinising Hormone (LH), required for follicle growth, remain 
consistently low until the LH surge, which occurs in the absence of progesterone and 
stimulates ovulation. Data summarised from (Wettemann et al. 1972; Austin 2001). 

 Follicle development 1.1.3

Several follicles are thought to begin growth each day and must pass through the 

preantral, antral and preovulatory stages before a mature oocyte, with the potential to be 

fertilised, is released. Throughout the preantral and antral phases, granulosa cells express 

Follicle Stimulating Hormone (FSH) receptors and theca cells express Luteinising Hormone 

(LH) receptors. These gonadotrophins are secreted by the anterior pituitary gland and are 

required to stimulate follicle progression past the preantral stage (FSH) and the antral 

stage (LH) and to prevent the breakdown of the follicle by atresia. In FSH receptor 

knockout mice, follicular development is arrested at the preantral stage (Dierich et al. 

1998; Kumar 2009), while LH receptor knockout mice arrest at the antral stage (Zhang et 

al. 2001). Theca cells of antral follicles secrete androgens, mainly testosterone, which 

stimulate granulosa cell proliferation. Theca cells secrete little oestrogen, but the 

androgens produced are converted to oestrogens by FSH-stimulated granulosa cells, such 

that these two cell types cooperate to maintain levels of oestrogen in the ovary and in the 

bloodstream. Low plasma levels of oestrogen inhibit secretion of FSH and LH from the 

pituitary gland, however the proliferation of granulosa cells and synthesis of oestrogen 

stimulated by the androgens creates a positive feedback system. Once the dominant 

follicle increases plasma oestrogen levels to the oestradiol threshold value, the pituitary 
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gland immediately secretes FSH and LH, leading to the LH surge in the late follicular stage 

(Figure 2). FSH and oestrogen stimulate granulosa cells to express LH receptors, which 

must also be present on the theca to respond to a brief LH surge and enter the 

preovulatory phase. The LH surge stimulates changes in follicle cells and the oocyte, 

triggering ovulation. LH also stimulates the shift from an autocrine follicle to a paracrine 

corpus luteum.  

In the bovine adult, the majority of ovarian follicles are of primordial stage (Miyamura et 

al. 1996). During follicle growth , the pre-granulosa cells surrounding the oocyte 

proliferate and differentiate to form the cuboidal granulosa cells of the primary follicle 

(Fair, 2003). These cells continue to proliferate, forming at least two layers in the 

secondary follicle. At this stage, the theca cells differentiate to theca externa and theca 

interna layers. The granulosa cells secrete a fluid, which forms a number of small cavities 

that eventually merge to form the antrum (Eppig, 2001). This marks the preantral to 

antral transition. Those granulosa cells closest to the oocyte begin to form the cumulus 

oophorous, so called as it has the appearance of a ‘little cloud’, and push the oocyte into 

the newly formed antrum cavity. These cumulus cells will continue to support the oocyte 

through projections into the oolemma until it is fertilised or degraded.  

Glucose transport is especially important as the oocyte has poor nutrient uptake 

mechanisms; instead pyruvate, which can be produced by cumulus cells, and endogenous 

triglyceride are the major substrates for ATP synthesis (Leese and Barton 1985; Sutton-

McDowall et al. 2004; Harris et al. 2007). Glucose also fuels cumulus expansion, which 

involves mucification of proteoglycans and glycosaminoglycans, primarily the 

glycosaminoglycan hyaluronic acid (Nagyova 2012). This results in expansion of cumulus 

volume without significant proliferation. This occurs prior to breakdown of the germinal 

vesicle in rodents (Dekel 1979; Eppig 1980) but afterwards in pigs (Motlik et al. 1986). 

Cumulus expansion and hyaluronic acid synthesis is promoted by FSH and prostaglandin 

E2 (Eppig 1980; Lin et al. 1994).  

 

 Oocyte maturation 1.1.4

Coinciding with these events, the oocyte increases protein synthesis and both cytoplasm 

and the germinal vesicle undergo significant remodelling. During follicle growth, the 
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bovine oocyte expands from 20µm to 130µm, while human oocytes expand to 120-

160µm (Mandelbaum 2000).  The surge in LH that precedes ovulation stimulates spindle 

formation in the oocyte and enables nuclear maturation (Kawamura et al. 2004). The 

activities of Maturation Promoting Factor (MPF) and Mitogen Activated Phosphorylase 

Kinase cause the chromatin in the germinal vesicle to breakdown (GVBD), which occurs 

within 8 hours of the LH surge in the bovine (Kruip et al., 1983). MPF is a heterodimeric 

protein complex comprised of Cyclin B and p34cdc2 (Campbell et al. 1996). GVBD is 

inhibited by cyclic Adenosine Monophosphate (cAMP), which is produced from Adenosine 

Triphosphate (ATP) (Fan et al. 2002). This could allow ATP availability to regulate whether 

an oocyte undergoes GVBD or not. The nuclear envelope of the germinal vesicle also 

breaks down and the oocyte progresses to metaphase II of meiosis (Tripathi et al. 2010). 

Finally, before ovulation the oocyte must regain meiotic competence by resuming 

meiosis, completing MI, and then arresting at meiotic prophase I of MII (Eppig 2001).  

The oocyte itself releases multiple signals to regulate primary follicle recruitment and 

development, including Insulin-Like Growth Factor (IGF), Epidermal Growth Factor (EGF) 

and Anti-Müllerian Hormone (AMH) (Fair, 2003), and may in turn be stimulated by 

Growth Differentiation Factor 9 (Eppig, 2001). During this time, the Zona Pellucida (ZP) is 

formed from sulphated glycoproteins secreted by the granulosa cells. The ZP is a 

proteinaceous matrix dividing the oocyte and pre-granulosa cells, which plays a vital role 

in fertilisation as well as protecting the embryo in the oviduct and uterus (Rankin and 

Dean, 2000). The granulosa cells establish projections through the ZP in order to transport 

substrates including glucose, nucleotides, amino acids and phospholipids to the oocyte 

(Moor et al. 1990). 

The first meiotic division produces two diploid daughter cells with asymmetrical division 

of the cytoplasm. The larger of the two cells becomes the secondary oocyte, while the 

smaller, termed the first polar body, is extruded to the perivitelline space between the 

oocyte and ZP for degradation (Tripathi et al. 2010). This is necessary to enable the 

restoration of ploidy following meiosis. Crossing-over of homologous maternal and 

paternal chromosomes during meiotic prophase I allows exchange of sections of DNA 

producing unique chromosomes in each gamete. Additionally, independent assortment of 

these chromosomes during meiosis I randomly assigns maternal and paternal 

chromosomes to each daughter cell. The oocyte immediately enters a second meiotic 
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division and arrests at metaphase II. During oocyte development, ribosome count 

increases, mitochondria associate with the smooth endoplasmic reticulum and there is 

mass transcription and translation. This will cease and maternal mRNA and protein 

control metabolism and development until the embryonic genome is activated in early 

cleavage several days after fertilisation. At this stage, the presence of high MPF levels 

prevents further maturation (Campbell et al. 1996).   

The granulosa cells express FSH receptors, which when activated stimulate the GC to 

secrete follicular fluid. After the LH surge, GCs also express LH receptors and convert 

androgens into progesterone, which is required for recognition of pregnancy. Proteolytic 

enzyme activity in the follicular fluid causes the follicle wall to thin as the follicle swells 

with fluid. At the point of ovulation the follicle ruptures, releasing the now mature oocyte 

into the oviduct and begins to form a corpus luteum (Rodgers and Irving-Rodgers 2010). 

Theca cells become small luteal cells while granulosa cells become large luteal cells. The 

Oocyte-Cumulus Complex (OCC) enters the peritoneal cavity between the ovary and 

oviduct and the oviductal fimbrae bind the cumulus cells to collect the OCC. It is then 

rapidly carried by cilia to the ampullary isthmic junction, which is the site of fertilisation. 

Meanwhile, the cells of the follicle reorganise to form the corpus luteum, coinciding with 

the luteal cells increasing oestrogen and progesterone secretion as described above. 

 Fertilisation 1.1.5

Tens to hundreds of spermatozoa are thought to reach the OCC and begin penetrating 

the cumulus oophorous, but only one spermatozoon must successfully fuse with the 

oocyte to initiate fertilisation. A capacitated spermatozoon must undergo the acrosome 

reaction to be capable of penetrating the zona pellucida. On contact with the zona 

pellucida, the cap-like acrosome over the spermatozoal head fuses with the oocyte 

plasma membrane, releasing enzymes and exposing cell surface antigens which are 

required for successful fertilisation. Sperm plasma membrane protein PH-20 has 

hyaluronidase activity and likely facilitates sperm movement through the hyaluronic acid-

rich cumulus cells (Lin et al. 1994). 

Traditional understanding is that only the sperm head penetrates the oocyte, however, 

evidence suggests that tail entry is sensitive to the presence of the microfilament 

inhibitor cytochalasin B and sperm tail filaments have been detected in mouse embryos 



9 
 

up to the morula stage (Simerly et al. 1993). Once the sperm enters the oocyte its 

mitochondria are degraded by ubiquitin-mediated autophagy in a process evolutionarily 

conserved from the nematode worm to the mouse, leaving only maternal mitochondria in 

the conceptus (Al Rawi et al. 2011). This process can fail in rare cases such that paternal 

mtDNA has been implicated in male infertility (May-Panloup et al. 2003). Sperm entry to 

the perivitelline space stimulates calcium oscillations originating from stores in the oocyte 

which promotes degradation of cyclin B1, one of the components of MPF. This 

deactivates MPF, which enables resumption and completion of meiosis II. A haploid set of 

chromosomes are again extruded to the perivitelline space forming a second polar body. 

The haploid maternal and paternal pronuclei align, establishing the unique embryonic 

genome and initiating the first embryonic cell cycle division.  

 Pre-implantation embryo development 1.1.6

The first embryonic cell cycle produces a nuclear diploid 2-cell embryo. Cell division in 

early embryonic development increases the number of cells without altering the size of 

the embryo, which is still enclosed within the zona pellucida.  

The cells of the bovine embryo divide approximately every 24 hours from the point of 

fertilisation (Figure 3), although this is often asynchronous. This rate differs between 

species and is also affected by embryo sex and embryo quality. The supplies of mRNA and 

protein, inherited from the oocyte, regulate development during fertilisation and early 

cleavage stages. The embryonic genome is not transcribed immediately after fertilisation; 

instead, after a short period of transcription at the 2-4 cell stage in bovine in vivo derived 

embryos, major Embryonic Genome Activation (EGA) begins around the 8 cell stage in the 

bovine (Wrenzycki et al. 2004), 4-8 cell stage in the human (Braude et al. 1988; Telford et 

al. 1990) and 2 cell stage in the mouse (Niakan et al. 2012).  

The developing embryo will compact to form a morula, defined morphologically as the 

point at which it is no longer possible to see the individual cells. The cells change shape 

and become wedge-like. This occurs on day 5 in the bovine (Holm et al. 2002). In parallel 

to cavitation, the cells of the morula begin to differentiate into two cell populations, the 

outermost cells become the trophectoderm (TE), and the inner cells form the inner cell 

mass (ICM). Following cavitation, the onset of differentiation and the subsequent 

formation of the fluid-filled blastocoel cavity, the embryo is referred to as the blastocyst. 
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Expansion of the blastocoel is driven primarily by the Sodium-Potassium-ATPase pump 

(Na+, K+ATPase), a major consumer of ATP at this stage of blastocyst development. The 

Na+, K+ ATPase transports Na+ and K+ across the TE in opposing directions, increasing 

osmolarity within the cavity formed by morula compaction and increasing flux of water 

into this cavity, forming the blastocoel. Expansion continues for around 18 hours and is 

accompanied by thinning of the ZP. The bovine blastocyst begins to hatch from the ZP on 

day 7 (Figure 3). The ICM further differentiates to form epiblast and hypoblast, which 

subsequently form the three key embryonic lineages: ectoderm, mesoderm and 

endoderm. These stages are similar for all mammals, though timing and cell number 

differ (Telford et al. 1990). The embryo develops to about the morula stage within the 

lumen of the oviduct; however the next stage occurs in the uterus.  

 Predicting oocyte and embryo viability 1.1.7

Oocyte maturation, fertilisation and embryo development to the hatched blastocyst stage 

have been recapitulated in vitro in several model species including the bovine. 

Morphology is widely used as a general marker for oocyte and embryo quality (Dokras et 

al. 1993; Gardner et al. 2004). There are, however differences between in vivo and in vitro 

embryo morphology and physiology, for example in vivo derived embryos tend to have a 

thicker zona pellucida, more obvious compaction and a higher inner cell number (Holm et 

al. 2002) as well as a wider perivitelline space between ooplasm and zona pellucida (Van 

Soom and de Kruif 1992). Several aspects of in vitro culture practices could cause these 

differences, in particular, an unphysiologically high oxygen tension (20% compared with 

~5% in vivo) in some systems and the composition of culture media (Hawk and Wall 

1994). However the subjective and relatively superficial nature of morphological 

assessment has led to substantial focus in developing non-invasive biochemical assays 

with the aim of producing a detailed metabolic profile of an embryo in terms of 

consumption of energy substrates including carbohydrates, amino acids and oxygen.
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Figure 3: An overview of in vitro early bovine embryo development with approximate timings and stage information. Following fertilisation, the paternal and 
maternal genome combine and the zygote begins to divide approximately once every 24 hours. In the bovine and the human, the embryonic genome is 
activated on day 3 of development, between the 4-cell and 16-cell stages. During day 5, the cell mass compacts to form a morula. This is followed by the 
expansion of the fluid-filled blastocoel cavity, alongside differentiation of the Inner Cell Mass to one side of the expanding blastocyst and the single-cell layer 
of trophectoderm cells. Blastocoel expansion continues, causing the blastocyst to expand in size as the zona pellucida thins. Finally, the blastocyst hatches 
from the zona. ATP demand remains relatively low and constant during the early cleavage stages (2-cell to morula) but increases during blastocoel expansion, 
finally reducing to an intermediate level once the blastocyst has fully expanded.
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1.2 Eukaryotic energy metabolism 

The oocyte, spermatozoon and embryo must complete a series of developmental events 

which require a constant but dynamic energy supply. Energy metabolism in all eukaryotic 

cells centres on the turnover of ATP, the primary chemical energy source in living cells. ATP 

is produced predominantly by aerobic respiration, but also through anaerobic glycolysis. In 

the early embryo there is little or no RNA or protein synthesis until the time of EGA and 

consequently DNA synthesis and mitosis are the major energy demands. Therefore ATP 

demand is relatively low throughout the first 3-4 days of development (Figure 3). A slight 

increase in energy demand has been reported following EGA , however the first major 

increase in energy demand occurs during morula compaction and blastocyst expansion, as 

ATP is required to fuel both the Na+, K+ ATPase and the dramatic rise in protein synthesis 

which coincides with the onset of growth (Leese et al. 2008). Once the blastocyst is 

established, ATP demand reduces to an intermediate level until implantation.  

ATP is formed in the embryo through glycolysis and oxidative phosphorylation, processes 

shared by all eukaryotic cells. Energy substrates for oxidative phosphorylation include 

glucose, pyruvate, amino acids and free fatty acids. All of these can be broken down to form 

Acetyl Coenzyme A (ACoA), which enters the Tricarboxylic Acid (TCA), Citric acid, or Krebs 

cycle. The TCA cycle produces electron carriers for oxidative phosphorylation, providing ATP 

to meet the dynamic energy demands of the developing embryo. 

 Glycolysis 1.2.1

Glucose (C6H1206) is a monosaccharide sugar and is a major energy substrate in many cell 

types. Most carbohydrates, such as starch, are broken down to glucose before ATP 

production is possible. Glucose is metabolised to pyruvate (C3H4O3) in the stoichiometric 

ratio 1:2 by a series of enzymatically-controlled reactions in the cytosolic process known as 

glycolysis. This produces 2 moles net ATP per mole of glucose, while a further 1 mole ATP 

can be generated by the entry of NADH to oxidative phosphorylation. Glucose must first be 

transported inside the cell by glucose transporter proteins such as the Facilitated Glucose 

Transporter (GLUT) or Sodium-Dependent Glucose Transporter (SGLT) families. In the 
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cytoplasm, hexokinase phosphorylates the 6-carbon of the glucose to glucose-6-phosphate 

(G-6P) by phosphoryl transfer from ATP. A divalent cation such as Mg2+ forms a complex 

with the ATP to enable this transfer. This first step of glycolysis ensures that the glucose 

molecule is retained in the cell, and is in common with the pentose phosphate pathway, 

which generates NADPH and pentose sugars. In glycolysis, the enzyme phosphoglucose 

isomerase catalyses the isomerisation of G-6P to its open-chain form, conversion of the 

aldehyde functional group to a ketone group (forming open-chain fructose-1,6-phosphate) 

and finally nucleophilic addition to form the five-member ring of fructose-6-phosphate (F-

6P). F-6P is further phosphorylated by phosphofructokinase (PFK) to fructose 1,6-

bisphosphate (F-1,6-BP). PFK is allosterically controlled by ATP, as high concentrations 

inhibit enzyme activity. This is the key regulatory step in glycolysis. F-1,6-BP is split into two 

3-carbon molecules; dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate 

(GAP) by aldolase. Triose phosphate isomerase catalyses conversion of GAP to DHAP and 

vice versa. GAP is oxidised by glyceraldehyde 3-phosphate dehydrogenase to 1, 3-

bisphoglycerate, producing NADH. 3-Phosphoglycerate kinase dephosphorylates 3-

phosphoglycerate, producing net 1 mole of ATP. 3-Phosphoglycerate is finally converted to 

pyruvate via phosphoglyceromutase, enolase and pyruvate kinase, yielding a further mole of 

ATP per mole of substrate. Other monosaccharides including galactose are converted to 

glucose to undergo glycolysis, while fructose enters glycolysis after digestion to GAP by a 

separate mechanism. 

Pyruvate has two principal fates in mammalian cells: conversion to lactate, yielding NAD+, 

or decarboxylation to ACoA, which can enter the TCA cycle to produce ATP. While most 

pyruvate goes to ACoA, a balance must be maintained between pyruvate and lactate levels, 

as this directly controls the ratio between NADH and NAD+, which must be maintained for 

glycolysis to proceed. Glycolysis is tightly controlled by several mechanisms, for example 

PFK catalyses an irreversible step and is a key control point. Competition between ATP and 

AMP for the active site of PFK enables allosteric control based on the ATP:AMP ratio; such 

that a relative decrease in ATP levels stimulates increased PFK activity. In addition, the 

NAD+:NADH ratio is typically very high in the cell, favouring conversion of GAP to 1, 3-

bisphosphoglycerate, which consumes NAD+. 
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 Fatty acid metabolism 1.2.2

Fatty acids are long chain hydrocarbons with a terminal carboxylate group which tend to 

exist in energy storage form as triacylglycerol (TG) or free fatty acids (FFAs) in cytoplasm. 

They are substrates for phospholipid production and are a key source of chemical energy. 

FFAs are linked to coenzyme A at the outer mitochondrial membrane, termed fatty acid 

activation, before being transported into the matrix by the L-carnitine shuttle. The fatty 

acyl-CoA then undergoes a series of reactions called β-oxidation to acyl-CoA and a 2-carbon 

shorter fatty acid, which also produces FADH2 and NADH. β-oxidation is described in detail 

in Chapter 4.  β-oxidation of fatty acids produces more ATP per mole of substrate than 

glycolysis, as FFAs contain many more carbon-carbon covalent bonds than glucose. 

Additionally, lipid is anhydrous and highly reduced so more ATP can be produced per unit 

mass than for glucose. 

 Tricarboxylic acid cycle 1.2.3

The TCA cycle is a series of enzymatically controlled reactions regulating the stepwise 

oxidation of ACoA. Most substrates must be converted to ACoA to enter the TCA cycle, but 

glucogenic amino acids can also be degraded to provide intermediate substrates such as 

fumarate or oxaloacetate (Figure 4). This ACoA is used by citrate synthase to catalyse the 

carboxylation of oxaloacetate (4C) to citrate (6C). The enzymes of the TCA cycle then 

catalyse the reduction of citrate to oxaloacetate in several steps, producing the electron 

carriers NADH and FADH2, as well as carbon dioxide, GTP and H+. Components of the TCA 

cycle are also used as precursor substrates for biosynthesis. 

Energy substrates, including carbohydrates, fatty acids and amino acids, are converted to 

Acetyl Coenzyme A (ACoA) by a variety of enzyme reactions. Glucose is converted to 

pyruvate in the cytosol by glycolysis, generating two moles of pyruvate, ATP, NADH, H+ and 

H2O per mole of glucose. Pyruvate can then be converted to ACoA, releasing CO2, or 

converted to lactate, regenerating one mole of NAD+ per mole of pyruvate (Berg et al. 

2002). Lactate production by anaerobic glycolysis in this way typically occurs in mammals 

when oxygen is limiting, however the regeneration of NAD⁺ is vital to maintaining redox 

balance and allowing further glycolysis to proceed. Redox state  maintenance is vital to 
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controlling activity and stability of many proteins, transcription of certain genes, and may be 

involved in cell differentiation and patterning in some species (Coffman and Denegre 2007). 

ACoA then enters the TCA cycle by bonding its acetyl group to oxaloacetate to form citrate. 

3 moles of NADH, 1 mole of FADH2 and 1 mole of GTP are produced through coupled redox 

reactions as part of the cycle. The TCA cycle also produces succinate, which carries electrons 

to complex II, succinate dehydrogenase (CII), the only complex directly involved in the TCA 

cycle. NADH and FADH2 act as electron carriers in the next step of aerobic respiration; 

oxidative phosphorylation. 
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Figure 4: The Tricarboxylic (TCA), Citric acid, or Krebs cycle. Pyruvate is oxidised and 
conjugated to coenzyme A to form Acetyl-CoA. ACoA is also provided by fatty acid β-
oxidation. Citrate synthase catalyses the condensation of Oxaloacetate with ACoA to form 
Citrate, releasing CoA to repeat this process. Citrate is isomerised to D-isocitrate via the 
unstable intermediate cis-Aconitase by the enzyme aconitase. Isocitrate is oxidised to 
oxalosuccinate, an unstable β-ketoacid, by isocitrate dehydrogenase. Isocitrate is 
spontaneously decarboxylated, releasing O2. Both steps of this are coupled to reduction of 
NAD+. The newly formed α-ketoglutarate undergoes oxidative decarboxylation and is 
conjugated to CoA by the α-ketoglutarate dehydrogenase complex to form succinyl-CoA. 
Cleavage of the energy-rich thioester succinyl-CoA by succinyl CoA synthetase is coupled to 
phosphorylation of a purine nucleotide diphosphate, here labelled as Guanosine 
Diphosphate (GDP). Succinate then undergoes several oxidation steps. First succinate 
dehydrogenase, complex II of the respirosome and the only complex to participate in the 
TCA cycle, oxidises succinate to fumarate. The energy released is insufficient to reduce NAD, 
so this reaction is coupled to the reduction of FAD and the only known cellular process 
producing FADH2. Fumarate is then hydrolysed to malate by fumarase, followed finally by 
the oxidation of malate to oxaloacetate, catalysed by malate dehydrogenase. This reaction 
is again coupled to NAD+ reduction, for a total of 3 moles of NADH and 1 mole of FADH2 
produced per complete cycle. 
The overall stoichiometry of the TCA cycle: 
Acetyl-CoA + 3NAD+ + FAD + GDP + Pi + 2H2O  2CO2 + 3NADH + FADH2 + GTP + 2H+ + CoA 
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 Oxidative phosphorylation 1.2.4

The now universally accepted theory of oxidative phosphorylation was first published by 

Peter Mitchell (1965). Hitherto, the vast majority of researchers believed that high-energy 

chemical intermediates provided the energy for the production of ATP. However, Mitchell 

theorised that the energy came instead from a chemiosmotic gradient; an unorthodox idea 

at the time. However, evidence for the structure and mechanisms of the electron transport 

chain (ETC) complexes and ATP synthase supported the chemiosmotic theory (Boyer et al. 

1973; Fry and Green 1980a; Fry and Green 1980b; Fry and Green 1981; Gresser et al. 1982). 

4 protein complexes are bound to the inner mitochondrial membrane and form the 

mitochondrial ETC. NADH produced by the TCA cycle carries electrons to complex I (CI) of 

the ETC. FADH2 generated by the TCA cycle carries electrons to CII. 

Oxidative phosphorylation in eukaryotic cells involves the coupling of electron (e-) transfer 

(from substrate oxidation) to phosphorylation of Adenosine Diphosphate (ADP) to 

Adenosine Triphosphate by the creation of a proton (H+) gradient or proton-motive force 

(PMF) across the mitochondrial inner membrane. The protons flow down this proton 

gradient through ATP Synthase, and this drives ATP synthesis (Berg et al. 2001). However, 

there are many physiological factors which prevent this in reality. One consideration is 

proton leak, which is caused by uncoupling of the ETC from ATP Synthase. This is caused in 

vivo by the expression of Uncoupling Proteins (UCP). Uncoupled respiration releases heat 

energy, a process enhanced by UCP1 expression in tissues such as brown adipose tissue in 

mammals. This has a variety of roles, such as maintaining temperature in newborn, 

hibernating or cold-dwelling mammals, as well as a possible mechanism of body weight 

control (Harper et al. 2001; Divakaruni and Brand 2011). It is interesting to note, however, 

that oxidative phosphorylation using fatty acids provides 8-11% less ATP per mole of oxygen 

than carbohydrate oxidation (Hinkle et al. 1991), perhaps due to intrinsic uncoupling by 

fatty acid β-oxidation (Borst et al. 1962; Leverve et al. 1998). 

Theoretically, 30-32 moles of ATP can be produced for every mole of glucose (Hinkle et al. 

1991; Berg et al. 2002), while one mole of palmitic acid generates 109-129 moles of ATP 

(Darvey 2006). 87% of this ATP comes from oxidative phosphorylation, with the remainder 

coming partly from the TCA cycle and partly from glycolysis. 
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 Productive and non-productive oxygen consumption 1.2.5

Oxygen acts as the final electron acceptor in the mitochondrial ETC. This is crucial to the 

mitochondrial conversion of ADP to ATP, the key endpoint of aerobic respiration. Therefore, 

consumption of oxygen can be considered to be representative of overall energy 

metabolism and the study of this energy transformation is part of bioenergetics. It is 

important to consider that some ATP can also be produced by non-oxidative sources such as 

non-aerobic glycolysis.   

Factors affecting cellular oxygen consumption include: 

 Cell metabolism and energy demand 

 Cell cycle processes. 

 Uncoupling of electron transport from ATP synthesis. 

o Caused by biological means e.g. Uncoupling protein activity 

o Caused by chemical means e.g. Uncoupler treatment 

 Non-mitochondrial oxygen consumption as reactive oxygen species (ROS) or by 

oxygen-consuming enzymes, such as NADPH oxidase. 

 Mitochondrial function 1.2.6

The mitochondrion is the site of ATP production through oxidative phosphorylation in 

eukaryotic cells. Mitochondria are typically ellipsoid and 0.5-1µm in diameter. However they 

may change shape, fuse together and translocate by associating to microtubules, leading to 

many different morphologies. They consist of a specialised outer and inner membrane, 

giving rise to a narrow intermembrane space. The outer membrane contains porins which 

allow aqueous components of up to 5kDa in size into the intermembrane space. The inner 

membrane, however, is highly selective to energy substrates and enzyme co-factors and 

relatively impermeable to ions. This membrane is the site of oxidative phosphorylation and 

hosts the components of the ETC and ATP synthase. The central part bounded by the inner 

membrane is the matrix and contains enzymes involved in the TCA cycle and β-oxidation. 

The inner membrane forms projections into the matrix known as cristae, increasing surface 

area available for oxidative phosphorylation. The number of cristae varies to allow cells to 

adapt to energy demand, for example 3 times more cristae are present in cardiac muscle 

mitochondria than in hepatocytes. Mitochondrial energy transduction is plastic by necessity, 
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as the ATP demand depends directly on the energy requirements of the cell, which change 

throughout the cell cycle, growth and development. However, mitochondria may fail to 

perform these roles adequately leading to dysfunction. Mitochondrial dysfunction can be 

defined as any change to the ability of the mitochondria to produce sufficient ATP in 

response to the demands of the cell. 

In addition to the primary function of ATP production, mitochondria also generate and 

detoxify Reactive Oxygen Species (ROS) as a toxic by-product of normal oxidative 

phosphorylation. ROS include superoxide (O2
.-), hydroxide (-.OH) and peroxide (H2O2), all of 

which are highly reactive and can cause damage to organelles and macromolecules such as 

protein, lipid and DNA. This is termed oxidative damage or oxidative stress. ROS do have 

some productive cellular functions, including signalling pathways, apoptosis, calcium 

regulation, translocation of mitochondria and metabolism. A deficiency in any of these 

processes could also be described as a type of dysfunction (Brand 2011). An understanding 

of the number of moles of ATP produced by mitochondria is valued in terms of whole body 

health, as control of this biochemistry is essential for control of obesity. Proton leak or 

uncoupled oxygen consumption accounts for 20-40% total oxygen consumption (Buttgereit 

and Brand 1995). In the preimplantation embryo there is the additional factor of 

mitochondrial maturation, which may influence oxygen consumption and oxidative 

phosphorylation. During preimplantation development, mitochondria develop from a 

spherical condensed form to the classical elongated structure, which is discussed further in 

Chapter 3.  
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1.3 Bovine oocyte and embryo metabolism 

Embryo metabolism is a source of great academic, clinical and commercial interest as the 

metabolic profile of an embryo may predict viability. Studies of embryo metabolism began 

by measuring turnover of radio-labelled substrate in-vitro. For example Wales and Brinster 

(1968) found that 2-8 cell mouse embryos consumed significantly more 14C glucose than 

oocytes or zygotes (Wales and Brinster 1968; Quinn and Wales 1973). The radiolabelling 

reduces developmental capacity, however, and is not suitable for routine screening before 

implantation.  

Non-invasive fluorimetric methods were later developed (Leese and Barton 1984; Leese and 

Barton 1985) to measure glucose and pyruvate consumption and lactate depletion from the 

media (Gardner and Leese, 1986; Gardner and Leese, 1987; Hardy et al. 1989). This highly 

sensitive method measures the change in NAD or NADP fluorescence coupled to enzymatic 

breakdown of the measured substrate using a fluorescence microscope with 

photomultiplier tube. Since these procedures are time-consuming (Barnett and Bavister, 

1996), a more high-throughput modification of this technique has been developed using a 

fluorimetric plate reader based on depletion or production of the substrate by individually 

cultured embryos over 24 hours and is described in detail in Chapter 2 (Guerif et al. 2013).  

Many reports have proposed a link between metabolic activity and embryo viability, for 

example, those of Conaghan et al. (1993) for pyruvate, Houghton et al. (2006) for oxygen, 

Gardner and Leese (1987), Gardner et al. (2011) for glucose and Houghton et al. (2002), 

Brison et al (2004) for amino acids. 

Measurement of various other factors secreted by embryos has also been carried out, 

including Human Chorionic Gonadotrophin (HCG) and Interferon-tau (IFN-τ), but as yet the 

relationships between concentration of these factors and embryo viability has not been 

defined (Donnay et al. 2002).   
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Figure 5: An overview of in vitro bovine preimplantation embryo metabolism at blastocyst stage. Green arrows indicate transport, red arrows indicate 
metabolic reactions. The bovine oocyte contains a large triglyceride (TG) store, used as an endogenous energy source during development. TG is hydrolysed 
to free fatty acids, which in turn are converted to Acyl-Coenzyme A by β-oxidation. Media is supplemented with glucose and pyruvate, which are consumed 
by anaerobic glycolysis, producing lactate, which is released, and oxidative phosphorylation (OXPHOS). Carbohydrates are digested to Acetyl-Coenzyme A 
(ACoA), which enters the Krebs or TCA cycle as described above. Amino acids are supplied in the media and can also be used as energy substrates, entering 
the Krebs cycle at various points. OXPHOS consumes diatomic oxygen (O2) and converts ADP to ATP, producing water. 
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 Glucose, pyruvate and lactate 1.3.1

The preferred energy substrate of cleavage stage mammalian embryos is pyruvate as first 

demonstrated in the mouse (Leese and Barton 1984), and later shown in bovine embryos 

by Rieger and Guay (1988). Glucose uptake is limited due to low expression of the 

transport protein Glut1 (Pantaleon et al. 1997) and of low hexokinase activity (Hooper 

and Leese 1989; Martin et al. 1993; Martin and Leese 1999). Pyruvate is exchanged for 

lactate via a monocarboxylate carrier (Butcher et al. 1998). Pre-compaction embryos 

derive 85-90% of their ATP through oxidative phosphorylation (Thompson et al. 1996; 

Sturmey and Leese 2003). After compaction, ATP demand increases and this is 

accompanied by an increase in glycolysis (Thompson and Peterson 2000). As described 

above, the ratio of pyruvate to lactate is involved in regulation of redox equilibrium by 

maintaining the NADH:NAD ratio in the cytoplasm and an excess of pyruvate can impair 

development (Dumollard et al. 2007). Indeed, the majority of pyruvate uptake by early 

preimplantation human embryos is directed towards lactate production as a means of 

regulating intracellular pH (Butcher et al. 1998). However, the bovine embryo can 

develop, though in reduced numbers, to the morula stage using lactate as sole exogenous 

energy source (Takahashi and First 1992). Pyruvate uptake is maintained alongside 

increased glucose transport post-compaction in bovine embryos (Thompson et al. 1996). 

Guerif et al. (2013) reported a measureable ‘optimum’ range of pyruvate depletion by 

early cleavage stage bovine embryos which correlate with increased viability to the 

blastocyst stage. 

Glucose is primarily used as an anabolic substrate, with up to 50% total glucose being 

used in the pentose phosphate pathway to build ATP, NAD, DNA and RNA at the 16 cell 

stage in the bovine (Javed and Wright 1991). At the blastocyst stage, glucose 

consumption greatly increases, and 50% is converted to lactate (Hardy et al. 1989; 

Conaghan et al. 1993; Sturmey and Leese 2003). However, as this process contributes 

only 2 moles ATP per mole glucose, compared to 32 moles through oxidative 

phosphorylation, the contribution of this to total ATP supply is relatively low. A greater 

increase in glycolysis is seen in response to stress in embryos and experiments conducted 

in sheep and mice suggest that embryos with higher rates of glucose metabolism are less 

viable (Leese et al. 1998; Leese 2002). High concentrations of glucose can, under some 

circumstances and depending on the species, have an inhibitory effect on embryonic 
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development and lead to reduced cell number and increased apoptosis (Jiménez et al. 

2003). In hyperglycaemic conditions (10-30mM glucose), Glut1 expression and 

transcription are reduced and the result is essentially glucose starvation. It has also been 

reported that glucose is detrimental up to 120 hours after fertilisation, but beneficial 

after this point and increases blastocyst numbers (Kim et al. 1993).  

In addition to the role of Glucose 6-Phosphate Dehydrogenase (G6PD) in the pentose 

phosphate pathway, it also metabolises and neutralises ROS (Lopes et al. 2007). Due to 

this detoxifying effect, G6PD has been described as cytoprotective against DNA damage 

and oxidative stress and it has been suggested that a deficiency in this enzyme in the 

embryo may reduce developmental capacity (Nicol et al. 2000). However, as moderate 

levels of ROS stimulate embryonic development (Rieger et al. 1992), this cytoprotective 

effect also delays female blastocyst development by controlling levels of ROS (Gutiérrez-

Adán et al. 2001). G6PD is the only NADPH-producing enzyme to be activated during 

oxidative stress (Lopes et al. 2007). It has been suggested that the increased glucose 

metabolism during blastocyst expansion results in increased ROS production which 

stimulates greater expression of G6PD, rather than simply increased glucose consumption 

(Lopes et al. 2007). This is an intriguing idea, which suggests that greatly increased 

respiration in embryos is a product of ROS production and could indicate a more 

damaged embryo rather than a more viable one. More data on the non-oxidative 

phosphorylation component of oxygen consumption is required to support this theory. 

Lactate production in the bovine accounts for 40% of glucose uptake on fertilisation, but 

increases at the blastocyst stage to 100% of glucose uptake (Thompson et al. 1996). 

Glucose is therefore directed to lactate production rather than entering the TCA cycle 

(Rieger et al. 1992). This does not appear to be related to oxygen availability, and instead 

may aid preparation of the embryo for the low-oxygen environment in the uterus (Fischer 

and Bavister 1993). Glycolysis provides both 2 moles net ATP per glucose and a range of 

intermediates for anabolic pathways, and along with high glutamine consumption, is 

common in rapidly dividing cell types (Newsholme et al. 1985) . 
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 Fatty acids 1.3.2

Oocytes of many species contain a sizeable store of lipid as triglycerides (TG) and it seems 

likely that the fatty acid composition of this store is highly dependent on maternal diet 

(Leroy et al. 2011). Fatty acid metabolism is of particular interest in relation to human 

fertility in the case of overweight and obese (OVOB) females and in the declining fertility 

of the dairy cow (Diskin et al. 2006). However, research into the effects of specific fatty 

acids and more importantly, combined effects of fatty acids at different concentrations, 

has been largely ignored until very recently. This research was reviewed by McKeegan 

and Sturmey (2011) and is discussed in detail in Chapter 4.  

A co-regulatory cycle between fatty acid and glucose, first proposed by Randle et al. 

(1963) exists in the whole body, as glucose and fatty acids compete for oxidation by 

tissues such as muscle and adipose. High insulin stimulates storage of lipids and 

carbohydrates, while high glucagon stimulates lipolysis in adipocytes and glucose 

production. However, a similar relationship at the cellular level has been proposed. 

Oxidation of one substrate inhibits production of the other. Briefly, production of Acetyl-

CoA from β-oxidation inhibits conversion of pyruvate to ACoA by pyruvate dehydrogenase 

(PDH), while elevated cytosolic citrate inhibits glucose uptake and glucose-6-phosphate 

phosphorylation by Phosphofructokinase (PFK) (Cheema-Dhadli et al. 1976). ACoA 

normally regulates PDH activity by feedback inhibition to modulate glycolysis, but this 

mechanism enhances this effect, reducing PDH activity still further. Conversely, 

production of malonyl-CoA following glycolysis inhibits CPT1, reducing transport of NEFA 

into the mitochondria. Interestingly, the regulatory roles of a ‘Randle-type’ cycle are 

abrogated by a stress-related mechanism (Carling et al. 2003). A decrease in substrate 

supply or increase in energy demand increases the ratio of AMP:ATP, stimulating activity 

of AMP-activated protein kinase (AMPK). AMPK inhibits Acetyl-CoA Carboxylase (ACC), 

decreasing malonyl-CoA production and therefore malonyl-CoA inhibition of β-oxidation. 

In addition, AMPK stimulates glucose uptake and glycolysis. The net effect of this is the 

AMPK-dependent activation of ATP-generating processes and inhibition of ATP-

consuming processes. 



25 
 

 Amino acids 1.3.3

Non-invasive assays of bovine embryos have included amino acid profiling by High 

Performance Liquid Chromatography (HPLC), which makes it possible to predict viability 

based particularly on consumption and production of amino acids (Sturmey et al. 2009, 

2010). As stated above, protein synthesis increases at the blastocyst stage and requires 

an increase in amino acid consumption (Partridge and Leese 1996). However, different 

amino acids are consumed at different rates, and amino acid profiling by reverse-phase 

HPLC has revealed signature profiles for different stages of embryo development in 

bovine (Thompson et al. 1996; Sturmey et al. 2010), porcine (Humpherson et al. 2005), 

mouse (Lamb and Leese 1994) and human embryos (Houghton et al. 2002). As with other 

markers of embryo viability, amino acid uptake and metabolism differs between in vitro 

and in vivo derived embryos (Partridge and Leese 1996) and is directly affected by the 

composition of the culture medium. For example, replacing Foetal Calf Serum (FCS) with 

Polyvinyl Alcohol reduced blastocyst rate and cell numbers, and led to quantitative and 

qualitative differences in amino acid turnover (Orsi and Leese 2004). Amino acid uptake is 

30% lower in embryos cultured without FCS (Partridge and Leese 1996). FCS contributes a 

range of components to embryo culture medium, including protein, amino acids and fatty 

acids which may be of benefit to the embryo, but may also have some negative effects. 

FCS can also protect the in vitro embryos by buffering pH and chelating heavy metal ions. 

As well as direct uptake of amino acids, embryos endocytose FCS, BSA and other protein 

supplements from which they may derive amino acids. 

Amino acids are also supplied as a supplement to the Synthetic Oviduct Fluid (SOF) 

medium used to culture bovine embryos. Often, essential and non-essential amino acids 

established by Eagle (1959) are added. It has been reported that provision of amino acids 

enhances the percentage of embryos progressing to blastocysts and increase cell number 

(Takahashi and First 1992). Aside from being utilised for protein synthesis, amino acids 

are also used as an energy source (Partridge and Leese 1996), a pH buffer (Baltz 1993; 

Baltz 2001) and may provide a defence against oxidative damage (Harding et al. 2003) . 

Importantly, supplying amino acids to in vitro cultured embryos shifts gene expression 

towards a more in vivo profile, which is potentially beneficial when studying in vitro 

models of development (Ho et al. 1995). 
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A range of amino acids transporters have been discovered in embryos, some of which are 

specific to individual amino acids and others which transport specific groups such as 

branched amino acids or zwitterions (Whitear and Leese 2008). Most of these are 

expressed from the blastocyst stage onward, though a few are expressed at early 

cleavage stages (Van Winkle 2001). It is assumed that maternally derived transporters are 

available until the embryonic genome is activated. Some patterns in transporter classes 

and the substrates carried are evident; for example all arginine transporters are sodium-

dependent. 

Glutamine metabolism is at its highest in two and four-cell bovine embryos, then 

decreases, in an inverse of the pattern of glucose metabolism (Rieger et al. 1992). This 

may be due to digestion of the maternal enzymes initially present in the embryo. 

However, the demand for glutamine increases during blastocyst expansion due to 

increased protein synthesis. 

A by-product of amino acid metabolism is ammonia, some of which may also be produced 

by spontaneous breakdown of amino acids, especially glutamine (Gardner 1994). 

Ammonia is toxic and may cause morphological, structural and metabolic perturbations 

to the embryo (Gardner 1994; Walker et al. 1992).  

As mentioned above, in vitro derived embryos exhibit significantly different amino acid 

profiles to in vivo derived embryos (Sturmey et al. 2010) and it is likely that many other 

aspects of the metabolic profile will exhibit similar differences. Metabolic profiling also 

revealed sex-linked difference in amino acid depletion, particularly in vitro derived 

embryos. However, results from in vitro derived embryos are not directly comparable 

with those derived in vivo, but are useful in building an accurate model of embryo 

development in the physiological environment 

 Oxygen consumption 1.3.4

Consumption of oxygen has been investigated as an indicator for bovine embryo viability 

(Lopes et al., 2005). Oocyte Oxygen Consumption Rate (OCR) is a marker of quality for 

oocytes in humans (Tejera et al. 2011) and is affected by ovarian stimulation treatment, 

maternal age and FSH concentration (Scott et al. 2008).  
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A number of non-invasive techniques have aimed to measure oxygen consumption of 

embryos as sensitively as possible, starting with a ‘Cartesian Diver’ system (Fridhandler et 

al. 1956; Mills and Brinster 1967). This has since been succeeded by more sensitive 

methods such as the pyrene method used by the Leese group (Houghton et al. 1996; 

Sturmey and Leese 2003). Currently, the most sensitive technique is nanorespirometry, 

which is used to assay single oocytes or embryos. It has been reported that 

nanorespirometry does not affect the viability of embryos, and hence could be an 

excellent candidate for accurate, non-invasive measurement on a clinical or commercial 

scale (Lopes et al. 2005). However, this technique does involve removing the embryo 

from its culture group, which may perturb metabolism in the embryos from certain 

species.  

OCRs have been reported for both in vivo and in vitro derived preimplantation embryos. 

The techniques used have, in general, shown that mean OCR throughout the cleavage 

stages tends to be relatively consistent and low, in line with ATP demand, but increases 

from morula to blastocyst and from blastocyst to expanded blastocyst stages (Houghton 

et al. 1996; Overström 1996; Thompson et al. 1996; Donnay and Leese 1999; Lopes et al. 

2005), reducing to an intermediate level once expansion is complete (Houghton et al. 

1996; Thompson et al. 1996; Lopes et al. 2005). However there is often great variation 

between values for the same stage, for example the difference in blastocyst oxygen 

consumption between the reports of Overström (1.5 nl/h) and Thompson (0.7 nl/h). This 

is likely due to the different methods used to generate data. Indeed, large variation has 

been reported between embryos in the same experimental group at the blastocyst stage, 

which could be influenced by the degree of expansion when the measurements are 

made, especially as the onset of expansion involves a dramatic increase in protein 

content (Overström 1996; Shiku et al. 2001). A record of oxygen consumption of a 

blastocyst over time may be more revealing than a single time point. Differences between 

male and female blastocysts have also been reported (Agung et al. 2005).  

Oxygen consumption by embryos can be affected by a variety of factors, including 

osmolarity and media composition. Observed differences between embryos derived in 

vivo and in vitro could be due to the change in conditions when removing embryos or 

oocytes from the in vivo to the in vitro situation. Glucose concentration in culture media 

has a particularly pronounced effect, as higher levels may result in reduced oxygen 
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consumption and increased lactate production through glycolysis (Donnay et al. 2002). 

This is similar to the ‘Crabtree’ effect in yeast (Seshagiri and Bavister 1991). 

Linking the morphological grade of the embryo to oxygen consumption has met with 

some success, for example Shiku and colleagues (2001) found that in vitro-derived 

morulae graded as ‘excellent’ (even cell division, no fragmentation) tended to have higher 

rates of respiration and result in a greater number of expanded blastocysts. Agung et al. 

(2005) reported that oxygen consumption of embryos graded as ‘excellent’ had higher 

rates of oxygen consumption than those graded as ‘good’, although no significant 

difference was found between early and expanded blastocysts. However, other 

researchers have not reported such correlations (Overström 1996). The nanorespirometry 

method indicated that embryos of higher quality grades have moderate respiration rates 

(Lopes et al. 2005). Moreover, embryos with wider diameters at both day 3 and 7 have 

increased respiration. This is in agreement with earlier work which found that morulae 

with greater diameters had greater respiration rates (Shiku et al. 2001). 

As indicated, ATP use is lowest in oocytes and cleavage stage embryos and the primary 

method for ATP production during these stages is oxidative phosphorylation (Leese et al. 

2008). By the blastocyst stage, 85% of ATP is still produced by oxidative phosphorylation, 

but absolute rates are much higher, which may be attributed primarily to two factors 

involved in developing the blastocyst; increased protein synthesis, and increased activity 

of the Na+,K+ATPase, to which 30-40% ATP is directed (Leese et al. 2008). In the bovine 

blastocyst this enzyme is estimated to account for between 10.5 and 44% of oxygen 

consumption (Leese et al. 2001). It has been suggested that less viable embryos may be 

more permeable to sodium ions and have to devote more energy to sodium pumping to 

maintain intracellular osmolarity (Leese et al. 2007; Lopes et al. 2010). 

A later study sought to use nanorespirometry to predict the development of early 

cleavage stage murine embryos to expanded blastocysts (Ottosen et al. 2007). The group 

found that there were significant increases in oxygen consumption moving from the 4 cell 

to 8 cell stage and again to the morula stage, followed by a doubling in rate at the 

expanded blastocyst stage. In general, embryos successfully reaching the expanded 

blastocyst stage tended to consume more oxygen than those which did not, though there 

was little difference between viable and poor 2 cell embryos. This oxygen consumption 
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data supports previous data in murine embryos (Houghton et al. 1996; Trimarchi et al. 

2000). 

 Oxidative damage 1.3.5

As oxygen consumption increases with embryo development, so too does the production 

of Reactive Oxygen Species (ROS) (Lopes et al. 2010). However ROS production may be 

regulated independently of OCR (Barja 2007) and is perhaps more dependent on 

mitochondrial membrane polarisation and the degree of uncoupling. A cycle of proton 

pumping and proton loss by ‘leaky’ respiration account for a significant amount of overall 

metabolism in whole organisms, including up to 25% of metabolic rate in rats (Brand 

2000). Although this proton cycle accounts for energy loss, it may be an evolutionarily 

conserved mechanism to reduce ROS production and oxidative damage (Brand 2000).  

It has been suggested that ROS are more toxic in vitro than in vivo (Johnson and Nasr-

Esfahani 1994) and this has led to the use of hypoxic incubators for in vitro embryo 

culture in order to improve blastocyst production. Indeed, in vitro matured oocytes 

exhibit upregulated expression of antioxidant enzymes compared to those matured in 

vivo, most likely in order to defend against the increased oxidative stress in vitro 

(Lonergan et al. 2003). An investigation into the effects of adding antioxidants to the 

culture medium revealed that ethylenediaminetetracetic acid (EDTA) and culture at 5% 

oxygen gave the greatest increase in murine embryo development, while Superoxide 

Dismutase (SOD) and Catalase also had beneficial effects (Orsi and Leese 2001). These 

data agree with an earlier study of DNA damage to bovine embryos by ROS using a 

microgel electrophoresis technique (Takahashi et al. 2000). The authors observed a 

positive correlation with DNA damage when embryos were cultured in 20% O2 compared 

to 5% O2 – a finding confirmed for blastocysts by Sturmey et al. (2009). Many 

investigations have attempted to use an antioxidant to reduce ROS levels and hence 

improve embryo quality. In one study, embryos were treated with vitamins E and C alone 

and together, and it was observed that more embryos treated with vitamin E progressed 

to blastocyst stage (17%) compared to 11% in control media (Olson and Seidel 2000). In a 

separate experiment, in vitro produced bovine embryos transferred to recipients had a 

63% higher surface area compared to controls when removed after 7 days. From these 

studies, it appears that ROS can have a deleterious effect on embryo development, and 
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efforts made to reduce ROS levels, such as incubating embryos in lower oxygen 

concentrations and treatment with antioxidants may be of benefit to the efficiency of 

embryo production. 

Mammalian cells do, however, have an array of defences against ROS as well as 

sophisticated DNA repair mechanisms, and bovine embryos are no exception. In a recent 

study, 70% of the DNA repair genes investigated were expressed in human blastocysts 

(Jaroudi et al. 2009). These transcripts were detected at higher levels in oocytes, most 

likely due to the reliance of the oocyte and early embryo on maternal transcripts until 

embryonic genome activation. It also appears that female blastocysts may be more 

protected against ROS than male blastocysts as they have a higher antioxidative capacity 

and production of NADPH, both of which are due to increased pentose phosphate 

pathway activity; four times that of male blastocysts (Tiffin et al. 1991). 
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1.4 Aims 

This literature review has revealed that rather little is known about the regulation of 

metabolism during preimplantation embryo development compared with the situation in 

somatic cells. In particular, there is a lack of information on the bioenergetic status of 

preimplantation embryos – particularly the components of oxygen consumption - a key 

consideration for tissues with dynamic changes in energy demand. Also, the role of lipid 

metabolism during the preimplantation phase has long been neglected – the focus having 

been on carbohydrate and amino acid metabolism. There is also a need to relate studies 

on metabolism to the outcome of embryo development, in phenotypic terms, i.e., the 

formation of a viable blastocyst and in terms of blastocyst gene expression and epigenetic 

modification. 

The aim of this thesis was therefore to investigate the regulation of oxidative metabolism 

in individual mammalian embryos and the immediate and legacy effects of metabolic 

dysregulation. This involved the following objectives: 

 Quantify the components of oxidative phosphorylation in the bovine 

embryo using oxygen consumption profiling techniques. 

 Investigate the effects of dysregulated β-oxidation of fatty acids derived 

from endogenous triglyceride stores on energy metabolism during 

preimplantation embryo development. 

 Examine the relationship between β-oxidation of endogenous fatty acids 

during in vitro embryo development and blastocyst gene expression. 

 Investigate the epigenetic legacy of dysregulated β-oxidation during in vitro 

embryo development. 
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2 General materials and methods 
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2.1 Bovine embryo In Vitro Production (IVP) 

 Source of reagents 2.1.1

The reagents used in this research and their suppliers are listed in appendix I. Double 

distilled water (ddH20) was taken from an ELGA water polisher. 

 Preparation of glassware and consumables for embryo 2.1.2

culture 

Glassware (volumetric flasks, funnels, beakers and Duran bottles) designated for the 

preparation of embryo culture media and stock solutions were washed and sterilised 

before use. Glassware was rinsed in ddH20 then submerged in an 8l bucket containing 

ddH20 + approximately 2% Decon 90™ for between 24hr – 2 weeks. Washed glassware 

was then removed from the Decon 90 solution, drained and rinsed three times by 

immersion in a rinsed 8l bucket containing ddH20. Rinsed glassware was then drained and 

sealed with aluminium foil or appropriate lids, labelled with autoclave tape and sterilised 

in a Rodwell Ensign autoclave at 121oC for 2hr. 

Non-sterile consumables including pipette tips, which were racked in appropriate boxes 

and eppendorf tubes, stored in glass jars or beakers, were sterilised in a Rodwell Ensign 

autoclave at 121oC for 2hr. 

Autoclaved glassware and consumables were transferred to a drying oven at 80oC for at 

least 5h to evaporate all moisture before use. 

Sterile plastic-ware including T25 and T75 culture flasks (Corning), tissue culture and petri 

dishes and universal tubes (Sarstedt) were tested for embryo culture before regular use. 

 Preparation of IVP media 2.1.3

The recipes used for media and solutions listed in this section are described below. All 

fertilisation and embryo culture media were made in large batches and stored as aliquots 

in sterile universal tubes (Sarstedt) at -20oC for 3 months. Stock solutions for holding 

media were kept at 4oC for the time indicated below.  
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Chemicals supplied as powder were weighed using a 4 decimal point (4 d.p) Sartorius or 

Ohaus balance. The balance was calibrated each day before use and cleaned after use 

with 70% Ethanol. Chemicals were weighed to siliconised weighing paper (Schleicher and 

Schuell) or a polystyrene weighing boat dependent on mass needed. Compounds were 

then transferred to a sterile volumetric flask through a sterile funnel and the appropriate 

volume of embryo tested (ET) water added (Fresenius Kabi). The flask was agitated by 

inversion or sonication or left at 4oC overnight until the chemicals were fully dissolved. 

Solutions were then sterilised using a 0.22µm PS Millipore syringe-top filter, discarding 

the first 6ml to be filtered as this carries embryotoxic compounds from the filter (Harrison 

et al. 1990). Sterile solutions were aliquotted to appropriate volumes using sterile T25 

culture flasks, universal tubes or eppendorf tubes.  

Media was tested for osmolarity in the appropriate range 280-290mOsm/kg using an 

Osmomat 030 osmometer (Gonotec GmbH, Berlin, Germany). Hepes-buffered and 

bicarbonate-buffered media to be used were within ±5mOsm/kg of each other to 

minimise osmotic shock to oocytes and embryos. If the osmolarity exceeded this range, 

the media was discarded and re-made. The osmometer was switched on 1 hour before 

use to allow cooling and calibrated to 0mOsm/kg using 100µl embryo tested water and to 

300mOsm/kg H2O using 100µl commercial standard (Camlabs, Cambridge, UK). The probe 

was cleaned carefully with laboratory tissue between each measurement to prevent 

contamination and an empty 500µl micro tube attached to the probe when not in use.  
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 Holding medium stocks 2.1.4

Stocks for preparation of Hepes-buffered Holding Media (HM) were prepared as 

described below. Hepes and Hepes Sodium Salt were stored in a sealed container at room 

temperature with desiccator crystals (Sigma-Aldrich, Dorset, UK). 

Stock Compounds Mass Relative 

molecular 

mass (Mr) 

Final 

concentration 

Final 

volume 

Storage 

Stock B Sodium 

bicarbonate 

NaHCO3 

0.42g 84.01 250mM 20ml 4oC for 

2 weeks 

Stock 

BSA 

Bovine 

Serum 

Albumin 

Fraction V, 

Essentially 

Fatty Acid 

Free 

2g  20% w/v 10ml 4oC for 

6 weeks 

Stock H Hepes Free 

Acid 

1.5g 238.3 126mM 50ml 

 

4oC for 

6 weeks 

Hepes 

Sodium Salt 

1.625g 260.3 125mM 

Stock K Kanamycin 

sulphate 

0.5g 382.6 131mM 10ml 4oC for 

6 weeks 

Stock 

Heparin 

Heparin 

(porcine) 

0.2g  1% w/v 20ml -20oC 

for 3 

months  

Table 1: Composition of stock solutions for holding medium. 

 FSH:LH stock 2.1.5

Lyophilised Menotrophin (Menopur) containing 75IU Luteinising Hormone (LH) and 75IU 

Follicle-Stimulating Hormone (FSH) was obtained from Ferring pharmaceuticals, West 
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Drayton, UK. The Menotrophin was reconstituted in 7.5ml of 1xM199 and mixed well 

before storing in 100µl aliquots at -20oC. 

 EGF:FGF stock 2.1.6

1mg Epidermal Growth Factor (EGF) from murine submaxillary gland was dissolved in 

20ml BMM. 25µg Fibroblast Growth Factor (FGF) was dissolved in 1ml BMM. The EGF and 

FGF stocks were then combined in the ratio 4ml EGF to 185µl FGF, mixed well and stored 

in 200µl aliquots at 20oC. 

 Maturation additives 2.1.7

Maturation Additives were prepared as described below, sterile filtered and stored in 

500µl aliquots at -20oC for 3 months. Gibco® Gultamax-II, containing a more stable 

dipeptide form of glutamine, L-alanyl-L-glutamine, was obtained from Life Technologies, 

Paisley, UK. 

Compounds Amount of 

chemical 

Apo-transferrin 0.025g 

Glutamax II 1ml 

Pyruvate 0.11g 

β-mercaptoethanol 7µl 

Polyvinyl Alcohol 

(PVA) 

0.025g 

ET Water 24ml 

Table 2: Composition of maturation additives for maturation media. 
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 Preparation of holding and bovine maturation media 2.1.8

Holding medium (HM) and Bovine Maturation Medium (BMM) were prepared each day 

before use (Table 3). HM was pre-warmed to 39oC for 2 hours in a warming incubator, 

while maturation media drops were prepared as shown in Figure 6 and pre-equilibrated 

for 2 hours at 39oC and 5% CO2 in air. 

Holding Medium (HM)  Bovine Maturation Medium (BMM) 

Solution Volume  Solution Volume 

ET Water 80ml  1xM199 8ml 

10xM199 10ml  Stock B 1ml 

Stock B 2ml  Foetal Calf Serum 

(FCS) 

1ml 

Stock H 6ml  Maturation 

Additives 

222µl 

Stock K 100µl  Glutamax II 100µl 

Stock BSA 200µl  EGF:FGF 100µl 

  FSH:LH 200µl 

 Heparin 10µl 

Final volume 98.3ml  Final volume 10.522ml 

Table 3: Holding media and bovine maturation media recipes. Each type of media was 
prepared fresh before use. 

 
Figure 6: Diagram showing setup of in vitro maturation plate and BMM wash dish. 3x 400 
µl drops of bovine maturation media (BMM) were placed in a 60mm petri dish and 
overlaid with oil. 500µl BMM was added to each well of a 4-well plate, with 1ml added to 
the centre to reduce evaporation.  
   

250µl media in wells

2ml PBS in centre2ml media in centre

500µl media in wells
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 Preparation of in-vitro fertilisation media 2.1.9

Fertilisation Tyrode’s Albumin Lactate Pyruvate medium (Fert-TALP) and Hepes-TALP 

spermatozoa wash medium were prepared as shown below (Table 4) and frozen at -20oC 

for up to 3 months. Both media were defrosted on the day of use. Hepes-TALP was pre-

warmed to 39oC for 2 hours in a warming incubator, while Fert-TALP drops were prepared 

as shown in Figure 7 and pre-equilibrated for 2 hours at 39oC and 5% CO2 in air. 

 Hepes-TALP 250ml  Fert-TALP 202ml 

Component Amount Concentration  Component Amount Concentration 

ET Water 248.393ml   ET Water 198.918ml  

NaCl 1.667g 114mM  NaCl 1.333g 114mM 

KCl 0.06g 3.19mM  KCl 0.0476g 3.19mM 

NaH2PO4 0.016g 0.45mM  NaH2PO4 0.0124g 0.45mM 

Gentamycin 1.25ml 0.05mg/ml  Gentamycin 1ml 0.05mg/ml 

NaHCO3 0.084 2mM  NaHCO3 0.42 2mM 

Pyruvate 0.0144g 0.26mM  Heparin 0.002g 10µg/ml 

Hepes free 

acid 

0.45g 7.5mM  Pen-hyp stock 2ml 2µM/1µM 

Hepes Na 

salt 

0.488g 7.5mM  Pyruvate 0.0058g 0.26mM 

CaCl2.2H2O 0.076g 2.06mM   CaCl2.2H2O 0.0605g 2.06mM  

MgCl2.6H2O 0.025g 0.49mM  MgCl2.6H2O 0.02g 0.49mM 

Na-Lactate 0.353ml 9.96mM  Na-Lactate 0.282ml 9.96mM 

    Non-essential 

amino acids 

2ml  

    Essential 

amino acids 

4ml  

OSMOLARITY 280-290  OSMOLARITY 280-290 

BSA 1g 4mg/ml  BSA 0.8g 4mg/ml 

Table 4: Preparation of Fert-TALP in vitro fertilisation medium and Hepes-TALP sperm 
washing medium. Medium was prepared in a sterile volumetric flask, sterile filtered and 
stored at -20oC for up to 3 months. 
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Figure 7: Diagram showing fertilisation wash and 4-well plate for IVF. 3x 400µl drops of 
Fertilisation media (Fert-TALP) were placed in a 60mm petri dish and overlaid with oil. 
250µl Fert-TALP medium was added to wells 1-3, 750µl to the 4th well and 1ml Fert TALP 
to the central reservoir. 
  

400µl wash drop

Oil overlay

250µl media in wells

2ml PBS in centre2ml media in centre

250µl media in wells 1-3

750µl media in well 4



40 
 

 Preparation of Percoll® gradient 2.1.10

Motile spermatozoa were selected by centrifugation through a discontinuous Percoll® 

density gradient. Stocks of Percoll® Additives (PA) and Sperm Tyrode’s Lactate (SPTL) 

were prepared as follows (Table 5). Both were sterile filtered and stored at -20oC. PA was 

aliquotted to 700µl and SPTL to 2ml. Percoll® was obtained from GE Healthcare, Uppsala, 

Sweden. 

Percoll® Additives (PA)  Sperm Tyrode’s Lactate (SPTL) 

Component Amount  Component Amount 

ET Water 48.467ml  ET Water 50.15ml 

NaCl 1.9479g  NaCl 0.292g 

KCl 0.0958g  KCl 0.014g 

NaH2PO4.2H2O 0.0188g  NaH2PO4.2H2O 0.003g 

Hepes 0.4967g  Hepes 0.0754g 

Hepes Sodium 

Salt 

0.5425g  Hepes Sodium Salt 0.0814g 

Sodium Lactate 

Syrup 

1.533ml  Sodium Lactate 

Syrup 

231 µL 

NaHCO3 0.035g  CaCl2.2H2O 0.0123g 

CaCl2.2H2O 0.0128g  MgCl2.7H2O 0.0032g 

MgCl2.7H2O 0.0034g  Gentamycin 0.131ml 

Gentamycin 2.083ml  Phenol Red 0.25ml 

Phenol Red 4.17µl   

  

Final volume 50ml  Final volume 50.15ml 

Table 5: Preparation of Percoll® Additives and SPTL solutions. Each was sterile filtered and 
stored at -20oC until required. 
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Percoll® was diluted to 90% using stock PA and 45% using stock SPTL as described below. 

The 4ml Percoll® gradient was then prepared by gently layering 2ml 45% Percoll® on top 

of 2ml 90% Percoll® as below and warmed to 39oC for at least 2 hours before use. 

90% Percoll® 45% Percoll® 

4.5ml Percoll® 2.0ml 90% Percoll® 

600µl PA 2.0ml 1x SPTL 

Table 6: Preparation of 90% and 45% Percoll®. Each was prepared fresh on the day of use. 
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 Preparation of in vitro embryo culture media 2.1.11

Synthetic Oviduct Fluid embryo culture medium with BSA (SOF-BSA) and Hepes-SOF 

embryo wash medium were prepared as shown below (Figure 8) and frozen at -20oC for 

up to 3 months. Both media were defrosted on the day of use. Hepes-SOF was pre-

warmed to 39oC for 2 hours in a warming incubator, while SOF-BSA drops were prepared 

as shown in Figure 8 and pre-equilibrated for 2 hours at 39oC and 5% CO2 in air. 

SOF-BSA 200ml  Hepes-SOF 250ml 

Component Amount Concentration 

(mM) 

 Component Amount Concentration 

(mM) 

ET Water To 

volume 

  ET Water To 

volume 

 

NaCl 1.258g 108  NaCl 1.574g 108 

KCl 0.106g 7.11  KCl 0.134g 7.2 

KH2PO4 0.032g 1.18  KH2PO4 0.041g 1.2 

NaHCO3 0.42g 25.00  NaHCO3 0.105 5.00 

Glucose 0.054g 1.5  Glucose 0.06g 1.5 

Pyruvate 0.007g 0.4  Pyruvate 0.009g 0.4 

MgCl2.6H2O 0.020g 0.5  Hepes-free acid 0.6g 10 

Glutamine  0.0058g 0.2  Hepes Na+ salt 0.65g 10  

Pen/Strep 1.199ml   CaCl2.2H2O 0.063g 1.7 

CaCl2.2H2O 0.050g 1.7  MgCl2.6H2O 0.025g 0.5 

  NEAA 2.5ml  

 EAA 5ml  

 Pen/Strep 1.5ml  

OSMOLARITY 280-290  OSMOLARITY 280-290 

BSA 1.598g 8% w/v  BSA 1g 4% w/v 

Table 7: Preparation of SOF BSA embryo culture medium and Hepes-SOF embryo handling 
and wash medium. Medium was prepared in a sterile volumetric flask, sterile filtered and 
stored at -20oC for up to 3 months. 
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Figure 8: The layout of SOFaaBSA drops in a 40mm culture dish. These drops were 
covered with mineral oil to prevent evaporation and incubated under humidified 5% CO2 
in air at 39oC for 2 hours prior to addition of embryos for pre-equilibration. 

   

    

  

 

40µl wash drops 

20µl culture 

20µl wash drops 
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 Preparation of amino acid supplement 2.1.12

Amino acid stocks with defined concentrations were prepared as below (Table 8) and 

stored at -80oC for up to 3 months. The stocks were diluted 50x in SOFaaBSA on the day 

of in vitro culture for final amino acid concentrations comparable to physiological levels 

(Tay et al. 1997).   

50x concentrated amino acid supplement (200ml) 

Component Amount (ml)  Final concentration 
(mM) 

Final concentration in 
media (µM) 

ET Water 200ml    

Arginine 0.4214  0.20 4.0  

Cysteine 0.0315  0.02 0.4  

Histidine 0.0838  0.04 0.8  

Isoleucine 0.0262  0.02 0.4  

Leucine 0.0787  0.06 1.2  

Lysine 0.1096  0.06 1.2 

Methionine 0.0298  0.02 0.4  

Phenylalanine 0.033  0.02 0.4  

Threonine 0.0596  0.05 1.0  

Tryptophan 0.0408  0.02 0.4  

Tyrosine 0.0725  0.04 0.8  

Valine 0.0351  0.03 0.6  

Alanine 0.098  0.11 2.2  

Asparagine 0.0751  0.05 1.0  

Aspartate 0.0399  0.03 0.6  

Glutamate 0.1471  0.10 2.0  

Glycine 0.03  0.04 0.8  

Proline 0.023  0.02 0.4  

Serine 0.042  0.04 0.8  

Glutamine 0.2922  0.20 0.4  

DABA 0.0516  0.05 1.0  

Table 8: Preparation of 50x amino acid supplement stock. Solution was sterile filtered and 
aliquotted to 500µl microtubes and stored at -80oC for up to 3 months. 
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 Collection and In Vitro Maturation (IVM) of bovine 2.1.13

oocytes. 

Phosphate Buffered Saline (PBS) was prepared by adding 2x PBS tablets to 400ml ddH2O 

in 500ml Duran bottles and sterilised by autoclaving at 121oC for 2hr. Bovine ovaries were 

collected from a local abattoir (ABP Murton, York) and transported to the laboratory in an 

insulated canister with warm PBS. All further manipulations and culture of ovaries, 

oocytes, spermatozoa and embryos were performed at bovine physiological temperature 

of 39oC.  

Upon arrival, ovaries were washed three times in fresh PBS at 39oC and stored in this 

solution on a heating plate. Follicular fluid containing oocytes was collected from antral 

follicles of <1cm diameter by aspiration with a pre-warmed 10 or 20ml syringe with 18 

gauge needle containing a small amount of Hepes-buffered holding medium. Holding 

medium for OCC collection was supplemented with heparin to prevent agglutination of 

collected tissue. Once the fluid of approximately 10 ovaries was aspirated, the syringe 

was emptied to a 25ml universal tube and maintained upright at 39oC to allow the 

Oocyte-Cumulus Complexes (OCCs) to settle to the bottom.  

The supernatant was removed using a sterile Pasteur pipette (Sarstedt) and the aspirate 

examined using an Olympus SZ11 stereomicroscope with Tokai Hit Thermo Plate heated 

stage (Olympus, Southend-on-Sea, UK) set to 39oC. Immature OCCs with a complete layer 

of cumulus cells were selected using a glass pipette in a 9cm petri dish with a marked 

grid. OCCs were washed twice in holding medium without heparin, then three times 

through 400µl pre-equilibrated BMM under mineral oil before transfer to 500µl BMM 

wells in groups of 50 in a 4-well plate (Nunc). OCCs were cultured for 24 hours at 39oC 

under 5% CO2 in humidified air. BMM consisted of bicarbonate-buffered M-199 

supplemented with 10% foetal bovine serum, 0.01IU FSH/LH (Ferring Pharmaceutical, 

Langley, UK), 0.40mg epidermal growth factor and 2.2ng fibroblast growth factor. 
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 In Vitro Fertilisation (IVF) 2.1.14

Mature OCCs in BMM were collected in 40µl using a Gilson Pipetman and washed through 

three 400µl drops of pre-equilibrated Fert-TALP medium. This allows three 1 in 10 

dilutions of the previous media for a total 1:1000 dilution, essentially removing the 

components of and waste products in the BMM. Cumulus expansion was used as a crude 

marker of OCC maturation and OCCs with poor cumulus expansion were not selected for 

IVF. OCCs were then transferred in groups of 50 to wells containing 250µl Fert TALP in a 

Nunc 4-well plate. 

In Vitro Fertilisation (IVF) was carried out using frozen-thawed spermatozoa from a bull of 

proven fertility (Genus, Cheshire, UK). Cryopreserved spermatozoa were thawed for 10 

seconds in a 50ml centrifuge tube (Sarstedt) containing tap water pre-heated to 40oC. The 

straw was dried and cut in sterile conditions before layering semen atop the 45% Percoll®. 

Sperm were centrifuged for 30 minutes at 760 x g in an accuSpin™ 400 centrifuge (Fisher 

Scientific, Loughborough, UK), the supernatant removed and the pellet resuspended in 

4ml pre-warmed Hepes TALP. Percoll® is a viscous liquid through which only motile sperm 

can swim to form the pellet, while immotile sperm, sperm extender and protein debris 

from semen are removed in the supernatant. After centrifugation at 330 x g for a further 

5 minutes, the supernatant was again removed and sperm resuspended in 200µl Fert-

TALP. Sperm suspension was incubated at 39oC and 5% CO2 in humidified air until 

required for fertilisation. Spermatozoa cell counts were performed using an Improved 

Neubauer Haemocytometer (Weber Scientific International, London, UK) and Leica 

LaborLux S microscope with 25x/0.5na objective, to calculate the correct volume of sperm 

suspension to co-incubate with mature OCCs at a concentration of 1x106ml-1. Sperm and 

OCCs were co-incubated for 18-24hr at 39oC and 5% CO2 in humidified air.  

 In Vitro Culture (IVC) 2.1.15

Embryo culture dishes were prepared using droplets of Synthetic Oviduct Fluid 

supplemented with 200µl 50x amino acids per 10ml (SOFaaBSA) under mineral oil as 

shown in Figure 8 and equilibrated at 39oC and 5% CO2 in air for at least 2 hours. Hepes-

buffered SOF was also warmed to 39oC for at least 2 hours before use. The putative 

zygotes were collected from IVF plates in a 2ml snap-cap centrifuge tube containing 500µl 
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of pre-warmed Hepes-SOF then denuded of remaining cumulus cells by vortexing for 2 

minutes using a Vortex Genie 2 (Scientific Industries, New York, USA). The tube contents 

were poured into a 4cm culture dish and the tube washed twice with Hepes SOF. Putative 

zygotes were then selected in Hepes SOF using a stereomicroscope with heated stage and 

transferred to SOF culture medium in groups of 40 using a glass pipette. The zygotes were 

washed twice in SOFaaBSA before moving to 20µl culture drops in groups of 20. The 

culture dishes were then incubated in a Dry Seal desiccator containing approximately 

150ml ddH2O with 150µl Antibiotic/Antimycotic (Ab/Am) solution. Air was purged from 

the desiccator and replaced with 5% CO2, 5% O2, 90% N2 bubbled through a Dreschel 

bottle containing 100ml ddH2O + 100µl Ab/Am. Embryos were cultured for up to 8 days, 

with cleavage rate recorded on day 2 and blastocyst rate recorded on days 7 and 8.  
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2.2 Measurement of Oxygen Consumption Rate (OCR) 

 Measurement of OCR by the Becton-Dickinson Oxygen 2.2.1

Biosensor System  

2.2.1.1 The Oxygen Biosensor System (OBS) 

The Oxygen Biosensor System (OBS) is a 96-well plate with a proprietary fluorescent 

compound immobilised to the bottom of each well (BD Biosciences, Oxford, UK). The 

fluorophore is quenched in the presence of oxygen; therefore respiring cells reduce the 

dissolved oxygen concentration causing an increase in fluorescence intensity. An ambient 

oxygen blank (culture media without cells) and a 0% oxygen control (sodium dithionite) is 

used in each experiment. The fluorophore was excited at 485nm and read at 630nm in a 

Tecan Infinite (Tecan, Reading, UK) or BMG Labtech FLUOstar Omega fluorimetric plate 

reader with Atmospheric Control Unit (BMG Labtech, Buckinghamshire, UK). Fluorescence 

signal intensity can be converted to oxygen concentration in atm or µmol/l using the 

manufacturer guidance (Timmins and Haq 2006) and further converted to give Oxygen 

Consumption Rates (OCR) in pmol/hr/embryo. 

100µl Hepes-buffered media was loaded to each well, with 2x media only wells adjacent 

to each well to be used as blank controls. 200µl sodium dithionite was loaded to a single 

well as a 0% oxygen control. The plate was sealed with HPLC film and incubated in the 

plate reader at 39oC for 1 hour. After this time, a single pre-blank reading was taken of 

each well with excitation at 485nm and emission at 630nm. The plate was then removed 

from the plate reader and transferred to a heated stage at 39oC for loading with samples. 

10µl media was removed from each sample well and replaced with 10µl of Hepes media 

containing at least 10 embryos. 10µl of media in each blank well was also replaced with 

pre-warmed Hepes media. The plate was then re-sealed with HPLC film and incubated in 

the plate reader for 40 minutes with readings every 20 seconds to measure the change in 

oxygen over time. 

2.2.1.2 Analysis of data 

Raw fluorescence data for each well at each time point was divided by the pre-blank 

value for the same well to calculate Normalised Relative Fluorescence (NRF). The NRF of 
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the sample wells was divided by the mean NRF of corresponding blank wells to calculate 

relative NRF (reNRF).  

Dynamic Range (DR) was calculated by dividing the initial intensity of the sodium 

dithionite control by an average of the media well pre-blank. This value is expected to be 

around 6. DR is then used to calculate the Stern-Volmer constant (Ksv), which is required 

to convert fluorescence data into oxygen concentrations. The ambient concentration of 

oxygen in media [O2]a was defined as 209µmol/l. 

KSV = (DR - 1) / [O2]a 

Finally, Ksv can be used to calculate the oxygen concentration (µmol/l) at each time point 

for the sample wells: 

 [O2] = (DR / reNRF - 1) / KSV 

[O2] was converted from µmol/l to pmol/embryo by multiplying by a factor of 100 and 

dividing by the number of embryos present. Oxygen concentration is then plotted against 

time. The gradient of this curve is the oxygen consumption rate (OCR) in 

pmol/embryo/hr.  

This system was previously used to measure oxygen consumption by bovine oocytes, 

however this is the first time it has been employed to assess bovine blastocyst oxygen 

metabolism following inhibition of metabolic processes. 

 Measurement of OCR by nanorespirometry 2.2.2

2.2.2.1 The nanorespirometer 

The method for nanorespirometry was adapted from Unisense (Unisense A/S, Aarhus, 

Denmark) guidance and the previous work of Ana Lopes (Lopes et al. 2005). The system 

uses a miniaturised electrode mounted on a motorised micromanipulator and connected 

to an oxygen sensor capable of 0.1µmol/l resolution. The incubation beaker containing 

Hepes-buffered media is maintained at 39oC by a thermostatically controlled water bath 

and held in place by a standard laboratory clamp stand and boss. A two-point calibration 

was performed as follows. The 0% O2 control was set using 10ml of 100mM Sodium 

dithionite, generating a signal in the region of 0-2mV. The ambient control (21% O2) was 
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Hepes SOF (without BSA supplement in order to prevent foaming), which was maintained 

at 39oC and bubbled with air for 30 minutes to maximise dissolved oxygen.  

2.2.2.2 Loading and measurement of embryos 

Embryos were loaded to a Drummond PCR micropipette (Alphalabs, Hampshire, UK) in 

1µl of Hepes-buffered media and equilibrated for approximately 1hr in a 15ml falcon tube 

containing the same media. The embryo sinks to the bottom and consumes oxygen, 

building up a steady-state gradient of decreasing oxygen concentration with increasing 

depth. Tubes were sealed at the bottom with vacuum grease to prevent diffusion of 

oxygen from below the loaded embryo. For measurement, the micropipettes are 

mounted to a specifically designed rack in groups of four. This rack is held stably in an 

incubation beaker filled with Hepes-SOF to the level of the micropipette surface and 

maintained at 39oC with coiled tubing running from a Grant water bath. Alignment of the 

probe tip with the centre of each micropipette opening was performed using a horizontal 

dissecting microscope. Control of the oxygen sensor probe by the motorised 

micromanipulator during measurement was carried out using the SensorTrace Pro 

program (Unisense). 

Readings were taken at 200µm intervals from -200µm to 4000µm, where 0µm is defined 

as the surface of the micropipette tube. The oxygen profile was visualised in real-time for 

an instant overview of the oxygen consumption by the embryo. However, the OCR 

gradient was calculated from the 3000 to 4000µm section of the profile to ensure 

comparability between more and less active embryos and avoid the loss of data due to 

evaporation at the top of the tube. 

The probe is sensitive to temperature fluctuation (2-3% change in signal per 1oC) and so 

the temperature of the incubation beaker was monitored at all times using a 

thermometer (Lopes et al. 2005). However, evaporation of water at the surface of the 

media was unavoidable and may cause a slight decrease in temperature. Media volume 

was maintained by adding embryo tested water pre-heated to 39oC when required. 

2.2.2.3 Inhibitor treatment 

To assess the contribution of different components of oxidative phosphorylation to the 

overall embryonic Oxygen Consumption Rate (OCR), embryos were loaded to 
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micropipettes as described above, except embryos were initially loaded in Hepes SOF + 

solvent control. This reduces potential deleterious effects of prolonged experiments and 

multiple manipulations with the same embryo and is acceptable as the basal OCR in 

Hepes SOF has been established in other experiments (0, 4.4.1) and the inhibitor effects 

must be calculated in reference to the solvent control OCR rather than basal OCR. In 

addition, the solvent control did not have a significant effect on OCR in other experiments 

(section 3.4.4-3.4.8). Following basal OCR measurement the embryo was removed from 

the micropipette to a pre-warmed solution of the inhibitor at the desired concentration in 

Hepes SOF using a stereomicroscope with heated stage. The embryo was then moved to a 

second pre-warmed dish containing the same inhibitor solution and loaded to a 

micropipette once more. Pre-equilibration and oxygen profiling were then carried out as 

before (section 2.2.2.2). 

2.2.2.4 Calculation of Oxygen Consumption Rate (OCR) 

The oxygen consumption rate is essentially the slope of the steady-state gradient 

recorded by the probe. This was calculated using an MS Excel program developed by 

Unisense which adapts Fick’s First Law of Diffusion:  

J = -D(dc/dx) 

Where J= diffusion flux (amount of oxygen that will flow through a small area during a 

short time interval in mol/m2/s) The solubility of oxygen in the media is 200µmol/l  and 

diffusion coefficient (D) at 38.5oC is 3.37x10-5 cm2 s-1: (Garcia and Gordon 1992). The 

slope of the gradient (change in concentration over time) is denoted by dc/dx. 

2.3 Energy substrate assays 

Lactate production, glucose and pyruvate consumption by individual pre-implantation 

bovine embryos of 2-cell to blastocyst stage were assayed by the rapid, non-invasive 

fluorimetric technique developed by Guerif et al. (2013). Briefly, embryos were selected 

for analysis at 2-4-cell and blastocyst stages (days 2, 5, 6 or 7 of culture, respectively). 

Selected embryos were washed in and moved to a modified SOFaaBSA “analysis” medium 

containing 0.5mM glucose and 0mM lactate. This media was prepared as described in 

Table 9. Embryos were incubated individually in 4µl droplets for 18-24hr under mineral oil 
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at 39oC in a humidified atmosphere of 5% CO2, 5% O2, and 90% N2. Identical control 

droplets were incubated adjacent to embryo-containing droplets to account for non-

specific degradation/appearance of compounds of interest.  

SOF analysis (100ml) 

Component Amount Concentration (mM) 

ET Water To volume  

NaCl 0.629g 108 

KCl 0.053g 7.11 

KH2PO4 0.016 1.18 

NaHCO3 0.21g 25.0 

Glucose 0.009g 0.5 

Pyruvate 0.0035g 0.4 

CaCl2.2H2O 0.025g 1.7 

MgCl2.6H2O 0.010g 0.5 

Glutamine GLN 0.0029g 0.2 

Pen/Strep 0.5995ml 1000 IU/ml 

Amino acids 50x 2ml 1x 

OSMOLARITY 280-290 

BSA 0.799g 8% w/v 

Table 9: Preparation of modified SOF analysis medium for glucose, lactate and pyruvate 

assays. Medium was prepared in a sterile volumetric flask, sterile filtered and stored at -

20oC for up to 3 months. 

Following 24hr individual culture, the morphological status of each embryo was recorded 

and compared to the stage recorded prior to individual culture. Development was defined 

as early cleavage stage embryos increasing in cell count or morula and blastocyst 

progression to a higher stage. Dead or arrested embryos were excluded from further 

analysis. Embryos were removed and spent media samples were frozen under oil at -80oC 

until analysis. 

Assay mixture was first loaded to each well of interest in a 96-well V-bottomed plate. 

Background fluorescence due to NAD+ or NADP was measured using a BMG FLUOstar 
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plate reader with excitation/emission of 340/460nm. Sample medium was added to the 

assay mixture in the ratio 1:10 and incubated in the dark at 37oC for a period of time 

specific to the substrate of interest. Fluorescence intensity was measured once more and 

corrected for the background values. Intensity values for each sample were calibrated 

against a six-point standard curve to calculate concentration of substrate and change in 

concentration of substrate was calculated by comparison to control drops of medium. 

Consumption or production of substrate was expressed in pmol/embryo/hr ± s.e.m. 
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 Pyruvate 2.3.1

Pyruvate reaction cocktail containing 0.1mM NADH and 40IU/ml lactate dehydrogenase 

in 4.6mM EPPS buffer, pH 8.0 and supplemented with 50µg/ml Penicillin and 50µg/ml 

Streptomycin was prepared prior to use and stored at -20oC for 3 months. 10 µl of assay 

mixture was added per well using positive displacement and fluorescence measured to 

yield a pre-blank background measurement. Sample medium, control medium or 

standard solution (1µl) was added to each well and incubated at 37oC for 3 minutes 

before endpoint readings. A reduction in fluorescence due to NADH oxidation was 

monitored. Final concentrations in each spent culture droplet were determined against a 

six point standard curve from 0-0.45mM pyruvate and consumption was calculated 

relative to the mean pyruvate concentration of the control drops. Pyruvate standard 

0.45mM obtained from Analox, London, UK. Standard curves with R2 <0.99 were rejected. 

 
 
Pyruvate + NADH + H+     Lactate + NAD+ 

 

 

Figure 9: An example standard curve for the pyruvate assay. 
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 Glucose 2.3.2

Glucose reaction cocktail containing 0.4mM dithiothreitol, 3.07mM MgSO4, 0.42mM ATP, 

and 1.25mM NADP+, 20 IU/ml hexokinase/glucose-6-phosphate dehydrogenase 

(HK/G6PD) in EPPS buffer at pH 8.0 was made prior to use and stored at -20oC for 3 

months. 10 µl of assay mixture was added per well using positive displacement and 

fluorescence measured to yield a pre-blank background measurement.  Sample medium 

(1µl) was added and incubated at 25oC for 10 minutes. Changes in fluorescence due to 

NADP+ reduction were monitored. Final concentrations in each spent culture droplet 

were determined against a six point standard curve from 0-0.5 mM glucose. Standard 

curves with R2 <0.99 were rejected. 

Glucose + ATP      Glucose-6-phsophate (G6P) + ADP 

 
 
 
G6P + NADP+      Gluconate-6-phsophate + NADPH + H+ 

 
 

 
Figure 10: An example standard curve for the glucose assay. 
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 Lactate 2.3.3

Assay mixture containing 40IU/ml lactate dehydrogenase (LDH) in a glycine-hydrazine 

buffer, pH 9.4 was prepared prior to use and stored at -20oC for up to 3 months. 10µl of 

assay mixture was added per well using positive displacement and fluorescence measured 

to yield a pre-blank background measurement.  Sample medium (1µl) was added to 10µl 

of assay mixture and incubated at 25oC for 30 minutes Changes in fluorescence due to 

NAD+ reduction were monitored. Final concentrations in each spent culture droplet were 

determined against a six point standard curve from 0-1.0mM lactate. Standard curves 

with R2 <0.99 were rejected. 

 
Lactate + NAD+      Pyruvate + NADH + H+ 

 

 
Figure 11: An example standard curve for the lactate assay. 
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2.4 L-carnitine assay 

This assay was performed according to manufacturer instructions (Abcam, Cambridge). 

Briefly, the supplied 100mM standard was diluted to 1mM with ddH2O. A standard curve 

and reaction mixture were prepared as follows: 

Standard [L-carnitine] 

(mol/µl) 

 Reaction mix component Volume per well 

(µl) 

0 0  Assay buffer 4 

1 0.04  Carnitine converting enzyme 0.2 

2 0.08  Carnitine development mix 0.2 

3 0.12  Substrate mix 0.4 

4 0.16  Carnitine probe 0.2 

5 0.2    

Table 10: Composition of the reaction mixture and standard solutions for the L-carnitine 
assay. 

 

5µl reaction mix was loaded to each well and a blank reading taken at 535/587nm. A 

positive control well containing standard 5 and reaction mix was used to set the gain to 

its optimal level. 5µl standard or sample was added to each well and the plate incubated 

at room temperature inside the plate reader. The end point reading was measured at 

535/587nm and a standard curve plotted. 
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2.5 Time-lapse imaging of embryo development 

using the Primo Vision system 

Real-time monitoring of embryo development throughout the culture period was 

performed using the Primo Vision system (Vitrolife, Goteborg, Sweden) and 9-well dishes 

(Cryo Management Ltd, Hungary). Each individual well of the 9-well dish was filled with 

SOFaaBSA using a pulled glass pipette and then the main well filled with 40µl of the same 

media. This was overlaid with oil and incubated at 39oC in 5% CO2/5% O2 for 2hr prior to 

loading embryos. 2-cell embryos were selected on day 1 of culture for transfer to the 9-

well dish. Images were recorded every 10 minutes for 7 days of culture. Data was 

analysed using the Primo Vision analyser software. 



59 
 

2.6 Cell allocation ratios 

Blastocyst cell counts and allocation ratio were taken using the method of Thouas et al. 

(2001). Blastocysts were incubated in Hepes SOF with 1% Triton X-100 (Sigma-Aldrich, 

Dorset, UK) and 100µg/ml propidium iodide (Sigma-Aldrich, Dorset, UK) for 30s. The 

Triton X-100 detergent permeablises the zona pellucida, allowing propidium iodide to 

enter and stain trophectoderm nuclei, but the blastocysts are moved before the dye 

reaches the inner cell mass. Blastocysts were moved to a fixative solution of 25µg/ml 

Hoescht 3342 in 100% ethanol overnight at 4oC. This dehydrates the blastocysts and 

allows the dye to stain all cells. Stained and fixed blastocysts were removed to a 1µl drop 

of glycerol on a sterile glass slide and fully flattened with a coverslip before labelling the 

embryo location. Images were taken on an Olympus IX51 inverted fluorescent microscope 

with 20x/0.5na UPlanF1 objective, ultraviolet lamp and excitation filters. Total cell 

number was recorded at 460nm and trophectoderm only at 560nm. The TE:ICM ratio was 

then calculated for each blastocyst measured. 
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3 Bovine embryo bioenergetics 
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3.1 Introduction 

 Metabolic profiling of pre-implantation embryos 3.1.1

The topic of embryo metabolism is of great interest as it may yield biomarkers that can be 

used to select viable embryos for transfer in clinical and commercial Assisted 

Reproduction Technologies (ARTs).  In addition is the importance of understanding the 

fundamental relationship between embryo metabolism and development. Ideally, studies 

on embryo metabolism should be non-invasive so that it is possible to relate metabolic 

activity to subsequent development. In addition, such assays should not perturb the 

embryo, affect its viability, or introduce any compounds, toxic or non-toxic, which may 

interfere with any aspect of development. Non-invasive methods should permit the 

assessment of an individual embryo and include the measurement of the consumption or 

production of various substrates in the culture medium, including glucose, pyruvate, 

lactate (Thompson et al. 1996; Sturmey and Leese 2003) and amino acids (Gopichandran 

and Leese 2003; Humpherson et al. 2005; Sturmey et al. 2010) whilst allowing assessment 

of ongoing development. As the embryonic genome activates at the 8-16 cell stage in the 

bovine (King et al. 1988; Telford et al. 1990; Wrenzycki and Niemann 2003), assessments 

of metabolism at earlier stages are be assumed to relate more directly to oocyte quality 

and maternal legacy effects rather than the physiology of the developing embryo (Donnay 

et al. 2002); after this stage metabolism is increasingly thought of as a marker of embryo 

viability. 

The general pattern of embryo energy metabolism throughout development based on our 

current level of knowledge is summarised in figures 1 and 2, in Chapter 1.  Briefly, overall 

metabolic activity remains at a relatively low rate during the cleavage stages, from the 

zygote to morula, but increases sharply at the blastocyst stage largely to meet the 

increased demands for metabolic energy. During blastocyst formation, 30-40% of total 

Adenosine Triphosphate (ATP) is consumed by the enzyme Na+/K+ ATPase, which is critical 

in forming the blastocoel cavity. This accounts for 10-44% of oxygen consumption (Leese 

et al. 2008). 
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 Oxygen consumption 3.1.2

Consumption of oxygen has been proposed as an indicator for embryo viability (Houghton 

et al. 1996; Trimarchi et al. 2000b; Shiku et al. 2001; Lopes et al. 2005; Lopes et al. 2010). 

The major fate of consumed oxygen is as the final electron acceptor in the electron 

transport chain of respiration, releasing energy for ATP production by oxidative 

phosphorylation (Thompson et al. 1996). Mammalian mitochondria produce 

approximately 4.8 moles of ATP via oxidative phosphorylation for every mole of diatomic 

oxygen (O2) consumed. This equates to a maximal ADP phosphorylation to oxygen 

reduction ratio (P/Omax) of 2.4 (Brand et al. 2005). Using this value, it is possible to 

estimate the total ATP produced by oxidative phosphorylation on the basis of OCR (Brand 

et al. 2005; Birket et al. 2011; Trimarchi et al. 2000). 

Oxygen consumption by embryos can be affected by a variety of factors, including media 

composition, solute concentration and whether the embryo is produced in vitro or in vivo 

(Lopes et al. 2007). The concentration of glucose in culture media has a particularly 

pronounced effect. For example, Synthetic Oviduct Fluid (SOF), based on the biochemical 

composition of sheep oviduct fluid (Restall and Wales 1966), contains 1.5mM glucose 

(Tervit et al. 1972). Increasing the glucose concentration to 5.5mM reportedly leads to a 

reduction in OCR and increased lactate production from glycolysis (Donnay et al. 2002). 

High glucose also leads to chromatin degradation and apoptosis in murine embryos 

(Leunda-Casi et al. 2002). In addition the mechanism of fertilisation might alter embryo 

metabolic activity,  For example, Tejera et al. (2012) reported that the OCR of human 

embryos decreases following ICSI, from 19.2pmol/embryo/hr at zygote stage to 

16.52pmol/embryo/hr after 52 hours post-ICSI (approx. 8 cell stage). However, embryos 

of higher quality, which were transferred to prospective mothers, had higher OCR than 

poor quality embryos (19.15 compared to 18.1pmol/embryo/hr). In the same study, it 

was reported that the OCR of transferred embryos which successfully implanted 

continued to rise 52 hrs post-ICSI, while OCR of non-implanting embryos continued to fall 

(Tejera et al. 2012). These data suggest that OCR may relate to viability. As yet, however 

the metabolic legacy of ART is relatively unexplored and could involve subtle changes 

with relevance to health, disease and longevity. 
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 Embryo mitochondria 3.1.3

The mitochondria of the mammalian oocyte and cleavage stage embryo have a distinctive 

morphology, appearing spherical with a diameter of less than 1μm, and fewer, shorter 

cristae than the classical elongated form seen in most differentiated cell types (Van 

Blerkom 2011). Despite this morphology, the mitochondria remain active and supply the 

oocyte and early embryo with ATP by oxidative phosphorylation. Maternal mitochondria 

increase in number from a tiny complement (<10) in the primordial oocyte until 

maturation is complete, at which point they may number in the hundreds of thousands 

(Van Blerkom 2004). All embryo mitochondria, including all their mtDNA, are maternally 

inherited; mitochondria from the spermatozoon are destroyed by ubiquitin-mediated 

proteolysis following fertilisation (Sutovsky et al. 1999; Cummins 2000). Interestingly, this 

process seems to have evolved autonomously many times, most likely to avoid 

inheritance of oxidative damage-prone spermatozoan DNA (Cummins 1998). In general, 

oxidative damage to mtDNA is particularly common as around 2% of electrons ‘leak’ from 

the electron transport chain to form reactive oxygen species (ROS) and defence or repair 

mechanisms do not exist in the mitochondria to prevent DNA damage (Cummins 2002). 

As the spermatozoa undergo significant shifts in oxygen concentration from low levels in 

the testis, to ambient levels in the vagina and again to low concentrations in the oviduct, 

spermatozoan mtDNA tends to accumulate mutations and a significant number of mtDNA 

deletions are found in the majority of normospermic men (Max 1992; Cummins 1998). In 

mammals, inheritance of paternal mtDNA is rare, linked to mitochondrial disease and 

seems to occur only in dysfunctional oocytes (St John et al. 2000). 

Embryo mitochondria gradually elongate and develop more extensive cristae as cleavage 

progresses, beginning at around the 16-cell stage and finally attaining a more classical 

morphology during blastocyst formation and expansion in the cow (Plante and King 1994) 

and human (Sathananthan and Trounson 2000). This change in morphology coincides 

with the increased energy demand associated with blastocoel cavity formation (Figure 3). 

Occasionally, ‘giant’ mitochondria with a diameter up to 2µm or unusual ‘dumbbell’ 

shaped forms are seen in mature oocytes, but fusion and fission are rare (Sathananthan 

and Trounson 2000; Van Blerkom 2011). The total complement of mitochondria, 

therefore, appears fixed from the MII oocyte stage until components required for 

mitochondrial replication are expressed post-implantation (Larsson et al. 1998; Ekstrand 



64 
 

et al. 2004). Measurement of mitochondrial DNA (mtDNA) is often used as a proxy for 

mitochondrial number, however mtDNA is not limited to one copy per organelle; rather 

there seems to be little consistency in the number of copies of mtDNA per mitochondria 

(Van Blerkom 2011), although it is thought that the mitochondria of the mature human 

oocyte contain only one mtDNA genome copy (Cummins 2002). In addition, there is little 

correlation between mtDNA copy number and the number of mitochondria or 

mitochondrial function. For example, expression of human mitochondrial transcription 

factor A in mouse embryos significantly increases mtDNA copy number, but with no 

detectable effect on mitochondrial number, measured by mitochondrial mass or maximal 

respiratory capacity (Ekstrand et al. 2004). However, in the human, as well as the mouse, 

lower mtDNA copy number correlates with reduced viability, suggesting some benefit to 

increased copy number (Stojkovic et al. 2001; Santos et al. 2006; Ge et al. 2012). 

 Oxidative phosphorylation 3.1.4

Oxidative phosphorylation in eukaryotic cells involves the coupling of the transfer of 

electrons that arise from substrate oxidation to the phosphorylation of Adenosine 

Diphosphate (ADP) to ATP (Figure 12 and Figure 13). The major sources of electrons in the 

Electron Transport Chain (ETC) are the reducing equivalents NADH, FADH2 and succinate, 

which are produced by the TCA cycle (Figure 4). Electrons from these reducing 

equivalents flow along four respiratory protein complexes – NADH dehydrogenase, 

succinate dehydrogenase, cytochrome bc1 complex and cytochrome c oxidase, which are 

bound to the inner mitochondrial membrane and associate tightly, forming a 

superstructure termed the respirosome (Dudkina et al. 2010; Dudkina et al. 2011; Winge 

2012). The flow of electrons across these proteins enables the establishment of a proton 

(H⁺) gradient that generates a proton-motive force (PMF) across the mitochondrial inner 

membrane. The protons flow down the proton gradient through ATP Synthase and the 

energy released enables ATP synthesis (Berg et al. 2002).   
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Figure 12: Overview of oxidative phosphorylation. The electron transport chain, or 

respirosome, consists of ATP synthase and 4 enzyme complexes; Complex I: NADH-Q 

Oxidoreductase, Complex II: Succinate-Q Reductase, Complex II: Q-Cytochrome c 

Oxidoreductase, Complex IV: Cytochrome c Oxidase. Electrons are carried to the 

respirosome by NADH and FADH2 generated by the TCA cycle. NADH binds to Complex I, 

which transfers electrons to Coenzyme Q (ubiquinone) for transport to Complex III. At 

Complex II, Coenzyme Q also accepts electrons from FADH2. Reduced Coenzyme Q 

transfers electrons to complex II, which uses donated electrons to reduce a as second co-

factor, Cytochrome c. Cytochrome c translocates to Complex IV, where the final electron 

acceptor, oxygen, is reduced. Electron transfer at Complex I, III and IV is coupled to active 

transport of protons across the inner mitochondrial membrane, maintaining a proton 

gradient or proton-motive force from within the intermembrane space to the matrix. 

Protons flow spontaneously through the proton channel of ATP synthase, providing the 

energy required for the formation of ATP from ADP and Pi and subsequent release of ATP. 
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Figure 13: Diagram of the Q cycle. Ubiquinol (QH2) binds at the ubiquinol oxidation site 

(Qo) to transfer one electron to a bound Rieske iron-sulphur protein (FeS), which then 

reduces cytochrome c (CytC). The two protons of QH2 are released to the intermembrane 

space. QH2 also transfers a second electron to a series of haem groups; cytochromes bL 

and bH. A second quinone (Q) binds at the ubiquinone reduction site (Qi) and is reduced, 

removing 2 protons from the matrix and contributing to the maintenance of the proton 

gradient. Myxothiazol competitively binds the Qo site, blocking electron transfer to 

cytochrome c and hence any further electron transport. Antimycin binds at the Qi site, 

inhibiting electron transfer and hence proton flow.  

 Classification of respiration 3.1.5

While the majority of oxygen consumption in most cell types is driven by mitochondrial 

oxidative phosphorylation, other cellular processes also consume oxygen. These include 

oxygen-consuming enzymes, as well as the production of reactive oxygen species (ROS) 

either as a spontaneous by-product of normal metabolism or in some cases as signalling 

molecules. Oxygen-consuming enzymes include xanthine oxidase, NADPH oxidase and 

squalene monoxygenase, which may be inhibited specifically to deduce their individual 

contribution to overall OCR. Total non-mitochondrial oxygen consumption can be 

assessed by treating cells with an inhibitor of respiratory complex III (or cytochrome bc1 

complex), since all electrons flowing through the electron transport chain must pass 

through complex III, transfer to cytochrome c via the Q cycle and transport to complex IV. 



67 
 

Myxothiazol is a competitive inhibitor of ubiquinol, binding at the ubiquinone reduction 

site (Qo) of the complex and prevents electron transfer from quinol to the Rieske iron-

sulphur protein (Figure 13). A further inhibitor is antimycin A, which binds the Qi site, 

preventing transfer of electrons from the haem group to oxidised quinone (Figure 13). 

Oxygen consumed by each of the respiratory components can be quantified by using 

inhibitors specific to each process. Theoretically, approximately 30 moles of ATP can be 

produced for every mole of glucose (Berg et al. 2001). The majority (87%) of this total ATP 

comes from oxidative phosphorylation, with the remainder coming from substrate-level 

phosphorylation in the TCA cycle and glycolysis. Other pathways, including creatine 

dephosphorylation by creatine kinase in the mouse embryo (Forsey et al. 2013), do 

generate ATP, but their overall contribution is small. However, there are many 

physiological factors which reduce the yield of ATP per unit glucose. For example, the 

proportion of oxygen consumption which is ATP-producing; i.e. coupled to ATP synthesis 

by ATP Synthase - is typically 60-80% (Birket et al. 2011); the remaining 20-40% is lost 

from potential ATP Synthesis and is described as uncoupled from ATP synthesis. One 

cause of uncoupling is the passive leak of protons across the inner mitochondrial 

membrane without flow through the proton channel of ATP Synthase, leading to partial 

uncoupling of electron transport from ATP Synthase. To investigate this in vitro, a range 

of respiratory inhibitors can be used. Oligomycin binds to the proton channel, effectively 

abolishing aerobic respiration, although some oxygen may still be consumed by non-ATP-

productive processes. This is uncoupled oxygen consumption, as it is independent of ATP 

Synthase activity. The difference between measured basal OCR and the OCR following 

oligomycin treatment is considered to be the coupled OCR (Brand and Nicholls 2011): 

Total Basal OCR – Oligomycin-sensitive OCR = Coupled OCR 

Coupled OCR rates in somatic cells range from 60-80%, although some carcinoma cell 

lines are only 30% (Affourtit and Brand 2009; Birket et al. 2011; Divakaruni and Brand 

2011). 

 Uncoupled respiration 3.1.6

The majority of uncoupled OCR is considered to be proton leak, although it does have at 

least one defined purpose, in whole body homeostasis and roles specific to some cell 
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types. Thus, in adipocytes uncoupled respiration is used to generate heat (Rousset et al. 

2004) and regulate non-ATP dependent carbon flux between anaerobic glycolysis and 

oxidative phosphorylation (Si et al. 2009), while uncoupling protein expression by 

pancreatic β-cells modulates their insulin secretion and (Chan et al. 2001). Uncoupling 

even has a role in photosynthesis; UCP1 expression is required to maintain mitochondrial 

redox state in Arabidopsis, while knockout of UCP1 reduces the overall rate of 

photosynthesis (Sweetlove et al. 2006). Furthermore, the ‘uncoupling to survive’ 

hypothesis of Martin Brand suggests that uncoupling regulates the proton gradient (ΔP), 

limiting mitochondrial superoxide production to prevent extensive oxidative damage and 

resulting conditions (Brand 2000). The majority of cellular reactive oxygen species (ROS) 

are generated by mitochondria (Boveris and Chance 1973). However, in isolated 

mitochondria, increasing respiration rate with ADP or an uncoupler such as DNP 

decreases the amount of ROS produced (Boveris and Chance 1973; Boveris et al. 1976). 

Uncoupling electron transport from ATP synthesis reduces the protonmotive force, which 

has been proposed to alter the redox state of the mitochondrial ubiquinone (Q) pool, 

reducing the concentration of QH. (Brand 2000). The net effect of this is to reduce 

formation of ROS. However, a similar observation has not been reported in whole cell 

experiments and the physiological relevance of isolated mitochondria manipulations 

under artificial conditions is doubtful. Further evidence of this idea comes from a finding 

that polymorphisms in uncoupling protein genes are associated with human longevity 

(Rose et al. 2011). It therefore appears that while uncoupling of respiration may reduce 

ATP production, it also has a beneficial regulatory role.  

 Oxygen profiling methods in oocytes and embryos 3.1.7

The analysis of oxygen consumption in rabbit oocytes and mouse embryos was first 

reported by Fridhandler et al. (1956; 1957). The authors used a Cartesian diver technique 

and noted that oxygen consumption by rabbit oocytes increased during development and 

subsequent embryo development to the blastocyst stage, but did not vary in response to 

serum. In addition, supplementation of the culture medium with pyruvate, glucose or TCA 

cycle substrates fumarate or malonate did not cause a detectable change in OCR. 

However, embryos were sensitive to cyanide treatment, reducing OCR of early cleavage 

stage embryos by 95%, and that of blastocysts to an undetectable level (Fridhandler et al. 

1957). The technique was further refined by Mills and Brinster (1967) to validate the non-
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invasive measure of oxygen consumption in the mouse, as 8-cell embryos continued to 

develop on return to culture. This was a complex and labour-intensive method, requiring 

large groups of embryos or oocytes to detect changes in oxygen concentration. 

Spectrophotometric methods were used in mouse blastocysts (Nilsson et al. 1982) and 

single human oocytes and blastocysts (Magnusson et al. 1986). This technique was based 

on the amount of oxyhaemoglobin converted to haemoglobin due to oxygen 

consumption and as such was indirect and lacked sensitivity. 

Methods to improve sensitivity were developed; the first method to measure oxygen 

consumption of single embryos with oxygen electrodes was developed by Overstrom et 

al. (1992). This method found that respiration rates of individual embryos correlated with 

survival following embryo transfer. However, the method was time-intensive and lacked 

sensitivity, so was not widely used. 

Oxygen consumption by small groups of murine, bovine and porcine embryos was 

measured using pyrene as a fluorescent marker of oxygen depletion, described by 

(Houghton et al. 1996; Thompson et al. 1996; Sturmey and Leese 2003). Pyrene is a non-

toxic, hydrophobic compound whose fluorescence is quenched in the presence of oxygen. 

The change in fluorescence is proportional to the change in oxygen concentration and can 

be measured using a quantitative fluorescence microscope. This method is non-invasive 

and embryos can be returned to culture and grown to the blastocyst stage. However, 

embryos must be assayed in groups and the technique is very time-demanding, requiring 

manual measurements every 15 minutes for up to 6 hours. Using this technique, murine 

embryo OCR was relatively constant at 6.7pmol/embryo/hr throughout cleavage stages, 

significantly increasing to 18.3pmol/embryo/hr at the blastocyst stage (Houghton et al. 

1996). A similar pattern was seen in the bovine, increasing from 10.7-

12.1pmol/embryo/hr during cleavage stages, to 17.4pmol/embryo/hr during morula 

compaction and to 40.2pmol/embryo/hr in the expanded blastocyst (Thompson et al. 

1996). In the porcine, a significant increase in oxygen consumption again occurred at the 

blastocyst stage, from around 20pmol/embryo/hr to 50pmol/embryo/hr with 

considerable biological variation for each stage measured throughout in vitro 

development of oocytes and embryos (Sturmey and Leese 2003). The pyrene technique 
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uses a closed system and so precludes dynamic experiments where compounds that 

might modulate OCR can be added. 

A self-referencing electrode technique was used to measure the OCR of mouse embryos 

(Trimarchi et al. 2000). The technique required the zona pellucida to be removed; an 

invasive process. Trimarchi and colleagues reported that the proportion of oxygen 

consumed by oxidative phosphorylation altered dramatically during early embryonic 

development, from 30% at early cleavage stages to 60-70% at the blastocyst stage, 

however the non-mitochondrial oxygen consumption stayed constant throughout 

development. Therefore, the cleavage stage embryo generates the majority of its ATP 

through glycolysis, whereas the blastocyst relies on oxidative phosphorylation. 50-70% of 

oxygen consumed was not used to produce ATP during the early cleavage stages.  

A scanning electrochemical microscopy technique was developed by Shiku et al. (2001). 

Bovine morulae with greater diameters had higher respiration rates than those with 

smaller diameters when measured by scanning electrochemical microscopy, suggesting a 

link between metabolic activity and total embryo volume. This pattern was later 

corroborated by Lopes and colleagues who, using an electrochemical method (discussed 

in detail in the following section) found that day 3 and day 7 bovine embryos with above 

average diameters had increased respiration (Lopes et al. 2005). Furthermore, Abe (2007) 

found that respiration rates of individual embryos correlated with morphological quality; 

higher ranked morulae tended to have greater OCR. A summary of reported OCR for 

bovine blastocysts is given below in Table 11. 
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 Nanorespirometry 3.1.8

Lopes and colleagues validated a technique called ‘nanorespirometry’ to measure the 

OCR of bovine single oocytes or embryos (Lopes et al. 2005). The system uses a 

miniaturised Clark electrode mounted on a motorised micromanipulator and connected 

to an oxygen sensor capable of 0.1µmol/l resolution. Embryos are maintained at 39oC in 

Hepes-buffered media for the duration of equilibration and oxygen profile measurement. 

Pre-equilibration allows the build-up of a steady state of oxygen consumption, where the 

concentration is lowest in close proximity to the embryo and highest at the media 

surface. This gradient in oxygen concentration is measured directly by the oxygen sensor 

and is converted to oxygen consumption in nl/hr.  Nanorespirometry does not affect the 

viability of embryos, and hence could be a candidate for accurate, non-invasive 

measurement on a clinical or commercial scale (Lopes et al. 2005). However, this 

technique does involve removing the embryo from its culture group. Moreover, working 

with the embryos under atmospheric gas conditions in Hepes-buffered medium, may 

perturb metabolism. 

OCR 

(pmol/embryo/hr) 

OCR 

(nl/embryo/hr) 

Reference Method 

58 1.3nl/hr Lopes 2005 Nanorespirometer 

67 1.5nl/hr 
Overström 

1996 

Self-Referencing 

Electrode 

31 0.7 nl/hr 
Thompson 

1995 
Pyrene 

Table 11: A summary of bovine blastocyst oxygen consumption from selected literature. 
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Figure 14: Overview of nanorespirometry. An embryo is aspirated to a 5µl micropipet and 
incubated at 39oC under Hepes SOF for 1hr. During this time the embryo settles to the 
bottom of the tube and establishes a steady state gradient of oxygen consumption. The 
oxygen concentration is measured in 200µm intervals, moving towards the embryo. This 
generates an oxygen profile, shown here as % oxygen saturation vs depth in µm. Example 
data collected using Unisense A/S© SensorTrace Pro 3.0 and the nanorespirometer 
system. 

Using nanorespirometry, Lopes et al. reported that the OCR increased during 

development, from 0.38nl/hr for day 3 embryos to 1.3nl/hr for day 7 embryos. In the 

same study, it was claimed that blastocysts with a higher morphological quality tended to 

have a higher OCR, with a mean of 1.72nl/hr. By contrast, blastocysts of lower 

morphological quality had a significantly lower OCR (Lopes et al. 2005). These data 

suggest that, in terms of OCR, the embryos with elevated metabolism tend to be the most 

viable. However this was based on subjective morphological analysis of blastocyst 

quality/viability.  

The nanorespirometer method has revealed additional data which suggests that embryos 

with higher quality grades have average respiration rates, with rogue high and low values 

indicative of reduced viability in the bovine (Lopes et al. 2005). 
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In a later study, Ottosen and colleagues used nanorespirometry to predict the capacity of 

early cleavage stage murine embryos to develop to expanded blastocysts (Ottosen et al. 

2007). There were significant increases in oxygen consumption between the 4 cell to 8 

cell stage and again to the morula stage, followed by a doubling in rate at the expanded 

blastocyst stage. In general, embryos that successfully reached the expanded blastocyst 

stage consumed more oxygen than those that did not, though there was little difference 

between viable and poor morphological quality 2 cell embryos. This supported previous 

data collected in murine embryos (Houghton et al. 1996). 

 Fluorometric techniques 3.1.9

While other fluorescence methods have been discussed above, so far the BD Oxygen 

Biosensor System (BD OBS), employing a proprietary fluorophore quenched by oxygen, 

has yet to be applied to oocytes or embryos. It has been used to assay oxygen 

consumption of somatic cells (Fraker et al. 2006) and spermatozoa from different bulls, 

identifying differences in respiration which correlated with the non-return rate, 

representing relative fertility (Garrett et al. 2008). However the present research is the 

first time the method has been applied to bovine oocytes and blastocysts. 
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3.2 Aims 

As described above, several studies have assayed oxygen consumption by oocytes and 

embryos, using a variety of methods, but a thorough assessment of the components of 

oxygen consumption has hitherto yet to be performed, limiting our understanding of the 

degree and possible effects of uncoupling and the capacity of embryos to adapt to 

metabolic challenges. The aim of this chapter is to quantify the ATP-producing oxygen 

consumption of bovine oocytes and embryos. This involved the following objectives: 

• Evaluate two different methods of measuring oocyte and early embryo 

oxygen consumption. 

• Measure the non-mitochondrial oxygen consumption of bovine embryos by 

acute inhibition of mitochondrial OCR with myxothiazol 

• Quantify the ATP-producing rate of oxygen consumption in bovine oocytes 

and embryos using acute inhibition of ATP synthase with oligomycin. 

• Determine the ‘spare’ respiratory capacity of bovine embryos using acute 

treatment with the uncoupling agent 2, 4-Dintrophenol. 

• Identify the contributions of the Tricarboxylic Acid Cycle to bovine embryo 

OCR using rotenone, an inhibitor of complex I. 
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3.3 Materials and methods 

Unless otherwise described, in vitro maturation and fertilisation of oocytes, in vitro 

culture and grading of embryos and measurement of oxygen consumption by 

nanorespirometry were performed as described in Chapter 2. 

 Linearity of the BD Oxygen Biosensor System 3.3.1

Experiments using the BD OBS system were performed at either atmospheric oxygen 

(21%) or 5% oxygen using the gas control module. Mean fluorescence intensity of 0% 

sodium dithionite controls was plotted alongside blank Hepes-buffered media 5% and 

21% using data from 5 separate experiments to form a 3-point standard curve to check 

for linearity (Figure 15). 

 Validation of the BD Oxygen Biosensor System 3.3.2

Prior to performing experiments using embryos, the BD oxygen biosensor system was 

tested with 4 randomly assigned groups (30, 50, 60 and 80) of mature oocyte-cumulus 

complexes (OCCs) following IVM. The change in absolute oxygen (pmol) was calculated 

from fluorescence intensity according to the manufacturer’s guidance (as described in 

Chapter 2.2.2.4) and the change in concentration normalised to individual OCC relative to 

time as plotted below (Figure 16). The gradient of this curve is the oxygen consumption 

rate in pmol/embryo/hr.  

 Comparison of the BD Oxygen Biosensor System and 3.3.3

Nanorespirometer oxygen profiling methods 

To validate whether the BD OBS method was  accurate, and reproducible, multiple 

oxygen consumption measurements of groups of in-vitro produced blastocysts at a range 

of stages of expansion were performed for comparison with mean OCR data collected by 

nanorespirometry, which has previously been validated with bovine embryos (Lopes, 

2005). For analysis by BD Oxygen Biosensor System (BD OBS), blastocysts were assigned 

randomly into groups of approximately 10. For analysis by nanorespirometry, blastocysts 

were loaded individually into PCR micropipets. Nanorespirometer oxygen profiles were 
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analysed using a manufacturer designed MS Excel program. BD OBS data was analysed 

according to manufacturer guidance using MS Excel.  

 Optimisation of solvent 3.3.4

Analytical Reagent (A.R.) Grade Absolute Ethanol was diluted in Hepes SOF to achieve 

stock concentrations of: 0.01%, 0.1%, 1%, and 10% (v/v). Embryos were cultured to the 

blastocyst stage as described in chapter 2 and assigned into groups of approximately 10 

mixed stage blastocysts for analysis by BD OBS in 50µl HSOF, as described above. Basal 

OCR of blastocysts was measured for 30 minutes by the BD OBS method, before injecting 

increasing concentrations of ethanol in 5µl volumes to reach approximate final 

concentrations of  0.001%, 0.01%, 0.1%, and 1% (v/v), again measuring for 30 minutes for 

each treatment.  

 Inhibitor preparation. 3.3.5

A range of inhibitors were used to assess the components of oxygen consumption.  

Details are given below in Table 12.   

Inhibitor name Solvent Concentration 

used 

Site affected Value ascertained 

Oligomycin DMSO/Ethanol 0.05µg/ml ATP Synthase Uncoupled OCR 

Myxothiazol Ethanol 1.6nM Complex III Non-mitochondrial 

OCR 

Antimycin A Ethanol 0.2µM Complex III Non-mitochondrial 

OCR 

2,4-

dinitrophenol 

(DNP) 

Ethanol 10µM Proton 

Gradient 

Maximal OCR 

Rotenone Ethanol 0.01µM Complex I Complex I- 

independent  OCR 

Table 12: Summary of the inhibitors used to measure aspects of bovine blastocyst oxygen 
consumption in this chapter 
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 Coupled oxygen consumption 3.3.6

In order to establish the optimum concentration of oligomycin to be used, the OCR of a 

group of 10 blastocysts was recorded prior to and after addition of increasing 

concentrations of the ATP synthase inhibitor oligomycin (Table 12). Groups of 10 

blastocysts were loaded into the BD OBS plate and OCR was measured every 20s for one 

hour at 485/600nm without mixing. After one hour, a vehicle control solution of DMSO 

was injected into the sample wells and OCR read for another hour. The injector was 

manually washed to remove the DMSO solution and primed with 0.05µg/ml oligomycin in 

HM. This procedure was timed for exactly 5 minutes to maintain an identical interval 

between measurements. Measurements were taken for a further 20 minutes before 

injecting 0.005µg/ml of the oligomycin and OCR measured for 30 min. This step was 

repeated for 0.05µg/ml and 0.5µg/ml oligomycin.   

These experiments were repeated with oligomycin solubilised in 100% Ethanol, n=40 

across 4 independent experiments. 

 Non-mitochondrial oxygen consumption 3.3.7

Non mitochondrial OCR was determined by addition of myxothiazol or antimycin, both 

inhibitors of complex III (Table 12). Following basal OCR measurement by BD OBS, 0.001% 

ethanol (vehicle control) was added to the well containing groups of embryos and basal 

OCR measured for 20min.  After this, increasing concentrations of myxothiazol in Hepes 

SOF in the range 0.16-16nM (Garrett et al. 2008) were injected and OCR measured for 

20min in the same way. Mitochondrial OCR was calculated by subtracting myxothiazol-

treated OCR from basal OCR. 

For antimycin treatment, blastocysts were profiled using nanorespirometry (n=20) across 

4 independent experiments. Following measurement of basal OCR in the presence of 

0.001% ethanol, measurement of the same embryos was repeated following treatment 

with increasing concentrations of antimycin in Hepes SOF in the range 0.02-2µM, in line 

with concentrations used in embryonic stem cells as described by (Birket et al. 2011).The 

OCR of 20 individual blastocysts was measured before and after treatment with 0.2µM 

antimycin A across 4 independent experiments from 3 independent IVP cohorts.  

Mitochondrial OCR was calculated by subtracting antimycin-treated OCR from basal OCR. 
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 Maximal rate and spare respiratory capacity 3.3.8

Maximal OCR was determined using DNP, an ionophore that abolishes the proton 

gradient, removing all regulation of mitochondrial OCR and forcing mitochondria to 

consume the maximum volume of oxygen. Embryos were first titrated with increasing 

concentrations of  DNP in Hepes SOF in the range 10-1000µM (Macháty et al. 2001) to 

determine the optimal concentration.  

Maximal OCR was determined using nanorespirometry (n=14) across 3 independent 

experiments. Following basal measurement, blastocysts were treated with 10µM DNP, 

increasing OCR. Spare respiratory capacity was calculated by subtracting the basal OCR 

from maximal OCR for each blastocyst. 

 NADH and FADH2-dependent OCR 3.3.9

NADH-dependent OCR was determined by addition of rotenone, an inhibitor of complex I, 

which receives electrons from NADH only (Table 12). To determine the optimal 

concentration of rotenone, a group of 30 blastocysts were first profiled by BD OBS. 

Following basal OCR measurement, 0.001% ethanol (vehicle control) was added to the 

well containing groups of embryos and basal OCR measured for 20min.  After this, 

increasing concentrations of rotenone in Hepes SOF in the range 0.001-1µM, in line with 

concentrations used in embryonic stem cells as described by (Birket et al. 2011).were 

injected and OCR measured for 20min in the same way. 

Next, individual embryos were profiled using nanorespirometry. Following measurement 

of basal OCR in the presence of 0.001% ethanol, measurement of the same embryos was 

repeated following treatment with 0.01µM rotenone in Hepes SOF. Complex I or NADH-

dependent OCR was calculated by subtracting the remaining OCR from basal. Complex II 

or FADH2-dependent OCR was calculated by subtracting the complex I dependent value 

from estimated coupled OCR based on Figure 20; 66% of basal OCR. 

Basal OCR – Rotenone-insensitive OCR = Complex I-dependent OCR 

Basal OCR x 0.66 = Estimated coupled OCR 

Estimated coupled OCR – Complex I-dependent OCR = Complex II-dependent OCR 
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 Statistical analyses 3.3.10

Data were compared between groups by ANOVA with post-hoc Bonferroni test, or Dunn’s 

test in the case of unequal groups. Significance threshold was p<0.05. Specific details of 

numbers of observations and replicates are given in appropriate figure legends. 
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3.4 Results 

 Linearity of the BD Oxygen Biosensor System 3.4.1

Mean fluorescence intensity of the sodium dithionite control at 0% oxygen was 

215209±1806, while blank media at 5% oxygen was 203425±1146, decreasing to 

47287±1825 in blank media at 21% oxygen. Plotting this data as a standard curve 

produces a trend line with r2=0.97 (Figure 15).  Plotting this data as a standard curve 

suggests that the change in fluorescence of the BD OBS in response to changing oxygen 

concentration is linear (Figure 15). 

 

 

Figure 15: Validation of the linearity of the BD OBS system. Data from 5 separate 
experiments conducted at 5% or 21% oxygen with corresponding 0% oxygen controls. 
data shown as mean intensity ±s.e.m. 0% O2: 215209±1806, 5% O2: 203425±1146, 21% 
O2: 47287±1825. 
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 Validation of the BD OBS system with OCCs 3.4.2

Figure 16A shows that fluorescent signal increased over time, in response to depletion of 

oxygen (Figure 16B) and was able to detect the oxygen consumption of as few as 30 OCCs 

(Figure 16C). Change in fluorescence over time correlates with the number of OCCs per 

well. Figure 5C also shows that when OCR per oocyte is largely equivalent regardless of 

group size.  

 

Figure 16: Analysis of OCR of different populations of bovine OCCs using the fluorescent 
BD OBS method. A) Change in fluorescence over time B) Change in oxygen concentration 
over time C) Individual OCR of OCCs measured in different population sizes from 30-80 
OCCs per group. Mean value = 39.8±8.6. Measured individual OCR was not different 
dependent on population size p=0.9. 
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 Comparison of blastocyst OCR profiles by 3.4.3

nanorespirometry and BD OBS 

The mean OCR value for groups of mixed stage blastocysts measured by BD OBS was 

27.2±2.9pmol/embryo/hr, while the mean OCR of single blastocysts of mixed stages 

measured by nanorespirometry was 21.7±1.3pmol/embryo/hr (Figure 17), with no 

significant difference between the two measurement types (p=0.9). These values are 

comparable to published data (Lopes et al. 2005). 

 

Figure 17: Comparison of OCR measured by nanorespirometer and BD OBS methods. 
Nanorespirometry: n=97 individual blastocysts measured across 10 independent 
experiments, BD OBS n= 40 blastocysts in groups of 10 across 4 independent experiments. 
Presented as mean OCR (pmol/embryo/hr)±s.e.m: NR: 21.7.6±1.3; BD OBS: 27.2±2.9.  
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 Optimisation of solvent for respiratory inhibitor 3.4.4

experiments 

Figure 18A shows that 0.005% (v/v) dimethyl sulphoxide (DMSO) had no significant effect 

on blastocyst oxygen consumption rate as measured by BD OBS (p=0.6). Figure 18B shows 

that injection of 0.001% analytical reagent (A.R) grade ethanol in Hepes SOF significantly 

reduced OCR from a basal level of 26.7 to 9.6pmol/embryo/hr (p=0.001). Injection of 

higher concentrations of ethanol abolished OCR entirely (Figure 18B). However, oxygen 

consumption of bovine blastocysts in the presence of molecular biology (M.B.) grade 

absolute ethanol in Hepes SOF (>99.5%) was 19.7pmol/embryo/hr, which did not differ 

significantly from basal OCR measurement (28.2pmol/embryo/hr; p=0.3).  

 

Figure 18: The effect of common solvents on blastocyst OCR. Data presented as OCR 
(pmol/embryo/hr)±s.e.m. A) The effect of DMSO on grouped blastocyst OCR measured 
over 3 independent experiments (n=30). B) The effect of A.R grade ethanol on blastocyst 
OCR measured over seven independent experiments (n=70). Mean OCR decreased from 
26.7±2.2 to 9.6±3.4 on addition of 0.001% ethanol. Injection of higher concentrations of 
solvent ablated OCR. C) The effect of 0.001% M.B grade ethanol on blastocyst OCR 
measured over 3 independent experiments (n=30). Mean OCR decreased from 28.2±5 to 
19.7±3.  

  

0

5

10

15

20

25

30

35

Basal A.R. Grade
Ethanol

0.01%
Ethanol

0.1%
Ethanol

1% Ethanol

M
ea

n
 O

C
R

 (
p

m
o

l/
em

b
ry

o
/h

r)

Blastocyst treatment

0

5

10

15

20

25

30

35

40

Basal DMSO

M
ea

n
 O

C
R

 (
p

m
o

l/
em

b
ry

o
/h

r)

Blastocyst treatment

A B

0

5

10

15

20

25

30

35

40

Basal M.B. Grade Ethanol

M
ea

n
 O

C
R

 (
p

m
o

l/
em

b
ry

o
/h

r)

Blastocyst treatment

C

*



84 
 

 Non-mitochondrial oxygen consumption rate 3.4.5

Addition of 1.6nM myxothiazol reduced OCR from 29.64pmol/embryo/hr to 

1.5pmol/embryo/hr, abolishing 95% of OCR compared to the solvent control (Figure 19A-

B). Injecting higher concentrations of myxothiazol ablated embryonic oxygen 

consumption entirely, suggesting toxicity above 1.6nM. 

As described in section 3.3.6, titrating antimycin concentration from 0.02µM, 0.2µM and 

2µM dramatically altered OCR.  At the lowest concentration, 0.02µM, OCR was reduced 

by 60% from 28.9±5.9 to 11.3±3.3 pmol/embryo/hr.  By comparison, 0.2µM antimycin 

consistently reduced OCR by 88% to 3.6±2.1pmol/embryo/hr (p=0.006), while 2µM 

consistently reduced blastocyst OCR to zero and was likely toxic (Figure 19C). Therefore, 

0.2µM was used in subsequent experiments.  

Figure 18D shows that the mean OCR in the presence of vehicle control was 26±3.6 

pmol/embryo/hr, which fell to 2.3±1. pmol/embryo/hr after addition of 0.2µM antimycin 

A (p<0.001). This suggests that 12.8% of basal OCR was non-mitochondrial (Figure 18E).  It 

should be noted that on a few occasions, antimycin treatment reduced OCR to zero. 

These embryos were not included in the calculation of non-mitochondrial OCR as it is 

likely that they died during the assay, thus this was not true OCR. 

  



85 
 

 

 

Figure 19: Blastocyst mitochondrial oxygen consumption. A) Blastocyst OCR measured by 
BD OBS (n=14) (B) Overall mitochondrial and non-mitochondrial OCR using myxothiazol 
(%; n=14). C) The effect of increasing concentrations of antimycin on OCR (n=20; 4 
replicates) D) Basal and mitochondrial OCR of single blastocysts (n=12; 3 replicates) E) 
Overall mitochondrial and non-mitochondrial OCR using antimycin. 
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 Coupled oxygen consumption 3.4.6

As shown in Figure 20, addition of 0.05µg/ml oligomycin had no effect on overall OCR, 

while concentrations above 0.5µg/ml abolished oxygen consumption entirely, suggesting 

toxicity. Therefore, 0.05µg/ml was selected as the appropriate concentration. When this 

was added to groups of 10 blastocysts, OCR was reduced from 19.7±2.8pmol/embryo/hr 

to 6.4±2.3pmol/embryo/hr (Figure 20B). The coupled rate of oxygen consumption was 

determined to be 13.3±0.7pmol/embryo/hr (Figure 20B), suggesting that 66% of in vitro 

produced bovine embryo oxygen consumption is coupled to ATP production, while 33% is 

uncoupled (Figure 20C).  

 

Figure 20: The coupled and uncoupled OCR of bovine blastocysts. A) Oligomycin titration 
using a group of 10 blastocysts. B) Oligomycin sensitive proportion of OCR (n=40, 4 
independent replicates). Coupled rate calculated as basal OCR – oligomycin-treated OCR. 
Data presented as mean OCR±s.e.m C) Coupled (32.6%) and uncoupled rate (67.4%) as a 
percentage of basal OCR. 
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 Maximal rate and spare respiratory capacity 3.4.7

Individual embryos had varied basal OCR between 4.5 and 38pmol/embryo/hr, however 

OCR consistently and significantly rose after addition of DNP (14 - 49pmol/embryo/hr), 

p=<0.001 (Figure 21). Mean OCR increased from 17.1±2.5pmol/embryo/hr to 32.3±2.7 

pmol/embryo/hr following addition of DNP (Figure 21A). The difference between the 

basal and maximal values, known as the spare respiratory capacity, was 

15.2pmol/embryo/hr. This suggests that basal OCR accounts for 53% of maximal OCR, 

with a 47% spare respiratory capacity (Figure 21B).  

 

Figure 21: Maximal respiratory rate and spare capacity of bovine blastocysts.  A) OCR 
increases to maximal following DNP treatment (p=<0.001, n=14; 3 independent 
replicates) B) Spare respiratory capacity, as calculated by subtracting basal from maximal 
OCR. Data presented as individual OCR (A) and % maximal OCR (B). 
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 NADH-dependent OCR 3.4.8

Addition of 0.01µM rotenone reduced the mean OCR from 16.5pmol/embryo/hr to 

7.1pmol/embryo/hr, a reduction of 57% (Figure 22). This analysis was subsequently 

repeated using nanorespirometry on individual blastocysts. Mean basal OCR fell from 

27.7±1.6pmol/embryo/hr, to 11.6±0.9pmol/embryo/hr following treatment with 0.01µM 

rotenone (Figure 22). This suggests a mean complex-I or NADH-dependent OCR of 

16.1±1.1pmol/embryo/hr, or 58% of basal OCR. 

 

Figure 22: Complex I–dependent blastocyst OCR. A) The effect of increasing 
concentrations of rotenone on grouped blastocyst OCR (n=30) B) Basal and rotenone-
sensitive or complex I-dependent OCR of single blastocysts C) Overall complex I-
dependent and independent OCR (%). 
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3.5 Discussion 

 Overview 3.5.1

The aim of this research was to quantify the components of oxygen consumption rate 

(OCR) in individual bovine blastocysts. In order to do this, the following experimental 

sequence was completed: 

 Validated the use of the BD Oxygen Biosensor System to measure OCR of groups 

of embryos against nanorespirometry 

 Optimised the use of solvents for respiratory inhibitor experiments 

 Measured non-mitochondrial OCR of bovine blastocysts using myxothiazol and 

antimycin A. 

 Calculated the amount of OCR coupled to ATP synthesis in bovine blastocysts 

using the ATP synthase inhibitor oligomycin. 

 Determined the maximal rate and spare respiratory capacity of bovine embryos 

using the uncoupler protonophore 2,4-Dinitrophenol. 

 Identified the contributions of tricarboxylic acid cycle products NADH and FADH2 

to OCR using the complex I inhibitor rotenone. 
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 Bioenergetic profile of bovine blastocysts. 3.5.2

 
Figure 23: Bioenergetic profile of bovine blastocyst oxygen consumption. Percentage 
contribution of each component was calculated using all of the preceding data. 

Analysis of oxygen consumption using a range of inhibitors has revealed for the first time 

a comprehensive and detailed breakdown of the fate of consumed oxygen by the bovine 

blastocyst, which is summarised in Figure 23. Spare respiratory capacity allows a potential 

89% increase in OCR.  This might be of importance during high energy demand processes 

such as blastocoel expansion, acting as a ‘buffer’ to enable ATP synthesis by 

mitochondrial oxidative phosphorylation to increase on demand. Around 21% of basal 

OCR is uncoupled from ATP synthesis but not used by non-mitochondrial processes and 

may contribute to ROS generation, or have an alternative role such as activity of oxygen-

consuming enzymes such as membrane-bound NADPH oxidase (Manes and Lai 1995) or 
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peroxisomal enzyme activity. Finally, 66% of basal OCR is coupled to ATP production, with 

the majority, 58% of basal, coming from electron flow from NADH to complex I and the 

remaining 8% of basal from electron flow from FADH2 to complex II. 

 Linearity of the BD Oxygen Biosensor System 3.5.3

Data recorded using the BD Bioscience oxygen biosensor system (BD OBS) at 0%, 5% and 

21% oxygen across 5 different experiments were plotted to form a 3-point standard curve 

with r2=0.972 (Figure 15).  This suggests that the change in fluorescence of the BD OBS in 

response to changing oxygen concentration was linear. 

 Validation of the BD Oxygen Biosensor System 3.5.4

The BD Bioscience oxygen biosensor system (BD OBS) has previously been applied to a 

wide range of somatic cell types (Wodnicka 2000; Stitt et al. 2002; Guarino et al. 2004; 

Fraker et al. 2006), however this is the first time the system has been used with 

mammalian embryos. Initially, the system was tested with 4 groups of mature OCCs, 

ranging from 30–80 OCCs per well to establish sensitivity, potential toxicity and 

reproducibility. The system was sufficiently sensitive to detect the OCR of 30 bovine 

OCCs, though increasing the number reduced an observed fluctuation in the fluorescent 

signal, suggesting that having more biological replicates reduces heterogeneity; 

alternatively the lower limit of sensitivity may have been reached. The system also gave a 

similar value for OCR per OCC regardless of the number (mean 55pmol/embryo/hr), 

suggesting sufficient reproducibility to compare different groups of OCCs or embryos 

where appropriate. 

On the basis of signal variability (Figure 16B) it was decided that 50 OCCs per group was 

the optimum group size for further experiments. In addition, all assayed OCCs were 

returned to culture after assay and fertilised as normal, resulting in similar blastocyst 

rates to control cognate OCCs not used in the experiment. The, BD OBS is therefore a 

sensitive, robust, non-toxic method for measuring OCC oxygen consumption and could be 

used to measure embryo OCR. 
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 Comparison of techniques 3.5.5

In addition to the BD OBS system, it was possible to use a nanorespirometer (Lopes et al. 

2005) to measure OCR.  This method is technically challenging, but allowed the OCR to be 

measured on individual embryos. It was necessary to confirm that mean OCR values for 

individual blastocysts did not differ according to the method of assay.  As shown in Figure 

17, there were no significant difference between the two measurement types (p=0.9). 

These data are broadly comparable to published findings. For example, when expressed 

as nl/embryo/hr, mean OCR as measured by nanorespirometry was 0.96nl/embryo/hr, 

compared to the 0.7nl/embryo/hr reported by Thompson et al. (1996) using the pyrene 

method and slightly lower than the value of 1.3 nl/embryo/hr published by Lopes et al. 

(2005) or 1.8nl/embryo/hr published by (Van Hoeck et al. 2011), both using 

nanorespirometry. These modest differences in OCR between published reports could be 

due to differences in culture technique, which have been well-described as having an 

impact on embryo metabolism (Takahashi and First 1992; Gardner and Sakkas 1993; 

Leese 1995; Gandhi et al. 2001). 

 Optimisation of solvent for respiratory inhibitor 3.5.6

experiments 

The majority of publications using water immiscible respiratory chain inhibitors such as 

oligomycin and DNP report using DMSO as the vehicle, without significant negative 

effects on somatic cell, stem cell or embryo physiology (Harvey et al. 2004; Birket et al. 

2011). In initial experiments, treating embryos with DMSO using the plate reader injector 

system had no significant effect on embryo OCR, hence DMSO was chosen for respiratory 

inhibitor experiments. However, addition of DMSO to the nanorespirometer lead to 

irreparable damage to the probe. Furthermore, DMSO has been reported in a variety of 

systems to interfere with gene expression (David et al. 2012) and increase oxidative 

damage by converting hydroxyl radicals to methyl radicals, which can react with O2 to 

form more reactive secondary radicals (Burkitt and Mason 1991); factors which could 

interfere with physiological measurement of oxygen consumption.  Consequently, DMSO 

was excluded from further experiments and ethanol was tested as an alternative 

(Trimarchi et al. 2000). 
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A titration experiment was therefore carried out in which increasing concentrations of 

analytical reagent (A.R) grade ethanol, ranging from 0.0001% to 1%, were tested for their 

effect on bovine blastocyst oxygen consumption rate. When this was done OCR was 

greatly reduced at all concentrations including the lowest, in which the mean basal OCR 

of 20 blastocysts reduced by 60% on addition of 0.001% ethanol in Hepes SOF (170µM). 

Injection of higher concentrations of ethanol abolished oxygen consumption completely 

and was likely toxic to the blastocysts. However, when repeated with molecular biology 

grade ethanol, no detrimental effect was observed. This observation was confirmed in 

subsequent experiments where Molecular Biology (M.B.) grade ethanol was used as a 

vehicle and shown not to affect ongoing embryo development. It is possible that the 

analytical reagent grade ethanol contained impurities such as methanol which interfered 

with embryo metabolism (Andrews et al. 1993; Abbott et al. 1995). M.B. grade ethanol 

was therefore chosen as an appropriate solvent for solubilisation of water immiscible 

chemicals used in the determination of oxygen consumption. 

 The non-mitochondrial OCR of bovine blastocysts 3.5.7

The majority of total oxygen consumption in the bovine blastocyst is due to mitochondrial 

oxidative phosphorylation, however a significant portion has been reported to be 

consumed by non-mitochondrial processes, such as oxygen-consuming cyclooxygenase or 

NADPH dehydrogenases (Trimarchi et al. 2000; Manes and Lai 1995). Addition of 1.6nM 

myxothiazol reduced mean OCR of 20 blastocysts from 29.55 to 1.5pmol/embryo/hr, 

abolishing 95% of OCR compared to the solvent control. This suggests that the remaining 

5% of blastocyst OCR is used in non-mitochondrial processes. Treatment with higher 

concentrations of the inhibitor caused a decrease in fluorescent signal, reflecting an 

increase in oxygen concentration (Guarino et al. 2004). This suggests that at higher 

concentrations the inhibitor is toxic and the resulting loss of respiring embryos removes 

the site of oxygen consumption. As the BD OBS is an open system, this change allows 

oxygen to diffuse into the well down the concentration gradient, returning it eventually to 

ambient concentration.  

In order to confirm the data for non-mitochondrial oxygen consumption obtained from 

blastocysts cultured in groups, individual embryo respiratory measures were performed. 

A second inhibitor of complex III, antimycin, was used in order to compare the effects of 
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inhibiting mitochondrial respiration at a different stage of the Q cycle (Figure 13). 

Furthermore, this was an opportunity to compare published data of mitochondrial OCR in 

mammalian embryos using the same inhibitor (Trimarchi et al. 2000). Addition of 0.2µM 

antimycin in Hepes SOF caused the mean blastocyst OCR to fall from 26±4.7 

pmol/embryo/hr to 2.3±1.3pmol/embryo/hr, suggesting that the true mean 

mitochondrial OCR was 24.5±4.1pmol/embryo/hr. From these data, it may be concluded 

that 12.8% of blastocyst OCR was used for non-mitochondrial purposes.  This is higher 

than was observed using myxothiazol. However, individual blastocyst data collected using 

nanorespirometry is likely to be more reliable than data for groups using fluorescence as 

the nanorespirometer is a more sensitive system and blastocysts in group analysis which 

may be more sensitive to toxic effects of the inhibitor cannot be detected and removed 

from the BD OBS analysis. 

The proportion of non-mitochondrial OCR was similar to that in many somatic cell types 

at around 10% (Porter and Brand 1995; Wu et al. 2007; Affourtit and Brand 2008; Amo et 

al. 2008; Kenney et al. 2014) and significantly lower than the 23.2% reported for 

embryonic stem cells (Birket et al. 2011). The non-mitochondrial component of oxygen 

consumption observed here was lower than that reported previously in murine 

blastocysts (Trimarchi et al. 2000); in that study, 30% of blastocyst OCR was insensitive to 

cyanide or 1mM antimycin A treatment, inhibiting complexes IV and III respectively. The 

proportion of non-mitochondrial oxygen consumption reported by Trimarchi et al. (2000) 

is in agreement with the work of Manes and Lai (1995), who determined that 30% of 

rabbit blastocyst OCR was caused by H2O2-producing oxygenase enzymes, reporting 

activity of an unidentified NADPH oxidase and identified superoxide and peroxide radicals 

present on the blastocyst surface (Manes and Lai 1995). These processes might include 

enzymatic activity, such as NADPH dehydrogenase, cyclooxygenases and xanthine 

oxidase. The differences between the present data and that reported by Manes and Lai 

may arise from species differences. Other metabolic pathways also differ between 

species, for example murine embryos consume significantly less glucose and pyruvate 

than bovine (Leese and Barton 1984; Leese et al. 1986). Further investigation comparing 

mitochondrial OCR between different mammalian species such as human, sheep and pig 

is clearly required.  
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 Coupled OCR of bovine blastocysts 3.5.8

The mean basal OCR of groups of 10 bovine embryos with multiple degrees of blastocyst 

expansion was 19.7±2.8pmol/embryo/hr or 0.44nl/embryo/hr, a value comparable to the 

data of Lopes et al. (2005). Treatment with 0.05 µg/ml oligomycin reduced the OCR to 

6.4±2.3 pmol/embryo/hr; approximately 33% of total. While this figure is in agreement 

with studies in somatic cells (Brand and Nicholls 2011), it remains surprising to find that 

only 66% of OCR in in vitro produced bovine blastocysts is coupled to ATP synthesis since 

it is often assumed that more viable embryos tend to have lower overall metabolism 

(Leese 2002) and an embryo with high uncoupled OCR must increase its overall OCR to 

maintain sufficient ATP production . It is tempting to speculate that the ratio of coupled 

to uncoupled oxygen consumption in individual blastocysts will have a role in embryo 

viability. For example, an embryo with a greater than average proportion of coupled OCR 

could be expected to produce enough ATP for basal metabolism and development while 

consuming less exogenous and endogenous substrate and producing less ROS by leaky 

respiration. In contrast, an embryo with a greater than average proportion of uncoupled 

OCR could be expected to produce greater levels of ROS, increasing lipid peroxidation, 

DNA damage and the amount of ATP required for repair of this damage.  

The present data (Figure 20B) also enable re-interpretation of previously published data. 

For example, we can consider the widely accepted data of Thompson et al. (1996), who 

reported total blastocyst OCR of 0.9 nl/embryo/hr (40.2 pmol/embryo/hr). If coupled OCR 

is 66% of total, coupled OCR was 26.5pmol/embryo/hr. The quantification of the coupled 

proportion of oxygen consumption suggests that ATP production is lower than previously 

thought, for example Thompson et al. (1996) reported 221pmol/embryo/hr ATP, a value 

calculated from total OCR. However, using the coupled OCR of 26.5pmol/embryo/hr and 

the P/Omax = 2.4 (per single oxygen), total ATP production by OXPHOS is 26.5 x 4.8 = 

127.3pmol/embryo/hr ATP. Furthermore, we can estimate ATP production from aerobic 

glycolysis, since 1 mole of lactate equates to 1 mole of ATP.  Thus, if individual bovine 

blastocyst lactate production was 31.9pmol/embryo/hr, again as determined by 

Thompson et al. (1996), ATP produced from glycolysis is 31.9pmol/embryo/hr, giving a 

total production of 127.3 + 31.9 = 159.2pmol/embryo/hr ATP. This value is significantly 

below the value reported by Thompson and colleagues (1996) in the absence of 

information relating to coupled OCR. However, using the newly calculated figures, 
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approximately 20% of ATP is produced by glycolysis, while 80% ATP is produced by 

coupled OXPHOS. This is broadly in agreement with Sturmey and Leese (2003), who 

reported that the overwhelming majority of ATP in the porcine blastocyst came from 

oxidative processes, despite not having access to data on the ratio of coupled: non-

coupled OCR.  

It should be noted that since oligomycin treatment slightly increases proton leak by 

inhibiting phosphorylation of ATP, the calculated coupled rate may be artificially lower 

than the true value; an unavoidable effect of the experimental intervention (Affourtit and 

Brand 2009; Divakaruni and Brand 2011). 

 Maximal rate and spare respiratory capacity  3.5.9

Spare respiratory capacity, which may be described as providing the ability of oxidative 

metabolism to adapt to changing ATP demand (Brand and Nicholls 2011),  was 

determined by measuring OCR in the presence of DNP. Basal OCR was 

17.1±2.5pmol/embryo/hr, while maximal OCR following DNP treatment was 

32.3±2.7pmol/embryo/hr. The spare respiratory capacity of bovine blastocysts was 

therefore 32.3-17.1 = 15.2pmol/embryo/hr, or 47% of maximal OCR (Figure 21).  In other 

words, under control conditions, the bovine blastocyst used only 53% of its possible 

maximal oxygen consumption. While there was high individual variation between 

embryos, it is interesting to note that the mean percentage change was similar for that 

established using the BD OBS method above 

As 33% of basal OCR is uncoupled from ATP synthesis (Figure 20), this implies that the 

bovine blastocyst uses only 35% of its potential maximal oxygen consumption for energy 

metabolism. Individual embryos had wide ranging basal OCR between 4.5 and 

38pmol/embryo/hr; however all exhibited a dramatic increase in OCR on DNP treatment, 

which rose to between 14 and 49pmol/embryo/hr. Individual variation in sensitivity to 

the uncoupler FCCP by murine embryos has previously been reported by Trimarchi et al. 

(2000), so it is possible that the precise concentration of DNP was not ideal in all cases. 

However, in the interest of controlling the independent variable, the concentration of 

DNP was titrated using a group of 20 blastocysts to find the most appropriate 

concentration for the majority.  
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A large spare respiratory capacity is common in cell types which require variable ATP 

demand, including neurons, muscle cells (Yadava and Nicholls 2007; Choi et al. 2009; 

Flynn et al. 2011) and most likely, embryos. Spare respiratory capacity in bovine 

blastocysts was measured as 89% over basal, much lower than somatic cells with dynamic 

ATP demand, such as rat neurones, with a spare respiratory capacity of 217% over basal 

(Brand and Nicholls 2011). However this still represents a relatively large buffer for 

energy demand processes in the embryo. Additionally, the maximal OCR is theoretically 

dependent, to some extent, on the number of mitochondria and thus may be fixed during 

embryo development (Van Blerkom 2011). Conversely a small spare capacity suggests 

mitochondrial dysfunction. Indeed, maximal OCR is also fixed throughout the early 

cleavage stages (Trimarchi et al. 2000). While basal OCR differs between species, similar 

fluctuations in OCR throughout pre-implantation development have been reported in 

mouse (Houghton et al. 1996), porcine (Sturmey and Leese 2003) and bovine embryos 

(Lopes et al. 2005). 

This spare respiratory capacity may be vital to support the changing energy demands of 

the developing pre-implantation embryo and throughout the cell cycles of individual 

blastomeres. As the number of mitochondria is fixed during this period of development, 

the maximal respiratory capacity may also remain fixed. This large potential reserve may 

therefore be necessary for the sudden and dramatic increase in energy demand on 

blastocoel expansion, caused by increasing protein synthesis, differentiation, growth and 

activity of the Na+/K+ ATPase (Donnay and Leese 1999). Membrane potential differs 

between mitochondria in the inner cell mass and trophectoderm cells; the 

trophectoderm, which will contribute to the placenta, consumes significantly more 

oxygen, contains ~80% of the total embryonic ATP and significantly more mitochondria, 

which tend to be more polarised than the comparatively quiescent ICM, from which the 

foetus will develop (Houghton et al. 1996; Houghton 2006). This distribution may help 

restrict ROS production in the ICM and developing postimplantation embryo until ATP 

demand increases, while the TE and resulting placenta are much more metabolically 

active.  
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 NADH and FADH2-dependent OCR 3.5.10

Having established the coupled rate of oxygen consumption in individual embryos (76%), 

it was decided to quantify the relative contributions of respiratory complexes I and II to 

the coupled rate. As complex I accepts electrons from NADH only and complex II from 

FADH2 only, this provides an insight into the activity of the TCA cycle in the bovine 

blastocyst. Addition of 0.01µM Rotenone, an inhibitor of complex I, caused individual 

blastocyst OCR to fall from 27.7±1.6pmol/embryo/hr, to 11.6±0.9pmol/embryo/hr; a 

reduction of 58% (Figure 22). This suggests that 16.1pmol/embryo/hr or 58% of total OCR 

is generated by complex I activity, which requires electron transfer from NADH. If 66% 

OCR is coupled, the difference between the two, that is 66%-58%=8% or 

2.2pmol/embryo/hr of embryo OCR due to complex II, which requires electron transfer 

from FADH2. The ratio of OCR due to complex I compared to II is 58/8=7.25. This is 

unsurprising as NADH is more abundant in the mammalian cell than FADH2, the Krebs 

cycle theoretically producing four times as much NADH as FADH2 and moreover, electron 

transfer from FADH2 releases less energy than that from NADH (Berg et al. 2002). It is 

possible that experimental analysis of this relationship using malate would result in a 

different FADH2-dependent rate due to the deleterious effects of experimental 

manipulations and the technical difficulties of performing both analyses on the same 

embryo; it is likely that the ratio is specific to each embryo. 

 Linking components of oxygen consumption to ATP 3.5.11

supply 

From the relative proportions of oxygen consumption reported above, it is possible to 

recalculate components of ATP supply assuming that 1) the ADP phosphorylation/oxygen 

reduction ratio P/Omax=2.4 (Brand et al. 2005); 2) the average bovine blastocyst has an 

OCR of 27.23±2.9pmol/embryo/hr (Figure 17); 3) that 32pmol/embryo/hr ATP is 

produced by glycolysis (Thompson et al. 1996) and 4) 66% of total OCR is coupled to ATP 

synthesis as reported above (Figure 20).  Thus, the coupled OCR was 18pmol/embryo/hr, 

which can, theoretically support the generation of approximately 86pmol/embryo/hr 

ATP. The NADH-dependent Complex I, contributing 58% of the total oxygen consumption, 

accounts for approximately 16pmol/embryo/hr of oxygen consumption and 

76.8pmol/embryo/hr ATP production. This suggests that FADH2-dependent complex II 
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accounts for 2pmol/embryo/hr O2 and 4.8pmol/embryo/hr ATP produced. Total ATP 

production per blastocyst including glycolysis was 118pmol/embryo/hr, such that 

oxidative phosphorylation accounts for approximately 72% of bovine blastocyst ATP 

production.  

 Evaluation of methodology 3.5.12

In many somatic cell types, it is possible to treat cells sequentially with a range of 

inhibitors over a short period of time to calculate several components of oxygen 

consumption (Brand and Nicholls 2011). By contrast, individual embryos were less robust 

in withstanding manipulation of mitochondrial function without death or complete 

dysregulation of energy metabolism. Early experiments attempting a similar approach by 

nanorespirometry failed as individual embryos must be pre-equilibrated, with inhibitor 

for an hour before measurement can be made. Attempting a second profile with a new 

inhibitor gave varied responses between embryos, but most often the embryos became 

unstable or ceased respiring altogether. In both experimental methods, it appeared that 

treatment of embryos with two inhibitors in series result in toxic effects. Separate 

experiments were therefore used to improve accuracy.  

 Strengths and limitations 3.5.13

Chapter 3 describes a detailed breakdown of the fate of consumed oxygen in the bovine 

blastocyst. Embryos responded consistently to the individual inhibitors in the experiments 

detailed above. However, embryos tended to be sensitive to the toxic effects of multiple 

inhibitors in series, preventing analysis of multiple components, such as uncoupled and 

non-mitochondrial OCR, in the same embryos. This approach is possible with somatic cells 

(Birket et al. 2011) but embryos may be more sensitive to metabolic poisons, or toxicity 

may be exacerbated by the 1hr equilibration time between nanorespirometer profiles. 

The BD OBS method may be more appropriate for a multiple inhibitor approach, but 

inhibiting oxidative phosphorylation tends to reduce the OCR below the lower limit of 

sensitivity using the number of blastocysts tested to date. Furthermore, repeating each 

bioenergetic profiling experiment with different preimplantation stages, such as zygote, 

pre-EGA cleavage stages or morulae, could illustrate dynamic changes in energy demand 

and OCR during preimplantation development. 
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 Conclusion 3.5.14

This chapter reports a detailed breakdown of bovine blastocyst oxygen consumption, 

which reflects the dynamic nature of mammalian embryo energy metabolism. Most 

oxygen is consumed in response to the activity of the NADH-dependent complex I, with a 

smaller proportion by FADH2-dependent complex II. The activity of these complexes is 

coupled to ATP synthase activity, producing sufficient ATP to meet the energy demands of 

the blastocyst, including protein and DNA synthesis, cell division and structural changes. 

However, a sizeable proportion of oxygen consumed, which varied between individual 

embryos, is uncoupled from ATP synthesis. A small proportion of this is due to non-

mitochondrial oxygen consuming processes, such as cyclooxygenases, but the remainder 

is apparently due to proton ‘leak’ and potentially causes oxidative damage to DNA, 

protein and lipid throughout the embryo. Finally, the blastocyst maintains a significant 

spare respiratory capacity, allowing an increase in coupled rate, perhaps in order to 

accelerate ATP production during energy-demanding processes such as blastocoel 

expansion. 
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4 The effects of manipulating bovine 

embryo lipid metabolism 
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4.1 Introduction 

 Fatty acid metabolism  4.1.1

Cellular fatty acids are stored in uncharged lipid droplets composed of triacylglycerol 

esters (TGs). In adult mammals, most TG is stored in the adipocyte; a specialised cell 

composed almost entirely of a single large lipid droplet. However, mammalian oocytes 

from many species contain comparatively high quantities of lipid stored as droplets in the 

ooplasm (Kruip et al. 1983; Cran 1985; Abe et al. 2002; Leroy et al. 2005; Sturmey et al. 

2006; Aardema et al. 2011), with considerable inter species variation (Table 14). It has 

been suggested that, on the basis of oxygen consumption, there is sufficient lipid to 

support the metabolic requirements of oocyte maturation as a sole energy source 

(Sturmey et al. 2009b). For example, oxidation of each mole of palmitate (C16H32O2) 

produces net 106 moles ATP. The stoichiometry of the complete oxidation of palmitate is 

as follows: 

Palmitoyl-CoA + 7 FAD + 7 NAD+ +7 CoA + 7 H2O  7 FADH2 + 7 NADH + 8 Acetyl-CoA + 7 H+ 

Producing the following proportions of ATP: 

Product/Process No. produced per 
mole palmitate 

Moles ATP produced 
per oxidation 

Net ATP produced 

Acetyl-CoA 8 10 80 
NADH 7 2.5 17.5 
FADH2 7 1.5 10.5 
    
Total ATP 
produced 

  108 

    
Initial activation   -2 
    
Total Net ATP 
produced 

  106 

Table 13: Stoichiometry of ATP production from the oxidation of 1 mole palmitate. 
Palmitate activation to palmitoyl-CoA requires 2 moles ATP. Data reproduced from (Brand 
1994; Meisenberg and Simmons 2011). 

Until relatively recently, the importance of the endogenous lipid store in oocytes has 

been largely overlooked, however a growing body of research has highlighted the vital 
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role of fatty acid metabolism in embryo development (Sturmey and Leese 2003; Sturmey 

et al. 2009). 

Species Triglyceride content 

(ng/nl volume of oocyte) 

Pig 37.3 

Sheep 21.2 

Cow 15 

Mouse 6.25 

Table 14: Mean oocyte triglyceride content of mammalian species. Data reproduced with 
kind permission from H. Leese (2012). 

Oocyte development from the primordial to a pre-ovulatory follicle housing an oocyte in 

metaphase II involves periods of growth, nuclear maturation and cytoplasmic 

development, however the precise period when the oocyte accumulates endogenous 

lipids is largely unknown. In vitro, the final stages of oocyte maturation are the most 

susceptible to modification of cytoplasmic lipid content. Ferguson and Leese reported 

that triglyceride content of bovine oocytes decreased from 59±1.37ng to 46±0.85ng 

during in vitro maturation (Ferguson and Leese 1999). In traditional cell or embryo 

culture, the major source of fatty acids in the medium is foetal calf serum (FCS) or bovine 

serum albumin (BSA), which also has bound lipids – and is obligatory whereas serum is 

less so, which influences the morphology and composition of the bovine oocyte and 

embryo (Sata et al. 1999). During bovine embryo development without serum, 

triglyceride content is relatively constant from 2 cell to hatched blastocyst stage at 

around 34±0.76ng, but addition of 10% serum led to an increase in triglyceride content 

from 33±0.65ng at the 5-6 cell stage to 62±1.14ng in the hatched blastocyst (Ferguson 

and Leese 1999). Non-esterified fatty acids (NEFA) are retained by bovine oocytes before 

and during meiotic maturation (Aardema et al. 2011) and modification of the fatty acid 

content of in vitro maturation (IVM) media alters tolerance of the resulting embryos to 

cryopreservation (Shehab-El-Deen et al. 2009); an indicator of lipid content and 

composition (Nagashima et al. 1994). These studies indicate that the lipid profile of the in 

vitro matured oocyte is dynamic and dependent on the culture environment. On this 
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basis, it is widely thought that the lipid profile of the oocyte in vivo reflects the fatty acid 

composition of the follicular fluid.  

 Diet and fatty acid composition 4.1.2

The composition of fatty acids contained in the blood plasma is influenced by maternal 

diet and can have very significant effects on oocyte and embryo development, reviewed 

by McKeegan and Sturmey (2011). For example, oocytes of canids and felids contain a rich 

store of lipid (Guraya 1965) and it has been proposed that a carnivorous diet leads to 

increased oocyte fatty acid (Spindler et al. 2000).   

Maternal metabolic stress is reported to have major effects on the fatty acid composition 

of blood and follicular fluid. A particularly well-studied model is the high yielding 

commercial dairy cow (Leroy et al. 2008a; Leroy et al. 2008b). Sustained high-volume milk 

production leaves the high yielding dairy cow in a state of permanent Negative Energy 

Balance (NEB), which is associated with reduced fertility and altered follicular fatty acid 

composition (Leroy et al. 2005b, 2010; Vanholder et al. 2005). Feeding the dairy cow a 

specialised diet including increased saturated and polyunsaturated lipid, known as ‘fat 

feeding’, can alleviate some of the negative effects of NEB by providing a rich energy 

source and reducing fatty acid content in milk (Leroy et al. 2013). NEB can be modelled in 

vitro by supplementing oocyte and embryo culture media with Non-Esterified Fatty Acids 

(NEFA), leading to altered oocyte and embryo fatty acid content, metabolism and gene 

expression (Van Hoeck et al. 2011). The embryos arising from NEFA-treated oocytes tend 

to have increased apoptosis and fewer total cells at blastocyst stage. Treatment with a 

mixture of NEFA including stearate, palmitate and oleate, the most abundant in the 

follicle, resulted in more dramatic perturbations to the embryo than stearate alone, 

including more greatly reduced blastocyst development rate, along with altered 

differential gene expression, amino acid and carbohydrate metabolism. This reinforces 

the need for more investigations incorporating a range of treatments at physiological 

concentrations and ratios, rather than isolated fatty acids in excess. 

In the human, maternal overweight and obesity (OVOB) is associated with subfertility 

(Dunning et al. 2010; Jungheim et al. 2011). Several studies have focused on the 

composition of the follicular fluid in OVOB women, since this is the environment in which 
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the oocyte matures prior to ovulation and is the first key stage in establishing the 

embryo’s metabolic and genetic phenotype during the periconceptual period in mammals 

(Steegers-Theunissen et al. 2013). A recent study by Valckx and colleagues (2012) 

reported that in OVOB women (BMI 25+), the increased serum content of C-Reactive 

Protein (CRP), triglycerides and insulin was reflected in the follicular fluid. This 

corroborated the earlier data of Robker et al (2009), who reported that obesity was 

associated with elevated follicular triglyceride and CRP levels, as well as lactate and 

androgen concentrations. Bausenwein et al. (2010) reported that oxidised Low-Density 

Lipoproteins (oxLDL) levels are significantly higher in the serum and follicular fluid of 

obese women and that the activities of catalase, glutathione oxidase and glutathione 

reductase were also increased (Bausenwein et al. 2010). In the whole body, oxLDL cause 

cardiovascular conditions such as atherosclerosis and coronary heart disease (Toshima et 

al. 2000), upregulate cellular ROS generation and Hypoxia-Inducible Factor 1α expression 

(Guarino et al. 2004).  

In the bovine, oocytes can mature and embryos can progress through multiple cleavage 

stages without exogenous substrates, relying only on endogenous TG stores (Ferguson 

and Leese 2006; Sturmey et al. 2009). Oocytes matured in this way were successfully 

fertilised and developed to blastocyst stage in normal media (Ferguson and Leese 1999; 

Sturmey et al. 2009). Mouse oocytes have a much smaller TG store and arrest within 

15hrs of culture without exogenous substrates (Downs and Hudson 2000). Similarly, when 

bovine oocytes were cultured without exogenous substrate and with an inhibitor of β-

oxidation, they arrest (Ferguson and Leese 2006). Furthermore, culture of bovine zygotes 

from zygote stage without exogenous substrates but supplemented with 5mM L-carnitine 

increased the number of morulae compared to media without L-carnitine or exogenous 

carbohydrate, although only 32% of these morulae developed into blastocysts (Sutton-

McDowall et al. 2012). These data suggest that β-oxidation of endogenous TG stores is 

vital to oocyte maturation and resulting embryo development. 

 Lipids in the oviduct and uterus. 4.1.3

Compared to our knowledge of the ovarian follicle, little is known about the lipid profile 

of oviduct and uterine fluid which support early embryo development. This gap in our 

understanding is presumably due to the technical challenges associated with the 
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collection of fresh samples from the oviduct and uterine lumen (Iritani et al. 1969, 1971, 

1974; Khandoker et al. 1997, 1998; Coyne et al. 2008; Hugentobler et al. 2008; Leese et al. 

2008). As a consequence, relatively little is known about lipid metabolism by 

preimplantation embryos in vivo. It was suggested that NEFA in the rabbit oviduct lumen 

may provide an energy substrate for early embryo development, since these oocytes can 

be cultured in vitro in simple salt-based medium supplemented with a sole NEFA such as 

palmitate, oleate or stearate together with BSA (Kane 1979). However, lipids have roles in 

addition to the provision of an oxidisable substrate for ATP synthesis, an illustration of 

which is given by Menezo et al. (1982) who reported that total fatty acid content of the 

bovine embryo increased between day 11 and 13 of development, with a specific increase 

in arachidonic acid; the precursor for prostaglandins, at Day 14. This could indicate the 

start of prostaglandin synthesis, vital to recognition of pregnancy, and suggests a more 

complex regulatory role for NEFA. 

For an overview of the pathways discussed below, see Figure 24. 

 Lipid metabolism and mitochondria 4.1.4

In mice, a high fat diet is associated with a deleterious mitochondrial phenotype in the 

oocyte (Grindler and Moley 2013). These mitochondria tend to have fewer cristae, 

reduced matrix electron density and an increased number of mitochondrial vacuoles 

(Luzzo et al. 2012). Mitochondria tend to cluster (Igosheva et al. 2010) and have reduced 

membrane polarisation (Wu et al. 2010), which is consistent with other tissues wherein 

an increase in FAO versus carbohydrate oxidation tends to decrease membrane potential 

(Rigoulet et al. 1998). In addition, the high fat diet oocyte tends to have fragmented 

spindles and clustered chromosomes (Luzzo et al. 2012). 

 The role of L-carnitine in fatty acid metabolism 4.1.5

Metabolism of endogenous long-chain fatty acids occurs in the matrix of the 

mitochondria.  The transport of fatty acid moieties into the mitochondrial matrix requires 

L-carnitine, an essential co-factor (Vaz and Wanders 2002). The transport of fatty acids 

into the mitochondrial matrix is a two-step process: cytosolic fatty acids in the form of 

fatty acyl-CoA are transesterified to L-carnitine by the enzyme Carnitine Palmitoyl 

Transferase 1 (CPT1B). The fatty acyl-carnitine passes through the outer mitochondrial 
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membrane and is transported to the matrix by carnitine-acylcarnitine translocase (CACT). 

CPTII transesterifies the fatty acids to mitochondrial CoA, releasing the L-carnitine to be 

transported by CACT back across the mitochondrial membranes. These reactions maintain 

fatty acid transport to the mitochondrion for β-oxidation and control the intracellular 

balance between free CoA and acyl-CoA (Vaz and Wanders 2002). Free carnitine is taken 

in through the diet, but can also be synthesised from lysine and methionine in mammals 

and other animals (Vaz and Wanders 2002). Synthesis takes place in the liver and involves 

the enzymes TML dioxygenase, HTML aldolase, TAMABA dehydrogenase and 

butyrobetainedioxygenase (BBD). Conversion of butyrobetaine to carnitine has been 

reported in many mammalian tissues, including the rat testis (Tanphaichitr and Broquist 

1974; Vaz and Wanders 2002), although activity of these enzymes has not been reported. 

L-carnitine synthesis has yet to be confirmed in the early embryo, although it is possible, 

especially when the embryo is viewed as a discrete organism with the potential to express 

every gene and carry out every biological process possible in the eventual organism. 

CPT1B expression has been confirmed in mouse blastocysts, though not in the zygote, 2-

cell or 8-cell stages (Dunning et al. 2010). However, inhibition of CPT1B with Etomoxir 

significantly reduced blastocyst rates, whereas supplementing medium with L-carnitine to 

facilitate increase β-oxidation caused an increase in blastocyst rate (Dunning et al. 2010). 

The importance of fatty acid β-oxidation (FAO) is especially interesting in this case 

considering that the endogenous store of triglyceride in the mouse oocyte (6.25ng/nl) is 

significantly smaller than other organisms studied. Furthermore, again in the mouse, 

inhibition of CPT1B with Etomoxir or malonyl CoA arrests oocyte maturation by a 

mechanism that may be rescued by supplying L-carnitine or palmitic acid in the medium 

(Downs et al. 2009). 

In addition to these effects in vitro, oral administration of L-carnitine to superovulated 

mice protects oocytes against oxidative stress (Miyamoto et al. 2010). The mechanism by 

which this occurs might be linked to the observation that L-carnitine supplementation 

causes an increase in β-oxidation and hence reduces the endogenous lipid stores 

available for lipid peroxidation (Dunning et al. 2010). However, anti-oxidant roles for L-

carnitine have been well documented. For example, Wu et al. (2011) found that addition 

of L-carnitine to the immature porcine oocyte improved maturation and reduced ROS 

levels, most likely by upregulating the production of the biological antioxidant 
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glutathione. It is clear that L-carnitine plays an important role in early embryo 

development. Theoretically, addition of L-carnitine facilitates increased fatty acid β-

oxidation, but the relationship between L-carnitine treatment and carbohydrate, amino 

acid and oxygen metabolism remains unknown. 

 Inhibition of fatty acid β-oxidation 4.1.6

An alternative approach to investigate the role of endogenous lipid stores in the early 

embryo is to inhibit, rather than increase β-oxidation. β-Mercaptoacetate (BMA) is a 

competitive inhibitor of palmitoyl-CoA dehydrogenase (long-chain 3-hydroxyacyl-

coenzyme A dehydrogenase), preventing complete β-oxidation of fatty acids to fatty acyl-

CoA and acetyl-CoA (Bauche et al. 1981). This inhibitor acts downstream of L-carnitine 

transport by CPT1B and can be used to investigate the mechanism proposed by Downs et 

al. (2009), who reported that inhibition of β-oxidation with Etomoxir or Malonyl-CoA 

decreased oocyte maturation, but that this effect was rescued by addition of L-carnitine. 

The authors suggested an AMPK-dependent mechanism, inhibiting malonyl-CoA 

formation to relieve the inhibition of β-oxidation. The effect of BMA on early porcine 

embryo development has previously been investigated (Sturmey et al. 2003). However, 

the effects of inhibiting endogenous β-oxidation during preimplantation bovine embryo 

development on oxidative metabolism have yet to be studied.  
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Figure 24: An overview of fatty acid transport and β-oxidation in mammalian cells. Fatty 
acids must be transported across the mitochondria; inner membrane for entry to the β-
oxidation pathway. Fatty acyl groups conjugated to Coenzyme A (Fatty Acyl-CoA) are 
conjugated to L-carnitine by the mitochondrial outer membrane-bound enzyme Carnitine 
Palmitoyl Transferase I, releasing CoA.  The fatty acyl-carnitine is transported across the 
mitochondrial inner membrane by the transport channel carnitine/acyl carnitine 
translocase, after which the L-carnitine moiety is exchanged for another CoA by carnitine 
palmitoyl transferase II, bound to the mitochondrial inner membrane on the matrix side. 
The L-carnitine is transported back into the intermembrane space by 
carnitine/acylcarnitine translocase. Remaining bound to CoA, the fatty acyl group 
undergoes β-oxidation, regulated by a series of 4 enzymes; Acyl-CoA dehydrogenase, 
Enoyl CoA hydratase, 3-Hydroxyacyl-CoA dehydrogenase (also known as long-chain fatty 
acyl dehydrogenase); and Thiolase. This sequence releases a fatty acid chain which is 
reduced in length by 2 carbons, which can undergo further β-oxidation, along with an 
Acetyl-CoA, which enters the tricarboxylic acid (TCA) cycle, providing electrons to drive 
ATP synthesis through oxidative phosphorylation. Figure adapted from (Berg et al. 2002). 
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4.2 Aims 

The aim of this chapter is to assess the effects of manipulating fatty acid metabolism on 

oxidative metabolism in bovine embryos. Specific objectives are to: 

 Investigate the effect of manipulating β-oxidation of endogenous fatty acid on 

oxygen consumption rate and mitochondrial polarisation. 

 Measure the effects of modifying endogenous stores by supplementing the 

culture medium with foetal calf serum and measuring embryonic lipid content, 

mitochondrial polarity and response to manipulation of β-oxidation. 

 Determine the metabolic impact of supplementing the culture medium with L-

carnitine. 
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4.3 Methods 

Embryos were produced as described in Chapter 2. Measurement of oxygen consumption 

and carbohydrate turnover were carried out as described in sections 2.2 and 2.3.  

 The effect of acute BMA treatment on bovine blastocyst 4.3.1

oxygen consumption measured by nanorespirometry 

It was first necessary to assess the effect of inhibiting fatty acid β-oxidation on bovine 

blastocyst oxygen consumption over a short period of time. This was done by 

nanorespirometry. After recording the basal oxygen profile in 1µl Hepes SOF, 1µl of 

0.1mM BMA in Hepes SOF was injected to each of the micropipettes carrying the 

blastocysts (n=3) making a final volume of 2µl and left to re-equilibrate for 30 minutes. 

Oxygen profiles were taken again for each blastocyst and data analysed using a 

manufacturer-designed MS Excel program. 

 Measurement of the effect of chronic BMA treatment on 4.3.2

bovine blastocyst oxygen consumption by 

nanorespirometry 

Embryos (n=110) were randomly grouped and cultured in standard SOFaaBSA or 

SOFaaBSA supplemented with 0.1mM BMA; a concentration that has been shown not to 

reduce oocyte maturation or blastocyst rate in the pig (Sturmey and Leese 2003). 

Blastocysts were staged according to the Gardner protocol (Trounson and Gardner 2000) 

and transferred to individual culture, in single 4µl droplets of SOFaaBSA + 0.1mM BMA. 

After 24 hours, blastocysts were staged and those which had developed to the required 

stage were loaded into micropipettes for oxygen profiling as described in Chapter 2. At 

the conclusion of the assay, embryos were returned to a fresh droplet of culture medium 

in group conditions and allowed to develop further. This procedure was repeated to 

collect oxygen profiles for 4 cell, 8 cell, morula and blastocyst stage embryos. At each 

stage of development, data were collected for an equivalent number of control embryos 

cultured in SOFaaBSA. 
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 The effect of enhanced β-oxidation on OCR 4.3.3

Putative zygotes (n=120) were randomly assigned to groups and cultured in SOFaaBSA + 

5mM L-carnitine, SOFaaBSA + 0.1mM BMA or standard SOFaaBSA. Embryos were cultured 

to the blastocyst stage on Day 8 before selection of 10 blastocysts to be profiled in the 

control and treatment group by BD OBS. The OBS method was performed as described 

previously.  

 Determination of follicle L-carnitine 4.3.4

Follicular fluid was aspirated from mature follicles (n=21), centrifuged to remove debris 

and stored at -20oC. The L-carnitine fluorimetric assay kit (Abcam) was used according to 

the manufacturer’s instructions to assay the concentration of L-carnitine in in vivo derived 

follicular fluid, FCS for cell culture (Sigma-Aldrich, Dorset, UK) and SOFaaBSA media. In 

this assay, an acetyl group is transferred from Acetyl-CoA to L-carnitine, followed by the 

oxidation of the proprietary probe with fluorescence change measured at 535/587nm. L-

carnitine concentrations are calculated by calibration to a 6-point standard curve in the 

range 0-10mM. 

 

Figure 25: An example standard curve for the L-carnitine assay 
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 Assessment of embryonic lipid content by confocal 4.3.5

microscopy 

Lipid droplets were stained with Nile Red according to the method described by Leroy et 

al. (2005), with the following adaptations: Embryos were selected at the relevant 

developmental stage and morphological quality and fixed overnight in 500µl 0.9% PBS 

with 1mg/ml Polyvinylpyrrolidone (PVP), 2% formaldehyde and 2% glutaraldehyde in 

groups. Fixed embryos were transferred to staining solution (250µl 0.9% PBS with 1mg/ml 

PVP (PBS/PVP) and 100nM Nile Red stain) for 2hr. Embryos were then mounted in 

custom-made chambers containing 50µl PBS/PVP for imaging. 

Images were obtained on a Zeiss LSM 710 Confocal Microscope with Plan-Apochromat 

40x air-based objective. Fluorophores were excited at 458nm and emission data collected 

at 571-741nm using a MBS 458/561 dichromatic beam splitter. Data were collected in a Z-

stack of the mid 20µm above and below the embryo equatorial across 12 individual 

images (Figure 27A). This allowed representative data to be collected from each cell of 

early cleavage stage embryos to be assessed.  

Images were analysed post-collection using Image J (NIH, http://rsbweb.nih.gov/ij/). Each 

of the 12 individual images per embryo was thresholded before specifically measuring the 

signal intensity. 
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Figure 26: Example individual Nile Red images of a range of early cleavage stage embryos. 

 

Figure 27: Example analyses of embryo lipid droplet staining by Nile Red. 12 cross section 
images were taken for each embryo across the central 20µm. Images were thresholded 
using ImageJ to convert the raw grayscale image to a binary image. A and B) Example 
images 1 and 12 from the same 5-cell embryo are shown in raw and binary form. Mean 
intensity was measured in a defined area for each embryo as shown in the binary images 
above. C-F) Raw and binary blastocyst cross-section images incorporating ICM.  
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Image 
no. 

Mean intensity 
(raw) 

Relative signal 
value (post-
threshold) 

 

Blastocyst 
Relative signal 
value (post-
threshold) 

1 1183.33 79.78 
 

A 100.69 

2 1131.68 74.70 
 

B 109.59 

3 1075.92 68.29 
 

C 86.54 

4 1021.84 61.48 
 

D 112.07 

5 978.12 55.78 
 

    

6 950.07 51.61 
 

Mean 102.22 

7 928.91 48.31 
 

s.d. 11.54 

8 912.77 46.01 
   9 895.23 43.44 
   10 877.81 41.37 
   11 857.39 38.98 
   12 833.07 36.59 
         

   Mean 970.51 53.86 
   s.d. 111.4 14.33 
    

Table 15: Example Nile Red staining image analysis. Table A shows the differences in raw 
and binary intensity for all 12 images taken of the embryo shown in Figure 26 images 1 
and 12. Only the post-threshold intensity was used for image analysis. Table B shows 
relative signal value of the binary blastocyst images shown in Figure 26C-F. 
 

 Assessment of mitochondrial polarity by confocal 4.3.6

microscopy 

Blastocysts were incubated with 0.2mg/ml JC-1 and 0.05µg/ml Hoescht 3342 in pre-

warmed HSOF at 39oC for 30 minutes before mounting in custom-made chambers 

containing 50µl HSOF at 39oC. Images were obtained on a Zeiss LSM 710 Confocal 

Microscope with Plan-Apochromat 40x air-based objective, with numerical aperture 0.6-

1.3. JC-1 was excited at 488nm using an MBS-488 dichromatic beam splitter and emission 

data was collected at 511-549nm (Red) and 578-625nm (Green). Hoescht 3342 was 

excited at 405 using an MBS-405 dichromatic beam splitter and emission data collected at 

414-501nm. Each image was analysed in ImageJ, auto-thresholded, and the area showing 

the embryo selected and pixel intensity measured for each channel (Figure 28). 

Polarisation ratios are calculated by dividing red/total (green + red) intensity. A higher 

ratio suggests polarisation, whereas a lower value suggests depolarisation. Mean 
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polarisation ratio was calculated for each experimental group and data from independent 

experiments combined for statistical analysis by ANOVA with post-hoc Bonferroni test, or 

Dunn’s test if groups were unequal. 

 

Figure 28: An example image of a blastocyst stained with JC-1 and Hoescht 3342. From 
left to right: (blue) the nuclear stain Hoescht 3342 (green) and (red) the ratiometric dye 
JC-1 which tends to form monomers with green fluorescence in depolarised mitochondria 
and J-aggregates with red fluorescence in more polarised mitochondria. The final image 
combines all 3 colours. The area highlighted in yellow in each image was analysed for 
fluorescence intensity with these values used to generate the depolarisation ratios for 
each blastocyst. 
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 Statistical analyses 4.3.7

All data presented in this chapter were analysed using SigmaPlot. Data was first tested for 

normality using the Shapiro-Wilke test, followed by analysis of variance (ANOVA) with 

post-hoc Bonferroni test for equal groups or Dunn’s test for unequal groups. The 

significance threshold was p<0.05. 
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4.4 Results 

 Inhibiting FAO during embryo development increases 4.4.1

OCR 

Figure 29A shows that inhibition of -oxidation with 0.1mM BMA throughout embryo 

culture led to significant increases in OCR at the morula (p=0.010) and at all blastocyst 

stages, including B1-B7 (p=0.050). At each stage, several embryos had very low OCR 

however, overall OCR increases with stage, as does the range of OCR. 

Oxygen consumption of bovine blastocysts increased with blastocyst development (Figure 

29B). In general, mean OCR of blastocysts treated with BMA was greater than that of the 

control at the equivalent stage. This was a significant difference at the fully hatched 

blastocyst stage, B7 (p=0.036). 
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Figure 29: The effect of inhibition of β-oxidation with BMA on OCR during embryo 
development. A) The basal OCR of embryos at each stage of early development following 
chronic culture with 0.1mM BMA versus control embryos cultured without supplement. 
OCR values in pmol/embryo/hr±1 s.d. 4 cell: control OCR 24.4±27.77 (n=7) BMA 
OCR=83.49±47.67, n=17. 8 cell: control OCR=12.51±14.9, n=12 BMA OCR=21.99±25.84 
n=14. Morula control OCR=2.18±1.86 n=3 BMA OCR=74.71±36.06, n=7. Blastocyst control 
OCR=30.85±27.73, n=21 BMA OCR=56.49±34.54, n=27. Total n=106 over 12 independent 
experiments. B) Mean OCR±1 s.d. of individual blastocysts cultured in SOFaaBSA control 
or SOFaaBSA + 0.1mM BMA from the zygote stage and measured on day 6, 7 or 8. 
Blastocysts were staged according to the Gardner Scale as described in Chapter 2. 
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 Acute BMA treatment increases OCR of blastocysts 4.4.2

dependent on FCS supplementation 

Following basal OCR measurement, 0.1mM BMA in HSOF was injected directly into the 

tube containing the respiring embryo. Acute treatment of bovine blastocysts with BMA 

tended to cause an immediate and dramatic increase in measured OCR, which varied 

between blastocysts (Figure 30B).  

By contrast, individual blastocysts cultured without FCS had variable responses to acute 

BMA treatment, with no significant difference overall (Figure 30A).  

 

Figure 30: The effect of inhibition of β-oxidation with BMA on blastocyst OCR with 0% and 
5% FCS. A) Blastocysts cultured with 0% FCS did not exhibit altered OCR following acute 
BMA treatment n=7. B) Blastocysts cultured with 5% FCS increase OCR following acute 
BMA treatment n=3. 
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 Manipulating fatty acid β-oxidation significantly alters 4.4.3

OCR. 

Measurement of bovine blastocysts by the OBS method (Figure 31) correlated well with 

the nanorespirometry data shown in Figure 29. The control blastocyst OCR was 

25±5pmol/embryo/hr, while the BMA-treated blastocyst OCR was 48±9pmol/embryo/hr 

(Figure 31) compared to 56.5pmol/embryo/hr by nanorespirometry (Figure 31). 

Furthermore, treatment with L-carnitine throughout of culture decreased OCR to 

16±4pmol/embryo/hr. 

 

Figure 31: OCR of groups of 10 mixed blastocysts cultured with 0.1mM BMA, 5mM 
carnitine or control SOFaaBSA media. Measurement by BD OBS assay across 4 
independent experiments. Presented as mean OCR±s.e.m. Control: 24.7±5.1, L-Carnitine: 
15.9±3.7, BMA: 47.7±9.2. 
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 Manipulating fatty acid β-oxidation alters carbohydrate 4.4.4

metabolism. 

Treatment with L-carnitine had little effect on glucose consumption (Figure 32A, p=0.46) 

but decreased pyruvate uptake at the early cleavage stages (Figure 32D, p=<0.001) and 

increased lactate production at blastocyst stages (Figure 32C, p=0.004). Blastocysts 

treated with Etomoxir (EX) to inhibit FAO consumed significantly more glucose than 

equivalent blastocysts cultured with L-carnitine (Figure 32A, p=0.009), BMA (Figure 32A, 

p=0.025) and control blastocysts (Figure 32A, p=0.005). BMA and EX treated embryos 

both had increased pyruvate consumption versus controls (p=0.018 and p=0.006 

respectively) and L-carnitine treated embryos (Figure 32E, p=0.018 and p=0.006 

respectively) (Figure 32D and E).  
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Figure 32: Carbohydrate metabolism of embryos following manipulation of β-oxidation 
with BMA, L-carnitine or Etomoxir. A) Cleavage stage glucose consumption in mean 
pmol/embryo/hr±s.e.m, n=30. Control: 8.6 ± 2.2, BMA: 8.1±1, L-carnitine: 4.6±0.8, 
Etomoxir: 7.5±0.9. B) Blastocyst glucose consumption in mean pmol/embryo/hr ± s.e.m, 
n=35. Control: 16.5±1.4, BMA: 18.3±2.2, L-carnitine: 15.8±1.3, Etomoxir: 28.4±1.1. C) 
Blastocyst lactate production in mean pmol/embryo/hr±s.e.m, n= 30. Control 19.3±5.8 
pmol/embryo/hr, BMA 18.6±3.0pmol/embryo/hr, L-carnitine 30.0±0.6pmol/embryo/hr, 
Etomoxir 20.4±2.8pmol/embryo/hr. D) Cleavage stage pyruvate consumption in mean 
pmol/embryo/hr±s.e.m, n=30. Control: 8.6±2.5, BMA: 11.7±3.6, L-carnitine: 6.6±0.1, 
Etomoxir: 9.8±2.6. E) Blastocyst pyruvate consumption in mean pmol/embryo/hr ± s.e.m, 
n=35. Control: 23.5±2.4, BMA: 30.7±2.8, L-carnitine: 24.8±2.9, Etomoxir: 38.0±3.7. Data 
bars with the same letter are significantly different from each other. 
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 L-carnitine is present in follicular fluid and FCS 4.4.5

The concentration of L-carnitine in FCS was 0.1mM (Figure 33), while the concentration of 

L-carnitine in preovulatory follicles with a diameter greater than 1cm was 0.22mM and 

varied little between follicles from different bovine ovaries (n=21). Consumption of L-

carnitine from the SOFaaBSA culture medium supplemented with 0.5mM L-carnitine was 

0.84±0.04pmol/embryo/hr in day 1 embryos, increasing to 1.66±0.32pmol/embryo/hr in 

day 2 embryos.  

 

Figure 33: L-carnitine concentration and consumption of L-carnitine during early cleavage 
stages. A) Mean L-carnitine concentration of FCS (0.09±0.003) and follicular fluid 
(0.15±0.02) in mM±s.e.m. Data collected from 5 separate collections over three 
independent experiments. B) Consumption of L-carnitine of Day 1 n=5 and Day 2 n=10 
embryos measured in groups of 5 over 24hr presented as mean±s.e.m. 
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 FCS supplementation increases lipid content in day 2-3 4.4.6

embryos 

Embryos were cultured for 8 days in the presence of FCS at a range of concentrations (0-

10%). Embryos supplemented with FCS had significantly increased lipid staining intensity 

than controls, suggesting higher lipid content (Figure 34A). However, there was no linear 

correlation between lipid droplet content and FCS concentration (Figure 34C). At the 

blastocyst stage, there were no significant differences in lipid content regardless of FCS 

concentration used (Figure 34B and D). 

 
Figure 34: The effect of increasing concentrations of FCS during culture on embryo lipid 
staining. A) Mean lipid staining intensity (arbitrary units)±s.e.m. of day 2-3 embryos of 
stages 2-8 cell produced with 0% (n=21), 2.5% (n=22), 5% (n=21) or 10% (n=9) FCS. There 
is not a linear relationship between % FCS and lipid staining intensity. B) Mean lipid 
staining intensity (arbitrary units)±s.e.m. of day 2-3 embryos of stages 2-8 cell produced 
with 0% (n=16), 2.5% (n=5), 5% (n=12) or 10% (n=4) FCS. Data points with the same letter 
are significantly different from each other.  
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 Increasing FCS concentration correlates with decreased 4.4.7

mitochondrial polarisation of day 2-3 embryos 

Embryos cultured in SOFaaBSA supplemented with 5% and 10% (v/v) FCS had significantly 

more depolarised mitochondria in comparison to control embryos cultured without FCS 

(Figure 35A). There was a negative correlation between FCS concentration (0-10%) and 

mean polarisation ratio (Figure 35B, p=0.018).  

 

Figure 35: The effect of increasing concentrations of FCS during culture on embryo 
mitochondrial polarisation ratio. A) Mean polarisation ratio±s.e.m of day 2-3 embryos of 
1-8 cell stages across 5 independent experiments. 0% FCS n=17, 2.5% FCS n=18, 5% FCS 
n=17, 10% FCS n=7. Data points with the same letter are significantly different from each 
other. B) Linear correlation of data presented in a), p=0.018. 
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 Manipulating β-oxidation of endogenous stores 4.4.8

significantly alters lipid droplet staining 

Figure 36A shows that cleavage stage embryos exposed to L-carnitine throughout 

development (‘chronic exposure’) had significantly decreased lipid staining intensity 

compared to control embryos (p=0.009) and BMA-treated embryos (Figure 36A, p<0.001). 

Day 7 Blastocysts treated with 0.1mM BMA had significantly higher intensity than 

controls or L-carnitine treated blastocysts (Figure 36B, p=0.022).  

 

Figure 36: The effect of manipulating β-oxidation during culture without FCS on embryo 
lipid staining. A) Mean lipid staining intensity (arbitrary units)±s.e.m. of day 2-3 embryos 
of stages 2-8 cell produced with 0% FCS. Control (n=8), 0.1mM BMA (n=13), L-carnitine 
(n=10) across 2 independent experiments. B) Mean lipid staining intensity (arbitrary 
units)±s.e.m. of Day 7 blastocysts produced with 0% FCS. Control (n=6), 0.1mM BMA 
(n=7), L-carnitine (n=5) across 2 independent experiments. Data points with the same 
letter are significantly different from each other. 
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 Manipulating FAO without FCS significantly decreases 4.4.9

mitochondrial polarisation ratio during early cleavage 

The mitochondrial polarisation ratio was significantly reduced in BMA-treated and L-

carnitine treated embryos compared to controls (Figure 37, p=0.002). However, there 

were no significant differences in blastocyst mitochondrial polarisation. 

 
Figure 37: Mean polarisation ratio±s.e.m of day 2-3 embryos of 2-8 cell stage chronically 
cultured with or without manipulators of β-oxidation. Control n=9, BMA n=10, L-carnitine 
n=13 across 2 independent experiments. Data points with the same letter are significantly 
different from each other. 
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 Manipulating FAO does not affect blastocyst 4.4.10

polarisation ratio with or without FCS 

Figure 38 shows that there was no change in mitochondrial polarisation rate in 

blastocysts following culture with 0% (A) or 5% (B) FCS. 

 

Figure 38: The effect of manipulating β-oxidation during culture +/- FCS on blastocyst lipid 
staining. A) Mean polarisation ratio±s.e.m of day 7 blastocysts cultured with or without 
chronic manipulators of β-oxidation and 0% FCS. Control n=8, BMA n=5, L-carnitine n=5 
across 2 independent experiments. No significant differences between treatments were 
apparent. B) Mean polarisation ratio±s.e.m of day 7 blastocysts cultured with or without 
chronic manipulators of β-oxidation and 5% FCS. Control n=6, BMA n=8, L-carnitine n=7, 
L-carnitine + BMA n=5 across 3 independent experiments. No significant differences 
between treatments were apparent. 
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 Treatment with BMA, Etomoxir or L-carnitine does not 4.4.11

alter development rate or blastocyst cell allocation. 

Cleavage and blastocyst development rates were recorded over 7 independent 

experiments and did not differ between control embryos and embryos treated with BMA 

or L-carnitine (Table 16). Embryos were cultured to blastocyst stage in the presence of 

BMA, Etomoxir or L-carnitine and stained for differential cell counting as described above 

(Section 2.6). Blastocysts of different treatment groups had similar mean cell counts 

(Figure 36A) and trophectoderm to inner cell mass ratios (Figure 39B). Additionally, 

inclusion of 5% FCS in culture medium had no effect on cell count or TE:ICM ratio 

(p=0.83). 

 Control BMA L-carnitine 

Cleavage rate 73% 81% 72% 

Number 

cleaved/total 

218/298 114/140 152/211 

    

Blastocyst rate 25% 24% 24% 

Number of 

blastocysts/total 

58/235 50/208 24/99 

Table 16: Cleavage and blastocyst rates for control, BMA and L-carnitine treated embryos. 
Rates recorded over 7 independent experiments. 

  
Figure 39: Cell allocation of blastocysts following treatment with BMA, Etomoxir or L-
carnitine. A) Mean total cell count did not differ between control, BMA, L-carnitine and 
Etomoxir treated blastocysts displayed as mean s.e.m. Control: 79±8.74, BMA: 111±8.21, 
L-carnitine: 93±4.59, Etomoxir: 81±9.55. B) Differential counts of blastocysts cultured with 
BMA, L-carnitine or Etomoxir versus controls presented as % Trophectoderm. Control 
63.1±3.7 %, n=8; BMA 66.3±3.5, n=6; L-carnitine 60.3±9.4, n=3; Etomoxir 59.9±1.8, n= 3. 
Data collected over 3 independent collections and experiments.  
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 Treatment with L-carnitine may accelerate blastocyst 4.4.12

development 

In order to assess differences in embryo development rate following manipulation of β-

oxidation, the Primo Vision embryo tracking system was used. One cohort of 9 2-cell 

embryos from a specific treatment group (BMA, L-carnitine, Etomoxir or controls) were 

allocated to a well-of-the-well (WoW) culture dish to track development over 8 days of 

development. 

Times of morula formation, blastocoel expansion and cell death were recorded. Data 

collected using the Primo Vision system (Figure 40) suggest that embryos treated with L-

carnitine may begin blastocoel expansion sooner than controls (5.08 days compared to 

6.75, p=0.017) or Etomoxir-treated embryos (7.2 days, p=0.003).  

 
Figure 40: Time of blastocoel expansion recorded using the Primovision system and Well-
of-the-well culture of L-carnitine, BMA, Etomoxir treated or control embryos. Treatment 
groups measured independently over a series of 12 independent collections and 
experiments. Data recorded as mean number of hours post-fertilisation±s.d. Control 
162±15.9 hr, n=6; BMA 136.7±5.7 hr, n=3, L-carnitine 122±5.1 hr, n=3; Etomoxir 173±7.2 
hr, n=3. 
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4.5 Discussion 

The bovine embryo has a large endogenous store of triglyceride, which is affected by 

maternal diet in vivo (Leroy et al. 2011; Leroy et al. 2013) and culture media composition 

in vitro (Ferguson and Leese 1999; Van Hoeck et al. 2011). Manipulation of oocyte fatty 

acid metabolism by inhibiting β-oxidation with BMA, Etomoxir or other inhibitors or 

promoting β-oxidation with L-carnitine affects oocyte maturation and subsequent embryo 

developmental competence (Downs et al. 2009; Dunning et al. 2010; Sutton-McDowall et 

al. 2012). In this chapter, the effects of manipulating the metabolism of endogenous 

stores during embryo development were investigated. The aim was to highlight the 

importance of fatty acid β-oxidation (FAO) on embryo development, oxidative 

metabolism and mitochondrial function. 

 Inhibiting β-oxidation during embryo development 4.5.1

increases OCR  

Individual bovine embryo OCR increased with stage of development (Figure 29A), 

corroborating data collected by other methods (Thompson et al. 1996; Trimarchi  et al. 

2000a; Lopes et al. 2005). 

Reducing FAO in embryos with 0.1mM BMA throughout culture led to a significant rise in 

oxygen consumption at the morula and blastocyst stages. The increased OCR may be 

more pronounced at the later stages due to increased metabolic activity associated with 

blastocoel expansion. Furthermore, inhibition of β-oxidation in the cleavage stage embryo 

could lead to legacy effects on metabolism at the blastocyst stage, alongside the switch 

from generating ATP from glycolysis at the cleavage stages to OXPHOS at the later stages 

(Trimarchi et al. 2000b).  

This increase in OCR was surprising, since the inhibition of fatty acid oxidation might be 

expected to limit access to a major endogenous energy source. Thus one might predict 

that inhibition of FAO would result in reduced metabolism and OCR. The increased OCR 

observed (Figure 29) may have arisen from an intrinsic uncoupling effect of fatty acids 

due to UCP activation (Rousset et al. 2004; Fedorenko et al. 2012) or accumulation of 

NEFA in the mitochondrial inner membrane, since oxidation to remove the fatty acids was 
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inhibited. An increase in OCR due to NEFA analogous to the effects of uncouplers such as 

FCCP or DNP has been reported in a variety of cell types (Rottenberg and Hashimoto 

1986; Luvisetto et al. 1990; Nobes et al. 1990). This would reduce the coupling of electron 

transport to oxidative phosphorylation, leading to inefficiency, where a greater 

consumption of oxygen would be required to produce a sufficient level of ATP. To 

investigate this possibility in the future, the coupled OCR of BMA-treated blastocysts 

could be measured alongside control blastocysts. A second possibility is that the 

additional oxygen consumption was non-mitochondrial in origin. This could be 

investigated by treating BMA-treated blastocysts with myxothiazol, which inhibits 

electron transfer by complex III, abolishing all mitochondrial oxygen consumption. 

 Manipulating fatty acid β-oxidation significantly alters 4.5.2

OCR 

L-carnitine is an essential co-factor for the transport of fatty acyl-CoA into mitochondria 

and plays a pivotal role in fatty acid oxidation (Bremer 1983). Supplementing embryo 

culture media with L-carnitine resulted in a 33% decrease in OCR. This was somewhat 

surprising as L-carnitine has been reported to stimulate fatty acid oxidation in oocytes 

and embryos (Dunning et al. 2010; Valsangkar and Downs 2013). Consequently one might 

have expected OCR to increase to reflect an increase in β-oxidation of fatty acids. 

One explanation for this apparent discrepancy might be a change in the strategy by which 

ATP is synthesised. The total energy demands of the developing embryo are not likely to 

be changed in the L-carnitine treated group, however, by promoting FAO, a higher 

proportion of ATP may be supplied at the expense of other pathways. Since FAO is the 

most efficient way of generating ATP it is possible that a partitioning towards FAO and 

concomitant fall in activity in other pathways was seen as an overall fall in OCR.  

 Manipulating fatty acid β-oxidation alters carbohydrate 4.5.3

metabolism. 

L-carnitine treatment of bovine embryos led to a rise in lactate production and fall in 

pyruvate consumption, suggesting that more glucose and pyruvate were converted to 

lactate by glycolysis rather than entered the Krebs cycle for complete oxidation. This 

suggested a switch from carbohydrate to fatty acid oxidation and a reduction in OCR used 
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for carbohydrate metabolism. The idea that increased FAO leads to a fall in glucose 

metabolism was proposed by Randle and colleagues (Randle et al. 1963; Randle 1998). 

This finding is analogous to the recent study by Van Hoeck and colleagues, who reported 

that supplementation of bovine embryo cultures with a mixture of fatty acids caused a 

reduction in glucose uptake, lending more support to the idea that increased FAO in 

embryos inhibits carbohydrate metabolism (Van Hoeck et al; 2011).   

A number of reports have used Etomoxir, which irreversibly inhibits CPT1 activity and 

hence FAO during oocyte maturation and embryo development (Downs et al. 2009; 

Dunning et al. 2010; Paczkowski et al. 2013). This inhibition is upstream of BMA, so 

comparison of embryos treated with both inhibitors could determine whether the 

mechanism involved in increasing OCR is due specifically to inhibition of fatty acid 

transport and β-oxidation, as well as highlight any difference in metabolism dependent on 

the site of inhibition. Etomoxir inhibition of mouse OCCs in vitro prevented subsequent 

embryo maturation to the blastocyst stage (Dunning et al. 2010). However, treatment 

with methyl palmoxirate, another inhibitor of CPT1, from the 2 cell stage reduced but did 

not abolish mouse blastocyst production (Hewitson et al. 1996). This suggests that FAO 

plays a vital role on mouse oocyte maturation. However, in this study bovine blastocyst 

rates were unaffected in embryos cultured with BMA or Etomoxir from the zygote stage 

(Table 16). Potentially, treatment with BMA or Etomoxir allows β-oxidation of short and 

medium-chain fatty acids to continue. 

Blastocysts treated with Etomoxir to inhibit FAO consumed more pyruvate than L-

carnitine treated embryos and took up more glucose than equivalent blastocysts in all 

other treatment groups, suggesting a more extreme phenotype than with BMA. This was 

perhaps due to the difference in site of action, as Etomoxir acts upstream of BMA. In 

addition, Etomoxir is irreversible while BMA is a competitive inhibitor, so it is possible 

that Etomoxir inhibited FAO more effectively. In a recent study by Valsangkar and Downs 

(2013), L-carnitine stimulated meiotic resumption in mouse oocytes, while BMA and 

Etomoxir each inhibited meiotic resumption. Furthermore, Dunning et al. (2010) reported 

that Etomoxir treatment during oocyte development or zygote cleavage reduced rates of 

blastocyst formation, while L-carnitine treatment during oocyte maturation increased β-

oxidation 2-fold as well as improving subsequent blastocyst rate. While it appears that 

manipulation of FAO during oocyte maturation rather than during early cleavage has 
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more dramatic effects on subsequent embryo development, the present data show that 

inhibiting or promoting FAO modification during embryo development affects other 

aspects of oxidative metabolism. 

 L-carnitine is present in the follicular environment and 4.5.4

consumed by early cleavage stage embryos 

L-carnitine is present at a concentration of 24±5.5µmol/l in serum and 29±6.6µmol/l in 

follicular fluid in the human (Leroy et al. 2011; Valckx et al. 2012). In the present study, 

the in vivo concentration of L-carnitine in bovine antral follicles was more than double 

that of FCS (0.09mM) at 2mM. This value is also much higher than that reported for 

bovine plasma; 270-700µM (Carlson et al. 2007) and suggests that L-carnitine 

accumulates in the ovarian follicle. The presence of L-carnitine in the follicular 

environment is particularly interesting in light of the triglyceride stores present in the 

bovine oocyte and the consumption of triglyceride during in vitro maturation (Ferguson 

and Leese 1999; Sturmey and Leese 2003; Ferguson and Leese 2006). It would be 

interesting to measure the concentration of L-carnitine in follicular fluid at different 

stages of follicle development and discover if the concentration changes, perhaps to 

support in vivo oocyte maturation.  

The presence of L-carnitine in follicular fluid; the natural environment, presents a strong 

physiological argument for the inclusion of L-carnitine in oocyte maturation systems. The 

presence of L-carnitine in in vitro maturation media has previously been shown to boost 

maturation and subsequent embryo development (Dunning et al. 2010; Sutton-McDowall 

et al. 2012; Valsangkar and Downs 2013). However, the concentrations used greatly 

exceeded those found in the follicle. Taken together, these findings suggest that L-

carnitine may have an important role in oocyte maturation in vivo and might improve the 

physiological relevance of the bovine model. Serum, which includes L-carnitine, is often a 

constituent of in vitro maturation systems and could account for one of the benefits of 

serum addition. Foetal Calf Serum is also widely used in cell culture practices generally 

and the addition of L-carnitine should be considered as having physiological relevance. 

In the FAO manipulation experiments (results sections 4.4.3, 4.4.4, 4.4.9-0), SOF medium 

was supplemented with 5mM L-carnitine, a concentration reported to improve the 

proportion of bovine zygotes which develop to blastocysts (Sutton-McDowall et al. 2012). 
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To the best of my knowledge, the concentration of L-carnitine in reproductive tract fluids, 

such as uterine and oviduct fluids, has not been measured, however the concentration of 

L-carnitine found in follicular fluid (0.15±0.02mM) was much lower than in the culture 

medium (5mM, Figure 33). This highlights the discrepancy between physiological levels of 

compounds and the concentrations used in laboratory studies and the relevance of data 

collected in supra-physiological conditions.  

The data in Figure 33C shows that bovine embryos depleted carnitine from the in vitro 

culture environment. Consumption of L-carnitine by bovine embryos increased from Day 

1 to Day 2.  

 FCS supplementation increases lipid content in day 2-3 4.5.5

embryos 

Foetal Calf Serum has long been added to embryo culture medium where it improves 

success rates by providing a range of metabolic substrates, including fatty acids, and 

growth factors, although it has been reported to lower mitochondrial number and 

efficiency (Crosier 2001). Lipid content was increased in early cleavage stage embryos 

cultured with FCS (Figure 34), in agreement with the findings of Ferguson and Leese 

(1999). However accumulation of lipid was not dependent on the concentration of FCS 

(2.5%-10%) in the medium. This suggests that embryos can replenish or maintain their TG 

reserves from the FCS, maintaining endogenous TG to a relatively constant level 

regardless of FCS concentration. It is possible that the absence of FCS or another source 

of NEFA in in vitro culture media leads to a fall in β-oxidation, although in vivo derived 

blastocysts have similar TG content to those produced in vitro without serum (Ferguson 

and Leese 1999). This is in agreement with the data of Leroy et al. (2005), who reported 

that bovine embryos cultured in the presence of 5% FCS had significantly more TG by the 

morula stage, and that of Aardema et al. (2011), who reported that supplementation of in 

vitro oocyte maturation media with oleic acid increased TG content. As in its natural 

environment, the embryo is exposed to a source of NEFA, culture with FCS, or at least a 

source of exogenous lipid, may be a more physiologically relevant culture technique.  
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 Increasing FCS concentration correlates with decreased 4.5.6

mitochondrial polarisation of day 2-3 embryos 

A reduction of mitochondrial transmembrane potential (ΔΨm) is a direct marker of 

mitochondrial function and can be caused by apoptosis and/or impaired mitochondrial 

regulation. To assess transmembrane potential in preimplantation embryos, the 

ratiometric dye JC-1 was used. Mitochondrial polarisation ratios were calculated by 

dividing red/total intensity (green + red). A higher ratio suggests polarisation, whereas a 

lower value suggests depolarisation. This method of quantification obviates artefacts 

commonly detected in the use of the marker JC-1 (Brand and Nicholls 2011) since non-

specific staining similar to green and red channels is cancelled out.  

A linear correlation was found between increasing FCS concentration and decreasing 

polarisation ratio in early cleavage stage embryos. This is in agreement with the data of 

Wu et al. (2010), who reported a decrease in mitochondrial membrane polarisation 

oocytes from mice fed a high fat diet. When considered with the lipid-staining data 

(Figure 34), this suggests that increased embryonic lipid content is related to 

mitochondrial phenotype. Even mildly hyperlipidaemic conditions could compromise 

embryonic mitochondrial polarity.  

No significant correlation was found between polarisation ratios and lipid staining 

intensity, since lipid uptake appeared to increase very dramatically on addition of the 

lowest concentration of FCS and reach a threshold. A positive correlation was found 

between FCS concentration and lipid stain intensity. Treatment with FCS also reduced the 

variation in lipid content between embryos. 

 Manipulating β-oxidation of endogenous stores 4.5.7

significantly alters lipid droplet staining 

While it seems likely that mammalian embryos utilise TG as an energy source during 

development, a decrease in lipid content between the oocyte and blastocyst stages has 

not been observed (Sturmey et al. 2009a; McKeegan and Sturmey 2011). Several studies 

have reported that bovine embryos take up lipid from the culture media, perhaps 

suggesting that it serves to replenish endogenous stores (Ferguson and Leese 1999; 

Aardema et al. 2011).  
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In the present study, addition of L-carnitine to promote β-oxidation throughout the 

embryo culture period led to significantly reduced lipid content at the early cleavage 

stages (Figure 36), implying that these embryos consumed TG more rapidly than control 

or BMA-treated embryos. Treatment with BMA to inhibit β-oxidation led to significantly 

increased lipid content at blastocyst stage (p=0.022), suggesting these embryos had 

consumed less TG than control or L-carnitine-treated embryos. Taken together, these 

data strongly suggest that. L-carnitine promotes fatty acid β-oxidation and accelerates the 

metabolism of lipid at early pre-implantation stages, while BMA inhibits β-oxidation so 

that most lipid remains, even at the blastocyst stage. This supports the hypothesis that 

bovine embryos can develop to the blastocyst stage even though lipid metabolism is 

inhibited.  

Treatment with L-carnitine also reduced variation in lipid staining, suggesting that 

supplementation had overcome individual variation in the concentration of L-carnitine 

present in the oocyte, or perhaps levels of synthesis in the embryo, forcing embryos to 

consume most of their lipid store. There was no significant difference between L-carnitine 

treatment and controls at the blastocyst stage, supporting the hypothesis that additional 

L-carnitine has no beneficial effect on bovine embryos cultured without serum. The 

variation in the BMA-treated group could be due to variation in oocyte TG content, based 

on maternal age, diet or variation in metabolism of medium and short-chain fatty acids. 

When bovine embryos were supplemented with L-carnitine or BMA in the presence of 5% 

FCS during embryo culture, no differences were observed in lipid droplet staining during 

early cleavage or blastocyst stages. Taken with the above data, this strongly suggests that 

bovine embryos consume endogenous TG during normal in vitro development, 

replenishing endogenous stores when a exogenous supply of lipid, such as NEFA found in 

FCS, is available. These findings are summarised below in Figure 41. 
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Figure 41: Summary of the effects of manipulation of endogenous fatty acid metabolism 
on embryo lipid content throughout in vitro development. Dotted line represents zygotic 
TG level. Supplementation with FCS (2.5-10%) allows the embryo to maintain high TG 
content to the blastocyst stage on D7 (Blue). BMA (Red) inhibits long chain fatty acid β-
oxidation so BMA-treated embryos have relatively higher TG than control embryos 
(Black). L-carnitine (Green) promotes β-oxidation, accelerating TG consumption but 
reaching a level similar to control embryos at the blastocyst stage. 

 Manipulating FAO without FCS significantly decreases 4.5.8

mitochondrial polarisation ratio in day 2-3 embryos 

In early cleavage stage embryos, cultured in the absence of FCS, inhibition or promotion 

of β-oxidation throughout the culture period led to a fall in mitochondrial polarisation 

ratio compared to controls (Figure 37). It has been reported that an increase in cellular 

fatty acid provision leads to decreased oocyte mitochondrial polarity in mouse oocytes 

(Wu et al. 2010) and other tissues (Borst et al. 1962; Rigoulet et al. 1998; Hue and 

Taegtmeyer 2009). However, others have reported that provision of fatty acids increases 

membrane potential in the bovine oocyte (Van Hoeck et al. 2013) and other tissues 

(Nobes et al. 1990). BMA inhibits β-oxidation beyond fatty acyl-CoA transport across the 

mitochondrial inner membrane. It is possible, therefore, that fatty acyl residues 

accumulate and could interfere directly with the mitochondrial membrane, reducing the 

voltage gradient. Similarly, supplementation with excess L-carnitine may result in 

increased transport of fatty acids into the intermembrane space, resulting in an 

accumulation of fatty acids and allowing for a similar interaction with the phospholipid 

membrane. Both of these scenarios could result in an uncoupling effect, reducing 

membrane polarisation (Luvisetto et al. 1987; Pietrobon et al. 1987). In addition, as fatty 
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acids are required for the activation of uncoupling proteins, the depolarisation could also 

be caused by increased UCP activity (Rousset et al. 2004; Fedorenko et al. 2012).  

The potential uncoupling caused by fatty acid accumulation in the mitochondrial inner 

membrane discussed above may be decreased in L-carnitine treated embryos, since the 

metabolism of these fatty acids is increased and hence their tendency to accumulate over 

time in the mitochondrial matrix could be expected to decrease. In addition, L-carnitine 

has been shown to increase production of glutathione and thereby reduce ROS levels. 

This would correlate with higher coupled respiration in L-carnitine treated embryos, such 

that the same ATP generation is achieved while the demand for substrates, including 

oxygen, is decreased. To investigate this, the coupled OCR of L-carnitine treated 

blastocysts was investigated. 

 Manipulating FAO does not significantly affect blastocyst 4.5.9

polarisation ratio with or without FCS 

There were no significant differences in polarisation ratio between blastocysts treated 

with inhibition or promotion of β-oxidation, regardless of whether FCS was present. This 

is surprising, given the significant changes in oxygen consumption induced by these 

treatments in FCS-treated blastocysts. It is therefore possible that embryos can overcome 

mitochondrial depolarisation during early cleavage by a regulatory mechanism and that 

altered OCR is a legacy of this effect. This could result in a change in cell number at the 

blastocyst stage or a change in mitochondrial copy number following the activation of the 

embryonic genome at the 8-16 cell stage. Alternatively it could simply reflect the shift in 

metabolic strategy from the use of lipid at early cleavage stages, which usually depletes 

lipid stores by the blastocyst stage, to minimal lipid metabolism in the blastocyst, thus 

alleviating the detrimental effects of dysregulated lipid metabolism. 

 Treatment with BMA, Etomoxir or L-carnitine does not 4.5.10

alter cell allocation ratio 

TE cells contain the majority of mitochondria in the blastocyst and are more metabolically 

active as they have to carry out the ion pumping required to  maintain the blastocoel 

cavity (Barnett et al. 1996; Van Blerkom 2008). ICM cells have lower ATP demand and so 

have fewer and less active mitochondria (Hewitson and Leese 1993; Houghton 2006). The 
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TE therefore has a higher OCR than the relatively quiescent ICM and an increase in TE:ICM 

ratio would explain a higher overall OCR. 

Embryos cultured to the blastocyst stage following stimulation of β-oxidation with L-

carnitine or inhibition of β-oxidation with BMA or Etomoxir each had similar mean cell 

counts and trophectoderm:inner cell mass ratios, regardless of the presence or absence 

of FCS (p=0.83). These findings indicate that manipulation of β-oxidation of endogenous 

stores has no effect on blastocyst cell count or the allocation to TE or ICM lineages. 

Furthermore, the differences in metabolism are not due to a difference in TE:ICM ratio or 

of total cell number. 

 Treatment with L-carnitine may accelerate blastocyst 4.5.11

development 

Timing of embryo cleavage, particularly the initial zygotic cleavage from one to two cells, 

has been proposed as a non-invasive marker of developmental capacity (Kirkegaard et al. 

2012; Cetinkaya et al. 2014). In humans, early cleavage is associated with increased 

pregnancy rates and reduced rate of abortion (Van Montfoort et al. 2004). Similarly, the 

time of zygotic cleavage is linked to increased developmental competence in the bovine 

embryo (Yadav et al. 1993; Lonergan et al. 1999; Lonergan et al. 2000; Lee et al. 2012).  

Data collected using the Primovision™ system (Figure 40) suggested that embryos treated 

with L-carnitine may begin blastocoel expansion earlier than controls (p=0.017) or 

Etomoxir-treated embryos (p=0.003). Instead, it may be that the addition of L-carnitine-

better supports development of bovine embryos in individual culture. Faster 

development may be linked to chromosomal aberration (Magli et al. 2014), 

fragmentation (Alikani 2000), loss of genomic imprinting and altered gene expression 

(Market Velker et al. 2012) . However, since development rates were poor when using the 

9-well culture dishes and only one treatment group could be cultured per week, few 

biological replicates were possible. While the system is excellent when using human 

embryos which develop well when incubated individually, bovine embryos which 

normally develop best in groups of around 20 (Gopichandran and Leese 2006) may be too 

isolated for autocrine or paracrine communication to provide support for embryos in a 9-

well culture dish. 
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 Strengths and limitations 4.5.12

Chapter 4 describes the differences in metabolism of embryos cultured with promotion of 

β-oxidation or inhibition of β-oxidation from the zygote to blastocyst stage. Analysis of 

relative lipid content by confocal microscopy was successful, but further study with a 

quantitative method of sufficient sensitivity could be a powerful addition to this study. 

Analysis of mitochondrial polarisation was also successful, but analysis of mitochondrial 

localisation and physiology using Transmission Electron Microscopy (TEM) would add 

further detail to the mitochondrial phenotype of embryos with dysregulated β-oxidation. 

Investigation of development rates and time of blastulation following manipulation of β-

oxidation with the Primo Vision system was limited by the relatively poor development of 

bovine embryos in the well-of-the-well dishes, presumably due to the increased distance 

between embryos, reducing paracrine signalling (Stokes et al. 2005; Gopichandran and 

Leese 2006). Additionally, only one treatment group could be analysed per development 

cycle, reducing the total number of replicates. 

 Conclusions 4.5.13

The role of fatty acid metabolism in mammalian reproduction has long been neglected 

but is an important area of investigation, especially in humans, since an increase in fat 

content of the oocyte and embryo, as in maternal obesity, is linked to infertility (Leary et 

al. 2014). It is also important in the dairy industry, where the dairy cow has reduced 

fertility due to negative energy balance (Leroy et al. 2005). An understanding of the 

underlying mechanisms affecting oocyte and early embryo development is therefore vital 

to improving assistive reproductive technologies (ARTs) in domestic animals and man. 

Fatty acid metabolism is undoubtedly a critical component of early embryo development 

(Sturmey et al. 2009b). Recent studies investigating the role of β-oxidation have 

suggested that successful FAO is vital for oocyte maturation (Sturmey and Leese 2003; 

Dunning et al. 2011) and the fatty acid composition of bovine reproductive fluids in vivo 

(Leroy et al. 2012) and during in vitro culture (Leroy et al. 2009) affects the outcome of 

early development. The present study provides evidence that modification of endogenous 

fatty acid β-oxidation in bovine embryos impacts on overall energy metabolism, including 

basal oxygen consumption rate, carbohydrate turnover, lipid metabolism, mitochondrial 

polarisation and possibly the coupling of electron transport and oxidative 
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phosphorylation. In addition, supplementation of culture media with FCS increased 

embryo lipid content, while decreasing mitochondrial polarity, providing further evidence 

for a link between lipid content and mitochondrial phenotype. 

In the present study, L-carnitine was shown to be present in the ovarian follicular 

environment, providing a justification for supplementing the culture medium for in vitro 

maturation with this component. 
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5 The effects of manipulating bovine 

embryo lipid metabolism on gene 

expression and methylation  
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Introduction 

 Gene expression in mammalian embryos 5.1.1

Mammalian preimplantation embryos are made up of relatively few cells; from one in the 

fertilised egg to around 200 in the bovine blastocyst and rely on maternal protein and 

mRNA transcripts during the early cleavage stages since the embryonic genome is not 

transcribed immediately following fertilisation. Embryonic Genome Activation (EGA) 

begins around the 8 cell stage in the bovine, 4-8 cell stage in the human and the late 1 cell 

stage in the mouse (Niakan et al. 2012). Thus, there is relatively little RNA present in the 

preimplantation embryo. These factors produce a range of challenges for studying gene 

expression in early embryos. Several reports have focused on specific gene expression in 

single blastomeres using qPCR, or alternatively, take a whole-genome approach using 

microarray technology and small groups of embryos. In this study, groups of ten 

blastocysts with matched pyruvate and oxygen consumption rates were collected (within 

mean±2.s.d) to obtain a representative sample of genetic changes with minimal variation.  

This enabled analysis of how gene expression differed in relation to metabolic changes 

following promotion of β-oxidation with L-carnitine and inhibition of β-oxidation with 

BMA. 

 Epigenetics and metabolic legacy 5.1.2

As proposed by Barker (1986), changes during early development can predispose the 

developing organism to disease. From the first report of a link between infant birth 

weight and adult coronary heart disease, to recent studies investigating the relationship 

between ART and adult health, it is increasingly well understood that early development 

is crucial to the health of the adult. The embryo is entirely dependent on the maternal 

environment and a harmful, but sublethal, environment, potentially produced by 

maternal diet and lifestyle, can have permanent implications for the organism’s health 

and development, the embryo giving rise eventually to all cell types, including the 

placenta and other extraembryonic tissues (Sinclair et al. 2007; Sinclair and Singh 2007; 

Fleming et al. 2011; Lucas 2013; Steegers-Theunissen et al. 2013). 

One mechanism connecting the preimplantation environment to development, 

metabolism and gene expression is epigenetics (Lucas 2013). Meaning ‘above genetics’, 
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epigenetics is the study of heritable changes in gene expression through means other 

than DNA modification. Examples of such modifications include DNA methylation, histone 

modification and RNA methylation, which enable cells to express a subset of the genome, 

allowing the tissue-specific gene expression associated with differentiated cells. DNA 

methylation is the most stable and heritable type of epigenetic modification, as well as 

the best understood since it is less complex than histone modification (Jones 2012). 

Certain areas of the mammalian genome are GC-rich and termed CpG islands (CGIs), 

defined as comprising at least 55% CpG dinucleotides and an observed to expected ratio 

of CpG of >0.6 (Takai and Jones 2002). Cytosine residues can be methylated to 5-

methylcytosine to control gene expression. Some 80-90% of human CpG sites are 

methylated, and 60-80% of CGIs occur around transcription promoter sites (Davuluri et al. 

2001; Takai and Jones 2002). Traditionally, methylation of DNA was perceived to repress 

gene expression (Phillips 2008), however a more complex picture is now emerging. 

Promoter methylation tends to repress gene expression, while intragenic methylation has 

gene-specific effects. Intergenic methylation has few well described effects and is much 

less common (Guo et al. 2014), highlighting the specific regulatory role of methylation. 

The methylation of CpG islands is largely regulated by a class of enzymes termed DNA 

Methyltransferases (DNMT). DNMT1 is responsible for ‘maintenance methylation’, 

required for cell differentiation and proliferation. DNMT2 methylates transfer RNA, 

allowing epigenetic control at an additional level of transcription. DNMT3a and DNMT3b, 

assisted by the non-catalytic DNMT3L, perform de novo methylation in the early embryo 

(Gowher et al. 2005). DNA methylation may work in tandem with histone modification to 

silence gene expression (Fuks 2005), however as histone modifications are reversible, it is 

debated whether they are a true epigenetic mechanism. DNA methylation is essential to 

cell differentiation and proliferation, with somatic cells retaining methylation patterns 

throughout their lifespan. Aberrant DNA methylation is implicated in many diseases, 

including developmental conditions and metabolic syndrome (Barres and Zierath 2011; 

Milagro et al. 2012; Carless et al. 2013). 

Epigenetic alterations are heritable, as changes to DNA persist in daughter cells following 

cell division. However, these alterations must be removed in order to allow the new 

organism’s epigenetic modifications to be applied. Germ cells undergo reprogramming to 

remove the vast majority of epigenetic modifications, though reports state that the 
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spermatozoon and oocyte have different levels and regions of methylation in mouse 

(Kobayashi et al. 2012) or relatively similar levels in humans (Guo et al. 2014). 

Furthermore, following oocyte fertilisation, the paternal genome is immediately 

demethylated (Yoshizawa et al. 2010; Ma et al. 2012; Smith et al. 2012), with maternal 

demethylation continuing until the blastocyst stage. In the mouse, demethylation starts in 

the zygote stage and most is completed by the end of the 2 cell stage (Guo et al. 2014). 

Paternal demethylation is reduced in IVF or ICSI-produced zygotes compared to in vivo-

derived zygotes (Ma et al. 2012). During postimplantation development up to 

gastrulation, selective de novo methylation establishes the organism’s unique 

methylation pattern as the ICM further differentiates (Smith et al. 2012; Hackett and 

Surani 2013). Again, there are some similarities in remethylation patterns in humans and 

animal models (Fulka et al. 2004), as well as some variation (Beaujean et al. 2004). DNMT 

activity has been detected in pregastrulation embryos and embryonic stem cells, but not 

in differentiated ESCs or somatic cells such as fibroblasts (Jaenisch 1997). Furthermore, 

DNMT knockout mouse embryos do not develop beyond gastrulation, while DNMT 

knockout ESCs do not survive differentiation (Li et al. 1992; Lei et al. 1996).  

Some genes are “imprinted” meaning that selective methylation is used to ensure only 

one parental allele of certain genes is expressed. These genes may be protected from 

remodelling during postimplantation development to an extent (Li et al. 1993; Smallwood 

et al. 2011; Hackett and Surani 2013) although several reports suggest that imprinted 

genes are prone to remodelling (Radford et al. 2012; Huntriss et al. 2013) and respond to 

the maternal environment (Puumala et al. 2012). Imprinted genes are often involved with 

growth and development (Lucas 2013), though some have argued that they are more 

important to somatic cell function than early development (Jaenisch 1997). Imprinting is 

vital in X-inactivation in mammalian females, preventing over expression of genes absent 

from the male Y chromosome, but mutations affecting imprinting are implicated in a 

variety of diseases. The active X chromosome tends to be hypermethylated within gene 

sequences and hypomethylated at promoter regions, with double the allele-specific 

methylation of the inactive X chromosome (Hellman and Chess 2007), leading to 

enhanced activity (Ball et al. 2009; Aran et al. 2011). The XIST gene (X inactive specific 

transcript) encodes a lncRNA component of the X-chromosome inactivation centre (Sado 

and Sakaguchi 2013) and is demethylated during gamete development but remethylated 

post-implantation (Norris et al. 1994; Beard et al. 1995). The XIST gene is expressed only 
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on the inactive X chromosome, which is always paternal in the placenta (Takagi and 

Sasaki 1975), but randomised in the actual embryo. An antisense transcript known as Tsix 

is encoded at the Xist locus and inhibits Xist transcription on the same chromosome (Lee 

et al. 1999; Migeon et al. 2001). Another X-linked lncRNA, XACT, was recently discovered 

(Vallot et al. 2013).The extraembryonic tissues tend to be more demethylated than the 

embryo (Sado et al. 2000).  In the mouse, Xist RNA tends to accumulate on the paternal X 

chromosome during the 4-8 cell stage. Xist remains on the TE and portion of the ICM 

destined to form endoderm, but disappears from the rest of the ICM complement (Mak 

et al. 2004; Okamoto et al. 2004). Another example is the intronic methylation of 

maternal IGF2R during oogenesis (Stöger et al. 1993) alongside the paternal-specific 

methylation upstream of the H19 promoter region during spermatogenesis (Tremblay et 

al. 1995). These modifications work in synergy; paternal H19 expression is suppressed, 

while maternal IGF2R is enhanced. These specific modifications are unaffected through 

demethylation in the zygote and de novo methylation in the postimplantation embryo 

(Jaenisch 1997), maintaining optimal expression of these genes throughout early 

development. 

Not all regulatory CGIs are found in promoter regions; CGIs several kbp away from a 

promoter can affect its transcription (Deaton and Bird 2011; Wittkopp and Kalay 2012). 

Regions known as ‘alternative promoters’ within genes can suppress or enhance 

transcription (Maunakea et al. 2010) and have phenotypic manifestations. Differential 

methylation of CGIs adjacent to splice sites can affect the efficiency of splicing, leading to 

expression of one splice variant of a protein over another (Edwards et al. 2010; Shukla et 

al. 2011). In general, around half of all genomic CGIs are known as ‘orphan’ CGIs and 

often show evidence of initiating transcription or dynamic expression. The orphan CGIs 

are primarily methylated during embryo development, as opposed to promoter CGIs 

(Illingworth et al. 2010). In addition, 42-60% of orphan CGIs had promoter activity in the 

human (Illingworth et al. 2010). The authors found that hypomethylated orphan CGIs 

were associated with expression of certain genes, while hypermethylation was associated 

with transcriptional repression (Illingworth et al. 2010). It seems possible that orphan CGI 

products are non-coding RNAs with regulatory roles and methylation of these sites could 

regulate tissue-specific gene expression (Illingworth et al. 2010). Increased intragenic 

methylation correlates with increased transcription in some cases (Deaton and Bird 

2011), however in other reports intragenic methylation decreased expression by 



149 
 

promoting a closed chromatin structure to prevent RNA Polymerase II binding (Lorincz et 

al. 2004). Thus, intragenic and intergenic methylation regulates gene expression, but the 

enhancing or suppressing effect of each modification is specific to each gene and cannot 

be easily predicted. 

While the total population of humans born through ART is increasing and the earliest ART 

children are entering adulthood, the majority of research linking ART, preimplantation 

conditions and epigenetic modifications is performed in animal models, primarily mouse, 

but also sheep, rat, rabbit and cow (Lucas 2013). Broadly speaking, animal models and the 

human have exhibited similar relationships between maternal diet and cardiovascular 

change, behaviour, bone development and the immune response in the progeny (Fleming 

et al. 2011). For example, a maternal diet deficient in methyl donors, such as 

tetrahydrofolate (THF), causes altered methylation status in the liver of foetal sheep 

(Sinclair et al. 2007). Similar effects were maintained in the rat until adolescence, but 

were rescued by dietary supplementation with folate (Lillycrop et al. 2005; Burdge et al. 

2009). Cooper et al. (2012) recently reported that supplementation of human maternal 

diet with folate, zinc, and vitamins A, B, C, and D altered DNA methylation status of 

offspring in a gender-specific manner, with hypomethylation of IGF2R in females and 

GTL2-2 in males. These changes were detected in cord blood, although not replicated at 9 

months in venous blood (Cooper et al. 2012). Such studies suggest that methylation 

status is affected by maternal diet, but remains dynamic to an extent throughout an 

organism’s life. 

Epigenetic modification is intricately linked to metabolism through a number of 

mechanisms. Acetyl-CoA, supplied by the TCA cycle, is the substrate for histone acetyl 

transferase enzymes, which perform histone modifications (Lee and Workman 2007; 

Shahbazian and Grunstein 2007). The primary methyl group donor for DNA and RNA 

methylation is S-adenosylmethionine (SAM), which is produced during the conversion of 

methionine to succinyl CoA for entry to the TCA cycle (Figure 4, Chapter 1). A further link 

to the TCA cycle is the FAD-dependent enzyme LSD1, which demethylates H3K4, a 

common histone modification site which increases transcription when trimethlyated 

(H3K4me3) (Shi et al. 2004). LSD1 also influences DNA metabolism, perhaps through this 

histone modification (Lan et al. 2008; Ciccone et al. 2009; Wang et al. 2009). Another 

methyl donor is tetrahydrofolate, which is converted to N5N16-methylenetetrahydrofolate 
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by the glycine cleavage system (Kaelin and McKnight 2013). In humans, genes with the 

H3K4me3 promoter modification tend to remain hypomethylated throughout gamete 

maturation and preimplantation development (Guo et al. 2014). During postimplantation 

development, and in hESCs, such genes tend to be highly methylated and actively 

expressed (Guo et al. 2014). Evolutionarily younger DNA elements tend to resist 

demethylation to a greater degree than ‘older’ elements. 

 Transcription 5.1.3

Transcriptomics is the study of the complete set of genes expressed by a cell type, and 

includes expression of messenger RNA (mRNA) and non-coding RNA (ncRNA). The 

majority of mRNAs may be similar between tissue types, but abundantly expressed 

mRNAs are often specific to a tissue. In general, around 10% of expressed genes are 

specific to a differentiated cell type, while many genes are constitutively expressed in all 

cell types (Lewin 2004). Microarray chip analysis allows an overview of expression of the 

entire genome to be recorded simultaneously, revealing genes that are differentially 

expressed between tissue types or treatments. Such comparisons may be made in 

experimental settings to examine the effect of an intervention or in clinical settings to 

compare the impact of a disease state. In studies in early development, microarray 

analysis opens the possibility to identify differences in gene expression pattern as a 

function of developmental stage and in response to manipulations and interventions. 

Recent studies using large-scale expression analysis have revealed a new cohort of 

candidate genes involved in aspects of embryo metabolism, development and successful 

pregnancy. For example, El-Sayed et al. (2006) established links between bovine embryo 

gene expression and developmental competence by analysing biopsies of day 7 

blastocysts which were later transferred to surrogate recipients. The authors found that 

blastocysts resulting in successful pregnancies, as measured on day 25, tended to express 

greater levels of genes including thioredoxin and cyclooxygenase 2, which are involved in 

prostaglandin synthesis, CDX2, a trophoblast-specific transcription factor, PLAU, a 

plasminogen activator, ALOX15, required for carbohydrate metabolism, BMP15, a growth 

factor, and PLAC8, a placental gene specific to invasion. However, embryos that had been 

reabsorbed by day 25 had increased expression levels of KRT8, a protein phosphorylase, 

PGK1 and AKRIBI, both involved in glucose metabolism; embryos resulting in no 

pregnancy had increased TNF cytokine, CD9, an inhibitor of implantation and EEF1A1, 
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involved in amino acid binding. These data indicate that there are differences in gene 

expression at the blastocyst stage in cattle that reflect developmental competence.  

 The EmbryoGENE platforms 5.1.4

The EmbryoGENE transcriptomic and methylomic microarray platform was first 

developed and validated by Robert et al. (2011). The transcriptomic EmbryoGENE bovine 

microarray comprises 42,242 probes in total, of which 21,139 are known reference genes; 

9,322 are novel transcribed regions (NTRs); 3,677 are alternatively spliced exons; 3,353 

are 3'-tiling probes; and 3,723 are controls.  

The transcriptomic microarray platform has since been used in numerous studies. Gad et 

al. (2012) found transcriptomic changes between embryos moved between in vitro and in 

vivo culture conditions before and after EGA, at the 4 or 16 cell stages. Embryos cultured 

in vitro until the 4 cell, 16 cell stages or blastocyst stage had significantly down-regulated 

gene products related to lipid metabolism, while 68 transcripts including development 

and proliferation-related genes were differentially expressed between embryos cultured 

in vitro at the time of genome activation and those cultured in vivo during embryonic 

genome activation. Another recent study found that embryos cultured under in vitro 

conditions, including embryo co-culture with buffalo rat liver cells, had significantly 

upregulated genes involved in cell death, and oxidative stress, as well as altered 

expression of lipid metabolism pathways than in vivo derived oocytes (Plourde et al. 

2012). These data suggest that transcription in the embryo is dynamically linked to 

embryo production method and culture conditions. 

A recent study by Cagnone and Sirard (2014) reported that culture of bovine embryos 

with serum lipid induced an altered transcriptomic phenotype at the blastocyst stage. 

Genes connected with oxidative stress and inflammation were upregulated, while 

pluripotency genes were downregulated. Another study reported that culturing bovine 

OCCs with L-carnitine boosted blastocyst rate, total cell count and a possible increase in 

mitochondrial content, along with decreased expression of fatty acid transporters 

SLC27A1 and SLC22A5 and increased expression of FAO enzymes CPT1B and CPT2 

(Ghanem et al. 2014). 

The EmbryoGENE bovine methylomic microarray platform was first developed and 

validated by Saadi et al. (2014). The authors found that bovine sperm DNA tended to be 
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more methylated than blastocyst DNA and validated this by selecting 7 DMRs for analysis 

by bisulphite pyrosequencing, which showed a similar pattern. However, the present 

study is the first use of this method in conjunction with parallel transcriptome analysis. 

 



153 
 

5.2 Aims 

The aim of this chapter is to quantify the effects of manipulating preimplantation embryo 

β-oxidation on gene expression and DNA methylation status. This aim will be addressed 

by carrying out the following series of experiments: 

 Metabolic profiling of bovine blastocysts produced following promotion of β-

oxidation with L-carnitine or inhibition of β-oxidation with β-mercaptoacetate. 

 Microarray analysis of transcriptional differences. 

 Microarray analysis of DNA methylation status. 
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5.3 Materials and methods 

The techniques described below in sections 5.3.1 and 5.3.2 were carried out in-house. 

RNA quantification (5.3.3) of the initial group of 12 samples was carried out at Université 

Laval by the author with the guidance of Isabelle Dufort. As several of these samples had 

degraded in transit, another group of samples were prepared on return to the UK. 

Quantification of these RNA samples was carried out by Sally James of the University of 

York. Once the final group of 12 samples were received at Université Laval, the 

techniques described in sections 5.3.4, 5.3.5, 5.3.6 and 5.3.7 were carried out by Isabelle 

Dufort and Dominique Gagne of Université Laval. Bioinformatic analysis (section 5.3.8) 

was carried out by Eric Fournier of Université Laval. Subsequent gene ontology analysis 

was carried out in-house by the author (section 5.3.8). All data shown below, including 

the metabolic profiles shown in section 5.4.1, relates only to the final group of 12 

samples. 

 In vitro culture and metabolic profiling 5.3.1

Embryos were produced using the in-vitro production protocol as described in Chapter 2. 

However, immediately after fertilisation, at the in vitro culture stage, zygotes were 

randomly assigned to SOFaaBSA culture media supplemented with 0.1mM β-

mercaptoacetate (BMA, a competitive inhibitor of long-chain acyl-CoA dehydrogenase), 

5mM L-carnitine (a co-factor required for transport of Fatty Acyl-CoA across the inner 

mitochondrial membrane) or unaltered SOFaaBSA. Culture media was SOFaaBSA + 5% 

FCS. As previously reported (Section 4.5, Figure 39), there was no difference in cleavage 

or blastocyst development rates between treatments. Embryos were cultured without 

interference to the blastocyst stage (Day 7), at which point blastocysts were removed for 

individual metabolic profiling of oxygen consumption rate by nanorespirometry and 

pyruvate consumption rate by fluorimetric assay as described in sections 2.2.2 and2.3.1. 

Four samples were prepared for each group; BMA, L-Carnitine and Control, for a total of 

12 samples. Each sample contained a group of 10 blastocysts with pyruvate and oxygen 

consumption rates within mean±2.s.d. Samples were immediately frozen in 5µl PBS on 

dry ice and stored at -80oC prior to RNA and DNA extraction using the AllPrep DNA/RNA 

micro kit (Qiagen).  
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 Parallel extraction of total RNA and DNA 5.3.2

RNA and DNA were extracted from frozen blastocysts using the QIAshredder kit and 

AllPrep DNA/RNA micro kit (Qiagen) following manufacturer’s guidance with the following 

modifications. Frozen blastocyst samples were transported to the preparation hood on 

dry ice and suspended in 75µl buffer RLT plus. The suspension was moved to a 

QIAShredder column and the original tube rinsed with a further 275µl RLT plus to ensure 

all blastocyst material was removed. The QIAshredder column was centrifuged at 10,000 

x g for 2min to lyse blastocysts and liberate all DNA and RNA. The homogenised lysate 

was then transferred to an AllPrep DNA spin column and centrifuged at 10,000 x g for 30s 

to separate DNA and RNA. DNA was bound to the spin column membrane and stored in a 

collection tube at room temperature until RNA extraction was completed.  

RNA purification as carried out as described by the manufacturer. Briefly, the lysate 

containing RNA was mixed with an equal volume of 70% ethanol, transferred to an 

RNeasy spin column and centrifuged at 10,000 x g for 15s, binding RNA to the column 

membrane. Bound RNA was then washed with a series of buffers and centrifuged at 

10,000 x g; 700µl RW1 for 15s, 500µl RPE for 15s and 500µl 80% ethanol for 2min. The 

80% ethanol wash removes any components which can interfere with downstream RNA 

labelling (described below). Carryover from previous washes was minimised by 

transferring the spin column to a fresh collection tube and spinning for a further 1min. 

Finally, RNA was eluted to a fresh collection tube in 12.5µl RNasefree water. RNA samples 

were transported on dry ice and stored at -80oC until required. 

DNA samples, still bound to the AllPrep DNA spin column, were washed with 500µl buffer 

AW1 and centrifuged at 10,000 x g for 15s to wash the membrane. The flow-through was 

discarded and the spin column membrane washed with 500µl buffer AW2 at 10,000 x g 

for 2min. DNA was extracted in 37µl buffer EB in a fresh collection tube AllPrep DNA/RNA 

micro kit. RNA and DNA samples were stored at -80oC before shipment to Université Laval 

on dry ice for transcriptomic and epigenetic analysis. DNA samples were stored at -20oC 

until required. 
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 Quantification of RNA quantity and quality 5.3.3

RNA quality was analysed using the Agilent Bioanalyser 2100 system (Agilent 

Technologies Inc., Santa Clara, CA). RNA samples with an RNA Integrity Number (RIN) of 

7.5 or greater, along with their DNA counterparts, were included in microarray analyses. 

 T7 amplication of RNA 5.3.4

RNA samples of >2ng with RIN >7.5 were amplified using the RiboAmp® HSPlus RNA 

Amplification Kit (Applied Biosystems) as described by Robert et al. (2011). Briefly, 1st 

strand cDNA was synthesised using 1st Strand Synthesis components and Superscript™ II 

Enzyme (Invitrogen). Following this, 2nd Strand DNA synthesis was performed and DNA 

was purified again using kit components. In vitro transcription was performed and the 

resulting anti-sense RNA (aRNA) purified. The resulting aRNA was then processed through 

another round of cDNA synthesis, cDNA purification, aRNA transcription and aRNA 

purification. The final aRNA was quantified using a NanoDrop system (Thermo Fisher 

Scientific, Wilmington, USA) and was around 50µg per sample. 

 Transcriptomic microarray analysis 5.3.5

RNA samples were first labelled in a dye-swap design with the Universal Linkage System 

(ULS) (Kreatech/Leica Biosystems, Ontario). Briefly, 2µl of CY3-ULS or CY5-ULS were 

added to 2µg RNA and 2µl Labelling Solution and the mixture was incubated at 85oC for 

15 minutes to allow the proprietary ULS moieties to bind to the N7 position of guanine on 

RNA molecules. Labelled RNA was separated from non-reacted ULS-label using the 

PicoPure™ RNA isolation Kit (Qiagen). Briefly, the RNA spin column was preconditioned 

using 250ml conditioning buffer and centrifuged at 16,000 x g. The labelled RNA sample 

was mixed with 100µl Extraction Buffer and 120µl 70% Ethanol, and then added to the 

preconditioned RNA column. Labelled RNA was bound to the column by centrifugation at 

100 x g for 2min, then flow-through was removed by further centrifugation at 16,000 x g. 

Bound RNA was then washed with Wash Buffer 1 and washed twice with Wash Buffer 2 

with centrifugation at 8000 x g and 16,000 x g. Bound RNA was eluted to a fresh collection 

tube by incubating with 11µl elution buffer and centrifugation at 16,000 x g. 
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 Hybridisation of labelled RNA samples to the microarray 5.3.6

Next, ULS-labelled RNA samples were conjugated to the microarray. Briefly, lyophilised 

10X blocking agent was reconstituted in 500µl nuclease free water, 2ml 10% Triton X-102 

was added to wash buffer and 0.005% Triton X-102 to gene expression buffers 1 and 2. 

Next, each of the following reagents (Table 17) were added to a 500µl microtube and 

mixed gently.  

Table 17: Composition of RNA hybridisation reaction mixture. 
 

The mixture was incubated at 60oC for exactly 15min to fragment the RNA, then 

immediately cooled on ice for 1min before adding 55µl hybridisation buffer Hi-RPM to 

halt fragmentation. 100µl sample was then immediately loaded to the gasket slide within 

the chamber base, distributing evenly across the slide surface. An Agilent microarray slide 

was then gently lowered on top of the gasket slide and the chamber cover firmly attached 

to the base. The chamber was held vertically to check for a single large bubble and then 

loaded to a rotating rack within the pre-warmed hybridisation oven at 65oC. The 

microarrays were rotated at 10rpm and 65oC for 17hr. 

Microarray chambers slides were then gently removed from the oven and array-gasket 

slides removed from the chambers. Each array-gasket slide was submerged in Gene 

Expression Buffer (GEB) 1 and separated. The array slide was then transferred to the 

staining dish containing pre-warmed GEB  1 for 3 min, then transferred to another slide 

staining dish containing GEB 2 for 3min. Slides were scanned immediately. 

 Epigenetic microarray analysis 5.3.7

Analysis of blastocyst DNA methylation status was performed using the EmbryoGENE 

platform as described below (de Montera et al. 2013). Briefly, blastocyst gDNA samples 

Substance 
Amount 

Cyanine 3-labeled RNA 825ng  

Cyanine 5-labeled RNA  825ng  

Agilent spike, 0.01X  2.75μl  

Nuclease-free water  to volume  

10X Blocking Agent  11μl  

25X Fragmentation Buffer  2.2μl  

Total Volume  55μl  
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were fragmented with the non-methylation dependent restriction enzyme MseI. Linker 

primers MseLig21 and MseLig12 were added by incubation with T4 DNA ligase for 20min. 

Following this, DNA samples were treated with the methyl-sensitive restriction enzymes 

HpaII, AciI and Hinp1I, which specifically digest non-methylated DNA fragments. Real-time 

qPCR was performed to verify digestion success and if insufficient digestion was observed 

(defined as a difference of <5 copies between digested and non-digested DNA), digestion 

was repeated. Methylated fragments were then amplified exponentially by PCR. 

Following this, non-methylated fragments were digested using MseI to remove linkers 

and then linearly amplified by PCR. This method leads to selective enrichment of 

methylated fragments, allowing differences in methylation between DNA samples to be 

detected. 

The amplified DNA samples were labeled with Cy3 and Cy5 dyes using the ULS 

Fluorescent Labelling Kit as described above (Kreatech, Ontario). Labelled DNA samples 

were hybridized to the Agilent-manufactured EmbryoGENE slides as described above for 

RNA samples, with the following modifications: Hybridisation was at 65oC for 40hr, after 

which microarray slides were washed in Oligo aCGH Wash Buffer 1 for 5min at room 

temperature, in Oligo aCGH Wash Buffer 2 for 1min at 37°C, in 100% acetonitrile for 10s 

at room temperature and finally in Stabilization and Drying Solution (Agilent, Diegem, 

Belgium) at room temperature for 30s. Slides were scanned immediately with 

PowerScanner (Tecan, Männedorf, Switzerland), followed by features extraction with 

ArrayPro 6.4 (MediaCybernetics, Bethesda, MD).  

 Analysis of microarray data 5.3.8

Microarray data analysis was performed by Eric Fournier using Flex array version 1.6 

(genomequebec.mcgill.ca/FlexArray) and the Linear Models for Microarray data (LIMMA) 

R package. Differentially expressed or differentially methylated genes identified by 

LIMMA analysis (exceeding fold change 0.5 and p value of 0.05) were analysed in-house 

using DAVID online functional annotation software (http://david.abcc.ncifcrf.gov/).  
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5.4 Results 

 Metabolic profiles 5.4.1

Blastocysts produced following chronic BMA treatment, chronic L-carnitine treatment, or 

control conditions, were metabolically profiled for oxygen and pyruvate consumption 

immediately prior to cryopreservation for microarray analyses as described above 

(Section 5.2). BMA-treated blastocysts (40.4±7.1pmol/embryo/hr) had a significantly 

higher mean oxygen consumption rate (OCR) than L-carnitine-treated blastocysts 

(23.2±2.7pmol/embryo/hr, p=0.034, Figure 42). Control blastocysts had an intermediate 

OCR (29.3±6.5pmol/embryo/hr). BMA-treated blastocysts also had significantly higher 

pyruvate consumption (23.6±7.1pmol/embryo/hr) than L-carnitine treated blastocysts 

(13.8±0.8pmol/embryo/hr, p=0.018, Figure 42). Control blastocysts had similar pyruvate 

consumption (13.1±3.3pmol/embryo/hr) to L-carnitine treated blastocysts, albeit with 

greater variation. 

 

Figure 42: Metabolic profiling of blastocysts for microarray analysis. A: Mean oxygen 
consumption rate of Control, BMA and L-carnitine treated embryos used in the following 
microarray experiments. BMA-treated OCR was significantly higher than L-carnitine-
treated OCR (p=0.034). B: Pyruvate consumption assays of the same embryos. Control: 
13.1±3.3; BMA: 23.6±7.1; L-carnitine: 13.8±0.8. BMA pyruvate consumption was 
significantly higher than L-carnitine (p=0.018). Data in both cases shown as mean±s.e.m. 
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 Summary of genetic changes 5.4.2

DNA and RNA were extracted from groups of 10 blastocysts in each treatment group for 

microarray analysis. BMA and L-carnitine treated blastocysts were compared to control 

embryos to generate a dataset of differentially expressed genes and differentially 

methylated regions (DMRs). Transcriptomic analyses revealed that 152 genes were 

differentially expressed in L-carnitine treated blastocysts (Figure 43A), while 582 genes 

were differentially expressed following BMA treatment (Figure 43B) (p<0.05, fold 

change>log2 (0.5)). Epigenomic comparison revealed 1414 DMRs between L-carnitine 

treated and control blastocysts (Figure 43C) and 2494 DMRs between BMA-treated and 

control blastocysts (Figure 43D) (p<0.05, fold change>log2 (0.5)).  
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Figure 43: Volcano plots indicating microarray results. A) Differential gene expression 
between L-carnitine treated and control blastocysts. B) Differential gene expression 
between BMA treated and control blastocysts. Data points located on the upper left side 
of the plot are significantly downregulated genes following treatment, whereas the points 
located on the upper right side of the plot are those which are significantly upregulated. 
C) Differential methylation between L-carnitine treated and control embryos. D) 
Differential methylation between BMA treated and control embryos. Data points located 
on the upper left side of the plot are significantly hypomethylated genes following 
treatment, whereas the points located on the upper right side of the plot are those which 
are significantly hypermethylated. Dashed lines indicate significance thresholds of p<0.05 
and fold change>log2 (0.5). 
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 Transcriptomic microarray following L-carnitine 5.4.3

treatment 

L-carnitine-treated blastocysts analysed using the EmbryoGENE transcriptomic microarray 

platform had 152 differentially expressed transcripts compared to control blastocysts 

(Figure 44), including 102 genes, 40 novel products and 1 pseudogene. These genes had a 

variety of functions, and a full list of annotations were found using online DAVID analysis 

software (Huang et al. 2009). However we will initially focus on genes involved in embryo 

metabolism and development, including oxidative damage and resistance, DNA and 

protein turnover, apoptosis and proliferation (Table 18 and Figure 45). 

 

Figure 44: Volcano plot indicating the spread of transcriptomic probe binding between L-
carnitine treated and control embryos. The dark points indicate probes which exceed the 
significance thresholds of p<0.05 and fold change>log2 (0.5). A total of 152 regions were 
differentially expressed between control and L-carnitine treated embryos. 
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Table 18: Table highlighting the role and fold change of selected genes which were differentially expressed between L-carnitine treated and control 
blastocysts. 

Annotation Group Gene ID Product name Role Fold 

change

Mitochondria ALAS2 Delta-aminolevulinate synthase 2 Catalyses first step of haem biosynthesis +0.60

RAB32 Ras-related protein 32 Mitochondrial fission +0.75

HEBP2 heme binding protein 2 Oxidative-stress induced apoptosis , mitochondrial membrane permeability -0.97

Metabolism STBD1 Starch binding domain 1 May have the capability to bind to carbohydrates, involved in glycogen metabolism +0.84

ELOVL1 Elongation of very long chain fatty acids 1 Elongation of very long chain fatty acids -0.68

ACOT4 Acyl-CoA thioesterase 4 Degradation/synthesis of fatty acids. Hydrolyses succinyl-CoA -0.86

ACSL6 Acyl-CoA synthetase long-chain 6 Long-chain FA synthetase -0.66

THEM4 Thioesterase superfamily member 4 Has acyl-CoA thioesterase activity towards medium and long-chain (C14 to C18) fatty acyl-CoA 

substrates

-0.60

TPI1 Triosephosphate isomerase 1 Converts Glyceraldehyde-3-phopshate (GAP) <-> Dihydroxyacetone-phosphate (DHA) for TG 

synthesis

-0.85

CYP4A22 Cytochrome P450 Catalyses the omega- and (omega-1)-hydroxylation of various fatty acids such as laurate and 

palmitate, no activity towards arachidonic acid and prostaglandin A1

+0.98

Obesity MTMR9 Myotubularin related protein 9 Control of cell proliferation Relevance to obesity and diabetes. -0.61

CLDN23 Claudin 23 Possible link to childhood obesity -1.44

Pregnancy IFNT Interferon-τ Primary signal for maternal recognition of pregnancy -1.41

PAG2 Pregnancy-associated glycoprotein 2 Low expression related to abortion. -1.24

PAG12 Pregnancy-associated glycoprotein 12 Involved in implantation and placentogenesis -0.94

PTGS2 Prostaglandin-endoperoxide synthase 2 or cyclooxygenase 2 Key enzyme in prostaglandin synthesis -0.84

TIA1 T-Cell-Restricted Intracellular Antigen-1 Silences COX-2 expression -0.76

ROS GSTO1 Glutathione S-transferase omega-1 Glutathione-ascorbate cycle antioxidant metabolism -0.61

Gap junctions GJB4 Component of gap junctions. Calcium Regulation in the Cardiac Cell. Membrane Trafficking -0.59

Oxygen-consuming SQLE Or squalene monooxygenase. 1st oxidation in cholesterol synthesis, likely rate-limiting. Oxygen consuming. -0.65

Protein turnover QSOX1 Sulfhydryl oxidase 1 Catalyses oxidation of thiol groups to sulphides -0.73

CHST10 Carbohydrate sulphotransferase 10 Transfers sulphate to the of terminal glucuronic acid of protein-and lipid-linked oligosaccharides. +0.65

TGM2 Transglutaminase 2 Catalyze the crosslinking of proteins +0.93

Transcription NUPR1 Nuclear protein, transcriptional regulator 1 Inhibits MSL1 activity on Histone H4'Lys-16' acetylation -0.60

TFAP2A Transcription factor AP-2 alpha KO represses placental gene expression in trophoblasts. Related to apoptosis, caspase and wnt. -1.01

ZNF187 Zinc finger and SCAN domain containing 26 Zinc Finger And SCAN Domain Containing 26. transcriptional regulation +0.62

TAF7 TATA Box Binding Protein (TBP)-Associated Factor, RNA Polymerase II Component of the DNA-binding general transcription factor complex TFIID, mediating promoter 

responses to various activators and repressors

+0.65

FOXG1 Forkhead box protein G1 Transcription repression factor which plays an important role in the establishment of the regional 

subdivision of the developing brain

+0.69

ZNF354A Zinc finger protein 354A Promotion of cardiogenesis in vertebrates and MAPK signalling +0.73

NR3C2 Nuclear receptor 3 C2 or mineralocorticoid receptor Ligand-dependent transcription factor +0.77

TBX18 T-box 18 Embryonic development  transcriptional repressor +0.85
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Figure 45: Differentially expressed genes of key interest in carnitine-treated blastocysts identified by microarray analysis. These genes are involved in 
embryo metabolism and development, including oxidative damage and resistance, recognition of pregnancy, DNA and protein turnover, apoptosis and 
proliferation. Genes presented exceed significance thresholds of p<0.05 and fold change>log2(0.5). 
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5.4.3.1 Genes involved in mitochondrial permeability and morphology 

Culturing embryos in the presence of L-carnitine led to a change in transcription of a 

number of genes involved in mitochondrial behaviour. HEBP2, involved in apoptosis and 

mitochondrial membrane permeability, was downregulated at transcript level (-0.97 fold 

change). ALAS2, which catalyses the first step of heme biosynthesis, along with RAB32, a 

protein required for mitochondrial fission, were upregulated compared to controls (+0.6 

and +0.75 fold increase respectively). 

5.4.3.2 Genes involved in metabolism 

A number of genes related to fatty acid β-oxidation were modulated at transcript level 

following promotion of β-oxidation with L-carnitine. In contrast, only one gene directly 

related to carbohydrate metabolism was altered. Five genes involved in fatty acid 

elongation and synthesis of triglyceride were downregulated following carnitine 

exposure; ELOVL1 (-0.68  fold change), ACOT4 (-0.80  fold change), ACSL6 (-0.66  fold 

change), THEM4 (-0.6  fold change), TPI1 (-0.85  fold change), while one transcript 

required for β-oxidation, CYP422A, was upregulated (+0.98  fold change). STBD1, starch 

binding domain 1, involved in carbohydrate metabolism, was upregulated in carnitine-

treated blastocysts (+0.84  fold change). 

5.4.3.3 Genes involved in successful pregnancy 

Three transcripts related to successful pregnancy were down-regulated in carnitine-

treated blastocysts compared to controls; IFNT (Interferon-τ), the primary signal for 

maternal recognition (-1.41  fold change), as well as pregnancy-associated glycoproteins 

PAG2 (-1.24  fold change) and PAG12 (-0.94  fold change). 

5.4.3.4 Genes involved in glutathione metabolism 

The gene GSTO1, encoding the cytoplasmic enzyme Glutathione S-transferase omega-1, 

was downregulated in L-carnitine-treated embryos (-0.61  fold change).  
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5.4.3.5 Intracellular junctions 

GJB4, encoding a component of gap junctions with roles including calcium regulation and 

membrane trafficking, had reduced expression following L-carnitine treatment (-0.59  fold 

change). 

5.4.3.6 Oxygen-consuming enzymes 

SQLE, encoding squalene monooxygenase, had reduced expression compared to control 

blastocysts following L-carnitine treatment (-0.65  fold change). 

5.4.3.7 Protein turnover and post-translational modification 

L-carnitine treatment led to altered expression of a number of genes involved in protein 

turnover. QSOX1, catalysing oxidation of thiol groups to sulphides, was downregulated (-

0.73  fold change), while CHST10, which transfers sulphate groups to glycoproteins and 

glycolipids, along with TGM2, involved in protein crosslinking were upregulated (+0.65 

and +0.93  fold change respectively). 

5.4.3.8 Transcription factors and transcription suppressors 

A number of genes encoding transcription factor or suppressor products were altered 

following promotion of β-oxidation with L-carnitine. Two transcription repressors were 

upregulated; TBX18, which represses genes involved in embryo development (+0.85 fold 

change); and FOXG1, which represses genes involved in brain development (+0.69 fold 

change). These changes might inhibit development of a viable embryo. Interestingly, 

TFAP2A (transcription factor AP-2 alpha) was downregulated (-1.10 fold change), an effect 

reported to repress placental gene expression in trophoblast. Additionally, NUPR1, 

encoding an inhibitor of histone acetylation was downregulated (-0.6 fold change).  
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 Transcriptomic microarray following BMA treatment 5.4.4

 

In blastocysts treated with BMA, a total of 582 sites were differentially expressed, with 

330 upregulated and 252 downregulated versus controls (Figure 46). Of these, 440 were 

differentially expressed genes, 62 were novel products and 14 were pseudogenes. The 

remaining 66 were internal ‘degenerate’ controls based on genes included in the 

microarray but with a number of mismatches. These were differentially expressed as their 

corresponding genes were differentially expressed and are included in the total of 440.  

 

 
Figure 46: Volcano plot indicating the spread of differentially expressed transcripts 
between BMA treated and control embryos. The dark points indicate probes which 
exceed the thresholds of p<0.05 and fold change>log2(0.5). A total of 582 transcripts 
were differentially expressed.
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Figure 47: Differential expression of key genes by blastocysts following inhibition of β-oxidation with β-mercaptoacetate. Genes grouped by functional 
classification. Genes displayed exceed significance thresholds of p< 0.05 and fold change>log2(0.5). 
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Annotation Group Gene ID Product name Role Fold change

MAP Kinase 

signalling

CASP3 Caspase 3 Apoptosis-Related Cysteine Peptidase 1.15

TNFRSF1A Tumour necrosis factor receptor  1A Activates NF-kB, regulates apoptosis via caspase 8 and inflammation 0.81

CACNA1G Voltage-dependent calcium channel, T Α1g Low voltage activated calcium channel involved in pacemaker activity and 0.75

lipid metabolism VAV3 Vav 3 guanine nucleotide exchange factor Acts with Rho GTPases to stimulate cytoskeletal rearrangements, regulates lipid processes 1.04

APOA1 Apolipoprotein A-I Major component of high density lipoprotein 1.31

PNPLA2 Patatin-like phospholipase containing 2 Catalyses the first step of lipolysis in lipid droplets. 0.63

WNT signalling DVL2 Dishevelled Segment Polarity Protein 2 Promotes internalisation of frizzled receptors following wnt signalling. 0.70

ROCK1 Rho-Associated, Coiled-Coil Protein Kinase 1 Rho kinase, regulates cytoskeleton and cell polarity 0.76

CSNK1E Casein Kinase 1, Epsilon Negative regulator of circadian rhythmicity 0.62

FOSL1 FOS-Like Antigen 1 Dimerises with JUN proteins to form transcription factor complex AP-1, regulates proliferation and differentiation. 1.30

WNT2B Wingless-Type MMTV Integration Site 2B Ligand for frizzled receptor, developmental signalling 0.67

CLDN23 Claudin 23 Possible link to childhood obesity -1.44

Amino acid 

metabolism

PAOX Polyamine oxidase (exo-N4-amino) Flavoenzyme oxidising N(1)acetyl spermidine to spermidine or putrescine. -0.65

AMT Glycine cleavage system T Aminomethyltransferase -0.90

GCSH Glycine cleavage system H One of four glycine components of glycine cleavage system -1.35

LOC787129 Similar to GCSH -1.34

PRODH Proline dehydrogenase (oxidase) 1 Mitochondrial FAD binding catalysing first step in proline degradation. -1.08

GNMT Glycine N-methyltransferase Methionine metabolism -1.07

LOC100299975 Similar to GCSH -1.03

Mitochondrial 

structure and 

function

PHB2 Prohibitin 2 Oestrogen receptor-selective coregulator with antiestrogens. -0.72

ENDOG Endonuclease G Mitochondrial endonuclease, cleaves DNA at GC tracts -0.69

MRPL2 Mitochondrial ribosomal protein L28 39S subunit of mitoribosome -0.65

SUOX Sulphite oxidase Intermembrane matrix protein oxidising sulphite to sulphate -0.80

AIFM2 Apoptosis-inducing factor, mitochondrion-associated, 2 Oxidoreductase mediating p53-dependent apoptosis. -0.63

SLC25A5 Solute carrier family 25 , member 5 Translocates ADP from cytoplasm to mitochondrial matrix and ATP from matrix to cytoplasm. -1.01

TXN2 Thioredoxin 2 Mitochondrial thioredoxin. -0.76

HMBS Hydroxymethylbilane synthase Third enzyme of heme biosynthetic pathway -0.73

AMT Glycine cleavage system T Aminomethyltransferase -0.90

CYC1 Cytochrome C-1 Heme-containing Cytochrome b-c1 components -0.69

TIMM17B Translocase of inner mitochondrial membrane 17 homolog B (yeast) Integral component of mitochondrial TIM23 complex. -0.67

ATP5G1 ATP synthase, H+ transporting, F0, C1 (9) Subunit of ATP synthase. -0.65

LOC787129 Similar to Glycine cleavage system H protein -1.34

LOC613316 Similar to ubiquinol--cytochrome c reductase -0.77

AGPAT5 1-acylglycerol-3-phosphate O-acyltransferase 5 Integral mitochondrial membrane protein catalysing 2nd step in de novo phospholipid synthesis. -1.37

C1QBP Complement component 1, q binding protein Complement subcomponent inhibiting C1 activation. -0.92

MRPL28 Mitochondrial ribosomal protein L28 39S component of mitoribosome -0.65

IVD Isovaleryl Coenzyme A dehydrogenase Mitochondrial matrix enzyme catalysing leucine metabolism. -0.60

MRPL38 Mitochondrial ribosomal protein L38 39S component of mitoribosome -0.64

LOC783502 Similar to ubiquinol--cytochrome c reductase -0.69

VPS25 Vacuolar protein sorting 25 homolog (S. cerevisiae) homolog. Endosomal sorting complex component -0.83

ATP6V1C2 ATPase, H+ transporting, lysosomal 42kDa, V1 C2 Subunit of vacuolar ATPase -0.59
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Annotation 

Group

Gene ID Product name Role Fold 

change
Electron transport 

chain

ATP6V1C2 ATPase, H+ transporting, lysosomal 42kDa, V1 subunit C2 Subunit of vacuolar ATPase -0.59

LOC786967 Similar to Glutaredoxin-1 Similar to (Thioltransferase-1) (TTase-1) -0.65

TXN2 Thioredoxin 2 Mitochondrial thioredoxin. -0.76

CYC1 Cytochrome C-1 Heme-containing Cytochrome b-c1 components -0.69

LOC783653 Similar to Glutaredoxin-1 Similar to (Thioltransferase-1) (TTase-1) -0.63

ATP5G1 ATP synthase, H+ transporting, mitochondrial F0 complex, C1 subunit 9 Subunit of ATP synthase. -0.65

ATP6V1B1 ATPase, H+ transporting, lysosomal 56/58kDa, V1 subunit B1 Subunit of vacuolar ATPase -0.83

LOC783502 Similar to ubiquinol--cytochrome c reductase -0.69

GLRXL Glutaredoxin (thioltransferase)-like -0.67

GLRX Glutaredoxin (thioltransferase) Redox enzyme involved in antioxidant defence, uses glutathione as cofactor. -0.61

LOC613316 Similar to ubiquinol--cytochrome c reductase -0.77

Transcription NFE2 Nuclear factor (erythroid-derived 2), 45kDa NF-E2 complex essential for regulating erythroid and megakaryocytic maturation and development -0.64

MRPL28 Mitochondrial ribosomal protein L28 39S subunit of mitochondrial ribosome, role in protein synthesis within mitochondria -0.65

GATA3 GATA binding protein 3 Tissue specific roles: regulate T cell development and mammary epithelial cell differentiation -0.80

PHB2 Prohibitin 2 Oestrogen receptor selective coregulator. Essential for mitochondrial activation, loss leads to diabetes -0.72

SPDEF SAM pointed domain containing etsl transcription factor Androgen-independent activator of prostate specific antigen promoter. -0.61

TFAP2C Transcription factor AP-2 gamma (activating enhancer binding protein 2 

gamma)

Involved in mammary development and hormone responsive breast cancer -0.81

VPS25 Vacuolar protein sorting 25 homolog (S. cerevisiae) Component of endosomal sorting complex, role in sorting ubiquitinated proteins. Regulates transcription via ELL 

(elongation factor RNA polymerase II)

-0.83

Post-translational 

modification

B4GALT1 UDP-Gal:betaGlcNAc beta 1,4- galactosyltransferase, polypeptide 1 Golgi form involved in lactose production, N-linked oligosaccahrides and carbohydrate moieties of glycolipids. Cell 

Surface form involved in cell-cell recognition in events including fertilisation.

-0.96

CTSL2 Cathepsin L2 Lysosomal cysteine peptidase, role in corneal physiology and certain cancers. -0.78

MPZ Myelin protein zero Vital structural component of myelin sheath. Deficiency implicated in heritable neurological diseases. -0.62

LOC786967 Similar to Glutaredoxin-1 (Thioltransferase-1) (TTase-1) -0.65

TXN2 Thioredoxin 2 Regulation of mitochondrial membrane potential and protection against ROS-induced apoptosis -0.76

FETUB Fetuin B Protease inhibitor required for oocyte fertilisation -0.63

LOC783653 Similar to Glutaredoxin-1 (Thioltransferase-1) (TTase-1) -0.63

SCARA5 Scavenger receptor class A, member 5 (putative) Ferritin receptor, mediates non-transferrin-dependent delivery of iron -0.81

PROS1 Protein S (alpha) Vitamin K-dependent glycoprotein. Binds complement component C. Role in blood clotting. -0.67

GLRXL Glutaredoxin (thioltransferase)-like -0.67

GLRX Glutaredoxin (thioltransferase) Redox enzyme involved in antioxidant defence, uses glutathione as cofactor. -0.61

SLC2A8 Solute carrier family 2 (facilitated glucose transporter), member 8 GLUT8. Insulin-regulated glucose transporter. Binds cytochalasin B and inhibited by fructose. -0.75

P2RX4 Purinergic receptor P2X, ligand-gated ion channel, 4 ATP-activated ligand binding ion channel. Forms homomeric or heteromeric trimmers. -0.68

UPK3B Uroplakin 3B Component of urothelial asymmetric unit membrane -0.62

LMBRD1 LMBR1 domain containing 1 Lysosomal protein involved in export of cobalamin for its conversion to cofactors. -0.84

FAM55C Family with sequence similarity 55, member C Also known as Neurexophilin And PC-Esterase Domain 3. -0.71
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Table 19: Table highlighting functional annotations of key genes which were differentially expressed following BMA treatment. Genes displayed exceeded 
the significance thresholds of p<0.05 and fold change>log2(0.5).

Annotation 

Group

Gene ID Product name Role Fold 

change

Stress response HSPH1 Heat Shock 105kDa/110kDa Protein 1 Prevents aggregation of denatured protein following cell stress 1.43

HSPB8 Heat Shock 22kDa Protein 8 Temperature-sensitive chaperone protein, oestrogen sensitive. 1.19

HSPA1A Heat Shock 70kDa Protein 1A Stabilises protein against aggregation. 1.94

HSPA1B Heat Shock 70kDa Protein 1B Stabilises protein against aggregation. 1.94

DNAJB1 DnaJ (Hsp40) Homolog B1 Interacts with and stimulates ATPase activity of Hsp70s 0.92

Stimulus 

response

CASP3 Caspase 3, Apoptosis-Related Cysteine Peptidase 1.15

XRCC2 X-Ray Repair Complementing (Defective Repair In Chinese Hamster Cells) DNA repair 0.64

CRYAB Crystallin, Alpha B Stabilises proteins against aggregation. 2.60

HSPB8 Heat Shock 22kDa Protein 8 Temperature-sensitive chaperone protein, oestrogen sensitive. 1.19

NGFR Nerve Growth Factor Receptor Regulates translocation of GLUT4 to the cell surface 1.46

HSPA1B Heat Shock 70kDa Protein 1B Stabilises proteins against aggregation. 1.94

Cellular 

remodelling

STMN2 Stathmin 2 Regulates microtubule stability, activated by MAP8 0.77

KLC1 Kinesin Light chain 1 Component of Kinesin. Transports intracellular cargo towards the + terminus of microtubules 0.59

SWAP70 Switch-associated protein 70 PI3P-dependent guanine exchange factor (GEF). Regulates membrane ruffling, actin cytoskeleton via 

RAC

0.98

UCHL1 Ubiquitin carboxyl-terminal esterase L1 Thiol protease involved in ubiquitin precursor processing. Protects monoubiquitin from degradation. 1.11

S100A11 S100 calcium binding protein A11 Regulation of cell cycle progression and differentiation 1.78

TUBB6 Tubulin β6 Major constituent of microtubules, interacts with Kinesin (+ end) and Dynesin (- end) 0.85

CDH2 Cadherin 2 Calcium dependent cell-cell adhesion glycoprotein. Role in left-right asymmetry in gastrulation. 1.08

KLC2 Kinesin light chain 2 Component of Kinesin. ATP-dependent transport of organelles and vesicles. 0.62

ACTG2 Actin γ2 Cell motility and maintenance of cytoskeleton 0.65

CASP3 Caspase 3 Apoptosis-Related Cysteine Peptidase 1.15

PNPLA2 Patatin-like phospholipase containing 2 Catalyses the first step of lipolysis in lipid droplets. 0.63

CAMK2N2 Calmodulin-dependent protein kinase II Negative regulator of Ca2+/calmodulin kinase II, regulates cell growth 0.63

GCH1 GTP cyclohydrolase 1 Positive regulation of nitric oxide synthesis, dopamine synthesis. Role in pain sensitivity and 

persistence.

0.78

AP1S2 Apoptosis-related protein complex 1σ2 Subunit of clathrin-associated adaptor protein complex I, protein sorting in late golgi/endosome 0.86

SPTBN1 Spectrin beta chain Actin crosslink or scaffold protein linking cytoskeleton to membrane. Role in Ca2+-dependent 

movement

0.96

SEC24D SEC 24 family D Component of COPII coat, role in transport of ER-derived vesicles to the golgi. 1.07
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5.4.4.1 Genes involved in MAP kinase signalling 

3 Genes involved in MAP kinase signalling were upregulated following BMA treatment, 

including CASP3, a caspase involved in apoptosis (-+1.15  fold change) and TNFRSF1A, 

which activates NF-kB and regulates apoptosis via caspase 8 (+0.81  fold increase). 

CACNA1G, a voltage-dependent calcium channel, was also upregulated (+0.75 fold 

increase). The MAP kinase pathway typically responds to stimuli including mitogens but 

also osmotic or heat stress, and regulates proliferation, mitosis, apoptosis and gene 

expression. An increase in expression of MAP kinase components suggests that the BMA-

treated embryo is under stress and may have altered cell division and apoptosis rates.  

5.4.4.2 Genes involved in lipid metabolism 

Two genes with a role in lipid metabolism were differentially expressed following BMA 

treatment; APOA1, the main protein component of high density lipoproteins (1.31 fold 

increase, p=0.04) and PNPLA2 a target of PPARγ with downstream roles in lipid 

metabolism (+0.63 fold change, p=0.03). 

5.4.4.3 Genes involved in WNT signalling 

5 genes involved in the wnt signalling cascade, a vital pathway to embryonic 

development, were upregulated in response to BMA treatment. These include DVL2, 

involved in frizzled receptor internalisation (0.7 fold increase, p=0.01), ROCK1, a vital Rho 

kinase (0.76 fold increase, p=0.03), CSNK1E, a casein kinase (0.62 fold increase, p=0.05), 

FOSL1, a transcription factor complex (1.3 fold increase, p=0.02) and WNT2B, a ligand for 

frizzled receptors.  This suggests an overall increase in wnt activity. 

5.4.4.4 Genes involved in amino acid metabolism 

A total of 5 genes involved in amino acid degradation were downregulated following BMA 

treatment, including 2 subunits of the glycine cleavage system, AMT (0.9 fold decrease, 

p=0.0) and GCSH (1.35 fold decrease, p=0.03). Additionally, polyamine oxidase (PAOX, 

0.65 fold decrease, p=0.04), glycine methyltransferase (1.07 fold decrease, p=0.004), and 

proline dehydrogenase (PRODH, 0.9 fold decrease, p=0.02).  
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5.4.4.5 Genes involved in mitochondrial structure and function 

A total of 24 genes involved in mitochondrial structure and function were downregulated 

following BMA treatment. These include ADP/ATP carrier SLC25A5 (-1.01 fold change, 

p=0.01), prohibitin PHB2 (-0.72 fold change, p=0.04), Endonuclease ENDOG (0.69 fold 

change, p=0.03), Mitoribosome subunits MRPL2 (-0.65 fold change, p=0.03), MRPL28 (-

0.65 fold change, p=0.03) and MRPL38 (-0.64 fold change, p=0.01), intermembrane 

sulphite oxidase SUOX 9-0.8 fold change, p=0.02), apoptosis-inducing oxidase AIFM2 (-

0.63 fold change, p=0.01), Thioredoxin TXN2 (-0.76 fold change, p=0.04), Haem synthase 

HMBS (-0.73 fold change, p=0.03), Glycine cleavage system components AMT (-0.9 fold 

change, p=0.00) and , Cytochrome C CYC1 (-0.69 fold change, p=0.05), TIM23 complex 

component TIMM17B (-0.67 fold change, p=0.04), ATP Synthase component ATP5G1 (-

0.65 fold change, p= 0.05) phospholipid transferase AGPAT5 (-1.37 fold change, p=0.04), 

complement component C1QBP (-0.92 fold change, p=0.01), CoA dehydrogenase IVD (-0.6 

fold change, p=0.00), endosomal sorting complex component VPS25 (-0.83 fold change, 

p=0.02) and ATPase components ATP6V1C2 (-0.59 fold change, p=0.02) and ATP6V1B1 (-

0.83 fold change, p=0.05). Also downregulated were novel transcripts LOC787129 (-1.34 

fold change, p=0.04), LOC613316 (-0.77 fold change, p=0.03) and LOC783502 (-0.69 fold 

change, p=0.03), which have homology to glycine cleavage system components and 

cytochrome c. 

5.4.4.6 Genes involved in the electron transport chain 

7 genes involved in generation of precursor metabolites and energy release through the 

electron transport chain were downregulated in BMA treated embryos. A number of 

these (ATP6V1C2, TXN2, CYC1, ATP5G1, ATP6V1B1, and LOC613316) are described in the 

mitochondrial polarisation and morphology section above. Additionally, Glutaredoxin 

GLRX (-0.67 fold change, p=0.05) and glutaredoxin-like protein GLRXL (-0.67 fold change, 

p=0.05) were both downregulated. Novel transcripts similar to glutaredoxin-1 LOC786967 

(-0.65 fold change, p=0.03) and LOC783653 (-0.63 fold change, p=0.03). This might 

suggest that the embryo consumes more oxygen in an attempt to overcome the resulting 

reduction in electron transport.  
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5.4.4.7 Genes involved in regulation of transcription  

A total of 8 genes involved in regulation of transcription were differentially expressed 

following BMA treatment. These included a number of proteins mentioned above; 

MRPL28, VPS25 and PHB2. 5 additional transcription factor genes were also 

downregulated following inhibition of β-oxidation with BMA. These included msh 

homeobox protein MSX2 (-0.59 fold change, p=0.04), Nuclear factor NFE2 (-0.64 fold 

change, p=0.04), GATA binding protein GATA3 (-0.8 fold change, p=0.04), SAM domain 

containing factor SPDEF (-0.61 fold change, p=0.01), transcription factor activating 

enhancer binding protein 2γ TFAP2C (-0.81 fold change, p=0.05).  

5.4.4.8 Genes involved in post-translational modification 

A total of 16 genes involved in post-translational modification of proteins were 

downregulated following BMA treatment. galactosyltransferase B4GALT1 (-0.96 fold 

change, p=0.01), cathepsin CTSL2 (-0.78 fold change, p=0.02), myelin protein MPZ (-0.62 

fold change, p=0.03), fetuin FETUB (-0.63 fold change, p=0.00), scavenger receptor 

SCARA5 (-0.81 fold change, p=0.01), Protein S PROS1 (-0.67 fold change, p=0.04), solute 

carrier SLC2A8 (-0.75 fold change, p=0.05), purinergic receptor P2RX4 (-0.68 fold change, 

p=0.01), uroplakin UPK3B (-0.62 fold change, p=0.03), LMBR1 domain containing protein 

LMBRD1 (-0.84 fold change, p=0.05), FAM55C (-0.71 fold change, p=0.04).  

5.4.4.9 Genes involved in stress response. 

5 genes involved in response to stress, including the 4 heat shock proteins HSPB8 (1.19 

fold increase, p= 0.03), HSPH1 (1.43 fold increase, p=0.00), HSPA1A (1.94 fold increase, 

p=0.01) and HSPA1B (1.94 fold increase, p=0.01) and heat shock stimulator DNAJB1, were 

upregulated following BMA treatment. 

5.4.4.10 Genes involved in stimulus response 

6 genes involved in the response to stimuli including temperature and antibiotics were 

upregulated following BMA treatment. These include two heat shock proteins mentioned 

above, HSPB8 and HSPA1B, as well as CASP3. Additionally, DNA repair receptor XRCC2 

(0.64 fold increase, p=0.00), Crystallin CRYAB (2.6 fold increase, p=0.01) and growth factor 

receptor NGFR (1.46 fold increase, p=0.00) were upregulated. Taken together, these 

upregulations suggest that the embryo is responding to BMA treatment as a stress 



175 
 

stimulus, with similar effects to exposure to increased temperature or antibiotic 

compounds, suggesting very deleterious conditions for the embryo. 

5.4.4.11 Genes involved in cellular remodelling 

16 genes identified to have roles in cellular remodelling and transport were upregulated 

following inhibition of β-oxidation with BMA. These include Stathmin STMN2 (+0.77 fold 

change), Kinesin light chin components KLC1 (+0.59 fold change) and KLC2 (+0.62 fold 

change), which are required for ATP-dependent transport towards the + terminus of 

microtubules, switch-associated protein SWAP70 (+0.98 fold change), ubiquitin esterase 

UCHL1 (+1.11 fold change), calcium binding protein S100A11 (+1.78 fold change), Tubulin 

TUBB6 (+0.85 fold change), Cadherin CDH2 (+1.08 fold change), actin component ACTG2 

(+0.65 fold change), phospholipase PNPLA2 (+0.63 fold change), calmodulin-dependent 

kinase CAMK2N2 (+0.63 fold change), GTP cyclohydrolase GCH1 (+0.78 fold change), 

apoptosis-related complex component AP1S2 (0.86 fold change), spectrin component 

SPTBN1 (+0.96 fold change), COPII coat component SEC24D (+1.07 fold change) and 

CASP3, mentioned above. 
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 Epigenetic microarray following L-carnitine treatment 5.4.5

A total of 1414 probe binding regions were differentially methylated between carnitine-

treated embryos and controls, with 733 hypermethylated in control and 681 

hypermethylated in carnitine-treated embryos. Of these, 65 exon sites were 

hypermethylated and 42 sites within exons were hypomethylated in carnitine treated 

embryos compared with controls for a total of 107 differentially methylated exons.42 

DMRs were within 1kbp of the transcription start site, 178 within 5kbp and 7 DMRs in 

CGIs were within 1kb of the transcription start site of at least 1 gene, with a further 4 

within 50kbp of transcription start sites of multiple genes. 

 

Figure 48: Epigenetic circular plot summarising all significantly different probe binding 
sites between control and L-carnitine treated blastocysts. Only significantly different 
(p<0.05) sites are displayed. Layers from top to bottom as follows: epigenetic p-value (0-
0.05), epigenetic fold-change (difference in methylation in L-carnitine treated embryos 
relative to controls), condition mean intensity, fold-changes of 18 known imprinted 
genes; symbols of the imprinted genes. 
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Figure 49: Volcano plot of all probes in methylation microarray between carnitine-treated 
and control embryos. Hypermethylated regions in carnitine or control treatments were 
above the threshold of log2(0.5) fold change and p<0.05. While high fold-change suggests 
a greater overall difference in methylation between control and L-carnitine treated 
embryos, the relationship is not linear. 

5.4.5.1 Promoter methylation  

Following L-carnitine treatment, 4 CpG Islands within (1kbp) and 1 CGI within 5kbp of a 

promoter were hypermethylated, while a further 7 regions 5-50kbp from promoter 

regions regulating a total of 67 genes. These changes are displayed below (Figure 50). 
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Figure 50: Differential methylation at CGIs within 50kbp of promoter regions in blastocysts produced following culture with L-carnitine.
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5.4.5.2 Differential methylation within 5kbp of a promoter region 

 

Figure 51: Differential methylation of CpG islands within 1kbp of promoter regions in 
blastocysts following promotion of β-oxidation with L-carnitine. 

Following embryo culture with L-carnitine, 4 CGIs proximal to a gene promoter (within 

1kbp) were significantly hypermethylated relative to control embryos. Such modifications 

are likely to have an inhibitory effect on gene expression. These include COX7A2L, 

encoding cytochrome c oxidase subunit 7A-related protein (1.89 fold increase, p=0.01), 

KIAA198 9 (0.63 fold increase, p=0.02), phosphoinosited-3-kinase PIK3CB (0.66 fold 

increase, p=0.04) and the embryonic transcription regulator Oct-6 or POU3F1 (0.82 fold 

increase, p=0.0). A CGI within 50kbp of the promoter controlling expression of 

transmembrane protein TMEM141 was also hypermethylated (0.63 fold increase, 

p=0.02). 

5.4.5.3 Distal promoter methylation 

Additionally, a further 7 regions 5-50kbp from promoter regions regulating a total of 67 

genes were differentially methylated following promotion of β-oxidation with L-carnitine. 

It is hard to predict the effect of differential methylation of regions at this distance from a 

promoter. These are listed in Table 20 below. 
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Table 20: Differential methylation in CGIs between 5-50kbp of a promoter following 
promotion of β-oxidation with L-carnitine. 

Gene ID Name Role Fold change P value

ABCA2 ATP-Binding Cassette, Sub-Family A (ABC1), Member 2 Thought to export lipid in neural cells. 0.63 0.02

BAK1 BCL2-antagonist/killer 1 Promotes apoptosis by inhibiting the effects of BCL2 0.76 0.03

C11H9ORF116 Chromosome 9 open reading frame 116 ortholog Encodes protein with unknown function 0.63 0.02

C11H9ORF142 Chromosome 9 open reading frame 142 ortholog Encodes protein with unknown function 0.63 0.02

C8G Complement component 8, gamma polypeptide Component of bactericidal membrane attack complex 0.63 0.02

CACNG4 Calcium channel, voltage-dependent, gamma subunit 4 Regulates trafficking of AMPA-selective glutamate receptors -0.68 0.04

CLIC3 Chloride intracellular channel 3 Inserts into membranes to form chloride channels 0.63 0.02

EDF1 Endothelial differentiation-related factor 1 Transcriptional coactivator for PPARγ, NR5A1 and NR1H3/LXRA, enhances DNA-binding 

of ATF1, ATF2, CREB1 and NR5A1
0.63 0.02

ENTPD2 Ectonucleoside triphosphate diphosphohydrolase 2 Hydrolyses nucleotides to regulate purinergic neurotransmission 0.63 0.02

FBXW5 F-box and WD repeat domain containing 5 Substrate recognition component of SCF and DCX ubiquitin-protein ligase complexes. 0.63 0.02

FHL3 Four and a half LIM domains 3 Suppresses tumorigenesis, MyoD and IgE receptor expression. 0.82 0.00

FUT7 Fucosyltransferase 7 (alpha (1,3) fucosyltransferase) Golgi membrane protein involved in creating sialyl-Lewis X antigens. 0.63 0.02

GGNBP1 Gametogenetin binding protein 1 May be involved in spermatogenesis 0.76 0.03

IER2 Immediate early response 2 Promotes tumour cell motility and metastasis 0.62 0.00

INPP5B Similar to inositol polyphosphate-5-phosphatase, 75kDa Inactivates IP3 signalling, controlling calcium signalling 0.82 0.00

ITPR3 Inositol 1,4,5-triphosphate receptor, type 3 Receptor for IP3, regulates calcium signalling 0.76 0.03

LCN1 Lipocalin 1 (tear prealbumin) Taste receptor, binds lipids and retinoids. 0.63 0.02

LCN10 Lipocalin 10 Possible retinoid carrier in epididymis with a role in male fertility 0.63 0.02

LCN12 Lipocalin 12 Possible retinoid carrier in epididymis with a role in male fertility 0.63 0.02

LCN15 Lipocalin 15 Protein coding gene, unknown function 0.63 0.02

LCN6 Lipocalin 6 Possible retinoid carrier in epididymis with a role in male fertility 0.63 0.02

LOC100295548 Unassigned Unknown function 0.63 0.02

LOC100296246 Unassigned Unknown function 1.89 0.01

LOC100297567 Unassigned Unknown function 0.62 0.00

LOC100299600 Unassigned Unknown function 0.63 0.02

LOC100336123 Unassigned Unknown function 0.68 0.04

LOC100336900 Unassigned Unknown function 0.63 0.02

LOC100336928 Unassigned Unknown function 0.63 0.02

LOC100336982 Unassigned Unknown function 0.66 0.04

LOC100336993 Unassigned Unknown function 0.66 0.04

LOC505851 Similar to Wilms tumor 1 associated protein Unknown function -0.60 0.03

LOC514980 Similar to Epididymal-specific lipocalin-9 precursor Unknown function 0.63 0.02

LOC521846 Similar to CG15216 CG15216-PA Unknown function 0.63 0.02

LOC528914 Similar to Olfactory receptor 1F12 (Hs6M1-35P) Unknown function -0.60 0.03

LOC529518 Similar to Hcg1805526 Unknown function -0.60 0.03

LOC532291 Similar to Hcg1805526 Unknown function -0.60 0.03

LOC618652 Similar to 1A6/DRIM interacting protein Unknown function 0.63 0.02

LOC781304 Hypothetical LOC781304 Unknown function -0.60 0.05

LOC781874 Similar to basic helix-loop-helix TF HAND2 Unknown function -0.60 0.05

LYL1 Lymphoblastic Leukemia Associated Hematopoiesis

Regulator 1

Helix-loop-helix transcription factor, roles in regulating haematopoiesis
0.62 0.00

MAMDC4 MAM domain containing 4 Selective transport of receptors ands ligands across polarised epithelia 0.63 0.02

MDM4 Mdm4 p53 regulator Inhibits p53 and p73-mediated apoptosis 0.66 0.04

MRPS2 Mitochondrial ribosomal protein S2 28S mitoribosome subunit 0.63 0.02

NACC1 Nucleus accumbens associated 1, BEN and BTB (POZ) 

domain containing

Transcriptional corepressor, recruits HDAC3 and HDAC4. Also recruits proteasome to 

cytoplasm.
0.62 0.00

NKAPL NFKB activating protein-like Implicated in schizophrenia -0.60 0.03

NPDC1 Neural proliferation, differentiation and control, 1 Down-regulates neural proliferation and transformation 0.63 0.02

PARF Rab-like GTP-binding protein 1A May enhance proliferation 0.63 0.02

PGBD1 PiggyBac transposable element derived 1 Transposase expressed in brain -0.60 0.03

PHPT1 Phosphohistidine phosphatase 1 Reversible dephosphorylation of histidine residues in proteins. 0.63 0.02

PIK3C2B Phosphoinositide-3-kinase, class 2, beta polypeptide PI3-kinase, involved in EGF and PDGF signalling 0.66 0.04

POU3F1 POU class 3 homeobox 1 Oct-6 octamer-binding transcription factor 0.82 0.00

PPP1R15B Protein phosphatase 1, regulatory (inhibitor) subunit 15B Promotes dephosphorylation of transcription factor EIF2αin unstressed cells 0.66 0.04

PTGDS Prostaglandin D2 synthase 21kDa (brain) Maturation and maintenance of CNS and male reproductive system 0.63 0.02

SF3A3 Splicing factor 3a, subunit 3, 60kDa Required for pre-mRNA splicing 0.82 0.00

SLC31A2 Solute carrier family 31 (copper transporters), member 2 Copper uptake 0.68 0.04

STX10 Syntaxin 10 SNARE involved in transport of vesicles from late endosome to Golgi 0.62 0.00

TRAF2 TNF receptor-associated factor 2 Regulates activation of NF-κB and JNK, promotes ubiquitination of target proteins. 0.63 0.02

TRMT1 TRM1 tRNA methyltransferase 1 homolog (S. cerevisiae) Demethylates guanine 26 of tRNAs 0.62 0.00

UTP11L UTP11-like, U3 small nucleolar ribonucleoprotein, Nuclear processing of pre-18S rRNA 0.82 0.00

ZFP37 Zinc finger protein 37 homolog Transcriptional regulator 0.68 0.04

ZKSCAN4 Zinc finger with KRAB and SCAN domains 4 Transcriptional regulator, MDM2 and EP300 -0.60 0.03

ZNF165 Zinc finger protein 165 Transcriptional regulator, spermatogenesis -0.60 0.03

ZNF187 Zinc finger protein 187/ZSCAN26 Transcriptional regulator -0.60 0.03

ZNF192 Zinc Finger With KRAB And SCAN Domains 8 Transcriptional regulator -0.60 0.03

ZNF389 Zinc finger protein 389 Pseudogene -0.60 0.03

ZSCAN16 Zinc finger and SCAN domain containing 16 Transcriptional regulator -0.60 0.03
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5.4.5.4 Differential methylation at CGI sites within 50kbp of a 

promoter 

Functional annotation analysis of all differentially methylated CGIs within 50kbp of a 

promoter using DAVID online software revealed 2 functional annotation groups: 

transcriptional regulators and phosphatidylinositol signalling. 

 

Figure 52: Differential methylation at CGIs within 50kbp of a promoter following L-
carnitine treatment. 

5.4.5.5 Genes involved in phosphatidylinositol signalling 

Several genes involved in phosphatidylinositol signalling were hypermethylated in 

promoter regions following promotion of β-oxidation with L-carnitine. These included 

inositol trisphosphate receptor ITPR3 (+0.76 fold change, p=0.03), inositol polyphosphate-

5-phosphatase INPP5B (+0.82 fold change, p=0.03), along with lipocalin family members 

Prostaglandin D2 synthase PTDGS (+0.63 fold change, p=0.02) and complement subunit 

C8G (+0.63 fold change, p=0.02).  

5.4.5.6 Genes involved in regulation of transcription 

Differentially methylated regions were detected in CGIs within 50kbp of the promoter 

regions controlling expression of a range of transcription factors. These include POU3F1 

(discussed above, +0.82 fold change, p=0.00), EDF1 (+0.63 fold change, p=0.02), Zinc 
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ZNF165 (-0.6 fold change, p=0.03), ZNF187 (-0.6 fold change, p=0.03), ZNF192 (-0.6 fold 

change, p=0.03) and ZSCAN16 (-0.6 fold change, p=0.03). Pseudogene ZNF389 was also 

hypomethylated (-0.6 fold change, p=0.03). 

5.4.5.7 Intragenic CGI methylation following L-carnitine treatment 

Table 21 below shows a list of intragenic CGIs which were differentially methylated 

following L-carnitine treatment. Of these, COX7A2L, KIAA1984, PIK3C2B and POU3F1 

were also methylated in promoter regions and are described in more detail above. DAVID 

functional annotation tools were used to identify the corresponding genes and their 

functions, with further detail found through literature searches. In general, it is likely that 

differential methylation of intragenic CGIs will affect expression of the corresponding 

gene, although the precise effects seem gene-specific. While this is speculative until 

specific analysis of gene expression and methylation by qPCR is performed, some genes 

bear discussion in greater detail due to their specific functions and would be prioritised 

for future study. 

5.4.5.8 Intragenic DMRs involved in signalling 

A number of genes encoding products with roles in signalling including the wnt and MAP 

kinase cascades and calcium signal transduction were differentially methylated in 

intragenic regions following promotion of β-oxidation with L-carnitine throughout embryo 

culture. These included G protein subunit GNG5 (+0.9 fold change, p=0.03), wnt ligand 

WNT5B (+0.87 fold change, p=0.05), MAP kinase cascade component MARK3 (-0.66 fold 

change, p=0.03), Calcium-dependent cell-cell adhesion protein PCDH14 (+0.92 fold 

change, p=0.00), calcium-activated ion channel Tweety 2 (+0.75 fold change, 0.03). 

5.4.5.9 Post-translational modification 

Intragenic regions of ubiquitin-binding protein UBAC2 (+0.6 fold change, p=0.02), Histone 

acetyltransferase component TRRAP (+1.48 fold change, p=0.04) were differentially 

methylated following embryo culture with L-carnitine. 
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5.4.5.10 Transcription factors 

Transcription factors ZNF462 (-0.72 fold change, p=0.00) and ZXDC (+0.69 fold change, 

p=0.04) were differentially methylated following promotion of β-oxidation with L-

carnitine.  

5.4.5.11  Intragenic CGI methylation 

A number of genes encoding protein products involved in intracellular signal transduction 

were differentially methylated in intragenic regions. These include GNG5, encoding the 

cell surface linked G-protein coupled chemokine receptor Guanine Nucleotide binding 

protein, which involved in chemokine signalling transduction. In humans, it co-localises to 

chromosome 1p22 with lysosomal chitobiase (Ahmad et al. 1995). 

WNT5B, encoding Wingless-Type MMTV Integration Site Family, Member 5B, is a key 

component of the wnt signalling cascade, vital in normal development, regulating cyclin 

D1 expression and a key component of carcinogenesis (Yang 2003). Interestingly, 

variation in wnt5b is linked to type 2 diabetes (Salpea et al. 2009a). Hypermethylation of 

WNT5B following L-carnitine treatment could enhance expression of this key protein, 

potentially allowing accelerated development. 

UBAC2, encoding ubiquitin-associated domain-containing protein 2, is potentially 

involved in ubiquitin-dependent protein degradation. Intronic methylation may enhance 

transcription of the gene product, potentially increasing protein degradation within the L-

carnitine treated embryo. The gene is also associated with a lncRNA (Sawalha et al. 2011).  

MARK3 is a protein kinase activated by phosphorylation and activating MAP2 and MAP4 

kinases to control cell polarity and cytoskeleton (Drewes et al. 1997). It also 

phosphorylates HDAC7, regulating localisation and activity of histone deacetylase and 

potentially leading to further epigenetic regulation of gene expression in the embryo.  
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Table 21: Intragenic CGI site differential methylation following promotion of β-oxidation 
with L-carnitine. 

Exon Intron Name Role Fold-change P-value

CLIP1 CLIP1 Cytoplasmic Linker Protein 1 Links cytoplasmic vesicles to the cytoskeleton 0.83 0.01

COX7A2L COX7A2L Cytochrome c oxidase subunit 7AII –

like protein

Regulatory subunit of complex IV which may increase 

respiration in response to oestrogen.

1.89 0.01

FRMD1 FRMD1 FERM Domain Containing 1 Associated with smallpox 0.68 0.03

KIAA1984 KIAA1984 Coiled-Coil Domain Containing 183 Unknown function 0.63 0.02

LRRC27 LRRC27 Leucine-Rich Repeat-Containing 

Protein 27

Unknown function -1.02 0.03

MARK3 MARK3 MAP/Microtubule Affinity-Regulating 

Kinase 3

MAP kinase signalling. Phosphorylates MAP2, MAP4 and 

HDAC7.

-0.66 0.03

PIK3C2B PIK3C2B Phosphatidylinositol-Phosphate 3-

Kinase C2β

Class II PI3 kinase. Involved in PI3 signalling. 0.66 0.04

POU3F1 POU3F1 POU class 3 homeobox 1 Oct-6. Octamer-binding transcription factor. Roles in 

embryo development and neurogenesis.

0.82 0.00

SYNRG SYNRG Synergin γ Interacts with AP1 clathrin-adaptor complex, may have a 

role in endocytosis/membrane trafficking

0.61 0.01

TTYH2 TTYH2 Tweety family member 2 Ca2+-activated chloride channel. 0.75 0.03

VPS33B VPS33B Vacuolar Protein Sorting 33 Homolog 

B

Vesicle mediated protein trafficking, membrane fusion of 

late endosomes and lysosomes

0.62 0.01

WNT5B WNT5B wingless-type MMTV integration site 
family, member 5B

Ligand in wnt cascade 0.87 0.05

AATF Apoptosis Antagonizing Transcription 

Factor

HDAC1 Inhibitor. Protects against oxidative damage -0.76 0.02

ANO4 Anoctamin 4 Associated with Alzheimer's disease 0.75 0.01

GNG5 Guanine nucleotide binding protein γ5 Heterotrimeric G protein subunit, involved in 

transmembrane signal transduction

0.90 0.03

KLC1 Kinesin light chain1 Microtubule-associated protein. May be involved in 

organelle transport

0.59 0.04

LOC100336662 Leucine-rich repeat-containing G 

protein-coupled receptor 5-like

Unknown function 0.68 0.02

PALLD Palladin Cytoskeletal protein, involved in establishing morphology, 

motility and cell-ECM interactions.

0.71 0.01

PCDH15 Protocadherin-related 15 Calcium dependent cell adhesion protein 0.92 0.00

TRRAP Transformation/Transcription Domain-

Associated Protein

Component of histone acetyltransferase complexes. Roles 

in transcription, DNA repair and epigenetic transcription 

activation.

1.48 0.04

UBAC2 UBA Domain Containing 2 Ubiquitin-binding, involved in protein degradation 0.60 0.02

ZNF462 Zinc Finger 462 Transcription regulation -0.72 0.00

ZXDC ZXD Family Zinc Finger C Cofactor to promote MHCI and MHCII transcription 0.69 0.04
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Figure 53: Differential methylation in intragenic regions following promotion of β-
oxidation with L-carnitine. 
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 Epigenetic microarray following BMA treatment 5.4.6

2,511 probe hybridisation sites were differentially methylated in BMA treatment versus 

controls. Of these, CpG islands within 49 genic regions and within 50kbp of 17 promoter 

regions were differentially methylated. 

 

Figure 54: Volcano plot indicating the spread of Differentially Methylated Regions 
between BMA treated and control embryos. The dark points indicate probes which 
exceed the thresholds of p<0.05 and fold change>log2(0.5).  
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5.4.6.1 Summary of epigenetic changes following BMA treatment 

 
Figure 55: Epigenetic circular plot summarising all significantly different probe binding 
sites between control and BMA treated blastocysts. Only significantly different (p<0.05) 
sites are displayed. Layers from top to bottom as follows: epigenetic p-value (0-0.05), 
epigenetic fold change (difference in methylation in BMA treated embryos relative to 
controls), condition mean intensity, fold changes of 18 known imprinted genes, symbols 
of the imprinted genes. 
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5.4.6.2 Promoter methylation in BMA-treated blastocysts 

2,511 probe hybridisation sites were differentially methylated in BMA treatment versus 

controls. Of these, 64 sites were within CpG islands, with 7 of these within (<1kbp) a 

promoter and a further 4 within 50kbp of a promoter. 30 CGIs overlapped exons and 44 

overlapped introns. 8 CGIs did not overlap a genic or promoter region and were not 

included in this analysis, although they could still have a regulatory role which could be 

revealed in further investigations. 

 
Figure 56: Differential methylation of CpG islands related to promoter regions following 
BMA treatment of embryos in culture. 

 
Table 22: Table showing gene name and product function of the data shown above in 
Figure 56. 
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Gene ID Gene name Product function Fold change P value

CDV3 Carnitine-deficiency associated gene expressed in ventricle 3 Expressed with HER-2 in breast cancer cells 1.38 0.04

LOC100295009 Rho guanine nucleotide exchange factor (GEF) 7-like Now termed ARHGEF7, induces membrane ruffling -0.69 0.02

LOC787649 Histone H4-like Pseudogene -0.77 0.05

MIC MHC class I-related protein Stress-induced cell-surface antigen 0.77 0.04

NAPB N-ethylmaleimide-sensitive factor attachment protein, beta Involved in vesicular transport between endoplasmic 

reticulum and Golgi apparatus.

-0.60 0.05

TMCC2 Transmembrane and coiled-coil domain family 2 Involved in genesis of Alzheimer’s disease 1.68 0.03

TMEM54 Transmembrane protein 54 Beta-Casein-like, tumour-associated antigen 0.80 0.02

LOC618012 Similar to histone cluster 1 Histone H2B type 1-like 0.73 0.03

TMEM92 Transmembrane Protein 92 Expressed in prostate tumours. 0.73 0.03

COL1A1 Alpha-1 type I collagen Component of type I collagen is a fibril-forming 

collagen found in most connective tissues.

0.73 0.03

LOC615867 Similar to Spermatid-specific linker histone H1-like protein Unknown function 0.73 0.03

SAMD14 Sterile alpha motif domain containing 14 Implicated in adenocarcinoma 0.73 0.03

SGCA Sarcoglycan, alpha (50kDa dystrophin-associated glycoprotein) Sarcoglycan complex component, linking F-actin and 

the ECM

0.73 0.03

LOC786342 Uncharacterised protein Unknown function -1.13 0.04

LOC781940 SPACA7: Sperm Acrosome Associated 7 Released following acrosome reaction in sperm. -1.13 0.04

MIR708 Mir-708 microRNA Alters gene expression, suppresses wnt signalling. -0.70 0.01

UBE2E2 Ubiquitin-conjugating enzyme E2E 2 (UBC4/5 homolog, yeast) Catalyses attachment of ubiquitin to proteins for 

degradation.

-0.59 0.05
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5.4.6.3 Differential methylation of intragenic regions 

49CGIs in intragenic regions were differentially methylated following BMA treatment. Of 

these, 29 were exonic and 44 were intronic, with 24 CGIs overlapping exonic and intronic 

regions of the same gene. These are summarised below in Figure 57.
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Figure 57: Differential methylation of intragenic CpG island regions following BMA treatment to blastocyst stage. Gene IDs LRRC27 to CDV3 were 
differentially methylated in a exonic CGI, whereas genes from PTPRN2 to SLC29A11 were differentially methylated in and intronic region. All genes 
displayed exceeded the significance thresholds of fold change log(0.5) and p<0.05. 
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Table 23: Table describing the gene name, product function, fold change and p value of 
the data shown above in Figure 57. 

Exon Intron Gene name Role Fold-
change

P-value

LRRC27 LRRC27 Leucine rich repeat containing 27 Protein coding, unknown role -1.26 0.02

LOC616486 Uncharacterised Similar to uncharacterized protein C17orf47 -0.90 0.03

COPS7A COPS7A COP9 constitutive photomorphogenic
homolog subunit 7A 

COP9 signalosome complex component. Regulates ubiquitin 
conjugation

-0.90 0.02

MARK3 MARK3 MAP/microtubule affinity-regulating kinase 3 Phosphorylates tau, MAP2 MAP4 and HDAC7. -0.78 0.02

LOC787649 LOC787649 Histone H4-like Similar to Hist1h4c protein -0.77 0.05

PPP1R7 PPP1R7 Protein phosphatase 1, regulatory (inhibitor) 
subunit 7

Regulates PP1, required for mitosis and correct localisation of PP1. -0.73 0.00

LOC100335
287 

Uncharacterised

LRRFIP2 Leucine Rich Repeat (In FLII) Interacting 
Protein 2

Wnt signalling activator, positively regulates Toll-like receptor 
signalling.

-0.67 0.01

ZSWIM3 Zinc finger, SWIM-type containing 3 Zinc binding, unknown function -0.64 0.04

IQCE IQCE IQ motif containing E Implicated in microcephaly -0.63 0.01

SERPINB4 Serpin peptidase inhibitor, clade B 
(ovalbumin), member 4

Protease inhibitor, mediate immune response to tumour cells -0.61 0.03

LOC100337
240

Serpin B3-like Possible protease inhibitor -0.60 0.01

MAN2A1 MAN2A1 Mannosidase alpha class 2A Glycosyl hydrolase -0.60 0.01

RHBDF1 RHBDF1 Rhomboid 5 homolog 1 (Drosophila) Regulates secretion of EGFR ligands -0.59 0.04

LOC100296
784

LOC100296784 Diabetes related ankyrin repeat protein-like Unknown function. 0.60 0.04

RSBN1 RSBN1 Round spermatid basic protein 1 Transcription regulation in germ cells 0.65 0.01

SH2B3 SH2B3 SH2B adaptor protein 3 Growth factor and cytokine signalling 0.65 0.04

LOC100299
475

LOC100299475 Uncharacterised Unknown function 0.66 0.02

HMCN2 HMCN2 Similar to hemicentin 2 Calcium ion binding 0.68 0.04

MIC MIC MHC class I-related protein Stress-induced cell-surface antigen 0.77 0.04

KIF14 KIF14 Kinesin family member 14 Microtubule-associated motor role in cytokinesis 0.77 0.03

TMEM54 TMEM54 Transmembrane protein 54 Tumour-associated antigen, antisense RNA 0.80 0.02

MYO9B MYO9B Myosin IXB Unconventional myosin, associated with type 1 diabetes 0.80 0.04

SETD1B SETD1B SET domain containing 1B Histone methyltransferase component 0.81 0.00

WNT5B WNT5B Wingless-type MMTV integration site family, 
member 5B

Ligand in wnt cascade 0.82 0.04

TMCC2 TMCC2 Transmembrane and coiled-coil domain 
family 2

Interacts with amyloid protein precursor and apolipoprotein A. 1.68 0.03

NKX2 NKX2 NK2 homeobox 1 Thyroid-specific transcription regulator 1.26 0.01

CDV3 CDV3 Carnitine-deficiency associated gene 
expressed in ventricle 3

Expressed with HER-2 in breast cancer cells 1.38 0.04

PTPRN2 Receptor-type tyrosine-protein phosphatase 
N2 precursor

Phosphorylates phosphatidylinositol, Autoantigen associated with 
type II diabetes mellitus

-0.98 0.01

ZNF462 Zinc finger protein 462 Transcription regulation -0.92 0.02

SLC39A11 Solute carrier family 39 (metal ion 
transporter), member 11

Zinc-influx transporter -0.84 0.02

SUFU Suppressor of fused homolog (Drosophila), Negative regulator of sonichedgehog/patched signalling -0.84 0.02

TCERG1L Transcription elongation regulator 1-like Associated with type II diabetes and ADHD -0.84 0.02

FBF1 Fas (TNFRSF6) binding factor 1 Apical junction complex assembly in epithelial cells -0.82 0.03

LOC615982 Similar to PH domain leucine-rich repeat-
containing protein phosphatase

Unknown function -0.77 0.02

LOC100336972 Centaurin, gamma 2-like Unknown function -0.77 0.02

BRSK2 BR serine/threonine kinase 2 Key role in axogenesis, cell cycle and insulin secretion. -0.74 0.04

LOC100298939 Uncharacterised Unknown function -0.74 0.04

JPH3 Junctophilin 3 Junctional membrane complex component. Brain specific. -0.67 0.02

FOXN3 Forkhead box N3 DNA-damage inducible transcription repressor causes cell cycle arrest. -0.65 0.02

DTX2 Deltex 2 Ubiquitin E3-ligase, regulator of notch signalling -0.65 0.01

PDE10A Phosphodiesterase 10A Regulates cAMP and cGMP concentration. -0.63 0.01

MSI2 Musashi RNA-binding protein 2 RNA binding protein in neuronal and embryonic stem cells -0.63 0.04

LOC790124 Similar to vasoactive intestinal peptide 
receptor 2

Unknown function -0.61 0.05

MKL1 Megakaryoblastic leukemia (translocation) 1 Transcriptional coactivator of serum response factor. Inhibits caspase 
expression. Embryonic stemc ell differentiation

-0.61 0.02

SHANK2 SH3 and multiple ankyrin repeat domains 
protein 2

Postsynaptic side of excitatory synapses. Role in autism, also AUTS17 0.64 0.04

TFDP1 Transcription factor Dp-1 E2F transcription factor, regulates activity of cell cycle promoters 0.67 0.02

PCDH15 Protocadherin 15 Regulates calcium-dependent cell-cell adhesion 0.76 0.00

KCNK9 Potassium channel, subfamily K, member 9 pH sensitive K+ channel. Maternally imprinted in brain. Deficiency 
linked to increased appetite and weight gain in mice

0.79 0.02

SLC39A11 Solute carrier 39. Zinc-influx transporter 1.56 0.04
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5.4.6.4 Genes involved in signalling cascades 

A number of genes encoding products involved in key signalling cascades were 

differentially methylated in the blastocyst following inhibition of β-oxidation with BMA. 

These include frizzled receptor ligand WNT5B (+0.82 fold change, p=0.04), Sonichedgehog 

pathway inhibitor SUFU (-0.84 fold change, p=0.02), Rhomboid protease-like protein 

RHBDF1 (-0.59 fold change, p=0.04), adaptor protein SH2B3 (+0.65 fold change, p=0.04), 

MAP kinase cascade component MSI2 (-0.63 fold change, p=0.04) and wnt signalling 

regulator LRRFIP2 (-0.67 fold change, p=0.01). 

5.4.6.5 Genes involved in transcription 

Following inhibition of β-oxidation with BMA, transcriptional regulator TFDP (+0.67 fold 

change, p=0.02) and spermatid-specific transcription factor RSBN1 (+0.65 fold change, 

p=0.01) were hypermethylated, while FOXN3 (-0.65 fold change, p=0.02) was 

hypomethylated, potentially leading altered expression of these genes and a dysregulated 

expression of their target genes.  

5.4.6.6 Genes involved in post-translational modification 

BRSK2 (-0.74 fold change, p=0.04), MARK3 (-0.78 fold change, p=0.02) and PTPRN2 (-0.98 

fold change, p=0.01) are all involved in protein phosphorylation and all were 

hypomethylated following BMA treatment. Mannosidase MAN2A1 (-0.6 fold change, 

p=0.01) and histone methyltransferase component SETD1B (+0.81 fold change, p=0.0) 

were also differentially methylated. 

5.4.6.7 Genes related to disease 

A number of genes which have been implicated in metabolic diseases were differentially 

methylated following inhibition of β-oxidation. In addition to BRSK2 and PTPRN2, which 

are linked to diabetes, MYO9B (+0.8 fold change, p=0.04), an unconventional myosin 

associated with type 1 diabetes (Wirth et al. 1996; Monsuur et al. 2005; Persengiev et al. 

2010) and KCNK9 (+0.79 fold change, p=0.02), which is linked to increased appetite and 

weight gain in mice (Pang et al. 2009), were also differentially methylated following 

inhibition of β-oxidation. 
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A number of DMRs following BMA treatment were related to neurological disorders, for 

example JPH3 (-0.67 fold change, p=0.02) is associated with Huntington’s disease (Sułek-

Piatkowska et al. 2008) and SHANK2 (+0.64 fold change, p=0.04) with autism (Berkel et al. 

2010). TMCC2 (+1.68 fold change, p=0.03) interacts with both amyloid protein A and 

apolipoprotein A and hence is related to Alzheimer’s disease (Hopkins et al. 2011; 

Hopkins 2013).  
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 Overview of the L-carnitine treated blastocyst transcriptome 5.4.1

and epigenome 

 

Figure 58: Combined circular plot showing transcriptomic and epigenetic changes 
following promotion of β-oxidation with L-carnitine. Only genes which were significantly 
differentially expressed or differentially methylated are displayed. 

One gene, encoding the mineralocorticoid and glucocorticoid-dependent transcription 

factor NR3C2, was upregulated and hypomethylated following L-carnitine treatment. The 

DMR, however, was in an ‘open sea’ region and hence located far from the CGI, likely 

limiting its effect on transcription. 
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 Overview of the BMA-treated blastocyst transcriptome and 5.4.1

epigenome 

 

Figure 59: Combined circular plot showing transcriptomic and epigenetic changes 
following inhibition of β-oxidation with BMA. Only genes which were significantly 
differentially expressed or differentially methylated are displayed. 

Four concordant differences were detected following BMA treatment, LOC506260, 

LOC511424, LOC505766 and SCHIP1. Encoding Schwannomin-interacting protein 1, 

SCHIP1 was upregulated and hypomethylated following BMA treatment. SCHIP1 interacts 

with NF2 or schwannomin, a scaffolding protein and tumour suppressor (Goutebroze et 

al. 2000). 
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5.5 Discussion 

A large number of genes were altered at the level of gene expression or methylation in 

response to manipulation of fatty acid β-oxidation. While the microarray analysis 

produces a static impression of the genetic activity of a group of embryos and the fold 

changes may be minor, differential regulation of gene expression at this early stage of 

development could have far-reaching consequences for the ongoing development of the 

embryo. The foetal developmental origin of health and disease (DoHaD) hypothesis was 

first noted in (Barker 1986), more recently reviewed (Barker 2007) and suggests that 

minute changes in the oocyte and embryo environment permanently affect the 

organism’s development, metabolism and gene expression, impacting on susceptibility to 

coronary heart disease and many other conditions. As discussed above, changes in the 

expression levels of some genes seem to predispose an embryo to a failed implantation 

or placental development, potentially aborting foetal development. It is equally likely that 

changes in expression of some genes could generate an apparently normal phenotype, 

with similar in vitro development rates and possibly successful pregnancies, but with far-

reaching consequences for the ongoing development of each individual.  

It should be noted that the pattern of gene expression differs greatly between in vivo 

derived and in vitro produced embryos (Niemann and Wrenzycki 2000; Bertolini et al. 

2002; Lonergan et al. 2003). Moreover, comparison of gene expression between embryos 

produced by IVF had substantial differences in gene expression profile compared to 

embryos generated by ICSI (Bridges et al. 2011), even between constitutively expressed 

or so-called ‘housekeeping genes’ (Luchsinger et al. 2013). 

 Metabolic differences 5.5.1

L-carnitine treated blastocysts had significantly lower OCR and pyruvate consumption 

rates than control or BMA treated embryos (Figure 42). This is in agreement with the 

previous OCR data in this thesis (Figure 31). In contrast to previous data (Figure 30, Figure 

31), BMA-treated embryos did not have significantly increased OCR compared to control 

embryos. This may be due to the removal of outliers exceeding mean pyruvate or oxygen 

consumption ±2s.d. as more metabolically active blastocysts e.g. expanding blastocysts 
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may have dramatically higher consumption rates than a group of similar stages of early 

blastocysts. 

 Differential expression following promotion of β-5.5.2

oxidation 

Promotion of fatty acid β-oxidation with L-carnitine led to a total of 152 changes in gene 

expression at the blastocyst stage, a shift related to an overall decrease in oxygen and 

pyruvate consumption (Figure 42). A relatively minor manipulation, providing an 

increased supply of a physiological compound to manipulate metabolism of an 

endogenous energy source, can therefore give rise to a wide range of effects at the 

metabolic and transcript levels. This suggests that fatty acid β-oxidation is linked to 

overall regulation of metabolism and gene expression and that dysregulated β-oxidation 

in the earliest stages of preimplantation development can have far-reaching effects. 

5.5.2.1 Genes involved in successful pregnancy 

Several of the genes which were altered at transcript level following promotion of β-

oxidation with L-carnitine have previously been reported to be differentially expressed in 

embryos that failed to give a pregnancy. For example, TNFα is associated with foetal 

resorption and was upregulated in embryos resulting in no pregnancy (Rekik et al. 2011). 

In the present study, L-carnitine-treated embryos did not exhibit altered expression of 

TNFα to controls, but expression of LITAF (lipopolysaccharide-induced TNF factor), 

encoding a protein which mediates TNFα expression, was downregulated. Also 

downregulated in the present study were PGTS2 (Cyclooxygenase 2), PLAU (urokinase-

type plasminogen activator), and IFNτ-C1 (interferon tau c), which binds CDX2 in bovine 

non-trophoblast cells. Transcript abundance of TXNIP (thioredoxin-interacting protein), 

which inhibits TXN activity or availability, was increased (0.88 fold increase, p=0.03). 

Expression of COX-2, PLAU, TXN and CDX2 was lower in embryos resulting in unsuccessful 

pregnancy in a study by Rekik et al. (2011), suggesting a potential link between increased 

β-oxidation and unsuccessful pregnancy.  

5.5.2.2 Mitochondrial permeability and morphology  

The transcription of a number of genes involved in mitochondrial behaviour was altered 

following carnitine treatment. HEBP2, also known as SOUL, was downregulated at the 
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transcript level. This gene plays a role in the induction of apoptosis in response to 

oxidative stress. Normally, mammalian embryos cannot undergo apoptosis prior to the 

maternal-zygote transition (MZT) and apoptosis is rare in embryos of higher 

morphological quality before the blastocyst stage (Hardy 1999). However the net effect of 

reduced HEBP2 expression may allow compromised blastomeres to escape apoptosis. 

Reduction of HEBP2 may also reduce mitochondrial membrane permeability (Zylka and 

Reppert 1999; Szigeti et al. 2006; Szigeti et al. 2010; Ambrosi et al. 2011). However, as 

reported above, L- carnitine-treated embryos did not have significantly different 

mitochondrial polarisation compared to controls, although mitochondrial polarisation 

was significantly lower at early cleavage stages (Figure 37, Chapter 4). ALAS2, required for 

haem biosynthesis, was upregulated following L-carnitine treatment, suggesting that 

synthesis of hemoproteins could be increased following promotion of β-oxidation. Also 

upregulated was RAB32, a protein which is required for mitochondrial fission. Perhaps 

increasing expression of ALAS2 and RAB32 could support or even accelerate 

mitochondrial development and division. These data suggest that altered expression of 

genes involved in mitochondrial structure and function could contribute to the metabolic 

differences observed following promotion of β-oxidation with L-carnitine during 

preimplantation development. 

5.5.2.3 Genes involved in metabolism 

A number of genes related to fatty acid β-oxidation were modulated at transcript level 

following L-carnitine treatment. Five genes involved in fatty acid elongation and synthesis 

of triglyceride were downregulated following carnitine exposure (ELOVL1, ACOT4, ACSL6, 

THEM4, TPI1), while one transcript required for β-oxidation, CYP422A, was upregulated.  

It is tempting to speculate that the overall effect of these changes is to reduce the 

synthesis of triglyceride in an attempt to regulate the rate of β-oxidation to native levels, 

abating the promoting effect of L-carnitine. CYP422A (cytochrome P450, family 4, 

subfamily A, polypeptide 22) is required for hydroxylation of laureate and palmitate, two 

unsaturated fatty acids. 

In contrast, only one gene directly related to carbohydrate metabolism was altered. 

STBD1, starch binding domain 1, may anchor glycogen to intracellular membranes as part 

of glycogen degradation (Jiang et al. 2011). Interestingly, this transcript was upregulated 

in L-carnitine-treated blastocysts, suggesting an increased capacity to degrade glycogen. 
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However, this is the only gene involved in carbohydrate metabolism identified by the 

transcriptomic platform, suggesting that the reduction in pyruvate consumption in this 

cohort (Figure 42B) and increased glycolysis by L-carnitine-treated embryos (Figure 32C) 

are regulated at a metabolic, rather than genetic, level. 

5.5.2.4 Genes involved in lipid metabolism 

ELOVL1, responsible for elongation of long-chain fatty acids, was downregulated, 

suggesting a decrease in synthesising longer chain forms for storage and in agreement 

with the model of increased β-oxidation rather than fat storage. Downregulation of 

ACSL2, a long-chain fatty acid synthetase, and TPI1, which converts Glyceraldehyde-3-

Phopshate (GAP) to Dihydroxyacetone-phosphate (DHA) for TG synthesis, may have a 

similar effect. A similar gene to ELOVL1, ELOVL5, is differentially expressed in response to 

serum treatment in the ovine blastocyst and is required for fertility in mice (Moon et al. 

2009; Hughes et al. 2011). It is therefore possible that downregulation of ELOVL1 could 

impact on fertility. ACOT4, which hydrolyses Acyl-CoA, and THEM4, which hydrolyses 

medium and long-chain fatty acyl-CoA groups, were also downregulated, suggesting a 

possible regulatory mechanism to limit β-oxidation in spite of increased L-carnitine 

provision. STBD1, starch binding domain 1, involved in carbohydrate binding and glycogen 

metabolism, was upregulated in carnitine-treated blastocysts, suggesting a possible 

increase in glycogen breakdown.  

Additionally, MTMR9, linked to obesity and diabetes, along with CLDN23, linked to 

childhood obesity, were downregulated following treatment with L-carnitine. It is 

tempting to speculate that such changes might offer a link toward obesity in childhood or 

adult life following dysregulated embryonic fatty acid metabolism. 

5.5.2.5 Genes involved in successful pregnancy 

Three transcripts related to successful pregnancy were down-regulated in carnitine-

treated blastocysts compared to controls. Interferon-τ is the primary signal for maternal 

recognition of pregnancy and low expression, following increased embryonic fatty acid β-

oxidation, would likely reduce the chance of successful recognition of pregnancy. 

Reduced expression of PAG2 has been related to spontaneous abortion, while PAG12 is 

reportedly involved in implantation and placentogenesis. Taken together, downregulation 

of PAG genes may have a compounding effect leading to inhibition of successful 
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implantation and placenta development and an increased likelihood that the embryo will 

abort. If the carnitine-treated embryos happened to develop more slowly, these changes 

would be unsurprising, however the carnitine-treated and control embryos were each 

profiled at around stage B3 (mean=2.7 v 2.6). Therefore, these data suggest that 

blastocysts with increased β-oxidation have reduced ability to signal to the mother and 

implant successfully. 

Several genes which are altered at transcript level have been reported to have differential 

expression dependent of the stage of embryo development. In separate experiments, 

kinetic data collected using the Primovision embryo development tracking system 

suggested that L-carnitine treated embryos begin blastocoel expansion earlier than 

control or Etomoxir-treated embryos (Figure 40). However, in this case the metabolic 

profiles and fixing for microarray analysis were performed on L-carnitine-treated and 

control blastocysts at similar stages of blastocyst expansion (B3). On average, BMA-

treated embryos were at a slightly more advanced stage of development (B4), though this 

was not a statistically significant difference (p=0.8). Where possible, blastocysts of a 

similar developmental stage were analysed but embryos were primarily selected based 

on metabolic similarity and blastocyst numbers were dependent on a variable tissue 

supply. Typically, embryos with slower development rates exhibit lower TNFα expression, 

but in this case the carnitine-treated embryos were measured at a similar stage of 

expansion and may have increased development rates (Figure 40). This suggests an even 

greater discrepancy between the rate of development and TNFα expression in L-carnitine-

treated embryos. 

5.5.2.6 Genes involved in glutathione metabolism 

The gene GSTO1, encoding the cytoplasmic enzyme Glutathione S-transferase omega-1, 

was downregulated in L-carnitine-treated embryos. L-carnitine treatment has been 

reported to alter glutathione metabolism, increasing resistance to oxidative stress, in a 

range of cell types (Gülçin 2006) and this may be part of such a response. GSTO1 is one of 

a number of enzymes bonding glutathione to a range of reactive moieties (R-X-

glutathione). R-X-glutathione is then degraded by GGT1 and GGTL3. This change at the 

transcript level may lead to an increase in bioavailability of glutathione, but a reduction in 

glutathione-mediated breakdown of toxic moieties. 
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5.5.2.7 Squalene epoxidase 

SQLE, encoding an oxygen-consuming enzyme, may be responsible for some of the non-

mitochondrial oxygen consumption reported in Chapter 3 (Figure 19). Interestingly, its 

expression was downregulated following carnitine treatment, and overall oxygen 

consumption was correspondingly reduced. 

5.5.2.8 Genes involved in protein modification 

5.5.2.9 Genes related to disease 

Almost all of the genes discussed above have relevance to disease conditions, including 

developmental and metabolic disorders related to knockout or overexpression of 

enzyme-coding genes. However some of the genes identified have hitherto been detected 

only in association with disease and it is possible that further analysis could elucidate the 

developmental origins or components of certain conditions. Following L-carnitine 

treatment, CALB1 is downregulated and is also downregulated in Huntington’s disease 

patients. CLDN23 and MTMR9 are both downregulated and have links to childhood and 

adult obesity respectively. FSTL1 is upregulated and upregulates other genes involved in 

the inflammatory component of arthritis. Also upregulated is AUTS2, which has been 

reported to confer susceptibility to autism.  

5.5.2.10 Genes involved in prostaglandin synthesis 

Prostaglandins are synthesised from arachidonic acid and as L-carnitine treatment 

promotes increased β-oxidation of fatty acids, it might be expected that bioavailability of 

arachidonic acid would also be reduced. Indeed, TIA1, encoding a silencer of COX-2, as 

well as its target gene, PTGS2/COX-2 were both downregulated following L-carnitine 

supplementation. This suggests a possible mechanism for a reduction in prostaglandin 

synthesis in embryos with increased β-oxidation. These proteins are mitochondrially 

localised and their activity may be linked to the changes in mitochondrial polarisation, 

OCR and potential changes in mitochondrial development following carnitine treatment. 

Prostaglandin synthesis normally varies with embryo development, so decreased 

expression of these genes might suggest a reduced ability for L-carnitine-treated embryos 

to synthesise prostaglandins in comparison with control embryos at the same stage of 

development. 
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 Differential expression following inhibition of β-oxidation 5.5.3

5.5.3.1 MAP kinase signalling 

A number of genes involved in MAP kinase signalling were upregulated following BMA 

treatment. The MAP kinase pathway typically responds to stimuli including mitogens but 

also osmotic or heat stress, and regulates proliferation, mitosis, apoptosis and gene 

expression. An increase in expression of MAP kinase components suggests that the BMA-

treated embryo is under stress and may possess altered cell division and apoptosis rates. 

It is possible that CACNA1G responds to mitochondrial depolarisation in embryos with 

dysregulated fatty acid metabolism (Figure 37, Chapter 4). A common mutation of 

CACNA1G is linked to autism (Strom et al. 2010), adding to a growing evidence base 

linking calcium signalling, mitochondrial function and autism (Lombard 1998). It is 

interesting to consider that carnitine-treated embryos have increased lactate production 

at early cleavage and blastocyst stages, as high blood lactate production is a signature of 

mitochondrial defects in children with autism (Correia et al. 2006). 

TNFRSF1A, an activator of NF-kB, as well as NF-kB itself, were both upregulated following 

BMA treatment, potentially having a synergistic increase in NF-kB signalling. NF-kB has a 

wide range of effects and dysregulated activation can cause inflammatory conditions and 

immunodeficiencies (Piret et al. 1995).  

5.5.3.2 Genes involved in lipid metabolism 

Two genes involved in lipid metabolism were upregulated following BMA treatment. 

APOA1, the main protein component of high density lipoproteins, is a prostacyclin 

stabilising factor which promotes fat efflux. Its upregulation following BMA treatment 

might suggest that the embryo is attempting to remove excess lipid by alternate means, 

since BMA inhibits β-oxidation.  PNPLA2 is a target of PPARγ and its upregulation may 

increase hydrolysis of lipid in lipid droplets which has been implicated in the response to 

starvation (Kim et al. 2006; Fischer et al. 2007; Paek et al. 2012). 

5.5.3.3 Genes involved in amino acid metabolism 

A total of 5 genes involved in amino acid degradation were downregulated following BMA 

treatment. This includes 2 subunits of the glycine cleavage system, polyamine oxidase and 
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proline dehydrogenase. One interpretation of these results is that the BMA-treated 

embryo is recovering from reduced β-oxidation by conserving amino acids for use as an 

energy source, reducing breakdown of amino acids for biosynthetic pathways. PAOX is 

involved in polyamine back conversion and regulates polyamine intracellular 

concentration. It is also involved in H2O2 generation, so a decrease in expression could 

reduce ROS generation. 

5.5.3.4 WNT signalling 

WNT5B, encoding Wingless-Type MMTV Integration Site Family, Member 5B, is a key 

component of the wnt signalling cascade, vital in normal development, since it regulates 

cyclin D1 expression and is a key component of carcinogenesis (Yang 2003). Interestingly, 

variation in wnt5b is liked to type 2 diabetes (Salpea et al. 2009a). Hypermethylation of 

WNT5B following L-carnitine treatment could enhance expression of this key protein, 

potentially allowing accelerated development. 

5.5.3.5 Genes involved in mitochondrial structure and function 

A total of 24 genes involved in mitochondrial structure and function were downregulated 

following BMA treatment. This is a large number of genes, and likely reflects the 

decreased mitochondrial polarisation ratio and increased oxygen consumption by BMA-

treated embryos (Figure 29 and Figure 36, Chapter 4). Indeed, among the downregulated 

genes are SLC25A5, SLC25A11, both ADP/ATP carriers involved in ATP synthase activity, 

along with the ATP synthase component ATP5G1 (F0 subunit) and ATP6VIC2 (ATPase 

subunit B1), possibly suggesting a decreased capacity to synthesise ATP which might 

stimulate increased OCR in an attempt to overcome this. Genes encoding subunits of the 

glycine cleavage system are included in this cluster (loc787129, loc783608. The general 

functions of loc613316 and loc783502 are generation of precursor metabolites and 

energy. 

PHB2 is involved in regulating mitochondrial respiration (Coates et al. 2001). ENDOG 

generates RNA primers needed for mtDNA replication and, along with TCF6 and SSBP, is 

required for mitochondrial biogenesis (Tiranti et al. 1995). MRPL2 encodes the large 

subunit of the mitoribosome, one of 54 mitoribosomal proteins, all of which are encoded 

by nuclear DNA (Kenmochi et al. 2001). The homodimeric SUOX localises to the 

mitochondrial intermembrane space and catalyses the final oxidation in the oxidation of 
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cysteine and methionine (Kisker et al. 1997). AIFM2 binds ssDNA and mediates caspase-

independent apoptosis (Ohiro et al. 2002). SLC25A5 cycles ADP and ATP between the 

cytoplasm and mitochondrial matrix and its suppression induces apoptosis (Jang et al. 

2008). Thioredoxin 2 also has an anti-apoptosis function and regulates mitochondrial 

membrane potential (Chen et al. 2002). HMBS is involved with heme synthesis and 

mutations are associated with autosomal dominant disease (Gregor et al. 2002). CYC1 is a 

component of cytochrome b-c1 complex, which accepts electrons from the Rieske protein 

and transfers to cytochrome c (Valnot et al. 1999). TIMM17B encodes a component of the 

TIM23 complex which mediates transport of mitochondrial proteins across the inner 

mitochondrial membrane (Bauer et al. 1999). ATP5G1 is one of 3 genes encoding subunit 

c of the proton channel of ATP synthase (Dyer and Walker 1993). IVD catalyses the third 

step in leucine breakdown and a deficiency leads to a build-up of the toxic isovaleric acid, 

which can damage the brain and nervous system  (Vockley et al. 2000). ATP6V1C2 

encodes a subunit of Vacuolar ATPase, which acidifies organelles to regulate protein 

sorting and receptor-mediator endocytosis (Smith et al. 2002). 

5.5.3.6 Post-translational modification 

Of these genes, 11 are involved in formation of disulphide bridges (B4GALT1, CTSL2, MPZ, 

LOC786967, FETUB, LOC783653, SCARA5, PROS1; also TXN2, GLRX, GLRXL, LOC786967 

and LOC783653 mentioned above) and 11 with glycoproteins (B4GALT1, SLC2A8, P2RX4, 

CTSL2, MPZ, FETUB, UPK3B, LMBRD1, FAM55C, SCARA5, PROS1). Concurrent 

downregulation of these genes is likely to reduce overall protein modification and may 

have adverse effects on protein turnover.  

A number of genes related to ubiquitination were altered during manipulation of β-

oxidation. Following BMA treatment, C1QBP expression was downregulated and UBE2E2 

was hypomethylated in a promoter region. Abnormalities in ubiquitin-controlled 

processes has been shown to cause disease including carcinogenesis, so it is possible that 

these alterations could have a deleterious effect on embryo development aside from 

dysregulated protein breakdown (El-Sayed et al. 2006). 

5.5.3.7 Stress response 

5 genes involved in response to stress, including 4 heat shock proteins and DNAJB1, were 

upregulated following BMA treatment. This suggests that the BMA-treated blastocyst is in 
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a state of stress reflected by the low mitochondrial polarisation ratio (Figure 36) and 

altered carbohydrate metabolism (Figure 32). These data suggest that the BMA-treated 

embryo might be trapped in a hypermetabolic state, forcing the dynamic energy budget, 

which describes the ability of respiring cells to modulate energy metabolism in response 

to changing demands and environmental conditions, into a potentially damaging range 

termed pejus (Kooijman 2009; Guerif et al. 2013b). GADD45B is also induced by stressful 

growth conditions and its upregulation following BMA treatment is another indication 

that the embryo responds to inhibition of β-oxidation as a tress condition. GADD45B 

demethylates certain DNA promoter regions, increasing expression of genes involved in 

neurogenesis in the adult such as brain-derived neurotrophic factor and fibroblast growth 

factor (Takekawa and Saito 1998; Ma et al. 2009). 

5.5.3.8 Stimulus response 

Six further genes involved in the response to stimuli including temperature and antibiotics 

were upregulated following BMA treatment. These include two heat shock proteins 

mentioned above, HSPB8 and HSPA1B, as well as CASP3. Additionally, DNA repair 

receptor XRCC2 (0.64 fold increase, p=0.00), Crystallin CRYAB (2.6 fold increase, p=0.01) 

and growth factor receptor NGFR (1.46 fold increase, p=0.00) were upregulated. Taken 

together, these upregulations suggest that the embryo is responding to BMA treatment 

by invoking a stress response, with similar effects as exposure to increased temperature 

or antibiotic compounds. 

5.5.3.9 Cellular remodelling 

Of the genes in this category, 8 normally have roles in cell projection, such as cilia, 

filopodia or axons (STMN2, KLC1, SWAP70, UCHL1, S100A11, TUBB6, CDH2, KLC2) 8 have 

cytosolic roles (ACTG2, CASP3, KLC1, UCHL1, PNPLA2, KLC2, CAMK2N2, GCH1) and 6 are 

required for intracellular transport (AP1S2, KLC1, UCHL1, SPTBN1, KLC2, SEC24D). This 

group of genes cover intracellular structure and trafficking of proteins as well as overall 

cellular movement into the extracellular space. Typically, in the adult, a number of the 

genes are associated with axon growth and other cellular extrusions. It might be 

considered unusual to see such genes significantly upregulated in blastocyst/embryo 

development but this may be connected with the relative higher stage of expansion 

compared to the control embryos. However, it seems likely that increased cellular 
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remodelling would place a greater demand on energy production, possibly explaining the 

increased oxygen consumption of BMA treated embryos compared to controls. 

 Differential methylation following promotion of β-5.5.4

oxidation 

Manipulating fatty acid β-oxidation in the early embryo causes a wide range of metabolic, 

transcriptomic and now epigenetic effects. These data, along with recently published 

reports, suggest that the metabolic legacy of dysregulated β-oxidation is complex, 

potentially interfering with successful recognition of pregnancy and embryo 

development, programming altered metabolism and genetic susceptibilities to disease. 

5.5.4.1 Differential methylation at CGI sites within 5kbp of a promoter 

Following embryo culture with L-carnitine, CGIs within 1kbp of the gene promoters 

controlling expression of COX7A2L, KIAA1989, PIK3CB and POU3F1, along with one 

further CGI within 5kbp of a promoter (TMEM141), were significantly hypermethylated 

relative to control embryos.  COX7A2L encodes a protein which may bind to electron 

transport chain complex IV to regulate oxygen consumption following stimulation by 

oestrogen (Watanabe et al. 1998). Also hypermethylated was a CGI within 1kbp of the 

promoter controlling expression of phosphoinositide-3-kinase 2β PIK3C2B, which 

phosphorylates phosphatidylinositol and phosphatidylinositiol-4-phosphate and is 

involved in PI signalling and metabolism (Arcaro 1998; Arcaro et al. 2000). A transcription 

regulator thought to be involved with key embryonic development events, POU3F1 or 

Oct-6, was also hypermethylated within 1kbp of its promoter region. This might suggest a 

potential suppression of expression, which is usually linked to completion of stem cell 

differentiation (Kawasaki et al. 2003; Patodia and Raivich 2012). 

5.5.4.2 Differential methylation at CGI sites within 50kbp of a 

promoter 

Functional annotation analysis of all differentially methylated CGIs within 50kbp of a 

promoter using DAVID online software revealed 2 functional annotation groups: 

transcriptional regulators and phosphatidylinositol signalling. Additionally, a number of 

genes were relevant to metabolic and developmental disease. 



207 
 

5.5.4.3 Genes involved in phosphatidylinositol signalling 

Several genes involved in phosphatidylinositol signalling were differentially methylated in 

promoter regions following promotion of β-oxidation. ITPR3 is an I3P receptor which 

mediates intracellular calcium release (Bánsághi et al. 2014). I3P receptors are also 

associated with calmodulin and are phosphorylated by PKA, PKB, PKG and CaMKII. 

Knockout studies in mice recently suggested that ITPR3 as well as ITPR2 are involved in 

energy metabolism and growth (Futatsugi et al. 2005). Promoter hypermethylation could 

cause suppression of ITPR3 expression, restricting aspects of energy metabolism. 

INPP5B was hypomethylated in a promoter region. This is a membrane-associated protein 

which activates phosphatidylinositol 4,5-bisphosphate by hydrolysis and localises to the 

endocytic and secretory pathways (Williams et al. 2007).  

5.5.4.4 Genes involved in prostaglandin metabolism 

A CGI within 50kbp of the promoter PTDGS was hypomethylated. This gene encodes 

Prostaglandin D2 synthase, which converts PGH2 to PGD2, a prostaglandin with a wide 

variety of roles including maintenance of the male reproductive system and the central 

nervous system (Ross et al. 1991). Interestingly, increased provision of lipid in the bovine 

diet has been reported to reduce prostaglandin secretion (Petit et al. 2002). 

Hypermethylation of this gene in response to promotion of β-oxidation could have a 

similar effect. 

PTDGS and C8G are part of the lipocalin superfamily, along with alpha-1-microglobulin, 

although PTDGS has diverged in structure and function (Nagata et al. 1991). C8G is a 

lipocalin family member, the human variant encoding one of three components of the 

Complement membrane attack complex (Dewald et al. 1996). Lipocalins transport 

hydrophobic molecules and are associated with innate immunity, prostaglandin synthesis 

and transport of retinoids and pheromones and are allergens to many mammals. 

5.5.4.5 Genes involved in regulation of transcription 

Differentially methylated regions were detected in CGIs within 50kbp of the promoter 

regions controlling expression of a range of transcription factors. These include POU3F1, 

discussed above, which is a transcription factor binding the octamer motif likely involved 

in embryo development (Kawasaki et al. 2003; Patodia and Raivich 2012). POU3F1 is 
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clustered with a long non-coding RNA gene. LncRNAs also have regulatory roles, with 

some acting as co-activators alongside transcription factor proteins, such as the ncRNA 

Evf-2 and homeobox TF Dlx2 (Panganiban and Rubenstein 2002; Feng et al. 2006). 

Hypermethylation of this CGI may affect expression of both Oct-6 and the lncRNA, 

potentially dysregulating aspects of embryo development.  

EDF1 is a transcription co-activator, functioning with TAT-element binding protein and 

other specific activator proteins to regulate PPARγ, CREB1 and NR5A1 signals. It may 

therefore have a diverse range of effects in lipid metabolism, cell differentiation and nitric 

oxide synthesis (Dragoni et al. 1998; Mariotti et al. 2000; Ballabio et al. 2004). A CGI 

within 50kbp of the EDF1 promoter site was hypermethylated following L-carnitine 

treatment and a resulting change in Edf-1 expression could dysregulate PPARγ signalling. 

A lack of PPARγ would decrease lipid storage and increase β-oxidation, supporting the 

high β-oxidation metabolism of L-carnitine treated embryos.  

Zinc Finger and SCAN Domain Containing transcriptional regulators ZFP37, ZKSCAN4, 

ZNF165, ZNF187 (also known as ZNF25), ZNF192 and ZSCAN16 were differentially 

methylated in CGIs related to promoter regions following promotion of β-oxidation with 

L-carnitine. ZNF165 is specific to sperm and testis and may play a role in spermatogenesis 

(Tirosvoutis et al. 1995; Dong et al. 2004), while ZKSCAN4 regulates expression of the 

ubiquitin ligase MDM2 and the histone acetyltransferase EP300 (Li et al. 2007). 

Differential methylation of these transcription factor genes could allow differential 

expression and a resulting dysregulation in transcription of myriad associated genes. 

5.5.4.6 Genes related to disease 

PGBD1 encodes a piggyback transposase which is specifically expressed in the brain and 

implicated in neural disorders including Alzheimer’s disease and schizophrenia (Belbin et 

al. 2011; Ohnuma et al. 2012). Hypomethylation due to dysregulated β-oxidation could 

allow altered expression, potentially disrupting neural development. 

5.5.4.7 Intragenic DMRs involved in signalling 

A number of genes encoding protein products involved in intracellular signal transduction 

were differentially methylated in intragenic regions. These include GNG5, Guanine 
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nucleotide binding protein 5, encodes a cell surface linked G-protein coupled chemokine 

receptor involved in chemokine signalling transduction (Ahmad et al. 1995). 

WNT5B, encoding Wingless-Type MMTV Integration Site Family, Member 5B, is a key 

component of the wnt signalling cascade, vital in normal development, regulating cyclin 

D1 expression and a key component of carcinogenesis (Yang 2003). Interestingly, 

variation in wnt5b is liked to type 2 diabetes (Salpea et al. 2009a). Hypermethylation of 

WNT5B in an intergenic CGI following L-carnitine treatment could alter expression of this 

key protein, potentially allowing accelerated development. MARK3 is a protein kinase 

activated by phosphorylation which activates MAP2 and MAP4 kinases to control cell 

polarity and cytoskeleton (Drewes et al. 1997). It also phosphorylates HDAC7, regulating 

localisation and activity of histone deacetylase and potentially leading to further 

epigenetic regulation of gene expression in the embryo. These relatively minor changes in 

methylation state of the embryonic genome could have far-reaching effects on ongoing 

development. 
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 Differential methylation following inhibition of β-5.5.5

oxidation 

5.5.5.1 Genes involved in ubiquitination 

UBE2E2 transfers ubiquitin from the E1 complex to lysine residues of proteins designated 

for degradation (Kimura et al. 1997; Ito et al. 1999). Hypomethylation may result in an 

increase of UBE2E2 expression. 

5.5.5.2 Genes involved in signalling 

Promoter regions of several genes involved in cell signalling pathways were 

hypomethylated following promotion of β-oxidation. LOC100295009, known as ARHGEF7 

or β-Pix is a Rho GTPase which activates Rho proteins, recruiting Rac1 and inducing 

membrane ruffling and apoptosis. ARHGEF7 also interacts with SHANK genes, which have 

reported association with autism spectrum disorders (Audebert et al. 2004; Valdes et al. 

2011). MIC is similar to human variants MICA and MICB, which act as stress-induced self-

antigens recognized by γδT, leading to cell lysis. MIC A and B are associated with a 

number of diseases including type 1 diabetes (López-Arbesu et al. 2007; Field et al. 2008). 

NAPB Beta-soluble NSF attachment protein is a component of the intracellular membrane 

fusion apparatus, which is controlled by SNAP (soluble NSF attachment proteins) 

receptors (Whiteheart et al. 1993). The micro RNA MIR-708 was also hypomethylated 

following BMA treatment. Overexpression causes increased cell proliferation, migration 

and invasion in lung cancer and negatively regulates wnt signalling (Jang et al. 2012; 

Robin et al. 2012), it is possible that altered expression due to promoter hypomethylation 

may also affect these pathways. 

5.5.5.3 Genes related to disease 

TMCC2 (Hopkins et al. 2011) is involved in pathogenesis of Alzheimer’s disease. It 

increases production of β-amyloid peptide by interacting with APP (Amyloid precursor 

protein) and APOE4, the major known cause of Alzheimer’s disease (Huang 2011) and 

increases be specific to presenilin-mediated γ-cleavage (Tharp and Sarkar 2013). 

Hypermethylation during earlier development could lead to altered production of these 

proteins. 
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CDV3 encodes a homolog to the mouse gene: Carnitine Deficiency-Associated Gene 

Expressed in Ventricle 3. It is highly expressed in the ventricles of carnitine-deficient 

juvenile visceral steatosis (JVS) mice, a model of cardiac hypertrophy, but this 

upregulation is reduced when the mice are supplied with L-carnitine within 6h (Fukumaru 

et al. 2002). In the present study, CDV3 was hypermethylated following inhibition of β-

oxidation with BMA. It is tempting to speculate that this would allow an increase in CDV3 

expression, causing cardiac hypertrophy in the adult. 

SAMD14 was also hypermethylated in the promoter region, an epigenetic alteration 

previously reported to suppress expression, with involvement in the carcinogenesis of 

pulmonary adenocarcinoma (Sun et al. 2008).  

SGCA is expressed in myotomes during muscle formation and mutations result in 

autosomal recessive lamb-girdle muscle dystrophy (Fougerousse et al. 1998). Unlike 

SGCB, which is expressed ubiquitously by the developing post-implantation embryo, SGCA 

is usually specific to striated muscle. 

Now identified as sperm acrosome associated 7 or SPACA7, LOC781940 was 

hypomethylated in blastocysts following inhibition of β-oxidation with BMA. SPACA7 is 

expressed in testis in the mouse from postnatal day 21 and is released from spermatozoa 

following the acrosome reaction, suggesting a role in cumulus dispersal and fertilisation 

(Nguyen et al. 2014).  

5.5.5.4 Differential methylation of intragenic regions 

5.5.5.5 Genes involved in signalling cascades 

WNT5B and SUFU are both involved in the hedgehog signalling pathway, as well as 

generation of basal cell carcinoma. LOC790124 may also be involved in signal 

transduction. WNT5B is a ligand for the frizzled family of receptors as a part of the wnt 

signalling cascade, involved in development and carcinogenesis (Saitoh and Katoh 2001; 

Salpea et al. 2009b). LRRFIP2 was also hypomethylated and encodes an enzyme which 

positively regulates wnt and Toll-like receptor signalling (Jin et al. 2013) (-0.67 fold 

change, p=0.01). 

Hypermethylation of WNT5B and hypomethylation of its regulator LRRFIP2 may affect 

developmental patterning, while hypomethylation of SUFU, a corepressor complex in 
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sonichedgehog/patch signalling (Chi et al. 2012), and LOC790124 potentially affect 

hedgehog signalling. The hedgehog cascade is also involved in embryo development, 

particularly organogenesis, as well as in stem cell renewal.  

RHBDF1 is a Rhomboid protease-like protein, but does not have protease activity. Instead 

it localises to the ER and regulates secretion of ligands for the epidermal growth factor 

receptor, potentially regulating sleep, cell survival, proliferation and migration (Nakagawa 

et al. 2005; Yan et al. 2008; Zou et al. 2009). SH2B3 is an adaptor protein involved in 

negative regulation of cytokine signal transduction and haematopoiesis, mutations are 

implicated in coeliac disease type 13 and susceptibility to type 2 diabetes (Plagnol et al. 

2011). This gene product also has roles in Notch signalling (Yamamoto et al. 2001; 

Takeyama et al. 2003). Musashi 2, which is involved in embryonic stem cell development 

and differentiation (Wuebben et al. 2012) as well as Mitogen Activated Phosphorylase 

Kinase signalling (Zhang et al. 2014) was hypomethylated following L-carnitine treatment 

(-0.63 fold change, p=0.04). Differential methylation of these genes could disrupt several 

key cell signalling pathways. 

5.5.5.6 Genes involved in transcription 

Following inhibition of β-oxidation with BMA, transcriptional regulator TFDP was 

hypermethylated while FOXN3 was hypomethylated, potentially leading to altered 

expression of these genes and a dysregulated expression of their target genes. TFDP1 is a 

downstream target of TGF-β signalling, and causes arrest at the G1 phase of the cell cycle, 

while FOXN3 may also be involved in DNA-damage dependent cell cycle arrest and a 

decrease in its expression could lead to propagation of cells with DNA damage. RSBN1 is 

expressed in round spermatids, interacts with protein kinase A and as it contains a 

homeobox motif, is likely to play a role in haploid germ cell transcription regulation 

(Takahashi et al. 2004). It is also associated with hypothyroidism and type 1 diabetes. 

5.5.5.7 Post-translational modification 

BRSK2, MARK3, PTPRN2 are all involved in protein phosphorylation and all were 

hypomethylated following BMA treatment. This could lead to an overall decrease in the 

phosphorylation of proteins involved in downstream events leading to neuron 

development, insulin secretion, and histone deacetylation. Both BRSK2 and PTPRN2 are 

linked to diabetes, as BRSK2 inhibits insulin secretion when phosphorylated, while 
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PTPRN2 is an auto-antigen in type 1 diabetes. MAN2A1 localises to the Golgi and 

catalyses the final hydrolysis of the asparagine-linked oligosaccharide maturation 

pathway. It also has roles in lipid and carbohydrate metabolism and is potentially linked 

to obesity (Shenfield et al. 2001). SETD1B specifically methylates lysine-4 of histone 3, 

dependent on demethylation of neighbouring lys-9 (Lee et al. 2007). 

5.5.5.8 Genes related to disease 

A number of genes which have been implicated in metabolic diseases were differentially 

methylated following inhibition of β-oxidation. BRSK2 regulates insulin secretion in 

response to elevated glucose levels via phosphorylation of CDK16 and PAK1. It also 

regulates cytoskeleton reorganization and may be involved in ER stress-induced 

apoptosis. PTPRN2 is implicated in insulin-independent diabetes (Li et al. 1997; Caromile 

et al. 2010). MYO9B is an unconventional myosin associated with type 1 diabetes (Wirth 

et al. 1996; Monsuur et al. 2005; Persengiev et al. 2010). KCNK9 is maternally imprinted 

and expressed in the brain (Barel et al. 2008). Deficiency in KCNK9 expression is linked to 

increased appetite and weight gain in mice (Pang et al. 2009). 

A number of DMRs were related to neurological disorders, for example JPH3 is associated 

with Huntington’s disease (Sułek-Piatkowska et al. 2008) and SHANK2 with autism (Berkel 

et al. 2010). TMCC2 interacts with both amyloid protein A and apolipoprotein A and 

hence is related to Alzheimer’s disease (Hopkins et al. 2011; Hopkins 2013).  

Several of the differentially methylated genes are stress-response elements, such as 

stress-induced cell surface antigen MIC (Collins 2004), while KIF 14 is a microtubule-

associated motor with roles in cytokinesis (Gruneberg et al. 2006; Madhavan et al. 2007) 

 Patterns in the transcriptome and epigenome 5.5.6

Only one concordant difference was identified following L-carnitine treatment, encoding 

the mineralocorticoid and glucocorticoid-dependent transcription factor NR3C2. 

Activation of NR32C stimulates expression of transporters including the Na+, K+ATPase 

vital to blastocoel development (Fuller and Young 2005). Defects in NR32C are associated 

with early onset hypertension which is severely exacerbated during pregnancy. The 

transcript is upregulated and hypomethylated following L-carnitine treatment, potentially 



214 
 

allowing an increased bioavailability of the gene product. This could have a protective 

effect. 

Four concordant differences were detected following BMA treatment including four 

uncharacterised transcripts (LOC506260, LOC511424, LOC505766)  and SCHIP1, 

Schwannomin-interacting protein 1 (Figure 59). SCHIP1, which co-localises with 

schwannomin adjacent to the plasma membrane (Goutebroze et al. 2000), was 

upregulated and hypomethylated following BMA treatment. Hypomethylation could 

enhance expression of SCHIP1, potentially leading to increased interactions with 

schwannomin. Schwannomin is a scaffolding protein and tumour suppressor, so increased 

expression of SCHIP1 may affect cell-cell adhesion, or have a protective effect by binding 

schwannomin to prevent schwannoma tumour formation.  

As the present study marks the first report to combine the EmbryoGENE transcriptomic 

and methylomic platforms, it is not yet possible to compare the current levels of 

congruence to published data using the same method in the preimplantation embryo. 

Some studies have combined genome-wide analysis of transcription and methylation 

status in other tissues. For example, Bock et al. (2012) reported similar hierarchical 

clustering of differentially methylated and differentially expressed genes in murine blood 

stem cells, forming a distinct profile to that of murine skin stem cells. However, current 

understanding suggests that in the mammalian embryo, there is a disconnect between 

methylation levels and gene expression. Recent studies suggest that most methylation in 

the human oocyte and embryo occurs in the gene body, rather than promoter regions 

(Guo et al. 2014; Okae et al. 2014). Therefore it appears that the lack of congruence 

between methylation status and gene expression in the present study may be typical to 

preimplantation tissues.  

 Strengths and limitations 5.5.7

Chapter 5 describes and discusses the myriad changes to gene expression and epigenetic 

status in the bovine blastocyst following manipulation of fatty acid β-oxidation. While 

many significant alterations were found between each treatment group and controls, 

unfortunately time was not available to validate these data by qPCR analysis. Data 

collected using the EmbryoGENE platforms in other studies have been successfully 

validated (Robert et al. 2011; Plourde et al. 2012; Cagnone and Sirard 2013; Cagnone and 
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Sirard 2014), but without validation of the key genes discussed in this chapter, 

interpretation of the data is limited. As the present study marks the first use of the 

EmbryoGENE methylation microarray, it is not possible to refer to published data using a 

similar method.  

In order to provide enough genetic material for microarray analysis, blastocysts were 

combined into small groups. As each blastocyst has a unique genome, this introduces 

heterogeneity.  However metabolic profiling of pyruvate and oxygen consumption 

allowed selection of matched embryos, reducing variation within sample groups. 

 General conclusions 5.5.8

The data presented in this chapter reinforce the causal relationship between 

preimplantation embryo metabolism and gene expression, potentially extending to 

lifetime effects through modification of embryo methylation status. Promotion of β-

oxidation with L-carnitine, or inhibition of β-oxidation with BMA, each have a wide range 

of effects on metabolism, gene expression and DNA methylation, despite no change in 

developmental competence, at least to the blastocyst stage.  

Promotion of β-oxidation led to changes in expression of genes involved in mitochondrial 

structure and function, metabolism, metabolic disease such as obesity, transcription and 

protein modification. Differential methylation affected genes involved in cell signalling, 

transcription and post-translational modification. 

Inhibition of β-oxidation led to changes in expression of genes involved in mitochondrial 

structure and function, metabolism of lipid and amino acids, transcription, protein 

modification, wnt and MAP signalling cascades and stress response, overall suggesting a 

response to stress conditions and dysregulation of metabolism. Differential methylation 

again affected genes involved in cell signalling, transcription and post-translational 

modification. 

Changes in gene expression indicate a potentially transient response to the metabolic 

manipulations, but altered expression can have lasting ramifications in terms of 

development, metabolism and the successful recognition of pregnancy. Furthermore, 

expression of stress response genes is also associated with embryo loss or loss of 

pregnancy (Cagnone and Sirard 2013). In addition, changes in CpG methylation indicate a 
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heritable regulatory level potentially affecting gene expression throughout a hypothetical 

organism’s lifespan. These data suggest that dysregulated β-oxidation in the 

preimplantation mammalian embryo can have long-term effects on gene expression 

through control of epigenetic modification. 
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5.6 Future studies 

Analysis of blastocyst DNA and mRNA using the EmbryoGENE platforms has revealed a 

number of genes involved in embryo metabolism and development which were altered 

following L-carnitine and BMA treatment. Of these, several groups of genes could be 

investigated in more detail using a combination of metabolomics and qPCR techniques 

with individual embryos. Analysis of individual blastocyst expression of genes involved in 

mitochondrial function and energy metabolism could be compared with oxygen and 

carbohydrate metabolism to further investigate the mechanisms of dysregulated 

metabolism following disruption of β-oxidation. Blastocyst biopsy analysis of genes which 

have been identified to have a role in successful implantation or pregnancy in tandem 

with metabolomics could verify the apparent link between β-oxidation and post-

implantation embryo viability. While pre-implantation embryo viability and cell counts 

were not altered during L-carnitine or BMA treatment, expression and methylation of 

many genes involved in proliferation, differentiation and apoptosis were altered. Assays 

of apoptosis could reveal dysregulated proliferation and apoptosis in BMA-treated 

embryos suggested by the differential expression of genes involved in these processes.
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6 General discussion 
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The basic aspects of mammalian embryo energy metabolism are understood following a 

programme of research reporting turnover of energy substrates including glucose, 

pyruvate, lactate, amino acids and oxygen (Leese 2012), although this is limited to in vitro 

studies due to technical challenges and ethical limitations. Oxygen consumption rate 

(OCR) is an excellent marker of overall metabolic activity, increasing during blastocyst 

development with a concurrent increase in oxidative phosphorylation to meet high 

energy demand (Trimarchi et al. 2000b). However relatively few studies have undertaken 

a detailed examination of the bioenergetics of preimplantation embryo development. In 

one of the few studies to detail components of oxygen consumption, Manes and Lai 

(1995) found that 49% of rabbit blastocyst oxygen consumption rate (OCR) was non-

mitochondrial, while in another, Trimarchi et al. (2000b) reported that 30% of bovine 

blastocyst OCR was non-mitochondrial. Lopes et al. (2005) validated the 

nanorespirometer system, a sensitive, accurate and non-invasive assay of embryo OCR 

and linked individual morphological blastocyst quality to differences in basal OCR. 

However, to my knowledge, this thesis represents the first report to measure the 

components of OCR in the mammalian preimplantation embryo. 

Metabolism of fatty acids by β-oxidation in mammalian embryos represents one area of 

metabolic research which, historically, has been relatively neglected. An exciting and 

growing body of research has established that β-oxidation of endogenous triglyceride 

stores provides a vital energy source to mammalian embryo development. Indeed, 

promotion of β-oxidation with exogenous L-carnitine during in vitro oocyte maturation 

has positive effects on maturation, embryo development and cryopreservation (Downs et 

al. 2009; Dunning et al. 2010; Sutton-McDowall et al. 2012; Valsangkar and Downs 2013), 

while supplementation of oocytes in vitro with Non-Esterified Fatty Acids (NEFA) has 

numerous detrimental effects to embryo development, metabolism and gene expression 

(Van Hoeck et al. 2011; Van Hoeck et al. 2013). One of the aims of this thesis has been to 

investigate the potential effects of promoting β-oxidation alongside potential negative 

effects of inhibiting β-oxidation negative on bovine embryo development, energy 

metabolism and gene expression. 
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6.1 Summary 

 Bioenergetic profiling of bovine embryos. 6.1.1

Chapter 3 describes the optimisation of 2 methods used to produce a detailed breakdown 

of the components of OCR in bovine blastocysts. The mean coupled OCR was 66%, similar 

to most somatic cell types (Birket et al. 2011). The mean spare capacity was +89%, 

potentially allowing the embryo to alter its OCR and ATP production dynamically in 

response to high-energy demand independently of the number of mitochondria. Non-

mitochondrial OCR was lower than values previously reported in rabbit (Manes and Lai 

1995) and mouse (Trimarchi, et al. 2000b) at around 12% and may be due to NADPH 

oxidase activity or non-mitochondrial ROS production. The majority of coupled OCR, 57% 

was due to electron flow from NADH to complex I, while a smaller portion was due to 

electron transfer from FADH2 to complex II. FADH2 is a lower-energy substrate than NADH 

and typically supports a lower P/Omax (Nobes et al. 1990). Around 12% of OCR was 

unaccounted for and could be part of mitochondrial ROS production, which may be 

regulated or spontaneous. Individual variation between blastocysts suggests that this 

profile is dynamic and may provide a useful marker of embryo response to nutritional or 

pharmacological challenges, such as those described in chapter 4. 

 β-oxidation and metabolism 6.1.2

Chapter 4 describes the effects of promoting or inhibiting β-oxidation of endogenous TG 

stores on oxygen, carbohydrate and lipid metabolism. The effect of increasing exogenous 

supply of NEFA by serum supplementation was also investigated. To summarise, 

promoting β-oxidation with exogenous L-carnitine decreased oxygen and pyruvate 

consumption, increased rates of TG consumption and lactate production, and led to 

mitochondrial inner membrane depolarisation. Blastocyst development and cell count 

were unaffected. Dysregulated carbohydrate metabolism and mitochondrial dysfunction 

are likely to be deleterious effects (Grindler and Moley 2013; Guerif et al. 2013).  

Preimplantation embryos show some plasticity by adapting to changing metabolic 

conditions, allowing culture systems to adopt a ‘let the embryo choose’ approach (Biggers 

and Racowsky 2002). For example, bovine embryos increase glucose and oxygen 
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consumption at blastocyst stage to provide increased ATP for blastocyst expansion and 

protein synthesis. Embryos can be cultured to the morula stage with only lactate or 

pyruvate as sole exogenous energy source (Brown and Whittingham 1991). 

In contrast to the reported beneficial effects of L-carnitine supply during in vitro oocyte 

maturation (Downs et al. 2009; Wu et al. 2010; Sutton-McDowall et al. 2012), these data 

suggest that increased β-oxidation during preimplantation development could impact 

ongoing development. On the other hand, competitive inhibition of β-oxidation with BMA 

increased oxygen and pyruvate consumption, depolarised mitochondria and decreased 

the rates of TG consumption and lactate output. Furthermore, inhibiting fatty acid 

transport upstream of β-oxidation with Etomoxir increased pyruvate consumption and 

decreased lactate production. Again, cell count and blastocyst development were 

unaffected but dysregulated carbohydrate metabolism and mitochondrial dysfunction 

could affect postimplantation development. Furthermore, without any recognisable 

morphological change, embryos with dysregulated β-oxidation due to diet, disease or 

environmental effects may potentially lead to downstream problems by mechanisms such 

as altered gene expression and permanent epigenetic modification.  

However, the successful development of embryos to blastocyst stage despite 

dysregulated β-oxidation suggests an impressive degree of plasticity and adaptability. 

Even when access to the endogenous energy store of TG is inhibited, the embryo adapts, 

altering oxygen, carbohydrate and amino acid metabolism to compensate, even if the 

result is mitochondrial dysfunction and altered gene expression, including upregulation of 

stress response genes. This might suggest that the embryo is surviving in adverse 

conditions, rather than thriving, perhaps an indication that the embryo is in a pejus state 

(Kooijman 2009). The ability of the bovine embryo to adapt in this way lends further 

weight to the ‘let the embryo choose’ approach to embryo culture.  

 β-oxidation and gene expression 6.1.3

Some of the data reported in chapter 4 were suspected to be legacy effects of defective 

β-oxidation, such as the altered carbohydrate metabolism during early cleavage leading 

to differences in OCR at blastocyst stages. By contrast, other data pointed to legacy 

effects in post-implantation development, such as mitochondrial dysfunction and altered 

lipid consumption. One mechanism for such effects could be alteration of gene 
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expression by immediate alteration at transcription level or epigenetic modification of 

DNA. Indeed, changes in expression of genes related to metabolism, development, stress 

response, metabolic disease and successful pregnancy were identified following 

manipulation of β-oxidation. Furthermore, differential methylation of genes encoding 

products involved in metabolism, development and disease were also identified. These 

data lend weight to the idea that manipulation of metabolism during preimplantation 

development can lead to permanent impairment. 
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6.2 Further work 

Two major research themes were unfortunately not included in the bioenergetic study. 

One original aim was to continue to define the components of OCR in terms of cellular 

process, including OCR used for protein synthesis, transcription, DNA replication and 

signalling using nanorespirometry, applying a similar approach to that of Birket et al. 

(2011). It is well established that transcription and protein synthesis gradually increase 

during embryo development and profiling the changing oxygen demand from these 

processes could provide rich information regarding the budgeting of ATP during early 

development. In addition, this research has focused on blastocyst oxygen metabolism, 

but ideally the same methods would be applied to cleavage stage embryos. As the 

number of mitochondria is fixed during embryo development, the maximal OCR may also 

be fixed, or perhaps regulated by changes in mitochondrial inner membrane polarisation 

of pH. If so, the spare respiratory capacity would be reduced as an embryo increases OCR 

in order to undergo blastocoel formation and blastocyst expansion. These studies were 

not completed due to time constraints and would be a priority for further investigation.  

Furthermore, production of Reactive Oxygen Species (ROS) is one fate of uncoupled OCR 

in most cell types and oxidative damage has a role in embryo development and 

developmental failure. Multiple methods to detect markers of oxidative damage were 

trialled, but unfortunately were not sensitive enough for use in individual or small groups 

of blastocysts. The opportunity for further method development could allow sufficient 

optimisation to investigate the potential relationship between differences in individual 

uncoupled OCR and oxidative damage, as well as the effect of manipulating β-oxidation 

on markers of oxidative damage. These could include techniques previously employed in 

embryos (Sturmey et al. 2009) as well as optimisation of new techniques for use with 

individual or small groups of embryos such as analysis of Thiobarbituric Acid Reactive 

Substances (TBARS), a marker of lipid damage (Seljeskog et al. 2006). TBARS have been 

detected in follicular fluid, albeit at much lower levels than in serum (Jozwik 1999) and 

may be present in the embryo.  

Manipulating β-oxidation was shown to affect basal OCR of embryos. Analysis of 

mitochondrial polarisation revealed dysfunctional mitochondria in both treatment groups 

tested; it is therefore likely that the bioenergetic profile of embryos with dysregulated β-



224 
 

oxidation would be altered; in particular % uncoupled OCR might increase, increasing 

basal OCR in order to provide enough ATP to meet energy demand and therefore 

reducing spare respiratory capacity. These factors could be investigated by 

nanorespirometry to further define the mechanism of altered OCR following 

manipulation of β-oxidation. 

A major consideration of this thesis was the relationship between metabolism during 

individual embryo development and health and disease during the ongoing development 

of the organism. Several findings, such as variable coupled OCR and spare capacity, 

depolarised mitochondria, and epigenetic modification following manipulation of β-

oxidation are likely to have far-reaching effects. Uncoupled or dysregulated mitochondrial 

respiration is implicated in a number of conditions, including late-onset neurological 

disease such as Alzheimer’s disease and Huntington’s disease. Dysregulated glucose 

metabolism is characteristic of metabolic disease including diabetes and metabolic 

syndrome. Several genes implicated in successful recognition of pregnancy, Autism, 

diabetes, Alzheimer’s and Huntington’s diseases, as well as cancers, were differentially 

expressed or differentially methylated following manipulation of β-oxidation. It can be 

argued that these discoveries link to developmental origins of health and disease 

(DoHaD), but without further study, these ideas are speculative. Ideally, metabolically 

profiled embryos would be transferred to recipient females to investigate the relationship 

between dysregulated oxygen metabolism or manipulation of β-oxidation and successful 

pregnancy and live birth. Furthermore, investigation of the relationship between 

epigenetic alteration and dysregulated metabolism at the blastocyst stage and lifetime 

health and disease was limited by the lab-based nature of this work. 
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6.3 Concluding remarks 

The broad aim of this work, as outlined in Chapter 1, was to investigate the regulation of 

oxidative metabolism in individual mammalian embryos and the immediate and legacy 

effects of metabolic dysregulation. To do this, a number of existing methods were 

employed and optimised, as described in Chapter 2. The data from these studies is 

summarised in Figure 60. In Chapter 3, the components of oxidative phosphorylation in 

the bovine blastocyst were reported. Data regarding the coupled OCR and spare 

respiratory capacity of bovine blastocysts were reported for the first time, providing a 

new understanding of blastocyst energy metabolism and allowing more accurate 

calculations of ATP production for future studies.  

After a period of neglect in the literature, β-oxidation of endogenous lipid stores is now 

increasingly regarded as a key component of oocyte and preimplantation embryo 

metabolism. In Chapter 4, metabolism of endogenous lipid was manipulated using a 

promoter and inhibitor of β-oxidation. In both cases, blastocyst development was 

unaffected, however several changes in energy metabolism were reported, including 

altered OCR, carbohydrate turnover and mitochondrial polarisation. These differences 

were suspected to have legacy effects and so the relationship between β-oxidation of 

endogenous fatty acids and gene expression, as well as gene methylation, was 

investigated in Chapter 5. These studies reveal a number of potentially deleterious effects 

of dysregulated fatty acid metabolism, but also highlight the plasticity of the mammalian 

embryo to adapt to sometimes harmful conditions by dynamic metabolic regulation.
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Figure 60: Summary figure combining key data from chapters 3-5. The components of 
blastocyst oxygen consumption (OCR) were reported (Chapter 3). Promotion of fatty acid 
transport with L-carnitine or inhibition of β-oxidation with β-mercaptoacetate (BMA) led 
to altered mitochondrial energy metabolism during early cleavage and blastocyst stages, 
including inner mitochondrial membrane polarisation (ΔΨ), OCR, pyruvate and lactate 
consumption (Chapter 4).  Microarray analysis of blastocysts following L-carnitine or BMA 
treatment revealed changes in transcription (mRNA) and differentially methylated 
regions (DMRs) of genes involved in many key processes (Chapter 5). 
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8.1 Suppliers 

Alpha Laboratories Ltd 

40 Parham Drive 

Eastleigh 

Hampshire 

SO50 4NU 

United Kingdom 

Ferring Pharmaceuticals Ltd 

Drayton Hall 

Church Road 

West Drayton 

UB7 7PS 

United Kingdom 

 

Analox Instruments 

Unit 22 

Acton Park Estate 

The Vale 

London W3 7QE 

United Kingdom 

 

Fisher Scientific UK Ltd  

Bishop Meadow Road  

Loughborough  

LE11 5RG 

United Kingdom 

BOC LIMITED                               

P O BOX 12 

Priestly Road 

Lancashire 

M28 2UT 

United Kingdom 

Fresenius Kabi 

Cestrian Court 

Eastgate Way 

Manor Park 

Runcorn 

Cheshire 

WA7 1NT 

United Kingdom 

 

Camlab House 

Norman Way Industrial Estate 

Over 

Cambridge 

CB24 5WE (formerly CB4 5WE) 

United Kingdom 

 

Life Technologies Ltd 

3 Fountain Drive 

Inchinnan Business Park 

Paisley  

PA4 9RF 

United Kingdom  

Crawford Scientific™ Ltd 

Holm Street 

Strathaven 

Lanarkshire 

ML10 6NB 

United Kingdom 

 

Sarstedt Ltd. 

68 Boston Road 

Beaumont Leys 

Leicester LE4 1AW 

United Kingdom 
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Scientific Laboratory Supplies Limited 

Wilford Industrial Estate 

Ruddington Lane 

Wilford 

Nottingham 

NG11 7EP 

United Kingdom  

Sigma-Aldrich Company Ltd.  

The Old Brickyard  

New Road  

Gillingham  

Dorset  

SP8 4XT  

United Kingdom 
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8.2 Materials 

Chemical Supplier Cat No. Amount 

(+)-Etomoxir sodium salt hydrate Sigma-Aldrich E1905-5MG 5mg 

2,4-Dinitrophenol Sigma-Aldrich D198501 5g 

Antibiotic/Antimycotic (Gibco, 100X) Fisher 11580486 20ml 

Antimycin A Sigma-Aldrich A8674-

25MG 

25mg 

BME 50x Sigma-Aldrich B6766 100ml 

BSA FAF Sigma-Aldrich A6003 25g 

BSA Fr V Sigma-Aldrich A9418 50g 

Calcium Chloride Dihydrate 

(CaCl2.2H2O) 

Sigma-Aldrich C7902 500g 

Decon 90 Detergent SLS CLE1020 1L 

Di-Sodium Hydrogen Orthophosphate 

Dihydrate (Na2HPO4.2H2O) 

Sigma-Aldrich 71638 500g 

EGF (bovine) Sigma-Aldrich E4127 1mg 

Ethanol (Mol.Bio grade) Sigma-Aldrich 51976-

500ML-F 

500ml 

FCS Sigma-Aldrich F9665 50ml 

FGF (bovine) Sigma-Aldrich F3133 10μg 

FSH (ovine) Sigma-Aldrich F8174-1VL 1 vial 

Gentamycin Solution Sigma-Aldrich G1272 10ml 

Glucose Sigma-Aldrich G6152 100g 

Glucose standard, 5.0mmol/L, 30ml Analox GMRD-010 30ml 

Heparin (bovine) Sigma-Aldrich H0777 100kU 

Heparin (porcine) Sigma-Aldrich H3149 25kU 

HEPES free acid Sigma-Aldrich H4034 100g 

HEPES sodium salt Sigma-Aldrich H7006 100g 

Hypotaurine Sigma-Aldrich H1384 10mg 

JC-1 Molecular Probes T-3168 5mg 
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Kanamycin Sulphate Sigma-Aldrich K1377 5g 

Lactate standard, 5.0mmol/L, 25ml Analox GMRD-079 25ml 

L-Carnitine inner salt Sigma-Aldrich C0158 5g 

L-Glutamine Sigma-Aldrich G8540 25g 

LH (ovine) Sigma-Aldrich L5269-1VL 1 vial 

LONG® R3 IGF-I (human) Sigma-Aldrich I1271-.1MG 1mg 

M199 liquid Sigma-Aldrich M4530 100ml 

M199 liquid 10x Sigma-Aldrich M0650 100ml 

Magnesium Sulphate Heptahydrate 

(MgCl2.7H2O) 

Sigma-Aldrich M2643 500g 

MEM 100x Sigma-Aldrich M7145 100ml 

Mineral Oil Sigma-Aldrich M8410 1l 

Myxothiazol Sigma-Aldrich T5580 1mg 

Nile Red Molecular Probes N-1142 25mg 

Oligomycin Sigma-Aldrich O4876-5MG 5mg 

PBS Tablets Sigma-Aldrich P4417-

100TAB 

100x 

Penicillamine Sigma-Aldrich P4875 1g 

Penicillin/Streptomycin Sigma-Aldrich P0781 100ml 

Penicillin/Streptomycin 10mg/ml Sigma-Aldrich P4333-

100ML 

100ml 

Percoll® SLS 17089102 250ml 

Phenol Red Solution Sigma-Aldrich P0290 100ml 

Phosphate Buffered Saline Sigma-Aldrich P4417-

100TAB 

100 

tablets 

Potassium Chloride (KCl) Sigma-Aldrich P5405 250g 

Potassium Di-Hydrogen 

Orthophosphate (KH2PO4) 

Sigma-Aldrich P5655 100g 

Pyruvate reagent kit, 30 tests, incl. std Analox GMRD-140 5ml 

Sodium Bicarbonate (NaHCO3) Sigma-Aldrich S4772 500g 

Sodium Chloride (NaCl) Sigma-Aldrich S5886 500g 

Sodium Di-Hydrogen Orthophosphate Sigma-Aldrich 71500 250g 
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Dihydrate (NaH2PO4.2H2O) 

Sodium Lactate Syrup Sigma-Aldrich L1375 100ml 

Sodium Pyruvate Sigma-Aldrich P2256 5g 

β-mercaptoacetate Sigma-Aldrich 108995 5g 

 


