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Abstract

Blind image deconvolution refers to the process of determining both

an exact image and the blurring function from its inexact image. This

thesis presents a solution of the blind image deconvolution problem us-

ing polynomial computations. The proposed solution does not require

prior knowledge of the blurring function or noise level. Blind image

deconvolution is needed in many applications, such as astronomy, re-

mote sensing and medical X-ray, where noise is present in the exact

image and blurring function. It is shown that the Sylvester resultant

matrix enables the blurring function to be calculated using approx-

imate greatest common divisor computations, rather than greatest

common divisor computations. A developed method for the com-

putation of an approximate greatest common divisor of two inexact

univariate polynomials is employed here, to identify arbitrary forms of

the blurring function. The deblurred image is then calculated by de-

convolving the computed blurring function from the degraded image,

using polynomial division. Moreover, high performance computing is

considered to speed up the calculation performed in the spatial do-

main. The effectiveness of the proposed solution is demonstrated by

experimental results for the deblurred image and the blurring func-

tion, and the results are compared with the state-of-the-art image

deblurring algorithm.
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ḡ1, ḡ2 preprocessed polynomials
g̃1, g̃2 corrected polynomials
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Chapter 1

Introduction

“A picture is worth a thousand words”.

— Napoleon Bonaparte

Imaging is present in all aspects of our lives, and in research and develop-

ment. A digital image is a numerical representation of an object or scene that

is typically captured, stored, or modified using optical devices. However, the op-

tical devices are not perfect, and various conditions can induce distortion in the

recorded object and degrade the image.

There are many sources of blur, including imperfections in the lens, atmospheric

turbulence, and the motion of the camera and/or object, and they result in the

intensity of a given image not being recorded exactly, such that the intensity

of a given pixel in the observed image is affected by its neighbouring pixels in

the exact image [38]. Moreover, the recorded image is commonly contaminated

with random noise. This noise can be generated from the optical device itself, in

particular an image sensor, or from digitisation and quantisation systems, and it
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can lead to measurement errors [54].

The light intensity in each pixel of the blurred image is spread by the convolution

operation [8, 38]. The blurring function is often referred to as a point spread

function (PSF) and it describes the shape and the pattern of the blurring func-

tion. In some applications the PSF is spatially variant and in others it is spatially

invariant. The spatially variant PSFs vary over the blurred image such that each

pixel contains a different PSF. Since it is difficult to estimate how the blur will

behave over the image, it is often assumed that the PSF is spatially invariant

[38].

In classical image restoration the exact image is reconstructed from its blurred

version by performing a backward operation to the image construction, basi-

cally by removing the blur which assumed to be known exactly [54]. Several

applications need image restoration, including video-conferencing, astronomical

and medical imaging, remote sensing, barcode readers and synthetic aperture

radar (SAR). However, it may be difficult or impossible to know the blur in-

formation a priori, and there may only be partial knowledge of the true image

given [33, 54, 81]. This makes it a challenging problem and therefore the term

blind image deconvolution (BID) has been introduced [38, 51, 57]. BID refers to

the process of identifying the true image from its blurred version, possibly using

prior information of the PSF and the noise level [51, 54].

Clearly, classical image restoration methods are not practical for many applica-

tions in image processing, where the PSF and noise information are not provided.

The solutions of the BID problem, therefore, employ additional information to

restore a true image, such as physical properties of a given degraded image in-

cluding image dimensions, resolution, or statistical properties such as entropy
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(which represents the randomness in an image).

This observation has helped many researchers to reduce the various effects of

degradation, both blur and noise, and to estimate an approximation of the true

image. These solutions can be implemented in many fields that require image

restoration. The following section provides some examples of the application of

the BID problem.

1.1 Applications of blind image deconvolution

This section considers some of the main applications that uses the solutions of

the BID problem to reconstruct a true image.

1.1.1 Astronomical imaging

Astronomy is a field that has contributed to the evolution of image restoration.

An astronomical image is an essential source of information for astronomers to

study cosmological objects, which are millions of light-years distant from Earth.

These objects are faint and require astronomers to use larger telescope apertures;

therefore curved mirrors are used instead of lenses to make observations. Images

are normally obtained using special ground-based telescopes, such as the one in

the Andes in Chile, and the two in Mauna Kea in Hawaii. However, the distortion

caused by turbulence in the atmosphere prevents a telescope from capturing a

clear image of an object. In particular, the light transmitted from stars is sent

through space undistorted until it hits the atmosphere, where it becomes dis-

torted [8, 79].



1.1 Applications of blind image deconvolution 4

To reduce the atmospheric fallout on the recorded images high quality space-

based telescopes are used, such as the Hubble space telescope (HST). However,

this is an expensive solution. A simple diagram (Figure 1.1) shows how astro-

nomical imaging is obtained using ground- and space-based telescopes. The main

improvement in the manufacture of telescopes is the correction of spherical aber-

ration in mirror.

Figure 1.1: The light emitted from stars is distorted by turbulent atmosphere.
Observations using ground-based telescopes include distortion effects that have
to be reduced by using BID methods; the alternative is to employ space-based
telescopes, [8].

Alternatively, BID methods are employed to reduce the atmospheric effects

in the observed image by estimating the distortion function or the PSF. Figure

1.2 provides an example of an image of cosmological objects taken by HST and

two blurred versions of it. Deconvolution methods in astronomy have been inves-
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(a) (b) (c) (d)

Figure 1.2: Astronomical image from HST. (b) and (c) are two distorted images,
that are generated using Matlab function conv2, of an original image in (a); (d)
is a restored image using the method described in this thesis.

tigated by many researchers [22, 82] and an overview is presented in [79].

1.1.2 Medical imaging

Image restoration techniques have been used in modern medicine as diagnostic

and therapeutic procedures [8]. The objective of medical imaging research is

to remove noise from distorted images without losing important information.

For example, identifying a tumour in a noisy background image is a challenging

problem. Medical images can be observed using many technologies such as X-ray,

computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound.

Figure 1.3 provides an example of image degradation using one of the medical

technologies. This type of problem has encouraged many scientists to study the

mathematical and statistical properties of medical images which often are noise

contaminated [34, 73, 74].
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(a) (b) (c) (d)

Figure 1.3: A medical CT imaging example. (b) and (c) are two distorted images
of an original image in (a) obtained using Matlab function conv2, and contam-
inated with different levels of noise; (d) is a restored image using the methods
described in this thesis.

1.1.3 Remote sensing

Remote sensing refers to the technology of collecting images and information of

a particular phenomenon that occurs on earth or outside the atmosphere, from

a distance [15]. Remote sensors can be attached to several platforms, such as

satellites and unmanned airborne vehicles, so that it becomes easy to cover wider

regions. The instruments, such as cameras, work by observing the electromag-

netic radiation reflected from an object [15]. However, an image obtained using

a satellite system passes through various layers of Earth’s atmosphere, resulting

in a degraded image, and degradation also occurs if camera motion is introduced.

Although the development of remote sensing technology is growing rapidly, the

demand of BID remains [15, 90]. The importance of the BID algorithms in re-

mote sensing can be seen in Figure 1.4.
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(a) (b) (c) (d)

Figure 1.4: An aerial map image of San Diego. (b) and (c) are two distorted im-
ages of an original image in (a), using Matlab function conv2, and contaminated
with noise; (d) is a restored image using the methods described in this thesis.

From the previous discussion, it can be seen that the BID becomes an essen-

tial procedure in several applications. This thesis is devoted to solve the BID

problem, and the next section outlines the description of this research.

1.2 Description of the thesis

In the next sections the aims, contributions and structure of the thesis will be

discussed.

1.2.1 Scope of the research

The objective of this research is to solve the BID problem, such that prior knowl-

edge of the exact image and the PSF are not required. The proposed BID method

is basically divided into two separate stages: the first aims to estimate the PSF
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and the second to restore the image. The difficulty in performing this algorithm

comes from its sensitivity to additive noise that arises from different sources, and

which makes the BID an ill-posed problem. In particular, an ill-posed problem

occurs when a continuous change in the input produces a discontinuous change

in the output information.

The PSF can be obtained using a greatest common divisor (GCD) computation

of two blurred versions. However, introducing additive noise to the problem re-

duces to an approximate greatest common divisor (AGCD) computation. These

calculations are carried out using the Sylvester resultant matrix approach, such

that two AGCD computations are performed.

Although the AGCD computations have been employed for image deblurring pre-

viously [2, 60, 69], this work differs from other works, in that that prior knowledge

of the PSF and the noise level are not required to restore an image from its blurred

version/versions.

The next section discusses the main contributions of the thesis.

1.2.2 Contributions of the thesis

Figures 1.2, 1.3, and 1.4 illustrate that the problem of image blurring exists in

several applications during image acquisition. The proposed image restoration

algorithm in this thesis can solve the following situations:

• If one distorted image is given, then a fast deconvolution method is applied

to restore the separable PSF and the image. This involves two AGCD com-

putations on two distinct rows and on two distinct columns of the distorted
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image. Then the deconvolution step is performed.

• If two distinct distorted images are given, such that each consists of similar

blur effects (e.g. taken by the same camera), then a fast deconvolution

method is applied to restore the separable PSF and the image. The PSF

is obtained by performing two AGCD computations; one is performed on

two distinct rows from each given image and the other is performed on

two distinct columns from each image. This is followed by a deconvolution

procedure for each image.

• If two distinct distorted images are given, such that each consists of similar

blur effects, and if the PSF is not separable, then a high performance parallel

computation is performed to restore the PSF and the image. To be more

precise, if the PSF cannot be decomposed into a horizontal and vertical

components, then it said to be nonseparable. The PSF is obtained by

performing AGCD computations; one by considering every row from each

given image and the other by considering every column from each image.

Then, a deconvolution procedure is performed for each image using the

computed PSF.

The proposed work can be operated on SNR lower than 30 dB, while some pre-

vious works operate on much higher SNR (e.g. 45 dB in [69] and 50 dB in [24]).

The following example shows some of the results obtained by applying the

proposed BID algorithm. These results are compared with state-of-the-art image

restoration methods. More results, performance analysis, and comparisons are

included in later in Chapter 8.
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(a) (b)

(c) (d)

Figure 1.5: Image restoration results. (a) an original aerial image; (b) a distorted
version of (a); (c) and (d) are the restored images using the implemented approach
in this thesis and the Richardson-Lucy method, respectively.

Example 1.1. Figure 1.5, shows the image restoration output of a blurred aerial

image given in (b). The performance of image restoration methods is measured

using different quantities such as root mean squares error (RMSE), normalised

absolute error (NAE), and with signal-to-noise ratio (SNR).

RMSE and NAE measure the differences between the blurred and the restored

images, and the SNR is defined as

SNRdB = 10 ∗ log10

Psignal
Pnoise

, (1.1)

where P stands for average power (i.e. mean square error for ground-truth signal

and background noise). The measurement techniques are described in detail in

Chapter 8.
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Table 1.1: Comparison of 5 deblurring methods. M1: The method described in
this thesis, M2: Lucy-Richardson, M3:Wiener filter, M4: Regularised filter, M5:
Maximum likelihood.

Image Deblurring methods RMSE NAE SNR

Aerial M1 4.98108e− 06 4.44995e− 04 5.95483e+ 01
M2 8.45910e− 04 1.28542e− 01 3.19328e+ 00
M3 2.32220e− 05 8.13516e− 04 4.79120e+ 01
M4 5.11691e− 04 8.60430e− 02 9.42049e+ 00
M5 8.43885e− 04 1.28195e− 01 3.20511e+ 00

Grass M1 1.09234e− 05 1.66468e− 03 4.01537e+ 01
M2 1.05321e− 03 1.56484e− 01 4.81140e− 01
M3 1.70980e− 05 2.68587e− 03 3.62553e+ 01
M4 5.66471e− 04 8.85061e− 02 5.80275e+ 00
M5 1.05514e− 03 1.56837e− 01 4.84129e− 01

The restored image using the proposed BID method shows an improvement, as

can be easily seen in Figure 1.5 (c). The SNR has increased significantly from

1.9441 dB to 59.5483 dB; more importantly, this image is restored with no prior

knowledge of the PSF and the noise level. The result is compared with a number

of built-in Matlab functions including the Richardson-Lucy method in Figure

1.5 (d); however, most of these functions require the PSF to be known a priori.

Similarly, Figure 1.6 compares the implemented BID method with the Richardson-

Lucy deconvolution method. The SNR has improved remarkably from −0.9363

dB to 40.1537 dB using the implemented BID.

Table 1.1 provides a comparison of 5 deblurring methods. Most of the existing

methods require an a priori knowledge of the PSF and the additive noise, but

the proposed method of BID gives a much better result with no prior assumption

of the PSF and noise.

The outline of the thesis is presented in the following section.
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(a) (b)

(c) (d)

Figure 1.6: Image restoration results, (a) an original grass image, (b) a distorted
version of (a), (c) and (d) are the restored images based on the implemented ap-
proach and Richardson-Lucy methods, respectively.
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1.2.3 Overview of the thesis

The rest of this thesis is divided into nine chapters.

Chapter 2 introduces some fundamental terms needed in image formation, in-

cluding image convolution. This chapter also presents an overview of some of

the most frequently used approaches in image deconvolution. Chapter 3 provides

an overview of the GCD and an AGCD definitions, presents various methods for

computing an AGCD, and discusses the adopted definition of an AGCD and its

computation-based method. Chapter 4 outlines the proposed method for image

deblurring; it first defines the problem in polynomial form and then describes

a solution for the BID problem in one-dimensional and two-dimensional cases,

including separable and nonseparable PSF. This solution is carried out using

Sylvester resultant matrix and subresultant matrices of two polynomials, as de-

scribed in Chapter 5. It discusses the Sylvester resultant matrix properties, how

it relates to the rank estimation problem, and the preprocessing operations re-

quired to adjust the variation of magnitude among the coefficients of the Sylvester

matrix. Chapter 6 highlights the methods used in this research to compute the

PSF, i.e. using an AGCD of two inexact polynomials. This includes two tech-

niques for computing the degree of an AGCD namely: the first principle angle

and residual methods. The computation method of the coefficients of an AGCD

is described then, using a structured low rank approximation. Chapter 7 presents

two methods for the PSF identification. The first part considers the restoration

of separable PSF in two cases: single degraded image, and two degraded images.

The second section describes the identification method of arbitrary PSF, includ-

ing separable and nonseparable PSFs. The deconvolution of the computed PSF
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from the degraded image is discussed in Chapter 8. This chapter also discusses

some computational specifications of the implemented algorithm. The experi-

mental results of the designed image restoration using polynomial computations

is shown in Chapter 9. A summary of the described method and its results are

presented in chapter 10, along with suggestions for future work.

1.3 Summary

A summary of the image restoration problem and some of its applications have

been introduced in this section, along with an overview of the main aim and con-

tribution of this thesis. The final section provided an outline of the thesis.

It is important to study and analyse the behaviour of image blurring, including

image distortion model, the properties of the PSF, and the convolution mech-

anism, in order to restore an image. In the next chapter, the image formation

problem will be presented in greater detail, along with a literature review on

image restoration methods.



Chapter 2

Image restoration

2.1 Introduction

It was shown in Chapter 1, image restoration is an essential procedure in many ap-

plications, thus this chapter is devoted to providing an overview of image restora-

tion. A blurred image is obtained by convolution of an exact image and distortion

effects. Section 2.2 discusses the degradation model of an image. Blur character-

isation and properties are introduced in Section 2.3, as well as some of its forms

including motion blur, out-of-focus blur, two-dimensional Gaussian blur, and the

Moffat function. As a result of introducing a blur to an exact image during

image acquisition, a boundary conditions problem arises; this will be discussed

in Section 2.4. Section 2.5 considers the convolution process in one-dimensional

(1D) and two-dimensional (2D) problems. The final section gives an overview of

previous works in the image restoration area.
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2.2 Image distortion model

To design a mathematical model of a blurred image, it is necessary to represent

the image as an array of numbers. An image of two or three dimensions consists

of arrays of elements called pixels. Each pixel is assigned an intensity between 0

and 256 units, on a gray scale or colour scale. The RGB image stores three com-

ponents per pixel, or three channels, that correspond to red, green and blue scales

respectively. For example, the intensity values (1, 0, 0), (0, 1, 0), and (0, 0, 1) are

referred to as a pure red, green and blue images respectively [38]. The following

discussion will be restricted to one channel or grey-scale images, since the same

process can be applied on each channel separately for RGB images.

The operation of the imperfection in blurred images caused by blur is referred

to as a convolution. In mathematics the convolution is an operation that aver-

ages the amount of overlap between two functions. It occurs in both continuous

and discrete form, and can be used in many applications for mathematics and

engineering [13].

Definition 2.1. Let f(i, j) and p(i, j) be two functions. Then the convolution

of p and f in discrete form is a function g that is given by

g(i, j) = (p⊗ f)(i, j),

=
∑
i

∑
j

p(i− k, j − l)f(i, j)

where ⊗ stands for convolution. The output function g(i, j) is a weighted average

of f(i, j) and p(i, j).

The transformation from input function into output function is assumed to be
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linear; moreover, it is assumed to be shift invariant [67]. In the image processing

context, each pixel value of the blurred image is equal to the weighted average of

the corresponding pixel value in the exact image and its neighbouring pixels, such

that weights are given by the PSF [38]. This means that in the image restoration

problem the assumptions of linearity and shift invariant (LSI) properties hold.

The most important point behind acquiring an acceptable reconstructed image

is to design an appropriate a model of the distortion. But it is difficult to as-

sume such a model because of the lack of information of the true image and the

blur; only robust image restoration methods can challenge this limitation [54]. A

mathematical model, however, that considers an observed image G as an altered

version of an exact image F can be modelled as

G = F ⊗ P + N, (2.1)

where P and N describe the PSF and additive noise in the blurred image, re-

spectively. This model might not be an exact representation of the problem, but

it gives an acceptable solution in many image restoration problems [54]. The

random noise N in image G could be generated from different sources, including

environment conditions and lens deficiency. The model in Eq. 2.1 is defined in

spatial domain as below

g(i, j) =
M−1∑
i

N−1∑
j

p(i− k, j − l)f(i, j) + n(i, j).

Suppose F , G, P , and N are the matrices that identify the exact image F, the

blurred image G, the PSF array, and the additive noise N respectively, then

g = ν(G), f = ν(F ), n = ν(N),

where ν denotes that g, f and n are vectors obtained by stacking the columns of
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Figure 2.1: Image formation model.

the matrices G, F , and N respectively. It follows that the blurred image can be

expressed in matrix-vector form as

g = Hf + n, (2.2)

See also Figure 2.1. The matrix H is ill-conditioned [57], and contains the coef-

ficients of the PSF with a dimension equal to the image size. The PSF reduces

the quality of image F, as does any additive noise. If no additive noise is intro-

duced to the convolution problem, then n = 0. The determination of the original

image F requires the calculation of an approximation of the vector f. The main

aim in image restoration is to remove the blur from the input image, since it is

considered to be more significant than the additive noise [57].

The next section defines the systematic introduced blur – the PSF and its prop-

erties.

2.3 Blurring function

Recall from Chapter 1 that the PSF describes the blurring function. More pre-

cisely, the PSF identifies the response that is the output of an imaging system to a

point source that is the input. This section considers some different shapes of the
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PSF caused by environmental conditions. The blurring in the image restoration

holds several assumptions, as listed below.

1. The PSF is spatially invariant in many applications but not all. More

precisely, it is independent in each pixel location. This implies the PSF

is equally distributed along x and y axes in the blurred image G [38]. By

contrast, the spatially variant PSF is computationally difficult to construct,

since every pixel has a different PSF [6].

2. The light intensity of the PSF is confined to a small area around its cen-

tre, such that it is zero beyond a given distance from its centre; therefore,

blurring is a local phenomenon [38].

3. The dimensions of P , which is the matrix form of PSF array, are much

smaller than those of F ∈ Rm×n, such that P contains all information

about the blurring of F [38].

4. The sum of pixel values of the PSF array is equal to one, since the imaging

process captures all the light [38, 54]. Consider matrix P ∈ Rc×d; then

c−1∑
k=0

d−1∑
l=0

pk,l = 1, (2.3)

where k, l define the location of each pixel intensity of the PSF.

5. The coefficients of matrix P have only positive values, since the nature of

image formation cannot be negative [54].

The PSF is, therefore, a function of distance between the influencing pixel in F

and the influenced pixels in G [38]. However, if no blur is included in the observed

image then the PSF is considered to be a unit pulse [54]. More precisely, the sum
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of the entries of P is equal to one.

The pattern of the PSF is often influenced by the optical device that is used to

record the blurred image or by other physical or environmental events. Typical

examples of the PSF model are given below:

1. Out-of-focus blur [38, 54] is caused by the aperture and the focal length

of the lens [54]. In particular, defocusing the lens at the acquisition process

results in the loss of some important features of the image, such as sharp-

ness. A system with a circular aperture can be expressed as a uniform disk

with radius R. If the centre of the PSF array defined as the matrix P is

given by (k, l) then the out-of-focus blur for each element pi,j is

pi,j =


1

πR2 if
√

(i− k)2 + (j − l)2 ≤ R2,

0 otherwise.

Figure 2.2 (a) shows the effect of out-of-focus PSF on image acquisition.

The shape of out-of-focus PSF can be seen in Figure 2.3, where (a) repre-

sents the 2D surface plot and (d) represents the 2D image of the PSF array.

2. Motion blur is present as a result of object movement or camera shake

or both, during the exposure time; see Figure 2.2 (b). The 1D motion blur

defines a proportional relation between the objects to be seen and the cam-

era along the horizontal direction [54].
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3. The 2D Gaussian blur [38] is given by

pi,j = exp

(
− 1

2

[
i− k j − l

]  s21 σ2

σ2 s22


−1  i− k

j − l

). (2.4)

Here the parameters s1, s2, and σ determine the width and orientation of

the PSF, centred at point (k, l) in P . This type of blur has an exponen-

tial decay shape from the centre, typically truncated when its values are

decayed sufficiently. The PSF is assumed to be horizontally and vertically

symmetrical if σ = 0, and rotationally symmetric if s1 = s2. In this case the

PSF is said to be separable, where it can be represented as a multiplication

of a column-vector by a row-vector. Figure 2.3 illustrates the surface of 2D

Gaussian blur in (b), and displays it as an image (c).

4. The Moffat function is a blur usually caused by astronomical devices, and

is given by

pi,j = exp

(
1 +

(i− k
s1

)2
+
(j − l
s2

)2)−β
, (2.5)

in which the parameters s1, s2, and β control the width and the decay pa-

rameters of the PSF. The decay rate of a Moffat PSF is much slower than

a Gaussian PSF. Figure 2.3 (c) shows the 2D surface of the Moffat PSF

and as an image in (f) [38, 82]. It is clear that the Gaussian function is

a limited condition of the Moffat function, such that β → ∞ [82]. With

regard to narrow PSFs, the Moffat function is numerically more accurate

than the Gaussian function [82]. The Moffat functions are also rotationally

symmetric if s1 = s2 [38] .
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(a) (b)

Figure 2.2: Different sources of image blurring. (a) Out-of-focus blur; (b) Motion
blur.
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(a) Out-of-focus blur
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(b) 2D Gaussian blur
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(c) Moffat blur

(d) Out-of-focus blur (e) 2D Gaussian blur (f) Moffat blur

Figure 2.3: Examples of three PSF s.

As was pointed out previously, the sum of the elements of the PSF in P are scaled

so that their sum is equal to one. The following example describes the pattern of



2.3 Blurring function 23

the PSF.

Example 2.1. Suppose a 2D PSF array is given by a non-zero matrix P ∈ R7×7,

such that 

p00 p01 p02 p03 p04 p05 p06

p10 p11 p12 p13 p14 p15 p16

p20 p21 p22 p23 p24 p25 p26

p30 p31 p32 p33 p34 p35 p36

p40 p41 p42 p43 p44 p45 p46

p50 p51 p52 p53 p54 p55 p56

p60 p61 p62 p63 p64 p65 p66



.

This PSF is rotationally symmetric, if

p00 = p06 = p60 = p66, p01 = p05 = p10 = p16 = p50 = p56 = p61 = p65,

p02 = p04 = p20 = p26 = p40 = p46 = p62 = p64, p03 = p30 = p36 = p63,

p11 = p15 = p51 = p55, p12 = p14 = p25 = p21 = p41 = p45 = p52 = p55,

p13 = p31 = p35 = p53, p22 = p24 = p42 = p44, p23 = p32 = p34 = p43,

and
6∑
i=0

6∑
j=0

pij = 1.

The pixel values in matrix P can be written as the following:

p(x, y) = p(6, 6)x6y6 + p(6, 5)x6y5 + p(6, 4)x6y4 + · · ·+ p(0, 2)y2 + p(0, 1)y + p(0, 0),

=
6∑
i=0

6∑
j=0

p(6− i, 6− j)x6−iy6−j,

= 1.

If the PSF array is symmetrical along x and y directions, it said to be separable,
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such that,

p(x, y) =

[
1 x x2 x3 x4 x5 x6

]
P

[
1 y y2 y3 y4 y5 y6

]T
.

A blurry image is formed by the convolution between the PSF array and an

exact image. The convolution procedure extends outside the border of an exact

image, and therefore it is a crucial to consider the boundary conditions problem

when performing the convolution. Section 2.4, discusses the boundary conditions

problem.

2.4 Boundary conditions

This section previews the standard types of boundary conditions at the border

of an exact image. Due to the digitisation process that occurs when capturing

an image, the information in some pixels can overflow to the neighbouring pixels.

The convolution process of the exact image and the PSF includes the out-of-

border pixels, causing a blurred image [54]. Clearly some of this information at

the border of the exact image will be lost; however, knowledge of the information

is required in the inverse problem. Therefore, to mend this effect, it is important

to predict the structure of the exact image outside the border. In particular, the

boundary conditions can be incorporated in the matrix H introduced in Eq. 2.2.

Failing to do so may result in oscillations at the border of a restored image with

bad quality, as can be seen in Figure 2.4.

The boundary conditions problem makes the following assumptions: the zero

boundary condition, the periodic boundary condition and the reflexive boundary

condition.
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(a) (b)

Figure 2.4: The boundary conditions problem in image restoration. (a) presents
the blurred image using the linear motion filter of size 5 × 5 and angle 45◦. (b)
is the restored image using a Matlab built-in function, showing oscillations at its
border.

Zero boundary condition [38]. It is usually assumed for images with mostly

black background, for instance in astronomical images. It creates a larger

image, such that the original image is placed in the centre and the remaining

pixels of the larger image are set to zero. However, this assumption is not

appropriate with images that have a considerable variation between the in-

ner and outer pixel values (with respect to the border). Figure 2.5 (b) shows

an example of an image with zero boundary condition. The zero boundary

condition implies that matrix H is constructed using a block Toeplitz with

Toeplitz blocks matrix (BTTB) structure in the image convolution. The

BTTB matrix can be written as

H =



T0 T−1 · · · T1−m

T1 T0 · · · T2−m
...

...
. . .

...

Tm−1 Tm−2 · · · T0


, i = 0, · · · ,m− 1, (2.6)

where each Ti represents a Toeplitz structure.
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Periodic boundary condition . This assumption, commonly used in image

processing, assumes a block circulant with circulant blocks matrix repre-

sentation (BCCB) [2, 38]. A matrix of BCCB is formed by blocks of circu-

lant matrices, where each column is repeated continuously with a shift in

position. The BCCB matrix can be written as

H =



C0 Cm−1 · · · C1

C1 C0 · · · C2

C2 C1 · · · C3

...
...

. . .
...

Cm−1 Cm−2 · · · C0


, i = 0, · · · ,m− 1, (2.7)

where each Ci is a circulant matrix [68].

The structure of the periodic boundary condition is based on embedding

the exact image repeatedly in a larger image. Figure 2.5 (c) manifests this

type of boundary condition. The periodic boundary condition is mainly

implemented using discrete Fourier transform (DFT) computations [68].

Reflexive boundary condition . This assumes that the pixel values outside

the border of an exact image are a reflection of those inside, as shown in

Figure 2.5 (d). The structure of the reflexive boundary condition is based

on a mixture of several block-structured matrices including, BTTB and

other

• (BHHB): Block Hankel with Hankel blocks.

• (BTHB): Block Toeplitz with Hankel blocks.

• (BHTB): Block Hankel with Toeplitz blocks. The Hankel matrix is a
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(a) image

(b) zero (c) periodic (d) reflex

Figure 2.5: The boundary conditions assumptions. (a) is an exact image; (b),
(c) and (d) show the effects of the zero boundary condition, the periodic boundary
condition and the reflexive boundary condition, respectively, where the red lines
shows the border of (a).

square matrix which can be expressed as

H =



h0 h1 h2 · · · hm−1

h1 h2 h3 · · · hm

h2 h3 h4 · · · hm+1

...
...

...
. . .

...

hm−1 hm hm+1 · · · h2m−2


, i = 0, · · · ,m− 1, (2.8)

where each skew-diagonal is constant. More details of these matrices

are given in [38, 40, 52].

The solution of the boundary condition problem varies depending on the used do-

main – in particular, if the spatial domain or Fourier domain is implemented [54].

The spatial domain can uses zero, periodic, and reflexive boundary conditions,
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while Fourier domain assumes the periodic boundary condition. The missing in-

formation of pixels located outside the degraded image are needed to solve the

deconvolution problem. The implementation of any condition requires to build a

large structured matrix, which is computationally expensive process. In spatial

domain, it more appropriate to consider the separable PSFs, since it can speed

up the computation using their decomposition property [61]. However, Fourier

domain assumes the periodic boundary condition, which can solve the deconvo-

lution problem faster using DFT. The next section describes the mathematical

behaviour of the convolution problem in 1D and 2D.

2.5 Convolution

The convolution of two functions was introduced in Definition 2.1. To solve the

BID problem, it is important to define the characterisation of the blurring matrix

H in Eq. 2.2. As discussed in Section 2.4, the structure of H is dependent on the

imposed boundary condition. Section 2.5.1 describes how the convolution occurs

in the image blurring. Section 2.5.2 explains the convolution using separability

of a PSF.

2.5.1 Two-dimensional convolution problem

This section considers the convolution matrix in 2D form. The blurred image

G is obtained as a result of the convolution of an exact image F and a 2D PSF

array. The pixel values of the blurred image G are stored in the matrix G. This

problem is modelled in matrix-vector form as in Eq. 2.2, where the images F and

G are transformed into column vectors f and g respectively, and n is the noise
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column vector. Since the information of the PSF is influenced by the introduced

boundary condition at the border of F, a large matrix H ∈ Rmn×mn is established,

such that H contains the information of matrix P ∈ Rm×n of the PSF array. The

structure of the blurring matrix H is determined by the introduced boundary

conditions explained in Section 2.4. The 2D convolution process, when n = 0 in

Eq. 2.2, can be illustrated by the next example.

Example 2.2. [38]. Consider an exact image F, a PSF array, and blurred image

G in the noise free environment, each of size 3 × 3, such that their matrices

representation F , G and P ∈ R3×3 are

F =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 , P =


p11 p12 p13

p21 p22 p23

p31 p32 p33

 , G =


b11 b12 b13

b21 b22 b23

b31 b32 b33

 .
First, the PSF matrix P must be rotated by 180◦ degrees. This is accomplished by

flipping its rows, resulting in matrix P1, and then flipping its columns, resulting

in matrix P2, as below.

P1 =


p31 p32 p33

p21 p22 p23

p11 p12 p13

 , P2 =


p33 p32 p31

p23 p22 p21

p13 p12 p11

 .
The matrix P2 can also be achieved if the columns of P are flipped first, and

the rows of the resulting matrix are flipped afterwards [38]. The (i, j) element in

matrix G is calculated by placing the centre of P2 on each (i, j) element of F .

The convolution with the 2D PSF is an LSI, which allows the blurred image G

to be obtained. In particular, each pixel in G is influenced by the neighbouring

of its corresponding pixel in F. For example, b22 is measured as the weighted
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combination of the PSF and the neighbouring pixels near to a22, a12, a23, a32, and

a21. However, there are some pixels with neighbouring outside the border of F,

and therefore an assumption of the boundary condition should be considered.

The following representation of F considers the scene outside the border:

w11 w12 w13 w14 w15

w21 a11 a12 a13 w25

w31 a21 a22 a23 w35

w41 a31 a32 a33 w45

w51 w52 w53 w54 w55

(2.9)

where wij denotes the elements at the border of F .

The structure of the blurring matrix H is dependent on the assumed following

boundary conditions.

Zero boundary condition [38]. If this condition is assumed, then the elements

wij are equal to zero. The element b22 of G is given by overlapping F and

P2, such that the elements a22 and p22 match:

b22 = p33 · a11 + p32 · a12 + p31 · a13

+ p23 · a21 + p22 · a22 + p21 · a21

+ p13 · a31 + p12 · a32 + p11 · a33,

while the element b21, located at the border of G, is given by overlapping

F and P2, such that the elements a21 and p22 are matched:

b21 = p33 · 0 + p32 · a11 + p31 · a21

+ p23 · 0 + p22 · a21 + p21 · a22

+ p13 · 0 + p12 · a31 + p11 · a32.
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Similarly, the calculations are repeated for all other elements of G. It fol-

lows, by using Eq. 2.2 when n = 0, that

b11

b21

b31

b12

b22

b32

b13

b23

b33



=



p22 p12 p21 p11

p32 p22 p12 p31 p21 p11

p32 p22 p31 p21

p23 p13 p22 p12 p21 p11

p33 p23 p13 p32 p22 p12 p31 p21 p11

p33 p23 p32 p22 p31 p21

p23 p13 p22 p12

p33 p23 p13 p32 p22 p12

p33 p23 p32 p22





a11

a21

a31

a12

a22

a32

a13

a23

a33



.

Periodic condition . It is assumed here that the image F is repeated endlessly

in all directions, so that elements wij in Eq. (2.9) show as the following

form:

a33 a31 a32 a33 a31

a13 a11 a12 a13 a11

a23 a21 a22 a23 a21

a33 a31 a32 a33 a31

a13 a11 a21 a31 a11

(2.10)
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which, by using Eq. 2.2 when n = 0, yields

b11

b21

b31

b12

b22

b32

b13

b23

b33



=



p22 p12 p32 p21 p11 p31 p23 p13 p33

p32 p22 p12 p31 p21 p11 p33 p23 p13

p12 p32 p22 p11 p31 p21 p13 p33 p23

p23 p13 p33 p22 p12 p32 p21 p11 p31

p33 p23 p13 p32 p22 p12 p31 p21 p11

p13 p33 p23 p12 p32 p22 p11 p31 p21

p21 p11 p31 p23 p13 p33 p22 p12 p32

p31 p21 p11 p33 p23 p13 p32 p22 p12

p11 p31 p21 p13 p33 p23 p12 p32 p22





a11

a21

a31

a12

a22

a32

a13

a23

a33



.

Reflexive condition [38]. The blurring matrix H, in this case, is structured as

the sum of the structured matrices BTTB,BHTB,BTHB, and BHHB [38].

The entries wij in F are represented as:

a11 a11 a12 a13 a13

a11 a11 a12 a13 a13

a21 a21 a22 a23 a23

a31 a31 a32 a33 a33

a31 a31 a32 a33 a33

(2.11)

Figure 2.6 (c) shows the effect of convolving a clean image in (a) with a

Gaussian PSF of size 15× 15 using the reflexive boundary condition.

The Gaussian PSF is a typical example of a separable blur, namely, the PSF

can be decomposed into horizontal and vertical components [78]. The convolution

computation with a separable PSF is discussed in the next section.
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(a) (b)

Figure 2.6: An example of the convolution in 2D problem with reflexive boundary
condition.

2.5.2 Convolution by separability

The convolution can be achieved quickly if a given PSF array is found to be sep-

arable. If the PSF can be decomposed into two column vectors, one representing

its horizontal components and the other representing its vertical components,

then the PSF is said to be separable. Mathematically, given a matrix P of a

separable PSF, the following holds:

P = PcP
T
r =



c1

c2
...

cm


[
r1 r2 . . . rn

]
, (2.12)

where ci and rj are the components of column vector Pc and row vector Pr, for

i = 1, . . . ,m and j = 1, . . . , n, respectively [38, 78]. The same result is obtained

if the form P = PrP
T
c is used. The rank of any separable PSF is always equal to

1 [38], otherwise it is a non-separable PSF. The elements in the blurring matrix

H that contains the information of separable PSF is given as pij = cirj.
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Figure 2.8: An example of a separable 2D PSF.
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Figure 2.7: An illustration of a simple separable square PSF.



2.6 Image restoration methods 35

Figure 2.7 provides an illustration of separability using a simple square PSF of

size 11×11. Figure 2.8 shows an example of a random separable PSF in 2D, such

that the PSF is decomposed into two 1D arbitrary array as shown in the diagram.

This diagram contains the numerical entries of the PSF; different representation

are shown in the left.

Given a blurred image, a reverse procedure of the convolution is required to

restore the image; this is referred to as a deconvolution. Having discussed how

the convolution procedure is performed, the next section introduces some of the

main approaches proposed to the image deconvolution problem.

2.6 Image restoration methods

An overview of image restoration fundamentals was given in the previous sections.

This section reviews some of the most frequently used image restoration methods.

Several methods have been proposed to restore distorted images; however, they

mostly require advance information about the problem. The image deconvolution

techniques can be classified into two main approaches, where the determination

of the PSF and the true image are performed either separately or simultaneously

[51].

The first approach identifies the the blurring function separately from the exact

image [51]. Any a priori blur identification technique is classified under this ap-

proach, i.e. it is mainly based on the PSF determination, regardless of the true

image restoration. This approach is commonly used in many applications such

as astronomy [22], photography and video [29, 81], and medical imaging [74]. It
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is built on the assumption that the true image holds some features such as point

sources or edges; moreover, the PSF is assumed to be symmetric with a possi-

bly known parametric form of the blur [51]. The blur can be estimated using

different techniques, such as spectral blur estimation [33], while the true image

can be obtained using the classical methods of image restoration [33], including

inverse filtering [7], Weiner filter [35], least squares and constrained least squares

filters, and iterative methods [7, 53], after identifying the PSF. The complexity

of the linear approach is considered to be very low compared to the non-linear

approach[51]. Furthermore, this approach can solve computationally simple al-

gorithms [51].

The second approach incorporates the identification procedure with a restoration

algorithm, where the determination of the PSF and the true image are simultane-

ous procedures [51]. One such method is called zero sheet separation; it refers to

the process of factoring the z-transform of the 2D blurred image [70, 76]. Methods

using this approach are claimed to be the fastest deblurring algorithm; it is based

on many assumptions such as the irreducibility of both the true image and the

PSF, with a finite support of the PSF, and the absence of noise [51]. Furthermore,

methods using this approach are considered to be very sensitive to additive noise.

Moreover, the second approach is used to solve more complex algorithms [51].

Other methods based on the second approach have been studied and reviewed in

[51], including the non-parametric deterministic constraints algorithm [50], the

high order statistic HOS algorithms [63], and the autoregressive moving average

ARMA parameter estimation algorithm including maximum likelihood blur esti-

mation [54], regularised filtering and cross validation methods [38, 50, 71], and

the Richardson-Lucy method [89]. Spectral methods are also used for the blur
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identification [16]. On the other hand, several methods based on algebraic geom-

etry techniques have been implemented to solve the BID problem [24, 60, 69].

Some of the most frequently used image restoration methods are discussed in

the following sections. Non-blind image deconvolution methods based on a pri-

ori observations of the PSF will be introduced first, including the inverse filter

in Section 2.6.1, the Wiener filter in Section 2.6.2, the constrained least squares

method in Section 2.6.3, and the iterative methods in Section 2.6.4. Finally, the

blind maximum likelihood restoration method will be presented in Section 2.6.5.

2.6.1 Inverse filter

As mentioned above, the inverse filter is considered to be one of the simplest

approaches to solve the deconvolution problem [8, 33]. It refers to the naive

solution of Eq. 2.2, which aims to find an approximate f̂ of the exact image f by

inverting the blurring matrix H. In noiseless conditions, this can be modelled by

f = H−1gexact. (2.13)

where gexact denotes the column vector representation of the blurred image G in

the noiseless condition. In the presence of noise, in particular (g = gexact + n),

the inverse solution of Eq. 2.2, is given by

f̂ = H−1g,

= H−1gexact +H−1n,

= f +H−1n. (2.14)
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The inverse filter uses spectral components of the blurred image to find the so-

lution. However, the inverse filter is not appropriate when some values of H are

equal to zero, and, introducing noise implies that the solution f̂ will be dominated

by noise.

It is important to define the singular values decomposition (SVD), to deal with

the inverted noise H−1n. As noted in the literature, the SVD is a tool used fre-

quently for analysing the numerical stability of a system.

Definition 2.2. Suppose A ∈ Rm×n is a matrix of size m× n in the field of real

numbers R. Then there are orthogonal matrices U ∈ Rm×mand V ∈ Rn×n such

that

A = UΣV T , Σ ∈ Rm×n, Σ =

 Σ1 0

0 0

 ,
Σ1 = diag(σ1, σ2, . . . , σk), k = min(m,n),

where σi for i = 1, . . . , k are the singular values of A such that:

σ1 ≥ σ2 ≥ . . . ≥ σr ≥ σr+1 = . . . = σk = 0.

The number of non-zero singular values σi of the matrix A ∈ Rm×n is equal to

its rank [11, 31]. However, in the presence of round-off error and noisy data the

rank determination becomes a non-trivial task.

It follows that the singular values of the blurring matrix H can be represented
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as

H = UΣV T

=

[
u1 u2 . . . um

] Σ1 0

0 0




vT1

vT2
...

vTn


= u1σ1v

T
1 + . . .+ ukσkv

T
k

=
k∑
i=1

σiuiv
T
i , (2.15)

where ui,vi, and σi are the columns vector of the orthogonal matrices U and V ,

and the nonzero values in the diagonal matrix Σ respectively [38]. Likewise, the

inverted matrix of H is decomposed by SVD:

H−1 =
k∑
i=1

1

σi
uTi vi. (2.16)

Exploiting the relation between Eqs. 2.13 and 2.16, an approximation of f̂ thus

can be modelled as

f̂ =
k∑
i=1

uTi g

σi
vi. (2.17)

Likewise, the inverted noise H−1n in Eq. 2.14 is given by

H−1n =
k∑
i=1

uTi n

σi
vi.

As was pointed out earlier, the matrix H is badly ill-conditioned because a small

bounded error in the input can result in a large unbounded error in the output

[8]. Therefore, solving the problem in presence of noise does not give an adequate

estimation to the exact image, because of the inverted noise H−1n [8, 33, 38].

The spectral components |uTi g|, which correspond to the larger singular values,

contain the exact data and represent the lower frequency information, but the
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(a) (b) (c)

(d) (e)

Figure 2.9: Image restoration using the inverse filter. (a) an exact image; (b) a
blurred image; (c) a restored image of (b); (d) a blurred image with noise; and (e)
a restored image of (d)

smaller components are corrupted by the additive noise.

Figure 2.9 compares the inverse filter results, when an exact image that is shown

in (a) is distorted by a blur only as shown in (b), and when it is distorted by

the blur plus an additive noise as shown in (d). The noiseless condition yields a

sharper image, as shown in (c), while the inverse filter failed to show a similar

result when the noise is introduced, as can be seen in (e). Since the inverse filter

method behaves badly with additive noise, a better solution for this problem may

involve regularisation methods or the least squares method.

Regularisation methods define a certain parameter that can reduce the effect of

noise in the restored image. In particular, the small components in f̂ Eq. 2.17

contain small singular values that require to be filtered, as they are dominated

by noise [71]. These regularisation methods can be represented using the solution
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in Eq. 2.17, by defining a filter factor φi such that

f̂filt =
k∑
i=1

φi
uTi g

σi
vi.

Two methods of regularisation are considered in [38] in order to determine the

filter factor φi. The first is truncated singular value decomposition (TSVD), and

the second is Tikhonov regularisation. In the TSVD method, the SVD compo-

nents corresponding to the smallest singular values are set to be zero, so that

φi =

 1 i = 1, . . . , d,

0 i = d+ 1, . . . , k. 1 ≤ d ≤ k,

where d denotes the truncation parameter [38]. The Tikhonov method computes

the approximation f̂ using the following minimisation problem:

min
f

{
‖g−Hf‖22 + µ2‖f‖22

}
,

where µ denotes the regularisation parameter. This parameter can be determined

using the filter factor φi

φi =
σ2
i

σ2
i + µ2

, i = 1, . . . , k.

To be more precise, the parameter µ defines the level at which the σi come

down due to noise in the image. In order to obtain an acceptable filter factor

φi the discrete Picard condition must be satisfied. This is satisfied if, for all σi

larger than µ, the corresponding coefficients decay faster than the σi [36]. The

TSVD filters out the smaller singular values with a sharp cut-off, while Tikhonov

filters out the smaller singular values with a gradual roll-off, and TSVD and

Tikhonov methods yield similar results. The regularisation parameter can be

defined manually; also it can be computed automatically using three methods: the

generalised cross validation [32, 71], the L-curve criterion [37], and the discrepancy



2.6 Image restoration methods 42

principle [38]. Moreover, the least squares methods can deal with the noise better

than inverse filter.

The next section discusses one of the least squares filters, the Wiener filter.

2.6.2 Wiener filter

The inverse filter method is very sensitive to additive noise, and therefore a

method called Wiener filter has been proposed to address this deficiency in the

image restoration. The Wiener filter is one of the linear approaches based on the

least squares method; it requires an a priori statistical knowledge of the exact

image f, noise n, and a model for the minimisation problem which may given by

[8]:

argf̂ min ‖f− f̂‖22. (2.18)

More precisely, the Wiener filter uses the LSI system where the determination

of the blurring matrix H of the PSF requires to minimise the MSE, between

f and the estimated image f̂ [54]. The Wiener filter performs two procedures

simultaneously on the blurred image, first inverting the blurring filter H and

then reducing the noise (i.e. noise smoothing).

The solution of Eq. 2.18 is expressed in spectral domain by

Hw =
H∗(u, v)Sf̂ (u, v)

|H(u, v)|2Sf̂ (u, v) + Sn(u, v)
, (2.19)

where H∗, Sf̂ and Sn are the complex conjugate of H, the power spectra of f̂

and n respectively, and u and v are the components in spectral domain. The

power spectra represent the distribution of the average signal power and noise

power among its frequency units in the image [54]. The Wiener filter performs

the deconvolution using an inverse filter and a compression procedure to remove
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the additive noise for each frequency, implying H(u, v) = 0, mainly by using the

low-pass filter [54]. When no additive noise is introduced to the problem only

the deconvolution process is performed. The implementation of the Wiener filter

requires an estimation of the power spectra of both the exact image and the noise.

In particular, if white noise is introduced then Sn is a measure as the variance of

the noise, such that

Sn(u, v) = σ2
n, (2.20)

for each spatial component (u, v). If the values of σ2
n are very small then the

restored image will be similar to the one obtained by inverse filter, and it will be

oversmoothed if the values of σ2
n are large [54].

The estimator of the power spectra of the exact image Sf (u, v) can be done using

several methods. One direct method is called the periodogram estimator, where

Sf (u, v) is computed from the blurred image as

Sf (u, v) ≈ Sg(u, v)− Sn(u, v),

Sg(u, v) =
1

mn
g(u, v)g∗(u, v),

where g∗(u, v) is the complex conjugate of the blurred image G ∈ Rm×n, [54].

An estimator of Sf (u, v) can be obtained from a set of images that are similar

to the exact image. Other methods include some statistical models, such as the

autoregressive model [54].
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(a) Clear image (b) Distorted image (c) Restored image

Figure 2.10: Image restoration using Wiener filter. (a) an exact image; (b) a
blurred noisy image; and (c) the restored image.

It can be easily seen from Figure 2.10 that the image details have been im-

proved but the noise has amplified. The Wiener filter was implemented using

exactly known PSF, on a blurred image contaminated with a random noise of

10−3.

In the next section another type of least squares filter will be discussed.

2.6.3 Constrained least squares filtering

This section presents a method of image restoration that is similar to the Wiener

filter in how it deals with the noise amplification problem which arises from

using the inverse filter. Another limitation arises as the Wiener filter requires an

estimation of the power spectra of the exact image, so some prior information

is needed. The constrained least squares filtering method is proposed to deal

with these limitations [3, 31, 43]. Basically, it assumes that the blurred image of

the restored and the exact images are almost equal [54]. More precisely, if the

following model is assumed:

H f̂ ≈ g,
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then

‖g−H f̂‖2 = σ2
n, (2.21)

is satisfied [54]. Since there are several possible solutions of Eq. 2.21, a second

criterion is assumed based on the smoothness of the solutions. In particular, the

second criterion is subject to the minimisation problem in Eq. 2.21. The solution

to this minimisation problem leads to an estimate of the exact solution in the

Fourier domain provided by

f̂ =
[ H∗(u, v)

|H(u, v)|2 + α|P (u, v)|2
]
g(u, v), (2.22)

where P (u, v) is the Fourier transform of the Laplacian function

P =


0 −1 0

−1 4 −1

0 −1 0

 , (2.23)

and α is a regularisation parameter such that Eq. 2.21 is accomplished. The

Laplacian operator is a smoothing filter, that is implemented here to identify the

fine detail in the blurred image, in particular, it is used to remove noise [33].

The ringing effect can be present in the restored image; when the value of α

is large. If the value of α is small, the effect of amplified noise in the restored

image is present; this is referred to as an undersmoothed image [3, 38, 54]. The

regularisation parameter can be estimated using several methods, as described in

Section 2.6.1.

The following section introduces the iterative methods.
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2.6.4 Iterative methods

Many efficient methods of image restoration can be solved using spectral filtering,

but only for simple LSI systems as discussed in the last two sections. In many

methods convolution in the spatial domain is chosen over convolution in the

spectral domain when a given image is too large [57], and when some required

prior knowledge cannot be expressed appropriately in the spectral domain, for

instance the positivity of image intensities [57]. In particular, the positivity in

some image restoration methods based on the spectral domain, such as the Wiener

filter and the constrained least squares filter [54], is not restricted. Many iterative

methods based on the spatial domain are investigated in [7, 53, 57].

Basically, iterative restoration methods preform an iteration procedure on the

solution obtained by using the inverse filter. The method is modelled by the

following formula:

f̂k+1 = f̂k + β(g−H f̂k), k = 0, · · · , c, (2.24)

where β is the converge parameter and k is the number of iterations such that

the solution is converged after c iterations. The parameter β satisfies

|1− βH| < 1, for each spatial component, (2.25)

with the assumption that |H| ≤ 1, the Eq. 2.25 satisfies

0 < β < 2 and H > 0. (2.26)

It can be easily seen that if k = 0 in Eq. 2.24, the solution becomes equal to the

blurred image that corresponds to g. This form is called the Landweber iteration

and is used in most iterative methods, including Richardson-Lucy [89]. The so-

lution in each iteration f̂k is compared with the g of the blurred image, and the
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output is used then to update the output of the next iteration. In particular, too

many iterations of Eq. 2.24, defined by the parameter β, will lead to an inverse

filtered image where the additive noise is amplified as the image deblurs [54].

A relevant solution is considered when an accurate value of the parameter β is

defined [54].

More constraints can be added to Eq. 2.24, to allow the use of a priori knowl-

edge, such as the positivity of the image intensities, as mentioned earlier. So by

eliminating all the negative intensities and replacing with zeros, Eq. 2.24 can be

written as

f̂k+1 = P
[̂
fk + β(g−H f̂k)

]
, k = 0, · · · , c, (2.27)

where P is a projection operation [54]. Some works have explored different def-

initions of the parameter β and the projection P [3]. The iterative restoration

method is extended to include models with spatially variant PSF [48, 54].

There are some disadvantages to using this method, including the assumption of

H > 0 in Eq. 2.26 for each spatial component, which is not satisfied in practice

[54], and the lack of information in the spectral domain [54]. To overcome these

difficulties a combination of the iterative methods in Eq. 2.24 and the constrained

least squares filter is considered [54]. Another drawback to this method is that

the iterative methods have a slow convergence rate; a better solution may involve

a conjugate gradient algorithm [57].

Richardson-Lucy is a well-known simple iterative deconvolution method [72]. A

clearer image is obtained using similar iteration procedures; however, ringing ef-

fects commonly appear on the boundaries of the objects of the restored image.

Several works propose an enhancement of the Richardson-Lucy method, to reduce
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the ringing effects, basically by assuming the dissimilarity between the edge and

the smooth area of the image [89].

(a) Clear image (b) Blurred image

(c) Iterative filter (d) Richardson-Lucy

Figure 2.11: The image restoration using the iterative filters and Richardson-Lucy
deconvolution method, in presence of noise.

Figure 2.11 shows an example of image restoration of a blurred image with

additive noise shown in (b), using the described iterative method in (c) such that

the iteration is 200, and the Richardson-Lucy method in (d). Obviously, the

restored image in (c) becomes darker than the blurred image; however, it con-

tains many more detail and the result is similar to that of the Richardson-Lucy

method. It also can be noticed that the inverse filter may have an advantage over

the iterative filter in noiseless conditions, while the iterative filter is more efficient

when noise is introduced to the blurred image.
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2.6.5 Maximum likelihood blur estimation methods

This method is an enhanced technique of the iterative constrained algorithm. It

is based on a statistical model and aims to optimise an approximate f̂ of the

exact f iteratively. The estimation process of f̂ and the elements of the PSF are

performed simultaneously.

In most of the image restoration methods, a model of the exact image and knowl-

edge of the PSF and the additive noise are required. Recall from Section 2.6.2

that the power spectra of an exact image can be estimated using a statistical

model. This involves the 2D autoregressive (AR) model, given by

f(x, y) = a01f(x, y − 1) + a11f(x− 1, y − 1) + a01f(x− 1, y) + ν(x, y), (2.28)

where aij are the AR coefficients, and ν(x, y) is an unpredictable spatial compo-

nent [54]. The parameters aij and ν(x, y), with variance σν equal to white noise,

are assumed to be unknown. In this case a function called log likelihood is estab-

lished to estimate a set of parameters θ from the given distorted image, such that

θ = {aij, σν , σn, H} [55, 56]. The problem can be solved in the spatial domain;

however, some works consider that the spectral domain has an advantage [56].

The log likelihood equation for Gaussian distribution is given by [54]

Lθ =
∑
u,v

(
logP (u, v) +

g(u, v)g∗(u, v)

P (u, v)

)
,

where P (u, v) is the probability density function (PDF) of the blurred image.

The PDF is obtained by combining the image restoration model in Eq. 2.2 and
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the AR model in Eq. 2.28, leading to

P (u, v)|g,θ = σ2
ν

|H(u, v)|2

|1− A(u, v)|2
+ σ2

n. (2.29)

where A(u, v) represents the coefficients aij in a 2D discrete Fourier transform.

Image restoration using the maximum likelihood blur estimation method is achieved

by estimating the parameters of θ that maximise the log likelihood function [49].

The main limitation of this method is that more constraints should be applied in

order to obtain an acceptable estimation of the PSF, such that its sum is equal

to 1 [55]. Another limitation is found in the log likelihood function itself: it is

excessively a non-linear optimisation method, and no unique solution is available

[55].

This development in the blur estimation using maximum likelihood algorithm

with unknown PSF continuously improves the image restoration [42, 48, 49].

It involves a better initialisation of the required parameters, such as in the

expectation-maximization algorithm [55, 56]. Figure 2.12 shows the image restora-

tion using maximum likelihood deconvolution, which gives a similar result to the

Richardson-Lucy deconvolution method.

(a) Original image (b) Blurred and noisy image (c) Restored image

Figure 2.12: Blind image deconvolution using maximum likelihood methods.



2.7 Summary 51

2.7 Summary

This section has reviewed the basic concepts of image restoration including im-

age formation, the blurring function known as the PSF, and image convolution.

Having discussed some of the main existing approaches of image restoration, the

following chapter will present important tools used in the new proposed method

of image restoration.
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Chapter 3

The GCD approach and image

deblurring

3.1 Introduction

It was seen that, the BID problem is an example of ill-posed linear problem

[57, 69]. This problem was modelled in Eq. 2.2, where H is an ill-conditioned

matrix that contains the PSF information. The determination of the original im-

age requires the calculation of the vector f. The main aim is to remove the blur

from the input image g, where it is considered to be more significant than the

noise n [57]. The solution of this problem is connected to the computation of the

GCD of two bivariate polynomials whose coefficients are exactly known. Several

algorithms have been established to retrieve the original image from a single im-

age or from many distorted images, using the GCD approach [24, 60, 69]. Thus,

the BID problem is an application of GCD computations, where the PSF array,

the true and degraded images are defined as bivariate polynomials. The PSF ar-
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ray is considered as the GCD of two dissimilar true images, such that each image

contains the true PSF. Before proceeding further with the BID problem, it is

necessary to define the GCD of two exact univariate polynomials and an AGCD

of two inexact univariate polynomials. This chapter provides an overview of the

GCD approach and its approximations of AGCDs of two univariate polynomials,

which will be introduced in Sections 3.2 and 3.3 respectively. Some well-known

approaches for AGCD computation are addressed in Section 3.4.

3.2 Definition of the GCD of a pair of exact

polynomials

The calculation of the GCD of two polynomials is a basic approach in the field

of algebraic computation.

Definition 3.1. Let f1(x) and f2(x) be two univariate polynomials whose coef-

ficients are known exactly:

f1(x) = âmx
m + âm−1x

m−1 + âm−2x
m−2 + · · ·+ â0, (3.1)

f2(x) = b̂nx
n + b̂n−1x

n−1 + b̂n−2x
n−2 + · · ·+ b̂0, (3.2)

where â0, â1, â2, ..., âm and b̂0, b̂1, b̂2, ..., b̂n are the coefficients of f1(x) and f2(x)

respectively and am, bn 6= 0, and m and n represent the degree of polynomials

f1(x) and f2(x) respectively.

The GCD of two univariate polynomials f1(x) and f2(x) is defined as a polynomial
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d̂(x) of highest degree that can divide f1(x) and f2(x):

d̂(x) = GCD (f1(x), f2(x)),

d̂(x) =
f1(x)

û(x)
=
f2(x)

v̂(x)
,

where û(x) and v̂(x) are referred to as the quotient polynomials, and are co-prime.

In many applications, the computational process of the GCD can produce a

very large number of errors leading two exact (i.e. error-free) polynomials which

have a non-constant GCD to become co-prime. If an arbitrary small perturba-

tion appears in the coefficients of f1(x) and f2(x), it will make them co-prime

polynomials. As a result of this deficiency of GCD computations, an AGCD is

introduced. In the next section, the most well-known definitions of AGCD are

presented and one of them is assumed.

3.3 Defnition of an AGCD of a pair of inexact

polynomials

A tremendous amount of literature has been published on the AGCD of a pair of

univariate polynomials whose coefficients are inexact. These studies have given

several definitions of the AGCD as well as many methods for computing one. An

AGCD arises in many applications including, for example, polynomial root finding

[64], computer vision [28], image deblurring [1, 51, 60, 69, 83], control theory [4],

system identification [80], and hybrid rational approximation [44]. The GCD of

a pair of exact polynomials f1(x) and f2(x) yields a unique result d̂(x), while the
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AGCD of two inexact polynomials g1(x) and g2(x) dose not have a unique result.

In particular, different definitions of an AGCD yields different formation of the

problem. Some studies [9, 20, 26, 75] have used the definition in [66] for ε-GCD

of polynomials, where the degree of an ε-GCD is uniquely defined, but not its

coefficients. The definition of an ε-GCD is formalised as follows.

Definition 3.2. [66], Let g1 and g2 be two univariate polynomials of degrees m

and n respectively within error bound ε > 0 and a given norm in the space of

polynomials. Then the ε-GCD is defined when:

• There exist perturbed polynomials g̃1(x) and g̃2(x) of g1 and g2, respectively:

g̃1(x) = g1(x) + δg1(x), ‖δg1‖ ≤ ε,

g̃2(x) = g2(x) + δg2(x), ‖δg2‖ ≤ ε, (3.3)

that satisfy:

1. The polynomial ε-GCD is equal to GCD(g̃1(x), g̃2(x)).

2. The degree of ε-GCD is equal to the maximum integer r such that:

deg(GCD (g̃1(x), g̃2(x))) = r.

However, in [47] the definition of an AGCD is presented as ‘the nearest GCD’

problem, and formalised as follows.

Definition 3.3. Let g1 and g2 be two polynomials of degreesm and n respectively,

with a given norm in the space of polynomials. Then the nearest-AGCD is defined

as the nearest g̃1(x), and g̃2(x) to g1 and g2 respectively, such that:

‖g1(x)− g̃1(x)‖2 + ‖g2(x)− g̃2(x)‖2, (3.4)
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is minimised. Moreover, g̃1(x) and g̃2(x) have a non-trivial GCD.

One of the limitations with ε-GCD is that it fails to consider the unique-

ness of the exact GCD [39], since there are many polynomials g̃1(x), and g̃2(x)

that are close to g1 and g2 and are bounded by error ε > 0. Moreover, ε-GCD

suffers from an instability problem [65], where small perturbations in the coeffi-

cients of the polynomials g̃1(x) and g̃2(x) produce different degrees. To overcome

this problem, Pan [65] has introduced a new definition δ-GCD based on initial

computation of polynomial roots. δ-GCD has a limitation because it requires

an accurate computation of its roots. On the other hand, Zeng [93] summarises

the characteristics of an AGCD around three properties: ’nearness’ as defined in

Definition 3.3, and ’maximum degree’ and ’minimum distance’ as defined in 3.2.

In general, a better definition of an AGCD is necessary to accommodate all these

properties, and therefore Definition 3.4 will be assumed.

One aim of this research is to obtain an appropriate definition of the following

problem: Given a pair of polynomials g1 and g2, find the degree of an AGCD, per-

turbations δf(x) and δg(x), and an AGCD polynomial. Therefore, the following

definition of an AGCD is assumed in this research.

Definition 3.4. [39]. Let g1 and g2 be a pair of inexact polynomials of degrees

m and n respectively. The polynomial d̃(x) with degree d is said to be an AGCD

of the perturbed polynomials g̃1(x) and g̃2(x), if the following properties are

satisfied.

1. The polynomials g̃1(x) and g̃2(x) are of degrees m and n respectively.

2. The distance in Eq. 3.4 is minimised.
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3. The degree of d̃(x) is equal to the rank loss of the Sylvester resultant matrix

of g̃1(x) and g̃2(x).

This definition assumes that the degree of an AGCD is computed using the

methods provided in [84].

Several studies use earlier definitions of an AGCD of univariate polynomials, for

example the quasiGCD method [5] uses Euclid’s algorithm with a look-ahead al-

gorithm, the QRGCD method [21] is based on the QR decomposition of Sylvester

resultant matrix, and the uvGCD algorithm [93] uses a black box-type algorithm

and the QRGCD approach to increase accuracy in the performance.

These approaches are discussed in the following section.

3.4 Previous works on AGCD computations

The computation of an AGCD of a pair of inexact polynomials can be performed

using several approaches, after which a definition of an AGCD is selected. In

particular, this research will follow the AGCD in Definition 3.4 which is based

on the ε-GCD definition. This section introduces three of the main computa-

tional approaches that have been used to compute the AGCD of two inexact

univariate polynomials: Euclid’s algorithm, the resultant and subresultant ma-

trices approach, and the optimisation techniques approach.

Euclid’s algorithm has been used to find the GCD of two exact polynomials. In

addition, several researchers [5, 14, 19, 41, 64, 77] have extended Euclid’s al-

gorithm to the computation of AGCD of two inexact polynomials. The GCD

computation of two univariate polynomials whose coefficients are exact is based

on the classical version of Euclid’s algorithm [12]. Euclid’s algorithm is very ef-
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ficient with exact coefficients, but problems arise with inexact coefficients. This

algorithm fails with AGCD computation, because it fails to terminate. In general,

most of the AGCD computation studies based on Euclid’s algorithm have consid-

ered this limitation and suggested some modifications to the main algorithm. For

instance, Hribernig and Setter [41] have modified the termination criteria, while

Noda [64] extended the algorithm to an approximate square-free decomposition

algorithm.

The resultant approach is an alternative to Euclid’s algorithm. The Sylvester

resultant and subresultant matrices of two univariate polynomials are discussed

in Chapter 5. The degree of the GCD of the exact polynomials f1(x) and f2(x) is

equal to the rank loss of the resultant matrix, which can be determined by using

the SVD.

The coefficients of an AGCD of two inexact polynomials with several close roots

are not easily determined using QR decomposition, unlike the case of exact poly-

nomials. A strategy was proposed in [20] to alleviate the instability problem, but

it fails when a leading coefficient is lower than 10−5, as shown in [9]. So a new

method that uses QR decomposition of the Bezoutian resultant matrix based on

pivoting was established to compute the degree of an AGCD [9]. Further, the

estimated smallest singular value method was investigated in [92] based on the

estimator used in [10].

A method based on optimisation can also be used [17, 20, 45, 46, 47, 62], and the

GCD computed by this method satisfies the properties in the definition below.

Definition 3.5. [39]. Consider two polynomials g1 and g2 with degrees m and n

respectively, and k < m, n. Then d(x) is an AGCD of g1 and g2 if:
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1. deg d(x) = k.

2. d(x) is an exact divisor for the perturbed polynomials g̃1(x) and g̃2(x).

3. The perturbation norm η is minimised, where

η = ‖g1(x)− g̃1(x)‖2 + ‖g2(x)− g̃2(x)‖2,

The magnitude of the perturbation to be added into an AGCD polynomial was

studied by Karmarkar and Lakshman [46]. They describe the characterisation of

the minimum perturbation that has to be added to the given two polynomials

so that the perturbed polynomials have a non-trivial GCD [46]. Likewise, Chin

and Corless [17] solved a non-linear optimisation problem which has a similar

formulation of the minimisation problem function in [46], but differs in terms of

the function that is minimised. In other words, Karmarkar and Lakshman in

[46, 47] addressed the optimisation problem as a function of the common roots of

the polynomial that were perturbed, whereas Chin and Corless in [17] addressed

it as a function of common divisor coefficients and presumed that the degree of

an AGCD is known a priori.

In summary, several methods for computing an AGCD have been investigated

in the literature. Recent interest has focused on structured matrix methods

[45, 58, 86]. Many works based on this approach lies in the fact that an esti-

mation of the noise level must be made. In other words, a threshold is required

to specify the minimum perturbation to be added to the inexact polynomials in

order to have a non-constant GCD. Some studies have focused on this limitation

and have introduced a new strategy based on the data-driven theory which does

not require a certain threshold [39, 84, 88, 91]. Mainly, they apply preprocessing

operations to the Sylvester resultant matrix of two polynomials whose coefficients
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are unknown exactly to obtain an accurate AGCD.

3.4.1 The application of AGCD in image restoration

In image restoration context, Pillai et al. [69] performed AGCD computation to

solve the BID problem and described two cases; in one a pair of blurred images

of the same scene are given, and in the other a single blurred image is available,

such that both cases lead to a solution of the original image. He suggests that the

PSF can be obtained using a partition of the distorted image. The choice of any

part requires it to contain the whole information of the PSF, and thus he assumed

each line of the image is blurred by the linear motion blur. Consequently, the

GCD of two part will result in the PSF and then the restoration of the original

image [69]. They operate the deblurring process on a quite higher SNR about 45

dB, while the work presented in this thesis can operate on lower SNR. However,

the computations in this method are performed in z−domain using the DFT,

which leads to quantisation errors in the obtained solution [69].

Some other work has used this idea on one degraded image formed as

G =
(
(F + E)⊗ P

)
+ N ∈ R(M+r)×(N+r), (3.5)

where G,F,E,P and N are the blurred and original images, measurement errors,

the PSF, and the additive noise respectively.

This model is used to restore a PSF, that is P, of an equal dimensions r×r, with-

out using the DFT [24]. The method used in [24], was considered only for a small

blurring function of order 3 × 3 pixels, and the deblurring method was applied

only on the first and the last rows or/and columns of the blurred image. The use
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of DFT in the GCD computation reduces the computational time; however, the

DFT is computed approximately which leads into errors in the GCD computa-

tion. The proposed work in [24] has determined the PSF from a degraded image

using Eq. 3.5, where the measurement error is added to the exact image and not

to the PSF. Moreover, the implemented GCD algorithm in this method requires

a priori threshold to define the noise [24].

The solution of the BID problem in this research differs on the work in [24, 69],

that prior knowledge of the PSF and noise are not required, moreover, the compu-

tation are performed without using the DFT. The previous method for computing

the degree of an AGCD in [39, 84, 88], in power basis is extended and developed,

in this research. Under this condition, the BID approach is developed to include

two important techniques. Initially, a set of preprocessing operations is applied

on the two inexact polynomials, as illustrated in Chapter 5. Secondly, the degree

of an AGCD is computed based on two methods used in [84] that are considered

in Chapter 6. The coefficients of AGCD polynomial are computed using the non-

linear structure preserving matrix method [87], and least squares method [91].

3.5 Summary

This chapter has defined the GCD and reviewed various definitions of an AGCD.

Definition 3.4 of an AGCD is applied in this research. An overview of the

AGCD computation approaches was discussed along with some of their limi-

tations. Given these points, the BID problem is addressed in the next chapter

using polynomial representation.
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Chapter 4

The image deblurring by

polynomial computations

An overview of the BID problem was given in Chapter 2. It refers to the process

of determining both the exact image and the PSF from an inexact image. The

computation of the PSF is connected to the computation of an AGCD of two

univariate polynomials. This chapter introduces the BID problem in polynomial

form, in order to use an AGCD method. Section 4.1 defines the image blurring

components in polynomial form. The problem of BID will be considered for the

separable PSF in Section 4.2 and for bivariate case in Section 4.3.

4.1 Deconvolution and polynomial

Chapter 2 described some of the image restoration methods based on the blurring

model in Eq. 2.1. This section describes possible forms of the blurring model
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that could be applied to an exact image, in polynomial form. Suppose that

F, G, P, E, and N are the exact image, the blurred image, the PSF array, the

measurement error, and the noise respectively. Then, the image distortion model

can be obtained as follows.

G = F ⊗ (P + E) + N, (4.1)

where ⊗ denotes the convolution operation.

This model is assumed in this research, where the PSF is not known exactly and

uncertainty is represented by E, and additive noise is present. Consider a matrix

F ∈ RM×N of an exact image F given by

F =



a0,0 a0,1 · · · a0,N−1

a1,0 a0,1 · · · a1,N−1
...

...
...

...

aM−1,0 aM−1,1 · · · aM−1,N−1


,

whose entries are the coefficients of a bivariate polynomial f(i, j), where x and y

are pixel locations,

f(x, y) =
M−1∑
i=0

N−1∑
i=0

aijx
iyj i = 0, . . . ,M − 1,

j = 0, . . . , N − 1. (4.2)

Similarly, the matrix P ∈ RC×D of the PSF array whose entries are the coefficients

of a bivariate polynomial p(x, y) is given by

p(x, y) =
C−1∑
k=0

D−1∑
l=0

pklx
kyl, k = 0, . . . , C − 1,

l = 0, . . . , D − 1. (4.3)

Obviously, the dimensions of the PSF in the horizontal and vertical directions

are not assumed to be equal [38]. A blurred image is the result of blending the
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PSF all over the clean image, in both directions, row-wise and column-wise. It

follows that the blurred image G is stored in a matrix G ∈ R(M+C−1)×(N+D−1)

whose entries are the coefficients of a bivariate polynomial g(x, y), such that

g(x, y) = f(x, y)p(x, y).

Eqs. 4.2 and 4.3 yield

g(x, y) =
M−1∑
i=0

N−1∑
j=0

C−1∑
k=0

D−1∑
l=0

f(i, j)p(k, l)x(i+k)y(j+l).

The substitutions s = i+ k and t = j + l give

g(x, y) =
∑
i,j,s,t

f(i, j)p(s− i, t− j)xsyt. (4.4)

This equation shows that the pixel values of the blurred image G are equal to the

2D convolution of the pixel values of the exact image F and the PSF [38]. The

coefficient of xsyt in the bivariate polynomial g(x, y) of G is given by∑
i,j,s,t

f(i, j)p(s− i, t− j), (4.5)

and this is the value of the pixel at (s, t) in G.

The product in Eq. 4.4 shows that the blurred image G is represented by a bivari-

ate polynomial of degrees (M +C − 2) and (N +D− 2) in x and y respectively.

Thus, its coefficients are stored in a matrix of order (M +C − 1)× (N +D− 1).

This matrix is larger than the matrix F of F because of the extra rows at the top

and bottom and the extra columns on the left and right of G. As was explained

in Chapter 2, these extra rows and columns in G define the boundary conditions.

Consequently, the bivariate polynomial g(x, y) is of higher degrees than the de-

grees of the bivariate polynomial f(x, y).

The polynomial representation of Eq. 4.1 is given by

g(x, y) = f(x, y)
(
p(x, y) + e(x, y)

)
+ n(x, y), (4.6)
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where g, f, p, e and n are the polynomial representations of the blurred image G,

the exact image F, the PSF array P, the measurement errors E, and additive

noise N respectively. The model in Eq. 4.6 is an equation of the following form:

g(x, y) = f(x, y)d(x, y) + n(x, y), (4.7)

where d is an approximate polynomial of the PSF. If the following is assumed,

‖ n(x, y)‖ � ‖ f(x, y)d(x, y)‖

where ‖ · ‖ , without any subscript, is refer to 2−norm ‖ · ‖2, defined by

‖a‖2 =
(
|a1|2 + |a2|2 + · · ·+ |an|2

)1/2
, a ∈ Rn.

Then, Eq. 4.7 can be approximated to

g(x, y) ≈ f(x, y)d(x, y). (4.8)

The proposed solution to the BID problem implements the above equations to

reconstruct a PSF. There are two cases in which the BID problem can be solved,

including separable and nonseparable. The next section illustrates the BID solu-

tion to reconstruct a separable PSF.

4.2 The separable PSF

Section 2.3 has described the convolution of a PSF and an exact image. The

blurred image G is obtained as a result of blending the PSF all over the clean

image F, to be more precise, in row-wise or/and column-wise dimensions. It

means that each pixel in G is represented as a multiplication of the PSF and

the corresponding pixel in F, and the PSF is spatially invariant. Section 4.2.1
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explains the solution of the BID problem for 1D PSF. Section 4.2.2 extends the

solution of the BID problem to solve the 2D separable PSF.

4.2.1 One dimensional PSF

This section assumes that the exact image F is blurred by a 1D PSF across each

row or each column, resulting in the equations below:

g(x, y) = f(x, y)pr(y), (4.9)

g(x, y) = f(x, y)pc(x). (4.10)

where pr(y) and pc(x) are polynomials represent the blurring in row-wise and

column-wise respectively. If Eq. 4.9 is applied, the problem can be solved using

two distinct rows R1 and R2 of the blurred image G, such that each contains

the full PSF. However, the following theory can be modified when Eq. 4.10 is

assumed. The application of Eq. 4.8 to R1 and R2, produces

h1(x, y) ≈ u1(x, y)dr1(y), and h2(x, y) ≈ u2(x, y)dr2(y). (4.11)

where h1(x, y) and h2(x, y) are the polynomials represent R1 and R2 respectively.

It is clear that the blurring in row-wise dr1(y) and dr2(y) are approximately sim-

ilar:

dr1(y) = pr(y) + e1(y), and dr2(y) = pr(y) + e2(y),

and they only vary in their measurement errors. These errors are considered to

be small, such that dr1(y) ≈ dr2(y), and therefore they substituted by dr(y). It

follows that Eqs. 4.11 become

h1(x, y) ≈ u1(x, y)dr(y), and h2(x, y) ≈ u2(x, y)dr(y). (4.12)
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Conceding that u1(x, y) and u2(x, y) are two distinct regions of the exact image F,

such that they are coprime, and therefore an AGCD computation of polynomials

h1(x, y) and h2(x, y) is required to reconstruct an approximation of the 1D PSF,

dr(y) = AGCD
(
h1(x, y), h2(x, y)

)
.

Once the 1D PSF is estimated, the restored image can be obtained using poly-

nomial division

f̃(x, y) = g(x, y)/dr(y).

where f̃(x, y) is a bivariate polynomial represents the restored image F̃. The

column-wise blurring can be calculated using two columns of G, and the AGCD

polynomial is expressed as dc(x).

The next section presents the theory when 2D blurring is applied on an image.

4.2.2 Two dimensional PSF

It was shown in Eq. 2.12 that a 2D PSF can be decomposed into a column-vector

and a row-vector if it has rank one. On the assumption of 2D separable PSF, the

following holds:

p(x, y) = pc(x)pr(y), (4.13)

Introducing the measurement errors to Eq. 4.13 yields the following approxima-

tion of the separable PSF

d(x, y) = dc(x)dr(y), (4.14)

It follows that a polynomial g(x, y) of image G can be written as

g(x, y) ≈ dc(x)f(x, y)dr(y), or g(x, y) ≈ dr(y)f(x, y)dc(x). (4.15)



4.2 The separable PSF 71

Following the description in Section 2.5.2, it is appropriate to follow one form of

g(x, y) since the same steps can be applied to the other. Given two distinct rows

R1 and R2, and two distinct columns R3 and R4 of the blurred image G, such that

R1 and R2 contain the row-wise components of the PSF and R3 and R4 contain

the column-wise components of the PSF. The application of Eq. 4.15 to R1, R2,

R3 and R4, produces

rk(x, y) ≈ uk(x, y)dr(y), k = 1, 2,

ck(x, y) ≈ uk(x, y)dc(x), k = 1, 2, (4.16)

where rk(x, y) for k = 1, 2 are the polynomials represent R1 and R2, and ck(x, y)

for k = 1, 2 are the polynomials represent R3 and R4.

The separable PSF can be calculated using two AGCD computations, one consid-

ers rows rk(x, y), and the other considers columns ck(x, y) for k = 1, 2, resulting

in AGCD polynomials dr(y) and dc(x). In particular,

dr(y) = AGCD
(
r1(x, y), r2(x, y)

)
, and dc(x) = AGCD

(
c1(x, y), c2(x, y)

)
.

This method is followed by another operation to restore the original image F from

the degraded version G using polynomial division and Eq. 4.14.

f̃(x, y) = g(x, y)/d(x, y).

The PSF is identified using AGCD computation, based on the work done in

[87, 88] that will be discussed in Chapter 6. While, the method used to restore

the exact image will be discussed in Chapter 8.

Example 4.1. Suppose that an exact image F of size 5 × 5 is represented by

matrix F , and a separable Gaussian blur of size 3× 3 is represented by matrix P
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as below:

F =



162 143 165 124 162

184 143 165 184 162

124 165 184 143 124

162 124 162 143 184

184 143 165 124 162


, and P =


0.0277 0.1110 0.0277

0.1110 0.4452 0.1110

0.0277 0.1110 0.0277

 .

Matrix P is of rank one, and can be expressed as the product of its decomposed

a column-vector and a row-vector as:

P =


0.1664

0.6672

0.1664


[

0.1664 0.6672 0.1664

]
.

Assuming the zero boundary condition, the convolution of F with PSF yields an

image G of size 7× 7 denoted by matrix G:

G =



4.4846 21.9429 24.9271 25.70850 22.8178 21.4170 4.4845

23.0779 112.3849 125.5034 130.4706 120.9870 108.9682 22.4689

28.3437 138.0706 154.1802 164.4233 165.4400 131.6927 25.9014

23.3438 119.3261 155.9236 168.8567 152.7898 118.5447 23.3438

26.5104 128.6090 143.5548 156.4268 149.2956 136.9357 28.3437

24.9112 119.2113 125.1444 128.4766 116.9613 110.2756 23.0779

5.0935 24.3852 25.5361 25.7085 22.81780 21.4170 4.4845


.

Each row of F represents a univariate polynomial of degree 4, likewise for each

column in F . Matrix P is decomposed into a row and a column, such that

each is represented by a univariate polynomial, both of degree 2. Therefore the

multiplication of each row in F with the decomposed row vector of P yields a

univariate polynomial of degree 6. The same applies for each column in F with

the decomposed column vector of P . It is easily seen that due to the assumption
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of the zero boundary condition, the extra rows and columns at the border of G

are smaller in value than the other elements of G. The 2D representation G of G

has the same size as F of F, if the extra rows and columns at the border of G are

omitted. Accordingly, the computation of the GCD of two univariate polynomials

can be performed using two distinct rows of G or/and two distinct columns of G

to recover the PSF.

For example, let R1 and R2 be two random rows of G respectively, then their

univariate polynomial representations are:

r1(y) = (4.4845)y6 + (21.4170)y5 + (22.8178)y4 + (25.7085)y3 + (24.9270)y2

+ (21.9429)y + (4.4845),

r2(y) = (4.4845)y6 + (21.4170)y5 + (22.8178)y4 + (25.7085)y3 + (25.5361)y2

+ (24.3852)y + (5.0935).

To compute the horizontal components of the PSF in the noiseless condition, a

calculation of GCD must be performed, such that[
0.1664 0.6672 0.1664

]
= GCD

(
r1(y), r2(y)

)
.

The same result can be achieved for two distinct columns.

If the model in Eq. 4.1 has a measurement error 10−3 and an additive noise of

10−4, then by assuming the zero boundary condition the blurred image G is given
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by matrix G as follows:

G =



4.4885 21.9635 24.9489 25.7309 22.8360 21.43474 4.4860

23.0987 112.4771 125.5983 130.5606 121.0833 109.0446 22.4814

28.3684 138.16629 154.2882 164.5306 165.5437 131.7739 25.9169

23.3628 119.4108 156.0326 168.9605 152.8872 118.6223 23.3573

26.5326 128.6993 143.6468 156.5233 149.3942 137.0284 28.3609

24.9323 119.2801 125.2269 128.5603 117.0380 110.3429 23.0948

5.0942 24.3898 25.5435 25.7163 22.8259 21.4226 4.4889


.

The horizontal components of the PSF can be computed by choosing r1 and r2,

which are two univariate polynomials of two rows of G:

r1(y) = (4.4860)y6 + (21.4347)y5 + (22.8360)y4 + (25.7309)y3 + (24.9489)y2

+ (21.9635)y + (4.4885),

r2(y) = (4.4889)y6 + (21.4226)y5 + (22.8259)y4 + (25.7163)y3 + (25.5435)y2

+ (24.3898)y + (5.0942).

The GCD computation here reduces to an AGCD computation:

dr(y) = AGCD
(
r1(y), r2(y)

)
.

Likewise if c1(x) and c2(x) are two univariate polynomials corresponding to two

random columns of G respectively, then

dc(x) = AGCD
(
c1(x), c2(x)

)
.

If two blurred images of different scenes are given, such that each contains

an equal separable PSF, eg. taken by the same device, then a row and a column

from each image are chosen in order to perform two AGCD computations.

This is not applicable when the exact images are convolved with a PSF that

is not separable, and thus a bivariate problem is introduced. The next section
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will examine the polynomial form of bivariate problem, when the PSF is not

separable.

4.3 The nonseparable PSF

This section presents the BID problem in its bivariate polynomial form, in par-

ticular, it considers the PSF that has a rank larger than one. This is referred to

as a nonseparable PSF, where the PSF array that is given by matrix P cannot

be decomposed into a column vector and a row vector.

Before proceeding with this problem, it is important to define an ordering system

for an image. The entries of a matrix representation of an image with dimensions

M ×N is represented in bivariate power basis as follows:

S =



1 y y2 . . . yN−1

x xy xy2 . . . xyN−1

...
...

... . . .
...

xM−1 xM−1y xM−1y2 . . . xM−1yN−1


. (4.17)

Matrix S stores the coefficients of a bivariate polynomial s(x, y), that contains

xi−1yj−1, for i = 1, · · · ,M and j = 1, · · · , N .An alternative ordering system

must be arranged for the coefficients of the corresponding bivariate polynomial,

so that it can be represented in an equivalent univariate polynomial. Thus, the

representation in S of a matrix is transformed into univariate power basis as:

T =



1 zM z2M . . . zM(N−1)

z zM+1 z2M+1 . . . zM(N−1)+1

...
...

... . . .
...

zM−1 z2M−1 z3M−1 . . . zMN−1


. (4.18)
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Matrix T stores the coefficients of a univariate polynomial t(z), which contains

zk−1 for k = 1, · · · ,MN .

The relation between the index (i, j) in matrix S and the index (k− 1) in matrix

T must be defined. This relation can be derived using the division and modulo

operators, such that

k = i+M(j − 1), (4.19)

and

i =
(
(k − 1) MODM

)
+ 1, j =

(
(k − 1) DIVM

)
+ 1, (4.20)

where DIV and MOD denote the division and modulo operators respectively, for

i = 1, · · · ,M ;j = 1, · · · , N ; k = 1, · · · ,MN .

, For example, the equivalent univariate polynomial of a bivariate polynomial

f(x, y) using univariate power basis is f(z) of degree (MN − 1), such that its

coefficients are arranged in a matrix F ∈ RM×N .

Now consider the blurred versions of the exact images F1 and F2 expressed in

polynomial form as:

g1(x, y) = f1(x, y)
(
p(x, y) + e1(x, y)

)
+ n1(x, y),

g2(x, y) = f2(x, y)
(
p(x, y) + e2(x, y)

)
+ n2(x, y),

where e denotes the measurement errors and n denotes the additive noises.

The PSF is assumed to be spatially invariant, and thus the PSF is assumed to be

equally assigned in each pixel of G1 and G2. If (e1 = e2 = 0) and (n1 = n2 = 0),

then GCD computations of g1(x, y) and g2(x, y) in x and y variables lead to

the exact PSF, p. However, if (e1, e2, n1, n2 6= 0), then an approximation of

the common factor p is estimated. Using Eq. 4.8 in the presence of noise, the
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polynomial forms of G1 and G2 are approximated into the following:

g1(x, y) ≈ f1(x, y)d(x, y), and g2(x, y) ≈ f2(x, y)d(x, y), (4.21)

where

d(x, y) ≈ d1(x, y) ≈ d2(x, y).

It is assumed that F1 and F2 are dissimilar. Therefore, their polynomial repre-

sentations are considered to be coprime. It follows that

d(x, y) = AGCD
(
g1(x, y), g2(x, y)

)
.

The corresponding matrices G1 and G2 of g1(x, y) and g2(x, y), are represented

as Eq. 4.17. Alternative representations of G1 and G2 are assumed, so each can

be expressed in z-basis as shown in Eq. 4.18. It follows that the matrices G1 and

G2 in univariate power basis are transformed into column vector representation

by stacking their columns. Accordingly, Eq. 4.21 is written as

g1(z) ≈ f1(z)d(z), and g2(z) ≈ f2(z)d(z). (4.22)

Then

d(z) = AGCD
(
g1(z), g2(z)

)
.

The recovered PSF is derived by converting the computed AGCD from a univari-

ate polynomial d(z) to a bivariate polynomial d(x, y), using Eqs. 4.20. Then the

exact images F1 and F2 are reconstructed using polynomial division:

f̃k(x, y) = gk(x, y)/d(x, y), k = 1, 2. (4.23)
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Example 4.2. Consider matrices F , P and G given by

F =


0 3 1

−1 1 −4

2 5 3

 , P =


1 2 1

1 0 0

0 2 1

 , G =



0 3 7 5 1

−1 2 −2 −7 −4

1 10 17 16 4

2 3 4 −7 −4

0 4 12 11 3


,

where matrix G represents the convolution of F with P . The entries of matrix G

are stored in bivariate power basis as follows:

G =



1 y y2 y3 y4

x xy xy2 xy3 xy4

x2 x2y x2y2 x2y3 x2y4

x3 x3y x3y2 x3y3 x3y4

x4 x4y x4y2 x4y3 x4y4


. (4.24)

The matrices F and P are expressed in the bivariate polynomial form as:

f(x, y) = 3x2y2 + 5x2y + 2x2 − 4xy2 + xy − x+ y2 + 3y,

p(x, y) = 1 + x+ 2y + y2 + x2y2.

The product of f(x, y) and p(x, y) yields a bivariate polynomial g(x, y) which

corresponds to the matrix G, such that

g(x, y) = 3x4y4 + 11x4y3 + 12x4y2 + 4x4y − 4x3y4 − 7x3y3 + 4x3y2 + 3x3y

+ 3x3 + 4x2y4 + 16x2y3 + 17x2y2 + 10x2y + x2 − 4xy4 − 7xy3 − 2xy2

+ 2xy − x+ y4 + 5y3 + 7y2 + 3y.

The bivariate power basis of matrix G in Eq. 4.24 is transformed into univariate
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power basis, such that its entries are stored in G as shown below:

G =



1 z5 z10 z15 z20

z z6 z11 z16 z21

z2 z7 z12 z17 z22

z3 z8 z13 z18 z23

z4 z9 z14 z19 z24


.

The bivariate problem can be transformed then into univariate problems, such

that f(x, y) p(x, y) and g(x, y) become

f(z) = 3z12 − 4z11 + z10 + 5z7 + z6 + 3z5 + 2z2 − z,

p(z) = z12 + z10 + 2z7 + 2z5 + z2 + z + 1,

g(z) = 3z24 − 4z23 + 4z22 − 4z21 + z20 + 11z19 − 7z18 + 16z17 − 7z16 + 5z15

+ 12z14 + 4z13 + 17z12 − 2z11 + 7z10 + 4z9 + 3z8 + 10z7 + 2z6 + 3z5

+ 2z3 + z2 − z + 1.

It can be clearly seen that a blurred image can be rearranged as a column

vector that represents a univariate polynomial. Therefore an AGCD computation

[87] using a Sylvester matrix of two univariate polynomials is applicable in this

case. However, a Sylvester matrix is assumed to be large for bivariate polynomi-

als even with a reasonable order of x and y. Therefore, it is necessary to reduce

the degree of the bivariate polynomials in order to perform the computations.

The method described in this section to simplify the problem to univariate poly-

nomial is still considered non-effective for larger degree.

In this research, the 2D problem is simplified into two 1D problems, by using

two AGCD computations based on the Sylvester resultant matrix to estimate the

separable PSF. Moreover, high performance computing (HPC) is implemented
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to estimate the nonseparable PSF, as it will be shown in Chapter 7. Before pro-

ceeding with the blind PSF estimation, it is important to introduce the Sylvester

resultant matrix and its subresultant matrices, that is needed to calculate the

GCD and an AGCD of a pair of polynomials. The relation between the Sylvester

matrix type and the GCD computation is explained in the next chapter.

4.4 Summary

The polynomial representation of the BID problem, including the univariate and

bivariate polynomials, was introduced in this chapter. Two methods to calculate

the PSF have been outlined. The first method aims to restore separable types of

the PSF and the second method aims to restore general types of the PSF; more

precisely, separable and nonseparable. These methods require the calculation of

an AGCD of two univariate polynomials, whose coefficients are unknown exactly,

using a Sylvester resultant matrix. What follows is an overview of the Sylvester

resultant matrix type and its relation to the GCD computations.



Chapter 5

Sylvester resultant matrix and its

modfied form

5.1 Introduction

A new solution of the BID problem using polynomial computations has been

described in Chapter 4. This solution uses the Sylvester resultant matrix to esti-

mate the PSF. The Sylvester resultant and its k subresultant matrices, denoted

by S(f1(x), f2(x)) and Sk(f1(x), f2(x)) respectively, can be used for the computa-

tion of the GCD of two univariate polynomials f1(x) and f1(x) whose coefficients

are known exactly. In particular, f1(x) and f2(x) have a non-constant GCD if

their Sylvester matrix is singular [4]. In this case, the degree of the GCD of f1(x)

and f2(x) is equal to the rank loss of their Sylvester matrix. The coefficients of

the GCD can be retrieved by reducing the Sylvester resultant matrix to an upper

triangular structure form using the decompositions LU or QR and the coefficients

of GCD will be found in the last non zero row of U or R. The polynomials are
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co-prime if their Sylvester matrix is non-singular (i.e the determinant of Sylvester

matrix is not equal to zero).

This chapter will examine the Sylvester resultant type in power basis and its

properties, for its application to GCD computations, using the theory proposed

in [84]. Section 5.2 describes the Sylvester resultant matrix, and its subresultant

matrices will be described in Section 5.3. A modification to the Sylvester matrix

and its subresultant matrices of two polynomials g1(x) and g2(x) whose coeffi-

cients are perturbed by noise, denoted by Sk(g1(x), g2(x)), will be introduced in

Section 5.4.

5.2 Sylvester resultant matrix

As already noted, a sufficient and necessary condition for two exact polynomials

to have a non-constant GCD is that the determinant of their Sylvester matrix

S(f1(x), f2(x)) equals zero. The Sylvester matrix in [4, 23] can be illustrated by

the following definition.

Definition 5.1. [84]. Let f1(x) and f2(x) be two exact polynomials of positive

degree, as in the following:

f1(x) =
m∑
i=0

âm−ix
m−i, i = 0, . . . ,m, âm 6= 0. (5.1)

f2(x) =
n∑
j=0

b̂n−jx
n−j, j = 0, . . . , n, b̂n 6= 0. (5.2)
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Then the Sylvester matrix of two polynomials f1(x) and f2(x) is S(f1, f2) ∈

R(m+n)×(m+n),

S(f1, f2) =



âm

âm−1 âm
... âm−1

. . .

â1
...

. . . âm

â0 â1
. . . âm−1

â0
. . .

...

. . . â1

â0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

b̂n

b̂n−1 b̂n
... b̂n−1

. . .

b̂1
...

. . . b̂n

b̂0 b̂1
. . . b̂n−1

b̂0
. . .

...

. . . b̂1

b̂0



,

where the coefficients âi of the polynomial f1(x) occupy the first n columns of

S(f1, f2) and the coefficients b̂i of the polynomial f2(x) occupy the last m columns

of S(f1, f2), [84]. The resultant of f1(x) and f2(x) is denoted by Res(f1, f2) such

that

Res(f1(x), f2(x)) = det(S(f1(x), f2(x))).

The polynomials f1(x) and f2(x) have a common divisor if an only if

Res(f1(x), f2(x)) = 0,

in which case, there exists a common divisor polynomial d̂k(x), k = 1, . . . , d̂ that

satisfies

d̂k(x) =
f1(x)

ûk(x)
=
f2(x)

v̂k(x)
, and d̂ = deg GCD(f1(x), f2(x)), (5.3)

[84], where ûk(x) and v̂k(x) are quotient polynomials of degree ûk < m and v̂k < n

respectively:

ûk(x) =
m−k∑
i=0

ûk,m−ix
m−i, v̂k(x) =

n−k∑
j=0

v̂k,n−jx
n−j, (5.4)
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and

d̂k(x) =
k∑
i=0

d̂k,k−ix
k−i.

Eq. 5.3 can be represented as

v̂k(x)f1(x) = ûk(x)f2(x), k = 1, . . . , d̂, (5.5)

where ûk(x) and v̂k(x) are equal to the zero polynomial for k = d̂+1, . . . ,min(m,n),

because deg GCD(f1(x), f2(x)) = d̂, that is:

ûk(x) ≡ 0, ûk(x) ≡ 0, k = d̂+ 1, . . . ,min(m,n). (5.6)

Accordingly, Eq. 5.5 and Eq. 5.6 can be written in matrix form as

[Ck Dk]

 v̂k

−ûk

 = Sk

 v̂k

−ûk

 = 0, k = 1, . . . ,min(m,n), (5.7)

where the Sylvester matrix can be expressed as two Toeplitz matrices

Ck = Ck(f1) ∈ R(m+n−k+1)(n−k+1), and Dk = Dk(f2) ∈ R(m+n−k+1)(m−k+1) :

Ck(f1) =



âm

âm−1
. . .

...
. . . âm

â0
... âm−1

. . .
...

â0


, Dk(f2) =



b̂n

b̂n−1
. . .

...
. . . b̂n

b̂0
... b̂n−1

. . .
...

b̂0


,

and Sk = Sk(f1, f2),

ûk =

[
uk,0 uk,1 . . . uk,m−k+1 uk,m−k

]
∈ Rm−k+1,

v̂k =

[
vk,0 vk,1 . . . vk,n−k+1 vk,n−k

]
∈ Rn−k+1,
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such that

ûk, v̂k 6= 0, for k = 1, . . . , d̂,

v̂k, v̂k = 0, for k = d̂+ 1, . . . ,min(m,n),

[84]. It follows that

Sk = Sk(f1, f2) = [Ck Dk] ∈ R(m+n−k+1)(m+n−2k+2).

The subresultant matrices are determined by deleting some rows and columns

from S(f1, f2). The kth subresultant matrix Sk(f1, f2) ∈ R(m+n−k+1)×(m+n−2k+2),

where 1 ≤ k ≤ min(m,n), is obtained by removing the last k−1 rows of S(f1, f2),

the last k − 1 columns of Ck(f1), and the last k − 1 columns of Dk(f2) [84]. The

Sylvester subresultant matrix for k = 1 reduces to Sylvester resultant matrix

S(f1, f2), [88], that is:

S1(f1, f2) = S(f1, f2).

The next section describes the relation between the computation of the GCD of

f1(x) and f2(x) and their Sylvester subresultant matrices Sk(f1(x), f2(x)).

5.3 Sylvester subresultant matrix

The computation of the GCD of the two exact polynomials f1(x) and f2(x) is per-

formed using subresultant matrices. To illustrate how the order of the Sylvester

matrix S(f1(x), f2(x)) and its subresultant matrices Sk(f1(x), f2(x)) are related

to the common divisor of two polynomials f1(x) and f2(x), the following theorems

are established.
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Theorem 5.1. See also [4, 23, 39].Let f1(x) and f2(x) be two polynomials as

described in Definition 5.1 and d̂(x) a polynomial of degree k. Let û(x) and v̂(x)

be two quotient polynomials defined in Eq. 5.4 with degree of m − k and n − k

respectively, such that:

f1(x) = ûk(x) · d̂k(x),

f2(x) = v̂k(x) · d̂k(x).

Then d̂(x) is a common divisor of f1(x) and f2(x) if and only if

f1(x) · v̂k(x) = f2(x) · ûk(x), k = 1, . . . , d̂.

The degree of the GCD and its coefficients are obtained using Theorems 5.2,

and 5.3.

Theorem 5.2. See also [84, 87]. Let a pair of polynomials f1(x) and f2(x) as

defined in Eq. 5.1 and Eq. 5.2 respectively have a non-constant GCD of degree d̂

and let S(f1, f2) be the Sylvester matrix. Then:

• the degree d̂ of their GCD is equal to the rank loss of the Sylvester resultant

matrix S(f1, f2) , so:

deg(GCD(f1, f2)) = m+ n− rankS(f1, f2).

• The coefficients of the GCD of f1 and f2 are in the last non-zero row of

the upper triangular forms U and R in the LU and QR decompositions of

S(f1, f2).

Theorem 5.3. See also [4, 23, 39]. The polynomials f1(x) and f2(x),as described

in 5.1, have a common divisor of degree k ≥ 1 if the rank of Sk(f1, f2) < (m +

n− 2k + 2).
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Since f1(x) and f2(x) have common divisors of degree k = 1, . . . , d̂, but they

do not have common divisors of degree k = d̂+ 1, . . . ,min(m,n), it follows that

rank Sk(f1(x), f2(x)) < m+ n− 2k + 2, k = 1, . . . , d̂,

rank Sk(f1(x), f2(x)) = m+ n− 2k + 2, k = d̂+ 1, . . . ,min(m,n).

Consequently, the degree d̂ of the GCD of f1(x) and f2(x) equals the index k

of the last subresultant matrix of order S1(f1, f2), S2(f1, f2), . . . , Sk(f1, f2), for

which Sk(f1, f2) is rank deficient [84]. More precisely, the homogeneous Eq. 5.7

has a non-zero solution for k = 1, . . . , d̂ as shown in Eq. 5.8, and because it is

assumed that f1(x) and f2(x) have a common divisor of degree k, this implies

d̂k,0 6= 0, [88]; therefore ûk,0, ûk,0 6= 0 [84].

It follows that Eq. 5.7 can be transformed from a homogeneous equation to a

linear algebraic equation if

Sk(f1, f2) = [ck Ak], (5.8)

where Ak = Ak(f1, f2) ∈ R(m+n−k+1)×(m+n−2k+1) is the matrix Sk(f1, f2) after

removing a column, which forms then the vector ck [21, 31, 84]. It follows that

Akxk = ck, k = 1, . . . , d̂,

Akxk 6= ck, k = d̂+ 1, . . . ,min(m,n), (5.9)

where

xk = [vk,1 . . . vk,n−k − uk,0 − uk,m−k]T ∈ R(m+n−2k+1).

This leads to Theorem 5.4.

Theorem 5.4. See also [4, 23, 39]. Consider the polynomials f1(x) and f2(x),

as described in 5.1, and k ≤ min(m,n) a positive integer. Then the nullity of
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Sk(f1, f2) is greater or equal to 1 if and only if,

Akxk = ck, x ∈ Rm+n−2k+1, (5.10)

has a solution.

Theorems 5.3 and 5.4 yield the following theorem.

Theorem 5.5. See also [39]. The polynomials f1(x) and f2(x) have a common

divisor of degree k if and only if Eq. 5.10 possesses a solution.

It can be shown that Eq. 5.9 possesses a solution for k = 1, . . . , d̂, and therefore

ck lies in the column space of Ak for these values of k and does not possesses a

solution for k = d̂+ 1, . . . ,min(m,n) [84]. Thus the degree d̂ of the GCD of f1(x)

and f2(x) is equal to the largest values of k for which Eq. 5.9 possesses a solution

[84].

The next example describes the construction of Sylvester subresultant matrices.

Example 5.1. Let the polynomial f1(x) be of degree m = 6 and the polynomial

f2(x) be of degree n = 4. Then:

S1 =



â6 â4

â5 â6 â3 â4

â4 â5 â6 â2 â3 â4

â3 â4 â5 â6 â1 â2 â3 â4

â2 â3 â4 â5 â0 â1 â2 â3 â4

â1 â2 â3 â4 â0 â1 â2 â3 â4

â0 â1 â2 â3 â0 â1 â2 â3

â0 â1 â2 â0 â1 â2

â0 â1 â0 â1

â0 â0



, S2 =



â6 â4

â5 â6 â3 â4

â4 â5 â6 â2 â3 â4

â3 â4 â5 â1 â2 â3 â4

â2 â3 â4 â0 â1 â2 â3 â4

â1 â2 â3 â0 â1 â2 â3

â0 â1 â2 â0 â1 â2

â0 â1 â0 â1

â0 â0



,
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S3 =



â6 â4

â5 â6 â3 â4

â4 â5 â2 â3 â4

â3 â4 â1 â2 â3 â4

â2 â3 â0 â1 â2 â3

â1 â2 â0 â1 â2

â0 â1 â0 â1

â0 â0


, S4 =



â6 â4

â5 â3 â4

â4 â2 â3 â4

â3 â1 â2 â3

â2 â0 â1 â2

â1 â0 â1

â0 â0


,

where

S1 = S(f1, f2), S2 = S2(f1, f2), S3 = S3(f1, f2), S4 = S4(f1, f2).

The next section explains three preprocessing operations applied to the Sylvester

matrix and its subresultant matrices.

5.4 The preprocessing operations applied to the

Sylvester matrix

Although the Sylvester matrix and its subresultant matrices Sk(f1(x), f2(x)) of

two exact polynomials f1(x) and f2(x) perform well in the GCD computations,

they yield incorrect results in the presence of error [84]. More precisely, the

computation of the GCD of f1(x) and f2(x) performed in floating point arith-

metic leads to two inexact polynomials g1(x) and g2(x) that are coprime because

their Sylvester matrix has full rank, even if f1(x) and f2(x) are not coprime [88].

Therefore the Sylvester and subresultant matrices Sk(g1(x), g2(x)) of two poly-

nomials whose coefficients are perturbed must be preprocessed before an AGCD

computation [84].
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This section reviews the preprocessing operations that have been described and

implemented in [39, 84] using the Sylvester matrix in power basis. Similar oper-

ations have been implemented in [91] for the Sylvester matrix in Bernstein basis.

Mainly, three preprocessing operations have been investigated by Winkler et al

[84]. The first operation normalises the coefficients of the polynomials using the

geometric mean. The second operation is the replacement of g2(x) by αg2(x),

where α is a parameter to be determined. A substitution is the last opera-

tion whose aim is to reduce the ratio of the maximum element, in magnitude,

of S(g1, g2) to the minimum element, in magnitude, of S(g1, g2), [84]. These

preprocessing operation are considered in Sections 5.4.1, 5.4.2 and 5.4.3. The

importance of these operations is pointed out in [86].

Initially, let two exact univariate polynomials f1(x) and f2(x) as defined in Eq.

3.1 be perturbed by noise, such that g1(x) and g2(x) are two inexact univari-

ate polynomials as defined in Definition 3.4. However, two inexact univariate

polynomials can be represented as the following:

g1(x) =
m∑
i=0

am−ix
m−i, am 6= 0, (5.11)

g2(x) =
n∑
j=0

bn−jx
n−j, bn 6= 0. (5.12)

The Sylvester matrix Sk(g1(x), g2(x)) is formed by the polynomials in Eqs. 5.11

and 5.12, and will be preprocessed based in the recent development in the AGCD

computation, [88]. The following sections introduce the three preprocessing op-

erations required prior to the computation of AGCD.
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5.4.1 Normalisation by geometric mean

Recall from Chapter 4 that the kth Sylvester matrix Sk(g1(x), g2(x)) is represented

as a partitioned structure matrix of two polynomials g1(x) and g2(x), where the

coefficients of g1(x) lie in the first n− k+ 1 columns and the coefficients of g2(x)

lie in the last m − k + 1 columns. This makes Sk(g1(x), g2(x)) unbalanced, if

g1(x) and g2(x) are not normalised, especially if the coefficients of g1(x) are much

larger or smaller than the coefficients of g2(x) [84]. Therefore a prior normalisa-

tion process of each polynomial g1(x) and g2(x) must be applied to overcome the

computational problems.

Several studies attempt to use the 2-norm of the coefficients [9, 20] and the ge-

ometric mean of the coefficients [87] for normalisation of the coefficients of a

polynomial. However, it can be shown that normalisation by geometric mean

instead of 2-norm yields a more balanced Sk(g1(x), g2(x)), [39, 87]. Moreover, the

geometric mean is also selected due to its accuracy against any tiny change in

the polynomial coefficients, in contrast to 1−, 2− and ∞ norms which omit this

change, [21]. Under these circumstances, the pair of inexact univariate polyno-

mials will be redefined as:

g1(x) =
m∑
i=0

ām−ix
m−i, ām−i =

am−i∏m
i=0 |am−i|

1
m+1

, (5.13)

g2(x) =
n∑
j=0

b̄n−jx
n−j, b̄n−j =

bn−j∏n
j=0 |bn−j|

1
n+1

, (5.14)

where ai and bi are the non-normalised coefficients. It is important to note that

the geometric mean here is considering only the non-zero coefficients ai 6= 0 and

bi 6= 0 and not all the coefficients [84]. The next section introduces the second

preprocessing operation.
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5.4.2 Relative scaling of polynomials

This operation introduces an arbitrary non-zero scalar α which satisfies

GCD(g1(x), g2(x)) ∼ GCD(g1(x), αg2(x)), α ∈ R\0, (5.15)

where ∼ denotes equivalence, because the GCD of two polynomials is defined

to within an arbitrary non-zero scalar [84]. In the case of the GCD of exact

polynomials f1(x) and f2(x), the scalar weight α can be set equal to one, unlike

the inexact case of polynomials g1(x) and g2(x) where α must be included to

obtain good computational results [39]. In particular, different values of α result

in different AGCDs. Based on the normalised Eqs. 5.13 and 5.14, a well-defined

parameter α is the relative weight of g2(x) to the unit weight of g1(x), [84].

The parameter α was first introduced by [86] who indicated that a well-determined

rank of Sylvester matrix Sk(g1(x), αg2(x)) is difficult to obtain by using random

values of α. Therefore the procedure of choosing a non-zero scalar α will decide

how good the results are. Furthermore, an AGCD computation requires an opti-

mal value of α, which will be discussed in Section 5.4.4.

The next section introduces the third preprocessing operation.

5.4.3 A change in the independent variable

A significant variation in the magnitude of the coefficients of the polynomial can

lead to unreliable computations [30]. Therefore the third preprocessing operation

scales the independent variable x, to minimise the ratio between the maximum

coefficient of g1(x) and g2(x), in magnitude, to the minimum coefficient of the

g1(x) and g2(x), in magnitude [84]. This scaling is achieved by a substitution in
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Eq. 5.16:

x = wθ, (5.16)

where w is the new independent variable and θ is a coefficient change value is to

be determined [84]. Introducing parameter θ in Eq. 5.16 to the GCD computation

of f1(x) and f2(x) does not change its degree. That is:

GCD(f1(x), f2(x)) = GCD(f1(wθ), f2(wθ)).

Accordingly, after introducing the parameter θ, the polynomials g1(x) and g2(x)

in Eqs. 5.13 and 5.14 are represented as:

ḡ1(w, θ) =
m∑
i=0

(ām−iθ
m−i)wm−i, (5.17)

ḡ2(w, θ) =
n∑
j=0

(b̄n−jθ
n−j)wn−j. (5.18)

The method to find the parameter θ of one polynomial has been studied in [30, 87],

and extended into two polynomials in [39]. In order to compute an AGCD of

Sk(ḡ1(w, θ), αḡ2(w, θ)), optimal values α0 and θ0 of α and θ will be considered in

the next section.

5.4.4 Linear programming

A computation of the optimal values α0 and θ0 of α and θ, respectively, is required

in order to compute an AGCD of Sk(ḡ1(w, θ), αḡ2(w, θ)) of two polynomials ḡ1θ(w)

and ḡ2θ(w) whose entries are {ām−iθm−i}mi=0 and {b̄n−jθn−i}nj=0, respectively. The

optimal values of α0 and θ0 can be determined using the minimisation problem

developed in [88]:
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α0, θ0 = arg min
α,θ

{
max{maxi=0,...,m |ām−iθm−i| ,maxj=0,...,n |αb̄n−jθn−j|}
min{mini=0,...,m |ām−iθm−i| ,minj=0,...,n |αb̄n−jθn−i|}

}
.

(5.19)

In particular, the minimisation problem can be expressed as:

Minimise λ
ψ

Subject to

λ > |ām−i|θm−i, i = 0, · · · ,m

λ > α|b̄n−j| θn−j, j = 0, · · · , n

ψ ≤ |ām−i|θm−i, i = 0, · · · ,m

ψ ≤ α|b̄n−j| θn−j, j = 0, · · · , n

ψ > 0, α > 0, θ > 0

On the assumption of the following:

Λ = log λ, Ψ = logψ, Θ = logθ, ν = logα, Āi = log |ām−i|,

and

B̄j = log |b̄n−j|,

the minimisation problem can be expressed as:

Minimise Λ−Ψ

Subject to

Λ − (m− i)Θ > Āi, i = 0, · · · ,m

Λ − (n− j)Θ − ν > B̄j, j = 0, · · · , n

−Ψ + (m− i)Θ > −Āi, i = 0, · · · ,m

−Ψ + (n− j)Θ + ν > −B̄j, j = 0, · · · , n.
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The problem is solved using linear programming (LP) [87], based on the following

expression

Λ−Ψ =

[
1 −1 0

]
Λ

Ψ

ν

 (5.20)

Consequently, the polynomials shown in Eq. 5.17 and Eq. 5.18 can be written as:

ḡ1(w, θ0) =
m∑
i=0

(ām−iθ
m−i
0 )wm−i, or ḡ1(w, θ0) =

∑m
i=0(am−iθ

m−i
0 )wm−i∏m

i=0 |am−iθ
m−i
0 |

1
m+1

,

(5.21)

and

ḡ2(w, θ0) =
n∑
j=0

(b̄n−jθ
n−j
0 )wn−j, or ḡ2(w, θ0) =

∑n
i=0(bn−jθ

n−j
0 )wn−j∏n

j=0 |bn−jθ
j
0|

1
n+1

. (5.22)

where α0 and θ0 are the calculated optimal values [87].

The Sylvester matrix Sk(g1(x), g2(x)) of two inexact polynomials g1(x) and g2(x)

that were defined in Eq. 5.11 and Eq. 5.12 is therefore transformed to preprocessed

Sk(ḡ1(w, θ), αḡ2(w, θ)) of two inexact polynomials ḡ1(w, θ) and ḡ2(w, θ) as defined

in Eqs. 5.21 and 5.22, respectively [88]. The new Sylvester matrix is given by:

S(ḡ1(w, θ), αḡ2(w, θ)) =

āmθ0
m

ām−1θ0
m−1 āmθ0

m

... ām−1θ0
m−1 . . .

...
...

. . . āmθ0
m

ā1θ0
...

. . . ām−1θ0
m−1

ā0 ā1θ0
. . .

...

ā0
. . . ā1θ0

ā0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α0b̄nθ0
n

α0b̄n−1θ0
n−1 α0b̄mθ0

n

... α0b̄n−1θ0
n−1 . . .

...
...

. . . α0b̄nθ0
n

α0b̄1θ0
...

. . . α0b̄n−1θ0
n−1

α0b̄0 α0b̄1θ0
. . .

...

α0b̄0
. . . α0b̄1θ0

α0b̄0


(5.23)
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[39]. The computation of an AGCD is implemented based on the preprocessed

Sylvester matrix and its subresultant matrices Sk(ḡ1(w, θ), αḡ2(w, θ)), where k

represents the order of the subresultant matrices. The next example illustrates

how the preprocessing operations minimise the ratio between the coefficients of

Sylvester matrix of two inexact polynomials.

Example 5.2. Let F ∈ R5×5 be a matrix represent an exact image F as below:

F =



0.8147 0.0975 0.1576 0.1419 0.6557

0.9058 0.2785 0.9706 0.4218 0.0357

0.1270 0.5469 0.9572 0.9157 0.8491

0.9134 0.9575 0.4854 0.7922 0.9340

0.6324 0.9649 0.8003 0.9595 0.6787


,

and P ∈ R3×5 a separable PSF

P =


0.7060

0.0318

0.2769


[

0.7577 0.7431 0.3922 0.6555 0.1712

]
.

Introducing the errors 10−4 and 10−6 as E and N respectively into the blurring

model in Eq. 4.1, yield

G =



0.4359 0.4797 0.3611 0.5627 0.6125 0.4681 0.2663 0.3206 0.0793

0.5043 0.6459 0.9325 1.2567 0.7752 0.6395 0.3344 0.0820 0.0079

0.2608 0.5755 1.0172 1.4786 1.7423 1.4198 0.8937 0.6325 0.1339

0.6818 1.2526 1.4120 1.9036 1.9628 1.3469 0.8454 0.5772 0.1192

0.3870 1.0336 1.4825 2.0264 2.2594 1.6301 1.0635 0.6515 0.1274

0.2069 0.4272 0.4482 0.6033 0.7015 0.4618 0.3011 0.2265 0.0480

0.1327 0.3326 0.4352 0.5857 0.6320 0.4349 0.2858 0.1687 0.0322


,

where its bivariate polynomial g(x, y) is of degrees 8 and 6 with respect to x and

y, respectively. Matrix P can be reconstructed from G, by choosing any two rows
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Figure 5.1: The magnitude of the coefficients of r1(y) and r2(y), before (•) and
after (N) the preprocessing operations, for Example 5.2

and any two columns of G. Let consider

r1(y) = (0.0793)y8 + (0.3206)y7 + (0.2663)y6 + (0.4681)y5 + (0.6125)y4

+ (0.5627)y3 + (0.3611)y2 + (0.4797)y + (0.4359),

r2(y) = (0.0480)y8 + (0.2265)y7 + (0.3011)y6 + (0.4618)y5 + (0.7015)y4

+ (0.6033)y3 + (0.4482)y2 + (0.4272)y + (0.2069). (5.24)

The Sylvester matrix S(r1(y), r2(y)) is of order 16 × 16, and the preprocessing

operations of S(r1(y), r2(y)) can be seen in Figure 5.1, which show the coefficients

of polynomials r1(y) and r2(y), before and after the preprocessing. This figure

shows a drop-off in the variation magnitude of the coefficients of r1(y), as shown

in (a), and the coefficients of r2(y), as shown in (b). The same is applied when

columns are considered.

The implemented AGCD computation will be explained in Chapter 6, which

is based on the GCD computation developed in [84].
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5.5 Summary

This chapter has provided an overview of the the Sylvester matrix and its subre-

sultant matrices and has explained their relation to the computation of the GCD.

The computations in the presence of noise require a modification to the Sylvester

matrix and its subresultant matrices. The work presented in [39, 84] suggested

three preprocessing operations to be applied on the Sylvester matrix of two inex-

act polynomials, as described in this chapter. It follows that a computation of an

AGCD can be carried out by the modified Sylvester resultant matrix. The next

chapter will explain the tools used to compute the PSF.



Chapter 6

The AGCD computation

6.1 Introduction

As was outlined in Chapter 5, given a blurred image in noiseless conditions, the

PSF can be computed by using the GCD computation of two exact polynomials

that correspond to two rows or/and two columns of that blurred image. However,

computing the GCD for the blurred image in the presence of noise is unreliable,

and thus it is necessary to use an AGCD computation instead. In this case, two

AGCD computations must be performed to restore the PSF of separable type.

Furthermore, this method can be extended to restore random types of the PSF,

including separable and nonseparable PSFs if two blurred versions containing

similar PSFs of an image are given. Basically by performing the AGCD com-

putations for each row or/and each column in the first blurred image and their

corresponding in the second blurred image. The computation of an AGCD is

based on the Sylvester matrix and its subresultant matrices whose inputs are two

inexact univariate polynomials. The Sylvester resultant matrix and its subre-
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sultant matrices are presented in Chapter 5 for univariate polynomials. Three

preprocessing operations were performed on the Sylvester matrix to refine the

solution.

This chapter explains the tools implemented to compute the PSF, based in the

work proposed in [84]. The AGCD computation of two inexact univariate poly-

nomials is based on the modified Sylvester resultant matrix, which is described

in Chapter 5. The computations of the degree of the GCD and an AGCD will be

described in Section 6.2 using two methods, the residual of an approximate linear

algebra equation and first principal angle between subspaces [84]. The compu-

tations of the AGCD coefficients will be discussed in Section 6.3, using different

methods.

6.2 The computation of the degree

This section considers the methods used to calculate the degree of an AGCD of

two polynomials in the presence of noise. However, it is an essential to distin-

guish between the computation of the degree of the GCD and the degree of an

AGCD. Therefore Sections 6.2.1 and 6.2.3 present the methods used for both

computations.

6.2.1 The degree of the GCD

The GCD of two polynomials f1(x) and f2(x) whose coefficients are known exactly

is defined in Chapter 3. It is pointed out in Theorems 5.3, 5.4 and 5.5 that the

GCD of f1(x) and f2(x) exists and equals the largest value of k = 1, . . . , d̂, such
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that Eq. 5.9 has a solution

Akxk = ck, k = 1, . . . ,min(m,n), (6.1)

where ck is the first column of Sk, [84]. It follows from Eq. 5.9 that

Lk ⊂ Hk, k = 1, . . . , d̂,

Lk * Hk, k = d̂+ 1, . . . ,min(m,n), (6.2)

where Lk and Hk are the spaces spanned by the column vector of ck and the

column space of Ak, respectively, [39, 88]. The main aim of this section is to

compute the degree d̂ of the GCD of two exact polynomials f1(x) and f2(x); that

requires the largest value of k for which the column vector ck lies in the column

space Ak for k = 1, . . . , d̂ [84]. The two methods investigated are first principal

angle between subspaces and residual of an approximate linear algebra equation,

based on the work done in [84].

First principal angle

The degree of the GCD of two polynomials f1(x) and f2(x) whose coeffi-

cients are known exactly can be computed using the method of first prin-

cipal angle ψk. This is based on the computation of the smallest angle φk

between two spanned spaces Lk and Hk of the column vector ck and the

column space Ak respectively [31, 84]. It follows that

φk = min∠(Lk,Hk) =

 εk = 0, for k = 1, . . . , d̂,

εk > 0, for k = d̂+ 1, . . . ,min(m,n).

(6.3)

This equation shows that the angle φk between Lk and Hk increases after

which k = d̂. The largest value of k for k = 1, . . . , d̂ which satisfies φk = 0

is equal to the degree d̂ of the GCD of two polynomials f1(x) and f2(x)
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whose coefficients are known exactly, using Eq. 5.9, [31, 88].

Residual

The residuals rk of the linear algebraic equation 6.1 is

rk = ‖Akxk − ck‖ =

 εk = 0, for k = 1, . . . , d̂,

εk > 0, for k = d̂+ 1, . . . ,min(m,n).
(6.4)

This equation shows that the growth of residual rk starts after which k = d̂.

Hence, the largest value of k for k = 1, . . . , d̂ which satisfies εk = 0 is equal

to the degree of the GCD of two polynomials f1(x) and f2(x) whose coeffi-

cients are known exactly [39, 84].

It is important to note that these methods perform well in a symbolic computing

environment but fail when finite precision arithmetic is used [88]. Therefore, a

prior step is required before applying these methods on a pair of inexact polyno-

mials g1(x) and g2(x) to compute the degree of an AGCD. The computation of

an AGCD is based on the preprocessed Sylvester matrix defined in Chapter 5.

The following section shows the criteria that determine an optimal column ck,

and how these can be reflected in the result, before the computational methods

for the degree of an AGCD are addressed.

6.2.2 Optimal column selection

In Section 6.2.1 Winkler et al. [84] argued that, in the case of exact polynomi-

als, the first column ck(f1) of the subresultant matrices of the Sylvester matrix

Sk(f1, f2) can be moved to the right hand side. Thus ck(f1) certainly lies in the
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column space of Ak(f1, f2) if f1 and f2 have a common divisor d̂(x) of degree

k [88]. In the presence of noise, however, it is difficult to define the column

vector ck since Sk(ḡ1, α0ḡ2), which is defined in Eq. 5.23, has full rank for each

k = 1, . . . ,min(m,n). Thus a column in Sk(ḡ1, α0ḡ2) that lies in the space spanned

by the remaining columns of Sk(ḡ1, α0ḡ2) does not exist [84]. It follows that Eq.

5.8 transforms to

Ak,ixk,i ≈ ck,i, k = 1, . . . ,min(m,n); i = 1, . . . , (m+ n− 2k + 2), (6.5)

where ck is the ith column of the Sk(ḡ1(w, θ0), α0ḡ2(w, θ0)), and Ak,i is the matrix

formed by the other columns of Sk(ḡ1, α0ḡ2) [88],

Ak,i = [ck,1, ck,2, . . . , ck,i−1, ck,i+1, . . . , ck,m+n−2k+1, ck,m+n−2k+2].

The value of index i will decide whether ck,i lies in ck,i(ḡ1) or ck,i(α0ḡ2) and

Ak,i = Ak,i(ḡ1(w, θ0), α0ḡ2(w, θ0)), [84]. The determination of indices k and i are

recorded when the error in the approximation 6.5 is a minimum [88]. Under

these circumstances, an optimal column ck,i of Sk(ḡ1(w, θ0), α0ḡ2(w, θ0)) will be

determined if the following indices are computed: [27, 84],

• The degree k = d of an AGCD of ḡ1 and ḡ2.

• The index i = l of the column of Sd(ḡ1(w, θ0), α0ḡ2(w, θ0)), such that the

column cd,i in the approximation 6.5 is satisfied.

In general, calculating an optimal index l and an optimal degree d of an AGCD of

ḡ1(w, θ0) and ḡ2(w, θ0) gives better results than choosing an optimal value of i = 1,

where the first column will be always from one side of S(ḡ1(w, θ0), α0ḡ2(w, θ0)),

[39, 84].

The next section describes two methods for the degree calculation of an AGCD
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of two inexact polynomials.

6.2.3 The degree of an AGCD

This section concerns the computation of the degree of an AGCD in the presence

of noise. The AGCD definition of a pair of polynomials g1(x) and g2(x) whose

coefficients are unknown is presented in Chapter 3. More precisely, the inexact

nature of g1(x) and g2(x) causes the and subresultant matrices to have full rank.

Therefore, the computation of the degree of an AGCD requires preprocessing

operations,[87, 88], as described in Chapter 5. Consequently, the preprocessing

operations of the Sylvester matrix S(g1(x), g2(x)) result in a new Sylvester ma-

trix S(ḡ1(w, θ0), α0ḡ2(w, θ0)), which is represented in Eq. 5.23, based on a pair of

preprocessed inexact polynomials that are defined in Eq. 5.21 and Eq. 5.22.

This section therefore modifies the methods explained in section 6.2.1, which in-

volve the determination of the first principal angle between subspaces and residual

of an approximation of linear algebra equation, with respect to the best values of

index l and degree d of an AGCD [84, 88].

First principal angle

The degree of an AGCD of two polynomials ḡ1(w, θ0) and ḡ2(w, θ0) whose

coefficients are unknown exactly can be calculated by the first principal

angle ψk,i. In particular, the ψk,i can be determined by calculating the

smallest angle φk,i between the spaces Lk,i and Hk,i of the column vector

ck,i and the column space Ak,i, respectively, [31, 84], such that the following
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equation 6.6 is satisfied:

ψk,i = min∠(Lk,i,Hk,i),

k = 1, . . . ,min(m,n), i = 1, . . . , l, . . . , (m+ n− 2k + 2),(6.6)

and

Lk,i = span{ck,i},

Hk,i = span{ck,1, ck,2, . . . , ck,i−1, ck,i+1, . . . , ck,m+n−2k+1}. (6.7)

It is obvious that dimLk,i = 1 and dimHk,i = m+n−2k+1. The minimum

value of angle φk,i of ψk,i for each value of k is computed as

φk = min {ψk,i : i = 1, . . . , l, . . . , (m+ n− 2k + 2)} , (6.8)

[84, 88]. It follows that the optimal column index i = lφ,k is recorded for

which each of the min(m,n) minima occurs, [39, 84]. Thus

lφ,k =

[
lφ,1 lφ,2 . . . lφ,min(m,n)

]
. (6.9)

The degree k = dφ of an AGCD of polynomials ḡ1(w, θ0) and ḡ2(w, θ0), is

equal to the index k for which the ratio φk+1/φk is a maximum, [39, 84]:

dφ =

{
k :

φk+1

φk
−→ max, k = 1, . . . ,min(m,n)− 1

}
, (6.10)

where the column index lφ,d is computed from Eq. 6.9. Then the column

ck,i in Eq. 6.5 can be defined using the indices k = dφ and i = lφ,dφ for which

the error in this approximation is a minimum. The determination of dφ can

be found when a maximum ratio between two consecutive values of angle

φk occurs, as shown in Eq. 6.10, in particular, when it changes significantly

from a small to a large value [84, 88].
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Residual

The residual rk,i is another technique that has been implemented in [84] to

define the optimal values of indices i and k of an AGCD. Given zk,i the

least squares (LS) solution of equation 6.5, the residual rk,i = rk,i(Ak,i, ck,i)

in this case is defined as

rk,i = ck,i − Ak,izk,i,

A†k,i = (ATk,iAk,i)
−1ATk,i,

zk,i = A†k,ick,i, (6.11)

where

k = 1, . . . ,min(m,n), i = 1, 2, . . . , . . . , (m+ n− 2k + 2),

and † denotes pseudo inverse [84, 88]. The minimum value of ‖rk,i‖ is

calculated for each subresultant matrix of order k, so that

rk = min
i
‖rk,i‖. (6.12)

[88]. The column index i = lr,k for which each of the minimum values ‖rk,i‖

is recorded, thereby yields the array lr: [84],

lr =

[
lr,1 lr,2 . . . lr,min(m,n)

]
. (6.13)

The degree k = dr of an AGCD of polynomials ḡ1(w, θ0) and ḡ2(w, θ0) is

equal to the index k for which the ratio rk+1/rk is a maximum, [39, 84]:

dr =

{
k :

rk+1

rk
−→ max, k = 1, . . . ,min(m,n)− 1

}
, (6.14)

where the column index lr is computed from Eq. 6.13. Then the column

ck,i in Eq. 6.5 can be defined using the indices k = dr and i = ldr for which

the error in this approximation is a minimum [88]. The determination of dr
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is seen when a maximum ratio between two consecutive values of residual

rk occurs, as shown in Eq. 6.14,[84].

The maximum change in the first principal angle and the residual in Eq. 6.9 and

Eq. 6.13 respectively, are used instead of their minimum values [84]. The use of

the ratio can be seen in the Example 6.1.

Example 6.1. [84]. Let min(m,n) = 6 and let r ∈ R6 be the vector of residual

rk for k = 1, . . . , 6,

r : =

[
r1 r2 r3 r4 r5 r6

]
,

=

[
10−10 4× 10−11 6× 10−8 2× 10−10 10−2 10−1

]
.

Obviously, the value of r2 represents the minimum residual and the variation in

residuals r1, . . . , r4 are relatively small, and thus their approximate solutions of

Eq. 6.5 are acceptable. On the other hand, it is seen that r5 � r4, which means

the least squares solutions of Eq. 6.5 give an unacceptably large error for k = 5.

The degree dr of an AGCD is equal to 5 based on the residual method.

In general, it has been shown that the results obtained from both methods

are similar for the degree of an AGCD, with only a small difference in the column

index of i [27, 39, 84].

The next section briefly explain the decomposition tools applied to the modified

Sylvester matrix type, to calculate its rank.

6.2.4 Rank determination using QR decomposition

This section considers the QR decomposition tool that is implemented to simplify

the computation and to decompose the Sylvester resultant and subresultant ma-
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trices. The degree of the GCD is equal to the rank of Sylvester resultant matrix

type. However, the degree of an AGCD of two inexact polynomials transforms

the problem to the rank determination, basically by performing the SVD or QR

decomposition on the modified Sylvester resultant matrix.

Following Definition 2.2 of the SVD, the rank is equal to the number of σi such

that σi 6= 0 [11, 31]. Using the SVD tool to determine the proximity of a full rank

matrix to a nearby rank deficient matrix is computationally expensive [25]. The

rank determination of a Sylvester matrix that constructed using two polynomials

of high degree will require intensive computing. Therefore a simpler tool is intro-

duced – QR decomposition. This refers to the factorisation of a matrix into two

matrices in a special form and was proposed in [10, 11, 59]. Suppose a matrix

A ∈ Rm×n, b ∈ Rm, and let Q ∈ Rm×m be an orthogonal matrix. Then, the min-

imisation problem minx ‖Ax−b‖2 is equivalent to the orthogonal transformation

of the linear least square problem

min
x
‖QT (Ax− b)‖2, (6.15)

where the notation ‖ · ‖ is referred to the vector norm, and Eq. 6.15 preserves the

Euclidean length [11, 31]. According to the QR decomposition of A ∈ Rm×n,m ≥

n, there is an orthogonal matrix Q ∈ Rm×m such that

A = Q

 R

0

 , (6.16)

where R is an upper triangular matrix with non-negative elements in the diagonal

[11].

The QR decomposition of matrix A ∈ Rm×n is not unique if rank(A) < n [11].

Moreover, the QR decomposition can be implemented in a certain way such that
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deleting or inserting a column or a row of a matrix is acceptable. More precisely,

the deletion procedure of a column or a row applied to the modified Sylvester

matrix using QR decomposition does not require to be implemented iteratively on

its subresultant matrices, because the information is already preserved [11, 31, 84].

The estimation of the degree of an AGCD using the QR decomposition method

is much faster than the SVD with larger matrix sizes [59]. The experimental

results in this research considers the QR decomposition on the modified Sylvester

matrix of two univariate inexact polynomials, as it has been implemented in [84].

However, the QR decomposition is computationally much more efficient than

SVD.

The next example illustrates how an AGCD degree of two inexact polynomials is

computed.

Example 6.2. Considering the matrices and polynomials provided in Example

5.2. If two rows of G are defined in Eq. 5.24, and two columns of G are defined

as below

c1(x) = (0.5857)x6 + (0.6033)x5 + (2.0264)x4 + (1.9036)x3 + (1.4786)x2

+ (1.2567)x+ (0.5627),

c2(x) = (0.0322)x6 + (0.0480)x5 + (0.1274)x4 + (0.1192)x3 + (0.1339)x2

+ (0.0079)x+ (0.0793).

Then, the degree computation of an AGCD is performed on the preprocessed

Sylvester matrices S(r̄1(w), αr̄2(w)) and S(c̄1(w), αc̄2(w)), where they scaled by

α and θ. The order of the PSF can be estimated using:

d1 = deg AGCD
(
c1(x), c2(x)

)
, and d2 = deg AGCD

(
r1(y), r2(y)

)
.
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Figure 6.1: Row rank estimation, for Example 6.2

where d1 and d2 are the estimated degrees of the rows and columns of the PSF,

respectively. Figures 6.1 and 6.2 demonstrate the rank estimation, using the first

principal angle and the residual methods to calculate the degree of an AGCD of

two inexact polynomials. It can be seen from Figure 6.1 that, the rank loss of

S(c̄1(w), αc̄2(w)) is equal to 2, and therefore, the PSF is of order 3 with respect

to its rows, that d1 = 3. While, the rank loss of S(r̄1(w), αr̄2(w)) is equal to 4, as

shown in Figure 6.2. More precisely, the degree of an AGCD of r1(y) and r2(y) is

estimated as 5, and therefore, the PSF is of order 5 with respect to its columns,

that d2 = 5. These figures prove the equality of the obtained rank loss, using the

residual and the first principal angle.

The computation of the coefficients of an AGCD is explained in the next

section.
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Figure 6.2: Column rank estimation, for Example 6.2

6.3 The computation of the coefficients of an

AGCD

This section describes a method for the calculation of an AGCD polynomial of

two inexact polynomials g1(x) and g2(x). The computation of an AGCD, here, is

based on using the method of structured non-linear total least norms (SNTLN)

applied to the modified Sylvester and subresultant matrices, [86, 87]. In partic-

ular, because the Sylvester matrix of inexact polynomials g1(x) and g2(x) has

full rank, it is necessary to add a structured perturbation to the preprocessed

Sylvester matrix in order to make it has rank deficient [87]. Then the coefficients

of an AGCD can be calculated. Applying this method on Sylvester resultant

matrix S(ḡ1(w, θ0), α0ḡ2(w, θ0)), which is defined in Eq. 5.23, will result in a

structured low rank approximation S(g̃1(x), g̃2(x)), [86, 87]. However, the degree

d of an AGCD of g1(x) and g2(x) has to be known first, as was illustrated in Sec-

tion 6.2.3. It follows that the coefficients of an AGCD have to be calculated. The

coefficients of an AGCD are calculated using three methods: least squares, QR,
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and LU. The structured low rank approximation based on the SNTLN method

and how it is related to an AGCD computation is addressed in the next section.

6.3.1 The computation of a structured low rank approxi-

mation

It has been shown in Theorem 5.2 that the degree of the GCD is equal to the

rank loss of the Sylvester matrix of exact polynomials f1(x) and f2(x), and its

coefficients are stated in the last non-zero row of the upper triangular factors of

the reduced ST (f1(x), f2(x)). It is assumed that g1(x) and g2(x), and therefore

ḡ1(w) and ḡ2(w) are inexact and coprime, which causes their Sylvester matrix

S(ḡ1(w), ḡ2(w)) to have full rank [87]. In this case, the computation of a struc-

tured low rank approximation requires small structured perturbations zg1(w) and

zg2(w), which must be added to ḡ1(w) and ḡ2(w), respectively, to approximate

the solution:

g̃1(w) =
m∑
i=0

(am−i + zg1)w
m−i, i = 0, . . . ,m,

g̃2(w) =
n∑
j=0

(bn−j + zg2)w
n−j, j = 0, . . . , n.

and

g̃1(w) = ḡ1(w) + zg1(w),

g̃2(w) = ḡ2(w) + zg2(w),
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[87]. Specifically, the perturbed polynomials g̃1(w) and g̃2(w) tend to have a

non-constant GCD [87], such that

rankS(g̃1(w), g̃2(w)) = rank
(
S
(
ḡ1(w), ḡ2(w)

)
+ S

(
zg1(w), zg2(w)

))
< (m+ n).

(6.17)

Due to the structured nature of a Sylvester matrix, structured matrix methods

can be used to compute the small structured perturbations zg1(w) and zg2(w).

The calculation of zg1(w) and zg2(w) can be achieved using the SNTLN method

[87].

The SNTLN method is described in Section 6.3.2, based on the method proposed

in [87].

6.3.2 The method of SNTLN

The problem of calculating the coefficients of an AGCD of two inexact polyno-

mials g1(x) and g2(x), can be formulated as the following:

Given the Sylvester matrix of g1(x) and g2(x), calculate the structured perturba-

tion Sylvester matrix of S(ḡ1(w), ḡ2(w)) such that Eq. 6.17 is satisfied.

The polynomials g1(x) and g2(x) represent two rows or two columns form a de-

grade image/images. As aforementioned in Chapter 5 that preprocessing opera-

tions of the Sylvester resultant matrix S(g1(x), g2(x)) are required, which transfer

the S(g1(x), g2(x)) to a new Sylvester resultant matrix S(ḡ1(w, θ0), α0ḡ2(w, θ0),

as it defined in Eq. 6.21. It is important to notice that the constants α0 and θ0

are the initial values of α and θ [87]. It follows that a computation of the degree

d of an AGCD of polynomials ḡ1(w, θ0) and ḡ2(w, θ0), defined in Eqs. 5.21 and

5.22 respectively, [87].
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The dth subresultant matrix Sd(ḡ1(w, θ0), α0ḡ2(w, θ0)) of order

(m+ n− d+ 1)× (m+ n− 2d+ 2)

has full rank, because the ḡ1(w, θ0) and ḡ2(w, θ0) are inexact, as described in

Section 6.2.3, [87]. Then, the homogeneous equation for k = d and i = l,

Sd
(
ḡ1θ, αḡ2θ

)
w = 0, (6.18)

is reduced to the approximation equationAx ≈ b whereA ∈ R(m+n−d+1)×(m+n−2d+2)

after removing the optimal column l in Sd(ḡ1(w, θ0), α0ḡ2(w, θ0)) to the right side

[87]. This column is equal to b in Eq. 6.5, which is defined by the degree d.

Considering Ml ∈ R(m+n−2d+1)(m+n−2d+1) is the identity matrix after removing

the column of index i = l, such that

Ml =

[
e1 e2 . . . el−1 el+1 . . . em+n−2d+1 em+n−2d+2

]
, ei ∈ Rm+n−2d+1,

where ei is the ith unit basis vector and the lth column of Sd(ḡ1(w, θ0), α0ḡ2(w, θ0))

is equal to Sd(ḡ1(w, θ0), α0ḡ2(w, θ0))el.

Therefore, removing the column l of Sd(ḡ1(w, θ0), α0ḡ2(w, θ0)) to the right hand

side gives the approximate linear algebraic equation,(
Sd
(
ḡ1(w, θ0), α0ḡ2(w, θ0)

)
Ml

)
x ≈ Sd

(
ḡ1(w, θ0), α0ḡ2(w, θ0)

)
el x ∈ Rm+n−2d+1.

(6.19)

In order to define the perturbation that has to be added on the dth subresultant of

Sylvester matrix which minimises the approximation in Eq. 6.19. The Structured
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perturbations matrix Bd of Sd(ḡ1(w, θ0), α0ḡ2(w, θ0)) is defined as follows

Bd(α, θ, z) =

zmθ
m

zm−1θ
m−1 zmθ

m

... zm−1θ
m−1 . . .

...
. . . zmθ

m

z1θ
. . . zm−1θ

m−1

z0 z1θ
. . .

...

z0
. . . z1θ

z0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

αzm+n+1θ
n

αzm+nθ
n−1 αzm+n+1θ

n

... αzm+nθ
n−1 . . .

...
. . . αzm+n+1θ

n

αzm+2θ
. . . αzm+nθ

n−1

αzm+1 αzm+2θ
. . .

...

αzm+1
. . . αzm+2θ

αzm+1


,

where

zg1(θ) =

[
zmθ

m zm−1θ
m−1 . . . z1θ z0

]T
∈ Rm+1,

αzg2(θ) =

[
αzm+n+1θ

n αzm+nθ
n−1 . . . αzm+2θ αzm+1

]T
∈ Rn+1.

It follows that z can be expressed as below

z =

[
z0 . . . zm zm+1 . . . zm+n+1

]T
∈ Rm+n+2.

Similarly to Sd, the column h of index l in Bd is removed to the right side as is

shown below((
Sd(α, θ) +Bd(α, θ, z)

)
Ml

)
x = cd(α, θ) + hd(α, θ, z), (6.20)

where the quantities α, θ, x and z are to be calculated by the SNTLN method

using Newton-Raphson method, and cd and hd are the lth columns of Sd(α, θ)

and Bd(α, θ, z) respectively [87], such that

cd(α, θ) = Sd(α, θ)el and hd(α, θ, z) = Bd(α, θ, z)el.

Winkler et al. [87] has pointed that depending on the column l the cd and hd may

or may not be functions of α. It is assumed here that cd and hd are functions of
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α if n− d+ 2 ≤ l ≤ m+ n− 2d+ 2, and not a functions of α if 1 ≤ l ≤ n− d+ 1

[87]. Furthermore, Winkler et al. [87] has solved Eq. 6.20, and thus, the output

after the preprocessing operations and derivations yields a structured low rank

approximation of S(g1(x), g2(x)) of rank m + n − d. The SNTLN method is

described in details in [87]. The corrected form of the polynomials g1(w) and

g2(w) after applying the SNTLN method are g̃1(w) and g̃2(w), and thus, the

Sylvester matrix of after preprocessing and the SNTLN methods is given by

S(g̃1(w), g̃2(w)). This can be given as the following

S(g̃1(w, θ), αg̃2(w, θ)) =

ãmθ0
m

ãm−1θ0
m−1 ãmθ0

m

... ãm−1θ0
m−1 . . .

...
...

. . . ãmθ0
m

ã1θ0
...

. . . ãm−1θ0
m−1

ã0 ã1θ0
. . .

...

ã0
. . . ã1θ0

ã0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

α0b̃nθ0
n

α0b̃n−1θ0
n−1 α0b̃mθ0

n

... α0b̃n−1θ0
n−1 . . .

...
...

. . . α0b̃nθ0
n

α0b̃1θ0
...

. . . α0b̃n−1θ0
n−1

α0b̃0 α0b̃1θ0
. . .

...

α0b̃0
. . . α0b̃1θ0

α0b̃0


.

(6.21)

where ãi and b̃j are the corrected coefficients of g̃1 and g̃2 for i = 0, · · · ,m and

j = 0, · · · , n respectively.

The coefficients of the AGCD polynomial is calculated using the perturbed poly-

nomials g̃1(w) and g̃2(w), that are defined as the following

g̃1(w, θ0) =
m∑
i=0

(ãm−iθ
m−i
0 )wm−i, or g̃1(w, θ0) =

m∑
i=0

(
(ād,m−i+zm−i)θ

m−i
0

)
wm−i,

and

g̃2(w, θ0) =
n∑
j=0

(b̃n−jθ
n−j
0 )wn−j, or g̃2(w, θ0) =

n∑
j=0

(
(b̄d,n−j+zm+n+1θ

n−j
0

)
wn−j.



6.3 The computation of the coefficients of an AGCD 117

The next example provides an illustration of the implemented SNTLN method,

[87].

Example 6.3. Considers the Sylvester matrices S(r1(y), r2(y)) and S(c1(x), c2(x))

each of order 16 × 16, such that the inexact polynomials r1(y), r2(y), c1(x),

and c2(x) are defined in Examples 6.2 and 6.3. The rank determination pro-

cess was performed on the modified Sylvester matrices S(r̄1(w), αr̄2(w)) and

S(c̄1(w), αc̄2(w)) in Example 6.3, where the estimated PSF is of order 3× 5.

In order to calculate the coefficients of the AGCD polynomials, the SNTLN

method is applied first on the Sylvester matrices:

S(r̄1(w), αr̄2(w)), and S(c̄1(w), αc̄2(w)),

resulting in the corrected Sylvester matrices:

S(r̃1(w), αr̃2(w)), and S(c̃1(w), αc̃2(w)),

where r̃1(w), r̃2(w), c̃1(w), and c̃2(w) are the polynomials calculated using the

SNTLN method. Figure 6.3 (a), shows the normalised singular values of the

Sylvester matrices S(r1(y), r2(y)), S(r̄1(w), αr̄2(w)), and S(r̃1(w), αr̃2(w)). The

same is shown in Figure 6.3 (b), for the Sylvester matrices that represent the

columns. It is easily seen that, [87]:

rankS(r1(y), r2(y)) = rankS(r̄1(w), αr̄2(w)) = rankS(r̃1(w), αr̃2(w)) = 12,

and

rankS(c1(x), c2(x)) = rankS(c̄1(w), αc̄2(w)) = rankS(c̃1(w), αc̃2(w)) = 10.
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Figure 6.3: The normalised singular values of the Sylvester matrices: (a)
S(r1(y), r2(y)) ◦; S(r̄1(w), αr̄2(w)) ∗; S(r̃1(w), αr̃2(w)) ♦, and (b) S(c1(x), c2(x))
◦; S(c̄1(w), αc̄2(w)) ∗; S(c̃1(w), αc̃2(w)) ♦, for Example 6.3

The coefficients of the AGCD polynomial occupy the last nonzero row of the

upper triangular factorsR and U in QR and LU of the decomposed ST (g̃1(w), αg̃2(w)),

[87]. Furthermore, the polynomial of the AGCD can be determined using least

squares (LS) method.

The next section presents the LS method.

6.3.3 The least squares method

This section considers a method to calculate the coefficients of the AGCD poly-

nomial using LS method. The LS method was also implemented previously in

Bernstein basis to compute the AGCD polynomial after preprocessing operations

[91]. The corrected polynomials g̃1(w, θ) and g̃2(w, θ) have a nonconstant common

divisor of degree d̃, such that

d̃(w, θ) =
g̃1(w, θ)

ũk(w, θ)
=
αg̃2(w, θ)

ṽk(w, θ)
, (6.22)
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and

d̃ = deg AGCD(g̃1(w, θ), g̃2(w, θ)),

where ũk(w, θ) and ṽk(w, θ) are the quotient polynomials.

The coefficients of ũk(w, θ) and ṽk(w, θ) are obtained from the SNTLN method

using the vector x, such that

ṽ0
...

ṽn−dθn−d

−ũ0
...

−ũm−dθm−d


=



x1
...

xq−1

−1

xq+1

...

xm+n−2d+2



∈ R(m+n−2d+2).

It follows that

ũ(w, θ0) =
m−d∑
i=0

(ãm−iθ
m−i
0 )wm−i, and ṽ(w, θ0) =

n−d∑
j=0

(b̃n−jθ
n−j
0 )wn−j.

Using Eq. 6.22, the perturbed polynomials are given by

g̃1d(w, θ0) = ũ(w, θ0)d̃(w, θ), and αg̃2d(w, θ0) = ṽ(w, θ0)d̃(w, θ). (6.23)

Alternately, Eqs. 6.23 can be written in the matrix form as the following T1[ũ(θ)]

T2[ṽ(θ)]

 d̃(θ) =

 g̃1(θ)

αg̃2(θ)

 , (6.24)
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where T1[ũ(θ)] ∈ R(m+1)(d+1) and T2[ṽ(θ)] ∈ R(n+1)(d+1) are Toeplitz matrices,

T1[ũ(θ)] =



ãm−d

ãm−d−1
. . .

...
. . . ãm−d

ã0
... ãm−d−1

. . .
...

ã0


, T2[ṽ(θ)] =



b̃n−d

b̃n−d−1
. . .

...
. . . b̃n−d

b̃0
... b̃n−d−1

. . .
...

b̃0


.

and d̃(θ), g̃1(θ), g̃2(θ) are the vectors of scaled coefficients of d̃(w, θ), g̃1(w, θ),

g̃2(w, θ). The coefficients of vector d̃(θ) can be calculated by solving the least

squares problem of Eq. 6.24, such that

d̃(θ) =


 T1[ũ(θ)]

T2[ṽ(θ)]



†  g̃1(θ)

αg̃2(θ)

 , (6.25)

where † denoted to the Moore-Penrose pseudoinverse.

The coefficients of the AGCD polynomial d̃(x) is obtained by transforming the

coefficients of d̃(θ) from w variable into x variable,

d̃i(x) =
d̃(w, θ)

wθ
, i = 0, · · · , d.

The LS, the QR and LU decomposition methods have been examined and com-

pared. The obtained results shows that the LS method gives a small error com-

pared with the other methods.

6.4 Summary

This chapter has described the two procedures applied on the modified Sylvester

matrix and its subresultant matrices. First, the computation methods for the de-
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gree of the GCD and an AGCD of two univariate polynomials are discussed and

compared. The investigation found that both methods the first principal angle

and the residual give a similar degree of an AGCD. Therefore one method will

be implemented throughout the rest of this research, that is the residual method.

The computation of the degree of an AGCD was performed based on two decom-

position tools that are the SVD and the QR decomposition. However, the SVD

method has some limitations including its failure to process large size of structured

matrices, and its lack of an updating property, which exists in QR decomposition

tool. Furthermore, the computation of an AGCD polynomial is considered at

which the degree is defined. Followed by the computation of a structured low

rank approximation. This computation requires to calculate the structured per-

turbation matrix S(δḡ1(w), δḡ2(w)) of Sylvester matrix S(g1(w), g2(w)) using the

structured matrix methods SNTLN described on [87]. Three methods have been

investigated to calculate the coefficients of an AGCD polynomial, including LS,

QR and LU decompositions. The PSF estimation, therefore, can be obtained us-

ing the described method of AGCD that relies on the Sylvester resultant matrix.

The PSF identification methods are described in the next chapter.
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Chapter 7

The PSF identification using the

AGCD computation

7.1 Introduction

The BID problem can be solved by employing polynomial computations. Chapter

4 has defined the BID in polynomial representation. This computation relies on

the preprocessed Sylvester matrix, which is described in Chapter 5 and it is con-

structed from two univariate polynomials. In an image context, these polynomials

represent two segments from a given degraded image or images, in particular, two

rows or two columns. The PSF can be calculated using the GCD computation,

as described in Chapter 6, such that the noise level is not given. This chapter dis-

cusses two situations in which the PSF is separable or nonseparable. Section 7.2

considers the estimation of a separable PSF. Section 7.3 considers the estimation

of an arbitrary form of PSF, including separable and nonseparable.
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7.2 The computation of separable PSF

Section 4.2 outlined the method of restoring a separable PSF. This method uses

the AGCD computation described in Chapter 6, which is carried out by the

modified Sylvester resultant matrix. Section 7.2.1 describes the calculation of a

separable PSF using one degraded image. Section 7.2.2 describes the calculation

of a separable PSF using two degraded images.

7.2.1 The PSF estimation using one degraded image

Consider an exact image F of order M ×N , and a PSF array P of order C ×D,

where C < M and D < N . It is assumed that a measurement error E is added to

P, such that the resulting PSF array is convolved with F. Then noise N is added

into the blurred image. The eventual degraded image G has the form of Eq. 4.1,

such that

G ∈ R(M+C−1)×(N+D−1). (7.1)

The goal is to find P given the degraded image G, without prior knowledge of the

noise level.

As mentioned in Chapter 3, two methods were proposed to solve the BID prob-

lem using the Sylvester-type algorithm [24, 69]. One method uses the DFT in the

GCD computation to minimise the computation time, however, this algorithm

leads to error in the solution (e.g. quantization error in analog-to-digital conver-

sion) [69]. While, the solution described in [24] is limited for a small blurring

function of order 3× 3 only, and the deblurring algorithm considers the first and

the last rows, or/and columns, of the blurred image. Another drawback for this

algorithm includes prior estimation of the noise level in the distorted image.



7.2 The computation of separable PSF 125

The work implemented in this chapter is able to determine the PSF that is per-

turbed by measurement error as shown in Eq. 7.1, using the described AGCD

computation that can be performed without the use of DFT.

It was described above that if the convolved P is separable then its coefficients

are formed by the multiplication of the vertical components, denoted by the vec-

tor Pc, with the horizontal components, denoted by the vector Pr, of the PSF,

as shown in Eq. 2.12. In the case that Pr = 1, then the PSF is represented

as a 1D polynomial p(x), such that P ∈ R1×D. Similarly, if Pc = 1 then the

PSF is represented as a 1D polynomial p(y), such that P ∈ RC×1. Algorithm 1

illustrates the method used to obtain a 1D PSF, by considering two rows using

the described AGCD computation.

Algorithm 1 The 1D PSF estimation using one distorted image

Input
One distorted image G.
Output
The 1D PSF, that is vector P.
BEGIN

1. Read in a distorted image G.

2. Choose two distinct rows R = (r1, r2) of G

3. Calculate their AGCD polynomial in row direction pr(y) which corresponds
to vector Pr:

pr(y) = AGCD(r1(y), r2(y)). (7.2)

4. Calculate the PSF, P = Pr.

END
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The same applies for a 1D PSF array represented as a column vector Pc, such

that the AGCD computation considers two dissimilar columns of G.

Example 7.1. Consider a true image F of size 70×100 pixels, and a 1D Gaussian

PSF of dimensions 1× 9 pixels, such that the PSF is given by the vector below:

P =

[
0.0916, 0.1053, 0.1164, 0.1236, 0.1261, 0.1236, 0.1164, 0.1053, 0.0916

]
.

A measurement error E of order 10−3 has been added to the vector P, and noise

N of order 10−5 has been added to the convolved resulting matrix. Figure 7.1 (a)

shows the degraded image G of order 70 × 108 pixels. To calculate the 1D (i.e.

row vector) PSF, two rows r1 and r2 of G are selected such that each contains

the PSF information, and each row is represented as a univariate polynomial in

y direction.

The degree of an AGCD of the two univariate polynomials is computed and is

equal to 9, using the residual based method for the rank estimation, see Figure

7.1 (c). The normalized singular values of S(r̄1(θ, w), αr̄2(θ, w)), S(r1(x), αr2(x)),

and S(r̃1(w), αr̃2(w)) are illustrated in Figure 7.1 (e), where it is seen that its

numerical rank is equal to 206, which indicates that the degree of the GCD of

the corrected polynomials r̃1 and r̃2, from the SNTLN method, is 9.

The coefficients of the PSF are calculated using the LS method, where its inputs

are r̃1 and r̃2. The exact and estimated 1D PSFs are shown in 7.1 (d), with an

error in the GCD equal to 3.8789e− 04.

Since the PSF is known, it is possible to restore the exact image using polynomial

division, as shown in Figure 7.1 (b). The method used to restore the exact image

will be discussed in the next chapter.
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Figure 7.1: The results of Example 7.1, using the AGCD computation. (a) a
degraded image; (b) a restored image ;(c) the estimated rank in row direction; (d)
the exact PSF (o) and the estimated PSF (+); (e) the normalized singular values
of S(r̄1(θ, w), αr̄2(θ, w)) ∗, S(r1(x), αr2(x)) ◦, and S(r̃1(w), αr̃2(w)) ♦
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Algorithm 2 describes the estimation method of a PSF giving one degraded

image based on the AGCD computation algorithm [87].

Algorithm 2 The 1D PSF estimation using one degraded image

Input
One distorted image G.
Output
The 2D PSF.
BEGIN

1. Read in a distorted image G.

2. Choose two rows R1 = (r1, r2) and two columns R2 = (c1, c2) of G2.

3. Calculate their AGCDs pr(y) and pc(x), such that

pr(y) = AGCD(r1(y), r2(y)), and pc(x) = AGCD(c1(x), c2(x)). (7.3)

4. Calculate the PSF polynomial p(x, y) = pr(x)pc(y), that corresponds to
matrix P .

END

In addition, a 2D PSF is calculated using two AGCD computations. One

considers two rows and the other considers two columns of the degraded image.

Then the PSF is calculated from the two resulting AGCD polynomials in row and

column directions, and their corresponding vectors are multiplied. This method

was explained in Section 4.2, where one AGCD computation is performed on the

first and last rows of G and another on the first and last columns of G.
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The next example discusses the results of the implemented BID algorithm

compare to the method implemented in [24].

Example 7.2. Let consider a distorted image of dimensions 47× 63 pixels, such

that it is produced using 3 × 3 Gaussian PSF, measurement error E = 10−5,

and noise N = 10−3. The work in [24] assumed the model in Eq 3.5, while the

proposed model in this thesis is Eq 4.1. The second model is more challenging

since the exact image is convolved with a corrupted PSF. However, applying the

proposed algorithm on a distorted image, using the first model, can also solve the

problem as shown in Figure 7.2, with GCD error of 4.423e − 03 in the blurring

function.

(a) distorted image (b) Restored image

Figure 7.2: The modified and restored images.

Danelakis et al.’s method suggests that only one GCD operation is needed

to compute the PSF, since the filter has the symmetry property. The top row

is equal to the bottom row, while the left and right elements in the second row

are copied from the middle element in the first row. The center of this PSF is

calculated by subtracting the sum of total elements from 1.

The next section identifies the PSF from two degraded images.
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7.2.2 The PSF estimation using two degraded images

Let F1 and F2 be two dissimilar true images, each of dimension M×N , and let P

be the PSF array of dimension C×D. Then G1 and G2 are two degraded versions

of F1 and F2 respectively, such that

Gk = Fk ⊗
(
P + Ek

)
+ Nk, k = 1, 2

where Gk ∈ R(M+C−1)×(N+D−1). Alternatively, the corresponding polynomial

forms are expressed as

gk(x, y) = fk(x, y)
(
p(x, y) + ek(x, y)

)
+ nk(x, y), k = 1, 2.

If errors are not presented (i.e. ek(x, y) = 0 and nk(x, y) = 0 for k = 1, 2), then the

GCD of g1 and g2 will lead to the exact PSF. However, if the errors are presented

(i.e. ek(x, y) 6= 0 and nk(x, y) 6= 0 for k = 1, 2), then the AGCD computation of

g1 and g2 leads to the PSF estimation. The 2D problem is simplified into two 1D

cases, where one is considered in the row direction and the other in the column

direction. The method is described in Chapter 4, where a row and a column are

selected from each distorted image G1 and G2 such that each contains the whole

information of the PSF.

hk(x, y) ≈ uk(x, y)d(x, y) k = 1, 2.

where hk(x, y) represents the degraded two rows or two column. An AGCD com-

putation is performed using the row form G1 and its corresponding row from

G2. Their AGCD is a univariate polynomial in row direction dr(y). The same is

performed for the two columns, where their AGCD is a univariate polynomial in

column direction dc(x). The two AGCDs polynomials are obtained by using the

modified Sylvester resultant matrix, defined in Chapter 5, for each. Then the 2D
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PSF is calculated from the resulting two AGCDs polynomials, using polynomial

multiplication.

Algorithm 3 describes the method for the 2D separable PSF using two degraded

images. The 2D separable PSF can be calculated using two consecutive AGCD

Algorithm 3 The PSF identification using two degraded image

Input
Two distorted images G1 and G2.
Output
The 2D PSF.
BEGIN

1. Read in two distorted images G1 and G2.

2. Choose a row r1 and a column c1 of G1 and their corresponding r2 and a
column c2 of G1.

3. Calculate their AGCDs dr(y) and dc(x), such that

dr(y) = AGCD(r1(y), r2(y)), and dc(x) = AGCD(c1(x), c2(x)). (7.4)

4. Calculate the PSF polynomial d(x, y) = dr(y)dc(x), which corresponds to
the approximated matrix P̃ = P̃rP̃c, where P̃r and P̃c are the computed
two vectors representing the horizontal and vertical components of the PSF.

END

computations. This section has provided a quick method to calculate the sepa-

rable type of PSF; however, in many cases the separability condition of the PSF

is not applied.

The procedures and methods to calculate an arbitrary form of PSF are discussed

in the next section.
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7.3 The computation of arbitrary PSF

It has been shown that the BID problem is an application of the GCD com-

putations. A quick computation method was introduced above, to calculate an

AGCD degree and its coefficients of a pair of inexact polynomials using a Sylvester

resultant matrix. Also, it was shown that the PSF can be estimated using the

described AGCD computation method, such that the noise and the PSF informa-

tion are not required to be known a priori. This method is efficient in calculating

separable types of the PSF.

It is then required to introduce a new method of BID, such that it includes an

estimation of nonseparable types of PSF. Therefore the AGCD computation is

extended to include iterative computations of AGCDs for each row and each col-

umn of two degraded images. This section aims to solve the following problem:

Given a pair of inexact distorted images such that both are convolved with the

same PSF, how can the AGCD computation be performed to restore arbitrary

forms PSF, without prior knowledge of the PSF or the noise? A further discus-

sion of the bivariate polynomials will be considered in Section 7.3.1. Section 7.3.2

considers a method of calculating the PSF using AGCD computations.

7.3.1 The GCD computation of bivariate polynomials

The GCD computation of bivariate polynomials are necessary for the solution

of the BID problem, when the introduced PSF is not separable. Thus, this

section explains the GCD computation when a pair of bivariate polynomials are

given. First, it is important to distinguish between the GCD of two univariate

polynomials and two bivariate polynomials. If two polynomials f1(x) and f2(x)
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of degrees m and n, respectively, are given such that 0 ≤ n ≤ m, then there are

two polynomials q(x) and r(x) that satisfy:

f1(x) = f2(x) · q(x) + r(x), r(x) ≡ 0 or deg(r(x)) < n. (7.5)

This equation has a different form in the case of bivariate polynomials. The

implementation of Euclid’s algorithm on univariate polynomials can be extended

to bivariate polynomials. Let f1(x, y) and f2(x, y) be two bivariate polynomials.

Then there are polynomials p(y), q(x, y), and r(x, y) such that

p(y)f1(x, y) = f2(x, y) · q(x, y) + r(x, y), (7.6)

where r(x, y) ≡ 0 or deg r(x, y) < deg f2(x, y) with respect to x, and p(y) is a

polynomial of y only [12].

It follows that Eq. 7.6 can be written as a series of polynomial division as below:

p0(y)f1(x, y) = f2(x, y) · q0(x, y) + r1(x, y), 0 < r1(x, y),

p1(y)f2(x, y) = r1(x, y) · q1(x, y) + r2(x, y), 0 < r2(x, y),

...

pj−1(y)rj−2(x, y) = rj−1(x, y) · qj−1(x, y) + rj(x, y), 0 < rj(x, y),

pj(y)rj−1(x, y) = rj(x, y) · qj(x, y) + rj+1(x, y), (7.7)

where deg(r1(x, y)) < deg(f2(x, y)) with respect to x.

Consequently, the following are proved, using Eq. 7.7 in [12]:

• The polynomials f1(x, y) and f2(x, y) have a common divisor rj+1(x, y) if

and only if rj+1(x, y) ≡ 0, [12].

• The GCD of polynomials f1(x, y) and f2(x, y) is obtained if rj+1(x, y) ≡ 0,

by deleting all factors that are functions of y only from r(x, y), [12].
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It can be seen from the first equation in Eqs. 7.7 that r1(x, y) is a function of

f1(x, y), f2(x, y), q0(x, y), and p0(y). The second equation in Eq. 7.7 shows that

r2(x, y) can be represented as a function of f1(x, y), f2(x, y), q0(x, y), q1(x, y),

p1(y), and p0(y) using the substitution of r1(x, y). Consequently, applying the

same substitution procedure repeatedly on the remaining equations yields

rj+1(x, y) = f1(x, y)A(x, y) + f2(x, y)B(x, y), (7.8)

where A(x, y) and B(x, y) are polynomials in x and y.

As discussed above, there are two polynomials û(x, y) and v̂(x, y), such that

f1(x, y) = û(x, y)d̂(x, y) and f2(x, y) = v̂(x, y)d̂(x, y), (7.9)

if and only if the polynomials f1(x, y) and f2(x, y) have a non-constant common

divisor, that is d̂(x, y). The system of equations in Eq. 7.9 can be solved as below:

f1(x, y)v̂(x, y)− f2(x, y)û(x, y) = 0. (7.10)

If A(x, y) = v̂(x, y) and B(x, y) = −û(x, y) and the polynomials f1(x, y) and

f2(x, y) are not coprime, then rj+1(x, y) ≡ 0.

The next section presents a method of calculating the PSF in the bivariate prob-

lem using an iterative GCD computation.

7.3.2 The iterative computation of GCD

This section considers the blur identification, P, in Eq. 4.1. Chapter 4 defined

the BID problem in the form of bivariate polynomials. The determination of P

is an application of the GCD computation of two bivariate polynomials g1(x, y)

and g2(x, y) of blurred images G1 and G2, as defined in Eq. 4.21, when n1(x, y) =

n2(x, y) = 0 (i.e. noise-free) [69]. Let g1(x, y) and g2(x, y) be two bivariate
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polynomials of blurred images G1 and G2 defined as below:

g1(x, y) =

(M+C−2)∑
m=0

(N+D−2)∑
n=0

g1(m,n)xmyn, (7.11)

g2(x, y) =

(M+C−2)∑
m=0

(N+D−2)∑
n=0

g2(m,n)xmyn. (7.12)

The bivariate polynomials g1(x, y) and g2(x, y) consist of (M +C − 1) univariate

polynomials, in row direction.

g1(m, y) = f1(m, y)d(m, y), m = 0, · · · ,M + C − 2, (7.13)

g2(m, y) = f2(m, y)d(m, y), m = 0, · · · ,M + C − 2. (7.14)

It follows that

GCD
(
g1(m, y), g2(m, y)

)
= d(m, y)GCD

(
f1(m, y), f2(m, y)

)
, (7.15)

for m = 0, · · · ,M + C − 2.

This equation defines a set of (M+C−1) univariate GCD computations, resulting

in (M + C − 1) polynomials d(m, y) to be calculated along with the GCDs of

f1(m, y) and f2(m, y). The degree of each (M + C − 1) GCD computation may

vary, and thus prior initialisation for the length of each GCD vector is necessary.

This can be achieved by appending zeros to the coefficients of each vector in the

GCD computation, such that each vector has the length N +D − 1.

Although the GCDs of the bivariate polynomials f1(x, y) and f2(x, y) are coprime,

their reduction into univariate polynomials, when x = µ, where µ is an arbitrary

constant, may result in them having a non-constant GCD. For instance, consider

two bivariate polynomials as below:

f1(x, y) = (x+ 2)(y + 6x)(y − 2x+ 1),

f2(x, y) = (x+ 1)(3y − 2x)(y2 − x).
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It is clear that the polynomials f1(x, y) and f2(x, y) are coprime. However, their

univariate polynomials when x = 1 are given as:

f1(1, y) = 3(y + 6)(y − 1),

f2(1, y) = 2(3y − 2)(y − 1)(y + 1),

which have a non-constant GCD.

Therefore it is important to introduce Theorem 7.1, before proceeding with the

GCDs of f1(m, y) and f2(m, y), as defined in Eq. 7.15. The following theorem is

established in [85] using two bivariate polynomials f1(x, y) and f2(x, y), that are

coprime.

Theorem 7.1. If two polynomials f1(x, y) and f2(x, y) are coprime, and if the

variable x equals an arbitrary constant µ ∈ C located on the unit circle in C, then

the function C(µ, y) given by

C(µ, y) := GCD
(
f1(µ, y), f2(µ, y)

)
,

with probability almost one, is independent of y [85].

Proof. Suppose that there are polynomials A1(x, y), A2(x, y), and ψ1(x); then

from Eq. 7.8 the following equation is satisfied:

ψ1(x) = f1(x, y)A1(x, y) + f2(x, y)A2(x, y), (7.16)

where ψ1(x) 6≡ 0. Similarly, if there exist polynomials B1(x, y), B2(x, y), and

ψ2(y), then

ψ2(y) = f1(x, y)B1(x, y) + f2(x, y)B2(x, y), (7.17)

where ψ2(y) 6≡ 0.
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If the substitution of x = µ is applied to Eq. 7.17 then

ψ2(y) = f1(µ, y)B1(µ, y) + f2(µ, y)B2(µ, y),

where µ is an arbitrary constant. Consider C(µ, y), the GCD of polynomials

f1(µ, y) and f2(µ, y) such that

C(µ, y) = GCD
(
f1(µ, y), f2(µ, y)

)
. (7.18)

Subsequently, this leads the function C(µ, y) to be a factor of ψ2(y) for each µ

and for which degC(µ, y) > 0.Moreover, Eq. 7.16 satisfies

ψ1(µ) = f1(µ, y)A1(µ, y) + f2(µ, y)A2(µ, y), (7.19)

such that ψ1(µ) = 0. More precisely, the right hand side of Eq. 7.19 is equal to

zero if each value of y is a root y = yi(µ) of C(µ, y), and thus ψ1(µ) = 0 for each

value of µ that is connected to each value yi(µ) of y.Consequently, every value

of µ that satisfies degC(µ, y) > 0 is a root of ψ1(x) as well.This means that the

polynomial C(µ, y) is non-constant for limited number of values of x, since the

polynomial ψ1(x) has a limited number of roots. The values of x are arbitrarily

distributed in the complex plan C. So it is assumed that these values of x are

not located on the unite circle in C, |x| = 1.The polynomial C(µ, y), however, is

a constant for all the values of x that satisfy |x| = 1. This applies, in particular,

when the value of µ is restricted to lie on the unit circle in C. Therefore C(µ, y)

is polynomial, and thus the polynomials f1(µ, y) and f2(µ, y) are coprime.

The above theorem considers bivariate polynomials in the complex plane C.

Similarly, and without loss of generality the method explained in this work can

be implemented on the real part R. Thus the constant µ is equivalent to m in

Eq. 7.15. Theorem 7.1 proves that the polynomials f1(m, y) and f2(m, y) in Eq.
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7.15, with high probability, are coprime for each value of m, and therefore the

computations of their GCDs are equal to the constant function c(m), such that

GCD
(
f1(m, y), f2(m, y)

)
= c(m), m = 0, 1, · · · , (M + C − 2). (7.20)

It follows that the M +C−1 univariate polynomials of d(m, y) can be calculated

by using the substitution of Eq. 7.20 into Eq. 7.15:

GCD
(
g1(m, y), g2(m, y)

)
= c(m)d(m, y), m = 0, 1, · · · , (M + C − 2). (7.21)

It can be seen that the left hand side of Eq. 7.21 is proportional to the right

hand side up to arbitrary scalars c(m), for each value of m. The iterative com-

putations of (M + C − 1) GCD produce the scaled quantities c(m)d(m, y), for

m = 0, 1, · · · , (M +C − 2), such that the variable y is independent in each poly-

nomial. It follows that the variable y in Eq. 7.20 is replaced by the values of n,

such that

GCD
(
g1(m,n), g2(m,n)

)
= c(m)d(m,n), (7.22)

for m = 0, 1, · · · , (M +C − 2) and n = 0, 1, · · · , (N +D− 2). Then suppose the

coefficients of the computed GCDs of two univariate polynomials g1(m,n) and

g2(m,n) are stored in a matrix A(m,n) of dimension (M +C− 1)× (N +D− 1).

In particular, if

A(m,n) = GCD
(
g1(m,n), g2(m,n)

)
, (7.23)

for m = 0, 1, · · · , (M+C−2) and n = 0, 1, · · · , (N+D−2), then the substitution

into Eq. 7.23 yields the equation below:

A(m,n) = c(m)d(m,n), m = 0, 1, · · · , (M + C − 2),

n = 0, 1, · · · , (N +D − 2).
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This equation can be represented as:

A(m,n)a(m) = d(m,n), m = 0, 1, · · · , (M + C − 2),

n = 0, 1, · · · , (N +D − 2), (7.24)

where a(m) = 1
c(m)

.

This equation is obtained from the GCDs computations, that include rows of the

distorted images. A similar equation is obtained when the computations of the

GCDs for each column of the distorted images are considered, given by:

B(m,n)b(m) = d(m,n), m = 0, 1, · · · , (M + C − 2),

n = 0, 1, · · · , (N +D − 2). (7.25)

Consequently, the relation between Eqs. 7.24 and 7.25 is provided by:

A(m,n)a(m)−B(m,n)b(m) = 0, m = 0, 1, · · · , (M + C − 2),

n = 0, 1, · · · , (N +D − 2). (7.26)

In the matrix form, the (M + C − 1)(N +D − 1) equations are expressed as[
S1 −S2

] y1

y2

 = 0, (7.27)

where S1 ∈ R[(M+C−1)(N+D−1)×(M+C−1)] and S2 ∈ R[(M+C−1)(N+D−1)×(N+D−1)] are

given by
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S1 =



A(0, 0) 0 0 · · · 0

A(0, 1) 0 0 · · · 0

A(0, 2) 0 0 · · · 0

· · · · · · · · · · · · · · ·

A(0, N +D − 2) 0 0
... 0

0 A(1, 0) 0 · · · 0

0 A(1, 1) 0 · · · 0

0 A(1, 2) 0 · · · 0

· · · · · · · · · · · · · · ·

0 A(1, N +D − 2) 0 0 0

...
...

...
...

...

0 0 0
... A(M + C − 2, 0)

0 0 0
... A(M + C − 2, 1)

0 0 0
... A(M + C − 2, 2)

· · · · · · · · · · · · · · ·

0 0 0 · · · A(M + C − 2, N +D − 2)



,

S2 =



B(0, 0) 0 0 · · · 0

0 B(0, 1) 0 · · · 0

0 0 B(0, 2) · · · 0

· · · · · · · · · · · · · · ·

0 0 0
... B(0, N +D − 2)

B(1, 0) 0 0 · · · 0

0 B(1, 1) 0 · · · 0

0 0 B(1, 2) · · · 0

· · · · · · · · · · · · · · ·

0 0 0 0 B(1, N +D − 2)

...
...

...
...

...

B(M + C − 2, 0) 0 0
... 0

0 B(M + C − 2, 1)
...

...
...

0 0 B(M + C − 2, 1)
... 0

· · · · · · · · · · · · · · ·

0 0 0 · · · B(M + C − 2, N +D − 2)



,
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and

y1 =

[
a(0) a(1) · · · a(M + C − 2)

]T
∈ RM+C−1,

y2 =

[
b(0) b(1) · · · b(N +D − 2)

]T
∈ RN+D−1.

The solution of

y =

 y1

y2

 (7.28)

in Eq. 7.27 can be calculated by using the SVD computation of the coefficients

matrix S =

[
S1 −S2

]
. In particular, the solution of vector y is equal to the

last column in the matrix V , where S = UΣV T in R.

Then the polynomial d(m,n) is approximated using Eqs. 7.24 and 7.25 into

d(m,n) =
1

2

(
A(m,n)a(m) +B(m,n)b(m)

)
, m = 0, 1, · · · , (M + C − 2),

n = 0, 1, · · · , (N +D − 2).

(7.29)

This means that the approximated bivariate polynomial d(m,n) is calculated by

averaging the computed GCDs of the distorted images, once by considering their

rows and again by considering their columns. The multiplication in Eqs. 7.24

and 7.25, and in particular the product of A(m,n)a(m) and B(m,n)b(m), can be

described as:

A(0, n)a(0) = d(0, n), n = 0, 1, · · · , (N +D − 2),

A(1, n)a(1) = d(1, n), n = 0, 1, · · · , (N +D − 2),

A(2, n)a(2) = d(2, n), n = 0, 1, · · · , (N +D − 2),

...

A(M + C − 1, n)a(M + C − 1) = d(M + C − 1, n), n = 0, 1, · · · , (N +D − 2),
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and

B(m, 0)b(0) = d(m, 0), m = 0, 1, · · · , (M + C − 2),

B(m, 1)b(1) = d(m, 1), m = 0, 1, · · · , (M + C − 2),

B(m, 2)b(2) = d(m, 2), m = 0, 1, · · · , (M + C − 2),

...

B(m,N +D − 2)b(N +D − 2) = d(m,N +D − 2), m = 0, 1, · · · , (M + C − 2),

respectively. The estimated PSF is then derived from Eq. 7.29, where its dimen-

sions are already calculated in the first stage of the computation of the GCD.

This section has considered the iterative computation of the GCD, which esti-

mates the PSF in two distorted images. The problem reduces to AGCD compu-

tation in the presence of noise. The AGCD computation method was described

in Chapter 6.

Algorithm 4, shows the images deblurring method based on AGCD computations

to calculate the PSF, either separable or nonseparable, from two distorted images.
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Algorithm 4 Deblurring by AGCD computations and the HPC

Input Two distorted images G1 and G2.

Output The PSF, restored images F̃1 and F̃2.

Begin

1. Perform the univariate AGCD computations for each row of G1 and G2.

• Initialisation of matrix A of dimensions (M + C − 1)× (N + D − 1),
and vector k1 of length (M + C − 1).

For i = 1 : M + C − 1

(a) Define the ith rows of G1 and G2.

r1 = G1(i, :) and r2 = G2(i, :)

(b) Calculate the AGCD d(i) of the two polynomials, that correspond
to these row vectors.

d(i) = AGCD(r1, r2)

(c) Store the computed degree d1 in ith entry of vector k1.
(d) Store the coefficients d(i) in the ith row of matrix A.

A(i, :) = d(i)

End For

2. Repeat Step 5, by considering each columns of image G1 and each columns
of image G2.

• Initialisation of matrix B of dimensions (M + C − 1)× (N +D − 1),
and vector k2 of length (N +D − 1).

For j = 1 : N +D − 1

(a) Define the jth columns of G1 and G2.

c1 = G1(:, j) and c2 = G2(:, j)

(b) Calculate the AGCD d(j) of the two polynomials, that correspond
to these column vectors.

d(j) = AGCD(c1, c2)

(c) Store the computed degree d2 in jth entry of vector k2.
(d) Store d(j) in the jth column of matrix B.

B(:, j) = d(j)

End For



7.3 The computation of arbitrary PSF 144

3. Solve Eq. 7.27 for y1 and y2 using the calculation of the SVD of coefficients

matrix S, that formed by S1 and S2.

4. Perform the calculation in Eq. 7.29, to obtain d(m,n).

5. Find the most frequent degrees d1 and d2 in vectors k1 and k2 respectively.

6. Derive P, that represent the 2D PSF, from d(m,n) using the estimated

dimensions d1 and d2.

7. Perform polynomial division to restore F1 and F1.

f̃1(x, y) = g1(x, y)/p(x, y) and f̃2(x, y) = g2(x, y)/p(x, y)

END
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It can be seen that the output of each AGCD computation of univariate

polynomials will include the estimation of the degree and its coefficients. These

coefficients are used then to form the estimated PSF. It is important to note

that some of the computed degree may vary, depending on the imposed noise and

the coefficients. It follows that estimation of its coefficients is poor. Therefore

an improvement to the previous method has been done, splitting the iterative

computation of AGCD into two stages.

The first stage is to compute the degree of each univariate polynomial, by consid-

ering each row and each column of two distorted images. This works by finding

the most frequently occurring degree(i.e. majority voting); in particular, this

procedure is applied to the vectors that store the computed degrees for each row,

and the vector that stores the degrees for each columns. So the computed degrees

are d1 and d2, which form the dimensions of the computed PSF in the x and y

directions respectively.

The second stage uses the estimated degree d1 and d2 to calculate the stored

coefficients in each row and each column of two distorted images. The advantage

of using this technique is that it gives more accurate results for the computed

degree and the coefficients of AGCD.

In general, the difference between the two methods are as below.

Method 1: The computation of AGCD are applied to each univariate poly-

nomial of two distorted images, such that the output from each iteration

consists of the computed rank and its coefficients. In particular, the degree

and its coefficients are calculated simultaneously in each iteration. The

computed coefficients are calculated using the LS method. Finally, by us-

ing the equalisation in Eq. 7.29 on the resulting matrices, the AGCD of g1
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and g2 is determined, which is the PSF.

Method 2: The rank estimation process is performed first, for each univariate

polynomial of two distorted images, by considering their rows and their

columns. The coefficients of AGCD polynomial are then calculated based

on the most frequent estimated rank.

To conclude, the algorithm proposed in method 2 suggests a stable solution for

the BID problem that does not require a priori knowledge of the PSF and the

noise.

7.4 Summary

This chapter has described two methods of restoring a PSF, using the method

of AGCD computation. The first method identifies the separable PSF, and the

second method identifies an arbitrary form of PSF. The separable PSF can be de-

rived given one degraded image; furthermore it can be derived given two degraded

images. This method is simple and computationally inexpensive. However, it

gives poor results if a nonseparable PSF is convolved with an exact image.

To solve this problem, the HPC is used to compute AGCDs of two degraded

images; this leads to the PSF identification and includes the separable and non-

separable forms. In addition, two techniques for the computation of AGCDs

have been examined and compared ( method 1 and method 2). The first method

computes the degree and its coefficients for each iteration. The second method

refines the solution by considering the best computed degree. This is determined

by selecting the most calculated degree, before proceeding with the computation
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of AGCD polynomials. The experimental results show that method 2 yields the

best results, compared to method 1.

Since the PSF has been determined, the next step is image deconvolution. The

restored image can be obtained by deconvolving the calculated PSF with the

degraded image. The method of deconvolution is introduced in the next chapter.
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Chapter 8

Image deconvolution

8.1 Introduction

The earlier chapters have described the convolution of a true image and a PSF in

two cases: in the presence of noise and in its absence. The convolution is carried

on using Toeplitz matrix, where the zero boundary condition has been assumed.

In particular, the 2D convolution of a true image with a 2D PSF uses the struc-

tured matrix BTTB, which is defined in Section 2.4. It has been shown that the

PSF can be determined using the GCD computation which relies on the Sylvester

resultant matrix and its subresultant matrices. This chapter describes the reverse

procedure of the convolution, more precisely, deconvolution operation. The de-

convolution is required for image deblurring, where it is a Toeplitz least squares

problem. The use of a structured matrix BTTB is computationally expensive.

Section 8.2 considers two methods for the deconvolution that are described in Sec-

tion 8.2.1 and Section 8.2.2. Section 8.3 discusses some specifications for image

deconvolution. Section 8.4 presents some results of image deconvolution.
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8.2 Deconvolution

This section considers the polynomial division in 1D and 2D problems. The

deconvolution is achieved by dividing the polynomial g(x, y) of the degraded

image G by the polynomial p(x, y) of the computed PSF P, such that

F̃ = G/P, or f̃(x, y) = g(x, y)/p(x, y), (8.1)

where f̃(x, y) and F̃ are the reconstructed polynomial and its corresponding ma-

trix form, respectively, of a restored image F̃. The problem in Eq. 8.1 can be

solved in 1D using the Toeplitz matrix, if the PSF is separable; moreover, it can

be solved using a fast Fourier transform (FFT) if the PSF has an arbitrary form.

The following sections consider the deconvolution of images (i.e. 2D polynomials)

that have been blurred with separable and nonseparable PSFs.

8.2.1 Deconvolution with separable PSF

Consider a matrix F ∈ RM×N of F, and a matrix P ∈ RC×D of a separable

PSF, where C < M and N < D. The convolution of F and P yield a matrix

G ∈ RM+C−1×N+D−1. Matrix P is given by

P =



p0,0 p0,1 · · · p0,D−1

p1,0 p1,1 · · · p1,D−1
...

...
. . .

...

pC−1,0 pC−1,1 · · · pC−1,D−1


.
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Also, matrix P can be expressed as

P = PcP
T
r , (8.2)

where Pc and Pr are the decomposed column and row vectors of matrix P .

The polynomial forms of Pc and Pr are pc(x) and pr(y) respectively, such that

pc(x) =
d∑

k=0

pd−kx
d−k, and pr(y) =

c∑
l=0

pc−ly
c−l, (8.3)

where d = D − 1 and c = C − 1. Let Hc and Hr be two Toeplitz matrices, such

that

Hc = Hc

(
pc(x)

)
∈ R(M+C−1)×(M), and Hr = Hr

(
pr(y)

)
∈ R(N+D−1)×(N);

Hc =



cc

cc−1
. . .

...
. . . cc

c0
... cc−1

. . .
...

c0


, Hr =



rd

rd−1
. . .

...
. . . rd

r0
... rd−1

. . .
...

r0


.

It follows that

R1 = [Hc]
†, and R2 = [Hr]

†, (8.4)

where † denotes pseudo-inverse, and R1 and R2 are the inverse of the Toeplitz

matrices Hc and Hr respectively.
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The solution of the inverse problem in Eq. 8.1 is obtained by deconvolving each

row of matrix G with the inverse Toeplitz matrix R2, which contains the informa-

tion of the horizontal components of the PSF. This procedure can be described

as below:

A(0, n) = R1(0, n) ∗ [G(0, n)]T ,

A(1, n) = R1(1, n) ∗ [G(1, n)]T ,

A(2, n) = R1(2, n) ∗ [G(2, n)]T ,

...

A(M + C − 1, n) = R1(M + C − 1, n) ∗ [G(M + C − 1, n)]T ,

for n = 0, 1, · · · , N , and where ∗ denotes matrix multiplication.

The resulting matrix is A(m,n), for m = 0, 1, · · · ,M+C−1 and n = 0, 1, · · · , N .

Image F̃ is obtained from the deconvolution procedure of the transposed matrix

[A(m,n)]T and R2, which stores the information of the vertical components of

the PSF P . This procedure can be describes as below:

B(m, 0) = R2(m, 0) ∗ [A(m, 0)]T ,

B(m, 1) = R2(m, 1) ∗ [A(m, 1)]T ,

B(m, 2) = R2(m, 2) ∗ [A(m, 2)]T ,

...

B(m,N +D − 1) = R2(m,N +D − 1) ∗ [A(m,N +D − 1)]T ,
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for m = 0, 1, · · · ,M .

Finally, the resulting matrix B(m,n) for m = 0, 1, · · · ,M and n = 0, 1, · · · , N ,

represent the restored image F̃.

The next section solves the image deconvolution problem when the PSF is not

separable.

8.2.2 Deconvolution with nonseparable PSF

The technique described in Section 8.2.1 solves the deconvolution problem when

the PSF is separable – more precisely, it has a rank one. In this section, another

technique is considered to deconvolve the PSF that has a rank larger than one –

more precisely, when it is nonseparable.

It was seen earlier that the 2D convolution problem is given by g = Hf + n.

Here, matrix H is ill-conditioned, and f,g and n are the column vectors of ma-

trices F , G and N respectively. This problem can be solved using the structured

matrices which were introduced in Section 2.5.1. The inverse problem is given

by f̃ = H−1g. Matrix H is defined as Toeplitz for a 1D separable PSF, and it is

defined as BTTB for a 2D nonseparable PSF.

Many deconvolution problems implement the Kronecker product when the PSF

has a rank one, and its approximation when the PSF has a rank larger than

one [38]. Although the computation of this problem in the spatial domain pre-

serves images information, it tends to be costly. Given a distorted image G ∈

R(M+C−1)×(N+D−1), and if the estimated 2D PSF is of dimension (C− 1×D− 1),

the deconvolved image F would be of order M × N . A restored image F̃ is ob-
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tained using the polynomial division defined in Eq. 8.1, by performing a fast

algorithm based on 2D DFT.

The 2D Fourier transform of image G is expressed in bivariate polynomial as:

g(z1, z2) =
1

(M+C-1)

1

(N+D-1)

(M+C-2)∑
s=0

(N+D-2)∑
t=0

g(s, t)zs1z
t
2,

where

z1 = exp
(
− 2πi

m

(M+C-1)

)
, and z2 = exp

(
− 2πi

n

(N+D-1)

)
, (8.5)

on the unit circle in the complex plane, for the counters m and n, such that

m = 0, · · · ,M + C − 1 and n = 0, · · · , N +D − 1.

Two assumptions are made when using the DFT. First, that the periodic bound-

ary condition holds for the input image G. Second, the discrete points of the PSF

are assumed to be the same as the discrete points of the input image G.

Therefore the PSF is extended to be of order (M+C−1)×(N+D−1) by padding

matrix P of P with zeros. Then the 2D Fourier transform of P is expressed as a

2D polynomial as:

p(z1, z2) =
1

(M+C-1)

1

(N+D-1)

(M+C-2)∑
s=0

(N+D-2)∑
t=0

p(s, t)zs1z
t
2,

on the unit circle in the complex plane Eq. 8.5, for the counters m and n, such

that m = 0, · · · ,M + C − 1 and n = 0, · · · , N +D − 1.

The transformation from the spatial domain into a Fourier domain is achieved

using the Matlab function fft2. A point-wise division operation of the 2D
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polynomials g(z1, z2) and p(z1, z2) is performed, such that

F̃ = G� P, and f̃(z1, z2) = g(z1, z2)/p(z1, z2), (8.6)

where � denotes the element-wise division operation, and the matrices F,G and

P are expressed in z1 and z2 variables.

Matrix F̃ represents the restored image in the Fourier domain. An inverse pro-

cedure of 2D FFT is applied to f̃(z1, z2), to transform it into the spatial domain.

This procedure is achieved using the Matlab function ifft2. The resulting 2D

polynomial f̃(x1, x2) is expressed in x and y variables, and represents the restored

image in the spatial domain.

The next section considers some computational specifications implemented in this

research.

8.3 Computational specifications

This section discuses some of the main computational details for the implemen-

tation of the BID using AGCD computation. The PSF and image selection are

discussed in Section 8.3.1, noise addition in Section 8.3.2, and boundary condi-

tions in Section 8.3.3.

8.3.1 The PSF and image selections

It was shown above that the blurred image results from the convolution of the

true image with the PSF. In most real applications, the PSF is unknown, and

thus the deconvolution requires an estimate of the exact PSF. Therefore, in this
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work it is assumed that the PSF is unknown; in particular, that it can take any

form including an arbitrary PSF or those described in Section 2.3. Here, the

determination of the PSF covers the separable type that has a rank one, and the

nonseparable type that has a rank larger than one. Recall from Section 2.3 that

the PSF is scaled such that the sum of its entries is always one. It should also be

noted that the PSF has smaller dimensions than the exact image. The convolution

of the PSF and the true image is performed using the Matlab function conv2.

The generated images are chosen such that they contain a number of details (i.e.

the images are busy).

8.3.2 Noise addition

The noise in the tested images is added such that it is uniformly distributed in

the interval [−1, · · · , 1]. The distorted images are contaminated with two types

of noise: the measurement error and the additive noise. One is added into the

PSF, while the other is added after the convolution of the true image with the

noisy PSF.

8.3.3 Boundary conditions

In general cases, the boundary conditions of a blurred image are not known, as

was discussed in Chapter 2. It is important to define the boundary condition

for an image before the convolution with the PSF. Failure to do this will lead

to incorrect results. The zero condition is assumed throughout this work. The

distorted images, which are used in the investigation, are obtained assuming the

model 4.1, and the distortion process is illustrated in Algorithm 5.
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Algorithm 5 Distorion process

Input

• Two true images F1 and F2 of dimensions M ×N .

• A PSF P.

• The boundary condition to be imposed (zero).

• The SNR ε−1 that includes, measurement error E, and noise N.

Output Distorted versions G1 and G2

.
Begin

1. Assigned both images F1 and F2 into larger images, and define the boundary
condition to zero.

2. Add noise E1 into P resulting in G1, and E2 into P resulting in G2.

3. Perform the calculation

G1 = F1 ⊗
(
P + E1

)
, and G2 = F2 ⊗

(
P + E2

)
.

4. Add noise N1 and N2 into each image resulted from Step 3, and thereby
obtaining the distorted images G1 and G2, such that each has the form in
Eq. 4.1.

The next section provides a brief discussion of the parallel computation using

the sun grid engine (SGE).

8.3.4 High performance algorithm

This section considers the use of networked HPC to solve the BID problem. The

iterative computation of an AGCD using the Sylvester matrix approach, discussed
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in Section 7.3.2, is highly expensive. Therefore the computations of AGCDs are

performed using distributed networked environments. Given two distorted im-

ages formed by considering what has been mentioned in Sections 8.3.1, 8.3.2, and

8.3.3, the aim is to calculate the PSF based on parallel computations of AGCDs.

The computation of AGCDs of two distorted images, carried out by processing

their rows and their columns, is more efficient using distributed networked en-

vironments as they provide more resources. The resources include processors

(CPU), memory, and storage space, which all reduce the computation time. The

parallel algorithm deals with each computation of an AGCD of two inexact uni-

variate polynomials as a task. Then the task is sent to the HPC server with a

specified memory and allocation. This step is applied on (M + C − 1) AGCDs

of univariate polynomials for each row of the distorted images; this is repeated

with columns, a further (N +D − 1) AGCDs computations.

The University of Sheffield uses the Iceberg server for HPC, where each user is

assigned a limited number of running tasks in parallel, while the remaining tasks

will be queued. However, the computations of AGCDs are performed faster in

the Iceberg server than on a user desktop. It follows that another procedure is

required to collect the obtained results and calculate the estimated PSF.

8.3.5 Performance measurement

Computational complexity The complexity (O) of this algorithm mostly de-

pends on the GCD computation steps. The input of the implemented GCD

is two polynomials, represented as rows or columns, both of the same size
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n − 1. The residual method is used to compute the degree of an AGCD,

based on the QR factorisation. This factorisation has a complexity of O(n3)

flops, which requires 3 operations, which consist of deleting a row and two

columns (3mn), for each Sylvester matrix [31].

If the QR factorisation is applied for each subresultant matrix, then the

complexity will be increased to O(n4) flops [31]. While, the QR updating

method preforms the QR decomposition on the first Sylvester matrix, and

then updates the results from the previous iteration without performing

the QR decomposition again. Using the QR updating method decreases

the complexity from O(n4) to O(n3). Thus, the complexity of the iterative

AGCD computations will be O(n3pq), where p and q are the total numbers

of all rows and all columns respectively [18]. Through the use of paralleli-

sation the complexity of the algorithm is decreased to O(n3).

Comparisons As mentioned above, some quantities are used to measure the

noise level in the exact, distorted, and restored images. One such measure

is SNR, which is expressed as

SNR =
Pgroundtruthsignal

Pnoise
,

where P denotes the average power of the ground-truth signal that repre-

sents a clean image, and the noise signal that represents the distortion in

an image. The SNR was defined in Eq. 1.1 using dB units. Similarly, peak

signal-to-noise ratio (PSNR) is commonly used to measure the noise level
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in an image. The PSNR can be defined in dB units as

PSNRdb = 20 ∗ log10

( MAX√
MSE

)
,

where MAX is the maximum pixel value contained in the image (i.e. great-

est value in the ground-truth signal), and MSE is the mean square error be-

tween the ground-truth signal and the distorted or estimated signal, which

can be defined as below:

MSE =
Σ(f̂(i, j)− f(i, j))

2

M ×N
,

where f̂ and f are the true images to be compared with, such that both

has size M ×N .

The RMSE and NAE are used here to measure the performance of the

implemented algorithm, such that

RMSE =

√
Σ(f̂(i, j)− f(i, j))

2

M ×N
, and NAE =

∑
|(f̂(i, j)− f(i, j))|∑

|f̂(i, j)|
.

The next section discuses some experimental results of the image deconvolution

described in this chapter, including separable and nonseparable PSF. However,

more experimental results and comparisons with other image deblurring methods

will be detailed in the next chapter.



8.4 Examples 161

8.4 Examples

This section presents four examples of the implemented BID. Examples 8.1 and

8.2 consider the image restoration when the PSF is separable. Examples 8.3 and

8.4 provide an illustration of the image restoration when the PSF is not separable.

Example 8.1. Consider an exact image of size 128×128 pixels that is convolved

with a separable PSF of size 11 × 11 pixels and the errors E = 1e − 3 and

N = 1e − 4, such that the SNR = 0.6536dB. The exact and distorted images

can be seen in Figure 8.3 (a) and (b). To estimate the convolved PSF, two

AGCD computations are performed on the degraded image, by considering two

rows and two columns. Figure 8.4, demonstrates the obtained ranks for each

AGCD computation, which suggests that the estimated PSF is of dimension 11

in both the x and y directions. It can be noted that the residual and the first

principal angle methods show similar degree. The entries of the estimated PSF

are calculated based on the residual method and the SNTLN output, such that

the coefficients are calculated by the LS method. Figure 8.2 illustrates the exact

PSF and the estimated PSF, where the error between the exact and the computed

PSF is (8.6146e− 04). The exact, degraded, and restored images are illustrated

in Figure 8.3. The restored image is obtained using polynomial division:

First by deconvolving each row of the degraded image with the computed row

vector, which represents the horizontal components of the computed PSF.

Second by deconvolving each column in the matrix that resulted from the first

step, with the computed column vector, which represents the vertical com-
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Figure 8.1: The rank estimation based on residual and first principal angle of two
inexact polynomials, for Example 8.1: (a) in column direction, (b) in row direction.
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(b) Estimated PSF

Figure 8.2: The exact and restored PSF, for Example 8.1.
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(a) Exact image (b) Distorted image (c) Restored image

Figure 8.3: Image restoration using the described method, for Example 8.1.

Table 8.1: The quality measurements for Example 8.1

Image Measurement Degraded Restored Restored
Aerial SNR 6.53316e− 01 1.73112e+ 01 Restored

PSNR 3.63886e+ 01 7.56052e+ 01 Restored
RMSE 1.26655e− 03 1.78256e− 04 Restored
NAE 2.18448e− 01 2.85492e− 02 Restored

ponents of the computed PSF.

Table 8.1 describes the quality measures of the exact, the distorted, and the

restored images.

Example 8.2. This experiment is performed on two exact images, each of which

is of size 128×128 pixels. Each exact image is convolved with a separable PSF of

size 7× 11 pixels, and the errors E and N provided in Table 8.2. To determinate

the convolved separable PSF from the distorted images, two AGCD computations

are used, by considering a row and a column from each image. The calculated

ranks are shown in Figure 8.4 using the residual method and based on the QR

decomposition. The obtained degree of the AGCD polynomial of two rows is 10,

and that of two columns is 6. Thus the estimated PSF of size 7× 11. Figure 8.5
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Figure 8.4: The rank estimation based on residual of two inexact polynomials for
Example 8.2: (a) in column direction, (b) in row direction.

shows the exact and the estimated PSF, and the error in the computed AGCD is

(5.7118e− 06). The exact, blurred and restored images are shown in Figures 8.6
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Figure 8.5: The exact and restored PSF for Example 8.2.

and 8.7. It can be seen that the method presented in this chapter yields improved

deblurred images, as shown in Table 8.2.

Example 8.3. This example considers the methods of AGCD that have been

described in this chapter. Consider two exact images, each of size 128 × 128
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(a) Exact image (b) Distorted image (c) Restored image

Figure 8.6: Image restoration for Grass−image in Example 8.2.

(a) Exact image (b) Distorted image (c) Restored image

Figure 8.7: Image restoration for Aerial−image in Example 8.2.

pixels. These images are convolved with an arbitrary PSF of size 9 × 7 pixels,

the measurement errors E, and noise N, such that the blurring model in Eq. 4.1

is assumed for each image. Thus the distorted images are constructed based on

the information provided in Table 8.3. The convolved PSF here is generated such

that its rank is larger than one, and it is scaled such that its entries sum to one.

The true images and their degraded forms are shown in Figure 8.8, such that the

degraded Rice-image has SNR = 2.78 and the Blobs-image has SNR = 3.80.

Consider the degraded versions of Rice-image and Blobs-image, with no prior

knowledge of the convolved PSF or the noise levels. The implementation of an

AGCD algorithm on both images, using Method 1 as described in this chapter,
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Table 8.2: The quality measurements of the restored images in Example 8.2

Image E N Measurement Degraded Restored
Grass 1.0000e− 05 1.0000e− 10 SNR −1.33956e+ 00 7.67426e+ 01

PSNR 3.36665e+ 01 2.15830e+ 02
RMSE 1.45121e− 03 1.60731e− 07
NAE 2.26932e− 01 2.42103e− 05

Aerial 1.0000e− 09 1.0000e− 11 SNR 1.32079e+ 00 8.82165e+ 01
PSNR 3.97401e+ 01 2.36667e+ 02
RMSE 1.07114e− 03 5.67050e− 08
NAE 1.76023e− 01 9.70245e− 06

Table 8.3: Test data information for Example 8.3.

Image E N SNR PSNR RMSE NAE
rice 1e− 06 1e− 03 2.78331e+ 00 2.72609e+ 01 1.99906e− 03 6.28097e− 01

blobs 1e− 05 1e− 07 3.80258e+ 00 2.63399e+ 01 2.09327e− 03 3.56309e− 01

(a) Clean Rice-image (b) Clean Blobs-image

(c) Distorted Rice-image (d) Distorted Blobs-image

Figure 8.8: Test images, for Example 8.3: (a) and (b) are the original images,
and their degraded versions (c) and (d) respectively.
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Figure 8.9: The exact and estimated PSFs, using Method 1 of AGCD computa-
tions, for Example 8.3: (a) is the exact PSF, (b) Estimated 1: is the PSF calculated
by considering the rows, resulted in e1 = 0.3099, (c) Estimated 2: is the PSF cal-
culated by considering the columns, resulted in e2 = 0.0078, and (d) is the average
of the estimated PSFs, resulted in e3 = 0.1557.

yields two estimations of the PSF, as shown in Figure 8.9. One is the result of

using the AGCD algorithm on each row of the degraded images, that is the scaled

d(m,n) in Eq. 7.24, and the other is formed by considering the columns, that is

the scaled d(m,n) in Eq. 7.25. It can be seen that, although the AGCD algorithm

gives a good result in one computation, as shown in (c) with error e2 = 0.00078,

it gives a poor result in the other one, as shown (b) with error e1 = 0.3099, and

thus applying Eq. 7.29 results in (d) with error e3 = 0.1557.

The computation of the AGCD is performed on each univariate polynomial that

corresponds to each row in Rice-image and Blobs-image. Figure 8.10 (a) shows

that the most frequent computed rank, in this case, is d̃1 = 8. Figure 8.10
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Figure 8.10: Rank estimation for Example 8.3

(b) shows that the most frequent computed rank is d̃2 = 6, by considering the

columns of Rice-image and Blobs-image. Thus the degree of the estimated PSF

equals 9 in the x direction and 7 in the y direction. It was pointed out above that

the computation method of AGCDs, presented in Algorithm 4, may yield better

results if the coefficients are calculated based on the most frequent computed

rank. To examine the difference between Method 1 and Method 2, let the input

data be exactly the same as given in Table 8.3. The rank estimation of two

degraded images gives d̃1 = 8 and d̃2 = 6 as the most frequent computed ranks

with respect to variables x and y, respectively. Figure 8.11, shows a significant

improvement in the estimated PSF as the output of Eq. 7.29, with an error

of (0.0075). Consequently, the restored images are improved too, as shown in

Figure 8.4. The restored images are then obtained using polynomial division of
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Figure 8.11: The exact and estimated PSFs, using Method 2 of AGCD computa-
tions for Example 8.3: (a) is the exact PSF, (b) Estimated 1: is the PSF calculated
by considering the rows, resulted in e1 = 0.0097, (c) Estimated 2: is the PSF cal-
culated by considering the columns, resulted in e2 = 0.0073, and (d) is the average
of the estimated PSFs resulted in e3 = 0.0075.
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their degraded versions and the computed PSF, such that the computed PSF

is the one resulting from Eq. 7.29. Figure 8.12 demonstrates images restoration

using Method 1 in (a) and (b), and Method 2 in (c) and (d). The performance

(a) (b)

(c) (d)

Figure 8.12: Image restoration using the computed PSF, where (a) and (b) are
restored based on Method 1, and (c) and (d) are restored based on Method 2 for
Example 8.3.

measurements for the restored images are shown in Table 8.4. In general, Method

2 provides more accurate results compared to Method 1, and therefore Method 2

is the best way to solve the BID problem.

Example 8.4. This experiment is performed using Method 2 on two exact im-

ages, each of size 128×128 pixels. The degraded images are formed using a PSF of

size 11×11 pixels and errors E and N as shown in Table 8.5. The estimated degree

is 11 in both variable x and y, as shown in Figure 8.13, because the most frequent
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Table 8.4: The quality measures of the restored images in Example 8.3

Image Measurement Method 1 Method 2
rice SNR 4.23633e+ 00 8.27808e+ 00

PSNR 4.15697e+ 01 4.69995e+ 01
RMSE 9.77499e− 04 7.45091e− 04
NAE 2.82914e− 01 2.21285e− 01

blobs SNR 5.48644e+ 00 2.40934e+ 01
PSNR 3.10015e+ 01 7.42875e+ 01
RMSE 1.65806e− 03 1.90396e− 04
NAE 3.38758e− 01 3.46211e− 02

calculated rank is 10 in variables x and y. Subsequently, the PSF is estimated
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Figure 8.13: The rank estimation for Example 8.4

using LS, based on the computed degree. The exact and the estimated PSF are

illustrated in Figure 8.14, and the error in the computed AGCD is (4.0762e−04).

In particular, the error resulting by considering the rows of the two distorted

images in the estimated PSF is (3.7736e − 04) , and is (3.4754e − 04) by con-
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Figure 8.14: The exact and estimated PSFs, using Method 2 of AGCD computa-
tions, for Example 8.4: (a) is the exact PSF, (b) is the estimated PSF with error
(4.0762e− 04).

sidering their columns. This means that the AGCD algorithm has achieved the

best result with the column-wise computation. However, the average of row-wise

computation and column-wise computation is considered for image restoration.

It has been found that the resulting errors in the estimated PSFs, using the three

methods LS, LU and QR are equal, at (4.0762e − 04). Figures 8.15 and 8.16

demonstrate the result of image restoration for the two degraded images, with

no prior knowledge of the PSF or the noise level. Table 8.5, shows a notable

(a) Exact (b) Distorted (c) Restored

Figure 8.15: Image restoration, using the computed PSF from Method 2, for
Example 8.4.
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(a) Exact (b) distorted (c) Restored

Figure 8.16: Image restoration, using the computed PSF from Method 2, for
Example 8.4.

improvement in the quality of the restored images.

Table 8.5: The quality measurements of the restored images in Example 8.4

Image E N Measurement Degraded Restored
Lena 1.0000e− 03 1.0000e− 07 SNR 4.05850e+ 00 2.67272e+ 01

PSNR 3.95120e+ 01 9.25314e+ 01
RMSE 1.08342e− 03 7.64710e− 05
NAE 2.30603e− 01 1.71584e− 02

Aerial 1.0000e− 04 1.0000e− 08 SNR 4.17403e+ 00 3.44451e+ 01
PSNR 3.33368e+ 01 1.06735e+ 02
RMSE 1.47533e− 03 3.75903e− 05
NAE 3.39274e− 01 8.28852e− 03

8.5 Summary

This chapter has described two methods for image deconvolution, after which

the PSF in estimated. One method considered the separable PSF and the other

considered the nonseparable PSF. The first method uses two Toeplitz matrices for

the deconvolution with the degraded image, where each Toeplitz is formed by a

1D PSF. This accelerates the solution of the deconvolution problem. The second

method uses the Fourier transform for the deconvolution, implementing a 2D FFT
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computation. Image restoration is achieved in two steps: first, by determining

the PSF, then by deconvolving the degraded image with the computed PSF. The

experimental results have been evaluated using the SNR, PSNR, RMSE, and

NAE measures.

Results from the BID methods that are described in this thesis will be compared

with state-of-the-art techniques in Chapter 9.



Chapter 9

Experimental results

The implementation of an AGCD computation in the BID problem was consid-

ered in Chapter 7. The performance of the described method can be seen in

Example 7.1, where the degraded images have been improved to some extent.

This case, however, is appropriate with a separable form of PSF. Chapter 7 has

solved the BID problem for an arbitrary form of PSF. The implemented solution

of the BID problem can be seen in Examples 8.1, 8.2, 8.3, and 8.4.

This chapter analyses more examples for both cases, where solving the BID prob-

lem can restore a distorted based on separable, or nonseparable PSF. All re-

sults are compared with the state-of-the-art methods, such as the Wiener filter,

regularised filter, the Lucy-Richardson method, and blind maximum likelihood

deconvolution, and where each has built-in MATLAB function. The state-of-the-

art methods were discussed in Chapter 2, where it was noted that all of them

require the knowledge a priori of the PSF or the noise. The threshold arguments

in the state-of-the-art methods include the PSF and noise level. The work in this

thesis does not require prior knowledge of the PSF and noise level, and thus it has
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an advantage over the other methods. The noise level should be omitted; to be

more precise, it will be specified to zero in the MATLAB functions: deconvwnr,

deconvreg, deconvlucy, and deconvblind.

(a) Exact image (b) Distorted image (c) Restored M1

(d) Restored M2 (e) Restored M3 (f) Restored M4

(g) Restored M5

Figure 9.1: Image restoration using five deblurring methods of
Cameraman−image presented in Example 9.1: (a) The original image; (b)
the distorted image; (c) the proposed method in this thesis; (d) Lucy-Richardson;
(e) regularised filter; (f) Wiener filter; (g) maximum likelihood.

Example 9.1. Consider an exact image F of size 265× 265 pixels, distorted by
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a PSF of size 7× 11, E = 1e− 03, and N = 1e− 04, such that

SNR = 7.37779e+ 00, PSNR = 4.27513e+ 01,

NAE = 2.05333e− 01, RMSE = 4.60709e− 04.

Figure 9.1 shows the exact, degraded, and restored images.

Table 9.1: Comparison of five deblurring methods. M1: The proposed method
in this thesis, M2: Lucy-Richardson, M3: Regularised filter, M4:Wiener filter, M5:
Maximum likelihood.

Image Methods PSF SNR PSNR RMSE NAE

Cameraman M1 Computed 1.71819e+ 01 6.42544e+ 01 1.57215e− 04 6.42144e− 02

M2 Exact 9.10841e+ 00 4.50260e+ 01 4.11181e− 04 1.73433e− 01

M3 Exact 2.05577e+ 01 7.22362e+ 01 1.05480e− 04 4.57103e− 02

M4 Exact 1.38809e+ 01 5.95191e+ 01 1.99214e− 04 8.19056e− 02

M5 Exact 9.16524e+ 00 4.54500e+ 01 4.02555e− 04 1.68222e− 01

Example 9.2. Consider two degraded images of two dissimilar scenes, distorted

by a separable 7 × 11 PSF, and the errors E and N, as shown in Table 9.2, and

where each exact image is of order 128× 128.

Table 9.2: Test data information.

Image E N SNR PSNR RMSE NAE

Mandrill 1e− 03 1e− 07 2.12109e+ 00 3.80893e+ 01 1.16330e− 03 2.21922e− 01

Cameraman 1e− 04 1e− 06 4.81392e+ 00 3.38244e+ 01 1.43980e− 03 3.34378e− 01

The original, degraded, and restored images of the mandrill and the camera-

man are illustrated in Figures 9.2, and 9.3 respectively.
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(a) Exact image (b) Distorted image (c) Restored M1

(d) Restored M2 (e) Restored M3 (f) Restored M4

(g) Restored M5

Figure 9.2: Image restoration using five deblurring methods of Mandril−image
presented in Example 9.2: (a) the original image; (b) the distorted image; (c) the
proposed method in this thesis; (d) Lucy-Richardson; (e) regularised filter; (f)
Wiener filter; (g) maximum likelihood.
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(a) Exact image (b) Distorted image (c) Restored M1

(d) Restored M2 (e) Restored M3 (f) Restored M4

(g) Restored M5

Figure 9.3: Image restoration using five deblurring methods of
Cameraman−image presented in Example 9.2: (a) the original image; (b)
the distorted image; (c) the proposed method in this thesis; (d) Lucy-Richardson;
(e) regularised filter; (f) Wiener filter; (g) maximum likelihood.

The obtained images using the state-of-the-art methods with the method de-

scribed in this thesis are compared, with regard to the quantity measures SNR,

PSNR, RMSE, and NAE. Table 9.3 shows that the proposed method gives the
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best results of the five deblurring methods.

Table 9.3: Comparison of five deblurring methods. M1: The proposed method in
this thesis, M2: Lucy-Richardson, M3: Regularised filter, M4: Wiener filter, M5:
Maximum likelihood.

Image Methods PSF SNR PSNR RMSE NAE

Mandrill M1 Computed 3.74384e+ 01 1.14291e+ 02 2.57629e− 05 5.04868e− 03

M2 Exact 3.21622e+ 00 4.14797e+ 01 9.81908e− 04 1.77973e− 01

M3 Exact 7.15808e+ 00 4.94026e+ 01 6.60732e− 04 1.23529e− 01

M4 Exact 2.46838e+ 01 8.13193e+ 01 1.33956e− 04 2.70837e− 02

M5 Exact 3.23316e+ 00 4.14918e+ 01 9.81310e− 04 1.78080e− 01

Cameraman M1 Computed 5.48765e+ 01 1.49276e+ 02 4.48032e− 06 9.62942e− 04

M2 Exact 8.17104e+ 00 4.73201e+ 01 7.33240e− 04 1.25952e− 01

M3 Exact 1.49994e+ 01 6.05686e+ 01 3.78058e− 04 7.59597e− 02

M4 Exact 3.39301e+ 01 9.87412e+ 01 5.60598e− 05 1.25656e− 02

M5 Exact 8.21684e+ 00 4.74460e+ 01 7.28640e− 04 1.24617e− 01

Example 9.3. This example considers two dissimilar images, such that each is

a degraded version of an exact image of size 128 × 128. Table 9.4 describes the

errors E in a nonseparable PSF of size 7 × 11 pixels, and additive noise N that

are used to generate the test images.

Table 9.4: Test data information.

Image E N SNR PSNR RMSE NAE

Lena 1e− 04 1e− 07 1.89393e+ 01 7.46394e+ 01 1.87075e− 04 3.81702e− 02

Cameraman 1e− 05 1e− 06 1.86431e+ 01 6.39916e+ 01 3.18589e− 04 7.34911e− 02

The restored images obtained using the described Method 1 in Chapter 7 are

compared with the other methods in Figures 9.4 and 9.5. Table 9.5 describes the

quality measures for each Lena-image and Cameraman-image. It shows that the
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best results are obtained using the proposed method. The restored images using

the proposed method and the Wiener filter give comparable results in Lena-image,

while the proposed method works much better for the Cameraman-image.

(a) Exact image (b) Distorted image (c) Restored M1

(d) Restored M2 (e) Restored M3 (f) Restored M4

(g) Restored M5

Figure 9.4: Image restoration using five deblurring methods of Lena−image pre-
sented in Example 9.3: (a) the original image; (b) the distorted image; (c) the
proposed method using Method 1 as described in Chapter 7; (d) Lucy-Richardson;
(e) regularised filter; (f) Wiener filter; (g) maximum likelihood.
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(a) Exact image (b) Distorted image (c) Restored M1

(d) Restored M2 (e) Restored M3 (f) Restored M4

(g) Restored M5

Figure 9.5: Image restoration using five deblurring methods of
Cameraman−image presented in Example 9.3: (a) the original image; (b)
the distorted image; (c) the proposed method using Method 1 as described in
Chapter 7; (d) Lucy-Richardson; (e) regularised filter; (f) Wiener filter; (g)
maximum likelihood.
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Table 9.5: Comparison of five deblurring methods. M1: The proposed method
in this thesis, M2: Lucy-Richardson, M3: Regularised filter, M4:Wiener filter, M5:
Maximum likelihood.

Image Methods PSF SNR PSNR RMSE NAE

Lena M1 Computed 1.89393e+ 01 7.46394e+ 01 1.87075e− 04 3.81702e− 02

M2 Exact 6.68150e+ 00 4.14797e+ 01 8.19420e− 04 1.77973e− 01

M3 Exact 1.77809e+ 01 7.22342e+ 01 2.10981e− 04 4.28863e− 02

M4 Exact 1.89349e+ 01 7.46187e+ 01 1.87269e− 04 3.82255e− 02

M5 Exact 6.77892e+ 00 4.50161e+ 01 8.22770e− 04 1.69682e− 01

Cameraman M1 Computed 4.55410e+ 01 1.26863e+ 02 1.37404e− 05 3.06153e− 03

M2 Exact 8.01989e+ 00 4.69717e+ 01 7.46128e− 04 1.30980e− 01

M3 Exact 1.64757e+ 01 6.45442e+ 01 3.09907e− 04 6.02402e− 02

M4 Exact 1.86431e+ 01 6.39916e+ 01 3.18589e− 04 7.34911e− 02

M5 Exact 8.15652e+ 00 4.72390e+ 01 7.36221e− 04 1.29591e− 01

Example 9.4. This experiment compares the obtained results of Method 2 in

Example 8.4 with the state-of-the-art methods. Example 8.4 demonstrated the

success of using Method 2 over Method 1 when each assumes the arbitrary form

of the PSF and uses the HPC to calculate the AGCDs of two polynomials. The

exact images are of size 128× 128 pixels, where each convolved by a PSF of size

11× 11 pixels. The errors in the Lena-image are E = 1e− 03 and N = 1e− 07,

which result in SNR = 4.05850 + 00, and the errors in Cameraman-image are

E = 1e− 04 and N = 1e− 08, which result in SNR = 4.17403e+ 00.

It can be seen that there is a remarkable improvement in the restored images,

based on Figures 8.15 and 8.16, and Table 8.5; however, it is important to com-

pare these outputs with the other methods. Table 9.6 provides a comparison of

the proposed solution of the BID problem that uses Method 2 described in Chap-

ter 7 with four deblurring methods: Lucy-Richardson, regularised filter, Wiener
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filter, and maximum likelihood.

Table 9.6: Comparison of five deblurring methods, for Example 9.4. M1:
Method 2 as described in Chapter 7, M2: Lucy-Richardson, M3: Regularised filter,
M4:Wiener filter, M5: Maximum likelihood.

Image Methods PSF SNR PSNR RMSE NAE

Lena M1 Computed 3.04157e+ 01 1.01318e+ 02 4.92819e− 05 1.07073e− 02

M2 Exact 6.04064e+ 00 4.38625e+ 01 8.71621e− 04 1.76771e− 01

M3 Exact 1.93994e+ 01 7.59614e+ 01 1.75110e− 04 3.63449e− 02

M4 Exact 2.67272e+ 01 9.25314e+ 01 7.64710e− 05 1.71584e− 02

M5 Exact 6.14273e+ 00 4.37759e+ 01 8.75403e− 04 1.79228e− 01

Cameraman M1 Computed 3.44451e+ 01 1.06735e+ 02 3.75903e− 05 8.28852e− 03

M2 Exact 6.49265e+ 00 4.13813e+ 01 9.86750e− 04 2.11048e− 01

M3 Exact 1.59412e+ 01 5.58216e+ 01 6.98177e− 05 1.10849e− 01

M4 Exact 3.40906e+ 01 9.43519e+ 01 1.37404e− 05 1.66366e− 02

M5 Exact 6.62351e+ 00 4.13600e+ 01 9.87799e− 04 2.14263e− 01
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(a) Exact image (b) Distorted image (c) Restored M1

(d) Restored M2 (e) Restored M3 (f) Restored M4

(g) Restored M5

Figure 9.6: Image restoration using five deblurring methods of Lena−image pre-
sented in Example 9.4: (a) the original image; (b) the distorted image; (c) the
proposed method using Method 2 as described in Chapter 7; (d) Lucy-Richardson;
(e) regularised filter; (f) Wiener filter; (g) maximum likelihood.
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(a) Exact image (b) Distorted image (c) Restored M1

(d) Restored M2 (e) Restored M3 (f) Restored M4

(g) Restored M5

Figure 9.7: Image restoration using five deblurring methods of
Cameraman−image presented in Example 9.4: (a) the original image; (b)
the distorted image; (c) the proposed method using Method 2 as described in
Chapter 7; (d) Lucy-Richardson; (e) regularised filter; (f) Wiener filter; (g)
maximum likelihood.
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Example 9.5. Consider an exact image F of order 200 × 240 pixels, distorted

by a PSF of size 13× 13 pixels, and the errors E = (1e− 04) and N = (1e− 06).

Therefore a degraded image G of F is obtained with SNR = (−2.63651e − 01),

PSNR = (2.39979e+ 01), RMSE = (1.37490e− 03), and NAE = (1.18966e+ 00).

The method described in Chapter 7 is applied to restore an image from its de-

graded version with no prior information of the PSF and noise level, and the

results are shown in Figure 9.8.
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Figure 9.8: The exact and estimated PSF.

In particular, the PSF in Figure 9.8 is obtained using two AGCD compu-

tations of two polynomials, one by considering two rows of G and the other by

considering two columns of G. These polynomials are normalised and prepro-

cessed, such that two modified Sylvester matrices are obtained, each of the form

S(ḡ1(θ0, w), α0ḡ2(θ0, w)).

The results show that α0 = 1.0773 and θ0 = 1.0028 in the row-wise, and α0 =

0.9337 and θ0 = 1.0004 in the column-wise computation. The degree of an AGCD

of two inexact polynomials is equal to the rank loss of the modified Sylvester ma-

trix of two inexact polynomials. Thus the estimated degrees in the two AGCD



188

50 100 150 200 250

−6

−4

−2

0

k

lo
g 10

 r
es

id
ua

l
k=12

(a) in column direction

50 100 150 200

−6

−4

−2

0

k

lo
g 10

 r
es

id
ua

l

k=12

(b) in row direction

Figure 9.9: The rank estimation based on the residual and QR updating methods.

computations is 13 in both in column and row directions, using the residual

method based on the QR decomposition tool for rank estimation, as shown in

Figure 9.9.

This was followed by performing two SNTLN computations on the polyno-

mials of two rows and likewise on the polynomials of two columns from G, in

order to calculate corrected forms of each. Figure 9.10 shows the normalised

singular values of Sylvester matrices S(g1(x), αg2(x)), S(ḡ1(θ, w), αḡ2(θ, w)), and

S(g̃1(w), αg̃2(w)). It can be seen that the rank of the Sylvester matrices of the

two polynomials is equal to 410 in column direction, and 490 in row direction.
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Figure 9.10: The normalized singular values of S(ḡ1(θ, w), αḡ2(θ, w)) ∗,
S(g1(x), αg2(x)) ◦, and S(g̃1(w), αg̃2(w)) ♦.
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(a) Exact image (b) Distorted image (c) Restored M1

(d) Restored M2 (e) Restored M3 (f) Restored M4

(g) Restored M5

Figure 9.11: Image restoration using five deblurring methods of
Calculator−image presented in Example 9.5: (a) the original image; (b)
the distorted image; (c) the proposed method using Method 2 as described in
Chapter 7; (d) Lucy-Richardson; (e) regularised filter; (f) Wiener filter; (g)
maximum likelihood.

Subsequently, the coefficients of the PSF were computed using the corrected

forms of the two polynomials in the modified Sylvester matrices, and which are

the input of the LS method. The output from these procedures is two AGCD

polynomials, where one represents the horizontal components and the other rep-

resents the vertical components of the PSF, and their multiplication forms the
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estimated PSF. It can be seen that the estimated PSF is an approximation of

the exact PSF, and the error in the GCD is (4.022e− 05).

The deconvolution of G with the computed PSF, using polynomial division, yields

a restored image with SNR = (6.29876e + 01). Figure 9.11 shows the image

restoration results of the five algorithms, using the computed PSF and without

the prior knowledge of the noise level. It can be noticed from this figure, that the

restored images in (c), (e), and (f) are visually similar in their appearance, but

they are different in their noise level and error measurement.

Table 9.7: Comparison of five deblurring methods. M1: The proposed method,
M2: Lucy-Richardson, M3: Regularised filter, M4:Wiener filter, M5: Maximum
likelihood.

Image Methods PSF SNR PSNR RMSE NAE

Calculator M1 Computed 6.29876e+ 01 1.81059e+ 02 5.34235e− 07 3.45151e− 04

M2 Computed 3.92373e+ 00 4.51907e+ 01 4.76514e− 04 2.92871e− 01

M3 Computed 3.78079e+ 01 1.20431e+ 02 1.10725e− 05 8.11109e− 03

M4 Computed 4.08961e+ 01 1.29768e+ 02 6.94235e− 06 4.85405e− 03

M5 Computed 4.00354e+ 00 4.54065e+ 01 4.71401e− 04 2.85128e− 01

Table 9.7 describes the quality measures for the five deblurring methods: each

method deconvolves the degraded image G with the computed PSF obtained from

the AGCD computations. This experiment used the computed PSF, that resulted

from AGCD computation, for the comparisons with the other deblurring methods.

More precisely, each MATLAB function: deconvlucy, deconvreg, deconvwnr,

and deconvblind employs the estimated PSF in the restoration process. The

method using AGCD computation based on the Sylvester matrix approach yields

the best results.
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Example 9.6. Given two blurred images G1 and G2 as in Figure 9.12, the exact

and the estimated PSF are shown in Figure 9.13. Figures 9.15 and 9.16 show the

obtained results for each image using MATLAB built-in functions, with known

exact PSF.
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Figure 9.12: Two different degraded aerial images.

These images are degraded versions of original images F1 and G2, each of order

512×512 and convolved with 11×11 nonseparable PSF. The errors are specified

in Table 9.8.

Table 9.8: Test data information in Example 9.6.

Image E N SNR PSNR RMSE NAE

Aerial 1 1e− 04 1e− 05 2.91659e+ 00 3.94656e+ 01 2.71484e− 04 1.65648e− 01

Aerial 2 1e− 05 1e− 05 6.66705e+ 00 4.58388e+ 01 1.97403e− 04 1.34142e− 01
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Figure 9.14: The estimated ranks in: (a) x variable, (b) y variable.
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Figure 9.13: The exact and estimated PSF.

The most frequent estimated rank loss are equal to 10, thus the degree in

both variables x and y is equal to 11, as shown in the histogram with normal fit

in Figure 9.14. Then, the PSF is calculated using the LS method, and the error

in the GCD is (1.5194e− 04).
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(a) Restored M1 (b) Restored M2 (c) Restored M3

(d) Restored M4 (e) Restored M5

Figure 9.15: Image restoration of Aerial l image using five deblurring methods:
(a) the proposed method using HPC; (b) Lucy-Richardson; (c) regularised filter;
(d) Wiener filter; (e) maximum likelihood.

(a) Restored M1 (b) Restored M2 (c) Restored M3

(d) Restored M4 (e) Restored M5

Figure 9.16: Image restoration of Aerial 2 image using five deblurring methods:
(a) the proposed method using HPC; (b) Lucy-Richardson; (c) regularised filter;
(d) Wiener filter; (e) maximum likelihood.

Table 9.6 describes the noise level and the errors in the restored images using
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the five algorithms.

Table 9.9: Comparison of five deblurring methods. M1: The proposed method,
M2: Lucy-Richardson, M3: Regularised filter, M4:Wiener filter, M5: Maximum
likelihood.

Image Methods PSF SNR PSNR RMSE NAE

Aerial 1 M1 Computed 2.77919e+ 01 9.44455e+ 01 1.73729e− 05 1.12771e− 02

M2 Exact 4.01077e+ 00 3.80385e+ 01 2.91565e− 04 1.90565e− 01

M3 Exact 9.85029e+ 00 5.30974e+ 01 1.37321e− 04 8.88698e− 02

M4 Exact 1.70739e+ 01 6.79635e+ 01 6.53013e− 05 4.30298e− 02

M5 Exact 4.05273e+ 00 3.81147e+ 01 2.90455e− 04 1.89930e− 01

Aerial 2 M1 Computed 3.36956e+ 01 1.06170e+ 02 9.66670e− 06 7.60212e− 03

M2 Exact 8.33640e+ 00 4.84204e+ 01 1.73498e− 04 1.23611e− 01

M3 Exact 1.57198e+ 01 6.67295e+ 01 6.94573e− 05 5.31436e− 02

M4 Exact 1.95935e+ 01 7.44120e+ 01 4.73036e− 05 3.71912e− 02

M5 Exact 8.38941e+ 00 4.85290e+ 01 1.72558e− 04 1.23084e− 01

It is noted that, the Lucy-Richardson and maximum likelihood deblurring

methods produce ringing artifacts in the restored images, while the ringing arti-

facts is less in the other deblurring methods. It is also noted that, if the Wiener

filter has given the exact PSF it produces, in some experiments not all, a compa-

rable results to the proposed method. In general, it is clear that the best results

are achieved using the proposed method which is based on the Sylvester matrix,

where no prior information of the PSF and noise are given.

The approach described in this work, is able to solve the real world applica-

tions, as it will be show in the next example.
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Figure 9.17: Blind deblurring process for one distorted coloured image, where
the blur and noise are unknown. R: Red, G: Green, B: Blue.

Example 9.7. Figure 9.17 illustrates the blind deblurring process given one

distorted image, which is captured by a smartphone’s camera. When the blurring

function and the noise are unknown, the problem can be solved using the GCD
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algorithm on any two channels of the coloured image (i.e. Red, Green, and

Blue), where each contains the same blurring function. In this example the red

and blue, are sufficient to estimate the PSF. The restored image is obtained using

the polynomial division of the given blurred image and the calculated PSF. It

can be seen from the restored image that the word (Perl) is clearly recognizable.

9.1 Summary

This chapter has demonstrated the success of image restoration using the Sylvester

matrix approach for the AGCD computation of two inexact polynomials com-

pared with the state-of-the-art methods.



Chapter 10

Conclusion and future work

The main work in this thesis has been to present a solution for the BID problem

using polynomial computations. It was shown that the BID problem exists in

many applications and several methods have been proposed in the literature to

solve it. However, these methods require partial knowledge of the blurred image,

including the convolved PSF and the noise level. The proposed method in this

thesis implements the GCD computation and polynomial division to solve the

BID problem, and does not require prior knowledge of the PSF or the noise to

reconstruct the exact image from its degraded version.

This problem is solved for the spatially invariant distortion system, where each

pixel in the degraded image has the same blur effect, in particular, the same

PSF. The separable PSF can be calculated using two GCD computations, by

considering two rows and two columns from the blurred image such that each is

represented in polynomial forms. In a noise-free environment, the GCD of two

exact polynomials is considered and the PSF can be obtained exactly. However,

an approximation of the exact PSF can only be obtained when the computation
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is performed in a floating point arithmetic; a noise being introduced into the

blurring system leads to inexact polynomials. In particular, additive noise leads

the exact polynomials to be coprime; thus, an AGCD of two inexact polynomial

is considered.

Several algorithms were proposed to define an AGCD of two inexact polynomials;

each definition may find different solutions to each problem. In this thesis the

degree of an AGCD of two inexact polynomials is considered to be correct when

it is equal to the degree of the GCD of their exact polynomials. The AGCD

algorithm implemented, based on a method developed in [84], uses the Sylvester

resultant matrix and its subresultant matrices, which were defined in Chapter 5.

However, three preprocessing operations were performed on the Sylvester matrix

to enhance the computations, because of the partitioned nature of the Sylvester

matrix of two polynomials.

An AGCD of two inexact polynomials is calculated by determining its degree

first. This can be achieved by applying different tools, described in chapter 6,

on the modified Sylvester matrix of two inexact polynomials. Two methods were

applied to the modified Sylvester resultant matrix and its subresultant matrices

to define the degree of an AGCD: the first principle angle and the residual of an

approximate linear equation. These methods were studied in [88], and described

in Chapter 6, where it was proved that both methods yield similar rank loss with

different column index. Using the QR updating technique in the residual method

reduces the computation complexity from O(n4) flops to O(n3) flops.

After the degree of an AGCD was defined the method of SNTLN proposed in

[87] was implemented to calculate a minimum perturbation to be added into the

Sylvester matrix of two inexact polynomials, such that they have a nonconstant
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common factor. The application of this method to the BID problem allows to ob-

tain a much better approximation for the exact PSF. The coefficients of an AGCD

polynomial can then be obtained using the LS method on the corrected two in-

exact polynomials. The experimental results show that using the LS method is

more efficient than using the LU or the QR decomposition methods.

The calculated degrees and coefficients construct the dimensions and the entries

of the estimated PSF. Similarly, this solution was applied to identify the non-

separable PSF by considering each column and row of two degraded images, such

that each image has the same PSF. This algorithm has been implemented using

the HPC to accelerate the computation of AGCDs. Two techniques to estimate

the PSF have been investigated. It was found that using Method 2 yields more

accurate results than Method 1. Method 2 applies the majority voting method

on the calculated degrees for each AGCD computation, before the coefficients

computations, while, Method 1 calculates the degree and its coefficients for each

AGCD computation. The exact images were then reconstructed using polynomial

division of the degraded images and the estimated PSF; this can be achieved by

using a Toeplitz matrix or the FFT method.

The method introduced in this thesis has provided a reliable solution for the BID

problem, compared with the state-of-the-art methods as shown in Chapter 9.

This method is implemented with the use of parallel computing to solve an arbi-

trary forms of PSF. The experimental results in this thesis, with different sizes

of PSFs and noise levels, have shown the adequacy of the described deblurring

method.

The main contributions of this work can be listed as below:

• The 1D and 2D PSF identification, using AGCD computations and with no
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prior information of the PSF and noise level.

• Fast deconvolution of a single degraded image and the calculated separable

PSF, without using the DFT.

• Fast deconvolution of two different degraded images and the calculated

separable PSF, without using the DFT.

• Fast deconvolution of two different degraded images and the calculated

arbitrary form of PSF, implemented in parallel network architecture.

One possible improvement for this work is to consider a fast deconvolution al-

gorithm for efficient computation with structured matrices. This algorithm can

then be used to deconvolve the PSF array from the blurred image, in the spa-

tial domain. Furthermore, future work can consider the deconvolution of the

PSF from the corrected degraded images, which correspond to the corrected in-

exact polynomials resulted from SNTLN. Another direction for future work is

the extension of the described algorithm using AGCD computation, to consider

different applications such as video deblurring and spatially variant deblurring.

For example, blurs may occur in many frames of a video when the camera is

shaking. The proposed approach can be extended into three-dimension (3D) to

restore exact frames from distorted ones caused by camera shake.
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